
50th International Colloquium on
Automata, Languages, and
Programming

ICALP 2023, July 10–14, 2023, Paderborn, Germany

Edited by

Kousha Etessami
Uriel Feige
Gabriele Puppis

EA
T
C
S

LIPIcs – Vo l . 261 – ICALP 2023 www.dagstuh l .de/ l ip i c s

Editors

Kousha Etessami
University of Edinburgh, UK
kousha@inf.ed.ac.uk

Uriel Feige
Weizmann Institute of Science, Rehovot, Israel
uriel.feige@weizmann.ac.il

Gabriele Puppis
University of Udine, Italy
gabriele.puppis@uniud.it

ACM Classification 2012
Theory of computation

ISBN 978-3-95977-278-5

Published online and open access by
Schloss Dagstuhl – Leibniz-Zentrum für Informatik GmbH, Dagstuhl Publishing, Saarbrücken/Wadern,
Germany. Online available at https://www.dagstuhl.de/dagpub/978-3-95977-278-5.

Publication date
July, 2023

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed
bibliographic data are available in the Internet at https://portal.dnb.de.

License
This work is licensed under a Creative Commons Attribution 4.0 International license (CC-BY 4.0):
https://creativecommons.org/licenses/by/4.0/legalcode.
In brief, this license authorizes each and everybody to share (to copy, distribute and transmit) the work
under the following conditions, without impairing or restricting the authors’ moral rights:

Attribution: The work must be attributed to its authors.

The copyright is retained by the corresponding authors.

Digital Object Identifier: 10.4230/LIPIcs.ICALP.2023.0

ISBN 978-3-95977-278-5 ISSN 1868-8969 https://www.dagstuhl.de/lipics

mailto:kousha@inf.ed.ac.uk
mailto:uriel.feige@weizmann.ac.il
https://orcid.org/0000-0001-9831-3264
mailto:gabriele.puppis@uniud.it
https://www.dagstuhl.de/dagpub/978-3-95977-278-5
https://www.dagstuhl.de/dagpub/978-3-95977-278-5
https://portal.dnb.de
https://creativecommons.org/licenses/by/4.0/legalcode
https://doi.org/10.4230/LIPIcs.ICALP.2023.0
https://www.dagstuhl.de/dagpub/978-3-95977-278-5
https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

0:iii

LIPIcs – Leibniz International Proceedings in Informatics

LIPIcs is a series of high-quality conference proceedings across all fields in informatics. LIPIcs volumes
are published according to the principle of Open Access, i.e., they are available online and free of charge.

Editorial Board

Luca Aceto (Chair, Reykjavik University, IS and Gran Sasso Science Institute, IT)
Christel Baier (TU Dresden, DE)
Mikolaj Bojanczyk (University of Warsaw, PL)
Roberto Di Cosmo (Inria and Université de Paris, FR)
Faith Ellen (University of Toronto, CA)
Javier Esparza (TU München, DE)
Daniel Král’ (Masaryk University – Brno, CZ)
Meena Mahajan (Institute of Mathematical Sciences, Chennai, IN)
Anca Muscholl (University of Bordeaux, FR)
Chih-Hao Luke Ong (University of Oxford, GB and Nanyang Technological University, SG)
Phillip Rogaway (University of California, Davis, US)
Eva Rotenberg (Technical University of Denmark, Lyngby, DK)
Raimund Seidel (Universität des Saarlandes, Saarbrücken, DE and Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, Wadern, DE)

ISSN 1868-8969

https://www.dagstuhl.de/lipics

ICALP 2023

https://www.dagstuhl.de/dagpub/1868-8969
https://www.dagstuhl.de/lipics

Contents

Preface
Kousha Etessami, Uriel Feige, and Gabriele Puppis . 0:xv

Organization
. 0:xix

List of Authors
. 0:xxvii

Invited Talks

A (Slightly) Improved Approximation Algorithm for the Metric Traveling
Salesperson Problem

Anna R. Karlin . 1:1–1:1

An Almost-Linear Time Algorithm for Maximum Flow and More
Rasmus Kyng . 2:1–2:1

Context-Bounded Analysis of Concurrent Programs
Pascal Baumann, Moses Ganardi, Rupak Majumdar, Ramanathan S. Thinniyam,
and Georg Zetzsche . 3:1–3:16

Quantum Codes, Local Testability and Interactive Proofs: State of the Art and
Open Questions

Thomas Vidick . 4:1–4:1

The Skolem Landscape
James Worrell . 5:1–5:2

Track A: Algorithms, Complexity and Games

Optimal Decremental Connectivity in Non-Sparse Graphs
Anders Aamand, Adam Karczmarz, Jakub Łącki, Nikos Parotsidis,
Peter M. R. Rasmussen, and Mikkel Thorup . 6:1–6:17

On Range Summary Queries
Peyman Afshani, Pingan Cheng, Aniket Basu Roy, and Zhewei Wei 7:1–7:17

Stable Matching: Choosing Which Proposals to Make
Ishan Agarwal and Richard Cole . 8:1–8:20

Expander Decomposition with Fewer Inter-Cluster Edges Using a Spectral Cut
Player

Daniel Agassy, Dani Dorfman, and Haim Kaplan . 9:1–9:20

Locality in Online, Dynamic, Sequential, and Distributed Graph Algorithms
Amirreza Akbari, Navid Eslami, Henrik Lievonen, Darya Melnyk,
Joona Särkijärvi, and Jukka Suomela . 10:1–10:20

An Efficient Algorithm for All-Pairs Bounded Edge Connectivity
Shyan Akmal and Ce Jin . 11:1–11:20

EA
T
C
S

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:vi Contents

Low-Depth Arithmetic Circuit Lower Bounds: Bypassing Set-Multilinearization
Prashanth Amireddy, Ankit Garg, Neeraj Kayal, Chandan Saha, and
Bhargav Thankey . 12:1–12:20

Multi Layer Peeling for Linear Arrangement and Hierarchical Clustering
Yossi Azar and Danny Vainstein . 13:1–13:18

Robust Communication Complexity of Matching: EDCS Achieves 5/6
Approximation

Amir Azarmehr and Soheil Behnezhad . 14:1–14:15

Improved Approximation Algorithms by Generalizing the Primal-Dual Method
Beyond Uncrossable Functions

Ishan Bansal, Joseph Cheriyan, Logan Grout, and Sharat Ibrahimpur 15:1–15:19

Approximation Algorithms for Envy-Free Cake Division with Connected Pieces
Siddharth Barman and Pooja Kulkarni . 16:1–16:19

Cumulative Memory Lower Bounds for Randomized and Quantum Computation
Paul Beame and Niels Kornerup . 17:1–17:20

Dynamic Averaging Load Balancing on Arbitrary Graphs
Petra Berenbrink, Lukas Hintze, Hamed Hosseinpour, Dominik Kaaser,
and Malin Rau . 18:1–18:18

Fast Approximation of Search Trees on Trees with Centroid Trees
Benjamin Aram Berendsohn, Ishay Golinsky, Haim Kaplan, and László Kozma . . . 19:1–19:20

Improved Product-State Approximation Algorithms for Quantum Local
Hamiltonians

Thiago Bergamaschi . 20:1–20:18

Sublinear Time Eigenvalue Approximation via Random Sampling
Rajarshi Bhattacharjee, Gregory Dexter, Petros Drineas, Cameron Musco,
and Archan Ray . 21:1–21:18

Streaming k-Edit Approximate Pattern Matching via String Decomposition
Sudatta Bhattacharya and Michal Koucký . 22:1–22:14

On Computing the Vertex Connectivity of 1-Plane Graphs
Therese Biedl and Karthik Murali . 23:1–23:16

Fault-Tolerant ST-Diameter Oracles
Davide Bilò, Keerti Choudhary, Sarel Cohen, Tobias Friedrich, Simon Krogmann,
and Martin Schirneck . 24:1–24:20

Isoperimetric Inequalities for Real-Valued Functions with Applications to
Monotonicity Testing

Hadley Black, Iden Kalemaj, and Sofya Raskhodnikova . 25:1–25:20

The Geometry of Tree-Based Sorting
Guy E. Blelloch and Magdalen Dobson . 26:1–26:19

Parameterized Complexity of Binary CSP: Vertex Cover, Treedepth, and Related
Parameters

Hans L. Bodlaender, Carla Groenland, and Michał Pilipczuk . 27:1–27:20

Contents 0:vii

Nondeterministic Interactive Refutations for Nearest Boolean Vector
Andrej Bogdanov and Alon Rosen . 28:1–28:14

A 4/3 Approximation for 2-Vertex-Connectivity
Miguel Bosch-Calvo, Fabrizio Grandoni, and Afrouz Jabal Ameli 29:1–29:13

Lower Bounds for Pseudo-Deterministic Counting in a Stream
Vladimir Braverman, Robert Krauthgamer, Aditya Krishnan, and Shay Sapir 30:1–30:14

Minimum Chain Cover in Almost Linear Time
Manuel Cáceres . 31:1–31:12

Improved Hardness Results for the Guided Local Hamiltonian Problem
Chris Cade, Marten Folkertsma, Sevag Gharibian, Ryu Hayakawa,
François Le Gall, Tomoyuki Morimae, and Jordi Weggemans . 32:1–32:19

Planar #CSP Equality Corresponds to Quantum Isomorphism – A Holant
Viewpoint

Jin-Yi Cai and Ben Young . 33:1–33:17

On the Fine-Grained Complexity of Small-Size Geometric Set Cover and Discrete
k-Center for Small k

Timothy M. Chan, Qizheng He, and Yuancheng Yu . 34:1–34:19

Ortho-Radial Drawing in Near-Linear Time
Yi-Jun Chang . 35:1–35:20

Approximation Algorithms for Network Design in Non-Uniform Fault Models
Chandra Chekuri and Rhea Jain . 36:1–36:20

Sublinear Algorithms and Lower Bounds for Estimating MST and TSP Cost in
General Metrics

Yu Chen, Sanjeev Khanna, and Zihan Tan . 37:1–37:16

Quantum Algorithms and Lower Bounds for Linear Regression with Norm
Constraints

Yanlin Chen and Ronald de Wolf . 38:1–38:21

New PRGs for Unbounded-Width/Adaptive-Order Read-Once Branching
Programs

Lijie Chen, Xin Lyu, Avishay Tal, and Hongxun Wu . 39:1–39:20

Approximate Nearest Neighbor for Polygonal Curves Under Fréchet Distance
Siu-Wing Cheng and Haoqiang Huang . 40:1–40:18

Linear Insertion Deletion Codes in the High-Noise and High-Rate Regimes
Kuan Cheng, Zhengzhong Jin, Xin Li, Zhide Wei, and Yu Zheng 41:1–41:17

Online Learning and Disambiguations of Partial Concept Classes
Tsun-Ming Cheung, Hamed Hatami, Pooya Hatami, and Kaave Hosseini 42:1–42:13

A General Framework for Learning-Augmented Online Allocation
Ilan Reuven Cohen and Debmalya Panigrahi . 43:1–43:21

Sample-Based Distance-Approximation for Subsequence-Freeness
Omer Cohen Sidon and Dana Ron . 44:1–44:19

ICALP 2023

0:viii Contents

New Partitioning Techniques and Faster Algorithms for Approximate Interval
Scheduling

Spencer Compton, Slobodan Mitrović, and Ronitt Rubinfeld . 45:1–45:16

Optimal (Degree+1)-Coloring in Congested Clique
Sam Coy, Artur Czumaj, Peter Davies, and Gopinath Mishra . 46:1–46:20

Incremental Maximization via Continuization
Yann Disser, Max Klimm, Kevin Schewior, and David Weckbecker 47:1–47:17

Local Computation Algorithms for Hypergraph Coloring – Following Beck’s
Approach

Andrzej Dorobisz and Jakub Kozik . 48:1–48:20

An EPTAS for Budgeted Matching and Budgeted Matroid Intersection via
Representative Sets

Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai . 49:1–49:16

Connected k-Center and k-Diameter Clustering
Lukas Drexler, Jan Eube, Kelin Luo, Heiko Röglin, Melanie Schmidt,
and Julian Wargalla . 50:1–50:20

On Sparsification of Stochastic Packing Problems
Shaddin Dughmi, Yusuf Hakan Kalayci, and Neel Patel . 51:1–51:17

Triangle Counting with Local Edge Differential Privacy
Talya Eden, Quanquan C. Liu, Sofya Raskhodnikova, and Adam Smith 52:1–52:21

Protecting Single-Hop Radio Networks from Message Drops
Klim Efremenko, Gillat Kol, Dmitry Paramonov, and Raghuvansh R. Saxena 53:1–53:20

On the Mixing Time of Glauber Dynamics for the Hard-Core and Related
Models on G(n, d/n)

Charilaos Efthymiou and Weiming Feng . 54:1–54:17

Broadcasting with Random Matrices
Charilaos Efthymiou and Kostas Zampetakis . 55:1–55:14

Improved Mixing for the Convex Polygon Triangulation Flip Walk
David Eppstein and Daniel Frishberg . 56:1–56:17

Optimal Adjacency Labels for Subgraphs of Cartesian Products
Louis Esperet, Nathaniel Harms, and Viktor Zamaraev . 57:1–57:11

Truthful Matching with Online Items and Offline Agents
Michal Feldman, Federico Fusco, Simon Mauras, and Rebecca Reiffenhäuser 58:1–58:20

Completely Reachable Automata: A Polynomial Algorithm and Quadratic Upper
Bounds

Robert Ferens and Marek Szykuła . 59:1–59:17

Approximating Long Cycle Above Dirac’s Guarantee
Fedor V. Fomin, Petr A. Golovach, Danil Sagunov, and Kirill Simonov 60:1–60:18

Compound Logics for Modification Problems
Fedor V. Fomin, Petr A. Golovach, Ignasi Sau, Giannos Stamoulis,
and Dimitrios M. Thilikos . 61:1–61:21

Contents 0:ix

Cliques in High-Dimensional Geometric Inhomogeneous Random Graphs
Tobias Friedrich, Andreas Göbel, Maximilian Katzmann, and Leon Schiller 62:1–62:13

An O(log k)-Approximation for Directed Steiner Tree in Planar Graphs
Zachary Friggstad and Ramin Mousavi . 63:1–63:14

Parallel Self-Testing of EPR Pairs Under Computational Assumptions
Honghao Fu, Daochen Wang, and Qi Zhao . 64:1–64:19

Matching Augmentation via Simultaneous Contractions
Mohit Garg, Felix Hommelsheim, and Nicole Megow . 65:1–65:17

On Differentially Private Counting on Trees
Badih Ghazi, Pritish Kamath, Ravi Kumar, Pasin Manurangsi,
and Kewen Wu . 66:1–66:18

Quantum Cryptography with Classical Communication: Parallel Remote State
Preparation for Copy-Protection, Verification, and More

Alexandru Gheorghiu, Tony Metger, and Alexander Poremba . 67:1–67:17

Parameterised and Fine-Grained Subgraph Counting, Modulo 2
Leslie Ann Goldberg and Marc Roth . 68:1–68:17

Efficient Data Structures for Incremental Exact and Approximate Maximum Flow
Gramoz Goranci and Monika Henzinger . 69:1–69:14

Low Sample Complexity Participatory Budgeting
Mohak Goyal, Sukolsak Sakshuwong, Sahasrajit Sarmasarkar,
and Ashish Goel . 70:1–70:20

The Impacts of Dimensionality, Diffusion, and Directedness on Intrinsic
Cross-Model Simulation in Tile-Based Self-Assembly

Daniel Hader and Matthew J. Patitz . 71:1–71:19

Parameter Estimation for Gibbs Distributions
David G. Harris and Vladimir Kolmogorov . 72:1–72:21

On Finding Constrained Independent Sets in Cycles
Ishay Haviv . 73:1–73:16

Faster Submodular Maximization for Several Classes of Matroids
Monika Henzinger, Paul Liu, Jan Vondrák, and Da Wei Zheng 74:1–74:18

Twin-Width of Planar Graphs Is at Most 8, and at Most 6 When Bipartite Planar
Petr Hliněný and Jan Jedelský . 75:1–75:18

A Sparse Johnson-Lindenstrauss Transform Using Fast Hashing
Jakob Bæk Tejs Houen and Mikkel Thorup . 76:1–76:20

Approximating Max-Cut on Bounded Degree Graphs: Tighter Analysis of the
FKL Algorithm

Jun-Ting Hsieh and Pravesh K. Kothari . 77:1–77:7

Ellipsoid Fitting up to a Constant
Jun-Ting Hsieh, Pravesh K. Kothari, Aaron Potechin, and Jeff Xu 78:1–78:20

ICALP 2023

0:x Contents

Finding Almost Tight Witness Trees
Dylan Hyatt-Denesik, Afrouz Jabal Ameli, and Laura Sanità . 79:1–79:16

Efficient Caching with Reserves via Marking
Sharat Ibrahimpur, Manish Purohit, Zoya Svitkina, Erik Vee, and
Joshua R. Wang . 80:1–80:20

Rerouting Planar Curves and Disjoint Paths
Takehiro Ito, Yuni Iwamasa, Naonori Kakimura, Yusuke Kobayashi,
Shun-ichi Maezawa, Yuta Nozaki, Yoshio Okamoto, and Kenta Ozeki 81:1–81:19

Hardness of Finding Combinatorial Shortest Paths on Graph Associahedra
Takehiro Ito, Naonori Kakimura, Naoyuki Kamiyama, Yusuke Kobayashi,
Shun-ichi Maezawa, Yuta Nozaki, and Yoshio Okamoto . 82:1–82:17

Searching for Regularity in Bounded Functions
Siddharth Iyer and Michael Whitmeyer . 83:1–83:20

Fully Dynamic Shortest Paths and Reachability in Sparse Digraphs
Adam Karczmarz and Piotr Sankowski . 84:1–84:20

New Additive Emulators
Shimon Kogan and Merav Parter . 85:1–85:17

Nearly-Linear Time LP Solvers and Rounding Algorithms for Scheduling Problems
Shi Li . 86:1–86:20

Simulating Markovian Open Quantum Systems Using Higher-Order Series
Expansion

Xiantao Li and Chunhao Wang . 87:1–87:20

Space-Efficient Interior Point Method, with Applications to Linear Programming
and Maximum Weight Bipartite Matching

S. Cliff Liu, Zhao Song, Hengjie Zhang, Lichen Zhang, and Tianyi Zhou 88:1–88:14

List Decoding of Rank-Metric Codes with Row-To-Column Ratio Bigger Than 1
2

Shu Liu, Chaoping Xing, and Chen Yuan . 89:1–89:14

Breaking the All Subsets Barrier for Min k-Cut
Daniel Lokshtanov, Saket Saurabh, and Vaishali Surianarayanan 90:1–90:19

A Tight (1.5 + ϵ)-Approximation for Unsplittable Capacitated Vehicle Routing
on Trees

Claire Mathieu and Hang Zhou . 91:1–91:16

Online Demand Scheduling with Failovers
Konstantina Mellou, Marco Molinaro, and Rudy Zhou . 92:1–92:20

Faster Parameterized Algorithms for Modification Problems to Minor-Closed
Classes

Laure Morelle, Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos 93:1–93:19

Nearly Tight Spectral Sparsification of Directed Hypergraphs
Kazusato Oko, Shinsaku Sakaue, and Shin-ichi Tanigawa . 94:1–94:19

The Communication Complexity of Set Intersection Under Product Distributions
Rotem Oshman and Tal Roth . 95:1–95:20

Contents 0:xi

An Optimal Separation Between Two Property Testing Models for Bounded
Degree Directed Graphs

Pan Peng and Yuyang Wang . 96:1–96:16

Decidability of Fully Quantum Nonlocal Games with Noisy Maximally Entangled
States

Minglong Qin and Penghui Yao . 97:1–97:20

Scheduling Under Non-Uniform Job and Machine Delays
Rajmohan Rajaraman, David Stalfa, and Sheng Yang . 98:1–98:20

Zero-Rate Thresholds and New Capacity Bounds for List-Decoding and
List-Recovery

Nicolas Resch, Chen Yuan, and Yihan Zhang . 99:1–99:18

Convergence of the Number of Period Sets in Strings
Eric Rivals, Michelle Sweering, and Pengfei Wang . 100:1–100:14

Lasserre Hierarchy for Graph Isomorphism and Homomorphism
Indistinguishability

David E. Roberson and Tim Seppelt . 101:1–101:18

Average-Case to (Shifted) Worst-Case Reduction for the Trace Reconstruction
Problem

Ittai Rubinstein .102:1–102:20

The Support of Open Versus Closed Random Walks
Thomas Sauerwald, He Sun, and Danny Vagnozzi . 103:1–103:21

Faster Matroid Partition Algorithms
Tatsuya Terao . 104:1–104:20

Frameworks for Nonclairvoyant Network Design with Deadlines or Delay
Noam Touitou .105:1–105:20

Tight Bounds for Chordal/Interval Vertex Deletion Parameterized by Treewidth
Michał Włodarczyk . 106:1–106:20

The Wrong Direction of Jensen’s Inequality Is Algorithmically Right
Or Zamir .107:1–107:10

A Hyperbolic Extension of Kadison-Singer Type Results
Ruizhe Zhang and Xinzhi Zhang . 108:1–108:14

Track B: Automata, Logic, Semantics, and Theory of Programming

On Semantically-Deterministic Automata
Bader Abu Radi and Orna Kupferman . 109:1–109:20

Checking Refinement of Asynchronous Programs Against Context-Free
Specifications

Pascal Baumann, Moses Ganardi, Rupak Majumdar,
Ramanathan S. Thinniyam, and Georg Zetzsche . 110:1–110:20

On the Limits of Decision: the Adjacent Fragment of First-Order Logic
Bartosz Bednarczyk, Daumantas Kojelis, and Ian Pratt-Hartmann111:1–111:21

ICALP 2023

0:xii Contents

The Complexity of Presburger Arithmetic with Power or Powers
Michael Benedikt, Dmitry Chistikov, and Alessio Mansutti . 112:1–112:18

A Dichotomy for Succinct Representations of Homomorphisms
Christoph Berkholz and Harry Vinall-Smeeth .113:1–113:19

Nominal Topology for Data Languages
Fabian Birkmann, Stefan Milius, and Henning Urbat .114:1–114:21

Population Protocols with Unordered Data
Michael Blondin and François Ladouceur . 115:1–115:20

Network Satisfaction Problems Solved by k-Consistency
Manuel Bodirsky and Simon Knäuer .116:1–116:20

Algebraic Recognition of Regular Functions
Mikołaj Bojańczyk and Lê Thành Dũng (Tito) Nguyễn .117:1–117:19

How to Play Optimally for Regular Objectives?
Patricia Bouyer, Nathanaël Fijalkow, Mickael Randour, and
Pierre Vandenhove . 118:1–118:18

Monadic NIP in Monotone Classes of Relational Structures
Samuel Braunfeld, Anuj Dawar, Ioannis Eleftheriadis, and Aris Papadopoulos119:1–119:18

Compositionality of Planar Perfect Matchings: A Universal and Complete
Fragment of ZW-Calculus

Titouan Carette, Etienne Moutot, Thomas Perez, and Renaud Vilmart 120:1–120:17

Deterministic Regular Functions of Infinite Words
Olivier Carton, Gaëtan Douéneau-Tabot, Emmanuel Filiot, and Sarah Winter121:1–121:18

Characterising Memory in Infinite Games
Antonio Casares and Pierre Ohlmann .122:1–122:18

Approximate Model Counting: Is SAT Oracle More Powerful Than NP Oracle?
Diptarka Chakraborty, Sourav Chakraborty, Gunjan Kumar, and
Kuldeep S. Meel . 123:1–123:17

The Identity Problem in Z ≀ Z Is Decidable
Ruiwen Dong .124:1–124:20

Indiscernibles and Flatness in Monadically Stable and Monadically NIP Classes
Jan Dreier, Nikolas Mählmann, Sebastian Siebertz, and Szymon Toruńczyk125:1–125:18

Black-Box Testing Liveness Properties of Partially Observable Stochastic Systems
Javier Esparza and Vincent P. Grande .126:1–126:17

The Fine-Grained Complexity of Boolean Conjunctive Queries and Sum-Product
Problems

Austen Z. Fan, Paraschos Koutris, and Hangdong Zhao .127:1–127:20

Flipper Games for Monadically Stable Graph Classes
Jakub Gajarský, Nikolas Mählmann, Rose McCarty, Pierre Ohlmann,
Michał Pilipczuk, Wojciech Przybyszewski, Sebastian Siebertz,
Marek Sokołowski, and Szymon Toruńczyk . 128:1–128:16

Contents 0:xiii

Regular Methods for Operator Precedence Languages
Thomas A. Henzinger, Pavol Kebis, Nicolas Mazzocchi, and N. Ege Saraç129:1–129:20

Positivity Problems for Reversible Linear Recurrence Sequences
George Kenison, Joris Nieuwveld, Joël Ouaknine, and James Worrell 130:1–130:17

Coverability in VASS Revisited: Improving Rackoff’s Bound to Obtain
Conditional Optimality

Marvin Künnemann, Filip Mazowiecki, Lia Schütze, Henry Sinclair-Banks,
and Karol Węgrzycki .131:1–131:20

First Order Logic on Pathwidth Revisited Again
Michael Lampis .132:1–132:17

Witnessed Symmetric Choice and Interpretations in Fixed-Point Logic with
Counting

Moritz Lichter .133:1–133:20

On the Complexity of Diameter and Related Problems in Permutation Groups
Markus Lohrey and Andreas Rosowski . 134:1–134:18

Canonical Decompositions in Monadically Stable and Bounded Shrubdepth
Graph Classes

Pierre Ohlmann, Michał Pilipczuk, Wojciech Przybyszewski, and
Szymon Toruńczyk .135:1–135:17

Probabilistic Guarded KAT Modulo Bisimilarity: Completeness and Complexity
Wojciech Różowski, Tobias Kappé, Dexter Kozen, Todd Schmid, and
Alexandra Silva .136:1–136:20

Action Codes
Frits Vaandrager and Thorsten Wißmann .137:1–137:20

ICALP 2023

Preface

This volume contains the papers presented at the 50th EATCS International Conference
on Automata, Languages and Programming (ICALP 2023), held in Paderborn, Germany,
during July 10–14, 2023. ICALP is a series of annual conferences of the European Association
for Theoretical Computer Science (EATCS), which first took place in 1972.

This year, the ICALP program consisted of two tracks:
Track A: Algorithms, Complexity, and Games
Track B: Automata, Logic, Semantics, and Theory of Programming

In response to the call for papers, a total of 443 eligible, anonymous submissions were
received: 346 for Track A and 97 for Track B. The committees decided to accept 132 papers
for inclusion in the scientific program: 103 papers for Track A and 29 for Track B. The
selection was made by the program committees based on originality, quality, and relevance
to theoretical computer science. The quality of the submissions was very high, and many
deserving papers could not be selected.

The EATCS sponsored awards for both a best paper and a best student paper in each of
the two tracks, selected by the program committees.

The best paper awards were given to the following papers:
Track A: Tsun-Ming Cheung, Hamed Hatami, Pooya Hatami, and Kaave Hosseini. Online

Learning and Disambiguations of Partial Concept Classes.
Track A: Miguel Bosch Calvo, Fabrizio Grandoni, and Afrouz Jabal Ameli. A 4/3 Approx-

imation for 2-Vertex-Connectivity.
Track B: Marvin Künnemann, Filip Mazowiecki, Lia Schütze, Henry Sinclair-Banks, and

Karol Węgrzycki. Coverability in VASS Revisited: Improving Rackoff’s Bound to Obtain
Conditional Optimality.

The best student paper awards, for papers that are solely authored by students, were
given to the following papers:
Track A: Manuel Cáceres. Minimum Chain Cover in Almost Linear Time.
Track B: Ruiwen Dong. The Identity Problem in Z ≀ Z is decidable.

Apart from the contributed talks, ICALP 2023 included invited presentations by
Anna Karlin, University of Washington, USA,
Rasmus Kyng, ETH Zurich, Switzerland,
Rupak Majumdar, Max Planck Institute for Software Systems, Germany,
Thomas Vidick, California Institute of Technology, USA, and Weizmann Institute of
Science, Israel,
James Worrell, University of Oxford, UK.

This volume contains all the contributed papers presented at the conference, and an
abstract or paper accompanying each of the invited talks by Anna Karlin, Rasmus Kyng,
Rupak Majumdar, Thomas Vidick, and James Worrell.

For this special 50th anniversary of ICALP 2023, the conference program also included a
special session with two invited talks by

Kurt Mehlhorn, Max Planck Institute for Computer Science, Germany,
Thomas A. Henzinger, Institute of Science and Technology, Austria.

EA
T
C
S

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xvi Preface

Although they did not provide abstracts for the proceedings, we acknowledge their involvement
and contribution.

The program of ICALP 2023 also included presentations of the EATCS Award 2023 to
Amos Fiat (Tel Aviv University), the Presburger Award 2023 to Aaron Bernstein (Rutgers
University) and to Thatchaphol Saranurak (University of Michigan), the Alonzo Church
Award 2023 to the following group of papers:

Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon, Lars Birkedal,
Derek Dreyer: “Iris: Monoids and Invariants as an Orthogonal Basis for Concurrent
Reasoning”. POPL 2015.
Ralf Jung, Robbert Krebbers, Lars Birkedal, Derek Dreyer: “Higher-order ghost state”.
ICFP 2016.
Robbert Krebbers, Ralf Jung, Aleš Bizjak, Jacques-Henri Jourdan, Derek Dreyer, Lars
Birkedal: “The Essence of Higher-Order Concurrent Separation Logic”. ESOP 2017.
Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Aleš Bizjak, Lars Birkedal, Derek
Dreyer: “Iris from the ground up: A modular foundation for higher-order concurrent
separation logic”. J. Funct. Program. 28 (2018).

The EATCS Distinguished Dissertation Award 2023 was awarded jointly to the following
PhD dissertations:

Kuikui Liu (University of Washington): “Spectral Independence: A New Tool to Analyze
Markov Chains” (supervisor Shayan Oveis Gharan).
Alex Lombardi (MIT, Department of Electrical Engineering and Computer Science):
“Provable Instantiations of Correlation Intractability and the Fiat-Shamir Heuristic”
(supervisor Vinod Vaikuntanathan).
Lijie Chen (MIT, Department of Electrical Engineering and Computer Science): “Better
Hardness via Algorithms, and New Forms of Hardness versus Randomness” (supervisor
Ryan Williams).

There was also the announcement of the new EATCS Fellows for 2023, who are:
Michael A. Bender (Stoney Brook University),
Leslie Ann Goldberg (University of Oxford),
Claire Mathieu (CNRS, IRIF, Université de Paris).

The following workshops were held as satellite events of ICALP 2023 on July 10, 2023:
Combinatorial Reconfiguration
Graph Width Parameters: from Structure to Algorithms (GWP 2023)
Algorithmic Aspects of Temporal Graphs VI
Adjoint Homomorphism Counting Workshop (ad hoc)
Congestion Games
Workshop On Reachability, Recurrences, and Loops ’23 (WORReLL’23)
Workshop on Recent Trends in Online Algorithms
Quantum Computing with Qiskit, and why Classical Algorithms still matter!
Algebraic Complexity Theory
Computer Science for CONTINUOUS Data

We wish to thank all authors who submitted extended abstracts for consideration, the
program committees for their scholarly effort, and all the reviewers who assisted the program
committees in the evaluation process.

We are also grateful to the Conference General Chair, Sevag Gharibian, his colleagues
from Paderborn University, and EATCS, for organizing ICALP 2023.

Preface 0:xvii

Finally, we would like to thank Anca Muscholl, the Chair of the ICALP Steering Com-
mittee, for her continuous support, Artur Czumaj, the president of EATCS, for his generous
advice on the organization of the conference, as well as Michael Wagner, Michael Didas, and
the entire editorial office of LIPIcs for their support in editing these proceedings.

July 2023 Kousha Etessami
Uriel Feige
Gabriele Puppis

ICALP 2023

Organization

Program Committees

Track A

Amir Abboud Weizmann Institute, Israel
Mikkel Abrahamsen University of Copenhagen, Denmark
Sepehr Assadi Rutgers University, USA
Aditya Bhaskara University of Utah, USA
Arnab Bhattacharyya National University of Singapore, Singapore
Greg Bodwin University of Michigan, USA
Karl Bringmann Saarland University, Germany
Clément Canonne University of Sydney, Australia
Vincent Cohen Addad Google Research, Zurich
Amin Coja Oghlan TU Dortmund, Germany
Michael Dinitz Johns Hopkins University, USA
Uriel Feige (Chair) Weizmann Institute, Israel
Moran Feldman University of Haifa, Israel
Sebastian Forster University of Salzburg, Austria
Sumegha Garg Stanford University, USA
Parikshit Gopalan Apple, USA
Karthik C.S. Rutgers University, USA
Yin Tat Lee University of Washington, USA
Stefano Leonardi Sapienza Universita di Roma, Italy
Sepideh Mahabadi MSR Redmond, USA
Giulio Malavolta Max Planck Institute for Security and Privacy, Germany
Jesper Nederlof Utrecht University, Netherlands
Vianney Perchet Ensae and Criteo AI Lab, France
Will Perkins Georgia Institute of Technology, USA
Marcin Pilipczuk University of Warsaw, Poland, and IT University of Copenhagen, Denmark
Aviad Rubinstein Stanford University, USA
Barna Saha University of California San Diego, USA
Rahul Santhanam University of Oxford, UK
Thatchaphol Saranurak University of Michigan, USA
Igor Shinkar Simon Fraser University, Canada
Mohit Singh Georgia Institute of Technology, USA
David Steurer ETH Zurich, Switzerland
Ola Svensson EPFL, Switzerland
Inbal Talgam-Cohen Technion, Israel
Kavitha Telikepalli Tata Institute of Fundamental Research, Mumbai, India
Vera Traub University of Bonn, Germany
Salil Vadhan Harvard University, USA
David Wajc Google Research, USA
Henry Yuen Columbia University, USA
Meirav Zehavi Ben-Gurion University, Israel

EA
T
C
S

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xx Organization

Track B
Shaull Almagor Technion, Israel
Albert Atserias Universitat Politecnica de Catalunya, Barcelona, Spain
Christel Baier TU Dresden, Germany
Véronique Bruyère University of Mons, Belgium
Thomas Colcombet IRIF / CNRS / Université Paris Cité, France
Andrei Bulatov Simon Fraser University, Canada
Wojciech Czerwiński University of Warsaw, Poland
Kousha Etessami (Chair) University of Edinburgh, UK
John Fearnley University of Liverpool, UK
Dana Fisman Ben-Gurion University, Israel
Rob van Glabbeek University of New South Wales, Australia
Chris Heunen University of Edinburgh, UK
Justin Hsu Cornell University, USA
Stefan Kiefer University of Oxford, UK
Kohei Kishida University of Illinois Urbana-Champaign, USA
Jan Kretinsky Technical University of Munich, Germany
Karoliina Lehtinen CNRS, Université Aix Marseille et Université de Toulon, LIS, France
Anthony Widjaja Lin TU Kaiserslautern & MPI-SWS, Germany
Wim Martens University of Bayreuth, Germany
Joanna Ochremiak CNRS, University of Bordeaux, France and University of Warsaw, Poland
Daniela Petrisan Université Paris Cité, IRIF, France
Sam Staton University of Oxford, UK
Ashutosh Trivedi University of Colorado - Boulder, USA
Takeshi Tsukada Chiba University, Japan
Mahesh Viswanathan University of Illinois Urbana-Champaign, USA

Organizing Committee

Sevag Gharibian, chair
Johannes Blömer
Friedhelm Meyer auf der Heide
Christian Scheideler
Ulf-Peter Schroeder

Steering Committee

Nikhil Bansal University of Michigan, US
Artur Czumaj Warwick University, UK
Javier Esparza TUM Munich, Germany
Simon Gay University of Glasgow, UK
Leslie Ann Goldberg Oxford University, UK
Thore Husfeldt (co-chair) Lund University, Sweden and IT University of Copenhagen, Denmark
Giuseppe Italiano Luiss University, Italy
Emanuela Merelli University of Camerino, Italy
Anca Muscholl (chair) Bordeaux University, France
Yuval Rabani Hebrew University, Israel
Paul Spirakis University of Liverpool, UK and University of Patras, Greece
James Worrell University of Oxford, UK

Organization 0:xxi

Financial Sponsors

External Reviewers

Upon their request, a small number of people who served as external reviewers do not appear
in this list.

Hugo Aaronson Scott Aaronson Behzad Abdolmaleki
Jayadev Acharya Akanksha Agrawal Michal Ajdarow
Shyan Akmal Hannaneh Akrami Gorjan Alagic
Dylan Altschuler Kazuyuki Amano Dong An
Aditya Anand Konrad Anand Nima Anari
Alexandr Andoni Marcelo Arenas Elena Arseneva
Kazuyuki Asada Vikrant Ashvinkumar Hilal Asi
Nathalie Aubrun Per Austrin Muqsit Azeem
Tanvi Bajpai Ainesh Bakshi Etienne Bamas
Nikhil Bansal Leonid Barenboim Corentin Barloy
Khashayar Barooti James Bartusek Dorian Baudry
Ulrich Bauer Soheil Behnezhad Michael Bekos
Paul Bell Rémy Belmonte Aleksandrs Belovs
Ziyad Benomar Suman Kalyan Bera Ioana Bercea
Benjamin Bergougnoux Pascal Bergstraesser Pascal Bergsträßer
Sebastian Berndt Aaron Bernstein Nayel Bettache
Siddharth Bhandari Sayan Bhattacharya Rishiraj Bhattacharyya
Sujoy Bhore Georgios Birmpas Csaba Biro
Andreas Björklund Eric Blais Jaroslaw Blasiok
Jannis Blauth Joakim Blikstad Ivan Bliznets
Achim Blumensath Hans L. Bodlaender Levente Bodnár
Benedikt Bollig Édouard Bonnet Christian Borgs
Joshua Brakensiek Pedro Branco Simina Branzei
Samuel Braunfeld Anton Braverman Léonard Brice
Jop Briet Joshua Brody Adam Brown
Niv Buchbinder Jaroslaw Byrka Benjamin Böhm
Jean Cardinal Alejandro Cassis Federica Cecchetto
Ruoxu Cen Keren Censor-Hillel Arghya Chakraborty

ICALP 2023

https://sfb901.upb.de
https://www.deepl.com
https://pc2.uni-paderborn.de
https://www.reply.com/de/about/careers
https://www.stiebel-eltron.de/de/home.html
https://www.hni.uni-paderborn.de
https://research.google

0:xxii Organization

Parinya Chalermsook T-H. Hubert Chan Timothy Chan
Timothy M. Chan Karthekeyan Chandrasekaran Yi-Jun Chang
Bernadette Charron-Bost Arnab Chatterjee Arkadev Chattopadhyay
Ho-Lin Chen Zongchen Chen Maria Cherifa
Vincent Cheval Leroy Chew Nai-Hui Chia
Andrew Childs Suryajith Chillara Rajesh Chitnis
Eden Chlamtac Davin Choo Keerti Choudhary
Anirban Chowdhury Valerio Cini Lorenzo Clemente
Richard Cleve Christian Coester Gil Cohen
Ilan Cohen Alessio Conte Arjan Cornelissen
Martin Costa Matthew Coudron Stefano Crespi Reghizzi
Andrés Cristi Maxime Crochemore Lorenzo Croissant
Emilio Cruciani David Cui Radu Curticapean
Artur Czumaj Yuval Dagan Anatole Dahan
Debarati Das Ewan Davies Sami Davies
Nabarun Deka Mahsa Derakhshan Palash Dey
Yann Disser Taylor Dohmen Jinshuo Dong
Florian Dorfhuber Anne Driemel Marina Drygala
Guillaume Ducoffe Aditi Dudeja Jesko Dujmovic
Talya Eden Charilaos Efthymiou Marco Eilers
Hafedh El Ferchichi Marek Elias Ehsan Emamjomeh-Zadeh
Alina Ene David Eppstein Leah Epstein
Thomas Erlebach Meryem Essaidi Alexandros Evangelidis
Tomer Ezra Amin Falah Ashkan Norouzi Fard
Vitaly Feldman Andreas Emil Feldmann Guillaume Fertin
Hendrik Fichtenberger Côme Fiegel Yuval Filmus
Nick Fischer Bailey Flanigan Henry Fleischmann
Noah Fleming Jacob Focke Fedor Fomin
Dimitris Fotakis Kyle Fox Cody Freitag
Dominik D. Freydenberger Tobias Friedrich Zachary Friggstad
Honghao Fu Federico Fusco Daniel Gabric
Jakub Gajarský Rishikesh Gajjala Andreas Galanis
Moses Ganardi Ankit Garg Mohit Garg
Felipe Garrido-Lucero Peter Gartland Surya Teja Gavva
Pawel Gawrychowski Loukas Georgiadis Timo Gervens
Abheek Ghosh Suprovat Ghoshal Rohan Ghuge
George Giakkoupis Amin Shiraz Gilani Jacob Gilbert
Niv Gilboa Uma Girish Marc Glisse
Aarushi Goel Shay Golan Emmanuel Goldberg
Petr Golovach Louis Golowich Timothy Gomez
Rica Gonen Junqing Gong Sivakanth Gopi
Barun Gorain Gramoz Goranci Spencer Gordon
Mayank Goswami Themistoklis Gouleakis Mohak Goyal
Fabrizio Grandoni Marta Grobelna Carla Groenland
Martin Grohe Kush Grover Shibashis Guha
He Guo Heng Guo Meghal Gupta
Tom Gur Jens Oliver Gutsfeld Roland Guttenberg
Thorsten Götte Michel Habib Amar Hadzihasanovic

Organization 0:xxiii

Maximilian Hahn-Klimroth Shai Halevi Thekla Hamm
Yassine Hamoudi Tesshu Hanaka Nathaniel Harms
Qizheng He Klaus Heeger Brett Hemenway
Dorothee Henke Léo Henry Monika Henzinger
D. Ellis Hershkowitz John M. Hitchcock Piotr Hofman
Alexandros Hollender Jacob Holm Max Hopkins
Gary Hoppenworth Ross Horne Lingxiao Huang
Shang-En Huang Kasper Høgh Jacob Imola
Tanmay Inamdar Stavros Ioannidis Yuval Ishai
Noa Izsak Hugo Jacob Riko Jacob
Meena Jagadeesan Palak Jain Pallavi Jain
Tomáš Jakl Arun Jambulapati Bart M.P. Jansen
David N. Jansen Klaus Jansen Rajesh Jayaram
Matthew Jenssen Mark Jerrum Xinrui Jia
Ce Jin Zhengzhong Jin Philips George John
Chris Jones Vincent Jugé Raphaël Jungers
Dominik Kaaser Praneeth Kacham Iden Kalemaj
Naoyuki Kamiyama Frank Kammer Anthimos-Vardis Kandiros
Panagiotis Kanellopoulos Mamadou Moustapha Kanté Mong-Jen Kao
Adam Karczmarz Juhani Karhumaki Matthew Katz
Alexander Kelley Esther Kelman David Kempe
George Kenison Thomas Kesselheim Arindam Khan
Kamyar Khodamoradi Sandra Kiefer Eun Jung Kim
Robbie King Valerie King Sándor Kisfaludi-Bak
Peter Kiss Susumu Kiyoshima Pieter Kleer
Kim-Manuel Klein Nathan Klein Dušan Knop
Yusuke Kobayashi Caleb Koch Tomasz Kociumaka
Shimon Kogan Pascal Koiran Benedikt Kolbe
Leszek Kolodziejczyk Christian Komusiewicz Tsvi Kopelowitz
Ama Koranteng Tuukka Korhonen Andre Kornell
Guy Kortsarz Peter Kostolányi Egor V. Kostylev
Kishore Kothapalli Michal Koucky Matt Kovacs-Deak
Dariusz Kowalski Laszlo Kozma Jan Kratochvil
Lena Krieg Ravishankar Krishnaswamy Paul Krogmeier
Piotr Krysta Ariel Kulik Alexander Kulikov
Janardhan Kulkarni Pooja Kulkarni Akash Kumar
Mrinal Kumar Nikhil Kumar Rajendra Kumar
Alexander Kurz Eyal Kushilevitz Dietrich Kuske
William Kuszmaul David Kutner Marvin Künnemann
Arnaud Labourel Bundit Laekhanukit Abhiruk Lahiri
Alexander Lam Michael Lampis Frédéric Lang
John Lapinskas Chris Laskowski Silvio Lattanzi
Thomas Lavastida Hoang-Oanh Le Hung Le
Van Bang Le Chin Ho Lee Euiwoong Lee
Engel Lefaucheux Johannes Lengler Shoham Letzter
Roie Levin Jason Li Minming Li
Ray Li Shi Li Wenzheng Li
Yi Li Yinan Li Yingying Li

ICALP 2023

0:xxiv Organization

Lyuben Lichev Moritz Lichter Thomas Lidbetter
Bingkai Lin Daogao Liu Jiahui Liu
Jin-Peng Liu Kuikui Liu Mike Liu
Mingmou Liu Quanquan Liu Yang Liu
Leo Lobski William Lochet Sylvain Lombardy
Dimitrios Los Florian Luca Josep Lumbreras
Xin Lyu Christof Löding Weiyun Ma
Marten Maack Andreas Maggiori James C.A. Main
Monosij Maitra Mikhail Makarov Frederik Mallmann-Trenn
Malhar Managoli Nikhil Mande Peter Manohar
Bodo Manthey Alberto Marchetti-Spaccamela Jay Mardia
Andrea Marino Oliver Markgraf Dan Marsden
Simon Martiel Tomáš Masařík Umang Mathur
Simon Mauras Theo McKenzie Audra McMillan
Nicole Megow Uri Meir Raghu Meka
Alexander Melnikov Darya Melnyk Nadav Merlis
Marcus Michelen Martin Milanič Jason Milionis
Antoine Miné Majid Mirzanezhad Pranabendu Misra
Slobodan Mitrović Valia Mitsou Parth Mittal
Divyarthi Mohan Sidhanth Mohanty Stefanie Mohr
Mathieu Molina Hendrik Molter Benjamin Monmege
Yoàv Montacute Shay Moran Benjamin Moseley
Tamer Mour Ramin Mousavi Shay Mozes
Loay Mualem Anish Mukherjee Tamalika Mukherjee
Sagnik Mukhopadhyay Adithya Murali Vishnu Murali
Tobias Mömke Noela Müller Viswanath Nagarajan
Tassio Naia Vasileios Nakos Seffi Naor
Meghana Nasre Sivaramakrishnan Natarajan Yasamin Nazari
Jelani Nelson Daniel Neuen Stefan Neumann
Alantha Newman Ilan Newman Dung Nguyen
Matthias Niewerth Reino Niskanen André Nusser
Zeev Nutov Martin Nägele Corentin Odic
Timm Oertel Pierre Ohlmann Yoshio Okamoto
Rafael Oliveira Dan Olteanu Lukáš Ondráček
Yota Otachi Benedikt Pago Soumyabrata Pal
Katarzyna Paluch Ioannis Panageas Debmalya Panigrahi
Fahad Panolan Charles Paperman Dmitry Paramonov
Louis Parlant Nikos Parotsidis Salman Parsa
Merav Parter Paweł Parys Viresh Patel
Subhasree Patro Michał Pawłowski Anurudh Peduri
Pan Peng Guillermo Perez Mateo Perez
Asaf Petruschka Seth Pettie Michał Pilipczuk
Vladimir Podolskii Tristan Pollner Aleksandr Popov
Danny Bøgsted Poulsen Lionel Pournin Thomas Powell
Nicola Prezza Eric Price Siddharth Pritam
Maximilian Probst Maximilian Prokop Kirk Pruhs
Ioannis Psarros Manish Purohit Edward Pyne
Pengyu Qian Youming Qiao Kent Quanrud

Organization 0:xxv

Yuval Rabani Tomasz Radzik Prasad Raghavendra
Ahmadreza Rahimi Saladi Rahul Justin Raizes
Ninad Rajgopal Michael Rao Christoforos Raptopoulos
Cyrus Rashtchian Mikhail Raskin Nidhi Rathi
Abhishek Rathod Gaurav Rattan Luca Reggio
Felix Reidl Rebecca Reiffenhäuser Hanlin Ren
Nicolas Resch David Richerby Sabine Rieder
Kilian Risse Cristian Riveros David Roberson
Mohammad Roghani Daniel Rogozin Lars Rohwedder
Maurice Rolvien Gregory Rosenthal Neil Ross
Marc Roth Thomas Rothvoss Sanjukta Roy
Davide Rucci Matteo Russo Andrew Ryzhikov
Paweł Rzążewski Heiko Röglin Sagi Saadon
Sushant Sachdeva Ron Safier Prakash Saivasan
Ken Sakayori Sukolsak Sakshuwong Sai Sandeep
Ignasi Sau Thomas Sauerwald David Saulpic
Saket Saurabh Saurabh Sawlani Olga Scheftelowitsch
Christian Scheideler Sven Schewe Aaron Schild
Martin Schirneck Niklas Schlomberg Sylvain Schmitz
Steffen Schuldenzucker Mark Schultz Roy Schwartz
Pascal Schweitzer Chris Schwiegelshohn Adam Sealfon
Masood Seddighin Pavel Semukhin Sayantan Sen
Flore Sentenac C. Seshadhri Martin P. Seybold
Hadas Shachnai Vihan Shah Omer Shahar
Liren Shan Roohani Sharma Adrian She
Suhail Sherif Abhishek Shetty Mahsa Shirmohammadi
Xinkai Shu Sebastian Siebertz Harsimran Singh
Sahil Singla Makrand Sinha Rene Sitters
Bart Smeulders Siani Smith Marek Sokołowski
Shay Solomon Tasuku Soma Manuel Sorge
Akshayaram Srinivasan Srikanth Srinivasan Piyush Srivastava
Frank Staals Georgios Stamoulis Kevin Stangl
Tatiana Starikovskaya Rafał Stefański Uri Stemmer
Miltiadis Stouras Hsin-Hao Su Sathyawageeswar Subramanian
Elina Sudit Scott Summers Janani Sundaresan
Céline Swennenhuis Prafullkumar Tale Navid Talebanfard
Zihan Tan Ewin Tang Jakub Tarnawski
Sébastien Tavenas Soeren Terziadis Guillaume Theyssier
Théophile Thiery Mads Toftrup Szymon Toruńczyk
Jacobo Torán Patrick Totzke Noam Touitou
Ohad Trabelsi Thorben Tröbst Ta-Wei Tu
Andrea Turrini Iddo Tzameret Ilay Tzarfati
Jakub Tětek Jonathan Ullman Chris Umans
Seeun William Umboh Jalaj Upadhyay Ali Vakilian
Arsen Vasilyan Sergei Vassilvitskii Yadu Vasudev
Rahul Vaze Nate Veldt Santhoshini Velusamy
Santosh Vempala Moritz Venzin N. V. Vinodchandran
Radu Vintan Lukas Vogl Mikhail Volkov

ICALP 2023

0:xxvi Organization

Tjark Vredeveld Anil Kumar Vullikanti Thuy Duong Vuong
Jens Vygen László Végh Magnus Wahlström
Erik Waingarten Hendrik Waldner Tomasz Walen
Nathan Wallheimer Chen Wang Haitao Wang
Quanlong Wang Justin Ward Julian Wargalla
Thomas Watson Chana Weil-Kennedy Oren Weimann
Maximilian Weininger Jennifer Welch Philip Wellnitz
Sebastian Wiederrecht Andreas Wiese Lisa Wilhelmi
Sarah Winkler Sarah Winter Michal Wlodarczyk
Alexander Wolff Damien Woods James Worrell
John Wright David Wu Yuchen Wu
Christian Wulff-Nilsen Karol Węgrzycki Ning Xie
Yinzhan Xu Zhou Xu Taisuke Yasuda
Christopher Ye Di-De Yen Asaf Yeshurun
Yuichi Yoshida Haifeng Yu Jing Yu
Qian Yu Weiqiang Yuan Peter Yuen
Igor Zablotchi Carol Zamfirescu Rico Zenklusen
Wei Zhan Chihao Zhang Minjian Zhang
Rachel Zhang Tianyi Zhang Xinzhi Zhang
Yuhao Zhang Da Wei Zheng Hang Zhou
Rudy Zhou Samson Zhou Zixin Zhou
Marius Zimand Martin Zimmermann Sebastian Zur
Goran Zuzic Paloma de Lima Tijn de Vos
Erik Jan van Leeuwen Jan van den Brand Ivor van der Hoog
Tom van der Zanden Stanislav Živný

List of Authors

Anders Aamand (6)
MIT, Cambridge, MA, USA

Bader Abu Radi (109)
School of Computer Science and Engineering,
Hebrew University, Jerusalem, Israel

Peyman Afshani (7)
Aarhus University, Denmark

Ishan Agarwal (8)
New York University, NY, USA

Daniel Agassy (9)
Tel Aviv University, Israel

Amirreza Akbari (10)
Aalto University, Espoo, Finland

Shyan Akmal (11)
MIT EECS and CSAIL, Cambridge, MA, USA

Prashanth Amireddy (12)
Harvard University, Cambridge, MA, USA

Yossi Azar (13)
School of Computer Science,
Tel-Aviv University, Israel

Amir Azarmehr (14)
Northeastern University, Boston, MA, USA

Ishan Bansal (15)
Operations Research and Information
Engineering, Cornell University,
Ithaca, NY, USA

Siddharth Barman (16)
Indian Institute of Science, Bangalore, India

Aniket Basu Roy (7)
Aarhus University, Denmark

Pascal Baumann (3, 110)
Max Planck Institute for Software Systems
(MPI-SWS), Kaiserslautern, Germany

Paul Beame (17)
Computer Science & Engineering,
University of Washington, Seattle, WA, USA

Bartosz Bednarczyk (111)
Computational Logic Group,
Technische Universität Dresden, Germany;
Institute of Computer Science,
University of Wrocław, Poland

Soheil Behnezhad (14)
Northeastern University, Boston, MA, USA

Michael Benedikt (112)
Department of Computer Science,
University of Oxford, UK

Petra Berenbrink (18)
Universität Hamburg, Germany

Benjamin Aram Berendsohn (19)
Institut für Informatik, Freie Universität Berlin,
Germany

Thiago Bergamaschi (20)
Department of Computer Science,
University of California, Berkeley, CA, USA

Christoph Berkholz (113)
Technische Universität Ilmenau, Germany

Rajarshi Bhattacharjee (21)
Manning College of Information and Computer
Sciences, University of Massachusetts, Amherst,
MA, USA

Sudatta Bhattacharya (22)
Computer Science Institute of Charles
University, Prague, Czech Republic

Therese Biedl (23)
David R. Cheriton School of Computer Science,
University of Waterloo, Canada

Davide Bilò (24)
Department of Information Engineering,
Computer Science and Mathematics,
University of L’Aquila, Italy

Fabian Birkmann (114)
Friedrich-Alexander-Universität
Erlangen-Nürnberg, Germany

Hadley Black (25)
Department of Computer Science, University of
California at Los Angeles, CA, USA

Guy E. Blelloch (26)
Carnegie Mellon University,
Pittsburgh, PA, USA

Michael Blondin (115)
Department of Computer Science,
Université de Sherbrooke, Canada

Manuel Bodirsky (116)
Institut für Algebra, TU Dresden, Germany

Hans L. Bodlaender (27)
Department of Information and Computing
Sciences, Utrecht University, The Netherlands

EA
T
C
S

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ICALP.2023.6
https://orcid.org/0000-0001-8138-9406
https://doi.org/10.4230/LIPIcs.ICALP.2023.109
https://doi.org/10.4230/LIPIcs.ICALP.2023.7
https://doi.org/10.4230/LIPIcs.ICALP.2023.8
https://doi.org/10.4230/LIPIcs.ICALP.2023.9
https://orcid.org/0009-0002-1433-3781
https://doi.org/10.4230/LIPIcs.ICALP.2023.10
https://orcid.org/0000-0002-7266-2041
https://doi.org/10.4230/LIPIcs.ICALP.2023.11
https://doi.org/10.4230/LIPIcs.ICALP.2023.12
https://doi.org/10.4230/LIPIcs.ICALP.2023.13
https://doi.org/10.4230/LIPIcs.ICALP.2023.14
https://doi.org/10.4230/LIPIcs.ICALP.2023.15
https://doi.org/10.4230/LIPIcs.ICALP.2023.16
https://doi.org/10.4230/LIPIcs.ICALP.2023.7
https://orcid.org/0000-0002-9371-0807
https://doi.org/10.4230/LIPIcs.ICALP.2023.3
https://doi.org/10.4230/LIPIcs.ICALP.2023.110
https://orcid.org/0000-0002-2666-3545
https://doi.org/10.4230/LIPIcs.ICALP.2023.17
https://orcid.org/0000-0002-8267-7554
https://doi.org/10.4230/LIPIcs.ICALP.2023.111
https://doi.org/10.4230/LIPIcs.ICALP.2023.14
https://orcid.org/0000-0003-2964-0880
https://doi.org/10.4230/LIPIcs.ICALP.2023.112
https://orcid.org/0000-0002-6930-3259
https://doi.org/10.4230/LIPIcs.ICALP.2023.18
https://doi.org/10.4230/LIPIcs.ICALP.2023.19
https://doi.org/10.4230/LIPIcs.ICALP.2023.20
https://orcid.org/0000-0002-3554-517X
https://doi.org/10.4230/LIPIcs.ICALP.2023.113
https://doi.org/10.4230/LIPIcs.ICALP.2023.21
https://orcid.org/0000-0002-6576-5931
https://doi.org/10.4230/LIPIcs.ICALP.2023.22
https://orcid.org/0000-0002-9003-3783
https://doi.org/10.4230/LIPIcs.ICALP.2023.23
https://orcid.org/0000-0003-3169-4300
https://doi.org/10.4230/LIPIcs.ICALP.2023.24
https://orcid.org/0000-0001-5890-9485
https://doi.org/10.4230/LIPIcs.ICALP.2023.114
https://orcid.org/0009-0008-9662-2870
https://doi.org/10.4230/LIPIcs.ICALP.2023.25
https://doi.org/10.4230/LIPIcs.ICALP.2023.26
https://orcid.org/0000-0003-2914-2734
https://doi.org/10.4230/LIPIcs.ICALP.2023.115
https://orcid.org/0000-0001-8228-3611
https://doi.org/10.4230/LIPIcs.ICALP.2023.116
https://orcid.org/0000-0002-9297-3330
https://doi.org/10.4230/LIPIcs.ICALP.2023.27
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

0:xxviii Authors

Andrej Bogdanov (28)
University of Ottawa, Canada

Mikołaj Bojańczyk (117)
Institute of Informatics, University of Warsaw,
Poland

Miguel Bosch-Calvo (29)
IDSIA, USI-SUPSI, Lugano, Switzerland

Patricia Bouyer (118)
Université Paris-Saclay, CNRS, ENS
Paris-Saclay, Laboratoire Méthodes Formelles,
91190, Gif-sur-Yvette, France

Samuel Braunfeld (119)
Computer Science Institute of Charles
University (IUUK), Prague, Czech Republic

Vladimir Braverman (30)
Rice University, Houston, TX, USA

Manuel Cáceres (31)
Department of Computer Science,
University of Helsinki, Finland

Chris Cade (32)
QuSoft and University of Amsterdam (UvA),
The Netherlands

Jin-Yi Cai (33)
Department of Computer Sciences,
University of Wisconsin-Madison, WI, USA

Titouan Carette (120)
Centre for Quantum Computer Science, Faculty
of Computing, University of Latvia, Riga, Latvia

Olivier Carton (121)
Université Paris Cité, CNRS, IRIF, F-75013,
France; Institut Universitaire de France, Paris,
France

Antonio Casares (122)
LaBRI, Université de Bordeaux, France

Diptarka Chakraborty (123)
National University of Singapore, Singapore

Sourav Chakraborty (123)
Indian Statistical Institute, Kolkata, India

Timothy M. Chan (34)
Department of Computer Science, University of
Illinois at Urbana-Champaign, IL, USA

Yi-Jun Chang (35)
National University of Singapore, Singapore

Chandra Chekuri (36)
Department of Computer Science, University of
Illinois, Urbana-Champaign, Urbana, IL, USA

Lijie Chen (39)
Miller Institute for Basic Research in Science at
University of California at Berkeley, CA, USA

Yanlin Chen (38)
QuSoft and CWI, Amsterdam, The Netherlands

Yu Chen (37)
EPFL, Lausanne, Switzerland

Kuan Cheng (41)
Department of Computer Science,
Peking University, Beijing, China

Pingan Cheng (7)
Aarhus University, Denmark

Siu-Wing Cheng (40)
Department of Computer Science and
Engineering, Hong Kong University of Science
and Technology, Hong Kong, China

Joseph Cheriyan (15)
Department of Combinatorics and Optimization,
University of Waterloo, Canada

Tsun-Ming Cheung (42)
McGill University, Montreal, Canada

Dmitry Chistikov (112)
Centre for Discrete Mathematics and its
Applications (DIMAP) & Department of
Computer Science, University of Warwick,
Coventry, UK

Keerti Choudhary (24)
Department of Computer Science and
Engineering, Indian Institute of Technology
Delhi, India

Omer Cohen Sidon (44)
Tel Aviv University, Israel

Ilan Reuven Cohen (43)
Faculty of Engineering, Bar-Ilan University,
Ramat Gan, Israel

Sarel Cohen (24)
School of Computer Science, Tel-Aviv-Yaffo
Academic College, Israel

Richard Cole (8)
New York University, NY, USA

Spencer Compton (45)
Stanford University, CA, USA

https://orcid.org/0000-0002-0338-6151
https://doi.org/10.4230/LIPIcs.ICALP.2023.28
https://doi.org/10.4230/LIPIcs.ICALP.2023.117
https://doi.org/10.4230/LIPIcs.ICALP.2023.29
https://orcid.org/0000-0002-2823-0911
https://doi.org/10.4230/LIPIcs.ICALP.2023.118
https://orcid.org/0000-0003-3531-9970
https://doi.org/10.4230/LIPIcs.ICALP.2023.119
https://doi.org/10.4230/LIPIcs.ICALP.2023.30
https://orcid.org/0000-0003-0235-6951
https://doi.org/10.4230/LIPIcs.ICALP.2023.31
https://doi.org/10.4230/LIPIcs.ICALP.2023.32
https://doi.org/10.4230/LIPIcs.ICALP.2023.33
https://orcid.org/0000-0002-1618-4081
https://doi.org/10.4230/LIPIcs.ICALP.2023.120
https://orcid.org/0000-0002-2728-6534
https://doi.org/10.4230/LIPIcs.ICALP.2023.121
https://orcid.org/0000-0002-6539-2020
https://doi.org/10.4230/LIPIcs.ICALP.2023.122
https://doi.org/10.4230/LIPIcs.ICALP.2023.123
https://doi.org/10.4230/LIPIcs.ICALP.2023.123
https://orcid.org/0000-0002-8093-0675
https://doi.org/10.4230/LIPIcs.ICALP.2023.34
https://orcid.org/0000-0002-0109-2432
https://doi.org/10.4230/LIPIcs.ICALP.2023.35
https://doi.org/10.4230/LIPIcs.ICALP.2023.36
https://orcid.org/0000-0002-6084-4729
https://doi.org/10.4230/LIPIcs.ICALP.2023.39
https://doi.org/10.4230/LIPIcs.ICALP.2023.38
https://doi.org/10.4230/LIPIcs.ICALP.2023.37
https://orcid.org/0000-0002-8972-1749
https://doi.org/10.4230/LIPIcs.ICALP.2023.41
https://doi.org/10.4230/LIPIcs.ICALP.2023.7
https://orcid.org/0000-0002-3557-9935
https://doi.org/10.4230/LIPIcs.ICALP.2023.40
https://doi.org/10.4230/LIPIcs.ICALP.2023.15
https://doi.org/10.4230/LIPIcs.ICALP.2023.42
https://orcid.org/0000-0001-9055-918X
https://doi.org/10.4230/LIPIcs.ICALP.2023.112
https://orcid.org/0000-0002-8289-5930
https://doi.org/10.4230/LIPIcs.ICALP.2023.24
https://doi.org/10.4230/LIPIcs.ICALP.2023.44
https://orcid.org/0000-0001-7870-6319
https://doi.org/10.4230/LIPIcs.ICALP.2023.43
https://orcid.org/0000-0003-4578-1245
https://doi.org/10.4230/LIPIcs.ICALP.2023.24
https://doi.org/10.4230/LIPIcs.ICALP.2023.8
https://doi.org/10.4230/LIPIcs.ICALP.2023.45

Authors 0:xxix

Sam Coy (46)
University of Warwick, Coventry, UK

Artur Czumaj (46)
University of Warwick, Coventry, UK

Peter Davies (46)
Durham University, UK

Anuj Dawar (119)
Department of Computer Science and
Technology, University of Cambridge, UK

Ronald de Wolf (38)
QuSoft and CWI, Amsterdam, The Netherlands;
University of Amsterdam, The Netherlands

Gregory Dexter (21)
Department of Computer Science,
Purdue University, West Lafayette, IN, USA

Yann Disser (47)
TU Darmstadt, Germany

Magdalen Dobson (26)
Carnegie Mellon University,
Pittsburgh, PA, USA

Ruiwen Dong (124)
Department of Computer Science,
University of Oxford, UK

Dani Dorfman (9)
Tel Aviv University, Israel

Andrzej Dorobisz (48)
Theoretical Computer Science Department,
Faculty of Mathematics and Computer Science,
Jagiellonian University, Kraków, Poland

Ilan Doron-Arad (49)
Computer Science Department,
Technion, Haifa, Israel

Gaëtan Douéneau-Tabot (121)
Université Paris Cité, CNRS, IRIF, F-75013,
France; Direction générale de l’armement –
Ingénierie des projets, Paris, France

Jan Dreier (125)
TU Wien, Austria

Lukas Drexler (50)
Heinrich-Heine Universität Düsseldorf, Germany

Petros Drineas (21)
Department of Computer Science, Purdue
University, West Lafayette, IN, USA

Shaddin Dughmi (51)
University of Southern California,
Los Angeles, CA, USA

Talya Eden (52)
Bar Ilan University, Ramat Gan, IL

Klim Efremenko (53)
Ben-Gurion University, Beer Sheva, Israel

Charilaos Efthymiou (54, 55)
Computer Science, University of Warwick,
Coventry, UK

Ioannis Eleftheriadis (119)
Department of Computer Science and
Technology, University of Cambridge, UK

David Eppstein (56)
Department of Computer Science, University of
California, Irvine, CA, USA

Navid Eslami (10)
Aalto University, Espoo, Finland;
Sharif University of Technology, Tehran, Iran

Javier Esparza (126)
Technische Universiät München, Germany

Louis Esperet (57)
Laboratoire G-SCOP, Grenoble, France

Jan Eube (50)
Universität Bonn, Germany

Austen Z. Fan (127)
Department of Computer Sciences,
University of Wisconsin-Madison, WI, USA

Michal Feldman (58)
Blavatnik School of Computer Science,
Tel Aviv University, Israel;
Microsoft Research, Herzliya, Israel

Weiming Feng (54)
School of Informatics, University of Edinburgh,
Edinburgh, UK

Robert Ferens (59)
University of Wrocław, Poland

Nathanaël Fijalkow (118)
CNRS, LaBRI and Université de Bordeaux,
France;
University of Warsaw, Poland

Emmanuel Filiot (121)
Université libre de Bruxelles & F.R.S.-FNRS,
Brussels, Belgium

Marten Folkertsma (32)
QuSoft and CWI, Amsterdam, The Netherlands

ICALP 2023

https://orcid.org/0000-0001-8500-8690
https://doi.org/10.4230/LIPIcs.ICALP.2023.46
https://orcid.org/0000-0002-7743-438X
https://doi.org/10.4230/LIPIcs.ICALP.2023.46
https://orcid.org/0000-0003-3739-5352
https://doi.org/10.4230/LIPIcs.ICALP.2023.46
https://orcid.org/0000-0003-4014-8248
https://doi.org/10.4230/LIPIcs.ICALP.2023.119
https://doi.org/10.4230/LIPIcs.ICALP.2023.38
https://doi.org/10.4230/LIPIcs.ICALP.2023.21
https://orcid.org/0000-0002-2085-0454
https://doi.org/10.4230/LIPIcs.ICALP.2023.47
https://doi.org/10.4230/LIPIcs.ICALP.2023.26
https://doi.org/10.4230/LIPIcs.ICALP.2023.124
https://doi.org/10.4230/LIPIcs.ICALP.2023.9
https://orcid.org/0000-0002-0910-4370
https://doi.org/10.4230/LIPIcs.ICALP.2023.48
https://doi.org/10.4230/LIPIcs.ICALP.2023.49
https://doi.org/10.4230/LIPIcs.ICALP.2023.121
https://orcid.org/0000-0002-2662-5303
https://doi.org/10.4230/LIPIcs.ICALP.2023.125
https://doi.org/10.4230/LIPIcs.ICALP.2023.50
https://doi.org/10.4230/LIPIcs.ICALP.2023.21
https://orcid.org/0000-0002-2784-1868
https://doi.org/10.4230/LIPIcs.ICALP.2023.51
https://orcid.org/0000-0001-8470-9508
https://doi.org/10.4230/LIPIcs.ICALP.2023.52
https://doi.org/10.4230/LIPIcs.ICALP.2023.53
https://doi.org/10.4230/LIPIcs.ICALP.2023.54
https://doi.org/10.4230/LIPIcs.ICALP.2023.55
https://orcid.org/0000-0003-4764-8894
https://doi.org/10.4230/LIPIcs.ICALP.2023.119
https://doi.org/10.4230/LIPIcs.ICALP.2023.56
https://doi.org/10.4230/LIPIcs.ICALP.2023.10
https://orcid.org/0000-0001-9862-4919
https://doi.org/10.4230/LIPIcs.ICALP.2023.126
https://orcid.org/0000-0001-6200-0514
https://doi.org/10.4230/LIPIcs.ICALP.2023.57
https://doi.org/10.4230/LIPIcs.ICALP.2023.50
https://orcid.org/0000-0001-7714-2195
https://doi.org/10.4230/LIPIcs.ICALP.2023.127
https://orcid.org/0000-0002-2915-8405
https://doi.org/10.4230/LIPIcs.ICALP.2023.58
https://doi.org/10.4230/LIPIcs.ICALP.2023.54
https://orcid.org/0000-0002-0079-1936
https://doi.org/10.4230/LIPIcs.ICALP.2023.59
https://orcid.org/0000-0002-6576-4680
https://doi.org/10.4230/LIPIcs.ICALP.2023.118
https://orcid.org/0000-0002-2520-5630
https://doi.org/10.4230/LIPIcs.ICALP.2023.121
https://doi.org/10.4230/LIPIcs.ICALP.2023.32

0:xxx Authors

Fedor V. Fomin (60, 61)
Department of Informatics,
University of Bergen, Norway

Tobias Friedrich (24, 62)
Hasso Plattner Institute,
Universität Potsdam, Germany

Zachary Friggstad (63)
Department of Computing Science,
University of Alberta, Canada

Daniel Frishberg (56)
Department of Computer Science,
University of California, Irvine, CA, USA

Honghao Fu (64)
CSAIL, Massachusetts Institute of Technology,
Cambridge, MA, USA

Federico Fusco (58)
Department of Computer, Control and
Management Engineering “Antonio Ruberti”,
Sapienza University of Rome, Italy

Jakub Gajarský (128)
University of Warsaw, Poland

Moses Ganardi (3, 110)
Max Planck Institute for Software Systems
(MPI-SWS), Kaiserslautern, Germany

Ankit Garg (12)
Microsoft Research, Bangalore, India

Mohit Garg (65)
Department of Computer Science and
Automation, Indian Institute of Science,
Bengaluru, India

Sevag Gharibian (32)
Paderborn Universität, Germany

Badih Ghazi (66)
Google, Mountain View, CA, US

Alexandru Gheorghiu (67)
Department of Computer Science and
Engineering, Chalmers University of Technology,
Göteborg, Sweden;
Institute for Theoretical Studies, ETH Zürich,
Switzerland

Ashish Goel (70)
Stanford University, CA, USA

Leslie Ann Goldberg (68)
Department of Computer Science,
University of Oxford, UK

Ishay Golinsky (19)
Blavatnik School of Computer Science,
Tel Aviv University, Israel

Petr A. Golovach (60, 61)
Department of Informatics,
University of Bergen, Norway

Gramoz Goranci (69)
Faculty of Computer Science,
Universität Wien, Austria

Mohak Goyal (70)
Stanford University, CA, USA

Vincent P. Grande (126)
RWTH Aachen University, Germany

Fabrizio Grandoni (29)
IDSIA, USI-SUPSI, Lugano, Switzerland

Carla Groenland (27)
Mathematical Institute, Utrecht University,
The Netherlands

Logan Grout (15)
Operations Research and Information
Engineering, Cornell University,
Ithaca, NY, USA

Andreas Göbel (62)
Hasso Plattner Institute,
Universität Potsdam, Germany

Daniel Hader (71)
Department of Computer Science and Computer
Engineering, University of Arkansas,
Fayetteville, AR, USA

Nathaniel Harms (57)
EPFL, Lausanne, Switzerland

David G. Harris (72)
Department of Computer Science, University of
Maryland, College Park, MD, USA

Hamed Hatami (42)
McGill University, Montreal, Canada

Pooya Hatami (42)
Ohio State University, Columbus, OH, USA

Ishay Haviv (73)
School of Computer Science, The Academic
College of Tel Aviv-Yaffo, Israel

Ryu Hayakawa (32)
Kyoto University, Japan

Qizheng He (34)
Department of Computer Science, University of
Illinois at Urbana-Champaign, IL, USA

https://doi.org/10.4230/LIPIcs.ICALP.2023.60
https://doi.org/10.4230/LIPIcs.ICALP.2023.61
https://orcid.org/0000-0003-0076-6308
https://doi.org/10.4230/LIPIcs.ICALP.2023.24
https://doi.org/10.4230/LIPIcs.ICALP.2023.62
https://doi.org/10.4230/LIPIcs.ICALP.2023.63
https://orcid.org/0000-0002-1861-5439
https://doi.org/10.4230/LIPIcs.ICALP.2023.56
https://orcid.org/0000-0002-1934-3391
https://doi.org/10.4230/LIPIcs.ICALP.2023.64
https://orcid.org/0000-0001-6250-945X
https://doi.org/10.4230/LIPIcs.ICALP.2023.58
https://orcid.org/0000-0002-4761-3432
https://doi.org/10.4230/LIPIcs.ICALP.2023.128
https://orcid.org/0000-0002-0775-7781
https://doi.org/10.4230/LIPIcs.ICALP.2023.3
https://doi.org/10.4230/LIPIcs.ICALP.2023.110
https://doi.org/10.4230/LIPIcs.ICALP.2023.12
https://doi.org/10.4230/LIPIcs.ICALP.2023.65
https://doi.org/10.4230/LIPIcs.ICALP.2023.32
https://orcid.org/0000-0001-8254-3268
https://doi.org/10.4230/LIPIcs.ICALP.2023.66
https://orcid.org/0000-0001-6225-7168
https://doi.org/10.4230/LIPIcs.ICALP.2023.67
https://doi.org/10.4230/LIPIcs.ICALP.2023.70
https://doi.org/10.4230/LIPIcs.ICALP.2023.68
https://doi.org/10.4230/LIPIcs.ICALP.2023.19
https://doi.org/10.4230/LIPIcs.ICALP.2023.60
https://doi.org/10.4230/LIPIcs.ICALP.2023.61
https://orcid.org/0000-0002-9603-2255
https://doi.org/10.4230/LIPIcs.ICALP.2023.69
https://orcid.org/0000-0002-1176-5549
https://doi.org/10.4230/LIPIcs.ICALP.2023.70
https://orcid.org/0000-0002-6694-1685
https://doi.org/10.4230/LIPIcs.ICALP.2023.126
https://doi.org/10.4230/LIPIcs.ICALP.2023.29
https://orcid.org/0000-0002-9878-8750
https://doi.org/10.4230/LIPIcs.ICALP.2023.27
https://doi.org/10.4230/LIPIcs.ICALP.2023.15
https://orcid.org/0000-0002-5180-7205
https://doi.org/10.4230/LIPIcs.ICALP.2023.62
https://doi.org/10.4230/LIPIcs.ICALP.2023.71
https://orcid.org/0000-0003-0259-9355
https://doi.org/10.4230/LIPIcs.ICALP.2023.57
https://doi.org/10.4230/LIPIcs.ICALP.2023.72
https://doi.org/10.4230/LIPIcs.ICALP.2023.42
https://doi.org/10.4230/LIPIcs.ICALP.2023.42
https://doi.org/10.4230/LIPIcs.ICALP.2023.73
https://doi.org/10.4230/LIPIcs.ICALP.2023.32
https://orcid.org/0000-0002-2518-1114
https://doi.org/10.4230/LIPIcs.ICALP.2023.34

Authors 0:xxxi

Monika Henzinger (69, 74)
Institute of Science and Technology Austria
(ISTA), Klosterneuburg, Austria

Thomas A. Henzinger (129)
Institute of Science and Technology Austria
(ISTA), Klosterneuburg, Austria

Lukas Hintze (18)
Universität Hamburg, Germany

Petr Hliněný (75)
Masaryk University, Brno, Czech republic

Felix Hommelsheim (65)
Faculty of Mathematics and Computer Science,
Universität Bremen, Germany

Kaave Hosseini (42)
University of Rochester, NY, USA

Hamed Hosseinpour (18)
Universität Hamburg, Germany

Jakob Bæk Tejs Houen (76)
BARC, Department of Computer Science,
University of Copenhagen, Denmark

Jun-Ting Hsieh (77, 78)
Carnegie Mellon University, Pittsburgh, PA,
USA

Haoqiang Huang (40)
Department of Computer Science and
Engineering, Hong Kong University of Science
and Technology, Hong Kong, China

Dylan Hyatt-Denesik (79)
Eindhoven University of Technology, The
Netherlands

Sharat Ibrahimpur (15, 80)
Department of Mathematics, London School of
Economics and Political Science, UK

Takehiro Ito (81, 82)
Graduate School of Information Sciences,
Tohoku University, Sendai, Japan

Yuni Iwamasa (81)
Graduate School of Informatics, Kyoto
University, Japan

Siddharth Iyer (83)
University of Washington CSE, Seattle, WA,
USA

Afrouz Jabal Ameli (29, 79)
TU Eindhoven, The Netherlands

Rhea Jain (36)
Department of Computer Science, University of
Illinois, Urbana-Champaign, Urbana, IL, USA

Jan Jedelský (75)
Masaryk University, Brno, Czech republic

Ce Jin (11)
MIT EECS and CSAIL, Cambridge, MA, USA

Zhengzhong Jin (41)
Massachusetts Institute of Technology,
Cambridge, MA, USA

Dominik Kaaser (18)
TU Hamburg, Germany

Naonori Kakimura (81, 82)
Faculty of Science and Technology,
Keio University, Yokohama, Japan

Yusuf Hakan Kalayci (51)
University of Southern California,
Los Angeles, CA, USA

Iden Kalemaj (25)
Department of Computer Science,
Boston University, MA, USA

Pritish Kamath (66)
Google, Mountain View, CA, US

Naoyuki Kamiyama (82)
Institute of Mathematics for Industry, Kyushu
University, Fukouka, Japan

Haim Kaplan (9, 19)
Tel Aviv University, Israel

Tobias Kappé (136)
Open Universiteit, Heerlen, The Netherlands;
ILLC, University of Amsterdam,
The Netherlands

Adam Karczmarz (6, 84)
University of Warsaw, Poland;
IDEAS NCBR, Warsaw, Poland

Anna R. Karlin (1)
Paul G. Allen School of Computer Science and
Engineering, University of Washington, Seattle,
WA, USA

Maximilian Katzmann (62)
Karlsruhe Institute of Technology, Germany

Neeraj Kayal (12)
Microsoft Research, Bangalore, India

Pavol Kebis (129)
University of Oxford, UK

ICALP 2023

https://orcid.org/0000-0002-5008-6530
https://doi.org/10.4230/LIPIcs.ICALP.2023.69
https://doi.org/10.4230/LIPIcs.ICALP.2023.74
https://doi.org/10.4230/LIPIcs.ICALP.2023.129
https://doi.org/10.4230/LIPIcs.ICALP.2023.18
https://orcid.org/0000-0003-2125-1514
https://doi.org/10.4230/LIPIcs.ICALP.2023.75
https://doi.org/10.4230/LIPIcs.ICALP.2023.65
https://doi.org/10.4230/LIPIcs.ICALP.2023.42
https://orcid.org/0000-0003-3625-5913
https://doi.org/10.4230/LIPIcs.ICALP.2023.18
https://orcid.org/0000-0002-8033-2130
https://doi.org/10.4230/LIPIcs.ICALP.2023.76
https://doi.org/10.4230/LIPIcs.ICALP.2023.77
https://doi.org/10.4230/LIPIcs.ICALP.2023.78
https://orcid.org/0000-0003-1497-6226
https://doi.org/10.4230/LIPIcs.ICALP.2023.40
https://doi.org/10.4230/LIPIcs.ICALP.2023.79
https://orcid.org/0000-0002-1575-9648
https://doi.org/10.4230/LIPIcs.ICALP.2023.15
https://doi.org/10.4230/LIPIcs.ICALP.2023.80
https://orcid.org/0000-0002-9912-6898
https://doi.org/10.4230/LIPIcs.ICALP.2023.81
https://doi.org/10.4230/LIPIcs.ICALP.2023.82
https://orcid.org/0000-0002-6794-3543
https://doi.org/10.4230/LIPIcs.ICALP.2023.81
https://doi.org/10.4230/LIPIcs.ICALP.2023.83
https://doi.org/10.4230/LIPIcs.ICALP.2023.29
https://doi.org/10.4230/LIPIcs.ICALP.2023.79
https://doi.org/10.4230/LIPIcs.ICALP.2023.36
https://orcid.org/0000-0001-9585-2553
https://doi.org/10.4230/LIPIcs.ICALP.2023.75
https://doi.org/10.4230/LIPIcs.ICALP.2023.11
https://doi.org/10.4230/LIPIcs.ICALP.2023.41
https://orcid.org/0000-0002-2083-7145
https://doi.org/10.4230/LIPIcs.ICALP.2023.18
https://orcid.org/0000-0002-3918-3479
https://doi.org/10.4230/LIPIcs.ICALP.2023.81
https://doi.org/10.4230/LIPIcs.ICALP.2023.82
https://orcid.org/0009-0005-9524-4677
https://doi.org/10.4230/LIPIcs.ICALP.2023.51
https://orcid.org/0000-0002-0995-6346
https://doi.org/10.4230/LIPIcs.ICALP.2023.25
https://orcid.org/0000-0002-4296-2393
https://doi.org/10.4230/LIPIcs.ICALP.2023.66
https://orcid.org/0000-0002-7712-2730
https://doi.org/10.4230/LIPIcs.ICALP.2023.82
https://doi.org/10.4230/LIPIcs.ICALP.2023.9
https://doi.org/10.4230/LIPIcs.ICALP.2023.19
https://orcid.org/0000-0002-6068-880X
https://doi.org/10.4230/LIPIcs.ICALP.2023.136
https://orcid.org/0000-0002-2693-8713
https://doi.org/10.4230/LIPIcs.ICALP.2023.6
https://doi.org/10.4230/LIPIcs.ICALP.2023.84
https://doi.org/10.4230/LIPIcs.ICALP.2023.1
https://doi.org/10.4230/LIPIcs.ICALP.2023.62
https://doi.org/10.4230/LIPIcs.ICALP.2023.12
https://doi.org/10.4230/LIPIcs.ICALP.2023.129

0:xxxii Authors

George Kenison (130)
Institute of Logic and Computation,
TU Wien, Austria

Sanjeev Khanna (37)
University of Pennsylvania,
Philadelphia, PA, USA

Max Klimm (47)
TU Berlin, Germany

Simon Knäuer (116)
Institut für Algebra, TU Dresden, Germany

Yusuke Kobayashi (81, 82)
Research Institute for Mathematical Sciences,
Kyoto University, Japan

Shimon Kogan (85)
Weizmann Institute of Science, Rehovot, Israel

Daumantas Kojelis (111)
Department of Computer Science,
University of Manchester, UK

Gillat Kol (53)
Princeton University, NJ, USA

Vladimir Kolmogorov (72)
Institute of Science and Technology Austria,
Klosterneuburg, Austria

Niels Kornerup (17)
Computer Science, University of Texas,
Austin, TX, USA

Pravesh K. Kothari (77, 78)
Carnegie Mellon University,
Pittsburgh, PA, USA

Michal Koucký (22)
Computer Science Institute of Charles
University, Prague, Czech Republic

Paraschos Koutris (127)
Department of Computer Sciences,
University of Wisconsin-Madison, WI, USA

Dexter Kozen (136)
Department of Computer Science,
Cornell University, Ithaca, NY, USA

Jakub Kozik (48)
Theoretical Computer Science Department,
Faculty of Mathematics and Computer Science,
Jagiellonian University, Kraków, Poland

László Kozma (19)
Institut für Informatik, Freie Universität Berlin,
Germany

Robert Krauthgamer (30)
Weizmann Institute of Science, Rehovot, Israel

Aditya Krishnan (30)
Pinecone, San Francisco, CA, USA

Simon Krogmann (24)
Hasso Plattner Institute,
Universität Potsdam, Germany

Ariel Kulik (49)
CISPA Helmholtz Center for Information
Security, Saarbrücken, Germany

Pooja Kulkarni (16)
University of Illinois at Urbana-Champaign, IL,
USA

Gunjan Kumar (123)
National University of Singapore, Singapore

Ravi Kumar (66)
Google, Mountain View, CA, US

Orna Kupferman (109)
School of Computer Science and Engineering,
Hebrew University, Jerusalem, Israel

Rasmus Kyng (2)
ETH Zürich, Switzerland

Marvin Künnemann (131)
RPTU Kaiserslautern-Landau, Germany

François Ladouceur (115)
Department of Computer Science,
Université de Sherbrooke, Canada

Michael Lampis (132)
Université Paris-Dauphine, PSL University,
CNRS, LAMSADE, 75016, Paris, France

François Le Gall (32)
Nagoya University, Japan

Shi Li (86)
State Key Laboratory for Novel Software
Technology, Nanjing University, China;
Department of Computer Science and
Engineering, University at Buffalo, NY, USA

Xiantao Li (87)
Department of Mathematics, Pennsylvania State
University, University Park, PA, USA

Xin Li (41)
Department of Computer Science,
Johns Hopkins University, Baltimore, MD, USA

Moritz Lichter (133)
TU Darmstadt, Germany

https://doi.org/10.4230/LIPIcs.ICALP.2023.130
https://doi.org/10.4230/LIPIcs.ICALP.2023.37
https://orcid.org/0000-0002-9061-2267
https://doi.org/10.4230/LIPIcs.ICALP.2023.47
https://doi.org/10.4230/LIPIcs.ICALP.2023.116
https://orcid.org/0000-0001-9478-7307
https://doi.org/10.4230/LIPIcs.ICALP.2023.81
https://doi.org/10.4230/LIPIcs.ICALP.2023.82
https://doi.org/10.4230/LIPIcs.ICALP.2023.85
https://orcid.org/0000-0002-1632-9498
https://doi.org/10.4230/LIPIcs.ICALP.2023.111
https://doi.org/10.4230/LIPIcs.ICALP.2023.53
https://doi.org/10.4230/LIPIcs.ICALP.2023.72
https://orcid.org/0000-0002-1519-726X
https://doi.org/10.4230/LIPIcs.ICALP.2023.17
https://doi.org/10.4230/LIPIcs.ICALP.2023.77
https://doi.org/10.4230/LIPIcs.ICALP.2023.78
https://orcid.org/0000-0003-0808-2269
https://doi.org/10.4230/LIPIcs.ICALP.2023.22
https://orcid.org/0000-0001-6309-1702
https://doi.org/10.4230/LIPIcs.ICALP.2023.127
https://orcid.org/0000-0002-8007-4725
https://doi.org/10.4230/LIPIcs.ICALP.2023.136
https://orcid.org/0000-0002-1362-7780
https://doi.org/10.4230/LIPIcs.ICALP.2023.48
https://orcid.org/0000-0002-3253-2373
https://doi.org/10.4230/LIPIcs.ICALP.2023.19
https://orcid.org/0009-0003-8154-3735
https://doi.org/10.4230/LIPIcs.ICALP.2023.30
https://doi.org/10.4230/LIPIcs.ICALP.2023.30
https://orcid.org/0000-0001-6577-6756
https://doi.org/10.4230/LIPIcs.ICALP.2023.24
https://doi.org/10.4230/LIPIcs.ICALP.2023.49
https://doi.org/10.4230/LIPIcs.ICALP.2023.16
https://doi.org/10.4230/LIPIcs.ICALP.2023.123
https://orcid.org/0000-0002-2203-2586
https://doi.org/10.4230/LIPIcs.ICALP.2023.66
https://orcid.org/0000-0003-4699-6117
https://doi.org/10.4230/LIPIcs.ICALP.2023.109
https://orcid.org/0000-0002-8268-6258
https://doi.org/10.4230/LIPIcs.ICALP.2023.2
https://doi.org/10.4230/LIPIcs.ICALP.2023.131
https://orcid.org/0009-0000-7651-6685
https://doi.org/10.4230/LIPIcs.ICALP.2023.115
https://orcid.org/0000-0002-5791-0887
https://doi.org/10.4230/LIPIcs.ICALP.2023.132
https://doi.org/10.4230/LIPIcs.ICALP.2023.32
https://orcid.org/0000-0001-9140-9415
https://doi.org/10.4230/LIPIcs.ICALP.2023.86
https://doi.org/10.4230/LIPIcs.ICALP.2023.87
https://orcid.org/0000-0002-9408-2451
https://doi.org/10.4230/LIPIcs.ICALP.2023.41
https://orcid.org/0000-0001-5437-8074
https://doi.org/10.4230/LIPIcs.ICALP.2023.133

Authors 0:xxxiii

Henrik Lievonen (10)
Aalto University, Espoo, Finland

Paul Liu (74)
Stanford University, CA, USA

Quanquan C. Liu (52)
Northwestern University, Evanston, IL, US

S. Cliff Liu (88)
Carnegie Mellon University,
Pittsburgh, PA, USA

Shu Liu (89)
The National Key Laboratory on Wireless
Communications, University of Electronic
Science and Technology of China, Chengdu,
China

Markus Lohrey (134)
Universität Siegen, Germany

Daniel Lokshtanov (90)
University of California Santa Barbara, CA,
USA

Kelin Luo (50)
Universität Bonn, Germany

Xin Lyu (39)
University of California at Berkeley, CA, USA

Shun-ichi Maezawa (81, 82)
Department of Mathematics,
Tokyo University of Science, Japan

Rupak Majumdar (3, 110)
Max Planck Institute for Software Systems
(MPI-SWS), Kaiserslautern, Germany

Alessio Mansutti (112)
IMDEA Software Institute, Madrid, Spain

Pasin Manurangsi (66)
Google, Bangkok, Thailand

Claire Mathieu (91)
CNRS Paris, France

Simon Mauras (58)
Blavatnik School of Computer Science,
Tel Aviv University, Israel

Filip Mazowiecki (131)
University of Warsaw, Poland

Nicolas Mazzocchi (129)
Institute of Science and Technology Austria
(ISTA), Klosterneuburg, Austria

Rose McCarty (128)
Princeton University, NJ, USA

Kuldeep S. Meel (123)
National University of Singapore, Singapore

Nicole Megow (65)
Faculty of Mathematics and Computer Science,
Universität Bremen, Germany

Konstantina Mellou (92)
Microsoft Research, Redmond, WA, USA

Darya Melnyk (10)
Aalto University, Espoo, Finland;
TU Berlin, Germany

Tony Metger (67)
Institute for Theoretical Physics, ETH Zürich,
Switzerland

Stefan Milius (114)
Friedrich-Alexander-Universität
Erlangen-Nürnberg, Germany

Gopinath Mishra (46)
University of Warwick, Coventry, UK

Slobodan Mitrović (45)
University of California Davis, CA, USA

Marco Molinaro (92)
Microsoft Research, Redmond, WA, USA;
PUC-Rio de Janeiro, Brazil

Laure Morelle (93)
LIRMM, Université de Montpellier, CNRS,
France

Tomoyuki Morimae (32)
Kyoto University, Japan

Ramin Mousavi (63)
Department of Computing Science, University of
Alberta, Canada

Etienne Moutot (120)
CNRS, I2M, Aix-Marseille Université, Marseille,
France

Karthik Murali (23)
School of Computer Science, Carleton University,
Ottawa, Canada

Cameron Musco (21)
Manning College of Information and Computer
Sciences, University of Massachusetts, Amherst,
MA, USA

Nikolas Mählmann (125, 128)
Universität Bremen, Germany

Lê Thành Dũng (Tito) Nguyễn (117)
Laboratoire de l’informatique du parallélisme
(LIP), École normale supérieure de Lyon, France

ICALP 2023

https://orcid.org/0000-0002-1136-522X
https://doi.org/10.4230/LIPIcs.ICALP.2023.10
https://orcid.org/0000-0002-9386-6609
https://doi.org/10.4230/LIPIcs.ICALP.2023.74
https://orcid.org/0000-0003-1230-2754
https://doi.org/10.4230/LIPIcs.ICALP.2023.52
https://doi.org/10.4230/LIPIcs.ICALP.2023.88
https://doi.org/10.4230/LIPIcs.ICALP.2023.89
https://orcid.org/0000-0002-4680-7198
https://doi.org/10.4230/LIPIcs.ICALP.2023.134
https://doi.org/10.4230/LIPIcs.ICALP.2023.90
https://doi.org/10.4230/LIPIcs.ICALP.2023.50
https://doi.org/10.4230/LIPIcs.ICALP.2023.39
https://orcid.org/0000-0003-1607-8665
https://doi.org/10.4230/LIPIcs.ICALP.2023.81
https://doi.org/10.4230/LIPIcs.ICALP.2023.82
https://orcid.org/0000-0003-2136-0542
https://doi.org/10.4230/LIPIcs.ICALP.2023.3
https://doi.org/10.4230/LIPIcs.ICALP.2023.110
https://orcid.org/0000-0002-1104-7299
https://doi.org/10.4230/LIPIcs.ICALP.2023.112
https://orcid.org/0000-0002-1052-2801
https://doi.org/10.4230/LIPIcs.ICALP.2023.66
https://doi.org/10.4230/LIPIcs.ICALP.2023.91
https://orcid.org/0000-0003-4080-3118
https://doi.org/10.4230/LIPIcs.ICALP.2023.58
https://doi.org/10.4230/LIPIcs.ICALP.2023.131
https://orcid.org/0000-0001-6425-5369
https://doi.org/10.4230/LIPIcs.ICALP.2023.129
https://orcid.org/0000-0002-9884-3406
https://doi.org/10.4230/LIPIcs.ICALP.2023.128
https://doi.org/10.4230/LIPIcs.ICALP.2023.123
https://doi.org/10.4230/LIPIcs.ICALP.2023.65
https://doi.org/10.4230/LIPIcs.ICALP.2023.92
https://doi.org/10.4230/LIPIcs.ICALP.2023.10
https://orcid.org/0000-0002-3108-8100
https://doi.org/10.4230/LIPIcs.ICALP.2023.67
https://orcid.org/0000-0002-2021-1644
https://doi.org/10.4230/LIPIcs.ICALP.2023.114
https://orcid.org/0000-0003-0540-0292
https://doi.org/10.4230/LIPIcs.ICALP.2023.46
https://doi.org/10.4230/LIPIcs.ICALP.2023.45
https://doi.org/10.4230/LIPIcs.ICALP.2023.92
https://doi.org/10.4230/LIPIcs.ICALP.2023.93
https://doi.org/10.4230/LIPIcs.ICALP.2023.32
https://doi.org/10.4230/LIPIcs.ICALP.2023.63
https://orcid.org/0000-0003-2073-4709
https://doi.org/10.4230/LIPIcs.ICALP.2023.120
https://orcid.org/0009-0003-3985-3609
https://doi.org/10.4230/LIPIcs.ICALP.2023.23
https://doi.org/10.4230/LIPIcs.ICALP.2023.21
https://orcid.org/0000-0003-3657-7736
https://doi.org/10.4230/LIPIcs.ICALP.2023.125
https://doi.org/10.4230/LIPIcs.ICALP.2023.128
https://orcid.org/0000-0002-6900-5577
https://doi.org/10.4230/LIPIcs.ICALP.2023.117

0:xxxiv Authors

Joris Nieuwveld (130)
Max Planck Institute for Software Systems,
Saarland Informatics Campus, Saarbrücken,
Germany

Yuta Nozaki (81, 82)
Faculty of Environment and Information
Sciences, Yokohama National University, Japan;
SKCM, Hiroshima University, Japan

Pierre Ohlmann (122, 128, 135)
University of Warsaw, Poland

Yoshio Okamoto (81, 82)
Graduate School of Informatics and Engineering,
The University of Electro-Communications,
Tokyo, Japan

Kazusato Oko (94)
Department of Mathematical Informatics, The
University of Tokyo, Japan;
Center for Advanced Intelligence Project,
RIKEN, Tokyo, Japan

Rotem Oshman (95)
Tel-Aviv University, Israel

Joël Ouaknine (130)
Max Planck Institute for Software Systems,
Saarland Informatics Campus, Saarbrücken,
Germany

Kenta Ozeki (81)
Faculty of Environment and Information
Sciences, Yokohama National University, Japan

Debmalya Panigrahi (43)
Department of Computer Science,
Duke University, Durham, NC, USA

Aris Papadopoulos (119)
School of Mathematics, Univesity of Leeds, UK

Dmitry Paramonov (53)
Princeton University, NJ, USA

Nikos Parotsidis (6)
Google Research, Zürich, Switzerland

Merav Parter (85)
Weizmann Institute of Science, Rehovot, Israel

Neel Patel (51)
University of Southern California,
Los Angeles, CA, USA

Matthew J. Patitz (71)
Department of Computer Science and Computer
Engineering, University of Arkansas,
Fayetteville, AR, USA

Pan Peng (96)
School of Computer Science and Technology,
University of Science and Technology of China,
Hefei, China

Thomas Perez (120)
Université de Lyon, ENS de Lyon, France

Michał Pilipczuk (27, 128, 135)
Institute of Informatics, University of Warsaw,
Poland

Alexander Poremba (67)
Computing and Mathematical Sciences,
California Institute of Technology, Pasadena,
CA, USA

Aaron Potechin (78)
University of Chicago, IL, USA

Ian Pratt-Hartmann (111)
Department of Computer Science, University of
Manchester, UK; Institute of Computer Science,
University of Opole, Poland

Wojciech Przybyszewski (128, 135)
University of Warsaw, Poland

Manish Purohit (80)
Google Research, USA

Minglong Qin (97)
State Key Laboratory for Novel Software
Technology, Nanjing University, China

Rajmohan Rajaraman (98)
Northeastern University, Boston, MA, USA

Mickael Randour (118)
F.R.S.-FNRS & UMONS – Université de Mons,
Belgium

Sofya Raskhodnikova (25, 52)
Department of Computer Science,
Boston University, MA, USA

Peter M. R. Rasmussen (6)
BARC, University of Copenhagen, Denmark

Malin Rau (18)
Universität Hamburg, Germany

Archan Ray (21)
Manning College of Information and Computer
Sciences, University of Massachusetts, Amherst,
MA, USA

Rebecca Reiffenhäuser (58)
Institute for Logic, Language and Computation,
University of Amsterdam, The Netherlands

https://doi.org/10.4230/LIPIcs.ICALP.2023.130
https://orcid.org/0000-0003-3223-0153
https://doi.org/10.4230/LIPIcs.ICALP.2023.81
https://doi.org/10.4230/LIPIcs.ICALP.2023.82
https://orcid.org/0000-0002-4685-5253
https://doi.org/10.4230/LIPIcs.ICALP.2023.122
https://doi.org/10.4230/LIPIcs.ICALP.2023.128
https://doi.org/10.4230/LIPIcs.ICALP.2023.135
https://orcid.org/0000-0002-9826-7074
https://doi.org/10.4230/LIPIcs.ICALP.2023.81
https://doi.org/10.4230/LIPIcs.ICALP.2023.82
https://doi.org/10.4230/LIPIcs.ICALP.2023.94
https://doi.org/10.4230/LIPIcs.ICALP.2023.95
https://doi.org/10.4230/LIPIcs.ICALP.2023.130
https://orcid.org/0000-0003-3118-0086
https://doi.org/10.4230/LIPIcs.ICALP.2023.81
https://orcid.org/0000-0003-1799-6660
https://doi.org/10.4230/LIPIcs.ICALP.2023.43
https://orcid.org/0000-0001-7071-4277
https://doi.org/10.4230/LIPIcs.ICALP.2023.119
https://doi.org/10.4230/LIPIcs.ICALP.2023.53
https://orcid.org/0000-0003-3888-7391
https://doi.org/10.4230/LIPIcs.ICALP.2023.6
https://doi.org/10.4230/LIPIcs.ICALP.2023.85
https://orcid.org/0000-0002-1942-778X
https://doi.org/10.4230/LIPIcs.ICALP.2023.51
https://doi.org/10.4230/LIPIcs.ICALP.2023.71
https://orcid.org/0000-0003-2700-5699
https://doi.org/10.4230/LIPIcs.ICALP.2023.96
https://doi.org/10.4230/LIPIcs.ICALP.2023.120
https://orcid.org/0000-0001-7891-1988
https://doi.org/10.4230/LIPIcs.ICALP.2023.27
https://doi.org/10.4230/LIPIcs.ICALP.2023.128
https://doi.org/10.4230/LIPIcs.ICALP.2023.135
https://orcid.org/0000-0002-7330-1539
https://doi.org/10.4230/LIPIcs.ICALP.2023.67
https://doi.org/10.4230/LIPIcs.ICALP.2023.78
https://orcid.org/0000-0003-0062-043X
https://doi.org/10.4230/LIPIcs.ICALP.2023.111
https://orcid.org/0000-0003-1158-9925
https://doi.org/10.4230/LIPIcs.ICALP.2023.128
https://doi.org/10.4230/LIPIcs.ICALP.2023.135
https://orcid.org/0000-0002-8650-2022
https://doi.org/10.4230/LIPIcs.ICALP.2023.80
https://orcid.org/0009-0004-8760-5498
https://doi.org/10.4230/LIPIcs.ICALP.2023.97
https://doi.org/10.4230/LIPIcs.ICALP.2023.98
https://orcid.org/0000-0001-8777-2385
https://doi.org/10.4230/LIPIcs.ICALP.2023.118
https://orcid.org/0000-0002-4902-050X
https://doi.org/10.4230/LIPIcs.ICALP.2023.25
https://doi.org/10.4230/LIPIcs.ICALP.2023.52
https://orcid.org/0000-0001-9219-8410
https://doi.org/10.4230/LIPIcs.ICALP.2023.6
https://orcid.org/0000-0002-5710-560X
https://doi.org/10.4230/LIPIcs.ICALP.2023.18
https://doi.org/10.4230/LIPIcs.ICALP.2023.21
https://orcid.org/0000-0002-0959-2589
https://doi.org/10.4230/LIPIcs.ICALP.2023.58

Authors 0:xxxv

Nicolas Resch (99)
Informatics’ Institute, University of Amsterdam,
The Netherlands

Eric Rivals (100)
LIRMM, Université Montpellier, CNRS, France

David E. Roberson (101)
Department of Applied Mathematics and
Computer Science, Technical University of
Denmark, Copenhagen, Denmark;
QMATH, Department of Mathematical Sciences,
University of Copenhagen, Denmark

Dana Ron (44)
Tel Aviv University, Israel

Alon Rosen (28)
Bocconi University, Milano, Italy;
Reichman University, Herzliya, Israel

Andreas Rosowski (134)
Universität Siegen, Germany

Marc Roth (68)
Department of Computer Science,
University of Oxford, UK

Tal Roth (95)
Tel-Aviv University, Israel

Ronitt Rubinfeld (45)
MIT, Cambridge, MA, USA

Ittai Rubinstein (102)
Qedma Quantum Computing, Tel Aviv, Israel

Wojciech Różowski (136)
Department of Computer Science,
University College London, UK

Heiko Röglin (50)
Universität Bonn, Germany

Danil Sagunov (60)
St. Petersburg Department of V.A. Steklov
Institute of Mathematics, Russia

Chandan Saha (12)
Indian Institute of Science, Bangalore, India

Shinsaku Sakaue (94)
Department of Mathematical Informatics,
The University of Tokyo, Japan

Sukolsak Sakshuwong (70)
Stanford University, CA, USA

Laura Sanità (79)
Bocconi University, Milano, Italy

Piotr Sankowski (84)
University of Warsaw, Poland;
IDEAS NCBR, Warsaw, Poland

Shay Sapir (30)
Weizmann Institute of Science, Rehovot, Israel

N. Ege Saraç (129)
Institute of Science and Technology Austria
(ISTA), Klosterneuburg, Austria

Sahasrajit Sarmasarkar (70)
Stanford University, CA, USA

Ignasi Sau (61, 93)
LIRMM, Université de Montpellier,
CNRS, France

Thomas Sauerwald (103)
University of Cambridge, UK

Saket Saurabh (90)
The Institute of Mathematical Sciences,
HBNI, Chennai, India;
University of Bergen, Norway

Raghuvansh R. Saxena (53)
Microsoft Research, Cambridge, MA, USA

Kevin Schewior (47)
University of Southern Denmark,
Odense, Denmark

Leon Schiller (62)
Hasso Plattner Institute,
Universität Potsdam, Germany

Martin Schirneck (24)
Faculty of Computer Science,
Universität Wien, Austria

Todd Schmid (136)
Department of Computer Science,
University College London, UK

Melanie Schmidt (50)
Heinrich-Heine Universität Düsseldorf, Germany

Lia Schütze (131)
Max Planck Institute for Software Systems
(MPI-SWS), Kaiserslautern, Germany

Tim Seppelt (101)
RWTH Aachen University, Germany

Hadas Shachnai (49)
Computer Science Department,
Technion, Haifa, Israel

Sebastian Siebertz (125, 128)
Universität Bremen, Germany

ICALP 2023

https://orcid.org/0000-0002-5133-5631
https://doi.org/10.4230/LIPIcs.ICALP.2023.99
https://orcid.org/0000-0003-3791-3973
https://doi.org/10.4230/LIPIcs.ICALP.2023.100
https://orcid.org/0000-0002-4463-8095
https://doi.org/10.4230/LIPIcs.ICALP.2023.101
https://orcid.org/0000-0001-6576-7200
https://doi.org/10.4230/LIPIcs.ICALP.2023.44
https://orcid.org/0000-0002-3021-7150
https://doi.org/10.4230/LIPIcs.ICALP.2023.28
https://doi.org/10.4230/LIPIcs.ICALP.2023.134
https://doi.org/10.4230/LIPIcs.ICALP.2023.68
https://doi.org/10.4230/LIPIcs.ICALP.2023.95
https://doi.org/10.4230/LIPIcs.ICALP.2023.45
https://orcid.org/0000-0002-8563-6213
https://doi.org/10.4230/LIPIcs.ICALP.2023.102
https://orcid.org/0000-0002-8241-7277
https://doi.org/10.4230/LIPIcs.ICALP.2023.136
https://doi.org/10.4230/LIPIcs.ICALP.2023.50
https://doi.org/10.4230/LIPIcs.ICALP.2023.60
https://doi.org/10.4230/LIPIcs.ICALP.2023.12
https://doi.org/10.4230/LIPIcs.ICALP.2023.94
https://doi.org/10.4230/LIPIcs.ICALP.2023.70
https://doi.org/10.4230/LIPIcs.ICALP.2023.79
https://orcid.org/0000-0002-0907-3754
https://doi.org/10.4230/LIPIcs.ICALP.2023.84
https://orcid.org/0000-0001-7531-685X
https://doi.org/10.4230/LIPIcs.ICALP.2023.30
https://doi.org/10.4230/LIPIcs.ICALP.2023.129
https://orcid.org/0000-0002-6652-4881
https://doi.org/10.4230/LIPIcs.ICALP.2023.70
https://doi.org/10.4230/LIPIcs.ICALP.2023.61
https://doi.org/10.4230/LIPIcs.ICALP.2023.93
https://doi.org/10.4230/LIPIcs.ICALP.2023.103
https://orcid.org/0000-0001-7847-6402
https://doi.org/10.4230/LIPIcs.ICALP.2023.90
https://doi.org/10.4230/LIPIcs.ICALP.2023.53
https://orcid.org/0000-0003-2236-0210
https://doi.org/10.4230/LIPIcs.ICALP.2023.47
https://doi.org/10.4230/LIPIcs.ICALP.2023.62
https://orcid.org/0000-0001-7086-5577
https://doi.org/10.4230/LIPIcs.ICALP.2023.24
https://orcid.org/0000-0002-9838-2363
https://doi.org/10.4230/LIPIcs.ICALP.2023.136
https://doi.org/10.4230/LIPIcs.ICALP.2023.50
https://orcid.org/0000-0003-4002-5491
https://doi.org/10.4230/LIPIcs.ICALP.2023.131
https://orcid.org/0000-0002-6447-0568
https://doi.org/10.4230/LIPIcs.ICALP.2023.101
https://doi.org/10.4230/LIPIcs.ICALP.2023.49
https://orcid.org/0000-0002-6347-1198
https://doi.org/10.4230/LIPIcs.ICALP.2023.125
https://doi.org/10.4230/LIPIcs.ICALP.2023.128

0:xxxvi Authors

Alexandra Silva (136)
Department of Computer Science,
Cornell University, Ithaca, NY, USA

Kirill Simonov (60)
Hasso Plattner Institute,
Universität Potsdam, Germany

Henry Sinclair-Banks (131)
Centre for Discrete Mathematics and its
Applications (DIMAP) & Department of
Computer Science, University of Warwick,
Coventry, UK

Adam Smith (52)
Boston University, MA, US

Marek Sokołowski (128)
University of Warsaw, Poland

Zhao Song (88)
Adobe Research, San Jose, CA, USA

David Stalfa (98)
Northeastern University, Boston, MA, USA

Giannos Stamoulis (61, 93)
LIRMM, Université de Montpellier, CNRS,
France

He Sun (103)
University of Edinburgh, UK

Jukka Suomela (10)
Aalto University, Espoo, Finland

Vaishali Surianarayanan (90)
University of California Santa Barbara, CA,
USA

Zoya Svitkina (80)
Google Research, USA

Michelle Sweering (100)
CWI, Amsterdam, The Netherlands

Marek Szykuła (59)
University of Wrocław, Poland

Joona Särkijärvi (10)
Aalto University, Espoo, Finland

Avishay Tal (39)
University of California at Berkeley, CA, USA

Zihan Tan (37)
DIMACS, Rutgers University, NJ, USA

Shin-ichi Tanigawa (94)
Department of Mathematical Informatics,
The University of Tokyo, Japan

Tatsuya Terao (104)
Research Institute for Mathematical Sciences,
Kyoto University, Japan

Bhargav Thankey (12)
Indian Institute of Science, Bangalore, India

Dimitrios M. Thilikos (61, 93)
LIRMM, Université de Montpellier, CNRS,
France

Ramanathan S. Thinniyam (3, 110)
Max Planck Institute for Software Systems
(MPI-SWS), Kaiserslautern, Germany

Mikkel Thorup (6, 76)
BARC, University of Copenhagen, Denmark

Szymon Toruńczyk (125, 128, 135)
University of Warsaw, Poland

Noam Touitou (105)
Amazon, Tel Aviv, Israel

Henning Urbat (114)
Friedrich-Alexander-Universität
Erlangen-Nürnberg, Germany

Frits Vaandrager (137)
Radboud University, Nijmegen, The Netherlands

Danny Vagnozzi (103)
University of Edinburgh, UK

Danny Vainstein (13)
School of Computer Science, Tel-Aviv University,
Israel

Pierre Vandenhove (118)
F.R.S.-FNRS & UMONS - Université de Mons,
Belgium; Université Paris-Saclay, CNRS, ENS
Paris-Saclay, Laboratoire Méthodes Formelles,
91190, Gif-sur-Yvette, France

Erik Vee (80)
Google Research, USA

Thomas Vidick (4)
Weizmann Institute of Science, Rehovot, Israel;
California Institute of Technology, Pasadena,
CA, USA

Renaud Vilmart (120)
Université Paris-Saclay, ENS Paris-Saclay, Inria,
CNRS, LMF, 91190, Gif-sur-Yvette, France

Harry Vinall-Smeeth (113)
Humboldt-Universität zu Berlin, Germany

Jan Vondrák (74)
Stanford University, CA, USA

https://orcid.org/0000-0001-5014-9784
https://doi.org/10.4230/LIPIcs.ICALP.2023.136
https://doi.org/10.4230/LIPIcs.ICALP.2023.60
https://orcid.org/0000-0003-1653-4069
https://doi.org/10.4230/LIPIcs.ICALP.2023.131
https://orcid.org/0000-0001-9393-1127
https://doi.org/10.4230/LIPIcs.ICALP.2023.52
https://orcid.org/0000-0001-8309-0141
https://doi.org/10.4230/LIPIcs.ICALP.2023.128
https://doi.org/10.4230/LIPIcs.ICALP.2023.88
https://doi.org/10.4230/LIPIcs.ICALP.2023.98
https://doi.org/10.4230/LIPIcs.ICALP.2023.61
https://doi.org/10.4230/LIPIcs.ICALP.2023.93
https://doi.org/10.4230/LIPIcs.ICALP.2023.103
https://orcid.org/0000-0001-6117-8089
https://doi.org/10.4230/LIPIcs.ICALP.2023.10
https://orcid.org/0000-0003-3091-3823
https://doi.org/10.4230/LIPIcs.ICALP.2023.90
https://doi.org/10.4230/LIPIcs.ICALP.2023.80
https://orcid.org/0000-0003-1200-6015
https://doi.org/10.4230/LIPIcs.ICALP.2023.100
https://orcid.org/0000-0001-5349-468X
https://doi.org/10.4230/LIPIcs.ICALP.2023.59
https://doi.org/10.4230/LIPIcs.ICALP.2023.10
https://doi.org/10.4230/LIPIcs.ICALP.2023.39
https://orcid.org/0000-0003-4844-8480
https://doi.org/10.4230/LIPIcs.ICALP.2023.37
https://doi.org/10.4230/LIPIcs.ICALP.2023.94
https://orcid.org/0000-0002-3530-2194
https://doi.org/10.4230/LIPIcs.ICALP.2023.104
https://doi.org/10.4230/LIPIcs.ICALP.2023.12
https://doi.org/10.4230/LIPIcs.ICALP.2023.61
https://doi.org/10.4230/LIPIcs.ICALP.2023.93
https://orcid.org/0000-0002-9926-0931
https://doi.org/10.4230/LIPIcs.ICALP.2023.3
https://doi.org/10.4230/LIPIcs.ICALP.2023.110
https://orcid.org/0000-0001-5237-1709
https://doi.org/10.4230/LIPIcs.ICALP.2023.6
https://doi.org/10.4230/LIPIcs.ICALP.2023.76
https://orcid.org/0000-0002-1130-9033
https://doi.org/10.4230/LIPIcs.ICALP.2023.125
https://doi.org/10.4230/LIPIcs.ICALP.2023.128
https://doi.org/10.4230/LIPIcs.ICALP.2023.135
https://orcid.org/0000-0002-5720-4114
https://doi.org/10.4230/LIPIcs.ICALP.2023.105
https://orcid.org/0000-0002-3265-7168
https://doi.org/10.4230/LIPIcs.ICALP.2023.114
https://orcid.org/0000-0003-3955-1910
https://doi.org/10.4230/LIPIcs.ICALP.2023.137
https://doi.org/10.4230/LIPIcs.ICALP.2023.103
https://doi.org/10.4230/LIPIcs.ICALP.2023.13
https://orcid.org/0000-0001-5834-1068
https://doi.org/10.4230/LIPIcs.ICALP.2023.118
https://doi.org/10.4230/LIPIcs.ICALP.2023.80
https://doi.org/10.4230/LIPIcs.ICALP.2023.4
https://orcid.org/0000-0002-8828-4671
https://doi.org/10.4230/LIPIcs.ICALP.2023.120
https://orcid.org/0000-0003-2422-9435
https://doi.org/10.4230/LIPIcs.ICALP.2023.113
https://orcid.org/0009-0001-6021-679X
https://doi.org/10.4230/LIPIcs.ICALP.2023.74

Authors 0:xxxvii

Chunhao Wang (87)
Department of Computer Science and
Engineering, Pennsylvania State University,
University Park, PA, USA

Daochen Wang (64)
QuICS, University of Maryland,
College Park, MD, USA

Joshua R. Wang (80)
Google Research, USA

Pengfei Wang (100)
LIRMM, Université Montpellier, CNRS, France

Yuyang Wang (96)
School of Computer Science and Technology,
University of Science and Technology of China,
Hefei, China

Julian Wargalla (50)
Heinrich-Heine Universität Düsseldorf, Germany

David Weckbecker (47)
TU Darmstadt, Germany

Jordi Weggemans (32)
QuSoft and CWI, Amsterdam, The Netherlands

Zhewei Wei (7)
Renmin University of China, Beijing, China

Zhide Wei (41)
Department of Computer Science,
Peking University, Beijing, China

Michael Whitmeyer (83)
University of Washington CSE,
Seattle, WA, USA

Sarah Winter (121)
Université libre de Bruxelles & F.R.S.-FNRS,
Brussels, Belgium

Thorsten Wißmann (137)
Radboud University, Nijmegen,
The Netherlands;
Friedrich-Alexander-Universität
Erlangen-Nürnberg, Germany

James Worrell (5, 130)
Department of Computer Science,
University of Oxford, UK

Hongxun Wu (39)
University of California at Berkeley, CA, USA

Kewen Wu (66)
University of California at Berkeley, CA, US

Karol Węgrzycki (131)
Saarland University and Max Planck Institute
for Informatics, Saarbrücken, Germany

Michał Włodarczyk (106)
Ben-Gurion University, Beer Sheva, Israel

Chaoping Xing (89)
School of Electronic Information and Electrical
Engineering, Shanghai Jiao Tong University,
China

Jeff Xu (78)
Carnegie Mellon University,
Pittsburgh, PA, USA

Sheng Yang (98)
Shanghai, CN

Penghui Yao (97)
State Key Laboratory for Novel Software
Technology, Nanjing University, China;
Hefei National Laboratory, 230088, China

Ben Young (33)
Department of Computer Sciences,
University of Wisconsin-Madison, WI, USA

Yuancheng Yu (34)
Department of Computer Science, University of
Illinois at Urbana-Champaign, IL, USA

Chen Yuan (89, 99)
School of Electronic Information and Electrical
Engineering, Shanghai Jiao Tong University,
China

Viktor Zamaraev (57)
University of Liverpool, UK

Or Zamir (107)
Princeton University, NJ, USA

Kostas Zampetakis (55)
Computer Science, University of Warwick,
Coventry, UK

Georg Zetzsche (3, 110)
Max Planck Institute for Software Systems
(MPI-SWS), Kaiserslautern, Germany

Hengjie Zhang (88)
Columbia University, New York, NY, USA

Lichen Zhang (88)
Massachusetts Institute of Technology,
Cambridge, MA, USA

Ruizhe Zhang (108)
The University of Texas at Austin, TX, USA

ICALP 2023

https://doi.org/10.4230/LIPIcs.ICALP.2023.87
https://orcid.org/0000-0001-5472-1207
https://doi.org/10.4230/LIPIcs.ICALP.2023.64
https://doi.org/10.4230/LIPIcs.ICALP.2023.80
https://orcid.org/0000-0001-8172-5270
https://doi.org/10.4230/LIPIcs.ICALP.2023.100
https://doi.org/10.4230/LIPIcs.ICALP.2023.96
https://doi.org/10.4230/LIPIcs.ICALP.2023.50
https://orcid.org/0000-0003-3381-058X
https://doi.org/10.4230/LIPIcs.ICALP.2023.47
https://doi.org/10.4230/LIPIcs.ICALP.2023.32
https://doi.org/10.4230/LIPIcs.ICALP.2023.7
https://doi.org/10.4230/LIPIcs.ICALP.2023.41
https://doi.org/10.4230/LIPIcs.ICALP.2023.83
https://orcid.org/0000-0002-3499-1995
https://doi.org/10.4230/LIPIcs.ICALP.2023.121
https://orcid.org/0000-0001-8993-6486
https://doi.org/10.4230/LIPIcs.ICALP.2023.137
https://doi.org/10.4230/LIPIcs.ICALP.2023.5
https://doi.org/10.4230/LIPIcs.ICALP.2023.130
https://doi.org/10.4230/LIPIcs.ICALP.2023.39
https://orcid.org/0000-0002-5894-822X
https://doi.org/10.4230/LIPIcs.ICALP.2023.66
https://orcid.org/0000-0001-9746-5733
https://doi.org/10.4230/LIPIcs.ICALP.2023.131
https://orcid.org/0000-0003-0968-8414
https://doi.org/10.4230/LIPIcs.ICALP.2023.106
https://doi.org/10.4230/LIPIcs.ICALP.2023.89
https://doi.org/10.4230/LIPIcs.ICALP.2023.78
https://doi.org/10.4230/LIPIcs.ICALP.2023.98
https://orcid.org/0000-0002-4104-2069
https://doi.org/10.4230/LIPIcs.ICALP.2023.97
https://orcid.org/0000-0003-1921-7253
https://doi.org/10.4230/LIPIcs.ICALP.2023.33
https://doi.org/10.4230/LIPIcs.ICALP.2023.34
https://orcid.org/0000-0002-3730-8397
https://doi.org/10.4230/LIPIcs.ICALP.2023.89
https://doi.org/10.4230/LIPIcs.ICALP.2023.99
https://orcid.org/0000-0001-5755-4141
https://doi.org/10.4230/LIPIcs.ICALP.2023.57
https://doi.org/10.4230/LIPIcs.ICALP.2023.107
https://doi.org/10.4230/LIPIcs.ICALP.2023.55
https://orcid.org/0000-0002-6421-4388
https://doi.org/10.4230/LIPIcs.ICALP.2023.3
https://doi.org/10.4230/LIPIcs.ICALP.2023.110
https://doi.org/10.4230/LIPIcs.ICALP.2023.88
https://doi.org/10.4230/LIPIcs.ICALP.2023.88
https://doi.org/10.4230/LIPIcs.ICALP.2023.108

0:xxxviii Authors

Xinzhi Zhang (108)
University of Washington, Seattle, WA, USA

Yihan Zhang (99)
Institute of Science and Technology Austria,
Klosterneuburg, Austria

Hangdong Zhao (127)
Department of Computer Sciences,
University of Wisconsin-Madison, WI, USA

Qi Zhao (64)
QuICS, University of Maryland, College Park,
MD, USA;
QICI, The University of Hong Kong, China

Da Wei Zheng (74)
University of Illinois Urbana-Champaign, IL,
USA

Yu Zheng (41)
Meta Platforms Inc

Hang Zhou (91)
École Polytechnique, Institut Polytechnique de
Paris, France

Rudy Zhou (92)
Carnegie Mellon University,
Pittsburgh, PA, USA

Tianyi Zhou (88)
University of California San Diego, CA, USA

Jakub Łącki (6)
Google Research, New York, NY,USA

https://doi.org/10.4230/LIPIcs.ICALP.2023.108
https://orcid.org/0000-0002-6465-6258
https://doi.org/10.4230/LIPIcs.ICALP.2023.99
https://orcid.org/0009-0009-7636-0831
https://doi.org/10.4230/LIPIcs.ICALP.2023.127
https://orcid.org/0000-0002-8091-0682
https://doi.org/10.4230/LIPIcs.ICALP.2023.64
https://orcid.org/0000-0002-0844-9457
https://doi.org/10.4230/LIPIcs.ICALP.2023.74
https://doi.org/10.4230/LIPIcs.ICALP.2023.41
https://doi.org/10.4230/LIPIcs.ICALP.2023.91
https://doi.org/10.4230/LIPIcs.ICALP.2023.92
https://doi.org/10.4230/LIPIcs.ICALP.2023.88
https://orcid.org/0000-0001-9347-0041
https://doi.org/10.4230/LIPIcs.ICALP.2023.6

A (Slightly) Improved Approximation Algorithm for
the Metric Traveling Salesperson Problem
Anna R. Karlin #

Paul G. Allen School of Computer Science and Engineering,
University of Washington, Seattle, WA, USA

Abstract
We describe recent joint work with Nathan Klein and Shayan Oveis Gharan showing that for any
metric TSP instance, the max entropy algorithm studied by [1] returns a solution of expected cost
at most 3

2 − ϵ times the cost of the optimal solution to the subtour elimination LP and hence is a
3
2 − ϵ approximation for the metric TSP problem. The research discussed comes from [1], [2] and [3].

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases Traveling Salesperson Problem, approximation algorithm

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.1

Category Invited Talk

Related Version Full Version: https://arxiv.org/pdf/2007.01409.pdf

Funding Anna R. Karlin: Research supported by Air Force Office of Scientific Research grant
FA9550-20-1-0212 and NSF grant CCF-1813135.

References
1 Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan. A (slightly) improved approximation

algorithm for metric TSP. In Samir Khuller and Virginia Vassilevska Williams, editors, STOC
’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy,
June 21-25, 2021, pages 32–45. ACM, 2021. doi:10.1145/3406325.3451009.

2 Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan. A (slightly) improved bound on the
integrality gap of the subtour LP for TSP. In 63rd IEEE Annual Symposium on Foundations
of Computer Science, FOCS 2022, Denver, CO, USA, October 31 – November 3, 2022, pages
832–843. IEEE, 2022. doi:10.1109/FOCS54457.2022.00084.

3 Anna R. Karlin, Nathan Klein, and Shayan Oveis Gharan. A (slightly) improved deterministic
approximation algorithm for metric TSP. CoRR, abs/2212.06296, 2022. doi:10.48550/arXiv.
2212.06296.

EA
T
C
S

© Anna R. Karlin;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 1; pp. 1:1–1:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:karlin@cs.washington.edu
https://doi.org/10.4230/LIPIcs.ICALP.2023.1
https://arxiv.org/pdf/2007.01409.pdf
https://doi.org/10.1145/3406325.3451009
https://doi.org/10.1109/FOCS54457.2022.00084
https://doi.org/10.48550/arXiv.2212.06296
https://doi.org/10.48550/arXiv.2212.06296
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

An Almost-Linear Time Algorithm for Maximum
Flow and More
Rasmus Kyng # Ñ

ETH Zürich, Switzerland

Abstract
In this talk, I will explain a new algorithm for computing exact maximum and minimum-cost flows in
almost-linear time, settling the time complexity of these basic graph problems up to subpolynomial
factors.

Our algorithm uses a novel interior point method that builds the optimal flow as a sequence of
approximate minimum-ratio cycles, each of which is computed and processed very efficiently using a
new dynamic data structure.

By well-known reductions, our result implies almost-linear time algorithms for several problems
including bipartite matching, optimal transport, and undirected vertex connectivity. Our framework
also extends to minimizing general edge-separable convex functions to high accuracy, yielding the
first almost-linear time algorithms for many other problems including entropy-regularized optimal
transport, matrix scaling, p-norm flows, and isotonic regression.

This talk is based on joint work with Li Chen, Yang P. Liu, Richard Peng, Maximilian Probst
Gutenberg, and Sushant Sachdeva [1]. Our result appeared in FOCS’22 and won the FOCS best
paper award.

2012 ACM Subject Classification Theory of computation → Network flows; Theory of computation
→ Sparsification and spanners; Theory of computation → Dynamic graph algorithms

Keywords and phrases Maximum flow, Minimum cost flow, Data structures, Interior point methods,
Convex optimization

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.2

Category Invited Talk

Funding Rasmus Kyng: The research leading to these results has received funding from the grant
“Algorithms and complexity for high-accuracy flows and convex optimization” (no. 200021 204787)
of the Swiss National Science Foundation.

References
1 Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and

Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. In 2022
IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pages 612–623,
2022. doi:10.1109/FOCS54457.2022.00064.

EA
T
C
S

© Rasmus Kyng;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 2; pp. 2:1–2:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kyng@inf.ethz.ch
http://rasmuskyng.com/
https://orcid.org/0000-0002-8268-6258
https://doi.org/10.4230/LIPIcs.ICALP.2023.2
https://doi.org/10.1109/FOCS54457.2022.00064
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

Context-Bounded Analysis of Concurrent Programs
Pascal Baumann #

Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany

Moses Ganardi #

Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany

Rupak Majumdar #

Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany

Ramanathan S. Thinniyam #

Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany

Georg Zetzsche #

Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany

Abstract
Context-bounded analysis of concurrent programs is a technique to compute a sequence of under-
approximations of all behaviors of the program. For a fixed bound k, a context bounded analysis
considers only those runs in which a single process is interrupted at most k times. As k grows, we
capture more and more behaviors of the program. Practically, context-bounding has been very
effective as a bug-finding tool: many bugs can be found even with small bounds. Theoretically,
context-bounded analysis is decidable for a large number of programming models for which verification
problems are undecidable. In this paper, we survey some recent work in context-bounded analysis of
multithreaded programs.

In particular, we show a general decidability result. We study context-bounded reachability
in a language-theoretic setup. We fix a class of languages (satisfying some mild conditions) from
which each thread is chosen. We show context-bounded safety and termination verification problems
are decidable iff emptiness is decidable for the underlying class of languages and context-bounded
boundedness is decidable iff finiteness is decidable for the underlying class.

2012 ACM Subject Classification Theory of computation → Concurrency; Software and its engin-
eering → Software verification

Keywords and phrases Context-bounded analysis, Multi-threaded programs, Decidability

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.3

Category Invited Talk

Funding This research was partially funded by the DFG project 389792660 TRR 248–CPEC and by
the European Union (ERC, FINABIS, 101077902). Views and opinions expressed are however those
of the author(s) only and do not necessarily reflect those of the European Union or the European
Research Council Executive Agency. Neither the European Union nor the granting authority can be
held responsible for them.

1 Introduction

Algorithmic verification of shared-state multithreaded programs is one of the main motivations
for research in theoretical computer science. The general problem is undecidable, even when
the class of programs is restricted in different ways. Thus, one direction of research has
focused on finding decidable models that over-approximate the problem and another on
finding under-approximations. An over-approximate model captures more behaviors than
the original program; thus, if we find that the over-approximation has no bad behaviors, we

EA
T
C
S

© Pascal Baumann, Moses Ganardi, Rupak Majumdar, Ramanathan S. Thinniyam, and
Georg Zetzsche;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 3; pp. 3:1–3:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pbaumann@mpi-sws.org
https://orcid.org/0000-0002-9371-0807
mailto:ganardi@mpi-sws.org
https://orcid.org/0000-0002-0775-7781
mailto:rupak@mpi-sws.org
https://orcid.org/0000-0003-2136-0542
mailto:thinniyam@mpi-sws.org
https://orcid.org/0000-0002-9926-0931
mailto:georg@mpi-sws.org
https://orcid.org/0000-0002-6421-4388
https://doi.org/10.4230/LIPIcs.ICALP.2023.3
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

3:2 Context-Bounded Analysis of Concurrent Programs

can be certain that neither does the original program. An under-approximation, conversely,
captures fewer behaviors. In this case, if we find a bad behavior in the approximation, we
know that the bad behavior is also possible in the original program.

We consider a particular type of under-approximation: context bounding. Context-
bounding is a technique to construct a parameterized sequence of under-approximations [46,
37]. For a fixed parameter k, a k-context-bounded analysis considers only those behaviors of
the program in which an individual thread is interrupted by the scheduler at most k times.
As k increases, more and more behaviors of the original program fall into the purview of the
analysis. In the limit, all behaviors are covered.

Context-bounding has become a popular technique because of two reasons. For a wide
class of programming models and verification questions, context-bounded analyses become
decidable, even though the unrestricted problems are undecidable. Moreover, in practice,
context-bounded analysis has had success as a bug finding tool, since many bugs in practical
instances can be discovered even with small values of k [46, 44, 36, 34].

We focus on decidability questions. In order to avoid “trivial” encodings of Turing
machines, we restrict programs to be finite data – that is, we assume each program variable
to take on finitely many values. Even with this restriction, depending on the model of
programs, decidability can be non-immediate because the state space of a program can be
infinite in other respects, such as the stack of an individual thread or the number of pending
threads.

Properties of concurrent programs. For the moment, we focus on three decision problems:
context-bounded reachability (“is there a k-bounded execution that reaches a specific global
state?”), context-bounded termination (“all all k-bounded executions terminating?”), and
context-bounded boundedness (“is there a bound on the number of pending threads along
every k-bounded execution?”). We shall come back to other problems later.

Context-bounded analysis is a family of problems, depending on the model of concurrent
programs as well as on the correctness properties considered. Qadeer and Rehof’s original
paper [46], that introduced context-bounding, stipulated that there is a fixed number of
recursive threads that read or write shared variables but these threads do not spawn further
threads. They showed that the reachability problem is NP-complete. Note that even with
two threads, the reachability problem for finite-data programs is already undecidable: for
example, we can encode the intersection non-emptiness problem for pushdown automata.
On the other hand, if threads are not recursive, then the reachability problem is decidable
without any context bounding restrictions, even if threads can spawn further threads: this
can be shown by a reduction to the coverability problem for vector addition systems with
states (VASS). Subsequently, Atig, Bouajjani, and Qadeer [11] extended decidability for
context-bounded reachability when threads can spawn further threads. They showed an
upper bound of 2EXPSPACE and a matching lower bound was shown by Baumann et al. [14].
Similar techniques show the same complexity for termination and boundedness.

A special case: Asynchronous programs. The special case of k = 0 of context-bounded
analysis is important enough to have its own name: asynchronous programs. In an asyn-
chronous program, threads are executed atomically to completion (that is, never interrupted
by the scheduler). Many software systems based on cooperative scheduling implement this
model. Sen and Viswanathan [47] studied the model and showed reachability is decidable
by reducing to a well-structured transition system. Ganty and Majumdar [28] showed that
reachability, termination, and boundedness are all EXPSPACE-complete, by again reducing
to coverability problems for VASS.

P. Baumann, M. Ganardi, R. Majumdar, R. S. Thinniyam, and G. Zetzsche 3:3

Majumdar, Thinniyam, and Zetzsche [40] proved decidability results for asynchronous
programs in a general language-theoretic setting. They fix a class of languages C, and consider
asynchronous programs in which each individual thread is a language from the class C over
the alphabet of thread names as well as a transformer over the global states. That is, each
thread is a language (from C) of words of the form dwd′, where d and d′ are global states
and w is a sequence of thread names. The intent is that an atomic execution of the thread
takes the global state from d to d′ and also spawns new instances of all the threads in w.

They show that for all classes C satisfying a mild language-theoretic assumption (the
class C is a full trio), safety and termination are decidable if and only if the underlying
language class C has a decidable emptiness problem. Similarly, boundedness is decidable if
and only if finiteness is decidable for C. As a consequence, they get decidability results for
asynchronous programs over context-free languages, higher-order recursion schemes, as well
as other language classes studied in infinite-state verification.

Contribution. Our starting point is the general approach of Majumdar, Thinniyam, and
Zetzsche [40]. We show their general decidability results can be extended to context-
bounded analysis (any k ≥ 0). We define concurrent programs over a language class C and
show analogous decidability results: (i) context-bounded reachability and context-bounded
termination for programs are decidable if and only if C has a decidable emptiness problem,
and (ii) context-bounded boundedness is decidable if and only if C has a decidable finiteness
problem. As a consequence, we get a uniform proof for decidability for these problems for
programs over context-free languages and for programs over higher-order recursion schemes.

The key argument in both settings is that of downclosures of languages under the subword
ordering. Safety, termination, and boundedness are preserved if we “lose” some spawned
threads, as long as the sequence of global state changes (and there are at most k of them
for the fixed context bound k) is maintained. Since downclosures (even when maintaining
a bounded number of distinguished letters) are always regular languages, this implies: If
our concurrent program satisfies one of the above properties, then each thread can be
over-approximated by a regular language so that the property is still satisfied. The decision
procedure for reachability then runs two semi-decision procedures: one enumerates executions
(to check for reachability) and the other enumerates regular languages and checks that (1)
the thread languages are contained in the regular languages and (2) uses known decidability
results for context-bounded reachability with regular thread languages.

The decision procedure does not, in particular, need to construct an explicit description of
the downclosure. In fact, it even shows decidability for language classes for which downclosures
cannot be constructed. On the flip side, we do not get complexity bounds.

Other properties. What about other properties? Ganty and Majumdar showed fair ter-
mination for context-free asynchronous programs is decidable (by reduction to Petri net
reachability) [28]. Majumdar, Thinniyam, and Zetzsche generalized the result to show that
fair termination is equivalent to configuration reachability in the general setting [40]. On the
other hand, decidability of fair termination implies the decidability of checking the “equal
letters problem”: deciding if a language in C has an equal number of as and bs. Thus, fair
termination is undecidable for indexed languages. The undecidability is inherited by context-
bounded fair termination. On the other hand, somewhat surprisingly, fair termination is
decidable for context-bounded runs of context-free multithreaded programs [15].

ICALP 2023

3:4 Context-Bounded Analysis of Concurrent Programs

2 Preliminaries

An alphabet is a finite non-empty set of symbols. For an alphabet Σ, we write Σ∗ for the set
of finite sequences of symbols (also called words) over Σ. A set L ⊆ Σ∗ of words is a language.
By pref(L) = {u ∈ Σ∗ | ∃v ∈ Σ∗ : uv ∈ L} we denote the set of prefixes of words in L.

The subword order ⊑ on Σ∗ is defined as follows: for u, v ∈ Σ∗ we have u ⊑ v if and only
if u can be obtained from v by deleting some of v’s letters. For example, abba ⊑ bababa, but
abba ̸⊑ baaba. The downclosure (or downward closure) ↓w of a word w ∈ Σ∗ with respect
to the subword order is defined as ↓w := {w′ ∈ Σ∗ | w′ ⊑ w}. The downclosure ↓L of a
language L ⊆ Σ∗ is given by ↓L := {w′ ∈ Σ∗ | ∃w ∈ L : w′ ⊑ w}. An important fact is that
the subword ordering ⊑ is a well-quasi ordering (Higman’s lemma). A consequence is that
the downclosure ↓L of any language L is a regular language [32]. However, a representation
for the downclosure of a language may not be effectively constructible.

The projection of a word w ∈ Σ∗ onto some alphabet Γ ⊆ Σ, written ProjΓ(w), is the
word obtained by erasing from w each symbol which does not belong to Γ. For a language
L, define ProjΓ(L) = {ProjΓ(w) | w ∈ L}. We write |w|Γ for the number of occurrences of
letters a ∈ Γ in w, and similarly |w|a if Γ = {a}.

A multiset m : X → N over a set X maps each symbol of X to a natural number. The
size |m| of a multiset m is given by |m| =

∑
x∈X m(x). The set of all multisets over X

is denoted M[X]. We identify subsets of X with multisets in M[X] where each element is
mapped to 0 or 1. We write m = Ja, a, c K for the multiset m ∈ M[{a, b, c, d}] such that
m(a) = 2, m(b) = m(d) = 0, and m(c) = 1. The Parikh image Parikh(w) ∈ M[Σ] of a word
w ∈ Σ∗ is the multiset such that for each letter a ∈ Σ we have Parikh(w)(a) = |w|a.

Given two multisets m, m′ ∈ M[X] we define m ⊕ m′ ∈ M[X] to be the multiset such
that for all a ∈ X, we have (m ⊕ m′)(a) = m(a) + m′(a). If m(a) ≥ m′(a) for all a ∈ X,
we also define m′ ⊖ m ∈ M[X]: for all a ∈ X, we have (m ⊖ m′)(a) = m(a) − m′(a). For
X ⊆ Y we regard m ∈ M[X] as a multiset in M[Y] where undefined values are mapped to 0.

Language Classes and Full Trios. A language class is a collection of languages, together
with some finite representation. Examples are the regular languages (e.g. represented by
finite automata) or the context-free languages (e.g. represented by pushdown automata). A
relatively weak and reasonable assumption on a language class is that it is a full trio, that is,
it is closed under rational transductions. Equivalently, a language class is a full trio if it is
closed under each of the following operations: taking intersection with a regular language,
taking homomorphic images, and taking inverse homomorphic images [16].

We assume that all full trios C considered in this paper are effective: Given a language L

from C, a regular language R, and a homomorphism h, we can compute a representation of
the languages L ∩ R, h(L), and h−1(L) in C.

Many classes of languages studied in formal language theory form effective full trios. These
include the regular and the context-free languages [33], the indexed languages [2, 25], the
languages of higher-order pushdown automata [42], higher-order recursion schemes [31, 24, 40],
Petri nets [29, 35], and lossy channel systems. However, the class of deterministic context-free
languages is not a full trio: this class is not closed under rational transductions.

3 A Language-Theoretic Model of Concurrent Programs

Intuitively, a concurrent program consists of a shared global state and a finite number of
thread names. Instances of thread names are called threads. A configuration of such a
program consists of the current value of the global state and a multiset of partially-executed

P. Baumann, M. Ganardi, R. Majumdar, R. S. Thinniyam, and G. Zetzsche 3:5

threads. A non-deterministic scheduler picks a partially-executed thread and runs it for some
number of steps. An executing thread can change the global state. It can also spawn new
threads – these can be picked and executed by the scheduler (in any order) in the future.
When a scheduler swaps a running thread for another one, we say that there is a context
switch. In our formal model, we keep the global state explicit and we model the execution
behavior of threads as languages. The language of a thread captures the new threads it can
spawn, as well as the effect of the execution on the global state.

3.1 Model
Let C be an (effective) full trio. A concurrent program (CP) over C is a tuple P =
(D, Σ, (La)a∈Σ, d0, m0), where D is a finite set of global states, Σ is an alphabet of thread
names, (La)a∈Σ is a family of languages from C over the alphabet ΣD = D ∪ Σ ∪ (D × D),
d0 ∈ D is an initial state, and m0 ∈ M[Σ] is a multiset of initial pending thread instances. We
assume that each La, a ∈ Σ, satisfies the condition La ⊆ aD

(
Σ ∪ (D × D)

)∗
D (we provide

the intuition behind this condition below).
A configuration c = (d, m) ∈ D × M[Σ∗

D] consists of a global state d ∈ D and a multiset
m of strings representing pending threads instances and partially executed threads. Given a
configuration c = (d, m), we write c.d and c.m to denote the elements d and m, respectively.
The size of a configuration c is |c.m|, i.e. the number of threads in the task buffer. We
distinguish between threads that have been spawned but not executed (pending threads) and
threads that have been partially executed (but swapped out). The pending thread instances
are represented by single letters a ∈ Σ (which corresponds to the name of the thread) while
the partially executed threads of “type” a ∈ Σ are represented by strings in pref(La) which
end in a letter from D × D.

Before presenting the formal semantics, let us provide some intuition. Suppose the
current configuration is (d, m). A non-deterministic scheduler picks one of the outstanding
threads (either a pending thread a ∈ m or a partially executed thread w ∈ m) and ex-
ecutes it for some time, until it terminates or until the scheduler decides to interrupt
it. The execution of a thread a is abstractly modeled by the language La. A word
ad1w1(d′

1, d2)w2(d′
2, d3) . . . (d′

k−1, dk)wk+1dk+1 ∈ La represents a run of an instance of the
thread a. The run starts executing in global state d1. It spawns new threads w1 ∈ Σ∗, then
gets interrupted at global state d′

1 by the scheduler. At some future point, the scheduler
starts executing it again at global state d2, when new threads w2 are spawned before it is
interrupted again at d′

2. The execution continues in this way until the thread terminates in
global state dk+1. Thus, the jump from one global state to another (from the perspective of
the thread) when a context switch is made is represented by a letter from D × D. The part
of a run starting at global state di, spawning threads wi and interrupted at d′

i is called a
segment. Each interruption is called a context switch; the above word has k context switches.

Formally, the semantics of P are given as a labelled transition system over the set of
configurations with the transition relation ⇒⊆ (D × M[Σ∗

D]) × (D × M[Σ∗
D]). The initial

configuration is given by c0 = (d0, m0).
The transition relation is defined using rules of four different types shown below. All four

types of rules are of the general form d
JwK,n′

−−−−→ d′. A rule of this form allows the program
to move from a configuration (d, m) to configuration (d′, m′), i.e., (d, m) ⇒ (d′, m′), iff
d

JwK.n′

−−−−→ d′ matches a rule and (m ⊖ JwK) ⊕ n′ = m′. Note that due to the definition of ⊖,
m has to contain w for the rule to be applicable. We also write w=⇒ to specify the particular
w used in the transition. As usual, the reflexive transitive closure of ⇒ is denoted by ⇒∗. A
configuration c is said to be reachable if c0 ⇒∗ c.

ICALP 2023

3:6 Context-Bounded Analysis of Concurrent Programs

(R1) d
JaK,Parikh(w)⊕Jadw(d′,d′′)K−−−−−−−−−−−−−−−−−→ d′ if ∃w ∈ Σ∗ : adw(d′, d′′) ∈ pref(La).

Rule (R1) allows us to pick some thread a from m and atomically execute it until the point
it is switched out by the scheduler. Note that the final letter (d′, d′′) of the thread indicates
that it has been switched out at global d′ and can be resumed when the global state is d′′.

(R2) d
JaK,Parikh(w)−−−−−−−−→ d′ if ∃w ∈ Σ∗ : adwd′ ∈ La.

Rule (R2) allows us to pick some thread a from m and atomically execute it to completion.

(R3) d
Jaw′(d′′,d)K,Parikh(w)⊕Jaw′(d′′,d)w(d′,d′′′)K−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ d′ if

∃w ∈ Σ∗ :
aw′(d′′, d)w(d′, d′′′) ∈ pref(La)

Rule (R3) allows us to pick some partially executed thread and execute it atomically until
the point it is switched out by the scheduler.

(R4) d
Jaw′(d′′,d)K,Parikh(w)−−−−−−−−−−−−−−→ d′ if ∃w ∈ Σ∗ : aw′(d′′, d)wd′ ∈ La

Rule (R4) allows us to pick some partially executed thread and execute it to completion.

3.2 Runs and Context-bounded Runs

A prerun of a concurrent program P = (D, Σ, (La)a∈Σ, d0, m0) is a finite or infinite sequence
ρ = (e0, n0), w1, (e1, n1), w2, . . . of alternating elements of configurations (ei, n′

i) ∈ D×M[Σ∗
D]

and strings wi ∈ Σ∗.
The set of preruns of P will be denoted Preruns(P). Note that if two concurrent programs

P and P′ have the same global states D and alphabet Σ, then Preruns(P) = Preruns(P′).
The length |ρ| of a finite prerun ρ is the number of configurations in ρ.

A run of a CP P = (D, Σ, (La)a∈Σ, d0, m0) is a prerun ρ = (d0, m0), w1, (d1, m1), w2, . . .

starting with the initial configuration (d0, m0), where for each i ≥ 0, we have (di, mi)
wi+1===⇒

(di+1, mi+1). The set of runs of P is denoted Runs(P).
For a number k, the run ρ is said to be k-context-bounded (k-CB for short) if for each

ci = (di, mi) ∈ ρ and for each w ∈ mi, we have |w|D×D ≤ k. The set of k-context-bounded
runs of P is denoted by Runsk(P). In the case of finite runs which reach a certain configuration
c, We say a configuration c is k-reachable if there is a finite k-CB run ρ ending in c.

3.3 Decision Problems

We study the following decision problems.

▶ Definition 1.
CB Safety (Global state reachability):
Instance: A concurrent program P, a context-bound k and a global state df ∈ D.
Question: Is there a k-reachable configuration c such that c.d = df ? If so, df is said to
be k-reachable (in P) and k-unreachable otherwise.
CB Boundedness:
Instance: A concurrent program P and a context-bound k.
Question: Is there an N ∈ N such that for every k-reachable configuration c we have
|c.m| ≤ N? If so, the concurrent program P is k-bounded; otherwise it is k-unbounded.
CB Termination:
Instance: A concurrent program P, a context-bound k.
Question: Is P k-terminating, that is, is every k-CB run of P finite?

P. Baumann, M. Ganardi, R. Majumdar, R. S. Thinniyam, and G. Zetzsche 3:7

3.4 Orders on Runs and Downclosures
Intuitively, k-safety, k-termination, and k-boundedness are preserved when the multiset of
pending threads is “k-lossy”: pending threads can get lost and we only consider runs where
each thread makes at most k context switches. This loss corresponds to these pending threads
never being scheduled by the scheduler. However, if a run demonstrates reachability of a
global state, or non-termination, or unboundedness, in the k-lossy version, it corresponds
also to a k-CB run in the original problem (and conversely). We make this intuition precise
by introducing an ordering on runs and defining the downclosure.

Let w, w′ ∈ ΣD
(
Σ ∪ (D × D)

)∗(
D ∪ (D × D)

)
be words with w = adw1e1w2e2 . . . wlel

and w′ = a′d′w′
1e′

1w′
2e′

2 . . . w′
le

′
l, where a, a′ ∈ Σ, d, d′ ∈ D, el, e′

l ∈ D ∪ (D × D), wi, w′
j ∈ Σ∗

for i, j ∈ [1, l], and ei, e′
j ∈ D × D for i, j ∈ [1, l − 1]. We define the state-preserving order

⊑D by w ⊑D w′ iff a = a′, d = d′, ei = e′
i for each i ∈ [1, l], and wi ⊑ w′

i, that is, wi is a
subword of w′

i, for each i ∈ [1, l]. We denote the corresponding notion of state-preserving
downclosure under this order by ⇓. Intuitively, the ⊑D relation is a subword ordering on
words that preserves the initial letter in Σ and all occurrences of D ∪ (D ×D), but potentially
loses letters from each segment – that is, newly spawned threads can be lost.

We use the order ⊑D to naturally define the order ⪯D on M[Σ∗
D] by induction: for

m, m′ ∈ M[Σ∗
D] with |m|, |m′| ≥ 1, we have m ⪯D m′ iff there are n, n′ ∈ M[Σ∗

D],
w, w′ ∈ Σ∗

D with m = n ⊕ JwK and m′ = n′ ⊕ Jw′K such that n ⪯D n′ and w ⊑D w′.
Furthermore, for all m ∈ M[Σ∗

D], we have ∅ ⪯D m.
We define an order ⊴ on preruns as follows: For preruns ρ = (e0, n0), w1, (e1, n1), w2, . . .

and ρ′ = (e′
0, n′

0), w′
1, (e′

1, n′
1), w′

2, . . ., we have ρ ⊴ ρ′ iff |ρ| = |ρ′|, ei = e′
i, wi ⊑D w′

i and
ni ⪯D n′

i for each i ≥ 0. The downclosure ↓R of a set R of preruns of P is defined as
↓R = {ρ ∈ Preruns(P) | ∃ρ′ ∈ R. ρ ⊴ ρ′}.

We write ⇓Runs(P) for the downclosure with respect to ⊴ restricted to valid runs.
Some properties of a concurrent program P only depend on the downclosure ⇓Runsk(P)

of the set Runsk(P) of k-CB runs of the program P. For these properties, we may transform
the program P to a program ⇓kP such that the latter is easier to analyze but retains the
properties of the former.

▶ Definition 2. For a language La of a CP, let

⇓kLa =

wwww�
(

La ∩
(k⋃

i=0

(
aD(Σ∗D × D)iΣ∗D

)))
For any CP P = (D, Σ, (La)a∈Σ, d0, m0) and number k, we define the CP ⇓kP =
(D, Σ, (⇓kLa)a∈Σ, d0, m0). In other words, ⇓kP is the program obtained by taking the state-
preserving downclosure of those words in La which contain at most k context switches.

Note that, by well-quasi-ordering arguments, for any fixed k, the languages La of ⇓kP

are all regular.

▶ Proposition 3. Let P = (D, Σ, (Lc)c∈C, d0, m0) be a concurrent program. Then
⇓Runsk(P) = ⇓Runs(⇓kP). In particular,
1. For every d ∈ D, P can k-reach d if and only if ⇓kP can k-reach d.
2. P is k-terminating if and only if ⇓kP is k-terminating.
3. P is k-bounded if and only if ⇓kP is k-bounded.

Clearly, every run in Runsk(P) is also in Runs(⇓kP). Conversely, we can show by induction
on the length of the run that for every run ρ ∈ Runs(⇓kP) there is a run ρ′ ∈ Runs(P) such
that ρ ⊴ ρ′. The result follows.

ICALP 2023

3:8 Context-Bounded Analysis of Concurrent Programs

4 Decidability Results

We now characterize full trios C for which decision problems for concurrent programs over C
are decidable. We shall make use of the following decidability results about regular languages.

▶ Theorem 4.
1. [28, 10] CB Safety is decidable for concurrent programs over regular languages.
2. [28, 15] CB Boundedness and CB termination are decidable for concurrent programs

over regular languages.

In fact, the above problems are decidable even if there is no bound on the number
of context switches. The result in [10] is stated for a model called Dynamic networks of
Concurrent Finite-state Systems (DCFS), but it is easy to see that there is a polynomial
time reduction for the problems of safety, termination and boundedness for CP over regular
languages to the corresponding problems for DCFS. The paper [15] shows decidability of CB
termination and CB boundedness for the model of dynamic networks of concurrent pushdown
systems, of which DCFS is a special case. There is also a simple reduction of these problems
to the corresponding results for the model of asynchronous programs [28].

Our first decidability result is the following.

▶ Theorem 5. Let C be a full trio. The following are equivalent:
(i) CB Safety is decidable for concurrent programs over C.
(ii) CB Termination is decidable for concurrent programs over C.
(iii) Emptiness is decidable for C.

The implications “(i)⇒(iii)” and The implications “(ii)⇒(iii)” are immediate from
corrsponding results for asynchronous programs [40], since context bounded analysis problems
generalize the corresponding analysis for asynchronous programs.

Before we prove the next implication, let us introduce a bit of notation. For each i ∈ N,
let Ri be the regular language Ri = ΣDΣ∗((D ×D)Σ∗)iD, R′

i = ΣDΣ∗((D ×D)Σ∗)i(D ×D),
for each l ∈ N we define Rl =

⋃l
i=0(Ri ∪ R′

i). For any language L and k ∈ N, the language
L ∩ Rk captures those words in L that contain at most k context switches.

For the implication “(iii)⇒(i)”, we construct two semidecision procedures (Algorithm 1):
the first one searches for regular over-approximations Aa of each language La such that
the program P′ obtained by replacing each La by the corresponding Aa is safe. We can
check whether our current guess for P′ is safe using Theorem 4. By Proposition 3, we
know that in case P is safe, then there must exist such a safe regular over-approximation.
Concurrently, the second procedure searches for a k-CB run reaching the target global state d

which witnesses the negation. Clearly, one of the two procedures must terminate. Note that
we use an emptiness check to ensure that our current guess for Aa includes the set La ∩ Rk.

To show “(iii)⇒(ii)”, we need an algorithm for termination of concurrent programs. As
in the case of safety, it consists of two semi-decision procedures. The one for termination
works just like the one for safety: It enumerates regular over-approximations and checks if
one of them terminates. The procedure for non-termination requires some terminology:

Predictions. We will use a notion of prediction, which assigns to each configuration (e, n)
of a run a multiset of strings that encode not only the past of each thread (as is done in n),
but also its future. To do this, we define the alphabet ΓD = ΣD ∪ {#} that extends ΣD a
fresh letter #. We shall encode predictions using strings of the form au#v, which encode a
thread with name a, past execution au, and future execution v. Additionally, we extend the
order ⪯D to strings of the form au#v by treating # as a letter from D × D which is to be
preserved. Let us make this precise.

P. Baumann, M. Ganardi, R. Majumdar, R. S. Thinniyam, and G. Zetzsche 3:9

Algorithm 1 Checking CB Safety.
Input: Concurrent program P = (D, Σ, (La)a∈Σ, d0, m0) over C, context bound k ∈ N,

state d ∈ D

run concurrently
begin /* find a safe over-approximation */

foreach tuple (Aa)a∈Σ of regular languages Aa ⊆ Σ∗ do
if (La ∩Rk) ∩ (Σ∗

D \Aa) = ∅ for each a ∈ Σ then
if P′ = (D, Σ, (Aa)a∈Σ, d0, m0) does not k-reach d then

return d is not reachable.

begin /* find a run reaching d */
foreach prerun ρ of P do

if ρ is a k-CB run that reaches d then
return d reachable.

Suppose ρ is a (finite or infinite) prerun (e0, n0), w1, (e1, n1), An annotation for ρ is
a sequence f0, f1, . . . ∈ M[Γ∗

D] of multisets of strings such that the sequence has the same
length as ρ. If ρ is a run, then we say that the annotation f0, f1, . . . is a prediction if
1. each string occurring in f0, f1, . . . is of the form au#v such that auv ∈ Σ∗

D and auv ∈
prefLa ∩

(
Σ ∪ (D × D)

)∗(
D ∪ (D × D)

)
2. for each i ≥ 0, the multisets ni and fi have the same cardinality and there is a bijection

between ni and fi so that (i) each word au in ni is in bijection with some word au#v in
fi and (ii) if au is the active thread when going from (ei, ni) to (ei+1, ni+1) and au#v is
its corresponding string au#v in fi, then the system executes the next segment in v.

Note that then indeed, for each thread, its string in ni records its past spawns, whereas the
corresponding string in fi contains all its future spawns (and possibly an additional suffix).

Of course, for each (finite or infinite) run, there exists a prediction: Just take the sequence
of actions of each thread in the future. Moreover, taking a prefix of both a run and some
accompanying prediction will yield a (shorter) run with a shorter prediction.

Self-covering runs. Recall that for each alphabet Θ, we have an embedding rela-
tion ⪯D on the set M[Θ∗

D], and in particular on M[Γ∗
D]. We say that a finite run

(e0, n0), w1, (e1, n1), . . . , wm, (em, nm), together with a prediction f0, . . . , fm is k-self-covering
if for some i < m, we have ei = em, fi ⪯D fm, and also, all words in f0, f1, . . . contain at most k

context-switches. As the name suggests, self-covering runs are witnesses for non-termination:

▶ Lemma 6. For every k ∈ N, a concurrent program has an infinite k-CB run if and only if
it has a k-self-covering run.

Here, it is crucial that for each k ∈ N, the ordering ⊑D is a WQO on the set of words
with at most k context-switches (on all of Σ∗

D, ⊑D is not a WQO).
We can now decide termination (Algorithm 2): the algorithm either (i) exhibits a k-

self-covering run, which shows the existence of a k-bounded infinite run by Lemma 6, or
(ii) finds a regular over-approximation that terminates, which means the original program is
terminating. We can check termination of the regular over-approximation using Theorem 4.
The algorithm also terminates: If there is an infinite k-bounded run, then Lemma 6 yields
the existence of a k-self-covering run. Moreover, if the concurrent program does terminate,
then Proposition 3 ensures the existence of a terminating regular over-approximation. This
concludes our proof of Theorem 5.

ICALP 2023

3:10 Context-Bounded Analysis of Concurrent Programs

Algorithm 2 Checking CB Termination.
Input: Concurrent program P = (D, Σ, (La)a∈Σ, d0, m0) over C and context bound k ∈ N
run concurrently

begin /* find a terminating over-approximation */
foreach tuple (Aa)a∈Σ of regular languages Aa ⊆ Σ∗

D do
if (La ∩Rk) ∩ (Σ∗ \Aa) = ∅ for each a ∈ Σ then

if P′ = (D, Σ, (Aa)a∈Σ, d0, m0) is k-terminating then
return P is k-terminating.

begin /* find a self-covering run */
foreach prerun ρ of P and an annotation σ do

if ρ with σ is a k-self-covering run then
return P is not k-terminating.

Our second theorem is as follows.

▶ Theorem 7. Let C be a full trio. The following are equivalent:
(i) CB Boundedness is decidable for concurrent programs over C.
(ii) Finiteness is decidable for C.

The implication “(i)⇒(ii)” follows from the special case of asynchronous programs [40]. It
was also observed in [40] that decidability of finiteness for C implies decidability of emptiness
for C. Further, by Theorem 5, we may assume that CB safety is decidable for CP over C.

We now show the implication “(ii)⇒(i)”. For a language L ⊆ Σ∗
D and n ∈ N, let

L|n = L ∩ Σ≤n
D be the language restricted to strings of length at most n and, in addition,

for k ∈ N, let L′
a|n = La|n ∩ Rk. Moreover, for an alphabet Θ, a language L ⊆ Θ∗, and a

word w ∈ Θ∗, we define the left quotient of L by w as w−1L := {u ∈ Θ∗ | wu ∈ L}. Our
algorithm is based on the following characterization of unboundedness.

▶ Lemma 8. The program P is k-unbounded iff one of the two following conditions hold:
(P1) Either there exists some number n such that Pn = (D, Σ, (L′

a|n)a∈Σ, d0, m0) is unboun-
ded, or

(P2) for some a ∈ Σ, there exists some word w ∈ pref(La) ending in a letter (d, d′) ∈ D × D

such that pref(w−1La) ∩ Σ∗ is infinite and there exists a run ρ reaching a configuration c

with w ∈ c and c.d = d′.

Essentially, (P1) captures the case where each thread spawns a finite number of other
threads and (P2) the case that there is some reachable configuration at which a single thread
can spawn an unbounded number of new threads. The above characterization allows us to
implement Algorithm 3, which interleave three semidecision procedures: Checking properties
(P1) and (P2) for positive certificates of unboundedness, as well as looking for certificates
of boundedness by looking for bounded regular over-approximations. Here we can check
boundedness for the latter by Theorem 4. Note that while checking for (P1), it is possible to
compute each language L′

a|n explicitly since these languages are all finite. This is because,
given any finite language F ∈ C and an explicitly given finite language A, we know F = A iff
F ∩ (Σ∗

D \ A) = ∅ and for all w ∈ A, F ∩ {w} ≠ ∅, where the first condition checks if F ⊆ A

and the second if A ⊆ F . Therefore, by enumerating all strings w, we can build A iteratively.

A Remark on Complexity. Our procedures show decidability, but do not provide complexity
results. For particular classes of languages, precise complexity bounds are known. For
example, CB Safety, CB Termination, and CB Boundedness for concurrent programs over

P. Baumann, M. Ganardi, R. Majumdar, R. S. Thinniyam, and G. Zetzsche 3:11

Algorithm 3 Checking CB Boundedness.
Input: Concurrent program P = (D, Σ, (La)a∈Σ, d0, m0) over C and context bound k ∈ N
run concurrently

begin /* (P1): Check if finite under-approximation is unbounded */
foreach n ∈ N do /* Explicitly find strings in L′

a|n */
foreach a ∈ Σ do

Xa ← ∅, L′
a|n ← La ∩ Σ≤n

D ∩Rk

foreach w ∈ Σ≤n
D do

if L′
a|n ∩ {w} ̸= ∅ then
Xa ← Xa ∪ {w}

if L′
a|n ∩ (Σ∗

D \Xa) = ∅ then
break

if Pn = (D, Σ, (Xa)a∈Σ, d0, m0) is unbounded then
return P unbounded.

begin /* (P2): Check if unbounded segment can be reached */
foreach prerun ρ of P, a ∈ Σ, w ∈ aDΣ∗(D ×DΣ∗)≤k−2(D ×D) ∪ {a} do

if ρ is a k-run that reaches c with w ∈ c, w = w′(d, d′) where d′ = c.d, and
pref(w−1La) ∩ Σ∗ is infinite then

return P unbounded.
if ρ is a k-run that reaches c with w ∈ c, w = a where d′ = c.d, and
pref((wd′)−1La) ∩ Σ∗ is infinite then

return P unbounded.

begin /* Find a bounded over-approximation */
foreach tuple (Aa)a∈Σ of regular languages Aa ⊆ (aΣ∗

D ∩Rk) do
if (La ∩Rk) ∩ (Σ∗

D \Aa) = ∅ for each a ∈ Σ then
if P′ = (D, Σ, (Aa)a∈Σ, d0, m0) is bounded then

return P bounded.

regular languages are all EXPSPACE-complete [28], and over context-free languages are
2EXPSPACE-complete [11, 14]. These bounds use explicit constructions of the downclosure.
In particular, our results show decidability of the same problems for concurrent programs
over higher-order recursion schemes. However, we do not get an explicit complexity bound.
While there is an explicit construction of the downclosure of these languages [53, 30, 20], a
precise complexity bound for the construction remains open.

5 Further Results

Other Decision Problems. While we focus on safety, termination, and boundedness, there
are decidability results for other properties and other classes of systems. The fair termination
problem is a variant of termination, where we require that the scheduler is fair. Intuitively, a
scheduler is fair if it schedules each partially executed thread that is infinitely often ready to
execute. Context-bounded fair termination is decidable (but non-elementary) for context-free
concurrent programs [15]. The problem is equivalent to Petri net reachability already for
asynchronous programs [28]. It is undecidable for indexed languages.

Context-bounded analysis has also been studied for non-regular specifications. Lal et
al. [38] showed decidability for context-bounded analysis for a subclass of weighted pushdown
systems. Recently, Baumann et al. [13] studied the context-bounded refinement problem for

ICALP 2023

3:12 Context-Bounded Analysis of Concurrent Programs

non-regular specifications. In their setting, there is a fixed number of recursive (context-free)
threads which also generate a language over a set of events. The specification is given by a
Dyck language. They show that checking containment in the specification is coNP-complete,
the same complexity as that of context-bounded safety verification, albeit requiring very
different techniques. An analogous result was shown for the setting of asynchronous programs,
but the complexity is EXPSPACE-complete [12].

Tools and Sequentialization. A practical motivation for studying context-bounded reach-
ability was that, empirically, many bugs in concurrent programs could be found with a small
number of context switches. This led to the development of several academic and industrial
tools, such as CHESS [44] and CSeq [27]. CHESS incorporated context bounding in an enu-
merative search. CSeq and several other tools implemented sequentialization: a preprocessing
step that compiles the original concurrent program into a sequential program that preserves
all k-context bounded runs, an idea going back to Lal and Reps [37]. Context-bounding was
integrated with other exploration heuristics such as abstract interpretation and partial-order
reduction [45, 21, 41].

Context-Bounded Analysis of Related Models. Context-bounding was studied for other
models of concurrency, such as parameterized state machines communicating through message-
passing over a given topology [18], concurrent queue systems [49], programs over weak memory
models [9, 1], abstract models such as valence automata [43], etc. In each case, the notion of
“context” has to be refined based on the model.

Similar Restrictions. The theory of context-bounding has inspired other natural bounds in
the analysis of concurrent systems. For example, a well-studied restricion is scope-bounding:
In a k-scope-bounded run, there can be an unbounded number of context-switches, but during
the time span of a single function call (i.e. between a push and its corresponding pop), there
can be at most k interruptions [52]. This covers more executions than context-bounding, which
comes at the cost of PSPACE-completeness of safety verification [52]. Scope-boundedness
has also been studied in terms of timed systems [4, 17], temporal-logic model-checking [6],
resulting formal languages [51], and as an under-approximation for infinite-state systems
beyond multi-pushdown systems [48].

Similarly, a k-phase-bounded run consists of k phases, in each of which at most one stack
is popped [50, 8]. Another variant is k-stage-bounded runs: They consist of k stages, each of
which allows only one thread to write to the shared memory, whereas the other threads can
only read from it [7]. Further restrictions are ordered multi-pushdown systems [19, 5] and
delay-bounded scheduling [26].

Powerful abstract notions of under-approximate analysis (which explain decidability
of several concrete restrictions described above) are available in the concepts of bounded
tree-width [39] and bounded split-width [3, 23, 22].

In conclusion, context-bounding is an elegant idea that has been very influential both in
practice and in theory. In practice, it has been incorporated in several tools for automatic
analysis of programs. Theoretically, it has led to a wealth of new models and analysis
algorithms. At this point, the theory has marched ahead of implementations: it is an
interesting open challenge to see how far the new algorithms can also lead to practical tools.

P. Baumann, M. Ganardi, R. Majumdar, R. S. Thinniyam, and G. Zetzsche 3:13

References
1 Parosh Aziz Abdulla, Mohamed Faouzi Atig, Ahmed Bouajjani, and Tuan Phong Ngo.

Context-bounded analysis for POWER. In Axel Legay and Tiziana Margaria, editors, Tools
and Algorithms for the Construction and Analysis of Systems – 23rd International Conference,
TACAS 2017, Held as Part of the European Joint Conferences on Theory and Practice of
Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings, Part II, volume 10206
of Lecture Notes in Computer Science, pages 56–74, 2017. doi:10.1007/978-3-662-54580-5_
4.

2 Alfred V. Aho. Indexed grammars – An extension of context-free grammars. J. ACM,
15(4):647–671, 1968. doi:10.1145/321479.321488.

3 C. Aiswarya, Paul Gastin, and K. Narayan Kumar. Verifying communicating multi-pushdown
systems via split-width. In Franck Cassez and Jean-François Raskin, editors, Automated
Technology for Verification and Analysis – 12th International Symposium, ATVA 2014, Sydney,
NSW, Australia, November 3–7, 2014, Proceedings, volume 8837 of Lecture Notes in Computer
Science, pages 1–17. Springer, 2014. doi:10.1007/978-3-319-11936-6_1.

4 S. Akshay, Paul Gastin, Shankara Narayanan Krishna, and Sparsa Roychowdhury. Revisiting
underapproximate reachability for multipushdown systems. In Tools and Algorithms for the
Construction and Analysis of Systems – 26th International Conference, TACAS 2020, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2020,
Dublin, Ireland, April 25-30, 2020, Proceedings, Part I, volume 12078 of Lecture Notes in
Computer Science, pages 387–404. Springer, 2020. doi:10.1007/978-3-030-45190-5_21.

5 Mohamed Faouzi Atig, Benedikt Bollig, and Peter Habermehl. Emptiness of ordered multi-
pushdown automata is 2ETIME-complete. Int. J. Found. Comput. Sci., 28(8):945–976, 2017.
doi:10.1142/S0129054117500332.

6 Mohamed Faouzi Atig, Ahmed Bouajjani, K. Narayan Kumar, and Prakash Saivasan.
Linear-time model-checking for multithreaded programs under scope-bounding. In Supratik
Chakraborty and Madhavan Mukund, editors, Automated Technology for Verification and
Analysis – 10th International Symposium, ATVA 2012, Thiruvananthapuram, India, October
3–6, 2012. Proceedings, volume 7561 of Lecture Notes in Computer Science, pages 152–166.
Springer, 2012. doi:10.1007/978-3-642-33386-6_13.

7 Mohamed Faouzi Atig, Ahmed Bouajjani, K. Narayan Kumar, and Prakash Saivasan. On
bounded reachability analysis of shared memory systems. In Venkatesh Raman and S. P.
Suresh, editors, 34th International Conference on Foundation of Software Technology and
Theoretical Computer Science, FSTTCS 2014, December 15–17, 2014, New Delhi, India,
volume 29 of LIPIcs, pages 611–623. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2014.
doi:10.4230/LIPIcs.FSTTCS.2014.611.

8 Mohamed Faouzi Atig, Ahmed Bouajjani, K. Narayan Kumar, and Prakash Saivasan. Parity
games on bounded phase multi-pushdown systems. In Amr El Abbadi and Benoît Garbinato,
editors, Networked Systems – 5th International Conference, NETYS 2017, Marrakech, Morocco,
May 17–19, 2017, Proceedings, volume 10299 of Lecture Notes in Computer Science, pages
272–287, 2017. doi:10.1007/978-3-319-59647-1_21.

9 Mohamed Faouzi Atig, Ahmed Bouajjani, and Gennaro Parlato. Context-bounded analysis of
TSO systems. In Saddek Bensalem, Yassine Lakhnech, and Axel Legay, editors, From Programs
to Systems. The Systems perspective in Computing – ETAPS Workshop, FPS 2014, in Honor
of Joseph Sifakis, Grenoble, France, April 6, 2014. Proceedings, volume 8415 of Lecture Notes
in Computer Science, pages 21–38. Springer, 2014. doi:10.1007/978-3-642-54848-2_2.

10 Mohamed Faouzi Atig, Ahmed Bouajjani, and Shaz Qadeer. Context-bounded analysis for
concurrent programs with dynamic creation of threads. In Proceedings of TACAS 2009, pages
107–123, 2009.

11 Mohamed Faouzi Atig, Ahmed Bouajjani, and Shaz Qadeer. Context-bounded analysis for
concurrent programs with dynamic creation of threads. Log. Methods Comput. Sci., 7(4), 2011.
doi:10.2168/LMCS-7(4:4)2011.

ICALP 2023

https://doi.org/10.1007/978-3-662-54580-5_4
https://doi.org/10.1007/978-3-662-54580-5_4
https://doi.org/10.1145/321479.321488
https://doi.org/10.1007/978-3-319-11936-6_1
https://doi.org/10.1007/978-3-030-45190-5_21
https://doi.org/10.1142/S0129054117500332
https://doi.org/10.1007/978-3-642-33386-6_13
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.611
https://doi.org/10.1007/978-3-319-59647-1_21
https://doi.org/10.1007/978-3-642-54848-2_2
https://doi.org/10.2168/LMCS-7(4:4)2011

3:14 Context-Bounded Analysis of Concurrent Programs

12 Pascal Baumann, Moses Ganardi, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg
Zetzsche. Checking refinement of asynchronous programs against context-free specifications.
In ICALP ’23, LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2023.

13 Pascal Baumann, Moses Ganardi, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg
Zetzsche. Context-bounded verification of context-free specifications. Proc. ACM Program.
Lang., 7(POPL):2141–2170, 2023. doi:10.1145/3571266.

14 Pascal Baumann, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche. The
complexity of bounded context switching with dynamic thread creation. In 47th International
Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8–11, 2020,
Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages 111:1–111:16. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ICALP.2020.111.

15 Pascal Baumann, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche. Context-
bounded verification of liveness properties for multithreaded shared-memory programs. Proc.
ACM Program. Lang., 5(POPL):1–31, 2021. doi:10.1145/3434325.

16 Jean Berstel. Transductions and context-free languages. Springer-Verlag, 1979.
17 Devendra Bhave, Shankara Narayanan Krishna, Ramchandra Phawade, and Ashutosh Trivedi.

On timed scope-bounded context-sensitive languages. In Developments in Language Theory –
23rd International Conference, DLT 2019, Warsaw, Poland, August 5–9, 2019, Proceedings,
volume 11647 of Lecture Notes in Computer Science, pages 168–181. Springer, 2019. doi:
10.1007/978-3-030-24886-4_12.

18 Benedikt Bollig, Paul Gastin, and Jana Schubert. Parameterized verification of communicating
automata under context bounds. In Joël Ouaknine, Igor Potapov, and James Worrell, editors,
Reachability Problems – 8th International Workshop, RP 2014, Oxford, UK, September 22–24,
2014. Proceedings, volume 8762 of Lecture Notes in Computer Science, pages 45–57. Springer,
2014. doi:10.1007/978-3-319-11439-2_4.

19 Luca Breveglieri, Alessandra Cherubini, Claudio Citrini, and Stefano Crespi-Reghizzi. Multi-
push-down languages and grammars. Int. J. Found. Comput. Sci., 7(3):253–292, 1996. doi:
10.1142/S0129054196000191.

20 Lorenzo Clemente, Paweł Parys, Sylvain Salvati, and Igor Walukiewicz. The diagonal problem
for higher-order recursion schemes is decidable. In Proceedings of the 31st Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS ’16, New York, NY, USA, July 5–8, 2016,
pages 96–105. ACM, 2016. doi:10.1145/2933575.2934527.

21 Katherine E. Coons, Madan Musuvathi, and Kathryn S. McKinley. Bounded partial-order
reduction. In Antony L. Hosking, Patrick Th. Eugster, and Cristina V. Lopes, editors, Proceed-
ings of the 2013 ACM SIGPLAN International Conference on Object Oriented Programming
Systems Languages & Applications, OOPSLA 2013, part of SPLASH 2013, Indianapolis, IN,
USA, October 26–31, 2013, pages 833–848. ACM, 2013. doi:10.1145/2509136.2509556.

22 Aiswarya Cyriac. Verification of communicating recursive programs via split-width. (Vérification
de programmes récursifs et communicants via split-width). PhD thesis, École normale supérieure
de Cachan, France, 2014. URL: https://tel.archives-ouvertes.fr/tel-01015561.

23 Aiswarya Cyriac, Paul Gastin, and K. Narayan Kumar. MSO decidability of multi-pushdown
systems via split-width. In Maciej Koutny and Irek Ulidowski, editors, CONCUR 2012 –
Concurrency Theory – 23rd International Conference, CONCUR 2012, Newcastle upon Tyne,
UK, September 4–7, 2012. Proceedings, volume 7454 of Lecture Notes in Computer Science,
pages 547–561. Springer, 2012. doi:10.1007/978-3-642-32940-1_38.

24 Werner Damm. The IO-and OI-hierarchies. Theoretical Computer Science, 20(2):95–207, 1982.
25 Werner Damm and Andreas Goerdt. An automata-theoretical characterization of the OI-

hierarchy. Information and Control, 71(1):1–32, 1986.
26 Michael Emmi, Shaz Qadeer, and Zvonimir Rakamaric. Delay-bounded scheduling. In Thomas

Ball and Mooly Sagiv, editors, Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2011, Austin, TX, USA, January 26–28,
2011, pages 411–422. ACM, 2011. doi:10.1145/1926385.1926432.

https://doi.org/10.1145/3571266
https://doi.org/10.4230/LIPIcs.ICALP.2020.111
https://doi.org/10.1145/3434325
https://doi.org/10.1007/978-3-030-24886-4_12
https://doi.org/10.1007/978-3-030-24886-4_12
https://doi.org/10.1007/978-3-319-11439-2_4
https://doi.org/10.1142/S0129054196000191
https://doi.org/10.1142/S0129054196000191
https://doi.org/10.1145/2933575.2934527
https://doi.org/10.1145/2509136.2509556
https://tel.archives-ouvertes.fr/tel-01015561
https://doi.org/10.1007/978-3-642-32940-1_38
https://doi.org/10.1145/1926385.1926432

P. Baumann, M. Ganardi, R. Majumdar, R. S. Thinniyam, and G. Zetzsche 3:15

27 Bernd Fischer, Omar Inverso, and Gennaro Parlato. Cseq: A sequentialization tool for
C – (competition contribution). In Nir Piterman and Scott A. Smolka, editors, Tools and
Algorithms for the Construction and Analysis of Systems – 19th International Conference,
TACAS 2013, volume 7795 of Lecture Notes in Computer Science, pages 616–618. Springer,
2013. doi:10.1007/978-3-642-36742-7_46.

28 Pierre Ganty and Rupak Majumdar. Algorithmic verification of asynchronous programs. ACM
Transactions on Programming Languages and Systems (TOPLAS), 34(1):6, 2012.

29 Sheila A. Greibach. Remarks on blind and partially blind one-way multicounter machines.
Theoretical Computer Science, 7(3):311–324, 1978. doi:10.1016/0304-3975(78)90020-8.

30 Matthew Hague, Jonathan Kochems, and C.-H. Luke Ong. Unboundedness and downward clos-
ures of higher-order pushdown automata. In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2016, St. Petersburg,
FL, USA, January 20–22, 2016, pages 151–163. ACM, 2016. doi:10.1145/2837614.2837627.

31 Matthew Hague, Andrzej S. Murawski, C.-H. Luke Ong, and Olivier Serre. Collapsible
pushdown automata and recursion schemes. In Proceedings of the Twenty-Third Annual IEEE
Symposium on Logic in Computer Science, LICS 2008, 24–27 June 2008, Pittsburgh, PA, USA,
pages 452–461, 2008. doi:10.1109/LICS.2008.34.

32 Leonard H Haines. On free monoids partially ordered by embedding. Journal of Combinatorial
Theory, 6(1):94–98, 1969.

33 John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to automata theory,
languages, and computation, 3rd Edition. Pearson international edition. Addison-Wesley, 2007.

34 Omar Inverso, Ermenegildo Tomasco, Bernd Fischer, Salvatore La Torre, and Gennaro Parlato.
Bounded verification of multi-threaded programs via lazy sequentialization. ACM Trans.
Program. Lang. Syst., 44(1):1:1–1:50, 2022. doi:10.1145/3478536.

35 Matthias Jantzen. On the hierarchy of Petri net languages. RAIRO – Theoretical Informatics
and Applications – Informatique Théorique et Applications, 13(1):19–30, 1979. URL: http:
//www.numdam.org/item?id=ITA_1979__13_1_19_0.

36 Salvatore La Torre, P. Madhusudan, and Gennaro Parlato. Reducing context-bounded
concurrent reachability to sequential reachability. In Ahmed Bouajjani and Oded Maler,
editors, Computer Aided Verification, 21st International Conference, CAV 2009, Grenoble,
France, June 26 – July 2, 2009. Proceedings, volume 5643 of Lecture Notes in Computer
Science, pages 477–492. Springer, 2009. doi:10.1007/978-3-642-02658-4_36.

37 Akash Lal and Thomas W. Reps. Reducing concurrent analysis under a context bound
to sequential analysis. Formal Methods Syst. Des., 35(1):73–97, 2009. doi:10.1007/
s10703-009-0078-9.

38 Akash Lal, Tayssir Touili, Nicholas Kidd, and Thomas W. Reps. Interprocedural analysis
of concurrent programs under a context bound. In C. R. Ramakrishnan and Jakob Rehof,
editors, Tools and Algorithms for the Construction and Analysis of Systems, 14th International
Conference, TACAS 2008, volume 4963 of Lecture Notes in Computer Science, pages 282–298.
Springer, 2008. doi:10.1007/978-3-540-78800-3_20.

39 P. Madhusudan and Gennaro Parlato. The tree width of auxiliary storage. In Thomas Ball
and Mooly Sagiv, editors, Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL 2011, Austin, TX, USA, January 26–28, 2011,
pages 283–294. ACM, 2011. doi:10.1145/1926385.1926419.

40 Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche. General decidability
results for asynchronous shared-memory programs: Higher-order and beyond. Log. Methods
Comput. Sci., 18(4), 2022. doi:10.46298/lmcs-18(4:2)2022.

41 Iason Marmanis, Michalis Kokologiannakis, and Viktor Vafeiadis. Reconciling preemption
bounding with DPOR. In Sriram Sankaranarayanan and Natasha Sharygina, editors, Tools
and Algorithms for the Construction and Analysis of Systems – 29th International Conference,
TACAS 2023, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2022, Paris, France, April 22–27, 2023, Proceedings, Part I, volume
13993 of Lecture Notes in Computer Science, pages 85–104. Springer, 2023. doi:10.1007/
978-3-031-30823-9_5.

ICALP 2023

https://doi.org/10.1007/978-3-642-36742-7_46
https://doi.org/10.1016/0304-3975(78)90020-8
https://doi.org/10.1145/2837614.2837627
https://doi.org/10.1109/LICS.2008.34
https://doi.org/10.1145/3478536
http://www.numdam.org/item?id=ITA_1979__13_1_19_0
http://www.numdam.org/item?id=ITA_1979__13_1_19_0
https://doi.org/10.1007/978-3-642-02658-4_36
https://doi.org/10.1007/s10703-009-0078-9
https://doi.org/10.1007/s10703-009-0078-9
https://doi.org/10.1007/978-3-540-78800-3_20
https://doi.org/10.1145/1926385.1926419
https://doi.org/10.46298/lmcs-18(4:2)2022
https://doi.org/10.1007/978-3-031-30823-9_5
https://doi.org/10.1007/978-3-031-30823-9_5

3:16 Context-Bounded Analysis of Concurrent Programs

42 AN Maslov. The hierarchy of indexed languages of an arbitrary level. Doklady Akademii Nauk,
217(5):1013–1016, 1974.

43 Roland Meyer, Sebastian Muskalla, and Georg Zetzsche. Bounded context switching for
valence systems. In Sven Schewe and Lijun Zhang, editors, 29th International Conference
on Concurrency Theory, CONCUR 2018, September 4–7, 2018, Beijing, China, volume
118 of LIPIcs, pages 12:1–12:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/LIPIcs.CONCUR.2018.12.

44 Madanlal Musuvathi and Shaz Qadeer. Iterative context bounding for systematic testing
of multithreaded programs. In Proceedings of the ACM SIGPLAN 2007 Conference on
Programming Language Design and Implementation, PLDI 2007, San Diego, CA, USA, June
10–13, 2007, pages 446–455. ACM, 2007. doi:10.1145/1250734.1250785.

45 Truc L. Nguyen, Bernd Fischer, Salvatore La Torre, and Gennaro Parlato. Concurrent
program verification with lazy sequentialization and interval analysis. In Amr El Abbadi
and Benoît Garbinato, editors, Networked Systems – 5th International Conference, NETYS
2017, Marrakech, Morocco, May 17–19, 2017, Proceedings, volume 10299 of Lecture Notes in
Computer Science, pages 255–271, 2017. doi:10.1007/978-3-319-59647-1_20.

46 Shaz Qadeer and Jakob Rehof. Context-bounded model checking of concurrent software. In
Nicolas Halbwachs and Lenore D. Zuck, editors, Tools and Algorithms for the Construction
and Analysis of Systems, 11th International Conference, TACAS 2005, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS 2005, Edinburgh,
UK, April 4-8, 2005, Proceedings, volume 3440 of Lecture Notes in Computer Science, pages
93–107. Springer, 2005. doi:10.1007/978-3-540-31980-1_7.

47 Koushik Sen and Mahesh Viswanathan. Model checking multithreaded programs with asyn-
chronous atomic methods. In CAV ’06: Proc. 18th Int. Conf. on Computer Aided Verification,
volume 4144 of LNCS, pages 300–314. Springer, 2006.

48 Aneesh K. Shetty, Shankara Narayanan Krishna, and Georg Zetzsche. Scope-bounded reach-
ability in valence systems. In Serge Haddad and Daniele Varacca, editors, 32nd International
Conference on Concurrency Theory, CONCUR 2021, August 24–27, 2021, Virtual Conference,
volume 203 of LIPIcs, pages 29:1–29:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPIcs.CONCUR.2021.29.

49 Salvatore La Torre, P. Madhusudan, and Gennaro Parlato. Context-bounded analysis of
concurrent queue systems. In C. R. Ramakrishnan and Jakob Rehof, editors, Tools and
Algorithms for the Construction and Analysis of Systems, 14th International Conference,
TACAS 2008, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2008, Budapest, Hungary, March 29 – April 6, 2008. Proceedings, volume
4963 of Lecture Notes in Computer Science, pages 299–314. Springer, 2008. doi:10.1007/
978-3-540-78800-3_21.

50 Salvatore La Torre, Parthasarathy Madhusudan, and Gennaro Parlato. A robust class of
context-sensitive languages. In 22nd IEEE Symposium on Logic in Computer Science (LICS
2007), 10–12 July 2007, Wroclaw, Poland, Proceedings, pages 161–170. IEEE Computer Society,
2007. doi:10.1109/LICS.2007.9.

51 Salvatore La Torre, Margherita Napoli, and Gennaro Parlato. Scope-bounded pushdown lan-
guages. Int. J. Found. Comput. Sci., 27(2):215–234, 2016. doi:10.1142/S0129054116400074.

52 Salvatore La Torre, Margherita Napoli, and Gennaro Parlato. Reachability of scope-bounded
multistack pushdown systems. Inf. Comput., 275:104588, 2020. doi:10.1016/j.ic.2020.
104588.

53 Georg Zetzsche. An approach to computing downward closures. In ICALP 2015, volume 9135,
pages 440–451. Springer, 2015. Full version: arXiv:1503.01068.

https://doi.org/10.4230/LIPIcs.CONCUR.2018.12
https://doi.org/10.1145/1250734.1250785
https://doi.org/10.1007/978-3-319-59647-1_20
https://doi.org/10.1007/978-3-540-31980-1_7
https://doi.org/10.4230/LIPIcs.CONCUR.2021.29
https://doi.org/10.1007/978-3-540-78800-3_21
https://doi.org/10.1007/978-3-540-78800-3_21
https://doi.org/10.1109/LICS.2007.9
https://doi.org/10.1142/S0129054116400074
https://doi.org/10.1016/j.ic.2020.104588
https://doi.org/10.1016/j.ic.2020.104588
https://arxiv.org/abs/1503.01068

Quantum Codes, Local Testability and Interactive
Proofs: State of the Art and Open Questions
Thomas Vidick #

Weizmann Institute of Science, Rehovot, Israel
California Institute of Technology, Pasadena, CA, USA

Abstract
The study of multiprover interactive proof systems, of locally testable codes, and of property testing
are deeply linked, conceptually if not formally, through their role in the proof of the PCP theorem in
complexity theory. Recently there has been substantial progress on an analogous research programme
in quantum complexity theory. Two years ago we characterized the power of multiprover interactive
proof systems with provers sharing entanglement, showing that MIP∗ =RE [4], a hugely surprising
increase in power from the classical result MIP=NEXP of [2]. The following year Panteleev and
Kalachev gave the first construction of quantum low-density parity-check codes (QLDPC) [5], thus
marking a major step towards the possible realization of good quantum locally testable codes – the
classical analogue of which was only constructed quite recently [3]. And finally, less than a year ago
Anshu, Breuckmann and Nirkhe used facts evidenced in the construction of good decoders for the
new QLDPC codes to resolve the NLTS conjecture [1], widely viewed as a crucial step on the way to
a possible quantum PCP theorem.

In the talk I will survey these results, making an effort to motivate and present them to the
non-expert. I will explain the connections between them and point to where, in my opinion, our
understanding is currently lacking. Along the way I will highlight a number of open problems whose
resolution could lead to further progress on one of the most important research programmes in
quantum complexity theory.

2012 ACM Subject Classification Theory of computation → Quantum complexity theory

Keywords and phrases quantum interactive proofs, quantum codes

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.4

Category Invited Talk

References
1 Anurag Anshu, Nikolas Breuckmann, and Chinmay Nirkhe. NLTS Hamiltonians from good

quantum codes. arXiv preprint, 2022. arXiv:2206.13228.
2 László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential time has

two-prover interactive protocols. Computational complexity, 1:3–40, 1991.
3 Irit Dinur, Shai Evra, Ron Livne, Alexander Lubotzky, and Shahar Mozes. Locally testable

codes with constant rate, distance, and locality. In Proceedings of the 54th Annual ACM
SIGACT Symposium on Theory of Computing, pages 357–374, 2022.

4 Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, and Henry Yuen. MIP∗=RE.
arxiv e-prints, page. arXiv preprint, 2020. arXiv:2001.04383.

5 Pavel Panteleev and Gleb Kalachev. Asymptotically good quantum and locally testable
classical LDPC codes. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory
of Computing, pages 375–388, 2022.

EA
T
C
S

© Thomas Vidick;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 4; pp. 4:1–4:1

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:thomas.vidick@weizmann.ac.il
https://doi.org/10.4230/LIPIcs.ICALP.2023.4
https://arxiv.org/abs/2206.13228
https://arxiv.org/abs/2001.04383
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

The Skolem Landscape
James Worrell #

Department of Computer Science, University of Oxford, UK

Abstract
The Skolem Problem asks to determine whether a given integer linear recurrence sequence (LRS)
has a zero term. This decision problem arises within a number of different topics in computer
science, including loop termination, weighted automata, formal power series, and probabilistic model
checking, among many other examples. Decidability of the problem is notoriously open, despite
having been the subject of sustained interest over several decades [2]. More specifically, the problem
is known to be decidable for recurrences of order at most 4 – a result obtained some 40 years
ago [4, 5] – while decidability is open already for recurrences of order 5.

In this talk we take a wide-ranging view of the Skolem Problem. We survey its history and
context, starting with the theorem of Skolem-Mahler-Lech characterising the set of zeros of a LRS
over fields of characteristic zero. Here we explain the non-effective nature of the existing proofs
of the theorem. Among modern developments, we overview versions of the Skolem-Mahler-Lech
theorem for non-linear recurrences and for fields of non-zero characteristic. We also describe two
recent directions of progress toward showing decidability of the Skolem Problem subject to classical
number theoretic conjectures.

The first new development concerns a recent algorithm [1] that decides the problem on the class
of simple LRS (those with simple characteristic roots) subject to two classical conjectures about
the exponential function. The algorithm is self-certifying: its output comes with a certificate of
correctness that can be checked unconditionally. The two conjectures alluded to above are required
for the proof of termination of the algorithm.

A second new development concerns the notion of Universal Skolem Set [3]: a recursive set
S of positive integers such that it is decidable whether a given non-degenerate linear recurrence
sequence has a zero in S. Decidability of the Skolem Problem is equivalent to the assertion that N is
a Universal Skolem Set. In lieu of this one can ask whether there exists a Universal Skolem Set of
density one. We will present a recent a construction of a Universal Skolem Set that has positive
density unconditionally and has density one subject to the Bateman-Horn conjecture in number
theory. The latter is a far-reaching generalisation of Hardy and Littlewood’s twin primes conjecture.

2012 ACM Subject Classification Mathematics of computing → Discrete mathematics; Computing
methodologies → Algebraic algorithms

Keywords and phrases Automata, Formal Languages, Linear Recurrence Sequences

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.5

Category Invited Talk

Funding James Worrell: Supported by UKRI Frontier Research Grant EP/X033813/1.

References
1 Y. Bilu, F. Luca, J. Nieuwveld, J. Ouaknine, D. Purser, and J. Worrell. Skolem meets Schanuel.

In 47th International Symposium on Mathematical Foundations of Computer Science, volume
241 of LIPIcs, pages 20:1–20:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

2 V. Halava, T. Harju, M. Hirvensalo, and J. Karhumäki. Skolem’s problem – On the border
between decidability and undecidability. Technical report, Turku Centre for Computer Science,
2005.

3 F. Luca, J. Ouaknine, and J. Worrell. A Universal Skolem Set of positive lower density. In
47th International Symposium on Mathematical Foundations of Computer Science, volume 241
of LIPIcs, pages 73:1–73:12. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

EA
T
C
S

© James Worrell;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 5; pp. 5:1–5:2

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jbw@cs.ox.ac.uk
https://doi.org/10.4230/LIPIcs.ICALP.2023.5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

5:2 The Skolem Landscape

4 M. Mignotte, T. Shorey, and R. Tijdeman. The distance between terms of an algebraic
recurrence sequence. Journal für die Reine und Angewandte Mathematik, pages 63–76, 1984.

5 N. Vereshchagin. Occurrence of zero in a linear recursive sequence. Mathematical notes of the
Academy of Sciences of the USSR, 38(2):609–615, August 1985.

Optimal Decremental Connectivity in Non-Sparse
Graphs
Anders Aamand #

MIT, Cambridge, MA, USA

Adam Karczmarz #

University of Warsaw, Poland
IDEAS NCBR, Warsaw, Poland

Jakub Łącki #

Google Research, New York, NY,USA

Nikos Parotsidis #

Google Research, Zürich, Switzerland

Peter M. R. Rasmussen #

BARC, University of Copenhagen, Denmark

Mikkel Thorup #

BARC, University of Copenhagen, Denmark

Abstract
We present a dynamic algorithm for maintaining the connected and 2-edge-connected components
in an undirected graph subject to edge deletions. The algorithm is Monte-Carlo randomized and
processes any sequence of edge deletions in O(m + n poly log n) total time. Interspersed with the
deletions, it can answer queries whether any two given vertices currently belong to the same (2-edge-
)connected component in constant time. Our result is based on a general Monte-Carlo randomized
reduction from decremental c-edge-connectivity to a variant of fully-dynamic c-edge-connectivity on
a sparse graph.

For non-sparse graphs with Ω(n poly log n) edges, our connectivity and 2-edge-connectivity
algorithms handle all deletions in optimal linear total time, using existing algorithms for the
respective fully-dynamic problems. This improves upon an O(m log(n2/m) + n poly log n)-time
algorithm of Thorup [J.Alg. 1999], which runs in linear time only for graphs with Ω(n2) edges.

Our constant amortized cost for edge deletions in decremental connectivity in non-sparse graphs
should be contrasted with an Ω(log n/ log log n) worst-case time lower bound in the decremental
setting [Alstrup, Husfeldt, and Rauhe FOCS’98] as well as an Ω(log n) amortized time lower-bound
in the fully-dynamic setting [Patrascu and Demaine STOC’04].

2012 ACM Subject Classification Theory of computation → Dynamic graph algorithms; Mathematics
of computing → Paths and connectivity problems; Mathematics of computing → Graph algorithms

Keywords and phrases decremental connectivity, dynamic connectivity

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.6

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2111.09376

Funding Anders Aamand: Supported by Thorup’s VILLUM Investigator Grant 16582 and by a
DFF-International Postdoc Grant 0164-00022B from the Independent Research Fund Denmark.
Adam Karczmarz : Partially supported by the ERC CoG grant TUgbOAT no 772346.
Peter M. R. Rasmussen: Supported by Thorup’s VILLUM Investigator Grant 16582.
Mikkel Thorup: Supported by Investigator Grant 16582, Basic Algorithms Research Copenhagen
(BARC), from the VILLUM Foundation.

EA
T
C
S

© Anders Aamand, Adam Karczmarz, Jakub Łącki, Nikos Parotsidis,
Peter M. R. Rasmussen, and Mikkel Thorup;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 6; pp. 6:1–6:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aamand@mit.edu
mailto:a.karczmarz@mimuw.edu.pl
https://orcid.org/0000-0002-2693-8713
mailto:jlacki@google.com
https://orcid.org/0000-0001-9347-0041
mailto:nikosp@google.com
https://orcid.org/0000-0003-3888-7391
mailto:pmrrasmussen@icloud.com
https://orcid.org/0000-0001-9219-8410
mailto:mikkel2thorup@gmail.com
https://orcid.org/0000-0001-5237-1709
https://doi.org/10.4230/LIPIcs.ICALP.2023.6
https://arxiv.org/abs/2111.09376
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

6:2 Optimal Decremental Connectivity in Non-Sparse Graphs

1 Introduction

In this paper, we present Monte Carlo randomized decremental dynamic algorithms for
maintaining the connected and 2-edge-connected components in an undirected graph subject
to edge deletions. Starting from a graph with n vertices and m edges, the algorithm can
process any sequence of edge deletions in O(m + n polylog n) total time while answering
queries whether a pair of vertices is currently in the same (2-edge-)connected component.
Each query is answered in constant time. The algorithm for decremental 2-edge-connectivity
additionally reports all bridges as they appear.

Putting our results in perspective, we say a graph is non-sparse if it has n logω(1) n edges.
Large areas of algorithmic research are devoted to non-sparse graphs, e.g., the generic goal
of sparsifying graphs to O(n polylog n) edges [6], or semi-streaming algorithms that aim to
sketch graphs using O(n polylog n) space [11]. Our result states that for dynamic connectivity
and 2-edge-connectivity, we can get down to amortized constant time per edge deletion if the
initial input graph is non-sparse. Prior to this work, such a result was only known in the
case where the initial input graph is very dense with Ω(n2) edges, and in the case of some
special classes of sparse graphs.

Achieving constant update and query time is generally the ideal target in data structures.
What makes amortized constant time for decremental connectivity particularly interesting
is that the most closely related problems have near-logarithmic cell-probe lower bounds.
This concerns the problem of getting worst-case time bounds or getting a fully-dynamic
algorithm (supporting both insertions and deletions of edges). The decremental setting and
the fact that we allow for amortization is therefore just enough assumptions to barely push
us into the world of constant update and query time (removing any of these assumptions, the
polylogarithmic lower bounds would kick in) and as such, our result draws a fine line between
the possible and the impossible. We shall discuss this further with precise references in
Section 1.1. It is worth noting that for some dynamic graph problems related to maintaining
(approximate) maximum matchings and colorings, constant amortized update bounds have
been shown, see, e.g., [7, 20, 21, 37].

Our algorithms are Monte Carlo randomized and answer all queries correctly with high
probability1. We note that since the correct answer to each query is uniquely determined from
the input, the algorithms work against adaptive adversaries, that is, each deleted edge may
depend on previous answers to queries and (in the case of decremental 2-edge-connectivity)
on the alleged bridges reported by the algorithm2

Furthermore, our algorithms offer a self-check capability. At the end, after all updates and
queries have been processed online, each algorithm can deterministically check if it might have
made a mistake. If the self-check passes, it is guaranteed that no incorrect answer was given.
Otherwise, the algorithm may have made a mistake. Given the self-check is deterministic,
the probability that the self-check passes following the execution of the algorithm only

1 We define high probability as probability 1 − O(n−γ) for any given γ.
2 To be precise, with unique correct answers, for any adaptive adversary Aad, there is a non-adaptive

adversary Anon-ad which provides the same sequence of edge deletions up to the first point in time
where the algorithm potentially reports an incorrect answer. Anon-ad is simply defined to provide the
same edge-deletions as Aad would conditioned on it receiving the unique correct answers to every query.
Intuitively, the adaptivity of the adversary only becomes relevant once the algorithm has already made
a mistake. Illustrating the issue of non-uniqueness in the case of decremental connectivity, suppose
we augmented our algorithm to report a (non-unique) path between queried pairs of vertices in the
same component. The choice of path could reveal information about the random bits employed by our
algorithm and this could be very problematic if Aad decided to delete the reported path edges.

A. Aamand et al. 6:3

depends on the correctness of the algorithm execution. However, as we show in the following,
the self-check passes with high probability. This feature implies that we can obtain Las
Vegas algorithms for certain non-dynamic problems whose solutions employ decremental
(2-edge-)connectivity algorithms as subroutines: we simply repeat trying to solve the static
problem from scratch, each time with new random bits, until the final self-check is passed.
With high probability, we are done already after the first round. A nice concrete example
is the algorithm of Gabow, Kaplan, and Tarjan [15] for the static problem of deciding if a
graph has a unique perfect matching. The algorithm uses a decremental 2-edge-connectivity
algorithm as a subroutine. With our decremental 2-edge-connectivity algorithm, repeating
until the self-check is passed, we obtain a Las Vegas algorithm for the unique perfect matching
problem that is always correct, and which terminates in O(m + n polylog n) time with high
probability.

The tradition of looking for linear time algorithms for non-sparse graphs goes back at
least to Fibonacci heaps, which can be used for solving single source shortest paths in
O(m + n log n) time [14]. Our results show that another fundamental graph problem can be
solved in linear time in the non-sparse case.

The previous best time bounds for the decremental connectivity and 2-edge-connectivity
problems were provided by Thorup [39]. His algorithms run in O(m log(n2/m) + n polylog n)
total time. This is amortized constant time per edge deletion only for very dense graphs
starting with Ω(n2) edges. For graphs with O(n1.99) edges, this is O(log n) amortized time
per edge deletion.

Both our algorithm and the previous one by Thorup are based on a general reduction from
decremental c-edge-connectivity to fully-dynamic c-edge-connectivity on a sparse c-certificate
graph with Õ(cn) updates.

The contribution of this paper is a new type of sparse c-certificate that is much more
efficient to maintain during edge deletions, reducing amortized time per deletion from
O(log(n2/m)) to the optimal O(1). We hope that this new sparse c-certificate will inspire
other applications. We shall discuss it further in Section 2.

It should be noted that [39] used Las Vegas randomization, that is, correctness was
guaranteed, but the running time bound only held with high probability. Our algorithms are
Monte Carlo randomized, but offer the final self-check. Another difference is that our new
algorithms need only a polylogarithmic number of random bits, whereas the ones from [39]
used Θ(m) random bits.

We will now give a more detailed discussion of our results in the context of related work.

1.1 Connectivity

Dynamic connectivity is the most fundamental dynamic graph problem. The fully dynamic
version has been extensively studied [8, 9, 12, 22, 23, 26, 28, 31, 34, 35, 36, 40, 42, 43] from
both the lower and upper bound perspective, even though close to optimal amortized update
bounds have been known since the 90s [22, 23, 40]. Currently, the best known amortized
update time bounds are O(log2 n/ log log n) deterministic [43] and O(log n · (log log n)2)
expected time [26].

Note that Thorup’s O(log(n2/m)) bound for decremental connectivity is essentially only
a (log log n)2 factor better than the latter of these bounds for fully-dynamic connectivity,
while our new bound brings the decremental cost down to a constant (for non-sparse graphs).
Getting down to a constant is particularly interesting when we compare with related lower
bounds as discussed below.

ICALP 2023

6:4 Optimal Decremental Connectivity in Non-Sparse Graphs

Connectivity Lower Bounds. Our result implies that decremental connectivity is provably
easier than fully-dynamic connectivity for a wide range of graph densities. Specifically, let
tu be the update time of a fully dynamic connectivity algorithm and let tq be its query
time. Pǎtraşcu and Demaine [35] showed a lower bound of Ω(log n) on max(tu, tq) in
the cell-probe model. Pǎtraşcu and Thorup [36] also showed that tu = o(log n) implies
tq = Ω(n1−o(1)). These lower bounds hold for all graph densities and allow for both
amortization and randomization. As a result, no fully-dynamic connectivity algorithm can
answer connectivity queries in constant time and have an amortized update time of o(log n).

In sharp contrast, assuming that m = Ω(n poly log n) edges are deleted, our algorithm
shows that one can solve decremental connectivity handling both queries and updates in
constant amortized time.

We note that such a result is possible only because we allow for amortization, as any
decremental connectivity algorithm with worst-case update time O(polylog n) must have
worst-case query time Ω

(
log n

log log n

)
[3]. This lower bound holds even for trees supporting

restricted connectivity queries of the form “are u and v connected?” for a fixed “root” u.
This lower bound also holds for dense graphs, as we can always add a large static clique to
the problem.

An optimal incremental connectivity algorithm has been known for over 40 years. Namely,
to handle m ≥ n edge insertion and q connectivity queries, one can use the union-find
data structure [38] with n − 1 unions and 2(m + q) finds. The total running time is
Θ((m+q)α((m+q), n)), which is linear for all but very sparse graphs (since α(Ω(n log n), n) =
O(1)). It was later shown that this running time is optimal for incremental connectivity [13].
Interestingly, incremental connectivity can be solved in optimal linear time in the case of
forests provided that the final shape of the forest is known in advance [16].

Similarly to the decremental case, one cannot hope to obtain an analogous result with a
worst-case update time in the incremental setting: Pǎtraşcu and Thorup [36] showed that
any incremental connectivity data structure with o

(
log n

log log n

)
worst-case update time must

have worst-case Ω(n1−o(1)) query time in the cell-probe model.

Other cases of optimal decremental connectivity. There is much previous work on cases
where decremental connectivity can be supported in O(m) total time. Alstrup, Secher,
and Spork [5] showed that decremental connectivity can be solved in optimal O(m) total
time on forests, answering queries in O(1) time.3 This was later extended to other classes of
sparse graphs: planar graphs [32], and minor-free graphs [24]. All these special graph classes
are sparse with m = O(n) edges.

For general graphs, we only have the previously mentioned work by Thorup [39], yielding
a total running time of O(m) for very dense graphs with m = Ω(n2) edges. We now obtain
the same linear time bound for all non-sparse graphs with m = Ω(n poly log n) edges.

1.2 General reduction for c-edge-connectivity
Our algorithm for decremental connectivity is based on a general randomized reduction from
decremental c-edge-connectivity (assuming all m edges are deleted) to fully-dynamic c-edge-
connectivity on a sparse graph with Õ(cn) updates. The reduction has a polylogarithmic
cost per vertex as well as a constant cost per edge. The previous decremental connectivity

3 The general word encoding trick behind [5, 16] that brings the update time to amortized constant has
been even shown to have practical relevance [4].

A. Aamand et al. 6:5

algorithm of Thorup [39] was also based on such a general reduction, but the cost per edge
was O(log(n2/m)) which is O(1) only for very dense graphs with m = Ω(n2). Below we will
describe the format of the reductions in more detail.

Because there are different notions of c-edge-connectivity, we first need to clarify our
definitions. We say that two vertices u, v are c-edge-connected iff there exist c edge-disjoint
paths between u and v in G. It is known that c-edge-connectivity is an equivalence relation;
we call its classes the c-edge-connected classes. However, for c ≥ 3, a c-edge-connected class
may induce a subgraph of G which is not connected, so it also makes sense to consider
c-edge-connected components, i.e., the maximal c-edge-connected induced subgraphs of G.4 It
is important to note that the c-edge-connected components and the c-edge-connected classes
are uniquely defined and both induce a natural partition of the vertices of the underlying
graph. Moreover, each c-edge-connected component of G is a subset of some c-edge-connected
class of G. For c = 1, 2, the c-edge-connected classes are c-edge-connected, so the two notions
coincide. To illustrate the difference, let us fix c ≥ 3 and consider a graph with c + 2 vertices
vs, vt, v1, . . . , vc and edges {vs, vt} × {v1, . . . , vc}; while all c-edge-connected components in
this graph are singletons, there is one c-edge-connected class, which is not a singleton, namely
{vs, vt}.

We define a c-certificate of G to be a subgraph H of G that contains all edges not
in c-edge-connected components, and also contains a c-edge-connected subgraph of each
c-edge-connected component. Both Thorup’s and our reduction maintains a c-certificate H

of G. Then, for any c′ ≤ c, we have that the c′-edge-connected equivalence classes and the
c′-edge-connected components are the same in G and H. As the edges from G are deleted,
we maintain a c-certificate with Õ(cn) edges undergoing only Õ(cn) edge insertions and
deletions in total.

The (uniquely defined) c-edge-connected components of a graph can be found using the
following algorithm: while the graph contains a cut of size at most c− 1, remove all edges
of this cut. For the reductions, we need algorithms that can help us in this process. We
therefore define the fully dynamic c-edge-cut problem as follows. Suppose a graph G is subject
to edge insertions and/or deletions. Then, a fully dynamic c-edge-cut data structure should
report, after each update, some edge e that belongs to some cut of size less than c. A typical
application of such a data structure is to repeatedly remove such edges e belonging to cuts
of size less than c, which splits G into its c-edge-connected components. For each c ≥ 1,
denote by Tc(n) the amortized time needed by the data structure to find an edge belonging
to a cut of size less than c. For example, for c = 1 we have T1(n) = O(1) since we do not
have to maintain anything. For c = 2, the data structure is required to maintain some bridge
of G and it is known that T2(n) = O((log n · log log n)2) [25]. For c ≥ 3, in turn, we have
Tc(n) = O(n1/2 poly (c)) [41].

Given a fully dynamic c-edge-cut data structure, whose update time for a graph on n

vertices is Tc(n), Thorup’s [39] reduction maintains, in O(m log(n2/m)) + Õ(c · n · Tc(n))
total time, a c-certificate H of the decremental graph G starting with n vertices and m edges.
The certificate undergoes only Õ(cn) edge insertions and deletions throughout any sequence
of deletions issued to G. We reduce here the total time to O(m) + Õ(c · n · Tc(n)).

Combining our reduction with the polylogarithmic fully-dynamic connectivity and
2-edge-connectivity algorithm of Holm, de Lichtenberg, and Thorup [23], we can now solve
decremental connectivity and 2-edge-connectivity in O(m) + Õ(n) time.

4 There is no consensus in the literature on the terminology relating to c-edge-connected components and
classes. Some authors (e.g., [17, 18]) reserve the term c-edge-connected components for what we in this
paper call c-edge-connected classes.

ICALP 2023

6:6 Optimal Decremental Connectivity in Non-Sparse Graphs

We can also apply the fully dynamic min-cut algorithm of Thorup [41] which identifies
cuts of size no(1) in n1/2+o(1) worst-case time. For c = no(1), we then maintain a c-certificate
H in O(m + n3/2+o(1)) total time. This includes telling which vertices are in the same
c-edge-connected component. If we further want to answer queries about c-edge-connectivity
between pairs of vertices, we can apply the fully-dynamic data structure of Jin and Sun [27]
to the c-certificate H. By definition, the answers to these queries are the same in H and G,
and the algorithm takes no(1) time per update or query. Hence the total time for the updates
remains O(m + n3/2+o(1)), and we can tell if two vertices are c-edge-connected in no(1) time.

1.3 Results
We will now give a more precise description of our reduction, including the log-factors hidden
in the Õ(cn) bound. Let the decremental c-certificate problem be that of maintaining a
c-certificate of G when G is subject to edge deletions. Recall that Tc(n) denotes the amortized
update time of a fully-dynamic c-edge-cut data structure. Thorup [39] showed the following.

▶ Theorem 1 (Thorup [39]). There exists a Las Vegas randomized algorithm for the decre-
mental c-certificate problem with expected total update time O(m log (n2/m) + n(c + log n) ·
Tc(n) log2 n). The maintained certificate undergoes O(n · (c + log n)) expected edge insertions
and deletions throughout, assuming Θ(m) random bits are provided. These bounds similarly
hold with high probability.

In particular the total update time is O(m) for very dense graphs with Ω(n2) edges.
Our main result, which we state below, shows that amortized constant update time can be
obtained as long as the initial graph has Ω(n polylog(n)) edges.

▶ Theorem 2. There exists a Monte Carlo randomized algorithm for the decremental c-
certificate problem with total update time O(m + n(c + log n) · Tc(n) log3 n + nc log7 n). The
maintained certificate undergoes O(nc log4 n) edge insertions and deletions throughout. The
algorithm is correct with high probability. Within this time bound, the algorithm offers a final
self-check after processing all updates.

In fact, our algorithm is itself a reduction to O(log n) instances of the decremental
c-certificate problem on a subgraph of G with m′ = O(m/ log2 n) edges. To handle each
of these instances, we use the state-of-the-art data structure (Theorem 1) which costs only
O(m′ log m′) = O(m/ log n) (for non-sparse graphs), yielding a combined cost of O(m). As a
result, our improved reduction (Theorem 2) requires Θ(m/ log n) random bits to hold.

We can reduce the need for random bits dramatically paying a little extra cost per vertex.
Our new randomized c-certificate that is the key to obtaining the new reduction requires
only pairwise independent sampling to work. This is in sharp contrast with the certificate
of Karger [30], used in the construction of Thorup’s data structure (Theorem 1), which
requires full independence, i.e., Θ(m) random bits. We show that we may instead plug our
new certificate into Thorup’s data structure at the cost of a single additional logarithmic
factor in the running time. Since Karger’s certificate constitutes the only use of randomness
in Thorup’s data structure, and full independence in our construction is required only for
invoking Theorem 1, we obtain the below low-randomness version of our main result.

▶ Theorem 3. There exists a Monte Carlo randomized algorithm for the decremental c-
certificate problem with total update time O(m+nc ·Tc(n) log4 n+nc log7 n). The maintained
certificate undergoes O(nc log4 n) edge insertions and deletions throughout. The algorithm
is correct with high probability if O(polylog n) random bits are provided. Within this time
bound, the algorithm offers the final self-check after processing all updates.

A. Aamand et al. 6:7

By using Theorem 3 with best known fully dynamic algorithms for different values of
c [23, 27, 41], we obtain:

▶ Theorem 4. There exists Monte Carlo randomized decremental connectivity and decre-
mental 2-edge-connectivity algorithms with O(m + n log7 n) total update time and O(1) query
time.

▶ Theorem 5. Let c = (log n)o(1). There exists a Monte Carlo randomized decremental
c-edge-connectivity data structure which can answer queries to whether two vertices are in
the same c-edge connected class in O(no(1)) time, and which has O(m) + Õ(n3/2) total update
time.

▶ Theorem 6. Let c = O(no(1)). There exists a Monte Carlo randomized decremental
c-edge-connected components data structure with O(m + n3/2+o(1)) total update time and
O(1) query time.

While Theorems 5 and 6 are only optimal for graphs with m = Ω(n3/2+o(1)) edges, we
do note that the improvement in runtime from O(mTc(n)) to O(m + nTc(n) polylog n) is
in general more impressive when Tc(n) is large. E.g., if Tc(n) =

√
n, for dense graphs with

Ω(n2) edges, the former bound is O(m5/4) while the later is O(m) which is a polynomial
improvement.

All the above applications of our main result work using only O(polylog n) random bits.
They moreover each have the self-check property as well. As discussed before, our new
2-edge-connectivity data structure implies an optimal O(m)-time unique perfect matching
algorithm for m = Ω(n polylog n).

1.3.1 Adaptive updates and unique perfect matching
All our time bounds are amortized. Amortized time bounds are particularly relevant for
dynamic data structures used inside algorithms solving problems for static graphs. In such
contexts, future updates often depend on answers to previous queries, and therefore we need
algorithms that work with adaptive updates.

Our reduction works against adaptive updates as long as all the information it provides
is uniquely defined from the input graph and the update sequence, hence not revealing
any information about the random choices in our c-certificate H. We assume some linear
orderings of the vertices and the edges, and define the representative (or ID) of a c-edge
connected component to be the smallest vertex in it. The reduction will safely maintain
the following public information about the c-edge-connected components of G: between
deletions, each vertex stores a pointer to the representative of its c-edge connected component,
so two vertices are in the same c-edge-connected component if and only if they have they
point to the same representative. With the representative, we store the size of the c-edge
connected component, and list its vertices in sorted order. Finally, we have a sorted list of all
edges that go between c-edge-connected components. After each update, we can also reveal
the representatives of the new c-edge-connected components, and the edges between these
components. For the case of 2-edge-connectivity, the above means that we can maintain the
bridges of a decremental graph and we can also maintain the connected components and
their sizes without revealing what the current randomized certificate looks like. All this is
needed for the unique perfect matching algorithm of Gabow, Kaplan, and Tarjan [15]. The
algorithm is an extremely simple recursion based on the fact that a graph with a unique

ICALP 2023

6:8 Optimal Decremental Connectivity in Non-Sparse Graphs

Algorithm 1 Algorithm computing Thorup’s certificate in the static setting.

Input : A graph G = (V, E), where n = |V |, sampling probability P , parameter c

Returns : A set of Õ(c · n/P) edges giving a c-certificate of G

1 Function ThorupCertificate(V, E, P, c):
2 if |E| ≤ c · n then
3 return E

4 S ← subset of E, in which each edge is included independently with prob. P ;
5 D ← edges of E connecting distinct c-edge-connected components of (V, S);
6 return D ∪ ThorupCertificate(V, S, P, c)

perfect matching has a bridge and all components have even sizes. The algorithm first
asks for a bridge (u, v) of some component. If there is none, there is no unique matching.
Otherwise we remove (u, v) and check the sizes of the components of u and v. If they are
odd, (u, v) is in the unique matching, and we remove all other incident edges. Otherwise
(u, v) is not in the unique matching. The important thing here is that the bridges do not tell
us anything about our random 2-certificate of the 2-edge-connected components.

Thus we solve the static problem of deciding if a graph has a unique perfect matching
in O(m) + Õ(n) time. If the self-verification reports a possible mistake, we simply rerun.
Consequently we get a Las Vegas algorithm that terminates in O(m) + Õ(n) time with high
probability.

Outline. Due to space constraints, in the remaining part of this extended abstract we give
a rather extensive technical overview of our data structure. All the details and proofs can be
found in the full version of this paper.

2 Technical overview

Our main technical contribution is a new construction of a sparse randomized c-certificate
that witnesses the c-edge-connected components of G and can be maintained in constant
time per edge deletion in G (assuming that the initial graph is not too sparse). In the static
case, deterministic certificates of this kind have been known for decades [33]. However, they
are not very robust in the decremental setting, where an adversary can constantly remove
its edges forcing it to update frequently. Consequently, Thorup [39] used a randomized
sample-based certificate to obtain his reduction. The general idea behind this approach is to
ensure that the certificate is sparse and undergoes few updates. Ideally, the sparse certificate
will only have to be updated whenever an edge from the certificate is deleted. Using a fully
dynamic data structure on the certificate, we may obtain efficient algorithms provided that
we don’t spend too much time on maintaining the certificate. Thorup’s reduction had an
additive overhead O(m log(n2/m)) for maintaining the certificate, which we will reduce to
the optimal O(m). We shall, in fact, use Thorup’s reduction as a subroutine, called on
O(log n) decremental subproblems each starting with O(m/ log2 n) edges.

2.1 Thorup’s construction [39]
Let us first briefly describe how Thorup’s algorithm operates on certificates and highlight
difficulties in improving his reduction to linear time. First of all, the c-certificate is constructed
as follows (see Algorithm 1 for pseudocode). Initially, sample edges of G uniformly with

A. Aamand et al. 6:9

probability P ≤ 1/2, thus obtaining a subgraph S. Then, compute the c-edge-connected
components of S and form a certificate H out of two parts: (1) A recursive certificate of
S, and (2) the subgraph D consisting of edges of G connecting distinct c-edge-connected
components of S.

As proved by Karger [30], D has size Õ(cn/P) with high probability. Thorup [39]
generalizes this by proving that D undergoes only Õ(cn/P) insertions throughout any
sequence of edge deletions to S. Since D depends only on the c-edge-connected components
of S, it is enough to have a c-certificate of S in order to define D. Hence, a c-certificate
of S (which is a graph a size O(mP), i.e., a constant factor smaller) is maintained under
edge deletions recursively. The recursion stops when the size of the input graph is O(cn).
To maintain D at each recursive level, we first need to maintain the c-edge-connected
components of the (recursive) certificate of S under edge deletions. The certificate of S can
be (inductively) seen to have Õ(cn/P) edges and undergo Õ(cn/P) updates. As a result, for
P = 1/2 maintaining its c-edge-connected components costs Õ(cn · Tc(n)) total time using
the fully-dynamic c-edge-cut data structure. Since at each recursion level the certificate size
decreases geometrically, the expected cost of all the dynamic c-edge-cut data structures is
Õ(cn · Tc(n)). For c = 1, 2, Õ(cn · Tc(n)) = Õ(n).

The bottle-neck in Thorup’s reduction. For non-sparse graphs, the bottleneck in Thorup’s
reduction is the additional cost of O(m log(n2/m)) which comes from the fact that, at each
level of the recursion, when a c-edge-connected component in S splits into two components
as a result of an edge deletion, we need to find edges of G between these two components
in order to update D. This takes O(m log (n2/m)) total time throughout using a standard
technique of iterating through the edges incident to the vertices in the smaller component
every time a split happens [10]. The O(log (n2/m)) (instead of O(log (n))) cost comes
by noticing that a vertex can at most have q neighbors in a component of order q, and
that after we go through the edges of a vertex i times it is in a component of order
≤ n/2i; hence it is only the first O(log(n/ deg(v))) times that all neighbors of v have to
be considered, so, by applying Jensen’s inequality, the total time spent on this becomes
O

(∑
v∈V deg(v) log(n/ deg(v))

)
= O(m log (n2/m)).

It turns out very challenging to get rid of the O(m log(n2/m)) term associated with
finding cuts when components split in Thorup’s reduction. If we knew that all of these cuts
were small, say of size at most δ, then we could apply a whole bag of tricks for efficiently
finding them in a total time of Õ(nδ), e.g., using invertible Bloom lookup tables [19], or the
XOR-trick [1, 2, 29]. Unfortunately, the bound of Õ(cn/P) only gives an average bound
on the number of edges between pairs of components, and in fact there can be pairs of
components having as many as Ω(n1/3) edges between them, as we will later show. In
order to resolve this, we have to introduce a new type of sample based c-edge certificate
obtained by only removing cuts of size at most δ = O(c polylog n) from G. In the following
three subsections, we describe the ideas behind this new certificate, the technical challenges
encountered in efficiently maintaining it, and why such a certificate is relevant for decremental
connectivity algorithms.

2.2 Our c-certificate based on small cut samples
In this section we describe the construction of our c-certificate. For simplicity, we assume
c = 1 for now.

The (simplified) algorithm for computing the certificate in the static setting is given as
Algorithm 2. In order to obtain a conceptually simpler picture of the certificate, Algorithm 2
is described recursively where each recursive call takes as input a minor G′ of G, namely

ICALP 2023

6:10 Optimal Decremental Connectivity in Non-Sparse Graphs

Algorithm 2 Algorithm computing our new certificate in the static setting.

Input : A graph G = (V, E) where n = |V | and m = |E|, sampling probability P ,
parameter δ

Returns : A set of O(mP log n + nδ log n) edges giving a 1-certificate of G

1 Function NewCertificate(V, E, P, δ):
2 if E = ∅ then
3 return ∅
4 D = ∅;
5 while G has a non-isolated vertex v of degree ≤ δ do
6 Remove from E all edges incident to v and add them to D

7 S ← subset of E, in which each edge is included independently with prob. P ;
8 H ← (V, S);
9 G′ ← graph obtained from G by contracting connected components of H;

10 return S ∪D ∪ NewCertificate(V (G′), E(G′), P, δ)

the graph obtained by contracting the connected components of H = (V, S), where S is a
subset of edges of G (after pruning G of small cuts in lines 5-6) sampled with probability
P . Adding an edge e of G′ to the certificate, simply means that we add the corresponding
edge of G. While Algorithm 2 gives a precise description of the static certificate at any given
point, maintaining these minors in the dynamic setting is too costly. Because of that, in the
dynamic algorithm, instead of using minors we work with a sequence of subgraphs of the
initial graph that are easier to maintain dynamically.

Denote by ℓ the depth of the recursion in Algorithm 2. For i = 1, . . . , ℓ, let Si be the
union of samples S on the recursive levels 1, . . . , i of Algorithm 2, so that Sℓ contains all
the edges sampled in the process. When an edge is deleted from G, it is removed from all
the sampled subsets S in the recursion, and thus also from all the relevant subsets Si. This
way, after any sequence of deletions the certificate that we maintain only depends on the
initial samples S1, S2 \ S1, . . . , Sℓ \ Sℓ−1 and the current graph G, not on the sequence of
edge updates made to G so far. We may therefore describe the certificate statically.

The critical idea behind our certificate is to introduce a small-cut-parameter δ. Our
certificate is obtained by iteratively removing certain cuts from G where each cut is allowed
to be of size at most δ. We denote by D ⊂ G the graph whose edge set consists of the edges
removed in this process. The overall goal is to define this cut removal process in a way so
that (1) each connected component of G \D is connected in Sl, and (2) it is easy to detect
new small cuts under edge deletions issued to G. We then use Sℓ ∪D as our connectivity
certificate of G. Importantly, we want δ to be as small as possible, ideally δ = O(polylog(n)).
This is because Õ(δn) will show up as an additive cost in our algorithm for maintaining the
certificate.

We will describe shortly how this type of certificate can be used in the design of efficient
decremental connectivity algorithms, but let us first demonstrate that the existence of such
a cut removal process (satisfying both (1) and (2)) for a small δ is non-trivial.

First of all, we could simply remove all cuts from G of size at most δ leaving us with the
(δ + 1)-connected components. Karger’s result [30] implies that with δ = O((c + log n)/P)
sufficiently large, these components will remain c-edge connected in S. However, in order to
maintain the small cuts, we would need a decremental δ-edge connectivity algorithm. As
δ > c, this approach simply reduces our problem to a much harder one.

A. Aamand et al. 6:11

Suppose on the other hand that we attempted to use Thorup’s sampling certificate [39]
described above. To simplify the exposition, let’s assume that P = 1/2. If D is the set of
edges between connected components of S, D∪S is a certificate. Thorup’s algorithm recurses
on S to find a final certificate of G. At first sight it may seem like D can be constructed by
iteratively removing cuts of size at most δ = O(log n) between the connected components of
S. After all, isn’t it unlikely that a connected component of S has more than, say, 100 log n

unsampled outgoing edges when the sampling probability is P = 1/2? As alluring as this
logic may be, it is flawed. Indeed, there exist graphs of maximum degree O(log n) such that
after sampling with P = 1/2, some two connected components of the sampled subgraph, C1
and C2, will have Ω(n1/3) unsampled edges between them. At some point in the iterative
process, we are thus forced to remove a cut of size Ω(n1/3) splitting C1 and C2, and we would
have to choose δ of at least this size (but it is possible that other examples could show that δ

would have to be even larger). Our algorithms spend total time Õ(nδ) on finding these cuts,
and if δ = Ω(n1/3), this is not good enough for a linear time algorithm for non-sparse graphs.

We remark that in this example, each vertex of G has degree O(log n) with high probability.
Therefore, an alternative approach yielding cuts of size O(log n) would be to cut out one
vertex at a time moving all incident edges to D. In particular this would cut the large
sampled components C1 and C2 into singletons, one vertex at a time. We cannot proceed
like this for general graphs which may have many vertices of large degree. Nevertheless, this
simple idea will be critically used in our construction which we will now discuss.

Our actual certificate uses δ = Θ(log n
P) and P = 1/ polylog n. To construct our certificate,

we start by iteratively pruning G of the edges incident to vertices of degree less than δ, moving
these edges to D. The graph left after the pruning G1 = G \D satisfies that each vertex of
positive degree has degree at least δ. Next, S1 defines a sample of G1, H1 = S1 ∩G1. The
expected degree of each vertex in H1 which is not isolated in G1 is at least δ · P = Θ(log n),
and thus we get that with constant probability a fraction of 3/4 of the vertices with positive
degree in the sampled subgraph H1 have degree ≥ 4.

Using this property we show that H1 can have at most 5n/6 connected components. As a
result, if we contract the connected components of H1 in the pruned graph G1, the resulting
graph G′

1 has at most 5n/6 vertices. Finally, we construct a certificate for G′
1 recursively

using the samples S2 \ S1, S3 \ S2, . . . , stopping when the contracted graph has no edges
between the contracted vertices (here G played the role of G′

0). The constant factor decay
in the number of components ensures that we are done after ℓ = O(log n) steps with high
probability. All edges of D are obtained as the removed edges of cuts of G of size less than δ,
so D will have size O(nδ). Our certificate will simply be Sℓ ∪D which we prove is in fact a
certificate.

With this, we have thus completed the goal of obtaining a small cut sample certificate
with δ as small as O(log n

P). Abstractly, our certificate has a quite simple description: we
alternate between sampling, removing small cuts around connected components in the sample,
and finally contracting these components. However, in our implementation, we cannot afford
to perform the contractions as described above explicitly, as updating them dynamically
would be costly. As a result we end up solving a more challenging problem in the dynamic
setting. Given a graph G and its subgraph H undergoing edge deletions, determine if any
connected components of H is incident to at most δ edges of G \D, i.e., induces a cut of
at most δ edges. It turns out that since we are only concerned with cuts of size at most δ,
we can in fact identify these cuts in total time O(m) + Õ(δn). We will describe this in the
following section.

ICALP 2023

6:12 Optimal Decremental Connectivity in Non-Sparse Graphs

A final property of our new randomized decremental certificate algorithm is that it
requires only O(log2 n) random bits to yield high-probability correctness bounds. This is in
sharp contrast with Thorup’s algorithm [39] which requires Ω(m) random bits. On a high
level, the reason we can do with few random bits is that in each step of the construction of
our certificate, we only need the bounds on the number of contracted components to hold
with constant probability. Indeed, we will still only have O(log n) recursive levels with high
probability. This means that for the probability bounds within a single recursive level, it
suffices to apply Chebyshev’s inequality. While the reduction of the number of required
random bits is nice, the main point, however, is that with our new certificate we can get down
to constant amortized update time per edge-deletion for decremental (2-edge)-connectivity
for all but the sparsest graphs.

2.3 Maintaining our certificate
As edges are deleted from G, the recursive structure of the c-certificate H changes. Indeed,
a deletion of an edge may cause the following changes in one of the recursive layers of H : (1)
introduce a cut of size less than δ surrounding a c-edge-connected component or (2) break
a c-edge-connected component in two. In the first case, the edges of the cut have to be
moved to D, and deleted from the current and later layers of H, causing further cascading.
When a c-edge-connected component (in a recursive layer) of H breaks in two, we need to
determine whether either of the new components has less than δ outgoing edges in G \D.
If we use the standard technique of iterating over all the edges incident to vertices of the
smaller component, this again incurs an O(log(n2/m)) cost per edge which is insufficient.
However, as we only care about components with at most δ outgoing edges, it turns out that
we can do better. We define the boundary ∂G(C) of a component C of some graph H ⊂ G

to be the set of edges of G with one endpoint in C, and another in V \ C. To overcome the
O(log (n2/m)) cost per edge, we prove that we can maintain boundaries of size at most δ

under splits using a Monte Carlo randomized algorithm in O(m + nδ polylog n) total time.
We achieve this by developing a fully dynamic data structure summarized as follows, that we
believe may be of independent interest.

▶ Theorem 7. Let G = (V, E) be an initially empty graph subject to edge insertions and
deletions and let s, 1 ≤ s ≤ n, be an integral parameter. There exists a data structure
that can process up to O(poly n) queries of the form “given some S ⊆ V , compute ∂G(S)”,
where ∂G(S) = E(S, V \ S), so that with high probability each query is answered correctly in
O

(
|S|s + |E(S, V)| · |∂G(S)|

s + log n
)

time. The data structure is initialized in O(ns) time
and can be updated in constant time.

We realize this result by deploying the so-called XOR-trick [29]5 for deciding if a boundary
of some subset of vertices is non-empty, albeit in a somewhat unusual manner. We now
briefly describe the method. Suppose each e ∈ E is assigned a random bit-string xe of length
Θ(log n), which fits in O(1) machine words. Let xv =

⊕
vw=e∈E xe denote the XOR of the

respective bit-strings of edges incident to v. Then, one can prove that, given S ⊆ V , with
high probability the XOR

⊕
u∈S xu is non-zero if and only if ∂G(S) ̸= ∅. The underlying

idea is that if an edge e incident to v ∈ S has its other endpoint also contained in S, its
corresponding bit string xe appears exactly twice in

⊕
u∈S xu, and thus cancels out. So,

emptiness of ∂G(S) can be tested in O(|S|) time.

5 See also [1, 2] for uses of the same idea in other contexts.

A. Aamand et al. 6:13

The XOR trick can also be used with no change to retrieve a non-empty boundary
∂G(S), but only when that boundary has precisely one element. In order to retrieve some
element of ∂G(S), existing applications of the XOR-trick consider a polylogarithmic number
of independent edge set samples, chosen such that one of the samples intersects ∂G(S)
precisely on one edge (with high probability). This unavoidably introduces a polylogarithmic
dependence in the cost per edge of the graph, which is prohibitive in our scenario.

The main idea behind Theorem 7 which allows us to deal with this problem is as
follows. We partition the edge set E into E1, . . . , Es. Each e ∈ E is assigned to one of
these sets uniformly at random. We apply the XOR-trick for each of the edge-disjoint
subgraphs (V, Ei) separately. This takes O(s|S|) time and computes a set I of all i such
that ∂G(S) ∩ Ei ̸= ∅ (with high probability). Clearly, in order to find ∂G(S), we only
need to look for this boundary’s elements in

(⋃
i∈I Ei

)
∩EG(S, V). Note that the expected

size of this set is (|I|/s) · |EG(S, V)| ≤ (|∂G(S)|/s) · |EG(S, V)|. If we set s to be larger
than the maximum size of a boundary that we would like to retrieve (in the algorithm
we ensure that the ratio is polylogarithmic), we significantly reduce the set of candidate
edges to consider and can search through them exhaustively. In total, as we show, only
O(|∂G(S)|+ |EG(S, V)| · |∂G(S)|/s + log n) edges are explored with high probability.

In our application, we end up using the data structure of Theorem 7 storing the (dynamic)
graph G \ D, and handling small boundary (of size no more than δ = polylog n) queries
for smaller sides C ⊆ V of decomposing components of ℓ = O(log n) dynamic subgraphs of
G \D. Throughout, the total size of the queried subsets C is O(n log2 n). Consequently,
the sum of |E(C, V)| over these sets is O(m log2 n). By setting s = δ log2 n in Theorem 7,
we obtain that the required queries for δ-bounded boundaries ∂G\D(C) can be processed in
O(n polylog n + m) total time.

2.4 Combining our certificate with Thorup’s algorithm
With the certificate as above, the overall idea for a decremental connectivity algorithm is
to maintain a c-certificate of (each recursive layer of) the decremental graph H = S \ D

using the algorithm by Thorup [39]. By choosing P = 1/ log2 n, S has m′ = O(m/ log2 n)
edges with high probability, so employing the algorithm of Theorem 1 on each recursive
layer takes total time O(m′ log2 n + ncTc(n) polylog n) = O(m + ncTc(n) polylog n) with
high probability. Let H∗ be the c-certificate thus obtained for H. Using a fully dynamic
c-edge-connectivity algorithm on H∗ ∪ D (which undergoes O(cn polylog n) updates), we
maintain a c-edge certificate of G. As H∗ ∪D undergoes O(cn polylog n) updates, running
the fully dynamic algorithm takes total time O(cnTc(n) polylog n).

We remark that for c = 1, 2 we could instead use a fully dynamic c-edge connectivity
algorithm on H with polylogaritmic update and query time at the price of a smaller P (which
would incur more log-factors in our final time bound). For c > 2, however, we only know that
Tc(n) = O(n1/2 poly(c)). Since running a fully dynamic algorithm on H takes total time
Ω(mTc(n)/ polylog n), this is insufficient to obtain linear time algorithms for dense graphs.

2.5 Final self-check
Let us finally describe the ideas behind the final self-checks claimed in Theorem 2 and 3 in a
more general context. In particular, we show that if a randomized Monte Carlo dynamic
algorithm satisfies some generic conditions then it can be augmented to detect, at the end
of its execution, whether there is any chance that it answered any query incorrectly. That
is, if the self-check passes then it is guaranteed that all queries were answered correctly

ICALP 2023

6:14 Optimal Decremental Connectivity in Non-Sparse Graphs

throughout the execution of the algorithm. Otherwise, it indicates that some queries might
have been answered incorrectly. The self-check property is particularly useful in applications
of dynamic algorithms as subroutines in algorithms solving static problems, that is, it enables
static algorithms to exhibit Las Vegas guarantees instead of the Monte Carlo guarantees
provided by the dynamic algorithm, as they can simply re-run the static algorithm with fresh
randomness until the self-check passes.

The properties of a dynamic algorithm amenable to a self-check behavior are as follows:
Once an error is made by the dynamic algorithm it should be detectable and any
subsequent updates of the algorithm should not correct the error before it is detected.
If the dynamic algorithm is stopped at any point in time, it should be able to still perform
the self-check within the guaranteed running time of the algorithm.

In our algorithm, as long as the c-certificate maintained by our algorithm is correct, the
c-edge-connectivity queries answered by our algorithm exhibit the same guarantees as the
fully dynamic c-edge-connectivity algorithm running on the c-certificate H. Hence, we only
need to detect potential errors in the process of maintaining the c-certificate H. Such errors
only happen with probability n−Ω(1).

By definition, a c-certificate H ⊆ G of G is correct if for every “non-witness” edge (u, v)
from G \H , we have that u and v are c-edge-connected in H . We use H = Sℓ ∪D where Sℓ

is decremental, and we impose the stronger requirement that if (u, v) ∈ G \H, then u and v

are c-edge-connected in Sℓ. If this is not the case, we consider it an error.
Suppose we have an error with (u, v). Since Sℓ is decremental, u and v cannot later

become c-edge connected in Sℓ. Thus, the error can only disappear if (u, v) is deleted from
G or (u, v) is added to H. Therefore, all our self-checker needs to do is this: Whenever an
edge from G \H is about to be deleted from G or about to be added to H, we first check
that u and v are c-edge-connected in Sℓ; otherwise we found an error. Also, if the algorithm
is terminated before all edges are deleted, we perform that above check on all remaining
edges. If any check finds an error, we flag the execution as invalid.

If an execution of our algorithm has not been flagged, we know that all queries have been
answered correctly. Moreover, the execution is only flagged with probability n−Ω(1).

As a final note, every vertex will maintain an ID of its c-edge-connected component in Sℓ.
Then u and v are the c-edge-connected in Sℓ if and only if they have the same ID. This is
checked in constant time, so these extra checks do not affect our overall asymptotic time
bounds.

References

1 Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Analyzing graph structure via linear
measurements. In Yuval Rabani, editor, Proceedings of the Twenty-Third Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages
459–467. SIAM, 2012. doi:10.1137/1.9781611973099.40.

2 Kook Jin Ahn, Sudipto Guha, and Andrew McGregor. Graph sketches: sparsification,
spanners, and subgraphs. In Michael Benedikt, Markus Krötzsch, and Maurizio Lenzerini,
editors, Proceedings of the 31st ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems, PODS 2012, Scottsdale, AZ, USA, May 20-24, 2012, pages 5–14. ACM,
2012. doi:10.1145/2213556.2213560.

3 S. Alstrup, T. Husfeldt, and T. Rauhe. Marked ancestor problems. In Proceedings 39th
Annual Symposium on Foundations of Computer Science (FOCS), pages 534–543, 1998.
doi:10.1109/SFCS.1998.743504.

https://doi.org/10.1137/1.9781611973099.40
https://doi.org/10.1145/2213556.2213560
https://doi.org/10.1109/SFCS.1998.743504

A. Aamand et al. 6:15

4 Stephen Alstrup, Jens P. Secher, and Mikkel Thorup. Word encoding tree connectivity
works. In David B. Shmoys, editor, Proceedings of the Eleventh Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, January 9-11, 2000, San Francisco, CA, USA, pages 498–499.
ACM/SIAM, 2000. URL: http://dl.acm.org/citation.cfm?id=338219.338598.

5 Stephen Alstrup, Jens Peter Secher, and Maz Spork. Optimal on-line decremental connectivity
in trees. Information Processing Letters, 64(4):161–164, 1997. doi:10.1016/S0020-0190(97)
00170-1.

6 Joshua D. Batson, Daniel A. Spielman, Nikhil Srivastava, and Shang-Hua Teng. Spectral
sparsification of graphs: theory and algorithms. Commun. ACM, 56(8):87–94, 2013. doi:
10.1145/2492007.2492029.

7 Sayan Bhattacharya, Fabrizio Grandoni, Janardhan Kulkarni, Quanquan C. Liu, and Shay
Solomon. Fully dynamic (∆ +1)-coloring in O(1) update time. ACM Trans. Algorithms,
18(2):10:1–10:25, 2022. doi:10.1145/3494539.

8 Julia Chuzhoy, Yu Gao, Jason Li, Danupon Nanongkai, Richard Peng, and Thatchaphol Sara-
nurak. A deterministic algorithm for balanced cut with applications to dynamic connectivity,
flows, and beyond. CoRR, abs/1910.08025, 2019. arXiv:1910.08025.

9 David Eppstein, Zvi Galil, Giuseppe F. Italiano, and Amnon Nissenzweig. Sparsification
– A technique for speeding up dynamic graph algorithms. J. ACM, 44(5):669–696, 1997.
doi:10.1145/265910.265914.

10 Shimon Even and Yossi Shiloach. An on-line edge-deletion problem. J. ACM, 28(1):1–4, 1981.
doi:10.1145/322234.322235.

11 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
On graph problems in a semi-streaming model. Theor. Comput. Sci., 348(2-3):207–216, 2005.
doi:10.1016/j.tcs.2005.09.013.

12 Greg N. Frederickson. Data structures for on-line updating of minimum spanning trees, with
applications. SIAM J. Comput., 14(4):781–798, 1985. doi:10.1137/0214055.

13 M. Fredman and M. Saks. The cell probe complexity of dynamic data structures. In
Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing (STOC),
STOC ’89, pages 345–354, New York, NY, USA, 1989. Association for Computing Machinery.
doi:10.1145/73007.73040.

14 Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. J. ACM, 34(3):596–615, 1987. doi:10.1145/28869.28874.

15 Harold N. Gabow, Haim Kaplan, and Robert Endre Tarjan. Unique maximum matching
algorithms. J. Algorithms, 40(2):159–183, 2001. doi:10.1006/jagm.2001.1167.

16 Harold N. Gabow and Robert Endre Tarjan. A linear-time algorithm for a special case of disjoint
set union. J. Comput. Syst. Sci., 30(2):209–221, 1985. doi:10.1016/0022-0000(85)90014-5.

17 Zvi Galil and Giuseppe F. Italiano. Maintaining the 3-edge-connected components of a graph
on-line. SIAM J. Comput., 22(1):11–28, 1993. doi:10.1137/0222002.

18 Dora Giammarresi and Giuseppe F. Italiano. Decremental 2- and 3-connectivity on planar
graphs. Algorithmica, 16(3):263–287, 1996. doi:10.1007/BF01955676.

19 Michael T Goodrich and Michael Mitzenmacher. Invertible bloom lookup tables. In 2011 49th
Annual Allerton Conference on Communication, Control, and Computing (Allerton), pages
792–799. IEEE, 2011.

20 Fabrizio Grandoni, Stefano Leonardi, Piotr Sankowski, Chris Schwiegelshohn, and Shay
Solomon. (1 + ϵ)-approximate incremental matching in constant deterministic amortized time.
In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages
1886–1898. SIAM, 2019. doi:10.1137/1.9781611975482.114.

21 Monika Henzinger and Pan Peng. Constant-time dynamic (∆ +1)-coloring. ACM Trans.
Algorithms, 18(2):16:1–16:21, 2022. doi:10.1145/3501403.

ICALP 2023

http://dl.acm.org/citation.cfm?id=338219.338598
https://doi.org/10.1016/S0020-0190(97)00170-1
https://doi.org/10.1016/S0020-0190(97)00170-1
https://doi.org/10.1145/2492007.2492029
https://doi.org/10.1145/2492007.2492029
https://doi.org/10.1145/3494539
https://arxiv.org/abs/1910.08025
https://doi.org/10.1145/265910.265914
https://doi.org/10.1145/322234.322235
https://doi.org/10.1016/j.tcs.2005.09.013
https://doi.org/10.1137/0214055
https://doi.org/10.1145/73007.73040
https://doi.org/10.1145/28869.28874
https://doi.org/10.1006/jagm.2001.1167
https://doi.org/10.1016/0022-0000(85)90014-5
https://doi.org/10.1137/0222002
https://doi.org/10.1007/BF01955676
https://doi.org/10.1137/1.9781611975482.114
https://doi.org/10.1145/3501403

6:16 Optimal Decremental Connectivity in Non-Sparse Graphs

22 Monika Rauch Henzinger and Valerie King. Randomized fully dynamic graph algorithms
with polylogarithmic time per operation. J. ACM, 46(4):502–516, 1999. doi:10.1145/320211.
320215.

23 Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity.
J. ACM, 48(4):723–760, July 2001. doi:10.1145/502090.502095.

24 Jacob Holm and Eva Rotenberg. Good r-divisions imply optimal amortised decremental
biconnectivity. CoRR, abs/1808.02568, 2018. arXiv:1808.02568.

25 Jacob Holm, Eva Rotenberg, and Mikkel Thorup. Dynamic bridge-finding in Õ(log2 n)
amortized time. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 35–52,
2018. doi:10.1137/1.9781611975031.3.

26 Shang-En Huang, Dawei Huang, Tsvi Kopelowitz, and Seth Pettie. Fully dynamic connectivity
in O(log n(log log n)2) amortized expected time. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta
Fira, January 16-19, pages 510–520, 2017. doi:10.1137/1.9781611974782.32.

27 Wenyu Jin and Xiaorui Sun. Fully dynamic s-t edge connectivity in subpolynomial time
(extended abstract). In 62nd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 861–872. IEEE, 2021. doi:
10.1109/FOCS52979.2021.00088.

28 Bruce M. Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity in polyloga-
rithmic worst case time. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages
1131–1142, 2013. doi:10.1137/1.9781611973105.81.

29 Bruce M. Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity in polyloga-
rithmic worst case time. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’13, pages 1131–1142, USA, 2013. Society for Industrial and
Applied Mathematics.

30 David R. Karger. Random sampling in cut, flow, and network design problems. Math. Oper.
Res., 24(2):383–413, 1999. doi:10.1287/moor.24.2.383.

31 Casper Kejlberg-Rasmussen, Tsvi Kopelowitz, Seth Pettie, and Mikkel Thorup. Faster
worst case deterministic dynamic connectivity. In 24th Annual European Symposium on
Algorithms, ESA 2016, August 22-24, 2016, Aarhus, Denmark, pages 53:1–53:15, 2016. doi:
10.4230/LIPIcs.ESA.2016.53.

32 Jakub Lacki and Piotr Sankowski. Optimal decremental connectivity in planar graphs. Theory
Comput. Syst., 61(4):1037–1053, 2017. doi:10.1007/s00224-016-9709-x.

33 Hiroshi Nagamochi and Toshihide Ibaraki. A linear-time algorithm for finding a sparse k-
connected spanning subgraph of a k-connected graph. Algorithmica, 7(5&6):583–596, 1992.
doi:10.1007/BF01758778.

34 Danupon Nanongkai, Thatchaphol Saranurak, and Christian Wulff-Nilsen. Dynamic minimum
spanning forest with subpolynomial worst-case update time. In 58th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, 2017,
pages 950–961, 2017. doi:10.1109/FOCS.2017.92.

35 Mihai Pǎtraşcu and Erik D. Demaine. Lower bounds for dynamic connectivity. In Proceedings
of the Thirty-Sixth Annual ACM Symposium on Theory of Computing, STOC ’04, pages
546–553, New York, NY, USA, 2004. Association for Computing Machinery. doi:10.1145/
1007352.1007435.

36 Mihai Pǎtraşcu and Mikkel Thorup. Don’t rush into a union: take time to find your roots. In
Proceedings of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose,
CA, USA, 6-8 June 2011, pages 559–568, 2011. doi:10.1145/1993636.1993711.

37 Shay Solomon. Fully dynamic maximal matching in constant update time. In Irit Dinur,
editor, IEEE 57th Annual Symposium on Foundations of Computer Science, FOCS 2016,
9-11 October 2016, Hyatt Regency, New Brunswick, New Jersey, USA, pages 325–334. IEEE
Computer Society, 2016. doi:10.1109/FOCS.2016.43.

https://doi.org/10.1145/320211.320215
https://doi.org/10.1145/320211.320215
https://doi.org/10.1145/502090.502095
https://arxiv.org/abs/1808.02568
https://doi.org/10.1137/1.9781611975031.3
https://doi.org/10.1137/1.9781611974782.32
https://doi.org/10.1109/FOCS52979.2021.00088
https://doi.org/10.1109/FOCS52979.2021.00088
https://doi.org/10.1137/1.9781611973105.81
https://doi.org/10.1287/moor.24.2.383
https://doi.org/10.4230/LIPIcs.ESA.2016.53
https://doi.org/10.4230/LIPIcs.ESA.2016.53
https://doi.org/10.1007/s00224-016-9709-x
https://doi.org/10.1007/BF01758778
https://doi.org/10.1109/FOCS.2017.92
https://doi.org/10.1145/1007352.1007435
https://doi.org/10.1145/1007352.1007435
https://doi.org/10.1145/1993636.1993711
https://doi.org/10.1109/FOCS.2016.43

A. Aamand et al. 6:17

38 Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm. J. ACM,
22(2):215–225, April 1975. doi:10.1145/321879.321884.

39 Mikkel Thorup. Decremental dynamic connectivity. Journal of Algorithms, 33(2):229–243,
1999. doi:10.1006/jagm.1999.1033.

40 Mikkel Thorup. Near-optimal fully-dynamic graph connectivity. In Proceedings of the Thirty-
Second Annual ACM Symposium on Theory of Computing, May 21-23, 2000, Portland, OR,
USA, pages 343–350, 2000. doi:10.1145/335305.335345.

41 Mikkel Thorup. Fully-dynamic min-cut. Comb., 27(1):91–127, 2007. doi:10.1007/
s00493-007-0045-2.

42 Zhengyu Wang. An improved randomized data structure for dynamic graph connectivity.
CoRR, abs/1510.04590, 2015. arXiv:1510.04590.

43 Christian Wulff-Nilsen. Faster deterministic fully-dynamic graph connectivity. In Sanjeev
Khanna, editor, Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 1757–1769.
SIAM, 2013. doi:10.1137/1.9781611973105.126.

ICALP 2023

https://doi.org/10.1145/321879.321884
https://doi.org/10.1006/jagm.1999.1033
https://doi.org/10.1145/335305.335345
https://doi.org/10.1007/s00493-007-0045-2
https://doi.org/10.1007/s00493-007-0045-2
https://arxiv.org/abs/1510.04590
https://doi.org/10.1137/1.9781611973105.126

On Range Summary Queries
Peyman Afshani #

Aarhus University, Denmark

Pingan Cheng #

Aarhus University, Denmark

Aniket Basu Roy #

Aarhus University, Denmark

Zhewei Wei #

Renmin University of China, Beijing, China

Abstract
We study the query version of the approximate heavy hitter and quantile problems. In the former
problem, the input is a parameter ε and a set P of n points in Rd where each point is assigned
a color from a set C, and the goal is to build a structure such that given any geometric range γ,
we can efficiently find a list of approximate heavy hitters in γ ∩ P , i.e., colors that appear at least
ε|γ ∩ P | times in γ ∩ P , as well as their frequencies with an additive error of ε|γ ∩ P |. In the latter
problem, each point is assigned a weight from a totally ordered universe and the query must output
a sequence S of 1 + 1/ε weights such that the i-th weight in S has approximate rank iε|γ ∩ P |,
meaning, rank iε|γ ∩ P | up to an additive error of ε|γ ∩ P |. Previously, optimal results were only
known in 1D [23] but a few sub-optimal methods were available in higher dimensions [4, 6].

We study the problems for two important classes of geometric ranges: 3D halfspace and 3D
dominance queries. It is known that many other important queries can be reduced to these two,
e.g., 1D interval stabbing or interval containment, 2D three-sided queries, 2D circular as well as 2D
k-nearest neighbors queries. We consider the real RAM model of computation where integer registers
of size w bits, w = Θ(log n), are also available. For dominance queries, we show optimal solutions
for both heavy hitter and quantile problems: using linear space, we can answer both queries in time
O(log n + 1/ε). Note that as the output size is 1

ε
, after investing the initial O(log n) searching time,

our structure takes on average O(1) time to find a heavy hitter or a quantile! For more general
halfspace heavy hitter queries, the same optimal query time can be achieved by increasing the space
by an extra logw

1
ε

(resp. log logw
1
ε
) factor in 3D (resp. 2D). By spending extra logO(1) 1

ε
factors in

both time and space, we can also support quantile queries.
We remark that it is hopeless to achieve a similar query bound for dimensions 4 or higher unless

significant advances are made in the data structure side of theory of geometric approximations.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Computational Geometry, Range Searching, Random Sampling, Geometric
Approximation, Data Structures and Algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.7

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2305.03180

Funding Peyman Afshani, Pingan Cheng: Supported by DFF (Det Frie Forskningsråd) of Danish
Council for Independent Research under grant ID DFF−7014−00404.
Aniket Basu Roy: Supported by DFF (Det Frie Forskningsråd) of Danish Council for Independent
Research under grant ID DFF−7014−00404 and the Independent Research Fund Denmark (DFF)
under a Sapere Aude Research Leader grant No. 1051-00106B.
Zhewei Wei: Supported by National Natural Science Foundation of China (No. U2241212).

EA
T
C
S

© Peyman Afshani, Pingan Cheng, Aniket Basu Roy, and Zhewei Wei;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 7; pp. 7:1–7:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:peyman@cs.au.dk
mailto:pingancheng@cs.au.dk
mailto:aniket@cs.au.dk
mailto:zhewei@ruc.edu.cn
https://doi.org/10.4230/LIPIcs.ICALP.2023.7
https://arxiv.org/abs/2305.03180
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

7:2 On Range Summary Queries

1 Introduction

Range searching is an old and fundamental area of computational geometry that deals with
storing an input set P ⊂ Rd of n (potentially weighted) points in a data structure such that
given a query range γ, one can answer certain questions about the subset of points inside γ.
Range searching is often introduced within a general framework that allows a very diverse
set of questions to be answered. For instance, if the points in P have been assigned integer
or real weights, then one can count the points in γ (range counting), sum the total weights
of the points in γ (weighted range counting), or find the maximum or minimum weight in γ

(range max or min queries).
However, there are some important questions that cannot be answered within this general

framework. Consider the following motivating example: our data includes the locations of
houses in a city as well as their estimated values and given a query range γ, we are interested
in the distribution of the house values within γ, for example, we might be interested to see if
there’s a large inequality in house values or not. Through classical results, we can find the
most expensive and the least expensive houses (max and min queries), and the average value
of the houses (by dividing the weighted sum of the values by the total number of houses in
γ). Unfortunately, this information does not tell us much about the distribution of the house
values within γ, e.g., one cannot compute the Gini index which is a widely-used measure of
inequality of the distribution. Ideally, to know the exact distribution of values within γ, one
must have all the values inside γ, which in the literature is known as a range reporting query
which reports all the points inside the query range γ. However, this could be an expensive
operation, e.g., it can take Ω(n) time if the query contains a constant fraction of the input
points. A reasonable alternative is to ask for a “summary” query, one that can summarize
the distribution. In fact, the streaming literature is rich with many important notions of
summary that are used to concisely represent a large stream of data approximately but
with high precision. Computing ε-quantiles can be considered as one of the most important
concepts for a succinct approximation of a distribution and it also generalizes many of the
familiar concepts, e.g., 0-quantile, 0.5-quantile, and 1-quantile that are also known as the
minimum, the median, and the maximum of S. We now give a formal definition below.

Quantile summaries. Given a sequence of values w1 ≤ · · · ≤ wk, a δ-quantile, for 0 ≤ δ ≤ 1,
is the value with rank ⌊δk⌋. By convention, 0-quantile and 1-quantiles are set to be the
minimum and the maximum, i.e., w1 and wk respectively. An ε-quantile summary is then
defined as the list of 1 + ε−1 values where the i-th value is the iε-quantile, for i = 0, · · · , ε−1.
As we will review shortly, computing exact quantiles is often too expensive so instead we
focus on approximations. We define an approximate ε-quantile summary (AQS) to be a
sequence of 1 + ε−1 values where the i-th value is between the (i − 1)-quantile and the
(i + 1)-quantile1, for i = 0, · · · , ε−1. An approximate quantile summary with a reasonably
small choice of ε can give a very good approximation of the distribution. It also has the
benefit that the query needs to output only O(ε−1) values, regardless of the number of points
inside the query range.

To obtain a relatively precise approximation of the distribution, ε needs to be chosen
sufficiently small, and thus we consider it an additional parameter (and thus not a constant).
This is also similar to the literature on streaming where the dependency on ε is important.

1 For a ≤ 0 (resp. a ≥ k), we define the a-quantile to be the 0-quantile (resp. k-quantile).

P. Afshani, P. Cheng, A. Basu Roy, and Z. Wei 7:3

1.1 Problem Definition, Previous Work, and Related Results
One of our main problems is the problem of answering approximate quantile summary (AQS)
queries which is defined as follows.

▶ Problem 1 (Approximate quantile summaries). Consider an input set P of n points in Rd

where each point p ∈ P is assigned a weight wp from a totally ordered universe. Given a
value ε, we are asked to build a structure such that given a query range γ, it can return an
AQS of P ∩ γ efficiently.

It turns out that another type of “range summary queries” is extremely useful for building
data structures for AQS queries.

Heavy hitter summaries. Consider a set P of k points where each point in P is assigned a
color from the set [n]. Let fi be the frequency of color i in P , i.e., the number of times color i

appears among the points in P . A heavy hitter summary (HHS) with parameter ε, is the list
of all the colors i with fi ≥ εk together with the value fi. As before, working with exact HHS
will result in very inefficient data structures and thus once again we turn to approximations.
An approximate heavy hitter summary (AHHS) with parameter ε is a list, L, of colors such
that every color i with fi ≥ εk is included in L and furthermore, every color i ∈ L is also
accompanied with an approximation, f ′

i , of its frequency such that fi − εk ≤ f ′
i ≤ fi + εk.

▶ Problem 2 (Approximate heavy hitters summaries). Consider an input set P of n points in
Rd where each point in P is assigned a color from the set [n]. Given a parameter ε, we are
asked to build a structure such that given a query γ, it can return an AHHS of the set P ∩ γ.

Observe that in both problems, the output size of a query is O(1/ε) in the worst-case.
Our main focus is to obtain data structures with the optimal worst-case query time of
O(log n + ε−1). Note that it makes sense to define an output-sensitive variant where the
query time is O(log n + k) where k is the output size. E.g., it could be the case for a AHHS
query that the numbrer of heavy hitters is much fewer than ε−1. This makes less sense
for AQS queries, since unless the distribution of weights inside the query range γ is almost
constant, an AQS will have Ω(ε−1) distinct values. As our main focus is on AQS, we only
consider AHHS data structures with the worst-case query time of O(log n + ε−1).

A note about the notation. To reduce the clutter in the expressions of query time and
space, we adopt the convention that log(·) function is at least one, e.g., we define loga b to
be max{1, ln b

ln a } for any positive values a, b.

Previous Results
As discussed, classical range searching solutions focus on rather simple queries that can
return sum, weighted sum, minimum, maximum, or the full list of points contained in a given
query range. This is an extensively researched area with numerous results to cite and so we
refer the reader to an excellent survey by Agarwal [5] that covers such classical results.

However, classical range searching data structures cannot give detailed statistical informa-
tion about the set of points contained inside the query region, unless one opts to report the
entire subset of points inside the query range, which could be very expensive if the set is large.
Because of this, there have been a number of attempts to answer more informative queries.
For example, “range median” queries have received quite a bit of attention [20, 10, 18].
Note that the median is the same as 0.5-quantile and thus these can be considered the

ICALP 2023

7:4 On Range Summary Queries

first attempts at answering quantile queries. However, optimal solution (linear space and
logarithmic query time) to exact range median queries has only be found in 1D [10]. For
higher dimensions, to the best of our knowledge, the only known technique is to reduce the
problem to several range counting instances [10, 13], and it is a major open problem in the
range searching field to find efficient data structures for exact range counting. Due to this
barrier, the approximate version of the problem [9] has been studied.

Data summary queries have also received some amount of attention, especially in the
context of geometric queries. Agarwal et al. [6] showed that the heavy hitters summary (as
well as a few other data summaries) are “mergeable” and this gives a baseline solution for a
lot of different queries in higher dimensions, although a straightforward application of their
techniques gives sub-optimal dependency on ε. In particular, for d = 2 and for halfspace (or
simplex) queries it yields a linear-space data structure with O(

√
n

ε) query time. For d = 3 the
query time will be O(n2/3/ε). In general, in the naive implementation, the query time will
be O(f(n)/ε) where f(n) is the query time of the corresponding “baseline” range searching
query (see Table 1 for more information). A more efficient approach towards merging of
summaries was taken by [17] where they study the problem in a communication complexity
setting, however, it seems possible to adopt their approach to a data structure as well, in
combination with standard application of partition trees; after building an optimal partition
tree, for any node v in the tree, consider it as a player in the communication problem with
the subset of points in the subtree of v as its input. At the query time, after identifying
O(n2/3) subsets that cover the query range, the goal would be to merge all the summaries
involved. By plugging the results in [17] this can result in a linear-space data structure with
query time of Õ(n2/3 + n1/6ε−3/2).

The issue of building optimal data structures for range summary queries was only tackled
in 1D by Wei and Yi [24]. They built a data structure for answering a number of summary
queries, including heavy hitters queries, and showed it is possible to obtain an optimal data
structure with O(n) space and O(log n + 1/ε) query time. Beyond this, only sub-optimal
solutions are available. Recently, there have been efforts to tackle “range sampling queries”
where the goal is to extract k random samples from the set |P ∩ γ| [3, 4, 16]. In fact, one of
the main motivations to consider range sampling queries was to gain information about the
distribution of the point set inside the query [3]. In particular, range sampling provides a
general solution for obtaining a “data summary” and for example, it is possible to solve the
heavy hitters query problem. However, it has a number of issues, in particular, it requires
sampling at least 1/ε2 points from the set |P ∩ γ|, and even then it will only provide a Monte
Carlo type approximation which means to boost the probabilistic guarantee, even more
points need to be sampled. For example, to get a high probability guarantee, Ω(ε−2log n)
samples are required.

Type-2 Color Counting. These queries were introduced in 1995 by Gupta et al. [15] within
the area of “colored range counting”. In this problem, given a set of colored points, we want
to report the frequencies of all the colors that appeared in a given query range. This is a
well-studied problem, but mostly in the orthogonal setting, see e.g., [11].

AHHS queries can be viewed as approximate type-2 color counting queries but with an
additive error. Consider a query with k points. If we allow error εk in type-2 counting,
then we can ignore colors with frequencies fewer than εk but otherwise we have to report
frequencies with error εk, which is equivalent to answering an AHHS query.

P. Afshani, P. Cheng, A. Basu Roy, and Z. Wei 7:5

Other Related Problems. Karpinski and Nekrich [19] studied the problem of finding the
most frequent colors in a given (orthogonal) query range. This problem has received further
attention in the community [8, 7, 14]. But the problem changes fundamentally when we
introduce approximations.

The Model of Computation. Our model of computation is the real RAM where we have
access to real registers that can perform the standard operations on real numbers in constant
time, but we also have access to w = Θ(log n) bits long integer registers that can perform the
standard operations on integers and extra nonstandard operations which can be implemented
by table lookups since we only need binary operations on fewer than 1

2 log n bits. Note that
our data structure works when the input coordinates are real numbers, however, at some
point, we will make use of the capabilities of our model of computation to manipulate the
bits inside its integer registers.

1.2 Our Contributions

Our main results and a comparison with the previously known results are shown in Table 1.
Overall, we obtain a series of new results for 3D AHHS and AQS query problems which

improve the current results via mergeability and independent range sampling [6, 4] by up to a
huge multiplicative nΩ(1) factor in query time with almost the same linear-space usage. This
improvement is quite nontrivial and requires an innovative combination of known techniques
like the shallow cutting lemma, the partition theorem, ε-approximations, as well as some new
ideas like bit-packing for nonorthogonal queries, solving AQS query problem using AHHS
instances, rank-preserving geometric sampling and so on.

For dominance queries, we obtain the first optimal results. When ε−1 = O(log n) our
halfspace AHHS results are also optimal. Note that for small values of ε, our halfspace AHHS
results yield significant improvements in the query time over the previous approaches. Along
the way, we also show improved results of the above problems for 2D as well as a slightly
improved exact type-2 simplex color counting result.

2 Preliminaries

In this section, we introduce the main tools we will use in our results. For a comprehensive
introduction to the tools we use, see the full version.

2.1 Shallow Cuttings and Approximate Range Counting

Given a set H of n hyperplanes in R3, the level of a point q ∈ R3 is the number of hyperplanes
in H that pass below q. We call the locus of all points of level at most k the (≤ k)-level and
the boundary of the locus is the k-level. A shallow cutting C for the (≤ k)-level of H (or a
k-shallow cutting for short) is a collection of disjoint cells (tetrahedra) that together cover
the (≤ k)-level of H with the property that every cell C ∈ C in the cutting intersects a set
HC , called the conflict list of C , of O(k) hyperplanes in H. The shallow cutting lemma is
the following.

▶ Lemma 1. For any set of n hyperplanes in R3 and a parameter k, there exists an O(k/n)-
shallow cutting of size O(n/k) that covers the (≤ k)-level. The cells in the cutting are all
vertical prisms unbounded from below (tetrahedra with a vertex at (0, 0, −∞)).

ICALP 2023

7:6 On Range Summary Queries

Table 1 Our main results compared with Mergeability-based [6] and Independent Range Sampling
(IRS)-based [4] solution. The IRS-based solutions are randomized with success probability 1 − δ for
a parameter 0 < δ < 1. F is the number of colors of the input. w = Θ(log n) is the word size of the
machine. † indicates optimal solutions.

Summary
Query Types Space Query Time Remark

Type-2
Simplex Color

Counting
O(n) O

(
n1− 1

d + n
1− 1

d F
1
d

wα

)
New

3D AHHS
Halfspace

O(n)
O(n)
O(n)
O(n logw

1
ε
)

O(log n + 1
ε n2/3)

Õ(n2/3 + 1
ε3/2 n1/6)

O(log n + 1
ε2 log 1

δ)
O(log n + 1

ε
)

Mergeability-based [6]
Monte Carlo [17]
IRS-based [4]
New

3D AHHS
Dominance

O(n)
O(n)
O(n)

O(log n + 1
ε log3 n)

O(log n + 1
ε2 log 1

δ)
O(log n + 1

ε
)

Mergeability-based [6]
IRS-based [4]
New†

3D AQS
Halfspace

O(n)
O(n)
O(n log2 1

ε
logw

1
ε
)

O(log n + 1
ε n2/3 log(εn))

O(log n + 1
ε2 log 1

δ)
O(log n + 1

ε
log2 1

ε
)

Mergeability-based [6]
IRS-based [4]
New

3D AQS
Dominance

O(n)
O(n)
O(n)

O(log n + 1
ε log3 n log(εn))

O(log n + 1
ε2 log 1

δ)
O(log n + 1

ε
)

Mergeability-based [6]
IRS-based [4]
New†

Furthermore, we can construct these cuttings for all k of form ai simultaneously in
O(n log n) time for any a > 1. Given any point q ∈ R3, we can find the smallest level k that
is above q as well the cell containing q in O(log n) time.

The above can also be applied to dominance ranges, which are defined as below. Given
two points p and q in Rd, p dominates q if and only if every coordinate of p is larger or equal
to that of q. The subset of Rd dominated by p is known as a dominance range. When the
query range in a range searching problem is a dominance range, we refer to it as a dominance
query. As observed by Chan et al. [12], dominance queries can be simulated by a halfspace
queries and thus Lemma 1 applies to them. See the full version for details.

We obtain the approximate version of the range counting result using shallow cuttings.

▶ Theorem 2 (Approximate Range Counting [2]). Let P be a set of n points in R3. One can
build a data structure of size O(n) for halfspace or dominance ranges such that given a query
range γ, one can report |γ ∩ P | in O(log n) time with error α|γ ∩ P | for any constant α > 0.

2.2 ε-approximation
Another tool we will use is ε-approximation, which is a useful sampling technique:

▶ Definition 3. Let (P, Γ) be a finite set system. Given any 0 < ε < 1, a set A ⊆ P is called
an ε-approximation for (P, Γ) if for any γ ∈ Γ,

∣∣∣ |γ∩A|
|A| − |γ∩P |

|P |

∣∣∣ ≤ ε.

The set A above allows us to approximate the number of points of γ ∩ P with additive
error ε|P | by computing |γ ∩A| exactly; essentially, ε-approximations reduce the approximate
counting problem on the (big) set P to the exact counting problem on the (small) set A.

P. Afshani, P. Cheng, A. Basu Roy, and Z. Wei 7:7

It has been shown that small-sized ε-approximations for set systems formed by points
and halfspaces/dominance ranges exist:

▶ Theorem 4 (ε-approximation [21, 22]). There exist ε-approximations of size O(ε− 2d
d+1) and

O(ε−1 logd+1/2 ε−1) for halfspace and dominance ranges respectively.

3 Approximate Heavy Hitter Summary Queries

We solve approximate quantile summary (AQS) queries using improved results for approximate
heavy hitter summary (AHHS) queries. We sketch the main ideas of our new AHHS solutions
in this section and refer the readers to the full version for details. For the clarity of description,
we use ε0 to denote the target error for the AHHS queries. We will reserve ε as a general
error parameter. We show the following.

▶ Theorem 5. For d = 3, the approximate halfspace heavy hitter summary queries can be
answered using O(n logw(1/ε0)) space and with the optimal O(log n + 1/ε0) query time.

▶ Theorem 6. For d = 2, the approximate halfspace heavy hitter summary queries can be
answered using O(n log logw(1/ε0)) space and with the optimal O(log n + 1/ε0) query time.

▶ Theorem 7. For d = 2, 3, the approximate dominance heavy hitter summary queries can
be answered using the optimal O(n) space and with the optimal O(log n + 1/ε0) query time.

3.1 Base Solution
The above results are built from a base solution, which solves the following problem:

▶ Problem 3 (Coarse-Grained AHHS Queries). Let P be a set of points in Rd, each associated
with a color. The problem is to store P in a structure such that given a query range q, one
can estimate the frequencies of colors in q ∩ P with an additive error up to ε|P | efficiently
for some parameter 0 < ε < 1.

Note that here we allow more error (since the error is defined in the entire point set). To
solve Problem 3, one crucial component we need is a better (exact) type-2 color counting
structure for halfspaces. We combine several known techniques in a novel way with bit-packing
to get the following theorem. See the full version for details.

▶ Theorem 8. Given an integer parameter F , a set P of n points in Rd where each point is
assigned a color from the set [F], one can build a linear-sized data structure, such that given
a query simplex q, it can output the number of times each color appears in P ∩ q in total time
max{O(n(d−1)/d), O(n(d−1)/dF 1/d/wα)}, for some appropriate constant α and word size w.

The main idea for getting a base solution is relatively straightforward. We group colors
according to their frequencies where each group contains colors of roughly equal frequencies.
However, we have to be careful about the execution and the analysis is a bit tricky. For
example, if we place all the points in one copy of the data structure of Theorem 8, then we
will get a sub-optimal result. However, by grouping the points correctly, and being stringent
about the analysis, we can obtain the following.

▶ Theorem 9. For d ≥ 3, Problem 3 for simplex queries (the intersection of d + 1 halfspaces)
can be solved with O(X) space for X = min{|P |, ε− 2d

d+1 } and a query time of

O

(
|P |1− 2

d−1

wαε
2

d−1

)
+ O

(
X

d−1
d

)
where w is the word-size of the machine and α is some positive constant.

ICALP 2023

7:8 On Range Summary Queries

The main challenge is that we have two cases for the size of an ε-approximation on n

points since it is bounded by min
{

n, O(ε− 2d
d+1)

}
and also two cases for the query time of

Theorem 8. However, the main idea is that since the total error budget is ε|P |, we can afford
to pick a larger error parameter εi = ε|P |

|Pi| , where Pi is the set of points with color i. The
details are presented in the full version.

3.2 Solving AHHS Queries
We first transform the problem into the dual space. So the point set P becomes a set H

of hyperplanes and any query halfspace becomes a point q. We want to find approximate
heavy hitters of hyperplanes of H below q. Here, we remark that obtaining a data structure
with O(n log 1

ε0
) space is not too difficult: build a hierarchy of shallow cuttings covering

level 2i/ε0 for i = 0, 1, · · · , log(ε0n) of the arrangement of H. For each shallow cutting cell
∆, we build the previous base structure for the conflict list S∆ for a parameter ε = ε0/c

for a big enough constant c. Then, observe that for queries below level ε−1
0 , we can spend

O(log n + 1
ε0

) time to find all the hyperplanes passing below the query and answer the AHHS
queries explicitly and also for shallow cutting levels above level ε

−3/2
0 , the total amount of

space used by the base solution is O(n). Thus, it turns out that the main difficulty lies in
handling the levels between ε−1

0 and ε
−3/2
0 .

To reduce the space to O(logw
1
ε0

), recall that in the query time of the base structure, we
have two terms O(1/(ε0wα)) and O(X2/3). Observe that we can afford to set ε to be roughly
ε0/wα and the first term will still be O(ε−1

0) because we are at level below ε
−3/2
0 , we have

X < ε
−3/2
0 and so the second term will always be O(ε−1

0)! The effect of setting ε = ε0/wα is
that now the base structure we built for a cell can output frequencies with a factor of wα

more precision, meaning it can be used for a factor of wα many more levels. So we only need
to build the base structure for shallow cuttings built for a factor of wα! This gives us the
O(n logw

1
ε0

) space bound. Of course, here the output has size O(ε−1) = O(wαε−1
0) and we

cannot afford to examine all these colors. The final ingredient here is that we can maintain a
list of O(ε−1

0) candidate colors using shallow cuttings built for a factor of 2.
We remark that although the tools are standard, the combination of the tools and the

analysis are quite nontrivial. Also when we have Θ(1/ε0) heavy hitters, our query time is
optimal. It is an interesting open problem if the query time can be made output sensitive.

4 Approximate Quantile Summary Queries

In this section, we solve Problem 1. We first show a general technique that uses our solution
to AHHS queries solution to obtain an efficient solution for AQS queries. We show that
for 3D halfspace and dominance ranges we can convert the solution for AHHS queries to a
solution for AQS queries with an O(log2 1

ε) blow up in space and time. Then in Section 4.2,
we present an optimal solution for dominance ranges based on a different idea.

First, we show how to solve AQS queries using the AHHS query solution. We describe
the data structure for halfspaces, since as we have mentioned before, the same can be applied
to dominance ranges in 3D as well. The high level idea of our structure is as follows: We first
transform the problem into the dual space. This yields the problem instance where we have
n weighted hyperplanes and given a query point q, we would like to extract an approximate
quantile summary for the hyperplanes that pass below q. To do this, we build hierarchical
shallow cuttings. For each cell in each cutting, we collect the hyperplanes in its conflict list
and then divide them into O(1

ε0
) groups according to the increasing order of their weights.

P. Afshani, P. Cheng, A. Basu Roy, and Z. Wei 7:9

Given a query point in the dual space, we first find the cutting and the cell containing it,
and then find an approximated rank of each group, within the subset below the query. This
is done by generating an AHHS problem instance and applying Theorem 5. We construct
the instance in a way such that the rank approximated will only have error small enough
such that we can afford to scan through the groups and pick an arbitrary hyperplane in
corresponding groups to form an approximate ε0-quantile summary.

4.1 The Data Structure and the Query Algorithm
We dualize the set P of n input points which gives us a set H = P of n hyperplanes. We
then build a hierarchy of shallow cuttings where the i-th shallow cutting, Ci, is a ki-shallow
cutting where ki = 2i

ε0
, for i = 0, 1, 2, · · · , log(ε0n). Consider a cell ∆ in the i-th shallow

cutting and its conflict list S∆. Let ϵ = ε0
c for a big enough constant c. We partition S∆

into t = 1
ϵ groups G1, G2, · · · , Gt sorted by weight, meaning, the weight of any hyperplane

in Gj is no larger than that of any hyperplane in Gj+1 for j = 1, 2, · · · , t − 1.
For each group Gj , we store the smallest weight among the hyperplanes it contains, as its

representative. To make the description shorter, we make the simplifying assumption that
t is a power of 2 (if not, we can add some dummy groups). We arrange the groups Gj as
the leaves of a balanced binary tree T and let V (T) be the set of vertices of T . Next, we
build the following set A∆ of colored hyperplanes, associated with ∆: Let ε′ = ϵ

log2 t
. For

every vertex v ∈ V (T), let Gv to be the set of all the hyperplanes contained in the subtree
of v; we add an ε′-approximation, Ev, of Gv to A∆ with color v. Using Theorem 5, we store
the points dual to hyperplanes in A∆ in a data structure Ψ∆ for AHHS queries with error
parameter ε′. This completes the description of our data structure.

The query algorithm. A given query q is answered as follows. Let us quickly go over the
standard parts: We consider the query in the dual space and thus q is considered to be a
point. Let k be the number of hyperplanes passing below q. Observe that by Theorem 2,
we can find a (1 + α) factor approximation, k∗, of k in O(log n) time for any constant α,
using a data structure that consumes linear space. This allows us to find the first ki-shallow
cutting Ci with ki−1 < k ≤ ki. The cell ∆ ∈ Ci containing q can also be found in O(log n)
time using a standard point location data structure (e.g., see [1]).

The interesting part of the query is how to handle the query after finding the cell ∆. Let
Hq be the subset of H that lies below q. Recall that S∆ is the subset of H that intersects ∆.
The important property of ∆ is that Hq ⊂ S∆ and also |S∆| = O(|Hq|) = O(k).

We query the data structure Ψ∆ built for ∆ to obtain a list of colors and their approximate
counts where the additive error in the approximation is at most ε′|A∆|. To continue with
the description of the query algorithm, let us use the notation gj to denote the subset of Gj

that lies below q, and let g = ∪t
j=1gj and thus |g| = k.

Note that while the query algorithm does not have direct access to g, or k, we claim that
using the output of the data structure Ψ∆, we can calculate the approximate rank of the
elements of gi within g up to an additive error of ε0k. Again, we can use tree T to visualize
this process. Recall that in Ψ∆, every vertex v ∈ V (T) represents a unique color in the data
structure Ψ∆ and the data structure returns an AHHS summary with error parameter ε′.
This allows us to estimate the number of elements of Ev that pass below q with error ε′|A∆|
and since Ev is an ε′-approximation of Gv, this allows us to estimate the number of elements
of Gv that pass below q with error at most 2ε′|A∆|. Consider the leaf node that represents
gj ⊂ Gj and the path π that connects it to the root of T . The approximate rank, rj , of gj is
calculated as follows. Consider a subtree with root u that hang to the left of the path π (as

ICALP 2023

7:10 On Range Summary Queries

shown in Figure 1). If color u does not appear in the output of the AHHS query, then we
can conclude that at most 2ε′|A∆| of its hyperplanes pass below q and in this case we do
nothing. If it does appear in the output of the AHHS query, then we know the number of
hyperplanes in its subtree that pass below q up to an additive error of 2ε′|A∆| and in this
case, we add this estimate to rj . In both cases, we are off by an additive error of 2ε′|A∆|.
We repeat this for every subtree that hangs to the left of π. The number of such subtree is
at most log t and thus the total error is at most 2ε′|A∆| log t. Now observe that

2ε′|A∆| log t = 2 ϵ

log2 t
· log t|S∆| · log t = O(εk) = O

(
ε0k

c

)
≤ ε0k

which follows by setting c large enough and observing the fact that |A∆| ≤ log t|S∆| since
every hyperplane in S∆ is duplicated log t times.

Gi

Figure 1 Compute the Approximate Rank of a Group: The approximated rank of Gi is calculated
as the sum of all the approximate counts of square nodes.

We are now almost done. We just proved that in each gi, we know the rank of its elements
within g up to an additive error of ε0k. This means that picking one element from each Gi

gives us a super-set of an AQS; in the last stage of the query algorithm we simply prune the
unnecessary elements as follows: We scan all the leave in T from left to right, i.e., consider
the group Gj for j = 1 to t and compute the quantile summary in a straightforward fashion.
To be specific, we initialize a variable j′ = 0 and then consider Gj , for j = 1 to t. The first
time rj exceeds a quantile boundary, i.e., rj ≥ j′ε0k∗, we add the hyperplane with the lowest
weight in Gj to the approximate ε0-quantile summary, and then increment j′.

Analysis

Based on the previous paragraph, the correctness is established. Thus, it remains to analyze
the space and query complexities. We start with the former.

Space Usage. Consider the structure Ψ∆ built for cell ∆ from a ki-shallow cutting Ci.
Observe that

∑
v∈V (T) |Gv| = |S∆| log t since in the sum every hyperplane will be counted

log t times. Ev is an ε′-approximation of Gv and thus

|Ev| ≤ min
{

ε′−3/2, Gv

}
(1)

P. Afshani, P. Cheng, A. Basu Roy, and Z. Wei 7:11

which implies

|A∆| =
∑

v∈V (T)

|Ev| ≤ min
{

ε′−3/22t, |S∆| log t
}

(2)

where the first part follows as there are at most 2t vertices in T and the second part follows
from (1). We build an instance of Theorem 5 on the set A∆ which by Theorem 5 uses
O(|A∆| logw

1
ε′) space. Assuming ∆ belongs to a ki-shallow cutting Ci, we have |S∆| = O(ki)

and there are O(n/ki) cells in Ci. Observe that∑
∆∈Ci

|A∆| =
∑

∆∈Ci

min
{

ε′−3/22t, |S∆| log t
}

=
∑

∆∈Ci

O
(

min
{

ε′−3/2t, ki log t
})

=

O

(
min

{
n

ki
ε−3

0 , n log 1
ε0

})
. (3)

Thus, the total space used for Ci is

O

(
min

{
n

ki
ε−3

0 logw

1
ε0

, n logw

1
ε0

log 1
ε0

})
.

Finally, observe that there can be at most O(log 1
ε0

) levels where the second term
dominates; to be specific, at least when ki exceeds ε−4

0 , the first term dominates and the
total space used by those levels is O(n) as ki’s form a geometric series. So the total space
usage of our structure is O(n log2 1

ε0
logw

1
ε0

).

Query Time. By Lemma 1, we can find the desired cutting cell in time O(log n). Next, we
query the data structure Ψ∆ which by Theorem 5 uses O(log n + ε′−1) = O(log n + ϵ

log2 t
) =

O(log n + 1
ε0

log2 1
ε0

) query time. Scanning the groups and pruning the output of the data
structure Ψ∆ takes asymptotically smaller time and thus it can be absorbed in the above
expression. Therefore, we obtain the following result.

▶ Theorem 10. Given an input consisting of an error parameter ε0, and a set P of n points
in R3 where each point p ∈ P is associated with a weight wp from a totally ordered universe,
one can build a data structure that uses O(n log2 1

ε0
logw

1
ε0

) space such that given any query
halfspace h, it can answer an AQS query with parameter ε0 in time O(log n + 1

ε0
log2 1

ε0
).

For the case of 2D, we can just replace Ψ∆ with the structure in Theorem 6, and we
immediately get the following:

▶ Theorem 11. Given an input consisting of an error parameter ε0, and a set P of n points
in R2 where each point p ∈ P is associated with a weight wp from a totally ordered universe,
one can build a data structure that uses O(n log2 1

ε0
log logw

1
ε0

) space such that given any
query halfspace h, it can answer an AQS query with parameter ε0 in time O(log n+ 1

ε0
log2 1

ε0
).

4.2 Dominance Approximate Quantile Summary Queries
Now we turn our attention to dominance ranges. We will show a structure similar to that
for halfspace queries. The main difference is that we now use exact type-2 color counting
as an auxiliary structure to estimate the rank of each group. This saves us roughly log2 1

ε0
factors for both space and query time and so we can answer quantile queries in the optimal
O(log n + 1

ε0
) time. To reduce the space to linear, we need more ideas. We first present

a suboptimal but simpler structure to demonstrate our main idea. Then we modify this
structure to get the desired optimal structure. We use shallow cuttings in the primal space.

ICALP 2023

7:12 On Range Summary Queries

4.2.1 A Suboptimal O(n log log 1
ε0

) Space Solution

We first describe a data structure that solves the dominance AQS problem with O(n log log 1
ε0

)
space and the optimal O(log n + 1

ε0
) query time.

Rank-Preserving Approximation for Weighted Points. Let S be a weighted point set where
every point has been assigned a weight from a totally ordered universe. Let rS(p) be the
rank of a point p in the set S. Consider a geometric set system (P, D), where P is a set of
weighted points in R3 and D is a family of subsets of P induced by 3D dominance ranges.
We mention a way to construct a sample A for P and a parameter ϵ such that∣∣∣∣rP ∩D(p)

|P |
− rA∩D(p)

|A|

∣∣∣∣ ≤ ϵ (4)

for any point p ∈ P and any range D ∈ D . First note that taking an ϵ-approximation for P

does not work since it does not take the weights of P into consideration. Our simple but
important observation is that we can lift the points P into 4D by adding their corresponding
weights as the fourth coordinate. Let us call this new point set P ′ and let (P ′, D ′) be the set
system in 4D induced by 4D dominance ranges. Consider an ϵ-approximation A′ for P ′ and
let A be the projection of A′ into the first three dimensions (i.e., by removing the weights
again). A will be our sample for P and to distinguish it from an unweighted approximation,
we call it rank-preserving ϵ-approximation. Indeed, for any point p ∈ P with weight wp

and any D ∈ D , rP ∩D(p) (resp. rA∩D(p)) is equal to the number of points in P ′ (resp.
A′) contained in 4D dominance range D × (−∞, wp). By the definition of ϵ-approximation,
property (4) holds.

We now turn our attention to the AQS for 3D dominance queries.

The Data Structure and The Query Algorithm. Similar to the structure we presented
for halfspace queries, we build 2i

ε0
-shallow cuttings for i = 0, 1, · · · , log(ε0n). Let κ = O(1)

be the constant such that O(1
ε0

logκ 1
ε0

) is the size of the ε0-approximation for dominance
ranges in 4D. Consider one k-shallow cutting C . We consider two cases:

If k ≤ 1
ε0

logκ 1
ε0

, for each cell ∆ in the cutting C , we collect the points in its conflict
list S∆ and divide them into t = 1

ϵ groups G1, G2, · · · , Gt according to their weights
(meaning, the weights in Gi are no larger than weights in group Gi+1) where ϵ = ε0

c for a
big enough constant c as we did for halfspace queries.
For k > 1

ε0
logκ 1

ε0
, we take a rank-preserving ϵ-approximation of S∆ first, and then divide

the approximation into t = 1
ϵ groups, just like the above case. Again, for each group, we

store the smallest weight among the points it contains.
We build the following structure for each cell ∆.

Let N be the number of points in all the t groups we generated for a cell ∆. We collect
groups Gi·α+1, Gi·α+2, · · · , G(i+1)·α into a cluster Ci for each i = 0, 1, · · · , t/α − 1 where
α = (log log 1

ε0
)3. For each group j in cluster Ci for j = 1, 2, · · · , α, we color the points in

the group with color j. Then we build the following type-2 color counting structure Ψi for
Ci. Let Ni be the total number of points in Ci:

First, we store three predecessor search data structures, one for each coordinate. This
allows us to map the input coordinates as well as the query coordinates to rank space.
Next, we build a grid of size 3

√
Ni × 3

√
Ni × 3

√
Ni such that each slice contains 3

√
N2

i

points. For each grid point, we store the points it dominates in a frequency vector using
the compact representation.

P. Afshani, P. Cheng, A. Basu Roy, and Z. Wei 7:13

Finally, we recurse on each grid slab (i.e., three recursions, one for each dimension). The
recursion stops when the number of points in the subproblem becomes smaller than
N∗ = Nη

i for some small enough constant η.
For these “leaf” subproblems, note that the total number of different answers to queries is
bounded by O(N3η

i). We build a lookup table which records the corresponding frequency
vectors for these answers. Note that since at every step we do a rank space reduction,
the look up can be simply done in O(1) time, after reducing the coordinates of the query
to rank space.

The query algorithm. Given a query q, we first locate the grid cell C containing q and this
gives us three ranks. Using the ranks for x and y, we obtain an entry and using the rank
of z, we find the corresponding word and the corresponding frequency vector stored in the
lower corner of C. We get three more frequency vectors by recursing to three subproblems.
We merge the three frequency vectors to generate the final answer. This completes the
description of the structure we build for each family Ci.

To answer a query q, we first find the first shallow cutting level above q and the
corresponding cutting cell ∆. We then query the data structure described above to get the
count the number of points dominated by q in each of the t groups. Then by maintaining a
running counter, we scan through the t groups from left to right to construct the approximate
ε0-quantile summary.

Space Usage. For the space usage, note that there are Ni grid points in each recursive
level and the recursive depth is O(1). There are α colors and the frequency of a color
is no more than Ni. So the total number of words needed to store frequency vectors is
O(Ni

α log Ni

w). When the problem size is below Nη
i , for each subproblem, we store a lookup

table using O(N3η
i

α log Ni

w) words. So the total number of words used for the bottom level
is O(Ni

Nη
i

) · O(N3η
i

α log Ni

w) = O(Ni
N2η

i
α log Ni

w). Note that by our construction and ε0 ≥ 1
n ,

N = O(1
ε0

logκ 1
ε0

), α = (log log 1
ε0

)3 ≤ (log log n)3 and Ni = O(α N
1/ε0

) = O(α logκ 1
ε0

) =
O(α logκ n). Since by assumption, w = Ω(log n), by picking η in N∗ = Nη

i to be a small
enough constant, the space usage for frequency vectors satisfy

f(Ni) =
{

3 3
√

Nif(3
√

N2
i) + O(Ni

w1−o(1)), for Ni ≥ N∗

O(Ni

w1−β), otherwise
,

for some constant 0 < β < 1, which solves to O(Ni(log Ni)3

w1−β) = O(Ni

w1−τ) for some constant
0 < τ < 1. Since the recursive depth is O(1), the space usage for all the predecessor searching
structures is O(Ni). Therefore the space usage of Ψi is O(N). So the total space for each
shallow cutting cell ∆ is bounded by N

Ni
· O(Ni) = O(N).

For ki ≥ 1
ε0

logκ 1
ε0

, N = O(1
ε0

logκ 1
ε0

). So the total space usage for them is bounded by
ε0n∑

i=κ log log 1
ε0

O

(
n

ki

)
· O(N) =

ε0n∑
i=κ log log 1

ε0

O
(nε0

2i

)
· O

(
1
ε0

logκ 1
ε0

)
= O(n).

For ki < 1
ε0

logκ 1
ε0

, N = ki and so we have space bound

κ log log 1
ε0∑

i=0
O

(
n

ki

)
· O(N) =

κ log log 1
ε0∑

i=0
O

(
n

ki

)
· O(ki) = O

(
n log log 1

ε0

)
.

This completes our space bound proof.

ICALP 2023

7:14 On Range Summary Queries

Query Time. For the query time, we first spend O(log n) time to find an appropriate
shallow cutting level and the corresponding cell by the property of shallow cuttings. Then
we query Ψi for i = 0, 1, · · · , t/α − 1 to estimate the count for each group in the cell. For
each Ψi, note that each predecessor searching takes O(log Ni) time. Also each frequency
vector can fit in one word and so we can merge two frequency vectors in time O(1). This
gives us the following recurrence relation for the query time

g(Ni) =
{

3g(3
√

N2
i) + O(log Ni), for Ni ≥ N∗

O(log Ni), otherwise
,

which solves to O((log Ni)3) = O((log log 1
ε0

)3) = O(α). Since we need to query t/α such
data structures to get the count for all groups, the total query time for count estimation is
O(t) = O(1/ε0). Then we scan through the groups and report the approximate quantiles
which takes again O(1/ε0) time. So the total query time is O(log n + 1

ε0
).

Correctness. Given a query q, let k be the actual number of points dominated by q. By
the property of shallow cuttings, we find a cell ∆ containing q in the shallow cutting level ki

above it such that k ≤ ki ≤ 2k. When ki < 1
ε0

logκ 1
ε0

, after we estimate the count in each
group, since the estimation is exact and each group has size |S∆|

t = ε0|S∆|
c , each quantile we

output will have error at most ε0|S∆|
c . For ki ≥ 1

ε0
logκ 1

ε0
, we introduce error ϵ|S∆| in the

ϵ-approximation, but since we use exact counting for each group, the total error will not
increase as we add up ranks of groups. So the total error is at most 2ε0|S∆|

c . In both cases,
the total error is at most ε0k for a big enough c.

4.2.2 An Optimal Solution for 3D Dominance AQS
In this section, we modify the data structure in the previous section to reduce the space
usage to linear. It can be seen from the space analysis that the bottleneck is shallow cuttings
with ki ≤ 1

ε0
logκ 1

ε0
. For the structures built for these levels, the predecessor searching

structures take linear space at each level which leads to a super linear space usage in total.
To address this issue, we do a rank space reduction for points in the cells of these levels
before constructing Ψi’s so that we can use the integer register to spend sublinear space for
the predecessor searching structures.

Rank Space Reduction Structure. We consider the cells in the 1
ε0

logκ 1
ε0

-shallow cutting.
Let A = logκ+1 1

ε0
. For the points in the conflict list S∆ of a shallow cutting cell ∆ ∈ C ,

we build a grid of size A × A × A such that each slice of the grid contains O(1/(ε0 log 1
ε0

))
points. The coordinate of each grid point consists of the ranks of its three coordinates
in the corresponding dimensions. For each of the O(A

ε0 log(1/ε0)) points in S∆, we round
it down to the closest grid point dominated by it. This reduces the coordinates of the
points down to O(log log 1

ε0
) bits and now we can apply the sub-optimal solution from the

previous subsection which leads to an O(n) space solution. To be more specific, we build the
hierarchical shallow cuttings for ki ≤ 1

ε0
logκ 1

ε0
locally for hyperplanes in S∆ and apply the

previous solution with a value ε′ = ε/c for a large enough constant c.

Query Algorithm and the query time. The query algorithm is similar to that for the
previous suboptimal solution. The only difference is that when the query q is in a shallow
cutting level smaller than 1

ε0
logκ 1

ε0
, we use the rank space reduction structure to reduce q

P. Afshani, P. Cheng, A. Basu Roy, and Z. Wei 7:15

to the rank space. Let q′ be the grid point obtained after reducing q to rank space. Observe
that the set of points dominated by q can be written as the union of the points dominated
by q′ and the subset of points dominated by q in three grid slabs of A that contain q. We
get an ε′-quantile for the former set using the data structure implemented on the grid points.
The crucial observation is that there are O(ε−1

0 / log 1
ε0

) points in the slabs containing q and
thus we can afford to build an approximate ε′-quantile summary of these points in O(1

ε0
)

time. We can then merge these two quantiles and return the answer as the result. By setting
c in the definition of ε′ small enough, we make sure that the result is a valid ε0 quantile
summary. This also yields a query time (after locating the correct cell ∆ in the shallow
cutting) of O(1

ε0
).

Correctness. Since we build shallow cutting ki ≤ 1
ε0

logκ 1
ε0

inside each cell in 1
ε0

logκ 1
ε0

-
shallow cutting, the transformed coordinates are consistent. As we described above, this
introduces error to the counts Ψi’s outputs, but since we correct the error explicitly afterwards,
the counts we get are still exact. The remaining is the same as the suboptimal solution and
so our structure finds ε0-quantile properly.

Space Usage. For the rank space reduction structure, we need to store a predecessor
searching structure for the query, which takes space linear in the number of slices which is
O(A). We build this structure for each cell in the A/ε0-shallow cutting level and there are
O(nε0/A) cells in total, and so the space usage is O(nε0). Building shallow cuttings inside
each cell will only increase the space by a constant factor by the property of shallow cuttings.

For each Ψi, by our analysis in the suboptimal solution, the frequency vectors will take
O(N

w1−τ) space. Now since the coordinates of the points and queries are integers of size at
most A, it takes O(log A) = O(log log 1

ε0
) bits to encode a coordinate. Since the word size is

w = Ω(log n), we need only O(Ni log A
w) space to build the predecessor searching structures

for Ψi. In total, we spend O(N
w1−o(1)) space for each shallow cutting level less than A/ε0. So,

the total space usage is O(n). We conclusion this section by the following theorem.

▶ Theorem 12. Given an input consisting of a parameter ε0 > 0, and a set P of n points in
R3 where each point p ∈ P is associated with a weight wp from a totally ordered universe, one
can build a data structure that uses the optimal O(n) space such that given any dominance
query γ, the data structure can answer an AQS query with parameter ε0 in the optimal query
time of O(log n + 1

ε0
).

5 Open Problems

Our results bring many interesting open problems. First, for type-2 color counting problems,
we showed a linear-sized structure for simplex queries. It is not clear if the query time can
be reduced with more space. It is an intriguing open problem to figure out the correct
space-time tradeoff for the problem. Note that our query time in Theorem 8 depends on the
number of colors in total. It is unclear if the query time can be made output-sensitive. This
seems difficult and unfortunately there seems to be no suitable lower bound techniques to
settle the problem. Furthermore, since improving exact simplex range counting results is
already very challenging, it makes sense to consider the approximate version of the problem
with multiplicative errors.

Second, for heavy-hitter queries, there are two open problems. In our solution, the
space usage is optimal with up to some extra polylogarithmic factor (in 1

ε). An interesting
challenging open problem is if the space usage can be made linear. On the other hand, our

ICALP 2023

7:16 On Range Summary Queries

query time is not output-sensitive. Technically speaking, there can be less than 1/ε heavy
hitters, and in this case, it would be interesting to see if O(log n + k) query time can be
obtained for k output heavy hitters with (close to) linear space2.

Third, for AQS queries, our data structure for halfspace ranges is suboptimal. The main
reason is that we need a type-2 range counting solution as a subroutine. For halfspace ranges,
our exact type-2 solution is too costly, and so we have to switch to an approximate version.
This introduces some error and as a result, we need to use a smaller error parameter, which
leads to extra polylogarithmic factors in both time and space. In comparison, we obtain an
optimal solution for dominance AQS queries through exact type-2 counting. Currently, it
seems quite challenging to improve the exact type-2 result for halfspace queries and some
different ideas probably are needed to improve our results.

Finally, it is also interesting to investigate approximate quantile summaries, or heavy
hitter summaries (or other data summaries or data sketches used in the streaming literature)
for a broader category of geometric ranges. In this paper, our focus has been on very fast
data structures, preferably those with optimal O(log n + 1

ε) query time, but we know such
data structures do not exist for many important geometric ranges. For example, with linear
space, simplex queries require O(n(d−1)/d) time and there are some matching lower bounds.
Nonetheless, it is an interesting open question whether approximate quantile or heavy hitter
summary can be built for simplex queries in time O(n(d−1)/d + 1

ε) using linear or near-linear
space; as we review in the introduction, the general approaches result in sub-optimal query
times of O(n(d−1)/d · 1

ε) or O(n(d−1)/d + 1
ε2).

References
1 Peyman Afshani and Timothy M. Chan. Optimal halfspace range reporting in three dimensions.

In Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
180–186, 2009.

2 Peyman Afshani, Chris Hamilton, and Norbert Zeh. A general approach for cache-oblivious
range reporting and approximate range counting. Computational Geometry: Theory and
Applications, 43:700–712, 2010. preliminary version at SoCG’09.

3 Peyman Afshani and Jeff M. Phillips. Independent Range Sampling, Revisited Again. In
Symposium on Computational Geometry (SoCG), pages 4:1–4:13, 2019.

4 Peyman Afshani and Zhewei Wei. Independent Range Sampling, Revisited. In Proceedings of
European Symposium on Algorithms (ESA), volume 87, pages 3:1–3:14, 2017.

5 Pankaj K. Agarwal. Range searching. In J. E. Goodman, J. O’Rourke, and C. Toth, editors,
Handbook of Discrete and Computational Geometry. CRC Press, Inc., 2016.

6 Pankaj K. Agarwal, Graham Cormode, Zengfeng Huang, Jeff M. Phillips, Zhewei Wei, and
Ke Yi. Mergeable summaries. In Proceedings of ACM Symposium on Principles of Database
Systems (PODS), pages 23–34, 2012.

7 Djamal Belazzougui, Travis Gagie, J. Ian Munro, Gonzalo Navarro, and Yakov Nekrich. Range
majorities and minorities in arrays. Algorithmica, 83(6):1707–1733, 2021.

8 Djamal Belazzougui, Travis Gagie, and Gonzalo Navarro. Better space bounds for parameter-
ized range majority and minority. In Algorithms and data structures, volume 8037 of Lecture
Notes in Comput. Sci., pages 121–132. Springer, Heidelberg, 2013.

9 Prosenjit Bose, Evangelos Kranakis, Pat Morin, and Yihui Tang. Approximate range mode
and range median queries. In Proceedings of Annual Symposium on Theoretical Aspects of
Computer Science (STACS), 2005.

2 We thank an anonymous referee for suggesting the “output-sensitive” version.

P. Afshani, P. Cheng, A. Basu Roy, and Z. Wei 7:17

10 Gerth Stølting Brodal, Beat Gfeller, Allan Grønlund Jørgensen, and Peter Sanders. Towards
optimal range medians. Theoretical Computer Science, 412(24):2588–2601, 2011.

11 Timothy M. Chan, Qizheng He, and Yakov Nekrich. Further Results on Colored Range
Searching. In Symposium on Computational Geometry (SoCG), volume 164, pages 28:1–28:15,
2020.

12 Timothy M. Chan, Kasper Green Larsen, and Mihai Pătraşcu. Orthogonal range searching on
the RAM, revisited. In Symposium on Computational Geometry (SoCG), pages 1–10, 2011.

13 Timothy M. Chan and Gelin Zhou. Multidimensional range selection. In Algorithms and
computation, volume 9472 of Lecture Notes in Comput. Sci., pages 83–92. Springer, Heidelberg,
2015.

14 Stephane Durocher, Meng He, J. Ian Munro, Patrick K. Nicholson, and Matthew Skala. Range
majority in constant time and linear space. Inform. and Comput., 222:169–179, 2013.

15 P. Gupta, R. Janardan, and M. Smid. Further results on generalized intersection searching
problems: Counting, reporting, and dynamization. Journal of Algorithms, 19(2):282–317,
1995.

16 Xiaocheng Hu, Miao Qiao, and Yufei Tao. Independent range sampling. In Richard Hull and
Martin Grohe, editors, Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium
on Principles of Database Systems, PODS’14, Snowbird, UT, USA, June 22-27, 2014, pages
246–255. ACM, 2014. doi:10.1145/2594538.2594545.

17 Zengfeng Huang and Ke Yi. The communication complexity of distributed epsilon-
approximations. SIAM Journal of Computing, 46(4):1370–1394, 2017.

18 Allan Grønlund Jørgensen and Kasper Green Larsen. Range selection and median: Tight cell
probe lower bounds and adaptive data structures. In Proc. 22ndProceedings of the Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 805–813, 2011.

19 Marek Karpinski and Yakov Nekrich. Searching for frequent colors in rectangles. In Proceedings
of the 20th Annual Canadian Conference on Computational Geometry, Montréal, Canada,
August 13-15, 2008, 2008.

20 Danny Krizanc, Pat Morin, and Michiel Smid. Range mode and range median queries on lists
and trees. Nordic J. Comput., 12(1):1–17, 2005.

21 Jiří Matoušek. Geometric Discrepancy: An Illustrated Guide. Algorithms and Combinatorics.
Springer Berlin Heidelberg, 2009.

22 Jeff M. Phillips. Coresets and sketches. CoRR, abs/1601.00617, 2016. arXiv:1601.00617.
23 Zhewei Wei and Ke Yi. Beyond simple aggregates: Indexing for summary queries. In

Proceedings of ACM Symposium on Principles of Database Systems (PODS), pages 117–128.
ACM, 2011.

24 Ke Yi, Lu Wang, and Zhewei Wei. Indexing for summary queries: Theory and practice. ACM
Transactions on Database Systems (TODS), 39(1), January 2014.

ICALP 2023

https://doi.org/10.1145/2594538.2594545
https://arxiv.org/abs/1601.00617

Stable Matching: Choosing Which Proposals to
Make
Ishan Agarwal
New York University, NY, USA

Richard Cole
New York University, NY, USA

Abstract
To guarantee all agents are matched in general, the classic Deferred Acceptance algorithm needs
complete preference lists. In practice, preference lists are short, yet stable matching still works well.
This raises two questions:

Why does it work well?
Which proposals should agents include in their preference lists?

We study these questions in a model, introduced by Lee [17], with preferences based on correlated
cardinal utilities: these utilities are based on common public ratings of each agent together with
individual private adjustments. Lee showed that for suitable utility functions, in large markets, with
high probability, for most agents, all stable matchings yield similar valued utilities. By means of a
new analysis, we strengthen Lee’s result, showing that in large markets, with high probability, for
all but the agents with the lowest public ratings, all stable matchings yield similar valued utilities.
We can then deduce that for all but the agents with the lowest public ratings, each agent has an
easily identified length O(log n) preference list that includes all of its stable matches, addressing the
second question above. We note that this identification uses an initial communication phase.

We extend these results to settings where the two sides have unequal numbers of agents, to
many-to-one settings, e.g. employers and workers, and we also show the existence of an ϵ-Bayes-Nash
equilibrium in which every agent makes relatively few proposals. These results all rely on a new
technique for sidestepping the conditioning between the tentative matching events that occur over
the course of a run of the Deferred Acceptance algorithm. We complement these theoretical results
with an experimental study.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Mathematics of
computing → Matchings and factors; Theory of computation → Random network models

Keywords and phrases Stable matching, randomized analysis

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.8

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2204.04162

Funding This work was supported in part by NSF Grant CCF-1909538.

Acknowledgements We thank the reviewers for their helpful feedback.

1 Introduction

Consider a doctor applying for residency positions. Where should she apply? To the very
top programs for her specialty? Or to those where she believes she has a reasonable chance
of success (if these differ)? And if the latter, how does she identify them? We study these
questions in the context of Gale and Shapley’s deferred acceptance (DA) algorithm [5]. It is
well-known that in DA the optimal strategy for the proposing side is to list their choices in
order of preference. However, this does not address which choices to list.

EA
T
C
S

© Ishan Agarwal and Richard Cole;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 8; pp. 8:1–8:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ICALP.2023.8
https://arxiv.org/abs/2204.04162
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Stable Matching: Choosing the Proposals

The DA algorithm is widely used to compute matchings in real-world applications: the
National Residency Matching Program (NRMP), which matches future residents to hospital
programs [25]; university admissions programs which match students to programs, e.g. in
Chile [24], school choice programs, e.g. for placement in New York City’s high schools [1],
the Israeli psychology Masters match [9], and no doubt many others (e.g. [7]).

Recall that each agent provides the mechanism a list of its possible matches in preference
order, including the possibility of “no match” as one of its preferences. These mechanisms
promise that the output will be a stable matching with respect to the submitted preference
lists. In practice, preference lists are relatively short. This may be directly imposed by
the mechanism or could be a reflection of the costs – for example, in time or money – of
determining these preferences. Note that a short preference list is implicitly stating that the
next preference after the listed ones is “no match”.

Thus it is important to understand the impact of short preference lists. Roth and
Peranson observed that the NRMP data showed that preference lists were short compared to
the number of programs and that these preferences yielded a single stable partner for most
participants; we note that this single stable partner could be the “no match” choice, and in
fact this is the outcome for a constant fraction of the participants. They also confirmed this
theoretically for the simplest model of uncorrelated random preferences; namely that with the
preference lists truncated to the top O(1) preferences, almost all agents have a unique stable
partner. Subsequently, in [10] the same result was obtained in the more general popularity
model which allows for correlations among different agents’ preferences; in their model, the
first side – men – can have arbitrary preferences; on the second side – women – preferences
are selected by weighted random choices, the weights representing the “popularity” of the
different choices. These results were further extended by Kojima and Parthak in [15].

The popularity model does not capture behavior in settings where bounds on the number
of proposals lead to proposals being made to plausible partners, i.e. partners with whom one
has a realistic chance of matching. One way to capture such settings is by way of tiers [2],
also known as block correlation [4]. Here agents on each side are partitioned into tiers, with
all agents in a higher tier preferred to agents in a lower tier, and with uniformly random
preferences within a tier. Tiers on the two sides may have different sizes. If we assign
tiers successive intervals of ranks equal to their size, then, in any stable matching, the only
matches will be between agents in tiers whose rank intervals overlap.

A more nuanced way of achieving these types of preferences bases agent preferences
on cardinal utilities; for each side, these utilities are functions of an underlying common
assessment of the other side, together with idiosyncratic individual adjustments for the
agents on the other side. These include the separable utilities defined by Ashlagi, Braverman,
Kanoria and Shi in [2], and another class of utilities introduced by Lee in [17]. This last
model will be the focus of our study.

To make this more concrete, we review a simple special case of Lee’s model, the linear
separable model. Suppose that there are n men and n women seeking to match with each
other. Each man m has a public rating rm, a uniform random draw from [0, 1]. These ratings
can be viewed as the women’s joint common assessment of the men. In addition, each woman
w has an individual adjustment, which we call a score, sw(m) for man m, again a uniform
random draw from [0, 1]. All the draws are independent. Woman w’s utility for man m is
given by 1

2 [rm + sw(m)]; her full preference list has the men in decreasing utility order. The
men’s utilities are defined similarly.

Lee stated that rather than being assumed, short preference lists should arise from the
model; this appears to have been a motivation for the model he introduced. A natural first
step would be to show that for some or all stable matchings, the utility of each agent can

I. Agarwal and R. Cole 8:3

be well-predicted, for this would then allow the agents to limit themselves to the proposals
achieving such a utility. Lee proved an approximate version of this statement, namely that
with high probability (w.h.p., for short) most agents obtain utility within a small ϵ of an
easily-computed individual benchmark. However, this does not imply that agents can restrict
their proposals to a reduced utility range. (See the paragraph preceding Definition 5 for the
specification of the benchmarks.)

Our work seeks to resolve this issue. We obtain the following results. Note that in these
results, when we refer to the bottommost agents, we mean when ordered by decreasing public
rating. Also, we let the term loss mean the difference between an agent’s benchmark utility
and their achieved utility.
1. We show that in the linearly separable model, for any constant c > 0, with probability

1 − 1/nc, in every stable matching, apart from a sub-constant σ fraction of the bottom-
most agents, all the other agents obtain utility equal to an easily-computed individual
benchmark ±ϵ, where ϵ is also sub-constant.
We show that both σ, ϵ = Θ̃(n−1/3).1 As we will see, this implies, w.h.p., that for all
the agents other than the bottommost σ fraction, each agent has Θ(ln n) possible edges
(proposals) that could be in any stable matching, namely the proposals that provide both
agents utility within ϵ of their benchmark. Furthermore, we show our bound is tight:
with fairly high probability, there is no matching, let alone stable matching, providing
every agent a partner if the values of ϵ and σ are reduced by a suitable constant factor.
An interesting consequence of this lower bound on the agents’ utilities is that the agents
can readily identify a moderate sized subset of the edge set to which they can safely
restrict their applications. More precisely, any woman w outside the bottommost σ

fraction, knowing only her own public rating, the public ratings of the men, and her
own private score for each man, can determine a preference list of length Θ̃(n1/3) which,
w.h.p, will yield the same result as her true full-length list. Our analysis also shows that
if w obtained the men’s private scores for these proposals, then w.h.p. she could safely
limit herself to a length O(ln n) preference list.

2. The above bounds apply not only to the linearly separable model, but to a significantly
more general bounded derivative model (in which derivatives of the utility functions are
bounded).

3. The result also immediately extends to settings with unequal numbers of men and women.
Essentially, our analysis shows that the loss for an agent is small if there is a σ fraction
of agents of lower rank on the opposite side. Thus even on the longer side, w.h.p., the
topmost n(1 − σ) agents all obtain utility close to their benchmark, where n is the size
of the shorter side. This limits the “stark effect of competition” [3] – namely that the
agents on the longer side are significantly worse off – to a lower portion of the agents on
the longer side.

