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Preface

This volume contains the papers presented at the 50th FATCS International Conference
on Automata, Languages and Programming (ICALP 2023), held in Paderborn, Germany,
during July 10-14, 2023. ICALP is a series of annual conferences of the Furopean Association
for Theoretical Computer Science (EATCS), which first took place in 1972.

This year, the ICALP program consisted of two tracks:
Track A: Algorithms, Complexity, and Games
Track B: Automata, Logic, Semantics, and Theory of Programming

In response to the call for papers, a total of 443 eligible, anonymous submissions were
received: 346 for Track A and 97 for Track B. The committees decided to accept 132 papers
for inclusion in the scientific program: 103 papers for Track A and 29 for Track B. The
selection was made by the program committees based on originality, quality, and relevance
to theoretical computer science. The quality of the submissions was very high, and many
deserving papers could not be selected.

The EATCS sponsored awards for both a best paper and a best student paper in each of
the two tracks, selected by the program committees.

The best paper awards were given to the following papers:

Track A: Tsun-Ming Cheung, Hamed Hatami, Pooya Hatami, and Kaave Hosseini. Online

Learning and Disambiguations of Partial Concept Classes.

Track A: Miguel Bosch Calvo, Fabrizio Grandoni, and Afrouz Jabal Ameli. A 4/3 Approz-
imation for 2-Vertex-Connectivity.
Track B: Marvin Kinnemann, Filip Mazowiecki, Lia Schiitze, Henry Sinclair-Banks, and

Karol Wegrzycki. Coverability in VASS Revisited: Improving Rackoff’s Bound to Obtain

Conditional Optimality.

The best student paper awards, for papers that are solely authored by students, were
given to the following papers:
Track A: Manuel Céaceres. Minimum Chain Cover in Almost Linear Time.
Track B: Ruiwen Dong. The Identity Problem in Z1Z is decidable.

Apart from the contributed talks, ICALP 2023 included invited presentations by

Anna Karlin, University of Washington, USA,

Rasmus Kyng, ETH Zurich, Switzerland,

Rupak Majumdar, Max Planck Institute for Software Systems, Germany,

Thomas Vidick, California Institute of Technology, USA, and Weizmann Institute of
Science, Israel,

James Worrell, University of Oxford, UK.

This volume contains all the contributed papers presented at the conference, and an
abstract or paper accompanying each of the invited talks by Anna Karlin, Rasmus Kyng,
Rupak Majumdar, Thomas Vidick, and James Worrell.

For this special 50th anniversary of ICALP 2023, the conference program also included a
special session with two invited talks by

Kurt Mehlhorn, Max Planck Institute for Computer Science, Germany,

Thomas A. Henzinger, Institute of Science and Technology, Austria.

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
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Although they did not provide abstracts for the proceedings, we acknowledge their involvement
and contribution.

The program of ICALP 2023 also included presentations of the EATCS Award 2023 to
Amos Fiat (Tel Aviv University), the Presburger Award 2023 to Aaron Bernstein (Rutgers
University) and to Thatchaphol Saranurak (University of Michigan), the Alonzo Church
Award 2023 to the following group of papers:

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal,

Derek Dreyer: “Iris: Monoids and Invariants as an Orthogonal Basis for Concurrent

Reasoning”. POPL 2015.

Ralf Jung, Robbert Krebbers, Lars Birkedal, Derek Dreyer: “Higher-order ghost state”.

ICFP 2016.

Robbert Krebbers, Ralf Jung, Ales Bizjak, Jacques-Henri Jourdan, Derek Dreyer, Lars

Birkedal: “The Essence of Higher-Order Concurrent Separation Logic”. ESOP 2017.

Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars Birkedal, Derek

Dreyer: “Iris from the ground up: A modular foundation for higher-order concurrent

separation logic”. J. Funct. Program. 28 (2018).

The EATCS Distinguished Dissertation Award 2023 was awarded jointly to the following
PhD dissertations:

Kuikui Liu (University of Washington): “Spectral Independence: A New Tool to Analyze

Markov Chains” (supervisor Shayan Oveis Gharan).

Alex Lombardi (MIT, Department of Electrical Engineering and Computer Science):

“Provable Instantiations of Correlation Intractability and the Fiat-Shamir Heuristic”

(supervisor Vinod Vaikuntanathan).

Lijie Chen (MIT, Department of Electrical Engineering and Computer Science): “Better

Hardness via Algorithms, and New Forms of Hardness versus Randomness” (supervisor

Ryan Williams).

There was also the announcement of the new EATCS Fellows for 2023, who are:

Michael A. Bender (Stoney Brook University),

Leslie Ann Goldberg (University of Oxford),

Claire Mathieu (CNRS, IRIF, Université de Paris).

The following workshops were held as satellite events of ICALP 2023 on July 10, 2023:
Combinatorial Reconfiguration

Graph Width Parameters: from Structure to Algorithms (GWP 2023)
Algorithmic Aspects of Temporal Graphs VI

Adjoint Homomorphism Counting Workshop (ad hoc)

Congestion Games

Workshop On Reachability, Recurrences, and Loops 23 (WORReLL’23)
Workshop on Recent Trends in Online Algorithms

Quantum Computing with Qiskit, and why Classical Algorithms still matter!
Algebraic Complexity Theory

Computer Science for CONTINUOUS Data

We wish to thank all authors who submitted extended abstracts for consideration, the
program committees for their scholarly effort, and all the reviewers who assisted the program
committees in the evaluation process.

We are also grateful to the Conference General Chair, Sevag Gharibian, his colleagues
from Paderborn University, and EATCS, for organizing ICALP 2023.
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Finally, we would like to thank Anca Muscholl, the Chair of the ICALP Steering Com-
mittee, for her continuous support, Artur Czumaj, the president of EATCS, for his generous
advice on the organization of the conference, as well as Michael Wagner, Michael Didas, and
the entire editorial office of LIPIcs for their support in editing these proceedings.

July 2023 Kousha Etessami
Uriel Feige
Gabriele Puppis
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A (Slightly) Improved Approximation Algorithm for
the Metric Traveling Salesperson Problem

Anna R. Karlin &
Paul G. Allen School of Computer Science and Engineering,
University of Washington, Seattle, WA, USA

—— Abstract

We describe recent joint work with Nathan Klein and Shayan Oveis Gharan showing that for any

metric TSP instance, the max entropy algorithm studied by [1] returns a solution of expected cost

at most % — € times the cost of the optimal solution to the subtour elimination LP and hence is a

2 — ¢ approximation for the metric TSP problem. The research discussed comes from [1], [2] and [3].
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An Almost-Linear Time Algorithm for Maximum
Flow and More

Rasmus Kyng =94
ETH Ziirich, Switzerland

—— Abstract

In this talk, I will explain a new algorithm for computing exact maximum and minimum-cost flows in

almost-linear time, settling the time complexity of these basic graph problems up to subpolynomial
factors.

Our algorithm uses a novel interior point method that builds the optimal flow as a sequence of
approximate minimum-ratio cycles, each of which is computed and processed very efficiently using a
new dynamic data structure.

By well-known reductions, our result implies almost-linear time algorithms for several problems
including bipartite matching, optimal transport, and undirected vertex connectivity. Our framework
also extends to minimizing general edge-separable convex functions to high accuracy, yielding the
first almost-linear time algorithms for many other problems including entropy-regularized optimal
transport, matrix scaling, p-norm flows, and isotonic regression.

This talk is based on joint work with Li Chen, Yang P. Liu, Richard Peng, Maximilian Probst
Gutenberg, and Sushant Sachdeva [1]. Our result appeared in FOCS’22 and won the FOCS best
paper award.
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—— Abstract

Context-bounded analysis of concurrent programs is a technique to compute a sequence of under-

approximations of all behaviors of the program. For a fixed bound k, a context bounded analysis
considers only those runs in which a single process is interrupted at most k times. As k grows, we
capture more and more behaviors of the program. Practically, context-bounding has been very
effective as a bug-finding tool: many bugs can be found even with small bounds. Theoretically,
context-bounded analysis is decidable for a large number of programming models for which verification
problems are undecidable. In this paper, we survey some recent work in context-bounded analysis of
multithreaded programs.

In particular, we show a general decidability result. We study context-bounded reachability
in a language-theoretic setup. We fix a class of languages (satisfying some mild conditions) from
which each thread is chosen. We show context-bounded safety and termination verification problems
are decidable iff emptiness is decidable for the underlying class of languages and context-bounded
boundedness is decidable iff finiteness is decidable for the underlying class.
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1 Introduction

Algorithmic verification of shared-state multithreaded programs is one of the main motivations
for research in theoretical computer science. The general problem is undecidable, even when
the class of programs is restricted in different ways. Thus, one direction of research has
focused on finding decidable models that over-approrimate the problem and another on
finding under-approximations. An over-approximate model captures more behaviors than
the original program; thus, if we find that the over-approximation has no bad behaviors, we
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can be certain that neither does the original program. An under-approximation, conversely,
captures fewer behaviors. In this case, if we find a bad behavior in the approximation, we
know that the bad behavior is also possible in the original program.

We consider a particular type of under-approximation: context bounding. Context-
bounding is a technique to construct a parameterized sequence of under-approximations [46,
37]. For a fixed parameter k, a k-context-bounded analysis considers only those behaviors of
the program in which an individual thread is interrupted by the scheduler at most k& times.
As k increases, more and more behaviors of the original program fall into the purview of the
analysis. In the limit, all behaviors are covered.

Context-bounding has become a popular technique because of two reasons. For a wide
class of programming models and verification questions, context-bounded analyses become
decidable, even though the unrestricted problems are undecidable. Moreover, in practice,
context-bounded analysis has had success as a bug finding tool, since many bugs in practical
instances can be discovered even with small values of k [46, 44, 36, 34].

We focus on decidability questions. In order to avoid “trivial” encodings of Turing
machines, we restrict programs to be finite data — that is, we assume each program variable
to take on finitely many values. Even with this restriction, depending on the model of
programs, decidability can be non-immediate because the state space of a program can be
infinite in other respects, such as the stack of an individual thread or the number of pending
threads.

Properties of concurrent programs. For the moment, we focus on three decision problems:
context-bounded reachability (“is there a k-bounded execution that reaches a specific global
state?”), context-bounded termination (“all all k-bounded executions terminating?”), and
context-bounded boundedness (“is there a bound on the number of pending threads along
every k-bounded execution?”). We shall come back to other problems later.

Context-bounded analysis is a family of problems, depending on the model of concurrent
programs as well as on the correctness properties considered. Qadeer and Rehof’s original
paper [46], that introduced context-bounding, stipulated that there is a fixed number of
recursive threads that read or write shared variables but these threads do not spawn further
threads. They showed that the reachability problem is NP-complete. Note that even with
two threads, the reachability problem for finite-data programs is already undecidable: for
example, we can encode the intersection non-emptiness problem for pushdown automata.
On the other hand, if threads are not recursive, then the reachability problem is decidable
without any context bounding restrictions, even if threads can spawn further threads: this
can be shown by a reduction to the coverability problem for vector addition systems with
states (VASS). Subsequently, Atig, Bouajjani, and Qadeer [11] extended decidability for
context-bounded reachability when threads can spawn further threads. They showed an
upper bound of 2EXPSPACE and a matching lower bound was shown by Baumann et al. [14].
Similar techniques show the same complexity for termination and boundedness.

A special case: Asynchronous programs. The special case of k£ = 0 of context-bounded
analysis is important enough to have its own name: asynchronous programs. In an asyn-
chronous program, threads are executed atomically to completion (that is, never interrupted
by the scheduler). Many software systems based on cooperative scheduling implement this
model. Sen and Viswanathan [47] studied the model and showed reachability is decidable
by reducing to a well-structured transition system. Ganty and Majumdar [28] showed that
reachability, termination, and boundedness are all EXPSPACE-complete, by again reducing
to coverability problems for VASS.
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Majumdar, Thinniyam, and Zetzsche [40] proved decidability results for asynchronous
programs in a general language-theoretic setting. They fix a class of languages C, and consider
asynchronous programs in which each individual thread is a language from the class C over
the alphabet of thread names as well as a transformer over the global states. That is, each
thread is a language (from C) of words of the form dwd’, where d and d’ are global states
and w is a sequence of thread names. The intent is that an atomic execution of the thread
takes the global state from d to d’ and also spawns new instances of all the threads in w.

They show that for all classes C satisfying a mild language-theoretic assumption (the
class C is a full trio), safety and termination are decidable if and only if the underlying
language class C has a decidable emptiness problem. Similarly, boundedness is decidable if
and only if finiteness is decidable for C. As a consequence, they get decidability results for
asynchronous programs over context-free languages, higher-order recursion schemes, as well
as other language classes studied in infinite-state verification.

Contribution. Our starting point is the general approach of Majumdar, Thinniyam, and
Zetzsche [40]. We show their general decidability results can be extended to context-
bounded analysis (any k > 0). We define concurrent programs over a language class C and
show analogous decidability results: (i) context-bounded reachability and context-bounded
termination for programs are decidable if and only if C has a decidable emptiness problem,
and (ii) context-bounded boundedness is decidable if and only if C has a decidable finiteness
problem. As a consequence, we get a uniform proof for decidability for these problems for
programs over context-free languages and for programs over higher-order recursion schemes.

The key argument in both settings is that of downclosures of languages under the subword
ordering. Safety, termination, and boundedness are preserved if we “lose” some spawned
threads, as long as the sequence of global state changes (and there are at most k of them
for the fixed context bound k) is maintained. Since downclosures (even when maintaining
a bounded number of distinguished letters) are always regular languages, this implies: If
our concurrent program satisfies one of the above properties, then each thread can be
over-approximated by a regular language so that the property is still satisfied. The decision
procedure for reachability then runs two semi-decision procedures: one enumerates executions
(to check for reachability) and the other enumerates regular languages and checks that (1)
the thread languages are contained in the regular languages and (2) uses known decidability
results for context-bounded reachability with regular thread languages.

The decision procedure does not, in particular, need to construct an explicit description of
the downclosure. In fact, it even shows decidability for language classes for which downclosures
cannot be constructed. On the flip side, we do not get complexity bounds.

Other properties. What about other properties? Ganty and Majumdar showed fair ter-
mination for context-free asynchronous programs is decidable (by reduction to Petri net
reachability) [28]. Majumdar, Thinniyam, and Zetzsche generalized the result to show that
fair termination is equivalent to configuration reachability in the general setting [40]. On the
other hand, decidability of fair termination implies the decidability of checking the “equal
letters problem”: deciding if a language in C has an equal number of as and bs. Thus, fair
termination is undecidable for indexed languages. The undecidability is inherited by context-
bounded fair termination. On the other hand, somewhat surprisingly, fair termination is
decidable for context-bounded runs of context-free multithreaded programs [15].
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2 Preliminaries

An alphabet is a finite non-empty set of symbols. For an alphabet X, we write ¥* for the set
of finite sequences of symbols (also called words) over ¥.. A set L C X* of words is a language.
By pref(L) = {u € ¥* | Jv € ¥*: wv € L} we denote the set of prefixes of words in L.

The subword order C on X* is defined as follows: for u,v € ¥* we have u C v if and only
if u can be obtained from v by deleting some of v’s letters. For example, abba C bababa, but
abba I baaba. The downclosure (or downward closure) Jw of a word w € ¥* with respect
to the subword order is defined as Jw := {w’ € ¥* | w’ C w}. The downclosure |L of a
language L C ¥* is given by JL := {w’ € ¥* | Jw € L: w' C w}. An important fact is that
the subword ordering C is a well-quasi ordering (Higman’s lemma). A consequence is that
the downclosure | L of any language L is a regular language [32]. However, a representation
for the downclosure of a language may not be effectively constructible.

The projection of a word w € ¥* onto some alphabet I' C ¥, written Projp(w), is the
word obtained by erasing from w each symbol which does not belong to I'. For a language
L, define Projp(L) = {Projp(w) | w € L}. We write |w|p for the number of occurrences of
letters @ € I' in w, and similarly |w|, if I = {a}.

A multiset m: X — N over a set X maps each symbol of X to a natural number. The
size |m| of a multiset m is given by [m| =} m(z). The set of all multisets over X
is denoted M[X]. We identify subsets of X with multisets in M[X] where each element is
mapped to 0 or 1. We write m = [a,a,c] for the multiset m € M[{q, b, ¢,d}] such that
m(a) =2, m(b) = m(d) =0, and m(c) = 1. The Parikh image Parikh(w) € M[X] of a word
w € ¥* is the multiset such that for each letter a € 3 we have Parikh(w)(a) = |w|,.

Given two multisets m, m’ € M[X] we define m & m’ € M[X] to be the multiset such
that for all @ € X, we have (m @ m’)(a) = m(a) + m’(a). If m(a) > m’(a) for all a € X,
we also define m’ © m € M[X]: for all a € X, we have (m © m’)(a) = m(a) — m’(a). For
X CY we regard m € M[X] as a multiset in M[Y] where undefined values are mapped to 0.

Language Classes and Full Trios. A language class is a collection of languages, together
with some finite representation. Examples are the regular languages (e.g. represented by
finite automata) or the context-free languages (e.g. represented by pushdown automata). A
relatively weak and reasonable assumption on a language class is that it is a full trio, that is,
it is closed under rational transductions. Equivalently, a language class is a full trio if it is
closed under each of the following operations: taking intersection with a regular language,
taking homomorphic images, and taking inverse homomorphic images [16].

We assume that all full trios C considered in this paper are effective: Given a language L
from C, a regular language R, and a homomorphism h, we can compute a representation of
the languages L N R, h(L), and h='(L) in C.

Many classes of languages studied in formal language theory form effective full trios. These
include the regular and the context-free languages [33], the indexed languages [2, 25], the
languages of higher-order pushdown automata [42], higher-order recursion schemes [31, 24, 40],
Petri nets [29, 35], and lossy channel systems. However, the class of deterministic context-free
languages is not a full trio: this class is not closed under rational transductions.

3 A Language-Theoretic Model of Concurrent Programs

Intuitively, a concurrent program consists of a shared global state and a finite number of
thread names. Instances of thread names are called threads. A configuration of such a
program consists of the current value of the global state and a multiset of partially-executed
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threads. A non-deterministic scheduler picks a partially-executed thread and runs it for some
number of steps. An executing thread can change the global state. It can also spawn new
threads — these can be picked and executed by the scheduler (in any order) in the future.
When a scheduler swaps a running thread for another one, we say that there is a context
switch. In our formal model, we keep the global state explicit and we model the execution
behavior of threads as languages. The language of a thread captures the new threads it can
spawn, as well as the effect of the execution on the global state.

3.1 Model

Let C be an (effective) full trio. A concurrent program (CP) over C is a tuple P =
(D, %, (La)aes, do, mp), where D is a finite set of global states, ¥ is an alphabet of thread
names, (Lq)acs is a family of languages from C over the alphabet ¥p = DU X U (D x D),
do € D is an initial state, and my € M[X] is a multiset of initial pending thread instances. We
assume that each L, a € X, satisfies the condition L, C aD (X U (D x D))*D (we provide
the intuition behind this condition below).

A configuration ¢ = (d,m) € D x M[X%] consists of a global state d € D and a multiset
m of strings representing pending threads instances and partially executed threads. Given a
configuration ¢ = (d, m), we write c.d and c.m to denote the elements d and m, respectively.
The size of a configuration c¢ is |c.m|, i.e. the number of threads in the task buffer. We
distinguish between threads that have been spawned but not executed (pending threads) and
threads that have been partially executed (but swapped out). The pending thread instances
are represented by single letters a € ¥ (which corresponds to the name of the thread) while
the partially executed threads of “type” a € ¥ are represented by strings in pref(L,) which
end in a letter from D x D.

Before presenting the formal semantics, let us provide some intuition. Suppose the
current configuration is (d,m). A non-deterministic scheduler picks one of the outstanding
threads (either a pending thread a € m or a partially executed thread w € m) and ex-
ecutes it for some time, until it terminates or until the scheduler decides to interrupt
it. The execution of a thread a is abstractly modeled by the language L,. A word
adiwy (dy, d2)wa(dy, ds3) ... (d),_q, di)wk1des1 € L, represents a run of an instance of the
thread a. The run starts executing in global state d;. It spawns new threads w; € X*, then
gets interrupted at global state dj by the scheduler. At some future point, the scheduler
starts executing it again at global state do, when new threads wsy are spawned before it is
interrupted again at dj. The execution continues in this way until the thread terminates in
global state dj4+1. Thus, the jump from one global state to another (from the perspective of
the thread) when a context switch is made is represented by a letter from D x D. The part
of a run starting at global state d;, spawning threads w; and interrupted at d} is called a
segment. Each interruption is called a context switch; the above word has k context switches.

Formally, the semantics of 8 are given as a labelled transition system over the set of
configurations with the transition relation =C (D x M[X%}]) x (D x M[X%)]). The initial
configuration is given by ¢y = (dg, myg).

The transition relation is defined using rules of four different types shown below. All four
[w],n’

types of rules are of the general form d —— d’. A rule of this form allows the program
to move from a configuration (d,m) to configuration (d’,m’), i.e., (d,m) = (d',m’), iff
d 217 7 matches a rule and (m © [w]) ®n’ = m’. Note that due to the definition of &,
m has to contain w for the rule to be applicable. We also write = to specify the particular
w used in the transition. As usual, the reflexive transitive closure of = is denoted by =*. A
configuration c is said to be reachable if ¢y =* c.
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(R1) d Lol Parikh(w)Oladw(@. DV 3¢ 34y € B adw(d’,d") € pref(Lg).

Rule (R1) allows us to pick some thread a from m and atomically execute it until the point
it is switched out by the scheduler. Note that the final letter (d’,d"”) of the thread indicates
that it has been switched out at global d’ and can be resumed when the global state is d”.

(R2) d TahParih) 3¢ Fw € T*: adwd’ € L,.

Rule (R2) allows us to pick some thread a from m and atomically execute it to completion.
aw' (d’ i w aw' (d’ w(d .d" Hw c E*:

(R3) d law’(d",d)],Parikh(w)®[aw’(d"”,d)w(d",d"")] d it

aw'(d",d)w(d',d") € pref(L,)
Rule (R3) allows us to pick some partially executed thread and execute it atomically until
the point it is switched out by the scheduler.

(R4) d low (@7, DVParibC0) g1 3¢ 3y € 2 aw'(d", d)ywd’ € L,

Rule (R4) allows us to pick some partially executed thread and execute it to completion.

3.2 Runs and Context-bounded Runs

A prerun of a concurrent program B = (D, X, (Lg)aes, do, my) is a finite or infinite sequence
p = (eg,ng), w1, (€1,n1), wa, ... of alternating elements of configurations (e;, n;) € D x M[¥%)]
and strings w; € X*.

The set of preruns of 3 will be denoted Preruns(3). Note that if two concurrent programs
P and P’ have the same global states D and alphabet X, then Preruns(3) = Preruns(p’).
The length |p| of a finite prerun p is the number of configurations in p.

A run of a CP B = (D, %, (La)aes, do, mg) is a prerun p = (dg, my), wy, (d1, my), wa, . ..

starting with the initial configuration (do, myg), where for each i > 0, we have (d;, m;) —==

(di+1,m;y1). The set of runs of P is denoted Runs().

For a number k, the run p is said to be k-context-bounded (k-CB for short) if for each
¢; = (d;,m;) € p and for each w € m;, we have |w|pxp < k. The set of k-context-bounded
runs of P is denoted by Runsg (). In the case of finite runs which reach a certain configuration
¢, We say a configuration c is k-reachable if there is a finite k-CB run p ending in c.

3.3 Decision Problems

We study the following decision problems.

» Definition 1.

CB Safety (Global state reachability):

Instance: A concurrent program B, a context-bound k and a global state dy € D.
Question: Is there a k-reachable configuration ¢ such that c.d = ds? If so, ds is said to
be k-reachable (in PB) and k-unreachable otherwise.

CB Boundedness:

Instance: A concurrent program B and a context-bound k.

Question: Is there an N € N such that for every k-reachable configuration ¢ we have
|em| < N? If so, the concurrent program B is k-bounded; otherwise it is k-unbounded.

CB Termination:

Instance: A concurrent program B, a context-bound k.
Question: Is P k-terminating, that is, is every k-CB run of B finite?
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3.4 Orders on Runs and Downclosures

Intuitively, k-safety, k-termination, and k-boundedness are preserved when the multiset of
pending threads is “k-lossy”: pending threads can get lost and we only consider runs where
each thread makes at most k context switches. This loss corresponds to these pending threads
never being scheduled by the scheduler. However, if a run demonstrates reachability of a
global state, or non-termination, or unboundedness, in the k-lossy version, it corresponds
also to a k-CB run in the original problem (and conversely). We make this intuition precise
by introducing an ordering on runs and defining the downclosure.

Let w,w’ € ED(Z U (D x D))*(D U (D x D)) be words with w = adwiejwses . .. we;
and w' = a'd'wiejwye; . .. wiej, where a,a’ € 3, d,d’' € D, e, e; € DU (D x D), w;, w; € £*
fori,j € [1,1], and e;,€} € D x D for i,j € [1,] — 1]. We define the state-preserving order
CpbywCpw iffa=4d',d=d, e = e} for each i € [1,]], and w; C w}, that is, w; is a
subword of wj, for each i € [1,1]. We denote the corresponding notion of state-preserving
downclosure under this order by |. Intuitively, the Cp relation is a subword ordering on
words that preserves the initial letter in ¥ and all occurrences of DU (D x D), but potentially
loses letters from each segment — that is, newly spawned threads can be lost.

We use the order Cp to naturally define the order <p on M[X%)] by induction: for
m,m’ € M[¥%] with |m|,|m’| > 1, we have m =<p m’ iff there are n,n’ € M[X%],

w,w' € % with m = n@® [w] and m’ = n’ @ [w'] such that n <p n’ and w Cp w'.

Furthermore, for all m € M[¥%], we have ) <p m.

We define an order < on preruns as follows: For preruns p = (eg,ng), w1, (e1,n1), wo, . ..
and p' = (e, ng), wi, (e, nf),wh, ..., we have p < p' iff |p| = |p/|, e; = €}, w; Cp w} and
n; =<p nj for each ¢ > 0. The downclosure |R of a set R of preruns of P is defined as
IR = {p € Preruns(P) | Ip' € R. p < p'}.

We write JRuns(*B) for the downclosure with respect to < restricted to valid runs.

Some properties of a concurrent program ‘P only depend on the downclosure {|Runs(33)
of the set Runsy(P) of k-CB runs of the program B. For these properties, we may transform
the program ‘P to a program |} such that the latter is easier to analyze but retains the
properties of the former.

» Definition 2. For a language L, of a CP, let

k
VLo = H(La n ( U (aD(=*D x D)T*D)))
i=0

For any CP B = (D,X%,(La)aex,do, mg) and number k, we define the CP 1B =
(D, %, (UrLa)aex, do, mg). In other words, JxB is the program obtained by taking the state-
preserving downclosure of those words in L, which contain at most k context switches.

Note that, by well-quasi-ordering arguments, for any fixed k, the languages L, of |
are all reqular.

» Proposition 3. Let B = (D,%,(Le)eee,do, mg) be a concurrent program. Then
JRunsg (B) = JRuns(JxB). In particular,

1. For every d € D, B can k-reach d if and only if {1P can k-reach d.

2. P is k-terminating if and only if P is k-terminating.

3. P is k-bounded if and only if &P is k-bounded.

Clearly, every run in Runsg () is also in Runs({}x93). Conversely, we can show by induction
on the length of the run that for every run p € Runs({}xB) there is a run p’ € Runs(*P) such
that p < p’. The result follows.
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4 Decidability Results

We now characterize full trios C for which decision problems for concurrent programs over C
are decidable. We shall make use of the following decidability results about regular languages.

» Theorem 4.

1. [28, 10] CB Safety is decidable for concurrent programs over regular languages.

2. [28, 15] CB Boundedness and CB termination are decidable for concurrent programs
over reqular languages.

In fact, the above problems are decidable even if there is no bound on the number
of context switches. The result in [10] is stated for a model called Dynamic networks of
Concurrent Finite-state Systems (DCFS), but it is easy to see that there is a polynomial
time reduction for the problems of safety, termination and boundedness for CP over regular
languages to the corresponding problems for DCFS. The paper [15] shows decidability of CB
termination and CB boundedness for the model of dynamic networks of concurrent pushdown
systems, of which DCFS is a special case. There is also a simple reduction of these problems
to the corresponding results for the model of asynchronous programs [28].

Our first decidability result is the following.

» Theorem 5. Let C be a full trio. The following are equivalent:
(i) CB Safety is decidable for concurrent programs over C.
(ii) CB Termination is decidable for concurrent programs over C.
(iii) Emptiness is decidable for C.

The implications “(i)=-(iii)” and The implications “(ii)=-(iii)” are immediate from
corrsponding results for asynchronous programs [40], since context bounded analysis problems
generalize the corresponding analysis for asynchronous programs.

Before we prove the next implication, let us introduce a bit of notation. For each i € N,
let R; be the regular language R; = SDY*((D x D)%*)!D, R = SDX*((D x D)¥*){(D x D),
for each | € N we define R; = Ué:o(Ri U R}). For any language L and k € N, the language
L N'Ry captures those words in L that contain at most k& context switches.

For the implication “(iii)=(i)”, we construct two semidecision procedures (Algorithm 1):
the first one searches for regular over-approximations A, of each language L, such that
the program 3’ obtained by replacing each L, by the corresponding A, is safe. We can
check whether our current guess for B’ is safe using Theorem 4. By Proposition 3, we
know that in case B is safe, then there must exist such a safe regular over-approximation.
Concurrently, the second procedure searches for a k-CB run reaching the target global state d
which witnesses the negation. Clearly, one of the two procedures must terminate. Note that
we use an emptiness check to ensure that our current guess for A, includes the set L, N Ry.

To show “(iii)=-(ii)”, we need an algorithm for termination of concurrent programs. As
in the case of safety, it consists of two semi-decision procedures. The one for termination
works just like the one for safety: It enumerates regular over-approximations and checks if
one of them terminates. The procedure for non-termination requires some terminology:

Predictions. We will use a notion of prediction, which assigns to each configuration (e, n)
of a run a multiset of strings that encode not only the past of each thread (as is done in n),
but also its future. To do this, we define the alphabet I'p = Xp U {#} that extends Xp a
fresh letter #. We shall encode predictions using strings of the form au#v, which encode a
thread with name a, past execution au, and future execution v. Additionally, we extend the
order =p to strings of the form au#v by treating # as a letter from D x D which is to be
preserved. Let us make this precise.
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Algorithm 1 Checking CB Safety.

Input: Concurrent program P = (D, X, (Lq)acs, do, mg) over C, context bound k € N,
state d € D
run concurrently
begin /* find a safe over-approximation */
foreach tuple (Aq)aes of regular languages A, C ¥* do
if (Lo NRE)N(ZH \ Aa) =0 for each a € T then
L if P’ = (D, 3, (Aa)aes, do, mo) does not k-reach d then
L return d is not reachable.

begin /* find a run reaching d */
foreach prerun p of B do

if p is a k-CB run that reaches d then
L return d reachable.

Suppose p is a (finite or infinite) prerun (eg, ng), wi, (€1,1n1),.... An annotation for p is
a sequence fo, f1,... € M[I'},] of multisets of strings such that the sequence has the same
length as p. If p is a run, then we say that the annotation fy, fi, ... is a prediction if
1. each string occurring in fy, f;, ... is of the form au#v such that auv € £}, and auv €
prefL, N (S U (D x D))" (DU (D x D))
2. for each ¢ > 0, the multisets n; and f; have the same cardinality and there is a bijection
between n; and f; so that (i) each word au in n; is in bijection with some word au#v in
f; and (ii) if au is the active thread when going from (e;,n;) to (e;4+1,n;4+1) and au#v is
its corresponding string au#v in f;, then the system executes the next segment in v.
Note that then indeed, for each thread, its string in n; records its past spawns, whereas the
corresponding string in f; contains all its future spawns (and possibly an additional suffix).
Of course, for each (finite or infinite) run, there exists a prediction: Just take the sequence
of actions of each thread in the future. Moreover, taking a prefix of both a run and some
accompanying prediction will yield a (shorter) run with a shorter prediction.

Self-covering runs. Recall that for each alphabet ©, we have an embedding rela-
tion <p on the set M[O%], and in particular on M[I'},]. We say that a finite run
(e, n9), w1, (€1,01), .., W, (€m, Ny, ), together with a prediction fo, ..., f,, is k-self-covering
if for some i < m, we have e¢; = e,,, f; <p f,,, and also, all words in fy, f1, ... contain at most k
context-switches. As the name suggests, self-covering runs are witnesses for non-termination:

» Lemma 6. For every k € N, a concurrent program has an infinite k-CB run if and only if
it has a k-self-covering run.

Here, it is crucial that for each k € N, the ordering Cp is a WQO on the set of words
with at most k context-switches (on all of ¥%,, Cp is not a WQO).

We can now decide termination (Algorithm 2): the algorithm either (i) exhibits a k-
self-covering run, which shows the existence of a k-bounded infinite run by Lemma 6, or
(ii) finds a regular over-approximation that terminates, which means the original program is
terminating. We can check termination of the regular over-approximation using Theorem 4.
The algorithm also terminates: If there is an infinite k-bounded run, then Lemma 6 yields
the existence of a k-self-covering run. Moreover, if the concurrent program does terminate,
then Proposition 3 ensures the existence of a terminating regular over-approximation. This
concludes our proof of Theorem 5.
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Algorithm 2 Checking CB Termination.

Input: Concurrent program 8 = (D, %, (Lq)acs, do, mg) over C and context bound k € N
run concurrently
begin /* find a terminating over-approximation */
foreach tuple (Aa)acx of regular languages Aq C X7 do
if (Lo NRi)N(Z*\ Ag) =0 for each a € ¥ then
L if P’ = (D,%, (Aa)acs, do, mo) is k-terminating then
| return ‘P is k-terminating.

begin /* find a self-covering run */
foreach prerun p of P and an annotation o do

if p with o is a k-self-covering run then
| return ‘P is not k-terminating.

Our second theorem is as follows.

» Theorem 7. Let C be a full trio. The following are equivalent:
(i) CB Boundedness is decidable for concurrent programs over C.
(ii) Finiteness is decidable for C.

The implication “(i)=-(ii)” follows from the special case of asynchronous programs [40]. It
was also observed in [40] that decidability of finiteness for C implies decidability of emptiness
for C. Further, by Theorem 5, we may assume that CB safety is decidable for CP over C.

We now show the implication “(ii)=-(i)”. For a language L C ¥% and n € N, let
L,=LnNn EE" be the language restricted to strings of length at most n and, in addition,
for k € N, let L! |, = La|n N Ri. Moreover, for an alphabet ©, a language L C ©* and a
word w € ©*, we define the left quotient of L by w as w™!L := {u € ©* | wu € L}. Our
algorithm is based on the following characterization of unboundedness.

» Lemma 8. The program B is k-unbounded iff one of the two following conditions hold:

(P1) FEither there exists some number n such that B, = (D, %, (L |n)aes, do, mg) s unboun-
ded, or

(P2) for some a € X, there exists some word w € pref(L,) ending in a letter (d,d’) € D x D
such that pref(w='L,) N Y* is infinite and there exists a Tun p reaching a configuration c
with w € ¢ and c.d = d'.

Essentially, (P1) captures the case where each thread spawns a finite number of other
threads and (P2) the case that there is some reachable configuration at which a single thread
can spawn an unbounded number of new threads. The above characterization allows us to
implement Algorithm 3, which interleave three semidecision procedures: Checking properties
(P1) and (P2) for positive certificates of unboundedness, as well as looking for certificates
of boundedness by looking for bounded regular over-approximations. Here we can check
boundedness for the latter by Theorem 4. Note that while checking for (P1), it is possible to
compute each language L’ |, explicitly since these languages are all finite. This is because,
given any finite language F' € C and an explicitly given finite language A, we know F' = A iff
FN (¥ \A) =0 and for all w € A, FN{w} # 0, where the first condition checks if F C A
and the second if A C F. Therefore, by enumerating all strings w, we can build A iteratively.

A Remark on Complexity. Our procedures show decidability, but do not provide complexity
results. For particular classes of languages, precise complexity bounds are known. For
example, CB Safety, CB Termination, and CB Boundedness for concurrent programs over
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Algorithm 3 Checking CB Boundedness.

Input: Concurrent program B = (D, X, (La)aes, do, mo) over C and context bound k € N
run concurrently
begin /* (P1): Check if finite under-approximation is unbounded */
foreach n € N do /* Explicitly find strings in Lg|, */
foreach a € ¥ do
Xo < 0, L]0 + LaNES" N Ry,
foreach w € E%n do
if Li|n N{w} # 0 then
| Xa <+ XoU{w}
if Li|n N (EZH \ Xa) =0 then
L break

if P, = (D, %, (Xa)aex,do, mo) is unbounded then
| return P unbounded.

begin /* (P2): Check if unbounded segment can be reached */
foreach prerun p of B, a € B, w € aDY* (D x DX*)<*"2(D x D) U {a} do
if p is a k-run that reaches ¢ with w € ¢, w = w'(d,d") where d' = c.d, and
pref(w™"'L,) N X" is infinite then
| return P unbounded.
if p is a k-run that reaches c with w € ¢, w = a where d’ = c.d, and
pref ((wd') "' L) N X* is infinite then
| return P unbounded.

begin /* Find a bounded over-approximation */
foreach tuple (Aq)aes of reqular languages A, C (aXp N'Ry) do
if (La NRE)N(ZH \ Aa) =0 for each a € T then
L if P’ = (D, %, (Aa)acs, do, mg) is bounded then
| return ‘P bounded.

regular languages are all EXPSPACE-complete [28], and over context-free languages are

2EXPSPACE-complete [11, 14]. These bounds use explicit constructions of the downclosure.

In particular, our results show decidability of the same problems for concurrent programs

over higher-order recursion schemes. However, we do not get an explicit complexity bound.

While there is an explicit construction of the downclosure of these languages [53, 30, 20], a
precise complexity bound for the construction remains open.

5 Further Results

Other Decision Problems. While we focus on safety, termination, and boundedness, there
are decidability results for other properties and other classes of systems. The fair termination
problem is a variant of termination, where we require that the scheduler is fair. Intuitively, a
scheduler is fair if it schedules each partially executed thread that is infinitely often ready to
execute. Context-bounded fair termination is decidable (but non-elementary) for context-free
concurrent programs [15]. The problem is equivalent to Petri net reachability already for
asynchronous programs [28]. It is undecidable for indexed languages.

Context-bounded analysis has also been studied for non-regular specifications. Lal et
al. [38] showed decidability for context-bounded analysis for a subclass of weighted pushdown
systems. Recently, Baumann et al. [13] studied the context-bounded refinement problem for
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non-regular specifications. In their setting, there is a fixed number of recursive (context-free)
threads which also generate a language over a set of events. The specification is given by a
Dyck language. They show that checking containment in the specification is coNP-complete,
the same complexity as that of context-bounded safety verification, albeit requiring very
different techniques. An analogous result was shown for the setting of asynchronous programs,
but the complexity is EXPSPACE-complete [12].

Tools and Sequentialization. A practical motivation for studying context-bounded reach-
ability was that, empirically, many bugs in concurrent programs could be found with a small
number of context switches. This led to the development of several academic and industrial
tools, such as CHESS [44] and CSeq [27]. CHESS incorporated context bounding in an enu-
merative search. CSeq and several other tools implemented sequentialization: a preprocessing
step that compiles the original concurrent program into a sequential program that preserves
all k-context bounded runs, an idea going back to Lal and Reps [37]. Context-bounding was
integrated with other exploration heuristics such as abstract interpretation and partial-order
reduction [45, 21, 41].

Context-Bounded Analysis of Related Models. Context-bounding was studied for other
models of concurrency, such as parameterized state machines communicating through message-
passing over a given topology [18], concurrent queue systems [49], programs over weak memory
models [9, 1], abstract models such as valence automata [43], etc. In each case, the notion of
“context” has to be refined based on the model.

Similar Restrictions. The theory of context-bounding has inspired other natural bounds in
the analysis of concurrent systems. For example, a well-studied restricion is scope-bounding:
In a k-scope-bounded run, there can be an unbounded number of context-switches, but during
the time span of a single function call (i.e. between a push and its corresponding pop), there
can be at most k interruptions [52]. This covers more executions than context-bounding, which
comes at the cost of PSPACE-completeness of safety verification [52]. Scope-boundedness
has also been studied in terms of timed systems [4, 17], temporal-logic model-checking [6],
resulting formal languages [51], and as an under-approximation for infinite-state systems
beyond multi-pushdown systems [48].

Similarly, a k-phase-bounded run consists of k phases, in each of which at most one stack
is popped [50, 8]. Another variant is k-stage-bounded runs: They consist of k stages, each of
which allows only one thread to write to the shared memory, whereas the other threads can
only read from it [7]. Further restrictions are ordered multi-pushdown systems [19, 5] and
delay-bounded scheduling [26].

Powerful abstract notions of under-approximate analysis (which explain decidability
of several concrete restrictions described above) are available in the concepts of bounded
tree-width [39] and bounded split-width [3, 23, 22].

In conclusion, context-bounding is an elegant idea that has been very influential both in
practice and in theory. In practice, it has been incorporated in several tools for automatic
analysis of programs. Theoretically, it has led to a wealth of new models and analysis
algorithms. At this point, the theory has marched ahead of implementations: it is an
interesting open challenge to see how far the new algorithms can also lead to practical tools.
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——— Abstract

The study of multiprover interactive proof systems, of locally testable codes, and of property testing
are deeply linked, conceptually if not formally, through their role in the proof of the PCP theorem in
complexity theory. Recently there has been substantial progress on an analogous research programme
in quantum complexity theory. Two years ago we characterized the power of multiprover interactive
proof systems with provers sharing entanglement, showing that MIP* =RE [4], a hugely surprising
increase in power from the classical result MIP=NEXP of [2]. The following year Panteleev and
Kalachev gave the first construction of quantum low-density parity-check codes (QLDPC) [5], thus
marking a major step towards the possible realization of good quantum locally testable codes — the
classical analogue of which was only constructed quite recently [3]. And finally, less than a year ago
Anshu, Breuckmann and Nirkhe used facts evidenced in the construction of good decoders for the
new QLDPC codes to resolve the NLTS conjecture [1], widely viewed as a crucial step on the way to
a possible quantum PCP theorem.

In the talk I will survey these results, making an effort to motivate and present them to the
non-expert. I will explain the connections between them and point to where, in my opinion, our
understanding is currently lacking. Along the way I will highlight a number of open problems whose
resolution could lead to further progress on one of the most important research programmes in
quantum complexity theory.
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—— Abstract

The Skolem Problem asks to determine whether a given integer linear recurrence sequence (LRS)
has a zero term. This decision problem arises within a number of different topics in computer
science, including loop termination, weighted automata, formal power series, and probabilistic model
checking, among many other examples. Decidability of the problem is notoriously open, despite
having been the subject of sustained interest over several decades [2]. More specifically, the problem
is known to be decidable for recurrences of order at most 4 — a result obtained some 40 years
ago [4, 5] — while decidability is open already for recurrences of order 5.

In this talk we take a wide-ranging view of the Skolem Problem. We survey its history and
context, starting with the theorem of Skolem-Mahler-Lech characterising the set of zeros of a LRS
over fields of characteristic zero. Here we explain the non-effective nature of the existing proofs
of the theorem. Among modern developments, we overview versions of the Skolem-Mahler-Lech
theorem for non-linear recurrences and for fields of non-zero characteristic. We also describe two
recent directions of progress toward showing decidability of the Skolem Problem subject to classical
number theoretic conjectures.

The first new development concerns a recent algorithm [1] that decides the problem on the class
of simple LRS (those with simple characteristic roots) subject to two classical conjectures about
the exponential function. The algorithm is self-certifying: its output comes with a certificate of
correctness that can be checked unconditionally. The two conjectures alluded to above are required
for the proof of termination of the algorithm.

A second new development concerns the notion of Universal Skolem Set [3]: a recursive set
S of positive integers such that it is decidable whether a given non-degenerate linear recurrence
sequence has a zero in S. Decidability of the Skolem Problem is equivalent to the assertion that N is
a Universal Skolem Set. In lieu of this one can ask whether there exists a Universal Skolem Set of
density one. We will present a recent a construction of a Universal Skolem Set that has positive
density unconditionally and has density one subject to the Bateman-Horn conjecture in number
theory. The latter is a far-reaching generalisation of Hardy and Littlewood’s twin primes conjecture.
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—— Abstract

We present a dynamic algorithm for maintaining the connected and 2-edge-connected components
in an undirected graph subject to edge deletions. The algorithm is Monte-Carlo randomized and
processes any sequence of edge deletions in O(m + n poly logn) total time. Interspersed with the
deletions, it can answer queries whether any two given vertices currently belong to the same (2-edge-
)connected component in constant time. Our result is based on a general Monte-Carlo randomized
reduction from decremental c-edge-connectivity to a variant of fully-dynamic c-edge-connectivity on
a sparse graph.

For non-sparse graphs with Q(n polylogn) edges, our connectivity and 2-edge-connectivity
algorithms handle all deletions in optimal linear total time, using existing algorithms for the
respective fully-dynamic problems. This improves upon an O(mlog(n®/m) + npoly logn)-time
algorithm of Thorup [J.Alg. 1999], which runs in linear time only for graphs with Q(n?) edges.

Our constant amortized cost for edge deletions in decremental connectivity in non-sparse graphs
should be contrasted with an Q(logn/loglogn) worst-case time lower bound in the decremental
setting [Alstrup, Husfeldt, and Rauhe FOCS’98] as well as an Q(logn) amortized time lower-bound
in the fully-dynamic setting [Patrascu and Demaine STOC’04].
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Optimal Decremental Connectivity in Non-Sparse Graphs

1 Introduction

In this paper, we present Monte Carlo randomized decremental dynamic algorithms for
maintaining the connected and 2-edge-connected components in an undirected graph subject
to edge deletions. Starting from a graph with n vertices and m edges, the algorithm can
process any sequence of edge deletions in O(m + npolylogn) total time while answering
queries whether a pair of vertices is currently in the same (2-edge-)connected component.
Each query is answered in constant time. The algorithm for decremental 2-edge-connectivity
additionally reports all bridges as they appear.

Putting our results in perspective, we say a graph is non-sparse if it has n logw(l) n edges.
Large areas of algorithmic research are devoted to non-sparse graphs, e.g., the generic goal
of sparsifying graphs to O(n polylogn) edges [6], or semi-streaming algorithms that aim to
sketch graphs using O(n polylogn) space [11]. Our result states that for dynamic connectivity
and 2-edge-connectivity, we can get down to amortized constant time per edge deletion if the
initial input graph is non-sparse. Prior to this work, such a result was only known in the
case where the initial input graph is very dense with (n?) edges, and in the case of some
special classes of sparse graphs.

Achieving constant update and query time is generally the ideal target in data structures.
What makes amortized constant time for decremental connectivity particularly interesting
is that the most closely related problems have near-logarithmic cell-probe lower bounds.
This concerns the problem of getting worst-case time bounds or getting a fully-dynamic
algorithm (supporting both insertions and deletions of edges). The decremental setting and
the fact that we allow for amortization is therefore just enough assumptions to barely push
us into the world of constant update and query time (removing any of these assumptions, the
polylogarithmic lower bounds would kick in) and as such, our result draws a fine line between
the possible and the impossible. We shall discuss this further with precise references in
Section 1.1. It is worth noting that for some dynamic graph problems related to maintaining
(approximate) maximum matchings and colorings, constant amortized update bounds have
been shown, see, e.g., [7, 20, 21, 37].

Our algorithms are Monte Carlo randomized and answer all queries correctly with high
probability!. We note that since the correct answer to each query is uniquely determined from
the input, the algorithms work against adaptive adversaries, that is, each deleted edge may
depend on previous answers to queries and (in the case of decremental 2-edge-connectivity)
on the alleged bridges reported by the algorithm?

Furthermore, our algorithms offer a self-check capability. At the end, after all updates and
queries have been processed online, each algorithm can deterministically check if it might have
made a mistake. If the self-check passes, it is guaranteed that no incorrect answer was given.
Otherwise, the algorithm may have made a mistake. Given the self-check is deterministic,
the probability that the self-check passes following the execution of the algorithm only

1 We define high probability as probability 1 — O(n~7) for any given 7.

2 To be precise, with unique correct answers, for any adaptive adversary A,q, there is a non-adaptive
adversary Apon-aa Which provides the same sequence of edge deletions up to the first point in time
where the algorithm potentially reports an incorrect answer. Apon-ad is simply defined to provide the
same edge-deletions as A,q would conditioned on it receiving the unique correct answers to every query.
Intuitively, the adaptivity of the adversary only becomes relevant once the algorithm has already made
a mistake. Illustrating the issue of non-uniqueness in the case of decremental connectivity, suppose
we augmented our algorithm to report a (non-unique) path between queried pairs of vertices in the
same component. The choice of path could reveal information about the random bits employed by our
algorithm and this could be very problematic if A,q4 decided to delete the reported path edges.
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depends on the correctness of the algorithm execution. However, as we show in the following,
the self-check passes with high probability. This feature implies that we can obtain Las
Vegas algorithms for certain non-dynamic problems whose solutions employ decremental
(2-edge-)connectivity algorithms as subroutines: we simply repeat trying to solve the static
problem from scratch, each time with new random bits, until the final self-check is passed.
With high probability, we are done already after the first round. A nice concrete example
is the algorithm of Gabow, Kaplan, and Tarjan [15] for the static problem of deciding if a
graph has a unique perfect matching. The algorithm uses a decremental 2-edge-connectivity
algorithm as a subroutine. With our decremental 2-edge-connectivity algorithm, repeating
until the self-check is passed, we obtain a Las Vegas algorithm for the unique perfect matching
problem that is always correct, and which terminates in O(m + n polylogn) time with high
probability.

The tradition of looking for linear time algorithms for non-sparse graphs goes back at
least to Fibonacci heaps, which can be used for solving single source shortest paths in
O(m + nlogn) time [14]. Our results show that another fundamental graph problem can be
solved in linear time in the non-sparse case.

The previous best time bounds for the decremental connectivity and 2-edge-connectivity
problems were provided by Thorup [39]. His algorithms run in O(mlog(n?/m) + npolylog n)
total time. This is amortized constant time per edge deletion only for very dense graphs
starting with Q(n?) edges. For graphs with O(n'-%%) edges, this is O(logn) amortized time
per edge deletion.

Both our algorithm and the previous one by Thorup are based on a general reduction from
decremental c-edge-connectivity to fully-dynamic c-edge-connectivity on a sparse c-certificate
graph with O(cn) updates.

The contribution of this paper is a new type of sparse c-certificate that is much more
efficient to maintain during edge deletions, reducing amortized time per deletion from
O(log(n?/m)) to the optimal O(1). We hope that this new sparse c-certificate will inspire
other applications. We shall discuss it further in Section 2.

It should be noted that [39] used Las Vegas randomization, that is, correctness was
guaranteed, but the running time bound only held with high probability. Our algorithms are
Monte Carlo randomized, but offer the final self-check. Another difference is that our new
algorithms need only a polylogarithmic number of random bits, whereas the ones from [39]
used ©(m) random bits.

We will now give a more detailed discussion of our results in the context of related work.

1.1 Connectivity

Dynamic connectivity is the most fundamental dynamic graph problem. The fully dynamic
version has been extensively studied [8, 9, 12, 22, 23, 26, 28, 31, 34, 35, 36, 40, 42, 43] from
both the lower and upper bound perspective, even though close to optimal amortized update
bounds have been known since the 90s [22, 23, 40]. Currently, the best known amortized
update time bounds are O(log?n/loglogn) deterministic [43] and O(logn - (loglogn)?)
expected time [26].

Note that Thorup’s O(log(n?/m)) bound for decremental connectivity is essentially only
a (loglogn)? factor better than the latter of these bounds for fully-dynamic connectivity,
while our new bound brings the decremental cost down to a constant (for non-sparse graphs).
Getting down to a constant is particularly interesting when we compare with related lower
bounds as discussed below.
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Connectivity Lower Bounds. Our result implies that decremental connectivity is provably
easier than fully-dynamic connectivity for a wide range of graph densities. Specifically, let
t, be the update time of a fully dynamic connectivity algorithm and let ¢, be its query
time. Pétragscu and Demaine [35] showed a lower bound of Q(logn) on max(t,,t,) in
the cell-probe model. Patragcu and Thorup [36] also showed that t, = o(logn) implies
t; = Q(n'=°W). These lower bounds hold for all graph densities and allow for both
amortization and randomization. As a result, no fully-dynamic connectivity algorithm can
answer connectivity queries in constant time and have an amortized update time of o(logn).

In sharp contrast, assuming that m = Q(npoly logn) edges are deleted, our algorithm
shows that one can solve decremental connectivity handling both queries and updates in
constant amortized time.

We note that such a result is possible only because we allow for amortization, as any

decremental connectivity algorithm with worst-case update time O(polylogn) must have

logn
loglogn

worst-case query time 2 ( ) [3]. This lower bound holds even for trees supporting

restricted connectivity queries of the form “are uw and v connected?” for a fixed “root” wu.
This lower bound also holds for dense graphs, as we can always add a large static clique to
the problem.

An optimal incremental connectivity algorithm has been known for over 40 years. Namely,
to handle m > n edge insertion and ¢ connectivity queries, one can use the union-find
data structure [38] with n — 1 unions and 2(m + ¢) finds. The total running time is
O((m+q)a((m+q),n)), which is linear for all but very sparse graphs (since a(2(nlogn),n) =
O(1)). It was later shown that this running time is optimal for incremental connectivity [13].
Interestingly, incremental connectivity can be solved in optimal linear time in the case of
forests provided that the final shape of the forest is known in advance [16].