4. The result extends to the many-to-one setting, in which agents on one side seek multiple
matches. Our results are given w.r.t. a parameter d, the number of matches that each
agent on the “many” side desires. For simplicity, we assume this parameter is the same
for all these agents. In fact, we analyze a more general many-to-many setting.

5. A weaker result with arbitrarily small σ, ϵ = Θ(1) holds when there is no restriction on
the derivatives of the utility functions, which we call the general values model. Again, we
show this bound cannot be improved in general. This setting is essentially the general

1 The Θ̃(·) notation means up to a poly-logarithmic term; here σ, ϵ = Θ((n/ ln n)−1/3).

ICALP 2023

8:4 Stable Matching: Choosing the Proposals

setting considered by Lee [17]. He had shown there was a σ fraction of agents who might
suffer larger losses; our bound identifies this σ fraction of agents as the bottommost
agents.

6. In the bounded derivative model, with slightly stronger constraints on the derivatives, we
also show the existence of an ϵ-Bayes-Nash equilibrium in which no agent proposes more
than O(ln2 n) times and all but the bottommost O((ln n/n)1/3) fraction of the agents
make only the O(ln n) proposals identified in (1) above. Here ϵ = Θ(ln n/n1/3).

These results all follow from a lemma showing that, w.h.p., each non-bottommost agent
has at most a small loss. In turn, the proof of this lemma relies on a new technique which
sidesteps the conditioning inherent to runs of DA in these settings.

Experimental results

Much prior work has been concerned with preference lists that have a constant bound on
their length. For moderate values of n, say n ∈ [103, 106], ln n is quite small, so our Θ(ln n)
bound may or may not be sufficiently small in practice for this range of n. What matters are
the actual constants hidden by the Θ notation, which our analysis does not fully determine.
To help resolve this, we conducted a variety of simulation experiments.

We have also considered how to select the agents to include in the preference lists, when
seeking to maintain a constant bound on their lengths, namely a bound that, for the values
of n we considered, was smaller than the Θ(ln n) bound determined by the above simulations;
again, our investigation was experimental.

Other Related work

The random preference model was introduced by Knuth [12] (for a version in English see [13]),
and subsequently extensively analyzed [20, 14, 21, 18, 23, 22, 16]. In this model, each agent’s
preferences are an independent uniform random permutation of the agents on the other side.
An important observation was that when running the DA algorithm, the proposing side
obtained a match of rank Θ(ln n) on the average, while on the other side the matches had
rank Θ(n/ ln n).

A recent and unexpected observation in [3] was the “stark effect of competition”: that
in the random preferences model the short side, whether it was the proposing side or not,
was the one to enjoy the Θ(ln n) rank matches. Subsequent work showed that this effect
disappeared with short preference lists in a natural modification of the random preferences
model [11]. Our work suggests yet another explanation for why this effect may not be present:
it does not require that short preference lists be imposed as an external constraint, but rather
that the preference model generates few edges that might ever be in a stable matching.

The number of edges present in any stable matching has also been examined for a
variety of settings. When preference lists are uniform the expected number of stable pairs
is Θ(n ln n) [21]; when they are arbitrary on one side and uniform on the other side, the
expected number is O(n ln n) [14]. This result continues to hold when preference lists are
arbitrary on the men’s side and are generated from general popularities on the women’s
side [6]. Our analysis shows that in the linear separable model (and more generally in the
bounded derivative setting) the expected number of stable pairs is also O(n ln n).

Another important issue is the amount of communication needed to identify who to place
on one’s preference lists when they have bounded length. In general, the cost is Ω(n) per
agent (in an n agent market) [8], but in the already-mentioned separable model of Ashlagi et
al. [2] this improves to Õ(

√
n) given some additional constraints, and further improves to

I. Agarwal and R. Cole 8:5

O(ln4 n) in a tiered separable market [2]. We note that for the bounded derivatives setting,
with high probability, the communication cost will be O(n1/3 ln2/3 n) for all agents except
the bottommost Θ(n2/3 ln1/3 n), for whom the cost can reach O(n2/3 ln1/3 n).

Another approach to selecting which universities to apply to was considered by Shorrer
who devised a dynamic program to compute the optimal choices for students assuming
universities had a common ranking of students [26].

Roadmap

In Section 2 we review some standard material. In Section 3 we state our main result in two
parts: Theorem 6, which bounds the losses in the setting of the linear model, and Theorem 8,
which shows it suffices to limit preference lists to a small set of edges. We prove these
theorems in Sections 4 and 5, respectively. We also present some numerical simulations for
the linear separable model in Section 6 We conclude with a brief discussion of open problems
in Section 7.

In the appendices of the full version of the paper, we formally state and prove all the
other results alluded to in the introduction and we also present further numerical simulations
for the linear separable model. For the reader’s convenience, in the text that follows, we
provide pointers to these appendices, as appropriate. We note that Appendix A provides a
complete summary of the content in these appendices.

2 Preliminaries

2.1 Stable Matching and the Deferred Acceptance (DA) Algorithm
Let M be a set of n men and W a set of n women. Each man m has an ordered list of
women that represents his preferences, i.e. if a woman w comes before a woman w′ in m’s
list, then m would prefer matching with w rather than w′. The position of a woman w in
this list is called m’s ranking of w. Similarly each woman w has a ranking of her preferred
men2. The stable matching task is to pair (match) the men and women in such a way that
no two people prefer each other to their assigned partners. More formally:

▶ Definition 1 (Matching). A matching is a pairing of the agents in M with the agents in
W . It comprises a bijective function µ from M to W , and its inverse ν = µ−1, which is a
bijective function from W to M .

▶ Definition 2 (Blocking pair). A matching µ has a blocking pair (m, w) if and only if:
1. m and w are not matched: µ(m) ̸= w.
2. m prefers w to his current match µ(m).
3. w prefers m to her current match ν(w).

▶ Definition 3 (Stable matching). A matching µ is stable if it has no blocking pair.

Gale and Shapley [5] proposed the seminal deferred acceptance (DA) algorithm for the
stable matching problem. We present the woman-proposing DA algorithm (Algorithm 1);
the man-proposing DA is symmetric. The following facts about the DA algorithm are well
known. We state them here without proof and we shall use them freely in our analysis.

2 Throughout this paper, we assume that each man m (woman w) ranks all the possible women (men),
i.e. m’s (w’s) preference list is complete.

ICALP 2023

8:6 Stable Matching: Choosing the Proposals

Algorithm 1 Woman Proposing Deferred Acceptance (DA) Algorithm.

Initially, all the men and women are unmatched.
while some woman w with a non-empty preference list is unmatched do

let m be the first man on her preference list;
if m is currently unmatched then

tentatively match w to m.
end
if m is currently matched to w′, and m prefers w to w′ then

make w′ unmatched and tentatively match w to m.
else

remove m from w’s preference list.
end

end

▶ Observation 4.
1. DA terminates and outputs a stable matching.
2. The stable matching generated by DA is independent of the order in which the unmatched

agents on the proposing side are processed.
3. Woman-proposing DA is woman-optimal, i.e. each woman is matched with the best partner

she could be matched with in any stable matching.
4. Woman-proposing DA is man-pessimal, i.e. each man is matched with the worst partner

he could be matched with in any stable matching.

2.2 Useful notation and definitions
There are n men and n women. In all of our models, each man m has a utility Um,w for the
woman w, and each woman w has a utility Vm,w for the man m. These utilities are defined as

Um,w = U(rw, sm(w)), and
Vm,w = V (rm, sw(m)),

where rm and rw are common public ratings, sm(w) and sw(m) are private scores specific to
the pair (m, w), and U(·, ·) and V (·, ·) are continuous and strictly increasing functions from
R2

+ to R+. The ratings are independent uniform draws from [0, 1] as are the scores.
In the Linear Separable Model, each man m assigns each woman w a utility of Um,w =

λ · rw + (1 − λ) · sm(w), where 0 < λ < 1 is a constant. The women’s utilities for the men
are defined analogously as Vm,w = λ · rm + (1 − λ) · sw(m). All our experiments are for this
model.

We let {m1, m2, . . . , mn} be the men in descending order of their public ratings and
{w1, w2, . . . , wn} be a similar ordering of the women. We say that mi has public rank i, or
rank i for short, and similarly for wi. We also say that mi and wi are aligned. In addition,
we often want to identify the men or women in an interval of public ratings. Accordingly,
we define M(r, r′) to be the set of men with public ratings in the range (r, r′), and M [r, r′]
to be the set with public ratings in the range [r, r′]; we also use the notation M(r, r′] and
M [r, r′) to identify the men with ratings in the corresponding semi-open intervals. We use
an analogous notation, with W replacing M , to refer to the corresponding sets of women.

We will be comparing the achieved utilities in stable matchings to the following bench-
marks: the rank i man has as benchmark U(rwi

, 1), the utility he would obtain from the
combination of the rank i woman’s public rating and the highest possible private score; and
similarly for the women. Based on this we define the loss an agent faces as follows.

I. Agarwal and R. Cole 8:7

▶ Definition 5 (Loss). Suppose man m and woman w both have rank i. The loss m sustains
from a match of utility u is defined to be U(rw, 1) − u. The loss for women is defined
analogously.

In our analysis we will consider a complete bipartite graph whose two sets of vertices
correspond to the men and women, respectively. For each man m and woman w, we view
the possible matched pair (m, w) as an edge in this graph. Thus, throughout this work, we
will often refer to edges being proposed, as well as edges satisfying various conditions.

3 Upper Bound in The Linear Separable Model

To illustrate our proof technique for deriving upper bounds, we begin by stating and proving
our upper bound result for the special case of the linear separable model with λ = 1

2 .

▶ Theorem 6. In the linear separable model with λ = 1/2, when there are n men and n

women, for any given constant c > 0, for large enough n, with probability at least 1 − n−c, in
every stable matching, for every i, with rwi

≥ σ ≜ 3L/2, agent mi suffers a loss of at most
L, where L = (16(c + 2) ln n/n)1/3, and similarly for the agents wi.

In words, w.h.p., all but the bottommost agents (those whose aligned agents have public
rating less than σ) suffer a loss of no more than L. This is a special case of our basic upper
bound for the bounded utilities model (Theorem 12).

One of our goals is to be able to limit the number of proposals the proposing side needs to
make. We identify the edges that could be in some stable matching, calling them acceptable
edges. Our definition is stated generally so that it covers all our results; accordingly we
replace the terms L and σ in Theorem 6 with parameters L and σ.

▶ Definition 7 (Acceptable edges). Let 0 < σ < 1 and 0 < L < 1 be two parameters. An edge
(mi, wj) is (L, σ)-man-acceptable either if it provides mi utility at least U(rwi

, 1) − L, or if
mi ∈ M [0, σ). The definition of (L, σ)-woman-acceptable is symmetric. Finally, (mi, wj) is
(L, σ)-acceptable if it is both (L, σ)-man and (L, σ)-woman-acceptable.

To prove our various results, we choose L and σ so that w.h.p. the edges in every stable
matching are (L, σ)-acceptable. We call this high probability event E . We will show that if E
occurs, then running DA on the set of acceptable edges, or any superset of the acceptable
edges obtained via loss thresholds, produces the same stable matching as running DA on the
full set of edges.

▶ Theorem 8. If E occurs, then running woman-proposing DA with the edge set restricted
to the acceptable edges or to any superset of the acceptable edges obtained via loss thresholds
(including the full edge set) result in the same stable matching.

The implication is that w.h.p. a woman can safely restrict her proposals to her acceptable
edges, or to any overestimate of this set of edges obtained by her setting an upper bound
on the loss she is willing to accept. There is a small probability – at most n−c – that this
may result in a less good outcome, which can happen only if E does not occur. Note that
Theorem 8 applies to every utility model we consider. Then, w.h.p., every stable matching
gives each woman w, whose aligned agent m has public rating rm ≥ σ = Ω((ln n/n)1/3), a
partner with public rating in the range [rm −2L, rm + 5

2 L] (see Theorem 25 in Appendix F.1).
The bound rm − 2L is a consequence of the bound on the woman’s loss; the bound rm + 5

2 L

is a consequence of the bound on the men’s losses. An analogous statement applies to the
men.

ICALP 2023

8:8 Stable Matching: Choosing the Proposals

This means that if we are running woman-proposing DA, each of these women might
as well limit her proposals to her woman-acceptable edges, which is at most the men with
public ratings in the range rm ± Θ(L) for whom she has private scores of at least 1 − Θ(L).
In expectation, this yields Θ(n1/3(ln n)2/3) men to whom it might be worth proposing. It
also implies that a woman can have a gain of at most Θ(L) compared to her target utility.

If, in addition, each man can inexpensively signal the women who are man-acceptable
to him, then the women can further limit their proposals to just those men providing them
with a signal; this reduces the expected number of proposals these women can usefully make
to just Θ(ln n).

4 Sketch of the Proof of Theorem 6

◦rating rmi , man mi ◦ woman wi

Mi = [rmi
− α, 1]

hi men, rating range α

ℓi women

men women

cutoff rmi − α

W̃i = W [rwi
, 1]

◦
woman wi = wi+ℓi

Figure 1 Illustrating Lemma 11.

We begin by outlining the main ideas used in our analysis. Our goal is to show that when
we run woman proposing DA, w.h.p. each man receives a proposal that gives him a loss of
at most L (except possibly for men among the bottommost Θ(nL)). As the outcome is the
man-pessimal stable matching, this means that w.h.p., in all stable matchings, these men
have a loss of at most L. By symmetry, the same bound holds for the women.

Next, we provide some intuition for the proof of this result. See Fig. 1. Our analysis uses
3 parameters α, β, γ = Θ(L). Let mi be a non-bottommost man. We consider the set of
men with public rank at least rmi

− α: Mi = M [rmi
− α, 1]. We consider a similar, slightly

larger set of women: W̃i = W [rwi
− 3α, 1]. Now we look at the best proposals by the women

in W̃i, i.e. the ones they make first. Specifically, we consider the proposals that give these
women utility at least V (rmi − α, 1), proposals that are therefore guaranteed to be to the
men in Mi. Let

∣∣Mi

∣∣ = i + hi and
∣∣Wi

∣∣ = i + ℓi. In expectation, ℓi − hi = 2αn. Necessarily,
at least ℓi − hi + 1 women in Mi cannot match with men in Mi \ {mi}. But, as we will see,
these women all have probability at least β of having a proposal to mi which gives them
utility at least V (rmi − α, 1). These are proposals these women must make before they make
any proposals to men with public rating less than rmi

− α. Furthermore, for each of these
proposals, mi has probability at least γ of having a loss of L or less. Thus, in expectation,
mi receives at least 2αβγn proposals which give him a loss of L or less.

We actually want a high-probability bound. So we choose α, β, γ so that αβγn ≥ c log n for
a suitable constant c > 0, and then apply a series of Chernoff bounds. There is one difficulty.
The Chernoff bounds requires the various proposals to be independent. Unfortunately, in

I. Agarwal and R. Cole 8:9

general, this does not appear to be the case. However, we are able to show that the failure
probability for our setting is at most the failure probability in an artificial setting in which
the events are independent, which yields the desired bound.

We now embark on the actual proof.
We formalize the men’s rating cutoff with the notion of DA stopping at public rating r.

▶ Definition 9 (DA stops). The women stop at public rating r if, in each woman’s preference
list, all the edges with utility less than V (r, 1) are removed. The women stop at man m if, in
each woman’s preference list, all the edges following her edge to m are removed. The women
double cut at man m and public rating r, if they each stop at m or r, whichever comes first.
Men stopping and double cutting are defined similarly. Finally, an edge is said to survive the
cutoff if it is not removed by the stopping.

To obtain our bounds for man mi, we will have the women double cut at rating rmi − α

and at man mi, where α > 0 is a parameter we will specify later.
Our upper bounds in all of the utility models depend on a parameterized key lemma

(Lemma 11) stated shortly. This lemma concerns the losses the men face in the woman-
proposing DA; a symmetric result applies to the women. The individual theorems follow by
setting the parameters appropriately. Our key lemma uses three parameters: α, β, γ > 0. To
avoid rounding issues, we will choose α so that αn is an integer. The other parameters need
to satisfy the following constraints.

for r ≥ α: V (r − α, 1) ≤ V (r, 1 − β) (1)
for r ≥ 3α: U(r, 1) − U(r − 3α, 1 − γ) ≤ L (2)

Equation (1) relates the range of private values that will yield a woman an edge to mi

that survives the cut at rmi
− α, or equivalently the probability of having such an edge.

Observation 10 below, shows that Equation (2) identifies the range of mi’s private values for
proposals from W̃i that yield him a loss of at most L (for we will ensure the women in W̃i

have public rating at least rwi
− 3α).

▶ Observation 10. Consider the proposal from woman w to the rank i man mi. Suppose the
rank i woman wi has rating rwi

≥ 3α. If w has public rating r ≥ rwi
− 3α and mi’s private

score for w is at least 1−γ, then mi’s utility for w is at least U(rwi −3α, 1−γ) ≥ U(rwi , 1)−L.

In the linear separable model with λ = 1
2 , we set α = β = γ and L = 2α.

The next lemma determines the probability that man mi receives a proposal causing him
a loss of at most L. The lemma calculates this probability in terms of the parameters we
just defined. Note that the result does not depend on the utility functions U(·, ·) and V (·, ·)
being linear. In fact, the same lemma applies to much more general utility models which we
also study (see Appendix C) and it is the crucial tool we use in all our upper bound proofs.

In what follows, to avoid heavy-handed notation, by rmi
−α we will mean max{0, rmi

−α}.
In order to state our next result crisply, we define the following Event Ei. It concerns

a run of woman-proposing DA with double cut at the rank i man mi and at public rating
rmi

− α. Let hi =
∣∣M [rmi

− α, rmi
)
∣∣, ℓi =

∣∣W [rwi
− 3α, rwi

)
∣∣, and wi be the woman with

rank i + ℓi. See Figure 1 for an illustration of these definitions. Event Ei occurs if rwi ≥ 3α

and between them the i + ℓi women in W [rwi
− 3α, 1] make at least one proposal to mi that

causes him a loss of at most L.
Finally we define Event E : it happens if Ei occurs for all i such that rwi

≥ 3α.

ICALP 2023

8:10 Stable Matching: Choosing the Proposals

▶ Lemma 11. Let α > 0 and L > 0 be given, and suppose that β and γ satisfy (1) and
(2), respectively. Then, Event E occurs with probability at least 1 − pf , where the failure
probability

pf = n ·exp(−α(n − 1)/12)+n ·exp(−α(n − 1)/24)+n exp(−αβn/8)+n ·exp(−αβγn/2).

The following simple claim notes that the men’s loss when running the full DA is no larger
than when running double-cut DA.

▷ Claim 12. Suppose a woman-proposing double-cut DA at man mi and rating rmi
− α is

run, and suppose mi incurs a loss of L. Then in the full run of woman-proposing DA, mi

will incur a loss of at most L.

Proof. Recall that when running the women-proposing DA the order in which unmatched
women are processed does not affect the outcome. Also note that as the run proceeds,
whenever a man’s match is updated, the man obtains an improved utility. Thus, in the run
with the full edge set we can first use the edges used in the double-cut DA and then proceed
with the remaining edges. Therefore if in the double-cut DA mi has a loss of L, in the full
run mi will also have a loss of at most L. ◁

To illustrate how this lemma is applied, we now prove Theorem 6. Note that L is the
value of L used in this theorem. Our other results use other values of L.

Proof of Theorem 6. By Lemma 11, in the double-cut DA, for all i with rwi
≥ 3α, mi

obtains a match giving him loss at most L, with probability at least 1−n·exp(−α(n − 1)/12)−
n · exp(−αn/24) − n exp

(
−α2n/8

)
− n · exp

(
−α3n/2

)
.

By Claim 12, mi will incur a loss of at most L in the full run of woman-proposing DA
with at least as large a probability. But this is the man-pessimal match. Consequently, in
every stable match, mi has a loss of at most L. By symmetry, the same bound applies to
each woman wi such that rmi ≥ 3α.

We choose L = [16(c + 2) ln n/n]1/3. Recalling that α = L/2, we see that for large enough
n the probability bound, over all the men and women, is at most 1 − n−c. The bounds
rwi ≥ 3α and rmi ≥ 3α imply we can set σ = 3α = 3

2 L. ◀

Proof of Lemma 11. We run the double-cut DA in two phases, defined as follows. Recall
that hi =

∣∣M [rmi
− α, rmi

)
∣∣ and ℓi =

∣∣W [rwi
− 3α, rwi

)
∣∣. Note that women with rank at

most i + ℓi have public rating at least rwi − 3α.
Phase 1. Every unmatched woman with rank at most i + ℓi keeps proposing until her next
proposal is to mi, or she runs out of proposals.
Phase 2. Each unmatched women makes her next proposal, if any, which will be a proposal
to mi.

Our analysis is based on the following four claims. The first two are simply observations
that w.h.p. the number of agents with public ratings in a given interval is close to the
expected number. We defer the proofs to the appendix.

A critical issue in this analysis is to make sure the conditioning induced by the successive
steps of the analysis does not affect the independence needed for subsequent steps. To achieve
this, we use the Principle of Deferred Decisions, only instantiating random values as they are
used. Since each successive bound uses a different collection of random variables this does
not present a problem.

I. Agarwal and R. Cole 8:11

▷ Claim 13. Let B1 be the event that for some i, hi ≥ 3
2 α(n − 1). B1 occurs with probability

at most n · exp(−α(n − 1)/12). The only randomness used in the proof are the choices of
the men’s public ratings. The same bound applies to the women.

Proof (Sketch). As E[hi] = α(n − 1), w.h.p., hi < 3
2 α(n − 1). This claim uses a Chernoff

bound with the randomness coming from the public ratings of the men. ◁

▷ Claim 14. Let B2 be the event that for some i, ℓi ≤ 5
2 α(n − 1). B2 occurs with probability

at most n · exp(−α(n − 1)/24). The only randomness used in the proof are the choices of
the women’s public ratings. The same bound applies to the men.

Proof. This is very similar to the proof of Claim 13. ◁

▷ Claim 15. Let B3 be the event that between them, the women with rank at most i + ℓi

make fewer than 1
2 αβn Step 2 proposals to mi. If events B1 and B2 do not occur, then B3

occurs with probability at most exp(−αβn/8). The only randomness used in the proof are
the choices of the women’s private scores.

This bound uses the private scores of the women and employs a novel argument given below
to sidestep the conditioning among these proposals.

▷ Claim 16. If none of the events B1, B2, or B3 occur, then at least one of the Step 2
proposals to mi will cause him a loss of at most L with probability at least 1− (1−γ)αβn/2 ≥
1 − exp(−αβγn/2). The only randomness used in the proof are the choices of the men’s
private scores.

Proof. Note that each Phase 2 proposal is from a woman w with rank at most i + ℓi. As
already observed, her public rating is at least rwi

− 3α. Recall that man mi’s utility for
w equals U(rw, smi(w)) ≥ U(rwi − 3α, smi(w)). To achieve utility at least U(rwi , 1) − L ≤
U(rwi

− 3α, 1 − γ) (using (2)) it suffices to have smi
(w) ≥ 1 − γ, which happens with

probability γ. Consequently, utility at least U(rwi , 1) − L is achieved with probability at
least γ.

For each Phase 2 proposal these probabilities are independent as they reflect mi’s private
scores for each of these proposals. Therefore the probability that there is no proposal
providing mi a loss of at most L is at most(

1 − γ
)αβn/2 ≤ exp(αβγn/2). ◁

Concluding the proof of Lemma 11: The overall failure probability summed over all n choices
of i is

n · exp(−α(n − 1)/12) + n · exp(−α(n − 1)/24) + n exp(−αβn/8) + n · exp(−αβγn/2).
◀

Proof of Claim 15. First, we simplify the action space by viewing the decisions as being made
on a discrete utility space, as specified in the next claim, proved in the appendix.

▷ Claim 17. For any δ > 0, there is a discrete utility space in which for each woman the
probability of selecting mi is only increased, and the probability of having any differences
in the sequence of actions in the original continuous setting and the discrete setting is at
most δ.

ICALP 2023

8:12 Stable Matching: Choosing the Proposals

We represent the possible computations of the double-cut DA in this discrete setting
using a tree T . Each woman will be going through her possible utility values in decreasing
order, with the possible actions of the various women being interleaved in the order given
by the DA processing. Each node u corresponds to a woman w processing her next utility
value. The possible choices at this utility are each represented by an edge descending from u.
These choices are:

i. Proposing to some man (among those men w has not yet proposed to); or
ii. “no action”. This corresponds to w making no proposal achieving the current utility.

We observe the following important structural feature of tree T . Let S be the subtree
descending from the edge corresponding to woman w proposing to mi; in S there are no
further actions of w, i.e. no nodes at which w makes a choice, because the double cut DA
cuts at the proposal to mi.

The assumption that B1 and B2 do not occur means that for all i, hi < 3
2 α(n − 1) and

ℓi > 5
2 α(n − 1), and therefore ℓi − hi > α(n − 1).

At each leaf of T , up to i + hi − 1 women will have been matched with someone other
than mi. The other women either finished with a proposal to mi or both failed to match
and did not propose to mi. Let w be a woman in the latter category. Then, on the path to
this leaf, w will have traversed edges corresponding to a choice at each discrete utility in the
range [V (rmi

− α, 1), V (1, 1)].
We now create an extended tree, Tx, by adding a subtree at each leaf; this subtree will

correspond to pretending there were no matches; the effect is that each women will take an
action at all their remaining utility values in the range [V (rmi − α, 1), V (1, 1)], except that
in the sub-subtrees descending from edges that correspond to some woman w selecting mi,
w has no further actions. For each leaf in the unextended tree, the probability of the path
to that leaf is left unchanged. The probabilities of the paths in the extended tree are then
calculated by multiplying the path probability in the unextended tree with the probabilities
of each woman’s choices in the extended portion of the tree.

Next, we create an artificial mechanism M that acts on tree Tx. The mechanism M is
allowed to put i + hi − 1 “blocks” on each path; blocks can be placed at internal nodes. A
block names a woman w and corresponds to her matching (but we no longer think of the
matches as corresponding to the outcome of the edge selection; they have no meaning beyond
making all subsequent choices by this woman be the “no action” choice).

DA can be seen as choosing to place up to i + hi − 1 blocks at each of the nodes
corresponding to a leaf of T . M will place its blocks so as to minimize the probability p of
paths with at least 1

2 αβn women choosing edges to mi. Clearly p is a lower bound on the
probability that the double-cut DA makes at least 1

2 αβn proposals in Step 2. Given a choice
of blocks we call the resulting probability of having fewer than 1

2 αβn women choosing edges
to mi the blocking probability.

▷ Claim 18. The probability that M makes at least 1
2 αβn proposals to mi is at least

1 − exp(−αβn/8).

▶ Corollary 19. The probability that the double-cut DA makes at least 1
2 αβn proposals to mi

is at least 1 − exp(−αβn/8).

Proof. For any fixed δ, by Claim 18, the probability that M makes at least 1
2 αβn proposals

to mi is at least 1 − exp(−αβn/8). By construction, the probability is only larger for the
double-cut DA in the discrete space.

I. Agarwal and R. Cole 8:13

Therefore, by Claim 12, the probability that the double-cut DA makes at least 1
2 αβn

proposals to mi in the actual continuous space is at least 1−exp(−αβn/8)−δ, and this holds
for any δ > 0, however small. Consequently, this probability is at least 1 − exp(−αβn/8). ◀

Proof of Claim 18. We will show that the most effective blocking strategy is to block as many
women as possible before they have made any choices. This leaves at least (i+ℓi)−(i−1+hi) ≥
1 + α(n − 1) ≥ αn women unmatched. Then, as we argue next, each of these remaining
at least αn women w has independent probability at least β that their proposal to mi is
cutoff-surviving. To be cutoff-surviving, it suffices that V (rmi

, sw(mi)) ≥ V (rmi
− α, 1).

But we know by (1) that V (rmi − α, 1) ≤ V (rmi , 1 − β), and therefore it suffices that
sw(mi) ≥ 1 − β, which occurs with probability β.

Consequently, in expectation, there are at least αβn proposals to mi, and therefore, by a
Chernoff bound, at least 1

2 αβn proposals with probability at least exp(−αβn/8).
We consider the actual blocking choices made by M and modify them bottom-up in a

way that only reduces the probability of there being 1
2 αβn or more proposals to mi.

Clearly, M can choose to block the same maximum number of women on every path
as it never hurts to block more women (we allow the blocking of women who have already
proposed to mi even though it does not affect the number of proposals to mi).

Consider a deepest block at some node u in the tree, and suppose b women are blocked
at u. Let v be a sibling of u. As this is a deepest block, there will be no blocks at proper
descendants of u, and furthermore as there are the same number of blocks on every path, v

will also have b blocked women.
Observe that if there is no blocking in a subtree, then the probability that a woman

makes a proposal to mi is independent of the outcomes for the other women. Therefore the
correct blocking decision at node u is to block the b women with the highest probabilities of
otherwise making a proposal to mi, which we call their proposing probabilities; the same is
true at each of its siblings v.

Let x be u’s parent. Suppose the action at node x concerns woman w̃x. Note that the
proposing probability for any woman w ̸= w̃x is the same at u and v because the remaining
sequence of actions for woman w is the same at nodes u and v, and as they are independent
of the actions of the other women, they yield the same probability of selecting mi at some
point.

We need to consider a number of cases.
Case 1. w is blocked at every child of x.

Then we could equally well block w at node x.
Case 2. At least one woman other than w̃x is blocked at some child of x.

Each such blocked woman w has the same proposing probability at each child of x.
Therefore by choosing to block the women with the highest proposing probabilities, we
can ensure that at each node either w̃x plus the same b − 1 other women are blocked, or
these b − 1 woman plus the same additional woman w′ ̸= w̃x are blocked. In any event,
the blocking of the first b − 1 women can be moved to x.
Case 2.1. w̃x is not blocked at any child of x.

Then the remaining identical blocked woman at each child of x can be moved to x.
Case 2.2. w̃x is blocked at some child of x but not at all the children of x.

Notice that we can avoid blocking w̃x at the child u of x corresponding to selecting
mi, as the proposing probability for w̃x after it has selected mi is 0, so blocking any
other women would be at least as good. Suppose that w ̸= w̃x is blocked at node u.

Let v be another child of x at which w̃x is blocked. Necessarily, p
v,w̃x

, the proposing
probability for w̃x at node v, is at least the proposing probability pv,w for w at node v (for

ICALP 2023

8:14 Stable Matching: Choosing the Proposals

otherwise w would be blocked at node v); also, pv,w equals the proposing probability for w

at every child of x including u; in addition, p
v,w̃x

equals the proposing probability for w̃x at
every child of x other than u. It follows that w is blocked at u and w̃x can be blocked at
every other child of x. But then blocking w̃x at x only reduces the proposing probability.

Thus in every case one should move the bottommost blocking decisions at a collection of
sibling nodes to a single blocking decision at their parent. ◁

◁

5 Making Fewer Proposals

We identify a sufficient set of edges that contains all stable matchings, and on which the DA
algorithm produces the same outcome as when it runs on the full edge set.

▶ Definition 20 (Viable edges). An edge (m, w) is man-viable if, according to m’s preferences,
w is at least as good as the woman he is matched to in the man-pessimal stable match. Woman-
viable is defined symmetrically. An edge is viable if it is both man and woman-viable. Ev is
the set of all viable edges.

▶ Lemma 21. Running woman-proposing DA with the edge set restricted to Ev and with any
superset obtained via loss thresholds, including the full edge set, results in the same stable
matching.

Proof. Suppose a new stable matching, S, now exists in the restricted edge set: it could not
be present when using the full edge set, therefore there must be a blocking edge (m, w) in
the full edge set. But neither m nor w would have removed this edge when forming their
restricted edge set since for both of them it is better than an edge they did not remove (the
edge they are matched with in S).

It follows that w.h.p. the set of stable matchings is the same when using Ev (or any
super set of it generated by truncation with larger loss thresholds) and the whole set. Thus
woman-proposing DA run on the restricted edge set will yield the same stable matching as
on the full edge set. ◀

Proof of Theorem 8. If E occurs, the set of acceptable edges contains all the viable edges.
Furthermore, the acceptable edges are defined by means of loss thresholds. The result now
follows from Lemma 21. ◀

For some of the very bottommost agents, almost all edges may be acceptable. However,
in the bounded derivatives model, with slightly stronger constraints on the derivatives, we
also show (see Appendix H) the existence of an ϵ-Bayes-Nash equilibrium in which all but
a bottom Θ((ln n/n)1/3) fraction of agents use only Θ(ln n) edges, and all agents propose
using at most Θ(ln2 n) edges, with ϵ = O(ln n/n1/3).

6 Numerical Simulations

We present several simulation results which are complementary to our theoretical results.
Throughout this section, we focus on the linear separable model.

I. Agarwal and R. Cole 8:15

6.1 NRMP Data
We used NRMP data to motivate some of our choices of parameters for our simulations. The
NRMP provides extensive summary data [19]. We begin by discussing this data.

Over time, the number of positions and applicants has been growing. We mention
some numbers for 2021. There were over 38,000 positions available and a little over 42,000
applicants. The main match using the DA algorithm (modified to allow for couples, who
comprise a little over 5% of the applicants) filled about 95% of the available positions.
The NRMP also ran an aftermarket, called SOAP, after which about 0.5% of the positions
remained unfilled.

The positions cover many different specialities. These specialities vary hugely in the
number of positions available, with the top 11, all of size at least 1,000, accounting for 75% of
the positions. In addition, about 75% of the doctors apply to only one speciality. We think
that as a first approximation, w.r.t. the model we are using, it is reasonable to view each
speciality as a separate market. Accordingly, we have focused our simulations on markets
with 1,000–2,000 positions (though the largest speciality in the NRMP data had over 9,000
positions).

On average, doctors listed 12.5 programs in their preference lists, hospital programs listed
88 doctors, and the average program size was 6.5 (all numbers are approximate). While
there is no detailed breakdown of the first two numbers, it is clear they vary considerably
over the individual doctors and hospitals. For our many-to-one simulations we chose to use a
fixed size for the hospital programs. Our simulations cause the other two numbers to vary
over the individual doctors and programs because the public ratings and private scores are
chosen by a random process.

6.2 Numbers of Available Edges
The first question we want to answer is how long do the preference lists need to be in order to
have a high probability of including all acceptable edges, for all but the bottommost agents?

We chose bottommost to mean the bottom 20% of the agents, based on where the needed
length of the preference lists started to increase in our experiments for n = 1,000–2,000.

We ran experiments with λ = 0.5, 0.67, 0.8, corresponding to the public rating having
respectively equal, twice, and four times the weight of the private scores in their contribution
to the utility. We report the results for λ = 0.8. The edge sets were larger for smaller values
of λ, but the results were qualitatively the same. We generated 100 random markets and
determined the smallest value of L that ensured all agents were matched in all 100 markets.
L = 0.12 sufficed. In Figure 2, we show results by decile of women’s rank (top 10%, second
10%, etc.), specifically the average length of the preference list and the average number of
edges proposed by a woman in woman-proposing DA, over these 100 randomly generated
markets. We also show the max and min values over the 100 runs; these can be quite far
from the average value. Note that the min values in Figure 2(a) are close to the max values
in Figure 2(b), which suggests that being on the proposing side does not significantly reduce
the value of L that the women could use compared to the value the men use. We also show
data for a typical single run in Figure 3.

We repeated the simulation for the many-to-one setting. In Figure 4, we show the results
for 2000 workers and 250 companies, each with 8 positions. Now, on average, a typical worker
(i.e. among the top 80%) has an average preference list length of 55 and makes 7 proposals.

The one-to-one results show that for non-bottommost agents, the preference lists have
length 150 on the average, while women make 30 proposals on the average (these numbers

ICALP 2023

8:16 Stable Matching: Choosing the Proposals

(a) Number of edges in the acceptable edge set,
per woman, by decile; average in blue with circles,
minimum in red with stars. (n = 2,000, λ = 0.8,
L = 0.12.)

(b) Number of edges in the acceptable edge set
proposed during the run of DA, per women, by
decile; average in blue with circles, maximum in
red with stars.

Figure 2 One-to-one case: summary statistics.

(a) Number of edges in the acceptable edge set for
each woman.

(b) Number of edges in the acceptable edge set
proposed by each woman.

Figure 3 One-to-one case: a typical run.

are slightly approximate). What is going on? We believe that the most common matches
provide a small loss or gain (Θ(n−1/3) in our theoretical bounds) as opposed to the maximum
loss possible (Θ(n−1/3 ln1/3 n) in our theoretical bounds), as is indicated by our distribution
bound on the losses (see item 4 in Appendix E.1). The question then is where do these edges
occur in the preference list, and the answer is about one fifth of the way through (for one
first has the edges providing a gain, which only go to higher up agents on the opposite side,
and then one has the edges providing a loss, and these go both up and down). However, a
few of the women will need to go through most of their list, as indicated by the fact that the
max and min lines (for example in Figure 4) roughly coincide.

This effect can also be seen in the many-to-one experiment but it is even more stark on
the worker’s side. The reason is that the number of companies with whom a worker w might
match which are above w, based on their public ratings alone, is Θ(Lcnc), while the number
below w is Θ(Lwnc), a noticeably larger number. (See Appendix F.1 for a proof of these
bounds.) The net effect is that there are few edges that provide w a gain, and so the low-loss
edges, which are the typical matches, are reached even sooner in this setting.

Now we turn to why the number of edges in the available edge set per woman changes at
the ends of the range. There are two factors at work. The first factor is due to an increasing
loss bound as we move toward the bottommost women, which increases the sizes of their
available edge sets. The second factor is due to public ratings. For a woman w the range of
men’s public ratings for its acceptable edges is [rm − Θ(L), rm + Θ(L)], where m is aligned
with w. But at the ends a portion of this range will be cut off, reducing the number of

I. Agarwal and R. Cole 8:17

(a) Many to One Setting: Number of edges in the
acceptable edge set per worker, by decile; average
in blue with circles, minimum in red with stars.
(nw = 2,000, d = 8, λ = 0.8, Lc = 0.14, Lw =
0.24.)

(b) Number of edges in the acceptable edge set
proposed during the run of DA, per worker, by
decile; average in blue with circles, maximum in
red with stars.

Figure 4 Many to One Setting.

acceptable edges, with the effect more pronounced for low public ratings. Because λ = 0.8,
initially, as we move to lower ranked women, the gain due to increasing the loss bound
dominates the loss due to a reduced public rating range, but eventually this reverses. Both
effects can be clearly seen in Figure 3(a), for example.

6.3 Unique Stable Partners

Another interesting aspect of our simulations is that they showed that most agents have a
unique stable partner. This is similar to the situation in the popularity model when there
are short preference lists, but here this result appears to hold with full length preference
lists. In Figure 5, we show the outcome on a typical run and averaged over 100 runs, for
n = 2,000 in the one-to-one setting. We report the results for the men, but as the setting is
symmetric they will be similar for the women. On the average, among the top 90% of agents
by rank, 0.5% (10 of 1,800) had more than one stable partner, and among the remainder
another 2% had multiple stable partners (40 of 200).

Also, as suggested by the single run illustrated in Figure 5(a), the pair around public
rank 1,600 and the triple between 1,200 and 1,400 have multiple stable partners which
they can swap (or exchange via a small cycle of swaps) to switch between different stable
matchings. This pattern is typical for the very few men with multiple stable partners outside
the bottommost region.

6.4 Constant Number of Proposals

Our many-to-one experiments suggest that the length of the preference lists needed by our
model are larger than those observed in the NRMP data. In addition, even though there is a
simple rule for identifying these edges, in practice the communication that would be needed
to identify these edges may well be excessive. In light of this it is interesting to investigate
what can be done when the agents have shorter preference lists.

We simulated a strategy where the workers’ preference lists contain only a constant
number of edges. We construct an Interview Edge Set which contains the edges (w, c)
satisfying the following conditions:
1. Let rw and rc be the public ratings of w and c respectively. Then |rw − rc| ≤ p.

ICALP 2023

8:18 Stable Matching: Choosing the Proposals

(a) Public ranks of men with multiple stable part-
ners in a typical run.

(b) Average numbers of men with multiple stable
partners, by decile.

Figure 5 Unique stable partners, one-to-one setting.

2. The private score w has for c as well as the private score of c for w are both greater
than q.

We choose the parameters p and q so as to have 15 edges per agent on average. Many
combinations of p and q would work. We chose a pair that caused relatively few mismatches.
We then ran worker proposing DA on the Interview Edge Set.

One way of identifying these edges is with the following communication protocol: the
workers signal the companies which meet their criteria (the workers’ criteria); the companies
then reply to those workers who meet their criteria. In practice this would be a lot of com-
munication on the workers’s side, and therefore it may be that an unbalanced protocol where
the workers use a larger qw as their private score cutoff and the companies a correspondingly
smaller qc is more plausible. Clearly this will affect the losses each side incurs when there is a
match, but we think it will have no effect on the non-match probability, and as non-matches
are the main source of losses, we believe our simulation is indicative. We ran the above
experiment with p = 0.19 and q = 0.60, with the company capacity being 8. Figure 6(a)
shows the locations of unmatched workers in a typical run of this experiment while 6(b)
shows the average numbers of unmatched workers per quantile (of public ratings) over 100
runs. We observe that the number of unmatched workers is very low (about 1.5% of the
workers) and most of these are at the bottom of the public rating range.

Figure 6(c) compares the utility obtained by the workers in the match obtained by
running worker-proposing DA on the Interview Edge Set to the utility they obtain in the
worker-optimal stable match. We observe that only a small number of workers have a
significantly worse outcome when restricted to the Interview Edge Set.

(a) Public ranks of unmatched
workers in a typical run.

(b) Average numbers of un-
matched workers by public rat-
ing decile.

(c) Distribution of workers’
utilities with worker-proposing
DA: (full edge set result) –
(Interview edge set result).

Figure 6 Constant number of proposals.

I. Agarwal and R. Cole 8:19

7 Discussion and Open Problems

Our work shows that in the bounded derivatives model, apart from a sub-constant fraction
of the agents, each of the other agents has O(ln n) easily identified edges on their preference
list which cover all their stable matches w.h.p.

As described in Section 6, our experiments for the one-to-one setting yield a need for
what appear to be impractically large preference lists. While the results in the many-to-one
setting are more promising, even here the preference lists appear to be on the large side.
Also, while our rule for identifying the edges to include is simple, in practice it may well
require too much communication to identify these edges. At the same time, our outcome is
better than what is achieved in practice: we obtain a complete match with high probability,
whereas in the NRMP setting a small but significant percentage of positions are left unfilled.
Our conclusion is that it remains important to understand how to effectively select smaller
sets of edges.

In the popularity model, it is reasonable for each agent to simply select their favorite
partners. But in the current setting, which we consider to be more realistic, it would be an
ineffective strategy, as it would result in most agents remaining unmatched. Consequently,
we believe the main open issue is to characterize what happens when the number of edges k

that an agent can list is smaller than the size of the allowable edge set. We conjecture that
following a simple protocol for selecting edges to list, such as the one we use in our experiments
(see Section 6.4), will lead to an ϵ-Bayes-Nash equilibrium, where ϵ is a decreasing function
of k. Strictly speaking, as the identification of allowable edges requires communication, we
need to consider the possibility of strategic communication, and so one would need to define
a notion of ϵ-equilibrium akin to a Subgame Perfect equilibrium. We conjecture that even
with this, it would still be an ϵ-equilibrium.

Finally, it would be interesting to resolve whether the experimentally observed near
uniqueness of the stable matching for non-bottom agents is a property of the linear separable
model. We conjecture that in fact it also holds in the bounded derivatives model.

References
1 Atila Abdulkadiroğlu, Parag A. Pathak, and Alvin E. Roth. The new york city high

school match. American Economic Review, 95(2):364–367, May 2005. doi:10.1257/
000282805774670167.

2 Itai Ashlagi, Mark Braverman, Yash Kanoria, and Peng Shi. Clearing matching markets
efficiently: Informative signals and match recommendations. Management Science, 66(5):2163–
2193, 2019. doi:10.1287/mnsc.2018.3265.

3 Itai Ashlagi, Yash Kanoria, and Jacob D. Leshno. Unbalanced random matching markets: The
stark effect of competition. Journal of Political Economy, 125(1), 2017. doi:10.1086/689869.

4 Peter Coles, Alexey Kushnir, and Muriel Niederle. Preference signaling in matching markets.
American Economic Journal: Microeconomics, 5(2):99–134, May 2013. doi:10.1257/mic.5.2.
99.

5 D. Gale and L. S. Shapley. College admissions and the stability of marriage. The American
Mathematical Monthly, 69(1):9–15, 1962. URL: http://www.jstor.org/stable/2312726.

6 Hugo Gimbert, Claire Mathieu, and Simon Mauras. Incentives in popularity-based random
matching markets, 2019. arXiv:1904.03890v1.

7 Yannai A. Gonczarowski, Noam Nisan, Lior Kovalio, and Assaf Romm. Matching for the
israeli “Mechinot” gap-year programs: Handling rich diversity requirements. In Proceedings of
the 2019 ACM Conference on Economics and Computation, EC ’19, page 321, New York, NY,
USA, 2019. Association for Computing Machinery. doi:10.1145/3328526.3329620.

ICALP 2023

https://doi.org/10.1257/000282805774670167
https://doi.org/10.1257/000282805774670167
https://doi.org/10.1287/mnsc.2018.3265
https://doi.org/10.1086/689869
https://doi.org/10.1257/mic.5.2.99
https://doi.org/10.1257/mic.5.2.99
http://www.jstor.org/stable/2312726
https://arxiv.org/abs/1904.03890v1
https://doi.org/10.1145/3328526.3329620

8:20 Stable Matching: Choosing the Proposals

8 Yannai A. Gonczarowski, Noam Nisan, Rafail Ostrovsky, and Will Rosenbaum. A stable
marriage requires communication. In Proceedings of the Twenty-Sixth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’15, pages 1003–1017, USA, 2015. Society for
Industrial and Applied Mathematics.

9 Avinatan Hassidim, Assaf Romm, and Ran I. Shorrer. Redesigning the israeli psychology
master’s match. American Economic Review, 107(5):205–09, May 2017. doi:10.1257/aer.
p20171048.

10 Nicole Immorlica and Mohammad Mahdian. Incentives in large random two-sided markets.
ACM Trans. Econ. Comput., 3(3), June 2015. doi:10.1145/2656202.

11 Yash Kanoria, Seungki Min, and Pengyu Qian. In which matching markets does the short
side enjoy an advantage? In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1374–1386. SIAM, 2021.

12 Donald E. Knuth. Mariages stables et leurs relations avec d’autres problèmes combinatoires
: introduction à l’analyse mathémathique des algorithmes. Les Presses de l’Université de
Montréal, 1976.

13 Donald E. Knuth. Stable Marriage and Its Relation to Other Combinatorial Problems: An
Introduction to the Mathematical Analysis of Algorithms, volume 10. CRM Proceedings &
Lecture Notes, 1996.

14 Donald E Knuth, Rajeev Motwani, and Boris Pittel. Stable husbands. Random Structures &
Algorithms, 1(1):1–14, 1990.

15 Fuhito Kojima and Parag A. Pathak. Incentives and stability in large two-sided matching
markets. American Economic Review, 99(3):608–27, June 2009. doi:10.1257/aer.99.3.608.

16 Ron Kupfer. The influence of one strategic agent on the core of stable matchings. In WINE,
2020.

17 SangMok Lee. Incentive compatibility of large centralized matching markets. The Review of
Economic Studies, 84(1):444–463, 2016.

18 Stephan Mertens. Random stable matchings. Journal of Statistical Mechanics: Theory and
Experiment, 2005, October 2005. doi:10.1088/1742-5468/2005/10/P10008.

19 nrmp.org. Results and data, 2021 main residency match, May 2021. URL: https://www.nrmp.
org/match-data-analytics/residency-data-reports/.

20 Boris Pittel. The average number of stable matchings. SIAM Journal on Discrete Mathematics,
2(4):530–549, 1989.

21 Boris Pittel. On Likely Solutions of a Stable Marriage Problem. The Annals of Applied
Probability, 2(2):358–401, 1992. doi:10.1214/aoap/1177005708.

22 Boris Pittel. On likely solutions of the stable matching problem with unequal numbers of men
and women. Mathematics of Operations Research, 44(1):122–146, 2019.

23 Boris Pittel, Larry Shepp, and Eugene Veklerov. On the number of fixed pairs in a random
instance of the stable marriage problem. SIAM Journal on Discrete Mathematics, 21(4):947–
958, 2008.

24 Ignacio Rios, Tomás Larroucau, Giorgiogiulio Parra, and Roberto Cominetti. Improving
the chilean college admissions system. Operations Research, 69(4):1186–1205, 2021. doi:
10.1287/opre.2021.2116.

25 Alvin E. Roth and Elliott Peranson. The redesign of the matching market for american
physicians: Some engineering aspects of economic design. American Economic Review,
89(4):748–780, September 1999. doi:10.1257/aer.89.4.748.

26 Ran I. Shorrer. Simultaneous search: Beyond independent successes. In Proceedings of the
2019 ACM Conference on Economics and Computation, EC ’19, pages 347–348, New York,
NY, USA, 2019. Association for Computing Machinery. doi:10.1145/3328526.3329599.

https://doi.org/10.1257/aer.p20171048
https://doi.org/10.1257/aer.p20171048
https://doi.org/10.1145/2656202
https://doi.org/10.1257/aer.99.3.608
https://doi.org/10.1088/1742-5468/2005/10/P10008
https://www.nrmp.org/match-data-analytics/residency-data-reports/
https://www.nrmp.org/match-data-analytics/residency-data-reports/
https://doi.org/10.1214/aoap/1177005708
https://doi.org/10.1287/opre.2021.2116
https://doi.org/10.1287/opre.2021.2116
https://doi.org/10.1257/aer.89.4.748
https://doi.org/10.1145/3328526.3329599

Expander Decomposition with Fewer Inter-Cluster
Edges Using a Spectral Cut Player
Daniel Agassy
Tel Aviv University, Israel

Dani Dorfman
Tel Aviv University, Israel

Haim Kaplan
Tel Aviv University, Israel

Abstract
A (ϕ, ϵ)-expander decomposition of a graph G (with n vertices and m edges) is a partition of V
into clusters V1, . . . , Vk with conductance Φ(G[Vi]) ≥ ϕ, such that there are at most ϵm inter-cluster
edges. Such a decomposition plays a crucial role in many graph algorithms. We give a randomized
Õ(m/ϕ) time algorithm for computing a (ϕ, ϕ log2 n)-expander decomposition. This improves upon
the (ϕ, ϕ log3 n)-expander decomposition also obtained in Õ(m/ϕ) time by [Saranurak and Wang,
SODA 2019] (SW) and brings the number of inter-cluster edges within logarithmic factor of optimal.

One crucial component of SW’s algorithm is a non-stop version of the cut-matching game of
[Khandekar, Rao, Vazirani, JACM 2009] (KRV): The cut player does not stop when it gets from the
matching player an unbalanced sparse cut, but continues to play on a trimmed part of the large
side. The crux of our improvement is the design of a non-stop version of the cleverer cut player
of [Orecchia, Schulman, Vazirani, Vishnoi, STOC 2008] (OSVV). The cut player of OSSV uses a
more sophisticated random walk, a subtle potential function, and spectral arguments. Designing
and analysing a non-stop version of this game was an explicit open question asked by SW.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases Exapander Decomposition, Cut-Matching Game

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.9

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2205.10301 [1]

Funding Israel science foundation (ISF) grant 1595/19, Israel science foundation (ISF) grant 2854/20,
and the Blavatnik research foundation.

1 Introduction

The conductance of a cut (S, V \ S) is ΦG(S, V \ S) = |E(S,V \S)|
min(vol(S),vol(V \S)) , where vol(S) is

the sum of the degrees of the vertices of S. The conductance of a graph G is the smallest
conductance of a cut in G.

A (ϕ, ϵ)-expander decomposition of a graph G is a partition of the vertices of G into clusters
V1, . . . , Vk with conductance Φ(G[Vi]) ≥ ϕ such that there are at most ϵm inter-cluster edges,
where ϕ, ϵ ≥ 0. We consider the problem of computing in almost linear time (Õ(m) time)
a (ϕ, ϵ)-expander decomposition for a given graph G and ϕ > 0, while minimizing ϵ as a
function of ϕ. It is known that a (ϕ, ϵ)-expander decomposition, with ϵ = O(ϕ log n), always
exists and that ϵ = Θ(ϕ log n) is optimal [23, 2].

Expander decomposition algorithms have been used in many cutting edge results, such
as directed/undirected Laplacian solvers [27, 11], graph sparsification [9, 10], distributed
algorithms [6], and maximum flow algorithms [15]. Expander decomposition was also used [10]

EA
T
C
S

© Daniel Agassy, Dani Dorfman, and Haim Kaplan;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 9; pp. 9:1–9:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ICALP.2023.9
https://arxiv.org/abs/2205.10301
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2 Expander Decomposition with Fewer Inter-Cluster Edges Using a Spectral Cut Player

(in the deterministic case) in order to break the O (
√
n) dynamic connectivity bound and

achieve an improved running time of O(no(1)) per operation. It was also used in the recent
breakthrough result by Chen et al. [8], who showed algorithms for maximum flow and
minimum cost flow in almost linear time.

Given an f(n)-approximation algorithm for the problem of finding a minimum conductance
cut, one can get a (ϕ,O(f(n) · ϕ log n))-expander decomposition algorithm by recursively
computing approximate cuts (and thus splitting V) until all components are certified as
expanders. In particular, using an exact minimum conductance cut algorithm ensures the
existence of an expander decomposition with ϵ = O (ϕ log n) as mentioned above. Using the
polynomial algorithms of [20, 4] which provide the best approximation ratios of O

(√
ϕ
)

and
O
(√

log n
)
, respectively, for conductance, gives polynomial time expander decomposition

algorithms with ϵ = O
(
ϕ3/2 log n

)
and ϵ = O

(
ϕ log

3
2 n
)

. However, these decomposition
algorithms might lead to a linear recursion depth, and therefore have superlinear time
complexity.

To get a near linear time algorithm using this recursive approach, one must be able to
efficiently compute low conductance cuts with additional guarantees. We get such cuts using
the cut-matching framework of [16] (abbreviated as KRV). In order to present our results in
the appropriate context we now give a brief background on the cut-matching framework.

Cut-matching. Edge-expansion is a connectivity measure related to conductance. The
edge-expansion of a cut (S, V \ S) is hG(S, V \ S) = |E(S,V \S)|

min(|S|,|V \S|) and the edge-expansion of
a graph G is the smallest edge-expansion of a cut in G.

The cut-matching game is a technique that reduces the approximation task for sparsest
cut (in terms of edge-expansion) to a polylogarithmic number of maximum flow problems.
The resulting approximation algorithm for sparsest cut is remarkably simple and robust.

The cut-matching game is played between a cut player and a matching player, as follows.
We start with an empty graph G0 on n vertices. At round t, the cut player chooses a bisection
(St, St) of the vertices (we assume n is even). In response, the matching player presents a
perfect matching Mt between the vertices of St and St and the game graph is updated to
Gt = Gt−1 ∪ Mt. Note that this graph may contain parallel edges. The game ends when
Gt is a sufficiently good edge-expander. The goal of this game is to devise a strategy for
the cut player that maximizes the ratio r(n) := ϕ/T , where T is the number of rounds and
ϕ = h(GT) is the edge-expansion of GT . KRV showed that one can translate a cut strategy of
quality r(n) into a sparsest cut algorithm of approximation ratio 1/r(n) by applying a binary
search on a sparsity parameter ϕ until we certify that h(G) ≥ ϕ and h(G) = O(ϕ/r(n)).

KRV devised a randomized cut-player strategy that finds the bisection using a stochastic
matrix that corresponds to a random walk on all previously discovered matchings. Their walk
traverses the previous matchings in order and with probability half takes a step according to
each matching. They showed that the matrix corresponding to this random walk can actually
be embedded (as a flow matrix) into Gt with constant congestion. They terminate when the
random walk matrix is close to uniform (i.e. having constant edge-expansion), resulting in
GT for T = O

(
log2 n

)
, having constant edge-expansion.

Orecchia et al. [21] (abbreviated as OSVV) took the same approach but devised a more
sophisticated random walk and used Cheeger’s inequality [7] in order to show that GT , for
T = O

(
log2 n

)
, has Ω (log n) edge-expansion. That is, they got a ratio of r(n) = Ω

(
1

log n

)
.

Equipped with this background we now get back to expander decomposition, and focus
on the Õ(m/ϕ) time algorithm by Saranurak and Wang [23] (abbreviated as SW). Their
algorithm is randomized, follows the recursive scheme described above, and computes a

D. Agassy, D. Dorfman, and H. Kaplan 9:3

(ϕ, ϕ log3 n)-expander decomposition in O
(

m log4 n
ϕ

)
time. Its number of inter-cluster edges

is off by a factor of O
(
log2 n

)
from optimal and off by a factor of O

(
log

3
2 n
)

from the
aforementioned best achievable polynomial time construction.

One core component of this algorithm is a variation of the cut-matching game (inspired
by Räcke et al. [22]). In this variation, the game graph Gt = (Vt, Et) may lose vertices
(i.e., Vt+1 ⊆ Vt) throughout the game and the objective of the cut player is to make VT

a near expander in GT (see Definition 9). The result of each round does not consist of
a perfect matching in Vt, but rather a subset to remove from Vt and a matching of the
remaining vertices. The game ends either with a balanced cut of low conductance, or with
an unbalanced cut of low conductance, such that the larger side is a near expander. This
allows SW to avoid recurring on the large side of the cut. Indeed, if the cut is balanced, they
run recursively on both sides, and if it is unbalanced, they use the fact that the large side is
a near expander and “trim” it by finding a large subset of this side which is an expander.
Then, they run recursively on the smaller side combined with the “trimmed” vertices. SW’s
analysis of the new cut-matching game is based on the ideas and the potential function of
KRV while carefully taking into account of the shrinkage of the game graph.

An open question, raised by SW, was whether one can adapt the technique of the cut-
matching strategy of OSVV to improve their decomposition. A major obstacle is how to
perform an OSVV-like spectral analysis when we lose vertices throughout the process and
need to bound the near-expansion of the final piece. This is challenging as the analysis of
OSVV is already somewhat more complicated than that of KRV: It uses a different lazy
random walk and a subtle potential to measure progress towards near expansion. Moreover
Cheeger’s inequality is suitable to show high expansion and the object we are targeting is a
near expander.

Our contribution. In this paper we answer this question of SW affirmatively. We present and
analyze an expander decomposition algorithm with a new cut-player inspired by OSVV. This
improves the result of SW and gives a randomized Õ(m/ϕ) time algorithm for computing an
(ϕ, ϕ log2 n)-expander decomposition (Theorem 18). This brings the number of inter-cluster
edges to be off only by O(log n) factor from the best possible.

To achieve this we overcome two main technical challenges: (1) We generalize the lazy
random walk of the cut player of OSVV and the subtle potential tracking its progress, to
the setting in which the vertex set shrinks (by ripping off of it small cuts as in SW). (2) We
show that when the generalized potential is small the remaining part of the game graph is a
near expander. This required a generalization of Cheeger’s inequality appropriate for our
purpose (see Lemma 33).

Our techniques may be applied in similar contexts. One concrete such context is the
construction of tree-cut sparsifiers. Specifically, one could try to use our technique to improve
the O

(
log4 n

)
-approximate tree-cut sparsifier construction of [22] by a factor of log n. (Note

that [22] in fact construct a tree-flow sparsifier, which is a stronger notion.)

The cut-matching framework [16] is formalized for edge-expansion rather than conductance.
Consequently, SW and others whose primary objective is conductance had to transform the
graph into a subdivision-graph in order to use this framework. The subdivision graph is
obtained by adding a new vertex (called a split-node) in the middle of each edge e, splitting
e into a path of length two. Consequently, the analysis has to translate cuts of low expansion
in the modified graph (the subdivision graph) to cuts of low conductance in the original
graph. This transformation complicates the algorithms and their analysis.

ICALP 2023

9:4 Expander Decomposition with Fewer Inter-Cluster Edges Using a Spectral Cut Player

To avoid this transformation we revisit the seminal results of KRV and OSVV and redo
them directly for conductance. This is not trivial and requires subtle changes to the cut
players, and the matching players, and the potentials measuring progress towards a graph
with small conductance. In particular the matching player does not produce a matching
anymore but rather what we call a dG-matching, which is a graph with the same degrees
as G.

Our new cut-matching algorithm is then described using this natural reformulation of the
cut-matching framework directly for conductance, removing the complications that would
have followed from using the split graph.

We believe that our clean presentations of the cut-matching framework for conductance
would prove useful for other applications of cut-matching that require optimization for
conductance rather than expansion.

Further related work. Computing the expansion and the conductance of a graph G is NP-
hard [18, 25], and there is a long line of research on approximating these connectivity measures.
The best known polynomial algorithms for approximating the minimum conductance cut
have either O

(√
log n

)
[4, 24] or O

(√
Φ(G)

)
approximation ratios [20]. Approximation

algorithms for expansion and conductance play a crucial role in algorithms for expander
decomposition [23, 5, 10], expander hierarchies [12, 14], and tree flow sparsifiers [22].

In his thesis, Orecchia [19] elaborates on the two cut-matching strategies described in
OSVV, one based on a lazy random walk, called CNAT, and a more sophisticated one based
on the heat-kernel random walk, called CEXP. Orecchia proves (Theorem 4.1.5 of [19]) that
using CNAT or CEXP , after T = Θ(log2 n) iterations, the graph GT has expansion Ω(log n)
(and thereby conductance Ω

(
1

log n

)
, since it is regular with degrees Θ(log2 n)). Orecchia also

bounds the second largest eigenvalue of the normalized Laplacian of GT . However, Orecchia
does not show how to use cut-matching to get approximation algorithms for the conductance
of G.

In a recent paper [3] Ameranis et al. use a generalized notion of expansion, also mentioned
in [19], where we normalize the number of edges crossing the cut by a general measure
(µ) of the smaller side of the cut. They define a corresponding generalized version of the
cut-matching game, and show how to use a cut strategy for this game to get an approximation
algorithm for two generalized cut problems. They claim that one can construct a cut strategy
for this measure using ideas from [19].1

Both SW and our result can be implemented in Õ(m) time using the recent result of [17],
by replacing Bounded-Distance-Flow (Lemma 21) and the “Trimming Step” of [23] with the
algorithm of [17, Section 8]. This Õ(m) hides many log factors and requires more complicated
machinery.

The structure of this paper is as follows. Section 2 contains additional definitions. In
order to provide the appropriate context for our work, Section 3 gives an overview of the
cut-matching games in [16] and [21] and highlights the differences between them. In the full
version of this paper, we give a complete and self-contained description of these approximation
algorithms directly for conductance. A reader knowledgeable in the Cut-Matching game
can skip directly to Section 4. In Section 4 we present our new non-stop spectral cut player
and expander decomposition algorithm. Section 5 contains the analysis of our algorithm.
Due to the space constraints some of the proofs are omitted, and are available in the full
version of this paper [1].

1 The details of such a cut player do not appear in [3] or [19].

D. Agassy, D. Dorfman, and H. Kaplan 9:5

To be consistent with common terminology we refer to a graph with conductance at least
ϕ as a ϕ-expander (rather than ϕ-conductor.) No confusion should arise since in the rest of
this paper we focus on conductance and do not use the notion of edge-expansion anymore.
In this paper we only focus on unweighted graphs, although our algorithm can be adapted to
the case of integral, polynomially bounded weights.

2 Preliminaries

We denote the transpose of a vector or a matrix x by x′. That is, if v is a column vector
then v′ is the corresponding row vector. For a vector v ∈ Rn

≥0, define
√
v to be vector whose

coordinates are the square roots of those of v. Given A ∈ Rn×n, we denote by A(i, j) the
element at the i’th row and j’th column of A. We denote by A(i,), A(, i) the i’th row and
column of A, respectively. We define both A(i,) and A(, i) as column vectors. We use the
abbreviation A(i) := A(i,) only with respect to the rows of A. Given a vector v ∈ Rn, we
denote its i’th element by v(i). For disjoint A,B ⊆ V , we denote by EG(A,B) the set of
edges connecting A and B. We sometimes omit the subscript when the graph is clear from
the context. If A = V \B, then we call (A,B) a cut.

▶ Fact 1. Let X,Y ∈ Rn×n,m ∈ N, then Tr(XY) = Tr(Y X).

▶ Fact 2. Let X,Y ∈ Rn×n be symmetric matrices and let k ∈ N. Then

Tr
(

(XYX)2k
)

≤ Tr
(
X2k

Y 2k

X2k
)
.

▶ Definition 3 (dG,volG(S)). Given a graph G, the vector dG ∈ Rn is defined as dG(v) =
degG(v). To simplify the notation, we denote d := dG whenever the graph G is clear from
the context. For S ⊆ V , we denote by volG(S) :=

∑
v∈S dG(v) the volume of S.

▶ Definition 4 (G{A}). Let G = (V,E) be a graph, and let A ⊆ V be a set of vertices. We
define the graph G{A} = (V ′, E′) as the graph induced by A with self-loops added to preserve
the degrees: V ′ = A,E′ = {{u, v} ∈ E : u, v ∈ A} ∪ {{u, u} : u ∈ A, v ∈ V \A, {u, v} ∈ E}.

▶ Definition 5 (d-Matching). Given a vector d ∈ Nn and a collection of pairs M =
{(ui, vi)}m

i=1. We say that M is a d-matching if the graph defined by M (i.e., the graph
whose edges are M) satisfies dM (v) = d(v), for every v.

▶ Definition 6 (dG-stochastic). A matrix F ∈ Rn×n is dG-stochastic with respect to a graph
G if the following two conditions hold: (1) F · 1n = dG and (2) 1′

n · F = d′
G.

▶ Definition 7 (Laplacian, Normalized Laplacian). Let A ∈ Rn×n be a symmetric matrix
and let d = A · 1n, D = diag(d). The Laplacian of A is defined as L(A) = D − A. The
normalized-Laplacian of A is defined as N (A) = D− 1

2 L(A)D− 1
2 = I − D− 1

2AD− 1
2 . The

(normalized) Laplacian of an undirected graph is defined analogously using its adjacency
matrix.

▶ Definition 8 (Conductance). Let G = (V,E) and S ⊂ V , S ̸= ∅. The conductance of the
cut (S, V \ S), denoted by ΦG(S, V \ S), is

ΦG(S, V \ S) = |E(S, V \ S)|
min(vol(S),vol(V \ S)) .

The conductance of G is defined to be Φ(G) = minS⊆V ΦG(S, V \ S).

ICALP 2023

9:6 Expander Decomposition with Fewer Inter-Cluster Edges Using a Spectral Cut Player

▶ Definition 9 (Expander, Near-Expander). Let G = (V,E). We say that G is a ϕ-expander
if Φ(G) ≥ ϕ. Let A ⊆ V . We say that A is a near ϕ-expander in G if

min
S⊆A

|E(S, V \ S)|
min(vol(S),vol(A \ S)) ≥ ϕ.

That is, a near expander is allowed to use cut edges that go outside of A. Note that the
above definition applies to both directed and undirected graphs.

▶ Definition 10 (Embedding). Let G = (V,E) be an undirected graph. Let F ∈ RV ×V
≥0 be a

matrix (not necessarily symmetric). We say that F is embeddable in G with congestion c, if
there exists a multi-commodity flow f in G, with |V | commodities, one for each vertex (vertex
v is the source of its commodity), such that, simultaneously for each (u, v) ∈ V × V , f routes
F (u, v) units of u’s commodity from u to v, and the total flow on each edge is at most c. 2

If F is the weighted adjacency matrix of a graph H on the same vertex set V , we say
that H is embeddable in G with congestion c if F is embeddable in G with congestion c.

▶ Lemma 11. Let G,H be two graphs on the same vertex set V . Let A ⊆ V . Let α > 0 be a
constant such that for each v ∈ V , dG(v) = α · dH(v). Assume that H is embeddable in G

with congestion c, and that A is a near ϕ-expander in H. Then, A is a near ϕ
cα -expander

in G.

▶ Corollary 12. Let G,H be two graphs on the same vertex set V . Let α > 0 be a constant
such that for each v ∈ V , dG(v) = α · dH(v). Assume that H is embeddable in G with
congestion c, and that H is a ϕ-expander. Then, G is a ϕ

cα -expander.

Proof. This follows from Lemma 11 by choosing A = V . ◀

3 Approximating conductance via cut-matching

In preparation for our expander decomposition algorithm we give a high level overview of the
conductance approximation algorithms of [16] and [21]. [16] and [21] described their results
for edge-expansion rather than conductance. In the full version of this paper, we give a
complete description and analysis of these algorithms for conductance. This translation from
edge-expansion to conductance is not trivial as both the cut player, the matching player,
and the analysis have to be carefully modified to take the degrees into account. Here we give
a high level overview of the key components of these algorithms and the differences between
them so one can better absorb our main algorithm in Section 4.2.

The cut-matching game of [16] (in the conductance setting) works as follows.

The Cut-Matching game for conductance, with parameters T and a degree vector d:
The game is played on a series of graphs Gi. Initially, G0 = ∅.
In iteration t, the cut player produces two multisets of size m, Lt, Rt ⊆ V , such that
each v ∈ V appears in Lt ∪Rt exactly d(v) times.
The matching player responds with a d-matching Mt that only matches vertices in
Lt to vertices in Rt.
We set Gt+1 = Gt ∪Mt.
The game ends at iteration T , and the quality of the game is r := Φ(GT). Note that
the volume of Gt increases from one iteration to the next.

2 This definition requires to route F (u, v) = F (v, u) both from u to v and from v to u if F is symmetric.

D. Agassy, D. Dorfman, and H. Kaplan 9:7

Given a strategy for the cut player of quality r, one can create a 1
r approximation

algorithm for the conductance of a given graph G. To this end, the matching player has to
provide matchings that can be embedded in G.

The difference between the results of [16] and [21] is mainly in the cut player. They
both run the game for T = Θ(log2 n) iterations but [16]’s cut player achieves quality of
r = Ω

(
1

log2 n

)
whereas [21]’s achieves quality of r = Ω

(
1

log n

)
. Notice that the cut player

produces the stated expansion result in GT regardless of the matchings given by the matching
player.

3.1 KRV’s Cut-Matching Game for Conductance

The cut player implicitly maintains a dG-stochastic flow matrix (i.e., representing flow
demands) Ft ∈ Rn×n, and the graph Gt which is the union of the matchings that it obtained
so far from the matching player (t is the index of the round). The flow Ft and the graph
Gt have two crucial properties. First, we can embed Ft in Gt with O(1) congestion (See
Definition 10). Second, after T = Θ(log2 n) rounds, with high probability, FT will have
constant conductance.3 Since the degrees in GT are factor of O(log2 n) larger than the
degrees in FT (when we think of FT as a weighted graph) then it follows by Corollary 12 that
GT is Ω(1/ log2 n) expander. Note that the cut player is unrelated to the input graph G in
which we would like to approximate the conductance. Its goal is to produce the expander GT .

At the beginning, F0 = D = diag(d), and G0 is the empty graph on V = [n]. The cut
player updates Ft as follows. It draws a random unit vector r ∈ Rn orthogonal to

√
d and

computes the projections ui = 1
d(i) ⟨D− 1

2Ft(i), r⟩.4 The cut player computes these projections
in O(m log2 n) time since the vector of all projections is u := D−1FtD

− 1
2 · r and Ft is defined

(see below) as a multiplication of Θ(log2 n) sparse matrices, each having O(m) non-zero
entries. The cut player sorts the projections as ui1 ≤ ... ≤ uin

. Consider the sequence
Q = (ui1 , ui1 , . . . , ui1 , ui2 , ui2 , . . . , ui2 , . . . , uin , . . . , uin), where each uij appears d(ij) times.
Then, |Q| = 2m. Take Lt ⊆ Q to be the multi-set containing the first m elements, and
Rt = Q \ Lt to be the multi-set containing the last m elements. Define η ∈ R such that
Lt ⊆ {ik : uik

≤ η} and Rt ⊆ {ik : uik
≥ η}. Note that a vertex can appear both in Lt and

in Rt, if uij
= η. For a vertex v ∈ V , denote by mv the number of times v appears in Lt,

and by m̄v the number of times v appears in Rt. That is, except for (maybe) one vertex, for
any v ∈ V , either mv = 0 and m̄v = d(v) or mv = d(v) and m̄v = 0.

The cut player hands out the partition Lt, Rt to the matching player who sends back a dG-
matching Mt (we think of Mt as an n×n matrix with at most m non-zero entries that encodes
the matching) between Lt and Rt. The cut player updates its flow matrix using Mt and
sets Ft+1(v) = 1

2Ft(v)+
∑

(v,u)∈Mt

1
2d(u)Ft(u) (in matrix form Ft+1 = 1

2
(
I +Mt ·D−1)Ft).5

This update keeps Ft a dG-stochastic matrix for all t. The cut player also defines the graph
Gt+1 as Gt+1 = Gt ∪Mt. This completes the description of the cut player of [16] adapted
for conductance.

3 We think about Ft as a weighted graph on V = [n]. The definitions of conductance, expander and
near-expander for weighted graphs are the same as Definitions 8-9 where |E(S, V \ S)| is the sum of the
weights of the edges crossing the cut.

4 Recall that Ft(i) is a column vector.
5 Note that it is possible that some u ∈ V appears in the sum

∑
(v,u)∈Mt

1
2d(u)Ft(u) multiple times, if v

is matched to u multiple times in Mt.

ICALP 2023

9:8 Expander Decomposition with Fewer Inter-Cluster Edges Using a Spectral Cut Player

The matching player constructs an auxiliary flow problem on G′ := G ∪ {s, t}, where s is
a new vertex which would be the source and t is a new vertex which would be the sink. We
add an arc (s, v) for each v ∈ Lt of capacity mv and we add an arc (v, t) of capacity m̄v for
each v ∈ Rt. The capacity of each edge e ∈ G is set to be c = Θ

(
1

ϕ log2 n

)
, where c is an

integer. The matching player computes a maximum flow g from s to t in this network.
If the value of g is less than m, then the matching player uses the minimum cut in G′

separating the source from the sink to find a cut in G of conductance O(ϕ log2 n). Otherwise,
it decomposes g to a set of paths, each carrying exactly one unit of flow from a vertex u ∈ Lt

to a vertex v ∈ Rt.6 Then it defines the dG-matching Mt as Mt = ((vj , uj))m
j=1, where vj

and uj are the endpoints of path j. We view Mt as a symmetric n × n matrix, such that
Mt(v, u) is the number of paths between v and u. The matching player connects the game to
the input graph G. Indeed, by solving the maximum flow problems in G it guarantees that
the expander GT is embeddable in G with congestion O(cT) = O(1/ϕ). Since the degrees of
GT are a factor of O(log2 n) larger than the degrees of G and GT is Ω(1/ log2 n) expander,
we get that G is a Ω(ϕ)-expander (see Corollary 12). The following theorem summarizes the
properties of this algorithm.

▶ Theorem 13 ([16]’s cut-matching game for conductance). Given a graph G and a parameter
ϕ > 0, there exists a randomized algorithm, whose running time is dominated by computing
a polylogarithmic number of maximum flow problems, that either
1. Certifies that Φ(G) = Ω(ϕ) with high probability; or
2. Finds a cut (S, V \ S) in G whose conductance is ΦG(S, V \ S) = O(ϕ log2 n).

If the matching player finds a sparse cut in any iteration then we terminate with Case
(2). On the other hand, if the game continues for T = O(log2 n) rounds then since the cut
player can embed FT in GT and the matching player can embed GT in G, and since Ft is an
expander, then we get Case (1).

The running time of the cut player is O(m log4 n). The matching player solves O(log2 n)
maximum flow problems. By using the most recent maximum flow algorithm of [8], we get the
matching player to run in O

(
m1+o(1)) time. Alternatively, we can adapt the cut-matching

game, and use a version of the Bounded-Distance-Flow algorithm (which was called Unit-Flow
in [23]; see Lemma 21), to get a running time of Õ(m

ϕ) for the matching player. We can also
get Õ(m) running time using the recent result [17].

The key part of the analysis is to show that FT is indeed an Ω(1)-expander for any choice
of dG-matchings of the matching player. To this end, we keep track of the progress of the
cut player using the potential function

ψ(t) =
∑
i∈V

∑
j∈V

1
d(i) · d(j)

(
Ft(i, j) − d(i)d(j)

2m

)2
=
∥∥∥∥D− 1

2FtD
− 1

2 − 1
2m

√
d
√
d′
∥∥∥∥2

F

where the matrix norm which we use here is the Frobenius norm (sum of the squares of
the entries). This potential represents the distance between the normalized flow matrix
F̄t = D− 1

2FtD
− 1

2 and the (normalized) uniform random walk distribution dGd
′
G/2m. Let

P = I − 1
2m

√
d
√
d′ be the projection matrix on the orthogonal complement of the span of

the vector
√
d, then we can also write this potential as

6 Note that there can be multiple flow paths between a pair of vertices u ∈ Lt and v ∈ Rt. Furthermore,
if u ∈ Lt ∩Rt then it is possible that a path starts and ends at u.

D. Agassy, D. Dorfman, and H. Kaplan 9:9

ψ(t) =
∥∥F̄tP

∥∥2
F

= Tr
(
(F̄tP)(F̄tP)′) = Tr(F̄tP

2F̄ ′
t) = Tr(PF̄ ′

t F̄t).

The first equality holds since Ft is d-stochastic and the last equality is due to Fact 1 (and
that P 2 = P as a projection matrix).

The crux of the proof is to show that after T rounds this potential is smaller than
1/(16m2) which implies that for every pair of vertices u and v, FT (u, v) ≥ d(v)d(u)/(4m).
From this we get a lower bound of 1/4 on the conductance of every cut.

3.2 OSVV’s Cut-Matching Game for Conductance
The cut player of [21] also maintains (implicitly) a flow matrix Ft and the union Gt of the
dG-matchings it got from the matching player. Let P = I − 1

2m

√
d
√
d′ be the projection to

the subspace orthogonal to
√
d as before (hence P 2 = P). Let δ = Θ(log n) be a power of 2.

Here the matrix Wt = (PD− 1
2FtD

− 1
2P)δ takes the role of D− 1

2FtD
− 1

2 from the cut player
of Section 3.1.

In round t the cut player computes the projections ui = 1√
d(i)

⟨Wt(i), r⟩, and defines Lt

and Rt based on these projections as in the previous section.7 Then it gets a dG-matching
Mt between Lt and Rt from the matching player. It defines Nt = δ−1

δ D + 1
δMt and updates

the flow to be Ft+1 = Nt ·D−1FtD
−1Nt. If we think of Ft as a random walk then D−1Nt

is a lazy step that we add before and after the walk Ft to get Ft+1. It holds that Ft+1 is
dG-stochastic and moreover that for all rounds t, Ft is embeddable in Gt with congestion
4
δ = O(1/ log n). Note that here we embed Ft in Gt with smaller congestion than in Section
3.1. We can still prove, however, that FT for T = O(log2 n) is a Ω(1) expander and therefore,
GT is a Ω(1/ log n) expander.

The matching player solves the same flow problem as in Section 3.1 but with an integer
capacity value of c = Θ(1

ϕ log n) on the edges of G. If the value of maximum flow is less than
m then it finds a cut of conductance O(ϕ log n), and otherwise it returns the matching that it
derives from a decomposition of the flow into paths. The matching player guarantees that the
expander GT is embeddable in G with congestion O(cT) = O(log n/ϕ). Since the degrees of
GT are larger by a factor of O(log2 n) than the degrees of G and GT is Ω(1/ log n)-expander,
we get that G is a Ω(ϕ)-expander (see Lemma 11). The following theorem summarizes the
properties of this algorithm.

▶ Theorem 14 ([21]’s cut-matching game for conductance). Given a graph G and a parameter
ϕ > 0, there exists a randomized algorithm, whose running time is dominated by computing
a polylogarithmic number of maximum flow problems, that either
1. Certifies that Φ(G) = Ω(ϕ) with high probability; or
2. Finds a cut (S, V \ S) in G whose conductance is ΦG(S, V \ S) = O(ϕ log n).

The running time of the cut player is dominated by computing the projections in
O(m log3 n) time per iteration for a total of O(m log5 n) time. The matching player solves
O(log2 n) maximum flow problems. Again, we can modify the algorithm so that its running
time is Õ(m

ϕ) or Õ(m), similarly to the previous subsection.

7 Computing these projections takes O(m log3 n) time since Ft is a multiplication of Θ(log2 n) sparse
matrices, each with O(m) non-zero entries. Therefore Wt is a multiplication of Θ(log3 n) matrices, each
of which is either P or a sparse matrix.

ICALP 2023

9:10 Expander Decomposition with Fewer Inter-Cluster Edges Using a Spectral Cut Player

As in Section 3.1, the key part of the analysis is to show that FT is indeed an Ω(1)-
expander for any choice of dG-matchings of the matching player. Here we keep track of the
progress of the cut player using the potential function

ψ(t) =
∥∥∥∥(D− 1

2FtD
− 1

2)δ − 1
2m

√
d
√
d′
∥∥∥∥2

F

.

Recall that Wt = (PD− 1
2FtD

− 1
2P)δ, so we can rewrite the potential function as

ψ(t) =
∥∥∥(D− 1

2FtD
− 1

2)δP

∥∥∥2

F
= Tr(P (D− 1

2FtD
− 1

2)2δP) (4)= Tr((PD− 1
2FtD

− 1
2P)2δ) = Tr(W 2

t) ,

where equality (4) follows since Ft is d-stochastic and the fact that P 2 = P . A careful
argument shows that after T = O(log2 n) iterations, ψ(T) ≤ 1/n. From this we deduce that
the second smallest eigenvalue of the normalized Laplacian of FT is at least 1/2 and then by
Cheeger’s inequality [7] we get that Φ(FT) = Ω(1).

4 Expander decomposition via spectral Cut-Matching

To put our main result in context we first show how SW [23] modified the cut-matching
game of KRV [16] for their expander decomposition algorithm.

4.1 SW’s Cut-Matching for expander decomposition
SW [23] take a recursive approach to find an expander decomposition. One can use the
cut-matching game to find a sparse cut, but if the cut is unbalanced, we want to avoid
recursing on the large side.

In order to refrain from recursing on the large side of the cut, SW changed the cut-
matching game as follows. The cut player now maintains a partition of V into a small set R
and a large set A = V \R, where initially R = ∅ and A = V . In each iteration the cut and
the matching player interact as follows.

The cut player computes two disjoint sets Al, Ar ⊆ A such that |Al| ≤ n/8 and |Ar| ≥ n/2.
The matching player returns a partition (S,A \ S) of A, which may be empty (S = ∅),
and a matching of Al \ S to a subset of Ar \ S.

The cut player computes the sets Al and Ar by projecting the rows of a flow-matrix F

that it maintains (as in KRV [16]) onto a random unit vector r, and applying a result by [22]
to generate the sets Al and Ar from the values of the projections. For the matching player,
SW use a flow-based algorithm which simultaneously gives a cut (S,A \ S) of conductance
O(ϕ log2 n) of G[A], and a matching of the vertices left in Al \ S to vertices of Ar \ S (S
may be empty when G[A] has conductance ≥ ϕ). If the matching player found a sparse cut
(S,A \ S) then the cut player updates the partition (R,A) of V by moving S from A to R.

The game terminates either when the volume of R gets larger than Ω(m/ log2 n) or after
O(log2 n) rounds. In the latter case, SW proved that the remaining set A (which is large) is
a near ϕ-expander in G (see Definition 9).

To prove that after T = Θ(log2 n) iterations, the remaining set A is a near ϕ-expander,
SW essentially followed the footsteps of KRV and used a similar potential. The argument is
more complicated since they have to take the shrinkage of A into account. SW did not use a
version of KRV suitable to conductance as we give in the full version. Therefore, they had
to modify the graph by adding a split node for each edge, essentially reducing conductance
to edge-expansion, a reduction that made their algorithm and analysis somewhat more
complicated. The following theorem summarized the properties of the cut-matching game
of [23].

D. Agassy, D. Dorfman, and H. Kaplan 9:11

▶ Theorem 15 (Theorem 2.2 of [23]). Given a graph G = (V,E) of m edges and a parameter
0 < ϕ < 1/ log2 n,8 there exists a randomized algorithm, called “the cut-matching step”,
which takes O ((m log n)/ϕ) time and terminates in one of the following three cases:
1. We certify that G has conductance Φ(G) = Ω(ϕ) with high probability.
2. We find a cut (R,A) of G of conductance ΦG(R,A) = O(ϕ log2 n), and vol(R),vol(A)

are both Ω(m
log2 n

), i.e., we find a relatively balanced low conductance cut.
3. We find a cut (R,A) of G with ΦG(R,A) ≤ c0ϕ log2 n for some constant c0, and vol(R) ≤

m
10c0 log2 n

, and with high probability A is a near ϕ-expander in G.

SW derived an expander decomposition algorithm from this modified cut-matching game
by recursing on both sides of the cut only if Case (2) occurs. In Case (3) they find a large
subset B ⊆ A which is an expander (in what they called the trimming step), add A \B to R
and recur only on R. The main result of [23] is as follows.

▶ Theorem 16 (Theorem 1.2 of [23]). Given a graph G = (V,E) of m edges and a parameter
ϕ, there is a randomized algorithm that with high probability finds a partitioning of V into
clusters V1, . . . , Vk such that ∀i : ΦG{Vi} = Ω(ϕ) and there are at most O(ϕm log3 n) inter
cluster edges.9 The running time of the algorithm is O(m log4 n/ϕ).

4.2 Our contribution: Spectral cut player for expander decomposition
SW [23] left open the question if one can improve their expander decomposition algorithm
using tools similar to the ones that allowed OSVV [21] to improve the conductance approx-
imation algorithm of KRV [16]. We give a positive answer to this question. Specifically
we improve the cut-matching game of SW and derive the following improved version of
Theorem 15.

▶ Theorem 17. Given a graph G = (V,E) of m edges and a parameter 0 < ϕ < 1
log n ,10

there exists a randomized algorithm which takes O
(
m log5 n+ m log2 n

ϕ

)
time and must end

in one of the following three cases:
1. We certify that G has conductance Φ(G) = Ω(ϕ) with high probability.
2. We find a cut (R,A) in G of conductance ΦG(R,A) = O(ϕ log n), and vol(R),vol(A) are

both Ω(m
log n), i.e, we find a relatively balanced low conductance cut.

3. We find a cut (R,A) with ΦG(R,A) ≤ c0ϕ log n for some constant c0, and vol(R) ≤
m

10c0 log n , and with high probability A is a near Ω(ϕ)-expander in G.

The proof of Theorem 17 is given in Section 5. Theorem 17 implies the following theorem

▶ Theorem 18. Given a graph G = (V,E) of m edges and a parameter ϕ, there is a
randomized algorithm that with high probability finds a partition of V into clusters V1, ..., Vk

such that ∀i : ΦG{Vi} = Ω(ϕ) and
∑

i |E(Vi, V \ Vi)| = O(ϕm log2 n). The running time of
the algorithm is O(m log7 n+ m log4 n

ϕ).11

To get Theorem 17 we use the following cut player and matching player.

8 The theorem is trivial if ϕ ≥ 1
log2 n

, because any cut (A, V \A) has conductance ΦG(A, V \A) ≤ 1. We
can therefore assume that ϕ < 1

log2 n
.

9 G{Vi} is defined in Definition 4.
10 The theorem is trivial if ϕ ≥ 1

log n , because any cut (A, V \A) has conductance ΦG(A, V \A) ≤ 1. We
can therefore assume that ϕ < 1

log n .
11 Note that if ϕ ≤ 1

log3 n
, then the running time matches the running time of [23] in Theorem 16. In case

that ϕ ≥ 1
log3 n

, we get a slightly worse running time of O(m log7 n) instead of O(m log4 n
ϕ).

ICALP 2023

9:12 Expander Decomposition with Fewer Inter-Cluster Edges Using a Spectral Cut Player

4.3 Cut player
Like in Section 3, we consider a d-stochastic flow matrix Ft ∈ Rn×n, and a series of graphs
Gt. F0 is initialized as F0 = D := diag(d), and G0 is initialized as the empty graph on
V = [n]. Here the cut player also maintains a low conductance cut At ⊆ V,Rt = V \ At,
such that after T = Θ(log2 n) rounds, with high probability, AT is a near expander in GT .
At the beginning, A0 = V , R0 = ∅,

Since the new cut-matching game consists of iteratively shrinking the domain At ⊆ V ,
we start by generalizing our matrices from Section 3 to this context of shrinking domain.

▶ Definition 19 (It, dt, Dt, Pt,volt). We define the following variables12

1. It ∈ Rn×n is the diagonal 0/1 matrix that have 1’s on the diagonal entries corresponding
to At.

2. dt = It · d ∈ Rn, i.e the projection of d onto At.
3. Dt = It ·D = diag(dt) ∈ Rn×n.
4. volt = volG(At).
5. Pt = It − 1

volt

√
dt

√
d′

t ∈ Rn×n.

We define the matrix Wt = (PtD
− 1

2FtD
− 1

2Pt)δ, where δ = Θ(log n) is set in Lemma 33,
that plays a crucial role in this section. This definition is similar to the definition of Wt in
Section 3.2, but with Pt instead of P . This makes us “focus” only on the remaining vertices
At, as any row/column of Wt corresponding to a vertex v ∈ Rt is zero. The matrix Wt is
used in this section to define the projections that our algorithm uses to update Ft. It is also
used in Section 5.3 to define the potential that measures how far is the remaining part of the
graph from a near expander. In particular, we show in Lemma 33 and Corollary 34 that if
W 2

T has small eigenvalues (which will be the case when the potential is small) then AT is
near-expander in GT .

Let r ∈ Rn be a random unit vector. Consider the projections ui = 1√
d(i)

⟨Wt(i), r⟩, for

i ∈ At. Note that because Pt

√
dt = 0, and Wt is symmetric:

∑
i∈At

d(i)ui =
∑
i∈At

√
d(i) ⟨Wt(i), r⟩ =

〈∑
i∈At

√
d(i)Wt(i), r

〉
=
〈
Wt

√
dt, r

〉
= 0

We use the following lemma to partition (some of) the remaining vertices into two
multisets Al

t and Ar
t .13 The lemma follows by applying Lemma 3.3 in [22] on the multiset of

the ui’s, where each ui appears with multiplicity of d(i).

▶ Lemma 20 (Lemma 3.3 in [22]). Given ui ∈ R for all i ∈ At, such that
∑

i∈At
d(i)ui = 0,

we can find in time O(|At| · log(|At|)) a multiset of source nodes Al
t ⊆ At, a multiset of target

nodes Ar
t ⊆ At, and a separation value η such that each i ∈ At appears in Al

t ∪Ar
t at most

d(i) times, and additionally:
1. η separates the sets Al

t, A
r
t , i.e., either maxi∈Al

t
ui ≤ η ≤ minj∈Ar

t
uj, or mini∈Al

t
ui ≥

η ≥ maxj∈Ar
t
uj,

2. |Ar
t | ≥ volt

2 , |Al
t| ≤ volt

8 ,
3. ∀i ∈ Al

t : (ui − η)2 ≥ 1
9u

2
i ,

4.
∑

i∈Al
t
miu

2
i ≥ 1

80
∑

i∈At
d(i)u2

i , where mi is the number of times i appears in Al
t.

12 These variables are the analogs of I, d,D,vol(G) and P (respectively) from Section 3.2 in G[At].
13 Note that this does not produce a bisection of V .

D. Agassy, D. Dorfman, and H. Kaplan 9:13

Note that a vertex could appear both in Al
t and in Ar

t , if uij = η. The cut player sends
Al

t, A
r
t and At to the matching player.

In turn, the matching player (see Subsection 4.4) returns a cut (St, At \St) and a matching
Mt of Al

t \ St to Ar
t \ St (each vertex of Al

t is matched to a vertex of Ar
t). We add self-loops

to Mt to preserve the degrees (that is, Mt is d-stochastic). Define Nt = δ−1
δ D + 1

δMt. The
cut player then updates Ft similarly to Section 3.2: Ft+1 = Nt · D−1FtD

−1Nt. Like in
the previous sections, we also define the graph Gt+1 as Gt+1 = Gt ∪ Mt.14. We define
At+1 = At \ St.

4.4 Matching player
The matching player receives Al

t and Ar
t and the current At. For a vertex v ∈ V , denote by

mv the number times v appears in Al
t, and by m̄v the number of times v appears in Ar

t . The
matching player solves the flow problem on G[At], specified by Lemma 21 below. This lemma
is similar to Lemma B.6 in [23] and is proved using the Bounded-Distance-Flow algorithm
(called Unit-Flow by [13, 23]). The details are provided in the full version of this paper [1].
Note that we can get running time of Õ(m) mentioned in the introduction by replacing this
subroutine is with a fair-cut computation as shown in [17, Section 8].

▶ Lemma 21. Let G = (V,E) be a graph with n vertices and m edges, let Al, Ar ⊆ V be
multisets such that |Ar| ≥ 1

2m, |A
l| ≤ 1

8m, and let 0 < ϕ < 1
log n be a parameter. For a vertex

v ∈ V , denote by mv the number times v appears in Al, and by m̄v the number of times
v appears in Ar. Assume that mv + m̄v ≤ d(v). We define the flow problem Π(G), as the
problem in which a source s is connected to each vertex v ∈ Al with an edge of capacity mv

and each vertex v ∈ Ar is connected to a sink t with an edge of capacity m̄v. Every edge of
G has the same capacity c = Θ

(
1

ϕ log n

)
, which is an integer. A feasible flow for Π(G) is a

maximum flow that saturates all the edges outgoing from s. Then, in time O(m
ϕ), we can

find either
1. A feasible flow f for Π(G); or
2. A cut S where ΦG(S, V \ S) ≤ 7

c = O(ϕ log n), vol(V \ S) ≥ 1
3m and a feasible flow for

the problem Π(G− S), where we only consider the sub-graph G[V \ S ∪ {s, t}] (that is,
vertices v ∈ Al \S are sources of mv units, and vertices v ∈ Ar \S are sinks of m̄v units).

▶ Remark 22. It is possible that Al ⊆ S, in which case the feasible flow for Π(G − S) is
trivial (the total source mass is 0).
Let St be the cut returned by the lemma. If the lemma terminates with the first case, we
denote St = ∅. Since c is an integer, we can decompose the returned flow into a set of
paths (using e.g. dynamic trees [26]), each carrying exactly one unit of flow from a vertex
u ∈ Al

t \St to a vertex v ∈ Ar
t \St. Note that multiple paths can route flow between the same

pair of vertices. If u ∈ Al
t ∩ Ar

t then it is possible that a path starts and ends at u. Each
u ∈ Al

t \ St is the endpoint of exactly mu ≤ d(u) paths, and each v ∈ Ar
t \ St is the endpoint

of at most m̄v ≤ d(v) paths. Define the “matching”15 M̃t as M̃t = ((ui, vi))
|Al

t\St|
i=1 , where

ui and vi are the endpoints of path i. We can view M̃t as a symmetric n× n matrix, such
that M̃t(u, v) is the number of paths from u to v. We turn M̃t into a d-stochastic matrix by
increasing its diagonal entries by d− M̃t1n. Formally, we set Mt := M̃t + diag(d− M̃t1n).

14Gt+1 may have self-loops.
15 Note that this is not a matching or a d-matching, but rather a graph that connects vertices of Aℓ

t to
vertices of Ar

t , whose degrees are bounded by d.

ICALP 2023

9:14 Expander Decomposition with Fewer Inter-Cluster Edges Using a Spectral Cut Player

Notice that d − M̃t1n has only non-negative entries, so Mt also has non-negative entries.
Intuitively, we can think of Mt as the response of the matching player to the subsets Al

t and
Ar

t given by the cut player.

5 Analysis

This section is organized as follows. Subsection 5.1 presents in detail the algorithm for
Theorem 17. Subsection 5.2 shows that Ft is embeddable in Gt with congestion 4

δ and that
Gt is embeddable in G with congestion c · t. Subsection 5.3 shows that if we reach round T ,
then with high probability, AT is a near Ω(ϕ)-expander in G. Finally, in Subsection 5.4 we
prove Theorem 17.

5.1 The Algorithm
Similarly to Section 3.2, let δ = Θ(log n) be a power of 2, let T = Θ(log2 n) and c = Θ(1

ϕ log n).
We choose c to be an integer. The algorithm follows along the same lines as the algorithm
of SW in Section 4.1. The only modifications are the usage of our new cut player and that
the algorithm stops if vol(Rt) > m·c·ϕ

70 = Ω(m
log n). In each round t, we implicitly update Ft

(see Section 4.3). Like SW, in order to keep the running time near linear, we use the flow
routine Bounded-Distance-Flow [13, 23] which is mentioned in Subsection 4.4. This routine
may also return a cut St ⊆ At with ΦG[A](St, At \ St) ≤ 1

c , in which case we “move” St to
Rt+1. After T rounds, FT certifies that the remaining part of AT is a near ϕ-expander.

5.2 Ft is embeddable in G

To begin the analysis of the algorithm, we first define a blocked matrix. This notion will be
useful when our matrices “operate” only on vertices of At.

▶ Definition 23. Let A ⊆ V . A matrix B ∈ Rn×n is A-blocked if B(i, j) = 0 for all i ̸= j

such that (i, j) /∈ A×A.

▶ Lemma 24. The following holds for all t:
1. Mt, Nt, Ft and Wt are symmetric.
2. Mt, Nt and Ft are d-stochastic.
3. Mt and Nt are At+1-blocked.

▶ Lemma 25. For all rounds t, Ft is embeddable in Gt with congestion 4
δ .

▶ Lemma 26. For all rounds t, Gt is embeddable in G with congestion ct.

5.3 AT is a near expander in FT

In this section we prove that after T = Θ(log2 n) rounds, with high probability, AT is a near
Ω(1)-expander in FT , which will imply that it is a near Ω(ϕ)-expander in G.

The section is organized as follows. Lemma 27 contains matrix identities and Lemma 28
specifies a spectral property that our proof requires. We then define a potential function
and lower bound the decrease in potential in Lemmas 29-32. Finally, in Lemma 33 and
Corollary 34 we use the lower bound on the potential at round T , to show that with high
probability AT is a near Ω(1)-expander in FT and a near Ω(ϕ)-expander in G.

▶ Lemma 27. The following relations hold for all t:
1. For any At-blocked d-stochastic matrix B ∈ Rn×n we have ItD

− 1
2BD− 1

2 = D− 1
2BD− 1

2 It

and Pt ·D− 1
2BD− 1

2 = D− 1
2BD− 1

2 · Pt.

D. Agassy, D. Dorfman, and H. Kaplan 9:15

2. ItPt = Pt, I2
t = It and P 2

t = Pt.
3. PtPt+1 = Pt+1Pt = Pt+1.
4. Pt = D− 1

2 L(1
volt

dtd
′
t)D− 1

2 (recall the Laplacian defined in Definition 7).

5. for any v ∈ Rn, it holds that v′L
(

1
volt

dtd
′
t

)
v =

∥∥∥D 1
2
t v
∥∥∥2

2
− 1

volt
⟨v, dt⟩2.

6. For any B ∈ Rn×n, Tr(ItBB
′) =

∑
i∈At

∥B(i)∥2
2.

We define the potential ψ(t) = Tr[W 2
t] =

∑
i∈At

∥Wt(i)∥2
2, where Wt was defined as

Wt = (PtD
− 1

2FtD
− 1

2Pt)δ. This is the same potential from Section 3.2 with the new definition
of Wt. Intuitively, by projecting using Pt instead of P , the potential only “cares” about the
vertices of At. As show in Lemma 33, having small potential will certify that AT is a near
expander in Ft.

Before we bound the decrease in potential, we recall Definition 7 of a normalized Laplacian
N (A) = D− 1

2 L(A)D− 1
2 = I −D− 1

2AD− 1
2 , where A is a symmetric d-stochastic matrix.

▶ Lemma 28. For any matrix A ∈ Rn×n, Tr(A′(I−(D− 1
2NtD

− 1
2)4δ)A) ≥ 1

3 Tr(A′N (Mt)A).

The following lemma bounds the decrease in potential. The bound takes into account
both the contribution of the matched vertices and the removal of St from At.

▶ Lemma 29. For each round t,

ψ(t) − ψ(t+ 1) ≥ 1
3

∑
{i,k}∈Mt

∥∥∥∥∥
(
Wt(i)√
d(i)

− Wt(k)√
d(k)

)∥∥∥∥∥
2

2

+
∑
j∈St

d(j)

∥∥∥∥∥Wt(j)√
d(j)

∥∥∥∥∥
2

2

Proof. To simplify the notation, we denote N̄t := D− 1
2NtD

− 1
2 and F̄t := D− 1

2FtD
− 1

2 . We
rewrite the potential in the next iteration as follows:

ψ(t+ 1) = Tr(W 2
t+1) = Tr

((
Pt+1D

− 1
2Ft+1D

− 1
2Pt+1

)2δ
)

= Tr
((

Pt+1D
− 1

2 (NtD
−1FtD

−1Nt)D− 1
2Pt+1

)2δ
)

= Tr
((

Pt+1D
− 1

2 (NtD
− 1

2D− 1
2FtD

− 1
2D− 1

2Nt)D− 1
2Pt+1

)2δ
)

= Tr
((
Pt+1N̄tF̄tN̄tPt+1

)2δ
)

(6)= Tr
((
N̄tPt+1F̄tPt+1N̄t

)2δ
)

(7)= Tr
((
N̄tPt+1PtF̄tPtPt+1N̄t

)2δ
)

= Tr
((
N̄tPt+1(PtF̄tPt)Pt+1N̄t

)2δ
)
,

where equality (6) follows from Lemma 27 (1) for Nt (which is At+1-blocked d-stochastic by
Lemma 24), and equality (7) follows from Lemma 27 (3).

By Properties (1) and (2) of Lemma 27 it holds that N̄t+1Pt+1 = Pt+1N̄t+1 =
Pt+1N̄t+1Pt+1. Therefore, the potential can be written in terms of symmetric matrices:

ψ(t+ 1) = Tr
((

(Pt+1N̄tPt+1)(PtF̄tPt)(Pt+1N̄tPt+1)
)2δ
)

≤ Tr((Pt+1N̄tPt+1)2δ(PtF̄tPt)2δ(Pt+1N̄tPt+1)2δ)
(2)= Tr((Pt+1N̄tPt+1)4δ(PtF̄tPt)2δ) = Tr((N̄tPt+1)4δW 2

t)
(4)= Tr(N̄4δ

t Pt+1W
2
t) (5)= Tr(N̄2δ

t Pt+1N̄
2δ
t W 2

t) (6)= Tr(WtN̄
2δ
t Pt+1N̄

2δ
t Wt)

(7)= Tr(WtN̄
2δ
t D− 1

2 L
(

1
volt+1

dt+1d
′
t+1

)
D− 1

2 N̄2δ
t Wt)

= Tr
((

D− 1
2 · N̄2δ

t Wt

)′
· L
(

1
volt+1

dt+1d
′
t+1

)
·
(
D− 1

2 · N̄2δ
t Wt

))
,

ICALP 2023

9:16 Expander Decomposition with Fewer Inter-Cluster Edges Using a Spectral Cut Player

where the inequality follows from Fact 2, equality (2) follows from Fact 1. Equalities (4) and
(5) follow from Properties (1) and (2) of Lemma 27 (and from the fact that Nt is At+1-blocked
d-stochastic, by Lemma 24). Equality (6) again uses Fact 1, and equality (7) follows from
Lemma 27 (4).

Let Zt = D− 1
2 · N̄2δ

t Wt. By applying Lemma 27 (5) we get

ψ(t+ 1) ≤ Tr
(
Z′

tL
(

1
volt+1

dt+1d
′
t+1

)
Zt

)
=

n∑
i=1

(Zt(, i))′L
(

1
volt+1

dt+1d
′
t+1

)
Zt(, i)

(2)=
n∑

i=1

(∥∥∥D 1
2
t+1Zt(, i)

∥∥∥2

2
− 1

volt+1
⟨Zt(, i), dt+1⟩2

)
≤

n∑
i=1

∥∥∥D 1
2
t+1Zt(, i)

∥∥∥2

2

=
n∑

i=1

∑
j∈At+1

(√
d(j)Zt(j, i)

)2
=
∑

j∈At+1

∥∥∥(D 1
2
t+1Zt

)
(j)
∥∥∥2

2

(5)=
∑

j∈At+1

∥∥(N̄2δ
t Wt

)
(j)
∥∥2

2

=
∑
j∈At

∥∥(N̄2δ
t Wt

)
(j)
∥∥2

2
−
∑
j∈St

∥∥(N̄2δ
t Wt

)
(j)
∥∥2

2
, (1)

where equality (2) holds by Property (5) of Lemma 27 and equality (5) holds since we only
sum rows in At+1. Since N̄t is diagonal outside At+1 (by the definition of Mt), we have that(
N̄2δ

t Wt

)
(j) = Wt(j), for every j ∈ St. Thus,∑

j∈St

∥∥(N̄2δ
t Wt

)
(j)
∥∥2

2 =
∑
j∈St

∥Wt(j)∥2
2 . (2)

By Lemma 27 (6), we get∑
j∈At

∥∥(N̄2δ
t Wt

)
(j)
∥∥2

2 = Tr(It · N̄2δ
t ·W 2

t · N̄2δ
t) = Tr(N̄2δ

t · It ·W 2
t · N̄2δ

t)

= Tr(N̄2δ
t ·W 2

t · N̄2δ
t) = Tr(N̄4δ

t W 2
t) (3)

where second equality holds since Nt is At+1-blocked d-stochastic (by Lemma 24), so in
particular it is At-blocked d-stochastic, and we can use Lemma 27 (1). The third equality
holds because ItWt = It(PtF̄tPt)δ and ItPt = Pt (by Lemma 27 (2)), and the last equality
follows from Fact 1. Plugging Equations (2) and (3) into (1) we get the following bound on
the decrease in potential:

ψ(t) − ψ(t+ 1) ≥ Tr((I − N̄4δ
t)W 2

t) +
∑
j∈St

∥Wt(j)∥2
2

= Tr(Wt(I − N̄4δ
t)Wt) +

∑
j∈St

∥Wt(j)∥2
2 ≥ 1

3 Tr(WtN (Mt)Wt) +
∑
j∈St

∥Wt(j)∥2
2

= 1
3 Tr((D− 1

2Wt)′L(Mt)(D− 1
2Wt)) +

∑
j∈St

d(j)

∥∥∥∥∥ Wt(j)√
d(j)

∥∥∥∥∥
2

2

= 1
3

∑
{i,k}∈Mt

∥∥∥∥∥ Wt(i)√
d(i)

− Wt(k)√
d(k)

∥∥∥∥∥
2

2

+
∑
j∈St

d(j)

∥∥∥∥∥ Wt(j)√
d(j)

∥∥∥∥∥
2

2

where the second inequality follows Lemma 28, and the last equality follows from by Laplacian
matrix properties. ◀

The following lemma states that the potential is expected to drop by a factor of 1 −
Ω(1/ log n).

D. Agassy, D. Dorfman, and H. Kaplan 9:17

▶ Lemma 30. For each round t,

E

1
3

∑
{i,k}∈Mt

∥∥∥∥∥Wt(i)√
d(i)

− Wt(k)√
d(k)

∥∥∥∥∥
2

2

+
∑
j∈St

d(j)

∥∥∥∥∥Wt(j)√
d(j)

∥∥∥∥∥
2

2

 ≥ 1
3000α log nψ(t) − 3

nα/16

for every α > 48, where the expectation is over the unit vector r ∈ Rn.

The following two corollaries follow by Lemmas 29 and 30.

▶ Corollary 31. For each round t, E[ψ(t + 1)] ≤
(

1 − 1
3000α log n

)
ψ(t) + 3

nα/16 , where the
expectation is over the unit vector r ∈ Rn.

▶ Corollary 32 (Total Decrease in Potential). With high probability over the choices of r,
ψ(T) ≤ 1

n .

The following lemma uses the low potential to derive the near-expansion of AT in FT .

▶ Lemma 33 (Variation of Cheeger’s inequality). Let H = (V, Ē) be a graph on n vertices,
such that FT is its weighted adjacency matrix. Assume that ψ(T) ≤ 1

n . Then, AT is a near
1
5 -expander in H.

Proof. Recall that FT is symmetric and d-stochastic. Let k = vol(AT). Let S ⊆ AT be a

cut, and denote dS ∈ Rn to be the vector where dS(u) =
{
d(u) if u ∈ S,

0 otherwise. Additionally,

denote ℓ = vol(S) ≤ 1
2k. Note that

∥∥√
dS

∥∥2
2 = ℓ.

Denote by λ̄ ≥ 0 the largest singular value of XT := PTD
− 1

2FTD
− 1

2PT (square root of
the largest eigenvalue of (PTD

− 1
2FTD

− 1
2PT)2). Because Tr(X2δ

T) = ψ(T) ≤ 1
n , we have in

particular that the largest eigenvalue of X2δ
T is at most 1

n , so we have λ̄ ≤ 1
n

1
δ

. We choose
δ = Θ(log n) such that 1

n
1
δ

≤ 1
20 , so λ̄ ≤ 1

20 .
In order to prove near-expansion we need to lower bound |EFT

(S, V \ S)|. We do so by
upper bounding |EFT

(S, S)| = 1
′
SFT1S . Note that 1′

SFT1S = 1
′
S(ITFT IT)1S . Observe the

following relation between XT and ITFT IT :

D
1
2XTD

1
2 = D

1
2 (PTD

− 1
2FTD

− 1
2PT)D 1

2

= D
1
2 (IT − 1

k

√
dT

√
d′

T)D− 1
2FTD

− 1
2 (IT − 1

k

√
dT

√
d′

T)D 1
2

= (IT − 1
k
dT1

′
T)FT (IT − 1

k
1T d

′
T)

= ITFT IT − 1
k
dT1

′
TFT IT − 1

k
ITFT1T d

′
T + 1

k2 dT1
′
TFT1T d

′
T .

Rearranging the terms, we get

ITFT IT = D
1
2XTD

1
2 + 1

k
dT1

′
TFT IT + 1

k
ITFT1T d

′
T − 1

k2 dT1
′
TFT1T d

′
T .

Therefore

|EFT
(S, S)| = 1

′
SFT1S

= 1
′
S

(
D

1
2XTD

1
2 + 1

k
dT1

′
TFT IT + 1

k
ITFT1T d

′
T − 1

k2 dT1
′
TFT1T d

′
T

)
1S .

We analyze the summands separately. The first summand can be bounded using λ̄, the
largest singular value of XT :

ICALP 2023

9:18 Expander Decomposition with Fewer Inter-Cluster Edges Using a Spectral Cut Player

1
′
SD

1
2XTD

1
2 1S =

√
d′

SX
√
dS =

〈√
dS , X

√
dS

〉
≤
∥∥∥√dS

∥∥∥
2

∥∥∥XT

√
dS

∥∥∥
2

≤
∥∥∥√dS

∥∥∥2

2
λ̄ ≤ ℓ

20 ,

where the first inequality is the Cauchy-Schwartz inequality. Observe that the second and
third summands are equal:

1
k
1

′
SdT1

′
TFT IT1S = ℓ

k
1

′
TFT1S = ℓ

k
1

′
SFT1T = 1

k
1

′
SITFT1T d

′
T1S ,

where the second equality follows by transposing and since FT is symmetric. We now bound
the sum of the second, third and fourth summands:

1
′
S

(
1
k
dT1

′
TFT IT + 1

k
ITFT1T d

′
T − 1

k2 dT1
′
TFT1T d

′
T

)
1S = 2ℓ

k
1

′
TFT1S − ℓ2

k21
′
TFT1T

≤
(

2ℓ
k

− ℓ2

k2

)
1

′
TFT1S ≤

(
2ℓ
k

− ℓ2

k2

)
1

′FT1S =
(

2ℓ
k

− ℓ2

k2

)
d′
1S = ℓ

k

(
2 − ℓ

k

)
ℓ,

where the first inequality follows since S ⊆ At. Note that ℓ
k ∈ [0, 1

2]. The last inequality
is true because for ℓ

k in this range,
(

2ℓ
k − ℓ2

k2

)
≥ 0. Moreover, because ℓ

k ∈
[
0, 1

2
]
, we have

ℓ
k

(
2 − ℓ

k

)
≤ 3

4 . Therefore, |EFT
(S, S)| ≤ 1

20ℓ+ 3
4ℓ = 4

5ℓ, and

|E(S, V \ S)| =
∑
u∈S

∑
v∈V \S

FT (u, v) =
∑
u∈S

∑
v∈V

FT (u, v) −
∑
u∈S

∑
v∈S

FT (u, v)

=
∑
u∈S

d(u) −
∑
u∈S

∑
v∈S

FT (u, v) ≥ ℓ− 4
5ℓ = ℓ

5 .

So ΦG(S, V \ S) = |E(S,V \S)|
vol(S) ≥ 1

5 , and this is true for all cuts S ⊆ A with vol(S)
vol(A) ≤ 1

2 . ◀

▶ Corollary 34. If we reach round T , then with high probability, AT is a near Ω(ϕ)-expander
in G.

Proof. Assume we reach round T . By Corollary 32 and Lemma 33, with high probability,
AT is a near Ω(1)-expander in FT . By Lemma 25, FT is embeddable in GT with congestion
O(1

δ). Note that GT is a union of T dG-matchings {Mt}T
t=1, each having dMt

= dG = dFT
.

Therefore, dGT
= T · dFT

. So by Lemma 11, AT is a near Ω(δ
T)-expander in GT . By Lemma

26, GT is embeddable in G with congestion cT . Together with the fact that dG = 1
T ·dGT

, we
get by Lemma 11 again, that A is a near Ω(δ

cT)-expander in G. Recall that c = O
(

1
ϕ log n

)
,

δ = Θ(log n), and T = O(log2 n). Therefore, A is an near Ω(ϕ)-expander in G. ◀

5.4 Proof of Theorem 17
We are now ready to prove Theorem 17.

Proof of Theorem 17. Recall that St denotes the cut returned by Lemma 21 at iteration t,
so that At+1 = At \ St.

Observe first that in any round t, we have ΦG(At, Rt) ≤ 7
c = O(ϕ log n). This is because

Rt =
⋃

0≤t′<t St′ and by Lemma 21, for each t′, ΦG[At′](St′ , V \ St′) ≤ 7
c = O(ϕ log n).

Assume the algorithm terminates because vol(Rt) > m·c·ϕ
70 = Ω(m

log n). We also have,
by Lemma 21, that vol(At) = Ω(m) = Ω(m

log n). Then (At, Rt) is a balanced cut where
ΦG(At, Rt) = O(ϕ log n). We end in Case (2) of Theorem 17.

D. Agassy, D. Dorfman, and H. Kaplan 9:19

Otherwise, the algorithm reached round T and we apply Corollary 34. If R = ∅, then we
obtain the first case of Theorem 17 because the whole vertex set V is, with high probability, a
near Ω(ϕ)-expander, which means that G is an Ω(ϕ)-expander. Otherwise, we write c = c1

ϕ log n

for some constant c1, and let c0 := 7
c1

. We have ΦG(AT , RT) ≤ 7
c = 7

c1
ϕ log n = c0ϕ log n.

Additionally, vol(RT) ≤ m·c·ϕ
70 = m·c1

70 log n = m
10c0 log n , and, with high probability, AT is a near

Ω(ϕ)-expander in G, which means we obtain the third case of Theorem 17.
To bound the running time, note that the algorithm performs at most T = Θ(log2 n)

iterations and each iteration’s running time is dominated by computing Wt · r in O(t · δ ·m)
and by running the matching player (Lemma 21) in O(m

ϕ). ◀

References
1 Daniel Agassy, Dani Dorfman, and Haim Kaplan. Expander decomposition with fewer inter-

cluster edges using a spectral cut player. arXiv preprint, 2022. arXiv:2205.10301.
2 Vedat Levi Alev, Nima Anari, Lap Chi Lau, and Shayan Oveis Gharan. Graph clustering

using effective resistance. arXiv preprint, 2017. arXiv:1711.06530.
3 Konstantinos Ameranis, Lorenzo Orecchia, Kunal Talwar, and Charalampos Tsourakakis.

Practical almost-linear-time approximation algorithms for hybrid and overlapping graph
clustering. In Proceedings of the 39th International Conference on Machine Learning (ICML),
pages 17071–17093, 2022.

4 Sanjeev Arora, Satish Rao, and Umesh Vazirani. Expander flows, geometric embeddings and
graph partitioning. Journal of the ACM (JACM), 56(2):1–37, 2009.

5 Yi-Jun Chang and Thatchaphol Saranurak. Improved distributed expander decomposition
and nearly optimal triangle enumeration. In Proceedings of the 2019 ACM Symposium on
Principles of Distributed Computing (PODS), pages 66–73, 2019.

6 Yi-Jun Chang and Thatchaphol Saranurak. Deterministic distributed expander decomposition
and routing with applications in distributed derandomization. In Proceedings of the 61st
Annual Symposium on Foundations of Computer Science (FOCS), pages 377–388, 2020.

7 Jeff Cheeger. A lower bound for the smallest eigenvalue of the laplacian. Problems in analysis,
625(195-199):110, 1970.

8 Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and
Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. arXiv
preprint, 2022. arXiv:2203.00671.

9 Timothy Chu, Yu Gao, Richard Peng, Sushant Sachdeva, Saurabh Sawlani, and Junxing Wang.
Graph sparsification, spectral sketches, and faster resistance computation via short cycle
decompositions. In Proceedings of the 61st Annual Symposium on Foundations of Computer
Science (FOCS), pages 18–85, 2020.

10 Julia Chuzhoy, Yu Gao, Jason Li, Danupon Nanongkai, Richard Peng, and Thatchaphol Sara-
nurak. A deterministic algorithm for balanced cut with applications to dynamic connectivity,
flows, and beyond. In Proceedings of the 61st Annual Symposium on Foundations of Computer
Science (FOCS), pages 1158–1167, 2020.

11 Michael B. Cohen, Jonathan Kelner, John Peebles, Richard Peng, Anup B. Rao, Aaron
Sidford, and Adrian Vladu. Almost-linear-time algorithms for markov chains and new spectral
primitives for directed graphs. In Proceedings of the 49th Annual Symposium on Theory of
Computing (STOC), pages 410–419, 2017.

12 Gramoz Goranci, Harald Räcke, Thatchaphol Saranurak, and Zihan Tan. The expander
hierarchy and its applications to dynamic graph algorithms. In Proceedings of the 2021
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2212–2228. SIAM, 2021.

13 Monika Henzinger, Satish Rao, and Di Wang. Local flow partitioning for faster edge connectivity.
In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 1919–1938, 2017.

ICALP 2023

https://arxiv.org/abs/2205.10301
https://arxiv.org/abs/1711.06530
https://arxiv.org/abs/2203.00671

9:20 Expander Decomposition with Fewer Inter-Cluster Edges Using a Spectral Cut Player

14 Yiding Hua, Rasmus Kyng, Maximilian Probst Gutenberg, and Zihang Wu. Maintaining
expander decompositions via sparse cuts. arXiv preprint, 2022. arXiv:2204.02519.

15 Jonathan A. Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. An almost-linear-
time algorithm for approximate max flow in undirected graphs, and its multicommodity
generalizations. In Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete
algorithms (SODA), pages 217–226, 2014.

16 Rohit Khandekar, Satish Rao, and Umesh Vazirani. Graph partitioning using single commodity
flows. Journal of the ACM, 56(4):1–15, 2009.

17 Jason Li, Danupon Nanongkai, Debmalya Panigrahi, and Thatchaphol Saranurak. Near-
linear time approximations for cut problems via fair cuts. In Proceedings of the 2023 Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 240–275, 2023.

18 David W. Matula and Farhad Shahrokhi. Sparsest cuts and bottlenecks in graphs. Discrete
Applied Mathematics, 27(1-2):113–123, 1990.

19 Lorenzo Orecchia. Fast approximation algorithms for graph partitioning using spectral and
semidefinite-programming techniques. PhD thesis, Berkeley, 2011.

20 Lorenzo Orecchia, Sushant Sachdeva, and Nisheeth K. Vishnoi. Approximating the exponential,
the lanczos method and an Õ(m)-time spectral algorithm for balanced separator. In Proceedings
of the 44th Annual Symposium on Theory of Computing (STOC), pages 1141–1160, 2012.

21 Lorenzo Orecchia, Leonard J. Schulman, Umesh V. Vazirani, and Nisheeth K. Vishnoi. On
partitioning graphs via single commodity flows. In Proceedings of the 40th Annual Symposium
on Theory of Computing (STOC), pages 461–470, 2008.

22 Harald Räcke, Chintan Shah, and Hanjo Täubig. Computing cut-based hierarchical decompos-
itions in almost linear time. In Proceedings of the 25th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 227–238, 2014.

23 Thatchaphol Saranurak and Di Wang. Expander decomposition and pruning: Faster, stronger,
and simpler. In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 2616–2635, 2019.

24 Jonah Sherman. Breaking the multicommodity flow barrier for O(
√

log n)-approximations
to sparsest cut. In Proceedings of the 50th Annual Symposium on Foundations of Computer
Science (FOCS), pages 363–372. IEEE, 2009.

25 Jiří Šíma and Satu Elisa Schaeffer. On the NP-completeness of some graph cluster measures.
In International Conference on Current Trends in Theory and Practice of Computer Science
(SOFTSEM), pages 530–537. Springer, 2006.

26 Daniel D. Sleator and Robert Endre Tarjan. A data structure for dynamic trees. Journal of
Computer and System Sciences, 26(3):362–391, 1983.

27 Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems. In Proceedings of the 36th Annual Symposium
on Theory of Computing (FOCS), pages 81–90, 2004.

https://arxiv.org/abs/2204.02519

Locality in Online, Dynamic, Sequential, and
Distributed Graph Algorithms
Amirreza Akbari #

Aalto University, Espoo, Finland

Navid Eslami #

Aalto University, Espoo, Finland
Sharif University of Technology, Tehran, Iran

Henrik Lievonen # Ñ

Aalto University, Espoo, Finland

Darya Melnyk # Ñ

Aalto University, Espoo, Finland
TU Berlin, Germany

Joona Särkijärvi #

Aalto University, Espoo, Finland

Jukka Suomela # Ñ

Aalto University, Espoo, Finland

Abstract
In this work, we give a unifying view of locality in four settings: distributed algorithms, sequential
greedy algorithms, dynamic algorithms, and online algorithms. We introduce a new model of
computing, called the online-LOCAL model: the adversary presents the nodes of the input graph
one by one, in the same way as in classical online algorithms, but for each node we get to see its
radius-T neighborhood before choosing the output. Instead of looking ahead in time, we have the
power of looking around in space.

We compare the online-LOCAL model with three other models: the LOCAL model of distributed
computing, where each node produces its output based on its radius-T neighborhood, the SLOCAL
model, which is the sequential counterpart of LOCAL, and the dynamic-LOCAL model, where
changes in the dynamic input graph only influence the radius-T neighborhood of the point of change.

The SLOCAL and dynamic-LOCAL models are sandwiched between the LOCAL and online-
LOCAL models. In general, all four models are distinct, but we study in particular locally checkable
labeling problems (LCLs), which is a family of graph problems extensively studied in the context of
distributed graph algorithms. We prove that for LCL problems in paths, cycles, and rooted trees,
all four models are roughly equivalent: the locality of any LCL problem falls in the same broad
class – O(log∗ n), Θ(log n), or nΘ(1) – in all four models. In particular, this result enables one to
generalize prior lower-bound results from the LOCAL model to all four models, and it also allows
one to simulate e.g. dynamic-LOCAL algorithms efficiently in the LOCAL model.

We also show that this equivalence does not hold in two-dimensional grids or general bipartite
graphs. We provide an online-LOCAL algorithm with locality O(log n) for the 3-coloring problem in
bipartite graphs – this is a problem with locality Ω(n1/2) in the LOCAL model and Ω(n1/10) in the
SLOCAL model.

2012 ACM Subject Classification Theory of computation → Online algorithms; Computing method-
ologies → Distributed algorithms; Theory of computation → Dynamic graph algorithms

Keywords and phrases Online computation, spatial advice, distributed algorithms, computational
complexity

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.10

Category Track A: Algorithms, Complexity and Games

EA
T
C
S

© Amirreza Akbari, Navid Eslami, Henrik Lievonen, Darya Melnyk, Joona Särkijärvi,
and Jukka Suomela;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 10; pp. 10:1–10:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:amirreza.akbari@aalto.fi
https://orcid.org/0009-0002-1433-3781
mailto:navid.eslami@sharif.edu
mailto:henrik.lievonen@aalto.fi
https://henriklievonen.fi/
https://orcid.org/0000-0002-1136-522X
mailto:melnyk@tu-berlin.de
https://darya-melnyk.github.io/
mailto:joona.sarkijarvi@gmail.com
mailto:jukka.suomela@aalto.fi
https://jukkasuomela.fi/
https://orcid.org/0000-0001-6117-8089
https://doi.org/10.4230/LIPIcs.ICALP.2023.10
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Locality in Online, Dynamic, Sequential, and Distributed Graph Algorithms

Related Version Full Version: https://arxiv.org/abs/2109.06593

Funding This work was supported in part by the Academy of Finland, Grant 333837.

Acknowledgements We would like to thank Alkida Balliu, Sameep Dahal, Chetan Gupta, Fabian
Kuhn, Dennis Olivetti, Jan Studený, and Jara Uitto for useful discussions. We would also like
to thank the anonymous reviewers for the very helpful feedback they have provided for previous
versions of this work.

1 Introduction

In online graph algorithms, the adversary reveals the input graph one node at a time: In
step i, the adversary presents some node vi. The algorithm gets to see the subgraph induced
by the nodes v1, . . . , vi, and the algorithm has to respond by labeling node vi. For example,
in online graph coloring, the algorithm has to pick a color for node vi in such a way that the
end result is a proper coloring of the input graph.

In this work, we consider a more general setting, which we call the online-LOCAL model:
in step i, the algorithm gets to see the subgraph induced by all nodes that are within distance
T from v1, . . . , vi. That is, the algorithm can look T hops further in the input graph around
the nodes presented by the adversary. For T = 0, this corresponds to the usual online model.
For T = n, on the other hand, any graph problem (in connected graphs) is solvable in this
setting. The key question is what value of T is sufficient for a given graph problem. Put
otherwise, what is the locality of a given online problem?

It turns out that this question is very closely connected to questions studied in the context
of distributed graph algorithms, and we can identify problem classes in which the online
setting coincides with the distributed setting. However, we also see surprising differences, the
prime example being the problem of 3-coloring bipartite graphs, which is a fundamentally
global problem in the distributed setting, while we show that we can do much better in the
online setting.

1.1 Contribution 1: landscape of models
In Section 2, we define the online-LOCAL model, and we also recall the definitions of three
models familiar from the fields of distributed and dynamic graph algorithms:

The LOCAL model [37,44]: the nodes are processed simultaneously in parallel; each node
looks at its radius-T neighborhood and picks its own output.
The SLOCAL model [26]: the nodes are processed sequentially in an adversarial order;
each node in its turn looks at its radius-T neighborhood and picks its own output (note
that here the output of a node may depend on the outputs of other nodes that were
previously processed).
The dynamic-LOCAL model: the adversary constructs the graph by adding nodes and
edges one by one; after each modification, the algorithm can only update the solution
within the radius-T neighborhood of the point of change. While this is not one of the
standard models, there is a number of papers [3, 9, 11,21,28,34,43] that implicitly make
use of this model. We also occasionally consider the dynamic-LOCAL± model, in which
we can have both additions and deletions.

In Section 3, we show that we can sandwich SLOCAL and both versions of dynamic-LOCAL
between LOCAL and online-LOCAL, as shown in Figure 1. In particular, this implies that
if we can prove that LOCAL and online-LOCAL are equally expressive for some family of
graph problems, we immediately get the same result also for SLOCAL and dynamic-LOCAL.
This is indeed what we achieve in our next contribution.

https://arxiv.org/abs/2109.06593

A. Akbari, N. Eslami, H. Lievonen, D. Melnyk, J. Särkijärvi, and J. Suomela 10:3

SLOCAL(T)
distributed,
sequential

LOCAL(T)
distributed,

parallel

online-
LOCAL(T)
centralized

dynamic-
LOCAL±(T)
centralized

dynamic-
LOCAL(T)
centralized

online graph
algorithms
centralized

⊊

⊈

⊈

⊊

⊊

⊊

⊊
⊊

Figure 1 The landscape of models – see Section 2 for the definitions. Each box represents the set
of problems solvable with locality O(T) in the given model of computation (except for online graph
algorithms, which do not have a notion of locality). For example, any problem with locality O(T) in
the LOCAL model can also be solved with locality O(T) in both the SLOCAL and the online-LOCAL
models. On the other hand, the SLOCAL and the dynamic-LOCAL models are incomparable, as
there exist problems that are solvable with locality O(T) in one of the models but that require ω(T)
locality in the other model.

1.2 Contribution 2: collapse for LCLs in rooted regular trees
A lot of focus in the study of distributed graph algorithms and the LOCAL model has been
on understanding locally checkable labeling problems (in brief, LCLs) [4,5,7,8,13,15,17,18,42].
These are problems where feasible solutions are defined with local constraints – a solution
is feasible if it looks good in all constant-radius neighborhoods (see Definition 3). Coloring
graphs of maximum degree ∆ with k colors (for some constants ∆ and k) is an example of
an LCL problem.

In Section 5, we study LCL problems in paths, cycles, and rooted regular trees, and we
show that all four models are approximately equally strong in these settings – see Table 1.
For example, we show that if the locality of an LCL problem in rooted trees is nΘ(1) in
the LOCAL model, it is also nΘ(1) in the dynamic-LOCAL, SLOCAL, and online-LOCAL
models.

Table 1 In all four models, LCL problems have got the same locality classes in paths, cycles, and
rooted trees. Here nΘ(1) refers to locality Θ(nα) for some constant α > 0. See Section 5 for more
details.

LOCAL SLOCAL dynamic- online-
LOCAL LOCAL

LCLs in paths and cycles O(log∗ n) ⇔ O(1) ⇔ O(1) ⇔ O(1)
Θ(n) ⇔ Θ(n) ⇔ Θ(n) ⇔ Θ(n)

LCLs in rooted regular trees O(log∗ n) ⇔ O(1) ⇔ O(1) ⇔ O(1)
Θ(log n) ⇔ Θ(log n) ⇔ Θ(log n) ⇔ Θ(log n)
nΘ(1) ⇔ nΘ(1) ⇔ nΘ(1) ⇔ nΘ(1)

ICALP 2023

10:4 Locality in Online, Dynamic, Sequential, and Distributed Graph Algorithms

By previous work, we know that LCL complexities in paths, cycles, and rooted regular
trees are decidable in the LOCAL model [4, 7,18]. Our equivalence result allows us to extend
this decidability to the SLOCAL, dynamic-LOCAL, and online-LOCAL models. For example,
there is an algorithm that gets as input the description of an LCL problem in rooted trees
and produces as output in which of the classes of Table 1 it is, for any of the four models.

1.3 Contribution 3: 3-coloring bipartite graphs in online-LOCAL
Given the equivalence results for LCLs in paths, cycles, and rooted regular trees, it would
be tempting to conjecture that the models are approximately equal for LCLs in any graph
class. In Section 4, we show that this is not the case: we provide an exponential separation
between the SLOCAL and online-LOCAL models for the problem of 3-coloring bipartite
graphs. By prior work it is known that in the LOCAL model, the locality of 3-coloring is
Ω(n1/2) in two-dimensional grids [13], which are a special case of bipartite graphs; using this
result we can derive a lower bound of Ω(n1/10) also for the SLOCAL model (see the full
version). In Section 4, we prove the following:

▶ Theorem 1. There is an online-LOCAL algorithm that finds a 3-coloring in bipartite
graphs with locality O(log n).

That is, in bipartite graphs, there is an LCL problem that requires locality nΩ(1) in the
LOCAL and SLOCAL models and is solvable with locality O(log n) in the online-LOCAL
model.

The algorithm that we present for coloring bipartite graphs is also interesting from the
perspective of competitive analysis of online algorithms. With locality O(log n), the online-
LOCAL algorithm can compute a 3-coloring. Since bipartite graphs are 2-colorable, this
gives us a 1.5-competitive online-LOCAL algorithm. On the other hand, it has been shown
that any online algorithm for coloring bipartite graphs is at least Ω(log n)-competitive [10],
with a matching algorithm presented in [38]. This result shows how much the competitive
ratio of an algorithm can be improved by increasing the view of each node.

1.4 Contribution 4: locality of online coloring
As a corollary of our work, together with results on distributed graph coloring from prior
work [13,19,37], we now have a near-complete understanding of the locality of graph coloring
in paths, cycles, rooted trees, and grids in both distributed and online settings. Table 2
summarizes our key results. For the proofs of the localities in the online-LOCAL model, see
Sections 4 and 5.

1.5 Motivation
Before we discuss the key technical ideas, we briefly explain the practical motivation for the
study of online-LOCAL and dynamic-LOCAL models. As a running example, consider the
challenge of providing public services (e.g. local schools) in a rapidly growing city. The future
is unknown, depending on future political decisions, yet the residents need services every day.

The offline solution would result in a city-wide redesign of e.g. the entire school network
every time the city plan is revised; this is not only costly but also disruptive. On the other
hand, a strict online solution without any consideration of the future would commit to a
solution that is far from optimal. The models that we study in this work capture the essence
of two natural strategies for coping with such a situation:

A. Akbari, N. Eslami, H. Lievonen, D. Melnyk, J. Särkijärvi, and J. Suomela 10:5

Table 2 The locality of the vertex coloring problem in distributed vs. online settings, for two
graph families: rooted trees and paths (with n nodes) and 2-dimensional grids (with

√
n ×

√
n

nodes). Note that most results for the online-LOCAL model follow from the equivalence results
discussed in Section 1.2. See Sections 4 and 5 and the full version for more details.

colors competitive LOCAL SLOCAL online- references
ratio LOCAL

Rooted trees 2 1 Θ(n) Θ(n) Θ(n) trivial
and paths 3 1.5 Θ(log∗ n) O(1) O(1) [19, 37]

4 2 Θ(log∗ n) O(1) O(1) [19, 37]
. . .

Grids 2 1 Θ(n1/2) Θ(n1/2) Θ(n1/2) trivial
3 1.5 Θ(n1/2) Ω(n1/10) O(log n) Section 4, [13]
4 2 Θ(log∗ n) O(1) O(1) [13]
5 2.5 Θ(log∗ n) O(1) 0 [13]
. . .

Redesign the public service network only in the local neighborhoods in which there are
new developments. This corresponds to the dynamic-LOCAL model, and the locality
parameter T captures the redesign cost and the disruption it causes.
Wait until new developments in a neighborhood are completed before providing permanent
public services in the area. This corresponds to the online-LOCAL model, and the locality
parameter T captures the inconvenience for the residents (the width of the “buffer zone”
without permanent public services around areas in which the city plan is not yet finalized).

These two models make it possible to formally explore trade-offs between the quality of
the solution in the long term vs. the inconvenience of those living close to the areas where
the city is changing. In these kinds of scenarios, the key challenge is not related to the
computational cost of finding an optimal solution (which is traditionally considered in the
context of dynamic graph algorithms) but to the quality of the solution (which is typically
the focus in online algorithms). The key constraint is not the availability of information
on the current state of the world (which is traditionally considered in distributed graph
algorithms), but the cost of changing the solution.

1.6 Techniques and key ideas
For the equivalence in paths and cycles (Section 5.1), we first make use of pumping-style
arguments that were introduced by Chang and Pettie [17] in the context of distributed
algorithms. We show that such ideas can be used to also analyze locality in the context
of online algorithms: we start by showing that we can “speed up” (or “further localize”)
online-LOCAL algorithms with a sublinear locality to online-LOCAL algorithms with a
constant locality in paths and cycles. Then, once we have reached constant locality in the
online-LOCAL model, we show how to turn it into a LOCAL-model algorithm with locality
O(log∗ n). In this part, the key insight is that we cannot directly simulate online-LOCAL in
LOCAL. Instead, we can use an online-LOCAL algorithm with a constant locality to find a
canonical labeling for each possible input-labeled fragment, and use this information to design
a LOCAL-model algorithm. The main trick is that we first present only disconnected path
fragments to an online-LOCAL algorithm, and force it to commit to some output labeling in
each fragment without knowing how the fragments are connected to each other.

ICALP 2023

10:6 Locality in Online, Dynamic, Sequential, and Distributed Graph Algorithms

In the case of rooted regular trees (Section 5.2), we face the same fundamental challenge:
we cannot directly simulate black-box online-LOCAL algorithms in the LOCAL model.
Instead, we need to look at the combinatorial properties of a given LCL problem Π. We
proceed in two steps: (1) Assume that the locality of Π is nΘ(1) in the LOCAL model;
we need to show that the locality is nΘ(1) also in the online-LOCAL model. Using the
result of [7], high LOCAL-model locality implies that the structure of Π has to have certain
“inflexibilities”, and we use this property to present a strategy that the adversary can use to
force any online-LOCAL algorithm with locality no(1) to fail. (2) Assume that we have an
online-LOCAL algorithm A for Π with locality o(log n); we need to show that the locality
is O(log∗ n) in the LOCAL model. Here we design a family of inputs and a strategy of the
adversary that forces algorithm A to construct a “certificate” (in the sense of [7]) that shows
that Π is efficiently solvable in the LOCAL model.

For 3-coloring bipartite graphs in online-LOCAL (Section 4), we make use of the following
ideas. We maintain a collection of graph fragments such that each of the fragments has got a
boundary that is properly 2-colored. Each such fragment has got one of two possible parities
(let us call them here “odd” and “even”) with respect to the underlying bipartition. We do
not know the global parity of a given graph fragment until we have seen almost the entire
graph. Nevertheless, it is possible to merge two fragments and maintain the invariant: if two
fragments A and B have parities that are not compatible with each other, we can surround
either A or B with a barrier that uses the third color, and thus change parities. Now we
can merge A and B into one fragment that has got a properly 2-colored boundary. The key
observation here is that we can make a choice between surrounding A vs. B, and if we always
pick the one with the smallest number of nested barriers, we never need to use more than a
logarithmic number of nested barriers. It turns out that this is enough to ensure that seeing
up to distance O(log n) suffices to color any node chosen by the adversary.

1.7 Open questions

Our work gives rise to a number of open questions. First, we can take a more fine-grained
view of the results in Tables 1 and 2:
1. Is there any problem in rooted trees with locality Θ(nα) in the online-LOCAL model and

locality Θ(nβ) in the LOCAL model, for some α < β?
2. Is it possible to find a 3-coloring in 2-dimensional grids in the dynamic-LOCAL model

with locality O(log n)?
3. Is it possible to find a 3-coloring in bipartite graphs in the online-LOCAL model with

locality o(log n)?
Perhaps even more interesting is what happens if we consider unrooted trees instead of
rooted trees. In unrooted trees we can separate randomized and deterministic versions
of the LOCAL model [16], and SLOCAL is strong enough to derandomize randomized
LOCAL-model algorithms [25]; hence the key question is:
4. Does randomized-LOCAL ≈ SLOCAL ≈ dynamic-LOCAL ≈ online-LOCAL hold for

LCL problems in unrooted trees?
Finally, our work shows a trade-off between the competitive ratio and the locality of coloring:
With locality O(log n), one can achieve O(1)-coloring of a bipartite graph, and to achieve
locality 0, one needs to use Ω(log n) colors. This raises the following question:
5. What trade-offs exist between the locality and number of colors needed to color a

(bipartite) graph in the online-LOCAL model?

A. Akbari, N. Eslami, H. Lievonen, D. Melnyk, J. Särkijärvi, and J. Suomela 10:7

2 Definitions and related work

Throughout this work, graphs are simple, undirected, and finite, unless otherwise stated. We
write G = (V, E) for a graph G with the set of nodes V and the set of edges E, and we use
n to denote the number of nodes in the graph. For a node v and a natural number T , we use
B(v, T) to denote the set of all nodes in the radius-T neighborhood of node v. For a set of
nodes U , we write G[U] for the subgraph of G induced by U . By radius-T neighborhood
of v we refer to the induced subgraph G[B(v, T)], together with possible input and output
labelings.

We use the following notation for graph problems. We write G for the family of graphs, Σ
for the set of input labels, and Γ for the set of output labels. For a graph G = (V, E), we write
I : V → Σ for the input labeling and L : V → Γ for the output labeling. We consider here
node labelings, but edge labelings can be defined in an analogous manner. A graph problem
Π associates with each possible input (G, I) a set of feasible solutions L; this assignment
must be invariant under graph isomorphism.

Locality. In what follows, we define five models of computing: LOCAL, SLOCAL, two
versions of dynamic-LOCAL, and online-LOCAL. In all of these models, an algorithm is
characterized by a locality T (a.k.a. locality radius, local horizon, time complexity, or round
complexity, depending on the context). In general, T can be a function of n. We assume
that the algorithm knows the value of n.

In each of these models M, we say that algorithm A solves problem Π if, for each possible
input (G, I) and for each possible adversarial choice, the labeling L produced by A is a
feasible solution. We say that problem Π has locality T in model M if T is the pointwise
smallest function such that there exists an M-model algorithm A that solves Π with locality
at most T .

LOCAL model. In the LOCAL model of distributed computing [37,44], the adversary labels
the nodes with unique identifiers from {1, 2, . . . , poly(n)}. In a LOCAL model algorithm,
each node in parallel chooses its local output based on its radius-T neighborhood (the output
may depend on the graph structure, input labels, and the unique identifiers).

Naor and Stockmeyer [42] initiated the study of the locality of LCL problems (see
Definition 3) in the LOCAL model. Today, LCL problems are well classified with respect to
their locality for the special cases of paths [4,5, 13,18,42], grids [13], directed and undirected
trees [5, 7, 8, 15,17] as well as general graphs [13,42], with only a few unknown gaps [7].

SLOCAL model. In the SLOCAL model [26], we have got adversarial unique identifiers
similar to the LOCAL model, but the nodes are processed sequentially with respect to an
adversarial input sequence σ = v1, v2, v3, . . . , vn. Each node v is equipped with an unbounded
local memory; initially, all local memories are empty. When a node v is processed, it can
query the local memories of the nodes in its radius-T neighborhood, and based on this
information, it has to decide what is its own final output and what to store in its own local
memory.

The SLOCAL model has been used as a tool to e.g. better understand the role of
randomness in the LOCAL model [25, 26]. It is also well-known that SLOCAL is strictly
stronger than LOCAL. For example, it is trivial to find a maximal independent set greedily
in the SLOCAL model, while this is a nontrivial problem in the general case in the LOCAL
model [6, 36]. There are many LCL problems with LOCAL-locality Θ(log∗ n) [19,37], and

ICALP 2023

10:8 Locality in Online, Dynamic, Sequential, and Distributed Graph Algorithms

all of them have SLOCAL-locality O(1). There are also LCL problems (e.g. the so-called
sinkless orientation problem), where the locality in the (deterministic) LOCAL model is
Θ(log n), while the locality in the (deterministic) SLOCAL model is Θ(log log n) [16, 25].

Dynamic-LOCAL model. To our knowledge, there is no standard definition or name for
what we call dynamic-LOCAL here; however, the idea has appeared implicitly in a wide
range of work. For example, many efficient dynamic algorithms for graph problems, such as
vertex or edge coloring, maximal independent set, and maximal matching, also satisfy the
property that the solution is only modified in the (immediate) local neighborhood of a point
of change [3, 9, 11,21,28,34,43], and hence all of them fall in the class dynamic-LOCAL.

We use the following definition for dynamic-LOCAL: Computation starts with an empty
graph G0. In step i, the adversary constructs a supergraph Gi of Gi−1 such that Gi and
Gi−1 differ in only one edge or one node; let Ci denote the set of nodes v in Gi with
Gi[B(v, T)] ̸= Gi−1[B(v, T)], i.e., nodes that are within distance at most T from the point
of change. In each step, the algorithm has to produce a feasible labeling Li for problem Π
in graph Gi, and the labeling can only be modified in the local neighborhood of a point of
change, i.e., Li(v) = Li−1(v) for all v /∈ Ci.

Note that we defined the dynamic-LOCAL model for the incremental case, where nodes
and edges are only added. If we do not require that Gi is a supergraph of Gi−1, we arrive at
what we call the dynamic-LOCAL± model with both additions and deletions.

Online graph algorithms. In online graph algorithms, nodes are processed sequentially with
respect to an adversarial input sequence σ = v1, v2, . . . , vn. Let σi = v1, v2, . . . , vi denote the
first i nodes of the sequence, and let Gi = G[{v1, v2, . . . , vi}] be the subgraph induced by
these nodes. When the adversary presents a node vi, the algorithm has to label vi based on
σi and Gi.

Online algorithms on graphs have been studied for many problems such as matching [35]
and independent set [30], but closest to our work is the extensive literature on online graph
coloring [1,10,29,31,33,38,47]. There is also prior work that has considered various ways
to strengthen the notion of online algorithms; the performance of online algorithms can
be improved by letting the algorithm know the input graph [20,32], by giving it an advice
string [12,14,22] with knowledge about the request sequence, or allowing the algorithm to
delay decisions [23]. The online-LOCAL model can be interpreted as online graph algorithms
with spatial advice, and it can also be interpreted as a model where the online algorithm
can delay its decision for node v until it has seen the whole neighborhood around v (this
interpretation is equivalent to the definition we give next).

Online-LOCAL model. We define the online-LOCAL model as follows. The nodes are
processed sequentially with respect to an adversarial input sequence σ = v1, v2, . . . , vn. Let
σi = v1, v2, . . . , vi denote the first i nodes of the sequence, and let Gi = G

[⋃i
j=1 B(vj , T)

]
be the subgraph induced by the radius-T neighborhoods of these nodes. When the adversary
presents a node vi, the algorithm has to label vi based on σi and Gi.

Observe that any online graph algorithm is an online-LOCAL algorithm with locality
0. Further note that in the online-LOCAL model, unique identifiers would not give any
additional information. This is because the nodes can always be numbered with respect to
the point in time when the algorithm first sees them in some Gi.

Yet another way to interpret the online-LOCAL model is that it is an extension of the
SLOCAL model, where the algorithm is equipped with unbounded global memory where it
can store arbitrary information on what has been revealed so far. When they introduced

A. Akbari, N. Eslami, H. Lievonen, D. Melnyk, J. Särkijärvi, and J. Suomela 10:9

the SLOCAL model, Ghaffari, Kuhn, and Maus [26] mentioned the possibility of such an
extension but pointed out that it would make the model “too powerful”, as just one bit
of global memory would already make it possible to solve e.g. leader election (and this
observation already shows that the online-LOCAL model is indeed strictly stronger than the
SLOCAL model). In our work, we show that even though online-LOCAL can trivially solve
e.g. leader election thanks to the global memory, it is not that easy to exploit this extra
power in the context of LCL problems. Indeed, online-LOCAL turns out to be as weak as
SLOCAL when we look at LCL problems in paths, cycles, and rooted trees.

Local computation algorithms. We do not discuss local computation algorithms (LCAs) [2,
24, 39, 40, 46, 46] in this work in more detail, but we briefly point out a direct connection
between the online-LOCAL model and LCAs. It is known that for a broad family of graph
problems (that includes LCLs), we can w.l.o.g. assume that whenever the adversary queries
a node v, the LCA makes probes to learn a connected subgraph around node v [27]. For such
problems, an online-LOCAL algorithm with locality T is at least as strong as an LCA that
makes T probes per query: an LCA can learn some subgraph of the radius-T neighborhood
of v and, depending on the size of the state space, remember some part of that, while in
the online-LOCAL model the algorithm can learn the entire radius-T neighborhood of v

and remember all of that. We leave a more detailed exploration of the distinction between
distance (how far to see) and volume (how much to see), in the spirit of e.g. [41, 45], for
future work.

3 Landscape of models

As an introduction to the models, we first check that all relations in Figure 1 indeed hold.
In each case, we are interested in asymptotic equivalence: for example, when we claim that
A ⊊ B, the interpretation is that locality T in model A implies locality O(T) in model B,
but the converse is not true. Note that the relation between the online-LOCAL problems
and the online graph algorithms has already been discussed in Sections 1 and 2.

Inclusions. Let us first argue that the subset relations in Figure 1 hold. These cases are
trivial:

Any LOCAL algorithm can be simulated in the SLOCAL model, and any SLOCAL
algorithm can be simulated in the online-LOCAL model (this is easiest to see if one
interprets online-LOCAL as an extension of SLOCAL with the global memory).
Any dynamic-LOCAL± algorithm can be directly used in the dynamic-LOCAL model
(an algorithm that supports both additions and deletions can handle additions).

These are a bit more interesting cases:
To simulate a LOCAL algorithm A in the dynamic-LOCAL± model, we can simply
recompute the entire output with A after each change. If the locality of A is T , then the
output of A only changes within distance T from a point of change.
To simulate a dynamic-LOCAL algorithm A in the online-LOCAL model, we proceed as
follows: When the adversary reveals a node v, we feed v along with the new nodes in its
radius-O(T) neighborhood to A edge by edge. Now there will not be any further changes
within distance T from v, and hence A will not change the label L(v) of v anymore.
Hence the online-LOCAL algorithm can also label v with L(v).

ICALP 2023

10:10 Locality in Online, Dynamic, Sequential, and Distributed Graph Algorithms

Table 3 Problems that we use to separate the models, and the bounds that we show for their
locality.

Problem LOCAL SLOCAL dynamic- dynamic- online-
LOCAL± LOCAL LOCAL

3-coloring paths Ω(log∗ n) O(1) O(1) O(1) O(1)
weak reconstruction Ω(n) Ω(n) O(1) O(1) O(1)
cycle detection Ω(n) Ω(n) Ω(n) O(1) O(1)
component-wise leader election Ω(n) Ω(n) Ω(n) Ω(n) O(1)
nested orientation ω(1) O(1) ω(1) ω(1) O(1)

Separations. To prove the separations of Figure 1, we make use of the classic distributed
graph problem of 3-coloring paths, as well as the following problems that are constructed to
highlight the differences between the models:

Weak reconstruction: in each connected component C there has to be at least one node v

such that its label L(v) is an encoding of a graph isomorphic to C.
Cycle detection: for each cycle there has to be at least one node that outputs “yes”, and
each node that outputs “yes” has to be part of at least one cycle.
Component-wise leader election: in each connected component exactly one node has to
be marked as the leader.
Nested orientation: find an acyclic orientation of the edges and label each node recursively
with its own identifier, the identifiers of its neighbors, and the labels of its in-neighbors
(see the full version for the precise definition).

We can prove the bounds shown in Table 3 for the locality of these problems in the five
models; see the full version for the details. Now each separation in Figure 1 follows from one
of the rows of Table 3.

4 3-coloring bipartite graphs

In this section, we present our Contribution 3: we design an algorithm for 3-coloring
bipartite graphs in the online-LOCAL model and show that this gives us an exponential
separation between the SLOCAL and online-LOCAL models. This section also serves as an
introduction into the algorithmic techniques that work in online-LOCAL. Equipped with
this understanding, in Section 5, we start to develop more technical tools that we need for
our Contribution 2.

By prior work [13], it is known that the locality of 3-coloring in
√

n ×
√

n grids is at least
Ω(

√
n) in the LOCAL model. The aforementioned paper considers the case of toroidal grid

graphs, but the same argument can be applied for non-toroidal grids (in essence, if you could
color locally anywhere in the middle of a non-toroidal grid, you could also apply the same
algorithm to color a toroidal grid). We can easily extend this result to show a polynomial
lower bound for 3-coloring grids in the SLOCAL model:

▶ Theorem 2. There is no SLOCAL algorithm that finds a 3-coloring in 2-dimensional grids
with locality o(n1/10).

To prove the result, we show that we can simulate SLOCAL algorithms sufficiently
efficiently in the LOCAL model. We use the standard technique of first precomputing a
distance-o(n1/10) coloring, and then using the colors as a schedule for applying the SLOCAL
algorithm. Such a simulation can be done efficiently and would lead to a LOCAL algorithm
running in o(

√
n) time, which is a contradiction. The full proof of the lower bound is presented

A. Akbari, N. Eslami, H. Lievonen, D. Melnyk, J. Särkijärvi, and J. Suomela 10:11

in the full version of the paper. As grids are bipartite graphs, the problem of 3-coloring
in grids already gives an exponential separation between the SLOCAL and online-LOCAL
models. For the special case of grids, we discuss the known locality bounds for the coloring
problem in the full version. A summary of these results can be found in Table 2.

In Section 4.1, we introduce the 3-coloring algorithm in the online-LOCAL, and we use the
special case of grids in order to visualize it. Besides providing a natural separation between
the SLOCAL and online-LOCAL models, the 3-coloring problem also shows the advantage
of allowing online algorithms to look around: while the best online coloring algorithm on
bipartite graphs is Θ(log n)-competitive, our algorithm in the online-LOCAL model achieves
a competitive ratio of 1.5.

Note that an optimal solution would be to color a bipartite graph with 2 colors. In all
models that we consider here, we know it is not possible to solve 2-coloring with locality
o(n), the worst case being a path with n nodes. We show that allowing an online-LOCAL
algorithm to use only one extra color makes it possible to find a valid coloring with locality
O(log n):

▶ Theorem 1. There is an online-LOCAL algorithm that finds a 3-coloring in bipartite
graphs with locality O(log n).

4.1 Algorithm for 3-coloring bipartite graphs in online-LOCAL
Algorithm overview. The high-level idea of our online-LOCAL algorithm is to color the
presented nodes of the graph with 2 colors until the algorithm sees two areas where the
2-colorings are not compatible. In essence, when the adversary presents a node far from
any other node the algorithm has seen, the algorithm blindly start constructing a 2-coloring.
When the adversary presents nodes in the neighborhood of already colored nodes, the
algorithm simply expands the 2-colored component – we call such a component a group.
The algorithm keeps expanding such properly 2-colored groups until, eventually, two groups
with incompatible 2-colorings meet (i.e., groups that have different parities). Then, the
algorithm uses the third color in order to create a barrier around one of the groups, effectively
flipping its parity. Our algorithm thereby makes use of the knowledge of previously queried
neighborhoods that are given by the online-LOCAL model: the algorithm is committing to
colors for nodes in the revealed subgraphs before they are queried.

Algorithm in detail. At the beginning, no nodes are revealed to the algorithm, and we
therefore say that all nodes are unseen. We refer to connected components of the subgraph
Gi of G as groups. With each of these groups, we associate a border count, which is a natural
number that is initially 0. The algorithm uses colors 0 and 1 for the 2-coloring, reserving
color 2 as the barrier color. Each time the adversary points at a node vi, the algorithm
gets to see the radius-T neighborhood B(vi, T) of this node. Now consider different types of
nodes in B(vi, T + 1). There are three different cases that the algorithm needs to address
(we visualize them in Figures 2–4 using grids as an example):
1. All nodes in B(vi, T + 1) are unseen. In this case, the nodes in B(vi, T) form a new

connected component, i.e. a new group. This group has a border count of 0. The algorithm
colors vi with 0, thus fixing the parity for this group (see Figure 2).

2. The algorithm has already seen some nodes in B(vi, T + 1), but all of them belong to the
same group. In this case, the adversary has shown an area next to an existing group.
If vi was already committed to a color, the algorithm uses that color. Otherwise, the
algorithm colors vi according to the 2-coloring of the group. All nodes in B(vi, T) are
now considered to be in this group (see Figure 3).

ICALP 2023

10:12 Locality in Online, Dynamic, Sequential, and Distributed Graph Algorithms

x x

Figure 2 3-coloring algorithm, case 1/3. The adversary queries node x. Here node x is in the
middle of an unseen region (shaded). The algorithm creates a new group (white) and fixes the color
of node x arbitrarily.

y y

A

Figure 3 3-coloring algorithm, case 2/3. The adversary queries node y. Some nodes in the local
neighborhood of y are already part of a group (white), and hence y joins this group. The algorithm
fixes the color of node y so that it is consistent with the coloring of the group.

C

B
z z

Figure 4 3-coloring algorithm, case 3/3. The adversary queries node z. Some nodes in the local
neighborhood of z belong to two different groups, B and C. The algorithm merges the groups. As
they have incompatible parities, the algorithm adds a new border around one of the groups, in this
case C, as both groups have the same number of borders around them and the algorithm can choose
arbitrarily. Nodes in the local neighborhood of z join the group, and z is colored in a way compatible
with the coloring of the newly created group.

A. Akbari, N. Eslami, H. Lievonen, D. Melnyk, J. Särkijärvi, and J. Suomela 10:13

Algorithm 1 join_groups(A, B).

Input: Groups A, B

Output: Group X

1 if A and B have different parities then
2 Let S be the group with the smaller border count. If they are equal, S = A;
3 For all nodes of color 0 in S, commit all uncolored neighbors to color 1;
4 For all nodes of color 1 in S, commit all uncolored neighbors to color 2;
5 For all nodes of color 2 in S, commit all uncolored neighbors to color 0;
6 Increase border count of S by 1.
7 end
8 Set all nodes in groups A, B to be in group X;
9 Set the border count for X to be the maximum of border counts for A, B and S;

10 return X

3. There are nodes in B(vi, T + 1) that belong to different groups. In this case, the algorithm
has to join groups. Here, we only define the join of two groups A and B; if there are
more groups, this join can be applied iteratively.
If A and B have different parities (i.e., the 2-colorings at their boundaries are not
compatible), the algorithm takes the group with the smaller border count and uses a
layer of nodes of color 2 to create a barrier that changes its parity, and then it increases
the group’s border count; see Algorithm 1 for the details. Then, the algorithm joins the
groups, that are now compatible, and sets the border count of the newly created group
to the maximum of the border counts of A and B.
By merging all groups in the local neighborhood of vi, the algorithm eventually ends up
in a situation where vi only sees nodes in a single group, and we are in a scenario similar
to case 2 above: nodes in the local neighborhood of vi also join the newly created group,
and if vi has not already committed to a color, the algorithm colors it according to the
2-coloring of this group (see Figure 4).

4.2 Analysis of the 3-coloring Algorithm in online-LOCAL
In order to show the correctness of the coloring algorithm, we first prove that this process
creates a valid 3-coloring provided that all our commitments remain within the visible area,
that is, inside subgraph Gi. Next, we show that by choosing T (n) = O(log n), all our
commitments indeed remain inside the visible area. Together, these parts prove Theorem 1.

Validity of the 3-coloring. We first prove that our algorithm always continues a valid
3-coloring, as long as it does not need to make commitments to unseen nodes. We consider
all three cases of the algorithm individually.
1. All nodes in B(vi, T + 1) are unseen. In this case, the algorithm colors vi with 0. As all

neighboring nodes were unseen, they have not been committed to any color, and thus
this case causes no errors.

2. The algorithm has already seen some nodes in B(vi, T + 1), but all of them belong to the
same group. In this case, the algorithm would either use the committed color or the
parity of the group. As previously committed colors do not cause errors, and the group
has consistent parity, this case cannot cause any errors.

ICALP 2023

10:14 Locality in Online, Dynamic, Sequential, and Distributed Graph Algorithms

3. There are nodes in B(vi, T + 1) that belong to different groups. In this case, we want to
join groups without breaking the coloring. If the two groups have the same parity, clearly,
no errors can be caused by continuing the 2-coloring. The interesting case is when the
two groups have different parities. Then, we need to show that the new commitments
made by Algorithm 1 do not create any errors.
Let S be the group with the smaller border count. By examining Algorithm 1, we can
see that all colored nodes that have uncolored neighbors are either of color 0 or color 1:
only in line 4, nodes can be colored with color 2, and all of those nodes’ neighbors are
then colored in line 5. Thus, in order for an error to occur, there either needs to be two
nodes of colors 0 and 1 that have uncolored neighbors and different parities in S, or the
algorithm commits to a color of a node that it has not yet seen. This could cause an
error, as two groups could commit a single node to two different colors.
As for the first case, we assume that all nodes in S that have uncolored neighbors also
have consistent parity. This trivially holds for a group that has border count 0, as all
colored nodes in it have the same parity. From the assumption, it follows that all nodes
colored with 1 in line 3 have the same parity, so they cannot create an error. After this,
all colored nodes with uncolored neighbors in the group have the same parity, and are
colored with 1. Thus all nodes colored with 2 in line 4 also have the same parity, as do
the nodes colored with 0 in line 5. As these are the only lines where nodes are colored,
this procedure cannot create any errors. It also ensures that, after the procedure, the only
colored nodes in the group that have uncolored neighbors are the nodes colored in line 5,
which have the same parity. Therefore, our assumption holds for all groups. Those nodes
also have a parity different from the nodes in S that had uncolored neighbors before this
procedure, so in essence, we have flipped the parity of group S to match the parity of the
other group.
As for the second case, this can be avoided by choosing a large enough T , so that all
commitments remain within the visible area of Gi. Next, we discuss how to choose
such a T .

Locality of the 3-coloring algorithm. In this part, we prove that by choosing locality
T (n) = 3⌈log2 n⌉ = O(log n), no nodes outside the visible area of Gi need to be committed.

We first make the observation that a group with border count b contains at least 2b nodes;
this is a simple induction:
b = 0: A newly created group contains at least 1 node.
b > 0: Consider the cases in which Algorithm 1 returns a group X with border count b.

One possibility is that A or B already had border count b, and hence by assumption it
already contained at least 2b nodes. The only other possibility is that both A and B

had border count exactly b − 1, they had different parities, one of the border counts was
increased, and hence X has now got a border count of b. But, in this case, both A and B

contained at least 2b−1 nodes each.
Hence the border count is bounded by b ≤ log2 n in a graph with n nodes.

We next consider the maximum distance between a node that the adversary has queried
and a node with a committed color. Note that the only place where the algorithm commits
a color to a node that the adversary has not queried yet is when building a border around
a group. There are three steps (lines 3–5) where the algorithm commits to the color of a
neighbor of a committed node, and thus effectively extends the distance by at most one in
each step. Therefore, if the border count is b, in the worst case, the algorithm commits a
color for a node that is within distance 3b from a node that was queried by the adversary.

A. Akbari, N. Eslami, H. Lievonen, D. Melnyk, J. Särkijärvi, and J. Suomela 10:15

As we have b ≤ log2 n, a locality of 3⌈log2 n⌉ ≥ 3b suffices to ensure that all the
commitments of the algorithm are safely within the visible region. This concludes the proof
of Theorem 1.

5 LCL problems in paths, cycles, rooted regular trees

We just showed that the online-LOCAL model is much more powerful than LOCAL and
SLOCAL for an LCL on bipartite graphs and grids. In this section, we discuss what happens
when we restrict our attention to LCL problems in paths, cycles, and trees. We start by
defining LCL problems more formally.

We say that Π is a locally verifiable problem with verification radius r if the following
holds: there is a collection of labeled local neighborhoods T such that L is a feasible solution
for input (G, I) if and only if for all nodes v, the radius-r neighborhood of v in (G, I, L) is in
T . Informally, a solution is feasible if it looks good in all radius-r neighborhoods.

▶ Definition 3 (Locally checkable labeling [42]). A locally verifiable problem Π is a locally
checkable labeling (LCL) problem if the set of the input labels Σ is finite, the set of the output
labels Γ is finite, and there is a natural number ∆ such that maximum degree of any graph
G ∈ G is at most ∆.

Note that in LCL problems, T is also finite since there are only finitely many possible
non-isomorphic labeled local neighborhoods.

It turns out that in the case of paths, cycles, and rooted regular trees, the LOCAL, SLO-
CAL, dynamic-LOCAL, and online-LOCAL models are all approximately equally expressive
for LCL problems. In particular, all classification and decidability results related to LCLs in
paths, cycles, and rooted regular trees in the LOCAL model [4, 7, 18] directly apply also in
the online-LOCAL model, the SLOCAL model, and both versions of the dynamic-LOCAL
model.

We show first that the LOCAL and online-LOCAL models are equivalent in the case of
paths and cycles, even when the LCL problems can have inputs. We then continue to prove
that the models are equivalent also in the more general case of LCL problems rooted regular
trees, but in this case we do not consider the possibility of having input labels.

Formally, we prove the following theorem for cycles and paths:

▶ Theorem 4. Let Π be an LCL problem in paths or cycles (possibly with inputs). If the
locality of Π is T in the online-LOCAL model, then its locality is O(T +log∗ n) in the LOCAL
model.

For the case of rooted trees, we prove the following two theorems:

▶ Theorem 5. Let Π be an LCL problem in rooted regular trees (without inputs). Problem Π
has locality nΩ(1) in the LOCAL model if and only if it has locality nΩ(1) in the online-LOCAL
model.

▶ Theorem 6. Let Π be an LCL problem in rooted regular trees (without inputs). Problem
Π has locality Ω(log n) in the LOCAL model if and only if it has locality Ω(log n) in the
online-LOCAL model.

These two theorems show that all LCL problems in rooted regular trees belong to one of
the known complexity classes O(log∗ n), Θ(log n) and nΩ(1) in all of the models we study.
In what follows, we introduce the high-level ideas of the proofs of these theorems. For full
proofs, we refer the reader to the full version.

ICALP 2023

10:16 Locality in Online, Dynamic, Sequential, and Distributed Graph Algorithms

5.1 Cycles and paths
We prove Theorem 4 by first showing that any LCL problem in cycles and paths has either
locality O(1) or Ω(n) in the online-LOCAL model. Next, we show that if a problem is solvable
with locality O(1) in the online-LOCAL model, then it is also solvable in locality O(log∗ n)
in the LOCAL model. These steps are described by the following two lemmas:

▶ Lemma 7. Let Π be an LCL problem in paths or cycles (possibly with inputs), and let A be
an online-LOCAL algorithm solving Π with locality o(n). Then, there exists an online-LOCAL
algorithm A′ solving Π with locality O(1).

The high-level idea of the proof of Lemma 7 is to construct a large virtual graph P ′ such
that when the original algorithm runs on the virtual graph P ′, the labeling produced by the
algorithm is locally compatible with the labeling in the original graph P . We ensure this
by applying a pumping-lemma-style argument on the LCL problem. The proof uses similar
ideas as the ones presented by Chang and Pettie [17].

▶ Lemma 8. Let Π be an LCL problem in paths or cycles (possibly with inputs), and let A
be an online-LOCAL algorithm solving Π with locality O(1). Then, there exists a LOCAL
algorithm A′ solving Π with locality O(log∗ n).

The high-level idea of the proof of Lemma 8 is to use the constant locality online-
LOCAL algorithm to construct a canonical output labeling for each possible neighborhood
of input labels. The fast LOCAL algorithm can then use these canonical labelings in disjoint
neighborhoods of the real graph, and the construction of the canonical labelings ensures that
the labeling also extends to the path segments between these neighborhoods.

The full proofs of these lemmas can be found in the full version of this paper. In order to
prove Theorem 4, it is sufficient to combine these lemmas with the fact that the possible
localities on paths and cycles in the LOCAL model are O(1), Θ(log∗ n) and Θ(n) [18].

5.2 Rooted regular trees
We prove the equivalence of the LOCAL and the online-LOCAL models for LCL problems
in rooted regular trees in two parts. We start out with Theorem 5 and show that if an
LCL problem requires locality nΩ(1) in the LOCAL model, then for every locality-no(1)

online-LOCAL algorithm we can construct an input instance which the algorithm must fail
to solve. To prove Theorem 6, we show that a locality-o(log n) online-LOCAL algorithm for
solving an LCL problem implies that there exists a locality-O(log∗ n) LOCAL algorithm for
solving that same problem. In the following, we outline the proofs of both theorems; the full
proofs can be found in the full version of the paper. Before considering the full proof, we
advise the reader to look at the example in the full version of this paper, where we show
that the 2.5-coloring problem requires locality Ω(

√
n) in the online-LOCAL model.

Proof outline of Theorem 5. Our proof is based on the fact that any LCL problem requiring
locality nΩ(1) in the LOCAL model has a specific structure. In particular, the problem can
be decomposed into a sequence of path-inflexible labels and the corresponding sequence of
more and more restricted problems [7]. Informally, a label is path-inflexible if two nodes
having that label can exist only at specific distances apart from each other. For example,
when 2-coloring a graph, two nodes having label 1 can exist only at even distances from
each other. The problems in the path-inflexible decomposition are formed by removing the
path-inflexible labels from the previous problem in the sequence until an empty problem is
reached.

A. Akbari, N. Eslami, H. Lievonen, D. Melnyk, J. Särkijärvi, and J. Suomela 10:17

This decomposition of the problem into restricted problems with path-inflexible labels
allows us to construct an input graph for any locality-no(1) online-LOCAL algorithm. In
particular, we force the algorithm to commit labels in disjoint fragments of the graph. Any
label that the algorithm uses must be a path-inflexible label in some problem of the sequence
of restricted problems. By combining two fragments containing labels that are path-inflexible
in the same problem, we can ensure that the algorithm cannot solve that problem in the
resulting graph. Hence the algorithm must use a label from a problem earlier in the sequence.
At some point, the algorithm must use labels that are path-inflexible in the original problem.
At that point, we can combine two fragments having path-inflexible labels in the original
problem in such a way that no valid labeling for the original problem exists, and hence the
algorithm must fail to solve the problem on the resulting graph.

Proof outline of Theorem 6. Here, we show that a locality-o(log n) online-LOCAL algo-
rithm solving an LCL problem implies that there exists a certificate for O(log∗ n) solvability
for that problem. It is known that the existence of such a certificate for a problem implies
that there exists a locality-O(log∗ n) LOCAL algorithm for solving the problem [7].

Informally, the certificate for O(log∗ n) solvability for LCL problem Π with label set Γ
and arity δ consists of a subset ΓT = {γ1, . . . , γt} of labels Γ, and two sequences of correctly
labeled complete δ-ary trees T 1 and T 2. The leaves of each tree in the sequence T 1 (resp.
T 2) are labeled in the same way using only labels from set ΓT . For every label of set ΓT ,
there exists a tree in both of the sequences having a root labeled with that label.

We can use the online-LOCAL algorithm to construct such a certificate. We do this by
constructing exponentially many deep complete δ-ary trees and using the algorithm to label
nodes in the middle of those trees. We then glue these trees together in various ways. When
the trees are glued together, we use the online-LOCAL algorithm to label the rest of the
nodes to form one tree of the sequence. We repeat this procedure until all trees of both
sequences have been constructed.

References
1 Susanne Albers and Sebastian Schraink. Tight bounds for online coloring of basic graph classes.

Algorithmica, 83(1):337–360, 2021. doi:10.1007/s00453-020-00759-7.
2 Noga Alon, Ronitt Rubinfeld, Shai Vardi, and Ning Xie. Space-efficient local computation

algorithms. In Proc. 23rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
2012), pages 1132–1139. SIAM, 2012. doi:10.1137/1.9781611973099.89.

3 Sepehr Assadi, Krzysztof Onak, Baruch Schieber, and Shay Solomon. Fully dynamic maximal
independent set with sublinear update time. In Proc. 50th Annual ACM SIGACT Symposium
on Theory of Computing (STOC 2018), pages 815–826, 2018. doi:10.1145/3188745.3188922.

4 Alkida Balliu, Sebastian Brandt, Yi-Jun Chang, Dennis Olivetti, Mikaël Rabie, and Jukka
Suomela. The distributed complexity of locally checkable problems on paths is decidable. In
Proc. 38th ACM Symposium on Principles of Distributed Computing (PODC 2019), pages
262–271. ACM Press, 2019. doi:10.1145/3293611.3331606.

5 Alkida Balliu, Sebastian Brandt, Yuval Efron, Juho Hirvonen, Yannic Maus, Dennis Olivetti,
and Jukka Suomela. Classification of distributed binary labeling problems. In Proc. 34th
International Symposium on Distributed Computing (DISC 2020), pages 17:1–17:17. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.DISC.2020.17.

6 Alkida Balliu, Sebastian Brandt, Juho Hirvonen, Dennis Olivetti, Mikaël Rabie, and Jukka
Suomela. Lower bounds for maximal matchings and maximal independent sets. Journal of the
ACM, 68(5), 2021. doi:10.1145/3461458.

ICALP 2023

https://doi.org/10.1007/s00453-020-00759-7
https://doi.org/10.1137/1.9781611973099.89
https://doi.org/10.1145/3188745.3188922
https://doi.org/10.1145/3293611.3331606
https://doi.org/10.4230/LIPIcs.DISC.2020.17
https://doi.org/10.1145/3461458

10:18 Locality in Online, Dynamic, Sequential, and Distributed Graph Algorithms

7 Alkida Balliu, Sebastian Brandt, Dennis Olivetti, Jan Studený, Jukka Suomela, and Aleksandr
Tereshchenko. Locally checkable problems in rooted trees. In Proc. 40th ACM Symposium
on Principles of Distributed Computing (PODC 2021), pages 263–272. ACM Press, 2021.
doi:10.1145/3465084.3467934.

8 Alkida Balliu, Juho Hirvonen, Dennis Olivetti, and Jukka Suomela. Hardness of minimal
symmetry breaking in distributed computing. In Proc. 38th ACM Symposium on Principles
of Distributed Computing (PODC 2019), pages 369–378. ACM Press, 2019. doi:10.1145/
3293611.3331605.

9 Leonid Barenboim and Tzalik Maimon. Fully dynamic graph algorithms inspired by distributed
computing: Deterministic maximal matching and edge coloring in sublinear update-time. ACM
Journal of Experimental Algorithmics, 24, 2019.

10 Dwight R. Bean. Effective coloration. The Journal of Symbolic Logic, 41(2):469–480, 1976.
doi:10.2307/2272247.

11 Sayan Bhattacharya, Deeparnab Chakrabarty, Monika Henzinger, and Danupon Nanongkai.
Dynamic algorithms for graph coloring. In Proc. 29th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2018), pages 1–20. SIAM, 2018. doi:10.1137/1.9781611975031.
1.

12 Maria Paola Bianchi, Hans-Joachim Böckenhauer, Juraj Hromkovič, and Lucia Keller. Online
coloring of bipartite graphs with and without advice. In Computing and Combinatorics, pages
519–530, 2012. doi:10.1007/978-3-642-32241-9_44.

13 Sebastian Brandt, Juho Hirvonen, Janne H. Korhonen, Tuomo Lempiäinen, Patric R. J.
Östergård, Christopher Purcell, Joel Rybicki, Jukka Suomela, and Przemysław Uznański. LCL
problems on grids. In Proc. 36th ACM Symposium on Principles of Distributed Computing
(PODC 2017), pages 101–110. ACM Press, 2017. doi:10.1145/3087801.3087833.

14 Elisabet Burjons, Juraj Hromkovič, Xavier Muñoz, and Walter Unger. Online graph coloring
with advice and randomized adversary. In Proc. 42nd International Conference on Current
Trends in Theory and Practice of Computer Science (SOFSEM 2016), pages 229–240. Springer,
2016. doi:10.1007/978-3-662-49192-8_19.

15 Yi-Jun Chang. The complexity landscape of distributed locally checkable problems on trees. In
Proc. 34th International Symposium on Distributed Computing (DISC 2020). Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.DISC.2020.18.

16 Yi-Jun Chang, Tsvi Kopelowitz, and Seth Pettie. An Exponential Separation between
Randomized and Deterministic Complexity in the LOCAL Model. In Proc. 57th IEEE
Symposium on Foundations of Computer Science (FOCS 2016), pages 615–624. IEEE, 2016.
doi:10.1109/FOCS.2016.72.

17 Yi-Jun Chang and Seth Pettie. A Time Hierarchy Theorem for the LOCAL Model. SIAM
Journal on Computing, 48(1):33–69, 2019. doi:10.1137/17M1157957.

18 Yi-Jun Chang, Jan Studený, and Jukka Suomela. Distributed graph problems through an
automata-theoretic lens. In Proc. 28th International Colloquium on Structural Information
and Communication Complexity (SIROCCO 2021), pages 31–49. Springer, 2021. doi:10.
1007/978-3-030-79527-6_3.

19 Richard Cole and Uzi Vishkin. Deterministic coin tossing with applications to optimal parallel
list ranking. Information and Control, 70(1):32–53, 1986. doi:10.1016/S0019-9958(86)
80023-7.

20 Stefan Dobrev, Rastislav Královič, and Richard Královič. Independent set with advice: The
impact of graph knowledge. In Proc. 10th Workshop on Approximation and Online Algorithms
(WAOA 2012). Springer, 2013. doi:10.1007/978-3-642-38016-7_2.

21 Yuhao Du and Hengjie Zhang. Improved algorithms for fully dynamic maximal independent
set, 2018. arXiv:1804.08908.

22 Yuval Emek, Pierre Fraigniaud, Amos Korman, and Adi Rosén. Online computation with advice.
In Proc. 36th edition of the International Colloquium on Automata, Languages and Program-
ming (ICALP 2009), pages 427–438. Springer, 2009. doi:10.1007/978-3-642-02927-1_36.

https://doi.org/10.1145/3465084.3467934
https://doi.org/10.1145/3293611.3331605
https://doi.org/10.1145/3293611.3331605
https://doi.org/10.2307/2272247
https://doi.org/10.1137/1.9781611975031.1
https://doi.org/10.1137/1.9781611975031.1
https://doi.org/10.1007/978-3-642-32241-9_44
https://doi.org/10.1145/3087801.3087833
https://doi.org/10.1007/978-3-662-49192-8_19
https://doi.org/10.4230/LIPIcs.DISC.2020.18
https://doi.org/10.1109/FOCS.2016.72
https://doi.org/10.1137/17M1157957
https://doi.org/10.1007/978-3-030-79527-6_3
https://doi.org/10.1007/978-3-030-79527-6_3
https://doi.org/10.1016/S0019-9958(86)80023-7
https://doi.org/10.1016/S0019-9958(86)80023-7
https://doi.org/10.1007/978-3-642-38016-7_2
https://arxiv.org/abs/1804.08908
https://doi.org/10.1007/978-3-642-02927-1_36

A. Akbari, N. Eslami, H. Lievonen, D. Melnyk, J. Särkijärvi, and J. Suomela 10:19

23 Yuval Emek, Shay Kutten, and Roger Wattenhofer. Online matching: Haste makes waste! In
Proc. 48th Annual ACM Symposium on Theory of Computing (STOC 2016), pages 333–344,
2016. doi:10.1145/2897518.2897557.

24 Guy Even, Moti Medina, and Dana Ron. Deterministic stateless centralized local algorithms
for bounded degree graphs. In Proc. 22nd European Symposium on Algorithms (ESA 2014),
pages 394–405. Springer, 2014. doi:10.1007/978-3-662-44777-2_33.

25 Mohsen Ghaffari, David G. Harris, and Fabian Kuhn. On derandomizing local distributed
algorithms. In Proc. 59th IEEE Annual Symposium on Foundations of Computer Science
(FOCS 2018), pages 662–673. IEEE, 2018. doi:10.1109/FOCS.2018.00069.

26 Mohsen Ghaffari, Fabian Kuhn, and Yannic Maus. On the complexity of local distributed
graph problems. In Proc. 49th Annual ACM SIGACT Symposium on Theory of Computing
(STOC 2017), pages 784–797. ACM Press, 2017. doi:10.1145/3055399.3055471.

27 Mika Göös, Juho Hirvonen, Reut Levi, Moti Medina, and Jukka Suomela. Non-local probes
do not help with many graph problems. In Proc. 30th International Symposium on Distributed
Computing (DISC 2016). Springer, 2016. doi:10.1007/978-3-662-53426-7_15.

28 Manoj Gupta and Shahbaz Khan. Simple dynamic algorithms for maximal independent set
and other problems, 2018. arXiv:1804.01823.

29 András Gyárfás and Jenő Lehel. On-line and first fit colorings of graphs. Journal of Graph
Theory, 12(2):217–227, 1988. doi:h10.1002/jgt.3190120212.

30 Magnús M. Halldórsson, Kazuo Iwama, Shuichi Miyazaki, and Shiro Taketomi. Online indepen-
dent sets. Theoretical Computer Science, 289(2):953–962, 2002. doi:10.1016/S0304-3975(01)
00411-X.

31 Magnús M. Halldórsson. Parallel and on-line graph coloring. Journal of Algorithms, 23(2):265–
280, 1997. doi:10.1006/jagm.1996.0836.

32 Magnús M. Halldórsson. Online coloring known graphs. Electronic Journal of Combinatorics,
7, 2000. doi:10.37236/1485.

33 Magnús M. Halldórsson and Mario Szegedy. Lower bounds for on-line graph coloring. Theo-
retical Computer Science, 130(1):163–174, 1994. doi:10.1016/0304-3975(94)90157-0.

34 Zoran Ivković and Errol L. Lloyd. Fully dynamic maintenance of vertex cover. In Proc.
19th International Workshop on Graph-Theoretic Concepts in Computer Science (WG 1993).
Springer, 1994.

35 Richard M. Karp, Umesh V. Vazirani, and Vijay V. Vazirani. An optimal algorithm for on-line
bipartite matching. In Proc. 22nd Annual ACM Symposium on Theory of Computing (STOC
1990), pages 352–358, 1990. doi:10.1145/100216.100262.

36 Fabian Kuhn, Thomas Moscibroda, and Roger Wattenhofer. Local computation: Lower and
upper bounds. Journal of the ACM, 63(2):1–44, 2016. doi:10.1145/2742012.

37 Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on Computing,
21(1):193–201, 1992. doi:10.1137/0221015.

38 László Lovász, Michael Saks, and W.T. Trotter. An on-line graph coloring algorithm with
sublinear performance ratio. Discrete Mathematics, 75(1):319–325, 1989. doi:10.1016/
0012-365X(89)90096-4.

39 Yishay Mansour, Aviad Rubinstein, Shai Vardi, and Ning Xie. Converting online algorithms
to local computation algorithms. In Proc. 39th International Colloquium on Automata,
Languages and Programming (ICALP 2012), pages 653–664. Springer, 2012. doi:10.1007/
978-3-642-31594-7_55.

40 Yishay Mansour and Shai Vardi. A local computation approximation scheme to maxi-
mum matching. In Proc. 16th International Workshop on Approximation Algorithms for
Combinatorial Optimization Problems (APPROX 2013) and 17th International Workshop
on Randomization and Computation (RANDOM 2013), pages 260–273. Springer, 2013.
doi:10.1007/978-3-642-40328-6_19.

ICALP 2023

https://doi.org/10.1145/2897518.2897557
https://doi.org/10.1007/978-3-662-44777-2_33
https://doi.org/10.1109/FOCS.2018.00069
https://doi.org/10.1145/3055399.3055471
https://doi.org/10.1007/978-3-662-53426-7_15
https://arxiv.org/abs/1804.01823
https://doi.org/h10.1002/jgt.3190120212
https://doi.org/10.1016/S0304-3975(01)00411-X
https://doi.org/10.1016/S0304-3975(01)00411-X
https://doi.org/10.1006/jagm.1996.0836
https://doi.org/10.37236/1485
https://doi.org/10.1016/0304-3975(94)90157-0
https://doi.org/10.1145/100216.100262
https://doi.org/10.1145/2742012
https://doi.org/10.1137/0221015
https://doi.org/10.1016/0012-365X(89)90096-4
https://doi.org/10.1016/0012-365X(89)90096-4
https://doi.org/10.1007/978-3-642-31594-7_55
https://doi.org/10.1007/978-3-642-31594-7_55
https://doi.org/10.1007/978-3-642-40328-6_19

10:20 Locality in Online, Dynamic, Sequential, and Distributed Graph Algorithms

41 Darya Melnyk, Jukka Suomela, and Neven Villani. Mending partial solutions with few changes.
In Proc. 25th International Conference on Principles of Distributed Systems (OPODIS 2022),
Leibniz International Proceedings in Informatics (LIPIcs). Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2022.

42 Moni Naor and Larry Stockmeyer. What can be computed locally? SIAM Journal on
Computing, 24(6):1259–1277, 1995. doi:10.1137/S0097539793254571.

43 Ofer Neiman and Shay Solomon. Simple deterministic algorithms for fully dynamic maximal
matching. ACM Transactions on Algorithms, 12(1), 2015. doi:10.1145/2700206.

44 David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM, 2000. doi:
10.1137/1.9780898719772.

45 Will Rosenbaum and Jukka Suomela. Seeing far vs. seeing wide: volume complexity of local
graph problems. In Proc. 39th ACM Symposium on Principles of Distributed Computing
(PODC 2020), pages 89–98. ACM Press, 2020. doi:10.1145/3382734.3405721.

46 Ronitt Rubinfeld, Gil Tamir, Shai Vardi, and Ning Xie. Fast local computation algorithms. In
Proc. 2nd Symposium on Innovations in Computer Science (ICS 2011), pages 223–238, 2011.

47 Sundar Vishwanathan. Randomized online graph coloring. Journal of Algorithms, 13(4):657–
669, 1992. doi:10.1016/0196-6774(92)90061-G.

https://doi.org/10.1137/S0097539793254571
https://doi.org/10.1145/2700206
https://doi.org/10.1137/1.9780898719772
https://doi.org/10.1137/1.9780898719772
https://doi.org/10.1145/3382734.3405721
https://doi.org/10.1016/0196-6774(92)90061-G

An Efficient Algorithm for All-Pairs Bounded Edge
Connectivity
Shyan Akmal # Ñ

MIT EECS and CSAIL, Cambridge, MA, USA

Ce Jin # Ñ

MIT EECS and CSAIL, Cambridge, MA, USA

Abstract
Our work concerns algorithms for a variant of Maximum Flow in unweighted graphs. In the All-Pairs
Connectivity (APC) problem, we are given a graph G on n vertices and m edges, and are tasked
with computing the maximum number of edge-disjoint paths from s to t (equivalently, the size of a
minimum (s, t)-cut) in G, for all pairs of vertices (s, t). Over undirected graphs, it is known that
APC can be solved in essentially optimal n2+o(1) time. In contrast, the true time complexity of APC
over directed graphs remains open: this problem can be solved in Õ(mω) time, where ω ∈ [2, 2.373)
is the exponent of matrix multiplication, but no matching conditional lower bound is known.

Following [Abboud et al., ICALP 2019], we study a bounded version of APC called the k-Bounded
All Pairs Connectivity (k-APC) problem. In this variant of APC, we are given an integer k in addition
to the graph G, and are now tasked with reporting the size of a minimum (s, t)-cut only for pairs
(s, t) of vertices with min-cut value less than k (if the minimum (s, t)-cut has size at least k, we can
just report it is “large” instead of computing the exact value).

Our main result is an Õ((kn)ω) time algorithm solving k-APC in directed graphs. This is the
first algorithm which solves k-APC faster than simply solving the more general APC problem exactly,
for all k ≥ 3. This runtime is Õ(nω) for all k ≤ poly(log n), which essentially matches the optimal
runtime for the k = 1 case of k-APC, under popular conjectures from fine-grained complexity.
Previously, this runtime was only achieved for general directed graphs when k ≤ 2 [Georgiadis et al.,
ICALP 2017]. Our result employs the same algebraic framework used in previous work, introduced
by [Cheung, Lau, and Leung, FOCS 2011]. A direct implementation of this framework involves
inverting a large random matrix. Our new algorithm is based off the insight that for solving k-APC,
it suffices to invert a low-rank random matrix instead of a generic random matrix.

We also obtain a new algorithm for a variant of k-APC, the k-Bounded All-Pairs Vertex Connectivity
(k-APVC) problem, where for every pair of vertices (s, t), we are now tasked with reporting the
maximum number of internally vertex-disjoint (rather than edge-disjoint) paths from s to t if this
number is less than k, and otherwise reporting that this number is at least k.

Our second result is an Õ(k2nω) time algorithm solving k-APVC in directed graphs. Previous
work showed how to solve an easier version of the k-APVC problem (where answers only need to be
returned for pairs of vertices (s, t) which are not edges in the graph) in Õ((kn)ω) time [Abboud et al,
ICALP 2019]. In comparison, our algorithm solves the full k-APVC problem, and is faster if ω > 2.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases maximum flow, all-pairs, connectivity, matrix rank

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.11

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2305.02132 [3]

Funding Shyan Akmal: Supported in part by NSF grants CCF-2129139 and CCF-2127597.
Ce Jin: Partially supported by NSF Grant CCF-2129139 and a Siebel Scholarship.

Acknowledgements The first author thanks Virginia Vassilevska Williams for insightful discussions
on algorithms for computing matrix rank.

EA
T
C
S

© Shyan Akmal and Ce Jin;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 11; pp. 11:1–11:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:naysh@mit.edu
https://www.shyan.akmal.com
https://orcid.org/0000-0002-7266-2041
mailto:cejin@mit.edu
https://ce-jin.github.io/
https://doi.org/10.4230/LIPIcs.ICALP.2023.11
https://arxiv.org/abs/2305.02132
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

11:2 An Efficient Algorithm for All-Pairs Bounded Edge Connectivity

1 Introduction

Computing maximum flows is a classic problem which has been extensively studied in graph
theory and computer science. In unweighted graphs, this task specializes to computing
connectivities, an interesting computational problem in its own right. Given a graph G on
n vertices and m edges, for any vertices s and t in G, the connectivity λ(s, t) from s to t is
defined to be the maximum number of edge-disjoint paths1 from s to t. Since maximum flow
can be computed in almost-linear time, we can compute λ(s, t) for any given vertices s and t

in m1+o(1) time [5].
What if instead of merely returning the value of a single connectivity, our goal is to

compute all connectivities in the graph? This brings us to the All-Pairs Connectivity (APC)
problem: in this problem, we are given a graph G as above, and are tasked with computing
λ(s, t) for all pairs of vertices (s, t) in G. In undirected graphs, APC can be solved in n2+o(1)

time [2], so that this “all-pairs” problem is essentially no harder than outputting a single
connectivity in dense graphs.

In directed graphs, APC appears to be much harder, with various conditional lower bounds
(discussed in Section 1.2) suggesting it is unlikely this problem can be solved in quadratic
time. Naively computing the connectivity separately for each pair yields an n2m1+o(1) time
algorithm for this problem. Using the flow vector framework (discussed in Section 3), it is
possible to solve APC in directed graphs in Õ(mω) time2 [7], where ω is the exponent of
matrix multiplication. Known algorithms imply that ω < 2.37286 [4], so the Õ(mω) time
algorithm is faster than the naive algorithm whenever the input graph is not too dense.

Our work focuses on a bounded version of the APC problem, which we formally state
as the k-Bounded All-Pairs Connectivity (k-APC) problem: in this problem, we are given a
directed graph G as above, and are tasked with computing min(k, λ(s, t)) for all pairs of
vertices (s, t) in G. Intuitively, this is a relaxation of the APC problem, where our goal is
to compute the exact values of λ(s, t) only for pairs (s, t) with small connectivity. For all
other pairs, it suffices to report that the connectivity is large, where k is our threshold for
distinguishing between small and large connectivity values.

When k = 1, the k-APC problem is equivalent to computing the transitive closure of the
input graph (in this problem, for each pair of vertices (s, t), we are tasked with determining if
G contains a path from s to t), which can be done in Õ(nω) time [8]. Similarly, for the special
case of k = 2, it is known that k-APC can be solved in Õ(nω) time, by a divide-and-conquer
algorithm employing a cleverly tailored matrix product [10]. As we discuss in Section 1.2,
there is evidence that these runtimes for k-APC when k ≤ 2 are essentially optimal.

Already for k = 3 however, it is open whether k-APC can be solved faster than computing
the exact values of λ(s, t) for all pairs (s, t) of vertices! Roughly speaking, this is because
the known Õ(mω) time algorithm for APC involves encoding the connectivity information
in the inverse of an m × m matrix, and inverting an m × m matrix takes O(mω) time in
general. This encoding step appears to be necessary for k-APC as well. For k = 2, clever
combinatorial observations about the structure of strongly connected graphs allow one to
skip this computation, but for k ≥ 3 it is not clear at all from previous work how to avoid
this bottleneck. Moreover, it is consistent with existing hardness results that k-APC could
be solved in O(nω) time for any constant k.

1 By Menger’s theorem, λ(s, t) is also equal to the minimum number of edges that must be deleted from
the graph G to produce a graph with no s to t path.

2 Given a function f , we write Õ(f) to denote f · poly(log f).

S. Akmal and C. Jin 11:3

▶ Open Problem 1. Can k-APC be solved in faster than Õ(mω) time for k = 3?

Due to this lack of knowledge about the complexity of k-APC, researchers have also
studied easier versions of this problem. Given vertices s and t in the graph G, we define the
vertex connectivity ν(s, t) from s to t to be the maximum number of internally vertex-disjoint
paths from s to t. We can consider vertex connectivity analogues of the APC and k-APC
problems. In the All-Pairs Vertex Connectivity (APVC) problem, we are given a graph G on
n vertices and m edges, and are tasked with computing the value of ν(s, t) for all pairs of
vertices (s, t) in G. In the k-Bounded All-Pairs Vertex Connectivity (k-APVC) problem, we are
given the same input G as above, but are now tasked with only computing min(k, ν(s, t)) for
all pairs of vertices (s, t) in G.

The k-APVC problem does not face the O(mω) barrier which existing algorithmic tech-
niques for k-APC seem to encounter, intuitively because it is possible to encode all the
vertex-connectivity information of a graph in the inverse of an n × n matrix instead of an
m × m matrix. As a consequence, [1] was able to present an Õ((kn)ω) time algorithm which
computes min(k, ν(s, t)) for all pairs of vertices (s, t) such that (s, t) is not an edge. Given
this result, it is natural to ask whether the more general k-APVC and k-APC problems can
also be solved in this same running time.

▶ Open Problem 2. Can k-APVC be solved in Õ((kn)ω) time?

▶ Open Problem 3. Can k-APC be solved in Õ((kn)ω) time?

1.1 Our Contribution
We resolve all three open problems raised in the previous section.

First, we present a faster algorithm for k-APC, whose time complexity matches the
runtime given by previous work for solving an easier version of k-APVC.

▶ Theorem 4. For any positive integer k, k-APC can be solved in Õ((kn)ω) time.

This is the first algorithm which solves k-APC faster than simply solving APC exactly using
the Õ(mω) time algorithm of [7], for all constant k ≥ 3.

Second, we present an algorithm for k-APVC, which is faster than the Õ((kn)ω) time
algorithm from [1] (which only solves a restricted version of k-APVC) if ω > 2.

▶ Theorem 5. For any positive integer k, k-APVC can be solved in Õ(k2nω) time.

1.2 Comparison to Previous Results
Conditional Lower Bounds
The field of fine-grained complexity contains many popular conjectures (which hypothesize
lower bounds on the complexity of certain computational tasks) which are used as the
basis of conditional hardness results for problems in computer science. In this section, we
review known hardness results for APC and its variants. The definitions of the problems and
conjectures used in this section can be found in...

Assuming that Boolean Matrix Multiplication (BMM) requires nω−o(1) time, it is known
that k-APC and k-APVC require nω−o(1) time to solve, even for k = 1 [8]. In particular, this
hypothesis implies our algorithms for k-APC and k-APVC are optimal for constant k.

Assuming the Strong Exponential Time Hypothesis (SETH), previous work shows that APC
requires (mn)1−o(1) time [12, Theorem 1.8], APVC requires m3/2−o(1) time [14, Theorem 1.7],
and k-APC requires

(
kn2)1−o(1) time [12, Theorem 4.3].

ICALP 2023

11:4 An Efficient Algorithm for All-Pairs Bounded Edge Connectivity

Let ω(1, 2, 1) be the smallest real number3 such that we can compute the product of an
n × n2 matrix and n2 × n matrix in nω(1,2,1)+o(1) time. Assuming the 4-Clique Conjecture,
the k-APVC problem over directed graphs (and thus the k-APC problem as well) requires(
k2nω(1,2,1)−2)1−o(1) time [1]. This conjecture also implies that solving APVC even in

undirected graphs requires nω(1,2,1)−o(1) time [11].

Algorithms for Related Problems
As mentioned previously, no nontrivial algorithms for k-APC over general directed graphs
were known for k ≥ 3, prior to our work. However, faster algorithms were already known for
k-APC over directed acyclic graphs (DAGs). In particular, [1] presented two algorithms to
solve k-APC in DAGs, running in 2O(k2)mn time and (k log n)4k+o(k)nω time respectively.

In comparison, our algorithm from Theorem 4 solves k-APC in general directed graphs,
is faster than the former algorithm whenever m ≥ nω−1 or k ≥ ω(

√
log n) (for example),

is always faster than the latter algorithm, and is significantly simpler from a technical
perspective than these earlier arguments. However, these algorithms for k-APC on DAGs
also return cuts witnessing the connectivity values, while our algorithm does not.

In the special case of undirected graphs, APVC can be solved in m2+o(1) time [14,
Theorem 1.8], which is faster than the aforementioned Õ(mω) time algorithm if ω > 2. Over
undirected graphs, k-APVC can be solved in k3m1+o(1) + n2 poly(log n) time. In comparison,
our algorithm from Theorem 5 can handle k-APVC in both undirected and directed graphs,
and is faster for large enough values of k in dense graphs.

In directed planar graphs with maximum degree d, [7, Theorem 1.5] proves that APC can
be solved in O

(
dω−2nω/2+1)

time.
In [15], the authors consider a symmetric variant of k-APC. Here, the input is a directed

graph G on n vertices and m edges, and the goal is to compute for all pairs of vertices (s, t),
the value of min(k, λ(s, t), λ(t, s)). This easier problem can be solved in O(kmn) time [15].

1.3 Organization
The rest of this paper is devoted to proving Theorems 4 and 5. In Section 2 we introduce
notation, some useful definitions, and results on matrix computation which will be useful in
proving correctness of our algorithms. In Section 3 we provide an intuitive overview of our
algorithms for k-APC and k-APVC. In Section 4 we describe a framework of “flow vectors”
for capturing connectivity values, and in Section 5 use this framework to prove Theorem 4.
In Section 6 we present helpful results about vertex-connectivity, and in Section 7 use these
results to prove Theorem 5.

2 Preliminaries

Graph Assumptions

Throughout, we let G denote a directed graph on n vertices and m edges. Without loss
of generality, we assume that the underlying undirected graph of G is connected, i.e., G is
weakly connected (since, if not, we could simply run our algorithms separately on each weakly
connected component of G), so we have m ≥ n − 1. We assume G has no self-loops, since
these do not affect the connectivity or vertex-connectivity values between distinct vertices.

3 Known fast matrix multiplication algorithms imply that ω(1, 2, 1) < 3.25669 [9, Table 2].

S. Akmal and C. Jin 11:5

In Sections 4 and 5 we focus on the k-APC problem, and so allow G to have parallel
edges between vertices (i.e., G can be a multigraph). We assume however, without loss of
generality, that for any distinct vertices s and t, there are at most k edges from s to t (since
if there were more than k parallel edges from s to t, we could delete some and bring the
count of parallel edges down to k without changing the value of min(k, λ(s, t))). In Sections 6
and 7 we focus on the k-APVC problem, and so assume that G is a simple graph with no
parallel edges, since parallel edges from u to v cannot affect the value of a vertex connectivity
ν(s, t), unless u = s and v = t, in which case the value of ν(s, t) is simply increased by the
number of additional parallel edges from s to t.

Graph Terminology and Notation

Given an edge e from u to v in G, we write e = (u, v). We call u the tail of e and v the
head of e. Vertices which are tails of edges entering a vertex v are called in-neighbors of v.
Similarly, vertices which are heads of edges exiting v are called out-neighbors of v. Given
a vertex u in G, we let Ein(u) denote the set of edges entering u, and Eout(u) denote the
set of edges exiting u. Similarly, Vin(u) denotes the set of in-neighbors of u, and Vout(u)
denotes the set of out-neighbors of u. Furthermore, we define Vin[u] = Vin(u) ∪ {u} and
Vout[u] = Vout(u) ∪ {u}. Finally, let degin(u) = |Ein(u)| and degout(u) = |Eout(u)| denote
the indegree and outdegree of u respectively.

Given vertices s and t, an (s, t)-cut is a set C of edges, such that deleting the edges
in C produces a graph with no s to t path. By Menger’s theorem, the size of a minimum
(s, t)-cut is equal to the connectivity λ(s, t) from s to t. Similarly, an (s, t)-vertex cut is a set
of C ′ of vertices with s, t ̸∈ C ′, such that deleting C ′ produces a graph with no s to t path.
Clearly, a vertex cut exists if and only if (s, t) is not an edge. When (s, t) is not an edge,
Menger’s theorem implies that the size of a minimum (s, t)-vertex cut is equal to the vertex
connectivity ν(s, t) from s to t.

Matrix Notation

Let A be a matrix. For indices i and j, we let A[i, j] denote the (i, j) entry of A. More
generally, if S is a set of row indices and T a set of column indices, we let A[S, T] denote the
submatrix of A restricted to rows from S and columns from T . Similarly, A[S, ∗] denotes A

restricted to rows from S, and A[∗, T] denotes A restricted to columns from T . We let A⊤

denote the transpose of A. If A is a square matrix, then we let adj(A) denote the adjugate
of A. If A is invertible, we let A−1 denote its inverse. If a theorem, lemma, or proposition
statement refers to A−1, it is generally asserting that A−1 exists (or if A is a random matrix,
asserting that A−1 exists with some probability) as part of the statement. We let I denote
the identity matrix (the dimensions of this matrix will always be clear from context). Given
a vector v⃗, for any index i we let v⃗[i] denote the ith entry in v⃗. We let 0⃗ denote the zero
vector (the dimensions of this vector will always be clear from context). Given a positive
integer k, we let [k] = {1, . . . , k} denote the set of the first k positive integers.

Matrix and Polynomial Computation

Given a prime p, we let Fp denote the finite field on p elements. Arithmetic operations over
elements of Fp can be performed in Õ(log p) time.

We now recall some well-known results about computation with matrices and polynomials,
which will be useful for our algorithms.

ICALP 2023

11:6 An Efficient Algorithm for All-Pairs Bounded Edge Connectivity

▶ Proposition 6. Let A be an a×b matrix, and B be a b×a matrix. If (I −BA) is invertible,
then the matrix (I − AB) is also invertible, with inverse

(I − AB)−1 = I + A(I − BA)−1B.

Proof. It suffices to verify that the product of (I − AB) with the right hand side of the
above equation yields the identity matrix. Indeed, we have

(I − AB)
(
I + A(I − BA)−1B

)
= I + A(I − BA)−1B − AB − ABA(I − BA)−1B

= I + A(I − BA)−1B − AB − A
(
I − (I − BA)

)
(I − BA)−1B

= I + A(I − BA)−1B − AB − A(I − BA)−1B + AB,

which simplifies to I, as desired. ◀

▶ Proposition 7. Let A be an a × a matrix over Fp. We can compute the inverse A−1 (if it
exists) in O(aω) field operations.

▶ Proposition 8 ([6, Theorem 1.1]). Let A be an a × b matrix over Fp. Then for any positive
integer k, we can compute min(k, rank A) in O(ab + kω) field operations.

▶ Proposition 9 (Schwartz-Zippel Lemma [13, Theorem 7.2]). Let f ∈ Fp[x1, . . . , xr] be a
degree d, nonzero polynomial. Let a⃗ be a uniform random point in Fr

p. Then f (⃗a) is nonzero
with probability at least 1 − d/p.

3 Proof Overview

3.1 Flow Vector Encodings
Previous algorithms for APC [7] and its variants work in two steps:
Step 1: Encode

In this step, we prepare a matrix M which implicitly encodes the connectivity information
of the input graph.

Step 2: Decode
In this step, we iterate over all pairs (s, t) of vertices in the graph, and for each pair run
a small computation on a submatrix of M to compute the desired connectivity value.

The construction in the encode step is based off the framework of flow vectors, introduced
in [7] as a generalization of classical techniques from network-coding. We give a high-level
overview of how this method has been previously applied in the APC problem.4

Given the input graph G, we fix a source vertex s. Let d = degout(s), and let F be some
ground field.5 Our end goal is to assign to each edge e in the graph a special vector e⃗ ∈ Fd

which we call a flow vector.
First, for each edge e ∈ Eout(s), we introduce a d-dimensional vector v⃗e. These vectors

intuitively correspond to some starting flow that is pumping out of s. It is important that
these vectors are linearly independent (and previous applications have always picked these
vectors to be distinct d-dimensional unit vectors). We then push this flow through the rest of
the graph, by having each edge get assigned a vector which is a random linear combination

4 For the APVC problem we employ a different, but analogous, framework described in Section 3.3.
5 In our applications, we will pick F to be a finite field of size poly(m).

S. Akmal and C. Jin 11:7

of the flow vectors assigned to the edges entering its tail. That is, given an edge e = (u, v)
with u ̸= s, the final flow vector e⃗ will be a random linear combination of the flow vectors for
the edges entering u. If instead the edge e = (s, v) is in Eout(s), the final flow vector e⃗ will
be a random linear combination of the flow vectors for the edges entering s, added to the
initial flow v⃗e.

The point of this random linear combination is to (with high probability) preserve linear
independence. In this setup, for any vertex v and integer ℓ, if some subset of ℓ flow vectors
assigned to edges in Ein(v) is independent, then we expect that every subset of at most ℓ

flow vectors assigned to edges in Eout(v) is also independent. This sort of behavior turns
out to generalize to preserving linear independence of flow vectors across cuts, which implies
that (with high probability) for any vertex t, the rank of the flow vectors assigned to edges
in Ein(t) equals λ(s, t).

Intuitively, this is because the flow vectors assigned to edges in Ein(t) will be a linear
combination of the λ(s, t) flow vectors assigned to edges in a minimum (s, t)-cut, and the
flow vectors assigned to edges in this cut should be independent.

Collecting all the flow vectors as column vectors in a matrix allows us to produce a single
matrix Ms, such that computing the rank of Ms[∗, Ein(t)] yields the desired connectivity
value λ(s, t) (computing these ranks constitutes the decode step mentioned previously).
Previous work [7, 1] set the initial pumped v⃗e to be distinct unit vectors. It turns out that
for this choice of starting vectors, it is possible to construct a single matrix M (independent
of a fixed choice of s), such that rank queries to submatrices of M correspond to the answers
we wish to output in the APC problem and its variants.

In Section 3.2 we describe how we employ the flow vector framework to prove Theorem 4.
Then in Section 3.3, we describe how we modify these methods to prove Theorem 5.

3.2 All-Pairs Connectivity
Our starting point is the Õ(mω) time algorithm for APC presented in [7], which uses the
flow vector encoding scheme outlined in Section 3.1.

Let K be an m × m matrix, whose rows and columns are indexed by edges in the input
graph. For each pair (e, f) of edges, if the head of e coincides with the tail of f , we set K[e, f]
to be a uniform random field element in F. Otherwise, K[e, f] = 0. These field elements
correspond precisely to the coefficients used in the random linear combinations of the flow
vector framework. Define the matrix

M = (I − K)−1. (1)

Then [7] proves that with high probability, for any pair (s, t) of vertices, we have

rank M [Eout(s), Ein(t)] = λ(s, t). (2)

With this setup, the algorithm for APC is simple: first compute M (the encode step),
and then for each pair of vertices (s, t), return the value of rank M [Eout(s), Ein(t)] as the
connectivity from s to t (the decode step).

By Equation (1), we can complete the encode step in Õ(mω) time, simply by inverting
an m × m matrix with entries from F. It turns out we can also complete the decode step in
the same time bound. So this gives an Õ(mω) time algorithm for APC.

Suppose now we want to solve the k-APC problem. A simple trick (observed in the proof
of [1, Theorem 5.2] for example) in this setting can allow us to speed up the runtime of
the decode step. However, it is not at all obvious how to speed up the encode step. To

ICALP 2023

11:8 An Efficient Algorithm for All-Pairs Bounded Edge Connectivity

implement the flow vector scheme of Section 3.1 as written, it seems almost inherent that
one needs to invert an m × m matrix. Indeed, an inability to overcome this bottleneck is
stated explicitly as part of the motivation in [1] for focusing on the k-APVC problem instead.

Our Improvement
The main idea behind our new algorithm for k-APC is to work with a low-rank version of the
matrix K used in Equation (1) for the encode step.

Specifically, we construct certain random sparse matrices L and R with dimensions m×kn

and kn × m respectively. We then set K = LR, and argue that with high probability, the
matrix M defined in Equation (1) for this choice of K satisfies

rank M [Eout(s), Ein(t)] = min(k, λ(s, t)). (3)

This equation is just a k-bounded version of Equation (2). By Proposition 6, we have

M = (I − K)−1 = (I − LR)−1 = I + L(I − RL)−1R.

Note that (I − RL) is a kn × kn matrix. So, to compute M (and thus complete the encode
step) we no longer need to invert an m × m matrix! Instead we just need to invert a matrix
of size kn × kn. This is essentially where the Õ ((kn)ω) runtime in Theorem 4 comes from.

Conceptually, this argument corresponds to assigning flow vectors through the graph by
replacing random linear combinations with random “low-rank combinations.” That is, for an
edge e ∈ Eout(u) exiting a vertex u, we define the flow vector at e to be

e⃗ =
k∑

i=1

 ∑
f∈Ein(u)

Li[f, u]f⃗

 · Ri[u, e],

where the inner summation is over all edges f entering u, f⃗ denotes the flow vector assigned
to edge f , and the Li[f, u] and Ri[u, e] terms correspond to random field elements uniquely
determined by the index i and some (edge, vertex) pair.

Here, unlike in the method described in Section 3.1, the coefficient in front of f⃗ in its
contribution to e⃗ is not uniquely determined by the pair of edges f and e. Rather, if edge
f enters node u, then it has the same set of “weights” Li[f, u] it contributes to every flow
vector exiting u. However, since we use k distinct weights, this restricted rule for propagating
flow vectors still suffices to compute min(k, λ(s, t)).

A good way to think about the effect of this alternate approach is that now for any
vertex v and any integer ℓ ≤ k, if some subset of ℓ flow vectors assigned to edges in Ein(v) is
independent, then we expect that every subset of at most ℓ flow vectors assigned to edges in
Eout(v) is also independent. In the previous framework, this result held even for ℓ > k. By
relaxing the method used to determine flow vectors, we achieve a weaker condition, but this
is still enough to solve k-APC.

This modification makes the encode step more complicated (it now consists of two
parts: one where we invert a matrix, and one where we multiply that inverse with other
matrices), but speeds it up overall. To speed up the decode step, we use a variant of an
observation from the proof of [1, Theorem 5.2] to argue that we can assume every vertex in
our graph has indegree and outdegree k. By Proposition 8 and Equation (3), this means we
can compute min(k, λ(s, t)) for all pairs (s, t) of vertices in Õ(kωn2) time. So the bottleneck
in our algorithm comes from the encode step, which yields the Õ ((kn)ω) runtime.

S. Akmal and C. Jin 11:9

3.3 All-Pairs Vertex Connectivity
Our starting point is the Õ ((kn)ω) time algorithm in [1], which computes min(k, ν(s, t)) for
all pairs of vertices (s, t) which are not edges. That algorithm is based off a variant of the
flow vector encoding scheme outlined Section 3.1. Rather than assign vectors to edges, we
instead assign flow vectors to vertices (intuitively this is fine because we are working with
vertex connectivities in the k-APVC problem). The rest of the construction is similar: we
imagine pumping some initial vectors to s and its out-neighbors, and then we propagate the
flow through the graph so that at the end, for any vertex v, the flow vector assigned to v is a
random linear combination of flow vectors assigned to in-neighbors of v.6

Let K be an n × n matrix, whose rows and columns are indexed by vertices in the input
graph. For each pair (u, v) of vertices, if there is an edge from u to v, we set K[u, v] to be a
uniform random element in F. Otherwise, K[u, v] = 0. These entries correspond precisely to
coefficients used in the random linear combinations of the flow vector framework.

Now define the matrix

M = (I − K)−1. (4)

Then we argue that for any pair (s, t) of vertices, we have

rank M [Vout[s], Vin[t]] =
{

ν(s, t) + 1 if (s, t) is an edge
ν(s, t) otherwise.

(5)

Previously, [1, Proof of Lemma 5.1] sketched a different argument, which shows that
rank M [Vout(s), Vin(t)] = ν(s, t) when (s, t) is not an edge.

We use Equation (5) to solve k-APVC. For the encode step, we compute M . By
Equation (4), we can do this by inverting an n × n matrix, which takes Õ(nω) time. For
the decode step, by Equation (5) and Proposition 8, we can compute min(k, ν(s, t)) for all
pairs (s, t) of vertices in asymptotically∑

s,t

(degout(s) degin(t) + kω) = m2 + kωn2

time, where the sum is over all vertices s and t in the graph. The runtime bound we get
here for the decode step is far too high – naively computing the ranks of submatrices is too
slow if the graph has many high-degree vertices.

To avoid this slowdown, [1] employs a simple trick to reduce degrees in the graph: we
can add layers of k new nodes to block off the ingoing and outgoing edges from each vertex
in the original graph. That is, for each vertex s in G, we add a set S of k new nodes, replace
the edges in Eout(s) with edges from s to all the nodes in S, and add edges from every node
in S to every vertex originally in Vout(s). Similarly, for each vertex t in G, we add a set T of
k new nodes, replace the edges in Ein(t) with edges from all the nodes in T to t, and add
edges from every vertex originally in Vin(t) to every node in T .

It is easy to check that this transformation preserves the value of min(k, ν(s, t)) for all
pairs (s, t) of vertices in the original graph where (s, t) is not an edge. Moreover, all vertices
in the original graph have indegree and outdegree exactly k in the new graph. Consequently,
the decode step can now be implemented to run in Õ(kωn2) time. Unfortunately, this

6 Actually, this behavior only holds for vertices v ̸∈ Vout[s]. The rule for flow vectors assigned to vertices
in Vout[s] is a little more complicated, and depends on the values of the initial pumped vectors.

ICALP 2023

11:10 An Efficient Algorithm for All-Pairs Bounded Edge Connectivity

construction increases the number of vertices in the graph from n to (2k + 1)n. As a
consequence, in the encode step, the matrix K we work with is no longer n × n, but instead
is of size (2k + 1)n × (2k + 1)n. Now inverting I − K to compute M requires Õ ((kn)ω) time,
which is why [1] obtains this runtime for their algorithm.

Our Improvement
Intuitively, the modification used by [1] to reduce degrees in the graph feels very inefficient.
This transformation makes the graph larger in order to “lose information” about connectivity
values greater than k. Rather than modify the graph in this way, can we modify the flow
vector scheme itself to speed up the decode step? Our algorithm does this, essentially
modifying the matrix of flow vectors to simulate the effect of the previously described
transformation, without ever explicitly adding new nodes to the graph.

Instead of working directly with the matrix M from Equation (4), for each pair (s, t) of
vertices we define a (k + 1) × (k + 1) matrix

Ms,t = Bs (M [Vout[s], Vin[t]]) Ct

which is obtained from multiplying a submatrix of M on the left and right by small random
matrices Bs and Ct, with k + 1 rows and columns respectively. Since Bs has k + 1 rows and
Ct has k + 1 columns, we can argue that with high probability, Equation (5) implies that

rank Ms,t =
{

min(k + 1, ν(s, t) + 1) if (s, t) is an edge
min(k + 1, ν(s, t)) otherwise.

So we can compute min(k, ν(s, t)) from the value of rank Ms,t. This idea is similar to the
preconditioning method used in algorithms for computing matrix rank efficiently (see [6] and
the references therein). Conceptually, we can view this approach as a modification of the
flow vector framework. Let d = degout(s). As noted in Section 3.1, previous work
1. starts by pumping out distinct d-dimensional unit vectors to nodes in Vout(s), and then
2. computes the rank of all flow vectors of vertices in Vin(t).
In our work, we instead
1. start by pumping out (d + 1) random (k + 1)-dimensional vectors to nodes in Vout[s], and

then
2. compute the rank of (k + 1) random linear combinations of flow vectors for vertices in

Vin[t].
This alternate approach suffices for solving the k-APVC problem, while avoiding the slow
Õ((kn)ω) encode step of previous work.

So, in the decode step of our algorithm, we compute min(k, ν(s, t)) for each pair (s, t) of
vertices by computing the rank of the (k + 1) × (k + 1) matrix Ms,t, in Õ(kωn2) time overall.

Our encode step is more complicated than previous work, because not only do we need
to compute the inverse (I − K)−1, we also have to construct the Ms,t matrices. Naively
computing each Ms,t matrix separately is too slow, so we end up using an indirect approach
to compute all entries of the Ms,t matrices simultaneously, with just O(k2) multiplications
of n × n matrices. This takes Õ(k2nω) time, which is the bottleneck for our algorithm.

4 Flow Vector Encoding

The arguments in this section are similar to the arguments from [7, Section 2], but involve
more complicated proofs because we work with low-rank random matrices as opposed to
generic random matrices.

S. Akmal and C. Jin 11:11

Fix a source vertex s in the input graph G. Let d = degout(s) denote the number of edges
leaving s. Let e1, . . . , ed ∈ Eout(s) be the outgoing edges from s.

Take a prime p = Θ(m5). Let u⃗1, . . . , u⃗d be distinct unit vectors in Fd
p.

Eventually, we will assign each edge e in G a vector e⃗ ∈ Fd
p, which we call a flow vector.

These flow vectors will be determined by a certain system of vector equations. To describe
these equations, we first introduce some symbolic matrices.

For each index i ∈ [k], we define an m × n matrix Xi, whose rows are indexed by edges
of G and columns are indexed by vertices of G, such that for each edge e = (u, v), entry
Xi[e, v] = xi,ev is an indeterminate. All entries in Xi not of this type are zero. Similarly, we
define n × m matrices Yi, with rows indexed by vertices of G and columns indexed by edges
of G, such that for every edge f = (u, v), the entry Yi[u, f] = yi,uf is an indeterminate. All
entries in Yi not of this type are zero. Let X be the m × kn matrix formed by horizontally
concatenating the Xi matrices. Similarly, let Y be the kn × m matrix formed by vertically
concatenating the Yi matrices. Then we define the matrix

Z = XY = X1Y1 + · · · + XkYk. (6)

By construction, Z is an m × m matrix, with rows and columns indexed by edges of G, such
that for any edges e = (u, v) and f = (v, w), we have

Z[e, f] =
k∑

i=1
xi,evyi,vf (7)

and all other entries of Z are set to zero.
Consider the following procedure. We assign independent, uniform random values from

Fp to each variable xi,ev and yi,uf . Let Li, L, Ri, R, and K be the matrices over Fp resulting
from this assignment to Xi, X, Yi, Y , and Z respectively. In particular, we have

K = LR. (8)

Now, to each edge e, we assign a flow vector e⃗ ∈ Fd
p, satisfying the following equalities:

1. Recall that e1, . . . , ed are all the edges exiting s, and u⃗1, . . . , u⃗d are distinct unit vectors
in Fd

p. For each edge ei ∈ Eout(s), we require its flow vector satisfy

e⃗i =

 ∑
f∈Ein(s)

f⃗ · K[f, ei]

 + u⃗i. (9)

2. For each edge e = (u, v) with u ̸= s, we require its flow vector satisfy

e⃗ =
∑

f∈Ein(u)

f⃗ · K[f, e]. (10)

A priori it is not obvious that flow vectors satisfying the above two conditions exist, but we
show below that they do (with high probability). Let Hs be the d × m matrix whose columns
are indexed by edges in G, such that the column associated with ei is u⃗i for each index i, and
the rest of the columns are zero vectors. Let F be the d × m matrix, with columns indexed
by edges in G, whose columns F [∗, e] = e⃗ are flow vectors for the corresponding edges. Then
Equations (9) and (10) are encapsulated by the simple matrix equation

F = FK + Hs. (11)

The following lemma shows we can solve for F in the above equation, with high probability.

ICALP 2023

11:12 An Efficient Algorithm for All-Pairs Bounded Edge Connectivity

▶ Lemma 10. We have det(I − K) ̸= 0, with probability at least 1 − 1/m3.

Proof. Since the input graph has no self-loops, by Equation (7) and the discussion immedi-
ately following it, we know that the diagonal entries of the m × m matrix Z are zero. By
Equation (7), each entry of Z is a polynomial of degree at most two, with constant term set
to zero. Hence, det(I − Z) is a polynomial over Fp with degree at most 2m, and constant
term equal to 1. In particular, this polynomial is nonzero. Then by the Schwartz-Zippel
Lemma (Proposition 9), det(I − K) is nonzero with probability at least

1 − 2m/p ≥ 1 − 1/m3

by setting p ≥ 2m4. ◀

Suppose from now on that det(I−K) ̸= 0 (by Lemma 10, this occurs with high probability).
Then with this assumption, we can solve for F in Equation (11) to get

F = Hs(I − K)−1 = Hs (adj(I − K))
det(I − K) . (12)

This equation will allow us to relate ranks of collections of flow vectors to connectivity values
in the input graph.

▶ Lemma 11. For any vertex t in G, with probability at least 1 − 2/m3, we have

rank F [∗, Ein(t)] ≤ λ(s, t).

Proof. Abbreviate λ = λ(s, t). Conceptually, this proof works by arguing that the flow
vectors assigned to all edges entering t are linear combinations of the flow vectors assigned
to edges in a minimum (s, t)-cut of G.

Let C be a minimum (s, t)-cut. By Menger’s theorem, |C| = λ.
Let S be the set of nodes reachable from s without using an edge in C, and let T be the

set of nodes which can reach t without using an edge in C. By definition of an (s, t)-cut, S

and T partition the vertices in G.
Now, let E′ be the set of edges e = (u, v) with v ∈ T . Set K ′ = K[E′, E′] and

F ′ = F [∗, E′]. Finally, let H ′ be a matrix whose columns are indexed by edges in E′, such
that the column associated with an edge e ∈ C is e⃗, and all other columns are equal to 0⃗.

Then by Equations (9) and (10), we have

F ′ = F ′K ′ + H ′.

Indeed, for any edge e = (u, v) ∈ E′, if u ∈ S then e ∈ C so H ′[∗, e] = e⃗, and there can be
no edge f ∈ E′ entering u, so (F ′K ′)[∗, e] = 0⃗. If instead u ∈ T , then H ′[∗, e] = 0⃗, but every
edge f entering u is in E′, so by Equation (10), we have (F ′K ′)[∗, e] = F ′[∗, e] as desired.

Using similar reasoning to the proof of Lemma 10, we have det(I−K ′) ̸= 0 with probability
at least 1 − 1/m3. If this event occurs, we can solve for F ′ in the previous equation to get

F ′ = H ′(I − K ′)−1.

Since H ′ has at most λ nonzero columns, rank H ≤ λ. So by the above equation, rank F ′ ≤ λ.
By definition, Ein(t) ⊆ E′. Thus F [∗, Ein(t)] is a submatrix of F ′. Combining this with the
previous results, we see that rank F [∗, Ein(t)] ≤ λ, as desired. The claimed probability bound
follows by a union bound over the events that I − K and I − K ′ are both invertible. ◀

S. Akmal and C. Jin 11:13

▶ Lemma 12. For any vertex t in G, with probability at least 1 − 2/m3, we have

rank F [∗, Ein(t)] ≥ min(k, λ(s, t)).

Proof. Abbreviate λ = min(k, λ(s, t)). Intuitively, our proof will argue that the presence of
edge-disjoint paths from s to t will lead to certain edges in Ein(t) being assigned linearly
independent flow vectors (with high probability), which will then imply the desired rank
lower bound.

By Menger’s theorem, G contains λ edge-disjoint paths P1, . . . , Pλ from s to t.
Consider the following assignment to the variables of the symbolic matrices Xi and Yi.

For each index i ≤ λ and edge e = (u, v), we set variable xi,ev = 1 if e is an edge in Pi.
Similarly, for each index i ≤ λ and edge f = (u, v), we set variable yi,uf = 1 if f is an edge
in Pi. All other variables are set to zero. In particular, if i > λ, then Xi and Yi have all
their entries set to zero. With respect to this assignment, the matrix XiYi (whose rows and
columns are indexed by edges in the graph) has the property that (XiYi)[e, f] = 1 if f is the
edge following e on path Pi, and all other entries are set to zero.

Then by Equation (6), we see that under this assignment, Z[e, f] = 1 if e and f are
consecutive edges in some path Pi, and all other entries of Z are set to zero. For this
particular assignment, because the Pi are edge-disjoint paths, Equations (9) and (10) imply
that the last edge of each path Pi is assigned a distinct d-dimensional unit vector. These
vectors are independent, so, rank F [∗, Ein(t)] = λ in this case.

With respect to this assignment, this means that F [∗, Ein(t)] contains a λ × λ full-rank
submatrix. Let F ′ be a submatrix of F [∗, Ein(t)] with this property. Since F ′ has full rank,
we have det F ′ ̸= 0 for the assignment described above.

Now, before assigning values to variables, each entry of adj(I − Z) is a polynomial of
degree at most 2m. So by Equation (12), det F ′ is equal to some polynomial P of degree at
most 2λm, divided by (det(I − Z))λ. We know P is a nonzero polynomial, because we saw
above that det F ′ is nonzero for some assignment of values to the variables (and if P were
the zero polynomial, then det F ′ would evaluate to zero under every assignment).

By Lemma 10, with probability at least 1−1/m3, a random evaluation to the variables will
have det(I − Z) evaluate to a nonzero value. Assuming this event occurs, by Schwartz-Zippel
Lemma (Proposition 9), a random evaluation to the variables in Z will have det F ′ ̸= 0 with
probability at least 1 − (2λm)/p ≥ 1 − 1/m3 by setting p ≥ 2m5.

So by union bound, a particular λ × λ submatrix of F [∗, Ein(t)] will be full rank with
probability at least 1 − 2/m3. This proves the desired result. ◀

▶ Lemma 13. Fix vertices s and t. Define λ = rank (I − K)−1[Eout(s), Ein(t)]. With
probability at least 1 − 4/m3, we have min(k, λ) = min(k, λ(s, t)).

Proof. The definition of Hs together with Equation (12) implies that

F [∗, Ein(t)] = (I − K)−1[Eout(s), Ein(t)]. (13)

By union bound over Lemmas 11 and 12, with probability at least 1 − 4/m3 the inequalities

λ = rank (I − K)−1[Eout(s), Ein(t)] = rank F [∗, Ein(t)] ≤ λ(s, t)

and

λ = rank (I − K)−1[Eout(s), Ein(t)] = rank F [∗, Ein(t)] ≥ min(k, λ(s, t))

simultaneously hold. The desired result follows. ◀

ICALP 2023

11:14 An Efficient Algorithm for All-Pairs Bounded Edge Connectivity

5 Connectivity Algorithm

In this section, we present our algorithm for k-APC.
We begin by modifying the input graph G as follows. For every vertex v in G, we

introduce two new nodes vout and vin. We replace each edge (u, v) originally in G is by the
edge (uout, vin). We add k parallel edges from v to vout, and k parallel edges from vin to v,
for all u and v. We call vertices present in the graph before modification the original vertices.

Suppose G originally had n nodes and m edges. Then the modified graph has nnew = 3n

nodes and mnew = m + 2kn edges. For any original vertices s and t, edge-disjoint paths from
s to t in the new graph correspond to edge disjoint paths from s to t in the original graph.
Moreover, for any integer ℓ ≤ k, if the original graph contained ℓ edge-disjoint paths from s

to t, then the new graph contains ℓ edge-disjoint paths from s to t as well.
Thus, for any original vertices s and t, the value of min(k, λ(s, t)) remains the same in

the old graph and the new graph. So, it suffices to solve k-APC on the new graph. In this
new graph, the indegrees and outdegrees of every original vertex are equal to k. Moreover,
sets Eout(s) and Ein(t) are pairwise disjoint, over all original vertices s and t.

We make use of the matrices defined in Section 4, except now these matrices are defined
with respect to the modified graph. In particular, K, L, and R are now matrices with
dimensions mnew × mnew, mnew × nnew, and nnew × mnew respectively.

Define L̃ to be the kn × nnew matrix obtained by vertically concatenating L[Eout(s), ∗]
over all original vertices s. Similarly, define R̃ to be the nnew × kn matrix obtained by
horizontally concatenating R[∗, Ein(t)] over all original vertices t.

The Algorithm

Using the above definitions, we present our approach for solving k-APC in Algorithm 1.

Algorithm 1 Our algorithm for solving k-APC.

1: Compute the nnew × nnew matrix (I − RL)−1.
2: Compute the knnew × knnew matrix M = L̃(I − RL)−1R̃.
3: For each pair (s, t) of original vertices, compute

rank M [Eout(s), Ein(t)]

and output this as the value for min(k, λ(s, t)).

▶ Theorem 14. With probability at least 1 − 5/(mnew), Algorithm 1 correctly solves k-APC.

Proof. By Lemma 10, with probability at least 1 − 1/(mnew)4 the matrix I − K is invertible.
Going forward, we assume that I − K is invertible.

By Lemma 13, with probability at least 1 − 4/(mnew)3, we have

rank(I − K)−1[Eout(s), Ein(t)] = min(k, λ(s, t)) (14)

for any given original vertices s and t. By union bound over all n2 ≤ (mnew)2 pairs of original
vertices (s, t), we see that Equation (14) holds for all original vertices s and t with probability
at least 1 − 4/(mnew).

Since I − K is invertible, by Equation (8) and Proposition 6 we have

(I − K)−1 = (I − LR)−1 = I + L(I − RL)−1R.

S. Akmal and C. Jin 11:15

Using the above equation in Equation (14) shows that for original vertices s and t, the
quantity min(k, λ(s, t)) is equal to the rank of

(I + L(I − RL)−1R)[Eout(s), Ein(t)] = L[Eout(s), ∗](I − RL)−1R[∗, Ein(t)]

where we use the fact that I[Eout(s), Ein(t)] is the all zeroes matrix, since in the modified
graph, Eout(s) and Ein(t) are disjoint sets for all pairs of original vertices (s, t).

Then by definition of L̃ and R̃, the above equation and discussion imply that

min(k, λ(s, t)) = rank (L̃(I − RL)−1R̃)[Eout(s), Ein(t)] = rank M [Eout(s), Ein(t)]

which proves that Algorithm 1 outputs the correct answers.
A union bound over the events that I − K is invertible and that Equation (14) holds for

all (s, t), shows that Algorithm 1 is correct with probability at least 1 − 5/(mnew). ◀

We are now ready to prove our main result.

▶ Theorem 4. For any positive integer k, k-APC can be solved in Õ((kn)ω) time.

Proof. By Theorem 14, Algorithm 1 correctly solves the k-APC problem. We now argue
that Algorithm 1 can be implemented to run in Õ((kn)ω) time.

In step 1 of Algorithm 1, we need to compute (I − RL)−1.
From the definitions of R and L, we see that to compute RL, it suffices to compute the

products RiLj for each pair of indices (i, j) ∈ [k]2. The matrix RiLj is nnew × nnew, and its
rows and columns are indexed by vertices in the graph. Given vertices u and v, let E(u, v)
denote the set of parallel edges from u to v. From the definitions of the Ri and Lj matrices,
we see that for any vertices u and v, we have

(RiLj)[u, v] =
∑

e∈E(u,v)

Ri[u, e]Lj [e, v]. (15)

As noted in Section 2, for all vertices u and v we may assume that |E(u, v)| ≤ k.
For each vertex u, define the k × degout(u) matrix R′

u, with rows indexed by [k] and
columns indexed by edges exiting u, by setting

R′
u[i, e] = Ri[u, e]

for all i ∈ [k] and e ∈ Eout(u).
Similarly, for each vertex v, define the degin(v) × k matrix L′

v by setting

L′
v[e, j] = Lj [e, v]

for all e ∈ Ein(v) and j ∈ [k].
Finally, for each pair (u, v) of vertices, define R′

uv = R′
u[∗, E(u, v)] and L′

uv =
L′

v[E(u, v), ∗]. Then by Equation (15), we have

(RiLj)[u, v] = R′
uvL′

uv[i, j].

Thus, to compute the RiLj products, it suffices to build the R′
u and L′

v matrices in O (kmnew)
time, and then compute the R′

uvL′
uv products. We can do this by computing (nnew)2 products

of pairs of k × k matrices. Since for every pair of vertices (u, v), there are at most k parallel
edges from u to v, kmnew ≤ k2n2, we can compute all the RiLj products, and hence the
entire matrix RL, in Õ(n2kω) time.

ICALP 2023

11:16 An Efficient Algorithm for All-Pairs Bounded Edge Connectivity

We can then compute I −RL by modifying O(kn) entries of RL. Finally, by Proposition 7
we can compute (I − RL)−1 in Õ((kn)ω) time.

So overall, step 1 of Algorithm 1 takes Õ((kn)ω) time.
In step 2 of Algorithm 1, we need to compute M = L̃(I − RL)−1R̃.
Recall that L̃ is a kn × nnew matrix. By definition, each row of L̃ has a single nonzero

entry. Similarly, R̃ is an nnew × kn matrix, with a single nonzero entry in each column.
Thus we can compute M , and complete step 2 of Algorithm 1 in Õ((kn)2) time.
Finally, in step 3 of Algorithm 1, we need to compute

rank M [Eout(s), Ein(t)] (16)

for each pair of original vertices (s, t) in the graph. In the modified graph, each original
vertex has indegree and outdegree k, so each M [Eout(s), Ein(t)] is a k × k matrix. For any
fixed (s, t), by Proposition 8 we can compute the rank of M [Eout(s), Ein(t)] in Õ(kω) time.

So we can compute the ranks from Equation (16) for all n2 pairs of original vertices (s, t)
and complete step 3 of Algorithm 1 in Õ(kωn2) time.

Thus we can solve k-APC in Õ((kn)ω) time overall, as claimed. ◀

6 Encoding Vertex Connectivities

Take a prime p = Θ̃(n5). Let K be an n × n matrix, whose rows and columns are indexed by
vertices of G. For each pair (u, v) of vertices, if (u, v) is an edge in G, we set K[u, v] to be a
uniform random element of Fp. Otherwise, K[u, v] = 0.

Recall from Section 2 that given a vertex v in G, we let Vin[v] = Vin(v) ∪ {v} be the set
consisting of v and all in-neighbors of v, and Vout[v] = Vout(v) ∪ {v} be the set consisting of
v and all out-neighbors of v. The following proposition7 is based off ideas from [7, Section 2].
A proof of this result can be found in the full version of this paper [3, Appendix B.2].

▶ Proposition 15. For any vertices s and t in G, with probability at least 1 − 3/n3, the
matrix (I − K) is invertible and we have

rank (I − K)−1[Vout[s], Vin[t]] =
{

ν(s, t) + 1 if (s, t) is an edge
ν(s, t) otherwise.

Proposition 15 shows that we can compute vertex connectivities in G simply by computing
ranks of certain submatrices of (I − K)−1. However, these submatrices could potentially
be quite large, which is bad if we want to compute the vertex connectivities quickly. To
overcome this issue, we show how to decrease the size of (I − K)−1 while still preserving
relevant information about the value of ν(s, t).

▶ Lemma 16. Let M be an a × b matrix over Fp. Let Γ be a (k + 1) × a matrix with uniform
random entries from Fp. Then with probability at least 1 − (k + 1)/p, we have

rank ΓM = min(k + 1, rank M).

7 The result stated here differs from a similar claim used in [1, Section 5]. See the full version of this
paper [3, Appendix B.1] for a comparison of these arguments.

S. Akmal and C. Jin 11:17

Proof. Since ΓM has k + 1 rows, rank(ΓM) ≤ k + 1.
Similarly, since ΓM has M as a factor, rank(ΓM) ≤ rank M . Thus

rank ΓM ≤ min(k + 1, rank M). (17)

So, it suffices to show that ΓM has rank at least min(k + 1, rank M).
Set r = min(k + 1, rank M). Then there exist subsets S and T of row and column indices

respectively, such that |S| = |T | = r and M [S, T] has rank r. Now, let U be an arbitrary set
of r rows in Γ. Consider the matrix M ′ = (ΓM)[U, T].

We can view each entry of M ′ as a polynomial of degree at most 1 in the entries of Γ.
This means that det M ′ is a polynomial of degree at most r in the entries of Γ. Moreover,
if the submatrix Γ[U, T] = I happens to be the identity matrix, then M ′ = M [S, T]. This
implies that det M ′ is a nonzero polynomial in the entries of Γ, because for some assignment
of values to the entries of Γ, this polynomial has nonzero evaluation det M [S, T] ̸= 0 (where
we are using the fact that M [S, T] has full rank).

So by the Schwartz-Zippel Lemma (Proposition 9), the matrix ΓM has rank at least r,
with probability at least 1 − r/p.

Together with Equation (17), this implies the desired result. ◀

Now, to each vertex u in the graph, we assign a (k + 1)-dimensional column vector b⃗u

and a (k + 1)-dimensional row vector c⃗u.
Let B be the (k + 1) × n matrix formed by concatenating all of the b⃗u vectors horizontally,

and let C be the n × (k + 1) matrix formed by concatenating all of the c⃗u vectors vertically.
For each pair of distinct vertices (s, t), define the (k + 1) × (k + 1) matrix

Ms,t = B[∗, Vout[s]]
(
(I − K)−1[Vout[s], Vin[t]]

)
C[Vin[t], ∗]. (18)

The following result is the basis of our algorithm for k-APVC.

▶ Lemma 17. For any vertices s and t in G, with probability at least 1 − 5/n3, we have

rank Ms,t =
{

min(k + 1, ν(s, t) + 1) if (s, t) is an edge
min(k + 1, ν(s, t)) otherwise.

Proof. Fix vertices s and t. Then, by Proposition 15, we have

rank (I − K)−1[Vout[s], Vin[t]] =
{

ν(s, t) + 1 if (s, t) is an edge
ν(s, t) otherwise

with probability at least 1 − 3/n3. Assume the above equation holds.
Then, by setting Γ = B[∗, Vout[s]] and M = (I − K)−1[Vout[s], Vin[t]] in Lemma 16, we

see that with probability at least 1 − 1/n3 we have

rank B[∗, Vout[s]](I − K)−1[Vout[s], Vin(t)] =
{

min(k + 1, ν(s, t) + 1) if (s, t) is an edge
min(k + 1, ν(s, t)) otherwise.

.

Assume the above equation holds.
Finally, by setting Γ = C⊤[∗, Vin(t)] and M = (B[∗, Vout[s]](I − K)−1[Vout[s], Vin(t)])⊤ in

Lemma 16 and transposition, we see that with probability at least 1 − 1/n3 we have

rank B[∗, Vout[s]]
(
(I − K)−1[Vout[s], Vin(t)]

)
C[Vin(t), ∗] = min(k + 1, ν(s, t) + 1)

if there is an edge from s to t, and

rank B[∗, Vout[s]]
(
(I − K)−1[Vout[s], Vin(t)]

)
C[Vin(t), ∗] = min(k + 1, ν(s, t))

otherwise. So by union bound, the desired result holds with probability at least 1 − 5/n3. ◀

ICALP 2023

11:18 An Efficient Algorithm for All-Pairs Bounded Edge Connectivity

7 Vertex Connectivity Algorithm

Let A be the adjacency matrix of the graph G with self-loops. That is, A is the n × n matrix
whose rows and columns are indexed by vertices of G, and for every pair (u, v) of vertices,
A[u, v] = 1 if v ∈ Vout[u] (equivalently, u ∈ Vin[v]), and A[u, v] = 0 otherwise.

Recall the definitions of the b⃗u and c⃗u vectors, and the K, B, C and Ms,t matrices from
Section 6. For each i ∈ [k + 1], let Pi be the n × n diagonal matrix, with rows and columns
indexed by vertices of G, such that Pi[u, u] = b⃗u[i]. Similarly, let Qi be the n × n diagonal
matrix, with rows and columns indexed by vertices of G, such that Qi[u, u] = c⃗u[i].

With these definitions, we present our approach for solving k-APVC in Algorithm 2.

Algorithm 2 Our algorithm for solving k-APVC.

1: Compute the n × n matrix (I − K)−1.
2: For each pair (i, j) ∈ [k + 1]2 of indices, compute the n × n matrix

Dij = APi(I − K)−1QjA⊤.

3: For each pair (s, t) of vertices, let Fs,t be the (k + 1) × (k + 1) matrix whose (i, j) entry is
equal to Dij [s, t]. If (s, t) is an edge, output (rank Fs,t)−1 as the value for min(k, ν(s, t)).
Otherwise, output min(k, rank Fs,t) as the value for min(k, ν(s, t)).

The main idea of Algorithm 2 is to use Lemma 17 to reduce computing min(k, ν(s, t))
for a given pair of vertices (s, t) to computing the rank of a corresponding (k + 1) × (k + 1)
matrix, Ms,t. To make this approach efficient, we compute the entries of all Ms,t matrices
simultaneously, using a somewhat indirect argument.

▶ Theorem 18. With probability at least 1 − 5/n, Algorithm 2 correctly solves k-APVC.

Proof. We prove correctness of Algorithm 2 using the following claim.

▷ Claim 19. For all pairs of indices (i, j) ∈ [k + 1]2 and all pairs of vertices (s, t), we have

Ms,t[i, j] = Dij [s, t],

where Dij is the matrix computed in step 2 of Algorithm 2.

Proof. By expanding out the expression for Dij from step 2 of Algorithm 2, we have

Dij [s, t] =
∑
u,v

A[s, u]Pi[u, u]
(
(I − K)−1[u, v]

)
Qj [v, v]A[v, t],

where the sum is over all vertices u, v in the graph (here, we use the fact that Pi and Qj are
diagonal matrices). By the definitions of A, the Pi, and the Qj matrices, we have

Dij [s, t] =
∑

u∈Vout[s]
v∈Vin[t]

b⃗u[i]
(
(I − K)−1[u, v]

)
c⃗v[j]. (19)

On the other hand, the definition of Ms,t from Equation (18) implies that

Ms,t[i, j] =
∑

u∈Vout[s]
v∈Vin[t]

B[i, u]
(
(I − K)−1[u, v]

)
C[v, j].

S. Akmal and C. Jin 11:19

Since B[i, u] = b⃗u[i] and C[v, j] = c⃗v[j], the above equation and Equation (19) imply that

Ms,t[i, j] = Dij [s, t]

for all (i, j) and (s, t), as desired. ◁

By Claim 19, the matrix Fs,t computed in step 3 of Algorithm 2 is equal to Ms,t. So by
Lemma 17, for any fixed pair (s, t) of vertices we have

rank Fs,t =
{

min(k + 1, ν(s, t) + 1) if (s, t) is an edge
min(k + 1, ν(s, t)) otherwise.

(20)

with probability at least 1 − 5/n3. Then by a union bound over all pairs of vertices (s, t), we
see that Equation (20) holds for all pairs (s, t), with probability at least 1 − 5/n.

Assume this event occurs. Then if (s, t) is an edge, by Equation (20) we correctly return

(rank Fs,t) − 1 = min(k + 1, ν(s, t) + 1) − 1 = min(k, ν(s, t))

as our answer for this pair.
Similarly, if (s, t) is not an edge, by Equation (20) we correctly return

min(k, rank Fs,t) = min(k, k + 1, ν(s, t)) = min(k, ν(s, t))

as our answer for this pair. This proves the desired result. ◀

With Theorem 18 established, we can prove our result for vertex connectivities.

▶ Theorem 5. For any positive integer k, k-APVC can be solved in Õ(k2nω) time.

Proof. By Theorem 18, Algorithm 2 correctly solves the k-APVC problem. We now argue
that Algorithm 2 can be implemented to run in Õ(k2nω) time.

In step 1 of Algorithm 2, we need to compute (I − K)−1. Since K is an n × n matrix, by
Proposition 7 we can complete this step in Õ(nω) time.

In step 2 of Algorithm 2, we need to compute Dij for each pair (i, j) ∈ [k + 1]2. For each
fixed pair (i, j), the Dij matrix is defined as a product of five n × n matrices whose entries
we know, so this step takes Õ(k2nω) time overall.

In step 3 of Algorithm 2, we need to construct each Fst matrix, and compute its rank.
Since each Fst matrix has dimensions (k + 1) × (k + 1) and its entries can be filled in simply
by reading entries of the Dij matrices we have already computed, by Proposition 8 this step
can be completed in Õ(kωn2) time.

By adding up the runtimes for each of the steps and noting that k ≤ n, we see that
Algorithm 2 solves k-APVC in Õ(k2nω) time, as claimed. ◀

References
1 Amir Abboud, Loukas Georgiadis, Giuseppe F. Italiano, Robert Krauthgamer, Nikos Parotsidis,

Ohad Trabelsi, Przemysław Uznański, and Daniel Wolleb-Graf. Faster algorithms for all-
pairs bounded min-cuts. In 46th International Colloquium on Automata, Languages, and
Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132 of LIPIcs, pages
7:1–7:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.
ICALP.2019.7.

ICALP 2023

https://doi.org/10.4230/LIPIcs.ICALP.2019.7
https://doi.org/10.4230/LIPIcs.ICALP.2019.7

11:20 An Efficient Algorithm for All-Pairs Bounded Edge Connectivity

2 Amir Abboud, Robert Krauthgamer, and Ohad Trabelsi. APMF < APSP? Gomory-Hu
tree for unweighted graphs in almost-quadratic time. In 62nd IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages
1135–1146. IEEE, 2021. doi:10.1109/FOCS52979.2021.00112.

3 Shyan Akmal and Ce Jin. An efficient algorithm for all-pairs bounded edge connectivity, 2023.
arXiv:2305.02132.

4 Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix
multiplication. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2021, Virtual Conference, January 10–13, 2021, pages 522–539. SIAM, 2021. doi:
10.1137/1.9781611976465.32.

5 Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and
Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. In 2022
IEEE 63rd Annual Symposium on Foundations of Computer Science (FOCS), pages 612–623,
2022. doi:10.1109/FOCS54457.2022.00064.

6 Ho Yee Cheung, Tsz Chiu Kwok, and Lap Chi Lau. Fast matrix rank algorithms and
applications. Journal of the ACM, 60(5):1–25, October 2013. doi:10.1145/2528404.

7 Ho Yee Cheung, Lap Chi Lau, and Kai Man Leung. Graph connectivities, network coding,
and expander graphs. SIAM Journal on Computing, 42(3):733–751, January 2013. doi:
10.1137/110844970.

8 M. J. Fischer and A. R. Meyer. Boolean matrix multiplication and transitive closure. In 12th
Annual Symposium on Switching and Automata Theory (SWAT 1971). IEEE, October 1971.
doi:10.1109/swat.1971.4.

9 François Le Gall and Florent Urrutia. Improved rectangular matrix multiplication using
powers of the Coppersmith-Winograd tensor. In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’18, pages 1029–1046, USA, 2018.
Society for Industrial and Applied Mathematics.

10 Loukas Georgiadis, Daniel Graf, Giuseppe F. Italiano, Nikos Parotsidis, and Przemysław
Uznański. All-Pairs 2-Reachability in O(nωlogn) Time. In 44th International Colloquium on
Automata, Languages, and Programming (ICALP 2017), volume 80 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 74:1–74:14, Dagstuhl, Germany, 2017. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ICALP.2017.74.

11 Zhiyi Huang, Yaowei Long, Thatchaphol Saranurak, and Benyu Wang. Tight conditional lower
bounds for vertex connectivity problems, 2022. doi:10.48550/arXiv.2212.00359.

12 Robert Krauthgamer and Ohad Trabelsi. Conditional lower bounds for all-pairs max-flow.
ACM Trans. Algorithms, 14(4), August 2018. doi:10.1145/3212510.

13 Rajeev Motwani and Prabhakar Raghavan. Randomized Algorithms. Cambridge University
Press, August 1995. doi:10.1017/cbo9780511814075.

14 Ohad Trabelsi. (Almost) ruling out SETH lower bounds for all-pairs max-flow, 2023. doi:
10.48550/arXiv.2304.04667.

15 Xiaowei Wu and Chenzi Zhang. Efficient algorithm for computing all low s-t edge connectivities
in directed graphs. In Mathematical Foundations of Computer Science 2015, pages 577–588.
Springer Berlin Heidelberg, 2015. doi:10.1007/978-3-662-48054-0_48.

https://doi.org/10.1109/FOCS52979.2021.00112
https://arxiv.org/abs/2305.02132
https://doi.org/10.1137/1.9781611976465.32
https://doi.org/10.1137/1.9781611976465.32
https://doi.org/10.1109/FOCS54457.2022.00064
https://doi.org/10.1145/2528404
https://doi.org/10.1137/110844970
https://doi.org/10.1137/110844970
https://doi.org/10.1109/swat.1971.4
https://doi.org/10.4230/LIPIcs.ICALP.2017.74
https://doi.org/10.48550/arXiv.2212.00359
https://doi.org/10.1145/3212510
https://doi.org/10.1017/cbo9780511814075
https://doi.org/10.48550/arXiv.2304.04667
https://doi.org/10.48550/arXiv.2304.04667
https://doi.org/10.1007/978-3-662-48054-0_48

Low-Depth Arithmetic Circuit Lower Bounds:
Bypassing Set-Multilinearization
Prashanth Amireddy #

Harvard University, Cambridge, MA, USA

Ankit Garg #

Microsoft Research, Bangalore, India

Neeraj Kayal #

Microsoft Research, Bangalore, India

Chandan Saha #

Indian Institute of Science, Bangalore, India

Bhargav Thankey #

Indian Institute of Science, Bangalore, India

Abstract
A recent breakthrough work of Limaye, Srinivasan and Tavenas [29] proved superpolynomial lower
bounds for low-depth arithmetic circuits via a “hardness escalation” approach: they proved lower
bounds for low-depth set-multilinear circuits and then lifted the bounds to low-depth general circuits.
In this work, we prove superpolynomial lower bounds for low-depth circuits by bypassing the hardness
escalation, i.e., the set-multilinearization, step. As set-multilinearization comes with an exponential
blow-up in circuit size, our direct proof opens up the possibility of proving an exponential lower
bound for low-depth homogeneous circuits by evading a crucial bottleneck. Our bounds hold for
the iterated matrix multiplication and the Nisan-Wigderson design polynomials. We also define
a subclass of unrestricted depth homogeneous formulas which we call unique parse tree (UPT)
formulas, and prove superpolynomial lower bounds for these. This significantly generalizes the
superpolynomial lower bounds for regular formulas [6, 19].

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory

Keywords and phrases arithmetic circuits, low-depth circuits, lower bounds, shifted partials

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.12

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://eccc.weizmann.ac.il/report/2022/151/

Funding Prashanth Amireddy: Supported in part by a Simons Investigator Award and NSF Award
CCF 2152413 to Madhu Sudan. A part of this work was done while the author was a research fellow
at Microsoft Research, India.
Chandan Saha: Partially supported by a MATRICS grant of the Science and Engineering Research
Board, DST, India.
Bhargav Thankey: Supported by the Prime Minister’s Research Fellowship, India.

Acknowledgements We would like to thank the anonymous reviewers for their valuable feedback.

1 Introduction

Arithmetic circuits are a natural model for computing polynomials using the basic operations
of addition and multiplication. One of the most fundamental questions about arithmetic
circuits is about finding a family of explicit polynomials (if they exist) that cannot be
computed by polynomial-sized arithmetic circuits. The existence of such explicit polynomials
was conjectured by Valiant in 1979 [40] and is the famed VP vs VNP conjecture. Arithmetic

EA
T
C
S

© Prashanth Amireddy, Ankit Garg, Neeraj Kayal, Chandan Saha, and Bhargav Thankey;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 12; pp. 12:1–12:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pamireddy@g.harvard.edu
mailto:garga@microsoft.com
mailto:neeraka@microsoft.com
mailto:chandan@iisc.ac.in
mailto:thankeyd@iisc.ac.in
https://doi.org/10.4230/LIPIcs.ICALP.2023.12
https://eccc.weizmann.ac.il/report/2022/151/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

12:2 Low-Depth Arithmetic Circuit Lower Bounds: Bypassing Set-Multilinearization

circuit lower bounds are expected to be easier than Boolean circuit lower bounds. Among
many reasons, one is due to the phenomenon of depth reduction. Arithmetic circuits can be
converted into low-depth circuits preserving the output polynomial and not blowing up the
size too much [1, 10,22,39,41]. Due to this, strong enough lower bounds even for restrictive
models of computation like depth-3 circuits or homogeneous depth-4 circuits can lead to
superpolynomial arithmetic circuit lower bounds.

Arithmetic formulas are an important subclass of arithmetic circuits where the out-degree
of every gate is at most 1. For constant-depth, formulas and circuits are polynomially
related. Also, all our results deal with formulas. So we will only refer to formulas from
here on. We consider (families of) polynomials having degree at most polynomial in n,
the number of variables. One of the first results studying low-depth arithmetic formulas
was that of [32], who proved lower bounds for homogeneous depth-3 formulas. Progress on
homogeneous formula lower bound was stalled for a while, and then various lower bounds for
homogeneous depth-4 formulas were proven in a series of works [6, 9, 13, 14, 19, 25, 26]. There
was limited progress for higher-depth formulas, and lower bounds remained open even for
depth-5 formulas. In a recent breakthrough work, [29] proved superpolynomial lower bounds
for constant-depth arithmetic formulas. Their lower bounds are of the form nΩ(log(n)c∆) for
a constant 0 < c∆ < 1 depending on the depth ∆ of the formula. The following two open
problems naturally emerge out of their work.

▶ Open Problem 1. Prove superpolynomial lower bounds for general formulas or even
homogeneous formulas. (A formula is homogeneous if every gate computes a homogeneous
polynomial.)

▶ Open Problem 2. Prove exponential lower bounds for constant-depth arithmetic formulas.
This is interesting even for homogeneous depth-5 formulas.

Towards answering Open Problems 1.1 and 1.2, let us examine the lower bound proof in
[29] at a high level. Their proof has two main steps: First, they reduce the problem of proving
lower bounds for low-depth formulas to the problem of proving lower bounds for low-depth
set-multilinear formulas; set-multilinear formulas are special homogeneous formulas with
an underlying partition of the variables into subsets. [29] calls such reductions “hardness
escalation”. Second, they use an interesting adaptation of the rank of the partial derivatives
matrix measure [31] to prove a lower bound for low-depth set-multilinear formulas. They call
this measure relative rank (relrk). The effectiveness of the relrk measure crucially depends on
a certain “imbalance” between the sizes of the sets used to define set-multilinear polynomials.
The proof in [29] raises two natural questions:
Question 1: Can we bypass the hardness escalation, i.e., the set-multilinearization, step?
Question 2: Can we design a measure that exploits some weakness of homogeneous (but

not necessarily set-multilinear) formulas directly?

Motivations for studying Question 1. Set-multilinear circuits form a natural circuit class
as most interesting polynomial families, such as the determinant, permanent, iterated matrix
multiplication, etc., are set-multilinear. However, set-multilinearization comes with an
exponential blow up in size – a homogeneous, depth-∆ formula computing a set-multilinear
polynomial of degree d can be converted to a set-multilinear formula of depth ∆ and size
dO(d) · s (see [29]). So, an exponential lower bound for low-depth set-multilinear formulas
does not imply an exponential lower bound for low-depth homogeneous formulas since we
are restricted to work with d ≤ log n

log log n . Indeed, it is possible to strengthen and refine the
argument in [29] to get an exponential lower bound for low-depth set-multilinear formulas
(see [2]). An approach that evades the hardness escalation step, which is a critical bottleneck,

P. Amireddy, A. Garg, N. Kayal, C. Saha, and B. Thankey 12:3

and directly works with homogeneous formulas has the potential to avoid the dO(d) loss and
give an exponential lower bound for low-depth homogeneous formulas. For instance, the
direct arguments in [14,26] yield exponential lower bounds for homogeneous depth-4 formulas.
If we go via the hardness escalation approach, we get a quasi-polynomial lower bound for
the same model. Besides, a direct argument can also be used to prove lower bounds for
polynomials that do not have a non-trivial set-multilinear component, see the full version
of this article [2] for more details. The hardness escalation approach of [29] can not yield
such a lower bound. Furthermore, it is conceivable that a direct argument can also be used
to obtain functional lower bounds for low-depth formulas which might be useful in proof
complexity.

Motivations for studying Question 2. Typical measures used for proving lower bounds for
arithmetic circuits include the partial derivatives measure (PD) [32,38], the rank of the partial
derivatives matrix measure (a.k.a. evaluation dimension) [31, 34, 36], the shifted partials
measure (SP) and its variants [9,14,19], the affine projections of partials measure (APP) [7,15],
etc. All these measures are defined for any polynomial, which is not necessarily set-multilinear.
Whereas the relrk measure used in [29], although very effective, is defined for set-multilinear
polynomials. Measures such as PD, SP, and APP have the geometrically appealing property
that they are invariant under the application of invertible linear transformations on the
variables. Since low-depth formulas, as well as low-depth homogeneous formulas, are closed
under linear transformations, it is natural to look for measures that do not blow up much
on applying linear transformations. Another important motivation for studying Question 2
is to learn low-depth homogeneous formulas. While the “hardness escalation” paradigm of
reducing to the set-multilinear case works for proving lower bounds, it is not clear how to
exploit it to design learning algorithms for low-depth formulas. Lower bounds for arithmetic
circuits are intimately connected to learning [5, 7, 18, 42]. Hence if we have a lower bound
measure that directly exploits the weakness of low-depth homogeneous formulas, it opens up
the possibility of new learning algorithms for such models.

1.1 Our results
We answer Questions 1 and 2 by giving a direct lower bound for low-depth homogeneous
formulas via the SP measure which was used in the series of works on homogeneous depth-4
exponential lower bounds. While our proof also yields lower bounds only in the low-degree
setting, the hope is that it could potentially lead to a stronger lower bound in the future.

Consider the shifted partials measure: SPk,ℓ(f) := dim⟨xℓ · ∂k(f)⟩, where f is a poly-
nomial. That is, SPk,ℓ(f) is the dimension of the space spanned by the polynomials ob-
tained by multiplying degree ℓ monomials to partial derivatives of f of order k. Also,
for convenience, let us denote by M(n, k) :=

(
n+k−1

k

)
the number of monomials of de-

gree k in n variables. Then note that for a homogeneous polynomial f of degree d,
SPk,ℓ(f) ≤ min{M(n, k)M(n, ℓ), M(n, d− k + ℓ)}.

We show that for polynomials computed by low-depth homogeneous formulas, the shifted
partials measure with an appropriate setting of k and ℓ is substantially smaller than the
above upper bound. At the same time, we exhibit explicit “hard” polynomials for which the
shifted partials measure is close to the above bound, hence yielding a lower bound.

▶ Theorem 3 (Lower bound for low-depth homogeneous formulas via shifted partials). Let C be
a homogeneous formula of size s and product-depth ∆ that computes a polynomial of degree d

in n variables. Then for appropriate values of k and ℓ,

SPk,ℓ(C) ≤ s 2O(d)

nΩ(d21−∆)
min{M(n, k)M(n, ℓ), M(n, d− k + ℓ)}.

ICALP 2023

12:4 Low-Depth Arithmetic Circuit Lower Bounds: Bypassing Set-Multilinearization

At the same time, there are homogeneous polynomials f of degree d in n variables (e.g., an
appropriate projection of iterated matrix multiplication polynomial, Nisan-Wigderson design
polynomial, etc.) such that

SPk,ℓ(f) ≥ 2−O(d) min{M(n, k)M(n, ℓ), M(n, d− k + ℓ)}.

This gives a lower bound of nΩ(d21−∆
)

2O(d) on the size of homogeneous product-depth ∆ formulas
for f .

▶ Remark 4.
1. At the end of this section, we briefly remark why it is surprising that we are able to

obtain the above lower bound using shifted partials. We also show that the lower bound
can be derived using the affine projections of partials (APP) measure (Lemma 19).

2. The above lower bound is slightly better than the bound of [29]. Instead of the dO(d) loss
incurred due to converting homogeneous to set-multilinear formulas, our analysis incurs a
2O(d) loss; in fact, this loss can be brought down to 2O(k), but we ignore this distinction
as we set k = Θ(d) in the analysis. So, for example, for homogeneous product-depth 2
formulas, our superpolynomial lower bound continues to hold for a higher degree (log2(n)
vs (log(n)/ log log(n))2 in [29]). While the improvement may be insignificant, this hints
at something interesting going on with the direct approach (see Section 1.2).

Lower bounds for general-depth arithmetic formulas are expected to be easier than
arithmetic circuit lower bounds. However, despite several approaches and attempts (e.g. via
tensor rank lower bounds [35]), we still do not have superpolynomial arithmetic formula
lower bounds. There has been some success though in proving lower bounds for some natural
restricted models (apart from the depth restrictions considered above). For example, [19]
considered the model of regular arithmetic formulas. These are formulas which consist of
alternating layers of addition (+) and multiplication (×) gates such that the fanin of all gates
in any fixed layer is the same. This is a natural model and the best-known formulas for many
interesting polynomial families like determinant, permanent, iterated matrix multiplication,
etc. are all regular. [19] proved a superpolynomial lower bound on the size of regular formulas
for an explicit polynomial and later [6] proved a tight lower bound for the iterated matrix
multiplication polynomial.

We prove superpolynomial lower bounds for a more general model.1 Consider a model
of homogeneous arithmetic formulas consisting of alternating layers of addition (+) and
multiplication (×) gates such that the fanin of all addition gates can be arbitrary but fanin
of product gates in any fixed layer is the same. We call these product-regular. We prove
super-polynomial lower bounds for homogeneous product-regular formulas. Previously we
did not know of lower bounds for even a much simpler model where the fanins of all the
product gates are fixed to 2.

In fact, we prove lower bounds for an even more general model which we call Unique Parse
Tree (UPT) formulas. A parse tree of a formula is a tree where for every + gate, one picks
exactly one child and for every product gate, we pick all the children. Then we “short circuit”
all the addition gates. Parse trees capture the way monomials are generated in a formula.
We say that a formula is UPT if all its parse trees are isomorphic. A product-regular formula
is clearly UPT. In the theorem below, IMMn,log n is the iterated multiplication polynomial
of degree log n.

1 The model in [6, 19] allowed slight non-homogeneity with the formal degree upper bounded by a small
constant times the actual degree. However, we only work with homogeneous formulas.

P. Amireddy, A. Garg, N. Kayal, C. Saha, and B. Thankey 12:5

▶ Theorem 5. Any UPT formula computing IMMn,log(n) has size at least nΩ(log log(n)). A
similar lower bound holds for the Nisan-Wigderson design polynomial.

▶ Remark 6.
1. While homogeneous product-regular formulas are restricted to compute polynomials

with only certain degrees (e.g., higher product-depth cannot compute prime degrees),
homogeneous UPT formulas do not suffer from this restriction.

2. While this result (which is obtained using the SP and the APP measures) could possibly
also be obtained by defining a similar model in the set-multilinear world, proving a lower
bound there and then transporting it back to the homogeneous world, our framework has
fewer number of moving parts and hence makes it easier to derive such results.

Challenges to using the SP measure. Let us remark briefly why it is surprising that we
are able to prove low-depth lower bounds via shifted partials. [8, 37] showed that the PD
measure of the polynomial (x2

1 + · · · + x2
n) d

2 is the maximum possible when the order of
derivatives, k, is at most d

2 . Notice that (x2
1 + · · ·+ x2

n) d
2 can be computed by a homogeneous

depth-4 formula of size O(nd). So, it is not possible to prove super-polynomial lower bounds
for low-depth homogeneous formulas using the PD measure as it is. One may ask if the
SP measure also has a similar limitation. Some of the finer separation results in [23, 24]
indicate that the SP measure (and some of its variants) can be fairly large for homogeneous
depth-4 and depth-5 formulas for the choices of k used in prior work. Also, the exponential
lower bounds for homogeneous depth-4 circuits in [14, 26] use random restrictions along with
a variant of the SP measure. It is not clear how to leverage random restrictions for even
homogeneous depth-5 circuits – this is also pointed out in [29]. Fortunately, [23,24] do not
rule out the possibility of using SP for all choices of parameters, like, say, k ≈ d

2 , to prove
lower bounds for low-depth homogeneous formulas. But, the original intuition from algebraic
geometry that led to the development of the SP measure (see [9] Section 2.1) breaks down
completely when k is so large (see [2]). Despite these apparent hurdles, and to our surprise,
we overcome these challenges and are able to use SP with k ≈ d

2 to prove super-polynomial
lower bounds for low-depth homogeneous formulas. To the best of our knowledge, no previous
work uses SP with this high a value of k.

1.2 Techniques and proof overview

In this section, we explain the proof idea and compare it with that in [29]. A lot of lower
bounds in arithmetic complexity follow the following outline.

Step 1: Depth reduction. One first shows that if f(x) is computed by a small circuit
from some restricted subclass of circuits, then there is a corresponding subclass of depth-4
circuits such that f(x) is also computed by a relatively small circuit from this subclass2.
The resulting subclass is of the form: f(x) =

∑s
i=1
∏ti

j=1 Qi,j . Usually there are simple
restrictions on the degrees of Qi,j ’s. For example, they could be upper bounded by some
number.

2 Some major results in the area such as [29, 33] did not originally proceed via a depth reduction but
instead analysed formulas directly. These results can however be restated as first doing a depth reduction
and then applying the appropriate measure.

ICALP 2023

12:6 Low-Depth Arithmetic Circuit Lower Bounds: Bypassing Set-Multilinearization

Step 2: Employing a suitable set of linear maps. Let F[x]=d be the space of homogeneous
polynomials of degree d, W be a suitable vector space, and Lin(F[x]=d, W) be the space of
linear maps from F[x]=d to W . We choose a suitable set of linear maps L ⊆ Lin(F[x]=d, W)
that define a complexity measure µL(f) := dim(L(f)), where L(f) := ⟨{L(f) : L ∈ L}⟩.

We would like to choose L so that it identifies some weakness of the terms
∏t

j=1 Qj in
the depth-4 circuit. That is, µL

(∏t
j=1 Qj

)
should be much smaller than µL(f) for a generic

f . For e.g., if Qj ’s are all linear polynomials, we can choose L to be the partial derivatives of
order k, ∂k. Then, µL

(∏t
j=1 Qj

)
≤
(

t
k

)
≪
(

n+k−1
k

)
which is the value for a generic f (for

k ≤ t/2). This is the basis of the homogeneous depth-3 formula lower bound in [32].
For proving lower bounds for bounded bottom fan-in depth-4 circuits (i.e., when degree

of Qj ’s is upper bounded by some number), [9, 13] introduced the SP measure and used the
linear maps L = xℓ · ∂k. The main insight in their proof was that if we apply a partial
derivative of order k on

∏t
j=1 Qj and use the product rule, then at least t− k of the Qj ’s

remain untouched. This structure can then be exploited by the shifts to get a lower bound.
This intuition however completely breaks down for k ≥ t (see [2]). Due to this, progress
remain stalled for higher depth arithmetic circuit lower bounds via SP.

In a major breakthrough, [29] gets around the above obstacle by working with set-
multilinear circuits which entails working with polynomials over d sets of variables (x1, . . . , xd),
|xi| = n. Let us use the shorthand xS = (xi)i∈S . The products they deal with are of the
form

∏t
j=1 Qj(xSj

), where S1, S2, . . . , St form a partition of [d]. The set of linear maps they
use are L = Π ◦ ∂xA

for a subset A ⊆ [d]. Here, Π is a map that sets n − n0 variables in
each of the variable sets in x[d]\A to 0. They observe (for the appropriate choice of n0) that
µL

(∏t
j=1 Qj(xSj)

)
≤ n|A|

2
1
2

∑t

j=1
imbalancej

.

Here, imbalancej = ||A ∩ Sj | log(n)− |Sj\A| log(n0)|. For the appropriate choice of n0,
a generic set-multilinear f satisfies µL(f) = n|A|, so that lower bound (on the number of
summands) obtained is exponential in the total imbalance

∑t
j=1 imbalancej . [29] observe

that this quantity is somewhat large for the depth-4 circuits that they consider.
The core of the above derivatives-based argument allows us to unravel some structure in

partial derivatives of order k applied on
∏t

j=1 Qj for values of k ≫ t. We use this to derive
a structure for the partial derivative space of a product

∏t
j=1 Qj(x). Consider a partial

derivative operator of order k indexed by a multiset α of size k. Using the chain rule,

∂α

t∏
j=1

Qj =
∑

α1,...,αt:
∑t

i=1
αi=α

cα
α1,...,αt

t∏
j=1

∂αj
Qj

for appropriate constants cα
α1,...,αt

’s. In the product
∏t

j=1 ∂αj
Qj , we can try to club terms

into two groups depending on if the size of |αj | is small or large. It turns out that the right
threshold for |αj | is k deg(Qj)/d (i.e., if we divide the order of the derivatives proportional
to the degrees of the terms). Let S := {j : |αj | ≤ k deg(Qj)/d}. Define k0 :=

∑
j∈S |αj |

and ℓ0 :=
∑

j∈S(deg(Qj) − |αj |). Notice that we can write the product
∏t

j=1 ∂αj
Qj as

P
∏

j∈S ∂αj
Qj , for a degree ℓ0 polynomial P . Hence, ∂α

∏t
j=1 Qj is a sum of terms of this

form. While it is not immediate (due to the condition on αj ’s in S), with a bit more work,
one can combine the product of partials into a single partial.

What can we say about k0 and ℓ0? It turns out that the quantity that comes up in the
calculations is k0 + k

d−k ℓ0 and it satisfies k0 + k
d−k ℓ0 ≤ k. Note that k0 is between 0 and k,

and ℓ0 between 0 and d− k. So the normalization brings ℓ0 to the right “scale”.

P. Amireddy, A. Garg, N. Kayal, C. Saha, and B. Thankey 12:7

It turns out we can give a better bound in terms of a quantity we call residue defined as

residuek(d1, . . . , dt) := 1
2 · min

k1,...,kt∈Z

t∑
j=1

∣∣∣∣kj −
k

d
· dj

∣∣∣∣ .
and having the property that:

▶ Proposition 7. Let k0 and ℓ0 be defined as above. Then, k0 + k
d−k ℓ0 ≤ k −

residuek(d1, . . . , dt), where dj = deg(Qj).

We want to spread the derivatives equally among all terms but cannot due to integrality issues.
The residue captures this quantitatively and as described below, is what gives us our lower
bounds. While the proof in [29] also relies on an integrality issue, there it originates from an
imbalance between the sizes of the variable sets involved in a set-multilinear partition (as the
map Π sets some variables in certain sets to 0). In contrast, we show that the integrality issue
arising directly from the derivatives can be leveraged without involving set-multilinearity.
In this sense, our approach is conceptually direct and simpler. Combined with the above
discussion, we get the following structural lemma about the derivative space of

∏t
j=1 Qj .

▶ Lemma 8.

〈
∂k (Q1 · · ·Qt)

〉
⊆

∑
S⊆[t], k0∈[0..k], ℓ0∈[0..(d−k)],

k0+ k
d−k ·ℓ0 ≤ k−residuek(d1,...,dt)

〈
xℓ0 · ∂k0

∏
j∈S

Qj

〉 .

Now we have the choice to utilize the above structure using an additional set of linear
maps. Both shifts and projections give similar lower bounds, so let us explain shifts here.
Note that there is an intriguing possibility of getting even better lower bounds (in terms of
dependence on d) using other sets of linear maps! From the above structural result, we have

〈
xℓ · ∂k (Q1 · · ·Qt)

〉
⊆

∑
S⊆[t], k0∈[0..k], ℓ0∈[0..(d−k)],

k0+ k
d−k ·ℓ0 ≤ k−residuek(d1,...,dt)

〈
xℓ+ℓ0 · ∂k0

∏
j∈S

Qj

〉 .

Thus we can upper bound,

SPk,ℓ((Q1 · · ·Qt)) ≤ 2t · d2 · max
k0,ℓ0≥0

k0+ k
d−k ·ℓ0 ≤ k−residuek(d1,...,dt)

M(n, k0) ·M(n, ℓ0 + ℓ)

≤ 2t · d2 2O(d)

nresiduek(d1,...,dt) min{M(n, k)M(n, ℓ), M(n, d− k + ℓ)},

where the second inequality follows from elementary calculations.
Now to upper bound the shifted partial dimension of polynomials computed by low-depth

formulas, we give a decomposition for such formulas into sums of products of polynomials
(Lemma 16) where the degree sequences are carefully chosen so that that the residues can be
simultaneously lower bounded for all the terms (Lemma 17). While in a different context,
these calculations do bear similarity with related calculations in [29].

Step 3: Lower bounding dim(L(f)) for an explicit f . As a last step, one shows that
for some explicit candidate hard polynomial dim(L(f)) is large and thereby obtains a lower
bound. This is another step where bypassing set-multilinearity helps as one is not constrained

ICALP 2023

12:8 Low-Depth Arithmetic Circuit Lower Bounds: Bypassing Set-Multilinearization

to pick a set-multilinear hard polynomial. Indeed, using a straightforward analysis we show
that the APP measure is high for an explicit non-set-multilinear polynomial (see Remark 23).
We also show that the measures are high for more standard polynomial families such as the
iterated matrix multiplication polynomials and the Nisan-Wigderson design polynomials.

Application to UPT formulas. We observe here that for the subclass of homogeneous
formulas that we call UPT formulas, one can do a depth-reduction to obtain a depth-4
formula in which all the summands have the same factorization pattern (i.e. the sequence
of degrees of the factors in all the summands is that same) - see Lemma 30. We further
observe (Lemma 31) that for any fixed sequence of degrees, there exists a suitable value of
the parameter k such that the residue is sufficiently large. This gives us the superpolynomial
lower bound for UPT formulas as stated in Theorem 5.

Despite the conceptual directness and simplicity of our approach, in bypassing set-
multilinearity, some of the calculations in the analysis become evidently more involved than
that in [29]. This is primarily due to the delicate choice of parameters in ratios involving
binomial coefficients; this is also the case in several prior exponential lower bound proofs
using SP and its variants [14, 16, 26]. Nevertheless, we think that by circumventing a critical
bottleneck, the analysis opens up the possibility of an exponential lower bound for low-depth
arithmetic circuits. Some of the ideas may indeed yield stronger bounds in the future.

Organization. After describing preliminaries in Section 2, we present a structural theorem
about the derivative space of a product of homogeneous polynomials in Section 3. This
result is then directly used to upper bound both the SP and APP measures of a product of
polynomials. Using this result and a decomposition result for low-depth formulas, we obtain
lower bounds for low-depth formulas in Section 4. Finally, we prove lower bounds for UPT
formulas in Section 5.

2 Preliminaries

In this section, we give the essential notations and definitions necessary to follow the article.
Let a, b, c be real numbers. Then we define the sets [a..b] := {x ∈ Z : x ∈ [a, b]} and

[a] := [1..a]. For a constant c ≥ 1 and b ≥ 0, we say a ≈c b if a ∈ [b/c, b]. We write a ≈ b

if a ≈c b for some (unspecified) constant c. All logarithms have base 2 unless specified
otherwise. We denote the fractional part of a by {a} := a− ⌊a⌋ and the nearest integer of
a by ⌊a⌉. The following quantity will be crucially used in the proofs of our lower bounds.
Here we think of d1, . . . , dt as degrees of certain homogeneous polynomials, d as the degree
of the product of those polynomials, and k is the order of partial derivatives used for the
complexity measures.

▶ Definition 9 (residue). For non-negative integers d1, . . . , dt such that d :=
t∑

i=1
di ≥ 1 and

k ∈ [0..(d− 1)], we define residuek(d1, . . . , dt) := 1
2 · min

k1,...,kt∈Z

t∑
i=1

∣∣ki − k
d · di

∣∣ .
The factor of half has been included in the definition just to make the statements of some
of the lemmas in our analysis simple. It is easy to show that residuek(d1, . . . , dt) ≤ k

2 . The
minimum is attained when for all i ∈ [t], ki =

⌊
k
d · di

⌉
. When we use residue in the analysis

of complexity measures, we would also have the following additional constraints that ki ≥ 0
and ki ≤ di, k1 + · · · + kn = k, where k shall be the order of derivatives. As the value of
residue can not decrease when we impose these constraints, we omit them.

P. Amireddy, A. Garg, N. Kayal, C. Saha, and B. Thankey 12:9

Let n and n0 be positive integers. Define variable sets x := {x1, . . . , xn} and
z := {z1, . . . , zn0}. For a monic monomial m and a P ∈ F[x], we define ∂mP ∈ F[x]
to be the polynomial obtained by successively taking partial derivatives with respect
to all the variables of m (counted with their multiplicities). For an integer ℓ ≥ 0,
xℓ := {x1

e1 · · ·xn
en : e1, . . . , en ∈ Z≥0 and

∑
i∈[n] ei = ℓ}. For an integer k ≥ 0 and

P ∈ F[x], ∂kP :=
{

∂mP : m ∈ xk
}

. For a P ∈ F[x], a map L : x → ⟨z⟩, and
S ⊆ F[x], πL(P) ∈ F[z] and πL(S) ⊆ F[z] are defined as πL(P) := P (L(x1), . . . , L(xn))
and πL(S) := {πL(P) : P ∈ S}, respectively.

For S, T ⊆ F[x], S · T := {P ·Q : P ∈ S and Q ∈ T } and S + T := {P + Q : P ∈
S and Q ∈ T }. For a S ⊆ F[x], we define its span as ⟨S⟩ ⊆ F[x] to be the set of all
polynomials which can be expressed as F-linear combinations of elements in S. For a
S ⊆ F[x], its dimension, denoted by dimS, refers to the maximum number of linearly
independent polynomials in S. We can now define the complexity measures for polynomials
that we use to prove our lower bounds: the shifted partials (SP) measure and the affine
projections of partials (APP) measure.

▶ Definition 10 (SP and APP measures). For a polynomial P ∈ F[x], non-negative in-
tegers k, ℓ, and n0 ∈ [n], we define SPk,ℓ(P) := dim

〈
xℓ · ∂kP

〉
and APPk,n0(P) :=

max
L:x→⟨z⟩

dim
〈
πL

(
∂kP

)〉
.

SP and APP are sub-additive. APP is related to the skewed partials and relrk measures used
in [15] and [29], respectively. For a comparison, see [2].

Next, we define a subclass of homogeneous formulas which we call UPT formulas3.

▶ Definition 11. A homogeneous formula C is said to be a unique-parse-tree formula if all
of its parse trees are isomorphic to each other as directed graphs.

For a UPT formula C, we define its canonical parse tree to be some fixed tree among all
the parse trees (this is a binary tree without loss of generality). For a detailed definition of
(canonical) parse tree, we refer the reader to the full version of this article [2].

Iterated Matrix Multiplication. The iterated matrix multiplication, IMMn,d is a polynomial
in N = d·n2 variables defined as the (1, 1)-th entry of the matrix product of d many n× n

matrices whose entries are distinct variables. To prove a lower bound for IMM , we analyze
the SP and APP for a projection of IMM , Pw that was introduced in [29].

▶ Definition 12 (Word polynomial Pw [29]). Given a word w = (w1, . . . , wd) ∈ Zd, let x(w)
be a tuple of d pairwise disjoint sets of variables (x1(w), . . . , xd(w)) with |xi(w)| = 2|wi| for
all i ∈ [d]. xi(w) will be called negative if wi < 0 and positive otherwise. As the set sizes
are powers of 2, we can map the variables in a set xi(w) to Boolean strings of length |wi|.
Let σ : x → {0, 1}∗ be such a mapping.4 We extend the definition of σ from variables to
set-multilinear monomials as follows: Let X = x1 · · ·xr be a set-multilinear monomial where
xi ∈ xϕ(i)(w) and ϕ : [r]→ [d] be an increasing function. Then, we define a Boolean string
σ(X) := σ(x1) ◦ · · · ◦ σ(xr), where ◦ denotes the concatenation of bits. Let M+(w) and
M−(w) denote the set of all (monic) set-multilinear monomials over all the positive sets

3 Our definition for UPT formulas is more general than the model considered in a recent paper by Limaye,
Srinivasan and Tavenas [30] as we do not impose set-multilinearity.

4 Note that σ may map a variable from xi(w) and a variable from xj(w) to the same string if i ̸= j.

ICALP 2023

12:10 Low-Depth Arithmetic Circuit Lower Bounds: Bypassing Set-Multilinearization

and all the negative sets, respectively. For two Boolean strings a, b, we say a ∼ b if a is a
prefix of b or vice versa. For a word w, the corresponding word polynomial Pw is defined as
Pw :=

∑
m+∈M+(w), m−∈M−(w)

σ(m+) ∼ σ(m−)

m+ ·m−.

We will make use of the following lemma from [29] which shows that computing IMM

is at least as hard as computing Pw. For this, we recall the notion of unbiased-ness of
w = (w1, . . . , wd) from [29] – we say that w is h-unbiased if maxi∈[d] |w1 + · · ·+ wi| ≤ h.

▶ Lemma 13 (Lemma 7 in [29]). Let w ∈ [−h..h]d be h-unbiased. If for some n ≥ 2h,
IMMn,d has a formula C of product-depth5 ∆ and size s, then Pw has a formula C ′ of
product-depth at most ∆ and size at most s. Moreover, if C is homogeneous, then so is C ′

and if C is UPT, then so is C ′ with the same canonical parse tree.6

Nisan-Wigderson design polynomial. For a prime power q and d ∈ N, let x =
{x1,1, . . . , x1,q,

. . . , xd,1, . . . , xd,q}. For any k ∈ [d], the Nisan-Wigderson design polynomial on qd variables,
denoted by NWq,d,k or simply NW , is defined as follows:

NWq,d,k =
∑

h(z)∈Fq [z]:
deg(h)<k

∏
i∈[d]

xi,h(i).

The IMM and the NW polynomials, and their variants, have been extensively used to prove
various circuit lower bounds [3, 4, 11,14,16,19–21,23,26,27,29,32].

3 Structure of the space of partials of a product

In this section, we bound the partial derivative space of a product of homogeneous polynomials.
In the following lemma, we show that the space of k-th order partial derivatives of a product
of polynomials is contained in a sum of shifted partial spaces with shift ℓ0 and order of
derivatives k0 such that k0 + k

d−k · ℓ0 is “small”. Using this lemma, we upper bound the SP
and APP measures of a product of homogeneous polynomials. These bounds are then used
in Sections 4 and 5 for proving lower bounds for low-depth homogeneous formulas and UPT
formulas respectively. Missing proofs from this section can be found in the full version of
this article [2],

▶ Lemma 14 (Upper bounding the partials of a product). Let n and t be positive integers
and Q1, . . . , Qt be non-constant, homogeneous polynomials in F[x] with degrees d1, . . . , dt

respectively. Let d := deg(Q1 · · ·Qt) =
t∑

i=1
di and k < d be a non-negative integer. Then,

〈
∂k (Q1 · · ·Qt)

〉
⊆

∑
S⊆[t], k0∈[0..k], ℓ0∈[0..(d−k)],

k0+ k
d−k ·ℓ0 ≤ k−residuek(d1,...,dt)

〈
xℓ0 · ∂k0

(∏
i∈S

Qi

)〉
.

We now use the above lemma to upper bound the shifted partials and affine projections of
partials measures of a product of polynomials.

5 The product-depth of a formula is the maximum number of product gates on any path from the root to
a leaf in the formula.

6 Although the lemma in [29] is stated for set-multilinear circuits, it also applies to homogeneous formulas
and UPT formulas (albeit with a mild blow-up in size) by the same argument.

P. Amireddy, A. Garg, N. Kayal, C. Saha, and B. Thankey 12:11

▶ Lemma 15 (Upper bounding SP and APP of a product). Let Q = Q1 · · ·Qt be a homogeneous
polynomial in F[x1, . . . , xn] of degree d = d1 + · · ·+ dt ≥ 1, where Qi is homogeneous and
di := deg(Qi) for i ∈ [t]. Then, for any non-negative integers k < d, ℓ ≥ 0, and n0 ≤ n,
1.

SPk,ℓ(Q) ≤ 2t · d2 · max
k0,ℓ0≥0

k0+ k
d−k ·ℓ0 ≤ k−residuek(d1,...,dt)

M(n, k0) ·M(n, ℓ0 + ℓ),

2.

APPk,n0(Q) ≤ 2t · d2 · max
k0,ℓ0≥0

k0+ k
d−k ·ℓ0 ≤ k−residuek(d1,...,dt)

M(n, k0) ·M(n0, ℓ0).

4 Lower bound for low-depth homogeneous formulas

In this section, we present a superpolynomial lower bound for “low-depth” homogeneous
formulas computing the IMM and NW polynomials. We begin by proving a structural
result for homogeneous formulas. Missing proofs from this section can be found in the full
version of this article [2].

4.1 Decomposition of low-depth formulas
We show that any homogeneous formula can be decomposed as a sum of products of
homogeneous polynomials of lower degrees, where the number of summands is bounded by
the number of gates in the original formula. The decomposition lemma given below bears
some resemblance to a decomposition of homogeneous formulas in [12]. In the decomposition
in [12], the degrees of the factors of every summand roughly form a geometric sequence, and
hence each summand is a product of a “large” number of factors. Here we show that each
summand has “many” low-degree factors. While the lower bound argument in [29] does not
explicitly make use of such a decomposition, their inductive argument can be formulated as a
depth-reduction or decomposition lemma (with slightly different thresholds for the degrees).

▶ Lemma 16 (Decomposition of low-depth formulas). Suppose C is a homogeneous formula
of product-depth ∆ ≥ 1 computing a homogeneous polynomial in F[x1, . . . , xn] of degree at
least d > 0. Then, there exist homogeneous polynomials {Qi,j}i,j in F[x1, . . . , xn] such that

1. C =
s∑

i=1
Qi,1 · · ·Qi,ti , for some s ≤ size(C), and

2. for all i ∈ [s], either

|{j ∈ [ti] : deg(Qi,j) = 1}| ≥ d21−∆
, or∣∣∣{j ∈ [ti] : deg(Qi,j) ≈2 d21−δ

}∣∣∣ ≥ d21−δ

− 1 , for some δ ∈ [2..∆].

4.2 Low-depth formulas have high residue
The following lemma gives us a value for the order of derivatives k with respect to which
low-depth formulas yield high residue. Its proof uses Lemma 16.

ICALP 2023

12:12 Low-Depth Arithmetic Circuit Lower Bounds: Bypassing Set-Multilinearization

▶ Lemma 17 (Low-depth formulas have high residue). Suppose C is a homogeneous formula
of product-depth ∆ ≥ 1 computing a polynomial in F[x1, . . . , xn] of degree d, where d21−∆ =
ω(1). Then, there exist homogeneous polynomials {Qi,j}i,j in F[x1, . . . , xn] such that C =

s∑
i=1

Qi,1 · · ·Qi,ti , for some s ≤ size(C). Fixing an arbitrary i ∈ [s], let t := ti and define

dj := deg(Qi,j) for j ∈ [t]. Then, residuek(d1, . . . , dt) ≥ Ω
(

d21−∆
)

, where k :=
⌊

α·d
1+α

⌋
,

α :=
∆−1∑
ν=0

(−1)ν

τ2ν −1 , and τ :=
⌊
d21−∆

⌋
.

4.3 High residue implies lower bounds

For a “random” homogeneous degree-d polynomial in F[x1, . . . , xn], if the shift ℓ is not
too large, we expect the SP measure to be close to the maximum number of operators
used to construct the shifted partials space, i.e., M(n, k) ·M(n, ℓ). Explicit examples of
such polynomials are given in Section 4.4. In the lemma below, we derive a lower bound
corresponding to the decompositions established above. The main step is to show that the
SP measure of a high-residue-decomposition is small.

▶ Lemma 18 (High residue implies lower bounds). Let P =
s∑

i=1
Qi,1 · · ·Qi,ti be a

homogeneous n-variate polynomial of degree d where {Qi,j}i,j are homogeneous and
SPk,ℓ(P) ≥ 2−O(d) ·M(n, k) ·M(n, ℓ) for some 1 ≤ k < d

2 , n0 ≤ n and ℓ =
⌊

n·d
n0

⌋
such that d ≤ n0 ≈ 2(d− k)·

(
n
k

) k
d−k . If there is a γ > 0 such that for all i ∈ [s],

residuek(deg(Qi,1), . . . , deg(Qi,ti
)) ≥ γ, then s ≥ 2−O(d) (n

d

)Ω(γ).

We state an analogous lemma with APP instead of SP.

▶ Lemma 19 (High residue implies lower bounds, using APP). Let P =
s∑

i=1
Qi,1 · · ·Qi,ti

be a homogeneous n-variate polynomial of degree d where {Qi,j}i,j are homogeneous
and APPk,n0(P) ≥ 2−O(d) · M(n, k) for some 1 ≤ k < d

2 , n0 ≤ n such that
d ≤ n0 ≈ 2(d− k).

(
n
k

) k
d−k . If there is a γ > 0 such that for all i ∈ [s],

residuek(deg(Qi,1), . . . , deg(Qi,ti)) ≥ γ, then s ≥ 2−O(d) ·
(

n
d

)Ω(γ).

▶ Remark 20. In the above lemmas, although our lower bound appears as 2−O(d) ·nΩ(γ),
similar calculations actually give a lower bound of 2−O(k) ·nΩ(γ) for any choice of k and an
appropriate choice of ℓ (or n0 in the case of APP). We do not differentiate between the
two, as for our applications (i.e., low-depth circuits and UPT formulas), the value of k we
choose is Θ(d). Moreover, we observe that the factor of 2−O(k) in our lower bounds is likely
unavoidable for any choice of k and ℓ (or n0 in the case of APP) using our current estimates
for the complexity measures. We refer the reader to the full version of this article [2] for more
details.

4.4 The hard polynomials

We shall prove our lower bound for the word polynomial Pw introduced in [29] as well as for
the Nisan-Wigderson design polynomial. In order to do this, we show that the SP and APP
measures of Pw and the SP measure of NW are large for suitable choices of k, ℓ and n0.

P. Amireddy, A. Garg, N. Kayal, C. Saha, and B. Thankey 12:13

▶ Lemma 21 (Pw as a hard polynomial). For integers h, d such that h > 100 and any
k ∈

[
d
30 , d

2
]
, there exists an h-unbiased word w ∈ [−h..h]d, integers n0 ≤ n, ℓ =

⌊
n·d
n0

⌋
such

that n0 ≈ 2(d−k)·
(

n
k

) k
d−k and the following bounds hold: SPk,ℓ(Pw) ≥ 2−O(d)·M(n, k)·M(n, ℓ)

and APPk,n0(Pw) ≥ 2−O(d) ·M(n, k). Here n refers to the number of variables in Pw, i.e.,
n =

∑
i∈[d] 2|wi|.

The following lemma shows that the SP measure of the Nisan-Wigderson design polynomial
is “large” for k as high as Θ(d), if ℓ is chosen suitably.

▶ Lemma 22 (NW as a hard polynomial). For n, d ∈ N such that 120 ≤ d ≤ 1
150

(
log n

log log n

)2
,

let q be the largest prime number between
⌊

n
2d

⌋
and

⌊
n
d

⌋
. For parameters k ∈

[
d
30 , d

2 −
√

d
8

]
and ℓ =

⌊
qd2

n0

⌋
, where n0 = 2(d− k)·

(
qd
k

) k
d−k ,SPk,ℓ(NWq,d,k) ≥ 2−O(d) ·M(qd, k) ·M(qd, ℓ).

▶ Remark 23. An advantage of directly analysing the complexity measures for homogeneous
formulas instead of for set-multilinear formulas is that our hard polynomial need not be set
multilinear. In the full version of this article [2], we describe an explicit non set-multilinear
polynomial P (in VNP) with a large APP measure; the construction is similar to a polynomial
in [7]. The proof that APP of P is large is considerably simpler than the proofs of the above
lemmas.

4.5 Putting everything together: the low-depth lower bound
▶ Theorem 24 (Low-depth homogeneous formula lower bound for IMM). For any d, n, ∆ such
that n = ω(d), any homogeneous formula of product-depth at most ∆ computing IMMn,d

over any field F has size at least 2−O(d) ·n
Ω
(

d21−∆
)

. In particular, when d = O(log n), we

get a lower bound of n
Ω
(

d21−∆
)

.

▶ Theorem 25 (Low-depth homogeneous formula lower bound for NW). Let n, d, ∆ be positive
integers. If ∆ = 1, let d = n1−ϵ for any constant ϵ > 0 and k =

⌊
d−1

2
⌋
. Otherwise, let

d ≤ 1
150

(
log n

log log n

)2
, let τ =

⌊
d21−∆

⌋
, α =

∆−1∑
ν=0

(−1)ν

τ2ν −1 , and k =
⌊

α·d
1+α

⌋
. In both cases, let q be

the largest prime between
⌊

n
2d

⌋
and

⌊
n
d

⌋
. Then, any homogeneous formula of product-depth at

most ∆ computing NWq,d,k over any field F has size at least 2−O(d)·n
Ω
(

d21−∆
)

. In particular,

when d = O(log n), we get a lower bound of n
Ω
(

d21−∆
)

.

▶ Remark 26. Notice that in the above theorem, as k depends on the product-depth ∆, the
polynomial NWq,d,k may be different for different values of ∆. However, much like in [19],
there is a way to “stitch” all the different NW polynomials for different values of ∆ into a
single polynomial P such that any homogeneous formula of product-depth ∆ computing P

has size at least 2−O(d)n
Ω
(

d21−∆
)

. See Theorem 34 for more details.

In [29], the authors showed how to convert a circuit of product-depth ∆ computing a
homogeneous polynomial to a homogeneous formula of product-depth 2∆ without much
increase in the size. Combining Lemma 11 from [29] with Theorems 24 and 25, we get:

ICALP 2023

12:14 Low-Depth Arithmetic Circuit Lower Bounds: Bypassing Set-Multilinearization

▶ Corollary 27 (Low-depth circuit lower bound for IMM). For any positive integers d, n, ∆
such that n = ω(d), any circuit of product-depth at most ∆ computing IMMn,d over any

field F with characteristic 0 or more than d has size at least 2−O(d) ·n
Ω
(

d21−2∆

∆

)
.

In particular, when d = O(log n), we get a lower bound of n
Ω
(

d21−2∆

∆

)
.

▶ Corollary 28 (Low-depth circuit lower bound for NW). Let n, d, ∆ be positive integers.
If ∆ = 1, let d = n1−ϵ for any constant ϵ > 0 and k =

⌊
d−1

2
⌋
. Otherwise, let d ≤

1
150

(
log n

log log n

)2
, let τ =

⌊
d21−∆

⌋
, α =

∆−1∑
ν=0

(−1)ν

τ2ν −1 , and k =
⌊

α·d
1+α

⌋
. In both cases, let q be the

largest prime number between
⌊

n
2d

⌋
and

⌊
n
d

⌋
. Then, any circuit of product-depth at most

∆ computing NWq,d,k over any field F of characteristic 0 or more than d has size at least

2−O(d) ·n
Ω
(

d21−2∆

∆

)
.

In particular, when d = O(log n), we get a lower bound of n
Ω
(

d21−2∆

∆

)
.

We note that our lower bounds quantitatively improve on the original homogeneous
formula lower bound of [29] in terms of the dependence on the degree. While [29] gives a

lower bound of dO(−d) ·n
Ω
(

d1/2∆−1
)

(as the conversion from homogeneous to set-multilinear

formulas increases the size by a factor of dO(d)), our lower bound is 2−O(d)·n
Ω
(

d21−∆
)

. Thus,
we get slight improvement both in the multiplicative factor (from dO(d) to 2O(d)) and in the
exponent of n (from d

1
2∆−1 to d

1
2(∆−1)). We point out what these improvements mean for

smaller depths: For ∆ = 2, our lower bound for homogeneous formulas computing IMM is
superpolynomial as long as d ≤ ϵ · log2 n for a small enough positive constant ϵ, whereas the

lower bound in [29] does not work beyond d = O

((
log n

log log n

)2
)

. In particular, we obtain a

lower bound of nΩ(log n) for the size of homogeneous depth-5 formulas computing IMMn,d

when d = Θ(log2 n). Finally, for ∆ = 3 and d ≤ ϵ · log4/3 n, we get a lower bound of nΩ(d1/4),
as compared to nΩ(d1/7) from [29].

5 Lower bound for unique-parse-tree formulas

In this section, we show that UPT formulas computing IMM must have a “large” size. We
begin by giving a decomposition for such formulas. Missing proofs from this section can be
found in the full version of this article [2].

5.1 Decomposition of UPT formulas

In order to upper bound the SP (or APP) measure of a UPT formula, we need certain results
about binary trees and UPT formulas. For a given canonical parse tree T with d leaves, we
define its degree sequence (d1, . . . , dt) using the function Deg-seq described in Algorithm 1.

We prove the following lemma in the full version of this article [2]. The idea here is to
“break” the tree at various nodes so that the successive sizes of the smaller trees are far from
each other.

P. Amireddy, A. Garg, N. Kayal, C. Saha, and B. Thankey 12:15

Algorithm 1 Degree sequence of a right-heavy binary tree.

1: function Deg-seq(T)
2: v0 ← root node of T .
3: if v0 is a leaf then
4: return (1).
5: end if
6: d← leaves(v0), i← 0.
7: while vi is not a leaf do
8: vi+1 ← right child of vi, i← i + 1.
9: end while

10: v ← vj corresponding to the largest index j such that leaves(vj) > d
3 .

11: d1 ← d− leaves(v).
12: return (d1, Deg-seq(Tv)).
13: end function

▶ Lemma 29. For a given canonical parse tree T with d ≥ 1 leaves, let (d1, . . . , dt) :=

Deg-seq(T), where the function Deg-seq is given in Algorithm 1. Also let ei := d−
i∑

j=1
dj

for i ∈ [t] and e0 := d. Then, for all i ∈ [t − 1], ei ∈
(

ei−1
3 , 2·ei−1

3

]
. Additionally, dt = 1,

et = 0, and log3 d + 1 ≤ t ≤ log3/2 d + 1.

As mentioned in Section 4.1, it was shown in [12] that a homogeneous formula can be
expressed as a “small” sum of products of homogeneous polynomials such that in each
summand, the degrees of the factors roughly form a geometric sequence. We observe that this
result can be strengthened for UPT formulas; in particular, we show that for UPT formulas,
the “degree sequences” of all the summands are identical.

▶ Lemma 30 (Log-product decomposition of UPT formulas). Let f ∈ F[x] be a homogeneous
polynomial of degree d ≥ 1 computed by a UPT formula C with canonical parse tree T (C). Let
(d1, . . . , dt) := Deg-seq(T (C)). Then there exist an integer s ≤ size(C) and homogeneous
polynomials {Qi,j}i,j where deg(Qi,j) = dj for i ∈ [s], j ∈ [t], such that

f =
s∑

i=1
Qi,1 · · ·Qi,t.

5.2 UPT formulas have high residue
Now we show that there exists a value of k that has high residue with respect to the degrees
of the factors given by the above log-product lemma.

▶ Lemma 31 (High residue for a degree sequence). For any given canonical parse tree T with
d ≥ 1 leaves, let (d1, . . . , dt) := Deg-seq(T) and k := Upt-K(d1, . . . , dt) where the function
Upt-K is described in Algorithm 2. Then

residuek(d1, . . . , dt) ≥
log3 d− 10

216 .

ICALP 2023

12:16 Low-Depth Arithmetic Circuit Lower Bounds: Bypassing Set-Multilinearization

Algorithm 2 The value of k for a given sequence of degrees.

1: function Upt-K(d1, . . . , dt)
/* Returns k which shall be the order of derivatives for the SP and APP measures. */

2: d = d1 + · · ·+ dt.
3: for i ∈ [0..t] do

4: ei ← d−
i∑

j=1
dj .

5: end for
6: m←

⌊ log3 d−1
3

⌋
.

/* Defining a function J : [3m]→ [t− 2]. */
7: for i ∈ [3m] do
8: J (i)← min

{
j ∈ [0..t] : ej ≤ 3i

}
.

9: end for
10: (a1, . . . , am)← undefined.
11: for i ∈ [m] do
12: j ← J (3i).

13: b0 ←
(

i−1∑
p=1

ap

33p

)
· dj+1.

/* b1 defined below is not used in the algorithm but will be useful in the analysis. */

14: b1 ←
(

i−1∑
p=1

ap

33p + 1
33i

)
· dj+1.

15: if {b0} ∈
[

1
18 , 17

18

]
then

16: ai ← 0.
17: else
18: ai ← 1.
19: end if
20: end for

21: α←
m∑

p=1

ap

33p

22: k ← ⌊α · d⌋
23: return k.
24: end function

5.3 Putting everything together: the UPT formula lower bound
In this section, we state our lower bounds for UPT formulas.

▶ Theorem 32 (UPT formula lower bound for IMM). For n ∈ N and d ≤ ϵ · log n · log log n,
where ϵ > 0 is a small enough constant, any UPT formula computing IMMn,d over any field
F has size nΩ(log d).

▶ Remark 33. The above theorem can also be derived by using the complexity measure
studied in [29] along with the observation that the unbounded-depth set-multilinearization
due to [35] (which increases the size by a factor of 2O(d)) preserves parse trees.

We also get an analogous theorem for a polynomial related to the NW polynomial.

▶ Theorem 34. Let n ∈ N, d ≤ ϵ · log n · log log n, where ϵ > 0 is a small enough constant,
and q be the largest prime number between

⌊
n
2d

⌋
and

⌊
n
d

⌋
. Then, any UPT formula computing

P =
⌈d/2⌉∑

i=⌊d/30⌋
yi ·NWq,d,i (where the y variables are distinct from the x variables), over any

field F has size nΩ(log d).

P. Amireddy, A. Garg, N. Kayal, C. Saha, and B. Thankey 12:17

6 Conclusion

Recently, [29] made remarkable progress on arithmetic circuit lower bounds by giving the
first super-polynomial lower bound for low-depth formulas. They achieve this by a hardness
escalation approach via set-multilinearization. But, set-multilinearization is an inherently
expensive process that seems to restrict us from obtaining an exponential lower bound for even
homogeneous low-depth formulas. In this work, we take the vital first step of sidestepping
set-multilinearization and showing a super-polynomial lower bound for low-depth formulas
via a direct approach. A direct approach does not seem to incur an inherent exponential
loss. So, it might be possible to prove stronger lower bounds for low-depth homogeneous
formulas or other related models using this approach or an adaptation of it.

Problem 1. Prove exponential lower bounds for low-depth homogeneous arithmetic formulas.
Prove exponential lower bounds for low-depth, multi-r-ic formulas.
A formula is said to be multi-r-ic, if the formal degree of every gate with respect to every
variable is at most r [17, 21]. The UPT formula lower bound proved in this work is for
formulas computing polynomials of degree at most O(log n · log log n). It would be interesting
to increase the range of degrees for which our bound works. In the non-commutative setting,
exponential lower bounds are known for formulas with exponentially many parse trees [28].

Problem 2. Prove an nΩ(log d) lower bound for UPT formulas for d = nO(1). Prove a
superpolynomial lower bound for formulas with “many” parse trees.
Our work also raises the prospect of learning low-depth homogeneous formulas given black-box
access using the “learning from lower bounds” paradigm proposed in [7, 18].

Problem 3. Obtain learning algorithms for random low-depth homogeneous formulas.
To upper bound SP or APP of a homogeneous formula C, we first show in Section 3 that the
space of partial derivatives of C has some structure and then exploit this structure using
shifts or affine projections. There might be a better way to exploit this structure, say by
going modulo an appropriately chosen ideal or using random restrictions along with shifts as
done in [14,26]. Exploring this possibility is also an interesting direction for future work.

References
1 Manindra Agrawal and V. Vinay. Arithmetic Circuits: A Chasm at Depth Four. In 49th

Annual IEEE Symposium on Foundations of Computer Science, FOCS 2008, October 25-28,
2008, Philadelphia, PA, USA, pages 67–75. IEEE Computer Society, 2008.

2 Prashanth Amireddy, Ankit Garg, Neeraj Kayal, Chandan Saha, and Bhargav Thankey.
Low-depth arithmetic circuit lower bounds via shifted partials. Electron. Colloquium Comput.
Complex., TR22-151, 2022. URL: https://eccc.weizmann.ac.il/report/2022/151.

3 Suryajith Chillara, Nutan Limaye, and Srikanth Srinivasan. Small-depth multilinear formula
lower bounds for iterated matrix multiplication with applications. SIAM J. Comput., 48(1):70–
92, 2019. Conference version appeared in the proceedings of STACS 2018. doi:10.1137/
18M1191567.

4 Michael A. Forbes, Mrinal Kumar, and Ramprasad Saptharishi. Functional lower bounds
for arithmetic circuits and connections to boolean circuit complexity. In 31st Conference
on Computational Complexity, CCC 2016, May 29 to June 1, 2016, Tokyo, Japan, pages
33:1–33:19, 2016.

ICALP 2023

https://eccc.weizmann.ac.il/report/2022/151
https://doi.org/10.1137/18M1191567
https://doi.org/10.1137/18M1191567

12:18 Low-Depth Arithmetic Circuit Lower Bounds: Bypassing Set-Multilinearization

5 Lance Fortnow and Adam R. Klivans. Efficient learning algorithms yield circuit lower bounds.
J. Comput. Syst. Sci., 75(1):27–36, 2009.

6 Hervé Fournier, Nutan Limaye, Guillaume Malod, and Srikanth Srinivasan. Lower Bounds for
Depth-4 Formulas Computing Iterated Matrix Multiplication. SIAM J. Comput., 44(5):1173–
1201, 2015. Conference version appeared in the proceedings of STOC 2014.

7 Ankit Garg, Neeraj Kayal, and Chandan Saha. Learning sums of powers of low-degree
polynomials in the non-degenerate case. In Sandy Irani, editor, 61st IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020,
pages 889–899. IEEE, 2020.

8 Fulvio Gesmundo and Joseph M. Landsberg. Explicit polynomial sequences with maximal
spaces of partial derivatives and a question of k. mulmuley. Theory Comput., 15:1–24, 2019.
doi:10.4086/toc.2019.v015a003.

9 Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Approaching the
Chasm at Depth Four. J. ACM, 61(6):33:1–33:16, 2014. Conference version appeared in the
proceedings of CCC 2013.

10 Ankit Gupta, Pritish Kamath, Neeraj Kayal, and Ramprasad Saptharishi. Arithmetic Circuits:
A Chasm at Depth 3. SIAM J. Comput., 45(3):1064–1079, 2016. Conference version appeared
in the proceedings of FOCS 2013.

11 Nikhil Gupta, Chandan Saha, and Bhargav Thankey. A super-quadratic lower bound for
depth four arithmetic circuits. In Shubhangi Saraf, editor, 35th Computational Complexity
Conference, CCC 2020, July 28-31, 2020, Saarbrücken, Germany (Virtual Conference), volume
169 of LIPIcs, pages 23:1–23:31. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.
doi:10.4230/LIPIcs.CCC.2020.23.

12 Pavel Hrubes and Amir Yehudayoff. Homogeneous formulas and symmetric polynomials.
Comput. Complex., 20(3):559–578, 2011. doi:10.1007/s00037-011-0007-3.

13 Neeraj Kayal. An exponential lower bound for the sum of powers of bounded degree polynomials.
Electronic Colloquium on Computational Complexity (ECCC), 19:81, 2012. URL: http:
//eccc.hpi-web.de/report/2012/081.

14 Neeraj Kayal, Nutan Limaye, Chandan Saha, and Srikanth Srinivasan. An Exponential Lower
Bound for Homogeneous Depth Four Arithmetic Formulas. SIAM J. Comput., 46(1):307–335,
2017. Conference version appeared in the proceedings of FOCS 2014.

15 Neeraj Kayal, Vineet Nair, and Chandan Saha. Separation Between Read-once Oblivious
Algebraic Branching Programs (ROABPs) and Multilinear Depth-three Circuits. ACM Trans.
Comput. Theory, 12(1):2:1–2:27, 2020. Conference version appeared in the proceedings of
STACS 2016.

16 Neeraj Kayal and Chandan Saha. Lower Bounds for Depth-Three Arithmetic Circuits with
small bottom fanin. Computational Complexity, 25(2):419–454, 2016. Conference version
appeared in the proceedings of CCC 2015.

17 Neeraj Kayal and Chandan Saha. Multi-k-ic depth three circuit lower bound. Theory Comput.
Syst., 61(4):1237–1251, 2017. The conference version appeared in the proceedings of STACS,
2015. doi:10.1007/s00224-016-9742-9.

18 Neeraj Kayal and Chandan Saha. Reconstruction of non-degenerate homogeneous depth three
circuits. In Moses Charikar and Edith Cohen, editors, Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26,
2019, pages 413–424. ACM, 2019.

19 Neeraj Kayal, Chandan Saha, and Ramprasad Saptharishi. A super-polynomial lower bound
for regular arithmetic formulas. In Symposium on Theory of Computing, STOC 2014, New
York, NY, USA, May 31 - June 03, 2014, pages 146–153, 2014.

20 Neeraj Kayal, Chandan Saha, and Sébastien Tavenas. An Almost Cubic Lower Bound for
Depth Three Arithmetic Circuits. In 43rd International Colloquium on Automata, Languages,
and Programming, ICALP 2016, July 11-15, 2016, Rome, Italy, pages 33:1–33:15, 2016.

https://doi.org/10.4086/toc.2019.v015a003
https://doi.org/10.4230/LIPIcs.CCC.2020.23
https://doi.org/10.1007/s00037-011-0007-3
http://eccc.hpi-web.de/report/2012/081
http://eccc.hpi-web.de/report/2012/081
https://doi.org/10.1007/s00224-016-9742-9

P. Amireddy, A. Garg, N. Kayal, C. Saha, and B. Thankey 12:19

21 Neeraj Kayal, Chandan Saha, and Sébastien Tavenas. On the size of homogeneous and of
depth four formulas with low individual degree. In Proceedings of the 48th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge, MA, USA, June
18-21, 2016, pages 626–632, 2016.

22 Pascal Koiran. Arithmetic circuits: The chasm at depth four gets wider. Theor. Comput. Sci.,
448:56–65, 2012.

23 Mrinal Kumar and Ramprasad Saptharishi. The computational power of depth five arithmetic
circuits. SIAM J. Comput., 48(1):144–180, 2019. doi:10.1137/18M1173319.

24 Mrinal Kumar and Shubhangi Saraf. The limits of depth reduction for arithmetic formulas:
it’s all about the top fan-in. In Symposium on Theory of Computing, STOC 2014, New York,
NY, USA, May 31 - June 03, 2014, pages 136–145, 2014.

25 Mrinal Kumar and Shubhangi Saraf. Superpolynomial lower bounds for general homogeneous
depth 4 arithmetic circuits. In Automata, Languages, and Programming - 41st International
Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I, pages
751–762, 2014.

26 Mrinal Kumar and Shubhangi Saraf. On the Power of Homogeneous Depth 4 Arithmetic
Circuits. SIAM J. Comput., 46(1):336–387, 2017. Conference version appeared in the
proceedings of FOCS 2014.

27 Deepanshu Kush and Shubhangi Saraf. Improved low-depth set-multilinear circuit lower
bounds. In Shachar Lovett, editor, 37th Computational Complexity Conference, CCC 2022,
July 20-23, 2022, Philadelphia, PA, USA, volume 234 of LIPIcs, pages 38:1–38:16. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.CCC.2022.38.

28 Guillaume Lagarde, Nutan Limaye, and Srikanth Srinivasan. Lower Bounds and PIT for
Non-commutative Arithmetic Circuits with Restricted Parse Trees. Computational Complexity,
28(3):471–542, 2019.

29 Nutan Limaye, Srikanth Srinivasan, and Sébastien Tavenas. Superpolynomial Lower Bounds
Against Low-Depth Algebraic Circuits. In 62nd IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 804–814. IEEE,
2021. A full version of the paper can be found at https://eccc.weizmann.ac.il/report/
2021/081.

30 Nutan Limaye, Srikanth Srinivasan, and Sébastien Tavenas. On the partial derivative method
applied to lopsided set-multilinear polynomials. In Shachar Lovett, editor, 37th Computational
Complexity Conference, CCC 2022, July 20-23, 2022, Philadelphia, PA, USA, volume 234
of LIPIcs, pages 32:1–32:23. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:
10.4230/LIPIcs.CCC.2022.32.

31 Noam Nisan. Lower Bounds for Non-Commutative Computation (Extended Abstract). In
Cris Koutsougeras and Jeffrey Scott Vitter, editors, Proceedings of the 23rd Annual ACM
Symposium on Theory of Computing, May 5-8, 1991, New Orleans, Louisiana, USA, pages
410–418. ACM, 1991.

32 Noam Nisan and Avi Wigderson. Lower Bounds on Arithmetic Circuits Via Partial Derivatives.
Computational Complexity, 6(3):217–234, 1997. Conference version appeared in the proceedings
of FOCS 1995.

33 Ran Raz. On the Complexity of Matrix Product. SIAM J. Comput., 32(5):1356–1369, 2003.
Conference version appeared in the proceedings of STOC 2002.

34 Ran Raz. Separation of Multilinear Circuit and Formula Size. Theory of Computing, 2(6):121–
135, 2006. Conference version appeared in the proceedings of FOCS 2004.

35 Ran Raz. Tensor-Rank and Lower Bounds for Arithmetic Formulas. J. ACM, 60(6):40:1–40:15,
2013. Conference version appeared in the proceedings of STOC 2010.

36 Ran Raz and Amir Yehudayoff. Lower Bounds and Separations for Constant Depth Multilinear
Circuits. Computational Complexity, 18(2):171–207, 2009. Conference version appeared in the
proceedings of CCC 2008.

37 Bruce Reznick. Sums of even powers of real linear forms. Memoirs of the AMS, 96:463, 1992.

ICALP 2023

https://doi.org/10.1137/18M1173319
https://doi.org/10.4230/LIPIcs.CCC.2022.38
https://eccc.weizmann.ac.il/report/2021/081
https://eccc.weizmann.ac.il/report/2021/081
https://doi.org/10.4230/LIPIcs.CCC.2022.32
https://doi.org/10.4230/LIPIcs.CCC.2022.32

12:20 Low-Depth Arithmetic Circuit Lower Bounds: Bypassing Set-Multilinearization

38 Amir Shpilka and Avi Wigderson. Depth-3 arithmetic circuits over fields of characteristic zero.
Computational Complexity, 10(1):1–27, 2001. Conference version appeared in the proceedings
of CCC 1999.

39 Sébastien Tavenas. Improved bounds for reduction to depth 4 and depth 3. Inf. Comput.,
240:2–11, 2015. Conference version appeared in the proceedings of MFCS 2013.

40 Leslie G. Valiant. Completeness Classes in Algebra. In Proceedings of the 11h Annual ACM
Symposium on Theory of Computing, April 30 - May 2, 1979, Atlanta, Georgia, USA, pages
249–261, 1979.

41 Leslie G. Valiant, Sven Skyum, S. Berkowitz, and Charles Rackoff. Fast Parallel Computation
of Polynomials Using Few Processors. SIAM J. Comput., 12(4):641–644, 1983.

42 Ilya Volkovich. A Guide to Learning Arithmetic Circuits. In Proceedings of the 29th Conference
on Learning Theory, COLT 2016, New York, USA, June 23-26, 2016, pages 1540–1561, 2016.

Multi Layer Peeling for Linear Arrangement and
Hierarchical Clustering
Yossi Azar #

School of Computer Science, Tel-Aviv University, Israel

Danny Vainstein #

School of Computer Science, Tel-Aviv University, Israel

Abstract
We present a new multi-layer peeling technique to cluster points in a metric space. A well-known
non-parametric objective is to embed the metric space into a simpler structured metric space such
as a line (i.e., Linear Arrangement) or a binary tree (i.e., Hierarchical Clustering). Points which
are close in the metric space should be mapped to close points/leaves in the line/tree; similarly,
points which are far in the metric space should be far in the line or on the tree. In particular we
consider the Maximum Linear Arrangement problem [20] and the Maximum Hierarchical Clustering
problem [12] applied to metrics.

We design approximation schemes (1 − ϵ approximation for any constant ϵ > 0) for these
objectives. In particular this shows that by considering metrics one may significantly improve former
approximations (0.5 for Max Linear Arrangement and 0.74 for Max Hierarchical Clustering). Our
main technique, which is called multi-layer peeling, consists of recursively peeling off points which
are far from the “core” of the metric space. The recursion ends once the core becomes a sufficiently
densely weighted metric space (i.e. the average distance is at least a constant times the diameter)
or once it becomes negligible with respect to its inner contribution to the objective. Interestingly,
the algorithm in the Linear Arrangement case is much more involved than that in the Hierarchical
Clustering case, and uses a significantly more delicate peeling.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases Hierarchical clustering, Linear arrangements, Metric embeddings

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.13

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2305.01367

Funding Yossi Azar : Research supported in part by the Israel Science Foundation (grant No.
2304/20).

1 Introduction

Unsupervised learning plays a major role in the field of machine learning. Arguably the most
prominent type of unsupervised learning is done through clustering. Abstractly, in this setting
we are given a set of data points with some notion of pairwise relations which is captured
via a metric space (such that closer points are more similar). In order to better understand
the data, the goal is to embed this space into a simpler structured space while preserving the
original pairwise relationships. A prevalent solution in this domain is to build a flat clustering
(or partition) of the data (e.g., by using the k-means algorithm). However, these types of
solutions ultimately fail to capture all pairwise relations (e.g., intra-cluster relations). To
overcome this difficulty, often the metric space is mapped to structures that may capture all
pairwise relations - in our case into a Linear Arrangement (LA) or a Hierarchical Clustering
(HC).

EA
T
C
S

© Yossi Azar and Danny Vainstein;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 13; pp. 13:1–13:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:azar@tau.ac.il
mailto:dannyvainstein@gmail.com
https://doi.org/10.4230/LIPIcs.ICALP.2023.13
https://arxiv.org/abs/2305.01367
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

13:2 Multi Layer Peeling for LA and HC

The idea of embedding spaces by using a Linear Arrangement or Hierarchical Clustering
structure is not new. These types of solutions have been extensively used in practice (e.g.,
see [11, 30, 5, 6, 26]) and have also been extensively researched from a theoretical point of
view (e.g., see [13, 12, 24, 10, 17, 20]). Notably, the Linear Arrangement type objectives were
first considered by Hansen [19] who considered the embedding of graphs into 2-dimensional
and higher planes. On the other hand, the study of Hierarchical Clustering type objectives
was initiated by Dasgupta [13] - spurring a fruitful line of work resulting in many novel
algorithms. In practice, more often than not, the data considered adheres to the triangle
inequality (in particular guaranteeing that if point a is similar, equivalently close, to points b

and c then so are b and c) and thus may be captured by a metric (e.g., see [9, 25, 26]).
The first objective we consider is the Max Linear Arrangement objective.

▶ Definition 1. Let G = (V, w) denote a metric (specifically, w satisfies the triangle inequality)
with |V | = n. In the Max Linear Arrangement problem our goal is to return a 1-1
mapping y : V → [n] so as to maximize

∑
i,j wi,jyi,j, where yi,j = |yi − yj |.

The second objective we consider is the Max Hierarchical Clustering objective.

▶ Definition 2. Let G = (V, w) denote a metric (specifically, w satisfies the triangle in-
equality). In the Max Hierarchical Clustering problem our goal is to return a binary
HC tree T such that its leaves are in a 1-1 correspondence with V . Furthermore, we would
like to return T so as to maximize

∑
i,j wi,j |Ti,j |, where Tij is the subtree rooted at the

lowest-common-ancestor of the leaves i and j in the Hierarchical Clustering tree T and |Ti,j |
is the number of leaves in Ti,j.

These objectives were first considered by Hassin and Rubinstein [20] and Cohen-Addad et
al. [12] (respectively) with respect to the non-metric case. For these (non-metric) objectives
the best known approximation ratios are 0.5 for the Linear Arrangement objective [20] and
0.74 for the Hierarchical Clustering objective [25]). The former was achieved by was achieved
by bisecting the data points randomly and thereafter greedily arranging each set and the
latter was achieved by approximating the Balanced Max-2-SAT problem.

As stated earlier, more often than not, the data considered in practical applications
adheres to the triangle inequality. Therefore, our results’ merits are two fold. First, we offer
a generalized framework to tackle these types of embedding objectives. Second, our results
show that by applying this natural assumption we may significantly improve former best
known approximations (from 0.5 (LA) and 0.74 (HC) to 1 − ϵ for any constant ϵ > 0).

Our Results

We provide the following results.
We design a general framework in order to tackle the embedding of metric spaces into
simpler structured spaces (see Algorithm 1). We then concretely apply our framework
to both the Linear Arrangement and Hierarchical Clustering settings. For an extended
discussion see Our Techniques.
We apply our framework to the Linear Arrangement case. In this case we prove that
our applied algorithm (2) is an EPRAS (see Definition 8) - i.e., for any constant ϵ > 0 it
yields a 1 − ϵ approximation.
We apply our framework to the Hierarchical Clustering case. In this case we prove that
our applied algorithm (4) is an EPRAS (see Definition 8) - i.e., for any constant ϵ > 0 it
yields a 1 − ϵ approximation.

Y. Azar and D. Vainstein 13:3

Our Techniques

Our generic multi-layer peeling approach appears in Algorithm 1. We begin by checking
whether the metric space is sufficiently densely weighted (i.e., whether the average distance
is at least a constant times the diameter, or equivalently the metric’s weighted density (see
Definition 3) is constant). If this is the case then we apply a specific algorithm that handles
such instances. In the LA case we devise our own algorithm (see Algorithm 3). Algorithm 3
leverages the General Graph Partitioning algorithm of Goldreich et al. [18] in order to “guess”
an optimal graph partition that induces an almost optimal linear arrangement. In the HC
case we leverage the work of Vainstein et al. [31].

If, however, the metric is not sufficiently densely weighted, then we observe that it
must contain a core - a subset of nodes containing almost all data points with a diameter
significantly smaller than the original metric’s. Our general algorithm then peels off data
points far from the core (in the LA setting) or not in the core (in the HC setting). We then
embed these peeled off points; by placing them on one of the extreme sides of the line (in the
LA setting) or by arranging them in a ladder structure (in the HC case; see Definition 11).
Thus, we are left with handling the core (in the HC setting) or the extended core (in the LA
setting).

Once again we consider two cases - either the total weight within the (extended) core is
small enough, in which case we embed the core arbitrarily. Otherwise, we recurse on the
instance induced by these data points. We claim that in every recursion step the density of
the (extended) core increases significantly until eventually the recursion ends either when
the (extended) core is sufficiently densely weighted or the total weight within the (extended)
core is small enough.

Our proof is based on several claims. First, we consider the metric’s (extended) core
compared to the peeled off layer. Since our algorithm embeds the two sets separately, we
need to bound the resulting loss in objective value. We show that the weights within the
peeled off layer contribute negligibly towards the objective while the weights between the
peeled off layer and the (extended) core, contribute significantly. Hence, it makes sense then
to peel off this layer in order to maximize the gain in objective value.

While the aforementioned is enough to bound the loss in a single recursion step, it is
not enough. The number of recursion steps may not be constant which, in principle, may
cause a blow up of the error. Nevertheless, we show that the error in each level is bounded
by a geometric sequence and hence is dominated by the error of the deepest recursion step.
Consequently, we manage to upper bound the total accumulated error by a constant that we
may take to be as small as we wish.

While at large this describes our proof techniques, the algorithm and analysis of LA
objective is a bit more nuanced as we will be considering 3 sets: the metric’s core, the peeled
off layer, and any remaining points which together with the core are labeled as the extended
core. In this case, to be able to justify peeling off a layer, we must choose the layer more
aggressively. Specifically, we define this layer as points that are sufficiently far from the core
(rather than any point outside the core, as in the HC case). Fortunately, this defined layer
(see Algorithm 2) fits our criteria (of our general algorithm, Algorithm 1).

Related Work

While the concept of hierarchical clustering has been around for a long time, the HC
objective is relatively recent. In their seminal work, Dasgupta [13] considered the problem
of HC from an optimization view point. Thereafter, Cohen-Addad et al. [12] were the

ICALP 2023

13:4 Multi Layer Peeling for LA and HC

first to consider the objective we use in our manuscript. In their work they showed that
the well known Average-Linkage algorithm yields an approximation of 2

3 . Subsequently,
Charikar et al. [8] improved upon this result through the use of semidefinite programming -
resulting in a 0.6671 approximation. Finally, Naumov et al. [25] improved this to 0.74 by
approximating the Balanced Max-2-SAT problem. With respect to the Max LA objective,
Hassin and Rubinstein [20] were first to consider the problem. Through an approach of
bisection and then greedily arranging the points, Hassin and Rubinstein managed to achieve
a 0.5 approximation. We note that the previous mentioned results all hold for arbitrary
weights, while our main contribution is showing that by assuming the triangle inequality
(i.e., metric-based dissimilarity weights) we may achieve PTAS’s for both objectives. We
further note that with respect to metric-based dissimilarity weights, specifically an L1 metric,
Rajagopalan et al. [26] proved a 0.9 approximation through the use of random cut trees.

Both objectives have been originally studied with respect to their minimization variants.
The minimum LA setting was first considered by Hansen [19]. Hansen leveraged the work of
Leighton and Rao [23] on balanced separators in order to approximate the minimum linear
arrangement objective to facor of O(log2 n). Following several works improving upon this
result, both Charikar et al. [10] and Feige and Lee [17] leveraged the novel work of Arora et
al. [4] on rounding of semidefinite programs, and combined this with the rounding algorithm
of Rao and Reicha [27] in order to show a O(

√
log n log log n) approximation. For further

reading on these are related types of objectives see [16, 27, 29, 28]. On the other hand, as
mentioned earlier the minimum HC setting was introduced by Dasgupta [13] and extensively
studied as well (e.g., see [13, 12, 7, 8, 1, 2, 31]).

Most related to our work is that of de la Vega and Kenyon [15]. In their work they provide
a PTAS for the Max Cut problem given a metric. The algorithm works by first creating a
graph of clones (wherein each original vertex is cloned a number of times that is based on its
outgoing weight in the original metric) with the property of being dense. It thereafter solves
the problem in this new graph by applying the algorithm of de la Vega and Karpinski [14].
For our objectives (HC and LA) such an approach seems to fail - specifically due to the fact
that our objectives take into consideration the number of nodes in every induced cut and the
cloned graph inflates the number of nodes which in turn inflates our objective values. Thus,
for our considered types of objectives we need the more intricate process of iterative peeling
(and subsequently terminating the process with more suited algorithms that leverage the
General Graph Partitioning algorithm of Goldreich et al. [18]). It is worth while mentioning
that there has also been an extensive study of closely related objectives with respect to dense
instances (e.g. see [22, 3, 21]). However these types of approaches seem to fall short since
our considered metrics need not be dense.

2 Multi-Layer Peeling Framework

Before defining our algorithms we need the following definitions.

▶ Definition 3. Let G = (V, w) denote a metric and U ⊂ V denote a subset of its nodes.
We introduce the following notations: (1) let DU = maxi,j∈U wi,j denote U ’s diameter, (2)
let WU =

∑
i,j∈U wi,j denote U ’s sum of weights, (3) let nU = |U | denote U ’s size and

(4) let ρU = WU

n2
U

DU
denote U ’s weighted density1.

1 Typically the density is defined with respect to
(

n
2

)
. For ease of presentation, we chose to define it with

respect to n2 - the proofs remain the same using the former definition.

Y. Azar and D. Vainstein 13:5

Figure 1 A recursion step (case (c)) and the two possible halting steps (cases (a) and (b)). The
yellow points define the metric’s core. In the HC case we peel off both red and green points in a
single step, while in the LA we must be more delicate and only peel off the green points.

All our algorithms will make use of the following simple yet useful structural lemma
that states that for small-density instances there exists a large cluster of nodes with a small
diameter. The proof appears in the full version.

▶ Lemma 4. For any metric G = (V, w) there exists a set U ⊂ V such that DU ≤ 4DV
√

ρV

and nU ≥ nV (1 − √
ρV).

▶ Definition 5. Given a metric G = (V, w) we denote U ⊂ V as guaranteed by Lemma 4 as
a metric’s core.

Note that the core can be found algorithmicaly simply through brute force (while the
core need not be unique, our algorithms will choose one arbitrarily).

Throughout our paper we consider different metric-based objectives. In order to solve
them, we apply the same recipe - if the instance is sufficiently densely weighted, apply an
algorithm for these types of instances. Otherwise, the algorithm detects the metric’s core
(which is a small-diameter subset containing almost all nodes) and peel off (and subsequently
embed) a layer of data points that are far from the core. The algorithm then considers the
core; if it is sufficiently small (in terms of inner weights) then we embed the core arbitrarily
and halt. Otherwise, we recurse on the core. Our algorithms for both objectives (LA and
HC) will follow the same structure as defined in Algorithm 1.

Algorithm 1 General Algorithm.

if the instance is sufficiently densely weighted then // case (a)
Solve it using ALGd−w.

else
Let C denote the metric’s core (as defined by Definition 5).
Define the layer to peel off A ⊂ V \ C appropriately.
Embed A.
if WV \A is negligible then Embed V \ A arbitrarily and return. ; // case (b)
else Continue recursively on V \ A ; // case (c)

We denote by cases (a) and (b) the different cases for which the algorithm may terminate
and by case (c) the recursive step. We further denote by ALGd−w an auxiliary algorithm that
will handle sufficiently densely weighted instances. (These algorithms will differ according to
the different objectives).

Henceforth, given an algorithm ALG and metric G we denote by ALG(G) the algorithm’s
returned embedding. We note that when clear from context we overload the notation and
denote ALG(G) as the embedding’s value under the respective objectives. Equivalently, we
will use the term OPT (G) for the optimal embedding.

ICALP 2023

13:6 Multi Layer Peeling for LA and HC

Our different algorithms will be similarly defined and thus so will their analyses. Thus,
we introduce a general scheme for analyzing such algorithms. Let k denote the number of
recursive calls our algorithm performs. Furthermore, let Gi denote the instance the algorithm
is called upon in step i for i = 0, 1, . . . , k. (I.e., G = G0 and ALG(Gk) does not perform a
recursive step, meaning that it terminates with case (a) or (b)). We first observe that by
applying a simple averaging argument we get the following useful observation.

▶ Observation 6. If there exist αi, βi, γi > 0 such that ALG(Gi) ≥ αi + ALG(Gi+1) and
OPT (Gi) ≤ βi + γiOPT (Gi+1) for all i = 0, . . . , k − 1 then

ALG(G)
OPT (G) ≥

∑k−1
i=0 αi + ALG(Gk)∑k−1

i=0
(
βiΠi−1

j=0γj

)
+ (Πk−1

i=0 γi)OPT (Gk)

≥ min{min
i

{ αi

βiΠi−1
j=0γj

},
ALG(Gk)

(Πk−1
i=0 γi)OPT (Gk)

}.

Thus, in order to analyze a given algorithm, it will be enough to set the values of αi, βi

and γi, and further analyze the approximation ratio of ALG(Gk)
OP T (Gk) for the different terminating

cases (cases (a) and (b)).

3 Notations and Preliminaries

We introduce the following notation to ease our presentation later on.

▶ Definition 7. Given a metric G = (V, w), a solution SOL(G) for the LA objective
and disjoints sets A, B ⊂ V we define: SOL(G)|A =

∑
i,j∈A wi,jyi,j and SOL(G)|A,B =∑

i∈A,j∈B wi,jyi,j . For the HC objective the notations are defined symmetrically by replacing
yi,j with |Ti,j |.

We will make use of algorithms belonging to the following class of algorithms.

▶ Definition 8. An algorithm is considered an Efficient Polytime Randomized Approximation
Scheme (EPRAS) if for any ϵ > 0 the algorithm has expected running time of f(1

ϵ)nO(1) and
approximates the optimal solution’s value up to a factor of 1 − ϵ.

We will frequently use the following (simple) observations and thus we state them here.

▶ Observation 9. Given values αi ≥ 0, α ∈ (0, 1
k(k+1)) and k ∈ N we have: (1) Πi(1 − αi) ≥

1 −
∑

i αi, (2) 1 + kα < 1
1−kα < 1 + (k + 1)α and (3) 1 + kα < ekα < 1 + (k + 1)α.

The following facts will prove useful in our subsequent proofs and are therefore stated here.

▶ Fact 10. Given a metric G, if the optimal linear arrangement under the LA objective is
OPTLA(G) and the optimal hierarchical clustering under the HC objective is OPTHC(G)
then we have OPTLA(G) ≥ 1

3 n
∑

i,j wi,jyi,j and OPTHC(G) ≥ 2
3 n

∑
i,j wi,j |Ti,j |.

We note that the HC portion of Fact 10 has been used widely in the literature (e.g., see
proof in [12]). The LA portion of Fact 10 is mentioned in Hassin and Rubinstein [20]. Finally,
in the HC section we make use of “ladder” HC trees. We define them here.

▶ Definition 11. We define a “ladder” as an HC tree that cuts a single data point from the
rest at every cut (or internal node).

Y. Azar and D. Vainstein 13:7

4 The Linear Arrangement Objective

We will outline the section as follows. We begin by presenting our algorithms (first the
algorithm that handles case (a) and thereafter the general algorithm). We will then bound the
algorithm’s approximation guarantee (by following the bounding scheme of Observation 6).
Finally, we will analyze the algorithm’s running time.

4.1 Defining the Algorithms
Here we begin by applying our general algorithm to the linear arrangement problem (which
we will denote simply as ALG). The algorithm uses, as a subroutine, an algorithm to handle
case (a). We denote this subroutine as ALGd−w and define it following the definition of
ALG.

4.1.1 Defining ALG

Here we apply our general algorithm (Algorithm 1) to the linear arrangement setting. In
order to do so, roughly speaking, we define the layer to peel off A as the set of all points
which are “far” from the metric’s core. We also introduce a subroutine to handle densely
weighted instances, ALGd−w.

Algorithm 2 Linear Arrangement Algorithm (ALG).

if ρ ≥ ϵ6 then solve it using ALGd−w. ; // case (a)
else

Let C denote the metric’s core (as defined by Lemma 4).
Let A denote all data points that are of distance ≥ ϵ2DV from C.
Place A to the left of V \ A. Arrange A arbitrarily.
if WV \A < ϵWV then Arrange V \ A arbitrarily and return. ; // case (b)
else Continue recursively on V \ A. ; // case (c)

The set V \ {A ∪ C} will be used frequently in the upcoming proofs and thus we give it its
own notation.

▶ Definition 12. Denote B = V \ {A ∪ C} where A and C are defined as in Algorithm 2.

4.1.2 Defining ALGd−w

Here we will introduce an algorithm to handle case (a) type instances. Before formally
defining the algorithm, we will first provide some intuition. Towards that end we first
introduce the following definition.

▶ Definition 13. Consider OPT (Gk)’s embedding into the line, [n]. Partition [n] into 1
ϵ

consecutive sets each of size ϵn and let P ∗
i denote the points embedded by OPT (Gk) into the

i’th consecutive set. Furthermore, denote by P ∗ = {P ∗
i } the induced partition of the metric.

Later on, we will show that OPT (Gk)’s objective value is closely approximated by the
value generated solely from inter-partition-set edges (i.e., any (u, v) where u, v lie in different
partition sets of P ∗). While OPT (Gk) cannot be found algorithmically, assuming the above
holds, it is enough for ALGd−w to guess the partition P ∗. Indeed, that is exactly what we
will do, by using the general graph partitioning algorithm of Goldreich et al. [18].

ICALP 2023

13:8 Multi Layer Peeling for LA and HC

We denote the General Graph Partitioning algorithm of Goldreich et al. [18] as
PT (G, Φ, ϵerr). See Definition 21 for a definition of Φ and ϵerr (these will be defined
by ALGd−w as well) and see Theorem 22 for the tester’s guarantees. We are now ready to
define our algorithm that handles sufficiently densely weighted instances (Algorithm 3).

Algorithm 3 LA Algorithm for Sufficiently Densely Weighted Instances (ALGd−w).

Let k = 1
ϵ denote the size of the partition.

for {µj,j′}j≤k,j′≤k,j ̸=j′ ⊂ {iϵ9n2DV : i ∈ N ∧ i ≤ 1
ϵ7 } do

Let Φ = {ϵn, ϵn}k
j=1 ∪ {µj,j′ , µj,j′}k

j,j′=1.
Run PT (G, Φ, ϵerr = ϵ9). Let P denote the output partition (if succeeded).
Let ŷ denote the linear arrangement obtained from embedding P consecutively on
the line (and arbitrarily within the partition sets).

Compute the value
∑

e weŷe for P .
Return the partition with maximum

∑
e weŷe value.

4.2 Analyzing the Approximation Ratio of ALG

Now that we have defined ALG we are ready to analyze its approximation ratio. Recall that
by Observation 6 it is enough to analyze the approximation ratio of cases (a), (b) and the
total loss incurred by the recursion steps (i.e., by setting αi, βi and γi).

4.2.1 Structural Lemmas
Recall that we defined k to be the number of recursion steps used by ALG and that Gi is the
instance that ALG is applied to at recursion step i. Further recall that given Gi, ALG(Gi)
partitioned the instance into Ai, Bi and Ci and that, informally, by Lemma 4 nCi contains
the majority of the data points and DCi

is relatively small compared to DVi
.

By the definition of Ci, Ai could be considered as a set of outliers. Therefore, intuitively
it makes sense to split Ai from Ci. In order to prove our algorithm’s approximation ratio we
will show that in fact one does not lose too much compared to optimal solution, by splitting
Ai from Ci. In order to do so we will show that in fact, both the values of ALG and OPT

will be roughly equal to 1
2 nWAi,Ci

(which makes sense intuitively since Ci is of low diameter
and contains many points and Ai are the points that are far from this cluster).

The following lemmas consider 2 types of algorithms - algorithms that split Ai and Ci

and algorithms that do not. Furthermore, they show that in fact, by the structural properties
of Ai and Ci, if we consider the values generated by these 2 types of algorithms restricted
to the objective value generated by the inter-weights WAi,Ci , are approximately equal. We
begin by lower bounding the value generated by algorithms that split Ai and Ci. Due to
lack of space, we defer the following proofs to the full version.

▶ Lemma 14. Given the two disjoint sets Ci and Ai and a linear arrangement y that places
all nodes in Ai to the left of all nodes in Ci we are guaranteed that∑

c∈Ci,a∈Ai

wa,cya,c ≥ nCi

2 (WCi,Ai
− nCi

nAi
DCi

).

Due to the fact that Ci is a small cluster containing most of the data points the above
lemma reduces to the following corollary.

Y. Azar and D. Vainstein 13:9

▶ Corollary 15. Given any linear arrangement y that places all nodes in Ai to the left of all
nodes in Ci we are guaranteed that∑

a∈Ai,c∈Ci

wa,cya,c ≥ 1
2nWAi,Ci(1 −

5√
ρ

ϵ2)

Now that we have lower bounded algorithms that split Ai and Ci we will upper bound
algorithms that do not have this restriction. (Note that we begin by handling the case where
one of the disjoint sets is a single data point and thereafter generalize it to two disjoint sets).

▶ Lemma 16. Given a set Ci and a point p ̸∈ Ci, we are guaranteed that∑
c∈Ci

wp,cyp,c ≤ (Wp,Ci + nCiDCi)(n − nCi

2).

We are now ready to upper bound the inter-objective-value of two sets of disjoint points.

▶ Lemma 17. Given the two disjoint sets Ci and Ai and any linear arrangement y we are
guaranteed that∑

c∈Ci,a∈Ai

wa,cya,c ≤ (n − nCi

2)(WCi,Ai
+ nCi

nAi
DCi

).

Due to the fact that Ci is a small cluster containing most of the data points the lemma
reduces to the following corollary.

▶ Corollary 18. Given any linear arrangement y we are guaranteed that∑
a∈Ai,c∈Ci

wa,cya,c ≤ 1
2nWAi,Ci

(1 +
9√

ρ

ϵ2).

We will want to show that the objective values of both ALG and OPT (and some other
intermediate values that will be defined later on) are approximately determined by their
value on the inter-weights of WAi,Ci . In order to do so, we first introduce the following
structural lemma that will help us explain this behaviour.

▶ Lemma 19. Given an instance G and sets A, B and C as defined by ALG(G) we have
WA + WA,B ≤ 2

√
ρ

ϵ2 WA,C .

4.2.2 Analyzing the Approximation Ratio of Case (a) of ALG

We first give an overview the approximation ratio analysis. Recall the definition of P ∗

(Definition 13). The first step towards our proof, is to show that instead of trying to
approximate OPT (Gk), it will be enough to consider its value restricted to intra-partition-set
weights with respect to P ∗. Even more, for such weights wu,v, incident to P ∗

i and P ∗
i+j , it

will be enough to assume that their generated value towards the objective (i.e., the value
yu,v) is only (j − 1)ϵn (while it may be as large as (j + 1)ϵn). Formally, this will be done in
Lemma 20 (whose proof is deferred to the full version).

Next, recall that ALGd−w tries to guess the partition P ∗ (up to some additive error) and
let P denote the partition guessed by ALGd−w. Observe that if guessed correctly, the value
generated towards ALG’s objective for any intra-partition-set weight crossing between Pi

and Pi+j is at least |Pi+1| + · · · |Pi+j−1| and if we managed to guess the set sizes as well
then this value is exactly (j − 1)ϵn (equivalent to that of OPT ’s). This will be done in
Proposition 23.

ICALP 2023

13:10 Multi Layer Peeling for LA and HC

▶ Lemma 20. Given the balanced line partition of set sizes ϵn, denoted as P ∗, we have

OPT (Gk) ≤ (1 + 13ϵ)
∑

1≤i≤k−1
1≤j≤k−i

WP ∗
i

,P ∗
i+j

(|P ∗
i+1| + · · · + |P ∗

i+j−1|).

Before proving Proposition 23 we state the properties of the general graph partitioning
algorithm of Goldreich et al. [18].

▶ Definition 21 ([18]). Let Φ = {λLB
j , λUB

j }k
j=1 ∪ {µLB

j,j′ , µUB
j,j′ }k

j,j′=1 denote a set of non-
negative values such that λLB

j ≤ λUB
j and µLB

j,j′ ≤ µUB
j,j′ . We define GPΦ the set of graphs G

on n vertices that have a k partition (V1, . . . , Vk) upholding the following constraints

∀j : λLB
j ≤ |Vj |

n
≤ λUB

j ; ∀j, j′ : µLB
j,j′ ≤

WVj ,Vj′

n2 ≤ µUB
j,j′ .

▶ Theorem 22 ([18]). Given inputs G = (V, w) with |V | = n and w : V × V → [0, 1]
describing the graph and Φ describing bounds on the wanted partition, ϵerr, the algorithm
PT (G, Φ, ϵerr) has expected running time2 of

exp
(

log(1
ϵerr

) · (O(1)
ϵerr

)k+1)
+ O(

log k
ϵerr

ϵ2
err

) · n.

Furthermore, if G ∈ GPΦ as in Definition 21 then the algorithm outputs a partition satisfying
∀j : λLB

j − ϵerr ≤ |Vj |
n ≤ λUB

j + ϵerr,

∀j, j′ : µLB
j,j′ − ϵerr ≤

WVj ,V
j′

n2 ≤ µUB
j,j′ + ϵerr.

We are now ready to prove Proposition 23.

▶ Proposition 23. If ALG terminates in case (a) then ALGd−w(Gk)
OP T (Gk) = ALG(Gk)

OP T (Gk) ≥ 1 − 20ϵ.

Proof. Let P = {Pi} denote the partition returned by PT (Gk, Φ, ϵerr) and recall that its
number of sets is k = 1

ϵ and that ϵerr = ϵ9. We first observe that by Theorem 22 we are
guaranteed that the error in |Pi| compared to |P ∗

i | = ϵn is at most |Pi| ≥ ϵn − ϵerrn (due to
the fact that in Φ we requested sets of size exactly ϵn). Therefore

ALGd−w ≥
∑

1≤i≤k−1
1≤j≤k−i

WPi,Pi+j (|Pi+1| + · · · + |Pi+j−1|) ≥
∑

1≤i≤k−1
1≤j≤k−i

(j − 1)(ϵn − ϵerrn)WPi,Pi+j ,
(1)

where WPi,Pi+j
denotes the weight crossing between Pi and Pi+j . For ease of presentation

we will remove the subscript in the summation henceforth.
Consider the difference between the cut size of WPi,Pi+j

and WP ∗
i

,P ∗
i+j

. Their difference
originates from two errors: (1) the error that incurred by the PT algorithm (see The-
orem 22) and (2) the error ALGd−w incurred in order to guess the partition of OPT (Gk)
(see Algorithm 3). Therefore,

WPi,Pi+j ≥ WP ∗
i

,P ∗
i+j

− ϵerrn2DV − ϵ9n2DV = WP ∗
i

,P ∗
i+j

− 2ϵ9n2DV

where the last equality is since ϵerr = ϵ9. Combining this with inequality 1 yields

ALGd−w ≥ (ϵn − ϵerrn) ·
∑

(j − 1)WP ∗
i

,P ∗
i+j

− (ϵn − ϵerrn) · 2(ϵ9n2)DV

∑
(j − 1) ≥

(ϵn − ϵerrn) ·
∑

(j − 1)WP ∗
i

,P ∗
i+j

− 2n3ϵ7DV ,
(2)

2 We remark that the original algorithm contains a probability of error δ, that appears in the running
time. We disregard this error and bound the expected running time of the algorithm.

Y. Azar and D. Vainstein 13:11

where the last inequality follows since ϵerr > 0 and
∑

(j − 1) =
∑k

i=1
∑k

j=i+1(j − 1) ≤ k3 =
ϵ−3.

Due to the fact that we are in case (a) we have that W
n2DV

= ρ ≥ ϵ6. By Fact 10 we have
that OPT ≥ 1

3 nW and therefore 2n3ϵ7DV can be bounded by 2n3ϵ7DV ≤ 2ϵnW ≤ 6ϵOPT .
Thus we get 2n3ϵ7DV ≤ 6ϵOPT (Gk). Combining this with inequality 2 yields

ALGd−w ≥ (ϵn − ϵerrn) ·
∑

(j − 1)WP ∗
i

,P ∗
i+j

− 6ϵOPT (Gk). (3)

On the other hand, recall that P ∗ denotes the balanced partition where all sets are of
size ϵn. Therefore, by Lemma 20 we therefore get

OPT (Gk) ≤ (1 + 13ϵ)
∑

WP ∗
i

,P ∗
i+j

(|P ∗
i+1| + · · · + |P ∗

i+j−1|) =

(1 + 13ϵ)
∑

(j − 1)(ϵn)WP ∗
i

,P ∗
i+j

= ϵn(1 + 13ϵ) ·
∑

(j − 1)WP ∗
i

,P ∗
i+j

.
(4)

Combining inequalities 3 and 4 yields

ALGd−w ≥ ϵn − ϵerrn

ϵn(1 + 13ϵ)OPT (Gk) − 6ϵOPT (Gk) =

1 − ϵ8

1 + 13ϵ
OPT (Gk) − 6ϵOPT (Gk) ≥ (1 − 20ϵ)OPT (Gk),

thereby concluding the proof. ◀

4.2.3 Analyzing the Approximation Ratio of Case (b) of ALG

Using our structural lemmas we will analyze the approximation ratio of ALG applied to
Gk under the assumption that the algorithm terminated in case (b) (i.e., that ρ < ϵ6 and
WB∪C ≤ ϵWGk

). The full proof is deferred to the full version.

▶ Proposition 24. If ALG terminates in case (b) then ALG(Gk)
OP T (Gk) ≥ 1 − 33ϵ.

Sketch. The proof follows the following path. Due to the fact that most of the instance’s
density is centered at the metric’s core C, the majority of OPT (Gk)’s objective is derived from
weights incident to C. Since we are case (b), the weight of WB∪C is negligible and therefore
we will show that in fact OPT (Gk)’s objective is defined by OPT (Gk)|A,C . Thereafter, we
show that in fact the best strategy to optimize for weights in WA,C is to place A at one
extreme of the line and C at the other - which, fortunately, is what ALG(Gk) (approximately)
does - thereby approximating OPT (Gk). ◀

4.2.4 Setting the Values αi, βi and γi

Due to lack of space, the following proofs are deferred to the full version.

▶ Proposition 25. For Ai and Ci as defined by our algorithm applied to Gi and for αi =
1
2 nWA,C(1 − 5√

ρ

ϵ2), we have ALG(Gi) ≥ αi + ALG(Gi+1).

▶ Proposition 26. Let Gi = (Vi, wi) and Gi+1 = (Vi+1, wi+1) denote the instances defined by
the i and i+1 recursion steps. Furthermore let βi = 1

2 nVi
WAi,Ci

(1+ 13√
ρ

ϵ2) and γi = 1+4√
ρi.

Therefore, OPT (Gi) ≤ βi + γiOPT (Gi+1).

Thus, we have managed to set the values of αi, βi and γi as follows.

▶ Definition 27. We define the values αi, βi and γi as follows

αi = 1
2nWAi,Ci(1 −

5√
ρi

ϵ2); βi = 1
2nViWAi,Ci(1 +

13√
ρi

ϵ2); γi = 1 + 4√
ρi. (5)

ICALP 2023

13:12 Multi Layer Peeling for LA and HC

4.2.5 Putting it all Together
Now that we have analyzed the terminal cases of the algorithm (cases (a) and (b)) and that
we have set the values of αi, βi and γi we will to combine these results to prove ALG’s
approximation ratio (as in Observation 9). In order to so we must therefore bound the
values mini{ αi

βiΠi−1
j=0γj

} and ALG(Gk)
(Πk−1

i=0 γi)OP T (Gk) . However, before doing so we will first show that

Πi−1
j=0γj converges. Recall that γi = 1 + 4√

ρi. The following lemma shows that the instances’
densities (ρi) increase at a fast enough rate (exponentially) in order for Πi−1

j=0γj to converge.

▶ Lemma 28. For all i = 1, . . . , k − 1 we are guaranteed that ρi+1 ≥ 4ρi.

Proof. Let V denote the set of nodes of Gi. Recall the notations A, B and C defined by our
algorithm applied to V (in particular, the set of nodes of Gi+1 is exactly B ∪ C). Therefore,
if we denote by DB−C the largest distance between any point in B and its closest point in
C, then DB∪C ≤ 2DB−C + DC ≤ 2ϵ2DV + 4DV

√
ρi, where the first inequality follow from

the triangle inequality and the second follows due to the fact that B is defined as the set of
all points of distance at most ϵ2 from C. Therefore,

ρi+1 = WB∪C

n2
B∪C · DB∪C

≥ WV

n2
V · DV

(ϵ

2ϵ2 + 4√
ρi

) = ρi(
ϵ

2ϵ2 + 4√
ρi

), (6)

where the equalities follows by the definition of ρi and the inequality follows due to the fact
that WB∪C ≥ ϵWV (which follows due to the fact that we are in case (c)), nB∪C ≤ nV and
DB∪C ≤ (2ϵ2 + 4√

ρi)DV (as stated above). Since we are in case (c), we are guaranteed that
ρi ≤ ϵ6 and therefore

ϵ

2ϵ2 + 4√
ρi

≥ ϵ

2ϵ2 + 4ϵ3 ≥ 1
3ϵ

, (7)

since ϵ ≤ 10−2. Combining inequalities 6 and 7, and since ϵ < 10−2 yields ρi+1 ≥
ρi(ϵ

2ϵ2+4√
ρi

) ≥ ρi

3ϵ ≥ 4ρi, thereby concluding the proof. ◀

We are now ready to show that Πi−1
j=0γj converges.

▶ Lemma 29. For γi = 1 + 4√
ρi we have Πi−1

j=0γj ≤ 1 + 5√
ρi.

Proof. Observe that Πi−1
j=0(1 + 4√

ρj) ≤ e
4·

∑
j

√
ρj ≤ e4√

ρi ≤ 1 + 5√
ρi, where the first in-

equality follows from Observation 9, the second follows since √
ρj are exponentially increasing

(see full version) and the third inequality follows again by Observation 9 combined with the
fact that ρ < ϵ2 and ϵ < 10−2. ◀

Next we leverage the former lemma to bound mini{ αi

βiΠi−1
j=0γj

} and ALG(Gk)
(Πk−1

i=0 γi)OP T (Gk) .

▶ Proposition 30. For αi, βi and γi as in Definition 27, we have mini{ αi

βiΠi−1
j=0γj

} ≥ 1 − 23ϵ.

Proof. We first bound αi

βi
. By the definitions of αi and βi we have

αi

βi
=

1 − 5√
ρi

ϵ2

1 + 13√
ρi

ϵ2

≥ (1 −
5√

ρi

ϵ2)(1 −
13√

ρi

ϵ2) ≥ 1 −
18√

ρi

ϵ2 , (8)

where the first inequality follows from the definitions of αi and βi and the rest of the
inequalities follow since ϵ < 102 and ρ < ϵ6.

Y. Azar and D. Vainstein 13:13

By Lemma 29 we are guaranteed that Πi−1
j=0γj ≤ 1+5√

ρi. Combining this with inequality
8 yields

αi

βiΠi−1
j=0γj

≥
1 − 18√

ρi

ϵ2

1 + 5√
ρi

≥ (1 − 18
ϵ2

√
ρi)(1 − 5√

ρi) ≥ 1 − 23
ϵ2

√
ρi,

and since ρi only increases and ρk−1 ≤ ϵ6 we have mini{ αi

βiΠi−1
j=0γj

} ≥ 1 − 23
ϵ2

√
ρk−1 ≥ 1 − 23ϵ,

thereby concluding the proof. ◀

▶ Proposition 31. For γi = 1 + 4√
ρi we have ALG(Gk)

(Πk−1
i=0 γi)OP T (Gk) ≥ 1 − 34ϵ.

Proof. By Propositions 23 and 24 we are guaranteed that ALG(Gk)
OP T (Gk) ≥ 1 − 33ϵ. On the other

hand by by Lemma 29 we are guaranteed that Πk−2
i=0 γi ≤ 1 + 5√

ρk−1. Therefore, if k = 1
then ALG(Gk)

(Πk−1
i=0 γi)OP T (Gk) = ALG(Gk)

OP T (Gk) ≥ 1 − 33ϵ. Otherwise, we have

ALG(Gk)
(Πk−1

i=0 γi)OPT (Gk)
≥ 1 − 33ϵ

(1 + 4√
ρk−1)(1 + 5√

ρk−1) ≥ 1 − 33ϵ

(1 + 4ϵ3)(1 + 5ϵ3) ≥ 1 − 34ϵ,

where the second inequality follows since ρk−1 < ϵ6 (since we recursed to step k) and the
subsequent inequalities follow since ϵ < 10−3 - thereby concluding the proof. ◀

Finally, we combine Propositions 30 and 31 to bound ALG’s approximation ratio.

▶ Theorem 32. For any metric G, ALG(G)
OP T (G) ≥ 1 − 34ϵ.

4.3 Analyzing the Running Time of ALG

Consider the definition of ALG. We observe that in each recursion step, the algorithm finds
the layer to peel off, A, and then recurses. Therefore the running time is defined by the
sum of these recursion steps, plus the terminating cases (i.e., either case (a) or case (b)).
Recall that case (a) applies ALGd−w on the instance, while case (b) arranges the instance
arbitrarily. Therefore, a bound on cases (a) and (b) is simply a bound on the running time
of ALGd−w which is given by Lemma 33 (whose proof appears in the full version).

▶ Lemma 33. Given an instance G, the running time of ALGd−w(G) is at most (1
ϵ7)

1
ϵ2 ·O(n2).

▶ Remark 34. A bi-product of Lemma 28 is that the number of recursion steps is bounded by
O(log n). The proof follows similarly to the proof of Lemma 48 substituting the inequality
ρi+1 ≥ 4ϵ

√
ρi with ρi+1 ≥ 4√

ρi (which holds due to Lemma 28).
We are now ready to analyze the running time of ALG. (The proof is deferred to the full
version.)

▶ Theorem 35. The algorithm ALG is an EPRAS (with running time O(n2 log n) plus the
running time of ALGd−w).

▶ Remark 36. We remark that one may improve the running time by replacing ALGd−w

with any faster algorithm while slightly degrading the quality of the approximation.

5 The Hierarchical Clustering Objective

The section is outlined as follows. We begin by presenting our algorithms (first the algorithm
to handle case (a) and subsequently the general algorithm). Thereafter we will bound the
algorithm’s approximation guarantee (by following the bounding scheme of Observation 6).
Finally, we will analyze the algorithm’s running time.

ICALP 2023

13:14 Multi Layer Peeling for LA and HC

5.1 Defining the Algorithms

As in the linear arragement setting, we will begin by applying our general algorithm to the
linear arrangement problem (which we will denote simply as ALG). The algorithm uses, as
a subroutine, an algorithm to handle case (a). We denote this subroutine as ALGd−w and
define it following the definition of ALG.

5.1.1 Defining ALG

Here we apply our general algorithm (Algorithm 1) to the hierarchical clustering setting. In
order to do so, roughly speaking, we define the layer to peel off A as all points outside of the
metric’s core.

Algorithm 4 Hierarchical Clustering Algorithm (ALG).

if ρ ≥ ϵ2 then Solve the instance using ALGd−w. ; // case (a)
else

Let C denote the metric’s core (as defined by Lemma 4).
Let A = V \ C denote the rest of the points.
Arrange A as a (arbitrary) ladder and denote the tree by TA.
if WC < 16ϵ · WV then // case (b)

Arrange C arbitrarily and denote the resulting tree by TC .
Attach TC ’s root as a child of the bottom most internal node of TA and return.

else // case (c)
Continue recursively on C and denote the resulting tree by TC .
Attach TC ’s root as a child of the bottom most internal node of TA and return.

▶ Remark 37. Note that Algorithm 4 conforms to the general Algorithm 1 since C = V \ A.

5.1.2 Defining ALGd−w

We will use the algorithm of Vainstein et al. [31] as ALGd−w. As part of their algorithm
they make use of the general graph partitioning algorithm of Goldreich et al. [18] which is
denoted by PT (·). Since we will use PT (·) to devise our own algorithm for the LA objective
we refer the reader to Definition 21 and Theorem 22 for a more in-depth explanation of the
PT (·) algorithm. We restate ALGd−w in Algorithm 5 as defined in Vainstein et al. [31].

Algorithm 5 HC Algorithm for Sufficiently Densely Weighted Instances (ALGd−w).

Enumerate over all trees T with k = 1
ϵ internal nodes.

for each such T do
for {λi}i≤k ⊂ {iϵ2n : i ∈ N ∧ i ≤ 3

ϵ } do
for {µj,j′}j≤k,j′≤k,j ̸=j′ ⊂ {iϵ3n2DV : i ∈ N ∧ i ≤ 9

ϵ } do
Let Φ = {λi, λi}k

i=1 ∪ {µj,j′ , µj,j′}k
j,j′=1.

Run PT (G, Φ, ϵerr = ϵ3). Let P denote the output partition (if succeeded).
Compute the HC objective value based on T and P .

Return the partition P and tree T with maximal HC objective value.

Y. Azar and D. Vainstein 13:15

5.2 Analyzing the Approximation Ratio of ALG

Now that we have defined ALG we are ready to analyze its approximation ratio. Recall that
by Observation 6 it is enough to analyze the approximation ratio of cases (a), (b) and the
total approximation loss generated by the recursion steps (i.e., by finding αi, βi and γi).

5.2.1 Analyzing the Approximation Ratio of Case (a) of ALG

In order to analyse the approximation ratio of ALGd−w in our setting we must first recall
the definition of instances with not-all-small-weights (as defined by Vainstein et al. [31]).

▶ Definition 38. A metric G is said to have not all small weights if there exist constants
(with respect to nV) c0, c1 < 1 such that the fraction of weights smaller than c0 · DV is at
most 1 − c1.

The following theorem was presented in Vainstein et al. [31].

▶ Theorem 39. For any constant ξ > 0 and any metric G = (V, w) with not all small
weights (with constants c0 and c1) we are guaranteed that ALGd−w(G)

OP T (G) ≥ 1 − O(ξ
c0·c1

) and that
ALGd−w’s expected running time is at most f(1

ξ) · n2.

Applying the above theorem with ξ = ϵ5 to our metric instance Gk yields Proposition 40
(whose proof is deferred to the full version).

▶ Proposition 40. If ALG terminates in case (a) then ALGd−w(Gk)
OP T (Gk) = ALG(Gk)

OP T (Gk) ≥ 1 − ϵ.

5.2.2 Analyzing the Approximation Ratio of Case (b) of ALG

▶ Proposition 41. If ALG terminates in case (b) then ALG(Gk)
OP T (Gk) ≥ 1 − 17ϵ.

Proof. The proof appears in the full version. ◀

5.2.3 Setting the Values αi, βi and γi

Due to lack of space, we defer the following proofs to the full version.

▶ Lemma 42. For Ai and Ci as defined by our algorithm applied to Gi and for αi =
nVi

(WAi
+ WAi,Ci

)(1 − √
ρi) we have ALG(Gi) ≥ αi + ALG(Gi+1).

▶ Lemma 43. Let Gi = (Vi, wi) and Gi+1 = (Vi+1, wi+1) denote the instances defined by
the i and i + 1 recursion steps. Furthermore, let βi = nVi

(WAi
+ WAi,Ci

) and γi = 1 + 2√
ρi.

Therefore, OPT (Gi) ≤ βi + γiOPT (Gi+1).

Thus, we combine these values in Definition 44.

▶ Definition 44. We define the values αi, βi and γi as follows

αi = nVi
(WAi

+ WAi,Ci
)(1 − √

ρi); βi = nVi
(WAi

+ WAi,Ci
); γi = 1 + 2√

ρi.

5.2.4 Putting it all Together
Now that we have analyzed the terminal cases of the algorithm (cases (a) and (b)) and
that we have set the values of αi, βi and γi we will combine these results to prove ALG’s
approximation ratio (as in Observation 6). Due to lack of space we defer the proofs of this
section to the full version.

ICALP 2023

13:16 Multi Layer Peeling for LA and HC

▶ Proposition 45. For αi, βi and γi as in Definition 44, we have mini{ αi

βiΠi−1
j=0γj

} ≥ 1 − 4ϵ.

▶ Proposition 46. For γi = 1 + 2√
ρi we have ALG(Gk)

(Πk−1
i=0 γi)OP T (Gk) ≥ 1 − 23ϵ.

▶ Theorem 47. For any metric G, ALG(G)
OP T (G) ≥ 1 − 23ϵ.

5.3 Analyzing the Running Time of ALG

Consider the definition of ALG. In each recursion step, the algorithm finds the layer to peel
off and then recurses. Therefore the running time is defined by the sum of these recursion
steps, plus the terminating cases (i.e., either case (a) or case (b)). Recall that case (a) applies
ALGd−w on the instance, while case (b) arranges the instance arbitrarily. Therefore, a bound
on cases (a) and (b) is simply a bound on the running time of ALGd−w which is given by
Theorem 39 [31]. In Lemma 48 we bound the number of recursion steps and subsequently
prove Theorem 49 (the proofs of which appears in the full version).

▶ Lemma 48. The number of recursion steps performed by Algorithm 4 is bounded by
O(log log n).

▶ Theorem 49. The algorithm ALG is an EPRAS (with running time O(n2 log log n) plus
the running time of ALGd−w).

▶ Remark 50. We remark that one may improve the running time by replacing ALGd−w

with any faster algorithm while slightly degrading the quality of the approximation.

References
1 Sara Ahmadian, Vaggos Chatziafratis, Alessandro Epasto, Euiwoong Lee, Mohammad Mahdian,

Konstantin Makarychev, and Grigory Yaroslavtsev. Bisect and conquer: Hierarchical clustering
via max-uncut bisection. CoRR, abs/1912.06983, 2019. arXiv:1912.06983.

2 Noga Alon, Yossi Azar, and Danny Vainstein. Hierarchical clustering: A 0.585 revenue
approximation. In Jacob D. Abernethy and Shivani Agarwal, editors, Conference on Learning
Theory, COLT 2020, 9-12 July 2020, Virtual Event [Graz, Austria], volume 125 of Proceedings
of Machine Learning Research, pages 153–162. PMLR, 2020. URL: http://proceedings.mlr.
press/v125/alon20b.html.

3 Sanjeev Arora, David R. Karger, and Marek Karpinski. Polynomial time approximation
schemes for dense instances of np-hard problems. J. Comput. Syst. Sci., 58(1):193–210, 1999.
doi:10.1006/jcss.1998.1605.

4 Sanjeev Arora, Satish Rao, and Umesh V. Vazirani. Expander flows, geometric embeddings and
graph partitioning. In László Babai, editor, Proceedings of the 36th Annual ACM Symposium
on Theory of Computing, Chicago, IL, USA, June 13-16, 2004, pages 222–231. ACM, 2004.
doi:10.1145/1007352.1007355.

5 Kevin Aydin, MohammadHossein Bateni, and Vahab S. Mirrokni. Distributed balanced
partitioning via linear embedding. Algorithms, 12(8):162, 2019. doi:10.3390/a12080162.

6 MohammadHossein Bateni, Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi
Hajiaghayi, Raimondas Kiveris, Silvio Lattanzi, and Vahab S. Mirrokni. Affinity clus-
tering: Hierarchical clustering at scale. In Isabelle Guyon, Ulrike von Luxburg, Samy
Bengio, Hanna M. Wallach, Rob Fergus, S. V. N. Vishwanathan, and Roman Gar-
nett, editors, Advances in Neural Information Processing Systems 30: Annual Conference
on Neural Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA,
USA, pages 6864–6874, 2017. URL: https://proceedings.neurips.cc/paper/2017/hash/
2e1b24a664f5e9c18f407b2f9c73e821-Abstract.html.

https://arxiv.org/abs/1912.06983
http://proceedings.mlr.press/v125/alon20b.html
http://proceedings.mlr.press/v125/alon20b.html
https://doi.org/10.1006/jcss.1998.1605
https://doi.org/10.1145/1007352.1007355
https://doi.org/10.3390/a12080162
https://proceedings.neurips.cc/paper/2017/hash/2e1b24a664f5e9c18f407b2f9c73e821-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/2e1b24a664f5e9c18f407b2f9c73e821-Abstract.html

Y. Azar and D. Vainstein 13:17

7 Moses Charikar and Vaggos Chatziafratis. Approximate hierarchical clustering via sparsest cut
and spreading metrics. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19,
pages 841–854, 2017.

8 Moses Charikar, Vaggos Chatziafratis, and Rad Niazadeh. Hierarchical clustering better than
average-linkage. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages 2291–2304,
2019.

9 Moses Charikar, Vaggos Chatziafratis, Rad Niazadeh, and Grigory Yaroslavtsev. Hierarchical
clustering for euclidean data. In The 22nd International Conference on Artificial Intelligence
and Statistics, AISTATS 2019, 16-18 April 2019, Naha, Okinawa, Japan, pages 2721–2730,
2019. URL: http://proceedings.mlr.press/v89/charikar19a.html.

10 Moses Charikar, Mohammad Taghi Hajiaghayi, Howard J. Karloff, and Satish Rao. l22
spreading metrics for vertex ordering problems. In Proceedings of the Seventeenth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2006, Miami, Florida, USA, January
22-26, 2006, pages 1018–1027. ACM Press, 2006. URL: http://dl.acm.org/citation.cfm?
id=1109557.1109670.

11 Gui Citovsky, Giulia DeSalvo, Claudio Gentile, Lazaros Karydas, Anand Rajagopalan, Afshin
Rostamizadeh, and Sanjiv Kumar. Batch active learning at scale. CoRR, abs/2107.14263,
2021. arXiv:2107.14263.

12 Vincent Cohen-Addad, Varun Kanade, Frederik Mallmann-Trenn, and Claire Mathieu. Hier-
archical clustering: Objective functions and algorithms. In Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA,
January 7-10, 2018, pages 378–397, 2018.

13 Sanjoy Dasgupta. A cost function for similarity-based hierarchical clustering. In Proceedings of
the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge,
MA, USA, June 18-21, 2016, pages 118–127, 2016.

14 Wenceslas Fernandez de la Vega and Marek Karpinski. Polynomial time approxima-
tion of dense weighted instances of MAX-CUT. Electron. Colloquium Comput. Complex.,
64, 1998. URL: https://eccc.weizmann.ac.il/eccc-reports/1998/TR98-064/index.html,
arXiv:TR98-064.

15 Wenceslas Fernandez de la Vega and Claire Kenyon. A randomized approximation scheme for
metric MAX-CUT. In 39th Annual Symposium on Foundations of Computer Science, FOCS
’98, November 8-11, 1998, Palo Alto, California, USA, pages 468–471. IEEE Computer Society,
1998. doi:10.1109/SFCS.1998.743497.

16 Guy Even, Joseph Naor, Satish Rao, and Baruch Schieber. Divide-and-conquer approximation
algorithms via spreading metrics (extended abstract). In 36th Annual Symposium on Founda-
tions of Computer Science, Milwaukee, Wisconsin, USA, 23-25 October 1995, pages 62–71.
IEEE Computer Society, 1995. doi:10.1109/SFCS.1995.492463.

17 Uriel Feige and James R. Lee. An improved approximation ratio for the minimum linear
arrangement problem. Inf. Process. Lett., 101(1):26–29, 2007. doi:10.1016/j.ipl.2006.07.
009.

18 Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. J. ACM, 45(4):653–750, 1998.

19 Mark D. Hansen. Approximation algorithms for geometric embeddings in the plane with
applications to parallel processing problems (extended abstract). In 30th Annual Symposium
on Foundations of Computer Science, Research Triangle Park, North Carolina, USA, 30
October - 1 November 1989, pages 604–609. IEEE Computer Society, 1989. doi:10.1109/
SFCS.1989.63542.

20 Refael Hassin and Shlomi Rubinstein. Approximation algorithms for maximum linear arrange-
ment. Inf. Process. Lett., 80(4):171–177, 2001. doi:10.1016/S0020-0190(01)00159-4.

ICALP 2023

http://proceedings.mlr.press/v89/charikar19a.html
http://dl.acm.org/citation.cfm?id=1109557.1109670
http://dl.acm.org/citation.cfm?id=1109557.1109670
https://arxiv.org/abs/2107.14263
https://eccc.weizmann.ac.il/eccc-reports/1998/TR98-064/index.html
https://arxiv.org/abs/TR98-064
https://doi.org/10.1109/SFCS.1998.743497
https://doi.org/10.1109/SFCS.1995.492463
https://doi.org/10.1016/j.ipl.2006.07.009
https://doi.org/10.1016/j.ipl.2006.07.009
https://doi.org/10.1109/SFCS.1989.63542
https://doi.org/10.1109/SFCS.1989.63542
https://doi.org/10.1016/S0020-0190(01)00159-4

13:18 Multi Layer Peeling for LA and HC

21 Marek Karpinski and Warren Schudy. Linear time approximation schemes for the gale-
berlekamp game and related minimization problems. In Michael Mitzenmacher, editor,
Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009,
Bethesda, MD, USA, May 31 - June 2, 2009, pages 313–322. ACM, 2009. doi:10.1145/
1536414.1536458.

22 Claire Kenyon-Mathieu and Warren Schudy. How to rank with few errors. In David S.
Johnson and Uriel Feige, editors, Proceedings of the 39th Annual ACM Symposium on Theory
of Computing, San Diego, California, USA, June 11-13, 2007, pages 95–103. ACM, 2007.
doi:10.1145/1250790.1250806.

23 Frank Thomson Leighton and Satish Rao. Multicommodity max-flow min-cut theorems
and their use in designing approximation algorithms. J. ACM, 46(6):787–832, 1999. doi:
10.1145/331524.331526.

24 Benjamin Moseley and Joshua Wang. Approximation bounds for hierarchical clustering:
Average linkage, bisecting k-means, and local search. In Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems 2017,
4-9 December 2017, Long Beach, CA, USA, pages 3094–3103, 2017.

25 Stanislav Naumov, Grigory Yaroslavtsev, and Dmitrii Avdiukhin. Objective-based hierarch-
ical clustering of deep embedding vectors. In Thirty-Fifth AAAI Conference on Artificial
Intelligence, AAAI 2021, Thirty-Third Conference on Innovative Applications of Artificial
Intelligence, IAAI 2021, The Eleventh Symposium on Educational Advances in Artificial
Intelligence, EAAI 2021, Virtual Event, February 2-9, 2021, pages 9055–9063. AAAI Press,
2021. URL: https://ojs.aaai.org/index.php/AAAI/article/view/17094.

26 Anand Rajagopalan, Fabio Vitale, Danny Vainstein, Gui Citovsky, Cecilia M. Procopiuc, and
Claudio Gentile. Hierarchical clustering of data streams: Scalable algorithms and approximation
guarantees. In Marina Meila and Tong Zhang, editors, Proceedings of the 38th International
Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event, volume
139 of Proceedings of Machine Learning Research, pages 8799–8809. PMLR, 2021. URL:
http://proceedings.mlr.press/v139/rajagopalan21a.html.

27 Satish Rao and Andréa W. Richa. New approximation techniques for some ordering problems.
In Howard J. Karloff, editor, Proceedings of the Ninth Annual ACM-SIAM Symposium on
Discrete Algorithms, 25-27 January 1998, San Francisco, California, USA, pages 211–218.
ACM/SIAM, 1998. URL: http://dl.acm.org/citation.cfm?id=314613.314703.

28 R. Ravi, Ajit Agrawal, and Philip N. Klein. Ordering problems approximated: Single-processor
scheduling and interval graph completion. In Javier Leach Albert, Burkhard Monien, and
Mario Rodríguez-Artalejo, editors, Automata, Languages and Programming, 18th International
Colloquium, ICALP91, Madrid, Spain, July 8-12, 1991, Proceedings, volume 510 of Lecture
Notes in Computer Science, pages 751–762. Springer, 1991. doi:10.1007/3-540-54233-7_180.

29 Paul D. Seymour. Packing directed circuits fractionally. Comb., 15(2):281–288, 1995. doi:
10.1007/BF01200760.

30 Baris Sumengen, Anand Rajagopalan, Gui Citovsky, David Simcha, Olivier Bachem, Pradipta
Mitra, Sam Blasiak, Mason Liang, and Sanjiv Kumar. Scaling hierarchical agglomerative
clustering to billion-sized datasets. CoRR, abs/2105.11653, 2021. arXiv:2105.11653.

31 Danny Vainstein, Vaggos Chatziafratis, Gui Citovsky, Anand Rajagopalan, Mohammad
Mahdian, and Yossi Azar. Hierarchical clustering via sketches and hierarchical correlation
clustering. In Arindam Banerjee and Kenji Fukumizu, editors, The 24th International Con-
ference on Artificial Intelligence and Statistics, AISTATS 2021, April 13-15, 2021, Virtual
Event, volume 130 of Proceedings of Machine Learning Research, pages 559–567. PMLR, 2021.
URL: http://proceedings.mlr.press/v130/vainstein21a.html.

https://doi.org/10.1145/1536414.1536458
https://doi.org/10.1145/1536414.1536458
https://doi.org/10.1145/1250790.1250806
https://doi.org/10.1145/331524.331526
https://doi.org/10.1145/331524.331526
https://ojs.aaai.org/index.php/AAAI/article/view/17094
http://proceedings.mlr.press/v139/rajagopalan21a.html
http://dl.acm.org/citation.cfm?id=314613.314703
https://doi.org/10.1007/3-540-54233-7_180
https://doi.org/10.1007/BF01200760
https://doi.org/10.1007/BF01200760
https://arxiv.org/abs/2105.11653
http://proceedings.mlr.press/v130/vainstein21a.html

Robust Communication Complexity of Matching:
EDCS Achieves 5/6 Approximation
Amir Azarmehr
Northeastern University, Boston, MA, USA

Soheil Behnezhad
Northeastern University, Boston, MA, USA

Abstract
We study the robust communication complexity of maximum matching. Edges of an arbitrary
n-vertex graph G are randomly partitioned between Alice and Bob independently and uniformly.
Alice has to send a single message to Bob such that Bob can find an (approximate) maximum
matching of the whole graph G. We specifically study the best approximation ratio achievable via
protocols where Alice communicates only Õ(n) bits to Bob.

There has been a growing interest on the robust communication model due to its connections to
the random-order streaming model. An algorithm of Assadi and Behnezhad [ICALP’21] implies
a (2/3 + ε0 ∼ .667)-approximation for a small constant 0 < ε0 < 10−18, which remains the best-
known approximation for general graphs. For bipartite graphs, Assadi and Behnezhad [Random’21]
improved the approximation to .716 albeit with a computationally inefficient (i.e., exponential time)
protocol.

In this paper, we study a natural and efficient protocol implied by a random-order streaming
algorithm of Bernstein [ICALP’20] which is based on edge-degree constrained subgraphs (EDCS)
[Bernstein and Stein; ICALP’15]. The result of Bernstein immediately implies that this protocol
achieves an (almost) (2/3 ∼ .666)-approximation in the robust communication model. We present a
new analysis, proving that it achieves a much better (almost) (5/6 ∼ .833)-approximation. This
significantly improves previous approximations both for general and bipartite graphs. We also prove
that our analysis of Bernstein’s protocol is tight.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Random order and robust communication complexity

Keywords and phrases Maximum Matching, Robust Communication Complexity, Edge Degree
Constrained Subgraph

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.14

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2305.01070 [4]

Acknowledgements The second author thanks David Wajc for enlightening discussions about going
beyond 2/3-approximations via EDCS.

1 Introduction

Given an n-vertex graph G = (V, E), a matching is a collection of vertex disjoint edges in G

and a maximum matching is the matching with the maximum size. In this paper, we study
matchings in Yao’s (one-way) communication model [14]. The edge-set E is partitioned
between two players Alice and Bob. Alice has to send a single message to Bob such that Bob
can find an (approximate) maximum matching of the whole graph G. We are particularly
interested in the trade-off between the size of the message sent by Alice and the approximation
ratio of the output solution. Besides being a natural problem, this communication model is
closely related to streaming algorithms and has thus been studied extensively over the years
[11, 13, 9, 1, 2].

EA
T
C
S

© Amir Azarmehr and Soheil Behnezhad;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 14; pp. 14:1–14:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ICALP.2023.14
https://arxiv.org/abs/2305.01070
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

14:2 Robust Communication Complexity of Matching

In order to obtain an exact maximum matching, it is known that Ω(n2) bits of commu-
nication are needed [10]. That is, the trivial protocol where Alice sends her whole input
to Bob is optimal. The situation is more interesting for approximate solutions. It is clear
that Ω(n) words of communication are needed for any approximation as the whole matching
can be given to Alice. A natural question, therefore, studied in numerous prior works
[11, 12, 13, 1, 2], is the best approximation achievable via protocols that have a near-optimal
communication complexity of Õ(n) = O(n poly log).

It is not hard to see that if Alice sends a maximum matching of her input to Bob, then
Bob can find a 1/2-approximate matching. There is, however, a more sophisticated approach
based on the powerful edge-degree constrained subgraph (EDCS) of Bernstein and Stein [7]
that achieves an (almost) 2/3-approximation (see the paper of Assadi and Bernstein [3]).
This turns out to be the right approximation under an adversarial partitioning of edges. In
their seminal paper, Goel, Kapralov, and Khanna [11] proved that obtaining a better than
2/3-approximation requires n1+1/(log log n) ≫ n poly log n communication.

The communication model discussed above is doubly worst-case in that both the input
graph and the edge partitioning are chosen by an adversary. In this paper, we study the so
called robust communication model – à la Chakrabarti, Cormode, and McGregor [9] – where
the graph G is still chosen by an adversary but its edges are now randomly partitioned between
Alice and Bob (i.e., each edge is uniformly given either to Alice or Bob independently).
This model goes beyond the doubly worst-case scenario discussed above and sheds light on
whether the hardness of a problem is inherent to the input graph or rather a pathological
partitioning of its edges. Another motivation behind the study of the robust communication
model is its connections to random-order streams. In particular, almost all known lower
bounds for random-order streams are proved in this robust communication model.

While existing protocols for adversarial partitionings already imply an (almost) 2/3-
approximation in the robust communication model, a random-order streaming algorithm of
Assadi and Behnezhad [1] implies a better bound. Their algorithm starts with an EDCS-based
algorithm of Bernstein [6], and then augments it with a number of short augmenting paths,
achieving a (2/3 + ε0)-approximation for some fixed constant 0 < ε0 < 10−18. This remains
the best-known approximation in general graphs. For bipartite graphs, an entirely different
approach of Assadi and Behnezhad [2] achieves a larger .716-approximtaion although their
protocol runs in doubly exponential time.

In this paper, we give a new analysis for the EDCS-based protocol of Bernstein [6] showing
that, without any augmentation, it already achieves a much better than 2/3-approximation.

▶ Theorem 1.1. Bernstein’s protocol [6] with high probability achieves a (1 − ε)5/6 ∼ .833
approximation in the robust communication model using O(n · log n · poly(1/ε)) words of
communication.

Theorem 1.1 improves, rather significantly, the state-of-the-art approximation for both
general and bipartite graphs from .667 [1] and .716 [2] respectively to .833. We note that
Bernstein’s protocol runs in linear time in the input size; hence Theorem 1.1, in addition
to improving approximation, also improves the running time of the algorithm of [2] from
doubly exponential to linear. Besides these quantitative improvements, we believe that a
more important qualitative implication of Theorem 1.1 is that EDCS, which has been used in
the literature to only obtain 2/3 or slightly-larger-than-2/3 approximations in various models,
can be used to obtain a significantly better approximation in the robust communication
model.

A. Azarmehr and S. Behnezhad 14:3

Our analysis can be applied to the more general multi-party one-way robust communication
model where instead of two players Alice and Bob, the input is randomly partitioned between
k players (see Section 3 for the formal definition of the model). This communication model
is particularly of interest since any lower bound in it, for any choice of k, also implies a lower
bound for random-order streams. We show the following, which generalizes Theorem 1.1:

▶ Theorem 1.2. For any k ≥ 2 and any ε > 0, Bernstein’s protocol [6] in the k-party
one-way robust communication model achieves a (1−ε)(2

3 + 1
3k)-approximation of maximum

matching using messages of length O(n · log n · poly(1/ε)).

We note that the current best approximation known in the random-order streaming setting
for maximum matching is (2/3 + 10−18) by Assadi and Behnezhad [1]. Theorem 1.2 implies
that either there is a better random-order streaming algorithm for maximum matching (which
likely is the case), or else to prove a tight lower bound via the multi-party communication
model, one has to consider at least k ≥ 1018/3 parties!

Finally, we show that our guarantees of Theorems 1.1 and 1.2 are tight for Bernstein’s
protocol. That is, we show that:

▶ Theorem 1.3. For any k ≥ 2, there exist an infinite family of graphs G such that
the expected approximation ratio of Bernstein’s protocol in the k-party one-way robust
communication model is at most (2

3 + 1
3k).

2 Technical Overview

Bernstein’s protocol constructs two subgraphs H and U of size O(n log n) both of which
will be communicated to Bob. Subgraph H is constructed solely by Alice who does so by
revealing only ε fraction of her input graph. The construction guarantees that for some
sufficiently large constant β ≥ 1, every edge (u, v) ∈ H satisfies degH(u) + degH(v) ≤ β.
That is, H has edge-degree upper bounded by β. This already implies that H has at most
O(nβ) = O(n) edges. The subgraph U is simply the set of all the remaining edges (u, v) in
the graph G (given either to Alice or Bob) for which degH(u) + degH(v) ≤ β − 1. In other
words, all the remaining “underfull” edges whose edge-degree is less than β are added to
U . While it is not at all clear that H can be constructed in such a way that guarantees
|U | = O(n log n), Bernstein [6] showed this is indeed possible. At the end, Bob returns a
maximum matching of all the edges that he receives.

The subgraph H ∪U can be shown to include an edge-degree constrained subgraph (EDCS)
of G, which is known to include a (2/3 − O(ε))-approximate maximum matching of the base
graph G for β ≥ 1/ε [7, 5]. This already implies an (almost) 2/3-approximation in our model.
This guarantee is in fact tight for the maximum matching contained in H ∪ U as illustrated
in Figure 1. In the example of Figure 1, the missed (red dashed) edges have edge-degree β

in H, and so they do not belong to U . While the graph in the example of Figure 1 has a
perfect matching, any matching in H ∪ U can only match 2/3-fraction of vertices.

The crucial insight is that although H ∪ U may only include a 2/3-approximate matching
of the graph, Bob in addition will also have access to the set EB of the edges originally
given to him in the random partitioning. So instead of H ∪ U , we need to focus on the
size of the maximum matching contained in H ∪ U ∪ EB. Let us now revisit the example
of Figure 1. As we discussed, the set H is only constructed using a small ε fraction of the
edges. Moreover, conditioned on H, the subgraph U will also be fully determined regardless

ICALP 2023

14:4 Robust Communication Complexity of Matching

A1 A2 A3

U
H
missed

B1 B2 B3

Figure 1 An example where subgraph H ∪ U in Bernstein’s protocol does not include a better
than 2/3-approximation.

of how the edges are partitioned between Alice and Bob. This implies that, even conditioned
on the outcome of H and U , each dashed edge is given to Bob with probability (almost)
1/2. This results in an (almost) 5/6-approximation in the example of Figure 1: We can
combine the 2/3-approximate black matching in U with half of the dashed edges, obtaining
an (almost) 2

3 + 1
2 · 1

3 = 5
6 approximation. We remark that this example already shows

that our 5/6-approximation guarantee of Theorem 1.1 is tight for Bernstein’s protocol (see
Theorem 1.3 for the formal proof).

The nice property of the example of Figure 1 is that subgraph H ∪ U includes a 2/3-
approximate matching M (the black matching in U) where removing its vertices from the
graph still leaves a 1/3-approximate matching in G (the dashed red edges). If we prove that
this holds for every graph, then we immediately get an (almost) 5/6-approximation analysis
for Bernstein’s protocol. Unfortunately, however, this property does not hold for all graphs.
In Section 6, we provide examples of H, U such that for every matching M in H ∪ U , it holds
that

|M | + 1
2µ(G − V (M)) ≤ 0.75µ(G),

where µ(G − V (M)) here is the size of maximum matching remained in graph G after
removing vertices of M . This implies that this idea is not sufficient to guarantee an (almost)
5/6-approximation for Bernstein’s protocol.

In our analysis, instead of first committing to a 2/3-approximate matching in H ∪ U and
then augmenting it using the edges in EB, we first commit to a smaller 1/2-approximate
matching by fixing an arbitrary maximum matching M∗ and taking half of its edges that
are given to Bob. The advantage of this smaller 1/2-approximate matching is that it can
be augmented much better. Specifically, we show that this 1/2-approximate matching, in
expectation, can be augmented by a matching of size (almost) µ(G)/3 using the edges in
H ∪ U , achieving overall a matching of size (almost) 1

2 µ(G) + 1
3 µ(G) = 5

6 µ(G). The proof of
why a matching of size µ(G)/3 can be found within the available vertices is the crux of our
analysis and is formalized via fractional matchings.

3 Preliminaries

We start by formally defining the robust communication model for maximum matching.

▶ Definition 3.1. In the k-party one-way robust communication model, each edge is assigned
independently and uniformly to one of the parties. The i-th party, supplied with the assigned
edges and a message mi from the (i−1)-th party, decides what message to send to the (i+1)-th

A. Azarmehr and S. Behnezhad 14:5

party. The k-th and last party is responsible for reporting a matching. The communication
complexity of a protocol in this model, is defined as the maximum number of words in the
messages communicated between the parties, i.e. maxi |mi|, where |mi| denotes the number
of words in mi.

In case k = 2, we refer to the first party as Alice and to the second party as Bob.

We use µ(G) to denote the size of the maximum matching in graph G. For an edge e, we
define its edge-degree as the sum of the degrees of its endpoints.

3.1 Background on Matching Theory
▶ Proposition 3.2 (folklore). Let G be any graph, and let x be a fractional matching on G,
such that for every vertex set S ⊆ V that |S| is smaller than 1

ε , we have

∑
e∈G[S]

xe ≤
⌊

|S|
2

⌋
.

Then, it holds that µ(G) ≥ (1 − ε)
∑

e xe.

Proof sketch. Let z be another fractional matching where ze = (1−ε)xe. If the x satisfies the
blossom inequality, i.e.

∑
e∈G[S] xe ≤

⌊
|S|
2

⌋
, for all S of size at most 1

ε , Then z satisfies it for

all S. To see this, let S be an odd-sized vertex set size at least 1
ε such that

∑
e∈G[S] xe ≥

⌊
|S|
2

⌋
.

Then it holds:∑
e∈G[S]

ze = (1 − ε)
∑

e∈G[S]

xe ≤
∑

e∈G[S]

xe − 1
2 ≤ |S|

2 − 1
2 ≤

⌊
|S|
2

⌋
.

Hence there exists an integral matching of size at least
∑

e ze = (1 − ε)
∑

e xe. ◀

The following definitions were introduced by Bernstein [6]. The proposition, from the
same paper, plays a key role in our analysis.

▶ Definition 3.3. A graph H has bounded edge-degree β, if for all edges (u, v) ∈ EH it holds
that dH(u) + dH(v) ≤ β.

▶ Definition 3.4. Given a graph G, and a subgraph H ⊆ G an edge (u, v) ∈ EG \ EH is
(H, β, λ)-underfull if dH(u) + dH(v) < (1 − λ)β.

▶ Proposition 3.5 (Lemma 3.1 from [6]). Fix any ε ∈
[
0, 1

2
]
, let λ, β be parameters such

that λ ≤ ε
384 , β ≥ 50λ−2 log

(1
λ

)
. Consider any graph G, and any subgraph H with bounded

edge-degree β. Let U contain all the (H, β, 3λ)-underfull edges in G \ H. Then µ(H ∪ U) ≥(2
3 − ε

)
µ(G).

3.2 Concentration Inequalities
We use the following concentration inequalities in our proofs.

▶ Proposition 3.6 (Chernoff bound). Let X1, . . . , Xn be independent random variables taking
values in [0, 1]. Let X =

∑
Xi and let µ = E [X]. Then, for any 0 < δ ≤ 1 and 0 < a ≤ µ,

we have

Pr (X ≥ (1 + δ)µ) ≤ exp
(

−δ2µ

3

)
and Pr (X ≥ µ + a) ≤ exp

(
− a2

3µ

)
.

ICALP 2023

14:6 Robust Communication Complexity of Matching

▶ Definition 3.7 ([8]). A function f : {0, 1}n → N is self-bounding if there exist functions
f1, . . . , fn : {0, 1}n−1 → N such that for all x ∈ {0, 1}n satisfy

0 ≤ f(x) − fi(x(i)) ≤ 1 ∀i ∈ [n],

and
n∑

i=1

(
f(x) − fi(x(i))

)
≤ f(x).

Where x(i) is obtained by dropping the i-th component of x.

▶ Proposition 3.8 ([8]). Take a self-bounding function f : {0, 1}n → N, and independent
0 − 1 variables X1, . . . , Xn. Define Z = f(X1, . . . , Xn). Then, it holds that

Pr (Z ≤ EZ − t) ≤ exp
(

−t2

2EZ

)
.

4 A New Analysis of Bernstein’s Protocol

This section is devoted to the proof of Theorems 1.1 and 1.2. We will provide an analysis of
Bernstein’s protocol (Protocol 1) in the two-party model. To make this analysis applicable
to the multi-party model, we assume that each edge is assigned to Bob independently with
probability p ≤ 1

2 .
We give a description of the protocol for the two-party model here. The multi-party

protocol is rather similar and we describe it in the Proof of Theorem 2. Let EA be the set of
edges assigned to Alice, and EB be the set of edges assigned to Bob. Also, fix a constant
ε ∈

[
0, 1

2
]

and let λ = ε
384 , and β = 50λ−4. The protocol is formalized as Protocol 1.

Protocol 1: Bernstein’s protocol via EDCS in the two-party one-way robust communica-
tion model.
Alice:
1. Take a subsample Es that includes each edge of EA independently with probability

ε
1−p .

2. Take a subgraph H of bounded edge-degree β from Es, such that the number of
(H, β, λ)-underfull edges in Er = E(G) \ Es is O(n · log n · poly(1/ε)) with high
probability. (See Claim 4.1 for the existence of H.)

3. Find the (H, β, λ)-underfull edges of EA \ Es, call them UA.
4. Communicate H ∪ UA to Bob.

Bob:
1. Return the maximum matching in EB ∪ H ∪ UA.

Claim 4.1 shows that Alice can execute step 2, and that Protocol 1 has communication
complexity O(n · log n · poly(1/ε)). Note that taking into account the randomization in
dividing the edges between Alice and Bob, Es can be considered a uniform sample from the
whole edge set that contains each edge with probability ε.

▷ Claim 4.1 (Lemma 4.1 in [6]). Alice, by looking only at the edges of Es, can take a
subgraph H ⊆ Es that has bounded degree β, and with high probability Er = E(G) \ Es

has at most O(n · log n · poly(1/ε)) many (H, β, λ)-underfull edges.

A. Azarmehr and S. Behnezhad 14:7

For the analysis, we first construct a fractional matching x of expected size(2
3 − O(ε)

)
µ(G), the support of which is contained in H ∪U . Then we show that a fractional

matching y can be obtained from x, such that its support is contained in EB ∪ H ∪ UA and
has expected size at least

(2
3 + p

3 − O(ε)
)

µ(G). Finally, we use the structure of y to show
that its existence implies EB ∪ H ∪ UA has an integral matching almost as large as the size of
y. In Section 5, we show that the approximation ratio is also achieved with high probability.

First, we describe how to obtain the fractional matching x given H ∪ U , where recall that
U is the set of (H, β, λ)-underfull edges in Er. Fix a maximum matching M∗ in Er. Let Min
be the edges of M∗ that appear in H ∪U , i.e. Min = M∗ ∩(H ∪U), and let Mout = M∗ \Min.

1. Start with H1 = H, and U1 = U .
2. For i = 1, . . . , λβ :
3. Let Mi be a maximum matching in Hi ∪ Ui.
4. Let Hi+1 = Hi \ (Mi \ Min), Ui+1 = Ui \ (Mi \ Min).

5. For every edge e, let xe = |{i : e ∈ Mi}|
λβ

.

One can think of this process as, starting with H ∪ U , taking a maximum matching Mi

each time, and removing Mi \ Min from the graph, then, letting xe equal to the fraction
of matchings we have taken that include e. Note that the matchings M1, . . . Mλβ can
intersect only in Min. We will use Proposition 3.5 to show that x has expected size at least(2

3 − O(ε)
)

µ(G).

▶ Lemma 4.2. It holds that E [
∑

e xe] ≥
(2

3 − 5
3 ε

)
µ(G).

Proof. We apply Proposition 3.5 to Gi = (H ∪ Er) \
(⋃

j<i Mj \ Min

)
, Hi, and Ui. After

removing a matching from H , for any edge, its degree in H will decrease by at most 2. Also,
U contains all the (H, β, λ)-underfull edges of Er. Hence, Ui contains all the edges of Gi \ Hi

that have Hi-degree smaller than (1 − λ)β − 2(i − 1) ≥ (1 − 3λ)β. Therefore, Proposition 3.5
implies

|Mi| ≥
(

2
3 − ε

)
µ(Gi).

Also, notice that Gi always includes M∗, consequently it holds µ(Gi) = µ(Er), and we have:∑
e

xe ≥ 1
λβ

∑
i

|Mi| ≥
(

2
3 − ε

)
µ(Er)

Taking into account the fact that E [µ(ER)] ≥ (1 − ε)µ(G), we get:

E

[∑
e

xe

]
≥

(
2
3 − ε

)
(1 − ε)µ(G) ≥

(
2
3 − 5

3ε

)
µ(G). ◀

To describe how y is obtained, we condition on Es, thereby fixing H, U , and x. The
support of y is included in EB ∪ H ∪ UA, i.e. the edges that Bob will have access to in
the end. We show that y has expected size at least about p · µ(Er) + (1 − p)

∑
e xe, where

the randomness is over how the remaining edges Er are divided between Alice and Bob.
Lifting the condition on Es, the expectation of this value, by Lemma 4.2, is larger than(2

3 + p
3 − O(ε)

)
µ(G).

ICALP 2023

14:8 Robust Communication Complexity of Matching

After drawing EB , take a matching M ′, which includes each edge of Min independently
with probability p, and includes each edge of Mout ∩ EB independently with probability 1 − ε.
Note, that conditioned on Es, each edge of Mout is assigned to Bob with probability p

1−ε .
Hence, each edge of Mout ends up in M ′ with probability p

1−ε (1 − ε) = p, i.e. M ′ includes
each edge of M∗ independently with probability p.

For any edge e /∈ M∗, define pe as the probability of e not being adjacent to any edge in
M ′. Notice, pe is simply equal to (1 − p) to the power of the number of edges in M ′ that are
adjacent to e. We define matching ŷ as follows:

ŷe =


1 if e ∈ M ′,
xe if e ∈ M∗ \ M ′,
0 if e /∈ M∗ and e is adjacent to an edge of M ′,
(1 − p) · xe

pe
otherwise.

We then scale down ŷ by a factor of 1 + ε, and zero out some edges to obtain a fractional
matching. Formally, we let:

y(u,v) =

0 if ŷu/(1 + ε) > 1 or ŷv/(1 + ε) > 1,
ŷ(u,v)

1 + ε
otherwise.

▶ Lemma 4.3. Conditioned on Es, it holds that

E

[∑
e

ye

]
≥ (1 − 3ε)p · µ(Er) + (1 − 3ε)(1 − p)

∑
e

xe − 2εµ(G).

Proof. All the arguments made in this proof are conditioned on Es.

▷ Claim 4.4. For every vertex u, it holds that E [ŷu] = p · χM∗(u) + (1 − p)xu, where χM∗(u)
is equal to 1 if u is covered by M∗ and zero otherwise.

Proof. First, consider a vertex u that is covered by M∗, say by edge e∗ ∈ M∗. When e∗

appears in M ′, we have ŷe∗ = 1, and for all the other edges e adjacent to u, the value of ŷe

is equal to zero. Thus, we will have ŷu = 1, i.e. E [ŷu | e∗ ∈ M∗] = 1.
Now, we condition on e∗ /∈ M ′. In this case, we will have ŷe∗ = xe∗ . Also, for any other

edge e adjacent to u, the probability that e is not adjacent to any edge in M ′ is equal to pe

1−p .
Thus with probability pe

1−p it holds that ŷe = (1 − p) · xe

pe
, and we will have ŷe = 0 otherwise.

Hence, we can write:

E [ŷu | e∗ /∈ M ′] = xe∗ +
∑
e∋u

e̸=e∗

pe

1 − p
·
(

(1 − p) · xe

pe

)
=

∑
e∋u

xe = xu.

Therefore, for a vertex u that is covered by M∗, it holds that

E [ŷu] = p · E [ŷu | e∗ ∈ M ′] + (1 − p) · E [ŷu | e∗ /∈ M ′] = p + (1 − p)xu.

The case where the vertex u is not covered by M∗ follows similarly. For each edge e

adjacent to u we have ŷe = (1 − p) · xe

pe
with probability pe, and we have ŷe = 0 otherwise.

Thus

E [ŷu] =
∑
e∋u

pe ·
(

(1 − p) · xe

pe

)
= (1 − p)xu. ◁

A. Azarmehr and S. Behnezhad 14:9

The following claim helps us show that we do not lose much of ŷ when we scale it down
and zero out some of the edges.

▷ Claim 4.5. For every vertex u, we have ŷu ≤ 1 if u is not covered by M∗ or xu ≤ 1
2 ,

otherwise it holds that Pr (ŷu > 1 + ε) ≤ ε.

Proof. Consider a vertex u not covered by M∗. For each edge e adjacent to u it holds that
pe ≥ 1 − p because e has at most one neighbouring edge in M∗. Hence we have:

ŷu ≤
∑
e∋u

(1 − p) · xe

pe
≤

∑
e∋u

xe ≤ 1.

Now take a vertex u that is covered by M∗, say by edge e∗ ∈ M∗. If e∗ ∈ M ′, then we
have ŷu = 1. Therefore we assume e∗ /∈ M ′, and accordingly ŷe = xe. For any other edge e

it holds that pe ≥ (1 − p)2. Hence we have:

ŷu ≤ xe∗ +
∑
e∋u

e̸=e∗

(1 − p) · xe

pe
≤ xe∗ +

∑
e∋u

e̸=e∗

xe

1 − p
≤ 2

∑
e∋u

xe = 2xu.

Thus, if it holds that xu ≤ 1
2 , then it follows ŷu ≤ 1.

For the other cases, we use the Chernoff bound to show that with high probability ŷu

is not much larger than 1. As mentioned before, if e∗ appears in M ′, it holds that ŷu = 1.
Therefore, we condition on e∗ /∈ M ′. We express X = yu − ye∗ as a sum of independent
random variables that take values in [0, 4/λβ]. Note that since the edges outside Min appear
in at most one Mi, for e /∈ M∗ we have xe ≤ 1

λβ .
Take an edge e = (u, v) ̸= e∗. If v is not matched in M∗ to another neighbour of u, then

the value of ye is independent of the value of the other edges adjacent to u. It is equal to
(1 − p) · xe

pe
≤ 2

λβ with probability pe

1−p , and zero otherwise.
If v is matched in M∗ to another neighbour v′ of u. Let e′ = (u, v′). Then the value

of ye + y′
e is independent of the value of the other edges adjacent to u. It is equal to

(1 − p) · xe+x′
e

(1−p)2 ≤ 4
λβ , with probability (1 − p), and zero otherwise.

Thus, by pairing the edges that are matched together, we can express X as a sum of
independent random variables in [0, 4/λβ]. The expectation of X, as calculated in Claim 4.4,
is equal to xu − xe∗ ≤ 1. From the Chernoff bound we get:

Pr (ŷu > 1 + ε) ≤ Pr (X > EX + ε)

≤ Pr
(

X · λβ

4 > µ
λβ

4 + ε
λβ

4

)
≤ exp

(
−ε2λ2β2/16

3µλβ/4

)
(By Chernoff bound, noting that Xλβ/4 is a sum of independent random variables in [0, 1].)

= exp
(

−ε2λβ

12

)
< ε, (Since λ = ε

384 and β = 50λ−4)

concluding the proof. ◁

We analyze E [yu]. Consider generating yu, in two steps. First, for every edge (u, v), we
let y(u,v) be equal to 1

1+ε ŷ(u,v) if ŷv ≤ 1 + ε, and zero otherwise. Then, we zero out y for all
the edges adjacent to u if ŷu > 1 + ε.

ICALP 2023

14:10 Robust Communication Complexity of Matching

In the first step, we lose a factor (1 + ε) when we scale ŷu down. Also, by Claim 4.5,
when we zero out edge (u, v) because yv > 1 + ε, we lose an ε-fraction from each edge, and
consequently from E [ŷu]. In the second step, again by Claim 4.5, if xu ≤ 1

2 or u is not
covered by M∗ we lose nothing. Otherwise, we zero out all the edges with probability at
most ε. We have ŷu ≤ 2xu ≤ 2, hence we lose an additive factor of 2ε. Overall for any vertex
u we get:

E [yu] ≥ (1 − ε)E [ŷu]
1 + ε

− 2ε ≥ (1 − 3ε) (p · χM∗(u) + (1 − p)xu) − 2ε,

and for any vertex u with xu ≤ 1
2 , we get:

E [yu] ≥ (1 − 3ε) (p · χM∗(u) + (1 − p)xu) .

Notice that since the sum of the components of x is at most µ(G), there are at most 2µ(G)
vertices with xu ≥ 1

2 . Thus, by summing the last two equations over u we get:∑
u

E [yu] =
∑

u∈V (M∗)

E [yu] +
∑

u/∈V (M∗)

E [yu]

≥

(1 − 3ε)
∑

u∈V (M∗)

p + (1 − p)xu

 +

(1 − 3ε)
∑

u/∈V (M∗)

(1 − p)xu

 − 2ε · 2µ(G)

= (1 − 3ε)2p · |M∗| + (1 − 3ε)(1 − p)
∑

u

xu − 4εµ(G).

Recall that |M∗| = µ(Er). Finally, by dividing both sides by 2, we get:∑
e

E [ye] ≥ (1 − 3ε)p · µ(Er) + (1 − 3ε)(1 − p)
∑

e

xe − 2εµ(G). ◀

Now we lift the condition on Es.

▶ Lemma 4.6. It holds that E [
∑

e ye] ≥
(2

3 + p
3 − 6ε

)
µ(G).

Proof. We have:

E

[∑
e

ye

]
= E

[
E

[∑
e

ye

∣∣∣∣ Es

]]

≥ E

[
(1 − 3ε)p · µ(Er) + (1 − 3ε)(1 − p)

∑
e

xe − 2εµ(G)
]

≥ (1 − 3ε)p · (1 − ε)µ(G) + (1 − 3ε)(1 − p)
(

2
3 − 5

3ε

)
µ(G) − 2εµ(G)

(by E [µ(Er)] = (1 − ε)µ(G) and Lemma 4.2)

≥
(

2
3 + p

3 −
(

7
6p + 29

6

)
ε

)
µ(G)

≥
(

2
3 + p

3 − 6ε

)
µ(G). ◀

We show that EB ∪ H ∪ UA has an integral matching almost as large as the size of y.

▶ Lemma 4.7. There exists a matching of size (1 − 3ε)
∑

e ye in EB ∪ H ∪ UA.

A. Azarmehr and S. Behnezhad 14:11

Proof. Notice that for every edge e, except the edges of M∗ which is a matching, it holds
that ye ≤ 4

λβ ≤ ε3. Therefore, for any vertex set S ⊆ V that |S| is smaller than 1
ε , we have:

∑
e∈G[S]

xe =
∑

e∈G[S]∩M∗

xe +
∑

e∈G[S]\M∗

xe ≤ |G[S] ∩ M∗| + 1
ε2 ε3 ≤

⌊
|S|
2

⌋
+ ε.

Hence, we can apply Proposition 3.2 to (1−2ε)y, to get µ(EB ∪H ∪UA) ≥ (1−3ε)
∑

e ye. ◀

Proof of Theorem 1.1. By Claim 4.1, Bernstein’s protocol (Protocol 1) is implementable
using only O(n · log n · poly(1/ε)) words of communication.

By Lemma 4.6 there exists a fractional matching y of expected size
(2

3 + p
3 − 6ε

)
µ(G).

Putting this together with Lemma 4.7, we can conclude Protocol 1 achieves a
(2

3 + p
3 − 9ε

)
approximation ratio. To see this approximation ratio is also achieved with high probability,
refer to Section 5. Finally, letting p = 1

2 and rescaling ε proves the theorem. ◀

Proof of Theorem 1.2. We need to adjust Protocol 1 for the k-party model. The first party
will sample each of its edges independently with probability ε/(1 − 1/k) to obtain Es. It
will then construct the subgraph H ⊆ Es with bounded edge-degree, and send it to the next
party along with the (H, β, λ)-underfull edges. Each of the next parties, except the last,
communicates the (H, β, λ)-underfull edges it has been assigned along with the edges in the
message it has received, to the next party. Finally, the last party will report the maximum
matching in the graph consisting of all the edges to which it has access.

This way, setting p = 1
k , the first k − 1 parties will act as Alice in our analysis, and the

last party acts as Bob. Hence, by a similar argument as in the Proof of Theorem 1, Protocol 1
achieves a (2

3 + 1
3k − 9ε) approximation ratio, and a rescaling of ε proves the theorem. ◀

5 From Expectation to High Probability

In this section, we show that with a slight modification, Bernstein’s protocol (Protocol 1)
achieves the 5

6 -approximation with high probability. To do so, Alice should send all the edges
to Bob when the number of edges is too small.

▷ Claim 5.1. Without loss of generality, we can assume µ(G) = Ω (log n).

Proof. A charging argument can be used to show that the number of edges in G is less than
2nµ(G). Fix a maximum matching M in G. For any edge e, charge a unit to an edge of M

that is adjacent to e. Such an edge must exist since M is a maximum matching. This way,
we charge once for every edge in G, and every edge of M is charged at most n times through
each of its endpoints.

To see why the claim is true, note that in case µ(G) is too small, i.e. µ(G) = O(log n),
the number of edges in the graph will be O(n log n) and Alice can send all of its edges to
Bob. ◁

▶ Lemma 5.2. Assuming that µ(G) = Ω(log n), whatever approximation ratio Protocol 1
achieves in expectation, it will achieve with high probability.

Proof. We condition on the sample edge set Es, thereby fixing H and U . Bob will have access
to the edges of H ∪ U because they are either assigned to Bob, or they are communicated to
Bob by Alice. Let e1, . . . , ek be the other edges, i.e. the edges of Er \ U . Each of these edges
is assigned to Bob independently with probability 1/2

1−ε .

ICALP 2023

14:12 Robust Communication Complexity of Matching

We define a self-bounding function f : {0, 1}k → Z. For x ∈ {0, 1}k, the value of f(x)
is equal to the maximum matching of H ∪ U ∪ Ex, where Ex = {ei | xi = 1}. Equivalently,
f(x) is the size of the output matching when the edges {ei | xi = 1} are assigned to Bob, i.e.
EB ∪ H ∪ UA is equal to Ex ∪ H ∪ U . Also, let fi(x(i)) = f(x1, . . . xi−1, 0, xi+1, . . . xk).

Take any x ∈ {0, 1}k. Notice that fi(x(i)) is equal to µ(Ex \ ei), and removing an edge
from a graph, will decrease its maximum matching by at most 1. Therefore, it holds:

0 ≤ f(x) − fi(x(i)) ≤ 1, ∀i : 1 ≤ i ≤ k.

Take the maximum matching M in H ∪ U ∪ Ex, and let I be the indices of the edges in
Ex ∩ M , i.e. I = {i | xi = 1 and ei ∈ M}. For any i /∈ I, the edge set Ex \ ei includes M .
Therefore, fi(x(i)) is equal to f(x), and we have:

k∑
i=1

(
f(x) − fi(x(i))

)
≤ |I| = f(x).

Thus, f is a self-bounding function.
We can now apply Proposition 3.8. Let Xi be the indicator variable that ei is assigned to

Bob, i.e. Xi is equal to 1 when ei ∈ EB. Let Z = f(X1, . . . , Xk), and µ = E [Z] = rµ(G).
That is, Z is the size of the output matching, and r is the approximation ratio that Protocol 1
achieves in expectation. By Proposition 3.8, we have:

Pr
(

Z ≤ rµ(G) −
√

2µ(G) log n
)

≤ exp
(

−2µ(G) log n

2µ(G)

)
= 1

n
.

Thus, with high probability Protocol 1 outputs a matching of size (1 − o(1))rµ(G). Note
that the deviation is o(1) by the assumption that µ(G) = Ω(log n). ◀

6 Some Instances for Bernstein’s Protocol

In this section, we first prove Theorem 1.3 that our analysis of Bernstein’s protocol in
Theorems 1.1 and 1.2 are tight. Then, we formalize a remark we made in Section 2.

Proof of Theorem 1.3. Consider a bipartite graph G(L, R), such that |L| = |R|. Where L

consists of three equally-sized groups of vertices A1, A2, and A3, and similarly R consists of B1,
B2, and B3. The induced subgraphs M1 = G[A1, B1], M2 = G[A2, B2], and M3 = G[A3, B3]
are perfect matchings. The induced subgraphs K1 = G[A1, B2] and K2 = G[A2, B3] are
complete bipartite graphs, and there are no other edges in the graph (see Figure 1). Note
that G has a perfect matching, i.e. the size of the maximum matching is equal to |L| = |R|.
Let β ≤ |V (G)|

12k which is O(|V (G)|).
Let EL be the set of edges assigned to the last party. To upper bound the approximation

ratio of the multi-party protocol, we construct a vertex cover for EL ∪ H ∪ U . It is a
well-known fact that the size of the minimum vertex cover is larger than the size of the
maximum matching. With high probability, the first party can take H to be completely
inside K1 ∪ K2, so that U will be equal the M1 ∪ M3, and no edges of M2 will appear in
H ∪ U .

Let X = V (M2 ∩ EL) ∩ A2, i.e. X includes one endpoint from every edge of M2 that is
assigned to the last party. We claim A1 ∪ B3 ∪ X is a vertex cover for EL ∪ H ∪ U . This is
true because A1 covers the edges of M1 and K1, B3 covers the edges of M3 and K2, and X

covers all the remaining edges, which is EL ∩ M2.

A. Azarmehr and S. Behnezhad 14:13

Conditioned on the H as described above, each edge of M2 will be assigned to Bob with
probability 1/k

1−ε . Thus the expected size of the vertex cover is equal to

|A1| + |B3| + 1/k

1 − ε
|A2| =

(
1
3 + 1

3 + 1/k

1 − ε
· 1

3

)
µ(G) ≤ (1 + 2ε)

(
2
3 + 1

3k

)
µ(G).

Letting ε be arbitrarily small proves the theorem. ◀

As mentioned in Section 2, the graph discussed in Theorem 1.3 (see Figure 1) has a nice
property, i.e. there exists a large matching M such that G − V (M) also has a large matching.
As the output of Bernstein’s protocol has expected size of at least |M | + 1

2 µ(G − V (M)),
which in this case is equal to 5

6 µ(G), this property might seem useful to analyze the protocol.
However, the following claim shows that such an M does not generally exist.

▷ Claim 6.1. There exists a graph G, with arbitrarily large number of vertices, such that for
β ≤ |V (G)| /4, there is a choice of H and U , such that every matching M in H ∪ U satisfies
|M | + 1

2 µ(G − V (M)) ≤ 0.75µ(G). Where here H is subgraph with bounded edge-degree
β, and U is the set of the underfull edges in G \ H, i.e. the edges of G \ H with H-degree
smaller than β − 1.

Proof. Let G(L, R) be a bipratite graph, such that |L| = |R|. Where L consists of four
equally-sized groups of vertices A1, A2, A3, and A4, and similarly R consists of B1, B2,
B3, and B4. The induced subgraphs M1 = G[A1, B1], M2 = G[A2, B2], M3 = G[A3, B3],
and M4 = G[A4, B4] are perfect matchings. The induced subgraphs K1 = G[A1, B2],
K2 = G[A2, B3], and K3 = G[A3, B4] are complete bipartite graphs, and there are no other
edges in the graph. Note that G has a perfect matching (see Figure 2).

A1 A2

U
H
missed

B1 B2 B3

A3

B4

A4

Figure 2 An example where every matching M satisfies |M | + 1
2 µ(G − V (M)) ≤ 0.75µ(G).

Let H be a (β/2)-regular subgraph of K1 ∪ K2 ∪ K3. The corresponding U is equal to
M1 ∪ M4, and none of the edges in M2 ∪ M3 appear in H ∪ U . We prove that maxM |M | +
1
2 µ(G − V (M)) ≤ 0.75µ(G), where M ranges over all the matchings in H ∪ U . We say that
a matching is optimal if it achieves the maximum possible value for |M | + 1

2 µ(G − V (M)).
First, we prove there exists an optimal matching that includes all of M1 ∪ M4. To see

this, take an optimal matching M . Take any vertex u in A1, and let its adjacent edge in M1
be e. If u is covered by some edge e′ ∈ M , then removing e′ from M and adding e does not
decrease |M | + 1

2 µ(G − V (M)). Because this would not change |M | and can only increase
µ(G − V (M)). Also, when u is not covered by M , adding the e to M will cause |M | to grow
by one, and µ(G − V (M)) to decrease by at most one. A similar argument holds for the
vertices in B4. Hence, by repeatedly adding such edges, we can obtain an optimal matching
containing M1 ∪ M4.

Now we can restrict our attention to A2 ∪ A3 ∪ B2 ∪ B3. We claim no matter what the
rest of M (a.k.a. M \ (M1 ∪ M2) = M ∩ K2) is, the value of |M | + 1

2 µ(G − V (M)) would be
the same. Because if |M ∩ K2| is equal to k, it holds that µ(G − V (M)) = 1

2 µ(G) − 2k.

ICALP 2023

14:14 Robust Communication Complexity of Matching

Hence the optimal value of |M | + 1
2 µ(G − V (M)) is equal to

|M1| + |M2| + k + 1
2

(
1
2µ(G) − 2k

)
= 3

4µ(G).

To see why µ(G − V (M)) = 1
2 µ(G) − 2k, note that since M1 ∪ M4 ⊆ M , any vertex of

B2 ∪ A3 is a singleton in G − V (M). Hence, a maximum matching in G − V (M) is the set
of edges in M2 ∪ M3 that are not adjacent to an edge of M , which has size 1

2 µ(G) − 2k. ◁

References
1 Sepehr Assadi and Soheil Behnezhad. Beating Two-Thirds For Random-Order Streaming

Matching. In 48th International Colloquium on Automata, Languages, and Programming,
ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), pages 19:1–19:13,
2021. doi:10.4230/LIPIcs.ICALP.2021.19.

2 Sepehr Assadi and Soheil Behnezhad. On the Robust Communication Complexity of Bipartite
Matching. In Approximation, Randomization, and Combinatorial Optimization. Algorithms
and Techniques, APPROX/RANDOM 2021, August 16-18, 2021, University of Washington,
Seattle, Washington, USA (Virtual Conference), pages 48:1–48:17, 2021. doi:10.4230/LIPIcs.
APPROX/RANDOM.2021.48.

3 Sepehr Assadi and Aaron Bernstein. Towards a Unified Theory of Sparsification for Matching
Problems. In 2nd Symposium on Simplicity in Algorithms, SOSA 2019, January 8-9, 2019,
San Diego, CA, USA, pages 11:1–11:20, 2019. doi:10.4230/OASIcs.SOSA.2019.11.

4 Amir Azarmehr and Soheil Behnezhad. Robust Communication Complexity of Matching:
EDCS Achieves 5/6 Approximation, 2023. arXiv:2305.01070.

5 Soheil Behnezhad. Improved Analysis of EDCS via Gallai-Edmonds Decomposition. CoRR,
abs/2110.05746, 2021. arXiv:2110.05746.

6 Aaron Bernstein. Improved Bounds for Matching in Random-Order Streams. In 47th Interna-
tional Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020,
Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages 12:1–12:13. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ICALP.2020.12.

7 Aaron Bernstein and Cliff Stein. Fully Dynamic Matching in Bipartite Graphs. In Automata,
Languages, and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan,
July 6-10, 2015, Proceedings, Part I, volume 9134 of Lecture Notes in Computer Science, pages
167–179. Springer, 2015. doi:10.1007/978-3-662-47672-7_14.

8 Stephane Boucheron, Gabor Lugosi, and Pascal Massart. On concentration of self-bounding
functions. Electronic Journal of Probability, 14(none):1884–1899, 2009.

9 Amit Chakrabarti, Graham Cormode, and Andrew McGregor. Robust lower bounds for
communication and stream computation. In Proceedings of the 40th Annual ACM Symposium
on Theory of Computing, Victoria, British Columbia, Canada, May 17-20, 2008, pages 641–650,
2008. doi:10.1145/1374376.1374470.

10 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
On graph problems in a semi-streaming model. Theor. Comput. Sci., 348(2-3):207–216, 2005.
doi:10.1016/j.tcs.2005.09.013.

11 Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication and streaming
complexity of maximum bipartite matching. In Proceedings of the Twenty-Third Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19,
2012, pages 468–485, 2012. doi:10.1137/1.9781611973099.41.

12 Michael Kapralov. Better bounds for matchings in the streaming model. In Proceedings
of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2013,
New Orleans, Louisiana, USA, January 6-8, 2013, pages 1679–1697. SIAM, 2013. doi:
10.1137/1.9781611973105.121.

https://doi.org/10.4230/LIPIcs.ICALP.2021.19
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.48
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.48
https://doi.org/10.4230/OASIcs.SOSA.2019.11
https://arxiv.org/abs/2305.01070
https://arxiv.org/abs/2110.05746
https://doi.org/10.4230/LIPIcs.ICALP.2020.12
https://doi.org/10.1007/978-3-662-47672-7_14
https://doi.org/10.1145/1374376.1374470
https://doi.org/10.1016/j.tcs.2005.09.013
https://doi.org/10.1137/1.9781611973099.41
https://doi.org/10.1137/1.9781611973105.121
https://doi.org/10.1137/1.9781611973105.121

A. Azarmehr and S. Behnezhad 14:15

13 Michael Kapralov. Space Lower Bounds for Approximating Maximum Matching in the Edge
Arrival Model. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 1874–1893. SIAM, 2021.
doi:10.1137/1.9781611976465.112.

14 Andrew Chi-Chih Yao. Some Complexity Questions Related to Distributive Computing
(Preliminary Report). In Proceedings of the 11h Annual ACM Symposium on Theory of
Computing, April 30 - May 2, 1979, Atlanta, Georgia, USA, pages 209–213. ACM, 1979.
doi:10.1145/800135.804414.

ICALP 2023

https://doi.org/10.1137/1.9781611976465.112
https://doi.org/10.1145/800135.804414

Improved Approximation Algorithms by
Generalizing the Primal-Dual Method Beyond
Uncrossable Functions
Ishan Bansal #

Operations Research and Information Engineering, Cornell University, Ithaca, NY, USA

Joseph Cheriyan # Ñ

Department of Combinatorics and Optimization, University of Waterloo, Canada

Logan Grout #

Operations Research and Information Engineering, Cornell University, Ithaca, NY, USA

Sharat Ibrahimpur # Ñ

Department of Mathematics, London School of Economics and Political Science, UK

Abstract
We address long-standing open questions raised by Williamson, Goemans, Vazirani and Mihail
pertaining to the design of approximation algorithms for problems in network design via the primal-
dual method (Combinatorica 15(3):435-454, 1995). Williamson et al. prove an approximation ratio
of two for connectivity augmentation problems where the connectivity requirements can be specified
by uncrossable functions. They state: “Extending our algorithm to handle non-uncrossable functions
remains a challenging open problem. The key feature of uncrossable functions is that there exists an
optimal dual solution which is laminar . . . A larger open issue is to explore further the power of the
primal-dual approach for obtaining approximation algorithms for other combinatorial optimization
problems.”

Our main result proves a 16-approximation ratio via the primal-dual method for a class of
functions that generalizes the notion of an uncrossable function. There exist instances that can be
handled by our methods where none of the optimal dual solutions have a laminar support.

We present applications of our main result to three network-design problems.
1. A 16-approximation algorithm for augmenting the family of small cuts of a graph G. The

previous best approximation ratio was O(log |V (G)|).
2. A 16 · ⌈k/umin⌉-approximation algorithm for the Cap-k-ECSS problem which is as follows: Given

an undirected graph G = (V, E) with edge costs c ∈ QE
≥0 and edge capacities u ∈ ZE

≥0, find a
minimum cost subset of the edges F ⊆ E such that the capacity across any cut in (V, F) is at least
k; umin (respectively, umax) denote the minimum (respectively, maximum) capacity of an edge in
E, and w.l.o.g. umax ≤ k. The previous best approximation ratio was min(O(log |V |), k, 2umax).

3. A 20-approximation algorithm for the model of (p, 2)-Flexible Graph Connectivity. The previous
best approximation ratio was O(log |V (G)|), where G denotes the input graph.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases Approximation algorithms, Edge-connectivity of graphs, f-Connectivity
problem, Flexible Graph Connectivity, Minimum cuts, Network design, Primal-dual method, Small
cuts

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.15

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2209.11209v2 [3]

Funding Ishan Bansal: Partially supported by Office of Naval Research (ONR) Grant N00014-21-1-
2575.
Joseph Cheriyan: Supported in part by NSERC, RGPIN-2019-04197.

EA
T
C
S

© Ishan Bansal, Joseph Cheriyan, Logan Grout, and Sharat Ibrahimpur;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 15; pp. 15:1–15:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ib332@cornell.edu
mailto:jcheriyan@uwaterloo.ca
https://www.math.uwaterloo.ca/~jcheriyan
mailto:lcg58@cornell.edu
mailto:s.ibrahimpur@lse.ac.uk
http://www.math.uwaterloo.ca/~s26ibrah
https://orcid.org/0000-0002-1575-9648
https://doi.org/10.4230/LIPIcs.ICALP.2023.15
https://arxiv.org/abs/2209.11209v2
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

15:2 Generalizing the WGMV Primal-Dual Method

Sharat Ibrahimpur : Received funding from the following sources: NSERC grant 327620-09 and an
NSERC DAS Award, European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement no. ScaleOpt–757481), and Dutch Research
Council NWO Vidi Grant 016.Vidi.189.087.

Acknowledgements We thank the anonymous reviewers and the ICALP PC for their comments. We
are grateful to Cedric Koh and Madison Van Dyk for reading a preliminary version, and for their
detailed comments and feedback.

1 Introduction

The primal-dual method is a well-known algorithmic discovery of the past century. Kuhn
(1955) [25] presented a primal-dual algorithm for weighted bipartite matching, and Dantzig et
al. (1957) [9] presented a generalization for solving linear programs. Primal-dual methods for
problems in combinatorial optimization are based on linear programming (LP) relaxations;
the associated linear programs (LPs) are crucial for the design and analysis of these algorithms.
A key feature of the primal-dual method is that it does not require solving the underlying LPs,
which makes it attractive for both theoretical studies and real-world applications. Several
computational studies of some of the well-known primal-dual approximation algorithms have
been conducted, and the consensus is that these algorithms work well in practice, see [19,
Section 4.9], [16], [21], [27], [32].

Several decades after the pioneering work of Kuhn, Dantzig et al., the design of ap-
proximation algorithms for NP-hard problems emerged as an important area of research.
Agrawal, Klein and Ravi [2] designed and analyzed a primal-dual approximation algorithm
for the Steiner forest problem. Goemans and Williamson [18] generalized these algorithms to
constrained forest problems. Subsequently, Williamson, Goemans, Vazirani and Mihail [33]
(abbreviated WGMV) extended the methods of [18] to obtain a primal-dual 2-approximation
algorithm for the problem of augmenting the connectivity of a graph to satisfy requirements
specified by uncrossable functions. These functions are versatile tools for modeling several
network-design problems.

Network design encompasses a wide class of problems that find applications in sectors
like transportation, facility location, information security, and resource connectivity, to name
a few. Due to its wide scope and usefulness, the area has been studied for decades and
it has led to major algorithmic innovations. Most network-design problems are NP-Hard,
and oftentimes even APX-hard, so researchers in the area have focused on designing good
approximation algorithms, preferably with a small constant-factor approximation ratio. In
the context of network design, many of the O(1) approximation algorithms rely on a particular
property called uncrossability, see the books by Lau, Ravi & Singh [26], Vazirani [31], and
Williamson & Shmoys [34]. This property has been leveraged in various ways to obtain
O(1) approximation ratios for problems such as survivable network design [20], min-cost/min-
size k-edge connected spanning subgraph [15, 14], min-cost 2-node connected spanning
subgraph [11], (p, 1)-flexible graph connectivity [5], etc. The primal-dual method is one of
the most successful algorithmic paradigms that leverages these uncrossability properties.

On the other hand, when the uncrossability property does not hold, most known tech-
niques for designing O(1) approximation algorithms fail to work. Indeed, only logarithmic
approximation ratios are known for some of the problems where the uncrossability property
does not hold. These logarithmic approximation ratios are usually obtained via a reduction
to the set cover problem, for which a greedy strategy yields a logarithmic approximation.
WGMV [33] conclude their paper with the following remark:

I. Bansal, J. Cheriyan, L. Grout, and S. Ibrahimpur 15:3

Extending our algorithm to handle non-uncrossable functions remains a challenging
open problem. The key feature of uncrossable functions is that there exists an optimal
dual solution which is laminar . . . A larger open issue is to explore further the
power of the primal-dual approach for obtaining approximation algorithms for other
combinatorial optimization problems. Handling all non-uncrossable functions is ruled
out by the fact that there exist instances corresponding to non-uncrossable {0, 1}
functions whose relative duality gap is larger than any constant.

Our main contribution in this work is a novel analysis of the WGMV primal-dual
approximation algorithm applied to a class of functions that strictly contain the class
of uncrossable functions; we show that the algorithm still yields an O(1) approximation
guarantee for this larger class. This new class of functions captures some well-studied network
design problems. An application of our main result provides improved approximation ratios
for the capacitated k-edge connected subgraph problem, some instances of the flexible graph
connectivity problem, and the problem of augmenting all small cuts of a graph. A detailed
discussion of our results can be found in Section 1.1. For the benefit of the reader, in
Section 2.1 we give an overview of WGMV’s primal-dual algorithm and its analysis.

The primal-dual algorithm for solving network design problems follows the common
strategy of starting with a graph that has no edges and then iteratively buying (i.e., including)
a subset of edges into the infeasible solution until feasibility is attained. Within each iteration,
the algorithm’s goal is to buy a cheap edge-set that fixes some or all of the infeasibility of
the current solution. Let F denote the edge-set that has been bought until some step in the
algorithm. A set of nodes S is said to be violated if the number of F -edges in the cut of S is
less than the prespecified connectivity requirement of S. The algorithm deems an edge to be
useful if it is in the cut of a violated set S. Clearly, the family of violated sets is important
for the design and analysis of these algorithms, especially the inclusion-wise minimal violated
sets. A family F of sets is called uncrossable if the following holds:

A,B ∈ F =⇒ either A ∩B,A ∪B ∈ F or A \B,B \A ∈ F .

Informally speaking, the uncrossability property ensures that the the minimal sets within the
family can be considered independently. Formally, a minimal violated set A in an uncrossable
family F cannot cross another set S ∈ F ; otherwise, we get a contradiction since A,S ∈ F
implies that either A ∩ S or A \ S is in F . This key property is one of the levers used in the
design of O(1)-approximation algorithms for some network-design problems. Unfortunately,
there are important problems in network design where the family of violated sets does not
form an uncrossable family. For instance, see the instance described in Appendix B. This
leads us to define a new class of set families that contains all uncrossable families.

Call a family F pliable if the following holds:

A,B ∈ F =⇒ at least two of A ∩B,A ∪B,A \B,B \A are in F .

In the full version of our paper, we show that the WGMV primal-dual algorithm has a super-
constant approximation ratio for pliable families. Nevertheless, by enforcing an additional
property on the given pliable family, we can establish that the WGMV algorithm yields an
O(1) approximation. We call this additional assumption property (γ); see Section 1.1.1 for
the formal definition. From a structural standpoint, this property still allows a minimal
violated set to cross another violated set, but, crucially, it does not allow them to cross an
arbitrary number of violated sets in arbitrary ways. As we show later, the fact that disparate
network design problems can be captured by pliable families with property (γ) hints that
this property is “just right”.

ICALP 2023

15:4 Generalizing the WGMV Primal-Dual Method

The above connectivity augmentation problems can be understood in a general framework
called f -connectivity. In this problem, we are given an undirected graph G = (V,E)
on n vertices with nonnegative costs c ∈ QE

≥0 on the edges and a requirement function
f : 2V → {0, 1} on subsets of vertices. We are interested in finding an edge-set F ⊆ E with
minimum cost c(F) :=

∑
e∈F ce such that for all cuts δ(S), S ⊆ V , we have |δ(S)∩F | ≥ f(S).

This problem can be formulated as the following integer program where binary variables xe

model inclusion of edge e in F :

min
∑
e∈E

cexe (f -IP)

subject to: x(δ(S)) ≥ f(S) ∀ S ⊆ V

xe ∈ {0, 1} ∀ e ∈ E.

We remark that in its most-general form, f -connectivity is hard to approximate within
a logarithmic factor. This can be shown via a reduction from the hitting set problem.1

Thus, research on f -connectivity has focused on instances where f has some nice structural
properties.

▶ Definition 1 ([33]). A function f : 2V → {0, 1} satisfying f(V) = 0 is called uncrossable
if for any A,B ⊆ V with f(A) = f(B) = 1, we have f(A ∩ B) = f(A ∪ B) = 1 or
f(A \B) = f(B \A) = 1.

▶ Definition 2. A function f : 2V → {0, 1} satisfying f(V) = 0 is called pliable if for any
A,B ⊆ V with f(A) = f(B) = 1, we have f(A ∩B) + f(A ∪B) + f(A \B) + f(B \A) ≥ 2.

Note that the problem of augmenting an uncrossable (pliable) family can be seen as an
f -connectivity problem whose requirement function is an uncrossable (pliable) function.

1.1 Our Contributions
In this work, we introduce the class of pliable functions and study the approximation ratio of
WGMV’s algorithm on f -connectivity instances arising from pliable functions. To the best of
our knowledge, we are the first to investigate the f -connectivity problem beyond uncrossable
functions. As mentioned before, the algorithm of WGMV can perform poorly on an arbitrary
instance with a pliable function f . In the full version [3, Section 6], we present an instance
where the solution returned by the WGMV algorithm costs Ω(

√
n) times the optimal cost.

1.1.1 Pliable Functions and Property (γ)
As alluded to in the introduction, the analysis of WGMV relies on the property that for any
inclusion-wise minimal violated set C and any violated set S, either C is a subset of S or
C is disjoint from S ([33, Lemma 5.1(3)]). This property does not hold when we apply the
primal-dual method to augment a pliable function; see the instance described in Appendix B.
Nevertheless, we carve out a subclass of pliable functions – still containing all uncrossable
functions – for which the WGMV algorithm yields an O(1)-approximate solution. This
subclass is characterized by the following structural property that allows for minimal violated
sets to cross other violated sets, but in a limited way.

1 Given a ground-set X and a family S of subsets of X to hit, we define L := {ℓx : x ∈ X}, R := {rx :
x ∈ X}, and E := {ex = ℓxrx : x ∈ X}. We then take G = (L ⊔ R, E) to be a bipartite graph with a
perfect matching E and f to be the indicator function of the family {{ℓx : x ∈ A} : A ∈ S}.

I. Bansal, J. Cheriyan, L. Grout, and S. Ibrahimpur 15:5

Property (γ) : For any edge-set F ⊆ E and for any violated sets (w.r.t. f and F)
C, S1, S2, with S1 ⊊ S2, the following conditional proposition holds:

(C is inclusion-wise minimal) and (C crosses both S1 and S2)
=⇒ S2 \ (S1 ∪ C) is either empty or violated.

▶ Theorem 3. Let G = (V,E) be an undirected graph with nonnegative costs c : E → Q≥0
on its edges, and let f : 2V → {0, 1} be a pliable function satisfying property (γ). Suppose
that there is a subroutine that, for any given F ⊆ E, computes all minimal violated sets w.r.t.
f and F . Then, in polynomial time and using a polynomial number of calls to the subroutine,
we can compute a 16-approximate solution to the given instance of the f -connectivity problem.

In the next three sections, we introduce the network-design applications where Theorem 3
gives new/improved approximation algorithms. In each of these applications, we setup an
f -connectivity problem where the function f is a pliable function with property (γ).

1.1.2 Application 1: Augmenting a Family of Small Cuts

Our first application is on finding a minimum-cost augmentation of a family of small cuts in
a graph. Formally, in an instance of the AugSmallCuts problem we are given an undirected
capacitated graph G = (V,E) with edge-capacities u ∈ QE

≥0, a set of links L ⊆
(

V
2
)

with
costs c ∈ QL

≥0, and a threshold λ̃ ∈ Q≥0. A subset F ⊆ L of links is said to augment a
node-set S if there exists a link e ∈ F with exactly one end-node in S. The objective is to
find a minimum-cost F ⊆ L that augments all non-empty S ⊊ V with u(δ(S) ∩ E) < λ̃.

We remark that some special cases of the AugSmallCuts problem have been studied
previously, and, to the best of our knowledge, there is no previous publication on the
general version of this problem. Let λ(G) denote the minimum capacity of a cut of G, thus,
λ(G) := min{u(δ(S) ∩ E) : ∅ ⊊ S ⊊ V }. Assuming u is integral and λ̃ = λ(G) + 1, we get
the well-known connectivity augmentation problem for which constant-factor approximation
algorithms are known [13, 23]. On the other hand, when λ̃ = ∞, a minimum-cost spanning
tree of (V,L), if one exists, gives an optimal solution to the problem.

Our main result here is an O(1)-approximation algorithm for the AugSmallCuts problem
that works for any choice of λ̃. The proof of the following theorem is given in Section 4.

▶ Theorem 4. There is a 16-approximation algorithm for the AugSmallCuts problem.

As an aside, we refer the reader to Benczur & Goemans [4] and the references therein for
results on the representations of the near-minimum cuts of graphs; they do not study the
problem of augmenting the near-minimum cuts.

In Appendix B, we give a small instance of the AugSmallCuts problem that illustrates
some of the technical challenges which arise while working with the f -connectivity problem
for a pliable function with property (γ). The instance described has bizarre properties that
do not arise when working with uncrossable functions. First, it has a minimal violated set
which crosses another violated set. Second, none of the optimal solutions to the dual LP of
the f -connectivity problem are supported on a laminar family. The latter was believed to
be a major hindrance to developing constant-factor approximation algorithms for general
network-design problems.

ICALP 2023

15:6 Generalizing the WGMV Primal-Dual Method

1.1.3 Application 2: Capacitated k-Edge-Connected Subgraph Problem

In the capacitated k-edge-connected subgraph problem (Cap-k-ECSS), we are given an
undirected graph G = (V,E) with edge costs c ∈ QE

≥0 and edge capacities u ∈ ZE
≥0. The goal

is to find a minimum-cost subset of the edges F ⊆ E such that the capacity across any cut
in (V, F) is at least k, i.e., u(δF (S)) ≥ k for all non-empty sets S ⊊ V . Let umax and umin,
respectively, denote the maximum capacity of an edge in E and the minimum capacity of an
edge in E. We may assume (w.l.o.g.) that umax ≤ k.

We mention that there are well-known 2-approximation algorithms for the special case
of the Cap-k-ECSS problem with umax = umin = 1, which is the problem of finding a
minimum-cost k-edge connected spanning subgraph. Khuller & Vishkin [24] presented a
combinatorial 2-approximation algorithm and Jain [20] matched this approximation guarantee
via the iterative rounding method.

Goemans et al. [17] gave a 2k-approximation algorithm for the general Cap-k-ECSS
problem. Chakrabarty et al. [6] gave a randomized O(log |V (G)|)-approximation algorithm;
note that this approximation guarantee is independent of k but does depend on the size of
the underlying graph. Recently, Boyd et al. [5] improved on these results by providing a
min(k, 2umax)-approximation algorithm. In this work, we give a (16·⌈k/umin⌉)-approximation
algorithm, which leads to improved approximation guarantees when both umin and umax
are sufficiently large. In particular, in the regime when k ≥ umax ≥ umin ≥ 32 and
umin · umax ≥ 16k.

▶ Theorem 5. There is a 16·⌈k/umin⌉-approximation algorithm for the Cap-k-ECSS problem.

The proof of Theorem 5 can be found in Section 5.

1.1.4 Application 3: (p, 2)-Flexible Graph Connectivity

Adjiashvili, Hommelsheim and Mühlenthaler [1] introduced the model of Flexible Graph
Connectivity that we denote by FGC. Boyd, Cheriyan, Haddadan and Ibrahimpur [5]
introduced a generalization of FGC. Let p ≥ 1 and q ≥ 0 be integers. In an instance
of the (p, q)-Flexible Graph Connectivity problem, denoted (p, q)-FGC, we are given an
undirected graph G = (V,E), a partition of E into a set of safe edges S and a set of unsafe
edges U, and nonnegative edge-costs c ∈ QE

≥0. A subset F ⊆ E of edges is feasible for the
(p, q)-FGC problem if for any set F ′ consisting of at most q unsafe edges, the subgraph
(V, F \ F ′) is p-edge connected. The objective is to find a feasible solution F that minimizes
c(F) =

∑
e∈F ce.

Boyd et al. [5] presented a 4-approximation algorithm for (p, 1)-FGC based on the
WGMV primal-dual method, and they gave an O(q log n)-approximation algorithm for
general (p, q)-FGC and a (q + 1)-approximation for (1, q)-FGC. Concurrently with our work,
Chekuri and Jain [8] obtained O(p)-approximation algorithms for (p, 2)-FGC, (p, 3)-FGC
and (2p, 4)-FGC; in particular, they present a (2p+ 4)-approximation ratio for (p, 2)-FGC.
Chekuri and Jain have several other results for network design in non-uniform fault models;
[7] have results on the flexible graph connectivity problem that arises from the classical
survivable network design problem, which they call (p, q)-Flex-SNDP.

Our main result here is an O(1)-approximation algorithm for the (p, 2)-FGC problem.

▶ Theorem 6. There is a 20-approximation algorithm for the (p, 2)-FGC problem. Moreover,
for even p, the approximation ratio is 6.

I. Bansal, J. Cheriyan, L. Grout, and S. Ibrahimpur 15:7

Note that in comparison to [8], Theorem 6 yields a better approximation ratio when
p > 8 or p ∈ {2, 4, 6, 8}. For p = 1, the approximation ratio of 3 from [5] is better than the
guarantees given by [8] and Theorem 6. The proof of Theorem 6 can be found in Section 6.

1.2 Related work
Goemans & Williamson [18] introduced the notion of proper functions with the motivation of
designing approximation algorithms for problems in network design. They formulated several
of these problems as the f -connectivity problem where f is a proper function. A symmetric
function f : 2V → Z>0 with f(V) = 0 is said to be proper if f(A ∪ B) ≤ max(f(A), f(B))
for any pair of disjoint sets A,B ⊆ V .

Jain [20] designed the iterative rounding framework for the setting when f is weakly
supermodular and presented a 2-approximation algorithm. A function f is said to be weakly
supermodular if f(A) + f(B) ≤ max(f(A ∩ B) + f(A ∪ B), f(A \ B) + f(B \ A)) for any
A,B ⊆ V . One can show that proper functions are weakly supermodular. We mention that
there are examples of uncrossable functions that are not weakly supermodular, see [5].

2 Preliminaries

This section has definitions and preliminary results. Our notation and terms are consistent
with [10, 30], and readers are referred to those texts for further information.

For a positive integer k, we use [k] to denote the set {1, . . . , k}. For a ground-set V and
a subset S of V , the complement of S (w.r.t. V) is denoted V \ S. Sets A,B ⊆ V are said to
cross, denoted A ▷◁ B, if each of the four sets A∩B, V \ (A∪B), A \B, B \A is non-empty;
on the other hand, if A,B do not cross, then either A ∪B = V , or A,B are disjoint, or one
of A,B is a subset of the other one. A family of sets L ⊆ 2V is said to be laminar if for any
two sets A,B ∈ L either A and B are disjoint or one of them is a subset of the other one.

We may use abbreviations for some standard terms, e.g., we may use “(p, q)-FGC” as
an abbreviation for “the (p, q)-FGC problem”. In some of our discussions, we may use the
informal phrasing “we apply the primal-dual method to augment a pliable function” instead
of the phrasing “we apply the primal-dual method to an f -connectivity problem where the
function f is a pliable function”.

Graphs, Subgraphs, and Related Notions
Let G = (V,E) be an undirected multi-graph (possibly containing parallel edges but no
loops) with non-negative costs c ∈ RE

≥0 on the edges. We take G to be the input graph,
and we use n to denote |V (G)|. For a set of edges F ⊆ E(G), c(F) :=

∑
e∈F c(e), and for

a subgraph G′ of G, c(G′) := c(E(G′)). For any instance G, we use opt(G) to denote the
minimum cost of a feasible subgraph (i.e., a subgraph that satisfies the requirements of the
problem). When there is no danger of ambiguity, we use opt rather than opt(G).

Let G = (V,E) be any multi-graph, let A,B ⊆ V be two disjoint node-sets, and let
F ⊆ V be an edge-set. We denote the multi-set of edges of G with exactly one end-node
in each of A and B by E(A,B), thus, E(A,B) := {e = uv : u ∈ A, v ∈ B}. Moreover, we
use δE(A) or δ(A) to denote E(A, V \A). By a p-cut we mean a cut of size p. We use G[A]
to denote the subgraph of G induced by A, G − A to denote the subgraph of G induced
by V \ A, and G − F to denote the graph (V, E \ F). We may use relaxed notation for
singleton sets, e.g., we may use G − v instead of G − {v}, etc. A multi-graph G is called
k-edge connected if |V (G)| ≥ 2 and for every F ⊆ E(G) of size < k, G− F is connected.

ICALP 2023

15:8 Generalizing the WGMV Primal-Dual Method

We use the following observations.

▶ Fact 7. Let A,B ⊆ V be a pair of crossing sets. For any edge-set F ⊆
(

V
2
)

and any
S ∈ {A ∩B,A ∪B,A \B,B \A}, we have δF (S) ⊆ δF (A) ∪ δF (B).

Proof. By examining cases, we can show that e ∈ δF (S) =⇒ e ∈ δF (A) or e ∈ δF (B). ◀

For any function f : 2V → {0, 1} and any edge-set F ⊆ E, we say that S ⊆ V is violated
w.r.t. f , F if |δF (S)| < f(S), i.e., if f(S) = 1 and there are no F -edges in the cut δ(S). We
drop f and F when they are clear from the context. The next observation states that the
violated sets w.r.t. any pliable function f and any “augmenting” edge-set F form a pliable
family.

▶ Fact 8. Let f : 2V → {0, 1} be a pliable function and F ⊆ E be an edge-set. Define the
function f ′ : 2V → {0, 1} such that f ′(S) = 1 if and only if both f(S) = 1 and δF (S) = ∅
hold. Then, f ′ is also pliable.

Proof. Consider A,B ⊊ V such that f ′(A) = 1 = f ′(B). Clearly, f(A) = 1 = f(B).
Moreover, for any S ∈ {A ∩ B,A ∪ B,A \ B,B \ A}, we have δF (S) = ∅, by Fact 7. Since
f is pliable, there are at least two distinct sets S1, S2 ∈ {A ∩B,A ∪B,A \B,B \A} with
f -value one. Then, we have f ′(S1) = 1 = f ′(S2) (since δF (S1) = ∅ = δF (S2)). Hence, f ′ is
pliable. ◀

2.1 The WGMV Primal-Dual Algorithm for Uncrossable Functions
In this section, we give a brief description of the primal-dual algorithm of Williamson et
al. [33] that achieves approximation ratio 2 for an f -connectivity problem where the function
f is an uncrossable function.

▶ Theorem 9 (Lemma 2.1 in [33]). Let f : 2V → {0, 1} be an uncrossable function. Suppose
we have a subroutine that for any given F ⊆ E, computes all minimal violated sets w.r.t. f ,
F . Then, in polynomial time and using a polynomial number of calls to the subroutine, we
can compute a 2-approximate solution to the given instance of the f -connectivity problem.

The algorithm and its analysis are based on the following LP relaxation of (f -IP) (stated
on the left) and its dual. Define S := {S ⊆ V : f(S) = 1}.

Primal LP

min
∑
e∈E

cexe

subject to:
∑

e∈δ(S)

xe ≥ 1 ∀S ∈ S

0 ≤ xe ≤ 1 ∀e ∈ E

Dual LP

max
∑
S∈S

yS

subject to:
∑

S∈S:e∈δ(S)

yS ≤ ce ∀e ∈ E

yS ≥ 0 ∀S ∈ S

The algorithm starts with an infeasible primal solution F = ∅, which corresponds to
x = χF = 0 ∈ {0, 1}E , and a feasible dual solution y = 0. At any time, we say that
S ∈ S is violated if δF (S) = ∅, i.e., the primal-covering constraint for S is not satisfied.
We call inclusion-wise minimal violated sets as active sets. An edge e ∈ E is said to be
tight if

∑
S∈S:e∈δ(S) yS = ce, i.e., the dual-packing constraint for e is tight. Throughout the

algorithm, the following conditions are maintained: (i) integrality of the primal solution;
(ii) feasibility of the dual solution; (iii) yS is never decreased for any S; and (iv) yS may only
be increased for S ∈ S that are active.

I. Bansal, J. Cheriyan, L. Grout, and S. Ibrahimpur 15:9

The algorithm has two stages. In the first stage, the algorithm iteratively improves primal
feasibility by including tight edges in F that are incident to active sets. If no such edge exists,
then the algorithm uniformly increases yS for all active sets S until a new edge becomes
tight. The first stage ends when x = χF becomes feasible. In the second stage, called reverse
delete, the algorithm removes redundant edges from F . Initially F ′ = F . The algorithm
examines edges picked in the first stage in reverse order, and discards edges from F ′ as long
as feasibility is maintained. Note that F ′ is feasible if the subroutine in the hypothesis of
Theorem 9 does not find any (minimal) violated sets.

The analysis of the 2-approximation ratio is based on showing that a relaxed form of the
complementary slackness conditions hold on “average”. Let F ′ and y be the primal and dual
solutions returned by the algorithm. By the design of the algorithm,

∑
S∈S:e∈δ(S) yS = ce

holds for any edge e ∈ F ′. Thus, the cost of F ′ can be written as
∑

e∈F ′
∑

S∈S:e∈δ(S) yS =∑
S∈S yS · |δF ′(S)|. Observe that the approximation ratio follows from showing that the

algorithm always maintains the following inequality:∑
S∈S

yS · |δF ′(S)| ≤ 2
∑
S∈S

yS . (1)

Consider any iteration and recall that the dual variables corresponding to active sets
were uniformly increased by an ε > 0 amount, until some edge became tight. Let C denote
the collection of active sets during this iteration. During this iteration, the left-hand side of
(1) increases by ε ·

∑
S∈C |δF ′(S)| and the right-hand side increases by 2 · ε · |C|. Thus, (1) is

maintained if one can show that the average F ′-degree of active sets in any iteration is ≤ 2,
and this forms the crux of the WGMV analysis.

We refer the reader to [19] for a detailed discussion of the primal-dual method for network
design problems.

3 Extending the WGMV Primal-Dual Method to Pliable functions

In this section, we prove our main result, Theorem 3: we show that the primal-dual algorithm
outlined in Section 2.1 is a 16-approximation algorithm for the f -connectivity problem where
f is a pliable function with property (γ). Our analysis follows the same high-level plan as
that of Williamson et al. [33] which was outlined in Section 2.1. We will show that, in any
iteration of the first stage of the primal-dual algorithm,

∑
C∈C |δF ′(C)| ≤ 16|C|, where C

is the collection of active sets in that iteration, and F ′ is the set of edges output by the
algorithm at termination, after the reverse delete stage.

For the remainder of this proof we assume that the iteration, and thus C, is fixed. We
define H := ∪C∈CδF ′(C). (Informally speaking, H is the subset of F ′ that is relevant for
the analysis of our fixed iteration.) Additionally, to ease notation when discussing a laminar
family of sets, we say that two sets A,B overlap if A \B,A∩B and B \A are all non-empty.
(Clearly, if A,B cross, then A,B overlap; if A ∪ B = V , then A,B do not cross but A,B
could overlap.)

We begin with a lemma which can be proved by the same arguments as in the proof of
[33, Lemma 5.1].

▶ Lemma 10. For any edge e ∈ H := ∪C∈CδF ′(C), there exists a witness set Se ⊆ V with:
(i) f(Se) = 1 and Se is violated in the current iteration, and
(ii) δF ′(Se) = {e}.

Our proof of the following key lemma is presented in Appendix A.

ICALP 2023

15:10 Generalizing the WGMV Primal-Dual Method

▶ Lemma 11. There exists a laminar family of witness sets.

▶ Lemma 12. The active sets in C are pair-wise disjoint.

Proof. Suppose that two sets C1, C2 ∈ C intersect. Then due to property (i) of pliable
functions, one of the sets C1 ∩ C2, C1 \ C2, or C2 \ C1 is violated; thus, a proper subset of
either C1 or C2 is violated. This is a contradiction because C1 and C2 are minimal violated
sets and no proper subset of C1 (respectively, C2) is violated. ◀

Let L be the laminar family of witness sets together with the node-set V . Let T be a
rooted tree that represents L; for each set S ∈ L, there is a node vS in T, and the node vV

is taken to be the root of T. The edges of T are oriented away from the root; thus, T has an
oriented edge (vQ, vS) iff Q is the smallest set of L that properly contains the set S of L.
Let ψ be a mapping from C to L that maps each active set C to the smallest set S ∈ L that
contains it. If a node vS of T has some active set mapped to its associated set S, then we
call vS active and we assign the color red to vS . Moreover, we assign the color green to each
of the non-active nodes of T that are incident to three or more edges of T; thus, node vS of
T is green iff degT(vS) ≥ 3 and vS is not active. Finally, we assign the color black to each of
the remaining nodes of T; thus, node vS of T is black iff degT(vS) ≤ 2 and vS is not active.

Let the number of red, green and black nodes of T be denoted by nR, nG and nB,
respectively. Clearly, nR +nG +nB = |T| = |F ′| + 1. Let nL denote the number of leaf nodes
of T.

▶ Lemma 13. The following are true:
(i) Each leaf node of T is red.
(ii) We have nG ≤ nL ≤ nR.

Proof. The first claim follows by repeating the argument in [33, Lemma 5.3]. Next, by (i),
we have nL ≤ nR. Moreover, we have nG ≤ nL because the number of leaves in any tree is
at least the number of nodes that are incident to three or more edges of the tree. ◀

Observe that each black node of T is incident to two edges of T; thus, every black non-root
node of T has a unique child.

Let us sketch our plan for proving Theorem 3. Clearly, the theorem would follow from
the inequality

∑
C∈C |δF ′(C)| ≤ O(1) · |C|; thus, we need to prove an upper bound of O(|C|)

on the number of “incidences” between the edges of F ′ and the cuts δ(C) of the active sets
C ∈ C. We start by assigning a token to T corresponding to each “incidence”. In more detail,
for each edge e ∈ F ′ and cut δ(C) such that C ∈ C and e ∈ δ(C) we assign one token to
the node vSe

of T that represents the witness set Se of the edge e. Thus, the total number
of tokens assigned to T is

∑
C∈C |δF ′(C)|; moreover, after the initial assignment, it can be

seen that each node of T has ≤ 2 tokens (see Lemma 14 below). Then we redistribute the
tokens according to a simple rule such that (after redistributing) each of the red/green nodes
has ≤ 8 tokens and each of the black nodes has no tokens. Lemma 15 (below) proves this
key claim by applying property (γ). The key claim implies that the total number of tokens
assigned to T is ≤ 8nR + 8nG ≤ 16nR ≤ 16|C| (by Lemma 13). This concludes our sketch.

We apply the following two-phase scheme to assign tokens to the nodes of T.
In the first phase, for C ∈ C and e ∈ δF ′(C), we assign a new token to the node vSe

corresponding to the witness set Se for the edge e. At the end of the first phase, observe
that the root vV of T has no tokens (since the set V cannot be a witness set).

I. Bansal, J. Cheriyan, L. Grout, and S. Ibrahimpur 15:11

In the second phase, we apply a root-to-leaves scan of T (starting from the root vV).
Whenever we scan a black node, then we move all the tokens at that node to its unique
child node. (There are no changes to the token distribution when we scan a red node or
a green node.)

▶ Lemma 14. At the end of the first phase, each node of T has ≤ 2 tokens.

Proof. Consider a non-root node vSe
of T. This node corresponds to a witness set Se ∈ L

and e is the unique edge of F ′ in δ(Se). The edge e is in ≤ 2 of the cuts δ(C), C ∈ C, because
the active sets are pairwise disjoint (in other words, the number of “incidences” for e is ≤ 2).
No other edge of F ′ can assign tokens to vSe

during the first phase. ◀

▶ Lemma 15. We have that:
(i) Any oriented path of T \ {vV } with four nodes has at least one non-black node.
(ii) Hence, after token redistribution, each red or green node of T has ≤ 8 tokens and each

black node of T has zero tokens.

Proof. For the sake of contradiction, assume that there exists an oriented path of T that
has four black nodes and that is not incident to the root vV ; let vS4 → vS3 → vS2 → vS1 be
such an oriented path. Thus, S1 ⊊ S2 ⊊ S3 ⊊ S4 are witness sets of L. For i ∈ {1, 2, 3, 4},
let Si be the witness set of edge ei = {ai, bi} ∈ F ′; note that ei has exactly one end-node in
Si, call it ai. Clearly, for i ∈ {1, 2, 3}, both nodes ai, bi are in Si+1 (since ei+1 is the unique
edge of F ′ in δ(Si+1)).

Let C ∈ C be an active set such that e1 ∈ δ(C).

▷ Claim 16. C is not a subset of S1.

For the sake of contradiction, suppose that C is a subset of S1. Since e1 has (exactly) one
end-node in C and b1 ̸∈ S1, we have a1 ∈ C. Let W be the smallest set in L that contains
C. Then W ⊆ S1, and, possibly, W = S1. Thus, we have a1 ∈ W and b1 ̸∈ W , hence,
e1 ∈ δ(W). Then we must have W = S1 (since e1 is in exactly one of the cuts δ(S), S ∈ L).
Then the mapping ψ from C to L maps C to W = S1, hence, vS1 is colored red. This is a
contradiction.

▷ Claim 17. C crosses each of the sets S2, S3, S4.

First, observe that e1 has (exactly) one end-node in C and has both end-nodes in S2.
Hence, both S2 ∩ C and S2 \ C are non-empty. Next, using Claim 16, we can prove that
C is not a subset of S2.

(
Otherwise, S2 would be the smallest set in L that contains C,

hence, vS2 would be colored red.
)

Repeating the same argument, we can prove that C is not
a subset of S3, and, moreover, C is not a subset of S4. Finally, note that V \ (C ∪ S4) is
non-empty.

(
Otherwise, at least one of C \S4 or C ∩S4 would be violated, since f is a pliable

function, and that would contradict the fact that C is a minimal violated set.
)

Observe that
S2 crosses C because all four sets S2 ∩C, S2 \C, C \S2, V \ (S2 ∪C) are non-empty (in more
detail, we have |{a1, b1} ∩ (S2 ∩ C)| = 1, |{a1, b1} ∩ (S2 \ C)| = 1, C ̸⊆ S2 =⇒ C \ S2 ̸= ∅,
V \ (C ∪ S2) ⊇ V \ (C ∪ S4) ̸= ∅). Similarly, it can be seen that S3 crosses C, and S4 crosses
C.

▷ Claim 18. Either S3 \ (C ∪ S2) is non-empty or S4 \ (C ∪ S3) is non-empty.

For the sake of contradiction, suppose that both sets S3 \ (C ∪ S2), S4 \ (C ∪ S3) are
empty. Then C ⊇ S4 \ S3 and C ⊇ S3 \ S2. Consequently, both end-nodes of e3 are in C

(since a3 ∈ S3 \ S2 and b3 ∈ S4 \ S3). This leads to a contradiction, since e3 ∈ F ′ is incident
to an active set in C, call it C3 (i.e., e3 ∈ δ(C3)), hence, one of the end-nodes of e3 is in both
C and C3, whereas the active sets are pairwise disjoint.

ICALP 2023

15:12 Generalizing the WGMV Primal-Dual Method

To conclude the proof of the lemma, suppose that S4 \(C∪S3) is non-empty (by Claim 18);
the other case, namely, S3 \ (C ∪ S2) ̸= ∅, can be handled by the same arguments. Then, by
property (γ), S4 \ (C ∪ S3) is a violated set, therefore, it contains a minimal violated set,
call it C̃. Clearly, the mapping ψ from C to L maps the active set C̃ to a set S

C̃
. Either

S
C̃

= S4 or else S
C̃

is a subset of of S4 \ S3. Both cases give contradictions; in the first case,
S4 is colored red, and in the second case, vS4 has ≥ 2 children in T so that S4 is colored
either green or red. Thus, we have proved the first part of the lemma.

The second part of the lemma follows by Lemma 13 and the sketch given below Lemma 13.
In more detail, at the start of the second phase, each node of T has ≤ 2 tokens, by Lemma 14.
In the second phase, we redistribute the tokens such that each (non-root) black node ends up
with no tokens, and each red/green node vS receives ≤ 6 redistributed tokens because there
are ≤ 3 black ancestor nodes of vS that could send their tokens to vS (by the first part of the
lemma). Hence, each non-root non-black node has ≤ 8 tokens, after token redistribution. ◀

4 O(1)-Approximation Algorithm for Augmenting Small Cuts

In this section, we give a 16-approximation algorithm for the AugSmallCuts problem, thereby
proving Theorem 4. Our algorithm for AugSmallCuts is based on a reduction to an instance of
the f -connectivity problem on the graph H = (V,L) for a pliable function f with property (γ).

Recall the AugSmallCuts problem: we are given an undirected graph G = (V,E) with
edge-capacities u ∈ QE

≥0, a set of links L ⊆
(

V
2
)

with costs c ∈ QL
≥0, and a threshold λ̃ ∈ Q≥0.

A subset F ⊆ L of links is said to augment a node-set S if there exists a link e ∈ F with
exactly one end-node in S. The objective is to find a minimum-cost F ⊆ L that augments
all non-empty S ⊊ V with u(δE(S)) < λ̃.

Proof of Theorem 4. Define f : 2V → {0, 1} such that f(S) = 1 if and only if S /∈ {∅, V } and
u(δE(S)) < λ̃. We apply Theorem 3 for the f -connectivity problem on the graph H = (V,L)
with edge-costs c ∈ QL

≥0 to obtain a 16-approximate solution F ⊆ L. By our choice of f ,
there is a one-to-one cost-preserving correspondence between feasible augmentations for
AugSmallCuts and feasible solutions to the f -connectivity problem. Thus, it remains to
argue that the assumptions of Theorem 3 hold.

First, we show that f is pliable. Note that f is symmetric and f(V) = 0. Consider sets
A,B ⊆ V with f(A) = f(B) = 1. By submodularity and symmetry of cuts in undirected
graphs, we have: max{u(δ(A ∪B)) + u(δ(A ∩B)), u(δ(A \B)) + u(δ(B \A))} ≤ u(δ(A)) +
u(δ(B)). Since the right hand side is strictly less than 2λ̃, we have f(A ∩B) + f(A ∪B) ≥ 1
and f(A \B) + f(B \A) ≥ 1, hence, f is pliable.

Second, we argue that f satisfies property (γ). Fix some edge-set F ⊆ L, and define
f ′ : 2V → {0, 1} such that f ′(S) = 1 if and only if f(S) = 1 and δF (S) = ∅. By Fact 8,
f ′ is also pliable. Consider sets C, S1, S2 ⊆ V , S1 ⊊ S2, that are violated w.r.t. f , F , i.e.,
f ′(C) = f ′(S1) = f ′(S2) = 1. Further, suppose that C is minimally violated, and C crosses
both S1 and S2. Suppose that S2 \ (S1 ∪C) is non-empty (the other case is trivial). To show
that S2 \ (S1 ∪C) is violated w.r.t. f, F , we have to show that (i) δF (S2 \ (S1 ∪C)) is empty
and (ii) u(δE(S2 \ (S1 ∪ C))) < λ̃. Observe that S2 crosses (S1 ∪ C). To show (i), we apply
Fact 7 twice; first, we show that δF (S1 ∪ C) is empty (since δF (C), δF (S1) are empty), and
then we show that δF (S2 \ (S1 ∪C)) is empty (since δF (S2) is empty). To show (ii), observe
that the multiset

δE(S2 \ (S1 ∪ C)) ∪ δE(C \ S2) is a (multi-)subset of δE(S2) ∪ δE(C ∪ S1).

I. Bansal, J. Cheriyan, L. Grout, and S. Ibrahimpur 15:13

(Note that for disjoint sets A1, A2, A3 ⊊ V , δ(A1) ∪ δ(A2) is a (multi-)subset of δ(A1 ∪A3) ∪
δ(A2 ∪A3).) Moreover, we claim that u(δE(C ∪ S1)) < λ̃ and u(δE(C \ S2)) ≥ λ̃. The two
claims immediately imply (ii) (since u(δE(S2)) < λ̃).

Next, we prove the two claims. Note that the sets C ∩ S1, C \ S1, S1 \C, V \ (C ∪ S1) are
non-empty, and note that f ′(C∩S1) = 0 = f ′(C \S1) since C is a minimal violated set. Since
f ′ is pliable and f ′(C) = 1 = f ′(S1), we have f ′(C ∪ S1) = 1. By Fact 7, δF (C ∪ S1) = ∅,
hence, f(C ∪ S1) = 1; equivalently, u(δE(C ∪ S1)) < λ̃. Since C is a minimal violated set,
f ′(C \ S2) = 0. Moreover, δF (C \ S2) = ∅, by Fact 7. Hence, f(C \ S2) = 0; equivalently,
u(δE(C \ S2)) ≥ λ̃.

Last, we describe a polynomial-time subroutine that for any F ⊆ L gives the collection of
all minimal violated sets w.r.t. f , F . Assign a capacity of λ̃ to all edges in F , and consider
the graph G′ = (V,E′) where E′ := E ∪ F . Then, the family of minimal violated sets is
given by {∅ ⊊ S ⊊ V : u(δE′(S)) < λ̃, u(δE′(A)) ≥ λ̃ ∀ ∅ ⊊ A ⊊ S}. We use the notion
of solid sets to find all such minimally violated sets; see Naor, Gusfield, and Martel [29]
and see Frank’s book [12]. A solid set of an undirected graph H = (V,E′′) with capacities
w ∈ RE′′

≥0 on its edges is a non-empty node-set Z ⊊ V such that w(δE′′(X)) > w(δE′′(Z)) for
all non-empty X ⊊ Z. Note that the family of minimal violated sets of interest to us is a
sub-family of the family of solid sets of G′. The family of all solid sets of a graph can be
listed in polynomial time, see [29] and [12, Chapter 7.3]. Hence, we can find all minimal
violated sets w.r.t. f , F in polynomial time, by examining the list of solid sets to check
(1) whether there is a solid set S that is violated, and (2) whether every proper subset of S
that is a solid set is not violated. This completes the proof of the theorem. ◀

5 O(k/umin)-Approximation Algorithm for the Capacitated
k-Edge-Connected Subgraph Problem

In this section, we give a 16 · ⌈k/umin⌉-approximation algorithm for the Cap-k-ECSS problem,
thereby proving Theorem 5. Our algorithm is based on repeated applications of Theorem 4.

Recall the capacitated k-edge-connected subgraph problem (Cap-k-ECSS): we are given
an undirected graph G = (V,E) with edge costs c ∈ QE

≥0 and edge capacities u ∈ ZE
≥0. The

goal is to find a minimum-cost subset of the edges F ⊆ E such that the capacity across any
cut in (V, F) is at least k, i.e., u(δF (S)) ≥ k for all non-empty sets S ⊊ V .

Proof of Theorem 5. The algorithm is as follows: Initialize F := ∅. While the minimum
capacity of a cut δ(S), ∅ ̸= S ⊊ V, in (V, F) is less than k, run the approximation algorithm
from Theorem 4 with input G = (V, F) and L = E \F , to augment all cuts δ(S), ∅ ≠ S ⊊ V,

with u(δ(S)) < k and obtain a valid augmentation F ′ ⊆ L. Update F by adding F ′, that is,
F := F ∪ F ′. On exiting the while loop, output the set of edges F .

At any step of the algorithm, let λ denote the minimum capacity of a cut in (V, F), i.e.,
λ := min{u(δF (S)) : ∅ ⊊ S ⊊ V }.

The above algorithm outputs a feasible solution since, upon exiting the while loop, λ is
at least k. Let F ∗ ⊆ E be an optimal solution to the Cap-k-ECSS instance. Notice that
F ∗ \F is a feasible choice for F ′ during any iteration of the while loop. Hence, by Theorem 4,
c(F ′) ≤ 16 · c(F ∗). We claim that the above algorithm requires at most ⌈ k

umin
⌉ iterations of

the while loop. This holds because each iteration of the while loop (except possibly the last
iteration) raises λ by at least umin. (At the start of the last iteration, k − λ could be less
than umin, and, at the end of the last iteration, λ could be equal to k). Hence, at the end of
the algorithm, c(F) ≤ 16 · ⌈ k

umin
⌉c(F ∗). This completes the proof. ◀

ICALP 2023

15:14 Generalizing the WGMV Primal-Dual Method

We remark that our new result (Theorem 4) is critical for the bound of ⌈ k
umin

⌉ on the
number of iterations of this algorithm. Earlier methods only allowed augmentations of
minimum cuts, so such methods may require as many as Ω(k) iterations. (In more detail, the
earlier methods would augment the cuts of (V, F) of capacity λ but would not augment the
cuts of capacity ≥ λ+ 1; thus, cuts of capacity λ+ 1 could survive the augmentation step.)

6 O(1)-Approximation Algorithm for (p, 2)-FGC

In this section, we present a 20-approximation algorithm for (p, 2)-FGC, by applying our
results from Section 3.

Recall (from Section 1) that the algorithmic goal in (p, 2)-FGC is to find a minimum-cost
edge-set F such that for any pair of unsafe edges e, f ∈ F ∩ U, the subgraph (V, F \ {e, f})
is p-edge connected.

Our algorithm works in two stages. First, we compute a feasible edge-set F1 for (p, 1)-FGC
on the same input graph, by applying the 4-approximation algorithm of [5]. We then augment
the subgraph (V, F1) using additional edges. Since F1 is a feasible edge-set for (p, 1)-FGC,
any cut δ(S), ∅ ⊊ S ⊊ V , in the subgraph (V, F1) either (i) has at least p safe edges or
(ii) has at least p+ 1 edges (see below for a detailed argument). Thus the cuts that need to
be augmented have exactly p+ 1 edges and contain at least two unsafe edges. Let us call
such cuts deficient. Augmenting all deficient cuts by at least one (safe or unsafe) edge will
ensure that we have a feasible solution to (p, 2)-FGC.

The following example shows that when p is odd, then the function f in the f -connectivity
problem associated with (p, 2)-FGC may not be an uncrossable function. In other words,
the indicator function f : 2V → {0, 1} of the sets S such that δ(S) is a deficient cut could
violate the definition of an uncrossable function.

▶ Example 19. We construct the graph G by starting with a 4-cycle v1, v2, v3, v4, v1 and
then replacing each edge of the 4-cycle by a pair of parallel edges; thus, we have a 4-regular
graph with 8 edges; we designate the following four edges as unsafe (and the other four
edges are safe): both copies of edge {v1, v4}, one copy of edge {v1, v2}, and one copy of edge
{v3, v4}. Clearly, G is a feasible instance of (3, 1)-FGC. On the other hand, G is infeasible
for (3, 2)-FGC, and the cuts δ({v1, v2}) and δ({v2, v3}) are deficient. Note that the function
f : {v1, v2, v3, v4} → {0, 1} that has f({v1, v2}) = f({v2, v3}) = f({v1}) = f({v4}) = 1 and
f(S) = 0 for all other S ⊆ V is not uncrossable (observe that the cuts δ(v2) and δ(v3) are
not deficient). Moreover, observe that the minimal violated set C = {v2, v3} crosses the
violated set S = {v1, v2}.

Proof of Theorem 6. In the following, we use F to denote the set of edges picked by the
algorithm at any step of the execution; we mention that our correctness arguments are valid
despite this ambiguous notation; moreover, we use δ(S) rather than δF (S) to refer to a cut
of the subgraph (V, F), where ∅ ̸= S ⊆ V .

Since F is a feasible edge-set for (p, 1)-FGC, any cut δ(S) (where ∅ ̸= S ⊆ V) either
(i) has at least p safe edges or (ii) has at least p + 1 edges. Consider a node-set S that
violates the requirements of the (p, 2)-FGC problem. We have ∅ ≠ S ⊊ V and there exist two
unsafe edges e, f ∈ δ(S) such that |δF (S) \ {e, f}| ≤ p− 1. Since F is feasible for (p, 1)-FGC,
we have |δ(S) \ {e}| ≥ p and |δ(S) \ {f}| ≥ p. Thus, |δF (S)| = p+ 1. In other words, the
node-sets S that need to be augmented have exactly p + 1 edges in δ(S), at least two of
which are unsafe edges. Augmenting all such violated sets by at least one (safe or unsafe)
edge will result in a feasible solution to (p, 2)-FGC. Let f : 2V → {0, 1} be the indicator
function of these violated sets. Observe that f is symmetric, that is, f(S) = f(V \S) for any

I. Bansal, J. Cheriyan, L. Grout, and S. Ibrahimpur 15:15

S ⊆ V ; this additional property of f is useful for our arguments. We claim that f is a pliable
function that satisfies property (γ), hence, we obtain an O(1)-approximation algorithm for
(p, 2)-FGC, via the primal-dual method and Theorem 3.

Our proof of the following key lemma is presented in [3, Section 5].

▶ Lemma 20. f is a pliable function that satisfies property (γ). Moreover, for even p, f is
an uncrossable function.

Lastly, we show that there is a polynomial-time subroutine for computing the minimal
violated sets. Consider the graph (V, F). Note that size of a minimum cut of (V, F) is at
least p since F is a feasible edge-set for (p, 1)-FGC. The violated sets are subsets S ⊆ V such
that δ(S) contains exactly p+ 1 edges, at least two of which are unsafe edges. Clearly, all the
violated sets are contained in the family of sets S such that δ(S) is a 2-approximate min-cut
of (V, F); in other words, {S ⊊ V : p ≤ |δ(S)| ≤ 2p} contains all the violated sets. It is well
known that the family of 2-approximate min-cuts in a graph can be listed in polynomial
time, see [22, 28]. Hence, we can find all violated sets and all minimally violated sets in
polynomial time.

Thus, we have a 20-approximation algorithm for (p, 2)-FGC via the primal-dual algorithm
of [33] based on our results in Section 3. Furthermore, for even p, the approximation ratio
is 6(= 4 + 2) since the additive approximation-loss for the augmenting step is 2 when f is
uncrossable (see Theorem 9). This completes the proof of Theorem 6. ◀

References
1 David Adjiashvili, Felix Hommelsheim, and Moritz Mühlenthaler. Flexible Graph Connectivity.

Mathematical Programming, 192:409–441, 2022. doi:10.1007/s10107-021-01664-9.
2 Ajit Agrawal, Philip Klein, and R Ravi. When Trees Collide: An Approximation Algorithm for

the Generalized Steiner Problem on Networks. SIAM Journal on Computing, 24(3):440–456,
1995. doi:10.1137/S0097539792236237.

3 Ishan Bansal, Joseph Cheriyan, Logan Grout, and Sharat Ibrahimpur. Improved Approximation
Algorithms by Generalizing the Primal-Dual Method Beyond Uncrossable Functions. CoRR,
abs/2209.11209v2, 2022. arXiv:2209.11209.

4 András A. Benczúr and Michel X. Goemans. Deformable Polygon Representation and Near-
Mincuts. In Building Bridges. Bolyai Society Mathematical Studies, pages 103–135. Springer,
2008. doi:10.1007/978-3-540-85221-6_3.

5 Sylvia C. Boyd, Joseph Cheriyan, Arash Haddadan, and Sharat Ibrahimpur. Approximation
algorithms for flexible graph connectivity. Mathematical Programming, 2023. doi:10.1007/
s10107-023-01961-5.

6 Deeparnab Chakrabarty, Chandra Chekuri, Sanjeev Khanna, and Nitish Korula. Ap-
proximability of Capacitated Network Design. Algorithmica, 72(2):493–514, 2015. doi:
10.1007/s00453-013-9862-4.

7 Chandra Chekuri and Rhea Jain. Approximating Flexible Graph Connectivity via Räcke Tree
based Rounding. CoRR, abs/2211.08324, 2022. doi:10.48550/arXiv.2211.08324.

8 Chandra Chekuri and Rhea Jain. Augmentation based Approximation Algorithms for Flexible
Network Design. CoRR, abs/2209.12273, 2022. doi:10.48550/arXiv.2209.12273.

9 George B. Dantzig, Lester R. Ford Jr., and Delbert R. Fulkerson. A Primal-Dual Algorithm
for Linear Programs. In Linear Inequalities and Related Systems, volume 38 of Annals
of Mathematics Studies, pages 171–182. Princeton University Press, 1957. doi:10.1515/
9781400881987-008.

10 Reinhard Diestel. Graph Theory. Graduate Texts in Mathematics. Springer, 2017. doi:
10.1007/978-3-662-53622-3.

11 Lisa Fleischer, Kamal Jain, and David P. Williamson. Iterative rounding 2-approximation
algorithms for minimum-cost vertex connectivity problems. Journal of Computer and System
Sciences, 72(5):838–867, 2006. doi:10.1016/j.jcss.2005.05.006.

ICALP 2023

https://doi.org/10.1007/s10107-021-01664-9
https://doi.org/10.1137/S0097539792236237
https://arxiv.org/abs/2209.11209
https://doi.org/10.1007/978-3-540-85221-6_3
https://doi.org/10.1007/s10107-023-01961-5
https://doi.org/10.1007/s10107-023-01961-5
https://doi.org/10.1007/s00453-013-9862-4
https://doi.org/10.1007/s00453-013-9862-4
https://doi.org/10.48550/arXiv.2211.08324
https://doi.org/10.48550/arXiv.2209.12273
https://doi.org/10.1515/9781400881987-008
https://doi.org/10.1515/9781400881987-008
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1016/j.jcss.2005.05.006

15:16 Generalizing the WGMV Primal-Dual Method

12 András Frank. Connections in Combinatorial Optimization, volume 38 of Oxford Lecture
Series in Mathematics and Its Applications. Oxford University Press, 2011.

13 Greg N. Frederickson and Joseph F. JáJá. Approximation Algorithms for Several Graph
Augmentation Problems. SIAM Journal on Computing, 10(2):270–283, 1981. doi:10.1137/
0210019.

14 Harold N. Gabow and Suzanne Gallagher. Iterated Rounding Algorithms for the Smallest
k-Edge Connected Spanning Subgraph. SIAM Journal on Computing, 41(1):61–103, 2012.
doi:10.1137/080732572.

15 Harold N. Gabow, Michel X. Goemans, Éva Tardos, and David P. Williamson. Approximating
the Smallest k-Edge Connected Spanning Subgraph by LP-Rounding. Networks, 53(4):345–357,
2009. doi:10.1002/net.20289.

16 Harold N. Gabow, Michel X. Goemans, and David P. Williamson. An efficient approximation
algorithm for the survivable network design problem. Mathematical Programming, 82:13–40,
1998. doi:10.1007/BF01585864.

17 Michel X. Goemans, Andrew V. Goldberg, Serge A. Plotkin, David B. Shmoys, Éva Tardos,
and David P. Williamson. Improved Approximation Algorithms for Network Design Problems.
In Proceedings of the 5th Symposium on Discrete Algorithms, pages 223–232, 1994.

18 Michel X. Goemans and David P. Williamson. A General Approximation Technique for
Constrained Forest Problems. SIAM Journal on Computing, 24(2):296–317, 1995. doi:
10.1137/S0097539793242618.

19 Michel X. Goemans and David P. Williamson. The Primal-Dual Method for Approximation
Algorithms and Its Application to Network Design Problems. In Approximation Algorithms
for NP-Hard Problems, chapter 4, pages 144–191. PWS Publishing Company, 1996. URL:
https://math.mit.edu/~goemans/PAPERS/book-ch4.pdf.

20 Kamal Jain. A Factor 2 Approximation Algorithm for the Generalized Steiner Network
Problem. Combinatorica, 21(1):39–60, 2001. doi:10.1007/s004930170004.

21 David S. Johnson, Maria Minkoff, and Steven Phillips. The Prize Collecting Steiner Tree
Problem: Theory and Practice. In David B. Shmoys, editor, Proceedings of the 11th Symposium
on Discrete Algorithms, pages 760–769, 2000. URL: https://dl.acm.org/doi/10.5555/
338219.338637.

22 David R. Karger and Clifford Stein. A New Approach to the Minimum Cut Problem. Journal
of the ACM, 43(4):601–640, 1996. doi:10.1145/234533.234534.

23 Samir Khuller and Ramakrishna Thurimella. Approximation Algorithms for Graph Augmen-
tation. Journal of Algorithms, 14(2):214–225, 1993. doi:10.1006/jagm.1993.1010.

24 Samir Khuller and Uzi Vishkin. Biconnectivity Approximations and Graph Carvings. Journal
of the ACM, 41(2):214–235, 1994. doi:10.1145/174652.174654.

25 Harold W. Kuhn. The Hungarian Method for the Assignment Problem. Naval Research
Logistics Quarterly, 2(1-2):83–97, 1955. doi:10.1002/nav.3800020109.

26 Lap Chi Lau, R. Ravi, and Mohit Singh. Iterative Methods in Combinatorial Optimization.
Cambridge Texts in Applied Mathematics. Cambridge University Press, 2011. doi:10.1017/
CBO9780511977152.

27 Milena Mihail, David Shallcross, Nate Dean, and Marco Mostrel. A Commercial Application of
Survivable Network Design: ITP/INPLANS CCS Network Topology Analyzer. In Proceedings
of the 7th Symposium on Discrete Algorithms, pages 279–287, 1996. URL: https://dl.acm.
org/doi/10.5555/313852.314074.

28 Hiroshi Nagamochi, Kazuhiro Nishimura, and Toshihide Ibaraki. Computing All Small Cuts
in an Undirected Network. SIAM Journal on Discrete Mathematics, 10(3):469–481, 1997.
doi:10.1137/S0895480194271323.

29 Dalit Naor, Dan Gusfield, and Charles Martel. A Fast Algorithm for Optimally Increasing
the Edge Connectivity. SIAM Journal on Computing, 26(4):1139–1165, 1997. doi:10.1137/
S0097539792234226.

https://doi.org/10.1137/0210019
https://doi.org/10.1137/0210019
https://doi.org/10.1137/080732572
https://doi.org/10.1002/net.20289
https://doi.org/10.1007/BF01585864
https://doi.org/10.1137/S0097539793242618
https://doi.org/10.1137/S0097539793242618
https://math.mit.edu/~goemans/PAPERS/book-ch4.pdf
https://doi.org/10.1007/s004930170004
https://dl.acm.org/doi/10.5555/338219.338637
https://dl.acm.org/doi/10.5555/338219.338637
https://doi.org/10.1145/234533.234534
https://doi.org/10.1006/jagm.1993.1010
https://doi.org/10.1145/174652.174654
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1017/CBO9780511977152
https://doi.org/10.1017/CBO9780511977152
https://dl.acm.org/doi/10.5555/313852.314074
https://dl.acm.org/doi/10.5555/313852.314074
https://doi.org/10.1137/S0895480194271323
https://doi.org/10.1137/S0097539792234226
https://doi.org/10.1137/S0097539792234226

I. Bansal, J. Cheriyan, L. Grout, and S. Ibrahimpur 15:17

30 Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency, volume 24 of
Algorithms and Combinatorics. Springer, 2003.

31 Vijay V. Vazirani. Approximation Algorithms. Springer, 2003. doi:10.1007/
978-3-662-04565-7.

32 David P. Williamson and Michel X. Goemans. Computational Experience with an Approx-
imation Algorithm on Large-Scale Euclidean Matching Instances. INFORMS Journal on
Computing, 8(1):29–40, 1996. doi:10.1287/ijoc.8.1.29.

33 David P. Williamson, Michel X. Goemans, Milena Mihail, and Vijay V. Vazirani. A Primal-
Dual Approximation Algorithm for Generalized Steiner Network Problems. Combinatorica,
15(3):435–454, 1995. doi:10.1007/BF01299747.

34 David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, 2011.

A Missing Proofs from Section 3

This section has several lemmas and proofs from Section 3 that are used to prove our main
result, Theorem 3.

▶ Lemma 21. Suppose S1 is a witness for edge e1 and S2 is a witness for edge e2 such that
S1 overlaps S2. Then there exist S′

1 and S′
2 satisfying the following properties:

(i) S′
1 is a valid witness for edge e1, S′

2 is a valid witness for edge e2, and S′
1 does not

overlap S′
2.

(ii) S′
1, S

′
2 ∈ {S1, S2, S1 ∪ S2, S1 ∩ S2, S1 \ S2, S2 \ S1}.

(iii) either S′
1 = S1 or S′

2 = S2.

Proof. We perform an exhaustive case analysis to check that the lemma is true. Note that
at least two of the four sets S1 ∪ S2, S1 ∩ S2, S1 \ S2, S2 \ S1 must be violated in the current
iteration. We consider the following cases.
1. If S1 ∪ S2 and S1 ∩ S2 are violated or S1 \ S2 and S2 \ S1 are violated, then the proof of

Lemma 5.2 in [33] can be applied.
2. If S1 ∪ S2 and S1 \ S2 are violated, then consider where the end-nodes of the edges e1

and e2 lie. If e1 ∈ E(S1 \ S2, V \ (S1 ∪ S2)) and e2 ∈ E(S1 \ S2, S1 ∩ S2), then we can set
S′

1 = S1 ∪ S2 and S′
2 = S2. The other possibilities for e1 and e2 are handled similarly.

3. If S1 ∩ S2 and S1 \ S2 are violated, again consider where the end-nodes of the edges e1
and e2 lie. If e1 ∈ E(S1 \ S2, V \ (S1 ∪ S2)) and e2 ∈ E(S1 \ S2, S1 ∩ S2), then we can set
S′

1 = S1 ∩ S2 and S′
2 = S2. The other possibilities for e1 and e2 are handled similarly.

This completes the proof of the lemma. ◀

▶ Lemma 22. Suppose a set A1 overlaps a set A2 and a third set A3 does not overlap A1
nor A2. Then A3 does not overlap any of the sets A1 ∪A2, A1 ∩A2, A1 \A2, A2 \A1.

Proof. Note that since A3 does not overlap A1 (or A2), they are either disjoint or one
contains the other. We consider the following cases.
1. Suppose A3 ∩ A1 = ∅. Then A2 ̸⊆ A3 since A1 ∩ A2 ̸= ∅. If A3 ∩ A2 = ∅, then

A3 ⊆ V \A1 ∪ A2 and we are done. Finally if A3 ⊆ A2, then A3 ⊆ A2 \A1 and we are
done.

2. Suppose A1 ⊆ A3. Then A3 ∩A2 ≠ ∅ since A1 ∩A2 ̸= ∅. Also, A3 ̸⊆ A2 since A1 ̸⊆ A2.
If A2 ⊆ A3, then A1 ∪A2 ⊆ A3 and we are done.

3. Suppose A3 ⊆ A1. Then A2 ̸⊆ A3 since A2 \A1 ̸= ∅. If A3 ⊆ A2, then A3 ⊆ A1 ∩A2 and
we are done. Finally if A3 ∩A2 = ∅, then A3 ⊆ A1 \A2 and we are done. ◀

ICALP 2023

https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1007/978-3-662-04565-7
https://doi.org/10.1287/ijoc.8.1.29
https://doi.org/10.1007/BF01299747

15:18 Generalizing the WGMV Primal-Dual Method

▶ Lemma 11. There exists a laminar family of witness sets.

Proof. We show that any witness family can be uncrossed and made laminar. We prove this
by induction on the size of the witness family ℓ.

Base Case: Suppose ℓ = 2, then one application of Lemma 21 is sufficient.

Inductive Hypothesis: If S1, . . . , Sℓ are witness sets for edges e1, . . . , eℓ respectively with
ℓ ≤ k, then, by repeatedly applying Lemma 21, one can construct witness sets S′

1, . . . , S
′
ℓ

for the edges e1, . . . , eℓ respectively such that S′
1, . . . , S

′
ℓ is a laminar family.

Inductive Step: Consider k + 1 witness sets S1, . . . , Sk+1. By the inductive hypothesis, we
can uncross all the witness sets S1, . . . , Sk to obtain witness sets S′

1, . . . , S
′
k that form a

laminar family. We now consider the following cases.
1. If Sk+1 does not overlap some S′

i, say S′
1, then we can apply the inductive hypothesis

to the k sets S′
2, . . . , S

′
k, Sk+1 and we obtain a laminar family of witness sets, none of

which overlap S′
1 either (by Lemma 22) and so we are done.

2. Suppose Sk+1 overlaps all the sets S′
1, . . . , S

′
k and for some S′

i, say S′
1, applying

Lemma 21 to the pair S′
1, Sk+1 gives S′

1, S
′
k+1. Then S′

1 does not overlap any of the
witness sets S′

2, . . . , S
′
k+1, hence, applying the inductive hypothesis to these k sets gives

us a laminar family of witness sets S′′

2 , . . . , S
′′

k . By Lemma 22, S′
1 does not overlap any

of the sets S′′

2 , . . . , S
′′

k and so we are done.
3. Suppose Sk+1 overlaps all the sets S′

1, . . . , S
′
k and, for every S′

i, applying Lemma 21 to
the pair S′

i, Sk+1 gives S′′
i , Sk+1. Then after doing this for every S′

i, we end up with
the witness family S′′

1 , . . . , S
′′

k , Sk+1 with the property that Sk+1 does not overlap any
of the other sets. Applying the inductive hypothesis to the k sets S′′

1 , . . . , S
′′

k gives us
a laminar family of witness sets S′′′

1 , . . . , S
′′′

k . By Lemma 22, Sk+1 does not overlap
any of the sets S′′′

1 , . . . , S
′′′

k and so we are done. ◀

B Optimal Dual Solutions with Non-Laminar Supports

In this section, we describe an instance of the AugSmallCuts problem where none of the
optimal dual solutions (to the dual LP given in (2.1), Section 2) have a laminar support.
Recall that the connectivity requirement function f for the AugSmallCuts problem is pliable
and satisfies property (γ), as seen in the proof of Theorem 4.

Consider the graph G = (V,E) (shown in Figure 1 below using solid edges) which is a
cycle on 4 nodes 1, 2, 3, 4, in that order. Edge-capacities are given by u12 = 3, u23 = 4, u34 =
2, u41 = 1. The link-set (shown using dashed edges) is L = {12, 23, 34, 41}, a disjoint copy of
E. Link-costs are given by c12 = c23 = c34 = 1 and c41 = 2.

Consider the AugSmallCuts instance that arises when we choose λ̃ = 6. The family of
small cuts (with capacity strictly less than λ̃) is given by

⋃
S∈A{S, V \ S}, where

A = {{1}, {1, 2}, {2, 3}, {1, 2, 3}}.

The associated pliable function f satisfies f(S) = 1 if and only if S ∈ A or V \ S ∈ A holds.
Observe that f is not uncrossable since f({1, 2}) = 1 = f({2, 3}), but f({1, 2} ∩ {2, 3}) =
f({2}) = 0 and f({2, 3} \ {1, 2}) = f({3}) = 0. Also note that the minimal violated set
{2, 3} (w.r.t. F = ∅) crosses the violated set {1, 2}.

It can be seen that there are three inclusion-wise minimal link-sets that are feasible for
the above instance and these are given by

C := {{12, 23, 34}, {12, 41}, {34, 41}}.

I. Bansal, J. Cheriyan, L. Grout, and S. Ibrahimpur 15:19

Figure 1 An instance of the AugSmallCuts problem where none of the optimal dual solutions
have a laminar support.

Since each F ∈ C has cost 3, the optimal value for the instance is 3. Next, since L contains
at least two links from every nontrivial cut, the vector x ∈ [0, 1]L with xe = 1

2 , ∀e ∈ L is
a feasible augmentation for the fractional version of the instance, i.e., x is feasible for the
primal LP given in (2.1), Section 2. Therefore, the optimal value of the primal LP is at
most 5

2 .
Now, consider the dual LP, which is explicitly stated below. The dual packing-constraints

are listed according to the following ordering of the links: 12, 23, 34, 41. For notational
convenience, we use the shorthand y1 to denote the dual variable y{1} corresponding to the
set {1}. We use similar shorthand to refer to the dual variables of the other sets; thus, y234
refers to the dual variable y{2,3,4}, etc.

max (y1 + y234) + (y12 + y34) + (y23 + y14) + (y123 + y4)
subject to: (y1 + y234) + (y23 + y14) ≤ 1

(y12 + y34) ≤ 1
(y23 + y14) + (y123 + y4) ≤ 1

(y1 + y234) + (y12 + y34) + (y123 + y4) ≤ 2
y ≥ 0.

Observe that adding all packing constraints gives 2 ·
∑

S∈A(yS + yV \S) ≤ 5, hence, the
optimal value of the dual LP is at most 5/2. Moreover, a feasible dual solution with objective
5/2 must satisfy the following conditions:

y1 + y234 = y23 + y14 = y123 + y4 = 1
2 and y12 + y34 = 1.

Clearly, there is at least one solution to the above set of equations, hence, by LP duality, the
optimal value of both the primal LP and the dual LP is 5/2.

Furthermore, any optimal dual solution y∗ satisfies max(y∗
S , y

∗
V \S) > 0 for all S ∈ A (by

the above set of equations). We conclude by arguing that for any optimal dual solution y∗, its
support S(y∗) = {S ⊆ V : y∗

S > 0} is non-laminar, because some two sets A,B ∈ S(y∗) cross.
Since the relation A crosses B is closed under taking set-complements (w.r.t. the ground-set V),
we may assume w.l.o.g. that the support contains each set in A = {{1}, {1, 2}, {2, 3}, {1, 2, 3}}.
The support of y∗ is not laminar because {1, 2} and {2, 3} cross.

ICALP 2023

Approximation Algorithms for Envy-Free Cake
Division with Connected Pieces
Siddharth Barman #

Indian Institute of Science, Bangalore, India

Pooja Kulkarni #

University of Illinois at Urbana-Champaign, IL, USA

Abstract
Cake cutting is a classic model for studying fair division of a heterogeneous, divisible resource
among agents with individual preferences. Addressing cake division under a typical requirement
that each agent must receive a connected piece of the cake, we develop approximation algorithms for
finding envy-free (fair) cake divisions. In particular, this work improves the state-of-the-art additive
approximation bound for this fundamental problem. Our results hold for general cake division
instances in which the agents’ valuations satisfy basic assumptions and are normalized (to have
value 1 for the cake). Furthermore, the developed algorithms execute in polynomial time under the
standard Robertson-Webb query model.

Prior work has shown that one can efficiently compute a cake division (with connected pieces) in
which the additive envy of any agent is at most 1/3. An efficient algorithm is also known for finding
connected cake divisions that are (almost) 1/2-multiplicatively envy-free. Improving the additive
approximation guarantee and maintaining the multiplicative one, we develop a polynomial-time
algorithm that computes a connected cake division that is both

(
1
4 + o(1)

)
-additively envy-free and(

1
2 − o(1)

)
-multiplicatively envy-free. Our algorithm is based on the ideas of interval growing and

envy-cycle elimination.
In addition, we study cake division instances in which the number of distinct valuations across

the agents is parametrically bounded. We show that such cake division instances admit a fully
polynomial-time approximation scheme for connected envy-free cake division.

2012 ACM Subject Classification Theory of computation → Algorithmic game theory; Theory of
computation → Algorithmic game theory and mechanism design

Keywords and phrases Fair Division, Envy-Freeness, Envy-Cycle Elimination

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.16

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2208.08670 [6]

Funding Siddharth Barman: Siddharth Barman gratefully acknowledges the support of a SERB
Core research grant (CRG/2021/006165).

1 Introduction

Cake cutting is an exemplar of fair division literature [9, 22, 21]. Since the foundational work
of Steinhaus, Banach, and Knaster [24], fair cake division has been extensively studied over
decades, and it continues to inspire research, including algorithmic breakthroughs [4], deep
mathematical connections [17, 20], and applicable variants [16]. This fair-division model
captures resource-allocation domains in which a divisible, heterogeneous resource (metaphor-
ically, the cake) needs to be fairly divided among agents with individual, distinct preferences.
For instance, cake division has been studied in the context of border negotiations [9] and fair
electricity division [5]. The predominant fairness notion of envy-freeness was also defined in

EA
T
C
S

© Siddharth Barman and Pooja Kulkarni;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 16; pp. 16:1–16:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:barman@iisc.ac.in
mailto:poojark2@illinois.edu
https://doi.org/10.4230/LIPIcs.ICALP.2023.16
https://arxiv.org/abs/2208.08670
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

16:2 Approximation Algorithms for Envy-Free Cake Division with Connected Pieces

the cake-division context [14]. This solution concept deems a cake division to be fair if each
agent values the piece assigned to her over that of any other agent, i.e., if the agents are not
envious of each other.

Formally, the cake is modeled as the interval [0, 1] and the cardinal preferences of the n

participating agents (over pieces of the cake) are expressed via valuation functions v1, . . . , vn;
in particular, vi(I) ∈ R+ denotes the value that agent i has for any interval I ⊆ [0, 1]. In
this work, we address cake division under the requirement that every agent must receive
a connected piece (i.e., an interval) of the cake. That is, our goal is to partition the cake
[0, 1] into exactly n pairwise-disjoint intervals and assign them among the n agents. This
connectivity requirement is standard in literature and is motivated by practical settings
wherein each agent must receive a contiguous part of the resource; consider, for instance,
division of land or non-preemptive scheduling. Hence, in this setup, an envy-free (i.e., fair)
division corresponds to a partition of [0, 1] into n pairwise-disjoint intervals, I1, I2, . . . , In,
such that assigning each interval Ii to agent i ∈ [n] results in no envy, i.e., vi(Ii) ≥ vi(Ij),
for all agents i, j ∈ [n].

The significance of envy-freeness is elevated by universal existential guarantees: under
benign assumptions on agents’ valuations, an envy-free cake division, in which each agent
receives a connected piece, is guaranteed to exist [25, 23, 27]. Here, the elegant proof of
Su [27] is considered a foundational result across all of fair division. These strong existential
results, however, do not have an algorithmic counterpart. Stromquist [26] has shown that
even a finite-time algorithm does not exist for computing an envy-free cake division with
connected pieces; this negative result holds in a model where the valuations are specified via
an (adversarial) oracle. Furthermore, it is known that, under ordinal preferences, achieving
envy-freeness with connected pieces is PPAD-hard [12].

These algorithmic barriers in route to finding exact envy-free cake divisions necessitate the
study of approximation guarantees. The current paper contributes to this research thread by
developing algorithms for finding connected cake divisions that are approximately envy-free.
In particular, this work improves the state-of-the-art additive approximation bound for this
fundamental fair division problem.

Our Results and Techniques. Our algorithmic results hold for general cake division instances
in which the agents’ valuations satisfy basic assumptions and are normalized, such that the
value for the entire cake for every agent is equal to one, i.e., vi([0, 1]) = 1 for all agents
i ∈ [n]. Furthermore, the developed algorithms execute in the standard Robertson-Webb
query model [21].

We address both additive and multiplicative approximations of envy-freeness. Specifically,
for parameter ε ∈ (0, 1), a connected cake division I1, . . . In (in which interval Ii is assigned
to agent i ∈ [n]) is said to be ε-envy-free (ε-EF) iff no agent has more than ε envy towards any
other agent, i.e., vi(Ii) ≥ vi(Ij)−ε for all agents i, j ∈ [n]. Analogously, an α-multiplicatively
envy-free (α-mult-EF) cake division I1, . . . In is one in which the envy is multiplicatively
bounded within a factor of α, i.e., vi(Ii) ≥ αvi(Ij) for all agents i, j ∈ [n]; here parameter
α ∈ (0, 1].

Our main result is a polynomial-time algorithm that computes a cake division (with
connected pieces) that is simultaneously

(1
4 + c

)
-EF and

(1
2 − c′)-mult-EF (Theorems 13

and 14); here, c and c′ are polynomially small (in n) terms. For instance, our algorithm can
be used to efficiently find a cake division that is 0.251-EF and 0.499-mult-EF.

Our result improves upon the previously best known additive approximation guarantee.
Specifically, prior work of Goldberg et al. [15] provides an efficient algorithm for computing
a 1

3 -EF cake division (with connected pieces); here, the computed allocation can leave some

S. Barman and P. Kulkarni 16:3

agents with no cake allocated to them and, hence, incur unbounded multiplicative envy.
On the multiplicative front, for a lower order term κ, Arunachaleswaran et al. [3] obtain a(1

2 − κ
)
-mult-EF guarantee, in conjunction with an additive envy bound close to 1

3 . Therefore,
for envy-free cake division, we improve the additive approximation guarantee from 1

3 to
(almost) 1

4 , while maintaining the best known multiplicative one.
Our algorithm extends the interval-growing method of [3] with the idea of bifurcating

intervals (see Definition 3). Such intervals satisfy the property that if an agent i receives
an interval that is bifurcating with respect to vi, then irrespective of how the rest of the
cake is assigned, agent i’s envy towards others remains bounded. For the algorithm’s design
and analysis, we modify each agent’s valuation to have a preference for bifurcating intervals.
With these modified valuations, we build upon the idea of interval growing. In particular, we
first obtain an allocation of (pairwise disjoint) intervals that might partially cover the entire
cake, though induce bounded envy among the agents and against the unassigned intervals.
Then, we use an envy-cycle-elimination idea to further allocate small pieces till at most
n unassigned intervals remain. Envy-graphs and the cycle-elimination method have been
extensively utilized in fair division; see, e.g., [19]. However, their use for contiguous cake
cutting (i.e., division under the contiguity requirement) is novel. We employ cycle elimination
in such a way that envy remains bounded as we allocate more and more of the cake. Finally,
we have n assigned and at most n unassigned intervals. We pair up adjacent assigned and
unassigned intervals to overall obtain a complete partition of the cake that has bounded
envy; see Section 3.1 for a detailed description of the algorithm.

It is relevant to note the technical distinctions between the algorithm of Arunachaleswaran
et al. [3] and the current one. In contrast to the prior work, the current algorithm executes
with a novel modification of the valuations (to incorporate preferences towards bifurcating
intervals). Moreover, the current analysis is more involved; in particular, the analysis requires
multiple new lemmas and consideration of intricate cases (see, e.g., Lemmas 6 to 11 and the
case analysis in the proof of Theorem 13).

Our second result addresses cake division instances in which the number of distinct
valuations is bounded. Specifically, we consider instances in which, for a parameter ε ∈ (0, 1)
and across the n agents, the number of distinct valuations is at most (εn − 1). For such
instances with bounded heterogeneity, we provide an algorithm that computes ε-EF allocations
in time polynomial in n and 1

ε (Theorem 16). Note that such settings naturally generalize
the case of identical valuations. Fair division algorithms under identical valuations have been
developed in many contexts (beyond cake division). Our result shows that, under this natural
generalization, a strong additive approximation guarantee can be obtained for connected
envy-free cake division; see Section 4.1

Additional Related Work. Prior works in (connected) cake division have also studied
improved approximation guarantees for specific valuation classes. For instance, it is shown
in [7] that a connected cake division with arbitrarily small envy can be computed efficiently
if the agents’ value densities satisfy the monotone likelihood ratios property. Another studied
valuation class is that of single-block valuations; in particular, these correspond to valuations
in which the agents have a constant density over some (agent-specific) interval of cake and
zero everywhere else. The work of Alijani et al. [1] provides an efficient algorithm for finding
(exact) envy-free cake division under single-block valuations that satisfy an ordering property.

1 We also detail at the end of the Section 4 that achieving multiplicative approximation bounds for envy
under bounded heterogeneity is as hard as it is in the general case.

ICALP 2023

16:4 Approximation Algorithms for Envy-Free Cake Division with Connected Pieces

For arbitrary single-block valuations (without the ordering property), Goldberg et al. [15]
obtain a 1

4 -EF guarantee. They also obtain NP-hardness results for connected envy-free cake
division under additional constraints, such as conforming to a given cut point.

Focussing on query complexity, Brânzei and Nisan [10] show that an ε-EF cake division
(with connected pieces) can be computed in a query efficient manner but the algorithm runs
in time exponential in n and 1

ε . By contrast, we develop polynomial-time algorithms.
The study of approximation guarantees – to bypass computational or existential barriers

– is an established research paradigm in theoretical computer science. For instance, in
discrete fair division, (multiplicative) approximation bounds for the maximin share has
received significant attention in recent years; see [2] and multiple references therein. Also, in
algorithmic game theory, approximation guarantees for Nash equilibria in two-player games
have been extensively studied; see, e.g., [11, 28, 18]. Our work contributes to this thematic
thread with a focus on cake division.

Non-Contiguous Cake Division. Algorithmic aspects of (exact) envy-free cake division
remain challenging even without the connectivity requirement. In fact, the existence of
a finite-time algorithm for noncontiguous envy-free cake division remained open until the
work of Brams and Taylor [8]. For noncontiguous envy-free cake divisions, an explicit
runtime bound – albeit a hyper-exponential one – was obtained in the notable work of
Aziz and Mackenzie [4]. Prior works have also addressed non-contiguous envy-free cake
division for special valuation classes: [1] obtains a polynomial-time algorithm for finding
(exact, but not necessarily contiguous) envy-free cake divisions under single-block valuations.
Also, [29] develops a polynomial-time algorithm for computing non-contiguous envy-free
cake divisions under single-peaked preferences. For the non-contiguous setting, [19] provides
a fully polynomial-time approximation scheme for computing approximate envy-free cake
divisions.

2 Notation and Preliminaries

We consider fair division of a divisible, heterogeneous good – i.e., a cake – among n agents.
The cake is modeled as the interval [0, 1], and the cardinal preferences of the agents i ∈ [n]
over the cake are expressed via valuation functions vi. In particular, vi(I) ∈ R+ denotes the
valuation that agent i ∈ [n] has for any interval I = [x, y] ⊆ [0, 1]; here, 0 ≤ x ≤ y ≤ 1. As
in prior works (see, e.g., [21]), we will address valuations {vi}n

i=1 that are (i) nonnegative:
vi(I) ≥ 0 for all intervals I ⊆ [0, 1], (ii) normalized: vi([0, 1]) = 1 for all agents i, (iii)
divisible: for any interval [x, y] ⊆ [0, 1] and scalar λ ∈ [0, 1], there exists a point z ∈ [x, y]
with the property that vi([x, z]) = λvi([x, y]), and (iv) additive: vi(I ∪ J) = vi(I) + vi(J) for
any pair of disjoint intervals I, J ⊆ [0, 1].

These properties ensure that for all agents i ∈ [n] and each interval I ⊆ [0, 1] we have
0 ≤ vi(I) ≤ 1. Also, note that, since the valuations vi are divisible, they are non-atomic:
vi([x, x]) = 0 for all points x ∈ [0, 1]. Relying on this property, we will throughout regard,
as a convention, two intervals to be disjoint even if they intersect exactly at an endpoint.
Our algorithms efficiently execute in the standard Robertson-Webb query model [22], that
provides access to the agents’ valuations via the following queries:

(i) Evaluation queries, Evali(x, y): Given points 0 ≤ x ≤ y ≤ 1, the oracle returns the
value that agent i has for the interval [x, y], i.e., returns vi([x, y]).

(ii) Cut queries, Cuti(x, ν): Given an initial point x ∈ [0, 1] and a value ν ∈ (0, 1), the
oracle returns the leftmost point y ∈ [x, 1] with the property that vi([x, y]) ≥ ν. If no
such y exists, the response to the query is 1.

S. Barman and P. Kulkarni 16:5

Allocations. The current work addresses fair cake division under the requirement that
each agent must receive a connected piece. That is, we focus solely on assigning to each
agent a single sub-interval of [0, 1]. Specifically, in a cake division instance with n agents, an
allocation is defined as an n-tuple of pairwise-disjoint intervals, I = (I1, I2, . . . , In), where
interval Ii is assigned to agent i ∈ [n] and

⋃n
i=1 Ii = [0, 1]. In addition, we will use the

term partial allocation to refer to an n-tuple of pairwise-disjoint intervals P = (P1, . . . , Pn)
that do not necessarily cover the entire cake, ∪i∈[n]Pi ⊊ [0, 1]. Note that, in an allocation
J = (J1, J2, . . . , Jn), partial or complete, each interval Ji is indexed to identify the agent i

that owns the interval, and not how the intervals are ordered within [0, 1].
Furthermore, for a partial allocation P = (P1, . . . , Pn), write UP = {U1, . . . , Ut} to denote

the collection of unassigned intervals that remain after the assigned ones (i.e., Pis) are
removed from [0, 1]. Formally, UP = {U1, . . . , Ut} is the minimum-cardinality collection of
disjoint intervals that satisfy

⋃
i Ui = [0, 1] \

(⋃n
j=1 Pj

)
.

Approximate Envy-Freeness. The fairness notions studied in this work are defined next.
An allocation E = (E1, . . . , En) is said to be envy free (EF) iff each agent prefers the interval
assigned to her over that of any other agent, vi(Ei) ≥ vi(Ej) for all agents i, j ∈ [n]. This
paper addresses both additive and multiplicative approximations of envy-freeness.

▶ Definition 1 (ε-EF). In a cake division instance with n agents and for a parameter
ε ∈ (0, 1), an (partial) allocation I = (I1, I2, . . . , In) is said to be ε-additively envy-free
(ε-EF) iff vi(Ii) ≥ vi(Ij)− ε, for all agents i, j ∈ [n].

▶ Definition 2 (α-mult-EF). For a parameter α ∈ (0, 1), an (partial) allocation I =
(I1, I2, . . . , In) is said to be α-multiplicatively envy-free (α-mult-EF) iff, for all agents i, j ∈ [n],
we have vi(Ii) ≥ α vi(Ij).

3 Approximation Algorithm for Envy-Free Cake Division

This section develops an algorithm for efficiently computing a cake division (with connected
pieces) that is

(1
4 + o(1)

)
-EF and

(1
2 − o(1)

)
-mult-EF.

For the design of the algorithm, we will use the notion of bifurcating intervals. For an
agent i, a bifurcating interval X satisfies the property that, if i is assigned interval X, then
one can divide the rest of the cake in any way and still agent i will have at most 1/4 envy
towards any other agent. Formally,

▶ Definition 3 (Bifurcating Intervals). An interval [x, y] ⊆ [0, 1] is said to be a bifurcating
interval for an agent i ∈ [n] iff

vi([x, y]) ≥ 1
4 , vi([0, x]) ≤ 1

2 , and vi([y, 1]) ≤ 1
2 .

For each agent i ∈ [n], we extend the valuation vi to a function v̂i which codifies a preference
towards bifurcating intervals. Formally, for each agent i ∈ [n] and any interval X ⊆ [0, 1],
define

v̂i(X) :=
{

1 if X is bifurcating for i.

vi(X) if X is not bifurcating for i.
(1)

ICALP 2023

16:6 Approximation Algorithms for Envy-Free Cake Division with Connected Pieces

We note that, in contrast to the valuation vi, the function v̂i is not additive.2 However,
analogous to vi, the function v̂i is monotonic, normalized, and nonnegative. In addition,
given access to Evali() queries, we can efficiently compute v̂i(X) for any interval X ⊆ [0, 1].
We will show in the analysis that the algorithm’s steps involving v̂is can be implemented
efficiently, given Robertson-Webb query access to the underlying valuations. The claim below
provides a bound on the value of non-bifurcating intervals.

▷ Claim 4. For any agent i ∈ [n], if Y ⊆ [0, 1] is not a bifurcating interval, then,
v̂i(Y) = vi(Y) < 1

2 .

Proof. All intervals H ⊆ [0, 1] of value vi(H) ≥ 1
2 are bifurcating; see Definition 3 and recall

that the agents’ valuations are normalized, vi([0, 1]) = 1. Hence, for any non-bifurcating
interval Y ⊆ [0, 1] we have vi(Y) < 1

2 , i.e., v̂i(Y) = vi(Y) < 1
2 (see equation (1)). ◁

We will also use the construct of an envy-graph. Specifically, for a partial allocation
P = (P1, . . . , Pn), an envy-graph GP is a directed graph over n vertices. Here, the vertices
represent the n agents and a directed edge, from vertex i to vertex j, is included in the
graph iff v̂i(Pi) < v̂i(Pj). Envy-graphs and the cycle-elimination algorithm (detailed next)
have been extensively utilized in discrete fair division; see, e.g., [19]. However, their use for
contiguous cake cutting is novel.

We will next show that, if for any partial allocation P = (P1, . . . , Pn), the envy-graph
GP contains a cycle, then we can in fact resolve the cycle – by reassigning the intervals – and
eventually obtain a partial allocation Q = (Q1, . . . , Qn) whose envy-graph GQ is acyclic.3

▶ Lemma 5. Given any partial allocation P = (P1, . . . , Pn), one can reassign the intervals
Pis among the agents and efficiently find another partial allocation Q = (Q1, . . . , Qn) with
the properties that

(i) The envy-graph GQ is acyclic.
(ii) The value v̂i(Qi) ≥ v̂i(Pi), for all agents i ∈ [n].

The proof of Lemma 5 is standard and, for completeness, is provided in Appendix A.
Recall that, for any partial allocation P = (P1, . . . , Pn), the set UP = {U1, . . . , Ut} denotes
the collection of unassigned intervals that remain after the intervals Pis are removed from
[0, 1]. Also, note that for any partial allocation P = (P1, . . . , Pn), we have |UP | ≤ n + 1.

3.1 Interval Growing and Cycle Elimination
Our algorithm (Algorithm 1) consists of two phases. In Phase I (Lines 2 to 6 in Algorithm

1), which we call the interval growing phase, the algorithm starts with empty intervals –
i.e., Pi = ∅ for all i – and iteratively grows these intervals while maintaining bounded envy
among the agents. In particular, to extend a partial allocation P = (P1, . . . , Pn), we first
judiciously select an unassigned interval U ∈ UP and then assign an inclusion-wise minimal
sub-interval of U to an agent a. The sub-interval of U and agent a are selected such that the
function value, v̂a, increases appropriately and, at the same time, the envy towards a (from
any other agents) remains bounded. Note that, in this phase, the cake might not be allocated
completely, but the invariant of bounded envy is maintained throughout. Phase I terminates
with a partial allocation P = (P 1, . . . , P n) under which each agent i ∈ [n] has bounded envy
towards the other agents and towards all the unassigned intervals U ∈ UP (see Lemma 8).

2 Also, the function v̂i is not divisible.
3 Here, the reassignment of the intervals implies that there exists a permutation π ∈ Sn such that

Qi = Pπ(i) for all agents i.

S. Barman and P. Kulkarni 16:7

Algorithm 1 Approximation Algorithm for Connected Cake Division.
Input: A cake division instance with oracle access to the valuations {vi}n

i=1 of the n agents
and a fixed constant δ ∈ (0, 1).
Output: A complete allocation (I1, . . . , In).

1: Initialize partial allocation P = (P1, . . . , Pn) = (∅, . . . , ∅) and UP = {[0, 1]}.
2: while there exists an unassigned interval U = [ℓ, r] ∈ UP and an agent i ∈ [n] such that

v̂i(U) ≥ v̂i(Pi) + δ
n do

3: Let C :=
{

i ∈ [n] : v̂i(U) ≥ v̂i(Pi) + δ
n

}
and, for every agent i ∈ C, set ri ∈ [ℓ, r] to

be the leftmost point such that v̂i([ℓ, ri]) ≥ v̂i(Pi) + δ
n .

4: Select agent a ∈ arg mini∈C ri and update the partial allocation P : assign Pa ← [ℓ, ra]
and keep the interval assignment of all other agents unchanged.

5: Update UP to be the collection of intervals that are left unassigned under the current
partial allocation P.

6: end while
7: while |UP | > n do
8: Update P = (P1, . . . , Pn) following Lemma 5 to ensure that the envy-graph GP is

acyclic.
9: Let s ∈ [n] be a source vertex in the graph GP , with assigned interval Ps = [ℓs, rs].

10: Let Ũ = [rs, r̃] ∈ UP be the unassigned interval that is adjacent (on the right) to Ps.
{Since |UP | > n, such an interval Ũ is guaranteed to exist.}

11: Write x ∈ [rs, r̃] to be the point with the property that vi([rs, x]) ≤ δ
n for all agents i

and this inequality is tight for at least one agent. Append Ps ← Ps ∪ [rs, x].
{If for all agents the value of Ũ is at most δ

n , then append Ps ← Ps ∪ Ũ .}
12: end while
13: Index the unassigned intervals Uj ∈ UP such that each Uj is adjacent to a distinct interval

Pj , for all j. {Since |UP | ≤ n, such an indexing is possible.}
14: For all agents i, set interval Ii = Pi ∪ Ui. {If an unassigned interval is not associated

with Pi, then set Ii = Pi.}
15: return allocation I = (I1, . . . , In).

At the end of Phase I, it is possible that the number of unassigned intervals is n + 1. The
objective of Phase II (Lines 7 to 12 in the algorithm) is to reduce the number of unassigned
intervals, while maintaining bounded envy between the agents and against the unassigned
intervals. Towards this, we use the cycle-elimination method (Lemma 5) to first ensure that
for the maintained partial allocation P the envy-graph GP is acyclic. Now, given that the
directed graph GP is acyclic, it necessarily admits a source vertex s ∈ [n], i.e., a vertex s with
no incoming edges. Furthermore, by the definition of the envy graph, we get that no agent
has sufficiently high envy towards the source vertex s ∈ [n]. With this guarantee in hand, we
enlarge the interval assigned to s (i.e., enlarge Ps) while maintaining bounded envy overall.
Specifically, we append to Ps a piece of small enough value from the unassigned interval Ũ

adjacent to Ps. Since |UP | = n + 1, an unassigned interval, adjacent to Ps, is guaranteed to
exist. Also, note that this extension ensures that Ps continues to be a connected piece of the
cake, i.e., agent s continues to receive a single interval. Performing such updates, Phase II
efficiently finds a partial allocation P with the property that |UP | ≤ n. Since at the end of
Phase II the number of unassigned intervals is at most n, we can associate each unassigned
interval U ∈ UP with a distinct assigned interval Pj that is adjacent to U . We merge each
assigned interval Pi with the associated and adjacent unassigned interval Ui (if any) to obtain

ICALP 2023

16:8 Approximation Algorithms for Envy-Free Cake Division with Connected Pieces

the interval Ii for each agent i ∈ [n]. The intervals I1, I2, . . . , In completely partition the
cake [0, 1] and constitute the returned allocation I = (I1, I2, . . . , In). In Appendix A.1, we
will prove that the two phases run in polynomial time under the Robertson-Webb query
model. We now establish the approximation guarantee of the Algorithm.

3.2 Approximation Guarantee
We first note a monotonicity property with respect to the function values, v̂is, satisfied during
the execution of the algorithm.

▶ Lemma 6. For any agent i ∈ [n], the function values v̂i of the assigned intervals, Pis, are
nondecreasing through the execution of Algorithm 1.

Proof. To establish the monotonicity under v̂i in Phase I, consider any iteration for the first
while-loop. Here, for the selected agent a ∈ [n], the value of the assigned interval, under v̂a,
in fact increases and for all the other agents it continues to be the same. Hence, the lemma
holds throughout Phase I. The monotonicity is also maintained during the execution of Phase
II: the value under v̂i does not decrease in Line 8 (Lemma 5) or in Line 11. Therefore, the
lemma stands proved. ◀

Next, we assert that, throughout the execution of the algorithm, the assigned intervals
satisfy an inclusion-wise minimality property. Note that in the following lemma we evaluate
agent i’s assigned interval under the function v̂i and evaluate the compared interval X under
the valuation vi.

▶ Lemma 7. Let P ′ = (P ′
1, . . . , P ′

n) be any partial allocation considered during the execution
of Algorithm 1. Then, for any two assigned intervals P ′

i and P ′
j = [ℓ′

j , r′
j] along with any

strict subset X = [ℓ′
j , x] ⊊ P ′

j (i.e., x < r′
j), we have vi(X) < v̂i(P ′

i) + δ
n .

Proof. We establish the lemma via an inductive argument. Indeed, the initial partial
allocation (∅, . . . , ∅) satisfies the desired property. Now, consider any iteration of the first-
while loop, and write P ′′ = (P ′′

1 , . . . , P ′′
n) to be the partial allocation that gets updated (in

this iteration) to P ′ = (P ′
1, . . . , P ′

n). In particular, let a be the agent selected in Line 4.
Note that for all the other agents i ̸= a, the assigned interval remains unchanged, P ′

i = P ′′
i .

Also, the induction hypothesis implies that P ′′ satisfies the lemma. Hence, for all the agents
i, j ≠ a (whose assigned intervals have not changed), the desired property continues to hold.
Furthermore, agent a receives an interval of higher function value, v̂a(P ′

a) ≥ v̂a(P ′′
a) + δ/n.

Hence, we have the lemma from agent a against any other agent j.
It remains to show that the lemma holds between P ′

i and P ′
a = [ℓ′

a, r′
a]. Assume, towards a

contradiction, that there exists a strict subset X = [ℓ′
a, x] ⊊ P ′

a such that vi(X) ≥ v̂i(P ′
i)+δ/n.

Since P ′
i = P ′′

i and v̂i(X) ≥ vi(X), we obtain v̂i(X) ≥ v̂i(P ′′
i) + δ/n. This, however,

contradicts the selection criterion in Lines 3 and 4. In particular, this bound implies ri < ra

(see Line 3) and, hence, a would not be the selected agent in Line 4. Therefore, by way of
contradiction, we have that the property holds with respect to P ′

a as well.
The above-mentioned arguments prove that the lemma holds for all allocations considered

in Phase I. Next, we show that it continues to hold through Phase II.
Consider any iteration of the second while-loop, and write P ′′ = (P ′′

1 , . . . , P ′′
n) to be the

partial allocation that gets updated in this iteration. The induction hypothesis gives us that
P ′′ satisfies the desired property. In Line 8 the intervals are reassigned among the agents
(i.e., the collection of intervals remains unchanged) and for each agent i, the value, under
v̂i, of the assigned interval does not decrease; see Lemma 5. Hence, the property continues

S. Barman and P. Kulkarni 16:9

to hold after Line 8. For analyzing the rest of the iteration, let s ∈ [n] denote the (source)
agent that gets selected in Line 9 and P ′

s be the updated interval for agent s; in particular,
interval P ′

s is obtained by appending a piece to P ′′
s . Since s is the only agent whose interval

got updated here, the lemma continues to hold between all other agents i, j ̸= s. Also, the
property is maintained from agent s’s perspective, since v̂s(P ′

s) ≥ v̂s(P ′′
s). To complete the

proof we will next show that the property is upheld between P ′
i and P ′

s, for any i ∈ [n].
Note that, for agent i ≠ s, the assigned interval remains unchanged during the current

update, P ′
i = P ′′

i . Furthermore, the fact that s is a source vertex gives us

v̂i(P ′′
i) ≥ v̂i(P ′′

s) ≥ vi(P ′′
s) (2)

The extension of P ′′
s to P ′

s (performed in Line 11) ensures that vi(P ′
s) ≤ vi(P ′′

s) + δ/n. Hence,
inequality (2) gives us vi(P ′

s) ≤ v̂i(P ′
i) + δ/n. That is, there does not exist an X ⊊ P ′

s with
the property that vi(X) ≥ v̂i(P ′

i) + δ/n. This completes the proof. ◀

The next lemma provides a bounded envy guarantee for the partial allocation P =
(P 1, . . . , P n) computed by Phase I. Note that in this lemma, while considering envy from
agent i to agent j, we evaluate P i with respect to v̂i and evaluate P j under vi.

▶ Lemma 8. Let P = (P 1, . . . , P n) be the partial allocation maintained by Algorithm 1 at
the end of Phase I (i.e., at the termination of the first while-loop). Then, for all agents
i, j ∈ [n] and all unassigned intervals U ∈ UP , we have

v̂i(P i) ≥ vi(P j)− δ

n
and v̂i(P i) ≥ vi(U)− δ

n
.

Proof. Fix an arbitrary agent i ∈ [n] and consider any unassigned interval U ∈ UP . The
execution condition of the first while-loop ensures that at termination it holds that v̂i(P i) ≥
v̂i(U) − δ

n ≥ vi(U) − δ
n ; the last inequality directly follows from the definition of v̂i. This

establishes the desired inequalities with respect to the unassigned intervals.
Next, for any assigned interval Pj = [ℓj , rj], assume, towards a contradiction, that

vi(P j) > v̂i(P i) + δ/n. Since the valuation vi is divisible (see Section 2),4 there exists a
strict subset X = [ℓj , x] ⊊ P j with the property that vi(X) = v̂i(P i) + δ/n. This, however,
contradicts Lemma 7 (instantiated with P ′ = P). The lemma stands proved. ◀

Next, we show that the bounded envy guarantee obtained at the end of Phase I (as stated
in Lemma 8) continues to hold in Phase II.

▶ Lemma 9. Let P = (P1, . . . , Pn) be the partial allocation maintained by Algorithm 1 at the
end of Phase II. Then, for all agents i, j ∈ [n] and all unassigned intervals U ∈ UP , we have

v̂i(Pi) ≥ vi(Pj)− δ

n
and v̂i(Pi) ≥ vi(U)− δ

n
.

Proof. Let P = (P 1, . . . , P n) be the partial allocation maintained by Algorithm 1 at the
end of Phase I. Note that UP and UP denote the collection of unassigned intervals left at
the end of Phase I and Phase II, respectively. We observe that, for all unassigned intervals
U ∈ UP , there exists an unassigned interval U ∈ UP such that U ⊆ U . These containments

4 Here, we invoke divisibility of vi with factor α = v̂i(P i)+δ/n

vi(P j)
∈ (0, 1). Also, note that, in contrast to vi,

the function v̂i is not divisible.

ICALP 2023

16:10 Approximation Algorithms for Envy-Free Cake Division with Connected Pieces

follow from the fact that in each iteration of the second while-loop (i.e., in Phase II) we
either reassign the allocated intervals (which preserves the collection of the unassigned ones)
or we enlarge a chosen assigned interval (Line 11); under such an enlargement, one of the
unassigned intervals gets reduced and the others remain unchanged.

Furthermore, Lemma 6 gives us v̂i(Pi) ≥ v̂i(P i) ≥ vi(U)− δ/n, for any interval U ∈ UP ;
here, the last inequality follows from Lemma 8. Using this bound and the above-mentioned
containment of unassigned intervals we get v̂i(Pi) ≥ vi(U) − δ/n, for all U ∈ UP . This
establishes the desired inequalities with respect to the unassigned intervals.

Next, for any assigned interval Pj = [ℓj , rj], assume, towards a contradiction, that
vi(Pj) > v̂i(Pi) + δ/n. Since the valuation vi is divisible, there exists a strict subset
X = [ℓj , x] ⊊ Pj with the property that vi(X) = v̂i(Pi) + δ/n. This, however, contradicts
Lemma 7 (instantiated with P ′ = P). The lemma stands proved. ◀

The following lemma shows that, at the end of Phase I, if an agent i does not receive a
bifurcating interval but some other agent j does, then j’s interval cannot be bifurcating (for
i) with an additional margin of δ

n . Formally,5

▶ Lemma 10. Let P = (P 1, . . . , P n) be the partial allocation maintained by Algorithm 1 at
the end of Phase I. If, for an agent i ∈ [n], the assigned interval P i is not bifurcating (for i),
but interval P j = [ℓj , rj] is bifurcating (for i). Then, at least one of the following inequalities
holds:

vi(P j) <
1
4 + δ

n
or vi([rj , 1]) >

1
2 −

δ

n
.

Proof. Assume, towards a contradiction, that the bifurcating interval P j = [ℓj , rj] has value
vi(P j) ≥ 1

4 + δ
n and vi([rj , 1]) ≤ 1

2 −
δ
n . These properties in fact imply the existence of a

strict subset X ⊊ P j that is bifurcating for i: write x ∈ [ℓj , rj] to denote the leftmost point
that satisfies vi([ℓj , x]) = vi(P j)− δ

n and set X = [ℓj , x]. Since valuation vi is divisible, such
a point x exists and we have x < rj . Furthermore, the lower bound on the value of P j gives
us vi(X) ≥ 1

4 . In addition, note that vi([0, ℓj]) ≤ 1/2, since P j = [ℓj , rj] is bifurcating. Also,
using the inequality vi([rj , 1]) ≤ 1

2 −
δ
n and the additivity of the valuation vi, we get that

vi([x, 1]) ≤ 1
2 . Indeed, these bounds ensure that X is a strict subset of P j and is bifurcating

for agent i.
The existence of X contradicts the selection criterion in Lines 3 and 4. In particular,

consider the iteration in which P j was assigned and write P ′
i to denote the interval assigned

to agent i during that iteration. We note that

v̂i(P ′
i) ≤ v̂i(P i) (via Lemma 6)

<
1
2 (P i is non-bifurcating & Claim 4)

On the other hand, v̂i(X) = 1, for the interval X identified above. Hence, j would not be
the selected agent in Line 4. This contradiction establishes the lemma. ◀

We next prove that a guarantee, analogous to Lemma 10, holds for Phase II as well.6

5 Note that, in contrast to Lemmas 8 and 9, here we have an absolute bound on the value of the compared
interval P j .

6 As in Lemma 10, here we have an absolute bound on the value of the compared interval Pj .

S. Barman and P. Kulkarni 16:11

▶ Lemma 11. Let P = (P1, . . . , Pn) be the partial allocation maintained by Algorithm 1 at
the end of Phase II. If, for an agent i ∈ [n], the assigned interval Pi is not bifurcating (for i),
but interval Pj = [ℓj , rj] is bifurcating (for i). Then, at least one of the following inequalities
holds:

vi(Pj) <
1
4 + δ

n
or vi([rj , 1]) >

1
2 −

δ

n
.

Proof. Write P = (P 1, . . . , P n) to denote the partial allocation at the end of Phase I. Note
that, throughout Phase II, the algorithm either reassigns the intervals (Line 8) or appends
(unassigned) pieces to them (Line 11). Hence, for the interval Pj , assigned to agent j at the
end of Phase II, there exists P k, for some k ∈ [n], such that Pj ⊇ P k.

We assume, towards a contradiction, that the bifurcating interval Pj = [ℓj , rj] has value
vi(Pj) ≥ 1

4 + δ
n and vi([rj , 1]) ≤ 1

2 −
δ
n . It cannot be the case that Pj = P k (for an interval

P k assigned at the end of Phase I), since this would contradict Lemma 10. Hence, in the
remainder of the proof we address the complementary case wherein Pj was obtained by
appending to an interval, say P ′

s, in an iteration of the second while-loop (specifically, Line 11).
Also, write P ′

i to denote the interval assigned to agent i during that iteration. Lemma 6 and
the fact that Pi is non-bifurcating for i (Claim 4) give us v̂i(P ′

i) ≤ v̂i(Pi) < 1/2. Using this
inequality and the fact that s was a source agent during the iteration under consideration,
we get

v̂i(P ′
s) ≤ v̂i(P ′

i) < 1/2 (3)

However, the assumptions on the values of Pj = [ℓj , rj] and [rj , 1] contradict inequality (3):
Let z denote the right endpoint of P ′

s, i.e., P ′
s = [ℓj , z]. Since a piece of bounded value is

appended in Line 11, we have vi(P ′
s) ≥ vi(Pj)− δ

n ≥
1
4 . Furthermore, using the inequality

vi([rj , 1]) ≤ 1
2 −

δ
n , we obtain vi([z, 1]) ≤ 1

2 . In addition, the fact that Pj = [ℓj , rj] is a
bifurcating interval gives us vi([0, ℓj)) ≤ 1

2 , i.e., the value to the left of P ′
s = [ℓj , z] is at most

1/2. These observations imply that P ′
s is a bifurcating interval for i; in particular, v̂i(P ′

s) = 1.
This bound contradicts inequality (3) and completes the proof. ◀

Using Lemma 9, we next obtain a relevant envy bound for the allocation I returned by
the algorithm.

▶ Lemma 12. The allocation I = (I1, . . . , In) computed by Algorithm 1 satisfies vi(Ii) ≥
1
2 vi(Ij)− δ

n , for all agents i, j ∈ [n].

Proof. Write P = (P1, . . . , Pn) to denote the partial allocation of the algorithm at the end
of Phase II. The execution condition of the second while-loop ensures that |UP | ≤ n. Also,
at the end of the algorithm, for each unassigned interval U ∈ UP , we select a distinct and
adjacent interval Pj and associate U with Pj . In particular, let Uj be the unassigned interval
associated with Pj . If Pj is not associated with any unassigned interval, then set Uj = ∅.
Indeed, Ij = Pj ∪ Uj is a connected piece of the cake, i.e., an interval.

For any agent i ∈ [n], if interval Ii is bifurcating, then vi(Ii) ≥ 1
4 . Furthermore, any other

assigned interval Ij is either completely to the left of Ii or to the right of Ii. In either case,
by the definition of bifurcating intervals, we have vi(Ij) ≤ 1

2 . Hence, for agents i that receive
a bifurcating interval Ii, we have the stated inequality, vi(Ii) ≥ 1

2 vi(Ij).
It remains to show that the lemma holds for agents i for whom Ii is not bifurcating.

For such agents, the interval Pi ⊆ Ii is also non-bifurcating and, hence, vi(Pi) = v̂i(Pi).
Therefore,

vi(Ii) ≥ vi(Pi) ≥ vi(Pj)− δ

n
and vi(Ii) ≥ vi(Pi) ≥ vi(Uj)− δ

n
(via Lemma 9)

ICALP 2023

16:12 Approximation Algorithms for Envy-Free Cake Division with Connected Pieces

Summing we get

2vi(Ii) ≥ vi(Pj) + vi(Uj)− 2δ

n
= vi(Ij)− 2δ

n
(since vi is additive)

Hence, we obtain the stated inequality, vi(Ii) ≥ 1
2 vi(Ij)− δ

n . This completes the proof. ◀

We now establish the main result of this section.

▶ Theorem 13. Given any cake division instance – with Robertson-Webb query access to the
valuations of the n agents – and parameter δ ∈ (0, 1), Algorithm 1 computes a connected cake
division (i.e., an allocation) I = (I1, . . . , In) that is

(1
4 + 2δ

n

)
-EF. The algorithm executes in

time that is polynomial in n and 1
δ .

Proof. Fix any agent i ∈ [n]. We establish the theorem by considering three complementary
and exhaustive cases, based on the interval Ii (assigned to agent i):
Case 1: Interval Ii is bifurcating,
Case 2: Value vi(Ii) < 1

4 ,
Case 3: Interval Ii is not bifurcating and vi(Ii) ≥ 1

4 .

In Case 1, since interval Ii is bifurcating for agent i, we have vi(Ii) ≥ 1
4 and, for any

other interval Ij (either to the left of Ii or to its right), we have vi(Ij) ≤ 1
2 . Therefore, in

this case, the stated approximation bound on envy holds, vi(Ii) ≥ vi(Ij)− 1
4 .

In Case 2, value vi(Ii) < 1
4 . Note that, Lemma 12 gives us vi(Ii) ≥ 1

2 vi(Ij)− δ
n , for any

other agent j ∈ [n]. Multiplying both sides of this inequality by 2 and simplifying we obtain

vi(Ii) ≥ vi(Ij)− vi(Ii)−
2δ

n
≥ vi(Ij)− 1

4 −
2δ

n
(since vi(Ii) < 1

4)

Therefore, in Case 2 as well, for agent i the envy is additively at most
(1

4 + 2δ
n

)
.

0 1

UjPj Ii

{ Ij

Case 3a

vi(Pj) ≥ 1
4 +

δ
n vi(Uj) ≥ 1

4 +
δ
n vi(Ii) ≥ 1

4

0 1

Uj Pj Ii
Case 3b

Figure 1 Placement of intervals Pj and Uj in Case 3.

Finally, in Case 3, interval Ii is not bifurcating and vi(Ii) ≥ 1
4 . Write P = (P1, . . . , Pn)

to denote the partial allocation at the end of Phase II and recall that Ik = Pk ∪ Uk, for
each agent k ∈ [n] and the associated unassigned interval Uk ∈ UP . For analyzing this case,
assume, towards a contradiction, that there exists an interval Ij that violates the stated
approximate envy-freeness bound, i.e.,

vi(Ij) > vi(Ii) + 1
4 + 2δ

n
. (4)

S. Barman and P. Kulkarni 16:13

Since, in the current case, vi(Ii) ≥ 1
4 , inequality (4) reduces to vi(Ij) > 1

2 + 2δ
n . We will

further show that for interval Ij the composing sub-intervals Pj and Uj are each of value
(under vi) at least 1

4 + δ
n . Towards this, note that, in the current case, since Ii is not

bifurcating for i, neither is Pi ⊆ Ii. Furthermore,

vi(Ii) ≥ vi(Pi) (vi is monotonic)
= v̂i(Pi) (since Pi is not bifurcating for i)

≥ vi(Pj)− δ

n
(5)

The last inequality follows from Lemma 9. A similar application of the lemma also gives us

vi(Ii) ≥ vi(Uj)− δ

n
(6)

Inequalities (4), (5), and (6) imply that the values of both Pj and Uj are at least 1
4 + δ

n .
Otherwise, say vi(Pj) < 1

4 + δ
n . Then,

vi(Ij) = vi(Pj) + vi(Uj) <
1
4 + δ

n
+ vi(Uj) ≤ vi(Ii) + 1

4 + 2δ

n
(via inequality (6))

Since the last inequality contradicts assumption (4), we have vi(Pj) ≥ 1
4 + δ

n . Similarly,
vi(Uj) ≥ 1

4 + δ
n .

As mentioned previously, vi(Ij) > 1
2 + 2δ

n . Hence, the values to the left and to the right
of Ij = [ℓj , rj] are upper bounded as follows:7 vi([0, ℓj]) ≤ 1

2 −
2δ
n and vi([rj , 1]) ≤ 1

2 −
2δ
n .

For the subsequent analysis, we also assume that interval Ij is on the left of Ii (see Figure
1); the proof for the other configuration (of Ij being to the right of Ii) follows analogously.
Now, there are two sub-cases to consider:
Case 3a: Interval Pj is to the left of Uj (i.e., Uj lies between Pj and Ii).
Case 3b: Interval Pj is to the right of Uj (i.e., Pj lies between Uj and Ii).

In Case 3a, we note that the interval Uj ∈ UP is bifurcating for agent i: As observed above,
vi(Uj) ≥ 1

4 + δ
n and the value (in the cake) to the right of Uj is equal to vi([rj , 1]) ≤ 1

2 −
2δ
n .

In addition, the value to the left of Uj is at most 1− (vi(Uj)+vi(Ii)) ≤ 1− 1
4 −

1
4 −

δ
n = 1

2 −
δ
n ;

interval Ii is to the right to Ij and, hence, to the right of Uj . Hence, Uj ∈ UP is bifurcating
for agent i.

Also, the design of Phase II ensures that, for the interval Uj , there exists an unassigned
interval U ∈ UP such that U ⊇ Uj ; here P = (P 1, . . . , P n) denotes the partial allocation at
the end of Phase I. Since Uj is bifurcating for i, so is U . By contrast, in the current case
(Case 3), the interval Pi is not bifurcating for i and, hence, neither is P i (Lemma 6). That
is, v̂i(P i) < 1

2 < 1 = v̂i(U). The bound, however, contradicts the termination of the first
while-loop. Therefore, by way of contradiction, we get that assumption (4) cannot hold in
Case 3a. This completes the analysis of this sub-case.

In Case 3b, we note that the interval Pj is bifurcating for agent i, with a margin of δ
n : As

observed above, vi(Pj) ≥ 1
4 + δ

n and the value to the right of Pj is equal to vi([rj , 1]) ≤ 1
2 −

2δ
n .

In addition, the value to the left of Pj is at most 1− (vi(Pj)+vi(Ii)) ≤ 1− 1
4 −

1
4 −

δ
n = 1

2 −
δ
n .

The existence of such a bifurcating interval Pj contradicts Lemma 11. Hence, even in Case
3b, we must have vi(Ij) ≤ vi(Ii) + 1

4 + 2δ
n , i.e., the stated bound on envy holds.

This completes the analysis for all the cases, and the theorem stands proved. ◀

7 Recall that the value of the entire cake is normalized, vi([0, 1]) = 1.

ICALP 2023

16:14 Approximation Algorithms for Envy-Free Cake Division with Connected Pieces

Complementing the additive envy-freeness guarantee obtained in Theorem 13, the next
result establishes that, in the computed allocation I, the envy is within a factor of (2 + c),
where parameter c ∈ (0, 1) is polynomially small (in n).

▶ Theorem 14. Given any cake division instance – with Robertson-Webb query access to the
valuations of the n agents – and parameter c ∈ (0, 1), we can compute (in time polynomial in
n and 1/c) a connected cake division (i.e., an allocation) I = (I1, . . . , In) that is 1

2+c -mult-EF.

Proof. The theorem directly follows from Lemma 12. In particular, we execute Algorithm 1
with parameter δ = c

8 , for a sufficiently small c ∈ (0, 1),8 and note that, for the computed
allocation I, Lemma 12 gives us vi(Ii) ≥ 1

2 vi(Ij) − δ
n = 1

2 vi(Ij) − c
8n , for agents i, j ∈ [n].

Summing over j, we obtain

n vi(Ii) ≥
1
2

n∑
j=1

vi(Ij)− c

8 = 1
2 −

c

8 (7)

The last equality follows from the fact that I1, . . . , In constitute a complete partition of the
cake, with value vi([0, 1]) = 1. Since constant c ≤ 1, inequality (7) reduces to vi(Ii) ≥ 1

4n ,
for all agents i ∈ [n]. Therefore, the bound obtained in Lemma 12 can be expressed as

vi(Ii) ≥
1
2vi(Ij)− c

8n
≥ 1

2vi(Ij)− c

2vi(Ii).

Simplifying we obtain (2 + c) vi(Ii) ≥ vi(Ij), for all agents i, j ∈ [n]. Therefore, the computed
allocation is 1

2+c -mult-EF ◀

4 An ε-EF Algorithm under Bounded Heterogeneity

This section addresses cake division instances in which, for a parameter ε ∈ (0, 1) and
across the n agents, the number of distinct valuations is at most (εn− 1). Our algorithm
(Algorithm 2) for finding ε-EF allocations in such instances in detailed next.

We first show in Lemma 15 below that the collection of intervals computed by Algorithm 2
cover the entire cake. We will then use this lemma to establish the approximate envy-freeness
guarantee in Theorem 16.

▶ Lemma 15. Given any cake division instance in which, across the n agents, the number
of distinct valuations is at most (εn− 1), Algorithm 2’s output I = (I1, . . . , In) is a complete
allocation, i.e., Iis are pairwise disjoint and ∪i∈[n]Ii = [0, 1].

Proof. By construction, the set of intervals F populated in Line 4 of Algorithm 2 are pairwise
disjoint and cover the entire cake. We will show that the number of intervals in F is at most
n, i.e., |F| ≤ n. Since the assigned intervals, Iis, are selected from the set F (see the for-loop
in the algorithm), the cardinality bound implies that no interval in F remains unassigned.
Hence, ∪i∈[n]Ii = [0, 1]. Also, given that the intervals in F are pairwise disjoint, so are the
Iis. Therefore, I = (I1, . . . , In) is a complete allocation.

We complete the proof by establishing that |F| ≤ n. Towards this it suffices to show that
|Z| ≤ n + 1; see Line 4 and note that |F| = |Z| − 1. In Line 2, for each agent i ∈ [n], we
consider T + 1 cut points 0 = xi

0 < xi
1 < xi

2 < . . . < xi
T −1 < xi

T = 1. The end points of the
cake, 0 and 1, are considered for every agent. Moreover, for any two agents, i, j ∈ [n], with

8 With this parameter choice, the algorithm executes in time that is polynomial in n and 1/c.

S. Barman and P. Kulkarni 16:15

Algorithm 2 ε-EF under bounded heterogeneity.
Input: A cake division instance with oracle access to the valuations {vi}n

i=1 of the n agents
along with parameter ε ∈ (0, 1).
Output: A complete allocation (I1, . . . , In).

1: Set T to be the smallest integer such that Tε ≥ 1, i.e., T :=
⌈ 1

ε

⌉
.

2: For each agent i ∈ [n], let 0 = xi
0 < xi

1 < xi
2 < . . . < xi

T −1 < xi
T = 1 be the

collection of (T + 1) cut points that satisfy vi([xi
t−1, xi

t]) = ε, for all 1 ≤ t ≤ T − 1, and
vi([xi

T −1, xi
T]) ≤ ε.

3: Let Z be the union of these cut points Z :=
⋃

i∈[n]
{

xi
0, xi

1, . . . , xi
T −1, xi

T

}
{Z is not a multiset, i.e., multiple instances of same cut point are not repeated in Z.}

4: Index the points in Z = {z0, z1, z2, . . . , zr} such that 0 = z0 < z1 < z2 < . . . < zr = 1
and define the collection of intervals F :=

{
[zt, zt+1]

}r−1

t=0
5: for agents i = 1 to n do
6: If F = ∅, then set interval Ii = ∅. Otherwise, if F ̸= ∅, then set Ii = arg maxF ∈F vi(F)

and update F ← F \ {Ii}.
7: end for
8: return allocation I = (I1, . . . , In).

identical valuations, vi = vj , even the remaining (T − 1) points are the same: xi
t = xj

t for
all 1 ≤ t ≤ T − 1. Since the number of distinct valuations is at most (εn − 1), there are
at most (εn − 1)(T − 1) cut points in Z that are strictly between 0 and 1. Including the
endpoints of the cake in the count, we get |Z| ≤ (εn− 1) (T − 1) + 2 ≤ (εn− 1) 1

ε + 2. The
last inequality follows from the definition of T ; in particular, T − 1 < 1

ε . Simplifying we
obtain |Z| ≤ n− 1

ε + 2 ≤ n + 1; recall that ε ≤ 1. Therefore, |F| ≤ n and the lemma stands
proved. ◀

The following theorem establishes that Algorithm 2 finds an allocation I = (I1, . . . , In)
that satisfies vi(Ii) ≥ vi(Ij)− ε for all agents i, j ∈ [n].

▶ Theorem 16. Given any cake division instance in which, across the n agents, the number
of distinct valuations is at most (εn− 1), Algorithm 2 (with Robertson-Webb query access to
the valuations) computes an ε-EF allocation in polynomial time.

Proof. The runtime analysis of the algorithm is direct. Also, via Lemma 15, we have that
the the returned tuple I = (I1, . . . , In) is indeed a complete allocation.

For proving that the algorithm achieves an ε-EF guarantee, consider any agent i ∈ [n]
and interval Ij = [zt, zt+1], where zt and zt+1 are successive points in the set Z; see Line 4.
If Ij = ∅, then in fact i does not envy j. We will show that vi(Ij) ≤ ε and, hence, obtain the
desired bound: vi(Ii) ≥ vi(Ij)− ε.

For agent i, write xi
s to be the largest (rightmost) cut point considered in Line 2 that

satisfies xi
s ≤ zt. In particular, xi

s+1 > zt. Note that the set Z (see Line 3) contains all
the points xi

0, xi
1, . . . , xi

T −1, xi
T ; in particular, xi

s+1 ∈ Z. In addition, zt and zt+1 are two
successive points in Z. Hence, we have zt+1 ≤ xi

s+1 and the interval Ij = [zt, zt+1] ⊆ [xi
s, xi

s+1].
By construction, vi([xi

s, xi
s+1]) ≤ ε and, hence, vi(Ij) ≤ ε. This bound on the valuation of

interval Ij implies that the computed allocation is ε-EF. The theorem stands proved. ◀

Note that the algorithm might assign some agents i ∈ [n] an interval of value of zero; in
particular, Ii = ∅. Imposing the requirement that each agent i ∈ [n] receives an interval of
nonzero value (to i) renders the problem as hard as finding an ε-EF allocation in general cake

ICALP 2023

16:16 Approximation Algorithms for Envy-Free Cake Division with Connected Pieces

division instances (without bounded heterogeneity). To see this, consider any cake division
instance (which might not satisfy the bounded heterogeneity condition). Append to the cake
another unit length interval and include

⌈
n+2

ε

⌉
dummy agents that have identical valuation

confined to the appended interval. This new instance satisfies bounded heterogeneity. Now,
if each agent in the constructed instance receives an interval of nonzero value, then the
appended interval must have been divided among the dummy agents and the underlying
cake [0, 1] among the original agents. This way we obtain an ε-EF allocation for the original
instance. Furthermore, note that an α-mult-EF guarantee, for any α > 0, implies that each
agent receives an interval of nonzero value. Therefore, achieving multiplicative approximation
bounds for envy under bounded heterogeneity is as hard as the general case.
▶ Remark 17. The discretization method used in Algorithm 2 has been utilized in prior
works as well; see [10] and [19]. The relevant insight obtained here is the difference between
additive and multiplicative approximations: While one can efficiently achieve an ε-additive
approximation under bounded heterogeneity, establishing any multiplicative guarantee is as
hard as solving the problem in complete generality.

5 Conclusion and Future Work

Algorithmically, connected envy-free cake division is a challenging and equally intriguing
problem at the core of fair division. The proof of existence of envy-free cake divisions (with
connected pieces) does not lend itself to efficient (approximation) algorithms and, at the
same time, negative results – that rule out, say, a polynomial-time approximation scheme
(PTAS) – are not known either. In this landscape, the current work improves upon the
previously best-known approximation guarantee for connected envy-free cake division. We
develop a computationally efficient algorithm that finds a connected cake division that is
simultaneously (1/4 + o(1))-EF and (1/2− o(1))-mult-EF. We also show that specifically for
instances with bounded heterogeneity, an ε-EF division can be computed in time polynomial
in n and 1/ε.

In addition to the patent problem of efficiently finding ε-EF connected cake divisions,
developing ε-EF algorithms for special valuation classes (such as single-block and single-
peaked valuations) is a relevant direction of future work. Inapproximability results – similar
to the ones recently obtained for ε-consensus halving [13] – are also interesting.

References
1 Reza Alijani, Majid Farhadi, Mohammad Ghodsi, Masoud Seddighin, and Ahmad Tajik.

Envy-free mechanisms with minimum number of cuts. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 31(1), 2017.

2 Georgios Amanatidis, Georgios Birmpas, Aris Filos-Ratsikas, and Alexandros A Voudouris.
Fair division of indivisible goods: A survey. arXiv preprint, 2022. arXiv:2202.07551.

3 Eshwar Ram Arunachaleswaran, Siddharth Barman, Rachitesh Kumar, and Nidhi Rathi. Fair
and efficient cake division with connected pieces. In International Conference on Web and
Internet Economics, pages 57–70. Springer, 2019.

4 Haris Aziz and Simon Mackenzie. A discrete and bounded envy-free cake cutting protocol for
any number of agents. In 2016 IEEE 57th Annual Symposium on Foundations of Computer
Science (FOCS), pages 416–427. IEEE, 2016.

5 Dinesh Kumar Baghel, Vadim E Levit, and Erel Segal-Halevi. Fair division algorithms for
electricity distribution. arXiv preprint, 2022. arXiv:2205.14531.

6 Siddharth Barman and Pooja Kulkarni. Approximation algorithms for envy-free cake division
with connected pieces, 2022. arXiv:2208.08670.

https://arxiv.org/abs/2202.07551
https://arxiv.org/abs/2205.14531
https://arxiv.org/abs/2208.08670

S. Barman and P. Kulkarni 16:17

7 Siddharth Barman and Nidhi Rathi. Fair cake division under monotone likelihood ratios.
Mathematics of Operations Research, 2021.

8 Steven J Brams and Alan D Taylor. An envy-free cake division protocol. The American
Mathematical Monthly, 102(1):9–18, 1995.

9 Steven J Brams and Alan D Taylor. Fair Division: From cake-cutting to dispute resolution.
Cambridge University Press, 1996.

10 Simina Brânzei and Noam Nisan. The query complexity of cake cutting. In Advances in
Neural Information Processing Systems, 2022.

11 Constantinos Daskalakis, Aranyak Mehta, and Christos Papadimitriou. Progress in approx-
imate nash equilibria. In Proceedings of the 8th ACM Conference on Electronic Commerce,
pages 355–358, 2007.

12 Xiaotie Deng, Qi Qi, and Amin Saberi. Algorithmic solutions for envy-free cake cutting.
Operations Research, 60(6):1461–1476, 2012.

13 Aris Filos-Ratsikas, Alexandros Hollender, Katerina Sotiraki, and Manolis Zampetakis.
Consensus-halving: Does it ever get easier? In Proceedings of the 21st ACM Conference on
Economics and Computation, pages 381–399, 2020.

14 Duncan K Foley. Resource allocation and the public sector, 1967.
15 Paul Goldberg, Alexandros Hollender, and Warut Suksompong. Contiguous cake cutting:

Hardness results and approximation algorithms. Journal of Artificial Intelligence Research,
69:109–141, 2020.

16 Hadi Hosseini, Ayumi Igarashi, and Andrew Searns. Fair division of time: Multi-layered cake
cutting. In 29th International Joint Conference on Artificial Intelligence, IJCAI 2020, pages
182–188. International Joint Conferences on Artificial Intelligence, 2020.

17 Duško Jojić, Gaiane Panina, and Rade Živaljević. Splitting necklaces, with constraints. SIAM
Journal on Discrete Mathematics, 35(2):1268–1286, 2021.

18 Spyros C Kontogiannis, Panagiota N Panagopoulou, and Paul G Spirakis. Polynomial
algorithms for approximating nash equilibria of bimatrix games. In International Workshop
on Internet and Network Economics, pages 286–296. Springer, 2006.

19 Richard J Lipton, Evangelos Markakis, Elchanan Mossel, and Amin Saberi. On approximately
fair allocations of indivisible goods. In Proceedings of the 5th ACM conference on Electronic
commerce, pages 125–131. ACM, 2004.

20 Gaiane Panina and Rade Živaljević. Envy-free division via configuration spaces. arXiv preprint,
2021. arXiv:2102.06886.

21 Ariel D Procaccia. Cake cutting algorithms. In Handbook of Computational Social Choice,
chapter 13. Citeseer, 2015.

22 Jack Robertson and William Webb. Cake-cutting algorithms: Be fair if you can. AK
Peters/CRC Press, 1998.

23 FW Simmons. Private communication to Michael Starbird, 1980.
24 Hugo Steinhaus. The Problem of Fair Division. Econometrica, 16:101–104, 1948.
25 Walter Stromquist. How to cut a cake fairly. The American Mathematical Monthly, 87(8):640–

644, 1980.
26 Walter Stromquist. Envy-free cake divisions cannot be found by finite protocols. the electronic

journal of combinatorics, 15(1):11, 2008.
27 Francis Edward Su. Rental harmony: Sperner’s lemma in fair division. The American

mathematical monthly, 106(10):930–942, 1999.
28 Haralampos Tsaknakis and Paul G Spirakis. An optimization approach for approximate nash

equilibria. In International Workshop on Web and Internet Economics, pages 42–56. Springer,
2007.

29 Chenhao Wang and Xiaoying Wu. Cake cutting with single-peaked valuations. In Combinatorial
Optimization and Applications: 13th International Conference, COCOA 2019, Xiamen, China,
December 13–15, 2019, Proceedings 13, pages 507–516. Springer, 2019.

ICALP 2023

https://arxiv.org/abs/2102.06886

16:18 Approximation Algorithms for Envy-Free Cake Division with Connected Pieces

A Missing Proofs from Section 3

Here, we restate and prove Lemma 5.

▶ Lemma 5. Given any partial allocation P = (P1, . . . , Pn), one can reassign the intervals
Pis among the agents and efficiently find another partial allocation Q = (Q1, . . . , Qn) with
the properties that

(i) The envy-graph GQ is acyclic.
(ii) The value v̂i(Qi) ≥ v̂i(Pi), for all agents i ∈ [n].

Proof. If, for given partial allocation P = (P1, . . . , Pn), the envy-graph GP is already acyclic,
then we directly obtain the lemma by setting Q = P. Hence, in the remainder of the proof
we consider the case wherein GP is cyclic.

Write C = i1 → i2 → . . . → ik → i1 to denote a cycle in GP . To obtain a new partial
allocation P ′ = (P ′

1, . . . , P ′
n), we reassign the intervals as follows: for all agents j not in the

cycle (i.e., j /∈ {i1, i2, . . . , ik}), set P ′
j = Pj . Furthermore, for all the agents it in the cycle C,

with 1 ≤ t < k, we set P ′
it

= Pit+1 and P ′
ik

= Pi1 . That is, each agent in the cycle receives
the interval assigned to its successor in the cycle. This reassignment ensures that, for all
agents i ∈ [n], we have v̂i(P ′

i) ≥ v̂i(Pi); recall that a directed edge (i, j) is included in the
graph GP iff v̂i(Pi) < v̂i(Pj).

We will now show that the number of edges in the envy-graph GP′ is strictly smaller
than the number of edges in GP . Hence, repeated elimination of cycles leads to an allocation
Q that satisfies the lemma. Note that the collection of intervals assigned in the allocation
P ′ is the same as the collection of intervals in P. Also, the out-degree of any vertex i in
GP (or in GP′) is equal to the number of bundles Pjs (or P ′

js) have value (under v̂i) strictly
greater than i’s value (again, under v̂i) for her own bundle. These observations imply that
for all agents not in the cycle C, the out-degree is the same in GP and GP′ . Moreover, for
all agents it in the cycle C, we have v̂it(P ′

it
) > v̂it(Pit). Hence, the out-degree of any such

agent it in GP is strictly smaller than its out-degree in GP . Therefore, the number of edges
in GP′ is strictly smaller than the ones in GP . This strict reduction in the number of edges
implies that after a polynomial number of cycle eliminations we obtain an allocation Q for
which GQ is acyclic and we have v̂i(Qi) ≥ v̂i(Pi), for all agents i ∈ [n]. The lemma stands
proved. ◀

A.1 Runtime Analysis of Algorithm 1
We begin by noting that, given Robertson-Webb query access to the underlying valuation vis,
we can answer cut and evaluation queries for the functions v̂i (see equation (1)) in polynomial
time. That is, given points 0 ≤ x ≤ y ≤ 1, we can find v̂i([x, y]) in polynomial time. Also,
given a point x ∈ [0, 1] and value ν ∈ [0, 1], we can efficiently compute the leftmost point y

(if one exists) that satisfies v̂i([x, y]) ≥ ν.

▷ Claim 18. For any agent i ∈ [n], given Robertson-Webb query access to the valuation vi,
we can answer cut and evaluation queries with respect to the function v̂i in polynomial time.

Proof. We first address the evaluation query for v̂i. Given interval [x, y] ⊆ [0, 1], we use Evali
to obtain the following three values: vi([x, y]), vi([0, x]), and vi([y, 1]). These three values tell
us whether [x, y] is a bifurcating interval for agent i; see Definition 3. If [x, y] is a bifurcating
interval, then we have v̂i([x, y]) = 1. Otherwise, v̂i([x, y]) = vi([x, y]).

Now, we consider the cut query for v̂i. Given a point x ∈ [0, 1], and a value ν ∈ [0, 1],
we identify two candidate points y1 and y2 and set y := min{y1, y2} as the leftmost point
that satisfies v̂i([x, y]) ≥ ν. The first candidate point is defined as y1 := Cuti(x, ν), i.e., y1

S. Barman and P. Kulkarni 16:19

is the leftmost point that satisfies vi([x, y1]) = ν. The definition of v̂i (see equation (1))
implies that v̂i([x, y1]) ≥ vi([x, y1)] = ν. Still, there could be a point y2 to the left of y1 such
that the interval [x, y2] is bifurcating for i and, hence, v̂i([x, y2]) ≥ ν. Therefore, the second
candidate y2 is computed by finding the smallest bifurcating interval, if one exists, starting
at x. Towards this, we first use the query Evali(0, x) to ensure that vi([0, x]) ≤ 1

2 . If the
interval [0, x] is of value more than 1/2, then we set y2 = 1. In case vi([0, x]) ≤ 1

2 , we set
y2 := max {Cuti(x, 0.25), Cuti(0, 0.5)}. Finally, we return the minimum of y1 and y2 as the
answer y to the cut query for v̂i.

Overall, we get that both the cut and the evaluation queries for v̂i can be answered in
polynomial time. This completes the proof. ◁

We now prove that the algorithm executes in polynomial time.

▶ Lemma 19. Given a fixed constant δ ∈
(
0, 1

4
)

and any cake division instance with
(Robertson-Webb) query access to the valuations of the n agents, Algorithm 1 computes an
allocation in time that is polynomial in n and 1

δ .

Proof. We will first establish the time complexity of Phase I of the algorithm. Note that, in
every iteration of this phase (i.e., in every iteration of the while-loop between Lines 2 and 6),
for some agent a ∈ [n], the value v̂a(Pa) increases additively by at least δ

n ; see Lines 3 and 4.
Since the functions v̂is are monotonic and upper bounded by 1, the first while-loop in the
algorithm iterates at most n2

δ times. We next show that each iteration of this while-loop
can be implemented in polynomial time and, hence, obtain that overall Phase I executes
in polynomial time. Note that the execution condition of the while-loop (Line 2) can be
evaluated efficiently, since the evaluation query under v̂is can be answered in polynomial time
(Claim 18). Similarly, the candidate set C in Line 3 can be computed efficiently. Finding
the points ris in Line 3 entails answering cut queries for the functions v̂is and this too can
be implemented efficiently (Claim 18). Therefore, all the steps in the while-loop can be
implemented efficiently, and we get that Phase I terminates in polynomial time.

For Phase II and each maintained partial allocation P = (P1, . . . , Pn), consider the
potential φ(P) :=

∑n
i=1

∑n
j=1 vi(Pj). In each iteration of the second while-loop (Lines 7 to

12), the assigned region of the cake (i.e., ∪i∈[n]Pi) monotonically increases. Indeed, while
updating a partial allocation, the intervals might get reassigned among the agents, however,
the union ∪i∈[n]Pi increases in each iteration of the second while-loop. Furthermore, in
every iteration, for at least one agent i and the selected interval Ps (see Line 11), the value
increases by δ

n .9 Hence, in each iteration, the potential φ increases by at least δ
n . Also, note

that the potential is upper bounded by n and, hence, the second while-loop iterates at most
n2

δ times. Since all the steps in each iteration of the loop can be implemented in polynomial
time – including the envy cycle elimination one (Lemma 5) – we get that Phase II itself
executes in polynomial time.

The final merging of the intervals takes linear time. This, overall, establishes the
polynomial-time complexity of the algorithm. ◀

9 If the unassigned interval Ũ , considered in Line 11, is of value less than δ
n for all agents i ∈ [n], then

after that update the number of unassigned intervals (i.e., |UP |) strictly decreases. Hence, after such an
update, the while-loop terminates.

ICALP 2023

Cumulative Memory Lower Bounds for
Randomized and Quantum Computation
Paul Beame # Ñ

Computer Science & Engineering, University of Washington, Seattle, WA, USA

Niels Kornerup # Ñ

Computer Science, University of Texas, Austin, TX, USA

Abstract
Cumulative memory – the sum of space used per step over the duration of a computation – is
a fine-grained measure of time-space complexity that was introduced to analyze cryptographic
applications like password hashing. It is a more accurate cost measure for algorithms that have
infrequent spikes in memory usage and are run in environments such as cloud computing that allow
dynamic allocation and de-allocation of resources during execution, or when many multiple instances
of an algorithm are interleaved in parallel.

We prove the first lower bounds on cumulative memory complexity for both sequential classical
computation and quantum circuits. Moreover, we develop general paradigms for bounding cumulative
memory complexity inspired by the standard paradigms for proving time-space tradeoff lower bounds
that can only lower bound the maximum space used during an execution. The resulting lower
bounds on cumulative memory that we obtain are just as strong as the best time-space tradeoff
lower bounds, which are very often known to be tight.

Although previous results for pebbling and random oracle models have yielded time-space
tradeoff lower bounds larger than the cumulative memory complexity, our results show that in
general computational models such separations cannot follow from known lower bound techniques
and are not true for many functions.

Among many possible applications of our general methods, we show that any classical sorting
algorithm with success probability at least 1/poly(n) requires cumulative memory Ω̃(n2), any classical
matrix multiplication algorithm requires cumulative memory Ω(n6/T), any quantum sorting circuit
requires cumulative memory Ω(n3/T), and any quantum circuit that finds k disjoint collisions in a
random function requires cumulative memory Ω(k3n/T 2).

2012 ACM Subject Classification Theory of computation → Oracles and decision trees; Theory of
computation → Quantum query complexity; Theory of computation → Quantum complexity theory

Keywords and phrases Cumulative memory complexity, time-space tradeoffs, branching programs,
quantum lower bounds

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.17

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2301.05680 [18]

Funding Paul Beame: Research supported by NSF grant CCF-2006359.

Acknowledgements Many thanks to David Soloveichik for his guidance and contributions to our
initial results.

1 Introduction

For some problems, algorithms can use additional memory for faster running times or
additional time to reduce memory requirements. While there are different kinds of tradeoffs
between time and space, the most common complexity metric for such algorithms is the
maximum time-space (TS) product. This is appropriate when a machine must allocate an

EA
T
C
S

© Paul Beame and Niels Kornerup;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 17; pp. 17:1–17:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:beame@cs.washington.edu
https://cs.washington.edu/people/faculty/beame
https://orcid.org/0000-0002-2666-3545
mailto:nielskornerup@utexas.edu
https://nielskornerup.github.io/
https://orcid.org/0000-0002-1519-726X
https://doi.org/10.4230/LIPIcs.ICALP.2023.17
https://arxiv.org/abs/2301.05680
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

17:2 Computational Cumulative Memory Lower Bounds

algorithm’s maximum space throughout its computation. However, recent technologies like
AWS Lambda [15] suggest that in the context of cloud computing, space can be allocated to
a program only as it is needed. When using such services, analyzing the average memory
used per step leads to a more accurate picture than measuring the maximum space.

Cumulative memory (CM), the sum over time of the space used per step of an algorithm, is
an alternative notion of time-space complexity that is more fair to algorithms with rare spikes
in memory. Cumulative memory complexity was introduced by Alwen and Serbinenko [12]
who devised it as a way to analyze time-space tradeoffs for “memory hard functions” like
password hashes. Since then, lower and upper bounds on the CM of problems in structured
computational models using the black pebble game have been extensively studied, beginning
with the work of [12, 7, 32, 10, 9, 8]. Structured models via pebble games are natural in the
context of the random oracle assumptions that are common in cryptography. By carefully
interweaving their memory-intensive steps, authors of these papers devise algorithms for
cracking passwords that compute many hashes in parallel using only slightly more space
than is necessary to compute a single hash. While such algorithms can use parallelism to
amortize costs and circumvent proven single instance TS complexity lower bounds, their
cumulative memory only scales linearly with the number of computed hashes. Strong CM
results have also been shown for the black-white pebble game and used to derive related
bounds for resolution proof systems [11].

The ideas used for these structured models yield provable separations between CM and
TS complexity in pebbling and random oracle models. The key question that we consider is
whether or not the same applies to general models of computation without cryptographic or
black-box assumptions: Are existing time-space tradeoff lower bounds too pessimistic for a
world where cumulative memory is more representative of a computation’s cost?

Our Results

The main answer we provide to this question is negative for both classical and quantum
computation: We give generic methods that convert existing paradigms for obtaining time-
space tradeoff lower bounds involving worst-case space to new lower bounds that replace the
time-space product by cumulative space, immediately yielding a host of new lower bounds
on cumulative memory complexity. With these methods, we show how to extend virtually
all known proofs for time-space tradeoffs to equivalent lower bounds on cumulative memory
complexity, implying that there cannot be cumulative memory savings for these problems.
Our results, like those of existing time-space tradeoffs, apply in models in which arbitrary
sequential computations may be performed between queries to a read-only input. Our lower
bounds also apply to randomized and quantum algorithms that are allowed to make errors.

Classical computation. We focus on lower bound paradigms that apply to computations
of multi-output functions f : Dn → Rm. Borodin and Cook [22] introduced a method for
proving time-space tradeoff lower bounds for such functions that takes a property such as
the following: for some K = K(R, n), constant γ, and distribution µ on Dn:
(*) For any partial assignment τ of k ≤ γm output values over R and any restriction (i.e.,

partial assignment) π of h = h(k, n) coordinates on Dn,

Pr
x∼µ

[f(x) is consistent with τ | x is consistent with π] ≤ K−k.

and derives a lower bound of the following form:

P. Beame and N. Kornerup 17:3

Table 1 All CM bounds match the TS lower bound when considering RAM computation or
quantum circuits. The symbol * indicates that the result requires additional assumptions.

Problem TS Lower Bound Source Matching CM Bound
Ranking, Sorting Ω(n2/ log n) [22] Corollary 4.4
Unique Elements, Sorting Ω(n2) [16] Corollary 4.14
Matrix-Vector Product (F) Ω(n2 log |F|) [4] Corollary 4.5
Matrix-Multiplication (F) Ω((n6 log |F|)/T) [4] Corollary 4.15
Hamming Closeness Ω(n2−o(1)) [19]* Full paper [18]*
Element Distinctness Ω(n2−o(1)) [19]* Full paper [18]*
Quantum Sorting Ω(n3/T) [29] Theorem 3.6
Quantum k disjoint collisions Ω(k3n/T 2) [27] Corollary 4.16
Quantum Boolean Matrix-Mult Ω(n5/T) [29] Full paper [18]*

▶ Proposition 1.1 ([22]). Assume that Property (*) holds for f : Dn → Rm with γ > 0
constant. Then, T (S + log2 T) is Ω(m h(S/ log2 K, n) log K).

In particular, since S ≥ log2 n is essentially always required, if we have the typical
case that h(k, n) = k∆ h1(n) for some function h1(n) then this says that T · S1−∆ is
Ω(m h1(n) log1−∆ K) or, equivalently, that max(S, log n) is Ω([(m h1(n)/T]1/(1−∆) log K).
As a simplified example of our new general paradigm, we prove the following analog for
cumulative complexity:

▶ Theorem 1.2. Suppose that Property (*) holds for f : Dn → Rm with h(k, n) = k∆h1(n)
and γ > 0 constant. If T log2 T is o(m h1(n) log K) then any algorithm computing f requires
cumulative memory Ω

([
(m h1(n))1/(1−∆) log K

]
/T ∆/(1−∆)) .

We note that this bound corresponds exactly to the bound on the product of time and
space from Borodin-Cook method. The full version of our general theorem for randomized
computation (Theorem 4.8) is inspired by an extension by Abrahamson [4] of the Borodin-
Cook paradigm to average case complexity.

Our full paper ([18]) also shows how the paradigms for the best time-space tradeoff lower
bounds for single-output Boolean functions, which are based on the densities of embedded
rectangles where these functions are constant, can be extended to yield cumulative memory
bounds.

Quantum computation. We develop an extension of our general approach that applies to
quantum computation as well. In this case Property (*) and its extensions that we use for
our more general theorem must be replaced by statements about quantum circuits with a
small number of queries. In this case, we first generalize the quantum time-space tradeoff
for sorting proven in [29], which requires that the time order in which output values are
produced must correspond to the sorted order, to a matching cumulative memory complexity
bound of Ω(n3/T) that works for any fixed time-ordering of output production, yielding a
more general lower bound. (For example, an algorithm may be able to determine the median
output long before it determines the other outputs.) We then show how an analog of our
classical general theorem can be applied to extend to paradigms for quantum time-space
tradeoffs to cumulative memory complexity bounds for other problems.

A summary of our results for both classical and quantum complexity is given in Table 1.

ICALP 2023

17:4 Computational Cumulative Memory Lower Bounds

Previous work
Memory hard functions and cumulative memory complexity. Alwen and Serbinenko [12]
introduced parallel cumulative (memory) complexity as a metric for analyzing the space
footprint required to compute memory hard functions (MHFs), which are functions designed
to require large space to compute. Most MHFs are constructed using hashgraphs [26] of
DAGs whose output is a fixed length string and their proofs of security are based on pebbling
arguments on these DAGs while assuming access to truly random hash functions for their
complexity bounds [12, 21, 32, 8, 10, 20]. (Also see our full paper [18] for their use in
separating CM and TS complexity.) Recent constructions do not require random hash
functions; however, they still rely on cryptographic assumptions [25, 14].

Classical time-space tradeoffs. While these were originally studied in restricted pebbling
models similar to those considered to date for cumulative memory complexity [35, 23],
the gold-standard model for time-space tradeoff analysis is that of unrestricted branching
programs, which simultaneously capture time and space for general sequential computation.
Following the methodology of Borodin and Cook [22], who proved lower bounds for sorting,
many other problems have been analyzed (e.g., [37, 2, 3, 16, 30]), including universal
hashing and many problems in linear algebra [4]. (See [34, Chapter 10] for an overview.) A
separate methodology for single-output functions, introduced in the context of restricted
branching programs [24, 31], was extended to general branching programs in [17], with
further applications to other problems [5] including multi-precision integer multiplication [33]
and error-correcting codes [28] as well as over Boolean input domains [6, 19]. Both of these
methods involve breaking the program into blocks to analyze the computation under natural
distributions over the inputs based on what happens at the boundaries between blocks.

Quantum time-space tradeoffs. Similar blocking strategies can be applied to quantum
circuits to achieve time-space trade-offs for multi-output functions. In [29] the authors
use direct product theorems to prove time-space tradeoffs for sorting and Boolean matrix
multiplication. They also proved somewhat weaker lower bounds for computing matrix-vector
products for fixed matrices A; those bounds were extended in [13] to systems of linear
inequalities. However, both of these latter results apply to computations where the fixed
matrix A defining the problem depends on the space bound and, unlike the case of sorting
or Boolean matrix multiplication, do not yield a fixed problem for which the lower bound
applies at all space bounds. More recently [27] extended the recording query technique of
Zhandry in [38] to obtain time-space lower bounds for the k-collision problem and match the
aforementioned result for sorting.

Our methods
At the highest level, we employ part of the same paradigms previously used for time-space
tradeoff lower bounds. Namely breaking up the computations into blocks of time and
analyzing properties of the branching programs or quantum circuits based on what happens
at the boundaries between time blocks. However, for cumulative memory complexity, those
boundaries cannot be at fixed locations in time and their selection needs to depend on the
space used in these time steps.

Further, in many cases, the time-space tradeoff lower bound needs to set the lengths of
those time blocks in a way that depends on the specific space bound. When extending the
ideas to bound cumulative memory usage, there is no single space bound that can be used

P. Beame and N. Kornerup 17:5

throughout the computation; this sets up a tricky interplay between the choices of boundaries
between time blocks and the lengths of the time blocks. Because the space usage within a
block may grow and shrink radically, even with optimal selection of block boundaries, the
contribution of each time block to the overall cumulative memory may be significantly lower
than the time-space product lower bound one would obtain for the individual block.

We show how to bound any loss in going from time-space tradeoff lower bounds to
cumulative memory lower bounds in a way that depends solely on the bound on the lengths
of blocks as a function h0 of the target space bound (cf. Lemma 4.7). For many classes of
bounding functions we are able to bound the loss by a constant factor, and we are able show
that it is always at most an O(log n) factor loss. If this bounding function h0 is non-constant,
we also need to bound the optimum way for the algorithm to allocate its space budget for
producing the require outputs throughout its computation. This optimization again depends
on the bounding function h0. This involves minimizing a convex function based on h0 subject
to a mix of convex and concave constraints, which is not generally tractable. However,
assuming that h0 is nicely behaved, we are able to apply specialized convexity arguments (cf.
Lemma 4.10) which let us derive strong lower bounds on cumulative memory complexity.

Road map. We give the overall definitions in Section 2, including a review of the standard
definitions of the work space used by quantum circuits. In Section 3, we give our lower bound
for quantum sorting algorithms which gives a taste of the issues involved for our general
theorems. In Section 4, we give the general theorems that let us convert the Borodin-Cook-
Abrahamson paradigm for multi-output functions to cumulative memory lower bounds for
classical randomized algorithms; that section also contains the corresponding theorems for
quantum lower bounds and statements of some sample applications for our general results.
Appendix A contains the arguments that bound the optimum allocations of cumulative space
budgets to time steps. Our full paper [18] contains more details, a conditional separation
between CM and TS complexity, detailed applications of the general theorems we present
here, and our bounds for single-output functions.

2 Preliminaries

Cumulative memory is an abstract notion of time-space complexity that can be applied
to any model of computation with a natural notion of space. Here we will use branching
programs and quantum circuits as concrete models, although our results generalize to any
reasonable model of computation.

Branching Programs. A branching programs with input {x1, . . . , xn} ∈ Dn is defined using
a rooted DAG in which each non-sink vertex is labeled with an i ∈ [n] and has |D| outgoing
edges that correspond to possible values of xi. Each edge is optionally labeled by some
number of output statements expressed as pairs (j, oj) where j ∈ [m] is an output index
and oj ∈ R (if outputs are to be ordered) or simply oj ∈ R (if outputs are to be unordered).
Evaluation starts at the root v0 and follows the appropriate labels of the respective xi. We
consider branching programs P that contain T + 1 layers where the outgoing edges from
nodes in each layer t are all in layer t + 1. We impose no restriction on the query pattern of
the branching program or when it can produce parts of the output. The time of the branching
program is T (P) = T . The space of the branching program is S(P) = maxt log2 |Lt| where
Lt is the set of nodes in layer t. Observe that in the absence of any limit on its space, a
branching program could be a decision tree; hence the minimum time for branching programs

ICALP 2023

17:6 Computational Cumulative Memory Lower Bounds

to compute a function f is its decision tree complexity. The time-space (product) used by the
branching program is TS(P) = T (P)S(P). The cumulative memory used by the branching
program is CM(P) =

∑
t log2 |Lt|.

Branching programs are very general, and simultaneously model time and space for
sequential computation. In particular they model time and space for random-access off-line
multitape Turing machines and random-access machines (RAMs) when time is unit-cost, space
is log-cost, and the input and output are read-only and write-only respectively. Branching
programs are much more flexible than these models since they can make arbitrary changes
to their storage in a single step.

Quantum Circuits. We also consider quantum circuits C classical read-only input X =
x1, . . . , xn that can be queried using an XOR query oracle. As is normal in circuit models,
each output wire is associated with a fixed position in the output sequence, independent of the
input. As shown in Figure 1 following [29], we abstract an arbitrary quantum circuit C into
layers C = {L1, . . . , LT } where layer Lt starts with the t-th query Q to the input and ends
with the start of the next layer. During each layer, an arbitrary unitary transformation V gets
applied which can express an arbitrary sub-circuit involving input-independent computation.
The sub-circuit/transformation V outputs St qubits for use in the next layer in addition to
some qubits that are immediately measured in the standard basis, some of which are treated
as classical write-only output. The time of C is lower bounded by the number of layers T

and we say that the space of layer Lt is St. Observe that to compute a function f , T must
be at least the quantum query complexity of f since that measure corresponds the above
circuit model when the space is unbounded. Note that the cumulative memory of a circuit is
lower-bounded by the sum of the St. For convenience we define S0, the space of the circuit
before its first query, to be zero. Thus we only consider the space after the input is queried.

Figure 1 The abstraction of a quantum circuit into layers.

3 Quantum cumulative memory complexity of sorting

As an illustrative example, we first show that the quantum cumulative memory complexity
of sorting is Ω(n3/T), matching the TS complexity bounds given in [29, 27]. This involves
the quantum circuit model which, as we have noted, produces each output position at a
predetermined input-independent layer. We restrict our attention to circuits that output all
elements in the input in some fixed rank order. While our proof is inspired by the time-space
lower bound of [29], it can be easily adapted to follow the proof in [27] instead. We start by
constructing a probabilistic reduction from the k-threshold problem to sorting.

▶ Definition 3.1. In the k-threshold problem we receive an input X = x1, . . . , xn where
xi ∈ {0, 1}. We want to accept iff there are at least k distinct values for i where xi = 1.

▶ Proposition 3.2 (Theorem 13 in [29]). For every γ > 0 there is an α > 0 such that any
quantum k-threshold circuit with at most T ≤ α

√
kn queries and with perfect soundness must

have completeness σ ≤ e−γk on inputs with Hamming weight k.

P. Beame and N. Kornerup 17:7

▶ Lemma 3.3. Let γ > 0. Let n be sufficiently large and C(X) be a quantum circuit with
input X = x1, . . . , xn. There is a β < 1 depending only on γ such that for all k ≤ β2n

and R ⊆ {n/2 + 1, . . . , n} where |R| = k, if C(X) makes at most β
√

kn queries, then the
probability that C(X) can correctly output all k pairs (xi, rj) where rj ∈ R and xi is the rj-th
smallest element of X is at most e(1−γ)k−1. If R is a contiguous set of integers, then the
probability is at most e−γk.

A version of this lemma was first proved in [29] with the additional assumption that the
set of output ranks R is a contiguous set of integers; this was sufficient to show that any
quantum circuit that produces its sorted output in sorted time order requires that T 2S is
Ω(n3). The authors stated that their proof can be generalized to any fixed rank ordering,
but the generalization is not obvious. We generalize their lemma to non-contiguous R, which
is sufficient to obtain an Ω(n3/T) lower bound on the cumulative complexity of sorting
independent of the time order in which the sorted output is produced.

Proof of Lemma 3.3. Choose α as the constant for γ in Proposition 3.2 and let β =
√

2α/6.
Let C be a circuit with at most β

√
kn layers that outputs the k correct pairs (xi, rj) with

probability p. Let R = {r1, . . . rk} where r1 < r2 < . . . < rk. We describe our construction
of a circuit C′(X) solving the k-threshold problem on inputs X = x1, . . . , xn/2 with exactly k

ones in terms of a function f : [n/2] → R. Given f , we re-interpret the input as follows: we
replace each xi with x′

i = f(i)xi, add k dummy values of 0, and add one dummy value of j

for each j ∈ {n/2 + 1, . . . , n} \ R. Doing this gives us an input X ′ = x′
1, . . . , x′

n that has n/2
zeroes. If we assume that f is 1-1 on the k ones of X, then the image of the ones of X will
be R and there will be precisely one element of X ′ for each j ∈ {n/2 + 1, . . . , n}. Therefore
the element of rank j > n/2 in X ′ will have value j, and hence the rank r1, . . . , rk elements
of X ′ will be the images of precisely those elements of X with xi = 1.

To obtain perfect soundness, we cannot rely on the output of C(X ′) and must be able
to check that each of the output ranks was truly mapped to by a distinct one of X. For
each element xi of X we simply append its index i as log2 n low order bits to its image x′

i

and append an all-zero bit-vector of length log2 n to each dummy value to obtain input X ′′.
Doing so will not change the ranks of the elements in X ′, but will allow recovery of the k

indices that should be the ones in X. In particular, circuit C′(X) will run C(X ′′) and then
for each output x′′

j with low order bits i, C′(X) will query xi, accepting if and only if all of
those xi = 1. More precisely, since the mapping from each xi to the corresponding x′′

i is
only a function of f , xi, and i, as long as C′(X) has an explicit representation of f , it can
simulate each query of C(X ′′) with two oracle queries to X. Since C′ has at most

2β
√

kn + k ≤ 3β
√

kn ≤ α
√

kn/2

layers, by Proposition 3.2, it can only accept with probability ≤ e−γk on inputs with k ones.
We now observe that for each fixed X with exactly k ones, for a randomly chosen function

f : [n/2] → R, the probability that f is 1-1 on the ones of X ′ is exactly k!/kk ≥ e1−k.
Therefore C′(X) will give the indices of the k ones in X with probability1 at least p · e1−k.
However, this probability must be at most e−γk, so we can conclude that p ≤ e(1−γ)k−1. In
the event that R is a contiguous set of integers, observe that any choice for the function f

will make X ′′ have the ones of X become ranks r1, . . . , rk. So the probability of finding the
ones is at least p ≤ e−γk. ◀

1 Note that though this is exponentially small in k it is still sufficiently large compared to the completeness
required in the lower bound for the k-threshold problem.

ICALP 2023

17:8 Computational Cumulative Memory Lower Bounds

By setting k and γ appropriately, Lemma 3.3 gives a useful upper bound on the number
of fixed ranks successfully output by any β

√
Sn query quantum circuit that has access to S

qubits of input dependent initial state. To handle input-dependent initial state, we will need
to use the following proposition.

▶ Proposition 3.4 ([1]). Let C be a quantum circuit, ρ be any S qubit (possibly mixed) state,
and I be the S qubit maximally mixed state. If C with initial state ρ produces some output O
with probability p, then C with initial state I produces O with probability at least p/22S.

This allows us to bound the overall progress made by any short quantum circuit.

▶ Lemma 3.5. There is a constant β > 0 such that, for any fixed set of S ≤ β2n ranks that
are greater than n/2, the probability that any quantum circuit C with at most β

√
Sn queries

and S qubits of input-dependent initial state correctly produces the outputs for these S ranks
is at most 1/e.

Proof. Choose β as the constant when γ is 1 + ln(4) in Lemma 3.3. Applying Proposition 3.4
to the bound in Lemma 3.3 gives us that a quantum circuit with S qubits of input-dependent
state can produce a fixed set of k ≤ β2n outputs larger than median with a probability at
most 22Se(1−γ)k−1. Since γ = 1 + ln(4) setting k = S gives that this probability is ≤ 1/e. ◀

▶ Theorem 3.6. When n is sufficiently large, any quantum circuit C for sorting a list of
length n with success probability at least 1/e and at most T layers that produces its sorted
outputs in any fixed time order requires cumulative memory that is Ω(n3/T).

Proof. We partition C into blocks with large cumulative memory that can only produce a
small number of outputs. We achieve this by starting at last unpartitioned layer and finding
a suitably low space layer before it so that we can apply Lemma 3.5 to upper bound the
number of correct outputs that can be produced in that block with a success probability of
at least 1/e. Let β be the constant from Lemma 3.5 and k∗(t) be the least non-negative
integer value of k such that the interval:

I(k, t) =
[
t − β

2 (2k+1 − 1)
√

n, t − β

2 (2k − 1)
√

n

]
contains some t′ such that St′ ≤ 4k − 1. We recursively define our blocks as follows. Let ℓ be
the number of blocks generated by this method. The final block Cℓ starts with the first layer
tℓ−1 ∈ I(k∗(T), T) where Stℓ−1 ≤ 4k∗(T) − 1 and ends with layer tℓ = T . Let ti be the first
layer of block Ci+1. Then the block Ci starts with the first layer ti−1 ∈ I(k∗(ti), ti) where
Sti−1 ≤ 4k∗(ti) − 1 and ends with ti. See Figure 2 for an illustration of our partitioning. Since
S0 = 0 we know that k∗(t) ≤ log(T). Likewise since St > 0 when t > 0, for all t > β

2
√

n we
know that 0 < k∗(t) ≤ log(T).

Block Ci starts with less than 4k∗(ti) qubits of initial state and has length at most
β2k∗(ti)√n; so by Lemma 3.5, if 4k∗(ti) ≤ β2n, the block Ci can output at most 4k∗(ti) inputs
with failure probability at most 1/e. Additionally Ci has at least β

2 2k∗(ti)−1√
n layers so

ℓ∑
i=1

β

4 2k∗(ti)√n ≤ T (1)

and each of these layers has at least 4k∗(ti)−1 qubits2, so the cumulative memory of Ci is at

2 This may not hold for C1 with length less than β
2

√
N , but Lemma 3.3 gives us that this number of

layers is insufficient to find a fixed rank input with probability at least 1/e. Thus we can omit such a
block from our analysis.

P. Beame and N. Kornerup 17:9

Figure 2 How we define the block Ci that ends at layer Lti . The red line is a plot of C’s space over
time. The grey layers are the ones used to lower bound the cumulative memory complexity of Ci, as
each of these layers uses at least 4k∗(ti)−1 qubits and the length of this interval is β

2 2k∗(ti)−1√
n.

least β
2 23k∗(ti)−3√

n so

CM(C) ≥
ℓ∑

i=1

β

2 23k∗(ti)−3√
n. (2)

We now have two possibilities: If we have some i such that 4k∗(ti) > β2n, the cumulative
memory of Ci alone is at least β4n2/16 which is Ω(n2) and hence C has cumulatively memory
Ω(n3/T) since T ≥ n. Otherwise, since we require that the algorithm is correct with
probability at least 1/e, each block Ci can produce at most 4k∗(ti) outputs. Since our circuit
must output all n/2 elements larger than the median, we know

∑ℓ
i=1 4k∗(ti) ≥ n/2. For

convenience we define wi = 2k∗(ti) which allows us to express the constraints as

CM(C) ≥ β

16
√

n

ℓ∑
i=1

w3
i and β

4
√

n

ℓ∑
i=1

wi ≤ T and
ℓ∑

i=1
w2

i ≥ n/2. (3)

Minimizing
∑ℓ

i=1 w3
i is a non-convex optimization problem and can instead be solved using

Minimize
ℓ∑

i=1
x3

i subject to
ℓ∑

i=1
x2

i ≥ ξ and
ℓ∑

i=1
xi ≤ ξ and ∀i, xi ≥ 0, (4)

for xi = 8T

βn3/2 wi and ξ = 32T 2

β2n2 . Lemma A.1 from Appendix C shows that for non-negative

xi with
∑

xi ≤
∑

x2
i , we have

∑
x2

i ≤
∑

x3
i . Thus

∑
x3

i ≥ ξ and applying the variable

substitution gives us:
ℓ∑

i=1
w3

i ≥ βn5/2

16T
. Plugging this into Equation (3) gives us the bound:

CM(C) ≥ β2n3

256T
and hence the cumulative memory of C is Ω(n3/T). ◀

4 General methods for proving cumulative memory lower bounds

Our method involves adapting techniques previously used to prove tradeoff lower bounds on
worst-case time and worst-case space. We show that the same properties that yield lower
bounds on the product of time and space in the worst case can also be used to produce
nearly identical lower bounds on cumulative memory. To do so, we first revisit the standard
approach to such time-space tradeoff lower bounds.

ICALP 2023

17:10 Computational Cumulative Memory Lower Bounds

The standard method for time-space tradeoff lower bounds for
multi-output functions
Consider a multi-output function f on Dn where the output f(x) is either unordered (the
output is simply a set of elements from R) or ordered (the output is a vector of elements
from R). Then |f(x)| is either the size of the set or the length of the vector of elements. The
standard method for obtaining an ordinary time-space tradeoff lower bounds for multi-output
functions on D-way branching programs is the following:

The part that depends on f . Choose a suitable probability distribution µ on Dn, often
simply the uniform distribution on Dn and then:
(A) Prove that Prx∼µ[|f(x)| ≥ m] ≥ α.
(B) Prove that for all k ≤ m′ and any branching program B of height ≤ h′(k, n), the

probability for x ∼ µ that B produces at least k correct output values of f on input x is
at most C · K−k for some m′, h′, K = K(R, n), and constant C independent of n.

Observe that under any distribution µ, a branching program with ordered outputs that
makes no queries can produce k outputs that are all correct with probability at least |R|−k,
so the bound in (B) shows that, roughly, up to the difference between K and |R| there is not
much gained by using a branching program of height h.

The generic completion. In the following outline we omit integer rounding for readability.
Let S′ = S + log2 T and suppose that

S′ ≤ m′ log2 K − log2(2C/α). (5)

Let k = [S′ + log2(2C/α)]/ log2 K, which is at most m′ by hypothesis on S′, and define
h(S′, n) = h′(k, n).
Divide time T into ℓ = T/h blocks of length h = h(S′, n).
The original branching program can be split into at most T · 2S = 2S′ sub-branching
programs of height ≤ h, each beginning at a boundary node between layers. By Property
(B) and a union bound, for x ∼ µ the probability that at least one of these ≤ 2S′

sub-branching programs of height at most h produces k correct outputs on input x is at
most 2S′ · C · K−k ≤ α/2 by our choice of k.
Under distribution µ, by (A), with probability at least α, an input x ∼ µ has some block
of time where at least m/ℓ = m · h(S′, n)/T outputs of f must be produced on input x.
If m · h(S′, n)/T ≤ k, this can occur for at most an α/2 fraction of inputs under µ.
Therefore we have m · h(S′, n)/T > k = [S′ + log2(2C/α)]/ log2 K and hence since
h(S′, n) ≥ h(S, n), combining with Equation (5), we have

T · (S + log2 T) = T · S′ ≥ min (m h(S, n), m′ n′) log2 K − log2(C/α) · T

where n′ ≤ n is the decision tree complexity of f and hence a lower bound on T .

▶ Remark 4.1. Though it will not impact our argument, for many instances of the above
outline, the proof of Property (B) is shown for a decision tree of the same height by proving
an analog for the conditional probability along each path in the decision tree separately; this
will apply to the tree as a whole since the paths are followed by disjoint inputs, so Property
(B) follows from the alternative property below:
(B’) For any partial assignment τ of k ≤ m′ output values over R and any restriction (i.e.,

partial assignment) π of h′(k, n) coordinates within Dn,

Pr
x∼µ

[f(x) is consistent with τ | x is consistent with π] ≤ C · K−k.

P. Beame and N. Kornerup 17:11

Figure 3 Our generic method for choosing blocks when h(k, n) = h(n). The area marked in grey
corresponds to the cumulative memory lower bound we obtain.

Observe that Property (B’) is only a slightly more general version of Property (*) from the
introduction where C = 1, m′ is arbitrary, and h′ is used instead of h.
▶ Remark 4.2. The above method still gives lower bounds for many multi-output functions
g : DN → RM that have individual output values that are easy to compute or large portions
of the input space on which they are easy to compute. The bounds follow by applying
the method to some subfunction f of g given by f(x) = ΠO(g(x, π)) where π is a partial
assignment to the input coordinates and ΠO is a projection onto a subset O of output
coordinates. In the subsequent discussions we ignore this issue, but the idea can be applied
to all of our lower bound methods.

A general extension to cumulative memory bounds
To give a feel for the basic ideas of the method, we first show this for a simple case. Observe
that, other than the separate bound on time, the lower bound on cumulative memory usage
we prove in this case is asymptotically identical to the bound achieved for the product of
time and worst-case space using the standard outline.

▶ Theorem 4.3. Let c > 0. Suppose that properties (A) and (B) apply for h′(k, n) = h(n),
m′ = m, and α = C = 1. If T log2 T ≤ m h(n) log2 K

6(c+1) then the cumulative memory used
in computing f : Dn → Rm in time T with success probability at least T −c is at least
1
6 m h(n) log2 K.

Proof. Fix a deterministic branching program P of length T computing f . Rather than
choosing fixed blocks of height h = h(n), layers of nodes at a fixed distance from each other,
and a fixed target of k outputs per block, we choose the block boundaries depending on the
properties of P and the target k depending on the property of the boundary layer chosen.

Let H = ⌊h(n)/2⌋. We break P into ℓ = ⌈T/H⌉ time segments of length H working
backwards from step T so that the first segment may be shorter than the rest. We let t1 = 0
and for 1 < i ≤ ℓ we let ti = arg min{ |Lt| : T − (ℓ − i + 1) · H ≤ t < T − (ℓ − i) · H } be the
time step with the fewest nodes among all time steps t ∈ [T − (ℓ − i + 1) · H, T − (ℓ − i) · H].

The i-th time block of P will be between times ti and ti+1. Observe that by construction
|ti+1 − ti| ≤ h(n) so each block has length at most h(n). This construction is shown in
Figure 3 Set Si = log2 |Lti

| so that Lti
has at 2Si nodes. By definition of each ti, the

cumulative memory used by P ,

CM(P) ≥
ℓ∑

i=1
Si · H. (6)

(Note that since S1 = 0, it does not matter that the first segment is shorter than the rest3.)

3 This simplifies some calculations and is the prime reason for starting the time segment boundaries at T .

ICALP 2023

17:12 Computational Cumulative Memory Lower Bounds

We now define the target ki for the number of output values produced in each time block
to be the smallest integer such that K−ki ≤ 2−Si/T c+1. That is,

ki = ⌈(Si + (c + 1) log2 T)/ log2 K⌉.

For x ∼ µ, for each i ∈ [ℓ] and each sub-branching program B rooted at some node in Lti
and

extending until time ti+1, by our choice of ki and Property (B), if ki ≤ m, the probability
that B produces at least ki correct outputs on input x is at most 2−Si/T c+1. Therefore, by a
union bound, for x ∼ µ the probability that P produces at least ki correct outputs in the i-th
time block on input x is at most |Lti | · 2−Si/T c+1 = 1/T c+1. Therefore, if each ki ≤ m, the
probability for x ∼ µ that there is some i such that P produces at least ki correct outputs
on input x during the i-th block is at most ℓ/T c+1 < T c and the probability for x ∼ µ that
P produces at most

∑ℓ
i=1(ki − 1) correct outputs in total on input x is > 1 − 1/T c.

If each ki ≤ m, since P must produce m correct outputs on x ∈ Dn with probability at
least 1/T c, we must have

∑ℓ
i=1(ki − 1) ≥ m. On the other hand, if some ki > m we have the

same bound. Using our definition of ki we have
∑ℓ

i=1[(Si + (c + 1) log2 T)]/ log2 K] ≥ m or∑ℓ
i=1(Si + (c + 1) log2 T) ≥ m · log2 K. Plugging in the bound (6) on the cumulative memory

and the value of ℓ, it implies that CM(P)/H + (c + 1)⌈T/H⌉ · log2 T ≥ m · log2 K or that
CM(P) + (c + 1)T log2 T ≥ 1

3 m · h(n) · log2 K, where the 3 on the right rather than a 2
allows us to remove the ceiling. Therefore either

T log2 T >
m · h(n) · log2 K

6(c + 1) or CM(P) ≥ 1
6 m h(n) log2 K. ◀

Simple applications. This simple case of our general theorem is sufficient to obtain many
tight new lower bounds on cumulative memory complexity including the following (full proofs
are in [18]):

▶ Corollary 4.4. Producing the ranks (positions of each input in the sorted order) or sorting
n integers from [n2] requites CMC that is Ω(n2/ log2 n).

▶ Corollary 4.5. For many fixed (random or explicit) n × n matrices A, computing Ax over
a finite field F requires CMC that is Ω(n2 log |F|).

Corollary 4.4 uses property (B) for ranking with m′ = h′(k, n) = Θ(n), C = 1, K =
2Θ(1/ log n) proven in [22, Lemma 1]. Corollary 4.5 uses property (B’) with m′ = h′(k, n) = cn,
for 0 < c ≤ 1/2, C = 1, and K = |F|c proven in [4, Theorem 4.6].

Full general theorem. In the general version of our theorem there are a number of additional
complications, most especially because the branching program height limit h(k, n) in Property
(B) can depend on k, the target for the number of outputs produced. This forces the lengths
of the blocks and the space used at the boundaries between blocks to depend on each other
in a quite delicate way. In order to discuss the impact of that dependence and state our
general theorem, we need the following definition.

▶ Definition 4.6. Given a non-decreasing function p : R → R with p(1) = 1, we define
p−1 : R → R ∪ {∞} by p−1(R) = min{j | p(j) ≥ k}. We also define the loss, Lp, of p by

Lp(n) = min
1≤k≤p(n)

∑k
j=1 p−1(j)

k · p−1(k) .

P. Beame and N. Kornerup 17:13

▶ Lemma 4.7. The following hold for every non-decreasing function p : R → R with p(1) = 1:
(a) 1/p(n) ≤ Lp(n) ≤ 1.
(b) If p is a polynomial function p(s) = s1/c then Lp(n) > 1/2c+1.

(c) For any c > 1, Lp(n) ≥ min
1≤s≤n

p(s) − p(s/c)
cp(s) .

(d) We say that p is nice if it is differentiable and there is an integer c > 1 such that for
all x, p′(cx) ≥ p′(x)/c. If p is nice then Lp(n) is Ω(1/ log2 n). This is tight for p with
p(s) = 1 + log2 s.
We prove this technical lemma in the full paper [18]. Here is our full general theorem.

▶ Theorem 4.8. Let c > 0. Suppose that function f defined on Dn has properties (A) and
(B) with α that is 1/nO(1) and m′ that is ω(log2 n). For s > 0, define h(s, n) to be h′(k, n)
for k = s/ log2 K. Suppose that h(s, n) = h0(s) h1(n) with h0(1) = 1 and h0 is constant or a
differentiable function such that s/h0(s) is increasing and concave. Define S∗ = S∗(T, n) by

S∗/h0(S∗) = (m h1(n) log2 K) /6T.

(a) Either T log2(2CT c+1/α) >
1
6 m h1(n) log2 K, which implies that T is Ω(m h1(n) log K

log n),
or the cumulative memory used by a randomized branching program in computing f in
time T with error ε ≤ α(1 − 1/(2T c)) is at least

1
6 Lh0(n log2 |D|) · min (m h(S∗(T, n), n), 3m′ h′(m′/2, n)) · log2 K.

(b) Further any randomized random-access machine computing f in time T with error
ε ≤ α(1 − 1/(2T c)) requires cumulative memory

Ω (Lh0(n log2 |D|) · min (m h(S∗(T, n), n), m′ h′(m′/2, n)) · log2 K) .

Before we give the proof of the theorem, we note that by Lemma 4.7, in the case that h0
is constant or h0(s) = s∆ for some constant ∆ > 0, which together account for all existing
applications we are aware of, the function Lh0 is lower bounded by a constant. In the latter
case, h0 is differentiable, has h0(s) = 1, and the function s/h0(s) = s1−∆ is increasing and
concave so it satisfies the conditions of our theorem. By using α = 1, m′ = m, and C = 1
with h from Property (*) in place of h′ in Property (B’), Theorem 4.8 yields Theorem 1.2.

More generally, the value S∗ in the statement of this theorem is at least a constant
factor times the value of S used in the generic time-space tradeoff lower bound methodology.
Therefore, the cumulative memory lower bound in Theorem 4.8 for random-access machines
is close to the lower bound on the product of time and space using standard methods.

Proof of Theorem 4.8. We prove both (a) and (b) directly for branching programs, which
can model random-access machines, and will describe the small variation that occurs in
the case that the branching program in question comes from a random-access machine. To
prove these properties for randomized branching programs, by Yao’s Lemma [36] it suffices
to prove the properties for deterministic branching programs that have error at most ε under
distribution µ. Fix a (deterministic) branching program P of length T computing f with
error at most ε under distribution µ. Without loss of generality, P has maximum space
usage at most Smax = n log2 |D| space since there are at most |Dn| inputs.

Let H = ⌊h1(n)/2⌋. We break P into ℓ = ⌈T/H⌉ time segments of length H working
backwards from step T so that the first segment may be shorter than the rest. We then
choose a sequence of candidates for the time steps in which to begin new blocks, as follows:
We let τ1 = 0 and for 1 < i ≤ ℓ we let

τi = arg min{ |Lt| : T − (ℓ − i + 1) · H ≤ t < T − (ℓ − i) · H }

ICALP 2023

17:14 Computational Cumulative Memory Lower Bounds

be the time step with the fewest nodes among all time steps t ∈ [T −(ℓ−i+1)·H, T −(ℓ−i)·H].
Set σi = log2 |Lτi

| so that Lτi
has at 2σi nodes. This segment contributes at least σi · H to

the cumulative memory bound of P .
To choose the beginning ti∗ of the last time block4. we find the smallest k such that

h0(σℓ−k+1) < k. Such a k must exist since h0 is a non-decreasing non-negative function,
h0(1) = 1 and σ1 = 0 < 1. We now observe that the length of the last block is at most k · H

which by choice of k is less than h(σℓ−k+1, n) and hence we have satisfied the requirements
for Property (B) to apply at each starting node of the last time block.

By our choice of each τi, the cumulative memory used in the last k segments is at least∑k
j=1 σℓ+1−j · H. Further, since k was chosen as smallest with the above property, we know

that for every j ∈ [k − 1] we have h0(σℓ−j+1) ≥ j Hence we have σℓ−j+1 ≥ h−1
0 (j) and we

get a cumulative memory bound for the last k segments of at least

(σℓ−k+1 +
k−1∑
j=1

h−1
0 (j)) · H. (7)

▷ Claim 4.9. σℓ−k+1 +
∑k−1

j=1 h−1
0 (j) ≥ Lh0(Smax) · σℓ−k+1 · k.

Proof of Claim. Observe that it suffices to prove the claim when we replace σℓ−k+1, which
appears on both sides, by a larger quantity. In particular, we show how to prove the claim
with h−1

0 (k) instead, which is larger since h0(σℓ−k+1) < k. But this follows immediately

since by definition Lh0(Smax) ≤
∑k

j=1
h−1

0 (j)

k·h−1
0 (k) , which is equivalent to what we want to prove.

◁

Write Si∗ = σℓ−k+1. By the claim, the cumulative memory contribution associated with
the last block beginning at ti∗ is at least Lh0(Smax) · Si∗ · h0(Si∗)H.

We repeat this in turn to find the time step for the beginning of the next block from the
end, ti∗−1. One small difference now is that there is a last partial segment of height at most
H from the beginning of segment containing ti∗ to layer ti∗ . However, this only adds at most
h1(n)/2 to the length of the segment which still remains well within the height bound of
h(Si∗−1, n) = h0(Si∗−1)h1(n) for Property (B) to apply.

Repeating this back to the beginning of the branching program we obtain a decomposition
of the branching program into some number i∗ of blocks, the i-th block beginning at time
step ti with 2Si nodes, height between h0(Si)H and h0(Si)H + H ≤ 2h0(Si)H, and with an
associated cumulative memory contribution in the i-th block of ≥ Lh0(Smax) · Si · h0(Si)H.

(This is correct even for the partial block starting at time t1 = 0 since S1 = 0.) Since we know
that i∗ ≤ ℓ, for convenience, we also define Si = 0 for i∗ + 1 ≤ i ≤ ℓ. Then, by definition

CM(P) ≥ Lh0(Smax) ·

(
i∗∑

i=1
Si · h0(Si)

)
· H = Lh0(Smax) ·

(
ℓ∑

i=1
Si · h0(Si)

)
(8)

and
ℓ∑

i=1
h0(Si) ≤ T/H. (9)

As in the previous argument for the simple case, for i ≤ i∗, we define the target ki for
the number of output values produced in each time block to be the smallest integer such
that CK̇−ki ≤ 2−Siα/(2T c+1). That is, ki = ⌈(Si + log2(2CT c+1/α))/ log2 K⌉.

4 Since we are working backwards from the end of the branching program and we do not know how many
segments are included in each block, we don’t actually know this index until things stop with t1 = 0

P. Beame and N. Kornerup 17:15

If ki > m′ for some i, then Si ≥ m′ · log2 K − log2(2CT c+1/α) ≥ (m′ log2 K)/2 since m′

is ω(log n) and 1/α and T are nO(1). Therefore h0(Si) ≥ h′(m′/2, n) and hence

CM(P) ≥ 1
2 Lh0(Smax) · m′ · h′(m′/2, n) · log2 K

Suppose instead that ki ≤ m′ for all i ≤ i∗. Then, for x ∼ µ, for each i ∈ [i∗] and each
sub-branching program B rooted at some node in Lti and extending until time ti+1, by our
choice of ki and Property (B), the probability that B produces at least ki correct outputs on
input x is at most α · 2−Si/(2T c+1). Therefore, by a union bound, for x ∼ µ the probability
that P produces at least ki correct outputs in the i-th time block on input x is at most

|Lti | · α · 2−Si/(2T c+1) = α/(2T c+1)

and hence the probability for x ∼ µ that there is some i such that P produces at least
ki correct outputs on input x during the i-th block is at most ℓ · α/(2T c+1) < α/(2T c).
Therefore, the probability for x ∼ µ that P produces at most

∑ℓ
i=1(ki − 1) correct outputs

in total on input x is > 1 − α/(2T c).
Since, by Property (A) and the maximum error it allows, P must produce at least m

correct outputs with probability at least α − ϵ ≥ α − α(1 − 1/(2T c)) = α/(2T c) for x ∼ µ,
we must have

∑i∗

i=1(ki − 1) ≥ m. Using our definition of ki we obtain

i∗∑
i=1

(Si + log2(2CT c+1/α)) ≥ m log2 K.

This is the one place in the proof where there is a distinction between an arbitrary
branching program and one that comes from a random access machine.

We first start with the case of arbitrary branching programs: Note that i∗ ≤ ℓ = ⌈T/H⌉ =
⌈T/⌊h1(n)/2⌋⌉. Suppose that T log2(2CT c+1/α) ≤ 1

6 m · h1(n) · log2 K. Then, even with
rounding, we obtain

∑i∗

i=1 Si ≥ 1
2 m log2 K.

Unlike an arbitrary branching program that may do non-trivial computation with sub-
logarithmic Si, a random-access machine with even one register requires at least log2 n bits
of memory (just to index the input for example) and hence Si + log2(2CT c+1/α) will be
O(Si), since T is at most polynomial in n and 1/α is at most polynomial in n by assumption.
Therefore we obtain that

∑i∗

i=1 Si is Ω(m log2 K) without the assumption on T .
In the remainder we continue the argument for the case of arbitrary branching programs

and track the constants involved. The same argument obviously applies for programs coming
from random-access machines with slightly different constants that we will not track. In
particular, since Si = 0 for i > i∗ we have

ℓ∑
i=1

Si ≥ 1
2 m · log2 K. (10)

From this point we need to do something different from the argument in the simple case
because the lower bound on the total cumulative memory contribution is given by Equation (8)
and is not simply

∑ℓ
i=1 Si · H. Instead, we combine Equation (10) and Equation (9) using

the following technical lemma that we prove in Appendix A.

▶ Lemma 4.10. Let p : R≥0 → R≥0 be a differentiable function such that q(x) = x/p(x) is a
concave increasing function of x. For x1, x2, . . . ∈ R≥0, if

∑
i xi ≥ K and

∑
i p(xi) ≤ L then∑

i xip(xi) ≥ q−1(K/L) · L.

ICALP 2023

17:16 Computational Cumulative Memory Lower Bounds

In our application of Lemma 4.10, p = h0, K = 1
2 m · log2 K, and L = T/H. Let S∗ be

the solution to S∗

h0(S∗) = K/L = m·H·log2 K
2T ≥ m·h1(n) log2 K

6T . Then Lemma 4.10 implies that∑ℓ
i=1 Si · h0(Si) ≥ S∗ · T/H = 1

2 , m · h0(S∗) · log2 K. and hence

CM(P) ≥ Lh0(Smax) · 1
2 m · h0(S∗) · H · log2 K ≥ 1

6 Lh0(Smax) · m · h(S∗, n) · log2 K

since H = ⌊h1(n)/2⌋ and h(S∗, n) = h0(S∗) · h1(n). ◀

In the special case that h0(s) = s∆ (and indeed for any nice function h0), there is an
alternative variant of the above in which one breaks up time into exponentially growing
segments starting with time step T . We used that alternative approach in Section 3.
▶ Remark 4.11. If we restrict our attention to o(m′ log K)-space bounded computation, then
each ki ≤ m′ and the cumulative memory bound for a branching program in Theorem 4.8
becomes 1

6 Lh0(n log2 |D|) · m · h(S∗(T, n), n) · log2 K. And the bound for RAM cumulative
memory becomes Ω (Lh0(n log2 |D|) · m · h(S∗(T, n), n) · log2 K) .

Generic method for quantum time-space tradeoffs
Quantum circuit time-space lower bounds have the same general structure as their classical
branching program counterparts. They require a lemma similar to (B) that gives an
exponentially small probability of producing k outputs with a small number of queries.

▶ Lemma 4.12 (Quantum generic property). For all k ≤ m′ and any quantum circuit C with
at most h′(k, n) layers, there exists a distribution µ such that when x ∼ µ, the probability
that C produces at least k correct output values of f(x) is at most C · K−k.

Such lemmas have historically been proving using direct product theorems [29, 13] or
the recording query technique [27]. Quantum time-space tradeoffs use the same blocking
strategy as branching programs; however, they cannot use union bounds to account for input-
dependent state at the start of a block. Instead, Proposition 3.4 lets us apply Lemma 4.12
to blocks in the middle of a quantum circuit. The 22S factor in Proposition 3.4 means that a
quantum time-space or cumulative memory lower bound is half of what you would expect
from a classical bound. Since a quantum circuit requires log2 n qubits to make a query, we
know that the space between layers is always at least log2 n and

T · S is Ω (min{m h′(S, n), m′ Q(f)} · log2 K)

where Q(f) is the bounded-error quantum query complexity of f .

Generic method for quantum cumulative complexity bounds
Our generic argument can just as easily be applied to quantum lower bounds for problems
where we have an instance of Lemma 4.12 using Proposition 3.4 to bound the number
of outputs produced even with initial input-dependent state. Quantum circuits require
at least log2 n qubits to hold the query index so the bounds derived are like those from
Theorem 4.8(b).

▶ Corollary 4.13. Let c > 0. Suppose that function f defined on Dn satisfies generic
Lemma 4.12 with m′ that is ω(log2 n). For s > 0, let h(s, n) = h′(s/ log2 K, n). Let
h(s, n) = h0(s)h1(n) where h0(1) = 1 and h0 is constant or a differentiable function where
s/h0(s) is increasing and concave. Let S∗ be defined by:

S∗/h0(S∗) = (m h1(n) log2 K) /6T.

P. Beame and N. Kornerup 17:17

The CM used by a quantum circuit that computes f in time T with error ε ≤ (1 − 1/(2T c)) is

≥ 1
6 Lh0(n log2 |D|) · min {m h(S∗, n), 3m′ h′(m′/2, n)} · log2 K.

If the circuit uses o(m′ log K) qubits, the CMC instead is 1
6 Lh0(n log2 |D|)·m·h(S∗, n)·log2 K.

Full general applications. Some applications of our full general theorem generalizing classical
and quantum time-space product lower bounds are the following (full proofs are in [18]):

▶ Corollary 4.14. The CMC for listing all uniquely occurring elements or sorting n integers
from [n] is Ω(n2).

▶ Corollary 4.15. Matrix multiplication for n×n matrices over finite field F requires classical
CMC that is Ω((n6 log |F|)/T).

▶ Corollary 4.16. For every m ≥ n, finding k disjoint collisions in a random function from
[m] to [n] requires quantum CMC that is Ω(k3n/T 2).

Corollary 4.14 uses properties (A) and (B) for unique elements with h′(k, n) = n/4,
m′ = n/4, m = n/(2e), α = 1/(2e − 1), K = 1/(2 ln N) and C = 1 that follow from
[16, Lemmas 2, 3]. Corollary 4.15 uses properties (A) and (B’) with h′(k, n) = Θ(n

√
k),

m′ = m = n2, α = 1, K = |F|Θ(1) and C = d2. as proven in [4, Theorem 7.1]. Corollary 4.16
uses Lemma 4.12 with h′(k, n) = Θ(k2/3n1/3), m′ = m = k, and C = K = 2 which follow
from [27, Theorem 9].

References
1 Scott Aaronson. Limitations of quantum advice and one-way communication. Theory of

Computing, 1(1):1–28, 2005. doi:10.4086/toc.2005.v001a001.
2 Karl R. Abrahamson. Generalized string matching. SIAM J. Comput., 16(6):1039–1051, 1987.

doi:10.1137/0216067.
3 Karl R. Abrahamson. A time-space tradeoff for Boolean matrix multiplication. In 31st

Annual IEEE Symposium on Foundations of Computer Science, Volume I, pages 412–419,
1990. doi:10.1109/FSCS.1990.89561.

4 Karl R. Abrahamson. Time-space tradeoffs for algebraic problems on general sequential
machines. J. Comput. Syst. Sci., 43(2):269–289, 1991. doi:10.1016/0022-0000(91)90014-v.

5 Miklós Ajtai. Determinism versus nondeterminism for linear time RAMs with memory
restrictions. J. Comput. Syst. Sci., 65(1):2–37, 2002. doi:10.1006/jcss.2002.1821.

6 Miklós Ajtai. A non-linear time lower bound for Boolean branching programs. Theory Comput.,
1(1):149–176, 2005. doi:10.4086/toc.2005.v001a008.

7 Joël Alwen and Jeremiah Blocki. Efficiently computing data-independent memory-hard
functions. In Advances in Cryptology – CRYPTO 2016, pages 241–271, 2016.

8 Joël Alwen, Jeremiah Blocki, and Krzysztof Pietrzak. Depth-robust graphs and their cumulative
memory complexity. In Advances in Cryptology – EUROCRYPT 2017, pages 3–32, 2017.

9 Joël Alwen, Binyi Chen, Chethan Kamath, Vladimir Kolmogorov, Krzysztof Pietrzak, and
Stefano Tessaro. On the complexity of Scrypt and proofs of space in the parallel random
oracle model. In Advances in Cryptology - EUROCRYPT 2016, Proceedings, Part II, volume
9666 of LNCS, pages 358–387, 2016. doi:10.1007/978-3-662-49896-5_13.

10 Joël Alwen, Binyi Chen, Krzysztof Pietrzak, Leonid Reyzin, and Stefano Tessaro. Scrypt
is maximally memory-hard. In Advances in Cryptology - EUROCRYPT 2017, Proceedings,
Part III, volume 10212 of Lecture Notes in Computer Science, pages 33–62, 2017. doi:
10.1007/978-3-319-56617-7_2.

ICALP 2023

https://doi.org/10.4086/toc.2005.v001a001
https://doi.org/10.1137/0216067
https://doi.org/10.1109/FSCS.1990.89561
https://doi.org/10.1016/0022-0000(91)90014-v
https://doi.org/10.1006/jcss.2002.1821
https://doi.org/10.4086/toc.2005.v001a008
https://doi.org/10.1007/978-3-662-49896-5_13
https://doi.org/10.1007/978-3-319-56617-7_2
https://doi.org/10.1007/978-3-319-56617-7_2

17:18 Computational Cumulative Memory Lower Bounds

11 Joël Alwen, Susanna F. de Rezende, Jakob Nordström, and Marc Vinyals. Cumulative
space in black-white pebbling and resolution. In 8th Innovations in Theoretical Computer
Science Conference (ITCS 2017), volume 67 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 38:1–38:21, 2017. doi:10.4230/LIPIcs.ITCS.2017.38.

12 Joël Alwen and Vladimir Serbinenko. High parallel complexity graphs and memory-hard func-
tions. In Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing,
pages 595–603, 2015. doi:10.1145/2746539.2746622.

13 Andris Ambainis, Robert Špalek, and Ronald de Wolf. A new quantum lower bound method,
with applications to direct product theorems and time-space tradeoffs. Algorithmica, 55(3):422–
461, 2009. doi:10.1007/s00453-007-9022-9.

14 Mohammad Hassan Ameri, Alexander R. Block, and Jeremiah Blocki. Memory-hard puzzles
in the standard model with applications to memory-hard functions and resource-bounded
locally decodable codes. Cryptology ePrint Archive, Paper 2021/801, 2021. URL: https:
//eprint.iacr.org/2021/801.

15 Andrew Baird, Bryant Bost, Stefano Buliani, Vyom Nagrani, Ajay Nair, Rahul Popat,
and Brajendra Singh. AWS serverless multi-tier architectures with Amazon API Gate-
way and AWS Lambda, 2021. URL: https://docs.aws.amazon.com/whitepapers/latest/
serverless-multi-tier-architectures-api-gateway-lambda/welcome.html.

16 Paul Beame. A general sequential time-space tradeoff for finding unique elements. SIAM J.
Comput., 20(2):270–277, 1991. doi:10.1137/0220017.

17 Paul Beame, T. S. Jayram, and Michael E. Saks. Time-space tradeoffs for branching programs.
J. Comput. Syst. Sci., 63(4):542–572, 2001. doi:10.1006/jcss.2001.1778.

18 Paul Beame and Niels Kornerup. Cumulative memory lower bounds for randomized and
quantum computation. CoRR, abs/2301.05680, 2023. doi:10.48550/arXiv.2301.05680.

19 Paul Beame, Michael E. Saks, Xiaodong Sun, and Erik Vee. Time-space trade-off lower
bounds for randomized computation of decision problems. J. ACM, 50(2):154–195, 2003.
doi:10.1145/636865.636867.

20 Jeremiah Blocki and Samson Zhou. On the depth-robustness and cumulative pebbling cost of
Argon2i. In Theory of Cryptography, pages 445–465, 2017.

21 Dan Boneh, Henry Corrigan-Gibbs, and Stuart Schechter. Balloon hashing: A memory-hard
function providing provable protection against sequential attacks. In Advances in Cryptology –
ASIACRYPT 2016, pages 220–248, 2016.

22 Allan Borodin and Stephen A. Cook. A time-space tradeoff for sorting on a general sequential
model of computation. SIAM J. Comput., 11(2):287–297, 1982. doi:10.1137/0211022.

23 Allan Borodin, Michael J. Fischer, David G. Kirkpatrick, Nancy A. Lynch, and Martin
Tompa. A time-space tradeoff for sorting on non-oblivious machines. J. Comput. Syst. Sci.,
22(3):351–364, 1981. doi:10.1016/0022-0000(81)90037-4.

24 Allan Borodin, Alexander A. Razborov, and Roman Smolensky. On lower bounds for read-k-
times branching programs. Comput. Complex., 3:1–18, 1993. doi:10.1007/BF01200404.

25 Binyi Chen and Stefano Tessaro. Memory-hard functions from cryptographic primitives. In
Advances in Cryptology – CRYPTO 2019, pages 543–572, 2019.

26 Cynthia Dwork, Moni Naor, and Hoeteck Wee. Pebbling and proofs of work. In Advances in
Cryptology – CRYPTO 2005, pages 37–54, 2005.

27 Yassine Hamoudi and Frédéric Magniez. Quantum time-space tradeoff for finding multiple
collision pairs. In 16th Conference on the Theory of Quantum Computation, Communication
and Cryptography (TQC 2021), volume 197 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 1:1–1:21, 2021. doi:10.4230/LIPIcs.TQC.2021.1.

28 Stasys Jukna. A nondeterministic space-time tradeoff for linear codes. Inf. Process. Lett.,
109(5):286–289, 2009. doi:10.1016/j.ipl.2008.11.001.

29 Hartmut Klauck, Robert Špalek, and Ronald de Wolf. Quantum and classical strong direct
product theorems and optimal time-space tradeoffs. SIAM Journal on Computing, 36(5):1472–
1493, 2007. doi:10.1137/05063235x.

https://doi.org/10.4230/LIPIcs.ITCS.2017.38
https://doi.org/10.1145/2746539.2746622
https://doi.org/10.1007/s00453-007-9022-9
https://eprint.iacr.org/2021/801
https://eprint.iacr.org/2021/801
https://docs.aws.amazon.com/whitepapers/latest/serverless-multi-tier-architectures-api-gateway-lambda/welcome.html
https://docs.aws.amazon.com/whitepapers/latest/serverless-multi-tier-architectures-api-gateway-lambda/welcome.html
https://doi.org/10.1137/0220017
https://doi.org/10.1006/jcss.2001.1778
https://doi.org/10.48550/arXiv.2301.05680
https://doi.org/10.1145/636865.636867
https://doi.org/10.1137/0211022
https://doi.org/10.1016/0022-0000(81)90037-4
https://doi.org/10.1007/BF01200404
https://doi.org/10.4230/LIPIcs.TQC.2021.1
https://doi.org/10.1016/j.ipl.2008.11.001
https://doi.org/10.1137/05063235x

P. Beame and N. Kornerup 17:19

30 Yishay Mansour, Noam Nisan, and Prasoon Tiwari. The computational complexity of universal
hashing. Theor. Comput. Sci., 107(1):121–133, 1993. doi:10.1016/0304-3975(93)90257-T.

31 E. Okol’nishnikova. On lower bounds for branching programs. Siberian Advances in Mathe-
matics, 3(1):152–166, 1993.

32 Ling Ren and Srinivas Devadas. Proof of space from stacked expanders. In Proceedings, Part I,
of the 14th International Conference on Theory of Cryptography - Volume 9985, pages 262–285.
Springer-Verlag, 2016. doi:10.1007/978-3-662-53641-4_11.

33 Martin Sauerhoff and Philipp Woelfel. Time-space tradeoff lower bounds for integer multipli-
cation and graphs of arithmetic functions. In Proceedings of the 35th Annual ACM Symposium
on Theory of Computing, pages 186–195, 2003. doi:10.1145/780542.780571.

34 John E. Savage. Models of Computation: Exploring the Power of Computing. Addison-Wesley
Longman Publishing Co., Inc., USA, 1st edition, 1997.

35 Martin Tompa. Time-space tradeoffs for computing functions, using connectivity properties
of their circuits. J. Comput. Syst. Sci., 20(2):118–132, 1980. doi:10.1016/0022-0000(80)
90056-2.

36 Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of complexity
(extended abstract). In 18th Annual IEEE Symposium on Foundations of Computer Science,
pages 222–227, 1977. doi:10.1109/sfcs.1977.24.

37 Yaacov Yesha. Time-space tradeoffs for matrix multiplication and the discrete Fourier transform
on any general sequential random-access computer. Journal of Computer and System Sciences,
29(2):183–197, 1984. doi:10.1016/0022-0000(84)90029-1.

38 Mark Zhandry. How to record quantum queries, and applications to quantum indifferentiability.
In Advances in Cryptology – CRYPTO 2019, pages 239–268, 2019.

A Optimizations

In this section we prove general optimization lemmas that allow us to derive worst-case
properties of the allocation of branching program layers into blocks.

▶ Lemma A.1. For non-negative reals x1, x2, . . . if
∑

i xi ≤
∑

i x2
i then

∑
i x3

i ≥
∑

i x2
i .

Proof. Without loss generality we remove all xi that are 0 or 1 since they contribute the
same amount to each of

∑
i xi,

∑
i x2

i , and
∑

i x3
i . Therefore every xi satisfies 0 < xi < 1 or

it satisfies xi > 1. We rename those xi with 0 < xi < 1 by yi and those xi with xi > 1 by zj .
Then

∑
i xi ≤

∑
i x2

i can be rewritten as
∑

i yi(1−yi) ≤
∑

j zj(zj −1), and both quantities
are positive. Let y∗ be the largest value < 1 and z∗ be the smallest value > 1. Thus:∑

i

(y2
i − y3

i) =
∑

i

y2
i (1 − yi) ≤

∑
i

y∗yi(1 − yi) = y∗
∑

i

yi(1 − yi) ≤ y∗
∑

j

zj(zj − 1)

< z∗
∑

j

zj(zj − 1) =
∑

j

z∗zj(zj − 1) ≤
∑

j

z2
j (zj − 1) =

∑
j

(z3
j − z2

j).

Rewriting gives
∑

i y2
i +

∑
j z2

j <
∑

i y3
i +

∑
j z3

j , or
∑

i x3
i >

∑
i x2

i , as required. ◀

The following is a generalization of the above to all differentiable functions p : R≥0 → R≥0

such that s/p(s) is a concave increasing function of s.

▶ Lemma 4.10. Let p : R≥0 → R≥0 be a differentiable function such that q(x) = x/p(x) is a
concave increasing function of x. For x1, x2, . . . ∈ R≥0, if

∑
i xi ≥ K and

∑
i p(xi) ≤ L then∑

i xip(xi) ≥ q−1(K/L) · L.

ICALP 2023

https://doi.org/10.1016/0304-3975(93)90257-T
https://doi.org/10.1007/978-3-662-53641-4_11
https://doi.org/10.1145/780542.780571
https://doi.org/10.1016/0022-0000(80)90056-2
https://doi.org/10.1016/0022-0000(80)90056-2
https://doi.org/10.1109/sfcs.1977.24
https://doi.org/10.1016/0022-0000(84)90029-1

17:20 Computational Cumulative Memory Lower Bounds

Proof. By hypothesis,
∑

i (xi − Kp(xi)/L) ≥ 0. Observe that s − Kp(s)/L is an increasing
function of s since s/p(s) is an increasing function of s that is 0 precisely when s = q−1(K/L).
Since all xi with xi = q−1(K/L) evaluate to 0 in the sum, we can rewrite it as∑

xi>q−1(K/L)

(xi − Kp(xi)/L) ≥
∑

xi<q−1(K/L)

(Kp(xi)/L − xi) , (11)

where each of the summed terms is positive. For xi ̸= q−1(K/L), define

f(xi) = xi · p(xi) − q−1(K/L) · L/K

xi − Kp(xi)/L
.

Observe that for xi = q−1(K/L) the denominator is 0 and the numerator equals p(xi)−xi·L/K

which is also 0. For xi > q−1(K/L) both the numerator and denominator are positive and
for xi < q−1(K/L) both the numerator and denominator are negative. Hence f(xi) is
non-negative for every xi ̸= q−1(K/L). The following claim holds because of the concavity
of q; its proof is in the full paper [18].