Similarly to the decremental case, one cannot hope to obtain an analogous result with a

worst-case update time in the incremental setting: Patragcu and Thorup [36] showed that

logn
loglogn

any incremental connectivity data structure with o ( ) worst-case update time must

have worst-case Q(n'~°(")) query time in the cell-probe model.

Other cases of optimal decremental connectivity. There is much previous work on cases
where decremental connectivity can be supported in O(m) total time. Alstrup, Secher,
and Spork [5] showed that decremental connectivity can be solved in optimal O(m) total
time on forests, answering queries in O(1) time.> This was later extended to other classes of
sparse graphs: planar graphs [32], and minor-free graphs [24]. All these special graph classes
are sparse with m = O(n) edges.

For general graphs, we only have the previously mentioned work by Thorup [39], yielding
a total running time of O(m) for very dense graphs with m = Q(n?) edges. We now obtain
the same linear time bound for all non-sparse graphs with m = Q(n poly logn) edges.

1.2 General reduction for c-edge-connectivity

Our algorithm for decremental connectivity is based on a general randomized reduction from
decremental c-edge-connectivity (assuming all m edges are deleted) to fully-dynamic c-edge-
connectivity on a sparse graph with 0(671) updates. The reduction has a polylogarithmic
cost per vertex as well as a constant cost per edge. The previous decremental connectivity

3 The general word encoding trick behind [5, 16] that brings the update time to amortized constant has
been even shown to have practical relevance [4].
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algorithm of Thorup [39] was also based on such a general reduction, but the cost per edge
was O(log(n?/m)) which is O(1) only for very dense graphs with m = Q(n?). Below we will
describe the format of the reductions in more detail.

Because there are different notions of c-edge-connectivity, we first need to clarify our
definitions. We say that two vertices u, v are c-edge-connected iff there exist ¢ edge-disjoint
paths between v and v in G. It is known that c-edge-connectivity is an equivalence relation;
we call its classes the c-edge-connected classes. However, for ¢ > 3, a c-edge-connected class
may induce a subgraph of G which is not connected, so it also makes sense to consider
c-edge-connected components, i.e., the maximal c-edge-connected induced subgraphs of G.* It
is important to note that the c-edge-connected components and the c-edge-connected classes
are uniquely defined and both induce a natural partition of the vertices of the underlying
graph. Moreover, each c-edge-connected component of G is a subset of some c-edge-connected
class of G. For ¢ = 1,2, the c-edge-connected classes are c-edge-connected, so the two notions
coincide. To illustrate the difference, let us fix ¢ > 3 and consider a graph with ¢+ 2 vertices
Vg, Vg, U1, . . ., U and edges {vs, v} X {v1,...,v.}; while all c-edge-connected components in
this graph are singletons, there is one c-edge-connected class, which is not a singleton, namely
{vs, vt}

We define a c-certificate of G to be a subgraph H of G that contains all edges not
in c-edge-connected components, and also contains a c-edge-connected subgraph of each
c-edge-connected component. Both Thorup’s and our reduction maintains a c-certificate H
of G. Then, for any ¢’ < ¢, we have that the ¢’-edge-connected equivalence classes and the
c’-edge-connected components are the same in G and H. As the edges from G are deleted,
we maintain a c-certificate with 5(cn) edges undergoing only 6(071) edge insertions and
deletions in total.

The (uniquely defined) c-edge-connected components of a graph can be found using the
following algorithm: while the graph contains a cut of size at most ¢ — 1, remove all edges
of this cut. For the reductions, we need algorithms that can help us in this process. We
therefore define the fully dynamic c-edge-cut problem as follows. Suppose a graph G is subject
to edge insertions and/or deletions. Then, a fully dynamic c-edge-cut data structure should
report, after each update, some edge e that belongs to some cut of size less than c¢. A typical
application of such a data structure is to repeatedly remove such edges e belonging to cuts
of size less than ¢, which splits G into its c-edge-connected components. For each ¢ > 1,
denote by T.(n) the amortized time needed by the data structure to find an edge belonging
to a cut of size less than c¢. For example, for ¢ = 1 we have Ti(n) = O(1) since we do not
have to maintain anything. For ¢ = 2, the data structure is required to maintain some bridge
of G and it is known that T5(n) = O((logn - loglogn)?) [25]. For ¢ > 3, in turn, we have
T.(n) = O(n'/? poly (c)) [41].

Given a fully dynamic c-edge-cut data structure, whose update time for a graph on n
vertices is T,(n), Thorup’s [39] reduction maintains, in O(mlog(n?/m)) + O(c - n - To(n))

total time, a c-certificate H of the decremental graph G starting with n vertices and m edges.

The certificate undergoes only O(cn) edge insertions and deletions throughout any sequence
of deletions issued to G. We reduce here the total time to O(m) + O(c - n - To(n)).

Combining our reduction with the polylogarithmic fully-dynamic connectivity and
2-edge-connectivity algorithm of Holm, de Lichtenberg, and Thorup [23], we can now solve
decremental connectivity and 2-edge-connectivity in O(m) + O(n) time.

4 There is no consensus in the literature on the terminology relating to c-edge-connected components and
classes. Some authors (e.g., [17, 18]) reserve the term c-edge-connected components for what we in this
paper call c-edge-connected classes.
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We can also apply the fully dynamic min-cut algorithm of Thorup [41] which identifies

D in nt/2+o() worst-case time. For ¢ = no(l), we then maintain a c-certificate

cuts of size n°(
H in O(m + n3/2t°(M) total time. This includes telling which vertices are in the same
c-edge-connected component. If we further want to answer queries about c-edge-connectivity
between pairs of vertices, we can apply the fully-dynamic data structure of Jin and Sun [27]
to the c-certificate H. By definition, the answers to these queries are the same in H and G,
and the algorithm takes n°(Y) time per update or query. Hence the total time for the updates

remains O(m + n?/2t°(M) and we can tell if two vertices are c-edge-connected in n°) time.

1.3 Results

We will now give a more precise description of our reduction, including the log-factors hidden
in the 6(cn) bound. Let the decremental c-certificate problem be that of maintaining a
c-certificate of G when G is subject to edge deletions. Recall that T.(n) denotes the amortized
update time of a fully-dynamic c-edge-cut data structure. Thorup [39] showed the following.

» Theorem 1 (Thorup [39]). There exists a Las Vegas randomized algorithm for the decre-
mental c-certificate problem with expected total update time O(mlog(n?/m) + n(c + logn) -
T.(n)log®n). The maintained certificate undergoes O(n - (¢ +logn)) expected edge insertions
and deletions throughout, assuming ©(m) random bits are provided. These bounds similarly
hold with high probability.

In particular the total update time is O(m) for very dense graphs with Q(n?) edges.
Our main result, which we state below, shows that amortized constant update time can be
obtained as long as the initial graph has Q(n polylog(n)) edges.

» Theorem 2. There exists a Monte Carlo randomized algorithm for the decremental c-
certificate problem with total update time O(m + n(c + logn) - T.(n) log® n + nclog” n). The
maintained certificate undergoes O(nc log* n) edge insertions and deletions throughout. The
algorithm is correct with high probability. Within this time bound, the algorithm offers a final
self-check after processing all updates.

In fact, our algorithm is itself a reduction to O(logn) instances of the decremental
c-certificate problem on a subgraph of G with m/ = O(m/log?n) edges. To handle each
of these instances, we use the state-of-the-art data structure (Theorem 1) which costs only
O(m'logm') = O(m/logn) (for non-sparse graphs), yielding a combined cost of O(m). As a
result, our improved reduction (Theorem 2) requires ©(m/logn) random bits to hold.

We can reduce the need for random bits dramatically paying a little extra cost per vertex.
Our new randomized c-certificate that is the key to obtaining the new reduction requires
only pairwise independent sampling to work. This is in sharp contrast with the certificate
of Karger [30], used in the construction of Thorup’s data structure (Theorem 1), which
requires full independence, i.e., ©(m) random bits. We show that we may instead plug our
new certificate into Thorup’s data structure at the cost of a single additional logarithmic
factor in the running time. Since Karger’s certificate constitutes the only use of randomness
in Thorup’s data structure, and full independence in our construction is required only for
invoking Theorem 1, we obtain the below low-randomness version of our main result.

» Theorem 3. There exists a Monte Carlo randomized algorithm for the decremental c-
certificate problem with total update time O(m+nc-Tu(n)log? n+nclog” n). The maintained
certificate undergoes O(nc log? n) edge insertions and deletions throughout. The algorithm
is correct with high probability if O(polylogn) random bits are provided. Within this time
bound, the algorithm offers the final self-check after processing all updates.
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By using Theorem 3 with best known fully dynamic algorithms for different values of
¢ [23, 27, 41], we obtain:

» Theorem 4. There exists Monte Carlo randomized decremental connectivity and decre-
mental 2-edge-connectivity algorithms with O(m + nlog’ n) total update time and O(1) query
time.

» Theorem 5. Let ¢ = (logn)°Y). There exists a Monte Carlo randomized decremental
c-edge-connectivity data structure which can answer queries to whether two vertices are in
the same c-edge connected class in O(n°Y) time, and which has O(m)+ O(n®/?) total update
time.

» Theorem 6. Let ¢ = O(n°Y)). There exists a Monte Carlo randomized decremental
c-edge-connected components data structure with O(m + n3/2+0(1)) total update time and
O(1) query time.

While Theorems 5 and 6 are only optimal for graphs with m = Q(n3/2+0(1)) edges, we
do note that the improvement in runtime from O(mT.(n)) to O(m + nT.(n)polylogn) is
in general more impressive when T,(n) is large. E.g., if T.(n) = \/n, for dense graphs with
Q(n?) edges, the former bound is O(m®/*) while the later is O(m) which is a polynomial
improvement.

All the above applications of our main result work using only O(polylogn) random bits.

They moreover each have the self-check property as well. As discussed before, our new
2-edge-connectivity data structure implies an optimal O(m)-time unique perfect matching
algorithm for m = Q(n polylogn).

1.3.1 Adaptive updates and unique perfect matching

All our time bounds are amortized. Amortized time bounds are particularly relevant for
dynamic data structures used inside algorithms solving problems for static graphs. In such
contexts, future updates often depend on answers to previous queries, and therefore we need
algorithms that work with adaptive updates.

Our reduction works against adaptive updates as long as all the information it provides
is uniquely defined from the input graph and the update sequence, hence not revealing
any information about the random choices in our c-certificate H. We assume some linear
orderings of the vertices and the edges, and define the representative (or ID) of a c-edge
connected component to be the smallest vertex in it. The reduction will safely maintain
the following public information about the c-edge-connected components of G: between
deletions, each vertex stores a pointer to the representative of its c-edge connected component,
so two vertices are in the same c-edge-connected component if and only if they have they
point to the same representative. With the representative, we store the size of the c-edge
connected component, and list its vertices in sorted order. Finally, we have a sorted list of all
edges that go between c-edge-connected components. After each update, we can also reveal
the representatives of the new c-edge-connected components, and the edges between these
components. For the case of 2-edge-connectivity, the above means that we can maintain the
bridges of a decremental graph and we can also maintain the connected components and
their sizes without revealing what the current randomized certificate looks like. All this is
needed for the unique perfect matching algorithm of Gabow, Kaplan, and Tarjan [15]. The
algorithm is an extremely simple recursion based on the fact that a graph with a unique
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Algorithm 1 Algorithm computing Thorup’s certificate in the static setting.

Input :A graph G = (V, E), where n = |V|, sampling probability P, parameter c
Returns: A set of @(c -n/P) edges giving a c-certificate of G

1 Function ThorupCertificate(V, E, P, c):
if |E| < c¢-n then

return F
S < subset of F, in which each edge is included independently with prob. P;
D <+ edges of E connecting distinct c-edge-connected components of (V,.5);
return D U ThorupCertificate(V,S, P, ¢)

o A WN

perfect matching has a bridge and all components have even sizes. The algorithm first
asks for a bridge (u,v) of some component. If there is none, there is no unique matching.
Otherwise we remove (u,v) and check the sizes of the components of u and v. If they are
odd, (u,v) is in the unique matching, and we remove all other incident edges. Otherwise
(u,v) is not in the unique matching. The important thing here is that the bridges do not tell
us anything about our random 2-certificate of the 2-edge-connected components.

Thus we solve the static problem of deciding if a graph has a unique perfect matching
in O(m) + 6(n) time. If the self-verification reports a possible mistake, we simply rerun.
Consequently we get a Las Vegas algorithm that terminates in O(m) + 5(n) time with high
probability.

QOutline. Due to space constraints, in the remaining part of this extended abstract we give
a rather extensive technical overview of our data structure. All the details and proofs can be
found in the full version of this paper.

2 Technical overview

Our main technical contribution is a new construction of a sparse randomized c-certificate
that witnesses the c-edge-connected components of G and can be maintained in constant
time per edge deletion in G (assuming that the initial graph is not too sparse). In the static
case, deterministic certificates of this kind have been known for decades [33]. However, they
are not very robust in the decremental setting, where an adversary can constantly remove
its edges forcing it to update frequently. Consequently, Thorup [39] used a randomized
sample-based certificate to obtain his reduction. The general idea behind this approach is to
ensure that the certificate is sparse and undergoes few updates. Ideally, the sparse certificate
will only have to be updated whenever an edge from the certificate is deleted. Using a fully
dynamic data structure on the certificate, we may obtain efficient algorithms provided that
we don’t spend too much time on maintaining the certificate. Thorup’s reduction had an
additive overhead O(mlog(n?/m)) for maintaining the certificate, which we will reduce to
the optimal O(m). We shall, in fact, use Thorup’s reduction as a subroutine, called on
O(logn) decremental subproblems each starting with O(m/log?®n) edges.

2.1 Thorup’s construction [39]

Let us first briefly describe how Thorup’s algorithm operates on certificates and highlight
difficulties in improving his reduction to linear time. First of all, the c-certificate is constructed
as follows (see Algorithm 1 for pseudocode). Initially, sample edges of G uniformly with
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probability P < 1/2; thus obtaining a subgraph S. Then, compute the c-edge-connected
components of S and form a certificate H out of two parts: (1) A recursive certificate of
S, and (2) the subgraph D consisting of edges of G connecting distinct c-edge-connected
components of S.

As proved by Karger [30], D has size 5(cn/P) with high probability. Thorup [39]
generalizes this by proving that D undergoes only 6(071/ P) insertions throughout any
sequence of edge deletions to S. Since D depends only on the c-edge-connected components
of S, it is enough to have a c-certificate of S in order to define D. Hence, a c-certificate
of S (which is a graph a size O(mP), i.e., a constant factor smaller) is maintained under

edge deletions recursively. The recursion stops when the size of the input graph is O(cn).

To maintain D at each recursive level, we first need to maintain the c-edge-connected
components of the (recursive) certificate of S under edge deletions. The certificate of S can
be (inductively) seen to have O(cn/P) edges and undergo O(cn/P) updates. As a result, for
P = 1/2 maintaining its c-edge-connected components costs 6(cn -Te(n)) total time using
the fully-dynamic c-edge-cut data structure. Since at each recursion level the certificate size
decreases geometrically, the expected cost of all the dynamic c-edge-cut data structures is
O(en - T,(n)). For ¢ = 1,2, O(cn - To(n)) = O(n).

The bottle-neck in Thorup’s reduction. For non-sparse graphs, the bottleneck in Thorup’s
reduction is the additional cost of O(mlog(n?/m)) which comes from the fact that, at each
level of the recursion, when a c-edge-connected component in S splits into two components
as a result of an edge deletion, we need to find edges of G between these two components
in order to update D. This takes O(mlog (n?/m)) total time throughout using a standard
technique of iterating through the edges incident to the vertices in the smaller component
every time a split happens [10]. The O(log(n?/m)) (instead of O(log(n))) cost comes
by noticing that a vertex can at most have ¢ neighbors in a component of order ¢, and
that after we go through the edges of a vertex ¢ times it is in a component of order
< n/2% hence it is only the first O(log(n/deg(v))) times that all neighbors of v have to
be considered, so, by applying Jensen’s inequality, the total time spent on this becomes
O (3 ey deg(v) log(n/ deg(v))) = O(m log (n?/m)).

It turns out very challenging to get rid of the O(mlog(n?/m)) term associated with
finding cuts when components split in Thorup’s reduction. If we knew that all of these cuts
were small, say of size at most J, then we could apply a whole bag of tricks for efficiently
finding them in a total time of O(nd), e.g., using invertible Bloom lookup tables [19], or the
XOR-trick [1, 2, 29]. Unfortunately, the bound of O(cn/P) only gives an average bound
on the number of edges between pairs of components, and in fact there can be pairs of
components having as many as Q(nl/ 3) edges between them, as we will later show. In
order to resolve this, we have to introduce a new type of sample based c-edge certificate
obtained by only removing cuts of size at most 6 = O(cpolylogn) from G. In the following
three subsections, we describe the ideas behind this new certificate, the technical challenges
encountered in efficiently maintaining it, and why such a certificate is relevant for decremental
connectivity algorithms.

2.2  Our c-certificate based on small cut samples

In this section we describe the construction of our c-certificate. For simplicity, we assume
c =1 for now.

The (simplified) algorithm for computing the certificate in the static setting is given as
Algorithm 2. In order to obtain a conceptually simpler picture of the certificate, Algorithm 2
is described recursively where each recursive call takes as input a minor G’ of G, namely
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Algorithm 2 Algorithm computing our new certificate in the static setting.

Input :A graph G = (V, E) where n = |V| and m = |E|, sampling probability P,
parameter 0
Returns: A set of O(mPlogn + ndlogn) edges giving a 1-certificate of G

1 Function NewCertificate(V,E, P, d):
if £ =0 then
return ()
D = 0;
while G has a non-isolated vertexr v of degree < ¢ do
Remove from FE all edges incident to v and add them to D
S < subset of F, in which each edge is included independently with prob. P;
H «+ (V,5);
G’ < graph obtained from G by contracting connected components of H;
return S U D U NewCertificate(V(G'), E(G'), P, )

© O N O oA WN

o
(=]

the graph obtained by contracting the connected components of H = (V, S), where S is a
subset of edges of G (after pruning G of small cuts in lines 5-6) sampled with probability
P. Adding an edge e of G’ to the certificate, simply means that we add the corresponding
edge of G. While Algorithm 2 gives a precise description of the static certificate at any given
point, maintaining these minors in the dynamic setting is too costly. Because of that, in the
dynamic algorithm, instead of using minors we work with a sequence of subgraphs of the
initial graph that are easier to maintain dynamically.

Denote by ¢ the depth of the recursion in Algorithm 2. For i = 1,...,¢, let S; be the
union of samples S on the recursive levels 1,...,7 of Algorithm 2, so that S, contains all
the edges sampled in the process. When an edge is deleted from G, it is removed from all
the sampled subsets S in the recursion, and thus also from all the relevant subsets S;. This
way, after any sequence of deletions the certificate that we maintain only depends on the
initial samples S1,55 \ S1,...,5¢\ Se—1 and the current graph G, not on the sequence of
edge updates made to G so far. We may therefore describe the certificate statically.

The critical idea behind our certificate is to introduce a small-cut-parameter 6. Our
certificate is obtained by iteratively removing certain cuts from G where each cut is allowed
to be of size at most §. We denote by D C G the graph whose edge set consists of the edges
removed in this process. The overall goal is to define this cut removal process in a way so
that (1) each connected component of G\ D is connected in S;, and (2) it is easy to detect
new small cuts under edge deletions issued to G. We then use Sy U D as our connectivity
certificate of G. Importantly, we want ¢ to be as small as possible, ideally § = O(polylog(n)).
This is because O((Sn) will show up as an additive cost in our algorithm for maintaining the
certificate.

We will describe shortly how this type of certificate can be used in the design of efficient
decremental connectivity algorithms, but let us first demonstrate that the existence of such
a cut removal process (satisfying both (1) and (2)) for a small ¢ is non-trivial.

First of all, we could simply remove all cuts from G of size at most ¢ leaving us with the
(6 + 1)-connected components. Karger’s result [30] implies that with § = O((c 4 logn)/P)
sufficiently large, these components will remain c-edge connected in S. However, in order to
maintain the small cuts, we would need a decremental d-edge connectivity algorithm. As
0 > ¢, this approach simply reduces our problem to a much harder one.
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Suppose on the other hand that we attempted to use Thorup’s sampling certificate [39]
described above. To simplify the exposition, let’s assume that P = 1/2. If D is the set of
edges between connected components of S, DU S is a certificate. Thorup’s algorithm recurses
on S to find a final certificate of G. At first sight it may seem like D can be constructed by
iteratively removing cuts of size at most § = O(logn) between the connected components of
S. After all, isn’t it unlikely that a connected component of .S has more than, say, 100 logn
unsampled outgoing edges when the sampling probability is P = 1/2? As alluring as this
logic may be, it is flawed. Indeed, there exist graphs of maximum degree O(logn) such that
after sampling with P = 1/2, some two connected components of the sampled subgraph, Cy
and Cs, will have Q(n'/?) unsampled edges between them. At some point in the iterative
process, we are thus forced to remove a cut of size Q(n'/3) splitting C; and Cs, and we would
have to choose § of at least this size (but it is possible that other examples could show that ¢
would have to be even larger). Our algorithms spend total time O(nd) on finding these cuts,
and if § = Q(n'/3), this is not good enough for a linear time algorithm for non-sparse graphs.

We remark that in this example, each vertex of G has degree O(logn) with high probability.

Therefore, an alternative approach yielding cuts of size O(logn) would be to cut out one
vertex at a time moving all incident edges to D. In particular this would cut the large
sampled components C; and Cs into singletons, one vertex at a time. We cannot proceed
like this for general graphs which may have many vertices of large degree. Nevertheless, this
simple idea will be critically used in our construction which we will now discuss.

Our actual certificate uses § = @(k’%) and P = 1/ polylog n. To construct our certificate,
we start by iteratively pruning G of the edges incident to vertices of degree less than d, moving
these edges to D. The graph left after the pruning Gy = G\ D satisfies that each vertex of
positive degree has degree at least d. Next, S; defines a sample of Gy, H; = S1 N G1. The
expected degree of each vertex in H; which is not isolated in G is at least § - P = O(logn),
and thus we get that with constant probability a fraction of 3/4 of the vertices with positive

degree in the sampled subgraph H; have degree > 4.

Using this property we show that H; can have at most 5n/6 connected components. As a
result, if we contract the connected components of H;y in the pruned graph G, the resulting
graph G has at most 5n/6 vertices. Finally, we construct a certificate for G recursively
using the samples Sy \ S1,55 \ S, ..., stopping when the contracted graph has no edges
between the contracted vertices (here G played the role of Gj)). The constant factor decay
in the number of components ensures that we are done after £ = O(logn) steps with high
probability. All edges of D are obtained as the removed edges of cuts of G of size less than 9,
so D will have size O(nd). Our certificate will simply be S, U D which we prove is in fact a
certificate.

With this, we have thus completed the goal of obtaining a small cut sample certificate
with § as small as O(lo%). Abstractly, our certificate has a quite simple description: we
alternate between sampling, removing small cuts around connected components in the sample,
and finally contracting these components. However, in our implementation, we cannot afford
to perform the contractions as described above explicitly, as updating them dynamically
would be costly. As a result we end up solving a more challenging problem in the dynamic
setting. Given a graph G and its subgraph H undergoing edge deletions, determine if any
connected components of H is incident to at most § edges of G \ D, i.e., induces a cut of
at most § edges. It turns out that since we are only concerned with cuts of size at most 9,
we can in fact identify these cuts in total time O(m) + O(dn). We will describe this in the
following section.
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A final property of our new randomized decremental certificate algorithm is that it
requires only O(log2 n) random bits to yield high-probability correctness bounds. This is in
sharp contrast with Thorup’s algorithm [39] which requires (m) random bits. On a high
level, the reason we can do with few random bits is that in each step of the construction of
our certificate, we only need the bounds on the number of contracted components to hold
with constant probability. Indeed, we will still only have O(logn) recursive levels with high
probability. This means that for the probability bounds within a single recursive level, it
suffices to apply Chebyshev’s inequality. While the reduction of the number of required
random bits is nice, the main point, however, is that with our new certificate we can get down
to constant amortized update time per edge-deletion for decremental (2-edge)-connectivity
for all but the sparsest graphs.

2.3 Maintaining our certificate

As edges are deleted from G, the recursive structure of the c-certificate H changes. Indeed,
a deletion of an edge may cause the following changes in one of the recursive layers of H: (1)
introduce a cut of size less than § surrounding a c-edge-connected component or (2) break
a c-edge-connected component in two. In the first case, the edges of the cut have to be
moved to D, and deleted from the current and later layers of H, causing further cascading.
When a c-edge-connected component (in a recursive layer) of H breaks in two, we need to
determine whether either of the new components has less than ¢ outgoing edges in G \ D.
If we use the standard technique of iterating over all the edges incident to vertices of the
smaller component, this again incurs an O(log(n?/m)) cost per edge which is insufficient.
However, as we only care about components with at most § outgoing edges, it turns out that
we can do better. We define the boundary 0z (C) of a component C' of some graph H C G
to be the set of edges of G with one endpoint in C, and another in V' \ C. To overcome the
O(log (n?/m)) cost per edge, we prove that we can maintain boundaries of size at most &
under splits using a Monte Carlo randomized algorithm in O(m + né polylogn) total time.
We achieve this by developing a fully dynamic data structure summarized as follows, that we
believe may be of independent interest.

» Theorem 7. Let G = (V, E) be an initially empty graph subject to edge insertions and
deletions and let s, 1 < s < n, be an integral parameter. There exists a data structure

that can process up to O(poly n) queries of the form “given some S C V', compute dg(S)”,
where 0g(S) = E(S,V'\'S), so that with high probability each query is answered correctly in

0] (|S\s +|E(S, V)| - @ + log n) time. The data structure is initialized in O(ns) time

and can be updated in constant time.

We realize this result by deploying the so-called XOR-trick [29]° for deciding if a boundary
of some subset of vertices is non-empty, albeit in a somewhat unusual manner. We now
briefly describe the method. Suppose each e € F is assigned a random bit-string . of length
O(logn), which fits in O(1) machine words. Let x, = @,,_.cp Z. denote the XOR of the
respective bit-strings of edges incident to v. Then, one can prove that, given S C V', with
high probability the XOR €, g =, is non-zero if and only if dg(S) # (. The underlying
idea is that if an edge e incident to v € S has its other endpoint also contained in S, its
corresponding bit string x. appears exactly twice in @ue g Tu, and thus cancels out. So,
emptiness of 9g(S) can be tested in O(]S]) time.

5 See also [1, 2] for uses of the same idea in other contexts.
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The XOR trick can also be used with no change to retrieve a non-empty boundary
9c(S), but only when that boundary has precisely one element. In order to retrieve some
element of d¢(.9), existing applications of the XOR-trick consider a polylogarithmic number
of independent edge set samples, chosen such that one of the samples intersects 0z (S)
precisely on one edge (with high probability). This unavoidably introduces a polylogarithmic
dependence in the cost per edge of the graph, which is prohibitive in our scenario.

The main idea behind Theorem 7 which allows us to deal with this problem is as
follows. We partition the edge set F into Eq,...,Es. Each e € E is assigned to one of
these sets uniformly at random. We apply the XOR-trick for each of the edge-disjoint
subgraphs (V, E;) separately. This takes O(s|S|) time and computes a set I of all ¢ such
that dg(S) N E; # 0 (with high probability). Clearly, in order to find dg(S), we only
need to look for this boundary’s elements in ({;c; Ei) N Eg(S, V). Note that the expected
size of this set is (|I|/s) - |Eq(S,V)| < (|0a(9)|/s) - |[Ec(S,V)|. If we set s to be larger
than the maximum size of a boundary that we would like to retrieve (in the algorithm
we ensure that the ratio is polylogarithmic), we significantly reduce the set of candidate
edges to consider and can search through them exhaustively. In total, as we show, only
O(10c(S)| + |Ec(S, V)| - 10c(S)|/s + logn) edges are explored with high probability.

In our application, we end up using the data structure of Theorem 7 storing the (dynamic)
graph G \ D, and handling small boundary (of size no more than § = polylogn) queries
for smaller sides C' C V of decomposing components of £ = O(logn) dynamic subgraphs of
G\ D. Throughout, the total size of the queried subsets C' is O(nlog?n). Consequently,
the sum of |[E(C, V)| over these sets is O(mlog?n). By setting s = dlog®n in Theorem 7,
we obtain that the required queries for J-bounded boundaries dg\ p(C) can be processed in
O(n polylogn + m) total time.

2.4 Combining our certificate with Thorup’s algorithm

With the certificate as above, the overall idea for a decremental connectivity algorithm is
to maintain a c-certificate of (each recursive layer of) the decremental graph H = S\ D
using the algorithm by Thorup [39]. By choosing P = 1/log®n, S has m/ = O(m/log® n)
edges with high probability, so employing the algorithm of Theorem 1 on each recursive
layer takes total time O(m’log?n + ncT.(n)polylogn) = O(m + ncTe.(n) polylogn) with
high probability. Let H* be the c-certificate thus obtained for H. Using a fully dynamic
c-edge-connectivity algorithm on H* U D (which undergoes O(cn polylogn) updates), we
maintain a c-edge certificate of G. As H* U D undergoes O(cn polylogn) updates, running
the fully dynamic algorithm takes total time O(cnT,(n) polylogn).

We remark that for ¢ = 1,2 we could instead use a fully dynamic c-edge connectivity
algorithm on H with polylogaritmic update and query time at the price of a smaller P (which
would incur more log-factors in our final time bound). For ¢ > 2, however, we only know that
T.(n) = O(n'/? poly(c)). Since running a fully dynamic algorithm on H takes total time
Q(mT.(n)/ polylogn), this is insufficient to obtain linear time algorithms for dense graphs.

2.5 Final self-check

Let us finally describe the ideas behind the final self-checks claimed in Theorem 2 and 3 in a
more general context. In particular, we show that if a randomized Monte Carlo dynamic
algorithm satisfies some generic conditions then it can be augmented to detect, at the end
of its execution, whether there is any chance that it answered any query incorrectly. That
is, if the self-check passes then it is guaranteed that all queries were answered correctly
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throughout the execution of the algorithm. Otherwise, it indicates that some queries might
have been answered incorrectly. The self-check property is particularly useful in applications
of dynamic algorithms as subroutines in algorithms solving static problems, that is, it enables
static algorithms to exhibit Las Vegas guarantees instead of the Monte Carlo guarantees
provided by the dynamic algorithm, as they can simply re-run the static algorithm with fresh
randomness until the self-check passes.
The properties of a dynamic algorithm amenable to a self-check behavior are as follows:
Once an error is made by the dynamic algorithm it should be detectable and any
subsequent updates of the algorithm should not correct the error before it is detected.
If the dynamic algorithm is stopped at any point in time, it should be able to still perform
the self-check within the guaranteed running time of the algorithm.

In our algorithm, as long as the c-certificate maintained by our algorithm is correct, the
c-edge-connectivity queries answered by our algorithm exhibit the same guarantees as the
fully dynamic c-edge-connectivity algorithm running on the c-certificate H. Hence, we only
need to detect potential errors in the process of maintaining the c-certificate H. Such errors
only happen with probability n =),

By definition, a c-certificate H C G of G is correct if for every “non-witness” edge (u,v)
from G\ H, we have that u and v are c-edge-connected in H. We use H = Sy U D where Sy
is decremental, and we impose the stronger requirement that if (u,v) € G\ H, then u and v
are c-edge-connected in Sy. If this is not the case, we consider it an error.

Suppose we have an error with (u,v). Since Sy is decremental, u and v cannot later
become c-edge connected in Sy;. Thus, the error can only disappear if (u,v) is deleted from
G or (u,v) is added to H. Therefore, all our self-checker needs to do is this: Whenever an
edge from G \ H is about to be deleted from G or about to be added to H, we first check
that v and v are c-edge-connected in Sy; otherwise we found an error. Also, if the algorithm
is terminated before all edges are deleted, we perform that above check on all remaining
edges. If any check finds an error, we flag the execution as invalid.

If an execution of our algorithm has not been flagged, we know that all queries have been
answered correctly. Moreover, the execution is only flagged with probability n =21,

As a final note, every vertex will maintain an ID of its c-edge-connected component in Sp.
Then u and v are the c-edge-connected in Sy if and only if they have the same ID. This is
checked in constant time, so these extra checks do not affect our overall asymptotic time
bounds.
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—— Abstract

We study the query version of the approximate heavy hitter and quantile problems. In the former
problem, the input is a parameter € and a set P of n points in R? where each point is assigned
a color from a set C, and the goal is to build a structure such that given any geometric range =,
we can efficiently find a list of approximate heavy hitters in v N P, i.e., colors that appear at least
g|y N P| times in v N P, as well as their frequencies with an additive error of [y N P|. In the latter
problem, each point is assigned a weight from a totally ordered universe and the query must output
a sequence S of 1 4 1/e weights such that the i-th weight in S has approximate rank ic|y N P|,
meaning, rank ic|y N P| up to an additive error of €|y N P|. Previously, optimal results were only
known in 1D [23] but a few sub-optimal methods were available in higher dimensions [4, 6].

We study the problems for two important classes of geometric ranges: 3D halfspace and 3D
dominance queries. It is known that many other important queries can be reduced to these two,
e.g., 1D interval stabbing or interval containment, 2D three-sided queries, 2D circular as well as 2D
k-nearest neighbors queries. We consider the real RAM model of computation where integer registers
of size w bits, w = O(logn), are also available. For dominance queries, we show optimal solutions
for both heavy hitter and quantile problems: using linear space, we can answer both queries in time
O(logn + 1/¢). Note that as the output size is <, after investing the initial O(logn) searching time,
our structure takes on average O(1) time to find a heavy hitter or a quantile! For more general
halfspace heavy hitter queries, the same optimal query time can be achieved by increasing the space
by an extra log,, < (resp. loglog,, 1) factor in 3D (resp. 2D). By spending extra log®™W 1 factors in

€
both time and space, we can also support quantile queries.

We remark that it is hopeless to achieve a similar query bound for dimensions 4 or higher unless
significant advances are made in the data structure side of theory of geometric approximations.
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On Range Summary Queries

1 Introduction

Range searching is an old and fundamental area of computational geometry that deals with
storing an input set P C R? of n (potentially weighted) points in a data structure such that
given a query range vy, one can answer certain questions about the subset of points inside ~.
Range searching is often introduced within a general framework that allows a very diverse
set of questions to be answered. For instance, if the points in P have been assigned integer
or real weights, then one can count the points in v (range counting), sum the total weights
of the points in v (weighted range counting), or find the maximum or minimum weight in ~
(range max or min queries).

However, there are some important questions that cannot be answered within this general
framework. Consider the following motivating example: our data includes the locations of
houses in a city as well as their estimated values and given a query range -y, we are interested
in the distribution of the house values within ~y, for example, we might be interested to see if
there’s a large inequality in house values or not. Through classical results, we can find the
most expensive and the least expensive houses (max and min queries), and the average value
of the houses (by dividing the weighted sum of the values by the total number of houses in
). Unfortunately, this information does not tell us much about the distribution of the house
values within +, e.g., one cannot compute the Gini index which is a widely-used measure of
inequality of the distribution. Ideally, to know the exact distribution of values within -, one
must have all the values inside ~, which in the literature is known as a range reporting query
which reports all the points inside the query range v. However, this could be an expensive
operation, e.g., it can take Q(n) time if the query contains a constant fraction of the input
points. A reasonable alternative is to ask for a “summary” query, one that can summarize
the distribution. In fact, the streaming literature is rich with many important notions of
summary that are used to concisely represent a large stream of data approximately but
with high precision. Computing e-quantiles can be considered as one of the most important
concepts for a succinct approximation of a distribution and it also generalizes many of the
familiar concepts, e.g., O-quantile, 0.5-quantile, and 1-quantile that are also known as the
minimum, the median, and the maximum of S. We now give a formal definition below.

Quantile summaries. Given a sequence of values wy < --- < wy, a d-quantile, for 0 < § < 1,
is the value with rank [dk]. By convention, O-quantile and 1-quantiles are set to be the
minimum and the maximum, i.e., w; and wy respectively. An e-quantile summary is then
defined as the list of 14 7! values where the i-th value is the ie-quantile, for ¢ = 0,--- , e~ 1.
As we will review shortly, computing exact quantiles is often too expensive so instead we
focus on approximations. We define an approximate e-quantile summary (AQS) to be a
sequence of 1 + ¢~*
(i + 1)-quantile!, for i = 0,--- ,e~!. An approximate quantile summary with a reasonably

values where the i-th value is between the (i — 1)-quantile and the

small choice of € can give a very good approximation of the distribution. It also has the
benefit that the query needs to output only O(e ) values, regardless of the number of points
inside the query range.

To obtain a relatively precise approximation of the distribution, € needs to be chosen
sufficiently small, and thus we consider it an additional parameter (and thus not a constant).
This is also similar to the literature on streaming where the dependency on ¢ is important.

L For a < 0 (resp. a > k), we define the a-quantile to be the O-quantile (resp. k-quantile).
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1.1 Problem Definition, Previous Work, and Related Results

One of our main problems is the problem of answering approximate quantile summary (AQS)
queries which is defined as follows.

» Problem 1 (Approximate quantile summaries). Consider an input set P of n points in R%
where each point p € P is assigned a weight w, from a totally ordered universe. Given a
value €, we are asked to build a structure such that given a query range vy, it can return an
AQS of PN efficiently.

It turns out that another type of “range summary queries” is extremely useful for building
data structures for AQS queries.

Heavy hitter summaries. Consider a set P of k points where each point in P is assigned a
color from the set [n]. Let f; be the frequency of color ¢ in P, i.e., the number of times color i
appears among the points in P. A heavy hitter summary (HHS) with parameter ¢, is the list
of all the colors i with f; > ek together with the value f;. As before, working with exact HHS
will result in very inefficient data structures and thus once again we turn to approximations.
An approzimate heavy hitter summary (AHHS) with parameter ¢ is a list, L, of colors such
that every color ¢ with f; > ¢k is included in L and furthermore, every color i € L is also
accompanied with an approximation, f/, of its frequency such that f; — ek < f/ < f; + ¢k.

» Problem 2 (Approximate heavy hitters summaries). Consider an input set P of n points in
R? where each point in P is assigned a color from the set [n]. Given a parameter ¢, we are
asked to build a structure such that given a query ~y, it can return an AHHS of the set P N~.

Observe that in both problems, the output size of a query is O(1/¢) in the worst-case.
Our main focus is to obtain data structures with the optimal worst-case query time of
O(logn + ¢~ 1). Note that it makes sense to define an output-sensitive variant where the
query time is O(logn + k) where k is the output size. E.g., it could be the case for a AHHS
query that the numbrer of heavy hitters is much fewer than =1
for AQS queries, since unless the distribution of weights inside the query range v is almost
constant, an AQS will have Q(¢~!) distinct values. As our main focus is on AQS, we only

consider AHHS data structures with the worst-case query time of O(logn + &~ 1).

This makes less sense

A note about the notation. To reduce the clutter in the expressions of query time and
space, we adopt the convention that log(:) function is at least one, e.g., we define log, b to

be max{1, it

, 2} for any positive values a, b.

Previous Results

As discussed, classical range searching solutions focus on rather simple queries that can
return sum, weighted sum, minimum, maximum, or the full list of points contained in a given
query range. This is an extensively researched area with numerous results to cite and so we
refer the reader to an excellent survey by Agarwal [5] that covers such classical results.
However, classical range searching data structures cannot give detailed statistical informa-
tion about the set of points contained inside the query region, unless one opts to report the
entire subset of points inside the query range, which could be very expensive if the set is large.
Because of this, there have been a number of attempts to answer more informative queries.
For example, “range median” queries have received quite a bit of attention [20, 10, 18].
Note that the median is the same as 0.5-quantile and thus these can be considered the
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first attempts at answering quantile queries. However, optimal solution (linear space and
logarithmic query time) to exact range median queries has only be found in 1D [10]. For
higher dimensions, to the best of our knowledge, the only known technique is to reduce the
problem to several range counting instances [10, 13], and it is a major open problem in the
range searching field to find efficient data structures for exact range counting. Due to this
barrier, the approximate version of the problem [9] has been studied.

Data summary queries have also received some amount of attention, especially in the
context of geometric queries. Agarwal et al. [6] showed that the heavy hitters summary (as
well as a few other data summaries) are “mergeable” and this gives a baseline solution for a
lot of different queries in higher dimensions, although a straightforward application of their
techniques gives sub-optimal dependency on e. In particular, for d = 2 and for halfspace (or
@) query time. For d = 3 the
query time will be O(n?/3/¢). In general, in the naive implementation, the query time will
be O(f(n)/e) where f(n) is the query time of the corresponding “baseline” range searching
query (see Table 1 for more information). A more efficient approach towards merging of

summaries was taken by [17] where they study the problem in a communication complexity

simplex) queries it yields a linear-space data structure with O(

setting, however, it seems possible to adopt their approach to a data structure as well, in
combination with standard application of partition trees; after building an optimal partition
tree, for any node v in the tree, consider it as a player in the communication problem with
the subset of points in the subtree of v as its input. At the query time, after identifying
O(nQ/ 3) subsets that cover the query range, the goal would be to merge all the summaries
involved. By plugging the results in [17] this can result in a linear-space data structure with
query time of O(n?/® 4+ n'/6e=3/2),

The issue of building optimal data structures for range summary queries was only tackled
in 1D by Wei and Yi [24]. They built a data structure for answering a number of summary
queries, including heavy hitters queries, and showed it is possible to obtain an optimal data
structure with O(n) space and O(logn + 1/¢) query time. Beyond this, only sub-optimal
solutions are available. Recently, there have been efforts to tackle “range sampling queries”
where the goal is to extract k random samples from the set [P N~| [3, 4, 16]. In fact, one of
the main motivations to consider range sampling queries was to gain information about the
distribution of the point set inside the query [3]. In particular, range sampling provides a
general solution for obtaining a “data summary” and for example, it is possible to solve the
heavy hitters query problem. However, it has a number of issues, in particular, it requires
sampling at least 1/¢2 points from the set |PN~|, and even then it will only provide a Monte
Carlo type approximation which means to boost the probabilistic guarantee, even more
points need to be sampled. For example, to get a high probability guarantee, (¢ ~2logn)
samples are required.

Type-2 Color Counting. These queries were introduced in 1995 by Gupta et al. [15] within
the area of “colored range counting”. In this problem, given a set of colored points, we want
to report the frequencies of all the colors that appeared in a given query range. This is a
well-studied problem, but mostly in the orthogonal setting, see e.g., [11].

AHHS queries can be viewed as approximate type-2 color counting queries but with an
additive error. Consider a query with k points. If we allow error ¢k in type-2 counting,
then we can ignore colors with frequencies fewer than €k but otherwise we have to report
frequencies with error ek, which is equivalent to answering an AHHS query.
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Other Related Problems. Karpinski and Nekrich [19] studied the problem of finding the
most frequent colors in a given (orthogonal) query range. This problem has received further
attention in the community [8, 7, 14]. But the problem changes fundamentally when we
introduce approximations.

The Model of Computation. Our model of computation is the real RAM where we have
access to real registers that can perform the standard operations on real numbers in constant
time, but we also have access to w = ©(logn) bits long integer registers that can perform the
standard operations on integers and extra nonstandard operations which can be implemented
by table lookups since we only need binary operations on fewer than %log n bits. Note that
our data structure works when the input coordinates are real numbers, however, at some
point, we will make use of the capabilities of our model of computation to manipulate the
bits inside its integer registers.

1.2 Qur Contributions

Our main results and a comparison with the previously known results are shown in Table 1.
Overall, we obtain a series of new results for 3D AHHS and AQS query problems which
improve the current results via mergeability and independent range sampling [6, 4] by up to a

2(1) factor in query time with almost the same linear-space usage. This

huge multiplicative n
improvement is quite nontrivial and requires an innovative combination of known techniques
like the shallow cutting lemma, the partition theorem, e-approximations, as well as some new
ideas like bit-packing for nonorthogonal queries, solving AQS query problem using AHHS
instances, rank-preserving geometric sampling and so on.

For dominance queries, we obtain the first optimal results. When ¢=! = O(logn) our
halfspace AHHS results are also optimal. Note that for small values of €, our halfspace AHHS
results yield significant improvements in the query time over the previous approaches. Along
the way, we also show improved results of the above problems for 2D as well as a slightly

improved exact type-2 simplex color counting result.

2 Preliminaries

In this section, we introduce the main tools we will use in our results. For a comprehensive
introduction to the tools we use, see the full version.

2.1 Shallow Cuttings and Approximate Range Counting

Given a set H of n hyperplanes in R3, the level of a point ¢ € R? is the number of hyperplanes
in H that pass below g. We call the locus of all points of level at most k the (< k)-level and
the boundary of the locus is the k-level. A shallow cutting % for the (< k)-level of H (or a
k-shallow cutting for short) is a collection of disjoint cells (tetrahedra) that together cover
the (< k)-level of H with the property that every cell C' € € in the cutting intersects a set
He, called the conflict list of C' | of O(k) hyperplanes in H. The shallow cutting lemma is
the following.

» Lemma 1. For any set of n hyperplanes in R? and a parameter k, there exists an O(k/n)-
shallow cutting of size O(n/k) that covers the (< k)-level. The cells in the cutting are all
vertical prisms unbounded from below (tetrahedra with a vertex at (0,0, —00)).
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Table 1 Our main results compared with Mergeability-based [6] and Independent Range Sampling
(IRS)-based [4] solution. The IRS-based solutions are randomized with success probability 1 — ¢ for
a parameter 0 < § < 1. F is the number of colors of the input. w = ©(logn) is the word size of the
machine. { indicates optimal solutions.

Summary .
Query Types Space Query Time Remark
Type-2 11
Simplex Color | O(n) @) (nl_é e > New
Counting
O(n) O(logn + 1n2/3) Mergeability-based [6]
3D AHHS O(n) O(n?3 + 531/2 nl/6) Monte Carlo [17]
Halfspace O(n) O(logn + 8% log %) IRS-based [4]
O(nlog, 1) O(logn + %) New
O(n) O(logn + L1og® n) Mergeability-based [6]
?]’3]1 nj?iliisce O(n) O(logn + % log 1) IRS-based [4]
O(n) O(logn + %) Newf
O(n) O(logn + 1n?/3log(en)) Mergeability-based [6]
3D AQS O(n) O(logn + L log 1) IRS-based [4]
Halfspace 21 1 s ) s %1 “oase
O(nlog” < log, <) | O(logn + _log® 3) New
O(n) O(logn + Llog® nlog(en)) | Mergeability-based [6]
3D AQS 0 o 9 log L
Dominance (n) (logn + = log 5) IRS-based [4]
O(n) O(logn + 1) Newt

Furthermore, we can construct these cuttings for all k of form a* simultaneously in
O(nlogn) time for any a > 1. Given any point ¢ € R3, we can find the smallest level k that
is above q as well the cell containing q in O(logn) time.

The above can also be applied to dominance ranges, which are defined as below. Given
two points p and ¢ in R%, p dominates ¢ if and only if every coordinate of p is larger or equal
to that of q. The subset of R? dominated by p is known as a dominance range. When the
query range in a range searching problem is a dominance range, we refer to it as a dominance
query. As observed by Chan et al. [12], dominance queries can be simulated by a halfspace
queries and thus Lemma 1 applies to them. See the full version for details.

We obtain the approximate version of the range counting result using shallow cuttings.

» Theorem 2 (Approximate Range Counting [2]). Let P be a set of n points in R3. One can
build a data structure of size O(n) for halfspace or dominance ranges such that given a query
range vy, one can report |y N P| in O(logn) time with error aly N P| for any constant o > 0.

2.2 e-approximation

Another tool we will use is e-approximation, which is a useful sampling technique:

» Definition 3. Let (P, T') be a finite set system. Given any 0 < e <1, a set A C P is called

an e-approzimation for (P,T) if for any v € T, ng‘ﬁ‘ — er;l‘gl <e.

The set A above allows us to approximate the number of points of v N P with additive
error ¢|P| by computing |yN A| exactly; essentially, e-approximations reduce the approximate
counting problem on the (big) set P to the exact counting problem on the (small) set A.
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It has been shown that small-sized e-approximations for set systems formed by points
and halfspaces/dominance ranges exist:

» Theorem 4 (c-approximation [21, 22]). There exist e-approzimations of size 0(57%) and
O(e™1 logd‘H/2 e~1) for halfspace and dominance ranges respectively.

3 Approximate Heavy Hitter Summary Queries

We solve approximate quantile summary (AQS) queries using improved results for approximate
heavy hitter summary (AHHS) queries. We sketch the main ideas of our new AHHS solutions
in this section and refer the readers to the full version for details. For the clarity of description,
we use g9 to denote the target error for the AHHS queries. We will reserve € as a general
error parameter. We show the following.

» Theorem 5. For d = 3, the approximate halfspace heavy hitter summary queries can be
answered using O(nlog,, (1/eo)) space and with the optimal O(logn + 1/gq) query time.

» Theorem 6. For d = 2, the approximate halfspace heavy hitter summary queries can be
answered using O(nloglog,,(1/20)) space and with the optimal O(logn + 1/2g) query time.

» Theorem 7. For d = 2,3, the approximate dominance heavy hitter summary queries can
be answered using the optimal O(n) space and with the optimal O(logn + 1/eq) query time.

3.1 Base Solution
The above results are built from a base solution, which solves the following problem:

» Problem 3 (Coarse-Grained AHHS Queries). Let P be a set of points in R?, each associated
with a color. The problem is to store P in a structure such that given a query range q, one
can estimate the frequencies of colors in ¢ N P with an additive error up to e|P| efficiently
for some parameter 0 < e < 1.

Note that here we allow more error (since the error is defined in the entire point set). To
solve Problem 3, one crucial component we need is a better (exact) type-2 color counting
structure for halfspaces. We combine several known techniques in a novel way with bit-packing
to get the following theorem. See the full version for details.

» Theorem 8. Given an integer parameter F, a set P of n points in R? where each point is
assigned a color from the set [F|, one can build a linear-sized data structure, such that given
a query simplez q, it can output the number of times each color appears in P N q in total time
max{O(n4=D/?) O(nld=D/dE/d 1y} | for some appropriate constant o and word size w.

The main idea for getting a base solution is relatively straightforward. We group colors

according to their frequencies where each group contains colors of roughly equal frequencies.

However, we have to be careful about the execution and the analysis is a bit tricky. For
example, if we place all the points in one copy of the data structure of Theorem 8, then we
will get a sub-optimal result. However, by grouping the points correctly, and being stringent
about the analysis, we can obtain the following.

» Theorem 9. For d > 3, Problem 3 for simplex queries (the intersection of d+ 1 halfspaces)
2d
can be solved with O(X) space for X = min{|P|,e” 71} and a query time of

of P ) o)

where w is the word-size of the machine and « is some positive constant.
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The main challenge is that we have two cases for the size of an e-approximation on n
points since it is bounded by min {n, 0(57%)} and also two cases for the query time of

Theorem 8. However, the main idea is that since the total error budget is €| P|, we can afford
to pick a larger error parameter ¢; = %, where P; is the set of points with color i. The

details are presented in the full version.

3.2 Solving AHHS Queries

We first transform the problem into the dual space. So the point set P becomes a set H
of hyperplanes and any query halfspace becomes a point q. We want to find approximate
heavy hitters of hyperplanes of H below ¢. Here, we remark that obtaining a data structure
with O(nlog %) space is not too difficult: build a hierarchy of shallow cuttings covering
level 2° /g for i = 0,1,--- ,log(eon) of the arrangement of H. For each shallow cutting cell
A, we build the previous base structure for the conflict list Sp for a parameter € = gq/c
for a big enough constant c. Then, observe that for queries below level g, 1 we can spend
O(logn + é) time to find all the hyperplanes passing below the query and answer the AHHS

queries explicitly and also for shallow cutting levels above level ¢, 3/

space used by the base solution is O(n). Thus, it turns out that the main difficulty lies in
3/2

2, the total amount of

handling the levels between ;' and ¢,

To reduce the space to O(log,, %), recall that in the query time of the base structure, we
have two terms O(1/(gow®)) and O(X?/3). Observe that we can afford to set ¢ to be roughly
g0/w® and the first term will still be O(e; ') because we are at level below /2 we have
X < 50_3/2 and so the second term will always be O(gy")! The effect of setting & = go/w® is
that now the base structure we built for a cell can output frequencies with a factor of w®
more precision, meaning it can be used for a factor of w® many more levels. So we only need
to build the base structure for shallow cuttings built for a factor of w®! This gives us the
O(nlog,, é) space bound. Of course, here the output has size O(s~!) = O(we; ") and we
cannot afford to examine all these colors. The final ingredient here is that we can maintain a
list of O(g; ') candidate colors using shallow cuttings built for a factor of 2.

We remark that although the tools are standard, the combination of the tools and the
analysis are quite nontrivial. Also when we have ©(1/gg) heavy hitters, our query time is
optimal. It is an interesting open problem if the query time can be made output sensitive.

4 Approximate Quantile Summary Queries

In this section, we solve Problem 1. We first show a general technique that uses our solution
to AHHS queries solution to obtain an efficient solution for AQS queries. We show that
for 3D halfspace and dominance ranges we can convert the solution for AHHS queries to a
solution for AQS queries with an O(log2 %) blow up in space and time. Then in Section 4.2,
we present an optimal solution for dominance ranges based on a different idea.

First, we show how to solve AQS queries using the AHHS query solution. We describe
the data structure for halfspaces, since as we have mentioned before, the same can be applied
to dominance ranges in 3D as well. The high level idea of our structure is as follows: We first
transform the problem into the dual space. This yields the problem instance where we have
n weighted hyperplanes and given a query point ¢, we would like to extract an approximate
quantile summary for the hyperplanes that pass below ¢q. To do this, we build hierarchical
shallow cuttings. For each cell in each cutting, we collect the hyperplanes in its conflict list
and then divide them into O(%) groups according to the increasing order of their weights.
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Given a query point in the dual space, we first find the cutting and the cell containing it,
and then find an approximated rank of each group, within the subset below the query. This
is done by generating an AHHS problem instance and applying Theorem 5. We construct
the instance in a way such that the rank approximated will only have error small enough
such that we can afford to scan through the groups and pick an arbitrary hyperplane in
corresponding groups to form an approximate ep-quantile summary.

4.1 The Data Structure and the Query Algorithm

We dualize the set P of n input points which gives us a set H = P of n hyperplanes. We
then build a hierarchy of shallow cuttings where the i-th shallow cutting, €, is a k;-shallow
cutting where k; = %7 for i = 0,1,2,--- ,log(egn). Consider a cell A in the i-th shallow
cutting and its conflict list Sa. Let € = ¢ for a big enough constant c. We partition Sa
into t = % groups G1,Go, -+ , G, sorted by weight, meaning, the weight of any hyperplane
in Gy is no larger than that of any hyperplane in G;4; for j =1,2,--- ,t — 1.

For each group G, we store the smallest weight among the hyperplanes it contains, as its
representative. To make the description shorter, we make the simplifying assumption that
t is a power of 2 (if not, we can add some dummy groups). We arrange the groups G; as
the leaves of a balanced binary tree 7 and let V(7)) be the set of vertices of 7. Next, we
build the following set Aa of colored hyperplanes, associated with A: Let &/ = ﬁrt. For
every vertex v € V(T), let G, to be the set of all the hyperplanes contained in the subtree
of v; we add an &’-approximation, E,, of G, to Ax with color v. Using Theorem 5, we store
the points dual to hyperplanes in Ax in a data structure W for AHHS queries with error

parameter £’. This completes the description of our data structure.

The query algorithm. A given query ¢ is answered as follows. Let us quickly go over the
standard parts: We consider the query in the dual space and thus ¢ is considered to be a
point. Let k be the number of hyperplanes passing below q. Observe that by Theorem 2,
we can find a (1 + «) factor approximation, k*, of k in O(logn) time for any constant «,
using a data structure that consumes linear space. This allows us to find the first k;-shallow
cutting €; with k;—1 < k < k;. The cell A € €; containing ¢ can also be found in O(logn)
time using a standard point location data structure (e.g., see [1]).

The interesting part of the query is how to handle the query after finding the cell A. Let

H, be the subset of H that lies below ¢. Recall that Sa is the subset of H that intersects A.

The important property of A is that H, C Sa and also |Sa| = O(|Hy|) = O(k).

We query the data structure ¥ 5 built for A to obtain a list of colors and their approximate
counts where the additive error in the approximation is at most ’|Aa|. To continue with
the description of the query algorithm, let us use the notation g; to denote the subset of G
that lies below ¢, and let g = U_, g; and thus |g| = k.

Note that while the query algorithm does not have direct access to g, or k, we claim that
using the output of the data structure W, we can calculate the approximate rank of the
elements of g; within g up to an additive error of gk. Again, we can use tree 7 to visualize
this process. Recall that in W 5, every vertex v € V(T) represents a unique color in the data

structure ¥ 5o and the data structure returns an AHHS summary with error parameter €’

This allows us to estimate the number of elements of F, that pass below ¢ with error &’|A |
and since FE, is an &’-approximation of G, this allows us to estimate the number of elements
of G, that pass below g with error at most 2’| Aa|. Counsider the leaf node that represents
g; C G; and the path 7 that connects it to the root of 7. The approximate rank, r;, of g; is
calculated as follows. Consider a subtree with root u that hang to the left of the path 7 (as
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shown in Figure 1). If color u does not appear in the output of the AHHS query, then we
can conclude that at most 2¢’|A | of its hyperplanes pass below ¢ and in this case we do
nothing. If it does appear in the output of the AHHS query, then we know the number of
hyperplanes in its subtree that pass below ¢ up to an additive error of 2¢’|A 4| and in this
case, we add this estimate to ;. In both cases, we are off by an additive error of 2¢’'|A4|.
We repeat this for every subtree that hangs to the left of 7. The number of such subtree is
at most logt and thus the total error is at most 2¢’|Aa|logt. Now observe that

€

log2 t

k
-logt|Sal -logt = O(ek) = O <€2) < eok

2¢'|Aallogt =2

which follows by setting c¢ large enough and observing the fact that |[Aa| < logt|Sa| since
every hyperplane in Sx is duplicated logt times.

G;

Figure 1 Compute the Approximate Rank of a Group: The approximated rank of G; is calculated
as the sum of all the approximate counts of square nodes.

We are now almost done. We just proved that in each g;, we know the rank of its elements
within g up to an additive error of ggk. This means that picking one element from each G;
gives us a super-set of an AQS; in the last stage of the query algorithm we simply prune the
unnecessary elements as follows: We scan all the leave in 7 from left to right, i.e., consider
the group G; for j =1 to t and compute the quantile summary in a straightforward fashion.
To be specific, we initialize a variable j' = 0 and then consider Gj, for j =1 to t. The first
time r; exceeds a quantile boundary, i.e., r; > j'egk*, we add the hyperplane with the lowest
weight in G to the approximate £p-quantile summary, and then increment j’.

Analysis

Based on the previous paragraph, the correctness is established. Thus, it remains to analyze
the space and query complexities. We start with the former.

Space Usage. Consider the structure ¥, built for cell A from a k;-shallow cutting ;.
Observe that 3, cy () |Go| = [Sa|logt since in the sum every hyperplane will be counted
logt times. E, is an ¢’-approximation of G, and thus

|E,| < min {E’fS/Q,Gv} (1)
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which implies

[Aal= > \Ev|Smin{é'_sﬂ%\sdlogt} 2)
veV(T)

where the first part follows as there are at most 2¢ vertices in 7 and the second part follows
from (1). We build an instance of Theorem 5 on the set A, which by Theorem 5 uses
O(|A4llog,, L) space. Assuming A belongs to a k;-shallow cutting €;, we have |Sa| = O(k;)
and there are O(n/k;) cells in &;. Observe that

Z |Aa| = Z min {5'*3/2215, \SA|logt} = Z @) (min {5’*3/215,]@; 1ogt}> =

AEE; AEE; AET;

1
0 (min{:_sa?’,nlog 50}) . (3)

Thus, the total space used for % is

. 1 1 1
(0] (min {n50‘3 log,, —,nlog,, — log }) .
k; €0 €0 €0

Finally, observe that there can be at most O(log %) levels where the second term
dominates; to be specific, at least when k; exceeds ¢, 4 the first term dominates and the
total space used by those levels is O(n) as k;’s form a geometric series. So the total space
usage of our structure is O(n log? é log,, %)

Query Time. By Lemma 1, we can find the desired cutting cell in time O(logn). Next, we

query the data structure W o which by Theorem 5 uses O(logn +&'~1) = O(logn + bg%t) =
1 2 1 . . .

O(logn + = log 5) query time. Scanning the groups and pruning the output of the data

structure ¥ 5 takes asymptotically smaller time and thus it can be absorbed in the above

expression. Therefore, we obtain the following result.

» Theorem 10. Given an input consisting of an error parameter €y, and a set P of n points
in R where each point p € P is associated with a weight w, from a totally ordered universe,
one can build a data structure that uses O(nlog? % log,, %) space such that given any query

halfspace h, it can answer an AQS query with parameter €q in time O(logn + % log2 %)

For the case of 2D, we can just replace ¥ with the structure in Theorem 6, and we
immediately get the following:

» Theorem 11. Given an input consisting of an error parameter €y, and a set P of n points
in R? where each point p € P is associated with a weight w, from a totally ordered universe,
one can build a data structure that uses O(n log? % log log,, %) space such that given any

query halfspace h, it can answer an AQS query with parameter g in time O(logn+ % log2 %)

4.2 Dominance Approximate Quantile Summary Queries

Now we turn our attention to dominance ranges. We will show a structure similar to that
for halfspace queries. The main difference is that we now use exact type-2 color counting
as an auxiliary structure to estimate the rank of each group. This saves us roughly log? é
factors for both space and query time and so we can answer quantile queries in the optimal
O(logn + %) time. To reduce the space to linear, we need more ideas. We first present
a suboptimal but simpler structure to demonstrate our main idea. Then we modify this
structure to get the desired optimal structure. We use shallow cuttings in the primal space.

7:11
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4.2.1 A Suboptimal O(nloglog _-) Space Solution

We first describe a data structure that solves the dominance AQS problem with O(nloglog - =)
space and the optimal O(logn + 2 ) query time.

Rank-Preserving Approximation for Weighted Points. Let S be a weighted point set where
every point has been assigned a weight from a totally ordered universe. Let rg(p) be the
rank of a point p in the set S. Consider a geometric set system (P, 2), where P is a set of
weighted points in R? and & is a family of subsets of P induced by 3D dominance ranges.
We mention a way to construct a sample A for P and a parameter € such that

rpap(p)  Tanp(p) .
| W

for any point p € P and any range D € Z. First note that taking an e-approximation for P
does not work since it does not take the weights of P into consideration. Our simple but
important observation is that we can lift the points P into 4D by adding their corresponding
weights as the fourth coordinate. Let us call this new point set P’ and let (P, 2’) be the set
system in 4D induced by 4D dominance ranges. Consider an e-approximation A’ for P’ and
let A be the projection of A’ into the first three dimensions (i.e., by removing the weights
again). A will be our sample for P and to distinguish it from an unweighted approximation,
we call it rank-preserving e-approrimation. Indeed, for any point p € P with weight w,
and any D € 2, rpap(p) (resp. ranp(p)) is equal to the number of points in P’ (resp.
A’} contained in 4D dominance range D X (—o00,w,). By the definition of e-approximation,
property (4) holds.
We now turn our attention to the AQS for 3D dominance queries.

The Data Structure and The Query Algorithm. Similar to the structure we presented
for halfspace queries, we build 2——shallow cuttings for i = 0,1, - ,log(egn). Let kK = O(1)
be the constant such that O(Z- L 10g*i L ) is the size of the eg-approximation for dominance
ranges in 4D. C0ns1der one k- shallow cutting %. We consider two cases:

Ifk < 1 log , for each cell A 1n the cutting ¥, we collect the points in its conflict

list Sa and d1v1de them into t = = groups G1,Ga, -+ , Gy according to their weights

(meaning, the weights in G; are no larger than weights in group G;;1) where e = £2 for a

big enough constant c as we did for halfspace queries.

For k > 1 log —, we take a rank—preserving e-approximation of Sx first, and then divide

the approxnnatlon intot = = groups just like the above case. Again, for each group, we

store the smallest weight arnong the points it contains.
We build the following structure for each cell A.

Let N be the number of points in all the t groups we generated for a cell A. We collect
groups Gi.at1,Giat2, s G(it1).a into a cluster C; for each i = 0,1,--- ,t/a — 1 where
a = (loglog é)zﬁ For each group j in cluster C; for j = 1,2,--- ,«, we color the points in
the group with color j. Then we build the following type-2 color counting structure W¥; for
C;. Let N; be the total number of points in C;:

First, we store three predecessor search data structures, one for each coordinate. This

allows us to map the input coordinates as well as the query coordinates to rank space.

Next, we build a grid of size &/N; x ¢/N; x ¥/N; such that each slice contains Q/]Tf

points. For each grid point, we store the points it dominates in a frequency vector using

the compact representation.
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Finally, we recurse on each grid slab (i.e., three recursions, one for each dimension). The
recursion stops when the number of points in the subproblem becomes smaller than
N, = N for some small enough constant 7.

For these “leaf” subproblems, note that the total number of different answers to queries is
bounded by O(Nl-3 ). We build a lookup table which records the corresponding frequency
vectors for these answers. Note that since at every step we do a rank space reduction,
the look up can be simply done in O(1) time, after reducing the coordinates of the query
to rank space.

The query algorithm. Given a query ¢, we first locate the grid cell C' containing ¢ and this
gives us three ranks. Using the ranks for x and y, we obtain an entry and using the rank
of z, we find the corresponding word and the corresponding frequency vector stored in the
lower corner of C'. We get three more frequency vectors by recursing to three subproblems.
We merge the three frequency vectors to generate the final answer. This completes the
description of the structure we build for each family C;.

To answer a query ¢, we first find the first shallow cutting level above ¢ and the
corresponding cutting cell A. We then query the data structure described above to get the
count the number of points dominated by ¢ in each of the ¢ groups. Then by maintaining a
running counter, we scan through the ¢ groups from left to right to construct the approximate
€p-quantile summary.

Space Usage. For the space usage, note that there are NV; grid points in each recursive
level and the recursive depth is O(1). There are a colors and the frequency of a color
is no more than N,. So the total number of words needed to store frequency vectors is
O(Ni%). When the problem size is below N, for each subproblem, we store a lookup

table using O(N? medoeli) words. So the total number of words used for the bottom level
2n )

is O(&) - O(NE"%) = O(NiW). Note that by our construction and g9 > =,

N = O(Z£1log" £), a = (loglog -)* < (loglogn)?® and N; = O(al%o) = O(alog" L) =

€0

O(alog™n). Since by assumption, w = Q(logn), by picking n in N, = N, to be a small

enough constant, the space usage for frequency vectors satisfy

3YNf({/N?) + O( iy ), for Ny > N,
O( ;127 ), otherwise
for some constant 0 < 8 < 1, which solves to O(: (1}](1%1;71-)3) = O(;2%) for some constant
0 < 7 < 1. Since the recursive depth is O(1), the space usage for all the predecessor searching
structures is O(NN;). Therefore the space usage of ¥, is O(NN). So the total space for each
shallow cutting cell A is bounded by &- - O(N;) = O(N).
For k; > % log” §7 N = O(% log" %) So the total space usage for them is bounded by

gon

EZOT:L O(,Z>~0(N): 3 O(T;io)~0<;)log“;)>:0(n).

i=k loglog % i=k loglog %

For k; < é log” é, N = k; and so we have space bound

k loglog % K loglog % 1
n n
5 o= Y 2) 0k = loglog — ) .
2 O (kl) O(N) 2 0 (7%) O(k;)) =0 (n oglog 50)

This completes our space bound proof.
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Query Time. For the query time, we first spend O(logn) time to find an appropriate
shallow cutting level and the corresponding cell by the property of shallow cuttings. Then
we query ¥; for ¢ =0,1,--- ,t/a — 1 to estimate the count for each group in the cell. For
each U;, note that each predecessor searching takes O(log N;) time. Also each frequency
vector can fit in one word and so we can merge two frequency vectors in time O(1). This
gives us the following recurrence relation for the query time

(V) = 39({/N2) + O(log N;), for N; > N,
g O(log N;), otherwise

which solves to O((log N;)?) = O((log log é)?’) = O(a). Since we need to query t/a such

data structures to get the count for all groups, the total query time for count estimation is

O(t) = O(1/eg). Then we scan through the groups and report the approximate quantiles

which takes again O(1/gp) time. So the total query time is O(logn + %)

Correctness. Given a query ¢, let k£ be the actual number of points dominated by g. By
the property of shallow cuttings, we find a cell A containing q in the shallow cutting level k;

above it such that k < k; < 2k. When k; < _- log , after we estimate the count in each

[Sal _ E(J|5A|
t

group, since the estimation is exact and each group has size , each quantile we

output will have error at most EOIS“' . Fork; > L = log" -, we 1ntr0duce error €/Sa| in the
e-approximation, but since we use exact countlng for each group, the total error will not
increase as we add up ranks of groups. So the total error is at most %
the total error is at most gk for a big enough c.

. In both cases,

4.2.2 An Optimal Solution for 3D Dominance AQS

In this section, we modify the data structure in the previous section to reduce the space
usage to linear. It can be seen from the space analysis that the bottleneck is shallow cuttings
with k; < % log” é For the structures built for these levels, the predecessor searching
structures take linear space at each level which leads to a super linear space usage in total.
To address this issue, we do a rank space reduction for points in the cells of these levels
before constructing W;’s so that we can use the integer register to spend sublinear space for
the predecessor searching structures.

Rank Space Reduction Structure. We consider the cells in the - log™ _--shallow cutting.
Let A = log"ﬁ'1 L For the points in the conflict list Sy of a shallow cuttlng cell A € %”,
we build a grid of size A x A x A such that each slice of the grid contains O(1/(go log = =)
points. The coordinate of each grid point consists of the ranks of its three coordlnates
in the corresponding dimensions. For each of the O(Tl/s)) points in S, we round
it down to the closest grid point dominated by it. This reduces the coordinates of the
points down to O(loglog é) bits and now we can apply the sub-optimal solution from the
previous subsection which leads to an O(n) space solution. To be more specific, we build the
hierarchical shallow cuttings for k; < é log” % locally for hyperplanes in S5 and apply the
previous solution with a value ¢’ = ¢/c for a large enough constant c.

Query Algorithm and the query time. The query algorithm is similar to that for the
previous suboptimal solution. The only difference is that when the query ¢ is in a shallow
cutting level smaller than 51 log™ =, we use the rank space reduction structure to reduce ¢
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to the rank space. Let ¢’ be the grid point obtained after reducing g to rank space. Observe
that the set of points dominated by ¢ can be written as the union of the points dominated
by ¢’ and the subset of points dominated by ¢ in three grid slabs of A that contain q. We
get an €’-quantile for the former set using the data structure implemented on the grid points.
The crucial observation is that there are O(gy 1/ log %) points in the slabs containing ¢ and
thus we can afford to build an approximate &-quantile summary of these points in O(é)
time. We can then merge these two quantiles and return the answer as the result. By setting
c in the definition of ¢’ small enough, we make sure that the result is a valid €9 quantile
summary. This also yields a query time (after locating the correct cell A in the shallow
cutting) of O(%)

Correctness. Since we build shallow cutting k; < - log" - inside each cell in X log" -
shallow cutting, the transformed coordinates are consistent. As we described above, this
introduces error to the counts W;’s outputs, but since we correct the error explicitly afterwards,
the counts we get are still exact. The remaining is the same as the suboptimal solution and
so our structure finds €p-quantile properly.

Space Usage. For the rank space reduction structure, we need to store a predecessor
searching structure for the query, which takes space linear in the number of slices which is
O(A). We build this structure for each cell in the A/ep-shallow cutting level and there are
O(nep/A) cells in total, and so the space usage is O(negg). Building shallow cuttings inside
each cell will only increase the space by a constant factor by the property of shallow cuttings.

For each W;, by our analysis in the suboptimal solution, the frequency vectors will take
O(%) space. Now since the coordinates of the points and queries are integers of size at
most A, it takes O(log A) = O(loglog %) bits to encode a coordinate. Since the word size is
w = Q(logn), we need only O(%OgA) space to build the predecessor searching structures
for ¥,;. In total, we spend O(ﬁ) space for each shallow cutting level less than A/eg. So,
the total space usage is O(n). We conclusion this section by the following theorem.

» Theorem 12. Given an input consisting of a parameter eg > 0, and a set P of n points in
R? where each point p € P is associated with a weight w, from a totally ordered universe, one
can build a data structure that uses the optimal O(n) space such that given any dominance
query vy, the data structure can answer an AQS query with parameter g in the optimal query
time of O(logn + é)

5 Open Problems

Our results bring many interesting open problems. First, for type-2 color counting problems,
we showed a linear-sized structure for simplex queries. It is not clear if the query time can
be reduced with more space. It is an intriguing open problem to figure out the correct
space-time tradeoff for the problem. Note that our query time in Theorem 8 depends on the
number of colors in total. It is unclear if the query time can be made output-sensitive. This
seems difficult and unfortunately there seems to be no suitable lower bound techniques to
settle the problem. Furthermore, since improving exact simplex range counting results is
already very challenging, it makes sense to consider the approximate version of the problem
with multiplicative errors.

Second, for heavy-hitter queries, there are two open problems. In our solution, the
space usage is optimal with up to some extra polylogarithmic factor (in %) An interesting
challenging open problem is if the space usage can be made linear. On the other hand, our
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query time is not output-sensitive. Technically speaking, there can be less than 1/¢ heavy
hitters, and in this case, it would be interesting to see if O(logn + k) query time can be
obtained for k output heavy hitters with (close to) linear space?.

Third, for AQS queries, our data structure for halfspace ranges is suboptimal. The main
reason is that we need a type-2 range counting solution as a subroutine. For halfspace ranges,
our exact type-2 solution is too costly, and so we have to switch to an approximate version.
This introduces some error and as a result, we need to use a smaller error parameter, which
leads to extra polylogarithmic factors in both time and space. In comparison, we obtain an
optimal solution for dominance AQS queries through exact type-2 counting. Currently, it
seems quite challenging to improve the exact type-2 result for halfspace queries and some
different ideas probably are needed to improve our results.

Finally, it is also interesting to investigate approximate quantile summaries, or heavy
hitter summaries (or other data summaries or data sketches used in the streaming literature)
for a broader category of geometric ranges. In this paper, our focus has been on very fast
data structures, preferably those with optimal O(logn + %) query time, but we know such
data structures do not exist for many important geometric ranges. For example, with linear
space, simplex queries require O(n(dfl)/ 4) time and there are some matching lower bounds.
Nonetheless, it is an interesting open question whether approximate quantile or heavy hitter
summary can be built for simplex queries in time O(n(dfl)/ d 4 %) using linear or near-linear
space; as we review in the introduction, the general approaches result in sub-optimal query
times of O(n(4=1/d. 1y or O(n(d=1/d 1),

€ €
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—— Abstract

To guarantee all agents are matched in general, the classic Deferred Acceptance algorithm needs
complete preference lists. In practice, preference lists are short, yet stable matching still works well.
This raises two questions:

Why does it work well?

Which proposals should agents include in their preference lists?

We study these questions in a model, introduced by Lee [17], with preferences based on correlated
cardinal utilities: these utilities are based on common public ratings of each agent together with
individual private adjustments. Lee showed that for suitable utility functions, in large markets, with
high probability, for most agents, all stable matchings yield similar valued utilities. By means of a
new analysis, we strengthen Lee’s result, showing that in large markets, with high probability, for
all but the agents with the lowest public ratings, all stable matchings yield similar valued utilities.
We can then deduce that for all but the agents with the lowest public ratings, each agent has an
easily identified length O(logn) preference list that includes all of its stable matches, addressing the
second question above. We note that this identification uses an initial communication phase.

We extend these results to settings where the two sides have unequal numbers of agents, to
many-to-one settings, e.g. employers and workers, and we also show the existence of an e-Bayes-Nash
equilibrium in which every agent makes relatively few proposals. These results all rely on a new
technique for sidestepping the conditioning between the tentative matching events that occur over
the course of a run of the Deferred Acceptance algorithm. We complement these theoretical results
with an experimental study.
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1 Introduction

Consider a doctor applying for residency positions. Where should she apply? To the very
top programs for her specialty? Or to those where she believes she has a reasonable chance
of success (if these differ)? And if the latter, how does she identify them? We study these
questions in the context of Gale and Shapley’s deferred acceptance (DA) algorithm [5]. It is
well-known that in DA the optimal strategy for the proposing side is to list their choices in
order of preference. However, this does not address which choices to list.
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The DA algorithm is widely used to compute matchings in real-world applications: the
National Residency Matching Program (NRMP), which matches future residents to hospital
programs [25]; university admissions programs which match students to programs, e.g. in
Chile [24], school choice programs, e.g. for placement in New York City’s high schools [1],
the Israeli psychology Masters match [9], and no doubt many others (e.g. [7]).

Recall that each agent provides the mechanism a list of its possible matches in preference
order, including the possibility of “no match” as one of its preferences. These mechanisms
promise that the output will be a stable matching with respect to the submitted preference
lists. In practice, preference lists are relatively short. This may be directly imposed by
the mechanism or could be a reflection of the costs — for example, in time or money — of
determining these preferences. Note that a short preference list is implicitly stating that the
next preference after the listed ones is “no match”.

Thus it is important to understand the impact of short preference lists. Roth and
Peranson observed that the NRMP data showed that preference lists were short compared to
the number of programs and that these preferences yielded a single stable partner for most
participants; we note that this single stable partner could be the “no match” choice, and in
fact this is the outcome for a constant fraction of the participants. They also confirmed this
theoretically for the simplest model of uncorrelated random preferences; namely that with the
preference lists truncated to the top O(1) preferences, almost all agents have a unique stable
partner. Subsequently, in [10] the same result was obtained in the more general popularity
model which allows for correlations among different agents’ preferences; in their model, the
first side — men — can have arbitrary preferences; on the second side — women — preferences
are selected by weighted random choices, the weights representing the “popularity” of the
different choices. These results were further extended by Kojima and Parthak in [15].

The popularity model does not capture behavior in settings where bounds on the number
of proposals lead to proposals being made to plausible partners, i.e. partners with whom one
has a realistic chance of matching. One way to capture such settings is by way of tiers [2],
also known as block correlation [4]. Here agents on each side are partitioned into tiers, with
all agents in a higher tier preferred to agents in a lower tier, and with uniformly random
preferences within a tier. Tiers on the two sides may have different sizes. If we assign
tiers successive intervals of ranks equal to their size, then, in any stable matching, the only
matches will be between agents in tiers whose rank intervals overlap.

A more nuanced way of achieving these types of preferences bases agent preferences
on cardinal utilities; for each side, these utilities are functions of an underlying common
assessment of the other side, together with idiosyncratic individual adjustments for the
agents on the other side. These include the separable utilities defined by Ashlagi, Braverman,
Kanoria and Shi in [2], and another class of utilities introduced by Lee in [17]. This last
model will be the focus of our study.

To make this more concrete, we review a simple special case of Lee’s model, the linear
separable model. Suppose that there are n men and n women seeking to match with each
other. Each man m has a public rating r,,, a uniform random draw from [0, 1]. These ratings
can be viewed as the women’s joint common assessment of the men. In addition, each woman
w has an individual adjustment, which we call a score, s,,(m) for man m, again a uniform
random draw from [0, 1]. All the draws are independent. Woman w’s utility for man m is
given by %[rm + 54 (m)]; her full preference list has the men in decreasing utility order. The
men’s utilities are defined similarly.

Lee stated that rather than being assumed, short preference lists should arise from the
model; this appears to have been a motivation for the model he introduced. A natural first
step would be to show that for some or all stable matchings, the utility of each agent can
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be well-predicted, for this would then allow the agents to limit themselves to the proposals
achieving such a utility. Lee proved an approximate version of this statement, namely that

with high probability (w.h.p., for short) most agents obtain utility within a small € of an

easily-computed individual benchmark. However, this does not imply that agents can restrict

their proposals to a reduced utility range. (See the paragraph preceding Definition 5 for the

specification of the benchmarks.)

Our work seeks to resolve this issue. We obtain the following results. Note that in these

results, when we refer to the bottommost agents, we mean when ordered by decreasing public

rating. Also, we let the term loss mean the difference between an agent’s benchmark utility

and their achieved utility.

1.

We show that in the linearly separable model, for any constant ¢ > 0, with probability
1 —1/n°, in every stable matching, apart from a sub-constant o fraction of the bottom-
most agents, all the other agents obtain utility equal to an easily-computed individual
benchmark +e¢, where € is also sub-constant.

We show that both o,e¢ = é(n_l/?’).1 As we will see, this implies, w.h.p., that for all
the agents other than the bottommost o fraction, each agent has ©(Inn) possible edges
(proposals) that could be in any stable matching, namely the proposals that provide both
agents utility within e of their benchmark. Furthermore, we show our bound is tight:
with fairly high probability, there is no matching, let alone stable matching, providing
every agent a partner if the values of € and ¢ are reduced by a suitable constant factor.
An interesting consequence of this lower bound on the agents’ utilities is that the agents
can readily identify a moderate sized subset of the edge set to which they can safely
restrict their applications. More precisely, any woman w outside the bottommost o
fraction, knowing only her own public rating, the public ratings of the men, and her
own private score for each man, can determine a preference list of length (:)(nl/ 3) which,
w.h.p, will yield the same result as her true full-length list. Our analysis also shows that
if w obtained the men’s private scores for these proposals, then w.h.p. she could safely
limit herself to a length O(Inn) preference list.

. The above bounds apply not only to the linearly separable model, but to a significantly

more general bounded derivative model (in which derivatives of the utility functions are
bounded).

The result also immediately extends to settings with unequal numbers of men and women.
Essentially, our analysis shows that the loss for an agent is small if there is a ¢ fraction
of agents of lower rank on the opposite side. Thus even on the longer side, w.h.p., the
topmost n(1 — o) agents all obtain utility close to their benchmark, where n is the size
of the shorter side. This limits the “stark effect of competition” [3] — namely that the
agents on the longer side are significantly worse off — to a lower portion of the agents on
the longer side.

. The result extends to the many-to-one setting, in which agents on one side seek multiple

matches. Our results are given w.r.t. a parameter d, the number of matches that each
agent on the “many” side desires. For simplicity, we assume this parameter is the same
for all these agents. In fact, we analyze a more general many-to-many setting.

. A weaker result with arbitrarily small o,e = ©(1) holds when there is no restriction on

the derivatives of the utility functions, which we call the general values model. Again, we
show this bound cannot be improved in general. This setting is essentially the general

! The é() notation means up to a poly-logarithmic term; here o, e = O((n/Inn)~/3).
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setting considered by Lee [17]. He had shown there was a o fraction of agents who might
suffer larger losses; our bound identifies this o fraction of agents as the bottommost
agents.

6. In the bounded derivative model, with slightly stronger constraints on the derivatives, we
also show the existence of an e-Bayes-Nash equilibrium in which no agent proposes more
than O(In®n) times and all but the bottommost O((Inn/n)'/?) fraction of the agents
make only the O(Inn) proposals identified in (1) above. Here ¢ = ©(Inn/n'/3).

These results all follow from a lemma showing that, w.h.p., each non-bottommost agent
has at most a small loss. In turn, the proof of this lemma relies on a new technique which
sidesteps the conditioning inherent to runs of DA in these settings.

Experimental results

Much prior work has been concerned with preference lists that have a constant bound on
their length. For moderate values of n, say n € [10%,10°], Inn is quite small, so our ©(Inn)
bound may or may not be sufficiently small in practice for this range of n. What matters are
the actual constants hidden by the © notation, which our analysis does not fully determine.
To help resolve this, we conducted a variety of simulation experiments.

We have also considered how to select the agents to include in the preference lists, when
seeking to maintain a constant bound on their lengths, namely a bound that, for the values
of n we considered, was smaller than the ©(Inn) bound determined by the above simulations;
again, our investigation was experimental.

Other Related work

The random preference model was introduced by Knuth [12] (for a version in English see [13]),
and subsequently extensively analyzed [20, 14, 21, 18, 23, 22, 16]. In this model, each agent’s
preferences are an independent uniform random permutation of the agents on the other side.
An important observation was that when running the DA algorithm, the proposing side
obtained a match of rank ©(Inn) on the average, while on the other side the matches had
rank O(n/Inn).

A recent and unexpected observation in [3] was the “stark effect of competition”: that
in the random preferences model the short side, whether it was the proposing side or not,
was the one to enjoy the ©(Inn) rank matches. Subsequent work showed that this effect
disappeared with short preference lists in a natural modification of the random preferences
model [11]. Our work suggests yet another explanation for why this effect may not be present:
it does not require that short preference lists be imposed as an external constraint, but rather
that the preference model generates few edges that might ever be in a stable matching.

The number of edges present in any stable matching has also been examined for a
variety of settings. When preference lists are uniform the expected number of stable pairs
is ©(nlnn) [21]; when they are arbitrary on one side and uniform on the other side, the
expected number is O(nlnn) [14]. This result continues to hold when preference lists are
arbitrary on the men’s side and are generated from general popularities on the women’s
side [6]. Our analysis shows that in the linear separable model (and more generally in the
bounded derivative setting) the expected number of stable pairs is also O(nlnn).

Another important issue is the amount of communication needed to identify who to place
on one’s preference lists when they have bounded length. In general, the cost is Q(n) per
agent (in an n agent market) [8], but in the already-mentioned separable model of Ashlagi et
al. [2] this improves to O(y/n) given some additional constraints, and further improves to
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O(In*n) in a tiered separable market [2]. We note that for the bounded derivatives setting,
with high probability, the communication cost will be O(nl/ 31n%/3 n) for all agents except
the bottommost ©(n%31n/?n), for whom the cost can reach O(n2/31n/?n).

Another approach to selecting which universities to apply to was considered by Shorrer
who devised a dynamic program to compute the optimal choices for students assuming
universities had a common ranking of students [26].

Roadmap

In Section 2 we review some standard material. In Section 3 we state our main result in two
parts: Theorem 6, which bounds the losses in the setting of the linear model, and Theorem 8,
which shows it suffices to limit preference lists to a small set of edges. We prove these
theorems in Sections 4 and 5, respectively. We also present some numerical simulations for
the linear separable model in Section 6 We conclude with a brief discussion of open problems
in Section 7.

In the appendices of the full version of the paper, we formally state and prove all the
other results alluded to in the introduction and we also present further numerical simulations
for the linear separable model. For the reader’s convenience, in the text that follows, we
provide pointers to these appendices, as appropriate. We note that Appendix A provides a
complete summary of the content in these appendices.

2 Preliminaries

2.1 Stable Matching and the Deferred Acceptance (DA) Algorithm

Let M be a set of n men and W a set of n women. Each man m has an ordered list of
women that represents his preferences, i.e. if a woman w comes before a woman w’ in m’s
list, then m would prefer matching with w rather than w’. The position of a woman w in
this list is called m’s ranking of w. Similarly each woman w has a ranking of her preferred
men?. The stable matching task is to pair (match) the men and women in such a way that
no two people prefer each other to their assigned partners. More formally:

» Definition 1 (Matching). A matching is a pairing of the agents in M with the agents in
W. It comprises a bijective function p from M to W, and its inverse v = pu~', which is a
bijective function from W to M.

» Definition 2 (Blocking pair). A matching p has a blocking pair (m,w) if and only if:
1. m and w are not matched: p(m) # w.

2. m prefers w to his current match p(m).

3. w prefers m to her current match v(w).

» Definition 3 (Stable matching). A matching u is stable if it has no blocking pair.

Gale and Shapley [5] proposed the seminal deferred acceptance (DA) algorithm for the
stable matching problem. We present the woman-proposing DA algorithm (Algorithm 1);
the man-proposing DA is symmetric. The following facts about the DA algorithm are well
known. We state them here without proof and we shall use them freely in our analysis.

2 Throughout this paper, we assume that each man m (woman w) ranks all the possible women (men),
i.e. m’s (w’s) preference list is complete.
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Algorithm 1 Woman Proposing Deferred Acceptance (DA) Algorithm.

Initially, all the men and women are unmatched.
while some woman w with a non-empty preference list is unmatched do
let m be the first man on her preference list;

if m is currently unmatched then
tentatively match w to m.

end

if m is currently matched to w', and m prefers w to w' then
make w’ unmatched and tentatively match w to m.

else
remove m from w’s preference list.

end
end

» Observation 4.

1. DA terminates and outputs a stable matching.

2. The stable matching generated by DA is independent of the order in which the unmatched
agents on the proposing side are processed.

3. Woman-proposing DA is woman-optimal, i.e. each woman is matched with the best partner
she could be matched with in any stable matching.

4. Woman-proposing DA is man-pessimal, i.e. each man is matched with the worst partner
he could be matched with in any stable matching.

2.2 Useful notation and definitions

There are n men and n women. In all of our models, each man m has a utility U,, ,, for the
woman w, and each woman w has a utility V,,, ,, for the man m. These utilities are defined as

Umw = U(ry, sm(w)), and
Vm,w - V(T’m, 511;(m))7

where r,, and r,, are common public ratings, s,,(w) and s,,(m) are private scores specific to
the pair (m,w), and U(-,-) and V(+,-) are continuous and strictly increasing functions from
]Rf_ to R4. The ratings are independent uniform draws from [0, 1] as are the scores.

In the Linear Separable Model, each man m assigns each woman w a utility of Uy, ., =
ATy + (L= X) - sp(w), where 0 < XA < 1 is a constant. The women’s utilities for the men
are defined analogously as Vi, = A - 7 + (1 — A) - 55 (m). All our experiments are for this

model.
We let {m1,ma,...,my} be the men in descending order of their public ratings and
{w1,wa,...,w,} be a similar ordering of the women. We say that m; has public rank ¢, or

rank ¢ for short, and similarly for w;. We also say that m; and w; are aligned. In addition,
we often want to identify the men or women in an interval of public ratings. Accordingly,
we define M (r,r’) to be the set of men with public ratings in the range (r,7’), and M[r,r’]
to be the set with public ratings in the range [r,r’]; we also use the notation M (r,r’] and
M][r,r") to identify the men with ratings in the corresponding semi-open intervals. We use
an analogous notation, with W replacing M, to refer to the corresponding sets of women.
We will be comparing the achieved utilities in stable matchings to the following bench-
marks: the rank ¢ man has as benchmark U(r,,, 1), the utility he would obtain from the
combination of the rank 7 woman’s public rating and the highest possible private score; and
similarly for the women. Based on this we define the loss an agent faces as follows.
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» Definition 5 (Loss). Suppose man m and woman w both have rank i. The loss m sustains
from a match of utility u is defined to be U(ry,1) — u. The loss for women is defined
analogously.

In our analysis we will consider a complete bipartite graph whose two sets of vertices
correspond to the men and women, respectively. For each man m and woman w, we view
the possible matched pair (m,w) as an edge in this graph. Thus, throughout this work, we
will often refer to edges being proposed, as well as edges satisfying various conditions.

3 Upper Bound in The Linear Separable Model

To illustrate our proof technique for deriving upper bounds, we begin by stating and proving
our upper bound result for the special case of the linear separable model with A = %

» Theorem 6. In the linear separable model with A = 1/2, when there are n men and n
women, for any given constant ¢ > 0, for large enough n, with probability at least 1 —n™¢, in
every stable matching, for every i, with r.,, > & = 3L/2, agent m; suffers a loss of at most

L, where L = (16(c + 2)Inn/n)/3, and similarly for the agents w;.

In words, w.h.p., all but the bottommost agents (those whose aligned agents have public
rating less than @) suffer a loss of no more than L. This is a special case of our basic upper
bound for the bounded utilities model (Theorem 12).

One of our goals is to be able to limit the number of proposals the proposing side needs to
make. We identify the edges that could be in some stable matching, calling them acceptable
edges. Our definition is stated generally so that it covers all our results; accordingly we
replace the terms L and & in Theorem 6 with parameters L and o.

» Definition 7 (Acceptable edges). Let 0 <o <1 and 0 < L < 1 be two parameters. An edge
(my,w;) is (L, o)-man-acceptable either if it provides m; utility at least U(ry,,1) — L, or if
m; € M|[0,0). The definition of (L, o)-woman-acceptable is symmetric. Finally, (m;, w;) is
(L, 0)-acceptable if it is both (L,o)-man and (L, c)-woman-acceptable.

To prove our various results, we choose L and ¢ so that w.h.p. the edges in every stable
matching are (L, o)-acceptable. We call this high probability event £. We will show that if £
occurs, then running DA on the set of acceptable edges, or any superset of the acceptable
edges obtained via loss thresholds, produces the same stable matching as running DA on the
full set of edges.

» Theorem 8. If £ occurs, then running woman-proposing DA with the edge set restricted
to the acceptable edges or to any superset of the acceptable edges obtained via loss thresholds
(including the full edge set) result in the same stable matching.

The implication is that w.h.p. a woman can safely restrict her proposals to her acceptable
edges, or to any overestimate of this set of edges obtained by her setting an upper bound
on the loss she is willing to accept. There is a small probability — at most n~¢ — that this
may result in a less good outcome, which can happen only if £ does not occur. Note that
Theorem 8 applies to every utility model we consider. Then, w.h.p., every stable matching
gives each woman w, whose aligned agent m has public rating r,, > & = Q((Inn/n)'/?), a

partner with public rating in the range [r,, — 2L, r,, + %7] (see Theorem 25 in Appendix F.1).

The bound r,,, — 2L is a consequence of the bound on the woman’s loss; the bound r,, + %L
is a consequence of the bound on the men’s losses. An analogous statement applies to the
men.
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This means that if we are running woman-proposing DA, each of these women might
as well limit her proposals to her woman-acceptable edges, which is at most the men with
public ratings in the range r,,, & ©(L) for whom she has private scores of at least 1 — O(L).
In expectation, this yields @(n1/3 (In n)2/3) men to whom it might be worth proposing. It
also implies that a woman can have a gain of at most ©(L) compared to her target utility.

If, in addition, each man can inexpensively signal the women who are man-acceptable
to him, then the women can further limit their proposals to just those men providing them
with a signal; this reduces the expected number of proposals these women can usefully make
to just O(Inn).

4  Sketch of the Proof of Theorem 6

men women

rating r,,, man m; —, 0| ------------- woman w;

h; men, rating range o W; = Wirg,, 1]

cutoff rpp, —a¢ ——
{; women

o A,
woman wW; = Wiy,

Figure 1 Illustrating Lemma 11.

We begin by outlining the main ideas used in our analysis. Our goal is to show that when
we run woman proposing DA, w.h.p. each man receives a proposal that gives him a loss of
at most L (except possibly for men among the bottommost O(nL)). As the outcome is the
man-pessimal stable matching, this means that w.h.p., in all stable matchings, these men
have a loss of at most L. By symmetry, the same bound holds for the women.

Next, we provide some intuition for the proof of this result. See Fig. 1. Our analysis uses
3 parameters a, 8,7 = O(L). Let m; be a non-bottommost man. We consider the set of
men with public rank at least r,,,, — a: M; = M[ry,, — «, 1]. We consider a similar, slightly
larger set of women: WZ = W{ry, — 3a,1]. Now we look at the best proposals by the women
in Wi, i.e. the ones they make first. Specifically, we consider the proposals that give these
women utility at least V(r,, — a, 1), proposals that are therefore guaranteed to be to the
men in M;. Let |M2| =i+ h; and ‘Wl| =i+ ¢;. In expectation, ¢; — h; = 2an. Necessarily,
at least ¢; — h; + 1 women in M; cannot match with men in M; \ {m;}. But, as we will see,
these women all have probability at least 8 of having a proposal to m; which gives them
utility at least V(r,,, — @, 1). These are proposals these women must make before they make
any proposals to men with public rating less than r,,, — a. Furthermore, for each of these
proposals, m; has probability at least v of having a loss of L or less. Thus, in expectation,
m; receives at least 2a8yn proposals which give him a loss of L or less.

We actually want a high-probability bound. So we choose «, 3,7 so that afyn > clogn for
a suitable constant ¢ > 0, and then apply a series of Chernoff bounds. There is one difficulty.
The Chernoff bounds requires the various proposals to be independent. Unfortunately, in
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general, this does not appear to be the case. However, we are able to show that the failure
probability for our setting is at most the failure probability in an artificial setting in which
the events are independent, which yields the desired bound.

We now embark on the actual proof.

We formalize the men’s rating cutoff with the notion of DA stopping at public rating r.

» Definition 9 (DA stops). The women stop at public rating r if, in each woman’s preference
list, all the edges with utility less than V(r,1) are removed. The women stop at man m if, in
each woman’s preference list, all the edges following her edge to m are removed. The women
double cut at man m and public rating 7, if they each stop at m or r, whichever comes first.
Men stopping and double cutting are defined similarly. Finally, an edge is said to survive the
cutoff if it is not removed by the stopping.

To obtain our bounds for man m;, we will have the women double cut at rating r,,, —
and at man m;, where a > 0 is a parameter we will specify later.

Our upper bounds in all of the utility models depend on a parameterized key lemma
(Lemma 11) stated shortly. This lemma concerns the losses the men face in the woman-
proposing DA; a symmetric result applies to the women. The individual theorems follow by
setting the parameters appropriately. Our key lemma uses three parameters: a, 3,y > 0. To
avoid rounding issues, we will choose « so that an is an integer. The other parameters need
to satisfy the following constraints.

for r > a: V(ir—a,1) <V(r,1-7) (1)
for r > 3o U(r,1)—U(r—3a,1—v) <L (2)

Equation (1) relates the range of private values that will yield a woman an edge to m;
that survives the cut at r,,, — «, or equivalently the probability of having such an edge.
Observation 10 below, shows that Equation (2) identifies the range of m;’s private values for
proposals from WZ that yield him a loss of at most L (for we will ensure the women in ’Wj
have public rating at least r,,, — 3a).

» Observation 10. Consider the proposal from woman w to the rank i man m;. Suppose the
rank i woman w; has rating vy, > 3. If w has public rating r > ry,, — 3a and m;’s private
score for w is at least 1—~, then m;’s utility for w is at least U(ry, —3a, 1—=) > U(ry,,1)—L.

In the linear separable model with A = %, we set « = =y and L = 2.

The next lemma determines the probability that man m; receives a proposal causing him
a loss of at most L. The lemma calculates this probability in terms of the parameters we
just defined. Note that the result does not depend on the utility functions U(-,-) and V(-,-)
being linear. In fact, the same lemma applies to much more general utility models which we
also study (see Appendix C) and it is the crucial tool we use in all our upper bound proofs.

In what follows, to avoid heavy-handed notation, by 7,,, —« we will mean max{0, r,,, —a}.

In order to state our next result crisply, we define the following Event &;. It concerns
a run of woman-proposing DA with double cut at the rank 7 man m; and at public rating
Pm, — . Let hy = [M[rp, — a,rm,)|, & = |Wrw, — 3a,74,)|, and w; be the woman with
rank ¢ + ¢;. See Figure 1 for an illustration of these definitions. Event &; occurs if r,,, > 3«
and between them the ¢ + ¢; women in W/r,,, — 3, 1] make at least one proposal to m; that
causes him a loss of at most L.

Finally we define Event £: it happens if & occurs for all ¢ such that r,, > 3a.
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» Lemma 11. Let a > 0 and L > 0 be given, and suppose that 8 and v satisfy (1) and
(2), respectively. Then, Event € occurs with probability at least 1 — py, where the failure
probability

ps =n-exp(—a(n —1)/12) +n-exp(—a(n — 1)/24) + nexp(—afn/8) +n-exp(—afyn/2).

The following simple claim notes that the men’s loss when running the full DA is no larger
than when running double-cut DA.

> Claim 12. Suppose a woman-proposing double-cut DA at man m; and rating r,, — o is
run, and suppose m; incurs a loss of L. Then in the full run of woman-proposing DA, m;
will incur a loss of at most L.

Proof. Recall that when running the women-proposing DA the order in which unmatched
women are processed does not affect the outcome. Also note that as the run proceeds,
whenever a man’s match is updated, the man obtains an improved utility. Thus, in the run
with the full edge set we can first use the edges used in the double-cut DA and then proceed
with the remaining edges. Therefore if in the double-cut DA m; has a loss of L, in the full
run m; will also have a loss of at most L. <

To illustrate how this lemma is applied, we now prove Theorem 6. Note that L is the
value of L used in this theorem. Our other results use other values of L.

Proof of Theorem 6. By Lemma 11, in the double-cut DA, for all i with r,, > 3a, m;
obtains a match giving him loss at most L, with probability at least 1—n-exp(—a(n — 1)/12)—
n - exp(—an/24) — nexp(—a’n/8) — n-exp(—a’n/2).

By Claim 12, m; will incur a loss of at most L in the full run of woman-proposing DA
with at least as large a probability. But this is the man-pessimal match. Consequently, in
every stable match, m; has a loss of at most L. By symmetry, the same bound applies to
each woman w; such that r,,, > 3a.

We choose L = [16(c+2) Inn/n]'/3. Recalling that o = L/2, we see that for large enough
n the probability bound, over all the men and women, is at most 1 — n~°¢. The bounds
Tw; > 3a and 1, > 3o imply we can set 0 = 3a = %f. <

Proof of Lemma 11. We run the double-cut DA in two phases, defined as follows. Recall
that h; = |M[rm, — a,rm,)| and & = [W(ry, — 30, 7u,)
most ¢ + ¢; have public rating at least r,, — 3.

Phase 1. Every unmatched woman with rank at most ¢ + £; keeps proposing until her next
proposal is to m;, or she runs out of proposals.

Phase 2. Each unmatched women makes her next proposal, if any, which will be a proposal
to m;.

. Note that women with rank at

Our analysis is based on the following four claims. The first two are simply observations
that w.h.p. the number of agents with public ratings in a given interval is close to the
expected number. We defer the proofs to the appendix.

A critical issue in this analysis is to make sure the conditioning induced by the successive
steps of the analysis does not affect the independence needed for subsequent steps. To achieve
this, we use the Principle of Deferred Decisions, only instantiating random values as they are
used. Since each successive bound uses a different collection of random variables this does
not present a problem.
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> Claim 13. Let By be the event that for some i, h; > %a(n —1). By occurs with probability
at most n - exp(—a(n — 1)/12). The only randomness used in the proof are the choices of
the men’s public ratings. The same bound applies to the women.

Proof (Sketch). As E[h;] = a(n — 1), w.h.p., h; < 2a(n — 1). This claim uses a Chernoff
bound with the randomness coming from the public ratings of the men. <

> Claim 14. Let By be the event that for some i, £; < %a(n —1). By occurs with probability
at most n - exp(—a(n — 1)/24). The only randomness used in the proof are the choices of
the women’s public ratings. The same bound applies to the men.

Proof. This is very similar to the proof of Claim 13. <

> Claim 15. Let Bs be the event that between them, the women with rank at most ¢ + ¢;
make fewer than %aﬁn Step 2 proposals to m;. If events By and By do not occur, then Bj
occurs with probability at most exp(—afn/8). The only randomness used in the proof are
the choices of the women’s private scores.

This bound uses the private scores of the women and employs a novel argument given below
to sidestep the conditioning among these proposals.

> Claim 16. If none of the events By, Bs, or B3 occur, then at least one of the Step 2
proposals to m; will cause him a loss of at most L with probability at least 1 — (1 —~)®#"/2 >
1 — exp(—afyn/2). The only randomness used in the proof are the choices of the men’s
private scores.

Proof. Note that each Phase 2 proposal is from a woman w with rank at most ¢ + £;. As
already observed, her public rating is at least r,,, — 3. Recall that man m;’s utility for
w equals U(ry, Sm,; (w)) > U(ry, — 3a, $m,; (w)). To achieve utility at least U(ry,,1) — L <
U(ry, — 3,1 — ) (using (2)) it suffices to have sp,,(w) > 1 — ~, which happens with
probability . Consequently, utility at least U(r,,, 1) — L is achieved with probability at
least ~.

For each Phase 2 proposal these probabilities are independent as they reflect m;’s private
scores for each of these proposals. Therefore the probability that there is no proposal
providing m; a loss of at most L is at most

(1=9)""" < exp(afyn/2). <
Concluding the proof of Lemma 11: The overall failure probability summed over all n choices
of 7 is

n-exp(—a(n —1)/12) + n - exp(—a(n — 1)/24) + nexp(—afn/8) + n - exp(—afyn/2).

<

Proof of Claim 15. First, we simplify the action space by viewing the decisions as being made
on a discrete utility space, as specified in the next claim, proved in the appendix.

> Claim 17. For any § > 0, there is a discrete utility space in which for each woman the
probability of selecting m; is only increased, and the probability of having any differences
in the sequence of actions in the original continuous setting and the discrete setting is at
most J.
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We represent the possible computations of the double-cut DA in this discrete setting
using a tree T'. Each woman will be going through her possible utility values in decreasing
order, with the possible actions of the various women being interleaved in the order given
by the DA processing. Each node u corresponds to a woman w processing her next utility
value. The possible choices at this utility are each represented by an edge descending from wu.
These choices are:

i. Proposing to some man (among those men w has not yet proposed to); or
ii. “no action”. This corresponds to w making no proposal achieving the current utility.

We observe the following important structural feature of tree T'. Let S be the subtree
descending from the edge corresponding to woman w proposing to m;; in S there are no
further actions of w, i.e. no nodes at which w makes a choice, because the double cut DA
cuts at the proposal to m;.

The assumption that B and By do not occur means that for all 4, h; < %a(n —1) and
l; > 3a(n — 1), and therefore ¢; — h; > a(n — 1).

At each leaf of T', up to 7 + h; — 1 women will have been matched with someone other
than m;. The other women either finished with a proposal to m; or both failed to match
and did not propose to m;. Let w be a woman in the latter category. Then, on the path to
this leaf, w will have traversed edges corresponding to a choice at each discrete utility in the
range [V (rm, — a,1),V(1,1)].

We now create an extended tree, T, by adding a subtree at each leaf; this subtree will
correspond to pretending there were no matches; the effect is that each women will take an
action at all their remaining utility values in the range [V (r,, — «, 1),V (1,1)], except that
in the sub-subtrees descending from edges that correspond to some woman w selecting m;,
w has no further actions. For each leaf in the unextended tree, the probability of the path
to that leaf is left unchanged. The probabilities of the paths in the extended tree are then
calculated by multiplying the path probability in the unextended tree with the probabilities
of each woman’s choices in the extended portion of the tree.

Next, we create an artificial mechanism M that acts on tree T,,. The mechanism M is
allowed to put 7 + h; — 1 “blocks” on each path; blocks can be placed at internal nodes. A
block names a woman w and corresponds to her matching (but we no longer think of the
matches as corresponding to the outcome of the edge selection; they have no meaning beyond
making all subsequent choices by this woman be the “no action” choice).

DA can be seen as choosing to place up to i + h; — 1 blocks at each of the nodes
corresponding to a leaf of T. M will place its blocks so as to minimize the probability p of
paths with at least %aﬂn women choosing edges to m;. Clearly p is a lower bound on the
probability that the double-cut DA makes at least %aﬁn proposals in Step 2. Given a choice
of blocks we call the resulting probability of having fewer than %aﬁn women choosing edges
to m; the blocking probability.