▷ Claim A.2. If q is a convex differentiable function, we can complete f to a (non-decreasing)
continuous function of x with f ′(x) ≥ 0 for all x with 0 < x ̸= q−1(K/L)

We now have the tools we need. Let x∗
− be the largest xi < q−1(K/L) and x∗

+ be the
smallest xi > q−1(K/L). Then we have f(x∗

+) ≥ f(x∗
−) and∑

xi>q−1(K/L)

(
xi p(xi) − q−1(K/L) · L/K · xi

)
=

∑
xi>q−1(K/L)

f(xi) · (xi − Kp(xi)/L)

≥
∑

xi>q−1(K/L)

f(x∗
+) · (xi − Kp(xi)/L)

≥ f(x∗
−)

∑
xi>q−1(K/L)

(xi − Kp(xi)/L)

≥ f(x∗
−)

∑
xi<q−1(K/L)

(Kp(xi)/L − xi) by Equation (11)

≥
∑

xi<q−1(K/L)

f(xi) · (Kp(xi)/L − xi)

=
∑

xi<q−1(K/L)

(
q−1(K/L) · L/K · xi − xi p(xi)

)
.

Adding back the terms where xi = q−1(K/L), which have value 0, and rewriting we obtain∑
i

(
xi p(xi) − q−1(K/L) · L/K · xi

)
≥ 0.

Therefore we have∑
i

xi p(xi) ≥ q−1(K/L) · L/K ·
∑

i

xi ≥ q−1(K/L) · (L/K) · K = q−1(K/L) · L. ◀

Dynamic Averaging Load Balancing on Arbitrary
Graphs
Petra Berenbrink #

Universität Hamburg, Germany

Lukas Hintze #

Universität Hamburg, Germany

Hamed Hosseinpour #

Universität Hamburg, Germany

Dominik Kaaser #

TU Hamburg, Germany

Malin Rau #

Universität Hamburg, Germany

Abstract
In this paper we study dynamic averaging load balancing on general graphs. We consider infinite time
and dynamic processes, where in every step new load items are assigned to randomly chosen nodes.
A matching is chosen, and the load is averaged over the edges of that matching. We analyze the
discrete case where load items are indivisible, moreover our results also carry over to the continuous
case where load items can be split arbitrarily. For the choice of the matchings we consider three
different models, random matchings of linear size, random matchings containing only single edges,
and deterministic sequences of matchings covering the whole graph. We bound the discrepancy,
which is defined as the difference between the maximum and the minimum load. Our results cover
a broad range of graph classes and, to the best of our knowledge, our analysis is the first result
for discrete and dynamic averaging load balancing processes. As our main technical contribution
we develop a drift result that allows us to apply techniques based on the effective resistance in an
electrical network to the setting of dynamic load balancing.

2012 ACM Subject Classification Theory of computation → Random walks and Markov chains;
Mathematics of computing → Stochastic processes; Theory of computation → Distributed algorithms

Keywords and phrases Dynamic Load Balancing, Distributed Computing, Randomized Algorithms,
Drift Analysis

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.18

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2302.12201

Funding Petra Berenbrink: Supported by DFG Research Group ADYN (FOR 2975) under grant
411362735, and by DFG grant 427756233.
Hamed Hosseinpour : Supported by DFG grant 427756233.
Malin Rau: Supported by DFG Research Group ADYN (FOR 2975) under grant DFG 411362735.

Acknowledgements We thank the anonymous reviewers for their comments.

1 Introduction

Parallel and distributed computing is ubiquitous in science, technology, and beyond. Key to
the performance of a distributed system is the efficient utilization of resources: in order to
obtain a substantial speed-up it is of utmost importance that all processors have to handle
the same amount of work. Unfortunately, many practical applications such as finite element

EA
T
C
S

© Petra Berenbrink, Lukas Hintze, Hamed Hosseinpour, Dominik Kaaser, and Malin Rau;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 18; pp. 18:1–18:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:petra.berenbrink@uni-hamburg.de
https://orcid.org/0000-0002-6930-3259
mailto:lukas.rasmus.hintze@uni-hamburg.de
mailto:hamed.hosseinpour@uni-hamburg.de
https://orcid.org/0000-0003-3625-5913
mailto:dominik.kaaser@tuhh.de
https://orcid.org/0000-0002-2083-7145
mailto:malin.rau@uni-hamburg.de
https://orcid.org/0000-0002-5710-560X
https://doi.org/10.4230/LIPIcs.ICALP.2023.18
https://arxiv.org/abs/2302.12201
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

18:2 Dynamic Averaging Load Balancing on Arbitrary Graphs

simulations are highly “irregular”, and the amount of load generated on some processors
is much larger than the amount of load generated on others. We therefore investigate load
balancing to redistribute the load. Efficient load balancing schemes have a plenitude of
applications, including high performance computing [34], cloud computing [27], numerical
simulations [26], and finite element simulations [29].

In this paper we consider neighborhood load balancing on arbitrary graphs with n nodes,
where the nodes balance their load in each step only with their direct neighbors. We assume
discrete load items as opposed to continuous (or idealized) load items which can be broken
into arbitrarily small pieces. We study infinite and dynamic processes where new load items
are generated in every step.

We consider two different settings. In the synchronous setting m load items are generated
on randomly chosen nodes. Then a matching is chosen and the load of the nodes is balanced
(via weighted averaging) over the edges of that matching. Here we further distinguish
between two matching models. We consider the random matching model where linear-size
matchings are randomly chosen, and the balancing circuit model where the graph is divided
deterministically into dmax many matchings. Here dmax is the maximum degree of any
node. In the asynchronous model exactly one load item is generated on a randomly chosen
node. In turn, the node chooses one of its edges at random and balances its load with
the corresponding neighbor. This model can be regarded as a variant of the synchronous
model where the randomly chosen matching has size one. It was introduced by [2] where the
authors show results for cycles assuming continuous load. Our goal is to bound the so-called
discrepancy, which is defined as the maximal load of any node minus the minimal load of
any node.

The assumption that load items initially arrive at uniformly random nodes is a limitation
of the model. However, we believe this to be a good starting point for further investigations
into the behavior of load balancing methods in dynamic settings.

Results in a Nutshell. In this paper we present bounds on the expected discrepancy and
bounds that hold with high probability for the three models introduced above. Our bounds
for the synchronous model with balancing circuits hold for arbitrary graphs G, the bounds
for the asynchronous model and the synchronous model with random matchings hold for
regular graphs G only. For the asynchronous model and the model with random matchings
our bounds on the discrepancy are expressed in terms of hitting times of a standard random
walk on G, as well as in terms of the spectral gap of the Laplacian of G. For the synchronous
model with balancing circuits we express our bounds in terms of the global divergence. This
can be thought of as a measure of the convergence speed of the Markov chains modeling
a random walk on G. However, it does not directly measure the speed of convergence of
the chain. It accounts for the time period in which the chain keeps a given distance from
the stationary (and uniform) distribution. In physics terminology, it is a measure of total
absement, which is the time-integral of displacement.

For all three infinite processes our bounds on the discrepancy hold at an arbitrary point
of time as long as the system is initially empty. Otherwise, the bounds hold after an initial
time period, its length is a function of the initial discrepancy. In the following we give some
exemplary results assuming that the system is initially empty and m = n. For the synchronous
model with random matchings and the asynchronous model we can bound the discrepancy
by O(

√
n log(n)) for any regular graph G. Our results show a polylogarithmic bound on

the discrepancy for all regular graphs with a hitting time at most O(n poly log(n)) (e.g.,
the two-dimensional torus or the hypercube). In all models we can bound the discrepancy

P. Berenbrink, L. Hintze, H. Hosseinpour, D. Kaaser, and M. Rau 18:3

Table 1 Asymptotic upper bounds on the discrepancy in specific graph classes.

Graph SBal(DRM(G), 1, m) SBal(DBC(G), 1, m) ABal(DA(G), 1)

d-regular
graph
(const. d)

log(n) +
√

m · log(n) log(n) +
√

m · log(n)
√

n · log(n)

cycle Cn log(n) +
√

m · log(n) log(n) +
√

m · log(n)
√

n · log(n)

2-D torus log(n) +
√

m/n · log3/2(n) (1 +
√

m/n) · log(n) log3/2(n)

r-D torus
(const.
r ≥ 3)

(1 +
√

m/n) · log(n) log(n) +
√

m/n · log(n) log(n)

hypercube (1 +
√

m/n) · log(n) (1 +
√

m/n) · log(n) log(n)

expander log n +
√

m/n · log(n) log n +
√

ζ/ λ(R) ·
√

m/n · log n log(n)

by O(
√

n log(n)) for arbitrary constant-degree regular graphs. For the full results we refer
the reader to Theorem 3.1, Theorem 4.1, and Theorem 5.1. We show an overview of our
bounds on the discrepancy for specific graph classes in Table 1. The corresponding results
are formally derived and can be found in the full version.

All bounds presented in this paper also hold for the corresponding continuous processes
without rounding. The authors of [2] consider the asynchronous process on cycles in the
continuous setting where the load items can be divided into arbitrary small pieces. They
bound the expected discrepancy, showing that E[disc(G)] = O(

√
n log(n)) for a cycle G

with n nodes. In contrast, we improve that bound for the cycle to O(
√

n log(n)), both in
expectation and with high probability.

Our main analytical vehicle is a drift theorem that bounds the tail of the sum of a
non-increasing sequence of random variables. Our drift theorem adapts known drift results
from the literature, similarly to the Variable Drift Theorem in [23].

1.1 Related Work
There is a vast body of literature on iterative load balancing schemes on graphs where nodes
are allowed to balance (or average) their load with neighbors only. One distinguishes between
diffusion load balancing where the nodes balance their load with all neighbors at the same
time and the matching model (or dimension exchange) model where the edges which are
used for the balancing form a matching. In the latter model every resource is only involved
in one balancing action per step, which greatly facilitates the analysis.

In this overview we only consider theoretical results and, as it is beyond the scope of this
work to provide a complete survey, we focus on results for discrete load balancing. For results
about continuous load balancing see, for example, [14, 22]. There are also many results in
the context of balancing schemes where not the resources try to balance their load but the
tokens (acting as selfish players) try to find a resource with minimum load. See [16] for a
comprehensive survey about selfish load balancing and [1, 21, 11] for some recent results.
Another related topic is token distribution where nodes do not balance their entire load with
neighbors but send only single tokens over to neighboring nodes with a smaller load. See
[18, 5, 30] for the static setting and [4] for the dynamic setting.

ICALP 2023

18:4 Dynamic Averaging Load Balancing on Arbitrary Graphs

Discrete Models. The authors of [28] give the first rigorous result for discrete load balancing
in the diffusion model. They assume that the number of tokens sent along each edge is
obtained by rounding down the amount of load that would be sent in the continuous case.
Using this approach they establish that the discrepancy is at most O(n2) after O(log(Kn))
steps, where K is the initial discrepancy. Similar results for the matching model are shown
in [19]. While always rounding down may lead to quick stabilization, the discrepancy tends
to be quite large, a function of the diameter of the graph. Therefore, the authors of [32]
suggest to use randomized rounding in order to get a better approximation of the continuous
case. They show results for a wide class of diffusion and matching load balancing protocols
and introduce the so-called local divergence, which aggregates the sum of load differences over
all edges in all rounds. The authors prove that the local divergence gives an upper bound
on the maximum deviation between the continuous and discrete case of a protocol. In [17]
the authors show several results for a randomized protocol with rounding in the matching
model. For complete graphs their results show a discrepancy of O(n

√
log n) after Θ(log(Kn))

steps. Later, [7] extended some of these results to the diffusion model. In [33] the authors
show that the number of rounds needed to reach constant discrepancy is w.h.p. bounded
by a function of the spectral gap of the relevant mixing matrix and the initial discrepancy.
In [8] the authors propose a very simple potential function technique to analyze discrete
diffusion load balancing schemes, both for discrete and continuous settings. In [9] the authors
investigate a load balancing process on complete graphs. In each round a pair of nodes is
selected uniformly at random and completely balance their loads up to a rounding error of
±1.

The authors of [12] study load balancing via matchings assuming random placement of
the load items. The initial load distribution is sampled from exponentially concentrated
distributions (including the uniform, binomial, geometric, and Poisson distributions). The
authors show that in this setting the convergence time is smaller than in the worst case
setting. Regardless of the graph’s topology, the discrepancy decreases by a factor of 4

√
t

within t synchronous rounds. Their approach of using concentration inequalities to bound
the discrepancy (in terms of the squared 2-norm of the columns of the matrices underlying
the mixing process) strongly influenced our approach.

Dynamic Models. There are far fewer results for the dynamic diffusion models where new
loads enter the system over time. In [2] the authors study a model similar to our asynchronous
model. In each step one load item is allocated to a chosen node. In the same step, the
chosen node picks a random neighbor, and the two nodes balance their loads by averaging
them (continuous model). The authors show that the expected discrepancy is bounded by
O(

√
n log n), as well as a lower bound on the square of the discrepancy of Ω(n). The authors

of [3] consider load balancing via matchings in a dynamic model where the load is, in every
step, distributed by an adversary. They show the system is stable for sufficiently limited
adversaries. They also give some upper bounds on the maximum load for the somewhat more
restricted adversary. The authors of [10] consider discrete dynamic diffusion load balancing
on arbitrary graphs. In each step up to n load items are generated on arbitrary nodes (the
allocation is determined by an adversary). Then the nodes balance their load with each
neighbor and finally one load item is deleted from every non-empty node. The authors show
that the system is stable, which means that the total load remains bounded over time (as a
function of n alone and independently of the time t).

In the graphical balanced allocations setting, the initial allocation of a load item is
constrained to a randomly chosen edge of a graph, but load items cannot be moved after
allocation (in contrast to our setting). For d-regular graphs, Peres, Talwar, and Wieder [31]

P. Berenbrink, L. Hintze, H. Hosseinpour, D. Kaaser, and M. Rau 18:5

show that for the greedy algorithm which allocates the load item to the lower-loaded node
at the edge, with the edge distribution being uniform, the discrepancy is in O(log(n)d/ε)
with high probability, where ε is the edge expansion of the graph. In fact, they show a more
general result in terms of distributions over arbitrary subsets of nodes. Furthermore, Bansal
and Feldheim [6] give a non-greedy algorithm using some non-local information that achieves
a discrepancy in O((d/k) log4(n) log(log(n))) for k-edge-connected d-regular graphs, as well
as a lower bound for the graphical balanced allocation setting stating that the discrepancy is
in Ω(d/k + log(n)) with constant probability at any given time for any allocation strategy.

2 Balancing Models and Notation

We consider the following class of dynamic load balancing processes on d-regular graphs G

with n nodes V (G) = [n]. Each process is modeled by a Markov chain (X⃗(t))t∈N0 , where
the load vector X⃗(t) = (Xi(t))i∈[n] ∈ Rn is the state of the process at the end of step t,
and Xi(t) is the load of node i at time t. We measure a load vector’s imbalance by the
discrepancy disc(x⃗), which is the difference between the maximum load and the minimum
load disc(x⃗) := maxi∈[n] xi − minj∈[n] xj .

We consider two balancing processes, the synchronous process SBal and the asynchronous
process ABal. Both processes are parameterized by a balancing parameter β determining
the balancing speed and a matching distribution D(G). For SBal, D(G) is a distribution
over linear-sized matchings of G. For ABal, D(G) is a distribution over edges of G. SBal
is additionally parameterized by the number of load items m ∈ N+ allocated in each round.
ABal allocates only one new load item per step.

Synchronous Processes. The synchronous process SBal(D(G), β, m) works as follows.
The process first allocates m items to randomly chosen nodes. Then it uses the matching
distribution D(G) to determine the matching which is applied. Finally it balances the load
over the edges of the matching (see Process Bal(m, β) described below). The parameter
β ∈ (0, 1] controls the fraction of the load difference that is sent over an edge in a step.

For the synchronous process SBal we consider two families of matching distributions,
random matchings (DRM(G)) and balancing circuits (DBC(G)). DRM(G) is generated ac-
cording to the following method described in [19]. In essence, in a first step, nodes mark
edges independently with probability 1/(8d), so that each edge is marked independently with
probability 1/(4d) − 1/(16d2) = Θ(1/d) (as it can be marked from either end); in a second
step, marked edges which are not incident to any other marked edge are selected for the
matching. In expectation, the resulting matching has a size which is linear in the number of
nodes; we refer to [19] for a more detailed description.

We will use capital M for randomly chosen matchings. The analysis for the random
matching model can be found in Section 3. In the balancing circuit model we assume G is
covered by ζ fixed matchings m(1), . . . , m(ζ). DBC(G) deterministically chooses matchings
in periodic manner such that in step t the matching m(t) = m(t mod ζ) is chosen. We will
use small m for deterministically chosen matchings. The analysis for the balancing circuit
model can be found in Section 4.

Asynchronous Process. The asynchronous process ABal(D(G), β) works as follows. The
process first uses D(G) to generate a matching, this time containing one edge only. The
distribution we consider, DA(G), first chooses a node i uniformly at random and then it
chooses one of the nodes’ edges (i, j) uniformly at random. Finally one new token is assigned

ICALP 2023

18:6 Dynamic Averaging Load Balancing on Arbitrary Graphs

to either node i or j and then the edge (i, j) is used for balancing (see Bal(m, β)). Note
that for ABal(DA(G), β) the load allocation heavily depends on the edges which are used
for balancing. This makes the analysis for this model quite challenging. In contrast, in
SBal(DA(G), β, m) the load allocation and the balancing are independent. Note that in the
case of d-regular graphs DA(G) is equivalent to the uniform distribution over all edges or to
choosing a random matching of size one. We analyze the asynchronous model in Section 5.

SBal(D(G), β, m): In each round t ∈ N+:
1. Allocate m discrete, unit-sized load items to the nodes uniformly and independently at

random. Define ℓi(t) as the number of tokens assigned to node i.
2. Sample a matching M(t) according to D(G).
3. Balance with Bal(M(t), β) applied to Xi(t) := Xi(t) + ℓi(t), i ∈ {1, . . . n}.

ABal(D(G), β): In each round t ∈ N+:
1. Select an edge {i, j} according to D(G).
2. Allocate a single unit-size load item to either node i or j with a probability of 1/2.

I.e., with prob. 1/2 set ℓi(t) = 1 and ℓk = 0 for all k ̸= i, otherwise set ℓj(t) = 1 and
ℓk = 0 for all k ̸= j.

3. Balance with Bal(M(t), β) applied to Xi(t) := Xi(t) + ℓi(t), where M(t) includes just
the edge {i, j}.

Bal(m, β): For each edge {i, j} in the matching m balance loads of i and j:
1. Assume w.l.o.g. that Xi(t) ≥ Xj(t).
2. Let p = β·(Xi(t)−Xj(t))

2 −
⌊

β·(Xi(t)−Xj(t))
2

⌋
.

3. Then, node i sends Li,j load items to node j where

Li,j :=


⌈

β·(Xi(t)−Xj(t))
2

⌉
, with probability p,⌊

β·(Xi(t)−Xj(t))
2

⌋
, with probability 1 − p.

In the idealized setting, where the load is continuously divisible, a load of β(Xi(t) − Xj(t))/2
is sent from node i to node j.

2.1 Notation
We are given an arbitrary graph G = (V, E) with n nodes. We mainly assume that G is
regular and write d for the node degree. Recall that the process is modeled by a Markov
chain (X⃗(t))t∈N, where X⃗(t) = (Xi(t))i∈[n] ∈ Rn is the load vector at the end of step t, and
Xi(t) is the load of node i at time t. We write ℓi(t) for the number of load items allocated
to node i in step t and define ℓ⃗(t) = (ℓi(t))i∈[n]. We will use upper case letters such as Xi(t)
and M(t) to denote random variables and random matrices and lower case letters (like xi(t),
m(t)) for fixed outcomes. If clear from the context we will omit t from a random variable.

We model the idealized balancing step in round t by multiplication with a matrix
Mβ(t) ∈ Rn×n given by

Mβ
i,j(t) :=


1, if i = j and i is not matched at time t,
1 − β/2, if i = j and i is matched at time t,
β/2, if i and j are matched at time t,
0, otherwise.

P. Berenbrink, L. Hintze, H. Hosseinpour, D. Kaaser, and M. Rau 18:7

We will omit the parameter β if it is clear from context. With slight abuse of notation we
use the same symbol M(t) for the matching itself and the associated balancing matrix and
refer to both as just “matchings”. Furthermore, we write E(M(t)) for their edges. For the
product of all matching matrices from time t1 to time t2 we write

M[t1,t2] := M(t2) · M(t2 − 1) · · · · · M(t1 + 1) · M(t1),

where for t1 > t2 we consider this to be the identity matrix. We generally refer to these
matrices as mixing matrices. Moreover, we write M[t] for the sequence of matching matri-
ces (M(τ))τ∈[t] and analogously m[t] for a fixed sequence of matching matrices (m(τ))τ∈[t].
We will write Mk,· for the vector forming the kth row of the matrix M (which we often treat
as a column vector despite it being a row).

In the balancing circuit model we define the round matrix R := m[1,ζ] as the product of
the matching matrices forming a complete period of the balancing circuit. Note that ζ has
no relation to the minimum or maximum degree, although we may assume w.l.o.g. that each
edge is covered by at least one of the matchings. We write λ(R) for the spectral gap of the
round matrix R, i.e., for the difference between the largest two eigenvalues of R.

We write ε⃗(t) ∈ Rn for the vector of additive rounding errors in round t. Then εk(t) is
the difference between the load at node k after step t and the load at node k after step t in
an idealized scheme where loads are arbitrarily divisible.

Putting all of this together we can express the load vector at the end of step t ∈ N+ as

X⃗(t) = M(t) ·
(

X⃗(t − 1) + ℓ⃗(t)
)

+ ε⃗(t). (1)

We write thit(G) for the hitting time of G, which is the maximum expected time it takes
for a standard random walk on G (i.e., the walk moves to a neighbor chosen uniformly
at random in each step) to reach a given node i from a given node j, with the maximum
taken over all such pairs of nodes. We write t*

hit(G) for the edge hitting time of G, which is
defined like the hitting time, except that the maximum is taken over adjacent nodes only.
We write L(G) for the normalized Laplacian matrix of a graph G. For regular graphs it
may be defined as L(G) := I − A(G)/d, where A(G) is the adjacency matrix of G. Writing
λ0 ≤ λ1 ≤ . . . ≤ λn−1 for the real eigenvalues of L(G), we let λ(L(G)) := λ1 − λ0 be the
spectral gap of the Laplacian of G.

3 Random Matching Model

In this section we analyze the process SBal(DRM(G), β, m) for d-regular graphs G, where
the matching distribution DRM(G) is generated by the algorithm given in [19]. Note that
the result (as well as the results for the two other models) holds at any point of time t if the
system is initially empty. Furthermore, we can show the same results in the idealized setting
where load items can be divided into arbitrarily small pieces (see [2]). For more details we
refer the reader to the paragraph directly after Equation (3).

▶ Theorem 3.1. Let G be a d-regular graph and define T (G) := min
{

thit(G)
n ·log(n),

√
d

λ(L(G)) ,

1
λ(L(G))

}
. Let X⃗(t) be the state of process SBal(DRM(G), β, m) at time t with disc(X⃗(0)) =:

K ≥ 1. There exists a constant c > 0 such that for all t ≥ c · log(K · n)/(λ(L(G)) · β) it

ICALP 2023

18:8 Dynamic Averaging Load Balancing on Arbitrary Graphs

holds w.h.p.1 and in expectation

disc(X⃗(t)) = O

log(n) ·

1 +

√
m

n
·

t*
hit(G)

n

 +

√
log(n)

β
· m

n
· T (G)

.

Proof. We first expand the recurrence of Equation (1) (cf. [32]). After one step we get

X⃗(t) = M(t) ·
(

X⃗(t − 1) + ℓ⃗(t)
)

+ ε⃗(t)

= M(t) ·
((

M(t − 1) ·
(

X⃗(t − 2) + ℓ⃗(t − 1)
)

+ ε⃗(t − 1)
)

︸ ︷︷ ︸
X⃗(t−1)

+ℓ⃗(t)
)

+ ε⃗(t)

= M[t−1,t] · X⃗(t − 2) +
t∑

τ=t−1
M[τ,t] · ℓ⃗(τ) +

t∑
τ=t−1

M[τ+1,t] · ε⃗(τ)

We repeatedly expand this form up to the beginning of the process and get

X⃗(t) = M[1,t] · X⃗(0)︸ ︷︷ ︸
I⃗(t)

+
t∑

τ=1
M[τ,t] · ℓ⃗(τ)︸ ︷︷ ︸

D⃗(t)

+
t∑

τ=1
M[τ+1,t] · ε⃗(τ)︸ ︷︷ ︸

R⃗(t)

. (2)

We write I⃗(t), D⃗(t), and R⃗(t) for the three terms as indicated. Note that in general these
terms are vectors of real numbers. The sum I⃗(t) + D⃗(t) can be regarded as the contribution
of an idealized process, where I⃗(t) is the contribution of the initial load and D⃗(t) is the
contribution of the dynamically allocated load. Thus, R⃗(t) is the deviation between the
idealized process without rounding and the discrete process described in Section 2.

To bound the discrepancy disc(X⃗(t)) of the load vector X⃗(t) at time t, we use the fact
that the discrepancy is sub-additive, i.e., that disc(x⃗ + y⃗) ≤ disc(x⃗) + disc(y⃗). Hence, to
bound disc(X⃗(t)), we individually bound the discrepancies of the three terms in Equation (2)
and get

disc(X⃗(t)) ≤ disc(I⃗(t)) + disc(D⃗(t)) + disc(R⃗(t)). (3)

If the system is initially empty, then disc(I⃗(t)) = 0. Moreover, in the idealized setting
without rounding disc(R⃗(t)) = 0. Techniques to bound the first term disc(I⃗(t)) and the last
term disc(R⃗(t)) are well-established. We state the corresponding results in Lemma 3.2 and
Lemma 3.3 directly below the proof of our theorem. The main part of the proof is to bound
disc(D⃗(t)), which will be done in Section 3.1.

Let now γ > 1. First, it follows from Lemma 3.2 that for all t ≥ c · log(K ·n)/(λ(L(G)) · β)
we have disc(I⃗(t)) ≤ 1 with probability at least 1 − n−γ . Second, it follows from Lemma 3.4
that disc(R⃗(t)) ≤ 2

√
γ log(n)/β with probability at least 1 − 3 · n−γ+1. Third, it follows

from Lemma 3.3 that

disc(D⃗(t)) = O

γ log(n) ·

1 +

√
m

n
·

t*
hit(G)

n

 +

√
γ log(n)

β
· m

n
· T (G)


with probability at least 1 − 2 · n−γ+1. The statement of the theorem therefore follows from
a union bound over the statements of Lemma 3.2, Lemma 3.3, and Lemma 3.4. The bound
on expectation follows analogously from the linearity of expectation and the bounds on the
expected discrepancies in the aforementioned lemmas. ◀

1 The expression with high probability (w.h.p.) denotes a probability of at least 1 − n−Ω(1).

P. Berenbrink, L. Hintze, H. Hosseinpour, D. Kaaser, and M. Rau 18:9

Intuitively, Lemma 3.2 states that the contribution of the initial load to the discrepancy
is insignificant if t is large enough. We generalize the analysis of Theorem 1 [32] (or Theorem
2.9 in [33]) to establish a bound on the discrepancy of the initial load as a function of β. We
prove it in the full version.

▶ Lemma 3.2 (Memorylessness Property). Let G be a d-regular graph. Let K = disc(X⃗(0)).
Then there exists a constant c > 0 such that for all γ > 0 and t ∈ N with t ≥ t0(γ) :=
c·max{γ log(n), log(K · n)}· 1

λ(L(G))·β we get with probability at least 1−n−γ and in expectation

disc(I⃗(t)) ≤ 1.

The next lemma bounds disc(R⃗(t)), the discrepancy contribution of cumulative rounding
errors. Note that this result does not just hold for the random matching model, but for
all the three models that we consider in this paper. In the proof of the lemma we extend
then results of Theorem 3.6 in [33] (which is based on work in [7]) to establish a bound as a
function of β. We prove it in the full version.

▶ Lemma 3.3 (Insignificance of Rounding Errors). Let G be an arbitrary graph. Then for all
γ > 1, t ∈ N, and k ∈ [n] we get with probability at least 1 − 2n−γ+1 and in expectation

disc(R⃗(t)) ≤ 2 ·
√

γ log(n)/β.

To bound disc(D⃗(t)), the discrepancy contribution of dynamically allocated load items
we apply the next lemma. It is in fact the core of our work. We prove it in Section 3.1.

▶ Lemma 3.4 (Contribution of Dynamically Allocated Load). Let G be a d-regular graph.
Define T (G) := min

{
thit(G) · log n/n,

√
d/λ(L(G)), 1/λ(L(G))

}
. Then for all γ > 1 and

t ∈ N we get with probability at least 1 − 3n−γ+1 and in expectation

disc(D⃗(t)) = O

γ log(n) ·

1 +

√
m

n
·

t*
hit(G)

n

 +

√
γ log(n)

β
· m

n
· T (G)

.

3.1 Bounding the Contribution of Dynamically Allocated Load
In this section we prove Lemma 3.4. Some of the proofs are omitted and can be found in full
version. As a first step, we bound disc(D⃗(t)) using the global divergence Υ(M[t]), which is
defined over a sequence of matching matrices M[t] as

Υ(M[t]) := max
k∈[n]

Υk(M[t]), where Υk(M[t]) :=

√√√√ t∑
τ=1

∥∥∥∥∥M[τ,t]
k,· − 1⃗

n

∥∥∥∥∥
2

2

.

The global divergence can be regarded as a measure of the convergence speed of a random
walk that uses the matching matrices as transition probabilities. In [17, 33, 7] the authors
use a related notion which they call the local p-divergence, also defined on a sequence of
matchings m[t]. The difference lies in the fact that the global divergence, essentially, measures
differences between nodes’ values and a global average, while the local divergence measures
differences between neighboring nodes. To show Lemma 3.4 we first observe the following.

▶ Observation 3.5. It holds that disc(D⃗(t)) ≤ 2 · maxk∈[n]|Dk(t) − t · m/n|.

ICALP 2023

18:10 Dynamic Averaging Load Balancing on Arbitrary Graphs

Next we consider a fixed node k and show a concentration inequality on Dk(t) in terms
of Υk(m[t]), where m[t] is the sequence of matchings applied by our process (Lemma 3.6).
Note that in the lemma we assume the matchings are fixed and the randomness is due to
the random load placement only. Hence, the lemma directly applies to DBC(G). Afterwards,
we bound the global divergence of the random sequence of matchings, Υk(M[t]) in terms
of a notion of “goodness” of the used matching distribution D, for the random sequence of
matchings (Lemma 3.9), and then bound the “goodness” of the distribution DRM(G) used
in the random matching model (Lemma 3.10). We start with a bound on the deviation of
Dk(t) from the average load t · m/n in terms of Υ(m[t]).

▶ Lemma 3.6 (Load Concentration). Let m[t] be an arbitrary sequence of matchings. Then
for all γ > 0, t ∈ N, and k ∈ [n] we get with probability at most 2 · n−γ

∣∣∣Dk(t) − t · m

n

∣∣∣ ≥ 4
3 · γ log(n) +

√
8γ log(n) · m

n
· Υk(m[t]).

Proof. Our goal is to decompose Dk(t) into a sum of independent random variables. Recall
that we assume that the matching matrices are fixed and all randomness is due to the random
choices of the load items. This will enable us to apply a concentration inequality to this sum.
For the decomposition observe that D⃗(t) =

∑t
τ=1 m[τ,t] · ℓ⃗(τ), where ℓ⃗(τ) is the random load

vector corresponding to the m load items allocated at time τ . So the kth coordinate of D⃗(t)
is Dk(t) =

∑t
τ=1

∑
w∈[n] m[τ,t]

k,w · ℓw(τ). We define the indicator random variable B(τ, j, w)
for τ ∈ [t], j ∈ [m] and w ∈ [n] as

B(τ, j, w) :=
{

1, if the j-th load item of step τ is allocated to node w,
0, otherwise.

Note that for fixed τ and j we have
∑

w∈[n] B(τ, j, w) = 1, P[B(τ, j, w) = 1] = 1/n and
E[B(τ, j, w)] = 1/n. Observe that ℓw(τ), the load allocated to node w at step τ , can be
expressed as

∑
j∈[m] B(τ, j, w). Merging this with the value of Dk(t) gives

Dk(t) =
t∑

τ=1

∑
w∈[n]

m[τ,t]
k,w ·

 ∑
j∈[m]

B(τ, j, w)

 =
t∑

τ=1

∑
j∈[m]

 ∑
w∈[n]

(
m[τ,t]

k,w · B(τ, j, w)
)

︸ ︷︷ ︸
=:Ck(τ,j)

.

For a fixed τ ∈ [t] and j ∈ [m] we define Ck(τ, j) :=
∑

w∈[n] m[τ,t]
k,w · B(τ, j, w). This

random variable measures the contribution of j-th load item of round τ to Dk(t). Note
that the load items are allocated independently from each other. Since m[τ,t] are fixed
matrices, then Ck(τ, j) and Ck(τ ′, j′) are independent for all τ and τ ′ and j ̸= j′. To apply
the concentration inequality Theorem 3.4 in [13], we need to show that Ck(τ, j) ≤ 1 and
compute an upper bound on Var[Ck(τ, j)]. Showing the first condition is easy since exactly
one of the indicator random variables B(τ, j, w) is one and m[τ,t]

k,w has a value between zero
and one.

It remains to consider the variance of Ck(τ, j). First note that by linearity of expectation

E[Ck(τ, j)] = E

∑
w∈[n]

(
m[τ,t]

k,w · B(τ, j, w)
)=

∑
w∈[n]

m[τ,t]
k,w · E[B(τ, j, w)]=

∑
w∈[n]

m[τ,t]
k,w · 1

n
= 1

n
,

P. Berenbrink, L. Hintze, H. Hosseinpour, D. Kaaser, and M. Rau 18:11

where the last equality follows form the fact that m[τ,k] is doubly stochastic. Now we get

Var[Ck(τ, j)] = E
[
(Ck(τ, j) − E[Ck(τ, j)])2

]
= E

((∑
w∈[n]

m[τ,t]
k,w · B(τ, j, w)

)
− 1

n

)2


=
∑

w′∈[n]

1
n

·
(

m[τ,t]
k,w′ − 1

n

)2
= 1

n
·

∥∥∥∥∥m[τ,t]
k,· − 1⃗

n

∥∥∥∥∥
2

2

,

where we used that for each τ and each j exactly one of the B(τ, j, w) is one and all others
are zero, and each of the n possible cases has uniform probability.

Recall that Ck(τ, j) and Ck(τ ′, j′) are independent for all τ, τ ′ and j ̸= j′. Hence we get

Var

 t∑
τ=1

∑
j∈[m]

Ck(τ, j)

 =
t∑

τ=1

∑
j∈[m]

Var[Ck(τ, j)] = 1
n

·
t∑

τ=1

∑
j∈[m]

∥∥∥∥∥m[τ,t]
k,· − 1⃗

n

∥∥∥∥∥
2

2

= m

n
·
(

Υk(m[t])
)2

,

where the final equality uses the definition of the global divergence Υk(m[t]). Applying
Theorem 3.4 in [13] with M = 1 and X = Dk(t) =

∑t
τ=1

∑
j∈[m] Ck(τ, j) with λ =

2γ log(n)/3 + Υk(m[t]) ·
√

2γm/n results in

P
[
Dk(t) − t · m

n
≥ 2

3 · γ log(n) +
√

2γ log(n) · m

n
· Υk(m[t])

]
≤ n−γ .

The lower bound can be established using Theorem 4.1 in [13] (with ai = 0 and M = 1). Via
a union bound we get

P
[∣∣∣Dk(t) − t · m

n

∣∣∣ ≥ 4
3 · γ log(n) +

√
8γ log(n) · m

n
· Υk(m[t])

]
≤ 2 · n−γ . ◀

To bound the global divergence of the matching sequence used by the process we use two
potential functions. The quadratic node potential Φ(x⃗) is given by

Φ(x⃗) :=
∑
i∈[n]

(xi − x)2
, where x := 1

n
·

∑
j∈[n]

xj .

For a set of edges S on the nodes [n] and a vector x⃗ ∈ Rn, the quadratic edge potential is

ΨS(x⃗) :=
∑

{i,j}∈S

(xi − xj)2.

We may also write ΨG := ΨE(G) whenever G is a graph, and ΨM := ΨE(M) whenever M is
a matching matrix. The following observation relates the drop of node potential to the edge
potential in terms of β.

▶ Observation 3.7. Let Mβ be a matching matrix with parameter β ∈ (0, 1]. Then for any
x⃗ ∈ Rn we have Φ(x⃗) − Φ(Mβ · x⃗) = 1−(1−β)2

2 · ΨE(Mβ)(x⃗).

We now define a notion of a matching distribution being good. In Lemma 3.9 below we
show that the notion is sufficient for showing that matching sequences generated from such
distributions have bounded global divergence. Note that the “goodness” of a distribution
does not depend on β but on graph properties and the random choices with which the
matchings are chosen. Hence, we assume β = 1.

ICALP 2023

18:12 Dynamic Averaging Load Balancing on Arbitrary Graphs

▶ Definition 3.8. Assume G is an arbitrary d-regular graph. Let g : R+
0 → R+ be an

increasing function and let σ2 > 1. Then a matching distribution D(G) is (g, σ2)-good if the
following conditions hold for M1 ∼ D(G) and all stochastic vectors x⃗ ∈ Rn.
1. Φ(x⃗) − E[Φ(M1 · x⃗)] ≥ g(Φ(x⃗)).
2. Var[Φ(M1 · x⃗)] ≤ (σ2 − 1) ·

(
Φ(x⃗) − E[Φ(M1 · x⃗)]

)2
.

It remains to show two results. First, assuming a matching distribution is (g, σ2)-good,
the global divergence of a matching sequence generated by that distribution can be bounded
in terms of g and σ (Lemma 3.9). Second, we have to calculate a function gG and the values
of σG for which the matching distribution DRM(G) is (gG, σ2

G)-good (see Lemma 3.10).

▶ Lemma 3.9 (Global Divergence). Assume G is an arbitrary graph. Let g : R+
0 → R+ be an

increasing function, σ2 > 1, and β ∈ (0, 1]. Let M[t] = (Mβ(τ))t
τ=1 be an i.i.d. sequence of

matching matrices generated by D(G) and assume D(G) is a (g, σ2)-good matching distribution.
Then for all γ > 0 and k ∈ [n] we get with probability at least 1 − n−γ

(
Υk(M[t])

)2
≤ 8σ2(γ log(n) + log(8σ2)) + 2

β
·
∫ 1

0

x

g(x) dx.

▶ Lemma 3.10. Assume G is an arbitrary d-regular graph. Let

gG(x) := 1
16d

· max
{

d · λ(L(G)) · x,
x2

Res(G) ,
4
27 · x3

}
and σ2

G = 32 · (t*
hit(G) /n) + 5.

Then DRM(G) is (gG, σ2
G)-good.

Proof. First, note that the function gG(x) is increasing in x. Applying the first part
of Lemma 3.11 (see below) we get that for any vector x⃗ ∈ Rn it holds that

Φ(x⃗) − E
[
Φ(M1 · x⃗)

]
≥ 1

16d
· ΨG(x⃗).

From the first two statements of Lemma 3.12 (stated behind Lemma 3.12) we see that for
M1 ∼ DRM(G) and all stochastic vectors x⃗ ∈ Rn

ΨG(x⃗) ≥ max
{

d · λ(L(G)) · Φ(x⃗), Φ(x⃗)2

Res(G) ,
4
27 · Φ(x⃗)3

}
.

Hence,

Φ(x⃗) − E
[
Φ(M1 · x⃗)

]
≥ 1

16d
· max

{
d · λ(L(G)) · Φ(x⃗), Φ(x⃗)2

Res(G) ,
4
27 · Φ(x⃗)3

}
,

and as a consequence, Φ(x⃗) − E[Φ(M1 · x⃗)] ≥ gG(Φ(x⃗)) by the definition of gG.
It remains to check the second condition of Definition 3.8 with our claimed value σ2

G.
Inserting its value as stated in the lemma, the condition requires that

Var[Φ(M1 · x⃗)] ≤ (32(t*
hit(G) /n) + 5 − 1) ·

(
Φ(x⃗) − E[Φ(M1 · x⃗)]

)2
,

which is given in the second part of Lemma 3.11 (see below). ◀

In Lemma 3.11 we first relate the drop of Φ to the quadratic edge potential Ψ. In the
second part we bound the variance of the potential drop as a function of the edge hitting
time.

P. Berenbrink, L. Hintze, H. Hosseinpour, D. Kaaser, and M. Rau 18:13

▶ Lemma 3.11. Let G be a d-regular graph, let M1 ∼ DRM(G), and let x⃗ ∈ Rn, then
1. Φ(x⃗) − E

[
Φ(M1 · x⃗)

]
≥ 1

16d · ΨG(x⃗).
2. Var

[
Φ(M1 · x⃗)

]
≤ (32 · (t*

hit(G) /n) + 4) ·
(
Φ(x⃗) − E

[
Φ(M1 · x⃗)

])2
.

In Lemma 3.12 we relate the size of the quadratic edge potential ΨG to the second-largest
eigenvalue of L(G), effective resistances of G and node potential. To state it, we need some
additional definitions. For any two nodes i and j of the graph G, Res(i, j) is the effective
resistance (or resistive distance) between i and j in G (see Chapter 9 in [24] for a definition,
and refer to further details and properties can also be found in [15] and [25, Section 4]; note
that in our case, all edges have unit weight). Furthermore, we write Res(G) for the resistive
diameter of G, i.e., the largest resistive distance between any pair of nodes in G, and write
Res∗(G) for the maximum effective resistance between any pair of nodes adjacent in G. I.e.,
Res(G) := maxi,j∈[n] Res(i, j) and Res∗(G) := max{i,j}∈E(G) Res(i, j). The first part of the
following lemma was previously shown in [19, 33].

▶ Lemma 3.12. Let x⃗ ∈ Rn, and let G be a connected d-regular graph.
1. ΨG(x⃗) ≥ d · λ(L(G)) · Φ(x⃗).
2. If x⃗ is stochastic, then ΨG(x⃗) ≥ max

{
1

Res(G) · Φ(x⃗)2, 4
27 · Φ(x⃗)3

}
3. max{i,j}∈E(G)(xi − xj)2 ≤ Res∗(G) · ΨG(x⃗).

Proof of Lemma 3.4
Proof. Define gG(x) = 1

16d · max
{

d · λ(L(G)) · x, x2/Res(G), 4x3/27
}

and let σ2
G := 32 ·

(t*
hit(G) /n) + 5. Then by Lemma 3.10 the matching distribution DRM(G) is (gG, σ2

G)-good.
By Lemma 3.9 we have for all t ∈ N, k ∈ [n]

P
[(

Υk(M[t])
)2

≤ 8σ2
G((γ + 1) log(n) + log(8σ2

G)) + 1
β

·
∫ 1

0

x

gG(x) dx

]
≥ 1 − n−(γ+1).

To bound Υk(M[t]) we use the following two claims, which we prove in the full version.

▷ Claim 3.13. It holds that
∫ 1

0
x/gG(x) dx = O(T (G)).

▷ Claim 3.14. For any d-regular graph G it holds that t*
hit(G) /n ≥ 1/2.

Together we get from Claim 3.13 and Claim 3.14 that with probability at least 1 − n−(γ+1)

(
Υk(M[t])

)2
= O

(
t*
hit(G)

n
·
(

γ log(n) + log
(

t*
hit(G)

n

))
+ T (G)

β

)
. (4)

Since t*
hit(G) = O(n3) (Proposition 10.16 in [24]), log(t*

hit(G) /n) = O(log n), and γ > 1,

Υk(M[t]) = O

√
γ log(n) ·

t*
hit(G)

n
+ T (G)

β

 = O

√
γ log(n) ·

t*
hit(G)

n
+

√
T (G)

β

.

Now Lemma 3.6 states that for any fixed sequence of matching matrices m[t], with probability
at least 1 − 2n−(γ+1) it holds that∣∣∣Dk(t) − t · m

n

∣∣∣ = O
(

γ log(n) +
√

γ log(n) · m

n
· Υk(m[t])

)
. (5)

ICALP 2023

18:14 Dynamic Averaging Load Balancing on Arbitrary Graphs

Applying a union bound over all k ∈ [n], Equation (4) and Equation (5) hold for all k with
probability at least 1 − 3n−γ . Hence, for all k ∈ [n]

∣∣∣Dk(t) − t · m

n

∣∣∣ = O

γ log(n) +
√

γ log(n) · m

n
·

√
γ log(n) ·

t*
hit(G)

n
+

√
T (G)

β


= O

γ log(n) ·

1 +

√
m

n
·

t*
hit(G)

n

 +

√
(γ + 1) log(n)

β
· m

n
· T (G)

.

The high-probability bound now follows from Observation 3.5. The corresponding bound on
E[disc(D⃗(t)] follows readily; see the full version for details. ◀

4 Balancing Circuit Model

Here we assume β = 1. Recall that we assume G is covered by ζ fixed match-
ings m(1), . . . , m(ζ). The matching distribution DBC(G) then deterministically chooses
the matching m(t) = m(t mod ζ) in step t. The round matrix is defined as R :=
m[1,ζ]. Thus, for a sequence of matchings m[t] the global divergence is Υ(m[t]) :=

maxk∈[n]

√∑t
τ=1

∥∥∥m[τ,t]
k,· − 1/n

∥∥∥2

2
. The next theorem provides an upper bound on the dis-

crepancy for this model. Note that the following theorem holds for arbitrary graphs, while
Theorem 3.1 only holds for d-regular graphs.

▶ Theorem 4.1. Let G be an arbitrary graph and let X⃗(t) be the state of process
SBal(DBC(G), 1, m) at time t with disc(X⃗(0)) =: K. For all t ∈ N with t ≥ ζ

λ (R) ·(ln(K · n))
it holds w.h.p. and in expectation

disc(X⃗(t)) = O
(

log(n) +
√

m/n · Υ(m[t]) ·
√

log(n)
)

.

Proof. The proof follows the same line as the proof Theorem 3.1, which is proved via
Lemma 3.2, Lemma 3.4, and Lemma 3.3 bounding I⃗(t), D⃗(t), and R⃗(t), respectively.
Lemma 3.2 is replaced by Lemma 4.2 below. Lemma 3.2 can also be applied to the balancing
circuit model since it only requires that the subgraph used for balancing is a matching.

It remains to replace Lemma 3.3. Since the matching matrices are fixed this time the
proof is much simpler. The proof of Lemma 3.6 carries to over to this model giving us a
bound on |Dk(t) − tm/n| for k ∈ [n] with probability at least 1 − 2 · n−γ . Applying the
union bound over all nodes k ∈ [n], together with Observation 3.5 (stating that disc(D⃗(t)) ≤
2 · maxk∈[n]|Dk(t) − t · m/n|), gives a bound on disc(D⃗(t)) which holds with probability at
least 1 − 2 · nγ+1. ◀

▶ Lemma 4.2 (Memorylessness Property). For all t ∈ N with t ≥ ζ/λ (R) · (ln(K · n)) it holds
that disc(I⃗(t)) ≤ 2.

Proof. Since Φ(x⃗) ≤ K2 · n it follows from Lemma 2 in [20] that

Φ
(

m[1,t] · x⃗
)

≤ (1−λ (R))2⌊t⌋/ζ ·Φ(x⃗) ≤ (1−λ (R))2⌊t⌋/ζ ·K2 ·n ≤ e−2⌊t⌋·λ (R)/ζ+2 ln(Kn).

Setting t ≥ (ζ/ λ (R)) · (ln(Kn)) gives Φ
(
m[1,t] · x⃗

)
≤ 1 which implies that disc(I⃗(t) ≤ 2. ◀

Note that a similar statement was shown in [32, 33, 7].
The next theorem provides a lower bound on the discrepancy for this model. The proof

can be found in the full version.

P. Berenbrink, L. Hintze, H. Hosseinpour, D. Kaaser, and M. Rau 18:15

▶ Theorem 4.3. Let G be an arbitrary graph and let X⃗(t) be the state of process
SBal(DBC(G), 1, m) at time t. Then for all t ∈ N and m ≥ 4n · log(n)/Υ(m[t]) it holds with
constant probability

disc(X⃗(t)) = Ω
(√

m/n · Υ(m[t])
)

.

5 Asynchronous Model

The following is our main theorem for the asynchronous model. The bounds provided by
Theorem 5.1 for the asynchronous model differ from those in Theorem 3.1 for the random
matching model in two details. First, the lower bound on the balancing time is larger by a
factor of n. This is due to the fact that the asynchronous model balances across just one
edge per round in contrast to Θ(n) edges in the random matching model. Second, the upper
bound on disc(X⃗(t)) is much simpler. Note, however that setting m = n in Theorem 3.1 and
further simplifying the result by using t*

hit(G) /n = Ω(1) (see also Claim 3.14 in the proof of
Lemma 3.4) results in the same asymptotic bound as in Theorem 5.1.

▶ Theorem 5.1. Let G be a d-regular graph and define T (G) := min
{

thit(G)
n ·log(n),

√
d

λ(L(G)) ,

1
λ(L(G))

}
. Let X⃗(t) be the state of process ABal(DA(G), β) at time t with disc(X⃗(0)) =:

K ≥ 1. There exists a constant c > 0 such that for all t ≥ c · n · log(K · n)/(λ(L(G)) · β) it
holds w.h.p. and in expectation

disc(X⃗(t)) = O

log(n)

√
t*
hit(G)

n
+

√
log(n)

β
· T (G)

.

Proof Sketch of Theorem 5.1. The proof of the theorem follows along the same lines at
the proof of Theorem 3.1. However, there are some major differences. Most importantly, the
proof of Lemma 3.6 (giving a concentration bound on Dk(t) in terms of the global divergence
of the sequence of matching matrices) can not be applied for ABal. The proof heavily
relies on the fact that the load allocation and the matching edges are chosen independently
from each other, which is certainly not the case for ABal. In the full version, we carefully
analyze the dependency using a stronger concentration inequality. In addition, we also have
to re-calculate the function gG and σG to show that the matching distribution used by DA is
(gG, σ2

G)-good. ◀

6 Drift Result

In our analysis we use the following tail bound for the sum of a non-increasing sequence
of random variables with variable negative drift. The proof uses established methods from
drift analysis. In particular, it relies one techniques found in the proof of the Variable Drift
Theorem in [23]. We prove it in the full version.

▶ Theorem 6.1. Let (X(t))t≥0 be a non-increasing sequence of discrete random variables
with X(t) ∈ R+

0 for all t with fixed X(0) = x0. Assume there exists an increasing function
h : R+

0 → R+ and a constant σ > 0 such that the following holds. For all t ∈ N and all x > 0
with P[X(t) = x] > 0
1. E[X(t + 1) | X(t) = x] ≤ x − h(x),
2. Var[X(t + 1) | X(t) = x] ≤ σ · (E[X(t + 1) | X(t) = x] − x)2

.

ICALP 2023

18:16 Dynamic Averaging Load Balancing on Arbitrary Graphs

Then the following statements hold.
1. For all δ ∈ (0, 1) and any arbitrary but fixed t

P

[∫ x0

X(t)

1
h(φ) dφ ≤ (1 − δ)t

]
≤ exp

(
− δ2t

2(σ + 1)

)
.

2. For all δ ∈ (0, 1) and p ∈ (0, 1) we define t0 := 2(σ+1)
δ2

(
− log(p) + log

(
2(σ+1)

δ2

))
. Then

P

[∞∑
t=t0+1

X(t) ≤ 1
1 − δ

·
∫ x0

0

φ

h(φ)dφ

]
≥ 1 − p.

7 Conclusions and Open Problems

In this paper we analyze discrete load balancing processes on graphs. As our main contribution
we bound the discrepancy that arises in dynamic load balancing in three models, the random
matching model, the balancing circuit model, and the asynchronous model. Our results for
the random matching model and the asynchronous model hold for d-regular graphs, while
our analysis for the balancing circuit model applies to arbitrary graphs.

To the best of our knowledge our results constitute the first discrepancy bounds for discrete,
dynamic balancing processes on general graphs. Furthermore, our results improve the work
by Alistarh et al. [2] who prove that the expected discrepancy is bounded by

√
n log(n) in

the (arguably simpler) continuous asynchronous process ABal(cont)(DA(G), 1). We improve
their bound to

√
n log(n) and additionally show that it holds with high probability. We

conjecture that our results are tight, up to polylogarithmic factors. However, showing tight
upper and lower bounds remains an open problem.

One interesting feature of our bound on the discrepancy is the scaling with the parameter β:
decreasing it linearly only increases the bound on the discrepancy by a square root factor.
This means for sufficiently small β, the expected amount of load transferred per edge and
round is constant.

Open Problems. We are confident that our results carry over to arbitrary graphs (as
opposed to regular graphs), provided that there exists a lower bound on the probability pmin

with which an edge is used for balancing. However, to show bounds on the discrepancy one
has to overcome fundamental problems such as the bias introduced by high-degree nodes.
Analyzing the behavior for more general load arrival distributions is also an interesting but
likely challenging open problem. More avenues for generalization are the deletion of load
over time as well as varying the amount of load generated in each round dynamically.

Another interesting open question is whether the results carry over to a model where the
amount of load that may be transmitted over an edge in each step is bounded by a constant.
If only a single load item can be transferred per edge and step the problem is similar to the
token distribution problem (see, for example, [5]).

Finally, we believe that one can also adapt our analysis to variant of a graphical balls-into-
bins process. The process works as follows. In each step an edge (i, j) is sampled uniformly at
random. W.l.o.g. assume that the load of i is smaller than the load of j by an additive term ∆.
Then a biased coin is tossed showing heads with probability p := min{1, (1 + β · ∆)/2} and
tails otherwise, where β is a suitably chosen and non-constant parameter. If the coin hits
heads one item is allocated to i and otherwise to j. A formal analysis of this allocation
process (as well as of other, related balls-into-bins processes) is beyond the scope of our
paper and remains an open problem.

P. Berenbrink, L. Hintze, H. Hosseinpour, D. Kaaser, and M. Rau 18:17

References
1 Heiner Ackermann, Simon Fischer, Martin Hoefer, and Marcel Schöngens. Distributed

algorithms for QoS load balancing. Distributed Comput., 23(5-6):321–330, 2011. doi:10.1007/
s00446-010-0125-1.

2 Dan Alistarh, Giorgi Nadiradze, and Amirmojtaba Sabour. Dynamic averaging load balancing
on cycles. In 47th International Colloquium on Automata, Languages, and Programming,
ICALP 2020, volume 168 of LIPIcs, pages 7:1–7:16. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2020. doi:10.4230/LIPIcs.ICALP.2020.7.

3 Aris Anagnostopoulos, Adam Kirsch, and Eli Upfal. Load balancing in arbitrary network
topologies with stochastic adversarial input. SIAM Journal on Computing, 34(3):616–639,
2005. doi:10.1137/S0097539703437831.

4 Elliot Anshelevich, David Kempe, and Jon M. Kleinberg. Stability of load balancing algorithms
in dynamic adversarial systems. SIAM J. Comput., 37(5):1656–1673, 2008. doi:10.1137/
050639272.

5 Friedhelm Meyer auf der Heide, Brigitte Oesterdiekhoff, and Rolf Wanka. Strongly adaptive
token distribution. Algorithmica, 15(5):413–427, 1996. doi:10.1007/BF01955042.

6 Nikhil Bansal and Ohad N. Feldheim. The power of two choices in graphical allocation.
In Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th Annual ACM SIGACT
Symposium on Theory of Computing, Rome, Italy, June 20–24, 2022, pages 52–63. ACM, 2022.
doi:10.1145/3519935.3519995.

7 Petra Berenbrink, Colin Cooper, Tom Friedetzky, Tobias Friedrich, and Thomas Sauerwald.
Randomized diffusion for indivisible loads. J. Comput. Syst. Sci., 81(1):159–185, 2015.
doi:10.1016/j.jcss.2014.04.027.

8 Petra Berenbrink, Tom Friedetzky, and Zengjian Hu. A new analytical method for parallel,
diffusion-type load balancing. J. Parallel Distributed Comput., 69(1):54–61, 2009. doi:
10.1016/j.jpdc.2008.05.005.

9 Petra Berenbrink, Tom Friedetzky, Dominik Kaaser, and Peter Kling. Tight & simple load
balancing. In 2019 IEEE International Parallel and Distributed Processing Symposium, IPDPS
2019, pages 718–726. IEEE, 2019. doi:10.1109/IPDPS.2019.00080.

10 Petra Berenbrink, Tom Friedetzky, and Russell A. Martin. On the stability of dynamic diffusion
load balancing. Algorithmica, 50(3):329–350, 2008. doi:10.1007/s00453-007-9081-y.

11 Petra Berenbrink, Peter Kling, Christopher Liaw, and Abbas Mehrabian. Tight load balancing
via randomized local search. In 2017 IEEE International Parallel and Distributed Processing
Symposium, IPDPS 2017, pages 192–201. IEEE Computer Society, 2017. doi:10.1109/IPDPS.
2017.52.

12 Leran Cai and Thomas Sauerwald. Randomized load balancing on networks with stochastic
inputs. In 44th International Colloquium on Automata, Languages, and Programming, ICALP
2017, volume 80 of LIPIcs, pages 139:1–139:14, 2017. doi:10.4230/LIPIcs.ICALP.2017.139.

13 Fan R. K. Chung and Lincoln Lu. Survey: Concentration inequalities and martingale inequali-
ties: A survey. Internet Math., 3(1):79–127, 2006. doi:10.1080/15427951.2006.10129115.

14 Ralf Diekmann, Andreas Frommer, and Burkhard Monien. Efficient schemes for nearest neigh-
bor load balancing. Parallel Comput., 25(7):789–812, 1999. doi:10.1016/S0167-8191(99)
00018-6.

15 Peter G. Doyle and J. Laurie Snell. Random Walks and Electric Networks. Number Book 22
in Carus Mathematical Monographs. Mathematical Association of America, Washington, DC,
1984.

16 Simon Fischer, Harald Räcke, and Berthold Vöcking. Fast convergence to wardrop equilibria
by adaptive sampling methods. SIAM J. Comput., 39(8):3700–3735, 2010. doi:10.1137/
090746720.

17 Tobias Friedrich and Thomas Sauerwald. Near-perfect load balancing by randomized rounding.
In Proceedings of the 41st Annual ACM Symposium on Theory of Computing, STOC 2009,
pages 121–130. ACM, 2009. doi:10.1145/1536414.1536433.

ICALP 2023

https://doi.org/10.1007/s00446-010-0125-1
https://doi.org/10.1007/s00446-010-0125-1
https://doi.org/10.4230/LIPIcs.ICALP.2020.7
https://doi.org/10.1137/S0097539703437831
https://doi.org/10.1137/050639272
https://doi.org/10.1137/050639272
https://doi.org/10.1007/BF01955042
https://doi.org/10.1145/3519935.3519995
https://doi.org/10.1016/j.jcss.2014.04.027
https://doi.org/10.1016/j.jpdc.2008.05.005
https://doi.org/10.1016/j.jpdc.2008.05.005
https://doi.org/10.1109/IPDPS.2019.00080
https://doi.org/10.1007/s00453-007-9081-y
https://doi.org/10.1109/IPDPS.2017.52
https://doi.org/10.1109/IPDPS.2017.52
https://doi.org/10.4230/LIPIcs.ICALP.2017.139
https://doi.org/10.1080/15427951.2006.10129115
https://doi.org/10.1016/S0167-8191(99)00018-6
https://doi.org/10.1016/S0167-8191(99)00018-6
https://doi.org/10.1137/090746720
https://doi.org/10.1137/090746720
https://doi.org/10.1145/1536414.1536433

18:18 Dynamic Averaging Load Balancing on Arbitrary Graphs

18 Bhaskar Ghosh, Frank Thomson Leighton, Bruce M. Maggs, S. Muthukrishnan, C. Greg
Plaxton, Rajmohan Rajaraman, Andréa W. Richa, Robert Endre Tarjan, and David Zuckerman.
Tight analyses of two local load balancing algorithms. SIAM J. Comput., 29(1):29–64, 1999.
doi:10.1137/S0097539795292208.

19 Bhaskar Ghosh and S. Muthukrishnan. Dynamic load balancing by random matchings. J.
Comput. Syst. Sci., 53(3):357–370, 1996. doi:10.1006/jcss.1996.0075.

20 Bhaskar Ghosh, S. Muthukrishnan, and Martin H. Schultz. First and second order diffusive
methods for rapid, coarse, distributed load balancing (extended abstract). In Proceedings of
the 8th Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA ’96, pages
72–81. ACM, 1996. doi:10.1145/237502.237509.

21 Martin Hoefer and Thomas Sauerwald. Threshold load balancing in networks. CoRR,
abs/1306.1402, 2013. arXiv:1306.1402.

22 David Kempe, Alin Dobra, and Johannes Gehrke. Gossip-based computation of aggregate
information. In 44th Symposium on Foundations of Computer Science (FOCS 2003), pages
482–491. IEEE Computer Society, 2003. doi:10.1109/SFCS.2003.1238221.

23 Johannes Lengler. Drift analysis. In Benjamin Doerr and Frank Neumann, editors, The-
ory of Evolutionary Computation – Recent Developments in Discrete Optimization, Natural
Computing Series, pages 89–131. Springer, 2020. doi:10.1007/978-3-030-29414-4_2.

24 David Levin and Yuval Peres. Markov Chains and Mixing Times. AMS, 2017. doi:10.1090/
mbk/107.

25 László Lovász. Random walks on graphs. Combinatorics, Paul Erdős is Eighty, 2:1–46, 1993.
26 Henning Meyerhenke. Shape optimizing load balancing for mpi-parallel adaptive numerical

simulations. In Graph Partitioning and Graph Clustering, 10th DIMACS Implementation
Challenge Workshop, volume 588 of Contemporary Mathematics, pages 67–82. American
Mathematical Society, 2012. URL: http://www.ams.org/books/conm/588/11699.

27 Vahid Mohammadian, Nima Jafari Navimipour, Mehdi Hosseinzadeh, and Aso Mohammad
Darwesh. Fault-tolerant load balancing in cloud computing: A systematic literature review.
IEEE Access, 10:12714–12731, 2022. doi:10.1109/ACCESS.2021.3139730.

28 S. Muthukrishnan, Bhaskar Ghosh, and Martin H. Schultz. First- and second-order diffusive
methods for rapid, coarse, distributed load balancing. Theory Comput. Syst., 31(4):331–354,
1998. doi:10.1007/s002240000092.

29 Borek Patzák and Daniel Rypl. Object-oriented, parallel finite element framework with
dynamic load balancing. Adv. Eng. Softw., 47(1):35–50, 2012. doi:10.1016/j.advengsoft.
2011.12.008.

30 David Peleg and Eli Upfal. The token distribution problem. SIAM J. Comput., 18(2):229–243,
1989. doi:10.1137/0218015.

31 Yuval Peres, Kunal Talwar, and Udi Wieder. Graphical balanced allocations and the (1 +
β)-choice process. Random Struct. Algorithms, 47(4):760–775, 2015. doi:10.1002/rsa.20558.

32 Yuval Rabani, Alistair Sinclair, and Rolf Wanka. Local divergence of markov chains and the
analysis of iterative load balancing schemes. In 39th Annual Symposium on Foundations of
Computer Science, FOCS ’98, pages 694–705. IEEE Computer Society, 1998. doi:10.1109/
SFCS.1998.743520.

33 Thomas Sauerwald and He Sun. Tight bounds for randomized load balancing on arbitrary
network topologies. In 53rd Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2012, pages 341–350. IEEE Computer Society, 2012. doi:10.1109/FOCS.2012.86.

34 Gengbin Zheng, Abhinav Bhatele, Esteban Meneses, and Laxmikant V. Kalé. Periodic
hierarchical load balancing for large supercomputers. Int. J. High Perform. Comput. Appl.,
25(4):371–385, 2011. doi:10.1177/1094342010394383.

https://doi.org/10.1137/S0097539795292208
https://doi.org/10.1006/jcss.1996.0075
https://doi.org/10.1145/237502.237509
https://arxiv.org/abs/1306.1402
https://doi.org/10.1109/SFCS.2003.1238221
https://doi.org/10.1007/978-3-030-29414-4_2
https://doi.org/10.1090/mbk/107
https://doi.org/10.1090/mbk/107
http://www.ams.org/books/conm/588/11699
https://doi.org/10.1109/ACCESS.2021.3139730
https://doi.org/10.1007/s002240000092
https://doi.org/10.1016/j.advengsoft.2011.12.008
https://doi.org/10.1016/j.advengsoft.2011.12.008
https://doi.org/10.1137/0218015
https://doi.org/10.1002/rsa.20558
https://doi.org/10.1109/SFCS.1998.743520
https://doi.org/10.1109/SFCS.1998.743520
https://doi.org/10.1109/FOCS.2012.86
https://doi.org/10.1177/1094342010394383

Fast Approximation of Search Trees on Trees with
Centroid Trees
Benjamin Aram Berendsohn # Ñ

Institut für Informatik, Freie Universität Berlin, Germany

Ishay Golinsky #

Blavatnik School of Computer Science, Tel Aviv University, Israel

Haim Kaplan # Ñ

Blavatnik School of Computer Science, Tel Aviv University, Israel

László Kozma # Ñ

Institut für Informatik, Freie Universität Berlin, Germany

Abstract
Search trees on trees (STTs) generalize the fundamental binary search tree (BST) data structure: in
STTs the underlying search space is an arbitrary tree, whereas in BSTs it is a path. An optimal
BST of size n can be computed for a given distribution of queries in O(n2) time [Knuth, Acta Inf.
1971] and centroid BSTs provide a nearly-optimal alternative, computable in O(n) time [Mehlhorn,
SICOMP 1977].

By contrast, optimal STTs are not known to be computable in polynomial time, and the fastest
constant-approximation algorithm runs in O(n3) time [Berendsohn, Kozma, SODA 2022]. Centroid
trees can be defined for STTs analogously to BSTs, and they have been used in a wide range of
algorithmic applications. In the unweighted case (i.e., for a uniform distribution of queries), the
centroid tree can be computed in O(n) time [Brodal, Fagerberg, Pedersen, Östlin, ICALP 2001;
Della Giustina, Prezza, Venturini, SPIRE 2019]. These algorithms, however, do not readily extend
to the weighted case. Moreover, no approximation guarantees were previously known for centroid
trees in either the unweighted or weighted cases.

In this paper we revisit centroid trees in a general, weighted setting, and we settle both the
algorithmic complexity of constructing them, and the quality of their approximation. For constructing
a weighted centroid tree, we give an output-sensitive O(n log h) ⊆ O(n log n) time algorithm, where
h is the height of the resulting centroid tree. If the weights are of polynomial complexity, the running
time is O(n log log n). We show these bounds to be optimal, in a general decision tree model of
computation. For approximation, we prove that the cost of a centroid tree is at most twice the
optimum, and this guarantee is best possible, both in the weighted and unweighted cases. We also
give tight, fine-grained bounds on the approximation-ratio for bounded-degree trees and on the
approximation-ratio of more general α-centroid trees.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis

Keywords and phrases centroid tree, search trees on trees, approximation

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.19

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: arxiv.org/abs/2209.08024 [6]

Funding Benjamin Aram Berendsohn: DFG grant KO 6140/1-1.
Ishay Golinsky: ISF grant no. 1595/19 and the Blavatnik Research Foundation.
Haim Kaplan: ISF grant no. 1595/19 and the Blavatnik Research Foundation.
László Kozma: DFG grant KO 6140/1-1.

EA
T
C
S

© Benjamin Aram Berendsohn, Ishay Golinsky, Haim Kaplan, and László Kozma;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 19; pp. 19:1–19:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:beab@zedat.fu-berlin.de
https://page.mi.fu-berlin.de/beab/
mailto:ishayg@mail.tau.ac.il
mailto:haimk@tau.ac.il
https://www.cs.tau.ac.il/~haimk/
https://orcid.org/0000-0001-9586-8002
mailto:laszlo.kozma@fu-berlin.de
https://page.mi.fu-berlin.de/lkozma/
https://orcid.org/0000-0002-3253-2373
https://doi.org/10.4230/LIPIcs.ICALP.2023.19
https://arxiv.org/abs/2209.08024
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

19:2 Fast Approximation of Search Trees on Trees with Centroid Trees

1 Introduction

Search trees on trees (STTs) are a far-reaching generalization of binary search trees (BSTs),
modeling the exploration of tree-shaped search spaces. Given an undirected tree T , an STT
on T is a tree rooted at an arbitrary vertex r of T , with subtrees built recursively on the
components resulting after removing r from T , see Figure 1 for an example. BSTs correspond
to the special case where the underlying tree T is a path.

STTs and, more generally, search trees on graphs arise in several different contexts
and have been studied under different names: tubings [14], vertex rankings [20, 8, 23],
ordered colorings [35], elimination trees [43, 49, 2, 9]. STTs have been crucial in many
algorithmic applications, e.g., in pattern matching and counting [24, 37, 27], cache-oblivious
data structures [4, 25], tree clustering [26], geometric visibility [30], planar point location [29],
distance oracles [16]. They arise in matrix factorization (e.g., see [22, § 12]), and have also
been related to the competitive ratio in certain online hitting set problems [23].

Similarly to the setting of BSTs, a natural goal is to find an STT in which the expected
depth of a vertex is as small as possible; we refer to such a tree as an optimal tree, noting
that it is not necessarily unique. This optimization task can be studied both for the uniform
probability distribution over the vertices, and for the more general case of an arbitrary
distribution given as input. We refer to the first as the unweighted and the second as the
weighted problem.

For BSTs, both the unweighted and the weighted problems are well-understood. In the
unweighted case, a simple balanced binary tree achieves the optimum. In the weighted
case, an optimal tree on n vertices can be found in time O(n2) by Knuth’s algorithm [36], a
textbook example of dynamic programming. No faster algorithm is known in general, although
Larmore’s algorithm [40] achieves better bounds under certain regularity assumptions on the
weights; for example, if the probability assigned to each vertex is Ω(1/n), then the optimum
can be found in time O(n1.591).

By contrast, the complexity of computing an optimal STT is far less understood. Even in
the unweighted case, no polynomial-time algorithm is known, and the problem is not known
to be NP-hard even with arbitrary weights. Recently, a PTAS was given for the weighted
problem [7], but its running time for obtaining a (1 + ε)-approximation of the optimal STT
is O(n1+2/ε), which is prohibitive for reasonably small values of ε. Note that the apparently
easier problem of minimizing the maximum depth of a vertex, i.e., computing the treedepth
of a tree, can be solved in linear time by Schäffer’s algorithm [50], and treedepth itself has
many algorithmic applications, e.g., see [47, § 6,7].

Centroid trees. Given the relatively high cost of computing optimal binary search trees,
research has turned already half a century ago to efficient approximations. Mehlhorn has
shown [44, 45] that a simple BST that can be computed in O(n) time closely approximates
the optimum. More precisely, both the optimum cost and the cost of the obtained tree are
in [H/log(3), H + 1], where H is the binary entropy of the input distribution.1 Alternatively,
the cost can be upper bounded by OPT+log (OPT)+log e, where OPT is the cost of the optimal
tree. Observe that this means that the approximation ratio gets arbitrarily close to 1 as OPT
goes to infinity.2

1 All logarithms in this paper are base 2.
2 Results for BSTs are sometimes presented in a more general form, where the input distribution also

accounts for unsuccessful searches, i.e., it may assign non-zero probabilities to the gaps between
neighboring vertices and outside the two extremes. Extending such a model to STTs is straightforward,
but perhaps less natural in the case of general trees, we therefore omit it for the sake of simplicity, and
consider only successful searches.

B. A. Berendsohn, I. Golinsky, H. Kaplan, and L. Kozma 19:3

Figure 1 (Left.) Tree T . (Middle.) Centroid tree of T . (Right.) A different STT on T . Colors
indicate weights (probabilities), w(e) = w(h) = w(i) = 0.15, w(d) = w(j) = w(k) = 0.10, and all
other vertices have weight 0.05. Observe that the centroid tree is (in this example) unique.

The BST that achieves the above guarantees is built by recursively picking roots such as
to make the weights of the left and right subtrees “as equal as possible”. This is a special
case of a centroid tree, defined as follows. Given a tree T , a centroid of T is a vertex whose
removal from T results in components with weight at most half of the total weight of T .
A centroid tree is built by iteratively finding a centroid and recursing on the components
resulting after its removal. See Figure 1 for an example.

The fact that an (unweighted) centroid always exists was already shown in the 19-th
century by C. Jordan [34]. We sketch the easy, constructive argument that also shows the
existence of a weighted centroid: start at an arbitrary vertex of T and, as long as the current
vertex is not a centroid, move one edge in the direction of the component with largest weight.
It is not hard to see that the procedure succeeds, visiting each vertex at most once.

A straightforward implementation of the above procedure finds an unweighted centroid
tree in O(n log n) time. This running time has been improved to O(n) by carefully using
data structures [11, 28]. The run-time guarantees however, do not readily generalize from
the unweighted to the weighted setting. Intuitively, the difficulty lies in the fact that in the
weighted case, the removal of a centroid vertex may split the tree in a very unbalanced way,
leaving up to n − 1 vertices in one component. Thus, a naive recursive approach will take
Θ(n2) time in the worst case.

Most algorithmic applications of STTs, including those mentioned before, rely on centroid
trees. It is therefore surprising that nothing appears to be known about how well the centroid
tree approximates the optimal STT in either the unweighted or weighted cases. In this paper
we prove that the centroid tree is a 2-approximation of the optimal STT, and that the factor
2 is, in general, best possible, both in the unweighted and weighted settings. As our main
result, we also show a more precise bound on the approximation ratio of centroid trees, in
terms of the maximum degree of the underlying tree T .3

Before stating our results, we need a few definitions. Consider an undirected, unrooted
tree T given as input, together with a weight function w : V (T) → R≥0. For convenience,
for any subgraph H of T , we denote w(H) =

∑
x∈V (H) w(x). (To interpret the weights as

probabilities, we need the condition w(T) = 1. It is, however, often convenient to relax this
requirement and allow arbitrary non-negative weights, which is the approach we will take.)

3 In their recent paper on dynamic STTs, Bose, Cardinal, Iacono, Koumoutsos, and Langerman [10]
remark that the ratio between the costs of the centroid- and optimal trees may be unbounded. In light
of our results, this observation is erroneous. It is true, however, that a centroid tree built using the
uniform distribution may be far from the optimum w.r.t. a different distribution.

ICALP 2023

19:4 Fast Approximation of Search Trees on Trees with Centroid Trees

A search tree on T is a rooted tree T with vertex set V (T) whose root is an arbitrary
vertex r ∈ V (T). The children of r in T are the roots of search trees built on the connected
components of the forest T − r. A tree consisting of a single vertex admits only itself as
a search tree. It follows from the definition that for all x, the subtree Tx of T rooted at x

induces a connected subgraph T [V (Tx)] of T , and moreover, Tx is a search tree on T [V (Tx)].
The cost of a search tree T on T is costw(T) =

∑
x∈V (T) w(x) · depthT (x), where the

depth of the root is taken to be 1. The optimum cost OPT(T , w) is the minimum of costw(T)
over all search trees T of T .

A vertex v ∈ V (T) is a centroid if for all components H of T −v, we have w(H) ≤ w(T)/2.
A search tree T of T is a centroid tree if vertex x is a centroid of T [V (Tx)] for all x ∈ V (T).
In general, the centroid tree is not unique, and centroid trees of the same tree can have
different costs.4 We denote by cent(T , w) the maximum cost of a centroid tree of (T , w),
with weight function w.

We can now state our approximation guarantee for centroid trees.

▶ Theorem 1. Let T be a tree, w : V (T) → R≥0, and m = w(T). Then

cent(T , w) ≤ 2 · OPT(T , w) − m.

We show that this result is optimal, including in the additive term. Moreover, the constant
factor 2 cannot be improved even for unweighted instances.

▶ Theorem 2.
(i) For every ε > 0 there is a sequence of instances (Tn, wn) with wn(Tn) = 1, and for

every centroid tree Cn of (Tn, wn)

costwn
(Cn) ≥ 2 · OPT(Tn, wn) − 1 − ε.

(ii) There is a sequence of instances (Tn, wn), where wn is the uniform distribution on
V (Tn), and for every centroid tree Cn of (Tn, wn)

lim
n→∞

costwn
(Cn)

OPT(Tn, wn) = 2.

In both cases lim
n→∞

OPT(Tn, wn) = ∞.

Note that the fact that limn→∞ OPT(Tn, wn) = ∞ in Theorem 2 establishes that the
asymptotic approximation ratio is 2. By this we mean that every bound of the form
cent ≤ c · OPT + o(OPT) must have c ≥ 2.

We next show a stronger guarantee when the underlying tree has bounded degree.

▶ Theorem 3. Let T be a tree, w : V (T) → R≥0, and let ∆ be the maximum degree of T .
Then

cent(T , w) ≤
(

2 − 1
2∆

)
· OPT(T , w).

We complement this result by two lower bounds. The first establishes the tightness of the
approximation ratio. The second shows a (slightly smaller) lower bound on the approximation
ratio for instances where OPT is unbounded.

4 Consider, for instance the two different centroid trees of a path on four vertices, with weights
(0.2, 0.3, 0.2, 0.3).

B. A. Berendsohn, I. Golinsky, H. Kaplan, and L. Kozma 19:5

▶ Theorem 4. Let ∆ ≥ 3 be integer.
(i) There is a sequence of instances (Tn, wn) such that Tn has maximum degree at most ∆,

and for every centroid tree Cn of (Tn, wn)

lim
n→∞

costwn
(Cn)

OPT(Tn, wn) = 2 − 1
2∆ .

(ii) There is a sequence of instances (Tn, wn) such that Tn has maximum degree at most ∆,
lim

n→∞
OPT(Tn, wn) = ∞, wn(Tn) = 1, and for every centroid tree Cn of (Tn, wn)

costwn(Cn) ≥
(

2 − 4
2∆

)
· OPT(Tn, wn) − 1.

We remark that Theorem 4(i) does not exclude the possiblity of a bound of the form
cent ≤ c ·OPT+o(OPT), where c < 2− 1

2∆ , as here OPT(Tn, wn) is bounded. Part (ii), however,
establishes that a bound of the form cent ≤ c · OPT + o(OPT) must have c ≥ 2 − 4

2∆ . We leave
open the problem of closing the gap in the asymptotic approximation ratio in terms of ∆.

Computing centroid trees. On the algorithmic side, we show that the weighted centroid tree
can be computed in O(n log n) time. Previously, the fastest known constant-approximation
algorithm [7] took O(n3) time (similarly achieving an approximation ratio of 2). The main
step of our algorithm, finding the weighted centroid of a tree, is achievable in O(log n) time,
assuming that the underlying tree is stored in a top tree data structure [1]. Iterating this
procedure in combination with known algorithms for constructing and splitting top trees
yields the algorithm that runs in O(n log n) time. As our main algorithmic result, we also
develop an improved, output-sensitive algorithm, with running time O(n log h), where h is
the height of the resulting centroid tree, yielding a running time O(n log log n) in the typical
case when the height is O(log n).

▶ Theorem 5. Let T be a tree on n vertices and w be a weight function. We can compute a
centroid tree of (T , w) in time O(n log h), where h is the height of the computed centroid tree.

One may ask whether the weighted centroid tree can be computed in linear time, similarly
to the unweighted centroid tree, or to the weighted centroid BST. We show that, assuming
a general decision tree model of computation, this is not possible, and the algorithm of
Theorem 5 is optimal for all n and h (up to a constant factor). Our lower bound on the
running time applies, informally, to any deterministic algorithm in which the input weights
affect program flow in the form of binary decisions, involving arbitrary computable functions.

More precisely, consider a tree T on n vertices. We say that a binary decision tree DT
solves T for a class of weight functions W mapping V (T) to R≥0, if the leaves of DT are
search trees on T , every branching of DT is of the form “f(w)>0?” for some computable
function f : W → {−1, +1}, and for every weight function w ∈ W , starting from the root of
DT and following branchings down the tree, we reach a leaf T of DT that is a valid centroid
tree for (T , w). The height of DT is then a lower bound on the worst-case running time.

▶ Theorem 6. Let h ≥ 3 and n ≥ h + 1 be integers. Then there is a tree T on at most
n vertices and a class W of weight functions on V (T) such that for every w ∈ W, every
centroid tree of (T , w) has height h, and every binary decision tree that solves T for W has
height Ω(n log h).

ICALP 2023

19:6 Fast Approximation of Search Trees on Trees with Centroid Trees

We can nonetheless improve the running time, when the weights are restricted in certain
(natural) ways. We define the spread σ of a weight function w as the ratio between the
total weight w(T), and the smallest non-zero weight of a vertex. As we show, O(n log h) ⊆
O(n log log (σ + n)) and therefore, when σ ∈ nO(1) (for instance, if the weights are integers
stored in RAM words), we obtain a running time of O(n log log n).

When many vertices have zero weight, we obtain further improvements, e.g., if only
O(n/ log n) of the weights are non-zero, we can compute a centroid tree in O(n) time, even
if the height h is large. The precise statement of these refined bounds and the discussion of
their optimality are available in the full version of this paper [6].

Approximate centroid trees. Finally, we consider the approximation guarantees of a
generalized form of centroid trees. Let us call a vertex v of a tree T an α-centroid, for
0 ≤ α ≤ 1, if w(H) ≤ α · w(T), for all components H of T − v. An α-centroid tree is an STT
in which every vertex x is an α-centroid of its subtree T [V (Tx)].

Observe that the standard centroid tree is a 1
2 -centroid tree, and all STTs are 1-centroid

trees. Also note that an α-centroid is a β-centroid for all β ≥ α and that the existence of
an α-centroid is not guaranteed for α < 1

2 (consider a single edge with the two endpoints
having the same weight). On the other hand, an α-centroid for α < 1

2 , if it exists, is unique,
and therefore the α-centroid tree is also unique. To see this, consider an α-centroid c that
splits T into components T1, . . . , Tk. If an alternative α-centroid c′ were in component Ti,
then its removal would yield a component containing all vertices in T − V (Ti), of weight at
least (1 − α) · w(T) > α · w(T).

Denote by centα(T , w) the maximum cost of an α-centroid tree of (T , w), or 0 if no
α-centroid tree exists. We refine our guarantee from Theorem 1 to approximate centroid
trees:

▶ Theorem 7. Let T be a tree, w : V (T) → R≥0, m = w(T). We have

(i) centα(T , w) ≤ 1
1 − α

· OPT(T , w) − α

1 − α
m, for α ∈ (0, 1),

(ii) centα(T , w) ≤ 1
2 − 3α · OPT(T , w) − 3α − 1

2 − 3αm, for α ∈
[

1
3 ,

1
2

]
.

Note that the second bound is a strengthening of the first when α < 1
2 . In particular, for

α ≤ 1
3 , it implies that an α-centroid tree is optimal, if it exists.

We show that the result is tight when α ≥ 1
2 by proving a matching lower bound.

▶ Theorem 8. For every α ∈ [1
2 , 1) there is a sequence of instances (Tn, wn) with

lim
n→∞

OPT(Tn, wn) = ∞, wn(Tn) = 1 and

centα(Tn, wn) ≥ 1
1 − α

· OPT(Tn, wn) − α

1 − α
.

Note that if α > 1
2 , we cannot prove such a lower bound for all α-centroid trees of (Tn, wn)

(as in Theorem 2), since a 1
2 -centroid tree exists and has stronger approximation guarantees

according to Theorem 1.
Finally, we argue that every optimal STT is a 2

3 -centroid tree. A special case of this
result (for BSTs) was shown by Hirschberg, Larmore, and Molodowitch [32], who also showed
that the ratio 2

3 is tight (in the special case of BSTs, and thus, also for STTs).

▶ Theorem 9. Let T be an optimal STT of (T , w). Then, T is a 2
3 -centroid tree of (T , w).

B. A. Berendsohn, I. Golinsky, H. Kaplan, and L. Kozma 19:7

Structure of the paper. In this extended abstract we omit some of the proofs, discussions,
and technical details which are included in the full paper [6]. In Section 2 we state a number
of results needed in the proofs. The general upper and lower bounds on the approximation
ratio of centroid trees (Theorems 1 and 2) are proved in Section 3. These results can be seen
as a warm-up towards the fine-grained bounds on the approximation ratio of centroid trees
(Theorems 3 and 4), which we prove in Section 4. The algorithmic results (Theorem 5) are
discussed in Section 5, with the details of the output-sensitive algorithm, the lower bounds
(Theorem 6), and further extensions available in the full paper. Results on α-centroids
(Theorems 7, 8, and 9) are proved in the full paper. In Section 6 we conclude with open
questions.

Related work. Different models of searching in trees have also been considered, e.g., the
one where we query edges instead of vertices [3, 39, 46, 48], with connections to searching
in posets [42, 31]. In the edge-query setting, Cicalese, Jacobs, Laber and Molinaro [17, 18]
study the problem of minimizing the average search time of a vertex, and show this to be an
NP-hard problem [17]. They also show that an “edge-centroid” tree (in their terminology, a
greedy algorithm) gives a 1.62-approximation of the optimum [18].

STTs generalize BSTs, therefore it is natural to ask to what extent the theory developed
for BSTs can be extended to STTs. Defining a natural rotation operation on STTs, Bose,
Cardinal, Iacono, Koumoutsos, and Langerman [10] develop an O(log log n) competitive
dynamic STT, analogously to Tango BSTs [19]. In a similar spirit, Berendsohn and Kozma [7]
generalize Splay trees [51] to STTs. The rotation operation on STTs naturally leads to
the definition of tree associahedra, a combinatorial structure that extends the classical
associahedron defined over BSTs or other Catalan-structures. Properties of tree- and more
general graph associahedra have been studied in [14, 21, 15, 12, 13, 5].

Searching in trees and graphs has also been motivated with applications, including
file system synchronisation [3, 46], software testing [3, 46], asymmetric communication
protocols [38], VLSI layout [41], and assembly planning [33].

2 Preliminaries

Given a graph G, we denote by V (G) its set of vertices, by E(G) its set of edges, and by
C(G) its set of connected components. If v ∈ V (G), denote by NG(v) the set of neighbors of
v in G, and degG(v) = |NG(v)|. For S ⊆ V (G), denote by G[S] the subgraph of G induced
by S, and for brevity, G − v = G[V (G) − {v}], and G − S = G[V (G) − S].

The following observation is straightforward.

▶ Observation 10. Let T be a search tree on T , w : V (T) → R≥0, m = w(T) and
r = root(T). For each component H ∈ C(T − r), denote by TH the subtree of T rooted at
the unique child of r in H. Then

costw(T) = m +
∑

H∈C(T −r)

costw(TH) ≥ m +
∑

H∈C(T −r)

OPT(H, w).

Projection of a search tree. For a rooted tree T and a vertex v ∈ V (T), we denote by
PathT (v) the set of vertices on the path in T from root(T) to v, including both endpoints.
Our upper bounds require the following notion of projection of a search tree.

ICALP 2023

19:8 Fast Approximation of Search Trees on Trees with Centroid Trees

▶ Theorem 11. Let T be a search tree on T and H a connected subgraph of T . There is a
unique search tree T |H on H such that for every v ∈ V (H),

PathT |H(v) = PathT (v) ∩ V (H).

▶ Definition 12 (Projection). Let T be a search tree on T and H a connected subgraph of T .
We call T |H, whose existence is established by Theorem 11, the projection of T to H.

Tie-breaking. Our lower bounds require the following tie-breaking procedure.

▶ Lemma 13. Let T be a tree, w : V (T) → R≥0 a weight function and let C be a centroid
tree of (T , w). For every ε > 0 there exists a weight function w′ : V (T) → R≥0 such that C

is the unique centroid tree of (T , w′) and ∥w′ − w∥∞ < ε.

Centroid and median. A certain concept of a median vertex of a tree has been used
previously in the literature. If T is a tree with positive vertex weights and positive edge
weights, then the median of T is the vertex v minimizing the quantity

∑
u̸=v w(u) · d(u, v).

Here w(u) is the weight of the vertex u, and d(u, v) is the distance from u to v, i.e., the sum
of the edge weights on the path from u to v. We show that if all edge-weights are 1, then
medians are precisely centroids.

▶ Lemma 14. Let T be a graph and w be a weight function on V (T). For each u ∈ V (T),
define W (u) =

∑
v∈V (T) dT (u, v) · w(v), where dT (u, v) denotes the number of edges on the

path from u to v in T . Then c ∈ V (T) is a centroid of (T , w) if and only if W (c) is minimal.

Proofs to Theorem 11 and Lemmas 13 and 14 are available in the full paper [6].

3 Approximation guarantees for general trees

In this section we prove the general upper bound and lower bounds the approximation quality
of centroid trees. We start with the upper bound.

▶ Theorem 1. Let T be a tree, w : V (T) → R≥0, and m = w(T). Then

cent(T , w) ≤ 2 · OPT(T , w) − m.

We prove the following lemma.

▶ Lemma 15. Let c be a centroid of (T , w) and m = w(T). Then

OPT(T , w) ≥ m

2 + w(c)
2 +

∑
H∈C(T −c)

OPT(H, w). (1)

Proof. Let T be an arbitrary search tree on T . We will show that costw(T) is at least the
right hand side of Equation (1).

Denote r = root(T). If r = c, using Observation 10, we have

costw(T) ≥ m +
∑

H∈C(T −c)

OPT(H, w),

which implies the claim. Assume therefore that r ̸= c. Denote by H∗ the connected component
of T − c where r is. The contribution of vertices of H∗ to costw(T) is at least costw(T |H∗).
For H ∈ C(T − c), H ̸= H∗ and v ∈ V (H), we have PathT (v) ⊇ {r} ∪ PathT |H(v), therefore

B. A. Berendsohn, I. Golinsky, H. Kaplan, and L. Kozma 19:9

the contribution of vertices of every H ̸= H∗ is at least w(H) + costw(T |H). Finally, the
contribution of c is at least 2w(c), since both c, r ∈ PathT (c). Summing the contributions of
all the vertices, we get

costw(T) ≥ 2w(c) + costw(T |H∗) +
∑

H̸=H∗

(w(H) + costw(T |H))

≥ m − w(H∗) + w(c) +
∑
H

OPT(H, w)

≥ m

2 + w(c) +
∑
H

OPT(H, w),

where the last inequality follows from c being a centroid. ◀

Proof of Theorem 1. The proof is by induction on the number of vertices. When |V (T)| = 1
we have

2 · OPT(T , w) − m = 2m − m = m = cent(T , w), as required.

Assume |V (T)| > 1. Let C be a centroid tree on T and c = root(C). Using Observation 10
and the induction hypothesis we have:

costw(C) ≤ m +
∑

H∈C(T −c)

cent(H, w)

≤ m +
∑

H∈C(T −c)

(2 · OPT(H, w) − w(H))

= w(c) + 2 ·
∑

H∈C(T −c)

OPT(H, w),

therefore it is enough to show that

w(c) + 2 ·
∑

H∈C(T −c)

OPT(H, w) ≤ 2 · OPT(T , w) − m,

which is just a re-arrangement of Lemma 15. This concludes the proof. ◀

Next, we prove the lower bounds on the approximation quality of centroid trees, showing
the tightness of Theorem 1. We note that in the edge-query model of search trees a 2-
approximation was shown in [18] using techniques similar to those in the proof of Theorem 1.
In contrast to that result, however, our approximation guarantee is best possible.

▶ Theorem 2.
(i) For every ε > 0 there is a sequence of instances (Tn, wn) with wn(Tn) = 1, and for

every centroid tree Cn of (Tn, wn)

costwn
(Cn) ≥ 2 · OPT(Tn, wn) − 1 − ε.

(ii) There is a sequence of instances (Tn, wn), where wn is the uniform distribution on
V (Tn), and for every centroid tree Cn of (Tn, wn)

lim
n→∞

costwn
(Cn)

OPT(Tn, wn) = 2.

In both cases lim
n→∞

OPT(Tn, wn) = ∞.

ICALP 2023

19:10 Fast Approximation of Search Trees on Trees with Centroid Trees

Figure 2 Illustration of the proof of Theorem 2(i). Vertex r is the root of Tn. (Left.) The
underlying tree Tn. (Middle.) The entroid tree Cn of Tn. (Right.) The search tree Tn.

As the proofs of both parts of Theorem 2 use the same construction with only slightly
different analyses, we prove here only part (i). The proof of part (ii) appears in the full
paper [6].

We proceed by constructing a sequence (Tn, wn) such that for some centroid tree Cn,

costwn
(Cn) ≥ 2 · OPT(Tn, wn) − 1.

Using Lemma 13, we can then add an arbitrarily small perturbation to wn to make Cn the
unique centroid tree. (Observe that for every search tree T , costw(T) is continuous in w,
therefore so is OPT(T , w).)

The sequence (Tn, wn) is constructed recursively as follows. For the sake of the construction
we view Tn as a rooted tree. The base case T0 is a tree with a single vertex v and w0(v) = 1.
For n > 0, take two copies (A, wA) and (B, wB) of (Tn−1, wn−1). Connect the roots of A
and B to a new vertex c. Finally, set root(Tn) = root(A) (see Figure 2). We define wn as
follows. (observe that wn(Tn) = 1, by induction on n.)

wn(v) =


0, v = c
1
2 wA(v), v ∈ V (A)
1
2 wB(v), v ∈ V (B).

Let Cn denote the search tree on Tn obtained by setting c as the root and recursing.
Observe that Cn is a centroid tree of (Tn, wn).

▶ Lemma 16. The following hold
(a) costwn

(Cn) = n + 1,
(b) limn→∞ OPT(Tn, wn) = ∞.

Proof. Let cn = costwn(Cn). Clearly, c0 = 1. Assume n > 0. Let CA and CB be search
trees on A and B respectively, each a copy of Cn−1. By construction of Cn we have

cn = 1 + 1
2costwA(CA) + 1

2costwB (CB) = 1 + cn−1,

and (a) follows by induction.
Using (a) and Theorem 1, part (b) follows:

OPT(Tn, wn) ≥ cn + 1
2 = n

2 + 1 → ∞. ◀

Next, in order to bound OPT(Tn, wn) from above, we construct a sequence of search trees
Tn on Tn. For n = 0, tree T0 is a single vertex. Assume n > 0. Let A, B, and c be as in the
definition of Tn. Let TA and TB be search trees over A and B respectively, each a copy of
Tn−1. Denote rA = root(A) and rB = root(B). Tree Tn is obtained by adding an edge from
rA to rB and an edge from rB to c, and setting root(Tn) = rA.

B. A. Berendsohn, I. Golinsky, H. Kaplan, and L. Kozma 19:11

▶ Lemma 17. costwn
(Tn) = n

2 + 1.

Proof. Denote tn = costwn
(Tn). Clearly t0 = 1. Assume n > 0. The contribution of vertices

of A to tn is exactly 1
2 costwA(TA) = tn−1

2 . Since r is an ancestor of all vertices in B, the
contribution of these vertices to tn is exactly 1

2 (1 + costwB (TB)) = 1+tn−1
2 . Summing the

contribution of all vertices, we get tn = tn−1 + 1
2 and the claim follows. ◀

Proof of Theorem 2(i). By Lemma 17, OPT(Tn, wn) ≤ n
2 + 1. Together with Lemma 16, the

claim follows. ◀

4 Approximation guarantees for trees with bounded degrees

In this section we show the upper and lower bounds on the approximation quality of centroid
trees when the underlying tree T has bounded degree. We start with the upper bound.

▶ Theorem 3. Let T be a tree, w : V (T) → R≥0, and let ∆ be the maximum degree of T .
Then

cent(T , w) ≤
(

2 − 1
2∆

)
· OPT(T , w).

For simplicity, in what follows we omit the weight function w from notations.

▶ Lemma 18. Let C be a centroid tree of T such that cost(C) = cent(T). Let P =
(v0, v1, . . . , vp) be any path in C. Then

cent(T) ≤
(

2 − 1
2p

)
m +

∑
H∈C(T −P)

cent(H).

Proof. By induction on p. For p = 0 we have

cent(T) = m +
∑

H∈C(T −v0)

cent(H), as required.

Assume now p > 0. Denote by T̃ the connected component of T − v0 where v1 is.
Denote P̃ = (v1, . . . , vp), and m̃ = w(T̃). Observe that m̃ ≤ m/2 and that C(T − P) =
C(T̃ − P̃) ·∪ (C(T − v0) − {T̃ }). By the induction hypothesis we have

cent(T̃) ≤
(

2 − 1
2p−1

)
m̃ +

∑
H∈C(T̃ −P̃)

cent(H), therefore

cent(T) = m + cent(T̃) +
∑

H∈C(T −v0)
H̸=T̃

cent(H)

≤ m +
(

2 − 1
2p−1

)
m̃ +

∑
H∈C(T̃ −P̃)

cent(H) +
∑

H∈C(T −v0)
H ̸=T̃

cent(H)

≤ m +
(

2 − 1
2p−1

)
m

2 +
∑

H∈C(T −P)

cent(H)

=
(

2 − 1
2p

)
m +

∑
H∈C(T −P)

cent(H), as required. ◀

ICALP 2023

19:12 Fast Approximation of Search Trees on Trees with Centroid Trees

Proof of Theorem 3. The proof is by induction on |V (T)|. Let T be any search tree on T .
We will show that cent(T) ≤

(
2 − 1

2∆

)
cost(T).

Denote r = root(T). Let C be a centroid tree on T with cost(C) = cent(T). Denote
by v0, v1, . . . , vd = r the vertices along the path to r in C. Denote Ti = T [V (Cvi)]. Observe
that r ∈ V (Td) ⊆ · · · ⊆ V (T0) = V (T). For i < d, denote by Ki the connected component
of T − r where vi is. Denote by si the unique child of r in T such that si ∈ V (Ki), i.e.,
V (Tsi

) = V (Ki). Finally, denote by p the minimal i for which one of the following holds:
1. vi = r, i.e., i = d,
2. si ∈ V (Ti+1), or
3. there exists j < i such that Kj = Ki, i.e., sj = si.
Note that from the third condition above it follows that p ≤ ∆. Denote P = (v0, . . . , vp).
We will prove the following.

▷ Claim 19.

cost(T) ≥ m +
∑

H∈C(T −P)

cost(T |H).

Assume for now that Claim 19 holds. Using Lemma 18, the fact that p ≤ ∆, the induction
hypothesis and Claim 19, we have

cent(T) ≤
(

2 − 1
2p

)
m +

∑
H∈C(T −P)

cent(H)

≤
(

2 − 1
2∆

)
m +

∑
H∈C(T −P)

(
2 − 1

2∆

)
cost(T |H)

≤
(

2 − 1
2∆

)
cost(T). ◀

Proof of Claim 19. The proof breaks into cases according to the defining condition of p.
Case 1. Assume vp = r. For every H ∈ C(T − P) and v ∈ V (H) we have PathT (v) ⊇

{r} ·∪ PathT |H(v). The contribution of such v to cost(T) is therefore at least w(v)(1 +
|PathT |H(v)|). The contribution of each vi to cost(T) is at least w(vi). Summing the
contribution of all vertices yields the required result. See Figure 3.

Figure 3 Illustration of the proof of Claim 19. Connected components of T − P are represented
by light gray circles. (Left.) Case 1. (Right.) Case 2. Vertices in T − Tp have r as ancestor. Vertices
in Tp − Tp+1 have both r and sp as ancestors.

B. A. Berendsohn, I. Golinsky, H. Kaplan, and L. Kozma 19:13

Figure 4 Case 3 in the proof of Claim 19. (Left.) Sub-case where vp is in the path in T between
r and vj . (Right.) Complementary sub-case. Connected components of T − P are represented by
light gray circles. In both sub-cases, vertices in Tp − Tp+1 have both r and sp as ancestors.

Case 2. Assume sp ∈ V (Tp+1). Denote by C1 the set of connected components of T − P

that are not contained in Tp. Denote C2 = C(T − P) − C1 (see Figure 3). For every
H ∈ C1, if v ∈ V (H), then PathT (v) ⊇ {r} ·∪ PathT |H(v). Therefore the contribution of
vertices in V (T − Tp) to cost(T) is at least

m − w(Tp) +
∑

H∈C1

cost(T |H). (2)

For vertices v ∈ V (Tp − Tp+1) we have {r, sp} ⊆ PathT (v). Therefore, using the fact that
w(Tp − Tp+1) ≥ w(Tp)

2 , the contribution of vertices in V (Tp) to cost(T) is at least

2 · w(Tp − Tp+1) +
∑

H∈C2

cost(T |H) ≥ w(Tp) +
∑

H∈C2

cost(T |H). (3)

Summing Equation (2) and Equation (3) yields the required result.
Case 3. Assume that there is a j < p such that Kp = Kj . Since p is minimal, we further

assume that Case 2 did not occur for indices smaller that p. In particular, sp = sj /∈ V (Tp).
As in Case 2, the contribution of vertices in T −Tp to cost(T) is at least as in Equation (2).
We have r /∈ V (Tp −Tp+1) and vp ∈ V (Tp −Tp+1)∩V (Kp) ̸= ∅, therefore, since Tp −Tp+1 is
connected, V (Tp −Tp+1) ⊆ V (Kp) (see Figure 4). It follows that vertices in Tp −Tp+1 have
both r and sp as ancestors. Since w(Tp − Tp+1) ≥ w(Tp)

2 , the contribution of vertices in Tp

is at least as in Equation (3). As in Case 2, the result follows by summing Equation (2)
and Equation (3). ◁

We now proceed to the lower bounds.

▶ Theorem 4. Let ∆ ≥ 3 be integer.
(i) There is a sequence of instances (Tn, wn) such that Tn has maximum degree at most ∆,

and for every centroid tree Cn of (Tn, wn)

lim
n→∞

costwn(Cn)
OPT(Tn, wn) = 2 − 1

2∆ .

(ii) There is a sequence of instances (Tn, wn) such that Tn has maximum degree at most ∆,
lim

n→∞
OPT(Tn, wn) = ∞, wn(Tn) = 1, and for every centroid tree Cn of (Tn, wn)

costwn
(Cn) ≥

(
2 − 4

2∆

)
· OPT(Tn, wn) − 1.

ICALP 2023

19:14 Fast Approximation of Search Trees on Trees with Centroid Trees

Figure 5 Illustration of Theorem 4(i). (Left.) The underlying tree Tn. (Middle.) The centroid
tree Cn. (Right.) The search tree Tn.

Part (i). As in the proof of Theorem 2, it will suffice to prove Theorem 4(i) for some
centroid tree Cn. Using Lemma 13, we can then add arbitrarily small perturbation to wn,
making Cn the unique centroid tree.

The sequence (Tn, wn) of Theorem 4(i) is constructed recursively as follows. For the sake
of the construction we regard Tn as a rooted tree. T0 is simply a single vertex v (which is
the root) and w0(v) = 1. For n > 0, Tn is constructed from ∆ copies of Tn−1 and ∆ + 1
additional vertices, v1, . . . , v∆+1, as shown in Figure 5 (left). The i’th copy of Tn−1 gets the
weight function wn−1/2i. We set wn(vi) = 0 for 1 ≤ i ≤ ∆ and wn(v∆+1) = 1/2∆. Finally,
we set root(Tn) = v1. By induction, Tn has maximal degree ∆ and wn is a distribution on
V (Tn).

Let Cn be a search tree on Tn defined recursively as follows. Connect the vertices
v1, . . . , v∆+1 to form a path and set v1 as the root of Cn. Continue recursively on each
connected component of T − {v1, . . . , v∆+1}. (See Figure 5 (middle).) Observe that Cn is a
centroid tree of (Tn, wn).

▶ Lemma 20. For all n,

costwn(Cn) = 2∆+1 − 1 − (2∆+1 − 2)
(

1 − 1
2∆

)n

. (4)

Proof. Denote cn = costwn
(Cn). Clearly c0 = 1 as required. Let n > 0. For each i, the

subtree of all the descendants of vi in Cn has weight 1/2i−1. Therefore

cn =
∆+1∑
i=1

1
2i−1 +

∆∑
i=1

1
2i

cn−1 = 2 − 1
2∆ +

(
1 − 1

2∆

)
cn−1.

It is straightforward to verify that the right hand side of Equation (4) is the solution to the
recursive formula above. ◀

In order to upper bound OPT(Tn, wn) we construct recursively a search tree Tn on Tn.
For n > 0, Tn is constructed by setting v∆+1 as root and attaching to it ∆ copies of Tn−1.
The vertices v1, . . . , v∆ are finally attached as leaves of Tn, each at its unique valid place.
See Figure 5 (right).

▶ Lemma 21. For all n,

costwn
(Tn) = 2∆ − 2∆

(
1 − 1

2∆

)n+1
. (5)

B. A. Berendsohn, I. Golinsky, H. Kaplan, and L. Kozma 19:15

Figure 6 An illustration of Theorem 4(ii). (Left.) The underlying tree Tn. (Middle.) The centroid
tree Cn. (Right.) The search tree Tn.

Proof. Denote tn = costwn
(Tn). We have t0 = 1. For n > 0, tn obeys the recursive relation

tn = 1 +
∆∑

i=1

1
2i

tn−1 = 1 +
(

1 − 1
2∆

)
tn−1,

of which the right hand side of Equation (5) is the solution. ◀

Proof of Theorem 4(i). Using Lemma 20 and Lemma 21,

costwn
(Cn)

OPT(Tn, wn) ≥ costwn
(Cn)

costwn
(Tn) → 2 − 1

2∆ . ◀

Observe that, as discussed in Section 1, OPT(Tn, wn)/wn(Tn) is bounded.

Part (ii). To prove Theorem 4(ii), we repeat the recursive construction of Theorem 4(i)
with a slight modification. As before, T0 is a tree with a single vertex. For n > 0,
(Tn, wn) is constructed from ∆ weighted copies of (Tn−1, wn−1) and ∆ − 1 additional vertices,
v1, . . . , v∆−1, each with weight 0, as shown in Figure 6 (left). We set root(Tn) = v1.

As before, the search tree Cn is defined by connecting the vertices v1, . . . , v∆−1 to a path,
setting v1 as root and recursing on the remaining connected component. Observe that Cn

is a centroid tree of (Tn, wn). (See Figure 6 (middle).) The search tree Tn is defined by
setting v∆−1 as root, attaching to it ∆ copies of Tn−1, then adding the vertices v1, . . . , v∆−2
as leaves, each at its unique valid place. See Figure 6 (right).

▶ Lemma 22. For all n,
(a) costwn

(Cn) =
(
2 − 4

2∆

)
· n + 1,

(b) costwn
(Tn) = n + 1.

The proof follows an analysis similar to that of Lemma 20 and Lemma 21.

Proof. Denote cn = costwn(Cn) and tn = costwn(Tn). Clearly c0 = t0 = 1. For n > 0 we
have

cn =
∆−1∑
i=1

1
2i−1 +

∆−2∑
i=1

1
2i

cn−1 + 2 1
2∆−1 cn−1 = 2 − 4

2∆ + cn−1, and

tn =
∆−2∑
i=1

1
2i

(tn−1 + 1) + 2 1
2∆−1 (tn−1 + 1) = 1 + tn−1,

and the lemma follows by induction. ◀

ICALP 2023

19:16 Fast Approximation of Search Trees on Trees with Centroid Trees

Proof of Theorem 4(ii). The fact that limn→∞ OPT(Tn, wn) = ∞ follows from Lemma 22
and Theorem 3 (or Theorem 1). Using Lemma 22 again, we have

costwn
(Cn) ≥

(
2 − 4

2∆

)
OPT(Tn, wn) − 1 + 4

2∆ .

Using Lemma 13, for each n we can add small enough perturbation to wn such that Cn is
the unique centroid tree and the claimed bound holds. ◀

5 Computing centroid trees

In this section, we show how to compute centroid trees using the top tree framework of
Alstrup, Holm, de Lichtenberg, and Thorup [1]. Top trees are a data structure used to
maintain dynamic forests under insertion and deletion of edges. Most importantly, they
expose a simple interface that allows the user to maintain information in the trees of the
forest. For this, the user only needs to implement a small number of internal operations.

Alstrup et al. in particular show how to maintain the median of trees in O(log n) per
operation, see Section 2 for the definition of the median. As mentioned before, if all
edge-weights are 1, then medians are precisely centroids (see Lemma 14).

▶ Theorem 23 ([1, Theorem 3.6]). We can maintain a forest with positive vertex weights on
n vertices under the following operations:

Add an edge between two given vertices u, v that are not in the same connected component;
Remove an existing edge;
Change the weight of a vertex;
Retrieve a pointer to the tree containing a given vertex;
Find the centroid of a given tree in the forest.

Each operation requires O(log n) time. A forest without edges and with n arbitrarily weighted
vertices can be initialized in O(n) time.

Note that Theorem 23 only admits positive vertex weights, whereas we allowed zero-weight
vertices. We show how to handle this problem in the full paper [6].

We now show how to use Theorem 23 to construct a centroid tree in O(n log n) time.

▶ Theorem 24. Given a tree T on n vertices and a positive weight function w, we can
compute a centroid tree of (T , w) in O(n log n) time.

Proof. First build a top tree on T by adding the edges one-by-one, in O(n log n) time. Then,
find the centroid c, and remove each incident edge. Then, recurse on each newly created tree
(except for the one containing only c). The algorithm finds each vertex precisely once and
removes each edge precisely once, for a total running time of O(n log n). ◀

Output-sensitive algorithm. We improve the algorithm given above to run in time
O(n log h), where n is the number of vertices in T and h is the height of the computed
centroid tree.

The main idea of the algorithm is inspired by the linear-time algorithm for unweighted
centroids by Della Giustina, Prezza, and Venturini [28], with a number of further technical
challenges. Instead of building a top tree on the whole tree T , we first split T into connected
subgraphs of size roughly h, and build a top tree on each component. Contracting each
component into a single vertex yields super-vertices in a super-tree. Each search for a centroid
consists of a global search and a local search: We first find the super-vertex containing the

B. A. Berendsohn, I. Golinsky, H. Kaplan, and L. Kozma 19:17

centroid, then we find the centroid within that super-vertex. After finding the centroid,
we remove it, which may split up the super-vertex into multiple super-vertices with a top
tree each, and also may split the super-tree into a super-forest. Finally, we recurse on each
component of the super-forest.

It can be seen that the total number of top tree operations needed is O(n). Since the top
trees each contain only h vertices, a top tree operation takes O(log h) time, for a total of
O(n log h). Detailed description and analysis of the algorithm, as well as the matching lower
bound, appear in the full paper [6].

6 Conclusions

We showed that the average search time in a centroid tree is larger by at most a factor of 2
than the smallest possible average search time in an STT and that this bound is tight. We
also showed that centroid trees can be computed in O(n log h) time where h is the height of
the centroid tree. Perhaps the most intriguing question is to determine whether the problem
of computing an optimal STT is in P. A secondary goal would be to achieve an approximation
ratio better than 2 in near linear time. (The running time of the STT’s of Berendsohn
and Kozma [7] degrade as O(n2k+1) for a

(
1 + 1

k

)
-approximation.) As for centroid trees, a

remaining question is whether they can be computed in O(n) time whenever the spread of
the weight function is σ ∈ O(n).

A special case in which high quality approximation can be efficiently found is when an
α-centroid tree exists for α < 1

2 . This case can be recognized and handled in near linear
time using our algorithm. (Observe that an α-centroid tree for α < 1

2 is also the unique
1
2 -centroid tree.) Theorem 7(ii) gives strong approximation guarantees for this case, yielding
the optimum when α ≤ 1

3 . It is an interesting question whether the bounds can be improved
for α in the range

(1
3 , 1

2
)
, i.e., whether Theorem 7(ii) is tight.

A small gap remains in the exact approximation ratio of centroid trees when T has
maximum degree ∆ and OPT is unbounded, i.e., between the upper bound (2 − 1

2∆) of
Theorem 3 and the lower bound (2 − 4

2∆) of Theorem 4(ii).

References
1 Stephen Alstrup, Jacob Holm, Kristian De Lichtenberg, and Mikkel Thorup. Maintaining

information in fully dynamic trees with top trees. ACM Trans. Algorithms, 1(2):243–264,
October 2005. doi:10.1145/1103963.1103966.

2 Bengt Aspvall and Pinar Heggernes. Finding minimum height elimination trees for interval
graphs in polynomial time. BIT, 34:484–509, 1994.

3 Yosi Ben-Asher, Eitan Farchi, and Ilan Newman. Optimal search in trees. SIAM J. Comput.,
28(6):2090–2102, 1999. doi:10.1137/S009753979731858X.

4 Michael A. Bender, Martin Farach-Colton, and Bradley C. Kuszmaul. Cache-oblivious string
b-trees. In ACM SIGMOD-SIGACT-SIGART, pages 233–242, 2006.

5 Benjamin Aram Berendsohn. The diameter of caterpillar associahedra. In Artur Czumaj and
Qin Xin, editors, 18th Scandinavian Symposium and Workshops on Algorithm Theory, SWAT
2022, June 27-29, 2022, Tórshavn, Faroe Islands, volume 227 of LIPIcs, pages 14:1–14:12.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.SWAT.2022.14.

6 Benjamin Aram Berendsohn, Ishay Golinsky, Haim Kaplan, and László Kozma. Fast approx-
imation of search trees on trees with centroid trees, 2022. arXiv:2209.08024.

7 Benjamin Aram Berendsohn and László Kozma. Splay trees on trees. In SODA, pages
1875–1900, 2022.

ICALP 2023

https://doi.org/10.1145/1103963.1103966
https://doi.org/10.1137/S009753979731858X
https://doi.org/10.4230/LIPIcs.SWAT.2022.14
https://arxiv.org/abs/2209.08024

19:18 Fast Approximation of Search Trees on Trees with Centroid Trees

8 Hans L. Bodlaender, Jitender S. Deogun, Klaus Jansen, Ton Kloks, Dieter Kratsch, Haiko
Müller, and Zsolt Tuza. Rankings of graphs. SIAM Journal on Discrete Mathematics,
11(1):168–181, 1998.

9 H.L. Bodlaender, J.R. Gilbert, H. Hafsteinsson, and T. Kloks. Approximating treewidth,
pathwidth, frontsize, and shortest elimination tree. Journal of Algorithms, 18(2):238–255,
1995. doi:10.1006/jagm.1995.1009.

10 Prosenjit Bose, Jean Cardinal, John Iacono, Grigorios Koumoutsos, and Stefan Langerman.
Competitive online search trees on trees. In SODA, pages 1878–1891, 2020.

11 Gerth Stølting Brodal, Rolf Fagerberg, Christian N. S. Pedersen, and Anna Östlin. The
complexity of constructing evolutionary trees using experiments. In ICALP, pages 140–151.
Springer, 2001.

12 Jean Cardinal, Stefan Langerman, and Pablo Pérez-Lantero. On the diameter of tree associ-
ahedra. Electron. J. Comb., 25(4):P4.18, 2018. URL: http://www.combinatorics.org/ojs/
index.php/eljc/article/view/v25i4p18, doi:10.37236/7762.

13 Jean Cardinal, Lionel Pournin, and Mario Valencia-Pabon. Bounds on the diameter of
graph associahedra. In Proceedings of the XI Latin and American Algorithms, Graphs and
Optimization Symposium (LAGOS), volume 195 of Procedia Computer Science, pages 239–247.
Elsevier, 2021.

14 Michael Carr and Satyan L. Devadoss. Coxeter complexes and graph-associahedra. Topology
and its Applications, 153(12):2155–2168, 2006.

15 Cesar Ceballos, Thibault Manneville, Vincent Pilaud, and Lionel Pournin. Diameters and
geodesic properties of generalizations of the associahedron. In Proceedings of the 27th Inter-
national Conference on Formal Power Series and Algebraic Combinatorics (FPSAC), pages
345–356, 2015.

16 Panagiotis Charalampopoulos, Pawel Gawrychowski, Shay Mozes, and Oren Weimann. An
almost optimal edit distance oracle. In Nikhil Bansal, Emanuela Merelli, and James Worrell,
editors, 48th International Colloquium on Automata, Languages, and Programming, ICALP
2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages
48:1–48:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.
ICALP.2021.48.

17 Ferdinando Cicalese, Tobias Jacobs, Eduardo Laber, and Marco Molinaro. On the complexity
of searching in trees and partially ordered structures. Theor. Comput. Sci., 412(50):6879–6896,
2011. doi:10.1016/j.tcs.2011.08.042.

18 Ferdinando Cicalese, Tobias Jacobs, Eduardo Laber, and Marco Molinaro. Improved approx-
imation algorithms for the average-case tree searching problem. Algorithmica, 68(4):1045–1074,
2014. doi:10.1007/s00453-012-9715-6.

19 Erik D. Demaine, Dion Harmon, John Iacono, and Mihai Pǎtraşcu. Dynamic optimality -
almost. SIAM J. Comput., 37(1):240–251, 2007. doi:10.1137/S0097539705447347.

20 Jitender S Deogun, Ton Kloks, Dieter Kratsch, and Haiko Müller. On vertex ranking for
permutation and other graphs. In STACS 1994, pages 747–758. Springer, 1994.

21 Satyan L. Devadoss. A realization of graph associahedra. Discrete Mathematics, 309(1):271–276,
2009.

22 Iain S Duff, Albert Maurice Erisman, and John Ker Reid. Direct methods for sparse matrices.
Oxford University Press, 2017.

23 Guy Even and Shakhar Smorodinsky. Hitting sets online and unique-max coloring. Discret.
Appl. Math., 178:71–82, 2014. doi:10.1016/j.dam.2014.06.019.

24 Paolo Ferragina. On the weak prefix-search problem. Theor. Comput. Sci., 483:75–84, 2013.
doi:10.1016/j.tcs.2012.06.011.

25 Paolo Ferragina and Rossano Venturini. Compressed cache-oblivious string b-tree. ACM
Trans. Algorithms, 12(4):52:1–52:17, 2016. doi:10.1145/2903141.

26 Greg N. Frederickson and Donald B Johnson. Finding kth paths and p-centers by generating
and searching good data structures. Journal of Algorithms, 4(1):61–80, 1983.

https://doi.org/10.1006/jagm.1995.1009
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v25i4p18
http://www.combinatorics.org/ojs/index.php/eljc/article/view/v25i4p18
https://doi.org/10.37236/7762
https://doi.org/10.4230/LIPIcs.ICALP.2021.48
https://doi.org/10.4230/LIPIcs.ICALP.2021.48
https://doi.org/10.1016/j.tcs.2011.08.042
https://doi.org/10.1007/s00453-012-9715-6
https://doi.org/10.1137/S0097539705447347
https://doi.org/10.1016/j.dam.2014.06.019
https://doi.org/10.1016/j.tcs.2012.06.011
https://doi.org/10.1145/2903141

B. A. Berendsohn, I. Golinsky, H. Kaplan, and L. Kozma 19:19

27 Travis Gagie, Danny Hermelin, Gad M Landau, and Oren Weimann. Binary jumbled pattern
matching on trees and tree-like structures. Algorithmica, 73(3):571–588, 2015.

28 Davide Della Giustina, Nicola Prezza, and Rossano Venturini. A new linear-time algorithm
for centroid decomposition. In Proceedings of the 26th International Symposium on String
Processing and Information Retrieval (SPIRE), volume 11811 of Lecture Notes in Computer
Science, pages 274–282. Springer, 2019.

29 Michael T. Goodrich and Roberto Tamassia. Dynamic trees and dynamic point location.
SIAM J. Comput., 28(2):612–636, 1998. doi:10.1137/S0097539793254376.

30 Leonidas J. Guibas, John Hershberger, Daniel Leven, Micha Sharir, and Robert Endre Tarjan.
Linear-time algorithms for visibility and shortest path problems inside triangulated simple
polygons. Algorithmica, 2:209–233, 1987. doi:10.1007/BF01840360.

31 Brent Heeringa, Marius Catalin Iordan, and Louis Theran. Searching in dynamic tree-like
partial orders. In WADS 2011, volume 6844 of Lecture Notes in Computer Science, pages
512–523. Springer, 2011. doi:10.1007/978-3-642-22300-6_43.

32 D.S. Hirschberg, L.L. Larmore, and M. Molodowitch. Subtree weight ratios for optimal binary
search trees. Technical Report TR 86-02, ICS Department, University of California, Irvine,
1986.

33 Ananth V. Iyer, H. Donald Ratliff, and Gopalakrishnan Vijayan. Optimal node ranking of
trees. Inf. Process. Lett., 28(5):225–229, 1988. doi:10.1016/0020-0190(88)90194-9.

34 Camille Jordan. Sur les assemblages de lignes. Journal für die reine und angewandte Mathem-
atik, 70:185–190, 1869.

35 Meir Katchalski, William McCuaig, and Suzanne Seager. Ordered colourings. Discrete
Mathematics, 142(1-3):141–154, 1995.

36 Donald E. Knuth. Optimum binary search trees. Acta Informatica, 1(1):14–25, 1971. doi:
10.1007/BF00264289.

37 Tomasz Kociumaka, Jakub Pachocki, Jakub Radoszewski, Wojciech Rytter, and Tomasz Waleń.
Efficient counting of square substrings in a tree. Theoretical Computer Science, 544:60–73,
2014.

38 Eduardo Laber and Marco Molinaro. An approximation algorithm for binary searching in
trees. Algorithmica, 59(4):601–620, 2011. doi:10.1007/s00453-009-9325-0.

39 Eduardo Laber and Loana Nogueira. Fast searching in trees. Electronic Notes in Discrete
Mathematics, 7:90–93, 2001. doi:10.1016/S1571-0653(04)00232-X.

40 Lawrence L. Larmore. A subquadratic algorithm for constructing approximately optimal
binary search trees. J. Algorithms, 8(4):579–591, 1987. doi:10.1016/0196-6774(87)90052-6.

41 Charles E. Leiserson. Area-efficient graph layouts (for VLSI). In STOC 1980, pages 270–281.
IEEE Computer Society, 1980. doi:10.1109/SFCS.1980.13.

42 Nathan Linial and Michael E. Saks. Every poset has a central element. J. Comb. Theory, Ser.
A, 40(2):195–210, 1985. doi:10.1016/0097-3165(85)90087-1.

43 Joseph W.H. Liu. The role of elimination trees in sparse factorization. SIAM journal on
matrix analysis and applications, 11(1):134–172, 1990.

44 Kurt Mehlhorn. Nearly optimal binary search trees. Acta Informatica, 5(4):287–295, 1975.
45 Kurt Mehlhorn. A best possible bound for the weighted path length of binary search trees.

SIAM Journal on Computing, pages 235–239, 1977.
46 Shay Mozes, Krzysztof Onak, and Oren Weimann. Finding an optimal tree searching strategy

in linear time. In SODA 2008, pages 1096–1105. SIAM, 2008. URL: http://dl.acm.org/
citation.cfm?id=1347082.1347202.

47 Jaroslav Nesetril and Patrice Ossona de Mendez. Sparsity - Graphs, Structures, and Al-
gorithms, volume 28 of Algorithms and combinatorics. Springer, 2012. doi:10.1007/
978-3-642-27875-4.

48 Krzysztof Onak and Pawel Parys. Generalization of binary search: Searching in trees and
forest-like partial orders. In FOCS 2006, pages 379–388, 2006. doi:10.1109/FOCS.2006.32.

ICALP 2023

https://doi.org/10.1137/S0097539793254376
https://doi.org/10.1007/BF01840360
https://doi.org/10.1007/978-3-642-22300-6_43
https://doi.org/10.1016/0020-0190(88)90194-9
https://doi.org/10.1007/BF00264289
https://doi.org/10.1007/BF00264289
https://doi.org/10.1007/s00453-009-9325-0
https://doi.org/10.1016/S1571-0653(04)00232-X
https://doi.org/10.1016/0196-6774(87)90052-6
https://doi.org/10.1109/SFCS.1980.13
https://doi.org/10.1016/0097-3165(85)90087-1
http://dl.acm.org/citation.cfm?id=1347082.1347202
http://dl.acm.org/citation.cfm?id=1347082.1347202
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1109/FOCS.2006.32

19:20 Fast Approximation of Search Trees on Trees with Centroid Trees

49 Alex Pothen, Horst D. Simon, and Kang-Pu Liou. Partitioning sparse matrices with eigenvectors
of graphs. SIAM journal on matrix analysis and applications, 11(3):430–452, 1990.

50 Alejandro A. Schäffer. Optimal node ranking of trees in linear time. Information Processing
Letters, 33(2):91–96, 1989.

51 Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees. J. ACM,
32(3):652–686, July 1985. doi:10.1145/3828.3835.

https://doi.org/10.1145/3828.3835

Improved Product-State Approximation Algorithms
for Quantum Local Hamiltonians
Thiago Bergamaschi #

Department of Computer Science, University of California, Berkeley, CA, USA

Abstract
The ground state energy and the free energy of Quantum Local Hamiltonians are fundamental
quantities in quantum many-body physics, however, it is QMA-Hard to estimate them in general. In
this paper, we develop new techniques to find classical, additive error product-state approximations
for these quantities on certain families of Quantum k-Local Hamiltonians. Namely, those which are
either dense, have low threshold rank, or are defined on a sparse graph that excludes a fixed minor,
building on the methods and the systems studied by Brandão and Harrow, Gharibian and Kempe,
and Bansal, Bravyi and Terhal.

We present two main technical contributions. First, we discuss a connection between product-
state approximations of local Hamiltonians and combinatorial graph property testing. We develop a
series of weak Szemerédi regularity lemmas for k-local Hamiltonians, built on those of Frieze and
Kannan and others. We use them to develop constant time sampling algorithms, and to characterize
the “vertex sample complexity” of the Local Hamiltonian problem, in an analog to a classical
result by Alon, de la Vega, Kannan and Karpinski. Second, we build on the information-theoretic
product-state approximation techniques by Brandão and Harrow, extending their results to the
free energy and to an asymmetric graph setting. We leverage this structure to define families of
algorithms for the free energy at low temperatures, and new algorithms for certain sparse graph
families.

2012 ACM Subject Classification Theory of computation → Quantum information theory; Theory
of computation → Approximation algorithms analysis

Keywords and phrases Approximation Algorithms, Quantum Information

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.20

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2210.08680

Funding Thiago Bergamaschi: NSF GRFP No. DGE 2146752.

1 Introduction

The mean-field approximation is a popular heuristic in quantum many-body physics, in which
product-states are used as an ansatz for generic quantum states. The low-energy states of
quantum systems may be highly entangled objects, and possibly exponentially more complex
than simple (unentangled) product states. This often makes computing properties of these
low-energy states classically intractable. From a complexity-theoretic point of view, the
mean-field approach casts these quantum problems that are in the complexity class QMA
[34], into problems in NP, since product-states have a polynomial-size description and can
act as classical, efficiently verifiable certificates. However, in the absence of a hardness-of-
approximation result for QMA [1, 6, 2, 29] and assuming QMA ̸=NP, it is generally unknown
if the ground states of quantum systems can even have “good” approximations with succinct
classical descriptions, let alone if we can compute or approximate them efficiently.

In this work, we develop a series of classical algorithms to efficiently find mean-field
approximations for quantum systems described by local Hamiltonians, and we develop new
techniques to show that good mean-field approximations exist for fairly general classes of

EA
T
C
S

© Thiago Bergamaschi;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 20; pp. 20:1–20:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:thiagob@berkeley.edu
https://doi.org/10.4230/LIPIcs.ICALP.2023.20
https://arxiv.org/abs/2210.08680
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

20:2 Improved Product-State Approximation Algorithms for Quantum Local Hamiltonians

these systems. A local Hamiltonian corresponds to a sparse matrix H ∈ Cdn×dn which is
exponentially large in the number n of quantum particles (or qudits), and can be described
as a sum over “local” terms H =

∑
e∈E he defined by some hypergraph G = ([n], E). H

is said to be k-local if each hyperedge e ∈ E is a k-tuple of vertices in [n], and is said to
have “bounded” interaction strengths if the operator norm ∥he∥∞ is at most a constant
independent of n for each hyperedge in E1.

It is well known that the existence of product-state approximations to H is very sensitive
to the structure of the underlying interaction graph G. In a seminal result, Brandão and
Harrow [15] proved that so long as H has bounded interaction strengths, and is defined
on a graph G of high degree or small expansion, then there exists a product state which
approximates the ground state energy of H up to an additive error ϵ ·m (scaling with the
number of edges or “interactions” m of H). Their results can be interpreted as rigorous proofs
of accuracy of the mean-field approximation to the ground state energy of certain systems,
and they opened the door to classical approximation schemes to find these “good” mean-field
solutions efficiently. One of the main focuses of this work is to relax certain assumptions
on the structure of the interaction graphs G, to extend the scope of their algorithms and
existence statements.

The second main focus of this work is to study the structure and classical computation of
properties of quantum systems in thermal equilibrium. The Helmholtz Free Energy F (β)
of a Quantum Local Hamiltonian H at a given temperature β−1 arises as an approximate
counting analog to the ground state energy, as it reveals the degeneracy of the ground state
(the number of QMA witnesses), the density of states of the Hamiltonian, as well as the
existence of phase transitions. Quantitatively, F (β) can be described as the optimum of a
maximum entropy program:

F (β) ≡ min
ρ≥0, Trρ=1

f(ρ) = min
ρ≥0, Trρ=1

Tr[Hρ] − S(ρ)/β (1)

where the optimizer ρ ∝ e−βH of the program above is called the Gibbs state of H. The
computational complexity, and in particular the hardness of approximation of F (β) is similarly
not comprehensively understood. While QMA-Hard to estimate in general due to a reduction
to the “low temperature” limit, and exactly computable in polynomial time using a #P
oracle [19], it would seem there is much to uncover regarding the computational tradeoffs
between error and temperature [16].

1.1 Our Main Contributions
In this section we overview our main contributions, which we present formally and in more
detail in section 2.2.

Rigorous Mean-Field Approximations and Guarantees in NP

Our first contributions concern improvements and extensions to the existence statements by
Brandão and Harrow [15]. Their methods had roots in the information-theoretic techniques
by [39] and [10], developed in the context of approximating CSPs using the Lasserre Heirarchy.
Informally, we show how to use their self-decoupling arguments to construct mixed states
which are tensor products of single-particle mixed states, which approximate the Free Energy
up to an additive error. We view these results as rigorous proofs of accuracy for the mean-field

1 Please refer to section 2.1 for more background on local Hamiltonians and Schatten norms.

T. Bergamaschi 20:3

approximation to the Free Energy of Quantum Local Hamiltonians, and they imply that
approximating the Free Energy of dense Hamiltonians up to an extensive error (scaling with
the number of edges) is in NP.

▶ Theorem 1. Fix k, d = O(1), and an inverse temperature β. Let H =
∑
e∈E he be a

k-Local Hamiltonian on n qudits of local dimension d, and m interactions each of strength
∥he∥∞ ≤ 1. Then, there exists a product state σβ such that

F ≤ f(σβ) = Tr[Hσβ] − S(σβ)/β ≤ F +O(n
k−1

3 m2/3) (2)

That is, σβ is an O(n k−1
3 m2/3) additive error approximation to the Free Energy of H.

Note that when k = 2 (Hamiltonians on Graphs), the error becomes O(n1/3m2/3) =
O(m/D1/3), which recovers Brandão and Harrow’s [15] result in terms of the average degree
D = m/n of the graph.

We emphasize two important points about the result above. First and foremost, the
existence of approximations to F (β) in NP implies that we can now use classical approximation
schemes to search for optimal mean-field approximations to the free energy, and they will
also be good additive approximations to the “entangled value” of F (β). As we later discuss,
this enables us to import practically all the previous machinery of approximation schemes for
the ground state energy, to the Free Energy, developing novel algorithms for many quantum
systems and improving on recent results by Bravyi et al. [16].

The second point of emphasis is that the result above holds at all temperatures β−1. In
this fashion, we are able to bypass the “low temperature bottleneck” of many approximation
schemes for the Free Energy which constrain approaches in previous work, such as the
polynomial interpolation method [11, 27] or Markov Chain Monte Carlo methods. We present
a comprehensive comparison with previous work and the scope of our techniques for thermal
systems in section 2.3.

Hamiltonian Regularity Lemmas and Approximation Algorithms

From an algorithmic point of view, our main contribution is a connection between product
state approximations and graph property testing. We discuss quantum analogs of the
weak Szemerédi regularity lemmas for dense graphs, hyper-graphs and low-threshold rank
graphs [22, 3, 23], developed in the context of additive approximation schemes for Max-Cut
and Max-kCSPs. At their heart lies a powerful combinatorial characterization of these
systems, Szemerédi’s celebrated regularity lemma [42], which states that dense graphs can
be approximately decomposed into unions of complete bipartite graphs. We develop natural,
constructive generalizations of these results for Quantum Local Hamiltonians, by combining
our new product state approximations with multi-coloured versions of known weak regularity
results, leading to improved approximation algorithms and novel structural characterizations
of local Hamiltonians. Our central result in this vein is an additive error approximation
scheme for dense k-Local Hamiltonians, which runs in constant time:

▶ Theorem 2. Fix d, k = O(1), ϵ > 0, and let H =
∑
e he be a k-Local Hamiltonian on n

qudits of local dimension d and bounded strength interactions ∥he∥∞ ≤ 1. Then, there exists
a randomized algorithm which runs in time 2poly(1/ϵ), and with probability .99 returns an
estimate for the ground state energy of H accurate up to an additive error of ϵ · nk.

We report our sampling algorithms, including that in theorem 2, in the probe model of
computation introduced by Goldreich et al. [26]. In a nutshell, the time complexity measured
above corresponds to the number of queries to a description of H, see section 2.1 for more
details.

ICALP 2023

20:4 Improved Product-State Approximation Algorithms for Quantum Local Hamiltonians

Our simplest algorithm is remarkably clean to describe, and is based on the “Vertex
Sample Complexity’ result for Max-kCSPs by Alon et al. [3]: Given a Hamiltonian H , sample
a uniformly random subset of qudits Q ⊂ [n] of certain constant size |Q| = q = poly(1/ϵ),
and let HQ be the dq × dq matrix corresponding to the restriction to the interactions of H
contained entirely in Q. Then, exactly diagonalize the (constant-sized) dq × dq matrix HQ,
and output its lowest eigenvalue multiplied by (n/q)k. For small constant d, k, ϵ > 0, it is
clear that this approach requires just a constant number of queries to H. The challenge, of
course, lies in proving that this estimate corresponds to a ϵ · nk additive error estimate to
the true ground state energy of the original Hamiltonian H.

In the body, we show how these ideas can be used to develop improvements in runtime
from npoly(1/ϵ) to poly(n, 1/ϵ) + 2poly(1/ϵ) or just 2poly(1/ϵ) for a wide range of problems on
Quantum Local Hamiltonians, such as approximation schemes for the ground state energy,
the Free Energy, and for Hamiltonians defined on low threshold rank graphs.

2 Technical Overview

2.1 Background and Notation
Linear Algebra and Matrix Norms. Given an w × w matrix A we refer to ∥A∥p as the
Schatten p-norm of A (the Lp norm of the singular values of A), and we refer to |A|p as the
Lp norm of the w2-dimensional vectorization of A. The graph decompositions are phrased in
terms of the cut norm ∥A∥C introduced by [22], defined by

A+ = max
S1,S2⊆[w]

∑
i∈S1,j∈S2

Aij and ∥A∥C = max(A+, (−A)+) (3)

where we have ∥A∥C ≤ ∥A∥∞→1 = supx ̸=0
|Ax|1
|x|∞

≤ 4 · ∥A∥C .

Asymptotic Notation. For any function f(n) we refer to the asymptotic notation Õ(f(n)) =
O(f(n)polylog(f(n))) ≤ c1 · f(n) logc2 f(n) for a choice of real positive constants c1, c2.

Local Hamiltonians. We denote a k-Local Hamiltonian on n qudits of local dimension
d via a dn × dn Hermitian matrix, which can be expressed as a sum of local interactions
H =

∑
e∈E he. By “local”, we simply mean that each summand he = He ⊗ IV \e acts

non-trivially only on k particles at a time, as indicated by each k-tuple e = (u1 · · ·uk) in
a set of hyper-edges E. In this manner, we can specify any Local Hamiltonian “instance”
simply by specifying the dk × dk submatrices of each local term. If d, k = O(1), then the
input has a polynomial-sized description in n. For notational convenience, we often omit the
trivial support IV \e. The ground state energy and the ground state of H are its minimum
eigenvalue and corresponding eigenvector, and the variational minimum energy of H is the
minimum energy of H among all product states minρ=⊗ρu

Tr[H ⊗u ρu] with ρu ∈ Cd×d and
ρu ≥ 0,Tru[ρu] = 1.

Interaction Graphs. We refer to the “Interaction Graph” G = ([n], E) of a 2-Local Hamilto-
nian H as the graph with undirected edges e = (u, v) ∈ E whenever the particles u, v
interact non-trivially in H. That is, whenever the spectral norm is non-zero ∥He∥∞ ≠ 0. By
expressing each d2 × d2 Hermitian matrix Hu,v =

∑
i,j∈[d2] H

i,j
u,v · σiu ⊗ σjv in an orthogonal

basis decomposition, and grouping all the interactions with the same basis i, j, we refer to
the i, j “Pauli Graph” as the subgraph of G induced on all the directed edges e = (u, v) with

T. Bergamaschi 20:5

non-zero Hi,j
u,v = d−2Tr[Hu,vσ

i
u ⊗ σjv], with weighted adjacency matrix J ij = {Hi,j

u,v}u,v∈[n].
We note that the matrices J ij are degenerate, since J ij = (Jji)T , but we often brush over
this issue via a handshaking argument. If we are given a density matrix ρ = ⊗ρu which is
a product of single qudit density matrices with a basis decomposition ρu = d−1 ∑

i α
i
u · σi,

then the energy of ρ, Tr[Hρ] is a polynomial over the real variables α:∑
(u,v)∈E

Tr[Hu,vρu⊗ρv] = d−2
∑

(u,v)∈E

∑
i,j∈[d2]

Hi,j
u,vα

i
u·αjv = (2d2)−1

∑
i,j∈[d2]

∑
u̸=v∈[n]

J ijuvα
i
u·αjv (4)

Model of Computation. We report our sampling algorithms in the probe model of computa-
tion introduced by [26] in the context of graph property testing. That is, we assume we can
sample a uniformly random vertex or hyper-edge in O(1) time (or “probes”). Formally, fixed a
k-Local Hamiltonian “instance” H =

∑
e∈E He ⊗ IV \e, for any k-tuple of vertices/hyper-edge

e = (u1 · · ·uk), ui ∈ [n], we assume we can query the (constant-sized) dk × dk sub-matrix
He in O(1) time. We emphasize that since our goal is often a sublinear time algorithm, we
always enforce that our algorithms output estimates for the energy (or free energy), and
implicit descriptions of product states. If requested, these implicit descriptions can always
be expanded into n-qudit product states in an additional poly(n, 1/ϵ) time.

2.2 Our Results
Approximation Guarantees in NP

The first of our results are rigorous proofs of accuracy of the mean-field approximation on
Quantum k-Local Hamiltonians. We argue the existence of product states, or products
of single-particle mixed states, which provide additive error approximations to the ground
state energy and the free energy of these systems. We build on the information-theoretic
techniques by Brandão and Harrow [15], presenting an extension to the free energy and
modestly refining their techniques on generic (hyper-) graphs.

▶ Theorem 3. Fix k, d = O(1). Let H =
∑
e∈E he be a k-Local Hamiltonian on n qudits

of local dimension d, and m interactions each of strength ∥he∥∞ ≤ 1. Then, there exists a
product state |ψ⟩ = ⊗u∈[n]|ψu⟩, |ψu⟩ ∈ Cd such that

⟨ψ|H|ψ⟩ ≤ min
ϕ

⟨ϕ|H|ϕ⟩ +O(n
k−1

3 m2/3) (5)

In the body, we prove more general versions of the theorem above sensitive to the matrix
of interaction strengths of H. Theorem 3 matches the previous results in [15] whenever
the Hamiltonian is defined on D-regular or dense graphs m = Ω(nk), and generalizes their
statements to just depend on the number of edges m. In the setting of Theorem 3, whenever
m = Ω(nk−1/ϵ3), approximating the ground state energy of H up to additive error ϵ ·m is in
the complexity class NP, as the product state has a polynomial size description and acts as a
classical witness. While these optimal product states may still be NP-Hard to find in the
worst case, there are many examples where one can approximate these solutions efficiently.

To extend both these information-theoretic ideas and algorithmic applications to the
free energy, we need further insights on the structure of these product state approximations.
We discuss2 how the “entanglement-breaking” procedure of [15], not only approximately

2 In section B of the full version.

ICALP 2023

20:6 Improved Product-State Approximation Algorithms for Quantum Local Hamiltonians

preserves the energy, but in fact also increases the entropy as well. When applied to the
Gibbs state, we show one can carefully extract a tensor product of single particle mixed-states
which is a good approximation to the free energy. We formalize this statement in Theorem 4,

▶ Theorem 4. Fix k, d = O(1), and an inverse temperature β. Let H =
∑
e∈E he be a

k-Local Hamiltonian on n qudits of local dimension d, and m interactions each of strength
∥he∥∞ ≤ 1. Then, there exists a product state σβ = ⊗u∈[n]σu, σu ∈ Cd×d such that

f(σβ) = Tr[Hσβ] − S(σβ)/β ≤ F +O(n
k−1

3 m2/3) (6)

We emphasize that the statement above implies a product state approximation exists at
all temperatures β−1 (and recovers the ground state approximation at T = 0), and moreover
uses very little of the underlying graph structure apart from the average dense condition.

Hamiltonian Weak Regularity Lemmas

We develop an approach to designing approximations algorithms for Local Hamiltonians
based on weak Szemerédi regularity lemmas, which are approximate decompositions to graphs,
matrices, and tensors [42, 22, 3, 23].

The idea behind this construction lies in a powerful tool in extremal combinatorics.
In his celebrated regularity lemma, Szemerédi [42] proved that any dense graph can be
approximated by a union of a constant number of complete bipartite graphs. However, the
number of partitions grew very fast with the intended quality of approximation. Frieze and
Kannan [22] developed a constructive decomposition under a weaker notion of approximation,
what they refered to as a “weak” regularity lemma. Concretely, they prove that any real
n× n matrix with bounded entries can be decomposed into a sum of O(1/ϵ2) cut matrices
(complete bipartite graphs), up to an error ϵ · n2 in the cut norm. Moreover, [22] proved
that one can in fact construct such a “cut decomposition” implicitly in time polynomial in
1/ϵ, which enabled them to devise constant time sampling-based approximation schemes for
many problems on dense graphs.

We define a natural adaptation of their results to a quantum setting, by constructing an
approximate decomposition HD of a Local Hamiltonian H which is a sum over complete,
bipartite, sub-Hamiltonians. The structure of HD can be understood as a “multi-colored”
matrix cut decomposition, as essentially we apply the cut decomposition by [22] to each term
in a basis decomposition of H . For concreteness, let H =

∑
u,v hu,v be a 2-Local Hamiltonian

on qubits, and let us consider re-writing its Pauli basis decomposition below. We suppress
the identity terms ⊗IV \{u,v} on the qubits that each interaction acts trivially on.

H =
∑

(u,v)∈E

hu,v =
∑

(u,v)∈E

∑
i,j∈{I,X,Y,Z}

hi,ju,vσ
i
u ⊗ σjv =

∑
i,j∈{I,X,Y,Z}

∑
u<v

hi,ju,vσ
i
u ⊗ σjv (7)

We associate each pair of indices i, j ∈ {I,X, Y, Z} to a color, and consider the n×n real
valued weighted adjacency matrix J ij = {hi,ju,v}u,v∈[n] of the i, j “Pauli Graph”. By applying
the cut decomposition by [22] to each of these 16 matrices J ij , we construct an approximate
decomposition of H into roughly 16 ·O(1/ϵ2) complete bipartite sub-Hamiltonians. In this
context, a “complete bipartite sub-Hamiltonian” is defined by two Pauli matrices, (say, X,Y),
two subsets S, T ⊂ [n] (which, for now, we assume to be disjoint), and an interaction strength
α ∈ R, and can be expressed as α

∑
u∈S,v∈T Xu ⊗ Yv.

T. Bergamaschi 20:7

In the body we argue that the approximation guarantees in the cut norm are precisely
what we need to ensure that for any product state σ = ⊗uσu, the energy of σ under H or
HD are close: Tr[Hσ] ≈ Tr[HDσ]. By further combining this product state regularity with
our asymmetric product state approximations, we prove a stronger property on the spectra
of HD:

▶ Lemma 5 (Informal). Fix d, k = O(1) and a constant ϵ > 0, and let H =
∑
e he be a

k-Local Hamiltonian on n qudits of local dimension d and m interactions of strength bounded
by ∥he∥∞ ≤ 1. Then, there exists a decomposition HD =

∑s
i D

(i) of H into s = O(1/ϵ2)
complete bipartite sub-Hamiltonians such that

∥H −HD∥∞ ≤ ϵ · nk/2m1/2 (8)

Additive Error Approximation Schemes

Leveraging the structure of the Hamiltonian regularity (lemma 5) in combination with the
product state approximation toolkit enables us to devise a series of approximation schemes
for Quantum Local Hamiltonians. We follow the ideas of [22, 3, 23] in establishing LP
relaxations to Max Cut and other Max CSPs, and we develop an SDP relaxation scheme for
finding the minimal energy product state of a Local Hamiltonian. These ideas enable us to
devise an efficient additive error approximation scheme for dense Hamiltonians,

▶ Theorem 6 (Theorem 2, restatement). Fix d, k = O(1) and ϵ > 0. Let H =
∑
e he be a

k-Local Hamiltonian on n qudits of local dimension d, and m interactions of bounded strength
∥he∥∞ ≤ 1. There exists a randomized algorithm which runs in time 2Õ(1/ϵ2k−2) in the probe
model of computation, and with probability .99 computes an estimate for the ground state
energy of H accurate up to an additive error of ϵ · nk/2√

m.

We note that nk/2√
m ≥ m, and thus in polynomial or sublinear time this approx-

imation scheme only provides a non-trivial guarantee when the hyper-graph is dense,
m = Ω(nk/ logc n) for some small positive constant c. However, it provides an improvement
over the nO(1/ϵ2) time algorithms by [24] and [15] in this additive error regime. On the other
hand, a simple explicit variant of this result provides a sub-exponential time approximation
algorithm whenever m = ω(nk−1 log n):

▶ Theorem 7. In the context of Theorem 2, there exists a randomized algorithm which runs
in time Õ(nk) · 2Õ(nk/ϵ2m) and with high probability computes an estimate for the ground
state energy of H accurate up to an additive error of ϵ ·m.

Concretely, the key idea behind these relaxations is that for any product state σ = ⊗uσu,
the energy of σ on the cut decomposition HD is a simple function of the average magnetization
of a small number of subsets of the n qudits. To illustrate how this enables a relaxation scheme,
consider a single complete bipartite sub-Hamiltonian, such as HS,T =

∑
u∈S,v∈T Xu ⊗ Yv.

The energy of σ on HS,T is

Tr[HS,Tσ] =
∑

u∈S,v∈T
Tru,v[Xuσu ⊗ Yvσv

]
=

(∑
u∈S

Tr[Xuσu]
)

·
(∑
v∈T

Tr[Yvσv]
)
, (9)

simply the product of the average X direction magnetization of S ⊂ [n] with the average Y
magnetization of T . If we fix a “guess” r, c ∈ [−n, n], one can introduce affine constraints
on the single particle density matrices σu, constraining their average magnetizations to lie
within a ±γ · n range of the guess r, c:

ICALP 2023

20:8 Improved Product-State Approximation Algorithms for Quantum Local Hamiltonians

r − γ · n ≤
∑
u∈S

Tr[Xuσu] ≤ r + γ · n, (10)

c− γ · n ≤
∑
v∈T

Tr[Yvσv] ≤ c+ γ · n. (11)

Then, we are guaranteed that any product state σ which is feasible for the constraints
above must have energy in a range around the guess: |Tr[HS,Tσ] − r · c| ≤ (2 · γ + γ2) ·n2. In
this manner, one can discretize over the space of “guesses” (r, c) and define an overlapping
set of convex constraints on the description of the product states σ, such that every product
state is feasible for at least one set of constraints. Approximating the ground state energy
among product states ultimately reduces to checking the feasibility of a constant number
of SDPs, one for each guess of r, c, and outputting whichever gives us the smallest energy
estimate.

Using the techniques by [23], we can extend these insights to the setting of symmetric
2-Local Hamiltonians defined on graphs of low threshold rank. They proved that the weak
regularity results of [22] could be extended to low-threshold rank graphs, by constructing
a cut decomposition of a low rank approximation to the normalized adjacency matrix of
these graphs. While in the appendix we formalize approximation algorithms for generic
symmetric Hamiltonians (on low threshold rank graphs), perhaps the most faithful extension
of this result to the quantum setting would be its application to approximating the Quantum
Max Cut [25, 37, 36, 38]. Given an undirected graph G = (V,E), the “Quantum Max-Cut”
corresponds to the maximum eigenvalue of the Hamiltonian

H = 1
2

∑
e∈E

(
Iu ⊗ Iv −Xu ⊗Xv − Yu ⊗ Yv − Zu ⊗ Zv

)
⊗ IV \{u,v} (12)

If A is the adjacency matrix of G and D the diagonal matrix of degrees, the δ-SOS
threshold rank tδ(A) of A is the number of eigenvalues of the normalized adjacency matrix
D−1/2AD−1/2 which are outside of the range [−δ, δ]. We prove

▶ Theorem 8. Fix ϵ, δ > 0. Let G = (V,E) be a graph on n vertices and m edges with
adjacency matrix A and threshold rank t ≡ tϵ/2(A). Then, there exists an algorithm which
finds an ϵ ·m+O(n1/3m2/3) additive error approximation to the Quantum Max Cut of G in
time poly(n, 1/ϵ, t) + 2Õ(t/ϵ2).

For instance, sparse D-regular random graphs have Θ(D−1/2)-SOS threshold rank 1.
In this manner, for any constant ϵ and if D = Ω(1/ϵ3), then one can compute an ϵ · m
approximation to the Quantum Max Cut of a D-regular random graph in polynomial time.

A series of works [30, 31, 32] showed that the matrix weak regularity lemma [22] could be
used to approximate the free energy of Ising Models, and to give interesting structural results
on the quality of the mean-field approximation and the “vertex sample complexity” of these
systems. They observed that the maximum entropy program subject to the linear relaxation
constraints described above, reveals properties of the Gibbs distribution and enables an
additive error approximation to the free energy at all temperatures. By combining these ideas
with the Hamiltonian regularity Lemma 5 and Theorem 4 on product state approximations
to the free energy, we develop a series of additive error approximation schemes for the free
energy of Quantum Local Hamiltonians. The first of which is a constant time approximation
scheme, which provides an additive error guarantee in a low temperature regime.

T. Bergamaschi 20:9

▶ Theorem 9. Fix k, d = O(1), and ϵ, δ > ω(n−1/(2k−2)) and an inverse temperature β > 0,
and let H be a k-Local Hamiltonian on n qudits of local dimension d and m bounded strength
interactions. Then, there exists an algorithm that runs in time 2Õ(ϵ2−2k) ·O(δ−2) in the probe
model of computation, that returns an estimate to the free energy accurate up to an additive
error of ϵnk/2m1/2 + δn/β and is correct with probability .99.

We emphasize that the free energy is a convex program regularized by temperature,
and thereby our approximation schemes often incur a tradeoff between combinatorial errors
and thermal (temperature dependent) errors. In the low temperature regime, whenever
β = Ω(n1−k/2m−1/2), the algorithm above recovers the behavior of the ground state energy
approximation scheme, and is largely temperature independent. However, as the temperature
increases and surpasses the threshold, the leading source of error becomes the thermal error
δn/β. In our second algorithm, we show that an explicit approach significantly improves this
thermal error dependence, at the cost of a polynomial runtime.

▶ Theorem 10. Fix k, d = O(1), and ϵ, δ > 0 and an inverse temperature β > 0, and
let H be a k-Local Hamiltonian on n qudits of local dimension d and m bounded strength
interactions. Then, there exists an algorithm that runs in time 2Õ(ϵ−2) · Õ(nk log 1/δ), that
returns an estimate to the free energy accurate up to an additive error of ϵnk/2m1/2 + δn/β

and is correct with high probability.

The Vertex Sample Complexity

The Regularity Lemma Lemma 20 enables us to derive an insightful structural statement
for Local Hamiltonians. Namely, the definition of a “vertex sample complexity” for Local
Hamiltonians of bounded interaction strengths, in an analogy to the vertex sample complexity
of Max-kCSPs of [3] and [4]. They showed that the restriction of any Max-kCSP to a uniformly
random sample of poly(1/ϵ) variables, sufficed to estimate the maximum number of satisfiable
clauses up to an additive error of ϵ ·nk. We develop a generalization of this result to Quantum
Local Hamiltonians, by combining the Hamiltonian regularity lemma with some extensions
to the proof techniques by [3] to SDPs.

▶ Theorem 11. Fix d, k = O(1) and ϵ > 0, and let H be a k-local Hamiltonian on n qudits
of local dimension d and m bounded interaction strengths. Let Q ⊂ [n] be a uniformly random
sample of q = Ω(ϵ−6 log 1/ϵ) of those qudits, and let HQ be the sum of interactions with
support contained entirely in Q. Then, with probability 0.99,∣∣∣∣ min

ρ
Tr[Hρ] − nk

qk
min
ρQ

Tr[HQρQ]
∣∣∣∣ ≤ ϵ · nk (13)

We rely crucially on the guarantee of product state approximations to Quantum Local
Hamiltonians in this regime of additive error. Indeed, one of the directions of the statement
above is quite intuitive for both classical and quantum systems: If the ground state energy
of H is low, then the ground state energy of the restriction HQ can’t be much higher than
the estimate. This is since the reduced density matrix ρQ = TrV \Q[ψ] of the ground state
ψ of H, probably also has low energy Tr[HQρQ] ≈ q2

n2 · Tr[Hψ], and the true ground state
energy of HQ can only be lower than that.

In the converse, however, lies an interesting “semi-classical” characterization of this
additive error regime. Note that if the ground state energy of H is “high”, then in particular
there doesn’t exist any product states with low energy on H. Using the proof techniques
in [3], we show this implies the existence of a certain succinctly describable classical certificate

ICALP 2023

20:10 Improved Product-State Approximation Algorithms for Quantum Local Hamiltonians

to this product-state “infeasibility”, which we sample from to prove the absence of product
states with low energy on HQ. Here is where we require the product state approximations of
Theorem 3: for sufficiently large Q, the absence of low energy product states for HQ must
imply a high ground state energy for HQ. In this sense, the ground state energy of HQ can’t
be much lower than its estimate either.

As a straightforward corollary to this structural result, now we can easily devise an
algorithm which provides an additive error guarantee by exactly diagonalizing the Hamiltonian
HQ on q = Õ(ϵ−6) vertices in time 2Õ(1/ϵ6). However, we can in fact do slightly better,
simply by applying the additive error, product state approximation algorithm by [24] to the
subsample:

▶ Corollary 12. Fix d, k = O(1) and ϵ > 0, and let H be a k-Local Hamiltonian on n

qudits of local dimension d and m bounded interaction strengths. There exists a randomized
algorithm which runs in time 2Õ(ϵ−2), and with probability .99 outputs an estimate to the
ground state energy accurate up to an additive error of ϵ · nk.

Aside from the improved dependence on k in the exponent, this result may seem to only
subtly differ from that in Theorem 2. However, we emphasize that Theorem 2 requires
an exponential number in 1/ϵ of samples of vertices, whereas Theorem 11 guarantees a
polynomial number suffices.

Approximation Schemes on Graphs that exclude a Fixed Minor

Finally, we develop novel singly-exponential time algorithms for sparse, 2-Local Hamiltonians
defined on graphs that exclude a fixed minor. Formally, the family of h-minor free graphs
are all the graphs G that can not produce another (smaller) graph h, by deleting edges
and vertices and by contracting edges [41]. Planar graphs, and bounded genus graphs
(such as toriods) are among the interesting special cases of these classes. Our approach
builds on previous work by [9] and [15] on planar graphs, using more general combinatorial
decompositions [21] and improving on their “quantum-to-classical” mappings. We show how
such 2-Local Hamiltonians can be approximately understood as classical Max k-CSPs defined
on the high degree vertices in the graph, and develop a dynamic programming algorithm to
solve it using a simple hyper-dimensional version of a tree decomposition. Our first result for
these systems is a classical algorithm to approximate the ground state energy in time singly
exponential in poly(1/ϵ),

▶ Theorem 13. Fix ϵ > 0. Let H be a 2-Local Hamiltonian defined on n qubits and m = Θ(n)
bounded strength interactions of norm < 1, configured on an h-minor free graph G = (V,E)
where the minor is constant size |h| = O(1). Then, we can approximate the ground state
energy of H up to additive error ϵ · n, in time poly(n) + n · 2poly(1/ϵ).

We build on these ideas by combining them with our information-theoretic techniques
for the free energy of quantum systems, to construct novel algorithms for the free energy of
these classes of sparse graphs at low temperatures as well.

▶ Theorem 14. Fix ϵ > 0 and an inverse temperature β. Let H be a 2-Local Hamiltonian on
n qubits and m = Θ(n) bounded strength interactions of norm < 1, configured on an h-minor
free graph G = (V,E) where the minor is constant size |h| = O(1). Then, we can approximate
the the free energy F (β) of H up to additive error ϵ·n, in time poly(n)+n·max(2, β−1)poly(1/ϵ),
respectively.

T. Bergamaschi 20:11

2.3 Related Work
Classical Approximation Schemes for QMA Complete Problems

While the systematic study of approximation algorithms to QMA-Complete problems is still
emerging, there are a number of works we would like to highlight on the topic. [9] developed
classical approximation schemes for ground state energies of classical and Quantum 2-Local
Hamiltonians configured on planar graphs (of bounded degree, in the quantum case). They
leveraged Baker’s technique [8] and structural properties of planar graphs to approximately
decompose the Hamiltonian into non-interacting partitions, which then could be analyzed by
exact diagonalization, or dynamic programming. [24] were among the first to construct an
approximation algorithm for the k-Local Hamiltonian Problem. They argued that product
states can provide a d−k+1-relative factor approximations to the ground state energy of
k-Local Hamiltonians defined on qudits, similarly to how Max Cut admits a 1/2 multiplicative
approximation. They then developed an approximation algorithm for the variational problem
of finding the minimal energy product state of a given Local Hamiltonian H . It constructs a
product state that provides an (extensive) ϵ · nk additive approximation to the ground state
energy, in runtime nO(ϵ−2 log 1/ϵ). Their approach was based on an adaptation of a classical
technique, the “exhaustive sampling method” by [7] to the quantum setting, developed in
the context of approximating Max Cut on dense graphs.

Later, [15] developed information-theoretic techniques to argue the existence of product
state approximations to the the ground state energy. More precisely, they show that so long
as H is everywhere dense (Ω(nk−1) minimum degree), has bounded expansion, or is clustered
into regions of sub-volume law entanglement entropy, there exist product states that provide
additive error approximations to the minimum energy. Leveraging their information-theoretic
statements, they turned the algorithm of [24] into a PTAS for the ground state energy, albeit
only meaningful when the number of interactions m = Ω(nk). Additionally, they devise
approximation schemes for Quantum Hamiltonians defined on generic planar graphs (not
just those of bounded degree), solving an open problem posed by [9]. Their key insight was
what we refer to as a “high-low degree” technique, in which one could consider a product
state over all vertices of degree larger than some tunable cutoff ∆, and a generic (entangled)
quantum state over the hilbert space of the low-degree particles, while incurring only a small
error to the ground state energy. It is worthwhile to raise however, that the runtime of the
resulting algorithm is triply-exponential in 1/ϵ, where the algorithm returns an ϵ · n additive
approximation.

More recently, in the context of relative error approximation schemes, [28] showed that
one can find a product state within a relative error of l of the ground state of a traceless
k-Local Hamiltonian of bounded norm, where l is the maximum degree of the underlying
hyper-graph. [18] devised a O(log n) multiplicative approximation scheme to the ground
state energy of 2-Local traceless Hamiltonians by rounding the solutions of SDPs to product
states.

Classical Approximation Schemes for the Free Energy of Quantum Systems

Our results also contribute to a rich literature of classical techniques for thermal quantum
systems. Perhaps the most well known of these techniques are the Quantum Monte Carlo
methods, which approximate the quantum partition function of a quantum system to that of
a classical spin system, which in turn is approximated via Markov chain Monte Carlo methods.
Despite the enormous practical success of these techniques, rigorous proofs of convergence
have only been presented in certain restricted systems [17, 13, 20], and they generically

ICALP 2023

20:12 Improved Product-State Approximation Algorithms for Quantum Local Hamiltonians

are efficient only in the high temperature limit. Another high-temperature technique is
the polynomial interpolation method [11, 27], based on a Taylor expansion of the partition
function in the high temperature limit. Although both of these approaches are only provably
efficient either on restricted classes of systems (such as substochastic Hamiltonians) and/or
in the high temperature limit (typically β is a constant, or at most O(log n)), they provide
quite strong notions of approximation. In fact, they generally provide (1 + ϵ) multiplicative
approximations to the partition function (which translates to an ϵ additive approximation
to the free energy), while in this paper we only attempt extensive, additive, ϵ · m error
approximations to the free energy.

By approaching the problem via this weaker notion of error, it is possible to devise
approximation schemes in a much wider range of temperatures. A recent result by [16]
presented an algorithm that estimates the free energy of dense Local Hamiltonians, also
building on the information-theoretic techniques by [15]. Their approach is based on a
quantum generalization to a classical correlation rounding approach by [40], and their
algorithm finds a ϵ · n2 additive approximation to the free energy of 2-Local Hamiltonians, in
runtime nO(ϵ−2).

Comparison to Previous Work

To conclude our introduction we summarize our algorithmic improvements in constrast to
previous known constructions for the quantum systems studied. In table 1 below we label
the Hamiltonians, and runtime and accuracy guarantees of the additive error approximation
schemes in previous work for the systems we consider. In table 2, we present our results for
these same systems.

For simplicity, unless otherwise stated we concern ourselves with Quantum Local Hamilto-
nians of bounded interaction strengths ∥He∥∞ ≤ 1 on n qubits and m interactions. In both
tables, we refer to a “low threshold rank” Hamiltonian as having constant ϵ-SOS threshold
rank of its interaction graph. With the exception of the recent work by [16], all the results
in table 1 concern ground state energy approximation schemes.

Table 1 A summary of previous algorithms for related Quantum Systems.

Result System/Context Accuracy Runtime

[24] k-local Hamiltonians ϵ · nk nÕ(ϵ−2)

[15] Low Threshold Rank
ϵ ·

∑
e∈E

∥He∥∞ nO(ϵ−1)
Hamiltonians

[16] Free Energy of
ϵ · n2 + δ · n/β nÕ(ϵ−2) · O(log 1/δ)2-local Hamiltonians

[9] Planar Graphs ϵ ·
∑

e∈E
∥He∥∞ nO(1) · 22poly(∆,ϵ−1)

of bounded degree ∆

[15] Planar Graphs ϵ ·
∑

e∈E
∥He∥∞ nO(1) · 222poly(ϵ−1)

We remark∗ that the runtime results for k-local Hamiltonians are reported in the probe
model [26], and thus may seem apriori incomparable to more standard model runtimes.
However, we emphasize that we can easily convert between models by suitably pre-processing
the input Hamiltonian and underlying Graph. For instance, if we are allowed query access to
the input Hamiltonian in time O(1), and arithmetic operations on entries of H take time O(1),
but sampling a random element of [n] takes time O(log n), then the algorithm of theorem 11
outputs an estimate to the ground state energy in total time O(poly(1/ϵ) · log n+ 2poly(1/ϵ)) -

T. Bergamaschi 20:13

Table 2 The main algorithms in this work.

System Context Accuracy Runtime∗

k-local Hamiltonians G.S. Energy ϵ · nk 2poly(ϵ−1)

Free Energy ϵ · nk + δ · n/β 2poly(ϵ−1) · O(δ−2)
Low Threshold Rank Maximum

ϵ · m + O(n1/3m2/3) (n/ϵ)O(1) + 2Õ(1/ϵ2)
Quantum Max Cut Eigenvalue

h-Minor Free Graphs G.S. Energy
ϵ · n nO(1) + n · 2poly(∆,ϵ−1)

of bounded degree ∆ Free Energy

h-Minor Free Graphs G.S. Energy
ϵ · n

nO(1) + n · 2poly(ϵ−1)

Free Energy nO(1) + n · max(2, β−1)poly(ϵ−1)

as we only require a poly(1/ϵ) number of sampled vertices. On the other hand, if don’t have
query access to the description of H, simply spending initial O(d2k(n + m)) = O(n + m)
preprocessing time to read out the description of H is sufficient to reduce the setting to the
previous one, assuming d, k = O(1).

3 Discussion

We conclude this work by raising some open problems. The first of which is a curious
gap between the quality of the mean field approximation to classical and Quantum Local
Hamiltonians. To contrast our results to those in the classical setting, [14, 12, 30, 32]
studied the quality of the mean-field approximation to classical spin glass models with
generic interaction matrices. The work of [32] culminated in the result that the mean-field
approximation is within an additive error of O(n2/3m1/3) of the free energy, a strictly better
dependence on the number of interactions than our upper bound, O(n1/3m2/3). As both
these results have roots in the information-theoretic techniques by [39], it seems intriguing
to ask whether there is some deeper structure. A possible direction would be to combine
the regularity insights with the correlation rounding techniques, as in [32]. However, there
remain certain technical obstacles to approaching the free energy of quantum systems with
the regularity lemma, namely analyzing the matrix exponential of the cut decomposition HD.

Another interesting problem is to improve the weak regularity results for “low threshold
rank” Hamiltonians (Such as theorem 8 and section G of the full version). While we are
able to devise approximation schemes based on graph regularity for a range of Hamiltonians
whose interaction graphs have low threshold rank, we are unable to provide an actual
construction of an approximate Hamiltonian H ′. It would also be interesting to see whether
the coarsest partition technique could be lifted to be applied to more general low threshold
rank Hamiltonians, as opposed to relying on the high degree of symmetry of the Quantum
Max Cut.

Finally, while the focus of this paper is on product-state approximations, the author
considers it to be an outstanding open problem whether one can devise entangled ansatz’s
for classical approximations schemes to quantum problems. For examples, see [33, 5, 35],
who devised low-depth quantum circuits which perform slightly better than the best product
state on certain Hamiltonians.

ICALP 2023

20:14 Improved Product-State Approximation Algorithms for Quantum Local Hamiltonians

4 Organization

In the appendix, we present a proof of the Hamiltonian regularity lemma 20, and, for
readability, defer to the full version (https://arxiv.org/abs/2210.08680) our information-
theoretic statements and algorithms.

References
1 Scott Aaronson. The quantum pcp manifesto, October 2006. URL: http://www.

scottaaronson.com/blog/?p=139.
2 Dorit Aharonov, Itai Arad, Zeph Landau, and Umesh V. Vazirani. The detectability lemma

and quantum gap amplification. In STOC ’09, 2009.
3 Noga Alon, Wenceslas Fernandez de la Vega, Ravi Kannan, and Marek Karpinski. Random

sampling and approximation of max-csp problems. Electron. Colloquium Comput. Complex.,
2002.

4 Gunnar Andersson and Lars Engebretsen. Property testers for dense constraint satisfaction
programs on finite domains. Random Struct. Algorithms, 21:14–32, 2002.

5 Anurag Anshu, David Gosset, and Karen J. Morenz. Beyond product state approximations
for a quantum analogue of max cut. In TQC, 2020.

6 Itai Arad. A note about a partial no-go theorem for quantum pcp. Quantum Inf. Comput.,
11:1019–1027, 2011.

7 Sanjeev Arora, David R. Karger, and Marek Karpinski. Polynomial time approximation
schemes for dense instances of np-hard problems. Journal of Computer and System Sciences,
58:193–210, 1999.

8 S. Baker. Approximation algorithms for np-complete problems on planar graphs. Journal of
the ACM, 1994.

9 Nikhil Bansal, Sergey Bravyi, and Barbara M. Terhal. Classical approximation schemes for
the ground-state energy of quantum and classical ising spin hamiltonians on planar graphs.
Quantum Inf. Comput., 9:701–720, 2009.

10 Boaz Barak, Prasad Raghavendra, and David Steurer. Rounding semidefinite programming
hierarchies via global correlation. 2011 IEEE 52nd Annual Symposium on Foundations of
Computer Science, pages 472–481, 2011.

11 Alexander I. Barvinok. Combinatorics and complexity of partition functions. In Algorithms
and combinatorics, 2016.

12 Anirban Basak and Sumit Mukherjee. Universality of the mean-field for the potts model.
Probability Theory and Related Fields, 168:557–600, 2015.

13 Thiago Bergamaschi. Simulated quantum annealing is efficient on the spike hamiltonian.
arXiv:Quantum Physics, 2020. arXiv:2011.15094.

14 Christian Borgs, Jennifer T. Chayes, László Miklós Lovász, Vera T. Sós, and Katalin Veszter-
gombi. Convergent sequences of dense graphs ii. multiway cuts and statistical physics. Annals
of Mathematics, 176:151–219, 2012.

15 Fernando G. S. L. Brandão and Aram Wettroth Harrow. Product-state approximations to
quantum ground states. In STOC ’13, 2013.

16 Sergey Bravyi, Anirban Narayan Chowdhury, David Gosset, and Pawel Wocjan. On the
complexity of quantum partition functions. arXiv, abs/2110.15466, 2021. arXiv:2110.15466.

17 Sergey Bravyi and David Gosset. Polynomial-time classical simulation of quantum ferromagnets.
Physical review letters, 119 10:100503, 2017.

18 Sergey Bravyi, David Gosset, Robert Koenig, and Kristan Temme. Approximation algorithms
for quantum many-body problems. Journal of Mathematical Physics, 2019.

19 Brielin Brown, Steven T. Flammia, and Norbert Schuch. Computational difficulty of computing
the density of states. Physical review letters, 107 4:040501, 2011.

https://arxiv.org/abs/2210.08680
http://www.scottaaronson.com/blog/?p=139.
http://www.scottaaronson.com/blog/?p=139.
https://arxiv.org/abs/2011.15094
https://arxiv.org/abs/2110.15466

T. Bergamaschi 20:15

20 Elizabeth Crosson and Aram Wettroth Harrow. Rapid mixing of path integral monte carlo for
1d stoquastic hamiltonians. Quantum, 5:395, 2021.

21 Erik D. Demaine, Mohammad Taghi Hajiaghayi, and Ken ichi Kawarabayashi. Algorithmic
graph minor theory: Decomposition, approximation, and coloring. 46th Annual IEEE Sym-
posium on Foundations of Computer Science (FOCS’05), pages 637–646, 2005.

22 Alan M. Frieze and Ravi Kannan. Quick approximation to matrices and applications. Com-
binatorica, 19:175–220, 1999.

23 Shayan Oveis Gharan and Luca Trevisan. A new regularity lemma and faster approximation
algorithms for low threshold rank graphs. In APPROX-RANDOM, 2013.

24 Sevag Gharibian and Julia Kempe. Approximation algorithms for qma-complete problems.
2011 IEEE 26th Annual Conference on Computational Complexity, pages 178–188, 2011.

25 Sevag Gharibian and Ojas Parekh. Almost optimal classical approximation algorithms for a
quantum generalization of max-cut. arXiv, abs/1909.08846, 2019. arXiv:1909.08846.

26 Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connection to
learning and approximation. Electron. Colloquium Comput. Complex., 3, 1998.

27 Aram Wettroth Harrow, Saeed Adel Mehraban, and Mehdi Soleimanifar. Classical algorithms,
correlation decay, and complex zeros of partition functions of quantum many-body systems.
Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, 2020.

28 Aram Wettroth Harrow and Ashley Montanaro. Extremal eigenvalues of local hamiltonians.
arXiv, abs/1507.00739, 2015. arXiv:1507.00739.

29 Matthew B. Hastings. Trivial low energy states for commuting hamiltonians, and the quantum
pcp conjecture. Quantum Inf. Comput., 13:393–429, 2013.

30 Vishesh Jain, Frederic Koehler, and Elchanan Mossel. The mean-field approximation: Inform-
ation inequalities, algorithms, and complexity. In COLT, 2018.

31 Vishesh Jain, Frederic Koehler, and Elchanan Mossel. The vertex sample complexity of free
energy is polynomial. In COLT, 2018.

32 Vishesh Jain, Frederic Koehler, and Andrej Risteski. Mean-field approximation, convex
hierarchies, and the optimality of correlation rounding: a unified perspective. Proceedings of
the 51st Annual ACM SIGACT Symposium on Theory of Computing, 2019.

33 Robbie King. An improved approximation algorithm for quantum max-cut. arXiv,
abs/2209.02589, 2022. arXiv:2209.02589.

34 Alexei Y. Kitaev, Alexander Shen, and Mikhail N. Vyalyi. Classical and quantum computation.
In Graduate studies in mathematics, 2002.

35 Eun Jee Lee. Optimizing quantum circuit parameters via sdp. In International Symposium on
Algorithms and Computation, 2022.

36 Ojas Parekh and Kevin Thompson. Application of the level-2 quantum lasserre hierarchy in
quantum approximation algorithms. In ICALP, 2021.

37 Ojas Parekh and Kevin Thompson. Beating random assignment for approximating quantum
2-local hamiltonian problems. arXiv, abs/2012.12347, 2021. arXiv:2012.12347.

38 Ojas Parekh and Kevin Thompson. An optimal product-state approximation for 2-local
quantum hamiltonians with positive terms. arXiv, abs/2206.08342, 2022. arXiv:2206.08342.

39 Prasad Raghavendra and Ning Tan. Approximating csps with global cardinality constraints
using sdp hierarchies. In SODA, 2012.

40 Andrej Risteski. How to calculate partition functions using convex programming hierarchies:
provable bounds for variational methods. arXiv, abs/1607.03183, 2016. arXiv:1607.03183.

41 Neil Robertson and Paul D. Seymour. Graph minors. ii. algorithmic aspects of tree-width. J.
Algorithms, 7:309–322, 1986.

42 Endre Szemerédi. Regular partitions of graphs. Colloq. Internat. CNRS, 260, 1975.

ICALP 2023

https://arxiv.org/abs/1909.08846
https://arxiv.org/abs/1507.00739
https://arxiv.org/abs/2209.02589
https://arxiv.org/abs/2012.12347
https://arxiv.org/abs/2206.08342
https://arxiv.org/abs/1607.03183

20:16 Improved Product-State Approximation Algorithms for Quantum Local Hamiltonians

A The Hamiltonian Regularity Lemma

Let us begin by reviewing the cut decomposition of [22]. The key intuition behind their
result is the notion that dense graphs can be roughly viewed as a sum of complete bipartite
sub-graphs between subsets of vertices in the graph. Each of these bipartite sub-graphs is
essentially a “cut” in the graph, hence the name.

▶ Definition 15. Given two sets S, T ⊂ [n] and a number d ∈ R, the n × n cut matrix
D =CUT(S, T, d) is defined by Du,v = d · δu∈Sδv∈T .

▶ Definition 16. A “cut decomposition” expresses a real matrix J as the sum

J =
s∑

k=0
D(k) +W (14)

where each D(k) is a cut matrix defined on sets Rk, Lk ⊂ [n], and of weight dk. Such a
decomposition is said to have width s, coefficient length (

∑
d2
k)1/2, and error ∥W∥∞→1.

The main result of [22] is precisely an algorithm to efficiently find such a decomposition:

▶ Theorem 17 ([22]). Let J be an arbitrary real matrix and fix a constant ϵ > 0. Then
there exists a cut decomposition of width O(ϵ−2), coefficient length O(∥J∥F /n), error at most
ϵn∥J∥F , and such that ∥W∥F ≤ ∥J∥F . Moreover, with probability 1 − δ said decomposition
can be found implicitly in time 2Õ(ϵ−2)/δ2, and explicitly in time Õ(n2/ϵ4) + 2Õ(ϵ−2)/δ2.

▶ Remark 18. The key point of the cut decomposition is that the number of cuts only depends
on the quality of the approximation, not the size of the graph.

Perhaps the main tool we introduce in this work is a generalization of this result to
the quantum setting. We exploit the fact that quantum density matrices and quantum
Hamiltonians can be expressed in a Pauli basis, to reduce the problem of decomposing
Hamiltonians into that of a “multi-colored” cut decomposition. For simplicity, here we
discuss the case of 2-Local Hamiltonians, on qudits of local dimension d = 2d′ which is a
power of 2, and defer further generalizations to the appendix.

Let H =
∑
He be 2-local Hamiltonian defined on n qudits, and define Plog d =

{I, X, Y, Z}⊗ log d be the set of Pauli operators acting on a single qudit. Any operator
hu,v acting on the Hilbert space of 2 qudits can be decomposed into basis of Plog d ⊗ Plog d:

Huv =
∑

i,j∈[d2]

hijuvσ
u
i ⊗ σvj (15)

Where the hijuv are all real coefficients. Group the coefficients of the interactions defined on
the same Pauli matrices i, j into an interaction matrix J ij = {hijuv}u,v, i.e., a matrix for each of
d4 “colors”. We note that this essentially defines O(d4) different weighted adjacency matrices.
Now, let us apply the regularity lemma of [22] on each of the colored interaction/adjacency
matrices J ij above. By construction, for each pair (i, j) one can express

J ij =
s∑

k=1
Dijk +W ij ≡ Dij +W ij (16)

Where Dijk = CUT (Rijk, Lijk, dijk) are the s cut matrices of the interaction i, j ∈ [d2],
defined on partitions {Rijk, Lijk} of the vertex set of the graph, and real constants dijk, for
k ∈ [s]. We can thereby define the cut decomposition HD of the Hamiltonian H to be the
edges of the Dijk crossing any such cut:

T. Bergamaschi 20:17

The Hamiltonian Cut Decomposition: HD = 1
2

∑
i,j∈[d2]
k∈[s]

∑
u∈Rijk

v ̸=u,v∈Lijk

Dijk
uv σ

u
i ⊗σvj ⊗IV \{u,v} (17)

where we appropriately order the tensor product such that u < v and add a factor of 1/2 via
a handshaking argument. More importantly, we filter out the diagonal entries Dijk

uu , since
the cuts S, T returned by the cut decomposition in Theorem 17 need not be disjoint, and
Local Hamiltonians can’t have “self-edges” in a basis decomposition. While unfortunately we
no longer can interpret the interaction graph of HD as an exact sum of complete bipartite
sub-Hamiltonians, fortunately, we will later recover this interpretation in an approximate
sense.

We dedicate the rest of this section to proving two interesting properties of HD. First,
we argue that the energy of any product state ρ = ⊗u∈V ρu is close, whether in H or HD,
arising from the combinatorial structure of the decomposition. Then, we leverage our product
state approximation toolkit, to argue that HD is in fact close to H in the spectral norm
∥H −HD∥∞.

▶ Theorem 19. Let H =
∑
u,vHu,v be a 2-Local Hamiltonian defined on qudits of local

dimension d = 2d′ = O(1), let Juv = ∥Huv∥∞ be the matrix of interaction strengths, and let
HD be the Hamiltonian cut decomposition of H of width s = O(ϵ−2). Then, for all product
states ρ = ⊗u∈V ρu,

|Tr[(H −HD)ρ]| ≤ ϵn∥J∥F (18)

Moreover, with probability 1 − δ said decomposition can be found implicitly in time
2Õ(ϵ−2)/δ2, and explicitly in time Õ(n2/ϵ4) + 2Õ(ϵ−2)/δ2

Proof. By restricting our attention to product states, we are able to essentially decouple the
“colors” (different Pauli terms) in the Cut Decomposition.∣∣Tr[(H − HD)ρ]

∣∣ =
∣∣∣∣ ∑

u<v

∑
i,j

(hij
uv − Dij

uv)Tr[σi
u ⊗ σj

vρ]
∣∣∣∣ = (19)

=
∣∣∣∣1
2

∑
i,j

∑
u̸=v

W ij
uvTr[σi

uρu]Tr[σj
vρv]

∣∣∣∣ ≤
∑
i,j

∣∣∣∣ ∑
u̸=v

W ij
uvTr[σi

uρu]Tr[σj
vρv]

∣∣∣∣ = (20)

=
∑
i,j

∣∣∣∣ ∑
v

(∑
u:u̸=v

W ij
uvTr[σi

uρu]
)

Tr[σj
vρv]

∣∣∣∣ ≤
∑
i,j

∑
v

∣∣∣∣ ∑
u

W ij
uvTr[σi

uρu]
∣∣∣∣ +

∑
i,j

∑
v

|W ij
vv| ≤

(21)

≤
∑

ij

(
∥W ij∥∞→1 + n · max

v
|W ij

vv|
)

, (22)

where we re-introduced the diagonal terms to obtain the ∞ → 1 norm. From Theorem
17 we can pick a width s = O(d8ϵ−2) = O(ϵ−2) s.t. ∥W ij∥∞→1 ≤ ϵn∥J ij∥F /d4. Finally,
the original interation graph has no diagonal elements (J ijvv = 0), and thus the Cauchy-
Schwartz inequality tells us the diagonal entries of Dij are bounded: |W ij

vv| = |J ijvv −Dij
vv| ≤∑

k |dijk| ≤ s1/2 · (
∑

(dijk)2)1/2 ≤ s1/2 · ∥J ij∥F /n. The observation ∥J ij∥F ≤ ∥J∥F and
assuming ϵ−2 = o(n) concludes the proof. ◀

By combining the product state cut decomposition above with our results on product
state approximations in theorem 3 and in section B of the full version, we can extend our
results to entangled states as well.

ICALP 2023

20:18 Improved Product-State Approximation Algorithms for Quantum Local Hamiltonians

▶ Lemma 20 (The Hamiltonian Weak Regularity Lemma). In the context of Theorem 19,
∥H −HD∥ ≤ ϵ · n∥J∥F .

Proof. By Schatten norm duality, there exists a normalized state ψ∗ s.t.

∥H −HD∥∞ = max
ψ

|Tr[(H −HD)ψ]| = |Tr[(H −HD)ψ∗]| (23)

We now apply the product state approximation Theorem 3 on the state ψ∗ and Hamiltonian
H ′ = H −HD, to argue there exists a separable state σ s.t.

|Tr[(H −HD)(ψ∗ − σ)]| ≤ ϵn∥J∥F /2 (24)

where we observe that if J ′ is the matrix of interaction strengths of H ′ = H − HD, then
∥J ′∥1 ≤ n∥J ′∥F (Cauchy-Schwartz) and ∥J ′∥F ≤

∑
i,j∈[d2] ∥W ij∥F ≤ O(d4∥J∥F) by means

of a triangle inequality and the guarantees on W in Theorem 17. Since σ is separable, we
can appropriately pick the width s = O(ϵ−2) in Theorem 19 to guarantee

|Tr[(H −HD)σ]| ≤ ϵn∥J∥F /2 (25)

and thereby via the triangle inequality:

∥H −HD∥∞ ≤ |Tr[(H −HD)(ψ∗ − σ)]| + |Tr[(H −HD)σ]| ≤ ϵn∥J∥F (26)

◀

Using the existing technology of matrix regularity lemmas, in the full version we present
extensions to the result above for Local Hamiltonians defined on hyper-graphs and for graphs
of low threshold rank.

Sublinear Time Eigenvalue Approximation via
Random Sampling
Rajarshi Bhattacharjee # Ñ

Manning College of Information and Computer Sciences,
University of Massachusetts, Amherst, MA, USA

Gregory Dexter # Ñ

Department of Computer Science, Purdue University, West Lafayette, IN, USA

Petros Drineas # Ñ

Department of Computer Science, Purdue University, West Lafayette, IN, USA

Cameron Musco # Ñ

Manning College of Information and Computer Sciences,
University of Massachusetts, Amherst, MA, USA

Archan Ray # Ñ

Manning College of Information and Computer Sciences,
University of Massachusetts, Amherst, MA, USA

Abstract
We study the problem of approximating the eigenspectrum of a symmetric matrix A ∈ Rn×n

with bounded entries (i.e., ∥A∥∞ ≤ 1). We present a simple sublinear time algorithm that
approximates all eigenvalues of A up to additive error ±ϵn using those of a randomly sampled
Õ
(

log3 n
ϵ3

)
× Õ

(
log3 n

ϵ3

)
principal submatrix. Our result can be viewed as a concentration bound

on the complete eigenspectrum of a random submatrix, significantly extending known bounds on
just the singular values (the magnitudes of the eigenvalues). We give improved error bounds of
±ϵ
√

nnz(A) and ±ϵ∥A∥F when the rows of A can be sampled with probabilities proportional to
their sparsities or their squared ℓ2 norms respectively. Here nnz(A) is the number of non-zero entries
in A and ∥A∥F is its Frobenius norm. Even for the strictly easier problems of approximating the
singular values or testing the existence of large negative eigenvalues (Bakshi, Chepurko, and Jayaram,
FOCS ’20), our results are the first that take advantage of non-uniform sampling to give improved
error bounds. From a technical perspective, our results require several new eigenvalue concentration
and perturbation bounds for matrices with bounded entries. Our non-uniform sampling bounds
require a new algorithmic approach, which judiciously zeroes out entries of a randomly sampled
submatrix to reduce variance, before computing the eigenvalues of that submatrix as estimates for
those of A. We complement our theoretical results with numerical simulations, which demonstrate
the effectiveness of our algorithms in practice.

2012 ACM Subject Classification Theory of computation → Sketching and sampling; Mathematics
of computing → Computations on matrices

Keywords and phrases sublinear algorithms, eigenvalue approximation, randomized linear algebra

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.21

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2109.07647 [10]

Funding RB, CM and AR were partially supported by an Adobe Research grant, along with NSF
Grants 2046235 and 1763618. PD and GD were partially supported by NSF AF 1814041, NSF FRG
1760353, and DOE-SC0022085.

Acknowledgements We thank Ainesh Bakshi, Rajesh Jayaram, Anil Damle, Nicholas Monath and
Christopher Musco for helpful conversations about this work.

EA
T
C
S

© Rajarshi Bhattacharjee, Gregory Dexter, Petros Drineas, Cameron Musco, and
Archan Ray;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 21; pp. 21:1–21:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rbhattacharj@cs.umass.edu
https://rbhattacharj.github.io/
mailto:gdexter@purdue.edu
https://www.gregorydexter.com/
mailto:pdrineas@purdue.edu
https://www.cs.purdue.edu/homes/pdrineas/
mailto:cmusco@cs.umass.edu
https://people.cs.umass.edu/~cmusco/
mailto:ray@cs.umass.edu
https://archanray.github.io/
https://doi.org/10.4230/LIPIcs.ICALP.2023.21
https://arxiv.org/abs/2109.07647
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

21:2 Sublinear Time Eigenvalue Approximation via Random Sampling

1 Introduction

Approximating the eigenvalues of a symmetric matrix is a fundamental problem – with
applications in engineering, optimization, data analysis, spectral graph theory, and beyond.
For an n × n matrix, all eigenvalues can be computed to high accuracy using direct eigen-
decomposition in O(nω) time, where ω ≈ 2.37 is the exponent of matrix multiplication [14, 2].
When just a few of the largest magnitude eigenvalues are of interest, the power method and
other iterative Krylov methods can be applied [39]. These methods repeatedly multiply the
matrix of interest by query vectors, requiring O(n2) time per multiplication when the matrix
is dense and unstructured.

For large n, it is desirable to have even faster eigenvalue approximation algorithms,
running in o(n2) time – i.e., sublinear in the size of the input matrix. Unfortunately, for
general matrices, no non-trivial approximation can be computed in o(n2) time: without
reading Ω(n2) entries, it is impossible to distinguish with reasonable probability if all entries
(and hence all eigenvalues) are equal to zero, or if there is a single pair of arbitrarily large
entries at positions (i, j) and (j, i), leading to a pair of arbitrarily large eigenvalues. Given
this, we seek to address the following question:

Under what assumptions on a symmetric n × n input matrix, can we compute non-trivial
approximations to its eigenvalues in o(n2) time?

It is well known that o(n2) time eigenvalue computation is possible for highly structured
inputs, like tridiagonal or Toeplitz matrices [26]. For sparse or structured matrices that
admit fast matrix vector multiplication, one can compute a small number of the largest in
magnitude eigenvalues in o(n2) time using iterative methods. Through the use of robust
iterative methods, fast top eigenvalue estimation is also possible for matrices that admit fast
approximate matrix-vector multiplication, such as kernel similarity matrices [25, 27, 4]. Our
goal is to study simple, sampling-based sublinear time algorithms that work under much
weaker assumptions on the input matrix.

1.1 Our Contributions
Our main contribution is to show that a very simple algorithm can be used to approximate all
eigenvalues of any symmetric matrix with bounded entries. In particular, for any A ∈ Rn×n

with maximum entry magnitude ∥A∥∞ ≤ 1, sampling an s × s principal submatrix AS

of A with s = Õ
(

log3 n
ϵ3

)
and scaling its eigenvalues by n/s yields a ±ϵn additive error

approximation to all eigenvalues of A with good probability.1 This result is formally stated
below, where [n] def= {1, . . . , n}.

▶ Theorem 1 (Sublinear Time Eigenvalue Approximation). Let A ∈ Rn×n be symmetric with
∥A∥∞ ≤ 1 and eigenvalues λ1(A) ≥ . . . ≥ λn(A). Let S ⊆ [n] be formed by including each
index independently with probability s/n as in Algorithm 1. Let AS be the corresponding
principal submatrix of A, with eigenvalues λ1(AS) ≥ . . . ≥ λ|S|(AS).

For all i ∈ [|S|] with λi(AS) ≥ 0, let λ̃i(A) = n
s · λi(AS). For all i ∈ [|S|] with

λi(AS) < 0, let λ̃n−(|S|−i)(A) = n
s · λi(AS). For all other i ∈ [n], let λ̃i(A) = 0. If

s ≥ c log(1/(ϵδ))·log3 n
ϵ3δ , for large enough constant c, then with probability ≥ 1 − δ, for all i ∈ [n],

λi(A) − ϵn ≤ λ̃i(A) ≤ λi(A) + ϵn.

1 Here and throughout, Õ(·) hides logarithmic factors in the argument. Note that by scaling, our algorithm
gives a ±ϵn · ∥A∥∞ approximation for any A.

R. Bhattacharjee, G. Dexter, P. Drineas, C. Musco, and A. Ray 21:3

See Figure 1 for an illustration of how the |S| eigenvalues of AS are mapped to estimates for
all n eigenvalues of A. Note that the principal submatrix AS sampled in Theorem 1 will
have O(s) = Õ

(
log3 n

ϵ3δ

)
rows/columns with high probability. Thus, with high probability, the

algorithm reads just Õ
(

log6 n
ϵ6δ2

)
entries of A and runs in poly(log n, 1/ϵ, 1/δ) time. Standard

matrix concentration bounds imply that one can sample O
(

s log(1/δ)
ϵ2

)
random entries from

the O(s) × O(s) random submatrix AS and preserve its eigenvalues to error ±ϵs with
probability 1 − δ [1]. See Appendix F of [10] for a proof. This can be directly combined with
Theorem 1 to give improved sample complexity:

▶ Corollary 2 (Improved Sample Complexity via Entrywise Sampling). Let A ∈ Rn×n be
symmetric with ∥A∥∞ ≤ 1 and eigenvalues λ1(A) ≥ . . . ≥ λn(A). For any ϵ, δ ∈ (0, 1), there
is an algorithm that reads Õ

(
log3 n

ϵ5δ

)
entries of A and returns, with probability at least 1 − δ,

λ̃i(A) for each i ∈ [n] satisfying |λ̃i(A) − λi(A)| ≤ ϵn.

Observe that the dependence on δ in Theorem 1 and Corollary 2 can be improved via
standard arguments: running the algorithm with failure probability δ′ = 2/3, repeating
O(log(1/δ)) times, and taking the median estimate for each λi(A). This guarantees that the
algorithm will succeed with probability at most 1 − δ at the expense of a log(1/δ) dependence
in the complexity.

We note that our ±ϵn error guarantee is particularly useful in applications where the
matrix A has low stable rank and the top eigenvalues have magnitude scaling roughly with
n. Low stable rank is a common feature of real-life data matrices [47], including classes of
bounded entry matrices, such as kernel similarity matrices [18] and adjacency matrices of
power law graphs [36].

−n 0 n

−s 0 s

λ̃n(A) λ̃1(A)λ̃n−(|S|−p)(A) λ̃p−1(A)

λ|S|(AS) λ1(AS)λp(AS) λp−1(AS)

λ̃t(A) for t ∈ (n − (|S| − p + 1), p)

Figure 1 Alignment of eigenvalues in Thm. 1 and Algo. 1. We illustrate how the eigenvalues
of AS , scaled by n

s
, are used to approximate all eigenvalues of A. If AS has p−1 positive eigenvalues,

they are set to the top p − 1 eigenvalue estimates. Its |S| − p + 1 negative eigenvalues are set to the
bottom eigenvalue estimates. All remaining eigenvalues are simply approximated as zero.

Comparison to known bounds. Theorem 1 can be viewed as a concentration inequality on
the full eigenspectrum of a random principal submatrix AS of A. This significantly extends
prior work, which was able to bound just the spectral norm (i.e., the magnitude of the
top eigenvalue) of a random principal submatrix [38, 44]. Bakshi, Chepurko, and Jayaram
[5] recently identified developing such full eigenspectrum concentration inequalities as an
important step in expanding our knowledge of sublinear time property testing algorithms for
bounded entry matrices.

ICALP 2023

21:4 Sublinear Time Eigenvalue Approximation via Random Sampling

Standard matrix concentration bounds [22] can be used to show that the singular values of
A (i.e., the magnitudes of its eigenvalues) are approximated by those of a O

(
log n

ϵ2

)
×O

(
log n

ϵ2

)
random submatrix (see Appendix G of [10]) with independently sampled rows and columns.
However, such a random matrix will not be symmetric or even have real eigenvalues in
general, and thus no analogous bounds were previously known for the eigenvalues themselves.

Lower Bounds. Recently, Bakshi, Chepurko, and Jayaram [5] studied the closely related
problem of testing positive semidefiniteness in the bounded entry model. They show how to
test whether the minimum eigenvalue of A is either greater than 0 or smaller than −ϵn by
reading just Õ(1

ϵ2) entries. They show that this result is optimal in terms of query complexity,
up to logarithmic factors. Like our approach, their algorithm is based on random principal
submatrix sampling. Our eigenvalue approximation guarantee strictly strengthens the testing
guarantee – given ±ϵn approximations to all eigenvalues, we immediately solve the testing
problem. Thus, our query complexity is tight up to a poly(log n, 1/ϵ) factor. It is open if
our higher sample complexity is necessary to solve the harder full eigenspectrum estimation
problem. See Section 1.4 for further discussion.

Improved bounds for non-uniform sampling. Our second main contribution is to show that,
when it is possible to efficiently sample rows/columns of A with probabilities proportional to
their sparsities or their squared ℓ2 norms, significantly stronger eigenvalue estimates can be
obtained. In particular, letting nnz(A) denote the number of nonzero entries in A and ∥A∥F

denote its Frobenius norm, we show that sparsity-based sampling yields eigenvalue estimates
with error ±ϵ

√
nnz(A) and norm-based sampling gives error ±ϵ∥A∥F . See Theorems 3

and 4 for formal statements. Observe that when ∥A∥∞ ≤ 1, its eigenvalues are bounded
in magnitude by ∥A∥2 ≤ ∥A∥F ≤

√
nnz(A) ≤ n. Thus, Theorems 3 and 4 are natural

strengthenings of Theorem 1. Row norm-based sampling (Theorem 4) additionally removes
the bounded entry requirement of Theorems 1 and 3.

As discussed in Section 1.3.1, sparsity-based sampling can be performed in sublinear time
when A is stored in a slightly augmented sparse matrix format, or when A is the adjacency
matrix of a graph accessed in the standard graph query model of the sublinear algorithms
literature [23]. Norm-based sampling can also be performed efficiently with an augmented
matrix format, and is commonly studied in randomized and “quantum-inspired” algorithms
for linear algebra [19, 43].

▶ Theorem 3 (Sparse Matrix Eigenvalue Approximation). Let A ∈ Rn×n be symmetric with
∥A∥∞ ≤ 1 and eigenvalues λ1(A) ≥ . . . ≥ λn(A). Let S ⊆ [n] be formed by including the ith

index independently with probability pi = min
(

1, s nnz(Ai)
nnz(A)

)
as in Algorithm 2 of [10]. Here

nnz(Ai) is the number of non-zero entries in the ith row of A. Let AS be the corresponding
principal submatrix of A, and let λ̃i(A) be the estimate of λi(A) computed from AS as in
Algorithm 2 of citebhattacharjee2021sublinear. If s ≥ c log8 n

ϵ8δ4 , for large enough constant c,
then with probability ≥ 1 − δ, for all i ∈ [n], |λ̃i(A) − λi(A)| ≤ ϵ

√
nnz(A).

▶ Theorem 4 (Row Norm Based Matrix Eigenvalue Approximation). Let A ∈ Rn×n be
symmetric and eigenvalues λ1(A) ≥ . . . ≥ λn(A). Let S ⊆ [n] be formed by including the
ith index independently with probability pi = min

(
1,

s∥Ai∥2
2

∥A∥2
F

+ 1
n2

)
as in Algorithm 3 of [10].

Here ∥Ai∥2 is the ℓ2 norm of the ith row of A. Let AS be the corresponding principal
submatrix of A, and let λ̃i(A) be the estimate of λi(A) computed from AS as in Algorithm
3 of [10]. If s ≥ c log10 n

ϵ8δ4 , for large enough constant c, then with probability ≥ 1 − δ, for all
i ∈ [n], |λ̃i(A) − λi(A)| ≤ ϵ∥A∥F .

R. Bhattacharjee, G. Dexter, P. Drineas, C. Musco, and A. Ray 21:5

The above non-uniform sampling theorems immediately yield algorithms for testing the
presence of a negative eigenvalue with magnitude at least ϵ

√
nnz(A) or ϵ∥A∥F respectively,

strengthening the results of [5], which require eigenvalue magnitude at least ϵn. In the graph
property testing literature, there is a rich line of work exploring the testing of bounded degree
or sparse graphs [23, 7]. Theorem 3 can be thought of as first step in establishing a related
theory of sublinear time approximation algorithms and property testers for sparse matrices.
Due to lack of space, we defer the proofs of Theorems 3 and 4 to Section 4 and Appendix E
of [10] respectively.

Surprisingly, in the non-uniform sampling case, the eigenvalue estimates derived from
AS cannot simply be its scaled eigenvalues, as in Theorem 1. E.g., when A is the identity,
our row sampling probabilities are uniform in all cases. However, the scaled submatrix
n
s · AS will be a scaled identity, and have eigenvalues equal to n/s – failing to give a
±ϵ
√

nnz(A) = ±ϵ∥A∥F = ±ϵ
√

n approximation to the true eigenvalues (all of which are 1)
unless s ≳

√
n

ϵ . To handle this, and related cases, we must argue that selectively zeroing out
entries in sufficiently low probability rows/columns of A (see Algorithms 2 and 3 of [10])
does not significantly change the spectrum, and ensures concentration of the submatrix
eigenvalues. It is not hard to see that simple random submatrix sampling fails even for the
easier problem of singular value estimation. Theorems 3 and 4 give the first results of their
kinds for this problem as well.

1.2 Related Work
Eigenspectrum estimation is a key primitive in numerical linear algebra, typically known
as spectral density estimation. The eigenspectrum is viewed as a distribution with mass
1/n at each of the n eigenvalues, and the goal is to approximate this distribution [49, 35].
Applications include identifying motifs in social networks [15], studying Hessian and weight
matrix spectra in deep learning [40, 51, 21], “spectrum splitting” in parallel eigensolvers [31],
and the study of many systems in experimental physics and chemistry [48, 41, 28].

Recent work has studied sublinear time spectral density estimation for graph structured
matrices – Braverman, Krishnan, and Musco [11] show that the spectral density of a
normalized graph adjacency or Laplacian matrix can be estimated to ϵ error in the Wasserstein
distance in Õ(n/ poly(ϵ)) time. Cohen-Steiner, Kong, Sohler, and Valiant study a similar
setting, giving runtime 2O(1/ϵ) [13]. We note that the additive error eigenvalue approximation
result of Theorem 1 (analogously Theorems 3 and 4) directly gives an ϵn approximation to
the spectral density in the Wasserstein distance – extending the above results to a much
broader class of matrices. When ∥A∥∞ ≤ 1, A can have eigenvalues as large as n, while the
normalized adjacency matrices studied in [13, 11] have eigenvalues in [−1, 1]. So, while the
results are not directly comparable, our Wasserstein error can be thought as on order of their
error of ϵ after scaling.

Our work is also closely related to a line of work on sublinear time property testing for
bounded entry matrices, initiated by Balcan et al. [6]. In that work, they study testing of
rank, Schatten-p norms, and several other global spectral properties. Sublinear time testing
algorithms for the rank and other properties have also been studied under low-rank and
bounded row norm assumptions on the input matrix [30, 33]. Recent work studies positive
semidefiniteness testing and eigenvalue estimation in the matrix-vector query model, where
each query computes Ax for some x ∈ Rn×n. As in Theorem 4, ±ϵ∥A∥F eigenvalue estimation
can be achieved with poly(log n, 1/ϵ) queries in this model [37]. Finally, several works study
streaming algorithms for eigenspectrum approximation [3, 32, 34]. These algorithms are not
sublinear time – they require at least linear time to process the input matrix. However, they

ICALP 2023

21:6 Sublinear Time Eigenvalue Approximation via Random Sampling

use sublinear working memory. Note that Theorem 1 immediately gives a sublinear space
streaming algorithm for eigenvalue estimation. We can simply store the sampled submatrix
AS as its entries are updated.

1.3 Technical Overview
In this section, we overview the main techniques used to prove Theorems 1, and then
how these techniques are extended to prove Theorems 3 and 4. We start by defining a
decomposition of any symmetric A into the sum of two matrices containing its large and
small magnitude eigendirections.

▶ Definition 5 (Eigenvalue Split). Let A ∈ Rn×n be symmetric. For any ϵ, δ ∈ (0, 1), let
Ao = VoΛoVT

o where Λo is diagonal, with the eigenvalues of A with magnitude ≥ ϵ
√

δn

on its diagonal, and Vo has the corresponding eigenvectors as columns. Similarly, let
Am = VmΛmVT

m where Λm has the eigenvalues of A with magnitude < ϵ
√

δn on its
diagonal and Vm has the corresponding eigenvectors as columns. Then, A can be decomposed
as

A = Ao + Am = VoΛoVT
o + VmΛmVT

m.

Any principal submatrix of A, AS, can be similarly written as

AS = Ao,S + Am,S = Vo,SΛoVT
o,S + Vm,SΛmVT

m,S ,

where Vo,S , Vm,S are the corresponding submatrices obtained by sampling rows of Vo, Vm.

Since AS , Am,S and Ao,S are all symmetric, we can use Weyl’s eigenvalue perturbation
theorem [50] to show that for all eigenvalues of AS ,

|λi(AS) − λi(Ao,S)| ≤ ∥Am,S∥2. (1)

We will argue that the eigenvalues of Ao,S approximate those of Ao – i.e. all eigenvalues
of A with magnitude ≥ ϵ

√
δn. Further, we will show that ∥Am,S∥2 is small with good

probability. Thus, via (1), the eigenvalues of AS approximate those of Ao. In the estimation
procedure of Theorem 1, all other small magnitude eigenvalues of A are estimated to be 0,
which will immediately give our ±ϵn approximation bound when the original eigenvalue has
magnitude ≤ ϵn.

Bounding the eigenvalues of Ao,S. The first step is to show that the eigenvalues of Ao,S

well-approximate those of Ao. As in [5], we critically use that the eigenvectors corresponding
to large eigenvalues are incoherent – intuitively, since ∥A∥∞ is bounded, their mass must
be spread out in order to witness a large eigenvalue. Specifically, [5] shows that for any
eigenvector v of A with corresponding eigenvalue ≥ ϵ

√
δn, ∥v∥∞ ≤ 1

ϵ
√

δ·
√

n
. We give related

bounds on the Euclidean norms of the rows of Vo (the leverage scores of Ao), and on these
rows after weighting by Λo.

Using these incoherence bounds, we argue that the eigenvalues of Ao,S approximate those
of Ao up to ±ϵn error. A key idea is to bound the eigenvalues of Λ1/2

o VT
o,SVo,SΛ1/2

o , which
are identical to the non-zero eigenvalues of Ao,S = Vo,SΛoVT

o,S . Via a matrix Bernstein
bound and our incoherence bounds on Vo, we show that this matrix is close to Λo with high
probability. However, since Λ1/2

o may be complex, the matrix is not necessarily Hermitian
and standard perturbation bounds [42, 29] do not apply. Thus, to derive an eigenvalue

R. Bhattacharjee, G. Dexter, P. Drineas, C. Musco, and A. Ray 21:7

bound, we apply a perturbation bound of Bhatia [9], which generalizes Weyl’s inequality to
the non-Hermitian case, with a log n factor loss. To the best of our knowledge, this is the
first time that perturbation theory bounds for non-Hermitian matrices have been used to
prove improved algorithmic results in the theoretical computer science literature.

We note that in Appendix B of [10], we give an alternate bound, which instead analyzes
the Hermitian matrix (VT

o,SVo,S)1/2Λo(VT
o,SVo,S)1/2, whose eigenvalues are again identical

to those of Ao,S . This approach only requires Weyl’s inequality, and yields an overall bound
of s = O

(
log n
ϵ4δ

)
, improving the log n factors of Theorem 1 at the cost of worse ϵ dependence.

Bounding the spectral norm of Am,S. The next step is to show that all eigenvalues of
Am,S are small provided a sufficiently large submatrix is sampled. This means that the
“middle” eigenvalues of A, i.e. those with magnitude ≤ ϵ

√
δn do not contribute much to any

eigenvalue λi(AS). To do so, we apply a theorem of [38, 44] which shows concentration of the
spectral norm of a uniformly random submatrix of an entrywise bounded matrix. Observe
that while ∥A∥∞ ≤ 1, such a bound will not in general hold for ∥Am∥∞. Nevertheless, we
can use the incoherence of Vo to show that ∥Ao∥∞ is bounded, which via triangle inequality,
yields a bound on ∥Am∥∞ ≤ ∥A∥∞ + ∥Ao∥∞. In the end, we show that if s ≥ O(log n

ϵ2δ), with
probability at least 1 − δ, ∥Am,S∥2 ≤ ϵs. After the n/s scaling in the estimation procedure
of Theorem 1, this spectral norm bound translates into an additive ϵn error in approximating
the eigenvalues of A.

Completing the argument. Once we establish the above bounds on Ao,S and Am,S ,
Theorem 1 is essentially complete. Any eigenvalue in A with magnitude ≥ ϵn will correspond
to a nearby eigenvalue in n

s · Ao,S and in turn, n
s · AS given our spectral norm bound on

Am,S . An eigenvalue in A with magnitude ≤ ϵn may or may not correspond to a nearby
by eigenvalue in Ao,S (it will only if it lies in the range [ϵ

√
δn, ϵn]). In any case, in the

estimation procedure of Theorem 1, such an eigenvalue will either be estimated using a small
eigenvalue of AS , or be estimated as 0. In both instances, the estimate will give ±ϵn error.

Can we beat additive error? It is natural to ask if our approach can be improved to yield
sublinear time algorithms with stronger relative error approximation guarantees for A’s
eigenvalues. Unfortunately, this is not possible – consider a matrix with just a single pair
of entries Ai,j , Aj,i set to 1. To obtain relative error approximations to the two non-zero
eigenvalues, we must find the pair (i, j), as otherwise we cannot distinguish A from the all
zeros matrix. This requires reading a Ω(n2) of A’s entries. More generally, consider A with
a random n/t × n/t principal submatrix populated by all 1s, and with all other entries equal
to 0. A has largest eigenvalue n/t. However, if we read s ≪ t2 entries of A, with good
probability, we will not see even a single one, and thus we will not be able to distinguish A
from the all zeros matrix. This example establishes that any sublinear time algorithm with
query complexity s must incur additive error at least Ω(n/

√
s).

1.3.1 Improved Bounds via Non-Uniform Sampling

We now discuss how to give improved approximation bounds via non-uniform sampling. We
focus on the ±ϵ

√
nnz(A) bound of Theorem 3 using sparsity-based sampling. Theorem 4’s

proof (for row norm sampling) follows the same general ideas, but with some additional
complications.

ICALP 2023

21:8 Sublinear Time Eigenvalue Approximation via Random Sampling

Theorem 3 requires sampling a submatrix AS , where each index i is included in S with
probability pi = min(1, s nnz(Ai)

nnz(A)). We reweight each sampled row by 1√
pi

. Thus, if entry Aij

is sampled, it is scaled by 1√
pi·pj

. When the rows have uniform sparsity (so all pi = s/n),
this ensures that the full submatrix is scaled by n/s, as in Theorem 1.

The proof of Theorem 3 follows the same outline as that of Theorem 1: we first argue that
the outlying eigenvectors in Vo are incoherent, giving a bound on the norm of each row of Vo

in terms of nnz(Ai). We then apply a matrix Bernstein bound and Bhatia’s non-Hermitian
eigenvalue perturbation bound to show that the eigenvalues of Ao,S approximate those of
Ao up to ±ϵ

√
nnz(A).

Bounding the spectral norm of Am,S. The major challenge is showing that the subsampled
middle eigendirections do not significantly increase the approximation error by bounding the
∥Am,S∥2 by ϵ

√
nnz(A). This is difficult since the indices in Am,S are sampled nonuniformly,

so existing bounds [44] on the spectral norm of uniformly random submatrices do not apply.
We extend these bounds to the non-uniform sampling case, but still face an issue due to
the rescaling of entries by 1√

pipj
. In fact, without additional algorithmic modifications,

∥Am,S∥2 is simply not bounded by ϵ
√

nnz(A)! For example, as already discussed, if A = I
is the identity matrix, we get Am,S = n

s · I and so ∥Am,S∥2 = n
s > ϵ

√
nnz(A), assuming

s <
√

n
ϵ . Relatedly, suppose that A is tridiagonal, with zeros on the diagonal and ones on

the first diagonals above and below the main diagonal. Then, if s ≥
√

n, with constant
probability, one of the ones will be sampled and scaled by n

s . Thus, we will again have
∥Am,S∥2 ≥ n

s ≥ ϵ
√

nnz(A), assuming s <
√

n
2ϵ . Observe that this issue arrises even when

trying to approximate just the singular values (the eigenvalue magnitudes). Thus, while
an analogous bound to the uniform sampling result of Theorem 1 can easily be given for
singular value estimation via matrix concentration inequalities (see Appendix G of [10]), to
the best of our knowledge, Theorems 3 and 4 are the first of their kind even for singular
value estimation.

Zeroing out entries in sparse rows/columns. To handle the above cases, we prove a novel
perturbation bound, arguing that the eigenvalues of A are not perturbed by more than
ϵ
√

nnz(A) if we zero out any entry Aij of A where
√

nnz(Ai) · nnz(Aj) ≤ ϵ
√

nnz(A)
c log n . This

can be thought of as a strengthening of Girshgorin’s circle theorem, which would ensure
that zeroing out entries in rows/columns with nnz(Ai) ≤ ϵ

√
nnz(A) does not perturb the

eigenvalues by more than ϵ
√

nnz(A). Armed with this perturbation bound, we argue that
if we zero out the appropriate entries of AS before computing its eigenvalues, then since
we have removed entries in very sparse rows and columns which would be scaled by a large

1√
pipj

factor in AS , we can bound ∥Am,S∥2. This requires relating the magnitudes of the
entries in Am,S to those in AS using the incoherence of the top eigenvectors, which gives
bounds on the entries of Ao,S = AS − Am,S .

Sampling model. We note that the sparsity-based sampling of Theorem 3 can be efficiently
implemented in several natural settings. Given a matrix stored in sparse format, i.e., as
a list of nonzero entries, we can easily sample a row with probability nnz(Ai)

nnz(A) by sampling
a uniformly random non-zero entry and looking at its corresponding row. Via standard
techniques, we can convert several such samples into a sampled set S close in distribution to
having each i ∈ [n] included independently with probability min

(
1, s nnz(Ai)

nnz(A)

)
. If we store

the values of nnz(A), nnz(A1), . . . , nnz(An), we can also efficiently access each pi, which is

R. Bhattacharjee, G. Dexter, P. Drineas, C. Musco, and A. Ray 21:9

needed for rescaling and zeroing out entries. Also observe that if A is the adjacency matrix
of a graph, in the standard graph query model [23], it is well known how to approximately
count edges and sample them uniformly at random, i.e., compute nnz(A) and sample its
nonzero entries, in sublinear time [24, 17]. Further, it is typically assumed that one has
access to the node degrees, i.e., nnz(A1), . . . , nnz(An). Thus, our algorithm can naturally
be used to estimate spectral graph properties in sublinear time.

The ℓ2 norm-based sampling of Theorem 4 can also be performed efficiently using an
augmented data structure for storing A. Such data structures have been used extensively in
the literature on quantum-inspired algorithms, and require just O(nnz(A)) time to construct,
O(nnz(A)) space, and O(log n) time to update give an update to an entry of A [43, 12].

1.4 Towards Optimal Query Complexity
As discussed, Bakshi et al. [5] show that any algorithm which can test with good probability
whether A has an eigenvalue ≤ −ϵn or else has all non-negative eigenvalues must read Ω̃

(1
ϵ2

)
entries of A. This testing problem is strictly easier than outputting ±ϵn error estimates of all
eigenvalues, so gives a lower bound for our setting. If the queried entries are restricted to fall in
a submatrix, [5] shows that this submatrix must have dimensions Ω

(1
ϵ2

)
×Ω

(1
ϵ2

)
, giving total

query complexity Ω
(1

ϵ4

)
. Closing the gap between our upper bound of Õ

(
log3 n

ϵ3

)
×Õ

(
log3 n

ϵ3

)
and the lower bound of Ω

(1
ϵ2

)
× Ω

(1
ϵ2

)
for submatrix queries is an intriguing open question.

Closing the gap. We show in Appendix A of [10] that this gap can be easily closed via a
surprisingly simple argument if A is positive semidefinite (PSD). In that case, A = BBT

with B ∈ Rn×n. Writing AS = ST AS for a sampling matrix S ∈ Rn×|S|, the non-zero
eigenvalues of AS are identical to those of BSST BT . Via a standard approximate matrix
multiplication analysis [16], one can then show that, for s ≥ 1

ϵ2δ , with probability at least
1 − δ, ∥BBT − BSST B∥F ≤ ϵn. Via Weyl’s inequality, this shows that the eigenvalues of
BSST B, and hence AS , approximate those of A up to ±ϵn error.2

Unfortunately, this approach breaks down when A has negative eigenvalues, and so
cannot be factored as BBT for real B ∈ Rn×n. This is more than a technical issue: observe
that when A is PSD and has ∥A∥∞ ≤ 1, it can have at most 1/ϵ eigenvalues larger than
ϵn – since its trace, which is equal to the sum of its eigenvalues, is bounded by n, and since
all eigenvalues are non-negative. When A is not PSD, it can have Ω(1/ϵ2) eigenvalues with
magnitude larger than ϵn. In particular, if A is the tensor product of a 1/ϵ2 × 1/ϵ2 random
±1 matrix and the ϵ2n × ϵ2n all ones matrix, the bulk of its eigenvalues (of which there are
1/ϵ2) will concentrate around 1/ϵ · ϵ2n = ϵn. As a result it remains unclear whether we can
match the 1/ϵ2 dependence of the PSD case, or if a stronger lower bound can be shown for
indefinite matrices.

Outside the ϵ dependence, it is unknown if full eigenspectrum approximation can be
performed with sample complexity independent of the matrix size n. [5] achieve this for the
easier positive semidefiniteness testing problem, giving sample complexity Õ(1/ϵ2). However
our bounds have additional log n factors. As discussed, in Appendix B of [10] we give
an alternate analysis for Theorem 1, which shows that sampling a O

(
log n
ϵ4δ

)
× O

(
log n
ϵ4δ

)
submatrix suffices for ±ϵn eigenvalue approximation, saving a log2 n factor at the cost of

2 In fact, via more refined eigenvalue perturbation bounds [9] one can show an ℓ2 norm bound on the
eigenvalue approximation errors, which can be much stronger than the ℓ∞ norm bound of Theorem 1.

ICALP 2023

21:10 Sublinear Time Eigenvalue Approximation via Random Sampling

worse ϵ dependence. However, removing the final log n seems difficult – it arises when
bounding ∥Am,S∥2 via bounds on the spectral norms of random principal submatrices [38].
Removing it seems as though it would require either improving such bounds, or taking a
different algorithmic approach, as simple modifications such as using bounds depending on
the intrinsic dimension do not seem to help.

Also note that our log n and ϵ dependencies for non-uniform sampling (Theorems 3 and 4)
are likely not tight. It is not hard to check that the lower bounds of [5] still hold in these
settings. For example, in the sparsity-based sampling setting, by simply having the matrix
entirely supported on a

√
nnz(A) ×

√
nnz(A) submatrix, the lower bounds of [5] directly

carry over. Giving tight query complexity bounds here would also be interesting. Finally, it
would be interesting to go beyond principal submatrix based algorithms, to achieve improved
query complexity, as in Corollary 2. Finding an algorithm matching the Õ

(1
ϵ2

)
overall query

complexity lower bound of [5] is open even in the much simpler PSD setting.

2 Notation and Preliminaries

We now define notation and foundational results that we use throughout our work. For
any integer n, let [n] denote the set {1, 2, . . . , n}. We write matrices and vectors in bold
literals – e.g., A or x. For a vector x, we let ∥x∥2 denote its Euclidean norm. We denote
the eigenvalues of a symmetric matrix A ∈ Rn×n by λ1(A) ≥ . . . ≥ λn(A), in decreasing
order. A symmetric matrix is positive semidefinite if all its eigenvalues are non-negative.
For two matrices A, B, we let A ⪰ B denote that A − B is positive semidefinite. For any
matrix A ∈ Rn×n and i ∈ [n], we let Ai denote the ith row of A. We let nnz(A) denote the
total number of non-zero elements in A, ∥A∥∞ denote the largest magnitude of an entry,
and ∥A∥2 = maxx

∥Ax∥2
∥x∥2

denote the spectral norm. We let ∥A∥F = (
∑

i,j A2
ij)1/2 denote

the Frobenius norm, and ∥A∥1→2 denote the maximum Euclidean norm of a column. For
A ∈ Rn×n and S ⊆ [n] we let AS denote the principal submatrix corresponding to S. We
let E2 denote the L2 norm of a random variable, E2[X] = (E[X2])1/2, where E[·] denotes
expectation.

We use the following basic facts and identities on eigenvalues throughout our proofs.

▶ Fact 1 (Eigenvalue of Matrix Product). For any two matrices A ∈ Cn×m, B ∈ Cm×n, the
non-zero eigenvalues of AB are identical to those of BA.

▶ Fact 2 (Gershgorin’s circle theorem [20]). Let A ∈ Cn×n with entries Aij. For i ∈ [n], let
Ri be the sum of absolute values of non-diagonal entries in the ith row. Let D(Aii, Ri) be
the closed disc centered at Aii with radius Ri. Then every eigenvalue of A lies within one of
the discs D(Aii, Ri).

▶ Fact 3 (Weyl’s Inequality [50]). For any two Hermitian matrices A, B ∈ Cn×n with
A − B = E, maxi |λi(A) − λi(B)| ≤ ∥E∥2.

Weyl’s inequality ensures that a small Hermitian perturbation of a Hermitian matrix will
not significantly change its eigenvalues. The bound can be extended to the case when the
perturbation is not Hermitian, with a loss of an O(log n) factor; to the best of our knowledge
this loss is necessary:

▶ Fact 4 (Non-Hermitian perturbation bound [9]). Let A ∈ Cn×n be Hermitian and B ∈
Cn×n be any matrix whose eigenvalues are λ1(B), . . . , λn(B) such that Re(λ1(B)) ≥ . . . ≥
Re(λn(B)) (where Re(λi(B)) denotes the real part of λi(B)). Let A − B = E. For some
universal constant C, maxi |λi(A) − λi(B)| ≤ C log n∥E∥2

R. Bhattacharjee, G. Dexter, P. Drineas, C. Musco, and A. Ray 21:11

Beyond the above facts, we use several theorems to obtain eigenvalue concentration
bounds. We first state a theorem from [44], which bounds the spectral norm of a principal
submatrix sampled uniformly at random from a bounded entry matrix. We build on this to
prove the full eigenspectrum concentration result of Theorem 1.

▶ Theorem 6 (Random principal submatrix spectral norm bound [38, 44]). Let A ∈ Cn×n be
Hermitian, decomposed into diagonal and off-diagonal parts: A = D + H. Let S ∈ Rn×n be a
diagonal sampling matrix with the jth diagonal entry set to 1 independently with probability
s/n and 0 otherwise. Then, for some universal constant C,

E2∥SAS∥2 ≤ C

[
log n · E2∥SHS∥∞ +

√
s log n

n
· E2∥HS∥1→2 + s

n
· ∥H∥2

]
+ E2∥SDS∥2.

For Theorems 3 and 4, we need an extension of Theorem 6 to the setting where rows
are sampled non-uniformly. We will use two bounds here. The first is a decoupling and
recoupling result for matrix norms. One can prove this lemma following an analogous result
in [44] for sampling rows/columns uniformly. The proof is almost identical so we omit it.

▶ Lemma 7 (Decoupling and recoupling). Let H be a Hermitian matrix with zero diagonal.
Let δj be a sequence of independent random variables such that δj = 1√

pj
with probability pj

and 0 otherwise. Let S be a square diagonal sampling matrix with jth diagonal entry set to
δj. Then:

E2∥SHS∥2 ≤ 2E2∥SHŜ∥2 and E2∥SHŜ∥∞ ≤ 4E2∥SHS∥∞,

where Ŝ is an independent diagonal sampling matrix drawn from the same distribution as S.

The second theorem bounds the spectral norm of a non-uniform random column sample of a
matrix. We give a proof for uniform sampling in Appendix D of [10], following the results
of [45].

▶ Theorem 8 (Non-uniform column sampling – spectral norm bound). Let A be an m × n

matrix with rank r. Let δj be a sequence of independent random variables such that δj = 1√
pj

with probability pj and 0 otherwise. Let S be a square diagonal sampling matrix with jth

diagonal entry set to δj.

E2∥AS∥2 ≤ 5
√

log r · E2∥AS∥1→2 + ∥A∥2

We use a standard Matrix Bernstein inequality to bound the spectral norm of random
submatrices.

▶ Theorem 9 (Matrix Bernstein [46]). Consider a finite sequence {Sk} of random matrices in
Rd×d. Assume that for all k, E[Sk] = 0 and ∥Sk∥2 ≤ L. Let Z =

∑
k Sk and let V1, V2

be semidefinite upper-bounds for the matrix valued variances Var1(Z) and Var2(Z):

V1 ⪰ Var1(Z) def= E
(

ZZT
)

=
∑

k

E
(
SkST

k

)
, and

V2 ⪰ Var2(Z) def= E
(
ZT Z

)
=
∑

k

E
(
ST

k Sk

)
.

Then, letting v = max(∥V1∥2, ∥V2∥2), for any t ≥ 0,

P(∥Z∥2 ≥ t) ≤ 2d · exp
(

−t2/2
v + Lt/3

)
.

ICALP 2023

21:12 Sublinear Time Eigenvalue Approximation via Random Sampling

For real valued random variables, we use the standard Bernstein inequality.

▶ Theorem 10 (Bernstein inequality [8]). Let {zj} for j ∈ [n] be independent random variables
with zero mean such that |zj | ≤ M for all j. Then for all positive t,

P

∣∣∣∣∣∣
n∑

j=1
zj

∣∣∣∣∣∣ ≥ t

 ≤ exp
(

−t2/2∑n
i=1 E[z2

i] + Mt/3

)
.

3 Sublinear Time Eigenvalue Estimation using Uniform Sampling

We now prove our main eigenvalue estimation result – Theorem 1. We give the pseudocode
for our principal submatrix based estimation procedure in Algorithm 1. We will show that
any positive or negative eigenvalue of A with magnitude ≥ ϵn will appear as an approximate
eigenvalue in AS with good probability. Thus, in step 5 of Algorithm 1, the positive and
negative eigenvvalues of AS are used to estimate the outlying largest and smallest eigenvalues
of A. All other interior eigenvalues of A are estimated to be 0, which will immediately give
our ±ϵn approximation bound when the original eigenvalue has magnitude ≤ ϵn.

Algorithm 1 Eigenvalue estimator using uniform sampling.

1: Input: Symmetric A ∈ Rn×n with ∥A∥∞ ≤ 1, Accuracy ϵ ∈ (0, 1), failure prob.
δ ∈ (0, 1).

2: Fix s = c log(1/(ϵδ))·log3 n
ϵ3δ where c is a sufficiently large constant.

3: Add each index i ∈ [n] to the sample set S independently with probability s
n . Let the

principal submatrix of A corresponding S be AS .
4: Compute the eigenvalues of AS : λ1(AS) ≥ . . . ≥ λ|S|(AS).
5: For all i ∈ [|S|] with λi(AS) ≥ 0, let λ̃i(A) = n

s ·λi(AS). For all i ∈ [|S|] with λi(AS) < 0,
let λ̃n−(|S|−i)(A) = n

s · λi(AS). For all remaining i ∈ [n], let λ̃i(A) = 0.
6: Return: Eigenvalue estimates λ̃1(A) ≥ . . . ≥ λ̃n(A).

Running time. Observe that the expected number of indices chosen by Algorithm 1 is
s = c log(1/(ϵδ))·log3 n

ϵ3δ . A standard concentration bound can be used to show that with high
probability (1 − 1/ poly(n)), the number of sampled entries is O(s). Thus, the algorithm
reads a total of O(s2) entries of A and runs in O(sω) time – the time to compute a full
eigendecomposition of AS .

3.1 Outer and Middle Eigenvalue Bounds
Recall that we will split A into two symmetric matrices (Definition 5): Ao = VoΛoVT

o which
contains its large magnitude (outlying) eigendirections with eigenvalue magnitudes ≥ ϵ

√
δn

and Am = VmΛmVT
m which contains its small magnitude (middle) eigendirections.

We first show that the eigenvectors in Vo are incoherent. I.e., that their (eigenvalue
weighted) squared row norms are bounded. This ensures that the outlying eigenspace of A is
well-approximated via uniform sampling.

▶ Lemma 11 (Incoherence of outlying eigenvectors). Let A ∈ Rn×n be symmetric with
∥A∥∞ ≤ 1. Let Vo be as in Definition 5. Let Vo,i denote the ith row of Vo. Then,

∥Λ1/2
o Vo,i∥2

2 ≤ 1
ϵ
√

δ
and ∥Vo,i∥2

2 ≤ 1
ϵ2δn

.

R. Bhattacharjee, G. Dexter, P. Drineas, C. Musco, and A. Ray 21:13

Proof. Observe that AVo = VoΛo. Let [AVo]i denote the ith row of the AVo. Then we
have

∥[AVo]i∥2
2 = ∥[VoΛo]i∥2

2 =
r∑

j=1
λ2

j · V2
o,i,j , (2)

where r = rank(Ao), Vo,i,j is the (i, j)th element of Vo and λj = Λo(j, j). ∥A∥∞ ≤ 1 by
assumption and since Vo has orthonormal columns, its spectral norm is bounded by 1, thus
we have ∥[AVo]i∥2

2 = ∥[A]iVo∥2
2 ≤ ∥[A]i∥2

2 · ∥Vo∥2
2 ≤ n. Therefore, by (2), we have:

r∑
j=1

λ2
j · V2

o,i,j ≤ n. (3)

Since by definition of Λo, |λj | ≥ ϵ
√

δn for all j, we finally have ∥Λ1/2
o Vo,i∥2

2 =
∑r

j=1 λj ·
V2

o,i,j ≤ n
ϵ
√

δn
= 1

ϵ
√

δ
and ∥Vo,i∥2

2 =
∑r

j=1 V2
o,i,j ≤ n

ϵ2δn2 = 1
ϵ2δn . ◀

Let S̄ ∈ Rn×|S| be the scaled sampling matrix satisfying S̄T AS̄ = n
s · AS . We next apply

Lemma 11 in conjunction with a matrix Bernstein bound to show that Λ1/2
o VT

o S̄S̄T VoΛ1/2
o

concentrates around its expectation, Λo. Since by Fact 1, this matrix has identical eigenvalues
to n

s ·Ao,S = S̄T VoΛoVT
o S̄, this allows us to argue that the eigenvalues of n

s ·Ao,S approximate
those of Λo.

▶ Lemma 12 (Concentration of outlying eigenvalues). Let S ⊆ [n] be sampled as in Algorithm
1 for s ≥ c log(1/(ϵδ))

ϵ3
√

δ
where c is a sufficiently large constant. Let S̄ ∈ Rn×|S| be the scaled

sampling matrix satisfying S̄T AS̄ = n
s · AS. Letting Λo, Vo be as in Definition 5, with

probability at least 1 − δ,

∥Λ1/2
o VT

o S̄S̄T VoΛ1/2
o − Λo∥2 ≤ ϵn.

Proof. Define E = Λ1/2
o VT

o S̄S̄T VoΛ1/2
o − Λo. For all i ∈ [n], let Vo,i be the ith row of Vo

and define the matrix valued random variable

Yi =
{

n
s Λ1/2

o Vo,iVT
o,iΛ

1/2
o , with probability s/n

0 otherwise.
(4)

Define Qi = Yi − E [Yi]. Observe that Q1, . . . , Qn are independent random variables
and that

∑n
i=1 Qi = Λ1/2

o VT
o S̄S̄T VoΛ1/2

o − Λo = E. Further, observe that ∥Qi∥2 ≤
max

(
1, n

s − 1
)

· ∥Λ1/2
o Vo,iVT

o,iΛ
1/2
o ∥2 ≤ max

(
1, n

s − 1
)

· ∥Λ1/2
o Vo,i∥2

2. Now, ∥Λ1/2
o Vo,i∥2

2 ≤
1

ϵ
√

δ
by Lemma 11. Thus, ∥Qi∥2 ≤ n

ϵ
√

δs
. The variance Var(E) def= E(EET) = E(ET E) =∑n

i=1 E[Q2
i] can be bounded as:

n∑
i=1

E[Q2
i] =

n∑
i=1

[
s

n
·
(n

s
− 1
)2

+
(

1 − s

n

)]
· (Λ1/2

o Vo,iVT
o,iΛoVo,iVT

o,iΛ1/2
o)

⪯
n∑

i=1

n

s
· ∥Λ1/2

o Vo,i∥2
2 · (Λ1/2

o Vo,iVT
o,iΛ1/2

o). (5)

Again by Lemma 11, ∥Λ1/2
o Vo,i∥2

2 ≤ 1
ϵ
√

δ
. Plugging back into (5) we can bound,

n∑
i=1

E[Q2
i] ⪯

n∑
i=1

n

s
· 1

ϵ
√

δ
· (Λ1/2

o Vo,iVT
o,iΛ1/2

o) = n

sϵ
√

δ
Λo ⪯ n2

sϵ
√

δ
· I.

ICALP 2023

21:14 Sublinear Time Eigenvalue Approximation via Random Sampling

Since Q2
i is PSD, this establishes that ∥Var(E)∥2 ≤ n2

sϵ
√

δ
. We then apply Theorem 9 (the

matrix Bernstein inequality) with L = n
sϵ

√
δ
, v = n2

sϵ
√

δ
, and d ≤ 1

ϵ2δ since there are at most
∥A∥2

F

δϵ2n2 ≤ 1
ϵ2δ outlying eigenvalues with magnitude ≥

√
δϵn in Λo. This gives:

P (∥E∥2 ≥ ϵn) ≤ 2
ϵ2δ

· exp
(

−ϵ2n2/2
v + Lϵn/3

)
≤ 2

ϵ2δ
· exp

(
−ϵ2n2/2

n2

sϵ
√

δ
+ ϵn2

3sϵ
√

δ

)

≤ 2
ϵ2δ

· exp
(

−sϵ3
√

δ

4

)
.

Thus, if we set s ≥ c log(1/(ϵδ))
ϵ3

√
δ

for large enough c, then the probability is bounded above by
δ, completing the proof. ◀

We cannot prove an analogous leverage score bound to Lemma 11 for the interior
eigenvectors of A appearing in Vm. Thus we cannot apply a matrix Bernstein bound as in
Lemma 12. However, we can use Theorem 6 to show that the spectral norm of the random
principal submatrix Am,S is not too large, and thus that the eigenvalues of AS = Ao,S +Am,S

are close to those of Ao,S .

▶ Lemma 13 (Spectral norm bound – sampled middle eigenvalues). Let A ∈ Rn×n be symmetric
with ∥A∥∞ ≤ 1. Let Am be as in Definition 5. Let S be sampled as in Algorithm 1.
If s ≥ c log n

ϵ2δ for some sufficiently large constant c, then with probability at least 1 − δ,
∥Am,S∥2 ≤ ϵs.

Proof. Let Am = Dm +Hm where Dm is the matrix of diagonal elements and Hm the matrix
of off-diagonal elements. Let S ∈ Rn×|S| be the binary sampling matrix with Am,S = ST AmS.
From Theorem 6, we have for some constant C,

E2[∥Am,S∥2] ≤ C

[
log n·E2[∥ST HmS∥∞]+

√
s log n

n
E2[∥HmS∥1→2]+ s

n
∥Hm∥2

]
+E2[∥ST DmS∥].

(6)

Considering the various terms in (6), we have ∥ST HmS∥∞ ≤ ∥Am∥∞ and ∥ST DmS∥2 =
∥ST DmS∥∞ ≤ ∥Am∥∞. We also have

∥Hm∥2 ≤ ∥Am∥2 + ∥Dm∥2 ≤ ∥Am∥2 + ∥Am∥∞ ≤ ϵδ1/2n + ∥Am∥∞

and

∥HmS∥1→2 ≤ ∥AmS∥1→2 ≤ ∥Am∥1→2 ≤
√

n.

The final bound follows since Am = VmVT
mA, where VmVT

m is an orthogonal projection
matrix. Thus, ∥Am∥1→2 ≤ ∥A∥1→2 ≤

√
n by our assumption that ∥A∥∞ ≤ 1. Plugging all

these bounds into (6) we have, for some constant C,

E2[∥Am,S∥2] ≤ C

[
log n · ∥Am∥∞ +

√
log n · s + s · ϵδ1/2

]
. (7)

It remains to bound ∥Am∥∞. We have A = Am + Ao and thus by triangle inequality,

∥Am∥∞ ≤ ∥A∥∞ + ∥Ao∥∞ = 1 + ∥Ao∥∞. (8)

R. Bhattacharjee, G. Dexter, P. Drineas, C. Musco, and A. Ray 21:15

Writing Ao = VoΛoVT
o (see Definition 5), and letting Vo,i denote the ith row of Vo, the

(i, j)th element of Ao has magnitude

|Ao,i,j | = |Vo,iΛoVT
o,j | ≤ ∥Vo,i∥2 · ∥ΛoVT

o,j∥2,

by Cauchy-Schwarz. From Lemma 11, we have ∥Vo,i∥2 ≤ 1
ϵδ1/2√

n
. Also, from (2),

∥ΛoVT
o,j∥2 = ∥[AVo]j∥2 ≤

√
n. Overall, for all i, j we have Ao,i,j ≤ 1

ϵδ1/2√
n

·
√

n = 1
ϵδ1/2 ,

giving ∥Ao∥∞ ≤ 1
ϵδ1/2 . Plugging back into (8) and in turn (7), we have for some constant C,

E2[∥Am,S∥2] ≤ C

[
log n

ϵδ1/2 +
√

s log n + sϵδ1/2
]
.

Setting s ≥ c log n
ϵ2δ for sufficiently large c, all terms in the right hand side of the above equation

are bounded by ϵ
√

δs and so

E2[∥Am,S∥2] ≤ 3ϵ
√

δs

Thus, by Markov’s inequality, with probability at least 1 − δ, we have ∥Am,S∥2 ≤ 3ϵs. We
can adjust ϵ by a constant to obtain the required bound. ◀

3.2 Main Accuracy Bounds
We now restate our main result, and give its proof via Lemmas 12 and 13.

▶ Theorem 1 (Sublinear Time Eigenvalue Approximation). Let A ∈ Rn×n be symmetric with
∥A∥∞ ≤ 1 and eigenvalues λ1(A) ≥ . . . ≥ λn(A). Let S ⊆ [n] be formed by including each
index independently with probability s/n as in Algorithm 1. Let AS be the corresponding
principal submatrix of A, with eigenvalues λ1(AS) ≥ . . . ≥ λ|S|(AS).

For all i ∈ [|S|] with λi(AS) ≥ 0, let λ̃i(A) = n
s · λi(AS). For all i ∈ [|S|] with

λi(AS) < 0, let λ̃n−(|S|−i)(A) = n
s · λi(AS). For all other i ∈ [n], let λ̃i(A) = 0. If

s ≥ c log(1/(ϵδ))·log3 n
ϵ3δ , for large enough constant c, then with probability ≥ 1 − δ, for all i ∈ [n],

λi(A) − ϵn ≤ λ̃i(A) ≤ λi(A) + ϵn.

Proof. Let S ∈ Rn×|S| be the binary sampling matrix with a single one in each column such
that ST AS = AS . Let S̄ =

√
n/s · S. Following Definition 5, we write A = Ao + Am. By

Fact 1 we have that the nonzero eigenvalues of n
s · Ao,S = S̄T VoΛoVT

o S̄ are identical to those
of Λ1/2

o VT
o S̄S̄T VoΛ1/2

o where Λ1/2
o is the square root matrix of Λo such that Λ1/2

o Λ1/2
o = Λo.

Note that Λo is Hermitian. However Λ1/2
o may be complex, and hence Λ1/2

o VT
o S̄S̄T VoΛ1/2

o

is not necessarily Hermitian, although it does have real eigenvalues. Thus, we can apply the
perturbation bound of Fact 4 to Λo and Λ1/2

o VT
o S̄S̄T VoΛ1/2

o to claim for all i ∈ [n], and
some constant C,

|λi(Λ1/2
o VT

o S̄S̄T VoΛ1/2
o) − λi(Λo)| ≤ C log n∥Λ1/2

o VT
o S̄S̄T VoΛ1/2

o − Λo∥2.

By Lemma 12 applied with error ϵ
2C log n , with probability at least 1 − δ, for any s ≥

c log(1/(ϵδ))·log3 n

ϵ3
√

δ
(for a large enough constant c) we have ∥Λ1/2

o VT
o S̄S̄T VoΛ1/2

o − Λo∥2 ≤
ϵn

2C log n . Thus, for all i,∣∣∣λi(Λ1/2
o VT

o S̄S̄T VoΛ1/2
o) − λi(Λo)

∣∣∣ <
ϵn

2 . (9)

We note that the conceptual part of the proof is essentially complete: the nonzero eigenvalues
of n

s ·Ao,S are identical to those of Λ1/2
o VT

o S̄S̄T VoΛ1/2
o , which we have shown well approximate

those of Λo and in turn Ao. i.e., the non-zero eigenvalues of n
s ·Ao,S approximate all outlying

ICALP 2023

21:16 Sublinear Time Eigenvalue Approximation via Random Sampling

eigenvalues of A. It remains to carefully argue how these approximations should be “lined
up” given the presence of zero eigenvalues in the spectrum of these matrices. We also must
account for the impact of the interior eigenvalues in Am,S , which is limited by the spectral
norm bound of Lemma 13. The rest of the argument is completed in Theorem 1 of [10]. ◀

▶ Remark. The proof of Lemma 12 and consequently, Theorem 1 can be modified to give
better bounds for the case when the eigenvalues of Ao lie in a bounded range – between
ϵa

√
δn and ϵbn where 0 ≤ b ≤ a ≤ 1. See Theorem 9 in Appendix C of [10] for details. For

example, if all the top eigenvalues are equal, one can show that s = Õ
(

log2 n
ϵ2

)
suffices to give

±ϵn error, nearly matching the lower bound of [5]. This indicates that improving Theorem 1
in general requires tackling the case when the outlying eigenvalues in Λo have a wide range.

4 Conclusion

We present efficient algorithms for estimating all eigenvalues of a symmetric matrix with
bounded entries up to additive error ϵn, by reading just a poly(log n, 1/ϵ) × poly(log n, 1/ϵ)
random principal submatrix. We give improved error bounds of ϵ

√
nnz(A) and ϵ∥A∥F when

the rows/columns are sampled with probabilities proportional to their sparsities or squared
ℓ2 norms, respectively (see Section 4 and Appendix E of [10]). We also perform numerical
simulations which demonstrate the effectiveness of our algorithms in practice (see Section 5
of [10]).

Our work leaves several open questions. In particular, it is open if our query complexity
for ±ϵn approximation can be improved, possibly to Õ(logc n/ϵ4) total entries using principal
submatrix queries or Õ(logc /ϵ2) entries using general queries. The later bound is open
even when A is PSD, a setting where we know that sampling a O(1/ϵ2) × O(1/ϵ2) principal
submatrix (with O(1/ϵ4) total entries) does suffice. Additionally, it is open if we can achieve
sample complexity independent of n, by removing all log n factors, as have been done for
the easier problem of testing positive semidefiniteness [5]. See Section 1.4 for more details.
Finally, it would be interesting to identify additional assumptions on A or on the sampling
model where stronger approximation guarantees (e.g., relative error) can be achieved in
sublinear time.

References
1 Dimitris Achlioptas and Frank McSherry. Fast computation of low-rank matrix approximations.

Journal of the ACM (JACM), 54(2):9–es, 2007.
2 Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix

multiplication. In Proceedings of the 32nd Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), 2021.

3 Alexandr Andoni and Huy L Nguyên. Eigenvalues of a matrix in the streaming model. In
Proceedings of the 24th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2013.

4 Arturs Backurs, Piotr Indyk, Cameron Musco, and Tal Wagner. Faster kernel matrix algebra
via density estimation. Proceedings of the 38th International Conference on Machine Learning
(ICML), 2021.

5 Ainesh Bakshi, Nadiia Chepurko, and Rajesh Jayaram. Testing positive semi-definiteness via
random submatrices. Proceedings of the 61st Annual IEEE Symposium on Foundations of
Computer Science (FOCS), 2020.

6 Maria-Florina Balcan, Yi Li, David P Woodruff, and Hongyang Zhang. Testing matrix rank,
optimally. In Proceedings of the 30th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2019.

R. Bhattacharjee, G. Dexter, P. Drineas, C. Musco, and A. Ray 21:17

7 Itai Benjamini, Oded Schramm, and Asaf Shapira. Every minor-closed property of sparse
graphs is testable. Advances in Mathematics, 223(6):2200–2218, 2010.

8 Serge Bernstein. Sur l’extension du théorème limite du calcul des probabilités aux sommes de
quantités dépendantes. Mathematische Annalen, 97(1):1–59, 1927.

9 Rajendra Bhatia. Matrix analysis. Springer Science & Business Media, 2013.
10 Rajarshi Bhattacharjee, Gregory Dexter, Petros Drineas, Cameron Musco, and Archan Ray.

Sublinear time eigenvalue approximation via random sampling. arXiv preprint, 2021. arXiv:
2109.07647.

11 Vladimir Braverman, Aditya Krishnan, and Christopher Musco. Linear and sublinear time
spectral density estimation. Proceedings of the 54th Annual ACM Symposium on Theory of
Computing (STOC), 2022.

12 Nadiia Chepurko, Kenneth L Clarkson, Lior Horesh, Honghao Lin, and David P Woodruff.
Quantum-inspired algorithms from randomized numerical linear algebra. arXiv, 2020. arXiv:
2011.04125.

13 David Cohen-Steiner, Weihao Kong, Christian Sohler, and Gregory Valiant. Approximating
the spectrum of a graph. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD), 2018.

14 James Demmel, Ioana Dumitriu, Olga Holtz, and Robert Kleinberg. Fast matrix multiplication
is stable. Numerische Mathematik, 2007.

15 Kun Dong, Austin R Benson, and David Bindel. Network density of states. In Proceedings of
the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD), 2019.

16 Petros Drineas and Ravi Kannan. Fast monte-carlo algorithms for approximate matrix
multiplication. In Proceedings of the 42nd Annual IEEE Symposium on Foundations of
Computer Science (FOCS), 2001.

17 Talya Eden and Will Rosenbaum. On sampling edges almost uniformly. SIAM Symposium on
Simplicty in Algorithms (SOSA), 2018.

18 Noureddine El Karoui. The spectrum of kernel random matrices. The Annals of Statistics,
38(1):1–50, 2010.

19 Alan Frieze, Ravi Kannan, and Santosh Vempala. Fast Monte-Carlo algorithms for finding
low-rank approximations. Journal of the ACM (JACM), 51(6):1025–1041, 2004.

20 Semyon Aranovich Gershgorin. Uber die abgrenzung der eigenwerte einer matrix. Izvestiya
Rossiyskoy akademii nauk. Seriya matematicheskaya, 6:749–754, 1931.

21 Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net
optimization via hessian eigenvalue density. In Proceedings of the 36th International Conference
on Machine Learning (ICML), 2019.

22 Alex Gittens and Joel A Tropp. Tail bounds for all eigenvalues of a sum of random matrices.
arXiv, 2011. arXiv:1104.4513.

23 Oded Goldreich and Dana Ron. Property testing in bounded degree graphs. In Proceedings of
the 29th Annual ACM Symposium on Theory of Computing (STOC), 1997.

24 Oded Goldreich and Dana Ron. Approximating average parameters of graphs. Random
Structures & Algorithms, 32(4):473–493, 2008.

25 Leslie Greengard and John Strain. The fast gauss transform. SIAM Journal on Scientific and
Statistical Computing, 1991.

26 Ming Gu and Stanley C Eisenstat. A divide-and-conquer algorithm for the symmetric
tridiagonal eigenproblem. SIAM Journal on Matrix Analysis and Applications, 1995.

27 Moritz Hardt and Eric Price. The noisy power method: A meta algorithm with applications.
Advances in Neural Information Processing Systems 27 (NIPS), 2014.

28 Jonas Helsen, Francesco Battistel, and Barbara M Terhal. Spectral quantum tomography.
Quantum Information, 2019.

29 Roger A. Horn and Charles R. Johnson. Matrix Analysis. Cambridge University Press, USA,
2nd edition, 2012.

ICALP 2023

https://arxiv.org/abs/2109.07647
https://arxiv.org/abs/2109.07647
https://arxiv.org/abs/2011.04125
https://arxiv.org/abs/2011.04125
https://arxiv.org/abs/1104.4513

21:18 Sublinear Time Eigenvalue Approximation via Random Sampling

30 Robert Krauthgamer and Ori Sasson. Property testing of data dimensionality. In Proceedings
of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2003.

31 Ruipeng Li, Yuanzhe Xi, Lucas Erlandson, and Yousef Saad. The eigenvalues slicing library
(EVSL): Algorithms, implementation, and software. SIAM Journal on Scientific Computing,
2019.

32 Yi Li, Huy L Nguyê̋n, and David P Woodruff. On sketching matrix norms and the top singular
vector. In Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), 2014.

33 Yi Li, Zhengyu Wang, and David P Woodruff. Improved testing of low rank matrices. In
Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD), 2014.

34 Yi Li and David P Woodruff. On approximating functions of the singular values in a stream.
In Proceedings of the 48th Annual ACM Symposium on Theory of Computing (STOC), 2016.

35 Lin Lin, Yousef Saad, and Chao Yang. Approximating spectral densities of large matrices.
SIAM Review, 2016.

36 Milena Mihail and Christos Papadimitriou. On the eigenvalue power law. In International
Workshop on Randomization and Approximation Techniques in Computer Science, pages
254–262. Springer, 2002.

37 Deanna Needell, William Swartworth, and David P Woodruff. Testing positive semidefiniteness
using linear measurements. In Proceedings of the 63rd Annual IEEE Symposium on Foundations
of Computer Science (FOCS), 2022.

38 Mark Rudelson and Roman Vershynin. Sampling from large matrices: An approach through
geometric functional analysis. Journal of the ACM (JACM), 2007.

39 Yousef Saad. Numerical methods for large eigenvalue problems: revised edition. SIAM, 2011.
40 Levent Sagun, Leon Bottou, and Yann LeCun. Eigenvalues of the hessian in deep learning:

Singularity and beyond. arXiv, 2016. arXiv:1611.07476.
41 RN Silver and H Röder. Densities of states of mega-dimensional Hamiltonian matrices.

International Journal of Modern Physics C, 1994.
42 G. W. Stewart and Ji guang Sun. Matrix Perturbation Theory. Academic Press, 1990.
43 Ewin Tang. Quantum-inspired classical algorithms for principal component analysis and

supervised clustering. arXiv, 2018. arXiv:1811.00414.
44 Joel A Tropp. Norms of random submatrices and sparse approximation. Comptes Rendus

Mathematique, 2008.
45 Joel A. Tropp. The random paving property for uniformly bounded matrices. Studia Mathem-

atica, 185:67–82, 2008.
46 Joel A Tropp. An introduction to matrix concentration inequalities. arXiv, 2015. arXiv:

1501.01571.
47 Madeleine Udell and Alex Townsend. Why are big data matrices approximately low rank?

SIAM Journal on Mathematics of Data Science, 1(1):144–160, 2019.
48 Lin-Wang Wang. Calculating the density of states and optical-absorption spectra of large

quantum systems by the plane-wave moments method. Physical Review B, 1994.
49 Alexander Weiße, Gerhard Wellein, Andreas Alvermann, and Holger Fehske. The kernel

polynomial method. Reviews of Modern Physics, 2006.
50 Hermann Weyl. The asymptotic distribution law of the eigenvalues of linear partial differential

equations (with an application to the theory of cavity radiation). Mathematical Annals, 1912.
51 Zhewei Yao, Amir Gholami, Qi Lei, Kurt Keutzer, and Michael W Mahoney. Hessian-based

analysis of large batch training and robustness to adversaries. arXiv, 2018. arXiv:1802.08241.

https://arxiv.org/abs/1611.07476
https://arxiv.org/abs/1811.00414
https://arxiv.org/abs/1501.01571
https://arxiv.org/abs/1501.01571
https://arxiv.org/abs/1802.08241

Streaming k-Edit Approximate Pattern Matching
via String Decomposition
Sudatta Bhattacharya #

Computer Science Institute of Charles University, Prague, Czech Republic

Michal Koucký #

Computer Science Institute of Charles University, Prague, Czech Republic

Abstract
In this paper we give an algorithm for streaming k-edit approximate pattern matching which uses
space Õ(k2) and time Õ(k2) per arriving symbol. This improves substantially on the recent algorithm
of Kociumaka, Porat and Starikovskaya [22] which uses space Õ(k5) and time Õ(k8) per arriving
symbol. In the k-edit approximate pattern matching problem we get a pattern P and text T and
we want to identify all substrings of the text T that are at edit distance at most k from P . In the
streaming version of this problem both the pattern and the text arrive in a streaming fashion symbol
by symbol and after each symbol of the text we need to report whether there is a current suffix of
the text with edit distance at most k from P . We measure the total space needed by the algorithm
and time needed per arriving symbol.

2012 ACM Subject Classification Theory of computation → Pattern matching; Theory of computa-
tion → Sketching and sampling

Keywords and phrases Approximate pattern matching, edit distance, streaming algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.22

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: http://arxiv.org/abs/2305.00615

Funding Sudatta Bhattacharya: Partially supported by the Grant Agency of the Czech Republic
under the grant agreement no. 19-27871X.
Michal Koucký: Partially supported by the Grant Agency of the Czech Republic under the grant
agreement no. 19-27871X.

Acknowledgements We thank Tomasz Kociumaka for pointing to us references for Corollary 3. We
thank anonymous reviewers for helpful comments.

1 Introduction

Pattern matching is a classical problem of finding occurrences of a given pattern P in text T .
It can be solved in time linear in the size of the pattern and text [21, 4, 20]. The classical
algorithms use space that is proportional to the pattern size. In a surprising work [25], Porat
and Porat were the first to design a pattern matching algorithm that uses less space. They
designed an on-line algorithm that pre-processes the pattern P into a small data structure,
and then it receives the text symbol by symbol. After receiving each symbol of the text,
the algorithm is able to report whether the pattern matches the current suffix of the text.
The algorithm uses poly-logarithmic amount of memory for storing the data structure and
processing the text. This represents a considerable achievement in the design of pattern
matching algorithms.

Porat and Porat also gave a small-space online algorithm that solves approximate pattern
matching up-to Hamming distance k, k-mismatch approximate pattern matching. In this
problem we are given the pattern P and a parameter k, and we should find all substrings of the

EA
T
C
S

© Sudatta Bhattacharya and Michal Koucký;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 22; pp. 22:1–22:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sudatta@iuuk.mff.cuni.cz
https://orcid.org/0000-0002-6576-5931
mailto:koucky@iuuk.mff.cuni.cz
https://orcid.org/0000-0003-0808-2269
https://doi.org/10.4230/LIPIcs.ICALP.2023.22
http://arxiv.org/abs/2305.00615
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

22:2 Streaming k-Edit Approximate Pattern Matching via String Decomposition

text T that are at Hamming distance at most k from P . Their algorithm uses Õ(k3) space, and
requires Õ(k2) time per arriving symbol of the text. Subsequently this was improved to space
Õ(k) and time Õ(

√
k) [10]. There has been a series of works [5, 9, 10, 19, 18, 15, 27, 26, 17]

on online and streaming pattern matching, and the line of work culminated in the work
of Clifford, Kociumaka and Porat [11] who gave a fully streaming algorithm with similar
parameters as [10].

In the streaming setting, also the pattern arrives symbol by symbol and we do not have the
space to store all of it at once. An important feature of the algorithm of Clifford, Kociumaka
and Porat is that their algorithm not only reports the k-mismatch occurrences of the pattern
but for each k-mismatch occurrence of P it can also output the full information about the
difference between P and the current suffix of the text, so called mismatch information.

Beside approximate pattern matching with respect to Hamming distance, researchers
also consider approximate pattern matching with respect to other similarity measures such
as edit distance. Edit distance ED(x, y) of two strings x and y is the minimum number of
insertions, deletions and substitutions needed to transform x into y. The k-edit approximate
pattern matching problem is a variant of the approximate pattern matching where we should
find all substrings of T that are at edit distance at most k from P . Since there could be
quadratically many such substrings, we usually only require to report for each position in T

whether there is a substring of T ending at that position that has edit distance at most k

from P . In the streaming version of the problem we want to output the minimal distance of
P to a current suffix of the text after receiving each symbol of T . Again we assume that
the text as well as the pattern arrive symbol by symbol, and we are interested in how much
space the algorithm uses, and how much time it takes to process each symbol.

Starikovskaya [27] proposed a streaming algorithm for the k-edit pattern matching
problem, which uses Õ(k8√

m) space and takes Õ(k2√
m + k13) time per arriving symbol.

Here, we denote m = |P | and n = |T |. Recently, using a very different technique Kociumaka,
Porat and Starikovskaya [22] constructed a streaming algorithm, which uses Õ(k5) space and
Õ(k8) amortized time per arriving symbol of the text.

In this work we substantially improve on the result of Kociumaka, Porat and Starikovskaya.
We give a streaming algorithm for k-edit approximate pattern matching that uses Õ(k2)
space and Õ(k2) time per arriving symbol.

▶ Theorem 1. Given integer k ≥ 0, there exists a randomized streaming algorithm for the
k-edit approximate pattern matching problem that uses Õ(k2) bits of space and takes Õ(k2)
time per arriving symbol of the text.

We speculate that some amortization techniques could bring the time complexity of our
k-edit approximate pattern matching algorithm further down. However, it seems unlikely
to achieve complexity below Õ(k) per arriving symbol as one could then solve the plain
edit distance problem in sub-quadratic time contradicting the Strong Exponential Time
Hypothesis (SETH) [2]. It is an interesting open question to achieve smaller space complexity
than Õ(k2). Currently, all known sketching techniques for edit distance that people use for
k-edit approximate pattern matching give sketches of size Ω(k2).

The technique of Kociumaka, Porat and Starikovskaya [22] for edit distance pattern
matching to large extent emulates the inner working of Hamming approximate pattern
matching algorithms. To that effect Kociumaka, Porat and Starikovskaya had to design a
rolling sketch for edit distance where multiple sketches can be “homomorphically” combined
into one. This requires sophisticated machinery. Here we use a somewhat different approach.
We use a recent locally consistent decomposition of strings which preserves edit distance
of Bhattacharya and Koucký [3]. The decomposition in essence translates edit distance

S. Bhattacharya and M. Koucký 22:3

to Hamming distance. Hence, we apply the k-mismatch approximate pattern matching
algorithm of Clifford, Kociumaka and Porat [11] on the stream of symbols coming from the
decomposition as a black box. Bhattacharya and Koucký [3] also constructed a rolling sketch
with limited update abilities, namely adding and deleting a symbol. We do not use that
sketch here.

1.1 Related work

Landau and Vishkin [23] gave the first algorithm for the k-mismatch approximate pattern
matching problem which runs in time O(k(m log m + n)) and takes O(k(m + n)) amount
of space. This was then improved to O(m log m + kn) time and O(m) space by Galil and
Giancarlo [13]. Later, Amir, Lewenstein and Porat [1] proposed two algorithms running in
time O(n

√
k log k) and Õ(n+k3(n/m)). The latter was improved by Clifford, Fontaine, Porat,

Sach and Starikovskaya [10] who gave an Õ(n+k2(n/m)) time algorithm. Charalampopoulos,
Kociumaka and Wellnitz, in their FOCS’20 paper [7], also proposed an Õ(n + k2(n/m))
time algorithm with slightly better polylog factors. An Õ(n + kn/

√
m) time algorithm

was given by Gawrychowski and Uznański [16], which showed a nice tradeoff between the
O(n

√
k log k) and Õ(n + k2(n/m)) running times. Not only that, they also showed that

their algorithm is essentially optimal upto polylog factors, by proving a matching conditional
lower bound. The polylog factors in the running time were then improved further by a
randomized algorithm by Chan, Golan, Kociumaka, Kopelowitz and Porat [6], with running
time O(n + kn(

√
log m/m)). This problem is thus quite well studied.

For the edit distance counterpart of the problem however, there is still a significant gap
between the best upper bound and the known conditional lower bound. Landau and Vishkin
[24] proposed an O(nk) time algorithm for the problem. This algorithm is still the state
of the art for larger values of k. Cole and Hariharan [12] gave an algorithm running in
time O(n + m + k4(n/m))(this runs faster if m ≥ k3). In their unified approach paper [7],
Charalampopoulos, Kociumaka and Wellnitz also proposed an algorithm running in time
O(n + m + k4(n/m)). The same authors in their FOCS’22 paper [8] gave an algorithm
running in time O(n + k3.5

√
log m log kn/m), finally improving the bound after 20 years.

For the lower bound, Backurs and Indyk [2] proved that a truly subquadratic time algorithm
for computing edit distance would falsify SETH. This would imply that an algorithm for the
k-edit approximate pattern matching which is significantly faster than O(n + k2(n/m)) is
highly unlikely.

Online k-mismatch approximate pattern matching problem was first solved by Benny Porat
and Ely Porat in 2009 [25]. They gave an online algorithm with running time Õ(k2) and space
Õ(k3) per arriving symbol of the text. Clifford, Fontaine, Porat, Sach and Starikovskaya in
their SODA’16 paper [10], improved it to Õ(k2) space and O(

√
k log k + poly(log(n))) time

per arriving symbol of the text. Clifford, Kociumaka and Porat [11] proposed a randomized
streaming algorithm which uses O(k log (m/k)) space and O(log (m/k)(

√
k log k + log3 m))

time per arriving symbol. The space upper bound is optimal up-to logarithmic factors,
matching the communication complexity lower bound. All these algorithms use some form of
rolling sketch.

In the streaming model, Starikovskaya proposed a randomized algorithm [27] for the
k-edit approximate pattern matching problem, which takes O(k8√

m log6 m) space and
O((k2√

m + k13) log4 m) time per arriving symbol. Kociumaka, Porat and Starikovskaya [22]
proposed an improved randomized streaming algorithm, which takes Õ(k5) space and Õ(k8)
amortized time per arriving symbol of the text.

ICALP 2023

22:4 Streaming k-Edit Approximate Pattern Matching via String Decomposition

2 Notations and preliminaries

We use a standard notation. For any string x = x1x2x2 . . . xn and integers p, q, x[p] denotes
xp, x[p, q] represents substring x′ = xp . . . xq of x, and x[p, q) = x[p, q − 1]. If q < p, then
x[p, q] is the empty string ε. x[p, . . .] represents x[p, |x|], where |x| is the length of x. "·"-
operator is used to denote concatenation, e.g x · y is the concatenation of two strings x and
y. For strings x and y, ED(x, y) is the minimum number of modifications (edit operations)
required to change x into y, where a single modification can be adding a character, deleting a
character or substituting a character in x. All logarithms are based-2 unless stated otherwise.
For integers p > q,

∑q
i=p ai = 0 by definition regardless of ai’s.

2.1 Grammars
We will use the following definitions from [3]. They are taken essentially verbatim. Let Σ ⊆ Γ
be two alphabets and # ̸∈ Γ. A grammar G is a set of rules of the type c → ab or c → ar,
where c ∈ (Γ ∪ {#}) \ Σ, a, b ∈ Γ and r ∈ N. c is the left hand side of the rule, and ab or ar

is the right hand side of the rule. # is the starting symbol. The size |G| of the grammar
is the number of rules in G. We only consider grammars where each a ∈ Γ ∪ {#} appears
on the left hand side of at most one rule of G, we call such grammars deterministic. The
eval(G) is the string from Σ∗ obtained from # by iterative rewriting of the intermediate
results by the rules from G. If the rewriting process never stops or stops with a string not
from Σ∗, eval(G) is undefined. We use eval(G1, G2, . . . , Gt) to denote the concatenation
eval(G1) · eval(G2) · · · eval(Gt). Using a depth-first traversal of a deterministic grammar G

we can calculate its evaluation size |eval(G)| in time O(|G|). Given a deterministic grammar
G and an integer m less or equal to its evaluation size, we can construct in time O(|G|)
another grammar G′ of size O(|G|) such that eval(G′) = eval(G)[m, . . .]. G′ will use some
new auxiliary symbols.

We will use the following observation of Ganesh, Kociumaka, Lincoln and Saha [14]:

▶ Proposition 2 ([14]). There is an algorithm that on input of two grammars Gx and Gy of
size at most m computes the edit distance k of eval(Gx) and eval(Gy) in time O((m + k2) ·
poly(log(m + n))), where n = |eval(Gx)| + |eval(Gy)|.

We remark that the above algorithm can be made to output also full information about edit
operations that transform eval(Gx) to eval(Gy). We will also use the following proposition
which can be obtained from Landau-Vishkin algorithm [23] see e.g. a combination of Lemma
6.2 and Theorem 7.13 in [7]:

▶ Corollary 3. For every pair of grammars Gx and Gy representing strings x and y, respect-
ively, and given a parameter k we can find in time O((m + k2) · poly(log(m + n))), where
n = |x| + |y| and m = |Gx| + |Gy|, the length of a suffix of x with the minimum edit distance
to y among all the suffixes of x, provided that the edit distance of the suffix and y is at most
k. If the edit distance of all the suffixes of x to y is more than k then the algorithm stops in
the given time and reports that no suffix was found.

3 Decomposition algorithm

Bhattacharya and Koucký [3] give a string decomposition algorithm (BK-decomposition
algorithm) that splits its input string into blocks, each block represented by a small grammar.
With high probability over the choice of randomness of the algorithm, two strings of length

S. Bhattacharya and M. Koucký 22:5

at most n and edit distance at most k are decomposed so that the number of blocks is the
same and at most k corresponding pairs of blocks differ. The edit distance between the two
strings corresponds to the sum of edit distances of differing pairs of blocks.

More specifically, the BK-decomposition algorithm gets two parameters n and k, k ≤ n,
and an input x. It selects at random pair-wise independent functions C1, . . . , CL and S-
wise independent functions H0, . . . , HL from certain hash families, and using those hash
functions it decomposes x into blocks, and outputs a grammar for each of the block. We
call the sequence of the produced grammars the BK-decomposition of x. Here, parameters
L = ⌈log3/2 n⌉ + 3 and S = O(k log3 n log∗ n). As shown in [3], the algorithm satisfies the
following property.

▶ Proposition 4 (Theorem 3.1 [3]). Let x be a string of length at most n. The BK-
decomposition algorithm outputs a sequence of grammars G1, . . . , Gs such that for n large
enough:
1. With probability at least 1 − 2/n, x = eval(G1, . . . , Gs).
2. With probability at least 1 − 2/

√
n, for all i ∈ {1, . . . , s}, |Gi| ≤ S.

The randomness of the algorithm is over the random choice of functions C1, . . . , CL and
H0, . . . , HL.

The functions C1, . . . , CL can be described using O(log2 n) bits in total and the S-wise
independent functions H0, . . . , HL can be described using O(S log2 n) bits in total. We also
need the following special case of Theorem 3.12 [3].

▶ Proposition 5 (Theorem 3.12 [3]). Let u, x, y ∈ Γ∗ be strings such that |ux|, |y| ≤ n and
ED(x, y) ≤ k. Let Gx

1 , . . . , Gx
s and Gy

1, . . . , Gy
s′ be the sequence of grammars output by the

BK-decomposition algorithm on input ux and y respectively, using the same choice of random
functions C1, . . . , CL and H0, . . . , HL. With probability at least 1 − 1/5 the following is true:
There exist an integer r ≥ 1, such that

x = eval(Gx
s−s′+1)[r, . . .] · eval(Gx

s−s′+2, . . . , Gx
s) & y = eval(Gy

1, . . . , Gy
s′),

and

ED(x, y) = ED(eval(Gx
s−s′+1)[r, . . .], eval(Gy

1)) +
s′∑

i=2
ED(eval(Gx

s−s′+i), eval(Gy
i)).

The grammars for x can be built incrementally. For a fixed choice of functions Ci, Hi, and
a string x we say that grammars Gx

1 , . . . , Gx
t are definite in its BK-decomposition Gx

1 , . . . , Gx
s

if for any string z and the BK-decomposition Gxz
1 , . . . , Gxz

s′ of xz obtained using the same
functions Ci, Hi, Gx

1 = Gxz
1 , . . . , Gx

t = Gxz
t . It turns out that all, but Õ(1) last grammars in

the BK-decomposition of x are always definite. The following claim appears in [3]:

▶ Proposition 6 (Lemma 4.2 [3]). Let n and k be given and R = O(log n log∗ n) be
a suitably chosen parameter. Let x, z ∈ Γ∗, |xz| ≤ n. Let H0, . . . , HL, C1, . . . , CL be
given. Let Gx

1 , Gx
2 , . . . , Gx

s be the output of the BK-decomposition algorithm on input x, and
Gxz

1 , Gxz
2 , . . . , Gxz

s′ be the output of the decomposition algorithm on input xz using the given
hash functions.
1. Gx

i = Gxz
i for all i = 1 . . . , s − R.

2. |x| ≤
∑min(s+R,s′)

i=1 |eval(Gxz
i)|.

The following claim bounds the resources needed to update BK-decomposition of x when
we append a symbol a to it.

ICALP 2023

22:6 Streaming k-Edit Approximate Pattern Matching via String Decomposition

▶ Proposition 7 (Theorem 5.1 [3]). Let k ≤ n be given and R = O(log n log∗ n)
be a suitably chosen parameter. Let functions C1, . . . , CL and H0, . . . , HL be given.
Let a ∈ Σ and x ∈ Σ∗ be of length at most n, and let Gx

1 , . . . , Gx
s be the

grammars output by the BK-decomposition algorithm on input x using functions
C1, . . . , CL, H0, . . . , HL. UpdateActiveGrammars(Gx

s−min(s,R+1)+1, . . . , Gx
s , a) outputs a se-

quence of grammars G′
1, . . . , G′

t′ such that Gx
1 , . . . , Gx

s−min(s,R+1), G′
1, . . . , G′

t′ is the sequence
that would be output by the BK-decomposition algorithm on x · a using the same functions
C1, . . . , CL, H0, . . . , HL. The update algorithm runs in time Õ(k) and outputs t′ ≤ 4RL

grammars.

3.1 Encoding a grammar

Let S and M = O(S log n) = O(k log4 n log∗ n) be parameters determined by the BK-
decomposition algorithm. [3] shows that each grammar of size at most S can be encoded as
a string of size M over some polynomial-size alphabet {1, . . . , 2α}, where the integer α can
be chosen so that 2M/α ≤ 1/n. The encoding Enc satisfies that if two grammars differ, their
encodings differ in every coordinate. The encoding is randomized, and one needs O(log n)
random bits to select the encoding function. The encoding can be calculated in time linear
in M , and given Enc(G) we can decode G in time O(M). The encoding satisfies:

▶ Proposition 8. Let G, G′ be two grammars of size at most S output by BK-decomposition
algorithm. Let encoding Enc be chosen at random.
1. Enc(G) ∈ {1, . . . , 2α}M .
2. If G = G′ then Enc(G) = Enc(G′).
3. If G ̸= G′ then with probability at least 1 − (2M/α), Ham(Enc(G), Enc(G′)) = M , that is

they differ in every symbol.

3.2 k-mismatch approximate pattern matching

Clifford, Kociumaka and Porat [11] design a streaming algorithm for k-mismatch approximate
pattern matching with the following properties. The algorithm first reads a pattern P symbol
by symbol, and then it reads a text T symbol by symbol. Upon reading each symbol of the
text it reports whether the word formed by the last received |P | symbols of the text are
within Hamming distance at most k from the pattern. If they are within Hamming distance
at most k we can request the algorithm to report the mismatch information between the
current suffix of the text and the pattern. The parameters k and n are given to the algorithm
at the beginning, where n is an upper bound on the total length of the pattern and the text.
By mismatch information between two strings x and y of the same length we understand
MIS(x, y) = {(i, x[i], y[i]); i ∈ {1, . . . , |x|} and x[i] ̸= y[i]}. So the Hamming distance of x

and y is Ham(x, y) = |MIS(x, y)|. Clifford, Kociumaka and Porat [11] give the following
main theorem.

▶ Proposition 9 ([11]). There exists a streaming k-mismatch approximate pattern matching
algorithm which uses O(k log n log(n/k)) bits of space and takes O((

√
k log k+log3 n) log(n/k))

time per arriving symbol. The algorithm is randomised and its answers are correct with
high probability, that is it errs with probability inverse polynomial in n. For each reported
occurrence, the mismatch information can be reported on demand in O(k) time.

S. Bhattacharya and M. Koucký 22:7

4 Algorithm overview

Now we provide the high-level view of how we proceed. We will take the pattern P and
apply on it the BK-decomposition algorithm. That will give us grammars GP

1 , GP
2 , . . . , GP

r

encoding the pattern. This has to be done incrementally as the symbols of P arrive. Then
we will incrementally apply the BK-decomposition algorithm on the text T .

We will not store all the grammars in memory, instead we will use the K-mismatch
approximate pattern matching algorithm of Clifford, Kociumaka and Porat [11] (CKP-match
algorithm) on the grammars. Here K = k · M , where M is the encoding size of each grammar.
For a suitable parameter R = Õ(1), we will feed the grammars GP

1 , . . . , GP
r−R to the CKP-

match algorithm as a pattern. In particular, we will encode each grammar by the encoding
function Enc from Section 3.1, and we will feed the encoding into the CKP-match algorithm
symbol by symbol.

Then as the symbols of the text T will arrive, we will incrementally build the grammars
for T while maintaining only a small set of active grammars. Grammars that become definite
will be fed into the CKP-match algorithm as its input text. (Again each one of the grammars
encoded by Enc.) The CKP-match algorithm will report K-mismatch occurrences of our
pattern in the text. Each K-mismatch occurrence corresponds to a match of the pattern
grammars to the text grammars, with up-to k differing pairs of grammars. We will recover
the differing pairs of grammars and calculate their overall edit distance. We will combine this
edit distance with the edit distance of the last R grammars of the pattern from the last R

grammars of the text. (The last R grammars of the text contain the active grammars which
were not fed into the CKP-match algorithm, yet.) If the total edit distance of the match
does not exceed the threshold k, we report it as an k-edit occurrence of P in T . If required
we can also output the edit operations that transform the pattern into a suffix of T . (Among
the current suffixes of T we pick the one which gives the smallest edit distance from P .)

The success probability of our scheme in reporting a particular occurrence of P in
T is some constant ≥ 1/2. Thus, we run the processes in parallel O(log n) times with
independently chosen randomness to achieve small error-probability.

We describe our algorithm in more details next.

5 Description of the algorithm

Now we describe one run of our algorithm. The algorithm receives parameters n and k,
based on them it sets parameters L = O(log n), R = O(log n log∗ n), S = O(k log3 n log∗ n),
M = O(k log4 n log∗ n), K = k · M = O(k2 log4 n log∗ n). Then it chooses at random pair-
wise independent functions C1, . . . , CL and S-wise independent functions H0, . . . , HL needed
by the BK-decomposition algorithm. It also selects the required randomness for the encoding
function Enc. It initializes the CKP-match algorithm for K-mismatch approximate pattern
matching on strings of length at most n · M .

There are two phases of the algorithm. In the first phase the algorithm receives a pattern P

symbol by symbol and incrementally builds a sequence of grammars GP
1 , . . . , GP

r representing
the pattern P . All but the last R grammars are encoded using Enc and sent to our instance
of CKP-match algorithm as its pattern (symbol by symbol of each encoding). In the second
phase our algorithm receives an input text T symbol by symbol. It will incrementally build
a sequences of grammars GT

1 , GT
2 , . . . representing the received text. Whenever one of the

grammars becomes definite it is encoded by Enc and sent to our instance of CKP-match
algorithm as the next part of its input text (symbol by symbol).

ICALP 2023

22:8 Streaming k-Edit Approximate Pattern Matching via String Decomposition

In the first phase, our algorithm uses the procedure given by Proposition 7 to construct
the grammars GP

1 , . . . , GP
r incrementally by adding symbols of P . The algorithm maintains

a buffer of 2R active grammars which are updated by the addition of each symbol. Whenever
the number of active grammars exceeds 2R we encode the oldest (left-most) grammars that
are definite and pass them to our instance of CKP-match algorithm as the continuation
of its pattern. The precise details of updating the grammars of the pattern are similar to
that of updating them for text which we will elaborate on more. After the input pattern
ends, we keep only R grammars GP

r−R+1, . . . , GP
r , and we send all the other grammars to

the CKP-match algorithm. Then we announce to the CKP-match algorithm the end of its
input pattern. So the CKP-match algorithm received as its pattern encoding of grammars
GP

1 , . . . , GP
r−R in this order. (In the case we end up with fewer than R + 1 grammars

representing P (r ≤ R), we apply a naïve pattern matching algorithm without need for the
CKP-match algorithm. We leave this simple case as an exercise to the reader.) For the rest
of this description we assume that r > R.

In the second phase, the algorithm will receive the input text T symbol by symbol. It will
incrementally build a sequence of grammars representing the text using the algorithm from
Proposition 7. We will keep at most R active grammars Ga

1 , . . . , Ga
t on which the algorithm

from Proposition 7 will be applied. The active grammars represent a current suffix of T .
The prefix of T up-to that suffix is represented by grammars GT

1 , . . . , GT
s which are definite.

Out of those definite grammars we will explicitly store only the last R in a buffer, the other
grammars will not be stored explicitly. (They will be used to calculate the current edit
distance and to run the update algorithm from Proposition 7.) The encoding of all the
definite grammars will be fed into the CKP-match algorithm as its input text whenever we
detect that a grammar is definite.

As the algorithm proceeds over the text it calculates a sequence of integers m1, m2, . . . , ms,
where the algorithm stores only the last R of them in a buffer. Each value mi is the minimal
edit distance of eval(GP

1 , . . . , GP
r−R) (a prefix of the pattern) to any suffix of eval(GT

1 , . . . , GT
i)

(a suffix of a prefix of the text) if the edit distance is less than k. mi is considered infinite
otherwise. (Values m1, . . . , mr−R−1 are all considered to be infinite.) The value mi will be
calculated after GT

i becomes definite and we send the grammar to our CKP-match algorithm.
(The CKP-match algorithm will facilitate its calculation.) Values mi will be used to calculate
the edit distance of the current suffix of the input text received by the algorithm. See Fig. 1
for an illustration.

GT
s−R+t+1 GT

s. . .

GP
r−R−t+1 GP

r−R. . .

GT
s. . .

Ga
1 Ga

t. . .

GP
r−R+1 GP

r−t. . . GP
r−t+1 GP

r

GT
s−R+tGT

s−R+1

GT
s−R+t+1GT

s−R+tGT
s−R+1

. . .

. . .

. . .GP
1

Active grammars

. . .

. . .

Last R grammars of the pattern

Buffer of past text grammars

CKP-match text

CKP-match pattern

Figure 1 The alignment of text and pattern grammars after arrival of some text symbol. The
pattern P is represented by grammars GP

1 , . . . , GP
r . Grammars GP

1 , . . . , GP
r−R are encoded by Enc

and sent to the CKP-match algorithm as its pattern. The current text T is represented by the
sequence of grammars GT

1 , . . . , GT
s , Ga

1 , . . . , Ga
t . Grammars GT

1 , . . . , GT
s are encoded and committed

to the CKP-match algorithm as its text. Grammars Ga
1 , . . . , Ga

t are active grammars of the text,
and might change as more symbols are added to the text.

We are ready to describe the basic procedures performed by the algorithm.

S. Bhattacharya and M. Koucký 22:9

Symbol arrival. Upon receiving the next symbol a of the input text, our algorithm invokes the
algorithm from Proposition 7 on the R + 1 grammars GT

s−R+t, . . . , GT
s , Ga

1 , . . . , Ga
t to append

the symbol a. From the algorithm we receive back grammars GT
s−R+t, . . . , GT

s , G′a
1 , . . . , G′a

t′ ,
where t′ < 4RL. (Here, eval(G′a

1 , . . . , G′a
t′) = eval(Ga

1 , . . . , Ga
t)·a. The grammars GT

s−R+t, . . . ,

GT
s received from the algorithm are discarded as they are definite and should not change.

The update algorithm needs them to have the proper context for compression.) If t′ > R

then grammars G′a
1 , . . . , G′a

t′−R become definite and we will commit each of them to the
CKP-match algorithm as explained further. We will commit them in order G′a

1 , . . . , G′a
t′−R.

The remaining grammars G′a
t′−R+1, . . . , G′a

t′ are relabelled as Ga
1 , . . . , Ga

t and become the
active grammars for the addition of the next symbol.

At this point our algorithm can output the minimal possible edit distance of the pattern
to any suffix of the text received up-to this point. We explain below how such query is
calculated.

Committing a grammar. When a grammar G becomes definite the algorithm commits
the grammar as follows. Thus far, grammars G1, . . . , Gs were committed and the sequence
of values m1, . . . , ms was calculated. We set Gs+1 = G, calculate encoding Enc(Gs+1) and
send the encoding symbol by symbol to our CKP-match algorithm. At this point we can
calculate ms+1 using the mismatch information provided by our CKP-match algorithm. If
s + 1 < r − R then we set ms+1 to ∞ otherwise we continue as follows to calculate ms+1.

We query our CKP-match algorithm for the Hamming distance between encoding of
GP

1 , . . . , GP
r−R (the pattern to the CKP-match algorithm) and the encoding of GT

s−r+R+2,

GT
s−r+R+3, . . . , GT

s+1 (the current suffix of the text of the CKP-match algorithm). If the
Hamming distance is less than K = k · M , then we let the CKP-match algorithm to recover
the mismatch information. By the design of the encoding function, if two grammars differ
then their encodings differ in all M positions (unless the encoding function Enc fails which
happens only with negligible probability.) Hence, the mismatch information consists of
encoding of up-to k pairs of grammars, with their indexes relative to the pattern. Thus, from
the mismatch information we recover pairs of grammars (G1, G′

1), . . . , (Gk′ , G′
k′), for some

k′ ≤ k where Gi come from the text and G′
i come from the pattern.

If (G1, G′
1) is not the very first grammar pair (GT

s−r+R+2, GP
1) (which we recognize by

their index in the mismatch information) then we compute the edit distance for each pair of
strings eval(Gi) and eval(G′

i), i = 1, . . . , k′. We set ms+1 to be the sum of those distances.
If (G1, G′

1) is the pair (GT
s−R+2, GP

1) then we apply the algorithm from Corollary 3 to
calculate the minimal edit distance between any suffix of eval(G1) and the string eval(G′

1).
For i = 2, . . . , k′, we compute the edit distance of eval(Gi) and eval(G′

i). We set ms+1 to be
the sum of the k′ calculated values.

However, if the CKP-match algorithm declares that the Hamming distance of its pattern
to its current suffix is more than K, we set ms+1 = ∞.

Finally, we discard Gs−r+R from the buffer of the last R committed grammars, and we
discard ms−R+2 from the buffer of values mi. We set s to be s + 1. This finishes the process
of committing a single grammar G, and a next grammar might be committed.

Pattern edit distance query. After we process the arrival of a new symbol, update the
active grammars as described above and commit grammars as necessary, the algorithm is
ready to answer the edit distance query on the current suffix of the text T and the pattern P .
At this point grammars GT

1 , . . . , GT
s were already committed to the CKP-match algorithm.

There are current active grammars Ga
1 , . . . , Ga

t which were not committed to the CKP-match

ICALP 2023

22:10 Streaming k-Edit Approximate Pattern Matching via String Decomposition

algorithm, and there are R grammars GP
r−R+1, . . . , GP

r of the input pattern that were not
committed to the CKP-match algorithm as part of its pattern. To answer the edit distance
query we will compare the edit distance of those last R grammars of pattern P with the last
grammars of the text, and we will combine this with a certain value mi, namely ms−R+t.

Let d = R−t. If d > 0, for i = 1, . . . , d compute the edit distance of each pair eval(GT
s−d+i)

and eval(GP
r−R+i). (Each grammar GT

s−d+i is available in the buffer of the last R committed
grammars.) For i = d + 1, . . . , R, compute the edit distance of each pair eval(Ga

i−d) and
eval(GP

r−R+i). Sum those R values together with ms−d. If the sum is less than k output it,
otherwise output ∞.

Since we are running O(log n) independent copies of our algorithm, each of the copies
produces an estimate on the edit distance and we output the smallest estimate. That is the
correct value with high probability.

6 Correctness of the algorithm

In this section we argue that the algorithm produces a correct output. First we analyze
the probability of certain bad events happening when the algorithm fails and then we argue
the correctness of the output assuming none of the bad events happens. There are several
sources of failure in our algorithm.
1. The BK-decomposition algorithm might produce a decomposition of either the pattern or

some suffix of the text with a grammar that is too big or with grammars that do not
represent expected strings. (A failure of Proposition 4.)

2. The BK-decomposition algorithm produces a correct decomposition of the pattern and
all suffixes of the text but grammars of some suffix of the text T and the pattern P do
not align well. (A failure of Proposition 5.)

3. The encoding function Enc fails for some pair of grammars produced by the BK-
decomposition algorithm that the CKP-match algorithm is supposed to compare. (A
failure of Proposition 8.)

4. BK-decomposition algorithm does not fail but the CKP-match algorithm fails to identify
a K-mismatch occurrence of its pattern or fails to produce correct mismatch information.
(A failure of Proposition 9.)

The failure probability of events 1), 3) and 4) will be each bounded by inverse polynomial
in n, where n is the parameter sent to those algorithms as an upper bound on the length of
the processed strings. Thus, if we expect our algorithm to process a text and a pattern of size
at most N , we can set the parameter n for the BK-decomposition algorithm to be N4 and
for the CKP-algorithm to be N4 · M = Õ(N5), where M is calculated from n = N4 and k of
the BK-decomposition algorithm. (Parameter k for the BK-decomposition algorithm is set
to k, and for the CKP-algorithm to K = k · M = Õ(k2).) We will run 2 log N independent
copies of our algorithm on the same text and pattern. Next we calculate the probability of
failure in case 1), 3) and 4) in a particular copy of the algorithm.

Event 1. There is one pattern P of length at most N , the probability of either of the two
conditions in Proposition 4 failing on P is at most 4/

√
n = 4/N2. The probability of failure

of Proposition 4 on any the at most N prefixes of the text T is at most N · 4/
√

n = 4/N .
Thus the probability of the bad event 1) happening is at most 4/N + 4/N2.

Event 3. There are at most N grammars of the pattern encoded by Enc and there are at
most N grammars of the text encoded by Enc and committed. Thus there are at most N2

pairs of grammars on which Proposition 8 could fail by encoding two distinct grammars

S. Bhattacharya and M. Koucký 22:11

by strings of Hamming distance less than M (failure in the third part of Proposition 8).
Given our setting of parameters, the probability of the bad event 3) happening is at most
N2/n = 1/N2.

Event 4. The probability that the CKP-match algorithm fails during its execution is at
most 1/n = 1/N4.

Thus, the probability of a failure of 1), 3) or 4) is at most 5/N , for N large enough. We
run 2 log N copies of the algorithm so the probability that any of the copies fails because of
events 1), 3), or 4) is at most 10 log N/N .

If none of the events 1), 3) and 4) occurs during the execution of the algorithm then the
pattern and the text are correctly decomposed into grammars by the BK-decomposition, the
grammars are properly encoded by Enc, and the CKP-match algorithm correctly identifies
all the occurrences of the pattern grammars in the committed text grammars, and for each
of the occurrences we correctly recover the differing pairs of pattern and text grammars.
Assuming this happens, we want to argue that with a high probability our algorithm will
correctly identify k-edit occurrences of the pattern P in the text T .

After receiving a prefix of the text T [1, ℓ], ℓ ≤ N , we want to determine whether some
suffix of T [1, ℓ] has edit distance at most k from the pattern P . Let a be such that T [a, ℓ] has
the minimal distance from P . Clearly, if the edit distance between T [a, ℓ] and P is at most k

then a ∈ {ℓ − |P | − k + 1, . . . , ℓ − |P | + k + 1}. By Proposition 5 applied on u = T [1, a − 1],
x = T [a, ℓ] and y = P , each of the 2 log N copies of our algorithm has probability at least
4/5 that the grammars of T are well aligned with grammars of P . Being well aligned means
that T [a, ℓ] is a suffix of eval(GT

s−r+t+1, . . . , GT
s , Ga

1 , . . . , Ga
t) and

ED(T [a, ℓ], P) = ED(eval(GT
s−r+t+1)[b, . . .], eval(GP

1))

+
r−t∑
i=2

ED(eval(GT
s−r+t+i), eval(GP

i))

+
r∑

i=r−t+1
ED(eval(Ga

i−r+t), eval(GP
i)),

for appropriate b. Moreover, the minimality of a implies that

ED(T [a, ℓ], P) = min
b

ED(eval(GT
s−r+t+1)[b, . . .], eval(GP

1))

+
r−t∑
i=2

ED(eval(GT
s−r+t+i), eval(GP

i))

+
r∑

i=r−t+1
ED(eval(Ga

i−r+t), eval(GP
i)).

Notice, regardless of whether Proposition 5 fails or not, the right-hand-side of the last equation
is always at least ED(T [a, ℓ], P) since it is an upper-bound on the true edit distance of P to
some suffix of T . We will argue that each copy of the algorithm outputs the right-hand-side
value of that equation if it has value at most k, and ∞ otherwise. Moreover, if at least one
of the copies of our algorithm has T [a, ℓ] and P well aligned, then the minimum among the
values output by the different copies of our algorithm is ED(T [a, ℓ], P).

Since we have 2 log N copies of the algorithm, the probability that none of the decom-
positions aligns T [a, ℓ] and P well is at most (1/5)2 log N < 1/N4. This upper-bounds the
probability of error of outputting a wrong value of minb ED(T [b, ℓ], P) after receiving ℓ sym-
bols of the text. As there will be at most N distinct values of ℓ, the probability of outputting

ICALP 2023

22:12 Streaming k-Edit Approximate Pattern Matching via String Decomposition

a wrong estimate of the edit distance of P to some suffix of T is at most N · 1/N4 = 1/N3,
conditioned on none of the bad events 1), 3) or 4) happening. Overall, the probability of a
failure of our algorithm is at most O(log N/N) ≤ 1/

√
N , for N large enough, and it could be

made an arbitrary small polynomial in N by choosing the parameters differently (n vs N).
It remains to argue that the copy of our algorithm which aligns T [a, ℓ] and P well, outputs

their edit distance. Consider the copy of the algorithm that aligns grammars of T [a, ℓ] and P

well. After arrival of the symbol T [ℓ] and updating the grammars, there are active grammars
Ga

1 , . . . , Ga
t , committed grammars GT

1 , . . . , GT
s and the pattern grammars GP

1 , . . . , GP
r . If

ED(T [a, ℓ], P) is at most k then the number of grammars in which P differs from the last
r grammars of T is at most k. Thus the CKP-match algorithm can identify the differing
grammars when computing the value ms−R+t which is set to

ms−R+t = min
b

ED(eval(GT
s−r+t+1)[b, . . .], eval(GP

1))

+
r−R∑
i=2

ED(eval(GT
s−r+t+i), eval(GP

i)).

Since, ms−R+t ≤ ED(T [a, ℓ], P) ≤ k, we have the true value of ms−R+t. Thus,

ED(T [a, ℓ], P) = ms−R+t

+
r−t∑

i=r−R+1
ED(eval(GT

s−r+t+i), eval(GP
i))

+
r∑

i=r−t+1
ED(eval(Ga

i−r+t), eval(GP
i)).

That is precisely how we evaluate the edit distance query of our algorithm.
If ED(T [a, ℓ], P) > k then we will output a value > k as we output some upper bound on

the edit distance. Any value > k is treated as the infinity.

7 Time complexity of the algorithm

In the first phase, we incrementally construct the grammars for the pattern P , using the
BK-decomposition algorithm from Proposition 7 on each symbol of P at a time. Updating
the active grammars for each new symbol takes Õ(k) time, committing each of the possible
Õ(1) definite grammars to the CKP-match algorithm takes Õ(M ·

√
K) = Õ(k2). Thus the

time needed per arriving symbol of the pattern is Õ(k2).
For each symbol of the text that arrives during the second phase of the algorithm we

need to update the active grammars of the text, update ms, and evaluate the edit distance of
the pattern from the current suffix of text. This includes parts Symbol arrival, Committing a
grammar and Pattern edit distance query of the algorithm.

Symbol arrival. Appending a symbol using the BK-decomposition algorithm from Pro-
position 7 takes Õ(k) time.

Committing a grammar. Encoding the grammar takes O(M) time using the algorithm
from Proposition 8, and committing it to the CKP-match algorithm takes time Õ(k2), as in
the pattern case.

Querying the CKP-match algorithm for Hamming distance K takes O(K) = Õ(k2) time.
This recovers at most k pairs of distinct grammars (Gi, G

′

i), 1 ≤ i ≤ k. Computing edit
distance ki of each pair of strings eval(Gi) and eval(G′

i), takes Õ(S + k2
i) = Õ(k + k2

i) time
using Proposition 2. If

∑
i ki ≤ k, the total time for the edit distance computation is bounded

S. Bhattacharya and M. Koucký 22:13

by Õ(k2). If the computation runs for longer we can stop it as we know ms is larger than k.
Running the algorithm from Corollary 3 on the first pair of distinct grammars to compute
the minimum edit distance between any suffix of eval(G1) and the string eval(G′

1) takes
Õ(S + k2) time. Thus committing a grammar takes time at most Õ(k2) where the longest
time takes the minimization algorithm on the first pair of grammars.

Pattern edit distance query. This step requires the alignment of the last R grammars of the
pattern with the appropriate grammars of the text and computing their edit distances. Using
Proposition 2, computing edit distances of R pairs of grammars takes R × Õ(k2) = Õ(k2)
time.

As there are at most Õ(1) committed grammars after processing each new symbol, the
total time of this step is Õ(k2) per arriving symbol.

8 Space complexity of the algorithm

During either phase of the algorithm, we store O(RL) = Õ(1) active and updated grammars
and buffer last O(R) committed grammars. This requires space Õ(k). Furthermore, the CKP-
match algorithm requires Õ(K) = Õ(k2) space. The edit distance algorithm of Proposition 2
cannot use more space than its running time so each invocation uses at most Õ(k2) space.
Similarly, Corollary 3 uses space Õ(k2). Thus our algorithm uses space at most Õ(k2) at
any point during its computation.

References
1 Amihood Amir, Moshe Lewenstein, and Ely Porat. Faster algorithms for string matching with

k mismatches. Journal of Algorithms, 50(2):257–275, 2004.
2 Arturs Backurs and Piotr Indyk. Edit distance cannot be computed in strongly subquadratic

time (unless seth is false). In Proceedings of the forty-seventh annual ACM symposium on
Theory of computing STOC, pages 51–58, 2015.

3 Sudatta Bhattacharya and Michal Koucký. Locally consistent decomposition of strings with
applications to edit distance sketching. In Proceedings of the 55th Annual ACM SIGACT
Symposium on Theory of Computing, STOC(to appear), 2023. arXiv:2302.04475.

4 Robert S Boyer and J Strother Moore. A fast string searching algorithm. Communications of
the ACM, 20(10):762–772, 1977.

5 Dany Breslauer and Zvi Galil. Real-time streaming string-matching. ACM Transactions on
Algorithms (TALG), 10(4):1–12, 2014.

6 Timothy M Chan, Shay Golan, Tomasz Kociumaka, Tsvi Kopelowitz, and Ely Porat. Approx-
imating text-to-pattern hamming distances. In Proceedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, pages 643–656, 2020.

7 Panagiotis Charalampopoulos, Tomasz Kociumaka, and Philip Wellnitz. Faster approximate
pattern matching: A unified approach. In 2020 IEEE 61st Annual Symposium on Foundations
of Computer Science (FOCS), pages 978–989. IEEE, 2020.

8 Panagiotis Charalampopoulos, Tomasz Kociumaka, and Philip Wellnitz. Faster pattern
matching under edit distance: a reduction to dynamic puzzle matching and the seaweed
monoid of permutation matrices. In 2022 IEEE 63rd Annual Symposium on Foundations of
Computer Science (FOCS), pages 698–707. IEEE, 2022.

9 Raphaël Clifford, Allyx Fontaine, Ely Porat, Benjamin Sach, and Tatiana Starikovskaya.
Dictionary matching in a stream. In Algorithms-ESA 2015: 23rd Annual European Symposium,
Patras, Greece, September 14-16, 2015, Proceedings, pages 361–372. Springer, 2015.

10 Raphaël Clifford, Allyx Fontaine, Ely Porat, Benjamin Sach, and Tatiana Starikovskaya.
The k-mismatch problem revisited. In Proceedings of the twenty-seventh annual ACM-SIAM
symposium on Discrete algorithms SODA, pages 2039–2052. SIAM, 2016.

ICALP 2023

https://arxiv.org/abs/2302.04475

22:14 Streaming k-Edit Approximate Pattern Matching via String Decomposition

11 Raphaël Clifford, Tomasz Kociumaka, and Ely Porat. The streaming k-mismatch problem. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2019, pages 1106–1125. SIAM, 2019. doi:10.1137/1.9781611975482.68.

12 Richard Cole and Ramesh Hariharan. Approximate string matching: A simpler faster algorithm.
SIAM Journal on Computing, 31(6):1761–1782, 2002.

13 Zvi Galil and Raffaele Giancarlo. Improved string matching with k mismatches. ACM SIGACT
News, 17(4):52–54, 1986.

14 Arun Ganesh, Tomasz Kociumaka, Andrea Lincoln, and Barna Saha. How compression
and approximation affect efficiency in string distance measures. In Proceedings of the 2022
ACM-SIAM Symposium on Discrete Algorithms, SODA, pages 2867–2919, 2022. doi:10.1137/
1.9781611977073.112.

15 Paweł Gawrychowski and Tatiana Starikovskaya. Streaming dictionary matching with mis-
matches. Algorithmica, pages 1–21, 2019.

16 Pawel Gawrychowski and Przemyslaw Uznanski. Towards unified approximate pattern matching
for hamming and l_1 distance. In 45th International Colloquium on Automata, Languages,
and Programming (ICALP 2018). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2018.

17 Shay Golan, Tomasz Kociumaka, Tsvi Kopelowitz, and Ely Porat. The Streaming k-Mismatch
Problem: Tradeoffs Between Space and Total Time. In Inge Li Gørtz and Oren Weimann,
editors, 31st Annual Symposium on Combinatorial Pattern Matching (CPM 2020), volume
161 of Leibniz International Proceedings in Informatics (LIPIcs), pages 15:1–15:15, Dagstuhl,
Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.CPM.
2020.15.

18 Shay Golan, Tsvi Kopelowitz, and Ely Porat. Towards optimal approximate streaming pattern
matching by matching multiple patterns in multiple streams. In 45th International Colloquium
on Automata, Languages, and Programming (ICALP 2018). Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik, 2018.

19 Shay Golan and Ely Porat. Real-time streaming multi-pattern search for constant alphabet.
In 25th Annual European Symposium on Algorithms (ESA 2017). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2017.

20 Richard M. Karp and Michael O. Rabin. Efficient randomized pattern-matching algorithms.
IBM Journal of Research and Development, 31(2):249–260, 1987. doi:10.1147/rd.312.0249.

21 Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast pattern matching in
strings. SIAM J. Comput., 6(2):323–350, 1977.

22 Tomasz Kociumaka, Ely Porat, and Tatiana Starikovskaya. Small-space and streaming pattern
matching with k edits. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer
Science (FOCS), pages 885–896. IEEE, 2022.

23 Gad M Landau and Uzi Vishkin. Efficient string matching with k mismatches. Theoretical
Computer Science, 43:239–249, 1986.

24 Gad M Landau and Uzi Vishkin. Fast parallel and serial approximate string matching. Journal
of algorithms, 10(2):157–169, 1989.

25 Benny Porat and Ely Porat. Exact and approximate pattern matching in the streaming model.
In 2009 50th Annual IEEE Symposium on Foundations of Computer Science, pages 315–323.
IEEE, 2009.

26 Jakub Radoszewski and Tatiana Starikovskaya. Streaming k-mismatch with error correcting
and applications. Information and Computation, 271:104513, 2020.

27 Tatiana Starikovskaya. Communication and streaming complexity of approximate pattern
matching. In 28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017).
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2017.

https://doi.org/10.1137/1.9781611975482.68
https://doi.org/10.1137/1.9781611977073.112
https://doi.org/10.1137/1.9781611977073.112
https://doi.org/10.4230/LIPIcs.CPM.2020.15
https://doi.org/10.4230/LIPIcs.CPM.2020.15
https://doi.org/10.1147/rd.312.0249

On Computing the Vertex Connectivity of 1-Plane
Graphs
Therese Biedl #

David R. Cheriton School of Computer Science, University of Waterloo, Canada

Karthik Murali #

School of Computer Science, Carleton University, Ottawa, Canada

Abstract
A graph is called 1-plane if it has an embedding in the plane where each edge is crossed at most
once by another edge. A crossing of a 1-plane graph is called an ×-crossing if there are no other
edges connecting the endpoints of the crossing (apart from the crossing pair of edges). In this paper,
we show how to compute the vertex connectivity of a 1-plane graph G without ×-crossings in linear
time.

To do so, we show that for any two vertices u, v in a minimum separating set S, the distance
between u and v in an auxiliary graph Λ(G) (obtained by planarizing G and then inserting into
each face a new vertex adjacent to all vertices of the face) is small. It hence suffices to search for
a minimum separating set in various subgraphs Λi of Λ(G) with small diameter. Since Λ(G) is
planar, the subgraphs Λi have small treewidth. Each minimum separating set S then gives rise to
a partition of Λi into three vertex sets with special properties; such a partition can be found via
Courcelle’s theorem in linear time.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms

Keywords and phrases 1-Planar Graph, Connectivity, Linear Time, Treewidth

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.23

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2212.06782 [2]

Funding Therese Biedl: Supported by NSERC.
Karthik Murali: Research done in part for the author’s Master’s thesis at University of Waterloo [26].

1 Introduction

The class of planar graphs, which are graphs that can be drawn on the plane without crossings,
is fundamental to both graph theory and graph algorithms. Many problems can be more
efficiently solved in planar graphs than in general graphs. However, real-world graphs, such
as social networks and biological networks, are typically non-planar. But they are often
near-planar, i.e., close to planar in some sense. One such graph class is the 1-planar graphs,
i.e., graphs that can be drawn on the plane such that each edge is crossed at most once.
Introduced in 1965 [28], both structural and algorithmic properties of 1-planar graphs have
been studied extensively, see [17, 21] for overviews.

In this paper, we look at the problem of vertex connectivity for 1-planar graphs. The
problem of vertex connectivity is fundamental in graph theory: given a connected graph G,
what is the size (denoted by κ(G)) of the smallest separating set, i.e., set of vertices whose
removal makes G disconnected? Vertex connectivity has many applications, e.g. in network
reliability and for measuring social cohesion.

EA
T
C
S

© Therese Biedl and Karthik Murali;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 23; pp. 23:1–23:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:biedl@uwaterloo.ca
https://orcid.org/0000-0002-9003-3783
mailto:karthikmurali@cmail.carleton.ca
https://orcid.org/0009-0003-3985-3609
https://doi.org/10.4230/LIPIcs.ICALP.2023.23
https://arxiv.org/abs/2212.06782
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 On Computing the Vertex Connectivity of 1-Plane Graphs

Known Results. For an n-vertex m-edge graph G, one can test in linear (i.e. O(m+n)) time
whether κ(G) ≥ 1 with a graph traversal algorithm. In 1969, Kleitman [20] showed how to
test κ(G) ≤ k in time O(k2nm). Subsequently, [29] and [18] presented linear-time algorithms
to decide k-connectivity for k = 2 and k = 3 respectively. (Some errors in [18] were corrected
in [15].) For κ(G) = 4, the first O(n2) algorithm was by Kanevsky and Ramachandran
[19]. For κ(G) ∈ O(1), the first O(n2) algorithm was by Nagamochi and Ibaraki [27]. For
general k and m, the fastest running times are Õ(nω + nkω) [25] and Õ(kn2) [16]. (Here,
Õ(g(n)) = O(g(n) logc n) for some constant c, and ω < 2.372 is the matrix multiplication
exponent.) Both algorithms are randomized and are correct with high probability. The
fastest deterministic algorithm takes time O(m · (n + min{k5/2, kn3/4})) [12].

Recent breakthroughs brought the run-time to test k-connectivity down to Ô(m +
min{n1.75k1+k/2, n1.9k2.5}) when k < n1/8 [13], and to Õ(m + nk3) for randomized al-
gorithms [11]. (Here Ô(g(n)) = O(g(n)1+o(1)).) Very recently, Li et al. [24] showed that
in fact Ô(m) run-time can be achieved for randomized algorithms, independent of k. On
the other hand, the problem of obtaining a deterministic linear time algorithm for deciding
vertex connectivity is still open.

Vertex Connectivity in Planar Graphs. Any simple planar graph G has at most 3n − 6
edges, hence has a vertex with at most five distinct neighbours, so κ(G) ≤ 5. Since κ(G) ≤ 3
can be tested in linear time, it only remains to test whether κ(G) = 4 or κ(G) = 5. In 1990,
Laumond [23] gave a linear time algorithm to compute κ(G) for maximal planar graphs. In
1999, Eppstein gave an algorithm to test vertex connectivity of all planar graphs in linear
time [8]. His algorithm inspired the current work, and so we review it briefly here. Given a
planar graph G with a fixed planar embedding (a plane graph), let the radialization be the
plane graph obtained by adding a new vertex inside each face of G and connecting this face
vertex to all vertices on the boundary of the face. The subgraph formed by the newly added
edges is called the radial graph R(G) [10]. The following is known.

▶ Theorem 1 (attributed to Nishizeki in [8]). Let S be a minimal separating set of a plane
graph G. Then there is a cycle C in R(G) with V (C) ∩ V (G) = S such that there are vertices
of G inside and outside C.

It hence suffices to find a shortest cycle C in R(G) for which V (C) ∩ V (G) is a separating
set of G. Since κ(G) ≤ 5, this reduces to the problem of testing the existence of a bounded-
length cycle (with some separation properties) in a planar graph. Eppstein solves this in
linear time by modifying his planar subgraph isomorphism algorithm suitably [8].

Our Results. In this paper, we consider testing vertex connectivity of near-planar graphs,
a topic that to our knowledge has not been studied before. We focus on 1-planar graphs
that come with a fixed 1-planar embedding (1-plane graphs), since testing 1-planarity is
NP-hard [14]. Since a simple 1-planar graph G has at most 4n−8 edges [3], we have κ(G) ≤ 7.
For technical reasons we assume that G has no ×-crossing, i.e., a crossing without other
edges among the endpoints of the crossing edges.

Let G be a 1-plane graph without ×-crossings. Inspired by Eppstein’s approach, we define
a planar auxiliary graph Λ(G), and show that G has a separating set of size k if and only
if Λ(G) has a co-separating triple with size- and diameter-restrictions. (Roughly speaking,
“co-separating triple” means that the vertices of Λ(G) can be partitioned into three sets
(A, X, B), such that X separates A, B in Λ(G) while simultaneously X ∩ V (G) separates
A ∩ V (G) and B ∩ V (G) in G. Detailed definitions are in Section 2.)

T. Biedl and K. Murali 23:3

(a) (b)

Figure 1 Theorem 2 does not hold for 1-plane graphs with ×-crossings.

▶ Theorem 2. Let G be a 1-plane graph without ×-crossings. Then G has a separating set of
size at most k if and only if Λ(G) has a co-separating triple (A, X, B) where |X ∩ V (G)| ≤ k

and the subgraph of Λ(G) induced by X has diameter at most 4k.

Let S be a minimum separating set of G and let (A, X, B) be the co-separating triple
derived from S with this theorem. Since vertices of X are close to each other in Λ(G), we can
project (A, X, B) onto a subgraph Λi ⊆ Λ(G) of diameter O(|S|) to obtain a co-separating
triple (Ai, X, Bi) of Λi. Conversely, we will show that with a suitable definition of subgraph
Λi every co-separating triple (Ai, X, Bi) of Λi can be extended into a co-separating triple
(A, X, B) of Λ(G) from which we can obtain X ∩ V (G) as a separating set of G. Since Λi

is planar and has diameter O(|S|), it has treewidth O(|S|). Using standard approaches for
graphs of small treewidth, and by κ(G) ≤ 7, we can search for (Ai, X, Bi) in linear time.
Therefore we will obtain:

▶ Theorem 3. The vertex connectivity of a 1-plane graph without ×-crossings can be computed
in linear time.

Limitations. We briefly discuss here the difficulty with ×-crossings. Figure 1(a) shows
two copies of a graph that are interleaved to produce a 1-planar embedding such that each
crossing is an ×-crossing. When these two graphs are fused together by identifying two pairs
of vertices that are diametrically opposite to each other (shown by grey blobs in Figure 1(a)),
we get the graph G in Figure 1(b). The two fused vertices form a separating set of G.
Moreover, this is the only minimum separating set since both graphs in Figure 1(a) are
3-connected. This example can be extended (by adding more concentric layers and more
vertices within each layer) to show that the distance between the two fused vertices can be
made arbitrarily large even in Λ(G). Thus Theorem 2 fails to hold for graphs with ×-crossings,
and in consequence our techniques to test vertex connectivity cannot be extended to them.

Organization of the Paper. In Section 2, we lay out the preliminaries, defining co-separating
triples and Λ(G) for 1-plane graphs. In Section 3, we generalize Theorem 1 to the class of
full 1-plane graphs, which are 1-plane graphs where the endpoints of each crossing induce
the complete graph K4. Using this result we prove Theorem 2 in Section 4, and turn it into
a linear-time algorithm in Section 5. We summarize in Section 6.

ICALP 2023

23:4 On Computing the Vertex Connectivity of 1-Plane Graphs

2 Preliminaries

We assume familiarity with graphs, see e.g. [7]. All graphs in this paper are assumed to
be connected and have no loops. A separating set of a graph G is a set S of vertices such
that G \ S is disconnected; we use the term flap for a connected component of G \ S. Set
S separates two sets A, B if there is no path connecting A and B in G \ S. The vertex
connectivity of G, denoted κ(G), is the cardinality of a minimum separating set. For any
vertex set A, an A-vertex is a vertex that belongs to A; we also write G-vertex for a vertex
of V (G).

A drawing of a graph in the plane is called good if edges are simple curves that intersect
only if they properly cross or have a common endpoint, any two edges intersect at most once,
and no three edges cross in a point. A 1-planar graph is a graph that has a good drawing
in the plane where each edge is crossed at most once; such a drawing is called a 1-planar
drawing and a graph with a given 1-planar drawing is called a 1-plane graph. Throughout
the paper, we assume that we are given a 1-plane graph G.

Let {(u, v), (w, x)} be a crossing in G, i.e., edges (u, v) and (w, x) cross each other. The
vertices {u, v, w, x} are called endpoints of the crossing; these are four distinct vertices since
the drawing is good. Two endpoints are called consecutive if they are not the two ends
of (u, v) or (w, x). We distinguish six types of crossings by whether consecutive endpoints
are adjacent (see Figure 2). As in [9], we call a crossing full if {u, v, w, x} induces K4, and
almost-full if {u, v, w, x} induces K4 minus one edge.1 We call it bowtie if {u, v, w, x} induces
a cycle, arrow if {u, v, w, x} induces K1,3 plus one edge, chair if {u, v, w, x} induces a path
of length three (the length of a path is its number of edges), and the crossing is an ×-crossing
otherwise (no edges connecting consecutive endpoints of the crossing). For an almost-full
crossing, there are exactly two consecutive non-adjacent endpoints; we call these the wing
tips and the other two endpoints the spine-vertices. For an arrow crossing, depending on
whether an endpoint is adjacent to zero or two of its consecutive endpoints, we call it the
tail or tip; the other two endpoints are the base vertices.

spine

wing tips

tip

tail

base

Figure 2 Types of crossings. From left to right: Full, almost-full, bowtie, arrow, chair and ×.

The planarization of G, denoted G×, is obtained by replacing any crossing {(u, v), (w, x)}
with a dummy vertex, i.e., remove the crossing edges and insert (at the point where the
crossing used to be) a new vertex adjacent to all of u, v, w, x. The resulting drawing is planar,
i.e., has no crossings. In a planar drawing Γ, a face is a maximal region of R2 \ Γ. Drawing
Γ defines at each vertex v the rotation ρ(v), which is the circular list of incident edges and
faces, ordered clockwise.

1 If G has parallel edges, then “{u, v, w, x} induces graph H” is intended to mean “the underlying simple
graph of the graph induced by {u, v, w, x} is H”.

T. Biedl and K. Murali 23:5

Pre-processing. In Figure 2, we assumed that any edge (u, x) between consecutive endpoints
of a crossing is actually drawn near that crossing, i.e., G× contains a face incident to (u, x)
and the dummy vertex of the crossing. (We call such a face a kite face and the edge a kite
edge.) In general this may not be true. But if (u, x) exists elsewhere in the drawing, then
we can duplicate it and insert it as a kite edge. This affects neither 1-planarity nor vertex
connectivity nor crossing type, so assume from now on that at any crossing all edges among
consecutive endpoints exist as kite edges. Since we never create a face of G× that is bounded
by two edges, graph G continues to have at most 4n − 8 edges.

Radial Planarization. Recall that Eppstein [8] used the radialization to compute the vertex
connectivity of a planar graph. We now generalize this concept to our 1-plane graph G as
follows. The radial planarization, denoted Λ(G), is obtained by first planarizing G to obtain
G×, and then radializing G× (see Figure 3). In other words, we add a face vertex f inside
each face F of G×, and for every incidence of F with a vertex v we add an edge (v, f), drawn
inside F and inserted in the drawing of Λ(G) such that it bisects the occurrence of F in the
rotation ρ(v). (Repeated incidences of F with v give rise to parallel edges (f, v).) As in [10],
we use the term radial graph for the subgraph R(G) of Λ(G) formed by the edges incident
with face vertices. Note that Λ(G) has three types of vertices: G-vertices, dummy vertices
that replace crossings of G, and face vertices. For a cycle C in Λ(G), we define the shortcut
VG(C) := V (G) ∩ V (C) for the G-vertices of C.

(a) (b) (c)

Figure 3 (a) A 1-plane graph G. (b) Its radial planarization Λ(G). (c) Λ(G) if G is an arrow
crossing. Face vertices are crosses, dummy vertices are white squares, edges of R(G) are dashed.

Co-separating Triple. We now clarify what it means to be separating in G and Λ(G)
simultaneously. We will actually give this definition for an arbitrary graph Λ that shares
some vertices with G (since it will later be needed for graphs derived from Λ(G)).

▶ Definition 4 (Co-separating triple). Let Λ be a graph that shares some vertices with G. A
partition of the vertices of Λ into three sets (A, X, B) is called a co-separating triple of Λ if
it satisfies the following properties:
1. Each of A, X and B contains at least one G-vertex.
2. For any two vertices a ∈ A and b ∈ B, there is no edge (a, b) in either E(Λ) or E(G).

We say that a co-separating triple of Λ has diameter d if any two vertices of X have
distance at most d in Λ. When Λ = Λ(G), then all G-vertices belong to Λ, and since A and
B both contain G-vertices the following is immediate:

▶ Observation 5. If (A, X, B) is a co-separating triple of Λ(G), then X is a separating set
of Λ(G) and X ∩ V (G) is a separating set of G.

ICALP 2023

23:6 On Computing the Vertex Connectivity of 1-Plane Graphs

3 Full 1-Plane Graphs

In this section, we study full 1-plane graphs, i.e., 1-plane graphs where all crossings are full.
In this case, we will find a co-separating triple (A, X, B) that has a special form (this will be
needed in Section 4): Vertex set X contains no dummy vertices, forms a cycle C in R(G),
and A and B are exactly the vertices inside and outside this cycle in the planar drawing of
Λ(G). (In other words, we generalize Theorem 1.)

▶ Theorem 6. Let G be a full 1-plane graph and S be a minimal separating set of G. Then
there is a cycle C in R(G) such that C does not visit dummy vertices, VG(C) = S, and there
are vertices of G inside and outside C.

Proof. The broad idea is to take a maximal path in R(G) that alternates between S-vertices
and face vertices with suitable properties, and then close it up into a cycle C of R(G) that
separates two vertices of G. Hence C automatically does not visit dummy vertices and
VG(C) = S since S is minimal. We explain the details now.

Call a face F of G× a transition face if F is either incident to an edge between two
S-vertices, or F is incident to vertices from different flaps of G \ S. The corresponding
face vertex in Λ(G) is called a transition-face vertex. By walking along the boundary of a
transition face, one can easily show the following (see the full version [2]):

▷ Claim 7. Every transition face F contains at least two vertices of S or two incidences
with the same vertex of S.

In consequence, any transition-face vertex has (in R(G)) two edges to vertices of S.
Vice versa, any S-vertex v has (in R(G)) two transition-face neighbours, because in the
planarization G× we transition at v from edges leading to one flap of G \ S to edges leading
to another flap and back; this can happen only at transition faces. See the full version [2] for
a proof of the following claim (and for the formal definition of “clockwise between”).

▷ Claim 8. Let (v, t1) and (v, t2) be two edges of G such that v ∈ S and t1 and t2 are in
different flaps of G \ S. Then there exists a transition face incident to v that is clockwise
between (v, t1) and (v, t2).

With this, it is obvious that we can find a simple cycle C that alternates between
transition-face vertices and S-vertices, but we need to ensure that C has vertices of G inside
and outside, and for this, we choose C more carefully. Formally, let v1 be an arbitrary
S-vertex. Let P = v1 . . . vk be a simple path that alternates between transition-face vertices
and S-vertices and that is maximal in the following sense: vk ∈ S, and for any transition-face
vertex vk+1 adjacent to vk and any S-vertex vk+2 adjacent to vk+1, at least one of vk+1, vk+2
already belongs to P . Since vk ∈ S and S is minimal, vk has neighbours t1, t2 in different
flaps of G\S. Applying Claim 8 twice gives a transition face F clockwise between (vk, t1) and
(vk, t2), and a transition face F ′ clockwise between (vk, t2) and (vk, t1). If k > 1, then (up to
renaming of t1, t2, F ′) we may assume that vk−1 is the face vertex of F ′. Hence for k > 1,
edge (vk, f) (where f is the face vertex of F) is not on P , and the same holds vacuously also
if k = 1. We have cases:

In the first case, f ∈ P , say f = vi for some 1 ≤ i ≤ k − 1 (Figure 4(a)). Then
C := vivi+1 . . . vkvi is a cycle with t1 and t2 on opposite sides.
In the second case f /∈ P . By Claim 7, R(G) contains at least two edges e, e′ that connect
f to S-vertices. Up to renaming we may assume that e = (vk, f). Consider extending
P via e and e′. By maximality of P the result is non-simple, and by f /∈ P therefore
e′ = (f, vi) for some 1 ≤ i ≤ k.

T. Biedl and K. Murali 23:7

t1

vi+1 vkvi

f
vi−1

vk−1

t2

(a)

t1

vi+1 vi f

vi−1

vk

t2

vk−1

(b)

f

t1 t2
u
vk
vk−1

(c)

Figure 4 Constructing the cycle C (bold) in R(G).

If 1 ≤ i ≤ k − 1 (Figure 4(b)), then define simple cycle C := vivi+1 . . . vkfvi and observe
that it has t1 and t2 on opposite sides. Otherwise (i = k) both edges e, e′ connect vk to
f (Figure 4(c)), and we let C be the cycle consisting of e and e′. There can be parallel
edges incident to f only because face F of G× was incident to vk repeatedly. Edges e, e′

were then added to Λ(G) in such a way that at least one other G-vertex on the boundary
of F lies between those incidences on either side of cycle C.

So in either case we have constructed a cycle C in R(G) with VG(C) ⊆ S that does not
visit dummy vertices and with two G-vertices (say a and b) inside and outside C. To show
that VG(C) = S, it is sufficient (by minimality of S) to show that VG(C) is separating in G.
To see this, fix any path π from a to b in G and let πΛ be the corresponding path in Λ(G)
obtained by replacing crossings by dummy vertices. Path πΛ must intersect C, but it uses
only G-vertices and dummy vertices while C uses only G-vertices and face vertices, so πΛ
intersects C in a vertex of G and VG(C) hence separates a from b in G. ◀

4 1-Plane Graphs Without ×-Crossings

In this section, we prove Theorem 2: Minimal separating sets correspond to co-separating
triples with small diameter. One direction is easy: If Λ(G) has a co-separating triple (A, X, B)
with |V (G) ∩ X| ≤ k, then from Observation 5, G has a separating set of size at most k.

Proving the other direction is harder, and we first give an outline. For the rest of this
section, fix a minimal separating set S, and two arbitrary flaps ϕ1, ϕ2 of G \ S. We first
augment graph G to Gaug by adding more edges; this is done to reduce the types of crossings
that can exist and thereby the number of cases. (Augmenting the graph is only used as a
tool to prove Theorem 2; the vertex connectivity algorithm does not use it.) We then find a
cycle C for Λ(Gaug) with vertices of G inside and outside C such that all vertices of S are
in the neighbourhood of C. To do so we temporarily modify Gaug further to make it a full
1-plane graph G+

aug, appeal to Theorem 6, and show that the resulting cycle can be used
for C. By setting Xaug = V (C) ∪ S, this cycle gives a co-separating triple (Aaug, Xaug, Baug)
of Λ(Gaug), and using C we can argue that the diameter of the graph induced by Xaug is
small. Finally we undo the edge-additions to transfer the co-separating triple from Λ(Gaug)
to Λ(G).

Augmentation. We define the augmentation of G with respect to S, ϕ1, ϕ2 to be the graph
Gaug := Gaug(S, ϕ1, ϕ2) obtained as the result of the following iterative process:

ICALP 2023

23:8 On Computing the Vertex Connectivity of 1-Plane Graphs

For any two consecutive endpoints u, x of a crossing, if there is no kite edge (u, x)
and it could be added without connecting flaps ϕ1, ϕ2, then add the kite edge, update
the flaps ϕ1 and ϕ2 (because they may have grown by merging with other flaps), and
repeat.

By construction S remains a separating set with flaps ϕ1, ϕ2 in Gaug, and it is minimal
since adding edges cannot decrease connectivity. Also, one can easily show the following
properties of crossings in Gaug (here not having ×-crossings is crucial), see Figure 5 for an
illustration, and the full version [2] for details.

x v

u w

φ1 S or φ2

φ2 S

OR

x v

u w

Figure 5 At a chair crossing, we can always add an edge to create an arrow-crossing.

▶ Observation 9. The crossings of Gaug = Gaug(S, ϕ1, ϕ2) have the following properties:
1. Any crossing is full, almost-full or an arrow crossing.
2. At any almost-full crossing, the spine vertices belong to S and the wing tips belong to ϕ1

and ϕ2.
3. At any arrow crossing, the tip belongs to S, the tail belongs to one of ϕ1, ϕ2, and the base

vertices belong to the other of ϕ1, ϕ2.

Extending Theorem 1? Note that we expanded Theorem 1 (for plane graphs) to Theorem 6
(for full 1-plane graphs), but as we illustrate now, it cannot be expanded to 1-plane graphs
without ×-crossings. One example for this is the graph that exists of exactly one arrow
crossing (see Figure 3(c)), because the tip is a separating set, but there is no 2-cycle in R(G)
that contains the tip. For an example with higher connectivity, consider Figure 6. The figure
shows a 1-plane graph where each crossing is an arrow crossing or a chair crossing. The
graph is 4-connected and a minimum separating set S is shown by vertices marked with
white disks. One can verify that in the radial planarization of the graph, there is no 8-cycle
in R(G) that contains all vertices in S. (This example will also be used later as running
example for our approach.)

Cycle C in Λ(Gaug). So we cannot hope to find a cycle C in Λ(Gaug) with G-vertices on
both sides that goes exactly through S. But we can find a cycle C that is “adjacent” to
all of S. To make this formal, define for a cycle C in Λ(Gaug) the set V×(C) to be the set
of all vertices of C that are vertices of G×

aug, i.e., they are G-vertices or dummy vertices of
Λ(Gaug).

▶ Lemma 10. There is a cycle C in Λ(Gaug) that uses only edges of R(Gaug) and such that
(1) every vertex in V×(C) is either in S or is a dummy vertex adjacent to an S-vertex,
(2) every S-vertex is either in V×(C) or adjacent to a dummy vertex in V×(C),
(3) there are G-vertices that are not in S both inside and outside C, and
(4) S separates G-vertices inside C from G-vertices outside C in Gaug.

T. Biedl and K. Murali 23:9

φ1 φ1

φ1
φ2φ2

φ2

Figure 6 A 4-connected 1-plane graph G, its augmentation Gaug with respect to the minimum
separating set S (white disks, the added edge is green/dot-dashed), and its radial planarization
Λ(Gaug). Note that the unique chair crossing in G becomes an arrow crossing in Gaug. The radial
graph does not have an 8-cycle passing through S.

Proof. As outlined, we first convert Gaug to a full 1-plane graph G+
aug as follows (see Figure 7

for the abstract construction and Figure 8(a) for the running example): At every almost-full
crossing and every arrow crossing, replace the crossing with a dummy vertex. At every arrow
crossing, furthermore add a base edge, which connects the base vertices and is inserted so
that it forms a full crossing. Since every crossing of Gaug is full, almost-full or arrow, all
crossings of G+

aug are full. We use D := V (G+
aug) \ V (G) for the new vertices and note that

every vertex in D is adjacent to an S-vertex and corresponds to a dummy vertex in Λ(Gaug).

S S

φ1 φ2

S S

φ1 φ2

→

S S

φ1 φ2

S S

φ1 φ2

S

φ1 φ1

φ2

S

φ1 φ1

φ2

→

S

φ1 φ1

φ2

S

φ1 φ1

φ2

Figure 7 From Gaug to G+
aug. Vertices in D are grey squares, the base edge is dashed.

Define S+ := S ∪ D and observe that this is a separating set of G+
aug since no edge of

G+
aug connects ϕ1 with ϕ2. Apply Theorem 6 to G+

aug and a subset of S+ that is minimally
separating. This gives a cycle C in R(G+

aug) such that VG+
aug

(C) ⊆ S+, C does not visit
dummy vertices of G+

aug, and there are G+
aug-vertices inside and outside C. See Figure 8(b).

We claim that C satisfies all conditions, for which we first need to show that it actually is a
cycle in Λ(Gaug). The only difference between Λ(Gaug) and Λ(G+

aug) is at each base edge:
Here Λ(G+

aug) has an extra vertex c (the dummy vertex for the crossing created by the base
edge) and the four incident face vertices, while Λ(Gaug) has only the two face vertices of the
kite faces at the arrow crossing. But by Theorem 6 cycle C does not visit c, so C also is a
cycle of Λ(Gaug).

To see that C satisfies (1), observe that V×(C) = VG+
aug

(C) ⊆ S+ = S ∪ D, and every
vertex of D is a dummy vertex of Λ(Gaug) that is adjacent to an S-vertex. Next we show (3).
We know that there exist two vertices a, b ∈ V (G+

aug) inside and outside C. If a ∈ S ∪ D,
then inspection of Figure 7 shows that a has a neighbour a′ in ϕ1 ∪ ϕ2 (hence a′ ∈ V (G) but
a′ ̸∈ S ∪ D). By V×(C) ⊆ S ∪ D therefore a′ is on the same side of C as a. Up to renaming
hence a /∈ S ∪ D, and likewise b /∈ S ∪ D. This proves (3).

ICALP 2023

23:10 On Computing the Vertex Connectivity of 1-Plane Graphs

Before proving (2) and (4), we first show that the same vertices a and b are separated (in
Gaug) by the set S′ consisting of all S-vertices that are in V×(C) or adjacent to V×(C) ∩ D.
To do so, pick an arbitrary path π from a to b in Gaug. We define a path π+ in G+

aug that
corresponds to π as follows: use the same set of edges of π, except if π used an edge (r, s)
that is part of an almost-full or an arrow crossing. At an almost-full crossing, we replace
(r, s) by a path r-d-s where d ∈ D is the dummy vertex. At an arrow crossing we have two
cases. If r, s were the base vertices, then we replace (r, s) by the base edge. If r, s were tip
and tail, then we replace (r, s) by r-d-s where d ∈ D is the dummy vertex.

Since π+ is a path from inside C to outside C in Gaug, it contains a vertex w ∈ V×(C)
⊆ S ∪ D. If w ∈ S, then define t := w. If w ∈ D, then near w path π+ must have had the
form r-w-s for some (r, s) ∈ π, due to our construction of π+. Furthermore, (r, s) either
belongs to an almost-full crossing, or to an arrow crossing with (r, s) connecting the tip and
tail. For both types of crossings, one of r, s belongs to S, and we define t to be this vertex.
So we have found a vertex t ∈ S on π that is either on V×(C) or adjacent to a dummy vertex
d ∈ D ∩ V×(C). Therefore t ∈ S′ and so any path from a to b intersects S′. So S′ ⊆ S is a
separating set of Gaug, hence by minimality S′ = S, which proves (2). Also the G-vertices a

and b are inside and outside C and separated by S, which proves (4). ◀

Notice that this lemma immediately implies a co-separating triple (Aaug, Xaug, Baug)
of Gaug: Fix such a cycle C, let Xaug = V (C) ∪ S and let Aaug and Baug be the sets of
vertices of Λ(Gaug) \ Xaug inside and outside C respectively. See Figure 8(c). Clearly this is
a partition, and by Lemma 10(3), both Aaug and Baug have a G-vertex. As Aaug and Baug
are on opposite sides of cycle C, V (C) ⊆ Xaug separates Aaug and Baug in Λ(Gaug), and by
Lemma 10(4), S ⊆ Xaug separates Aaug ∩ V (G) and Baug ∩ V (G) in Gaug. Therefore there
can be no edge (a, b) with a ∈ Aaug and b ∈ Baug in either Λ(Gaug) or Gaug.

(a) (b)

Xaug

Aaug

Baug

(c)

Figure 8 Finding a co-separating triple for the graph G from Figure 6. (a) Graph G+
aug; vertices

in D are grey squares and base edges are dashed. (b) Cycle C for the minimal cutting set D; we do
not show the face-vertices. Note that every vertex of S is adjacent (in Gaug) to a dummy-vertex on
C. (c) The resulting co-separating triples (Aaug, Xaug, Baug).

Small Diameter. In order to prove Theorem 2, we first argue that the subgraph of Λ(Gaug)
induced by Xaug has small diameter. Clearly the diameter of this graph is in O(|C|) since all
vertices of Xaug are on C or adjacent to it by Lemma 10(2). However, |C| may not be in
O(|S|), which is why we need a more careful analysis to bound the length of a walk connecting
two vertices of Xaug. Furthermore, to transfer the diameter-bound to Λ(G) later, we need to
exclude the edges that were added in Gaug from such walks. Write Eaug := E(Gaug) \ E(G)

T. Biedl and K. Murali 23:11

(in Figure 6 the unique edge in Eaug is green/dash-dotted). Recall that edges in Eaug are
kite edges, hence connect two vertices of G and have no crossing, therefore these edges also
exist in Λ(Gaug).

▶ Lemma 11. For any two vertices u, v ∈ Xaug, there is a walk W from u to v in Λ(Gaug)
that has length at most 4|S| and does not use edges of Eaug.

Proof. Since u, v ∈ Xaug, they are either in V×(C) (recall that this includes dummy vertices
of Λ(Gaug) on C), or face vertices on C, or in S. In the latter two cases they are within
distance one of some vertex in V×(C). So there exist vertices u′, v′ ∈ V×(C) that are within
distance at most one of u and v, respectively. Enumerate one of the paths between u′, v′ along
cycle C as x0, . . . , x2t with x0 = u′ and x2t = v′. (Observe that the vertices in V×(C) are
exactly the even-indexed ones since C uses edges of R(Gaug).) Each vertex x2i for i = 0, . . . , t

is either in S (then set s2i := x2i), or by Lemma 10(1) it is a dummy vertex that has a
neighbour s2i ∈ S. Define π to be the walk

u, u′=x0, s0, x0, x1, x2, s2, x2, x3, . . . , x2i−1, x2i, s2i, x2i, x2i+1, . . . , s2t, x2t=v′, v,

i.e., it is the walk from u to v via C with detours at even-indexed vertices to reach an
S-vertex. Observe that π has two properties: (1) At most three consecutive vertices in π do
not belong to S, and at the ends there are at most two consecutive vertices not in S; (2) if
y, z are two consecutive vertices of π that are different, then at least one of them is a face
vertex or a dummy vertex, hence (y, z) ̸∈ Eaug. We call a walk that satisfies (1) and (2) an
S-hopping walk.

Let W be the shortest S-hopping walk from u to v. Observe that W can visit any S-vertex
at most once, for otherwise we could find a shorter S-hopping walk by omitting the part
between a repeated S-vertex. Since W contains at most three vertices between any two
S-vertices, and at most two vertices not in S at the beginning and end, it has length at most
4|S|. ◀

From Gaug to G. We now show how to transform (Aaug, Xaug, Baug) into a co-separating
triple (A, X, B) of Λ(G) of small diameter. Recall that Gaug = G ∪ Eaug, so Λ(Gaug) is
obtained from Λ(G) by inserting the edges Eaug and splitting any face vertex of a face that
was divided by an edge in Eaug. We undo this in two parts. First, remove the edges of
Eaug from Λ(Gaug). This does not affect the separation properties of (Aaug, Xaug, Baug) since
we only remove edges, and it maintains the diameter since the walks of Lemma 11 do not
use Eaug. The second step is to identify face vertices that belong to the same face of G.
Define sets A, B, X to be the same as Aaug, Baug, Xaug except that face vertices that were
identified need to be replaced. To do so, observe that Aaug and Baug are on opposite sides of
C, and so no face vertex of Aaug can get identified with a face vertex of Baug unless they
both get identified with a face vertex of C. Thus the resulting face vertices come in three
kinds: entirely composed of face vertices of Aaug (add these to A), entirely composed of face
vertices of Baug (add these to B), and containing a face vertex of C (add these to X).

Clearly A, B, X contain vertices of G since Aaug, Baug, Xaug did and we only identified
face vertices. Assume for contradiction that (a, b) is an edge of G or Λ(G) for some a ∈ A

and b ∈ B. Then (a, b) is not an edge in Gaug or Λ(Gaug). Thus at least one of a, b must be a
face vertex that resulted from identifications. But with our choice of A and B then there was
some edge (a′, b′) in Λ(Gaug) connecting vertices in Aaug and Baug, a contradiction. Thus
(A, X, B) is the desired co-separating triple and Theorem 2 holds.

ICALP 2023

23:12 On Computing the Vertex Connectivity of 1-Plane Graphs

5 Computing Vertex Connectivity in Linear Time

In this section, we show how to use Theorem 2 to obtain a linear time algorithm for finding
the vertex connectivity of 1-plane graphs without ×-crossings. The crucial insight is that
we only need to find the smallest k for which there is a co-separating triple (A, X, B) with
|X ∩V (G)| = k. Moreover, the subgraph of Λ(G) induced by X has small diameter. Therefore
we can create some subgraphs Λ1, Λ2, . . . of Λ(G) that have small treewidth and X belongs
to at least one subgraph. (We assume that the reader is familiar with treewidth and its
implications for algorithms; see for example [4] or the full version [2].) We can search for a
co-separating triple within these subgraphs using standard approaches for graphs of bounded
treewidth, quite similar to the planar subgraph isomorphism algorithm by Eppstein [8].

The Graphs Λi. As a first step, we perform a breadth-first search in Λ(G) starting at an
arbitrary vertex (the root); let T be the resulting BFS-tree. For j = 1, 2, . . . let Vj (the jth
layer) be the vertices at distance j−1 from the root, and let d be the largest index where
Vj is non-empty. Define Vj := ∅ for any index j < 1 or j > d. For any a ≤ b, the notation
Λ[Va ∪ · · · ∪ Vb] will be a shortcut for the subgraph of Λ(G) induced by Va ∪ · · · ∪ Vb.

Assume that we know the size k ≤ 7 of the separating set that we seek (we will simply
try all possibilities for k later). Define w = 4k + 2 ≤ 30, so we know that any two
vertices in X (of some putative co-separating triple (A, X, B) that satisfies the conclusion of
Theorem 2) have distance at most w − 2 in Λ(G). Hence X belongs to Vi+1∪ . . . ∪Vi+w−2 for
some i ∈ {0, . . . , d−w+2}. Thus we will search for X within Λ[Vi+1∪ . . . ∪Vi+w−2], but to
guarantee that there are vertices representing A and B we also keep two extra layers above
and below (i.e., layers Vi−1, Vi, Vi+w−1, Vi+w). Furthermore, we add an edge set Ui−1 (‘upper
edges’) within Vi−1 and an edge set Li+w (‘lower edges’) within Vi+w that have some special
properties.

▷ Claim 12. For i ∈ {0, . . . , d−w+2}, there exist sets of edges Ui−1 (connecting vertices of
Vi−1) and Li+w (connecting vertices of Vi+w) such that the following holds:
1. Two vertices u, v ∈ Vi−1 can be connected via edges of Ui−1 if and only if there exists a

path in Λ[V1 ∪ · · · ∪ Vi−1] that connects u and v.
2. Two vertices u, v ∈ Vi+w can be connected via edges of Li+w if and only if there exists a

path in Λ[Vi+w ∪ · · · ∪ Vd] that connects u and v.
3. The graph Λi := Λ[Vi−1∪ . . . ∪Vi+w]∪Ui−1∪Li+w is planar and has radius at most w+2.
Furthermore,

∑d−w+2
j=0 |Uj |+|Lj | ∈ O(n) and we can compute these sets in time O(n).

Proof. For Ui−1, this is easy. If i = 0, 1 then Vi−1 is empty and U−1 = ∅ works. Otherwise,
pick an arbitrary vertex ri−1 in Vi−1, and let Ui−1 be the edges that connect ri−1 to all
other vertices of Vi−1. In consequence, all vertices of Vi−1 can be connected within Ui−1, but
this is appropriate since they can all be connected within the BFS-tree T , using only layers
1, . . . , i − 1 of T . Graph Λ[Vi−1 ∪· · ·∪ Vi+w] ∪Ui−1 is planar, because it can be obtained from
the planar graph Λ[V1 ∪ · · · ∪ Vi+w] by first contracting every vertex in layers 2, . . . , i − 2 into
its parent in T (yielding one super-node at the root), and then contracting this super-node
into ri−1.

For Li+w, existence likewise is easy (and was argued by Eppstein [8]): Simply contract
any edge of Λ[Vi+w ∪ · · · ∪ Vd] that has at least one endpoint not in Vi+w, and let Li+w be
the edges within Vi+w that remain at the end. However, it is not obvious how one could
implement contraction in overall linear time; we give an alternate approach for this in the
full version [2].

T. Biedl and K. Murali 23:13

Since both Ui−1 and Li+w can be seen as obtained via contractions, graph Λi is planar.
To prove the radius-bound, define r to be ri−1 if i ≥ 2 and to be the root of T otherwise.
Any vertex v ∈ Λi has distance at most w+2 from r, because we can go upward from v in T

at most w+1 times until we either reach a vertex v in Vi−1 (which is r=ri−1 or adjacent to
it due to Ui−1), or i ∈ {0, 1} and we reach the root of T (which is r). ◁

An example of graph Λi is given in the full version [2].

Co-separating Triples in Λi. We continue to assume that we know k ≤ 7 (and hence
w = 4k + 2 ≤ 30). Crucial for the correctness of our search for a co-separating triple in Λ(G)
is that it suffices to search in Λi for all i.

▶ Lemma 13. There exists a co-separating triple (A, X, B) of Λ(G) with diameter k if and
only if there exists an index i ∈ {0, . . . , w−d+2} and a co-separating triple (Ai, X, Bi) of Λi

with diameter k for which X ⊆ Λ[Vi+1 ∪ · · · ∪ Vi+w−2].

Proof. Let (A, X, B) be a co-separating triple of Λ(G). Since X has diameter at most w − 2,
all vertices of X lie in the layers i+1, . . . , i+w −2 for some index i. Let Ai and Bi be subsets
of A and B restricted to the vertices of Λi. We now show that (Ai, X, Bi) is a co-separating
triple of Λi. Clearly these sets partition Λi. Condition 1 (‘each set contains a G-vertex’)
clearly holds for X. To see that it holds for Ai, consider graph G in which X ∩V (G) separates
non-empty sets A ∩ V (G) and B ∩ V (G). Since G is connected, there exists an edge (a, x)
with a ∈ A ∩ V (G) and x ∈ X ∩ V (G). This edge may or may not exist in Λ(G), but if it
does not then it got replaced by a-c-x with a dummy vertex c. So a has distance at most
two from a vertex in Vi+1 ∪ · · · ∪ Vi+w−2 and hence belongs to Vi−1 ∪ · · · ∪ Vi+w, and so to
Λi and to Ai. The argument is symmetric for Bi.

Now we argue Condition 2 (‘no edges between Ai and Bi in Λi or G’). Fix two vertices
a ∈ Ai and b ∈ Bi. Since Ai ⊆ A and Bi ⊆ B, there is no edge (a, b) in either Λ(G) or G. So
we are done unless (a, b) is an edge of Ui−1 or Li+w. Assume (a, b) ∈ Li+w, the other case is
similar. By Claim 12(2), there exists a path π in Λ[Vi+w ∪ · · · ∪ Vd] connecting a and b. No
vertex of π belongs to X, and so the vertices of π either all belong to A or all belong to B

since (A, X, B) is co-separating. This contradicts a ∈ A and b ∈ B.
We now prove the other direction. Let (Ai, X, Bi) be a co-separating triple of some Λi

with X ⊆ Λ[Vi+1 ∪ · · · ∪ Vi+w−2]. We define A and B as follows. Begin with all vertices in Ai

and Bi, respectively; with this all vertices in Λi belong to one of A, X, B. Now consider any
vertex v that does not belong to Λi, so either v ∈ V1 ∪ · · · ∪ Vi−2 or v ∈ Vi+w+1 ∪ · · · ∪ Vd.
Assume the latter (the other case is similar), and let K be the component of Λ[Vi+w ∪· · ·∪Vd]
that contains v. By Claim 12(2), there exists a component K ′ of graph (Vi+w, Li+w) that
contains exactly the vertices of K ∩ Vi+w. The vertices of K ′ must either all be in Ai, or
they must all be in Bi, because they are in layer Vi+w (so not in X) and they are connected
via Li+w. Assign v (and actually all vertices of K) to A if V (K ′) ⊆ Ai, and to B otherwise.

We now show that partition (A, X, B) is a co-separating triple of Λ(G). Clearly Condition 1
holds since already Ai and Bi contain G-vertices. To show Condition 2, consider two vertices
a ∈ A and b ∈ B and assume for contradiction that there is an edge (a, b) in either G or
Λ(G). This means that at least one of a, b is not in Vi−1 ∪ · · · ∪ Vi+w, else edge (a, b) would
contradict that (Ai, X, Bi) was co-separating in Λi. Say a ∈ Vi+w+1 ∪ · · · ∪ Vd, all other cases
are similar. With this it is impossible that (a, b) is an edge of Λ(G): Such an edge would put
a, b into the same component of Λ[Vi+w ∪ · · · ∪ Vd], but by construction of A and B we know
that all vertices of such a component are put into the same set of A and B.

ICALP 2023

23:14 On Computing the Vertex Connectivity of 1-Plane Graphs

So (a, b) must be an edge of G\Λ(G), which means that it is crossed. Let c be the dummy
vertex on (a, b). If c ∈ A then (c, b) is an edge of Λ(G) with endpoints in A and B, which we
proved impossible already. Likewise c ∈ B is impossible, so we must have c ∈ X. But then
c ∈ Vi+1 ∪· · ·∪Vi+w−2, which puts its neighbour a into Vi ∪· · ·∪Vi+w−1, a contradiction. ◀

Subroutine (To Find a Separating Set of Size k). We continue to assume that we know
k ≤ 7 (and hence w = 4k + 2 ≤ 30). We also assume that edge-sets Uj and Lj have been
computed already for all possible indices j, and that the edges of Λ(G) have been split into
2d + 1 sets E0, E0,1, . . . , Ed−1,d, Ed where Ej (for j = 0, . . . , d) are all edges within layer Vj

while Ej−1,j (for j = 1, . . . , d) are all edges connecting Vj to Vj+1. Perform the following for
i = 0, . . . , d−w+2:
1. Compute Λi. This takes time O(|E(Λi)|) time: The vertices are Vi−1 ∪ · · · ∪ Vi+w, the

edges are Ui−1 ∪Ei−1,i ∪Ei ∪· · ·∪Ei+w−1,i+w ∪Li+w, and all these sets are pre-computed.
2. Since Λi is a planar graph with radius at most w + 2, it has treewidth O(w) [8] and

a corresponding tree decomposition T can be found in O(|E(Λi)|) time. We may also
assume that T has O(|Λi|) bags.

3. We want to express Condition 2 of a co-separating triple as a condition in a single graph,
and so define Λ+

i as follows: Begin with graph Λi, and add to it any edge (v, w) of G that
is crossed (so is replaced in Λ(G) by a path v-c-w via dummy vertex c) and for which
v, w, c all belong to Λi.

4. Create a tree decomposition T + of Λ+
i as follows. Begin with T . For any bag Y and any

dummy vertex c ∈ Y , add to Y all neighbours of c that belong to Λi. One can argue
that this is a tree decomposition of Λ+

i of width O(5w) = O(1), and can be computed in
O(|T |) = O(|Λi|) time, see the full version [2].

5. Test whether Λi has a co-separating triple (A, X, B) for which X contains exactly k

vertices of G and lies within Vi+1 ∪ · · · ∪ Vi+w−2. One can show (see the full version [2])
that this can be expressed in monadic second-order logic, using graph Λ+

i for defining
adjacencies. By Courcelle’s famous theorem [6], since Λ+

i has a tree decomposition of
constant width, therefore the test can be done in O(|T +|) = O(|Λi|) time.

6. If we find such a co-separating triple, then break (and output X ∩ V (G) as a separating
set of size k), else try the next i.

The run-time for one index i is hence O(|E(Λi)|). To bound the total run-time, we must
bound

∑d
i=0 |E(Λi)|. Since each Λi uses w + 2 consecutive layers, any edge of Λ(G) belong to

at most w + 2 sets in E(Λ0), . . . , E(Λd−w+1). Any edge in U0, . . . , Ud, L0, . . . , Ld belongs to
exactly one set in E(Λ0), . . . , E(Λd−w+1). Therefore

∑d−w+1
i=0 |E(Λi)| ≤ (w + 2)|E(Λ(G)| +∑d−w+1

i=0 (|Ui| + |Li|) ∈ O(w|E(Λ(G))|) + O(n), which by w ∈ O(1) and |E(Λ(G)| ∈ O(n)
shows that the total run-time is linear.

The Final Algorithm. The algorithm for testing vertex-connectivity hence proceeds as
follows. First pre-process G and duplicate edges to become kite edges where required. Then
compute Λ(G), the BFS-tree and the layers, and the edge-sets Ej , Ej,j+1, Uj and Lj for
j = 0, . . . , d+2. All this takes O(n) time since Λ(G) has O(n) edges. For k = 1, . . . , 7, run
the sub-routine to test whether there exists a separating set of size k; this will necessarily
find the minimum such set. Each such run takes time O(n), and since there is a constant
number of them the overall time is linear and Theorem 3 holds.

T. Biedl and K. Murali 23:15

6 Outlook

In this paper, we showed that the vertex connectivity of a 1-plane graph G without ×-
crossings can be computed in linear time. The main insight is that the distance (in an
auxiliary graph) between any two vertices of a minimum separating set of G must be bounded.
We close with some open questions. First, can we deal with ×-crossings?

▶ Open problem 1. Can the vertex connectivity of an arbitrary 1-plane graph be computed
in linear time?

In our ‘bad example’ (Figure 1), all crossings were ×-crossings. As a first step towards
Problem 1, could we at least compute the vertex connectivity in linear time if the number of
×-crossings is bounded by a constant?

Throughout the paper, we assumed that the input came with a fixed 1-planar embedding.
We did this since testing 1-planarity is NP-hard [14]. However, it might be easier to test
whether there exists a 1-planar embedding without ×-crossing; all the existing NP-hardness
proofs of 1-planarity that we are aware of [14, 22, 1, 5] have ×-crossings in the 1-planar
drawings.

▶ Open problem 2. Is it NP-hard to test whether a given graph has a 1-planar drawing
without ×-crossing?

The crucial ingredient for our result was the structural property that vertices of a
separating set are close in some sense. Are there similar structural properties for edge
connectivity or bisections? Are there similar results for other classes of near-planar graphs?

References
1 Christopher Auer, Franz J Brandenburg, Andreas Gleißner, and Josef Reislhuber. 1-planarity

of graphs with a rotation system. Journal of Graph Algorithms and Applocations, 19(1):67–86,
2015. doi:10.7155/jgaa.00347.

2 Therese Biedl and Karthik Murali. On computing the vertex connectivity of 1-plane graphs.
CoRR, abs/2212.06782, 2022. doi:10.48550/arXiv.2212.06782.

3 Rainer Bodendiek, Heinz Schumacher, and Klaus Wagner. Bemerkungen zu einem Sechsfar-
benproblem von G Ringel. Abhandlungen aus dem Mathematischen Seminar der Universität
Hamburg, 53:41–52, 1983. doi:10.1007/BF02941309.

4 Hans Bodlaender and Arie Koster. Combinatorial optimization on graphs of bounded treewidth.
The Computer Journal, 51(3):255–269, 2008. doi:10.1093/comjnl/bxm037.

5 Sergio Cabello and Bojan Mohar. Adding one edge to planar graphs makes crossing number
and 1-planarity hard. SIAM Journal on Computing, 42(5):1803–1829, 2013. doi:10.1137/
120872310.

6 Bruno Courcelle. The monadic second-order logic of graphs. I. Recognizable sets of finite graphs.
Information and computation, 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

7 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

8 David Eppstein. Subgraph isomorphism in planar graphs and related problems. Journal of
Graph Algorithms and Applications, 3(3):1–27, 1999. doi:10.7155/jgaa.00014.

9 Igor Fabrici, Jochen Harant, Tomás Madaras, Samuel Mohr, Roman Soták, and Carol T
Zamfirescu. Long cycles and spanning subgraphs of locally maximal 1-planar graphs. Journal
of Graph Theory, 95(1):125–137, 2020. doi:10.1002/jgt.22542.

10 Fedor V Fomin and Dimitrios M Thilikos. New upper bounds on the decomposability of planar
graphs. Journal of Graph Theory, 51(1):53–81, 2006. doi:10.1002/jgt.20121.

ICALP 2023

https://doi.org/10.7155/jgaa.00347
https://doi.org/10.48550/arXiv.2212.06782
https://doi.org/10.1007/BF02941309
https://doi.org/10.1093/comjnl/bxm037
https://doi.org/10.1137/120872310
https://doi.org/10.1137/120872310
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.7155/jgaa.00014
https://doi.org/10.1002/jgt.22542
https://doi.org/10.1002/jgt.20121

23:16 On Computing the Vertex Connectivity of 1-Plane Graphs

11 Sebastian Forster, Danupon Nanongkai, Liu Yang, Thatchaphol Saranurak, and Sorrachai
Yingchareonthawornchai. Computing and testing small connectivity in near-linear time and
queries via fast local cut algorithms. In ACM-SIAM Symposium on Discrete Algorithms, pages
2046–2065. SIAM, 2020. doi:10.1137/1.9781611975994.126.

12 Harold N Gabow. Using expander graphs to find vertex connectivity. Journal of the ACM,
53(5):800–844, 2006. doi:10.1145/1183907.1183912.

13 Yu Gao, Jason Li, Danupon Nanongkai, Richard Peng, Thatchaphol Saranurak, and Sorrachai
Yingchareonthawornchai. Deterministic graph cuts in subquadratic time: Sparse, balanced,
and k-vertex. CoRR, abs/1910.07950, 2019. arXiv:1910.07950.

14 Alexander Grigoriev and Hans L Bodlaender. Algorithms for graphs embeddable with few
crossings per edge. Algorithmica, 49(1):1–11, 2007. doi:10.1007/s00453-007-0010-x.

15 Carsten Gutwenger and Petra Mutzel. A linear time implementation of SPQR-trees. In Graph
Drawing, volume 1984 of Lecture Notes in Computer Science, pages 77–90. Springer, 2000.
doi:10.1007/3-540-44541-2_8.

16 Monika R Henzinger, Satish Rao, and Harold N Gabow. Computing vertex connectivity: new
bounds from old techniques. Journal of Algorithms, 34(2):222–250, 2000. doi:10.1006/jagm.
1999.1055.

17 Seok-Hee Hong and Takeshi Tokuyama, editors. Beyond Planar Graphs, Communications of
NII Shonan Meetings. Springer, 2020. doi:10.1007/978-981-15-6533-5.

18 John E Hopcroft and Robert Endre Tarjan. Dividing a graph into triconnected components.
SIAM Journal on Computing, 2(3):135–158, 1973. doi:10.1137/0202012.

19 Arkady Kanevsky and Vijaya Ramachandran. Improved algorithms for graph four-connectivity.
Journal of Computer and System Sciences, 42(3):288–306, 1991. doi:10.1016/0022-0000(91)
90004-O.

20 Daniel Kleitman. Methods for investigating connectivity of large graphs. IEEE Transactions
on Circuit Theory, 16(2):232–233, 1969. doi:10.1109/TCT.1969.1082941.

21 Stephen Kobourov, Giuseppe Liotta, and Fabrizio Montecchiani. An annotated bibliography on
1-planarity. Computer Science Review, 25:49–67, 2017. doi:10.1016/j.cosrev.2017.06.002.

22 Vladimir P Korzhik and Bojan Mohar. Minimal obstructions for 1-immersions and hardness
of 1-planarity testing. Journal of Graph Theory, 72(1):30–71, 2013. doi:10.1002/jgt.21630.

23 Jean-Paul Laumond. Connectivity of plane triangulations. Information Processing Letters,
34(2):87–96, 1990. doi:10.1016/0020-0190(90)90142-K.

24 Jason Li, Danupon Nanongkai, Debmalya Panigrahi, Thatchaphol Saranurak, and Sorrachai
Yingchareonthawornchai. Vertex connectivity in poly-logarithmic max-flows. In Proceedings
of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 317–329, 2021.
doi:10.1145/3406325.3451088.

25 Nathan Linial, László Lovász, and Avi Wigderson. Rubber bands, convex embeddings and
graph connectivity. Combinatorica, 8(1):91–102, 1988. doi:10.1007/BF02122557.

26 Karthik Murali. Testing vertex connectivity of bowtie 1-plane graphs. Master’s thesis,
David R. Cheriton School of Computer Science, University of Waterloo, 2022. Available at
https://uwspace.uwaterloo.ca/.

27 Hiroshi Nagamochi and Toshihide Ibaraki. A linear-time algorithm for finding a sparse k-
connected spanning subgraph of a k-connected graph. Algorithmica, 7(5&6):583–596, 1992.
doi:10.1007/BF01758778.

28 Gerhard Ringel. Ein Sechsfarbenproblem auf der Kugel. Abhandlungen aus dem Mathematis-
chen Seminar der Universität Hamburg, 29(1):107–117, 1965. doi:10.1007/BF02996313.

29 Robert E Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on Computing,
1(2):146–160, 1972. doi:10.1137/0201010.

https://doi.org/10.1137/1.9781611975994.126
https://doi.org/10.1145/1183907.1183912
https://arxiv.org/abs/1910.07950
https://doi.org/10.1007/s00453-007-0010-x
https://doi.org/10.1007/3-540-44541-2_8
https://doi.org/10.1006/jagm.1999.1055
https://doi.org/10.1006/jagm.1999.1055
https://doi.org/10.1007/978-981-15-6533-5
https://doi.org/10.1137/0202012
https://doi.org/10.1016/0022-0000(91)90004-O
https://doi.org/10.1016/0022-0000(91)90004-O
https://doi.org/10.1109/TCT.1969.1082941
https://doi.org/10.1016/j.cosrev.2017.06.002
https://doi.org/10.1002/jgt.21630
https://doi.org/10.1016/0020-0190(90)90142-K
https://doi.org/10.1145/3406325.3451088
https://doi.org/10.1007/BF02122557
https://uwspace.uwaterloo.ca/
https://doi.org/10.1007/BF01758778
https://doi.org/10.1007/BF02996313
https://doi.org/10.1137/0201010

Fault-Tolerant ST-Diameter Oracles
Davide Bilò #

Department of Information Engineering, Computer Science and Mathematics,
University of L’Aquila, Italy

Keerti Choudhary #

Department of Computer Science and Engineering, Indian Institute of Technology Delhi, India

Sarel Cohen #

School of Computer Science, Tel-Aviv-Yaffo Academic College, Israel

Tobias Friedrich #

Hasso Plattner Institute, Universität Potsdam, Germany

Simon Krogmann #

Hasso Plattner Institute, Universität Potsdam, Germany

Martin Schirneck #

Faculty of Computer Science, Universität Wien, Austria

Abstract
We study the problem of estimating the ST -diameter of a graph that is subject to a bounded number
of edge failures. An f-edge fault-tolerant ST -diameter oracle (f -FDO-ST) is a data structure that
preprocesses a given graph G, two sets of vertices S, T , and positive integer f . When queried with a
set F of at most f edges, the oracle returns an estimate D̂ of the ST -diameter diam(G−F, S, T),
the maximum distance between vertices in S and T in G − F . The oracle has stretch σ ⩾ 1 if
diam(G−F, S, T) ⩽ D̂ ⩽ σ diam(G−F, S, T). If S and T both contain all vertices, the data structure
is called an f -edge fault-tolerant diameter oracle (f -FDO). An f -edge fault-tolerant distance sensitivity
oracles (f -DSO) estimates the pairwise graph distances under up to f failures.

We design new f -FDOs and f -FDO-ST s by reducing their construction to that of all-pairs
and single-source f -DSOs. We obtain several new tradeoffs between the size of the data structure,
stretch guarantee, query and preprocessing times for diameter oracles by combining our black-box
reductions with known results from the literature.

We also provide an information-theoretic lower bound on the space requirement of approximate
f -FDOs. We show that there exists a family of graphs for which any f -FDO with sensitivity f ⩾ 2
and stretch less than 5/3 requires Ω(n3/2) bits of space, regardless of the query time.

2012 ACM Subject Classification Theory of computation → Shortest paths; Theory of computation
→ Data structures design and analysis; Theory of computation → Cell probe models and lower
bounds

Keywords and phrases diameter oracles, distance sensitivity oracles, space lower bounds, fault-
tolerant data structures

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.24

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2305.03697

1 Introduction

The diameter, i.e., the largest distance between any two vertices, is one of the most fun-
damental graph parameters for it measures how fast information can spread in a network.
The problem of approximating the diameter of a given graph in a time-efficient manner has
been extensively studied [1, 3, 4, 25, 26, 27, 43, 44, 45]. Here, we investigate the diameter
computation problem in the fault-tolerant model. The interest in this setting stems from the

EA
T
C
S

© Davide Bilò, Keerti Choudhary, Sarel Cohen, Tobias Friedrich, Simon Krogmann, and
Martin Schirneck;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 24; pp. 24:1–24:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:davide.bilo@univaq.it
https://orcid.org/0000-0003-3169-4300
mailto:keerti@iitd.ac.in
https://orcid.org/0000-0002-8289-5930
mailto:sarelco@mta.ac.il
https://orcid.org/0000-0003-4578-1245
mailto:tobias.friedrich@hpi.de
https://orcid.org/0000-0003-0076-6308
mailto:simon.krogmann@hpi.de
https://orcid.org/0000-0001-6577-6756
mailto:martin.schirneck@univie.ac.at
https://orcid.org/0000-0001-7086-5577
https://doi.org/10.4230/LIPIcs.ICALP.2023.24
https://arxiv.org/abs/2305.03697
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2 Fault-Tolerant ST-Diameter Oracles

fact that most real-world networks are prone to errors. These failures, though unpredictable,
are transient due to some simultaneous repair process that is undertaken in these applications.
This has motivated the research on designing fault-tolerant oracles for various graph problems
in the past decade. An f -edge/vertex fault-tolerant oracle is a compact data structure that
can quickly report the desired solution or graph property of the network on occurrence of up
to f edge/vertex failures. The parameter f that describes the degree of robustness against
errors is known as the sensitivity of the oracle. A lot of work has been done in designing
fault-tolerant structures for various problems like connectivity [20, 32, 33], finding shortest
paths [2, 12, 36], and distance sensitivity oracles [5, 7, 14, 24, 30, 31, 34, 47].

While the fault-tolerant model has been studied a lot for distances, the landscape of
fault-tolerant diameter oracles is far less explored. For a given graph G = (V, E) and
two sets S, T ⊆ V of vertices, an f-edge fault-tolerant diameter oracle (f -FDO-ST) is a
data structure that stores information about G after a preprocessing step. When queried
with a set F of at most f edges, the oracle returns an upper bound of the ST -diameter
diam(G − F, S, T) = maxs∈S,t∈T dG−F (s, t) of G − F . This is the maximum among all s-t-
distances for s ∈ S and t ∈ T under the condition that none of the shortest paths can use an
edge in the query set F . We say that the oracle has a stretch of σ ⩾ 1 if the value D̂ returned
upon query F satisfies diam(G − F, S, T) ⩽ D̂ ⩽ σ diam(G − F, S, T). When S = T = V ,
the data structure is called an f -edge fault-tolerant diameter oracle (f -FDO).

The problem of designing f -FDOs was originally raised by Henzinger, Lincoln, Neumann,
and Vassilevska Williams [40] and has recently been studied by Bilò, Cohen, Friedrich, and
Schirneck [17] and the same authors together with Choudhary [15], see also Section 1.1.

The problem of designing f -FDO-ST can be seen as a generalisation of the Bichromatic
Diameter, a problem in which the two sets S and T form a partition of V . The latter
problem is motivated by several related, well-studied problems in computational geometry,
e.g., Bichromatic Diameter on point sets (commonly known as Bichromatic Farthest Pair),
where one seeks to determine the farthest pair of points in a given set of points in space.
The problem of Bichromatic Diameter was studied by Dalirrooyfard, Vassilevska Williams,
Vyas, and Wein [28].

Given the plethora of work on distance oracles and the close connection between the
distance and the diameter problem, a natural question is if we can convert the results on
distance computation under failures into analogous oracles for the diameter without sacrificing
much on our performance parameters.

▶ Question. Are there black-box reductions from fault-tolerant diameter oracles to fault-
tolerant distance oracles without considerable overhead in stretch, query time, and space?

In this work, we present several such reductions and, from them, conclude trade-offs
between the space, stretch, preprocessing, and query time for diameter oracles. In more
detail, our techniques for obtaining upper bounds is by presenting reductions to the problem
of constructing f-edge fault-tolerant distance sensitivity oracles (f -DSOs) in two widely
studied categories. The all-pairs variant can be queried with any pair of vertices s, t ∈ V

and set F ⊆ E of f failures and reports (an estimate) of the distance dG−F (s, t) between
s and t in G − F . In the single-source variant, the source s is fixed and the set of allowed
queries consists of the target vertices t together with a set F of failures.

For the regular diameter (S = T = V), we provide two theorems showing that both
all-pairs and single-source f -DSOs can be used to construct f -FDOs.

D. Bilò, K. Choudhary, S. Cohen, T. Friedrich, S. Krogmann, and M. Schirneck 24:3

Table 1 Properties of the f -FDOs obtained via Theorem 1 using all-pairs f -DSOs from the
literature. The applicable graph class (un-/directed, un-/weighted) is determined by the f -DSO. W

denotes the maximum edge weight for graphs with arbitrary positive weights, M is the maximum
edge weight for integer weighted graphs. The parameter k ⩾ 1 is a positive integer, ε > 0 a
positive real, α ∈ [0, 1] is a real number in the unit interval, and ω < 2.37286 denotes the matrix
multiplication exponent.

Sensitivity Stretch Space Query time
Preprocessing

Time
Ref.

1 2 Õ(n2) O(1) Õ(mn) [10, 11]

1 2 Õ(n2) O(1) Õ(n2.5794M + mn) [37]

1 1 + (2k − 1)(1 + ε) Õ(k5n1+1/k ε−4) O(k) O(kmn1+1/k) [8]

2 2 Õ(n2) Õ(1) poly(n) [32]

f = o(log n
log log n

) 2 Õ(n3−α) Õ(f2n2−(1−α)/f) O(nω+1−αM) [47]

f = o(log n
log log n

) 2 + ε O(fn2+o(1)(log W)ε−f) Õ(f7 log log W) O(fn5+o(1)(log W)ε−f) [23]

f ⩾ 1 2 O(fn4) fO(f) nO(f) [34]

f ⩾ 1 2 O(n2+αM) Õ(f4n2−αM + f2+ωnM) Õ(nω+(3−ω)αM + mn) [18]

f ⩾ 1 1 + (8k − 2)(f + 1) O
(
fkn1+1/k log (nW)

)
Õ(f3) poly(n) [24]

▶ Theorem 1. Let G be a (undirected or directed) graph with n vertices, m edges, and possibly
positive edge weights. Given access to an f -DSO D for G with stretch σ ⩾ 1, preprocessing
time P, space S, and query time Q, one can construct an f-FDO for G with stretch 1 + σ,
preprocessing time O(P + mn log n), space O(S), and query time O(f2Q).

In Section 1.2, we review existing all-pairs f -DSOs. By applying the reduction stated in
Theorem 1 we obtain new f -FDOs as listed in Table 1.

The following theorem shows how we can use the single-source variant of distance
sensitivity oracles to construct f -FDOs.

▶ Theorem 2. Let G be a (undirected or directed) graph with n vertices, m edges, and
possibly positive edge weights. Given access to a single-source f -DSO D for G with stretch
σ ⩾ 1, preprocessing time P, space S, and query time Q, one can construct an f -FDO for G

with stretch 2(1 + σ), preprocessing time O(P), space O(S), and query time O(fQ).

Section 1.3 discusses single-source f -DSOs from the literature. Together with Theorem 2
they give new f -FDOs, summarized in Table 2.

The main technical contribution of this work, however, is a novel fault-tolerant data
structure for the more general ST -diameter problem that was introduced and studied in
recent years. For example, Backurs, Roditty, Segal, Vassilevska Williams, and Wein [4] proved
that for any undirected graph one can compute a 3-approximation of the ST -diameter in
O(mn) time. They also provided a randomized algorithm that computes a 2-approximation
of the ST -diameter in Õ(m

√
n) time.1 Dalirrooyfard, Vassilevska Williams, Vyas, and

Wein [28] studied the problem of computing the bi-chromatic ST -diameter, the special case
of ST -diameter problem where the sets S and T form a partition of V . Similar to f -FDOs,
we explore the problem of designing compact oracles that report the ST -diameter of a graph
after occurrences of up to f failures. We present reductions between f -DSOs and f -FDO-ST s,
as stated in the following theorem. To the best of our knowledge, our paper is the first work
that provides some results on f -FDO-ST s, for general values of f .

1 For a non-negative function g(n, m, f), we write Õ(g) for O(g · polylog(n)).

ICALP 2023

24:4 Fault-Tolerant ST-Diameter Oracles

Table 2 Properties of the f -FDOs obtained via Theorem 2 using single-source f -DSOs from the
literature. The applicable graph class (un-/directed, un-/weighted) is determined by the single-source
f -DSO. W denotes the maximum edge weight for graphs with arbitrary positive weights, M is the
maximum edge weight for integer weighted graphs. The parameter ε > 0 is a positive real and
ω < 2.37286 denotes the matrix multiplication exponent.

Sensitivity Stretch Space Query time
Preprocessing

Time
Ref.

1 4 Õ(n3/2) Õ(1) Õ(mn1/2 + n2) [16, 38]

1 4 Õ(n3/2M1/2) Õ(1) Õ(nωM) [16]

1 4 + ε Õ(n(log W)ε−1) O(log log1+ε(nW)) poly(n) [5, 8, 13]

1 6 O(n) O(1) Õ(mn) [13]

f ⩾ 1 4f + 4 Õ(fn) Õ(f3) Õ(fm) [14]

▶ Theorem 3. Let G = (V, E) be an undirected graph with n vertices, m edges, and possibly
positive edge weights. Let S, T ⊆ V be two non-empty sets. Given access to an f -DSO for G

with stretch σ ⩾ 1, preprocessing time P, space S, and query time Q, one can compute an f -
FDO-ST for G with preprocessing time P + Õ(mn + n|S||T |) and stretch 1 + 3σ. Additionally,
the f -FDO-ST has the following properties.

If the sensitivity is f = o(log n), the oracle requires S + O(n3/2 (2f + log n)) space and
has a query time of O(f2 (2f + Q)).

If f = Ω(log n), the oracle requires S + O(n2) space and has a query time of O(f2(f + Q)).

Some more remarks on the preprocessing time stated in Theorem 3 may be in order.
The reduction itself takes time P + O(mn + n2 log n + n|S||T |) to compute but requires
that the shortest paths in G are unique. The total preprocessing time depends on how this
condition is achieved. It is always possible to guarantee unique shortest paths either by
randomly perturbing the edge weights with sufficiently small values, see [41], or by using a
more complex deterministic method, also known as lexicographic perturbation [19, 21, 39].
While the first method increases the preprocessing only by a constant factor, it makes the
preprocessing procedure randomized. Lexicographic perturbation, in turn, increases the time
by an additive O(mn + n2 log2 n) term [19]. By applying the reduction stated in Theorem 3
to existing all-pairs f -DSOs we obtain the f -FDOs listed in Table 3.

In addition, we present improved constructions of f -FDO-ST s for the important case of
a single source or target, i.e., when |S| = 1 or |T | = 1, or when one is only given access to
single-source f -DSOs. In the following, for the sake of readability, when S = {s}, we will use
“sT -diameter” instead of “ST -diameter” or “{s}T -diameter”, same for the oracles.

▶ Theorem 4. Let G = (V, E) be an undirected graph with n vertices, m edges, and possibly
positive edge weights. Let s ∈ V be a vertex and T ⊆ V a non-empty set. Given a single-
source f -DSO for G with preprocessing time P, space S, query time Q, and stretch σ, one can
compute an f-FDO-sT for G with preprocessing time P + O(m + n log n), space S + O(n),
query time O(f2 + fQ), and stretch 1 + 2σ. For unweighted graphs, the preprocessing time
can be improved to P + O(m).

Table 4 shows the f -fault-tolerant sT -diameter-oracle obtained from Theorem 4.

D. Bilò, K. Choudhary, S. Cohen, T. Friedrich, S. Krogmann, and M. Schirneck 24:5

Table 3 Properties of the f -FDO-ST for undirected graphs obtained via Theorem 3 using all-pairs
f -DSOs from the literature. The preprocessing time is omitted due to space reasons. W denotes the
maximum edge weight for graphs with arbitrary positive weights, M is the maximum edge weight for
integer weighted graphs. The parameter k ⩾ 1 is a positive integer, ε > 0 a positive real, α ∈ [0, 1]
is a real number in the unit interval, and ω < 2.37286 denotes the matrix multiplication exponent.

Sensitivity Stretch Space Query time Ref.

1 4 Õ(n2) O(1) [10, 11, 37]

1 1 + (6k − 3)(1 + ε) Õ(n3/2 + k5n1+1/k ε−4) O(1) [8]

2 4 Õ(n2) Õ(1) [32]

f = o(log n
log log n

) 4 Õ(n3−α) Õ(f2n2−(1−α)/f) [47]

f = o(log n
log log n

) 4 + ε O(fn2+o(1)(log W)ε−f) Õ(f2 2f + f7 log log W) [23]

f = o(log n) 4 O(n2+αM) Õ(f4n2−αM + f2+ωnM) [18]

f = o(log n) 4 O(fn4) fO(f) [34]

f = o(log n) 1 + (24k − 6)(f + 1) O(n3/2+o(1) + fkn1+1/k log (nW)) Õ(f2 2f) [24]

Table 4 Properties of the f -FDO-sT for undirected graphs obtained via Theorem 4 using single-
source f -DSOs from the literature.

Sensitivity Stretch Space Query time
Preprocessing

Time
Ref.

1 3 Õ(n3/2) Õ(1) Õ(mn1/2 + n2) [16, 38]

1 3 Õ(n3/2M1/2) Õ(1) Õ(nωM) [16]

1 3 + ε Õ(n(log W)ε−1) O(log log1+ε(nW)) poly(n) [5, 8, 13]

1 5 O(n) O(1) Õ(mn) [13]

f ⩾ 1 4f + 3 Õ(fn) Õ(f3) Õ(fm) [14]

▶ Theorem 5. Let G = (V, E) be an undirected graph with n vertices, m edges, and possibly
positive edge weights. Let S, T be two non-empty subsets of V . Given a single-source f -DSO
for G with preprocessing time P, space S, query time Q, and stretch σ, one can compute an
f-FDO-ST for G with preprocessing time O(P + m+n log n), space O(S + n), query time
O(f2 +fQ), and stretch 2+5σ. For unweighted graphs, the preprocessing time can be improved
to O(P + m)

Table 5 corresponds to the oracles obtained via Theorem 5.
We also prove an information-theoretic lower bound on the space requirement of approxi-

mate f -FDOs that support f ⩾ 2 edge failures. Note that the lower bound in Theorem 6
holds independently of the query time. It is known from work of Bilò, Cohen, Friedrich, and
Schirneck [17] that f -FDOs with stretch σ < 1.5 require Ω(n2) bits of space, and in our work
we complement this result by proving that f -FDOs with stretch σ < 5/3 require Ω(n1.5)
bits of space. Obtaining Ω(n2) lower bound for f -FDOs with stretch σ < 2 for undirected
unweighted graphs is an interesting open problem.

▶ Theorem 6. Let n be a positive integer. Any f-FDO or f-FDO-ST for n-vertex graphs
with sensitivity f ⩾ 2 and stretch 5

3 − ε for any ε > 0 requires Ω(n3/2) bits of space.

ICALP 2023

24:6 Fault-Tolerant ST-Diameter Oracles

Table 5 Properties of the fault-tolerant ST -diameter oracles (f -FDO-ST) obtained via the
reduction in Theorem 5 using single-source distance sensitivity oracles (f -DSOs) from the literature.
W denotes the maximum edge weight for graphs with arbitrary positive weights, M is the maximum
edge weight for integer weighted graphs. The parameter ε > 0 is a positive real and ω < 2.37286
denotes the matrix multiplication exponent.

Sensitivity Stretch Space Query time
Preprocessing

Time
Ref.

1 7 Õ(n3/2) Õ(1) Õ(mn1/2 + n2) [16, 38]

1 7 Õ(n3/2M1/2) Õ(1) Õ(nωM) [16]

1 7 + ε Õ(n(log W)ε−1) O(log log1+ε(nW)) poly(n) [5, 8, 13]

1 12 O(n) O(1) Õ(mn) [13]

f ⩾ 1 10f + 7 Õ(fn) Õ(f3) Õ(fm) [14]

Outline. This work is structured as follows. In the remainder of this section, we review
the literature focusing on diameter oracles and distance sensitivity oracles. We then fix
our notations and some preliminaries in Section 2. Section 3 presents our constructions of
f -FDO-ST, for the general case of S, T ⊆ V . In Section 4 we consider the special case of a
single source, that is, of f -FDO-sT . In Section 5 we prove the space lower bound. The proofs
of Theorems 1 and 2 follow from similar ideas as discussed in Section 3 and are deferred to
the full version of the paper.

1.1 Related Work on Fault-Tolerant Diameter Oracles
Fault-tolerant diameter oracles were introduced by Henzinger, Lincoln, Neumann, and
Vassilevska Williams [40]. They showed that for a single failure in unweighted directed
graphs, one can compute in time Õ(mn + n1.5

√
Dm/ε), where ε ∈ (0, 1] and D is the

diameter of the graph, a 1-FDO with 1 + ε stretch that has O(m) space, constant query time.
Bilò, Cohen, Friedrich, and Schirneck [17] showed that one can improve the preprocessing time
to Õ(mn + n2/ε), which is nearly optimal under certain conditional hardness assumptions
for combinatorial algorithms (see [40]). They also showed that fast matrix multiplication
reduces the preprocessing time for dense graphs to Õ(n2.5794 + n2/ε).

Bilò, Choudhary, Cohen, Friedrich, and Schirneck [15] addressed the problem of computing
1-FDOs with o(m) space. They showed that for unweighted directed graphs with diameter
D = ω(n5/6), there is a 1-FDO with Õ(n) space, 1 + n5/6

D = 1 + o(1) stretch, and O(1) query
time. It has a preprocessing time of O(mn). In the same work it was also shown that for
graphs with diameter D = ω((n4/3 log n)/(ε

√
m)) and any ε > 0, there is a (1 + ε)-stretch

1-FDO, with preprocessing time O(mn), space o(m), and constant query time.
For undirected graphs the space requirement can be reduced. There is a folklore con-

struction that combines the DSO by Bernstein and Karger [11] with the observation that in
undirected graphs the eccentricity of an arbitrary vertex is a 2-approximation of the diameter.
This results in an 1-FDO with stretch 2 and constant query time that takes only O(n) space,
details can be found in [17, 40].

For f > 1 edge failures in undirected graphs with non-negative edge weights, Bilò et al. [17]
presented an f -FDO with (f + 2) stretch, O(f2 log2 n) query time, Õ(fn) space, and Õ(fm)
preprocessing time. A lower bound in that work showed that f -FDO with finite stretch must
have Ω(fn) space, nearly matching their construction.

D. Bilò, K. Choudhary, S. Cohen, T. Friedrich, S. Krogmann, and M. Schirneck 24:7

Table 6 Existing f -sensitive all-pairs distance oracles for undirected graphs. The parameter
k ⩾ 1 is a positive integer, ε > 0 a positive real, α ∈ [0, 1] is a real number in the unit interval, and
ω < 2.37286 denotes the matrix multiplication exponent.

Sensitivity Stretch Space Query time
Preprocessing

Time
Ref.

1 1 Õ(n2) O(1) Õ(mn) [10, 11]

1 1 Õ(n2) O(1) Õ(n2.5794M) [37]

1 (2k − 1)(1 + ε) Õ(k5n1+1/k ε−4) O(k) O(kmn1+1/k) [8]

2 1 Õ(n2) Õ(1) poly(n) [32]

f = o(log n
log log n

) 1 Õ(n3−α) Õ(n2−(1−α)/f) O(nω+1−αM) [47]

f = o(log n
log log n

) 1 + ε O(fn2+o(1)(log W)ε−f) Õ(f5 log log W) O(fn5+o(1)(log W)ε−f) [23]

f ⩾ 1 1 O(fn4) fO(f) nO(f) [34]

f ⩾ 1 1 O(n2+αM) Õ(f2n2−αM + fωnM) Õ(nω+(3−ω)αM) [18]

f ⩾ 1 (8k − 2)(f + 1) O
(
fkn1+1/k log (nW)

)
Õ(f3) poly(n) [24]

We are not aware of any O(n)-sized, constant-stretch FDOs for directed graphs with
arbitrary diameter in the literature prior to this work, not even for sensitivity (f = 1). Also,
no non-trivial f -FDOs with o(f)-stretch were known. To the best of our knowledge, we are
the first to study the problem of general f -FDO-ST s with S, T ̸= V .

We now discuss the known information-theoretic lower bounds for FDOs. Bilò, Cohen,
Friedrich, Schirneck [17] showed that any FDO with stretch σ < 3/2 for undirected unweighted
graphs requires Ω(m) bits of space, even for f = 1. They also extended the same lower
bound of Ω(m) bits to edge-weighted graphs and σ < 2. Bilò, Choudhary, Cohen, Friedrich,
and Schirneck [15] extended this result to directed graphs. In particular, they showed that
for directed unweighted graphs with diameter D = O(

√
n /m), any FDO with stretch better

than
(3

2 − 1
D

)
requires Ω(m) bits of space. They further proved that for directed graphs any

f -FDO requires Ω(2f/2n) bits of space, as long as 2f/2 = O(n).

1.2 All-Pairs Distance Sensitivity Oracles
The first distance-sensitive oracle was in the context of directed graphs [29]. It maintained
exact distances and was capable of handling a single edge failure. The space requirement
of this oracle is O(n2 log n) and its query time is O(log n). This was later generalized
to handle a single vertex or edge failure in [30]. Demetrescu, Thorup, Chowdhury, and
Ramachandran [30] presented an exact 1-sensitive distance oracle of size O(n2 log n), O(1)
query time and Õ(mn2) preprocessing time. Later, in two consecutive papers, Bernstein and
Karger improved the preprocessing time (while keeping the space and query time unchanged),
first to O(n2√

m) in [10] and then to Õ(mn) in [11]. Baswana and Khanna [8] considered
approximate 1-DSOs for unweighted graphs. More precisely, they presented a data structure
of size O(k5n1+1/k log3 n

ε4), (2k − 1)(1 + ε) stretch and O(k) query time. Duan and Pettie [32]
considered the case of two failures (vertices or edges) with exact distances. The size of their
oracle is O(n2 log3 n), the query time is O(log n) and the construction time is polynomial.

Using fast matrix multiplication, Weimann and Yuster [47] presented, for any parameter
α ∈ [0, 1], a DSO that can handle up to O(log n/ log log n) edges or vertices failures with
Õ(n2−(1−α)/f) query time and O(Mnω+1−α) preprocessing time for directed graphs with
integer weights in the range [−M, M], where ω < 2.373 is the matrix multiplication exponent.
In [35], Grandoni and Vassilevska Williams presented a distance sensitivity oracle with

ICALP 2023

24:8 Fault-Tolerant ST-Diameter Oracles

Table 7 Existing f -sensitive single-source distance oracles for undirected graphs W denotes the
maximum edge weight for graphs with arbitrary positive weights, M is the maximum edge weight
for integer weighted graphs. The parameter ε > 0 is a positive real and ω < 2.37286 denotes the
matrix multiplication exponent.

Sensitivity Stretch Space Query time
Preprocessing

Time
Ref.

1 1 Õ(n3/2) Õ(1) Õ(mn1/2 + n2) [16, 38]

1 1 Õ(n3/2M1/2) Õ(1) Õ(nωM) [16]

1 1 + ε Õ(n(log W)ε−1) O(log log1+ε(nW)) poly(n) [5, 8, 13]

1 2 O(n) O(1) Õ(mn) [13]

f ⩾ 1 2f + 1 Õ(fn) Õ(f2) Õ(fm) [14]

subcubic Õ(Mnω+1/2 + Mnω+α(4−ω)) preprocessing time and sublinear Õ(n1−α) query time.
Van den Brand and Saranurak [18] presented a distance-sensitive oracle that can handle
f ⩾ log n updates (where an update is an edge insertion or deletion), with Õ(Mnω+(3−ω)µ)
preprocessing time, Õ(Mn2−µf2 + Mnfω) update time, and Õ(Mn2−µf + Mnf2) query
time, where the parameter µ ∈ [0, 1] can be chosen. Chechik and Cohen [22] presented a
1-DSO with with subcubic Õ(Mn2.873) preprocessing time and Õ(1) query time. This was
improved by Ren [42] and later by Gu and Ren [37], who obtained a 1-DSO with Õ(Mn2.5794)
preprocessing time and constant query time. Recently Duan and Ren [34] presented an exact
f -DSO with O(fn4) space, fO(f) query time, and nO(f) preprocessing time.

In Table 6 we summarize several of the above f -DSOs for undirected graphs.

1.3 Related Work on Single-Source Distance Sensitivity Oracles

First, we discuss undirected graphs. Baswana and Khanna [8] showed that unweighted
undirected graphs can be preprocessed in O(m

√
n/ε) time to compute a (1 + ε)-stretch

single-source edge/vertex fault-tolerant distance-oracle of size O(n log n + n/ε3) and constant
query time. For weighted graphs, they showed the construction of an O(n log n) size oracle
which can report 3-approximate distances on single failure in O(1) time. Bilò, Gualà, Leucci,
and Proietti [13] showed that for a single edge failure in weighted graphs we can compute an
O(n)-size oracle with stretch 2 and constant query time. Also, a construction is provided
that has 1 + ε stretch, with O

(
ε−1n log(1/ε)

)
size and O

(
ε−1 log n log(1/ε)

)
query time. All

the results stated till now are for a single edge or vertex failure only. For multiple failures,
Bilò, Gualà, Leucci, and Proietti [14] gave a construction of size O(fn log2 n), computable in
Õ(mf) time that reports (2f + 1)-stretched distances in O(f2 log2 n) time.

Bilò, Cohen, Friedrich, and Schirneck [16] presented several additional single-source DSOs.
For undirected unweighted graphs, they presented a single-source DSO that has size O(n3/2),
query time Õ(1) and Õ(m

√
n + n2) preprocessing time. For graphs with integer edge weights

in the range [1, M] and using fast matrix multiplication, they presented a single-source DSO
with O(M1/2n3/2) space, Õ(1) query time and Õ(Mnω) preprocessing time. For sparse
graphs with m = O(M3/7n7/4) they presented a single-source DSO with the same size, Õ(1)
query time, and subquadratic Õ(M7/8m1/2n11/8) preprocessing time.

For directed graphs, Baswana, Choudhary, Hussain, and Roditty [5] showed that we
can preprocess directed weighted graphs with edge weights in range [1, W] to compute an
oracle of Õ(ε−1n log W) size that reports (1 + ε)-approximate distances on single edge/vertex

D. Bilò, K. Choudhary, S. Cohen, T. Friedrich, S. Krogmann, and M. Schirneck 24:9

failure in Õ(log log1+ε(nW)) time. Gupta and Singh [38] designed exact distance oracles of
Õ(n3/2) size that on single edge/vertex failure in directed/undirected unweighted graphs
reports distances in Õ(1) time. In Table 7 we summarize several of the above f -DSOs for
undirected graphs.

2 Preliminaries

For a given graph G = (V, E), possibly with positive edge weights, we denote by dG(u, v)
the distance in G from vertex u ∈ V to vertex v ∈ V . Given two non-empty subsets
S, T ⊆ V , the ST -diameter of G is defined as diam(G, S, T) = maxs∈S,t∈T dG(s, t). With
a little abuse of notation, when S = {s} (resp., T = {t}), we also use diam(G, s, T) (resp.,
diam(G, S, t)) as a shorthand of diam(G, {s}, T) (resp., diam(G, S, {t})) for the sT -diameter
(resp., St-diameter). Moreover, if S = T = V , we use diam(G) instead of diam(G, V, V).

For a given set F ⊆ E, we denote by G−F the graph obtained from G by removing all the
edges of F . If H is a subgraph of G, we use V (H) and E(H) for the vertices and edges of H ,
respectively. An f -edge fault-tolerant distance sensitivity oracle (f -DSO) with stretch σ ⩾ 1
is a data structure that answers queries (u, v, F) with u, v ∈ V and F ⊆ E with |F | ⩽ f . It
returns an estimate d̂G−F (u, v) of the distance from u to v in G − F such that dG−F (u, v) ⩽
d̂G−F (u, v) ⩽ σ · dG−F (u, v). An f -edge fault-tolerant ST -diameter oracle (f -FDO-ST) with
stretch σ returns, upon query F ⊆ E with |F | ⩽ f , an estimate D̂ = D̂(F, S, T) of the
ST -diameter of G − F such that diam(G−F, S, T) ⩽ D̂ ⩽ σ · diam(G−F, S, T). If S = {s}
is a singleton or S = T = V are both the whole vertex set, we abbreviate such oracles for as
f -FDO-sT and f -FDO, respectively.

3 ST-Diameter Oracles

We start by showing how to use distance sensitivity oracles to design data structures for the
fault-tolerant ST -diameter, i.e., the ST -diameter of G − F after a set of edges F ⊆ E failed.
The maximum number f of supported failures is called the sensitivity of the data structure.
The result is formally stated in Theorem 3.

In the following, we assume that the shortest paths in G are made unique. This way, we can
identify a shortest path with its endpoints, which enabled saving both in the time-efficiency
of the preprocessing and the space-efficiency of the resulting data structure. In particular, it
allows for a subquadratic (in n) space overhead over the underlying f -DSO. However, the
precise way how to make the paths unique influences the nature of the preprocessing. As
discussed in Section 1, one can ensure a unique shortest path in a random fashion by slightly
perturbing the edge weights. Alternatively, lexicographic perturbation [19, 21, 39] provides a
deterministic procedure but adds an O(mn + n2 log2 n) term to the running time.

Let πu,v denote the (unique) shortest path in G from u to v. Fix a set F ⊆ E of at
most f edges and recall that we use V (F) to denote the set of endpoints of edges in F . Our
f -DSO-ST uses a data structure to map S and T into two suitable subsets S′ and T ′ of
V (F), respectively. A vertex v ∈ V (F) belongs to S′ (resp., T ′) if there exists a shortest
path πs,t from some s ∈ S to some t ∈ T such that v is a vertex on πs,t and the subpath πs,v

(resp., πv,t) of πs,t from s to v (resp., from t to v) contains no vertex of V (F) other than v.
Note that πs,v (resp., πv,t) is completely contained in G − F , whence dG−F (s, v) = dG(s, v)
(analogously for dG−F (v, t)). The sizes of S′, T ′ ⊆ V (F) are in O(f).

ICALP 2023

24:10 Fault-Tolerant ST-Diameter Oracles

3.1 Query Algorithm
Before describing the data structure, we present the query algorithm. Let D denote the
f -DSO with stretch σ ⩾ 1 that is assumed in Theorem 3. Given the query F , our diameter
oracle computes the two sets S′ and T ′. Next, for every two vertices u and v such that u ∈ S′

and v ∈ T ′, it queries D with the triple (u, v, F) to obtain a σ-approximation of dG−F (u, v).
The f -FDO-ST returns the value D̂ = diam(G, S, T) + max(u,v)∈S′×T ′ D(u, v, F).

Given S′ and T ′, the time needed to compute D̂ is O(f2Q), where Q is the query time of
the f -DSO D. The value diam(G, S, T) can be precomputed.

▶ Lemma 7. The f -FDO-ST has a stretch of 1 + 3σ.

Proof. Let s ∈ S and t ∈ T be two arbitrary vertices. We first show that dG−F (s, t) ⩽ D̂,
that is, the returned value never underestimates the ST -diameter of G − F . We only
need to prove the case in which some of the failing edges in F belong to πs,t as otherwise
dG−F (s, t) = dG(s, t) ⩽ diam(G, S, T) ⩽ D̂. Thus, let xs (resp., xt) be the vertex of
V (F) that is closest to s (resp., t) in πs,t. By definition of S′, T ′, we have xs ∈ S′ and
xt ∈ T ′ and thus dG−F (s, xs) = dG(s, xs) and dG−F (xt, t) = dG(xt, t). Moreover, it holds
that dG−F (s, xs) + dG−F (xt, t) = dG(s, xs) + dG(xt, t) ⩽ diam(G, S, T) as πs,xs

and πxt,t are
vertex-disjoint. Using the triangle inequality twice and the fact that max(u,v)∈S′×T ′ D(u, v, F)
never underestimates diam(G−F, S′, T ′), we get

dG−F (s, t) ⩽ dG−F (s, xs) + dG−F (xs, xt) + dG−F (xt, t)

⩽ diam(G, S, T) + diam(G−F, S′, T ′) ⩽ D̂.

We now prove that D̂ ⩽ (1 + 3σ) · diam(G−F, S, T). Let u ∈ S′ and v ∈ T ′ be arbitrary.
There are s ∈ S and t ∈ T such that dG−F (s, u), dG−F (v, t) ⩽ diam(G, S, T). We arrive at

D(u, v, F) ⩽ σdG−F (u, v) ⩽ σ
(
dG−F (u, s) + dG−F (s, t) + dG−F (t, v)

)
⩽ σ

(
diam(G, S, T) + diam(G−F, S, T) + diam(G, S, T)

)
⩽ 3σ diam(G−F, S, T),

thus D̂ = diam(G, S, T) + maxu∈S′,v∈T ′ D(u, v, F) ⩽ (1 + 3σ) diam(G − F, S, T). ◀

3.2 Data Structure for the Sets S′ and T ′ for Large Sensitivity
Recall that, given the failure set F , the set S′ contains all v ∈ V (F) such that there are
s ∈ T and t ∈ T for which v is the closest vertex to s on V (F) ∩ E(πs,t), analogously for T ′.
We now describe the data structure that computes the sets S′ and T ′, focusing on S′ since
the case of T ′ follows in the same fashion.

The construction algorithm depends on the sensitivity f . Suppose first that f = Ω(log n).
For each vertex v ∈ V , the data structure stores the shortest-path tree Tv of G rooted at v

and mark some of its vertices. Namely, all s ∈ S are marked for which there is a t ∈ T such
that v lies on the path πs,t. For every two vertices s ∈ S and t ∈ T , πs,t contains v if and
only if dG(s, t) = dG(s, v) + dG(v, t). We used here that the paths are unique. It suffices to
compute the all-pairs distances in G in time O(mn + n2 log n) time2 and use them to mark
the vertices of Tv for all v with the obvious O(n|S||T |)-time algorithm.

2 The time needed for this step reduces to O(mn) in case G is unweighted or has only small integer or
even floating point weights (in exponent-mantissa representation) using Thorup’s algorithm [46].

D. Bilò, K. Choudhary, S. Cohen, T. Friedrich, S. Krogmann, and M. Schirneck 24:11

Additionally, each vertex u of Tv is annotated with the value countv(u), the number of
marked vertices in the subtree (Tv)u rooted at u. For a fixed tree Tv, all values countv(u)
are computable in O(n) time in a bottom-up fashion. Finally, we store, for each Tv, a
data structure that supports least common ancestor (LCA) queries in constant time. Such
structures can be built in time and space that is linear in the size of the tree [9]. The time
needed to construct the data structure is O(mn + n2 log n + n|S||T |) and the space is O(n2).

To answer a query F , the algorithm scans all the vertices v ∈ V (F) and decides which
of them to include in S′. The graph Tv − F is a collection of rooted trees. (Possibly some
of the trees degenerated to isolated vertices.) We observe that v ∈ S′ if and only if Tv − F

contains a marked vertex that is still reachable from v. To check this condition, the algorithm
computes the set F0 of all the edges {u, w} ∈ F that are contained in Tv. This is the case if
and only if the LCA of u and w in Tv is either u or w.

Next, we define a notion of domination for edges in F0. We say that an edge {u, w} ∈ F0,
where u is the parent of w in Tv, is dominated by another edge {a, b} ∈ F0, where a is the
parent of b in Tv, if {u, w} is in the subtree of Tv rooted at b. This is equivalent to b being
the LCA of b and u. The query algorithm removes all dominated edges from F0, which can
be done in O(|F0|2) = O(f2) time.

Recall that countv(v) is the overall number of marked vertices in Tv. Evidently, some
vertex in Tv − F is reachable from v iff they are in the same connected component. Thus,
there is a marked vertex reachable from v if and only if countv(v) is strictly larger than the
number of marked vertices contained in those components of Tv − F that do not contain v.
Indeed, the difference between those two values is exactly the number of marked vertices
reachable from v. Each connected component of Tv − F that does not contain v is a tree T ′

rooted at some vertex w ∈ V (F0)\{v}. Let u be the parent of w in Tv. Compared to the full
subtree (Tv)u rooted at u, T ′ is missing those subtrees “further down” that are rooted at
some other vertex b whose parent a is a vertex of T ′. Those are exactly the edges {a, b} ∈ F0
that are dominated by {u, w}. Accordingly, the value countv(u) counts the marked vertices in
T ′ and additionally those in the subtrees rooted at the vertices b. By removing all dominated
edges from F0, we avoid any double counting and ensure that countv(v)−

∑
u∈V (F0) countv(u)

is indeed the quantity we are interested in. It can be computed in time O(f) for each v.

3.3 Small Sensitivity
We now modify the data structure in the case where the sensitivity f = o(log n) is sublog-
arithmic. If so, the information of all the trees Tv can be stored in a more compact way.
For every vertex v ∈ V , we define a new representation Tv of the tree Tv by first removing
unnecessary parts and then replacing long paths with single edges. This corresponds to
the two steps of the compression described below. For the first one, we need the following
definition. We say a subtree Tv of Tv preserves the source-to-leaf reachability if, for every set
F ⊆ E of up to f failing edges, there is a marked vertex of Tv that is reachable from the
source v in Tv − F if and only if there is a leaf of Tv that is reachable from v in Tv − F .

The first compression step. We first describe how to preserve the source-to-leaf reachability.
We select a set Lv ⊆ S of at most 2f marked vertices and set Tv as the smallest subtree of
Tv that contains v and Lv. We say that a marked vertex s of Tv is relevant if there is no
marked vertex s′ ̸= s that is contained in the path from v to s in Tv.

We compute Lv as follows. We construct a DAG Gv that is obtained from a copy of Tv

in which each edge (u, u′), with u being the parent of u′ in Tv, is directed from u to u′. The
DAG is augmented with a dummy sink vertex x that contains an incoming directed edge

ICALP 2023

24:12 Fault-Tolerant ST-Diameter Oracles

from each relevant vertex s of Tv. We then run the algorithm of Baswana, Choudhary, and
Roditty [6] to compute a subgraph Hv of Gv such that (i) the in-degree of each vertex of Hv

is at most 2f and (ii) for every possible set F of at most f edge failures, each vertex u is
reachable from v in the graph Gv − F iff u is reachable from v in Hv − F .

The set Lv of marked vertices corresponds to the tails of the edges in Hv that enter the
sink x. As x has in-degree of at most 2f in Hv, the size of Lv is O(2f). Moreover, Lv is the
set of leaves of Tv. The following lemma proves the correctness of our selection algorithm.

▶ Lemma 8. For every F ⊆ E(G), with |F | ⩽ f , there is a marked vertex of Tv that is
reachable from v in Tv − F iff there is a vertex of Lv that is reachable from v in Tv − F .

Proof. Fix a set F of at most f failing edges of G. As Tv is a subtree of Tv, if there is a
vertex in Lv that is reachable from v in Tv − F , then the same marked vertex is reachable
from v in Tv − F . To prove the other direction, let X be the set of all marked vertices that
are reachable from v in Tv − F . We prove that X ∩ Lv ̸= ∅. Let s ∈ X be a marked vertex
that is reachable from v in Tv − F . Let s∗ ∈ S be the vertex closest to v in the path from v

to s in Tv (possibly, s∗ = s). We have that s∗ is relevant and is reachable from v in Tv − F .
This implies that the sink x is reachable from v in Gv − F via the path that goes through s∗.
As a consequence, x is also reachable in Hv − F . Hence, there is a vertex in Lv that is also
reachable from v in Tv − F . Therefore, X ∩ Lv ̸= ∅. ◀

The second compression step. After the first compression step, the tree Tv contains at
most 2f leaves. However, it might still be the case that the number of vertices of Tv is
large due to the presence of very long paths connecting two consecutive branch vertices, i.e.,
vertices of Tv with two or more children. The second step of compressing Tv allows us to
represent long paths between consecutive branch vertices in a more compact way.

Let x and y be two consecutive branch vertices in Tv, i.e., x is an ancestor of y in Tv and
the internal vertices of the path P from x to y are not branch vertices. We say that P is
long if it contains at least

√
n edges. If the path P is long, we substitute the path P in Tv

with a representative edge between x and y (so we also remove all the internal vertices of P

from the tree) and we add the path P to the set P of long paths. So, in every tree Tv, we
replace every long path between two consecutive branch vertices with a representative edge.
We observe that P can be computed in O(n2) time. Moreover, we observe that P contains
O(n3/2) paths as each tree Tv contributes with at most

√
n long paths.

Next, we use the algorithm given in [2] to hit all the long paths in P with a set Z of
O(

√
n log n) pivot vertices in O(|P|

√
n) = O(n2) time, where a path is hit if we select a

pivot vertex that belongs to the path. For each pivot z ∈ Z, we store the shortest-path tree
Tz of G rooted at z. By construction, each long path P ∈ P between two consecutive branch
vertices x and y of a tree Tv is contained in Tz, for some z ∈ Z that hits P ; moreover, a
vertex z ∈ Z that hits P is also the least-common-ancestor of x and y in Tz.

The representative edge (x, y) in Tv stores a pointer to the tree Tz of any pivot z that
hits P (ties can be arbitrarily broken). Clearly, after the second compression step, each
tree Tv contains O(2f

√
n) vertices. Therefore, the overall size needed to store all the trees

Tv is O(2f n3/2). Moreover, storing the trees Tz for all the pivots in Z requires O(n) space
per tree, for a total of O(n3/2 log n) space. Hence, the overall size of our data structure is
O(n3/2(2f + log n)).

Now, given a set F of at most f failing edges, we describe how the query algorithm
computes the set S′ in O(f22f) time. As before, for every v ∈ V (F), we need to understand
whether v must be added to S′ or not. In the following, we fix v ∈ V (F) and explain how to

D. Bilò, K. Choudhary, S. Cohen, T. Friedrich, S. Krogmann, and M. Schirneck 24:13

check whether v ∈ S′ or not in O(f2f) time. We recall that v must be added to S′ iff there
is a marked vertex in Tv − F that is still reachable from v. By Lemma 8, this is equivalent
to having a leaf of Lv that is reachable from v in Tv − F .

We visit the tree Tv and we remove from Tv all edges that correspond to edges in F . This
can be easily done in O(f) time for each non-representative edge using least-common-ancestor
queries. For the representative edges we proceed as follows. We consider all the representative
edges in Tv. Let (x, y) be a representative edge of Tv and let z be the pivot of the tree Tz

that is associated with the edge (x, y) in Tv. We remove (x, y) from Tv iff there is a failing
edge in F that is contained in the path P in Tz from x to y. We check whether P contains
some edges of F in O(f) time as follows. We look at all the failing edges in F and, for each
failing edge (u, u′) ∈ F , we check whether (u, u′) is an edge of P using a constant number of
least-common-ancestor queries in the tree Tz.3 As each tree Tv contains O(2f) representative
edges and we need O(f) time to understand if a representative edge can be removed or not
from the tree, we need O(f2f) to understand which are the representative edges that need
to be removed from Tv, for a fixed v ∈ V (F).

Once all edges that represent F have been removed from Tv, it is enough to check whether
there is a vertex of Lv that is still reachable from v. This can be clearly done in O(f2) time
per tree Tv using the values ku, as already discussed for the case in which f = Ω(log n). In
particular, for every vertex u in Tv, the value ku is equal to the number of vertices of Lv

that are contained in the subtree of Tv rooted at u.

4 Single-Source sT-Diameter Oracles

In the following theorem, we address the question of computing an sT -diameter oracle using
a single-source DSO with source s. We restate the relevant theorem below. Its proof uses
similar ideas as those shown in Section 3, but the single-source setting allows for a better
preprocessing time, space, and stretch.

▶ Theorem 4. Let G = (V, E) be an undirected graph with n vertices, m edges, and possibly
positive edge weights. Let s ∈ V be a vertex and T ⊆ V a non-empty set. Given a single-
source f -DSO for G with preprocessing time P, space S, query time Q, and stretch σ, one can
compute an f-FDO-sT for G with preprocessing time P + O(m + n log n), space S + O(n),
query time O(f2 + fQ), and stretch 1 + 2σ. For unweighted graphs, the preprocessing time
can be improved to P + O(m).

Proof. Let D denote the single-source f -DSO. The preprocessing algorithm for the f -FDO-
sT first constructs D with source s. It also computes a shortest path tree Ts of G rooted at s.
Each node v ∈ V (Ts) = V is annotated with a pointer to its parent node and its respective
number in the pre-order and post-order traversal of Ts. Similarly as above, the algorithm also
computes the value count(v) for every v, which is the number of descendants of v (including
v itself) that are in T . Finally, it stores the maximum distance C = maxt∈T dG(s, t) from the
root among the vertices in the set T . The preprocessing takes total time P + O(m + n log n)
in general weighted graphs and, again, can be reduced to P + O(m) for certain classes of
weights [46]. Storing the oracle and the tree takes S + O(n) space.

3 We observe that (u, u′) is on the path P iff one of the following two conditions hold: (i) the least-
common-ancestor of u and x in Tz is u and the least-common-ancestor of u′ and x in Tz is u′; (ii) the
least-common-ancestor of u and y in Tz is u and the least-common-ancestor of u′ and y in Tz is u′.

ICALP 2023

24:14 Fault-Tolerant ST-Diameter Oracles

For the query, consider a set F ⊆ E of up to f failing edges and let F0 = F ∩ E(Ts)
be those failures that are in the tree. Consider the collection of rooted (sub-)trees Ts − F0.
Define XF to be the set of roots of those trees that contain some vertex from T . For some
v ∈ V , let D(v, F) be the σ-approximation of the replacement distance dG−F (s, v) computed
by the DSO D. Our sT -diameter oracle answers the query F by reporting the value

D̂ = C + max
x∈XF

D(x, F).

Regarding the correctness of that answer, consider a vertex t ∈ T . Let x ∈ XF be
the root of the subtree of Ts that contains t. There is a path from s to t in G − F of
length at most dG−F (s, x) + dG(x, t) ⩽ dG−F (s, x) + dG(s, t) ⩽ D(x, F) + C. Hence, we
have dG−F (s, t) ⩽ C + maxx∈XF

D(x, F), that is, diam(G−F, s, T) ⩽ D̃. We next prove
D̂ ⩽ (1 + 2σ) · diam(G−F, s, T). Let x0 ∈ XF be the maximizer of D(x, F), and t ∈ T be in
the tree in Ts −F0 that is rooted in x0. Then, we have dG−F (s, x0) ⩽ dG−F (s, t)+dG(t, x0) ⩽
dG−F (s, t) + dG(t, s) ⩽ 2 · dG−F (s, t). We used here that G is undirected so that we can go
“up” the tree from t to x0. From this, we get

D̂ = C +D(x0, F) ⩽ C +σ ·dG−F (s, x0) ⩽ C +2σ ·dG−F (s, t) ⩽ (1+2σ) ·diam(G−F, s, T).

Given XF , computing D̂ takes time O(fQ). It remains to show how to compute XF from
F in O(f2) time. Recall that we know the parent of every non-root node in Ts. We use it to
first obtain F0 from F in time O(f) as an edge {a, b} is in Ts iff a is parent of b or vice versa.

For each edge e ∈ F0, let b(e) be the endpoint of e that is farther from the source s. Next,
define B0 = {b(e) | e ∈ F0} ∪ {s}. Every root in XF is either the source s or the “lower”
endpoint of a failing edge, i.e., XF ⊆ B0. For each b ∈ B0, let B0(b) be the closest proper
descendants of b in B0, if any. That is, on the paths in Ts between b and any b′ ∈ B0(b) there
is no other vertex from B0. We can compute the sets B0(b) for all b ∈ B0 simultaneously in
total time O(|B0|2) = O(f2) as follows. A vertex is a proper ancestor of b′ iff its pre-order
number is strictly smaller than that of b′ and its post-order number is strictly larger. So
finding those takes time O(|B0|) for each b′ ∈ B0. Then, b′ is in the set B0(b) for the proper
ancestor b with the highest pre-order number.

Finally, observe that a vertex b ∈ B0 lies in XF if and only if there is at least one vertex
of T that falls into the subtree of Ts rooted at v but not in any of the subtrees rooted at
(proper) descendants of b in B0. To check this condition via the counts, we only need to
consider the immediate descendants in B0(b). If the element of T is in some lower subtree,
then it is also accounted for by an immediate descendant. In summary, some b ∈ B0 is in XF

iff count(b)−
∑

b′∈B0(b) count(b′) > 0. This proves that XF is computable in time O(f2). ◀

We now handle multiple sources, that is, we build an f -FDO-ST for a general set S. The
next result is a straightforward reduction to the sT -case. As it turns out, it is enough to
construct the sT -diameter oracle for two arbitrary vertices s ∈ S and t ∈ T . Due to lack of
space, the proof of Lemma 9 is deferred to the full version of the paper.

▶ Lemma 9. Let G = (V, E) be an undirected graph with n vertices, m edges, and possibly
positive edge weights. Let S, T ⊆ V be non-empty sets of vertices, and s ∈ S and t ∈ T be two
vertices. Suppose one is given access to an f -FDO-sT and an f -FDO-tS for G with respective
preprocessing times PsT and PtS, space requirements SsT and StT , query times QsT and QsT ,
and stretches σsT and σtS. Then, one can compute an f -FDO-ST for G with preprocessing
time PsT + PtS, space SsT + StS, query time QsT + QtT , and stretch σsT + σtS + min(σsT , σtS).

D. Bilò, K. Choudhary, S. Cohen, T. Friedrich, S. Krogmann, and M. Schirneck 24:15

Table 8 Conditions for the presence of edges between the vertex sets of graph G in Section 5.
The symbol ⊕ stands for the exclusive or. All conditions are symmetric with respect to the index
pairs (i, x), (j, y), and (k, z), whence H is undirected.

Set Pair Vertex Pair Edge Condition
A × A independent set
B × B b[i, j, k], b[x, y, z] (i = x) ⊕ (j = y)
C × C c[i, j, k], c[x, y, z] (i = x) ⊕ (j = y)
D × D independent set
A × B a[i, j], b[x, y, z] (i = x) ∧ (z = 0)
B × C b[i, j, k], c[x, y, z] (i = x) ∧ (j = y)
C × D c[i, j, k], d[x, y] (j = y) ∧ (k = 0)

Combining Theorem 4 and Lemma 9 gives a reduction from f -FDO-ST to single-source
f -DSOs. However, it results in a data structure with a stretch of 3 + 6σ, where σ is the
original stretch of the f -DSO We can improve this by not treating Lemma 9 as a black box.

▶ Theorem 5. Let G = (V, E) be an undirected graph with n vertices, m edges, and possibly
positive edge weights. Let S, T be two non-empty subsets of V . Given a single-source f -DSO
for G with preprocessing time P, space S, query time Q, and stretch σ, one can compute an
f-FDO-ST for G with preprocessing time O(P + m+n log n), space O(S + n), query time
O(f2 +fQ), and stretch 2+5σ. For unweighted graphs, the preprocessing time can be improved
to O(P + m)

Proof. Let s ∈ S and t ∈ T be arbitrary. The preprocessing algorithm of the f -FDO-ST uses
the single-source f -DSO twice, once for source s and once for t, to construct an f -FDO-sT

DsT and an f -FDO-tS DtS both with stretch 1 + 2σ, as described in Theorem 4.
For a set F ⊆ E of at most f edge failures, let DsT (F) and DtS(F) be the respective

(1 + 2σ)-approximations of diam(G − F, s, T) and diam(G − F, t, S). Further, let Dst(F) be a
σ-approximation of dG−F (s, t), obtained from the DSO with source s. The query algorithm
outputs D̂ = DtS(F) + Dst(F) + DsT (F). Let (s0, t0) ∈ S × T . We have

dG−F (s0, t0) ⩽ dG−F (s0, t) + dG−F (t, s) + dG−F (s, t0)
⩽ DtS(F) + Dst(F) + DsT (F) ⩽ (2+5σ) · diam(G−F, S, T). ◀

5 Space Lower Bound

Recall that Theorem 6 states a space lower bound for f -FDOs and f -FDO-STs with sensitivity
f ⩾ 2 in that if they have stretch better than 5/3, they must take Ω(n3/2) space. The theorem
is implied by the following lemma, which we prove in this section.

▶ Lemma 10. For infinitely many n, there is a graph G = (V, E) with n vertices (and two
sets S, T ⊆ V) such that any data structure that decides for any pair of edges e, e′ ∈ E,
whether G − {e, e′} has diameter (resp., ST -diameter) 3 or 5 requires Ω(n3/2) bits of space.

We first construct an auxiliary graph H. Let n = 6N for some N which is a perfect
square. In the following, indices i, j range over the set [

√
N] and k ranges over {0, 1}

Define four pairwise disjoint sets of vertices A = {a[i, j]}i,j , B = {b[i, j, k]}i,j,k, C =
{c[i, j, k]}i,j,k, D = {d[i, j]}i,j with respective cardinalities N, 2N, 2N, and N . The vertex
set of H is V (H) = A ∪ B ∪ C ∪ D. The edges in H are shown in Table 8 and are defined

ICALP 2023

24:16 Fault-Tolerant ST-Diameter Oracles

A B C D

j ik

i⊕ j i⊕ j

Figure 1 Visual representation of the graph H. Each vertex corresponds to a tuple [i, j] or [i, j, k]
and belongs to one of the sets A, B, C, or D. To move from vertex a[i, j] to b[i′, j′, k′] it must be
the case that i = i′ and k′ = 0, but one can jump from any j to any j′. This is marked by the blue
edge labeled j between sets A and B, analogously for the other pairs of sets. When moving inside
the sets B or C either the first index i ≠ i′ or the second one j ̸= j′ changes, marked by the red
labels. Sets A and D have no internal edges.

depending on the relations among the indices of the participating vertices. For example,
some edge {b[i, j, k], b[x, y, z]} between elements of B and C exists if and only if either i and
x are equal or j and y are equal, while k, z ∈ {0, 1} can be arbitrary. Note that the number
of edges in E is Θ(N3/2) = Θ(n3/2).

▶ Lemma 11. The diameter of H is at most 3.

Proof. To verify that the diameter of H is at most 3, we give explicit paths of length at
most 3 between all possible vertex pairs from the sets A, B, C, and D. Note that all paths
below are reversible as the edges are undirected. The symbol x stands for any index from
[
√

N] except x, analogously for y.

For vertices a[i, j], a[x, y] ∈ A, we distinguish two cases depending on whether the first
indices i ̸= x are different or not. In the first case, the vertices are joined by the path
(a[i, j], b[i, y, 0], b[x, y, 0], a[x, y]). In the second case, the middle two vertices are the same,
thus the path shortens to (a[i, j], b[x, y, 0], a[x, y]).

Symmetrically, for vertices d[i, j], d[x, y] ∈ D, the cases are defined with respect two the
second indices, i.e., whether j ≠ y. The paths are (d[i, j], c[x, j, 0], c[x, y, 0], d[x, y]) and
(d[i, j], c[x, y, 0], d[x, y]), respectively.

For vertices b[i, j, k], b[x, y, z] ∈ B, the generic path is (b[i, j, k], b[x, j, k], b[x, y, z]). If
i = x, then the first two vertices are the same; if j = y, the last two are. The argument
for vertices c[i, j, k], c[x, y, z] ∈ C is the same.

For the vertex pair (a[i, j], b[x, y, z]) ∈ A × B, the ley point is that any edge inside of B

changes exactly one of the first two indices. If i ̸= x, the path is (a[i, j], b[i, y, 0], b[x, y, z]),
otherwise it is (a[i, j], b[x, y, 0], b[x, y, z]).

The pair (d[i, j], c[x, y, z]) ∈ D × C is handled symmetrically. If j ̸= y, the path is
(d[i, j], c[x, j, 0], c[x, y, z]), otherwise it is (d[i, j], b[x, y, 0], b[x, y, z]).

Vertex pair (a[i, j], c[x, y, z]) ∈ A × C: path (a[i, j], b[i, y, 0], c[i, y, z], c[x, y, z]). Note that
if i = x the last two vertices are the same. Vertex pair (d[i, j], b[x, y, z]) ∈ D × B: path
(d[i, j], c[x, j, 0], b[x, j, z], b[x, y, z]).

Vertex pair (a[i, j], d[x, y]) ∈ A × D: path (a[i, j], b[i, y, 0], c[i, y, 0], d[x, y]).

Vertex pair (b[i, j, k], c[x, y, z]) ∈ B × C: the path (b[i, j, k], b[x, j, k], c[x, j, k], c[x, y, z])
possibly shortens if consecutive vertices are the same. ◀

D. Bilò, K. Choudhary, S. Cohen, T. Friedrich, S. Krogmann, and M. Schirneck 24:17

Consider an arbitrary binary
√

N ×
√

N ×
√

N matrix (tensor) M . We build a supergraph
G ⊇ H embedding the information about the entries of M in the fault-tolerant diameter of
G under dual failures, i.e., diam(G−F) with |F | = 2. The number of possible matrices M

will then imply the space lower bounds for diameter oracles for G.
The graph G contains all vertices and edges of H and the following additional edges.

For all i, j, y ∈ [
√

N], if M [i, j, y] = 1, then add {a[i, j], b[i, y, 1]} as an edge of G.
For all i, x, y ∈ [

√
N], if M [i, x, y] = 1, then add {c[i, y, 1], d[x, y]}.

Note that the diameter of G remains at most 3.
Consider any four indices i, j, x, y ∈ [

√
N] such that i ̸= x and j ̸= y. We define two

sets F, F ′ both containing pairs of vertices in V = V (H). First, let F ⊆ E(H) ⊆ E contain
e1 = {a[i, j], b[i, y, 0]} and e2 = {c[i, y, 0], d[x, y]}. Secondly, let F ′ be the set comprising the
two pairs e′

1 = {a[i, j], b[i, y, 1]} and e′
2 = {c[i, y, 1], d[x, y]}. Note that the elements of F ′ are

only edges of G if the entries M [i, j, y] and M [i, x, y] are 1.

▶ Lemma 12. For any four indices i, j, x, y ∈ [
√

N] such that i ≠ x and j ̸= y, the diameter
of G − (F ∪ F ′) is at least 5.

Proof. We show that the distance between a[i, j] and d[x, y] in G − (F ∪ F ′) is at least 5.
Contrarily, assume that P = (a[i, j], w1, w2, w3, d[x, y]) is a path of length at most 4. P must
pass across sets A → B, B → C, and C → D and change the indices from (i, j) to (x, y).

The neighborhood of a[i, j] in G − (F ∪ F ′) is the set{
b[i, y, 0] | y ∈ [

√
N] \ {y}

}
∪

{
b[i, y, 1] | y ∈ [

√
N] \ {y} ∧ M [i, j, y]} = 1

}
.

The index i cannot change on the first edge {a[i, j], w1} of P and, since the edges e1 =
{a[i, j], b[i, y, 0]} ∈ F and e′

1 = {a[i, j], b[i, y, 1]} ∈ F ′ are missing, the second index of w1
must differ from y. Symmetrically, the change of j cannot take place on the last edge
{w3, d[x, y]} and the first index of w3 must differ from x. At least one of the edges {w1, w2}
or {w2, w3} passes from B to C, w.l.o.g. let this be {w1, w2}. This edge (already present in
H) cannot change any of the indices. We are left with {w2, w3}. If P has strictly less than 4
edges, then w2 = w3. Otherwise, either both endpoints w2 and w3 are in B, both are in C

or there is exactly one in either. None of those cases allows one to make the two necessary
changes to the indices simultaneously. ◀

▶ Lemma 13. The diameter of (G − F) ∪ F ′ is 3.

Proof. The proof is very similar to that of Lemma 11, only that every time the edge
e1 = {a[i, j], b[i, y, 0]} ∈ F (respectively, e2 = {c[i, y, 0], d[x, y]}) has been used, it is replaced
by e′

1 = {a[i, j], b[i, y, 1]} ∈ F ′ (respectively, by e′
2 = {c[i, y, 1], d[x, y]}). ◀

▶ Lemma 14. The diameter of G − F is at most 3 if M [i, j, y] = M [i, x, y] = 1, and at least
5 if M [i, j, y] = M [i, x, y] = 0.

Proof. The diameter of graph G − F is at least 5 if neither vertex pair in F ′ is an edge of G

by Lemma 12. This is only true if M [i, j, y] = M [i, x, y] = 0. Conversely, by Lemma 13, the
diameter is at most 3 if both edges in F ′ lie in G, i.e., if M [i, j, y] = M [i, x, y] = 1. ◀

We now finish the proof of Lemma 10. Suppose there exists a data structure that
distinguishes whether after any two edges fail the diameter of the resulting graph is bounded
by 3 or at least 5. We can use it to infer the entry M [i, j, y] for any triple (i, j, y) ∈ [

√
N]3

ICALP 2023

24:18 Fault-Tolerant ST-Diameter Oracles

of indices such that i and j differ from each other, and j and y differ. We compute the
edges in F with respect to the indices i ≠ x = j ̸= y and apply Lemma 14 to check whether
M [i, j, y] = M [i, x, y] = 1 or M [i, j, y] = M [i, x, y] = 0. For the assertion in Lemma 10 about
the ST -diameter, we choose S = A and T = D. Since there are 2

√
N (

√
N −1)2 = 2Ω(n3/2)

collections of possible answers, the oracle must take Ω(n3/2) bits of space.

References
1 Donald Aingworth, Chandra Chekuri, Piotr Indyk, and Rajeev Motwani. Fast Estimation of

Diameter and Shortest Paths (Without Matrix Multiplication). SIAM Journal on Computing,
28:1167–1181, 1999. doi:10.1137/S0097539796303421.

2 Noga Alon, Shiri Chechik, and Sarel Cohen. Deterministic Combinatorial Replacement Paths
and Distance Sensitivity Oracles. In Proceedings of the 46th International Colloquium on
Automata, Languages, and Programming, (ICALP), pages 12:1–12:14, 2019. doi:10.4230/
LIPIcs.ICALP.2019.12.

3 Bertie Ancona, Monika Henzinger, Liam Roditty, Virginia Vassilevska Williams, and Nicole
Wein. Algorithms and Hardness for Diameter in Dynamic Graphs. In Proceedings of the
46th International Colloquium on Automata, Languages, and Programming (ICALP), pages
13:1–13:14, 2019. doi:10.4230/LIPIcs.ICALP.2019.13.

4 Arturs Backurs, Liam Roditty, Gilad Segal, Virginia Vassilevska Williams, and Nicole Wein.
Toward Tight Approximation Bounds for Graph Diameter and Eccentricities. SIAM Journal
on Computing, 50:1155–1199, 2021. doi:10.1137/18M1226737.

5 Surender Baswana, Keerti Choudhary, Moazzam Hussain, and Liam Roditty. Approximate
Single-Source Fault Tolerant Shortest Path. ACM Transactions on Algorithms, 16:44:1–44:22,
2020. doi:10.1145/3397532.

6 Surender Baswana, Keerti Choudhary, and Liam Roditty. Fault-Tolerant Subgraph for Single-
Source Reachability: General and Optimal. SIAM Journal on Computing, 47:80–95, 2018.
doi:10.1137/16M1087643.

7 Surender Baswana and Telikepalli Kavitha. Faster Algorithms for Approximate Distance Ora-
cles and All-Pairs Small Stretch Paths. In Proceedings of the 47th Symposium on Foundations
of Computer Science (FOCS), pages 591–602, 2006. doi:10.1109/FOCS.2006.29.

8 Surender Baswana and Neelesh Khanna. Approximate Shortest Paths Avoiding a Failed Vertex:
Near Optimal Data Structures for Undirected Unweighted Graphs. Algorithmica, 66:18–50,
2013. doi:10.1007/s00453-012-9621-y.

9 Michael A. Bender and Martin Farach-Colton. The LCA problem revisited. In Gaston H.
Gonnet, Daniel Panario, and Alfredo Viola, editors, LATIN 2000: Theoretical Informatics,
4th Latin American Symposium, Punta del Este, Uruguay, April 10-14, 2000, Proceedings,
volume 1776 of Lecture Notes in Computer Science, pages 88–94. Springer, 2000. doi:
10.1007/10719839_9.

10 Aaron Bernstein and David R. Karger. Improved Distance Sensitivity Oracles via Random
Sampling. In Proceedings of the 19th Symposium on Discrete Algorithms (SODA), pages 34–43,
2008. URL: https://dl.acm.org/citation.cfm?id=1347082.1347087.

11 Aaron Bernstein and David R. Karger. A Nearly Optimal Oracle for Avoiding Failed Vertices
and Edges. In Proceedings of the 41st Symposium on Theory of Computing (STOC), pages
101–110, 2009. doi:10.1145/1536414.1536431.

12 Davide Bilò, Keerti Choudhary, Luciano Gualà, Stefano Leucci, Merav Parter, and Guido
Proietti. Efficient Oracles and Routing Schemes for Replacement Paths. In Proceedings of
the 35th Symposium on Theoretical Aspects of Computer Science (STACS), pages 13:1–13:15,
2018. doi:10.4230/LIPIcs.STACS.2018.13.

13 Davide Bilò, Luciano Gualà, Stefano Leucci, and Guido Proietti. Compact and Fast Sensitivity
Oracles for Single-Source Distances. In Piotr Sankowski and Christos D. Zaroliagis, editors,
Proceedings of the 24th European Symposium on Algorithms (ESA), pages 13:1–13:14, 2016.
doi:10.4230/LIPIcs.ESA.2016.13.

https://doi.org/10.1137/S0097539796303421
https://doi.org/10.4230/LIPIcs.ICALP.2019.12
https://doi.org/10.4230/LIPIcs.ICALP.2019.12
https://doi.org/10.4230/LIPIcs.ICALP.2019.13
https://doi.org/10.1137/18M1226737
https://doi.org/10.1145/3397532
https://doi.org/10.1137/16M1087643
https://doi.org/10.1109/FOCS.2006.29
https://doi.org/10.1007/s00453-012-9621-y
https://doi.org/10.1007/10719839_9
https://doi.org/10.1007/10719839_9
https://dl.acm.org/citation.cfm?id=1347082.1347087
https://doi.org/10.1145/1536414.1536431
https://doi.org/10.4230/LIPIcs.STACS.2018.13
https://doi.org/10.4230/LIPIcs.ESA.2016.13

D. Bilò, K. Choudhary, S. Cohen, T. Friedrich, S. Krogmann, and M. Schirneck 24:19

14 Davide Bilò, Luciano Gualà, Stefano Leucci, and Guido Proietti. Multiple-Edge-Fault-
Tolerant Approximate Shortest-Path Trees. Algorithmica, 84:37–59, 2022. doi:10.1007/
s00453-021-00879-8.

15 Davide Bilò, Keerti Choudhary, Sarel Cohen, Tobias Friedrich, and Martin Schirneck. Deter-
ministic Sensitivity Oracles for Diameter, Eccentricities and All Pairs Distances. In Proceedings
of the 49th International Colloquium on Automata, Languages, and Programming (ICALP),
pages 22:1–22:19, 2022. doi:10.4230/LIPIcs.ICALP.2022.22.

16 Davide Bilò, Sarel Cohen, Tobias Friedrich, and Martin Schirneck. Near-Optimal Deterministic
Single-Source Distance Sensitivity Oracles. In Proceedings of the 29th European Symposium
on Algorithms (ESA), pages 18:1–18:17, 2021. doi:10.4230/LIPIcs.ESA.2021.18.

17 Davide Bilò, Sarel Cohen, Tobias Friedrich, and Martin Schirneck. Space-Efficient Fault-
Tolerant Diameter Oracles. In Proceedings of the 46th International Symposium on Mathemat-
ical Foundations of Computer Science (MFCS), pages 18:1–18:16, 2021. doi:10.4230/LIPIcs.
MFCS.2021.18.

18 Jan van den Brand and Thatchaphol Saranurak. Sensitive Distance and Reachability Oracles
for Large Batch Updates. In Proceedings of the 60th Symposium on Foundations of Computer
Science (FOCS), pages 424–435, 2019. doi:10.1109/FOCS.2019.00034.

19 Sergio Cabello, Erin W. Chambers, and Jeff Erickson. Multiple-Source Shortest Paths in
Embedded Graphs. SIAM J. Comput., 42:1542–1571, 2013. doi:10.1137/120864271.

20 Diptarka Chakraborty and Keerti Choudhary. New Extremal Bounds for Reachability and
Strong-Connectivity Preservers Under Failures. In Proceedings of the 47th International
Colloquium on Automata, Languages, and Programming (ICALP), pages 25:1–25:20, 2020.
doi:10.4230/LIPIcs.ICALP.2020.25.

21 Abraham Charnes. Optimality and Degeneracy in Linear Programming. Econometrica,
20:160–170, 1952.

22 Shiri Chechik and Sarel Cohen. Distance Sensitivity Oracles with Subcubic Preprocessing
Time and Fast Query Time. In Proccedings of the 52nd Symposium on Theory of Computing
(STOC), pages 1375–1388, 2020. doi:10.1145/3357713.3384253.

23 Shiri Chechik, Sarel Cohen, Amos Fiat, and Haim Kaplan. (1 + ε)-Approximate f -Sensitive
Distance Oracles. In Proceedings of the 28th Symposium on Discrete Algorithms (SODA),
pages 1479–1496, 2017. doi:10.1137/1.9781611974782.96.

24 Shiri Chechik, Michael Langberg, David Peleg, and Liam Roditty. f -Sensitivity Distance Ora-
cles and Routing Schemes. Algorithmica, 63:861–882, 2012. doi:10.1007/s00453-011-9543-0.

25 Shiri Chechik, Daniel H. Larkin, Liam Roditty, Grant Schoenebeck, Robert E. Tarjan, and
Virginia Vassilevska Williams. Better Approximation Algorithms for the Graph Diameter. In
Proceedings of the 25th Symposium on Discrete Algorithms (SODA), pages 1041–1052, 2014.
doi:10.1137/1.9781611973402.78.

26 Keerti Choudhary and Omer Gold. Extremal Distances in Directed Graphs: Tight Spanners
and Near-Optimal Approximation Algorithms. In Proceedings of the 31st Symposium on
Discrete Algorithms (SODA), pages 495–514, 2020. doi:10.1137/1.9781611975994.30.

27 Pierluigi Crescenzi, Roberto Grossi, Leonardo Lanzi, and Andrea Marino. On Computing the
Diameter of Real-World Directed (Weighted) Graphs. In Ralf Klasing, editor, Proceedings of
the 11th Symposium on Experimental Algorithms (SEA), pages 99–110, 2012. doi:10.1007/
978-3-642-30850-5_10.

28 Mina Dalirrooyfard, Virginia Vassilevska Williams, Nikhil Vyas, and Nicole Wein. Tight
Approximation Algorithms for Bichromatic Graph Diameter and Related Problems. In
Proceedings of the 46th International Colloquium on Automata, Languages, and Programming
(ICALP), pages 47:1–47:15, 2019. doi:10.4230/LIPIcs.ICALP.2019.47.

29 Camil Demetrescu and Mikkel Thorup. Oracles for Distances Avoiding a Link-Failure. In
Proceedings of the 13th Symposium on Discrete Algorithms (SODA), pages 838–843, 2002.
URL: https://dl.acm.org/citation.cfm?id=545381.545490.

ICALP 2023

https://doi.org/10.1007/s00453-021-00879-8
https://doi.org/10.1007/s00453-021-00879-8
https://doi.org/10.4230/LIPIcs.ICALP.2022.22
https://doi.org/10.4230/LIPIcs.ESA.2021.18
https://doi.org/10.4230/LIPIcs.MFCS.2021.18
https://doi.org/10.4230/LIPIcs.MFCS.2021.18
https://doi.org/10.1109/FOCS.2019.00034
https://doi.org/10.1137/120864271
https://doi.org/10.4230/LIPIcs.ICALP.2020.25
https://doi.org/10.1145/3357713.3384253
https://doi.org/10.1137/1.9781611974782.96
https://doi.org/10.1007/s00453-011-9543-0
https://doi.org/10.1137/1.9781611973402.78
https://doi.org/10.1137/1.9781611975994.30
https://doi.org/10.1007/978-3-642-30850-5_10
https://doi.org/10.1007/978-3-642-30850-5_10
https://doi.org/10.4230/LIPIcs.ICALP.2019.47
https://dl.acm.org/citation.cfm?id=545381.545490

24:20 Fault-Tolerant ST-Diameter Oracles

30 Camil Demetrescu, Mikkel Thorup, Rezaul A. Chowdhury, and Vijaya Ramachandran. Oracles
for Distances Avoiding a Failed Node or Link. SIAM Journal on Computing, 37:1299–1318,
2008. doi:10.1137/S0097539705429847.

31 Ran Duan, Yong Gu, and Hanlin Ren. Approximate Distance Oracles Subject to Multiple
Vertex Failures. In Proceedings of the 32nd Symposium on Discrete Algorithms (SODA), pages
2497–2516, 2021. doi:10.1137/1.9781611976465.148.

32 Ran Duan and Seth Pettie. Dual-Failure Distance and Connectivity Oracles. In Proceedings
of the 20th Symposium on Discrete Algorithms (SODA), pages 506–515, 2009. URL: http:
//dl.acm.org/citation.cfm?id=1496770.1496826.

33 Ran Duan and Seth Pettie. Connectivity Oracles for Failure Prone Graphs. In Leonard J.
Schulman, editor, Proceedings of the 42nd Symposium on Theory of Computing (STOC), pages
465–474, 2010. doi:10.1145/1806689.1806754.

34 Ran Duan and Hanlin Ren. Maintaining Exact Distances under Multiple Edge Failures. In
Proceedings of the 54th Symposium on Theory of Computing (STOC), pages 1093–1101, 2022.
doi:10.1145/3519935.3520002.

35 Fabrizio Grandoni and Virginia Vassilevska Williams. Improved Distance Sensitivity Oracles via
Fast Single-Source Replacement Paths. In Proceedings of the 53rd Symposium on Foundations
of Computer Science (FOCS), pages 748–757, 2012. doi:10.1109/FOCS.2012.17.

36 Fabrizio Grandoni and Virginia Vassilevska Williams. Faster Replacement Paths and Distance
Sensitivity Oracles. ACM Transaction on Algorithms, 16:15:1–15:25, 2020. doi:10.1145/
3365835.

37 Yong Gu and Hanlin Ren. Constructing a Distance Sensitivity Oracle in O(n2.5794M) Time. In
Proceedings of the 48th International Colloquium on Automata, Languages, and Programming
(ICALP), pages 76:1–76:20, 2021. doi:10.4230/LIPIcs.ICALP.2021.76.

38 Manoj Gupta and Aditi Singh. Generic Single Edge Fault Tolerant Exact Distance Oracle. In
Proceedings of the 45th International Colloquium on Automata, Languages, and Programming,
(ICALP), pages 72:1–72:15, 2018. doi:10.4230/LIPIcs.ICALP.2018.72.

39 David Hartvigsen and Russell Mardon. The All-Pairs Min Cut Problem and the Minimum
Cycle Basis Problem on Planar Graphs. SIAM J. Discret. Math., 7:403–418, 1994. doi:
10.1137/S0895480190177042.

40 Monika Henzinger, Andrea Lincoln, Stefan Neumann, and Virginia Vassilevska Williams.
Conditional Hardness for Sensitivity Problems. In Proceedings of the 8th Conference on
Innovations in Theoretical Computer Science (ITCS), pages 26:1–26:31, 2017. doi:10.4230/
LIPIcs.ITCS.2017.26.

41 Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching Is as Easy as Matrix
Inversion. Comb., 7:105–113, 1987. doi:10.1007/BF02579206.

42 Hanlin Ren. Improved Distance Sensitivity Oracles with Subcubic Preprocessing Time. Journal
of Computer and System Sciences, 123:159–170, 2022. doi:10.1016/j.jcss.2021.08.005.

43 Liam Roditty. Approximating the Diameter. In Ming-Yang Kao, editor, Encyclopedia
of Algorithms, pages 116–117. Springer, New York City, NY, USA, 2016. doi:10.1007/
978-1-4939-2864-4_566.

44 Liam Roditty and Virginia Vassilevska Williams. Fast Approximation Algorithms for the
Diameter and Radius of Sparse Graphs. In Proceedings of the 45th Symposium on Theory of
Computing (STOC), pages 515–524, 2013. doi:10.1145/2488608.2488673.

45 Frank W. Takes and Walter A. Kosters. Determining the Diameter of Small World Networks.
In Craig Macdonald, Iadh Ounis, and Ian Ruthven, editors, Proceedings of the 20th Conference
on Information and Knowledge Management (CIKM), pages 1191–1196, 2011. doi:10.1145/
2063576.2063748.

46 Mikkel Thorup. Undirected Single-Source Shortest Paths with Positive Integer Weights in
Linear Time. Journal of the ACM, 46:362–394, 1999. doi:10.1145/316542.316548.

47 Oren Weimann and Raphael Yuster. Replacement Paths and Distance Sensitivity Oracles
via Fast Matrix Multiplication. ACM Transactions on Algorithms, 9:14:1–14:13, 2013. doi:
10.1145/2438645.2438646.

https://doi.org/10.1137/S0097539705429847
https://doi.org/10.1137/1.9781611976465.148
http://dl.acm.org/citation.cfm?id=1496770.1496826
http://dl.acm.org/citation.cfm?id=1496770.1496826
https://doi.org/10.1145/1806689.1806754
https://doi.org/10.1145/3519935.3520002
https://doi.org/10.1109/FOCS.2012.17
https://doi.org/10.1145/3365835
https://doi.org/10.1145/3365835
https://doi.org/10.4230/LIPIcs.ICALP.2021.76
https://doi.org/10.4230/LIPIcs.ICALP.2018.72
https://doi.org/10.1137/S0895480190177042
https://doi.org/10.1137/S0895480190177042
https://doi.org/10.4230/LIPIcs.ITCS.2017.26
https://doi.org/10.4230/LIPIcs.ITCS.2017.26
https://doi.org/10.1007/BF02579206
https://doi.org/10.1016/j.jcss.2021.08.005
https://doi.org/10.1007/978-1-4939-2864-4_566
https://doi.org/10.1007/978-1-4939-2864-4_566
https://doi.org/10.1145/2488608.2488673
https://doi.org/10.1145/2063576.2063748
https://doi.org/10.1145/2063576.2063748
https://doi.org/10.1145/316542.316548
https://doi.org/10.1145/2438645.2438646
https://doi.org/10.1145/2438645.2438646

Isoperimetric Inequalities for Real-Valued Functions
with Applications to Monotonicity Testing
Hadley Black #

Department of Computer Science, University of California at Los Angeles, CA, USA

Iden Kalemaj #

Department of Computer Science, Boston University, MA, USA

Sofya Raskhodnikova #

Department of Computer Science, Boston University, MA, USA

Abstract

We generalize the celebrated isoperimetric inequality of Khot, Minzer, and Safra (SICOMP 2018)
for Boolean functions to the case of real-valued functions f : {0, 1}d → R. Our main tool in the
proof of the generalized inequality is a new Boolean decomposition that represents every real-valued
function f over an arbitrary partially ordered domain as a collection of Boolean functions over the
same domain, roughly capturing the distance of f to monotonicity and the structure of violations of
f to monotonicity.

We apply our generalized isoperimetric inequality to improve algorithms for testing monotonicity
and approximating the distance to monotonicity for real-valued functions. Our tester for monotonicity
has query complexity Õ(min(r

√
d, d)), where r is the size of the image of the input function. (The

best previously known tester makes O(d) queries, as shown by Chakrabarty and Seshadhri (STOC
2013).) Our tester is nonadaptive and has 1-sided error. We prove a matching lower bound for
nonadaptive, 1-sided error testers for monotonicity. We also show that the distance to monotonicity
of real-valued functions that are α-far from monotone can be approximated nonadaptively within a
factor of O(

√
d log d) with query complexity polynomial in 1/α and the dimension d. This query

complexity is known to be nearly optimal for nonadaptive algorithms even for the special case of
Boolean functions. (The best previously known distance approximation algorithm for real-valued
functions, by Fattal and Ron (TALG 2010) achieves O(d log r)-approximation.)

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms; Mathematics of computing → Probabilistic algorithms

Keywords and phrases Isoperimetric inequalities, property testing, monotonicity testing

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.25

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2011.09441

Funding Hadley Black: This work was supported by NSF Grant CCF-1553605 and Boston Univer-
sity’s Data Science Initiative.
Iden Kalemaj: This work was supported by NSF award CCF-1909612 and Boston University’s
Dean’s Fellowship.
Sofya Raskhodnikova: This work was supported by NSF award CCF-1909612.

Acknowledgements We thank Ramesh Krishnan Pallavoor Suresh for useful discussions.

EA
T
C
S

© Hadley Black, Iden Kalemaj, and Sofya Raskhodnikova;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 25; pp. 25:1–25:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hablack@cs.ucla.edu
https://orcid.org/0009-0008-9662-2870
mailto:ikalemaj@bu.edu
https://orcid.org/0000-0002-0995-6346
mailto:sofya@bu.edu
https://orcid.org/0000-0002-4902-050X
https://doi.org/10.4230/LIPIcs.ICALP.2023.25
https://arxiv.org/abs/2011.09441
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

25:2 Isoperimetric Inequalities for Real-Valued Functions

1 Introduction

We investigate the structure of real-valued functions over the domain {0, 1}d, the d-
dimensional hypercube. Our main contribution is a generalization of a powerful tool from
the analysis of Boolean functions, specifically, isoperimetric inequalities1, to the case of
real-valued functions. Isoperimetric inequalities for the undirected hypercube were studied
by Margulis [34] and Talagrand [40]. Chakrabarty and Seshadhri [19] had a remarkable
insight to develop a directed analogue of the Margulis inequality. This beautiful line of work
culminated in the directed analogue of the Talagrand inequality proved by Khot, Minzer,
and Safra [32]. We refer to this as the KMS inequality. As Khot, Minzer, and Safra explain
in their celebrated work, the Margulis inequality follows from the Talagrand inequality
and, more generally, the directed analogue of the Talagrand inequality implies all the other
inequalities we mentioned. We generalize all these inequalities to the case of real-valued
functions2.

For the directed case, we prove a generalization of the KMS inequality for functions
f : {0, 1}d → R. To generalize the undirected isoperimetric inequalities, we give a property
testing interpretation of the Talagrand inequality. With this interpretation, it is easy to show
a generalization of the undirected Talagrand inequality to the case of real-valued functions.

Our proofs of the new isoperimetric inequalities reduce the general case to the Boolean
case. Our main tool for generalizing the KMS inequality is a new Boolean decomposition
theorem that represents every real-valued function f over an arbitrary partially ordered
domain as a collection of Boolean functions over the same domain, roughly capturing the
distance of f to monotonicity and the structure of violations of f to monotonicity.

We apply our generalized isoperimetric inequality to improve algorithms for testing
monotonicity and approximating the distance to monotonicity for real-valued functions. Our
algorithm for testing monotonicity is nonadaptive and has 1-sided error. An algorithm is
nonadaptive if its input queries do not depend on answers to previous queries. A property
testing algorithm has 1-sided error if it always accepts all inputs with the property it is testing.
We show that our algorithm for testing monotonicity is optimal among nonadaptive, 1-sided
error testers. Our distance approximation algorithm is nonadaptive. Its query complexity is
nearly optimal for nonadaptive algorithms, even for the special case of Boolean functions.

1.1 Isoperimetric Inequalities for Real-Valued Functions
We view the domain of functions f : {0, 1}d → R as the vertices of a d-dimensional hypercube.
For the directed isoperimetric inequalities, the edges of the hypercube are ordered pairs (x, y),
where x, y ∈ {0, 1}d and there is a unique3 i ∈ [d] such that xi = 0, yi = 1, and xj = yj for
all coordinates j ∈ [d] \ {i}. This defines a natural partial order on the domain: x ⪯ y if
xi ≤ yi for all coordinates i ∈ [d] or, equivalently, if there is a directed path from x to y

in the hypercube. A function f : {0, 1}d → R is monotone if f(x) ≤ f(y) whenever x ⪯ y.
The distance to monotonicity of a function f : {0, 1}d → R, denoted ε(f), is the minimum of

1 We discuss isoperimetric inequalities that study the size of the “boundary” between the points on which
the function takes value 0 and the points on which it takes value 1. The boundary size is defined in
terms of the edges of the d-dimensional hypercube with vertices labeled by the values of the function.
The edges of the hypercube might be directed or undirected, depending on the type of the inequality.

2 Following our initial manuscript, [10] and [14] proved generalizations of the KMS inequality to Boolean
functions over hypergrids. We remark that our techniques also extend these inequalities to real-valued
functions, f : [n]d → R. See Section 1.3 for more discussion.

3 Given a positive integer ℓ ∈ Z+, we let [ℓ] denote the set {1, 2, . . . , ℓ}.

H. Black, I. Kalemaj, and S. Raskhodnikova 25:3

|{x ∈ {0, 1}d : f(x) ̸= g(x)}|/2d over all monotone functions g : {0, 1}d → R. An edge (x, y)
is violated by f if f(x) > f(y). Let S−

f be the set of violated edges. For x ∈ {0, 1}d, let
I−

f (x) be the number of outgoing violated edges incident on x, specifically,

I−
f (x) =

∣∣∣{y : (x, y) ∈ S−
f

}∣∣∣ .

Our main result is the following isoperimetric inequality.

▶ Theorem 1.1 (Isoperimetric Inequality). There exists a constant C > 0, such that for all
functions f : {0, 1}d → R,

E
x∼{0,1}d

[√
I−

f (x)
]
≥ C · ε(f). (1)

Theorem 1.1 is a generalization of the celebrated inequality of Khot, Minzer, and Safra [32]
that was strengthened by Pallavoor et al. [36], who proved (1) for the special case of Boolean
functions f : {0, 1}d → {0, 1}. We show that the same inequality holds for real-valued
functions without any dependence on the size of the image of the function. In addition, the
constant C is only a factor of 2 smaller than the constant in the inequality of Pallavoor et al.

Applications to monotonicity testing and distance approximation rely on a stronger,
“robust” version of Theorem 1.1. The robust version considers an arbitrary 2-coloring
col : S−

f → {red, blue} of the violated edges. The color of an edge is used to specify whether
the edge is counted towards the lower or the upper endpoint. Let I−

f,red(x) be the number of
outgoing red violated edges incident on x, and I−

f,blue(x) be the number of incoming blue
violated edges incident on x, specifically,

I−
f,red(x) =

∣∣∣{y : (x, y) ∈ S−
f , col(x, y) = red

}∣∣∣ ;

I−
f,blue(y) =

∣∣∣{x : (x, y) ∈ S−
f , col(x, y) = blue

}∣∣∣ .

Our next theorem is a generalization of the robust isoperimetric inequality for Boolean
functions established by Khot, Minzer, and Safra and strengthened by Pallavoor et al. As
before, the constant C is only a factor of 2 smaller for the real-valued case than for the
Boolean case.

▶ Theorem 1.2 (Robust Isoperimetric Inequality). There exists a constant C > 0, such that
for all functions f : {0, 1}d → R and colorings col : S−

f → {red, blue},

E
x∼{0,1}d

[√
I−

f,red(x)
]

+ E
y∼{0,1}d

[√
I−

f,blue(y)
]
≥ C · ε(f).

Note that Theorem 1.2 implies Theorem 1.1 by considering the coloring where all violated
edges are red. Therefore, we only present a proof of Theorem 1.2.

1.1.1 Boolean Decomposition
Our main technical contribution is the Boolean decomposition (Theorem 1.3). It allows us
to prove Theorem 1.2 by reducing the general case of real-valued functions to the special
case of Boolean functions. Theorem 1.3 states that every non-monotone function f can be
decomposed into Boolean functions f1, f2, . . . , fk that collectively preserve the distance to
monotonicity of f and violate a subset of the edges violated by f . Crucially, they violate
edges in vertex-disjoint subgraphs of the hypercube.

ICALP 2023

25:4 Isoperimetric Inequalities for Real-Valued Functions

Our Boolean decomposition works for functions over any partially ordered domain. We
represent such a domain by a directed acyclic graph (DAG). For a DAG G, we denote its
vertex set by V (G) and its edge set by E(G). A DAG G determines a natural partial order
on its vertex set: for all x, y ∈ V (G), we have x ⪯ y if and only if G contains a path from x

to y. A function f : V (G)→ R is monotone if f(x) ≤ f(y) whenever x ⪯ y. An edge (x, y)
of G is violated by f if f(x) > f(y). The definitions of ε(f), the distance of f to monotone,
and S−

f , the set of violated edges, are the same as for the special case of the hypercube.

▶ Theorem 1.3 (Boolean Decomposition). Suppose G is a DAG and f : V (G)→ R is a function
over the vertices of G that is not monotone. Then, for some k ≥ 1, there exist Boolean
functions f1, . . . , fk : V (G)→ {0, 1} and vertex-disjoint (induced) subgraphs H1, . . . ,Hk of G
for which the following hold:
1. 2

∑k
i=1 ε(fi) ≥ ε(f).

2. S−
fi
⊆ S−

f ∩ E(Hi) for all i ∈ [k].

We derive Theorem 1.2 from Theorem 1.3 in Section 2 and prove Theorem 1.3 in Section 3.
A natural first attempt to proving Theorem 1.1 is to try reducing to the special case of

Boolean functions (the KMS inequality) via a thresholding argument. Given f : {0, 1}d → R
and t ∈ R, define ht : {0, 1}d → {0, 1} to be ht(x) = 1 iff f(x) > t. Clearly, this can only
reduce the left-hand side of (1) since the influential edges of ht are a subset of the influential
edges of f . Thus, if there exists some t ∈ R such that ε(ht) = Ω(ε(f)), then applying the
KMS inequality to ht would show that the inequality also holds for f . In fact, this technique
easily allows us to reduce the undirected inequality for the real-valued case to the Boolean
case, without any significant additional ideas (see Section 7 of the full version [11] for details).
However, in the directed setting, a simple argument shows that there exists f for which
ε(ht) ≤ ε(f)/r for all t ∈ R, where r is the size of the image of f . Thus, we use additional
ideas to prove Theorem 1.1 by a reduction to the KMS inequality. The highly structured
decomposition of Theorem 1.3 gives a collection of vertex-disjoint subgraphs H1, . . . ,Hk of
the directed hypercube where, in each Hi, an independent “variable thresholding rule” can be
applied, yielding the Boolean function fi. The “threshold” for each vertex x in Hi depends
on the values of the function at a particular set of vertices reachable from x.

The Boolean decomposition is quite powerful: in addition to enabling us to prove the new
isoperimetric inequality, it can be used to easily derive a lower bound on the number of edges
violated by a real-valued function directly from the bound for the Boolean case, without
relying on Theorem 1.2. This bound is used to analyze the edge tester for monotonicity whose
significance is described in Section 1.2. The early works on monotonicity testing [30, 25, 39]
have shown that |S−

f | ≥ ε(f) · 2d for every Boolean function f on the domain {0, 1}d. In
other words, the number of edges violated by f is at least the number of points on which
the value of the function has to change to make it monotone. This bound was generalized
to the case of real-valued functions by [25, 39] who showed that |S−

f | ≥ (ε(f)/⌈log r⌉) · 2d

for every real-valued function f on the domain {0, 1}d and with image size r. (The size of
the image of f is the number of distinct values it takes.) Chakrabarty and Seshadhri [17]
improved this bound by a factor of Θ(log r), thus removing the dependence on the size of the
image of the function. Our Boolean decomposition of a real-valued function f in terms of
Boolean functions f1, . . . , fk, given by Theorem 1.3, yields this result of [17] as an immediate
corollary of the special case for Boolean functions:

|S−
f | ≥

k∑
i=1
|S−

fi
| ≥

k∑
i=1

ε(fi) · 2d ≥ ε(f) · 2d−1,

where the inequalities follow by first applying Item 2 of Theorem 1.3, then applying the
bound for the Boolean case, and, finally, applying Item 1 of Theorem 1.3.

H. Black, I. Kalemaj, and S. Raskhodnikova 25:5

1.1.2 Undirected Isoperimetric Inequality for Real-Valued Functions
The original isoperimetric inequality of Talagrand [40] treats the domain {0, 1}d as an
undirected hypercube. An undirected edge {x, y} is influential if f(x) ̸= f(y). Let If (x) be
the number of influential edges {x, y} incident on x ∈ {0, 1}d for which f(x) > f(y). This
definition ensures that each influential edge is counted towards If (x) for exactly one vertex x.
The variance var(f) of a Boolean function is defined as p0(1− p0), where p0 is the probability
that f(x) = 0 for a uniformly random point x in the domain. Talagrand [40] proved the
following.

▶ Theorem 1.4 (Talagrand Inequality [40]). For all functions f : {0, 1}d → {0, 1},

E
x∼{0,1}d

[√
If (x)

]
≥
√

2 var(f). (2)

Before generalizing Theorem 1.4 to real-valued functions, we reinterpret it using a property
testing notion. Observe that the natural definition of the variance of a real-valued function
results in a quantity that depends on specific values of the function, whereas whether an
edge is influential depends only on whether the values on its endpoints are different and
not on the specific values themselves. So, variance is not a suitable notion for generalizing
this inequality. We replace the variance of f with the distance of f to constant, denoted
dist(f, const), i.e., the minimum of Prx∼{0,1}d [f(x) ̸= g(x)] over all constant functions
g : {0, 1}d → R. For a Boolean function f , the distance to constant is min{p0, (1 − p0)}
and, therefore, the left-hand side of (2) is at least dist(f, const)/

√
2. Next, we state our

generalization of Talagrand’s inequality. See Section 7 of the full version [11] for the proof.

▶ Theorem 1.5 (Undirected Isoperimetric Inequality). For all functions f : {0, 1}d → R,

E
x∼{0,1}d

[√
If (x)

]
≥ dist(f, const)

2
√

2
.

Note that natural generalizations of the Margulis inequality and the inequality of Chakrabarty
and Seshadhri to the real range follow from Theorem 1.2 (for the the special case of Boolean
functions, the implication is discussed in [32], and it holds for the real range for the same
reasons).

1.2 Applications of Our Isoperimetric Inequality for Real-Valued
Functions

We apply our generalized isoperimetric inequality (Theorem 1.2) to improve algorithms
for testing monotonicity and approximating the distance to monotonicity for real-valued
functions.

1.2.1 Monotonicity Testing
Monotonicity of functions, first studied in the context of property testing by Goldreich et
al. [30], is one of the most widely investigated properties in this model [26, 25, 39, 33, 29,
1, 28, 31, 3, 38, 2, 7, 15, 12, 17, 18, 19, 13, 16, 21, 5, 23, 35, 8, 32, 20, 9]. A function is
ε-far from monotone if its distance to monotonicity is at least ε; otherwise, it is ε-close to
monotone. An ε-tester for monotonicity is a randomized algorithm that, given a parameter
ε ∈ (0, 1) and oracle access to a function f , accepts with probability at least 2/3 if f is
monotone and rejects with probability at least 2/3 if f is ε-far from monotone. Prior to

ICALP 2023

25:6 Isoperimetric Inequalities for Real-Valued Functions

our work, the best monotonicity tester for real-valued functions was the edge tester. The
edge tester, introduced by [30], queries the values of f on the endpoints of uniformly random
edges of the hypercube and rejects if it finds a violated edge. As we discussed in Section 1.1,
a series of works [30, 25, 39, 17] proved lower bounds on |S−

f |, the number of violated edges,
resulting in the tight analysis of the edge tester for both Boolean and real-valued functions:
O(d/ε) queries are sufficient (and also necessary, e.g., for f(x) = 1− x1, the anti-dictator
function). For many years, it remained open whether an o(d)-query tester for monotonicity
existed, until a sequence of breakthroughs [19, 22, 32] designed testers for Boolean functions
with query complexity Õ(d7/8), Õ(d5/6), and finally Õ(

√
d). Prior to our work, the same

question remained open for functions with image size, r, greater than 2.
We show that when r is small compared to d, monotonicity can be tested with o(d)

queries. (Note that r ≤ 2d.)

▶ Theorem 1.6. There exists a nonadaptive, 1-sided error ε-tester for monotonicity of
functions f : {0, 1}d → R that makes Õ

(
min

(
r

√
d

ε2 , d
ε

))
queries and works for all functions

f with image size r.

The proof of Theorem 1.6 (in Section 4) heavily relies on the generalized isoperimetric
inequality of Theorem 1.2. We extend several other combinatorial properties of Boolean
functions to real-valued functions. In particular, the persistence of a vertex x ∈ {0, 1}d is a
key combinatorial concept in the analysis. A vertex x ∈ {0, 1}d is τ -persistent if, with high
probability, a random walk that starts at x and takes τ steps in the d-dimensional directed
hypercube ends at a vertex y for which f(y) ≤ f(x). As we show, the upper bound on the
number of vertices which are not τ -persistent grows linearly with the distance τ and the
image size r. For the tester analysis, one needs to carefully choose the distance parameter τ

for which many vertices are τ -persistent. In particular, this value of τ also depends on the
image size r, resulting in the linear dependence on r in the query complexity of the tester.

1.2.2 Our Lower Bound for Testing Monotonicity
We show that our monotonicity tester is optimal among nonadaptive, 1-sided error testers.

▶ Theorem 1.7. There exists a constant ε > 0, such that for all d, r ∈ N, every nonadaptive,
1-sided error ε-tester for monotonicity of functions f : {0, 1}d → [r] requires Ω(min(r

√
d, d))

queries.

We prove Theorem 1.7 by generalizing a construction of Fischer et al. [29] that showed that
nonadaptive, 1-sided error monotonicity testers of Boolean functions must make Ω(

√
d)

queries. We refer the reader to Section 6 of the full version [11] for the proof. Blais et al. [12]
demonstrated that every tester for monotonicity over the d-dimensional hypercube domain
requires Ω(min(d, r2)) queries. Our lower bound is stronger when r ∈ [2,

√
d], although it

applies only to nonadaptive, 1-sided error algorithms.

1.2.3 Approximating the Distance to Monotonicity
Motivated by the desire to handle noisy inputs, Parnas et al. [38] generalized the property
testing model to tolerant testing. There is a direct connection between tolerant testing of a
property and approximating the distance to the property with additive and multiplicative
error in the sense that these problems can be reduced to each other with the right setting
of parameters and have the same query complexity up to logarithmic factors (see, e.g., [38,
Claim 2] and [36, Theorem A.1]). One clean way to state distance approximation guarantees

H. Black, I. Kalemaj, and S. Raskhodnikova 25:7

is to replace the additive error α with the promise that the input function is α-far from the
property, as specified in the following definition. A randomized c-approximation algorithm
for the distance to monotonicity, where c > 1, is given a parameter α ∈ (0, 1) and oracle
access to a function f : {0, 1}d → R that is α-far from monotone. It outputs an estimate ε̂

that, with probability at least 2/3, satisfies ε(f) ≤ ε̂ ≤ c · ε(f).
Fattal and Ron [27] studied the problem of approximating the distance to monotonicity for

real-valued functions over the hypergrid domain [n]d. For the special case of the hypercube
domain, they give an O(d log r)-approximation algorithm for functions with image size r that
makes poly(d, 1/α) queries. Theorem 1.2 allows us to improve on their result, by showing
that the algorithm of Pallavoor et al. [36] for approximating the distance to monotonicity of
Boolean functions also works for real-valued functions, without any loss in the approximation
guarantee.

▶ Theorem 1.8. There exists a nonadaptive O(
√

d log d)-approximation algorithm for the
distance to monotonicity that, given a parameter α ∈ (0, 1) and oracle access to a function
f : {0, 1}d → R that is α-far from monotone, makes poly(d, 1/α) queries.

Pallavoor et al. prove that this approximation ratio is nearly optimal for nonadaptive
algorithms, even for the special case of Boolean functions. We also note that, by the
connection between tolerant testing and erasure-resilient testing observed by Dixit et al. [24],
our Theorem 1.8 implies the existence of an erasure-resilient ε-tester for monotonicity of
functions f : {0, 1}d → R that can handle up to Θ(ε/

√
d log d) erasures with query complexity

poly(d, 1/ε). The tester of Dixit et al. could handle only O(ε/d) erasures. For the proof of
Theorem 1.8, we refer the reader to Section 5 of the full version [11].

1.3 Other Prior Work on Monotonicity Testing and Open Questions
The query complexity of monotonicity testing of Boolean functions over the hypercube has
been resolved for nonadaptive testers by Chen et al. [21, 23] who proved a lower bound of
Ω̃(
√

d). For adaptive testers, the best lower bound known to date is Ω̃(d1/3), also shown
by [23]. It is an open question whether adaptive algorithms can do better than nonadaptive
ones for functions over the hypercube domain, both in the case of Boolean functions and,
more generally, for functions with small image size. As we mentioned before, there is a lower
bound of Ω(d) for functions with image size Ω(

√
d) [12].

Monotonicity testing has also been studied for functions on other types of domains,
including general partially ordered domains [29], with particular attention to the hypergrid
domain [n]d. (It has also been investigated in the context where the distance to monotonicity
is the normalized Lp distance instead of the Hamming distance [6], but we focus our attention
here on the Hamming distance.) When d = 1, monotonicity testing on the hypergrid [n]
is equivalent to testing sortedness of n-element arrays. This problem was introduced by
Ergun et al. [26]. Its query complexity has been completely pinned down in terms of n and
ε by [26, 28, 18, 4]: it is Θ(log(εn)

ε). Pallavoor et al. [35, 37] considered the setting when
the tester is given an additional parameter r, the number of distinct elements in the array,
and obtained an O((log r)/ε)-query algorithm. There are also lower bounds for this setting:
Ω(log r) for nonadaptive algorithms by [13] and Ω(log r

log log r) for all testers for the case when
r = n1/3 by [4].

For general d, Black et al. [8, 9] gave an Õ(d5/6)-query tester for Boolean functions
f : [n]d → {0, 1}. For real-valued functions, Chakrabarty and Seshadhri [17, 18] proved
basically matching upper and lower bounds of O((d log n)/ε) and Ω((d log n − log ε−1)/ε).
However, their lower bound only applies for functions with a large image. Pallavoor et al. [35]

ICALP 2023

25:8 Isoperimetric Inequalities for Real-Valued Functions

gave an O(d
ε · log d

ε · log r)-query tester, where r, the size of the image, is given to the tester as
a parameter. It remains open whether there is an Õ(

√
d)-query tester for Boolean functions

on the hypergrid domain.

1.3.1 Discussion of Results Published After our Initial Manuscript

Recently, in independent works, [10] and [14] showed generalizations of the isoperimetric
inequality of [32] to Boolean functions on general hypergrids (see [10, Theorem 1.4] and [14,
Theorem 1.3]). These works obtain Õ(n

√
d/ε2)-query and Õ(n3

√
d/ε2)-query nonadaptive, 1-

sided error monotonicity testers, respectively, for such functions. Our Boolean decomposition
(Theorem 1.3) implies that these isoperimetric inequalities also hold for functions f : [n]d → R
by the approach described in Section 2. We also believe that this should imply the existence
of an Õ(rn

√
d/ε2)-query tester for functions f : [n]d → [r]. A possible approach to proving

this could be to generalize the analysis given in Section 7 of [10] to the case of range [r].
Presumably, this would follow the same approach as in our Section 4 in which we prove
Theorem 1.6, but adapted to hypergrids. Since [10, 14] were published well after our initial
manuscript, we will refrain from going into further details on their relationship with our
results.

2 Directed Talagrand Inequality for Real-Valued Functions

In this section, we use our Boolean decomposition (Theorem 1.3) to prove Theorem 1.2, which
easily implies the non-robust version (Theorem 1.1) as we point out in the introduction.
Let f : {0, 1}d → R be a non-monotone function over the d-dimensional hypercube and let
col : S−

f → {red, blue} be an arbitrary 2-coloring of S−
f . Given x ∈ {0, 1}d and a subgraph

H of the d-dimensional hypercube, we define the quantities

I−
f,red,H(x) =

∣∣∣{y : (x, y) ∈ S−
f ∩ E(H), col(x, y) = red

}∣∣∣ ;

I−
f,blue,H(y) =

∣∣∣{x : (x, y) ∈ S−
f ∩ E(H), col(x, y) = blue

}∣∣∣ .

Let f1, . . . , fk : {0, 1}d → {0, 1} be the Boolean functions and H1, . . . ,Hk be the vertex-
disjoint subgraphs of the d-dimensional hypercube that are guaranteed by Theorem 1.3. Let
C ′ denote the constant from the robust Boolean isoperimetric inequality (Theorem 2.7 of
[36]) that is hidden by Ω. We have

E
x∼{0,1}d

[√
I−

f,red(x)
]

+ E
y∼{0,1}d

[√
I−

f,blue(y)
]

≥ E
x

[√
I−

f,red,
⋃k

i=1
Hi

(x)
]

+ E
y

[√
I−

f,blue,
⋃k

i=1
Hi

(y)
]

(3)

=
k∑

i=1

(
E
x

[√
I−

f,red,Hi
(x)

]
+ E

y

[√
I−

f,blue,Hi
(y)

])
(4)

≥
k∑

i=1

(
E
x

[√
I−

fi,red,Hi
(x)

]
+ E

y

[√
I−

fi,blue,Hi
(y)

])
(5)

=
k∑

i=1

(
E
x

[√
I−

fi,red(x)
]

+ E
y

[√
I−

fi,blue(y)
])

(6)

H. Black, I. Kalemaj, and S. Raskhodnikova 25:9

≥
k∑

i=1
C ′ · ε(fi) (7)

≥ C ′ · ε(f)
2 . (8)

The inequality (3) holds because
⋃k

i=1Hi is a subgraph of the d-dimensional hypercube.
The equality (4) holds because the Hi’s are vertex-disjoint. The inequality (5) holds since
S−

fi
⊆ S−

f and the equality (6) holds since S−
fi
⊆ E(Hi) (these are both by item 2 of

Theorem 1.3). Finally, (7) is due to [36, Theorem 2.7] and (8) is due to item 1 of Theorem 1.3.

3 Boolean Decomposition: Proof of Theorem 1.3

In this section, we prove Boolean Decomposition (Theorem 1.3). Our results consider any
partially ordered domain, which we represent by a DAG G. The transitive closure of G,
denoted TC(G), is the graph with vertex set V (G) and edge set {(x, y) : x ≺ y}. The violation
graph of f is the graph (V (G), E′), where E′ is the set of edges of TC(G) violated by f .

In Section 3.1, we define the key notion of sweeping graphs and identify some of their
important properties. In Section 3.2, we prove a general lemma that shows how to use a
matching M in TC(G) to find vertex-disjoint sweeping graphs in G satisfying a “matching
rearrangement” property. The techniques in Section 3.1 and Section 3.2 are inspired by
the techniques of [8] used to analyze Boolean functions on the hypergrid domain, [n]d. In
Section 3.3, we apply our matching decomposition lemma to a carefully chosen matching to
obtain the subgraphs H1, . . . ,Hk. Finally, in Section 3.4, we define the Boolean functions
f1, . . . , fk and complete the proof of Theorem 1.3.

3.1 Sweeping Graphs and Their Properties
Given a graph G and two subgraphs H1 and H2, we define the union H1 ∪ H2 to be the
graph with vertex set V (H1) ∪ V (H2) and edge set E(H1) ∪ E(H2).

▶ Definition 3.1 ((S, T)-Sweeping Graphs). Given a DAG G and s, t ∈ V (G), define H(s, t)
to be the subgraph of G formed by the union of all directed paths in G from s to t. Given two
disjoint subsets S, T ⊆ V (G), define the (S, T)-sweeping graph, denoted H(S, T), to be the
union of directed paths in G that start from some s ∈ S and end at some t ∈ T . That is,

H(S, T) =
⋃

(s,t)∈S×T

H(s, t).

Note that if s ⪯̸ t then H(s, t) = ∅.
We now prove three properties of sweeping graphs which we use in Section 3.4 to analyze

our functions f1, . . . , fk. Given disjoint sets S, T ⊆ V (G) and z ∈ V (H(S, T)), define the sets

S(z) = {s ∈ S : s ⪯ z} and T (z) = {t ∈ T : z ⪯ t}.

▷ Claim 3.2 (Properties of Sweeping Graphs). Let G be a DAG and S, T ⊆ V (G) be disjoint
sets.
1. (Property of Nodes in a Sweeping Graph): If z ∈ V (H(S, T)) then S(z) ̸= ∅ and T (z) ̸= ∅.
2. (Property of Nodes Outside of a Sweeping Graph): If z ∈ V (G) \ V (H(S, T)) then at most

one of the following is true: (a) ∃y ∈ V (H(S, T)) such that z ≺ y, (b) ∃x ∈ V (H(S, T))
such that x ≺ z.

3. (Sweeping Graphs are Induced): If x, y ∈ V (H(S, T)) and (x, y) ∈ E(G) then (x, y) ∈
E(H(S, T)).

ICALP 2023

25:10 Isoperimetric Inequalities for Real-Valued Functions

Proof. Property 1 holds by definition of the sweeping graph H(S, T). If z ∈ V (H(S, T)),
then, by definition of H(S, T), there exist s ∈ S and t ∈ T for which z belongs to some
directed path from s to t. That is, z ∈ V (H(s, t)). Thus, s ∈ S(z) and t ∈ T (z), and property
1 holds.

We now prove property 2. Suppose, for the sake of contradiction, that there exist
x, y, z ∈ V (G) for which x, y ∈ V (H(S, T)), z /∈ V (H(S, T)), and x ≺ z ≺ y. By property 1,
there exist some s ∈ S(x) and some t ∈ T (y). Then s ⪯ x ≺ z ≺ y ⪯ t and, consequently,
z belongs to some directed path from s to t. Thus, z ∈ V (H(s, t)), and so z ∈ V (H(S, T)).
This is a contradiction.

We now prove property 3. Suppose x, y ∈ V (H(S, T)) and (x, y) ∈ E(G). By property 1,
there exist s ∈ S and t ∈ T for which s ⪯ x and y ⪯ t. Since (x, y) ∈ E(G), we have x ≺ y

and so s ⪯ x ≺ y ⪯ t. Thus, the edge (x, y) belongs to a directed path from s to t. That is,
(x, y) ∈ E(H(s, t)) and so (x, y) ∈ E(H(S, T)). ◁

3.2 Matching Decomposition Lemma for DAGs
In this section, we prove the following matching decomposition lemma. Recall that TC(G)
denotes the transitive closure of G, which is the graph with vertex set V (G) and edge set
{(x, y) : x ≺ y}. Consider a matching M in TC(G). We represent M : S → T as a bijection
between two disjoint sets S, T ⊆ V (G) of the same size for which s ≺M(s) for all s ∈ S. For
a set S′ ⊆ S, define M(S′) = {M(s) : s ∈ S′}. Note that for convenience we will sometimes
abuse notation and represent M as the set of pairs, {(s, M(s)) : s ∈ S}, instead of as a
bijection.

▶ Lemma 3.3 (Matching Decomposition Lemma for DAGs). For every DAG G and every
matching M : S → T in TC(G), there exist partitions (Si : i ∈ [k]) of S and (Ti : i ∈ [k]) of
T , where M(Si) = Ti for all i ∈ [k], and the following hold.
1. (Sweeping Graph Disjointness): V (H(Si, Ti)) ∩ V (H(Sj , Tj)) = ∅ for all i ̸= j ∈ [k].
2. (Matching Rearrangement Property): For all i ∈ [k] and (x, y) ∈ Si × Ti, if x ≺ y then

there exists a matching M̂ : Si → Ti in TC(G) for which (x, y) ∈ M̂ .

Proof. In Algorithm 1, we show how to construct partitions (Si : i ∈ [k]) for S and (Ti : i ∈ [k])
for T from a matching M in TC(G). We use the following notion of conflicting pairs.

▶ Definition 3.4 (Conflicting Pairs). Given a DAG G and four disjoint sets X, Y, X ′, Y ′ ⊂
V (G), we say the two pairs (X, Y) and (X ′, Y ′) conflict if V (H(X, Y)) ∩ V (H(X ′, Y ′)) ̸= ∅.

Algorithm 1 Algorithm for constructing conflict-free pairs from a matching M .

Require: A DAG G and a matching M : S → T in TC(G).

1: Q0 ← {({x}, {y}) : (x, y) ∈M} ▷ Initialize pairs using M

2: for s ≥ 0 do
3: if two pairs (X, Y) ̸= (X ′, Y ′) ∈ Qs conflict then
4: Qs+1 ← (Qs \ {(X, Y), (X ′, Y ′)}) ∪ {(X ∪X ′, Y ∪ Y ′)} ▷ Merge conflicting pairs
5: else
6: s∗ ← s and return Qs∗ ▷ Terminate when there are no conflicts

The following observation is apparent and by design of Algorithm 1.

H. Black, I. Kalemaj, and S. Raskhodnikova 25:11

Figure 1 An illustration for Algorithm 1 with input matching M = {(a, x), (b, y), (c, z)}. We
initialize Q0 = {({a}, {x}), ({b}, {y}), ({c}, {z})}. The pairs ({a}, {x}) and ({b}, {y}) conflict, so
we merge them to obtain a new and final collection Q1 = {({a, b}, {x, y}), ({c}, {z})}.

▶ Observation 3.5 (Loop Invariants of Algorithm 1). For all s ∈ {0, 1, . . . , s∗}, (a) M(X) = Y

for all (X, Y) ∈ Qs, (b) (X : (X, ·) ∈ Qs) is a partition of S, and (c) (Y : (·, Y) ∈ Qs) is a
partition of T .

Given a matching M : S → T in TC(G), we run Algorithm 1 to obtain the set Qs∗ . See
Fig. 1 for an illustration. Define k = |Qs∗ | and let {(Si, Ti) : i ∈ [k]} be the set of pairs in
Qs∗ . By Observation 3.5, (Si : i ∈ [k]) is a partition of S, (Ti : i ∈ [k]) is a partition of T ,
and M(Si) = Ti for all i ∈ [k]. Item 1 of Lemma 3.3 holds since Algorithm 1 terminates at
step s only when all pairs in Qs are non-conflicting (recall Definition 3.4). Thus, to prove
Lemma 3.3 it only remains to prove item 2. To do so, we prove the following Claim 3.6, that
easily implies item 2. Note that while we only require Claim 3.6 to hold for the special case
of s = s∗, using an inductive argument on s allows us to give a proof for all s ∈ {0, 1, . . . , s∗}.

▷ Claim 3.6 (Rematching Claim). For all s ∈ {0, 1, . . . , s∗}, pairs (X, Y) ∈ Qs, and
(x, y) ∈ X × Y , there exists a matching M̂ : X \ {x} → Y \ {y} in TC(G).

Proof. The proof is by induction on s. For the base case, if s = 0, then, by inspection of
Algorithm 1, for (X, Y) ∈ Q0, we must have X = {x} and Y = {y}. Thus, setting M̂ = ∅
trivially proves the claim.

Now let s > 0. Fix some (X, Y) ∈ Qs and (x, y) ∈ X × Y . Let (X1, Y1), (X2, Y2) ∈ Qs−1
be the pairs of sets in Qs−1 for which x ∈ X1 and y ∈ Y2. First, if (X1, Y1) = (X2, Y2),
then by induction there exists a matching M̂ ′ : X1 \ {x} → Y1 \ {y} in TC(G). Note that
by definition of Algorithm 1, we must have X1 ⊆ X and Y1 ⊆ Y . Then the required
matching is M̂ = M̂ ′ ∪M |X\X1 where M |(·) denotes the restriction of the original matching
M to the set (·). Suppose (X1, Y1) ̸= (X2, Y2). This is the interesting case, and we give
an accompanying illustration in Fig. 2. By definition of Algorithm 1, it must be that
(X1, Y1) and (X2, Y2) conflict (recall Definition 3.4) and were merged to form X = X1 ∪X2
and Y = Y1 ∪ Y2. Thus, there exists some vertex z ∈ V (H(X1, Y1)) ∩ V (H(X2, Y2)) and
x1 ∈ X1, y1 ∈ Y1, x2 ∈ X2, y2 ∈ Y2 for which x1 ⪯ z ⪯ y1 and x2 ⪯ z ⪯ y2.

We now invoke the inductive hypothesis to get matchings M̂1 : X1 \ {x} → Y1 \ {y1} and
M̂2 : X2 \ {x2} → Y2 \ {y} in TC(G). Observe that x2 ⪯ z ⪯ y1 and thus we can match x2
and y1. The required matching in TC(G) is M̂ = M̂1 ∪ M̂2 ∪ {(x2, y1)}. ◁

We conclude the proof of Lemma 3.3 by showing that Claim 3.6 implies item 2. We are
given (Si, Ti) ∈ Qs∗ for some i ∈ [k] and (x, y) ∈ Si × Ti where x ≺ y. By Claim 3.6, there
exists a matching M̂ ′ : Si \{x} → Ti \{y} in TC(G). We set M̂ = M̂ ′∪{(x, y)}. Since x ≺ y,
the final matching M̂ : Si → Ti is a matching in TC(G) which contains the pair (x, y). ◀

ICALP 2023

25:12 Isoperimetric Inequalities for Real-Valued Functions

Figure 2 An illustration for the case of (X1, Y1) ̸= (X2, Y2) in the proof of Claim 3.6. The solid
lines represent directed paths. The dotted line represents the pair (x2, y1) added to obtain the final
matching M̂ . The only vertices of X ∪ Y not participating in M̂ are x and y.

3.3 Specifying a Matching to Construct the Subgraphs H1, . . . , Hk

In this section, we apply Lemma 3.3 to a carefully chosen matching M in order to construct
our vertex-disjoint subgraphs H1, . . . ,Hk.

▶ Definition 3.7 (Max-weight, Min-cardinality Matching). A matching M in TC(G) is a
max-weight, min-cardinality matching for f if M maximizes

∑
(x,y)∈M (f(x) − f(y)) and

among such matchings minimizes |M |.

Henceforth, let M denote a max-weight, min-cardinality matching. Let S and T denote
the set of lower and upper endpoints, respectively, of M . We use the following well-known
fact on matchings in the violation graph.

▶ Fact 3.8 (Corollary 2 [29]). For a DAG G and function f : V (G) → R, the distance to
monotonicity ε(f) is equal to the size of the minimum vertex cover of the violation graph of
f divided by |V (G)|.

▶ Fact 3.9. M is a matching in the violation graph of f that is also maximal. That is, (a)
f(x) > f(y) for all (x, y) ∈M and (b) |M | ≥ (ε(f) · |V (G)|)/2.

Proof. First, for the sake of contradiction, suppose f(x) ≤ f(y) for some pair (x, y) ∈ M .
Then we can set M = M \ {(x, y)}, which can only increase

∑
(x,y)∈M (f(x) − f(y)) and

will decrease |M | by 1. This contradicts the definition of M . Thus, f(x) > f(y) for all
(x, y) ∈M and so M is a matching in the violation graph of f . Second, since M maximizes∑

(x,y)∈M (f(x) − f(y)), it must also be a maximal matching in the violation graph of f .
Thus, (b) follows from Fact 3.8 and the fact that the size of any maximal matching is at least
half the size of the minimum vertex cover. ◀

We now apply Lemma 3.3 to M , obtaining the partitions (Si : i ∈ [k]) and (Ti : i ∈ [k]) for
S and T , respectively, for which M(Si) = Ti for all i ∈ [k]. For each i ∈ [k], let Hi = H(Si, Ti).
We use the collection of sweeping graphs H1, . . . ,Hk to prove Theorem 1.3. Note that these
subgraphs are all vertex-disjoint by item 1 of Lemma 3.3. We use item 2 of Lemma 3.3 to
prove the following lemma regarding the (Si, Ti) pairs. The proof crucially relies on the fact
that M is a max-weight, min-cardinality matching.

▶ Lemma 3.10 (Property of the Pairs (Si, Ti)). For all i ∈ [k] and (x, y) ∈ Si × Ti, if x ≺ y

then f(x) > f(y).

H. Black, I. Kalemaj, and S. Raskhodnikova 25:13

Proof. Suppose there exists i ∈ [k], x ∈ Si, and y ∈ Ti for which x ≺ y and f(x) ≤ f(y). By
item 2 of Lemma 3.3 there exists a matching M̂ : S → T in TC(G) for which (x, y) ∈ M̂ . In
particular, since M and M̂ have identical sets of lower and upper endpoints,∑

(s,t)∈M̂

(f(s)− f(t)) =
∑

(s,t)∈M

(f(s)− f(t)) and |M̂ | = |M |.

Now set M̂ ′ = M̂ \ {(x, y)} and observe that since f(x) ≤ f(y),∑
(s,t)∈M̂ ′

(f(s)− f(t)) ≥
∑

(s,t)∈M

(f(s)− f(t)) and |M̂ ′| < |M |.

Therefore, M is not a max-weight, min-cardinality matching and this is a contradiction. ◀

3.4 Tying it Together: Defining the Boolean Functions f1, . . . , fk

We are now equipped to define the functions f1, . . . , fk : V (G) → {0, 1} and complete the
proof of Theorem 1.3. First, given i ∈ [k] and z ∈ V (G) \ V (Hi), we say that z is below Hi

if there exists y ∈ V (Hi) for which z ≺ y, and z is above Hi if there exists x ∈ V (Hi) for
which x ≺ z. Since Hi is the (Si, Ti)-sweeping graph, by item 2 of Claim 3.2, vertex z cannot
be both below and above Hi, simultaneously. Second, given z ∈ V (Hi), we define the set
Ti(z) = {t ∈ Ti : z ⪯ t}. Note that by item 1 of Claim 3.2, Ti(z) ̸= ∅ for all z ∈ V (Hi), and
so the quantity maxt∈Ti(z) f(t) is always well-defined.

▶ Definition 3.11. For each i ∈ [k], define the function fi : V (G)→ {0, 1} as follows. For
every z ∈ V (G),

fi(z) =


1, if z ∈ V (Hi) and f(z) > maxt∈Ti(z) f(t),
0, if z ∈ V (Hi) and f(z) ≤ maxt∈Ti(z) f(t),
1, if z /∈ V (Hi) and z is above Hi,

0, if z /∈ V (Hi) and z is not above Hi.

See Fig. 3 for an illustration of the values of fi. We first prove item 1 of Theorem 1.3.
Recall that M(Si) = Ti for all i ∈ [k]. Let Mi = M |Si denote the matching M restricted
to Si. Consider x ∈ Si. By Lemma 3.10, f(x) > f(y) for all y ∈ Ti such that x ≺ y. Thus,
f(x) > maxt∈Ti(x) f(t) and so fi(x) = 1. Now consider y ∈ Ti. Observe that y ∈ Ti(y).
Thus, clearly, f(y) ≤ maxt∈Ti(y) f(t), and so fi(y) = 0. Therefore, fi(x) = 1 for all x ∈ Si

and fi(y) = 0 for all y ∈ Ti. In particular, fi(x) = 1 > 0 = fi(M(x)) for all x ∈ Si and so
Mi is a matching in the violation graph of fi. Thus, ε(fi) ≥ |Mi|

|V (G)| for all i ∈ [k]. Then

k∑
i=1

ε(fi) ≥ |V (G)|−1
k∑

i=1
|Mi| = |V (G)|−1 · |M | ≥ |V (G)|−1 · ε(f) · |V (G)|

2 = ε(f)
2

by the above argument and Fact 3.9. Thus, item 1 of Theorem 1.3 holds.
To prove item 2 of Theorem 1.3, we need to show that, for all i ∈ [k], the following hold:

S−
fi
⊆ E(Hi) and S−

fi
⊆ S−

f .

We first prove that S−
fi
⊆ E(Hi). Consider an edge (x, y) ∈ E(G) \E(Hi). We need to show

that fi(x) ≤ fi(y). First, observe that if both x, y ∈ V (Hi), then by item 3 of Claim 3.2, we
have (x, y) ∈ E(Hi). Thus, we only need to consider the following three cases. Recall that
fi(x), fi(y) ∈ {0, 1}.

ICALP 2023

25:14 Isoperimetric Inequalities for Real-Valued Functions

Figure 3 An illustration for the Boolean function fi of Definition 3.11. The diamond represents
the DAG G whose paths are directed from bottom to top. The hexagon represents the sweeping
graph Hi = H(Si, Ti). The value of fi is 1 for the vertices in Si and 0 for the vertices in Ti. For
vertices outside of Hi, its value is 1 for the vertices that are above Hi and 0 for all other vertices.

1. x ∈ V (Hi), y /∈ V (Hi): In this case, y is above Hi, and so fi(y) = 1. Thus, fi(x) ≤ fi(y).
2. x /∈ V (Hi), y ∈ V (Hi): In this case, x is below Hi, and so x is not above Hi by item 2 of

Claim 3.2. Thus, fi(x) = 0, and so fi(x) ≤ fi(y).
3. x /∈ V (Hi), y /∈ V (Hi): If x is above Hi, then y is above Hi as well, and so fi(x) =

fi(y) = 1. Otherwise, x is not above Hi and so fi(x) = 0. Thus, fi(x) ≤ fi(y).
Therefore, S−

fi
⊆ E(Hi).

We now prove that S−
fi
⊆ S−

f . Consider an edge (x, y) ∈ S−
fi

. Then fi(x) = 1 and
fi(y) = 0. Since S−

fi
⊆ E(Hi), we get (x, y) ∈ E(Hi) and so x, y ∈ V (Hi). By definition

of the functions fi, it holds that f(x) > maxt∈Ti(x) f(t) and f(y) ≤ maxt∈Ti(y) f(t). Since
x ≺ y, then Ti(y) ⊆ Ti(x), because all vertices reachable from y are also reachable from x.
Therefore,

f(x) > max
t∈Ti(x)

f(t) ≥ max
t∈Ti(y)

f(t) ≥ f(y).

Thus, f(x) > f(y), and so (x, y) ∈ S−
f . As a result, S−

fi
⊆ S−

f and item 2 of Theorem 1.3
holds. This concludes the proof of Theorem 1.3.

4 Testing Monotonicity of Real-Valued Functions

In this section, we prove Theorem 1.6. Some details have been omitted from this version.
The omitted portion can be found in Section 4.3 of the full version [11]. We show that the
tester of [32] for Boolean functions can be employed to test monotonicity of real-valued
functions. The tester is simple: it queries two comparable vertices x and y and rejects if the
pair exhibits a violation to monotonicity for f . The tester tries different values τ for the
distance between x and y, that is, the number of coordinates on which they differ. The key
step in the analysis of [32] (and in our analysis) is to show that for some choice of τ , the
tester will detect a violation to monotonicity with high enough probability. The extra factor
of r in the query complexity of our tester arises because we are forced to choose τ which is a
factor of (r − 1) smaller than for the Boolean case. Intuitively, the reason for this is that as
the walk length τ increases, the probability that the function value stays below a certain
threshold decreases. We make this precise in Section 4.2.

We first define the distribution from which the tester samples x and y. Following this, we
present the tester as Algorithm 2. Let p denote the largest integer for which 2p ≤

√
d/ log d.

In Algorithm 2, we sample pairs of vertices at distance τ , where τ ranges over the powers of
two up to 2p.

H. Black, I. Kalemaj, and S. Raskhodnikova 25:15

▶ Definition 4.1 (Pair Test Distribution). Given parameters b ∈ {0, 1} and a positive integer τ ,
define the following distribution Dpair(b, τ) over pairs (x, y) ∈ ({0, 1}d)2. Sample x uniformly
from {0, 1}d. Let S = {i ∈ [d] : xi = b}. If τ > |S|, then set y = x. Otherwise, sample a
uniformly random set T ⊆ S of size |T | = τ . Obtain y by setting yi = 1− xi if i ∈ T and
yi = xi otherwise.

Algorithm 2 Monotonicity Tester for f : {0, 1}d → R.

Require: Parameters ε ∈ (0, 1), dimension d, and image size r; oracle access to function
f : {0, 1}d → R.

1: for all b ∈ {0, 1} and τ ∈ {1, 2, 4, . . . , 2p} do
2: repeat Õ

(
min

(
r

√
d

ε2 , d
ε

))
times:

3: Sample (x, y) ∼ Dpair(b, τ).
4: if b = 0 and f(x) > f(y) then reject. ▷ if b = 0 then x ⪯ y

5: if b = 1 and f(x) < f(y) then reject. ▷ if b = 1 then x ⪰ y

6: accept.

Our tester only uses comparisons between function values, not the values themselves.
Thus, for the purposes of our analysis we can consider functions with the range [r] w.l.o.g.

When τ = 1, the algorithm is simply sampling edges from the d-dimensional hypercube.
The distribution from which we sample is not the uniform distribution on edges, but following
an argument from [32], we can assume that for τ = 1, our tester has the same guarantees as
the edge tester.

The choice of the distance parameter τ for which the rejection probability of the tester
is high depends on the existence of a certain “good” bipartite subgraph of violated edges.
Our analysis differs from the analysis of [32] both in how we obtain the “good” subgraph of
violated edges and in the choice of the optimal distance parameter τ .

We extend the following definitions from [32]. Let G(A, B, EAB) denote a directed
bipartite graph with vertex sets A and B and all edges in EAB directed from A to B.

▶ Definition 4.2 ((K, ∆)-Good Graphs). A directed bipartite graph G(A, B, EAB) is (K, ∆)-
good if for X, Y such that either X = A, Y = B or X = B, Y = A, we have: (a) |X| = K.
(b) Vertices in X have degree exactly ∆. (c) Vertices in Y have degree at most 2∆. The
graph G is (K, ∆)-left-good if X = A and (K, ∆)-right-good if X = B.

The weight of x ∈ {0, 1}d, denoted by |x|, is the number of coordinates of x with value 1.

▶ Definition 4.3 (Persistence). Given f : {0, 1}d → [r] and an integer τ ∈
[
1,

√
d

log d

]
, a

vertex x ∈ {0, 1}d of weight in the range d
2 ±O(

√
d log d) is τ -right-persistent for f if

Pr
y

[f(y) ≤ f(x)] >
9
10 ,

where y is obtained by choosing a uniformly random set T ⊂ {i ∈ [d] : xi = 0} of size τ and
setting yi = 1 if i ∈ T and yi = xi otherwise4. We define τ -left-persistence symmetrically.

We use the following technical claim implicitly shown in the analysis of the tester of [32].

4 Note that τ ≥ |{i ∈ [d] : xi = 0}| by our assumption on x and τ .

ICALP 2023

25:16 Isoperimetric Inequalities for Real-Valued Functions

▷ Claim 4.4 ([32]). Suppose there exists a (K, ∆)-right-good subgraph G(A, B, EAB) of the
directed d-dimensional hypercube, such that (a) EAB ⊆ S−

f , (b) K
√

∆ = Θ(ε(f)·2d

log d), and
(c) at least 99

100 |B| of the vertices in B are (τ ′ − 1)-right-persistent for some τ ′ such that
τ ′ ·∆≪ d. Then there exists a constant C ′ > 0, such that for (x, y) ∼ Dpair(0, τ ′),

Pr
x,y

[f(x) > f(y)] ≥ C ′ · τ ′

d
· K

2d
·∆.

The analogous claim holds given a (K, ∆)-left-good subgraph with many (τ ′−1)-left-persistent
vertices in A and (x, y) drawn from Dpair(1, τ ′).

In Section 4.1, we prove Lemma 4.6 which obtains a good subgraph for f satisfying
conditions (a) and (b) of Claim 4.4. In Section 4.2, we prove Lemma 4.8 which gives an upper
bound on the fraction of non-persistent vertices, enabling us to satisfy condition (c). The
remainder of the proof of Theorem 1.6 is deferred to the full version [11]. In particular, in
Section 4.3 of the full version, we use Lemma 4.6 and Lemma 4.8 to show that the conditions
of Claim 4.4 are satisfied and then use this to prove Theorem 1.6.

4.1 Existence of a Good Bipartite Subgraph
In this section, we prove Lemma 4.6 on the existence of good bipartite subgraphs for real-
valued functions, which was proved in [32] for the special case of Boolean functions. This
lemma crucially relies on our isoperimetric inequality for real-valued functions (Theorem 1.2).
We first state (without proof) a combinatorial result of [32], which we need for our lemma.

▶ Lemma 4.5 (Lemma 6.5 of [32]). Let G(A, B, EAB) be a directed bipartite graph whose
vertices have degree at most 2s. Suppose in addition, that for any 2-coloring of its edges
col : EAB → {red, blue} we have∑

x∈A

√
degred(x) +

∑
y∈B

√
degblue(y) ≥ L, (9)

where degred(x) denotes the number of red edges incident on x and degblue(y) denotes the
number of blue edges incident on y. Then G(A, B, EAB) contains a subgraph that is (K, ∆)-
good with K

√
∆ ≥ L

8s .

We can now generalize Lemma 7.1 of [32].

▶ Lemma 4.6. For all functions f : {0, 1}d → R, there exists a subgraph G(A, B, EAB) of
the directed, d-dimensional hypercube which is (K, ∆)-good, where K

√
∆ = Θ(ε(f)·2d

log d) and
EAB ⊆ S−

f .

Proof. Our proof relies on Lemma 4.5. Condition (9) is clearly reminiscent of the isoperimetric
inequality in Theorem 1.2. We want to partition the vertices in {0, 1}d into sets A and B

such that all the violated edges are directed from A to B and apply Theorem 1.2 to the
resulting graph. In addition, we want (9) to hold for a big enough value of L. In the Boolean
case, we can simply partition the vertices by function values. In contrast, for real-valued
functions, a vertex x ∈ {0, 1}d can be incident on both incoming and outgoing violated edges.
To overcome this challenge we resort to the bipartiteness of the directed hypercube, where
each edge is between a vertex with an odd weight and a vertex with an even weight. Partition
S−

f into two sets:

E0 = {(x, y) ∈ S−
f : |x| is even};

H. Black, I. Kalemaj, and S. Raskhodnikova 25:17

E1 = {(x, y) ∈ S−
f : |x| is odd}.

For j ∈ {0, 1}, let Vj and Wj denote the set of lower and upper endpoints, respectively, of the
edges in Ej . We consider the two subgraphs Gj(Vj , Wj , Ej) for j ∈ {0, 1}. Notice that the
vertices in V0 ∪W1 have even weight and the vertices in V1 ∪W0 have odd weight. Obviously,
V0 and W1 may not be disjoint, and similarly V1 and W0 may not be disjoint, and thus G0
and G1 may not be vertex-disjoint.

We quickly explain why we cannot simply use Lemma 4.5 with either G0 or G1. Fix a
2-coloring of the edges E0 ∪ E1. By averaging, one of the graphs will have a high enough
contribution to left-hand side of the isoperimetric inequality of Theorem 1.2. Assume this
graph is G0. As a result, condition (9) will hold for G0 with L = Ω(ε · 2d). However, one
cannot guarantee that condition (9) holds for all possible colorings of the edges of G0. Our
construction below describes how to combine G0 and G1 so that we can jointly “feed” them
into Lemma 4.5.

We construct copies Ĝ0 and Ĝ1 of G0 and G1, so that Ĝ0 contains a vertex labelled (x, 0)
for each vertex x of G0, and Ĝ1 contains a vertex (x, 1) for each vertex x of G1. For each
edge (x, y) in G0 we add an edge from (x, 0) to (y, 0) in Ĝ0. We do the same for the edges of
G1. Note that each edge of S−

f has exactly one copy, either in Ĝ0 or Ĝ1.
Let Ĝ(V̂ , Ŵ ,S−

f) denote the union of the two vertex-disjoint graphs Ĝ0 and Ĝ1. That is,

V̂ = {(x, 0) | x ∈ V0} ∪ {(x, 1) | x ∈ V1},

Ŵ = {(y, 0) | y ∈W0} ∪ {(y, 1) | y ∈W1}.

All the edges of Ĝ are directed from V̂ to Ŵ . Although imprecise, we think of the edges of
Ĝ as S−

f , since each edge in S−
f has exactly one copy in Ĝ.

Consider a 2-coloring col : S−
f → {red, blue}. Observe that∑

(x,·)∈V̂

√
I−

f,red(x) +
∑

(y,·)∈Ŵ

√
I−

f,blue(x) =
∑

x∈V0∪V1

√
I−

f,red(x) +
∑

y∈W0∪W1

√
I−

f,blue(y)

=
∑

x∈{0,1}d

|x| is even

√
I−

f,red(x) +
√

I−
f,blue(x) +

∑
x∈{0,1}d

|x| is odd

√
I−

f,red(x) +
√

I−
f,blue(x)

=
∑

x∈{0,1}d

√
I−

f,red(x) +
∑

y∈{0,1}d

√
I−

f,blue(y) ≥ C · ε(f) · 2d,

where the inequality holds by Theorem 1.2.
By construction, I−

f,red(x) = degred((x, ·)) for all (x, ·) ∈ V̂ and I−
f,blue(y) = degblue((y, ·))

for all (y, ·) ∈ Ŵ . We have that condition (9) of Lemma 4.5 holds with L = C · ε(f) · 2d.
Thus, Ĝ contains a subgraph Ggood(A, B, EAB) that is (K, ∆)-good with K

√
∆ ≥ L

8 log d .
Without loss of generality, assume Ggood(A, B, EAB) is (K, ∆)-right-good.

Let Ggood,0 = (A0, B0, EA0B0) denote the subgraph of Ggood lying in Ĝ0 and let Ggood,1 =
(A1, B1, EA1B1) denote the subgraph of Ggood lying in Ĝ1. Since B0 ∩B1 = ∅, we know that
either |B0| ≥ K/2 or |B1| ≥ K/2. Suppose |B0| ≥ K/2. Moreover, since Ĝ0 and Ĝ1 are
vertex-disjoint subgraphs, the degree of a vertex of A0 ∪B0 in Ggood,0 is the same its degree
in Ggood. Thus, Ggood,0 is a (K/2, ∆)-right-good subgraph of the d-dimensional directed
hypercube for which K

2

√
∆ ≥ L

16 log d .
By removing some vertices from B0, and redefining K if necessary, we may assume that

K
√

∆ = Θ
(

ε(f)·2d

log d

)
. This completes the proof of Lemma 4.6. ◀

ICALP 2023

25:18 Isoperimetric Inequalities for Real-Valued Functions

4.2 Bounding the Number of Non-Persistent Vertices

We prove Lemma 4.8 that bounds the number of non-persistent vertices for a function f and
a given distance parameter τ . All results in this section also hold for τ -left-persistence.

For a function f : {0, 1}d → R, we define I−
f as |S−

f
|

2d .

▶ Corollary 4.7 (Corollary of Theorem 6.6, Lemma 6.8 of [32]). Consider a function
h : {0, 1}d → {0, 1} and an integer τ ∈

[
1,

√
d

log d

]
. If I−

h ≤
√

d then

Pr
x∼{0,1}d

[
x is not τ -right-persistent for h

]
= O

(
τ√
d

)
. (10)

We generalize the above result to functions with image size r ≥ 2.

▶ Lemma 4.8. Consider a function f : {0, 1}d → [r] and an integer τ ∈
[
1,

√
d

log d

]
. If

I−
f ≤

√
d, then

Pr
x∼{0,1}d

[
x is not τ -right-persistent for f

]
= (r − 1) ·O

(
τ√
d

)
.

Proof. For all t ∈ [r], define the threshold function ht : {0, 1}d → {0, 1} as:

ht(x) =
{

1 if f(x) > t,

0 otherwise.

Observe that for all t ∈ [r], we have S−
ht
⊆ S−

f , and thus I−
ht
≤ I−

f ≤
√

d. By Corollary 4.7,
we have that (10) holds for h = ht for all t ∈ [r]. Next, we point out that a vertex x ∈ {0, 1}d

is τ -right-persistent for f if and only if x is τ -right-persistent for the Boolean function hf(x).
Too see this, consider a vertex z such that x ≺ z. First, note that hf(x)(x) = 0. Second, note
that hf(x)(z) = 1 if and only if f(z) > f(x) by definition of hf(x). Therefore, f(z) ≤ f(x)
if and only if hf(x)(z) ≤ hf(x)(x). Finally, note that all vertices are persistent for hr since
hr(x) = 0 for all x ∈ {0, 1}d. Using these observations, we have

Pr
x∼{0,1}d

[x is not τ -right-persistent for f]

= Pr
x∼{0,1}d

[
x is not τ -right-persistent for hf(x)

]
≤ Pr

x∼{0,1}d
[∃t ∈ [r − 1] : x is not τ -right-persistent for ht]

≤
r−1∑
t=1

Pr
x∼{0,1}d

[x is not τ -right-persistent for ht]

=
r−1∑
t=1

O

(
τ√
d

)
= (r − 1) ·O

(
τ√
d

)
,

where the second inequality is by the union bound and the last equality is due to the fact
that (10) holds for all ht, t ∈ [r]. ◀

H. Black, I. Kalemaj, and S. Raskhodnikova 25:19

References
1 Nir Ailon and Bernard Chazelle. Information theory in property testing and monotonicity

testing in higher dimension. Information and Computation, 204(11):1704–1717, 2006.
2 Nir Ailon, Bernard Chazelle, Seshadhri Comandur, and Ding Liu. Estimating the distance to

a monotone function. Random Structures and Algorithms, 31(3):371–383, 2007.
3 Tugkan Batu, Ronitt Rubinfeld, and Patrick White. Fast approximate P CP s for multidimen-

sional bin-packing problems. Information and Computation, 196(1):42–56, 2005.
4 Aleksandrs Belovs. Adaptive lower bound for testing monotonicity on the line. In Ap-

proximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM), pages 31:1–31:10, 2018.

5 Aleksandrs Belovs and Eric Blais. A polynomial lower bound for testing monotonicity. In
Proceedings, ACM Symposium on Theory of Computing (STOC), pages 1021–1032, 2016.

6 Piotr Berman, Sofya Raskhodnikova, and Grigory Yaroslavtsev. lp-testing. In Proceedings,
ACM Symposium on Theory of Computing (STOC), pages 164–173, 2014.

7 Arnab Bhattacharyya, Elena Grigorescu, Kyomin Jung, Sofya Raskhodnikova, and David P.
Woodruff. Transitive-closure spanners. SIAM J. Comput., 41(6):1380–1425, 2012.

8 Hadley Black, Deeparnab Chakrabarty, and C. Seshadhri. A o(d)· polylog n monotonicity
tester for Boolean functions over the hypergrid [n]d. In Proceedings, ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 2133–2151, 2018.

9 Hadley Black, Deeparnab Chakrabarty, and C. Seshadhri. Domain reduction for monotonicity
testing: A o(d) tester for Boolean functions in d-dimensions. In Shuchi Chawla, editor,
Proceedings, ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1975–1994, 2020.

10 Hadley Black, Deeparnab Chakrabarty, and C. Seshadhri. Directed isoperimetric theorems for
boolean functions on the hypergrid and an Õ(n

√
d) monotonicity tester. In Proceedings, ACM

Symposium on Theory of Computing (STOC), 2023.
11 Hadley Black, Iden Kalemaj, and Sofya Raskhodnikova. Isoperimetric inequalities for real-

valued functions with applications to monotonicity testing. CoRR, abs/2011.09441, 2020.
arXiv:2011.09441.

12 Eric Blais, Joshua Brody, and Kevin Matulef. Property testing lower bounds via communication
complexity. Computational Complexity, 21(2):311–358, 2012.

13 Eric Blais, Sofya Raskhodnikova, and Grigory Yaroslavtsev. Lower bounds for testing properties
of functions over hypergrid domains. In Proceedings, IEEE Conference on Computational
Complexity (CCC), pages 309–320, 2014.

14 Mark Braverman, Subhash Khot, Guy Kindler, and Dor Minzer. Improved monotonicity
testers via hypercube embeddings. In Proceedings, Innovations in Theoretical Computer
Science (ITCS), pages 25:1–25:24, 2023.

15 Jop Briët, Sourav Chakraborty, David García Soriano, and Ari Matsliah. Monotonicity testing
and shortest-path routing on the cube. Combinatorica, 32(1):35–53, 2012.

16 Deeparnab Chakrabarty, Kashyap Dixit, Madhav Jha, and C. Seshadhri. Property testing
on product distributions: Optimal testers for bounded derivative properties. ACM Trans. on
Algorithms, 13(2):20:1–20:30, 2017.

17 Deeparnab Chakrabarty and C. Seshadhri. Optimal bounds for monotonicity and Lipschitz
testing over hypercubes and hypergrids. In Proceedings, ACM Symposium on Theory of
Computing (STOC), pages 419–428, 2013.

18 Deeparnab Chakrabarty and C. Seshadhri. An optimal lower bound for monotonicity testing
over hypergrids. Theory of Computing, 10:453–464, 2014.

19 Deeparnab Chakrabarty and C. Seshadhri. An o(n) monotonicity tester for Boolean functions
over the hypercube. SIAM Journal on Computing, 45(2):461–472, 2016.

20 Deeparnab Chakrabarty and C. Seshadhri. Adaptive Boolean monotonicity testing in total
influence time. In Proceedings, Innovations in Theoretical Computer Science (ITCS), pages
20:1–20:7, 2019.

ICALP 2023

https://arxiv.org/abs/2011.09441

25:20 Isoperimetric Inequalities for Real-Valued Functions

21 Xi Chen, Anindya De, Rocco A. Servedio, and Li-Yang Tan. Boolean function monotonicity
testing requires (almost) n1/2 non-adaptive queries. In Proceedings, ACM Symposium on
Theory of Computing (STOC), pages 519–528, 2015.

22 Xi Chen, Rocco A. Servedio, and Li-Yang Tan. New algorithms and lower bounds for
monotonicity testing. In Proceedings, IEEE Symposium on Foundations of Computer Science
(FOCS), pages 286–295, 2014.

23 Xi Chen, Erik Waingarten, and Jinyu Xie. Beyond Talagrand functions: new lower bounds for
testing monotonicity and unateness. In Proceedings, ACM Symposium on Theory of Computing
(STOC), pages 523–536, 2017.

24 Kashyap Dixit, Sofya Raskhodnikova, Abhradeep Thakurta, and Nithin Varma. Erasure-
resilient property testing. SIAM Journal on Computing, 47(2):295–329, 2018.

25 Yevgeniy Dodis, Oded Goldreich, Eric Lehman, Sofya Raskhodnikova, Dana Ron, and Alex
Samorodnitsky. Improved testing algorithms for monotonicity. In Proceedings of Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RAN-
DOM, pages 97–108, 1999.

26 Funda Ergun, Sampath Kannan, Ravi Kumar, Ronitt Rubinfeld, and Mahesh Viswanathan.
Spot-checkers. J. Comput. System Sci., 60(3):717–751, 2000.

27 Shahar Fattal and Dana Ron. Approximating the distance to monotonicity in high dimensions.
ACM Trans. on Algorithms, 6(3):52:1–52:37, 2010.

28 Eldar Fischer. On the strength of comparisons in property testing. Information and Computa-
tion, 189(1):107–116, 2004.

29 Eldar Fischer, Eric Lehman, Ilan Newman, Sofya Raskhodnikova, Ronitt Rubinfeld, and
Alex Samorodnitsky. Monotonicity testing over general poset domains. In Proceedings, ACM
Symposium on Theory of Computing (STOC), pages 474–483, 2002.

30 Oded Goldreich, Shafi Goldwasser, Eric Lehman, Dana Ron, and Alex Samorodnitsky. Testing
monotonicity. Combinatorica, 20(3):301–337, 2000.

31 Shirley Halevy and Eyal Kushilevitz. Testing monotonicity over graph products. Random
Structures and Algorithms, 33(1):44–67, 2008.

32 Subhash Khot, Dor Minzer, and Muli Safra. On monotonicity testing and Boolean isoperimetric-
type theorems. SIAM Journal on Computing, 47(6):2238–2276, 2018.

33 Eric Lehman and Dana Ron. On disjoint chains of subsets. Journal of Combinatorial Theory,
Series A, 94(2):399–404, 2001.

34 Grigory A. Margulis. Probabilistic characteristics of graphs with large connectivity. Problemy
Peredachi Informatsii, 10(2):101–108, 1974.

35 Ramesh Krishnan S. Pallavoor, Sofya Raskhodnikova, and Nithin Varma. Parameterized
property testing of functions. ACM Trans. Comput. Theory, 9(4):17:1–17:19, 2018.

36 Ramesh Krishnan S. Pallavoor, Sofya Raskhodnikova, and Erik Waingarten. Approximating
the distance to monotonicity of Boolean functions. Random Structures and Algorithms,
60(2):233–260, 2022.

37 Ramesh Krishnan Pallavoor Suresh. Improved Algorithms and New Models in Property Testing.
PhD thesis, Boston University, 2020.

38 Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and distance
approximation. J. Comput. Syst. Sci., 72(6):1012–1042, 2006.

39 Sofya Raskhodnikova. Monotonicity testing. Masters Thesis, MIT, 1999.
40 Michel Talagrand. Isoperimetry, logarithmic Sobolev inequalities on the discrete cube, and

Margulis’ graph connectivity theorem. Geom. Func. Anal., 3(3):295–314, 1993.

The Geometry of Tree-Based Sorting
Guy E. Blelloch #

Carnegie Mellon University, Pittsburgh, PA, USA

Magdalen Dobson #

Carnegie Mellon University, Pittsburgh, PA, USA

Abstract
We study the connections between sorting and the binary search tree (BST) model, with an aim
towards showing that the fields are connected more deeply than is currently appreciated. While any
BST can be used to sort by inserting the keys one-by-one, this is a very limited relationship and
importantly says nothing about parallel sorting. We show what we believe to be the first formal
relationship between the BST model and sorting. Namely, we show that a large class of sorting
algorithms, which includes mergesort, quicksort, insertion sort, and almost every instance-optimal
sorting algorithm, are equivalent in cost to offline BST algorithms. Our main theoretical tool is
the geometric interpretation of the BST model introduced by Demaine et al. [18], which finds an
equivalence between searches on a BST and point sets in the plane satisfying a certain property. To
give an example of the utility of our approach, we introduce the log-interleave bound, a measure
of the information-theoretic complexity of a permutation π, which is within a lg lg n multiplicative
factor of a known lower bound in the BST model; we also devise a parallel sorting algorithm with
polylogarithmic span that sorts a permutation π using comparisons proportional to its log-interleave
bound. Our aforementioned result on sorting and offline BST algorithms can be used to show
existence of an offline BST algorithm whose cost is within a constant factor of the log-interleave
bound of any permutation π.

2012 ACM Subject Classification Theory of computation → Sorting and searching

Keywords and phrases binary search trees, sorting, dynamic optimality, parallelism

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.26

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2110.11836

Funding This work was supported by the National Science Foundation grants CCF-1901381, CCF-
1910030, CCF-1919223, DGE1745016, and DGE2140739.

Acknowledgements We thank Kanat Tangwongsan for helpful discussions. We thank the anonymous
reviewers for their useful comments.

1 Introduction

Comparison-based sorting and searching on a BST are among the most elementary, important,
and well-studied algorithmic topics in all of theoretical computer science. It has long been
observed that they are closely related: both enjoy better performance on sequences that
are information-theoretically simpler, such as reversals of sorted lists, sequences with long
runs of consecutive keys, or sequences composed from simple shuffles of sorted lists. Indeed,
their respective searches for instance optimality have yielded the independent discovery of
almost identical results [34]. Despite the extensive number of similar results throughout the
literature, there is comparatively very little known about the formal relationship between
sorting and the binary search tree (BST) model. In this paper, we present what we believe
to be the first formal relation between the sorting cost model and the BST model. Our result
shows that a large class of sorting algorithms, which includes mergesort, quicksort, insertion

EA
T
C
S

© Guy E. Blelloch and Magdalen Dobson;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 26; pp. 26:1–26:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:guyb@cs.cmu.edu
mailto:mrdobson@cs.cmu.edu
https://doi.org/10.4230/LIPIcs.ICALP.2023.26
https://arxiv.org/abs/2110.11836
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

26:2 The Geometry of Tree-Based Sorting

sort, and most adaptive sorting algorithms, are equivalent in cost to offline algorithms in
the BST model. As this class is large and contains many well-studied algorithms, we find it
interesting that we are able to show any kind of new and nontrivial theoretical result based
on this characterization.

Binary Search Trees. The binary search tree is a fundamental data structure that stores an
ordered universe of keys in a dynamic tree. A search for a key begins with a pointer to the
root of the tree and at each step performs one of two unit-cost actions: move the pointer to a
parent or child node, or perform a rotation. Rotations are key to understanding the power of
the model, because they allow frequently queried elements to be kept close to the root of the
tree as well as exploiting other kinds of order in the sequence of queried keys. The power of
rotations is related to the concept of instance optimality, a general term which refers to the
fact that an algorithm can enjoy improvements on its worst-case complexity on well-defined
sets of “easy” inputs. Many BST algorithms perform better than their worst-case complexity
(i.e. log n per operation) on various kinds of input [37, 19, 18, 3]. Beyond these specific
improvements, the hope for a more general kind of instance optimality is crisply expressed
by the dynamic optimality conjecture of Sleator and Tarjan [35], which states that there
exists a binary search tree whose performance on any online sequence of searches is constant
factor competitive with the best offline algorithm for that sequence. The dynamic optimality
conjecture remains open. Another equally important open question is whether there is an
offline efficient algorithm for calculating even an approximately optimal number of rotations
for a given input sequence. These problems have been the subject of extensive work both in
the past [38, 16, 15, 19, 21, 8] and at the present moment [26, 13, 7, 25, 23].

Sorting. Similarly to the BST model, where rotations are used to achieve instance optimality
for particular classes of inputs, in comparison-based sorting an adaptive sorting algorithm
performs fewer comparisons when the input is “closer” to sorted by some measure. In this
field a measure of disorder for a list L is paired with an algorithm which is optimal for
this measure. Here, optimal roughly means that sorting L only requires the number of
comparisons needed to distinguish it from all other lists which are more presorted than L [34].
An accompanying notion is that a measure of disorder may be superior (inferior) to another
measure – that is, always requires fewer comparisons for any given permutation. Mannila first
formalized these ideas [31]. After this, many researchers devised new measures of disorder
and corresponding optimal algorithms [17, 22, 24, 28, 29, 27, 33, 34]; furthermore, there was
also interest in work-optimal parallel versions of optimal sorting algorithms [11, 30, 14]. It
remains an open problem whether there exists a measure which is provably superior to any
possible measure of disorder.

Arborally Satisfied Point Sets and Sorting. One of our most important tools in connecting
BSTs and sorting is the geometric interpretation of BSTs [18, 20]. In this interpretation, an
access sequence of n keys is represented as an n × n grid with time order (input order) on
one axis (here the x axis) and key order (output order) on the other axis. Points are added
to the grid to account for all keys that must be visited when searching or inserting the keys
one at a time from left to right. Demaine et al. [18], and Derryberry, Sleator, and Wang [20]
show that for any BST algorithm, the accesses plotted in the plane must satisfy the property
that for every pair of points p, q (both original and added points), there is a monotonic path
(e.g. up and right) from p to q consisting of horizontal and vertical segments with a point at

G. E. Blelloch and M. Dobson 26:3

(a) The input sequence. (b) Sequence arborally satisfied
using quicksort.

(c) Sequence arborally satisfied
using mergesort.

Figure 1 On the left, the input sequence plotted in the plane. In the middle, the input sequence
arborally satisfied using accesses corresponding to quicksort. On the right, the input sequence
arborally satisfied using accesses corresponding to mergesort.

each corner1. Demaine et al. refer to such a set of points as being arborally satisfied, and
show that any such set of size m implies the sequence of n keys can be searched or inserted
in cost O(m) in the BST model.

We observe that the geometric approach is also useful for sorting, since unlike the BST
model, it does not directly enforce an order of insertion. As some evidence of the utility of
the geometric approach, consider the following two algorithms that can be used to arborally
satisfy a set of accesses. The first algorithm starts by choosing a random point, then adding
accesses to that point across its entire row of the point set. Then, it recurses above and below
the row, and in each partition it picks a random point and adds new points to all locations
in its row for which there is a key in the partition. It is not hard to verify the points added
in this way are arborally satisfied: any point p can get to a point q by going up (or down)
to the row that separated them, then across to column of q and up (down) to q. Second,
consider another algorithm that adds points across the middle column, and then for the left
and right, add points along their middle columns for all points in those halves. Recursing to
the base case again gives an arborally satisfied set. See Figure 1 for an example of both of
these algorithms. The attentive reader may have noticed that the accesses added in the first
algorithm correspond to the comparisons made by the quicksort algorithm, and the accesses
added in the second algorithm correspond to comparisons made by the mergesort algorithm.
We will extend these ideas to more interesting algorithms in this paper.

We note that in addition to being of significant theoretical interest, taking advantage of
locality in key sequences is widely practical for both search trees and sorting. Sleator and
Tarjan won the ACM Kannelakis Theory and Practice award for their work on splay trees and
its applications for reducing key search time in several widely used applications. Adaptive
sorting algorithms are widely adopted in practice, including timsort, which is implemented
as built-in libraries for Python, Java, Swift, and Rust, among other languages [2].

1.1 Our Results
In this paper we present specific results relating sorting and BSTs using arborally satisfied
sets. Our first result is an explicit relation between the cost models of a broad set of sorting
algorithms and BST algorithms. The specific set of algorithms, which we refer to as tree-based

1 The papers have their own preferred definition, but the definitions are all equivalent.

ICALP 2023

26:4 The Geometry of Tree-Based Sorting

sorting algorithms and which are formally defined in Section 3, are divided into two classes:
BST mergesorts are sorting algorithms based on recursive merges of the input, where the
keys being merged are stored in binary search trees; BT partition sorts are sorting algorithms
based on recursive partitions of the input based on key ordering, where the keys are stored
in a binary tree. In Section 3, we show that these two types of algorithms are “dual” to each
other in the following way: a BST mergesort A sorting permutation π with cost A(π) implies
the existence of binary tree (BT) partition sort B sorting π−1 with cost A(π), and vice versa.

The category of tree-based sorting algorithms is large. Both quicksort and mergesort
on lists fall into the category of tree-based sorting algorithms, as lists are simply a special
case of trees. Sorting by insertion into a BST is also a BST mergesort, since the merges can
be carried out in any order. McIlroy’s adaptive sorting algorithms – namely, insertion sort
with exponential search and mergesort with exponential search – are BST mergesorts [32].
These algorithms were influential in the development of timsort [2], a mergesort algorithm
that breaks the input into runs of increasing or decreasing keys and merges them based
on certain ordering criteria; since it is also a mergesort on lists, timsort is a BST merge.
In their capstone paper on adaptive sorting, Petersson and Moffat cover the three most
powerful known adaptive sorting algorithms – local insertion sort, historical insertion sort,
and regional insertion sort. Local insertion sort is a BST mergesort as it inserts into a BST
with a single additional pointer, which can be converted to the BST model with constant
overhead [13]. Historical and regional insertion sort are not BST mergesorts as presented by
the authors, but independently discovered data structures would yield BST mergesorts with
the same bounds [35, 21].

Theorem 1 shows that for any tree-based sorting algorithm that sorts access sequence π

using A(π) accesses, there exists an offline algorithm in the BST model which searches for
each key in π using O(A(π)) accesses. The proof of Theorem 1 is subtle and nontrivial and
requires several new insights relating to the geometric interpretation of the BST model. In
the following statement, OPTBST(π) refers to the cost of the best offline algorithm.

▶ Theorem 1. Let A be a tree-based sorting algorithm which sorts permutation π using A(π)
accesses. Then OPTBST(π) ∈ O(A(π)).

As some evidence for the utility of our approach, we introduce the log-interleave bound,
a measure of the information-theoretic complexity of a permutation π. The log-interleave
bound is an upper bound on the number of bits needed to encode π; it can also be understood
from an algorithmic perspective as a mergesort with a more efficient merge step. Our main
results on the log-interleave bound illustrate the connections between sorting and the BST
model. In the statements of the following results, we use the notation LIB(π) to refer to the
log-interleave bound of a permutation π. This will be defined formally in Section 4.

The first result is a proof that the log-interleave bound is within a lg lg n multiplicative
factor of the optimal offline BST algorithm on any permutation. Somewhat similarly to
Demaine et al.’s proof of the closeness to optimality of tango trees [19], our proof shows
closeness to optimality by comparing the log-interleave bound with Wilber’s interleave
bound [38], a lower bound in the BST model.

▶ Theorem 17. For any permutation π, IB(π) ≤ LIB(π) ∈ O(lg lg n IB(π)).

Next, we show that there is a work optimal parallel sorting algorithm related to the
log-interleave bound. The next result is a parallel mergesort featuring a merge step which
combines recent work on parallel split and join of BSTs [4] with a BST from [9] and an
analysis which shows that with this new merge step, the mergesort sorts a sequence π in

G. E. Blelloch and M. Dobson 26:5

O(LIB(π)) work. While the span of this algorithm is greater than the span of a typical
parallel sort and indeed may be open to improvement, all existing parallel sorting algorithms
present guarantees only for very weak measures of disorder [14, 30].

▶ Theorem 21. There exists a parallel mergesort which for any permutation π performs
O(LIB(π)) work with polylogarithmic span.

Finally, a corollary of Theorem 6 shows that there is an offline BST algorithm that incurs
cost O(LIB(π)), and thus that the log-interleave bound is an upper bound in the BST model.

▶ Corollary 22. There exists an offline BST algorithm A such that A(π) = O(LIB(π)).

Model of Computation. Our results for the parallel algorithms are given for the binary-
fork-join model [5]. In this model a process can fork two child processes, which work in
parallel and when both complete, the parent process continues. Costs are measured in terms
of the work (total number of instructions across all processes) and span (longest dependence
path among processes). Any algorithm in the binary forking model with W work and S

span can be implemented on a CRCW PRAM with P processors in O(W/P + S) time with
high probability [1, 6], so the results here are also valid on the PRAM, maintaining work
efficiency.

1.2 Related Work
Upper and Lower Bounds in the BST Model. The pursuit of dynamic optimality led to a
string of work in both upper and lower bounds on the cost of a sequence of searches on a
BST. Three important upper bounds in the literature are the dynamic finger bound [35, 16,
15, 13, 8, 23], the working set bound [35], and the unified bound [3, 21], which respectively
state that accessing an element is fast if its key is close to the key of the previous search,
if its key has been searched recently, and a combination of the two. There has also been
significant work in lower bounding the cost of an access sequence in the BST model. Two
such lower bounds, the interleave bound and the funnel bound, were introduced by Wilber
in [38]; a recent work by Lecomte and Weinstein [26] affirmatively settled the 30-year open
question of whether the funnel bound was tighter than the interleave bound, proving a lg lg n

multiplicative separation in some cases. Another lower bound, the rectangle bound, was
introduced by Demaine et al. in [18].

Progress on Dynamic Optimality. The BST which comes closest to dynamic optimality is
the tango tree of Demaine et al. [19], which has a competitive ratio of O(lg lg n) with respect
to the best offline algorithm. Wilber’s interleave bound was vital in the analysis of the
competitive ratio, since the authors showed that on any access sequence x, the tango tree uses
O(lg lg n IB(x)) accesses, where IB(x) represents the interleave bound of the sequence. In [37],
Wang et al. introduce the multi-splay tree, a BST which achieves O(lg lg n) optimality with
better worst-case guarantees than the tango tree. Prominent candidates for a dynamically
optimal algorithm include the splay tree, which was presented by Sleator and Tarjan at the
same time as the dynamic optimality conjecture [35], and the Greedy algorithm presented in
Demaine et al.’s geometric interpretation of the BST model [18].

Other Data Structures and the BST model. The min-heap, which stores a set of keys
and supports inserting arbitrary elements and extracting and deleting the minimum element.
Recently, Kozma and Saranurak show an explicit relation between the BST model and the

ICALP 2023

26:6 The Geometry of Tree-Based Sorting

heap cost model [25], as well as proposing an analogue of the dynamic optimality conjecture
for heaps. Specifically, they show that for every heapsort algorithm (that is, an algorithm
which sorts a permutation π with cost A(π) by inserting its keys into a heap and repeatedly
extracting the minimum element) corresponds to an insertion sort into a BST algorithm
which incurs cost A(π) on the inverse permutation π−1. Their insight came from relating the
rotation operation in a BST to the link operation in a heap, which allowed them to relate
the corresponding cost models.

Adaptive Sorting in Parallel. During the period of interest in the adaptive sorting model, re-
searchers were also interested in work-optimal parallel sorting algorithms with polylogarithmic
span. Unsurprisingly, such algorithms exist for practical measures Runs and Inv [11, 14];
one also exists for Osc, a generalization of Inv [30] that is still theoretically weak. To our
knowledge there are no results on parallel sorting algorithms which are optimal with respect
to any stronger measures.

2 Preliminaries

Terminology. Throughout this paper, we will use the terms list, permutation, and access
sequence interchangeably to refer to some ordering of the keys 1, 2, . . . , n. The term access
sequence is used in the literature on BSTs to denote a sequence of queries to a BST; unless
otherwise stated, an access sequence is presumed not to contain repeated keys.

The Binary Search Tree Model. A binary tree (BT) is either a leaf or a node consisting of
a left binary tree, a key and a right binary tree. A binary seach tree (BST) is a binary tree
where the keys have a total order, and for each node in the tree all keys in its left subtree
are less than its key, and all keys in its right tree are greater.

The following definition of the BST model is drawn from [35, 38, 19]. The model assumes
an initial BST with keys [1, 2, . . . , n] and an access sequence [x1, x2, . . . , xm] of searches,
where xi ∈ {1, 2, . . . , n}. Each search starts at the root and at each node it visits, it may
perform one of the following actions: (a) move to the right child, left child, or parent, or (b)
perform a rotation of the node and its parent. Each of these actions has unit cost and the
search must visit its specified key. We refer to an algorithm that decides on what actions to
perform for each search as a BST algorithm. A BST algorithm may be offline – meaning it
can see the entire sequence of queries ahead of time – or online, meaning that queries are
revealed one at a time.

Wilber’s Interleave Bound. Wilber’s interleave bound is a lower bound on the cost of
accessing any sequence in the BST model. Given an access sequence π consisting of the
keys x1, x2, . . . , xn, fix a static binary tree P (meaning it will never be rotated) with the
keys of π at the leaves in the order they appear in π. Calculate the interleave bound of π

as follows: query the keys in π in sorted order. For each vertex vj , label each element i of
the sequence with R or L, depending on whether accessing i in P goes through the right or
the left subtree of vj , respectively (if i is in neither subtree, give it no label). The interleave
bound of vj , denoted IB(vj), is the number of switches between R and L in the labels if the
keys are queried in sorted order. The interleave bound of the entire access sequence π is
calculated by summing over the interleave bounds of each vertex, so IB(π) =

∑
v∈P IB(vi).

As the lower bound holds for an arbitrary tree P , the interleave bound of the sequence is
usually understood to refer to the maximum over all static trees. See Figure 3 for an example
calculation.

G. E. Blelloch and M. Dobson 26:7

Arborally Satisfied Sets. In [21], Derryberry et al. formalize a connection between binary
search trees and points in the plane satisfying a certain property. An access sequence can
be plotted in the plane where one axis represents key values and the other axis represents
the ordering of the search sequence (that is, time). In the context of sorting, these axes can
also be referred to as input order and output order. In this work, we use the horizontal axis
for time and the vertical access for keyspace. See Figure 1 for an example of an arborally
satisfied set.

In addition to plotting the search sequence on the plane, one can also plot the key values
of the nodes which a BST algorithm accesses (for search or rotations) while searching for a
node. When searching for an element xi which is inserted at time i, the values of the nodes
in the search path are plotted on the same vertical. Demaine et al. [18] proved that such a
plot satisfies the following property:

▶ Definition 2. Given a set P of points in the plane, P is arborally satisfied if for every
two points x, y ∈ P that are not on the same vertical or horizontal, the rectangle defined by x

and y contains at least one point in addition to x and y.

As mentioned in Section 1, a useful equivalent definition of arboral satisfaction is that
there must be a monotonic path (e.g. consisting only of moves up and to the right) between
x and y with a point at every corner. Note that any valid search on a BST will only touch
nodes in a subtree τi of tree T , where τi includes the root of T . We sometimes refer to such
a subtree as a top tree of T .

Demaine et al. show that a BST can be used to arborally satisfy an access sequence
plotted in the plane. However, one can also use an algorithm that directly places points in
the plane rather than using a BST.

▶ Definition 3. Given a set of points in the plane corresponding to an access sequence π,
an offline arboral satisfaction algorithm adds points to the plane to make an arborally
satisfied set. An online arboral satisfaction algorithm also adds points in the plane to
form an arborally satisfied set, but accesses are revealed one by one in input order and the
algorithm must produce an arborally satisfied set at each time.

Demaine et al. show that a BST algorithm is equivalent to an arboral satisfaction
algorithm, but they also show a more surprising result: an arboral satisfaction algorithm
is equivalent to a BST algorithm. Specifically, they show that an offline (online) arboral
satisfaction algorithm requiring f(π) accesses to arborally satisfy a search sequence π can be
transformed to an offline (online) BST algorithm requiring O(f(π)) accesses to search for
the elements of a sequence π.

3 Tree-based Sorting

Towards the goal of unifying the BST model and sorting, we ask the following question:
when can the costs of a sorting algorithm be related to the costs of a BST algorithm? Clearly
not every comparison-based sorting algorithm should be relatable to the BST model: as
mentioned in Section 1, for example, an algorithm that guesses and checks could take O(n)
steps for an arbitrary permutation. Our investigation is therefore limited to sorting over
binary trees, and in particular it considers a class of mergesort and partition sort (related to
quicksort) algorithms on binary trees.

ICALP 2023

26:8 The Geometry of Tree-Based Sorting

3.1 Mergesort
We first consider mergesorts in which the sequences to be merged are represented as BSTs.
“Mergesort” is interpreted here as merging based on any split of the input sequence, not just
splits into equally-sized parts; thus insertion sort using a sequence of insertions into a BST is
a special case of mergesort. The cost of these algorithms is measured in terms of the number
of accesses to the tree required during the mergesort, which will always be at least as great
as the number of comparisons. We capture the idea of a BST mergesort more formally before
giving the theorem statement.

A merge will interleave contiguous subsequences from its two inputs. We refer to each of
these subsequences as blocks and we refer to the ends of each block as block boundaries. The
block boundaries need to be accessed to even verify that the merge is correct. The following
defines a merge that examines some top part of two trees to generate its output.

▶ Definition 4. A BST merge takes two BSTs TA and TB, and for some top trees τa of TA

and τb of TB, returns a BST T such that for some top tree τ of T , τ = τa ∪ τb, the subtrees
of τ correspond to unchanged subtrees of τa and τb, and τ contains the block boundaries. The
number of accesses used by the merge is |τ |.

▶ Definition 5. A BST mergesort recursively splits the input sequence into two parts each
of size at least 1, sorts each part with a BST mergesort, and executes a BST merge on the
results. A mergesort on an input of size 1 returns its input. The number of accesses used by
the mergesort is the sum of accesses across all merges.

This leads to the main theorem.

▶ Theorem 6. Let A be a BST mergesort algorithm which sorts permutation π using A(π)
accesses. Then OPTBST(π) ∈ O(A(π)).

Theorem 6 is proved by showing that for every BST mergesort algorithm, there is an
offline BST algorithm that incurs the same cost as the BST mergesort within a constant
factor. Our proof relies on the geometric interpretation of the BST model – instead of directly
transforming a BST mergesort into an offline BST algorithm we use arborally satisfied sets
as an intermediary. The key ingredient is a transformation of a BST merge algorithm to an
offline arborally satisfied set algorithm, which is equivalent to an offline BST algorithm by
Demaine et al.’s theorem [18]. The following graphic illustrates the chain of dependencies.

The main idea behind going from the mergesort to an arborally satisfied set is to
transform a merge algorithm M into an algorithm that “merges” two arborally satisfied
sets by concatenating them along the time axis (in this paper the x axis) and resolving
any unsatisfied rectangles between the two sets, thus producing an arborally satisfied set.
This “arboral” mergesort algorithm would by definition be an offline arborally satisfied
set algorithm. Ideally this arboral merge would use the same number of accesses as a
corresponding BST merge M. The key idea behind our algorithm is to use the keys accessed
during the tree merge to arborally satisfy the sets on the two sides, as well as add points to
make it easier to satisfy the condition on future merges. In particular, the keys are added in

G. E. Blelloch and M. Dobson 26:9

Algorithm 1 arboralMerge(A, B,M)
The arboral satisfaction algorithm; also illustrated in Figure 2a.

Input: Two arborally satisfied sets A, B; BST merge algorithm M.
Output: An arborally satisfied set C consisting of the concatenation of A and B as well as

additional accesses needed to arborally satisfy the concatenation.
1 if A == ∅ then return B ;
2 if B == ∅ then return A ;
3 C ← concatenate A and B on the time axis ;
4 S ← set of keys accessed when merging keys in A and B using M ;
5 access each key in S in the first, middle (rightmost column of A), and end columns of C ;
6 return C ;

(a) An illustration of an arboral merge. (b) A BST separated into a top tree and auxili-
ary trees.

Figure 2 On the right, an illustration of the merging algorithm shown in Algorithm 1. The blue
squares represent members of the two sets being merged, while the red columns (referred to as
CL, CM , CR in the proof of Theorem 6) illustrate the additional accesses necessary for the merge.
A path drawn from a ∈ A to b ∈ B illustrates how the accesses in the middle column ensure the
set is arborally satisfied. On the right, a BST with a top tree shown in blue and auxiliary trees T1

through T6, where the recursive structure is shown in T1.

three columns: the leftmost column of the left set, the rightmost column of the right set,
and a middle column – we will use the rightmost of the left set, although the leftmost of
the right set would also work. Roughly, the accesses are placed down the middle to resolve
unsatisfied rectangles, and they are placed down the leftmost and rightmost columns to
restore invariants that are useful for future merges. These accesses must by definition form
top trees of the two trees being merged. Algorithm 1 shows the merging routine, which is
used as a sub-step in an arborally satisfied set algorithm which recursively splits the input
set to singletons and then uses Algorithm 1 to merge sub-parts of the input; see Figure 2a for
an illustration of the merge step. Since we are adding a constant number of points per access
in the mergesort, the total points added is proportional to the cost of the mergesort, which
in turn implies an offline BST algorithm with the same cost as the original BST mergesort.

The most difficult part of Theorem 6 is proving correctness of the arboral mergesort –
that is, that each execution of the arboral merge routine produces an arborally satisfied set.
This will require some more background on arborally satisfied sets.

▶ Definition 7. A treap over a set of pairs S is a BST over the first coordinate of each s ∈ S

and a min-heap over the second coordinate. Ties over the second coordinate are permitted
and may be broken arbitrarily.

ICALP 2023

26:10 The Geometry of Tree-Based Sorting

A treap with ties on the priorities can also be expressed as a multi-treap (for multi-node
treap), where ties are stored in a multi-node that may have more than two children. Child
relations must obey an underlying BST structure on the nodes stored within a multi-node;
hence a multi-node may have at most one more child than the number of keys in the multi-
node. A key component of our proof is that we will define a multi-treap with respect to
each side of an arborally satisfied set and then relate these to the BST the mergesort will
generate.

▶ Definition 8. Given an arborally satisfied set A, let the left (right) priority be the distance
from the left (right) boundary of the first point in the row (closer has higher priority). The
left (right) multi-treap of A is the multi-treap defined by the (row, priority) pairs.

Since there can be many points in any given column of an arborally satisfied set, multi-
nodes of the multi-treaps can have more than two children.2

▶ Definition 9. Given a BST T and an arborally satisfied set A with left (right) multi-treap
HA, T is left (right) congruent with A if there is some valid BST structure on HA (forming
a binary subtree within each multi-node) such that the tree structure on HA is equal to T . T

is doubly congruent with A if it is both left and right congruent.

Note that many BSTs can be left (equivalently right) congruent with the same arborally
satisfied set A due to equal priorities. Also many arborally satisfied sets can be left (right)
congruent with the same BST T . It may seem unlikely that a BST is doubly congruent with
a arborally satisfied set, but in our construction we will maintain double congruence, and in
particular we will show that the point sets created by Algorithm 1 are doubly congruent to
the corresponding tree.

The following observation will be useful for the proof of Theorem 6. It follows from a
similar argument to Lemma 2.1 of Demaine et al. [18].

▶ Observation 10. Consider an arborally satisfied set A that is double-congruent with a
tree T . Then for any top tree τ of T , if the keys in τ are accessed along either the left or
right column of A, or one past the left or right column, the resulting set of points is arborally
satisfied.

Proof. Begin with the case where the keys of τ are accessed one past the leftmost or rightmost
column of A. Assume for the sake of contradiction that there exists an unsatisfied rectangle –
that is, a rectangle with two points at its corners and no points contained within it – between
access a ∈ A and access b ∈ τ . Consider the least common ancestor c of a and b, whose key
value must be between those of a and b. Since by our assumption, there are no keys accessed
between the rectangle defined by a and b, this contradicts the fact that τ is a continuous
subtree of T , since c must be accessed in τ to reach b.

This leaves the case where accesses to τ are instead placed on the leftmost or rightmost
column of A – that is, in addition to accesses that were already there. Consider an arbitrary
access a ∈ A and any access b ∈ τ . If the accesses in τ are placed on a new column past
the rightmost (leftmost) column of A, there is a monotonic path from a to b with accesses
at every corner. If the accesses in τ are imposed on the rightmost (leftmost) column of A

instead, the same accesses still form a monotonic path, since this only causes the elimination
of one right (left) move. ◀

2 Demaine et al. [18] define a similar notion when proving that for any arborally satisfied set there is a
BST execution with equivalent cost, but only with respect to one side, and only when sweeping column
by column.

G. E. Blelloch and M. Dobson 26:11

We now prove correctness of the arboral mergesort algorithm.

▶ Lemma 11. The arboral mergesort algorithm is correct: that is, it returns an arborally
satisfied set.

Proof. We will use the following inductive hypothesis on the arboral merge algorithm
(Algorithm 1) to show correctness: Algorithm 1 returns an arborally satisfied set which is
double-congruent to the tree T returned by the corresponding BST mergesort algorithm.

Base Case. When the set is just a single point, both arboral satisfaction and double
congruence follow trivially.

Inductive Step. The inductive step is broken into several claims, and some new notation is
called for. The two arborally satisfied sets being merged are A and B, and by the inductive
hypothesis are both arborally satisfied and double-congruent to trees TA and TB , respectively.
The additional accesses specified by the mergesort are added to three columns. Let CL, CR,
and CM denote the set of points which the arboral merge adds along the left, right, and
middle columns respectively; see Figure 2a for an illustration. It will also be useful to denote
the subset of a Ci (i ∈ {L, R, M}) consisting only of accesses to keys in A or B. These
subsets are denoted by Ci(A) or Ci(B).

The merge will break A and B into contiguous blocks that are interleaved in key order.
As assumed in the model, the block boundaries must be accessed by the merge, and therefore
included in the Ci. In general the Ci will include other points as well. The inductive step
has to show both that the resulting set is arborally satisfied and is doubly congruent to the
merged tree T .

Arboral Satisfaction. Points within A or B are satisfied by the inductive hypothesis. Points
both in CL, CR, CM are satisfied by the fact that they access precisely the same keys. This
leaves the two more interesting cases: (1) pairs of points one from the previously exiting
points (in A or B) and one from the new boundaries CL, CR, CM , and (2) pairs of points one
from A and one for B. For the first case, A is double-congruent to tree TA (by the inductive
hypothesis), and Ci(A) is a top tree of A (by construction), so we can apply Observation 10
for points in A and Ci(A). Now since the boundaries of each block of A must be in Ci(A), we
can get from a point in A to a point in Ci(B) using a monotonic path by going to a boundary
point in Ci(A) and then up or down the column to the point in Ci(B). Symmetrically points
in B can get to points in Ci(B) and Ci(A) by a monotonic path. For case (2) consider any
point a ∈ A and point b ∈ B. There is a monotonic path between a and b by composing the
monotonic path between a and a boundary point in pa in Cm(A), between b and a boundary
point pb in Cm(B), and between pa and pb, which are in the same column; see Figure 2a.

Double congruency to T . We will show that the set AB returned by the arboral merge
algorithm is right congruent to T . Left congruency is true by symmetry. The keys in CR

(those accessed by the merge) correspond to a top tree τ of T . Since all keys in the column
CR have the same highest priority we can organize the root multi-node to match the structure
of τ making those nodes congruent. Now consider the subtrees not in τ . They properly are
lower in the tree and have equal or lower priority (only equal if they happen to be in the last
row). Furthermore the subtrees are separated by keys in τ . Each such subtree either comes
completely from TA or completely from TB and have the same structure as before the merge
(they were not touched by the merge). Furthermore the points from TA (TB) only appear in

ICALP 2023

26:12 The Geometry of Tree-Based Sorting

A (B). This implies the relative priorities have not change for those points when merging
into AB. By induction, the trees TA (TB) were congruent to A (B) before the merge so the
subtrees were congruent and remain congruent after the merge (neither the relative priorities
nor tree structure have changed). This implies the whole tree T is congruent with AB. ◀

The proof of Theorem 6 now follows easily.

Proof of Theorem 6. The theorem follows once the cost of the arboral mergesort is shown
to be O(A(π)). Since the cost of A is dominated by the cost of each merge execution, and
that cost is at most multiplied by six in each call to the arboral merge, the cost of the arboral
mergesort is at most 6A(π). When the arboral mergesort is transformed into an offline BST
algorithm, the cost remains the same for a total cost of O(A(π)). ◀

3.2 Partition Sort
We now consider a class of sorting algorithms motivated by quicksort, which we refer to as
partition sorts. As in the case of mergesort, we limit ourselves to working with binary trees.
However, in this case the trees are not ordered by key, but instead are ordered by input order.
The algorithm is like quicksort in that it picks a pivot, partitions the keys on the pivot and
recurses. Since we are interested in lower bounds (i.e. showing the cost of partition sort is at
least as great as optimal BSTs), we can assume an oracle picks the perfect pivot (e.g., the
median). As with mergesort, to achieve better than trivial O(n log n) bounds it is important
that the partition need not visit the whole tree it is partitioning, but rather just some top
tree. This allows for sending whole subsequences to the lesser or greater/equal side without
visiting all nodes. More precisely here are the definitions of partition and partition sort.

▶ Definition 12. A BT partition takes a BT T and for some top tree τ of T returns two
BTs TA, TB with distinct keys such that for some top trees τa of TA and τb of TB, τ = τa ∪ τb,
the other subtrees of T appear in either TA or TB unchanged, and τ contains the block
boundaries of the partitioned output. Furthermore the preordering of the keys in TA or TB are
a subsequence of the preordering in T (i.e. left-to-right ordering). We assume both partitions
are non-empty. The number of accesses used by the partition is |τ |.

▶ Definition 13. A BT partition sort on a BT tree T (1) partitions T into Ta and Tb

such that for some key k all keys in Ta are less than k and all keys in Tb are greater or
equal to k, (2) recurses on each partition, and (3) returns the left and right results appended.
The recursion terminates when the tree is of size one. The number of accesses used by the
partition sort is the sum of accesses across all partitions.

Our goal is to show the following theorem, which has the same form as the result for
mergesort.

▶ Theorem 14. Let A be a BT partition sort algorithm that sorts permutation π using A(π)
accesses, and let OPTBST(π) be the optimal cost of querying π with a BST algorithm. Then
OPTBST(π) ∈ O(A(π)).

Our approach is to show a one-to-one correspondence between the tree-based merge and
partition sorts.

▶ Lemma 15. For any BT partition sort algorithm A that sorts permutation π using
A(π) accesses, there is a BST mergesort sort algorithm B that sorts permutation π−1 using
B(π−1) = A(π) accesses, and vice versa.

G. E. Blelloch and M. Dobson 26:13

Proof. The idea is to consider running BST mergesort backwards, while reversing the role of
time and key order. Consider undoing a merge – i.e. taking the merged tree and partitioning
back into its two inputs. Reversing the roles of time and keys, this is equivalent to a BT
partition where keys are time order and the partitions is on the first time of the right partition.
In particular the size of the top tree and therefore access cost is identical. This continues to
be true on the recursive calls. In both cases the base case is of size one. Hence the total
access costs of the two algorithms are identical, one applied to the inverse permutation of
the other. ◀

Since the size of arborally satisfied sets are invariant under rotation by 90 degrees,
reversing the role does not affect the size of the set. Since the proof of Theorem 6 first showed
how to map a BST mergesort to an arborally satisfied set and this implied the same bound
on a offline BST, this remains true if we rotate the input, arborally satisfy it in the same
way, and generate a BST. Theorem 14 follows. Taken together, Theorem 6 and Theorem 14
show the statement in Theorem 1. Although the duality of mergesort and quicksort has been
recognized before we are not aware of any formal correspondence such as the one given here.

4 The Log-Interleave Bound

The following two sections contain results that illustrate the utility of the approach shown in
Theorem 1: namely, that results in the sorting cost model can directly translate to interesting
results in the BST model. In this section we propose an information-theoretic bound on
both the cost of accessing a sequence in the BST model and sorting a list in the comparison
model. Theorem 17 shows that the log-interleave bound is within a lg lg n multiplicative
factor of a known lower bound in the BST model. In the next section, we show that there
exists a BST mergesort algorithm that sorts any permutation π in O(LIB(π)) comparisons,
and thus combined with Theorem 6 shows the existence of an offline BST algorithm with the
same costs in the BST model.

The log-interleave bound can be thought of as an algorithmic perspective on Wilber’s
interleave bound. Let P be the static tree with the keys of a permutation π at the bottom.
Consider sorting π via mergesort: clearly, each non-leaf vertex of P denotes a merge. The
interleave bound charges unit cost for each switch between the right and left subtree during
a merge. Another way of looking at this cost is that every continuous run of accesses to the
left subtree incurs unit cost. Thus, a mergesort with a merge step that incurred unit cost for
each consecutive run – as opposed to the standard mergestep which charges for the size of
each run – would sort π using O(IB(π)) comparisons.

Lecomte and Weinstein [26] and Chalermsoook et al. [12] independently show that the
merge step described above does not exist. However, it is possible to charge the logarithm
of the size of each consecutive run, as shown by Brown and Tarjan in [10]. This idea leads
us to using such a merge step as an information-theoretic bound, which applies to sorting
(sequentially and in parallel), and the BST model. The log-interleave bound is formally
defined below; note its similarity to the interleave bound.

▶ Definition 16. Given an access sequence π, fix a static binary tree P with the keys of π at
the leaves. For each vertex vj, query the descendants of vj in sorted order, then label each
with R or L depending on whether it is in the left or right subtree of vj . Let S(vj) represent
the decomposition of this labeling into the smallest possible number of runs of consecutive
accesses to L or R in vj . Then LIB(vj) =

∑
ri∈S(vj) lg(|ri| + 1) and LIB(π) =

∑
v∈P LIB(vi).

See Figure 3 for an example calculation.

ICALP 2023

26:14 The Geometry of Tree-Based Sorting

52 864 31 7

Figure 3 Consider accessing the keys 1-8 in order. For the vertex v1 at the root of the tree shown
here, the labeled access sequence is [L, L, L, R, L, R, R, R]. Since the access sequence switches
between the left and right subtree three times, IB(v1) = 3. Similarly, LIB(v1) = lg 4+lg 2+lg 2+lg 4
since the smallest possible decomposition of the labeled access sequence consists of [[L, L, L], [R],
[L], [R, R, R]].

A natural question one might ask about a BST algorithm or an adaptive sorting algorithm
is how far, in the worst case, is the cost of this algorithm from any known lower bounds? Or,
in other words, how close is this algorithm to optimal? In this section, we will settle this
question for the log-interleave bound in the BST model, ending in the following theorem:

▶ Theorem 17. For any permutation π, IB(π) ≤ LIB(π) ∈ O(lg lg n IB(π)).

Our first step is to show that we cannot hope to do better than a lg lg n separation; this
is stated in the following lemma. This result is similar to the separation result in Theorem 2
of Lecomte and Weinstein [26]; furthermore, the result implies that an online BST algorithm
using LIB(π) accesses cannot be dynamically optimal.

▶ Lemma 18. There exists a permutation π such that LIB(π) = Θ(lg lg n IB(π)).

Proof. First we will need to define a particularly useful permutation. The bit-reversal
permutation πB on n = 2k keys is generated by taking a sorted list [0, 1, . . . , n], writing each
key in binary, then reversing the bits of each key. For example, the bit-reversal permutation
on 8 keys is [0, 4, 2, 6, 1, 5, 3, 7]. Let P be a static tree with keys of πB at the bottom: then
querying its keys in sorted order will switch between the left and right subtree of any vj ∈ P

on each query. This implies that IB(πB) = Θ(n lg n), thus showing that any BST algorithm
will incur this cost when querying πB .

Consider the permutation π obtained by splitting the sorted list into n/ lg n segments
of equal size, and then permuting those n/ lg n segments according to the bit-reversal
permutation πB .

The interleave bound of π will be the same as for a list with n/ lg n elements permuted
according to the bit-reversal sequence – that is, (n/ lg n) lg(n/ lg n) = O(n). In π, every
block is of size lg n, so to calculate the log-interleave bound, we multiply by lg lg n on
all but the bottom lg lg n levels. Thus, the log-interleave bound of π is Θ(n lg lg n) while
IB(π) = O(n). ◀

Now we have shown there is no possibility of doing better than a lg lg n separation, we
show that this separation is tight. This starts with the following question: when are the
interleave bound and the log-interleave bound farthest apart? It follows from the convexity
of the logarithm that for each vertex vj of a static tree, the interleave bound and the

G. E. Blelloch and M. Dobson 26:15

log-interleave bound are farthest apart when vj experiences long runs of consecutive accesses
to its subtrees (e.g. the list [L, L, L, R, R, R] has fairly different values for its interleave
bound and log-interleave bound, but the list [L, R, L, R, L, R] does not).

However, a completely sorted list πS – translating to the longest run size possible for each
vertex of P – has IB(πS) = LIB(πS) = Θ(n). This suggests there must be some intermediate
value of the block size that maximizes the difference between the two bounds. As the reader
might have inferred from Lemma 18, that size will turn out to be lg n. The next lemma,
whose proof follows directly from the convexity of the logarithm, formalizes this intuition.

▶ Lemma 19. For a permutation π, let v be a vertex of the corresponding static tree P such
that IB(v) = S. Then LIB(v) will differ from IB(v) by the greatest amount when each “run”
of L or R in the labeled sequence is the same size.

Now that we have established that the interleave bound and the log-interleave bound differ
the most when all continuous runs are the same size, we move on to ask the following question:
how large do the runs of the same size have to be to further maximize this difference? The
next lemma shows this fact in the following way: in the inequality below, the expression
S lg

(
n
S + 1

)
bounds the log-interleave bound of any π such that IB(π) = S. The left-hand

expression c lg(lg n + 1)
(

S + n
lg n

)
will directly suffice to prove Theorem 17. The proof of

the lemma draws out the fact that the two expressions are closest to each other when the
size of the continuous runs is lg n.

▶ Lemma 20. For a permutation π, let v be a vertex of the corresponding static tree P such
that IB(v) = S. Furthermore, let the number of leaves below vertex v be n. Then for some
constant c,

c lg(lg n + 1)
(

S + n

lg n

)
≥ S lg

(n

S
+ 1
)

.

Proof. Assume for the sake of contradiction that

c lg(lg n + 1)S + c lg(lg n + 1) n

lg n
< S lg

(n

S
+ 1
)

.

This would imply that each added term is smaller than S lg
(

n
S + 1

)
. Begin by examining

the case where the first term is smaller than the term on the right:

lg(lg n + 1)S < S lg
(n

s
+ 1
)

=⇒ lg(lg n + 1) < lg
(n

S
+ 1
)

=⇒ lg n <
n

S

=⇒ S <
n

lg n
.

This shows that when S ≥ n
lg n , we reach a contradiction and our claim holds. Now, when

S < n
lg n , the second term in the sum dominates. When the second term dominates, the

expression reads

c lg(lg n + 1) · n

lg n
≥ n

lg n
lg(lg n + 1)

which is self-evidently true for all c ≥ 1. ◀

Now, these two lemmas are put together to prove Theorem 17.

ICALP 2023

26:16 The Geometry of Tree-Based Sorting

Proof of Theorem 17. Let P be the static tree corresponding to π, and for each vertex vi

of P , let Si = IB(vi). By Lemma 19, we can assume that if the number of leaves below vi

is ni, then LIB(vi) = Si lg
(

ni

S + 1
)
. Then IB(π) =

∑n−1
i=1 Si. Next, we can use the upper

bound on LIB(vi) from Lemma 20 to upper bound LIB(π):

LIB(π) ≤
n−1∑
i=1

c lg lg n

(
S + ni

lg n

)

= c lg lg n

(
IB(π) + 1

lg n

lg n∑
i=1

2i n

2i

)
= c lg lg n (IB(π) + n) = O(IB(π) lg lg n). ◀

5 Adaptive Parallel Mergesort

In this section we present a parallel BST mergesort which sorts a permutation π using
O(LIB(π)) accesses, and the same amount of work. We refer to the algorithm as an adaptive
parallel mergesort.

First we introduce the data structure used in our mergesort. Given a BST T and a key k,
a split refers to returning two BSTs, one containing all keys from T which are greater than
k, and one containing all keys which are less than k. Given two BSTs T1, T2 such that any
key in T1 is greater than every key in T2, join returns a single BST T containing the union
of the keys in T1 and T2. As previously stated, we assume keys are unique.

The tree used in our mergesort algorithm is a modified red-black tree described by Tarjan
and Van Wyck in [36], which they call a heterogeneous finger search tree. These trees have
the useful property that a key d in a heterogenous finger search tree with n elements can
be accessed in time O(log(min(d, n − d) + 1)). This property allowed Tarjan and Van Wyck
to devise fast split and join algorithms for heterogenous finger search trees; split runs in
amortized time O(lg(min(|T1|, |T2|) + 1)) – that is, the logarithm of the size of the smaller
tree returned. Join similarly is bounded by amortized time O(lg(min(|T1|, |T2|) + 1)) – in this
case, the size of the smaller of the two trees being joined together. The worst-case complexity
of split and join is O(log max |T1|, |T2|). As presented in [36], the heterogeneous finger search
tree is not strictly a BST as it uses more than one pointer; however, work by [13] shows how
it can be converted into using a single pointer with an additional constant factor loss.

The natural parallel algorithm to merge two trees is as follows: starting with two trees,
split each tree using the other tree’s root; then, recurse in parallel to merge the two left halves
and the two right halves, respectively, joining the two at the end. This idea was presented
by Blelloch et al. [4], and is shown here in Algorithm 2. This algorithm, however, does not
meet the log-interleave bound even if we use heterogeneous finger search trees for the split
and join. We therefore modify the algorithm as is shown in Algorithm 3 and illustrated in
Figure 4, which follows the same idea with some small modifications. In addition to splitting
the second tree T2 into L2 and R2 based on the root of the first tree (T1), it then splits T1
by the maximum value of L2 and the minimum value of R2 to effectively break T1 into three
parts. The middle part need not be split recursively since it falls between two elements of T2.
This avoids redundant splits.

G. E. Blelloch and M. Dobson 26:17

Figure 4 One round of our recursive merge algorithm. The nodes shown in red are the nodes
used to split a tree; the small blue nodes denote merges.

Algorithm 2 union(T1, T2).
Blelloch et al.’s union algorithm. Here,
the function expose refers to returning
the root and its right and left subtrees.

Input: Two BSTs T1, T2 with disjoint
keys.

Output: A BST containing the union
of the keys of T1 and T2

1 if T1 = Leaf then return T2 ;
2 else if T2 = Leaf then return T1 ;
3 else
4 L1, k2, R1 = expose(T1);
5 L2, R2 = split(T2, k) ;
6 do in parallel
7 TL = union(L1, L2);
8 TR = union(R1, R2) ;
9 return join(TL, k2, TR);

Algorithm 3 mergeHT(T1, T2)
Pseudocode for the merge step of our
mergesort.

Input: Two BSTs T1, T2

Output: A BST containing the union
of the keys of T1 and T2

1 if T1 = Leaf then return T2 ;
2 else if T2 = Leaf then return T1 ;
3 else
4 k = root(T1);
5 L2, R2 = split(T2, k) ;
6 k1 = max(L2) ; k2 = min(R2) ;
7 L1, I = split(T1, k1) ;
8 M, R1 = split(I, k2) ;
9 do in parallel

10 TL = merge(L1, L2) ;
11 TR = merge(R1, R2) ;
12 return join(join(TL, M), TR);

It is not immediate our modified algorithm’s work is bounded by the log-interleave bound,
since the set of splits and joins it performs does not neatly correspond to the sums of block
sizes at each level in the static tree used to calculate the log-interleave bound. We will show
that this different sequence of splits and joins also performs within the log-interleave bound,
culminating in the following theorem:

▶ Theorem 21. There exists a parallel mergesort which for any permutation π performs
O(LIB(π)) work with polylogarithmic span.

Furthermore, since the algorithm proposed is a BST mergesort, it follows from Theorem 6
that there also exists an offline BST algorithm with the same cost in the BST model:

▶ Corollary 22. There exists an offline BST algorithm A such that A(π) = O(LIB(π)).

The proofs of Theorem 21 and Corollary 22 are shown in the full version of the paper.

ICALP 2023

26:18 The Geometry of Tree-Based Sorting

References
1 N. S. Arora, R. D. Blumofe, and C. G. Plaxton. Thread scheduling for multiprogrammed

multiprocessors. Theory of Computing Systems (TOCS), 34(2), April 2001.
2 Nicolas Auger, Vincent Jugé, Cyril Nicaud, and Carine Pivoteau. On the worst-case complexity

of TimSort. In European Symposium on Algorithms (ESA), volume 112. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2018.

3 Mihai Badoiu, Richard Cole, Erik D. Demaine, and John Iacono. A unified access bound on
comparison-based dynamic dictionaries. Theoretical Computer Science, 382(2), 2007.

4 Guy E. Blelloch, Daniel Ferizovic, and Yihan Sun. Just join for parallel ordered sets. In ACM
Symposium on Parallelism in Algorithms and Architectures (SPAA), 2016.

5 Guy E. Blelloch, Jeremy T. Fineman, Yan Gu, and Yihan Sun. Optimal parallel algorithms in
the binary-forking model. In ACM Symposium on Parallelism in Algorithms and Architectures
(SPAA), 2020.

6 Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computations by work
stealing. J. ACM, 46(5), 1999.

7 Prosenjit Bose, Jean Cardinal, John Iacono, Grigorios Koumoutsos, and Stefan Langerman.
Competitive online search trees on trees. In ACM-SIAM Symposium on Discrete Algorithms
(SODA). SIAM, 2020.

8 Prosenjit Bose, Karim Douïeb, John Iacono, and Stefan Langerman. The power and limitations
of static binary search trees with lazy finger. In International Symposium on Algorithms and
Computation (ISAAC), volume 8889. Springer, 2014.

9 Mark R Brown and Robert E Tarjan. A fast merging algorithm. Journal of the ACM (JACM),
26(2), 1979.

10 Mark R. Brown and Robert Endre Tarjan. Design and analysis of a data structure for
representing sorted lists. SIAM J. Comput., 9(3):594–614, 1980.

11 Svante Carlsson and Jingsen Chen. An optimal parallel adaptive sorting algorithm. Inf.
Process. Lett., 39(4), 1991.

12 Parinya Chalermsook, Julia Chuzhoy, and Thatchaphol Saranurak. Pinning down the strong
wilber 1 bound for binary search trees. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques, APPROX/RANDOM 2020, August 17-19, 2020,
Virtual Conference, volume 176 of LIPIcs, pages 33:1–33:21. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2020. doi:10.4230/LIPIcs.APPROX/RANDOM.2020.33.

13 Parinya Chalermsook, Mayank Goswami, László Kozma, Kurt Mehlhorn, and Thatchaphol
Saranurak. Multi-finger binary search trees. In International Symposium on Algorithms and
Computation (ISAAC), volume 123. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

14 Jingsen Chen and Christos Levcopoulos. Improved parallel sorting of presorted sequences.
In Joint Conference on Vector and Parallel Processing (CONPAR - VAPP), volume 634.
Springer, 1992.

15 Richard Cole. On the dynamic finger conjecture for splay trees. Part II: The proof. SIAM
Journal on Computing, 30(1), 2000.

16 Richard Cole, Bud Mishra, Jeanette Schmidt, and Alan Siegel. On the dynamic finger
conjecture for splay trees. Part I: Splay sorting log n-block sequences. SIAM Journal on
Computing, 30(1), 2000.

17 Curtis R. Cook and Do Jin Kim. Best sorting algorithms for nearly sorted lists. Communications
of the ACM, 23(11), 1980.

18 Erik D. Demaine, Dion Harmon, John Iacono, Daniel Kane, and Mihai Patrascu. The geometry
of binary search trees. In ACM-SIAM Symposium on Discrete Algorithms (SODA), 2009.

19 Erik D. Demaine, Dion Harmon, John Iacono, and Mihai Patrascu. Dynamic optimality–almost.
SIAM Journal on Computing, 37(1), 2007.

20 J. Derryberry, D. D. Sleator, and C. C. Wang. A lowerbound framework for binary search
trees with rotations. Technical report, Technical Report CMU-CS-05-187, School of Computer
Science, Carnegie Mellon University, 2005.

https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2020.33

G. E. Blelloch and M. Dobson 26:19

21 Jonathan Derryberry. Adaptive Binary Search Trees. PhD thesis, Carnegie Mellon University,
2009.

22 Vladimir Estivill-Castro and Derick Wood. A new measure of presortedness. Information and
Computation, 83(1), 1989.

23 John Iacono and Stefan Langerman. Weighted dynamic finger in binary search trees. In
ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM, 2016.

24 Jyrki Katajainen, Christos Levcopoulos, and Ola Petersson. Local insertion sort revisited. In
International Symposium on Optimal Algorithms, 1989.

25 László Kozma and Thatchaphol Saranurak. Smooth heaps and a dual view of self-adjusting
data structures. In ACM Symposium on Theory of Computing (STOC). ACM, 2018.

26 Victor Lecomte and Omri Weinstein. Settling the relationship between Wilber’s bounds for
dynamic optimality. In European Symposium on Algorithms (ESA), 2020.

27 Christos Levcopoulos and Ola Petersson. Adaptive heapsort. Journal of Algorithms, 14(3),
1983.

28 Christos Levcopoulos and Ola Petersson. Sorting shuffled monotone sequences. In Scandinavian
Workshop on Algorithm Theory, 1990.

29 Christos Levcopoulos and Ola Petersson. Splitsort–an adaptive sorting algorithm. Information
Processing Letters, 39(4), 1991.

30 Christos Levcopoulos and Ola Petersson. Exploiting few inversions when sorting: Sequential
and parallel algorithms. Theor. Comput. Sci., 163(1&2), 1996.

31 Heikki Mannila. Measures of presortedness and optimal sorting algorithms. IEEE Transactions
on Computers, C-34(4), 1985.

32 Peter McIlroy. Optimistic sorting and information theoretic complexity. In ACM-SIAM
Symposium on Discrete Algorithms (SODA), 1993.

33 Alistair Moffat and Ola Petersson. Historical searching and sorting. In International Symposium
on Algorithms, 1991.

34 Ola Petersson and Alistair Moffat. A framework for adaptive sorting. Discrete Applied
Mathematics, 59, 1995.

35 Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees. J. ACM,
32(3), 1985.

36 Robert Endre Tarjan and Christopher J. Van Wyk. An O(n log log n)-time algorithm for
triangulating a simple polygon. SIAM J. on Computing, 17(1), 1988.

37 Chengwen Chris Wang, Jonathan Derryberry, and Daniel Dominic Sleator. O(log log n)-
competitive dynamic binary search trees. In ACM-SIAM Symposium on Discrete Algorithms
(SODA). ACM Press, 2006.

38 Robert Wilber. Lower bounds for accessing binary search trees with rotations. SIAM Journal
on Computing, 18(1), 1989.

ICALP 2023

Parameterized Complexity of Binary CSP:
Vertex Cover, Treedepth, and Related Parameters
Hans L. Bodlaender #

Department of Information and Computing Sciences, Utrecht University, The Netherlands

Carla Groenland #

Mathematical Institute, Utrecht University, The Netherlands

Michał Pilipczuk #

Institute of Informatics, University of Warsaw, Poland

Abstract
We investigate the parameterized complexity of Binary CSP parameterized by the vertex cover
number and the treedepth of the constraint graph, as well as by a selection of related modulator-based
parameters. The main findings are as follows:

Binary CSP parameterized by the vertex cover number is W[3]-complete. More generally, for
every positive integer d, Binary CSP parameterized by the size of a modulator to a treedepth-d
graph is W[2d + 1]-complete. This provides a new family of natural problems that are complete
for odd levels of the W-hierarchy.
We introduce a new complexity class XSLP, defined so that Binary CSP parameterized by
treedepth is complete for this class. We provide two equivalent characterizations of XSLP: the
first one relates XSLP to a model of an alternating Turing machine with certain restrictions on
conondeterminism and space complexity, while the second one links XSLP to the problem of
model-checking first-order logic with suitably restricted universal quantification. Interestingly,
the proof of the machine characterization of XSLP uses the concept of universal trees, which are
prominently featured in the recent work on parity games.
We describe a new complexity hierarchy sandwiched between the W-hierarchy and the A-hierarchy:
For every odd t, we introduce a parameterized complexity class S[t] with W[t] ⊆ S[t] ⊆ A[t],
defined using a parameter that interpolates between the vertex cover number and the treedepth.

We expect that many of the studied classes will be useful in the future for pinpointing the complexity
of various structural parameterizations of graph problems.

2012 ACM Subject Classification Theory of computation → W hierarchy

Keywords and phrases Parameterized Complexity, Constraint Satisfaction Problems, Binary CSP,
List Coloring, Vertex Cover, Treedepth, W-hierarchy

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.27

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://doi.org/10.48550/arXiv.2208.12543

Funding Carla Groenland: Supported by the Marie Skłodowska-Curie grant GRAPHCOSY (number
101063180).
Michał Pilipczuk: This research is a part of the project BOBR that has received funding from
the European Research Council (ERC) under the European Union’s Horizon 2020 research and
innovation programme (grant agreement no. 948057).

1 Introduction

The Binary Constraint Satisfaction Problem (BinCSP, for short) is a fundamental
problem defined as follows. We are given an undirected graph G = (V,E), called the primal
or the Gaifman graph, where V is a set of variables, each with a prescribed domain of possible

EA
T
C
S

© Hans L. Bodlaender, Carla Groenland, and Michał Pilipczuk;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 27; pp. 27:1–27:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:h.l.bodlaender@uu.nl
https://orcid.org/0000-0002-9297-3330
mailto:c.e.groenland@uu.nl
https://orcid.org/0000-0002-9878-8750
mailto:michal.pilipczuk@mimuw.edu.pl
https://orcid.org/0000-0001-7891-1988
https://doi.org/10.4230/LIPIcs.ICALP.2023.27
https://doi.org/10.48550/arXiv.2208.12543
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

27:2 Binary CSP: Vertex Cover, Treedepth, and Related Parameters

values. Further, each edge uv of G corresponds to a binary constraint that restricts the
possible pairs of values that can be assigned to u and v. The task is to decide whether every
variable can be mapped to a value from its domain so that all the constraints are satisfied.

Due to immense modeling power, constraint satisfaction problems are of great importance
in multiple applications, and the theoretical study of their complexity is a field on its own.
In this work we are interested in parameterized algorithms for BinCSP, with a particular
focus on structural parameters of the Gaifman graph. An example of such a result is a classic
observation, usually attributed to Freuder [32]: using dynamic programming, BinCSP can
be solved in time nk+O(1), where n is the maximum size of a domain and k is the treewidth of
the Gaifman graph. In the language of parameterized complexity, this means that BinCSP
parameterized by treewidth is slice-wise polynomial, or in the complexity class XP.

The class XP is very general and just placing BinCSP parameterized by treewidth within
XP does not provide much insight into the actual complexity of the problem. A more detailed
study of the parameterizations of BinCSP by pathwidth and by treewidth was recently
performed by Bodlaender, Groenland, Nederlof, and Swennenhuis in [11], and by Bodlaender,
Groenland, Jacob, Pilipczuk, and Pilipczuk in [10]. In particular, as shown in [11], BinCSP
parameterized by pathwidth is complete for XNLP: the class of all parameterized problems
that can be solved by a nondeterministic Turing machine using f(k) log n space and f(k)·nO(1)

time, where k is the parameter and f is a computable function. A “tree variant” of XNLP,
called XALP, was studied in [10]; it can be defined using the same model of a Turing
machine, except that the machine additionally has access to a stack of unbounded size that
can be manipulated by pushing and popping. As proved in [10], BinCSP parameterized by
treewidth is complete for XALP. All in all, the recent works [7, 9, 10, 11, 26] present a variety
of problems on graphs with linear or tree-like structure that are complete for XNLP and
XALP, respectively. This is an evidence that XNLP and XALP capture certain fundamental
varieties of computational problems: those amenable to linearly and tree-structured dynamic
programming with state space of slice-wise polynomial size.

The contemporary research in parameterized algorithms features many more structural
parameters of graphs, besides treewidth and pathwidth. In this work we explore the
complexity of BinCSP parameterized by the following parameters of the Gaifman graph:
(1) the vertex cover number, (2) the treedepth, and (3) a selection of related modulator-based
parameters lying between the vertex cover number and the treedepth.

New completeness results for the W-hierarchy. The W-hierarchy was introduced around
thirty years ago in the work by Downey and Fellows that founded the field of parameterized
algorithms and complexity. In this hierarchy, we have a collection of classes, including
W[1] ⊆ W[2] ⊆ . . . ⊆ W[SAT] ⊆ W[P]; see [20, 21, 30] for an overview and for bibliographic
references. A large variety of problems are known to be complete (under fpt reductions) for
W[1] and for W[2]. However, for classes W[t] with t ⩾ 3, there is so far only a handful of
examples of natural problems known to be complete [1, 5, 6, 14, 15, 36]. Our first contribution
is to give new examples of complete problems for W[t] for all odd t ⩾ 3.

Our first example concerns BinCSP parameterized by the vertex cover number: the
minimum size of a vertex cover in the Gaifman graph.

▶ Theorem 1. BinCSP parameterized by the vertex cover number of the Gaifman graph is
complete for the class W[3].

It was known that BinCSP parameterized by the vertex cover number is W[1]-hard [29, 44].
The W[3]-completeness is surprising, not only due to the small number of examples of natural
W[3]-complete problems, but also because many problems appear to be fixed-parameter
tractable or even have a kernel of polynomial size, when the vertex cover number is used as
the parameter (e.g., [28, 29, 31, 34]).

H. L. Bodlaender, C. Groenland, and M. Pilipczuk 27:3

For a graph G and a graph class C, a modulator to C in G is a set of vertices W such
that G−W ∈ C. For instance, vertex covers are modulators to the class of edgeless graphs.
A feedback vertex set is another type of a modulator, now to graphs without cycles, i.e., to
forests. The feedback vertex number of a graph G is the minimum size of a feedback vertex
set in G. We prove that the parameterization by the feedback vertex number yields a much
harder problem.

▶ Theorem 2. BinCSP parameterized by the feedback vertex number of the Gaifman graph
is W[SAT]-hard and in W[P].

Finally, with similar techniques, we obtain the following completeness results for W[t] for
all odd t ⩾ 3. Here, treedepth is a structural parameter measuring the “depth” of a graph,
we will expand on it later on.

▶ Theorem 3. For each integer d ⩾ 1, BinCSP is complete for W[2d+1] when parameterized
by the minimum size of a modulator to a graph of treedepth at most d, and when parameterized
by the minimum size of a modulator to a forest of depth at most d.

Interestingly, each increase of the depth of the trees by one corresponds to an increase in the
W-hierarchy by two levels: this is because one level of depth in the tree or forest corresponds
to a conjunction (looking at all children of a node) with a disjunction (the choice of a value).
Theorem 3 can be seen as an interpolation between Theorems 1 and 2: by allowing the forest
to have larger and larger depth, we obtain harder and harder parameterized problems. This
yields a family of natural complete problems for the odd levels of the W-hierarchy.

Theorem 1 is proved in Section 3, while Theorems 2 and 3 are proved in the full version [12].

Treedepth parameterization: class XSLP. As we argued, the classes XNLP and XALP
can be seen as the “natural home” for BinCSP parameterized by pathwidth and treewidth
respectively, and for many other problems on “path-like” or “tree-like” graphs. We introduce
a new parameterized complexity class XSLP which is the “natural home” for the parameter
treedepth instead, reflecting “shallow” graphs (this is what the letter S stands for).

The treedepth of a graph G is the minimum depth of a rooted forest F on the same
vertex set as G such that every edge of G connects a vertex with its ancestor in F ; thus, it
is a measure of shallowness of a graph. While treedepth is never smaller than pathwidth,
it can be arbitrarily large even on graphs of bounded pathwidth: a path on n vertices
has pathwidth 1 and treedepth ⌈log2(n + 1)⌉. Despite being relatively lesser known than
treewidth or pathwidth, treedepth appears naturally in many seemingly disconnected areas.
For instance, it features a prominent role in the theory of Sparsity (see [43, Chapters 6
and 7] for an overview), has interesting combinatorics of its own (see e.g. [16, 19, 22, 39]),
corresponds to important dividing lines in finite model theory (see e.g. [25, 40]), and governs
the parameterized complexity of block-structured integer programming (see [24] for an
overview). More importantly for us, a line of work [33, 37, 41, 42, 45, 46] uncovered that for
many classic problems, on graphs of low treedepth one can design fixed-parameter algorithms
that are both time- and space-efficient, which is conjectured not to be possible for the
pathwidth or treewidth parameterizations [46]. This makes treedepth a prime candidate for
a parameter that can be interesting from the point of view of BinCSP.

And so, we define two complexity classes: XSLP consists of all parameterized problems
that can be reduced to BinCSP parameterized by treedepth in parameterized logspace (that
is, in deterministic space f(k) + O(log n) for a computable f), while XSLP+ has the same
definition, except we consider fpt reductions. This distinction is of technical nature: on one

ICALP 2023

27:4 Binary CSP: Vertex Cover, Treedepth, and Related Parameters

hand we use parameterized logspace reductions to match the definitions of XALP and XNLP
and retain the inclusion XSLP ⊆ XNLP ⊆ XALP, and on the other hand we would like to
compare XSLP with the W-hierarchy, which requires closure under fpt reductions. In fact,
XSLP+ ⊇ W[t] for every integer t (this will follows from Proposition 4).

We prove two alternative characterizations of XSLP. The first one is through a machine
model: we prove that XSLP can be equivalently defined as problems that can be solved
by an alternating Turing machine with the following resource bounds: (1) f(k) log n bits
of nondeterminism, (2) f(k) + O(log n) bits of conondeterminism, (3) alternation at most
f(k), and (4) working space f(k) + O(log n) plus a read-once stack of size f(k) log n that
can be only pushed upon and read only at the end of the computation. See Theorem 10
in Section 4.1 for a formal statement. This reflects the characterization of XALP through
alternating Turing machines with different bounds on conondeterminism and the size of a
computation tree, see [10, Theorem 1].

The main step in the proof of our machine characterization of XSLP is a regularization
lemma for the considered machine model, allowing us to assume that the computation tree has
always a very concrete shape. Interestingly, this step crucially uses the existence of fpt-sized
universal trees, a tool fundamentally underlying the recent advances in the complexity of
parity games. While universal trees can be seen only implicitly in the breakthrough work of
Calude et al. [13], their central role in the approach was exposed in subsequent works [18, 38].

The second characterization is through model-checking first-order logic, and is inspired
by the definition of the A-hierarchy; see [30, Chapter 8]. In essence, we provide a complete
problem for XSLP, which amounts to model-checking first-order sentences in which universal
quantification must follow a root-to-leaf path in a rooted forest present in the structure.
Details and formal statements can be found in Section 4.2.

d-fold vertex cover and the S-hierarchy. We “project” the class XSLP closer to lower
levels of the W-hierarchy, thus obtaining a new hierarchy of parameterized classes sandwiched
between the W-hierarchy and the A-hierarchy. For this, we introduce the following parameter.

The 1-fold vertex cover number of a graph G is simply the number of vertices of G.
Inductively, for d ⩾ 2, the d-fold vertex cover number is the smallest integer k with
the following property: there is a subset of vertices U ⊆ V (G) with |U | ⩽ k such that
every connected component of G − U has (d − 1)-fold vertex cover number at most k.
Alternatively, we can also define the parameter using a “fattened” variant of elimination
trees (the decomposition notion underlying treedepth). Namely, G has d-fold vertex cover
number at most k if and only if there is a rooted tree T of depth at most d, and a vertex
partition {Vt : t ∈ V (T)} of V (G) such that |Vt| ⩽ k for all t ∈ V (T), and edges in G between
vertices of Vs and Vt are only allowed when s and t are equal or are in an ancestor-descendant
relationship in T .

We now define the parameterized complexity class1 S[2d−1] as the fpt-closure of BinCSP
parameterized by the d-fold vertex cover number, for all integers d ⩾ 1. The following result
relates the introduced classes to the W-hierarchy, the A-hierarchy, and the class XSLP+.

▶ Proposition 4. For every integer d ⩾ 1, we have W[2d− 1] ⊆ S[2d− 1] ⊆ A[2d− 1] and
S[2d− 1] ⊆ XSLP+.

The proof is straightforward and is given in the full version [12].

1 We remark that there is an already existing concept called the S-hierarchy, related to subexponential
parameterized algorithms; see [30, Definition 16.9]. Since we are not aware of any subsequent work on
the structure of this hierarchy, we took the liberty of using the same naming scheme for our classes.

H. L. Bodlaender, C. Groenland, and M. Pilipczuk 27:5

While the definition of d-fold vertex cover seems not to have been discussed explicitly
in the literature, the idea of alternating deletions of batches of vertices and splitting into
connected components is not entirely new, as similar parameters that interpolate between
vertex cover and treedepth have previously been studied. For example, 2-fold vertex cover is
within a multiplicative factor of two of vertex integrity, a parameter that was introduced
by Barefoot, Entringer and Swart [4] in 1987 (see [2] for a survey). In the context of
block-structure integer programs, the fracture number [23] can be seen as an analogue of
2-fold vertex cover, while the concept of topological height [24] serves a role similar to that
of d in the definition of d-fold vertex cover.

Comparison to List Coloring. The classic List Coloring problem can be interpreted as
the special case of BinCSP where every constraint just stipulates that the values assigned
to adjacent variables are different from each other. Therefore, a hardness result for List
Coloring implies one for BinCSP. Vice versa, we can attempt to turn an instance of
BinCSP on graph G into an instance of List Coloring by adding, for each edge uv in G

and each forbidden pair of values (a, b), a vertex to G adjacent to u and v with color list
{a, b}. This transformation does not significantly affect graph parameters such as treedepth,
treewidth or pathwidth, so hardness and completeness results of BinCSP may also be
inherited to List Coloring. However, the transformation may make dramatic changes to
other parameters such as vertex cover and vertex modulator to a graph of treedepth at most
d, where we can only easily deduce W[2d− 1]-hardness from our W[2d+ 1]-hardness results.
In fact, we separate the two problems with the following result, proved in the full version [12].

▶ Theorem 5. List Coloring is in W[2] when parameterized by the vertex cover number
and in W[2d] when parameterized by the size of a modulator to a treedepth-d graph.

We believe that due to its robustness, BinCSP better suited to measure the complexity of
parameters than List Coloring is. This is also witnessed by the (nearly) tight completeness
results presented in Theorems 1, 2, and 3. Table 1 below presents a comparison of the
parameterized complexity landscapes of BinCSP and of List Coloring under various
structural parameterizations. We discuss this table in the full version [12].

2 Preliminaries

For integers a ⩽ b, we write [a, b] for {a, a+ 1, . . . , b}.

Graphs and their parameters. In this paper, we denote the depth of a rooted tree as the
maximum number of vertices on a path from root to leaf. A rooted forest is a collection of
rooted trees. The depth of a rooted forest is the maximum depth of the trees in the forest.2

We use standard graph notation. An elimination forest of a graph G, is a rooted forest
F with the same vertex set as G, such that for each edge uv of G, u is an ancestor of v or v
is an ancestor of u in F . (Note that the forest can contain edges that are not in G.) The
treedepth of a graph G is the minimum depth of of rooted forest embedding of G.

Let C be a class of graphs. A modulator to C in a graph G is a set of vertices W ⊆ V (G),
such that the graph G−W belongs to C. A vertex cover of a graph G is a set of vertices
W ⊆ V (G), such that every edge of G has at least one endpoint in W . Note that a set of

2 The definitions of depth of a tree used in the literature can differ by one. Here we count the number of
vertices, e.g., a tree consisting of a single vertex has depth 1.

ICALP 2023

27:6 Binary CSP: Vertex Cover, Treedepth, and Related Parameters

Table 1 Complexity of BinCSP and List Coloring. Results marked with ∗ are shown in this
paper. Some results without a reference are easy to obtain.

Parameter Binary CSP List Coloring
number of vertices W[1]-complete [27, 44] poly-kernel

vertex cover W[3]-complete ∗ W[1]-hard [29], in W[2] ∗
feedback vertex set W[SAT]-hard, in W[P] ∗ W[3]-hard, in W[P] ∗

modulator to treedepth-d W[2d + 1]-complete ∗ W[2d − 1]-hard, in W[2d] ∗
modulator to depth d-forest W[2d + 1]-complete ∗ W[2d − 1]-hard, in W[2d] ∗

modulator to clique para-NP-complete FPT, poly-kernel [3, 35]
treedepth XSLP-complete ∗ XSLP-complete ∗

tree partition width XALP-complete [10] W[1]-hard, in XL [8]
tree partition width + degree XALP-complete [10] FPT

pathwidth XNLP-complete [11] XNLP-complete [11]
bandwidth XNLP-complete [11] FPT
treewidth XALP-complete [10] XALP-complete [10]

treewidth + degree XALP-complete [10] FPT

vertices is a vertex cover if and only if it is a modulator to the class of edgeless graphs, or,
equivalently, to the class of graphs with treedepth at most 1. A feedback vertex set in a graph
G is a modulator to a forest, or, equivalently, a set of vertices that intersects each cycle in G.

Constraint satisfaction problems. We consider the BinCSP problem defined as follows.
An instance of BinCSP is a triple

I = (G, {D(u) : u ∈ V (G)}, {C(u, v) : uv ∈ E(G)}),

where
G is an undirected graph, called the Gaifman graph of the instance;
for each u ∈ V (G), D(u) is a finite set called the domain of u; and
for each uv ∈ E(G), C(u, v) ⊆ D(u) × D(v) is a binary relation called the constraint
at uv. Note that C(u, v) is not necessarily symmetric; throughout this paper, we apply
the convention that C(v, u) = {(b, a) | (a, b) ∈ C(u, v)}.

In the context of a BinCSP instance, we may sometimes call vertices variables. A satisfying
assignment for an instance I is a function η that maps every variable u to a value η(u) ∈ D(u)
such that for every edge uv of G, we have (η(u), η(v)) ∈ C(u, v). The BinCSP problem asks,
for a given instance I, whether I is satisfiable, that is, there is a satisfying assignment for I.

The List Coloring problem is a special case of BinCSP defined as follows. An instance
consists of a graph G and, for every vertex u of G, a set (list) of colors L(u). The question
is whether there is a mapping f of vertices to colors such that for every vertex u we have
f(u) ∈ L(u), and for each edge uv of G, we have f(u) ̸= f(v). Note that this is equivalent to
a BinCSP instance where lists L(u) are the domains, and all constraints are non-equalities:
C(u, v) = {(a, b) ∈ L(u) × L(v) | a ̸= b} for every edge uv.

Complexity theory. We assume the reader to be familiar with standard notions of the
parameterized complexity theory, such as the W-hierarchy or parameterized reductions. For
more background, see [17, 20, 21, 30]. Let us recall concepts directly used in this paper.

H. L. Bodlaender, C. Groenland, and M. Pilipczuk 27:7

We say that a parameterized problem Q is in parameterized logspace if Q can be decided
in (deterministic) space f(k) + O(log n), for some computable function f . Note that every
problem in parameterized logspace is fixed-parameter tractable, because a Turing machine
working in space f(k) + O(log n) has 2O(f(k)) ·nO(1) configurations, and hence its acceptance
can be decided in fixed-parameter time.

An fpt-reduction is a parameterized reduction that works in fixed-parameter time. A
pl-reduction is a parameterized reduction that works in parameterized logspace, that is, can
be computed in (deterministic) space f(k) + O(log n), for some computable function f .

A Boolean formula is said to be t-normalized when it is the conjunction of disjunctions of
conjunctions of . . . of literals, with t levels of conjunctions or disjunctions. We only consider
the case where t ⩾ 2, and assume that we start by conjunctions. Note that 2-normalized
Boolean formulas are in Conjunctive Normal Form.

In the Weighted t-Normalized Satisfiability problem, we are given a t-normalized
Boolean formula F on n variables, and an integer k, and ask if we can satisfy F by setting
exactly k of the variables to true, and all other variables to false. This problem is complete
for W[t], see e.g. [20, 21]. A t-normalized expression is said to be anti-monotone if each
literal is the negation of a variable. We use the following result to simplify our proofs.

▶ Theorem 6 (Downey and Fellows, see [20, 21]). For every odd t ⩾ 3, Weighted Anti-
Monotone t-Normalized Satisfiability is complete for W [t].

We use the following result as starting point for membership proofs.

▶ Theorem 7 (Downey and Fellows, see [20, 21]). For every t ⩾ 2, Weighted t-Normalized
Satisfiability is complete for W[t].

3 W[3]-completeness for BinCSP parameterized by vertex cover

In this section, we prove Theorem 1. We prove the hardness below and refer to the full
version [12] for the proof of membership.

▶ Lemma 8. BinCSP with vertex cover as parameter is W[3]-hard.

Proof. Take an instance of Weighted 3-Normalized Anti-Monotone Satisfiability,
i.e., we have a Boolean formula F that is a conjunction of disjunctions of conjunctions of
negative literals, and ask if we can satisfy it by setting exactly k variables to true. Suppose
x1, . . . , xn are the variables used by F . Suppose F is the conjunction of r disjunctions of
conjunctions of negative literals.

We build a graph G as follows. The vertex set V (G) consists of a set W = {w1, . . . , wk}
of size k, and a set S = {v1, v2, . . . , vr} of size r. The set W will be the vertex cover of G,
and S will form an independent set. We add edges from each vertex in W to each other
vertex in the graph.

The domain of a vertex w ∈ W is D(w) = {x1, . . . , xn}. For distinct w,w′ ∈ W , w′ ≠ w′,
we set C(w,w′) = {(xi, xj) | i ≠ j}. This enforces that all vertices in W are assigned a
different value – this corresponds to setting exactly k variables to true.

Now consider a vertex vi ∈ S for i ∈ [1, r]. We say that vi represents the ith disjunction
of conjunctions of literals in F , i.e., each of the disjunctions in the formula is represented by
one vertex in the independent set. Suppose that this disjunction has ti terms (each term
is a conjunction of negative literals). We set D(vi) = [1, ti], that is, each value for vi is an
integer in [1, ti].

ICALP 2023

27:8 Binary CSP: Vertex Cover, Treedepth, and Related Parameters

The intuition is as follows. We set a variable xi to true, if and only if exactly one vertex
in W is assigned xi. As all vertices in W will get a different value, we set in this way
exactly k variables to true. The formula F is the conjunction of r disjunctions; each of
these disjunctions is represented by one of the vertices vi ∈ S. For each vi, the disjunction
represented by vi must be satisfied, so one of its terms must be satisfied. The value of vi

tells a satisfied term, i.e., if the value of vi is j ∈ [1, ti], then the jth term is satisfied. This is
checked by looking at the edges from vi to the vertices in W .

We now give the constraints that ensure the term is satisfied. Consider a vertex vi ∈ S

and w ∈ W . Recall that the value of vi is an integer in [1, ti] which represents one term in
the ith disjunction of F , and that term is a conjunction of a number of negative literals. For
j ∈ [1, ti] and j′ ∈ [1, n], we have (j, xj′) ∈ C(vi, w) if and only if for each literal ¬xj′′ that
appears in the jth term of the ith disjunction of F , j′′ ̸= j′.

We call the constructed graph G and write I for the corresponding instance of BinCSP.

▷ Claim 9. F can be satisfied by setting exactly k variables to true, if and only if I has a
satisfying assignment.

Proof of Claim 9. Suppose F can be satisfied by making xi1 , . . . , xik
true, and all other literals

false. Then assign the vertices in W the values xi1 , . . . , xik
successively. The constraints

between vertices in W are thus satisfied.
Now consider a vertex vi ∈ S. Consider the ith term Fi of the (upper level) conjunction

of F . This term must be satisfied by the truth assignment. Suppose the term is Fi =
Fi,1 ∨ · · · ∨Fi,ti . At least one of the Fij ’s must be satisfied by the truth assignment, say Fi,j′ .
Then assign vi the value j′.

We can verify that the constraints for edges between vi and each wj are fulfilled. By
assumption, Fi,j′ holds. It thus cannot contain a negative literal ¬xα, where xα is set to
true. So wj cannot be assigned xα when ¬xα is a literal in Fi,j′ . Thus we found a satisfying
assignment for I.

Now, suppose that I has a satisfying assignment. From the constraints between vertices
in W , we see that all vertices in W have a different value. Set a variable xi to true, if and
only if a vertex in W has value xi, and otherwise, set it to false. We have thus set exactly k
variables to true.

Consider the ith term of the upper level conjunction of F . Suppose this term is Fi,1 ∨ . . .∨
Fi,ti . Suppose vi is assigned value j. For each negative literal ¬xα in the conjunction Fi,j ,
by the constraints, we cannot have a vertex in W that is assigned xα, and thus xα is set to
false. Thus, the term Fi,j is satisfied by the truth assignment, and thus Fi is satisfied. As
this holds for all conjuncts of F , F is satisfied by the specified assignment. ◁

From Claim 9, we see that we have a parameterized reduction from Weighted Anti-
Monotone 3-Normalized Satisfiability to BinCSP with vertex cover as parameter. The
result now follows from the W[3]-hardness of Weighted Anti-Monotone 3-Normalized
Satisfiability (Theorem 6). ◀

4 XSLP and treedepth

In this section we discuss the class XSLP and its various characterizations. As discussed in
Section 1, we actually define two variants of this class, depending on the kind of reductions
that we would like to speak about. Let BinCSP/td denote the following parameterized problem.
We are given a BinCSP instance I and an elimination forest of the Gaifman graph of I

H. L. Bodlaender, C. Groenland, and M. Pilipczuk 27:9

of depth at most k, which is the parameter. The task is to decide whether I is satisfiable.
Then the two variants of XSLP are defined as the closures of this problem under pl- and
fpt-reductions, respectively:

XSLP = [BinCSP/td]pl and XSLP+ = [BinCSP/td]fpt
.

That is, XSLP consists of all parameterized problems that are pl-reducible to BinCSP/td, and
XSLP+ is defined similarly, but with fpt-reductions in mind.

Note that in the BinCSP/td problem we assume that a suitable elimination forest is provided
on input. This is to abstract away the need of computing such an elimination forest; the
complexity of this task is also an interesting question, but lies beyond the scope of this work.

4.1 A machine characterization
We first give a machine characterization of XSLP. We will use a model of an alternating
read-once stack machine, or AROSM for brevity, which we now define. We assume familiarity
with standard Turing machines, on which we build our model.

An alternating read-once stack machine M is a Turing machine that has access to three
types of memory, each using {0, 1} as the alphabet:

a read-only input tape;
a working tape; and
a read-once stack.

The input tape and the working tape are accessed and manipulated as usual, by a head
that may move, read, and (in the case of the working tape) write on the tape. The input
to the machine is provided on the input tape. On the other hand, the stack is initially
empty and the machine may, upon any transition, push a single symbol onto the stack. It
cannot, however, read the stack until the final step of the computation. More precisely,
the acceptance condition is as follows: The machine has a specified final state. Once it is
reached, the computation finishes and the machine reads the ith bit of the stack, where i is
the number whose binary encoding is the current content of the working tape. If this bit is 1,
then M accepts, and otherwise it rejects.

A configuration of M is a 5-tuple consisting of the state, the content of the working tape,
the content of the stack, and the positions of the heads on the input and the working tape.

Further, M is an alternating machine, which means that its states are partitioned into
three types: existential states, universal states, and deterministic states. A configuration
of a machine is existential/universal/deterministic if its state is so. When the state of the
machine is deterministic, there is exactly one transition allowed. At existential and universal
states, there are always two transitions allowed; these will be named the 0-transition and
the 1-transition. The acceptance is defined as usual in alternating machines: when in an
existential state, M may accept if at least one allowed transition leads to a configuration
from which it may accept, and in a universal state we require that both transitions lead to
configurations from which M may accept. The notion of a machine deciding a (parameterized)
problem is as usual.

The ∀ computation tree of M for input x is defined as a tree of configurations with the
following properties:

the root is the initial configuration with input x;
the leaves are configurations with the final state;
every deterministic and every existential configuration has exactly one child, which is the
unique, respectively any of the two configurations to which the machine may transit;

ICALP 2023

27:10 Binary CSP: Vertex Cover, Treedepth, and Related Parameters

every universal configuration has exactly two children, corresponding to the two
configurations to which the machine may transit.

It follows that M accepts input x if there is a ∀ computation tree for input x where every
leaf is a configuration in which M accepts. We call such ∀ computation trees accepting.

A branch of a (rooted) tree is a root-to-leaf path. For a ∀ computation tree T of
machine M , we define the following quantities:

The working space of T is the minimum number i such among configurations present
in T , the head on the working tape is never beyond the ith cell.
The stack size of T is the maximum size of the stack among all configurations in T .
The nondeterminism of T is the maximum number of existential configurations on any
branch of T .
The conondeterminism of T is the maximum number of universal configurations on any
branch of T .
The alternation of a branch of T is the minimum number of blocks into which the branch
can be partitioned so that each of the blocks does not simultaneously contain an existential
and a universal configuration. The alternation of T is the maximum alternation on any
branch of T .

We say that a machine M decides a parameterized problem Q using certain resources among
those described above, if for any input (x, k), we have (x, k) ∈ Q if and only if there is an
accepting ∀ computation tree for (x, k) that has the resources bounded as prescribed.

Having all the necessary definitions in place, we can state the main result of this section.

▶ Theorem 10. The following conditions are equivalent for a parameterized problem Q.
(1) Q ∈ XSLP;
(2) Q can be decided by an alternating read-once stack machine that for input (x, k) with

|x| = n, uses working space at most f(k)+O(log n), stack size f(k) log n, nondeterminism
f(k) log n, co-nondeterminism f(k)+O(log n), and alternation f(k), for some computable
function f .

Before we proceed to the proof of Theorem 10, let us discuss the necessity of different
resource restrictions described in (2):

Increasing the working space to f(k) log n (and thus rendering the stack, the non-
determinism and the co-nondeterminism unnecessary) would make the machine model at
least as powerful (and in fact, equivalently powerful) as deterministic Turing machines with
f(k) log n space; this corresponds to a class called XL. As XL+ (the closure of XL under
fpt reductions) contains AW[SAT] [30, Exercise 8.39], the supposition that the amended
model is still equivalent to XSLP would imply the inclusion AW[⋆] ⊆ AW[SAT] ⊆ XSLP+.
From the logic characterization that will be provided in Section 4.2 it follows that
AW[⋆] ⊇ XSLP+, so in fact we would obtain a collapse AW[⋆] = AW[SAT] = XSLP+.
If we increase the bound on allowed co-nondeterminism to f(k) log n, thus matching the
bound on the allowed nondeterminism, then it is not hard to see that the obtained machine
model would be able to solve the model-checking problem for first-order logic on general
relational structures, which is AW[⋆]-complete. Consequently, if the amended machine
model was still equivalent to XSLP, we would again obtain equality AW[⋆] = XSLP+,
which we consider unlikely.
If we let the machine use unbounded nondeterminism, then already for k constant
and assuming no use of co-nondeterminism, our machines would be able to solve every
problem in NL, including Directed Reachability. If the obtained machine model was
still equivalent to XSLP, then Directed Reachability would be reducible (in L) to
BinCSP on graphs of constant treedepth. But the latter problem is actually in L, so we
would obtain L = NL.

H. L. Bodlaender, C. Groenland, and M. Pilipczuk 27:11

We believe that increasing the alternation from f(k) to f(k) + O(log n) yields a strictly
more powerful machine model, though at this point we cannot pinpoint any concrete
collapse that would be implied by the converse. However, it is not hard to check that an
AROSM with resource bounds as in Theorem 10, but alternation f(k) + O(log n), is able
to solve BinCSP instances with Gaifman graphs of treedepth as large as log n, but with
all domains of size at most k. We do not see how to reduce this problem to BinCSP
with domains of unbounded size, but treedepth bounded by f(k).
It is an interesting question whether the f(k) log n bound on the stack size can be
lifted; that is, whether allowing unbounded stack size strictly increases the power of the
considered machine model. On one hand, in all our proofs, the stack is essentially only
used to store nondeterministic bits, and in any run there are at most f(k) log n of them
anyway. So if the stack is used only for this purpose, then it is immaterial whether its size
is bounded by f(k) log n or unbounded. On the other hand, the restriction on the stack
size plays an important role in the proof of the implication (2) ⇒ (1) of Theorem 10. We
leave resolving this question open.

The remainder of this section is devoted to the proof of Theorem 10. Naturally, the
argument is split into the forward and the backward implication.

We refer to the full version [12] for the proof of the simpler implication (1) ⇒ (2), but
briefly sketch it here. We use an AROSM to guess a satisfying assignment to the given
BinCSP/td instance, by going top-down through the associated forest. We use nondeterminism
to guess the assignment for the next vertex u, and conondeterminism to verify whether
the currently guessed partial assignment can be extended to all the subtrees rooted at the
children of u.

We now proceed to the more difficult implication (2) ⇒ (1) of Theorem 10. The main
idea is that we introduce a restricted variant of a regular AROSM, which is an AROSM
whose ∀ computation tree has a very specific shape, computable from k and the length of the
input. We will then show two lemmas: (i) for every AROSM there is an equivalent regular
one, and (ii) acceptance of a regular AROSM can be reduced to BinCSP/td. The main point
in this strategy is that the assumption that the computation tree is fixed allows us to fix it
as the elimination tree of the Gaifman graph of the constructed BinCSP instance.

More precisely, we will be working with the contracted ∀ computation trees defined as
follows. Let T be a ∀ computation tree of an AROSM M , where without loss of generality we
assume that the starting state of M is universal. A universal block of T is an inclusion-wise
maximal subtree A of T such that the root of A is a universal configuration and A does
not contain existential configurations. Note that removing all universal blocks from T

breaks T into a collection of disjoint paths consisting only of deterministic and existential
configurations; these will be called existential blocks. The contraction of T is the tree T ′

whose nodes are universal blocks of T , where the ancestor order is naturally inherited from T :
one block is an ancestor of the other in T ′ if this holds for their roots in T . Note that a
universal block B is a child of a universal block A in T ′ if and only if there is an existential
block C that connects the root of B with a leaf of A. Thus, the edges of T ′ are in one-to-one
correspondence with the existential blocks of T .

▶ Definition 11. An AROSM M is regular if given (1n, k) one can in parameterized logspace
compute a rooted tree Tn,k with the following properties:

Tn,k has depth at most f(k), for some computable function f ; and
for any input (x, k) with |x| = n, if M accepts (x, k), then M has a ∀ computation tree
accepting (x, k) whose contraction is Tn,k.

ICALP 2023

27:12 Binary CSP: Vertex Cover, Treedepth, and Related Parameters

With this definition in place, we can state the two lemmas described before.

▶ Lemma 12. If a parameterized problem Q can be decided by an AROSM M using the
resource bounds stated in Theorem 10, then it can also be decided by a regular AROSM M ′

using such resource bounds.

▶ Lemma 13. If Q can be decided by a regular AROSM M using the resource bounds stated
in Theorem 10, then Q ∈ XSLP.

The (2) ⇒ (1) implication of Theorem 10 follows directly by combining the two lemmas
above. The proof of Lemma 13 is a conceptually straightforward, though technically a bit
involved encoding of a ∀ computation tree of the machine through an instance of BinCSP
whose elimination tree is (roughly) Tn,k. We give this proof in the full version [12]. The proof
of Lemma 12 is the interesting part of the argument, as it involves the notion of universal
trees.

Before we proceed, let us state a simple lemma that is used in our proofs several times.
We included a proof in the full version [12] for completeness.

▶ Lemma 14. Suppose T is a rooted tree with N leaves. Then there exists a labelling λ that
maps every edge e of T to a binary string λ(e) ∈ {0, 1}⋆ with the following properties:

For every node u, the labels of edges connecting u with its children are pairwise different.
For every leaf ℓ, the total length of labels on the root-to-ℓ path in T is at most ⌈logN⌉.

Moreover, given T the labelling λ can be computed in deterministic logarithmic space.

4.1.1 Regularization
We now prove Lemma 12. We need the following definitions. An ordered tree is a rooted tree
where for every vertex u there is a linear order ⪯ on the children of u. An embedding of an
ordered tree S into an ordered tree T is an injective mapping ϕ : V (S) → V (T) such that

the root of S is mapped to the root of T , and
for every node u of S, the children of u in S are mapped to distinct children of ϕ(u) in T
in an order-preserving way: if v ≺ v′ are distinct children of u in S, then ϕ(v) ≺ ϕ(v′).

We will use the following result about the existence of universal trees.

▶ Lemma 15 (follows from Jurdziński and Lazić [38], see also Theorem 2.2 of [18]). For every
pair of integers n, k ∈ N there exists an ordered tree Un,k such that

Un,k has depth k;
Un,k has at most 2n ·

(⌈log n⌉+k+1
k

)
leaves; and

for every ordered tree T of depth at most k and with at most n leaves, there is an
embedding of T into Un,k.

Moreover, given (1n, k), the tree Un,k can be computed parameterized logspace.

We remark that the claim about the computability of Un,k in parameterized logspace
is not present in [18, 38], but follows directly from the recursive construction presented
there. In fact, we will also need the following property, which again follows directly from the
construction, and which strengthens the embedding property stated in Lemma 15.

▶ Lemma 16. For every node u of Un,k, the subtree of Un,k rooted at u is isomorphic to
Un′,k′ for some n′ ⩽ n and k′ ⩽ k; the labeling of nodes of Un,k with suitable numbers
n′, k′ can be computed along with Un,k within the algorithm of Lemma 15. Moreover, if
n1, . . . , np are nonnegative integers such that n1 + . . . + np ⩽ n, then there are distinct
children v1 ≺ v2 ≺ . . . ≺ vp of the root of Un,k such that for every i ∈ {1, . . . , p}, the subtree
of Un,k rooted at vi is isomorphic to Un′

i
,k−1 for some n′

i ⩾ ni.

H. L. Bodlaender, C. Groenland, and M. Pilipczuk 27:13

Finally, observe that

2n ·
(

⌈log n⌉ + k + 1
k

)
⩽ 2n · 2⌈log n⌉+k+1 ⩽ O(2k · n2),

hence Un,k has O(2k · n2) leaves.
We proceed to the proof of Lemma 12. Let us fix an AROSM M that on any input

(x, k) with |x| ⩽ n, uses f(k) log n nondeterminism, f(k) + d log n conondeterminism, f(k)
alternation, f(k) + d log n working space, and f(k) log n stack size, where f is a computable
function and d ∈ N is a constant. We may assume w.l.o.g. that the starting state of M is
universal. Denote K = f(k) and N = 2f(k)+⌈d log n⌉ ⩽ 2f(k)+1 ·nd; then K is an upper bound
on the depth and N is an upper bound on the total number of leaves of any ∀ computation
tree accepting (x, k) within the stipulated resources. By Lemma 15, we may compute the
universal tree UN,K in deterministic space h(k) + O(log n) for a computable function h.
Note that UN,K has N ′ = O(2K · N2) ⩽ O(23f(k) · n2d) leaves. The tree UN,K will serve
the role of Tn,k in the proof. Also, we use Lemma 14 to compute a suitable labeling λ of
the edges of UN,K in which the total length of labels on every branch of UN,K is at most
⌈logN ′⌉ ⩽ 3f(k) + 2d log n+ O(1).

We are left with designing an AROSM M ′ that is equivalent to M , in the sense that M ′

accepts input (x, k) if and only if M does, and in such case the contracted ∀ computation
tree of M ′ on (x, k) may be UN,K . The idea is that machine M ′ will simulate M while
inserting some dummy computation to “fill” the contracted ∀ computation tree of M to UN,K .
However, we will need to be very careful about how the conondeterminism of M is simulated.

A stackless configuration is a configuration of M , but without specifying the content
of the stack; that is, it consists of the state of M , the content of the working tape, and
the positions of the heads on the input and the working tapes. For a universal stackless
configuration c of M , we define the universal block rooted at c, denoted U(c), as a rooted
tree of stackless configurations that is obtained just as the ∀ computation tree, except that
M starts at c and we do not continue the simulation once the final state or any existential
configuration is reached. Note here since M cannot read the stack except for the end of
the computation, U(c) is uniquely defined for every stackless configuration c. Thus, the
leaves of U(c) are existential or final (stackless) configurations, and whenever c is present in
a ∀ computation tree T of M , T contains a copy of U(c) rooted at c as a subtree.

The next claim shows that given a stackless configuration c, the universal block U(c) can
be computed within the allowed resources.

▷ Claim 17. Given a stackless configuration c of M , the universal block U(c), together
with a labelling of its edges with transitions taken, can be computed in deterministic space
h(k) + O(log n), for some computable h.

Proof. Let Z = f(k) + ⌊d log n⌋. Observe that for every binary string r ∈ {0, 1}Z , we
can compute the branch of U(c) that takes the consecutive conondeterministic choices as
prescribed by the consecutive bits of r. To do this, just simulate M starting from c and,
whenever a conondeterministic choice needs to be made, use the next bit of r to determine
how it is resolved. (This simulation stops when an existential or a final configuration is
encountered.) Having this subprocedure, the whole U(c) can be easily computed by iterating
through consecutive strings r ∈ {0, 1}Z and outputting the branches of U(c) one after the
other. (Strictly speaking, from every next branch we output only the part after diverging
from the previous branch.) Finally, note that r can be stored within the allowed space. ◁

ICALP 2023

27:14 Binary CSP: Vertex Cover, Treedepth, and Related Parameters

With Claim 17 established, we proceed to the construction of M ′. For the sake of the
proof, suppose M has a ∀ computation tree T that is accepting and uses the allowed resources.
Machine M ′ tries to verifies the existence of such T by traversing the universal tree UN,K

and guessing, along the way, how the contraction T ′ of T embeds into UN,K . By Lemma 15
we know that such an embedding always exists. The traversal of UN,K will be done in such
a way that the contracted ∀ computation tree of M ′ will be always UN,K .

At every point of computation, M ′ stores on its working tape a node u of UN,K and its
contracted ∀ computation tree from this point on should be the subtree of UN,K rooted at u.
Machine M ′ is always either in the real mode or in the dummy mode. In the real mode, M ′

is in the process of guessing a subtree of T . Therefore, then M ′ holds the following data:
On the working tape, M ′ stores a stackless configuration c of M . The reader should think
of c as of the configuration of M at the root of a universal block of T .
On its own stack, M ′ holds the content of the stack of M .
Additionally on the working tape, M ′ stores two integers a and b, denoting the total
number of nondeterministic and conondeterministic bits used by M so far, respectively.
(In other words, a and b are the total number of existential and universal configurations
visited so far on a branch of T .) We maintain the following invariant: the subtree of
UN,K rooted at u is UN ′,K′ for some K ′ ⩽ K and N ′ such that N ′ ⩾ N/2b.

Then the task of M ′ is to verify the existence of a subtree S of a ∀ computation tree of M
such that

S has c supplied with the current content of the stack at its root;
S embeds into the subtree of UN,K rooted at u;
the nondeterminism and the conondeterminism of S together with a and b add to at most
f(k) log n and f(k) + d log n, respectively; and
S is accepting, that is, every leaf of S is an accepting configuration.

In the dummy mode, M ′ is not guessing any part of T , so its task is to perform some
meaningless computation in order to make its contracted ∀ computation tree equal to the
subtree of UN,K rooted at u. So in this mode, M ′ holds on its working tape only the node u.

We now explain steps taken by M ′ in the real mode. Given c, M ′ applies the algorithm
of Claim 17 to compute the universal block U(c). (Formally speaking, U(c) is not computed
explicitly, as it would not fit within the working space, but at any point a bit from the
description of U(c) is needed, we run the algorithm of Claim 17 to compute this bit.) Let
ℓ1, . . . , ℓp be the leaves of U(c), in the order as they appear in the description of U(c).
Informally, we wish to fit in U(c) into the computation tree of M ′ while keeping enough
“space” for the remaining computations M may wish to perform, without knowing how the
computation will continue at the leaves. For every i ∈ {1, . . . , p}, let bi be total number of
universal configurations on the branch of U(c) finishing at ℓi. By assumption, the subtree of
UN,K rooted at u is isomorphic to UN ′,K′ for some N ′ ⩾ N/2b and K ′ ⩽ K. Similarly, we
would like to find children v1 ≺ v2 ≺ . . . ≺ vp of u in UN,K such that the subtree rooted at
each vi is isomorphic to UNi,K′−1 where Ni ⩾ N/2b+bi . This follows from Lemma 16: we
check that

p∑
i=1

N/2b+bi ⩽ N ′
p∑

i=1
2−bi = N ′,

where the last equality follows since U(c) is a binary tree. Note that given b1, . . . , bp, we may
compute the corresponding children v1, . . . , vp with sufficiently large subtrees in logarithmic
space greedily: having found vi, we can set vi+1 to be the ≺-smallest child v of u such that
vi ≺ v and the subtree rooted at v is isomorphic to UN ′′,K′−1 for some N ′′ ⩾ mi. Hence,

H. L. Bodlaender, C. Groenland, and M. Pilipczuk 27:15

from now on we assume that the children v1, . . . , vp are given to us. (Again, formally, when
we need any vi, we run the logarithmic space algorithm computing v1, . . . , vp to retrieve the
sought vi.)

Machine M ′ conondeterministically guesses the label λ(uv) of an edge uv connecting u
with a child v; this can be done using conondeterministic 2|λ(uv)| + 1 bits3. Noting that the
pair (u, λ(uv)) uniquely determines v, we can now compute v. We have two cases:

Suppose v = vi for some i ∈ {1, . . . , p}. Then M ′ simulates all transitions of M on the
path from c to the leaf ℓi in U(c) (this may include some push operations). If ℓi is a final
configuration, M ′ finishes the computation and verifies acceptance in the same way M

would do. Otherwise, if ℓi is an existential configuration, M ′ further nondeterministically
simulates M using its own nondeterminism, until a final or a universal configuration is
encountered, or the bound of f(k) log n on the total number of nondeterministic steps is
exceeded (together with a). In case of a final configuration, we do the same as before:
machine M ′ concludes the computation and verifies whether M accepts. In case of a
universal configuration, say c′, M ′ moves the currently considered node of UN,K from
u to v, and proceeds with working with c′ at v. The counters a and b are updated by
the total number of nondeterministic and conondeterminisitc bits used between ℓ and
c′ and between c and ℓ, respectively. Note here that the content of the stack has been
appropriately updated while simulating the transitions of M from c to c′.
Suppose v /∈ {v1, . . . , vp}. Then M ′ moves the currently considered node of UN,K from u

to v, but enters v in the dummy mode.
This concludes the description of the behavior of M ′ in the real mode.

Finally, when in the dummy mode, machine M ′ does as follows:
If u is a leaf, M ′ just accepts.
If u is not a leaf, M ′ conondeterministically chooses a label λ(uv) of an edge uv connecting
u with a child v, using 2|λ(u, v)|+1 conondeterminstic bits. Then M ′ computes v, performs
a trivial nondeterministic transition, and enters v, again in the dummy mode.

This completes the construction of M ′.
From the construction it follows that the contracted ∀ computation tree of M ′ on

(x, k) is always UN,K , hence M ′ is regular. Moreover, on every branch M ′ uses as much
nondeterminism as M , that is, at most f(k) log n, while the conondeterminism of M ′ is
bounded by 2⌈logN ′⌉ + k ⩽ 6f(k) + 4d log n+ k + O(1), by the assumed properties of the
labeling λ. The maximum stack length of M ′ is the same as that of M , while on its working
tape, M ′ holds always at most one configuration of M plus h(k) + O(log n) additional bits,
for some computable function h. Finally, since every contracted ∀ computation tree of M
accepting (x, k) within prescribed resources embeds into UN,K , it is straightforward to see
from the construction that M ′ accepts (x, k) within the prescribed resources if and only if M
does. This concludes the proof of Lemma 12, so the proof of Theorem 10 is also complete.

4.2 A logic characterization

We now provide another characterization of XSLP, by providing a complete problem related
to model-checking first-order logic. This reflects the definitions of classes AW[⋆] and of the
A-hierarchy, see [30, Chapter 8].

3 For instance, the machine can guess consecutive bits of λ(uv) interleaved with symbols 0 and 1, where 0
denotes “continue guessing” and 1 denotes “end of λ(uv)”.

ICALP 2023

27:16 Binary CSP: Vertex Cover, Treedepth, and Related Parameters

We use the standard terminology for relational structures. A (relational) signature is a
set Σ consisting of relation symbols, where each relation symbol R has a prescribed arity
ar(R) ∈ N. A Σ-structure A consists of a universe U and, for every relation symbol R ∈ Σ,
its interpretation RA ⊆ Uar(R) in A. In this paper we only consider binary signatures, that
is, signatures where every relation has arity at most 2.

For a signature Σ, we may consider standard first-order logic over Σ-structures. In
this logic there are variables for the elements of the universe. Atomic formulas are of the
form x = y and R(x1, . . . , xk) for some R ∈ Σ with k = ar(R), with the obvious semantics.
These can be used to form larger formulas by using Boolean connectives, negation, and
quantification (both existential and universal).

A Σ-structure A is called forest-shaped if Σ contains a binary relation parent such that
parentA is the parent relation on a rooted forest with the vertex set being the universe of A,
and a unary relation root such that rootA is the set of roots of this forest. We say that a
first-order sentence φ over Σ is ∀-guided if it is of the form:

φ = ∀x1 ∃y1 . . . ∀xk ∃yk (root(x1) ∧ parent(x1, x2) ∧ . . . ∧ parent(xk−1, xk)) ⇒
ψ(x1, y1, . . . , xk, yk)

where ψ is quantifier-free. In other words, φ is in a prenex form starting with a universal
quantifier, and moreover we require that the first universally quantified variable is a root
and every next universally quantified variable is a child of the previous one. Note that there
are no restrictions on existential quantification.

For a binary signature Σ, we consider the problem of model-checking ∀-guided formulas
on forest-shaped Σ-structures. In this problem we are given a forest-shaped Σ-structure A
and a ∀-guided sentence φ, and the question is whether φ holds in A. We consider this as a
parameterized problem where ∥φ∥ – the total length of an encoding of the sentence φ – is
the parameter.

The following statement provides a characterization of XSLP in terms of the model-
checking problem described above.

▶ Theorem 18. There exists a binary signature Σ such that the following conditions are
equivalent for a parameterized problem Q.
(1) Q ∈ XSLP;
(2) Q can be pl-reduced to the problem of model-checking ∀-guided sentences on forest-shaped

Σ-structures.
The proof of Theorem 18 can be found in the full version [12], but we sketch it here.
For the (1) ⇒ (2) implication, it suffices to pl-reduce BinCSP/td to the model-checking

problem for ∀-guided sentences on forest-shaped structures. This is a fairly straightforward
construction. Given an instance I of BinCSP/td, we build a relational structure A consisting
of the (given) elimination forest F of the Gaifman graph of I and the disjoint union of
domains D(u) of variables u of I. These domains are bound to respective variables using
a binary predicate, and there is another binary predicate encoding the constraints. Then
it is straightforward to write a ∀-guided sentence φ that checks the satisfiability of I in a
top-down manner on F : existential variables are used to guess the evaluation of variables
of I, while universal variables are used to verify the possibility of extending the current
partial evaluation further down.

For the (2) ⇒ (1) implication, by Theorem 10 it suffices to design an AROSM M that
solves the model-checking problem for ∀-guided sentences on forest-shaped Σ-structures
within the bounds stipulated in Theorem 10. Machine M uses its conondeterminism and
nondeterminism to universally and existentially guess the evaluations of consecutive variables

H. L. Bodlaender, C. Groenland, and M. Pilipczuk 27:17

x1, y1, . . . , xk, yk, within 2k rounds of alternation. Here, the assumption that the input
sentence is ∀-guided and the input structure is forest-shaped can be used in conjunction with
Lemma 14 to bound the total conondeterminism used by O(k + log n). Once all variables
are evaluated, satisfaction of ψ can be checked within 4 additional rounds of alternation by
assuming without loss of generality that ψ is in DNF.

5 Conclusion

In this paper we explored the parameterized complexity of BinCSP for a variety of relatively
strong structural parameters, including the vertex cover number, treedepth, and several
modulator-based parameters. We believe that together with the previous works on XALP and
XNLP [7, 9, 10, 11, 26], our work uncovers a rich complexity structure within the class XP,
which is worth further exploration. We selected concrete open questions below.

In [10, 11], several problems such as Independent Set or Dominating Set, which are
fixed-parameter tractable when parameterized by treewidth, were shown to be XALP-
and XNLP-complete when parameterized by the logarithmic treewidth and pathwidth,
which is at most k when the corresponding width measure is at most k log n. Can one
prove similar results for the class XSLP and parameterization by logarithmic treedepth?
Theorem 3 provides natural complete problems only for the odd levels of the W-hierarchy.
Similarly, we defined the S-hierarchy only for odd levels. It would be interesting to have
a natural description of the situation also for the even levels.
The characterizations of XSLP given by Theorems 10 and 18 can be “projected” to a
rough characterizations of classes S[d] for odd d by stipulating that the alternation is
at most d. Unfortunately, this projection turns out not to be completely faithful: the
obtained problems do not precisely characterize the class S[d], but lie somewhere between
S[d− O(1)] and S[d+ O(1)]. Can we provide a compelling description of the levels of the
S-hierarchy in terms of machine problems or in terms of model-checking first-order logic?
What is the complexity of List Coloring parameterized by the vertex cover number?
Currently, we know it is W[1]-hard and in W[2]. Similarly, what is the complexity of
List Coloring and Precoloring Extension with the minimum size of a modulator
to a treedepth-d graph as the parameter?
Can one obtain a better understanding of the complexity of BinCSP and List Coloring
parameterized by the feedback vertex number?

References
1 Faisal N. Abu-Khzam, Henning Fernau, Benjamin Gras, Mathieu Liedloff, and Kevin Mann.

Enumerating minimal connected dominating sets. In 30th Annual European Symposium
on Algorithms, ESA 2022, volume 244 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 1:1–1:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:
10.4230/LIPIcs.ESA.2022.1.

2 Kunwarjit S. Bagga, Lowell W. Beineke, Wayne D. Goddard, Marc J. Lipman, and Raymond E.
Pippert. A survey of integrity. Discrete Applied Mathematics, 37:13–28, 1992. doi:10.1016/
0166-218X(92)90122-Q.

3 Aritra Banik, Ashwin Jacob, Vijay Kumar Paliwal, and Venkatesh Raman. Fixed-parameter
tractability of (n − k) list coloring. Theory of Computing Systems, 64(7):1307–1316, 2020.
doi:10.1007/s00224-020-10014-9.

4 Curtis A. Barefoot, Roger Entringer, and Henda Swart. Vulnerability in graphs—a comparative
survey. Journal of Combinatorial Mathematics and Combinatorial Computing, 1(38):13–22,
1987.

ICALP 2023

https://doi.org/10.4230/LIPIcs.ESA.2022.1
https://doi.org/10.4230/LIPIcs.ESA.2022.1
https://doi.org/10.1016/0166-218X(92)90122-Q
https://doi.org/10.1016/0166-218X(92)90122-Q
https://doi.org/10.1007/s00224-020-10014-9

27:18 Binary CSP: Vertex Cover, Treedepth, and Related Parameters

5 Thomas Bläsius, Tobias Friedrich, Julius Lischeid, Kitty Meeks, and Martin Schirneck.
Efficiently enumerating hitting sets of hypergraphs arising in data profiling. Journal of
Computer and System Sciences, 124:192–213, 2022. doi:10.1016/j.jcss.2021.10.002.

6 Thomas Bläsius, Tobias Friedrich, and Martin Schirneck. The complexity of dependency
detection and discovery in relational databases. Theoretical Computer Science, 900:79–96,
2022. doi:10.1016/j.tcs.2021.11.020.

7 Hans L. Bodlaender, Gunther Cornelissen, and Marieke van der Wegen. Problems hard for
treewidth but easy for stable gonality. In 48th International Workshop on Graph-Theoretic
Concepts in Computer Science, WG 2022, volume 13453 of Lecture Notes in Computer Science,
pages 84–97. Springer, 2022. doi:10.1007/978-3-031-15914-5_7.

8 Hans L. Bodlaender, Carla Groenland, and Hugo Jacob. List Colouring Trees in Logarithmic
Space. In Proceedings 30th Annual European Symposium on Algorithms, ESA 2022, volume
244 of Leibniz International Proceedings in Informatics (LIPIcs), pages 24:1–24:15. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ESA.2022.24.

9 Hans L. Bodlaender, Carla Groenland, Hugo Jacob, Lars Jaffke, and Paloma T. Lima. XNLP-
completeness for parameterized problems on graphs with a linear structure. In Proceedings
17th International Symposium on Parameterized and Exact Computation, IPEC 2022, volume
249 of LIPIcs, pages 8:1–8:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPIcs.IPEC.2022.8.

10 Hans L. Bodlaender, Carla Groenland, Hugo Jacob, Marcin Pilipczuk, and Michał Pilipczuk.
On the complexity of problems on tree-structured graphs. In 17th International Symposium
on Parameterized and Exact Computation, IPEC 2022, volume 249 of LIPIcs, pages 6:1–6:17.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.IPEC.2022.6.

11 Hans L. Bodlaender, Carla Groenland, Jesper Nederlof, and Céline M. F. Swennenhuis.
Parameterized problems complete for nondeterministic FPT time and logarithmic space. In
62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, pages
193–204. IEEE, 2021. doi:10.1109/FOCS52979.2021.00027.

12 Hans L. Bodlaender, Carla Groenland, and Michał Pilipczuk. Parameterized complexity of
binary csp: Vertex cover, treedepth, and related parameters. CoRR, abs/2208.12543, 2022.
arXiv:2208.12543.

13 Cristian S. Calude, Sanjay Jain, Bakhadyr Khoussainov, Wei Li, and Frank Stephan. Deciding
parity games in quasi-polynomial time. SIAM J. Comput., 51(2):17–152, 2022. doi:10.1137/
17m1145288.

14 Katrin Casel, Henning Fernau, Mehdi Khosravian Ghadikolaei, Jérôme Monnot, and Florian
Sikora. On the complexity of solution extension of optimization problems. Theoretical Computer
Science, 904:48–65, 2022. doi:10.1016/j.tcs.2021.10.017.

15 Jianer Chen and Fenghui Zhang. On product covering in 3-tier supply chain models: Natural
complete problems for W [3] and W [4]. Theoretical Computer Science, 363(3):278–288, 2006.
doi:10.1016/j.tcs.2006.07.016.

16 Jiehua Chen, Wojciech Czerwiński, Yann Disser, Andreas Emil Feldmann, Danny Hermelin,
Wojciech Nadara, Marcin Pilipczuk, Michał Pilipczuk, Manuel Sorge, Bartlomiej Wróblewski,
and Anna Zych-Pawlewicz. Efficient fully dynamic elimination forests with applications to
detecting long paths and cycles. In 2021 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2021, pages 796–809. SIAM, 2021. doi:10.1137/1.9781611976465.50.

17 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

18 Wojciech Czerwiński, Laure Daviaud, Nathanaël Fijalkow, Marcin Jurdziński, Ranko Lazić,
and Pawel Parys. Universal trees grow inside separating automata: Quasi-polynomial lower
bounds for parity games. In Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2019, pages 2333–2349. SIAM, 2019. doi:10.1137/1.9781611975482.142.

https://doi.org/10.1016/j.jcss.2021.10.002
https://doi.org/10.1016/j.tcs.2021.11.020
https://doi.org/10.1007/978-3-031-15914-5_7
https://doi.org/10.4230/LIPIcs.ESA.2022.24
https://doi.org/10.4230/LIPIcs.IPEC.2022.8
https://doi.org/10.4230/LIPIcs.IPEC.2022.6
https://doi.org/10.1109/FOCS52979.2021.00027
https://arxiv.org/abs/2208.12543
https://doi.org/10.1137/17m1145288
https://doi.org/10.1137/17m1145288
https://doi.org/10.1016/j.tcs.2021.10.017
https://doi.org/10.1016/j.tcs.2006.07.016
https://doi.org/10.1137/1.9781611976465.50
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1137/1.9781611975482.142

H. L. Bodlaender, C. Groenland, and M. Pilipczuk 27:19

19 Wojciech Czerwiński, Wojciech Nadara, and Marcin Pilipczuk. Improved bounds for the
excluded-minor approximation of treedepth. SIAM J. Discret. Math., 35(2):934–947, 2021.
doi:10.1137/19M128819X.

20 Rodney G. Downey and Michael R. Fellows. Parameterized Complexity. Springer, 1999.
doi:10.1007/978-1-4612-0515-9.

21 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

22 Zdenek Dvořák, Archontia C. Giannopoulou, and Dimitrios M. Thilikos. Forbidden graphs for
tree-depth. Eur. J. Comb., 33(5):969–979, 2012. doi:10.1016/j.ejc.2011.09.014.

23 Pavel Dvořák, Eduard Eiben, Robert Ganian, Dušan Knop, and Sebastian Ordyniak. The
complexity landscape of decompositional parameters for ILP: Programs with few global
variables and constraints. Artificial Intelligence, 300:103561, 2021. doi:10.1016/j.artint.
2021.103561.

24 Friedrich Eisenbrand, Christoph Hunkenschröder, Kim-Manuel Klein, Martin Koutecký, Asaf
Levin, and Shmuel Onn. An algorithmic theory of integer programming. CoRR, abs/1904.01361,
2019. arXiv:1904.01361.

25 Michael Elberfeld, Martin Grohe, and Till Tantau. Where first-order and monadic second-order
logic coincide. ACM Trans. Comput. Log., 17(4):25, 2016. doi:10.1145/2946799.

26 Michael Elberfeld, Christoph Stockhusen, and Till Tantau. On the space and circuit complexity
of parameterized problems: Classes and completeness. Algorithmica, 71(3):661–701, 2015.
doi:10.1007/s00453-014-9944-y.

27 Michael R. Fellows, Danny Hermelin, Frances A. Rosamond, and Stéphane Vialette. On the
parameterized complexity of multiple-interval graph problems. Theoretical Computer Science,
410(1):53–61, 2009. doi:10.1016/j.tcs.2008.09.065.

28 Michael R. Fellows, Daniel Lokshtanov, Neeldhara Misra, Frances A. Rosamond, and Saket
Saurabh. Graph layout problems parameterized by vertex cover. In 19th International
Symposium on Algorithms and Computation, ISAAC 2008, volume 5369 of Lecture Notes in
Computer Science, pages 294–305. Springer, 2008. doi:10.1007/978-3-540-92182-0_28.

29 Jirí Fiala, Petr A. Golovach, and Jan Kratochvíl. Parameterized complexity of coloring
problems: Treewidth versus vertex cover. Theoretical Computer Science, 412(23):2513–2523,
2011. doi:10.1016/j.tcs.2010.10.043.

30 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006. doi:10.1007/3-540-29953-X.

31 Fedor V. Fomin, Bart M. P. Jansen, and Michał Pilipczuk. Preprocessing subgraph and minor
problems: When does a small vertex cover help? Journal of Computer and System Sciences,
80(2):468–495, 2014. doi:10.1016/j.jcss.2013.09.004.

32 Eugene C. Freuder. Complexity of K-tree structured Constraint Satisfaction Problems. In 8th
National Conference on Artificial Intelligence, AAAI-90, pages 4–9. AAAI Press / The MIT
Press, 1990. URL: http://www.aaai.org/Library/AAAI/1990/aaai90-001.php.

33 Martin Fürer and Huiwen Yu. Space saving by dynamic algebraization. In 9th International
Computer Science Symposium in Russia, CSR 2014, volume 8476 of Lecture Notes in Computer
Science, pages 375–388. Springer, 2014. doi:10.1007/978-3-319-06686-8_29.

34 Robert Ganian. Improving vertex cover as a graph parameter. Discrete Mathematics and
Theoretical Computer Science, 17(2):77–100, 2015. doi:10.46298/dmtcs.2136.

35 Gregory Z. Gutin, Diptapriyo Majumdar, Sebastian Ordyniak, and Magnus Wahlström.
Parameterized pre-coloring extension and list coloring problems. SIAM Journal on Discrete
Mathematics, 35(1):575–596, 2021. doi:10.1137/20M1323369.

36 Miika Hannula, Bor-Kuan Song, and Sebastian Link. An algorithm for the discovery of
independence from data. arXiv, abs/2101.02502, 2021. arXiv:2101.02502.