> Claim 18. The probability that M makes at least %aﬁn proposals to m; is at least
1 — exp(—afn/8).

» Corollary 19. The probability that the double-cut DA makes at least %aﬁn proposals to m;
is at least 1 — exp(—afBn/8).

Proof. For any fixed §, by Claim 18, the probability that M makes at least %aﬁn proposals
to m; is at least 1 — exp(—afn/8). By construction, the probability is only larger for the
double-cut DA in the discrete space.
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Therefore, by Claim 12, the probability that the double-cut DA makes at least %aﬁn
proposals to m; in the actual continuous space is at least 1 —exp(—afn/8) — 4, and this holds
for any § > 0, however small. Consequently, this probability is at least 1 — exp(—a/3n/8). <=

Proof of Claim 18. We will show that the most effective blocking strategy is to block as many
women as possible before they have made any choices. This leaves at least (i+¢;)—(i—1+h;) >
1+ a(n—1) > an women unmatched. Then, as we argue next, each of these remaining
at least an women w has independent probability at least 8 that their proposal to m; is

cutoff-surviving. To be cutoff-surviving, it suffices that V(rp,, sw(m;)) > V(rm, — o, 1).

But we know by (1) that V(rp,, — a,1) < V(rp,,,1 — ), and therefore it suffices that
Sw(m;) > 1 — B, which occurs with probability 5.

Consequently, in expectation, there are at least aSn proposals to m;, and therefore, by a
Chernoff bound, at least %aﬁn proposals with probability at least exp(—an/8).

We consider the actual blocking choices made by M and modify them bottom-up in a
way that only reduces the probability of there being %a,@n or more proposals to m;.

Clearly, M can choose to block the same maximum number of women on every path
as it never hurts to block more women (we allow the blocking of women who have already
proposed to m; even though it does not affect the number of proposals to m;).

Consider a deepest block at some node u in the tree, and suppose b women are blocked
at u. Let v be a sibling of u. As this is a deepest block, there will be no blocks at proper
descendants of u, and furthermore as there are the same number of blocks on every path, v
will also have b blocked women.

Observe that if there is no blocking in a subtree, then the probability that a woman
makes a proposal to m; is independent of the outcomes for the other women. Therefore the
correct blocking decision at node w is to block the b women with the highest probabilities of
otherwise making a proposal to m;, which we call their proposing probabilities; the same is
true at each of its siblings v.

Let x be u’s parent. Suppose the action at node x concerns woman w,. Note that the
proposing probability for any woman w # w, is the same at u and v because the remaining
sequence of actions for woman w is the same at nodes u and v, and as they are independent
of the actions of the other women, they yield the same probability of selecting m; at some
point.

We need to consider a number of cases.

Case 1. w is blocked at every child of x.

Then we could equally well block w at node x.
Case 2. At least one woman other than w, is blocked at some child of .

Each such blocked woman w has the same proposing probability at each child of x.

Therefore by choosing to block the women with the highest proposing probabilities, we
can ensure that at each node either w, plus the same b — 1 other women are blocked, or
these b — 1 woman plus the same additional woman w’ # w,, are blocked. In any event,
the blocking of the first b — 1 women can be moved to z.
Case 2.1. w, is not blocked at any child of .
Then the remaining identical blocked woman at each child of z can be moved to x.
Case 2.2. w, is blocked at some child of  but not at all the children of x.
Notice that we can avoid blocking w, at the child u of x corresponding to selecting
m;, as the proposing probability for w, after it has selected m; is 0, so blocking any
other women would be at least as good. Suppose that w # w,, is blocked at node .
Let v be another child of z at which w, is blocked. Necessarily, p, ~ , the proposing

x

probability for w, at node v, is at least the proposing probability p,, for w at node v (for
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otherwise w would be blocked at node v); also, py . equals the proposing probability for w
at every child of z including w; in addition, Py equals the proposing probability for w, at
every child of z other than u. It follows that w is blocked at u and w, can be blocked at
every other child of z. But then blocking w, at = only reduces the proposing probability.
Thus in every case one should move the bottommost blocking decisions at a collection of
sibling nodes to a single blocking decision at their parent. <

5 Making Fewer Proposals

We identify a sufficient set of edges that contains all stable matchings, and on which the DA
algorithm produces the same outcome as when it runs on the full edge set.

» Definition 20 (Viable edges). An edge (m,w) is man-viable if, according to m’s preferences,
w is at least as good as the woman he is matched to in the man-pessimal stable match. Woman-
viable is defined symmetrically. An edge is viable if it is both man and woman-viable. E, is
the set of all viable edges.

» Lemma 21. Running woman-proposing DA with the edge set restricted to E, and with any
superset obtained via loss thresholds, including the full edge set, results in the same stable
matching.

Proof. Suppose a new stable matching, S, now exists in the restricted edge set: it could not
be present when using the full edge set, therefore there must be a blocking edge (m,w) in
the full edge set. But neither m nor w would have removed this edge when forming their
restricted edge set since for both of them it is better than an edge they did not remove (the
edge they are matched with in 5).

It follows that w.h.p. the set of stable matchings is the same when using F, (or any
super set of it generated by truncation with larger loss thresholds) and the whole set. Thus
woman-proposing DA run on the restricted edge set will yield the same stable matching as
on the full edge set. <

Proof of Theorem 8. If £ occurs, the set of acceptable edges contains all the viable edges.
Furthermore, the acceptable edges are defined by means of loss thresholds. The result now
follows from Lemma 21. |

For some of the very bottommost agents, almost all edges may be acceptable. However,
in the bounded derivatives model, with slightly stronger constraints on the derivatives, we
also show (see Appendix H) the existence of an e-Bayes-Nash equilibrium in which all but
a bottom O((Inn/n)'/3) fraction of agents use only ©(Inn) edges, and all agents propose
using at most ©(In?n) edges, with € = O(Inn/n'/3).

6 Numerical Simulations

We present several simulation results which are complementary to our theoretical results.
Throughout this section, we focus on the linear separable model.
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6.1 NRMP Data

We used NRMP data to motivate some of our choices of parameters for our simulations. The
NRMP provides extensive summary data [19]. We begin by discussing this data.

Over time, the number of positions and applicants has been growing. We mention
some numbers for 2021. There were over 38,000 positions available and a little over 42,000
applicants. The main match using the DA algorithm (modified to allow for couples, who
comprise a little over 5% of the applicants) filled about 95% of the available positions.
The NRMP also ran an aftermarket, called SOAP, after which about 0.5% of the positions
remained unfilled.

The positions cover many different specialities. These specialities vary hugely in the
number of positions available, with the top 11, all of size at least 1,000, accounting for 75% of
the positions. In addition, about 75% of the doctors apply to only one speciality. We think
that as a first approximation, w.r.t. the model we are using, it is reasonable to view each
speciality as a separate market. Accordingly, we have focused our simulations on markets
with 1,000-2,000 positions (though the largest speciality in the NRMP data had over 9,000
positions).

On average, doctors listed 12.5 programs in their preference lists, hospital programs listed
88 doctors, and the average program size was 6.5 (all numbers are approximate). While
there is no detailed breakdown of the first two numbers, it is clear they vary considerably
over the individual doctors and hospitals. For our many-to-one simulations we chose to use a
fixed size for the hospital programs. Our simulations cause the other two numbers to vary
over the individual doctors and programs because the public ratings and private scores are
chosen by a random process.

6.2 Numbers of Available Edges

The first question we want to answer is how long do the preference lists need to be in order to
have a high probability of including all acceptable edges, for all but the bottommost agents?
We chose bottommost to mean the bottom 20% of the agents, based on where the needed
length of the preference lists started to increase in our experiments for n = 1,000-2,000.
We ran experiments with A = 0.5,0.67,0.8, corresponding to the public rating having
respectively equal, twice, and four times the weight of the private scores in their contribution
to the utility. We report the results for A = 0.8. The edge sets were larger for smaller values
of A, but the results were qualitatively the same. We generated 100 random markets and

determined the smallest value of L that ensured all agents were matched in all 100 markets.

L = 0.12 sufficed. In Figure 2, we show results by decile of women’s rank (top 10%, second
10%, etc.), specifically the average length of the preference list and the average number of
edges proposed by a woman in woman-proposing DA, over these 100 randomly generated
markets. We also show the max and min values over the 100 runs; these can be quite far
from the average value. Note that the min values in Figure 2(a) are close to the max values
in Figure 2(b), which suggests that being on the proposing side does not significantly reduce
the value of L that the women could use compared to the value the men use. We also show
data for a typical single run in Figure 3.

We repeated the simulation for the many-to-one setting. In Figure 4, we show the results
for 2000 workers and 250 companies, each with 8 positions. Now, on average, a typical worker

(i.e. among the top 80%) has an average preference list length of 55 and makes 7 proposals.

The one-to-one results show that for non-bottommost agents, the preference lists have
length 150 on the average, while women make 30 proposals on the average (these numbers
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Figure 2 One-to-one case: summary statistics.
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Figure 3 One-to-one case: a typical run.

are slightly approximate). What is going on? We believe that the most common matches
provide a small loss or gain (©(n~1/3) in our theoretical bounds) as opposed to the maximum
loss possible (©(n~1/3 Int/? n) in our theoretical bounds), as is indicated by our distribution
bound on the losses (see item 4 in Appendix F.1). The question then is where do these edges
occur in the preference list, and the answer is about one fifth of the way through (for one
first has the edges providing a gain, which only go to higher up agents on the opposite side,
and then one has the edges providing a loss, and these go both up and down). However, a
few of the women will need to go through most of their list, as indicated by the fact that the
max and min lines (for example in Figure 4) roughly coincide.

This effect can also be seen in the many-to-one experiment but it is even more stark on
the worker’s side. The reason is that the number of companies with whom a worker w might
match which are above w, based on their public ratings alone, is ©(L.n.), while the number
below w is ©(Lyn.), a noticeably larger number. (See Appendix F.1 for a proof of these
bounds.) The net effect is that there are few edges that provide w a gain, and so the low-loss
edges, which are the typical matches, are reached even sooner in this setting.

Now we turn to why the number of edges in the available edge set per woman changes at
the ends of the range. There are two factors at work. The first factor is due to an increasing
loss bound as we move toward the bottommost women, which increases the sizes of their
available edge sets. The second factor is due to public ratings. For a woman w the range of
men’s public ratings for its acceptable edges is [r, — O(L), 7, + O(L)], where m is aligned
with w. But at the ends a portion of this range will be cut off, reducing the number of
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Figure 4 Many to One Setting.

acceptable edges, with the effect more pronounced for low public ratings. Because A = 0.8,
initially, as we move to lower ranked women, the gain due to increasing the loss bound
dominates the loss due to a reduced public rating range, but eventually this reverses. Both
effects can be clearly seen in Figure 3(a), for example.

6.3 Unique Stable Partners

Another interesting aspect of our simulations is that they showed that most agents have a
unique stable partner. This is similar to the situation in the popularity model when there
are short preference lists, but here this result appears to hold with full length preference
lists. In Figure 5, we show the outcome on a typical run and averaged over 100 runs, for
n = 2,000 in the one-to-one setting. We report the results for the men, but as the setting is
symmetric they will be similar for the women. On the average, among the top 90% of agents
by rank, 0.5% (10 of 1,800) had more than one stable partner, and among the remainder
another 2% had multiple stable partners (40 of 200).

Also, as suggested by the single run illustrated in Figure 5(a), the pair around public
rank 1,600 and the triple between 1,200 and 1,400 have multiple stable partners which
they can swap (or exchange via a small cycle of swaps) to switch between different stable
matchings. This pattern is typical for the very few men with multiple stable partners outside
the bottommost region.

6.4 Constant Number of Proposals

Our many-to-one experiments suggest that the length of the preference lists needed by our
model are larger than those observed in the NRMP data. In addition, even though there is a
simple rule for identifying these edges, in practice the communication that would be needed
to identify these edges may well be excessive. In light of this it is interesting to investigate
what can be done when the agents have shorter preference lists.

We simulated a strategy where the workers’ preference lists contain only a constant
number of edges. We construct an Interview Edge Set which contains the edges (w,c)
satisfying the following conditions:

1. Let r, and r. be the public ratings of w and ¢ respectively. Then |r,, — r.| < p.
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Figure 5 Unique stable partners, one-to-one setting.

2. The private score w has for ¢ as well as the private score of ¢ for w are both greater

than q.

We choose the parameters p and ¢ so as to have 15 edges per agent on average. Many
combinations of p and ¢ would work. We chose a pair that caused relatively few mismatches.
We then ran worker proposing DA on the Interview Edge Set.

One way of identifying these edges is with the following communication protocol: the
workers signal the companies which meet their criteria (the workers’ criteria); the companies
then reply to those workers who meet their criteria. In practice this would be a lot of com-
munication on the workers’s side, and therefore it may be that an unbalanced protocol where
the workers use a larger q,, as their private score cutoff and the companies a correspondingly
smaller ¢, is more plausible. Clearly this will affect the losses each side incurs when there is a
match, but we think it will have no effect on the non-match probability, and as non-matches
are the main source of losses, we believe our simulation is indicative. We ran the above
experiment with p = 0.19 and ¢ = 0.60, with the company capacity being 8. Figure 6(a)
shows the locations of unmatched workers in a typical run of this experiment while 6(b)
shows the average numbers of unmatched workers per quantile (of public ratings) over 100
runs. We observe that the number of unmatched workers is very low (about 1.5% of the
workers) and most of these are at the bottom of the public rating range.

Figure 6(c) compares the utility obtained by the workers in the match obtained by
running worker-proposing DA on the Interview Edge Set to the utility they obtain in the
worker-optimal stable match. We observe that only a small number of workers have a
significantly worse outcome when restricted to the Interview Edge Set.

(a) Public ranks of unmatched (b) Average numbers of un- (c) Distribution of workers

9
workers in a typical run. matched workers by public rat- utilities with worker-proposing
ing decile. DA: (full edge set result) —

(Interview edge set result).

Figure 6 Constant number of proposals.
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7 Discussion and Open Problems

Our work shows that in the bounded derivatives model, apart from a sub-constant fraction
of the agents, each of the other agents has O(lnn) easily identified edges on their preference
list which cover all their stable matches w.h.p.

As described in Section 6, our experiments for the one-to-one setting yield a need for
what appear to be impractically large preference lists. While the results in the many-to-one
setting are more promising, even here the preference lists appear to be on the large side.
Also, while our rule for identifying the edges to include is simple, in practice it may well
require too much communication to identify these edges. At the same time, our outcome is
better than what is achieved in practice: we obtain a complete match with high probability,
whereas in the NRMP setting a small but significant percentage of positions are left unfilled.
Our conclusion is that it remains important to understand how to effectively select smaller
sets of edges.

In the popularity model, it is reasonable for each agent to simply select their favorite
partners. But in the current setting, which we consider to be more realistic, it would be an
ineffective strategy, as it would result in most agents remaining unmatched. Consequently,
we believe the main open issue is to characterize what happens when the number of edges k
that an agent can list is smaller than the size of the allowable edge set. We conjecture that
following a simple protocol for selecting edges to list, such as the one we use in our experiments
(see Section 6.4), will lead to an e-Bayes-Nash equilibrium, where € is a decreasing function
of k. Strictly speaking, as the identification of allowable edges requires communication, we
need to consider the possibility of strategic communication, and so one would need to define
a notion of e-equilibrium akin to a Subgame Perfect equilibrium. We conjecture that even
with this, it would still be an e-equilibrium.

Finally, it would be interesting to resolve whether the experimentally observed near
uniqueness of the stable matching for non-bottom agents is a property of the linear separable
model. We conjecture that in fact it also holds in the bounded derivatives model.
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—— Abstract
A (¢, €)-expander decomposition of a graph G (with n vertices and m edges) is a partition of V'
into clusters Vi, ..., Vi with conductance ®(G[V;]) > ¢, such that there are at most em inter-cluster

edges. Such a decomposition plays a crucial role in many graph algorithms. We give a randomized
O(m/ ) time algorithm for computing a (¢, ¢ log? n)-expander decomposition. This improves upon
the (¢, #log® n)-expander decomposition also obtained in O(m/¢) time by [Saranurak and Wang,
SODA 2019] (SW) and brings the number of inter-cluster edges within logarithmic factor of optimal.

One crucial component of SW'’s algorithm is a non-stop version of the cut-matching game of
[Khandekar, Rao, Vazirani, JACM 2009] (KRV): The cut player does not stop when it gets from the
matching player an unbalanced sparse cut, but continues to play on a trimmed part of the large
side. The crux of our improvement is the design of a non-stop version of the cleverer cut player
of [Orecchia, Schulman, Vazirani, Vishnoi, STOC 2008] (OSVV). The cut player of OSSV uses a
more sophisticated random walk, a subtle potential function, and spectral arguments. Designing
and analysing a non-stop version of this game was an explicit open question asked by SW.
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1 Introduction

. BE(5,V\S .
The conductance of a cut (S,V'\ S) is ®¢(S,V\ S) = min(v‘olES),v\olzl/\S))’ where vol(S) is
the sum of the degrees of the vertices of S. The conductance of a graph G is the smallest
conductance of a cut in G.

A (¢, €)-expander decomposition of a graph G is a partition of the vertices of G into clusters
Vi,..., Vi with conductance ®(G[V;]) > ¢ such that there are at most em inter-cluster edges,
where ¢, e > 0. We consider the problem of computing in almost linear time (O(m) time)
a (¢, €)-expander decomposition for a given graph G and ¢ > 0, while minimizing € as a
function of ¢. It is known that a (¢, €)-expander decomposition, with € = O(¢logn), always
exists and that e = O(¢logn) is optimal [23, 2].

Expander decomposition algorithms have been used in many cutting edge results, such
as directed/undirected Laplacian solvers [27, 11], graph sparsification [9, 10], distributed
algorithms [6], and maximum flow algorithms [15]. Expander decomposition was also used [10]
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(in the deterministic case) in order to break the O (y/n) dynamic connectivity bound and
achieve an improved running time of O(no(l)) per operation. It was also used in the recent
breakthrough result by Chen et al. [8], who showed algorithms for maximum flow and
minimum cost flow in almost linear time.

Given an f(n)-approximation algorithm for the problem of finding a minimum conductance
cut, one can get a (¢, O(f(n) - plogn))-expander decomposition algorithm by recursively
computing approximate cuts (and thus splitting V') until all components are certified as
expanders. In particular, using an exact minimum conductance cut algorithm ensures the
existence of an expander decomposition with e = O (¢ logn) as mentioned above. Using the
polynomial algorithms of [20, 4] which provide the best approximation ratios of O (\/5) and
0] (\/@), respectively, for conductance, gives polynomial time expander decomposition
algorithms with ¢ = O ((;53/2 log n) and ¢ = O (qS log% n ). However, these decomposition
algorithms might lead to a linear recursion depth, and therefore have superlinear time
complexity.

To get a near linear time algorithm using this recursive approach, one must be able to
efficiently compute low conductance cuts with additional guarantees. We get such cuts using
the cut-matching framework of [16] (abbreviated as KRV). In order to present our results in
the appropriate context we now give a brief background on the cut-matching framework.

Cut-matching. FEdge-expansion is a connectivity measure related to conductance. The
edge-expansion of a cut (S, V' \ S) is hg(S,V\ S) = % and the edge-expansion of
a graph G is the smallest edge-expansion of a cut in G.

The cut-matching game is a technique that reduces the approximation task for sparsest
cut (in terms of edge-expansion) to a polylogarithmic number of maximum flow problems.
The resulting approximation algorithm for sparsest cut is remarkably simple and robust.

The cut-matching game is played between a cut player and a matching player, as follows.
We start with an empty graph G on n vertices. At round ¢, the cut player chooses a bisection
(S, S¢) of the vertices (we assume n is even). In response, the matching player presents a
perfect matching M; between the vertices of S; and S; and the game graph is updated to
G = G4_1 U M;. Note that this graph may contain parallel edges. The game ends when
G, is a sufficiently good edge-expander. The goal of this game is to devise a strategy for
the cut player that maximizes the ratio r(n) := ¢/T', where T is the number of rounds and
¢ = h(Gr) is the edge-expansion of Gp. KRV showed that one can translate a cut strategy of
quality r(n) into a sparsest cut algorithm of approximation ratio 1/r(n) by applying a binary
search on a sparsity parameter ¢ until we certify that h(G) > ¢ and h(G) = O(¢/r(n)).

KRV devised a randomized cut-player strategy that finds the bisection using a stochastic
matrix that corresponds to a random walk on all previously discovered matchings. Their walk
traverses the previous matchings in order and with probability half takes a step according to
each matching. They showed that the matrix corresponding to this random walk can actually
be embedded (as a flow matrix) into G; with constant congestion. They terminate when the
random walk matrix is close to uniform (i.e. having constant edge-expansion), resulting in
Gp for T =0 (1og2 n), having constant edge-expansion.

Orecchia et al. [21] (abbreviated as OSVV) took the same approach but devised a more
sophisticated random walk and used Cheeger’s inequality [7] in order to show that G, for

T=0 (log2 n), has Q (logn) edge-expansion. That is, they got a ratio of r(n) = Q ( L )

logn
Equipped with this background we now get back to expander decomposition, and focus
on the O(m/¢) time algorithm by Saranurak and Wang [23] (abbreviated as SW). Their
algorithm is randomized, follows the recursive scheme described above, and computes a
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(o, $log? n)-expander decomposition in O (%gzl") time. Its number of inter-cluster edges

is off by a factor of O (log2 n) from optimal and off by a factor of O <log% n) from the
aforementioned best achievable polynomial time construction.

One core component of this algorithm is a variation of the cut-matching game (inspired
by Récke et al. [22]). In this variation, the game graph G; = (V;, E}) may lose vertices
(i.e., Vix1 C Vi) throughout the game and the objective of the cut player is to make Vr
a near erxpander in G (see Definition 9). The result of each round does not consist of
a perfect matching in V4, but rather a subset to remove from V; and a matching of the
remaining vertices. The game ends either with a balanced cut of low conductance, or with
an unbalanced cut of low conductance, such that the larger side is a near expander. This
allows SW to avoid recurring on the large side of the cut. Indeed, if the cut is balanced, they
run recursively on both sides, and if it is unbalanced, they use the fact that the large side is
a near expander and “trim” it by finding a large subset of this side which is an expander.
Then, they run recursively on the smaller side combined with the “trimmed” vertices. SW'’s
analysis of the new cut-matching game is based on the ideas and the potential function of
KRV while carefully taking into account of the shrinkage of the game graph.

An open question, raised by SW, was whether one can adapt the technique of the cut-
matching strategy of OSVV to improve their decomposition. A major obstacle is how to
perform an OSVV-like spectral analysis when we lose vertices throughout the process and
need to bound the near-expansion of the final piece. This is challenging as the analysis of
OSVYV is already somewhat more complicated than that of KRV: It uses a different lazy
random walk and a subtle potential to measure progress towards near expansion. Moreover
Cheeger’s inequality is suitable to show high expansion and the object we are targeting is a
near expander.

Our contribution. In this paper we answer this question of SW affirmatively. We present and
analyze an expander decomposition algorithm with a new cut-player inspired by OSVV. This
improves the result of SW and gives a randomized O(m /@) time algorithm for computing an
(¢, $log? n)-expander decomposition (Theorem 18). This brings the number of inter-cluster
edges to be off only by O(logn) factor from the best possible.

To achieve this we overcome two main technical challenges: (1) We generalize the lazy
random walk of the cut player of OSVV and the subtle potential tracking its progress, to
the setting in which the vertex set shrinks (by ripping off of it small cuts as in SW). (2) We
show that when the generalized potential is small the remaining part of the game graph is a
near expander. This required a generalization of Cheeger’s inequality appropriate for our
purpose (see Lemma 33).

Our techniques may be applied in similar contexts. One concrete such context is the
construction of tree-cut sparsifiers. Specifically, one could try to use our technique to improve
the O (1og4 n)-approximate tree-cut sparsifier construction of [22] by a factor of logn. (Note
that [22] in fact construct a tree-flow sparsifier, which is a stronger notion.)

The cut-matching framework [16] is formalized for edge-expansion rather than conductance.
Consequently, SW and others whose primary objective is conductance had to transform the
graph into a subdivision-graph in order to use this framework. The subdivision graph is
obtained by adding a new vertex (called a split-node) in the middle of each edge e, splitting
e into a path of length two. Consequently, the analysis has to translate cuts of low expansion
in the modified graph (the subdivision graph) to cuts of low conductance in the original
graph. This transformation complicates the algorithms and their analysis.

9:3
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To avoid this transformation we revisit the seminal results of KRV and OSVV and redo
them directly for conductance. This is not trivial and requires subtle changes to the cut
players, and the matching players, and the potentials measuring progress towards a graph
with small conductance. In particular the matching player does not produce a matching
anymore but rather what we call a dg-matching, which is a graph with the same degrees
as G.

Our new cut-matching algorithm is then described using this natural reformulation of the
cut-matching framework directly for conductance, removing the complications that would
have followed from using the split graph.

We believe that our clean presentations of the cut-matching framework for conductance
would prove useful for other applications of cut-matching that require optimization for
conductance rather than expansion.

Further related work. Computing the expansion and the conductance of a graph G is NP-
hard [18, 25], and there is a long line of research on approximating these connectivity measures.
The best known polynomial algorithms for approximating the minimum conductance cut
have either O (\/@) [4, 24] or O( <I>(G)> approximation ratios [20]. Approximation
algorithms for expansion and conductance play a crucial role in algorithms for expander
decomposition [23, 5, 10], expander hierarchies [12, 14], and tree flow sparsifiers [22].

In his thesis, Orecchia [19] elaborates on the two cut-matching strategies described in
OSVV, one based on a lazy random walk, called Cnxar, and a more sophisticated one based
on the heat-kernel random walk, called Crxp. Orecchia proves (Theorem 4.1.5 of [19]) that

using Cy a7 or Cgxp, after T' = (9(10g2 n) iterations, the graph G has expansion Q(logn)

1
logn

bounds the second largest eigenvalue of the normalized Laplacian of Gr. However, Orecchia

(and thereby conductance , since it is regular with degrees ©(log” n)). Orecchia also
does not show how to use cut-matching to get approximation algorithms for the conductance
of G.

In a recent paper [3] Ameranis et al. use a generalized notion of expansion, also mentioned
in [19], where we normalize the number of edges crossing the cut by a general measure
(1) of the smaller side of the cut. They define a corresponding generalized version of the
cut-matching game, and show how to use a cut strategy for this game to get an approximation
algorithm for two generalized cut problems. They claim that one can construct a cut strategy
for this measure using ideas from [19].1

Both SW and our result can be implemented in O(m) time using the recent result of [17],
by replacing Bounded-Distance-Flow (Lemma 21) and the “Trimming Step” of [23] with the
algorithm of [17, Section 8]. This O(m) hides many log factors and requires more complicated
machinery.

The structure of this paper is as follows. Section 2 contains additional definitions. In
order to provide the appropriate context for our work, Section 3 gives an overview of the
cut-matching games in [16] and [21] and highlights the differences between them. In the full
version of this paper, we give a complete and self-contained description of these approximation
algorithms directly for conductance. A reader knowledgeable in the Cut-Matching game
can skip directly to Section 4. In Section 4 we present our new non-stop spectral cut player
and expander decomposition algorithm. Section 5 contains the analysis of our algorithm.
Due to the space constraints some of the proofs are omitted, and are available in the full
version of this paper [1].

! The details of such a cut player do not appear in [3] or [19].
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To be consistent with common terminology we refer to a graph with conductance at least
¢ as a ¢-expander (rather than ¢-conductor.) No confusion should arise since in the rest of
this paper we focus on conductance and do not use the notion of edge-expansion anymore.
In this paper we only focus on unweighted graphs, although our algorithm can be adapted to
the case of integral, polynomially bounded weights.

2 Preliminaries

We denote the transpose of a vector or a matrix x by z’. That is, if v is a column vector
then v’ is the corresponding row vector. For a vector v € RZ,, define /v to be vector whose
coordinates are the square roots of those of v. Given A € R™ ™, we denote by A(i,7) the
element at the ¢’th row and j’th column of A. We denote by A(i,), A(,4) the ’th row and
column of A, respectively. We define both A(4,) and A(,4) as column vectors. We use the
abbreviation A(i) := A(7,) only with respect to the rows of A. Given a vector v € R", we
denote its i’th element by v(i). For disjoint A, B C V, we denote by Eg(A, B) the set of
edges connecting A and B. We sometimes omit the subscript when the graph is clear from
the context. If A =V \ B, then we call (4, B) a cut.

» Fact 1. Let X,Y € R™*", m € N, then Tr(XY) = Tr(Y X).

> Fact 2. Let X, Y € R™ "™ be symmetric matrices and let k € N. Then
Tr ((XYX)Q’“) <Tr (XQ’“YQ’“XQ"') .

» Definition 3 (dg,volg(S)). Given a graph G, the vector dg € R" is defined as dg(v) =
deg(v). To simplify the notation, we denote d := dg whenever the graph G is clear from
the context. For S CV, we denote by volg(S) =) g da(v) the volume of S.

» Definition 4 (G{A}). Let G = (V, E) be a graph, and let A CV be a set of vertices. We
define the graph G{A} = (V', E') as the graph induced by A with self-loops added to preserve
the degrees: V! = A,E' = {{u,v} € E:u,v € A} U{{u,u} :ue€ A,v e V\ A {uv} e E}.

» Definition 5 (d-Matching). Given a vector d € N™ and a collection of pairs M =
{(us,v;)}2,. We say that M is a d-matching if the graph defined by M (i.e., the graph
whose edges are M) satisfies dp(v) = d(v), for every v.

» Definition 6 (dg-stochastic). A matriz F' € R™*"™ is dg-stochastic with respect to a graph
G if the following two conditions hold: (1) F -1, =dg and (2) 1], - F = d,.

» Definition 7 (Laplacian, Normalized Laplacian). Let A € R™*" be a symmetric matriz
and let d = A-1,, D = diag(d). The Laplacian of A is defined as L(A) = D — A. The
normalized-Laplacian of A is defined as N(A) = D2 L(A)D~2 = I — D 2AD~%. The
(normalized) Laplacian of an undirected graph is defined analogously using its adjacency
matriz.

» Definition 8 (Conductance). Let G = (V,E) and S C V, S # (. The conductance of the
cut (S,V'\ 9), denoted by @ (S, V' \ S), is

[E(S, V\S)|

(S VA §) = min(vol(S), vol(V \ S))’

The conductance of G is defined to be ®(G) = mingcy P¢(S,V \ S).

9:5
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» Definition 9 (Expander, Near-Expander). Let G = (V, E). We say that G is a ¢-expander
if ®(G) > ¢. Let AC V. We say that A is a near ¢-expander in G if
. [E(S,V\S)|
> Q.
B in(vol(S), vol(A\ 5)) = ¥

That is, a near expander is allowed to use cut edges that go outside of A. Note that the
above definition applies to both directed and undirected graphs.

» Definition 10 (Embedding). Let G = (V, E) be an undirected graph. Let F € RY}Y be a
matriz (not necessarily symmetric). We say that F is embeddable in G with congestion ¢, if
there exists a multi-commodity flow f in G, with |V| commodities, one for each vertex (vertex
v is the source of its commodity), such that, simultaneously for each (u,v) € VXV, f routes
F(u,v) units of u’s commodity from u to v, and the total flow on each edge is at most c. 2
If F is the weighted adjacency matriz of a graph H on the same vertex set V, we say
that H is embeddable in G with congestion c if F' is embeddable in G with congestion c.

» Lemma 11. Let G, H be two graphs on the same vertexr set V. Let AC V. Let a >0 be a
constant such that for each v € V, dg(v) = a - dpy(v). Assume that H is embeddable in G
with congestion ¢, and that A is a near ¢-expander in H. Then, A is a near %—empander
in G.

» Corollary 12. Let G, H be two graphs on the same vertex set V. Let a > 0 be a constant
such that for each v € V, dg(v) = a - dg(v). Assume that H is embeddable in G with
congestion ¢, and that H is a ¢p-expander. Then, G is a %—expander.

Proof. This follows from Lemma 11 by choosing A = V. <

3 Approximating conductance via cut-matching

In preparation for our expander decomposition algorithm we give a high level overview of the
conductance approximation algorithms of [16] and [21]. [16] and [21] described their results
for edge-expansion rather than conductance. In the full version of this paper, we give a
complete description and analysis of these algorithms for conductance. This translation from
edge-expansion to conductance is not trivial as both the cut player, the matching player,
and the analysis have to be carefully modified to take the degrees into account. Here we give
a high level overview of the key components of these algorithms and the differences between
them so one can better absorb our main algorithm in Section 4.2.
The cut-matching game of [16] (in the conductance setting) works as follows.

The Cut-Matching game for conductance, with parameters T and a degree vector d:
The game is played on a series of graphs G;. Initially, Go = 0.
In iteration ¢, the cut player produces two multisets of size m, L;, Ry C V, such that
each v € V appears in L; U R; exactly d(v) times.
The matching player responds with a d-matching M; that only matches vertices in
L; to vertices in R;.
We set Giy1 = Gy U M.
The game ends at iteration T, and the quality of the game is r := ®(Gr). Note that
the volume of G; increases from one iteration to the next.

2 This definition requires to route F(u,v) = F(v,u) both from u to v and from v to u if F is symmetric.
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Given a strategy for the cut player of quality r, one can create a % approximation
algorithm for the conductance of a given graph G. To this end, the matching player has to
provide matchings that can be embedded in G.

The difference between the results of [16] and [21] is mainly in the cut player. They
both run the game for T = O(log?n) iterations but [16]’s cut player achieves quality of
r=0Q ( L

ogn
produces the stated expansion result in G regardless of the matchings given by the matching
player.

whereas [21]’s achieves quality of r = Q ) Notice that the cut player

_1
log? n

3.1 KRV’s Cut-Matching Game for Conductance

The cut player implicitly maintains a dg-stochastic flow matrix (i.e., representing flow
demands) F; € R™*", and the graph G; which is the union of the matchings that it obtained
so far from the matching player (¢ is the index of the round). The flow F; and the graph
G; have two crucial properties. First, we can embed F}; in G; with O(1) congestion (See
Definition 10). Second, after T = (9(10g2 n) rounds, with high probability, Fr will have
constant conductance.® Since the degrees in G are factor of O(log®n) larger than the
degrees in Frr (when we think of Frr as a weighted graph) then it follows by Corollary 12 that
Gr is Q(1/ log? n) expander. Note that the cut player is unrelated to the input graph G in
which we would like to approximate the conductance. Its goal is to produce the expander Gr.

At the beginning, Fy = D = diag(d), and Gy is the empty graph on V = [n]. The cut
player updates F; as follows. It draws a random unit vector r € R™ orthogonal to v/d and
computes the projections u; = ﬁ(D’%Ft(i), r).* The cut player computes these projections

in O(mlog?n) time since the vector of all projections is u := D~ F,D~2 -7 and F, is defined
(see below) as a multiplication of ©(log®n) sparse matrices, each having O(m) non-zero
entries. The cut player sorts the projections as w;, < ... < u; . Consider the sequence
Q = (Wiyy Wiy ooy Wiy s Uigy Wiy - o vy Wiy -+, Uiy, -+ ., Uy, ), Where each u;, appears d(i;) times.
Then, |Q| = 2m. Take L; C @ to be the multi-set containing the first m elements, and
R, = Q\ L; to be the multi-set containing the last m elements. Define € R such that
Ly CH{ig s ugy, <n} and Ry C {ig : u;, > n}. Note that a vertex can appear both in L; and
in Ry, if u;; = n. For a vertex v € V, denote by m, the number of times v appears in L,
and by m, the number of times v appears in R;. That is, except for (maybe) one vertex, for
any v € V, either m,, = 0 and m, = d(v) or m, = d(v) and m, = 0.

The cut player hands out the partition L;, R; to the matching player who sends back a dg-
matching M; (we think of M; as an n x n matrix with at most m non-zero entries that encodes
the matching) between L; and R;. The cut player updates its flow matrix using M; and
sets Fii1(v) = 5F4(0) + 25 (4 wyenr, #(U)Ft(u) (in matrix form Fyyq = § (I + M, - D) F}).5
This update keeps F}; a dg-stochastic matrix for all t. The cut player also defines the graph
Gi41 as Gep1 = Gy U M;. This completes the description of the cut player of [16] adapted
for conductance.

We think about F; as a weighted graph on V = [n]. The definitions of conductance, expander and
near-expander for weighted graphs are the same as Definitions 8-9 where |E(S,V \ S)| is the sum of the
weights of the edges crossing the cut.
Recall that Fi(¢) is a column vector.
Note that it is possible that some u € V appears in the sum Z(v,u)eMt #(H)Ft(u) multiple times, if v

is matched to u multiple times in M;.
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The matching player constructs an auxiliary flow problem on G’ := G U {s, t}, where s is
a new vertex which would be the source and ¢ is a new vertex which would be the sink. We
add an arc (s, v) for each v € L; of capacity m, and we add an arc (v,t) of capacity m,, for
each v € R;. The capacity of each edge e € G is set to be ¢ = © <m), where c is an
integer. The matching player computes a maximum flow g from s to ¢ in this network.

If the value of g is less than m, then the matching player uses the minimum cut in G’
separating the source from the sink to find a cut in G of conductance O((blog2 n). Otherwise,
it decomposes g to a set of paths, each carrying exactly one unit of flow from a vertex u € Ly
to a vertex v € R;.5 Then it defines the dg-matching M; as M; = ((v;, uj));”:l, where v;
and u; are the endpoints of path j. We view M, as a symmetric n x n matrix, such that
M;(v,u) is the number of paths between v and u. The matching player connects the game to
the input graph G. Indeed, by solving the maximum flow problems in G it guarantees that
the expander G is embeddable in G with congestion O(c¢T) = O(1/¢). Since the degrees of
G are a factor of O(log® n) larger than the degrees of G' and G is Q(1/log® n) expander,
we get that G is a Q(¢)-expander (see Corollary 12). The following theorem summarizes the
properties of this algorithm.

» Theorem 13 ([16]'s cut-matching game for conductance). Given a graph G and o parameter
¢ > 0, there exists a randomized algorithm, whose running time is dominated by computing
a polylogarithmic number of mazimum flow problems, that either

1. Certifies that ®(G) = Q(¢) with high probability; or

2. Finds a cut (S,V '\ S) in G whose conductance is (S, V \ S) = O(¢plog®n).

If the matching player finds a sparse cut in any iteration then we terminate with Case
(2). On the other hand, if the game continues for T = O(log® n) rounds then since the cut
player can embed Fr in Gp and the matching player can embed G in G, and since F} is an
expander, then we get Case (1).

The running time of the cut player is O(mlog*n). The matching player solves O(log? n)
maximum flow problems. By using the most recent maximum flow algorithm of [8], we get the
matching player to run in O (m!*°(1)) time. Alternatively, we can adapt the cut-matching
game, and use a version of the Bounded-Distance-Flow algorithm (which was called Unit-Flow
in [23]; see Lemma 21), to get a running time of O(%) for the matching player. We can also
get O(m) running time using the recent result [17].

The key part of the analysis is to show that Frp is indeed an §2(1)-expander for any choice
of dg-matchings of the matching player. To this end, we keep track of the progress of the
cut player using the potential function

V() => > m (Ft(z',j) - ‘“i)‘i(j))z - HDéFf,Dé _ %\/g\/g

2
2m
ieV jev F

where the matrix norm which we use here is the Frobenius norm (sum of the squares of
the entries). This potential represents the distance between the normalized flow matrix
F, = D2 F,D~% and the (normalized) uniform random walk distribution dedi/2m. Let
P=7—- ﬁ\/&\/@ be the projection matrix on the orthogonal complement of the span of
the vector v/d, then we can also write this potential as

6 Note that there can be multiple flow paths between a pair of vertices u € L; and v € Rs. Furthermore,
if w € Ly N Ry then it is possible that a path starts and ends at w.
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U(t) = | P[5 = T (FP)(F,P)') = Tx(F,P*F}) = Te(PF/F)).

The first equality holds since F; is d-stochastic and the last equality is due to Fact 1 (and
that P2 = P as a projection matrix).
The crux of the proof is to show that after 7" rounds this potential is smaller than

1/(16m?) which implies that for every pair of vertices u and v, Fr(u,v) > d(v)d(u)/(4m).

From this we get a lower bound of 1/4 on the conductance of every cut.

3.2 0SVV’s Cut-Matching Game for Conductance

The cut player of [21] also maintains (implicitly) a flow matrix F; and the union G of the
dg-matchings it got from the matching player. Let P =1 — ﬁ\/&\/@ be the projection to

the subspace orthogonal to v/d as before (hence P? = P). Let § = O(logn) be a power of 2.

Here the matrix W; = (PD‘%FtD‘%P)‘; takes the role of D_%FtD_% from the cut player
of Section 3.1.
In round ¢ the cut player computes the projections u; = ——(W;(i),r), and defines L;

d (i)

and R; based on these projections as in the previous sectionﬁen it gets a dg-matching
M, between L; and R; from the matching player. It defines Ny = %D + %Mt and updates
the flow to be Fy .1 = N, - D"'F,D~'N,. If we think of F; as a random walk then D~!'N,
is a lazy step that we add before and after the walk F; to get F;41. It holds that Fi . is
dg-stochastic and moreover that for all rounds ¢, F; is embeddable in GG; with congestion
2 =0(1/logn). Note that here we embed F} in G; with smaller congestion than in Section
3.1. We can still prove, however, that Fy for T = O(log?n) is a Q(1) expander and therefore,
Gr is a Q(1/logn) expander.

The matching player solves the same flow problem as in Section 3.1 but with an integer
capacity value of ¢ = @(@) on the edges of G. If the value of maximum flow is less than
m then it finds a cut of conductance O(¢logn), and otherwise it returns the matching that it
derives from a decomposition of the flow into paths. The matching player guarantees that the
expander G is embeddable in G with congestion O(cT') = O(logn/¢). Since the degrees of
G are larger by a factor of O(log? n) than the degrees of G and G is Q(1/ log n)-expander,
we get that G is a (¢)-expander (see Lemma 11). The following theorem summarizes the
properties of this algorithm.

» Theorem 14 ([21]'s cut-matching game for conductance). Given a graph G and a parameter
¢ > 0, there exists a randomized algorithm, whose running time is dominated by computing
a polylogarithmic number of mazimum flow problems, that either

1. Certifies that ®(G) = Q(o) with high probability; or

2. Finds a cut (S,V \ S) in G whose conductance is (S, V \ ) = O(¢logn).

The running time of the cut player is dominated by computing the projections in
O(mlog®n) time per iteration for a total of O(mlog®n) time. The matching player solves
O(log?® n) maximum flow problems. Again, we can modify the algorithm so that its running
time is O(%) or O(m), similarly to the previous subsection.

7 Computing these projections takes O(m log3n) time since F; is a multiplication of ©(log? n) sparse
matrices, each with O(m) non-zero entries. Therefore W; is a multiplication of ©(log® n) matrices, each
of which is either P or a sparse matrix.
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ICALP 2023



9:10

Expander Decomposition with Fewer Inter-Cluster Edges Using a Spectral Cut Player

As in Section 3.1, the key part of the analysis is to show that Fr is indeed an Q(1)-
expander for any choice of dg-matchings of the matching player. Here we keep track of the
progress of the cut player using the potential function

p(t) = H(DéFtDé)é _ %\/ﬁﬁ

2
F

Recall that W, = (PD_%FtD_%P)‘S, so we can rewrite the potential function as

2
G(t) = H(D‘%FtD‘%)‘SPH =Te(P(D"2F,D~%)¥P) L Tx((PD"2F,D~ 2 P)*’) = Te(W?) ,
F
where equality (4) follows since F; is d-stochastic and the fact that P2 = P. A careful
argument shows that after T' = O(log® n) iterations, ¥(T") < 1/n. From this we deduce that
the second smallest eigenvalue of the normalized Laplacian of Fr is at least 1/2 and then by
Cheeger’s inequality [7] we get that ®(Fr) = Q(1).

4 Expander decomposition via spectral Cut-Matching

To put our main result in context we first show how SW [23] modified the cut-matching
game of KRV [16] for their expander decomposition algorithm.

4.1 SW’s Cut-Matching for expander decomposition

SW [23] take a recursive approach to find an expander decomposition. One can use the
cut-matching game to find a sparse cut, but if the cut is unbalanced, we want to avoid
recursing on the large side.

In order to refrain from recursing on the large side of the cut, SW changed the cut-
matching game as follows. The cut player now maintains a partition of V' into a small set R
and a large set A =V \ R, where initially R = () and A = V. In each iteration the cut and
the matching player interact as follows.

The cut player computes two disjoint sets A, A” C A such that |A!| < n/8 and |A"| > n/2.

The matching player returns a partition (S, A\ S) of A, which may be empty (S = ),

and a matching of A"\ S to a subset of A"\ S.

The cut player computes the sets A' and A" by projecting the rows of a flow-matriz F
that it maintains (as in KRV [16]) onto a random unit vector r, and applying a result by [22]
to generate the sets A' and A" from the values of the projections. For the matching player,
SW use a flow-based algorithm which simultaneously gives a cut (S, A\ S) of conductance
O(¢log® n) of G[A], and a matching of the vertices left in A'\ S to vertices of A"\ S (S
may be empty when G[A] has conductance > ¢). If the matching player found a sparse cut
(S, A\ S) then the cut player updates the partition (R, A) of V by moving S from A to R.

The game terminates either when the volume of R gets larger than Q(m/log®n) or after
O(log® n) rounds. In the latter case, SW proved that the remaining set A (which is large) is
a near ¢-expander in G (see Definition 9).

To prove that after T = ©(log” n) iterations, the remaining set A is a near ¢-expander,
SW essentially followed the footsteps of KRV and used a similar potential. The argument is
more complicated since they have to take the shrinkage of A into account. SW did not use a
version of KRV suitable to conductance as we give in the full version. Therefore, they had
to modify the graph by adding a split node for each edge, essentially reducing conductance
to edge-expansion, a reduction that made their algorithm and analysis somewhat more
complicated. The following theorem summarized the properties of the cut-matching game
of [23].
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» Theorem 15 (Theorem 2.2 of [23]). Given a graph G = (V, E) of m edges and a parameter

0< o< 1/10g2 n,8 there exists a randomized algorithm, called “the cut-matching step”,

which takes O ((mlogn)/¢) time and terminates in one of the following three cases:

1. We certify that G has conductance ®(G) = Q(¢) with high probability.

2. We find a cut (R, A) of G of conductance ®c(R,A) = O(plog®n), and vol(R),vol(A)
are both Q(logign), i.e., we find a relatively balanced low conductance cut.

3. We find a cut (R, A) of G with ®g(R, A) < copplog? n for some constant ¢y, and vol(R) <

and with high probability A is a near ¢-expander in G.

10co log? n’

SW derived an expander decomposition algorithm from this modified cut-matching game
by recursing on both sides of the cut only if Case (2) occurs. In Case (3) they find a large
subset B C A which is an expander (in what they called the trimming step), add A\ B to R
and recur only on R. The main result of [23] is as follows.

» Theorem 16 (Theorem 1.2 of [23]). Given a graph G = (V, E) of m edges and a parameter
¢, there is a randomized algorithm that with high probability finds a partitioning of V into
clusters Vi,..., Vi such that Vi : ®gpviy = Q(¢) and there are at most O(¢mlog® n) inter
cluster edges.® The running time of the algorithm is O(mlog*n/¢).

4.2 Our contribution: Spectral cut player for expander decomposition

SW [23] left open the question if one can improve their expander decomposition algorithm
using tools similar to the ones that allowed OSVV [21] to improve the conductance approx-
imation algorithm of KRV [16]. We give a positive answer to this question. Specifically
we improve the cut-matching game of SW and derive the following improved version of
Theorem 15.

» Theorem 17. Given a graph G = (V, E) of m edges and a parameter 0 < ¢ < @,10

there exists a randomized algorithm which takes O (m log® n + %?2") time and must end

in one of the following three cases:

1. We certify that G has conductance ®(G) = Q(p) with high probability.

2. We find a cut (R, A) in G of conductance ®¢(R, A) = O(¢logn), and vol(R), vol(A) are
both Q(%), i.e, we find a relatively balanced low conductance cut.

3. We find a cut (R, A) with ®c(R,A) < coplogn for some constant ¢y, and vol(R) <

and with high probability A is a near Q(¢)-expander in G.

__m
10co logn’

The proof of Theorem 17 is given in Section 5. Theorem 17 implies the following theorem

» Theorem 18. Given a graph G = (V,E) of m edges and a parameter ¢, there is a
randomized algorithm that with high probability finds a partition of V into clusters Vi, ..., Vi
such that Vi : ®qry,y = Q@) and Y, |E(Vi, V\Vi)| = O(¢mlog®n). The running time of
the algorithm is O(mlog’ n + %ff").n

To get Theorem 17 we use the following cut player and matching player.

8 The theorem is trivial if ¢ > log%n, because any cut (A, V \ A) has conductance @ (A, V \ A) < 1. We
can therefore assume that ¢ < log%n'

9 G{V;} is defined in Definition 4.
10The theorem is trivial if ¢ > ——, because any cut (A4, V \ A) has conductance ®g(A4,V \ A) < 1. We

logn’
can therefore assume that ¢ < @.
' Note that if ¢ < log+n7 then the running time matches the running time of [23] in Theorem 16. In case
mlog*n
=)

that ¢ > —L—, we get a slightly worse running time of O(mlog” n) instead of O(

log®n’
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4.3 Cut player

Like in Section 3, we consider a d-stochastic flow matrix F; € R"*™, and a series of graphs
Gi. Fy is initialized as Fy = D := diag(d), and Gy is initialized as the empty graph on
V = [n]. Here the cut player also maintains a low conductance cut A; C V, Ry = V' \ Ay,
such that after T = ©(log® n) rounds, with high probability, Ay is a near expander in Gy
At the beginning, Ag =V, Ry = 0,

Since the new cut-matching game consists of iteratively shrinking the domain A; C V,
we start by generalizing our matrices from Section 3 to this context of shrinking domain.

» Definition 19 (I, d;, D;, P;,vol;). We define the following variables'?

1. I; € R™*™ is the diagonal 0/1 matriz that have 1’s on the diagonal entries corresponding
to A;.

dy = I, -d € R", i.e the projection of d onto Ay.

D, = I, - D = diag(d;) € R™*™.

vol; = volg(Ay).

Py =1 — S Vdi/d € R™™.

We define the matrix W, = (P,D~ 2 F,D~2 P,)°, where § = O(logn) is set in Lemma 33,
that plays a crucial role in this section. This definition is similar to the definition of W; in
Section 3.2, but with P; instead of P. This makes us “focus” only on the remaining vertices
Ay, as any row/column of W; corresponding to a vertex v € R; is zero. The matrix W; is
used in this section to define the projections that our algorithm uses to update F;. It is also
used in Section 5.3 to define the potential that measures how far is the remaining part of the
graph from a near expander. In particular, we show in Lemma 33 and Corollary 34 that if
W2 has small eigenvalues (which will be the case when the potential is small) then A7 is
near-expander in Gr.

Ll ol ol

Let r € R™ be a random unit vector. Consider the projections u; = —A—(W,(i),r), for

NZTO)

1 € A;. Note that because P;/d; = 0, and W; is symmetric:

> dliyui = Y V/d(i) (Wa(i),r) = <Z WWt<i>,r> = (We/di,r) =0

1EA: i€EAL 1€EA

We use the following lemma to partition (some of) the remaining vertices into two
multisets AL and A7.'® The lemma follows by applying Lemma 3.3 in [22] on the multiset of
the w;’s, where each u; appears with multiplicity of d (7).

» Lemma 20 (Lemma 3.3 in [22]). Given u; € R for all i € Ay, such that 3, , d(i)u; =0,
we can find in time O(|A¢| -log(|A¢])) a multiset of source nodes AL C Ay, a multiset of target
nodes Ay C Ay, and a separation value ) such that each i € A; appears in AL U A7 at most
d(i) times, and additionally:

1. 7 separates the sets AL AV, i.e., either max;c 41 t; < 1) < Miljear uj, or Minge g1 u; >

7 Z maXjeAr Uj,

2. |A7] > ¥k | Al| < ok,
3. Vie AL (ui —n)? > fu?,

4, ZieAi miu? > 45 D ica, d(i)u?, where m; is the number of times i appears in Al.

77

12 These variables are the analogs of I,d, D,vol(G) and P (respectively) from Section 3.2 in G[A].
13 Note that this does not produce a bisection of V.
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Note that a vertex could appear both in Al and in A7, if u;; = n. The cut player sends
AL AT and A; to the matching player.

In turn, the matching player (see Subsection 4.4) returns a cut (S, A:\ S¢) and a matching
M, of AL\ Sy to AL\ S (each vertex of AL is matched to a vertex of A7). We add self-loops
to M; to preserve the degrees (that is, M is d-stochastic). Define N, = %D + %Mt. The
cut player then updates Fy similarly to Section 3.2: Fy;; = N; - D~'F;D~'N;. Like in
the previous sections, we also define the graph Giy1 as Gy11 = Gy U M;.'%. We define
Appr = A\ Se.

4.4 Matching player

The matching player receives AL and A} and the current A;. For a vertex v € V, denote by
m, the number times v appears in A!, and by m, the number of times v appears in A}. The
matching player solves the flow problem on G[A], specified by Lemma 21 below. This lemma
is similar to Lemma B.6 in [23] and is proved using the Bounded-Distance-Flow algorithm
(called Unit-Flow by [13, 23]). The details are provided in the full version of this paper [1].
Note that we can get running time of O(m) mentioned in the introduction by replacing this
subroutine is with a fair-cut computation as shown in [17, Section 8§].

» Lemma 21. Let G = (V,E) be a graph with n vertices and m edges, let A\, A" C V be

multisets such that |A"| > %m, |Al < %m, and let 0 < ¢ < loén be a parameter. For a vertex

v € V, denote by m, the number times v appears in A, and by m,, the number of times

v appears in A". Assume that m, + m, < d(v). We define the flow problem II(G), as the

problem in which a source s is connected to each vertex v € Al with an edge of capacity m,

and each vertexr v € A" is connected to a sink t with an edge of capacity m,. Every edge of

ngn), which is an integer. A feasible flow for II(G) is a

maximum flow that saturates all the edges outgoing from s. Then, in time O(%), we can

find either

1. A feasible flow f for II(G); or

2. A cut S where ®¢(S,V\ S) < I =0(¢logn), vol(V\ S) > tm and a feasible flow for
the problem II(G — S), where we only consider the sub-graph G[V \ S U {s,t}] (that s,
vertices v € A\ S are sources of m,, units, and vertices v € A"\ S are sinks of m, units).

G has the same capacity ¢ = © (

» Remark 22. Tt is possible that A' C S, in which case the feasible flow for II(G — 9) is
trivial (the total source mass is 0).

Let S; be the cut returned by the lemma. If the lemma terminates with the first case, we
denote S; = 0. Since c is an integer, we can decompose the returned flow into a set of
paths (using e.g. dynamic trees [26]), each carrying exactly one unit of flow from a vertex
u € AL\ S; to a vertex v € A7\ S;. Note that multiple paths can route flow between the same
pair of vertices. If u € AL N A7 then it is possible that a path starts and ends at u. Each
u € AL\ S; is the endpoint of exactly m,, < d(u) paths, and each v € A} \ S; is the endpoint
of at most m, < d(v) paths. Define the “matching”'® M, as M, = ((ui,vi))ﬁa\st‘, where
u; and v; are the endpoints of path i. We can view M; as a symmetric n X n matrix, such
that M,(u,v) is the number of paths from u to v. We turn M, into a d-stochastic matrix by

increasing its diagonal entries by d — M,1,,. Formally, we set M, := M, + diag(d — M,1,,).

14 G+ 1 may have self-loops.
15 Note that this is not a matching or a d-matching, but rather a graph that connects vertices of A{ to
vertices of A}, whose degrees are bounded by d.
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Notice that d — M,1,, has only non-negative entries, so M; also has non-negative entries.
Intuitively, we can think of M; as the response of the matching player to the subsets AL and
A7 given by the cut player.

5 Analysis

This section is organized as follows. Subsection 5.1 presents in detail the algorithm for
Theorem 17. Subsection 5.2 shows that F; is embeddable in G; with congestion % and that
G, is embeddable in G with congestion ¢ - ¢. Subsection 5.3 shows that if we reach round T,
then with high probability, Ar is a near (¢)-expander in G. Finally, in Subsection 5.4 we
prove Theorem 17.

5.1 The Algorithm

Similarly to Section 3.2, let § = ©(logn) be a power of 2, let T = ©(log® n) and ¢ = @((bl;gn).

We choose ¢ to be an integer. The algorithm follows along the same lines as the algorithm
of SW in Section 4.1. The only modifications are the usage of our new cut player and that
the algorithm stops if vol(R;) > m;g(b = Q(lo’gn). In each round ¢, we implicitly update F}
(see Section 4.3). Like SW, in order to keep the running time near linear, we use the flow
routine Bounded-Distance-Flow [13, 23] which is mentioned in Subsection 4.4. This routine
may also return a cut S; C Ay with ®qay(St, Ay \ St) < %, in which case we “move” S; to
Riqq. After T rounds, Fr certifies that the remaining part of Ar is a near ¢-expander.

5.2 F; is embeddable in G

To begin the analysis of the algorithm, we first define a blocked matrix. This notion will be
useful when our matrices “operate” only on vertices of A;.

» Definition 23. Let A C V. A matrizx B € R™"*" is A-blocked if B(i,j) =0 for alli # j
such that (i,j) ¢ A x A.

» Lemma 24. The following holds for all t:
1. My, Ny, Fy and W, are symmetric.

2. My, N; and F; are d-stochastic.

3. M; and Ny are Agyq1-blocked.

» Lemma 25. For all rounds t, F; is embeddable in G, with congestion %.

» Lemma 26. For all rounds t, Gy is embeddable in G with congestion ct.

5.3 Agr is a near expander in Fr

In this section we prove that after T = ©(log® n) rounds, with high probability, A is a near
Q(1)-expander in Fr, which will imply that it is a near (¢)-expander in G.

The section is organized as follows. Lemma 27 contains matrix identities and Lemma 28
specifies a spectral property that our proof requires. We then define a potential function
and lower bound the decrease in potential in Lemmas 29-32. Finally, in Lemma 33 and
Corollary 34 we use the lower bound on the potential at round 7', to show that with high
probability Ar is a near (1)-expander in Fr and a near §(¢)-expander in G.

» Lemma 27. The following relations hold for all t:
1. For any Ag-blocked d-stochastic matriz B € R™*"™ we have ItD_%BD_% = D_%BD‘%It
and P,-D~:BD~% = D"3BD~% - P,.
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2. ItPt Pt,I2—ItandP —Pt

3. PP 1Pt+1Pt Piiq.

4. P, = D_EE(Volt dd})D™2 (recall the Laplacian defined in Definition 7).
5. for any v € R"™, it holds that U’E( vol dtd’> v = HD2 H — vol (v, dy)?.
6.

For any B € R™*", Tr(I,BB’) = ZigAt 1 B(i )”2

We define the potential ¢(t) = Tr[W7] = >0, 4. ||Wt(z)H§, where W; was defined as
W,=(P,D" 2 FtD*%Pt)‘S. This is the same potential from Section 3.2 with the new definition
of W;. Intuitively, by projecting using P, instead of P, the potential only “cares” about the
vertices of A;. As show in Lemma 33, having small potential will certify that A is a near
expander in Fj.

Before we bound the decrease in potential, we recall Definition 7 of a normalized Laplacian
N(A) =D 2L(A)D~2 = — D 2AD~ %, where A is a symmetric d-stochastic matrix.

» Lemma 28. For any matriz A € R™*", Tr(A'(I— (D~ 2 N,D~%)%)A) > L Tr(AN(My)A).

The following lemma bounds the decrease in potential. The bound takes into account
both the contribution of the matched vertices and the removal of S; from A;.

» Lemma 29. For each round t,

2 2

( Wi(i)  Walk) )
VA0 Vam )|,
Proof. To simplify the notation, we denote N := D_%NtD_% and F} := D_%FtD_%. We
rewrite the potential in the next iteration as follows:

ORISRy
{i,k}eM,

+ 3 d0) H Wd(é))

JESt

2

26
Yt +1) = Te(W2,) = Tr((PtHD—éFtHD—éPm))

26
< P D3 (N,D- 1FtD*1Nt)D*%Pt+1) >
1 1 1 26
< P D3 (N, DD~ thD*EDﬁNt)DﬁPtH) >
20\ (6) ~ = =\ 20
Tr ( Pt+thFtNtPt+1) ) =Tr ((tht+1FtPt+th) )
= = =\ 25
e Tr ( NtPt+1PtFtPtPt+1Nt) ) =Tr ((NtPt+1(PtFtPt)Pt+1Nt) > )

where equality (6) follows from Lemma 27 (1) for N; (which is A;41-blocked d-stochastic by
Lemma 24), and equality (7) follows from Lemma 27 (3).
By Properties (1) and (2) of Lemma 27 it holds that Nyy1Piy; = Pip1Npyr =
P;11N¢41Piy1. Therefore, the potential can be written in terms of symmetric matrices:
26
Pit+1)= (((Pt+1NtPt+1)( Ftpt)(Pt+1NtPt+1)) )
< Tr((Pg1 NP1 ) (PF P (P Ny Pr1)™)
E Te((Po1 NePrsa ) (P F P)) = Te((Ni P ) U W7)
2 T (NP Py W) 2 Te(NP Py NPWE) 2 Tr(Wy NP Py NPOW)
1

VOli 41

=Tr <(D_% 'Nt%Wt)/ L (vol +1dt+1dt+1> : (D_% ~N36Wt)> ,

O T (W,N¥D 3L ( dt+1d;+1> D™EN}Wy)
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where the inequality follows from Fact 2, equality (2) follows from Fact 1. Equalities (4) and
(5) follow from Properties (1) and (2) of Lemma 27 (and from the fact that N; is A;1-blocked
d-stochastic, by Lemma 24). Equality (6) again uses Fact 1, and equality (7) follows from
Lemma 27 (4).

Let Z, = D2 - N2*W,. By applying Lemma 27 (5) we get

n

! 1 / - / 1 ! .
Y(t+1) <Tr <Ztﬁ (mdt+ldt+1> Zt> = Z(Zt(ﬂ)) L (mdt+1dt+1> Zi(,4)

i=1

Hﬁ

<HDMZz< i)

2 1
2 , Vol (Zu(,1), detr) ) ZHDtJrIZt

S Y (e - 3 [(rha)ol[E 3 16 o

i=1 j€EAL+1 JEAL+1 JEAL+1
26 26
=D l@Ew) G, = > (Ve we) G M
JEAL JESt

where equality (2) holds by Property (5) of Lemma 27 and equality (5) holds since we only
sum rows in A;yq. Since NV; is diagonal outside A;y; (by the definition of M), we have that
(N2W,) (4) = Wi(j), for every j € S;. Thus,

S I@EW) Gl = X2 W3- (2)

JESt JESE

By Lemma 27 (6), we get

> (NEW) ( H Tr(I; - N2 - W2 - N2°) = Te(N?° - I, - W2 - N29)
JEAL

= Te(NP - W NP) = Te(N W) (3)

where second equality holds since Ny is A;yi1-blocked d-stochastic (by Lemma 24), so in
particular it is A;-blocked d-stochastic, and we can use Lemma 27 (1). The third equality
holds because I;W; = I;(P,F;P;)? and I, P; = P; (by Lemma 27 (2)), and the last equality
follows from Fact 1. Plugging Equations (2) and (3) into (1) we get the following bound on
the decrease in potential:

Y(t) = p(t+1) > Tr((1 = NOYWE) + > [We)ll3

JESt
= Te(Wi(I - NSYWo) + ) [Wa(i)ll3 > %Tath(Mt)Wt) + ) W)
JESt JESt

1 _1 , -1
= 5 (D™ W) L(M. W) +§ ||

1 Wi(i)  We(k) NIRLAG
=3 - + > d

3B Vi v, 2" H 10,

where the second inequality follows Lemma 28, and the last equality follows from by Laplacian
matrix properties. |

The following lemma states that the potential is expected to drop by a factor of 1 —
Q(1/logn).
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» Lemma 30. For each round t,

1
Egz

{i,k}eM,

+>od() H o
2

2 JES

Wi(i) — Wi(k)

d() /()

1 3
t _
=~ 3000c lognw( ) ne/16

for every a > 48, where the expectation is over the unit vector r € R™.

The following two corollaries follow by Lemmas 29 and 30.
» Corollary 31. For each round t, E[¢(t +1)] < (1 - m> P(t) + ﬁ, where the

expectation is over the unit vector r € R™.

» Corollary 32 (Total Decrease in Potential). With high probability over the choices of r,
W(T) < 5.
The following lemma uses the low potential to derive the near-expansion of Ay in Frp.

» Lemma 33 (Variation of Cheeger's inequality). Let H = (V, E) be a graph on n vertices,
such that Fr is its weighted adjacency matriz. Assume that (T) <
%—ewpander in H.

%. Then, At is a near

Proof. Recall that Fr is symmetric and d-stochastic. Let k = vol(Ar). Let S C Ar be a

d(u) ifues, Additionally,
0 otherwise.

cut, and denote dg € R™ to be the vector where dg(u) = {
denote ¢ = vol(S) < k. Note that H\/dst =/

Denote by A > 0 the largest singular value of X7 1= PrD :FpD™%Pp (square root of
the largest eigenvalue of (PrD~2 FpD~2 Pr)?). Because Tr(X2%) = ¢(T) < 1. we have in

particular that the largest eigenvalue of X%‘S is at most %, so we have A\ < -t-. We choose
no
d = O(logn) such that ni% < 55,50 A < 5
In order to prove near-expansion we need to lower bound |Ep,(S,V \ S)|. We do so by
upper bounding |Er, (S, S)| = 1sFrls. Note that 1sFrlg = 15(IrFrlIr)ls. Observe the
following relation between X and IpFplp:

D}XyD% = D¥(PrD~ 3 FpD~%Pp)D3
1 1
= D} (g = 2 \/dr\[dp) D" PrD=H (I — o/ /) D

1 1

1 1 1
= IrFplr — EdT]]./TFTIT — EITFTILTd/T + ?dT]]-/TFT]]-Td/T
Rearranging the terms, we get
1 1 1
IrFrly = D%XTD% + EdT]]-/TFTIT + EITFT]].Td/T — ﬁdT]]-/TFT]]-Td/T .

Therefore

|EFT(S7 S)' = ]]-f‘SFT]]-S
1

s 1 !
= 1% <D2XTDé + EdT]llTFTIT + EITFTILTd/T N

dTIL’TFTILTd’T) 1.

We analyze the summands separately. The first summand can be bounded using A, the
largest singular value of Xp:
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E

2

ds

15D XrD¥1s = JIX/ds = (V/ds, X ds>§H@2 H\/E

where the first inequality is the Cauchy-Schwartz inequality. Observe that the second and

third summands are equal:

1

¢ ¢ 1
%l’sdTIL’TFTIT]lS = EIL/TFTILS = Z1Frly = E]l’SITFTILTd’T]lS,

k

where the second equality follows by transposing and since Frp is symmetric. We now bound
the sum of the second, third and fourth summands:

20 02
z]llTFT]lS - ﬁ

20 (2 20 (2 20 62 é 14

where the first inequality follows since S C A;. Note that é € [0, 1] The last inequality
is true because for Z in this range, (% ) > 0. Moreover because £ 7 € [O, 2} we have

f2-£) <3 Therefore, |EFp, (S, 9)] < 2—10€ + 30 =24, and

|(SV\S|—ZZFTUU ZZFTUU ZZFT’LLU

1 1 1
s (der’TFTIT + o IrFripdy - kszr'TFTer@ 1g = 19 Frily

u€S veV\S ueSveV ueES veS
l
:Zd(u)—ZZFT U, v >Z—f€—5
u€esS ueSveS

So (S, V\S) = ‘EVST‘Q)S” > L, and this is true for all cuts S C A with VO:EA)) <1

<

» Corollary 34. If we reach round T, then with high probability, Ar is a near (¢)-expander
in G.

Proof. Assume we reach round 7T'. By Corollary 32 and Lemma 33, with high probability,
Ar is a near Q(1)-expander in Fp. By Lemma 25, Frr is embeddable in Gy with congestion
O(%). Note that Gr is a union of T' dg-matchings {M,;}]_,, each having du;, = dg = dp;..
Therefore, dg,, =T - dp,.. So by Lemma 11, Ay is a near Q(%)—expander in Gp. By Lemma
26, Gr is embeddable in G with congestion ¢T'. Together with the fact that dg = % -dag,, we

get by Lemma 11 again, that A is a near Q(C%)—expander in G. Recall that ¢ = O (m),

§ = O(logn), and T = O(log® n). Therefore, A is an near (¢)-expander in G. <

5.4 Proof of Theorem 17

We are now ready to prove Theorem 17.

Proof of Theorem 17. Recall that S; denotes the cut returned by Lemma 21 at iteration t,
so that At+1 = At \ St~
Observe first that in any round ¢, we have ®¢ (A4, Ry) < Z =0(¢

logn). This is because
= Ug<s/< Sv and by Lemma 21, for each ', ®¢a,,1(Sw, v \ St,) <7z

¢ =O0(¢logn).
Absume the algorithm terminates because vol(R;) > m7‘6¢ = Q(25)- We also have,
by Lemma 21, that vol(4;) = Q(m) = Q(;;). Then (A R,) is a balanced cut where

O (As, Ry) = O(¢logn). We end in Case (2) of Theorem 17.
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Otherwise, the algorithm reached round T and we apply Corollary 34. If R = (), then we
obtain the first case of Theorem 17 because the whole vertex set V' is, with high probability, a
near Q(¢)-expander, which means that G is an (¢)-expander. Otherwise, we write ¢ = -2

¢logn
for some constant ¢, and let ¢y := % We have ®¢(Ar, Rr) < % = %gblogn = co¢logn.
Additionally, vol(Rr) < m%g‘b = 76?;)& = wcﬁogn, and, with high probability, A is a near

Q(¢)-expander in G, which means we obtain the third case of Theorem 17.

To bound the running time, note that the algorithm performs at most 7" = ©(log® n)
iterations and each iteration’s running time is dominated by computing W - r in O(t - § - m)
and by running the matching player (Lemma 21) in O( %) <
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—— Abstract

In this work, we give a unifying view of locality in four settings: distributed algorithms, sequential
greedy algorithms, dynamic algorithms, and online algorithms. We introduce a new model of
computing, called the online-LOCAL model: the adversary presents the nodes of the input graph
one by one, in the same way as in classical online algorithms, but for each node we get to see its
radius-T" neighborhood before choosing the output. Instead of looking ahead in time, we have the
power of looking around in space.

We compare the online-LOCAL model with three other models: the LOCAL model of distributed
computing, where each node produces its output based on its radius-7" neighborhood, the SLOCAL
model, which is the sequential counterpart of LOCAL, and the dynamic-LOCAL model, where
changes in the dynamic input graph only influence the radius-T" neighborhood of the point of change.

The SLOCAL and dynamic-LOCAL models are sandwiched between the LOCAL and online-
LOCAL models. In general, all four models are distinct, but we study in particular locally checkable
labeling problems (LCLs), which is a family of graph problems extensively studied in the context of
distributed graph algorithms. We prove that for LCL problems in paths, cycles, and rooted trees,
all four models are roughly equivalent: the locality of any LCL problem falls in the same broad

©M) _in all four models. In particular, this result enables one to

class — O(log* n), ©(logn), or n
generalize prior lower-bound results from the LOCAL model to all four models, and it also allows
one to simulate e.g. dynamic-LOCAL algorithms efficiently in the LOCAL model.

We also show that this equivalence does not hold in two-dimensional grids or general bipartite
graphs. We provide an online-LOCAL algorithm with locality O(logn) for the 3-coloring problem in
bipartite graphs — this is a problem with locality Q(n'/?) in the LOCAL model and Q(n!/1°) in the
SLOCAL model.
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1 Introduction

In online graph algorithms, the adversary reveals the input graph one node at a time: In
step 4, the adversary presents some node v;. The algorithm gets to see the subgraph induced
by the nodes vy, ...,v;, and the algorithm has to respond by labeling node v;. For example,
in online graph coloring, the algorithm has to pick a color for node v; in such a way that the
end result is a proper coloring of the input graph.

In this work, we consider a more general setting, which we call the online-LOCAL model:
in step i, the algorithm gets to see the subgraph induced by all nodes that are within distance
T from vy, ...,v;. That is, the algorithm can look 7" hops further in the input graph around
the nodes presented by the adversary. For T' = 0, this corresponds to the usual online model.
For T = n, on the other hand, any graph problem (in connected graphs) is solvable in this
setting. The key question is what value of T is sufficient for a given graph problem. Put
otherwise, what is the locality of a given online problem?

It turns out that this question is very closely connected to questions studied in the context
of distributed graph algorithms, and we can identify problem classes in which the online
setting coincides with the distributed setting. However, we also see surprising differences, the
prime example being the problem of 3-coloring bipartite graphs, which is a fundamentally
global problem in the distributed setting, while we show that we can do much better in the
online setting.

1.1 Contribution 1: landscape of models

In Section 2, we define the online-LOCAL model, and we also recall the definitions of three
models familiar from the fields of distributed and dynamic graph algorithms:
The LOCAL model [37,44]: the nodes are processed simultaneously in parallel; each node
looks at its radius-7T neighborhood and picks its own output.
The SLOCAL model [26]: the nodes are processed sequentially in an adversarial order;
each node in its turn looks at its radius-T" neighborhood and picks its own output (note
that here the output of a node may depend on the outputs of other nodes that were
previously processed).
The dynamic-LOCAL model: the adversary constructs the graph by adding nodes and
edges one by one; after each modification, the algorithm can only update the solution
within the radius-T neighborhood of the point of change. While this is not one of the
standard models, there is a number of papers [3,9,11,21,28,34,43] that implicitly make
use of this model. We also occasionally consider the dynamic-LOCALi model, in which
we can have both additions and deletions.
In Section 3, we show that we can sandwich SLOCAL and both versions of dynamic-LOCAL
between LOCAL and online-LOCAL, as shown in Figure 1. In particular, this implies that
if we can prove that LOCAL and online-LOCAL are equally expressive for some family of
graph problems, we immediately get the same result also for SLOCAL and dynamic-LOCAL.
This is indeed what we achieve in our next contribution.
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SLOCAL(T)

/ c
LOCAL(T) online-
LOCAL(T)
¢
¢
<
dynamic- dynamic- online graph
LOCAL*(T) | —& | LOCAL(T) algorithms

Figure 1 The landscape of models — see Section 2 for the definitions. Each box represents the set
of problems solvable with locality O(T) in the given model of computation (except for online graph
algorithms, which do not have a notion of locality). For example, any problem with locality O(T") in
the LOCAL model can also be solved with locality O(T) in both the SLOCAL and the online-LOCAL
models. On the other hand, the SLOCAL and the dynamic-LOCAL models are incomparable, as
there exist problems that are solvable with locality O(T) in one of the models but that require w(7T’)
locality in the other model.

1.2 Contribution 2: collapse for LCLs in rooted regular trees

A lot of focus in the study of distributed graph algorithms and the LOCAL model has been

on understanding locally checkable labeling problems (in brief, LCLs) [4,5,7,8,13,15,17,18,42].

These are problems where feasible solutions are defined with local constraints — a solution
is feasible if it looks good in all constant-radius neighborhoods (see Definition 3). Coloring
graphs of maximum degree A with & colors (for some constants A and k) is an example of
an LCL problem.

In Section 5, we study LCL problems in paths, cycles, and rooted reqular trees, and we
show that all four models are approximately equally strong in these settings — see Table 1.
For example, we show that if the locality of an LCL problem in rooted trees is n®(") in
the LOCAL model, it is also n®(") in the dynamic-LOCAL, SLOCAL, and online-LOCAL
models.

Table 1 In all four models, LCL problems have got the same locality classes in paths, cycles, and

rooted trees. Here n®™) refers to locality ©(n®) for some constant a > 0. See Section 5 for more

details.
LOCAL SLOCAL dynamic- online-
LOCAL LOCAL
LCLs in paths and cycles O(log*™n) < 0(1) < 01 < 01
O(n) & O(n) & O(n) & O(n)
LCLs in rooted regular trees O(log*n) < 0(1) < 01 < 01
O(logn) <& ©O(logn) <« O(ogn) <«  O(logn)
M o oM PR PR

10:3

ICALP 2023



10:4

Locality in Online, Dynamic, Sequential, and Distributed Graph Algorithms

By previous work, we know that LCL complexities in paths, cycles, and rooted regular
trees are decidable in the LOCAL model [4,7,18]. Our equivalence result allows us to extend
this decidability to the SLOCAL, dynamic-LOCAL, and online-LOCAL models. For example,
there is an algorithm that gets as input the description of an LCL problem in rooted trees
and produces as output in which of the classes of Table 1 it is, for any of the four models.

1.3 Contribution 3: 3-coloring bipartite graphs in online-LOCAL

Given the equivalence results for LCLs in paths, cycles, and rooted regular trees, it would
be tempting to conjecture that the models are approximately equal for LCLs in any graph
class. In Section 4, we show that this is not the case: we provide an exponential separation
between the SLOCAL and online-LOCAL models for the problem of 3-coloring bipartite
graphs. By prior work it is known that in the LOCAL model, the locality of 3-coloring is
Q(nl/ 2) in two-dimensional grids [13], which are a special case of bipartite graphs; using this
result we can derive a lower bound of Q(n'/1?) also for the SLOCAL model (see the full
version). In Section 4, we prove the following:

» Theorem 1. There is an online-LOCAL algorithm that finds a 3-coloring in bipartite
graphs with locality O(logn).

That is, in bipartite graphs, there is an LCL problem that requires locality n*(!) in the
LOCAL and SLOCAL models and is solvable with locality O(logn) in the online-LOCAL
model.

The algorithm that we present for coloring bipartite graphs is also interesting from the
perspective of competitive analysis of online algorithms. With locality O(logn), the online-
LOCAL algorithm can compute a 3-coloring. Since bipartite graphs are 2-colorable, this
gives us a 1.5-competitive online-LOCAL algorithm. On the other hand, it has been shown
that any online algorithm for coloring bipartite graphs is at least Q(logn)-competitive [10],
with a matching algorithm presented in [38]. This result shows how much the competitive
ratio of an algorithm can be improved by increasing the view of each node.

1.4 Contribution 4: locality of online coloring

As a corollary of our work, together with results on distributed graph coloring from prior
work [13,19,37], we now have a near-complete understanding of the locality of graph coloring
in paths, cycles, rooted trees, and grids in both distributed and online settings. Table 2
summarizes our key results. For the proofs of the localities in the online-LOCAL model, see
Sections 4 and 5.

1.5 Motivation

Before we discuss the key technical ideas, we briefly explain the practical motivation for the
study of online-LOCAL and dynamic-LOCAL models. As a running example, consider the
challenge of providing public services (e.g. local schools) in a rapidly growing city. The future
is unknown, depending on future political decisions, yet the residents need services every day.

The offline solution would result in a city-wide redesign of e.g. the entire school network
every time the city plan is revised; this is not only costly but also disruptive. On the other
hand, a strict online solution without any consideration of the future would commit to a
solution that is far from optimal. The models that we study in this work capture the essence
of two natural strategies for coping with such a situation:
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Table 2 The locality of the vertex coloring problem in distributed vs. online settings, for two
graph families: rooted trees and paths (with n nodes) and 2-dimensional grids (with \/n x \/n
nodes). Note that most results for the online-LOCAL model follow from the equivalence results
discussed in Section 1.2. See Sections 4 and 5 and the full version for more details.

colors competitive LOCAL SLOCAL  online- references
ratio LOCAL
Rooted trees 2 1 O(n) O(n) O(n) trivial
and paths 3 1.5 O(log*n) 0O(1) o(1) [19,37]
4 2 O(log*n) O(1) 0(1) 19,37]
Grids 2 1 O(n'/?) o(n'/?) o(n'/?) trivial
3 1.5 0(n'/?) Q(n'/1%)  O(logn) Section 4, [13]
4 2 O©(log*n) O(1) o(1) [13]
5 2.5 O(log*n) O(1) 0 [13]

Redesign the public service network only in the local neighborhoods in which there are
new developments. This corresponds to the dynamic-LOCAL model, and the locality
parameter T' captures the redesign cost and the disruption it causes.
Wait until new developments in a neighborhood are completed before providing permanent
public services in the area. This corresponds to the online-LOCAL model, and the locality
parameter T captures the inconvenience for the residents (the width of the “buffer zone”
without permanent public services around areas in which the city plan is not yet finalized).
These two models make it possible to formally explore trade-offs between the quality of
the solution in the long term vs. the inconvenience of those living close to the areas where
the city is changing. In these kinds of scenarios, the key challenge is not related to the
computational cost of finding an optimal solution (which is traditionally considered in the
context of dynamic graph algorithms) but to the quality of the solution (which is typically
the focus in online algorithms). The key constraint is not the availability of information
on the current state of the world (which is traditionally considered in distributed graph
algorithms), but the cost of changing the solution.

1.6 Techniques and key ideas

For the equivalence in paths and cycles (Section 5.1), we first make use of pumping-style
arguments that were introduced by Chang and Pettie [17] in the context of distributed
algorithms. We show that such ideas can be used to also analyze locality in the context
of online algorithms: we start by showing that we can “speed up” (or “further localize”)
online-LOCAL algorithms with a sublinear locality to online-LOCAL algorithms with a
constant locality in paths and cycles. Then, once we have reached constant locality in the
online-LOCAL model, we show how to turn it into a LOCAL-model algorithm with locality
O(log™ n). In this part, the key insight is that we cannot directly simulate online-LOCAL in
LOCAL. Instead, we can use an online-LOCAL algorithm with a constant locality to find a
canonical labeling for each possible input-labeled fragment, and use this information to design
a LOCAL-model algorithm. The main trick is that we first present only disconnected path
fragments to an online-LOCAL algorithm, and force it to commit to some output labeling in
each fragment without knowing how the fragments are connected to each other.

10:5
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In the case of rooted regular trees (Section 5.2), we face the same fundamental challenge:
we cannot directly simulate black-box online-LOCAL algorithms in the LOCAL model.
Instead, we need to look at the combinatorial properties of a given LCL problem II. We
proceed in two steps: (1) Assume that the locality of II is n®W in the LOCAL model;
we need to show that the locality is n®(®) also in the online-LOCAL model. Using the
result of [7], high LOCAL-model locality implies that the structure of IT has to have certain
“inflexibilities”, and we use this property to present a strategy that the adversary can use to
force any online-LOCAL algorithm with locality 7°(") to fail. (2) Assume that we have an
online-LOCAL algorithm A for IT with locality o(logn); we need to show that the locality
is O(log™ n) in the LOCAL model. Here we design a family of inputs and a strategy of the
adversary that forces algorithm A to construct a “certificate” (in the sense of [7]) that shows
that IT is efficiently solvable in the LOCAL model.

For 3-coloring bipartite graphs in online-LOCAL (Section 4), we make use of the following
ideas. We maintain a collection of graph fragments such that each of the fragments has got a
boundary that is properly 2-colored. Each such fragment has got one of two possible parities
(let us call them here “odd” and “even”) with respect to the underlying bipartition. We do
not know the global parity of a given graph fragment until we have seen almost the entire
graph. Nevertheless, it is possible to merge two fragments and maintain the invariant: if two
fragments A and B have parities that are not compatible with each other, we can surround
either A or B with a barrier that uses the third color, and thus change parities. Now we
can merge A and B into one fragment that has got a properly 2-colored boundary. The key
observation here is that we can make a choice between surrounding A vs. B, and if we always
pick the one with the smallest number of nested barriers, we never need to use more than a
logarithmic number of nested barriers. It turns out that this is enough to ensure that seeing
up to distance O(logn) suffices to color any node chosen by the adversary.

1.7 Open questions

Our work gives rise to a number of open questions. First, we can take a more fine-grained
view of the results in Tables 1 and 2:

1. Is there any problem in rooted trees with locality ©(n®) in the online-LOCAL model and
locality ©(n®) in the LOCAL model, for some a < 3?

2. Is it possible to find a 3-coloring in 2-dimensional grids in the dynamic-LOCAL model
with locality O(logn)?

3. Is it possible to find a 3-coloring in bipartite graphs in the online-LOCAL model with
locality o(logn)?

Perhaps even more interesting is what happens if we consider unrooted trees instead of

rooted trees. In unrooted trees we can separate randomized and deterministic versions

of the LOCAL model [16], and SLOCAL is strong enough to derandomize randomized

LOCAL-model algorithms [25]; hence the key question is:

4. Does randomized-LOCAL ~ SLOCAL =~ dynamic-LOCAL =~ online-LOCAL hold for
LCL problems in unrooted trees?

Finally, our work shows a trade-off between the competitive ratio and the locality of coloring:
With locality O(logn), one can achieve O(1)-coloring of a bipartite graph, and to achieve
locality 0, one needs to use Q(logn) colors. This raises the following question:

5. What trade-offs exist between the locality and number of colors needed to color a
(bipartite) graph in the online-LOCAL model?
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2 Definitions and related work

Throughout this work, graphs are simple, undirected, and finite, unless otherwise stated. We
write G = (V, E) for a graph G with the set of nodes V and the set of edges F, and we use
n to denote the number of nodes in the graph. For a node v and a natural number T', we use
B(v,T) to denote the set of all nodes in the radius-T" neighborhood of node v. For a set of
nodes U, we write G[U] for the subgraph of G induced by U. By radius-T neighborhood
of v we refer to the induced subgraph G[B(v,T)], together with possible input and output
labelings.

We use the following notation for graph problems. We write G for the family of graphs, %
for the set of input labels, and T for the set of output labels. For a graph G = (V, E), we write
I:V — ¥ for the input labeling and L: V' — I" for the output labeling. We consider here
node labelings, but edge labelings can be defined in an analogous manner. A graph problem
IT associates with each possible input (G, I) a set of feasible solutions L; this assignment
must be invariant under graph isomorphism.

Locality. In what follows, we define five models of computing: LOCAL, SLOCAL, two
versions of dynamic-LOCAL, and online-LOCAL. In all of these models, an algorithm is
characterized by a locality T (a.k.a. locality radius, local horizon, time complexity, or round
complexity, depending on the context). In general, T' can be a function of n. We assume
that the algorithm knows the value of n.

In each of these models M, we say that algorithm A solves problem IT if, for each possible
input (G,I) and for each possible adversarial choice, the labeling L produced by A is a
feasible solution. We say that problem II has locality 7" in model M if T is the pointwise
smallest function such that there exists an M-model algorithm A that solves II with locality
at most 1.

LOCAL model. In the LOCAL model of distributed computing [37,44], the adversary labels
the nodes with unique identifiers from {1,2,...,poly(n)}. In a LOCAL model algorithm,
each node in parallel chooses its local output based on its radius-T neighborhood (the output
may depend on the graph structure, input labels, and the unique identifiers).

Naor and Stockmeyer [42] initiated the study of the locality of LCL problems (see
Definition 3) in the LOCAL model. Today, LCL problems are well classified with respect to
their locality for the special cases of paths [4,5,13,18,42], grids [13], directed and undirected
trees [5,7,8,15,17] as well as general graphs [13,42], with only a few unknown gaps [7].

SLOCAL model. In the SLOCAL model [26], we have got adversarial unique identifiers
similar to the LOCAL model, but the nodes are processed sequentially with respect to an
adversarial input sequence o = vy, va,vs, ..., v,. Each node v is equipped with an unbounded
local memory; initially, all local memories are empty. When a node v is processed, it can
query the local memories of the nodes in its radius-7' neighborhood, and based on this
information, it has to decide what is its own final output and what to store in its own local
memory.

The SLOCAL model has been used as a tool to e.g. better understand the role of
randomness in the LOCAL model [25,26]. It is also well-known that SLOCAL is strictly
stronger than LOCAL. For example, it is trivial to find a maximal independent set greedily
in the SLOCAL model, while this is a nontrivial problem in the general case in the LOCAL
model [6,36]. There are many LCL problems with LOCAL-locality ©(log™ n) [19,37], and
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all of them have SLOCAL-locality O(1). There are also LCL problems (e.g. the so-called
sinkless orientation problem), where the locality in the (deterministic) LOCAL model is
O(logn), while the locality in the (deterministic) SLOCAL model is O(loglogn) [16,25].

Dynamic-LOCAL model. To our knowledge, there is no standard definition or name for
what we call dynamic-LOCAL here; however, the idea has appeared implicitly in a wide
range of work. For example, many efficient dynamic algorithms for graph problems, such as
vertex or edge coloring, maximal independent set, and maximal matching, also satisfy the
property that the solution is only modified in the (immediate) local neighborhood of a point
of change [3,9,11,21,28,34,43], and hence all of them fall in the class dynamic-LOCAL.

We use the following definition for dynamic-LOCAL: Computation starts with an empty
graph Gy. In step i, the adversary constructs a supergraph G; of G;_1 such that G; and
G,;_1 differ in only one edge or one node; let C; denote the set of nodes v in G; with
G;[B(v,T)] # G;—1[B(v,T)], i.e., nodes that are within distance at most 7" from the point
of change. In each step, the algorithm has to produce a feasible labeling L; for problem II
in graph G;, and the labeling can only be modified in the local neighborhood of a point of
change, i.e., L;(v) = L;_1(v) for all v ¢ C;.

Note that we defined the dynamic-LOCAL model for the incremental case, where nodes
and edges are only added. If we do not require that G; is a supergraph of G;_1, we arrive at
what we call the dynamic-LOCAL® model with both additions and deletions.

Online graph algorithms. In online graph algorithms, nodes are processed sequentially with
respect to an adversarial input sequence o = vy, vs,...,V,. Let 0; = v1,v2,...,v; denote the
first ¢ nodes of the sequence, and let G; = G[{v1,va,...,v;}] be the subgraph induced by
these nodes. When the adversary presents a node v;, the algorithm has to label v; based on
o; and G;.

Online algorithms on graphs have been studied for many problems such as matching [35]
and independent set [30], but closest to our work is the extensive literature on online graph
coloring [1,10,29,31,33,38,47]. There is also prior work that has considered various ways
to strengthen the notion of online algorithms; the performance of online algorithms can
be improved by letting the algorithm know the input graph [20,32], by giving it an advice
string [12,14,22] with knowledge about the request sequence, or allowing the algorithm to
delay decisions [23]. The online-LOCAL model can be interpreted as online graph algorithms
with spatial advice, and it can also be interpreted as a model where the online algorithm
can delay its decision for node v until it has seen the whole neighborhood around v (this
interpretation is equivalent to the definition we give next).

Online-LOCAL model. We define the online-LOCAL model as follows. The nodes are
processed sequentially with respect to an adversarial input sequence ¢ = vy, va,...,v,. Let
0; = v1,V2,...,v; denote the first 4 nodes of the sequence, and let G; = G[U;Zl B(vy, T)]
be the subgraph induced by the radius-T" neighborhoods of these nodes. When the adversary
presents a node v;, the algorithm has to label v; based on o; and G;.

Observe that any online graph algorithm is an online-LOCAL algorithm with locality
0. Further note that in the online-LOCAL model, unique identifiers would not give any
additional information. This is because the nodes can always be numbered with respect to
the point in time when the algorithm first sees them in some G;.

Yet another way to interpret the online-LOCAL model is that it is an extension of the
SLOCAL model, where the algorithm is equipped with unbounded global memory where it
can store arbitrary information on what has been revealed so far. When they introduced
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the SLOCAL model, Ghaffari, Kuhn, and Maus [26] mentioned the possibility of such an
extension but pointed out that it would make the model “too powerful”, as just one bit
of global memory would already make it possible to solve e.g. leader election (and this
observation already shows that the online-LOCAL model is indeed strictly stronger than the
SLOCAL model). In our work, we show that even though online-LOCAL can trivially solve
e.g. leader election thanks to the global memory, it is not that easy to exploit this extra
power in the context of LCL problems. Indeed, online-LOCAL turns out to be as weak as
SLOCAL when we look at LCL problems in paths, cycles, and rooted trees.

Local computation algorithms. We do not discuss local computation algorithms (LCAs) [2,
24,39,40,46,46] in this work in more detail, but we briefly point out a direct connection
between the online-LOCAL model and LCAs. It is known that for a broad family of graph
problems (that includes LCLs), we can w.l.o.g. assume that whenever the adversary queries
a node v, the LCA makes probes to learn a connected subgraph around node v [27]. For such
problems, an online-LOCAL algorithm with locality T is at least as strong as an LCA that
makes T probes per query: an LCA can learn some subgraph of the radius-T" neighborhood
of v and, depending on the size of the state space, remember some part of that, while in
the online-LOCAL model the algorithm can learn the entire radius-7" neighborhood of v
and remember all of that. We leave a more detailed exploration of the distinction between
distance (how far to see) and volume (how much to see), in the spirit of e.g. [41,45], for
future work.

3 Landscape of models

As an introduction to the models, we first check that all relations in Figure 1 indeed hold.
In each case, we are interested in asymptotic equivalence: for example, when we claim that
A C B, the interpretation is that locality T in model A implies locality O(T') in model B,
but the converse is not true. Note that the relation between the online-LOCAL problems
and the online graph algorithms has already been discussed in Sections 1 and 2.

Inclusions. Let us first argue that the subset relations in Figure 1 hold. These cases are

trivial:
Any LOCAL algorithm can be simulated in the SLOCAL model, and any SLOCAL
algorithm can be simulated in the online-LOCAL model (this is easiest to see if one
interprets online-LOCAL as an extension of SLOCAL with the global memory).
Any dynamic-LOCALT algorithm can be directly used in the dynamic-LOCAL model
(an algorithm that supports both additions and deletions can handle additions).

These are a bit more interesting cases:
To simulate a LOCAL algorithm A in the dynamic-LOCAL® model, we can simply
recompute the entire output with A after each change. If the locality of A is T', then the
output of A only changes within distance T" from a point of change.
To simulate a dynamic-LOCAL algorithm A in the online-LOCAL model, we proceed as
follows: When the adversary reveals a node v, we feed v along with the new nodes in its
radius-O(T") neighborhood to A edge by edge. Now there will not be any further changes
within distance T from v, and hence A will not change the label L(v) of v anymore.
Hence the online-LOCAL algorithm can also label v with L(v).
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Table 3 Problems that we use to separate the models, and the bounds that we show for their
locality.

Problem LOCAL SLOCAL dynamic- dynamic- online-
LOCAL® LOCAL  LOCAL
3-coloring paths Q(log™n) O(1) O(1) O(1) O(1)
weak reconstruction Q(n Q(n) o(1) o) o(1)
cycle detection Q(n) Q(n) Q(n) o(1) 0(1)
component-wise leader election  Q(n) Q(n) Q(n) Q(n) 0(1)
nested orientation w(1) 0(1) w(1) w(1) 0(1)

Separations. To prove the separations of Figure 1, we make use of the classic distributed
graph problem of 3-coloring paths, as well as the following problems that are constructed to
highlight the differences between the models:
Weak reconstruction: in each connected component C' there has to be at least one node v
such that its label L(v) is an encoding of a graph isomorphic to C.
Cycle detection: for each cycle there has to be at least one node that outputs “yes”, and
each node that outputs “yes” has to be part of at least one cycle.
Component-wise leader election: in each connected component exactly one node has to
be marked as the leader.
Nested orientation: find an acyclic orientation of the edges and label each node recursively
with its own identifier, the identifiers of its neighbors, and the labels of its in-neighbors
(see the full version for the precise definition).
We can prove the bounds shown in Table 3 for the locality of these problems in the five
models; see the full version for the details. Now each separation in Figure 1 follows from one
of the rows of Table 3.

4  3-coloring bipartite graphs

In this section, we present our Contribution 3: we design an algorithm for 3-coloring
bipartite graphs in the online-LOCAL model and show that this gives us an exponential
separation between the SLOCAL and online-LOCAL models. This section also serves as an
introduction into the algorithmic techniques that work in online-LOCAL. Equipped with
this understanding, in Section 5, we start to develop more technical tools that we need for
our Contribution 2.

By prior work [13], it is known that the locality of 3-coloring in v/n X \/n grids is at least
Q(y/n) in the LOCAL model. The aforementioned paper considers the case of toroidal grid
graphs, but the same argument can be applied for non-toroidal grids (in essence, if you could
color locally anywhere in the middle of a non-toroidal grid, you could also apply the same
algorithm to color a toroidal grid). We can easily extend this result to show a polynomial
lower bound for 3-coloring grids in the SLOCAL model:

» Theorem 2. There is no SLOCAL algorithm that finds a 3-coloring in 2-dimensional grids
with, locality o(n'/10).

To prove the result, we show that we can simulate SLOCAL algorithms sufficiently
efficiently in the LOCAL model. We use the standard technique of first precomputing a
distance-o(n'/19) coloring, and then using the colors as a schedule for applying the SLOCAL
algorithm. Such a simulation can be done efficiently and would lead to a LOCAL algorithm
running in o(y/n) time, which is a contradiction. The full proof of the lower bound is presented
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in the full version of the paper. As grids are bipartite graphs, the problem of 3-coloring
in grids already gives an exponential separation between the SLOCAL and online-LOCAL
models. For the special case of grids, we discuss the known locality bounds for the coloring
problem in the full version. A summary of these results can be found in Table 2.

In Section 4.1, we introduce the 3-coloring algorithm in the online-LOCAL, and we use the
special case of grids in order to visualize it. Besides providing a natural separation between
the SLOCAL and online-LOCAL models, the 3-coloring problem also shows the advantage
of allowing online algorithms to look around: while the best online coloring algorithm on
bipartite graphs is ©(logn)-competitive, our algorithm in the online-LOCAL model achieves
a competitive ratio of 1.5.

Note that an optimal solution would be to color a bipartite graph with 2 colors. In all
models that we consider here, we know it is not possible to solve 2-coloring with locality
o(n), the worst case being a path with n nodes. We show that allowing an online-LOCAL
algorithm to use only one extra color makes it possible to find a valid coloring with locality
O(logn):

» Theorem 1. There is an online-LOCAL algorithm that finds a 3-coloring in bipartite
graphs with locality O(logn).
4.1 Algorithm for 3-coloring bipartite graphs in online-LOCAL

Algorithm overview. The high-level idea of our online-LOCAL algorithm is to color the
presented nodes of the graph with 2 colors until the algorithm sees two areas where the
2-colorings are not compatible. In essence, when the adversary presents a node far from

any other node the algorithm has seen, the algorithm blindly start constructing a 2-coloring.

When the adversary presents nodes in the neighborhood of already colored nodes, the

algorithm simply expands the 2-colored component — we call such a component a group.

The algorithm keeps expanding such properly 2-colored groups until, eventually, two groups
with incompatible 2-colorings meet (i.e., groups that have different parities). Then, the
algorithm uses the third color in order to create a barrier around one of the groups, effectively
flipping its parity. Our algorithm thereby makes use of the knowledge of previously queried
neighborhoods that are given by the online-LOCAL model: the algorithm is committing to
colors for nodes in the revealed subgraphs before they are queried.

Algorithm in detail. At the beginning, no nodes are revealed to the algorithm, and we

therefore say that all nodes are unseen. We refer to connected components of the subgraph

G; of G as groups. With each of these groups, we associate a border count, which is a natural

number that is initially 0. The algorithm uses colors 0 and 1 for the 2-coloring, reserving

color 2 as the barrier color. Each time the adversary points at a node v;, the algorithm
gets to see the radius-7" neighborhood B(v;,T') of this node. Now consider different types of
nodes in B(v;,T + 1). There are three different cases that the algorithm needs to address

(we visualize them in Figures 2—4 using grids as an example):

1. All nodes in B(v;, T + 1) are unseen. In this case, the nodes in B(v;,T) form a new
connected component, i.e. a new group. This group has a border count of 0. The algorithm
colors v; with 0, thus fixing the parity for this group (see Figure 2).

2. The algorithm has already seen some nodes in B(v;, T + 1), but all of them belong to the

same group. In this case, the adversary has shown an area next to an existing group.

If v; was already committed to a color, the algorithm uses that color. Otherwise, the
algorithm colors v; according to the 2-coloring of the group. All nodes in B(v;, T) are
now considered to be in this group (see Figure 3).
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Figure 2 3-coloring algorithm, case 1/3. The adversary queries node . Here node z is in the
middle of an unseen region (shaded). The algorithm creates a new group (white) and fixes the color
of node z arbitrarily.
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Figure 3 3-coloring algorithm, case 2/3. The adversary queries node y. Some nodes in the local
neighborhood of y are already part of a group (white), and hence y joins this group. The algorithm
fixes the color of node y so that it is consistent with the coloring of the group.

Figure 4 3-coloring algorithm, case 3/3. The adversary queries node z. Some nodes in the local
neighborhood of z belong to two different groups, B and C. The algorithm merges the groups. As
they have incompatible parities, the algorithm adds a new border around one of the groups, in this
case C, as both groups have the same number of borders around them and the algorithm can choose
arbitrarily. Nodes in the local neighborhood of z join the group, and z is colored in a way compatible
with the coloring of the newly created group.
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Algorithm 1 join_ groups(A, B).

Input: Groups A, B
Output: Group X

1 if A and B have different parities then

2 Let S be the group with the smaller border count. If they are equal, S = A;
3 For all nodes of color 0 in S, commit all uncolored neighbors to color 1;

4 For all nodes of color 1 in S, commit all uncolored neighbors to color 2;

5 For all nodes of color 2 in .S, commit all uncolored neighbors to color 0;

6 Increase border count of S by 1.

7 end

8 Set all nodes in groups A, B to be in group X;

9 Set the border count for X to be the maximum of border counts for A, B and S;
10 return X

3. There are nodes in B(v;, T + 1) that belong to different groups. In this case, the algorithm
has to join groups. Here, we only define the join of two groups A and B; if there are
more groups, this join can be applied iteratively.

If A and B have different parities (i.e., the 2-colorings at their boundaries are not
compatible), the algorithm takes the group with the smaller border count and uses a
layer of nodes of color 2 to create a barrier that changes its parity, and then it increases
the group’s border count; see Algorithm 1 for the details. Then, the algorithm joins the
groups, that are now compatible, and sets the border count of the newly created group
to the maximum of the border counts of A and B.

By merging all groups in the local neighborhood of v;, the algorithm eventually ends up
in a situation where v; only sees nodes in a single group, and we are in a scenario similar
to case 2 above: nodes in the local neighborhood of v; also join the newly created group,
and if v; has not already committed to a color, the algorithm colors it according to the
2-coloring of this group (see Figure 4).

4.2 Analysis of the 3-coloring Algorithm in online-LOCAL

In order to show the correctness of the coloring algorithm, we first prove that this process
creates a valid 3-coloring provided that all our commitments remain within the visible area,
that is, inside subgraph G;. Next, we show that by choosing T'(n) = O(logn), all our
commitments indeed remain inside the visible area. Together, these parts prove Theorem 1.

Validity of the 3-coloring. We first prove that our algorithm always continues a valid
3-coloring, as long as it does not need to make commitments to unseen nodes. We consider
all three cases of the algorithm individually.

1. All nodes in B(v;, T 4+ 1) are unseen. In this case, the algorithm colors v; with 0. As all
neighboring nodes were unseen, they have not been committed to any color, and thus
this case causes no errors.

2. The algorithm has already seen some nodes in B(v;, T + 1), but all of them belong to the
same group. In this case, the algorithm would either use the committed color or the
parity of the group. As previously committed colors do not cause errors, and the group
has consistent parity, this case cannot cause any errors.

10:13

ICALP 2023



10:14

Locality in Online, Dynamic, Sequential, and Distributed Graph Algorithms

3. There are nodes in B(v;, T + 1) that belong to different groups. In this case, we want to
join groups without breaking the coloring. If the two groups have the same parity, clearly,
no errors can be caused by continuing the 2-coloring. The interesting case is when the
two groups have different parities. Then, we need to show that the new commitments
made by Algorithm 1 do not create any errors.

Let S be the group with the smaller border count. By examining Algorithm 1, we can
see that all colored nodes that have uncolored neighbors are either of color 0 or color 1:
only in line 4, nodes can be colored with color 2, and all of those nodes’ neighbors are
then colored in line 5. Thus, in order for an error to occur, there either needs to be two
nodes of colors 0 and 1 that have uncolored neighbors and different parities in S, or the
algorithm commits to a color of a node that it has not yet seen. This could cause an
error, as two groups could commit a single node to two different colors.

As for the first case, we assume that all nodes in .S that have uncolored neighbors also
have consistent parity. This trivially holds for a group that has border count 0, as all
colored nodes in it have the same parity. From the assumption, it follows that all nodes
colored with 1 in line 3 have the same parity, so they cannot create an error. After this,
all colored nodes with uncolored neighbors in the group have the same parity, and are
colored with 1. Thus all nodes colored with 2 in line 4 also have the same parity, as do
the nodes colored with 0 in line 5. As these are the only lines where nodes are colored,
this procedure cannot create any errors. It also ensures that, after the procedure, the only
colored nodes in the group that have uncolored neighbors are the nodes colored in line 5,
which have the same parity. Therefore, our assumption holds for all groups. Those nodes
also have a parity different from the nodes in S that had uncolored neighbors before this
procedure, so in essence, we have flipped the parity of group S to match the parity of the
other group.

As for the second case, this can be avoided by choosing a large enough T, so that all
commitments remain within the visible area of GG;. Next, we discuss how to choose
such a T'.

Locality of the 3-coloring algorithm. In this part, we prove that by choosing locality
T(n) = 3[logy n] = O(log n), no nodes outside the visible area of G; need to be committed.

We first make the observation that a group with border count b contains at least 2° nodes;
this is a simple induction:

b = 0: A newly created group contains at least 1 node.

b > 0: Consider the cases in which Algorithm 1 returns a group X with border count b.
One possibility is that A or B already had border count b, and hence by assumption it
already contained at least 2° nodes. The only other possibility is that both A and B
had border count exactly b — 1, they had different parities, one of the border counts was
increased, and hence X has now got a border count of b. But, in this case, both A and B
contained at least 2°~! nodes each.

Hence the border count is bounded by b < logy n in a graph with n nodes.

We next consider the maximum distance between a node that the adversary has queried
and a node with a committed color. Note that the only place where the algorithm commits
a color to a node that the adversary has not queried yet is when building a border around
a group. There are three steps (lines 3-5) where the algorithm commits to the color of a
neighbor of a committed node, and thus effectively extends the distance by at most one in
each step. Therefore, if the border count is b, in the worst case, the algorithm commits a
color for a node that is within distance 3b from a node that was queried by the adversary.
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As we have b < logyn, a locality of 3[log,n] > 3b suffices to ensure that all the
commitments of the algorithm are safely within the visible region. This concludes the proof
of Theorem 1.

5 LCL problems in paths, cycles, rooted regular trees

We just showed that the online-LOCAL model is much more powerful than LOCAL and
SLOCAL for an LCL on bipartite graphs and grids. In this section, we discuss what happens
when we restrict our attention to LCL problems in paths, cycles, and trees. We start by
defining LCL problems more formally.