37 Falko Hegerfeld and Stefan Kratsch. Solving connectivity problems parameterized by treedepth
in single-exponential time and polynomial space. In 37th International Symposium on
Theoretical Aspects of Computer Science, STACS 2020, volume 154 of LIPIcs, pages 29:1–29:16.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.STACS.2020.
29.

ICALP 2023

https://doi.org/10.1137/19M128819X
https://doi.org/10.1007/978-1-4612-0515-9
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1016/j.ejc.2011.09.014
https://doi.org/10.1016/j.artint.2021.103561
https://doi.org/10.1016/j.artint.2021.103561
https://arxiv.org/abs/1904.01361
https://doi.org/10.1145/2946799
https://doi.org/10.1007/s00453-014-9944-y
https://doi.org/10.1016/j.tcs.2008.09.065
https://doi.org/10.1007/978-3-540-92182-0_28
https://doi.org/10.1016/j.tcs.2010.10.043
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1016/j.jcss.2013.09.004
http://www.aaai.org/Library/AAAI/1990/aaai90-001.php
https://doi.org/10.1007/978-3-319-06686-8_29
https://doi.org/10.46298/dmtcs.2136
https://doi.org/10.1137/20M1323369
https://arxiv.org/abs/2101.02502
https://doi.org/10.4230/LIPIcs.STACS.2020.29
https://doi.org/10.4230/LIPIcs.STACS.2020.29

27:20 Binary CSP: Vertex Cover, Treedepth, and Related Parameters

38 Marcin Jurdziński and Ranko Lazić. Succinct progress measures for solving parity games. In
32nd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, pages 1–9.
IEEE Computer Society, 2017. doi:10.1109/LICS.2017.8005092.

39 Ken-ichi Kawarabayashi and Benjamin Rossman. A polynomial excluded-minor approximation
of treedepth. In 2018 Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018,
pages 234–246. SIAM, 2018. doi:10.1137/1.9781611975031.17.

40 Deepanshu Kush and Benjamin Rossman. Tree-depth and the formula complexity of subgraph
isomorphism. In 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS
2020, pages 31–42. IEEE, 2020. doi:10.1109/FOCS46700.2020.00012.

41 Wojciech Nadara, Michał Pilipczuk, and Marcin Smulewicz. Computing treedepth in
polynomial space and linear FPT time. In 30th Annual European Symposium on Algorithms,
ESA 2022, volume 244 of LIPIcs, pages 79:1–79:14. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2022. doi:10.4230/LIPIcs.ESA.2022.79.

42 Jesper Nederlof, Michał Pilipczuk, Céline M. F. Swennenhuis, and Karol Węgrzycki.
Hamiltonian Cycle parameterized by treedepth in single exponential time and polynomial
space. In 46th International Workshop on Graph-Theoretic Concepts in Computer Science,
volume 12301 of Lecture Notes in Computer Science, pages 27–39. Springer, 2020. doi:
10.1007/978-3-030-60440-0_3.

43 Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity – Graphs, Structures, and
Algorithms, volume 28 of Algorithms and combinatorics. Springer, 2012. doi:10.1007/
978-3-642-27875-4.

44 Christos H. Papadimitriou and Mihalis Yannakakis. On the complexity of database queries.
Journal of Computer and System Sciences, 58(3):407–427, 1999. doi:10.1006/jcss.1999.
1626.

45 Michał Pilipczuk and Sebastian Siebertz. Polynomial bounds for centered colorings on
proper minor-closed graph classes. J. Comb. Theory, Ser. B, 151:111–147, 2021. doi:
10.1016/j.jctb.2021.06.002.

46 Michał Pilipczuk and Marcin Wrochna. On space efficiency of algorithms working on structural
decompositions of graphs. ACM Trans. Comput. Theory, 9(4):18:1–18:36, 2018. doi:10.1145/
3154856.

https://doi.org/10.1109/LICS.2017.8005092
https://doi.org/10.1137/1.9781611975031.17
https://doi.org/10.1109/FOCS46700.2020.00012
https://doi.org/10.4230/LIPIcs.ESA.2022.79
https://doi.org/10.1007/978-3-030-60440-0_3
https://doi.org/10.1007/978-3-030-60440-0_3
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1006/jcss.1999.1626
https://doi.org/10.1006/jcss.1999.1626
https://doi.org/10.1016/j.jctb.2021.06.002
https://doi.org/10.1016/j.jctb.2021.06.002
https://doi.org/10.1145/3154856
https://doi.org/10.1145/3154856

Nondeterministic Interactive Refutations for
Nearest Boolean Vector
Andrej Bogdanov #

University of Ottawa, Canada

Alon Rosen #

Bocconi University, Milano, Italy
Reichman University, Herzliya, Israel

Abstract
Most n-dimensional subspaces A of Rm are Ω(

√
m)-far from the Boolean cube {−1, 1}m when

n < cm for some constant c > 0. How hard is it to certify that the Nearest Boolean Vector (NBV)
is at least γ

√
m far from a given random A?

Certifying NBV instances is relevant to the computational complexity of approximating the
Sherrington-Kirkpatrick Hamiltonian, i.e. maximizing xT Ax over the Boolean cube for a matrix
A sampled from the Gaussian Orthogonal Ensemble. The connection was discovered by Mohanty,
Raghavendra, and Xu (STOC 2020). Improving on their work, Ghosh, Jeronimo, Jones, Potechin,
and Rajendran (FOCS 2020) showed that certification is not possible in the sum-of-squares framework
when m ≪ n1.5, even with distance γ = 0.

We present a non-deterministic interactive certification algorithm for NBV when m ≫ n log n

and γ ≪ 1/mn1.5. The algorithm is obtained by adapting a public-key encryption scheme of Ajtai
and Dwork.

2012 ACM Subject Classification Theory of computation → Interactive proof systems; Theory of
computation → Problems, reductions and completeness; Theory of computation → Cryptographic
primitives

Keywords and phrases average-case complexity, statistical zero-knowledge, nondeterministic refuta-
tion, Sherrington-Kirkpatrick Hamiltonian, complexity of statistical inference, lattice smoothing

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.28

Category Track A: Algorithms, Complexity and Games

Funding Andrej Bogdanov: Work supported by Hong Kong RGC GRF grant CUHK 14209920 and
NSERC grant RGPIN-2023-05006.
Alon Rosen: Work supported by European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (Grant agreement No. 101019547) and Cariplo
CRYPTONOMEX grant.

Acknowledgements We are grateful to Chris Jones for useful advice and feedback. Part of this
work was done while the first author was affiliated with and the second author visited the Chinese
University of Hong Kong.

1 Introduction

When can we expect to have a reduction from problem A to problem B? Complexity theory
can be used not only to show existence of reductions but also to argue separations. For
example, one reason an oracle for factoring is not considered an imminent threat to SAT
is that the correctness of prime factorizations can be both proved and refuted, that is (the
decision version of) factoring is in NP ∩ coNP.

In general, there cannot be a reduction (of sufficiently low complexity) from A to B if
there is a complexity class that (conjecturally) separates the two. For worst-case problems
in NP the separating class is often NP ∩ coNP or one of its close relatives (NP ∩ coAM or
Statistical Zero-Knowledge).

EA
T
C
S

© Andrej Bogdanov and Alon Rosen;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 28; pp. 28:1–28:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:abogdano@uottawa.ca
https://orcid.org/0000-0002-0338-6151
mailto:alon.rosen@unibocconi.it
https://orcid.org/0000-0002-3021-7150
https://doi.org/10.4230/LIPIcs.ICALP.2023.28
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

28:2 Nondeterministic Interactive Refutations for Nearest Boolean Vector

It is natural to wonder whether analogous separations in average-case complexity can
clarify the landscape of reductions within distributional NP; a class of particular importance
to cryptography and learning theory. Reductions among non-NP-complete distributional
problems do exist, but are few and far between. Notable examples include lattice problems [18,
24, 22, 17]. More recently, a web of reductions was developed to explain the hardness of
various statistical inference problems [5].

A handful of average-case NP complete problems were found in the 1980-90s [16, 9]. All
these problems are closely related to simulation of Turing Machines, perhaps necessarily
so [29]. The conjectured hardness of combinatorial problems like random SAT or planted
clique still lacks satisfactory explanation.

In the context of random SAT, Feige, Kim, and Ofek [7] showed that random 3CNF
instances with n variables and m ≫ n1.4 equations admit efficient nondeterministic refutations
of satisfiability, that is, belong to Avg-coNP.1 Although most such instances are unsatisfiable,
it is not known how to efficiently certify the lack of a satisfying assignment in the regime
n1.4 ≪ m ≪ n1.5. On the other hand, when m ≪ n1.4 not even nondeterministic refutations
are known. Thus we do not expect a reduction from random 3SAT with clause-to-variable
density n0.41 to random 3SAT with density n0.39 barring a major algorithmic advance.

Our contribution is an analogous result for the distributional Nearest Boolean Vector to a
Subspace problem which was introduced by Mohanty, Raghavendra and Xu [19]. In Theorem 1
we show that for a certain parameter regime in which this problem may be intractable,
the problem is in average-case statistical zero-knowledge (Avg-SZK) and therefore admits
interactive nondeterministic refutations.

1.1 The Nearest Boolean Vector problem
We work with the following formulation of the Nearest Boolean Vector problem:

Nearest Boolean Vector (NBV):
Input: An n-dimensional subspace A of Rm.
Yes instances: There exists a v ∈ {−1, 1}m such that dist(v, A) ≤ γ

√
m.

No instances: For all v ∈ {−1, 1}m, dist(v, A) >
√

m/2.

When n < cm for a sufficiently small constant c, most subspaces A (chosen from the
uniform Haar measure) are no instances [19]. We are interested in the errorless average-case
complexity of NBV. An efficient average-case algorithm for distributional NBV can be viewed
as an efficiently computable certificate that most subspaces are far from the Boolean cube.

When γ < 1/2, NBV is in NP. Several works [19, 8, 23] provide evidence that it is
intractable on average in the regime m ≪ n2.

1.2 Our Result
We give a reduction from distributional NBV to the Statistical Distance to Uniform (SDU)
problem. The input to SDU is a sampler of outputs in {0, 1}n, the YES instances are samplers
whose outputs are 1 − δ far from uniform, and NO instances are samplers whose values are δ

close to uniform. For δ = 1/3 SDU is in the class Statistical Zero Knowledge (SZK) [26],
which is a subclass of coAM.2

1 Their result was recently extended to the semi-random model [12] in which the formula is arbitrary and
only the literals are polarized randomly.

2 When δ = 1/n, SDU is in the more restricted class Non-Interactive Statistical Zero-Knowledge
(NISZK) [10]. AvgNISZK membership can also be obtained for smaller γ.

A. Bogdanov and A. Rosen 28:3

▶ Theorem 1. Let C be a sufficiently large constant and ϵ ≥ 2−n/C . For all but an ϵ-
fraction of instances, NBV with parameters m = Cn log n and γ = 1/Cmn3/2 log1/2(n/ϵ) is
in AvgSZK.

The proof is given in Section 3. In Section 5 we outline a tentative approach for improving
the completeness error γ.

When ϵ is polynomial in n, SZK membership holds for all but a n−O(1) fraction of
instances and the approximation factor γ has value Θ̃(1/mn3/2). When ϵ is 2−Ω(n) then the
fraction of instances is exponential, but γ = Θ(1/mn2).

2 Background and Overview

2.1 Average-case refutations
Refutations come up naturally in the study of combinatorial optimization. A worst-case
approximation algorithm A for a minimization problem P is required to output a value
within a factor of c of the optimum on all instances. Such an algorithm provides an efficient
refutation of the claim

x has a solution of value at most A(x)/c (1)

for every instance x.
When efficient refutations are hard to obtain for all x it may be natural to relax the

condition to hold for most x. An average-case refutation should still certify (1), but it is now
allowed to fail on some small fraction of inputs x.

For many natural distributions, the optimum is tightly concentrated around its expectation.
For example, the maximum number of satisfiable clauses in random 3SAT with sufficiently
large clause-to-variable density is close to 7/8 on most instances. In particular, an average-
case refutation must certify that most instances are not satisfiable, but it should be allowed to
output “I don’t know” on a small fraction of inputs. This motivates the following definition:

▶ Definition 2. A refutation R with failure rate ϵ for distributional (promise) prob-
lem f is an algorithm that outputs “no” or “I don’t know”, is always correct (R(x) =
f(x) or “I don’t know”), and outputs “I don’t know” on at most an ϵ-fraction of inputs.

While efficient deterministic or randomized refutations are needed for the design of
approximation algorithms, in this work we are interested in the existence of nondeterministic
(coNP-type) refutations. Such refutations yield efficiently verifiable certificates of (1) on
most inputs. As a consequence of Theorem 1 we have

▶ Corollary 3. There is a efficient nondeterministic interactive refutation for NBV with
failure rate ϵ ≥ 2−n/C and parameters m = Cn log n, γ = 1/Cmn3/2 log1/2(n/ϵ).

2.2 Refutations in the Sum-of-Squares Framework
The sum-of-squares (SoS) framework is an incomplete but poweful framework for refuting
optimization problems. It has been used to argue efficient refutations do not exist for
problems such as clique [3]. The most notable incorrect prediction of SoS is on random 3LIN
with perfect completeness [11, 27]. In that case not only do refutations exist but they can be
found by Gaussian elimination.

In contrast, the nondeterministic refutations of Feige, Kim, and Ofek arise as solutions to
the level-O(n2δ) SoS relaxation of random 3SAT with n variables and m constraints. This
may be viewed as evidence that SoS correctly predicts refutability in problems that are
immune to Gaussian elimination “attacks”.

ICALP 2023

28:4 Nondeterministic Interactive Refutations for Nearest Boolean Vector

2.3 Sherrington-Kirkpatrick and Nearest Boolean Vector
The negative energy of the Sherrington-Kirkpatrick Hamiltonian at zero-temperature is the
value

SK(M) = min 1√
n

· xT Mx subject to x ∈ {±1/
√

n}n

for a matrix M sampled from the Gaussian Orthogonal Ensemble. It can be efficiently
certified that SK(M) ≤ 2 + ϵ for every ϵ > 0 and most matrices M via the relaxation

SK(M) ≤ min
∥u∥=1

1√
n

· uT Mu = λ1(M), (2)

where λ1(M) is the largest eigenvalue of M , which is known to not exceed 2 + ϵ for most
matrices M .

Parisi [21] conjectured and Talagrand [28] proved that SK(M) is in fact strictly smaller
than 2 for most matrices M . The true value for most M is concentrated around Parisi’s
constant P∗ ≈ 1.526. More recently Montanari [20] found an algorithm that finds a solution
x for which xT Mx ≤ P∗ − ϵ for most matrices M and proved its correctness under some
plausible conjecture.

Mohanty, Raghavendra, and Xu [19] ask whether Montanari’s algorithm can be matched
with an efficient certificate that SK(M) ≤ P∗ + ϵ for most matrices M . Together with
Montanari’s algorithm, this would give an errorless heuristic for calculating SK(M) up
to lower-order terms. As a first step they show that SK reduces to the potentially more
tractable Nearest Boolean Vector Problem.

Mohanty, Raghavendra, and Xu prove that for all c, γ > 0 there exists an ϵ > 0 such
that if NBV with parameters m/n = c and γ admits efficient refutations than so does the
claim SK(M) ≤ 2 − ϵ for most M . Moreover, for sufficiently small c, most subspaces A are
no-instances of NBV.

However, their main evidence for refutability of NBV is negative: They show that no
refutations can be obtained from the natural degree-4 SoS relaxation of NBV for any constant
c, even in case of perfect completeness γ = 0. A refutation algorithm for γ = 0 is merely
required to certify that no Boolean vector belongs to the subspace A. The SoS hardness
regime was later extended to m ≪ n3/2 and to degree-nΩ(1) SoS by Ghosh et al. [8]. It is
believed that it can be further extended up to m < n2/4, as (heuristically) suggested by
calculations of the low-degree likelihood ratio (see Potechin et al. [23]).

Theorem 1 has no bearing on the complexity of certifying that SK(M) ≤ 2 for most M .
To obtain an improvement over the spectral certificate (2) the completeness error γ would
have to be constant, or at least m−ϵ for some small ϵ.

2.4 Algorithms for NBV
When m ≫ n2 and γ is a sufficiently small constant it is plausible that NBV can be efficiently
solved by linearization. Represent A as the column span of B for some m × n matrix B.
Consider the objective

minimize
m∑

i=1

(
⟨Bi, x⟩2 − 1

)2 over x ∈ Rn, (3)

where Bi is the i-th row of B. If A had a Boolean vector ⟨Bi, x⟩ = ±1 the value of this
objective would be zero. We suspect that for most matrices B it should be lower bounded by

A. Bogdanov and A. Rosen 28:5

Ω(m). If (3) were efficiently computable its value would be the required certificate. Although
this is unlikely, the same argument can be applied to its linearization in which degree-2
monomials xixj are represented by variables yij :

minimize
m∑

i=1

(n∑
j,k=1

BijBikyjk − 1
)2

over y ∈ Rn(n+1)/2, (4)

which is a convex quadratic objective and therefore efficiently minimizable.
In the case of perfect completeness, γ = 0 NBV reduces to the Shortest Vector Problem

(SVP) in lattices with approximation factor exponential in the dimension and can therefore
be solved by the LLL algorithm [15] for any m > n. Here is an outline of the (standard)
reduction R. Let the columns of C ∈ Rm×(m−n) be a random orthonormal basis of the
dual subspace A⊥. Consider the lattice L spanned by the rows of the m × (2m − n) matrix
C ′ = [δIm|C] for δ = 2−2m2 . If A contained a Boolean vector x then C ′x would be a
vector of length δ

√
m in L. If not, by a union bound there is unlikely to exist a vector

x ∈ {−2m, . . . , 2m}m for which ∥Cx∥ < 2mδ so the shortest vector in L has length at least
2mδ.

2.5 Nondeterministic refutations for NBV
This reduction R extends to almost-perfect completeness γ = 2−Θ(m2). It is tempting
to conjecture for m ≫ n log n that there is a constant d such that R reduces NBV with
parameter γ = m−d to SVP with approximation factor

√
m, which is a coNP problem [1].

Should such a reduction exist it would imply efficient nondeterministic refutations for NBV.
We were unable to prove the soundness of R in this parameter regime. Our preliminary

calculations indicate that L may contain unusually short vectors for most instances A of
NBV.

Instead, we prove Theorem 1 by adapting a public-key encryption scheme of Ajtai and
Dwork [2] (see [4] for a “modern” description) into the desired reduction from NBV to SDU.

2.6 Refutations, SZK, and Public-key Encryption
The chosen plaintext attack security notion for one-bit encryption with public key
PK and encryption algorithm Enc posits that the distributions (PK, Enc(PK, 0)) and
(PK, Enc(PK, 1)) are computationally indistinguishable. In contrast, functionality requires
that they be statistically distinguishable by the decryption algorithm.

The security of several public-key encryption candidates is argued using a model (fake)
public-key distribution FK with the property that PK and FK are computationally indistin-
guishable while (FK, Enc(FK, 0)) and (FK, Enc(FK, 1)) are statistically indistinguishable.
This proof strategy yields a reduction from distinguishing real and model public keys to
SDU.

The security proof for the Ajtai-Dwork (AD) and Bogdanov et al.’s (BCHR) pancake
encryptions are of this type. In BCHR, the model public key FK is a sequence m of
independent standard n-dimensional Gaussians, while in the real public key PK an almost-
periodic component is planted in a secret direction s of Rn. If the almost-periodic component
is concentrated around the values −1 and 1, the row-span of PK can be viewed as a
yes-instance of NBV.

To turn this distinguisher between PK and FK into a refutation, we observe that the
encryption remains functional even for a worst-case choice of PK that satisfies some efficiently
verifiable conditions (the largest and smallest singular values of PK are pseudorandom). By

ICALP 2023

28:6 Nondeterministic Interactive Refutations for Nearest Boolean Vector

verifying these conditions the reduction from NBV to SDU ensures that all yes-instances of
NBV map to yes-instances of SDU, while affecting only a small fraction of no-instances, thus
providing interactive remoteness certificates for most instances of NBV.

The BCHR encryption and security proof suggest the following visualization of the
remoteness certificates. If a random matrix FK is multiplied on the right by a random
x ∼ {±1}m the output FK · x is close to a random Gaussian point in Rn (see Fact 17).
On the other hand, PK · x is concentrated around “pancakes” perpendicular to the secret
direction s. To certify remoteness, the verifier asks the prover to furnish an x ∈ {±1}m close
to a random Gaussian point g in Rn. Unless g happens to land close to a pancake the prover
will fail on an no- instance PK of NBV .

A fatal weakness of BCHR encryption is that it is insecure unless m ≫ n2, a setting
of parameters in which NBV is tractable. In contrast, security of AD can be proved
when m = O(n log n). This improvement is obtained by modifying the encryption from
round(PK · x) to round(σA · x) mod P(B), where PK = [A|B] with A ∈ R(m−n)×n and
B ∈ Rn×n is the public key matrix, P(B) is the parallelepiped spanned by the columns of B,
and σ is a suitable scaling factor. Reduction 1 in Section 3 implements this security proof
(in a different basis which is more suitable for analysis), again by imposing some efficiently
verifiable conditions that hold for typical yes-instances but for none of the no-instances of
NBV .

3 Refutation via Lattice Smoothing

We represent the random subspace A as the row space of a random n × m matrix [A|B′]
of independent normal entries. It is sufficient to specify these entries up to O(log n) bits of
precision. We carry out our analyses assuming infinite precision. It will be clear from the
calculations that the additional effect of rounding the entries of A does not affect correctness.

For a real number x let x = ⌊x⌉ + {x} be its unique representation with ⌊x⌉ ∈ Z and
{x} ∈ [−1/2, 1/2). Let {x}p be the multiple of 1/p in [−1/2, 1/2) closest to {x}. The
notation extends to vectors and matrices entrywise.

▷ Fact 4. (a) |{x}| ≤ |x| and (b) |{x + y}| ≤ |{x}| + |{y}|.

We choose the modulus p to equal Cn
√

m for a sufficiently large constant C. Let
σ = (1/π)

√
n ln(12mn/ϵ + 2n).

Reduction 1: On input [A|B′], A ∈ Rn×(m/2), B′ ∈ Rn×(m/2),
1 Find a submatrix B of B′ with smallest singular value at least 1/

√
n.

2 If step 1 is unsuccessful, fail.
3 If any column of A has norm more than 2

√
n, fail.

4 Otherwise, output the sampler S that maps x ∼ {±1}m/2 to {{σB−1A}px} ∈ 1
pZ

n
p .

A naive implementation of step 1 would split B′ into m/n candidate matrices B and
attempt to find one with singular value 1/

√
n, resulting in failure rate ϵ = 2−O(m/n) which is

n−O(1) when m = O(n log n). In Section 4 we design a greedy procedure for choosing B that
improves the failure rate to 2−Ω(n).

Theorem 1 follows from Claims 5 and 8.

▷ Claim 5. Assume ϵ > 2−Ω(n). For all but an ϵ-fraction of instances [A|B′] the output of
S is 1/3-close to a uniformly random element of 1

pZ
n
p .

A. Bogdanov and A. Rosen 28:7

▷ Fact 6 (Smoothing). [18, Lemmas 3.3 and 4.1] If all columns of B ∈ Rn×n have norm at
most b, g is standard normal in Rn, and σ ≥ (b/2π)

√
ln(n/ϵ + 2n), then {σB−1g} is ϵ-close

to a uniform random point in [−1/2, 1/2)n.

▷ Fact 7 (Leftover hash lemma). [13] If C ∼ Zn×m
p is a random matrix and x ∈ Zm

p be a
random vector uniformly distributed on some set of size M then (C, Cx) is

√
pn/M -close to

uniformly random.

Proof of Claim 5. By Proposition 9 B can be found (efficiently) except with probability
exp(−Ω(m)). By large deviation bounds all columns of B have norm at most 2

√
n except

with probability 2−Ω(n). By our choice of parameters, both conditions are satisfied except
with probability 2−Ω(m) + 2−Ω(n) ≤ ϵ/2. Assuming this we argue the conclusion holds even
when conditioning on B.

For each column ai of A, σai ∈ Rn is a normal vector of zero mean and covariance σI.
By smoothing Fact 6, {σB−1ai} is ϵ/4m-close to a uniform point in [−1/2, 1/2)n. Therefore
C = {σB−1A}p is ϵ/12-close to a random matrix in 1

pZ
(m/2)×n
p . By Fact 7, (C, Cx) is

ϵ/12+
√

pn/2m/2-close to random. By our choice of parameters, ϵ/12+
√

pn/2m/2 ≤ ϵ/6. By
Markov’s inequality the output of the sampler is 1/3-close to random except with probability
ϵ/2 over the choice of A, and therefore except with probability ϵ over the choice of A and B′.

◁

▷ Claim 8. If [A|B′] is a yes instance of NBV with parameters m > Cn log n and γ <

1/Cmn3/2 log1/2(n/ϵ), either the reduction fails, or the output of S is 2/3-far from random.

Proof. As [A|B′] is a yes instance of NBV there exists a witness w ∈ Rn such that w[A|B′] =
v + e, where v ∈ {±1}m and ∥e∥ ≤ γ

√
m. Let D be the distinguisher that on input y ∈ 1

pZ
n
p

accepts if |{⟨wB, y⟩}| < 1/24.
Assume y is uniform in 1

pZ
n
p . We show D accepts y with probability at most 1/6. We

can write y as {u}p where u is uniform in [0, 1)n. Let e′ = y − u and let vB and eB be the
projections of v and e on the columns indexed by B. Then

⟨wB, y⟩ = ⟨vB + eB , u + e′⟩ = ⟨vB , u⟩ + ⟨vB , e′⟩ + ⟨eB , y⟩

The random variable {⟨vB , u⟩} is uniform in [−1/2, 1/2), so |{⟨vB , u⟩}| > 1/12 with proba-
bility 5/6. If this happens, by the triangle inequality,

|{⟨wB, y⟩}| ≥ |{⟨vB , u⟩}| − |⟨vB , e′⟩| − |⟨eB , y⟩|
≥ 1/12 − ∥vB∥∥e′∥ − ∥eB∥∥y∥
≥ 1/12 − n/p − γ

√
mn

> 1/24

and D rejects y.
Now assume the reduction does not fail so that ∥B−1∥ ≤

√
n and all columns of A and B

have norm at most 2
√

n. We will show that D accepts y = {{σB−1A}px} with probability
at least 5/6. Therefore D distinguishes this distribution from the uniform one, so the two
must be 2/3-far.

Let E = {σB−1A}p − {σB−1A}. Then

{σB−1A}p = {σB−1A} + E = σB−1A − ⌊σB−1A⌋ + E.

Since x is integral,

y = {{σB−1A}px} = {σB−1Ax + Ex}.

ICALP 2023

28:8 Nondeterministic Interactive Refutations for Nearest Boolean Vector

Therefore

⟨wB, y⟩ = ⟨wB, σB−1Ax⟩ + ⟨wB, Ex⟩ − ⟨wB, f⟩,

where f = ⌊σB−1Ax + Ex⌉. The first term equals

⟨wB, σB−1Ax⟩ = σ⟨wA, x⟩ = σ⟨vA, x⟩ + σ⟨eA, x⟩,

where vA and eA are the projections of v and e on the coordinates indexed by the columns
of A. The third term equals

⟨wB, f⟩ = ⟨vB , f⟩ + ⟨eB , f⟩.

As σ⟨vA, x⟩ and ⟨vB , f⟩ are integers,

|{⟨wB, y⟩}| ≤ |σ⟨eA, x⟩| + |⟨wB, Ex⟩| + |⟨eB , f⟩|
≤ σ∥eA∥∥x∥ + ∥wB∥∥Ex∥ + ∥eB∥∥f∥
≤ σ∥eA∥∥x∥ + (∥vB∥ + ∥eB∥)∥Ex∥ + ∥eB∥(σ∥B−1∥∥Ax∥ + ∥Ex∥ +

√
n)

≤ σγm + (
√

n + γ
√

m)(
√

mn/p) + γ
√

m(σ ·
√

n · ∥Ax∥ +
√

mn/p +
√

n).

As Ax is a random ±1 sum of vectors of norm at most 2
√

n, its expected squared norm is mn,
so its norm is at most 3

√
mn with probability at least 5/6. Since γ < 1/Cmn3/2 log1/2(n/ϵ),

p > Cn
√

m, and so p > Cγm
√

n, each term on the right hand side is less than 1/72 (if C is
sufficiently large). Then the left hand side is less than 1/24 and D accepts y. ◁

4 Well-conditioned submatrices of random matrices

We now present and analyze the simple greedy algorithm used in step 1 in Reduction 1.

▶ Proposition 9. Let B ∈ Rm×n be a random Gaussian matrix with m > Cn. The
probability that B contains a square submatrix with smallest singular value at least 1/

√
n is

1 − exp(−Ω(m)). Moreover this submatrix can be found efficiently.

Think of the column vectors of B as a stream of random normal vector samples. The
matrix A is constructed incrementally column by column, starting with the empty matrix.
After k − 1 columns of A have been chosen, the next sample from the stream is considered
as a candidate for the k-th column. It is rejected unless

ρ =
k∑

i=1

1
σ2

k

≤ k

n − k + 1 , (5)

where σ1, . . . , σk are the singular values of A.
Once all n columns of A have been chosen, (5) guarantees that the sum of inverse squares

of the singular values is at most n, so the smallest singular value will be at least
√

n as desired.
It remains to argue that no more than m − n rejections happen except with probability
exp(−Ω(m)).

Evolution of ρ

We analyze the evolution of ρ as columns are being added to A. Let Ak be any non-singular
n × k matrix. Then

ρ(Ak) =
∑k

i=1
∏

j ̸=i σ2
j∏k

i=1 σ2
i

= −χ′
k(0)

χk(0) ,

A. Bogdanov and A. Rosen 28:9

where χk(λ) = det(A⊤
k Ak − λI). Given Ak, let Ak+1 be the random matrix obtained by

appending a random normal column x to Ak.
Let L ∈ Rk×k be an orthogonal matrix such that L⊤A⊤

k AkL = diag(σ2
1 , . . . , σ2

k). It can
be obtained from the singular value decomposition of Ak. The matrix L′ ∈ R(k+1)×(k+1)

given by L′ = diag(L, 1) is also orthogonal and

Ak+1L′ =
[
Ak x

]
·
[
L

1

]
=

[
AkL x

]
Since the columns of AkL are orthogonal of length σ1, . . . , σk, the columns of

AkL diag(σ−1
1 , . . . , σ−1

k)

can be completed to an orthonormal basis C. The change of variables

y⊤ = x⊤C

is then an isometry, so y1, . . . , yn are independent standard normals, and ∥y∥ = ∥x∥. Then

L′⊤A⊤
k+1Ak+1L′ =


σ2

1 σ1y1
σ2

2 σ2y2
. . .

...
σ2

k σkyk

σ1y1 σ2y2 . . . σkyk ∥y∥2


Therefore

χk+1(λ) = det(A⊤
k+1Ak+1 − λI)

= det(L′⊤A⊤
k+1Ak+1L′ − λI)

= (∥y∥2 − λ)
k∏

i=1
(σ2

i − λ) −
k∑

i=1
σ2

i y2
i

∏
j ̸=i

(σ2
j − λ)

= χk(λ)
(

∥y∥2 − λ −
k∑

i=1

σ2
i y2

i

σ2
i − λ

)
.

We obtain the following recurrences:

χk+1(0) = χk(0)∥y⊥k∥2

χ′
k+1(0) = χ′

k(0)∥y⊥k∥2 − χk(0)
(

1 +
k∑

i=1

y2
i

σ2
i

)
,

where y⊥k = (yk+1, . . . , yn).

▷ Claim 10. If (n − k + 1)χ′
k(0) + kχk(0) ≥ 0 then

E
[
(n − k)χ′

k+1(0) + (k + 1)χk+1(0)
∣∣Ak

]
≥ 0.

The claim follows from linearity of expectation using the facts E[y2
i] = 1 and E∥y⊥k∥2 = k.

Proof of Proposition 9. We show that the number of samples required for each column of
A is dominated by a geometric random variable whose success probability is some absolute
constant p⋆. The expected number of samples required is then at most n/p⋆. By large
deviation bounds for geometric random variables [14] the probability that more than Cn

samples are required is then at most exp(−Ω(Cnp⋆)), assuming C > 1/p⋆.

ICALP 2023

28:10 Nondeterministic Interactive Refutations for Nearest Boolean Vector

For the first column of A to fulfill (5) its squared norm needs to be at least n. This is at
least p⋆ by Corollary 12 (with a1 = · · · = an = 1 and b = 0).

Now suppose (5) holds after the k-th column was added. Fix Ak and let X be the random
variable (n − k)χ′

k+1(0) + (k + 1)χk+1(0). By Claim 10 E[X] ≥ 0. The random variable X

is of the form in Corollary 12 so Pr(X > E[X]) ≥ p⋆. Once a column x has been picked so
that X ≥ 0, the invariant (5) will hold for the matrix Ak+1 = [Ak x]. ◀

4.1 Anticoncentration
The concentration Q of a real-valued random variable X is Q(X, h) = supx Pr(x ≤ X ≤ x+h).

▶ Proposition 11. There exists an absolute constant C such that if X1, . . . , Xn are indepen-
dent mean zero, unit variance random variables such that Q(Xi, h) ≤ 3/4 for all i and some
h ≤ 1/4C then

Pr
(
a1X1 + · · · + anXn > 0

)
≥ h2

32 + 4h2 .

for all a1, . . . , an.

▶ Corollary 12. There is an absolute constant p⋆ so that for every n and a1, . . . , an, b,

Pr
(
a1Z2

1 + · · · + anZ2
n + b ≥ µ

)
≥ p⋆,

where Z1, . . . , Zn are independent normals and µ = a1 + · · · + an + b.

Proof. Apply Proposition 11 to the random variables Yi = (X2
i − 1)/

√
2 which have mean

zero and unit variance. The condition Q(Yi, h) ≤ 3/4 is satisfied for all h ≤ 0.2. ◀

Proof of Proposition 11. Let X = a1X1 + · · ·+anXn. We may assume X has unit variance.
By Rogozin’s inequality [25],

Q(X, H) ≤ CH
(∑

a2
i (1 − Q(aiXi, aih))

)−1/2
= 2CH ≤ 2Ch,

where H = h maxi|ai| ≤ h. Applying Claim 13 we get

Pr[X > 0] ≥ 1
t + h

(h(1 − 2Ch) − 2/t) = h/2 − 2/t

t + h
.

Choosing t = 8/h we get Pr(X > 0) ≥ h2/(32 + 4h2). ◀

▷ Claim 13. For every zero-mean, unit-variance X, every λ > 0, and every t ≥ 1

Pr[X > 0] ≥ 1
t + h

(
h · Pr(−h < X ≤ 0) − 2/t

)
.

Proof. Let p = Pr(X ∈ (0, t]) and q = Pr(X ∈ (−h, 0]). Then

E[X] ≤ −h Pr(X ≤ −h) + 0 Pr(−h < X ≤ 0) + t Pr(0 < X ≤ t) + E[X1(X > t)]
≤ −h · (1 − q − p) + t · p + E[X1(X > t)].

As E[X] = 0,

p ≥ 1
t + h

(
h(1 − q) − E[X1(X > t)]

)
.

By Claim 14, E[X1(X > t)] ≤ E[|X|1(|X| > t)] ≤ 2/t. ◁

A. Bogdanov and A. Rosen 28:11

▷ Claim 14. For every zero-mean, unit-variance X and every t ≥ 1,

E
[
|X|1(|X| > t)

]
≤ 2/t.

Proof.

E
[
|X|1(|X| > t)

]
=

∫ ∞

0
Pr(|X|1(|X| > t) > x)dx

=
∫ t

0
Pr(|X| > t)dx +

∫ ∞

t

Pr(|X| > x)dx

≤
∫ t

0
(1/t2)dx +

∫ ∞

t

(1/x2)dx

= 2/t.

The inequality is Chebyshev’s. ◁

5 Refutation via Boolean combinations

Theorem 1 was proved by adapting the Ajtai-Dwork encryption scheme into a refutation
algorithm for NBV. In this Section we carry out an analogous analysis for the “pancake
encryption” of Bogdanov, Cueto Noval, Hoffmann, and Rosen (BCHR).

Their public key is also computationally indistinguishable from a random subspace of Rm.
The dimension of this subspace is, however, only o(

√
m). As a consequence, the resulting

refutation only applies to a regime of NBV that is efficiently tractable.
While BCHR becomes insecure when n ≫

√
m, we believe that a modification of it may

be secure up to n = m1−o(1). The advantage of the BCHR-based reduction over Theorem 1
is that it applies to larger completeness error γ.

▶ Theorem 15. For every constant ϵ there exists a constant C such that for all but an
ϵ-fraction of instances, average-case NBV with parameters m = C(n log n)2 and γ = 1/C

√
m

is in SZK.

Let Z be a normal random variable and let ζ1 < · · · < ζr be the unique numbers
such that Pr(Z ≤ ζi) = (2i + 1)/2r. The Gaussian rounding roundr : R → {ζ1, . . . , ζr}
is the function roundr(z) = ζi where i is the unique index for which ⌈r · Pr(Z ≤ z)⌉ =
⌈r · Pr(Z ≤ ζi)⌉ (see Figure 1). For z ∈ Rn let roundr : Rn → {ζ1, . . . , ζr}n be given by
roundr(z) = (roundr(z1), . . . , roundr(zn)). Ser r = max{Cm, Cn2/γ2}.

ζ1 ζ2 ζ3 ζ5 ζ6 ζ7ζ4 = 0

Figure 1 The function roundr for r = 7. All intervals have equal Gaussian measure. The values
in the i-th interval round to ζi.

Reduction 2: On input A ∈ Rm×n,
1 If the largest singular value of A is more than 2

√
m, fail.

2 If the smallest singular value of A is less than
√

m/4, fail.
3 Otherwise, output the sampler S that maps x ∼ {±1/

√
m}m to roundr(Ax).

Theorem 15 follows from Claims 16 and 19.

ICALP 2023

28:12 Nondeterministic Interactive Refutations for Nearest Boolean Vector

▷ Claim 16. For every ϵ there is a C so that for a 1 − ϵ fraction of instances A ∈ Rm×n,
where m = (Cn log n)2, the output of S is 2/3-close to random.

▷ Fact 17. [4] The distribution (A, roundr(Ax)) is
√

4en ln r/
√

m-close to (A, ζ), where ζ

is uniform over rounded values and independent of A.

▷ Fact 18. [6] Assume m > 2n. The largest and smallest singular values of A is at most
2
√

n and at least
√

n/4, except with probability exp(−Ω(n)).

Proof of Claim 16. By Fact 17, the joint distribution of A and the output of the sampler
is O(C−1/2)-close to uniform. Therefore for all but O(C−1/2) choices of A the output is
2/3-close to uniform. By a Chernoff bound and Fact 18 at most 2−Ω(m) other inputs A cause
the reduction to fail. ◁

▷ Claim 19. If A is a yes instance of NBV with γ < 1/C
√

m, either Reduction 2 fails, or
the output of S is 2/3-far from random.

▷ Fact 20. [4] For sufficiently large r, roundr(z), z ∈ R is r−1/2-close to z unless |z| > t for
t such that Pr(|Z| > t) ≤ 3(r ln r)−1/2, where Z is normal in R.

Proof of Claim 19. Let w ∈ Rn be the witness for which wA = v + e where v ∈ {±1}m and
∥e∥ ≤ γ

√
m. Let D be the distinguisher that, given ζ, accepts if |{

√
m⟨w, ζ⟩}| ≤ 1/48.

Assuming the reduction did not fail, by the assumption on singular values,

1
4 ≤ ∥v∥ − ∥e∥

2
√

m
≤ ∥w∥ ≤ ∥v∥ + ∥e∥√

m/4
≤ 8.

If ζ is random, we argue that D rejects with probability at least 5/6. we can write
ζ = roundr(g) for a normal g ∈ Rn. Let e = roundr(g) − g. Then

√
m⟨w, ζ⟩ =

√
m⟨w, g⟩ +√

m⟨w, e⟩. The random variable
√

m⟨w, g⟩ is a univariate normal with standard deviation
at least

√
m∥w∥ ≥

√
m/4. By Fact 6, {

√
m⟨w, g⟩} is 2−Ω(m) < 1/24 close to uniform in

[−1/2, 1/2). In particular, |{
√

m⟨w, g⟩}| > 1/24 except with probability 11/12 − 1/24. By
Fact 20, ∥e∥∞ ≤ r−1/2 except with probability 3n(r ln r)−1/2 < 1/24. Both events happen
with probability at least 5/6. Assuming this,

|{
√

m⟨w, ζ⟩}| > 1/24 − |{
√

m⟨w, e⟩}| ≥ 1/24 −
√

m∥w∥∥e∥ > 1/48

because
√

m∥w∥∥e∥ ≤ 8
√

mr−1/2 and D rejects.
If ζ is the output of the sampler we argue that the distinguisher accepts it with probability

at least 8/9:

|{
√

m⟨w, Ax⟩}| = |{
√

m⟨v + e, x⟩}| = |{
√

m⟨v, x⟩ +
√

m⟨e, x⟩}| =
√

m|⟨e, x⟩| (6)

because v and
√

mx are integral. As x is random, E[⟨e, x⟩2] = ∥e∥2/m. By Markov’s
inequality, |⟨e, x⟩| ≤ 3∥e∥/

√
m except with probability 1/9. If this holds (6) is at most

3∥e∥ ≤ 3γ
√

m.
As the largest singular value of A is at most 2

√
m, all entries of Ax are between −2 and

2. By Fact 20, ∥roundr(Ax) − Ax∥∞ ≤ nr−1/2. Therefore

|{
√

m⟨w, roundr(Ax) − Ax⟩}| ≤
√

m∥w∥∥roundr(Ax) − Ax∥ ≤ 8
√

mnr−1/2 ≤ γ
√

m.

Together with (6), |{
√

m⟨w, Ax⟩}| ≤ 4γ
√

m ≤ 1/48. ◁

A. Bogdanov and A. Rosen 28:13

References
1 Dorit Aharonov and Oded Regev. Lattice problems in NP ∩ coNP. J. ACM, 52(5):749–765,

September 2005. doi:10.1145/1089023.1089025.
2 Miklós Ajtai and Cynthia Dwork. A public-key cryptosystem with worst-case/average-case

equivalence. In Proceedings of the Twenty-Ninth Annual ACM Symposium on Theory of
Computing, 1997.

3 Boaz Barak, Samuel Hopkins, Jonathan Kelner, Pravesh K. Kothari, Ankur Moitra, and Aaron
Potechin. A nearly tight sum-of-squares lower bound for the planted clique problem. SIAM
Journal on Computing, 48(2):687–735, 2019. doi:10.1137/17M1138236.

4 Andrej Bogdanov, Miguel Cueto Noval, Charlotte Hoffmann, and Alon Rosen. Public-key
encryption from homogeneous clwe. Cryptology ePrint Archive, Paper 2022/093, 2022. URL:
https://eprint.iacr.org/2022/093.

5 Matthew S. Brennan and Guy Bresler. Reducibility and statistical-computational gaps from
secret leakage. In Conference on Learning Theory, COLT 2020, volume 125 of Proceedings of
Machine Learning Research, pages 648–847. PMLR, 2020. URL: http://proceedings.mlr.
press/v125/brennan20a.html.

6 Kenneth R. Davidson and Stanislaw J. Szarek. Chapter 8 - local operator theory, random
matrices and banach spaces. In W.B. Johnson and J. Lindenstrauss, editors, Handbook of the
Geometry of Banach Spaces, volume 1 of Handbook of the Geometry of Banach Spaces, pages
317–366. Elsevier Science B.V., 2001. doi:10.1016/S1874-5849(01)80010-3.

7 U. Feige, J. H. Kim, and E. Ofek. Witnesses for non-satisfiability of dense random 3CNF
formulas. In 47th Annual IEEE Symposium on Foundations of Computer Science, 2006.
doi:10.1109/FOCS.2006.78.

8 Mrinalkanti Ghosh, Fernando Granha Jeronimo, Chris Jones, Aaron Potechin, and Goutham
Rajendran. Sum-of-squares lower bounds for sherrington-kirkpatrick via planted affine planes.
In Sandy Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 954–965. IEEE, 2020. doi:
10.1109/FOCS46700.2020.00093.

9 Oded Goldreich. Average Case Complexity, Revisited, pages 422–450. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2011. doi:10.1007/978-3-642-22670-0_29.

10 Oded Goldreich, Amit Sahai, and Salil Vadhan. Can statistical zero knowledge be made
non-interactive? or on the relationship of szk and niszk. In Michael Wiener, editor, Advances
in Cryptology – CRYPTO’ 99, pages 467–484, Berlin, Heidelberg, 1999. Springer Berlin
Heidelberg.

11 Dima Grigoriev. Linear lower bound on degrees of positivstellensatz calculus proofs for the
parity. Theor. Comput. Sci., 259(1):613–622, May 2001.

12 Venkatesan Guruswami, Pravesh K. Kothari, and Peter Manohar. Algorithms and certificates
for boolean CSP refutation: smoothed is no harder than random. In 54th Annual ACM
SIGACT Symposium on Theory of Computing, 2022. doi:10.1145/3519935.3519955.

13 R. Impagliazzo, L. A. Levin, and M. Luby. Pseudo-random generation from one-way functions.
In Proceedings of the Twenty-First Annual ACM Symposium on Theory of Computing, STOC
’89, pages 12–24, New York, NY, USA, 1989. Association for Computing Machinery. doi:
10.1145/73007.73009.

14 Svante Janson. Tail bounds for sums of geometric and exponential variables. Statistics &
Probability Letters, 135:1–6, 2018. doi:10.1016/j.spl.2017.11.017.

15 H.W. Jr. Lenstra, A.K. Lenstra, and L. Lovász. Factoring polynomials with rational coefficients.
Mathematische Annalen, 261:515–534, 1982. URL: http://eudml.org/doc/182903.

16 Leonid A. Levin. Average case complete problems. SIAM J. Comput., 15(1):285–286, 1986.
doi:10.1137/0215020.

17 Vadim Lyubashevsky and Daniele Micciancio. On bounded distance decoding, unique shortest
vectors, and the minimum distance problem. In Shai Halevi, editor, Advances in Cryptology -
CRYPTO 2009, 29th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 16-20, 2009. Proceedings, volume 5677 of Lecture Notes in Computer Science, pages
577–594. Springer, 2009. doi:10.1007/978-3-642-03356-8_34.

ICALP 2023

https://doi.org/10.1145/1089023.1089025
https://doi.org/10.1137/17M1138236
https://eprint.iacr.org/2022/093
http://proceedings.mlr.press/v125/brennan20a.html
http://proceedings.mlr.press/v125/brennan20a.html
https://doi.org/10.1016/S1874-5849(01)80010-3
https://doi.org/10.1109/FOCS.2006.78
https://doi.org/10.1109/FOCS46700.2020.00093
https://doi.org/10.1109/FOCS46700.2020.00093
https://doi.org/10.1007/978-3-642-22670-0_29
https://doi.org/10.1145/3519935.3519955
https://doi.org/10.1145/73007.73009
https://doi.org/10.1145/73007.73009
https://doi.org/10.1016/j.spl.2017.11.017
http://eudml.org/doc/182903
https://doi.org/10.1137/0215020
https://doi.org/10.1007/978-3-642-03356-8_34

28:14 Nondeterministic Interactive Refutations for Nearest Boolean Vector

18 Daniele Micciancio and Oded Regev. Worst-case to average-case reductions based on
gaussian measures. SIAM Journal on Computing, 37(1):267–302, 2007. doi:10.1137/
S0097539705447360.

19 Sidhanth Mohanty, Prasad Raghavendra, and Jeff Xu. Lifting sum-of-squares lower bounds:
Degree-2 to degree-4. In Proceedings of the 52nd Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2020, pages 840–853, New York, NY, USA, 2020. Association for
Computing Machinery. doi:10.1145/3357713.3384319.

20 Andrea Montanari. Optimization of the Sherrington-Kirkpatrick Hamiltonian. In 2019
IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS), 2019. doi:
10.1109/FOCS.2019.00087.

21 G. Parisi. Infinite number of order parameters for spin-glasses. Phys. Rev. Lett., 43:1754–1756,
December 1979. doi:10.1103/PhysRevLett.43.1754.

22 Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem: Extended
abstract. In Proceedings of the Forty-First Annual ACM Symposium on Theory of Computing,
STOC ’09, pages 333–342, New York, NY, USA, 2009. Association for Computing Machinery.
doi:10.1145/1536414.1536461.

23 Aaron Potechin, Paxton Turner, Prayaag Venkat, and Alexander S. Wein. Near-optimal fitting
of ellipsoids to random points, 2022. doi:10.48550/ARXIV.2208.09493.

24 Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. J.
ACM, 56(6), September 2009. doi:10.1145/1568318.1568324.

25 B. A. Rogozin. On the increase of dispersion of sums of independent random variables. Theory
of Probability & Its Applications, 6(1):97–99, 1961. doi:10.1137/1106010.

26 Amit Sahai and Salil Vadhan. A complete problem for statistical zero knowledge. J. ACM,
50(2):196–249, March 2003. doi:10.1145/636865.636868.

27 Grant Schoenebeck. Linear level lasserre lower bounds for certain k-csps. In Proceedings of the
2008 49th Annual IEEE Symposium on Foundations of Computer Science, FOCS ’08, pages
593–602, USA, 2008. IEEE Computer Society. doi:10.1109/FOCS.2008.74.

28 Michel Talagrand. The Parisi Formula, pages 349–474. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2011. doi:10.1007/978-3-642-22253-5_7.

29 Luca Trevisan. The program-enumeration bottleneck in average-case complexity theory.
In 2010 IEEE 25th Annual Conference on Computational Complexity, pages 88–95, 2010.
doi:10.1109/CCC.2010.18.

https://doi.org/10.1137/S0097539705447360
https://doi.org/10.1137/S0097539705447360
https://doi.org/10.1145/3357713.3384319
https://doi.org/10.1109/FOCS.2019.00087
https://doi.org/10.1109/FOCS.2019.00087
https://doi.org/10.1103/PhysRevLett.43.1754
https://doi.org/10.1145/1536414.1536461
https://doi.org/10.48550/ARXIV.2208.09493
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1137/1106010
https://doi.org/10.1145/636865.636868
https://doi.org/10.1109/FOCS.2008.74
https://doi.org/10.1007/978-3-642-22253-5_7
https://doi.org/10.1109/CCC.2010.18

A 4/3 Approximation for 2-Vertex-Connectivity
Miguel Bosch-Calvo #

IDSIA, USI-SUPSI, Lugano, Switzerland

Fabrizio Grandoni #

IDSIA, USI-SUPSI, Lugano, Switzerland

Afrouz Jabal Ameli #

TU Eindhoven, The Netherlands

Abstract
The 2-Vertex-Connected Spanning Subgraph problem (2VCSS) is among the most basic NP-hard
(Survivable) Network Design problems: we are given an (unweighted) undirected graph G. Our
goal is to find a subgraph S of G with the minimum number of edges which is 2-vertex-connected,
namely S remains connected after the deletion of an arbitrary node. 2VCSS is well-studied in terms
of approximation algorithms, and the current best (polynomial-time) approximation factor is 10/7
by Heeger and Vygen [SIDMA’17] (improving on earlier results by Khuller and Vishkin [STOC’92]
and Garg, Vempala and Singla [SODA’93]).

Here we present an improved 4/3 approximation. Our main technical ingredient is an approx-
imation preserving reduction to a conveniently structured subset of instances which are “almost”
3-vertex-connected. The latter reduction might be helpful in future work.

2012 ACM Subject Classification Theory of computation → Routing and network design problems

Keywords and phrases Algorithm, Network Design, Vertex-Connectivity, Approximation

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.29

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2305.02240 [3]

Funding The first 2 authors are partially supported by the SNF Grant 200021_200731 / 1.

1 Introduction

Real-world networks are prone to failures. For this reason it is important to design them so
that they are still able to support a given traffic despite a few (typically temporary) failures
of nodes or edges. The basic goal of survivable network design is to construct cheap networks
which are resilient to such failures.

Most natural survivable network design problems are NP-hard, and a lot of work was
dedicated to the design of approximation algorithms for them. One of the most basic
survivable network design problems is the 2-Vertex-Connected Spanning Subgraph problem
(2VCSS). Recall that an (undirected) graph G = (V, E) is k-vertex-connected (kVC) if, after
removing any subset W of at most k − 1 nodes (with all the edges incident to them), the
residual graph G[V \ W] is connected. In particular, in a 2VC graph G we can remove any
single node while maintaining the connectivity of the remaining nodes (intuitively, we can
tolerate a single node failure). In 2VCSS we are given a 2VC (unweighted) undirected graph
G = (V, E), and our goal is to compute a minimum cardinality subset of edges S ⊆ E such
that the (spanning) subgraph (V, S) is 2VC.

2VCSS is NP-hard: indeed an n-node graph G admits a Hamiltonian cycle iff it contains
a 2VC spanning subgraph with n edges. Czumaj and Lingas [13] proved that the problem is
APX-hard, hence most likely it does not admit a PTAS. A 2-approximation for 2VCSS can
be obtained in different ways. For example one can compute an (open) ear decomposition of

EA
T
C
S

© Miguel Bosch-Calvo, Fabrizio Grandoni, and Afrouz Jabal Ameli;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 29; pp. 29:1–29:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:miguel.boschcalvo@idsia.ch
mailto:fabrizio@idsia.ch
mailto:a.jabal.ameli@tue.nl
https://doi.org/10.4230/LIPIcs.ICALP.2023.29
https://arxiv.org/abs/2305.02240
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 A 4/3 Approximation for 2-Vertex-Connectivity

the input graph and remove the trivial ears (containing a single edge). The resulting graph
is 2VC and contains at most 2(n − 1) edges (while the optimum solution must contain at
least n edges). The first non-trivial 5/3 approximation was obtained by Khuller and Vishkin
[28]. This was improved to 3/2 by Garg, Vempala and Singla [20] (see also an alternative 3/2
approximation by Cheriyan and Thurimella [11]). Finally Heeger and Vygen [24] presented
the current-best 10/7 approximation1. Our main result is as follows (please see Section 2 for
an overview of our approach):

▶ Theorem 1. There is a polynomial-time 4
3 -approximation algorithm for 2VCSS.

1.1 Related Work

An undirected graph G is k-edge-connected (kEC) if it remains connected after removing up
to k − 1 edges. The 2-Edge-Connected Spanning Subgraph problem (2ECSS) is the natural
edge-connectivity variant of 2VCSS, where the goal is to compute a 2EC spanning subgraph
with the minimum number of edges. Like 2VCSS, 2ECSS does not admit a PTAS unless
P = NP [13]. It is not hard to compute a 2 approximation for 2ECSS. For example it is
sufficient to compute a DFS tree and augment it greedily. Khuller and Vishkin [27] found
the first non-trivial 3/2-approximation algorithm. Cheriyan, Sebö and Szigeti [10] improved
the approximation factor to 17/12. This was further improved to 4/3 in two independent
and drastically different works by Hunkenschröder, Vempala and Vetta [25] and Sebö and
Vygen [34]. The current best and very recent 118

89 + ε < 1.326 approximation is due to Garg,
Grandoni and Jabal Ameli [19]. Our work exploits several ideas from the latter paper. The
k-Edge Connected Spanning Subgraph problem (kECSS) is the natural generalization of
2ECSS to any connectivity k ≥ 2 (see, e.g., [11, 17]).

A major open problem in the area is to find a better than 2 approximation for the
weighted version of 2ECSS. This is known for the special case with 0-1 edge weights, a.k.a.
the Forest Augmentation problem, by the recent work by Grandoni, Jabal-Ameli and Traub
[21] (see also [2, 7, 6] for the related Matching Augmentation problem).

A problem related to kECSS is the k-Connectivity Augmentation problem (kCAP): given
a k-edge-connected undirected graph G and a collection of extra edges L (links), find a
minimum cardinality subset of links L′ whose addition to G makes it (k + 1)-edge-connected.
It is known [14] that kCAP can be reduced to the case k = 1, a.k.a. the Tree Augmentation
problem (TAP), for odd k and to the case k = 2, a.k.a. the Cactus Augmentation problem
(CacAP), for even k. Several approximation algorithms better than 2 are known for TAP
[1, 8, 9, 15, 16, 22, 29, 30, 31], culminating with the current best 1.393 approximation by
Cecchetto, Traub and Zenklusen [5]. Till recently no better than 2 approximation was known
for CacAP (excluding the special case where the cactus is a single cycle [18]): the first such
algorithm was described by Byrka, Grandoni and Jabal Ameli [4], and later improved to
1.393 in [5]. In a recent breakthrough by Traub and Zenklusen, a better than 2 (namely
1.694) aproximation for the weighted version of TAP was achieved [35] (later improved to
1.5 + ε in [36]). Partial results in this direction where achieved earlier in [1, 12, 16, 22, 32].

1 Before [24] a few other papers claimed even better approximation ratios [23, 26], however they have
been shown to be buggy or incomplete, see the discussion in [24].

M. Bosch-Calvo, F. Grandoni, and A. Jabal Ameli 29:3

1.2 Preliminaries
We use standard graph notation. For a graph G = (V, E), we let V (G) = V and E(G) = E

denote its nodes and edges, resp. For W ⊆ V and F ⊆ E, we use the shortcuts G \ F :=
(V, E \ F) and G \ W := G[V \ W]. For a subgraph G′, a node v and an edge e, we also use
the shortcuts v ∈ G′ and e ∈ G′ meaning v ∈ V (G′) and e ∈ E(G′), resp. Throughout this
paper we sometimes use interchangeably a subset of edges F and the corresponding subgraph
(W, F), W = {v ∈ V : v ∈ f ∈ F}. The meaning will be clear from the context. For example,
we might say that F ⊆ E is 2VC or that F contains a connected component. In particular,
we might say that S ⊆ E is a 2VC spanning subgraph. Also, given two subgraphs G1 and
G2, by G′ = G1 ∪ G2 we mean that G′ is the subgraph induced by E(G1) ∪ E(G2). We
sometimes represent paths and cycles as sequence of nodes. A k-vertex-cut of G is a subset
W of k nodes such that G[V \ W] has at least 2 connected components. A node defining a
1-vertex-cut is a cut vertex.

By OPT(G) ⊆ E(G) we denote an optimum solution to a 2VCSS instance G, and let
opt(G) := |OPT(G)| be its size. All the algorithms described in this paper are deterministic.

The proofs that are omitted here due to space constraints will appear in the journal
version of the paper (see also [3]).

2 Overview of Our Approach

In this section we sketch the proof of our 4/3-approximation (Theorem 1). The details and
proofs which are omitted here will be given in the following technical sections.

Our result relies on 3 main ingredients. The first one is an approximation-preserving (up
to a small additive term) reduction of 2VCSS to instances of the same problem on properly
structured graphs, which are “almost” 3VC in a sense described later (see Section 2.1).

At this point we compute a minimum-size 2-edge-cover H similarly to prior work: this
provides a lower bound on the size of the optimal solution. For technical reasons, we transform
H into a canonical form, without increasing its size (see Section 2.2).

The final step is to convert H into a feasible solution S. Starting from S = H, this is
done by iteratively adding edges to and removing edges from S in a careful manner. In order
to take the size of S under control, we assign 1/3 credits to each edge of the initial S, and
use these credits to pay for any increase in the number of edges of S (see Section 2.3). We
next describe the above ingredients in more detail.

2.1 A Reduction to Structured Graphs
Our first step is an approximation-preserving (up to a small additive factor) reduction of
2VCSS to instances of the same problem on properly structured graphs. This is similar in
spirit to an analogous reduction for 2ECSS in [19]. In particular we exploit the notion of
irrelevant edges and isolating cuts defined in that paper. We believe that our reduction might
be helpful also in future work.

In more detail, we can get rid of the following irrelevant edges.

▶ Lemma 2 (irrelevant edge). Given a 2VC graph G, let e = uv ∈ E(G) be such that {u, v}
is a 2-vertex-cut (we call e irrelevant). Then every optimal 2VCSS solution for G does not
contain e.

Proof. We will need the following observation:

ICALP 2023

29:4 A 4/3 Approximation for 2-Vertex-Connectivity

▶ Fact 3. Suppose that a minimal solution S to 2VCSS on a graph G contains a cycle
C. Then S does not contain any chord f of C. Indeed, otherwise consider any open ear
decomposition2 of S which uses C as a first ear. Then f would be a trivial ear (consisting of
a single edge) of the decomposition, and thus S \ {f} would also be 2VC, contradicting the
minimality of S.

Let H ⊆ E be any optimal (hence minimal) solution to 2VCSS on G. Assume by
contradiction that H contains an irrelevant edge e = uv. Removing u and v splits H into
different connected components C1, . . . , Ck, with k ≥ 2. Each one of those components has
edges uiu, viv in H, where ui, vi ∈ Ci for i ∈ {1, . . . , k}, otherwise H would contain a cut
vertex. Let P1 be a path from u1 to v1 in C1, and P2 be a path from v2 to u2 in C2. Then e

is a chord of the cycle P1 ∪ P2 ∪ {uu1, v1v, vv2, u2u}, contradicting the minimality of H by
Fact 3. ◀

We can enforce (see later) that our graph G is “almost” 3VC, in the sense that the only
2-vertex-cuts of G are a very specific type of isolating cuts defined as follows.

▶ Definition 4 (isolating cut). Given a 2-vertex-cut {u, v} of a graph G, we say that this cut
is isolating if G \ {u, v} has exactly two connected components, one of which consisting of 1
node. Otherwise the cut is non-isolating.

Assuming that there are no non-isolating cuts, we can avoid the following local configura-
tion: this will be helpful in the rest of our analysis.

▶ Definition 5 (removable 5-cycle). We say that a 5-cycle C of a 2VC graph G is removable
if it has at least two vertices of degree 2 in G.

▶ Lemma 6. Given a 2VC graph G without non-isolating cuts and with at least 6 nodes. Let
C be a removable 5-cycle of G. Then in polynomial time one can find an edge e of C such
that there exists an optimum solution to 2VCSS on G not containing e (we say that e is a
removable edge).

Proof. Assume C = v1v2v3v4v5. If C has two vertices of degree 2 that are adjacent in C,
namely v1 and v2, then {v3, v5} is a non-isolating cut of G, a contradiction. Thus we can
assume that C has exactly two non-adjacent vertices of degree 2, say v1 and v3 w.l.o.g.

We will show that the edge e = v4v5 is the desired removable edge. Let H be an optimal
2VCSS solution for G that uses the edge v4v5. Observe that in this case since v1 and v3 have
degree 2, then H must contain all the edges of C.

To complete the argument we show that there exists an edge f ∈ E(G) \ E(H), such that
v4v5 is a chord of a cycle in H ′ := H ∪ {f}: hence we can remove v4v5 from H ′ using Fact 3
to obtain an alternative optimum solution not containing v4v5.

Let H ′′ = H \ {v4v5}. There is no cycle C ′ in H ′′ that contains both v4 and v5, otherwise
v4v5 is a chord of C ′ in H, contradicting the minimality of H by Fact 3. Therefore if we
remove v2 from H ′′, there must be no paths from v4 to v5. This means that there is a
partition of V (G)\{v2} into non-empty sets V1 and V2 such that, {v3, v4} ∈ V1, {v1, v5} ∈ V2
and there is no edge in H ′′ between V1 and V2. Since |V (G)| ≥ 6, then we can assume w.l.o.g
that |V1| ≥ 3.

2 An ear-decomposition of an undirected graph G is a sequence of paths or cycles P0, . . . , Pk (ears)
spanning E(G) such that P0 is a cycle and Pi, i ≥ 1, has its internal nodes disjoint from Vi−1 :=
V (P0) ∪ . . . ∪ V (Pi−1) and its endpoints (or one node if Pi is a cycle) in Vi−1. We say that an ear-
decomposition is open if Pi is a path, for i ≥ 1. Every 2VC graph admits an open ear decomposition
[33, Chapter 15].

M. Bosch-Calvo, F. Grandoni, and A. Jabal Ameli 29:5

u

v

Figure 1 The cycle induced by the blue edges is a removable cycle, since it has two vertices of
degree 2 in G. The edge uv is removable. The red and orange (resp. gray) pairs of vertices form a
non-isolating (resp. isolating) cut. The green edge is irrelevant.

There must be an edge f = u1u2 ∈ E(G) such that u1 ∈ V1 \ {v3, v4} and u2 ∈ V2,
otherwise {v2, v4} is a non-isolating cut in G, a contradiction. Now we show that f is the
desired edge. We claim that there exists a path P1 in H [V1 \ {v3}] between u1 and v4. Since
H is 2VC, there exists a path P1 between u1 and v4 not using v2. Such path does not use v3
either since this node is adjacent only to v2 and v4, and u1 /∈ {v3, v4}. If P1 is not contained
in H [V1], it would need to use at least two edges between V1 and V2 in H , however we argued
before that H contains only one such edge, namely v4v5. Symmetrically, we claim that there
exists a path P2 in H [V2 \ {v1}] between u2 and v5. Notice that u2 = v5 is possible, in which
case the claim trivially holds. Hence next assume u2 ̸= v5. Observe that u2 ̸= v1 since u2 is
adjacent to u1 /∈ {v2, v5}. Thus, the claim about P2 follows symmetrically to the case of P1.
Altogether, v4v5 is a chord of the cycle P1 ∪ P2 ∪ {f} ∪ C \ {v4v5} in H ′ = H ∪ {f}, which
implies the lemma. ◀

We are now ready to define a structured graph and to state our reduction to such graphs.

▶ Definition 7 (structured graph). A 2VC graph G is structured if it does not contain: (1)
Irrelevant edges; (2) Non-isolating cuts; (3) Removable 5-cycles.

▶ Lemma 8. Given a constant 1 < α ≤ 3
2 , if there exists a polynomial-time algorithm for

2VCSS on a structured graph G that returns a solution of cost at most
max{opt(G), α · opt(G) − 2}, then there exists a polynomial-time α-approximation algorithm
for 2VCSS.

We remark that any α−ε approximation of 2VCSS on structured graphs, for an arbitrarily
small constant ε > 0, immediately implies an algorithm of the type needed in the claim of
Lemma 8: indeed, instances with opt(G) ≤ max{ 2

ε , 2
α−1 } can be solved exactly in constant

time by brute force.
The algorithm at the heart of our reduction is algorithm RED given in Algorithm 1.

Lines 1-2 solve by brute force instances with few nodes. Lines 3-4, 5-10, and 11-12 get rid
recursively of irrelevant edges, non-isolating vertex cuts and removable 5-cycles, resp. When
Line 13 is reached, the graph is structured and therefore we can apply a black-box algorithm
ALG for structured instances of 2VCSS.

It is easy to see that the algorithm runs in polynomial time.

ICALP 2023

29:6 A 4/3 Approximation for 2-Vertex-Connectivity

Algorithm 1 Reduction from arbitrary to structured instances of 2VCSS. Here G is 2VC and ALG is
an algorithm for structured instances that returns a solution of cost at most max{opt(G), α·opt(G)−2}
for some 1 < α ≤ 3

2 .

1: if |V (G)| < max{6, 2
α−1 } then

2: Compute OPT(G) by brute force (in constant time) and return OPT(G)
3: if G contains an irrelevant edge then
4: return RED(G \ {e})
5: if G contains a non-isolating vertex cut {u, v} then
6: let (V1, V2), 2 ≤ |V1| ≤ |V2|, be a partition of V (G) \ {u, v} such that there are no

edges between V1 and V2 in G \ {u, v}
7: let G1 be the graph resulting from G by contracting V2 into one node v2 and G2 the

graph resulting from G by contracting V1 into one node v1 (keeping one copy of parallel
edges in both cases)

8: let H1 = RED(G1) and H2 = RED(G2)
9: let E1 (resp. E2) be the two edges of H1 (resp., H2) with endpoints in v2 (resp., v1)

10: return H := (H1 \ E1) ∪ (H2 \ E2)
11: if G contains a removable 5-cycle then
12: let e be the removable edge (found via Lemma 6) in that cycle and return RED(G\{e})
13: return ALG(G)

▶ Lemma 9. RED(G) runs in polynomial time in |V (G)| if ALG does so.

Proof. Let n = |V (G)|. First observe that each recursive call, excluding the corresponding
subcalls, can be executed in polynomial time. In particular, we can find one irrelevant edge,
if any, in polynomial time by enumerating all the possible 2-vertex-cuts. Furthermore, we
can find some removable 5-cycle, if any, in polynomial time by enumerating all 5-cycles.
Then, by Lemma 6, we can indentify a removable edge in such cycle. We also remark that
in Lines 4 and 12 we remove one edge, and we never increase the number of edges. Hence
the corresponding recursive calls increase the overall running time by a polynomial factor
altogether.

It is then sufficient to bound the number f(n) of recursive calls where we execute Lines
6-10 starting from a graph with n nodes. Consider one recursive call on a graph G with n

nodes, where the corresponding graph G1 has 5 ≤ k ≤ n/2 + 2 nodes. Notice that G2 has
n − k + 4 nodes. Thus one has f(n) ≤ max5≤k≤n/2+2{f(k) + f(n − k + 4)}, which implies
that f(n) is polynomially bounded. ◀

Let us next show that RED produces a feasible solution.

▶ Lemma 10. Given a 2VC graph G, RED(G) returns a feasible 2VCSS solution for G.

Proof. Let us prove the claim by induction on (|V (G)|, |E(G)|) in lexicographic order. The
base cases are given when RED(G) executes Lines 2 or 13: in these cases RED clearly returns
a feasible solution. Consider an instance G where RED(G) does not execute those lines
(in the root call), and assume the claim holds for any instance G′ where (|V (G′)|, |E(G′)|)
is strictly smaller than (|V (G)|, |E(G)|) in lexicographic order. By Lemma 2, when RED
recurses at Line 4, the graph G \ {e} is 2VC, hence the recursive call returns a 2VC spanning
subgraph by inductive hypothesis. A similar argument holds when Line 12 is executed, this
time exploiting Lemma 6.

M. Bosch-Calvo, F. Grandoni, and A. Jabal Ameli 29:7

It remains to consider the case when Lines 6-10 are executed. Notice that both G1 and
G2 are 2VC. In this case we can assume by inductive hypothesis that both H1 and H2 are
2VC. Consider any w1 ∈ V1. Since H1 is 2VC, H1 contains 2 vertex disjoint paths from w1
to v2. Notice that both u and v must be the second last node in exactly one such path,
hence in particular there exist two (internally) vertex-disjoint paths Pw1u and Pw1v in H

over the nodes V1 ∪ {u, v} from w1 to u and v, resp. Symmetrically, for each w2 ∈ V2 there
exist two vertex disjoint paths Pw2u and Pw2v in H over the nodes V2 ∪ {u, v} from w2 to u

and v, resp.
For any w1 ∈ V1 and w2 ∈ V2, the w1-w2 paths Pw1u ∪ Pw2u and Pw1v ∪ Pw2v in H are

vertex disjoint. Similarly, for any w1 ∈ V1 and w2 ∈ V2, Pw1u ∪ Pw1v and Pw2u ∪ Pw2v are
vertex disjoint u-v paths in H . Given w1 ∈ V1 and w′

1 ∈ V1 ∪ {u, v}, consider the two vertex
disjoint paths in H1 between them. If these paths do not contain v2, then they also belong
to H. Otherwise exactly one of those paths contains the subpath P ′ = uv2v: by replacing
P ′ with Pw2u ∪ Pw2v for an arbitrary w2 ∈ V2, one obtains two vertex disjoint w1-w′

1 paths
in H. A symmetric argument holds for w2 ∈ V2 and w′

2 ∈ V2 ∪ {u, v}.
Assume to get a contradiction that H has a cut vertex w. If w ∈ {u, v}, then w is also a

cut vertex in either H1 or H2. Thus we can assume w.l.o.g. w ∈ V1. Consider the components
resulting of removing the vertex w from H. If one of this components does not contain u

nor v then w is also a cut vertex in H1. Thus removing w from H yields two connected
components Cu, Cv, with u ∈ Cu, v ∈ Cv. But since w ∈ V1, no edge from H2 present in H

is removed by deleting w. In particular, there is a path from u to v in H, contradicting the
fact that w is a cut vertex. ◀

It remains to analyze the approximation factor of RED.

▶ Lemma 11. |RED(G)| ≤

{
opt(G), if |V (G)| < max{6, 2

α−1 };
α · opt(G) − 2, if |V (G)| ≥ max{6, 2

α−1 }.

Proof. We prove the claim by induction on (|V (G)|, |E(G)|) in lexicographic order. The
base cases correspond to the execution of Lines 2 and 13. Here the claim trivially holds. The
claim holds by inductive hypothesis and by Lemmas 2 and 6 when Lines 4 and 12, resp., are
executed. Notice that the 6 that appears in the max in the claim of the lemma is meant to
guarantee that the conditions of Lemma 6 are satisfied.

It remains to consider the case when Lines 6-10 are executed. Let OPT be a minimum
2VC spanning subgraph of G, and OPTi be an optimal 2VCSS solution for Gi, i ∈ {1, 2}.
We will later show

|OPT| = |OPT1| + |OPT2| − 4. (1)

Notice that since |Hi ∩ Ei| = 2 for i ∈ {1, 2} and H1 \ E1 and H2 \ E2 are edge-disjoint, we
have |H| = |H1| + |H2| − 4.

Notice that, for |Vi| ≥ 2
α−1 , one has |OPTi| ≤ α|OPTi| − 2. We now distinguish a few

cases.
If |V2| < max{6, 2

α−1 }, then |H| = |H1| + |H2| − 4 = |OPT1| + |OPT2| − 4 = |OPT|.
If |V1| ≥ max{6, 2

α−1 }, then |H| = |H1| + |H2| − 4 ≤ α|OPT1| − 2 + α|OPT2| − 2 − 4 ≤
α(|OPT1| + |OPT2|) − 8 ≤ α|OPT| + 4α − 8 ≤ α|OPT| − 2. The last inequality uses the
assumption α ≤ 3/2.

Finally, if |V1| < max{6, 2
α−1 } and |V2| ≥ max{6, 2

α−1 }, we have |H| = |H1| + |H2| − 4 ≤
|OPT1| + α|OPT2| − 2 − 4 = (1 − α)|OPT1| + α(|OPT1| + |OPT2|) − 6 ≤ (1 − α)|OPT1| + 4α +
α|OPT| − 6 ≤ α|OPT| − 2. The last inequality holds since |OPT1| ≥ |V (G1)| ≥ 5 and α > 1.

ICALP 2023

29:8 A 4/3 Approximation for 2-Vertex-Connectivity

It remains to prove (1). Let E1 be the two edges of G1 with endpoints in v2 and
E2 be the two edges of G2 with endpoints in v1. Observe that Ei coincides with the Ei

defined in Line 9. By the same argument as in the proof of Lemma 10, one has that
(OPT1 \ E1) ∪ (OPT2 \ E2) is a 2VC spanning subgraph of G. Notice that OPT1 \ E1 and
OPT2 \ E2 are edge-disjoint and that |Ei ∩ OPTi| = |Ei| = 2 for i ∈ {1, 2}. Using this two
facts we get that |OPT| ≤ |(OPT1 \ E1) ∪ (OPT2 \ E2)| = |OPT1| + |OPT2| − 4.

For the other direction, assume by contradiction that |OPT| < |OPT1|+|OPT2|−4. Notice
that E(G) = (E(G1) \ E1)∪̇(E(G2) \ E2) and thus OPT = ((E(G1) \ E1) ∩ OPT)∪̇((E(G2) \
E2) ∩ OPT). Thus we have that either |(E(G1) \ E1) ∩ OPT| < |OPT1| − 2 or |(E(G2) \
E2) ∩ OPT| < |OPT2| − 2. Assume w.l.o.g. that |(E(G1) \ E1) ∩ OPT| < |OPT1| − 2. Then
((E(G1) \ E1) ∩ OPT) ∪ {uv2, vv2} is a 2VC spanning subgraph of G1 of cardinality less than
|OPT1|, a contradiction. (1) follows. ◀

2.2 A Canonical 2-Edge-Cover
It remains to give a good enough approximation algorithm for structured graphs. The first
step in our algorithm (similarly to prior work on related problems [6, 19, 25]) is to compute
(in polynomial time [33, Chapter 30]) a minimum-cardinality 2-edge-cover3 H of G. It is
worth to remark that |H| ≤ opt(G): indeed the degree of each node in any 2VC spanning
subgraph of G must be at least 2.

For technical reasons, we transform H, without increasing its size, into another 2-edge-
cover which is canonical in the following sense. We need some notation first. If a connected
component of H has at least 6 edges we call it a large component, and otherwise a small
component. Let C be a large component of H. We call every maximal 2VC subgraph of C a
block, and every edge of C such that its removal splits that component into two connected
components a bridge. Notice that every edge of C is either a bridge or belongs to some block
in that component. Also, every edge of C belongs to at most one block, thus there is a
unique partition of the edges of C into blocks and bridges (but a node of C might belong
to multiple blocks and to multiple bridges). Observe that C is 2VC iff it has exactly one
block. If C is large but not 2VC we call it a complex component. If a block B of a complex
component C contains only one cut vertex of C, we say that B is a leaf-block of C. Notice
that since H is a 2-edge-cover, C must have at least 2 leaf blocks.

▶ Definition 12 (Canonical 2-Edge-Cover). A 2-edge-cover S of a graph G is canonical if:
(1) Every small component of S is a cycle; (2) For any complex component C of S, each
leaf-block B of C has at least 5 nodes.

▶ Lemma 13. Given a minimum 2-edge-cover H of a structured graph G, in polynomial
time one can compute a canonical 2-edge-cover S of G with |S| = |H|.

Proof. We start with S := H . At each step if there are edges e ∈ E(G)\E(S) and e′ ∈ E(S),
such that S′ := S ∪ {e} \ {e′} is a 2-edge-cover that has fewer connected components than S

or it has the same number of connected components as S but has fewer bridges and blocks in
total than S, then we replace S by S′. This process clearly terminates within a polynomial
number of steps, returning a 2-edge-cover S of the same size as the initial H (hence in
particular S must be minimal).

3 A 2-edge-cover H of a graph G is a subset of edges such that each node v of G has at least 2 edges of H
incident to it.

M. Bosch-Calvo, F. Grandoni, and A. Jabal Ameli 29:9

Let us show that the final S satisfies the remaining properties. Assume by contradiction
that S has a connected component C with at most 5 edges that is not a cycle. By a simple
case analysis C must be a 4-cycle plus one chord f . However this contradicts the minimality
of S by Fact 3.

Finally assume by contradiction that S has a complex component C, with a leaf-block B

such that B has at most 4 nodes. By the minimality of S, B must be a 3-cycle or a 4-cycle.
Let B = v1 . . . vk, k ∈ {3, 4}, and assume w.l.o.g. that v1 is the only cut-vertex of C that
belongs to B. In this case we show that there must exist an edge e = uz ∈ E(G) such that
u ∈ {v2, vk} and z /∈ B. If this is not true then for k = 3, v1 is a cut-vertex in G, and for
k = 4, {v1, v3} form a non-isolating cut, leading to a contradiction in both cases. Consider
S′ := S ∪ {e} \ {uv1}. Note that S′ is a 2-edge-cover of the same size as S. Since uv1 belongs
to a cycle of S, then the number of connected components in S′ is not more than in S. If
z /∈ C the number of connected components of S′ is less than in S, which is a contradiction.
Otherwise the number of connected components of S and S′ is the same. Now in S′ all the
bridges and the blocks of S that shared an edge with any path from u to z in S \ {uv1}
become part of the same block and all the other bridges and blocks remain the same. This is
a contradiction as the total number of bridges and blocks of S′ is less than in S. ◀

2.3 A Credit-Based Argument
Next assume that we are given a minimum-cardinality canonical 2-edge-cover H of a structured
graph G. Observe that, for |H| ≤ 5, H is necessarily a cycle of length |H| by the definition
of canonical 2-edge-cover and a simple case analysis. In particular H is already a feasible
(and optimal) solution. Therefore we next assume |H| ≥ 6. Starting from S = H, we will
gradually add edges to (and sometimes remove edges from) S, until S becomes 2VC. In order
to keep the size of S under control, we use a credit-based argument similarly to prior work
[6, 19, 21]. At high level, the idea is to assign a certain number of credits cr(S) to S. Let us
define the cost of S as cost(S) = |S| + cr(S). We guarantee that for the initial value of S,
namely S = H, cost(S) ≤ 4

3 |H|. Furthermore, during the process cost(S) does not increase.
During the process we maintain the invariant that S is canonical. Hence the following

credit assignment scheme is valid for any intermediate S:
1. To every small component C of S we assign cr(C) = |E(C)|/3 credits.
2. Each large component C receives cr(C) = 1 credits.
3. Each block B receives cr(B) = 1 credits.
4. Each bridge b receives cr(b) = 1/4 credits.
We remark that each large connected component C of S which is 2VC, receives one credit in
the role of a component, and one additional credit in the role of a block of that component.
Let cr(S) ≥ 0 the total number of credits assigned to the subgraphs of S. It is not hard to
show that the initial cost of S is small enough.

▶ Lemma 14. cost(H) ≤ 4
3 |H|.

Proof. Let us initially assign 1
4 credits to the bridges of H and 1

3 credits to the remaining
edges. Hence we assign at most |H|

3 credits in total. We next redistribute these credits so as
to satisfy the credit assignment scheme.

Each small component C retains the credits of its edges. If C is large and 2VC then it
has exactly one block B. Since |E(C)| ≥ 6, its edges have at least 2 credits, so we can assign
1 credit to C and 1 to B.

Now consider a complex component C of H. The bridges keep their own credits. Since
H is a 2-edge-cover and C is complex, then C has at least 2 leaf-blocks B1 and B2. By
the definition of canonical, B1 and B2 have at least 5 nodes (hence edges) each. Therefore

ICALP 2023

29:10 A 4/3 Approximation for 2-Vertex-Connectivity

together they have at least 10
3 > 3 credits, which is sufficient to assign one credit to C, B1

and B2. Any other block B of C (which has at least 3 edges) keeps the credits of its edges,
hence at least 1 credit. Observe that cost(H) = |H| + cr(H) ≤ 4

3 |H| as desired. ◀

As mentioned before, starting from S = H, we will transform S without increasing its cost
cost(S) until it becomes a single large component C that is 2VC (and thus it has exactly
one block B) and therefore a 2VC spanning subgraph of G. Notice that at the end of the
process cr(S) = cr(C) + cr(B) = 2, hence |S| = cost(S) − 2 ≤ 4

3 |H| − 2. Combining this with
the trivial case for |H| ≤ 5, we obtain the following lemma.

▶ Lemma 15. Given a canonical minimum 2-edge-cover H of a structured graph G, one can
compute in polynomial time a 2VCSS solution S for G with |S| ≤ max{|H|, 4

3 |H| − 2}.

Given the above results, it is easy to prove Theorem 1.

Proof of Theorem 1. By Lemma 8 it is sufficient to compute a solution of cost at most
max{opt(G), 4

3 · opt(G) − 2} on a structured graph G. We initially compute a canonical
minimum 2-edge-cover H of G via Lemma 13. Then we apply Lemma 15 to obtain a 2VCSS
solution S with |S| ≤ max{|H|, 4

3 |H| − 2} ≤ max{opt(G), 4
3 opt(G) − 2}. Clearly all steps

can be performed in polynomial time. ◀

It remains to discuss the proof of Lemma 15 (assuming |H| ≥ 6), which is the most
technical part of our paper. The construction at the heart of the proof consists of a few
stages. Recall that we start with a 2-edge-cover S = H, and then gradually transform S

without increasing cost(S).
In the first stage of our construction we remove from S all the small components with the

exception of the following type of 4-cycles that require a separate argument in the following.

▶ Definition 16 (pendant 4-cycle). Let S be a 2-edge-cover of a graph G and C ′ be a large
component of S. We say that a connected component C of S is a pendant 4-cycle (of C ′) if
C is a 4-cycle and all the edges of G with exactly one endpoint in C have the other endpoint
in C ′.

▶ Lemma 17. Let G be a structured graph and H be a canonical minimum 2-edge cover of
G, with |H| ≥ 6. In polynomial time one can compute a canonical 2-edge-cover S of G such
that the only small components of S are pendant 4-cycles and cost(S) ≤ cost(H).

In the second stage of our construction we reduce to the case where S consists of large 2VC
components only.

▶ Lemma 18. Let G be a structured graph and S be a canonical 2-edge-cover of G such that
the only small components of S are pendant 4-cycles. In polynomial time one can compute a
canonical 2-edge-cover S′ of G such that all the connected components of S′ are 2VC and
large, and cost(S′) ≤ cost(S).

At this point we can exploit the following definition and lemma from [19] to construct
the desired 2VC spanning subgraph.

▶ Definition 19 (Nice Cycle). Let Π = (V1, . . . , Vk), k ≥ 2, be a partition of the node-set of a
graph G. A nice cycle N of G w.r.t. Π is a subset of edges with endpoints in distinct subsets
of Π such that: (1) N induces one cycle of length at least 2 in the graph obtained from G by
collapsing each Vi into a single node; (2) given the two edges of N incident to some Vi, these
edges are incident to distinct nodes of Vi unless |Vi| = 1.

M. Bosch-Calvo, F. Grandoni, and A. Jabal Ameli 29:11

▶ Lemma 20 ([19]). Let Π = (V1, . . . , Vk), k ≥ 2, be a partition of the node-set of a 2VC
graph G. In polynomial time one can compute a nice cycle N of G w.r.t. Π.

▶ Lemma 21. Let G be a structured graph and S be a 2-edge-cover of G such that all the
connected components of S are 2VC and large. In polynomial time one can compute a 2VCSS
solution S′ for G with cost(S′) ≤ cost(S).

Proof. Initially set S′ = S. Consider the partition Π = (V1, . . . , Vk) of V (G) where Vi is
the set of vertices of the 2VC component Ci of S′. If k = 1, S′ already satisfies the claim.
Otherwise, using Lemma 20 we can compute a nice cycle N of G w.r.t. Π. Let us replace S′

with S′′ := S′ ∪N . W.l.o.g assume N is incident to V1, ..., Vr for some 2 ≤ r ≤ k. Then in S′′

the nodes V1 ∪ . . .∪Vr belong to a unique (large) 2VC connected component C ′. Furthermore
cost(S′) − cost(S′′) =

∑r
i=1(cr(Ci) + cr(Bi)) − cr(C ′) − cr(B′) − r = 2r − 2 − r ≥ 0, where Bi

is the only block of the component Ci and B′ the only block of C ′. By iterating the process
for a polynomial number of times one obtains a single 2VC component, hence the claim. ◀

The proof of Lemma 15 follows by chaining Lemmas 17, 18, and 21, and by the previous
simple observations.

References
1 David Adjiashvili. Beating approximation factor two for weighted tree augmentation with

bounded costs. In Philip N. Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira,
January 16-19, pages 2384–2399. SIAM, 2017. doi:10.1137/1.9781611974782.157.

2 Étienne Bamas, Marina Drygala, and Ola Svensson. A simple LP-based approximation
algorithm for the matching augmentation problem. In Karen Aardal and Laura Sanità, editors,
Integer Programming and Combinatorial Optimization - 23rd International Conference, IPCO
2022, Eindhoven, The Netherlands, June 27-29, 2022, Proceedings, volume 13265 of Lecture
Notes in Computer Science, pages 57–69. Springer, 2022. doi:10.1007/978-3-031-06901-7_5.

3 Miguel Bosch-Calvo, Fabrizio Grandoni, and Afrouz Jabal Ameli. A 4/3 approximation for
2-vertex-connectivity, 2023. arXiv:2305.02240.

4 Jaroslaw Byrka, Fabrizio Grandoni, and Afrouz Jabal Ameli. Breaching the 2-approximation
barrier for connectivity augmentation: a reduction to steiner tree. In Konstantin Makarychev,
Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia Chuzhoy, editors, Proccedings
of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, Chicago,
IL, USA, June 22-26, 2020, pages 815–825. ACM, 2020. doi:10.1145/3357713.3384301.

5 Federica Cecchetto, Vera Traub, and Rico Zenklusen. Bridging the gap between tree and
connectivity augmentation: unified and stronger approaches. In Samir Khuller and Vir-
ginia Vassilevska Williams, editors, STOC ’21: 53rd Annual ACM SIGACT Symposium on
Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 370–383. ACM, 2021.
doi:10.1145/3406325.3451086.

6 Joe Cheriyan, Jack Dippel, Fabrizio Grandoni, Arindam Khan, and Vishnu V. Narayan.
The matching augmentation problem: a 7/4-approximation algorithm. Math. Program.,
182(1):315–354, 2020. doi:10.1007/s10107-019-01394-z.

7 Joseph Cheriyan, Robert Cummings, Jack Dippel, and J. Zhu. An improved approximation
algorithm for the matching augmentation problem. CoRR, abs/2007.11559, 2020. arXiv:
2007.11559.

8 Joseph Cheriyan and Zhihan Gao. Approximating (unweighted) tree augmentation via
lift-and-project, part I: stemless TAP. Algorithmica, 80(2):530–559, 2018. doi:10.1007/
s00453-016-0270-4.

ICALP 2023

https://doi.org/10.1137/1.9781611974782.157
https://doi.org/10.1007/978-3-031-06901-7_5
https://arxiv.org/abs/2305.02240
https://doi.org/10.1145/3357713.3384301
https://doi.org/10.1145/3406325.3451086
https://doi.org/10.1007/s10107-019-01394-z
https://arxiv.org/abs/2007.11559
https://arxiv.org/abs/2007.11559
https://doi.org/10.1007/s00453-016-0270-4
https://doi.org/10.1007/s00453-016-0270-4

29:12 A 4/3 Approximation for 2-Vertex-Connectivity

9 Joseph Cheriyan and Zhihan Gao. Approximating (unweighted) tree augmentation via lift-
and-project, part II. Algorithmica, 80(2):608–651, 2018. doi:10.1007/s00453-017-0275-7.

10 Joseph Cheriyan, András Sebö, and Zoltán Szigeti. Improving on the 1.5-approximation of a
smallest 2-edge connected spanning subgraph. SIAM J. Discret. Math., 14(2):170–180, 2001.
doi:10.1137/S0895480199362071.

11 Joseph Cheriyan and Ramakrishna Thurimella. Approximating minimum-size k-connected
spanning subgraphs via matching. SIAM J. Comput., 30(2):528–560, 2000. doi:10.1137/
S009753979833920X.

12 Nachshon Cohen and Zeev Nutov. A (1+ln2)-approximation algorithm for minimum-cost
2-edge-connectivity augmentation of trees with constant radius. Theor. Comput. Sci., 489-
490:67–74, 2013. doi:10.1016/j.tcs.2013.04.004.

13 Artur Czumaj and Andrzej Lingas. On approximability of the minimum-cost k-connected
spanning subgraph problem. In Robert Endre Tarjan and Tandy J. Warnow, editors,
Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms, 17-
19 January 1999, Baltimore, Maryland, USA, pages 281–290. ACM/SIAM, 1999. URL:
http://dl.acm.org/citation.cfm?id=314500.314573.

14 E. A. Dinits, A. V. Karzanov, and M. V. Lomonosov. On the structure of a family of minimal
weighted cuts in a graph. Studies in Discrete Optimization, pages 290–306, 1976.

15 Guy Even, Jon Feldman, Guy Kortsarz, and Zeev Nutov. A 1.8 approximation algorithm for
augmenting edge-connectivity of a graph from 1 to 2. ACM Trans. Algorithms, 5(2):21:1–21:17,
2009. doi:10.1145/1497290.1497297.

16 Samuel Fiorini, Martin Groß, Jochen Könemann, and Laura Sanità. Approximating weighted
tree augmentation via chvátal-gomory cuts. In Artur Czumaj, editor, Proceedings of the Twenty-
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA,
USA, January 7-10, 2018, pages 817–831. SIAM, 2018. doi:10.1137/1.9781611975031.53.

17 Harold N. Gabow and Suzanne Gallagher. Iterated rounding algorithms for the smallest
k-edge connected spanning subgraph. SIAM J. Comput., 41(1):61–103, 2012. doi:10.1137/
080732572.

18 Waldo Gálvez, Fabrizio Grandoni, Afrouz Jabal Ameli, and Krzysztof Sornat. On the cycle
augmentation problem: Hardness and approximation algorithms. In Evripidis Bampis and
Nicole Megow, editors, Approximation and Online Algorithms - 17th International Workshop,
WAOA 2019, Munich, Germany, September 12-13, 2019, Revised Selected Papers, volume
11926 of Lecture Notes in Computer Science, pages 138–153. Springer, 2019. doi:10.1007/
978-3-030-39479-0_10.

19 Mohit Garg, Fabrizio Grandoni, and Afrouz Jabal Ameli. Improved approximation for two-
edge-connectivity. In Nikhil Bansal and Viswanath Nagarajan, editors, Proceedings of the
2023 ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, Florence, Italy, January
22-25, 2023, pages 2368–2410. SIAM, 2023. doi:10.1137/1.9781611977554.ch92.

20 Naveen Garg, Santosh S. Vempala, and Aman Singla. Improved approximation algorithms for
biconnected subgraphs via better lower bounding techniques. In Vijaya Ramachandran, editor,
Proceedings of the Fourth Annual ACM/SIGACT-SIAM Symposium on Discrete Algorithms,
25-27 January 1993, Austin, Texas, USA, pages 103–111. ACM/SIAM, 1993. URL: http:
//dl.acm.org/citation.cfm?id=313559.313618.

21 Fabrizio Grandoni, Afrouz Jabal Ameli, and Vera Traub. Breaching the 2-approximation
barrier for the forest augmentation problem. In Stefano Leonardi and Anupam Gupta, editors,
STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy,
June 20 - 24, 2022, pages 1598–1611. ACM, 2022. doi:10.1145/3519935.3520035.

22 Fabrizio Grandoni, Christos Kalaitzis, and Rico Zenklusen. Improved approximation for
tree augmentation: saving by rewiring. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29,
2018, pages 632–645, New York, NY, USA, 2018. Association for Computing Machinery.
doi:10.1145/3188745.3188898.

https://doi.org/10.1007/s00453-017-0275-7
https://doi.org/10.1137/S0895480199362071
https://doi.org/10.1137/S009753979833920X
https://doi.org/10.1137/S009753979833920X
https://doi.org/10.1016/j.tcs.2013.04.004
http://dl.acm.org/citation.cfm?id=314500.314573
https://doi.org/10.1145/1497290.1497297
https://doi.org/10.1137/1.9781611975031.53
https://doi.org/10.1137/080732572
https://doi.org/10.1137/080732572
https://doi.org/10.1007/978-3-030-39479-0_10
https://doi.org/10.1007/978-3-030-39479-0_10
https://doi.org/10.1137/1.9781611977554.ch92
http://dl.acm.org/citation.cfm?id=313559.313618
http://dl.acm.org/citation.cfm?id=313559.313618
https://doi.org/10.1145/3519935.3520035
https://doi.org/10.1145/3188745.3188898

M. Bosch-Calvo, F. Grandoni, and A. Jabal Ameli 29:13

23 Prabhakar Gubbala and Balaji Raghavachari. Approximation algorithms for the minimum
cardinality two-connected spanning subgraph problem. In Michael Jünger and Volker Kaibel,
editors, Integer Programming and Combinatorial Optimization, 11th International IPCO
Conference, Berlin, Germany, June 8-10, 2005, Proceedings, volume 3509 of Lecture Notes in
Computer Science, pages 422–436. Springer, 2005. doi:10.1007/11496915_31.

24 Klaus Heeger and Jens Vygen. Two-connected spanning subgraphs with at most 10/7 opt
edges. SIAM J. Discret. Math., 31(3):1820–1835, 2017. doi:10.1137/16M1091587.

25 Christoph Hunkenschröder, Santosh S. Vempala, and Adrian Vetta. A 4/3-approximation
algorithm for the minimum 2-edge connected subgraph problem. ACM Trans. Algorithms,
15(4):55:1–55:28, 2019. doi:10.1145/3341599.

26 Raja Jothi, Balaji Raghavachari, and Subramanian Varadarajan. A 5/4-approximation algo-
rithm for minimum 2-edge-connectivity. In Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, January 12-14, 2003, Baltimore, Maryland, USA, pages
725–734. ACM/SIAM, 2003. URL: http://dl.acm.org/citation.cfm?id=644108.644227.

27 Samir Khuller and Uzi Vishkin. Biconnectivity approximations and graph carvings. In S. Rao
Kosaraju, Mike Fellows, Avi Wigderson, and John A. Ellis, editors, Proceedings of the 24th
Annual ACM Symposium on Theory of Computing, May 4-6, 1992, Victoria, British Columbia,
Canada, pages 759–770. ACM, 1992. doi:10.1145/129712.129786.

28 Samir Khuller and Uzi Vishkin. Biconnectivity approximations and graph carvings. J. ACM,
41(2):214–235, 1994. doi:10.1145/174652.174654.

29 Guy Kortsarz and Zeev Nutov. Lp-relaxations for tree augmentation. In Klaus Jansen,
Claire Mathieu, José D. P. Rolim, and Chris Umans, editors, Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2016,
September 7-9, 2016, Paris, France, volume 60 of LIPIcs, pages 13:1–13:16. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.APPROX-RANDOM.2016.13.

30 Guy Kortsarz and Zeev Nutov. A simplified 1.5-approximation algorithm for augmenting
edge-connectivity of a graph from 1 to 2. ACM Trans. Algorithms, 12(2):23:1–23:20, 2016.
doi:10.1145/2786981.

31 Hiroshi Nagamochi. An approximation for finding a smallest 2-edge-connected subgraph
containing a specified spanning tree. Discret. Appl. Math., 126(1):83–113, 2003. doi:10.1016/
S0166-218X(02)00218-4.

32 Zeev Nutov. On the tree augmentation problem. In 25th Annual European Symposium on
Algorithms, ESA 2017, September 4-6, 2017, Vienna, Austria, pages 61:1–61:14, Dagstuhl,
Germany, 2017. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.
ESA.2017.61.

33 Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency. Springer Science
& Business Media, 2003.

34 András Sebö and Jens Vygen. Shorter tours by nicer ears: 7/5-approximation for the graph-tsp,
3/2 for the path version, and 4/3 for two-edge-connected subgraphs. Comb., 34(5):597–629,
2014. doi:10.1007/s00493-014-2960-3.

35 Vera Traub and Rico Zenklusen. A better-than-2 approximation for weighted tree augmentation.
In 62nd IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver,
CO, USA, February 7-10, 2022, pages 1–12. IEEE, 2021. doi:10.1109/FOCS52979.2021.00010.

36 Vera Traub and Rico Zenklusen. A (1.5+ϵ)-approximation algorithm for weighted connectivity
augmentation. CoRR, abs/2209.07860, 2022. doi:10.48550/arXiv.2209.07860.

ICALP 2023

https://doi.org/10.1007/11496915_31
https://doi.org/10.1137/16M1091587
https://doi.org/10.1145/3341599
http://dl.acm.org/citation.cfm?id=644108.644227
https://doi.org/10.1145/129712.129786
https://doi.org/10.1145/174652.174654
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2016.13
https://doi.org/10.1145/2786981
https://doi.org/10.1016/S0166-218X(02)00218-4
https://doi.org/10.1016/S0166-218X(02)00218-4
https://doi.org/10.4230/LIPIcs.ESA.2017.61
https://doi.org/10.4230/LIPIcs.ESA.2017.61
https://doi.org/10.1007/s00493-014-2960-3
https://doi.org/10.1109/FOCS52979.2021.00010
https://doi.org/10.48550/arXiv.2209.07860

Lower Bounds for Pseudo-Deterministic Counting
in a Stream
Vladimir Braverman #

Rice University, Houston, TX, USA

Robert Krauthgamer #

Weizmann Institute of Science, Rehovot, Israel

Aditya Krishnan #

Pinecone, San Francisco, CA, USA

Shay Sapir # Ñ

Weizmann Institute of Science, Rehovot, Israel

Abstract
Many streaming algorithms provide only a high-probability relative approximation. These two
relaxations, of allowing approximation and randomization, seem necessary – for many streaming
problems, both relaxations must be employed simultaneously, to avoid an exponentially larger (and
often trivial) space complexity. A common drawback of these randomized approximate algorithms is
that independent executions on the same input have different outputs, that depend on their random
coins. Pseudo-deterministic algorithms combat this issue, and for every input, they output with
high probability the same “canonical” solution.

We consider perhaps the most basic problem in data streams, of counting the number of items
in a stream of length at most n. Morris’s counter [CACM, 1978] is a randomized approximation
algorithm for this problem that uses O(log log n) bits of space, for every fixed approximation factor
(greater than 1). Goldwasser, Grossman, Mohanty and Woodruff [ITCS 2020] asked whether pseudo-
deterministic approximation algorithms can match this space complexity. Our main result answers
their question negatively, and shows that such algorithms must use Ω(

√
log n/ log log n) bits of

space.
Our approach is based on a problem that we call Shift Finding, and may be of independent

interest. In this problem, one has query access to a shifted version of a known string F ∈ {0, 1}3n,
which is guaranteed to start with n zeros and end with n ones, and the goal is to find the unknown
shift using a small number of queries. We provide for this problem an algorithm that uses O(

√
n)

queries. It remains open whether poly(log n) queries suffice; if true, then our techniques immediately
imply a nearly-tight Ω(log n/ log log n) space bound for pseudo-deterministic approximate counting.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms; Theory of computation → Lower bounds and information complexity; Theory of
computation → Pseudorandomness and derandomization

Keywords and phrases streaming algorithms, pseudo-deterministic, approximate counting

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.30

Category Track A: Algorithms, Complexity and Games

Related Version arXiv Version: https://arxiv.org/abs/2303.16287

Funding Vladimir Braverman: Work partially supported by ONR Award N00014-18-1-2364 and
NSF awards 1652257, 1813487 and 2107239.
Robert Krauthgamer : Work partially supported by ONR Award N00014-18-1-2364, by a Weizmann-
UK Making Connections Grant, by a Minerva Foundation grant, and the Weizmann Data Science
Research Center.
Aditya Krishnan: Work partially done while the author was at Johns Hopkins University and
supported by the MINDS Data Science Fellowship.

EA
T
C
S

© Vladimir Braverman, Robert Krauthgamer, Aditya Krishnan, and Shay Sapir;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 30; pp. 30:1–30:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vb21@rice.edu
mailto:robert.krauthgamer@weizmann.ac.il
https://orcid.org/0009-0003-8154-3735
mailto:aditya@pinecone.io
mailto:shay.sapir@weizmann.ac.il
https://sites.google.com/view/shaysapir
https://orcid.org/0000-0001-7531-685X
https://doi.org/10.4230/LIPIcs.ICALP.2023.30
https://arxiv.org/abs/2303.16287
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

30:2 Lower Bounds for Pseudo-Deterministic Counting in a Stream

Shay Sapir : This research was partially supported by the Israeli Council for Higher Education (CHE)
via the Weizmann Data Science Research Center.

1 Introduction

Computing over data streams is a rich algorithmic area that has developed enormously, and
actually started with the simple-looking problem of approximate counting [28]. Let us first
recall the streaming model: The input is a stream, i.e., a sequence of items, and the goal is
to compute a pre-defined function of these items, such as the number of items (or number of
the distinct items), while making one sequential pass over the stream (or sometimes a few
passes). Many useful functions actually depend on the items as a multiset, i.e., ignoring their
order, or even only on their frequencies (like the famous ℓp-norm of the frequency vector).
Another possible goal is to produce a sample, rather than computing a function, e.g., to
produce a uniformly random item.

The primary measure of efficiency for streaming algorithms is their space complexity,
and for many problems, researchers have designed space-efficient algorithms, often with
space complexity that is even polylogarithmic in the input size. However, this comes at a
price – these algorithms are usually randomized (and not deterministic) and/or compute an
approximate solution (rather than exact one). In fact, oftentimes both relaxations are needed
in order to achieve low space complexity. For example, to count the number of items in a
stream of length at most n, there is a randomized approximation algorithm using O(loglog n)
bits of space, but algorithms that are exact or deterministic must use Ω(log n) bits [28].
Another example is the ℓ2-norm of the frequency vector of items from a ground set [d] (or
equivalently, of a d-dimensional vector under a sequence of additive updates) – there is a
randomized approximation algorithm that uses O(log d) bits of space, but algorithms that
are exact or deterministic must use Ω(d) bits of space [1].

Gat and Goldwasser [9] initiated the study of pseudo-deterministic algorithms, which
informally means that when run (again) on the same input, with high probability they
produce exactly the same output. This notion combats a potential issue with randomized
algorithms, that independent executions on the same input might return different outputs,
depending on the algorithm’s coin tosses. Many known streaming algorithms suffer from
this issue, which is a serious concern for some users and applications. Pseudo-deterministic
algorithms were later considered in the streaming model by Goldwasser, Grossman, Mohanty
and Woodruff [16], and these are formally defined as follows.

▶ Definition 1.1. A streaming algorithm A is pseudo-deterministic (PD) if there is a function
F (·) defined on inputs of A (streams), such that for every stream σ,

Pr[A(σ) = F (σ)] ≥ 9/10,

where the probability is over the random choices of the algorithm. We shall refer to F as the
canonical function of algorithm A.1

We focus on estimation problems, which ask to approximate a numerical value, and are
very popular in the streaming model. For such problems, the notion of PD relaxes the exact
setting and the deterministic one, since exact algorithms have one canonical output (the

1 The canonical function F depends on the order arrival of the stream items. In an alternative definition,
the canonical function depends on the items only as a multiset, i.e., ignoring their order in the stream.
These two definitions are equivalent in the setting of approximate counting, which is the focus of our
work.

V. Braverman, R. Krauthgamer, A. Krishnan, and S. Sapir 30:3

Table 1 Known space bounds (in bits) for 2-approximate counting in a stream of length at most
n. Folklore bounds are stated without a reference.

Algorithms Upper bound Lower bound
Exact or deterministic O(log n) Ω(log n)
Randomized and approximate O(loglog n) [28] Ω(loglog n) [29]
Pseudo-deterministic O(log n) Ω(

√
log n/loglog n) [Thm. 1.2]

exact numerical value), and hence they are PD. Thus the known lower bounds for these
settings do not apply for PD algorithms, and a central question, identified in [16], remains
open:

Are there efficient PD streaming algorithms for estimation problems?

Currently, no lower bounds are known for natural estimation problems, although for
several search problems, like reporting an element from a stream with deletions (equivalently,
an index from the support of the frequency vector), it is known that lower bounds for
deterministic algorithms extend to PD algorithms [16].

1.1 Main Result: Approximate Counting
Perhaps the most basic problem in the streaming model is to count the number of stream
items. Exact counting, i.e., computing the number of items exactly, requires Θ(log n) bits of
space when the stream has length at most n, even for randomized algorithms with some error
probability. Work by Morris [28], later refined in [8, 18, 29], showed that the number of stream
items can be (1 + ϵ)-approximated with probability 9/10 using Oϵ(loglog n) bits of space,
where ϵ > 0 is arbitrary but fixed. Throughout, we refer to multiplicative approximation,
and use the notations Oc(·) and Ωc(·) to hide factors that are polynomial in c. Morris’s
algorithm has found many applications, both in theory and in practice [27, 29]. An open
question stated explicitly by Goldwasser, Grossman, Mohanty and Woodruff [16] is whether
there is a PD algorithm for this problem using O(loglog n) bits of space. We answer their
question negatively, by proving the following lower bound.

▶ Theorem 1.2 (Main Result). For every c, n > 1, every PD streaming algorithm that
c-approximates the number of items in a stream of length at most (c + 1)n must use
Ωc(

√
log n/loglog n) bits of space.

To be more precise, our lower bound is actually Ω
(log n√

log n loglog(cn)+log c

)
, which is still

Ω(
√

log n
loglog n) as long as c < 2

√
log n loglog n. Previously, there was a large gap for this

problem, between O(log n) bits (by a deterministic algorithm) and Ω(loglog n) bits (from
the randomized setting) [29]. See Table 1 for a summary of the known bounds.

Our proof analyzes the promise variant of c-approximate counting for streams of length at
most (c + 1)n, which we denote by ΠAC

c,n ; this variant asks to distinguish whether the number
of stream items is ≤ n or > cn (see Definition 2.1). A crucial property of PD algorithms is
that they have to be PD also for inputs in the range [n + 1, cn] (i.e., outside the promise).
We rely on this property of PD algorithms to prove the following result, which immediately
yields Theorem 1.2 as a corollary.

ICALP 2023

30:4 Lower Bounds for Pseudo-Deterministic Counting in a Stream

▶ Theorem 1.3 (Main Result). For every c, n > 1, every PD streaming algorithm for problem
ΠAC

c,n must use Ωc(
√

log n/loglog n) bits of space.

Our proof of Theorem 1.3 appears in Section 4. It is based on a problem that we call
Shift Finding, which may be of independent interest, as it is very natural and likely to
find connections to other problems. In addition, it can potentially lead to a near-tight
Ω(log n/ loglog n) lower bound for PD streaming, by simply improving our algorithmic result
for Shift Finding. A very recent independent work by Grossman, Gupta and Sellke [20]
shows a tight Ω(log n) bound for ΠAC

c,n , using a very different technique, which views the PD
streaming algorithm as a Markov chain with a limited number of states.

1.2 Main Technique: The Shift Finding Problem
Our main result relies on algorithms for the shift Finding problem ΠSF

c,n , which is defined
below. Let us first introduce some basic terminology. A function F : [m]→ {0, 1} can also be
viewed as a string F ∈ {0, 1}m, and vice versa, and we sometimes use these interchangeably.
Given s ∈ [0, n], let the shifted version of this F be the function Fs : x 7→ F (s + x), with a
properly restricted domain, see Section 2.

▶ Definition 1.4 (Shift Finding). Let c, n > 1. In problem ΠSF
c,n , the input is a string

P ∈ {0, 1}(c−1)n, and one has query access to a string Fs∗ that is the concatenation of n− s∗

zeros, then P , and finally s∗ ones, for an unknown s∗ ∈ [0, n]. Thus, a query for x ∈ [0, cn]
returns Fs∗(x). The goal is to output s∗.

The measure of complexity of an algorithm for this problem is the number of queries that
it makes to Fs∗ . A randomized algorithm is required to be correct (in its output s∗) with
probability 9/10.

This problem may be also of independent interest. In a different variant of shift finding,
the input is a random string c ∈ {0, 1}n and a vector x that is obtained from the string c by
a cyclic shift τ and some noise (random bit flips), and the goal is to compute the shift τ with
high probability. This problem is related to GPS synchronization, see [23, 2] for more details.
There is a sublinear time algorithm for this problem, running in time roughly O(n0.641) [2].
One main difference is that in our Definition 1.4, one string is completely known to the
algorithm, and the only concern is the number of queries to the second string.

1.2.1 Connection to PD Counting
We show that an algorithm for Shift Finding (ΠSF

c,n) implies a space lower bound for PD
streaming algorithm for counting (ΠAC

c,n).

▶ Theorem 1.5. Let c, n > 1, and suppose that the Shift Finding problem ΠSF
c,n admits a

randomized algorithm that makes at most q = q(c, n) queries (possibly adaptive). Then, every
PD streaming algorithm for the approximate counting problem ΠAC

c,n must use Ω(log n
log q) bits of

space.

It immediately follows that if the Shift Finding problem ΠSF
c,n can be solved using polylog(n)

queries (for fixed c > 1), then PD approximate counting requires Ω(log n
loglog n) bits of space.

However, our current upper bound for Shift Finding is q = O(
√

cn) queries (Theorem 1.8)
and is not strong enough to yield a nontrivial lower bound for PD approximate counting.

Therefore, to prove our main lower bound (Theorem 1.3), we revert to a generalization of
Theorem 1.5 where the Shift Finding algorithm is still given an instance of problem ΠSF

c,n

(namely, a string F and query access to Fs∗), but reports a small set R ⊂ [0, n] (say of size

V. Braverman, R. Krauthgamer, A. Krishnan, and S. Sapir 30:5

|R| ≤ t) that contains the unknown shift (i.e., s∗ ∈ R). This algorithm may be randomized
provided that it is PD, and its canonical function maps each instance of problem ΠSF

c,n to a
set R of size t that contains s∗.

▶ Theorem 1.6. Let c, n > 1, and suppose there is a PD algorithm Q that, given an instance
of problem ΠSF

c,n , makes at most q = q(c, n) queries (possibly adaptive) to Fs∗ and its canonical
function M maps the input to a set R ⊂ [0, n] of size t = tc(n) that contains s∗. Then every
PD streaming algorithm for problem ΠAC

c,n must use Ω(log(n/t)
log q) bits of space.

We use Theorem 1.6, (more precisely its proof arguments rather than its statement) to
prove our main result (Theorem 1.3), see Section 4. At a high level, the proof of Theorem 1.3
proceeds by splitting into two cases, depending on the canonical function F . Roughly speaking,
in one case we show a Shift Finding algorithm that returns a set of size t = n/2

√
log n using

q = O(log n) queries by binary search, and in the other case an algorithm to find the shift
(i.e., t = 1) with probability 9/10 using q = 2

√
log n uniformly random queries.

As a corollary of Theorem 1.5, we get that the tracking version of approximate counting
must use Ω(log n) bits of space, which is tight with a straightforward deterministic counting.
Tracking means that the algorithm produces an output after every stream item rather than at
the end of the stream, and with probability 9/10, all the outputs are simultaneously correct
(i.e., approximate the number of items seen so far).

▶ Corollary 1.7 (Tracking). For every c, n > 1, every PD tracking algorithm that c-
approximates the number of items in a stream of length (c + 1)n must use Ω(log n) bits
of space.

In contrast, for standard randomized algorithms, there is a tracking algorithm for (1 +
ϵ)-approximate counting that uses Oϵ(loglog n) bits of space, for any fixed ϵ > 0 [29].
Corollary 1.7 follows by an easy modification of the proof of Theorem 1.5. That proof uses
O(log q) repetitions of a PD streaming algorithm, and then employs a union bound on q

input streams, which is not necessary for tracking algorithms and thus the bound follows.
A more direct argument is essentially by equivalence to exact counting. For a stream with

s < n items, the state of a PD tracking algorithm with canonical function F can be used to
compute s, as follows. Simulate insertion of more items to the stream until the output of
the algorithm changes to 1 (which corresponds to the first 1 in Fs), from which s can be
computed.

1.2.2 An Algorithm for Shift Finding
Consider a special case of the Shift Finding problem ΠSF

c,n , where the input string P is a
run of zeros followed by a run of ones (viewed as a function, it is a step function); then the
algorithm can perform a binary search using O(log(cn)) queries, and find the unique location
where Fs∗ switches from value 0 to 1, and hence recover s∗. At the other extreme, suppose
the input string P is random; then with high probability every set of O(log n) queries from P

(and thus from Fs∗) will be answered differently (viewed as a string in {0, 1}O(log n)). Based
on these observations, one may hope that problem ΠSF

c,n admits an algorithm that makes
polylog(cn) queries. We leave this as an open question and prove a weaker bound of O(

√
cn)

queries.

▶ Theorem 1.8 (Shift Finding Algorithm). There is a deterministic algorithm for problem
ΠSF

c,n that makes O(
√

cn) queries.

ICALP 2023

30:6 Lower Bounds for Pseudo-Deterministic Counting in a Stream

A key observation in our result, that may be useful in future work, is that for every shift
s∗ there is a “short witness” that uses exactly 2 queries. We formalize this as verifying a
given guess s for the shift s∗.

▶ Lemma 1.9 (Short Witness). There is a deterministic algorithm that, given as input an
instance of problem ΠSF

c,n and s < n, makes 2 queries to Fs∗ and returns “yes” if s = s∗ and
“no” otherwise.

The proofs of Theorem 1.8 and Lemma 1.9 appear in Section 5. At a high level, the Shift
Finding algorithm in Theorem 1.8 queries the set {Fs∗(0), Fs∗(

√
cn), Fs∗(2

√
cn), ..., Fs∗(cn)},

and then uses the short witness (Lemma 1.9) to check every feasible s ∈ [n] (i.e., that agrees
with the query answers). Following an observation by Peter Kiss, we are able to improve our
Shift Finding algorithm to use only O((cn)1/3 log n) queries; details omitted.

1.3 Related Work
Pseudo-deterministic algorithms

The notion of pseudo-deterministic algorithms was introduced by [9] (they originally called
them Bellagio algorithms), followed by a long sequence of works that studied it in different
models [13, 19, 14, 30, 24, 15, 5, 31, 11, 21, 12, 16, 26, 6, 17, 10, 7]. In the streaming and
sketching models, [16] proved strong lower bounds for finding a non-zero entry in a vector
(given in a stream with deletions), and for sketching ℓ2-norms. Another related setting is that
of sublinear time computation. Under certain assumptions, PD algorithms (in the sublinear
time region) were shown to admit the following relation with deterministic algorithms – if
for a certain problem there is a PD algorithm using q queries, then there is a deterministic
algorithm using O(q4) queries [13]. The techniques of [13] do not seem to extend to streaming
algorithms.

Adaptive adversarial streams

In this setting, the stream items are chosen adversarially and depend on past outputs of the
streaming algorithm (i.e., the stream is adaptive) [3]. This model is considered to be between
PD algorithms and the standard randomized setting, in the sense that for streams of length
m, amplifying a PD algorithm to success probability 1− 1

10m (by O(log m) repetitions and
taking the median) guarantees (by a union bound) that the algorithm outputs the canonical
solution after every stream item with probability 9/10, thus the adversary acts as an oblivious
one (the adversary knows in advance the output of the streaming algorithm, which is the
canonical function). For approximate counting, adaptive streams and standard (oblivious)
streams are equivalent (since the stream items are identical) and thus admit an algorithm
using O(loglog n) bits of space.

There is a vast body of work designing algorithms for adaptive streams, but not much is
known in terms of lower bounds. Lower bounds are known for some search problems, like
finding a spanning forest in a graph undergoing edge insertions and deletions, but also for
graph coloring [4]. Regarding estimation problems, the only lower bound we are aware of is
for some artificial problem [25]. Recently, Stoeckl [32] showed a lower bound on streaming
algorithms that use a bounded amount of randomness, conditioned on a lower bound for PD
algorithms. In the related model of linear sketching, Hardt and Woodruff [22] showed lower
bounds on the dimensions of sketching algorithms, which applies to many classical problems,
like ℓp-norm estimation and heavy hitters.

V. Braverman, R. Krauthgamer, A. Krishnan, and S. Sapir 30:7

2 Preliminaries

▶ Definition 2.1 (Approximate counting). Let c, n > 1. In problem ΠAC
c,n , the input is a

stream of l ≤ (c + 1)n identical items. The goal is to output 0 if l ≤ n and 1 if l > cn (and
otherwise the output can be either 0 or 1).

Let A be a PD algorithm for problem ΠAC
c,n , and let F : [0, (c + 1)n] → {0, 1} be the

canonical function of A. Thus, there is a fixed string P ∈ {0, 1}(c−1)n such that

F (x) =


0 if x ∈ [0, n];
1 if x ∈ [cn + 1, (c + 1)n];
P (x− n) otherwise.

For s∗ ∈ [0, n], let Fs∗ : [0, (c + 1)n − s∗] → {0, 1} be a shifted version of F , namely the
function Fs∗ : x 7→ F (s∗ + x). We use these notations throughout the paper.

Our proofs are based on a reduction from a simple one-way communication problem,
called MESSAGE and denoted ΠMSG

Σ , where Alice’s input x is from an alphabet Σ that is
fixed in advance, Bob has no input, and the goal is that Bob outputs x with probability at
least 2/3. It is well known that this problem requires Ω(log |Σ|) bits of communication, even
for randomized protocols using shared randomness. We provide a proof for completeness.

▶ Lemma 2.2. For every alphabet Σ, every one-way communication protocol (even with
shared randomness) for problem ΠMSG

Σ must use Ω(log |Σ|) bits of communication.

Proof. Let A be a protocol for problem ΠMSG
Σ . For a random string r representing the

randomness of A, let Σr ⊂ Σ be the set of all s ∈ Σ for which Bob correctly recovers s. Let r∗

be a string maximizing |Σr|, then by averaging, |Σr∗ | ≥ 2
3 |Σ|. Consider an instance of A that

uses r∗ as its random string. Assume by contradiction that the number of communication
bits is less than log |Σr∗ |, then by the pigeonhole principle there are two distinct inputs
s, s′ ∈ Σr∗ such that A(s) and A(s′) result in the same message. Bob then cannot distinguish
between (i.e., has the same output distribution for) s and s′, a contradiction. Hence, the
number of bits of communication is at least log |Σr∗ | = Ω(log |Σ|). ◀

3 Lower Bounds for PD Approximate Counting via Shift Finding

In this section, we prove Theorem 1.5. The proof involves three problems from different
settings: (a) PD approximate counting in the streaming model; (b) Shift Finding in the
query-access model; and (c) MESSAGE in one-way communication with shared randomness.
The proof essentially shows that if there is an algorithm for Shift Finding that makes only
q queries and also a streaming algorithm for PD approximate counting that uses b bits of
space, then MESSAGE can be solved using O(b log q) bits of communication. Combining
this bound with the well-known lower bound for MESSAGE in Lemma 2.2 yields a lower
bound for b.

A core idea in the proof is that an execution of a PD streaming algorithm A for the
approximate counting problem ΠAC

c,n on a stream with s∗ insertions, can be used (even without
knowing s∗, by making additional insertions and then querying the streaming algorithm A)
to provide query access to the shifted function Fs∗ : x 7→ F (s∗ + x). This query access, along
with a query-efficient algorithm for the Shift Finding problem ΠSF

c,n , is then used to solve an
instance of the MESSAGE problem ΠMSG

Σ .

ICALP 2023

30:8 Lower Bounds for Pseudo-Deterministic Counting in a Stream

In fact, we prove the following theorem, which holds for each string F separately (rather
than a bound that depends on the worst-case F), and yields Theorem 1.5 as an immediate
corollary.

▶ Theorem 3.1. Let A be a PD streaming algorithm for problem ΠAC
c,n , where c, n > 1, and

let F : [0, (c + 1)n]→ {0, 1} be the canonical function of A. Suppose that Shift Finding with
respect to this specific F (the problem of finding an unknown shift s∗ ∈ [n] with probability
at least 9/10 given query access to Fs∗) admits a randomized algorithm that makes at most
q = q(F) (possibly adaptive) queries. Then the streaming algorithm A must use Ω(log n

log q) bits
of space.

Proof. Define algorithm A′ to be an amplification of A to success probability 1− 1/(10q), by
running O(log q) independent repetitions and reporting their majority. Assume there exists
an algorithm Q that for every s∗ ∈ [n], makes at most q = q(F) queries to Fs∗ (possibly
adaptive) and outputs s∗ with probability at least 9/10.

Consider an instance of problem ΠMSG
Σ with alphabet Σ = [0, n], and consider the

following protocol for it. Alice starts an execution of the streaming algorithm A′ using the
shared randomness, then takes her input s∗ ∈ Σ and makes s∗ stream insertions to algorithm
A′, and finally sends the state (memory contents) of A′ to Bob.

Bob continues the execution of the streaming algorithm A′ (using the shared randomness),
and uses it to provide query access to Fs∗ , as follows. In order to query Fs∗ at any index x,
Bob makes a fresh copy A0 of the streaming algorithm A′, insert x stream items to algorithm
A0 and then reads its output. With probability at least 1− 1/(10q), the answer that Bob
gets is indeed Fs∗(x) (because the number of items inserted to this instance of the algorithm
is x + s∗). Bob uses this query access and his knowledge of F to simulate algorithm Q (with
the goal of recovering s∗).

Consider Bob’s simulation of algorithm Q. If Q was executed with true query access to
Fs∗ , then it would have had success probability 9/10, and would have made a sequence of
queries XQ to Fs∗ . This sequence XQ depends only on Fs∗ and the coin tosses of algorithm
Q. In particular, revealing XQ (i.e., conditioned on XQ) does not affect the coins of the
streaming algorithm A′, and it still succeeds with probability at least 1− 1/(10q). We can
thus apply a union bound to conclude that algorithm A′ succeeds on all queries x ∈ XQ (i.e.,
outputs the corresponding Fs∗(x)) with probability at least 1− q · 1

10q = 9/10. Hence, when
Bob simulates algorithm Q using the streaming algorithm A′, with probability 9/10 (over
the coins of A′) the execution is identical to running algorithm Q with true access to Fs∗ ,
which itself succeeds with probability 9/10. By a union bound, with probability 8/10 both
algorithm Q and the streaming algorithm A′ succeed, in which case Bob recovers s∗, and
therefore this communication protocol solves problem ΠMSG

Σ with alphabet Σ = [0, n].
By Lemma 2.2, the message Alice sends must contain Ω(log n) bits, and thus the streaming

algorithm A′ must use Ω(log n) bits of space. Recall that algorithm A′ consists of O(log q)
copies of the streaming algorithm A and thus algorithm A must use Ω(log n

log q) bits of space. ◀

4 Lower Bound for PD Approximate Counting

In this section, we prove Theorem 1.3, i.e., for every c, n > 1, we prove that every PD
streaming algorithm for the approximate counting problem ΠAC

c,n must use Ωc(
√

log n
loglog n) bits

of space.

V. Braverman, R. Krauthgamer, A. Krishnan, and S. Sapir 30:9

Let F be the canonical function of a PD streaming algorithm for problem ΠAC
c,n . Our

analysis is split into two cases depending on F , which informally correspond to whether a
fixed pattern (like “01”) appears in the string F at most t times or not. These cases are
analyzed using Theorems 1.6 and 3.1. The overall bound will be derived by optimizing the
threshold t between the two cases to roughly t = n/2

√
log n.

4.1 Scenario One
In this scenario, there is a specific pattern in F that appears at most t times, where t = tc(n)
will be set at the end of our proof. We first consider the pattern “01” in F , which corresponds
to x ∈ [0, (c + 1)n− 1] such that F (x) = 0 and F (x + 1) = 1, and later generalize this pattern
to a broader family.

▶ Lemma 4.1. If the pattern “01” appears at most t times in F , then every PD streaming
algorithm for problem ΠAC

c,n whose canonical function is F must use Ω(log(n/t)
loglog(cn)) bits of space.

Proof. The proof is by a reduction from problem MESSAGE, similarly to the proof of
Theorem 3.1. Perhaps the most delicate part is the definition of an alphabet Σ for the
MESSAGE problem ΠMSG

Σ , and it proceeds as follows.
Given s ∈ [n], consider the following execution of Binary Search on the function Fs.

Initialize l = 0 and r = cn + 1, and at every iteration query Fs(⌊ l+r
2 ⌋); if Fs(⌊ l+r

2 ⌋) = 0,
then l← ⌊ l+r

2 ⌋, otherwise r ← ⌊ l+r
2 ⌋. These iterations maintain the invariant that Fs(l) = 0

and Fs(r) = 1, and after at most log(cn) iterations arrive at r = l + 1 with the pattern “01”.
Define a mapping M : [n] → [cn] such that M(s) is the location where the binary search
finds a “01” in Fs, i.e., the final index l; thus F (s + M(s)) = 0 and F (s + M(s) + 1) = 1.

In order to define an alphabet Σ, consider a partitioning of [n] to buckets, defined such
that items s, s′ are from the same bucket B if and only if they are mapped to the same
value M(s) = M(s′). For every bucket B and every s, s′ ∈ B, we know from above that
F (s′ + M(s)) = 0 and F (s′ + M(s) + 1) = 1, so there are at most t possibilities for s′

(one of which is s′ = s), and thus the size of the bucket |B| ≤ t. Define Σ ⊂ [n] by taking
one representative from each bucket. Thus, every s1 ̸= s2 ∈ Σ satisfy M(s1) ̸= M(s2) and
|Σ| ≥ n/t.

Let A be a streaming algorithm whose canonical function is F and let algorithm A′

be an amplification of algorithm A that succeeds with probability 1 − 1/(10 log(cn)) (by
making O(loglog(cn)) repetitions and taking the majority). Consider an instance of the
MESSAGE problem ΠMSG

Σ , and proceed similarly to the proof of Theorem 3.1. We provide
a self-contained analysis for completeness. Alice and Bob perform the following protocol.
Alice starts an execution of algorithm A′ using the shared randomness. For input s∗ ∈ Σ,
she inserts s∗ stream items to algorithm A′ and sends the state (memory contents) of this
algorithm A′ to Bob. In order to get query access to Fs∗ at index x, Bob makes a fresh
copy A0 of algorithm A′, continues the algorithm’s execution (using the shared randomness),
inserts x stream items to algorithm A0 and finally reads its output. Bob uses this query
access to simulate the Binary Search algorithm on Fs∗ (with the goal of recovering M(s∗)).
He then infers which bucket corresponds to his result, and outputs the representative of that
bucket (which is s∗ if he recovers M(s∗)).

If the Binary Search algorithm were executed with true query access to Fs∗ , then it would
have output M(s∗) and would have made a sequence of queries XBS to Fs∗ . This sequence
depends only on Fs∗ , and in particular independent of the random coins of algorithm A′.
Thus by a union bound, algorithm A′ succeeds on all queries x ∈ XBS (i.e. outputs the
corresponding Fs∗(x)) with probability at least 1− log(cn) · 1/(10 log(cn)) = 9/10. Hence,

ICALP 2023

30:10 Lower Bounds for Pseudo-Deterministic Counting in a Stream

when Bob simulates the Binary Search algorithm using the streaming algorithm A′, then
with probability 9/10 the execution is identical to running the Binary Search algorithm with
true query access to Fs∗ . Thus with this probability 9/10, Bob recovers M(s∗), and hence
outputs s∗, which concludes the correctness analysis of the communication protocol.

By Lemma 2.2, the message Alice sends must contain Ω(log |Σ|) ≥ Ω(log(n/t)) bits, and
thus algorithm A′ must use Ω(log(n/t)) bits of space. Recall that algorithm A′ is made
of O(loglog(cn)) copies of algorithm A and thus algorithm A must use Ω(log(n/t)

loglog(cn)) bits of
space. ◀

▶ Remark 4.2. This proof can be easily generalized to prove Theorem 1.6. The first exten-
sion is by replacing the Binary Search algorithm and the corresponding buckets with any
deterministic algorithm Q that returns a subset containing s∗. In order to generalize Q to
any PD algorithm Y , consider the canonical function of Y instead of the mapping M , and
apply the same proof. It holds because the crucial property of the Binary Search algorithm
was the existence of the mapping M . Then by an additional union bound, both algorithms
Q and A′ succeed with probability 8/10 (as in the proof of Theorem 3.1).

We now generalize Lemma 4.1 to a larger family of patterns in F , where each pattern is
characterized by a parameter k ∈ [n], and appears at index x ∈ [0, (c + 1)n− k] such that
F (x) = 0 and F (x + k) = 1. These patterns are allowed to overlap with each other (for
different values of k). Denote such a pattern by “0?k−11”, where each question mark can
represent either 0 or 1, and the number of question marks is k−1 < n. A copy of this pattern
can be found in O(log n

k) queries to Fs∗ by a binary search on the grid (0, k, ..., ⌈ cn
k ⌉k), since

Fs∗(0) = 0 and Fs∗(⌈ cn
k ⌉k) = 1. Hence, if there exists k for which this pattern appears at

most t times in F , then the communication protocol above can be adjusted to imply that
algorithm A must use at least Ω(log(n/t)

loglog(cn/k)) ≥ Ω(log(n/t)
loglog(cn)) bits of space. The only change in

the proof is in the number of queries that Bob makes, which affects the number of repetitions
in algorithm A′, and thus only affects the loglog term.

▶ Corollary 4.3. If for some k ≤ n the pattern “0?k−11” appears at most t times in F , then
every PD streaming algorithm for problem ΠAC

c,n whose canonical function is F , must use
Ω(log(n/t)

loglog(cn)) bits of space.

4.2 Scenario Two
In this scenario, for every k ≤ n the pattern “0?k−11” appears at least t times in F .

▶ Lemma 4.4. If for all k ∈ [n], the pattern “0?k−11” appear at least t times in F , then
every PD streaming algorithm for problem ΠAC

c,n whose canonical function is F , must use
Ω(log n

log(cn/t)+loglog n) bits of space.

Proof. In this case, there is an algorithm for the Shift Finding problem ΠSF
c,n using q =

O(cn log n
t) queries to Fs∗ , as follows.

1. let S = [0, n]
2. repeat the following 10cn log n

t times:
a. pick r ∈ [cn] uniformly at random and query Fs∗(r)
b. let S ← {s ∈ S : F (s + r) = Fs∗(r)}

3. if |S| = 1, return s ∈ S; else return FAIL

The final set S clearly contains the shift s∗. It remains to show that all s ̸= s∗ are
removed from the set S with high probability.

V. Braverman, R. Krauthgamer, A. Krishnan, and S. Sapir 30:11

Fix s ∈ [n], s ̸= s∗. There are t values for r ∈ [cn] for which F (s∗ + r) ̸= F (s + r),
as follows. Assume without loss of generality that s∗ < s and denote k = s − s∗ ∈ [n].
Let l be a location that corresponds to the pattern “0?k−11” in F , i.e. F (l) = 0 and
F (l + k) = 1. If l ∈ [s∗ + 1, s∗ + cn], then there is r ∈ [cn] such that s∗ + r = l, for which
F (s∗ + r) = 0 ̸= F (l + k) = F (s + r). There are at least t locations for this pattern (i.e.
possible values for l), thus it remains to show that indeed l ∈ [s∗ + 1, s∗ + cn]. It must be
that l + k > n since F (x) = 0 for all x ≤ n, and similarly l ≤ cn since F (x) = 1 for all
x > cn. Hence l ∈ [n− k + 1, cn] ⊂ [s∗ + 1, s∗ + cn], and thus there are t values for r ∈ [cn]
for which F (s∗ + r) ̸= F (s + r) (each value for r corresponds to a possible value for l).

Thus, in each repetition, s is removed from the set S with probability at least t
cn . The

probability s is not removed after 10cn log n
t repetitions is (1 − t

cn)(10cn log n)/t < 1
n2 . By a

union bound, all s ̸= s∗ are removed with probability 1− 1
n , which concludes the correctness

analysis of the algorithm for problem ΠSF
c,n .

By Theorem 3.1, every PD streaming algorithm for the approximate counting problem
ΠAC

c,n with a canonical function F must use Ω(log n
log((cn log n)/t)) bits of space. ◀

4.3 Concluding the Proof of Theorem 1.3

Concluding the two scenarios, set t = n/2
√

log n·log log(cn) and get by Corollary 4.3 and
Lemma 4.4 that every PD streaming algorithm for the approximate counting problem ΠAC

c,n

must use

Ω(min{ log(n/t)
loglog(cn) , log n

log((cn/t) log n)}) = Ω(log n√
log n loglog(cn)+log c

)

bits of space, which boils down to Ω(
√

log n
loglog n) for c < 2

√
log n loglog n.

5 Shift Finding Algorithm

One can hope to prove tighter lower bounds for PD streaming algorithms for the approximate
counting problem ΠAC

c,n , and a possible approach is by solving the Shift Finding problem ΠSF
c,n

using polylog n queries. Recall that in problem ΠSF
c,n , the input is a string P ∈ {0, 1}(c−1)n,

which can be represented by a string F which is a concatenation of n zeros, P and then n

ones; and query access to a shifted version of F with shift s∗, denoted Fs∗ . As stated in
Theorem 1.8, we show a deterministic algorithm for problem ΠSF

c,n using O(
√

cn) queries
(Algorithm 1), and we leave open the question whether it is the right bound. The proof relies
on an efficient verification algorithm that for input s, uses 2 queries and returns “yes” if and
only if s = s∗, as stated in Lemma 1.9 and described next.

Proof of Lemma 1.9. Denote by l ∈ [n + 1, cn + 1] the smallest number such that F (l) = 1,
and by r ∈ [n, cn] the largest number such that F (r) = 0. For input s ∈ [0, n], the verification
algorithm returns “no” if Fs∗(l − s) = 0 or Fs∗(r − s) = 1, and otherwise returns “yes”.

If s = s∗, then Fs∗(x− s) = F (x) and the verification algorithm outputs “yes”. If s > s∗,
then s∗ − s + l < l and thus Fs∗(l − s) = F (s∗ − s + l) = 0 and the verification algorithm
outputs “no”. Similarly, if s < s∗ then Fs∗(r − s) = 1 and the verification algorithm outputs
“no”. ◀

▶ Remark 5.1. There is a randomized algorithm for problem ΠSF
c,n using Õc(

√
n) queries that

is similar to the proof of Theorem 1.3 in Section 4. It proceeds by considering those two
scenarios. In scenario one, instead of constructing the set Σ, query witnesses for all the t

ICALP 2023

30:12 Lower Bounds for Pseudo-Deterministic Counting in a Stream

possible shifts using 2t queries and hence recover the unknown shift s∗. In scenario two, the
proof of Theorem 1.3 shows how to find the unknown shift s∗ in O(cn

t log n) queries with
high probability. Hence, by setting t =

√
cn log n, this algorithm finds the unknown shift in

O(max{t + log(cn), cn
t log n}) ≤ O(

√
cn log n) queries with high probability.

Next is a slight improvement, a deterministic algorithm in O(
√

cn) queries, proving
Theorem 1.8.

Algorithm 1 Deterministic Shift Finding in O(
√

cn) queries.

Input: n, c, F and query access to Fs∗

Output: s∗

1: Q← (Fs∗(0), Fs∗(
√

cn), Fs∗(2
√

cn), ..., Fs∗(cn))
2: let S ←

{
s ∈ [0, n] : ∀i ∈ [0,

√
cn], Fs(i

√
cn) = Q(i)

}
▷ i.e. the set of all shifts that could

have produced Q

3: for s ∈ S do
4: check the witness of s

5: if s = s∗ then return s

▶ Lemma 5.2. The set S in Algorithm 1 is of size O(
√

cn).

Proof. Assume by contradiction that |S| ≥
√

cn + 1. Hence by the pigeonhole principle,
there exists s1 < s2 ∈ S such that s1 = s2 mod

√
cn. Hence for all i ∈ [0,

√
cn− s2−s1√

cn
],

Q(i) = Fs2(i
√

cn) = Fs1(s2 − s1 + i
√

cn) = Q(s2−s1√
cn

+ i),

where the first and last transitions hold since s1, s2 ∈ S and s2−s1√
cn

is an integer number,
and the second transition is by definition. Thus Q has a period of length s2−s1√

cn
≤ ⌊ s2√

cn
⌋.

However, for i ∈ [
√

cn − ⌊ s2√
cn
⌋ + 1,

√
cn] the values that Q get are Q(i) = Fs2(i

√
cn) = 1

since s2 + i
√

cn ≥ cn; thus all entries in Q are equal 1, which contradicts the fact that
Q(0) = 0, and thus completes the proof. ◀

Algorithm 1 returns the shift s∗ since s∗ ∈ S and by the correctness of the verifier in
Lemma 1.9. The number of queries Algorithm 1 makes is O(|S| + |Q|) = O(

√
cn), which

proves Theorem 1.8.

References
1 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the

frequency moments. In Proceedings of the Twenty-Eighth Annual ACM Symposium on the
Theory of Computing, pages 20–29, 1996. doi:10.1145/237814.237823.

2 Alexandr Andoni, Piotr Indyk, Dina Katabi, and Haitham Hassanieh. Shift finding in sub-
linear time. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA, pages 457–465, 2013. doi:10.1137/1.9781611973105.33.

3 Omri Ben-Eliezer, Rajesh Jayaram, David P. Woodruff, and Eylon Yogev. A framework for
adversarially robust streaming algorithms. J. ACM, 69(2):17:1–17:33, 2022. doi:10.1145/
3498334.

4 Amit Chakrabarti, Prantar Ghosh, and Manuel Stoeckl. Adversarially robust coloring for graph
streams. In 13th Innovations in Theoretical Computer Science Conference, ITCS, volume
215 of LIPIcs, pages 37:1–37:23. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPIcs.ITCS.2022.37.

https://doi.org/10.1145/237814.237823
https://doi.org/10.1137/1.9781611973105.33
https://doi.org/10.1145/3498334
https://doi.org/10.1145/3498334
https://doi.org/10.4230/LIPIcs.ITCS.2022.37

V. Braverman, R. Krauthgamer, A. Krishnan, and S. Sapir 30:13

5 Peter Dixon, A. Pavan, and N. V. Vinodchandran. On pseudodeterministic approximation
algorithms. In 43rd International Symposium on Mathematical Foundations of Computer
Science, MFCS, volume 117 of LIPIcs, pages 61:1–61:11. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2018. doi:10.4230/LIPIcs.MFCS.2018.61.

6 Peter Dixon, A. Pavan, and N. V. Vinodchandran. Complete problems for multi-
pseudodeterministic computations. In 12th Innovations in Theoretical Computer Science
Conference, ITCS, volume 185 of LIPIcs, pages 66:1–66:16. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2021. doi:10.4230/LIPIcs.ITCS.2021.66.

7 Peter Dixon, A. Pavan, Jason Vander Woude, and N. V. Vinodchandran. Pseudodeterminism:
promises and lowerbounds. In STOC ’22: 54th Annual ACM Symposium on Theory of
Computing, pages 1552–1565, 2022. doi:10.1145/3519935.3520043.

8 Philippe Flajolet. Approximate counting: A detailed analysis. BIT, 25(1):113–134, 1985.
doi:10.1007/BF01934993.

9 Eran Gat and Shafi Goldwasser. Probabilistic search algorithms with unique answers and
their cryptographic applications. Electron. Colloquium Comput. Complex., TR11-136, 2011.
URL: https://eccc.weizmann.ac.il/report/2011/136, arXiv:TR11-136.

10 Sumanta Ghosh and Rohit Gurjar. Matroid intersection: A pseudo-deterministic paral-
lel reduction from search to weighted-decision. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM, volume 207
of LIPIcs, pages 41:1–41:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.APPROX/RANDOM.2021.41.

11 Michel X. Goemans, Shafi Goldwasser, and Dhiraj Holden. Doubly-efficient pseudo-
deterministic proofs. CoRR, abs/1910.00994, 2019. arXiv:1910.00994.

12 Oded Goldreich. Multi-pseudodeterministic algorithms. Electron. Colloquium Comput.
Complex., TR19-012, 2019. URL: https://eccc.weizmann.ac.il/report/2019/012, arXiv:
TR19-012.

13 Oded Goldreich, Shafi Goldwasser, and Dana Ron. On the possibilities and limitations of
pseudodeterministic algorithms. In Innovations in Theoretical Computer Science, ITCS, pages
127–138. ACM, 2013. doi:10.1145/2422436.2422453.

14 Shafi Goldwasser and Ofer Grossman. Perfect bipartite matching in pseudo-deterministic RNC.
Electron. Colloquium Comput. Complex., TR15-208, 2015. URL: https://eccc.weizmann.ac.
il/report/2015/208, arXiv:TR15-208.

15 Shafi Goldwasser, Ofer Grossman, and Dhiraj Holden. Pseudo-deterministic proofs. In 9th
Innovations in Theoretical Computer Science Conference, ITCS, volume 94 of LIPIcs, pages
17:1–17:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.
ITCS.2018.17.

16 Shafi Goldwasser, Ofer Grossman, Sidhanth Mohanty, and David P. Woodruff. Pseudo-
deterministic streaming. In 11th Innovations in Theoretical Computer Science Conference,
ITCS, volume 151 of LIPIcs, pages 79:1–79:25, 2020. doi:10.4230/LIPIcs.ITCS.2020.79.

17 Shafi Goldwasser, Russell Impagliazzo, Toniann Pitassi, and Rahul Santhanam. On the pseudo-
deterministic query complexity of NP search problems. In 36th Computational Complexity
Conference, CCC, volume 200 of LIPIcs, pages 36:1–36:22. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2021. doi:10.4230/LIPIcs.CCC.2021.36.

18 André Gronemeier and Martin Sauerhoff. Applying approximate counting for computing
the frequency moments of long data streams. Theory Comput. Syst., 44(3):332–348, 2009.
doi:10.1007/s00224-007-9048-z.

19 Ofer Grossman. Finding primitive roots pseudo-deterministically. Electron. Colloquium
Comput. Complex., TR15-207, 2015. URL: https://eccc.weizmann.ac.il/report/2015/207,
arXiv:TR15-207.

20 Ofer Grossman, Meghal Gupta, and Mark Sellke. Tight space lower bound for pseudo-
deterministic approximate counting. arXiv preprint, 2023. arXiv:2304.01438.

ICALP 2023

https://doi.org/10.4230/LIPIcs.MFCS.2018.61
https://doi.org/10.4230/LIPIcs.ITCS.2021.66
https://doi.org/10.1145/3519935.3520043
https://doi.org/10.1007/BF01934993
https://eccc.weizmann.ac.il/report/2011/136
https://arxiv.org/abs/TR11-136
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2021.41
https://arxiv.org/abs/1910.00994
https://eccc.weizmann.ac.il/report/2019/012
https://arxiv.org/abs/TR19-012
https://arxiv.org/abs/TR19-012
https://doi.org/10.1145/2422436.2422453
https://eccc.weizmann.ac.il/report/2015/208
https://eccc.weizmann.ac.il/report/2015/208
https://arxiv.org/abs/TR15-208
https://doi.org/10.4230/LIPIcs.ITCS.2018.17
https://doi.org/10.4230/LIPIcs.ITCS.2018.17
https://doi.org/10.4230/LIPIcs.ITCS.2020.79
https://doi.org/10.4230/LIPIcs.CCC.2021.36
https://doi.org/10.1007/s00224-007-9048-z
https://eccc.weizmann.ac.il/report/2015/207
https://arxiv.org/abs/TR15-207
https://arxiv.org/abs/2304.01438

30:14 Lower Bounds for Pseudo-Deterministic Counting in a Stream

21 Ofer Grossman and Yang P. Liu. Reproducibility and pseudo-determinism in log-space. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA,
pages 606–620. SIAM, 2019. doi:10.1137/1.9781611975482.38.

22 Moritz Hardt and David P. Woodruff. How robust are linear sketches to adaptive inputs?
In Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing, pages
121–130, 2013. doi:10.1145/2488608.2488624.

23 Haitham Hassanieh, Fadel Adib, Dina Katabi, and Piotr Indyk. Faster GPS via the sparse
fourier transform. In The 18th Annual International Conference on Mobile Computing and
Networking, Mobicom, pages 353–364. ACM, 2012. doi:10.1145/2348543.2348587.

24 Dhiraj Holden. A note on unconditional subexponential-time pseudo-deterministic algorithms
for BPP search problems. CoRR, abs/1707.05808, 2017. arXiv:1707.05808.

25 Haim Kaplan, Yishay Mansour, Kobbi Nissim, and Uri Stemmer. Separating adaptive streaming
from oblivious streaming using the bounded storage model. In Advances in Cryptology –
CRYPTO, volume 12827 of Lecture Notes in Computer Science, pages 94–121. Springer, 2021.
doi:10.1007/978-3-030-84252-9_4.

26 Zhenjian Lu, Igor Carboni Oliveira, and Rahul Santhanam. Pseudodeterministic algorithms
and the structure of probabilistic time. In STOC ’21: 53rd Annual ACM Symposium on
Theory of Computing, pages 303–316, 2021. doi:10.1145/3406325.3451085.

27 Jérémie O. Lumbroso. How Flajolet processed streams with coin flips. CoRR, abs/1805.00612,
2018. arXiv:1805.00612.

28 Robert Morris. Counting large numbers of events in small registers. Commun. ACM, 21(10):840–
842, 1978. doi:10.1145/359619.359627.

29 Jelani Nelson and Huacheng Yu. Optimal bounds for approximate counting. In Proceedings of
the 41st ACM Symposium on Principles of Database Systems, PODS, pages 119–127, 2022.
doi:10.1145/3517804.3526225.

30 Igor Carboni Oliveira and Rahul Santhanam. Pseudodeterministic constructions in subexpo-
nential time. In Proceedings of the 49th Annual ACM Symposium on Theory of Computing,
STOC, pages 665–677, 2017. doi:10.1145/3055399.3055500.

31 Igor Carboni Oliveira and Rahul Santhanam. Pseudo-derandomizing learning and approxima-
tion. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM, volume 116 of LIPIcs, pages 55:1–55:19. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.APPROX-RANDOM.2018.55.

32 Manuel Stoeckl. Streaming algorithms for the missing item finding problem. In Proceedings of
the Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 793–818, 2023.
doi:10.1137/1.9781611977554.ch32.

https://doi.org/10.1137/1.9781611975482.38
https://doi.org/10.1145/2488608.2488624
https://doi.org/10.1145/2348543.2348587
https://arxiv.org/abs/1707.05808
https://doi.org/10.1007/978-3-030-84252-9_4
https://doi.org/10.1145/3406325.3451085
https://arxiv.org/abs/1805.00612
https://doi.org/10.1145/359619.359627
https://doi.org/10.1145/3517804.3526225
https://doi.org/10.1145/3055399.3055500
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2018.55
https://doi.org/10.1137/1.9781611977554.ch32

Minimum Chain Cover in Almost Linear Time
Manuel Cáceres #

Department of Computer Science, University of Helsinki, Finland

Abstract
A minimum chain cover (MCC) of a k-width directed acyclic graph (DAG) G = (V, E) is a set of k

chains (paths in the transitive closure) of G such that every vertex appears in at least one chain
in the cover. The state-of-the-art solutions for MCC run in time Õ(k(|V |+ |E|)) [Mäkinen et at.,
TALG], O(TMF (|E|) + k|V |), O(k2|V |+ |E|) [Cáceres et al., SODA 2022], Õ(|V |3/2 + |E|) [Kogan
and Parter, ICALP 2022] and Õ(TMCF (|E|) +

√
k|V |) [Kogan and Parter, SODA 2023], where

TMF (|E|) and TMCF (|E|) are the running times for solving maximum flow (MF) and minimum-cost
flow (MCF), respectively.

In this work we present an algorithm running in time O(TMF (|E|) + (|V | + |E|) log k). By
considering the recent result for solving MF [Chen et al., FOCS 2022] our algorithm is the first
running in almost linear time. Moreover, our techniques are deterministic and derive a deterministic
near-linear time algorithm for MCC if the same is provided for MF. At the core of our solution we
use a modified version of the mergeable dictionaries [Farach and Thorup, Algorithmica], [Iacono and
Özkan, ICALP 2010] data structure boosted with the SIZE-SPLIT operation and answering queries
in amortized logarithmic time, which can be of independent interest.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Network flows; Theory of computation → Sorting and searching

Keywords and phrases Minimum chain cover, directed acyclic graph, minimum flow, flow decompo-
sition, mergeable dictionaries, amortized running time

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.31

Category Track A: Algorithms, Complexity and Games

Related Version Previous Version: https://arxiv.org/abs/2305.02166

Funding This work was funded by the Academy of Finland (grants No. 352821, 328877).

Acknowledgements I am very grateful to Alexandru I. Tomescu and Brendan Mumey for initial
discussions on flow decomposition of a minimum flow representing an MPC. I am also very grateful
to the anonymous reviewers for their useful suggestions.

1 Introduction

Computing a minimum-sized set of chains covering all vertices of a DAG G = (V, E) is a well
known poly-time solvable problem [15, 18], with many applications in widespread research
fields such as bioinformatics [34, 7, 13, 4, 8, 32]. Here we call such an object a minimum chain
cover (an MCC) C containing k chains C = {C1, . . . , Ck}, which are paths in the transitive
closure of G. The size k of an MCC is known as the width of G and equals the maximum
number of pairwise unreachable vertices (antichain) of G, by Dilworth’s theorem [15] on
partially ordered sets (posets).

The history of MCC. It was Fulkerson [18] in the 1950s the first to show a poly-time
algorithm for posets (transitive DAGs). His algorithm reduces the problem to finding a
maximum matching in a bipartite graph with 2|V | vertices and |E| edges, and thus can be

EA
T
C
S

© Manuel Cáceres;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 31; pp. 31:1–31:12

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:manuel.caceres@helsinki.fi
https://orcid.org/0000-0003-0235-6951
https://doi.org/10.4230/LIPIcs.ICALP.2023.31
https://arxiv.org/abs/2305.02166
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

31:2 Minimum Chain Cover in Almost Linear Time

solved in O(|E|
√
|V |) time by using the Hopcroft-Karp algorithm [21]1. Improvements on

these ideas were derived in the O(|V |2 + k
√

k|V |) and O(
√
|V ||E|+ k

√
k|V |) time algorithms

of Chen and Chen [10, 11], and the O(k|V |2) time algorithm of Felsner et al. [17]. In
the same article, Felsner et al. showed a combinatorial approach to compute a maximum
antichain (MA) in near-linear time for the cases k = 2, 3, 4, which was latter generalized
to O(f(k)(|V |+ |E|)) [5], f(k) being an exponential function. State-of-the-art approaches
improve exponentially on its running time dependency on k. These approaches solve the
strongly related problem of minimum path cover (MPC). An MPC P is a minimum-sized
set of paths covering the vertices of G, and thus it is also a valid chain cover. Moreover,
since every MCC can be transformed into an MPC (by connecting consecutive vertices in
the chains), the size of an MPC also equals the width k.

The state-of-the-art for MCC. Mäkinen et al. [29] provided an algorithm for MPC, running
in time O(k(|V |+ |E|) log |V |) = Õ(k(|V |+ |E|)) while Cáceres et al. [6] presented the first
O(k2|V |+ |E|) parameterized linear time algorithm. Both algorithms are based on a classical
reduction to minimum flow [30], which we will revisit later. In the same work, Cáceres
et al. [6] showed how to compute an MPC in time O(TMF (|E|) + ||P||) and a MA in time
O(TMF (|E|)), where TMF (|E|) is the running time for solving maximum flow (MF) and ||P||
is the total length of the reported MPC. As such, by using the recent result for MF of Chen
et al. [9] we can solve MPC and MA in (almost) optimal (input+output size) time. However,
the same does not apply to MCC as the total length of an MCC can be exactly |V | (e.g. by
removing repeated vertices) while the total length of an MPC can be Ω(k|V |) in the worst
case, as shown in Figure 1.

The k|V | barrier was recently overcame by Kogan and Parter [26, 27] by reducing the
total length of an MPC. They obtain this improvement by using reachability shortcuts and
by devising a more involved reduction to minimum cost flow (MCF). Their algorithms run in
time Õ(|E|+ |V |3/2) [26] and Õ(

√
k|V |+ |E|1+o(1)) [27] using the MCF algorithms of Bran

et al. [35] and Chen et al. [9], respectively.

In this paper we present an algorithm for MCC improving its running time dependency
on k exponentially w.r.t. the state-of-the-art.

▶ Theorem 1. Given a k-width DAG G = (V, E) we can compute a minimum chain cover in
time O(TMF (|E|) + (|V |+ |E|) log k), where TMF (|E|) is the time for solving maximum flow.

Thus by applying the flow algorithm of Chen et al. [9] we solve the problem in almost-linear
time for the first time.

▶ Corollary 2. Given a k-width DAG G = (V, E) we can compute a minimum chain cover
in time O(|E|1+o(1)) w.h.p.

Moreover, our solution in Theorem 1 uses a MF solver as a black box and it is deterministic
otherwise. Therefore, we provide a deterministic MCC solution in near-linear time if one is
found for MF. At the core of our solution we use mergeable dictionaries boosted with the
SIZE-SPLIT operation to efficiently transform the flow outputted by the MF solver into an
MCC. Mergeable dictionaries is a data structure maintaining a dynamic partition K of the
natural numbers {1, . . . , k} (the reuse of k is intentional as this is how our approach will
use the data structure), starting from the partition K = {{1, . . . , k}} and supporting the
following operations, for K, K1, K2 ∈ K:

1 Recent fast solutions for maximum matching do not speed up this approach as one needs to compute
the transitive closure of the DAG first.

M. Cáceres 31:3

Figure 1 Example k-width DAG where every MPC P has total length ||P|| = Ω(k|V |). Indeed,
every path in an MPC must start from some ui and traverse the middle path v1, . . . , vℓ until reaching
some wj , since otherwise it is not possible to cover the rest of the graph minimally. Moreover, if
k = ℓ = |V |/3, then ||P|| = Ω(|V |2). On the other hand, there is always an MCC C of total size
||C|| = |V | (in this case only one of the chains cover the vertices of the middle path).

SEARCH(K, j): returns maxi∈K,i≤j i if any such element exists2.

MERGE(K1, K2): replaces K1 and K2 by K1 ∪K2 in K.

SPLIT(K, j): replaces K by K ′ = {i ∈ K | i ≤ j} (only if K ′ ≠ ∅) and K \K ′ (only if
K ̸= K ′) in K.

Note that the MERGE operation does not assume that maxi∈K1 i < mini∈K2 i (sets are
non-overlapping) as generated by the SPLIT operation. If the previous condition (or the
analogous maxi∈K2 i < mini∈K1 i) is assumed, the operation is known as JOIN. Mergeable
dictionaries have applications in Lempel-Ziv decompression [16, 3, 31], mergeable trees [19]
and generalizations of union-find-split [28]. In this paper we show how to modify them to
obtain a fast MCC algorithm. Next, we review the different approaches used to implement
mergeable dictionaries in the literature.

Mergeable dictionaries. The first efficient implementation of mergeable dictionaries can be
derived3 from the segment merge strategy proposed by Farach and Thorup [16] to efficiently
MERGE two self-balanced binary search trees, assuming that operations SEARCH, SPLIT
and JOIN are implemented in logarithmic time. The authors showed how to implement the
MERGE operation by minimally SPLITing both sets into non-overlapping sets and pairwise
JOINing the resulting parts. They proved that after |V |+|E| operations (the abuse of notation
is again intentional) their strategy works in O(log k · log (|V |+ |E|)) amortized time per
operation. Later, Iacono and Özkan [22] presented a mergeable dictionaries implementation
running in O(log k) amortized time per operation, based on biased skip lists [1]. The same
amortized running time was later achieved by Karczmarz [24] with a very simple approach
using tries [14] to represent the sets.

2 This query is also known as predecessor query in the literature.
3 The authors of [16] do not define mergeable dictionaries formally.

ICALP 2023

31:4 Minimum Chain Cover in Almost Linear Time

Our algorithm for MCC computes a minimum flow f∗ encoding an MPC and then extracts
an MCC from f∗ by processing G in topological order and querying mergeable dictionaries
boosted with the SIZE-SPLIT operation. Formally, we require the following operations, for
K, K1, K2 ∈ K, s ∈ {1, . . . , |K| − 1}:

SOME(K): returns some element i ∈ K.
MERGE(K1, K2): replaces K1 and K2 by K1 ∪K2 in K.
SIZE-SPLIT(K, s): replaces K by K ′ ⊆ K, |K ′| = s and K \K ′ in K.

In Section 3 we show how to implement these operations in O(log k) amortized time
each. Then, in Section 4 we show our MCC algorithm using the previously described data
structure. Besides the theoretical improvement already explained, we highlight the simplicity
of our solutions, both in our proposal for boosted mergeable dictionaries as well as in our
algorithm for MCC.

2 Notation and preliminaries

Graphs. For a vertex v ∈ V we denote N−(v) (N+(v)) to be the set of in(out)-neighbors of
v that is N−(v) = {u ∈ V | (u, v) ∈ E} (N+(v) = {w ∈ V | (v, w) ∈ E}). A v1vℓ-path is a
sequence of vertices P = v1, . . . , vℓ such that (vi, vi+1) ∈ E for i ∈ {1, . . . , ℓ− 1}, in this case
we say that v1 reaches vℓ. We say that P is proper if ℓ ≥ 2 and that P is a cycle if v1 = vℓ.
A directed acyclic graph (DAG) is a graph without proper cycles. In a DAG we can compute,
in linear time [23, 33], a topological order v1, . . . , v|V | of its vertices such that for every i < j,
(vj , vi) ̸∈ E. In this paper we assume that G is a DAG and since our algorithms run in time
Ω(|V |+ |E|), we assume that an input topological order is given. A chain is a sequence of
vertices C = v1, . . . , vℓ′ such that for each i ∈ {1, . . . , ℓ′ − 1} vi reaches vi+1. We denote
|C| = ℓ′ to the length of the chain. A chain cover C is a set of chains such that every vertex
appears in some chain of C. We say that it is a chain decomposition if every vertex appears
in exactly one chain of C and a path cover if every chain of C is a path, in this case we denote
it P instead. We denote ||C|| to the total length of a chain cover that is ||C|| =

∑
C∈C |C|.

An antichain is a subset of vertices A ⊆ V such that for u, v ∈ A, u ≠ v, u does not reach v.
The minimum size of a chain cover is known as the width of G and we denote it k.

Flows. Given a function of demands d : E → N0 and s, t ∈ V , an st-flow is a func-
tion f : E → N0 satisfying flow conservation that is inF lowv :=

∑
u∈N−(v) f(u, v) =∑

w∈N+(v) f(v, w) := outF lowv for each v ∈ V \ {s, t}, and satisfying the demands that
is f(e) ≥ d(e) for each e ∈ E. A flow decomposition of k (the reuse of notation is again
intentional) paths of f is a collection D = P1, . . . , Pk of st-paths such that for each edge
e ∈ E, f(e) = |{Pi ∈ D | e ∈ Pi}|.4 The size |f | of f is defined as the net flow entering t

(equivalently exiting s by flow conservation) that is |f | = inF lowt − outF lowt. The problem
of minimum flow looks for a feasible st-flow of minimum size. Finding an MPC can be
reduced to decompose a specific minimum flow [30], we will revisit this reduction in Section 4.
The same techniques applied for the problem of maximum flow can be used in the context of
the minimum flow problem [12, 2]. In fact, for MPC one can directly apply a maximum flow
algorithm with capacities at most |V | [6, Theorem 2.2 (full version)].

4 This is a simplified definition of flow decomposition which suffices for our purposes.

M. Cáceres 31:5

Data structures. A self-balancing binary search tree such as an AVL-tree or a red-black
tree [20] is a binary search tree supporting operations SEARCH, SPLIT and JOIN in
logarithmic time each (in the worst case). A (binary) trie [14] is a binary tree representing a
set of integers by storing their binary representation as root-to-leaf paths of the trie. In our
tries all root-to-leaf paths have the same length ⌊log k⌋+ 1. For a data structure supporting
a set of operations, and a potential function ϕ capturing the state of the data structure,
we say that the amortized time of an operation equals to its (worst-case) running time
plus the change ∆ϕ in the potential triggered by the operation. If we apply a sequence of
O(|V |+ |E|) operations whose amortized time is O(log k) the total (worst-case) running time
is O((|V |+ |E|) log k).

3 Mergeable dictionaries with SIZE-SPLIT

We show how to implement the boosted mergeable dictionaries supporting operations SOME,
MERGE and SIZE-SPLIT in O(log k) amortized time each. To achieve this result we modify
an existing solution of mergeable dictionaries implementing operations SEARCH, MERGE
and SPLIT by adding the SELECT operation. Formally for K ∈ K, s ∈ 1, . . . , |K|,

SELECT(K, s): returns the s-th smallest element in K.

With the SELECT operation we can use (normal) mergeable dictionaries to implement
SOME and SIZE-SPLIT as follows:

SOME(K)← SEARCH(K, k).
SIZE-SPLIT(K, s)← SPLIT(K,SELECT(K, s)).

While for SOME it suffices to do a SEARCH with a known upper bound (recall that k is
the maximum element in the universe considered), in the case of SIZE-SPLIT we can first
SELECT the corresponding pivot and use this pivot to SPLIT the set by its value, obtaining
the desired sizes for the split.

This reduction allows us to obtain the boosted mergeable dictionaries by simply imple-
menting the SELECT operation with logarithmic amortized cost (SIZE-SPLIT can be seen as
one call to SELECT followed by a separate call to SPLIT). Moreover, if the implementation
of SELECT does not modify the data structure (and thus the potential ϕ), its amortized
time equals its (worst-case) running time (as ϕ does not change). We show that this is
indeed the case in both the segment merge strategy of Farach and Thorup [16], and the trie
implementation of Karczmarz [24], the latter achieving the desired running time.

The mergeable dictionaries based on segment merge represent each set as a self-balancing
binary search tree. As such, the SELECT operation can be implemented in O(log k) time by
storing the sub-tree sizes at every node of the tree, which can be maintained (updated when
the tree changes) in the same (worst-case) running time as the normal operations of the tree
(see e.g. [25]).

Similarly, the implementation of Karczmarz [24] represents every set as a trie of its
elements. As discussed in Section 2, a trie stores its elements as their binary representation
encoded as (equal length) root-to-leaf paths of the trie. For example, if k = 6 the corre-
sponding binary representation of 3 is 011, which is represented as the root-to-leaf path
following the left child, then its right child and then its right child. Analogous to binary
search trees, the nodes of a trie can be augmented to store the number of leaves in their
respective sub-trees. If such augmentation of a trie is performed, then the operation SELECT
can be implemented in O(log k) (worst-case) time similar to the implementation on binary
search trees, since the leaves in the trie follow the same order as the elements they represent:

ICALP 2023

31:6 Minimum Chain Cover in Almost Linear Time

Figure 2 Result of calling SIZE-SPLIT(K = {1, 4, 7, 10, 15}, 2) on a trie representation of boosted
mergeable dictionaries. The binary representation of numbers in the set are spelled as root-to-leaf
paths of the trie. Some number of leaves’ counters are written in red under their respective nodes.
Those counters are used to answer 4← SELECT(K, 2). After this, SPLIT(K, 4) is performed. The
path P representing the longest prefix (01) between the binary representations of 4 (0100) and 7
(0111) is highlighted in yellow. The right figure shows the end result, note that only the counters in
the nodes of P change.

for a query SELECT(s) on a trie node, it suffices to look at the number of leaves l (elements)
under the left child, if l ≥ s we continue to the left child answering SELECT(s), otherwise
we continue to the right child answering SELECT(s− l).

Karczmarz [24] showed that SPLIT(K, j) can be performed by finding the root-to-node
path P corresponding to the longest common prefix between the binary representations of
SEARCH(K, j) and of the smallest value greater than j in K. It then splits the trie by
removing the right children of the nodes of P (to form K ′) and then joining those nodes
as right children of a copy of P (to create K \K ′). Note that this procedure can be easily
augmented to maintain the number of leaves under each node: only the nodes in P (and
in its copy) decrease their value by the number of leaves of their lost children. Figure 2
shows an example of the SPLIT operation. MERGE(K1, K2) is implemented as a simple
recursive algorithm that at every step keeps one of the (common) nodes and then merges the
corresponding left and right sub-trees (if one of those sub-trees is empty then it just keeps
the other sub-tree, we refer to the original work [24] for details). In this case the maintenance
of the number of leaves can be performed when returning from the recursive calls: simply
recompute the number of leaves as the sum of the number of leaves of their two children.
Each of these computations is a constant time operation, and thus they do not change the
asymptotic running time of MERGE. We then obtain the following lemma.

▶ Lemma 3. There exists a data structure maintaining a dynamic partition K of {1, . . . , k}
starting from K = {{1, . . . , k}} and answering operations SOME, MERGE and SIZE-SPLIT
such that for a sequence of n = Ω(k) operations5 it answers in total O(n log k) time.

Proof. We first note that operations SOME, MERGE and SIZE-SPLIT can be implemented
in the same asymptotic (worst-case) running time as operations SEARCH, MERGE and
SPLIT in the data structure of Karczmarz [24], respectively. Indeed, as previously discussed,
SOME is implemented as one call to SEARCH, MERGE is implemented in the same way
as in [24] but taking care of the number-of-leaves counters’ updates which does not affect
the asymptotic running time, and SIZE-SPLIT is implemented as one call to SELECT (in

5 This requirement comes from the fact that mergeable dictionaries actually start from an empty collection
of sets, however, one can create the singleton sets and merge then in total O(k log k) time.

M. Cáceres 31:7

Figure 3 Flow reduction (demands are not shown) of the graph of Figure 1 and a minimum
flow on it. Only edges with positive flow are shown. The flow is implicitly presented as a flow
decomposition showing every path highlighted in yellow, this flow decomposition corresponds to an
MPC of the original DAG.

O(log k) time) followed by one call to SPLIT (also in O(log k) time). For the amortized
analysis we reuse the potential function used by Karczmarz [24], namely, the number of nodes
on all tries. Operations SOME and MERGE follow the same potential change as in [24] and
thus have an O(log k) amortized running time. Finally, since SELECT does not change the
total number of nodes (nor any of the tries) the potential change of a SIZE-SPLIT is the
same as the one of a SPLIT, that is O(log k) as in [24]. The lemma follows by using the
amortized running times of the data structure’s operations. ◀

4 An almost linear time algorithm for MCC

We show how to use Lemma 3 to obtain a fast MCC algorithm. Our algorithm computes a
minimum flow f∗ encoding an MPC of G and then uses the data structure from Lemma 3 to
efficiently extract an MCC from f∗. Next, we describe the well known [30] reduction from
MPC to MF by following the notation of [6, Section 2.3 (full version)].

Given the DAG G we build its flow reduction G = (V, E) as the graph obtained by adding
a global source s, a global sink t and splitting every vertex v ∈ V into two copies connected by
an edge. Additionally, the first copy, vi, is connected from the in-neighbors of v and the second
copy, vo, is connected to the out-neighbors of v. Formally, V = {s, t}∪{vi | v ∈ V }∪{vo | v ∈
V }, and E = {(s, vi) | v ∈ V } ∪ {(vo, t) | v ∈ V } ∪ {(vi, vo) | v ∈ V } ∪ {(uo, vi) | (u, v) ∈ E}.
Note that |E| = O(|V | + |E|), and that G is also a DAG. We also define demands on the
edges, d : E :→ N0, as 1 if the edge is of the form (vi, vo), and 0 otherwise. Intuitively,
the demands require that at least one unit of flow goes through every vertex (of G), which
directly translates into to the path cover condition of covering each vertex with at least
one path. In fact, every flow decomposition (recall Section 2) of a feasible st-flow f of G, d

corresponds to a path cover of G of size |f |. Moreover, every decomposition of a minimum
flow f∗ of G, d corresponds to an MPC of G, and thus k = |f∗| [6, Section 2.3 (full version)].
Figure 3 illustrates these ideas with an example.

Since every vertex cannot belong to more than |V | paths in an MPC, the problem can be
reduced to maximum flow [2, Theorem 3.9.1]. We summarize these results in the following
lemma.

ICALP 2023

31:8 Minimum Chain Cover in Almost Linear Time

Algorithm 1 Non-optimized pseudocode for our MCC algorithm. A naive implementation
of this algorithm obtains an O(||P||) running time as explained in this manuscript.

Input: A directed acyclic graph G = (V, E).
Output: A minimum chain decomposition C = C1, . . . , Ck of G.

1 (G, d)← Build the flow reduction of G detailed in Section 4
2 f∗, k = |f∗| ← Use Lemma 4 to obtain a minimum flow of (G, d)
3 Initialize Ci as an empty list for i ∈ {1, . . . , k}
4 Is ← {1, . . . , k}
5 for v ∈ V in topological order do
6 Iv ← Take f∗(s, vi) elements from Is

7 for uo ∈ N−(vi) do
8 Iuv ← Take f∗(uo, vi) elements from Iu

9 Iv ← Iv ∪ Iuv

10 i← Choose an element from Iv

11 Ci.append(v)
12 return C1, . . . , Ck

▶ Lemma 4 (Adaptation of [6, Theorem 2.2 (full version)]). We can compute a flow f∗ of G, d

such that every flow decomposition of f∗ corresponds to an MPC of G, in time O(TMF (|E|)),
where TMF (|E|) is the time for solving maximum flow.

A decomposition algorithm is simple in this case: start from s and follow a path P of
positive flow edges until arriving at t, and then update f∗ decreasing the flow on the edges
of P by one. Repeat this process until no flow remains. The st-paths obtained during the
decomposition can be easily transformed into an MPC P of G (trim s and t and replace
vi, vo by v on each path, see e.g. [27]).

If implemented carefully (see e.g. [26, Lemma 1.11 (full version)]), the previous algorithm
runs in time O(||P||) and it outputs a valid MCC P (recall that every MPC is an MCC).
However, as shown in Figure 1, ||P|| can be Ω(k|V |) in the worst case. Our algorithm over-
comes this barrier by instead directly extracting (from f∗) a minimum chain decomposition
(MCD, recall Section 2) and thus its total length is exactly |V |.

The main idea to extract an MCD C = C1, . . . , Ck from f∗ is to compute, for each vertex
v ∈ V , the set Iv ⊆ {1, . . . , k} of indices such that v would belong to paths Pv = {Pi | i ∈ Iv}
in a flow decomposition D = P1, . . . , Pk of f∗. Note that Is = It = {1, . . . , k} by construction
of G, d. To efficiently compute these sets, we process the vertices in a topological order of
G, for example s, vi

1, vo
1, . . . , vi

|V |, vo
|V |, t (recall that a topological order v1, . . . , v|V | of G is

assumed as input). When processing vertex v we compute Iv as follows: for every u ∈ N−(v)
we take (exactly) f∗(u, v) elements from Iu, let us denote Iuv to these elements. Then, we
compute Iv as the union

⋃
u∈N−(v) Iuv. And finally, we take an arbitrary element i ∈ Iv and

append v to Ci. Algorithm 1 shows a pseudocode for this algorithm.
Note that vertices are added to their respective chains in the correct order since they are

processed in topological order.
Moreover, since indices are moved from one vertex to the other only if there is an edge

between them, consecutive vertices are always connected by a path in G, and thus the lists
Ci correspond to proper chains. Finally, adding each vertex to only one such chain ensures
that the end result is indeed an MCD (every vertex in exactly one chain).

An important aspect of the algorithm is that exactly f∗(ui, vi) (f∗(s, vi)) elements are
taken out of Iu (Is). This step is always possible thanks to flow conservation of f∗.

M. Cáceres 31:9

Algorithm 2 Our MCC algorithm running in time O(TMF (|E|) + (|V |+ |E|) log k), where
TMF (|E|) is the time for solving maximum flow. The algorithm uses the boosted mergeable
dictionaries from Section 3.

Input: A directed acyclic graph G = (V, E).
Output: A minimum chain decomposition C = C1, . . . , Ck of G.

1 (G, d)← Build the flow reduction of G detailed in Section 4
2 f∗, k = |f∗| ← Use Lemma 4 to obtain a minimum flow of (G, d)
3 Initialize Ci as an empty list for i ∈ {1, . . . , k}
4 Initialize mergeable dictionaries maintaining a partition of {1, . . . , k}
5 Is ← {1, . . . , k}
6 for v ∈ V in topological order do
7 Iv, Is ← SIZE-SPLIT(Is, f∗(s, vi))
8 for uo ∈ N−(vi) do
9 Iuv, Iu ← SIZE-SPLIT(Iu, f∗(uo, vi))

10 Iv ← MERGE(Iv, Iuv)
11 i← SOME(Iv)
12 Ci.append(v)
13 return C1, . . . , Ck

▶ Lemma 5. Given a k-width DAG G = (V, E) as input, Algorithm 1 computes a minimum
chain decomposition C = C1, . . . , Ck of G.

Proof. By Lemma 4, every flow decomposition of f∗ corresponds to an MPC of G. We prove
that each Ci is a chain of V , since every vertex is added to exactly one Ci we conclude that
C = C1, . . . , Ck is a minimum chain decomposition. Inductively, if v is added after v′ in chain
Ci, then v′ reaches v in G. Indeed, i ∈ Iv and in particular i ∈ Iu for some u ∈ N−(v), and
inductively v′ reaches u in G and thus also reaches v. ◀

Moreover, since only splits and unions are performed, the sets Iv’s and Iuv’s form a
partition of {1, . . . , k} at any point during the algorithm’s execution.

A simple implementation of sets Iv’s and Iuv’s as linked lists, allows us to perform the
unions and element picks in constant time, but the splits in O(f∗(uo, vi)) (and O(f∗(s, vi)))
time each, and thus in O

(∑
v∈V

(
f∗(s, vi) + f∗(vo, t)

)
+

∑
(u,v)∈E f∗(uo, vi)

)
= O(||P||)

time in total. However, we can implement the sets Iv’s and Iuv’s as boosted mergeable
dictionaries from Section 3 to speed up the total running time. Algorithm 2 shows the final
result.

▶ Theorem 1. Given a k-width DAG G = (V, E) we can compute a minimum chain cover in
time O(TMF (|E|) + (|V |+ |E|) log k), where TMF (|E|) is the time for solving maximum flow.

Proof. The correctness of the algorithm follows from the previous discussion and Lemma 5
since Algorithm 2 is an implementation of Algorithm 1. Building the flow reduction takes
O(|V |+ |E|) time and obtaining the minimum flow f∗ takes O(TMF (|E|)) time by Lemma 4.
The rest of the running time is derived from the calls to the mergeable dictionaries’ operations.
SOME is called O(|V |) times while SIZE-SPLIT and MERGE are called once per edge in
the flow reduction that is O(|E|) = O(|V |+ |E|) times. By applying Lemma 3 the total time
of the O(|V |+ |E|) operation calls is O((|V |+ |E|) log k). ◀

ICALP 2023

31:10 Minimum Chain Cover in Almost Linear Time

We finish our paper by encapsulating our result into a tool that can be used to efficiently
extract a set of vertex-disjoint chains C, encoding a set of paths P , from a flow f that encodes
P as a flow decomposition. If the problem can be modeled as a maximum flow/minimum cost
flow problem, the result of Chen et al. [9] allows us to solve such problems in almost linear
time. As a simple example, we could solve the ℓ-cover problem (find a set of ℓ vertex-disjoint
chains covering the most vertices) in almost linear time.

▶ Corollary 6. Let G = (V, E) be a DAG, and f : E → N0 a flow encoding a set of |f | paths
P of G as a flow decomposition into weight-1 paths. In O((|V |+ |E|) log |f |) time, we can
compute a set of |f | vertex-disjoint chains C of G, which can (alternatively) be obtained by
removing repeated vertices from P.

References
1 Amitabha Bagchi, Adam L Buchsbaum, and Michael T Goodrich. Biased skip lists. Algorith-

mica, 42:31–48, 2005.
2 Jørgen Bang-Jensen and Gregory Z Gutin. Digraphs: theory, algorithms and applications.

Springer Science & Business Media, 2008.
3 Philip Bille, Mikko Berggren Ettienne, Travis Gagie, Inge Li Gørtz, and Nicola Prezza.

Decompressing Lempel-Ziv compressed text. In Proceedings of the 30th Data Compression
Conference (DCC 2020), pages 143–152. IEEE, 2020.

4 Manuel Cáceres, Massimo Cairo, Andreas Grigorjew, Shahbaz Khan, Brendan Mumey, Romeo
Rizzi, Alexandru I Tomescu, and Lucia Williams. Width helps and hinders splitting flows.
In Proceedings of the 30th Annual European Symposium on Algorithms (ESA 2022), pages
31:1–31:14, 2022.

5 Manuel Cáceres, Massimo Cairo, Brendan Mumey, Romeo Rizzi, and Alexandru I Tomescu.
A linear-time parameterized algorithm for computing the width of a DAG. In Proceedings
of the 47th International Workshop on Graph-Theoretic Concepts in Computer Science (WG
2021), pages 257–269. Springer, 2021.

6 Manuel Cáceres, Massimo Cairo, Brendan Mumey, Romeo Rizzi, and Alexandru I Tomescu.
Sparsifying, shrinking and splicing for minimum path cover in parameterized linear time. In
Proceedings of the 33rd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2022),
pages 359–376. SIAM, 2022.

7 Manuel Cáceres, Brendan Mumey, Edin Husić, Romeo Rizzi, Massimo Cairo, Kristoffer
Sahlin, and Alexandru I Tomescu. Safety in multi-assembly via paths appearing in all path
covers of a DAG. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
19(6):3673–3684, 2021.

8 Ghanshyam Chandra and Chirag Jain. Sequence to graph alignment using gap-sensitive
co-linear chaining. In Proceedings of the 27th Annual International Conference on Research in
Computational Molecular Biology (RECOMB 2023), pages 58–73. Springer, 2023.

9 Li Chen, Rasmus Kyng, Yang P Liu, Richard Peng, Maximilian Probst Gutenberg, and Sushant
Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. In Proceedings of
the 63rd IEEE Annual Symposium on Foundations of Computer Science (FOCS 2022), pages
612–623. IEEE, 2022.

10 Yangjun Chen and Yibin Chen. An efficient algorithm for answering graph reachability queries.
In Proceedings of the 24th International Conference on Data Engineering (ICDE 2008), pages
893–902. IEEE, 2008.

11 Yangjun Chen and Yibin Chen. On the graph decomposition. In Proceedings of the 4th IEEE
Fourth International Conference on Big Data and Cloud Computing (BDCloud 2014), pages
777–784. IEEE, 2014.

12 Eleonor Ciurea and Laura Ciupala. Sequential and parallel algorithms for minimum flows.
Journal of Applied Mathematics and Computing, 15(1):53–75, 2004.

M. Cáceres 31:11

13 Nicola Cotumaccio and Nicola Prezza. On indexing and compressing finite automata. In
Proceedings of the 32nd ACM-SIAM Symposium on Discrete Algorithms (SODA 2021), pages
2585–2599. SIAM, 2021.

14 Rene De La Briandais. File searching using variable length keys. In Papers presented at the
the March 3-5, 1959, western joint computer conference, pages 295–298, 1959.

15 Robert P Dilworth. A decomposition theorem for partially ordered sets. Annals of Mathematics,
51(1):161–166, 1950.

16 Martin Farach and Mikkel Thorup. String matching in Lempel—Ziv compressed strings.
Algorithmica, 20(4):388–404, 1998.

17 Stefan Felsner, Vijay Raghavan, and Jeremy Spinrad. Recognition algorithms for orders of
small width and graphs of small Dilworth number. Order, 20(4):351–364, 2003.

18 Delbert R Fulkerson. Note on Dilworth’s decomposition theorem for partially ordered sets.
Proceedings of the American Mathematical Society, 7(4):701–702, 1956.

19 Loukas Georgiadis, Haim Kaplan, Nira Shafrir, Robert E Tarjan, and Renato F Werneck.
Data structures for mergeable trees. ACM Transactions on Algorithms, 7(2):1–30, 2011.

20 Leo J Guibas and Robert Sedgewick. A dichromatic framework for balanced trees. In
Proceedings of the 19th Annual Symposium on Foundations of Computer Science (FOCS 1978),
pages 8–21. IEEE, 1978.

21 John E Hopcroft and Richard M Karp. An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM Journal on Computing, 2(4):225–231, 1973.

22 John Iacono and Özgür Özkan. Mergeable dictionaries. In Proceedings of the 37th Interna-
tional Colloquium on Automata, Languages, and Programming (ICALP 2010), pages 164–175.
Springer, 2010.

23 Arthur B Kahn. Topological sorting of large networks. Communications of the ACM, 5(11):558–
562, 1962.

24 Adam Karczmarz. A simple mergeable dictionary. In Proceedings of the 15th Scandinavian
Symposium and Workshops on Algorithm Theory (SWAT 2016), pages 7:1–7:13, 2016.

25 Donald E Knuth. The art of computer programming: Volume 3: Sorting and Searching.
Addison-Wesley Professional, 1998.

26 Shimon Kogan and Merav Parter. Beating matrix multiplication for n1/3-directed short-
cuts. In Proceedings of the 49th International Colloquium on Automata, Languages, and
Programming (ICALP 2022). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. Full
version available at https://www.weizmann.ac.il/math/parter/sites/math.parter/files/
uploads/main-lipics-full-version_3.pdf.

27 Shimon Kogan and Merav Parter. Faster and unified algorithms for diameter reducing shortcuts
and minimum chain covers. In Proceedings of the 34th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2023), pages 212–239. SIAM, 2023.

28 Katherine Jane Lai. Complexity of union-split-find problems. Master’s thesis, Massachusetts
Institute of Technology, 2008.

29 Veli Mäkinen, Alexandru I Tomescu, Anna Kuosmanen, Topi Paavilainen, Travis Gagie, and
Rayan Chikhi. Sparse Dynamic Programming on DAGs with Small Width. ACM Transactions
on Algorithms, 15(2):1–21, 2019.

30 Simeon C Ntafos and S Louis Hakimi. On path cover problems in digraphs and applications
to program testing. IEEE Transactions on Software Engineering, 5(5):520–529, 1979.

31 Simon J Puglisi and Massimiliano Rossi. On Lempel-Ziv decompression in small space. In
Proceedings of the 29th Data Compression Conference (DCC 2019), pages 221–230. IEEE,
2019.

32 Nicola Rizzo, Manuel Caceres, and Veli Mäkinen. Chaining of maximal exact matches in
graphs. arXiv preprint, 2023. arXiv:2302.01748.

33 Robert E Tarjan. Edge-disjoint spanning trees and depth-first search. Acta Informatica,
6(2):171–185, 1976.

ICALP 2023

https://www.weizmann.ac.il/math/parter/sites/math.parter/files/uploads/main-lipics-full-version_3.pdf
https://www.weizmann.ac.il/math/parter/sites/math.parter/files/uploads/main-lipics-full-version_3.pdf
https://arxiv.org/abs/2302.01748

31:12 Minimum Chain Cover in Almost Linear Time

34 Cole Trapnell, Brian A Williams, Geo Pertea, Ali Mortazavi, Gordon Kwan, Marijke J
Van Baren, Steven L Salzberg, Barbara J Wold, and Lior Pachter. Transcript assembly and
quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell
differentiation. Nature Biotechnology, 28(5):511, 2010.

35 Jan van den Brand, Yin Tat Lee, Yang P Liu, Thatchaphol Saranurak, Aaron Sidford, Zhao
Song, and Di Wang. Minimum cost flows, MDPs, and ℓ1-regression in nearly linear time for
dense instances. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory of
Computing (STOC 2021), pages 859–869, 2021.

Improved Hardness Results for the Guided Local
Hamiltonian Problem
Chris Cade #

QuSoft and University of Amsterdam (UvA),
The Netherlands

Marten Folkertsma #

QuSoft and CWI, Amsterdam,
The Netherlands

Sevag Gharibian #

Paderborn Universität, Germany
Ryu Hayakawa #

Kyoto University, Japan

François Le Gall #

Nagoya University, Japan
Tomoyuki Morimae #

Kyoto University, Japan

Jordi Weggemans #

QuSoft and CWI, Amsterdam, The Netherlands

Abstract
Estimating the ground state energy of a local Hamiltonian is a central problem in quantum chemistry.
In order to further investigate its complexity and the potential of quantum algorithms for quantum
chemistry, Gharibian and Le Gall (STOC 2022) recently introduced the guided local Hamiltonian
problem (GLH), which is a variant of the local Hamiltonian problem where an approximation of a
ground state (which is called a guiding state) is given as an additional input. Gharibian and Le Gall
showed quantum advantage (more precisely, BQP-completeness) for GLH with 6-local Hamiltonians
when the guiding state has fidelity (inverse-polynomially) close to 1/2 with a ground state.

In this paper, we optimally improve both the locality and the fidelity parameter: we show that
the BQP-completeness persists even with 2-local Hamiltonians, and even when the guiding state
has fidelity (inverse-polynomially) close to 1 with a ground state. Moreover, we show that the
BQP-completeness also holds for 2-local physically motivated Hamiltonians on a 2D square lattice
or a 2D triangular lattice. Beyond the hardness of estimating the ground state energy, we also show
BQP-hardness persists when considering estimating energies of excited states of these Hamiltonians
instead. Those make further steps towards establishing practical quantum advantage in quantum
chemistry.

2012 ACM Subject Classification Theory of computation → Quantum complexity theory

Keywords and phrases Quantum computing, Quantum advantage, Quantum Chemistry, Guided
Local Hamiltonian Problem

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.32

Category Track A: Algorithms, Complexity and Games

Related Version This paper is based on our following two technical reports
Previous Version: https://arxiv.org/abs/2207.10097
Previous Version: https://arxiv.org/abs/2207.10250

Funding CC acknowledges support from QuSoft and CWI, as well as the University of Amsterdam
(UvA) under a POC (proof of concept) fund. MF and JW were supported by the Dutch Ministry of
Economic Affairs and Climate Policy (EZK), as part of the Quantum Delta NL programme. RH,
FLG, and TM were supported by MEXT Quantum Leap Flagship Program (MEXT Q-LEAP) grant
No. JPMXS0120319794. RH was also supported by JSPS KAKENHI Grant Number JP22J11727.
FLG was also supported by JSPS KAKENHI grants Nos. JP19H04066, JP20H05966, JP20H00579,
JP20H04139, JP21H04879. SG was supported by DFG grants 450041824 and 432788384. TM was
supported by JST Moonshot JPMJMS2061-5-1-1, JST FOREST, the Grant-in-Aid for Scientific
Research (B) No.JP19H04066, the Grant-in Aid for Transformative Research Areas (A) 21H05183,
and the Grant-in-Aid for Scientific Research (A) No.22H00522.

Acknowledgements We thank Jonas Helsen for feedback on an earlier draft, and Ronald de Wolf for
helpful comments.

EA
T
C
S

© Chris Cade, Marten Folkertsma, Sevag Gharibian, Ryu Hayakawa, François Le Gall,
Tomoyuki Morimae, and Jordi Weggemans;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 32; pp. 32:1–32:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:chris.cade@cwi.nl
mailto:marten.folkertsma@cwi.nl
mailto:sevag.gharibian@upb.de
mailto:ryu.hayakawa@yukawa.kyoto-u.ac.jp
mailto:legall@math.nagoya-u.ac.jp
mailto:tomoyuki.morimae@yukawa.kyoto-u.ac.jp
mailto:jordi.weggemans@cwi.nl
https://doi.org/10.4230/LIPIcs.ICALP.2023.32
https://arxiv.org/abs/2207.10097
https://arxiv.org/abs/2207.10250
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

32:2 Improved Hardness Results for the Guided Local Hamiltonian Problem

1 Introduction

Simulation of physical systems is one of the originally envisioned applications of quantum
computing [12, 13]. Quantum chemistry, in particular, has seen much activity on this front
in recent years, e.g. [1, 4, 5, 24, 29, 31]. There, a central goal is to estimate the ground
state energy of a given k-local Hamiltonian H, denoted the k-local Hamiltonian problem
(k-LH). Roughly, for this problem, a k-local Hamiltonian H =

∑
i Hi on n qubits is a 2n × 2n

Hermitian matrix, specified succinctly via “local quantum clauses” Hi acting on k ∈ O(1)
qubits each. The eigenvalues of H are the discrete energy levels of the corresponding quantum
system. In particular, the smallest eigenvalue, which we denote λ0(H), is called the ground
state energy. An eigenvector corresponding to λ0(H) is called a ground state, and describes
a state of the quantum system in the energy configuration λ0(H). Note that k-LH strictly
generalizes classical k-SAT, in that any instance of the latter can be embedded into the
former.

Unfortunately, it is nowadays well-known that estimating ground state energies of local
Hamiltonians is QMA-complete [23]. This hardness persists, moreover, even in the bosonic [32]
and fermionic settings [30]. Thus, assuming BQP ̸= QMA, one cannot hope for an efficient
algorithm for k-LH on all k-local Hamiltonians.

What actually happens in practice

In an attempt to bypass worst-case hardness results, in practice the quantum chemistry
community often adopts the following two-step procedure:

(Step 1: Ground state approximation) A classical heuristic algorithm is applied to obtain
a “guiding state” |ψ⟩, which is hoped to have “good” fidelity with a ground state.
(Step 2: Ground state energy approximation) The guiding state |ψ⟩ is used in Quantum
Phase Estimation (QPE) [22] to efficiently compute the corresponding ground state energy
[2, 4]. (A more recent approach is based on variational quantum algorithms, aimed more
at near-term hardware (see [9] for a survey), but which is heuristic in nature (unlike
QPE).)

Two comments: (1) There is something special about Step 2 – it is a unique strength of
quantum computers to be able to resolve an eigenvalue (within additive 1/poly(n) precision) of
a (sparse) Hermitian matrix given just an approximation |ψ⟩ to the corresponding eigenvector
(via QPE)!1 Indeed, the closely related task of (sparse) matrix inversion, which can be solved
efficiently on a quantum computer coherently by diagonalizing the matrix and “manually”
inverting its eigenvalues via postselection, is BQP-complete [19]. (2) In general, one does not
expect a good2 guiding state for arbitrary local Hamiltonian H to exist, as this would imply
QCMA = QMA. And even if such a guiding state did exist, finding it can still be hard. For
example, minimizing tr(Hρ) over the “simplest” quantum ansatz of tensor product states,
i.e. ρ = ρ1 ⊗ ρ2 ⊗ · · · ⊗ ρn for ρi ∈ L(C2), remains NP-hard (seen by letting H be a diagonal
Hamiltonian encoding a classical 3-SAT instance).

1 Actually, quantum computers can efficiently prepare a ground state with fidelity 1−1/ exp(n) given access
to a guiding state |u⟩ that has inverse polynomial fidelity with a ground state |g⟩ (i.e. |⟨u|g⟩| ≥ 1/poly(n))
using quantum amplitude amplification for local Hamiltonians that have inverse-polynomial spectral
gaps [26].

2 “Good” here meaning a state |ψ⟩ with inverse polynomial fidelity with a ground state, and with a
succinct classical description allowing |ψ⟩ to be prepared efficiently.

C. Cade et al. 32:3

Directions for study

With Steps 1 and 2 above in mind, in order to practically obtain a quantum advantage for
quantum chemistry problems, there are two branches of study necessary:

(Step 1: Ground state approximation) Here, the best one can hope for is fast algorithms
tailored to physically motivated special cases of Hamiltonians H (either heuristic or
worst-case poly-time complexity). This is arguably the bottleneck for fast quantum
algorithms outperforming classical techniques [25].
(Step 2: Ground state energy approximation) A thorough complexity theoretic understand-
ing of which Hamiltonian families provably permit quantum computers to outperform
classical ones, assuming a good guiding state has been found (in Step 1).

In [15], the formal study of the second step above was initiated. Specifically, the Guided k-local
Hamiltonian problem (k-GLH) was introduced, which is stated roughly as follows (formally
given in Definition 6): Given a k-local Hamiltonian H, an appropriate “representation” of
a guiding state |ψ⟩ with δ-fidelity with the ground space of H, and real thresholds β > α,
estimate the ground state energy of H. Then, two results were shown:

For any constant k, k-GLH can be efficiently solved classically within constant precision,
i.e. for β − α ∈ Θ(1) and δ ∈ Θ(1).
In contrast, 6-GLH is BQP-hard for inverse polynomial precision, i.e. β − α ≥ 1/poly(n),
and δ = 1/

√
2 − 1/poly(n).

The latter regime of inverse-polynomial precision turns out to be the relevant one for
solving quantum chemistry problems in practice – the desired “chemical accuracy” is about
1.6 millihartree (which is constant relative to an unnormalized Hamiltonian), which upon
renormalization of the Hamiltonian (as done here) yields the claimed inverse polynomial
precision. This BQP-hardness result thus gives theoretical evidence for the superiority of
quantum algorithms for chemistry.

Four important problems were left open in [15]: Is k-GLH still BQP-hard with larger
δ, and in particular for δ arbitrarily close to 1? Is k-GLH still BQP-hard for k < 6? Is
k-GLH still BQP-hard for estimating the excited state energies? Is k-GLH still BQP-hard
for physically motivated Hamiltonians?

This work

In this work, we continue the agenda toward Step 2 above by resolving these four open
questions. Here are our main contributions:

First, we show that BQP-hardness continues to hold even for δ = 1 − 1/poly(n), i.e. even
when we are promised the guiding state |ψ⟩ is a remarkably good approximation to the
ground state.
Second, we show that BQP-hardness continues to hold even for k = 2. (Note that for
k = 1, the problem can be solved efficiently classically, even without a guiding state.)
Third, we extend the BQP-hardness results to the case when one is interested in estimating
energies of excited states, rather than just the groundstate. Interestingly, we are only
able to show BQP-completeness in this setting by showing that the first point holds, i.e.
the BQP-hardness in the regime δ ∈ [1

2 + Ω(1/poly(n)), 1 − Ω(1/poly(n))].
Fourth, we prove hardness results for physically motivated Hamiltonians. They include
XY model (constraints of the form XX+Y Y), Heisenberg model (constraints of the form
XX+Y Y +ZZ), the antiferromagnetic XY model and the antiferromagnetic Heisenberg
model (i.e. “Quantum Max Cut” [16]). In contrast, the BQP-hardness construction
of [15] is arguably artificial, because they used the circuit-to-Hamiltonian construction
of [23] and query Hamiltonian construction of [3].

ICALP 2023

32:4 Improved Hardness Results for the Guided Local Hamiltonian Problem

To formalize the third direction, we introduce the Guided k-Local Hamiltonian Low
Energy-problem (k-GLHLE) in which the guiding state has δ-fidelity with the c’th excited
state of H and the problem is to estimate the c’th excited state energy of H (for a formal
definition, see Definition 6). Then, the four contributions above are summarized in the
following theorem.

▶ Theorem 1 (Main result). For any δ ∈ (0, 1 − Ω(1/poly(n))), constant k ≥ 2 and some
integer 0 ≤ c ≤ O(poly(n)), there exist a, b ∈ [−1, 1] with b − a ∈ Ω(1/poly(n)) such that
k-GLHLE is BQP-hard. Moreover, it is still BQP-hard if the 2-local Hamiltonian is restricted
to any of the following families of Hamiltonians:

non-2SLD Hamiltonian on a 2D square lattice
antiferromagnetic Heisenberg model
antiferromagnetic XY model on a 2D triangular lattice.

Here, the “non-2SLD” Hamiltonians are, roughly, 2-local Hamiltonians that cannot be
diagonalized via single-qubit unitaries (see Definition 5 for the formal definition). (The term
2SLD is short for “the 2-local parts of all interactions in the set are simultaneously locally
diagonalizable”.) It was originally introduced in the Hamiltonian complexity classification
of Cubitt and Montanaro [10]. The XY model and the Heisenberg model are examples of
non-2SLD Hamiltonians.

Techniques

Now let us explain our technical contributions. Our first result is the improvement of the
fidelity δ (Proposition 7 in Section 3). The construction of [15] cannot exceed δ = 1/2 , but
we achieve the fidelity δ = 1 − 1/poly(n). Let us explain why the construction of [15] cannot
exceed the fidelity δ = 1/2. Their construction for the BQP-hardness result is the following
local Hamiltonian

H = α+ β

2 I ⊗ |0⟩ ⟨0| +H ′ ⊗ |1⟩ ⟨1| ,

where β − α > 1/poly(n) and H ′ is a certain local Hamiltonian whose lowest eigenvalue is
≤ α in the YES case and is ≥ β in the NO case. It is clear that a ground state of H is
|ψ⟩ ⊗ |1⟩ in the YES case, where |ψ⟩ is a ground state of H ′. For the NO case, a ground
state is |0...0⟩ ⊗ |0⟩. It can then be easily observed that the optimal guiding state (i.e. the
guiding state that has the maximum fidelity with ground states in both the YES and the NO
cases) is written as |ϕ⟩ ⊗ |+⟩ for a certain choice of |ϕ⟩, which shows that the fidelity cannot
exceed 1/2 in this construction.

To overcome the problem, we use the perturbation theory approaches of [21, 7]. In
particular, we use first-order perturbation theory, either using the general Schrieffer-Wolf
transform framework of [7] or a more first-principles approach via the Projection Lemma.
The main idea is to use a large energy penalty term to rule out all low-energy states which
do not look like “history states”. We then show that the corresponding guiding state can be
chosen as the semi-classical subset state introduced in [15] (see Definition 2 in Section 2). To
obtain this, we notice that the ground state of our Hamiltonian is gapped and unique. This
is because we are doing a reduction from BQP (as opposed to QMA). In other words, there
is no QMA “proof” to be plugged into the history state construction, and therefore there is
a unique low-energy history state. In sum, via perturbation theory, we are able to directly
approximate the ground state with a guiding state in both YES and NO cases, as opposed to
the block encoding approach of [15], which used equally weighted orthogonal subspaces to
separately encode the YES and NO cases, respectively.

C. Cade et al. 32:5

Our second result is BQP-hardness of k-GLH for k = 2 (Propositions 9 in Section 3).
Here, the universal simulation setup of [11, 33] cannot be directly applied, because although
their results can approximately preserve the ground space of the input Hamiltonian, it was
not known whether semi-classical subset states can be mapped to semi-classical subset states
under such simulation frameworks, and the latter is essential for guiding states used in GLH.
We show that this is indeed the case. In particular, we show that the original semi-classical
subset state of the input 5-GLH instance is mapped to a state with polynomially many
ancilla qubits in the low-energy subspace of the simulating 2-local Hamiltonian.

Our third result is the BQP-hardness for physically motivated 2-local Hamiltonians
(Proposition 10 and Proposition 12). The main obstacle here is that ground states of
physically motivated 2-local Hamiltonians are not known to be guided by semi-classical
subset states. To solve the problem, we introduce another class of semi-classical states which
we call semi-classical encoded states (see Definition 3 in Section 2). Intuitively, semi-classical
encoded states are states constructed from semi-classical subset states by applying a local
isometry on each qubit. Although semi-classical encoded states are more general than semi-
classical subset states, they still allow succinct descriptions and efficient classical sampling
algorithms (Lemma 4). For us, it is essential that semi-classical encoded states are closed
under the applications of the local encoding of states during the perturbative simulations.
We show that semi-classical encoded states indeed satisfy this property, and therefore can
guide ground states of physically motivated 2-local Hamiltonians. The semi-classical encoded
states newly introduced in this paper are of independent interest, and seem to have many
other interesting applications.

Finally, our fourth result is to extend the k-GLH problem to the question of excited state
energy estimation, we call this the Guided k-Local Hamiltonian Low Energy (k-GLHLE)
problem. In Ref. [20], the authors show that determining the cth excited state energy of a
k-local Hamiltonian (k ≥ 3), where c = poly(n), is QMA-complete – even if all the c − 1
energy eigenstates and corresponding energies are known. In their construction, they embed
a k-local Hamiltonian H, encoding the QMA computation, in a Hamiltonian H ′ living
on a larger Hilbert space. This allows them to add up to polynomial number of artificial
eigenstates to H ′ below the groundstate of H. Finding the c’th eigenvalue of H ′ is then
just as hard as finding the groundstate of H. We show that this construction translates to
the setting with guiding states. As a bonus, we also show that the unguided problem is
QMA-hard for k = 2, which was left open in [20].

Open questions

There are many open questions surrounding GLH, as well as the more general important
goal of solving quantum chemistry problems on quantum computers. For example, we have
shown BQP-hardness of GLH for physically motivated Hamiltonians such as those with
Heisenberg interactions. An important next step would be to show BQP-hardness for the
specific types of fermionic Hamiltonians which are currently being studied in the quantum
chemistry literature. Another subtle but important point is that, technically, the level of
precision required for GLH in quantum chemistry scales as 1/n, while the hardness promise
gap scales as o(1/n) in [15] and the present paper. Can this be improved to Θ(1/n)? A
positive resolution to the quantum PCP conjecture would presumably, in turn, allows one to
obtain hardness for gap Θ(1). Absent this, we are unaware of any circuit-to-Hamiltonian
construction which is able to achieve O(1/n) promise gap. Moreover, as mentioned earlier,
the main bottleneck for quantum chemistry on quantum computers is the arduous task of
finding a good guiding state (if it even exists!). Can good heuristics be designed for this?

ICALP 2023

32:6 Improved Hardness Results for the Guided Local Hamiltonian Problem

Efforts to date suggest the answer so far is negative [25]. Finally, more interestingly (but
more challengingly), can one show rigorous poly-time guiding-state computation algorithms
for the specific families of Hamiltonians considered in the quantum chemistry literature?

2 Preliminaries

Notation

We denote by [M] the set {1, . . . ,M}. We write λi(A) to denote the ith eigenvalue of a
Hermitian matrix A, ordered in non-decreasing order, with λ0(A) denoting the smallest
eigenvalue (ground energy). We denote eig(A) = {λ0(A), . . . , λdim(A)−1(A)} for the (ordered)
set of all eigenvalues of A.

2.1 Semi-classical states
In this section, we formally introduce the guided local Hamiltonian problem. We first define
two classes of semi-classical states. The term “semi-classical” is motivated by the requirement
for such states that they should be efficiently described (as an input of the problem) and
efficiently samplable.3

▶ Definition 2 (Semi-classical subset state). We say that a normalized state |u⟩ ∈ C2n is a
semi-classical subset state if there is a subset S ⊆ {0, 1}n with |S| = poly(n) such that

|u⟩ = 1√
|S|

∑
x∈S

|x⟩ .

A semi-classical subset state can be efficiently described by the description of S. It is
clear that we can efficiently sample from the probability distribution that outputs x ∈ {0, 1}n

with probability |⟨x|u⟩|2, i.e. according to the uniform distribution over S.
We next introduce a generalized version of a semi-classical subset state.

▶ Definition 3 (Semi-classical encoded state). We say that a normalized state |u⟩ ∈ C2m ,
for n < m ∈ O(n), is a semi-classical encoded state if there is a subset S ⊆ {0, 1}n with
|S| = poly(n) and a set of isometries V1, V2, ..., Vn, where each of Vi maps a 1-qubit state to
an O(1)-qubit state, such that

|u⟩ = 1√
|S|

∑
x∈S

V1(|x1⟩) ⊗ V2(|x2⟩) ⊗ · · · ⊗ Vn(|xn⟩).

A semi-classical encoded state is indeed a semi-classical subset state if the encoding is
trivial (i.e. V1 = V2 = · · · = Vn = I). A semi-classical encoded state can be described by
the description of S and isometries V1, V2..., Vn. We can also efficiently sample from the
semi-classical encoded state as we show in the following lemma.

▶ Lemma 4. Given the description of an m-qubit semi-classical encoded state |u⟩, we can
classically efficiently sample from the probability distribution that outputs x ∈ {0, 1}m with
probability |⟨x|u⟩|2.

3 The requirement of sampling access for a guiding state is motivated by the existence of an efficient
classical algorithm for the GLH problem with constant precision, given a guiding state with sampling
access, as shown in [15]. One type of a semi-classical state we use in this paper is a polynomial-size
variant of the notion of subset states, first introduced in [18].

C. Cade et al. 32:7

Proof. Assume we are given the description, S ⊆ {0, 1}n and V1, V2, ..., Vn, of the semi-
classical encoded state

|u⟩ = 1√
|S|

∑
x∈S

V1(|x1⟩) ⊗ V2(|x2⟩) ⊗ · · · ⊗ Vn(|xn⟩).

Let P (y0, y1, ..., yi−1) = |(⟨y0, y1, ..., yi−1| ⊗ I) |u⟩ |2 be the probability that the measurement
outcome of the first i qubits of |u⟩ in the computational basis is y0, y1, ..., yi−1. For each
i ∈ [m], we can efficiently calculate P (y0, y1, ..., yi−1) because |S| = poly(n) and V1(|x1⟩) ⊗
V2(|x2⟩) ⊗ · · · ⊗Vn(|xn⟩) is a product state of O(1)-qubit states. Then, we can also efficiently
calculate the conditional probability

P (z|y0, y1, ..., yi−1) = P (y0, y1, ..., yi−1, z)
P (y0, y1, ..., yi−1) .

If the bits y0, y1, ..., yi−1 have already been sampled, we compute P (z|y0, y1, ..., yi−1) and
sample the next bit by tossing the coin with bias P (0|y0, y1, ..., yi−1). In this way, we can
classically efficiently sample from the probability distribution that outputs x with probability
|⟨x|u⟩|2. ◀

2.2 Non-2SLD Hamiltonian and geometry of interaction
To state the result, we introduce some families of Hamiltonians. Given a set of (at most)
two-body interactions S = {hα}, S-Hamiltonian refers to the family of Hamiltonians that
can be written in the form

H =
∑

⟨i,j⟩∈E

Ji,jh
(i,j)
αi,j

, (1)

where Ji,j ∈ R, h(i,j)
αi,j is two-local interaction chosen from S and E is the set of edges that

represents the connectivity of interaction [10]. If the connectivity of two-body interaction is
restricted to a 2D square lattice, we call such a family S-Hamiltonian on a 2D square lattice.
We also introduce the notion of 2SLD and non-2SLD:

▶ Definition 5 (2SLD interaction [10]). Suppose S is a set of interactions at most 2 qubits.
We say that S is 2SLD if there exists U ∈ SU(2), such that for all hi ∈ S,

U⊗2hi(U†)⊗2 = αiZ ⊗ Z +Ai ⊗ I + I ⊗Bi,

where αi ∈ R and Ai, Bi are arbitrary single-qubit Hamiltonians.

A set S is non-2SLD if it is not 2SLD. In particular, such non-2SLD S includes the following
physically motivated4 Hamiltonians:

{Z,X,ZZ,XX} (ZZXX interaction [6])
{Z,X,ZX,XZ} (ZX interaction [6])
{XX + Y Y } (general XY interaction)
{XX + Y Y + ZZ} (general Heisenberg interaction).

If there is only a single type of interaction (like S = {XX + Y Y + ZZ}), the Hamiltonian is
called semi-translationally-invariant. (Interaction strength can differ in each term.)

4 For clarity, in [10] and here, all hardness results require non-uniform weights on constraints. It is an open
question whether one can obtain (say) QMA-hardness results with uniform (i.e. unit weight) constraints
for such models. This remains an interesting open question, as many-body physicists typically utilize
unit weights to model physical systems.

ICALP 2023

32:8 Improved Hardness Results for the Guided Local Hamiltonian Problem

Restriction on the sign of the interaction

We also introduce a further restricted class of S-Hamiltonian in which all the signs of the
coefficients are promised to be non-negative (i.e. all of Ji,j in eq. (1) must satisfy Ji,j ≥ 0).
We call such a family of Hamiltonians as S+-Hamiltonian following [28]. In [28], the following
results are shown:

{αXX + βY Y + γZZ}+-Hamiltonian is QMA-complete if α + β > 0, α + γ > 0 and
β + γ > 0 hold.
{αXX + βY Y + γZZ}+-Hamiltonian is QMA-complete if the interactions are restricted
to the edges of a 2D triangular lattice if αXX + βY Y + γZZ is not proportional to
XX + Y Y + ZZ in addition to the condition that α+ β > 0, α+ γ > 0 and β + γ > 0
hold.

The first type of S+-Hamiltonian includes the antiferromagnetic Heisenberg model ({XX +
Y Y +ZZ}+-Hamiltonian) and the antiferromagnetic XY model ({XX+Y Y }+-Hamiltonian)
as important special cases. The antiferromagnetic XY model (unlike the antiferromagnetic
Heisenberg model) remains QMA-complete if its geometric interaction is restricted to a 2D
triangular lattice as it is included in the second type of S+-Hamiltonian above.

3 GLHLE hardness constructions

We next define the guided local Hamiltonian low energy (GLHLE) problem, which can be
viewed as a generalization of GLH by considering arbitrary eigenstates of Hamiltonians5. For
an n-qubit Hamiltonian H , we denote Πc the projector onto the space spanned by the states
of H that have energy λc(H).

▶ Definition 6 (Guided Local Hamiltonian Low Energy). GLHLE(k, c, a, b, δ)
Input: A k-local Hamiltonian H on n qubits such that ∥H∥ ≤ 1 and the description of a

semi-classical encoded state |u⟩ ∈ C2n , a constant c ∈ N≥0.
Promise: ∥Πc |u⟩ ∥2 ≥ δ, where Πc denotes the projection on the subspace spanned by the cth

eigenstates, ordered in order of non-decreasing energy, of H, and either λc(H) ≤ a or
λc(H) ≥ b holds.

Goal: Decide whether λc(H) ≤ a or λc(H) ≥ b.
The proof of Theorem 1 consists of five parts: first, we show that 5-local GLH with
δ = 1 − Ω(1/poly(n)) fidelity is BQP-hard. Then, we show how to extend this result to the
BQP-hardness of the 6-local GLHLE problem. Next, we improve the locality parameter and
show a reduction from 6-local GLHLE to 2-local GLHLE. Simultaneously we show that this
also holds when we restict the Hamiltonians to be non−2SLD S-Hamiltonian on a 2D square
lattice. Finally, we show that BQP-hardness persists if we restrict the family of Hamiltonians
to be {XX + Y Y +ZZ}+-Hamiltonians, or {XX + Y Y }+-Hamiltonians on a 2D triangular
lattice.

We state these five parts as propositions and prove them one by one, from this our main
result (Theorem 1) follows.

5 This definition of GLH is very similar to the definition of GLH∗(k, a, b, δ) in [15]. The difference is that
while the guiding states used in [15] are restricted to semi-classical subset states (Definition 2), in our
definition we use the more general concept of semi-classical encoded states (Definition 3). Note that
our BQP-hardness result for general 2-local Hamiltonians (Proposition 9) actually holds even when
the guiding state is a semi-classical subset state. Proposition 9, which optimally improves both the
locality and fidelity parameters of [15], therefore holds in exactly the same setting as [15]. We use
semi-classical encoded states only to show BQP-hardness for further restricted families of Hamiltonians
(Propositions 10 and 12).

C. Cade et al. 32:9

3.1 Increasing the allowed fidelity
The first proposition focuses on increasing the allowed fidelity of the guiding state with the
ground state of the Hamiltonian of interest (and hence c = 0).

▶ Proposition 7. For any δ ∈ (0, 1 − Ω(1/poly(n))), there exist a, b ∈ [0, 1] with b − a ∈
Ω(1/poly(n)) such that the problem GLHLE(5, 0, a, b, δ) is BQP-hard. Moreover, it is still
BQP-hard with the additional two promises that
1. H has a non-degenerate ground state separated from the first excited state by a spectral

gap γ ∈ Ω(1/poly(n)) in both the cases λ0(H) ≤ a and λ0(H) ≥ b.(We call such instances
γ-gapped GLH(k, a, b, δ).)

2. The guiding state is restricted to be a semi-classical subset state.

Proof. Let Π = (Πyes,Πno) be a promise problem in BQP, and x ∈ {0, 1}n be an input. Let
Ux = UmUm−1...U1 be a quantum circuit that decides x consisting of m = poly(n) gates. Ux

acts on |x⟩A ⊗|0...0⟩B where A denotes the n-qubit input register and B denotes the poly-size
ancilla register. By measuring the output register of Ux |x⟩A ⊗ |0...0⟩B , the quantum verifier
outputs 1 with probability at least α if x ∈ ΠYES (at most β if x ∈ ΠNO, respectively). We
may assume α = 1 − 2−n and β = 2−n via the standard error reduction for BQP.

Consider a pre-idled quantum verifier Ũx := UxI · · · I, where I is the identity gate. The
Ũx consists of M := m+N gates, where N is the number of idling steps. (N = poly(n) is
taken properly later.) Consider Kitaev’s [23] 5-local circuit-to-Hamiltonian construction with
an additional scaling factor:

H := ∆(Hin +Hprop +Hstab) +Hout. (2)

Here,

Hin := (I − |x⟩ ⟨x|)A ⊗ (I − |0...0⟩ ⟨0...0|)B ⊗ (|0⟩ ⟨0|)C (3)
Hout := |0⟩ ⟨0|out ⊗ |M⟩ ⟨M |C (4)

Hstab :=
M−1∑
j=1

|0⟩ ⟨0|Cj
⊗ |0⟩ ⟨0|Cj+1

(5)

Hprop :=
M∑

t=1
Ht,where (6)

Ht := −1
2Ut ⊗ |t⟩ ⟨t− 1|C − 1

2U
†
t ⊗ |t− 1⟩ ⟨t|C + 1

2I ⊗ (|t⟩ ⟨t|C + |t− 1⟩ ⟨t− 1|C). (7)

It is known that the non-degenerate and zero-energy ground space of H0 := Hin +Hprop +
Hstab is spanned by |ψhist⟩, where

|ψhist⟩ := 1√
M + 1

M∑
t=0

ŨtŨt−1 · · · Ũ1 |x⟩A ⊗ |0...0⟩B ⊗ |t⟩C .

It is also known that the smallest non-zero eigenvalue of H0 is larger than π2/(64M2) [17,
Lemma 2.2] (based on [14, Lemma 3]).

We apply the Schrieffer-Wolf transformation for this H by taking sufficiently large ∆.
Note that Hout = |0⟩ ⟨0| ⊗ I ⊗ |M⟩ ⟨M | and ∥Hout∥ = 1. We would take

∆ ≥ 16 · 64M2/π2.

Then, H has a one-dimensional ground space spanned by a ground state |g⟩. In the following,
we analyze the fidelity between |g⟩ and |ψhist⟩, and the eigenvalue of |g⟩ in the YES and NO
cases.

ICALP 2023

32:10 Improved Hardness Results for the Guided Local Hamiltonian Problem

Analysis of fidelity

Using Equation (12) of Appendix B , the bound

∥ |g⟩ − |ψhist⟩ ∥ ∈ O
(
(∆/M2)−1)

holds. Let us introduce the following state:

|u⟩ := 1√
N

N∑
t=1

|x⟩A ⊗ |0...0⟩B ⊗ |t⟩C .

This is a semi-classical subset state. This state satisfies

|⟨u|ψhist⟩|2 = N

m+N + 1 .

Therefore, for any positive polynomial r, we can take sufficiently large N,∆ ∈ O(poly(n)) so
that |⟨u|g⟩|2 ≥ 1 − 1/r(n).

Analysis of eigenvalue

Next, we see the ground state energy of H in both the YES case and the NO case. The
first-order effective Hamiltonian is given by

Heff,1 = |ψhist⟩ ⟨ψhist|Hout |ψhist⟩ ⟨ψhist| .

The history state is defined as

|ψhist⟩ = 1√
M + 1

M∑
t=1

Ũt · · · Ũ1 |x⟩A ⊗ |0...0⟩B ⊗ |t⟩C

and

⟨ψhist|Hout |ψhist⟩ = 1
M + 1 ⟨x, 0|U †

x(|0⟩ ⟨0|out ⊗ I)Ux |x, 0⟩ .

The eigenvalue of Heff,1 is given by ⟨ψhist|Hout |ψhist⟩ and this is O((∆/M2)−1) =
O(1/poly(n))-close to the ground state energy of H using Equation (11).

It can be verified that ⟨ψhist|Hout |ψhist⟩ ≤ (1−α)/(M+1) if Ux accepts x with probability
at least α and ⟨ψhist|Hout |ψhist⟩ ≥ (1 − β)/(M + 1) if Ux accepts x with probability at most
β. As we have mentioned earlier, we can assume α = 1 − 2−n and β = 2−n. Therefore, the
ground state energy a of H lies in the range of 0 ± O((∆/M2)−1) if x ∈ Πyes and the ground
state energy b of H lies in the range of 1/(M + 1) ± O((∆/M2)−1) if x ∈ Πno.

We also see the spectral gap between the ground state and any excited state in both
the YES and NO cases. We first see the NO case. As we have shown, the ground state
energy lies in 1−2n

M+1 ± O((M2/∆)). In H = ∆(Hin +Hprop +Hstab) +Hout, the eigenvalues of
∆(Hin +Hprop +Hstab) is perturbed at most ∥Hout∥ = 1. Therefore, the smallest non-zero
eigenvalue of H is larger than (∆π2)/(64M2)−1. The spectral gap in the NO case is therefore

O
(

∆
M2

)
− 1 −

(
1 − 2−n

M + 1 + O
(
M2

∆

))
.

The ground state energy in the YES case is smaller than that in the NO case. Therefore, we
can take sufficiently large ∆ ∈ poly(n) so that H has inverse-polynomial spectral gap and
b − a ∈ Ω(1/poly(n)). Finally, we can normalize H by a polynomially large factor, which
concludes the proof. ◀

C. Cade et al. 32:11

3.2 Extending to excited states
The next proposition extends the result to excited states, at the cost of increasing the locality
of the construction by one.

▶ Proposition 8. For any δ ∈ Ω(0, 1 − 1/poly(n)) there exist a, b ∈ [−1, 1] with b − a ∈
Ω(1/poly(n)) and some number 0 ≤ c ≤ poly(n) such that GLHLE(6, c, a, b, δ) is BQP-hard
even when,
1. the c’th eigenvalue of H, λc(H), is non-degenerate and is separated by a gap γ ∈

Ω(1/poly(n)) from both λc−1(H) and λc+1(H). (We call such instances γ-gapped
GLHLE(k, c, a, b, δ).)

2. The guiding state is restricted to be a semi-classical subset state.

Proof. We will reduce directly from the BQP-complete Hamiltonian H as defined in Eq. (2).
Again, let |u⟩ be a semi-classical guiding state such that |⟨u⟩ψ0| ≥ ζ. Consider the following
6-local Hamiltonian H(c) on n+ 1 qubits6:

H(c) = H(z) ⊗ |0⟩ ⟨0| +H(s) ⊗ |1⟩ ⟨1| , (8)

where

H(z) =
d∑

i=0
2i|1⟩⟨1|i +

n∑
i=d+1

2d+1|1⟩⟨1|i −
(
c− 1

2

)
I,

H(s) = 1
2
H + I/4

∥H∥ + 1/4 − 1
4I,

where we have that d = ⌈log2(c)⌉. H(z) has exactly c states with negative energy, with the
smallest eigenvalue being −c+ 1

2 and the largest eigenvalue value at
∑d

i=0 2i +
∑n

i=d+1 2d+1 −(
c− 1

2
)

= 2d+1 + 2d+1(n − d) − 1
2 − c. The spectrum jumps in integer steps of 1, and

has as largest negative (resp. smallest non-negative) energy value − 1
2 (resp. 1

2). Since
eig(H(s)) ∈ [−1/4, 1/4], we must have that H(s) sits precisely at the c’th excited state
level (or c + 1’th eigenstate level) in H(c). Therefore, given a guiding state |u⟩ for H
such that |⟨u|ψ0⟩| ≥ δ, one has that the guiding state |u(c)⟩ = |u⟩ ⊗ |1⟩ is also semi-
classical and must have |⟨u(c)|ψ(c)

c ⟩| ≥ δ, where |ψ(c)
c ⟩ denotes the cth excited state of

H(c). Since this construction of H(c) and |u(c)⟩ provides a polynomial time reduction
from an instance of GLH(k, a, b, δ) to one of GLHLE(k, c, a, b, δ), whenever c = O(poly(n)),
we must have that GLHLE(k, c, a, b, δ) is BQP-hard whenever k ≥ 6. The gap between
λc(H(c)) − λc−1(H(c)) = 1

4 and the gap between λc+1(H(c)) − λc(H(c)) = γ as before. The
norm of the new Hamiltonian is bounded by |H(c)| = O(poly(n)), hence after normalisation
we retain λc(H(c)) − λc−1(H(c)) ≥ λc+1(H(c)) − λc(H(c)) = Ω(1/poly(n)). ◀

3.3 Locality reduction and reduction to physically motivated
Hamiltonians via strong Hamiltonian simulation

The next two propositions bring (i) the locality k down to 2 and (ii) extend the result to any
of non-2SLD S-Hamiltonian on a 2D square lattice.

6 Note that this gadget can be trivially changed such that estimating the n highest energy states is
BQP-hard.

ICALP 2023

32:12 Improved Hardness Results for the Guided Local Hamiltonian Problem

▶ Proposition 9. Any γ-gapped GLHLE(k, c, a, b, δ) with k ∈ O(1), b − a ∈ Ω(1/poly(n)),
δ ∈ (0, 1−Ω(1/poly(n))), 0 ≤ c ≤ poly(n), and γ ∈ Ω(1/poly(n)) with a guiding semi-classical
subset state can be reduced to γ′-gapped GLHLE(2, c, a′, b′, δ′) with b′ − a′ ∈ Ω(1/poly(n)),
δ′ ∈ (0, 1 − Ω(1/poly(n))) and γ′ ∈ Ω(poly(n)), and with a guiding semi-classical subset state
in polynomial time.

▶ Proposition 10. Any γ-gapped GLHLE(k, c, a, b, δ) with k ∈ O(1), b− a ∈ Ω(1/poly(n)),
δ ∈ (0, 1 − Ω(1/poly(n))), 0 ≤ c ≤ poly(n) and γ ∈ Ω(1/poly(n)), and with a guiding
semi-classical subset state can be reduced to γ′-gapped GLHLE(2, c, a′, b′, δ′) with b′ − a′ ∈
Ω(1/poly(n)), δ′ ∈ (0, 1 − Ω(1/poly(n))) and γ′ ∈ Ω(poly(n)) in polynomial time whose
Hamiltonian is restricted to any of non-2SLD S-Hamiltonian on a 2D square lattice.

Proof of Propositions 9 and 10. Let H and |u⟩ be arbitrary inputs of GLHLE(k, c, a, b, δ)
with k ∈ O(1), b − a ∈ Ω(1/poly(n)), δ ∈ (0, 1 − Ω(1/poly(n))). From Theorem 15 (in
Appendix A.1), we can efficiently find a non-2SLD S-Hamiltonian H ′ on a 2D square lattice
that is a strong (∆, η, ϵ)-simulation of H given the description of H. We take ϵ < (b− a)/2,
b′ = b− ϵ, a′ = a+ ϵ and ∆ = O(ϵ−1∥H∥2 + η−1∥H∥) so that λc(H ′) ≤ a′ if λc(H) ≤ a, and
λc(H ′) ≥ b′ if λc(H) ≥ b′ while b′ − a′ ∈ Ω(1/poly(n)).

We have shown the existence of desirable eigenvectors in the simulated Hamiltonian.
What remains to show is that (i) the encoded state of |u⟩ still has 1 − 1/poly(n) fidelity with
c’th excited state of H ′ and (ii) the encoded state is still a semi-classical subset state after
the simulation by a 2-local Hamiltonian (for concluding Proposition 9) , and (iii) the encoded
state is still a semi-classical encoded state after the simulation by an arbitrary non-2SLD
S-Hamiltonian on a 2D square lattice (for concluding Proposition 10).

(i) Verification of the fidelity. The fidelity can be analyzed by the following lemma:

▶ Lemma 11 (Simulation of the gapped excited state). Suppose the c’th excited state |g⟩ of
H is non-degenerate and separated from both the c− 1’th excited state and c+ 1’th excited
state by a gap γ. Suppose H ′ is a (∆, η, ϵ)-simulation of H such that 2ϵ < γ. Then H ′ has a
non-degenerate c’th excited state |g′⟩ and

∥Estate(|g⟩) − |g′⟩ ∥ ≤ η + O(γ−1ϵ).

Proof. This is a slight modification of Lemma 2 of [8]. First, the non-degeneracy of the c’th
excited state of H ′ follows because the i’th smallest eigenvalues of H and H ′ differs at most ϵ
for all 0 ≤ i ≤ dim(H)−1, and ϵ satisfies 2ϵ < γ. Consider H as an unperturbed Hamiltonian
and V := Ẽ†H ′Ẽ −H as a perturbation. Then, the perturbed Hamiltonian H + V = Ẽ†H ′Ẽ
has a non-degenerate c’th excited state Ẽstate(|g′⟩). The first-order perturbation theory for
eigenvectors gives ∥ |g⟩ − Ẽ†

state(|g′⟩)∥ ∈ O(γ−1ϵ). Therefore, it follows that ∥Ẽstate(|g⟩) −
|g′⟩ ∥ = ∥Ẽstate(|g⟩) − Ẽstate(Ẽ†

state(|g′⟩))∥ ∈ O(γ−1ϵ) using that Ẽstate is an isometry and
|g′⟩ ∈ Im(Ẽstate) . Finally, by using ∥Estate − Ẽstate∥ ≤ η, ∥Estate(|g⟩) − |g′⟩ ∥ ≤ η + O(γ−1ϵ)
follows. ◀

Using Lemma 11, we can take sufficiently small ϵ and η to ensure ∥Estate(|u⟩) − |g′⟩ ∥ ≤
δ′ = δ − 1/poly(n). Because the Hamiltonian simulation is efficient, the operator norm ∥H ′∥
and the number of qubits of H ′ is in poly(n).

(ii) Verification of the semi-classical property for Proposition 9. We start from a semi-
classical subset state |u⟩ = 1/

√
|S|

∑
x∈S |x⟩. We show that after the simulation of the

original k-local Hamiltonian H where k ∈ O(1) by an 2-local Hamiltonian, the corresponding
encoding Estate(|u⟩) is still a semi-classical subset state.

C. Cade et al. 32:13

In order to simulate the k-local Hamiltonian by a 2-local Hamiltonian (that has no
restriction on the family of Hamiltonian), it is enough to use mediator qubit gadgets
that attach |0⟩ states for mediator qubits (called subdivision and 3-to-2 gadgets [27]). A
k-local term can be simulated by (⌈k/2⌉ + 1)-local terms using the subdivision gadget.
Moreover, subdivision gadgets can be applied to each of the terms of the Hamiltonian in
parallel [28, 11]. Therefore, we can reduce a k-local Hamiltonian to a 3-local Hamiltonian
by O(log k) rounds of applications of the subdivision gadgets. Then we can use the 3-to-2
gadgets in parallel to reduce to a 2-local Hamiltonian. In the corresponding encoding of
states of this procedure, polynomially many |0⟩ states are attached to the original state.
Clearly, by attaching polynomially many |0⟩ states, a polynomial-size subset state is mapped
to another polynomial-size subset state:

1√
|S|

∑
x∈S

|x⟩ → 1√
|S|

∑
x∈S

|x⟩ |0⟩⊗poly(n) = 1√
|S|

∑
x∈S×{0...0}

|x⟩ .

This concludes the proof of Proposition 9.

(iii) Verification of the semi-classical property for Proposition 10. We proceed to show
that starting from a semi-classical subset state |u⟩, the resulting state is a semi-classical
encoded state when we simulate the original Hamiltonian by a non-2SLD S-Hamiltonian on
a 2D square lattice. There are three types of encodings used in the simulation:

Mediator qubits. In this encoding, some simple ancilla states are attached to the
original state.
Subspace encoding. In this encoding, a local isometry is applied to the original state.
Local Unitaries. In this encoding, local unitary U ⊗ U ⊗ · · · ⊗ U , where each of U acts
on one qubit, is applied to the original state.

We restate the chain of Hamiltonian simulations of Appendix C:✓ ✏
Arbitrary k-local Hamiltonian
↓ (1) Mediator qubits. (Attach a semi-classical subset state |α⟩.)
Spatially sparse 5-local Hamiltonian
↓ (2) Mediator qubits. (Attach polynomially many |+y⟩ states.)
Spatially sparse 10-local real Hamiltonian
↓ (3) Mediator qubits. (Attach polynomially many |0⟩ or |1⟩ states.)
Spatially sparse 2-local Pauli interactions with no Y -terms
↓ (4) Subspace encoding.
Spatially sparse S0 = {XX + Y Y + ZZ} or {XX + Y Y } Hamiltonian
↓ (5) Mediator qubits. (Attach polynomially many |0⟩ or |1⟩ states.)
S0-Hamiltonians on a 2D square lattice
↓ (6) Mediator qubits, Subspace encoding, and local unitary.
Arbitrary non-2SLD S-Hamiltonian on a 2D square lattice✒ ✑

In step (1), a semi-classical subset state is attached to a semi-classical subset state |u⟩. The
resulting state is also a semi-classical subset state:

|u⟩ = 1√
|S|

∑
x∈S

|x⟩ → 1√
|S|

∑
x∈S

|x⟩ ⊗ 1√
|S′|

∑
x′∈S′

|x′⟩

= 1√
|S||S′|

∑
x∈S×S′

|x⟩ . (9)

ICALP 2023

32:14 Improved Hardness Results for the Guided Local Hamiltonian Problem

The resulting state after the encodings of steps (2)∼(4) is a semi-classical encoded state
because in these steps, a tensor product of single-qubit states is attached to a semi-classical
subset state and then the state is encoded by a local isometry. By further performing a
local encoding to the semi-classical encoded state, the resulting state is also a semi-classical
encoded state. This concludes the proof of Proposition 10. ◀

Finally, we show a BQP-hardness result for the antiferromagnetic Hamiltonian.

▶ Proposition 12. For any δ ∈ (0, 1 − Ω(1/poly(n))), there exist a, b ∈ [0, 1] with b− a ∈
Ω(1/poly(n)) and 0 ≤ c ≤ O(poly(n)) such that the problem GLHLE(2, c, a, b, δ) with b−a ∈
Ω(1/poly(n)) is BQP-hard for Hamiltonians that are restricted to either {XX+Y Y +ZZ}+-
Hamiltonian, or {XX + Y Y }+-Hamiltonian on a 2D triangular lattice.

Proof. We first prove the case of {XX+Y Y +ZZ}+-Hamiltonian. This can be reduced from
the GLHLE problem of {XX + Y Y + ZZ}-Hamiltonian with a semi-classical encoded state
as a guiding state, which is shown to be BQP-hard in Proposition 10. The {XX+Y Y +ZZ}-
Hamiltonian can be simulated by {XX + Y Y + ZZ}+-Hamiltonian using the “basic gadget”
(this is a type of a mediator qubit gadget) of [28]. In the corresponding encoding of the
state, a tensor product of two-qubit states is attached to the original state. This encodes a
semi-classical encoded state to another semi-classical encoded state. The reason is as follows.
Let us denote the attached tensor product of polynomially many two-qubit states as

|ϕ1⟩ ⊗ |ϕ2⟩ ⊗ · · · |ϕm⟩ = V ′
1 |0⟩ ⊗ V ′

2 |0⟩ ⊗ · · ·V ′
m |0⟩ ,

where |ϕ1⟩ , ..., |ϕm⟩ are two-qubit states and V ′
1 , ..., V

′
m are isometries such that V ′

i |0⟩ = |ϕi⟩
for each i ∈ [m]. Then, the original semi-classical encoded state represented by a polynomial-
size subset S and a local isometry V1 ⊗ V2 ⊗ · · · ⊗ Vn is mapped to a semi-classical encoded
state represented by a subset S × {0...0} and a local isometry V1 ⊗ · · · ⊗ Vn ⊗ V ′

1 ⊗ · · · ⊗ V ′
m.

This concludes the case of {XX + Y Y + ZZ}+-Hamiltonian.
We next show the BQP-hardness of the GLHLE problem of {XX + Y Y }+-Hamiltonian

on a 2D triangular lattice with a semi-classical encoded state. We show a reduction from
the GLHLE problem of {XX + Y Y }-Hamiltonian on a 2D square lattice with a semi-
classical encoded state as a guiding state, which is shown to be BQP-hard in Proposition 10.
It is shown in [28] how to simulate {XX + Y Y }-Hamiltonian on a 2D square lattice by
{XX + Y Y }+-Hamiltonian on a 2D triangular lattice by using mediator qubit gadgets. The
corresponding encoding is just attaching a product state of polynomially many O(1)-qubit
states to the original guiding state. Therefore, the original semi-classical encoded state
is mapped to another semi-classical encoded state (by a similar reason as in the case of
{XX + Y Y + ZZ}+-Hamiltonian). ◀

References
1 Scott Aaronson. Why quantum chemistry is hard. Nature Physics, 5:707–708, 2009. doi:

10.1038/nphys1415.
2 Daniel S. Abrams and Seth Lloyd. Quantum algorithm providing exponential speed increase

for finding eigenvalues and eigenvectors. Physical Review Letters, 83:5162–5165, 1999. doi:
10.1103/PhysRevLett.83.5162.

3 Andris Ambainis. On physical problems that are slightly more difficult than QMA. In 29th
IEEE Conference on Computational Complexity (CCC), pages 32–43, 2014.

4 Alán Aspuru-Guzik, Anthony D. Dutoi, Peter J. Love, and Martin Head-Gordon. Simulated
quantum computation of molecular energies. Science, 309(5741):1704–1707, 2005. doi:
10.1126/science.1113479.

https://doi.org/10.1038/nphys1415
https://doi.org/10.1038/nphys1415
https://doi.org/10.1103/PhysRevLett.83.5162
https://doi.org/10.1103/PhysRevLett.83.5162
https://doi.org/10.1126/science.1113479
https://doi.org/10.1126/science.1113479

C. Cade et al. 32:15

5 Bela Bauer, Sergey Bravyi, Mario Motta, and Garnet Kin-Lic Chan. Quantum algorithms for
quantum chemistry and quantum materials science. Chemical Reviews, 120(22):12685–12717,
2020. doi:10.1021/acs.chemrev.9b00829.

6 Jacob D Biamonte and Peter J Love. Realizable hamiltonians for universal adiabatic quantum
computers. Physical Review A, 78(1):012352, 2008.

7 Sergey Bravyi, David DiVincenzo, and Daniel Loss. Schrieffer–Wolff transformation for
quantum many-body systems. Annals of physics, 326(10):2793–2826, 2011.

8 Sergey Bravyi and Matthew Hastings. On complexity of the quantum ising model. Commu-
nications in Mathematical Physics, 349(1):1–45, 2017.

9 Marco Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Suguru Endo,
Keisuke Fujii, Jarrod R. McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, and
Patrick J. Coles. Variational quantum algorithms. Nature Reviews Physics, 3:625–644,
2021. doi:s42254-021-00348-9.

10 Toby Cubitt and Ashley Montanaro. Complexity classification of local hamiltonian problems.
SIAM Journal on Computing, 45(2):268–316, 2016.

11 Toby Cubitt, Ashley Montanaro, and Stephen Piddock. Universal quantum hamiltonians.
Proceedings of the National Academy of Sciences, 115(38):9497–9502, 2018.

12 Richard Feynman. Simulating physics with computers. International Journal of Theoretical
Physics, 21(6–7):467–488, 1982.

13 Richard Feynman. Quantum mechanical computers. Optics News, 11:11, 1985.
14 Sevag Gharibian and Julia Kempe. Hardness of approximation for quantum problems. In

Proceedings of the 39th International Colloquium on Automata, Languages and Programming
(ICALP 2012), pages 387–398, 2012.

15 Sevag Gharibian and François Le Gall. Dequantizing the quantum singular value transformation:
hardness and applications to quantum chemistry and the quantum PCP conjecture. In
Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing, pages
19–32, 2022. Full version available as arXiv:2111.09079. doi:10.1145/3519935.3519991.

16 Sevag Gharibian and Ojas Parekh. Almost Optimal Classical Approximation Algorithms for a
Quantum Generalization of Max-Cut. In Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques (APPROX/RANDOM 2019), volume 145, pages
31:1–31:17, 2019.

17 Sevag Gharibian and Justin Yirka. The complexity of simulating local measurements on
quantum systems. Quantum, 3:189, 2019. doi:10.22331/q-2019-09-30-189.

18 Alex Bredariol Grilo, Iordanis Kerenidis, and Jamie Sikora. QMA with subset state witnesses.
In International Symposium on Mathematical Foundations of Computer Science, pages 163–174.
Springer, 2015.

19 Aram W. Harrow, Avinatan Hassadim, and Seth Lloyd. Quantum algorithm for solving linear
systems of equations. Physical Review Letters, 15(103):150502, 2009.

20 Stephen P. Jordan, David Gosset, and Peter J. Love. Quantum-Merlin-Arthur–complete
problems for stoquastic hamiltonians and markov matrices. Phys. Rev. A, 81:032331, March
2010. arXiv:0905.4755. doi:10.1103/PhysRevA.81.032331.

21 Julia Kempe, Alexei Yu. Kitaev, and Oded Regev. The complexity of the local Hamiltonian
problem. SIAM journal on Computing, 35(5):1070–1097, 2006.

22 Alexei Yu. Kitaev. Quantum measurements and the Abelian Stabilizer Problem, 1995. arXiv:
quant-ph/9511026.

23 Alexei Yu. Kitaev, Alexander H. Shen, and Mikhail N. Vyalyi. Classical and Quantum
Computation. American Mathematical Society, 2002.

24 Joonho Lee, Dominic W. Berry, Craig Gidney, William J. Huggins, Jarrod R. McClean, Nathan
Wiebe, and Ryan Babbush. Even more efficient quantum computations of chemistry through
tensor hypercontraction. PRX Quantum, 2:030305, 2021. doi:10.1103/PRXQuantum.2.030305.

ICALP 2023

https://doi.org/10.1021/acs.chemrev.9b00829
https://doi.org/s42254-021-00348-9
https://doi.org/10.1145/3519935.3519991
https://doi.org/10.22331/q-2019-09-30-189
https://arxiv.org/abs/0905.4755
https://doi.org/10.1103/PhysRevA.81.032331
https://arxiv.org/abs/quant-ph/9511026
https://arxiv.org/abs/quant-ph/9511026
https://doi.org/10.1103/PRXQuantum.2.030305

32:16 Improved Hardness Results for the Guided Local Hamiltonian Problem

25 Seunghoon Lee, Joonho Lee, Huanchen Zhai, Yu Tong, Alexander M Dalzell, Ashutosh Kumar,
Phillip Helms, Johnnie Gray, Zhi-Hao Cui, Wenyuan Liu, et al. Is there evidence for exponential
quantum advantage in quantum chemistry? arXiv preprint, 2022. arXiv:2208.02199.

26 Lin Lin and Yu Tong. Near-optimal ground state preparation. Quantum, 4:372, 2020.
27 Roberto Oliveira and Barbara M. Terhal. The complexity of quantum spin systems on a

two-dimensional square lattice. Quantum Information and Computation, 8(10):0900–0924,
2008.

28 Stephen Piddock and Ashley Montanaro. The complexity of antiferromagnetic interactions
and 2d lattices. Quantum Information & Computation, 17(7-8):636–672, 2017.

29 Markus Reiher, Nathan Wiebe, Krysta M. Svore, Dave Wecker, and Matthias Troyer. Elucid-
ating reaction mechanisms on quantum computers. Proceedings of the National Academy of
Sciences, 114(29):7555–7560, 2017. doi:10.1073/pnas.1619152114.

30 Norbert Schuch and Frank Verstraete. Computational complexity of interacting electrons and
fundamental limitations of density functional theory. Nature Physics, 5:732–735, 2009.

31 Yuan Su, Dominic W. Berry, Nathan Wiebe, Nicholas Rubin, and Ryan Babbush. Fault-
tolerant quantum simulations of chemistry in first quantization. PRX Quantum, 2:040332,
November 2021. doi:10.1103/PRXQuantum.2.040332.

32 Tzu-Chieh Wei, Michele Mosca, and Ashwin Nayak. Interacting boson problems can be QMA
hard. Physical Review Letters, 104:040501, 2010.

33 Leo Zhou and Dorit Aharonov. Strongly universal Hamiltonian simulators. arXiv preprint,
2021. arXiv:2102.02991.

A Approximate Hamiltonian simulation

A.1 Introduction of approximate Hamiltonian simulation
While in the QMA-hardness reduction it suffices to focus only on the eigenvalues in the
simulation, in the reduction of GLH it is also important to know how the eigenvectors change
in the perturbative simulation. It is convenient to introduce the notion of approximate
Hamiltonian simulation to show the reduction of GLH.

▶ Definition 13 (Approximate Hamiltonian simulation [11], [33]). We say that an m-qubit
Hamiltonian H ′ is a (∆, η, ϵ)-simulation of an n-qubit Hamiltonian H if there exists a local
encoding E(M) = V (M ⊗ P + M̄ ⊗Q)V † such that
1. There exists an encoding Ẽ(M) = Ṽ (M ⊗ P + M̄ ⊗Q)Ṽ † such that Ẽ(1) = P≤∆(H′) and

∥Ṽ − V ∥ ≤ η, where P≤∆(H′) is the projector onto the subspace spanned by eigenvectors
of H ′ with eigenvalue below ∆,

2. ∥H ′
≤∆ − Ẽ(H)∥ ≤ ϵ, where H ′

≤∆ := P≤∆(H′)H
′.

Here, V is a local isometry that can be written as V =
⊗

i Vi where each Vi is an isometry
acting on at most 1 qubit, and P and Q are locally orthogonal projectors (i.e. for all
i there exist orthogonal projectors Pi and Qi acting on the same subsystem as Vi such
that PiQi = 0, PiP = P and QiQ = Q) such that P + Q = I, and M̄ is the complex
conjugate of M . Moreover, we say that the simulation is efficient if m and ∥H ′∥ are at most
O(poly(n, η−1, ϵ−1,∆)), and the description of H ′ can be computable in poly(n) time given
the description of H.

We approximately simulate the original Hamiltonian H in the low-energy subspace of H ′.
There is a corresponding encoding of a state which can be taken as

Estate(ρ) = V (ρ⊗ σ)V †

for σ such that Pσ = σ (if P ̸= 0). If ρ is the eigenvector of H with eigenvalue α, then
Estate(ρ) is approximately the eigenvector of H ′ with eigenvalue α′ ∈ [α− ϵ, α+ ϵ].

https://arxiv.org/abs/2208.02199
https://doi.org/10.1073/pnas.1619152114
https://doi.org/10.1103/PRXQuantum.2.040332
https://arxiv.org/abs/2102.02991

C. Cade et al. 32:17

In [33], it is shown that there exist families of Hamiltonians that can efficiently simulate
any O(1)-local Hamiltonians. They call such families of Hamiltonians strongly universal
Hamiltonians.7 We use the construction of strongly universal Hamiltonians of [33] to show
Proposition 9. Formally, the strong (and weak) universality is defined as follows:

▶ Definition 14 (Strong and weak universality [33]). A family of Hamiltonians H = {Hm}
is weakly universal if given any ∆, η, ϵ > 0, any O(1)-local, n-qubit Hamiltonian can be
(∆, η, ϵ)-simulated. Such a family is strongly universal if the simulation is always efficient.

The following result is shown in [33]:

▶ Theorem 15 ([33]). Any non-2SLD S-Hamiltonian on a 2D-square lattice is strongly
universal.

B Schrieffer-Wolf transformation for 1-dimensional gapped ground
space

Let us introduce the Schrieffer-Wolf transformation and its approximation [7] which we use in
the proof. We only consider the case when the unperturbed Hamiltonian has 1-dimensional
ground space.

Let H0 be a Hamiltonian that has 1-dimensional ground space spanned by |g0⟩ whose
energy is 0. Let us assume that the smallest non-zero eigenvalue of H0 is larger than one.
Consider the following (perturbed) Hamiltonian: H = ∆H0 + V . We shall always assume
that ∥V ∥ ≤ ∆/2 in the following. Then, there is only one eigenvector (which we denote |g⟩)
of H with eigenvalue lying in the interval of [−∆/2,∆/2] (Lemma 3.1 of [7]).

Then, the Schrieffer-Wolf (SW) transformation is defined as a unitary USW that maps
the ground space of H to that of H0. That is, USW |g⟩ = |g0⟩. The Hamiltonian

Heff = Π0USW(∆H0 + V)U†
SWΠ0

is called the effective low-energy Hamiltonian. Here, Π0 is the projector onto the ground
space of H0. The eigenvector of Heff is |g0⟩ and the eigenvalue is the same as the eigenvalue
of |g⟩ with respect to H.

Next, we show how to approximate USW and Heff . We only need the simplest first-order
approximation in the proof of Proposition 7. In the following, we further assume ∥V ∥ ≤ ∆/16.
Then, it is known that

∥I − USW∥ ∈ O(∆−1∥V ∥) (10)

and

∥Heff − Π0VΠ0∥ ∈ O(∆−1∥V ∥2) (11)

hold (Lemma 3.4 [7], Lemma 4 [8]). This means that I and Π0VΠ0 work as the first-order
approximation of USW and Heff , respectively. The derivation and the forms of the higher-order
terms can be found in [7]. From eq. (10), it follows that∥∥ |g⟩ − |g0⟩

∥∥ =
∥∥∥(I − U†

SW) |g0⟩
∥∥∥ ∈ O(∆−1∥V ∥). (12)

It follows from eq. (11) that the ground state energy of H differs at most O(∆−1∥V ∥2) from
the eigenvalue of Heff,1 := Π0VΠ0 (restricted to the space spanned by |g0⟩).

7 It would be possible to show Theorem 1 by modifying the verifier circuit Ũx following [27] to make the
constructed Hamiltonian spatially sparse. We believe Proposition 9 is interesting because the reduction
holds for arbitrary O(1)-local Hamiltonian even if it is not originally spatially sparse.

ICALP 2023

32:18 Improved Hardness Results for the Guided Local Hamiltonian Problem

C Encoding of states for strong Hamiltonian simulation

We sketch the construction of the strong Hamiltonian simulation introduced in [33]. The
simulation mainly consists of two parts. First, they construct spatially sparse 5-local
Hamiltonian [27] using a quantum phase estimation circuit and its modification. This
procedure may be thought of as a “Hamiltonian-to-circuit” (then goes back to Hamiltonian
by circuit-to-Hamiltonian) construction. Then, they perturbatively simulate the spatially
sparse Hamiltonian with known techniques in the literature [27, 11, 28]. In the following, we
overview their construction.

(1) Arbitrary k-local Hamiltonian → spatially sparse 5-local Hamiltonian ([33])

Let H be a target O(1)-local Hamiltonian. Assume that H can be written as H =∑
i Ei |ψi⟩ ⟨ψi| where {Ei} and {|ψi⟩} are the eigenvalues and eigenvectors of H. In [33],

they showed that there is a spatially sparse quantum circuit U sparse
PE that approximately

estimates the energy of H, i.e.

U sparse
PE

∑
i

ci |ψi⟩ |0m⟩ ≈
∑

i

ci |ψi⟩ |Ẽi⟩ |other⟩ ,

where {ci} are arbitrary coefficients and {|Ẽi⟩} are approximations of {Ei}.
The circuit U sparse

PE is implemented first by constructing U sparse
NN that consists of 1D nearest-

neighborhood interaction. Then, U sparse
NN is converted into a spatially sparse circuit using

ancilla qubits and swap gates.
Then they combine uncomputation and idling to construct

U = (Idling)(U sparse
PE)†(Idling)U sparse

PE .

They apply circuit-to-Hamiltonian construction for this U to construct spatially sparse 5-local
Hamiltonian Hcircuit. They use first-order perturbation theory to show that Hcircuit simulates
H in its low-energy subspace. The encoding of Hcircuit to the low energy subspace of H is
approximated by the map: H → H ⊗ |α⟩ ⟨α|. Here, |α⟩ is a subset state with poly(n)-size
subset S′ that is related to the history state of the idling steps after uncomputation. For
detail, see the proof of Proposition 2 of [33]. Then, the corresponding encoding of the state is

|u⟩ → |u⟩ ⊗ |α⟩ .

The encoded state is also a semi-classical subset state if |u⟩ is a semi-classical subset state.

(2) Spatially sparse 5-local Hamiltonian → Spatially sparse 10-local real
Hamiltonian (Lemma 22 of [11])

In this simulation, the state is encoded by attaching polynomially many |+y⟩ where |+y⟩ is
the +1 eigenvector of Pauli Y matrix:

|u⟩ → |u⟩ ⊗ |+y⟩ ⊗ · · · ⊗ |+y⟩ . (13)

This encoding does not map a semi-classical subset state into a semi-classical state but maps
into a semi-classical encoded state. The reason is as follows. Let Vy be a unitary such that
|+y⟩ = Vy |0⟩, and |u⟩ = 1/

√
|S|

∑
x∈S |x⟩. Then, the right side of eq. (13) can be written as

|u⟩ ⊗ |+y⟩ ⊗ · · · ⊗ |+y⟩ = 1√
|S|

∑
x∈S×{0...0}

I ⊗ · · · ⊗ I ⊗ Vy ⊗ · · · ⊗ Vy |x⟩ .

This is a semi-classical encoded state with a subset S × {0...0} and a local isometry (this is
indeed a local unitary) I ⊗ · · · ⊗ I ⊗ Vy ⊗ · · · ⊗ Vy.

C. Cade et al. 32:19

(3) Spatially sparse 10-local real Hamiltonian → Spatially sparse 2-local Pauli
interactions with no Y -terms ([27, 10])

This can be done first by simulating the 10-local real Hamiltonian with 11-local Hamiltonian
whose Pauli decomposition does not contain any Pauli Y terms [11, Lemma 40]. In the
corresponding encoding, |1⟩ states are attached for the polynomially many mediator qubits
introduced in the simulation. Then, we can use subdivision gadgets and 3-to-2 gadgets [27].
In this simulation, polynomially many mediator qubits are introduced, and the encoding of
states is just to add |0⟩ states for each of the mediator qubits. The resulting Hamiltonian can
be written in the form

∑
i<j αijAij +

∑
k(βkXk + γkZk), where Aij is one of the interactions

of XiXj , XiZj , ZiXj or ZiZj .

(4) Subspace encoding for spatially sparse S0 = {XX + Y Y + ZZ} or
{XX + Y Y } Hamiltonian (Theorem 42 of [11])

We have already obtained 2-local Hamiltonian in the form
∑

i<j αijAij +
∑

k(βkXk + γkZk).
Then we show how to simulate this Hamiltonian with arbitrary non-2SLD S-Hamiltonians.
We first consider S0 Hamiltonian, where S0 = {XX+Y Y +ZZ} or S0 = {XX+Y Y }. In this
simulation, we use subspace encoding in which the logical qubit of the original Hamiltonian
is encoded into four physical qubits. Consider the simulation by Heisenberg interaction
{XX + Y Y + ZZ} for example. Each logical qubit is encoded into 4 qubit state by an
isometry that is defined as

V |0⟩ = |0L⟩ = |Ψ−⟩13 |Ψ−⟩24 (14)

V |1⟩ = |1L⟩ = 2√
3

|Ψ−⟩12 |Ψ−⟩34 − 1√
3

|Ψ−⟩13 |Ψ−⟩24 , (15)

where |Ψ−⟩ = (|01⟩ − |10⟩)/
√

2. For details, see [11, Theorem 42]. The encoding of states
for XX+YY interaction is the same. A semi-classical encoded state is clearly mapped to
a semi-classical encoded state by applying a local isometry of the corresponding subspace
encoding.

(5) Spatially sparse S0-Hamiltonian → S0-Hamiltonians on a 2D square lattice
(Lemma 47 of [11])

This simulation can be done using three perturbative gadgets called subdivision, fork, and
crossing gadgets. All of these gadgets attach a mediator qubit for each use of the gadgets.
O(1) rounds of parallel use of perturbative gadgets are sufficient to simulate a spatially
sparse S0-Hamiltonian by a S0-Hamiltonians on a 2D square lattice, which prevents the
interaction strength to grow exponentially. (For general interaction graphs, O(log n) rounds
of perturbative simulations are necessary.)

(6) S0-Hamiltonian on 2D square lattice → Arbitrary non-SLD S-Hamiltonian on a
2D square lattice (Theorem 43 of [11])

Finally, this simulation is similarly done by using variants of mediator qubit gadgets or
subspace encoding gadgets as well as applying local unitaries.8

8 Applying local unitaries means to simulate H by U⊗nH(U†)⊗n where U acts on one qubit. The
corresponding encoding of state is Estate(|ψ⟩) = U⊗n |ψ⟩.

ICALP 2023

Planar #CSP Equality Corresponds to Quantum
Isomorphism – A Holant Viewpoint
Jin-Yi Cai #

Department of Computer Sciences, University of Wisconsin-Madison, WI, USA

Ben Young1 #

Department of Computer Sciences, University of Wisconsin-Madison, WI, USA

Abstract
Recently, Mančinska and Roberson proved [11] that two graphs G and G′ are quantum isomorphic
if and only if they admit the same number of homomorphisms from all planar graphs. We extend
this result to planar #CSP with any pair of sets F and F ′ of real-valued, arbitrary-arity constraint
functions. Graph homomorphism is the special case where each of F and F ′ contains a single
symmetric 0-1-valued binary constraint function. Our treatment uses the framework of planar Holant
problems. To prove that quantum isomorphic constraint function sets give the same value on any
planar #CSP instance, we apply a novel form of holographic transformation of Valiant [13], using the
quantum permutation matrix U defining the quantum isomorphism. Due to the noncommutativity
of U ’s entries, it turns out that this form of holographic transformation is only applicable to planar
Holant. To prove the converse, we introduce the quantum automorphism group Qut(F) of a set
of constraint functions/tensors F , and characterize the intertwiners of Qut(F) as the signature
matrices of planar Holant(F | EQ) quantum gadgets. Then we define a new notion of (projective)
connectivity for constraint functions and reduce arity while preserving the quantum automorphism
group. Finally, to address the challenges posed by generalizing from 0-1 valued to real-valued
constraint functions, we adapt a technique of Lovász [9] in the classical setting for isomorphisms of
real-weighted graphs to the setting of quantum isomorphisms.

2012 ACM Subject Classification Mathematics of computing → Graph theory; Theory of computa-
tion → Problems, reductions and completeness

Keywords and phrases #CSP, Quantum isomorphism, Holant, Gadget, Intertwiners, Planar graphs

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.33

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2212.03335

Acknowledgements The authors thank David Roberson for his insightful comments and suggestions,
and Austen Fan for helpful discussions.

1 Introduction

Graph Homomorphism and #CSP

A homomorphism from graph K to graph X is an edge-preserving map from the vertex set
V (K) of K to the vertex set V (X) of X. A well-studied problem in complexity theory is to
count the number of distinct homomorphisms from K to X, which can be expressed as∑

σ:V (K)→V (X)

∏
(u,v)∈E(K)

(AX)σ(u),σ(v),

1 Corresponding author

EA
T
C
S

© Jin-Yi Cai and Ben Young;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 33; pp. 33:1–33:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jyc@cs.wisc.edu
mailto:benyoung@cs.wisc.edu
https://orcid.org/0000-0003-1921-7253
https://doi.org/10.4230/LIPIcs.ICALP.2023.33
https://arxiv.org/abs/2212.03335
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

33:2 Planar #CSP Equality Corresponds to Quantum Isomorphism – A Holant Viewpoint

the value of the partition function of X evaluated on K, where AX is the adjacency matrix
of X. From this perspective, graph homomorphism naturally generalizes to a counting
constraint satisfaction problem (#CSP) by replacing {AX} with a set F of R or C-valued
constraint functions on one or more inputs from a finite domain V (F), and replacing K

with a set of constraints and variables, where each constraint applies a constraint function
to a sequence of variables. The problem is to compute the partition function, which is
the sum over all variable assignments of the product of the constraint function evaluations.
Letting V (F) = V (X) and the constraint and variable sets be E(K) and V (K), respectively,
with each edge/constraint applying AX to its two endpoints, we recover the special case of
counting homomorphisms from K to X.

Bulatov [2] proved that every problem #CSP(F), parameterized by a finite set F of
0-1-valued constraint functions, is either (1) solvable in polynomial-time or (2) #P-complete.
Dyer and Richerby [6] proved that this complexity dichotomy has a decidable criterion. This
dichotomy was further extended to nonnegative real-valued, and then to all complex-valued
constraint functions [5, 4]. When we restrict to planar #CSP instances (for which the
bipartite constraint-variable incidence graph is planar), a further complexity trichotomy is
known for the Boolean domain (where V (F) = {0, 1}) [7], that there are exactly three classes:
(1) polynomial-time solvable; (2) #P-hard for general instances but solvable in polynomial-
time over planar structures; and (3) #P-hard over planar structures. Furthermore, Valiant’s
holographic algorithm with matchgates [13] is universal for all problems in class (2): Every
#P-hard #CSP problem that is solvable in polynomial-time in the planar setting is solvable
by this one algorithmic strategy. However, for planar #CSP on domains of size greater than
2, a full complexity classification is open.

Holant Problems

We carry out much of our work in the planar Holant framework from counting complexity,
which we find natural to this theory, and of which planar #CSP itself is a special case. Like
a #CSP problem, a Holant problem is parameterized by a set F of constraint functions.
The input to a planar Holant problem is a signature grid, a planar graph where each edge
represents a variable and every vertex is assigned a constraint function from F . A vertex’s
constraint function is applied to its incident edges. This is dual to the #CSP view of graph
homomorphism, where each edge is a (necessarily binary) constraint and each vertex is a
variable. As with #CSP, the computational problem is to compute the Holant value – the
sum over all variable (edge) assignments, of the product of the evaluations of the constraint
functions. A (planar) gadget is a (planar) Holant signature grid with a number of dangling
edges, representing external variables. Each gadget has an associated signature matrix, which
stores the Holant value for each fixed assignment to the dangling edges. The study of Holant
problems is motivated by Valiant’s holographic transformations [13], which are certain Holant
value-preserving transformations of the constraint functions by invertible matrices.

Classical and Quantum Isomorphism

As suggested above, one can view a q-vertex real-weighted graph X, via its adjacency matrix
AX ∈ Rq×q, as an R-valued binary (i.e. two input variables) constraint function. Two q-vertex
graphs X and Y are isomorphic if one can apply a permutation to the rows and columns of
AX to obtain AY . Equivalently, if we convert AX and AY to vectors aX , aY ∈ Rq2 , there is a
permutation matrix P satisfying P ⊗2aX = aY . For n-ary constraint functions F, G ∈ R[q]n ,
where [q] = {1, 2, . . . , q}, a natural generalization applies. F and G are isomorphic if there is
a permutation matrix P satisfying P ⊗nf = g, where f, g ∈ Rqn are the vector versions of F

and G.

J.-Y. Cai and B. Young 33:3

Quantum isomorphism of (undirected, unweighted) graphs, introduced in [1], is a relaxa-
tion of classical isomorphism. Graphs X and Y are quantum isomorphic if there is a perfect
winning strategy in a two-player graph isomorphism game in which the players share and
can perform measurements on an entangled quantum state. This condition is equivalent to
the existence of a quantum permutation matrix matrix U – a relaxation of a permutation
matrix whose entries do not necessarily commute – satisfying U⊗2aX = aY [10]. Analogously
to classical isomorphism, in this work we define n-ary constraint functions F and G to be
quantum isomorphic if there is a quantum permutation matrix U satisfying U⊗nf = g. Sets
F and G of constraint functions of equal cardinality are quantum isomorphic if there is a
single quantum permutation matrix defining a quantum isomorphism between every pair of
corresponding functions in F and G.

In [8], Lovász proved that two graphs are isomorphic if and only if they admit the same
number of homomorphisms from every graph. Fifty years later, Mančinska and Roberson [11]
proved that two graphs are quantum isomorphic if and only if they admit the same number
of homomorphisms from all planar graphs. We generalize this result to #CSP and sets of
constraint functions. We achieve this via graph combinatorics, results from quantum group
theory, and a novel form of holographic transformation, establishing new connections between
planar Holant, #CSP, quantum permutation matrices, and quantum isomorphism.

While quantum permutation matrices, quantum isomorphism, and other quantum con-
structions in this paper are somewhat abstract and technical, we believe it is precisely these
concepts’ abstractness that makes the connections we develop between them and the very
concrete, combinatorial concept of planarity so fascinating and potentially fruitful. Our
result that quantum isomorphism exactly captures planarity could lead to entirely novel,
algebraic methods of studying the complexity of planar #CSP and Holant.

Our Results

Our main result is the following theorem, a broad extension of the main result of Mančinska
and Roberson [11], recast into the well-studied Holant and #CSP frameworks.

▶ Theorem (Theorem 9, informal). Sets F and G of R-valued constraint functions are quantum
isomorphic iff the partition function of every planar #CSP(F) instance is preserved upon
replacing every constraint function in F with the corresponding function in G.

Our general constraint functions add significant complexity relative to the graph homomorph-
ism special case in [11], since, unlike unweighted graph adjacency matrices, they can be (1)
asymmetric (i.e. permuting the argument order affects their value), (2) n-ary, for n > 2, and
(3) arbitrary real-valued. Each of these three extensions adds intricacies and challenges not
present in [11], which we address with novel approaches that reveal new, deeper connections
between quantum permutation matrices and planar graphs.

First, in Subsection 3.1 we give a procedure for decomposing any planar Holant signature
grid corresponding to a planar #CSP instance into a small set of simple gadgets. Here arise
the first new complications associated with higher-arity signatures. The dangling edges of
simple gadgets extracted from the signature grid may not be oriented correctly, so we must
use certain other gadgets to pivot them to the correct orientation, respecting planarity.

With some preparation in Subsection 3.2, we prove the quantum Holant theorem in
Subsection 3.3. The forward direction of Theorem 9 is a direct corollary, giving a more
graphical and more intuitive proof than that of the graph homomorphism special case in [11].
The gadget decomposition gives an expression for the Holant value as a product of the
component gadgets’ signature matrices. So, assuming F and G are quantum isomorphic, we

ICALP 2023

33:4 Planar #CSP Equality Corresponds to Quantum Isomorphism – A Holant Viewpoint

use the quantum permutation matrix U defining the quantum isomorphism as a quantum
holographic transformation, inserting tensor powers of U and its inverse between every pair
of signature matrices in the product without changing the Holant value. Then a sequence
of these holographic transformations converts every signature in F to the corresponding
signature in G. The quantum holographic transformation does not work on general signature
grids, since viewing U itself as a constraint function in the signature grid is not in general
well-defined, as U ’s entries do not commute and the partition function does not specify an
order to multiply the constraint function evaluations. However, the planarity of the signature
grid and the resulting gadget decomposition and matrix product expression for the Holant
value implicitly provide a multiplication order. Quantum holographic transformations apply
to the planar version of the general Holant problem parameterized by a set F of constraint
functions (not just the special case of #CSP), and should be of independent interest.

The success of the quantum holographic transformation for asymmetric signatures is also
dependent on the fact that the holographic transformation action of a quantum permutation
matrix is invariant under gadget rotations and reflections. The asymmetry and rotation and
reflection issues are only relevant in the context of planar signature grids, since in nonplanar
grids, one can simply cross and twist the incident edges to achieve the desired input order.
Hence this is another interesting connection between quantum permutation matrices and the
structural properties of planar graphs.

In Section 4, to prove the reverse direction of Theorem 9, we turn to the theory of
quantum groups [15, 14]. We introduce the quantum automorphism group Qut(F) of a set F
of signatures, an abstraction of the classical automorphism group satisfying many of the same
properties. Using the planar gadget decomposition, we prove that the signature matrices of
planar Holant gadgets in the context of #CSP(F), a very concrete, combinatorial concept,
exactly capture the abstract intertwiner space of Qut(F). A natural approach to the rest of
the proof breaks down for constraint functions of arity > 2. Hence we introduce a method to
reduce a constraint function’s arity while maintaining its inclusion in the original intertwiner
space. Then we say a constraint function is projectively connected if this procedure yields a
connected graph upon reaching arity 2. Finally, we show that if F and G are projectively
connected and the quantum automorphism group of the disjoint union of F and G maps a
“vertex” of F to a “vertex” of G, then F and G are quantum isomorphic (analogous to the
familiar classical fact for graphs). For 0-1 valued functions, Mančinska and Roberson [11]
ensured connectivity by taking complements. However, for real-valued functions F and G

this method does not work: we cannot take the complement to assume they are projectively
connected. Instead, we adapt to the quantum setting a technique of Lovász [9] in the classical
setting for real-weighted graphs, and extract a quantum isomorphism to complete the proof.

All of the above results extend to sets of constraint functions over C that are closed under
conjugation and for which the quantum isomorphism respects conjugation (both properties
are trivially satisfied by constraint functions over R). In the full version, our proof is carried
out in this setting. In this extended abstract, we specialize to constraint functions over R.

In Appendix A, we give an alternate approach for enforcing constraint function connectivity
due to Roberson [12], which adds new binary connected constraint functions to F and G
rather than modify the existing constraint functions to be projectively connected. We explore
two further topics in the full version. First, we extend the connection between quantum
isomorphism and nonlocal games. We define graph isomorphism games for real-weighted
directed graphs and prove the following generalization of a result in [11]: real-weighted graphs
F and G admit the same number of homomorphisms from all planar graphs if and only if
there is a perfect quantum commuting strategy for the (F, G)-isomorphism game. Second,

J.-Y. Cai and B. Young 33:5

we discuss how pivoting dangling edges around a gadget and horizontally reflecting gadgets,
graphical manipulations that arise naturally throughout our work, correspond to the dual
and adjoint operations in the pivotal dagger category of gadgets.

We hope that our results, in particular the quantum holographic transformation technique
in Theorem 18, will lead to further applications of quantum group theory in the study of
planar #CSP and Holant complexity.

2 Preliminaries

Constraint functions and #CSP

▶ Definition 1 (Constraint function, V (F), V (F)). A tensor F ∈ R[q]n , for q, n ≥ 1, is a
constraint function of domain size q and arity n. For x ∈ [q]n, we write Fx = Fx1,...,xn

=
F (x1, . . . , xn) ∈ R. We write V (F) for [q], thus F ∈ RV (F)n . Whenever we specify a set F
of constraint functions, it is assumed that all F ∈ F have the same domain, which we call
V (F), with |V (F)| = q.

▶ Definition 2 (#CSP, Z). A #CSP problem #CSP(F) is parameterized by a set F of
constraint functions. A #CSP(F) instance K is defined by a pair (V, C), where V is a set of
variables and C is a multiset of constraints. Each constraint c = (F c, vc1 , . . . , vcnF

) consists
of a constraint function F c ∈ F and an ordered tuple of variables to which F is applied. The
partition function Z, on input #CSP(F) instance K, outputs

Z(K) =
∑

σ:V →V (F)

∏
(F c,vc1 ,...,vcnF

)∈C

F c(σ(vc1), . . . , σ(vcnF
)).

▶ Definition 3 (Compatible constraint function sets, KF→G). Let F = {Fi}i∈[t], G = {Gi}i∈[t]
be two sets of constraint functions on the same domain [q]. F and G are compatible if, for all
i ∈ [t], Fi and Gi have common arity ni. Call Fi and Gi corresponding constraint functions.

For compatible F and G and any #CSP(F) instance K, define a #CSP(G) instance
KF→G by replacing every constraint (Fi, vi1 , . . . , vini

) of K with the corresponding constraint
(Gi, vi1 , . . . , vini

).

Often it will be useful to “flatten” a constraint function F into a matrix:

▶ Definition 4 (F m,d, f). For F ∈ R[q]n and any m, d ≥ 0, m + d = n, let F m,d ∈ R[qm]×[qd]

be the qm ×qd matrix defined by F m,d
x1...xm,xn...xm+1

= F (x1, . . . , xn), where x1 . . . xm ∈ N is the
base-q integer with the most significant digit x1, and similarly for xn . . . xm+1 (in decreasing
index). We write f = F n,0 ∈ Rqn ; it is called the signature vector of F .

Quantum permutation matrices and quantum isomorphism

A core construction in this work is the quantum permutation matrix, a generalization of
classical permutation matrix, whose entries come from an arbitrary C∗-algebra rather than
{0, 1}. For the purposes of this work, one can view a C∗-algebra as simply an abstraction of
C, equipped with an involution ∗ analogous to conjugation, and whose elements, critically,
do not necessarily commute. More generally, one can think of a C∗-algebra as the algebra of
bounded operators on a Hilbert space.

▶ Definition 5 (Quantum permutation matrix). A matrix U = (uij) with entries from a
C∗-algebra with unit element 1 is called a quantum permutation matrix if it satisfies the
following conditions for all i, j:

ICALP 2023

33:6 Planar #CSP Equality Corresponds to Quantum Isomorphism – A Holant Viewpoint

u2
ij = uij = u∗

ij;∑
j uij =

∑
i uij = 1.

If the C∗-algebra in question is C, then the first condition implies U is a 0-1 matrix, and then
the second condition implies U is a classical permutation matrix. Hence the abstraction of C
to an arbitrary C∗-algebra is one of the many abstractions from “classical” to “quantum”
constructions throughout this work.

Recall that graphs X and Y with adjacency matrices AX , AY ∈ {0, 1}[q]×[q] are classically
isomorphic if and only if PAX = AY P for some classical permutation matrix P . Hence we
say X and Y are quantum isomorphic (X ∼=qc Y) [1, 10] if there is a quantum permutation
matrix U satisfying UAX = AY U . Equivalently, U⊗2aX = aY , where aX , aY ∈ {0, 1}q2 are
the signature vectors of AX and AY . Hence the following definition is a generalization of
quantum graph isomorphism to higher-arity constraint functions over R.

▶ Definition 6 (∼=qc). F, G ∈ R[q]n are quantum isomorphic (F ∼=qc G) if there is a q × q

quantum permutation matrix U satisfying U⊗nf = g. Compatible sets F and G of constraint
functions are quantum isomorphic (F ∼=qc G) if there is a q × q quantum permutation matrix
U satisfying U⊗ arity(Fi)fi = gi for every i.

Holant, gadgets and signature matrices

A Holant problem Holant(F), like a #CSP problem, is parameterized by a set F of constraint
functions, usually called signatures. The input to Holant(F) is a signature grid Ω, which
consists of an underlying multigraph X with vertex set V and edge set E. Each vertex v ∈ V

is assigned a signature Fv ∈ F of arity deg(v). The incident edges E(v) = (ev
1, . . . , ev

deg(v))
of v are input variables to Fv taking values in V (F). We use Pl-Holant(F) to specify that
input signature grids must have planar underlying multigraphs. For planar Holant, the input
variables of Fv are labeled in cyclic order starting with one particular edge, labeled with a
diamond. The output on input Ω is

HolantΩ(F) =
∑

σ:E→V (F)

∏
v∈V

Fv(σ|E(v)), (1)

where Fv(σ|E(v)) = (Fv)(σ(ev
1), . . . , σ(ev

deg(v))). For sets F and G of signatures, define the
problem Holant(F | G) as follows. A signature grid in the context of Holant(F | G) has a
bipartite underlying multigraph with bipartition V = V1 ⊔ V2 such that the vertices in V1
and V2 are assigned signatures from F and G, respectively.

The Holant problems in this work always include the following set of signatures.

▶ Definition 7 (En, EQ). For fixed q, define the 0-1-valued equality constraint function
En ∈ R[q]n by En(x1, . . . , xn) = 1 iff x1 = . . . = xn. Define EQ =

⋃
n En.

To each #CSP(F) instance K = (V, C) we associate a signature grid ΩK in the context
of Holant(F | EQ) defined as follows: For every constraint c ∈ C, if c applies function F of
arity n, create a degree-n vertex assigned F , called a constraint vertex. For each variable
v ∈ V , if v appears in the mulitset of constraints Cv ⊆ C, create a degree-|Cv| vertex
assigned E|Cv| ∈ EQ, called an equality vertex, and edges (v, c) for every c ∈ Cv such that
the cyclic order of edges incident to each constraint vertex matches the order of variables in
the constraint. Any edge assignment σ must assign all edges incident to an equality vertex
the same value (or else the term corresponding to σ is 0), so we can view σ as #CSP variable
assignent. Hence Z(K) = HolantΩK

(F | EQ).

J.-Y. Cai and B. Young 33:7

For example, to compute the number of homomorphisms K → X, consider a #CSP(AX)
instance where the vertices of K are variables and each edge of K is a constraint applying
function AX ∈ RV (X)2 (X’s adjacency matrix) to the edge’s two endpoints. The corresponding
Holant signature grid ΩK starts with underlying graph K, with K’s vertices assigned the
appropriate equality signature from EQ, and we subdivide each of K’s edges by placing degree-
2 constraint vertices, assigned signature AX , connected to the labeled equality vertices. See
Figure 1. We always depict equality and constraint vertices as circles and squares, respectively.

E3

E2

E4

E2

E1

= AX

⇝

K ΩK

Figure 1 A graph K and the corresponding Holant(AX | EQ) signature grid ΩK for computing
the number of homomorphisms from K to X. Square vertices are assigned signature AX .

Generalizing graph homomorphism to #CSP entails replacing AX with an arbitrary set F
of constraint functions, and replacing the degree-2 vertices assigned AX with arbitrary-degree
vertices assigned signatures from F .

▶ Definition 8 (Planar #CSP instance). A #CSP instance K is planar if the underlying
multigraph of the corresponding Holant signature grid ΩK is planar.

We now have the notation to state our main theorem.

▶ Theorem 9 (Main result). Let F , G be compatible sets of constraint functions. Then
F ∼=qc G if and only if Z(K) = Z(KF→G) for every planar #CSP(F) instance K.

If F = {AX} and G = {AY }, then Theorem 9 specializes to the result of [11]: graphs X and
Y are quantum isomorphic iff they admit the same number of homomorphisms from every
planar graph K.

▶ Definition 10 (Gadget). A gadget is a Holant signature grid equipped with an ordered set
of dangling edges (edges with only one endpoint), defining external variables.

Our gadgets will be in the context of Pl-Holant(F | EQ), the Holant problem equivalent
to #CSP(F). In this case, we specify that all dangling edges must be attached to equality
vertices (vertices assigned signatures in EQ).

See Figures 2 and 3 for examples of gadgets in the context of Pl-Holant(F | EQ). We draw
dangling edges lighter and thinner than internal edges.

▶ Definition 11 (M(K)). Let K be a gadget with n dangling edges and containing signatures
of domain size q. For any m, d ≥ 0, m + d = n, define K’s (m, d)-signature matrix
M(K) ∈ Rqm×qd by letting M(K)x,y be the Holant value when the first m dangling edges
(called output dangling edges) are assigned x1, . . . , xm and the last d dangling edges (called
input dangling edges) are assigned yd, . . . , y1. We draw the output/input dangling edges to
the left/right of the gadget.

▶ Definition 12. Gadget K is planar if the underlying multigraph has an embedding with no
edges (dangling or not) crossing, and the dangling edges are in cyclic order in the outer face.

ICALP 2023

33:8 Planar #CSP Equality Corresponds to Quantum Isomorphism – A Holant Viewpoint

For a plane embedding of a planar gadget, we draw its output and input dangling edges
on the left in order from top to bottom and on the right in order from bottom to top,
respectively. For a gadget’s signature matrix, observe that we consider the input dangling
edges in reverse order, so from top to bottom. This definition preserves planarity of ◦:

▶ Definition 13 (Gadget ◦, ⊗, †). For a gadget K with m+d dangling edges, write K ∈ G(m, d)
to mean we consider K with m output and d input dangling edges.

For K ∈ G(m, d), L ∈ G(d, w), define the composition K◦L ∈ G(m, w) by connecting each
input dangling edge of K with the corresponding output dangling edge of L. If ◦ creates
adjacent vertices assigned Ea, Eb ∈ EQ, we contract the edge between them, merging them
into a single vertex assigned Ea+b−2. This does not change the Holant value.
For K ∈ G(m1, d1), L ∈ G(m2, d2), define the tensor product K⊗L ∈ G(m1 +m2, d1 +d2)
by placing K above L.
For K ∈ G(m, d), define the (conjugate) transpose K† ∈ G(d, m) by reflecting K’s
underlying multigraph horizontally.

See Figure 2. It is well known that applying the ◦, ⊗, † operations to gadgets corresponds to
applying these operations to their signature matrices. See e.g. [3].

K
L

K ◦ L

K ⊗ L

L†

Figure 2 Operations on gadgets K and L in the context of Pl-Holant(F | EQ).

3 Quantum Isomorphism Implies Planar #CSP Equivalence

3.1 The Planar Gadget Decomposition
Throughout, let F ∈ R[q]n denote a constraint function in F , a set of constraint functions.

▶ Definition 14 (PF , PF (m, d)). Let PF be the collection of all planar gadgets in the context
of Holant(F | EQ). Recall that all dangling edges of such a gadget are attached to vertices
assigned signatures in EQ.

Let PF (m, d) ⊆ PF be the subset of gadgets with m output and d input dangling edges.

The discussion after Definition 7 constructs a Pl-Holant(F | EQ) instance modelling any
given planar #CSP(F) instance. One can easily invert this construction to produce a planar
#CSP(F) instance modelling any given Pl-Holant(F | EQ) instance. Hence the signature
grids underlying PF (m, d) are exactly the set of signature grids ΩK corresponding to planar
#CSP(F) instances.

We next introduce two families of fundamental gadgets in PF . See Figure 3.

J.-Y. Cai and B. Young 33:9

▶ Definition 15 (Em,d, Fm,d). For m, d ≥ 0, let Em,d be the gadget consisting of a single
vertex, assigned Em+d, with m output and d input dangling edges.

For m, d ≥ 0 and (m + d)-ary signature function F , let Fm,d be the gadget consisting of a
central degree-(m + d) vertex assigned F , and m left and d right “arms”, each with a vertex
assigned E2 with an output or input dangling edge, respectively. Define I = E1,1.

E5

E2,3 I

F

F2,3

F

F5,0

Figure 3 Examples of the fundamental gadgets Em,d and Fm,d. The diamond indicates the first
input to asymmetric F .

Observe that M(Em,d) = Em,d and M(Fm,d) = F m,d; in particular M(Fn,0) = f .
The next lemma addresses a key new issue raised by viewing our higher-arity constraint

functions as explicit vertices in the signature grid. Section 4 requires all F gadgets to be
in the form Fm+d,0, but the decomposition procedure below produces gadgets Fm,d for
arbitrary m and d (see Figure 5). Hence we must pivot Fm,d’s dangling edges between input
and output. E2,0, E0,2, I ∈ ⟨E1,0, E1,2⟩◦,⊗,† (the closure of {E1,0, E1,2} under ◦, ⊗, †), so we
apply a procedure like the one in Figure 4.

▶ Lemma 16. Let F be an n-ary constraint function. Then Fm,d ∈ ⟨E1,0, E1,2, Fn,0⟩◦,⊗,†
for all m + d = n.

F2,4

E2,0 E2,0 E2,0

F5,1

◦ ◦ ◦ =

Figure 4 (F2,4 ⊗ I⊗3) ◦ (I⊗3 ⊗ E2,0 ⊗ I⊗2) ◦ (I⊗2 ⊗ E2,0 ⊗ I) ◦ (I ⊗ E2,0) = F5,1.

Next we show that any planar Holant(F | EQ) gadget can be decomposed into the
Farity(F),0 gadgets containing the signatures in F , and two small equality gadgets.

▶ Theorem 17. PF = ⟨E1,0, E1,2, {Farity(F),0 | F ∈ F}⟩◦,⊗,†.

The reverse inclusion follows from the fact that ◦, ⊗, † preserve planarity. The idea for the
forward inclusion is to decompose an arbitrary K ∈ PF into a composition of copies of Em,d

and appropriate Fm,d, tensored with copies of I. We use Lemma 16 to convert each Fm,d

to Fn,0. To extract an equality or constraint vertex, we apply one of the two extraction
procedures shown in Figure 5, or their horizontal reflections. The extraction procedures
guarantee that remaining gadget is still planar, bipartite, and has all dangling edges incident
to equality vertices (i.e. is in PF), so we apply induction.

ICALP 2023

33:10 Planar #CSP Equality Corresponds to Quantum Isomorphism – A Holant Viewpoint

E5

Fi

Fj

E∗
E∗

E∗

= ◦
E2,3

I⊗2

I

E2

E2
E2

Fi

Fj

E∗
E∗

E∗

F

E2

E2

E∗

E∗

E∗
E∗

E∗

= ◦
F2,3

I⊗2

I

E∗

E∗

E∗
E∗

E∗

Figure 5 Extracting an equality (top) or constraint vertex from a planar Holant(F | EQ) gadget.

3.2 Gadgets and quantum permutation matrices
The quantum Holant theorem, proved in Subsection 3.3, stems from viewing the quantum
permutation matrix U itself as a signature in a Holant signature grid, indicated by a triangle
vertex ▲. An immediate corollary of this theorem is one half of our main result Theorem 9:
Planar #CSP instances with quantum isomorphic signature sets have the same partition
function value. The proof of this result via the quantum Holant theorem is graphical and
more intuitive than the proof in [11] of the graph homomorphism special case, and ties
quantum isomorphism into the well-studied Holant framework. Furthermore, the graphical
calculus of the quantum Holant theorem nicely highlights one of the key new difficulties of
our generalization: unlike constraint functions derived from homomorphisms to undirected
graphs (the case considered in [11]), general constraint functions F can be asymmetric: F ’s
value is not necessarily preserved under permutation of its inputs. By planarity, permutations
that cross F ’s input edges are not allowed, but the dihedral group actions – rotations and
reflection – are allowed. Define the rotated constraint function F (r) for r ∈ [arity(F)]
by F (r)(x1, . . . , xn) = F (xr+1, . . . , xn, x1, . . . , xr) and the reflected constraint function F †

by F †(x1, . . . , xn) = F (xn, . . . , x1). Assuming F and G are quantum isomorphic, that is,
U⊗nf = g, it is not a priori obvious (due to noncommutativity), but true, that

U⊗nf = g ⇐⇒ U⊗nf (r) = g(r) and U⊗nf = g ⇐⇒ U⊗nf† = g†. (2)

The quantum Holant theorem uses U to transform each F in the Holant signature grid into
G (via the assumption U⊗nf = g), and since the signatures F (r) and F † may appear in the
signature grid in place of F , the theorem’s success is dependent on the identities (2).

The bottom two panes of Figure 6 below illustrate a case of (2) for 5-ary f and g. The
fact that Figure 6 uses F2,3 and G2,3 (with signature matrices F 2,3 and G2,3) in place of
F5,0 and G5,0 (with signature vectors f and g) is due to the additional useful identity

U⊗nf = g ⇐⇒ U⊗mF m,d(U⊗d)† = Gm,d for any m + d = n, (3)

illustrated in the upper right pane of Figure 6.

J.-Y. Cai and B. Young 33:11

⇐⇒

⇐
⇒ ⇐⇒

F G
=

U⊗2 ◦ F2,3 ◦
(
U⊗3)†

G2,3

F G

=

U⊗2 ◦
(
F(2))2,3 ◦

(
U⊗3)† (G(2))2,3

F G
=

U⊗5 ◦ F5,0 G5,0

F † G†

=

U⊗3 ◦
(
F†)3,2 ◦

(
U⊗2)† (G†)3,2

Figure 6 The “action” of U transforming F to G is preserved under (clockwise from top right)
edge pivoting, signature reflection, and signature rotation.

(
U⊗n

)† is drawn as a black box, since,
due to noncommutativity,

(
U⊗n

)† ̸=
(
U†)⊗n in general.

3.3 The Quantum Holant Theorem
The quantum Holant theorem gives a quantum version of holographic transformation. A
holographic transformation [13] transforms one Holant signature grid Ω into another Ω′

resulting in the same Holant value. For a set F of signatures and an invertible T ∈ Cq×q,
write TF = {T ⊗kf | F ∈ F has arity k}. Define FT similarly. Valiant’s Holant Theorem
in [13] states that HolantΩ(F | G) = HolantΩ′(TF | GT −1), for any Ω and sets of signatures
F , G, where Ω′ is constructed from Ω by replacing every signature in F or G with the
corresponding transformed signature.

The Holant signature grids ΩK and ΩKF→G satisfying Z(K) = Pl-HolantΩK
(F | EQ) and

Z(KF→G) = Pl-HolantΩKF→G
(G | EQ) are the same, up to replacement of every signature

F ∈ F by the corresponding signature G ∈ G. Assuming F ∼=qc G, there is a quantum
permutation matrix U satisfying U⊗nf = g for every F ∈ F and corresponding G ∈ G. This
suggests we perform a quantum holographic transformation using U . A calculation shows
that E0,n = E0,nU⊗n for every n and any quantum permutation matrix U . As U−1 = U† is
a quantum permutation matrix, (EQ)U−1 = EQ. Then the Holant theorem setting T to U
seems to give

Z(K) = HolantΩK
(F | EQ) = HolantΩKF→G

(G | EQ) = Z(KF→G) (4)

for any, not necessarily planar, #CSP(F) instance K. However, this cannot be true. If
F = {F} and G = {G}, where F and G are symmetric, binary, and 0-1 valued, (4) implies
that the graphs with adjacency matrices F and G admit the same number of homomorphisms
from any graph, giving F ∼= G, a classical result of Lovász [8]. In other words, any quantum
isomorphic graphs are classically isomorphic. But this is known to be false – see e.g. [1]. The
main reason for this failure is the noncommutativity of U ’s entries.

When ΩK is planar, however, this can be rescued by using the decomposition procedure
for ΩK in the proof of Theorem 17, which produces a sequence of gadgets whose signature
matrices multiply to the Holant value. This defines an order of ΩK ’s vertices, giving a
globally consistent way in which U ’s entries are multiplied, for the partition function (sum of
product expression). We will use U as a “quantum holographic transformation” by inserting
U⊗k and its inverse (U⊗k)† between every pair of these gadgets, converting every F ∈ F to
the corresponding G ∈ G and preserving EQ.

ICALP 2023

33:12 Planar #CSP Equality Corresponds to Quantum Isomorphism – A Holant Viewpoint

▶ Theorem 18 (Quantum Holant Theorem). Let U be a q × q quantum permutation matrix,
and let F and U F be compatible sets of domain-q real-valued signatures. Then for every
Pl-Holant(F) signature grid Ω,

Pl-HolantΩ(F) = Pl-HolantΩ′(UF),

where Ω′ is constructed from Ω by replacing every signature in F with the corresponding
signature in UF .

We omit its proof in this extended abstract. The main idea is to perform successive quantum
holographic transformations using U ; the “pushing through” a set of U ’s as tensor powers is
illustrated in Figure 7. Since the central gadget may be

(
F(r)

i

)mi,di or
(

F†
i

)mi,di (depending
on the orientation of F in the signature grid) rather than simply Fmi+di,0, the identities (2)
and (3) illustrated in Figure 6 are necessary.

◦ ◦. . . ◦ ◦ . . .

I⊗ri

I⊗ti

F mi,di

i

(U⊗ri−1+di−1+ti−1)†

U⊗ri+mi+ti

(U⊗ri+di+ti)†

U⊗ri+1+mi+1+ti+1

Figure 7 A visualization of a step in the proof of the quantum Holant theorem. We insert factors
of the form I = (U⊗k)†U⊗k between every pair of gadgets I⊗ri ⊗ Fmi,di

i ⊗ I⊗ti , then apply gadget
composition associativity. The resulting gadget in the blue box is I⊗ri ⊗Gmi,di

i ⊗ I⊗ti .

Observe that, unlike other results in this work, the quantum Holant theorem is not only
applicable to Pl-Holant(F | EQ), but more generally to Pl-Holant(F) for any signature set
F . Since holographic transformations are an indespensable tool for the study of Holant
problems, and planar Holant is the subject of much active research, the quantum Holant
theorem should be of independent interest.

▶ Corollary 19. Let F and G be compatible sets of constraint functions. If F ∼=qc G, then
Z(K) = Z(KF→G) for every planar #CSP(F) instance K.

4 Planar #CSP Equivalence Implies Quantum Isomorphism

The Quantum Automorphism Group

The most abstract construction in this work is the quantum automorphism group Qut(F) of
a constraint function set F . We omit the full formal definition here, as understanding it is
not relevant to the rest of the work.

J.-Y. Cai and B. Young 33:13

▶ Definition 20 (Qut(F)). For a set F of constraint functions with |V (F)| = q, the
quantum automorphism group Qut(F) of F is defined by the universal2 C∗-algebra C(Qut(F))
generated by the entries of a q × q matrix U = (uij) subject to the relations specifying that U
is a quantum permutation matrix and U⊗ arity(F)f = f for every F ∈ F .

Observe that, just as U⊗ arity(F)f = g defines a quantum isomorphism between F and G,
U⊗ arity(F)f = f defines quantum automorphisms of F . It is helpful, and sufficient for our
purposes, to identify Qut(F) with U and C(Qut(F)), thought of as the algebra of continuous
functionals on Qut(F). Indeed, if U ’s entries commute, then C(Qut(F)) concretizes as the
algebra of continuous functionals on the classical automorphism group Aut(F). Thus the
relationship between Qut(F) and Aut(F) is analogous to the relationship between quantum
and classical permutation matrices: the former is an abstraction of the latter, sharing many
familiar properties and constructions.

One such construction is the orbits of Qut(F) on the domain V (F) [10]. If U is the
quantum permutation matrix defining Qut(F), then x, y ∈ V (F) are in the same orbit of
Qut(F) if and only if uxy ̸= 0 (one can draw an analogy with the orbits of Aut(F) on V (F)
by viewing uxy as corresponding to the automorphisms mapping x to y).

Another such construction is the intertwiner space of Qut(F).

▶ Definition 21 (CQut(F)(m, d), CQut(F)). CQut(F)(m, d) = {M ∈ Cqm×qd | U⊗mM =
MU⊗d} is the space of (m, d)-intertwiners of Qut(F), and CQut(F) =

⋃
m,d CQut(F)(m, d).

Observe that the equation U⊗mM = MU⊗d resembles, after multiplying by (U⊗d)−1 =
(U⊗d)†, the equation U⊗mF m,d

(
U⊗d

)† = Gm,d characterizing quantum isomorphism of F

and G (recall (3)). Hence it is reasonable to assume that CQut(F) consists of gadget signature
matrices. The next lemma, proved in the full version using techniques from quantum group
theory, is a step towards this conclusion.

▶ Lemma 22. CQut(F) = ⟨E1,0, E1,2, {f | F ∈ F}⟩+,◦,⊗,†.

Note that the RHS of Lemma 22 is the linear span of the signature matrices of the gadgets
in the RHS of Theorem 17. This observation motivates the following definition.

▶ Definition 23 (QP
F (m, d)). A planar (m, d)-quantum F -gadget is a finite linear combination

of gadgets in PF (m, d) with coefficients in C. Let QP
F (m, d) be the collection of all planar

(m, d)-quantum F-gadgets. Extend the signature matrix function M linearly to QP
F (m, d).

Applying M to quantum F-gadgets composed of gadgets on the RHS of Theorem 17
yields the RHS of Lemma 22, so we have the following key connection between the planar
gadget decomposition and the intertwiners of Qut(F).

▶ Theorem 24. CQut(F)(m, d) = {M(Q) | Q ∈ QP
F (m, d)} for every m, d ∈ N.

Say a #CSP instance K = (V, C) is 1-labeled if there is a distinguished labeled variable
v ∈ V . For x ∈ V (F), let Zx be the partition function on 1-labeled instances, defined
identically to Z, except only summing over those σ : V → V (F) such that σ(v) = x. A
1-labeled #CSP(F) instance K with labeled variable v corresponds to a Holant(F | EQ)
gadget K with a single dangling edge incident to the equality vertex constructed from v.
For x ∈ V (F), M(K)x = Zx(K). Then the connection between intertwiners and gadget
signature matrices established in Theorem 24 yields the following lemma, a quantum analogue
of several similar classical results for graph homomorphism, including [9, Lemma 2.4].

▶ Lemma 25. x, y ∈ V (F) are in the same orbit of Qut(F) if and only if Zx(K) = Zy(K)
for all 1-labeled planar #CSP(F) instances K.

2 A “universal” C∗-algebra is roughly analogous to the generator-and-relation presentation of a group.

ICALP 2023

33:14 Planar #CSP Equality Corresponds to Quantum Isomorphism – A Holant Viewpoint

Arity Reduction and Projective Connectivity

For n-ary constraint functions, the remaining results require n-dimensional generalizations of
orbits. However, such higher-dimensional orbits are not known to exist for n > 2. This is
another new difficulty posed by our extension of binary graph homomorphism to higher-arity
functions. We overcome it by the following arity-reduction technique.

▶ Lemma 26. Let F be an n-ary constraint function with n > 2 and let U define Qut({F}),
so U⊗nf = f . Define an arity-(n − 1) constraint function F ′ by F ′

x2,...,xn
=

∑
x1

Fx1,x2,...,xn .
Then U⊗n−1f ′ = f ′ (where f ′ is the vectorization of F ′).

After n − 2 applications of Lemma 26, the resulting binary constraint function is the
adjacency matrix of a R-weighted graph. We would like this R-weighted graph to be connected,
meaning the transitive closure of the relation ∼ on V (X) defined by x ∼ y ⇐⇒ Xxy ̸= 0 has
only a single equivalence class. We define connnectivity for higher-arity tensors motivated
by Lemma 26. For n ≥ 2, an n-ary constraint function F is projectively connected if the
R-weighted graph X defined by Xuv =

∑
x1,...,xn−2

Fx1,...,xn−2,u,v is connected.

▶ Definition 27 (⊕). Let F ∈ RV (F)n

, G ∈ RV (G)n be constraint functions of the same arity
n. The direct sum F ⊕ G ∈ R(V (F)⊔V (G))n of F and G is defined for all x ∈ (V (F) ⊔ V (G))n

by setting (F ⊕G)x to be Fx or Gx if x ∈ V (F)n or x ∈ V (G)n, respectively, and 0 otherwise.
For constraint function sets F and G of size s, define F ⊕ G = {Fi ⊕ Gi | i ∈ [s]}.

For n = 2 and 0-1 valued F and G, the direct sum is the disjoint union of the graphs
whose adjacency matrices are F and G. Projective connectivity is desirable due to the
following lemma, an extension of [10, Theorem 4.5] to higher arity, and an analogue of the
fact that, for connected graphs X and Y , if there exist vertices x ∈ V (X) and y ∈ V (Y) in
the same orbit of the automorphism group of the disjoint union of X and Y , then X ∼= Y .

▶ Lemma 28. Let F and G be constraint function sets with domains V (F) and V (G),
respectively, and further assume that F and G contain a pair of corresponding projectively
connected constraint functions. If there are some x̂ ∈ V (F), ŷ ∈ V (G) in the same orbit of
Qut(F ⊕ G), then F ∼=qc G.

The proof of Lemma 28 proceeds roughly as follows. Let U define Qut(F ⊕ G), and let F and
G be the corresponding projectively connected constraint functions in F and G, respectively.
Summing out all but two indices of F ⊕ G (as in Lemma 26), we obtain a R-weighted graph
Z whose subgraphs induced by V (F) and V (G) are connected, and such that U⊗2z = z.
Then, following the proof of [10, Theorem 4.5], we extract from Z enough information about
U to show that its quarter submatrix (uxy)x∈V (X),y∈V (Y) is itself a quantum permutation
matrix, defining a quantum isomorphism between F and G.

Finally, we come to the proof of the reverse implication of Theorem 9. Lemma 28 assumes
F contains a projectively constraint function, which in general is not true. For (unweighted)
graphs, one can take the complement to assume the graphs are connected, but this trick does
not apply to our R-weighted constraint functions. Instead, we adapt an idea from Lovász’s
proof of [9, Corollary 2.6], which is roughly the classical case of Theorem 9 restricted to
positive-real-weighted graphs. The idea is to add a new vertex to each graph, each adjacent
to all other vertices by edges of the same nonzero weight. The new vertices are the targets of
a result analogous to Lemma 25, each graph is now connected, and by symmetry of the new
vertices, their addition preserves isomorphism. Somewhat remarkably, the same idea applies
to quantum isomorphism of higher-arity constraint functions.

J.-Y. Cai and B. Young 33:15

▶ Lemma 29. Let F and G be compatible sets of constraint functions. If Z(K) = Z(KF→G)
for every planar #CSP(F) instance K, then F ∼=qc G.

We now present a proof sketch of Lemma 29. See the full version for a full proof. Let 0F and
0G be new domain elements. For each F ∈ F , G ∈ G, define constraint functions F ′ and G′

on V (F) ⊔ {0F } and V (G) ⊔ {0G}, by letting

F ′
x =


Fx x ∈ V (F)n

γ x = (0F , 0F , . . . , 0F , c), c ̸= 0F

0 otherwise
; G′

x =


Gx x ∈ V (G)n

γ x = (0G, 0G, . . . , 0G, c), c ̸= 0G

0 otherwise

for some fixed γ ∈ R \ {0}. Let F ′ = {F ′ | F ∈ F}, G′ = {G′ | G ∈ G}, with V (F ′) =
V (F) ⊔ {0F } and V (G′) = V (G) ⊔ {0G}.

F ′ and G′ are designed to simultaneously satisfy three properties. First, defining R-
weighted graphs X ′ and Y ′ from F ′ and G′ by summing the first n−2 indices as in Lemma 26,
we have X ′

0F v = γ ̸= 0 for every v ∈ V (X ′) \ {0F }, and similarly for Y ′. Thus X ′ and Y ′

are connected, so F ′ and G′ are projectively connected.
Second, we wish to obtain Z0F (K) = Z0G(K) for every planar 1-labeled #CSP(F ′ ⊕ G′)

instance K = (V, C). Then Lemma 25 asserts that 0F and 0G are in the same orbit of
Qut(F ′ ⊕ G′), Hence, since F ′ and G′ are projectively connected, 0F ∈ V (F ′), and 0G ∈ V (G′),
Lemma 28 gives F ′ ∼=qc G′. Let K = (V, C). To obtain Z0F (K) = Z0G(K), consider the
following. Let v0 be the labeled variable in V . When v0 takes value 0F ∈ V (F ′), all variables
must take values in V (F ′) (otherwise the assignment contributes 0 to the partition function,
as F ′ ⊕ G′ takes value 0 unless its inputs are all in V (F ′) or all in V (G′)). Furthermore, by
construction of F ′, any constraint function applied to variable v0 evaluates to 0 unless most
of its other arguments also take value 0F . This fixes more variables to 0F , and the effect
cascades to other constraint functions applied to those variables and so on. Any nonzero
constraint with a variable fixed to 0F always evaluates to γ. Let D be the set of such
constraints. Remaining constraints in C \ D apply some F ′ to inputs in only V (F), so F ′, by
construction, acts as the original F . Therefore, the sub-instance of K induced by constraints
C \ D is effectively a planar #CSP(F) instance, so Z0F (K) is expressible as γ|D| times the
sum of Z(K ′) for various planar #CSP(F) instances K ′. Similarly, by the symmetry of F ′

and G′, Z0G(K) is expressible as γ|D| times the sum of Z(K ′′) for matching planar #CSP(G)
instances K ′′, and by assumption each Z(K ′) = Z(K ′′). Hence Z0F (K) = Z0G(K).

Third, upon obtaining the quantum isomorphism U between F ′ and G′, we must re-
cover a quantum isomorphism between the original F and G. Define the matrix Û =
(uuv)u∈V (G),v∈V (F) (in other words, we eliminate from U the row and column corresponding
to the new vertices 0G and 0F , respectively). F ′ and G′ were constructed so that, if γ is
chosen to be sufficiently large, then Û is a quantum permutation matrix, and furthermore
defines a quantum isomorphism between F and G.

References

1 Albert Atserias, Laura Mančinska, David E. Roberson, Robert Šámal, Simone Severini,
and Antonios Varvitsiotis. Quantum and non-signalling graph isomorphisms. Journal of
Combinatorial Theory, Series B, 136:289–328, 2019.

2 Andrei A. Bulatov. The complexity of the counting constraint satisfaction problem. J. ACM,
60(5), October 2013. doi:10.1145/2528400.

3 Jin-Yi Cai and Xi Chen. Complexity Dichotomies for Counting Problems, volume 1. Cambridge
University Press, 2017. doi:10.1017/9781107477063.002.

ICALP 2023

https://doi.org/10.1145/2528400
https://doi.org/10.1017/9781107477063.002

33:16 Planar #CSP Equality Corresponds to Quantum Isomorphism – A Holant Viewpoint

4 Jin-Yi Cai and Xi Chen. Complexity of counting csp with complex weights. J. ACM, 64(3),
June 2017. doi:10.1145/2822891.

5 Jin-Yi Cai, Xi Chen, and Pinyan Lu. Nonnegative weighted #csp: An effective complexity
dichotomy. SIAM J. Comput., 45(6):2177–2198, 2016. doi:10.1137/15M1032314.

6 Martin Dyer and David Richerby. An effective dichotomy for the counting constraint satisfaction
problem. SIAM Journal on Computing, 42(3):1245–1274, 2013. doi:10.1137/100811258.

7 Heng Guo and Tyson Williams. The complexity of planar boolean #csp with complex weights.
Journal of Computer and System Sciences, 107:1–27, 2020.

8 László Lovász. Operations with structures. Acta Mathematica Hungarica, 18(3-4):321–328,
1967.

9 László Lovász. The rank of connection matrices and the dimension of graph algebras. European
Journal of Combinatorics, 27(6):962–970, 2006.

10 Martino Lupini, Laura Mančinska, and David Roberson. Nonlocal games and quantum
permutation groups. Journal of Functional Analysis, 279, December 2017. doi:10.1016/j.
jfa.2020.108592.

11 Laura Mančinska and David E. Roberson. Quantum isomorphism is equivalent to equality
of homomorphism counts from planar graphs. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), pages 661–672, 2020. doi:10.1109/FOCS46700.
2020.00067.

12 David Roberson. Private communication, 2023.
13 Leslie G. Valiant. Holographic algorithms. SIAM Journal on Computing, 37(5):1565–1594,

2008.
14 Shuzhou Wang. Quantum Symmetry Groups of Finite Spaces. Communications in Mathemat-

ical Physics, 195(1):195–211, July 1998. doi:10.1007/s002200050385.
15 S. L. Woronowicz. Compact matrix pseudogroups. Communications in Mathematical Physics,

111(4):613–665, December 1987. doi:10.1007/BF01219077.

A Appendix: An alternate approach to connectivity

The proof of Lemma 28 makes use of the 2-dimensional orbits, or orbitals, of Qut(F ⊕ G).
This construction, as mentioned earlier, does not extend to dimensions higher than 2. This
is why we, via projective connectivity, effectively require that F and G contain a binary
connected constraint function in the hypothesis of Lemma 28. To satisfy this hypothesis,
we ensure that the modified constraint functions F ′ and G′ in the proof of Lemma 29 are
projectively connected. In this appendix, we present a different construction, due to Roberson
[12], which, rather than modify the existing constraint functions, adds new binary connected
constraint functions to F and G, while preserving quantum isomorphism. This removes
the need for projective connectivity entirely, simplifies the proof of Lemma 28, and could
simplify the proof of Lemma 29, since it is no longer necessary that F ′ and G′ be projectively
connected (though we still need Z0F (K) = Z0G(K) for all planar 1-labeled K). Additionally,
the alternate construction makes use of two lemmas which should be of independent interest.

First, we extend Definition 3 to gadgets.

▶ Definition 30 (KF→G). For compatible constraint function sets F and G and K ∈ PF ,
let KF→G ∈ PG be the corresponding gadget formed by replacing each constraint signature
Fi ∈ F with the corresponding Gi ∈ G. Extend this mapping linearly to QP

F .

The first lemma shows that, viewing intertwiners themselves as constraint functions, we may
add “corresponding” pairs of intertwiners (the signature matrices of corresponding quantum
F and G-gadgets – recall Theorem 24) to F and G, while preserving equivalence on planar
#CSP instances.

https://doi.org/10.1145/2822891
https://doi.org/10.1137/15M1032314
https://doi.org/10.1137/100811258
https://doi.org/10.1016/j.jfa.2020.108592
https://doi.org/10.1016/j.jfa.2020.108592
https://doi.org/10.1109/FOCS46700.2020.00067
https://doi.org/10.1109/FOCS46700.2020.00067
https://doi.org/10.1007/s002200050385
https://doi.org/10.1007/BF01219077

J.-Y. Cai and B. Young 33:17

▶ Lemma 31 ([12]). Let F and G be compatible constraint function sets. Let MF ∈
CQut(F)(m, d) and MG ∈ CQut(G)(m, d) such that MF = M(Q) and MG = M(QF→G)
for some quantum F-gadget Q ∈ QP

F (m, d). Let F and G be the constraint functions
satisfying F m,d = MF and Gm,d = MG, and let F ′ = F ∪{F} and G′ = G ∪{G}. Then
Z(K) = Z(KF→G) for all planar #CSP(F) instances K if and only if Z(K) = Z(KF ′→G′)
for all planar #CSP(F ′) instances K.

Proof. The backward direction is immediate. Let K be a planar #CSP(F ′) instance, and
let ΩK be the corresponding Pl-Holant(F ′ | EQ) instance. Create a “quantum signature
grid” Ω̂K ∈ QP

F (0, 0) by replacing every instance of a vertex v assigned F in ΩK by the
equivalent quantum gadget Q ∈ QP

F , matching the cyclically-ordered dangling edges of each
gadget to the cyclically-ordered incident edges of v (and contracting the edges between the
adjacent equality vertices to preserve bipartiteness). Similarly create Ω̂KF′→G′ ∈ QP

G (0, 0)
by replacing every instance of a vertex assigned G in ΩKF′→G′ with QF→G ∈ QP

G . Then the
index-α summand of Ω̂K or Ω̂KF′→G′ is a planar #CSP(F) instance Kα

F or planar #CSP(G)
instance Kα

G , respectively, and furthermore Kα
G = (Kα

F)F→G . Thus

Z(K) = Pl-HolantΩK
(F ′ | EQ)

= Pl-HolantΩ̂K
(F | EQ)

= Pl-HolantΩ̂KF′→G′
(G | EQ)

= Pl-HolantΩKF′→G′
(G′ | EQ)

= Z(KF ′→G′). ◀

An alternate proof would also need the following lemma, which is equivalent to Lemma 31
once Theorem 9 is proved.

▶ Lemma 32 ([12]). Suppose F , G, F , G, F ′, and G′ satisfy the hypotheses of Lemma 31.
Then F ∼=qc G ⇐⇒ F ′ ∼=qc G′.

Proof. The backward direction is immediate. Let U be the quantum permutation matrix
defining the quantum isomorphism between F and G. It suffices to show U⊗m+df = g,
or equivalently, by (3), U⊗mMF (U⊗d)† = MG. This identity follows from the proof of
the quantum Holant theorem. Indeed, while the statement in Theorem 18 only applies
to signature grids (gadgets in QP

F (0, 0)), the proof may be easily modified to apply to
Q ∈ QP

F (m, d) as follows. After inserting (U⊗k)†U⊗k between each pair of gadgets in the
Theorem 17 decomposition of (each summand of) Q and reassociating to convert every F
signature to the corresponding G signature and fix the internal equality vertices, we must
effectively apply an additional U or U† to each original dangling edge of Q to fully transform
each equality vertex with a dangling edge back to itself via U⊗aEa,b(U⊗b)† = Ea,b. Thus
U⊗m Q(U⊗d)† = QF→G , and applying M to both sides gives the result. ◀

Together, Lemmas 31 and 32 show that, to prove Theorem 9, we may assume that F
and G contain (the constraint functions created from) any intertwiners MF and MG which
are the signature matrices of corresponding quantum F and G-gadgets. In particular, we
trivially have (E1,0 ◦ E0,1)F→G = (E1,0 ◦ E0,1), so we may assume F and G both contain
M(E1,0 ◦ E0,1) = J , the all-1s matrix. J is a connected constraint function, so we may
immediately apply Lemma 28. Moreover, since J is already binary, we don’t have to worry
about reducing arity in the proof of Lemma 28.

ICALP 2023

On the Fine-Grained Complexity of Small-Size
Geometric Set Cover and Discrete k-Center for
Small k

Timothy M. Chan #

Department of Computer Science, University of Illinois at Urbana-Champaign, IL, USA

Qizheng He #

Department of Computer Science, University of Illinois at Urbana-Champaign, IL, USA

Yuancheng Yu #

Department of Computer Science, University of Illinois at Urbana-Champaign, IL, USA

Abstract
We study the time complexity of the discrete k-center problem and related (exact) geometric set
cover problems when k or the size of the cover is small. We obtain a plethora of new results:

We give the first subquadratic algorithm for rectilinear discrete 3-center in 2D, running in
Õ(n3/2) time.

We prove a lower bound of Ω(n4/3−δ) for rectilinear discrete 3-center in 4D, for any constant
δ > 0, under a standard hypothesis about triangle detection in sparse graphs.

Given n points and n weighted axis-aligned unit squares in 2D, we give the first subquadratic
algorithm for finding a minimum-weight cover of the points by 3 unit squares, running in
Õ(n8/5) time. We also prove a lower bound of Ω(n3/2−δ) for the same problem in 2D, under the
well-known APSP Hypothesis. For arbitrary axis-aligned rectangles in 2D, our upper bound is
Õ(n7/4).

We prove a lower bound of Ω(n2−δ) for Euclidean discrete 2-center in 13D, under the Hyperclique
Hypothesis. This lower bound nearly matches the straightforward upper bound of Õ(nω), if the
matrix multiplication exponent ω is equal to 2.

We similarly prove an Ω(nk−δ) lower bound for Euclidean discrete k-center in O(k) dimensions
for any constant k ≥ 3, under the Hyperclique Hypothesis. This lower bound again nearly
matches known upper bounds if ω = 2.

We also prove an Ω(n2−δ) lower bound for the problem of finding 2 boxes to cover the largest
number of points, given n points and n boxes in 12D. This matches the straightforward
near-quadratic upper bound.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Geometric set cover, discrete k-center, conditional lower bounds

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.34

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2305.01892 [19]

Funding Timothy M. Chan: Work supported by NSF Grant CCF-2224271.

Acknowledgements We thank Yinzhan Xu for helpful discussions.

EA
T
C
S

© Timothy M. Chan, Qizheng He, and Yuancheng Yu;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 34; pp. 34:1–34:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tmc@illinois.edu
https://orcid.org/0000-0002-8093-0675
mailto:qizheng6@illinois.edu
https://orcid.org/0000-0002-2518-1114
mailto:yyu51@illinois.edu
https://doi.org/10.4230/LIPIcs.ICALP.2023.34
https://arxiv.org/abs/2305.01892
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

34:2 Small-Size Geometric Set Cover and Discrete k-Center for Small k

1 Introduction

1.1 The discrete k-center problem for small k

The Euclidean k-center problem is well-known in computational geometry and has a long
history: given a set P of n points in Rd and a number k, we want to find k congruent balls
covering S, while minimizing the radius. Euclidean 1-center can be solved in linear time for
any constant dimension d by standard techniques for low-dimensional linear programming or
LP-type problems [21, 24, 27, 41, 50]. In a celebrated paper from SoCG’96, Sharir [44] gave
the first Õ(n)-time1 algorithm for Euclidean 2-center in R2, which represented a significant
improvement over previous near-quadratic algorithms (the hidden logarithmic factors have
since been reduced in a series of subsequent works [29, 16, 49, 23]). The problem is more
difficult in higher dimensions: the best time bound for Euclidean 2-center in Rd is about nd

(see [3, 2] for some results on the R3 case), and Cabello et al. [14] proved a conditional lower
bound, ruling out no(d)-time algorithms, assuming the Exponential Time Hypothesis (ETH).
We are not aware of any work specifically addressing the Euclidean 3-center problem.

The k-center problem has also been studied under different metrics. The most popular
version after Euclidean is L∞ or rectilinear k-center : here, we want to find k congruent
hypercubes covering P , while minimizing the side length of the hypercubes.2 As expected,
the rectilinear version is a little easier than the Euclidean. Sharir and Welzl in SoCG’96 [45]
showed that rectilinear 3-center problem in R2 can be solved in linear time, and that rectilinear
4-center and 5-center in R2 can be solved in Õ(n) time (the logarithmic factors have been
subsequently improved by Nussbaum [42]). Katz and Nielsen’s work in SoCG’96 [35] implied
near-linear-time algorithms for rectilinear 2-center in any constant dimension d, while Cabello
et al. in SODA’08 [14] gave an O(n log n)-time algorithm for rectilinear 3-center in any
constant dimension d. Cabello et al. also proved a conditional lower bound for rectilinear
4-center, ruling out no(

√
d)-time algorithms under ETH.

In this paper, we focus on a natural variant of the problem called discrete k-center, which
has also received considerable attention: here, given a set P of n points in Rd and a number
k, we want to find k congruent balls covering P , while minimizing the radius, with the
extra constraint that the centers of the chosen balls are from P .3 The Euclidean discrete
1-center problem can be solved in O(n log n) time in R2 by a straightforward application of
farthest-point Voronoi diagrams; it can also be solved in O(n log n) (randomized) time in
R3 with more effort [15], and in subquadratic Õ(n2−2/(⌈d/2⌉+1)) time for d ≥ 4 by standard
range searching techniques [4, 40]. Agarwal, Sharir, and Welzl in SoCG’97 [6] gave the first
subquadratic algorithm for Euclidean discrete 2-center in R2, running in Õ(n4/3) time.

One may wonder whether Euclidean discrete 2-center in higher constant dimensions could
also be solved in subquadratic time via range searching techniques. No results have been
reported, but an Õ(nω)-time algorithm is not difficult to obtain, where ω < 2.373 denotes the
matrix multiplication exponent: by binary search, the problem reduces to finding two balls
of a given radius r with centers in S covering S, which is equivalent to finding a pair p, q ∈ S

such that cpq =
∨

z∈S(apz ∧ azq) is false, where apz is true iff p and z has distance more than
r – this computation reduces to a Boolean matrix product. This approach works for arbitrary

1 The Õ notation hides polylogarithmic factors.
2 All squares, rectangles, hypercubes, and boxes are axis-aligned in this paper.
3 Some authors define the problem slightly more generally, where the constraint is that the centers are

from a second input set; in other words, the input consists of two sets of points (“demand points” and
“supply points”). The results of this paper will apply to both versions of the problem.

T. M. Chan, Q. He, and Y. Yu 34:3

Table 1 Summary of results on k-center for small k in R2.

k Euclidean rectilinear Euclidean discrete rectilinear discrete

1 O(n) O(n) O(n log n) O(n)

2 Õ(n) [44] O(n) [45] Õ(n4/3) [6] Õ(n)

3 Õ(n) [45] Õ(n3/2) (new)

(not necessarily geometric) distance functions. The main question is whether geometry could
help in obtaining faster algorithms in the higher-dimensional Euclidean setting, as Agarwal,
Sharir, and Welzl were able to exploit successfully in R2:

▶ Question 1. Is there an algorithm running in faster than nω time for the Euclidean discrete
2-center problem in higher constant dimensions?

We can similarly investigate the rectilinear version of the discrete k-center problem, which
is potentially easier. For example, the rectilinear discrete 2-center problem can be solved in
Õ(n) time in any constant dimension d, by a straightforward application of orthogonal range
searching, as reported in several papers [10, 11, 34]. The approach does not seem to work for
the rectilinear discrete 3-center problem. Naively, rectilinear discrete 3-center can be reduced
to n instances of (some version of) rectilinear discrete 2-center, and solved in Õ(n2) time.
However, no better results have been published, leading to the following questions:

▶ Question 2. Is there a subquadratic-time algorithm for the rectilinear discrete 3-center
problem?

▶ Question 3. Are there lower bounds to show that the rectilinear discrete 3-center problem
does not have near-linear-time algorithm (and is thus strictly harder than rectilinear discrete
2-center, or rectilinear continuous 3-center)?

Similar questions may be asked about rectilinear discrete k-center for k ≥ 4. Here, the
complexity of the problem is upper-bounded by Õ(nω(⌊k/2⌋,1,⌈k/2⌉)), where ω(a, b, c) denotes
the exponent for multiplying an na ×nb and an nb ×nc matrix: by binary search, the problem
reduces to finding k hypercubes of a given edge length r with centers in S covering S, which
is equivalent to finding a dominating set of size k in the graph with vertex set S where an
edge pz exists iff the distance of p and z is more than r – the dominating set problem reduces
to rectangular matrix multiplication with the time bound stated, as observed by Eisenbrand
and Grandoni [28]. Note that the difference ω(⌊k/2⌋, 1, ⌈k/2⌉) − k converges to 0 as k → ∞
by known matrix multiplication bounds [25] (and is exactly 0 if ω = 2).

As k gets larger compared to d, a better upper bound of nO(dk1−1/d) is known for both the
continuous and discrete k-center problem under the Euclidean and rectilinear metric [5, 31, 32].
Recently, in SoCG’22, Chitnis and Saurabh [22] (extending earlier work by Marx [38] in
the R2 case) proved a nearly matching conditional lower bound for discrete k-center in Rd,
ruling out no(k1−1/d)-time algorithms under ETH. However, these bounds do not answer our
questions concerning very small k’s. In contrast, the conditional lower bounds by Cabello et
al. [14] that we have mentioned earlier are about very small k and so are more relevant, but
are only for the continuous version of the k-center problem. (The continuous version behaves
differently from the discrete version; see Tables 1–2.)

ICALP 2023

34:4 Small-Size Geometric Set Cover and Discrete k-Center for Small k

Table 2 Summary of results on k-center for small k in Rd for an arbitrary constant d. (CLB
stands for “conditional lower bound”.)

k Euclidean rectilinear Euclidean discrete rectilinear discrete

1 O(n) O(n) Õ(n2−2/(⌈d/2⌉+1)) O(n)

2 nO(d) Õ(n) [35] Õ(nω) Õ(n)

CLB: nΩ(d) [14] CLB: Ω(n2−δ) (new)

3 Õ(n) [14] Õ(nω(1,1,2)) Õ(n2)

CLB: Ω(n3−δ) (new) CLB: Ω(n4/3−δ) (new)

4 nO(d) Õ(nω(2,1,2)) Õ(n3)

CLB: nΩ(
√

d) [14] CLB: Ω(n4−δ) (new)

1.2 The geometric set cover problem with small size k

The decision version of the discrete k-center problem (deciding whether the minimum radius
is at most a given value) reduces to a geometric set cover problem: given a set P of n points
and a set R of n objects, find the smallest subset of objects in R that cover all points of
P . Geometric set cover has been extensively studied in the literature, particularly from the
perspective of approximation algorithms (since for most types of geometric objects, set cover
remains NP-hard); for example, see the references in [18]. Here, we are interested in exact
algorithms for the case when the optimal size k is a small constant.

For the application to Euclidean/rectilinear k-center, the objects are congruent balls/
hypercubes, or by rescaling, unit balls/hypercubes, but other types of objects may be
considered, such as arbitrary rectangles or boxes.

We can also consider the weighted version of the problem: here, given a set P of n points,
a set R of n weighted objects, and a small constant k, we want to find a subset of k objects
in R that cover all points of P , while minimizing the total weight of the chosen objects.

A “dual” problem is geometric hitting set, which in the weighted case is the following:
given a set P of n weighted points, a set R of n objects, and a small constant k, find a subset
of k points in P that hit all objects of R, while minimizing the total weight of the chosen
points. (The continuous unweighted version, where the chosen points may be anywhere,
is often called the piercing problem.) In the case of unit balls/hypercubes, hitting set is
equivalent to set cover due to self-duality.

For rectangles in R2 or boxes in Rd, size-2 geometric set cover (unweighted or weighted)
can be solved in Õ(n) time, like discrete rectilinear 2-center [10, 11, 34], by orthogonal
range searching. Analogs to Questions 2–3 may be asked for size-3 geometric set cover for
rectangles/boxes.

Surprisingly, the complexity of exact geometric set cover of small size k has not received
as much attention, but very recently in SODA’23, Chan [17] initiated the study of similar
questions for geometric independent set with small size k, for example, providing subquadratic
algorithms and conditional lower bounds for size-4 independent set for boxes.

For larger k, hardness results by Marx and Pilipczuk [39] and Bringmann et al. [13]
ruled out no(k)-time algorithms for size-k geometric set cover for rectangles in R2 and unit
hypercubes (or orthants) in R4, and no(

√
k)-time algorithms for unit cubes (or orthants) in

R3 under ETH. But like the other fixed-parameter intractability results mentioned, these
proofs do not appear to imply any nontrivial lower bound for very small k such as k = 3.

T. M. Chan, Q. He, and Y. Yu 34:5

1.3 New results
New algorithms. In this paper, we answer Question 2 in the affirmative for dimension
d = 2, by presenting the first subquadratic algorithms for rectilinear discrete 3-center in R2,
and more generally, for (unweighted and weighted) geometric size-3 set cover for unit squares,
as well as arbitrary rectangles in R2. More precisely, the time bounds of our algorithms are:

Õ(n3/2) for rectilinear discrete 3-center in R2 and unweighted size-3 set cover for unit
squares in R2;
Õ(n8/5) for weighted size-3 set cover for unit squares in R2;
Õ(n5/3) for unweighted size-3 set cover for rectangles in R2;
Õ(n7/4) for weighted size-3 set cover for rectangles in R2.

New conditional lower bounds. We also prove the first nontrivial conditional lower bounds
on the time complexity of rectilinear discrete 3-center and related size-3 geometric set cover
problems. More precisely, our lower bounds are:4

Ω(n3/2−δ) for weighted size-3 set cover (or hitting set) for unit squares in R2, assuming
the APSP Hypothesis;
Ω(n4/3−δ) for rectilinear discrete 3-center in R4 and unweighted size-3 set cover (or hitting
set) for unit hypercubes in R4, assuming the Sparse Triangle Hypothesis;
Ω(n4/3−δ) for unweighted size-3 set cover for boxes in R3, assuming the Sparse Triangle
Hypothesis.

The lower bound in the first bullet is particularly attractive, since it implies that con-
ditionally, our Õ(n8/5)-time algorithm for weighted size-3 set cover for unit squares in R2

is within a small factor (near n0.1) from optimal, and that our Õ(n7/4)-time algorithm for
weighted size-3 set cover for rectangles in R2 is within a factor near n0.25 from optimal. The
second bullet answers Question 3, implying that rectilinear discrete 3-center is strictly harder
than rectilinear discrete 2-center and rectilinear (continuous) 3-center, at least when the
dimension is 4 or higher. (In contrast, rectilinear (continuous) 4-center is strictly harder
than rectilinear discrete 4-center for sufficiently large constant dimensions [14]; see Table 2.)

In addition, we prove the following conditional lower bounds:
Ω(n2−δ) for Euclidean discrete 2-center in R13 and unweighted size-3 set cover (or hitting
set) for unit balls in R13, assuming the Hyperclique Hypothesis;
Ω(nk−δ) for Euclidean discrete k-center in R7k and unweighted size-k set cover for unit
balls in R7k for any constant k ≥ 3, assuming the Hyperclique Hypothesis.

In particular, this answers Question 1 in the negative if ω = 2 (as conjectured by some
researchers): geometry doesn’t help for Euclidean discrete 2-center when the dimension is
a sufficiently large constant. Similarly, the second bullet indicates that the upper bound
Õ(nω(⌊k/2⌋,1,⌈k/2⌉)) for Euclidean discrete k-center is basically tight for any fixed k ≥ 3 in a
sufficiently large constant dimension, if ω = 2. (See Tables 1–3.)

Lastly, we prove a lower bound for a standard variant of set cover known as maximum
coverage: given a set P of n points, a set R of n objects, and a small constant k, find k objects
in R that cover the largest number (rather than all) of points of P . Geometric versions of
the maximum coverage problem have been studied before from the approximation algorithms
perspective (e.g., see [9]). It is also related to “outliers” variants of k-center problems (where
we allow a certain number of points to be uncovered), which have also been studied for small

4 Throughout this paper, δ denotes an arbitrarily small positive constant.

ICALP 2023

34:6 Small-Size Geometric Set Cover and Discrete k-Center for Small k

Table 3 Summary of results on size-3 geometric set cover in R2.

objects unweighted weighted

unit squares Õ(n3/2) (new) Õ(n8/5) (new)
CLB: Ω(n3/2−δ) (new)

rectangles Õ(n5/3) (new) Õ(n7/4) (new)
CLB: Ω(n3/2−δ) (new)

k (e.g., see [5]). Recall that the size-2 geometric set cover problem for boxes in Rd can be
solved in Õ(n) time (which was why our attention was redirected to the size-3 case). In
contrast, we show that maximum coverage for boxes cannot be solved in near-linear time
even for size k = 2. More precisely, we obtain the following lower bound:

Ω(n2−δ) for size-2 maximum coverage for unit hypercubes in R12, assuming the Hyper-
clique Hypothesis.

What is notable is that this lower bound is tight (up to no(1) factors), regardless of ω,
since there is an obvious Õ(n2)-time algorithm for boxes in Rd by answering n2 orthogonal
range counting queries – our result implies that this obvious algorithm can’t be improved!

On hypotheses from fine-grained complexity. Let us briefly state the hypotheses used.

The APSP Hypothesis is among the three most popular hypotheses in fine-grained
complexity [46] (the other two being the 3SUM Hypothesis and the Strong Exponential
Time Hypothesis): it asserts that there is no O(n3−δ)-time algorithm for the all-pairs
shortest paths problem for an arbitrary weighted graph with n vertices (and O(log n)-bit
integer weights). This hypothesis has been used extensively in the algorithms literature
(but less often in computational geometry).
The Sparse Triangle Hypothesis asserts that there is no O(m4/3−δ)-time algorithm for
detecting a triangle (i.e., a 3-cycle) in a sparse unweighted graph with m edges. The
current best upper bound for triangle detection, from a 3-decade-old paper by Alon,
Yuster, and Zwick [8], is Õ(m2ω/(ω+1)), which is Õ(m4/3) if ω = 2. (In fact, a stronger
version of the hypothesis asserts that there is no O(m2ω/(ω+1)−δ)-time algorithm.) As
supporting evidence, it is known that certain “listing” or “all-edges” variants of the
triangle detection problem have an O(m4/3−δ) lower bound, under the 3SUM Hypothesis
or the APSP Hypothesis [43, 48, 20]. See [1, 33] for more discussion on the Sparse Triangle
Hypothesis, and [17] for a recent application in computational geometry.
The Hyperclique Hypothesis asserts that there is no O(nk−δ)-time algorithm for detecting
a size-k hyperclique in an ℓ-uniform hypergraph with n vertices, for any fixed k > ℓ ≥ 3.
See [37] for discussion on this hypothesis, and [12, 17, 36] for some recent applications
in computational geometry, including Künnemann’s breakthrough result on conditional
lower bounds for Klee’s measure problem [36].

Techniques. Traditionally, in computational geometry, subquadratic algorithms with “in-
termediate” exponents between 1 and 2 tend to arise from the use of nonorthogonal range
searching [4] (Agarwal, Sharir, and Welzl’s Õ(n4/3)-time algorithm for Euclidean discrete
2-center in R2 [6] being one such example). Our subquadratic algorithms for rectilinear
discrete 3-center in R2 and related set-cover problems, which are about “orthogonal” or
axis-aligned objects, are different. A natural first step is to use a g × g grid to divide into

T. M. Chan, Q. He, and Y. Yu 34:7

cases, for some carefully chosen parameter g. Indeed, a grid-based approach was used in
some recent subquadratic algorithms by Chan [17] for size-4 independent set for boxes in
any constant dimension, and size-5 independent set for rectangles in R2 (with running time
Õ(n3/2) and Õ(n4/3) respectively). However, discrete 3-center or rectangle set cover is much
more challenging than independent set (for one thing, the 3 rectangles in the solution may
intersect each other). To make the grid approach work, we need new original ideas (notably,
a sophisticated argument to assign grid cells to rectangles, which is tailored to the 2D case).
Still, the entire algorithm description fits in under 3 pages.

Our conditional lower bounds for rectilinear discrete 3-center and the corresponding set
cover problem for unit hypercubes are proved by reduction from unweighted or weighted
triangle finding in graphs. It turns out there is a simple reduction in R2 by exploiting weights.
However, lower bounds in the unweighted case (and thus the original rectilinear discrete
3-center problem) are much trickier. We are able to design a clever, simple reduction in R6

by hand, but reducing the dimension down to 4 is far from obvious and we end up employing
a computer-assisted search, interestingly. The final construction is still simple, and so is easy
to verify by hand.

Our conditional lower bound proofs for Euclidean discrete 2-center, and more generally
discrete k-center, are inspired by a recent conditional hardness proof by Bringmann et al. [12]
from SoCG’22 on a different problem. Specifically, they proved that deciding whether the
intersection graph of n unit hypercubes in R12 has diameter 2 requires near-quadratic time
under the Hyperclique Hypothesis. A priori, this diameter problem doesn’t seem related to
discrete k-center; moreover, it was a rectilinear problem, not Euclidean (and we know that
in contrast, rectilinear discrete 2-center has a near-linear upper bound!). Our contribution is
in realizing that Bringmann et al.’s approach is useful for Euclidean discrete 2-center and
k-center, surprisingly. To make the proof work though, we need some new technical ideas (in
particular, an extra dimension for the k = 2 case, and multiple extra dimensions for larger k,
with carefully designed coordinate values). Still, the final proof is not complicated to follow.

Our conditional lower bound for size-2 maximum coverage for boxes is also proved using a
similar technique, but again the adaptation is nontrivial, and we introduce some interesting
counting arguments that proceed a bit differently from Bringmann et al.’s original proof for
diameter (a problem that does not involve counting).

2 Subquadratic Algorithms for Size-3 Set Cover for Rectangles in R2

In this section, we describe the most basic version of our subquadratic algorithm to solve
the size-3 geometric set cover problem for weighted rectangles in R2. The running time is
Õ(n16/9). Refinements of the algorithm will be described in the full version of the paper,
where we will improve the time bound further to Õ(n7/4), or even better for the unweighted
case and unit square case. The rectilinear discrete 3-center problem in R2 reduces to the
unweighted unit square case by standard techniques [15, 30].

We begin with a lemma giving a useful geometric data structure:

▶ Lemma 1. For a set P of n points and a set R of n weighted rectangles in R2, we can
build a data structure in Õ(n) time and space, to support the following kind of queries: given
a pair of rectangles r1, r2 ∈ R, we can find a minimum-weight rectangle r3 ∈ R (if it exists)
such that P is covered by r1 ∪ r2 ∪ r3, in Õ(1) time.

Proof. By orthogonal range searching [4, 26] on P , we can find the minimum/maximum x-
and y-values among the points of P in the complement of r1 ∪ r2 in Õ(1) time (since the
complement can be expressed as a union of O(1) orthogonal ranges). As a result, we obtain

ICALP 2023

34:8 Small-Size Geometric Set Cover and Discrete k-Center for Small k

the minimum bounding box b enclosing P \ (r1 ∪ r2). To finish, we find a minimum-weight
rectangle in R enclosing b; this is a “rectangle enclosure” query on R and can be solved in Õ(1)
time, since it also reduces to orthogonal range searching (the rectangle [x−, x+] × [y−, y+]
encloses the rectangle [ξ−, ξ+] × [η−, η+] in R2 iff the point (x−, x+, y−, y+) lies in the box
(−∞, ξ−] × [ξ+, ∞) × (−∞, η−] × [η+, ∞) in R4). ◀

▶ Theorem 2. Given a set P of n points and a set R of n weighted rectangles in R2, we
can find 3 rectangles r∗

1 , r∗
2 , r∗

3 ∈ R of minimum total weight (if they exist), such that P is
covered by r∗

1 ∪ r∗
2 ∪ r∗

3, in Õ(n16/9) time.

Proof. Let B0 be the minimum bounding box enclosing P (which touches 4 points). If
a rectangle of R has an edge outside of B0, we can eliminate that edge by extending the
rectangle, making it unbounded.

Let g be a parameter to be determined later. Form a g × g (non-uniform) grid, where
each column/row contains O(n/g) rectangle vertices.

Step 1. For each pair of rectangles r1, r2 ∈ R that have vertical edges in a common column
or horizontal edges in a common row, we query the data structure in Lemma 1 to find
a minimum-weight rectangle r3 ∈ R (if exists) such that P ⊂ r1 ∪ r2 ∪ r3, and add the
triple r1r2r3 to a list L. The number of queried pairs r1r2 is O(g · (n/g)2) = O(n2/g),
and so this step takes Õ(n2/g) total time.

Step 2. For each rectangle r1 ∈ R and each of its horizontal (resp. vertical) edges e1, define
γ−(e1) and γ+(e1) to be the leftmost and rightmost (resp. bottommost and topmost) grid
cell that intersects e1 and contains a point of P not covered by r1. We can naively find
γ−(e1) and γ+(e1) by enumerating the O(g) grid cells intersecting e1 and performing O(g)
orthogonal range queries; this takes Õ(gn) total time. For each rectangle r2 ∈ R that has
an edge intersecting γ−(e1) or γ+(e1), we query the data structure in Lemma 1 to find a
minimum-weight rectangle r3 ∈ R (if exists) such that P ⊂ r1 ∪ r2 ∪ r3, and add the triple
r1r2r3 to the list L. The total number of queried pairs r1r2 is O(n · n/g) = O(n2/g), and
so this step again takes Õ(n2/g) total time. (This entire Step 2, and the definition of
γ−(·) and γ+(·), might appear mysterious at first, but their significance will be revealed
later in Step 3.)

Step 3. We guess the column containing each of the vertical edges of r∗
1 , r∗

2 , r∗
3 and the row

containing each of the horizontal edges of r∗
1 , r∗

2 , r∗
3 ; there are at most 12 edges and so

O(g12) choices. Actually, 4 of the 12 edges are eliminated after extension, and so the
number of choices can be lowered to O(g8).
After guessing, we know which grid cells are completely inside r∗

1 , r∗
2 , r∗

3 and which grid
cells intersect which edges of r∗

1 , r∗
2 , r∗

3 . We may assume that the vertical edges from
different rectangles in {r∗

1 , r∗
2 , r∗

3} are in different columns, and the horizontal edges from
different rectangles in {r∗

1 , r∗
2 , r∗

3} are in different rows: if not, r∗
1r∗

2r∗
3 would have already

been found in Step 1. In particular, we know combinatorially what the arrangement of
r∗

1 , r∗
2 , r∗

3 looks like, even though we do not know the precise coordinates and identities of
r∗

1 , r∗
2 , r∗

3 .
We classify each grid cell γ into the following types (see Figure 1):

Type A: γ is completely contained in some r∗
j (j ∈ {1, 2, 3}). Here, we assign γ to

each such r∗
j .

Type B: γ is not of type A, and intersects an edge of exactly one rectangle r∗
j . We

assign γ to this r∗
j . Observe that points in P ∩ γ can only be covered by r∗

j .

T. M. Chan, Q. He, and Y. Yu 34:9

A1

A1/2A1/2 A2

C1/2

A2/3

C3

B2

B3C2/3

A1 A1 A1

A1 A1 A1 A1

A1 A1 A1 A1

A1 A1 A2 A2

A3 A3 A3

B1

B1

C1

B1 A2 A2 A2 A2 A2

A3 A3

A2/3 A3 A3

A2/3 A3 A3

A2/3 A3 A3

A2 A2 A2 A2 A2

A2 A2 A2 A2 A2

A2 A2 A2 A2 A2

A2 A2 A2 A2 A2

A2 A2 A2 A2 A2

A2

A2

A2 B2

B2

B2

B2

B2

B2

B2

B3

r∗2

r∗3

r∗1

B3 B3 B3

Figure 1 Proof of Theorem 2: grid cells in Step 3. The letter in a cell indicates its type (A, B,
or C), and the number (or numbers) in a cell indicates the index (or indices) j ∈ {1, 2, 3} of the
rectangle r∗

j that the cell is assigned to.

Type C: γ is not of type A, and intersects edges from two different rectangles in
{r∗

1 , r∗
2 , r∗

3}. W.l.o.g., suppose that γ intersects a horizontal edge e∗
1 of r∗

1 and a vertical
edge e∗

2 of r∗
2 ; note that the intersection point v∗ = e∗

1 ∩ e∗
2 lies on the boundary of

the union r∗
1 ∪ r∗

2 ∪ r∗
3 . By examining the arrangement of {r∗

1 , r∗
2 , r∗

3}, we know that at
least one of the following is true: (i) we can walk horizontally from v∗ to an endpoint
of e∗

1 (or a point at infinity) while staying on the boundary of r∗
1 ∪ r∗

2 ∪ r∗
3 , or (ii) we

can walk vertically from v∗ to an endpoint of e∗
2 (or a point at infinity) while staying

on the boundary of r∗
1 ∪ r∗

2 ∪ r∗
3 .

If (i) is true, we assign γ to r∗
1 . Observe that if there is a point in P ∩ γ not covered

by r∗
1 (and if the guesses are correct), then γ must be equal to γ−(e∗

1) or γ+(e∗
1) (as

defined in Step 2), and so r∗
1r∗

2r∗
3 would have already been found in Step 2. This is

because except for γ, the grid cells encountered while walking from v∗ to that endpoint
of e∗

1 can intersect only r∗
1 and so points in those cells can only be covered by r∗

1 .
If (ii) is true, we assign γ to r∗

2 for a similar reason.

Note that there are at most O(1) grid cells γ of type C; and the grid cells γ of type B
form O(1) contiguous blocks. Let ρj be the union of all grid cells assigned to r∗

j . Then ρj

is a rectilinear polygon of O(1) complexity. We compute the minimum/maximum x- and
y-values of the points in P ∩ ρj , by orthogonal range searching in Õ(1) time. As a result,
we obtain the minimum bounding box bj enclosing P ∩ ρj . We find a minimum-weight
rectangle rj ∈ R enclosing bj , by a rectangle enclosure query (reducible to orthogonal
range searching, as before). If P \ (r1 ∪ r2 ∪ r3) = ∅ (testable by orthogonal range
searching), we add the triple r1r2r3 (which should coincide with r∗

1r∗
2r∗

3 , if it has not been
found earlier and if the guesses are correct) to L. The total time over all guesses is Õ(g8).

At the end, we return a minimum-weight triple in L. The overall running time is
Õ(g8 + n2/g + gn). Setting g = n2/9 yields the theorem. ◀

ICALP 2023

34:10 Small-Size Geometric Set Cover and Discrete k-Center for Small k

R
(3)
x3x

′
1 R

(2)
x2x

′
3

R
(1)
x1x

′
2

Figure 2 Reduction from the minimum-weight triangle problem to weighted size-3 set cover for
orthants in R2.

3 Conditional Lower Bounds for Size-3 Set Cover for Boxes

In this section, we prove conditional lower bounds for size-3 set cover for boxes in certain
dimensions (rectilinear discrete 3-center is related to size-3 set cover for unit hypercubes).
We begin with the weighted version, which is more straightforward and has a simple proof,
and serves as a good warm-up to the more challenging, unweighted version later.

3.1 Weighted size-3 set cover for unit squares in R2

An orthant (also called a dominance range) refers to a d-sided box in Rd which is unbounded
along each of the d dimensions. (Note that orthants may be oriented in 2d ways.) To obtain a
lower bound for the unit square or unit hypercube case, it suffices to obtain a lower bound for
the orthant case, since we can just replace each orthant with a hypercube with a sufficiently
large side length M , and then rescale by a 1/M factor.

▶ Theorem 3. Given a set P of n points and a set R of n weighted orthants in R2, finding 3
orthants in R of minimum total weight that cover P requires Ω(n3/2−δ) time for any constant
δ > 0, assuming the APSP Hypothesis.

Proof. The APSP Hypothesis is known to be equivalent [47] to the hypothesis that finding
a minimum-weight triangle in a weighted graph with n vertices requires Ω(n3−δ) time for
any constant δ > 0. We will reduce the minimum-weight triangle problem on a graph
with n vertices and m edges (m ∈ [n, n2]) to the weighted size-3 set cover problem for
O(m) points and orthants in R2. Thus, if there is an O(m3/2−δ)-time algorithm for the
latter problem, there would be an algorithm for the former problem with running time
O(m3/2−δ) ≤ O(n3−2δ), refuting the hypothesis.

Let G = (V, E) be the given weighted graph with n vertices and m edges. Without loss
of generality, assume that all edge weights are in [0, 0.1], and that V ⊂ [0, 0.1], i.e., vertices
are labelled by numbers that are rescaled to lie in [0, 0.1]. Assume that 0 ∈ V and 0.1 ∈ V .

The reduction. For each vertex t ∈ V , we create three points (t, 1 + t), (2, t), and (1 + t, −1)
(call them of type 1, 2, and 3, respectively).

Create the following orthants in R2:

∀x1x′
2 ∈ E : R

(1)
x1x′

2
= (−∞, 1 + x′

2) × (−∞, 1 + x1] (type 1)
∀x2x′

3 ∈ E : R
(2)
x2x′

3
= [1 + x2, ∞) × (−∞, x′

3) (type 2)
∀x3x′

1 ∈ E : R
(3)
x3x′

1
= (x′

1, ∞) × [x3, ∞) (type 3)

T. M. Chan, Q. He, and Y. Yu 34:11

The weight of each orthant is set to be the number of points it covers plus the weight of the
edge it represents. The total number of points and orthants is O(n) and O(m) respectively.
The reduction is illustrated in Figure 2.

Correctness. We prove that the minimum-weight triangle in G has weight w (where
w ∈ [0, 0.3]) iff the optimal weighted size-3 set cover has weight 3n + w.

Any feasible solution (if exists) must use an orthant of each type, since the point (0, 1)
of type 1 (resp. the point (2, 0.1) of type 2, and the point (1.1, −1) of type 3) can only be
covered by an orthant of type 1 (resp. 3 and 2). So, the three orthants in the optimal solution
must be of the form R

(1)
x1x′

2
, R

(2)
x2x′

3
and R

(3)
x3x′

1
for some x1x′

2, x2x′
3, x3x′

1 ∈ E.
If x1 < x′

1, some point (of type 1) would be uncovered; on the other hand, if x1 > x′
1,

some point (of type 1) would be covered twice, and the total weight would then be at least
3n + 1. Thus, x1 = x′

1. Similarly, x2 = x′
2 and x3 = x′

3. So, x1x2x3 forms a triangle in G.
We conclude that the minimum-weight solution R

(1)
x1x2 , R

(2)
x2x3 and R

(3)
x3x1 correspond to the

minimum-weight triangle x1x2x3 in G. ◀

3.2 Unweighted size-3 set cover for boxes in R3

Our preceding reduction uses weights to ensure equalities of two variables representing
vertices. For the unweighted case, this does not work. We propose a different way to force
equalities, by using an extra dimension and extra sides (i.e., using boxes instead of orthants),
with some carefully chosen coordinate values.

▶ Theorem 4. Given a set P of n points and a set R of n unweighted axis-aligned boxes in
R3, deciding whether there exist 3 boxes in R that cover P requires Ω(n4/3−δ) time for any
constant δ > 0, assuming the Sparse Triangle Hypothesis.

Proof. We will reduce the triangle detection problem on a graph with m edges to the
unweighted size-3 set cover problem for O(m) points and boxes in R3. Thus, if there is an
O(m4/3−δ)-time algorithm for the latter problem, there would be an algorithm for the former
problem with running time O(m4/3−δ), refuting the hypothesis.

Let G = (V, E) be the given unweighted sparse graph with n vertices and m edges
(n ≤ m). Without loss of generality, assume that V ⊂ [0, 0.1], and 0 ∈ V and 0.1 ∈ V .

The reduction. For each vertex t ∈ V , create six points

(−1 + t, 0, 2 + t) (type 1)
(1 + t, 0, −2 + t) (type 2)
(2 + t, −1 + t, 0) (type 3)

(−2 + t, 1 + t, 0) (type 4)
(0, 2 + t, −1 + t) (type 5)
(0, −2 + t, 1 + t) (type 6)

Create the following boxes in R3:

∀x1x′
2 ∈ E : R

(1)
x1x′

2
= (−1 + x1, 1 + x1) × [−2 + x′

2, 2 + x′
2] × R

∀x2x′
3 ∈ E : R

(2)
x2x′

3
= [−2 + x′

3, 2 + x′
3] × R × (−1 + x2, 1 + x2)

∀x3x′
1 ∈ E : R

(3)
x3x′

1
= R × (−1 + x3, 1 + x3) × [−2 + x′

1, 2 + x′
1]

(call them of type 1, 2, and 3, respectively).

ICALP 2023

34:12 Small-Size Geometric Set Cover and Discrete k-Center for Small k

Correctness. We prove that a size-3 set cover exists iff a triangle exists in G.
Any feasible solution (if exists) must use a box of each type, since the point (−1, 0, 2) of

type 1 (resp. the point (2, −1, 0) of type 3, and the point (0, 2, −1) of type 5) can only be
covered by a box of type 3 (resp. 2 and 1). So, the three boxes in a feasible solution must be
of the form R

(1)
x1x′

2
, R

(2)
x2x′

3
and R

(3)
x3x′

1
for some x1x′

2, x2x′
3, x3x′

1 ∈ E.
Consider points of type 1 with the form (−1 + t, 0, 2 + t). The box R

(2)
x2x′

3
cannot cover

any of them due to the third dimension. The box R
(1)
x1x′

2
covers all such points corresponding

to t > x1, and the box R
(3)
x3x′

1
covers all such points corresponding to t ≤ x′

1. So, all points of
type 1 are covered iff x1 ≤ x′

1. Similarly, all points of type 2 are covered iff x′
1 ≤ x1. Thus,

all points of type 1–2 are covered iff x1 = x′
1. By a symmetric argument, all points of type

3–4 are covered iff x3 = x′
3; and all points of type 5–6 are covered iff x2 = x′

2. We conclude
that a feasible solution exists iff a triangle x1x2x3 exists in G. ◀

We remark that the boxes above can be made fat, with side lengths between 1 and a
constant (by replacing R with an interval of a sufficiently large constant length).

3.3 Unweighted size-3 set cover for unit hypercubes in R4

Our preceding lower bound for unweighted size-3 set cover for boxes in R3 immediately
implies a lower bound for orthants (and thus unit hypercubes) in R6, since the point (x, y, z)
is covered by the box [a−, a+]× [b−, b+]× [c−, c+] in R3 iff the point (x, x, y, y, z, z) is covered
by the orthant [a−, ∞) × (−∞, a+] × [b−, ∞) × (−∞, b+] × [c−, ∞) × (−∞, c+] in R6.

A question remains: can the dimension 6 be lowered? Intuitively, there seems to be some
wastage in the above construction: there are several 0’s in the coordinates of the points, and
several R’s in the definition of the boxes, and these get doubled after the transformation to 6
dimensions. However, it isn’t clear how to rearrange coordinates to eliminate this wastage:
we would have to give up this nice symmetry of our construction, and there are too many
combinations to try. We ended up writing a computer program to exhaustively try all these
different combinations, and eventually find a construction that lowers the dimension to 4!
Once it is found, correctness is straightforward to check, as one can see in the proof below.

▶ Theorem 5. Given a set P of n points and a set R of n unweighted orthants in R4,
deciding whether there exists a size-3 set cover requires Ω(n4/3−δ) time for any constant
δ > 0, assuming the Sparse Triangle Hypothesis.

Proof. We will reduce the triangle detection problem on a graph with m edges to the
unweighted size-3 set cover problem for O(m) points and orthants in R4.

Let G = (V, E) be the given unweighted graph with n vertices and m edges (n ≤ m).
Without loss of generality, assume that V ⊂ [0, 0.1], and 0 ∈ V and 0.1 ∈ V .

The reduction. For each vertex t ∈ V , create six points

(0 + t, 2 + t, −0.5, −0.5) (type 1)
(2 − t, 0 − t, −0.5, −0.5) (type 2)
(1 − t, 0.5, 1 + t, 1.5) (type 3)

(0.5, 1 + t, 0.5, 2 − t) (type 4)
(−0.5, −0.5, 2 − t, 0 − t) (type 5)
(−0.5, −0.5, 0 + t, 1 + t) (type 6)

Create the following orthants in R4:

T. M. Chan, Q. He, and Y. Yu 34:13

∀x1x′
2 ∈ E : R

(1)
x1x′

2
= [0 + x1, +∞) × [0 − x1, +∞) × (−∞, 1 + x′

2) × (−∞, 2 − x′
2)

∀x2x′
3 ∈ E : R

(2)
x2x′

3
= (−∞, 1 − x2] × (−∞, 1 + x2] × (0 + x′

3, +∞) × (0 − x′
3, +∞)

∀x3x′
1 ∈ E : R

(3)
x3x′

1
= (−∞, 2 − x′

1) × (−∞, 2 + x′
1) × (−∞, 2 − x3] × (−∞, 1 + x3]

(call them of type 1, 2, and 3, respectively).

Correctness. We prove that a size-3 set cover exists iff a triangle exists in G.
Any feasible solution (if exists) must use an orthant of each type, as one can easily check

(like before). So, the three orthants in a feasible solution must be of the form R
(1)
x1x′

2
, R

(2)
x2x′

3

and R
(3)
x3x′

1
for some x1x′

2, x2x′
3, x3x′

1 ∈ E.

Consider points of type 1 with the form (0 + t, 2 + t, −0.5, −0.5). The orthant R
(2)
x2x′

3

cannot cover any of them due to the third dimension. The orthant R
(1)
x1x′

2
covers all such

points corresponding to t ≥ x1, and the orthant R
(3)
x3x′

1
covers all such points corresponding

to t < x′
1. So, all points of type 1 are covered iff x1 ≤ x′

1. By similar arguments, it can be
checked that all points of type 2 are covered iff x1 ≥ x′

1; all points of type 3 are covered
iff x2 ≤ x′

2; all points of type 4 are covered iff x2 ≥ x′
2; all points of type 5 are covered iff

x3 ≤ x′
3; all points of type 6 are covered iff x3 ≥ x′

3. We conclude that a feasible solution
exists iff a triangle x1x2x3 exists in G. ◀

In the computer search, we basically tried different choices of points with coordinate
values of the form c ± t or c for some constant c, and orthants defined by intervals of the form
[c ± xj , +∞) or (−∞, c ± xj] (closed or open) for some variable xj (or x′

j). The constraints
are not exactly easy to write down, but are self-evident as we simulate the correctness proof
above. Naively, the number of cases is in the order of 1014, but can be drastically reduced to
about 107 with some optimization and careful pruning of the search space. The C++ code is
not long (under 150 lines) and, after incorporating pruning, runs in under a second.

It is now straightforward to modify the above lower bound proof for unweighted orthants
(or unit hypercubes) in R4 to the rectilinear discrete 3-center problem in R4. In the full
version of the paper, we also prove a higher conditional lower bound for weighted size-6 set
cover for rectangles in R2.

4 Conditional Lower Bound for Euclidean Discrete 2-Center

In this section, we prove our conditional lower bound for the Euclidean discrete 2-center
problem in a sufficiently large constant dimension. The general structure of our proof is
inspired by Bringmann et al.’s recent conditional hardness proof [12] for the problem of
computing diameter of box intersection graphs in R12, specifically, testing whether the
diameter is more than 2. (Despite the apparent dissimilarities of the two problems, what
led us to initially suspect that the ideas there might be useful is that both problems are
concerned with paths of length 2 in certain geometrically defined graphs, and both problems
have a similar “quantifier structure”, after unpacking the problem definitions.) Extra ideas
are needed, as we are dealing with the Euclidean metric instead of boxes; we end up needing
an extra dimension, with carefully tuned coordinate values, to make the proof work.

▶ Theorem 6. For any constant δ > 0, there is no O(n2−δ)-time algorithm for Euclidean
discrete 2-center in R13, assuming the Hyperclique Hypothesis.

ICALP 2023

34:14 Small-Size Geometric Set Cover and Discrete k-Center for Small k

Proof. We will reduce the problem of detecting a 6-hyperclique in a 3-uniform hypergraph
with n vertices, to the Euclidean discrete 2-center problem on N = O(n3) points in R13. Thus,
if there is an O(N2−δ)-time algorithm for the latter problem, there would be O(n6−3δ)-time
algorithm for the former problem, refuting the Hyperclique Hypothesis.

Let G = (V, E) be the given 3-uniform hypergraph. By a standard color-coding tech-
nique [7], we may assume that G is 6-partite, i.e., V is partitioned into 6 parts V1, . . . , V6,
and each edge in E consists of 3 vertices from 3 different parts. The goal is to decide the
existence of a 6-hyperclique, i.e., (x1, . . . , x6) ∈ V1 × · · · × V6 such that {xi, xj , xk} ∈ E for
all distinct i, j, k ∈ {1, . . . , 6}.

Without loss of generality, assume that V ⊂ [0, 1], i.e., vertices are labelled by numbers
that are rescaled to lie in [0, 1]. Let f, g : [0, 1] → [0, 1] be some injective functions satisfying
f(x)2 + g(x)2 = 1. For example, we can take f(x) = cos x and g(x) = sin x; or alternatively,
avoiding trigonometric functions, f(x) = x and g(x) =

√
1 − x2; or avoiding irrational

functions altogether, f(x) = 2x/(x2 + 1) and g(x) = (x2 − 1)/(x2 + 1). (With the last two
options, by rounding to O(log n) bits of precision, it is straightforward to make our reduction
work in the standard integer word RAM model.)

The reduction. We construct the following set S of O(n3) points in R13:

1. For each (x1, x2, x3) ∈ V1 × V2 × V3 with {x1, x2, x3} ∈ E, create the point

px1x2x3 = (f(x1), g(x1), f(x2), g(x2), f(x3), g(x3), 0, 0, 0, 0, 0, 0, 1) .

2. Similarly, for each (x4, x5, x6) ∈ V4 × V5 × V6 such that {x4, x5, x6} ∈ E, create the point

qx4x5x6 = (0, 0, 0, 0, 0, 0, f(x4), g(x4), f(x5), g(x5), f(x6), g(x6), −1) .

3. For each (vi, vj , vk) ∈ Vi ×Vj ×Vk with distinct i, j, k such that {vi, vj , vk} ̸∈ E, {i, j, k} ≠
{1, 2, 3}, and {i, j, k} ≠ {4, 5, 6}, create a point zvivjvk

: the coordinates in dimensions
2i−1, 2i are −f(vi), −g(vi), and similarly the coordinates in dimensions 2j−1, 2j, 2k−1, 2k

are −f(vj), −g(vj), −f(vk), −g(vk), respectively; the 13-th coordinate is

ϕijk = |{1, 2, 3} ∩ {i, j, k}| − 1.5 ∈ {−0.5, 0.5} ;

and all other coordinates are 0. For example, if i = 1, j = 2, k = 4,

zv1v2v4 = (−f(v1), −g(v1), −f(v2), −g(v2), 0, 0, −f(v4), −g(v4), 0, 0, 0, 0, 0.5) .

4. Finally, add two auxiliary points s± = (0, . . . , 0, ±3.5).

We solve the discrete 2-center problem on the above point set S, and return true iff the
minimum radius is strictly less than

√
10.25.

Correctness. Suppose there exists a 6-hyperclique (x1, . . . , x6) ∈ V1×· · ·×V6 in G. We claim
that every point of S has distance strictly less than

√
10.25 from px1x2x3 or qx4x5x6 . Thus,

S can be covered by 2 balls centered at px1x2x3 and qx4x5x6 with radius less than
√

10.25.
To verify the claim, consider a point zv1v2v4 ∈ S for a triple (v1, v2, v4) ∈ V1 × V2 × V4
with {v1, v2, v4} ̸∈ E. Observe that the distance between the points (f(vℓ), g(vℓ)) and
(−f(xℓ), −g(xℓ)) in R2 is at most 2, with equality iff vℓ = xℓ. On the other hand, the distance
between (f(vℓ), g(vℓ)) and (0, 0) is 1, and the distance between (0, 0) and (−f(xℓ), −g(xℓ))
is 1. Thus,

∥zv1v2v4 − px1x2x3∥2 ≤ 22 + 22 + 1 + 1 + 0 + 0 + (0.5 − 1)2 ≤ 10.25,

T. M. Chan, Q. He, and Y. Yu 34:15

with equality iff v1 = x1 and v2 = x2. Furthermore,

∥zv1v2v4 − qx4x5x6∥2 ≤ 1 + 1 + 0 + 22 + 1 + 1 + (0.5 + 1)2 ≤ 10.25,

with equality iff v4 = x4. Since {x1, x2, x4} ∈ E, we cannot have simultaneously v1 = x1,
v2 = x2, and v4 = x4. So, zv1v2v4 has distance strictly less than

√
10.25 from px1x2x3 or qx4x5x6 .

Similarly, the same holds for zvivjvk
∈ S for all other choices of i, j, k. Points px′

1x′
2x′

3
∈ S have

distance at most
√

2 + 2 + 2 + 0 + 0 + 0 + 0 <
√

10.25 from px1x2x3 , and similarly, points
qx′

4x′
5x′

6
∈ S have distance less than

√
10.25 from qx4x5x6 . Finally, the auxiliary point s+ has

distance at most
√

1 + 1 + 1 + 0 + 0 + 0 + 2.52 <
√

10.25 from px1x2x3 , and similarly the
point s− has distance less than

√
10.25 from qx4x5x6 .

On the reverse direction, suppose that the minimum radius for the discrete 2-center
problem on S is strictly less than

√
10.25. Note that the distance between s+ and zvivjvk

is at least
√

1 + 1 + 1 + 0 + 0 + 0 + 32 >
√

10.25, and the distance between s+ and qx4x5x6

is at least
√

0 + 0 + 0 + 1 + 1 + 1 + 4.52 >
√

10.25. Thus, in order to cover s+, one of the
two centers must be equal to px1x2x3 for some {x1, x2, x3} ∈ E. Similarly, in order to cover
s−, the other center must be equal to qx4x5x6 for some {x4, x5, x6} ∈ E. Then for every
(v1, v2, v4) ∈ V1 × V2 × V4 with {v1, v2, v4} ̸∈ E, the point zv1v2v4 has distance strictly less
than

√
10.25 from px1x2x3 or qx4x5x6 . By the above argument, we cannot have v1 = x1 and

v2 = x2 and v4 = x4. It follows that {x1, x2, x4} ∈ E. Similarly, {xi, xj , xk} ∈ E for all
other choices of i, j, k. We conclude that {x1, . . . , x6} is a 6-hyperclique. ◀

From the same proof (after rescaling), we immediately get a near-quadratic conditional
lower bound for unweighted size-2 geometric set cover for unit balls in R13. In the full version
of the paper, we extend the proof to Euclidean discrete k-center for larger constant k, with
more technical effort and more delicate handling of the extra dimensions. This is interesting:
discrete k-center seems even farther away from graph diameter, but in a way, our proof shows
that discrete k-center is a better problem to illustrate the full power of Bringmann et al.’s
technique [12].

In the full version of the paper, we also adapt the approach to prove a conditional lower
bound for size-2 maximum coverage for boxes. The proof uses a different way to enforce
conditions like {x1, x2, x4} ∈ E, via an interesting counting argument – we encourage the
readers to take a look at the full version.

5 Conclusions

In this paper, we have obtained a plethora of nontrivial new results on a fundamental class
of problems in computational geometry related to discrete k-center and size-k geometric set
cover for small values of k. (See Tables 1–3.) In particular, we have a few results where the
upper bounds and conditional lower bounds are close:

For weighted size-3 set cover for rectangles in R2, we have given the first subquadratic
Õ(n7/4)-time algorithm, and an Ω(n3/2−δ) lower bound under the APSP Hypothesis.
For Euclidean discrete k-center (or unweighted size-k set cover for unit balls) in RO(k),
we have proved an Ω(nk−δ) lower bound under the Hyperclique Hypothesis, which is near
optimal if ω = 2.
For size-2 maximum coverage for boxes in a sufficiently large constant dimension, we
have proved an Ω(n2−δ) lower bound under the Hyperclique Hypothesis, which is near
optimal.

ICALP 2023

34:16 Small-Size Geometric Set Cover and Discrete k-Center for Small k

For all of our results, we have managed to find simple proofs (each with 1–3 pages).
We view the simplicity and accessibility of our proofs as an asset – they would make
good examples illustrating fine-grained complexity techniques in computational geometry.
Generally speaking, there has been considerable development on fine-grained complexity
in the broader algorithms community over the last decade [46], but to a lesser extent in
computational geometry. A broader goal of this paper is to encourage more work at the
intersection of these two areas. We should emphasize that while our conditional lower bound
proofs may appear simple in hindsight, they are not necessarily easy to come up with; for
example, see one of our proofs that require computer-assisted search (Theorem 5).

As many versions of the problems studied here still do not have matching upper and
lower bounds, our work raises many interesting open questions. For example:

Is it possible to make our subquadratic algorithm for rectilinear discrete 3-center in R2

work in dimension 3 or higher?
Is it possible to make our conditional lower bound proof for rectilinear discrete 3-center
in R4 work in dimension 2 or 3?
Is it possible to make our conditional lower bound for Euclidean discrete 2-center in R13

work in dimension 3?
Is it possible to make our conditional lower bound for size-2 maximum coverage for boxes
in R12 work in dimension 2 or 3?
Although we have ruled out subquadratic algorithms for Euclidean discrete 2-center in
R13, could geometry still help in beating nω time if ω > 2?

We should remark that some of these questions could be quite difficult. In fine-grained
complexity, there are many examples of basic problems that still do not have tight conditional
lower bounds (to mention one well-known geometric example, Künnemann’s recent FOCS’22
paper [36] has finally obtained a near-optimal conditional lower bound for Klee’s measure
problem in R3, but tight lower bounds in dimension 4 and higher are still not known for
non-combinatorial algorithms). Still, we hope that our work would inspire more progress in
both upper and lower bounds for this rich class of problems.

References
1 Amir Abboud, Karl Bringmann, Seri Khoury, and Or Zamir. Hardness of approximation

in P via short cycle removal: Cycle detection, distance oracles, and beyond. In Proc. 54th
Annual ACM Symposium on Theory of Computing (STOC), pages 1487–1500, 2022. doi:
10.1145/3519935.3520066.

2 Pankaj K. Agarwal, Rinat Ben Avraham, and Micha Sharir. The 2-center problem in three
dimensions. Comput. Geom., 46(6):734–746, 2013. Preliminary version in SoCG’10. doi:
10.1016/j.comgeo.2012.11.005.

3 Pankaj K. Agarwal, Alon Efrat, and Micha Sharir. Vertical decomposition of shallow levels
in 3-dimensional arrangements and its applications. SIAM J. Comput., 29(3):912–953, 1999.
doi:10.1137/S0097539795295936.

4 Pankaj K. Agarwal and Jeff Erickson. Geometric range searching and its relatives. In Advances
in Discrete and Computational Geometry, volume 223 of Contemporary Mathematics, pages
1–56. AMS Press, 1999. URL: http://jeffe.cs.illinois.edu/pubs/survey.html.

5 Pankaj K. Agarwal and Cecilia Magdalena Procopiuc. Exact and approximation algorithms
for clustering. Algorithmica, 33(2):201–226, 2002. doi:10.1007/s00453-001-0110-y.

6 Pankaj K Agarwal, Micha Sharir, and Emo Welzl. The discrete 2-center problem. Discrete &
Computational Geometry, 20(3):287–305, 1998. Preliminary version in SoCG’97.

7 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.
doi:10.1145/210332.210337.

https://doi.org/10.1145/3519935.3520066
https://doi.org/10.1145/3519935.3520066
https://doi.org/10.1016/j.comgeo.2012.11.005
https://doi.org/10.1016/j.comgeo.2012.11.005
https://doi.org/10.1137/S0097539795295936
http://jeffe.cs.illinois.edu/pubs/survey.html
https://doi.org/10.1007/s00453-001-0110-y
https://doi.org/10.1145/210332.210337

T. M. Chan, Q. He, and Y. Yu 34:17

8 Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given length cycles.
Algorithmica, 17(3):209–223, 1997. doi:10.1007/BF02523189.

9 Ashwinkumar Badanidiyuru, Robert Kleinberg, and Hooyeon Lee. Approximating low-
dimensional coverage problems. In Proc. 28th ACM Symposium on Computational Geometry
(SoCG), pages 161–170, 2012. doi:10.1145/2261250.2261274.

10 Sergei Bespamyatnikh and David G. Kirkpatrick. Rectilinear 2-center problems. In Proc. 11th
Canadian Conference on Computational Geometry (CCCG), 1999. URL: http://www.cccg.
ca/proceedings/1999/fp55.pdf.

11 Sergei Bespamyatnikh and Michael Segal. Rectilinear static and dynamic discrete 2-center
problems. In Proc. 6th Workshop on Algorithms and Data Structures (WADS), pages 276–287,
1999. doi:10.1007/3-540-48447-7_28.

12 Karl Bringmann, Sándor Kisfaludi-Bak, Marvin Künnemann, André Nusser, and Zahra
Parsaeian. Towards sub-quadratic diameter computation in geometric intersection graphs. In
Proc. 38th International Symposium on Computational Geometry (SoCG), pages 21:1–21:16,
2022. doi:10.4230/LIPIcs.SoCG.2022.21.

13 Karl Bringmann, Sándor Kisfaludi-Bak, Michal Pilipczuk, and Erik Jan van Leeuwen. On
geometric set cover for orthants. In Proc. 27th Annual European Symposium on Algorithms
(ESA), pages 26:1–26:18, 2019. doi:10.4230/LIPIcs.ESA.2019.26.

14 Sergio Cabello, Panos Giannopoulos, Christian Knauer, Dániel Marx, and Günter Rote.
Geometric clustering: Fixed-parameter tractability and lower bounds with respect to the
dimension. ACM Trans. Algorithms, 7(4):43:1–43:27, 2011. Preliminary version in SODA’08.
doi:10.1145/2000807.2000811.

15 Timothy M. Chan. Geometric applications of a randomized optimization technique. Discret.
Comput. Geom., 22(4):547–567, 1999. doi:10.1007/PL00009478.

16 Timothy M. Chan. More planar two-center algorithms. Computational Geometry, 13(3):189–
198, 1999.

17 Timothy M. Chan. Finding triangles and other small subgraphs in geometric intersection
graphs. In Proc. 34th ACM-SIAM Symposium on Discrete Algorithms (SODA), 2023. To
appear. URL: https://arxiv.org/abs/2211.05345.

18 Timothy M. Chan and Qizheng He. Faster approximation algorithms for geometric set cover.
In Proc. 36th International Symposium on Computational Geometry (SoCG), pages 27:1–27:14,
2020. doi:10.4230/LIPIcs.SoCG.2020.27.

19 Timothy M. Chan, Qizheng He, and Yuancheng Yu. On the fine-grained complexity of small-size
geometric set cover and discrete k-center for small k. arXiv preprint, 2023. arXiv:2305.01892.

20 Timothy M. Chan, Virginia Vassilevska Williams, and Yinzhan Xu. Hardness for triangle
problems under even more believable hypotheses: Reductions from Real APSP, Real 3SUM,
and OV. In Proc. 54th ACM Symposium on Theory of Computing (STOC), pages 1501–1514,
2022. doi:10.1145/3519935.3520032.

21 Bernard Chazelle and Jirı Matoušek. On linear-time deterministic algorithms for optimization
problems in fixed dimension. Journal of Algorithms, 21(3):579–597, 1996.

22 Rajesh Chitnis and Nitin Saurabh. Tight lower bounds for approximate & exact k-center
in Rd. In Proc. 38th International Symposium on Computational Geometry (SoCG), pages
28:1–28:15, 2022. doi:10.4230/LIPIcs.SoCG.2022.28.

23 Jongmin Choi and Hee-Kap Ahn. Efficient planar two-center algorithms. Comput. Geom.,
97:101768, 2021. doi:10.1016/j.comgeo.2021.101768.

24 Kenneth L. Clarkson. Las Vegas algorithms for linear and integer programming when the
dimension is small. Journal of the ACM, 42(2):488–499, 1995.

25 Don Coppersmith. Rapid multiplication of rectangular matrices. SIAM J. Comput., 11(3):467–
471, 1982. doi:10.1137/0211037.

26 Mark de Berg, Otfried Cheong, Marc J. van Kreveld, and Mark H. Overmars. Computational
Geometry: Algorithms and Applications. Springer, 3rd edition, 2008. URL: https://www.
worldcat.org/oclc/227584184.

ICALP 2023

https://doi.org/10.1007/BF02523189
https://doi.org/10.1145/2261250.2261274
http://www.cccg.ca/proceedings/1999/fp55.pdf
http://www.cccg.ca/proceedings/1999/fp55.pdf
https://doi.org/10.1007/3-540-48447-7_28
https://doi.org/10.4230/LIPIcs.SoCG.2022.21
https://doi.org/10.4230/LIPIcs.ESA.2019.26
https://doi.org/10.1145/2000807.2000811
https://doi.org/10.1007/PL00009478
https://arxiv.org/abs/2211.05345
https://doi.org/10.4230/LIPIcs.SoCG.2020.27
https://arxiv.org/abs/2305.01892
https://doi.org/10.1145/3519935.3520032
https://doi.org/10.4230/LIPIcs.SoCG.2022.28
https://doi.org/10.1016/j.comgeo.2021.101768
https://doi.org/10.1137/0211037
https://www.worldcat.org/oclc/227584184
https://www.worldcat.org/oclc/227584184

34:18 Small-Size Geometric Set Cover and Discrete k-Center for Small k

27 Martin E. Dyer. On a multidimensional search technique and its application to the Euclidean
one-centre problem. SIAM Journal on Computing, 15(3):725–738, 1986.

28 Friedrich Eisenbrand and Fabrizio Grandoni. On the complexity of fixed parameter clique and
dominating set. Theor. Comput. Sci., 326(1-3):57–67, 2004. doi:10.1016/j.tcs.2004.05.009.

29 David Eppstein. Faster construction of planar two-centers. In Proc. 8th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 131–138, 1997. URL: http://dl.acm.org/
citation.cfm?id=314161.314198.

30 Greg N. Frederickson and Donald B. Johnson. The complexity of selection and ranking
in X + Y and matrices with sorted columns. J. Comput. Syst. Sci., 24(2):197–208, 1982.
doi:10.1016/0022-0000(82)90048-4.

31 R. Z. Hwang, R. C. Chang, and Richard C. T. Lee. The searching over separators strategy
to solve some NP-hard problems in subexponential time. Algorithmica, 9(4):398–423, 1993.
doi:10.1007/BF01228511.

32 R. Z. Hwang, Richard C. T. Lee, and R. C. Chang. The slab dividing approach to solve the
Euclidean p-center problem. Algorithmica, 9(1):1–22, 1993. doi:10.1007/BF01185335.

33 Ce Jin and Yinzhan Xu. Removing additive structure in 3SUM-based reductions. CoRR,
abs/2211.07048, 2022. doi:10.48550/arXiv.2211.07048.

34 Matthew J. Katz, Klara Kedem, and Michael Segal. Discrete rectilinear 2-center problems.
Comput. Geom., 15(4):203–214, 2000. doi:10.1016/S0925-7721(99)00052-8.

35 Matthew J. Katz and Frank Nielsen. On piercing sets of objects. In Proc. 12th Annual
Symposium on Computational Geometry (SoCG), pages 113–121, 1996. doi:10.1145/237218.
237253.

36 Marvin Künnemann. A tight (non-combinatorial) conditional lower bound for Klee’s measure
problem in 3D. In Proc. 63rd IEEE Symposium on Foundations of Computer Science (FOCS),
pages 555–566, 2022. doi:10.1109/FOCS54457.2022.00059.

37 Andrea Lincoln, Virginia Vassilevska Williams, and R. Ryan Williams. Tight hardness for
shortest cycles and paths in sparse graphs. In Proc. 29th ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1236–1252, 2018. doi:10.1137/1.9781611975031.80.

38 Dániel Marx. Efficient approximation schemes for geometric problems? In Proc. 13th Annual
European Symposium of Algorithms (ESA), pages 448–459, 2005. doi:10.1007/11561071_41.

39 Dániel Marx and Michal Pilipczuk. Optimal parameterized algorithms for planar facility
location problems using voronoi diagrams. In Proc. 23rd Annual European Symposium on
Algorithms (ESA), pages 865–877, 2015. doi:10.1007/978-3-662-48350-3_72.

40 Jirí Matoušek. Reporting points in halfspaces. Comput. Geom., 2:169–186, 1992. doi:
10.1016/0925-7721(92)90006-E.

41 Nimrod Megiddo. Linear-time algorithms for linear programming in R3 and related problems.
SIAM Journal on Computing, 12(4):759–776, 1983.

42 Doron Nussbaum. Rectilinear p-piercing problems. In Proc. International Symposium on
Symbolic and Algebraic Computation (ISSAC), pages 316–323, 1997. doi:10.1145/258726.
258828.

43 Mihai Pǎtraşcu. Towards polynomial lower bounds for dynamic problems. In Proc. 42nd ACM
Symposium on Theory of Computing (STOC), pages 603–610, 2010. doi:10.1145/1806689.
1806772.

44 Micha Sharir. A near-linear algorithm for the planar 2-center problem. Discrete & Computa-
tional Geometry, 18(2):125–134, 1997. Preliminary version in SoCG’96.

45 Micha Sharir and Emo Welzl. Rectilinear and polygonal p-piercing and p-center problems.
In Proc. 12th Annual Symposium on Computational Geometry (SoCG), pages 122–132, 1996.
doi:10.1145/237218.237255.

46 Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity.
In Proceedings of the ICM, volume 3, pages 3431–3472. World Scientific, 2018. URL: https:
//people.csail.mit.edu/virgi/eccentri.pdf.

https://doi.org/10.1016/j.tcs.2004.05.009
http://dl.acm.org/citation.cfm?id=314161.314198
http://dl.acm.org/citation.cfm?id=314161.314198
https://doi.org/10.1016/0022-0000(82)90048-4
https://doi.org/10.1007/BF01228511
https://doi.org/10.1007/BF01185335
https://doi.org/10.48550/arXiv.2211.07048
https://doi.org/10.1016/S0925-7721(99)00052-8
https://doi.org/10.1145/237218.237253
https://doi.org/10.1145/237218.237253
https://doi.org/10.1109/FOCS54457.2022.00059
https://doi.org/10.1137/1.9781611975031.80
https://doi.org/10.1007/11561071_41
https://doi.org/10.1007/978-3-662-48350-3_72
https://doi.org/10.1016/0925-7721(92)90006-E
https://doi.org/10.1016/0925-7721(92)90006-E
https://doi.org/10.1145/258726.258828
https://doi.org/10.1145/258726.258828
https://doi.org/10.1145/1806689.1806772
https://doi.org/10.1145/1806689.1806772
https://doi.org/10.1145/237218.237255
https://people.csail.mit.edu/virgi/eccentri.pdf
https://people.csail.mit.edu/virgi/eccentri.pdf

T. M. Chan, Q. He, and Y. Yu 34:19

47 Virginia Vassilevska Williams and R. Ryan Williams. Subcubic equivalences between path,
matrix, and triangle problems. J. ACM, 65(5):27:1–27:38, 2018. Preliminary version in
FOCS’10. doi:10.1145/3186893.

48 Virginia Vassilevska Williams and Yinzhan Xu. Monochromatic triangles, triangle listing and
APSP. In Proc. 61st IEEE Symposium on Foundations of Computer Science (FOCS), pages
786–797, 2020. doi:10.1109/FOCS46700.2020.00078.

49 Haitao Wang. On the planar two-center problem and circular hulls. In Proc. 36th International
Symposium on Computational Geometry (SoCG), pages 68:1–68:14, 2020. doi:10.4230/
LIPIcs.SoCG.2020.68.

50 Emo Welzl. Smallest enclosing disks (balls and ellipsoids). In New Results and New Trends in
Computer Science, pages 359–370. Springer, 1991.

ICALP 2023

https://doi.org/10.1145/3186893
https://doi.org/10.1109/FOCS46700.2020.00078
https://doi.org/10.42 30/LIPIcs.SoCG.2020.68
https://doi.org/10.42 30/LIPIcs.SoCG.2020.68

Ortho-Radial Drawing in Near-Linear Time
Yi-Jun Chang # Ñ

National University of Singapore, Singapore

Abstract
An orthogonal drawing is an embedding of a plane graph into a grid. In a seminal work of Tamassia
(SIAM Journal on Computing 1987), a simple combinatorial characterization of angle assignments
that can be realized as bend-free orthogonal drawings was established, thereby allowing an orthogonal
drawing to be described combinatorially by listing the angles of all corners. The characterization
reduces the need to consider certain geometric aspects, such as edge lengths and vertex coordinates,
and simplifies the task of graph drawing algorithm design.

Barth, Niedermann, Rutter, and Wolf (SoCG 2017) established an analogous combinatorial
characterization for ortho-radial drawings, which are a generalization of orthogonal drawings to
cylindrical grids. The proof of the characterization is existential and does not result in an efficient
algorithm. Niedermann, Rutter, and Wolf (SoCG 2019) later addressed this issue by developing
quadratic-time algorithms for both testing the realizability of a given angle assignment as an
ortho-radial drawing without bends and constructing such a drawing.

In this paper, we improve the time complexity of these tasks to near-linear time. We establish a
new characterization for ortho-radial drawings based on the concept of a good sequence. Using the
new characterization, we design a simple greedy algorithm for constructing ortho-radial drawings.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Graph drawing, ortho-radial drawing, topology-shape-metric framework

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.35

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2305.00425

1 Introduction

A plane graph is a planar graph G = (V, E) with a combinatorial embedding E . The
combinatorial embedding E fixes a circular ordering E(v) of the edges incident to each vertex
v ∈ V , specifying the counter-clockwise ordering of these edges surrounding v in the drawing.
An orthogonal drawing of a plane graph is a drawing of G such that each edge is drawn as a
sequence of horizontal and vertical line segments. For example, see Figure 1 for an orthogonal
drawing of K4 with 4 bends. Alternatively, an orthogonal drawing of G can be seen as an
embedding of G into a grid such that the edges of G correspond to internally disjoint paths in
the grid. Orthogonal drawing is one of the most classical drawing styles studied in the field of
graph drawing, and it has a wide range of applications, including VLSI circuit design [7, 40],
architectural floor plan design [33], and network visualization [5, 22, 26, 30].

The topology-shape-metric framework. One of the most fundamental quality measures of
orthogonal drawings is the number of bends. The bend minimization problem, which asks for
an orthogonal drawing with the smallest number of bends, has been extensively studied over
the past 40 years [14, 16, 17, 38, 39, 25]. In a seminal work, Tamassia [39] introduced the
topology-shape-metric framework to tackle the bend minimization problem. Tamassia showed
that an orthogonal drawing can be described combinatorially by an orthogonal representation,
which consists of an assignment of an angle of degree in {90◦, 180◦, 270◦, 360◦} to each corner
and a designation of the outer face. Specifically, Tamassia [39] showed that an orthogonal
representation can be realized as an orthogonal drawing with zero bends if and only if the
following two conditions are satisfied:

EA
T
C
S

© Yi-Jun Chang;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 35; pp. 35:1–35:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cyijun@nus.edu.sg
https://sites.google.com/a/umich.edu/yi-jun-chang/
https://orcid.org/0000-0002-0109-2432
https://doi.org/10.4230/LIPIcs.ICALP.2023.35
https://arxiv.org/abs/2305.00425
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

35:2 Ortho-Radial Drawing in Near-Linear Time

Figure 1 A grid, an orthogonal drawing, a cylindrical grid, and an ortho-radial drawing.

(O1) The sum of angles around each vertex is 360◦.
(O2) The sum of angles around each face with k corners is (k + 2) · 180◦ for the outer face

and is (k − 2) · 180◦ for the other faces.
An orthogonal representation is valid if it satisfies the above conditions (O1) and (O2).
Given a valid orthogonal representation, an orthogonal drawing realizing the orthogonal
representation can be computed in linear time [29, 39]. This result (shape → metric) allows us
to reduce the task of finding a bend-minimized orthogonal drawing (topology → metric) to the
conceptually much simpler task of finding a bend-minimized valid orthogonal representation
(topology → shape). By focusing on orthogonal representations, we may neglect certain
geometric aspects of graph drawing such as edge lengths and vertex coordinates, making
the task of algorithm design easier. In particular, given a fixed combinatorial embedding,
the task of finding a bend-minimized orthogonal representation can be easily reduced to the
computation of a min-cost flow [39].

1.1 Ortho-radial drawing
Ortho-radial drawing is a natural generalization of orthogonal drawing to cylindrical grids,
whose grid lines consist of concentric circles and straight lines emanating from the center of
the circles. Formally, an ortho-radial drawing is defined as a planar embedding where each
edge is drawn as a sequence of lines that are either a circular arc of some circle centered on
the origin or a line segment of some straight line passing through the origin. We do not allow
a vertex to be drawn on the origin, and we do not allow an edge to pass through the origin
in the drawing. For example, see Figure 1 for an ortho-radial drawing of K4 with two bends.

The study of ortho-radial drawing is motivated by its applications [4, 23, 42] in network
visualization [41]. For example, ortho-radial drawing is naturally suitable for visualizing
metro systems with radial routes and circle routes.

There are three types of faces in an ortho-radial drawing. The face that contains an
unbounded region is called the outer face. The face that contains the origin is called the
central face. The remaining faces are called regular faces. It is possible that the outer face
and the central face are the same face.

Given a plane graph, an ortho-radial representation is defined as an assignment of an
angle to each corner together with a designation of the central face and the outer face. Barth,
Niedermann, Rutter, and Wolf [2] showed that an ortho-radial representation can be realized
as an ortho-radial drawing with zero bends if the following three conditions are satisfied:
(R1) The sum of angles around each vertex is 360◦.
(R2) The sum s of angles around each face F with k corners satisfies the following.

s = (k − 2) · 180◦ if F is a regular face.
s = k · 180◦ if F is either the central face or the outer face, but not both.
s = (k + 2) · 180◦ if F is both the central face and the outer face.

(R3) There exists a choice of the reference edge e⋆ such that the ortho-radial representation
does not contain a strictly monotone cycle.

Y.-J. Chang 35:3

Intuitively, this shows that the ortho-radial representations that can be realized as ortho-
radial drawings with zero bends can be characterized similarly by examining the angle sum
around each vertex and each face, with the additional requirement that the representation
does not have a strictly monotone cycle.

The definition of a strictly monotone cycle is technical and depends on the choice of the
reference edge e⋆, so we defer its formal definition to a subsequent section. The reference
edge e⋆ is an edge in the contour of the outer face and is required to lie on the outermost
circular arc used in an ortho-radial drawing. Informally, a strictly monotone cycle has a
structure that is like a loop of ascending stairs or a loop of descending stairs, so a strictly
monotone cycle cannot be drawn. The necessity of (R1)–(R3) is intuitive to see. The more
challenging and interesting part of the proof in [2] is to show that these three conditions are
actually sufficient.

1.2 Previous methods
The proof by Barth, Niedermann, Rutter, and Wolf [2] that conditions (R1)–(R3) are
necessary and sufficient is only existential in that it does not yield efficient algorithms to
check the validity of a given ortho-radial representation and to construct an ortho-radial
drawing without bends realizing a given ortho-radial representation.

Checking (R1) and (R2) can be done in linear time in a straightforward manner. The
difficult part is to design an efficient algorithm to check (R3). The most naive approach of
examining all cycles costs exponential time. The subsequent work by Niedermann, Rutter,
and Wolf [35] addressed this gap by showing an O(n2)-time algorithm to decide whether a
strictly monotone cycle exists for a given reference edge e⋆, where n is the number of vertices
in the input graph. They also show an O(n2)-time algorithm to construct an ortho-radial
drawing without bends, for any given ortho-radial representation with a reference edge e⋆

that does not lead to a strictly monotone cycle.

Rectangulation. The idea behind the proof of Barth, Niedermann, Rutter, and Wolf [2] is a
reduction to the easier case where each regular face is rectangular. For this case, they provided
a proof that conditions (R1)–(R3) are necessary and sufficient, and they also provided an
efficient drawing algorithm via a reduction to a flow computation given that (R1)–(R3) are
satisfied. For any given ortho-radial representation with n vertices, it is possible to add
O(n) additional edges to turn it into an ortho-radial representation where each regular face
is rectangular. A major difficulty in the proof of [2] is that they need to ensure that the
addition of the edges preserves not only (R1) and (R2) but also (R3). The lack of an efficient
algorithm to check whether (R3) is satisfied is precisely the reason that the proof of [2] does
not immediately lead to a polynomial-time algorithm.

Quadratic-time algorithms. The above issue was addressed in a subsequent work by
Niedermann, Rutter, and Wolf [35]. They provided an O(n2)-time algorithm to find a strictly
monotone cycle if one exists, given a fixed choice of the reference edge e⋆. This immediately
leads to an O(n2)-time algorithm to decide whether a given ortho-radial representation,
with a fixed reference edge e⋆, admits an ortho-radial drawing. Moreover, combining this
O(n2)-time algorithm with the proof of [2] discussed above yields an O(n4)-time drawing
algorithm. The time complexity is due to the fact that O(n) edge additions are needed for
rectangulation, for each edge addition there are O(n) candidate reference edges to consider,
and to test the feasibility of each candidate edge they need to run the O(n2)-time algorithm
to test whether the edge addition creates a strictly monotone cycle.

ICALP 2023

35:4 Ortho-Radial Drawing in Near-Linear Time

The key idea behind the O(n2)-time algorithm for finding a strictly monotone cycle is a
structural theorem that if there is a strictly monotone cycle, then there is a unique outermost
one which can be found by a left-first DFS starting from any edge in the outermost strictly
monotone cycle. The DFS algorithm costs O(n) time. Guessing an edge in the outermost
monotone cycle adds an O(n) factor overhead in the time complexity.

Using further structural insights on the augmentation process of [2], the time complexity
of the above O(n4)-time drawing algorithm can be lowered to O(n2) [35]. The reason for
the quadratic time complexity is that for each of the O(n) edge additions, a left-first DFS
starting from the newly added edge is needed to test whether the addition of this edge creates
a strictly monotone cycle.

1.3 Our new method
For both validity testing (checking whether a given angle assignment induces a strictly
monotone cycle) and drawing (finding a geometric embedding realizing a given ortho-radial
representation), the two algorithms in [35] naturally cost O(n2) time, as they both require
performing left-first DFS O(n) times.

In this paper, we present a new method for ortho-radial drawing that is not based on
rectangulation and left-first DFS. We design a simple O(n log n)-time greedy algorithm
that simultaneously accomplishes both validity testing and drawing, for the case where the
reference edge e⋆ is fixed. If a reference edge e⋆ is not fixed, our algorithm costs O(n log2 n)
time, where the extra O(log n) factor is due to a binary search over the set of candidates
for the reference edge. At a high level, our algorithm tries to construct an ortho-radial
drawing in a piece-by-piece manner. If at some point no progress can be made in that the
current partial drawing cannot be further extended, then the algorithm can identify a strictly
monotone cycle to certify the non-existence of a drawing.

Good sequences. The core of our method is the notion of a good sequence, which we briefly
explain below. An ortho-radial representation satisfying (R1) and (R2), with a fixed reference
edge e⋆, determines whether an edge e is a vertical edge (i.e., e is drawn as a segment of a
straight line passing through the origin) or horizontal (i.e., e is drawn as a circular arc of
some circle centered on the origin). Let Eh denote the set of horizontal edges, oriented in
the clockwise direction, and let Sh denote the set of connected components induced by Eh.
Note that each component S ∈ Sh is either a path or a cycle. The exact definition of a good
sequence is technical, so we defer it to a subsequent section. Intuitively, a good sequence
is an ordering of Sh = (S1, S2, . . . , Sk), where k = |Sh|, that allows us to design a simple
linear-time greedy algorithm constructing an ortho-radial drawing in such a way that S1 is
drawn on the circle r = k, S2 is drawn on the circle r = k − 1, and so on.

In general, a good sequence might not exist, even if the given ortho-radial representation
admits an ortho-radial drawing. In such a case, we show that we may add virtual edges to
transform the ortho-radial representation into one where a good sequence exists. We will
design a greedy algorithm for adding virtual edges and constructing a good sequence. In
each step, we add virtual vertical edges to the current graph and append a new element
S ∈ Sh to the end of our sequence. In case we are unable to find any suitable S ∈ Sh to
extend the sequence, we can extract a strictly monotone cycle to certify the non-existence of
an ortho-radial drawing. A major difference between our method and the approach based on
rectangulation in [2, 35] is that the cost for adding a new virtual edge is only O(log n) in our
algorithm. As we will later see, in our algorithm, in order to identify new virtual edges to be
added, we only need to do some simple local checks such as calculating the sum of angles,
and there is no need to do a full left-first DFS to test whether a newly added edge creates a
strictly monotone cycle.

Y.-J. Chang 35:5

Open questions. While we show a nearly linear-time algorithm for the (shape → metric)-step
(i.e., from ortho-radial representations to ortho-radial drawings), essentially nothing is known
about the (topology → shape)-step (from planar graphs to ortho-radial representations).
While the task of finding a bend-minimized orthogonal representation of a given plane graph
can be easily reduced to the computation of a minimum cost flow [39], such a reduction does
not apply to ortho-radial representations, as network flows do not work well with the notion
of strictly monotone cycles. It remains an open question as to whether a bend-minimized
ortho-radial representation of a plane graph can be computed in polynomial time.

1.4 Related work
The bend minimization problem for orthogonal drawings for planar graphs of maximum
degree 4 without a fixed combinatorial embedding is NP-hard [24, 25]. If the combinatorial
embedding is fixed, the topology-shape-metric framework of Tamassia [39] reduces the bend
minimization problem to a min-cost flow computation. The algorithm of Tamassia [39]
costs O(n2 log n) time. The time complexity was later improved to O

(
n7/4√

log n
)

[25] and
then to O

(
n3/2 log n

)
[14]. A recent O(n poly log n)-time planar min-cost flow algorithm [20]

implies that the bend minimization problem can be solved in O(n poly log n) time if the
combinatorial embedding is fixed.

If the combinatorial embedding is not fixed, the NP-hardness result of [24, 25] can be
bypassed if the first bend on each edge does not incur any cost [9] or if we restrict ourselves
to some special class of planar graphs. In particular, for planar graphs with maximum degree
3, it was shown that the bend-minimization can be solved in polynomial time [16]. After a
series of improvements [13, 17, 19], we now know that a bend-minimized orthogonal drawing
of a planar graph with maximum degree 3 can be computed in O(n) time [17].

The topology-shape-metric framework [39] is not only useful in bend minimization, but
it is also, implicitly or explicitly, behind the graph drawing algorithms for essentially all
computational problems in orthogonal drawing and its variants, such as morphing orthogonal
drawings [8], allowing vertices with degree greater than 4 [15, 31, 36], restricting the direction
of edges [18, 21], drawing cluster graphs [10], and drawing dynamic graphs [11].

The study of ortho-radial drawing by Barth, Niedermann, Rutter, and Wolf [2, 35]
extended the topology-shape-metric framework [39] to accommodate cylindrical grids. Before
these works [2, 35], a combinatorial characterization of drawable ortho-radial representation
is only known for paths, cycles, and theta graphs [28], and for the special case where the
graph is 3-regular and each regular face in the ortho-radial representation is a rectangle [27].

1.5 Organization
In Section 2, we discuss the basic graph terminology used in this paper, review some results
in previous works [2, 35], and state our main theorems. In Section 3, we give a technical
overview of our proof. We conclude in Section 4 with discussions on possible future directions.

2 Preliminaries

Throughout the paper, let G = (V, E) be a planar graph of maximum degree at most 4 with a
fixed combinatorial embedding E in the sense that, for each vertex v ∈ V , a circular ordering
E(v) of its incident edges is given to specify the counter-clockwise ordering of these edges
surrounding v in a planar embedding. As we will discuss in the full version of the paper, we
may assume that the input graph G is simple and biconnected. In this section, we introduce
some basic graph terminology and review some results from the paper [3], which is a merge
of the two papers [2, 35] on ortho-radial drawing.

ICALP 2023

35:6 Ortho-Radial Drawing in Near-Linear Time

𝑣𝑣5

𝐹𝐹1

𝑣𝑣9

𝑣𝑣8

𝑣𝑣10𝑣𝑣2

𝑣𝑣3 𝑣𝑣6

𝑣𝑣7𝑣𝑣4

𝑣𝑣11𝑣𝑣1

𝐹𝐹2𝐹𝐹3

Figure 2 A non-crossing-free path, a crossing-free path, and a facial cycle.

Paths and cycles. Unless otherwise stated, all edges, paths, and cycles are assumed to be
directed. We write e, P , and C to denote the reversal of an edge e, a path P , and a cycle C,
respectively. We allow paths and cycles to have repeated vertices and edges. We say that a
path or a cycle is simple if it does not have repeated vertices. Following [3], we say that a
path or a cycle is crossing-free if it satisfies the following conditions:

The path or the cycle does not contain repeated undirected edges.
For each vertex v that appears multiple times in the path or the cycle, the ordering of
the edges incident to v appearing in the path or the cycle respects the ordering of E(v)
or its reversal.

Although a crossing-free path or a crossing-free cycle might touch a vertex multiple times,
the path or the cycle never crosses itself. For any face F , we define the facial cycle CF to be
the clockwise traversal of its contour. In general, a facial cycle might not be a simple cycle
as it can contain repeated edges. If we assume that G is biconnected, then each facial cycle
of G must be a simple crossing-free cycle. See Figure 2 for an illustration of different types
of paths and cycles. The path (v11, v9, v5, v1, v2, v10, v9, v8) is not crossing-free as the path
crosses itself at v9. The path (v8, v9, v5, v1, v2, v10, v9, v11) is crossing-free since it respects
the ordering E(v) for v = v9. The cycle C = (v1, v5, v6, v3, v4, v7, v6, v5, v9, v10, v2) is the
facial cycle of F2. The cycle C is not a crossing-free cycle as it traverses the undirected edge
{v5, v6} twice, from opposite directions.

Ortho-radial representations and drawings. A corner is an ordered pair of undirected edges
(e1, e2) incident to v such that e2 immediately follows e1 in the counter-clockwise circular
ordering E(v). Given a planar graph G = (V, E) with a fixed combinatorial embedding E , an
ortho-radial representation R = (ϕ, Fc, Fo) of G is defined by the following components:

An assignment ϕ of an angle a ∈ {90◦, 180◦, 270◦} to each corner of G.
A designation of a face of G as the central face Fc.
A designation of a face of G as the outer face Fo.

For the special case where v has only one incident edge e, we view (e, e) as a 360◦ corner.
This case does not occur if we consider biconnected graphs.

Y.-J. Chang 35:7

𝑣𝑣5

𝑣𝑣4

𝑣𝑣3

𝑣𝑣2

𝑣𝑣1

𝑣𝑣6

𝑣𝑣7

𝑣𝑣8

𝑣𝑣9

𝑣𝑣10 𝑣𝑣11

𝑣𝑣14 𝑣𝑣13

𝑣𝑣12

𝑣𝑣10

𝑣𝑣14

𝑣𝑣13

𝑣𝑣11

𝑣𝑣12

𝑣𝑣1𝑣𝑣2
𝑣𝑣3

𝑣𝑣4
𝑣𝑣5

𝑣𝑣6
𝑣𝑣7

𝑣𝑣8
𝑣𝑣9

𝑒𝑒⋆

𝐹𝐹𝑜𝑜

𝐹𝐹𝑐𝑐

𝑒𝑒⋆

𝑒𝑒

𝑃𝑃

𝑣𝑣1

𝑣𝑣2

𝑣𝑣3

𝑣𝑣4

𝑢𝑢1

𝑢𝑢2

𝑢𝑢3
𝑢𝑢4

𝑒𝑒⋆ ∘ 𝑃𝑃 ∘ 𝑒𝑒 𝑒𝑒⋆ ∘ 𝑒𝑒⋆ ∘ 𝑃𝑃 ∘ 𝑒𝑒

𝑣𝑣5

𝑒𝑒⋆

Figure 3 A drawing of an ortho-radial representation with a reference edge, where the small blue
circles in the left figure denote the angles in the representation that are realized in the right figure.

An ortho-radial representation R = (ϕ, Fc, Fo) is drawable if the representation can be
realized as an ortho-radial drawing of G with zero bends such that the angle assignment ϕ is
satisfied, the central face Fc contains the origin, the outer face Fo contains an unbounded
region.

Recall that, by the definition of ortho-radial drawing, in an ortho-radial drawing with
zero bends, each edge is either drawn as a line segment of a straight line passing the origin
or drawn as a circular arc of a circle centered at the origin. We also consider the setting
where the reference edge e⋆ is fixed. In this case, there is an additional requirement that the
reference edge e⋆ has to lie on the outermost circular arc used in the drawing and follows the
clockwise direction. If such a drawing exists, we say that (R, e⋆) is drawable. See Figure 3
for an example of a drawing of an ortho-radial representation R with the reference edge
e⋆ = (v14, v5). In the figure, we use ◦, ◦ ◦, and ◦ ◦ ◦ to indicate a 90◦, a 180◦, and a 270◦
angle assigned to a corner, respectively.

It was shown in [3] that (R, e⋆) is drawable if and only if the ortho-radial representation
R satisfies (R1) and (R2) and the reference edge e⋆ does not lead to a strictly monotone
cycle. Since it is straightforward to test whether (R1) and (R2) are satisfied in linear time,
from now on, unless otherwise stated, we assume that (R1) and (R2) are satisfied for the
ortho-radial representation R under consideration.

Combinatorial rotations. Consider a 2-length path P = (u, v, w) that passes through v

such that u ̸= w. Given the angle assignment ϕ, P is either a 90◦ left turn, a straight line,
or a 90◦ right turn. We define the combinatorial rotation of P as follows.

rotation(P) =


−1, P is a 90◦ left turn,
0, P is a straight line,
1, P is a 90◦ right turn.

More formally, let S = (e1, . . . , ek) be the contiguous subsequence of edges starting
from e1 = {u, v} and ending at ek = {v, w} in the circular ordering E(v) of the undir-
ected edges incident to v. Then

∑k−1
j=1 ϕ(ej , ej+1) − 180◦ equals the degree of the turn

of P at the intermediate vertex v, so the combinatorial rotation of P is rotation(P) =(∑k−1
j=1 ϕ(ej , ej+1) − 180◦

)
/ 90◦.

ICALP 2023

35:8 Ortho-Radial Drawing in Near-Linear Time

For the special case where u = w, the rotation of P = (u, v, u) can be a 180◦ left turn,
in which case rotation(P) = −2, or a 180◦ right turn, in which case rotation(P) = 2. For
example, consider the directed edge e = (u, v) where P first goes from u to v along the right
side of e and then goes from v back to u along the left side of e. Then P is considered a
180◦ left turn, and similarly, P is considered a 180◦ right turn. In particular, if P = (u, v, u)
is a subpath of a facial cycle C, then P is always considered as a 180◦ left turn, and so
rotation(P) = −2.

For a crossing-free path P of length more than 2, we define rotation(P) as the sum of
the combinatorial rotations of all 2-length subpaths of P . Similarly, for a cycle C of length
more than 2, we define rotation(C) as the sum of the combinatorial rotations of all 2-length
subpaths of C. Same as [2, 35], based on this notion, we may restate condition (R2).

(R2′) For each face F , the combinatorial rotation of its facial cycle CF satisfies the following:

rotation(CF) =


4, F is a regular face,
0, F is either the central face or the outer face, but not both,
−4, F is both the central face and the outer face.

For example, consider the ortho-radial representation shown in Figure 3. The path
P = (v10, v11, v12, v13, v14) has rotation(P) = −1 since it makes two 90◦ left turns and one
90◦ right turn. The cycle C = (v10, v11, v12, v13, v14) is the facial cycle of the central face,
and it has rotation(C) = 0.

We briefly explain the equivalence between the new and the old definitions of (R2). If F

is a regular face with k corners, then in the original definition of (R2), it is required that the
sum s of angles around F is s = (k − 2) · 180◦. Since the facial cycle CF traverses the contour
of F in the clockwise direction, the number of 90◦ right turns minus the number of 90◦ left
turns must be exactly 4. Therefore, s = (k − 2) · 180◦ is the same as rotation(CF) = 4, as
each 90◦ right turn contributes 1 and each 90◦ left turn contributes −1 in the calculation of
rotation(CF).

Interior and exterior regions of a cycle. Any cycle C partitions the remaining graph into
two parts. If C is a facial cycle, then one part is empty. The direction of C is clockwise with
respect to one of the two parts. The part with respect to which C is clockwise, together
with C itself, is called the interior of C. Similarly, the part with respect to which C is
counter-clockwise, together with C itself, is called the exterior of C. In particular, if a vertex
v lies in the interior of C, then v must be in the exterior of C.

This above definition is consistent with the notion of facial cycle in that any face F is in
the interior of its facial cycle CF . Depending on the context, the interior or the exterior of a
cycle can be viewed as a subgraph, a set of vertices, a set of edges, or a set of faces. For
example, consider the cycle C = (v1, v2, v10, v9, v5) of the plane graph shown in Figure 2.
The interior of C is the subgraph induced by v8, v11, and all vertices in C. The exterior of
C is the subgraph induced by v3, v4, v6, v7, and all vertices in C. The cycle C partitions the
faces into two parts: The interior of C contains F3, and the exterior of C contains F1 and F2.

Let C be a simple cycle oriented in such a way that the outer face Fo lies in its exterior.
Following [3], we say that C is essential if the central face Fc is in the interior of C. Otherwise
we say that C is non-essential. The following lemma was proved in [3].

Y.-J. Chang 35:9

▶ Lemma 1 ([3]). Let C be a simple cycle oriented in such a way that the outer face Fo lies
in its exterior, then the combinatorial rotation of C satisfies the following:

rotation(C) =
{

4, C is an essential cycle,
0, C is a non-essential cycle.

In the above lemma, we implicitly assume that (R1) and (R2) are satisfied. The intuition
behind the lemma is that an essential cycle behaves like the facial cycle of the outer face or
the central face, and a non-essential cycle behaves like the facial cycle of a regular face.

Subgraphs. When we take a subgraph H of G, the combinatorial embedding, the angle
assignment, the central face, and the outer face of H are inherited from G naturally.
For example, suppose that E(v) = (e1, e2, e3) with ϕ(e1, e2) = 90◦, ϕ(e2, e3) = 90◦, and
ϕ(e3, e1) = 180◦ in G. Suppose that v is incident only to two edges e1 and e2 in H , then the
angle assignment ϕH for the two corners surrounding v in H will be ϕH(e1, e2) = 90◦ and
ϕH(e2, e1) = 270◦.

Each face of G is contained in exactly one face of H, A face in H can contain multiples
faces of G. A face of H is said to be the central face if it contains the central face of G.
Similarly, A face of H is said to be the outer face if it contains the outer face of G.

For example, consider the subgraph H induced by {v2, v3, . . . , v9} in the ortho-radial
representation in Figure 3. In H, v9 is incident to only two edges e1 = {v8, v9} and
e2 = {v2, v9}, and the angle assignment ϕH for the two corners surrounding v9 in H are
ϕH(e1, e2) = 90◦ and ϕH(e2, e1) = 270◦. The outer face and the central face of H are the
same.

Defining direction via reference paths. Following [3], for any two edges e = (u, v) and
e′ = (x, y), we say that a crossing-free path P is a reference path for e and e′ if P starts at u

or v and ends at x or y such that P does not contain any of the edges in {e, e, e′, e′}. Given
a reference path P for e = (u, v) and e′ = (x, y), we define the combinatorial direction of e′

with respect to e and P as follows.

direction(e, P, e′) =


rotation(e ◦ P ◦ e′), P starts at v and ends at x,
rotation(e ◦ P ◦ e′) + 2, P starts at u and ends at x,
rotation(e ◦ P ◦ e′) − 2, P starts at v and ends at y,
rotation(e ◦ P ◦ e′), P starts at u and ends at y.

Here P ◦ Q denotes the concatenation of the paths P and Q. An edge e is interpreted as a
1-length path. In the definition of direction(e, P, e′), we allow the possibility that a reference
path P consists of a single vertex. If v = x and u ̸= w, then we may choose P to be the
0-length path consisting of a single vertex v = x, in which case direction(e, P, e′) is simply
the combinatorial rotation of the 2-length path (u, v, y). We do not consider the cases where
e = e′ or e = e′.

Consider the reference edge e = (v14, v1) in the ortho-radial representation of Figure 3.
We measure the direction of e′ = (v8, v9) from e with different choices of the reference
path P . If P = (v1, v2, v9), then direction(e, P, e′) = rotation(e ◦ P ◦ e′) − 2 = −1. If
P = (v14, v10, v9), then we also have direction(e, P, e′) = rotation(e ◦ P ◦ e′) = −1. If we
select P = (v1, v2, v3, v4, v5, v6, v7, v8), then we get a different value of direction(e, P, e′) =
rotation(e ◦ P ◦ e′) = 3. As we will later discuss, direction(e, P, e′) mod 4 is invariant under
the choice of P .

ICALP 2023

35:10 Ortho-Radial Drawing in Near-Linear Time

In the definition of direction(e, P, e′), the additive +2 in rotation(e ◦ P ◦ e′) + 2 is due to
the fact that the actual path that we intend to consider is e ◦ e ◦ P ◦ e′, where we make a
180◦ right turn in e ◦ e, which contributes +2 in the calculation of the combinatorial rotation.
Similarly, the additive −2 in rotation(e ◦ P ◦ e′) − 2 is due to the fact that the actual path
that we intend to consider is e ◦ P ◦ e′ ◦ e′, where we make a 180◦ left turn in e′ ◦ e′. There
is no additive term in rotation(e ◦ P ◦ e′) because of the cancellation of the 180◦ right turn
e ◦ e and the 180◦ left turn e′ ◦ e′. The reason why e ◦ e has to be a right turn and e′ ◦ e′ has
to be a left turn will be explained later.

See Figure 4 for an example of the calculation of an edge direction. The direction of
e = (u1, u2) with respect to e⋆ = (v1, v2) and the reference path P = (v1, v5, v4, u1) can be
calculated by rotation(e⋆ ◦ P ◦ e′) + 2 = 1 according to the formula above, where the additive
+2 is due to the 180◦ right turn at e⋆ ◦ e⋆.

Edge directions. Imagining that the origin is the south pole, in an ortho-radial drawing
with zero bends, each edge e is either drawn in one of the following four directions:

e points towards the north direction if e is drawn as a line segment of a straight line
passing the origin, where e is directed away from the origin.
e points towards the south direction if e is drawn as a line segment of a straight line
passing the origin, where e is directed towards the origin.
e points towards the east direction if e is drawn as a circular arc of a circle centered at
the origin in the clockwise direction.
e points towards the west direction if e is drawn as a circular arc of a circle centered at
the origin in the counter-clockwise direction.

We say that e is a vertical edge if e points towards north or south. Otherwise, we say that
e is a horizontal edge. We argue that as long as (R1) and (R2) are satisfied, the direction of
any edge e is uniquely determined by the ortho-radial representation.

For the reference edge e⋆, it is required that e⋆ points east, and so e⋆ points west. Consider
any edge e that is neither e⋆ nor e⋆. It is clear that the value of direction(e⋆, P, e) determines
the direction of e in that the direction of e is forced to be east, south, west, or north if
direction(e⋆, P, e) mod 4 equals 0, 1, 2, or 3, respectively. For example, in the ortho-radial
representation of Figure 3, the edge e′ = (v8, v9) is a vertical edge in the north direction, as
we have calculated that direction(e⋆, P, e′) mod 4 = 3.

▶ Lemma 2 ([3]). For any two edges e and e′, the value of direction(e, P, e′) mod 4 is invariant
under the choice of the reference path P .

The above lemma shows that direction(e⋆, P, e) mod 4 is invariant under the choice of
the reference path P , so the direction of each edge in an ortho-radial representation is well
defined, even for the case that (R, e⋆) might not be drawable. Given the reference edge e⋆,
we let Eh denote the set of all horizontal edges in the east direction, and let Ev denote the
set of all vertical edges in the north direction.

Horizontal segments. We require that in a drawing of (R, e⋆), the reference edge e⋆ lies on
the outermost circular arc used in the drawing, so not every edge in CFo is eligible to be a
reference edge. To determine whether an edge e ∈ CFo is eligible to be a reference edge, we
need to introduce some terminology.

Given the reference edge e⋆, the set Ev of vertical edges in the north direction and the
set Eh of horizontal edges in the east direction are fixed. Let Sh denote the set of connected
components induced by Eh. Each component S ∈ Sh is either a path or a cycle, and so in
any drawing of R, there is a circle C centered at the origin such that S must be drawn as C

or a circular arc of C. We call each component S ∈ Sh a horizontal segment.

Y.-J. Chang 35:11

𝑣𝑣5

𝑣𝑣4

𝑣𝑣3

𝑣𝑣2

𝑣𝑣1

𝑣𝑣6

𝑣𝑣7

𝑣𝑣8

𝑣𝑣9

𝑣𝑣10 𝑣𝑣11

𝑣𝑣14 𝑣𝑣13

𝑣𝑣12

𝑣𝑣10

𝑣𝑣14

𝑣𝑣13

𝑣𝑣11

𝑣𝑣12

𝑣𝑣1𝑣𝑣2
𝑣𝑣3

𝑣𝑣4
𝑣𝑣5

𝑣𝑣6
𝑣𝑣7

𝑣𝑣8
𝑣𝑣9

𝑒𝑒⋆

𝐹𝐹𝑜𝑜

𝐹𝐹𝑐𝑐

𝑒𝑒⋆

𝑒𝑒

𝑃𝑃

𝑣𝑣1

𝑣𝑣2

𝑣𝑣3

𝑣𝑣4

𝑢𝑢1

𝑢𝑢2
𝑢𝑢3

𝑢𝑢4

𝑒𝑒⋆ ∘ 𝑃𝑃 ∘ 𝑒𝑒 𝑒𝑒⋆ ∘ 𝑒𝑒⋆ ∘ 𝑃𝑃 ∘ 𝑒𝑒

𝑣𝑣5

𝑒𝑒⋆

Figure 4 The calculation of direction(e⋆, P, e).

Each horizontal segment S ∈ Sh is written as a sequence of vertices S = (v1, v2, . . . , vs),
where s is the number of vertices in S, such that (vi, vi+1) ∈ Eh for each 1 ≤ i < s. If S is
a cycle, then we additionally have (vs, v1) ∈ Eh, so S = (v1, v2, . . . , vs) is a circular order.
When S is a cycle, we use modular arithmetic on the indices so that vs+1 = v1. We write
Nnorth(S) to denote the set of vertical edges e = (x, y) ∈ Ev such that x ∈ S. Similarly,
Nsouth(S) is the set of vertical edges e = (x, y) ∈ Ev such that y ∈ S. We assume that the
edges in Nnorth(S) and Nsouth(S) are ordered according to the indices of their endpoints in S.
The ordering is sequential if S is a path and is circular if S is a cycle. Consider the ortho-radial
representation R given in Figure 3 as an example. The horizontal segment S = (v10, v9, v2)
has Nsouth(S) = ((v11, v10), (v8, v9), (v3, v2)) and Nnorth(S) = ((v10, v14), (v2, v1)).

Observe that Nnorth(S) = ∅ for the horizontal segment S ∈ Sh that contains e⋆ is a
necessary condition that a drawing of R where e⋆ lies on the outermost circular arc exists.
This condition can easily be checked in linear time.

Spirality. Intuitively, direction(e, P, e′) quantifies the degree of spirality of e′ with respect to
e and P . Unfortunately, Lemma 2 does not hold if we replace direction(e, P, e′) mod 4 with
direction(e, P, e′). A crucial observation made in [3] is that such a replacement is possible if
we add some restrictions about the positions of e, e′, and P . See the following lemma.

▶ Lemma 3 ([3]). Let C and C ′ be essential cycles such that C ′ lies in the interior of C.
Let e be an edge on C. Let e′ be an edge on C ′. The value of direction(e, P, e′) is invariant
under the choice of the reference path P , over all paths P in the interior of C and in the
exterior of C ′.

Recall that we require a reference path to be crossing-free. This requirement is crucial in
the above lemma. If we allow P to be a general path that is not crossing-free, then we may
choose P in such a way that P repeatedly traverses a non-essential cycle many times, so
that direction(e, P, e′) can be made arbitrarily large and arbitrarily small.

Setting e = e⋆ and C = CFo in the above lemma, we infer that direction(e⋆, P, e′) is
determined once we fix an essential cycle C ′ that contains e′ and only consider reference
paths P that lie in the exterior of C ′. The condition for the lemma is satisfied because CFo

is the outermost essential cycle in that all other essential cycles are in the interior of CFo .
The reason why we set C = CFo and not C = CFo is that Fo has to be in the exterior of C.
Note that the assumption that G is biconnected ensures that each facial cycle is simple.

Let C be an essential cycle and let e be an edge in C. In view of the above, following [3],
we define the edge label ℓC(e) of e with respect to C as the value of direction(e⋆, P, e), for any
choice of reference path P in the exterior of C ′. For the special case that e = e⋆ and C = CFo ,

ICALP 2023

35:12 Ortho-Radial Drawing in Near-Linear Time

𝑒𝑒⋆

𝑒𝑒

𝑣𝑣2

𝑣𝑣3
𝑣𝑣4

𝑣𝑣10

𝑣𝑣7

𝑣𝑣8 𝑣𝑣9

𝑣𝑣5

𝑒𝑒⋆

𝑣𝑣1 𝑣𝑣2
𝑣𝑣3

𝑣𝑣4

𝑣𝑣5
𝑣𝑣6 𝑣𝑣7 𝑣𝑣8

𝑣𝑣9

𝑣𝑣10
𝑣𝑣6

𝑣𝑣1

1

1

1

1

0

0

0

2
22

0

Figure 5 Changing the reference edge to e leads to a strictly monotone cycle.

we let ℓC(e) = 0. Intuitively, the value ℓC(e) quantifies the degree of spirality of e from e⋆

if we restrict ourselves to the exterior of C. Consider the edge e = (u1, u2) in the essential
cycle C = (u1, u2, u3, u4) in Figure 4 as an example. We have ℓC(e) = direction(e⋆, P, e) = 1,
since the reference path P = (v1, v5, v4, u1) lies in exterior of C.

We briefly explain the formula of direction(e, P, e′): As discussed earlier, in the definition
of direction(e, P, e′), the additive +2 in rotation(e ◦ P ◦ e′) + 2 is due to the fact that the
actual path that we want to consider is e ◦ e ◦ P ◦ e′, where we make a 180◦ right turn in e ◦ e.
The reason why e ◦ e has to be a right turn is because of the scenario considered in Lemma 3,
where e is an edge in C. To ensure that we stay in the interior of C in the traversal from e

to e′ via the path e ◦ e ◦ P ◦ e′, the 180◦ turn of e ◦ e has to be a right turn. The remaining
part of the formula of direction(e, P, e′) can be explained similarly.

Monotone cycles. We are now ready to define the notion of strictly monotone cycles used in
(R3). We say that an essential cycle C is monotone if all its edge labels ℓC(e) are non-negative
or all its edge labels ℓC(e) are non-positive. Let C be an essential cycle that is monotone. If
C contains at least one positive edge label, then we say that C is increasing. If C contains
at least one negative edge label, then we say that C is decreasing. We say that C is strictly
monotone if C is either decreasing or increasing but not both.

Intuitively, an increasing cycle is like a loop of descending stairs, and a decreasing cycle
is like a loop of ascending stairs, so they are not drawable. It was proved in [3] that
(R, e⋆) is drawable if and only if it does not contain a strictly monotone cycle. Recall again
that, throughout the paper, unless otherwise stated, we assume that the given ortho-radial
representation already satisfies (R1) and (R2).

▶ Lemma 4 ([3]). An ortho-radial representation R, with a fixed reference edge e⋆ such that
Nnorth(S) = ∅ for the horizontal segment S ∈ Sh that contains e⋆, is drawable if and only if
it does not contain a strictly monotone cycle.

Consider Figure 5 as an example. The ortho-radial representation R is drawable with
the reference edge e⋆. If we change the reference edge to e, then (R, e) become undrawable,
as the essential cycle C = (v1, v2, . . . , v10) is increasing. With respect to the reference edge e,
all the edge labels on the cycle C are non-negative, with some of them being positive. We
are ready to state our main results.

▶ Theorem 5. There is an O(n log n)-time algorithm A that outputs either a drawing of
(R, e⋆) or a strictly monotone cycle of (R, e⋆), for any given ortho-radial representation R of
an n-vertex biconnected simple graph, with a fixed reference edge e⋆ such that Nnorth(S) = ∅
for the horizontal segment S ∈ Sh that contains e⋆.

Y.-J. Chang 35:13

𝑣𝑣1,1

𝑣𝑣1,3

𝑣𝑣1,2𝑣𝑣1,4

𝑣𝑣2,1

𝑣𝑣2,2
𝑣𝑣2,3

𝑣𝑣3,1

𝑣𝑣3,2

𝑣𝑣3,3𝑣𝑣3,4

𝑣𝑣3,5

𝑣𝑣4,1

𝑣𝑣4,2

𝑣𝑣4,3

𝑣𝑣5,1
𝑣𝑣5,2

𝑣𝑣5,3
𝑣𝑣5,4

𝑣𝑣6,1𝑣𝑣6,2

𝐺𝐺1 𝐺𝐺1+

𝐺𝐺2

𝐺𝐺3

𝐺𝐺2+

𝐺𝐺3+

𝐺𝐺4 𝐺𝐺4+

𝐺𝐺5

𝐺𝐺6

𝐺𝐺5+

𝐺𝐺6+

Figure 6 Constructing a good drawing for a good sequence.

The above theorem improves the previous algorithm of [35] which costs O(n2) time. If
the output of A is a strictly monotone cycle, then the cycle certifies the non-existence of a
drawing, by Lemma 4. We also extend the above theorem to the case where the reference
edge is not fixed.

▶ Theorem 6. There is an O(n log2 n)-time algorithm A that decides whether an ortho-radial
representation R of an n-vertex biconnected simple graph is drawable. If R is drawable, then
A also computes a drawing of R.

The proofs of Theorems 5 and 6 are left to the full version of the paper.

3 Technical overview

Let A = (S1, S2, . . . , Sk) be any sequence of k horizontal segments. We consider the following
terminology for each 1 ≤ i ≤ k, where k is the length of the sequence A.

Let Gi be the subgraph of G induced by the horizontal edges in S1, S2, . . . , Si and the
set of all vertical edges whose both endpoints are in S1, S2, . . . , Si. Let Fi be the central
face of Gi, and let Ci be the facial cycle of Fi.
We extend the notion Nsouth(S) to a sequence of horizontal segments: Nsouth(S1, S2, . . . , Si)
is defined as the set of all vertical edges e = (x, y) ∈ Ev such that y ∈ Ci and x /∈ Ci.
Let G+

i be the subgraph of G induced by all the edges in Gi together with the edge set
Nsouth(S1, S2, . . . , Si). Let F +

i be the central face of G+
i , and let C+

i be the facial cycle
of F +

i .

ICALP 2023

35:14 Ortho-Radial Drawing in Near-Linear Time

For each vertical edge e = (x, y) ∈ Nsouth(S1, S2, . . . , Si), the south endpoint x appears exactly
once in C+

i . We circularly order the edges e = (x, y) ∈ Nsouth(S1, S2, . . . , Si) according to the
position of the south endpoint x in the circular ordering of C+

i . Take the graph G = G6 in
Figure 6 as an example. In this graph, there are 6 horizontal segments, shaded in Figure 6:

S1 = (v1,1, v1,2, v1,3, v1,4), S2 = (v2,1, v2,2, v2,3), S3 = (v3,1, v3,2, v3,3, v3,4, v3,5),
S4 = (v4,1, v4,2, v4,3), S5 = (v5,1, v5,2, v5,3, v5,4, v5,5), S6 = (v6,1, v6,2).

With respect to the sequence A = (S1, S2, . . . , S6), Figure 6 shows the graphs Gi and G+
i ,

for all 1 ≤ i ≤ 6. For example, for i = 2, we have:

Nsouth(S1, S2) = ((v3,1, v1,1)(v3,2, v2,1), (v3,4, v2,3), (v3,5, v1,4)),
Nnorth(S2) = ((v2,1, v1,2), (v2,2, v1,3))
C2 = (v1,1, v1,2, v2,1, v2,2, v2,3, v2,2, v1,3, v1,4),
C+

2 = (v1,1, v3,1, v1,1, v1,2, v2,1, v3,2, v2,1, v2,2, v2,3, v3,4, v2,3, v2,2, v1,3, v1,4, v3,5, v1,4).

Here Nsouth(S1, S2), C2, and C+
2 are circular orderings, and Nnorth(S2) is a sequential ordering,

as S2 is a path.

Good sequences. We say that a sequence of horizontal segments A = (S1, S2, . . . , Sk) is
good if A satisfies the following conditions.
(S1) S1 is the reversal of the facial cycle of the outer face Fo, i.e., S1 = CFo .
(S2) For each 1 < i ≤ k, Nnorth(Si) satisfies the following requirements.

Nnorth(Si) ̸= ∅.
If Si is a path, then Nnorth(Si) is a contiguous subsequence of Nsouth(S1, S2, . . . , Si−1).
If Si is a cycle, then Nnorth(Si) = Nsouth(S1, S2, . . . , Si−1).

Clearly, if A = (S1, S2, . . . , Sk) is good, then (S1, S2, . . . , Si) is also good for each 1 ≤ i < k.
In general, a good sequence that covers the set of all horizontal segments might not exist for
a given (R, e⋆). In particular, in order to satisfy (S1), it is necessary that the cycle CFo is a
horizontal segment. The sequence A = (S1, S2, . . . , S6) shown in Figure 6 is a good sequence.

If A = (S1, S2, . . . , Sk) is good, then we can find a drawing of Gk in linear time by fixing
the drawing of S1, S2, . . . , Sk sequentially, as the definition of a good sequence allows us to
safely place Si below S1, S2, . . . , Si−1 and above Si+1, Si+2, . . . , Sk. The following lemma is
proved formally in the full version of the paper.

▶ Lemma 7. For a given good sequence A = (S1, S2, . . . , Sk), an ortho-radial drawing of Gk

without bends can be constructed in time O
(∑k

i=1 |Si|
)

.

See Figure 6 for an example of a drawing of Gk produced by the algorithm of Lemma 7.

Constructing a good sequence. In order to use Lemma 7 to compute an ortho-radial
drawing of (R, e⋆), we need to find a good sequence A = (S1, S2, . . . , Sk) with Gk = G.
However, such a good sequence might not exist even if (R, e⋆) is drawable. We will show that
as long as (R, e⋆) is drawable, we can always add some virtual edges to the graph so that
such a good sequence exists and can be computed efficiently. The first step of the algorithm
is a simple preprocessing step to ensure the following two properties:

The facial cycle of the outer face is a horizontal segment.
Each vertex is incident to a horizontal segment.

Y.-J. Chang 35:15

𝑒𝑒𝑓𝑓

𝑒𝑒⋆

Figure 7 The preprocessing steps.

𝑢𝑢 𝑣𝑣𝑤𝑤

𝑧𝑧𝑥𝑥 𝑦𝑦
𝐹𝐹1 𝐹𝐹2

𝑒𝑒′

𝑆𝑆𝑖𝑖𝐹𝐹
𝑆𝑆

Figure 8 Adding a virtual vertical edge in a regular face.

See Figure 7 for the algorithm of the preprocessing step. The addition of the edge ef

ensures that CFo is a horizontal segment. To ensure that each vertex is on a horizontal
segment, some degree-2 vertices are removed by smoothing.

The above two properties alone are not sufficient to guarantee the existence of a good
sequence A = (S1, S2, . . . , Sk) with Gk = G, as there could be horizontal segment S such
that Nnorth(S) = ∅ and S ≠ CFo . Such a horizontal segment S can never be added to a good
sequence, as the definition of a good sequence requires all horizontal segments in the sequence
to be non-empty. To deal with this issue, we consider the following eligibility criterion for
adding a virtual vertical edge incident to such a horizontal segment S:

Let A = (S1, S2, . . . , Sk) be the current good sequence. Let S /∈ A be a horizontal
segment such that Nnorth(S) = ∅ and S ̸= CFo . Let F be the face such that S is a
subpath of CF . We say that S is eligible for adding a virtual edge if there exists an edge
e′ ∈ CF with e′ ∈ Si for some 1 ≤ i ≤ k such that either rotation(e′ ◦ · · · ◦ S) = 2 or
rotation(S ◦ · · · ◦ e′) = 2 along the cycle CF .

See Figure 8 for an illustration of adding a virtual edge. In the figure, there are two
horizontal segments along the contour of F that are eligible for adding a virtual edge due
to e′ ∈ Si. The rotation criterion for eligibility is to ensure that the new faces created due
to the virtual edge still satisfy (R2). The condition Nnorth(S) = ∅ ensures that immediately
after adding the virtual edge, we may append S to the end of the sequence A.

Our algorithm to construct a good sequence is a simple greedy algorithm: We repeatedly
find horizontal segments that can be appended to the current good sequence and repeatedly
add virtual edges, until no further such operations can be done. A straightforward imple-
mentation of the greedy algorithm, which checks all remaining horizontal segments in each
step, takes O(n2) time. In the full version of the paper, we will present a more efficient
implementation that costs only O(n log n) time.

Extracting a strictly monotone cycle. In the full version of the paper, we prove that if the
above greedy algorithm stops with a good sequence A = (S1, S2, . . . , Sk) that does not cover
all horizontal segments, then a strictly monotone cycle of the original graph G, without any

ICALP 2023

35:16 Ortho-Radial Drawing in Near-Linear Time

𝑆𝑆𝑖𝑖

𝑒𝑒′

𝐹𝐹

𝑆𝑆𝑖𝑖

𝑒𝑒′

𝐹𝐹

𝑢𝑢 𝑣𝑣𝑤𝑤

𝑧𝑧𝑥𝑥 𝑦𝑦
𝐹𝐹1 𝐹𝐹2

𝑒𝑒′

𝑆𝑆𝑖𝑖𝐹𝐹
𝑆𝑆

𝐹𝐹𝑖𝑖,𝑖𝑖+1
𝑒𝑒𝑖𝑖

𝑒𝑒𝑖𝑖+1
𝑃𝑃𝑖𝑖←𝑖𝑖+1

𝐹𝐹𝑖𝑖,𝑖𝑖+1

𝑒𝑒𝑖𝑖
𝑒𝑒𝑖𝑖+1

𝑃𝑃𝑖𝑖→𝑖𝑖+1

𝑒𝑒𝑖𝑖 𝑒𝑒𝑖𝑖+1

𝑒𝑒⋆

𝐶𝐶

𝑃𝑃 ∘ 𝑒𝑒

𝑥𝑥𝑖𝑖 𝑥𝑥𝑖𝑖+1

01
𝑒𝑒𝑖𝑖 𝑒𝑒𝑗𝑗

𝑃𝑃𝑖𝑖→𝑗𝑗out

𝑒𝑒𝑒

+2

+2

𝑒𝑒𝑖𝑖 𝑒𝑒𝑗𝑗

𝑃𝑃𝑖𝑖→𝑗𝑗out

𝑃𝑃

+2

𝐶𝐶

Figure 9 Face types (∗, ⊔) and (⊔, ∗).

virtual edges, can be found to certify the non-existence of a drawing. Let (e1, e2, . . . , es) be
the circular ordering of Nsouth(A). Note that {e1, e2, . . . , es} is the set of all edges connecting
a vertex in Gk and a vertex not in Gk. The proof is achieved by a careful analysis of the
structure of the faces involving {e1, e2, . . . , es}. We show that the fact that no more progress
can be made in the greedy algorithm forces the parts of the contours of these faces that are
not in Gk to form ascending or descending patterns in a consistent manner, so we are able
to extract a strictly monotone cycle in G by considering the edges in these facial cycles.

Face types. For each 1 ≤ i ≤ s, we write Fi,i+1 to denote the unique face F such that CF

contains both ei and ei+1. Note that vs+1 = v1 because (e1, e2, . . . , es) is a circular ordering.
Consider the face Fi,i+1, for some 1 ≤ i ≤ s. We define Pi←i+1 as the subpath of CFi,i+1

starting at ei+1 and ending at ei. We write Pi→i+1 = Pi←i+1. We write Zi←i+1 = (z1, z2, . . .)
to denote the string of numbers such that zl is the rotation of the subpath of Pi←i+1 consisting
of the first l edges. Similarly, we let Zi→i+1 = (z1, z2, . . .) be the string of numbers such that
zl is the rotation of the subpath of Pi→i+1 consisting of the first l edges. We define the types
(∗, ⊔), (⊔, ∗), (⊔, ⊔), and (−), as follows.

Fi,i+1 is of type (∗, ⊔) if 0 ◦ 1c ◦ 2, for some c ≥ 1, is a prefix of Zi←i+1.
Fi,i+1 is of type (⊔, ∗) if 0 ◦ (−1)c ◦ (−2), for some c ≥ 1, is a prefix of Zi→i+1.
Fi,i+1 is of type (⊔, ⊔) if Fi,i+1 is both of type (⊔, ∗) and of type (∗, ⊔).
Fi,i+1 is of type (−) if Zi←i+1 = 0 ◦ 1c ◦ 2 for some c ≥ 1.

In other words, Fi,i+1 is of type (−) if the subpath of the facial cycle of Fi,i+1 that connects
the south endpoints of ei+1 and ei is a horizontal straight line in the west direction. By
considering Pi→i+1 = Pi←i+1, equivalently, Fi,i+1 is of type (−) if Zi→i+1 = 0 ◦ (−1)c ◦ (−2)
for some c ≥ 1.

Consider the good sequence A = (S1, S2) of Figure 6 as an example, where we let
Nsouth(S1, S2) = (e1, e2, e3, e4), where e1 = (v3,1, v1,1), e2 = (v3,2, v2,1), e3 = (v3,4, v2,3),
and e4 = (v3,5, v1,4). The facial cycle of the face F1,2 is (v3,1, v1,1, v2,1, v3,2). We have
P1→2 = (v1,1, v3,1, v3,2, v2,1) and Z1→2 = (0, −1, −2), so F1,2 is of type (−).

Intuitively, the face Fi,i+1 is of type (⊔, ∗) if Pi→i+1 makes two 90◦ left turns before
making any right turns, and the first 90◦ left turn is made at xi. These two 90◦ left turns
form a ⊔-shape. Similarly, the face Fi,i+1 is of type (∗, ⊔) if Pi←i+1 makes two 90◦ right turns
before making any left turns, and the first 90◦ right turn is made at xi+1. These two 90◦
right turns form a ⊔-shape. See Figure 9 for illustrations of faces of types (∗, ⊔) and (⊔, ∗).
In the left part of the figure, we have Zi←i+1 = (0, 1, 1, 1, 2, 1, 2, 1, 2), so Fi,i+1 is of type
(∗, ⊔). In the right part of the figure, we have Zi→i+1 = (0, −1, −1, −2, −3, −3, −2, −1, −2),
so Fi,i+1 is of type (⊔, ∗). We show that one of the following holds, which intuitively implies
the existence of a strictly monotone cycle.

All faces Fi,i+1 are of type (−) and (⊔, ∗), and at least one face Fi,i+1 is of type (⊔, ∗).
All faces Fi,i+1 are of type (−) and (∗, ⊔), and at least one face Fi,i+1 is of type (∗, ⊔).

Y.-J. Chang 35:17

1𝑒𝑒𝑖𝑖 𝑒𝑒𝑖𝑖+1

𝑒𝑒 +1

𝐶𝐶

+1 𝑒𝑒𝑖𝑖 𝑒𝑒𝑖𝑖+1

𝑒𝑒 +1

+1 2
11

0

𝑆𝑆

𝑃𝑃𝑖𝑖←𝑖𝑖+1

𝑆𝑆

𝑒𝑒𝑖𝑖 = 𝑒𝑒𝑐𝑐1 𝑒𝑒𝑗𝑗 = 𝑒𝑒𝑐𝑐4+1

𝑒𝑒𝑐𝑐2

𝑒𝑒𝑐𝑐3

𝑒𝑒𝑐𝑐4
𝑒𝑒𝑐𝑐1+1

𝑒𝑒𝑐𝑐2+1

𝑒𝑒𝑐𝑐3+1
𝑒𝑒𝑎𝑎2−1

𝑒𝑒𝑎𝑎3−1

𝑒𝑒𝑎𝑎1−1
𝑒𝑒𝑎𝑎1

𝑒𝑒𝑎𝑎2

𝑒𝑒𝑎𝑎3
𝐵𝐵1

𝐵𝐵2

𝐵𝐵3

𝑒𝑒⋆

+1

0

−1

0
1

2

3 4
45

4
3

2

1

0

𝑒𝑒1 𝑒𝑒2 𝑒𝑒3

𝑒𝑒4𝑒𝑒5

𝑣𝑣1

𝑣𝑣2 𝑣𝑣3

𝑣𝑣4𝑣𝑣5

Figure 10 Extracting a strictly monotone cycle C = (v1, v2, . . . , v5).

Consider Figure 10 for an example of extracting a strictly monotone cycle. In the figure,
the shaded part corresponds to the part of the graph that is not in Gk. In this example,
Nsouth(A) = (e1, e2, . . . , e5). The faces F5,1, F1,2, and F2,3 are of type (∗, ⊔). The faces
F3,4 and F4,5 are of type (−). The cycle C = (v1, v2, . . . , v5) is strictly monotone, as it
is increasing. We can calculate that ℓC((v1, v2)) = 1 by first going from e⋆ to e2 via a
crossing-free path P and then going from e2 to (v1, v2) along the path P2→3, as (v1, v2) is an
intermediate edge of P2→3. The first part has rotation 1 and the second part has rotation 0,
so the overall rotation is 1. Similarly, we can calculate that ℓC(e) = 0 for each remaining
edge e in C.

4 Conclusions

In this paper, we presented a near-linear time algorithm to decide whether a given ortho-radial
representation is drawable, improving upon the previous quadratic-time algorithm [35]. If
the representation is drawable, then our algorithm outputs an ortho-radial drawing realizing
the representation. Otherwise, our algorithm outputs a strictly monotone cycle to certify the
non-existence of such a drawing. Given the broad applications of the topology-shape-metric
framework in orthogonal drawing, we anticipate that our new ortho-radial drawing algorithm
will be relevant and useful in future research in this field.

ICALP 2023

35:18 Ortho-Radial Drawing in Near-Linear Time

While there has been extensive research in orthogonal drawing, much remains unknown
about the computational complexity of basic optimization problems in ortho-radial drawing.
In particular, the problem of finding an ortho-radial representation that minimizes the number
of bends has only been addressed by a practical algorithm [34] that has no provable guarantees.
It remains an intriguing open question to determine to what extent bend minimization is
polynomial-time solvable for ortho-radial drawing. To the best of our knowledge, even
deciding whether a given plane graph admits an ortho-radial drawing without bends is not
known to be polynomial-time solvable.

Given an ortho-radial representation, can we find an ortho-radial drawing with the smallest
number of layers (i.e., the number of concentric circles) in polynomial time? As discussed in
the full version of the paper, if a good sequence is given, then our algorithm can output a
layer-minimized drawing. For the general case where a good sequence might not exist, our
algorithm does not have the layer-minimization guarantee, as there is some flexibility in the
choice of virtual edges to add, and selecting different virtual edges results in different good
sequences. There was a series of work in finding compact orthogonal drawings according to
various complexity measures [1, 6, 12, 32, 37]. To what extent the ideas developed in these
works can be applied to ortho-radial drawings?

References

1 Michael J. Bannister, David Eppstein, and Joseph A. Simons. Inapproximability of orthogonal
compaction. Journal of Graph Algorithms and Applications, 16(3):651–673, 2012. doi:
10.7155/jgaa.00263.

2 Lukas Barth, Benjamin Niedermann, Ignaz Rutter, and Matthias Wolf. Towards a Topology-
Shape-Metrics Framework for Ortho-Radial Drawings. In Boris Aronov and Matthew J.
Katz, editors, 33rd International Symposium on Computational Geometry (SoCG), volume 77
of Leibniz International Proceedings in Informatics (LIPIcs), pages 14:1–14:16, Dagstuhl,
Germany, 2017. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.
SoCG.2017.14.

3 Lukas Barth, Benjamin Niedermann, Ignaz Rutter, and Matthias Wolf. A topology-shape-
metrics framework for ortho-radial graph drawing. arXiv preprint, 2021. arXiv:2106.05734v1.

4 Hannah Bast, Patrick Brosi, and Sabine Storandt. Metro maps on flexible base grids. In 17th
International Symposium on Spatial and Temporal Databases, pages 12–22, 2021.

5 Carlo Batini, Enrico Nardelli, and Roberto Tamassia. A layout algorithm for data flow
diagrams. IEEE Transactions on Software Engineering, SE-12(4):538–546, 1986.

6 Michael A. Bekos, Carla Binucci, Giuseppe Di Battista, Walter Didimo, Martin Grone-
mann, Karsten Klein, Maurizio Patrignani, and Ignaz Rutter. On turn-regular ortho-
gonal representations. Journal of Graph Algorithms and Applications, 26(3):285–306, 2022.
doi:10.7155/jgaa.00595.

7 Sandeep N Bhatt and Frank Thomson Leighton. A framework for solving VLSI graph layout
problems. Journal of Computer and System Sciences, 28(2):300–343, 1984.

8 Therese Biedl, Anna Lubiw, Mark Petrick, and Michael Spriggs. Morphing orthogonal planar
graph drawings. ACM Transactions on Algorithms (TALG), 9(4):1–24, 2013.

9 Thomas Bläsius, Ignaz Rutter, and Dorothea Wagner. Optimal orthogonal graph drawing
with convex bend costs. ACM Trans. Algorithms, 12(3):33:1–33:32, 2016.

10 Ulrik Brandes, Sabine Cornelsen, Christian Fieß, and Dorothea Wagner. How to draw the
minimum cuts of a planar graph. Computational Geometry, 29(2):117–133, 2004.

11 Ulrik Brandes and Dorothea Wagner. Dynamic grid embedding with few bends and changes.
In International Symposium on Algorithms and Computation, pages 90–99. Springer, 1998.

https://doi.org/10.7155/jgaa.00263
https://doi.org/10.7155/jgaa.00263
https://doi.org/10.4230/LIPIcs.SoCG.2017.14
https://doi.org/10.4230/LIPIcs.SoCG.2017.14
https://arxiv.org/abs/2106.05734v1
https://doi.org/10.7155/jgaa.00595

Y.-J. Chang 35:19

12 Stina S Bridgeman, Giuseppe Di Battista, Walter Didimo, Giuseppe Liotta, Roberto Tamassia,
and Luca Vismara. Turn-regularity and optimal area drawings of orthogonal representations.
Computational Geometry, 16(1):53–93, 2000.

13 Yi-Jun Chang and Hsu-Chun Yen. On bend-minimized orthogonal drawings of planar 3-graphs.
In 33rd International Symposium on Computational Geometry (SoCG 2017). Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2017.

14 Sabine Cornelsen and Andreas Karrenbauer. Accelerated bend minimization. JGAA, 16(3):635–
650, 2012.

15 Giuseppe Di Battista, Walter Didimo, Maurizio Patrignani, and Maurizio Pizzonia. Ortho-
gonal and quasi-upward drawings with vertices of prescribed size. In Proceedings of the 7th
International Symposium on Graph Drawing (GD), pages 297–310. Springer Berlin Heidelberg,
1999.

16 Giuseppe Di Battista, Giuseppe Liotta, and Francesco Vargiu. Spirality and optimal orthogonal
drawings. SIAM Journal on Computing, 27(6):1764–1811, 1998.

17 Walter Didimo, Giuseppe Liotta, Giacomo Ortali, and Maurizio Patrignani. Optimal orthogonal
drawings of planar 3-graphs in linear time. In Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 806–825. SIAM, 2020.

18 Walter Didimo, Giuseppe Liotta, and Maurizio Patrignani. On the complexity of HV-rectilinear
planarity testing. In International Symposium on Graph Drawing (GD), pages 343–354.
Springer, 2014.

19 Walter Didimo, Giuseppe Liotta, and Maurizio Patrignani. Bend-minimum orthogonal drawings
in quadratic time. In International Symposium on Graph Drawing and Network Visualization
(GD), pages 481–494. Springer, 2018.

20 Sally Dong, Yu Gao, Gramoz Goranci, Yin Tat Lee, Richard Peng, Sushant Sachdeva, and
Guanghao Ye. Nested dissection meets ipms: Planar min-cost flow in nearly-linear time. In
Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 124–153. SIAM, 2022.

21 Stephane Durocher, Stefan Felsner, Saeed Mehrabi, and Debajyoti Mondal. Drawing HV-
restricted planar graphs. In Latin American Symposium on Theoretical Informatics (LATIN),
pages 156–167. Springer, 2014.

22 Markus Eiglsperger, Carsten Gutwenger, Michael Kaufmann, Joachim Kupke, Michael Jünger,
Sebastian Leipert, Karsten Klein, Petra Mutzel, and Martin Siebenhaller. Automatic layout
of UML class diagrams in orthogonal style. Information Visualization, 3(3):189–208, 2004.

23 Martin Fink, Magnus Lechner, and Alexander Wolff. Concentric metro maps. In Proceedings
of the Schematic Mapping Workshop (SMW), 2014.

24 Michael Formann, Torben Hagerup, James Haralambides, Michael Kaufmann, Frank Thomson
Leighton, Antonios Symvonis, Emo Welzl, and G Woeginger. Drawing graphs in the plane
with high resolution. SIAM Journal on Computing, 22(5):1035–1052, 1993.

25 Ashim Garg and Roberto Tamassia. A new minimum cost flow algorithm with applications to
graph drawing. In Proceedings of the Symposium on Graph Drawing (GD), pages 201–216.
Springer Berlin Heidelberg, 1997.

26 Carsten Gutwenger, Michael Jünger, Karsten Klein, Joachim Kupke, Sebastian Leipert, and
Petra Mutzel. A new approach for visualizing UML class diagrams. In Proceedings of the 2003
ACM symposium on Software visualization, pages 179–188, 2003.

27 Mahdieh Hasheminezhad, S Mehdi Hashemi, Brendan D McKay, and Maryam Tahmasbi.
Rectangular-radial drawings of cubic plane graphs. Computational Geometry, 43(9):767–780,
2010.

28 Mahdieh Hasheminezhad, S Mehdi Hashemi, and Maryam Tahmasbi. Ortho-radial drawings
of graphs. Australasian Journal of Combinatorics, 44:171–182, 2009.

29 Min-Yu Hsueh. Symbolic layout and compaction of integrated circuits. PhD thesis, University
of California, Berkeley, 1980.

ICALP 2023

35:20 Ortho-Radial Drawing in Near-Linear Time

30 Steve Kieffer, Tim Dwyer, Kim Marriott, and Michael Wybrow. Hola: Human-like orthogonal
network layout. IEEE transactions on visualization and computer graphics, 22(1):349–358,
2015.

31 Gunnar W. Klau and Petra Mutzel. Quasi-orthogonal drawing of planar graphs. Technical
Report MPI-I-98-1-013, Max-Planck-Institut für Informatik, Saarbrücken, 1998.

32 Gunnar W Klau and Petra Mutzel. Optimal compaction of orthogonal grid drawings. In
Proceedings of the 7th Conference on Integer Programming and Combinatorial Optimization
(IPCO), pages 304–319. Springer, 1999.

33 Robin S. Liggett and William J. Mitchell. Optimal space planning in practice. Computer-Aided
Design, 13(5):277–288, 1981. Special Issue Design optimization. doi:10.1016/0010-4485(81)
90317-1.

34 Benjamin Niedermann and Ignaz Rutter. An integer-linear program for bend-minimization in
ortho-radial drawings. In International Symposium on Graph Drawing and Network Visualiza-
tion, pages 235–249. Springer, 2020.

35 Benjamin Niedermann, Ignaz Rutter, and Matthias Wolf. Efficient Algorithms for Ortho-Radial
Graph Drawing. In Gill Barequet and Yusu Wang, editors, 35th International Symposium
on Computational Geometry (SoCG), volume 129 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 53:1–53:14, Dagstuhl, Germany, 2019. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik. doi:10.4230/LIPIcs.SoCG.2019.53.

36 Achilleas Papakostas and Ioannis G Tollis. Efficient orthogonal drawings of high degree graphs.
Algorithmica, 26(1):100–125, 2000.

37 Maurizio Patrignani. On the complexity of orthogonal compaction. Computational Geometry,
19(1):47–67, 2001.

38 James A Storer. The node cost measure for embedding graphs on the planar grid. In Proceedings
of the twelfth annual ACM symposium on Theory of computing, pages 201–210, 1980.

39 Roberto Tamassia. On embedding a graph in the grid with the minimum number of bends.
SIAM Journal on Computing, 16(3):421–444, 1987.

40 Leslie G Valiant. Universality considerations in VLSI circuits. IEEE Transactions on Computers,
100(2):135–140, 1981.

41 Hsiang-Yun Wu, Benjamin Niedermann, Shigeo Takahashi, Maxwell J. Roberts, and Martin
Nöllenburg. A survey on transit map layout – from design, machine, and human perspectives.
Computer Graphics Forum, 39(3):619–646, 2020. doi:10.1111/cgf.14030.

42 Yingying Xu, Ho-Yin Chan, and Anthony Chen. Automated generation of concentric circles
metro maps using mixed-integer optimization. International Journal of Geographical Informa-
tion Science, pages 1–26, 2022.

https://doi.org/10.1016/0010-4485(81)90317-1
https://doi.org/10.1016/0010-4485(81)90317-1
https://doi.org/10.4230/LIPIcs.SoCG.2019.53
https://doi.org/10.1111/cgf.14030

Approximation Algorithms for Network Design in
Non-Uniform Fault Models
Chandra Chekuri #

Department of Computer Science, University of Illinois, Urbana-Champaign, Urbana, IL, USA

Rhea Jain #

Department of Computer Science, University of Illinois, Urbana-Champaign, Urbana, IL, USA

Abstract
Classical network design models, such as the Survivable Network Design problem (SNDP), are
(partly) motivated by robustness to faults under the assumption that any subset of edges upto a
specific number can fail. We consider non-uniform fault models where the subset of edges that
fail can be specified in different ways. Our primary interest is in the flexible graph connectivity
model [1, 3, 4, 8], in which the edge set is partitioned into safe and unsafe edges. Given parameters
p, q ≥ 1, the goal is to find a cheap subgraph that remains p-connected even after the failure of q

unsafe edges. We also discuss the bulk-robust model [6, 2] and the relative survivable network design
model [19]. While SNDP admits a 2-approximation [32], the approximability of problems in these
more complex models is much less understood even in special cases. We make two contributions.

Our first set of results are in the flexible graph connectivity model. Motivated by a conjecture
that a constant factor approximation is feasible when p and q are fixed, we consider two special cases.
For the s-t case we obtain an approximation ratio that depends only on p, q whenever p + q > pq/2
which includes (p, 2) and (2, q) for all p, q ≥ 1. For the global connectivity case we obtain an O(q)
approximation for (2, q), and an O(p) approximation for (p, 2) and (p, 3) for any p ≥ 1, and for (p, 4)
when p is even. These are based on an augmentation framework and decomposing the families of
cuts that need to be covered into a small number of uncrossable families.

Our second result is a poly-logarithmic approximation for a generalization of the bulk-robust
model when the “width” of the given instance (the maximum number of edges that can fail in any
particular scenario) is fixed. Via this, we derive corresponding approximations for the flexible graph
connectivity model and the relative survivable network design model. We utilize a recent framework
due to Chen et al. [17] that was designed for handling group connectivity.

2012 ACM Subject Classification Theory of computation → Routing and network design problems

Keywords and phrases non-uniform faults, network design, approximation algorithm

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.36

Category Track A: Algorithms, Complexity and Games

Funding Chandra Chekuri: Supported in part by NSF grants CCF-1910149 and CCF-1907937.
Rhea Jain: Supported in part by NSF grant CCF-1907937.

Acknowledgements We thank Qingyun Chen for clarifications on a proof in [17]. We thank Joseph
Cheriyan for pointers and helpful comments on flexible graph connectivity. The initial impetus for
our work on this topic came from [8].

1 Introduction

The Survivable Network Design Problem (SNDP) is an important problem in combinatorial
optimization that generalizes many well-known problems related to connectivity and is
also motivated by practical problems related to the design of fault-tolerant networks. The
input to this problem is an undirected graph G = (V, E) with non-negative edge costs
c : E → R+ and a collection of source-sink pairs (s1, t1), . . . , (sh, th), each with an integer
connectivity requirement ri. The goal is to find a minimum-cost subgraph H of G such that

EA
T
C
S

© Chandra Chekuri and Rhea Jain;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 36; pp. 36:1–36:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:chekuri@illinois.edu
mailto:rheaj3@illinois.edu
https://doi.org/10.4230/LIPIcs.ICALP.2023.36
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

36:2 Network Design in Non-Uniform Fault Models

H has ri connectivity for each pair (si, ti). We focus on edge-connectivity requirements in
this paper.1 SNDP contains as special cases classical problems such as s-t shortest path,
minimum spanning tree (MST), minimum k-edge-connected subgraph (k-ECSS), Steiner
tree, Steiner forest and several others. It is NP-Hard and APX-Hard to approximate. There
is a 2-approximation via the iterated rounding technique [32].

A pair (s, t) that is k-edge-connected in G is robust to the failure of any set of k − 1
edges. In various settings, the set of edges that can fail can be correlated and/or exhibit
non-uniform aspects. We are interested in network design in such settings, and discuss a few
models of interest that have been studied in the (recent) past. We start with the flexible
graph connectivity model (flex-connectivity for short) that was the impetus for our work.

Flexible graph connectivity. In this model, first introduced by Adjiashvili [1] and studied in
several recent papers [3, 4, 5, 8, 7], the input is an edge-weighted undirected graph G = (V, E)
where the edge set E is partitioned to safe edges S and unsafe edges U . The assumption,
as the names suggest, is that unsafe edges can fail while safe edges cannot. We say that a
vertex-pair (s, t) is (p, q)-flex-connected in a subgraph H of G if s and t are p-edge-connected
after deleting from H any subset of at most q unsafe edges. The input, as in SNDP, consists of
G and h source-sink pairs; the i’th pair now specifies a (pi, qi)-flex-connectivity requirement.
The goal is to find a min-cost subgraph H of G such that for each i, si and ti are (pi, qi)-
flex-connected in H. We refer to this as the Flex-SNDP problem. Note that Flex-SNDP
generalizes SNDP in two ways2.

Bulk-robust network design. This fairly general non-uniform model was introduced by
Adjiashvili, Stiller and Zenklusen [6]. Here an explicit scenario set Ω = {F1, F2, . . . , Fm} is
given as part of the input where each Fj ⊆ E. The goal is to find a min-cost subgraph H of
G such that each of the given pairs (si, ti) remains connected in H −Fj for each j ∈ [m]. We
consider a slight generalization of this problem in which each scenario is now a pair (Fj ,Kj)
where Kj is a set of source-sink pairs. As earlier, the goal is to find a min-cost subgraph H

of G such that for each j ∈ [m], each pair (si, ti) in Kj is connected in H − Fj . The width of
the failure scenarios is max1≤j≤ℓ |Fj |. We use Bulk-SNDP to refer to this problem.

The advantage of the bulk-robust model is that one can specify arbitrarily correlated
failure patterns, allowing it to capture many well studied problems in network design. We
observe that SNDP and Flex-SNDP problem can be cast as special cases of Bulk-SNDP
model where the width is maxi(ri − 1) in the former case, and maxi(pi + qi − 1) in the
latter case. The slight generalization on Bulk-SNDP described above also allows us to
model a new problem recently proposed by Dinitz, Koranteng, and Kortsarz [19] called
Relative Survivable Network Design (RSNDP). This problem allows one to ask for
higher connectivity even when the underlying graph G has small cuts. The input is an
edge-weighted graph G = (V, E) and source-sink pairs (si, ti) each with requirement ri; the
goal is to find a min-cost subgraph H of G such that for each F ⊆ E with |F | < ri, (si, ti) is
connected in H − F if si and ti are connected in G− F . It is easy to see that RSNDP is a
special case of Bulk-SNDP with width at most maxi(ri − 1). A disadvantage of Bulk-SNDP
is that scenarios have to be explicitly listed, while the other models discussed specify failure
scenarios implicitly. However, when connectivity requirements are small/constant, one can
reduce to Bulk-SNDP by explicitly listing the failure sets.

1 In the literature the term EC-SNDP and VC-SNDP are used to distinguish edge and vertex connectivity
requirements. We use SNDP in place of EC-SNDP.

2 If all edges are safe (E = S), then (p, 0)-flex-connectivity is equivalent to p-edge-connectivity. Similarly,
if all edges are unsafe (E = U), then (1, q − 1)-flex-connectivity is equivalent to q-edge-connectivity.

C. Chekuri and R. Jain 36:3

While SNDP admits a 2-approximation, the approximability of network design in the
preceding models is not well-understood. The known results mostly focus on two special cases:
(i) the single pair case where there is only one pair (s, t) with a connectivity requirement
and (ii) the spanning or global connectivity case when all pairs of vertices have identical
connectivity requirement. Even in the single pair case, there are results that show that
problems in the non-uniform models are hard to approximate to poly-logarithmic or almost-
polynomial factors when the connectivity requirement is not bounded [6, 5]. Further, natural
LP relaxations in some cases can also be shown to have large integrality gaps [16]. Motivated
by these negative results and practical considerations, we focus our attention on Flex-
SNDP when the max connectivity requirement p, q are small, and similarly on Bulk-SNDP
when the width is small. Other network design problems with similar hardness results
have admitted approximation ratios that depend on the max connectivity requirement (for
example, VC-SNDP [12, 18, 38] and (s,t) case of Bulk-Robust [6]).

1.1 Our contribution
We are mainly motivated by Flex-SNDP and insights for it via Bulk-SNDP. We make two
broad contributions. Our first set of results is on special cases of Flex-SNDP for which
we obtain constant factor approximations. Our second contribution is a poly-logarithmic
approximation for Flex-SNDP, Bulk-SNDP, and RSNDP when the requirements are small.

We use the terminology (p, q)-Flex-ST to refer to the single-pair problem with requirement
(p, q). We use the term (p, q)-FGC to refer to the spanning/global-connectivity problem
where all pairs of vertices have the (p, q)-flex-connectivity requirement (the term FGC is to
be consistent with previous usage [3, 8]).

(p, q)-FGC. Adjiashvili et al. [3] considered (1, 1)-FGC and obtained a constant factor
approximation that was subsequently improved to 2 by Boyd et al. [8]. [8] obtained several
results for (p, q)-FGC including a 4-approximation for (p, 1)-FGC, a (q + 1)-approximation
for (1, q)-FGC, and a O(q log n)-approximation for (p, q)-FGC. The first non-trivial case of
small p, q for which we did not know a constant factor is (2, 2)-FGC. We prove several results
that, as a corollary, yield constant factor approximation for small values of p, q.

▶ Theorem 1. For any q ≥ 0 there is a (2q + 2)-approximation for (2, q)-FGC. For any
p ≥ 1 there is a (2p + 4)-approximation for (p, 2)-FGC, and a (4p + 4)-approximation for
(p, 3)-FGC. Moreover, for all even p ≥ 2 there is an (6p + 4)-approximation for (p, 4)-FGC.

▶ Remark 2. In independent work Bansal et al. [7] obtained an O(1)-approximation for
(p, 2)-FGC for any p ≥ 1 (6 when p is even and 20 when p is odd). More broadly, they obtain
constant factor approximations for a special class of augmentation problems and demonstrate
several interesting applications.

(p, q)-Flex-ST. Adjiashivili et al. [4] considered (1, q)-Flex-ST and (p, 1)-Flex-ST and
obtained several results. They described a q-approximation for (1, q)-Flex-ST and a (p + 1)-
approximation for (p, 1)-Flex-ST; when p is a fixed constant they obtain a 2-approximation.
Also implicit in [6] is an O(q(p + q) log n)-approximation algorithm for (p, q)-Flex-ST that
runs in nO(p+q)-time. No constant factor approximation was known when p, q ≥ 2 with
(2, 2)-Flex-ST being the first non-trivial case. We prove a constant factor approximation for
this and several more general settings via the following theorem.

ICALP 2023

36:4 Network Design in Non-Uniform Fault Models

▶ Theorem 3. For all p, q where (p + q) > pq/2, there is an O((p + q)O(p))-approximation
algorithm for (p, q)-Flex-ST that runs in nO(p+q) time. In particular, there is an O(1)
approximation for (p, 2) and (2, q)-Flex-ST when p, q are fixed constants.

Flex-SNDP, Bulk-SNDP, and RSNDP. We show that these problems admit poly-
logarithmic approximation algorithms when the width/connectivity requirements are small.

▶ Theorem 4. There is a randomized algorithm that yields an O(k4 log7 n)-approximation
for Bulk-SNDP on instances with width at most k, and runs in expected polynomial time.

▶ Corollary 5. There is a randomized algorithm that yields an O(q(p + q)3 log7 n)- approx-
imation for Flex-SNDP when (pi, qi) ≤ (p, q) for all pairs (si, ti), and runs in expected
nO(q)-time.

▶ Corollary 6. There is a randomized algorithm that yields an O(k4 log7 n)-approximation for
RSNDP where k is the maximum connectivity requirement, and runs in expected polynomial
time.

As far as we are aware of, no previous approximation algorithms were known for SNDP
versions of flexible graph connectivity (with both p, q ≥ 2) or bulk-robustness.

1.2 Overview of techniques and related work
Network design has substantial literature. We describe closely related work and results to
put ours in context.

SNDP and related connectivity problems. SNDP is a canonical problem in network
design for connectivity that captures many problems. We refer the reader to some older
surveys [28, 36] on approximation algorithms for connectivity problems, and several recent
papers with exciting progress on TSP and weighted Tree and Cactus augmentation. Frank’s
books is an excellent source for polynomial-time solvable exact algorithms [23]. For SNDP,
the augmentation approach was pioneered in [41], and was refined in [25]. These led
to 2Hk approximation where k is the maximum connectivity requirement. Jain’s iterated
rounding approach [32] obtained a 2-approximation. The nice structural results that underpin
the algorithms for SNDP have been extended to element connectivity introduced in [33];
consequently, Elem-SNDP also admits a 2-approximation [21]. VC-SNDP has posed non-
trivial technical challenges; the problem is not constant factor approximable when the
maximum connectivity requirement is large [12]. In a breakthrough result, [18], Chuzhoy and
Khanna gave an O(k3 log n) approximation via a reduction to element connectivity, where k

is the maximum connectivity. Nutov [38] improves this to an O(k2) approximation for the
single-source VC-SNDP case; however, there has been no further progress in obtaining an
f(k)-approximation for the general VC-SNDP problem.

Flexible Graph Connectivity. Flexible graph connectivity has been a topic of recent interest,
although the model was introduced earlier in the context of a single pair [1]. Adjiashvili,
Hommelsheim and Mühlenthaler [3] introduced FGC (which is the same as (1, 1)-FGC)
and pointed out that it generalizes the well-known MST and 2-ECSS problems. Several
approximation algorithms for various special cases of FGC and Flex-ST were obtained by
Adjiashvili et al.[3] and Boyd et al. [8], as described in Section 1.1.

Adjiashvili et al. [5] also showed hardness results in the single pair setting. They prove
that (1, k)-Flex-ST in directed graphs is at least as hard as directed Steiner tree which
implies poly-logarithmic factor inapproximability [31]. They prove that (k, 1)-Flex-ST in

C. Chekuri and R. Jain 36:5

directed graphs is at least as hard to approximate as directed Steiner forest (which has
almost polynomial factor hardness [20]). The hardness results are when k is part of the input
and large, and show that approximability of network design in this model is substantially
different from the edge-connectivity model.

Bulk-Robust Network Design. This model was initiated in [6]. They obtained an O(log n +
log m) approximation for the Bulk-Robust spanning tree problem (as a special case of the
more general matroid basis problem). The authors show that the directed single pair problem
(Bulk-Robust shortest path) is very hard to approximate. The hardness reduction motivated
the definition of width. The authors obtain an O(k2 log n)-approximation for Bulk-Robust
shortest path via a nice reduction to the Set Cover problem and the use of the augmentation
approach that we build upon here. For the special case of k = 2 the authors obtain an
O(1)-approximation. Adjiashvili [2] showed that if the graph is planar then one can obtain
an O(k2)-approximation for both Bulk-Robust shortest path and spanning tree problems
– he uses the augmentation approach from [6] and shows that the corresponding covering
problem in each augmentation phase corresponds to a Set Cover problem that admits a
constant factor approximation. As far as we are aware, there has not been any progress on
the general setting beyond the spanning tree and shortest path cases.

Relative Network Design. This model was introduced in very recent work [19]. The authors
obtain a 2-approximation for the spanning case via nice use of the iterated rounding technique
even though the requirement function is not skew-supermodular. They also obtain a simple
2-approximation when the maximum requirement is 2. They obtain a 27

4 -approximation for
the (s, t)-case when the maximum demand is 3.

Survivable Network Design for Group Connectivity. As we remarked, one part of this
work builds on the recent framework of Chen et al. [17]. Their main motivation was to
address the approximability of the survivable network design problem with group connectivity
requirements. We refer the reader to [24, 30, 31, 14, 13, 17] and pointers to the extensive
work on the approximability of these problems.

Our Techniques. As we remarked, the non-uniform models have been difficult to handle
for existing algorithmic techniques. The structures that underpins the known algorithms
for SNDP (primal-dual [41] and iterated rounding [32]) are skew-supermodularity of the
requirement function and submodularity of the cut function in graphs. Since non-uniform
models do not have such clean structural properties, these known techniques cannot be
applied directly. Another technique for network design, based on several previous works, is
augmentation. In the augmentation approach we start with an initial set of edges F0 that
partially satisfy the connectivity constraints. We then augment F0 with a set F in the graph
G− F0; the augmentation is typically done to increase the connectivity by one unit for pairs
that are not yet satisfied. We repeat this process in several stages until all connectivity
requirements are met. The utility of the augmentation approach is that it allows one to
reduce a higher-connectivity problem to a series of problems that solve a potentially simpler
{0, 1}-connectivity problem. An important tool in this area is a 2-approximation for covering
an uncrossable function (a formal definition is given in Section 3) [41].

In trying to use the augmentation approach for Flex-SNDP and its special cases, we see
that the resulting functions are usually not uncrossable. To prove Theorems 1 and 3, we
overcome this difficulty by decomposing the family of cuts to be covered in the augmentation

ICALP 2023

36:6 Network Design in Non-Uniform Fault Models

problem into a sequence of cleverly chosen uncrossable subfamilies. Our structural results
hold for certain range of values of p and q and hint at additional structure that may be
available to exploit in future work. Boyd et al. also show a connection to capacitated network
design (also implicitly in [5]) which has been studied in several works [25, 9, 10, 11]. This
model generalizes standard edge connectivity by allowing each edge e to have an integer
capacity ue ≥ 1. One can reduce capacitated network design to standard edge connectivity
by replacing each edge e with ue parallel edges, blowing up the approximation factor by
maxe ue. Boyd et al. show that (1, k)-Flex-SNDP and (k, 1)-Flex-SNDP can be reduced to
Cap-SNDP with maximum capacity k. While this reduction does not extend when p, q ≥ 2,
it provides a useful starting point that we exploit for Theorem 3.

We use a completely different algorithmic approach to prove Theorem 4. We rely on
a recent novel framework of Chen, Laekhanukit, Liao, and Zhang [17] to tackle survivable
network design in group connectivity setting. They used the seminal work of Räcke [39]
on probabilistic approximation of capacitated graphs via trees, and the group Steiner tree
rounding techniques of Garg, Konjevod and Ravi [24], and subsequent developments [27].
We adapt their ideas to handle the augmentation problem for Flex-SNDP and Bulk-SNDP.
We refer the reader to Section 4 since the framework is technical.

Organization. Section 2 sets up the relevant background on the LP relaxations for Flex-
SNDP and Bulk-SNDP. Section 3 outlines the proofs of Theorems 1 and 3. Section 4 outlines
the proofs of Theorems 4 and the resulting corollaries 5 and 6. This paper combines and
extends results from two preliminary versions; [16] for the first set of results discussed in
Section 3, and [15] for the second set of results discussed in Section 4. A full version of this
paper will be made publicly available in the near future.

2 Preliminaries

Throughout the paper we will assume that we are given an undirected graph G = (V, E)
along with a cost function c : E → R≥0. When we say that H is a subgraph of G = (V, E)
we implicitly assume that H is an edge-induced subgraph, i.e. H = (V, F) for some F ⊆ E.
For any subset of edges F ⊆ E and any set S ⊆ V we use the notation δF (S) to denote the
set of edges in F that have exactly one endpoint in S. We may drop F if it is clear from the
context. For all discussion of flex-connectivity, we will let S denote the set of safe edges and
U denote the set of unsafe edges.

Flex-SNDP LP Relaxation. We describe an LP relaxation for (p, q)-Flex-SNDP problem.
Recall that we are given a set of h terminal pairs (si, ti) ⊆ V × V and the goal is to choose
a min-cost subset of the edges F such that in the subgraph H = (V, F), si and ti are
(p, q)-flex-connected for any i ∈ [h]. Let C = {S ⊂ V | ∃i ∈ [h] s.t. |S ∩ {si, ti}| = 1} be the
set of all vertex sets that separate some terminal pair. For a set of edges F to be feasible
for the given (p, q)-Flex-SNDP instance, we require that for all S ∈ C, |δF (S) \ B| ≥ p for
any B ⊆ U with |B| ≤ q. We can write cut covering constraints expressing this condition,
but these constraints are not adequate by themselves. To improve this LP, we consider the
connection to capacitated network design: we give each safe edge a capacity of p + q, each
unsafe edge a capacity of p, and require p(p + q) connectivity for the terminal pairs; it is
not difficult to verify that this is a valid constraint. These two sets of constraints yield the
following LP relaxation with variables xe ∈ [0, 1], e ∈ E.

C. Chekuri and R. Jain 36:7

min
∑
e∈E

c(e)xe

subject to
∑

e∈δ(S)−B

xe ≥ p S ∈ C, B ⊆ U , |B| ≤ q

(p + q)
∑

e∈δ(S)∩S

xe + p
∑

e∈δ(S)∩U

xe ≥ p(p + q) S ∈ C

xe ∈ [0, 1] e ∈ E

The following lemma borrows ideas from [8, 10].

▶ Lemma 7. The Flex-SNDP LP relaxation can be solved in nO(q) time. For (p, q)-FGC, it
can be solved in polynomial time.

Proof. We show a polynomial time separation oracle for the given LP. Suppose we are given
some vector x ∈ [0, 1]|E|. We first check if the capacitated min-cut constraints are satisfied.
This can be done in polynomial time by giving every safe edge a weight of p + q and every
unsafe edge a weight of p, and checking that the min-cut value is at least p(p + q). If it is not,
we can find the minimum cut and output the corresponding violated constraint. Suppose all
capacitated constraints are satisfied. Then, for each B ⊆ U , |B| ≤ q we remove B and check
that for each s, t ∈ T , the s-t min-cut value in the graph G−B with edge-capacities given
by x is at least p. Since there are at most nO(q) such possible sets B, we get our desired
separation oracle.

In the FGC case, if there is a remaining unsatisfied constraint, then there must must
be some S ⊂ V and some B ⊆ U , |B| ≤ q, such that

∑
e∈δ(S)−B xe < p. In particular,∑

e∈S∩δ(S)−B xe < p and
∑

e∈U∩δ(S)−B xe < p. We claim that the total weight (according to
weights (p + q) for safe edges and p for unsafe edges) going across δ(S) is at most 2p(p + q):
at most (p + q)p from S ∩ (δ(S)−B), at most p2 from U ∩ (δ(S)−B), and at most pq from
B. Recall that the min-cut of the graph according the weights has already been verified to
be at least p(p + q). Hence, any violated cut from the first set of constraints corresponds
to 2-approximate min-cut. It is known via Karger’s theorem that there are at most O(n4)
2-approximate min-cuts in a graph, and moreover they can also be enumerated in polynomial
time [34, 35]. We can enumerate all 2-approximate min-cuts and check each of them to see if
they are violated. To verify whether a candidate cut S is violated we consider the unsafe
edges in δ(S) ∩ U and sort them in decreasing order of xe value. Let B′ be a prefix of this
sorted order of size min{q, |δ(S) ∩ U|}. It is easy to see that that δ(S) is violated iff it is
violated when B = B′. Thus, we can verify all candidate cuts efficiently. ◀

Bulk-SNDP LP Relaxation. We can similarly define an LP relaxation for the Bulk-SNDP
problem. As above, we have a variable xe ∈ [0, 1] for each edge e ∈ E.

min
∑
e∈E

c(e)xe

subject to
∑

e∈δ(S)\Fj

xe ≥ 1 ∀(Fj ,Kj) ∈ Ω, S separates a terminal pair in Kj

xe ∈ [0, 1]

Note that the LP has a separation oracle that runs in time polynomial in n and m:
for each scenario (Fj ,Kj), we can remove Fj from the graph and check that the minimum
(u, v)-cut is at least 1 for each (u, v) ∈ Kj .

ICALP 2023

36:8 Network Design in Non-Uniform Fault Models

Augmentation. The results of this paper rely on the augmentation framework. We first
discuss Flex-SNDP. Suppose G = (V, E), {si, ti}i∈[h] is an instance of (p, q)-Flex-SNDP. We
observe that (p, 0)-Flex-SNDP instance can be solved via 2-approximation to EC-SNDP.
Hence, we are interested in q ≥ 1. Let F1 be a feasible solution for the (p, q − 1)-Flex-
SNDP instance. This implies that for any cut S that separates a terminal pair we have
|δF1∩S(S)| ≥ p or |δF1(S)| ≥ p + q − 1. We would like to augment F1 to obtain a feasible
solution to satisfy the (p, q) requirement. Define a function f : 2|V | → {0, 1} where f(S) = 1
iff (i) S separates a terminal pair and (ii) |δF1∩S(S)| < p and |δF1(S)| = p + q− 1. We call S

a violated cut with respect to F1. Since F1 satisfies (p, q − 1) requirement, if |δF1∩S | < p it
must be the case that |δF1(S)| ≥ p + q − 1. The following lemma is simple.

▶ Lemma 8. Suppose F2 ⊆ E \ F1 is a feasible cover for f , that is, δF2(S) ≥ f(S) for all S.
Then F1 ∪ F2 is a feasible solution to (p, q)-Flex-SNDP.

The augmentation problem is then to find a min-cost subset of edges to cover f in G− F1.
The key observation is that the augmentation problem does not distinguish between safe
and unsafe edges and hence we can rely on traditional connectivity augmentation ideas.
Note that if we instead tried to augment from (p− 1, q) to (p, q)-flex-connectivity, we would
still need to distinguish between safe and unsafe edges. The following lemma shows that
the LP relaxation for the original instance provides a valid cut-covering relaxation for the
augmentation problem.

▶ Lemma 9. Let x ∈ [0, 1]|E| be a feasible LP solution for a given instance of (p, q)-Flex-
Steiner. Let F1 be a feasible solution that satisfies (p, q − 1) requirements for the terminal.
Then, for any violated cut S ⊆ V in (V, F1), we have

∑
e∈δ(S)\F1

xe ≥ 1.

Adjiashvili et al [6] also define a corresponding augmentation problem for the bulk robust
network design model as follows: given an instance to Bulk-SNDP, let Ωℓ =

⋃
j∈[m]{(F,Kj) :

|F | ≤ ℓ and F ⊆ Fj}. Let Hℓ ⊆ E be a subset of edges that satisfy the constraints defined
by the scenarios in Ωℓ. Then, a solution to the augmentation problem from ℓ− 1 to ℓ is a set
of edges H ′ such that Hℓ−1 ∪H ′ satisfies the constraints defined by scenarios in Ωℓ. It is
not difficult to verify that any solution to the original instance Ω is also a solution to any of
the augmentation problems, and any solution satisfying all scenarios in Ωk also satisfies all
scenarios in Ω, where k is the width of the Bulk-SNDP instance.

3 Uncrossability-Based Approximation Algorithms

In this section, we prove Theorem 1 and Theorem 3. Recall that we are given a graph
G = (V, E) with cost function on the edges c : E → R≥0 and a partition of the edge set E

into safe edges S and unsafe edges U . In the (p, q)-FGC problem, our goal is to find the
cheapest set of edges such that every cut has either p safe edges or p + q total edges. The
(p, q)-Flex-ST problem is similar, except that we are also given s, t ∈ V as part of the input
and we focus only on cuts separating s from t.

We start by providing some necessary background on uncrossable/ring families and
submodularity of the cut function. We then prove a simple O(q)-approximation for (2, q)-
FGC by directly applying existing algorithms for covering uncrossable functions. Next, we
devise a framework for augmentation when the requirement function is not uncrossable.
Finally, we prove our results for special cases of (p, q)-FGC and (p, q)-Flex-ST using this
framework.

C. Chekuri and R. Jain 36:9

Uncrossable functions and families. Uncrossable functions are a general class of requirement
functions that are an important ingredient in network design [41, 26, 28, 36].

▶ Definition 10. A function f : 2V → {0, 1} is uncrossable if for every A, B ⊆ V such
that f(A) = f(B) = 1, one of the following is true: (i) f(A ∪ B) = f(A ∩ B) = 1, (ii)
f(A−B) = f(B −A) = 1. A family of cuts C ⊂ 2V is an uncrossable family if the indicator
function fC : 2V → {0, 1} with f(S) = 1 iff S ∈ C, is uncrossable.

For a graph G = (V, E), a requirement function f : 2V → {0, 1}, and a subset of edges
A ⊆ E, we say a set S ⊆ V is violated with respect to A, f if f(S) = 1 and δA(S) = ∅. The
following important result gives a 2-approximation algorithm for the problem of covering an
uncrossable requirement function.

▶ Theorem 11 ([41]). Let G = (V, E) be an edge-weighted graph and let f : 2V → {0, 1} be
an uncrossable function. Suppose there is an efficient oracle that for any A ⊆ E outputs all
the minimal violated sets of f with respect to A. Then there is an efficient 2-approximation
for the problem of finding a minimum cost subset of edges that covers f .

A special case of uncrossable family of sets is a ring family. We say that an uncrossable
family C ⊆ 2V is a ring family if the following conditions hold: (i) if A, B ∈ C and A, B

properly intersect3 then A∩B and A∪B are in C and (ii) there is a unique minimal set in C.
We observe that if C is an uncrossable family such that there is a vertex s contained in every
A ∈ C then C is automatically a ring family. Theorem 11 can be strengthened for this case.
There is an optimum algorithm to find a min-cost cover of a ring family – see [37, 38, 22].

In order to use Theorem 11 in the augmentation framework, we need to be able efficiently
find all the minimal violated sets of the family. As above, we let F1 denote a feasible solution
for the (p, q − 1)-Flex-SNDP instance. For any fixed p, q, we can enumerate all minimal
violated sets in nO(p+q) time by trying all possible subsets of p + q − 1 edges in F1. In the
context of (p, q)-FGC, the total number of violated cuts in the augmentation problem is
bounded by O(n4). See [8] and the proof of Lemma 7 for details.

For the following sections on (p, q)-FGC, we let C denote the family of violated cuts.
Note that such families are symmetric, since δ(S) = δ(V − S). For any two sets A, B ∈ C,
if A ∪ B = V then by symmetry, V − A, V − B ∈ C. In this case, V − A = B − A and
V −B = A−B, so A and B uncross. Therefore, when proving uncrossability of A and B,
we assume without loss of generality that (A ∪B) ̸= V .

Submodularity and posimodularity of the cut function. It is well-known that the cut
function of an undirected graph is symmetric and submodular. Submodularity implies that
for all A, B ⊆ V , |δ(A)|+ |δ(B)| ≥ |δ(A ∩B)|+ |δ(A ∪B)|. Symmetry and submodularity
also implies posimodularity: for all A, B ⊆ V , |δ(A)|+ |δ(B)| ≥ |δ(A−B)|+ |δ(B −A)|.

3.1 An O(q)-approximation for (2, q)-FGC
The following lemma shows that the augmentation problem for increasing flex-connectivity
from (2, q − 1) to (2, q), for any q ≥ 1 corresponds to covering an uncrossable function.

▶ Lemma 12. The set of all violated cuts when augmenting from (2, q−1)-FGC to (2, q)-FGC
is uncrossable.

3 A, B properly intersect if A ∩ B ̸= ∅ and A − B, B − A ̸= ∅.

ICALP 2023

36:10 Network Design in Non-Uniform Fault Models

The preceding lemma yields a 2(q + 1)-approximation for (2, q)-FGC as follows. We
start with a 2-approximation for (2, 0)-FGC that can be obtained by using an algorithm for
2-ECSS. Then for we augment in q-stages to go from a feasible solution to (2, 0)-FGC to
(2, q)-FGC. The cost of augmentation in each stage is at most OPT where OPT is the cost of
an optimum solution to (2, q)-FGC. We can use the known 2-approximation algorithm in each
augmentation stage since the family is uncrossable. Recall from Section 2 that the violated
cuts can be enumerated in polynomial time, and hence the primal-dual 2-approximation for
covering an uncrossable function can be implemented in polynomial-time. This leads to the
claimed approximation and running time.

3.2 Identifying Uncrossable Subfamilies

We have seen that the augmentation problem from (2, q − 1)-FGC to (2, q)-FGC leads to
covering an uncrossable function. Boyd et al. [8] showed that augmenting from (p, 0)-FGC
to (p, 1)-FGC also leads to an uncrossable function for any p ≥ 1. However this approach
fails for most cases of augmenting from (p, q − 1) to (p, q) (see [16] for examples). However,
in certain cases, we can take a more sophisticated approach where we consider the violated
cuts in a small number of stages. In each stage, we choose a subfamily of the violated cuts
that is uncrossable. In such cases, we can obtain a 2k-approximation for the augmentation
problem, where k is the upper bound on the number of stages.

Suppose we want to augment from (p, q − 1) to (p, q) (for either FGC or the Flex-ST
setting). Let G = (V, E) be the original input graph, and let F be the set of edges we
have already included. Recall that a cut ∅ ≠ A ⊊ V is violated iff |δF (A)| = p + q − 1,
|δF ∩S(A)| < p, and in the Flex-ST case, A separates s from t. Instead of attempting to cover
all violated sets at once, we do so in stages. In each stage we consider the violated cuts
based on the number of safe edges. We begin by covering all violated sets with no safe edges,
then with one safe edge, and iterate until all violated sets are covered. This is explained in
Algorithm 1 below.

Algorithm 1 Augmenting from (p, q − 1) to (p, q) in stages.

1: F ′ ← F

2: for i = 0, . . . , p− 1 do
3: Ci ← {S : S is violated and |δF ′∩S(S)| = i}
4: F ′

i ← approximation algorithm to cover cuts in Ci

5: F ′ ← F ′ ∪ F ′
i

6: end for
7: return F ′

3.3 Approximating (p, q)-FGC for q ≤ 4

In this section, we show that the above approach works to augment from (p, q − 1)-FGC
to (p, q)-FGC whenever q ≤ 3 and also for q = 4 when p is even. The only unspecified
part Algorithm 1 is to cover cuts in Ci in the i’th stage. If we can prove that Ci forms an
uncrossable family then we can obtain a 2-approximation in each stage. First, we prove a
generic and useful lemma regarding cuts in Ci.

For the remaining lemmas, we let Fi ⊆ E denote the set of edges F ′ at the start of iteration
i. In other words, Fi is a set of edges such that for all ∅ ≠ A ⊊ V , if |δFi(A)| = p + q − 1,
then |δFi∩S(A)| ≥ i.

C. Chekuri and R. Jain 36:11

▶ Lemma 13. Fix an iteration i ∈ {0, . . . , p− 1}. Let Ci be as defined in Algorithm 1. Then,
if A, B ∈ Ci and
1. |δFi

(A ∩B)| = |δFi
(A ∪B)| = p + q − 1, or

2. |δFi(A−B)| = |δFi(B −A)| = p + q − 1
then A and B uncross, i.e. A ∩B, A ∪B ∈ Ci or A−B, B −A ∈ Ci.

Note that the preceding lemma holds for the high-level approach. Now we focus on cases
where we can prove that Ci is uncrossable.

▶ Lemma 14. Fix an iteration i ∈ {0, . . . , p− 1}. Let Ci be as defined in Algorithm 1. Then,
for q ≤ 3, Ci is uncrossable.

Proof. Suppose A, B ⊆ V such that δFi(A) and δFi(B) both have exactly i safe and
p + q − 1− i unsafe edges. Suppose for the sake of contradiction that they do not uncross.
By Lemma 13, one of δFi(A∩B) and δFi(A∪B) must have at most p + q− 2 edges, and the
same holds for δFi

(A−B) and δFi
(B −A). Without loss of generality, suppose δFi

(A ∩B)
and δFi

(A− B) each have at most p + q − 2 edges. By the assumptions on Fi, they must
both have at least p safe edges, hence they each have at most q − 2 unsafe edges. Note that
δFi

(A) ⊆ δFi
(A − B) ∪ δFi

(A ∩ B), hence δFi
(A) can have at most 2(q − 2) unsafe edges.

When q ≤ 3, 2(q−2) < q, which implies that δFi(A) has strictly more than p−1 safe edges, a
contradiction. Notice that δFi

(A) ⊆ δFi
(B−A)∪δFi

(A∪B), δFi
(B) ⊆ δFi

(A−B)∪δFi
(A∪B),

and δFi(B) ⊆ δFi(B − A) ∪ δFi(A ∩ B); therefore the same argument follows regardless of
which pair of sets each have strictly less than p + q − 2 edges. ◀

▶ Corollary 15. For any p ≥ 2 there is a (2p + 4)-approximation for (p, 2)-FGC and a
(4p + 4)-approximation for (p, 3)-FGC.

Can we extend the preceding lemma for q = 4? It turns out that it does work when p is
even but fails for odd p ≥ 3.

▶ Lemma 16. Fix an iteration i ∈ {0, . . . , p− 2}. Let Ci be as defined in Algorithm 1. Then,
for q = 4, Ci is uncrossable. Furthermore, if p is an even integer, Cp−1 is uncrossable.

The preceding lemma leads to a (6p + 4)-approximation for (p, 4)-FGC when p is even by
augmenting from a feasible solution to (p, 3), since we pay an additional cost of 2p ·OPT .
The preceding lemma also shows that the bottleneck for odd p is in covering Cp−1. It may be
possible to show that Cp−1 separates into a constant number of uncrossable families leading
to an O(p)-approximation for (p, 4)-FGC for all p. The first non-trivial case is when p = 3.

3.4 An O(1)-Approximation for Flex-ST
In this section, we provide a constant factor approximation for (p, q)-Flex-ST for all fixed
p, q that satisfy 2(p + q) > pq. We follow the general approach outlined in 3.2 with some
modifications. In particular, we start with a stronger set of edges F than in the FGC case
above. Let E′ ⊆ E denote a feasible solution to (p, q − 1)-Flex-ST.

Recall from Section 1 the capacitated network design problem, in which each edge has
an integer capacity ue ≥ 1. Consider an instance of the (p(p + q))-Cap-ST problem on G

where every safe edge is given a capacity of p + q and every unsafe edge is given a capacity
of p. Our goal is to find the cheapest set of edges that support a flow of (p(p + q)) from s

to t. It is easy to see that any solution to (p, q)-Flex-ST is also a feasible solution for this
capacitated problem: every s-t cut either has at least p safe edges or at least p + q total edges,
and either case gives a capacity of at least p(p + q). As mentioned in Section 1, there exists a

ICALP 2023

36:12 Network Design in Non-Uniform Fault Models

2 maxe(ue) = 2(p + q) approximation for this problem. Let E′′ ⊆ E be such a solution, and
note that cost(E′′) ≤ 2(p + q) ·OPT , where OPT denotes the cost of an optimal solution to
(p, q)-Flex-ST.

Let F = E′ ∪ E′′. We redefine C to limit ourselves to the set of violated cuts containing
s, i.e. C = {A ⊂ V : s ∈ A, t /∈ A, |δF ∩S(A)| < p, |δF ∩U (A)| = p + q − 1}. By symmetry, it
suffices to only consider cuts containing s, since covering a set also covers its complement.
Following the discussion in Section 3.2, we use Algorithm 1 to cover violated cuts in stages
based on the number of safe edges. However, unlike the spanning case, the sets Ci are not
uncrossable in the single pair setting, even for (2, 2)-Flex-ST. In this case, we aim to further
partition Ci into subfamilies that we can cover efficiently.

For the remaining lemmas, we let Fi ⊆ E denote the set of edges F ′ at the start of
iteration i. In other words, Fi is a set of edges such that for all cuts A separating s from t, if
|δFi

(A)| = p + q − 1, then |δFi∩S(A)| ≥ i. We begin with a structural lemma.

▶ Lemma 17. Fix an iteration i ∈ {0, . . . , p− 1}. Let Ci be as defined in Algorithm 1. Let
A, B ∈ Ci. Then, either
1. A ∪B, A ∩B ∈ Ci, i.e. A and B uncross, or
2. max(δFi∩S(A ∩B), δFi∩S(A ∪B)) ≥ p.

Consider a flow network on the graph (V, Fi) with safe edges given a capacity of (p + q)
and unsafe edges given a capacity of p. Since E′′ ⊆ Fi, Fi satisfies the p(p + q)-Cap-ST
requirement. Therefore, the minimum capacity s-t cut and thus the maximum s-t flow value
is at least p(p + q). Since capacities are integral, there is some integral max flow f . By flow
decomposition, we can decompose f into a set P of |f | paths, each carrying a flow of 1, and
we can find P in polynomial time.

For each Q ⊆ P where |Q| = i, we define a subfamily of violated cuts CQ
i as follows. Let

Q = P1, . . . , Pi. Then, A ∈ Ci is in CQ
i iff there exist distinct edges e1, . . . , ei ∈ S satisfying:

1. ∀j ∈ [i], δFi
(A) ∩ Pj = {ej},

2. δFi∩S(A) = {e1, . . . , ei}.
Informally, CQ

i is the set of all violated cuts that intersect the paths of Q exactly once and
on a distinct safe edge each.

▶ Lemma 18. Suppose pq < 2p + 2q. If A ∈ Ci, then there exists some Q ⊆ P, |Q| = i, such
that A ∈ CQ

i .

The above lemma shows that ∪Q⊆P,|Q|=iCQ
i = Ci. Therefore, it suffices to cover each CQ

i .

▶ Lemma 19. For any Q ⊆ P, |Q| = i, CQ
i is a ring family.

We combine the above lemmas to obtain a constant factor approximation for covering Ci.

▶ Lemma 20. Suppose 2(p + q) > pq and p, q are fixed. Then, there exists an algorithm that
runs in nO(p+q) time to cover all cuts in Ci with cost at most

(
p2+2pq

i

)
·OPT .

The above lemma gives us Theorem 3 as a corollary. At the beginning of each augmentation
step, before running Algorithm 1, we compute a solution to the (p(p + q))-Cap-ST problem,
which we can do with cost at most (p + q) ·OPT . Summing over q augmentation iterations
gives us the desired (p + q)O(p) approximation ratio.

▶ Remark 21. The approximation factor in Theorem 3 can be optimized slightly. For example,
the algorithm we describe gives a 5-approximation for (2, 2)-Flex-ST. We omit the details of
this optimization in this paper and instead focus on showing constant factor for fixed p, q.

C. Chekuri and R. Jain 36:13

4 Approximating the Augmentation Problem for (p, q)-Flex-SNDP

In this section, we prove Theorem 4 and the resulting Corollaries 5 and 6. We begin
with some background on Räcke’s capacity-based probabilistic tree embeddings and Tree
Rounding algorithms for Group Steiner tree. We then present the algorithm and analysis for
Bulk-SNDP.

4.1 Räcke Tree Embeddings

The results in this section use Räcke’s capacity-based probabilistic tree embeddings. We
borrow the notation from [17]. Given G = (V, E) with capacity x : E → R+ on the
edges, a capacitated tree embedding of G is a tree T , along with two mapping functions
M1 : V (T)→ V (G) and M2 : E(T)→ 2E(G) that satisfy some conditions. M1 maps each
vertex in T to a vertex in G, and has the additional property that it gives a one-to-one mapping
between the leaves of T and the vertices of G. M2 maps each edge (a, b) ∈ E(T) to a path
in G between M1(a) and M1(b). For notational convenience we view the two mappings as a
combined mappingM. For a vertex u ∈ V (G) we useM−1(u) to denote the leaf in T that is
mapped to u byM1. For an edge e ∈ E(G) we useM−1(e) = {f ∈ E(T) | e ∈M2(f)}. It is
sometimes convenient to view a subset S ⊆ V (G) both as vertices in G and also corresponding
leaves of T .

The mapping M induces a capacity function y : E(T) → R+ as follows. Consider
f = (a, b) ∈ E(T). T − f induces a partition (A, B) of V (T) which in turn induces a
partition/cut (A′, B′) of V (G) via the mapping M: A′ is the set of vertices in G that
correspond to the leaves in A and similarly B′. We then set y(f) =

∑
e∈δ(A′) x(e), in

other words y(f) is the capacity of cut (A′, B′) in G. The mapping also induces loads
on the edges of G. For each edge e ∈ G, we let load(e) =

∑
f∈E(T):e∈M(f) y(f). The

relative load or congestion of e is rload(e) = load(e)/x(e). The congestion of G with
respect to a tree embedding (T ,M) is defined as maxe∈E(G) rload(e). Given a probabilistic
distribution D on trees embeddings of (G, x) we let βD = maxe∈E(G) E(T ,M)∼D rload(e)
denote the maximum expected congestion. Räcke showed the following fundamental result
on probabilistic embeddings of a capacitated graph into trees.

▶ Theorem 22 ([39]). Given a graph G and x : E(G) → R+, there exists a probability
distribution D on tree embeddings such that βD = O(log |V (G)|). All trees in the support of
D have height at most O(log(nC)), where C is the ratio of the largest to smallest capacity in
x. Moreover, there is randomized polynomial-time algorithm that can sample a tree from the
distribution D.

In the rest of the paper we use β to denote the guarantee provided by the preceding
theorem where β = O(log n) for a graph on n nodes. In order to use these probabilistic
embeddings to route flow, we need the following corollary, where we use maxflowz

H(A, B) to
denote the maxflow between two disjoint vertex subsets A, B in a capacitated graph H with
capacities given by z : E(H)→ R+.

▶ Corollary 23. Let D be the distribution guaranteed in Theorem 22. Let A, B ∈ V (G) be
two disjoint sets. Then

(i) for any tree (T ,M) in D, maxflowx
G(A, B) ≤ maxflowy

T (M−1(A),M−1(B)) and
(ii) 1

β E(T ,M)∼D[maxflowy
T (M−1(A),M−(B))] ≤ maxflowx

G(A, B).

ICALP 2023

36:14 Network Design in Non-Uniform Fault Models

4.2 Group Steiner Tree, Set Connectivity and Tree Rounding
The group Steiner tree problem was introduced in [40] and studied in approximation by Garg,
Konjevod and Ravi [24]. The input is an edge-weighted graph G = (V, E), a root vertex
r ∈ V , and k groups S1, S2, . . . , Sk where each Si ⊆ V . The goal is to find a min-weight
subgraph H of G such there is a path in H from r to each group Si (that is, to some vertex
in Si). The approximability of this problem has attracted substantial attention. Garg et
al. [24] described a randomized algorithm to round a fractional solution to a cut-based LP
relaxation when G is a tree – it achieves a O(log n log k)-approximation.

Set Connectivity is a generalization of group Steiner tree problem. Here we are given pairs
of sets (S1, T1), (S2, T2), . . . , (Sk, Tk) and the goal is to find a min-cost subgraph H such that
there is an (Si, Ti) path in H for each i. Chalermsook, Grandoni and Laekhanukit [13] studied
Survivable Set Connectivity problem, motivated by earlier work in [29]. Here each pair (Si, Ti)
has a connectivity requirement ri which implies that one seeks ri edge-disjoint paths between
Si and Ti in the chosen subgraph H; [13] obtained a bicriteria-approximation via Räcke tree
and group Steiner tree rounding. The recent work of Chen et al [17] uses related but more
sophisticated ideas to obtain the first true approximation for this problem. They refer to
the problem as Group Connectivity problem and obtain an O(r3 log r log7 n)-approximation
where r = maxi ri connectivity requirement (see [17] for more precise bounds).

Oblivious tree rounding. In [13] a randomized oblivious algorithm based on the group
Steiner tree rounding from [24] is described. This is useful since the sets to be connected
during the course of their algorithm are implicitly generated. We encapsulate their result in
the following lemma. The tree rounding algorithm in [13, 17] is phrased slightly differently
since they combine aspects of group Steiner rounding and the congestion mapping that comes
from Räcke trees. We separate these two explicitly to make the idea more transparent. We
refer to the algorithm from the lemma below as TreeRounding.

▶ Lemma 24 ([13, 17]). Consider an instance of Set Connectivity on an n-node tree
T = (V, E) with height h and let x : E → [0, 1]. Suppose A, B ⊆ V are disjoint sets and
suppose K ⊆ E such that x restricted to K supports a flow of f ≤ 1 between A and B. There
is a randomized algorithm that is oblivious to A, B, K (hence depends only on x and value
f) that outputs a subset E′ ⊆ E such that (i) The probability that E′ ∩K connects A to
B is at least a fixed constant ϕ and (ii) For any edge e ∈ E, the probability that e ∈ E′ is
min{1, O(1

f h log2 n)x(e)}.

4.3 Rounding Algorithm for the Augmentation Problem
We adapt the algorithm and analysis in [17] to Bulk-SNDP. Let β be the expected congestion
given by Theorem 22. Consider an instance of Bulk-SNDP specified by a graph G : (V, E)
with cost function c : E → R≥0 and a set of scenarios Ω = {(Fj ,Kj) : j ∈ [m]}. Assume we
have a partial solution H satisfying all scenarios in Ωℓ−1. We augment H to satisfy scenarios
in Ωℓ.

We start by obtaining a solution {xe}e∈E\H for the LP relaxation. Let E′ = E \H. We
define LARGE = {e ∈ E′ : xe ≥ 1

4ℓβ }, and SMALL = {e ∈ E′ : xe < 1
4ℓβ }. The LP has paid

for each e ∈ LARGE a cost of at least c(e)/(4ℓβ), hence adding all of them to H will cost
O(ℓβ ·OPTLP). If LARGE ∪H is a feasible solution to the augmentation problem, then we
are done since we obtain a solution of cost O(ℓ log n ·OPTLP). Thus, the interesting case is
when LARGE ∪H is not a feasible solution.

C. Chekuri and R. Jain 36:15

Following [17] we employ a Räcke tree based rounding. A crucial step is to set up a
capacitated graph appropriately. We can assume, with a negligible increase in the fractional
cost, that for each edge e ∈ E′, x(e) = 0 or x(e) ≥ 1

n3 ; this can be ensured by rounding down
to 0 the fractional value of any edge with very small value, and compensating for this loss by
scaling up the fractional value of the other edges by a factor of (1 + 1/n). It is easy to check
that the new solution satisfies the cut covering constraints, and we have only increased the
cost of the fractional solution by a (1 + 1/n)-factor. In the subsequent steps we can ignore
edges with xe = 0 and assume that there are no such edges.

Consider the original graph G = (V, E) where we set a capacity for each e ∈ E as follows.
If e ∈ LARGE ∪H we set x̃e = 1

4ℓβ . Otherwise we set x̃e = xe. Since the ratio of the largest
to smallest capacity is O(n3), the height of any Räcke tree for G with capacities x̃ is at most
O(log n). Then, we repeatedly sample Räcke trees. For each tree, we sample edges by the
rounding algorithm given by Chalermsook et al in [13] (see Section 4.2 for details). A formal
description of the algorithm is provided below where t′ and t are two parameters that control
the number of trees sampled and the number of times we run the tree rounding algorithm in
each sampled tree. We will analyze the algorithm by setting both t and t′ to Θ(ℓ log n).

Algorithm 2 Approximating the Bulk-SNDP Augmentation Problem from ℓ − 1 to ℓ.

H ← partial solution satisfying scenarios in Ωℓ

{x}e∈E ← fractional solution to the LP
LARGE← {e ∈ E′ : xe ≥ 1

4ℓβ }
SMALL← {e ∈ E′ : xe < 1

4ℓβ }
H ← H ∪ LARGE
if H is a feasible solution satisfying scenarios in Ωℓ+1 then return H

else

x̃e ←

{
1

4ℓβ e ∈ H

xe otherwise
end if
D ← Räcke tree distribution for (G, x̃)
for i = 1, . . . t′ do

Sample a tree (T ,M, y) ∼ D
for j = 1, . . . , t do

H ′ ← output of oblivious TreeRounding algorithm on (G, T)
H ← H ∪M(H ′)

end for
end for
return H

4.4 Analysis
For the remainder of of this analysis, we denote as H the partial solution after buying
edges in LARGE. We will assume, following earlier discussion, that H does not satisfy all
requirements specified by scenarios in Ωℓ. This implies that there must be some F such that
|F | ≤ ℓ, F ⊆ Fi for some i ∈ [m], and ∃(u, v) ∈ Ki such that u and v are disconnected in
(V, H \ F). Since H satisfies all scenarios in Ωℓ−1, it must be the case that F has exactly ℓ

edges. We call such an F a violating set. There are at most
(|H|

ℓ

)
violating edge sets, and

since |H| ≤ n2, this is upper bounded by O(n2ℓ). We say that a set of edges H ′ ⊆ E \H is
a feasible augmentation for violating edge set F if ∀i ∈ [m] such that F ⊆ Fi, ∀(u, v) ∈ Ki,
there is a path from u to v in (H ∪H ′) \ F . The following is a simple observation.

ICALP 2023

36:16 Network Design in Non-Uniform Fault Models

▷ Claim 25. H ′ ⊆ E \H is a feasible solution to the augmentation problem iff for each
violating edge set F , H ′ is a feasible augmentation for F .

The preceding observation allows us to focus on a fixed violating edge set F , and ensure
that the algorithm outputs a set H ′ that is a feasible augmentation for F with high probability.
We observe that the algorithm is oblivious to F . Thus, if we obtain a high probability bound
for a fixed F , since there are O(n2ℓ) violating edge sets, we can use the union bound to argue
that H ′ is feasible solution for all violating edge sets. For the remainder of this section,
until we do the final cost analysis, we work with a fixed violating edge set F . For ease of
notation, we let KF =

⋃
i∈[m]:F ⊆Fi

Ki be the set of terminal pairs that need to be connected
in (H ∪H ′) \ F .

Consider a tree (T ,M, y) in the Räcke distribution for the graph G with capacities
x̃. We let M−1(F) denote the set of all tree edges corresponding to edges in F , i.e.
M−1(F) = ∪e∈FM−1(e). We call (T ,M, y) good with respect to F if y(M−1(F)) ≤ 1

2 ;
equivalently, F blocks a flow of at most 1

2 in T .

▶ Lemma 26. For a violating edge set F , a randomly sampled Räcke tree (T ,M, y) is good
with respect to F with probability at least 1

2 .

Given the preceding lemma, a natural approach is to sample a good tree T and hope that
T \M−1(F) still has good flow between each terminal pair. However, since we rounded down
all edges in LARGE ∪H, it is possible that M−1(F) contains an edge whose removal would
disconnect a terminal pair in T , even if T is good. See [17] for a more detailed discussion
and example.

We note that our goal is to find a set of edges H ′ ⊆ E such that each terminal pair in
KF has a path in (H ′ ∪H) \ F ; these paths must exist in the original graph, even if they
do not exist in the tree. Therefore, instead of looking directly at paths in T , we focus on
obtaining paths through components that are already connected in (V (G), H \ F). The rest
of the argument is to show that sufficiently many iterations of TreeRounding on any good
tree T for F will yield a feasible set H ′ for F .

4.5 Shattered Components, Set Connectivity and Rounding
Let QF be the set of connected components in the subgraph induced by H \ F . We use
vertex subsets to denote components. Let T be a good tree for F . We say that a connected
component Q ∈ QF is shattered if it is disconnected in T \M−1(F), else we call it intact.
For each (u, v) ∈ KF , let Qu ∈ QF be the component containing u, and Qv ∈ QF be the
component containing v. Note that Qu may be the same as Qv for some (u, v) ∈ KF , but if
F is a violating edge set then there is at least one pair (u, v) ∈ KF such that Qu ≠ Qv. Now,
we define a Set Connectivity instance that is induced by F and T . Consider two disjoint
vertex subsets A, B ⊂ V . We say that (A, B) partitions the set of shattered components if
each shattered component Q is fully contained in A or fully contained in B. Formally let

ZF = {(A ∪Qu, B ∪Qv) : (A, B) partitions the shattered components, (u, v) ∈ KF }.

In other words, ZF is set of all partitions of shattered components that separate some pair
(u, v) ∈ KF . Since the leaves of T are in one to one correspondence with V (G) we can view
ZF as inducing a Set Connectivity instance in T ; technically we need to consider the pairs
{(M−1(A),M−1(B)) | (A, B) ∈ ZF }; however, for simplicity we conflate the leaves of T
with V (G). We claim that it suffices to find a feasible solution that connects the pairs defined
by ZF in the tree T .

C. Chekuri and R. Jain 36:17

▶ Lemma 27. Let E′ ⊆ T \M−1(F). Suppose there exists a path in E′ ⊆ T \M−1(F)
connecting A to B for all (A, B) ∈ ZF . Then, there is an u-v path for each (u, v) ∈ KF in
(M(E′) ∪H) \ F .

Routing flow. We now argue that (T ,M, y) routes sufficient flow for each pair in ZF

without using the edges in M−1(F); in other words y is fractional solution (modulo a scaling
factor) to the Set Connectivity instance ZF in the graph/forest T \M−1(F). We can then
appeal to TreeRounding lemma to argue that it will connect the pairs in ZF without using
any edges in F .

▶ Lemma 28. Let (A, B) ∈ ZF . Let S ⊂ VT such that A ⊆ S and B ⊆ VT \ S. Then
y(δT \M−1(F)(S)) ≥ 1

4ℓβ .

Bounding ZF . A second crucial property is a bound on |ZF |, the number of pairs in the
Set Connectivity instance induced by F and a good tree T for F .

▶ Lemma 29. For a good tree T , |ZF | ≤ 22ℓβ |KF |.

4.6 Correctness and Cost
The following two lemmas show that by taking a union bound over all violating edge sets
F and applying the Tree Rounding lemma 24, one can show that the algorithm outputs a
feasible augmentation solution with probability at least 1

2 .

▶ Lemma 30. Suppose T is good for a violating edge set F . Then after t = O(ℓlogn)
rounds of TreeRounding with flow parameter 1

4ℓβ , the probability that H ′ is not a feasible
augmentation for F is at most (1− ϕ)t|ZF | ≤ 1/4.

▶ Lemma 31. The algorithm outputs a solution H ′ such that H∪H ′ is a feasible augmentation
to the given instance with probability at least 1

2 .

Now we analyze the expected cost of the edges output by the algorithm for augmentation
with respect to OPTLP, the cost of the fractional solution.

▶ Lemma 32. The total expected cost of the algorithm is O(ℓ3 log7 n) ·OPTLP.

Combining the correctness and cost analysis we obtain the following.

▶ Lemma 33. There is a randomized O(ℓ3 log7 n)-approximation algorithm for the Bulk-
SNDP Augmentation problem from ℓ− 1 to ℓ. The algorithm runs in time polynomial in n

and α, where α is the amount of time it takes to solve the LP.

To prove Theorem 4, we start with a solution from ℓ = 0 and iteratively solve k

augmentation problems. Since the LP for Bulk-SNDP can be solved in polynomial time (see
Section 2), we obtain a polynomial time O(k4 log7 n)-approximation algorithm.

For Flex-SNDP, recall that (p, 0)-Flex-SNDP is equivalent to EC-SNDP where every
terminal pair has connectivity requirement ri = p. Therefore, we can start with a 2-
approximate solution to (p, 0)-Flex-SNDP and apply Lemma 33 q times. In this case, the
maximum width is p + q, so we get an overall approximation ratio of O(q(p + q)3 log7 n).
Recall from Section 2 that the LP can be solved in nO(q) time, giving us Corollary 5.

Finally, for Relative SNDP, there is an LP relaxation described in [19] that can be solved
in polynomial time, even when k is not fixed. We can modify Algorithm 2 for RSNDP by
solving this LP relaxation instead and following the same rounding algorithm. This, along
with the reduction to Bulk-SNDP discussed in Section 1, completes the proof of Corollary 6.

ICALP 2023

36:18 Network Design in Non-Uniform Fault Models

References
1 David Adjiashvili. Fault-tolerant shortest paths – Beyond the uniform failure model, 2013.

doi:10.48550/arXiv.1301.6299.
2 David Adjiashvili. Non-uniform robust network design in planar graphs. arXiv preprint, 2015.

arXiv:1504.05009.
3 David Adjiashvili, Felix Hommelsheim, and Moritz Mühlenthaler. Flexible graph connectivity.

In International Conference on Integer Programming and Combinatorial Optimization, pages
13–26. Springer, 2020.

4 David Adjiashvili, Felix Hommelsheim, and Moritz Mühlenthaler. Flexible graph connectivity.
Mathematical Programming, 192(1):409–441, 2022.

5 David Adjiashvili, Felix Hommelsheim, Moritz Mühlenthaler, and Oliver Schaudt. Fault-
Tolerant Edge-Disjoint s-t Paths – Beyond Uniform Faults. In Artur Czumaj and Qin
Xin, editors, 18th Scandinavian Symposium and Workshops on Algorithm Theory (SWAT
2022), volume 227 of Leibniz International Proceedings in Informatics (LIPIcs), pages 5:1–
5:19, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:
10.4230/LIPIcs.SWAT.2022.5.

6 David Adjiashvili, Sebastian Stiller, and Rico Zenklusen. Bulk-robust combinatorial optimiza-
tion. Mathematical Programming, 149(1):361–390, 2015.

7 Ishan Bansal, Joseph Cheriyan, Logan Grout, and Sharat Ibrahimpur. Improved approximation
algorithms by generalizing the primal-dual method beyond uncrossable functions, 2022. To
appear in Proc. of ICALP 2023. doi:10.48550/arXiv.2209.11209.

8 Sylvia Boyd, Joseph Cheriyan, Arash Haddadan, and Sharat Ibrahimpur. Approximation
algorithms for flexible graph connectivity. Mathematical Programming, pages 1–24, 2023.
Preliminary version appeared in Proc. of FSTTCS 2021. doi:10.1007/s10107-023-01961-5.

9 R. D. Carr, L. K. Fleischer, V. J. Leung, and C. A. Phillips. Strengthening integrality gaps
for capacitated network design and covering problems. In Proceedings of the eleventh annual
ACM-SIAM symposium on Discrete algorithms, pages 106–115. Society for Industrial and
Applied Mathematics, 2000.

10 Deeparnab Chakrabarty, Chandra Chekuri, Sanjeev Khanna, and Nitish Korula. Approxima-
bility of capacitated network design. Algorithmica, 72(2):493–514, 2015.

11 Deeparnab Chakrabarty, Ravishankar Krishnaswamy, Shi Li, and Srivatsan Narayanan. Ca-
pacitated network design on undirected graphs. In Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques, pages 71–80. Springer, 2013.

12 Tanmoy Chakraborty, Julia Chuzhoy, and Sanjeev Khanna. Network design for vertex
connectivity. In Proceedings of the fortieth annual ACM symposium on Theory of computing,
pages 167–176, 2008.

13 Parinya Chalermsook, Fabrizio Grandoni, and Bundit Laekhanukit. On survivable set
connectivity. In Proceedings of the 2015 Annual ACM-SIAM Symposium on Discrete Al-
gorithms (SODA), pages 25–36. Society for Industrial and Applied Mathematics, 2015.
doi:10.1137/1.9781611973730.3.

14 Chandra Chekuri, Guy Even, Anupam Gupta, and Danny Segev. Set connectivity problems in
undirected graphs and the directed steiner network problem. ACM Transactions on Algorithms
(TALG), 7(2):1–17, 2011.

15 Chandra Chekuri and Rhea Jain. Approximating flexible graph connectivity via räcke tree
based rounding, 2022. doi:10.48550/arXiv.2211.08324.

16 Chandra Chekuri and Rhea Jain. Augmentation based approximation algorithms for flexible
network design, 2022. doi:10.48550/arXiv.2209.12273.

17 Qingyun Chen, Bundit Laekhanukit, Chao Liao, and Yuhao Zhang. Survivable network design
revisited: Group-connectivity, 2022. Full version of paper in Proceedings of IEEE FOCS 2022.
doi:10.48550/arXiv.2204.13648.

18 J. Chuzhoy and S. Khanna. An O(k3 log n)-approximation algorithm for vertex-connectivity
survivable network design. Theory of Computing, 8:401–413, 2012.

https://doi.org/10.48550/arXiv.1301.6299
https://arxiv.org/abs/1504.05009
https://doi.org/10.4230/LIPIcs.SWAT.2022.5
https://doi.org/10.4230/LIPIcs.SWAT.2022.5
https://doi.org/10.48550/arXiv.2209.11209
https://doi.org/10.1007/s10107-023-01961-5
https://doi.org/10.1137/1.9781611973730.3
https://doi.org/10.48550/arXiv.2211.08324
https://doi.org/10.48550/arXiv.2209.12273
https://doi.org/10.48550/arXiv.2204.13648

C. Chekuri and R. Jain 36:19

19 Michael Dinitz, Ama Koranteng, and Guy Kortsarz. Relative Survivable Network Design.
In Amit Chakrabarti and Chaitanya Swamy, editors, Approximation, Randomization, and
Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2022), volume
245 of Leibniz International Proceedings in Informatics (LIPIcs), pages 41:1–41:19, Dagstuhl,
Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.
APPROX/RANDOM.2022.41.

20 Yevgeniy Dodis and Sanjeev Khanna. Design networks with bounded pairwise distance. In
Proceedings of the thirty-first annual ACM symposium on Theory of computing, pages 750–759,
1999.

21 L. Fleischer, K. Jain, and D. P. Williamson. Iterative rounding 2-approximation algorithms
for minimum-cost vertex connectivity problems. Journal of Computer and System Sciences,
72(5):838–867, 2006.

22 András Frank. Kernel systems of directed graphs. Acta Sci. Math.(Szeged), 41(1-2):63–76,
1979.

23 András Frank. Connections in combinatorial optimization, volume 38. Oxford University Press
Oxford, 2011.

24 Naveen Garg, Goran Konjevod, and Ramamoorthi Ravi. A polylogarithmic approximation
algorithm for the group steiner tree problem. Journal of Algorithms, 37(1):66–84, 2000.
Preliminary version in Proc. of ACM-SIAM SODA 1998.

25 M. X. Goemans, A. V. Goldberg, S. Plotkin, D. B. Shmoys, E. Tardos, and D. P. Williamson.
Improved approximation algorithms for network design problems. In Proceedings of the fifth
annual ACM-SIAM symposium on Discrete algorithms, pages 223–232, 1994.

26 M. X. Goemans and D. P. Williamson. The primal-dual method for approximation algorithms
and its application to network design problems. In Approximation algorithms for NP-hard
problems, pages 144–191. PWS Publishing Company, Boston, MA, 1997.

27 Fabrizio Grandoni, Bundit Laekhanukit, and Shi Li. O(log2 k log log k)-approximation algo-
rithm for directed steiner tree: a tight quasi-polynomial-time algorithm. In Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of Computing, pages 253–264, 2019.

28 A. Gupta and J. Könemann. Approximation algorithms for network design: A survey. Surveys
in Operations Research and Management Science, 16(1):3–20, 2011.

29 Anupam Gupta, Ravishankar Krishnaswamy, and Ramamoorthi Ravi. Tree embeddings for
two-edge-connected network design. In Proceedings of the Twenty-First Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1521–1538. SIAM, 2010.

30 Eran Halperin, Guy Kortsarz, Robert Krauthgamer, Aravind Srinivasan, and Nan Wang.
Integrality ratio for group steiner trees and directed steiner trees. SIAM Journal on Computing,
36(5):1494–1511, 2007.

31 Eran Halperin and Robert Krauthgamer. Polylogarithmic inapproximability. In Proceedings
of the thirty-fifth annual ACM symposium on Theory of computing, pages 585–594, 2003.

32 K. Jain. A factor 2 approximation algorithm for the generalized Steiner network problem.
Combinatorica, 21(1):39–60, 2001.

33 Kamal Jain, Ion Măndoiu, Vijay V Vazirani, and David P Williamson. A primal-dual schema
based approximation algorithm for the element connectivity problem. Journal of Algorithms,
45(1):1–15, 2002.

34 David R Karger. Global min-cuts in rnc, and other ramifications of a simple min-cut algorithm.
In Soda, volume 93, pages 21–30, 1993.

35 David R Karger. Minimum cuts in near-linear time. Journal of the ACM (JACM), 47(1):46–76,
2000.

36 G. Kortsarz and Z. Nutov. Approximating minimum cost connectivity problems. In Dagstuhl
Seminar Proceedings. Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2010.

37 Z. Nutov. Approximating Steiner networks with node-weights. SIAM Journal on Computing,
39(7):3001–3022, 2010.

ICALP 2023

https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.41
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.41

36:20 Network Design in Non-Uniform Fault Models

38 Z. Nutov. Approximating minimum-cost connectivity problems via uncrossable bifamilies.
ACM Transactions on Algorithms (TALG), 9(1):1, 2012.

39 Harald Räcke. Optimal hierarchical decompositions for congestion minimization in networks.
In Proceedings of the Fortieth Annual ACM Symposium on Theory of Computing, STOC
’08, pages 255–264, New York, NY, USA, 2008. Association for Computing Machinery. doi:
10.1145/1374376.1374415.

40 Gabriele Reich and Peter Widmayer. Beyond steiner’s problem: A vlsi oriented generalization.
In International Workshop on Graph-theoretic Concepts in Computer Science, pages 196–210.
Springer, 1989.

41 D. P. Williamson, M. X. Goemans, M. Mihail, and V. V. Vazirani. A primal-dual approximation
algorithm for generalized Steiner network problems. Combinatorica, 15(3):435–454, 1995.

https://doi.org/10.1145/1374376.1374415
https://doi.org/10.1145/1374376.1374415

Sublinear Algorithms and Lower Bounds for
Estimating MST and TSP Cost in General Metrics
Yu Chen # Ñ

EPFL, Lausanne, Switzerland

Sanjeev Khanna # Ñ

University of Pennsylvania, Philadelphia, PA, USA

Zihan Tan # Ñ

DIMACS, Rutgers University, NJ, USA

Abstract
We consider the design of sublinear space and query complexity algorithms for estimating the cost
of a minimum spanning tree (MST) and the cost of a minimum traveling salesman (TSP) tour in a
metric on n points. We start by exploring this estimation task in the regime of o(n) space, when the
input is presented as a stream of all

(
n
2

)
entries of the metric in an arbitrary order (a metric stream).

For any α ≥ 2, we show that both MST and TSP cost can be α-approximated using Õ(n/α) space,
and moreover, Ω(n/α2) space is necessary for this task. We further show that even if the streaming
algorithm is allowed p passes over a metric stream, it still requires Ω̃(

√
n/αp2) space.

We next consider the well-studied semi-streaming regime. In this regime, it is straightforward
to compute MST cost exactly even in the case where the input stream only contains the edges of
a weighted graph that induce the underlying metric (a graph stream), and the main challenging
problem is to estimate TSP cost to within a factor that is strictly better than 2. We show that in
graph streams, for any ε > 0, any one-pass (2 − ε)-approximation of TSP cost requires Ω(ε2n2) space.
On the other hand, we show that there is an Õ(n) space two-pass algorithm that approximates the
TSP cost to within a factor of 1.96.

Finally, we consider the query complexity of estimating metric TSP cost to within a factor that
is strictly better than 2 when the algorithm is given access to an n × n matrix that specifies pairwise
distances between n points. The problem of MST cost estimation in this model is well-understood
and a (1 + ε)-approximation is achievable by Õ(n/εO(1)) queries. However, for estimating TSP cost,
it is known that an analogous result requires Ω(n2) queries even for (1, 2)-TSP, and for general
metrics, no algorithm that achieves a better than 2-approximation with o(n2) queries is known.
We make progress on this task by designing an algorithm that performs Õ(n1.5) distance queries
and achieves a strictly better than 2-approximation when either the metric is known to contain a
spanning tree supported on weight-1 edges or the algorithm is given access to a minimum spanning
tree of the graph. Prior to our work, such results were only known for the special cases of graphic
TSP and (1, 2)-TSP.

In terms of techniques, our algorithms for metric TSP cost estimation in both streaming and
query settings rely on estimating the cover advantage which intuitively measures the cost needed to
turn an MST into an Eulerian graph. One of our main algorithmic contributions is to show that this
quantity can be meaningfully estimated by a sublinear number of queries in the query model. On
one hand, the fact that a metric stream reveals pairwise distances for all pairs of vertices provably
helps algorithmically. On the other hand, it also seems to render useless techniques for proving space
lower bounds via reductions from well-known hard communication problems. Our main technical
contribution in lower bounds is to identify and characterize the communication complexity of new
problems that can serve as canonical starting point for proving metric stream lower bounds.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Minimum spanning tree, travelling salesman problem, streaming algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.37

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2203.14798

EA
T
C
S

© Yu Chen, Sanjeev Khanna, and Zihan Tan;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 37; pp. 37:1–37:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yu.chen@epfl.ch
https://sites.google.com/view/chenyu94/home
mailto:sanjeev@cis.upenn.edu
https://www.cis.upenn.edu/~sanjeev/
mailto:zihantan1993@gmail.com
https://sites.google.com/view/zihantan
https://orcid.org/0000-0003-4844-8480
https://doi.org/10.4230/LIPIcs.ICALP.2023.37
https://arxiv.org/abs/2203.14798
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

37:2 Sublinear Algorithms and Lower Bounds for MST and TSP Cost

Funding Yu Chen: Supported by ERC Starting Grant 759471.
Sanjeev Khanna: Supported in part by NSF awards CCF-1934876 and CCF-2008305.
Zihan Tan: Supported by a grant to DIMACS from the Simons Foundation (820931).

1 Introduction

The minimum spanning tree (MST) problem and the metric traveling salesman (TSP) problem
are among the most well-studied combinatorial optimization problems with a long and rich
history. The two problems are intimately connected to one another, as many approximation
algorithms for metric TSP use a minimum spanning tree as a starting point for efficiently
constructing an approximate solution. In particular, any algorithm for estimating the MST
cost to within a factor of α immediately implies an algorithm for estimating the metric TSP
cost to within a factor of 2α. In this work, we consider the design of sublinear space and
query complexity algorithms for estimating the cost of a minimum spanning tree (MST)
and the cost of a minimum metric traveling salesman (TSP) tour in an n-vertex weighted
undirected graph G. An equivalent view of both problems is that we are given an n × n

matrix w specifying pairwise distances between them, where the entry w[u, v] corresponds
to the weight of the shortest path from u to v in G. It is clear that any algorithm that
works with a weighted graph as input also works when the input is presented as the complete
metric. However, the converse is not true. For instance, no single-pass streaming algorithm
can obtain a finite approximation to the diameter (or even determine the connectivity) of a
graph in o(n) space when the graph is presented as a sequence of edges (a graph stream). But
if instead we are presented a stream of n2 entries of the metric matrix w (a metric stream),
there is a trivial Õ(1) space algorithm for this problem – simply track the largest entry seen.

1.1 Our Results
In the first part of this work, we explore the power and limitations of graph and metric
streams for MST and TSP cost estimation. We start by exploring this estimation task in the
regime of o(n) space in the streaming model. It is easy to show that no finite approximation
to MST/TSP cost is achievable in this regime when the input stream simply contains the
edges of a weighted graph that induce the underlying metric (a graph stream). However,
we show that this state of affairs changes completely if the input is instead presented as all
entries of the shortest-path-distance metric induced by the input graph (a metric stream).

▶ Theorem 1. For any α > 1, there is a randomized one-pass α-approximation streaming
algorithm for MST cost estimation in metric streams using Õ(n/α) space.

Note that this also immediately gives a one-pass Õ(n/α)-space algorithm for TSP cost
estimation for any α ≥ 2 by simply doubling the MST cost estimate. The result above is in
sharp contrast to what is achievable in graph streams. Using a simple reduction from the
Index problem, we can show the following lower bound for graph streams.

▶ Theorem 2. For any α > 1, any randomized p-pass α-approximation streaming algorithm
for MST cost estimation in graph streams requires Ω̃(n/p) space.

We next show that there are limits to the power of metric streams, and in particular,
any non-trivial approximation of MST cost still requires polynomial space even if we allow
multiple passes over the stream.

▶ Theorem 3. For any α > 1, any randomized one-pass α-approximation streaming algorithm
for MST cost estimation in metric streams requires Ω(n/α2) space.

Y. Chen, S. Khanna, and Z. Tan 37:3

▶ Theorem 4. For any α > 1, any randomized p-pass α-approximation streaming algorithm
for MST cost estimation requires Ω̃(

√
n/αp2) space.

Table 1 summarizes our results for MST (and TSP) cost estimation in the regime of o(n)
space.

Table 1 Summary of results for MST-cost estimation streaming algorithms.

Stream Type
MST estimation

of passes Approximation ratio Upper or Lower bounds

Metric Stream

1 1 Õ(n) (trivial)

1 α Õ(n/α) (Theorem 1), Ω̃(n/α2) (Theorem 3)

p α Ω̃(
√

n/αp2) (Theorem 4)

Graph Stream
1 1 Θ̃(n) (trivial)

p any Ω(n/p) (Theorem 2)

We next consider the well-studied semi-streaming regime when the streaming algorithm
is allowed to use Õ(n) space. In this regime, it is straightforward to design a deterministic
one-pass streaming algorithm to compute MST cost exactly even in graph streams, and this
in turn, immediately gives an Õ(n) space algorithm to estimate TSP cost to within a factor
of 2. Thus in the semi-streaming regime, the key challenging problem is to estimate TSP cost
to within a factor that is strictly better than 2. A special case of this problem, graphic TSP
cost estimation, where the input metric corresponds to the shortest-path distances induced
by an unweighted undirected graph, was studied in [4], and the authors gave an Õ(n) space
randomized one-pass streaming algorithm that achieves an (11/6)-approximation even in
the setting of graph streams. This ratio was recently improved1 by Behnezhad, Roghani,
Rubinstein, and Saberi to 1.83 [2]. However, no analogous result is known for general TSP.
We show that there is in fact a good reason for this state of affairs:

▶ Theorem 5. For any 0 < ϵ < 1, any randomized one-pass (2−ε)-approximation streaming
algorithm for TSP cost estimation in graph streams requires Ω(ϵ2n2) space.

However, we show that the situation changes considerably once we allow two passes
and indeed there is now a deterministic Õ(n) space algorithm that achieves better than a
2-approximation to TSP cost.

▶ Theorem 6. There is a deterministic two-pass 1.96-approximation algorithm for TSP cost
estimation in graph streams using Õ(n) space.

We note that an interesting remaining question here is if a similar result is achievable
using one pass when the input is a metric stream. As a step towards understanding the
power of metric streams in semi-streaming regime, we show that any one-pass algorithm that
computes TSP cost exactly requires Ω(n2) space. Table 2 summarizes our results for TSP
cost estimation in the regime of semi-streaming space.

1 In their paper, they give an Õ(n)-time 1.83-approximation algorithm, which can be easily turned into a
one-pass streaming algorithm with space Õ(n) with the same approximation ratio.

ICALP 2023

37:4 Sublinear Algorithms and Lower Bounds for MST and TSP Cost

Table 2 Summary of results for TSP-cost estimation streaming algorithms. The statements and
proofs for entries marked by (∗) is deferred to the full version.

Stream Type
TSP estimation

of passes Approximation ratio Upper or Lower bounds

Metric Stream
1 1 Ω(n2)*

1 2 − ε Open

Graph Stream

1 2 Θ̃(n) (trivial)

1 2 − ε Ω̃(ε2n2) (Theorem 5)

2 1.96 Õ(n) (Theorem 6)

The second part of our paper focuses on the design of sublinear query complexity
algorithms for TSP cost estimation. The related problem of estimating the MST cost using
sublinear queries was first studied in the graph adjacency-list model by Chazelle, Rubinfeld,
and Trevisan [3]. The authors gave an Õ(dW/ε2)-time algorithm to estimate the MST cost
to within a factor of (1 + ε) in a graph where the average degree is d, and all edge costs are
integers in {1, . . . , W }. For certain parameter regimes this gives a sublinear time algorithm
for estimating the MST cost, but in general, this run-time need not be sublinear. In fact, it
is not difficult to show that in general, even checking if a graph is connected requires Ω(n2)
queries in the graph adjacency-list model, and hence no finite approximation to MST cost
can be achieved in o(n2) queries. However, the situation changes if one restricts attention
to the metric MST problem where the edge weights satisfy the triangle inequality, and the
algorithm is given access to an n × n matrix w specifying pairwise distances between vertices.
Czumaj and Sohler [6] showed that for any ε > 0, there exists an Õ(n/εO(1)) query algorithm
that returns a (1 + ε)-approximate estimate of the metric MST cost. This result immediately
implies an Õ(n/εO(1)) time algorithm to estimate the TSP cost to within a factor of (2 + ε)
for any ε > 0. In sharp contrast to this result, so far no o(n2) query algorithms are known
to approximate metric TSP cost to a factor that is strictly better than 2. In this work, we
consider sublinear query algorithms for TSP cost when the algorithm is given query access
to the n × n distance matrix w. We will assume throughout the paper that all entries of w

are positive integers.
For the special case of graphic TSP, where the metric corresponds to shortest path

distances of some underlying connected unweighted graph, the algorithm of Chen, Kannan,
and Khanna [4] combined with the recent result of Behnezhad [1] (which builds on the work of
Yoshida et al. [8] and Onak et al. [7]), gives an Õ(n)-query (27/14)-approximation algorithm
for estimating graphic TSP cost. The authors in [4] also show that there exists an ε0 > 0, such
that any algorithm that estimates the cost of graphic TSP (or even (1, 2)-TSP) to within a
(1 + ε0)-factor, necessarily requires Ω(n2) queries. Later on, Behnezhad, Roghani, Rubinstein,
and Saberi [2] improved the graphic TSP result by giving an Õ(n)-query 1.83-approximation,
and they also gave an Õ(n)-query (1.5 + ε)-approximation algorithm for (1, 2)-TSP. This
leaves open the following question: Is there an o(n2) query algorithm to estimate TSP cost
to a factor strictly better than 2 when the metric is arbitrary?

We make progress on this question by designing an Õ(n1.5)-query algorithm that achieves
a strictly better than 2-approximation when either the metric is known to contain a spanning
tree supported on weight-1 edges or the algorithm is given access to a minimum spanning
tree of the graph. Prior to our work, such results were only known for the special cases of
graphic TSP and (1, 2)-TSP.

Y. Chen, S. Khanna, and Z. Tan 37:5

▶ Theorem 7. There is a randomized algorithm, that, given access to an n-point metric w

with the promise that w contains a minimum spanning tree supported only on weight-1 edges,
estimates with high probability the metric TSP cost to within a factor of (2 − ε0) for some
universal constant ε0 > 0, by performing Õ(n1.5) queries to w.

We note that the setting of Theorem 7 captures as a special case graphic TSP but is
considerably more general, and hence difficult.

▶ Theorem 8. There is a randomized algorithm, that, given access to an n-point metric w

and an arbitrary minimum spanning tree of the complete graph with edge weights given by w,
estimates with high probability the metric TSP cost to within a factor of (2 − ε0) for some
universal constant ε0 > 0, by performing Õ(n1.5) queries to w.

In what follows, we give an overview of the techniques underlying our results.

1.2 Technical Overview
1.2.1 Overview of Algorithmic Techniques
Our streaming algorithm for MST estimation (Theorem 1) utilizes a rather natural idea. We
sample O(n/α) vertices and maintain a MST T ′ over them. For the remaining vertices, we
maintain an estimate of the cost of connecting them to the nearest vertex in T ′. We show
that these estimates can be suitably combined to obtain an α-approximation of MST cost.
In this subsection we focus on providing a high-level overview of the algorithms for TSP
estimation.

It is well-known that MST ≤ TSP ≤ 2 · MST holds for any graph/metric, since we can
construct a TSP-tour by doubling all edges of a MST (and then shortcut the obtained
walk into a tour). Since the MST cost of a graph/metric can be exactly computed by a
one-pass Õ(n) space algorithm (the greedy algorithm) in the streaming model, and can
be approximated to within a factor of (1 + ε) by performing Õ(n) queries in the query
model [6], to obtain a factor (2 − ε) approximation for TSP, it suffices to establish either
TSP ≥ (1 + ε) · MST or TSP ≤ (2 − ε) · MST holds. From the approach due to [5], the
minimum weight of a perfect matching on the set of all odd-degree vertices in an MST can
immediately gives us the answer. However, obtaining a good approximation to the minimum
weight of such a perfect matching appears hard to do, both for semi-streaming algorithms
and for a query algorithm that performs o(n2) queries, even if we are given an MST at
the start. To get around this issue, we consider an alternative measure, called the cover
advantage, that turns out to be more tractable in both models.

Cover Advantage. Let T be a MST of the input graph/metric. For an edge f ∈ E(T)
and an edge e /∈ E(T), we say that f is covered by e, iff f belongs to the unique tree-path
in T connecting the endpoints of e. For a set E′ of edges, we denote by cov(E′, T) the set
of all edges in E(T) that are covered by at least one edge in E′. The cover advantage of
E′, denoted by adv(E′), is defined to be the total weight of all edges in cov(E′, T) minus
the total weight of all edges in E′. Intuitively, if a single-edge set {e} where e = (u, v) has
cover advantage c, then we can construct a tour by starting from some Euler-tour of T

and replacing the segment corresponding to the tree path of T connecting u to v by the
single edge e, and thereby “saving a cost of c” from 2 · MST, the cost of the Euler-tour
obtained by doubling MST edges. Generalizing this idea, we show that if there exists a set E′

with cover advantage bounded away from 0 (at least ε · MST), then TSP ≤ (2 − ε/2) · MST.
Conversely, if there does not exist any set E′ with cover advantage close to MST/2 (say

ICALP 2023

37:6 Sublinear Algorithms and Lower Bounds for MST and TSP Cost

at least (1/2 − ε/2) · MST), then TSP ≥ (1 + ε) · MST. In fact, we show that the same
hold for a more restricted notion called special cover advantage, which is defined to be the
maximum cover advantage of any subset E′ of edges that have at least one endpoint being a
special vertex in T (a vertex v is called a special vertex of T iff degT (v) ̸= 2). Therefore, to
obtain a better-than-factor-2 approximation for TSP, it suffices to obtain a constant-factor
approximation for the maximum cover advantage or the maximum special cover advantage.

Estimating maximum cover advantage in the streaming setting. We construct a one-
pass streaming algorithm O(1)-estimating the maximum cover advantage, which leads to a
two-pass algorithm in Theorem 6 where in the first pass we only compute an MST of the
input graph. We store edges with substantial cover advantage with respect to the MST in a
greedy manner. Since all edges appear in the stream, it can be shown that, if we end up not
discovering a large cover advantage, then the real maximum cover advantage is indeed small
(bounded away from MST/2).

Estimating maximum cover advantage in the query model. The task of obtaining a
constant-factor approximation to maximum cover advantage turns out to be distinctly more
challenging in the query model, even if we are given explicit access to an MST of the metric.
The design of sublinear query algorithms for estimating cover advantage is indeed our central
algorithmic contribution. We design an Õ(n1.5)-query algorithm for estimating the maximum
cover advantage when either an MST is explicitly given or we can assume that the MST
is supported on weight-1 edges. Note that the latter case generalizes graphic TSP studied
in [4].

The algorithms for these two cases share several similarities. To illustrate the ideas
behind them, it might be instructive to consider the following two examples. In the first
example, we are given an MST T on V that has at most O(

√
n) leaves. We can simply query

the distances between all pairs u, v ∈ V where u is a special vertex of T , and then use the
obtained information to compute the maximum special cover advantage, which takes Õ(n1.5)
queries since there can be at most O(

√
n) special vertices (or in fact we can even query the

distances between all pairs of special vertices in T and compute the minimum weight perfect
matching on them). In the second example, we are given an MST T on V which is a star
graph centered at a vertex r ∈ V , and all edges have weight 1. Note that, since all edge
weights are integers, in this case the distances between every pair of vertices in V \ {r} is
either 1 or 2, and it is not hard to see that the maximum cover advantage is exactly the
size of a maximum weight-1 matching on V \ {r}. Therefore, we can adapt the algorithm
from [1] to obtain an O(1)-approximation of the maximum weight-1 matching size, using
Õ(n) queries. Note that, in this case we obtain an estimate of the maximum cover advantage
without computing a set of edges that achieves it.

Taking a step back, we observe that, in the first example where the number of special
vertices is small, the cover advantage can be computed in a local and exhaustive manner,
while in the second example where the number of special vertices is large, the cover advantage
has to be estimated in a global and “superficial” manner. Intuitively, our query algorithms
interpolate between these two approaches in an organic manner.

We now provide more details of our query algorithms in the two special cases. We first
consider the special case where we are given the structure of an MST.

When MST is given. We root the given MST T at an arbitrary vertex. For each vertex
v ∈ V , we say that it is light iff the subtree of T rooted at v, denoted by Tv, contains at
most

√
n vertices, and we call Tv a light subtree of T . On the one hand, the cover advantages

Y. Chen, S. Khanna, and Z. Tan 37:7

that are local at some light subtree (achieved by edges with both endpoints in the same
light subtree) can be efficiently estimated in an exhaustive manner. On the other hand,
if we peel off all light subtrees from T , then the remaining subtree, that we denote by T ′,
contains at most

√
n leaves, and therefore the special cover advantage achieved by any set of

edges with at least one endpoint being a special vertex of T ′ can also be computed in an
exhaustive manner. The only type of cover advantages that is not yet computed are the
one achieved by edges with endpoints in different light subtrees. We then observe that the
light subtrees hanged at T are similar to the edges of a star graph hanged at its root, and
eventually manage to adapt the algorithm from [1] in a delicate way to estimate the cover
advantage by edges of this type in a global manner.

When MST consists of only weight-1 edges. This special case appears trickier since we do
not know the structure of an MST at the start, and there may not even be a unique MST. To
circumvent this, we need to utilize the following technical result of [4]: Let G1 be the graph
on V induced by all weight-1 edges in the given metric, then if G1 contains a size-s matching
consisting of only edges in 2-edge-connected components of G1, then TSP ≤ 2n − Ω(s).
This result allows us to construct a local procedure that explores some neighborhood of the
unknown graph G1 up to a certain size, such that in the end we either reconstruct a size-

√
n

subgraph of the (locally) unique MST, or certify that a set of Ω(
√

n) vertices belong to some
2-edge-connected components of G1, which will be later collected to estimate the maximum
weight-1 matching size.

We then use this local procedure on a set of vertices randomly sampled from V . Let T

be an MST. Intuitively, if the total size of light subtrees of T is non-negligible, then with
high probability some of the sampled vertices will lie in light subtrees of T , and we can
obtain an estimate of the local cover advantage within subtrees. If the total size of light
subtrees is negligible, then T ′, the subtree obtained from T by peeling off all light subtrees,
has roughly the same size as T , which means that T is close to the first instructive example
mentioned before – a tree with only O(

√
n) special vertices. Then we can apply the local

procedure to Ω(
√

n) sampled vertices, to almost reconstruct the whole tree T , and the rest
of the algorithm is similar to the algorithm in the first special case.

1.2.2 Overview of Lower Bound Techniques
As our algorithmic results illustrate that metric streams are more powerful than graph
streams, it is perhaps not surprising that proving space lower bounds for metrics streams
turns out to be a more challenging task that requires new tools. To illustrate this point, it
might be instructive to consider the following simplified versions of metric and graph streams.
Let G be a graph.

Unweighted Graph Stream: a sequence that contains all edges of E(G), and the same
edge may appear more than once in the stream;
Unweighted Metric Stream: a sequence that contains, for each pair u, v of V (G), a symbol
f(u, v) indicating whether or not the edge (u, v) belongs to E(G).

Note that in unweighted metric streams, the non-edge information between pairs of vertices
is also explicitly given (as the edge information), as opposed to being given implicitly in
the unweighted graph stream. This seemingly unimportant distinction, unexpectedly, makes
proving lower bounds for several problems much harder in unweighted metric streams than
unweighted graph streams.

For example, consider the problem of deciding whether the input graph is a clique. On
the one hand, to prove a space lower bound for streaming algorithms in unweighted graph
streams, we consider the following two-player one-way communication game: Alice is given a

ICALP 2023

37:8 Sublinear Algorithms and Lower Bounds for MST and TSP Cost

graph GA and Bob is given a graph GB on a common vertex set V , and Alice and Bob want
to decide if GA ∪ GB is the complete graph on V . It is easy to show that this communication
game has back-and-forth communication complexity Ω(n2). In fact, Alice’s input graph GA

can be viewed as a vector xA ∈ {0, 1}(V
2) and Bob’s input graph GB can be viewed as a

vector xB ∈ {0, 1}(V
2), where the coordinate xA

(u,u′) indexed by the pair u, u′ of vertices in V

indicates whether or not the edge (u, u′) appears in graph GA, and similarly xB
(u,u′) indicates

whether or not the edge (u, u′) appears graph GB . It is then easy to see that the two players
need to detect whether or not the bitwise-OR of vectors xA and xB is the all-one vector,
which requires Ω(n2)-bits information exchange even in the back-and-forth communication
model. On the other hand, in the corresponding two-player one-way communication game for
unweighted metric streams, Alice and Bob are each given a set of edge/non-edge information,
with the promise that the edge/non-edge information between each pair of vertices appears
in at least one of the player’s input. There is a one-bit protocol: Alice simply sends to Bob a
signal indicating whether or not in her input there is non-edge information between any pair
of vertices, and Bob outputs “Not a Clique” iff either he sees Alice’s “non-edge” signal or he
sees a non-edge information in his input.

The distinction that all non-edge information is explicitly given in the unweighted stream
seems to fail all reductions from standard problems (like Disjointness and Index) to prove
lower bounds. Therefore, in the lower bound proofs of Theorem 3 and Theorem 4, we identify
new “primitive” graph-theoretic problems, prove communication lower bounds for them, and
then reduce them to MST-estimation problems. Here we briefly provide some ideas for the
proof of Theorem 4.

We consider the special type of metrics, in which the distance between every pair of
vertices is either 1 or a large enough real number. Intuitively, the problem of estimating the
MST cost is equivalent to the problem of estimating the number of connected components of
the graph induced by all weight-1 edges, which is essentially a graph-theoretic problem in
unweighted metric streams.

As a first step, we consider the following problem: given an unweighted metric stream,
decide whether the underlying graph is a perfect matching or a perfect matching minus one
edge. Unlike the previous clique-identification problem, we show that the corresponding
two-player communication game for this problem has communication complexity Ω(n) in the
back and forth communication model, even if the complete edge/non-edge information is
split between Alice and Bob. The proof is by analyzing the information complexity of any
protocol for the problem, We construct several similar input combinations for Alice and Bob,
among which some cross-combination lead to different answers, and then lower bound the
mutual information between the protocol transcript and the players’ inputs.

However, this perfect matching vs perfect matching minus one edge problem is not
sufficient for our purpose, since a perfect matching graph on n vertices has n/2 connected
components, while a perfect matching minus one edge graph on n vertices has n/2 − 1
connected components, and the ratio between n/2 and n/2 − 1 are too small to provide a
space lower bound for α-approximation of the number of connected components. To fix this
issue, we next consider a generalization of this problem, called the Clique or Independent
Set problem (COIa,b) parametrized by two integers a, b. In this problem, we are required to
decide whether the input graph is the disjoint union of b cliques of size a each (Yes case) or it
is a disjoint union of (b − 1) cliques of size a each and an independent set of size a (No case).
Note that if a = 2 and b = n/2 then this problem is exactly the perfect matching vs perfect
matching minus one edge problem. Now if we let a ≫ b, then the ratio between numbers
of connected components in Yes case and in No case is (a + b − 1)/b = Ω(a/b), which is

Y. Chen, S. Khanna, and Z. Tan 37:9

enough for giving a space lower bound for o(a/b)-approximation streaming algorithms for
MST estimation. For the proof of the communication lower bound of problem COIa,b, we first
consider the special case COIa,2 and show that the communication complexity is Ω̃(1) via a
Hellinger distance analysis on transcript distributions on certain input combinations, and
then use a direct sum type argument to show that the communication complexity of COIa,b

is Ω̃(b). Both steps use techniques similar to the ones used in the proof of communication
lower bound for the perfect matching vs perfect matching minus one edge problem. Now
for a given approximation ratio α > 1, setting a = Θ(

√
αn) and b = Θ(

√
n/α) yields the

desired communication lower bound, which then implies the space lower bounds for streaming
algorithms.

1.3 Organization

Due to the limit of space, in the remainder of the paper we only present the proof sketches
of one of our algorithmic results, which best illustrates the utilization of cover advantage.
We first introduce the notion of cover advantage in Section 2. We then we sketch the proof
of Theorem 6 in Section 3 and sketch the proof of Theorem 8 in Section 4. The proofs of all
other theorems are deferred to the full version (in the appendix).

2 Cover Advantage

In this section, we introduce the notion of cover advantage, which is a key notion that captures
the gap between the MST cost and the TSP cost. Our TSP cost estimation algorithms in
both streaming and query settings will crucially utilize this notion. Due to the limit of space,
the proofs of some lemmas presented in this section are deferred to the full version.

At a high-level, the TSP estimation algorithms in this paper are based on converting an
MST T of the input graph/metric into a spanning Eulerian subgraph. A trivial approach
is to simply double all edges in T obtaining a 2-approximation. A more clever approach
due to Christofides [5] instead makes T Eulerian by adding a minimum weight perfect
matching on odd-degree vertices in T , obtaining a 3/2-appproximation. However, computing
a good approximation to the minimum weight perfect matching on a set of vertices appears
hard to do either in the semi-streaming setting or with sublinear number of queries. We
instead identify the more tractable notion, called the cover advantage, that can be efficiently
implemented in the semi-streaming and query model.

We say that an edge f of tree T is covered by an edge e that may or may not belong to
T , iff f ∈ E(P T

e); and we say that f is covered by a set E′ of edges, iff it is covered by some
edge of E′. We denote by cov(e) the set of all edges of T that are covered by e, and define
cov(E′) =

⋃
e∈E′ cov(e).

Let T ′ be a subtree of T . For each edge e /∈ E(T), we define cov(e, T ′) = cov(e) ∩
E(T ′). Similarly, for a set E′ of edges, we define cov(E′, T ′) =

⋃
e∈E′ cov(e, T ′). Clearly,

cov(E′, T ′) = cov(E′) ∩ E(T ′).
We define the cover advantage of a set E′ of edges on a subtree T ′ of T , denoted by

adv(E′, T ′), to be adv(E′, T ′) = w(cov(E′, T ′)) − w(E′). The optimal cover advantage of a
subtree T ′, denoted by adv(T ′), is defined to be the maximum cover advantage of any set
E′ of edges that have at least one endpoint lying in V (T ′) on T ′. The optimal special cover
advantage of a subtree T ′, denoted by adv∗(T ′), is defined to be the maximum cover advantage
of any set E′ of edges that have at least one endpoint being a special vertex of T ′ (a vertex
v is a special vertex of T ′ iff degT ′(v) ̸= 2). Clearly, by definition, adv(T ′) ≥ adv∗(T ′) ≥ 0.

ICALP 2023

37:10 Sublinear Algorithms and Lower Bounds for MST and TSP Cost

The next two lemmas show that the optimal cover advantage and the optimal special
cover advantage of any subtree can be computed using a small number of queries.

▶ Lemma 9. There is an algorithm, that given a subtree T ′ of T , computes the optimal cover
advantage of T ′ as well as a set E′ of edges achieving the optimal cover advantage of T ′, by
performing at most O(n · |V (T ′)|) queries.

▶ Lemma 10. There is an algorithm, that given a subtree T ′ of T , computes the optimal
special cover advantage of T ′ as well as a set E′ of edges achieving the optimal special cover
advantage of T ′, by performing O(n · kT ′) queries, where kT ′ is the number of special vertices
in T ′.

The following lemma is crucial to our algorithms. It shows that the high cover advantage
of edge-disjoint subtrees of an MST translates into a TSP tour whose cost is bounded away
from 2 times the MST cost.

▶ Lemma 11. Let T be an MST on a set V of vertices, and let T be a set of edge-disjoint
subtrees of T . Then TSP ≤ 2 · MST − 1

2 ·
∑

T ′∈T adv(T ′).

Proof. We introduce some definitions before providing the proof.
Let E′ be a set of edges that do not belong to E(T). We define the multi-graph HT,E′

as follows. Its vertex set is V (HT,E′) = V . Its edge set is the union of (i) the set E′; and
(ii) the set E[T,E′] that contains, for each edge f ∈ E(T), 2 copies of f iff f is covered by
an even number of edges in E′, 1 copy of f iff f is covered by an odd number of edges
in E′. Equivalently, graph HT,E′ can be obtained from the following iterative algorithm.
Throughout, we maintain a graph Ĥ on the vertex set V , that initially contains two copies
of each edge of E(T). We will maintain the invariant that, over the course of the algorithm,
for each edge f of E(T), graph Ĥ contains either one copy or two copies of f . We then
process edges of E′ one-by-one (in arbitrary order) as follows. Consider now an edge e ∈ E′

and the tree-path P T
e . We add one copy of edge e to Ĥ. Then for each edge f ∈ E(P T

e),
if currently the graph Ĥ contains 2 copies of f , then we remove one copy of it from Ĥ; if
currently the graph Ĥ contains 1 copy of f , then we add one copy of it into Ĥ . Clearly after
each iteration of processing some edge of E′, the invariant still holds. It is also easy to see
that the resulting graph we obtain after processing all edges of E′ is exactly the graph HT,E′

defined above.
We prove the following observation.

▶ Observation 12. For any set E′, graph HT,E′ is Eulerian.

Proof. Consider the algorithm that produces the graph HT,E′ . Initially, graph Ĥ contains 2
copies of each edge of T , and is therefore Eulerian. It is easy to see that, in the iteration
of processing the edge e ∈ E′, we only modify the degrees of vertices in the cycle e ∪ P T

e .
Specifically, for each vertex in the cycle e ∪ P T

e , either its degree is increased by 2 (if a copy
is added to both of its incident edges in the cycle), or its degree is decreased by 2 (if a copy
is removed from both of its incident edges in the cycle), or its degree remains unchanged (if
a copy is removed from one of its incident edges, and a copy is added to the other incident
edge). Therefore, the graph Ĥ remains Eulerian after this iteration, and it follows that the
resulting graph HT,E′ is Eulerian. ◀

We now provide the proof of Lemma 11. Denote T = {T1, . . . , Tk}. For each index
1 ≤ i ≤ k, let E∗

i be the set of edges that achieves the maximum cover advantage on Ti.
Denote E∗ =

⋃
1≤i≤k E∗

i , and then we let E′ be the random subset of E∗ that includes

Y. Chen, S. Khanna, and Z. Tan 37:11

each edge of E∗ independently with probability 1/2. We will show that the expected total
weight of all edges in E(HT,E′) is at most 2 · MST(G) − 1

2 ·
∑

1≤i≤k adv(Ti). Note that
this implies that there exists a subset E∗∗ of E∗, such that the weight of graph HT,E∗∗

is at most 2 · MST(G) − 1
2 ·

∑
1≤i≤k adv(Ti). Combined with Observation 12 and the fact

that TSP is upper bounded by the total cost of any connected Eulerian graph, this implies
TSP ≤ 2 · MST(G) − 1

2 ·
∑

1≤i≤k adv(Ti), completing the proof of Lemma 11.
We now show that E[w(HT,E′)] ≤ 2 · MST(G) − 1

2 ·
∑

1≤i≤k adv(Ti). From the definition
of graph HT,E′ , E(HT,E′) = E′ ∪ E[T,E′]. On one hand, from the construction of set E′,
E[w(E′)] = w(E∗)/2. On the other hand, for each edge f ∈ cov(E∗), with probability 1/2
graph HT,E′ contains 1 copy of it, and with probability 1/2 graph HT,E′ contains 2 copies
of it. Therefore, E[w(E[T,E′])] = 2 · w(E(T)) − w(cov(E∗))/2. Note that subtrees {Ti}1≤i≤k

are edge-disjoint, so the edge sets {cov(E∗, Ti)}1≤i≤k are mutually disjoint. Altogether,

E[w(HT,E′)] = 2 · MST − w(cov(E∗)) − w(E∗)
2

≤ 2 · MST − 1
2 ·

∑
1≤i≤k

(
w(cov(E∗, Ti)) − w(E∗

i)
)

≤ 2 · MST − 1
2 ·

∑
1≤i≤k

(
w(cov(E∗

i , Ti)) − w(E∗
i)

)
= 2 · MST − 1

2 ·
∑

1≤i≤k

adv(Ti). ◀

Complementing Lemma 11, the next lemma shows that, if the special cover advantage is
low, then the TSP cost is close to 2 times the MST cost.

▶ Lemma 13. Let T ′ be any subtree of an MST T . Then TSP ≥ 2 · w(T ′) − 2 · adv∗(T ′).

Proof. Let π∗ be the optimal TSP-tour that visits all vertices of V , so TSP = w(π∗). Let
π be the tour obtained from π∗ by deleting all vertices of T \ T ′, so π is a tour that visits
all vertices of V (T ′), and, from triangle inequality, w(π∗) ≥ w(π). We now show that
E(π) can be partitioned into two subsets E(π) = E0 ∪ E1, such that E(T ′) ⊆ cov(E0) and
E(T ′) ⊆ cov(E1).

Let V ′ be the set of all odd-degree vertices in T ′, so |V ′| is even. Denote V ′ =
{v1, v2, . . . , v2k}, where the vertices are index according to the order in which they ap-
pear in π. For each 1 ≤ i ≤ 2k, we define edge ei = (vi, vi+1) and define Ei

π to be the set of
all edges traversed by π between vertices vi and vi+1. Clearly, cov(ei) ⊆ cov(Ei

π). We define
E0 =

⋃
0≤i≤k−1 E2i

π and E1 =
⋃

0≤i≤k−1 E2i+1
π .

Consider now the tour π′ induced by edges of e1, . . . , e2k. Clearly, π′ is a tour that visits
all vertices of V ′. We define sets F0 = {e2i | 0 ≤ i ≤ k − 1} and F1 = {e2i+1 | 0 ≤ i ≤ k − 1},
so E(π′) = F0 ∪ F1. We now show that E(T ′) ⊆ cov(F0) and E(T ′) ⊆ cov(F1). Note that
this implies that E(T ′) ⊆ cov(E0) and E(T ′) ⊆ cov(E1), since

cov(F0) =
(⋃

0≤i≤k−1
cov(e2i)

)
⊆

(⋃
0≤i≤k−1

cov(E2i
π)

)
⊆ cov

(⋃
0≤i≤k−1

E2i
π

)
= cov(E0),

and similarly cov(F1) ⊆ cov(E1).
In fact, note that F0 is a perfect matching on V ′. Since V ′ is the set of odd-degree

vertices of T ′, the graph on V (T ′) induced by edges of E(T ′) ∪ F0 is Eulerian. Therefore,
every edge of T ′ appears in at least two sets of {cov(e′) | e′ ∈ E(T ′) ∪ Mo}. Note that for
each e′ ∈ E(T ′), cov(e′) = {e′}. Therefore, every edge e ∈ E(T ′) appears in at least one set
of {cov(e′) | e′ ∈ F0}, i.e., E(T ′) ⊆ cov(F0). Similarly, we get that E(T ′) ⊆ cov(F1).

ICALP 2023

37:12 Sublinear Algorithms and Lower Bounds for MST and TSP Cost

From triangle inequality, w(F0) + w(F1) ≤ w(E0) + w(E1) = w(π). Note that edges of
F0 and F1 have both endpoint in V ′, and moreover, from the definition of V ′, all vertices
of V ′ are special vertices of T ′. Since E(T ′) ⊆ cov(F0), from the definition of adv∗(T ′),
we get that adv∗(T ′) ≥ w(cov(F0, T ′)) − w(F0) = w(T ′) − w(F0), and similarly adv∗(T ′) ≥
w(T ′) − w(F1). Therefore, TSP = w(π∗) ≥ w(π) = w(E0) + w(E1) ≥ w(F0) + w(F1) ≥
2 · (w(T ′) − adv∗(T ′)). ◀

The last two lemmas show that the total cover advantage and the total special cover
advantage of a set of edge-disjoint subtrees of an MST can be efficiently and accurately
estimated.

▶ Lemma 14. There is an algorithm, that, given a constant 0 < ε < 1 and a set T of edge-
disjoint subtrees of T , with high probability, either correctly reports that

∑
T ′∈T adv(T ′) ≥

ε · MST, or correctly reports that
∑

T ′∈T adv(T ′) ≤ 2ε · MST, by performing Õ((n/ε2) ·
max {|V (T ′)|}T ′∈T) queries.

▶ Lemma 15. There is an algorithm, that, given a constant 0 < ε < 1 and a set T of edge-
disjoint subtrees of T , with high probability, either correctly reports that

∑
T ′∈T adv∗(T ′) ≥

ε · MST, or correctly reports that
∑

T ′∈T adv∗(T ′) ≤ 2ε · MST, by performing Õ((n/ε2) ·
max {kT ′ | T ′ ∈ T }) queries, where kT ′ is the number of special vertices in T ′.

3 A Two-Pass Algorithm for TSP Estimation in Graph Streams

In this section, we present a deterministic 2-pass 1.96-approximation algorithm for TSP
estimation in graph streams, which uses Õ(n) space, thus proving Theorem 6. Our algorithm
will utilize the notion of cover advantage, introduced in Section 2. This result is in a sharp
contrast to Theorem 5 which showed that any single-pass algorithm requires Ω(n2) space to
obtain a better than 2-approximation.

Algorithm. Let α, β ∈ (0, 1) be two constants whose values will be set later. In the first
pass, we simply compute a minimum spanning tree T and its cost MST =

∑
e∈E(T) w(e).

Throughout the second pass, we maintain a subset Etemp of edges, that is initialized to be ∅,
and will only grow over the course of the algorithm. Upon the arrival of each edge e, we
compare w(e) with w(cov(e) \ cov(Etemp)) =

∑
f∈cov(e)\cov(Etemp) w(f). We add the edge e to

set Etemp iff w(e) ≤ α · w(cov(e) \ cov(Etemp)). Let E∗ be the set Etemp at the end of the
algorithm. We then compute w(cov(E∗)) =

∑
e∈cov(E∗) w(e). If w(cov(E∗)) ≥ β · MST, then

we output (2 − (1−α)·β
2) · MST as an estimate of TSP; otherwise we output 2 · MST. We use

the parameters α = 0.715 and β = 0.285, so (2 − (1−α)·β
2) ≈ 2

2α(1−β) ≈ 1.96.

Proof of Correctness. The correctness of the algorithm is guaranteed by the following two
claims.

▷ Claim 16. If w(cov(E∗)) ≥ β · MST, then TSP ≤ (2 − (1−α)·β
2) · MST.

Proof. Let E′ be the random subset of E∗ that includes each edge of E∗ independently with
probability 1/2. We will show that the expected total weight of all edges in graph E(HT,E′)
is at most (2 − (1−α)·β

2) · MST, namely E[w(E(HT,E′))] ≤ (2 − (1−α)·β
2) · MST. Note that this

implies that there exists a subset E∗∗ of E∗, such that w(E(HT,E∗∗)) ≤ (2 − (1−α)·β
2) · MST.

Combined with Observation 12, this implies that there is an Eulerian tour of the same cost
(using only edges of graph HT,E∗∗). Therefore, there is a TSP-tour of at most the same cost,
completing the proof of Claim 16.

Y. Chen, S. Khanna, and Z. Tan 37:13

We now show that E[w(E(HT,E′))] ≤ (2 − (1−α)·β
2) · MST. From the definition of graph

HT,E′ , E(HT,E′) = E′ ∪ E[T,E′]. On one hand, from the definition of the random subset E′,
E[w(E′)] = w(E∗)/2. On the other hand, for each edge f ∈ cov(E∗), with probability 1/2
graph HT,E′ contains 1 copy of it, and with probability 1/2 graph HT,E′ contains 2 copies
of it. Therefore, E[w(E[T,E′])] = 2 · w(E(T)) − w(cov(E∗))/2 = 2 · MST − w(cov(E∗))/2.
Altogether, E[w(E(HT,E′))] = 2 · MST − (w(cov(E∗)) − w(E∗))/2. The following observation
follows immediately from the algorithm.

▶ Observation 17. w(E∗) ≤ α · w(cov(E∗)).

From Observation 17,

E[w(E(HT,E′))] ≤ 2 · MST − (1 − α) · w(cov(E∗))
2 ≤

(
2 − (1 − α) · β

2

)
· MST.

This concludes the proof of Claim 16. ◁

We next show that, if we do not find a sufficiently large cover, i.e., the value of w(cov(E∗))
is not sufficiently large compared with MST, then TSP must be bounded away from MST.

▷ Claim 18. If w(cov(E∗)) < β · MST, then TSP ≥ 2α(1 − β) · MST.

Proof. Recall that set V1(T) contains all vertices with odd degree in T . Let M be a minimum-
cost perfect matching on V1(T), so TSP ≥ 2 · w(M). We use the following observations. The
proof of Observation 19 is straightforward and is deferred to the full version.

▶ Observation 19. cov(M) = E(T).

▶ Observation 20. For each e ∈ M , w(cov(e) \ cov(E∗)) < w(e)/α.

Proof. We denote by Qe the shortest-path in G connecting the endpoints of e (where G is
the graph underlying the stream). Since Qe is a subgraph of G, all edges of Qe will appear
in the graph stream of G. Note that w(Qe) = w(e) and cov(e) ⊆ cov(E(Qe)).

We will show that, for every edge e′ ∈ E(Qe), w(cov(e′) \ cov(E∗)) < w(e′)/α. Note that
the observation follows from this assertion, as

w(cov(e)\cov(E∗)) ≤ w(cov(E(Qe))\cov(E∗)) ≤
∑

e′∈E(Qe)

w(cov(e′)\cov(E∗)) <
w(Qe)

α
= w(e)

α
.

Consider now any edge e′ ∈ E(Qe), and assume for contradiction that w(cov(e′) \
cov(E∗)) ≥ w(e′)/α. Note that set Etemp only grows over the course of the algorithm that
computes set E∗, and so does the set cov(Etemp). Therefore, when e′ arrives in the stream,
w(cov(e′) \ cov(Etemp)) ≥ w(e′)/α must hold. Then according to the algorithm, the edge e′

should be added to Etemp right away, which means that edge e′ will eventually belong to E∗,
leading to cov(e′) ⊆ cov(E∗) and w(cov(e′) \ cov(E∗)) = 0, a contradiction to the assumption
that w(cov(e′) \ cov(E∗)) ≥ w(e′)/α. ◀

From Observation 19 and Observation 20, we get that

(1−β) ·MST ≤ MST−w(cov(E∗)) = w(cov(M)\cov(E∗)) ≤
∑
e∈M

w(cov(e)\cov(E∗)) < w(M)/α.

Therefore, w(M) ≥ α(1 − β) · MST. Since TSP ≥ 2 · w(M), we conclude that TSP ≥
2α(1 − β) · MST. ◁

ICALP 2023

37:14 Sublinear Algorithms and Lower Bounds for MST and TSP Cost

4 An (2 − ε0)-Approximation Query Algorithm with a given MST

In this section, we provide a proof sketch of Theorem 8, by showing an algorithm that, given
access of a minimum spanning tree of a metric, obtains an (2 − ε0)-approximation of TSP
(for ε0 = 2−100) by performing Õ(n1.5) queries. Note that it suffices for the algorithm to
correctly claim either TSP ≥ (1 + ε0) · MST or TSP ≤ (2 − ε0) · MST.

Let T be the input MST and let it be rooted at an arbitrary vertex. We first divide T

into a top part and a bottom part as follows. We say that a vertex v is maximally light, iff
Tv (the subtree of T rooted at v) contains at most

√
n vertices, but its parent node does not.

Let T ′ be the tree obtained from T by deleting from it, for each maximally light vertex v, all
edges and vertices of Tv, and we call T ′ the top part of T , and call T \ T ′ the bottom part of
T . It is easy to show that T ′ has at most O(

√
n) leaves and therefore at most O(

√
n) special

vertices. Moreover, we can efficiently partition T ′ into a set P of O(
√

n) vertex-disjoint paths,
such that, for each path P ∈ P, either P contains a single vertex of T , or the total number
of vertices in T that has an ancestor in P is at most

√
n. For each path P ∈ P , we call the

subtree of T induced by all vertices of P and all their descendants in T a segment. Let S be
the set of all segments.

The algorithm consists of four steps, that are summarized as follows.

1. We compute the special cover advantage of T ′ using Lemma 10. If adv∗(T ′) ≥ 10ε0 · MST,
then we claim TSP ≤ (2 − ε0) · MST.

2. We estimate the total cover advantage of all segments using Lemma 14. If the algorithm
reports that

∑
S∈S adv(S) ≥ 10ε0 · MST, then we claim TSP ≤ (2 − ε0) · MST.

3. (informal) We estimate the cover advantage involving T \T ′, with the help of the algorithm
in [1]. If the estimation is at least 10ε0 · MST, then we claim TSP ≤ (2 − ε0) · MST.

4. If we did not terminate and claim TSP ≤ (2 − ε0) · MST in any of the previous step, then
we claim TSP ≥ (1 + ε0) · MST.

We first count the total number of queries performed by the algorithm. First, the
algorithm from Lemma 10 performs Õ(n1.5) queries, since the number of special vertices in
T ′ is at most O(

√
n). Second, in Step 2, the algorithm from Lemma 14 performs in total

Õ(n1.5) queries, since each segment contains O(
√

n) vertices. Lastly, in Step 3 the algorithm
performs Õ(n1.5) queries. Altogether, the algorithm performs in total Õ(n1.5) queries.

We now show that the algorithm indeed returns a (2 − ε0)-approximation of TSP. That
is, the claim made by the algorithm is correct.

If in Step 1, the algorithm from Lemma 10 reported adv∗(T ′) ≥ 10ε0 · MST. Then from
Lemma 11, TSP ≤ 2 · MST − (10ε0) · MST/2 = (2 − 5ε0) · MST and the claim is correct.
If in Step 2, the algorithm from Lemma 14 reported

∑
S∈S adv(S) ≥ 10ε0 · MST. From

Lemma 11, TSP ≤ 2 · MST − (10ε0) · MST/2 = (2 − 5ε0) · MST and the claim is correct.
If in Step 2, the estimate of the cover advavtage in T \ T ′ is at least 10ε0 · MST, from
Lemma 11, we can derive that TSP ≤ (2 − 5ε0) · MST and the claim is correct.

We assume from now on the algorithm did not terminate and claim TSP ≤ (2 − ε0) · MST
in the first three steps. We will show that in this case, TSP ≥ (1 + ε0) · MST.

Let π be an optimal TSP-tour, so TSP = w(π). Intuitively, if the tour π “continuously
travels within the top part of T ”, then the report in Step 1 guarantees that its total cost must
be bounded away from MST; if the tour π “continuously travels within the same segments”,
then the report in Step 2 guarantees that its total cost must be bounded away from MST.
Therefore, we only need to consider the case where the tour “constantly jumping between
the top and the bottom parts of T and across different segments”.

Y. Chen, S. Khanna, and Z. Tan 37:15

Note that, since the cover advantage that we discovered in Steps 1-2 are low, for every
edge e = (u, v), the weight w(e) should be rougly equal to the total weight of the unique
u-v path in T . Therefore, if we replace each edge of π with the corresponding path in
T , then the total weight of the resulting edge set should be close to TSP. But since the
tour jumps between the top and the bottom parts of T and across different segments, the
“segment-connecting” edges in T must be covered many times by π, and this can be used to
show that w(π) is bounded away from MST.

Specifically, we let E′
π the obtained edge set after replacing each edge of E(π) with edges

in the corresponding path in T , so E′
π may contain many copies of the same edge. For each

edge e that has more than 2 copies contained in E′
π, if E′

π contains an odd number of copies
of e, then we delete all but one copies from E′

π; if E′
π contains an even number of copies of e,

then we delete all but two copies from E′
π. Denote by E′ the resulting set of edges, so each

edge has at most 2 copies contained in E′. It is easy to verify that the graph induced by
edges of E′ (with multiplicity) is connected and Eulerian.

Let E′′ be the subset of E′ that contains all bridges in the graph induced by edges of E′

(ignoring multiplicities), and it is easy to verify that each edge has two copies contained in E′.
Then from the report of Steps 1-2 of the algorithm, we can show that w(E′) − w(E(π)) ≥
O(ε0) · MST and w(E′) ≥ MST + w(E′′). Therefore, if w(E′′) ≥ Ω(ε0) · MST then we are
done. If w(E′′) ≤ O(ε0) · MST, then we can show that the total cost of all edges with at
least one endpoints in T \ T ′ must be large, and from the report of Step 3 of the algorithm,
we can conclude that w(E(π)) is bounded away from MST.

5 Future Directions

In this work, we studied the problems of MST and TSP cost estimation in the streaming
and query settings. For TSP cost estimation, we introduced and utilized a novel notion
called cover advantage that may prove useful for solving this problem in other computational
models also. In the streaming setting, an interesting open problem is to obtain a one-pass
o(n2)-space (2 − ε)-approximate estimation of TSP cost in the metric stream. In the query
model, we believe a major open problem is to obtain an o(n2)-query (2 − ε)-approximate
estimation of TSP-cost in general metrics.

References
1 Soheil Behnezhad. Time-optimal sublinear algorithms for matching and vertex cover. arXiv

preprint, 2021. arXiv:2106.02942.
2 Soheil Behnezhad, Mohammad Roghani, Aviad Rubinstein, and Amin Saberi. Sublinear

algorithms for tsp via path covers. arXiv preprint, 2023. arXiv:2301.05350.
3 Bernard Chazelle, Ronitt Rubinfeld, and Luca Trevisan. Approximating the minimum spanning

tree weight in sublinear time. SIAM J. Comput., 34(6):1370–1379, 2005.
4 Yu Chen, Sampath Kannan, and Sanjeev Khanna. Sublinear algorithms and lower bounds for

metric tsp cost estimation. arXiv preprint, 2020. arXiv:2006.05490.
5 Nicos Christofides. Worst-case analysis of a new heuristic for the travelling salesman problem.

Technical report, Carnegie-Mellon Univ Pittsburgh Pa Management Sciences Research Group,
1976.

6 Artur Czumaj and Christian Sohler. Estimating the weight of metric minimum spanning trees
in sublinear time. SIAM Journal on Computing, 39(3):904–922, 2009.

ICALP 2023

https://arxiv.org/abs/2106.02942
https://arxiv.org/abs/2301.05350
https://arxiv.org/abs/2006.05490

37:16 Sublinear Algorithms and Lower Bounds for MST and TSP Cost

7 Krzysztof Onak, Dana Ron, Michal Rosen, and Ronitt Rubinfeld. A near-optimal sublinear-
time algorithm for approximating the minimum vertex cover size. In Proceedings of the
twenty-third annual ACM-SIAM symposium on Discrete Algorithms, pages 1123–1131. Society
for Industrial and Applied Mathematics, 2012.

8 Yuichi Yoshida, Masaki Yamamoto, and Hiro Ito. Improved constant-time approximation
algorithms for maximum matchings and other optimization problems. SIAM Journal on
Computing, 41(4):1074–1093, 2012.

Quantum Algorithms and Lower Bounds for Linear
Regression with Norm Constraints
Yanlin Chen #

QuSoft and CWI, Amsterdam, The Netherlands

Ronald de Wolf #

QuSoft and CWI, Amsterdam, The Netherlands
University of Amsterdam, The Netherlands

Abstract
Lasso and Ridge are important minimization problems in machine learning and statistics. They are
versions of linear regression with squared loss where the vector θ ∈ Rd of coefficients is constrained
in either ℓ1-norm (for Lasso) or in ℓ2-norm (for Ridge). We study the complexity of quantum
algorithms for finding ε-minimizers for these minimization problems. We show that for Lasso we
can get a quadratic quantum speedup in terms of d by speeding up the cost-per-iteration of the
Frank-Wolfe algorithm, while for Ridge the best quantum algorithms are linear in d, as are the best
classical algorithms. As a byproduct of our quantum lower bound for Lasso, we also prove the first
classical lower bound for Lasso that is tight up to polylog-factors.

2012 ACM Subject Classification Mathematics of computing → Mathematical optimization; Theory
of computation → Quantum computation theory

Keywords and phrases Quantum algorithms, Regularized linear regression, Lasso, Ridge, Lower
bounds

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.38

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2110.13086

Funding Ronald de Wolf : Partially supported by the Dutch Research Council (NWO) through
Gravitation-grant Quantum Software Consortium, 024.003.037, and through QuantERA ERA-NET
Cofund project QuantAlgo 680-91-034.

Acknowledgements We thank Yi-Shan Wu and Christian Majenz for useful discussions, and Armando
Bellante for pointing us to [11].

1 Introduction

1.1 Linear regression with norm constraints
One of the simplest, most useful and best-studied problems in machine learning and statistics
is linear regression. We are given N data points {(xi, yi)}N−1

i=0 where x ∈ Rd and y ∈ R, and
want to fit a line through these points that has small error. In other words, we want to
find a vector θ ∈ Rd of coefficients such that the inner product ⟨θ, x⟩ =

∑d
j=1 θjxj is a good

predictor for the y-variable. There are different ways to quantify the error (“loss”) of such a
θ-vector, the most common being the squared error (⟨θ, x⟩ − y)2, averaged over the N data
points (or over an underlying distribution D that generated the data). If we let X be the
N ×d matrix whose N rows are the x-vectors of the data, then we want to find a θ ∈ Rd that
minimizes ∥Xθ − y∥2

2. This minimization problem has a well-known closed-form solution:
θ = (XT X)+XT y, where the superscript “+” indicates the Moore-Penrose pseudoinverse.

EA
T
C
S

© Yanlin Chen and Ronald de Wolf;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 38; pp. 38:1–38:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:yanlin.chen@cwi.nl
mailto:rdewolf@cwi.nl
https://doi.org/10.4230/LIPIcs.ICALP.2023.38
https://arxiv.org/abs/2110.13086
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

38:2 Quantum Algorithms and Lower Bounds for Linear Regression w/ Norm Constraints

In practice, unconstrained least-squares regression sometimes has problems with overfitting
and often yields solutions θ where all entries are non-zero, even when only a few of the d

coordinates in the x-vector really matter and one would really hope for a sparse vector θ [42,
see Chapters 2 and 13]. This may be improved by “regularizing” θ via additional constraints.
The most common constraints are to require that the ℓ1-norm or ℓ2-norm of θ is at most some
bound B.1 Linear regression with an ℓ1-constraint is called Lasso (due to Tibshirani [43]),
while with an ℓ2-constraint it is called Ridge (due to Hoerl and Kennard [29]).

Both Lasso and Ridge are widely used for robust regression and sparse estimation in ML
problems and elsewhere [44, 15]. Consequently, there has been great interest in finding the
fastest-possible algorithms for them. For reasons of efficiency, algorithms typically aim at
finding not the exactly optimal solution but an ε-minimizer, i.e., a vector θ whose loss is only
an additive ε worse than the minimal-achievable loss. The best known results on the time
complexity of classical algorithms for Lasso are an upper bound of Õ(d/ε2) [28] and a lower
bound of Ω(d/ε) [16] (which we actually improve to a tight lower bound in this paper, see
below); for Ridge the best bound is Θ̃(d/ε2) [28], which is tight up to logarithmic factors.2

1.2 Our results
We focus on the quantum complexity of Lasso and Ridge, investigating to what extent
quantum algorithms can solve these problems faster. Table 1 summarizes the results. The
upper bounds are on time complexity (total number of elementary operations and queries to
entries of the input vectors) while the lower bounds are on query complexity (which itself
lower bounds time complexity).

Table 1 Classical and quantum upper and lower bounds for Lasso and Ridge.

Upper bound Lower bound

Lasso Classical [28]: Õ(d/ε2) Classical [this work]: Ω̃(d/ε2)

Quantum [this work]: Õ(
√

d/ε2) Quantum [this work]: Ω(
√

d/ε1.5)

Ridge Classical [28]: Õ(d/ε2) Classical [28]: Ω(d/ε2)

Quantum [this work]: Ω(d/ε)

1.2.1 Lasso
We design a quantum algorithm that finds an ε-minimizer for Lasso in time Õ(

√
d/ε2). This

gives a quadratic quantum speedup over the best-possible classical algorithm in terms of d,
while the ε-dependence remains the same as in the best known classical algorithm.

1 For ease of presentation we will set B = 1. However, one can also set B differently or even do a binary
search over its values, finding a good θ for each of those values and selecting the best one at the end.
Instead of putting a hard upper bound B on the norm, one may also include it as a penalty term in
the objective function itself, by just minimizing the function ∥Xθ − y∥2

2 + λ ∥θ∥, where λ is a Lagrange
multiplier and the norm of θ could be ℓ1 or ℓ2 (and could also be squared). This amounts to basically
the same thing as our setup.

2 For such bounds involving additive error ε to be meaningful, one has to put certain normalization
assumptions on X and y, which are given in the body of the paper. The Õ and Θ̃-notation hides
polylogarithmic factors. It is known that N = O((log d)/ε2) data points suffice for finding an ε-minimizer,
which explains the absence of N as a separate variable in these bounds.

Y. Chen and R. de Wolf 38:3

Our quantum algorithm is based on the Frank-Wolfe algorithm, a well-known iterative
convex optimization method [22]. Frank-Wolfe, when applied to a Lasso instance, starts
at the all-zero vector θ and updates this in O(1/ε) iterations to find an ε-minimizer. Each
iteration looks at the gradient of the loss function at the current point θ and selects the
best among 2d directions for changing θ (each of the d coordinates can change positively or
negatively, whence 2d directions). The new θ will be a convex combination of the previous θ

and this optimal direction of change. Note that Frank-Wolfe automatically generates sparse
solutions: only one coordinate of θ can change from zero to nonzero in one iteration, so the
number of nonzero entries in the final θ is at most the number of iterations, which is O(1/ε).

Our quantum version of Frank-Wolfe does not reduce the number of iterations, which
remains O(1/ε), but it does reduce the cost per iteration. In each iteration it selects the best
among the 2d possible directions for changing θ by using a version of quantum minimum-
finding on top of a quantum approximation algorithm for entries of the gradient (which in
turn uses amplitude estimation). Both this minimum-finding and our approximation of entries
of the gradient will result in approximation errors throughout. Fortunately Frank-Wolfe is
a very robust method which still converges if we carefully ensure those quantum-induced
approximation errors are sufficiently small.

Our quantum algorithm assumes coherent quantum query access to the entries of the
data points (xi, yi), as well as a relatively small QRAM (quantum-readable classical-writable
classical memory). We use a variant of a QRAM data structure developed by Prakash and
Kerenidis [37, 33], to store the nonzero entries of our current solution θ in such a way that
we can (1) quickly generate θ as a quantum state, and (2) quickly incorporate the change
of θ incurred by a Frank-Wolfe iteration.3 Because our θ is O(1/ε)-sparse throughout the
algorithm, we only need Õ(1/ε) bits of QRAM.

We also prove a lower bound of Ω(
√

d/ε1.5) quantum queries for Lasso, showing that the
d-dependence of our quantum algorithm is essentially optimal, while our ε-dependence might
still be slightly improvable. Our lower bound strategy “hides” a subset of the columns of
the data matrix X by letting those columns have slightly more +1s than −1, and observes
that an approximate minimizer for Lasso allows us to recover this hidden set. We then use
the composition property of the adversary lower bound [12] together with a worst-case to
average-case reduction to obtain a quantum query lower bound for this hidden-set-finding
problem, and hence for Lasso.

Somewhat surprisingly, no tight classical lower bound was known for Lasso prior to this
work. To the best of our knowledge, the previous-best classical lower bound was Ω(d/ε), due
to Cesa-Bianchi, Shalev-Shwartz, and Shamir [16]. As a byproduct of our quantum lower
bound, we use the same set-hiding approach to prove for the first time the optimal (up to
logarithmic factors) lower bound of Ω̃(d/ε2) queries for classical algorithms for Lasso.

1.2.2 Ridge
What about Ridge? Because ℓ2 is a more natural norm for quantum states than ℓ1, one
might hope that Ridge is more amenable to quantum speedup than Lasso. Unfortunately
this turns out to be wrong: we prove a quantum lower bound of Ω(d/ε) queries for Ridge,
using a similar strategy as for Lasso. This shows that the classical linear dependence of the
runtime on d cannot be improved on a quantum computer. Whether the ε-dependence can
be improved remains an open question.

3 Each iteration will actually change all nonzero entries of θ because the new θ is a convex combination of
the old θ and a vector with one nonzero entry. Our data structure keeps track of a global scalar, which
saves us the cost of separately adjusting all nonzero entries of θ in the data structure in each iteration.

ICALP 2023

38:4 Quantum Algorithms and Lower Bounds for Linear Regression w/ Norm Constraints

1.3 Related work
As already cited in Table 1, Hazan and Koren [28] obtained an optimal classical algorithm for
Ridge, and the best known classical algorithm for Lasso. Cesa-Bianchi, Shalev-Shwartz, and
Shamir [16] provided a non-optimal classical lower bound for Lasso, and their idea inspired us
to hide a subset among the column of the data matrix and to use a Lasso solver to find that
subset (our lower bound also benefited from the way composition of the adversary bound
was used in [8]).

Du, Hsieh, Liu, You, and Tao [20] also showed a quantum upper bound for Lasso based
on quantizing parts of Frank-Wolfe, though their running time Õ(N3/2

√
d) is substantially

worse than ours. The main goal of their paper was to establish differential privacy, not so
much to obtain the best-possible quantum speedup for Lasso. They also claim an Ω(

√
d)

lower bound for quantum algorithms for Lasso [20, Corollary 1], without explicit dependence
on ε, but we do not fully understand their proof, which goes via a claimed equivalence
with quantum SVMs. Bellante and Zanero [11] recently and independently used similar
techniques as we use here for our Lasso upper bound (KP-trees and amplitude estimation)
to give a polynomial quantum speedup for the classical matching-pursuit algorithm, which is
a heuristic algorithm for the NP-hard problem of linear regression with a sparsity constraint,
i.e., with an ℓ0-regularizer.

Another quantum approach for solving (unregularized) least-squares linear regression is
based on the linear-systems algorithm of Harrow, Hassidim, and Lloyd [27]. In this type of
approach, the quantum algorithm very efficiently generates a solution vector θ as a quantum
state 1

∥θ∥2

∑
i θi |i⟩ (which is incomparable to our goal of returning θ as a classical vector).

Chakraborty, Gilyén, and Jeffery [18] used the framework of block-encodings to achieve this.
Subsequently Gilyén, Lloyd, and Tang [25] obtained a “dequantized” classical algorithm for
(unregularized) least-squares linear regression assuming length square sampling access to the
input data, which again is incomparable to our setup. The quantum algorithm was very
recently improved with an ℓ2-regularizer by Chakraborty, Morolia, and Peduri [19], thought
still producing the final output as a quantum state rather than as a classical solution.

Norm-constrained linear regression is a special case of convex optimization. Quantum
algorithms for various convex optimization problems have received much attention recently.
For example, there has been a sequence of quantum algorithms for solving linear and
semidefinite programs starting with Brandão and Svore [14, 5, 13, 6, 3]. There have also
been some polynomial speedups for matrix scaling [7, 26] and for boosting in machine
learning [9, 30], as well as some general speedups for converting membership oracles for a
convex feasible set to separation oracles and optimization oracles [17, 4, 2]. On the other hand
Garg, Kothari, Netrapalli, and Sherif [24] showed that the number of iterations for first-order
algorithms for minimizing non-smooth convex functions cannot be significantly improved on
a quantum computer; recently they generalized this result to higher-order algorithms [23].
Finally, there has also been work on quantum speedups for non-convex problems, for instance
on escaping from saddle points [45].

2 Preliminaries

Throughout the paper, d will always be the dimension of the ambient space Rd, and log
without a base will be the binary logarithm. It will be convenient for us to index entries
of vectors starting from 0, so the entries xi of a d-dimensional vector x are indexed by
i ∈ {0, . . . , d − 1} = Zd. UN = U{0, . . . , N − 1} is the discrete uniform distribution over
integers 0, 1, 2, . . . , N − 1.

Y. Chen and R. de Wolf 38:5

2.1 Computational model and quantum algorithms

Our computational model is a classical computer (a classical random-access machine) that
can invoke a quantum computer as a subroutine. The input is stored in quantum-readable
read-only memory (a QROM), whose bits can be queried. The classical computer can also
write bits to a quantum-readable classical-writable classical memory (a QRAM). The classical
computer can send a description of a quantum circuit to the quantum computer; the quantum
computer runs the circuit (which may include queries to the input bits stored in QROM and
to the bits stored by the computer itself in the QRAM), measures the full final state in the
computational basis, and returns the measurement outcome to the classical computer. In
this model, an algorithm has time complexity T if it uses at most T elementary classical
operations and quantum gates, quantum queries to the input bits stored in QROM, and
quantum queries to the QRAM. The query complexity of an algorithm only measures the
number of queries to the input stored in QROM. We call a (quantum) algorithm bounded-error
if (for every possible input) it returns a correct output with probability at least 9/10.

We will represent real numbers in computer memory using a number of bits of precision
that is polylogarithmic in d, N , and 1/ε (i.e., Õ(1) bits). This ensures all numbers are
represented throughout our algorithms with negligible approximation error and we will ignore
those errors later on for ease of presentation.

The following is a modified version of quantum minimum-finding, which in its basic form
is due to Høyer and Dürr [21]. Our proof of the more general version below is given in our
full version on arXiv, and is based on a result from [5]. We also use some other Grover-based
quantum algorithms as subroutines, described in our full version.

▶ Theorem 1 (min-finding with an approximate unitary). Let δ1, δ2, ε ∈ (0, 1), v0, . . . , vd−1 ∈ R.
Suppose we have a unitary Ã that maps |j⟩ |0⟩ → |j⟩ |Λj⟩ such that for every j ∈ Zd, after
measuring the state |Λj⟩, with probability ≥ 1 − δ2 the first register λ of the measurement
outcome satisfies |λ − vj | ≤ ε. There exists a quantum algorithm that finds an index j

such that vj ≤ mink∈Zd
vk + 2ε with probability ≥ 1 − δ1 − 1000 log(1/δ1) ·

√
2dδ2, using

1000
√

d · log(1/δ1) applications of Ã and Ã†, and Õ(
√

d) elementary gates. In particular, if
δ2 ≤ δ2

1/(2000000d log(1/δ1)), that finds such a j with probability ≥ 1− 2δ1.

2.2 Expected and empirical loss

Let sample set S = {(xi, yi)}N−1
i=0 be a set of i.i.d. samples from Rd × R, drawn according to

an unknown distribution D. A hypothesis is a function h : Rd → R, and H denotes a set of
hypotheses. To measure the performance of the prediction, we use a convex loss function ℓ :
R2 → R. The expected loss of h with respect to D is denoted by LD(h) = E(x,y)∼D[ℓ(h(x), y)],
and the empirical loss of h with respect to S is denoted by LS(h) = 1

N

∑
i∈ZN

ℓ(h(xi), yi).

▶ Definition 2. Let ε > 0. An h ∈ H is an ε-minimizer over H w.r.t. D if

LD(h)− min
h′∈H

LD(h′) ≤ ε.

▶ Definition 3. Let ε > 0. An h ∈ H is an ε-minimizer over H w.r.t. sample set S if

LS(h)− min
h′∈H

LS(h′) ≤ ε.

ICALP 2023

38:6 Quantum Algorithms and Lower Bounds for Linear Regression w/ Norm Constraints

2.3 Linear regression problems and their classical and quantum setup

In linear regression problems, the hypothesis class is the set of linear functions on Rd. The
goal is to find a vector θ for which the corresponding hypothesis ⟨θ, x⟩ provides a good
prediction of the target y. One of the most natural choices for regression problems is the
squared loss

ℓ(ŷ, y) = (ŷ − y)2.

We can instantiate the expected and empirical losses as a function of θ using squared loss:

LD(θ) = E(x,y)∼D[ℓ(⟨θ, x⟩, y)] = E(x,y)∼D[(⟨θ, x⟩ − y)2],

LS(θ) = 1
N

∑
i∈ZN

ℓ(⟨θ, x⟩, yi) = 1
N

∑
i∈ZN

(⟨θ, x⟩ − yi)2.

We also write the empirical loss as LS(θ) = 1
N ∥Xθ − y∥2

2, where matrix entry Xij is the jth
entry of the vector xi, and y is the N -dimensional vector with entries yi. As we will see
below, if the instances in the sample set are chosen i.i.d. according to D, and N is sufficiently
large, then LS(θ) and LD(θ) are typically close by the law of large numbers.

In the quantum case, we assume the sample set S is stored in a QROM, which we can access
by means of queries to the oracles OX : |i⟩ |j⟩ |0⟩ → |i⟩ |j⟩ |Xij⟩ and Oy : |i⟩ |0⟩ → |i⟩ |yi⟩.

2.3.1 Lasso

The least absolute shrinkage and selection operator, or Lasso, is a special case of linear
regression with a norm constraint on the vector θ: it restricts solutions to the unit ℓ1-ball,
which we denote by Bd

1 . For the purpose of normalization, we require that every sample
(x, y) satisfies ∥x∥∞ ≤ 1 and |y| ≤ 1.4 The goal is to find a θ ∈ Bd

1 that (approximately)
minimizes the expected loss. Since the expected loss is not directly accessible, we instead find
an approximate minimizer of the empirical loss. Mohri, Rostamizadeh, and Talwalkar [34]
showed that with high probability, an approximate minimizer for empirical loss is also a
good approximate minimizer for expected loss.

▶ Theorem 4 ([34], Theorem 11.16). Let D be an unknown distribution over [−1, 1]d× [−1, 1]
and S = {(xi, yi)}N−1

i=0 be a sample set containing N i.i.d. samples from D. Then, for each
δ > 0, with probability ≥ 1− δ over the choice of S, the following holds for all θ ∈ Bd

1 :

LD(θ)− LS(θ) ≤ 4
√

2 log(2d)
N

+ 4
√

log(1/δ)
2N

.

This theorem implies that if N = c log(d/δ)/ε2 for sufficiently large constant c, then
finding (with error probability ≤ δ) an ε-minimizer for the empirical loss LS , implies finding
(with error probability ≤ 2δ taken both over the randomness of the algorithm and the choice
of the sample S) a 2ε-minimizer for the expected loss LD.

4 Note that if θ ∈ Bd
1 and ∥x∥∞ ≤ 1, then |⟨θ, x⟩| ≤ 1 by Hölder’s inequality.

Y. Chen and R. de Wolf 38:7

2.3.2 Ridge
Another special case of linear regression with a norm constraint is Ridge, which restricts
solutions to the unit ℓ2-ball Bd

2 . For the purpose of normalization, we now require that every
sample (x, y) satisfies ∥x∥2 ≤ 1 and |y| ≤ 1. Similarly to the Lasso case, Mohri, Rostamizadeh,
and Talwalkar [34] showed that with high probability, an approximate minimizer for the
empirical loss is also a good approximate minimizer for the expected loss.

▶ Theorem 5 ([34], Theorem 11.11). Let D be an unknown distribution over Bd
2 × [−1, 1]

and S = {(xi, yi)}N−1
i=0 be a sample set containing N i.i.d. samples from D. Then, for each

δ > 0, with probability ≥ 1− δ over the choice of S, the following holds for all θ ∈ Bd
2 :

LD(θ)− LS(θ) ≤ 8
√

1
N

+ 4
√

log(1/δ)
2N

.

2.4 The KP-tree data structure and efficient state preparation
Kerenidis and Prakash [37, 33] gave a quantum-accessible classical data structure to store a
vector θ with support t (i.e., t nonzero entries) to enable efficient preparation of the state

|θ⟩ =
∑
j∈Zd

√
|θj |
∥θ∥1

|j⟩ |sign(θj)⟩ .

We modify their data structure such that for arbitrary a, b ∈ R and j ∈ Zd, we can efficiently
update a data structure for the vector θ to a data structure for the vector aθ + bej , without
having to individually update all nonzero entries of the vector. We only give the definition
here; for more details and analysis, see our full version on arXiv.

▶ Definition 6 (KP-tree). Let θ ∈ Rd have support t. Define a KP-tree KPθ of θ as:
KPθ is a rooted binary tree with depth ⌈log d⌉ and with O(t log d) vertices.
The root stores a scalar A ∈ R \ {0} and the support t of θ.
Each edge of the tree is labelled by a bit.
For each j ∈ supp(θ), there is one corresponding leaf storing θj

A . The number of leaves is t.
The bits on the edges of the path from the root to the leaf corresponding to the jth entry
of θ, form the binary description of j.
Each intermediate node stores the sum of its children’s absolute values.

For ℓ ∈ Z⌈log d⌉ and j ∈ Z2ℓ , we define KPθ(ℓ, j) as the value of the jth node in the ℓth

layer, i.e., the value stored in the node that we can reach by the path according to the binary
representation of j from the root. Also, we let KPθ(0, 0) be the sum of all absolute values
stored in the leaves. If there is no corresponding jth node in the ℓth layer (that is, we cannot
reach a node by the path according to the binary representation of j from the root), then
KPθ(ℓ, j) is defined as 0. Note that both the numbering of the layer and the numbering of
nodes start from 0. In the special case where θ is the all-0 vector, the corresponding tree will
just have a root node with t = 0.

3 Quantum Algorithm for Lasso

3.1 The classical Frank-Wolfe algorithm
Below is a description of the Frank-Wolfe algorithm with approximate linear solvers. For now
this is for an arbitrary convex objective function L and arbitrary compact convex domain X
of feasible solutions; for Lasso we will later instantiate these to the quadratic loss function and

ICALP 2023

38:8 Quantum Algorithms and Lower Bounds for Linear Regression w/ Norm Constraints

ℓ1-ball, respectively. Frank-Wolfe finds an ε-approximate solution to a convex optimization
problem, using O(1/ε) iterations. It is a first-order method: each iteration assumes access
to the gradient of the objective function at the current point. The algorithm considers the
linearization of the objective function, and moves towards a minimizer of this linear function
without ever leaving the domain X (in contrast to for instance projected gradient descent).

Algorithm 1 The Frank-Wolfe algorithm with approximate linear subproblems.

input : number of iterations T > 0; convex differentiable function L; compact
convex domain X ;

Let CL be the curvature constant of L;
Let θ0 be an arbitrary point in X ;
for t← 0 to T do

τt = 2
t+2 ;

find s ∈ X such that ⟨s,∇L(θt)⟩ ≤ min
s′∈X
⟨s′,∇L(θt)⟩+ τtCL

4 ;

θt+1 = (1− τt)θt + τts;
end
output : θT ;

The convergence rate of the Frank-Wolfe algorithm is affected by the “non-linearity” of
the objective function L, as measured by the curvature constant CL:

▶ Definition 7. The curvature constant CL of a convex and differentiable function L : Rd → R
with respect to a convex domain X is defined as

CL ≡ sup
x,s∈X ,γ∈[0,1],
y=x+γ(s−x)

2
γ2 (L(y)− L(x)− ⟨∇L(x), (y − x)⟩).

Next we give an upper bound for the curvature constant of the empirical loss function for
Lasso.

▶ Theorem 8. Let S = {(xi, yi)}N−1
i=0 with all entries of xi and yi in [−1, 1]. Then the

curvature constant CLS
of LS w.r.t. Bd

1 is ≤ 8.

Proof. We know

LS(θ) = 1
N
∥Xθ − y∥2

2 = (Xθ − y)T (Xθ − y)
N

= θT XT Xθ − yT Xθ − θT XT y + yT y

N
,

which implies the Hessian of LS is ∇2LS(z) = 2XT X
N , independent of z. By replacing sup by

max because the domain is compact, we have

CLS
= max

x,s∈X ,γ∈[0,1],
y=x+γ(s−x)

2
γ2 (LS(y)− LS(x)− ⟨∇LS(x), (y − x)⟩)

= max
x,s∈X ,γ∈[0,1]

⟨(s− x),∇2LS · (s− x)⟩ = max
x,s∈X

2
N
∥X(s− x)∥2

2.

Each coefficient of X is at most 1 in absolute value, and s−x ∈ 2Bd
1 , hence each entry of the

vector X(s− x) has magnitude at most 2. Therefore max
x,y∈Bd

1

2
N ∥X(s− x)∥2

2 is at most 8. ◀

Y. Chen and R. de Wolf 38:9

The original Frank-Wolfe algorithm [22] assumed that the minimization to determine the
direction-of-change s was done exactly, without the additive error term τtCLS

/4 that we
wrote in Algorithm 1. However, the following theorem, due to Jaggi [31], shows that solving
approximate linear subproblems is sufficient for the Frank-Wolfe algorithm to converge at an
O(CLS

/T) rate, which means one can find an ε-approximate solution with T = O(CLS
/ε)

iterations.

▶ Theorem 9 ([31], Theorem 1). For each iteration t ≥ 1, the corresponding θt of Algorithm 1
satisfies

LS(θt)− min
θ′∈Bd

1

LS(θ′) ≤ 3CLS

t + 2 .

3.2 Approximating the quadratic loss function and entries of its gradient
In this subsection, we give a quantum algorithm to estimate the quadratic loss function LS(θ)
and entries of its gradient, given query access to entries of the vectors in S = {(xi, yi)}N−1

i=0
and given a KP-tree for θ ∈ Bd

1 . One can estimate these numbers with additive error β in
time roughly 1/β.

We start with estimating entries of the gradient of the loss function at a given θ:

▶ Theorem 10. Let θ ∈ Bd
1 , and β, δ > 0. Suppose we have a KP-tree KPθ of vector θ

and can make quantum queries to OKPθ
: |ℓ, k⟩ |0⟩ → |ℓ, k⟩ |KPθ(ℓ, k)⟩. One can implement

Ũ∇LS
: |j⟩ |0⟩ → |j⟩ |Λ⟩ such that for all j ∈ Zd, after measuring the state |Λ⟩, with probability

≥ 1− δ the first register λ of the outcome will satisfy |λ−∇jLS(θ)| ≤ β, by using Õ(log(1/δ)
β)

applications of OX , O†
X , Oy, O†

y, OKPθ
, O†

KPθ
, and elementary gates.

Next we show how to estimate the value of the loss function itself at a given θ:

▶ Theorem 11. Let θ ∈ Bd
1 , and β, δ > 0. Suppose we have a KP-tree KPθ of vector θ and

can make quantum queries to OKPθ
: |ℓ, k⟩ |0⟩ → |ℓ, k⟩ |KPθ(ℓ, k)⟩. Then we can implement

ŨLS
: |0⟩ → |Λ⟩ such that after measuring the state |Λ⟩, with probability ≥ 1 − δ the first

register λ of the outcome will satisfy |λ − LS(θ)| ≤ β, by using Õ(log(1/δ)
β) applications of

OX , O†
X , Oy, O†

y, OKPθ
, O†

KPθ
, and elementary gates.

If we have multiple vectors θ0, . . . , θm−1, then we can apply the previous theorem condi-
tioned on the index of the vector we care about:

▶ Corollary 12. Let θ0, θ1, . . . , θm−1 ∈ Bd
1 , and β, δ > 0. Suppose for all h ∈ Zm, we

have a KP-tree KPθh of vector θh and can make quantum queries to OKPθ
: |h, ℓ, k⟩ |0⟩ →

|h, ℓ, k⟩ |KPθh(ℓ, k)⟩. Then we can implement ŨLS
: |h⟩ |0⟩ → |h⟩ |Λ⟩ such that for all h ∈ Zm,

after measuring the state |Λ⟩, with probability ≥ 1 − δ the first register λ of the outcome
will satisfy |λ− LS(θh)| ≤ β, by using Õ(log(1/δ)

β) applications of OX , O†
X , Oy, O†

y, OKPθ
,

O†
KPθ

, and elementary gates.

3.3 Quantum algorithms for Lasso with respect to S

In this subsection, we will show how to find an approximate minimizer for Lasso with respect
to a given sample set S. The following algorithm simply applies the Frank-Wolfe algorithm
to find an ε-minimizer for Lasso with respect to the sample set S given C, a guess for the
curvature constant CLS

(which our algorithm does not know in advance). Note that to find
an s ∈ Bd

1 such that ⟨s,∇LS(θt)⟩ ≤ min
s′∈X
⟨s′,∇LS(θt)⟩ + τtCLS

/4, it suffices to only check

ICALP 2023

38:10 Quantum Algorithms and Lower Bounds for Linear Regression w/ Norm Constraints

s ∈ {±e0, . . . ,±ed−1} because the domain is Bd
1 and ∇LS is a linear function in θ. Also, by

Theorem 8, the curvature constant CLS
of loss function LS is at most 8 because (xi, yi) is in

[−1, 1]d × [−1, 1] for all i ∈ ZN .

Algorithm 2 The algorithm for Lasso with a guess C for the value of the curvature
constant.

input : a positive value C; additive error ε;
Let θ0 be the d-dimensional all-zero vector;
Let T = 6 · ⌈C

ε ⌉;
for t← 0 to T do

τt = 2
t+2 ;

Let s ∈ {±e0, . . . ,±ed−1} be such that ⟨∇LS(θt), s⟩ ≤ min
j′∈Zd

−|∇j′LS(θt)|+ C
8t+16 ;

θt+1 = (1− τt)θt + τts;
end
output : θT ;

It is worth mentioning that Algorithm 2 also outputs an ε-minimizer if its input C equals
the curvature constant CLS

approximately instead of exactly. For example, suppose we
only know that the curvature constant CLS

is between C and 2C, where C is the input in
Algorithm 2. Then the output of Algorithm 2 is still an ε-minimizer. We can see this by
first observing that the error we are allowed to make for the linear subproblem in iteration t

is CLS

4t+8 ≥
C

8t+16 , and hence by Theorem 9, after T = 6 · ⌈C
ε ⌉ iterations, the output θT is a

3C
(T +2) = 3C

6·⌈C/ε⌉+2 -minimizer for LS . Because 3C
6·⌈C/ε⌉+2 ≤ ε, the output θT is therefore an

ε-minimizer.
In the Lasso case, we do not know how to find a positive number C such that CLS

∈ [C, 2C],
but we know CLS

≤ 8 by Theorem 8. Hence we can try different intervals of possible values
for CLS

: we apply Algorithm 2 with different input C = 8, 4, 2, 1, 1/2, . . . , 2−⌈log(1/ε)⌉, and
then we collect all outputs of Algorithm 2 with those different inputs, as candidates. After
that, we compute the objective values of all those candidates, and output the one with
minimum objective value. If CLS

∈ (ε, 8], then at least one of the values we tried for C will
be within a factor of 2 of the actual curvature constant CLS

. Hence one of our candidates is
an ε-minimizer.

However, we also need to deal with the case that CLS
≤ ε. In this case, we consider

the “one-step” version of the Frank-Wolfe algorithm, where the number of iterations is 1.
But now we do not estimate ⟨∇LS(θt), s⟩ anymore (i.e., we do not solve linear subproblems
anymore). We find that the only possible directions are the vertices of the ℓ1-ball, and θ0

is the all-zero vector, implying that θ1, the output of one-step Frank-Wolfe, must be in
I = {±e0/3, . . . ,±ed−1/3} by the update rule of Frank-Wolfe. Besides, CLS

≤ ε implies
that θ1 is a 3CLS

1+2 ≤ ε-minimizer for Lasso. Hence we simply output a v = arg min
v′∈I

LS(v′) if
CLS

≤ ε.
Combining the above arguments gives the following algorithm:

▶ Theorem 13. Let S = {(xi, yi)}N−1
i=0 be the given sample set stored in QROM. For each

ε ∈ (0, 0.5), there exists a bounded-error quantum algorithm that finds an ε-minimizer for
Lasso w.r.t. sample set S using Õ(

√
d

ε2) time and Õ(1
ε) QRAM and classical space.

Proof. We will implement Algorithm 3 in Õ(
√

d
ε2) time and Õ(1

ε) QRAM space. Below we
analyze its different components.

Y. Chen and R. de Wolf 38:11

Algorithm 3 The algorithm for Lasso.

input : ε;
Let v ∈ {±e0/3, . . . ,±ed−1/3} be such that LS(v)−minj∈Zd

LS(±ej/3) ≤ ε/10;
Let candidate set A = {v};
for C ← 8, 4, 2, 1, 1

2 , . . . , 2−⌈log(1/ε)⌉−1 do
RUN Algorithm 2 with inputs C and ε/10;
ADD the output of Algorithm 2 to A;

end
output : arg minw∈A LS(w);

3.3.1 Analysis of Algorithm 2
We first show that we can implement Algorithm 2 in Õ(

√
d

ε2) time. Because CLS
≤ 8

(Theorem 8), the number of iterations for Algorithm 2 with input C = CLS
is at most

6 · ⌈ 8
ε⌉. However, as we mentioned above, we don’t know how large CLS

is exactly, so
we try all possible inputs (of Algorithm 2) in Algorithm 3. Note that for every input
C ∈ {8, 4, 2, 1, 1

2 , . . . , 2−⌈log(1/ε)⌉−1} and for every number of iterations t ∈ {1, . . . , 6 · ⌈C
ε ⌉},

C
4t+8 is at least ε

10 , so it suffices to ensure that in each iteration in each of our runs of
Algorithm 2, the additive error for the approximate linear subproblem is ≤ ε

10 .
Suppose we have KPθt for each iteration t of Algorithm 2, and suppose we can make queries

to OKPθt , then by Theorem 10, one can implement Ũ∇LS
: |j⟩ |0⟩ → |j⟩ |Λ⟩ such that for all

j ∈ Zd, after measuring the state |Λ⟩, with probability ≥ 1− ε2

2d·1020·log6(1/ε) the first register
λ of the measurement outcome will satisfy |λ−∇jLS(θ)| ≤ ε

20 , by using Õ(log(d/ε)
ε) time and

queries to OKPθt , O†
KPθt

. Then by Theorem 1, with failure probability at most ε
10000 log(1/ε) ,

one can find s ∈ {±e0, . . . ,±ed−1} such that ⟨∇LS(θt), s⟩ ≤ min
j′∈Zd

−|∇j′LS(θt)|+ 2 · ε
20 , by

using Õ(
√

d · log(1/ε)) applications of Ũ∇LS
and Ũ†

∇LS
, and Õ(

√
d) elementary gates.

For each iteration t in Algorithm 2, we also maintain KPθt and hence we can make
quantum queries to OKPθt . The cost for constructing KPθ0 and the cost for updating KPθt

to KPθt+1 is Õ(1) for both time and space by (shown in our full version). Moreover, the
total number of iterations T is at most 6 · ⌈ 8

ε⌉ in Algorithm 2 because CLS
≤ 8, and hence

the space cost for maintaining KPθt and implementing OKPθt is Õ(1
ε) bits. Hence we can

implement Algorithm 2 with failure probability at most ⌈ 8
ε⌉ ·

6ε
10000 log(1/ε) using Õ(

√
d

ε2) time
and Õ(1

ε) bits of QRAM and classical space.

3.3.2 Analysis of Algorithm 3
Now we show how to implement Algorithm 3 with failure probability at most 1/10 using
Õ(

√
d

ε2) time. By Corollary 12, one can implement ŨLS
: |j⟩ |0⟩ → |j⟩ |Λ⟩ such that for

all j ∈ Zd, after measuring the state |Λ⟩, with failure probability at most 1
2d·1016 the first

register λ of the outcome will satisfy |λ − LS(ej/3)| ≤ ε/20 using Õ(1
ε) time. Then by

Theorem 1, with failure probability at most 0.0001 + 1000 · log(1000)
√

2d
2d·1016 ≤ 2

1000 we can
find v ∈ {±e0/3, . . . ,±ed−1/3} such that LS(v)−minj∈Zd

LS(±ej/3) ≤ 2 · ε/20 = ε/10 by
using Õ(

√
d) applications of ŨLS

and Ũ †
LS

and Õ(
√

d) elementary gates, hence Õ(
√

d
ε) time.

Because Algorithm 3 runs Algorithm 2 ⌈log(1/ε)⌉ times and each run fails with probability
at most ⌈ 8

ε⌉ ·
6ε

10000 log(1/ε) , the candidate set A, with failure probability ⌈ 8
ε⌉ ·

6ε
10000 log(1/ε) ·

⌈log(1/ε)⌉ + 2
1000 ≤

1
20 , contains an ε

10 -minimizer. To output arg minw∈A LS(w), we use

ICALP 2023

38:12 Quantum Algorithms and Lower Bounds for Linear Regression w/ Norm Constraints

Theorem 11 to evaluate LS(w) for all w ∈ A with additive error ε
10 with failure probability

at most 1
40 log(1/ε) , and hence we find an ε/10-minimizer among A with probability at least

1−1/20−⌈log(1/ε)⌉ · 1
40 log(1/ε) ≥ 0.9. Because the candidate set A contains an ε

10 -minimizer
for Lasso, the ε

10 -minimizer among A is therefore an ε-minimizer for Lasso. The QRAM and
classical space cost for each run is at most Õ(1

ε) because the space cost for Algorithm 2 is
Õ(1

ε). Hence the total cost for implementing Algorithm 3 is Õ(
√

d
ε2) time and Õ(1

ε) bits of
QRAM and classical space. ◀

3.4 Quantum algorithms for Lasso with respect to D
In the previous subsection, we showed that we can find an ε-minimizer for Lasso with respect
to sample set S. Here we show how we can find an ε-minimizer for Lasso with respect to
distribution D. First sample a set S of N = Õ((log d)/ε2) i.i.d. samples from D, which is the
input that will be stored in QROM, and then find an ε/2-minimizer for Lasso with respect
to S by Theorem 13. By Theorem 4, with high probability, an ε/2-minimizer for Lasso with
respect to S will be an ε-minimizer for Lasso with respect to distribution D. Hence we obtain
the following corollary:

▶ Corollary 14. Let S = {(xi, yi)}N−1
i=0 be the given sample set, sampled i.i.d. from D. For

arbitrary ε > 0, if N = Õ(log d
ε2), then there exists a bounded-error quantum algorithm that

finds an ε-minimizer for Lasso w.r.t. distribution D using Õ(
√

d
ε2) queries to OX , Oy and

elementary gates, and using Õ(1
ε) space (QRAM and classical bits).

In our full version on arXiv we show that we can also avoid the usage of QRAM in the
above corollary with Õ(1/ε) extra overhead.

▶ Corollary 15. Let S = {(xi, yi)}N−1
i=0 be the given sample set, sampled i.i.d. from D. For

arbitrary ε > 0, if N = Õ(log d
ε2), then there exists a bounded-error quantum algorithm that

finds an ε-minimizer for Lasso w.r.t. D using Õ(
√

d
ε3) queries to OX , Oy and elementary

gates, and using Õ(1
ε) classical bits.

4 Quantum query lower bounds for Lasso

In this section we prove a quantum lower bound of Ω(
√

d/ε1.5) queries for Lasso. To show
such a lower bound, we define a certain set-finding problem, and show how it can be solved
by an algorithm for Lasso. After that, we show that the worst-case set-finding problem
can be seen as the composition of two problems, which have query complexities Ω(

√
d/ε)

and Ω(1/ε), respectively. Then the composition property of the quantum adversary bound
implies a Ω(

√
d/ε · 1/ε) = Ω(

√
d/ε1.5) query lower bound for Lasso.

4.1 Finding a hidden set W using a Lasso solver
Let p ∈ (0, 1/2), W ⊂ Zd, and W = Zd \W . Define the distribution Dp,W over (x, y) ∈
{−1, 1}d × {−1, 1} as follows. For each j′ ∈W , xj′ is generated according to Pr[xj′ = 1] =
Pr[xj′ = −1] = 1/2, and for each j ∈W , xj is generated according to Pr[xj = 1] = 1/2 + p.
And y is generated according to Pr[y = 1] = 1. The goal of the distributional set-finding
problem DSFDp,W

with respect to Dp,W is to output a set W̃ such that |W̃∆W | ≤ w/200,
given M samples from Dp,W . One can think of the M × d matrix of samples as “hiding” the
set W : the columns corresponding to j ∈W are likely to have more 1s than −1s, while the
columns corresponding to j ∈W have roughly as many 1s as −1s. A Lasso-solver can help us
to find the hidden set W approximately. Precisely, algorithms that find an ε/8000-minimizer
for Lasso with respect to Dp,W can also find a set W̃ ⊂ Zd such that |W∆W̃ | ≤ w/200.

Y. Chen and R. de Wolf 38:13

▶ Theorem 16. Let ε ∈ (2/d, 1/100), w be eitehr ⌊1/ε⌋ or ⌊1/ε⌋ − 1, p = 1/(2⌊1/ε⌋), and
W ⊂ Zd be a set of size w. Let θ be an ε/8000-minimizer for Lasso w.r.t. Dp,W . Then the
set W̃ that contains the indices of the entries of θ whose absolute value is ≥ ε/3 satisfies
|W∆W̃ | ≤ w/200.

4.2 Worst-case quantum query lower bound for the set-finding problem
Here we will define the worst-case set-finding problem and then provide a quantum query
lower bound for it. Before we step into the query lower bound for the worst-case set-finding
problem, we have to introduce the lower bounds for the following problems first.

consider the exact set-finding problem: given input x = x0 . . . xd−1 ∈ {0, 1}d with at most
w 1s, find the set W of all indices j with xj = 1 (equivalently, learn x). To see the query lower
bound for this problem, we consider the identity function where both domain and codomain
are Z = {z ∈ {0, 1}d : |z| = w}, and give a lower bound for computing this. If we can
compute the identity function, then we can simply check the output string x0, x1, . . . , xd−1
and collect all indices j with xj = 1.

▶ Theorem 17. Let w be an integer satisfying 0 < w ≤ d/2, W ⊂ Zd with size w, and
x ∈ {0, 1}d such that xj = 1 if j ∈W and xj′ = 0 if j′ ∈W . Suppose we have query access
to x. Then every quantum bounded-error algorithm to find W makes at least 1

8
√

dw queries.

Using the same method, we give a lower bound for the approximate set-finding problem
ASFd,w, which is to find a set W̃ ⊂ Zd such that |W∆W̃ | ≤ w/200. The intuition is that if
we could find such a W̃ then we can “correct” it to W itself using a small number of Grover
searches, so finding a good approximation W̃ is not much easier than finding W itself.

▶ Theorem 18. Let w be an integer satisfying 0 < w ≤ d/2, W ⊂ Zd with size w, and
x ∈ {0, 1}d such that xj = 1 if j ∈ W and xj′ = 0 if j′ ∈ W . Suppose we have query
access to x. Then every bounded-error quantum algorithm that outputs W̃ ⊂ Zd satisfying
|W∆W̃ | ≤ w/200 makes Ω(

√
dw) queries.

Next we consider the Hamming-weight distinguisher problem HDℓ,ℓ′ : given a z ∈ {0, 1}N

of Hamming weight ℓ or ℓ′, distinguish these two cases. The adversary bound gives the
following bound (a special case of Nayak and Wu [35] based on the polynomial method [10]).

▶ Theorem 19. Let N ∈ 2Z+, z ∈ {0, 1}N , and p ∈ (0, 0.5) be multiple of 1/N . Suppose
we have query access to z. Then every bounded-error quantum algorithm that computes
HD N

2 ,N(1
2 +p) makes Ω(1/p) queries.

The above theorem implies a lower bound of Ω(1/p) queries for HD N
2 ,N(1

2 +p). One can
also think of the input bits as ±1 and in this case, the goal is to distinguish whether the
entries add up to 0 or to 2pN . For convenience, we abuse the notation HD N

2 ,N(1
2 +p) also for

the problem with ±1 inputs. Now we are ready to prove a lower bound for the worst-case
set-finding problem WSFd,w,p,N : given a matrix X ∈ {−1, 1}N×d where each column-sum is
either 2pN or 0, the goal is to find a set W̃ ⊂ Zd such that |W̃∆W | ≤ w/200, where W is
the set of indices for those columns whose entries add up to 2pN and w = |W |. One can
see that this problem is actually a composition of the approximate set-finding problem and
the Hamming-weight distinguisher problem. Composing the relational problem ASFd,w with
d valid inputs of HD N

2 ,N(1
2 +p), exactly w of which evaluate to 1, we can see that the d-bit

string given by the values of HD N
2 ,N(1

2 +p) on these d inputs, is a valid input for ASFd,w. In
other words, the set of valid inputs for WSFd,w,p,N , or equivalently, the set of valid inputs
for the composed problem ASFd,w ◦ (HD N

2 ,N(1
2 +p))d is

ICALP 2023

38:14 Quantum Algorithms and Lower Bounds for Linear Regression w/ Norm Constraints

{(x(1), . . . , x(d)) ∈ Pd : |HD N
2 ,N(1

2 +p)(x(1)) . . . HD N
2 ,N(1

2 +p)(x(d))| = w},

where P = {x ∈ {0, 1}N : |x| ∈ {N/2, N/2 + pN}}. The next theorem by Belovs and Lee
shows that the quantum query complexity of the composed problem ASFd,w ◦ (HD N

2 , N+2pN
2

)d

is at least the product of the complexities of the two composing problems:

▶ Theorem 20 ([12], Corollary 27). Let f ⊆ S × T , with S ⊆ {0, 1}d, be a relational problem
with bounded-error quantum query complexity L. Assume that f is efficiently verifiable,
that is given some t ∈ T and oracle access to x ∈ S, there exists a bounded-error quantum
algorithm that verifies whether (x, t) ∈ f using o(L) queries to x. Let D ⊆ {0, 1}N and
g : D → {0, 1} be a Boolean function whose bounded-error quantum query complexity is Q.
Then the bounded-error quantum query complexity of the relational problem f ◦ gd, restricted
to inputs x ∈ {0, 1}dN such that gd(x) ∈ S, is Ω(LQ).

Applying Theorem 20 with the lower bounds of Theorem 19 and Theorem 18, we obtain:

▶ Corollary 21. Let N ∈ 2Z+ and p ∈ (0, 0.5) be an integer multiple of 1/N . Given a matrix
X ∈ {−1, +1}N×d such that there exists a set W ⊆ Zd with size w and

For every j ∈W ,
∑

i∈ZN

Xij = 2pN .

For every j′ ∈W ,
∑

i∈ZN

Xij′ = 0.

Suppose we have query access to X. Then every bounded-error quantum algorithm that
computes W̃ such that |W∆W̃ | ≤ w/200, uses Ω(

√
dw/p) queries to OX .

4.3 Worst-case to average-case reduction for the set-finding problem
Our goal is to prove a lower bound for Lasso algorithms that have high success probability
w.r.t. the distribution Dp,W , yet the lower bound of the previous subsection is for worst-case
instances. In this subsection, we will connect these by providing a worst-case to average-case
reduction for the set-finding problem. After that, by simply combining with the query
lower bound for the worst-case set-finding problem and the reduction from the distributional
set-finding problem to Lasso, we obtain an Ω(

√
d/ε1.5) query lower bound for Lasso.

▶ Theorem 22. Let N ∈ 2Z+, p ∈ (0, 0.5) be an integer multiple of 1/N , w be a natural
number between 2 to d/2, and M be a natural number. Suppose X ∈ {−1, +1}N×d is a valid
input for WSFd,w,p,N , and let W ⊂ Zd be the set of the w indices of the columns of X whose
entries add up to 2pN . Let R ∈ ZM×d

N be a matrix whose entries are i.i.d. samples from UN ,
and define X ′ ∈ {−1, 1}M×d as X ′

ij = XRijj. Then the M vectors (X ′
i, 1), where X ′

i is the
ith row of X ′ and i ∈ ZM , are i.i.d. samples from Dp,W .

Proof. Every entry of R is a sample from UN , so XRijj is uniformly chosen from the entries
of the jth column of X. Moreover, because every valid input W for WSFd,w,p,N satisfies that
for every j ∈W , Pri∼UN

[Xij = 1] = 1/2 + p and for every j′ ∈W , Pri∼UN
[Xij′ = 1] = 1/2,

we know (X ′
i, 1) is distributed as Dp,W . ◀

The above theorem tells us that we can convert an instance of WSFd,w,p,N to an instance
of DSFDp,W

. Note that we can produce matrix R offline and therefore we can construct the
oracle OX′ : |i⟩ |j⟩ |0⟩ → |i⟩ |j⟩ |XRijj⟩ using 1 query to OX : |i⟩ |j⟩ |0⟩ → |i⟩ |j⟩ |Xij⟩ (and
some other elementary gates, which is irrelevant to the number of queries). Also observe
that if M = 1012 · ⌈log d⌉ · ⌊1/ε⌋2 = O((log d)/ε2) and hence S′ = {(X ′

i, 1)}M−1
i=0 is a sample

Y. Chen and R. de Wolf 38:15

set with M i.i.d. samples from Dp,W , then by Theorem 4, with probability ≥ 9/10, an
ε/16000-minimizer for Lasso with respect to S′ is also an ε/8000-minimizer for Lasso with
respect to distribution Dp,W . By Theorem 16, an ε/8000-minimizer for Lasso with respect to
distribution Dp,W can be used to output a set W̃ ⊂ Zd such that |W̃∆W | ≤ w/200, where
W is the set of indices for those columns of X whose entries add up to 2pN . Hence we have
a reduction from the worst-case set-finding problem to Lasso. By the reduction above and
by plugging w = ⌊1/ε⌋ and p = 1/(2⌊1/ε⌋) in Corollary 21 (and N an arbitrary natural
number such that pN ∈ N), we obtain a lower bound of Ω(

√
d/ε1.5) queries for WSFd,w,p,N ,

and hence the main result of this section: a lower bound of Ω(
√

d/ε1.5) for Lasso.

▶ Corollary 23. Let ε ∈ (2/d, 1/100), w = ⌊1/ε⌋, p = 1/(2⌊1/ε⌋), and W ⊂ Zd with size w.
Every bounded-error quantum algorithm that computes an ε-minimizer for Lasso w.r.t. Dp,W

uses Ω(
√

d/ε1.5) queries.

4.4 Classical lower bound for Lasso

In the full version of this paper on arXiv we show how this quantum lower bound approach
can be modified to prove, for the first time, a lower bound of Ω̃(d/ε2) on the classical query
complexity of Lasso. This lower bound is optimal up to logarithmic factors.

5 Quantum query lower bound for Ridge

Recall that Ridge’s setup assumes the vectors in the sample set are normalized in ℓ2 rather than
ℓ∞ as in Lasso. We modify the distribution to D′

p,W over (x, y) ∈ {−1/
√

d, 1/
√

d}d×{−1, 1}
as follows. Let p ∈ (0, 1/4), W ⊂ Zd, and W = Zd \W . For each j′ ∈ W , xj′ is generated
according to Pr[xj′ = −1/

√
d] = 1/2 + p; for each j ∈ W , xj is generated according to

Pr[xj = 1/
√

d] = 1/2 + p; y is generated according to Pr[y = 1] = 1. Now again we want to
solve a distributional set-finding problem with respect to D′

p,W , given M samples from D′
p,W .

Similar to the Lasso case, one can think of the M × d matrix of samples as “hiding” the
set W : the columns corresponding to j ∈W are likely to have more 1/

√
d’s than −1/

√
d’s,

while the columns corresponding to j ∈W are likely to have more −1/
√

d’s than 1/
√

d’s.
In this section let θ∗ =

∑
j∈Zd

ej√
d

(−1)[j∈W] and note that for every θ ∈ Rd,

LD′
p,W

(θ) =E(x,y)∼D′
p,W

[⟨θ, x⟩2]− 2E(x,y)∼D′
p,W

[⟨θ, x⟩] + 1

=(E(x,y)∼D′
p,W

[⟨θ, x⟩2]− E(x,y)∼D′
p,W

[⟨θ, x⟩]2)

+ E(x,y)∼D′
p,W

[⟨θ, x⟩]2 − 2E(x,y)∼D′
p,W

[⟨θ, x⟩] + 1

=∥θ∥2
2 · (1− 4p2)/d + (E(x,y)∼D′

p,W
[⟨θ, x⟩]− 1)2

=∥θ∥2
2 · (1− 4p2)/d + (2p⟨θ, θ∗⟩ − 1)2,

where the third equality holds because ⟨θ, x⟩ is a sum of independent random variables and
hence its variance is the sum of the variances of the terms θixi (which are θ2

i (1− 4p2)/d).
Next we show that θ∗ is the minimizer for Ridge with respect to D′

p,W .

▶ Theorem 24. Let w = ⌊d/2⌋ and W ⊂ Zd be a set of size w, and let ε ∈ (1000/d, 1/10000)
and p = 1/⌊1/ε⌋. Then θ∗ =

∑
j∈Zd

ej√
d
(−1)[j∈W] is the minimizer for Ridge w.r.t. D′

p,W .

ICALP 2023

38:16 Quantum Algorithms and Lower Bounds for Linear Regression w/ Norm Constraints

Proof. Let θ =
∑

j∈Zd

θjej ∈ Bd
2 be a minimizer. We want to show θj = θ∗

j for every j ∈ Zd.

Note that if θj · (−1)[j∈W] < 0, then we can flip the sign of θj to get a smaller objective
value, that is,

LD′
p,W

(θ′) − LD′
p,W

(θ) = (∥θ′∥2
2 − ∥θ∥2

2) · (1 − 4p2)/d + (2p⟨θ′, θ∗⟩ − 1)2 − (2p⟨θ, θ∗⟩ − 1)2

= (2p⟨θ′ − θ, θ∗⟩)(2p⟨θ′ + θ, θ∗⟩ − 2)

= (−4pθj · (−1)[j∈W])(2p⟨θ′ + θ, θ∗⟩ − 2) < 0,

where θ′ =
∑

k∈Zd\{j}
θkek − θjej , and the last inequality is because −4pθj · (−1)[j∈W] > 0

and 2p⟨θ′ + θ, θ∗⟩ ≤ 2p∥θ′ + θ∥2 · ∥θ∗∥2 ≤ 4p ≤ 1. Since θ was assumed a minimizer, for all
j ∈ Zd the sign of θj must be (−1)[j∈W].

Second, we show that we must have |θ0| = |θ1| = · · · = |θd−1|. Suppose, towards a
contradiction, that this is not the case. Consider θ′ =

∑
j∈Zd

uej · (−1)[j∈W], where u =√ ∑
j∈Zd

|θj |2/d. We have

LD′
p,W

(θ′)− LD′
p,W

(θ) = (2p⟨θ′ − θ, θ∗⟩)(2p⟨θ′ + θ, θ∗⟩ − 2)

= (2p/
√

d) · (du−
∑
j∈Zd

|θj |) · (2p⟨θ′ + θ, θ∗⟩ − 2) < 0.

The last inequality holds because again 2p⟨θ′ + θ, θ∗⟩ ≤ 4p ≤ 1 and in addition,

d ·
∑
j∈Zd

|θj |2 > (
∑
j∈Zd

|θj |)2

by the Cauchy–Schwarz inequality (which is strict if the |θj | are not all equal). Hence if θ is
indeed a minimizer, then its entries must all have the same magnitude.

Now we know a minimizer θ must be in the same direction as θ∗, we just don’t know yet
that the magnitudes of its entries are 1/

√
d. Suppose ∥θ∥2 = u ≤ 1 and θ = u · θ∗, then

LD′
p,W

(θ) = ∥θ∥2
2 · (1− 4p2)/d + (2p⟨θ, θ∗⟩ − 1)2 = (u2(1− 4p2)/d + (2pu− 1)2).

The discriminant of f(u) = u2(1− 4p2)/d + (2pu− 1)2 is less than 0, and u = 2p
4p2+(1−4p2)/d

is the global minimizer of f(u). Note that u = 2p
4p2+(1−4p2)/d > 1, and hence f(1) ≤ f(u) for

every u ≤ 1. Therefore we know θ∗ is the minimizer for Ridge with respect to D′
p,W . ◀

Next we show that the inner product between the minimizer and an approximate minimizer
for Ridge will be close to 1.

▶ Theorem 25. Let w = ⌊d/2⌋, W ⊂ Zd be a set of size w, ε ∈ (1000/d, 1/10000),
and p = 1/⌊1/ε⌋. Suppose θ ∈ Bd

2 is an ε/1000-minimizer for Ridge w.r.t. D′
p,W . Then

⟨θ, θ∗⟩ ≥ 0.999.