We say that II is a locally verifiable problem with verification radius r if the following
holds: there is a collection of labeled local neighborhoods T such that L is a feasible solution
for input (G, I) if and only if for all nodes v, the radius-r neighborhood of v in (G, I, L) is in
T. Informally, a solution is feasible if it looks good in all radius-r neighborhoods.

» Definition 3 (Locally checkable labeling [42]). A locally verifiable problem II is a locally
checkable labeling (LCL) problem if the set of the input labels ¥ is finite, the set of the output
labels T is finite, and there is a natural number A such that mazimum degree of any graph
G € G is at most A.

Note that in LCL problems, 7 is also finite since there are only finitely many possible
non-isomorphic labeled local neighborhoods.

It turns out that in the case of paths, cycles, and rooted regular trees, the LOCAL, SLO-
CAL, dynamic-LOCAL, and online-LOCAL models are all approximately equally expressive
for LCL problems. In particular, all classification and decidability results related to LCLs in
paths, cycles, and rooted regular trees in the LOCAL model [4,7,18] directly apply also in
the online-LOCAL model, the SLOCAL model, and both versions of the dynamic-LOCAL
model.

We show first that the LOCAL and online-LOCAL models are equivalent in the case of
paths and cycles, even when the LCL problems can have inputs. We then continue to prove
that the models are equivalent also in the more general case of LCL problems rooted regular
trees, but in this case we do not consider the possibility of having input labels.

Formally, we prove the following theorem for cycles and paths:

» Theorem 4. Let IT be an LCL problem in paths or cycles (possibly with inputs). If the
locality of I1 is T in the online-LOCAL model, then its locality is O(T +log* n) in the LOCAL
model.

For the case of rooted trees, we prove the following two theorems:

» Theorem 5. Let IT be an LCL problem in rooted regular trees (without inputs). Problem 11
has locality n®*") in the LOCAL model if and only if it has locality n®*Y) in the online-LOCAL
model.

» Theorem 6. Let II be an LCL problem in rooted regular trees (without inputs). Problem
IT has locality Q2(logn) in the LOCAL model if and only if it has locality Q(logn) in the
online-LOCAL model.

These two theorems show that all LCL problems in rooted regular trees belong to one of
the known complexity classes O(log* n), ©(logn) and n* in all of the models we study.
In what follows, we introduce the high-level ideas of the proofs of these theorems. For full
proofs, we refer the reader to the full version.
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5.1 Cycles and paths

We prove Theorem 4 by first showing that any LCL problem in cycles and paths has either
locality O(1) or Q(n) in the online-LOCAL model. Next, we show that if a problem is solvable
with locality O(1) in the online-LOCAL model, then it is also solvable in locality O(log* n)
in the LOCAL model. These steps are described by the following two lemmas:

» Lemma 7. Let II be an LCL problem in paths or cycles (possibly with inputs), and let A be
an online-LOCAL algorithm solving I1 with locality o(n). Then, there exists an online-LOCAL
algorithm A’ solving T1 with locality O(1).

The high-level idea of the proof of Lemma 7 is to construct a large virtual graph P’ such
that when the original algorithm runs on the virtual graph P’, the labeling produced by the
algorithm is locally compatible with the labeling in the original graph P. We ensure this
by applying a pumping-lemma-style argument on the LCL problem. The proof uses similar
ideas as the ones presented by Chang and Pettie [17].

» Lemma 8. Let II be an LCL problem in paths or cycles (possibly with inputs), and let A
be an online-LOCAL algorithm solving 11 with locality O(1). Then, there exists a LOCAL
algorithm A’ solving TI with locality O(log" n).

The high-level idea of the proof of Lemma 8 is to use the constant locality online-
LOCAL algorithm to construct a canonical output labeling for each possible neighborhood
of input labels. The fast LOCAL algorithm can then use these canonical labelings in disjoint
neighborhoods of the real graph, and the construction of the canonical labelings ensures that
the labeling also extends to the path segments between these neighborhoods.

The full proofs of these lemmas can be found in the full version of this paper. In order to
prove Theorem 4, it is sufficient to combine these lemmas with the fact that the possible
localities on paths and cycles in the LOCAL model are O(1), O(log* n) and ©O(n) [18].

5.2 Rooted regular trees

We prove the equivalence of the LOCAL and the online-LOCAL models for LCL problems
in rooted regular trees in two parts. We start out with Theorem 5 and show that if an
LCL problem requires locality n®*(1) in the LOCAL model, then for every locality-n°()
online-LOCAL algorithm we can construct an input instance which the algorithm must fail
to solve. To prove Theorem 6, we show that a locality-o(logn) online-LOCAL algorithm for
solving an LCL problem implies that there exists a locality-O(log* n) LOCAL algorithm for
solving that same problem. In the following, we outline the proofs of both theorems; the full
proofs can be found in the full version of the paper. Before considering the full proof, we
advise the reader to look at the example in the full version of this paper, where we show
that the 2.5-coloring problem requires locality Q(y/n) in the online-LOCAL model.

Proof outline of Theorem 5. Our proof is based on the fact that any LCL problem requiring
locality n*(") in the LOCAL model has a specific structure. In particular, the problem can
be decomposed into a sequence of path-inflexible labels and the corresponding sequence of
more and more restricted problems [7]. Informally, a label is path-inflexible if two nodes
having that label can exist only at specific distances apart from each other. For example,
when 2-coloring a graph, two nodes having label 1 can exist only at even distances from
each other. The problems in the path-inflexible decomposition are formed by removing the
path-inflexible labels from the previous problem in the sequence until an empty problem is
reached.
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This decomposition of the problem into restricted problems with path-inflexible labels
allows us to construct an input graph for any locality-n°") online-LOCAL algorithm. In
particular, we force the algorithm to commit labels in disjoint fragments of the graph. Any
label that the algorithm uses must be a path-inflexible label in some problem of the sequence
of restricted problems. By combining two fragments containing labels that are path-inflexible
in the same problem, we can ensure that the algorithm cannot solve that problem in the
resulting graph. Hence the algorithm must use a label from a problem earlier in the sequence.
At some point, the algorithm must use labels that are path-inflexible in the original problem.
At that point, we can combine two fragments having path-inflexible labels in the original
problem in such a way that no valid labeling for the original problem exists, and hence the
algorithm must fail to solve the problem on the resulting graph.

Proof outline of Theorem 6. Here, we show that a locality-o(logn) online-LOCAL algo-
rithm solving an LCL problem implies that there exists a certificate for O(log" n) solvability
for that problem. It is known that the existence of such a certificate for a problem implies
that there exists a locality-O(log” n) LOCAL algorithm for solving the problem [7].

Informally, the certificate for O(log* n) solvability for LCL problem II with label set T’
and arity ¢ consists of a subset I'y = {71, ..., } of labels ', and two sequences of correctly
labeled complete §-ary trees 7' and 72. The leaves of each tree in the sequence 7' (resp.
T?2) are labeled in the same way using only labels from set I'7. For every label of set I'r,
there exists a tree in both of the sequences having a root labeled with that label.

We can use the online-LOCAL algorithm to construct such a certificate. We do this by
constructing exponentially many deep complete J-ary trees and using the algorithm to label
nodes in the middle of those trees. We then glue these trees together in various ways. When
the trees are glued together, we use the online-LOCAL algorithm to label the rest of the
nodes to form one tree of the sequence. We repeat this procedure until all trees of both
sequences have been constructed.
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—— Abstract

Our work concerns algorithms for a variant of Maximum Flow in unweighted graphs. In the All-Pairs
Connectivity (APC) problem, we are given a graph G on n vertices and m edges, and are tasked
with computing the maximum number of edge-disjoint paths from s to ¢ (equivalently, the size of a
minimum (s,t)-cut) in G, for all pairs of vertices (s,t). Over undirected graphs, it is known that
APC can be solved in essentially optimal n?*°(") time. In contrast, the true time complexity of APC
over directed graphs remains open: this problem can be solved in O~(m“’) time, where w € [2,2.373)
is the exponent of matrix multiplication, but no matching conditional lower bound is known.

Following [Abboud et al., ICALP 2019], we study a bounded version of APC called the k-Bounded
All Pairs Connectivity (k-APC) problem. In this variant of APC, we are given an integer k in addition
to the graph G, and are now tasked with reporting the size of a minimum (s, t)-cut only for pairs
(s,t) of vertices with min-cut value less than k (if the minimum (s, t)-cut has size at least k, we can
just report it is “large” instead of computing the exact value).

Our main result is an O((kn)*) time algorithm solving k-APC in directed graphs. This is the
first algorithm which solves k-APC faster than simply solving the more general APC problem exactly,
for all k> 3. This runtime is O(n*) for all k < poly(logn), which essentially matches the optimal
runtime for the £k = 1 case of k-APC, under popular conjectures from fine-grained complexity.
Previously, this runtime was only achieved for general directed graphs when k < 2 [Georgiadis et al.,
ICALP 2017]. Our result employs the same algebraic framework used in previous work, introduced
by [Cheung, Lau, and Leung, FOCS 2011]. A direct implementation of this framework involves
inverting a large random matrix. Our new algorithm is based off the insight that for solving k-APC,
it suffices to invert a low-rank random matrix instead of a generic random matrix.

We also obtain a new algorithm for a variant of k-APC, the k-Bounded All-Pairs Vertex Connectivity
(k-APVC) problem, where for every pair of vertices (s,t), we are now tasked with reporting the
maximum number of internally vertex-disjoint (rather than edge-disjoint) paths from s to ¢ if this
number is less than k, and otherwise reporting that this number is at least k.

Our second result is an O~(k’2n‘*’) time algorithm solving k-APVC in directed graphs. Previous
work showed how to solve an easier version of the k-APVC problem (where answers only need to be
returned for pairs of vertices (s, t) which are not edges in the graph) in O((kn)“) time [Abboud et al,
ICALP 2019]. In comparison, our algorithm solves the full k-APVC problem, and is faster if w > 2.
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1 Introduction

Computing maximum flows is a classic problem which has been extensively studied in graph
theory and computer science. In unweighted graphs, this task specializes to computing
connectivities, an interesting computational problem in its own right. Given a graph G on
n vertices and m edges, for any vertices s and t in G, the connectivity A(s,t) from s to t is
defined to be the maximum number of edge-disjoint paths' from s to t. Since maximum flow
can be computed in almost-linear time, we can compute A(s,t) for any given vertices s and ¢
in m'*T°M time [5].

What if instead of merely returning the value of a single connectivity, our goal is to
compute all connectivities in the graph? This brings us to the All-Pairs Connectivity (APC)
problem: in this problem, we are given a graph G as above, and are tasked with computing
(s, t) for all pairs of vertices (s,t) in G. In undirected graphs, APC can be solved in n?*+°()
time [2], so that this “all-pairs” problem is essentially no harder than outputting a single
connectivity in dense graphs.

In directed graphs, APC appears to be much harder, with various conditional lower bounds
(discussed in Section 1.2) suggesting it is unlikely this problem can be solved in quadratic
time. Naively computing the connectivity separately for each pair yields an n2m!+°() time
algorithm for this problem. Using the flow vector framework (discussed in Section 3), it is
possible to solve APC in directed graphs in O(m®) time? [7], where w is the exponent of
matrix multiplication. Known algorithms imply that w < 2.37286 [4], so the O(m®) time
algorithm is faster than the naive algorithm whenever the input graph is not too dense.

Our work focuses on a bounded version of the APC problem, which we formally state
as the k-Bounded All-Pairs Connectivity (k-APC) problem: in this problem, we are given a
directed graph G as above, and are tasked with computing min(k, A(s,t)) for all pairs of
vertices (s,t) in G. Intuitively, this is a relaxation of the APC problem, where our goal is
to compute the exact values of \(s,t) only for pairs (s,t) with small connectivity. For all
other pairs, it suffices to report that the connectivity is large, where k is our threshold for
distinguishing between small and large connectivity values.

When k = 1, the k-APC problem is equivalent to computing the transitive closure of the
input graph (in this problem, for each pair of vertices (s,t), we are tasked with determining if
G contains a path from s to t), which can be done in O(n®) time [8]. Similarly, for the special
case of k = 2, it is known that k-APC can be solved in O(n®) time, by a divide-and-conquer
algorithm employing a cleverly tailored matrix product [10]. As we discuss in Section 1.2,
there is evidence that these runtimes for k-APC when k < 2 are essentially optimal.

Already for k = 3 however, it is open whether k-APC can be solved faster than computing
the ezact values of A(s,t) for all pairs (s,t) of vertices! Roughly speaking, this is because
the known O~(m”) time algorithm for APC involves encoding the connectivity information
in the inverse of an m x m matrix, and inverting an m x m matrix takes O(m®) time in
general. This encoding step appears to be necessary for k-APC as well. For k = 2, clever
combinatorial observations about the structure of strongly connected graphs allow one to
skip this computation, but for £ > 3 it is not clear at all from previous work how to avoid
this bottleneck. Moreover, it is consistent with existing hardness results that k-APC could
be solved in O(n*) time for any constant k.

1 By Menger’s theorem, A(s, t) is also equal to the minimum number of edges that must be deleted from
the graph G to produce a graph with no s to ¢t path.
2 Given a function f, we write O(f) to denote f - poly(log f).
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» Open Problem 1. Can k-APC be solved in faster than O(m*) time for k = 37

Due to this lack of knowledge about the complexity of k-APC, researchers have also
studied easier versions of this problem. Given vertices s and ¢ in the graph G, we define the
vertex connectivity v(s,t) from s to t to be the maximum number of internally vertex-disjoint
paths from s to t. We can consider vertex connectivity analogues of the APC and k-APC
problems. In the All-Pairs Vertex Connectivity (APVC) problem, we are given a graph G on
n vertices and m edges, and are tasked with computing the value of v(s,t) for all pairs of
vertices (s,t) in G. In the k-Bounded All-Pairs Vertex Connectivity (k-APVC) problem, we are
given the same input G as above, but are now tasked with only computing min(k, v(s,t)) for
all pairs of vertices (s,t) in G.

The k-APVC problem does not face the O(m®) barrier which existing algorithmic tech-
niques for k-APC seem to encounter, intuitively because it is possible to encode all the
vertex-connectivity information of a graph in the inverse of an n X n matrix instead of an
m x m matrix. As a consequence, [1] was able to present an O((kn)“) time algorithm which
computes min(k, v(s,t)) for all pairs of vertices (s,t) such that (s,t) is not an edge. Given
this result, it is natural to ask whether the more general k-APVC and k-APC problems can
also be solved in this same running time.

» Open Problem 2. Can k-APVC be solved in O((kn)®) time?
» Open Problem 3. Can k-APC be solved in O((kn)“) time?

1.1 OQOur Contribution

We resolve all three open problems raised in the previous section.
First, we present a faster algorithm for k-APC, whose time complexity matches the
runtime given by previous work for solving an easier version of k-APVC.

» Theorem 4. For any positive integer k, k-APC can be solved in O((kn)“) time.

This is the first algorithm which solves k-APC faster than simply solving APC exactly using
the O(m*) time algorithm of [7], for all constant k > 3.

Second, we present an algorithm for k-APVC, which is faster than the O((kn)*) time
algorithm from [1] (which only solves a restricted version of k-APVC) if w > 2.

» Theorem 5. For any positive integer k, k-APVC can be solved in O(k2n‘*’) time.

1.2 Comparison to Previous Results
Conditional Lower Bounds

The field of fine-grained complexity contains many popular conjectures (which hypothesize
lower bounds on the complexity of certain computational tasks) which are used as the
basis of conditional hardness results for problems in computer science. In this section, we
review known hardness results for APC and its variants. The definitions of the problems and
conjectures used in this section can be found in...

Assuming that Boolean Matrix Multiplication (BMM) requires n@=°() time, it is known
that k-APC and k-APVC require n*~°() time to solve, even for k = 1 [8]. In particular, this
hypothesis implies our algorithms for k-APC and k-APVC are optimal for constant k.

Assuming the Strong Exponential Time Hypothesis (SETH), previous work shows that APC
requires (mn)'=°() time [12, Theorem 1.8], APVC requires m?>/2~°() time [14, Theorem 1.7],
and k-APC requires (kn2)1_0(1) time [12, Theorem 4.3].

11:3

ICALP 2023



11:4

An Efficient Algorithm for All-Pairs Bounded Edge Connectivity

Let w(1,2,1) be the smallest real number? such that we can compute the product of an
n x n? matrix and n? x n matrix in n*(1:2D+°() time. Assuming the 4-Clique Conjecture,
the k-APVC problem over directed graphs (and thus the k-APC problem as well) requires
(k‘2n“(1’2’1)_2)170(1) time [1]. This conjecture also implies that solving APVC even in

undirected graphs requires n<(121=°() time [11].

Algorithms for Related Problems

As mentioned previously, no nontrivial algorithms for k-APC over general directed graphs
were known for k > 3, prior to our work. However, faster algorithms were already known for
k-APC over directed acyclic graphs (DAGs). In particular, [1] presented two algorithms to
solve k-APC in DAGs, running in 2°*")mn time and (klog n)4k+°(’“)n“’ time respectively.

In comparison, our algorithm from Theorem 4 solves k-APC in general directed graphs,
is faster than the former algorithm whenever m > n*~! or k > w(y/logn) (for example),
is always faster than the latter algorithm, and is significantly simpler from a technical
perspective than these earlier arguments. However, these algorithms for k-APC on DAGs
also return cuts witnessing the connectivity values, while our algorithm does not.

In the special case of undirected graphs, APVC can be solved in m?t°(1) time [14,
Theorem 1.8], which is faster than the aforementioned O(m®) time algorithm if w > 2. Over
undirected graphs, k-APVC can be solved in k3m!*To() 4 n?2 poly(logn) time. In comparison,
our algorithm from Theorem 5 can handle k-APVC in both undirected and directed graphs,
and is faster for large enough values of k in dense graphs.

In directed planar graphs with maximum degree d, [7, Theorem 1.5] proves that APC can
be solved in O (d“~2n®/2+1) time.

In [15], the authors consider a symmetric variant of k-APC. Here, the input is a directed
graph G on n vertices and m edges, and the goal is to compute for all pairs of vertices (s, ),
the value of min(k, A(s,t), A(t,s)). This easier problem can be solved in O(kmn) time [15].

1.3 Organization

The rest of this paper is devoted to proving Theorems 4 and 5. In Section 2 we introduce
notation, some useful definitions, and results on matrix computation which will be useful in
proving correctness of our algorithms. In Section 3 we provide an intuitive overview of our
algorithms for k-APC and k-APVC. In Section 4 we describe a framework of “flow vectors’
for capturing connectivity values, and in Section 5 use this framework to prove Theorem 4.

)

In Section 6 we present helpful results about vertex-connectivity, and in Section 7 use these
results to prove Theorem 5.

2 Preliminaries

Graph Assumptions

Throughout, we let G denote a directed graph on n vertices and m edges. Without loss
of generality, we assume that the underlying undirected graph of G is connected, i.e., G is
weakly connected (since, if not, we could simply run our algorithms separately on each weakly
connected component of ), so we have m > n — 1. We assume G has no self-loops, since
these do not affect the connectivity or vertex-connectivity values between distinct vertices.

3 Known fast matrix multiplication algorithms imply that w(1,2,1) < 3.25669 [9, Table 2].
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In Sections 4 and 5 we focus on the k-APC problem, and so allow G to have parallel
edges between vertices (i.e., G can be a multigraph). We assume however, without loss of
generality, that for any distinct vertices s and ¢, there are at most k edges from s to t (since
if there were more than k parallel edges from s to ¢, we could delete some and bring the
count of parallel edges down to k without changing the value of min(k, A(s,¢))). In Sections 6
and 7 we focus on the k-APVC problem, and so assume that G is a simple graph with no
parallel edges, since parallel edges from u to v cannot affect the value of a vertex connectivity
v(s,t), unless u = s and v = ¢, in which case the value of v(s,t) is simply increased by the
number of additional parallel edges from s to ¢.

Graph Terminology and Notation

Given an edge e from u to v in G, we write ¢ = (u,v). We call u the tail of e and v the

head of e. Vertices which are tails of edges entering a vertex v are called in-neighbors of v.

Similarly, vertices which are heads of edges exiting v are called out-neighbors of v. Given
a vertex u in G, we let Ej,(u) denote the set of edges entering u, and Eqy(u) denote the
set of edges exiting w. Similarly, Vi,(u) denotes the set of in-neighbors of w, and V¢ (u)
denotes the set of out-neighbors of u. Furthermore, we define Viy[u] = Vip(u) U {u} and
Vout[t] = Vout(u) U {u}. Finally, let deg;,(u) = |Ein(u)| and deg,(u) = |Eout(u)| denote
the indegree and outdegree of u respectively.

Given vertices s and ¢, an (s,t)-cut is a set C' of edges, such that deleting the edges
in C produces a graph with no s to ¢t path. By Menger’s theorem, the size of a minimum
(s,t)-cut is equal to the connectivity A(s,t) from s to ¢. Similarly, an (s, t)-vertex cut is a set

of C" of vertices with s,t € C’, such that deleting C’ produces a graph with no s to ¢ path.

Clearly, a vertex cut exists if and only if (s,t) is not an edge. When (s,t) is not an edge,
Menger’s theorem implies that the size of a minimum (s, t)-vertex cut is equal to the vertex
connectivity v(s,t) from s to t.

Matrix Notation

Let A be a matrix. For indices ¢ and j, we let A[i, j] denote the (i,7) entry of A. More
generally, if S is a set of row indices and T a set of column indices, we let A[S,T] denote the
submatrix of A restricted to rows from S and columns from T'. Similarly, A[S,*] denotes A
restricted to rows from S, and A[*, T| denotes A restricted to columns from 7. We let AT
denote the transpose of A. If A is a square matrix, then we let adj(A) denote the adjugate
of A. If A is invertible, we let A~! denote its inverse. If a theorem, lemma, or proposition
statement refers to A™!, it is generally asserting that A~! exists (or if A is a random matrix,
asserting that A~! exists with some probability) as part of the statement. We let I denote
the identity matrix (the dimensions of this matrix will always be clear from context). Given
a vector ¥, for any index i we let ¥]i] denote the i*® entry in 7. We let 0 denote the zero
vector (the dimensions of this vector will always be clear from context). Given a positive
integer k, we let [k] = {1,...,k} denote the set of the first k positive integers.

Matrix and Polynomial Computation

Given a prime p, we let F), denote the finite field on p elements. Arithmetic operations over
elements of I, can be performed in O(log p) time.

We now recall some well-known results about computation with matrices and polynomials,
which will be useful for our algorithms.

11:5
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» Proposition 6. Let A be an a x b matriz, and B be a bx a matriz. If (I — BA) is invertible,
then the matriz (I — AB) is also invertible, with inverse

(I-AB)™' =1+ A(I-BA)'B.

Proof. It suffices to verify that the product of (I — AB) with the right hand side of the
above equation yields the identity matrix. Indeed, we have

(I —AB) (I+A(I - BA)™'B)
=TI+ A(I -BA) 'B—- AB - ABA(I - BA)™'B
=I+A(I-BA) 'B-—AB—-A(I-(I-BA)(I-BA)'B
=I+A(I—-BA)™'B—-AB - A(I - BA)"'B + AB,

which simplifies to I, as desired. |

» Proposition 7. Let A be an a x a matriz over F,. We can compute the inverse A= (if it
exists) in O(a®) field operations.

» Proposition 8 ([6, Theorem 1.1]). Let A be an a x b matriz over Fy,. Then for any positive
integer k, we can compute min(k,rank A) in O(ab+ k“) field operations.

» Proposition 9 (Schwartz-Zippel Lemma [13, Theorem 7.2]). Let f € Fplz1,...,2,] be a
degree d, nonzero polynomial. Let @ be a uniform random point in F),. Then f(d) is nonzero
with probability at least 1 — d/p.

3 Proof Overview

3.1 Flow Vector Encodings

Previous algorithms for APC [7] and its variants work in two steps:

Step 1: Encode
In this step, we prepare a matrix M which implicitly encodes the connectivity information
of the input graph.

Step 2: Decode
In this step, we iterate over all pairs (s, t) of vertices in the graph, and for each pair run
a small computation on a submatrix of M to compute the desired connectivity value.

The construction in the encode step is based off the framework of flow vectors, introduced
in [7] as a generalization of classical techniques from network-coding. We give a high-level
overview of how this method has been previously applied in the APC problem.*

Given the input graph G, we fix a source vertex s. Let d = deg,;(s), and let F be some
ground field.® Our end goal is to assign to each edge e in the graph a special vector € € F¢
which we call a flow vector.

First, for each edge e € Eoui(s), we introduce a d-dimensional vector v;. These vectors
intuitively correspond to some starting flow that is pumping out of s. It is important that
these vectors are linearly independent (and previous applications have always picked these
vectors to be distinct d-dimensional unit vectors). We then push this flow through the rest of
the graph, by having each edge get assigned a vector which is a random linear combination

4 For the APVC problem we employ a different, but analogous, framework described in Section 3.3.
® In our applications, we will pick F to be a finite field of size poly(m).
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of the flow vectors assigned to the edges entering its tail. That is, given an edge e = (u,v)
with u # s, the final flow vector € will be a random linear combination of the flow vectors for
the edges entering u. If instead the edge e = (s,v) is in Eqyyut($), the final flow vector € will
be a random linear combination of the flow vectors for the edges entering s, added to the
initial flow .

The point of this random linear combination is to (with high probability) preserve linear
independence. In this setup, for any vertex v and integer ¢, if some subset of ¢ flow vectors
assigned to edges in Fi,(v) is independent, then we expect that every subset of at most ¢
flow vectors assigned to edges in Eqyut(v) is also independent. This sort of behavior turns
out to generalize to preserving linear independence of flow vectors across cuts, which implies
that (with high probability) for any vertex t, the rank of the flow vectors assigned to edges
in Fiy(t) equals A(s,t).

Intuitively, this is because the flow vectors assigned to edges in E;,(t) will be a linear
combination of the A(s,t) flow vectors assigned to edges in a minimum (s, t)-cut, and the
flow vectors assigned to edges in this cut should be independent.

Collecting all the flow vectors as column vectors in a matrix allows us to produce a single
matrix My, such that computing the rank of M|, Fi,(t)] yields the desired connectivity
value A(s,t) (computing these ranks constitutes the decode step mentioned previously).
Previous work [7, 1] set the initial pumped @, to be distinct unit vectors. It turns out that
for this choice of starting vectors, it is possible to construct a single matrix M (independent
of a fixed choice of s), such that rank queries to submatrices of M correspond to the answers
we wish to output in the APC problem and its variants.

In Section 3.2 we describe how we employ the flow vector framework to prove Theorem 4.
Then in Section 3.3, we describe how we modify these methods to prove Theorem 5.

3.2 All-Pairs Connectivity

Our starting point is the O(m®) time algorithm for APC presented in [7], which uses the
flow vector encoding scheme outlined in Section 3.1.

Let K be an m x m matrix, whose rows and columns are indexed by edges in the input
graph. For each pair (e, f) of edges, if the head of e coincides with the tail of f, we set K]e, f]
to be a uniform random field element in F. Otherwise, K[e, f] = 0. These field elements
correspond precisely to the coefficients used in the random linear combinations of the flow
vector framework. Define the matrix

M=(I-K)"' (1)
Then [7] proves that with high probability, for any pair (s,t) of vertices, we have
rank M [Eout (), Ein(t)] = A(s, t). (2)

With this setup, the algorithm for APC is simple: first compute M (the encode step),
and then for each pair of vertices (s,t), return the value of rank M[E,.(s), Ein(t)] as the
connectivity from s to ¢ (the decode step).

By Equation (1), we can complete the encode step in O(m®) time, simply by inverting
an m X m matrix with entries from F. It turns out we can also complete the decode step in
the same time bound. So this gives an O(m®) time algorithm for APC.

Suppose now we want to solve the k-APC problem. A simple trick (observed in the proof
of [1, Theorem 5.2] for example) in this setting can allow us to speed up the runtime of
the decode step. However, it is not at all obvious how to speed up the encode step. To
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implement the flow vector scheme of Section 3.1 as written, it seems almost inherent that
one needs to invert an m x m matrix. Indeed, an inability to overcome this bottleneck is
stated explicitly as part of the motivation in [1] for focusing on the k-APVC problem instead.

Our Improvement

The main idea behind our new algorithm for k-APC is to work with a low-rank version of the
matrix K used in Equation (1) for the encode step.

Specifically, we construct certain random sparse matrices L and R with dimensions m x kn
and kn x m respectively. We then set K = LR, and argue that with high probability, the
matrix M defined in Equation (1) for this choice of K satisfies

rank M [Eqout (), Ein(t)] = min(k, A(s, t)). (3)
This equation is just a k-bounded version of Equation (2). By Proposition 6, we have
M=(I-K)y'=(I~-LR)™'=I+L(I-RL)'R.

Note that (I — RL) is a kn x kn matrix. So, to compute M (and thus complete the encode
step) we no longer need to invert an m x m matrix! Instead we just need to invert a matrix
of size kn x kn. This is essentially where the O ((kn)*) runtime in Theorem 4 comes from.

Conceptually, this argument corresponds to assigning flow vectors through the graph by
replacing random linear combinations with random “low-rank combinations.” That is, for an
edge e € Foui(u) exiting a vertex u, we define the flow vector at e to be

522 Z Li[fau]f 'Ri[uae]ﬂ

i=1 \ f€Eum(u)

where the inner summation is over all edges f entering wu, f denotes the flow vector assigned
to edge f, and the L;[f,u] and R;[u,e] terms correspond to random field elements uniquely
determined by the index ¢ and some (edge, vertex) pair.

Here, unlike in the method described in Section 3.1, the coefficient in front of f in its
contribution to € is not uniquely determined by the pair of edges f and e. Rather, if edge
f enters node u, then it has the same set of “weights” L;[f, u] it contributes to every flow
vector exiting u. However, since we use k distinct weights, this restricted rule for propagating
flow vectors still suffices to compute min(k, A(s,t)).

A good way to think about the effect of this alternate approach is that now for any
vertex v and any integer £ < k, if some subset of ¢ flow vectors assigned to edges in Fi,(v) is
independent, then we expect that every subset of at most ¢ flow vectors assigned to edges in
Eout(v) is also independent. In the previous framework, this result held even for ¢ > k. By
relaxing the method used to determine flow vectors, we achieve a weaker condition, but this
is still enough to solve k-APC.

This modification makes the encode step more complicated (it now consists of two
parts: one where we invert a matrix, and one where we multiply that inverse with other
matrices), but speeds it up overall. To speed up the decode step, we use a variant of an
observation from the proof of [1, Theorem 5.2] to argue that we can assume every vertex in
our graph has indegree and outdegree k. By Proposition 8 and Equation (3), this means we
can compute min(k, \(s,t)) for all pairs (s, t) of vertices in O(k“n?) time. So the bottleneck
in our algorithm comes from the encode step, which yields the O ((kn)*) runtime.
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3.3 All-Pairs Vertex Connectivity

Our starting point is the O ((kn)“) time algorithm in [1], which computes min(k, (s, t)) for
all pairs of vertices (s,t) which are not edges. That algorithm is based off a variant of the
flow vector encoding scheme outlined Section 3.1. Rather than assign vectors to edges, we
instead assign flow vectors to vertices (intuitively this is fine because we are working with
vertex connectivities in the k-APVC problem). The rest of the construction is similar: we
imagine pumping some initial vectors to s and its out-neighbors, and then we propagate the
flow through the graph so that at the end, for any vertex v, the flow vector assigned to v is a
random linear combination of flow vectors assigned to in-neighbors of v.%

Let K be an n X n matrix, whose rows and columns are indexed by vertices in the input
graph. For each pair (u,v) of vertices, if there is an edge from u to v, we set K[u,v] to be a
uniform random element in F. Otherwise, K [u,v] = 0. These entries correspond precisely to
coefficients used in the random linear combinations of the flow vector framework.

Now define the matrix

M=(1-K)"" (4)
Then we argue that for any pair (s,t) of vertices, we have

v(s,t)+1 if (s,t)is an edge

v(s,t) otherwise.

rank M [Vou[s], Via[t] = { (5)

Previously, [1, Proof of Lemma 5.1] sketched a different argument, which shows that
rank M [Vous(s), Vin(t)] = v(s,t) when (s,t) is not an edge.

We use Equation (5) to solve k-APVC. For the encode step, we compute M. By
Equation (4), we can do this by inverting an n x n matrix, which takes O(n®) time. For
the decode step, by Equation (5) and Proposition 8, we can compute min(k, v(s,t)) for all
pairs (s,t) of vertices in asymptotically

Z (degout (S) degin(t) + kw) = m2 + kwTLQ

s,t

time, where the sum is over all vertices s and t in the graph. The runtime bound we get
here for the decode step is far too high — naively computing the ranks of submatrices is too
slow if the graph has many high-degree vertices.

To avoid this slowdown, [1] employs a simple trick to reduce degrees in the graph: we
can add layers of k new nodes to block off the ingoing and outgoing edges from each vertex
in the original graph. That is, for each vertex s in G, we add a set S of k new nodes, replace
the edges in Fout(s) with edges from s to all the nodes in S, and add edges from every node
in S to every vertex originally in Vo, (s). Similarly, for each vertex ¢ in G, we add a set T of
k new nodes, replace the edges in Ej,(t) with edges from all the nodes in T to ¢, and add
edges from every vertex originally in Vi, (t) to every node in T'.

It is easy to check that this transformation preserves the value of min(k, v(s,t)) for all
pairs (s,t) of vertices in the original graph where (s,t) is not an edge. Moreover, all vertices
in the original graph have indegree and outdegree exactly k in the new graph. Consequently,
the decode step can now be implemented to run in O(k‘“nQ) time. Unfortunately, this

6 Actually, this behavior only holds for vertices v & Vous [s]. The rule for flow vectors assigned to vertices
in Vout[s] is a little more complicated, and depends on the values of the initial pumped vectors.
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construction increases the number of vertices in the graph from n to (2k + 1)n. As a
consequence, in the encode step, the matrix K we work with is no longer n x n, but instead

is of size (2k + 1)n x (2k + 1)n. Now inverting I — K to compute M requires O ((kn)“) time,
which is why [1] obtains this runtime for their algorithm.

Our Improvement

Intuitively, the modification used by [1] to reduce degrees in the graph feels very inefficient.
This transformation makes the graph larger in order to “lose information” about connectivity
values greater than k. Rather than modify the graph in this way, can we modify the flow
vector scheme itself to speed up the decode step? Our algorithm does this, essentially
modifying the matrix of flow vectors to simulate the effect of the previously described
transformation, without ever explicitly adding new nodes to the graph.

Instead of working directly with the matrix M from Equation (4), for each pair (s,t) of
vertices we define a (k + 1) x (k4 1) matrix

Ms,t = By (M[‘/out[s]a Vin [tﬂ) Cy

which is obtained from multiplying a submatrix of M on the left and right by small random
matrices B; and C, with k£ + 1 rows and columns respectively. Since B has k 4+ 1 rows and
C; has k 4 1 columns, we can argue that with high probability, Equation (5) implies that

min(k + 1,v(s,t) + 1) if (s,t) is an edge

rank M, ; =
min(k + 1,v(s,t)) otherwise.

So we can compute min(k,v(s,t)) from the value of rank M ;. This idea is similar to the
preconditioning method used in algorithms for computing matrix rank efficiently (see [6] and
the references therein). Conceptually, we can view this approach as a modification of the
flow vector framework. Let d = deg,,.(s). As noted in Section 3.1, previous work

1. starts by pumping out distinct d-dimensional unit vectors to nodes in Vg (s), and then
2. computes the rank of all flow vectors of vertices in Vi, (¢).

In our work, we instead
1. start by pumping out (d+ 1) random (k + 1)-dimensional vectors to nodes in Vyu[s], and
then
2. compute the rank of (k4 1) random linear combinations of flow vectors for vertices in
Viu[t]-
This alternate approach suffices for solving the k-APVC problem, while avoiding the slow
O((kn)“) encode step of previous work.
So, in the decode step of our algorithm, we compute min(k, v(s,t)) for each pair (s,t) of
vertices by computing the rank of the (k4 1) x (k 4 1) matrix M, in O(k“n?) time overall.
Our encode step is more complicated than previous work, because not only do we need
to compute the inverse (I — K)~!, we also have to construct the M, matrices. Naively
computing each M, matrix separately is too slow, so we end up using an indirect approach
to compute all entries of the M, ; matrices simultaneously, with just O(k?) multiplications
of n x n matrices. This takes O(k?>n®) time, which is the bottleneck for our algorithm.

4 Flow Vector Encoding

The arguments in this section are similar to the arguments from [7, Section 2], but involve
more complicated proofs because we work with low-rank random matrices as opposed to
generic random matrices.
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Fix a source vertex s in the input graph G. Let d = deg, . (s) denote the number of edges
leaving s. Let e1,...,eq € FEout(s) be the outgoing edges from s.
Take a prime p = ©(m®). Let @1, ...,y be distinct unit vectors in Fg.

Eventually, we will assign each edge e in G a vector € € ]Fg, which we call a flow vector.

These flow vectors will be determined by a certain system of vector equations. To describe
these equations, we first introduce some symbolic matrices.

For each index i € [k], we define an m x n matrix X;, whose rows are indexed by edges
of G and columns are indexed by vertices of G, such that for each edge e = (u,v), entry
Xile,v] = ¢, is an indeterminate. All entries in X; not of this type are zero. Similarly, we
define n x m matrices Y;, with rows indexed by vertices of G and columns indexed by edges
of G, such that for every edge f = (u,v), the entry Y;[u, f] = ;s is an indeterminate. All
entries in Y; not of this type are zero. Let X be the m x kn matrix formed by horizontally
concatenating the X; matrices. Similarly, let Y be the kn x m matrix formed by vertically
concatenating the Y; matrices. Then we define the matrix

Z=XY=X1 +-+ XiY}. (6)

By construction, Z is an m X m matrix, with rows and columns indexed by edges of G, such
that for any edges e = (u,v) and f = (v, w), we have

k
Z[e,f] = in,evyi,vf (7)
=1

and all other entries of Z are set to zero.

Consider the following procedure. We assign independent, uniform random values from
IF, to each variable x; ¢, and y; 5. Let L;, L, R;, R, and K be the matrices over ), resulting
from this assignment to X;, X,Y;, Y, and Z respectively. In particular, we have

K = LR. (8)
Now, to each edge e, we assign a flow vector € € ]F;‘f, satisfying the following equalities:

1. Recall that eq,...,eq are all the edges exiting s, and iy, ..., Ug are distinct unit vectors
in Fg. For each edge e; € Eout(s), we require its flow vector satisfy

=\ Y f-Klfel]]|+i. (9)

fEFEin(s)

2. For each edge e = (u,v) with u # s, we require its flow vector satisfy

e= S FoKlfel (10)

f€Ein (“)

A priori it is not obvious that flow vectors satisfying the above two conditions exist, but we
show below that they do (with high probability). Let Hy be the d x m matrix whose columns
are indexed by edges in G, such that the column associated with e; is @; for each index i, and
the rest of the columns are zero vectors. Let F' be the d x m matrix, with columns indexed
by edges in G, whose columns F'[*,e] = € are flow vectors for the corresponding edges. Then
Equations (9) and (10) are encapsulated by the simple matrix equation

F=FK+H,. (11)

The following lemma shows we can solve for F' in the above equation, with high probability.
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» Lemma 10. We have det(I — K) # 0, with probability at least 1 — 1/m3.

Proof. Since the input graph has no self-loops, by Equation (7) and the discussion immedi-
ately following it, we know that the diagonal entries of the m x m matrix Z are zero. By
Equation (7), each entry of Z is a polynomial of degree at most two, with constant term set
to zero. Hence, det(I — Z) is a polynomial over F, with degree at most 2m, and constant
term equal to 1. In particular, this polynomial is nonzero. Then by the Schwartz-Zippel
Lemma (Proposition 9), det(I — K) is nonzero with probability at least

1—2m/p>1—1/m3
by setting p > 2m?. <

Suppose from now on that det(I—K) # 0 (by Lemma 10, this occurs with high probability).
Then with this assumption, we can solve for F' in Equation (11) to get

H; (adj(I — K))

F=H(I-K)" = det(I — K)

(12)
This equation will allow us to relate ranks of collections of flow vectors to connectivity values
in the input graph.

» Lemma 11. For any vertex t in G, with probability at least 1 — 2/m3, we have
rank F[x, Fi, ()] < A(s,t).

Proof. Abbreviate A = A(s,t). Conceptually, this proof works by arguing that the flow
vectors assigned to all edges entering ¢ are linear combinations of the flow vectors assigned
to edges in a minimum (s, t)-cut of G.

Let C be a minimum (s, t)-cut. By Menger’s theorem, |C| = .

Let S be the set of nodes reachable from s without using an edge in C, and let T" be the
set of nodes which can reach ¢ without using an edge in C. By definition of an (s, t)-cut, S
and T partition the vertices in G.

Now, let E’ be the set of edges e = (u,v) with v € T. Set K/ = K[E', E'] and
F' = F[*, E']. Finally, let H' be a matrix whose columns are indexed by edges in E’, such
that the column associated with an edge e € C is €, and all other columns are equal to 0.

Then by Equations (9) and (10), we have

F =FK +H.

Indeed, for any edge e = (u,v) € F’, if u € S then e € C so H'[,e] = €, and there can be
no edge f € E’ entering u, so (F'K')[*,e] = 0. If instead u € T, then H'[x, ] = 0, but every
edge f entering u is in E’, so by Equation (10), we have (F'K')[*, e] = F'[«,¢] as desired.
Using similar reasoning to the proof of Lemma 10, we have det(I —K") # 0 with probability
at least 1 — 1/m?3. If this event occurs, we can solve for F” in the previous equation to get

F'=H'(I-K)"

Since H' has at most A nonzero columns, rank H < \. So by the above equation, rank F’ < .
By definition, Ei,(t) C E’. Thus F[x, Ei,(t)] is a submatrix of F’. Combining this with the
previous results, we see that rank F[x, Fi,(t)] < A, as desired. The claimed probability bound
follows by a union bound over the events that I — K and I — K’ are both invertible. <
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» Lemma 12. For any vertex t in G, with probability at least 1 — 2/m3, we have
rank F[*, Fi,(t)] > min(k, A(s,1)).

Proof. Abbreviate A = min(k, \(s,t)). Intuitively, our proof will argue that the presence of
edge-disjoint paths from s to ¢t will lead to certain edges in Ej,(t) being assigned linearly
independent flow vectors (with high probability), which will then imply the desired rank
lower bound.

By Menger’s theorem, G contains A edge-disjoint paths Py,..., Py from s to t.

Consider the following assignment to the variables of the symbolic matrices X; and Y;.
For each index ¢ < X and edge e = (u,v), we set variable z; ., = 1 if e is an edge in P;.

Similarly, for each index i < X and edge f = (u,v), we set variable y; s = 1 if f is an edge
in P;. All other variables are set to zero. In particular, if ¢ > A, then X; and Y; have all
their entries set to zero. With respect to this assignment, the matrix X;Y; (whose rows and
columns are indexed by edges in the graph) has the property that (X;Y;)[e, f] =1 if f is the
edge following e on path P;, and all other entries are set to zero.

Then by Equation (6), we see that under this assignment, Z[e, f] = 1 if e and f are
consecutive edges in some path P;, and all other entries of Z are set to zero. For this
particular assignment, because the P; are edge-disjoint paths, Equations (9) and (10) imply
that the last edge of each path P; is assigned a distinct d-dimensional unit vector. These
vectors are independent, so, rank F'[x, Ei, ()] = A in this case.

With respect to this assignment, this means that F[*, Fi,(¢)] contains a A x A full-rank
submatrix. Let F’ be a submatrix of F[x, Ei,(t)] with this property. Since F” has full rank,
we have det F’ # 0 for the assignment described above.

Now, before assigning values to variables, each entry of adj(I — Z) is a polynomial of
degree at most 2m. So by Equation (12), det F’ is equal to some polynomial P of degree at
most 2Am, divided by (det(I — Z))*. We know P is a nonzero polynomial, because we saw
above that det F” is nonzero for some assignment of values to the variables (and if P were
the zero polynomial, then det F’ would evaluate to zero under every assignment).

By Lemma 10, with probability at least 1—1/m?, a random evaluation to the variables will
have det(I — Z) evaluate to a nonzero value. Assuming this event occurs, by Schwartz-Zippel
Lemma (Proposition 9), a random evaluation to the variables in Z will have det F/ # 0 with
probability at least 1 — (2Am)/p > 1 — 1/m? by setting p > 2m?°.

So by union bound, a particular A x A submatrix of F[*, Fi,(t)] will be full rank with
probability at least 1 — 2/m?>. This proves the desired result. |

» Lemma 13. Fiz vertices s and t. Define X = rank (I — K) Y Eou(s), Ein(t)]. With
probability at least 1 —4/m3, we have min(k, \) = min(k, A\(s,t)).

Proof. The definition of H, together with Equation (12) implies that
Flx, Ein(t)] = (I = K) ™ [Eou(s), En(1)]. (13)
By union bound over Lemmas 11 and 12, with probability at least 1 — 4/m? the inequalities
A =rank (I — K) Y [Eou(s), Ein(t)] = rank F[x, Ei, (t)] < A(s, t)
and
A =rank (I — K) " '[Eout(s), Ein(t)] = rank F[x, Fiy (t)] > min(k, A(s, t))

simultaneously hold. The desired result follows. <
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5 Connectivity Algorithm

In this section, we present our algorithm for k-APC.

We begin by modifying the input graph G as follows. For every vertex v in G, we
introduce two new nodes voys and vi,. We replace each edge (u,v) originally in G is by the
edge (Uout, Vin).- We add k parallel edges from v to vout, and k parallel edges from vy, to v,
for all v and v. We call vertices present in the graph before modification the original vertices.

Suppose G originally had n nodes and m edges. Then the modified graph has nyew = 3n
nodes and myew = m + 2kn edges. For any original vertices s and ¢, edge-disjoint paths from
s to t in the new graph correspond to edge disjoint paths from s to ¢ in the original graph.
Moreover, for any integer ¢ < k, if the original graph contained ¢ edge-disjoint paths from s
to t, then the new graph contains ¢ edge-disjoint paths from s to t as well.

Thus, for any original vertices s and ¢, the value of min(k, A(s,t)) remains the same in
the old graph and the new graph. So, it suffices to solve k-APC on the new graph. In this
new graph, the indegrees and outdegrees of every original vertex are equal to k. Moreover,
sets Eout(s) and Fi,(t) are pairwise disjoint, over all original vertices s and t.

We make use of the matrices defined in Section 4, except now these matrices are defined
with respect to the modified graph. In particular, K, L, and R are now matrices with
dimensions Mpew X Mnew; Mnew X Mnews aANd Npew X Mpew respectively.

Define L to be the kn X npe, matrix obtained by vertically concatenating L[Eqyu;($), %]
over all original vertices s. Similarly, define R to be the nnew X kn matrix obtained by
horizontally concatenating R[x, Fi,(t)] over all original vertices t.

The Algorithm
Using the above definitions, we present our approach for solving k-APC in Algorithm 1.

Algorithm 1 Our algorithm for solving k-APC.

1: Compute the nyeyw X Npew matrix (I — RL)™L
2: Compute the knyew X kNpew matrix M = L(I — RL)™'R.
3: For each pair (s,t) of original vertices, compute

rank M [Eout (), Ein (1))

and output this as the value for min(k, A(s,t)).

» Theorem 14. With probability at least 1 — 5/(Mpew), Algorithm 1 correctly solves k-APC.

Proof. By Lemma 10, with probability at least 1 — 1/(myeyw)* the matrix I — K is invertible.
Going forward, we assume that I — K is invertible.
By Lemma 13, with probability at least 1 — 4/(mpew)>, we have

rank(l — K) " [Eouw(s), Ein(t)] = min(k, A(s, t)) (14)

for any given original vertices s and t. By union bound over all n? < (Mmyey)? pairs of original
vertices (s, 1), we see that Equation (14) holds for all original vertices s and ¢ with probability
at least 1 — 4/(Mpew)-

Since I — K is invertible, by Equation (8) and Proposition 6 we have

(I-K)'=(I-LR)y'=I+L(I—-RL)'R.
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Using the above equation in Equation (14) shows that for original vertices s and ¢, the
quantity min(k, A(s,t)) is equal to the rank of

(I 4+ L(I — RL) " 'R)[Eout(5), Ein(t)] = L[Eow(s), *](I — RL) "' R[*, By, (t)]

where we use the fact that I[Eyut(s), Ein(t)] is the all zeroes matrix, since in the modified
graph, Eout(s) and Ej,(t) are disjoint sets for all pairs of original vertices (s,t).
Then by definition of L and R, the above equation and discussion imply that

min(k, \(s,t)) = rank (ji(] — RL)71R) [Eout(8), Ein(t)] = rank M[Eou(s), Ein(t)]

which proves that Algorithm 1 outputs the correct answers.
A union bound over the events that I — K is invertible and that Equation (14) holds for
all (s,t), shows that Algorithm 1 is correct with probability at least 1 — 5/(mpew)- <

We are now ready to prove our main result.
» Theorem 4. For any positive integer k, k-APC can be solved in O((kn)*) time.

Proof. By Theorem 14, Algorithm 1 correctly solves the k-APC problem. We now argue
that Algorithm 1 can be implemented to run in O((kn)“) time.

In step 1 of Algorithm 1, we need to compute (I — RL)™?.

From the definitions of R and L, we see that to compute RL, it suffices to compute the
products R;L; for each pair of indices (i,j) € [k]2. The matrix R;L; iS Npew X Nnew, and its
rows and columns are indexed by vertices in the graph. Given vertices v and v, let E(u,v)
denote the set of parallel edges from u to v. From the definitions of the R; and L; matrices,
we see that for any vertices u and v, we have

(RiLp)[u,v] = > Rifu,e]Ljle, v]. (15)
e€E(u,v)

As noted in Section 2, for all vertices v and v we may assume that |E(u,v)| < k.

For each vertex u, define the k x deg,(u) matrix R!,, with rows indexed by [k] and

uI

columns indexed by edges exiting u, by setting
Rl [i,e] = Ri[u, €]

for all ¢ € [k] and e € Eqy(u).
Similarly, for each vertex v, define the deg;, (v) X k matrix L] by setting

Li} [e’j] = Lj [6, 'U]

for all e € Ey(v) and j € [k].
Finally, for each pair (u,v) of vertices, define R

w = Rl E(u0)] and L, =
L! [E(u,v),*]. Then by Equation (15), we have

(RiLj)[u7 U] = R:szw [Z,j]

Thus, to compute the R; L, products, it suffices to build the R, and L/ matrices in O (kmpew)
time, and then compute the R, L/, products. We can do this by computing (nyey)” products
of pairs of k X k matrices. Since for every pair of vertices (u,v), there are at most k parallel
edges from u to v, kMmpew < k*n?, we can compute all the R;L; products, and hence the
entire matrix RL, in O(n?k*) time.
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We can then compute I — RL by modifying O(kn) entries of RL. Finally, by Proposition 7
we can compute (I — RL)~" in O((kn)*) time.

So overall, step 1 of Algorithm 1 takes O((kn)“) time.

In step 2 of Algorithm 1, we need to compute M = L(I — RL)"'R.

Recall that L is a kn X nyew matrix. By definition, each row of L has a single nonzero
entry. Similarly, R is an npew X kn matrix, with a single nonzero entry in each column.

Thus we can compute M, and complete step 2 of Algorithm 1 in O((kn)?) time.

Finally, in step 3 of Algorithm 1, we need to compute
rank M[Eqgut(s), Ein(t)) (16)

for each pair of original vertices (s,t) in the graph. In the modified graph, each original
vertex has indegree and outdegree k, so each M[FEqu(s), Fin(t)] is a k x k matrix. For any
fixed (s,t), by Proposition 8 we can compute the rank of M[Eoy(s), Fi(t)] in O(k*) time.
So we can compute the ranks from Equation (16) for all n? pairs of original vertices (s, )
and complete step 3 of Algorithm 1 in O(k“n?) time.
Thus we can solve k-APC in O((kn)*) time overall, as claimed. <

6 Encoding Vertex Connectivities

Take a prime p = (:)(n5) Let K be an n X n matrix, whose rows and columns are indexed by
vertices of G. For each pair (u,v) of vertices, if (u,v) is an edge in G, we set K[u,v] to be a
uniform random element of F,,. Otherwise, K[u,v] = 0.

Recall from Section 2 that given a vertex v in G, we let Vi,[v] = Vip(v) U {v} be the set
consisting of v and all in-neighbors of v, and Vout[v] = Vour(v) U {v} be the set consisting of
v and all out-neighbors of v. The following proposition” is based off ideas from [7, Section 2].
A proof of this result can be found in the full version of this paper [3, Appendix B.2].

» Proposition 15. For any vertices s and t in G, with probability at least 1 — 3/n>, the
matriz (I — K) is invertible and we have

rank (1K) Vo], Valt] = {”“’“ T s ede
v(s,t) otherwise.

Proposition 15 shows that we can compute vertex connectivities in GG simply by computing
ranks of certain submatrices of (I — K)~!. However, these submatrices could potentially
be quite large, which is bad if we want to compute the vertex connectivities quickly. To
overcome this issue, we show how to decrease the size of (I — K)~! while still preserving
relevant information about the value of v(s,t).

» Lemma 16. Let M be an a x b matriz over F,. LetT' be a (k+ 1) X a matriz with uniform
random entries from Fp,. Then with probability at least 1 — (k + 1)/p, we have

rank I'M = min(k + 1, rank M).

" The result stated here differs from a similar claim used in [1, Section 5]. See the full version of this
paper [3, Appendix B.1] for a comparison of these arguments.
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Proof. Since I'M has k + 1 rows, rank(I'M) < k + 1.
Similarly, since M has M as a factor, rank(T'M) < rank M. Thus

rank I'M < min(k + 1, rank M). (17)

So, it suffices to show that I'M has rank at least min(k + 1, rank M).

Set r = min(k 4 1,rank M). Then there exist subsets S and T of row and column indices
respectively, such that |S| = |T| = r and M[S,T] has rank r. Now, let U be an arbitrary set
of r rows in I". Consider the matrix M’ = (T M)[U, T].

We can view each entry of M’ as a polynomial of degree at most 1 in the entries of T'.
This means that det M’ is a polynomial of degree at most r in the entries of I'. Moreover,
if the submatrix T'[U,T] = I happens to be the identity matrix, then M’ = M[S,T]. This
implies that det M’ is a nonzero polynomial in the entries of T", because for some assignment
of values to the entries of T', this polynomial has nonzero evaluation det M[S,T] # 0 (where
we are using the fact that M[S,T] has full rank).

So by the Schwartz-Zippel Lemma (Proposition 9), the matrix I'M has rank at least r,
with probability at least 1 — r/p.

Together with Equation (17), this implies the desired result. <

Now, to each vertex u in the graph, we assign a (k + 1)-dimensional column vector bu
and a (k + 1)-dimensional row vector ¢,.
Let B be the (k+1) x n matrix formed by concatenating all of the b, vectors horizontally,

and let C be the n x (k + 1) matrix formed by concatenating all of the &, vectors vertically.

For each pair of distinct vertices (s, t), define the (k + 1) x (k + 1) matrix
M = B, Vousls]] (I = K) ™ [Vout[s], Via[t]]) C[Vin[t], #]. (18)
The following result is the basis of our algorithm for k-APVC.
» Lemma 17. For any vertices s and t in G, with probability at least 1 — 5/n3, we have
min(k + 1,v(s,t) + 1) if (s,t) is an edge
rank M, ; =
’ min(k + 1,v(s,t)) otherwise.

Proof. Fix vertices s and t. Then, by Proposition 15, we have

t)+1 if (s,t) i d
rank (I — K) ™ [Voue[s], Vialt] = v(s,t)+1 if (s,t) is an edge
v(s,t) otherwise

with probability at least 1 — 3/n3. Assume the above equation holds.
Then, by setting I' = B[x, Vout[s]] and M = (I — K)™![Vout[s], Vin[t] in Lemma 16, we
see that with probability at least 1 — 1/n® we have
in(k + 1 t)+1) if (s,t)i d
vank Bl Vit [8]1 (1 — K)~ [Voue 8], Vin (1)] = min(k + 1,v(s,t) +1) if (s,t) is an edge .
min(k + 1,v(s,t)) otherwise.

Assume the above equation holds.
Finally, by setting T' = C' T [*, Vi, (t)] and M = (B[x, Vou[s]](I — K) ™ [Vous[s], Vin(H)]) T in
Lemma 16 and transposition, we see that with probability at least 1 — 1/n3 we have

rank B[, Vout[s] (I — K) ™ [Vout[s], Vin(t)]) C[Vin(t), %] = min(k + 1, v(s, t) + 1)
if there is an edge from s to ¢, and
rank B[, Vous[s]] (I — K) ™ [Vout[s], Vin(t)]) C[Vin(t), %] = min(k + 1,v(s, t))
otherwise. So by union bound, the desired result holds with probability at least 1 —5/n3. <
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7 Vertex Connectivity Algorithm

Let A be the adjacency matrix of the graph G with self-loops. That is, A is the n x n matrix
whose rows and columns are indexed by vertices of G, and for every pair (u,v) of vertices,
Alu,v] = 1 if v € Voui[u] (equivalently, u € Viy[v]), and Afu,v] = 0 otherwise.

Recall the definitions of the Eu and ¢, vectors, and the K, B, C' and M, ; matrices from
Section 6. For each i € [k + 1], let P; be the n x n diagonal matrix, with rows and columns
indexed by vertices of G, such that P;[u,u] = b, [i]. Similarly, let Q; be the n x n diagonal
matrix, with rows and columns indexed by vertices of G, such that Q;[u, u] = &,[i].

With these definitions, we present our approach for solving k-APVC in Algorithm 2.

Algorithm 2 Our algorithm for solving k-APVC.

1: Compute the n x n matrix (I — K)~*
2: For each pair (i, ) € [k + 1]? of indices, compute the n x n matrix

Dij = AP,(I - K)7'Q;AT.

3: For each pair (s,t) of vertices, let Fy ¢ be the (k+1) x (k+ 1) matrix whose (7, j) entry is
equal to Dj;[s,t]. If (s,¢) is an edge, output (rank F ;) — 1 as the value for min(k, v(s,t)).
Otherwise, output min(k, rank F; ;) as the value for min(k, v(s,t)).

The main idea of Algorithm 2 is to use Lemma 17 to reduce computing min(k, v(s,t))
for a given pair of vertices (s,t) to computing the rank of a corresponding (k + 1) x (k + 1)
matrix, M, ;. To make this approach efficient, we compute the entries of all M, ; matrices
simultaneously, using a somewhat indirect argument.

» Theorem 18. With probability at least 1 — 5/n, Algorithm 2 correctly solves k-APVC.
Proof. We prove correctness of Algorithm 2 using the following claim.

> Claim 19. For all pairs of indices (4,5) € [k + 1]? and all pairs of vertices (s,t), we have
Ms,t[ivj] = Dij[87t]7
where D;; is the matrix computed in step 2 of Algorithm 2.

Proof. By expanding out the expression for D;; from step 2 of Algorithm 2, we have

D;j[s, ] ZA s, u]P, ((I K)~ [u,v}) Qjlv,v]Alv, ],

where the sum is over all vertices u,v in the graph (here, we use the fact that P; and @; are
diagonal matrices). By the definitions of A, the P;, and the Q; matrices, we have

D;jls, t] Z b K) ™ Mu,v)) &[] (19)
uevout[ ]
vEVin[t]

On the other hand, the definition of M, from Equation (18) implies that
stZ] Z BZU‘ I K) [ ])C[Ua]]

uevout[ ]
Ue‘/in [t]
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Since Bli,u] = by,[i] and Cv,j] = &,[j], the above equation and Equation (19) imply that
Ms,t[i7 ]] = Dij [Sv ﬂ
for all (i,7) and (s,t), as desired. <

By Claim 19, the matrix F§; computed in step 3 of Algorithm 2 is equal to M, ;. So by
Lemma 17, for any fixed pair (s,t) of vertices we have

min(k + 1,v(s,t) +1) if (s,¢) is an edge

(20)
min(k + 1,v(s,t)) otherwise.

rank Fy ; = {

with probability at least 1 —5/n®. Then by a union bound over all pairs of vertices (s,t), we
see that Equation (20) holds for all pairs (s,t), with probability at least 1 — 5/n.
Assume this event occurs. Then if (s,t) is an edge, by Equation (20) we correctly return

(rank Fys ;) — 1 =min(k + 1,v(s,t) + 1) — 1 = min(k, v(s, t))

as our answer for this pair.
Similarly, if (s, t) is not an edge, by Equation (20) we correctly return

min(k,rank F, ;) = min(k, k + 1,v(s,t)) = min(k, v(s, t))
as our answer for this pair. This proves the desired result. <

With Theorem 18 established, we can prove our result for vertex connectivities.
» Theorem 5. For any positive integer k, k-APVC can be solved in O(k*n®) time.

Proof. By Theorem 18, Algorithm 2 correctly solves the k-APVC problem. We now argue
that Algorithm 2 can be implemented to run in O(k?*n®) time.

In step 1 of Algorithm 2, we need to compute (I — K)~!. Since K is an n x n matrix, by
Proposition 7 we can complete this step in O(n®) time.

In step 2 of Algorithm 2, we need to compute D;; for each pair (4,7) € [k + 1]>. For each
fixed pair (4, 7), the D;; matrix is defined as a product of five n x n matrices whose entries
we know, so this step takes O(an“) time overall.

In step 3 of Algorithm 2, we need to construct each Fy; matrix, and compute its rank.
Since each Fg; matrix has dimensions (k + 1) x (k4 1) and its entries can be filled in simply
by reading entries of the D;; matrices we have already computed, by Proposition 8 this step
can be completed in O(k“n?) time.

By adding up the runtimes for each of the steps and noting that & < n, we see that
Algorithm 2 solves k-APVC in O(k?n®) time, as claimed. <
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—— Abstract

A recent breakthrough work of Limaye, Srinivasan and Tavenas [29] proved superpolynomial lower

bounds for low-depth arithmetic circuits via a “hardness escalation” approach: they proved lower
bounds for low-depth set-multilinear circuits and then lifted the bounds to low-depth general circuits.
In this work, we prove superpolynomial lower bounds for low-depth circuits by bypassing the hardness
escalation, i.e., the set-multilinearization, step. As set-multilinearization comes with an exponential
blow-up in circuit size, our direct proof opens up the possibility of proving an exponential lower
bound for low-depth homogeneous circuits by evading a crucial bottleneck. Our bounds hold for
the iterated matrix multiplication and the Nisan-Wigderson design polynomials. We also define
a subclass of unrestricted depth homogeneous formulas which we call unique parse tree (UPT)
formulas, and prove superpolynomial lower bounds for these. This significantly generalizes the
superpolynomial lower bounds for regular formulas [6,19].
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1 Introduction

Arithmetic circuits are a natural model for computing polynomials using the basic operations

of addition and multiplication. One of the most fundamental questions about arithmetic

circuits is about finding a family of explicit polynomials (if they exist) that cannot be

computed by polynomial-sized arithmetic circuits. The existence of such explicit polynomials

was conjectured by Valiant in 1979 [40] and is the famed VP vs VNP conjecture. Arithmetic
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circuit lower bounds are expected to be easier than Boolean circuit lower bounds. Among
many reasons, one is due to the phenomenon of depth reduction. Arithmetic circuits can be
converted into low-depth circuits preserving the output polynomial and not blowing up the
size too much [1,10,22,39,41]. Due to this, strong enough lower bounds even for restrictive
models of computation like depth-3 circuits or homogeneous depth-4 circuits can lead to
superpolynomial arithmetic circuit lower bounds.

Arithmetic formulas are an important subclass of arithmetic circuits where the out-degree
of every gate is at most 1. For constant-depth, formulas and circuits are polynomially
related. Also, all our results deal with formulas. So we will only refer to formulas from
here on. We consider (families of) polynomials having degree at most polynomial in n,
the number of variables. One of the first results studying low-depth arithmetic formulas
was that of [32], who proved lower bounds for homogeneous depth-3 formulas. Progress on
homogeneous formula lower bound was stalled for a while, and then various lower bounds for
homogeneous depth-4 formulas were proven in a series of works [6,9,13,14,19,25,26]. There
was limited progress for higher-depth formulas, and lower bounds remained open even for
depth-5 formulas. In a recent breakthrough work, [29] proved superpolynomial lower bounds
for constant-depth arithmetic formulas. Their lower bounds are of the form nf2(08(m)®) for
a constant 0 < ca < 1 depending on the depth A of the formula. The following two open
problems naturally emerge out of their work.

» Open Problem 1. Prove superpolynomial lower bounds for general formulas or even
homogeneous formulas. (A formula is homogeneous if every gate computes a homogeneous
polynomial.)

» Open Problem 2. Prove exponential lower bounds for constant-depth arithmetic formulas.
This is interesting even for homogeneous depth-5 formulas.

Towards answering Open Problems 1.1 and 1.2, let us examine the lower bound proof in
[29] at a high level. Their proof has two main steps: First, they reduce the problem of proving
lower bounds for low-depth formulas to the problem of proving lower bounds for low-depth
set-multilinear formulas; set-multilinear formulas are special homogeneous formulas with
an underlying partition of the variables into subsets. [29] calls such reductions “hardness
escalation”. Second, they use an interesting adaptation of the rank of the partial derivatives
matrix measure [31] to prove a lower bound for low-depth set-multilinear formulas. They call
this measure relative rank (relrk). The effectiveness of the relrk measure crucially depends on
a certain “imbalance” between the sizes of the sets used to define set-multilinear polynomials.
The proof in [29] raises two natural questions:

Question 1: Can we bypass the hardness escalation, i.e., the set-multilinearization, step?
Question 2: Can we design a measure that exploits some weakness of homogeneous (but
not necessarily set-multilinear) formulas directly?

Motivations for studying Question 1. Set-multilinear circuits form a natural circuit class
as most interesting polynomial families, such as the determinant, permanent, iterated matrix
multiplication, etc., are set-multilinear. However, set-multilinearization comes with an
exponential blow up in size — a homogeneous, depth-A formula computing a set-multilinear
polynomial of degree d can be converted to a set-multilinear formula of depth A and size
dO@ . 5 (see [29]). So, an exponential lower bound for low-depth set-multilinear formulas
does not imply an exponential lower bound for low-depth homogeneous formulas since we
are restricted to work with d < log’ﬁ) gn. Indeed, it is possible to strengthen and refine the
argument in [29] to get an exponential lower bound for low-depth set-multilinear formulas
(see [2]). An approach that evades the hardness escalation step, which is a critical bottleneck,
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and directly works with homogeneous formulas has the potential to avoid the d°(% loss and
give an exponential lower bound for low-depth homogeneous formulas. For instance, the
direct arguments in [14,26] yield exponential lower bounds for homogeneous depth-4 formulas.
If we go via the hardness escalation approach, we get a quasi-polynomial lower bound for
the same model. Besides, a direct argument can also be used to prove lower bounds for
polynomials that do not have a non-trivial set-multilinear component, see the full version
of this article [2] for more details. The hardness escalation approach of [29] can not yield
such a lower bound. Furthermore, it is conceivable that a direct argument can also be used
to obtain functional lower bounds for low-depth formulas which might be useful in proof
complexity.

Motivations for studying Question 2. Typical measures used for proving lower bounds for
arithmetic circuits include the partial derivatives measure (PD) [32,38], the rank of the partial
derivatives matrix measure (a.k.a. evaluation dimension) [31,34,36], the shifted partials
measure (SP) and its variants [9,14,19], the affine projections of partials measure (APP) [7,15],
etc. All these measures are defined for any polynomial, which is not necessarily set-multilinear.
Whereas the relrk measure used in [29], although very effective, is defined for set-multilinear
polynomials. Measures such as PD, SP, and APP have the geometrically appealing property
that they are invariant under the application of invertible linear transformations on the
variables. Since low-depth formulas, as well as low-depth homogeneous formulas, are closed
under linear transformations, it is natural to look for measures that do not blow up much
on applying linear transformations. Another important motivation for studying Question 2
is to learn low-depth homogeneous formulas. While the “hardness escalation” paradigm of
reducing to the set-multilinear case works for proving lower bounds, it is not clear how to
exploit it to design learning algorithms for low-depth formulas. Lower bounds for arithmetic
circuits are intimately connected to learning [5,7,18,42]. Hence if we have a lower bound
measure that directly exploits the weakness of low-depth homogeneous formulas, it opens up
the possibility of new learning algorithms for such models.

1.1 Our results

We answer Questions 1 and 2 by giving a direct lower bound for low-depth homogeneous
formulas via the SP measure which was used in the series of works on homogeneous depth-4
exponential lower bounds. While our proof also yields lower bounds only in the low-degree
setting, the hope is that it could potentially lead to a stronger lower bound in the future.

Consider the shifted partials measure: SPy, ,(f) := dim(x’ - 8%(f)), where f is a poly-
nomial. That is, SPy ¢(f) is the dimension of the space spanned by the polynomials ob-
tained by multiplying degree ¢ monomials to partial derivatives of f of order k. Also,
for convenience, let us denote by M(n,k) := (”+Z_1) the number of monomials of de-
gree k in n variables. Then note that for a homogeneous polynomial f of degree d,
SPo(f) < min{M(n,k)M(n,€), M(n,d —k +£)}.

We show that for polynomials computed by low-depth homogeneous formulas, the shifted
partials measure with an appropriate setting of k and £ is substantially smaller than the
above upper bound. At the same time, we exhibit explicit “hard” polynomials for which the
shifted partials measure is close to the above bound, hence yielding a lower bound.

» Theorem 3 (Lower bound for low-depth homogeneous formulas via shifted partials). Let C' be
a homogeneous formula of size s and product-depth A that computes a polynomial of degree d
in n variables. Then for appropriate values of k and ¥,

520(d)
n
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At the same time, there are homogeneous polynomials f of degree d in n variables (e.g., an
appropriate projection of iterated matriz multiplication polynomial, Nisan-Wigderson design
polynomial, etc.) such that

SPie(f) 2 270 min{M(n, k)M (n. 0), M(n,d — k + )},

S1-A
This gives a lower bound of % on the size of homogeneous product-depth A formulas
for f.

» Remark 4.

1. At the end of this section, we briefly remark why it is surprising that we are able to
obtain the above lower bound using shifted partials. We also show that the lower bound
can be derived using the affine projections of partials (APP) measure (Lemma 19).

2. The above lower bound is slightly better than the bound of [29]. Instead of the d°(® loss
incurred due to converting homogeneous to set-multilinear formulas, our analysis incurs a
20(d) oss; in fact, this loss can be brought down to 2°(), but we ignore this distinction
as we set k = ©(d) in the analysis. So, for example, for homogeneous product-depth 2
formulas, our superpolynomial lower bound continues to hold for a higher degree (log*(n)
vs (log(n)/loglog(n))? in [29]). While the improvement may be insignificant, this hints
at something interesting going on with the direct approach (see Section 1.2).

Lower bounds for general-depth arithmetic formulas are expected to be easier than
arithmetic circuit lower bounds. However, despite several approaches and attempts (e.g. via
tensor rank lower bounds [35]), we still do not have superpolynomial arithmetic formula
lower bounds. There has been some success though in proving lower bounds for some natural
restricted models (apart from the depth restrictions considered above). For example, [19]
considered the model of regular arithmetic formulas. These are formulas which consist of
alternating layers of addition (4) and multiplication (x) gates such that the fanin of all gates
in any fixed layer is the same. This is a natural model and the best-known formulas for many
interesting polynomial families like determinant, permanent, iterated matrix multiplication,
etc. are all regular. [19] proved a superpolynomial lower bound on the size of regular formulas
for an explicit polynomial and later [6] proved a tight lower bound for the iterated matrix
multiplication polynomial.

We prove superpolynomial lower bounds for a more general model.! Consider a model
of homogeneous arithmetic formulas consisting of alternating layers of addition (+) and
multiplication (Xx) gates such that the fanin of all addition gates can be arbitrary but fanin
of product gates in any fixed layer is the same. We call these product-regular. We prove
super-polynomial lower bounds for homogeneous product-regular formulas. Previously we
did not know of lower bounds for even a much simpler model where the fanins of all the
product gates are fixed to 2.

In fact, we prove lower bounds for an even more general model which we call Unique Parse
Tree (UPT) formulas. A parse tree of a formula is a tree where for every + gate, one picks
exactly one child and for every product gate, we pick all the children. Then we “short circuit”
all the addition gates. Parse trees capture the way monomials are generated in a formula.
We say that a formula is UPT if all its parse trees are isomorphic. A product-regular formula
is clearly UPT. In the theorem below, IM M, 1055 is the iterated multiplication polynomial
of degree logn.

! The model in [6,19] allowed slight non-homogeneity with the formal degree upper bounded by a small
constant times the actual degree. However, we only work with homogeneous formulas.
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» Theorem 5. Any UPT formula computing I M M,, 144(n) has size at least nf?oglog(n)) = 4
similar lower bound holds for the Nisan- Wigderson design polynomial.

» Remark 6.

1. While homogeneous product-regular formulas are restricted to compute polynomials
with only certain degrees (e.g., higher product-depth cannot compute prime degrees),
homogeneous UPT formulas do not suffer from this restriction.

2. While this result (which is obtained using the SP and the APP measures) could possibly
also be obtained by defining a similar model in the set-multilinear world, proving a lower
bound there and then transporting it back to the homogeneous world, our framework has
fewer number of moving parts and hence makes it easier to derive such results.

Challenges to using the SP measure. Let us remark briefly why it is surprising that we
are able to prove low-depth lower bounds via shifted partials. [8,37] showed that the PD
measure of the polynomial (2% + --- + z%)% is the maximum possible when the order of
derivatives, k, is at most %. Notice that (22 +-- -+ z%)% can be computed by a homogeneous
depth-4 formula of size O(nd). So, it is not possible to prove super-polynomial lower bounds
for low-depth homogeneous formulas using the PD measure as it is. One may ask if the
SP measure also has a similar limitation. Some of the finer separation results in [23,24]
indicate that the SP measure (and some of its variants) can be fairly large for homogeneous
depth-4 and depth-5 formulas for the choices of k used in prior work. Also, the exponential
lower bounds for homogeneous depth-4 circuits in [14,26] use random restrictions along with
a variant of the SP measure. It is not clear how to leverage random restrictions for even
homogeneous depth-5 circuits — this is also pointed out in [29]. Fortunately, [23,24] do not
rule out the possibility of using SP for all choices of parameters, like, say, k ~ %7 to prove
lower bounds for low-depth homogeneous formulas. But, the original intuition from algebraic
geometry that led to the development of the SP measure (see [9] Section 2.1) breaks down
completely when & is so large (see [2]). Despite these apparent hurdles, and to our surprise,
we overcome these challenges and are able to use SP with &k ~ g to prove super-polynomial
lower bounds for low-depth homogeneous formulas. To the best of our knowledge, no previous
work uses SP with this high a value of k.

1.2 Techniques and proof overview

In this section, we explain the proof idea and compare it with that in [29]. A lot of lower
bounds in arithmetic complexity follow the following outline.

Step 1: Depth reduction. One first shows that if f(x) is computed by a small circuit
from some restricted subclass of circuits, then there is a corresponding subclass of depth-4

circuits such that f(x) is also computed by a relatively small circuit from this subclass?.

The resulting subclass is of the form: f(x) = >.7_; Hz;l Qi,;. Usually there are simple
restrictions on the degrees of ); ;’s. For example, they could be upper bounded by some
number.

2 Some major results in the area such as (29, 33] did not originally proceed via a depth reduction but
instead analysed formulas directly. These results can however be restated as first doing a depth reduction
and then applying the appropriate measure.

12:5
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Step 2: Employing a suitable set of linear maps. Let F[x]=¢ be the space of homogeneous
polynomials of degree d, W be a suitable vector space, and Lin(F[x]=¢, W) be the space of
linear maps from F[x]=? to W. We choose a suitable set of linear maps £ C Lin(F[x]=¢, W)
that define a complexity measure us(f) := dim(L(f)), where L(f) := ({L(f) : L € L}).

We would like to choose £ so that it identifies some weakness of the terms H§:1 Q; in

the depth-4 circuit. That is, p, (H;Zl Qj) should be much smaller than u.(f) for a generic
f. For e.g., if @;’s are all linear polynomials, we can choose L to be the partial derivatives of
order k, 8*. Then, p, (H;Zl Qj) < ( ) < (n+k 1) which is the value for a generic f (for
k <t/2). This is the basis of the homogeneous depth-3 formula lower bound in [32].

For proving lower bounds for bounded bottom fan-in depth-4 circuits (i.e., when degree
of @;’s is upper bounded by some number), [9,13] introduced the SP measure and used the
linear maps £ = x* - 8*. The main insight in their proof was that if we apply a partial
derivative of order k£ on H;Zl Q; and use the product rule, then at least t — k of the @);’s
remain untouched. This structure can then be exploited by the shifts to get a lower bound.
This intuition however completely breaks down for k > ¢ (see [2]). Due to this, progress
remain stalled for higher depth arithmetic circuit lower bounds via SP.

In a major breakthrough, [29] gets around the above obstacle by working with set-
multilinear circuits which entails working with polynomials over d sets of variables (x1, ..., Xq),
|x;| = n. Let us use the shorthand xg = (X;);es. The products they deal with are of the
form H —1Qj(xs;), where S1,5,...,S; form a partition of [d]. The set of linear maps they
use are L' IT o Oy, for a subset A C [d]. Here, IT is a map that sets n — ng variables in
each of the variable sets in x[d]\ A to 0. They observe (for the appropriate choice of ng) that

e (I Qifxs)) < 5=

Here, imbalance; = HA N S |log(n) — |S;\Allog(no)|. For the appropriate choice of ny,
a generic set-multilinear f satisfies pz(f) = nl4l, so that lower bound (on the number of
summands) obtained is exponential in the total imbalance 22:1 imbalance;. [29] observe
that this quantity is somewhat large for the depth-4 circuits that they consider.

imbalance ;

The core of the above derivatives-based argument allows us to unravel some structure in
partial derivatives of order k applied on H§:1 Q; for values of k > t. We use this to derive
a structure for the partial derivative space of a product H§:1 Q;(x). Consider a partial
derivative operator of order k indexed by a multiset « of size k. Using the chain rule,

t t

j— (e} .

a@ H Qj - § : Cal,.“,at H aanJ
J=1 al,.“,atzzzzl a;=a Jj=1

for appropriate constants c¢g,  ,,’s. In the product H§:1 Oa,;Qj, we can try to club terms
into two groups depending on if the size of |ey;| is small or large. It turns out that the right
threshold for |a;| is k deg(Q;)/d (i.e., if we divide the order of the derivatives proportional
to the degrees of the terms). Let S := {j : |o;| < k deg(Q;)/d}. Define ko := > ¢yl
and {o 1= } . 5(deg(Q;) — [aj|). Notice that we can write the product Hj‘:l 0a,Qj as
PH]ES Oa;Qj, for a degree £y polynomial P. Hence, 0, H;Zl Q; is a sum of terms of this
form. While it is not immediate (due to the condition on «;’s in S), with a bit more work,
one can combine the product of partials into a single partial.

What can we say about kg and ¢3? It turns out that the quantity that comes up in the
calculations is kg + ﬁﬂo and it satisfies kg + ﬁﬁo < k. Note that kg is between 0 and k,
and ¢y between 0 and d — k. So the normalization brings ¢y to the right “scale”.
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It turns out we can give a better bound in terms of a quantity we call residue defined as

t

1
residuey (dy, ..., d;) := 3, rni]?EZ E
V1 vt .
Jj=1

k

ki = dyl.

and having the property that:

» Proposition 7. Let ky and fy be defined as above. Then, ko + ﬁﬁo < k -
residuey(di, ..., d:), where dj = deg(Q;).

We want to spread the derivatives equally among all terms but cannot due to integrality issues.
The residue captures this quantitatively and as described below, is what gives us our lower
bounds. While the proof in [29] also relies on an integrality issue, there it originates from an
imbalance between the sizes of the variable sets involved in a set-multilinear partition (as the
map II sets some variables in certain sets to 0). In contrast, we show that the integrality issue
arising directly from the derivatives can be leveraged without involving set-multilinearity.
In this sense, our approach is conceptually direct and simpler. Combined with the above
discussion, we get the following structural lemma about the derivative space of H;Zl Qj.

» Lemma 8.

<ak (Ql o Qt)> c Z <X€o . ako H Qj > .
SC[t], ko€[0..k], £o€[0..(d—k)], Jjes
kUJ’,ﬁ.ZD < k—residuey (di,...,d¢)

Now we have the choice to utilize the above structure using an additional set of linear
maps. Both shifts and projections give similar lower bounds, so let us explain shifts here.
Note that there is an intriguing possibility of getting even better lower bounds (in terms of
dependence on d) using other sets of linear maps! From the above structural result, we have

<x€ .9 (Q1 - Qt)> - Z <X1€+1Zo . §%o H Q; > )

SC[H, ko€[0..K], Lo€[0..(d—k)], jes
k}oerfkk-Zo < lcfresiduek(dl,.“,dt)

Thus we can upper bound,

SPre((Q1-+- Q) <2 - d*- ma

X
ko,o>0
k’o+dfkk'£0 < k—residueg (d1,...,d¢)

M(n, ko) - M(n, £y +£)

P 20(d) )
<2'.d ) min{M (n, k)M (n,€), M(n,d — k +¢)},

nresiduek(dh...,dt
where the second inequality follows from elementary calculations.

Now to upper bound the shifted partial dimension of polynomials computed by low-depth
formulas, we give a decomposition for such formulas into sums of products of polynomials
(Lemma 16) where the degree sequences are carefully chosen so that that the residues can be
simultaneously lower bounded for all the terms (Lemma 17). While in a different context,
these calculations do bear similarity with related calculations in [29].

Step 3: Lower bounding dim(L(f)) for an explicit f. As a last step, one shows that

for some explicit candidate hard polynomial dim(£(f)) is large and thereby obtains a lower
bound. This is another step where bypassing set-multilinearity helps as one is not constrained

ICALP 2023
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to pick a set-multilinear hard polynomial. Indeed, using a straightforward analysis we show
that the APP measure is high for an explicit non-set-multilinear polynomial (see Remark 23).
We also show that the measures are high for more standard polynomial families such as the
iterated matrix multiplication polynomials and the Nisan-Wigderson design polynomials.

Application to UPT formulas. We observe here that for the subclass of homogeneous
formulas that we call UPT formulas, one can do a depth-reduction to obtain a depth-4
formula in which all the summands have the same factorization pattern (i.e. the sequence
of degrees of the factors in all the summands is that same) - see Lemma 30. We further
observe (Lemma 31) that for any fixed sequence of degrees, there exists a suitable value of
the parameter k such that the residue is sufficiently large. This gives us the superpolynomial
lower bound for UPT formulas as stated in Theorem 5.

Despite the conceptual directness and simplicity of our approach, in bypassing set-
multilinearity, some of the calculations in the analysis become evidently more involved than
that in [29]. This is primarily due to the delicate choice of parameters in ratios involving
binomial coefficients; this is also the case in several prior exponential lower bound proofs
using SP and its variants [14,16,26]. Nevertheless, we think that by circumventing a critical
bottleneck, the analysis opens up the possibility of an exponential lower bound for low-depth
arithmetic circuits. Some of the ideas may indeed yield stronger bounds in the future.

Organization. After describing preliminaries in Section 2, we present a structural theorem
about the derivative space of a product of homogeneous polynomials in Section 3. This
result is then directly used to upper bound both the SP and APP measures of a product of
polynomials. Using this result and a decomposition result for low-depth formulas, we obtain
lower bounds for low-depth formulas in Section 4. Finally, we prove lower bounds for UPT
formulas in Section 5.

2 Preliminaries

In this section, we give the essential notations and definitions necessary to follow the article.

Let a,b,c be real numbers. Then we define the sets [a..b] := {z € Z: z € [a,b]} and
[a] := [1..a]. For a constant ¢ > 1 and b > 0, we say a =, b if a € [b/c,b]. We write a ~ b
if a ~. b for some (unspecified) constant c. All logarithms have base 2 unless specified
otherwise. We denote the fractional part of a by {a} := a — |a] and the nearest integer of
a by |a]. The following quantity will be crucially used in the proofs of our lower bounds.
Here we think of dy,...,d; as degrees of certain homogeneous polynomials, d as the degree
of the product of those polynomials, and k is the order of partial derivatives used for the
complexity measures.

t
» Definition 9 (residue). For non-negative integers dy, ... ,dy such that d:= > d; > 1 and
i=1

t

k € [0..(d — 1)], we define residuey(ds,...,d;) == 1 - _ min__ |ki — & dy].
15kt €L ;=1

1=

The factor of half has been included in the definition just to make the statements of some
of the lemmas in our analysis simple. It is easy to show that residueg(dy,...,d;) < % The
minimum is attained when for all i € [t], k; = | £ - d;]. When we use residue in the analysis
of complexity measures, we would also have the following additional constraints that k; > 0
and k; < d;, k1 +--- + k, = k, where k shall be the order of derivatives. As the value of

residue can not decrease when we impose these constraints, we omit them.
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Let n and ng be positive integers. Define variable sets x := {x,...,2,} and
z = {z1,...,2n,}. For a monic monomial m and a P € F[x], we define 9,,P € F[x]
to be the polynomial obtained by successively taking partial derivatives with respect
to all the variables of m (counted with their multiplicities). For an integer ¢ > 0,
xt = {m® 2, t e, . e, € Zsg and Zie[n] e; = L}. For an integer k > 0 and
P € Flx], 8"P = {8,P:mex"}. For a P € Flx], a map L : x — (z), and
S C Fix], mr(P) € Flz] and 7(S) C F[z] are defined as 7 (P) := P(L(z1),...,L(zy))
and 77,(S) := {n(P) : P € 8}, respectively.

For S, T CF[x],S-T:={P-Q:PcS and QeT} andS+T ={P+Q: P €
S and Q € T} For a § C F[x], we define its span as (S) C F[x] to be the set of all
polynomials which can be expressed as F-linear combinations of elements in S. For a
S C F[x], its dimension, denoted by dim S, refers to the maximum number of linearly
independent polynomials in S. We can now define the complexity measures for polynomials
that we use to prove our lower bounds: the shifted partials (SP) measure and the affine
projections of partials (APP) measure.

» Definition 10 (SP and APP measures). For a polynomial P € F[x], non-negative in-
tegers k, 0, and ny € [n|, we define SPy¢(P) := dim <x£-8kP> and APPj . (P) =
di 9k P)).
ey dim (7, (9"P))
SP and APP are sub-additive. APP is related to the skewed partials and relrk measures used
in [15] and [29], respectively. For a comparison, see [2].
Next, we define a subclass of homogeneous formulas which we call UPT formulas®.

» Definition 11. A homogeneous formula C' is said to be a unique-parse-tree formula if all
of its parse trees are isomorphic to each other as directed graphs.

For a UPT formula C, we define its canonical parse tree to be some fixed tree among all
the parse trees (this is a binary tree without loss of generality). For a detailed definition of
(canonical) parse tree, we refer the reader to the full version of this article [2].

Iterated Matrix Multiplication. The iterated matrix multiplication, I M M,, 4 is a polynomial
in N = d-n? variables defined as the (1,1)-th entry of the matrix product of d many n x n
matrices whose entries are distinct variables. To prove a lower bound for IM M, we analyze
the SP and APP for a projection of IM M, Py that was introduced in [29].

» Definition 12 (Word polynomial Py, [29]). Given a word w = (wy, ..., wq) € Z%, let x(w)
be a tuple of d pairwise disjoint sets of variables (x1(W), ..., xq(W)) with |x;(w)| = 21Vl for
all i € [d]. x;(w) will be called negative if w; < 0 and positive otherwise. As the set sizes
are powers of 2, we can map the variables in a set x;(w) to Boolean strings of length |w;|.
Let o : x — {0,1}" be such a mapping.* We extend the definition of o from variables to
set-multilinear monomials as follows: Let X = x1---x, be a set-multilinear monomial where
T € Xg(3y(W) and ¢ : [r] = [d] be an increasing function. Then, we define a Boolean string
o(X) :=o(x1)o---00(x.), where o denotes the concatenation of bits. Let My (w) and
M_(w) denote the set of all (monic) set-multilinear monomials over all the positive sets

3 Our definition for UPT formulas is more general than the model considered in a recent paper by Limaye,
Srinivasan and Tavenas [30] as we do not impose set-multilinearity.
4 Note that ¢ may map a variable from x;(w) and a variable from x;(w) to the same string if i # 7.
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and all the negative sets, respectively. For two Boolean strings a,b, we say a ~ b if a is a
prefix of b or vice versa. For a word w, the corresponding word polynomial Py, is defined as
Py = > my - m_.
myEMy(w), m_eM_(w)
o(my) ~ o(m-)

We will make use of the following lemma from [29] which shows that computing IM M
is at least as hard as computing Py. For this, we recall the notion of unbiased-ness of
w = (w1, ..., wq) from [29] — we say that w is h-unbiased if max;ciq) w1 + - -+ + w;| < h.

» Lemma 13 (Lemma 7 in [29]). Let w € [—h..h]? be h-unbiased. If for some n > 2",
IMM,, 4 has a formula C of product-depth® A and size s, then Py has a formula C' of
product-depth at most A and size at most s. Moreover, if C is homogeneous, then so is C’
and if C is UPT, then so is C' with the same canonical parse tree.

Nisan-Wigderson design polynomial. For a prime power ¢ and d € N, let x =
{xl,h -5 T1,q,

cees®d 1., %dq}. For any k € [d], the Nisan-Wigderson design polynomial on gd variables,
denoted by NW, g, or simply NW, is defined as follows:

NWyar = Z H Zi,h(s)-
]

h(z)€Fq[z]: i€ld

deg(h)<k
The IM M and the NW polynomials, and their variants, have been extensively used to prove
various circuit lower bounds [3,4,11,14,16,19-21,23,26,27, 29, 32].

3  Structure of the space of partials of a product

In this section, we bound the partial derivative space of a product of homogeneous polynomials.
In the following lemma, we show that the space of k-th order partial derivatives of a product
of polynomials is contained in a sum of shifted partial spaces with shift ¢; and order of
derivatives kg such that kg + ﬁ - g is “small”. Using this lemma, we upper bound the SP
and APP measures of a product of homogeneous polynomials. These bounds are then used
in Sections 4 and 5 for proving lower bounds for low-depth homogeneous formulas and UPT
formulas respectively. Missing proofs from this section can be found in the full version of
this article [2],

» Lemma 14 (Upper bounding the partials of a product). Let n and t be positive integers
and Q1,...,Q¢ be non-constant, homogeneous polynomials in F[x]| with degrees dy,...,d;

t
respectively. Let d := deg(Q1---Q¢) = >_ d; and k < d be a non-negative integer. Then,
i=1

<ak (Qle»g Z <xéo,3ko (HQ7>>
L0€[0..(d—k)],

SClt], ko€l0..k], €S
k0+d%'k‘[0 < k—residueg (dq,...,d¢)

We now use the above lemma to upper bound the shifted partials and affine projections of
partials measures of a product of polynomials.

5 The product-depth of a formula is the maximum number of product gates on any path from the root to
a leaf in the formula.

6 Although the lemma in [29] is stated for set-multilinear circuits, it also applies to homogeneous formulas
and UPT formulas (albeit with a mild blow-up in size) by the same argument.
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» Lemma 15 (Upper bounding SP and APP of a product). Let Q = Q1 - - - Q+ be a homogeneous
polynomial in F[xq,...,x,] of degree d =dy + -+ dy > 1, where Q; is homogeneous and
d; := deg(Q;) fori € [t]. Then, for any non-negative integers k < d, £ >0, and ng < n,

SPk,[(Q) < 2t . d2 . max M(Tl, k’o) . M(n, by + f),
ko,£0>0
kg—i—ﬁ%o < k—residueg (dq,...,dt)

max M(n, kq) - M(ng, ).
jnax (n, ko) - M(no, €o)
ko+ﬁ-fo < kfresiduek(dl,...,dt)

4 Lower bound for low-depth homogeneous formulas

In this section, we present a superpolynomial lower bound for “low-depth” homogeneous
formulas computing the IM M and NW polynomials. We begin by proving a structural
result for homogeneous formulas. Missing proofs from this section can be found in the full
version of this article [2].

4.1 Decomposition of low-depth formulas

We show that any homogeneous formula can be decomposed as a sum of products of
homogeneous polynomials of lower degrees, where the number of summands is bounded by
the number of gates in the original formula. The decomposition lemma given below bears
some resemblance to a decomposition of homogeneous formulas in [12]. In the decomposition
in [12], the degrees of the factors of every summand roughly form a geometric sequence, and
hence each summand is a product of a “large” number of factors. Here we show that each
summand has “many” low-degree factors. While the lower bound argument in [29] does not
explicitly make use of such a decomposition, their inductive argument can be formulated as a
depth-reduction or decomposition lemma (with slightly different thresholds for the degrees).

» Lemma 16 (Decomposition of low-depth formulas). Suppose C' is a homogeneous formula
of product-depth A > 1 computing a homogeneous polynomial in Fx1,...,x,] of degree at
least d > 0. Then, there exist homogeneous polynomials {Q; ;}, ; in Flx1,...,2n] such that

1. C= Z Qi1 Qiy,, for some s <size(C), and
i=1
2. for alli € [s], either

1{j € [t:] : deg(Qi;) =1} > d> | or

Hj € [t;] : deg(Qi ;) ~2 dQIJH >d? " —1 , for some § € [2..A].

4.2 Low-depth formulas have high residue

The following lemma gives us a value for the order of derivatives k£ with respect to which
low-depth formulas yield high residue. Its proof uses Lemma 16.

12:11
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» Lemma 17 (Low-depth formulas have high residue). Suppose C is a homogeneous formula
of product-depth A > 1 computing a polynomial in Flxy, ..., x,] of degree d, where 270 =
w(1). Then, there exist homogeneous polynomials {Q;;},; ; in Flzy, ..., x,] such that C =

S
> Qi Qiyy, for some s < size(C). Fizing an arbitrary ¢ € [s], let t := t; and define
i=1

d; = deg(Q;) for j € [t]. Then, residuey(dy,. .. d;) > Q(dQl_A>, where k = {%J

A-1 v —
a:= Y 5;131, and T = {dzl AJ.
v=0

4.3 High residue implies lower bounds

“random” homogeneous degree-d polynomial in F[xq,...,x,], if the shift ¢ is not

For a
too large, we expect the SP measure to be close to the maximum number of operators
used to construct the shifted partials space, i.e., M(n,k)-M(n,¢). Explicit examples of
such polynomials are given in Section 4.4. In the lemma below, we derive a lower bound
corresponding to the decompositions established above. The main step is to show that the

SP measure of a high-residue-decomposition is small.

S

» Lemma 18 (High residue implies lower bounds). Let P = Y Qi1-- Qi be a
i=1

homogeneous n-variate polynomial of degree d where {Q”}ZJ are homogeneous and

SPre(P) > 279 . M(n,k)-M(n,t) for some 1 < k < $ng < n and £ = {"—dJ

27 no
_k_
such that d < ng ~ 2(d—k)-(%)™*. If there is a v > 0 such that for all i € [s],
residues (deg(Qi.1), - - ., deg(Qi,)) > 7, then s > 279 (%)Q(v).

We state an analogous lemma with APP instead of SP.

» Lemma 19 (High residue implies lower bounds, using APP). Let P = > Qi1 Qi
i=1

be a homogeneous n-variate polynomial of degree d where {Qm}i’j areihomogeneous
and APPy,,(P) > 279 . M(nk) for some 1 < k < % ny < n such that
d < ny = 2(d—k:).(%)ﬁ. If there is a v > 0 such that for all i € [s],
residue (deg(Q;.1), .. .,deg(Qi ;) >, then s > 2-0(d). (%)Q(V).

» Remark 20. In the above lemmas, although our lower bound appears as 2~ (D). p2()
similar calculations actually give a lower bound of 2=9®*).n2() for any choice of k and an
appropriate choice of ¢ (or ng in the case of APP). We do not differentiate between the
two, as for our applications (i.e., low-depth circuits and UPT formulas), the value of k we
choose is ©(d). Moreover, we observe that the factor of 279(*) in our lower bounds is likely
unavoidable for any choice of k and ¢ (or ng in the case of APP) using our current estimates
for the complexity measures. We refer the reader to the full version of this article [2] for more
details.

4.4 The hard polynomials

We shall prove our lower bound for the word polynomial Py, introduced in [29] as well as for
the Nisan-Wigderson design polynomial. In order to do this, we show that the SP and APP
measures of Py, and the SP measure of NW are large for suitable choices of k, £ and nqg.
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» Lemma 21 (P, as a hard polynomial). For integers h,d such that h > 100 and any
ke [30, 5] there exists an h-unbiased word w € [—h..h]?, integers ng < n, £ = {%J such

that ng ~ 2(d—k)-(% )ﬂ and the following bounds hold: SPy, ;(Py) > 279 DM (n, k)-M(n, ¢)
and APPy, . (Py) > 279 . M(n, k). Here n refers to the number of variables in Py, i.e.,

n= ZiG[d] 2lwil.

The following lemma shows that the SP measure of the Nisan-Wigderson design polynomial
is “large” for k as high as ©(d), if ¢ is chosen suitably.

2

» Lemma 22 (NW as a hard polynomial). For n,d € N such that 120 < d < 115 (1015%2“ ,
let q be the largest prime number between L%J and LQJ For parameters k [si % - 7‘1}
and £ = {%J where ng = 2(d — k)- (qk ) 'SP (NWyax) > 2-O@W . M(qd, k) - M(qd, 0).

» Remark 23. An advantage of directly analysing the complexity measures for homogeneous
formulas instead of for set-multilinear formulas is that our hard polynomial need not be set
multilinear. In the full version of this article [2], we describe an explicit non set-multilinear
polynomial P (in VNP) with a large APP measure; the construction is similar to a polynomial
n [7]. The proof that APP of P is large is considerably simpler than the proofs of the above
lemmas.

4.5 Putting everything together: the low-depth lower bound

» Theorem 24 (Low-depth homogeneous formula lower bound for IM M). For any d,n, A such
that n = w(d), any homogeneous formula of product-depth at most A computing IM M, 4

o' A)

over any field F has size at least 279 .p ( . In particular, when d = O(logn), we
Q(d21 A)

get a lower bound of n .

» Theorem 25 (Low-depth homogeneous formula lower bound for NW). Let n,d, A be positive
integers. If A = 1, let d = n'~¢ for any constant € > 0 and k = L%J Otherwise, let

d< -L (M)Q let T = {le_AJ a= Az_l CD and k= { J In both cases, let q b
: Y - Y - e - | 14« q ve

— 150 \ loglogn
v=0
n

the largest prime between LﬁJ and L%J Then, any homogeneous formula of product-depth at
o1 A)
most A computing NW, 4.1, over any field F has size at least 279(@.n ( . In particular,
of 42 A)
when d = O(logn), we get a lower bound of n ( .

» Remark 26. Notice that in the above theorem, as k depends on the product-depth A, the
polynomial NW, 4 may be different for different values of A. However, much like in [19],
there is a way to “stitch” all the different NW polynomials for different values of A into a
single polynomial P such that any homogeneous formula of product-depth A computing P

o1 A)
has size at least 2=9@p, ( . See Theorem 34 for more details.

In [29], the authors showed how to convert a circuit of product-depth A computing a
homogeneous polynomial to a homogeneous formula of product-depth 2A without much
increase in the size. Combining Lemma 11 from [29] with Theorems 24 and 25, we get:

12:13

ICALP 2023



12:14

Low-Depth Arithmetic Circuit Lower Bounds: Bypassing Set-Multilinearization

» Corollary 27 (Low-depth circuit lower bound for IMM). For any positive integers d,n, A
such that n = w(d), any circuit of product-depth at most A computing IM M, q over any

Q d21—2A )
field F with characteristic 0 or more than d has size at least 2=9(@.p ( ° .

o d21—2A)
In particular, when d = O(logn), we get a lower bound of n ( ° .

» Corollary 28 (Low-depth circuit lower bound for NW). Let n,d, A be positive integers.

If A =1, let d = n'~¢ for any constant ¢ > 0 and k = L%J Otherwise, let d <

2 - A-1 .
Flo (1023{%);”) ,let T = {d21 AJ, o= Zo 57121, and k = [%J In both cases, let q be the
o=

largest prime number between L%J and L%J Then, any circuit of product-depth at most

A computing NWy a1 over any field F of characteristic 0 or more than d has size at least
2128

2—O<d)-n9< 5

d21_2A )
In particular, when d = O(logn), we get a lower bound of n ( ° .

We note that our lower bounds quantitatively improve on the original homogeneous
formula lower bound of [29] in terms of the dependence on the degree. While [29] gives a

Q (dl/ZA 71>
lower bound of d°(-=%).n (as the conversion from homogeneous to set-multilinear

S1-A
formulas increases the size by a factor of d°(4)), our lower bound is 2~°(4).n ( ) . Thus,
we get slight improvement both in the multiplicative factor (from dP@ to QO(d)) and in the
exponent of n (from dﬁ to dm) We point out what these improvements mean for
smaller depths: For A = 2, our lower bound for homogeneous formulas computing IM M is
superpolynomial as long as d < ¢ - log? n for a small enough positive constant €, whereas the

2
lower bound in [29] does not work beyond d = O (( logn ) ) In particular, we obtain a

loglogn
lower bound of n21°8™) for the size of homogeneous depth-5 formulas computing I M M, 4
when d = ©(log® n). Finally, for A =3 and d < e- 10g4/3 n, we get a lower bound of nQ(dl/4),

as compared to n(@7) from [29].

5 Lower bound for unique-parse-tree formulas

In this section, we show that UPT formulas computing /M M must have a “large” size. We
begin by giving a decomposition for such formulas. Missing proofs from this section can be
found in the full version of this article [2].

5.1 Decomposition of UPT formulas

In order to upper bound the SP (or APP) measure of a UPT formula, we need certain results
about binary trees and UPT formulas. For a given canonical parse tree 7 with d leaves, we
define its degree sequence (dy,...,d;) using the function DEG-SEQ described in Algorithm 1.

We prove the following lemma in the full version of this article [2]. The idea here is to
“break” the tree at various nodes so that the successive sizes of the smaller trees are far from
each other.
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Algorithm 1 Degree sequence of a right-heavy binary tree.

1: function DEG-SEQ(T)

2 vg + root node of T.

3 if vg is a leaf then

4 return (1).

5: end if

6 d + leaves(vg), i < 0.

7 while v; is not a leaf do

8 Vi1 < right child of v;, i <— i + 1.
9

end while
10: v < v; corresponding to the largest index j such that leaves(v,) > %
11: dy + d — leaves(v).

12: return (dy, DEG-SEQ(Ty)).
13: end function

» Lemma 29. For a given canonical parse tree T with d > 1 leaves, let (dy,...,d;

~—

DEG-SEQ(T), where the function DEG-SEQ is given in Algorithm 1. Also let e; :=d — d;
j=1

fori € [t] and eq := d. Then, for alli € [t —1], e; € (e’gl, 2'e§‘1]. Additionally, d; = 1,
e =0, and loggd+1 <t <logs /o d + 1.

As mentioned in Section 4.1, it was shown in [12] that a homogeneous formula can be
expressed as a “small” sum of products of homogeneous polynomials such that in each
summand, the degrees of the factors roughly form a geometric sequence. We observe that this
result can be strengthened for UPT formulas; in particular, we show that for UPT formulas,
the “degree sequences” of all the summands are identical.

» Lemma 30 (Log-product decomposition of UPT formulas). Let f € F[x] be a homogeneous
polynomial of degree d > 1 computed by a UPT formula C' with canonical parse tree T (C). Let
(di,...,dt) := DEG-SEQ(T (C)). Then there exist an integer s < size(C) and homogeneous
polynomials {Qi;}, ; where deg(Qi;) = d; fori € [s], j € [t], such that

F=Y Qi1 Qi
i=1

5.2 UPT formulas have high residue

Now we show that there exists a value of k that has high residue with respect to the degrees
of the factors given by the above log-product lemma.

» Lemma 31 (High residue for a degree sequence). For any given canonical parse tree T with
d > 1 leaves, let (dy,...,d:) := DEG-SEQ(T) and k := UpT-K(dy,...,d:) where the function
UpT-K is described in Algorithm 2. Then

> logs d — 10.

residueg(dy, ..., d;) 916
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Algorithm 2 The value of k£ for a given sequence of degrees.

1: function UpT-K(d1,...,dt)
/* Returns k which shall be the order of derivatives for the SP and APP measures. */

2: d=dy+ -+ d;.
3: for i € [0..t] do
4: e +—d— Z dj.
j=1
5: end for
m < Lloggsd—lJ .
/* Defining a function J : [3m]| — [t — 2]. */
7 for i € [3m] do
8: J (i) < min {j € [0..t] : ¢; < 3},
9: end for
10: (a1y...,am) < undefined.
11: for i € [m] do
12: j <« J(3i).
i—1
13: bo < (Z ;;;) 'dj+1.
p=1
/* b1 defined below is not used in the algorithm but will be useful in the analysis. */
i1
14: by + ( ;TIL + 3%”) cdjy1.
p=1
15: if {bo} € [, 1] then
16: a; < 0.
17: else
18: a; < 1.
19: end if

20: end for

21: a< Y o
p=1
22: k<+ |a-d]
23: return k.
24: end function

5.3 Putting everything together: the UPT formula lower bound

In this section, we state our lower bounds for UPT formulas.

» Theorem 32 (UPT formula lower bound for IMM). For n € N and d < e-logn -loglogn,
where € > 0 is a small enough constant, any UPT formula computing IM M, q over any field
F has size n¥1ogd),

» Remark 33. The above theorem can also be derived by using the complexity measure
studied in [29] along with the observation that the unbounded-depth set-multilinearization
due to [35] (which increases the size by a factor of 29(®)) preserves parse trees.

We also get an analogous theorem for a polynomial related to the NW polynomial.

» Theorem 34. Letn € N, d < e¢-logn -loglogn, where € > 0 is a small enough constant,
and q be the largest prime number between [%J and L%J Then, any UPT formula computing
[d/2]
P= Yy - NW,a,; (where the y variables are distinct from the x variables), over any
i=[d/30]
field F has size n2108d),
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6 Conclusion

Recently, [29] made remarkable progress on arithmetic circuit lower bounds by giving the
first super-polynomial lower bound for low-depth formulas. They achieve this by a hardness
escalation approach via set-multilinearization. But, set-multilinearization is an inherently
expensive process that seems to restrict us from obtaining an exponential lower bound for even
homogeneous low-depth formulas. In this work, we take the vital first step of sidestepping
set-multilinearization and showing a super-polynomial lower bound for low-depth formulas
via a direct approach. A direct approach does not seem to incur an inherent exponential
loss. So, it might be possible to prove stronger lower bounds for low-depth homogeneous
formulas or other related models using this approach or an adaptation of it.

Problem 1. Prove exponential lower bounds for low-depth homogeneous arithmetic formulas.
Prove exponential lower bounds for low-depth, multi-r-ic formulas.

A formula is said to be multi-r-ic, if the formal degree of every gate with respect to every
variable is at most r [17,21]. The UPT formula lower bound proved in this work is for
formulas computing polynomials of degree at most O(logn -loglogn). It would be interesting
to increase the range of degrees for which our bound works. In the non-commutative setting,
exponential lower bounds are known for formulas with exponentially many parse trees [28].

Q(log d) O(l)'

Problem 2. Prove an n lower bound for UPT formulas for d = n Prove a

superpolynomial lower bound for formulas with “many” parse trees.

Our work also raises the prospect of learning low-depth homogeneous formulas given black-box
access using the “learning from lower bounds” paradigm proposed in [7,18].

Problem 3. Obtain learning algorithms for random low-depth homogeneous formulas.

To upper bound SP or APP of a homogeneous formula C', we first show in Section 3 that the
space of partial derivatives of C' has some structure and then exploit this structure using
shifts or affine projections. There might be a better way to exploit this structure, say by
going modulo an appropriately chosen ideal or using random restrictions along with shifts as
done in [14,26]. Exploring this possibility is also an interesting direction for future work.
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—— Abstract

We present a new multi-layer peeling technique to cluster points in a metric space. A well-known
non-parametric objective is to embed the metric space into a simpler structured metric space such
as a line (i.e., Linear Arrangement) or a binary tree (i.e., Hierarchical Clustering). Points which
are close in the metric space should be mapped to close points/leaves in the line/tree; similarly,
points which are far in the metric space should be far in the line or on the tree. In particular we
consider the Maximum Linear Arrangement problem [20] and the Maximum Hierarchical Clustering
problem [12] applied to metrics.

We design approximation schemes (1 — ¢ approximation for any constant ¢ > 0) for these
objectives. In particular this shows that by considering metrics one may significantly improve former
approximations (0.5 for Max Linear Arrangement and 0.74 for Max Hierarchical Clustering). Our
main technique, which is called multi-layer peeling, consists of recursively peeling off points which
are far from the “core” of the metric space. The recursion ends once the core becomes a sufficiently
densely weighted metric space (i.e. the average distance is at least a constant times the diameter)
or once it becomes negligible with respect to its inner contribution to the objective. Interestingly,
the algorithm in the Linear Arrangement case is much more involved than that in the Hierarchical
Clustering case, and uses a significantly more delicate peeling.
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1 Introduction

Unsupervised learning plays a major role in the field of machine learning. Arguably the most
prominent type of unsupervised learning is done through clustering. Abstractly, in this setting
we are given a set of data points with some notion of pairwise relations which is captured
via a metric space (such that closer points are more similar). In order to better understand
the data, the goal is to embed this space into a simpler structured space while preserving the
original pairwise relationships. A prevalent solution in this domain is to build a flat clustering
(or partition) of the data (e.g., by using the k-means algorithm). However, these types of
solutions ultimately fail to capture all pairwise relations (e.g., intra-cluster relations). To
overcome this difficulty, often the metric space is mapped to structures that may capture all
pairwise relations - in our case into a Linear Arrangement (LA) or a Hierarchical Clustering
(HC).
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Multi Layer Peeling for LA and HC

The idea of embedding spaces by using a Linear Arrangement or Hierarchical Clustering
structure is not new. These types of solutions have been extensively used in practice (e.g.,
see [11, 30, 5, 6, 26]) and have also been extensively researched from a theoretical point of
view (e.g., see [13, 12, 24, 10, 17, 20]). Notably, the Linear Arrangement type objectives were
first considered by Hansen [19] who considered the embedding of graphs into 2-dimensional
and higher planes. On the other hand, the study of Hierarchical Clustering type objectives
was initiated by Dasgupta [13] - spurring a fruitful line of work resulting in many novel
algorithms. In practice, more often than not, the data considered adheres to the triangle
inequality (in particular guaranteeing that if point a is similar, equivalently close, to points b
and ¢ then so are b and ¢) and thus may be captured by a metric (e.g., see [9, 25, 26]).
The first objective we consider is the Max Linear Arrangement objective.

» Definition 1. Let G = (V,w) denote a metric (specifically, w satisfies the triangle inequality)
with V]| = n. In the Maz Linear Arrangement problem our goal is to return a 1-1
mapping y : V' — [n] so as to mazimize 3, ; w; jyi;, where y; ; = |y; — yj.

The second objective we consider is the Max Hierarchical Clustering objective.

» Definition 2. Let G = (V,w) denote a metric (specifically, w satisfies the triangle in-
equality). In the Max Hierarchical Clustering problem our goal is to return a binary
HC tree T such that its leaves are in a 1-1 correspondence with V. Furthermore, we would
like to return T so as to mazimize 3, . w; ;|T; ;
lowest-common-ancestor of the leaves i and j in the Hierarchical Clustering tree T and |T; ;|
is the number of leaves in T; ;.

, where T;; is the subtree rooted at the

These objectives were first considered by Hassin and Rubinstein [20] and Cohen-Addad et
al. [12] (respectively) with respect to the non-metric case. For these (non-metric) objectives
the best known approximation ratios are 0.5 for the Linear Arrangement objective [20] and
0.74 for the Hierarchical Clustering objective [25]). The former was achieved by was achieved
by bisecting the data points randomly and thereafter greedily arranging each set and the
latter was achieved by approximating the Balanced Max-2-SAT problem.

As stated earlier, more often than not, the data considered in practical applications
adheres to the triangle inequality. Therefore, our results’ merits are two fold. First, we offer
a generalized framework to tackle these types of embedding objectives. Second, our results
show that by applying this natural assumption we may significantly improve former best
known approximations (from 0.5 (LA) and 0.74 (HC) to 1 — ¢ for any constant ¢ > 0).

Our Results

We provide the following results.
We design a general framework in order to tackle the embedding of metric spaces into
simpler structured spaces (see Algorithm 1). We then concretely apply our framework
to both the Linear Arrangement and Hierarchical Clustering settings. For an extended
discussion see Our Techniques.
We apply our framework to the Linear Arrangement case. In this case we prove that
our applied algorithm (2) is an EPRAS (see Definition 8) - i.e., for any constant € > 0 it
yields a 1 — ¢ approximation.
We apply our framework to the Hierarchical Clustering case. In this case we prove that
our applied algorithm (4) is an EPRAS (see Definition 8) - i.e., for any constant € > 0 it
yields a 1 — e approximation.
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Our Techniques

Our generic multi-layer peeling approach appears in Algorithm 1. We begin by checking
whether the metric space is sufficiently densely weighted (i.e., whether the average distance
is at least a constant times the diameter, or equivalently the metric’s weighted density (see
Definition 3) is constant). If this is the case then we apply a specific algorithm that handles
such instances. In the LA case we devise our own algorithm (see Algorithm 3). Algorithm 3
leverages the General Graph Partitioning algorithm of Goldreich et al. [18] in order to “guess”
an optimal graph partition that induces an almost optimal linear arrangement. In the HC
case we leverage the work of Vainstein et al. [31].

If, however, the metric is not sufficiently densely weighted, then we observe that it
must contain a core - a subset of nodes containing almost all data points with a diameter
significantly smaller than the original metric’s. Our general algorithm then peels off data
points far from the core (in the LA setting) or not in the core (in the HC setting). We then
embed these peeled off points; by placing them on one of the extreme sides of the line (in the
LA setting) or by arranging them in a ladder structure (in the HC case; see Definition 11).
Thus, we are left with handling the core (in the HC setting) or the extended core (in the LA
setting).

Once again we consider two cases - either the total weight within the (extended) core is
small enough, in which case we embed the core arbitrarily. Otherwise, we recurse on the
instance induced by these data points. We claim that in every recursion step the density of
the (extended) core increases significantly until eventually the recursion ends either when
the (extended) core is sufficiently densely weighted or the total weight within the (extended)
core is small enough.

Our proof is based on several claims. First, we consider the metric’s (extended) core
compared to the peeled off layer. Since our algorithm embeds the two sets separately, we
need to bound the resulting loss in objective value. We show that the weights within the
peeled off layer contribute negligibly towards the objective while the weights between the
peeled off layer and the (extended) core, contribute significantly. Hence, it makes sense then
to peel off this layer in order to maximize the gain in objective value.

While the aforementioned is enough to bound the loss in a single recursion step, it is
not enough. The number of recursion steps may not be constant which, in principle, may
cause a blow up of the error. Nevertheless, we show that the error in each level is bounded
by a geometric sequence and hence is dominated by the error of the deepest recursion step.
Consequently, we manage to upper bound the total accumulated error by a constant that we
may take to be as small as we wish.

While at large this describes our proof techniques, the algorithm and analysis of LA
objective is a bit more nuanced as we will be considering 3 sets: the metric’s core, the peeled
off layer, and any remaining points which together with the core are labeled as the extended
core. In this case, to be able to justify peeling off a layer, we must choose the layer more
aggressively. Specifically, we define this layer as points that are sufficiently far from the core
(rather than any point outside the core, as in the HC case). Fortunately, this defined layer
(see Algorithm 2) fits our criteria (of our general algorithm, Algorithm 1).

Related Work

While the concept of hierarchical clustering has been around for a long time, the HC
objective is relatively recent. In their seminal work, Dasgupta [13] considered the problem
of HC from an optimization view point. Thereafter, Cohen-Addad et al. [12] were the
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first to consider the objective we use in our manuscript. In their work they showed that
the well known Average-Linkage algorithm yields an approximation of % Subsequently,
Charikar et al. [8] improved upon this result through the use of semidefinite programming -
resulting in a 0.6671 approximation. Finally, Naumov et al. [25] improved this to 0.74 by
approximating the Balanced Max-2-SAT problem. With respect to the Max LA objective,
Hassin and Rubinstein [20] were first to consider the problem. Through an approach of
bisection and then greedily arranging the points, Hassin and Rubinstein managed to achieve
a 0.5 approximation. We note that the previous mentioned results all hold for arbitrary
weights, while our main contribution is showing that by assuming the triangle inequality
(i.e., metric-based dissimilarity weights) we may achieve PTAS’s for both objectives. We
further note that with respect to metric-based dissimilarity weights, specifically an L1 metric,
Rajagopalan et al. [26] proved a 0.9 approximation through the use of random cut trees.

Both objectives have been originally studied with respect to their minimization variants.
The minimum LA setting was first considered by Hansen [19]. Hansen leveraged the work of
Leighton and Rao [23] on balanced separators in order to approximate the minimum linear
arrangement objective to facor of O(log® n). Following several works improving upon this
result, both Charikar et al. [10] and Feige and Lee [17] leveraged the novel work of Arora et
al. [4] on rounding of semidefinite programs, and combined this with the rounding algorithm
of Rao and Reicha [27] in order to show a O(y/lognloglogn) approximation. For further
reading on these are related types of objectives see [16, 27, 29, 28]. On the other hand, as
mentioned earlier the minimum HC setting was introduced by Dasgupta [13] and extensively
studied as well (e.g., see [13, 12, 7, 8, 1, 2, 31]).

Most related to our work is that of de la Vega and Kenyon [15]. In their work they provide
a PTAS for the Max Cut problem given a metric. The algorithm works by first creating a
graph of clones (wherein each original vertex is cloned a number of times that is based on its
outgoing weight in the original metric) with the property of being dense. It thereafter solves
the problem in this new graph by applying the algorithm of de la Vega and Karpinski [14].
For our objectives (HC and LA) such an approach seems to fail - specifically due to the fact
that our objectives take into consideration the number of nodes in every induced cut and the
cloned graph inflates the number of nodes which in turn inflates our objective values. Thus,
for our considered types of objectives we need the more intricate process of iterative peeling
(and subsequently terminating the process with more suited algorithms that leverage the
General Graph Partitioning algorithm of Goldreich et al. [18]). It is worth while mentioning
that there has also been an extensive study of closely related objectives with respect to dense
instances (e.g. see [22, 3, 21]). However these types of approaches seem to fall short since
our considered metrics need not be dense.

2  Multi-Layer Peeling Framework

Before defining our algorithms we need the following definitions.

» Definition 3. Let G = (V,w) denote a metric and U C V denote a subset of its nodes.
We introduce the following notations: (1) let Dy = max; jeu w; ; denote U’s diameter, (2)
let Wy =37, scpywij denote U's sum of weights, (3) let ny = |U| denote U'’s size and
(4) let puy = —XZ— denote U’s weighted density".

2
TLUDU

n

L Typically the density is defined with respect to (2) For ease of presentation, we chose to define it with

respect to n? - the proofs remain the same using the former definition.
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Case (a); Semi-uniform Case (a); Semi-uniform

Metric’s core Metric’s core 0.0,

= Peeled off layer (i.e, 4) o © == Peeled off layer (i.e., 4;) ° oX

S\
| 0°8%
1 0% )

oo

0

Recursed subset (i.e., C;) mmm Recursed subset (i.e., B; U C;)

Case (c); Recurse Case (b); Negligible

welights

Case (c); Recurse Case (b); Negligible

weights

HC Objective LA Objective

Figure 1 A recursion step (case (c)) and the two possible halting steps (cases (a) and (b)). The
yellow points define the metric’s core. In the HC case we peel off both red and green points in a
single step, while in the LA we must be more delicate and only peel off the green points.

All our algorithms will make use of the following simple yet useful structural lemma
that states that for small-density instances there exists a large cluster of nodes with a small
diameter. The proof appears in the full version.

» Lemma 4. For any metric G = (V,w) there exists a set U C'V such that Dy < 4Dy \/pv
and ny > ny (1 — /pv).

» Definition 5. Given a metric G = (V,w) we denote U C V as guaranteed by Lemma 4 as
a metric’s core.

Note that the core can be found algorithmicaly simply through brute force (while the
core need not be unique, our algorithms will choose one arbitrarily).

Throughout our paper we consider different metric-based objectives. In order to solve
them, we apply the same recipe - if the instance is sufficiently densely weighted, apply an
algorithm for these types of instances. Otherwise, the algorithm detects the metric’s core
(which is a small-diameter subset containing almost all nodes) and peel off (and subsequently
embed) a layer of data points that are far from the core. The algorithm then considers the
core; if it is sufficiently small (in terms of inner weights) then we embed the core arbitrarily
and halt. Otherwise, we recurse on the core. Our algorithms for both objectives (LA and
HC) will follow the same structure as defined in Algorithm 1.

Algorithm 1 General Algorithm.

if the instance is sufficiently densely weighted then // case (a)

| Solve it using ALGg_s,.
else
Let C denote the metric’s core (as defined by Definition 5).
Define the layer to peel off A C V'\ C appropriately.
Embed A.
if Wi\ 4 is negligible then Embed V' \ A arbitrarily and return. ; // case (b)
// case (c)

else Continue recursively on V' \ 4 ;

We denote by cases (a) and (b) the different cases for which the algorithm may terminate
and by case (c) the recursive step. We further denote by ALG4—_,, an auxiliary algorithm that
will handle sufficiently densely weighted instances. (These algorithms will differ according to
the different objectives).

Henceforth, given an algorithm ALG and metric G we denote by ALG(G) the algorithm’s
returned embedding. We note that when clear from context we overload the notation and
denote ALG(QG) as the embedding’s value under the respective objectives. Equivalently, we
will use the term OPT(G) for the optimal embedding.
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Our different algorithms will be similarly defined and thus so will their analyses. Thus,
we introduce a general scheme for analyzing such algorithms. Let k£ denote the number of
recursive calls our algorithm performs. Furthermore, let G; denote the instance the algorithm
is called upon in step ¢ for i = 0,1,...,k. (Le., G = Gy and ALG(G},) does not perform a
recursive step, meaning that it terminates with case (a) or (b)). We first observe that by
applying a simple averaging argument we get the following useful observation.

» Observation 6. If there exist v, B;,7v; > 0 such that ALG(G;) > «; + ALG(G;41) and
OPT(G;) < Bi + viOPT(Giy1) for alli=0,...,k—1 then

ALG(G) _ S i + ALG(Gy)

OPT(G) = S} (BAT_by;) + (I3 %) OPT(Gy)
ALG(Gy)

’ (I1{=v)OPT(Gy)

> min{min{ i

= 2
4 Binj:%)')/j

Thus, in order to analyze a given algorithm, it will be enough to set the values of «;, §;
and +;, and further analyze the approximation ratio of %&g’;g

cases (cases (a) and (b)).

for the different terminating

3 Notations and Preliminaries

We introduce the following notation to ease our presentation later on.

» Definition 7. Given a metric G = (V,w), a solution SOL(G) for the LA objective
and disjoints sets A,B C V we define: SOL(G)[s = >_; ;c 4 Wi ;j¥i,; and SOL(G)[, g =
ZieA,jeB w; jYi,j. For the HC objective the notations are defined symmetrically by replacing
Yij with |T1J|

We will make use of algorithms belonging to the following class of algorithms.

» Definition 8. An algorithm is considered an Efficient Polytime Randomized Approximation
Scheme (EPRAS) if for any € > 0 the algorithm has expected running time of f(%)no(l) and
approximates the optimal solution’s value up to a factor of 1 — €.

We will frequently use the following (simple) observations and thus we state them here.

» Observation 9. Given values a; > 0, a € (0, ﬁ) and k € N we have: (1) II;(1 —a;) >
1=, a5, (2) 1+ka< == <1+ (k+1aand (8) 1+ ka <" <1+ (k+1)a.

The following facts will prove useful in our subsequent proofs and are therefore stated here.

» Fact 10. Given a metric G, if the optimal linear arrangement under the LA objective is
OPTA(G) and the optimal hierarchical clustering under the HC objective is OPThc(G)
then we have OPTpA(G) > in > WijYi; and OPTyc(G) > 2n > wig| Tl

We note that the HC portion of Fact 10 has been used widely in the literature (e.g., see
proof in [12]). The LA portion of Fact 10 is mentioned in Hassin and Rubinstein [20]. Finally,
in the HC section we make use of “ladder” HC trees. We define them here.

» Definition 11. We define a “ladder” as an HC tree that cuts a single data point from the
rest at every cut (or internal node).
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4  The Linear Arrangement Objective

We will outline the section as follows. We begin by presenting our algorithms (first the
algorithm that handles case (a) and thereafter the general algorithm). We will then bound the
algorithm’s approximation guarantee (by following the bounding scheme of Observation 6).
Finally, we will analyze the algorithm’s running time.

4.1 Defining the Algorithms

Here we begin by applying our general algorithm to the linear arrangement problem (which
we will denote simply as ALG). The algorithm uses, as a subroutine, an algorithm to handle
case (a). We denote this subroutine as ALG4_,, and define it following the definition of
ALG.

4.1.1 Defining ALG

Here we apply our general algorithm (Algorithm 1) to the linear arrangement setting. In
order to do so, roughly speaking, we define the layer to peel off A as the set of all points
which are “far” from the metric’s core. We also introduce a subroutine to handle densely
weighted instances, ALGg_,,.

Algorithm 2 Linear Arrangement Algorithm (ALG).

if p > €% then solve it using ALGg4_,. ; // case (a)
else
Let C denote the metric’s core (as defined by Lemma 4).

Let A denote all data points that are of distance > 2Dy from C.

Place A to the left of V'\ A. Arrange A arbitrarily.

if Wy a4 < Wy then Arrange V' \ A arbitrarily and return. ; // case (Db)
else Continue recursively on V' \ A. ; // case (c)

The set V' \ {AUC?} will be used frequently in the upcoming proofs and thus we give it its
own notation.

» Definition 12. Denote B =V \ {AUC} where A and C are defined as in Algorithm 2.

4.1.2 Defining ALG,4_,,

Here we will introduce an algorithm to handle case (a) type instances. Before formally
defining the algorithm, we will first provide some intuition. Towards that end we first
introduce the following definition.

» Definition 13. Consider OPT(Gy)’s embedding into the line, [n]. Partition [n] into *
consecutive sets each of size en and let P;* denote the points embedded by OPT(GYy,) into the
i’th consecutive set. Furthermore, denote by P* = {P}} the induced partition of the metric.

Later on, we will show that OPT(Gy)’s objective value is closely approximated by the
value generated solely from inter-partition-set edges (i.e., any (u,v) where u, v lie in different
partition sets of P*). While OPT(G},) cannot be found algorithmically, assuming the above
holds, it is enough for ALG4_,, to guess the partition P*. Indeed, that is exactly what we
will do, by using the general graph partitioning algorithm of Goldreich et al. [18].
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We denote the General Graph Partitioning algorithm of Goldreich et al. [18] as
PT(G,®,€ecrr). See Definition 21 for a definition of ® and €., (these will be defined
by ALG4_,, as well) and see Theorem 22 for the tester’s guarantees. We are now ready to
define our algorithm that handles sufficiently densely weighted instances (Algorithm 3).

Algorithm 3 LA Algorithm for Sufficiently Densely Weighted Instances (ALG4—y).

Let k = % denote the size of the partition.
for {Mj,j’}jgk,j’gk,j;éj’ C {i69n2DV 1 eNAL L %7} do
Let @ = {en, en}y_y U{p;jr, 155035 21
Run PT(G,®, e = €). Let P denote the output partition (if succeeded).
Let 7 denote the linear arrangement obtained from embedding P consecutively on
the line (and arbitrarily within the partition sets).
Compute the value ), w.y. for P.
Return the partition with maximum ) _ w.g. value.

4.2 Analyzing the Approximation Ratio of ALG

Now that we have defined ALG we are ready to analyze its approximation ratio. Recall that
by Observation 6 it is enough to analyze the approximation ratio of cases (a), (b) and the
total loss incurred by the recursion steps (i.e., by setting «;, £; and ;).

4.2.1 Structural Lemmas

Recall that we defined k to be the number of recursion steps used by ALG and that G; is the
instance that ALG is applied to at recursion step i. Further recall that given G;, ALG(G;)
partitioned the instance into A;, B; and C; and that, informally, by Lemma 4 n¢, contains
the majority of the data points and D¢, is relatively small compared to Dy;.

By the definition of C;, A; could be considered as a set of outliers. Therefore, intuitively
it makes sense to split A; from C;. In order to prove our algorithm’s approximation ratio we
will show that in fact one does not lose too much compared to optimal solution, by splitting
A; from C;. In order to do so we will show that in fact, both the values of ALG and OPT
will be roughly equal to nWy, ¢, (which makes sense intuitively since C; is of low diameter
and contains many points and A; are the points that are far from this cluster).

The following lemmas consider 2 types of algorithms - algorithms that split A; and C;
and algorithms that do not. Furthermore, they show that in fact, by the structural properties
of A; and C}, if we consider the values generated by these 2 types of algorithms restricted
to the objective value generated by the inter-weights W4, ¢,, are approximately equal. We
begin by lower bounding the value generated by algorithms that split A; and C;. Due to
lack of space, we defer the following proofs to the full version.

» Lemma 14. Given the two disjoint sets C; and A; and a linear arrangement y that places
all nodes in A; to the left of all nodes in C; we are guaranteed that

nci
E Wa,cYa,c > 9 (WCi,Ai - nCinAiDCi)'
ceCi,a€A;

Due to the fact that C; is a small cluster containing most of the data points the above
lemma reduces to the following corollary.
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» Corollary 15. Given any linear arrangement y that places all nodes in A; to the left of all
nodes in C; we are guaranteed that

1 5.y/p
Z Wa,cYa,c > §nWAi;Ci(1 - 2[)

a€A;,ceC;

Now that we have lower bounded algorithms that split A; and C; we will upper bound
algorithms that do not have this restriction. (Note that we begin by handling the case where

one of the disjoint sets is a single data point and thereafter generalize it to two disjoint sets).

» Lemma 16. Given a set C; and a point p & C;, we are guaranteed that

nci
Z Wp,cYp,e < (Wlhci + nC'iDCi)(n Ty )
ceC;

We are now ready to upper bound the inter-objective-value of two sets of disjoint points.

» Lemma 17. Given the two disjoint sets C; and A; and any linear arrangement y we are
guaranteed that

’I’LCi
Z Wa,cYa,c < (n - 2 )(WChAi + ncinAiDci)'
ceCi,a€A;

Due to the fact that C; is a small cluster containing most of the data points the lemma
reduces to the following corollary.

» Corollary 18. Given any linear arrangement y we are guaranteed that
1 9./p
Z Wa,cYa,c < §nWAi,Ci(1 + ng)
a€A;,ceC;

We will want to show that the objective values of both ALG and OPT' (and some other
intermediate values that will be defined later on) are approximately determined by their
value on the inter-weights of W4, ¢,. In order to do so, we first introduce the following
structural lemma that will help us explain this behaviour.

» Lemma 19. Given an instance G and sets A, B and C as defined by ALG(G) we have
Wa+Wap < 2§WA,C-

4.2.2 Analyzing the Approximation Ratio of Case (a) of ALG

We first give an overview the approximation ratio analysis. Recall the definition of P*
(Definition 13). The first step towards our proof, is to show that instead of trying to
approximate O PT(GYy,), it will be enough to consider its value restricted to intra-partition-set
weights with respect to P*. Even more, for such weights w,, ,, incident to P and P, it
will be enough to assume that their generated value towards the objective (i.e., the value
Yu,v) is only (j — 1)en (while it may be as large as (j + 1)en). Formally, this will be done in
Lemma 20 (whose proof is deferred to the full version).

Next, recall that ALG4_,, tries to guess the partition P* (up to some additive error) and
let P denote the partition guessed by ALGy4_,,. Observe that if guessed correctly, the value
generated towards ALG’s objective for any intra-partition-set weight crossing between P;
and P;1; is at least |Pj11| 4+ - -+ |Pi+;—1| and if we managed to guess the set sizes as well
then this value is exactly (j — 1)en (equivalent to that of OPT’s). This will be done in
Proposition 23.
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» Lemma 20. Given the balanced line partition of set sizes en, denoted as P*, we have

OPT(Gi) < (1 + 13¢) Z Wp |PAal+ -+ 1P )
1<i<k—-1
1<j<k—i
Before proving Proposition 23 we state the properties of the general graph partitioning
algorithm of Goldreich et al. [18].
» Definition 21 ([18]). Let ® = {\B AVP}F_ U {u”,,,ugjf K ii—1 denote a set of non-
negative values such that )\jLB < )\;]B and p35 B < ,uj i - We define GPo the set of graphs G
on n vertices that have a k partition (V1 .. Vk) upholding the following constraints
LB |V| UB. . LB Wy, v, UB
Vi AT < " SN VeI < —5 7 <

n2  —Fig

» Theorem 22 ([18]). Given inputs G = (V,w) with |V]| = n and w : V x V — [0,1]

describing the graph and ® describing bounds on the wanted partition, €., the algorithm

PT(G,®,¢€.rr) has expected running time* of

L, o0 log
) ()M + O

2
€err

exp (log( ) n.

687‘7’ 667"7‘

Furthermore, if G € GPg as in Definition 21 then the algorithm outputs a partition satisfying
Vj : )\]LB — €err S llnjl S )\ng + €err,

vjvj/: Mﬁff—%wﬁ J2 = Sﬂg{ﬁ'i_ﬁirr-
We are now ready to prove Proposition 23.

ALG4_w(Gr) _ ALG(Gy) ~,
OPT(Gr) _ OPT(Gp) =

» Proposition 23. If ALG terminates in case (a) then >1—20e.

Proof. Let P = {P;} denote the partition returned by PT(Gp, ®, €crr) and recall that its
number of sets is k = ; and that €., = €. We first observe that by Theorem 22 we are
guaranteed that the error in |P;| compared to |P;| = en is at most |P;| > en — €qrn (due to
the fact that in ® we requested sets of size exactly en). Therefore

ALGa—w> Y Weip, (1P 4+ [Pagma) 2 Y (G = D(en — ecrn) Wy pyy
1<i<k—1 1<i<k—1 ( )
1<j<k—i 1<j<k—i

where Wp, p,
we will remove the subscript in the summation henceforth.

Consider the difference between the cut size of Wp, p, . and Wpi*7 P, Their difference
originates from two errors: (1) the error that incurred by the PT algorithm (see The-
orem 22) and (2) the error ALG4—_,, incurred in order to guess the partition of OPT(G},)

(see Algorithm 3). Therefore,

denotes the weight crossing between P; and P;; ;. For ease of presentation

WP Piv; Z Wp* p* — €errN DV — € n2DV Wpi*7pi»:rj - 26977,2DV
where the last equality is since €, = €?. Combining this with inequality 1 yields
ALG 4y > (en — €erpnt) - Z(] - l)Wp;,p;Jrj — (en — €erpn) - 2(€°n%) Dy Z(] -1) >

(2)
(en — €erpm) - Z(] - I)Wpi*?p; —2n3€¢" Dy,

2 We remark that the original algorithm contains a probability of error §, that appears in the running
time. We disregard this error and bound the expected running time of the algorithm.
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where the last inequality follows since €. >0 and > (5 —1) =) le > ?:i+1(j —-1)<k3=
-3
€ s.

Due to the fact that we are in case (a) we have that nz‘/gv = p > €%, By Fact 10 we have

that OPT > %nW and therefore 2n3e” Dy, can be bounded by 2n3e” Dy < 2enW < 6eOPT.

Thus we get 2n®¢” Dy < 6eOPT(Gy). Combining this with inequality 2 yields
ALG g > (en = €crrn) - > (j = )Wpr pr = 6€OPT(Gy,). (3)

On the other hand, recall that P* denotes the balanced partition where all sets are of
size en. Therefore, by Lemma 20 we therefore get
OPT(Gy) < (14 13¢) Z WPI.*,P;H(|P1'11| o+ P a]) = )
(1+136) Y (j = D(en)Wp: pr, = en(1+13€)- Y (j = )We: pr, .
Combining inequalities 3 and 4 yields
EN — €erpN

> ST Cerr?t
ALG 4w 2 en(1 4+ 13¢)

1—€®
1+ 13e
thereby concluding the proof. <

OPT(G)) — 6eOPT(Gy) > (1 — 20¢)OPT(Gy,),

4.2.3 Analyzing the Approximation Ratio of Case (b) of ALG

Using our structural lemmas we will analyze the approximation ratio of ALG applied to
G under the assumption that the algorithm terminated in case (b) (i.e., that p < €® and
Whue < eWg, ). The full proof is deferred to the full version.

» Proposition 24. [f ALG terminates in case (b) then %Eg’;g >1—33e

Sketch. The proof follows the following path. Due to the fact that most of the instance’s
density is centered at the metric’s core C, the majority of OPT(G\,)’s objective is derived from
weights incident to C. Since we are case (b), the weight of Wpyc is negligible and therefore
we will show that in fact OPT(Gy)’s objective is defined by OPT(Gy)|4 - Thereafter, we
show that in fact the best strategy to optimize for weights in W4 ¢ is to place A at one
extreme of the line and C' at the other - which, fortunately, is what ALG(G}%,) (approximately)
does - thereby approximating OPT(Gy,). <

4.2.4 Setting the Values «;, 8; and ~;
Due to lack of space, the following proofs are deferred to the full version.

» Proposition 25. For A; and C; as defined by our algorithm applied to G; and for o; =
anWac(l — se‘éﬁ), we have ALG(G;) > a; + ALG(Gi11).

» Proposition 26. Let G; = (V;,w;) and Git1 = (Viy1,wit1) denote the instances defined by
the i and i+ 1 recursion steps. Furthermore let 3; = %nvi Wy, c,(1+ 136‘2/‘7) and v; = 14+4,/p;.
Therefore, OPT(G;) < B; + v:OPT(Giy1).

Thus, we have managed to set the values of «;, 8; and ~y; as follows.

» Definition 27. We define the values «;, B; and v; as follows

1
o = *nWAhCi(l —

5P 1 13,/pi
5 ): ¢ )

2 ); ﬁi:§nviWAi,Ci(1+ 2 ); vi =14 4/p;. (5)
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4.2.5 Putting it all Together

Now that we have analyzed the terminal cases of the algorithm (cases (a) and (b)) and that
we have set the values of «a;, ; and 7; we will to combine these results to prove ALG’s
approximation ratio (as in Observation 9). In order to so we must therefore bound the
values mml{ﬂlﬂiﬁ} and #&'}T)W. However, before doing so we will first show that
Hé;%ﬂj converges. Recall that «; = 1 +4,/p;. The following lemma shows that the instances’
densities (p;) increase at a fast enough rate (exponentially) in order for H;;%)'yj to converge.

» Lemma 28. Foralli=1,...,k —1 we are guaranteed that p;+1 > 4p;.

Proof. Let V denote the set of nodes of G;. Recall the notations A, B and C defined by our
algorithm applied to V' (in particular, the set of nodes of G;41 is exactly B U C'). Therefore,
if we denote by Dp_¢ the largest distance between any point in B and its closest point in
C, then Dpyuc < 2Dp_c + Do < 262Dy + 4Dy \/p;, where the first inequality follow from
the triangle inequality and the second follows due to the fact that B is defined as the set of
all points of distance at most €2 from C. Therefore,

WBUC > WV ( € €
262 +4./p; 2¢2 +4,/p;

where the equalities follows by the definition of p; and the inequality follows due to the fact
that Wgue > €Wy (which follows due to the fact that we are in case (c)), npuc < ny and
Dpuc < (2¢2 4+ 4,/p;)Dy (as stated above). Since we are in case (c), we are guaranteed that
pi < €% and therefore

) = pi ) (6)

Pit+1 = 3 Z 5
Npuc -Dpuc ny, - Dy

€ € 1
> > —
2e2 +4./p; ~ 2¢2 4+ 4e3 T 3¢’ (™)

since ¢ < 1072, Combining inequalities 6 and 7, and since ¢ < 1072 yields p;4 1 >

Pi

pi(ﬁw) > £ > 4p;, thereby concluding the proof. <

We are now ready to show that H;;%)Wj converges.

» Lemma 29. Forvy; = 1+ 4,/p; we have Hé;%ﬁj <1+5/p;.

Proof. Observe that Hj-;lo(l +4,/p;) < 64'23' VPi <etVPi <14 5,/pi, where the first in-
equality follows from Observation 9, the second follows since ,/p; are exponentially increasing
(see full version) and the third inequality follows again by Observation 9 combined with the
fact that p < €2 and € < 1072, <

Next we leverage the former lemma to bound min;{ 7_} and ALG(Gr)

a;
BiH;;é j (2} 7)) OPT(Gy)

» Proposition 30. For «;, B; and ~y; as in Definition 27, we have mlnl{ﬁn‘f‘i,l’y} >1—23¢.
g

Proof. We first bound % By the definitions of a; and 3; we have

BoirmE ol e

= - — (®)

5v/Pi
7 1- ) i 13 i 18 i
e N
€ €

where the first inequality follows from the definitions of «; and ; and the rest of the
inequalities follow since € < 10% and p < €5.
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By Lemma 29 we are guaranteed that H;;%ﬁj < 1+5,/p;. Combining this with inequality
8 yields

18ypi 18 23
2 (1= VA 5YE) 2 1= SR

(67 > -
Bl by, ~ 1+5

and since p; only increases and py_1 < €5 we have min;{ nl —H 1 >1- %,/pk_l > 11— 23¢,

70J

thereby concluding the proof. |

- L ' ALG(Gk) B
» Proposition 31. For v; = 1+ 4,/p; we have =Ty 0PT(Gr) > 1— 34e.

Proof. By Propositions 23 and 24 we are guaranteed that ALG(Gr) > 1 —33¢. On the other

OPT(Gy)
hand by by Lemma 29 we are guaranteed that Hl o 2y: <14 5./pe_1. Therefore, if k =1
ALG(G ALG(G
then i, 1)(()Plf12(Gk) = OPTEGkg > 1 — 33¢. Otherwise, we have
ALG(Gy) S 1—33¢ S 1—33¢ > 1 34e,

(M) %)OPT(Gy) — (L +4y/pr—1)(L+5y/pr—1) — (1 +4€3)(1 + 5e3)

where the second inequality follows since p_1 < € (since we recursed to step k) and the
subsequent inequalities follow since € < 1073 - thereby concluding the proof. <

Finally, we combine Propositions 30 and 31 to bound ALG’s approximation ratio.

» Theorem 32. For any metric G, Sf,(T;EGg >1— 34e.

4.3 Analyzing the Running Time of ALG

Consider the definition of ALG. We observe that in each recursion step, the algorithm finds
the layer to peel off, A, and then recurses. Therefore the running time is defined by the

sum of these recursion steps, plus the terminating cases (i.e., either case (a) or case (b)).

Recall that case (a) applies ALG4—,, on the instance, while case (b) arranges the instance
arbitrarily. Therefore, a bound on cases (a) and (b) is simply a bound on the running time
of ALG4_,, which is given by Lemma 33 (whose proof appears in the full version).

» Lemma 33. Given an instance G, the running time of ALG 4_,,(G) is at most (E%)% -0(n?).

» Remark 34. A bi-product of Lemma 28 is that the number of recursion steps is bounded by
O(logn). The proof follows similarly to the proof of Lemma 48 substituting the inequality
piv1 > 4e\/p; with pi 1 > 4,/p; (which holds due to Lemma 28).

We are now ready to analyze the running time of ALG. (The proof is deferred to the full
version.)

» Theorem 35. The algorithm ALG is an EPRAS (with running time O(n?logn) plus the
running time of ALG4_y, ).

» Remark 36. We remark that one may improve the running time by replacing ALG g,
with any faster algorithm while slightly degrading the quality of the approximation.

5 The Hierarchical Clustering Objective

The section is outlined as follows. We begin by presenting our algorithms (first the algorithm
to handle case (a) and subsequently the general algorithm). Thereafter we will bound the
algorithm’s approximation guarantee (by following the bounding scheme of Observation 6).
Finally, we will analyze the algorithm’s running time.
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5.1 Defining the Algorithms

As in the linear arragement setting, we will begin by applying our general algorithm to the
linear arrangement problem (which we will denote simply as ALG). The algorithm uses, as
a subroutine, an algorithm to handle case (a). We denote this subroutine as ALG4—,, and
define it following the definition of ALG.

5.1.1 Defining ALG

Here we apply our general algorithm (Algorithm 1) to the hierarchical clustering setting. In
order to do so, roughly speaking, we define the layer to peel off A as all points outside of the
metric’s core.

Algorithm 4 Hierarchical Clustering Algorithm (ALG).

if p > €2 then Solve the instance using ALGg_,. ; // case (a)
else

Let C denote the metric’s core (as defined by Lemma 4).

Let A =V \ C denote the rest of the points.

Arrange A as a (arbitrary) ladder and denote the tree by T'a.

if Weo < 16¢ - Wy then // case (b)
Arrange C arbitrarily and denote the resulting tree by T¢.

Attach T¢’s root as a child of the bottom most internal node of T4 and return.

else // case (c)
Continue recursively on C' and denote the resulting tree by T¢.

Attach T¢’s root as a child of the bottom most internal node of T4 and return.

» Remark 37. Note that Algorithm 4 conforms to the general Algorithm 1 since C' =V \ A.

5.1.2 Defining ALG,_,,

We will use the algorithm of Vainstein et al. [31] as ALG4_,,. As part of their algorithm
they make use of the general graph partitioning algorithm of Goldreich et al. [18] which is
denoted by PT(-). Since we will use PT(+) to devise our own algorithm for the LA objective
we refer the reader to Definition 21 and Theorem 22 for a more in-depth explanation of the
PT(-) algorithm. We restate ALG4_,, in Algorithm 5 as defined in Vainstein et al. [31].

Algorithm 5 HC Algorithm for Sufficiently Densely Weighted Instances (ALGg—.,).

Enumerate over all trees T' with k = % internal nodes.
for each such T do
for {)\i}igk C {i62n :1eNAT L %} do
for {Mj,j’}jﬁk,j’gk,j#j’ - {i€3n2DV :1eENAT L %} do
Let @ = {\;, Ai}i‘c:l U {,“jyj/vﬂj,j’}?,j/:l'
Run PT(G, ®, €. = €2). Let P denote the output partition (if succeeded).
Compute the HC objective value based on T and P.

Return the partition P and tree T' with maximal HC objective value.
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5.2 Analyzing the Approximation Ratio of ALG

Now that we have defined ALG we are ready to analyze its approximation ratio. Recall that
by Observation 6 it is enough to analyze the approximation ratio of cases (a), (b) and the
total approximation loss generated by the recursion steps (i.e., by finding «;, 8; and ;).

5.2.1 Analyzing the Approximation Ratio of Case (a) of ALG

In order to analyse the approximation ratio of ALG4_,, in our setting we must first recall
the definition of instances with not-all-small-weights (as defined by Vainstein et al. [31]).

» Definition 38. A metric G is said to have not all small weights if there exist constants
(with respect to ny ) co,c1 < 1 such that the fraction of weights smaller than cy - Dy is at
most 1 — cy.

The following theorem was presented in Vainstein et al. [31].

» Theorem 39. For any constant & > 0 and any metric G = (V,w
weights (with constants ¢y and ¢1) we are guaranteed that %}“’G()G) >

ALG 4., s expected running time is at most f(%) -n2.

) with not all small
1—O(=-) and that

Co-C1

Applying the above theorem with ¢ = € to our metric instance G}, yields Proposition 40
(whose proof is deferred to the full version).

ALG4_w(Gr) _ ALG(Gy)
OPdT(Gk)k = OPT(GZ) >1-e

» Proposition 40. If ALG terminates in case (a) then

5.2.2 Analyzing the Approximation Ratio of Case (b) of ALG
o . . ALG(G
» Proposition 41. [f ALG terminates in case (b) then W(GZ% >1—17e.

Proof. The proof appears in the full version. <

5.2.3 Setting the Values «;, 8; and ~;
Due to lack of space, we defer the following proofs to the full version.

» Lemma 42. For A; and C; as defined by our algorithm applied to G; and for o; =
ny,(Wa, + Wa, c,)(1 — \/pi) we have ALG(G;) > a; + ALG(Git1).

» Lemma 43. Let G; = (Vi,w;) and Gir1 = (Vig1,wi+1) denote the instances defined by
the i and i + 1 recursion steps. Furthermore, let 3; = ny,(Wa, +Wa, c,) and v; = 14 2,/p;.
Therefore, OPT(G;) < B; + v:OPT(G;41).

Thus, we combine these values in Definition 44.

» Definition 44. We define the values «;, B; and ; as follows
Q; =Ny, (WAw + WAi7Ci)(1 - \/fT’L)a Bi = ny; (WA1 + WAi7Ci); vi=1+ Qm

5.2.4 Putting it all Together

Now that we have analyzed the terminal cases of the algorithm (cases (a) and (b)) and
that we have set the values of oy, 5; and ~; we will combine these results to prove ALG’s
approximation ratio (as in Observation 6). Due to lack of space we defer the proofs of this
section to the full version.
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» Proposition 45. For a;, B; and ~y; as in Definition 44, we have mini{ﬁ} >1—4e.
T4

it o ; ALG(Gx) _
» Proposition 46. For v; = 1+ 2,/p; we have (=210 PT(Gr) >1— 23e.

» Theorem 47. For any metric G, SL%EGG; >1—23e.

5.3 Analyzing the Running Time of ALG

Consider the definition of ALG. In each recursion step, the algorithm finds the layer to peel
off and then recurses. Therefore the running time is defined by the sum of these recursion
steps, plus the terminating cases (i.e., either case (a) or case (b)). Recall that case (a) applies
ALG4_,, on the instance, while case (b) arranges the instance arbitrarily. Therefore, a bound
on cases (a) and (b) is simply a bound on the running time of ALG4_,, which is given by
Theorem 39 [31]. In Lemma 48 we bound the number of recursion steps and subsequently
prove Theorem 49 (the proofs of which appears in the full version).

» Lemma 48. The number of recursion steps performed by Algorithm /j is bounded by
O(loglogn).

» Theorem 49. The algorithm ALG is an EPRAS (with running time O(n?loglogn) plus
the running time of ALG4_., ).

» Remark 50. We remark that one may improve the running time by replacing ALG4_,
with any faster algorithm while slightly degrading the quality of the approximation.
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Robust Communication Complexity of Matching:
EDCS Achieves 5/6 Approximation
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—— Abstract

We study the robust communication complexity of maximum matching. Edges of an arbitrary
n-vertex graph G are randomly partitioned between Alice and Bob independently and uniformly.
Alice has to send a single message to Bob such that Bob can find an (approximate) maximum
matching of the whole graph G. We specifically study the best approximation ratio achievable via
protocols where Alice communicates only 6(n) bits to Bob.

There has been a growing interest on the robust communication model due to its connections to
the random-order streaming model. An algorithm of Assadi and Behnezhad [ICALP’21] implies
a (2/3 + eo ~ .667)-approximation for a small constant 0 < go < 107*®, which remains the best-
known approximation for general graphs. For bipartite graphs, Assadi and Behnezhad [Random’21]
improved the approximation to .716 albeit with a computationally inefficient (i.e., exponential time)
protocol.

In this paper, we study a natural and efficient protocol implied by a random-order streaming
algorithm of Bernstein [ICALP’20] which is based on edge-degree constrained subgraphs (EDCS)
[Bernstein and Stein; ICALP’15]. The result of Bernstein immediately implies that this protocol
achieves an (almost) (2/3 ~ .666)-approximation in the robust communication model. We present a
new analysis, proving that it achieves a much better (almost) (5/6 ~ .833)-approximation. This
significantly improves previous approximations both for general and bipartite graphs. We also prove
that our analysis of Bernstein’s protocol is tight.
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1 Introduction

Given an n-vertex graph G = (V| E), a matching is a collection of vertex disjoint edges in G
and a maximum matching is the matching with the maximum size. In this paper, we study
matchings in Yao’s (one-way) communication model [14]. The edge-set E is partitioned
between two players Alice and Bob. Alice has to send a single message to Bob such that Bob
can find an (approximate) maximum matching of the whole graph G. We are particularly
interested in the trade-off between the size of the message sent by Alice and the approximation
ratio of the output solution. Besides being a natural problem, this communication model is
closely related to streaming algorithms and has thus been studied extensively over the years
11, 13,9, 1, 2].
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In order to obtain an eract maximum matching, it is known that €(n?) bits of commu-
nication are needed [10]. That is, the trivial protocol where Alice sends her whole input
to Bob is optimal. The situation is more interesting for approximate solutions. It is clear
that Q(n) words of communication are needed for any approximation as the whole matching
can be given to Alice. A natural question, therefore, studied in numerous prior works
[11, 12, 13, 1, 2], is the best approximation achievable via protocols that have a near-optimal
communication complexity of O(n) = O(n poly log).

It is not hard to see that if Alice sends a maximum matching of her input to Bob, then
Bob can find a 1/2-approximate matching. There is, however, a more sophisticated approach
based on the powerful edge-degree constrained subgraph (EDCS) of Bernstein and Stein [7]
that achieves an (almost) 2/3-approximation (see the paper of Assadi and Bernstein [3]).
This turns out to be the right approximation under an adversarial partitioning of edges. In
their seminal paper, Goel, Kapralov, and Khanna [11] proved that obtaining a better than
2/3-approximation requires plt1/(oglogn) 5 p poly log n communication.

The communication model discussed above is doubly worst-case in that both the input
graph and the edge partitioning are chosen by an adversary. In this paper, we study the so
called robust communication model — & la Chakrabarti, Cormode, and McGregor [9] — where
the graph G is still chosen by an adversary but its edges are now randomly partitioned between
Alice and Bob (i.e., each edge is uniformly given either to Alice or Bob independently).
This model goes beyond the doubly worst-case scenario discussed above and sheds light on
whether the hardness of a problem is inherent to the input graph or rather a pathological
partitioning of its edges. Another motivation behind the study of the robust communication
model is its connections to random-order streams. In particular, almost all known lower
bounds for random-order streams are proved in this robust communication model.

While existing protocols for adversarial partitionings already imply an (almost) 2/3-
approximation in the robust communication model, a random-order streaming algorithm of
Assadi and Behnezhad [1] implies a better bound. Their algorithm starts with an EDCS-based
algorithm of Bernstein [6], and then augments it with a number of short augmenting paths,
achieving a (2/3 + g¢)-approximation for some fixed constant 0 < g9 < 10718, This remains
the best-known approximation in general graphs. For bipartite graphs, an entirely different
approach of Assadi and Behnezhad [2] achieves a larger .716-approximtaion although their
protocol runs in doubly exponential time.

In this paper, we give a new analysis for the EDCS-based protocol of Bernstein [6] showing
that, without any augmentation, it already achieves a much better than 2/3-approximation.

» Theorem 1.1. Bernstein’s protocol [6] with high probability achieves a (1 —¢€)5/6 ~ .833
approzimation in the robust communication model using O(n -logn - poly(1/e)) words of
communication.

Theorem 1.1 improves, rather significantly, the state-of-the-art approximation for both
general and bipartite graphs from .667 [1] and .716 [2] respectively to .833. We note that
Bernstein’s protocol runs in linear time in the input size; hence Theorem 1.1, in addition
to improving approximation, also improves the running time of the algorithm of [2] from
doubly exponential to linear. Besides these quantitative improvements, we believe that a
more important qualitative implication of Theorem 1.1 is that EDCS, which has been used in
the literature to only obtain 2/3 or slightly-larger-than-2/3 approximations in various models,
can be used to obtain a significantly better approximation in the robust communication
model.
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Our analysis can be applied to the more general multi-party one-way robust communication
model where instead of two players Alice and Bob, the input is randomly partitioned between
k players (see Section 3 for the formal definition of the model). This communication model
is particularly of interest since any lower bound in it, for any choice of k, also implies a lower
bound for random-order streams. We show the following, which generalizes Theorem 1.1:

» Theorem 1.2. For any k > 2 and any € > 0, Bernstein’s protocol [6] in the k-party
one-way robust communication model achieves a (1 —E)(% aF :%k)—approximation of maximum
matching using messages of length O(n -logn - poly(1/¢)).

We note that the current best approximation known in the random-order streaming setting
for maximum matching is (2/3 + 107!®) by Assadi and Behnezhad [1]. Theorem 1.2 implies
that either there is a better random-order streaming algorithm for maximum matching (which
likely is the case), or else to prove a tight lower bound via the multi-party communication
model, one has to consider at least k > 108 /3 parties!

Finally, we show that our guarantees of Theorems 1.1 and 1.2 are tight for Bernstein’s
protocol. That is, we show that:

» Theorem 1.3. For any k > 2, there exist an infinite family of graphs G such that
the expected approzimation ratio of Bernstein’s protocol in the k-party one-way robust

communication model is at most (% S Sik)

2  Technical Overview

Bernstein’s protocol constructs two subgraphs H and U of size O(nlogn) both of which
will be communicated to Bob. Subgraph H is constructed solely by Alice who does so by
revealing only ¢ fraction of her input graph. The construction guarantees that for some

sufficiently large constant 8 > 1, every edge (u,v) € H satisfies degy(u) + degy (v) < .

That is, H has edge-degree upper bounded by . This already implies that H has at most
O(npB) = O(n) edges. The subgraph U is simply the set of all the remaining edges (u,v) in
the graph G (given either to Alice or Bob) for which degy (u) + degy(v) < 8 — 1. In other
words, all the remaining “underfull” edges whose edge-degree is less than (§ are added to
U. While it is not at all clear that H can be constructed in such a way that guarantees
|U| = O(nlogn), Bernstein [6] showed this is indeed possible. At the end, Bob returns a
maximum matching of all the edges that he receives.

The subgraph HUU can be shown to include an edge-degree constrained subgraph (EDCS)
of G, which is known to include a (2/3 — O(¢))-approximate maximum matching of the base

graph G for 8 > 1/e [7, 5]. This already implies an (almost) 2/3-approximation in our model.

This guarantee is in fact tight for the maximum matching contained in H U U as illustrated
in Figure 1. In the example of Figure 1, the missed (red dashed) edges have edge-degree
in H, and so they do not belong to U. While the graph in the example of Figure 1 has a
perfect matching, any matching in H U U can only match 2/3-fraction of vertices.

The crucial insight is that although H UU may only include a 2/3-approximate matching
of the graph, Bob in addition will also have access to the set Ep of the edges originally
given to him in the random partitioning. So instead of H U U, we need to focus on the
size of the maximum matching contained in H UU U Ep. Let us now revisit the example
of Figure 1. As we discussed, the set H is only constructed using a small ¢ fraction of the
edges. Moreover, conditioned on H, the subgraph U will also be fully determined regardless
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Figure 1 An example where subgraph H U U in Bernstein’s protocol does not include a better
than 2/3-approximation.

of how the edges are partitioned between Alice and Bob. This implies that, even conditioned
on the outcome of H and U, each dashed edge is given to Bob with probability (almost)
1/2. This results in an (almost) 5/6-approximation in the example of Figure 1: We can
combine the 2/3-approximate black matching in U with half of the dashed edges, obtaining
an (almost) % + % . é = % approximation. We remark that this example already shows
that our 5/6-approximation guarantee of Theorem 1.1 is tight for Bernstein’s protocol (see
Theorem 1.3 for the formal proof).

The nice property of the example of Figure 1 is that subgraph H U U includes a 2/3-
approximate matching M (the black matching in U) where removing its vertices from the
graph still leaves a 1/3-approximate matching in G (the dashed red edges). If we prove that
this holds for every graph, then we immediately get an (almost) 5/6-approximation analysis
for Bernstein’s protocol. Unfortunately, however, this property does not hold for all graphs.
In Section 6, we provide examples of H, U such that for every matching M in H UU, it holds
that

M| + 54(G — V(M) < 0.75u(G),

where (G — V(M)) here is the size of maximum matching remained in graph G after
removing vertices of M. This implies that this idea is not sufficient to guarantee an (almost)
5/6-approximation for Bernstein’s protocol.

In our analysis, instead of first committing to a 2/3-approximate matching in H UU and
then augmenting it using the edges in EFp, we first commit to a smaller 1/2-approximate
matching by fixing an arbitrary maximum matching M* and taking half of its edges that
are given to Bob. The advantage of this smaller 1/2-approximate matching is that it can
be augmented much better. Specifically, we show that this 1/2-approximate matching, in
expectation, can be augmented by a m