Proof. Because θ is an ε/1000-minimizer, we have

0.001ε ≥ LD′
p,W

(θ)− LD′
p,W

(θ∗) = (1− 4p2) · (∥θ∥2
2 − 1)/d + (2p⟨θ, θ∗⟩ − 1)2 − (2p− 1)2

=⇒ 2p⟨θ, θ∗⟩ ≥ 1−
√

1− 4p + 4p2 + 0.001ε− (1− 4p2) · (∥θ∥2
2 − 1)/d.

Y. Chen and R. de Wolf 38:17

Letting z = 4p− 4p2 − 0.001ε + (1− 4p2) · (∥θ∥2
2 − 1)/d, we have

2p⟨θ, θ∗⟩ ≥1−
√

1− z ≥ 1− (1− z/2) = z/2
=2p− 2p2 + (1− 4p2) · (∥θ∥2

2 − 1)/d− 0.001ε,

where the second inequality holds because z ∈ (0, 1). Dividing both sides by 2p, we have

⟨θ, θ∗⟩ ≥ 1− p + (1− 4p2) · (∥θ∥2
2 − 1)/(2pd)− 0.0005ε/p.

Because θ ∈ Bd
2 , p = 1/⌊1/ε⌋, and ε ∈ (1000/d, 1/10000), we get ⟨θ, θ∗⟩ ≥ 0.999. ◀

Combining the above theorem with the following theorem, we can see how to relate the
entries of an approximate minimizer for Ridge with respect to D′

p,W to the elements of the
hidden set W .

▶ Theorem 26. Suppose θ ∈ Bd
2 satisfies ⟨θ, θ∗⟩ ≥ 1 − 0.001. Then #{j ∈ Zd | θj · θ∗

j ≤
0} ≤ d/500.

Proof. If θj · θ∗
j ≤ 0 then |θj − θ∗

j | ≥ |θ∗
j | = 1√

d
, hence using Theorem 25 we have

1
d

#{j ∈ Zd | θj · θ∗
j ≤ 0} ≤ ∥θ − θ∗∥2

2 = ∥θ∥2
2 + ∥θ∗∥2

2 − 2⟨θ, θ∗⟩

≤ 2− 2(1− 0.001) = 1/500. ◀

We know θ∗ =
∑

j∈Zd

ej√
d
(−1)[j∈W], so by looking at the signs of entries of θ, we can find

an index set W̃ = {j ∈ Zd : θj > 0} satisfying that |W∆W̃ | ≤ d/500 ≤ w/200 because
w = ⌊d/2⌋. Therefore, once we have an ε/1000-minimizer for Ridge with respect to D′

p,W ,
we can solve DSFD′

p,W
.

With the reduction from DSFD′
p,W

to Ridge, we here show (similar to Lasso) a lower
bound for the worst-case symmetric set-finding problem WSSFd,w,p,N : given a matrix X ∈
{−1/

√
d, 1/
√

d}N×d where each column-sum is either 2pN/
√

d or −2pN/
√

d, the goal is to
find a set W̃ ⊂ Zd such that |W̃∆W | ≤ w/200, where W is the set of indices for those
columns whose entries add up to 2pN/

√
d and w = |W |. This problem is again a composition

of the approximate set finding problem in Section 4.2 and the Hamming-weight distinguisher
problem HDℓ,ℓ′ with ℓ = N

2 − pN and ℓ′ = N
2 + pN up to a scalar 1/

√
d. Following the proof

of Theorem 19, we prove a lower bound of Ω(1/p) queries for this problem.

▶ Theorem 27. Let N ∈ 2Z+, z ∈ {0, 1}N , and p ∈ (0, 0.5) be an integer multiple of
1/N . Suppose we have query access to z. Then every bounded-error quantum algorithm that
computes HD N

2 −pN, N
2 +pN makes Ω(1/p) queries.

Again we think of the input bits as ±1 and abuse the notation HD N
2 −pN, N

2 +pN for the
problem with ±1 input. Also, by the composition property of the adversary bound from
Belovs and Lee [12] (Theorem 20), we have a lower bound of Ω(

√
dw/p) for WSSFd,w,p,N

from the Ω(
√

dw) lower bound for ASFd,w and the Ω(1/p) lower bound for HD N
2 −pN, N

2 +pN .

▶ Corollary 28. Let N ∈ 2Z+ and p ∈ (0, 0.5) be an integer multiple of 1/N . Given a matrix
X ∈ {−1/

√
d, +1/

√
d}N×d such that there exists a set W ⊆ Zd with size w and

For every j ∈W ,
∑

i∈ZN

Xij = 2pN/
√

d.

For every j′ ∈W ,
∑

i∈ZN

Xij′ = −2pN/
√

d.

Then every bounded-error quantum algorithm that computes W̃ such that |W∆W̃ | ≤ w/200,
takes Ω(

√
dw/p) queries.

ICALP 2023

38:18 Quantum Algorithms and Lower Bounds for Linear Regression w/ Norm Constraints

The final step for proving a lower bound for Ridge, using the same arguments as in
Section 4.3, is to provide a worst-case to average-case reduction for the symmetric set-finding
problem. We follow the same proof in Theorem 22 and immediately get the following theorem:

▶ Theorem 29. Let N ∈ 2Z+, p ∈ (0, 0.5) be an integer multiple of 1/N , w be a natural
number between 2 to d/2, and M be a natural number. Suppose X ∈ {−1/

√
d, +1/

√
d}N×d

is a valid input for WSSFd,w,p,N , and let W ⊂ Zd be the set of the w indices of the columns
of X whose entries add up to 2pN/

√
d. Let R ∈ ZM×d

N be a matrix whose entries are i.i.d.
samples from UN , and define X ′ ∈ {−1/

√
d, 1/
√

d}M×d as X ′
ij = XRijj. Then the vectors

(X ′
i, 1), where X ′

i is the ith row of X ′ and i ∈ ZM , are i.i.d. samples from D′
p,W .

By setting M = 1010 · ⌈log d⌉ · ⌊1/ε⌋2 = O((log d)/ε2) and letting S′ = {(X ′
i, 1)}M−1

i=0 be a
sample set with M i.i.d. samples from D′

p,W , with probability ≥ 9/10, an ε/2000-minimizer
for Ridge with respect to S′ is also an ε/1000-minimizer for Ridge with respect to distribution
D′

p,W from Theorem 5. By Theorem 26 and Theorem 25, an ε/1000-minimizer for Ridge with
respect to distribution D′

p,W gives us a set W̃ ⊂ Zd such that |W̃ ∆W | ≤ w/200, where W is
the set of indices for those columns of X whose entries add up to 2pN/

√
d. Hence we have a

reduction from the worst-case symmetric set-finding problem to Ridge. By this reduction
and by plugging w = ⌊d/2⌋ and p = 1/⌊1/ε⌋ in Corollary 28 (and N an arbitrary natural
number such that pN ∈ N), we obtain a lower bound of Ω(d/ε) queries for WSSFd,w,p,N ,
and hence for Ridge as well, which is the main result of this section.

▶ Corollary 30. Let ε ∈ (2/d, 1/1000), w = ⌊d/2⌋, p = 1/⌊1/ε⌋, and W ⊂ Zd with size w.
Every bounded-error quantum algorithm that computes an ε-minimizer for Ridge w.r.t. D′

p,W

uses Ω(d/ε) queries.

6 Future work

We mention a few directions for future work:
While the d-dependence of our quantum bounds for Lasso is essentially optimal, the
ε-dependence is not: upper bound

√
d/ε2 vs lower bound

√
d/ε1.5. Can we shave off

a 1/
√

ε factor from our upper bound, maybe using a version of accelerated gradient
descent [36] with O(1/

√
ε) iterations instead of Frank-Wolfe’s O(1/ε) iterations? Or can

we somehow improve our lower bound by embedding harder query problems into Lasso?
Similar question for Ridge: the linear d-dependence of our quantum bounds is tight,
but we should improve the ε-dependence of our upper and/or lower bounds. The most
interesting outcome would be a quantum algorithm for Ridge with better ε-dependence
than the optimal classical complexity of Θ̃(d/ε2); currently we do not know of any
quantum speedup for Ridge.
Can we speed up some other methods for (smooth) convex optimization? In particular,
can we find a classical iterative method where quantum algorithms can significantly
reduce the number of iterations, rather than just the cost per iteration as we did here?
There are many connections between Lasso and Support Vector Machines [32], and there
are recent quantum algorithms for optimizing SVMs [38, 41, 39, 1, 40]. We would like to
understand this connection better.

References
1 Jonathan Allcock and Chang-Yu Hsieh. A quantum extension of SVM-perf for training

nonlinear SVMs in almost linear time. Quantum, 4:342, 2020. arXiv:2006.10299.
2 Joran van Apeldoorn. A quantum view on convex optimization. PhD thesis, Universiteit van

Amsterdam, 2020.

https://arxiv.org/abs/2006.10299

Y. Chen and R. de Wolf 38:19

3 Joran van Apeldoorn and András Gilyén. Quantum algorithms for zero-sum games, 2019.
arXiv:1904.03180.

4 Joran van Apeldoorn, András Gilyén, Sander Gribling, and Ronald de Wolf. Convex optimiza-
tion using quantum oracles. Quantum, 4:220, 2020. arXiv:1809.00643.

5 Joran van Apeldoorn, András Gilyén, Sander Gribling, and Ronald de Wolf. Quantum SDP-
solvers: better upper and lower bounds. Quantum, 4:230, 2020. Earlier version in FOCS’17.
arXiv:1705.01843.

6 Joran van Apeldoorn and András Gilyén. Improvements in quantum SDP-solving with
applications. In Proceedings of 46th International Colloquium on Automata, Languages, and
Programming, volume 132 of Leibniz International Proceedings in Informatics, pages 99:1–99:15,
2019. arXiv:1804.05058.

7 Joran van Apeldoorn, Sander Gribling, Yinan Li, Harold Nieuwboer, Michael Walter, and
Ronald de Wolf. Quantum algorithms for matrix scaling and matrix balancing. In Proceedings
of 48th International Colloquium on Automata, Languages, and Programming, volume 198 of
Leibniz International Proceedings in Informatics, pages 110:1–17, 2021. arXiv:2011.12823.

8 Simon Apers and Ronald de Wolf. Quantum speedup for graph sparsification, cut approximation
and Laplacian solving. In Proceedings of 61st IEEE Annual Symposium on Foundations of
Computer Science, pages 637–648, 2020. arXiv:1911.07306.

9 Srinivasan Arunachalam and Reevu Maity. Quantum boosting. In Proceedings of 37th
International Conference on Machine Learning (ICML’20), 2020. arXiv:2002.05056.

10 Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf. Quantum
lower bounds by polynomials. Journal of the ACM, 48(4):778–797, 2001. Earlier version in
FOCS’98. quant-ph/9802049.

11 Armando Bellante and Stefano Zanero. Quantum matching pursuit: A quantum algorithm for
sparse representations. Physical Review A, 105:022414, 2022.

12 Aleksandrs Belovs and Troy Lee. The quantum query complexity of composition with a
relation, 2020. arXiv:2004.06439.

13 Fernando Brandão, Amir Kalev, Tongyang Li, Cedric Yen-Yu Lin, Krysta Svore, and Xiaodi
Wu. Quantum SDP solvers: Large speed-ups, optimality, and applications to quantum learning.
In Proceedings of 46th International Colloquium on Automata, Languages, and Programming,
volume 132 of Leibniz International Proceedings in Informatics, pages 27:1–27:14, 2019.
arXiv:1710.02581.

14 Fernando Brandão and Krysta Svore. Quantum speed-ups for solving semidefinite programs.
In Proceedings of 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS,
pages 415–426, 2017. arXiv:1609.05537.

15 Peter Bühlmann and Sara van de Geer. Statistics for High-Dimensional Data: Methods,
Theory and Applications. Springer, 2011.

16 Nicolò Cesa-Bianchi, Shai Shalev-Shwartz, and Ohad Shamir. Efficient learning with partially
observed attributes. Journal of Machine Learning Research, 12:2857–2878, 2011. arXiv:
1004.4421.

17 Shouvanik Chakrabarti, Andrew Childs, Tongyang Li, and Xiaodi Wu. Quantum algorithms
and lower bounds for convex optimization. Quantum, 4:221, 2020. arXiv:1809.01731.

18 Shantanav Chakraborty, András Gilyén, and Stacey Jeffery. The power of block-encoded matrix
powers: improved regression techniques via faster Hamiltonian simulation. In Proceedings of
46th International Colloquium on Automata, Languages, and Programming, volume 132 of
Leibniz International Proceedings in Informatics, pages 33:1–33:14, 2019. arXiv:1804.01973.

19 Shantanav Chakraborty, Aditya Morolia, and Anurudh Peduri. Quantum regularized least
squares, 2022. arXiv:2206.13143.

20 Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, Shan You, and Dacheng Tao. Quantum differen-
tially private sparse regression learning, 2020. arXiv:2007.11921.

21 Christoph Dürr and Peter Høyer. A quantum algorithm for finding the minimum, 1996.
arXiv:quant-ph/9607014.

ICALP 2023

https://arxiv.org/abs/1904.03180
https://arxiv.org/abs/1809.00643
httsp://arxiv.org/abs/1705.01843
https://arxiv.org/abs/1804.05058
https://arxiv.org/abs/2011.12823
https://arxiv.org/abs/1911.07306
https://arxiv.org/abs/2002.05056
https://arxiv.org/abs/2004.06439
https://arxiv.org/abs/1710.02581
https://arxiv.org/abs/1609.05537
https://arxiv.org/abs/1004.4421
https://arxiv.org/abs/1004.4421
https://arxiv.org/abs/1809.01731
https://arxiv.org/abs/1804.01973
https://arxiv.org/abs/2206.13143
https://arxiv.org/abs/2007.11921
https://arxiv.org/abs/quant-ph/9607014

38:20 Quantum Algorithms and Lower Bounds for Linear Regression w/ Norm Constraints

22 Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming. Naval Research
Logistics Quarterly, 3(1-2):95–110, 1956.

23 Ankit Garg, Robin Kothari, Praneeth Netrapalli, and Suhail Sherif. Near-optimal lower bounds
for convex optimization for all orders of smoothness. In Proceedings of 35th Conference on
Neural Information Processing Systems, 2021.

24 Ankit Garg, Robin Kothari, Praneeth Netrapalli, and Suhail Sherif. No quantum speedup
over gradient descent for non-smooth convex optimization. In Proceedings of 12th Innovations
in Theoretical Computer Science Conference, volume 185 of Leibniz International Proceedings
in Informatics, pages 53:1–53:20, 2021. arXiv:2010.01801.

25 András Gilyén, Seth Lloyd, and Ewin Tang. Quantum-inspired low-rank stochastic regression
with logarithmic dependence on the dimension, 2018. arXiv:1811.04909.

26 Sander Gribling and Harold Nieuwboer. Improved quantum lower and upper bounds for matrix
scaling. In Proceedings of 39th International Symposium on Theoretical Aspects of Computer
Science (STACS 2022), volume 219 of Leibniz International Proceedings in Informatics, pages
35:1–35:23, 2022. arXiv:2109.15282.

27 Aram Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for solving linear
systems of equations. Physical Review Letters, 103(15):150502, 2009. arXiv:0811.3171.

28 Elad Hazan and Tomer Koren. Linear regression with limited observation. In Proceedings
of the 29th International Conference on Machine Learning, 2012. arXiv:1206.4678 . More
extensive version at arXiv:1108.4559.

29 Arthur Hoerl and Robert Kennard. Ridge regression: biased estimation for nonorthogonal
problems. Technometrics, 12(1):55–67, 1970.

30 Adam Izdebski and Ronald de Wolf. Improved quantum boosting, 2020. arXiv:2009.08360.
31 Martin Jaggi. Revisiting Frank-Wolfe: Projection-free sparse convex optimization. In Proceed-

ings of the 30th International Conference on Machine Learning, volume 28, pages 427–435,
2013.

32 Martin Jaggi. An equivalence between the Lasso and Support Vector Machines. In Johan
Suykens, Marco Signoretto, and Andreas Argyriou, editors, Regularization, Optimization,
Kernels, and Support Vector Machines. CRC Press, 2014. arXiv:1303.1152.

33 Iordanis Kerenidis and Anupam Prakash. Quantum recommendation systems. In Proceedings of
8th Innovations in Theoretical Computer Science Conference, volume 67 of Leibniz International
Proceedings in Informatics, pages 49:1–49:21, 2017. arXiv:1603.08675.

34 Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. Foundations of Machine Learning.
Adaptive Computation and Machine Learning series. MIT Press, second edition, 2018.

35 Ashwin Nayak and Felix Wu. The quantum query complexity of approximating the median
and related statistics. In Proceedings of the 31st Annual ACM Symposium on Theory of
Computing, pages 384–393. ACM, 1999. arXiv:quant-ph/9804066.

36 Yurii Nesterov. A method for solving the convex programming problem with convergence rate
O(1/k2). Proceedings of the USSR Academy of Sciences, 269:543–547, 1983.

37 Anupam Prakash. Quantum Algorithms for Linear Algebra and Machine Learning. PhD thesis,
University of California, Berkeley, 2014.

38 Patrick Rebentrost, Masoud Mohseni, and Seth Lloyd. Quantum support vector machine for
big data classification. Physical Review Letters, 113(13):130503, 2014. arXiv:1307.0471.

39 Seyran Saeedi and Tom Arodz. Quantum sparse support vector machines, 2019. arXiv:
1902.01879.

40 Seyran Saeedi, Aliakbar Panahi, and Tom Arodz. Quantum semi-supervised kernel learning.
Quantum Machine Intelligence, 3:24, 2021.

41 Maria Schuld and Nathan Killoran. Quantum machine learning in feature Hilbert spaces.
Physical Review Letters, 122(13):040504, 2019. arXiv:1803.07128.

42 Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning - From Theory to
Algorithms. Cambridge University Press, 2014.

https://arxiv.org/abs/2010.01801
https://arxiv.org/abs/1811.04909
https://arxiv.org/abs/2109.15282
https://arxiv.org/abs/0811.3171
https://arxiv.org/abs/1206.4678
https://arxiv.org/abs/1108.4559
https://arxiv.org/abs/2009.08360
https://arxiv.org/abs/1303.1152
https://arxiv.org/abs/1603.08675
https://arxiv.org/abs/quant-ph/9804066
https://arxiv.org/abs/1307.0471
https://arxiv.org/abs/1902.01879
https://arxiv.org/abs/1902.01879
https://arxiv.org/abs/1803.07128

Y. Chen and R. de Wolf 38:21

43 Robert Tibshirani. Regression shrinkage and selection via the Lasso. Journal of the Royal
Statistical Society, 58:267–288, 1996.

44 Hrishikesh Vinod. A survey of Ridge regression and related techniques for improvements over
ordinary least squares. The Review of Economics and Statistics, 60(1):121–131, 1978.

45 Chenyi Zhang, Jiaqi Leng, and Tongyang Li. Quantum algorithms for escaping from saddle
points. Quantum, 5:229, 2021. arXiv:2007.10253.

ICALP 2023

https://arxiv.org/abs/2007.10253

New PRGs for Unbounded-Width/Adaptive-Order
Read-Once Branching Programs
Lijie Chen #

Miller Institute for Basic Research in Science at University of California at Berkeley, CA, USA

Xin Lyu #

University of California at Berkeley, CA, USA

Avishay Tal #

University of California at Berkeley, CA, USA

Hongxun Wu #

University of California at Berkeley, CA, USA

Abstract
We give the first pseudorandom generators with sub-linear seed length for the following variants of
read-once branching programs (roBPs):

1. First, we show there is an explicit PRG of seed length O(log2(n/ε) log(n)) fooling unbounded-
width unordered permutation branching programs with a single accept state, where n is the
length of the program. Previously, [Lee-Pyne-Vadhan RANDOM 2022] gave a PRG with seed
length Ω(n) for this class. For the ordered case, [Hoza-Pyne-Vadhan ITCS 2021] gave a PRG
with seed length Õ(log n · log 1/ε).

2. Second, we show there is an explicit PRG fooling unbounded-width unordered regular branching
programs with a single accept state with seed length Õ(

√
n · log(1/ε) + log(1/ε)). Previously,

no non-trivial PRG (with seed length less than n) was known for this class (even in the ordered
setting). For the ordered case, [Bogdanov-Hoza-Prakriya-Pyne CCC 2022] gave an HSG with
seed length Õ(log n · log 1/ε).

3. Third, we show there is an explicit PRG fooling width w adaptive branching programs with
seed length O(log n · log2(nw/ε)). Here, the branching program can choose an input bit to
read depending on its current state, while it is guaranteed that on any input x ∈ {0, 1}n, the
branching program reads each input bit exactly once. Previously, no PRG with a non-trivial
seed length is known for this class.
We remark that there are some functions computable by constant-width adaptive branching
programs but not by sub-exponential-width unordered branching programs.

In terms of techniques, we indeed show that the Forbes-Kelly PRG (with the right parameters)
from [Forbes-Kelly FOCS 2018] already fools all variants of roBPs above. Our proof adds several new
ideas to the original analysis of Forbes-Kelly, and we believe it further demonstrates the versatility
of the Forbes-Kelly PRG.

2012 ACM Subject Classification Theory of computation → Pseudorandomness and derandomization

Keywords and phrases pseudorandom generators, derandomization, read-once branching programs

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.39

Category Track A: Algorithms, Complexity and Games

Funding Lijie Chen: Supported by a Miller Research Fellowship.
Avishay Tal: Supported by a Sloan Research Fellowship and NSF CAREER Award CCF-2145474.

EA
T
C
S

© Lijie Chen, Xin Lyu, Avishay Tal, and Hongxun Wu;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 39; pp. 39:1–39:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lijiechen@berkeley.edu
https://orcid.org/0000-0002-6084-4729
mailto:xinlyu@berkeley.edu
mailto:avishay.tal@gmail.com
mailto:wuhx@berkeley.edu
https://doi.org/10.4230/LIPIcs.ICALP.2023.39
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

39:2 New PRGs for Unbounded-Width/Adaptive-Order Read-Once Branching Programs

1 Introduction

One central question in complexity theory is whether randomness is necessary for efficient
computation. In the time setting, the question is essentially asking whether P = BPP. While
it is commonly believed that P = BPP [23, 16], it is known that establishing this would imply
breakthrough lower bounds in complexity theory [13, 17], which seems to be out of reach for
current techniques. Therefore, most previous works are devoted to derandomizing sub-classes
of BPP. In particular, the class of randomized log-space algorithms (BPL) has attracted a
lot of attention, since not only it contains many interesting problems, but also it is indeed
possible to give unconditional derandomizations of BPL [22, 27].

A leading approach to derandomize BPL is to construct explicit PRGs for ordered
read-once branching programs (see below for a formal definition) with short seed length.

▶ Definition 1. An ordered read-once branching program (roBP) B of length n and width
w computes a function B : {0, 1}n → {0, 1}. The program has (n + 1) layers of states
V0 ∪ V1 ∪ · · · ∪ Vn where Vi contains all states in the i-th layer. Being width-w means that
|Vi| ≤ w for every i ∈ [n]. On an input x ∈ {0, 1}n, the branching program computes as
follows. It starts at a fixed start state s ∈ V0. Then for every i = 1, 2, . . . , n, it reads the next
input bit xi and updates its state according to a transition function Bi : Vi−1 × {0, 1} → Vi

by taking vi = Bt(vi−1, xi). Note that the transition function Bi can differ at each time step.

When we use the program to compute a decision problem, we specify a set Vacc ⊆ [w]
of accepting states in the final layer. Let vn be the final state reached by the branching
program on input x. If vn ∈ Vacc, the branching program accepts, denoted by B(x) = 1.
Otherwise, the program rejects, denoted by B(x) = 0.

Next, we recall the definition of a pseudorandom generator (PRG).

▶ Definition 2. Let F be a class of functions f : {0, 1}n → {0, 1}. An ε-PRG for F is a
function G : {0, 1}s → {0, 1}n such that for every f ∈ F ,∣∣∣∣ Pr

x∈{0,1}n
[f(x) = 1] − Pr

x∈{0,1}s
[f(G(x)) = 1]

∣∣∣∣ ≤ ε.

We say that G ε-fools F if it is an ε-PRG for F . The input length s is the seed length of the
PRG G. We say a generator is explicit, if given as input a seed x ∈ {0, 1}s, the output is
computable in space O(s).

In a seminal work, Nisan constructed an explicit PRG that ε-fools length-n width-w
ordered roBPs with seed length O (log n · log(nw/ε)). Since then, many PRGs with improved
seed lengths were constructed for sub-classes of ordered roBPs (see [5, 10, 20] and the
references therein), but Nisan’s PRG remains the state-of-the-art even for width-4 general
roBPs.

Nisan’s PRG (and [15, 9]) crucially relies on the following “communication” argument:
The first half of the roBP can only communicate log w bits (describing the state reached at
the end of the first half) to the second half. Due to this, it is possible to reuse all but log w

bits from the seed that is used to generate the first half of the pseudorandom input, when
generating the second half of the pseudorandom input. Recursively applying the idea gives
the log n log(nw/ε) seed length of Nisan’s PRG.

However, some researchers have the feeling that this type of argument is inherently limited
to having seed length at least log2 n [6, 26, 28]1, and different approaches are required to

1 For example, in [26], “This paradigm seems unlikely to yield pseudorandom generators for general
logspace computations that have a seed length of O(log1.99 n).”

L. Chen, X. Lyu, A. Tal, and H. Wu 39:3

overcome this log2 n barrier. The search for a different paradigm for designing PRGs has
motivated the study of models stronger than normal roBPs, with the hope that studying them
would inspire us to find new techniques. In particular, two interesting models, unordered
roBPs and unbounded-width roBPs, were introduced recently. It turns out that designing
PRGs for both models requires inherently new techniques or analysis compared to Nisan’s
original PRG (or the INW PRG [15]).

Unordered roBPs. Let B be a class of ordered roBPs. We say a function g : {0, 1}n → {0, 1}
is computable by an unordered B roBP, if there is a function f : {0, 1}n → {0, 1} and a
permutation π on [n] such that f is computable by a roBP in B and g(x1, . . . , xn) =
f(xπ(1), xπ(2), . . . , xπ(n)).

It is known that Nisan’s PRG fails to fool unordered roBPs [29]. After a long line of
previous works [4, 14, 26, 28, 11, 19, 7], Forbes and Kelly [8] constructed O(log2 n log(nw/ε))-
seed-length PRGs fooling length-n width-w unordered roBPs with error ε.

Unbounded-width roBPs. Another recent line of works studied roBPs with unbounded
width [12, 25, 24, 3, 18]. Of course, a general roBP with unbounded width can compute any
function (even with a single accept state), so we must restrict our attention to sub-classes
of such roBPs. The following two sub-classes of roBPs are the most studied ones in the
literature.

▶ Definition 3. Let B be an ordered roBP with length n and width w. We say that B is a
regular roBP, if for every t ∈ [n] and every v ∈ [w], there are exactly 2 pairs (u, b) ∈ [w]×{0, 1}
such that Bt(u, b) = v. We say that B is a permutation roBP, if for every t ∈ [n] and every
b ∈ {0, 1}, Bt(·, b) is a permutation on [w].

In [12], an Õ(log n · log 1/ε)-seed length PRG with error ε is constructed for ordered
unbounded-width permutation roBP with length-n and a single accept state. A later work [25]
(building on a prior work [1]) constructed an Õ(log n ·

√
log(n/ε) + log(1/ε))-seed length

weighted PRG for the same class.2

1.1 Our Results
In this work, we consider two even stronger models of roBPs: (1) roBPs that are both
unordered and have unbounded width and (2) roBPs that can read input in an adaptive
order (that is, the next bit to read can depend on the current state).

1.1.1 Unordered and Unbounded-width roBPs
Given the recent developments on unordered roBPs and on unbounded-width roBPs, a natural
question is whether one can construct non-trivial PRGs for unordered and unbounded-width
(permutation or regular) roBPs. A prior, it is even unclear whether such a class admits
non-explicit PRGs with short seed length, since the usual probabilistic argument for the
existence of PRGs with short seed length does not apply here [12].

Our first result is a polylog(n/ε)-seed-length PRG for unordered unbounded-width
permutation roBPs with a single accept state, significantly improving the previous Ω(n)-seed
length PRGs from [18].

2 A weighted PRG for a class of functions F is a pair of functions G : {0, 1}s → {0, 1}n and ρ : {0, 1}s → R
such that Ex∈{0,1}s [ρ(x)f(G(x))] is ε-close to Ex∈{0,1}n [f(x)].

ICALP 2023

39:4 New PRGs for Unbounded-Width/Adaptive-Order Read-Once Branching Programs

▶ Theorem 4 (Unbounded width permutation BP). For all integers n and ε > 0, there is an
explicit ε-PRG G : {0, 1}s → {0, 1}n with seed length

s = O(log n · log2(n/ε))

that fools unordered unbounded-width permutation branching programs with a single accept
state.

Our second result is a Õ (
√

n log(1/ε))-seed-length PRG for unordered unbounded-width
regular roBPs with a single accept state. No (even non-explicit) non-trivial PRG is known
for this class even in the ordered setting; Bogdanov, Hoza, Prakriya, and Pyne [3] has
constructed Õ (log n · log(1/ε))-seed-length HSG for the ordered case.3

▶ Theorem 5 (Unbounded width regular BP). For all integers n and ε > 0, there is an explicit
ε-PRG G : {0, 1}s → {0, 1}n with seed length

s = O

(√
n log

(n

ε

)
· log n

)
that fools unordered unbounded-width regular branching programs with a single accept state.

In terms of techniques, we indeed prove that the Forbes-Kelly PRG suffices for the
two theorems above. Our analysis carefully modifies the original analysis from [8]. In
fact, we prove that a single round of Forbes-Kelly pseudorandom restriction fools unordered
unbounded-width regular roBPs (see Theorem 10). Iterating this restriction O(log(n/ε)) times
proves Theorem 4. Unfortunately, it is unclear whether the same iterative construction fools
unordered unbounded-width regular roBPs since they are not closed under restrictions. Still,
doing the pseudorandom restriction exactly once with the right parameters proves Theorem 5.

1.1.2 Adaptive roBPs
While an unordered roBP can read its input in any order, it cannot change the ordering
based on the input it has read so far (i.e., the order is input oblivious). We also consider an
even stronger variant of roBPs, called adaptive roBPs, which are programs that can decide
the next bit to read given its current state. We formally define them as follows.

▶ Definition 6. An adaptive read-once branching program B of length n and width w computes
a function B : {0, 1}n → {0, 1}. The program has states V0 ∪V1 ∪· · ·∪Vn where Vi consists of
the w states in the i-th layer. On an input x ∈ {0, 1}n, the branching program B computes as
follows. It starts at a fixed start state v0 ∈ [w]. Then for every t = 1, 2, . . . , n, it reads the bit
xpos(t−1,vt−1) and updates its state according to a transition function Bt : Vt−1×{0, 1} → Vt by
taking vt = Bt(vt−1, xpos(t−1,vt−1)). Here, pos : V0 ∪ · · · ∪ Vn−1 → [n] is a function specifying
the index of the next bit to read given the current state vt−1. We require that on every input
x ∈ {0, 1}n, B reads each bit in x exactly once.

We remark that adaptive roBPs are strictly stronger than unordered roBPs as shown by
an example function f : {0, 1} × {0, 1}n × {0, 1}n → {0, 1} as

f(b, x, y) = 1[b = 0] · 1[x = y] + 1[b = 1] · 1[x = yR].

3 A hitting set generator (HSG) H : {0, 1}s → {0, 1} for a class of functions F satisfies the following: for
every f ∈ F such that Prx∈{0,1}n [f(x) = 1] > ε, there exists z ∈ {0, 1}s such that f(H(z)) = 1. Note
that a PRG is automatically an HSG, while the converse may not hold.

L. Chen, X. Lyu, A. Tal, and H. Wu 39:5

Here, yR denotes the reversed string of y. Observe that there is a constant-width adaptive
roBP for f . The program first reads b. If b = 0, the program reads and compares x and y

bit by bit. Otherwise, the program compares x and yR bit by bit. Moreover, it is easy to
see (via a communication complexity argument) that every unordered roBP for f requires
exponential width.

Our third result gives O(polylog(nw/ε))-seed-length PRG for adaptive roBPs. To the
best of our knowledge, no explicit PRGs with seed length less than n was known prior to our
work.

▶ Theorem 7. For every n, w ≥ 1 and ε > 0, there is an explicit ε-PRG G : {0, 1}s → {0, 1}n

fooling width-w adaptive roBPs with seed length s = O(log n · log2(nw/ε)).

We prove Theorem 7 by adapting the argument in [8]. The key observation allowing
us to do so is the following. Suppose B satisfies the read-once promise. Then, for every
vertex v ∈ Vi, if we denote by Prev (resp. Postv) the set of possible variables read in any
path from the starting state to v (resp. v to the accepting state). It must be the case that
Prev and Postv are disjoint for every v. By a delicate argument (Claim 15), we show that
this disjointness property is sufficient for applying the key technique of Forbes-Kelley proof:
decomposing the branching program by high/low-degree Fourier terms.

Moreover, when the width w of the adaptive roBP is small, we can show that the branching
program has bounded Fourier growth (following [7]). In particular, we show that the L-th
level Fourier mass of a width-w adaptive roBP is bounded by O(log(nw))2Lw. As shown in
[8], for programs with bounded Fourier growth, we can further improve the seed length by a
log(n) factor. Formally, we show

▶ Theorem 8. For every n, w ≥ 1 and ε > 0, there is an explicit ε-PRG G : {0, 1}s → {0, 1}n

fooling width-w adaptive roBPs with seed length s = Õ(w log2(n/ε)).

Theorem 8 is a direct corollary of the new Fourier growth bound. We briefly comment on
how we get the Fourier growth of O(log n)2Lw for adaptive roBP. Roughly speaking, given a
width-w, length-n adaptive roBP B, we construct a related witdh-2w, length-n2 oblivious
roBP B′, such that the Fourier spectrum of B is “dominated” by that of B′. The idea is
simple: we duplicate each input of B for n times and get n2 bits. Now, it is easy to construct
a width-2w oblivious roBP running on the n2 bits to simulate B. (Essentially, the n2 bits
allow us to make n passes over the input, we can use each pass to implement one step of
transition of B.)

Although B′ has n2 input bits, we can exploit the promise that B is read-once, and prove
the following nice property: For any input z ∈ {0, 1}n2 , B′(z) depends only on n bits of z

(that is to say, there is a subset of n bits from z, such that flipping all other bits of z cannot
change the output). This allows us to connect the Fourier weights of B′ and B. The details
can be found in Appendix A.

2 Preliminaries

For a Boolean predicate P , we use 1{P } to denote the indicator of P , which takes value 1 if
P holds, value 0 otherwise. We often use Un to denote the uniform distribution over {0, 1}n

(when n is clear from the context, we will just write U for simplicity), and U(X) to denote
the uniform distribution over a set X. For two strings α, β ∈ {0, 1}n, we use α ∧ β and α + β

to denote their bit-wise AND and bit-wise XOR, respectively. Similarly, for two distributions
D1, D2, we use D1 ∧ D2 (resp. D1 + D2) to denote the distributions obtained by drawing
α ∼ D1 and β ∼ D2 and outputting α ∧ β (resp. α + β).

ICALP 2023

39:6 New PRGs for Unbounded-Width/Adaptive-Order Read-Once Branching Programs

We always work with the {−1, 1}n basis for Boolean function analysis. For a function
f : {−1, 1}n → R, recall that its Fourier characters indexed by α ⊆ [n], is defined by

f̂(α) = E
x∈{−1,1}n

[
f(x) ·

∏
i∈α

xi

]
.

We often use greek letters (such as α, β, γ) to index Fourier characters.
We will need k-wise independent and γ-almost k-wise independent distributions through-

out the paper, which look locally uniform and thus fool functions that only depend on a few
bits.

▶ Definition 9. Let D be a distribution over {0, 1}n. We say D is k-wise independent if, for
every f : {0, 1}n → [−1, 1] that depends on at most k bits, we have

E
D

f(D) = E
U

f(U).

If D merely satisfies∣∣∣E
D

f(D) − E
U

f(U)
∣∣∣ ≤ γ

for every such f , we say that D is γ-almost k-wise independent.

It is possible to sample from a k-wise independent distribution using O(k · log n) random bits
([30]) and from a γ-almost k-wise independent distribution using O(k + log log n + log 1/γ)
random bits ([21, 2]).

3 PRGs for Unbounded-width Branching Programs

In this section, we will prove the following theorem, which shows that one round of pseu-
dorandom restriction fools regular branching programs with unbounded width and a single
accept state.

▶ Theorem 10. Let B be an unbounded-width regular branching program of length n with
starting state s ∈ V0 and a single accept state t ∈ Vn. Let D, U denote a 2k-wise independent
distribution and a uniform distribution over {0, 1}n, respectively. Let T (a) denote a 2k-wise
independent distribution over [a]n, and let distribution T be defined as Ti = 1{T

(a)
i

=1} for all
i ∈ [n]. Then

|E[B(U)] − E[B(D + T ∧ U)]| ≤ n · (1 − 1/a)k/2.

Since the class of permutation BPs is closed under restrictions, we can iteratively apply
Theorem 10 to it with k = log(n) and a = 2. The immediate consequence is that we get a
PRG for unordered unbounded-width permutation branching programs.

▶ Corollary 11 (Restating Theorem 4). For all integers n and ε > 0, there is an explicit
ε-PRG G : {0, 1}s → {0, 1}n with seed length

s = O(log n · log2(n/ε))

that fools unordered unbounded-width permutation branching programs with a single accept
state.

L. Chen, X. Lyu, A. Tal, and H. Wu 39:7

However, when it comes to regular branching programs, this class is no longer closed under
restrictions. Hence we can only apply Theorem 10 once and set k = Õ(

√
n) and a = Õ(

√
n).

It remains an interesting open problem to apply iterative restriction for unbounded-width
regular branching programs.

▶ Corollary 12 (Restating Theorem 5). For all integers n and ε > 0, there is an explicit
ε-PRG G : {0, 1}s → {0, 1}n with seed length

s = O

((√
n log

(n

ε

)
+ log

(
1
ε

))
· log n

)
that fools unordered unbounded-width regular branching programs with a single accept state.

We will prove Theorem 10 in Subsection 3.1 and Subsection 3.2. In Subsection 3.3, we
prove Corollary 11 and Corollary 12.

3.1 Fourier Decomposition of Regular BPs
Recall that Vi is the set of nodes in the i-th level of our branching program. s ∈ V0 is the
starting point and t ∈ Vn is the unique accepting state. x ∈ {0, 1}n is the input to our
branching program B. In order to work with {−1, 1} basis, we let yi = (−1)xi for all i ∈ [n].

For any two nodes a ∈ Vi and b ∈ Vj . We define the indicator Pa,b : {−1, +1}n → {0, 1},

Pa,b(y) =
{

1 Starting from a, we reach at node b on inputs xi+1, . . . , xj ;
0 Otherwise.

Its Fourier expansion is as follows:

Pa,b(y) =
∑

α⊆{i+1,i+2,...,j}

P̂a,b(α) · χα(y)

where the Fourier characters are defined as

χα(y) =
∏
i∈α

yi.

This naturally extends Pa,b to Rn → R.
Furthermore, we define

P̄
[k]
a,b(y) =

∑
α⊆{i+1,i+2,...,j}

|α|=k, j∈α

P̂a,b(α) · χα(y)

which is the sum all the degree k terms that contain yj .
We also define

P
(k)
a,b (y) =

∑
α⊆{i+1,i+2,...,j}

|α|=k, i+1∈α

P̂a,b(α) · χα(y)

which is the sum all the degree k terms that contain yi+1.

▶ Fact 13. Let D, T, U be the distributions defined in Theorem 10, and let G be a distribution
defined as

Gi =
{

(−1)Di Ti = 0,

0 Ti = 1.
∀i ∈ [n].

Then, we have E[B(U)] = P̂s,t(∅) and E[B(D + T ∧ U)] = Ey∼G[Ps,t(y)].

ICALP 2023

39:8 New PRGs for Unbounded-Width/Adaptive-Order Read-Once Branching Programs

Proof. Notice that when yi = (−1)xi for all i, B(x) = Ps,t(y). The first fact holds because
for all α ̸= ∅, we have Ey∼U({±1}n)[χα(y)] = 0. Hence E[B(U)] = Ey∼U({±1}n)[Ps,t(y)] =
P̂s,t(∅).

For the second fact, conditioned on an instantiation of T , we define an intermediate
distribution G′ as

G′
i =

{
(−1)Di Ti = 0,

(−1)Ui Ti = 1.
.

we know that E[B(D + T ∧ U)] = Ey∼G′ [Ps,t(y)].

When Ti = 1, we have Ey∼G′ [yi | Ti = 1] = Ey∼G[yi | Ti = 1] = 0 since yi is sampled
uniformly and independently from {±1}.
When Ti = 0, we always have Gi = G′

i = (−1)Di .
Hence for all α, we know that

Ey∼G′ [χα(y)] = Ey∼G′

[∏
i∈α

yi

]
= ET

∏
i∈α

Ti=1

Ey∼G′ [yi | Ti = 1] · Ey∼G′

∏
i∈α

Ti=0

yi

∣∣∣∣∣∣∣ T




= ET

∏
i∈α

Ti=1

Ey∼G [yi | Ti = 1] · Ey∼G

∏
i∈α

Ti=0

yi

∣∣∣∣∣∣∣ T


 = Ey∼G[χα(y)].

As a result, Ey∼G′ [Ps,t(y)] = Ey∼G[Ps,t(y)]. This finishes the proof. ◀

3.2 Bounding the Error
In the error analysis, we follow the approach of Forbes and Kelley [8]. By Fact 13, the result
we wish to prove is equivalent to∣∣∣Ey∼G[Ps,t(y)] − P̂s,t(∅)

∣∣∣ ≤ n · (1 − 1/a)k/2.

In the analysis of [8], they considered the decomposition,

Lk(y) =
∑

α⊆{1,2,...,n}
0<|α|<k

P̂s,t(α) · χα(y),

Ps,t(y) − P̂s,t(∅) = Lk(y) +
n∑

i=1

∑
m∈Vi

P̄ [k]
s,m(y) · Pm,t(y).

Here Lk(y) are the low-degree terms, and P̄
[k]
s,m(y) · Pm,t(y) are the terms that reaches degree

k exactly at node m ∈ Vi. The intuition is that the 2k-wise independent distribution D fools
Lk(y) while the high-degree terms are fooled by T ∧ U .

However, in order to work for unbounded-width regular branching programs, we have to
consider a different decomposition. Let Lk(y) be the same as before. We have

Ps,t(y) − P̂s,t(∅) = Lk(y) +
n∑

i=1

∑
m∈Vi

Ps,m(y) · P
(k)
m,t(y).

Observe that we are using P
(k)
m,t(y) instead of P̄

[k]
m,t(y). The benefit of this decomposition is

that now for all y, we have∑
m∈Vi

Ps,m(y)2 ≤ 1,

L. Chen, X. Lyu, A. Tal, and H. Wu 39:9

since from s only one state m can be reached under input y. In contrast, in the original
decomposition,

∑
m∈Vi

Pm,t(y)2 could be very large. This difference will be essential in our
analysis.

Now we are ready to prove Theorem 10.

Proof of Theorem 10. By our decomposition, we know∣∣∣Ey∼G[Ps,t(y)] − P̂s,t(∅)
∣∣∣ ≤ |Ey∼G[Lk(y)]| +

n∑
i=1

∑
m∈Vi

∣∣∣Ey∼G

[
Ps,m(y) · P

(k)
m,t(y)

]∣∣∣ . (1)

Since G is k-wise independent, we know Ey∼G [Lk(y)] = 0. Now we bound the second term.
We will need the following fact: For any two (not necessarily independent) sequences of
random variables {fm}m∈Vi , {gm}m∈Vi , we have

E
[∑

m∈Vi

fmgm

]
≤ E

[∑
m∈Vi

f2
m

]1/2

E
[∑

m∈Vi

g2
m

]1/2

.

This is the Cauchy-Schwarz Inequality for random variables.
Let fm = |Ps,m(y)| and gm = |P (k)

m,t(y)|. We have

∑
m∈Vi

∣∣∣Ey∼G

[
Ps,m(y)P (k)

m,t(y)
]∣∣∣ ≤ Ey∼G

[∑
m∈Vi

(Ps,m(y))2

]1/2

Ey∼G

[∑
m∈Vi

P
(k)
m,t(y)2

]1/2

We bound these two separately.
We first bound Ey∼G

[∑
m∈Vi

P
(k)
m,t(y)2

]
. Suppose

P
(k)
m,t(y) =

∑
α

cαχα(y).

By 2k-wise independence of G, we know for all α ̸= β and |α| + |β| ≤ 2k, the cross term

Ey∼G[χα(y)χβ(y)] = 0.

For the square terms, notice that for all Ti = 1, we have yi = 0. When Ti = 0, yi = (−1)Di .
Ti = 1 happens with probability 1/a. D, T are 2k-wise independent. Hence when |α| = k,
we have4

Ey∼G[χα(y)2] = Ey∼D[χα(y)2 · 1{∀i∈α,Ti=0}]

=
(

1 − 1
a

)k

· Ey∼U [χα(y)2]

=
(

1 − 1
a

)k

.

Hence,

Ey∼G

[(
P

(k)
m,t(y)

)2
]

= Ey∼G

∑
|α|=k

c2
αχα(y)2


=
(

1 − 1
a

)k ∑
|α|=k

c2
α ≤

(
1 − 1

a

)k

Ey∼U

[
(Pm,t(y))2

]
.

4 For brevity, we use y ∼ U to mean that y ∼ U({−1, 1}n).

ICALP 2023

39:10 New PRGs for Unbounded-Width/Adaptive-Order Read-Once Branching Programs

The last step follows from Parseval identity. Summing over all m ∈ Vi for a fixed i, we get

∑
m∈Vi

Ey∼G

[(
P

(k)
m,t(y)

)2
]

≤
(

1 − 1
a

)k ∑
m∈Vi

Ey∼U

[
(Pm,t(y))2

]
=
(

1 − 1
a

)k ∑
m∈Vi

Ey∼U [Pm,t(y)] =
(

1 − 1
a

)k

.

The last step is because now y ∼ U , and the branching program is regular so that∑
m∈Vi

Ey∼U [Pm,t(y)] = 1.5
On the other hand, as we mentioned, for any y, s can reach a single vertex in Vi, hence∑

m∈Vi

Ey∼G

[
Ps,m(y)2] ≤ 1.

Putting these two together, we get

|Ey∼G[Ps,t(y)] − P̂s,t(∅)| ≤
n∑

i=1
Ey∼G

[∑
m∈Vi

(Ps,m(y))2

]1/2

· Ey∼G

[∑
m∈Vi

P
(k)
m,t(y)2

]1/2

≤
(

1 − 1
a

)k/2
n. ◀

3.3 Applications
Finally, we prove Corollary 11 and Corollary 12 in the rest of this section.

Proof of Corollary 11. Let {D(i)}i∈[ℓ], {T (i)}i∈[ℓ] be ℓ independent copies of 2k-wise inde-
pendent dsitributions defined in Theorem 10 with k = log

(
n
ε

)
+ log log(n

ε) + 1 and a = 2.
We construct pseudorandom distributions G(0), G(1), . . . , G(ℓ) with ℓ = Θ(log(n/ε)). We

let G0 be the set of all one strings in {0, 1}n and set

G(i+1) = D(i) + T (i) ∧ G(i).

Let branching program B(i) be defined as B(ℓ) = B and

B(i)(x) = B(i+1)(D(i) + T (i) ∧ x).

Since any restriction of a permutation branching program is still a permutation branching
program. For any realization of D(i) and T (i), Theorem 10 says that,∣∣∣E[B(i+1)(U)] − E[B(i)(U)]

∣∣∣ =
∣∣∣Ex∼D(i)+T (i)∧U [B(i)(x)] − E[B(i)(U)]

∣∣∣
≤
(

1 − 1
2

)log(n
ε)+log log(n

ε)+1
n ≤ ε/2

log(n
ε) .

From a standard Chernoff bound, with probability at least 1 − ε/2, T (1) ∧ T (2) ∧ · · · ∧ T (ℓ) =
0000 . . . 0. This implies that

∣∣E[B(0)(U)] − Ex∼G(0) [B(0)(x)]
∣∣ ≤ ε/2 since B(0) does not

depend on its input when T (1) ∧ T (2) ∧ · · · ∧ T (ℓ) = 0000 . . . 0.

5 This is the only place we use the regularity of the program.

L. Chen, X. Lyu, A. Tal, and H. Wu 39:11

On the other hand, by definition, we know EB(0),x∼G(0) [B(0)(x)] = Ex∼G(ℓ) [B(x)]. Hence
a hybrid argument proves that

|Ex∼G(ℓ) [B(x)] − E[B(U)]| =
∣∣Ex∼G(0) [B(0)(x)] − E[B(0)(U)]

∣∣+
∣∣E[B(0)(U)] − E[B(ℓ)(U)]

∣∣
≤ ε/2 +

ℓ∑
i=1

∣∣E[B(i−1)(U)] − E[B(i)(U)]
∣∣

≤ ε. ◀

Proof of Corollary 12. For regular branching programs, let D and T be 2k-wise independent
distributions defined in Theorem 10 with k = 2

√
n log

(
n
ε

)
+ log

(1
ε

)
+ 2 and a =

√
n

log(n
ε) .

We let D′ be another independent copy of D.
We construct pseudorandom distribution G = D + T ∧ D′. From Theorem 10, we know

that

|Ex∼D+T ∧U [B(x)] − E[B(U)]| ≤ n ·
(

1 − 1
a

)k

≤ ε/2.

Let N = |{i | Ti = 1}|. Since T is 2k-wise independent,

E[Nk] ≤
∑

i1,i2,...,ik∈[n]

Pr[Ti1 = Ti2 = · · · = Tik
= 1]

= nk · Pr
i1,i2,...,ik∈[n]

[Ti1 = Ti2 = · · · = Tik
= 1]

= nk ·
k∏

j=1
Pr[Tij

= 1 | Ti1 = Ti2 = · · · = Tij−1 = 1]

≤ nk ·
k∏

j=1
(Pr[ij ∈ {i1, i2, . . . , ij−1}] + Pr[Tij = 1 | ij ̸∈ {i1, i2, . . . , ij−1}])

≤ nk ·
(

k

n
+ 1

a

)k

From Markov inequality, we get that Pr[N ≥ 2k] ≤ 2 · (1/2)k + 2 · (n/(2ak))k. By the 2k

wise independence of D′,

|Ex∼G[B(x)] − Ex∼D+T ∧U [B(x)]| ≤ 2 · (1/2)k + 2 · (n/(2ak))k ≤ ε/2.

The seed length is 3k(log n + log a) = O
((√

n log
(

n
ε

)
+ log

(1
ε

))
· log n

)
. ◀

▶ Remark 14. We believe the seed length in Corollary 11 can be improved to O(log2 n·log(n/ε))
following the sharper analysis in Section 7.1 of [8]. However, for the simplicity of presentation,
we choose to only present it for the seed length of O(log n · log2(n/ε)).

4 PRGs for Adaptive Branching Programs

In this section, we prove our results for adaptive roBPs.

4.1 Decomposition of roBPs
As before, We use B : {0, 1}n → {0, 1} to denote the adaptive branching program we are
analyzing and use P : {±1}n → {0, 1} to denote the function computed by BP over {±1}
basis. For every input x ∈ {0, 1}n, define y ∈ {±1}n as yi = (−1)xi for every i ∈ [n], and

ICALP 2023

39:12 New PRGs for Unbounded-Width/Adaptive-Order Read-Once Branching Programs

define P (y) = B(x). For any state v in the program, we denote by posv the index of the
variable queried on state v. We have two outgoing edges from v, one marked with xposv

= 0
and another with xposv

= 1.
For any state v in the program, we denote by Prev the set of variables read in any path

from the starting state to v, and by Postv the set of variables read in any path from v to the
accepting state. We observe that Prev and Postv are disjoint as otherwise there exists a path
from the starting state to the accepting state (and passes through v) and reads the same
variable twice.

Formally, suppose there exists a vertex v and an index i ∈ Prev ∩ Postv. We choose a
computation path π from starting vertex v0 to v that queries the set S ⊆ [n] of variables,
and a path π′ from v to the final layer that queries the set T ⊆ [n], where i ∈ S.

We can construct an input x ∈ {0, 1}n that guides the program to follow the computational
path of π ◦ π′. Each time the program reads a variable xj , if xj has been queried before, this
clearly violates the read-once requirement. Otherwise, we can set xj to make the program
follow the path of π ◦ π′. However, since know xi is queried at least twice along the path,
there must be some point, where the “read-once” requirement is violated.

Define P : {−1, 1}n → {0, 1} as the function computed by the program. For a state v

in the branching program, we denote by P→v the event that the path from the starting
state passes through v. Note that P→v can be described as a branching program on the
variables Prev. We denote by Pv→ the sub-program of P starting at v. Note that Pv→ can
be described as a branching program on the variables Postv.

4.1.1 Fourier Decomposition for Adaptive BP
Recall that the Fourier representation of any function f : {±1}n → R is

∑
α⊆[n] f̂(α)χα(y)

where χα(y) =
∏

i∈α yi and f̂(α) = Ey∼{±1}n [f(y) · χα(y)]. Furthermore, we have that
Ey∼{±1}n [f(y)2] =

∑
α f̂(α)2 and Ey∼{±1}n [f(y)] = f̂(∅).

Let k ∈ N. Let α be a set of size ℓ > k. We express P̂ (α) as a sum of products of Fourier
coefficients, where the Fourier coefficients come from sub-programs of B. In particular, we
have the following claim.

▷ Claim 15. We have

P̂ (α) =
∑

v:|Prev∩α|=k,posv∈α

P̂→v(α ∩ Prev) · P̂v→(α ∩ Postv).

Proof. By definition

P̂ (α) = Ey∼{±1}n [P (y) · χα(y)] = Ey∼{±1}n [P (y) · 1{B on y reads all the variables in α} · χα(y)]

where the second equality holds due to the following reason. For any β ⊆ α let Xβ be the set
of strings on which the program reads β and doesn’t read α \ β. We note that if x ∈ Xβ for
some set β which is a strict subset of α, then also x′ := x ⊕ ei for i ∈ α \ β is in Xβ , since
the path for both x and x′ will be the same (as the path doesn’t query xi). We see that the
inputs in Xβ can be partitioned to pairs, and each pair contributed 0 to Ey∼{±1}n [χα(y)].

For any x for which B(x) reads all the variables in α, there is a unique state v along the
path such that B reads exactly k variables in α before v, and B reads the k + 1 variable
from α immediately on the edge that goes out from v.

Thus, we can partition these paths according to the state v. We observe that v is the
state immediately before reading the k + 1 variable in α if |Prev ∩ α| = k and if posv ∈ α.
This gives

L. Chen, X. Lyu, A. Tal, and H. Wu 39:13

P̂ (α) = Ey∼{±1}n

 ∑
v:|Prev∩α|=k,posv∈α

P→v(y)Pv→(y) · χα(y) · 1{B reads all the variables in α}


=

∑
v:|Prev∩α|=k,posv∈α

Ey∼{±1}n

[
P→v(y)Pv→(y) · χα(y)] · 1{B reads all the variables in α}

]
=

∑
v:|Prev∩α|=k,posv∈α

Ey∼{±1}n [P→v(y)Pv→(y) · χα(y)]

where the last equality follows from the same argument as before by observing that
P→v(y)Pv→(y) is equivalent to the indicator of a program B′ that checks that we passed
through v and reached the accept state of B.

Now, for every state v : |Prev ∩ α| = k, posv ∈ α, we get

Ex[P→v(y)Pv→(y) · χα(y)]
= Ey∈{0,1}Prev [P→v(y)χα∩Prev

(y)] · Ey∈{0,1}Postv [Pv→(y)χα∩Postv
(y)]

= P̂→v(α ∩ Prev) · P̂v→(α ∩ Postv),

which completes the proof. ◁

By summing over all sets of size larger than k we get∑
α:|α|>k

P̂ (α)χα(y)

=
∑

α,v:|Prev∩α|=k,posv∈α

P̂→v(α ∩ Prev)χα∩Prev (y) · P̂v→(α ∩ Postv)χα∩Postv (y)

=
∑

v

 ∑
α′:α′⊆Prev,|α′|=k

P̂→v(α′)χα′(y)

 ·

 ∑
α′′:α′′⊆Postv,posv∈α′′

P̂→v(α′′)χα′′(y)

 .

For each v we denote

Hv(y) :=
∑

α′:α′⊆Prev,|α′|=k

P̂→v(α′)χα′(y)

and

Gv(y) :=
∑

α′′:α′′⊆Postv,posv∈α′′

P̂→v(α′′)χα′′(y).

We observe that Gv(y) is the posv-Laplacian6 of Pv→. As such, Gv(y) is a bounded function,
i.e., |Gv(y)| ≤ 1 for all y ∈ {±1}n.

▶ Lemma 16. For any read-once adaptive branching program B, let P be the function
computed by B. We have

P (y) = E[P (U)] + L(y) +
∑
v∈V

Hv(y) · Gv(y)

where L(y) =
∑

1≤|α|≤k P̂ (α)χα(y).

6 Given a function f : {±1}n → R and index i ∈ [n]. The i-Laplacian of f is defined as a new function
Lif(y) := f(y)−f(y+ei)

2 , where ei denotes the i-th unit vector. Observe that Lif(y) =
∑

S:i∈S
f̂(S)χS(y).

ICALP 2023

39:14 New PRGs for Unbounded-Width/Adaptive-Order Read-Once Branching Programs

Proof. Any function can be written in the Fourier representation, i.e.

P (y) =
∑

α⊆[n]

P̂ (α) · χα(y).

Now, we can partition this sum to the sum of sets of size at least k and the sum of sets of
size smaller than k,

P (y) = E[P] + L(y) + H(y)

where

E[P] = P̂ (∅), L(y) =
∑

1≤|α|≤k

P̂ (α)χα(y) and H(y) =
∑

|α|>k

P̂ (α)χα(y).

We decompose H(y) by the above decomposition. ◀

4.2 Forbes-Kelley PRG fools Adaptive roBP
In this section, we prove that the Forbes-Kelley PRG fools adaptive roBP. First, the following
lemma is the analog of [8, Lemma 6.3] for adaptive roBP.

▶ Lemma 17. Let B be a read-once adaptive branching program of size s. Suppose D, T,

and U are independently drawn from a 2(k + 1)-wise independent distribution, a (k + 1)-wise
independent distribution, and the uniform distribution over {±1}n, respectively. Then,

|E[P (U)] − E[P (D + T ∧ U)]| ≤ s · 2−k/2.

Since we are working over ±1 basis, T ∧U is a coordinate-wise operation defined as (T ∧U)i =
−1 if and only if Ti = Ui = −1, and D +(T ∧U) is defined as (D +(T ∧U))i = Di × (T ∧U)i.

Proof. We use the Decomposition Lemma (Lemma 16):

|E[P] − E[P (D + T ∧ U)]| ≤ |E[L(D + T ∧ U)]| +
∑
v∈V

|E[(Hv · Gv)(D + T ∧ U)]|. (2)

The first summand in the RHS of Eq. (2) equals zero since D + T ∧ U fools any χα for
|α| ≤ k. Namely,

E[L(D + T ∧ U)] =
∑

0<|α|≤k

P̂ (α) · E[χα(D + T ∧ U)] = 0.

We bound the second summand in the RHS of Eq. (2) term by term. For each v ∈ V :

|ED,T,U [(Hv · Bv→)(D + T ∧ U)]|
≤ ED,T [|EU [(Hv · Bv→)(D + T ∧ U)]|]
= ED,T [|EU [Hv(D + T ∧ U)]| · |EU [Gv(D + T ∧ U)]|] (3)
≤ ED,T [|EU [Hv(D + T ∧ U)]|] (4)

≤ 2−k/2. (Claim 18)

Here, (3) follows by observing that, for every fixed T and D, Hv(D+T ∧U) and Gv(D+T ∧U)
are independent. (4) is due to that Bv→ is bounded. Finally, the last line utilizes a claim
that is to be introduced and proved next.

Overall, we get

|E[B(U)] − E[B(D + T ∧ U)]| ≤
∑

i,v∈Vi

2−k/2 = s · 2−k/2,

as desired. ◀

L. Chen, X. Lyu, A. Tal, and H. Wu 39:15

The following claim has been used in the proof of Lemma 17. We show its proof now.

▷ Claim 18. Let Hv : {±1}m → R be a function whose Fourier spectrum is k-homogeneous,
i.e.,

Hv(y) =
∑

α⊆[m]:|α|=k

Ĥv(α) · χα(y).

Let D, T, and U denote a 2k-wise independent distribution, a k-wise independent distribution,
and uniform distribution over {0, 1}n. Then,

ED,T [|EU [Hv(D + T ∧ U)]|] ≤ 2−k/2 ·
√∑

α

Ĥv(α)2

Proof. We verify the claim by direction calculation.

(ED,T [|EU [Hv(D + T ∧ U)]|])2

≤ ED,T

[
EU [Hv(D + T ∧ U)]2

]
= ED,T,U,U ′ [Hv(D + T ∧ U) · Hv(D + T ∧ U ′)]

=
∑
α,α′

Ĥv(α) · Ĥv(α′) · ED,T,U,U ′ [χα(D + T ∧ U) · χα′(D + T ∧ U ′)]

=
∑
α,α′

Ĥv(α) · Ĥv(α′) · ED[χα(D)χα′(D)] · ET,U,U ′ [χα(T ∧ U) · χα′(T ∧ U ′)]

=
∑

α

Ĥv(α)2 · ET,U,U ′ [χα(T ∧ U) · χα(T ∧ U ′)] +
∑

α ̸=α′

|Ĥv(α)| · |Ĥv(α′)| · 0

(D is 2k-wise)

=
∑

α

Ĥv(α)2 · ET [1{α∩T =∅}]

= 2−k ·
∑

α

Ĥv(α)2. (T is k-wise independent, |α| = k)

◁

Finally, let us remark that we can also use δ-almost k-wise independent distributions
T, D to construct D + T ∧ U . Doing an analysis similar as we have done for Claim 18, one
can show that

|E[P (U)] − E[P (D + T ∧ U)]| ≤ s ·

(
√

γ + 2−k/2 + √
γ

(∑
α

|Ĥ(α)|
))

.

The argument is also similar to the one done in [8, Lemma 7.2]. We omit the detail here.
Note that, if we can prove a good upper bound of

∑
α |Ĥ(α)|, we can hope to construct

D, T using γ-almost k-wise independent distributions with larger γ. Recall the seed length
to sample a γ-almost distribution is O(log(1/γ) + k + log log(n)), which is smaller than the
seed length to sample a perfect k-wise independent distribution by a log(n) factor for large γ

(e.g., when γ ≈ 2−k).

4.2.1 PRG for Adaptive roBP
Given Lemma 17, we prove Theorem 7 now.

ICALP 2023

39:16 New PRGs for Unbounded-Width/Adaptive-Order Read-Once Branching Programs

Proof of Theorem 7. The proof is nearly identical to that of Corollary 11.
Let {D(i)}i∈[ℓ], {T (i)}i∈[ℓ] be ℓ independent copies of 2k-wise independent dsitributions

defined in Lemma 17 with k = log
(

n
ε

)
+ log log(n

ε) + 1.
We construct pseudorandom distributions G(0), G(1), . . . , G(ℓ) with ℓ = Θ(log(n/ε)). We

let G0 be the trivial PRG that outputs 1n ∈ {0, 1}n. Then we set

G(i+1) = D(i) + T (i) ∧ G(i).

Define a branching program B(i) as B(ℓ) = B and

B(i)(x) = B(i+1)(D(i) + T (i) ∧ x).

Note that B(i) is a random variable depending on D(i) and T (i). Since the restriction of
an adaptive roBP is still a roBP. For any realization of D(i) and T (i), Lemma 17 says that,∣∣∣E[B(i+1)(U)] − E[B(i)(U)]

∣∣∣ ≤ ε/2
log(n

ε) .

From a standard Chernoff bound, with probability at least 1 − ε/2, T (1) ∧ T (2) ∧ · · · ∧ T (ℓ) =
0000 . . . 0. Conditioning on this event, B(0) does not depend on its input, implying that∣∣E[B(0)(U)] − Ex∼G(0) [B(0)]

∣∣ ≤ ε/2 since B(0).
On the other hand, by definition, we know EB(0),x∼G(0) [B(0)(x)] = Ex∼G(ℓ) [B(x)]. Hence

a hybrid argument proves that

|Ex∼G(ℓ) [B(x)] − E[B(U)]| =
∣∣∣Ex∼G(0) [B(0)(x)] − E[B(0)(U)]

∣∣∣+
∣∣∣E[B(0)(U)] − E[B(ℓ)(U)]

∣∣∣
≤ ε/2 +

ℓ∑
i=1

∣∣∣E[B(i−1)(U)] − E[B(i)(U)]
∣∣∣

≤ ε,

completing the proof. ◀

References
1 AmirMahdi Ahmadinejad, Jonathan A. Kelner, Jack Murtagh, John Peebles, Aaron Sidford,

and Salil P. Vadhan. High-precision estimation of random walks in small space. In Sandy
Irani, editor, 61st IEEE Annual Symposium on Foundations of Computer Science, FOCS 2020,
Durham, NC, USA, November 16-19, 2020, pages 1295–1306. IEEE, 2020.

2 Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. Simple constructions of almost
k-wise independent random variables. Random Structures & Algorithms, 3(3):289–304, 1992.

3 Andrej Bogdanov, William M. Hoza, Gautam Prakriya, and Edward Pyne. Hitting sets
for regular branching programs. In Shachar Lovett, editor, 37th Computational Complexity
Conference, CCC 2022, July 20-23, 2022, Philadelphia, PA, USA, volume 234 of LIPIcs, pages
3:1–3:22. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

4 Andrej Bogdanov, Periklis A. Papakonstantinou, and Andrew Wan. Pseudorandomness for
read-once formulas. In Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium on Foundations
of Computer Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 240–
246. IEEE Computer Society, 2011.

5 Mark Braverman, Anup Rao, Ran Raz, and Amir Yehudayoff. Pseudorandom generators for
regular branching programs. SIAM J. Comput., 43(3):973–986, 2014.

6 Joshua Brody and Elad Verbin. The coin problem and pseudorandomness for branching
programs. In 51th Annual IEEE Symposium on Foundations of Computer Science, FOCS
2010, October 23-26, 2010, Las Vegas, Nevada, USA, pages 30–39. IEEE Computer Society,
2010.

L. Chen, X. Lyu, A. Tal, and H. Wu 39:17

7 Eshan Chattopadhyay, Pooya Hatami, Omer Reingold, and Avishay Tal. Improved pseudor-
andomness for unordered branching programs through local monotonicity. In STOC, pages
363–375. ACM, 2018.

8 Michael A Forbes and Zander Kelley. Pseudorandom generators for read-once branching
programs, in any order. In 2018 IEEE 59th Annual Symposium on Foundations of Computer
Science (FOCS), pages 946–955. IEEE, 2018.

9 Anat Ganor and Ran Raz. Space pseudorandom generators by communication complexity
lower bounds. In Klaus Jansen, José D. P. Rolim, Nikhil R. Devanur, and Cristopher Moore,
editors, Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2014, September 4-6, 2014, Barcelona, Spain, volume 28 of
LIPIcs, pages 692–703. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2014.

10 Parikshit Gopalan, Raghu Meka, Omer Reingold, Luca Trevisan, and Salil Vadhan. Better
pseudorandom generators from milder pseudorandom restrictions. In Proc. 53rd Annual IEEE
Symposium on Foundations of Computer Science (FOCS), pages 120–129. IEEE, 2012.

11 Elad Haramaty, Chin Ho Lee, and Emanuele Viola. Bounded independence plus noise fools
products. SIAM J. Comput., 47(2):493–523, 2018.

12 William M. Hoza, Edward Pyne, and Salil P. Vadhan. Pseudorandom generators for unbounded-
width permutation branching programs. In James R. Lee, editor, 12th Innovations in Theoret-
ical Computer Science Conference, ITCS 2021, January 6-8, 2021, Virtual Conference, volume
185 of LIPIcs, pages 7:1–7:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

13 Russell Impagliazzo, Valentine Kabanets, and Avi Wigderson. In search of an easy witness:
exponential time vs. probabilistic polynomial time. Journal of Computer and System Sciences,
65(4):672–694, 2002.

14 Russell Impagliazzo, Raghu Meka, and David Zuckerman. Pseudorandomness from shrinkage.
In Proc. 53rd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages
111–119. IEEE, 2012.

15 Russell Impagliazzo, Noam Nisan, and Avi Wigderson. Pseudorandomness for network
algorithms. In Proc. 26th Annual ACM Symposium on Theory of Computing (STOC), pages
356–364, 1994.

16 Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits: deran-
domizing the XOR lemma. In Proc. 29th Annual ACM Symposium on Theory of Computing
(STOC), pages 220–229, 1997.

17 Valentine Kabanets and Russell Impagliazzo. Derandomizing polynomial identity tests means
proving circuit lower bounds. Computational Complexity, 13(1-2):1–46, 2004.

18 Chin Ho Lee, Edward Pyne, and Salil P. Vadhan. Fourier growth of regular branching
programs. In Amit Chakrabarti and Chaitanya Swamy, editors, Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques, APPROX/RANDOM 2022,
September 19-21, 2022, University of Illinois, Urbana-Champaign, USA (Virtual Conference),
volume 245 of LIPIcs, pages 2:1–2:21. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2022.

19 Chin Ho Lee and Emanuele Viola. More on bounded independence plus noise: Pseudorandom
generators for read-once polynomials. Theory of Computing, 16:1–50, 2020.

20 Raghu Meka, Omer Reingold, and Avishay Tal. Pseudorandom generators for width-3 branching
programs. In Moses Charikar and Edith Cohen, editors, Proceedings of the 51st Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA, June 23-26,
2019, pages 626–637. ACM, 2019.

21 Joseph Naor and Moni Naor. Small-bias probability spaces: efficient constructions and
applications. SIAM Journal of Computing, 22(4):838–856, 1993.

22 Noam Nisan. Pseudorandom generators for space-bounded computation. Combinatorica,
12(4):449–461, 1992.

23 Noam Nisan and Avi Wigderson. Hardness vs. randomness. Journal of Computer and System
Sciences, 49(2):149–167, 1994.

ICALP 2023

39:18 New PRGs for Unbounded-Width/Adaptive-Order Read-Once Branching Programs

24 Edward Pyne and Salil P. Vadhan. Limitations of the impagliazzo-nisan-wigderson pseudoran-
dom generator against permutation branching programs. In Chi-Yeh Chen, Wing-Kai Hon,
Ling-Ju Hung, and Chia-Wei Lee, editors, Computing and Combinatorics – 27th International
Conference, COCOON 2021, Tainan, Taiwan, October 24-26, 2021, Proceedings, volume 13025
of Lecture Notes in Computer Science, pages 3–12. Springer, 2021.

25 Edward Pyne and Salil P. Vadhan. Pseudodistributions that beat all pseudorandom generators
(extended abstract). In Valentine Kabanets, editor, 36th Computational Complexity Conference,
CCC 2021, July 20-23, 2021, Toronto, Ontario, Canada (Virtual Conference), volume 200 of
LIPIcs, pages 33:1–33:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

26 Omer Reingold, Thomas Steinke, and Salil P. Vadhan. Pseudorandomness for regular branch-
ing programs via fourier analysis. In Prasad Raghavendra, Sofya Raskhodnikova, Klaus
Jansen, and José D. P. Rolim, editors, Approximation, Randomization, and Combinatorial
Optimization. Algorithms and Techniques – 16th International Workshop, APPROX 2013,
and 17th International Workshop, RANDOM 2013, Berkeley, CA, USA, August 21-23, 2013.
Proceedings, volume 8096 of Lecture Notes in Computer Science, pages 655–670. Springer,
2013.

27 Michael E. Saks and Shiyu Zhou. BP hspace(s) subseteq dspace(s3/2). Journal of Computer
and System Sciences, 58(2):376–403, 1999.

28 Thomas Steinke, Salil P. Vadhan, and Andrew Wan. Pseudorandomness and fourier-growth
bounds for width-3 branching programs. Theory Comput., 13(1):1–50, 2017.

29 Yoav Tzur. Notions of weak pseudorandomness and gf (2n)-polynomials. Master’s thesis,
Weizmann Institute of Science, 2009.

30 Salil P. Vadhan. Pseudorandomness. Foundations and Trends in Theoretical Computer Science.
Now Publishers, 2012.

A Fourier Growth of Constant-Width Adaptive roBP

In this appendix, we show that the Fourier growth of width-w adaptive roBP is upper
bounded by that of width-2w oblivious roBP. As a corollary, we can use almost k-wise
independent primitives in the construction of Forbes-Kelley PRG, which saves the seed length
from O(log3(n/ε)) to Õ(w log2(n/ε)) when w is small.

A.1 Reducing Adaptive roBP to Oblivious roBP
We start by proving the following lemma.

▶ Lemma 19. Suppose B : {0, 1}n → {0, 1} is computed by a width-w adaptive roBP. Then
there is a width-2w oblivious roBP B′ : {0, 1}n2 → {0, 1} such that the following inequality
holds for every L ≥ 1,∑

α⊆[n]:|α|=L

|B̂(α)| ≤
∑

α⊆[n2]:|α|=L

|B̂′(α)|.

Proof. For an input x ∈ {0, 1}n2 to B′, we partition the bits into chunks of length n. Namely,

x = ((x1
1, . . . , xn

1), (x1
2, . . . , xn

2), . . . , (x1
n, . . . , xn

n)).

For each i ∈ [n], we will think of (xi
j)j∈[n] as n duplicate bits that equal to the i-th input bit

to the original program B. Namely, consider a mapping σ : {0, 1}n → {0, 1}n2 as

σ(z) = ((z1, z2, . . . , zn), . . . , (z1, z2, . . . , zn)).

L. Chen, X. Lyu, A. Tal, and H. Wu 39:19

Constructing the oblivious program. We construct a width-2w oblivious roBP B′ such
that B(x) = B′(σ(x)). To illustrate, in the following, we use x = (x1, . . . , xn) to denote
the input of B, and z = (z1

1 , . . . , zn
n) to denote the input of B′. Note that if z = σ(x), then

zj
i = xj for every i, j,

We describe the construction now. Note that B′ involves n2 + 1 layers and n2 transitions.
For each i ∈ [n], We use the ((i − 1)n + 1)-th to the (in)-th transitions of B′ to implement
the i-th transition of B.

Recall that the (i − 1)-th (resp. i-th) layer of B contains states Vi−1 (resp. Vi). Write
Vi−1 = {v1, . . . , vw} and Vi = {u1, . . . , uw}. We construct V i−1 = {v′

1, . . . , v′
w, u′

1, . . . , u′
w}.

Identify v′
1, . . . , v′

w with v1, . . . , vw, and u′
1, . . . , u′

w with u1, . . . , uw. Recall that each vertex
vj reads one input bit xposvj

from x.

We make n + 1 copies of V i−1, denoted by V
0
i−1, . . . , V

n

i−1. Next, we build a sub-program
from V

0
i−1 to V

n

i−1, using inputs z1
i , . . . , zn

i . For each t ∈ [n], we add edges from V
t−1
i−1 to

V
t

i−1. We let all states of V
t−1
i−1 read the variable zt

i (which is supposed to be xt if σ(x) = z).
For every vj such that posvj

= t, suppose vj has two out edges to uj0 , uj1 with label 0 and 1.
We add two edges from v′

j (in V
t−1
i−1) to u′

j0
and u′

j,1 (in V
t

i−1) with label 0 and 1. For every vj

where posvj
̸= t and every uj , the state reads the input and simply ignores it. (operationally,

this means we add two edges from the current state to the corresponding state in the next
layer.)

Now we have n sub-programs: for each i ∈ [n], we have a subprogram from V
0
i−1 to

V
n

i−1. For each i ∈ [n], observe that both the “u”-states of V
n

i−1 and the “v”-states of V
0
i

are identified with states in Vi. We naturally glue each pair of corresponding states together.
We also glue “v”-states of V

n

i−1 and “u”-states of V
0
i arbitrarily. This way, we construct a

larger branching program of length n2 (from V
0
1 to V

n

n) and width 2w. It is straightforward
to verify that B(x) = B′(σ(x)).

Calculating Fourier weights. Now we verify that B′ satisfies the lemma statement. Consider
the Fourier spectrum of B′:

B′(z) =
∑

α⊆[n2]

B̂′(α)χα(z).

We claim that, for every α ⊆ [n2] such that there exists {k1n + i, k2n + i} ⊆ α for some
k1 ̸= k2 and i, it must be the case that |B̂′(α)| = 0. Indeed, we have

B̂′(α) = Ez∼Un2 [χα(z) · B′(z)]. (5)

We observe that

B′(z) =
∑

π:accepting computation path
1[B′ on input z follows π].

Let zi
k1

, zi
k2

be the two variables associated with indices {k1n + i, k2n + i}. By the promise
that B is read-once, in any computation path π of B′, it cannot be the case that both zi

k1

and zi
k2

are used (i.e., at least one of them is ignored in the path). It follows that each path
contributes zero to (5). Consequently, B̂′(α) = 0.

Next, we have

B(x) = B′(σ(x)) =
∑

α⊆[n2]

B̂′(α)χα(σ(x)).

ICALP 2023

39:20 New PRGs for Unbounded-Width/Adaptive-Order Read-Once Branching Programs

As we have shown, B̂′(α) is non-zero only when α does not contain two variables zi
k1

, zi
k2

in
the same group k. For every such α, χα(σ(x)) = χΠ(α)(x) where Π denotes the projection
of α onto [n]. Namely, Π(α)i = 1 if and only if αkn+i = 1 for some k ∈ [n]. It follows that
|α| = |Π(α)|. Finally, applying the triangle inequality gives∑

β⊆[n]:|β|=L

|B̂(β)| ≤
∑

α⊆[n2]:|α|=L

|B̂′(α)|,

as desired. ◀

A.2 Fourier Growth and Pseudorandomness
Chattopadhyay, Hatami, Reingold and Tal [7] proved the following Fourier growth bound for
width-w oblivious roBP.

▶ Theorem 20 ([7]). Suppose B : {0, 1}n → {0, 1} is computed by a width-w oblivious roBP.
Then, for every k ≥ 1, it holds that∑

α:|α|=k

|B̂(α)| ≤ O(log(nw))wk.

As a direct corollary from Lemma 19 and Theorem 20, we obtain the following Fourier
growth bound for width-w adaptive roBP.

▶ Corollary 21. Suppose B : {0, 1}n → {0, 1} is computed by a width-w adaptive roBP. Then,
for every k ≥ 1, it holds that∑

α:|α|=k

|B̂(α)| ≤ O(log(nw))2wk.

Similarly as done by Forbes and Kelley [8], one can use the Fourier growth bound to
improve the seed length for small-width adaptive roBP, and obtain the following corollary.

▶ Corollary 22 (Restating Theorem 8). For every n, w ≥ 1 and ε > 0, there is an
explicit ε-PRG G : {0, 1}s → {0, 1}n fooling width-w adaptive roBPs with seed length
s = Õ(w log2(n/ε))).

Approximate Nearest Neighbor for Polygonal
Curves Under Fréchet Distance
Siu-Wing Cheng #

Department of Computer Science and Engineering,
Hong Kong University of Science and Technology, Hong Kong, China

Haoqiang Huang #

Department of Computer Science and Engineering,
Hong Kong University of Science and Technology, Hong Kong, China

Abstract
We propose κ-approximate nearest neighbor (ANN) data structures for n polygonal curves under the
Fréchet distance in Rd, where κ ∈ {1 + ε, 3 + ε} and d ≥ 2. We assume that every input curve has at
most m vertices, every query curve has at most k vertices, k ≪ m, and k is given for preprocessing.
The query times are Õ(k(mn)0.5+ε/εd + k(d/ε)O(dk)) for (1 + ε)-ANN and Õ(k(mn)0.5+ε/εd) for
(3 + ε)-ANN. The space and expected preprocessing time are Õ(k(mndd/εd)O(k+1/ε2)) in both cases.
In two and three dimensions, we improve the query times to O(1/ε)O(k) · Õ(k) for (1 + ε)-ANN and
Õ(k) for (3 + ε)-ANN. The space and expected preprocessing time improve to O(mn/ε)O(k) · Õ(k)
in both cases. For ease of presentation, we treat factors in our bounds that depend purely on d

as O(1). The hidden polylog factors in the big-Õ notation have powers dependent on d.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases Polygonal curves, Fréchet distance, approximate nearest neighbor

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.40

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2304.14643

1 Introduction

Given a set of trajectories, the nearest neighbor problem is to efficiently report the one most
similar to a query trajectory. Trajectories are often represented as polygonal curves, and the
nearest neighbor problem is encountered frequently in applications [19, 20, 21].

Various similarity metrics have been proposed for polygonal curves. We are interested in
the Fréchet distance [3] which has attracted much attention in recent years. It is defined as
follows. A parameterization of a curve τ is a function ρ : [0, 1] → Rd such that, as t increases
from 0 to 1, the point ρ(t) moves monotonically from the beginning of τ to its end. We may
have ρ(t1) = ρ(t2) for two distinct values t1 and t2. Two parameterizations ρ and ϱ for curves
τ and σ, respectively, induce a matching M: for all t ∈ [0, 1], M matches ρ(t) with ϱ(t). A
point can be matched with multiple partners. The distance between τ and σ under M is
dM(τ, σ) = maxt∈[0,1] d(ρ(t), ϱ(t)), where d(·, ·) denotes the Euclidean distance. The Fréchet
distance is dF (τ, σ) = minM dM(τ, σ). We call a minimizing matching a Fréchet matching.

Let T = {τ1, . . . , τn} be a set of n polygonal curves with at most m vertices each. Given
any value κ ≥ 1, the κ-approximate nearest neighbor (ANN) problem is to construct a
data structure so that for any query curve σ, we can quickly report a curve τl ∈ T with
dF (σ, τl) ≤ κ · minτi∈T dF (σ, τi). We assume that every query curve has at most k vertices,
and k is given for preprocessing. In the literature, if k = m, it is called the symmetric version;
if k < m, it is called the asymmetric version. If the query curve is sketched by the user, it

EA
T
C
S

© Siu-Wing Cheng and Haoqiang Huang;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 40; pp. 40:1–40:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:scheng@cse.ust.hk
https://orcid.org/0000-0002-3557-9935
mailto:haoqiang.huang@connect.ust.hk
https://orcid.org/0000-0003-1497-6226
https://doi.org/10.4230/LIPIcs.ICALP.2023.40
https://arxiv.org/abs/2304.14643
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

40:2 Approximate Nearest Neighbor for Polygonal Curves Under Fréchet Distance

is likely that k ≪ m and this is the scenario for which we design our data structures. We
define the (κ, δ)-ANN problem as follows: for any query curve, we report “no” or a curve
τl ∈ T with dF (σ, τl) ≤ κδ; if we report “no”, it must be the case that minτi∈T dF (σ, τi) > δ.

There have been many results on the ANN problem under the discrete Fréchet distance
d̃F , which restricts the definition of dF to parameterizations ρ and ϱ that match each vertex
of τ with at least one vertex of σ, and vice versa. As a result, dF (τ, σ) ≤ d̃F (τ, σ). It is
possible that dF (τ, σ) ≪ d̃F (τ, σ); for example, σ is a long horizontal line segment, and τ is
a parallel copy near σ with an extra vertex in the middle. The advantage of d̃F is that it
can be computed using a simple dynamic programming algorithm [11].

Indyk and Motwani [17] and Har-Peled [14] proved that a solution for the (κ, δ)-ANN
problem for points in a metric space gives a solution for the κ(1 + O(ε))-ANN problem. The
result has been simplified in the journal version [15]. The method is general enough that it
works for polygonal curves under dF and d̃F . Theorem 1 in Section 2 states the deterministic
result in our context; the reduction increases the space and query time by polylogarithmic
factors. If a probabilistic (κ, δ)-ANN solution with failure probability f is used, the bounds
in Theorem 1 also hold, and the ANN solution has an O(f log n) failure probability.

Indyk [16] proposed the first (κ, δ)-ANN solution under d̃F , where κ = O(log m+log log n),
for the case that k = m and the vertices come from a discrete point set X. It uses
O

(
|X|

√
m(m

√
mn)2)

space and answers a query in O
(
mO(1) log n

)
time.1 Driemel and

Silverstri [10] developed probabilistic (κ, δ)-ANN solutions under d̃F with a failure probability
1/n; they achieve the following combinations of (κ, query time, space) for the case of
k = m:

(
4d3/2m, O(m), O(n log n+mn)

)
,
(
4d3/2, O(24dmm log n), O(24mdn log n+mn)

)
, and(

4d3/2m/t, O(22tmt log n), O(22tmt−1n log n+mn)
)

for any integer t ≥ 1. The approximation
ratio has been reduced to 1 + ε by two research groups later. Filtser et. al. [13] proposed two
deterministic (1+ε, δ)-ANN data structures under d̃F ; one answers a query in O(kd) time and
uses n · O(1

ε)kd space and O(mn(d log m + O(1
ε)kd)) expected preprocessing time; the other

answers a query in O(kd log dkn
ε) time and uses n · O(1

ε)kd space and O(mn log n
ε · (d log m +

O(1
ε)kd)) worst-case preprocessing time. Emiris and Psarros [12] obtained probabilistic (1+ε)-

ANN and (1 + ε, δ)-ANN data structures under d̃F with failure probabilities 1/2 for the case
of k = m. The (1 + ε)-ANN data structure answers a query in Õ(d24mmO(1/ε)) time and uses
Õ(dm2n) · (2 + d/ log m)O(dmO(1/ε) log(1/ε)) space and preprocessing time. The (1 + ε, δ)-ANN
data structure answers a query in O(d24m log n) time and uses O(dn) + (mn)O(m/ε2) space
and preprocessing time. The failure probabilities can be reduced to 1/n with an increase in
the query time, space, and preprocessing time by an O(log n) factor.

Most known results under dF are for R. For curves in R (time series), Driemel and Psar-
ros [9] developed the first (κ, δ)-ANN data structures under dF with the following combinations
of (κ, query time, space):

(
5+ε, O(k), O(mn)+n·O(1

ε)k
)
,
(
2+ε, O(2kk), O(mn)+n·O(m

kε)k
)
,

and
(
24k + 1, O(k log n), O(n log n + mn)

)
. The last one is probabilistic, and the fail-

ure probability is 1/poly(n). Later, Bringman et al. [5] obtained improved solutions
with the following combinations of (κ, query time, space):

(
1 + ε, O(2kk), n · O(m

kε)k
)
,

(2 + ε, O(k), n · O(m
kε)k

)
,

(
2 + ε, O(2kk), O(mn) + n · O(1

ε)k
)
,

(
2 + ε, O(1

ε)k+2, O(mn)
)
, and(

3 + ε, O(k), O(mn) + n · O(1
ε)k

)
. They also obtained lower bounds that are conditioned

on the Orthogonal Vectors Hypothesis: for all ε, ε′ ∈ (0, 1), it is impossible to achieve the
combination

(
2 − ε, O(n1−ε′), poly(n)

)
in R when 1 ≪ k ≪ log n and m = knΘ(1/k), or(

3 − ε, O(n1−ε′), poly(n)
)

in R when m = k = Θ(log n), or
(
3 − ε, O(n1−ε′), poly(n)

)
in R2

when 1 ≪ k ≪ log n and m = knΘ(1/k). Mirzanezhad [18] described a (1 + ε, δ)-ANN data
structure for Rd that answer a query in O(kd) time and uses O(n · max{

√
d/ε,

√
dD/ε2}dk)

1 A tradeoff is also presented in [16].

S.-W. Cheng and H. Huang 40:3

space, where D is the diameter of the set of input curves. If k is not given, the approximation
ratio and space increase to 5 + ε and n · O(1

ε)dm, respectively. There is no bound on D in
the space complexity of the first solution. We summarize all these previous results in Table 1
for easier comparison.

Table 1 Comparison of our data structures to the previous results.

Distance Space Query time Approximation

Continuous Fréchet, R

O (mn) + n · O
(

1
ε

)k
O(k) (5 + ϵ, δ)-ANN [9]

O (mn) + n · O
(

m
kε

)k
O(2kk) (2 + ϵ, δ)-ANN [9]

O (n log n + mn) O(k log n) (24k + 1, δ)-ANN [9]a

n · O
(

m
kε

)k
O(2kk) (1 + ε, δ)-ANN [5]

n · O
(

m
kε

)k
O(k) (2 + ε, δ)-ANN [5]

O (mn) + n · O
(

1
ε

)k
O(2kk) (2 + ε, δ)-ANN [5]

O (mn) O
(

1
ε

)k+2 (2 + ε, δ)-ANN [5]
O (mn) + n · O

(
1
ε

)k
O(k) (3 + ε, δ)-ANN [5]

Continuous Fréchet, Rd

O
(
n · max{

√
d/ε,

√
dD/ε2}dk

)
O(kd) (1 + ε, δ)-ANN [18]

n · O
(

1
ε

)dm
O(kd) (5 + ε, δ)-ANN [18]

Õ
(

k(mndd/εd)O(k+1/ε2)
)

Õ
(
k(mn)0.5+ε/εd + k(d/ε)O(dk)) (1 + ε, δ)-ANN, Theorem 9

Õ
(

k(mndd/εd)O(k+1/ε2)
)

Õ
(
k(mn)0.5+ε/εd

)
(3 + ε, δ)-ANN, Theorem 11

Continuous Fréchet, R2

and R3
O

(
1
ε

)4d(k−1)+1 (mn)4(k−1)k log2 n O
(

1
ε

2d(k−2)
)

k log mn
ε

log n (1 + ε, δ)-ANN, Theorem 9

O
(

1
ε

)2d(k−1)+1 (mn)2(k−1)k log2 n O
(
k log mn

ε
log n

)
(3 + ε, δ)-ANN, Theorem 11

Discrete Fréchet, Rd

O
(
|X|

√
m(m

√
mn)2)

O
(
mO(1) log n

)
(O(log m + log log n), δ)-ANN [16]

O(n log n + mn) O(m) (4d3/2m, δ)-ANN [10]
O(24mdn log n + mn) O(24dmm log n) (4d3/2, δ)-ANN [10]

O(22tmt−1n log n + mn) O(22tmt log n) (4d3/2m/t, δ)-ANN [10]
n · O

(
1
ε

)kd
O(kd)b (1 + ε, δ)-ANN [13]

O(dn) + (mn)O(m/ε2) O
(
d24m log n

)
(1 + ε, δ)-ANNc [12]

a A randomized data structure with a failure probability of 1/poly(n).
b The query time is achieved by implementing the dictionary with a hash table. The query time is

O(kd log dkn
ε) when implementing the dictionary with a trie.

c A randomized data structure with a failure probability of 1
2 .

We develop (κ, δ)-ANN data structures under dF in Rd for κ ∈ {1+ε, 3+ε} and d ≥ 2. We
assume that every query curve has at most k vertices, k ≪ m, and k is given for preprocessing.
To simplify the bounds, we assume that k ≥ 3 throughout this paper. There are three
design goals. First, the query times are sublinear in mn. Second, the space complexities
depend only on the input parameters. Third, the space complexities are neither proportional
to min{mΩ(d), nΩ(d)} nor exponential in min{m, n}. It would be desirable to remove all
exponential dependencies on d, but we are not there yet.

We achieve a query time of Õ(k(mn)0.5+ε/εd + k(d/ε)O(dk)) for (1 + ε, δ)-ANN. We
remove the exponential dependence on k for (3 + ε, δ)-ANN and obtain an Õ(k(mn)0.5+ε/εd)
query time. The space and expected preprocessing time are Õ(k(mndd/εd)O(k+1/ε2)) in
both cases. For ease of presentation, we treat any factor in our bounds that depends only
on d as O(1). The hidden polylog factors in the big-Õ notation have powers dependent
on d. In two and three dimensions, we improve the query times to O(1/ε)O(k) · Õ(k) for
(1 + ε, δ)-ANN and Õ(k) for (3 + ε, δ)-ANN. The space and expected preprocessing time
improve to O(mn/ε)O(k) · Õ(k) in both cases. Using the reduction in [15] (Theorem 1 in
Section 2), we obtain (1 + ε)-ANN and (3 + ε)-ANN data structures by increasing the query
time and space by an O(log n) and an O(1

ε log2 n) factors, respectively. More precise bounds
are stated in Theorems 9 and 11.

Our (1 + ε, δ)-ANN result is based on two new ideas. First, we develop a novel encoding
of query curves that are based on local grids in the input vertex neighborhoods. Second, we
draw a connection to an approximate segment shooting problem which we solve efficiently.
We present these ideas in Sections 2 and 4. Our (3 + ε)-ANN result is obtained by simplifying
the encoding. We present this result in Section 3.

ICALP 2023

40:4 Approximate Nearest Neighbor for Polygonal Curves Under Fréchet Distance

We work in the word RAM model. We use (vi,1, . . . , vi,m) to denote the sequence of
vertices of τi from beginning to end – τi is oriented from vi,1 to vi,m. We use τi,a to denote
the edge vi,avi,a+1. For any two points x, y ∈ τi, we say that x ≤τi

y if x does not appear
behind y along τi, and τi[x, y] denotes the subcurve between x and y. Given two subsets
X, Y ⊆ τi, X ≤τi

Y if and only if for every point x ∈ X and every point y ∈ Y , x ≤τi
y. A

ball centered at the origin with radius r is denoted by Br. Given two subsets X, Y ⊂ Rd,
d(X, Y) = minx∈X,y∈Y d(x, y); their Minkowski sum is X ⊕ Y = {x + y : x ∈ X, y ∈ Y }; if
X = {p}, we write p ⊕ Y for simplicity. For any x, y ∈ Rd, xy denotes the oriented segment
from x to y, and aff(xy) is the oriented support line of xy that shares the orientation of xy.

2 (1 + O(ε), δ)(1 + O(ε), δ)(1 + O(ε), δ)-ANN

Har-Peled et al. [15, Theorem 2.10] proved a reduction from the (1 + ε)-ANN problem to the
(1 + ε, δ)-ANN problem. Although the result is described for points in a metric space with a
probabilistic data structure for the (1 + ε, δ)-ANN problem, the method is general enough
to work for polygonal curves under dF or d̃F in Rd and any deterministic solution for the
(1 + ε, δ)-ANN problem. We rephrase their result in our context below.

▶ Theorem 1 ([15]). Let T be a set of n polygonal curves in Rd. If there is a data structure
for the (κ, δ)-ANN problem for T under dF or d̃F that has space complexity S, query time Q,
deletion time D, and preprocessing time P , then there is a κ(1 + O(ε))-ANN data structure
for T under dF or d̃F that has space complexity O(1

ε S log2 n), query time O(Q log n), and
expected preprocessing time O

(1
ε log2 n

P + (Q + D)n log n
)
.

By Theorem 1, we can focus on the (1 + ε, δ)-ANN problem. Without loss of generality,
we assume that each curve in T has exactly m vertices, and every query curve has exactly
k vertices. If necessary, extra vertices can be added in an arbitrary manner to enforce this
assumption without affecting the Fréchet distance.

The high level idea of our preprocessing is to identify all query curves that are within a
Fréchet distance (1 + O(ε))δ from each τi ∈ T , group the curves that share similar structural
characteristics, assign each group a unique key value, and store these key values in a trie D.
It is possible for a query curve to belong to multiple groups. Each key value is associated
with the subset of curves in T that induce that key value. Correspondingly, given a query
curve σ, we generate all possible key values for σ and search D with them. If some curve in
T is retrieved, it is the desired answer; otherwise, we report “no”.

There are two challenges to overcome. First, it is impossible to examine all possible
query curves. We can only check some space discretization in order to obtain a finite running
time. To control the discretization error, it is easy to cover the input curves by a grid
with an appropriate cell width; however, the grid size and hence the data structure size
would then depend on some non-combinatorial parameters. We propose coarse encodings of
query curves so that there are O(

√
d/ε)4d(k−1)(mn)4(k−1) of them. A query curve may have

O(
√

d/ε)2d(k−2) coarse encodings. The second challenge is to efficiently generate all possible
coarse encodings of a query curve at query time. We reduce the coarse encoding generation
to an approximate segment shooting problem. This step turns out to be the bottleneck in
four and higher dimensions as we aim to avoid any factor of the form mΩ(d) or nΩ(d) in the
space complexity. It is the reason for the (mn)0.5+ε term in the query time. In two and three
dimensions, the approximate segment shooting problem can be solved more efficiently.

In the rest of this section, we present the coarse encoding and a (1 + O(ε), δ)-ANN data
structure, using an approximate segment shooting oracle. The approximate segment shooting
problem can be solved by the results in [8] in two and three dimensions. We solve the
approximate segment shooting problem in four and higher dimensions in Section 4.

S.-W. Cheng and H. Huang 40:5

2.1 Coarse encodings of query curves
Imagine an infinite grid in Rd of cell width εδ/

√
d. For any subset R ⊂ Rd, we use G(R)

to denote the set of grid cells that intersect R. Let G1 =
⋃

i∈[n],a∈[m] G(vi,a ⊕ Bδ). Let
G2 =

⋃
i∈[n],a∈[m] G(vi,a ⊕ B(2+12ε)δ). Both G1 and G2 have O(mn/εd) size.

The coarse encoding of a curve σ = (w1, w2, . . . , wk) is a 3-tuple F = (A, B, C). The
component C is sequence of pairs of grid cells ((cj,1, cj,2))j∈[k−1] such that (cj,1, cj,2) ∈
(G1 × G1) ∪ {null}. Both A and B are arrays of length k − 1, and every element of A and B
belongs to G2 ∪ {null}. We first provide the intuition behind the design of (A, B, C) before
describing the constraints that realize the intuition.

Imagine that a curve τi ∈ T is a (1 + O(ε))-ANN of σ. The data structure needs to cater
for the preprocessing, during which the query curve σ is not available; it also needs to cater
for the query procedure, during which we do not want to directly consult the input curves in
T in order to avoid a linear dependence in mn.

In preprocessing, we use pairs of grid cells as surrogates of the possible query curve edges.
The advantage is that we can enumerate all possible pairs of grid cells and hence cater for all
possible query curve edges. Specifically, for j ∈ [k − 1], if (cj,1, cj,2) ̸= null, it is the surrogate
of wjwj+1, so wjwj+1 should pass near cj,1 and cj,2. Each non-null (cj,1, cj,2) corresponds to
a contiguous subsequence vi,a, . . . , vi,b of vertices of τi that are matched to points in wjwj+1
in a Fréchet matching. Of course, we do not know the Fréchet matching, so we will need
to enumerate and handle all possibilities. Also, since wjwj+1 is unknown in preprocessing,
vi,a, . . . , vi,b can only be matched to a segment joining a vertex xj of cj,1 to a vertex yj of cj,2
so that dF (x′

jy′
j , τi[vi,a, vi,b]) ≤ (1 + O(ε))δ for some subsegment x′

jy′
j ⊆ xjyj . This property

will be enforced in the data structure construction later.
At query time, given σ = (w1, . . . , wk), we will make approximate segment shooting queries

to determine a sequence of cell pairs ((cj,1, cj,2))j∈[k−1]. We do not always use (cj,1, cj,2)
as a surrogate for the edge wjwj+1 though. As mentioned in the previous paragraph, a
non-null (cj,1, cj,2) denotes the matching of a contiguous subsequence of input curve vertices
to wjwj+1; however, we must also allow the matching of a contiguous subsequence of vertices
of σ to a single input edge. Therefore, after determining ((cj,1, cj,2))j∈[k−1], we still have
the choice of using (cj,1, cj,2) as is or substituting it by the null value. For a technical
reason, (c1,1, c1,2) and (ck−1,1, ck−1,2) are always kept non-null, so we have 2k−3 possible
sequences of pairs of cells. Take one of these sequences. If (cr,1, cr,2) and (cs,1, cs,2) are two
non-null pairs such that (cj,1, cj,2) = null for j ∈ [r + 1, s − 1], it means that no vertex of τi

is matched to wjwj+1 for j ∈ [r + 1, s − 1]. As a result, the vertices wr+1, . . . , ws of σ are
matched to the edge vi,bvi,b+1 of τi, where vi,b is the last vertex of τi matched to wrwr+1
in the current enumeration. We use the pair of cells A[r] and B[s] as the surrogate of the
edge vi,bvi,b+1. So we require A[r] and B[s] to be near cr,2 and cs,1, respectively, because
(cr,1, cr,2) is the surrogate of wrwr+1, and (cs,1, cs,2) is the surrogate of wsws+1. We have
to try all possible locations of A[r] and B[s] in the vicinity of cr,2 and cs,1. A[r] and B[s]
can be the surrogate for edges of multiple curves in T , which allows us to compare σ with
multiple input curves simultaneously at query time. The constraint to be enforced is that
wr+1, . . . , ws can be matched to a segment joining a vertex xr of A[r] and a vertex xs of
B[s] so that dF (x′

rx′
s, σ[wr+1, ws]) ≤ (1 + O(ε))δ for some subsegment x′

rx′
s ⊆ xrxs. Figure 1

shows a illustration for the intuition above.
We present the constraints for (A, B, C) that realize the intuition above. When (cj,1, cj,2) ̸=

null, a natural choice of cj,1 is the first grid cell in G1 that we hit when walking from wj to
wj+1, i.e., segment shooting. In Rd where d ∈ {2, 3}, there are ray shooting data structures
for boxes [8]. In higher dimensions, ray shooting results are known for a single convex

ICALP 2023

40:6 Approximate Nearest Neighbor for Polygonal Curves Under Fréchet Distance

σ

τ
v3

v1

v2

v4

v5

v6

c1,1

c1,2

c5,1

A[1]

B[5]

w1

w2

v4
v5

w2

w5

c1,2 ⊕ B(1+11ε)δ

c5,1 ⊕ B(1+11ε)δ

Figure 1 The underlying intuition for deriving the coarse encoding of σ. We use τ instead of τi for
ease of notation. Assume that dF (τ, σ) ≤ δ and the vertices v1, v2, v3, v4 are matched to the segment
w1w2 by the Fréchet matching. w1w2 must intersect some balls centered at τ ’s vertices, which means
that w1w2 intersects G1. Let c1,1 and c1,2 be the first and the last cells in G1 that intersect w1w2

along the direction of w1w2. (c1,1, c1,2) can serve as a surrogate of the edge w1w2 in a sense that we
can verify whether v1, v2, v3, v4 can be matched to w1w2 properly by checking whether they can be
matched to a segment that joins vertices of c1,1 and c1,2 properly. This idea can be generalized to
all edges of σ with vertices of τ matched to them. The subcurve σ[w2, w5] is matched to an edge
v4v5 of τ . We introduce A[1] ⊂ G(c1,2 ⊕ B(1+11ε)δ) and B[5] ⊂ G(c5,1 ⊕ B(1+11ε)δ). (A[1], B[5]) can
serve as a surrogate of v4v5. (A[1], B[5]) can encode σ[w2, w5] sufficiently because for every segment
x1x5 that joins a vertex x1 of A[1] and a vertex x5 of B[5], there exists a subsegment x′

1x′
5 ⊂ x1x5

such that dF (x′
1x′

5, σ[w2, w5]) ≤ (1 + O(ε))δ.

polytope and an arrangement of hyperplanes [1]; even in such cases, the query time is
substantially sublinear only if the space complexity is at least the input size raised to a power
of Ω(d). It would be (mn)Ω(d) in our case. We define a λ-segment query problem below that
approximates the ray shooting problem, and we will present an efficient solution for λ = 11εδ

in Section 4 that avoids an (mn)Ω(d) term in the space complexity. As mentioned before, the
ray shooting result in [8] suffices in two and three dimensions.

λλλ-segment query. A set O of objects in Rd is preprocessed into a data structure so
that for any oriented query segment pq, the λ-segment query with pq on O returns
one of the following answers:

If pq intersects an object in O, let x be the first intersection point with an object
in O as we walk from p to q. In this case, the query returns an object o ∈ O such
that px intersects o ⊕ Bλ. Figure 2 shows an illustration.
Otherwise, the query returns null or an object o ∈ O such that d(o, pq) ≤ λ.

We are now ready to state the three constraints on (A, B, C).
Constraint 1:

(a) Both (c1,1, c1,2) and (ck−1,1, ck−1,2) belong to G1 × G1.
(b) For j ∈ [k − 1], if (cj,1, cj,2) ̸= null, then:

(i) cj,1 and cj,2 are the grid cells returned by the (11εδ)-segment queries with wjwj+1
and wj+1wj on G1, respectively;

(ii) the minimum point in wjwj+1 ∩ (cj,1 ⊕ B11εδ) lies in front of the maximum point
in wjwj+1 ∩ (cj,2 ⊕ B11εδ) with respect to ≤wjwj+1 .

S.-W. Cheng and H. Huang 40:7

p q

c c′

c′′ ⊕ Bλ

c′ ⊕ Bλ
c′′

Figure 2 The λ-segment query with pq on the boxes {c, c′, c′′} can return c or c′ but not c′′.

Constraint 2:
(a) B[1] and A[k − 1] belong to G2.
(b) w1 ∈ B[1] and wk ∈ A[k − 1].

Constraint 3:
(a) For j ∈ [2, k − 2], if (cj,1, cj,2) = null, then A[j] and B[j] are null.
(b) For j ∈ [k − 1], if (cj,1, cj,2) ̸= null, then A[j] and B[j] belong to G2, d(cj,1, B[j]) ≤

(1 + 11ε)δ, and d(cj,2, A[j]) ≤ (1 + 11ε)δ.
(c) Let J be the set of (r, s) ∈ [k − 1] × [k − 1] such that r < s, (cr,1, cr,2) ̸= null,

(cs,1, cs,2) ̸= null, and (cj,1, cj,2) = null for j ∈ [r + 1, s − 1]. For every (r, s) ∈ J , let
xr and xs be the smallest vertices of A[r] and B[s] according to the lexicographical
order of their coordinates, there exist x′

r, x′
s ∈ xrxs such that x′

r ≤xrxs x′
s and

dF (x′
rx′

s, σ[wr+1, ws]) ≤ (1 + ε)δ.

We remark that if wjwj+1 intersects the interior of the union of cells in G1, con-
straint 1(b)(ii) is satisfied automatically for (cj,1, cj,2) given constraint 1(b)(i). When
wjwj+1 does not intersect the interior of the union of cells in G1, it is possible that the
(11εδ)-segment queries return two cells that violate constraint 1(b)(ii). In this case, the input
vertices are too far from wjwj+1 to be matched to any point in wjwj+1 within a distance δ,
so we can set (cj,1, cj,2) to be null.

The next result shows that any query curve σ near a curve τi ∈ T has a coarse encoding
with some additional properties. These properties will be useful in the analysis. Let M
denote a matching between σ and some τi ∈ T . For any subcurve σ′ ⊆ σ, we use M(σ′) to
denote the subcurve of τi matched to σ′ by M.

▶ Lemma 2. Let σ = (w1, . . . , wk) be a curve of k vertices. Let M be a matching between σ

and τi ∈ T such that dM(τi, σ) ≤ δ. Let π̃j = {vi,a : a ∈ [m−1], vi,a ∈ M(wjwj+1)\M(wj)}
for all j ∈ [k − 1]. Define πj = π̃j for all j ∈ [k − 2], πk−1 = {vi,m} ∪ π̃k−1, and
π0 = {vi,1 . . . , vi,m} \

⋃k−1
j=1 πj. There is a coarse encoding (A, B, C) for σ that satisfies the

following properties.
(i) For j ∈ [2, k − 1], πj = ∅ if and only if (cj,1, cj,2) = null.
(ii) For all (r, s) ∈ J , if r = 1 and π1 = ∅, let b1 = 1; otherwise, let br = max{b : vi,b ∈ πr}.

For all (r, s) ∈ J , there exist a point z ∈ A[r] ∩ τi,br and another point z′ ∈ B[s] ∩ τi,br

such that z ≤τi,br
z′.

Proof. We define the component C as follows. Given that vi,1 ∈ M(w1), w1w2 intersects
the interior of the union of cells in G1, so the (11εδ)-segment query with w1w2 on G1 must
return some cell; we define it to be c1,1. Similarly, the (11εδ)-segment query with w2w1 on G1
must return some cell; we define it to be c1,2. The pair (ck−1,1, ck−1,2) are also defined in a
similar way as vi,m ∈ M(wk). Consider any j ∈ [2, k − 1]. If vi,a ∈ πj for some a ∈ [m], then
vi,a ∈ M(wjwj+1), which implies that wjwj+1 intersects vi,a ⊕ Bδ and hence the interior of
the union of cells in G1. Thus, (cj,1, cj,2) can be defined using the (11εδ)-segment queries
with wjwj+1 and wj+1wj as before. On the other hand, if πj = ∅, we define (cj,1, cj,2) to be
null. Constraint 1 and property (i) in the lemma are thus satisfied.

ICALP 2023

40:8 Approximate Nearest Neighbor for Polygonal Curves Under Fréchet Distance

p wr+1

cr,2

cr,2 ⊕ B11εδ

p′

zr ∈M(p′)

ws

q
cs,1

cs,1 ⊕ B11εδ

q′

zs ∈M(q′)

wr ws+1

vi,br vi,br+1

Figure 3 Illustration of p, p′, q′, q, zr, and zs.

Next, we define A and B to satisfy constraints 2 and 3.
As vi,1 ∈ M(w1) and vi,m ∈ M(wk), both d(w1, vi,1) and d(wk, vi,m) are at most δ. So

w1 lies in a cell in G(vi,1 ⊕ Bδ) ⊂ G(vi,1 ⊕ B(2+12ε)δ) ⊂ G2; we make this cell B[1]. Similarly,
we define A[k − 1] to be the cell in G2 that contains wk. Constraint 2 is thus enforced.

For j ∈ [2, k − 2], if (cj,1, cj,2) = null, let A[j] and B[j] be null, satisfying constraint 3(a).
B[1] and A[k − 1] have already been defined, and they belong to G2. Since w1 lies in a
cell in G(vi,1 ⊕ Bδ) ⊂ G1, we have w1 ∈ c1,1 ⊕ B11εδ by the (11εδ)-segment query. Then,
d(c1,1, B[1]) ≤ 11εδ as w1 ∈ B[1]. Similarly, d(ck−1,2, A[k − 1]) ≤ 11εδ. So B[1] and A[k − 1]
satisfy constraint 3(b). It remains to discuss A[j] for j ∈ [1, k − 2] and B[j] for j ∈ [2, k − 1].

Consider an arbitrary j∗ ∈ [k − 1] such that (cj∗,1, cj∗,2) ̸= null. Recall that J is the
set of (r, s) ∈ [k − 1] × [k − 1] such that r < s, (cr,1, cr,2) ̸= null, (cs,1, cs,2) ̸= null, and
(cj,1, cj,2) = null for j ∈ [r + 1, s − 1]. Thus, if j∗ ≤ k − 2, it must exist as the first value in
exactly one element of J , and if j∗ ≥ 2, it must also exist as the second value in exactly
another element of J . As a result, it suffices to define A[r] and B[s] for every (r, s) ∈ J and
verify that constraints 3(b) and 3(c) are satisfied.

Take any (r, s) ∈ J . If πr ̸= ∅, it is legal to define br = max{b : vi,b ∈ πr}. If πr = ∅,
then r = 1 because for any r > 1, πr ̸= null by (i) as (cr,1, cr,2) ̸= null by the definition of
J . In the case that r = 1 and π1 = ∅, b1 is defined to be 1. Therefore, br is well defined
for all (r, s) ∈ J . The definition of br implies that br = max{b : vi,b ∈ M(wrwr+1)}. Since
(cs,1, cs,2) ̸= null and (cj,1, cj,2) = null for j ∈ [r + 1, s − 1], by (i), πs ̸= ∅ and πj = ∅ for
j ∈ [r + 1, s − 1]. It follows that vi,br+1 ∈ πs which is a subset of M(wsws+1). Pick any
point p ∈ wrwr+1 and any point q ∈ wsws+1 such that vi,br ∈ M(p) and vi,br+1 ∈ M(q).

We claim that pwr+1 ∩ (cr,2 ⊕ B11εδ) and wsq ∩ (cs,1 ⊕ B11εδ) are non-empty. Since cr,2
is the cell in G1 returned by the (11εδ)-segment query with wr+1wr, for any intersection
point x between wr+1wr and any cell in G1, we have xwr+1 ∩ (cr,2 ⊕ B11εδ) ̸= ∅ by definition.
We have p ∈ wrwr+1 ∩ (vi,br ⊕ Bδ) by our choice of p; it means that p is an intersection
point between wrwr+1 and a cell in G(vi,br

⊕ Bδ) ⊂ G1. We can thus substitute p for x and
conclude that pwr+1 ∩ (cr,2 ⊕ B11εδ) ̸= ∅. Similarly, we get wsq ∩ (cs,1 ⊕ B11εδ) ̸= ∅.

By our claim, when we walk from wr+1 to p, we hit cr,2 ⊕ B11εδ at some point p′, and
when we walk from ws to q, we hit cs,1 ⊕ B11εδ at some point q′. Pick two points zr ∈ M(p′)
and zs ∈ M(q′). By definition, cr,2 ∈ G(vir,ar

⊕ Bδ) for some τir
∈ T and some index

ar ∈ [m]. The cell width of cr,2 is εδ/
√

d, so cr,2 ⊂ vir,ar
⊕ B(1+ε)δ. By triangle inequality,

p′ ∈ vir,ar ⊕ B(1+12ε)δ and hence zr ∈ vir,ar ⊕ B(2+12ε)δ, which implies that zr is contained
in a cell in G(vir,ar

⊕ B(2+12ε)δ) ⊂ G2. By a similar reasoning, we can also deduce that zs is
contained in a cell in G2. We define A[r] and B[s] to be the cells in G2 that contain zr and
zs, respectively. Figure 3 shows an illustration.

Since d(cr,2, zr) ≤ d(cr,2, p′) + d(p′, zr) ≤ (1 + 11ε)δ, we get d(cr,2, A[r]) ≤ (1 + 11ε)δ.
Similarly, d(cs,1, B[s]) ≤ (1 + 11ε)δ. This takes care of constraint 3(b).

S.-W. Cheng and H. Huang 40:9

As vi,br ∈ M(p) and p ≤wrwr+1 p′, we have vi,br ≤τi M(p′). Similarly, we have M(q′) ≤τi

vi,br+1 . Therefore, vi,br
≤τi

M(p′) ≤τi
M(q′) ≤τi

vi,br+1 . As zr ∈ M(p′) and zs ∈ M(q′), zr

and zs satisfy property (ii) of the lemma. The distance between zr and any vertex xr of A[r]
is at most εδ. So is the distance between zs and any vertex xs of B[s]. Thus, we can use
the linear interpolation I between xrxs and zrzs as a matching to get dI(xrxs, zrzs) ≤ εδ.
Combining M and I shows that there is a matching between σ[p′, q′] and xrxs within a
distance of (1 + ε)δ. Since σ[wr+1, ws] ⊆ σ[p′, q′], we have thus verified constraint 3(c). ◀

2.2 Data structure organization and construction
We construct G1 and G2 in O(mn/εd) time and space. We need a point location data
structure for G2 which is organized as a multi-level tree as follows. The top-level tree has
leaves corresponding to the intervals of the cells on the first coordinate axis. Each leaf is
associated with the cells that project to the interval of that leaf, and these cells are stored
in a second-level tree with leaves corresponding to the intervals of these cells on the second
coordinate axis. Continuing in this manner yields d = O(1) levels, using O(|G2|) = O(mn/εd)
space and O

(
(mn/εd) log mn

ε

)
preprocessing time. A point location takes O(log mn

ε) time.
The (1+O(ε), δ)-ANN data structure is a trie D. Each key to be stored in D is a candidate

coarse encoding, which is a 3-tuple (A, B, C) just like a coarse encoding. For a candidate
coarse encoding, constraints 1(a), 2(a), 3(a), and 3(b) must be satisfied, but constraints 1(b),
2(b), and 3(c) are ignored. This difference is necessary because constraints 1(b), 2(b), and
3(c) require the query curve, which is not available in preprocessing. For each candidate
coarse encoding E, let TE be the subset of input curves that are within a Fréchet distance of
(1 + O(ε))δ from any query curve that has E as a coarse encoding, we will discuss shortly
how to obtain the curves in TE .

Each key E in D has O(k) size because E stores O(k) cells in G1 and G2. As a trie, D is
a rooted tree with as many levels as the length of the key E. Searching in D boils down to
visiting the appropriate child of an internal node of D. Each component of the key E is an
element of G2 ∪ {null} or (G1 × G1) ∪ {null}; there are O(m2n2/ε2d) possibilities. We keep a
dictionary at each internal node of D for finding the appropriate child to visit in O(log mn

ε)
time. Hence, the total search time of D is O(k log mn

ε).
To bound the size of D, observe that each key E at a leaf of D induces O(k) entries in

the dictionaries at the ancestors of that leaf. There are O(
√

d/ε)4d(k−1)(mn)4(k−1) candidate
coarse encodings. So the total space taken by the dictionaries at the internal nodes is
O(

√
d/ε)4d(k−1)(mn)4(k−1)k. We will show that if a query curve has E as a coarse encoding,

any curve in TE is within a Fréchet distance of (1 + O(ε))δ from that query curve. Therefore,
we only need to store one of the curves in TE at the leaf for E, and it suffices to store the index
of this curve. Therefore, the total space complexity of D is O(

√
d/ε)4d(k−1)(mn)4(k−1)k.

The construction of D proceeds as follows. We initialize D to be empty. We enumerate all
possible candidate coarse encodings based on constraints 1(a), 2(a), 3(a), and 3(b). Take a
possible candidate coarse encoding E. The set TE is initialized to be empty. We go through
every input curve τi to determine whether to include τi in TE . If TE ̸= ∅ in the end, we
insert E together with one curve in TE into D. In the following, we discuss the checking of
whether to include τi in TE .

Let E be (A, B, C). We generate all possible partitions of {vi,1, . . . , vi,m} that satisfy the
following properties.

Partition: a sequence of k disjoint subsets (π0, π1, . . . , πk−1) such that
⋃k−1

j=0 πj =
{vi,1, . . . , vi,m}, vi,1 ∈ π0, vi,m ∈ πk−1, πj may be empty for some j ∈ [k − 2], and for
any vi,a ∈ πj and any vi,b ∈ πl, if j < l, then a < b.

ICALP 2023

40:10 Approximate Nearest Neighbor for Polygonal Curves Under Fréchet Distance

There are fewer than mk−1 partitions. Given a partition (π0, . . . , πk−1), the vertices in π0
are to be matched with vi,1; for j ∈ [k − 1], the vertices in πj are to be matched with points
in wjwj+1 \ {wj}, where wjwj+1 is the j-th edge of the query curve; vi,m and possibly other
vertices of τi are matched with wk. The reference to wjwj+1 is conceptual; we do not need
to know the query curve in preprocessing.

We describe four tests for each partition below. As soon as we come across a partition
that passes all four tests, we insert τi into TE . If a partition fails any test, we move on to the
next partition. If no partition can pass all four tests in the end, we do not include τi in TE .

The first test is that for j ∈ [2, k − 1], πj = ∅ if and only if (cj,1, cj,2) = null. This test
takes O(k) time. We exclude π1 from this test because (c1,1, c1,2) ̸= null by constraint 1(a),
whereas π1 may be empty or not depending on the partition enumerated.

In the second test, for j ∈ [k − 1], if πj ̸= ∅, let aj , bj ∈ [m] be the smallest and largest
indices such that vi,aj , vi,bj ∈ πj , the intuition is that vi,aj , . . . , vi,bj can be matched to the
surrogate (cj,1, cj,2) of wjwj+1 within a distance of (1 + O(ε))δ. The second test checks this
property as follows. Observe that (cj,1, cj,2) ̸= null: (c1,1, c1,2) ̸= null by constraint 1(a), and
for j ∈ [2, k −1], (cj,1, cj,2) ̸= null by the first test. Pick the smallest vertices xj of cj,1 and yj

of cj,2 according to the lexicographical order of their coordinates. If xjyj ∩ (vi,aj ⊕ B(1+12ε)δ)
or xjyj ∩ (vi,bj

⊕ B(1+12ε)δ) is empty, the test fails. Otherwise, compute the minimum point
x′

j in xjyj ∩ (vi,aj
⊕ B(1+12ε)δ) and the maximum point y′

j in xjyj ∩ (vi,bj
⊕ B(1+12ε)δ) with

respect to ≤xjyj . If it is not the case that x′
j ≤xjyj y′

j , the test fails. Suppose that x′
j ≤xjyj y′

j .
Compute dF (x′

jy′
j , τi[vi,aj

, vi,bj
]) and check whether it is (1 + 12ε)δ or less. If all of the above

checks succeed for all j ∈ [k − 1], the second test succeeds; otherwise, the test fails. The test
takes O(m log m) time, which is dominated by the computation of dF (x′

jy′
j , τi[vi,aj

, vi,bj
])

over all j ∈ [k − 1].
The third test is that B[1] ∈ G(vi,1 ⊕ Bδ) and A[k − 1] ∈ G(vi,m ⊕ Bδ), which boils down

to checking whether d(vi,1, B[1]) and d(vi,m, A[k − 1]) are at most δ.
The fourth test involves J , the set of (r, s) ∈ [k −1]× [k −1] such that r < s, (cr,1, cr,2) ̸=

null, (cs,1, cs,2) ̸= null, and (cj,1, cj,2) = null for j ∈ [r + 1, s − 1]. Note that |J | ≤ k − 1 and
it can be constructed in O(k) time. For every (r, s) ∈ J , if r = 1 and π1 = ∅, let b1 = 1;
otherwise, let br = max{b : vi,b ∈ πr}. It follows that br + 1 = min{a : vi,a ∈ πs}. We check
if it is the case that τi,br

∩ A[r] ̸= ∅, τi,br
∩ B[s] ̸= ∅, and we hit A[r] no later than B[s]

when we walk from vi,br to vi,br+1. (Recall the intuition that the pair A[r] and B[s] serve as
the surrogate of the edge τi,br

= vi,br
vi,br+1.) If check fails for any (r, s) ∈ J , the test fails.

Otherwise, the test succeeds. This test runs in O(k) time.
The following result summarizes the construction of D and four properties of each

candidate coarse encoding in D.

▶ Lemma 3. The trie D has O(
√

d/ε)4d(k−1)(mn)4(k−1)k size and can be constructed in
O(

√
d/ε)4d(k−1)(mn)4(k−1)(k log mn

ε + mk log m) time. We can search D with a coarse en-
coding in O(k log mn

ε) time. For each candidate coarse encoding E = (A, B, C), a curve
τi ∈ T belongs to TE if and only if there exists a partition (π0, . . . , πk−1) of the vertices of τi

that satisfy the following four properties. For j ∈ [k − 1], if j = 1 and π1 = ∅, let b1 = 1;
otherwise, if πj ̸= ∅, let aj = min{a : vi,a ∈ πj} and let bj = max{b : vi,b ∈ πj}.

(i) For j ∈ [2, k − 1], πj = ∅ if and only if (cj,1, cj,2) = null.
(ii) For j ∈ [k − 1], if πj ̸= ∅, let xj and yj be the smallest vertices of cj,1 and cj,2 according

to the lexicographical order of their coordinates, there exist x′′
j , y′′

j ∈ xjyj such that
x′′

j ≤xjyj
y′′

j and dF (x′′
j y′′

j , τi[vi,aj
, vi,bj

]) ≤ (1 + 12ε)δ.
(iii) B[1] ∈ G(vi,1 ⊕ Bδ) and A[k − 1] ∈ G(vi,m ⊕ Bδ).
(iv) For every (r, s) ∈ J , τi,br

∩ A[r] ̸= ∅, τi,br
∩ B[s] ̸= ∅, and we hit A[r] no later than

B[s] when we walk from vi,br to vi,br+1.

S.-W. Cheng and H. Huang 40:11

2.3 Querying
At query time, we are given a curve σ = (w1, ..., wk). We enumerate all coarse encodings
of σ; for each coarse encoding E enumerated, we search the trie D for E; if E is found, we
return the curve in TE stored with E as the answer of the query; if no coarse encoding of σ

can be found in D, we return “no”.
Each search in D takes O(k log mn

ε) time as stated in Lemma 3. The enumeration of the
coarse encodings of σ require a solution for the (11εδ)-segment queries on G1 as stated in
constraint 1(b)(i) in Section 2.1. We will discuss an efficient solution later.

For j ∈ [k − 1], we make two (11εδ)-segment queries with wjwj+1 and wj+1wj on G1 to
obtain uj,1 and uj,2, respectively. If any of the two queries returns null, define (uj,1, uj,2) to
be null. If (uj,1, uj,2) ̸= null and the minimum point in wjwj+1 ∩ (uj,1 ⊕ B11εδ) does not
lie in front of the maximum point in wjwj+1 ∩ (uj,2 ⊕ B11εδ) with respect to ≤wjwj+1 , then
constraint 1(b)(ii) is not satisfied. It must be the case that wjwj+1 does not intersect the
interior of the union of cells in G1, and the (11εδ)-segment queries just happen to return two
cells that violate constraint 1(b)(ii). In this case, the input vertices are too far from wjwj+1
to be matched to any point in wjwj+1 within a distance δ, so we reset (uj,1, uj,2) to be null.

After defining (uj,1, uj,2) for j ∈ [k − 1], we generate the coarse encodings of σ as follows.
The pairs (c1,1, c1,2) and (ck−1,1, ck−1,2) are defined to be (u1,1, u1,2) and (uk−1,1, uk−1,2),
respectively. For j ∈ [2, k − 2], we enumerate all possible C by setting (cj,1, cj,2) to be
(uj,1, uj,2) or null. This gives a total of 2k−3 possible C’s. We query the point location data
structure for G2 to find the cells B[1] and A[k −1] that contain w1 and wk, respectively. Then,
for each C enumerated, we enumerate A[j] for j ∈ [1, k−2] and B[j] for j ∈ [2, k−1] according
to constraints 3(a) and 3(b) in Section 2.1. This enumeration produces O(

√
d/ε)2d(k−2) tuples

of (A, B, C). For each (A, B, C) enumerated, we check whether it satisfies constraint 3(c),
which can be done in O(k log k) time as implied by the following result.

▶ Lemma 4. Take any (r, s) ∈ J . Let xr and xs be the smallest vertices of A[r] and B[s]
by the lexicographical order of their coordinates. We can check in O((s − r) log(s − r)) time
whether there are x′

r, x′
s ∈ xrxs such that x′

r ≤xrxs
x′

s and dF (x′
rx′

s, σ[wr+1, ws]) ≤ (1 + ε)δ.

▶ Lemma 5. The query time is O(kQseg) + O(
√

d/ε)2d(k−2)k log mn
ε , where Qseg is the time

to answer an (11εδ)-segment query.

2.4 Approximation guarantee
First, we show that if σ is within a Fréchet distance δ from some input curve, there exists a
coarse encoding E of σ such that TE ̸= ∅. Hence, E and a curve in TE are stored in D.

▶ Lemma 6. If dF (τi, σ) ≤ δ, then τi ∈ TE for some coarse encoding E of σ.

Proof. Let M be a Fréchet matching between τi and σ. Let E be the coarse encoding specified
for σ in Lemma 2. For any subcurve σ′ ⊆ σ, we use M(σ′) to denote the subcurve of τi

matched to σ′ by M. For j ∈ [k−1], let π̃j = {vi,a : a ∈ [m−1], vi,a ∈ M(wjwj+1)\M(wj)}.
Define πj = π̃j for j ∈ [k − 2], πk−1 = {vi,m} ∪ π̃k−1, and π0 = {vi,1, . . . , vi,m} \

⋃k−1
j=1 πj .

We obtain a partition (π0, ..., πk−1) of the vertices of τi.
We prove that E, τi, and (π0, ..., πk−1) satisfy Lemma 3(i)–(iv) which put τi in TE .

Lemma 3(i) follows directly from Lemma 2(i),
Take any j ∈ [k−1] such that πj ̸= ∅. Let πj be {vi,a, vi,a+1, . . . , vi,b}. By the definition of

πj , every vertex in πj belongs to M(wjwj+1), so τi[vi,a, vi,b] ⊂ M(wjwj+1). Then, there must
exist two points p, q ∈ wjwj+1 such that p ≤wjwj+1 q and dF (pq, τi[vi,a, vi,b]) ≤ δ. If j = 1, we

ICALP 2023

40:12 Approximate Nearest Neighbor for Polygonal Curves Under Fréchet Distance

have (c1,1, c1,2) ̸= null by constraint 1(a); if j ∈ [2, k − 1], by Lemma 2(i), (cj,1, cj,2) ̸= null as
πj ≠ null. Therefore, cj,1 and cj,2 are cells in G1 returned by the (11εδ)-segment queries with
wjwj+1 and wj+1wj , respectively. We have shown that dF (pq, τi[vi,a, vi,b]) ≤ δ; therefore, p

is contained in a cell in G(vi,a ⊕ Bδ) ⊂ G1. As cj,1 is the cell returned by the (11εδ)-segment
query with wjwj+1, there must be a point zp ∈ wjwj+1 ∩(cj,1 ⊕B11εδ) such that zp ≤wjwj+1 p.
In a similar way, we can conclude that there must be a point zq ∈ wjwj+1 ∩ (cj,2 ⊕ B11εδ)
such that q ≤wjwj+1 zq. That is, zp ≤wjwj+1 p ≤wjwj+1 q ≤wjwj+1 zq. Let xj and yj be the
smallest vertices of cj,1 and cj,2 according to the lexicographical order of their coordinates.
Both d(zp, xj) and d(zq, yj) are at most 12εδ. A linear interpolation from zpzq to xjyj

maps p and q to two points x′′
j and y′′

j on xjyj , respectively, such that x′′
j ≤xjyj

y′′
j . Also,

the linear interpolation adds a distance 12εδ or less, which gives dF (x′′
j y′′

j , τi[vi,a, vi,b]) ≤
dF (x′′

j y′′
j , pq) + dF (pq, τi[vi,a, vi,b]) ≤ (1 + 12ε)δ. Hence, Lemma 3(ii) is satisfied.

The grid cells B[1] and A[k − 1] are defined to contain w1 and wk, respectively. Also,
vi,1 ∈ M(w1) and vi,m ∈ M(wk). Hence, B[1] ∈ G(vi,1 ⊕ Bδ) and A[k − 1] ∈ G(vi,m ⊕ Bδ),
satisfying Lemma 3(iii).

For any pair (r, s) ∈ J , by Lemma 2(ii), there exist two points z ∈ A[r] ∩ τi,br and
z′ ∈ B[s] ∩ τi,br

such that z ≤τi,br
z′. Since A[r] and B[s] are interior-disjoint unless they

are equal, we must hit A[r] no later than B[s] when we walk from vi,br
to vi,br+1, satisfying

Lemma 3(iv). ◀

We show that if E is a coarse encoding of σ, each curve in TE is close to σ.

▶ Lemma 7. Let E be a coarse encoding of σ. For every τi ∈ TE, dF (τi, σ) ≤ (1 + 24ε)δ.

Proof. (Sketch) Suppose that TE ̸= ∅ as the lemma statement is vacuous otherwise. Take
any τi ∈ TE . We construct a matching M between τi and σ such that dM(τi, σ) ≤ (1 + 24ε)δ.
Since TE ̸= ∅, there exists a partition (π0, . . . , πk−1) of the vertices of τi that satisfy
Lemma 3(i)–(iv). Using these properties, we can match the vertices of τi to points on σ and
then the vertices of σ to points on τi. Afterwards, σ and τi divided into line segments by
their vertices and images of their matching partners. We use linear interpolations to match
the corresponding line segments. More details can be found in the appendix. ◀

In two and three dimensions, the ray shooting data structure for boxes in [8] can be
used as the (11εδ)-segment query data structure. It has an O(log |G1|) = O(log mn

ε) query
time and an O(|G1|2+µ) = O((mn)2+µ/εd(2+µ)) space and preprocessing time for any fixed
µ ∈ (0, 1). If the query segment does not intersect any cell in G1, we return null. In four and
higher dimensions, we will prove the following result in Section 4.

▶ Lemma 8. We can construct a data structure in O(
√

d/ε)O(d/ε2) · Õ((mn)O(1/ε2)) space
and preprocessing time such that given any oriented edge e of the query curve σ, the data
structure either discovers that minτi∈T dF (σ, τi) > δ, or reports a correct answer for the
(11εδ)-segment query with e on G1. The query time is Õ((mn)0.5+ε/εd).

Combining the results in this section with the ray shooting result in [8], Lemma 8,
and Theorem 1 gives (1 + ε)-ANN data structures. Theorem 1 uses the deletion cost of a
(1 + ε, δ)-ANN data structure. We perform each deletion by reconstructing the data structure
from scratch because we do not have a more efficient solution.

▶ Theorem 9. For any ε ∈ (0, 0.5), there is a (1 + O(ε))-ANN data structure for T under
the Fréchet distance with the following performance guarantees:

S.-W. Cheng and H. Huang 40:13

d ∈ {2, 3} :
query time = O

(1
ε

)2d(k−2)
k log mn

ε log n,
space = O

(1
ε

)4d(k−1)+1(mn)4(k−1)k log2 n,
expected preprocessing time = O

(1
ε

)4d(k−1)(mn)4(k−1)(k log mn
ε + mk log m

)
n log n.

d ≥ 4 :
query time = Õ

(1
εd k(mn)0.5+ε

)
+ O

(√
d

ε

)2d(k−2)
k log mn

ε log n,
space = O

(√
d

ε

)4d(k−1)(mn)4(k−1)k · 1
ε log2 n + O

(√
d

ε

)O(d/ε2) · Õ((mn)O(1/ε2)),
expected preprocessing time = O

(√
d

ε

)4d(k−1)(mn)4(k−1)(k log mn
ε + mk log m

)
n log n +

O
(√

d
ε

)O(d/ε2) · Õ((mn)O(1/ε2)).

3 (3 + O(ε), δ)(3 + O(ε), δ)(3 + O(ε), δ)-ANN

Given a query curve σ = (w1, w2, . . . , wk), for j ∈ [k −1], we solve the (11εδ)-segment queries
with wjwj+1 and wj+1wj on G1 as before. Let ((cj,1, cj,2))j∈[k−1] denote the results of the
queries. Recall that each (cj,1, cj,2) belongs to (G1 × G1) ∪ {null}.

Suppose that there are k0 ≤ k − 1 non-null pairs in ((cj,1, cj,2))j∈[k−1]. Extract these
non-null pairs to form the sequence ((cjr,1, cjr,2))r∈[k0]. Note that j1 = 1 and jk0 = k − 1 by
constraint 1(a). We construct a polygonal curve σ0 by connecting the centers of cjr,1 and
cjr,2 for r ∈ [k0] and the centers of cjr,2 and cjr+1,1 for r ∈ [k0 − 1]. The polygonal curve
σ0 acts as a surrogate of σ. It has at most 2k − 2 vertices. We will use σ0 as the key to
search a trie at query time to obtain an answer for a (3 + O(ε), δ)-ANN query. As a result,
no enumeration is needed which avoids the exponential dependence of the query time on k.

In preprocessing, we enumerate all sequences of 2l cells in G1 for l ∈ [2, k − 1]. For
each sequence, we construct the polygonal curve σ′ that connects the centers of the cells
in the sequence, and we find the nearest input curve τi to σ′. If dF (σ′, τi) ≤ (1 + 12ε)δ,
we store (σ′, i) in a trie D. There are O(

√
d/ε)2d(k−1)(mn)2(k−1) entries in D. We organize

the trie D in the same way as described in Section 2.2. The space required by D is
O(

√
d/ε)2d(k−1)(mn)2(k−1)k. The search time of D is O(k log mn

ε). The preprocessing time
is O(

√
d/ε)2d(k−1)(mn)2(k−1)(k log mn

ε + kmn log(km)) = O(
√

d/ε)2d(k−1)(mn)2k−1k log mn
ε

due to the computation of the nearest input curve for each sequence enumerated.
At query time, we construct σ0 from σ in O(kQseg) time, where Qseg is the time to answer

a (11εδ)-segment query. We compute dF (σ, σ0) in O(k2 log k) time. If dF (σ, σ0) > (2 + 12ε)δ,
we report “no”. Otherwise, we search D with σ0 in O(k log mn

ε) time. If the search fails, we
report “no”. Otherwise, the search returns (σ0, i) for some i ∈ [n].

▶ Lemma 10. If dF (σ, σ0) ≤ (2 + 12ε)δ and the search in D with σ0 returns (σ0, i), then
dF (σ, τi) ≤ (3 + 24ε)δ. Otherwise, minτi∈T dF (σ, τi) > δ.

Combining the results in this section with the ray shooting results in two and three
dimensions [8], Lemma 8, and Theorem 1, we obtain the following theorem.

▶ Theorem 11. For any ε ∈ (0, 0.5), there is a (3 + O(ε))-ANN data structure for T under
the Fréchet distance with the following performance guarantees:

d ∈ {2, 3}:
query time = O(k log mn

ε log n),
space = O

(1
ε

)2d(k−1)+1(mn)2(k−1)k log2 n,
expected preprocessing time = O

(1
ε

)2d(k−1)(mn)2k−1kn log mn
ε log n.

ICALP 2023

40:14 Approximate Nearest Neighbor for Polygonal Curves Under Fréchet Distance

d ≥ 4 :
query time = Õ

(1
εd k(mn)0.5+ε

)
,

space = O
(√

d
ε

)2d(k−1)(mn)2(k−1)k · 1
ε log2 n + O

(√
d

ε

)O(d/ε2) · Õ((mn)O(1/ε2)),
expected preprocessing time = O

(√
d

ε

)2d(k−1)(mn)2k−1kn log mn
ε log n +

O
(√

d
ε

)O(d/ε2) · Õ((mn)O(1/ε2)).

4 (11εδ)(11εδ)(11εδ)-segment queries and proof of Lemma 8

We describe the (11εδ)-segment query data structure in Lemma 8. We first present the
main ideas before giving the details. Let wjwj+1 be a query segment, which is unknown at
preprocessing. There are three building blocks.

First, the intuition is to capture the support lines of all possible query segments using
pairs of cells in G1. It would be ideal to retrieve a pair of cells intersected by aff(wjwj+1),
but this seems to be as difficult as the ray shooting problem. For a technical reason, we need
to use more grid cells in a larger neighborhood of the input vertices than in G1, so define
G3 =

⋃
i∈[n],a∈[m] G(vi,a ⊕ B(1+6ε)δ).

We find a grid vertex x of G1 that is a (1 + ε)-approximate nearest grid vertex to
aff(wjwj+1). We will show that if d(x, aff(wjwj+1)) > (1 + ε)εδ, the answer to the (11εδ)-
segment query is null; otherwise, we can find a cell γ ∈ G3 near x that intersects aff(wjwj+1).
We can use any other cell c ∈ G1 to form a pair with γ that acts as a surrogate for the
support lines of query segments that pass near c and γ.

Second, given wjwj+1 at query time, among all possible choices of c, we need to find the
right one(s) efficiently so that (c, γ) is a surrogate for aff(wjwj+1). We explain the ideas
using the case that wj+1 lies between wj and aff(wjwj+1) ∩ γ. Note that wj may not be near
any cell in G1. In order that minτi∈T d(σ, τi) ≤ δ, wj must be within a distance δ from some
input edge τi,a. We find a maximal packing of aff(τi,a) ⊕ BO(δ) using lines that are parallel
to τi,a and are at distance Θ(εδ) or more apart. There are O(ε1−d) lines in the packing, and
every point in aff(τi,a) ⊕ Bδ is within a distance O(εδ) from some line in the packing. The
projection of wj to the approximately nearest line approximates the location of wj . Hence,
we should seek to divide the lines in the packing into appropriate segments so that, given wj

and its approximately nearest line in the packing, we can efficiently find the segment that
contains the projection of wj and retrieve some precomputed information for that segment.

Third, let ℓ be a line in the packing mentioned above, for each possible cell c ∈ G1, we
use the geometric construct F (c, γ) = {x ∈ Rd : ∃ y ∈ γ s.t. xy ∩ c ≠ ∅} defined in [6] which
can be computed in O(1) time. The projection of (ℓ ⊕ B2εδ) ∩ F (c, γ) in ℓ is the set of points
on ℓ such that if the projection of wj is in it, then (c, γ) is a surrogate for aff(wjwj+1). As a
result, the endpoints of the projections of (ℓ ⊕ B2εδ) ∩ F (c, γ) over all possible choices of c

divide ℓ into segments that we desire. Each segment may stand for several choices of c’s. For
each segment, we store the cell c′ close to that segment because the ideal choice is the cell
that we hit first as we walk from wj to wj+1.

As described above, we use two approximate nearest neighbor data structures that involve
lines. The first one is due to Andoni et al. [4] which stores a set of points P such that given
a query line, the (1 + ε)-approximate nearest point to the query line can be returned in
Õ(d3|P |0.5+ε) time. It uses Õ

(
d2|P |O(1/ε2)) space and preprocessing time. The second result

is due to Agarwal et al. [2] which stores a set L of lines such that given a query point, the
2-approximate nearest line to the query point can be returned in Õ(1) time. It uses Õ(|L|2)
space and expected preprocessing time.

S.-W. Cheng and H. Huang 40:15

4.1 Data structure organization
We restrict ε to be chosen from (0, 0.5). We construct the data structure of Andoni et al. [4]
for the grid vertices of G1 so that for any query line, the (1 + ε)-approximate nearest grid
vertex can be returned in Õ((mn)0.5+ε/εd) time. We denote this data structure by Danp. It
takes O(

√
d/ε)O(d/ε2) · Õ((mn)O(1/ε2)) space and preprocessing time.

For each input edge τi,a, define a set of lines Li,a as follows. Let H be the hyperplane
through vi,a orthogonal to aff(τi,a). Take a (d − 1)-dimensional grid in H with vi,a as a grid
vertex and cell width εδ/

√
d − 1. The set Li,a includes every line that is orthogonal to H

and passes through a vertex of this grid in H at distance within (1 + 2ε)δ from vi,a. The set
Li,a has O(ε1−d) size, and it can be constructed in O(ε1−d) time. Moreover, every point in
the cylinder aff(τi,a) ⊕ Bδ is within a distance εδ from some line in Li,a.

Define L =
⋃

i∈[n],a∈[m−1] Li,a. The size of L is O(mn/εd−1), and L can be constructed
in O(mn/εd−1) time. We construct the data structure of Agarwal et al. [2] for L so that for
any query point, a 2-approximate nearest line in L can be returned in Õ(1) time. We denote
this data structure by Danl. It uses Õ((mn)2/ε2d−2) space and expected preprocessing time.

Recall that G3 =
⋃

i∈[n],a∈[m] G(vi,a ⊕ B(1+6ε)δ).
For every γ ∈ G3 and every c ∈ G1, we construct F (c, γ) = {x ∈ Rd : ∃ y ∈ γ s.t. xy ∩ c ≠

∅}, which is empty or an unbounded convex polytope of O(1) size that can be constructed in
O(1) time as a Minkowski sum [6]. The total time needed is O((mn)2/ε2d).

For every γ ∈ G3, every c ∈ G1, and every line ℓ ∈ L, compute the intersection (ℓ⊕B2εδ)∩
F (c, γ) and project it orthogonally to a segment in ℓ. Take any line ℓ ∈ L. The resulting
segment endpoints in ℓ divide ℓ into canonical segments. There are O((mn)2/ε2d) canonical
segments in ℓ. For every cell γ ∈ G3 and every canonical segment ξ ⊆ ℓ, compute the set Cγ,ξ

of every cell c ∈ G1 such that ξ is contained in the projection of (ℓ ⊕ B2εδ) ∩ F (c, γ) onto ℓ.
Fix an arbitrary point in ξ and denote it by pξ. Each Cγ,ξ has O(mn/εd) size. The total time
needed over all cells in G3 and all canonical segments in all lines in L is Õ((mn)5/ε5d−1).

Let pγ be the center of the cell γ. Define cγ,ξ to be the cell in Cγ,ξ such that pξpγ ∩
(cγ,ξ ⊕ B5εδ) is nearest to pξ among {pξpγ ∩ (c ⊕ B5εδ) : c ∈ Cγ,ξ}. The total time to compute
cγ,ξ over all cells in G3 and all canonical segments in all lines in L is O((mn)5/ε5d−1).

Finally, for every line ℓ ∈ L, we store the canonical segments in ℓ in an interval tree
Tℓ [7]. It uses linear space and preprocessing time. For any query point in ℓ, one can
search Tℓ in O(log mn

ε) time to find the canonical segment in ℓ that contains the query
point. For each canonical segment ξ stored in Tℓ, we keep a dictionary Tξ that stores the set
{(γ, cγ,ξ) : γ ∈ G3} with γ as the key. For any cell γ ∈ G3, we can search Tξ in O(log mn

ε)
time to report cγ,ξ. These interval trees and dictionaries have a total size of O((mn)4/ε4d−1),
and they can be constructed in Õ((mn)4/ε4d−1) time.

The data structures Danp, Danl, Tℓ for ℓ ∈ L, and Tξ for all canonical segments ξ’s are
what we need to support the (11εδ)-segment queries on G1.

▶ Lemma 12. We can construct Danp, Danl, Tℓ for ℓ ∈ L, and Tξ for every ℓ ∈ L and every
canonical segment ξ ⊂ ℓ in O(

√
d/ε)O(d/ε2) · Õ((mn)O(1/ε2)) space and preprocessing time.

In the definition of cγ,ξ, one may ask what if pξpγ does not intersect c ⊕ B5εδ for some
c ∈ Cγ,ξ. We prove that this cannot happen. We also establish some other properties.

▶ Lemma 13. Let γ be a cell in G3. Let ξ be a canonical segment. Let Lξ be the cylinder
with ξ as the axis and radius 2εδ.

(i) For every cell c ∈ G1, if c ∩ xy ̸= ∅ for some points x ∈ Lξ and y ∈ γ, then c ∈ Cγ,ξ.
(ii) For every point x ∈ Lξ, every point y ∈ γ and every cell c ∈ Cγ,ξ, xy ∩ (c ⊕ B5εδ) ̸= ∅.

ICALP 2023

40:16 Approximate Nearest Neighbor for Polygonal Curves Under Fréchet Distance

(iii) Let λ be any value greater than or equal to 11εδ. When we walk from a point x ∈ Lξ

to a point y ∈ γ, we cannot hit any c ∈ Cγ,ξ earlier than cγ,ξ ⊕ Bλ irrespective of the
choices of x and y.

4.2 Answering a query

Given an oriented segment wjwj+1 of the query curve σ, we answer the (11εδ)-segment query
with wjwj+1 on G1 by the following steps.

Step 1: We query Danp with aff(wjwj+1) to report a grid vertex x of G1. This takes
Õ((mn)0.5+ε/εd) time.

Step 2: We check the distance d(x, aff(wjwj+1)). If d(x, aff(wjwj+1)) > (1 + ε)εδ, then
aff(wjwj+1) is at distance more than εδ from the closest grid vertex of G1, which implies
that aff(wjwj+1) does not intersect any cell in G1. In this case, we report null.
We also check the distances d(wj , L) and d(wj+1, L). We query Danl with wj in Õ(1)
time to find a line ℓj ∈ L. If d(wj , ℓj) > 2εδ, then d(wj , L) > εδ, which implies that wj is
at distance farther than δ from aff(τi,a) for any τi ∈ T and any a ∈ [m − 1]. As a result,
dF (σ, τi) > δ for all τi ∈ T , so we report “no” for the (κ, δ)-ANN query. Analogously, we
query Danl with wj+1 in Õ(1) time to find a line ℓj+1 ∈ L. If d(wj+1, ℓj+1) > 2εδ, we
report “no” for the (κ, δ)-ANN query.

Step 3: Suppose that d(x, aff(wjwj+1)) ≤ (1 + ε)εδ, d(wj , ℓj) ≤ 2εδ, and d(wj+1, ℓj+1) ≤
2εδ. Then, we check the cells in G(x ⊕ B2εδ) in O(ε−d) time to find one that intersects
aff(wjwj+1). Let γ be this cell. We do not know if γ belongs to G1 or not. Nevertheless,
since x is a grid vertex of G1, γ is within a distance (1 + 3ε)δ from some input curve
vertex. Therefore, γ must be a cell in G3. There are three cases depending on the relative
positions of wj and γ.

Step 3(a): wj ∈ γ ∩ aff(wjwj+1). We claim that G1 ∩ G(wj ⊕ B7εδ) is non-empty, and
we report an arbitrary cell in it as the answer for the (11εδ)-segment query. This step
takes O(ε−d) time.

Step 3(b): wj precedes γ ∩ aff(wjwj+1) along aff(wjwj+1) oriented from wj to wj+1.
We query Tℓj

to find the canonical segment ξ ⊂ ℓj that contains the projection of wj

in ℓj . Then, we query Tξ with γ to return cγ,ξ as the answer for the (11εδ)-segment
query. The time needed is O(log mn

ε).

Step 3(c): γ∩aff(wjwj+1) precedes wj along aff(wjwj+1) oriented from wj to wj+1. We
query Tℓj+1 to find the canonical segment ξ ⊂ ℓj+1 that contains the projection of wj+1
in ℓj+1. Then, we query Tξ with γ to obtain cγ,ξ. We claim that G(cγ,ξ ⊕ B5εδ) ⊂ G3
and some cell in G(cγ,ξ ⊕ B5εδ) intersects wjwj+1. Pick one such cell γ̂ in O(ε−d)
time. Either step 3(a) or 3(b) is applicable with γ replaced by γ̂. Whichever case is
applicable, we jump to that case with γ replaced by γ̂ to return an answer for the
(11εδ)-segment query. The time needed is Õ(ε−d).

▶ Lemma 14. It takes Õ((mn)0.5+ε/εd) time to answer a (11εδ)-segment query.

Lemmas 12 and 14 gives the performance of the (11εδ)-segment query data structure in
Lemma 8. The proof of the query output correctness in Lemma 8 can be found in the full
version.

S.-W. Cheng and H. Huang 40:17

5 Conclusion

We present (1 + ε)-ANN and (3 + ε)-ANN data structures that achieve sublinear query times
without having space complexities that are proportion to min{mΩ(d), nΩ(d)} or exponential
in min{m, n}. The query times are Õ(k(mn)0.5+ε/εO(d) + k(d/ε)O(dk)) for (1 + ε)-ANN and
Õ(k(mn)0.5+ε/εO(d)) for (3 + ε)-ANN. In two and three dimensions, the query times can be
improved to Õ(k/εO(k)) for (1 + ε)-ANN and Õ(k) for (3 + ε)-ANN. It is an open problem is
to lower the exponential dependence on d and k.

References
1 P.K. Agarwal and J. Matoušek. Ray shooting and parametric search. SIAM Journal on

Computing, 22(4):794–806, 1993.
2 P.K. Agarwal, N. Rubin, and M. Sharir. Approximate nearest neighbor search amid higher-

dimensional flats. In Proceedings of the European Symposium on Algorithms, pages 4:1–4:13,
2017.

3 H. Alt and M. Godau. Computing the Fréchet distance between two polygonal curves.
International Journal of Computational Geometry and Applications, 5:75–91, 1995.

4 A. Andoni, P. Indyk, R. Krauthgamer, and H.L. Nguyen. Approximate line nearest neighbor
in high dimensions. In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms,
pages 293–301, 2009.

5 K. Bringmann, A. Driemel, A. Nusser, and I. Psarros. Tight bounds for approximate near
neighbor searching for time series under Fréchet distance. In Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms, pages 517–550, 2022.

6 S.-W. Cheng and H. Huang. Curve simplification and clustering under Fréchet distance. In
Proceedings of the ACM-SIAM Symposium on Discrete Algorithms, pages 1414–1432, 2023.

7 T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein. Introduction to Algorithms. MIT
Press, second edition, 2001.

8 M. de Berg, D. Halperin, M. Overmars, J. Snoeyink, and M. van Kreveld. Efficient ray shooting
and hidden surface removal. Algorithmica, 12:30–53, 1994.

9 A. Driemel and I. Psarros. (2 + ϵ)-ANN for time series under the Fréchet distance. arXiv
preprint v5, 2021. arXiv:2008.09406.

10 A. Driemel and F. Silvestri. Locality-sensitive hashing of curves. In Proceedings of the
International Symposium on Computational Geometry, pages 37:1–37:16, 2017.

11 T. Eiter and H. Mannila. Computing discrete Fréchet distance. Technical Report CD-TR
94/64, Christian Doppler Laboratory for Expert Systems, TU Vienna, Austria, 1994.

12 I.Z. Emiris and I. Psarros. Products of Euclidean metrics, applied to proximity problems
among curves: Unified treatment of discrete fréchet and dynamic time warping distances.
ACM Transactions on Spatial Algorithms and Systems, 6(4):1–20, 2020.

13 A. Filtser, O. Filtser, and M.J. Katz. Approximate nearest neighbor for curves: simple,
efficient, and deterministic. In Proceedings of the International Colloquium on Automata,
Languages, and Programming, pages 48:1–48:19, 2020.

14 S. Har-Peled. A replacement for Voronoi diagrams of near linear size. In Proceedings of the
Annual IEEE Symposium on Foundations of Computer Science, pages 94–103, 2001.

15 S. Har-Peled, P. Indyk, and R. Motwani. Approximate nearest neighbor: towards removing
the curse of dimensionality. Theory of Computing, 8:321–350, 2012.

16 P. Indyk. Approximate nearest neighbor algorithms for Fréchet distance via product metrics.
In Proceedings of the Annual Symposium on Computational Geometry, pages 102–106, 2002.

17 P. Indyk and R. Motwani. Approximate nearest neighbor: towards removing the curse of
dimensionality. In Proceedings of the Annual ACM Symposium on Theory of Computing, pages
604–613, 1998.

ICALP 2023

https://arxiv.org/abs/2008.09406

40:18 Approximate Nearest Neighbor for Polygonal Curves Under Fréchet Distance

18 Mirzanezhad M. On the approximate nearest neighbor queries among curves under the Fréchet
distance. arXiv preprint, 2020. arXiv:2004.08444.

19 C. Shahabi, M. Kolahdouzan, and M. Sharifzadeh. A road network embedding technique for
k-nearest neighbor search in moving object databases. GeoInformatica, 7:255–273, 2003.

20 Z. Song and N. Roussopoulos. K-nearest neighbor search for moving query point. In Proceedings
of the International Symposium on Spatial and Temporal Databases, pages 79–96, 2001.

21 Y. Tao and D. Papadias. Parameterized queries in spatio-temporal databases. In Proceedings
of ACM International Conference on Management of Data, pages 334–345, 2002.

https://arxiv.org/abs/2004.08444

Linear Insertion Deletion Codes in the High-Noise
and High-Rate Regimes
Kuan Cheng #

Department of Computer Science, Peking University, Beijing, China

Zhengzhong Jin #

Massachusetts Institute of Technology, Cambridge, MA, USA

Xin Li #

Department of Computer Science, Johns Hopkins University, Baltimore, MD, USA

Zhide Wei #

Department of Computer Science, Peking University, Beijing, China

Yu Zheng #

Meta Platforms Inc

Abstract
This work continues the study of linear error correcting codes against adversarial insertion deletion
errors (insdel errors). Previously, the work of Cheng, Guruswami, Haeupler, and Li [6] showed the
existence of asymptotically good linear insdel codes that can correct arbitrarily close to 1 fraction
of errors over some constant size alphabet, or achieve rate arbitrarily close to 1{2 even over the
binary alphabet. As shown in [6], these bounds are also the best possible. However, known explicit
constructions in [6], and subsequent improved constructions by Con, Shpilka, and Tamo [9] all fall
short of meeting these bounds. Over any constant size alphabet, they can only achieve rate ă 1{8 or
correct ă 1{4 fraction of errors; over the binary alphabet, they can only achieve rate ă 1{1216 or
correct ă 1{54 fraction of errors. Apparently, previous techniques face inherent barriers to achieve
rate better than 1{4 or correct more than 1{2 fraction of errors.

In this work we give new constructions of such codes that meet these bounds, namely, asymptotic-
ally good linear insdel codes that can correct arbitrarily close to 1 fraction of errors over some constant
size alphabet, and binary asymptotically good linear insdel codes that can achieve rate arbitrarily
close to 1{2. All our constructions are efficiently encodable and decodable. Our constructions are
based on a novel approach of code concatenation, which embeds the index information implicitly into
codewords. This significantly differs from previous techniques and may be of independent interest.
Finally, we also prove the existence of linear concatenated insdel codes with parameters that match
random linear codes, and propose a conjecture about linear insdel codes.

2012 ACM Subject Classification Theory of computation Ñ Error-correcting codes

Keywords and phrases Error correcting code, Edit distance, Pseudorandomness, Derandomization

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.41

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2303.17370

Funding Kuan Cheng: Supported by a start-up fund of Peking University.
Zhengzhong Jin: Supported in part by DARPA under Agreement No. HR00112020023 and by an
NSF grant CNS-2154149. Most of the work was done while the author was a PhD student at Johns
Hopkins University, and supported by NSF CAREER Award CCF-1845349.
Xin Li: Supported by NSF CAREER Award CCF-1845349 and NSF Award CCF-2127575.
Zhide Wei: Supported by a start-up fund of Peking University.
Yu Zheng: Most of the work was done while the author was a PhD student at Johns Hopkins
University, and partially supported by NSF Award CCF-2127575.

EA
T
C
S

© Kuan Cheng, Zhengzhong Jin, Xin Li, Zhide Wei, and Yu Zheng;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 41; pp. 41:1–41:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ckkcdh@pku.edu.cn
https://orcid.org/0000-0002-8972-1749
mailto:zzjin@mit.edu
mailto:lixints@cs.jhu.edu
https://orcid.org/0000-0002-9408-2451
mailto:zhidewei@pku.edu.cn
mailto:hizzy1027@gmail.com
https://doi.org/10.4230/LIPIcs.ICALP.2023.41
https://arxiv.org/abs/2303.17370
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

41:2 Linear Insertion Deletion Codes in the High-Noise and High-Rate Regimes

1 Introduction

Error correcting codes are fundamental objects in computer science and information theory.
Starting from the seminal work of Shannon and Hamming, the study of error correcting
codes has led to a deep understanding of how to ensure reliable communications in various
noisy channels. Furthermore, error correcting codes have found rich applications in other
seemingly unrelated areas such as complexity theory, learning theory, pseudorandomness and
many more. Traditionally, the errors studied are either erasures (where a transmitted symbol
is replaced by a ‘?’) or symbol modifications (where a transmitted symbol is replaced by a
different symbol), and they can be either random or adversarial. Through decades of effort,
we now have an almost complete understanding of codes for such errors, and constructions
with efficient encoding and decoding algorithms that match or are close to various known
bounds.

An important and more general type of errors, known as synchronization errors, however,
is much less understood. These errors include insertion and deletions (so we also call them
insdel errors for short), which can cause the positions of received symbols to shift. On the
other hand, they occur frequently in real world applications, including disk access, integrated
circuits, communication networks and so on. They are also closely related to applications in
computational biology and DNA-based storage systems [3, 25]. Although the study of codes
for such errors started around the same time as Shannon’s works, progress has historically
been slow due to the apparent difficulty of handling the loss of index information with such
errors. For example, many basic questions, such as the capacity of the binary deletion channel
with deletion probability p is still wide open, and the first explicit construction that has a
constant rate and can correct a constant fraction of adversarial errors is not known until
1999 [21].

From now on, we will focus exclusively on adversarial insdel errors. Over the past several
years, with the development of new techniques such as synchronization strings [17], there has
been a wave of new constructions of codes for these errors [17, 16, 22, 8, 4, 15, 19, 14, 5, 7,
18, 12, 20, 24, 14]. Some of them achieve excellent parameters, e.g., codes that approach the
singleton bound over a large constant alphabet [17], codes with almost optimal redundancy
over the binary alphabet [8, 15], list-decodable codes over large alphabets that can correct
more errors than the length of the codeword [18], and list-decodable codes over any alphabet
of positive rate for the information-theoretically largest possible combination of insertions
and deletions [12, 20, 24, 14]. However, none of the above constructions gives a linear code,
and the existence of asymptotically good linear codes for insdel errors over a constant size
alphabet is not known until the work of Cheng, Guruswami, Haeupler, and Li [6].

The motivation of studying linear codes comes from several aspects. First, they have
compact representations using either generator matrices or parity check matrices, which
directly give efficient encoding and testing algorithms with running time Opn2q. Second,
such codes have simple structures, so they are often easier to analyze and allow one to use
powerful techniques from linear algebra. Finally, linear codes have had great success in codes
for erasures and symbol modifications, achieving some of the most well known constructions
with (near) optimal parameters. Thus, one could ask if the same is true for insdel codes.

As is standard in the literature of error correcting codes, the two most important
parameters of a linear insdel code are δ, the fraction of insdel errors the code can correct; and
R, the rate of the code, defined as the message length divided by the codeword length. In [6],
the authors established several bounds regarding the tradeoff between these two parameters
for linear insdel codes. First, they showed that any linear code correcting δ fraction of insdel
errors must have rate at most 1

2 p1 ´ δq, regardless of the alphabet size. This is known as the
half-singleton bound and generalizes a previous result in [1], which shows that any linear code

K. Cheng, Z. Jin, X. Li, Z. Wei, and Y. Zheng 41:3

that can correct even a single deletion must have a rate of at most 1{2. This bound shows a
severe limitation of linear codes for insdel errors, as general codes can correct δ fraction of
errors with R approaching 1 ´ δ. Taking into consideration the alphabet size q, this bound
can be improved to 1

2 p1 ´
q

q´1 δq ` op1q, which is known as the half-Plotkin bound. On the
other hand, the authors also showed that over the field Fq, for any δ ą 0 there exists a linear
code family that can correct δ fraction of insdel errors, with rate p1 ´ δq{2 ´ Hpδq{ log2 q,
where H is the binary entropy function. In particular, this implies the existence of binary
linear codes with rate 1{2 ´ ε capable of correcting Ωpε log´1 1

ε q fraction of insdel errors for
any ε ą 0; and linear insdel codes over Fq of rate 1

2 p1 ´ δq ´ ε capable of correcting any
δ-fraction of insdel errors, for a large enough q “ 2Θpε´1

q, which approaches the half-singleton
bound. Hence, the rate can approach 1{2 even over the binary alphabet, and the fraction of
errors corrected can approach 1 over a constant size alphabet, both of which are the best
possible.

Going further, [6] also constructed explicit asymptotically good linear insdel codes.
However, the fraction of errors the code can correct and the rate of the code are both quite
small. [6] did not specify these constants, but a rough estimate shows that the code has
δ ă 1{400 and R ă 2´80. Thus a natural question left in their work is to improve these
parameters.

Recently, a subsequent work by Con, Shpilka, and Tamo [9] made progress in this direction.
For a field Fq with q “ polyp1{εq, they constructed explicit linear insdel codes that can correct
δ fraction of errors with rate R “ p1´4δq{8´ ε. For the field F2 their explicit linear code can
correct δ fraction of errors with rate R “ p1´ 54δq{1216. Hence, for a constant size alphabet
their construction can achieve δ ă 1{4 with a positive R, or R ă 1{8 with a positive δ. For
the binary alphabet, their construction can achieve δ ă 1{54 with a positive R, or R ă 1{1216
with a positive δ. One caveat is that their codes over the binary alphabet can only decode
efficiently from deletions (although they can also decode from insertions inefficiently), while
their codes over the large alphabet can decode efficiently from both deletions and insertions.
In another work by the same authors [10], they also showed the existence of Reed-Solomon
codes over a field of size nOpkq that have message length k, codeword length n, and can
correct n ´ 2k ` 1 insdel errors. This achieves the half-singleton bound. They complemented
the existential result by providing a deterministic construction over a field of size nkOpkq ,
which runs in polynomial time for k “ Oplog n{ log log nq. Nevertheless, in this paper we
only focus on the case of a constant alphabet size.

In summary, all known explicit constructions over constant size alphabets fall short of
getting rate close to 1{2, or getting the fraction of errors correctable close to 1. In fact,
previous techniques seem to face inherent barriers to achieve rate better than 1{4 or correct
more than 1{2 fraction of errors, which we will talk about in more details when we give an
overview of our techniques.

1.1 Our Results
In this paper we further improve the fraction of errors δ and the rate R that can be achieved
by linear insdel codes with efficient encoding and decoding algorithms. In the case of high
noise, we give explicit constructions of insdel codes with positive rate that can correct δ

fraction of errors with δ arbitrarily close to 1, over a constant size alphabet. In the case
of high rate, we give explicit constructions of insdel codes that can achieve rate arbitrarily
close to 1{2 and correct a positive constant fraction of errors, over the binary alphabet.1

1 It’s also easy to generalize our constructions to larger alphabet size, but for clarity we omit the details
in this version.

ICALP 2023

41:4 Linear Insertion Deletion Codes in the High-Noise and High-Rate Regimes

Specifically, we have the following theorems.

▶ Theorem 1 (High noise). For any constant ε ą 0 there exists an efficient construction of
linear insdel codes over an alphabet of size polyp1{εq, with rate Ωpε2q that can correct 1 ´ ε

fraction of insdel errors (possibly inefficiently).

With efficient decoding, the rate becomes slightly worse.

▶ Theorem 2 (High noise). For any constant ε ą 0, there is a family of linear codes with
rate Ωpε4q and alphabet size polyp1{εq, that can be encoded in polynomial time and decoded
from up to 1 ´ ε fraction of insdel errors in polynomial time.

▶ Theorem 3 (High rate). For any constant ε ą 0, there is a family of binary linear codes
with rate 1{2 ´ ε, that can be encoded in polynomial time and decoded from Ωpε3 log´1 1

ε q

fraction of insdel errors in polynomial time.

Our constructions are based on code concatenation. We complement our explicit con-
structions by showing that there exist linear concatenated codes that match the parameters
of random linear codes. These constructions can be considered in a sense “semi-explicit”
since the outer code is explicit, and we only need to find explicit inner codes.

▶ Theorem 4. For any field Fq0 and any constant δ ą 0, there exists a family of linear
concatenated code over Fq0 where the outer code is a Reed-Solomon code, such that the code
has rate 1

2 p1 ´ δq ´ Hpδq{ log q0 ´ op1q and can correct δ fraction of insdel errors, where Hpq

is the binary entropy function.

We emphasize that the inner codes here may be different for different positions. So if one
wants to use brute force to search for a sequence of proper inner codes, then this may take
time at least 2n log2 n where n is the length of the outer codewords.

This theorem implies the following corollaries.

▶ Corollary 5. For any constant δ ą 0, there exists a family of binary linear concatenated
code where the outer code is a Reed-Solomon code, such that the code has rate 1

2 p1 ´ δq and
can correct Ωpδ log´1 1

δ q fraction of insdel errors.

▶ Corollary 6. For any constants δ, ε ą 0 there exists a family of linear concatenated code
over an alphabet of size q “ 2Θpε´1

q where the outer code is a Reed-Solomon code, such that
the code has rate 1

2 p1 ´ δq ´ ϵ and can correct δ fraction of insdel errors.

Finally, we study the question of whether binary linear insdel codes can achieve δ

arbitrarily close to 1{2 with a positive rate R. Notice that even for general binary codes, it
is well known that the maximum fraction of deletions that any non-trivial binary code of
size ě 3 can correct is below 1{2 since any 3 different n-bit binary strings must contain two
strings with the same majority bit, and thus their longest common subsequence is at least
n{2. For binary linear codes this can also be seen from the half-Plokin bound. A recent work
by Guruswami, He, and Li [13] in fact already provided a negative answer to this question
even for general binary codes. In particular, they showed that there exists an absolute
constant α ą 0 such that any binary code C Ď t0, 1un with |C| ě 2polylogn must have two
strings whose longest common subsequence has length at least p1{2 ` αqn. Thus C cannot
correct more than 1{2 ´ α fraction of insdel errors. Since linear codes are more restricted,
one may expect that a stronger result can be proved for binary linear codes. Specifically, we
have the following conjecture:

K. Cheng, Z. Jin, X. Li, Z. Wei, and Y. Zheng 41:5

▶ Conjecture 7. There exists an absolute constant α ą 0 such that any linear subspace C Ď Fn
2

with dimension ě 3 must have two strings (vectors) whose longest common subsequence has
length at least p1{2 ` αqn.

However, we are not able to prove this conjecture. Instead, we can prove a weaker result.

▶ Theorem 8. There exists an absolute constant α ą 0 such that any linear subspace C Ď Fn
2

with dimension ě 3 must have two strings (vectors) whose longest common subsequence has
length at least p 1

2 ` α
log n qn.

1.2 Overview of the Techniques
There have been only two previous works on explicit constructions of asymptotically good
linear insdel codes over fields of constant size, i.e., [6] and [9]. The apparent difficulty of
constructing such codes comes from the following aspects: First, many of the previous
constructions of (non-linear) insdel codes are based on adding index information to the
codewords, either in the form of direct encoding of indices, or more sophisticated objects such
as synchronization strings. Since all of these result in fixed strings, adding such information
in any naive way will lead to non-linear codes. Indeed, both [6] and [9] have to find alternative
ways to “embed” synchronization strings into a linear code. Specifically, [6] uses what is
called a synchronization sequence, which is a sequence of 0’s added in between each pair of
adjacent symbols in a codeword. This preserves the linearity if the original code is linear. [9],
on the other hand, embeds the synchronization string by combining a codeword symbol x

and a synchronization string symbol a into a pair px, a ¨ xq, where ¨ is the multiplication over
the corresponding field Fq. This also preserves the linearity over Fq, but now the symbols
from the synchronization strings are mixed with symbols from the codeword, and it is not
easy to tell them apart. Note that for decoding, one needs to first use the synchronization
string to recover the positions of the codeword symbols. To solve this problem, [9] also needs
to add buffers of 0’s between adjacent pairs, where the length of a buffer is at least as long
as the pair px, a ¨ xq.

It can be seen that the added 0’s in the above two approaches form an inherent barrier to
achieving high rate or high fraction of correctable errors. In [6], a constant number of 0’s are
added in between each pair of adjacent symbols in a codeword, which already decreases the
rate and the possible decoding radius to a small constant. In [9], the operation of converting
a codeword symbol x and a synchronization string symbol a into a pair px, a ¨ xq already
decreases the rate of the code to below 1{2, while adding 0’s as buffers decreases the rate
even more to below 1{4. Similarly, add 0’s as buffers also decreases the possible decoding
radius to below 1{2. For binary codes, [9] needs to use another layer of code concatenation,
which further decreases the rate and decoding radius.

The key idea in all our constructions is to eliminate the use of 0’s as buffers or synchroniz-
ation sequences. Instead, we embed synchronization information directly into the codewords.
To achieve this, we also use code concatenation, where for the outer code we choose a suitable
Reed-Solomon code. On the other hand, the key difference between our constructions and
standard concatenated codes is that we choose a different inner code for every position of
the outer code. This way, we can make sure that the inner codewords corresponding to outer
codeword symbols at different positions are far enough from each other, and thus we can
roughly tell them apart by just looking at the received codeword. By using linear inner codes
for all positions, this preserves the linearity of the code, and at the same time eliminates
the use of 0’s. On a high level, this is why our constructions can achieve either high rate
(arbitrarily close to 1{2) or high fraction of correctable errors (arbitrarily close to 1). We
now discuss our techniques in more details for the two cases.

ICALP 2023

41:6 Linear Insertion Deletion Codes in the High-Noise and High-Rate Regimes

Constructions for high error. Note that to correct 1 ´ ε fraction of insdel errors, a linear
code must have alphbet size at least 1{ε by the half-Plotkin bound. Here we use an alphabet
of size polyp1{εq. With an appropriately chosen parameter γ “ Ωpεq, after picking an outer
Reed-Solomon code with codeword length n, rate γ and relative distance 1 ´ γ, our strategy
is to design n different inner codes C1

in, ¨ ¨ ¨ ,Cn
in. The goal is to ensure that codewords in

different inner codes have large edit distance, or equivalently, the length of their longest
common subsequence (LCS for short) is at most γn1 where n1 “ Oplog nq is the block length
of the inner code. However, since all these codes are linear, 0 is a codeword of each inner
code, and two 0’s (even from different inner codes) are guaranteed to have 0 edit distance.
We design the inner codes to ensure this is the only bad case.

More specifically, we ensure that for any two inner codewords x, y, unless they are both 0
or they correspond to the same message in one inner code Ci

in, their edit distance is large.
We show that if we pick n random linear codes for C1

in, ¨ ¨ ¨ ,Cn
in, then this property holds

with high probability. Furthermore, we can derandomize this by using a small biased sample
space to generate the n generator matrices of C1

in, ¨ ¨ ¨ ,Cn
in. Roughly, this is because the

property we want is local – it only looks at any two inner codewords x, y. By using a small
biased sample space, we can show that (roughly) under the above conditions, any non-trivial
parity of the bits (we treat a symbol in the alphabet of size polyp1{εq as a binary string of
length Oplogp1{εqq) of px, yq has a small bias. Hence a standard XOR lemma implies the
joint distribution of px, yq is close to uniform. Since n1 “ Oplog nq, we only need to look at
polypnq such pairs of px, yq. Thus it suffices to choose the error in the small biased sample
space to be 1{polypnq. This gives us a sample space of size polypnq and we can exhaustively
search for a good construction. This gives us n different inner codes with rate Ωpγq.

Using these inner codes, it is now relatively straightforward to argue about the parameters
of the concatenated code. The rate is Ωpγ2q “ Ωpε2q. To argue about the distance, we
consider the LCS between any two different codewords C1, C2, and divide it sequentially
into blocks according to the inner codewords of C1. Each block now covers a substring of
C2. Intuitively, by the property of our inner codes, each block contains only a small number
of matches compared to the total size of this block in C1 and the substring covered in C2,
unless it is a 0 inner codeword in C1 and is matched to another 0 inner codeword in C2, or it
is a match between the same inner codeword in a single inner code Ci

in. However our outer
code guarantees that the latter cannot happen too many times (i.e., at most Opγnq times).
Therefore the LCS has length at most Opγnn1q. By choosing γ appropriately, the code can
correct 1 ´ ε fraction of insdel errors.

We present a simple polynomial time decoding algorithm. Given any received string y,
we consider the partition of y into n substrings y1, ¨ ¨ ¨ , yn such that y “ y1 ˝ y2 ˝ ¨ ¨ ¨ ˝ yn,
where each yi can be the empty string. For each yi, we find the closest codeword xi P Ci

in in
edit distance and record their edit distance ∆i. We then minimize ∆ “

ř

iPrns ∆i, by using
a simple dynamic programming. We show that as long as there are not too many errors,
by using the optimal partition returned from the dynamic programming, one can correctly
recover a small fraction of the outer codewords. Intuitively, this is because if the partition
results in too many errors in the recovered outer codewords, then again by the property of
our inner codes, the quantity ∆ will be very large, unless there are a lot of errors. We then
use a list decoding algorithm for the Reed-Solomon code to get a list of candidate codewords,
and search the list to find the correct codeword, which is the one closest to y in edit distance.
For technical reasons, this decreases the rate of the code to Ωpε4q.

K. Cheng, Z. Jin, X. Li, Z. Wei, and Y. Zheng 41:7

Constructions with high rate. Now we explain our construction with high rate and polyno-
mial time encoding and decoding. We first exhibit a warm-up construction achieving rate
1{3 ´ γ. Then we improve the rate to 1{2 ´ γ, while the construction will be significantly
more involved due to additional issues arising in the analysis.

Inheriting the structure of the general construction, our first construction is as the
following. The outer code is a Reed-Solomon code with block length n, alphabet size n,
relative distance δ and rate p1 ´ δq, where δ “ γ{2. To achieve a high rate, we will design
the inner codes to have a large rate, ideally close to 1{2. At the same time, we also need to
ensure that the code can correct a positive constant fraction of errors, thus we want to make
sure that the LCS between any two different codewords is not too large.

As before, we will design the inner codes such that ideally, codewords from different inner
codes are far away from each other (or equivalently, have small LCS). However, there are
additional issues in the analysis of the LCS. First, the 0 codewords from different inner codes
are always the same. This is inevitable since we are dealing with linear codes. Second, in
a matching between two different codewords C1, C2, some inner codeword of C1 may be
matched to a substring of the concatenation of two adjacent inner codewords of C2. Thus it
is not enough to just ensure that codewords from different inner codes are far away from
each other. We note that this issue also occurs in our constructions for high noise. However,
there we designed the inner codes to have small rate but large distance, so the LCS between
different inner codewords is quite small. When some inner codeword of C1 is matched to a
substring of the concatenation of two adjacent codewords of C2, the size of the matching in
this part at most doubles the size of the LCS between two different inner codewords, and is
affordable in that case. Here however, since we are trying to achieve a high rate, the distance
between two different inner codewords becomes quite small, and the LCS becomes relatively
large (e.g., larger than 1{2 fraction). Hence, we cannot afford to double this size.

On a high level, we resolve the second issue by strengthening our local property of inner
codes, while our analysis will show that the first issue can also be resolved as a consequence.
We begin by discussing the local property we need to achieve rate 1{3 ´ γ. The distinct
binary inner codes C1

in,C2
in, . . . ,Cn

in are constructed to have block length n1, message length
k1 “ p1{3 ´ γ{2qn1, with the following property: for every i, j P rns, for every codeword w in
Ci

in, for every two codewords u, v from two adjacent inner codes Cj
in,Cj`1

in , unless w “ u or
w “ v, the distance between w and any substring of u ˝ v is at least d1 “ Ωpn1q. We first
explain why this property implies a good decoding radius and then explain how to construct
these inner codes.

We show the decoding radius by directly providing the following decoding algorithm.
On an input y which is a corrupted version of a codeword z, the algorithm first finds a
string z̃ P t0, 1unn1 which has a maximum block matching with y. A block matching is
defined to be a set of matches where each match, denoted as pi, rα, βsq, consists of a non-zero
inner codeword u P Ci

in and a substring yrα,βs, such that their edit distance is at most d1{2.
Furthermore, the matching is monotone in the sense that the substrings of y involved in the
matching do not overlap and the matches cannot cross. We call u a candidate string for
the i-th block. We give a simple dynamic programming algorithm to find a maximum block
matching together with a corresponding sequence of candidates. To construct z̃, we first fill
these candidates to their corresponding blocks and then set all the other blocks to be 0.

Now we show that as long as there are at most ρnn1 errors for some small constant ρ ą 0,
z̃ agrees with z in most of the blocks (inner codewords). To show this, divide z into blocks
z1 ˝ z2 ˝ ¨ ¨ ¨ ˝ zn such that each zi corresponds to an inner codeword. Similarly, divide y into
blocks y1 ˝ y2 ˝ ¨ ¨ ¨ ˝ yn such that each yi is the corrupted version of zi. Notice that there can

ICALP 2023

41:8 Linear Insertion Deletion Codes in the High-Noise and High-Rate Regimes

be at most ρnn1

d1{2 “ pcγqn blocks with at least d1{2 errors, for some constant c “ cpρq. So the
maximum block matching has size at least n̂´ cγn where n̂ is the number of non-zero blocks
in z. Now consider a maximum block matching and the sequence of candidates returned by
the algorithm. We show that there are at most cγn candidates that are not equal to the
corresponding blocks of z, by using the local property. As we fill all the other blocks to be 0,
this also implies there are at most cγn zero-blocks being incorrectly recovered. Hence the
algorithm correctly recovers 1 ´ Opcγq fraction of blocks in z. By taking c (and thus also
ρ) to be a small enough constant, one can use the list-decoding algorithm of Reed-Solomon
codes to recover z.

Next, we explain how to construct the inner codes. We start by considering a random
construction, that is, all the inner codes are independent random linear codes. We show the
local property holds with high probability. Consider arbitrary codewords w P Ci

inzt0u, u P

Cj
in, v P Cj`1

in for some i, j P rns, where w ‰ u and w ‰ v. Here the inequality means the two
codewords are either from different inner codes or they correspond to different messages in
one inner code. Suppose there is a substring w1 of u ˝ v, which has distance ă d1 to w. So
the LCS between w and w1 should be ℓ ě

|w|`|w1
|´d1

2 . Notice that ℓ ď |w| ď n1. Consider
any monotone alignment between w and w1. Because w ‰ u, w ‰ v and the inner codes are
all independent and generated randomly, by a similar argument as in [6], the event that the
alignment is indeed a matching of bits happens with probability at most 2´ℓ. We then apply
a union bound over all possible alignments of size ℓ and all possible codewords w, u, v. A key
observation is that the number of all possible codewords w, u, v is 23k1 since we have three
different codewords here. However, we have ℓ ď n1. Therefore for the union bound to work,
we have to set k1 ă n1{3. This is the reason that we can only achieve rate close to 1{3 with
this construction.

Next, we derandomize the construction by replacing the uniform randomness used with
an ε-biased distribution. Here, as before, we crucially use the fact that our property for
the inner codes is local: the only place where we use randomness is when we bound the
probability that an alignment is a valid matching, and it only involves three codewords. Since
n1 “ Oplog nq, by using a standard XOR Lemma and taking ε “ 1{polypnq, we can argue
that when restricted to any three codewords, the ε-biased distribution is 1{polypnq close to
the uniform distribution in statistical distance. This is enough for the union bound since
there are at most polypnq such triples w, u, v.

Since we only need Oplog nq random bits to generate the above ε-biased distribution, one
can exhaustively search for a good construction that satisfies our local property. This also
takes polynomial time since one only needs to check every triple of inner codewords.

In our improved construction, we add new ideas to bypass the rate 1{3 barrier in the
above construction, by giving a new local property of the inner codes. Recall that the reason
we need to choose k1 ă n1{3 in the above construction is that the alignment we consider in
the local property consists of matches that involve three different codewords, which results
in a 23k1 term in the union bound, but the alignment has size at most n1. In the new local
property, we generalize this by considering alignments that involve 2s` 1 different codewords
for some integer s. In a simplified version, consider any two different codewords C1, C2 of the
concatenated codes and an LCS between them, we analyze any s consecutive inner codewords
in C1, and how they can be matched to a substring in C2. Note that the s consecutive
inner codewords cannot be matched to a substring with length much larger than sn1, or
there are already many unmatched bits in C2. So we can imagine a new local property like
the following: let w be the concatenation of any s adjacent inner codewords, and u be the
concatenation of any s ` 1 adjacent inner codewords. As long as the codewords in w and

K. Cheng, Z. Jin, X. Li, Z. Wei, and Y. Zheng 41:9

u are sufficiently different, the distance between w and any substring of u is at least Ωpn1q.
The idea is that an alignment between w and u can have size up to sn1, while the union
bound gives a 2p2s`1qk1 term. Thus we can potentially achieve k1 ă s

2s`1 n1, and if s is large
enough, the rate is close to 1{2. Note that the warm-up construction i corresponds to the
case of s “ 1.

However, it is not straightforward to make this idea work. The main issue is that unlike
the simple case of s “ 1, when we consider s consecutive inner codewords for s ą 1, there
can be multiple 0 codewords in them, which can potentially be matched to the 0 codewords
in u. Furthermore, there can be inner codewords in w and u that correspond to the same
message in a single inner code. These issues will increase the probability that the alignment
is a valid matching and can cause the union bound to fail. To fix this, we require the “unique”
blocks in w to be dense. Specifically, we define a unique block of w (or u) to be a non-zero
inner codeword such that either no block of u (or w) is in the same inner code with it, or
any block of u (or w) in the same inner code with it corresponds to a different message. Now
we define the following new local property:

For every w which is a sequence of t “ Op
log 1

γ

γ2 q consecutive inner codewords, every u

which is a sequence of t ` 1 consecutive inner codewords, and every w1 which is a substring
of u, the distance between w and w1 is at least d1 “ Ωpγn1q, as long as the number of unique
blocks in w or u is at least s “ Ωpγtq. By the distance property of the outer code, for any two
different concatenated codewords, in at least one of them, the fraction of such t consecutive
inner codewords with at least s unique blocks is a constant.

Using this new property, we can design a similar decoding algorithm as that of the first
construction, and with a similar analysis, achieve decoding radius Ωpγ3n{ log 1

γ q.
We defer these details to the technical part and mainly explain here how to construct the

inner codes with the new property and why this indeed gives a rate of 1{2 ´ γ.
Similar to before, we start with a construction where all inner codes are independent ran-

dom linear codes, and later derandomize it with an ε-biased space. As long as the parameters
s, t are constants, it is easy to see that the derandomization step still works. Therefore, now
we only focus on the random construction and argue that the new local property holds with
high probability. For this, we use a delicate combinatorial and probabilistic argument.

Suppose the property is not satisfied with some concatenated codewords C1, C2. Then
there exists a w1 such that the edit distance between w, w1 is less than d1, which implies the
LCS between w and w1 is ℓ ą p|w| ` |w1| ´ d1q{2. Consider an arbitrary monotone alignment
M between w and w1 of size ℓ. We have two cases. The first case is that there is a pair
of indices pi, jq in M such that |i ´ j| ě d1. This implies that there cannot be any pair of
indices pi1, j1q in M such that i1 “ j1, for otherwise there are already at least d1 bits in C1 or
C2 that are not matched. Let t̂ be the larger number of non-zero blocks in w and w1. Note
that t̂ ě s. Since all inner codes are independent and random, and every pair of indices pi, jq

in M has i ‰ j, the probability that M is a matching is at most 2´ppt̂´1qn1
´Opd1

qq (w1 can
have length as small as pt ` 1qn ´ n ´ d1). Now if we apply the union bound, the main term
is actually the total number of possible tuples of the non-zero inner codewords. Since there
are at most 2t̂ non zero blocks in w and u, this number is at most 22t̂k1 . Thus as long as s is
a large enough integer, the rate of the code can approach 1{2.

The second case is that every pair of indices pi, jq in M has |i ´ j| ă d1. In this case, we
focus on the unique blocks. Let s1 be the larger number of unique blocks in w and u, and for
simplicity assume u has more unique blocks. We delete all matches where the endpoint in
u is not in a unique block, or the endpoint in w falls out of the block at the same position
as the block in u which contains the endpoint in u. Thus we attain a trimmed alignment

ICALP 2023

41:10 Linear Insertion Deletion Codes in the High-Noise and High-Rate Regimes

M 1. Under the assumed condition in this case, we don’t lose too many matches. Indeed
the number of matches left is at least ℓ1 “ s1pn1 ´ d1q ´ n1 ´ d1. We now upper bound the
probability that there exists such an M 1 which is a valid matching. Since this event is implied
by the original event, this also provides an upper bound of the original event.

The probability that any M 1 is a valid matching is 2ℓ1 , by our definition of unique blocks.
Now in the union bound, the main term turns out to be the total number of possible tuples
of the inner codewords corresponding to the s1 unique blocks in u and the other s1 blocks at
the same positions in w, which is roughly 2p2s1

qk1 . Notice that s1 ě s. Thus in this case, as
long as s is large enough, the rate of the code can also approach 1{2.

The existence of linear concatenated codes matching random linear codes. This part
is similar in spirit to Thommesen’s work [23], which shows the existence of binary linear
concatenated codes with Reed-Solomon outer codes that asymptotically meet the Gilbert-
Varshamov bound. In particular, we also take a Reed-Solomon code as the outer code,
and use an independent random linear inner code for every symbol of the outer codeword.
Interestingly, here we take the outer code to be a rn, k “ p1 ´ γqn{2, d “ p1 ` γqn{2sq
Reed-Solomon code with q “ Θpnq, i.e., the rate of the outer code is less than 1{2. On the
other hand, we take all inner codes to have rate 1. Using a careful probabilistic counting
argument together with an estimate of the number of Reed-Solomon codewords with a specific
weight (as done in [23]), we can prove the existence of linear concatenated insdel codes with
parameters as in Theorem 4.

The choice of the parameters of the outer code is different from our explicit constructions,
suggesting that maybe different constructions based on these parameters can lead to better
explicit linear insdel codes.

Organization of the paper. Our general construction is exhibited in Section 3. The high
error construction and its analysis are given in Section 4. We put the technical details of the
rest of our results in the full version.

2 Preliminaries

Notation. Let Σ be an alphabet. For a string x P Σ˚,
1. |x| denotes the length of the string.
2. xri, js denotes the substring of x from position i to position j (both endpoints included).
3. xris denotes the i-th symbol of x.
4. x ˝ x1 denotes the concatenation of x and some other string x1 P Σ˚.
5. For a string s which is a concatenation of shorter strings s1, s2, . . . , st, the i-th block of s

refers to si.

▶ Definition 9 (Edit distance and Longest Common Subsequence). For any two strings
x, y P Σn, the edit distance ∆Epx, yq is the minimum number of edit operations (insertions
and deletions) required to transform x into y.2 A longest common subsequence of x and y

is a longest pair of subsequences of x and y that are equal as strings. We use LCSpx, yq to
denote the length of a longest common subsequence between x and y.

2 The standard definition of edit distance also allows substitution, but for simplicity we only consider
insertions and deletions here, as a substitution can be replaced by a deletion followed by an insertion.

K. Cheng, Z. Jin, X. Li, Z. Wei, and Y. Zheng 41:11

Note that ∆Epx, yq “ |x| ` |y| ´ 2 ¨ LCSpx, yq. We use ∆Hpx, yq to denote the Hamming
distance between two strings x and y.

▶ Definition 10. An pn, m, dq-code C is an error-correcting code (for Hamming errors) with
codeword length n, message length m, such that the Hamming distance between every pair of
codewords in C is at least d.

▶ Definition 11. Fix an alphabet Σ, an error-correcting code C Ď Σn for edit errors with
message length m and codeword length n consists of an encoding function Enc : Σm Ñ Σn

and a decoding function Dec : Σ˚ Ñ Σm. The code can correct k edit errors if for every y, s.
t. ∆Epy, Encpxqq ď k, we have Decpyq “ x. The rate of the code is defined as m

n .

We say C is a linear code if the alphabet Σ is a finite field Fq and the encoding function
Enc : Fm

q Ñ Fn
q is a Fq-linear map.

We use the following list decoding algorithm for Reed-Solomon codes due to Guruswami
and Sudan [11].

▶ Theorem 12. Given a family of Reed-Solomon codes of message rate γ, an error rate of
ε “ 1 ´

?
γ can be list-decoded in polynomial time.

We use Un to denote the uniform distribution on t0, 1un.

▶ Definition 13. An ε-biased distribution X over t0, 1un is such that for any S Ď rns,
|Pr r

À

iPS Xi “ 1s ´ 1{2| ď ε. A function g : t0, 1us Ñ t0, 1un is an ε-biased generator if
gpUsq is an ε-biased distribution.

The following ε-biased generator is used.

▶ Theorem 14 ([2]). For every n P N, every ε P p0, 1q, there exists an explicit ε-biased
generator t0, 1us ÝÑ t0, 1un with s “ Oplog n ` logp1{εqq.

We also need the following XOR lemma.

▶ Lemma 15 (XOR Lemma). The statistical distance between an ε-biased distribution and a
uniform distribution, both over t0, 1un, is at most ε

?
2n.

3 General Construction of Our Codes

All our codes follow the general strategy of code concatenation, which we describe below.
The outer code Cout with encoding function : Encout : Σk

out Ñ Σn
out is an rn, k, ds Reed

Solomon Code for Hamming errors. We then use n different inner codes C1
in, . . . ,Cn

in, such
that for any i P rns, Ci

in is a linear code Enci
in : Σout Ñ Σn1

in , where n1 is the block length of
the inner code. In this paper Σin always has constant size and we let n1 “ Θplog nq. For
different applications, we will need the inner codes to have slightly different properties.

Our final code C works naturally by first encoding the message using the outer code,
then encoding each symbol of the outer code using the inner codes. This gives a codeword
over Σin with length N “ n ¨ n1. If the outer code and all the inner codes are linear, the
concatenated code is also linear.

4 Constructions For High Noise

In this section we give our linear codes that can correct 1 ´ ε fraction of insdel errors, for
any constant ε ą 0. Our codes can still achieve a constant rate.

ICALP 2023

41:12 Linear Insertion Deletion Codes in the High-Noise and High-Rate Regimes

The construction. Following our general construction, we take Cout to be an rn, k, dsn
Reed-Solomon code with |Σout| “ n, k “ γn and d “ p1 ´ γqn for some constant γ ą 0
to be chosen later. We construct n different inner codes C1

in, . . . ,Cn
in with alphabet size

|Σin| “ polyp1{γq, message length k1 “ Θplog nq, and codeword length n1 “ Θplog nq, with
the following property.

▶ Property 1. For any two codewords x P Ci
in, y P Cj

in, if either of the following two conditions
holds:
1. i ‰ j, and x ‰ 0n1 or y ‰ 0n1 .
2. i “ j and x ‰ y.

Then we have LCSpx, yq ď γn1.

▶ Lemma 16. There exists an efficient construction of n inner codes C1
in, . . . ,Cn

in, where
each Ci

in has alphabet size |Σin| “ polyp1{γq and rate Ωpγq.

Proof. We first show that if we pick n independent random linear inner codes C1
in, . . . ,Cn

in
over an alphabet size |Σin| “ polyp1{γq, then they satisfy Property 1 with high probability.
We then show how to derandomize the construction using a small biased sample space.

Fix a field Fq. For each Ci
in we independently pick log n uniformly random vectors in Fn1

q

with n1 “ Θplog n{γq as the basis for Ci
in, or equivalently, the rows in the generating matrix

of Ci
in. We bound the probability that there exist two codewords x P Ci

in, y P Cj
in that satisfy

the conditions of Lemma 16 but LCSpx, yq ą γn1.

▷ Claim 17. Consider any fixed common subsequence between x and y of length t, where the
corresponding indices in x are ts1, ¨ ¨ ¨ , stu and the corresponding indices in y are tr1, ¨ ¨ ¨ , rtu.
Then

Prr@k P rts, xsk
“ yrk

s ď q´t.

To prove the claim we have two cases.
Case 1: i ‰ j, and x ‰ 0n1 or y ‰ 0n1 . This is the easy case. Since i ‰ j, and all the

entries in the generating matrices of Ci
in and Cj

in are chosen independently uniformly from
Fq, we know that the events xsk

“ yrk
are all independent, even if x “ 0n1 or y “ 0n1 .

Furthermore, the probability of each such event is 1{q. Hence the claim follows.
Case 2: i “ j. In this case, the events xsk

“ yrk
are not necessarily all independent.

However, the claim still follows from the following claim in [6], which deals exactly with
this situation.

▷ Claim 18. [Claim 4.2 of [6]] Let G be a random generating matrix for a linear code over
Fq. For any two different messages xi, xj and codewords Ci “ xiG, Cj “ xjG, consider
any fixed common subsequence between Ci and Cj of length t, where the corresponding
indices in Ci are ts1, ¨ ¨ ¨ , stu and the corresponding indices in Cj are tr1, ¨ ¨ ¨ , rtu. Then

Prr@k P rts, Ci
sk

“ Cj
rk
s ď q´t.

Now by a union bound, and noticing that the total number of possible cases where two
strings of length n1 have a common subsequence of length γn1 is at most

`

n1

γn1

˘2
, we have

PrrProperty 1 does not holds ď n2q2 log n

ˆ

n1

γn1

˙2
q´γn1

ď

ˆ

e

γ

˙2γn1

n2q2 log n´γn1

.

Therefore, one can set q “ p e
γ q

3 and n1 “ Θplog n{γq so that the above probability is
q´Ωplog nq “ 1{polypnq.

K. Cheng, Z. Jin, X. Li, Z. Wei, and Y. Zheng 41:13

Next we show how to derandomize the above construction using a small biased space.
Without loss of generality we assume the field we use is Fq with q “ 2ℓ. Thus, by choosing an
arbitrary basis b1, ¨ ¨ ¨ , bℓ in Fq we can identify the field with the vector space Fℓ

2, such that
any a P Fq can be expressed as a “

ř

iPrℓs aibi, where @i, ai P F2. In this way, the generating
matrix of each Ci

in can be viewed as consisting of ℓn1 log n “ Θpℓ log2 nq bits.
We pick a τ -biased sample space with nℓn1 log n bits for some τ “ 1{polypnq to be chosen

later. Note that by Theorem 14 this can be generated by Oplog nq uniform random bits.
Given ℓ bits a1, ¨ ¨ ¨ , aℓ which defines the field element a “

ř

iPrℓs aibi, and any p P Fq,
consider the operation p ¨ a and the corresponding coefficient in the basis b1. It’s not hard to
see that this is a F2-linear function (i.e., a parity) of a1, ¨ ¨ ¨ , aℓ. Call this parity Lppa1, ¨ ¨ ¨ , aℓq.
We have the following claim.

▷ Claim 19. Lppa1, ¨ ¨ ¨ , aℓq ” 0 if and only if p “ 0.

Proof of the claim. The “if” part is trivially true. For the other part, note that if p ‰ 0 then
pb1, ¨ ¨ ¨ , pbℓ must also be linearly independent and thus form a basis of Fq. Therefore, some
pbi must have a non-zero coefficient in b1 and thus Lppa1, ¨ ¨ ¨ , aℓq has a term ai in the parity,
therefore it cannot be the 0 function. ◁

Note that there are altogether 2ℓ different parity functions involving a1, ¨ ¨ ¨ , aℓ, and
q “ 2ℓ elements in Fq. Thus the previous claim immediately implies the following claim.

▷ Claim 20. Any parity function involving a1, ¨ ¨ ¨ , aℓ is equivalent to Lppa1, ¨ ¨ ¨ , aℓq for
some p P Fq.

Now consider the two codewords x P Ci
in, y P Cj

in. Let x0 and y0 be the corresponding
messages for x and y respectively. We now have the following claim.

▷ Claim 21. Unless i “ j and y0 “ p ¨ x0 or x0 “ p ¨ y0 for some p P Fq, under the τ -biased
sample space, the joint distribution of px, yq is qn1

τ -close to the uniform distribution over
F2n1

q .

Proof of the claim. Let x “ px1, ¨ ¨ ¨ , xn1q P Fn1

q “ Fℓn1

2 and y “ py1, ¨ ¨ ¨ , yn1q P Fn1

q “ Fℓn1

2 .
Consider any non-trivial parity of the 2ℓn1 bits, which by Claim 20 corresponds to the
coefficient of b1 under some function

ř

kPrn1spp
x
kxk ` py

kykq, where @k, px
k, py

k P Fq, and they
are not all 0.

If i ‰ j, then
ř

kPrn1s px
kxk and

ř

kPrn1s py
kyk use different bits in the τ -biased sample

space. Since x, y are not both 0n1 , the resulted parity is a non-trivial parity of the bits in the
sample space, which by definition has bias at most τ .

Otherwise we have i “ j. Let G be the generating matrix for Ci
in, thus x “ x0G and

y “ y0G. For any k P rn1s, let Gk be the k’th column of G. We have

ÿ

kPrn1s

ppx
kxk ` py

kykq “
ÿ

kPrn1s

ppx
kx0Gk ` py

ky0Gkq “
ÿ

kPrn1s

ppx
kx0 ` py

ky0qGk.

Notice that each entry in each Gk is independently uniformly chosen from Fq “ Fℓ
2. Thus by

Claim 19 if the coefficient of the above sum in b1 is the trivial parity 0, then we must have
@k P rn1s, px

kx0 ` py
ky0 “ 0. This implies that either y0 “ p ¨ x0 or x0 “ p ¨ y0 for some p P Fq.

Otherwise, the parity is a non-trivial parity of the bits in the sample space, which by
definition has bias at most τ . Now, by Lemma 15, the joint distribution of px, yq is qn1

τ -close
to the uniform distribution over F2n1

q . ◁

ICALP 2023

41:14 Linear Insertion Deletion Codes in the High-Noise and High-Rate Regimes

Back to the proof of our lemma. If the conditions of the above claim hold, then the
joint distribution of px, yq is qn1

τ -close to the uniform distribution. Hence, the probability
that there exists any common subsequence of length γn1 between x and y is at most
`

n1

γn1

˘2
q´γn1

` qn1

τ .
On the other hand, if the conditions of the above claim do not hold, then without loss of

generality assume that y0 “ p ¨ x0 for some p P Fq. Hence p ‰ 1. In this case, notice that we
also have y “ p ¨ x, and thus the probability that there exists any common subsequence of
length γn1 between x and y is completely determined by the random variables in x. Note
that any non-trivial parity of the bits in x is also a non-trivial parity of the bits of the
τ -biased sample space, which has bias at most τ . By Lemma 15, the distribution of x is
qn1

{2τ -close to being uniform on Fn1

q .
We have the following claim.

▷ Claim 22. Let x be a uniformly random vector in Fn1

q , and y “ p ¨ x. Then

PrrDa common subsequence of length t between x and ys ď

ˆ

n1

t

˙2
q´t.

Proof of the claim. Consider any fixed common subsequence of length t between x and y.
Assume where the corresponding indices in x are ts1, ¨ ¨ ¨ , stu and the corresponding indices
in y are tr1, ¨ ¨ ¨ , rtu, such that s1 ă s2 ă ¨ ¨ ¨ ă st and r1 ă r2 ă ¨ ¨ ¨ ă rt. For any k P rts, let
mk “ maxpsk, rkq. Notice that m1 ă m2 ă ¨ ¨ ¨ ă mt. Define Ek to be the event xsk

“ yrk
.

For each k P rts, if sk “ rk, then

PrrEks “ Prrxsk
“ p ¨ xsk

s “ Prrxsk
“ 0s “ 1

q
.

Furthermore, since sk “ rk “ mk is larger than all tsk1 , rk1 , k1 ă ku, the event Ek is
independent of all tEk1 , k1 ă ku. Thus

PrrEk|tEk1 , k1 ă kus “
1
q

.

Otherwise, sk ‰ rk and without loss of generality assume sk ą rk. This means sk “ mk

and is larger than all tsk1 , rk1 , k1 ă ku. We can now first fix all txsk1 , yrk1 , k1 ă ku and yrk
,

and conditioned on this fixing xsk
is still uniform over Fq. Thus

PrrEks “ Prrxsk
“ p ¨ xrk

s “
1
q

.

Note that any such fixing also fixes the outcomes of all tEk1 , k1 ă ku. Hence we also have

PrrEk|tEk1 , k1 ă kus “
1
q

.

Therefore, the above equation holds in all cases, and for all k. This gives

Prr
č

kPrts

Eks ď q´t,

and the claim follows from a union bound. ◁

K. Cheng, Z. Jin, X. Li, Z. Wei, and Y. Zheng 41:15

Since x is qn1
{2τ -close to being uniform on Fn1

q , the probability that there exists any common
subsequence of length γn1 between x and y is at most

`

n1

γn1

˘2
q´γn1

` qn1
{2τ in this case.

To summarize, using the τ -biased sample space we always have that the probability
that there exists any common subsequence of length γn1 between x and y is at most
`

n1

γn1

˘2
q´γn1

` qn1

τ . By another union bound, we have

PrrProperty 1 does not holds ď n2q2 log n

˜

ˆ

n1

γn1

˙2
q´γn1

` qn1

τ

¸

ď

ˆ

e

γ

˙2γn1

n2q2 log n´γn1

` n2qn1
`2 log nτ.

Therefore, one can still set q “ p e
γ q

3, n1 “ Θplog n{γq, and τ “ q´Ωplog n{γq “ 1{polypnq
so that the above probability is q´Ωplog nq “ 1{polypnq.

Once we know this, we can exhaustively search the τ -biased sample space and find a
sample point which gives us a construction that satisfies Property 1. Since we only have
polypnq sample points and checking each sample point takes polynomial time, altogether this
takes polynomial time. ◀

Note that our concatenated code C now has rate Ωpγ2q. Further, Property 1 implies the
following property:

▶ Property 2.
1. @i ‰ j, we have Ci

in
Ş

Cj
in “ t0n1

u.
2. For any i, j P rns and any two codewords x P Ci

in, y P Cj
in, if x ‰ y then LCSpx, yq ď γn1.

Let z be any substring of a codeword from the concatenated code C, and assume z is a
substring of zj ˝ zj`1 ˝ ¨ ¨ ¨ ˝ zj`ℓ, where @t, zj`t is a codeword in Cj`t

in . We say the codewords
tzj`t, t “ 0, ¨ ¨ ¨ , ℓu contribute to the string z.

We now show that Property 1 and Property 2 give us the following lemma.

▶ Lemma 23. Let x be a codeword from the code Ci
in. Let z be any substring of a codeword

from the concatenated code C, and tzj`t, t “ 0, ¨ ¨ ¨ , ℓu are the inner codewords contributing
to z. If @t, zj`t ‰ x, then we have LCSpx, zq ă 2γp|x| ` |z|q.

Proof. By Property 2, the longest common subsequence between x and any zj`t has length
at most γn1. If ℓ “ 1, then we have

LCSpx, zq ď γn1 ă 2γp|x| ` |z|q.

Otherwise we have ℓ ě 2. Notice that |z| ą pℓ ´ 2qn1. Thus we have

LCSpx, zq ď ℓγn1 ď 2γpℓ ´ 1qn1 ă 2γp|x| ` |z|q. ◀

We can now prove the following lemma.

▶ Lemma 24. For any two different codewords C1, C2 P C, we have ∆EpC1, C2q ą 2p1´6γqN .

Proof. We upper bound LCSpC1, C2q as follows. Consider a particular longest common
subsequence and divide it sequentially according to the n inner codewords in C1. Let the
codewords in C1 be x1, ¨ ¨ ¨ , xn and the corresponding substrings in C2 under the LCS be
z1, ¨ ¨ ¨ , zn.

ICALP 2023

41:16 Linear Insertion Deletion Codes in the High-Noise and High-Rate Regimes

By Lemma 23, for any i P rns, we must have LCSpxi, ziq ď 2γp|xi| ` |zi|q, unless some
inner codeword in zi is equal to xi. This could happen either because xi “ 0n1 or because zi

contains part of xi from exactly the i’th inner code. In the latter two cases, we call such
an index i bad. Note that for a bad i we have LCSpxi, ziq ď n1, and there are at most γn

such bad indices for either case, by our choice of the outer code. Let t be the number of bad
indices, thus t ď 2γn. Therefore,

LCSpx, zq “
ÿ

i is not bad
LCSpxi, ziq `

ÿ

i is bad
LCSpxi, ziq

ď 2γ
ÿ

i is not bad
p|xi| ` |zi|q ` tn1

ă 2γp2n1nq ` 2γnn1 “ 6γN,

where the last inequality follows from the fact that if the number of bad indices is larger than 0,
then

ř

i is not badp|xi|` |zi|q ă 2n1n. Therefore ∆EpC1, C2q ą 2N ´ 12γN “ 2p1´ 6γqN . ◀

Setting γ “ ε{6, this gives the following theorem.

▶ Theorem 25. For any constant ε ą 0 there exists an efficient construction of linear insdel
codes over an alphabet of size polyp1{εq, with rate Ωpε2q that can correct 1 ´ ε fraction of
insdel errors (possibly inefficiently).

References
1 Khaled A.S. Abdel-Ghaffar, Hendrik C. Ferreira, and Ling Cheng. On linear and cyclic codes

for correcting deletions. In 2007 IEEE International Symposium on Information Theory (ISIT),
pages 851–855, 2007.

2 Noga Alon, Oded Goldreich, Johan Håstad, and René Peralta. Simple constructions of almost
k-wise independent random variables. Random Structures & Algorithms, 3(3):289–304, 1992.

3 J. Bornholt, R. Lopez, D. M. Carmean, L. Ceze, G. Seelig, and K. Strauss. A dna-based
archival storage system. ACM SIGARCH Comput. Archit. News, 44:637–649, 2016.

4 Joshua Brakensiek, Venkatesan Guruswami, and Samuel Zbarsky. Efficient low-redundancy
codes for correcting multiple deletions. IEEE Transactions on Information Theory, 64(5):3403–
3410, 2018. Preliminary version in SODA 2016.

5 Boris Bukh, Venkatesan Guruswami, and Johan Håstad. An improved bound on the fraction
of correctable deletions. IEEE Trans. Information Theory, 63(1):93–103, 2017. Preliminary
version in SODA 2016. doi:10.1109/TIT.2016.2621044.

6 Kuan Cheng, Venkatesan Guruswami, Bernhard Haeupler, and Xin Li. Efficient linear and affine
codes for correcting insertions/deletions. In Proceedings of the 2021 ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1–20, 2021. doi:10.1137/1.9781611976465.1.

7 Kuan Cheng, Zhengzhong Jin, Xin Li, and Ke Wu. Block Edit Errors with Transpositions: De-
terministic Document Exchange Protocols and Almost Optimal Binary Codes. In Christel Baier,
Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International
Colloquium on Automata, Languages, and Programming (ICALP 2019), volume 132 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 37:1–37:15, Dagstuhl, Germany, 2019.
Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.ICALP.2019.37.

8 Kuan Cheng, Zhengzhong Jin, Xin Li, and Ke Wu. Deterministic document exchange protocols,
and almost optimal binary codes for edit errors. Journal of the ACM (JACM), 69(6):1–39,
2022. Preliminary version in 2018 IEEE 59th Annual Symposium on Foundations of Computer
Science (FOCS).

9 Roni Con, Amir Shpilka, and Itzhak Tamo. Explicit and efficient constructions of linear
codes against adversarial insertions and deletions. IEEE Transactions on Information Theory,
68(10):6516–6526, 2022. doi:10.1109/TIT.2022.3173185.

https://doi.org/10.1109/TIT.2016.2621044
https://doi.org/10.1137/1.9781611976465.1
https://doi.org/10.4230/LIPIcs.ICALP.2019.37
https://doi.org/10.1109/TIT.2022.3173185

K. Cheng, Z. Jin, X. Li, Z. Wei, and Y. Zheng 41:17

10 Roni Con, Amir Shpilka, and Itzhak Tamo. Reed solomon codes against adversarial insertions
and deletions. In 2022 IEEE International Symposium on Information Theory (ISIT), pages
2940–2945, 2022. doi:10.1109/ISIT50566.2022.9834672.

11 V. Guruswami and M. Sudan. Improved decoding of reed-solomon and algebraic-geometry codes.
IEEE Transactions on Information Theory, 45(6):1757–1767, 1999. doi:10.1109/18.782097.

12 Venkatesan Guruswami, Bernhard Haeupler, and Amirbehshad Shahrasbi. Optimally resilient
codes for list-decoding from insertions and deletions. In Proccedings of the 52nd Annual ACM
Symposium on Theory of Computing, pages 524–537, 2020. doi:10.1145/3357713.3384262.

13 Venkatesan Guruswami, Xiaoyu He, and Ray Li. The zero-rate threshold for adversarial
bit-deletions is less than 1/2. IEEE Transactions on Information Theory, pages 1–1, 2022.
doi:10.1109/TIT.2022.3223023.

14 Venkatesan Guruswami and Carol Wang. Deletion codes in the high-noise and high-rate
regimes. IEEE Trans. Information Theory, 63(4):1961–1970, 2017.

15 Bernhard Haeupler. Optimal document exchange and new codes for insertions and deletions.
In 60th IEEE Annual Symposium on Foundations of Computer Science, pages 334–347, 2019.

16 Bernhard Haeupler, Aviad Rubinstein, and Amirbehshad Shahrasbi. Near-Linear Time
Insertion-Deletion Codes and (1+eps)-Approximating Edit Distance via Indexing. Proceeding
of the ACM Symposium on Theory of Computing (STOC), pages 697–708, 2019.

17 Bernhard Haeupler and Amirbehshad Shahrasbi. Synchronization strings: codes for insertions
and deletions approaching the singleton bound. Journal of the ACM (JACM), 68(5):1–39,
2021. Preliminary version in 49th Annual ACM SIGACT Symposium on Theory of Computing
(STOC).

18 Bernhard Haeupler, Amirbehshad Shahrasbi, and Madhu Sudan. Synchronization strings: List
decoding for insertions and deletions. Proceeding of the International Colloquium on Automata,
Languages and Programming (ICALP), pages 76:1–76:14, 2018. doi:10.4230/LIPIcs.ICALP.
2018.76.

19 Bernhard Haeupler, Amirbehshad Shahrasbi, and Ellen Vitercik. Synchronization strings:
Channel simulations and interactive coding for insertions and deletions. Proceeding of the
International Colloquium on Automata, Languages and Programming (ICALP), pages 75:1–
75:14, 2018. doi:10.4230/LIPIcs.ICALP.2018.75.

20 Tomohiro Hayashi and Kenji Yasunaga. On the list decodability of insertions and deletions. In
2018 IEEE International Symposium on Information Theory (ISIT), pages 86–90. IEEE, 2018.

21 Leonard J. Schulman and David Zuckerman. Asymptotically good codes correcting insertions,
deletions, and transpositions. IEEE Trans. Inf. Theory, 45(7):2552–2557, 1999. Preliminary
version in SODA 1997. doi:10.1109/18.796406.

22 Jin Sima and Jehoshua Bruck. Optimal k-deletion correcting codes. In IEEE International
Symposium on Information Theory, pages 847–851, 2019. doi:10.1109/ISIT.2019.8849750.

23 C. Thommesen. The existence of binary linear concatenated codes with reed - solomon
outer codes which asymptotically meet the gilbert- varshamov bound. IEEE Transactions on
Information Theory, 29(6):850–853, 1983. doi:10.1109/TIT.1983.1056765.

24 Antonia Wachter-Zeh. List decoding of insertions and deletions. IEEE Transactions on
Information Theory, 64(9):6297–6304, 2017.

25 S. M. Hossein Tabatabaei Yazdi, Ryan Gabrys, and Olgica Milenkovic. Portable and
error-free dna-based data storage. Scientific Reports, 7:2045–2322, 2017. doi:10.1038/
s41598-017-05188-1.

ICALP 2023

https://doi.org/10.1109/ISIT50566.2022.9834672
https://doi.org/10.1109/18.782097
https://doi.org/10.1145/3357713.3384262
https://doi.org/10.1109/TIT.2022.3223023
https://doi.org/10.4230/LIPIcs.ICALP.2018.76
https://doi.org/10.4230/LIPIcs.ICALP.2018.76
https://doi.org/10.4230/LIPIcs.ICALP.2018.75
https://doi.org/10.1109/18.796406
https://doi.org/10.1109/ISIT.2019.8849750
https://doi.org/10.1109/TIT.1983.1056765
https://doi.org/10.1038/s41598-017-05188-1
https://doi.org/10.1038/s41598-017-05188-1

Online Learning and Disambiguations of Partial
Concept Classes
Tsun-Ming Cheung #

McGill University, Montreal, Canada

Hamed Hatami #

McGill University, Montreal, Canada

Pooya Hatami #

Ohio State University, Columbus, OH, USA

Kaave Hosseini #

University of Rochester, NY, USA

Abstract
In a recent article, Alon, Hanneke, Holzman, and Moran (FOCS ’21) introduced a unifying framework
to study the learnability of classes of partial concepts. One of the central questions studied in their
work is whether the learnability of a partial concept class is always inherited from the learnability of
some “extension” of it to a total concept class.

They showed this is not the case for PAC learning but left the problem open for the stronger
notion of online learnability.

We resolve this problem by constructing a class of partial concepts that is online learnable, but
no extension of it to a class of total concepts is online learnable (or even PAC learnable).

2012 ACM Subject Classification Theory of computation → Online learning theory

Keywords and phrases Online learning, Littlestone dimension, VC dimension, partial concept
class, clique vs independent set, Alon-Saks-Seymour conjecture, Standard Optimal Algorithm, PAC
learning

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.42

Category Track A: Algorithms, Complexity and Games

Related Version arXiv: https://arxiv.org/abs/2303.17578

Funding Hamed Hatami: Supported by an NSERC grant.
Pooya Hatami: Supported by NSF grant CCF-1947546.

Acknowledgements We wish to thank Mika Göös for clarifying the reductions in [3, 4, 5, 2].

1 Introduction

In many practical learning problems, the learning task is tractable because we are only
required to predict the labels of the data points that satisfy specific properties. In the setting
of binary classification problems, instead of learning a total concept h : X → {0, 1}, we
are often content with learning a partial version of it h̃ : X → {0, 1, ⋆}, where h̃(x) = ⋆

means that both 0 and 1 are acceptable predictions. This relaxation of allowing unspecified
predictions renders a wider range of learning tasks tractable.

Consider, for example, predicting whether a person approves or disapproves of various
political stances by observing their previous voting pattern. This person might not hold a
strong opinion about particular political sentiments, and it might be impossible to predict
their vote on those issues based on their previous history. However, the learning task might
become possible if we allow both “approve” and “disapprove” as acceptable predictions in
those cases where a firm conviction is lacking.

EA
T
C
S

© Tsun-Ming Cheung, Hamed Hatami, Pooya Hatami, and Kaave Hosseini;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 42; pp. 42:1–42:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tsun.ming.cheung@mail.mcgill.ca
mailto:hatami@cs.mcgill.ca
mailto:pooyahat@gmail.com
mailto:kaave.hosseini@rochester.edu
https://doi.org/10.4230/LIPIcs.ICALP.2023.42
https://arxiv.org/abs/2303.17578
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

42:2 Online Learning and Disambiguations of Partial Concept Classes

A well-studied example of this phenomenon is learning half-spaces with a large margin.
In this problem, the domain is the set of points in a bounded region in an arbitrary Euclidean
space, and the concepts are half-spaces that map each point to 1 or 0 depending on whether
they belong to the half-space or not. It is well-known that when the dimension of the
underlying Euclidean space is large, one needs many samples to learn a half-space. However,
in the large margin setting, we are only required to correctly predict the label of a point if
its distance from the defining hyperplane is bounded from below by some margin. Standard
learning algorithms for this task, such as the classical Perceptron algorithm, due to Rosenblatt
[9], show that this relaxation of the learning requirement makes the problem tractable even for
high-dimensional Euclidean spaces. Motivated by such examples, Alon, Hanneke, Holzman,
and Moran [1] initiated a systematic study of the learnability of partial concept classes
H ⊆ {0, 1, ⋆}X . They focused on the two frameworks of probably approximately correct (PAC)
learning and online learning. We refer to [1] for the definition of PAC learnability of partial
concept classes. We define online learnability in Definition 4.

PAC learning is an elegant theoretical framework characterized by the combinatorial
parameter of the Vapnik–Chervonenkis (VC) dimension. The fundamental theorem of PAC
learning states that a total binary concept class is PAC learnable if and only if its VC
dimension is finite. Similarly, online learnability of total concept classes is characterized by
a combinatorial parameter called the Littlestone dimension (LD). We formally define the
VC dimension and the Littlestone dimension in Definitions 14 and 15 respectively. Alon,
Hanneke, Holzman, and Moran [1] proved that these characterizations of PAC and online
learnability extend to the setting of partial concept classes.

▶ Theorem 1 ([1, Theorems 1 and 15]). Let H ⊆ {0, 1, ⋆}X be a partial concept class.
H is PAC learnable if and only if VC(H) < ∞.
H is online learnable if and only if LD(H) < ∞.

It follows from the definitions of VC and LD dimensions that for every partial concept
class H ⊆ {0, 1, ⋆}X , we have VC(H) ≤ LD(H). In particular, online learnability always
implies PAC learnability.

One of the central questions studied in [1] is whether the learnability of a partial
concept class is always inherited from the learnability of some total concept class. To make
this question precise, we need to define the notion of disambiguation of a partial concept
class. While we defer the formal definitions to Section 2.2, one may understand a strong
disambiguation of a partial class as simply an assignment of each ⋆ to either 1 or 0 for each
partial concept in the class. When X is infinite, it is more natural to consider the weaker
notion of disambiguation that we shall define in Definition 17. When X is finite, the notions
of disambiguation and strong disambiguation coincide.

Consider the problem of learning the partial concept class H ⊆ {0, 1, ⋆}X in PAC learning
or online learning. If the partial concept class H has a disambiguation H ⊆ {0, 1}X that is
PAC learnable, then H is PAC learnable. This follows from VC(H) ≤ VC(H), or simply by
running the PAC learning algorithm of H on H. Similarly, if a disambiguation H of H is
online learnable, then H is online learnable.

Is the learnability of every partial concept class inherited from the learnability of some
disambiguation to a total concept class?

▶ Question 2 (Informal [1]). Does every learnable partial class have a learnable disambigu-
ation?

Equipped with the VC dimension characterization of Theorem 1, [1] proved that for PAC
learning, the answer to Question 2 is negative.

T.-M. Cheung, H. Hatami, P. Hatami, and K. Hosseini 42:3

▶ Theorem 3 ([1, Theorem 11]). For every n ∈ N, there exists a partial concept class
Hn ⊆ {0, 1, ⋆}[n] with VC(Hn) = 1 such that any disambiguation H of Hn has VC(H) ≥
(log n)1−o(1). Moreover, for X = N, there exists H∞ ⊆ {0, 1, ⋆}X with VC(H∞) = 1 such
that VC(H) = ∞ for every disambiguation H of H∞.

While Theorem 3 gives a strong negative answer to Question 2 in the case of PAC learning,
the question was left open for online learning. Roughly speaking, this question strengthens
the bounded-VC assumption on H to bounded Littlestone dimension (LD), which pertains
to online learnability of H.

The authors in [1] also proposed a second open problem that replaces the bounded-VC
dimension assumption by the assumption of polynomial growth. This assumption is weaker
than bounded LD dimension but stronger than bounded VC dimension.

As we discuss below, our main result resolves these two open problems.

Online learnability

Online learning is performed in a sequence of consecutive rounds, where at round t, the
learner is presented with an instance xt ∈ X and is required to predict its label. After
predicting the label, the correct label yt ∈ {0, 1} is revealed to the learner. Note that even
for partial concept classes, we require that the correct label is 0 or 1. The learner’s goal
is to make as few prediction mistakes as possible during this process. We assume that the
true labels are always realizable, i.e. there is a partial concept h ∈ H with h(xi) = yi for all
i = 1, . . . , t.

▶ Definition 4 (Online Learnability). A partial concept class H ⊆ {0, 1, ⋆}X is online learnable
if there is a mistake bound m := m(H) ∈ N such that for every T ∈ N, there exists a learning
algorithm that on every realizable sequence (xi, yi)i=1,...,T makes at most m mistakes.

Online learnability for total classes is equivalent to the bounded Littlestone dimension. In
Theorem 1, Alon, Hanneke, Holzman, and Moran [1] showed that the same equivalence carries
out in the setting of partial classes. They asked the following formulation of Question 2.

If a partial class is online learnable, is there a disambiguation of it that is online learnable?

More precisely, they pose the following question:

▶ Problem 5 ([1]). Let H be a partial class with LD(H) < ∞. Does there exist a disambigu-
ation H of H with LD(H) < ∞? Is there one with VC(H) < ∞?

We give a negative answer to Problem 5:

▶ Theorem 6 (Main Theorem). For every n ∈ N, there exists a partial concept class
Hn ⊆ {0, 1, ⋆}[n] with LD(Hn) ≤ 2 such that every disambiguation H of Hn satisfies
LD(H) ≥ VC(H) = Ω(log log n). Consequently, for X = N, there exists H∞ ⊆ {0, 1, ⋆}X with
LD(H∞) ≤ 2 and LD(H) ≥ VC(H) = ∞ for every disambiguation H of H∞.

Polynomial growth

A general strategy to prove a super-constant lower bound on the VC dimension of a total
concept class H ⊆ {0, 1}n is to show that the class is of super-polynomial size. This is
the approach utilized in Theorem 3 and Theorem 6. For a total concept class H ⊆ {0, 1}n

with VC dimension d, one has 2d ≤ |H| ≤ O(nd): the lower bound is immediate from
the definition of VC dimension, and the upper bound is the consequence of the celebrated
Sauer-Shelah-Perles (SSP) lemma.

ICALP 2023

42:4 Online Learning and Disambiguations of Partial Concept Classes

▶ Theorem 7 (Sauer-Shelah-Perles lemma [10]). Let H ⊆ {0, 1}n and VC(H) = d. Then

|H| ≤
(

n

≤ d

)
:=

d∑
i=0

(
n

i

)
= O(nd).

The direct analog of the SSP lemma is not true for partial concept classes: [1] proved
that there exists H ⊆ {0, 1, ⋆}[n] with VC(H) = 1 such that every disambiguation H has size
|H| ≥ nΩ(log n). This result, combined with the SSP lemma for total classes, immediately
implies Theorem 3.

Interestingly, under the stronger assumption of the bounded Littlestone dimension, the
polynomial growth behavior of the original SSP lemma remains valid.

▶ Theorem 8 ([1]). Every partial concept class H ⊆ {0, 1, ⋆}[n] with LD(H) ≤ d has a
disambiguation H with |H| ≤ O(nd).

We say that a partial concept class H ⊆ {0, 1, ⋆}X has polynomial growth with parameter
d ∈ N if for every finite X ′ ⊆ X , there is a disambiguation H|X ′ of H|X ′ of size at most
O(|X ′|d). Note that by Theorem 8, every partial concept class with Littlestone dimension d

has polynomial growth with parameter d.
Alon, Hanneke, Holzman, and Moran asked the following question:

▶ Problem 9 ([1]). Let H ⊆ {0, 1, ⋆}X be a partial concept class with polynomial growth.
Does there exist a disambiguation H of H such that VC(H) < ∞?

Note that Problem 9 cannot be resolved (in the negative) by a naive application of the
SSP lemma to disambiguations of H or its restrictions. However, Theorem 6 combined with
Theorem 8 refutes Problem 9 as well.

▶ Theorem 10. For every n ∈ N, there is H ⊆ {0, 1, ⋆}[n] with polynomial growth with
parameter 2 such that every disambiguation H of H has VC(H) = Ω(log log n).

Consequently, for X = N, there exists H∞ ⊆ {0, 1, ⋆}X with polynomial growth with
parameter 2 such that every disambiguation H∞ of H∞ has VC(H∞) = ∞.

The Alon-Saks-Seymour Problem

The proof of Theorem 3 in [1] hinges on the breakthrough result of Göös [4] and its
subsequent improvements [2] that led to almost optimal super-polynomial bounds on the
“biclique partition number versus chromatic number” problem of Alon, Saks, and Seymour.
The biclique partition number of a graph G, denoted by bp(G), is the smallest number of
complete bipartite graphs (bicliques) that partition the edge set of G. Alon, Saks, and
Seymour conjectured that the chromatic number of a graph with biclique partition number
k is at most k + 1. Huang and Sudakov refuted the Alon-Saks-Seymour conjecture in [6]
by establishing a superlinear gap between the two parameters. Later in a breakthrough,
Göös [4] proved a superpolynomial separation.

Our main result, Theorem 6, also builds on the aforementioned graph constructions.
However, unlike previous works, our theorem demands a reasonable upper bound on the
number of vertices. Since the constructions result from a complex sequence of reductions
involving query complexity, communication complexity, and graph theory [3, 4, 5, 2], it is
necessary to scrutinize them to ensure that the required parameters are met. We present a
reorganized and partly simplified sequence of constructions in Section 3.3 that establishes
the following theorem.

T.-M. Cheung, H. Hatami, P. Hatami, and K. Hosseini 42:5

▶ Theorem 11 (Small-size refutation of the Alon-Saks-Seymour conjecture). There exists a
graph G on 2Θ(k4 log3 k) vertices that admits a biclique partition of size 2O(k log4 k) but its
chromatic number is at least 2Ω(k2).

Theorem 11 is essentially due to [2]. Our contribution to this theorem is obtaining an explicit
and optimized bound on the size of G.

Standard Optimal Algorithm

Theorem 6 provides an example partial class with Littlestone dimension ≤ 2, such that
the VC dimension of every disambiguation is Ω(log log n). Whether one can improve the
Ω(log log n) lower bound is unclear. In particular, it is an interesting question whether
every disambiguation of a partial class of Littlestone dimension at most 2 has VC dimension
O(log log n). One natural candidate approach for obtaining such an upper bound would be
to utilize the Standard Optimal Algorithm (SOA).

SOA is an online learning algorithm devised by Littlestone [7] that can learn classes with
bounded Littlestone dimensions. Alon, Hanneke, Holzman, and Moran, in their proof of
Theorem 8, showed that applying SOA to a partial concept class H with Littlestone dimension
d yields a disambiguation of size |H| ≤ O(nd) and consequently VC dimension O(d log n).
This shows that the lower bound of Theorem 6 on VC dimension of disambiguations cannot
be improved beyond O(log n). It is hence natural to ask whether it is possible to obtain an
improved upper bound on the VC dimension of the SOA-based disambiguation.

We answer this question in the negative by constructing a family of partial concept classes
H of Littlestone dimension d where the disambiguation obtained by the SOA algorithm has
VC dimension Ω(d log(n/d)).

▶ Theorem 12. For every natural numbers d ≤ n, there exists a partial concept class
Hn,d ⊆ {0, 1, ⋆}[n] with d ≤ LD(Hn,d) ≤ d + 1 such that the SOA disambiguation of Hn,d has
VC dimension Ω(d log(n/d)).

2 Preliminaries and Background

For a positive integer k, we denote [k] := {1, . . . , k}. We adopt the convention that {0, 1}0

or {0, 1, ⋆}0 contains the empty string only, which we denote by ().
We adopt the standard computer science asymptotic notations, such as Big-O, and use

the asymptotic tilde notations to hide poly-logarithmic factors.

2.1 VC Dimension and Littlestone Dimension
Let H ⊆ {0, 1, ⋆}X be a partial concept class. When the domain X is finite, we sometimes
view H as a partial matrix MX ×H, where each row corresponds to a point x ∈ X and each
column corresponds to a concept h ∈ H, and the entries are defined as M(x, h) = h(x).

Next, we define the VC dimension and the Littlestone dimension of partial classes, which
generalize the definitions of these notions for total classes. As shown in [1], the VC and
Littlestone dimensions for partial classes capture PAC and online learnability, respectively.

▶ Definition 13 (Shattered set). A finite set of points C = {x1, . . . , xn} ⊆ X is shattered by
a partial concept class H ⊆ {0, 1, ⋆}X if for every pattern y ∈ {0, 1}n, there exists h ∈ H with
h(xi) = yi for all i ∈ [n].

ICALP 2023

42:6 Online Learning and Disambiguations of Partial Concept Classes

▶ Definition 14 (VC dimension). The VC dimension of a partial class H, denoted by VC(H),
is the maximum d such that there exists a size-d subset of X that is shattered by H. If no
such largest d exists, define VC(H) = ∞.

Viewed as a matrix, the VC dimension of H is the maximum d such that the associated
partial matrix MX ×H contains a zero/one submatrix of dimensions d×2d, where the columns
enumerate all d-bit zero/one patterns.

The Littlestone dimension is defined through the shattering of decision trees instead of
sets. Consider a full binary decision tree of height d where every non-leaf v is labelled with
an element xv ∈ X . We identify every node of this tree by the string v ∈

⋃d
k=0{0, 1}k that

corresponds to the path from the root to the node. That is, the root is the empty string, its
children are the two elements in {0, 1}, and more generally, the children of a node v⃗ ∈ {0, 1}k

are the two strings v⃗0 and v⃗1 in {0, 1}k+1.
We say that such a tree is shattered by a partial concept class H if for every leaf y ∈ {0, 1}d,

there exists h ∈ H such that h(xy[<i]) = yi for each i ∈ [d], where y[< i] is the first (i − 1)-th
bits of y. In other words, applying the decision tree to h will result in the leaf y.

▶ Definition 15 (Littlestone dimension). The Littlestone dimension of a partial concept class
H, denoted by LD(H), is the maximum d such that there is an X -labelled height-d full binary
decision tree that is shattered by H. If no such largest d exists, define LD(H) = ∞.

The dual of a concept class H is the concept class with the roles of points and concepts
exchanged. Concretely, the dual class of H ∈ {0, 1, ⋆}X , denoted by H⊤, is the collection of
functions fx : H → {0, 1, ⋆} for every x ∈ X , which is defined by fx(h) = h(x) for each h ∈ H.
When X is finite, taking the dual corresponds to transposing the matrix of the concept class.
The VC-dimension of the dual-class is related to that of the primal class by the inequality

VC(H⊤) ≤ 2VC(H)+1 − 1

(see [8]), which translates to a lower bound of the VC-dimension of the primal class.

2.2 Disambiguations
We start by formally defining strong disambiguation and disambiguation. As mentioned
earlier, the two notions coincide when the domain X is finite.

▶ Definition 16 (Strong Disambiguation). A strong disambiguation of a partial concept class
H ⊆ {0, 1, ⋆}X is a total concept class H ⊆ {0, 1}X such that for every h ∈ H, there exists a
h̄ ∈ H that is consistent with h on the points h−1({0, 1}).

▶ Definition 17 (Disambiguation). A disambiguation of a partial concept class H ⊆ {0, 1, ⋆}X

is a total concept class H ⊆ {0, 1}X such that for every h ∈ H and every finite S ⊆ h−1({0, 1}),
there exists h̄ ∈ H that is consistent with h on S.

A learning algorithm can often provide a disambiguation of a partial concept class by
assigning the prediction of the algorithm to unspecified values. Relevant to our work is the
disambiguation by the Standard Optimal Algorithm of Littlestone. It was observed in [1]
that this algorithm can provide “efficient” disambiguations of partial classes with bounded
Littlestone dimensions. We describe this disambiguation next.

Consider a partial concept class H ⊆ {0, 1, ⋆}X with a countable domain X and an ordering
x1, x2, . . . of X . Given b⃗ ∈ {0, 1, ⋆}k, let H|⃗b be the set of concepts h where h(xi) = bi for
every i ∈ [k]. For convenience, we identify H|() = H. For the purpose of the algorithm, we
adopt the convention LD(∅) = −1.

T.-M. Cheung, H. Hatami, P. Hatami, and K. Hosseini 42:7

The SOA obtains a disambiguation iteratively and assigns a 0/1 value to each ⋆ in H: for
each k ∈ N, consider H|⃗b for every b⃗ ∈ {0, 1}k−1. Pick c ∈ {0, 1} which maximizes LD(H|⃗bc),
breaking ties by favoring c = 0, and assign c to h(xk) = ⋆ for every h ∈ H|⃗b⋆.

We use the notation HSOA for the SOA disambiguation of a partial concept class H. As
mentioned earlier, for a partial class with Littlestone dimension d, Theorem 8 gives an upper
bound of

(
n

≤d

)
= O(nd) on

∣∣∣HSOA
∣∣∣. The theorem follows from the mistake bound of SOA

for online learning, which relies on the crucial property that at least one choice of c ∈ {0, 1}
satisfies LD(H|⃗bc) ≤ LD(H|⃗b) − 1 whenever H|⃗b ̸= ∅.

3 Proofs

In this section, we present the proofs of Theorems 6, 10, 11, and 12.

3.1 Proofs of Theorems 6 and 10
As mentioned earlier, Theorem 10 is an immediate corollary of Theorem 6 and Theorem 8.
We focus on proving Theorem 6.

Suppose G = (V, E) is the graph supplied by Theorem 11 on |V | = n = 2Θ(k4 log3 k)

vertices with a biclique partition of size m = 2O(k log4 k). We will use G to build a partial
concept class G ⊆ {0, 1, ⋆}V . This construction is simply the dual of the partial concept class
of [1] in their proof of Theorem 6.

Let {B1, . . . , Bm} be the size-m biclique partition of the edges of G. We fix an orientation
Bi = Li × Ri for each biclique. Define G ⊆ {0, 1, ⋆}V as follows. For each i ∈ [m], associate
a concept hi : V → {0, 1, ⋆} to the biclique Bi, defined by

hi(v) =


0 if v ∈ Li

1 if v ∈ Ri

⋆ otherwise
.

We first observe that the Littlestone dimension of this concept class is at most 2.

▷ Claim 18. LD(G) ≤ 2.

Proof. We show that G, viewed as a matrix, does not contain
[
1 0
1 0

]
as a submatrix and

then show that the existence of this submatrix is necessary for having a Littlestone dimension
greater than 2.

If
[
1 0
1 0

]
appears in G as a submatrix, then there exist i ̸= j and u ̸= v ∈ V (G) such

that hi(v) = hj(v) = 1 and hi(u) = hj(u) = 0. However, this means that v ∈ Ri ∩ Rj

and u ∈ Li ∩ Lj , which in turn implies that the edge {u, v} is covered by both Bi and Bj ,
contradicting the assumption that each edge is covered exactly once.

On the other hand, for a class H ⊆ {0, 1, ⋆}X with Littlestone dimension greater than
2, there exists a shattered X -labelled height-3 full binary tree. In particular, there exists
h, h′ ∈ H and points x(), x1, x10 such that

h(x()) = 1, h(x1) = 0, h(x10) = 0,

h′(x()) = 1, h′(x1) = 0, h′(x10) = 1.

This means that the submatrix restricted to the columns {x(), x1} and the rows {h, h′} is[
1 0
1 0

]
. We conclude that LD(G) ≤ 2. ◁

ICALP 2023

42:8 Online Learning and Disambiguations of Partial Concept Classes

Proof of Theorem 6. Consider the partial concept class G ⊆ {0, 1, ⋆}V above. By Claim 18,
we have LD(G) ≤ 2. We show that for every disambiguation G of G, we have VC(G) ≥
Ω(log log n). The argument here is similar to the proof of Theorem 3.

Consider a disambiguation G of G. Note that if two columns u and v are identical in G,
then there is no edge between u and v, as otherwise, some hi would have assigned 0 to one of
u and v and 1 to the other. Therefore, if two columns u and v are identical, we can color the
corresponding vertices with the same color. Consequently, the number of distinct columns
in G is at least the chromatic number χ(G) ≥ 2Ω(k2). By the SSP lemma (Theorem 7), if
VC(G⊤) ≤ d, then G must have at most O(md) distinct columns. Therefore,

2Ω(k2) ≤ O(md).

Substituting m = 2Õ(k) shows that d = Ω̃(k). Finally,

VC(G) ≥ Ω(log VC(G⊤)) ≥ Ω(log k) ≥ Ω(log log n).

This completes the proof of the first part of Theorem 6.
For the second part, we adopt the same construction in the proof of [1, Theorem 11]. Let

H∞ be a union of disjoint copies of Hn over n ∈ N, each supported on a domain Xn mutually
disjoint from others and the partial concepts of Hn extend outside of its domain by ⋆. Since
any disambiguation H of H∞ simultaneously disambiguates all Hn, the Sauer-Shelah-Perles
lemma implies that VC(H) must be infinite. ◀

3.2 Disambiguations via the SOA algorithm (Theorem 12)
This section is dedicated to the proof of Theorem 12.

Proof of Theorem 12. We prove the statement by showing that for every r, d ∈ N, there
exists a partial concept class Hr,d on [n], where n = d(2r +r), such that d ≤ LD(Hr,d) ≤ d+1
and the SOA disambiguation has VC dimension ≥ dr and at least 2dr distinct rows. The
other cases of n follow by trivially extending the domain.

For any r, d ∈ N, define

Fr,d = {F ⊆ [d2r] : |F | = d}.

Note that |Fr,d| =
(

d2r

d

)
≥ 2dr. We enumerate the sets in Fr,d as F1, . . . , F(d2r

d) in the natural
order.

Next, we define the partial concept class Hr,d on domain [d(2r + r)]. The class consists of
the partial concepts hi,j for i ∈ [

(
d2r

d

)
] and j ∈ [dr] defined as follows:

hi,j(x) =


1 if x ∈ Fi

0 if x ∈ [d2r] \ Fi

β(i, j) if x = d2r + j

⋆ otherwise

,

where β(i, j) denotes j-th bit of the dr-bit binary representation of i if i ∈ [2dr], and
β(i, j) = ⋆ otherwise.

We first prove that d ≤ LD(Hr,d) ≤ d + 1. Note that there is a set of 2d indices I ⊆ [d2r]
which

{Fi ∩ [d] : i ∈ I} = P([d]),

T.-M. Cheung, H. Hatami, P. Hatami, and K. Hosseini 42:9

therefore [d] can be shattered by {hi,1 : i ∈ I} and hence LD(Hr,d) ≥ VC(Hr,d) ≥ d. On the
other hand, note that |f−1(1)| ≤ d + 1 for any f ∈ Hr,d, which implies that LD(Hr,d) ≤ d + 1.

Next, we consider the SOA disambiguation. We claim that {d2r + 1, . . . , d(2r + r)} is
shattered by {hi,1 : i ∈ [2dr]}. There are no disambiguations for x ∈ [d2r]. For x > d2r, note
that for any b⃗ ∈ {0, 1}x−1, either Hr,d |⃗b = ∅ or

Hr,d |⃗b = {hi,j : j ∈ [dr]},

where i ∈ [d2r] such that Fi = {k ∈ [d2r] : bk = 1}. We focus on the latter case and restrict
to i ∈ [2dr]. There is exactly one c ∈ {0, 1} such that Hr,d |⃗bc ̸= ∅, namely c = β(i, x − d2r)
and in this case Hr,d |⃗bc = {hi,c}. This forces the algorithm to disambiguate every function f

with b⃗ ∈ {0, 1}x−1 by setting f(x) = hi,c(x) = β(i, x − d2r). In this manner, every hi,j is
eventually disambiguated into the same total function:

hi,j(x) =


1 if x ∈ Fi

0 if x ∈ [d2r] \ Fi

β(i, x − d2r) if x > d2r

.

In particular, for every i ∈ [2dr], the bit string (hi,1(d2r + 1), . . . , hi,1(d2r + dr)) is the dr-bit
binary representation of i. This provides a witness for which VC(Hr,d

SOA) ≥ dr. ◀

As an illustration, we provide the matrix representation of H1,2 and some essential steps
of the SOA disambiguation below in Figure 1.

1 1 0 0 0
1 1 0 0 0
1 0 1 0 0
1 0 1 0 1
1 0 0 1 1
1 0 0 1 0
0 1 1 0 1
0 1 1 0 1
0 1 0 1
0 1 0 1
0 0 1 1
0 0 1 1




(a) Matrix representation of H1,2: all empty
spaces are filled with stars.

1 1 0 0 0 0
1 1 0 0 0 0
1 0 1 0 0 1
1 0 1 0 0 1
1 0 0 1 1 0
1 0 0 1 1 0
0 1 1 0 1 1
0 1 1 0 1 1
0 1 0 1
0 1 0 1
0 0 1 1
0 0 1 1




(b) The SOA disambiguation of H1,2: the
shaded entries indicate where the shattering
occurs.

Figure 1 H1,2 and its SOA disambiguation.

3.3 Small-size refutation of the Alon-Saks-Seymour conjecture
(Theorem 11)

In this section, we present the construction of Theorem 11 in detail. The starting point is
constructing a Boolean function due to [2] in query complexity. This Boolean function then
goes through several reductions to be converted into a graph, as described below.

We first introduce some basic definitions related to the notion of certificate complexity.
Let f : {0, 1}n → {0, 1} be a Boolean function. For b ∈ {0, 1} and an input x ∈ f−1(b), a
partial input ρ ∈ {0, 1, ⋆}n is called a b-certificate if x is consistent with ρ and for every

ICALP 2023

42:10 Online Learning and Disambiguations of Partial Concept Classes

x′ ∈ {0, 1}n consistent with ρ, we have f(x′) = b. The size of ρ is the number of non-⋆ entries
of ρ. Define Cb(f, x) as the smallest size of a b-certificate for x. The b-certificate complexity
of f , denoted Cb(f), is the maximum of Cb(f, x) over all x ∈ f−1(b).

The unambiguous b-certificate complexity of f , denoted UCb(f), is the smallest k such
that
1. Every input x ∈ f−1(b) has a b-certificate ρx of size at most k;
2. For every x ̸= y in f−1(b), we have ρx ̸= ρy.

The main result of [2] is the following separation between UC1 and C0.

▶ Theorem 19 ([2, Theorem 1]). There is a function f : {0, 1}12n4 log2 n → {0, 1} such that
UC1(f) = O(n log3 n) and C0(f) = Ω(n2).

The next step of the construction is to transform the function separating the certificate
complexities UC1 and C0 into a communication problem. This is achieved by the “lifting” trick:
given a function f : {0, 1}n → {0, 1} and a “gadget” function g : {0, 1}k × {0, 1}k → {0, 1},
we define f ◦ gn : {0, 1}nk × {0, 1}nk → {0, 1} as

f ◦ gn([x1, . . . , xn], [y1, . . . , yn]) = f(g(x1, y1), . . . , g(xn, yn)).

For a communication problem f : {0, 1}m × {0, 1}m → {0, 1} and b ∈ {0, 1}, let Covb(f)
denote the minimum number of b-monochromatic rectangles required to cover all the b-entries
of f . We denote by UCovb(f) the minimum number of b-monochromatic rectangles required
to partition all the b-entries of f . The following theorem provides a connection between the
communication complexity parameters and the certificate complexity parameters.

▶ Theorem 20 ([5, Theorem 33]). There exists a gadget g : {0, 1}k × {0, 1}k → {0, 1} with
k = Ω(log n) such that for every f : {0, 1}n → {0, 1}, we have

log Covb(f ◦ gn) = Ω(k Cb(f)).

Note that for every b ∈ {0, 1}, we have log UCovb(f ◦ gn) ≤ 2k UCb(f). This combined
with Theorem 20 allows one to “lift” the UC1 vs C0 separation of Theorem 19 into a UCov1
vs Cov0 separation.

▶ Corollary 21. There exists a function f : {0, 1}O(n4 log3 n) × {0, 1}O(n4 log3 n) → {0, 1} such
that

log Cov0(f) = Ω(n2) and log UCov1(f) = n log4 n.

Next, we show how to convert these communication parameters to graph parameters of
the biclique partition number and chromatic number.

▶ Lemma 22. Let h : {0, 1}t × {0, 1}t → {0, 1} be a Boolean function with Cov0(h) = c and
UCov1(h) = m. There exists a graph G = (V, E) on at most 22t vertices with bp(G) ≤ m2

and χ(G) ≥
√

c.

Proof. Define the graph G with V := h−1(0) as follows. Two vertices (x, y), (x′, y′) ∈ V are
adjacent in G iff h(x, y′) = 1 or h(x′, y) = 1. By construction, if {(x1, y1), . . . , (xℓ, yℓ)} ⊆ V

is an independent set, then {x1, . . . , xℓ} × {y1, . . . , yℓ} is a 0-monochromatic rectangle for h.
Thus every proper vertex coloring of G with χ(G) colors corresponds to a 0-cover of h with
χ(G) many 0-monochromatic rectangles. Therefore, χ(G) ≥ c.

T.-M. Cheung, H. Hatami, P. Hatami, and K. Hosseini 42:11

We next show that there exists a small set of bicliques such that every edge of E is covered
at least once and at most twice by these bicliques. Let h−1(1) =

⋃m
i=1(Ai ×Bi) be a partition

of h−1(1) into m many 1-monochromatic rectangles. Note that every 1-monochromatic
rectangle Ai × Bi corresponds to a biclique Qi := S−

i × S+
i in G, where

S−
i := {(x, y) ∈ V (G) : x ∈ Ai} and S+

i = {(x, y) ∈ V (G) : y ∈ Bi}.

Notice that each edge {(x, y), (x′, y′)} of G is covered at least once by Q1, . . . , Qm, and it is
covered at most twice, the latter happening when h(x, y′) = h(x′, y) = 1.

We have thus constructed a graph G on at most 22t vertices such that χ(G) ≥ c, and
there are at most m bicliques where every edge in G appears in at least one and at most two
bicliques.

Define H2 as the subgraph of G that consists of all the edges covered by exactly two
bicliques among Q1, . . . , Qm. For every i, j ∈ [m], define Qij = (S−

i ∩ S+
j) × (S+

i ∩ S−
j). Note

that each Qij is a biclique of H2, and moreover, each edge of H2 appears in exactly one Qij .
Hence, the biclique partition number of H2 is at most m2. Now, if χ(H2) ≥

√
c, we obtain

H2 as the desired graph. Suppose otherwise that χ(H2) <
√

c, and consider a proper vertex
coloring of H2 with

√
c colors with color classes V1, . . . , V√

c. Since χ(G) ≥ c, there must
exist i such that the induced subgraph of G on Vi, denoted by G[Vi], satisfies χ(G[Vi]) ≥

√
c.

Since Vi is an independent set of H2, thus the restrictions of bicliques Q1, . . . , Qm to Vi form
a biclique partition of G[Vi]. ◀

Lemma 22 and Corollary 21 together imply Theorem 11.

▶ Remark 23. In addition to providing effective bounds on the size of the graph, Lemma 22 also
simplifies the original chain of reductions utilized in prior work [2, 4, 3, 11] toward achieving
a super-polynomial separation between the biclique partition and chromatic numbers. We
will briefly describe the original proof below and highlight the differences.

(i) Similar to our proof of Theorem 11, the chain of reduction begins with the function f

provided by Corollary 21, such that

log Cov0(f) = Ω(n2) and log UCov1(f) = n log4 n.

(ii) Yannakasis [11] (see also [4, Figure 1]) showed how to use f to construct a graph F

on UCov1(f) = 2O(n log4 n) vertices such that every Clique-Stable set separator of F is
of size at least Cov0(f) = 2Ω(n2). Here, a Clique-Stable set separator is a collection of
cuts in F such that for every disjoint pair (C, I) of a clique C and a stable set I in F ,
there is a cut (A, B) in the collection with C ⊆ A and I ⊆ B.

(iii) Bousquet et. al., [3, Lemma 23] show how to use F to construct a new graph G with
the so-called oriented biclique packing number at most 2n log4 n and chromatic number
χ(G) ≥ 2Ω(n2).

(iv) The graph G is then turned into a separation between the biclique partition number
and chromatic number in a different graph H via a final reduction in [3].

The above chain of reductions is not sufficient for our application because the graph G

of Step (iii) has a vertex for each pair (C, I) of a clique C and a stable set I of F , and as
a result, there are no effective upper-bounds on the number of vertices of G. Our proof of
Theorem 11 bypasses Step (ii) and employs a more direct approach to construct a small-size
graph G that has similar properties to the graph G of Step (iii).

ICALP 2023

42:12 Online Learning and Disambiguations of Partial Concept Classes

4 Concluding remarks

A few natural questions remain unanswered. The first question is whether a similar example
H for Theorem 6 with the stronger assumption LD(H) = 1 exists.

▶ Problem 24. Let H be a partial class with LD(H) = 1. Does there exist a disambiguation
of H by a total class H such that LD(H) < ∞? Is there one with VC(H) < ∞?

Theorem 10 shows that for partial classes, having polynomial growth is not a sufficient
condition for PAC learnability. A natural candidate reinstatement of the theorem is to work
with the more restrictive assumption of linear growth.

▶ Problem 25. Let H ⊆ {0, 1, ⋆}X have polynomial growth with parameter 1. Does there
exist a disambiguation H of H with VC(H) < ∞?

Another question is whether one can improve the lower bound of Ω(log log n) in Theorem 6
to Ω(log n).

▶ Problem 26. Can the lower bound in Theorem 6 be improved to VC(H) ≥ Ω(log n)?

Forbidding combinatorial patterns

A natural method to prove upper bounds on the VC dimension of a concept class is establishing
that it does not contain a specific combinatorial pattern. For example, the construction
for Theorem 3 in [1] utilized the fact that the concept class (viewed as a matrix) does not

contain the combinatorial patterns
[
1 1
0 0

]
and

[
1 0
0 1

]
, which are patterns that are in any

concept class H with VC(H) ≥ 2. Similarly, the dual construction in Theorem 6 forbids the

pattern
[
1 0
1 0

]
, a compulsory pattern for any concept class H with LD(H) ≥ 3.

▶ Problem 27. Suppose H ⊆ {0, 1, ⋆}[n] does not contain the pattern
[
1 1
0 1

]
. Does every

disambiguation H of H satisfy VC(H) = O(1)?

References
1 Noga Alon, Steve Hanneke, Ron Holzman, and Shay Moran. A theory of PAC learnability of

partial concept classes. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer
Science (FOCS), pages 658–671. IEEE, 2022.

2 Kaspars Balodis, Shalev Ben-David, Mika Göös, Siddhartha Jain, and Robin Kothari. Unam-
biguous DNFs and Alon-Saks-Seymour. In 2021 IEEE 62nd Annual Symposium on Foundations
of Computer Science – FOCS 2021, pages 116–124. IEEE Computer Soc., Los Alamitos, CA,
[2022] ©2022. doi:10.1109/FOCS52979.2021.00020.

3 N. Bousquet, A. Lagoutte, and S. Thomassé. Clique versus independent set. European J.
Combin., 40:73–92, 2014. doi:10.1016/j.ejc.2014.02.003.

4 Mika Göös. Lower bounds for clique vs. independent set. In 2015 IEEE 56th Annual Symposium
on Foundations of Computer Science—FOCS 2015, pages 1066–1076. IEEE Computer Soc.,
Los Alamitos, CA, 2015. doi:10.1109/FOCS.2015.69.

5 Mika Göös, Shachar Lovett, Raghu Meka, Thomas Watson, and David Zuckerman. Rectangles
are nonnegative juntas. SIAM J. Comput., 45(5):1835–1869, 2016.

6 Hao Huang and Benny Sudakov. A counterexample to the Alon-Saks-Seymour conjecture and
related problems. Combinatorica, 32(2):205–219, 2012.

https://doi.org/10.1109/FOCS52979.2021.00020
https://doi.org/10.1016/j.ejc.2014.02.003
https://doi.org/10.1109/FOCS.2015.69

T.-M. Cheung, H. Hatami, P. Hatami, and K. Hosseini 42:13

7 Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold
algorithm. Machine Learning, 2(4):285–318, 1988. doi:10.1023/a:1022869011914.

8 Jiří Matoušek, editor. Lectures on Discrete Geometry. Springer New York, 2002. doi:
10.1007/978-1-4613-0039-7.

9 Frank Rosenblatt. The perceptron: a probabilistic model for information storage and organiz-
ation in the brain. Psychological review, 65 6:386–408, 1958.

10 Norbert Sauer. On the density of families of sets. Journal of Combinatorial Theory, Series A,
13(1):145–147, 1972.

11 Mihalis Yannakakis. Expressing combinatorial optimization problems by linear programs. J.
Comput. System Sci., 43(3):441–466, 1991. doi:10.1016/0022-0000(91)90024-Y.

ICALP 2023

https://doi.org/10.1023/a:1022869011914
https://doi.org/10.1007/978-1-4613-0039-7
https://doi.org/10.1007/978-1-4613-0039-7
https://doi.org/10.1016/0022-0000(91)90024-Y

A General Framework for Learning-Augmented
Online Allocation
Ilan Reuven Cohen #

Faculty of Engineering, Bar-Ilan University, Ramat Gan, Israel

Debmalya Panigrahi #

Department of Computer Science, Duke University, Durham, NC, USA

Abstract
Online allocation is a broad class of problems where items arriving online have to be allocated to
agents who have a fixed utility/cost for each assigned item so to maximize/minimize some objective.
This framework captures a broad range of fundamental problems such as the Santa Claus problem
(maximizing minimum utility), Nash welfare maximization (maximizing geometric mean of utilities),
makespan minimization (minimizing maximum cost), minimization of ℓp-norms, and so on. We focus
on divisible items (i.e., fractional allocations) in this paper. Even for divisible items, these problems
are characterized by strong super-constant lower bounds in the classical worst-case online model.

In this paper, we study online allocations in the learning-augmented setting, i.e., where the
algorithm has access to some additional (machine-learned) information about the problem instance.
We introduce a general algorithmic framework for learning-augmented online allocation that produces
nearly optimal solutions for this broad range of maximization and minimization objectives using
only a single learned parameter for every agent. As corollaries of our general framework, we improve
prior results of Lattanzi et al. (SODA 2020) and Li and Xian (ICML 2021) for learning-augmented
makespan minimization, and obtain the first learning-augmented nearly-optimal algorithms for the
other objectives such as Santa Claus, Nash welfare, ℓp-minimization, etc. We also give tight bounds
on the resilience of our algorithms to errors in the learned parameters, and study the learnability of
these parameters.

2012 ACM Subject Classification Theory of computation → Scheduling algorithms

Keywords and phrases Algorithms with predictions, Scheduling algorithms, Online algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.43

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2305.18861

Funding Ilan Reuven Cohen: This research was supported by the Israel Science Foundation
grant No. 1737/21.
Debmalya Panigrahi: This research was supported in part by NSF grants CCF-1750140 (CAREER)
and CCF-1955703.

1 Introduction

Recent research has focused on obtaining learning-augmented algorithms for many online
problems to overcome pessimistic lower bounds in competitive analysis. In this paper,
we consider the online allocation framework in the learning-augmented setting. In this
framework, a set of (divisible) items have to be allocated online among a set of agents, where
each agent has a non-negative utility/cost for each item. This framework captures a broad
range of classic problems depending on the objective one seeks to optimize. In load balancing
(also called makespan minimization), the goal is to minimize the maximum (MinMax) cost
of any agent. A more general goal is to minimize the ℓp-norm of the cost vector defined on
the agents, for some p ≥ 1. Both makespan minimization (which is ℓ∞-minimization) and
ℓp-minimization are classic problems in scheduling theory and have been extensively studied
in competitive analysis. In a different vein, the online allocation framework also applies to

EA
T
C
S

© Ilan Reuven Cohen and Debmalya Panigrahi;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 43; pp. 43:1–43:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ilan-reuven.cohen@biu.ac.il
https://orcid.org/0000-0001-7870-6319
mailto:debmalya@cs.duke.edu
https://orcid.org/0000-0003-1799-6660
https://doi.org/10.4230/LIPIcs.ICALP.2023.43
https://arxiv.org/abs/2305.18861
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

43:2 A General Framework for Learning-Augmented Online Allocation

maximization problems, where the allocation of an item obtains some utility for the receiving
agent. This includes the famous Santa Claus problem, where the goal is to maximize the
minimum (MaxMin) utility of any agent, or the maximization of Nash welfare which is
defined as the geometric mean of the agents’ utilities. These maximization objectives have
also been been extensively studied, particularly because of their connection to fairness in
allocations.

Learning-Augmented Online Allocation. In this paper, we consider the online allocation
framework in the learning-augmented setting. Typically, online allocation problems are
characterized by strong super-constant lower bounds in competitive analysis, e.g., Ω(log m)
for load balancing [7], Ω(p) for ℓp-minimization [4] and Ω(m) for both Santa Claus (folklore)
and Nash welfare [9]. A natural question, then, is whether some additional (machine-learned)
information about the problem instance (we call these learned parameters) can help overcome
these lower bounds and obtain a near-optimal solution. In this paper, we answer this
question in the affirmative. In particular, we give a simple, unified framework for obtaining
near-optimal (fractional) allocations using a single learned parameter for every agent. Our
result holds for both maximization and minimization problems, and applies to all objective
functions that satisfy two mild technical conditions that we define below. Indeed, the most
interesting aspect of our techniques and results is this generality: prior work for online
allocation problems, both in competitive analysis and beyond worst-case algorithms, has
typically been specific to the objective at hand, and the techniques for maximization and
minimization objectives bear no similarity. In contrast, our techniques surprisingly handles
not only a broad range of objectives but applies both to maximization and minimization
problems simultaneously. We hope that the generality of our methods will cast a new light
on what is one of the most important classes of problems in combinatorial optimization.

Before proceeding further, we define the two technical conditions that the objective
function of the online allocation problem needs to satisfy for our results to apply. Let
f : Rm

>0 → R>0 be the objective function defined on the vector of costs/utilities of the agents.
Then, the conditions are:

Monotonicity: f is said to be monotone if the following holds: for any ℓ, ℓ′ ∈ Rm
>0 such

that ℓi ≥ ℓ′
i for all i ∈ [m], we have f(ℓ) ≥ f(ℓ′).

Homogeneity: f is said to be homogeneous if the following holds: for any ℓ, ℓ′ ∈ Rm
>0 such

that ℓ′
i = α · ℓi for all i ∈ [m], then we have f(ℓ′) = α · f(ℓ).

We say an objective function is well-behaved if it is both monotone and homogeneous. All
online allocation objectives studied previously that we are aware of are well-behaved, including
the examples given above.

1.1 Our Results
We now state our main result below:

▶ Theorem 1 (Informal). Fix any ϵ > 0. For any online allocation problem with a well-behaved
objective, there is an algorithm that achieves a competitive ratio of 1− ϵ for maximization
problems or 1 + ϵ for minimization problems using a single learned parameter for every agent.

We remark that the role of ϵ in the above theorem is to ensure that the learned parameter
vector is of bounded precision.

Comparison to Prior Work. Lattanzi et al. [17] were the first to consider online allocation
in a learning-augmented setting. They considered a special case of the load balancing
problem called restricted assignment, and showed the surprising result that a single (learned)

I. R. Cohen and D. Panigrahi 43:3

parameter for each agent is sufficient to bypass the lower bound and obtain a nearly optimal
(fractional) allocation. This result was further generalized by Li and Xian [20] to the full
generality of the load balancing problem, but instead of a single parameter, they now
required two parameters for every agent. At a high level, their algorithm first uses one set
of parameters to restrict the set of agents who can receive an item, and then solves the
resulting restricted assignment problem using the second set of parameters. A a corollary of
Theorem 1, we improve this result by obtaining a near-optimal solution using a single learned
parameter for every agent. In both these papers, as well as in our paper, the (fractional)
allocation uses proportional allocation. In the setting of online optimization, proportional
allocations were used earlier by Agrawal et al. [1] for the (weighted) b-matching problem.
As in our paper, they also gave an iterative algorithm for computing the parameters of the
allocation. However, because the two problems are structurally very different (e.g., matching
is a packing problem while our allocation problems are covering problems), the iterative
algorithm in the Agrawal et al. paper is different from ours. To the best of our knowledge,
our results for the other problems, namely Santa Claus, Nash welfare maximization, ℓp-norm
minimization, and other objectives that can be defined in the online allocation framework
are the first results in learning-augmented algorithms for these problems.

We now state our additional results.

Resilience to Prediction Error. A key desiderata of learning-augmented online algorithms
is resilience to errors in the learned parameters. In other words, one desires that the
competitive ratio of the algorithm should gracefully degrade when the learned parameters
used in the algorithm deviate from their optimal values. For well-behaved objectives for
both minimization and maximization problems, we give an error-resilient algorithm whose
competitive ratio degrades gracefully with prediction error:

▶ Theorem 2 (Informal). For any online allocation problem with a well-behaved objective,
there is an (learning-augmented) algorithm that achieves a competitive ratio of O(α) when the
learned parameter input to the algorithm is within a multiplicative factor of α of the optimal
learned parameter for every agent. This holds for both minimization and maximization
objectives.

The above theorem is asymptotically tight for the MaxMin objective. But, interestingly,
for the MinMax objective we can do better:

▶ Theorem 3 (Informal). For the load balancing problem (MinMax objective), there is an
(learning-augmented) algorithm that achieves a competitive ratio of O(log α) when the learned
parameter input to the algorithm is within a multiplicative factor of α of the optimal learned
parameter for every agent. Moreover, the dependence O(log α) in the above statement is
asymptotically tight.

An analogous statement was previously known only in the special case of restricted
assignment [17].

▶ Remark 4. We use a multiplicative measure of error α similar to [17]. For both MinMax
and MaxMin objectives, we may assume w.l.o.g. that α ≤ m. This is because by standard
techniques, it is possible to achieve O(min(α, m)) and O(log min(α, m)) competitiveness
for the MaxMin and MinMax objectives respectively. We also show that our bounds are
asymptotically tight as a function of α, in addition to matching existing lower bounds for
the two problems as a function of m.

ICALP 2023

43:4 A General Framework for Learning-Augmented Online Allocation

Learnability of Parameters. We also study the learnability of the parameters used in our
algorithm. Following [20] and [18], we adopt the PAC framework. We assume that each item
is drawn independently (but not necessarily identically) from a distribution, and show a
bound on the sample complexity of approximately learning the parameter vector under this
setting. For the MaxMin and MinMax objectives, we show the following:

▶ Theorem 5 (Informal). Fix any ϵ > 0. For the online allocation problem with MaxMin or
MinMax objectives, the sample complexity of learning a parameter vector that gives a 1− ϵ

(for MaxMin) or 1 + ϵ (for MinMax) approximation is O(m
log m · log m

ϵ).

We note that a similar result was previously known for the MinMax objective (Li and
Xian [20]). We also generalize this result to all well-behaved objectives subject to a technical
condition of superadditivity for maximization or subadditivity for minimization. All the
objectives described earlier in the introduction satisfy these conditions.

1.2 Our Techniques
Our learning-augmented online algorithms for both minimization and maximization objectives
follow from a single, unified algorithmic framework that we develop in this paper. This is
quite surprising because in the worst-case setting, the online algorithms for the different
objectives do not share any similarity (indeed have different competitive ratios), particularly
between maximization and minimization problems. First, let us first consider the MinMax
and MaxMin objectives. To use common terminology across these problems, let us call
the cost/utility of an item j to an agent i the weight of item j for agent i and denote it
pi,j . Our common algorithmic framework uses proportional allocation according to the
learned parameters of the agents. Let wi denote the parameter for agent i. Normally,
proportional allocation would entail that we allocate a fraction xi,j of item j to agent i

where xi,j = wipi,j∑
i′ wi′ pi′,j

. But, this is clearly not adequate, since it would produce the same
allocation for both the MaxMin and MinMax objectives. Specifically, if pi,j is large for a
pair i, j, then xi,j should be large for the MaxMin objective and small for the MinMax
objective respectively. To implement this intuition, we exponentiate the weight pi,j by a
fixed value α that depends on the objective (i.e., is different for MaxMin and MinMax) and
then allocate using fractions xi,j = wipα

i,j∑
i′ wi′ pα

i′,j

. We call this an exponentiated proportional

allocation (or EP-allocation in short), and call α the exponentiation constant.
Let us fix any value of α. It is clear that for both the MinMax and MaxMin objectives,

an optimal allocation has uniform cumulative fractional weights (called load) across all agents.
(Note that otherwise, an infinitesimal fraction of an item can be repeatedly moved from the
most loaded to the least loaded agent to eventually improve the competitive ratio.) Following
this intuition, we define a canonical allocation as one that sets learned parameters on the
agents in a way that equalizes the loads on all agents. We show that the canonical allocation
always exists and is unique. Indeed, this is true not only for all EP-allocation algorithms,
but for a much broader class of proportional allocation schemes that we called generalized
proportional allocations (or GP-allocations). In the latter class, we allow any transformation
of the weights pi,j before applying proportional allocation. Thus, EP-allocations represent
the subclass of GP-allocations where the transformation is exponentiation by the fixed value
α. We also give a simple iterative (Sinkhorn-like) algorithm for computing the optimal learned
parameters, and establish its convergence properties, for GP-allocations. GP-allocations give
an even larger palette of proportional allocation schemes to choose from than EP-allocations,
and we hope it will be useful in future work for problem settings that are not covered in this
paper (e.g., non-linear utilities).

I. R. Cohen and D. Panigrahi 43:5

Finally, we need to set the value of α specifically for the MinMax and MaxMin objectives.
Intuitively, it is clear that we need to set α to a large positive value for the MaxMin objective
and a large negative value for the MinMax objective. Indeed, we show that in the limit of
α→∞ and α→ −∞, the canonical allocation defined above recovers optimal allocations for
the MaxMin and MinMax objectives respectively. We also show a monotonicity property of
the optimal objective (with the value of α) that can be used to set α to a finite value (function
of ϵ) and obtain a 1 − ϵ (resp., 1 + ϵ) approximation for the MaxMin (resp., MinMax)
objective, for any ϵ > 0.

Now that we have described the EP-allocation scheme for obtaining nearly optimal
algorithms for the MinMax and MaxMin objectives, we generalize to all well-behaved
objective functions. This is quite simple. The main advantage of the MinMax and MaxMin
objectives that is not shared by other objectives is the property that the optimal solution
has uniform load across all agents. Now, suppose for a maximization objective, the load of
agent i in an optimal solution is si (we call this the scaling parameter for agent i). For now,
suppose these values si are also provided offline as a second set of parameters. Then, we
can first scale the weights pi,j using these parameters to obtain a new instance qi,j = pi,j

si
.

Clearly, the optimal solution for the original instance has uniform load across all agents
for the transformed instance. Indeed, by the monotonicity of the maximization objective,
this solution for the transformed instance is also optimal for the MaxMin objective. Using
the above analysis for the MaxMin objective, we can now claim that there exist learned
parameters wi for i ∈ [m] such that setting xi,j = wiqα

i,j∑
i′ wi′ qα

i′,j

gives an optimal solution to
the original instance of the problem. Now, note that

xi,j =
wiq

α
i,j∑

i′ wi′qα
i′,j

=
(wi/sα

i)pα
i,j∑

i′(wi′/sα
i′)pα

i′,j

=
w′

ip
α
i,j∑

i′ w′
i′pα

i′,j

for w′
i = wi/sα

i .

It follows that by using learned parameters w′
i in an EP-allocation on the original instance,

we can obtain an optimal solution for the original maximization objective. (The case for
a minimization objective is identical to the above argument, with the MaxMin objective
being replaced by the MinMax objective.) Finally, using the homogeneity of the objective
function, we can also set α to a finite value (function of ϵ) and obtain a 1− ϵ (resp., 1 + ϵ)
approximation for the maximization (resp., minimization) objective, for any ϵ > 0.

1.3 Related Work
Learning-augmented online algorithms were pioneered by the work of Lykouris and
Vassilvikskii [21] for the caching problem, and has become a very popular research area in
the last few years. The basic idea of this framework is to augment an online algorithm with
(machine-learned) predictions about the future, which helps overcome pessimistic worst case
lower bounds in competitive analysis. Many online allocation problems have been considered in
this framework in scheduling [27, 5, 6, 8, 15, 24], online matching [2, 13, 16], ad delivery [22, 19],
etc. The reader is referred to the survey by Mitzenmacher and Vassilvitskii [25, 26] for
further examples of online learning-augmented algorithms. The papers specifically related to
our work are those of Lattanzi et al. [17] and Li and Xian [20] that we described above, and
that of Lavastida et al. [18] that focuses on the learnability of the parameters for the same
problem. As mentioned earlier, Agrawal et al. [1] used the proportional allocation framework
earlier for the online (weighted) b-matching problem, and gave an iterative algorithm for
computing the parameters of the allocation.

We now give a brief summary of online allocation in the worst-case model. For
minimization problems, two classic objectives are makespan (i.e., ℓ∞ norm) and ℓp norm
minimization for p > 1. The former was studied in several works (e.g., [7, 3]), eventually

ICALP 2023

43:6 A General Framework for Learning-Augmented Online Allocation

leading to an asymptotically tight bound of Θ(log m). This was later generalized to arbitrary
ℓp norms, and a tight bound of Θ(p) was obtained for this case [4, 12]. For maximization
objectives, there are Ω(m) lower bounds for many natural objectives such as MaxMin (see,
e.g., [14]) and Nash welfare [9]. Some recent work has focused on overcoming these lower
bounds using additional information such as monopolist values for the agents [9, 10]. While
this improves the competitive ratio to sub-linear in m, lower bounds continue to rule out
near-optimal solutions (or even constant factor approximations) that we seek in this paper.

Organization. For most of the paper, we only consider the MinMax and MaxMin objectives.
We establish the notation in Section 2 and give an overview of the results. Then, we prove
these results by showing properties of GP-allocations in Section 3 and of EP-allocations in
Section 4. Next, we give noise resilient algorithms in Section 5 and discuss learnability of
the parameters in Section 6. Finally, in Section 7, we extend our results to all well-behaved
objective functions via simple reductions to the MaxMin and MinMax objectives.

2 Preliminaries and Results

2.1 Problem Definition

We have n (divisible) items that arrive online and have to be (fractionally) allocated to m

agents. The weight of item j ∈ [n] for agent i ∈ [m] is denoted pi,j and is revealed when item
j arrives. We denote the weight matrix

P =

 p1,1 . . . p1,n

...
. . .

...
pm,1 . . . pm,n

 where all pi,j > 0 for all i ∈ [m], j ∈ [n].1

A feasible allocation is given by an assignment matrix

X =

x1,1 . . . x1,n

...
. . .

...
xm,1 . . . xm,n

 where xi,j ∈ [0, 1] for all i ∈ [m], j ∈ [n] and
m∑

i=1

xi,j = 1 for all j ∈ [n].

Note that every item has to be fully allocated among all the agents. We use X to denote
the set of feasible solutions. The total weight of an agent i corresponding to an allocation X

(we call this the load of i) is given by

ℓi(P, X) =
∑

j∈[n]

xi,j · pi,j ,

and the vector of loads of all the agents is denoted ℓ(P, X).
The load balancing problem is now defined as

min
X∈X

{
T : ℓi(P, X) ≤ T for all i ∈ [m]

}
,

while the Santa Claus problem is defined as

max
X∈X

{
T : ℓi(P, X) ≥ T for all i ∈ [m]

}
.

I. R. Cohen and D. Panigrahi 43:7

2.2 Exponentiated and Generalized Proportional Allocations
Our algorithmic framework is simple: when allocating item j, we first exponentiate the
weights pi,j to pα

i,j for some fixed α (called the exponentiation constant) that only depends
on the objective being optimized. Next, we perform proportional allocation weighted by the
learned parameters wi for agents i ∈ [m]:

xi,j =
pα

i,j · wi∑
i′∈[m]

pα
i′,j · wi′

.

We call this an exponentiated proportional allocation or EP-allocation in short.
Our main theorem is the following:

▶ Theorem 6. For the load balancing and Santa Claus problems, there are EP-allocations
that achieve a competitive ratio of 1 + ϵ and 1− ϵ respectively, for any ϵ > 0.

The Canonical Allocation. In order to define an EP-allocation and establish Theorem 6, we
need to specify two things: the vector of learned parameters w ∈ Rm

>0 and the exponentiation
constant α. First, we focus on the learned parameters. For any fixed α and a weight matrix
P , we use learned parameters w ∈ Rm

>0 that result in equal load for every agent. We call
this the canonical allocation. The corresponding learned parameters and the load of every
agent are respectively called the canonical parameters (denoted w∗) and the canonical load
(denoted ℓ∗).

Apriori, it is not clear that a canonical allocation should even exist, and even if it does,
that it is unique. Interestingly, we show this existence and uniqueness not just from EP-
allocations but for the much broader class of proportional allocations where any function
f : R>0 → R>0 (called the transformation function) can be used to transform the weights
rather than just an exponential function. I.e.,

xi,j = f(pi,j) · wi∑
i′∈[m]

f(pi′,j) · wi′

.

We call this a generalized proportional allocation or GP-allocation in short.
We show the following theorem for GP-allocations:

▶ Theorem 7. For any weight matrix P ∈ Rm×n
>0 and any transformation function f : R>0 →

R>0, the canonical load for a GP-allocation exists and is unique. Moreover, it is attained by
a unique (up to scaling) set of canonical parameters.

We prove Theorem 7 algorithmically by giving a simple iterative (offline) algorithm that
converges to the set of canonical parameters (see Algorithm 1). We will show later that
the canonical allocations produced by appropriately setting the value of the exponentiation
constant α are respectively optimal (fractional) solutions for the Santa Claus and the load
balancing problems. Therefore, an interesting consequence of the iterative convergence of this
algorithm to the canonical allocation is that it gives a simple alternative offline algorithm
for computing an optimal fractional solution for these two problems. To the best of our
knowledge, this was not explicitly known before our work.

An interesting direction for future research would be to explore other natural classes of
transformation functions, other than the exponential functions considered in this paper. Since
Theorem 7 holds for any transformation function, they also admit a canonical allocation,

ICALP 2023

43:8 A General Framework for Learning-Augmented Online Allocation

and it is conceivable that such canonical allocations would optimize objective functions
other than the MinMax and MaxMin functions considered here. For example, one natural
open problem is following: are there a transformation functions whose canonical allocations
correspond to maximizing Nash Social Welfare or minimizing p-norms of loads?

Monotonicity and Convergence of EP-allocations. Now that we have defined the learned
parameters in Theorem 6 as the corresponding canonical parameters, we are left to define the
values of the exponentiation constant α for the MaxMin and MinMax problems respectively.
We show two key properties of canonical loads of EP-allocations. First, we show that the
canonical load is monotone nondecreasing with the value of α. This immediately suggests
that we should choose the largest possible value of α for the MaxMin problem since it is
a maximization problem, and the smallest possible value of α for the MinMax problem
since it is a minimization problem. Indeed, the second property that we show is that in the
limit of α→∞, the canonical load converges to the optimal objective for the Santa Claus
problem (we denote this optimal value ℓSNT) and in the limit of α→ −∞, the canonical load
converges to the optimal objective for the load balancing problem (we denote this optimal
value ℓMKS).

For a fixed α, let X(P, α, w) denote the assignment matrix and ℓ(P, α, w) the load vector
for a learned parameter vector w. Let ℓ∗(P, α) denote the corresponding canonical load. We
show the following properties of canonical EP-allocations:

▶ Theorem 8. For any weight matrix P ∈ Rm×n
>0 , the following properties hold for canonical

EP-allocations:
The monotonicity property: For α1, α2 ∈ R such that α1 ≥ α2, we have ℓ∗(P, α1) ≥
ℓ∗(P, α2).
The convergence property: lim

α→∞
ℓ∗(P, α) = ℓSNT(P) and lim

α→−∞
ℓ∗(P, α) = ℓMKS(P).

Clearly, Theorem 8 implies Theorem 6 as a corollary when α is set sufficiently large for
the Santa Claus problem and sufficiently small for the load balancing problem.

In the rest of the paper, we will prove Theorem 7 and Theorem 8.

3 Canonical Properties of Generalized Proportional Allocations

In this section, we prove Theorem 7. For notational convenience, we define a transformation
matrix G ∈ Rm×n

>0 where G(i, j) = f(pi,j) for the transformation function f . Using this
notation, we denote by xi,j(G, w) the fractional allocation of item j to agent i, and by
ℓi(P, G, w) the load of agent i (we use ℓ(P, G, w) to denote the vector of agent loads) under
the GP-allocation corresponding to the transformation matrix G and learned parameters w.

We say two sets of learned parameters w, w′ are equivalent (denoted w ≡ w′) if there
exists some constant c > 0 such that w′

i = c · wi for every agent i ∈ [m]. The following
is a simple observation from the GP-allocation scheme that two equivalent sets of learned
parameters produce the same allocation:

▶ Observation 9. For any G ∈ Rm×n
>0 , if w ≡ w′ ∈ Rm

>0, then xi,j(G, w) = xi,j(G, w′) for
all i, j.

We also note that GP-allocations are monotone in the sense that if one agent’s parameter
decreases while the rest increase, then the allocation on this agent decreases as well.

I. R. Cohen and D. Panigrahi 43:9

▶ Observation 10. Consider any G ∈ Rm×n
>0 and any nonzero vector ϵ ∈ Rm

≥0 such that
−wk < ϵk ≤ 0 for some k ∈ [m] and ϵi ≥ 0 for all i ≠ k. Then, xk,j(G, w′) < xk,j(G, w) for
all j ∈ [n], where w′ = w + ϵ and w′ ̸= w.

Our first nontrivial property is that the load vector uniquely determines the learned
parameters up to equivalence of the parameters.

▶ Lemma 11. For any P, G ∈ Rm×n
>0 , ℓi(P, G, w) = ℓi(P, G, w′) for all i ∈ [m] if and only

if w ≡ w′.

Proof. In one direction, if w ≡ w′, the loads are identical because the allocations are identical
(by Observation 9).

We now show the lemma in the opposite direction. Let k = arg mini
wi

w′
i

and c = wk

w′
k
.

Let us define ŵ = c ·w′. Then, ŵk = wk, and ŵi′ =
(

mini
wi

w′
i

)
· w′

i′ ≤ wi′ for all i′ ≠ k.
Now, if w and w′ are not equivalent, then there exists some i′ ∈ [m] such that ŵi′ < wi′ .
Therefore, by Observation 10, xk,j(G, ŵ) > xk,j(G, w) for all j ∈ [n]. But, by Observation 9,
xk,j(G, ŵ) = xk,j(G, w′) for all j ∈ [n]. Thus, xk,j(G, w′) > xk,j(G, w) for all j ∈ [n], which
contradicts ℓk(P, G, w′) = ℓk(P, G, w). ◀

Similarly, we show that if the canonical load exists (i.e., a load vector where all loads are
identical), it must be unique.

▶ Lemma 12. For any P, G ∈ Rm×n
>0 , if there exist w, w′ ∈ Rm

>0 such that ℓi(P, G, w) = ℓ

and ℓi(P, G, w′) = ℓ′ for all i ∈ [m], then ℓ = ℓ′.

Proof. Assume for the purpose of contradiction that there exist w, w′ ∈ Rm
>0 such that for

all i ∈ [m], ℓi(P, G, w) = ℓ and ℓi(P, G, w′) = ℓ′ but ℓ > ℓ′. Let k = arg mini
wi

w′
i

and c = wk

w′
k

,
and let ŵ = c ·w′. We have

ℓ′ = ℓk(P, G, w′) = ℓk(P, G, ŵ) ≥ ℓk(P, G, w) = ℓ, which is a contradiction.

Here, the second equality is by Observation 9, and the inequality is by Observation 10, since
ŵk = wk, and ŵi ≤ wi for i ∈ [m]. ◀

3.1 Convergence of Algorithm 1
The rest of this section focuses on showing the existence of a canonical allocation for GP-
allocations. We do so by showing convergence of the following simple iterative algorithm
(Algorithm 1):

Note that Algorithm 1 ensures that if the loads of all agents are uniform at any stage,
then the iterative process has converged and the algorithm terminates. So, it remains to
show that for any P, G ∈ Rm×n

>0 , this iterative process reaches a set of parameters w∗ ∈ Rm
>0

such that ℓi(P, G, w∗) = ℓi′(P, G, w∗) for all i, i′ ∈ [m].
Our proof has two parts. The first part shows that the maximum and minimum loads

are (weakly) monotone over the course of the iterative process. For this, we focus on a
single iteration. For a vector ℓ ∈ Rm

>0, let ℓmax = maxi∈[m] ℓi and ℓmin = mini∈[m] ℓi be the
maximum and minimum coordinates of ℓ. We will show that if ℓ

(r)
max and ℓ

(r)
min are not equal

at the beginning of an iteration, then ℓ
(r)
max can only decrease (or stay unchanged) and ℓ

(r)
min

can only increase (or stay unchanged) in a single iteration.

▶ Lemma 13. Consider any P, G ∈ Rm×n
>0 , γ > 0. Let w, w′, ℓ, ℓ′ ∈ Rm

>0 such that
ℓi = ℓi(P, G, w), ℓ′

i = ℓi(P, G, w′) and w′
i = wi

ℓi
· γ and let p̃i =

∑
j pi,j. Then, we have

ℓ′
i ≥ ℓmin/

(
1− ℓi−ℓmin

p̃i

)
and ℓ′

i ≤ ℓmax/
(

1+ ℓmax−ℓi
p̃i

)
.

ICALP 2023

43:10 A General Framework for Learning-Augmented Online Allocation

Algorithm 1 The iterative algorithm showing the existence of a canonical allocation for
GP-allocations.

Initialize: w(0) ← 1m

Iteration r:
Compute ℓ(r) as ℓ

(r)
i ← ℓi(P, G, w(r)), for all i ∈ [m], where ℓi(P, G, w(r)) is the

load of agent i under the GP-allocation with transformation matrix G and
learned parameters w(r).
Set w(r+1) as w

(r+1)
i ← w

(r)
i

ℓ
(r)
i

· γ(r), for all i ∈ [m].

Here, γ(r) ∈ R>0 is a scaling factor whose value does not affect the load (by
Observation 9). But, by using, e.g., γ(r) = ℓ

(r)
1 , we can ensure that the algorithm

terminates with a single set of learned parameters instead of repeatedly finding
equivalent sets of parameters after it has converged.

In the second part, we show that the ratio ℓ(r)
max

ℓ
(r)
min

is strictly decreasing after a finite number
of iterations. The proof of this stronger property requires the per-iteration weak monotonicity
property that we establish in the first part of the proof. The proof is deferred to the full
version of the paper.

▶ Lemma 14. Let P, G ∈ Rm×n
>0 be given fixed matrices. Fix an iteration r in Algorithm 1

where ℓ
(r)
max > ℓ

(r)
min. Let ℓ

(r)
max ≥ (1 + ϵ) · ℓ(r)

min for some ϵ ∈ (0, 1]. Then, in the next iteration,
we have ℓ

(r+1)
min ≥ (1 + c · ϵ) · ℓ(r)

min for some constant c > 0 that only depends on P and G.

Using Lemma 13 and Lemma 14, we complete the proof of Theorem 7.

Proof of Theorem 7. We are given fixed matrices P, G ∈ Rm×n
>0 . Let ℓ

(r)
max, ℓ

(r)
min denote the

maximum and the minimum load respectively in iteration r of Algorithm 1. Let c > 0 be the
constant (that depends only on P, G) in Lemma 14.

For a non-negative integer a, let ra be defined recursively as follows:

ra = ra−1 +
⌈

log(1 + 2−a+1)
log (1 + c · 2−a)

⌉
+ 1, where r0 =

⌈
log
(

ℓ(0)
max/ℓ

(0)
min

)
log (1 + c)

⌉
+ 1.

We will show for any a, in any iteration r ≥ ra, we have ℓ(r)
max/ℓ

(r)
min ≤ 1 + 2−a. First, we prove

it for a = 0. If there exists some r ≤ r0 such that ℓ(r)
max/ℓ

(r)
min ≤ 2, then this also holds for

r ≥ r0 by Lemma 13. Otherwise, for all r ≤ r0 we have ℓ(r)
max/ℓ

(r)
min > 2. Then, using Lemma 14

with ϵ = 1, we get ℓ
(r+1)
min ≥ (1 + c) · ℓ(r)

min. Therefore, ℓ
(r0)
min ≥ (1 + c)r0 · ℓ(0)

min > ℓ
(0)
max by our

choice of r0. This contradicts Lemma 13, thereby showing that ℓ(r)
max/ℓ

(r)
min ≤ 2 for any r ≥ r0.

Now, we show the inductive case. Assume the inductive hypothesis that ℓ
(ra−1)
max /ℓ

(ra−1)
min ≤

1 + 2−(a−1). We will prove that ℓ(ra)
max/ℓ

(ra)
min ≤ 1 + 2−(a). The proof is similar to the base

case of a = 0. If there exists some r ≤ ra such that ℓ(r)
max/ℓ

(r)
min ≤ 1 + 2−a, then this

inequality also holds for any r ≥ ra by Lemma 13. Otherwise, for all r ≤ ra we have
ℓ(r)

max/ℓ
(r)
min > 1 + 2−a. Then, for all ra−1 ≤ r ≤ ra, using Lemma 14 with ϵ = 2−a, we have

ℓ
(r+1)
min ≥ (1 + c · 2−a) · ℓ(r)

min. Therefore, ℓ
(ra)
min ≥ (1 + c · 2−a)ra−ra−1 · ℓ(ra−1)

min . By our choice
of ra, this implies ℓ

(ra)
min > (1 + 2−(a−1)) · ℓ(ra−1)

min . By the induction hypothesis, this implies
ℓ

(ra)
min > ℓ

(ra−1)
max . But, this implies ℓ

(ra)
max > ℓ

(ra−1)
max , which contradicts Lemma 13. Therefore,

lim
r→∞

ℓ(r)
max/ℓ

(r)
min = 1,

and ℓ∗(P, G) = lim
r→∞

ℓ(r)
max. Moreover, by Lemma 12 this value is uniquely defined and attained

by a unique (up to scaling) set of learned parameters. ◀

I. R. Cohen and D. Panigrahi 43:11

3.2 Weak Monotonicity of the Maximum and Minimum Loads in
Algorithm 1: Proof of Lemma 13

For ease of description, we assume that G and w are normalized in the following sense:

w = 1m and
∑

j

gi,j = 1.

This transformation is local to the current iteration, and only for the purpose of this proof.
First, we explain why this change of notation is w.l.o.g. Suppose Ĝ, ŵ represent the actual
transformation matrix and learned parameters respectively. Now, we define G as follows:

gi,j = ĝi,j · ŵi∑
i′∈[m] ĝi′,j · ŵi′

,

and our new learned parameters is given by 1m.
Note that the fractional allocation remains unchanged, i.e., xi,j(Ĝ, ŵ) = xi,j(G, 1m) = gi,j ,

and therefore the loads are also unchanged: ℓi = ℓi(P, Ĝ, ŵ) = ℓi(P, G, 1m) =
∑

j∈[n] gi,j ·pi,j .
Assume w.l.o.g. (by Observation 9) that γ = ℓ1, so ŵ′

i = ŵi

ℓi
· ℓ1. In the normalized notation,

the new parameters are w′
i = ℓ1

ℓi
. Again, the allocation is unchanged whether we use the

original notation or the normalized one:

xi,j(Ĝ, ŵ′) = xi,j(G, w′) = gi,j · w′
i∑

i′∈[m] gi′,j · w′
i′

,

and we have, ℓ′
i = ℓi(P, Ĝ, ŵ′) = ℓi(P, G, w′).

The case of Two Agents. For brevity, we will only consider the case of two agents here,
i.e., m = 2. The reduction from general m to m = 2 is deferred to the full version of the
paper.

We have

ℓ1 =
∑

j

g1,j · p1,j and ℓ2 =
∑

j

g2,j · p2,j ,

and the parameter for the second agent after the update is given by: w′
2 = ℓ1

ℓ2
(note that

w′
1 = 1).

Accordingly, the loads after the update are given by:

ℓ′
1 =

∑
j

p1,j ·
g1,j

g1,j + w′
2 · g2,j

and ℓ′
2 =

∑
j

p2,j ·
w′

2 · g2,j

g1,j + w′
2 · g2,j

.

Assume w.l.o.g that ℓ1 < ℓ2. First, note that, from monotonicity (Observation 10) we
have:

ℓ′
2 ≤ ℓ2 = ℓmax/

(
1+ ℓmax−ℓ2

p̃1

)
.

Next, we have to show that

ℓ′
1 ≤ ℓmax/

(
1+ ℓmax−ℓ1

p̃1

)
= ℓ2/

(
1+ ℓ2−ℓ1

p̃1

)
. (1)

The proof of the lower bound on ℓ′
1 is similar and is omitted for brevity.

We use the following standard inequality:

ICALP 2023

43:12 A General Framework for Learning-Augmented Online Allocation

▶ Fact 15 (Milne’s Inequality [23]). For any a, b ∈ Rn, we have

∑
j∈[n]

aj · bj

aj + bj
≤

∑
j∈[n]

aj ·
∑

j∈[n]

bj∑
j∈[n]

(aj + bj)
.

In using this inequality, we set for any j ∈ [n],

aj = p1,j and bj = p1,j ·
(

fj

w′
2
− 1
)

where fj = g1,j + w′
2 · g2,j = g1,j + w′

2 · (1− g1,j).

First, we calculate each term in Milne’s inequality separately:∑
j∈[n]

aj · bj

aj + bj
=
∑
j∈[n]

p1,j · fj − w′
2

fj
=
∑
j∈[n]

p1,j · g1,j + w′
2 · g2,j − w′

2
fj

=
∑
j∈[n]

p1,j · g1,j − w′
2 · (1 − g2,j)
fj

=
∑
j∈[n]

p1,j · g1,j − w′
2 · g1,j

fj
=
∑
j∈[n]

p1,j · g1,j · 1 − w′
2

fj
= ℓ′

1 · (1 − w′
2).

∑
j∈[n]

aj = p̃1.

∑
j∈[n]

bj =
∑
j∈[n]

p1,j · g1,j ·
(

1
w′

2
− 1
)

= ℓ1

w′
2

− ℓ1 = ℓ2 − ℓ1 = ℓ2 · (1 − w′
2).

Using Fact 15, we get

ℓ′
1 · (1− w′

2) ≤ p̃1 · ℓ2

ℓ2 − ℓ1 + p̃1
· (1− w′

2)

By our assumption that ℓ1 < ℓ2, and therefore w′
2 < 1. We now get Equation (1) by

rearranging terms. This completes the proof for the lemma for the case of two agents. As
mentioned previously, the reduction from general m to m = 2 is deferred to the full version
of the paper.

4 Monotonicity and Convergence of Exponentiated Proportional
Allocations

In this section, we prove the monotonicity and convergence of EP-allocations (Theorem 8).
First, we establish monotonicity of EP-allocations (first part of Theorem 8). We compare

two EP-allocations with arbitrary learned parameters but different exponential constants.
We show that with a larger exponent, at least one agent’s load will be higher, regardless of
the parameters used.

▶ Lemma 16. Fix a weight matrix P ∈ Rm×n
>0 . Let α, α′ ∈ R such that α > α′. Now, for

any two sets of learned parameters wα, wα′ ∈ Rm
>0, there exists an agent k ∈ [m] such that

ℓk(P, α, wα) ≥ ℓk(P, α′, wα′).

Proof. Let ∆ denote the vector of differences of loads of the machines in the two allocations,
namely ∆i = ℓi(P, α, wα) − ℓi(P, α′, wα′). Our goal is to show that ∆ has at least one
nonnegative coordinate.

I. R. Cohen and D. Panigrahi 43:13

To show this, we define a vector in the positive orthant c ∈ Rm
>0 as follows:

ci =
(

wα,i

wα′,i

) 1
ρ

, where ρ = α− α′ > 0

and show that this vector c has a nonnegative inner product with the vector ∆. Note that
this suffices since the inner product of a vector with all positive coordinates and one with all
negative coordinates cannot be nonnegative. In other words, we want to show the following:∑

i∈[m]

ci · (ℓi(P, α, wα)− ℓi(P, α′, wα′)) ≥ 0. (2)

Let us denote the fractional allocation of an item j in the two cases by xi,j and x′
i,j

respectively. Then, Equation (2) can be rewritten as∑
i∈[m]

ci ·
∑

j∈[n]

pi,j · (xi,j − x′
i,j) ≥ 0.

Changing the order of the two summations, we rewrite further as

∑
j∈[n]

∑
i∈[m]

ci · pi,j · (xi,j − x′
i,j)

 ≥ 0.

We will prove this inequality separately for each item j ∈ [n]. Namely, we will show that∑
i∈[m]

ci · pi,j · (xi,j − x′
i,j) ≥ 0, for every j ∈ [n]. (3)

Fix an item j. Since the item is fixed, we will drop j from the notation and define u ∈ Rm

as

ui = pi · (xi − x′
i).

So, we need to show that

c · u ≥ 0, i.e.,
∑

i∈[m]

ci · ui ≥ 0. (4)

We have

∑
i

ci · ui =
∑

i

ci · pi ·
(

pα
i · wα,i∑

i′ pα
i′ · wα,i′

−
pα′

i · wα′,i∑
i′ pα′

i′ · wα′,i′

)

= 1
T

·
∑

i

ci · pi ·

(
pα

i · wα,i ·

(∑
i′

pα′

i′ · wα′,i′

)
− pα′

i · wα′,i ·

(∑
i′

pα
i′ · wα,i′

))

where T =

(∑
i′

pα′

i′ · wα′,i′

)
·

(∑
i′

pα
i′ · wα,i′

)
.

Now, on the right hand side of the above equation, we replace α by α′ + ρ and wα,i by
wα′,i · cρ

i for every i ∈ [m]. This gives us:

ICALP 2023

43:14 A General Framework for Learning-Augmented Online Allocation

∑
i

ci · ui =

1
T

∑
i

ci · pi

(
pα′

i · pρ
i · wα′,i · cρ

i

(∑
i′

pα′

i′ · wα′,i′

)
− pα′

i · wα′,i

(∑
i′

pα′

i′ · pρ
i′ · wα′,i′ · cρ

i′

))

= 1
T

∑
i

bi

(
ai · bρ

i

(∑
i′

ai′

)
− ai

(∑
i′

ai′ · bρ
i′

))
,

where ai = wα′,i · pα′
i and bi = pi · ci.

Rearranging the summations on the two terms on the right hand side, we get

∑
i

ci · ui = 1
T
·

(∑
i′

ai′

)
·
∑

i

ai · bρ+1
i − 1

T
·

(∑
i′

ai′ · bρ
i′

)
·
∑

i

ai · bi

Now, let zi = a
1/2
i , and yi = a

1/2
i · bρ/2+1/2

i , and θ = |ρ−1|
ρ+1 . Then, we have

T ·
∑

i

ci · ui =
(∑

i′

ai′

)
·

(∑
i

ai · bρ+1
i

)
−

(∑
i′

ai′ · bρ
i′

)
·

(∑
i

ai · bi

)

=
(∑

i′

z2
i′

)
·

(∑
i

y2
i

)
−

(∑
i′

z1+θ
i′ · y1−θ

i′

)
·

(∑
i

z1−θ
i · y1+θ

i

)
.

In the last equation, the first term follows directly from ai′ = z2
i′ and ai · bρ+1

i = y2
i . The

second term is more complicated. There are two cases. If ρ ≤ 1, then ai′ ·bρ
i′ = z1+θ

i′ ·y1−θ
i′ and

ai · bi = z1−θ
i · y1+θ

i but if ρ > 1, then the roles get reversed and we get ai′ · bρ
i′ = z1−θ

i′ · y1+θ
i′

and ai · bi = z1+θ
i · y1−θ

i .
Now, note that T ≥ 0. So, to establish

∑
i ci · ui ≥ 0, it suffices to show that the right

hard side of the equation is nonnegative. We do so by employing Callebaut’s inequality
which we state below:

▶ Fact 17 (Callebaut’s Inequality [11]). For any y, z ∈ Rn and θ ≤ 1, we have(∑
i′

z2
i′

)
·

(∑
i

y2
i

)
≥

(∑
i′

z1+θ
i′ · y1−θ

i′

)
·

(∑
i

z1−θ
i · y1+θ

i

)

Note that we can apply Callebaut’s inequality because ρ ≥ 0 implies that θ ≤ 1. This
completes the proof of the lemma. ◀

We now state a lemma asserting the convergence property of EP-allocations. The proof
of the lemma, which is constructive in the sense that it gives an algorithm to determine α

and wα or α′ and wα′ , is deferred to the full version of the paper.

▶ Lemma 18. Given any weight matrix P ∈ Rm×n
>0 and any constant ϵ > 0,

(a) there exists an α (think of α as a sufficiently large negative number) and a corresponding
set of parameters wα such that ℓi(P, α, wα) ≤ (1 + ϵ) · ℓMKS(P) for all i ∈ [m].

(b) there exists an α′ (think of α′ as a sufficiently large positive number) and a corresponding
set of parameters wα′ such that ℓi(P, α′, wα′) ≥ (1− ϵ) · ℓSNT(P) for all i ∈ [m].

We are now ready to complete the proof of Theorem 8.

I. R. Cohen and D. Panigrahi 43:15

Proof of Theorem 8. First by Lemma 11, there exists w∗
α and w∗

α′ , such that, for all i ∈ [m],
ℓi(P, α, w∗

α) = ℓ∗(P, α) and ℓi(P, α′, w∗
α′) = ℓ∗(P, α′). Now, if ℓ∗(P, α) < ℓ∗(P, α′), it would

contradict Lemma 16. And combining Lemma 16 and Lemma 18, we completed the proof
the second part of Theorem 8. ◀

5 Noise Resilience: Handling Predictions with Error

In this section, we show the noise resilience of our algorithms, namely that we can handle
errors in the learned parameters. First, we will show that for both objectives (MaxMin and
MinMax), an η-approximate set of learned parameters yields an online algorithm with a
competitive ratio of at least/at most η. Second, for the MinMax objective, we show that it is
possible to improve the competitive ratio further in the following sense: using a set of learned
parameters with a multiplicative error of η with respect to the optimal parameters, we can
obtain a O(log η)-competitive algorithm. (This was previously shown by Lattanzi et al. [17]
but only for the special case of restricted assignment.) We also rule out a similar guarantee
for the MaxMin objective, i.e., we show that using η-approximate learned parameters, an
algorithm cannot hope to obtain a competitive ratio better than η/c for some constant c.
Finally, we show that noise-resilient bounds can be obtained not just for the MinMax and
MaxMin objectives but also for any homogeneous monotone minimization or maximization
objective function.

Formally, a weight vector w is η-approximate with respect to a weight vector to w∗, if
for any two agents i, i′ ∈ [m], wi′

wi
≤ η · w∗

i′
w∗

i
. First, we show a basic noise resilience property

that holds for both the MinMax and MaxMin objectives:

▶ Lemma 19. Fix a weight matrix P ∈ Rm×n
>0 and a transformation matrix G ∈ Rm×n

>0 . For
any two parameter vectors w∗, w ∈ Rm

>0, such that w is η-approximate to w∗, we have that
for any agent k:

ℓk(P, G, w∗)
η

≤ ℓk(P, G, w) ≤ η · ℓk(P, G, w∗).

Proof. Let yi,j = xi,j(G, w∗) and zi,j = xi,j(G, w) be the respective fractional allocations
under proportional allocation using the transformation matrix G. For an agent i, let
τi = wi/w∗

i . Then for any two agents i, k, we have that 1/η ≤ τk/τi ≤ η. We have,
yi,j

zi,j
=
∑

i′∈[m]
τi′
τi
· yi′,j . Therefore,

yi,j

zi,j
=
∑

i′∈[m]

τi′

τi
· yi′,j ≥

∑
i′∈[m]

1
η
· yi′,j = 1

η
·
∑

i′∈[m]

yi′,j = 1
η

, and

yi,j

zi,j
=
∑

i′∈[m]

τi′

τi
· yi′,j ≤

∑
i′∈[m]

η · yi′,j = η ·
∑

i′∈[m]

yi′,j = η.

Hence, yi,j/η ≤ zi,j ≤ yi,j · η. Finally, the lemma hold by summing over all items. ◀

The next theorem follows immediately by using a proportional allocation according to
the parameter vector w̃:

▶ Theorem 20. Fix any P, G ∈ Rm×n
>0 . Let w be a learned parameter vector that gives a

solution of value γ for the MaxMin (resp., MinMax) objective using proportional allocation.
Let w̃ be η-approximate to w for some η > 1. Then, there exists an online algorithm that
given w̃ generates a solution with value at least Ω(γ/η) (resp., at most O(ηγ)).

ICALP 2023

43:16 A General Framework for Learning-Augmented Online Allocation

Algorithm 2 The online algorithm with predictions.

Let ŵ a prediction vector and T is the offline optimal objective for the
MinMax problem.
Initialize: ℓi ← 0 and w̃i ← ŵi, for all i ∈ [m]

For each item j:
Compute xi,j = f(pi,j)·w̃i∑

i′∈[m]

f(pi′,j) · w̃i′

ℓi ← ℓi + pi.j · xi,j , for all i ∈ [m]
If exists i ∈ [m], s.t. ℓi > 2 · T

Set ℓi ← 0
Update w̃i ← w̃i/2

In particular, if w is the optimal learned parameter vector in the above theorem and w̃ is
an η-approximation to it, then we obtain a competitive ratio of Ω(1/η).

The rest of this section focuses on the MinMax objective for which we can obtain an
improved bound. In the next lemma, we establish an upper bound on the load, using
Lemma 19 and monotonicity.

▶ Lemma 21. Fix a weight matrix P ∈ Rm×n
>0 and a transformation matrix G ∈ Rm×n

>0 . For
any two parameter vectors w∗, w ∈ Rm

>0 such that there exists an agent k ∈ [m] for which
w∗

k/2 ≤ wk ≤ w∗
k and for all other agents i ̸= k, we have wi ≥ w∗

i /2, then the following
holds: ℓk(P, G, w) ≤ 2 · ℓk(P, G, w∗).

Proof. Define w′ where w′
k = w∗

k (i.e., the maximum in its allowed range) and w′
i = w∗

i /2 for
all i ̸= k (i.e., the minimum in their allowed ranges). Now, by monotonicity (Observation 10),
we have xk,j(G, w) ≤ xk,j(G, w′), and therefore, ℓk(P, G, w) ≤ ℓk(P, G, w′). Note that for
w′, for any two agents i1, i2, wi1

wi2
≤ 2 · w∗

i1
w∗

i2
. Therefore, by Lemma 19, we have ℓk(P, G, w′) ≤

2 · ℓk(P, G, w∗). By combining the two inequalities, we have ℓk(P, G, w) ≤ ℓk(P, G, w′) ≤
2 · ℓk(P, G, w∗), as required. ◀

Let us denote the predicted learned parameter vector that is given offline to the MinMax
algorithm by ŵ. We also assume that the algorithm knows the optimal objective value T .
By scaling, we assume w.l.o.g that w̃ is coordinate-wise larger than the optimal learned
parameter vector w. The algorithm uses a learned parameter vector ŵ that is iteratively
refined, starting with ŵ = w̃ (see Algorithm 2). In each iteration, the current parameter
vector ŵ is used to determine the assignment using proportional allocation until an agent’s
load in the current phase exceeds 2T . If this happens for any agent i, then the algorithm
halves the value of ŵi, starts a new phase for agent i, and continues doing proportional
allocation with the updated learned parameter vector ŵ.

▶ Theorem 22. Fix any P, G ∈ Rm×n
>0 . Let w be a learned parameter vector that gives

a fractional solution with maximum load T using proportional allocation. Let w̃ be an η-
approximate prediction for w. Then there exists an online algorithm that given w̃ generates
a fractional assignment of items to agents with maximum load at most O(T log η).

Proof. By the algorithm’s definition, an agent’s total load is at most 2T times the number
of phases for the agent. We show that for any agent i, the parameter w̃i is always at least
wi/2. This immediately implies that the number of phases for machine i is O(log η), which
in turn establishes the theorem.

I. R. Cohen and D. Panigrahi 43:17

Suppose, for contradiction, in some phase for agent k, we have w̃k < wk/2. Moreover,
assume w.l.o.g. that agent k is the first agent for which this happens. Clearly, by the
algorithm definition, there is a preceding phase for agent k when w̃k < wk. Note that, in
this entire preceding phase, we have wk > w̃k ≥ wk/2, and for all i ̸= k, w̃i ≥ wi/2 (by
our assumption that k is the first agent to have a violation). However, by Lemma 21, the
load of agent k in the preceding phase would be at most 2T . This contradicts the fact that
the algorithm started a new phase for agent k when its load exceeded 2T in the preceding
phase. ◀

6 Learnability of the Parameters

We consider the learning model introduced by [18], and show that under this model, the
parameter vector w can be learned efficiently from sampled instances. Specifically, we consider
the following model: the jth item (i.e., the values of pj = (pi,j : i ∈ [m]) is independently
sampled from a (discrete) distribution Dj . In other words, the matrix P of utilities is sampled
from D = ×jDj .

We set up the model for the MaxMin objective; the setup for the MinMax objective
is very similar and is omitted for brevity. Let T = EP ∼D[ℓSNT(P)] be the expected value
of the MaxMin objective in the optimal solution for an instance ℓSNT(P) drawn from D.
Morally, we would like to say that we can obtain a vector w that gives a nearly optimal
solution (in expectation) using proportional allocation (i.e., a MaxMin objective of (1− ϵ) ·T
in expectation for some error parameter ϵ) using a bounded (as a function of ϵ) number of
samples. Similar to [18], we need the following assumption:

Small Items Assumption. Conceptually, this assumption states that each individual item
has a small utility compared to the overall utility of any agent in an optimal solution.
Precisely, we need pi,j ≤ T

ζ for every i ∈ [m], j ∈ [n] for some value ζ = Θ
(

log m
ϵ2

)
.

Our main theorem in this section for the MaxMin and MinMax objectives are:

▶ Theorem 23. Fix an ϵ > 0 for which the small items assumption holds. Then, there is an
(learning) algorithm that samples O(m

log m · log m
ϵ) independent instances from D and outputs

(with high probability) a prediction vector w such that using w in the proportional allocation
scheme gives a MaxMin objective of at least (1 − Ω(ϵ)) · T in expectation over instances
P ∼ D.

▶ Theorem 24. Fix an ϵ > 0 for which the small items assumption holds. Then, there
is an (learning) algorithm that samples O(m

log m · log m
ϵ) independent instances from D and

outputs (with high probability) a prediction vector w such that using w in the proportional
allocation scheme gives a MinMax objective of at most (1 + O(ϵ))T in expectation over
instances P ∼ D.

Importantly, the description of the entries of w in Theorem 23 and Theorem 24
are bounded. Specifically, let us define NET(m, ϵ) ⊆ Rm

>0 as follows: (a) for the
MaxMin objective, w ∈ NET(m, ϵ) if there exist vectors u, δ ∈ Rm

>0 such that wi = δi

uα
i

and ui, δi ∈
{(

1
1−ϵ

)r

: r ∈ [K]
}

for some K = O(m
ϵ log m

ϵ), and (b) for the MinMax
objective, w ∈ NET′(m, ϵ) if there exist vectors u, δ ∈ Rm

>0 such that wi = δi

uα
i

and
ui, δi ∈ {(1 + ϵ)r : r ∈ [K]} for some K = O(m

ϵ log m
ϵ). The vectors w produced by the

learning algorithm in Theorem 23 and Theorem 24 will satisfy w ∈ NET(m, ϵ) and
w ∈ NET′(m, ϵ) in the respective cases.

ICALP 2023

43:18 A General Framework for Learning-Augmented Online Allocation

Proof Idea for Theorem 23 and Theorem 24. Recall that in PAC theory, the number of
samples needed to learn a function from a family of N functions is about O(log N). Indeed,
restricting w to be in the class NET(m, ϵ) or NET′(m, ϵ) serves this role of limiting the
hypothesis class to a finite, bounded set since |NET(m, ϵ)| = |NET′(m, ϵ)| = K2m where
K = O(m

ϵ log m
ϵ). Using standard PAC theory, this implies that using about O(m log K) =

O(m · log m
ϵ) samples, we can learn the “best” vector in NET(m, ϵ) or NET′(m, ϵ) depending

on whether we have the MaxMin or MinMax objective. Our main technical work is to
show that this “best” vector produces an approximately optimal solution when used in
proportional allocation. We state this lemma next:

▶ Lemma 25. Fix any P . For the MaxMin objective, there exists a learned parameter
vector w ∈ NET(m, ϵ) which when used in EP-allocation gives a 1− Ω(ϵ) approximation.
For the MaxMin objective, there exists a learned parameter vector w′ ∈ NET′(m, ϵ) which
when used in EP-allocation gives a 1 + O(ϵ) approximation.

The proofs of this lemma and the preceding theorems are deferred to the full version of the
paper.

7 Generalization to Well-Behaved Objectives

We first generalize Theorem 6 to all well-behaved functions (Proofs for this section are
deferred to the full version).

▶ Theorem 26. Fix any instance of an online allocation problem with divisible items where
the goal is to maximize or minimize a monotone homogeneous objective function. Then, there
exists an online algorithm and a learned parameter vector in Rm

>0 that achieves a competitive
ratio of 1− ϵ (for maximization) or 1 + ϵ (for minimization).

Proof. Fix an objection function f and a matrix P ∈ Rm×n
>0 . Let ℓf

i denote the load of agent
i in an optimal solution for objective function f . Also, let xi,j denote the fraction of item j

assigned to agent i in this optimal solution. Now, consider the matrix P̃ , where p̃i,j = pi,j

ℓf
i

.

By the monotonicity property of f , the optimal objective value for P̃ is 1. Therefore, by
Theorem 8, there exist α and w̃, such that using an EP-allocation, we get ℓ∗(P̃ , α, w̃) ≥ 1− ϵ

for maximization and ℓ∗(P̃ , α, w̃) ≤ 1 + ϵ for minimization. Let x∗
i,j be the fraction of item j

assigned to agent i in this approximate solution. By the definition of EP-allocation, x∗
i,j is

proportional to p̃α
i,j · w̃i =

(
pi,j

ℓf
i

)α

· w̃i = pα
i,j · w̃i

(ℓf
i

)α . Thus, if we define w such that wi = w̃i

(ℓf
i

)α ,
then the corresponding EP-allocation gives a (1− ϵ)-approximate solution for maximization
and (1 + ϵ)-approximate solution for minimization. ◀

7.1 Noise Resilience
Next, we consider noise resilience for well-behaved functions, i.e., we generalize Theorem 20
to all well-behaved objective functions. This follows immediately from Lemma 19 and the
observation that if all loads are scaled by η, then the objective value for a well-behaved
objective is also scaled by η. We state this generalized theorem below:

▶ Theorem 27. Fix any P, G ∈ Rm×n
>0 and any monotone, homogeneous function f . Let w

be a learned parameter vector that gives a solution of objective value γ using EP-allocation.
Let w̃ be η-approximate to w for some η > 1. Then, the EP-allocation for w̃ gives a solution
with value at least γ/η for maximization and at most ηγ for minimization.

I. R. Cohen and D. Panigrahi 43:19

7.2 Learnability
Finally, we consider learnability of parameters for well-behaved functions, i.e., we generalize
Theorem 23 and using an by assuming additional property of the objective function:

For a maximization objective f , we need superadditivity: f(
∑

r ℓr) ≥
∑

r f(ℓr).
For a minimization objective f , we need subadditivity: f(

∑
r ℓr) ≤

∑
r f(ℓr).

▶ Theorem 28. Let f be a well-behaved function. If f is superadditive, the following
theorem holds for maximization of f , while if f is subadditive, the following theorem holds
for minimization of f . Let T be the expectation of the maximum value of f over instances
sampled from D. Fix an ϵ > 0 for which the small items assumption holds. Then, there is an
(learning) algorithm that samples O(m

log m · log m
ϵ) independent instances from D and outputs

(with high probability) a prediction vector w such that using w in the EP-allocation gives
a value of f that is at least (1− Ω(ϵ)) · T for maximization and at most (1 + O(ϵ)) · T for
minimization, in expectation over instances P ∼ D.

8 Conclusion and Future Directions

In this paper, we gave a unifying framework for designing near-optimal algorithm for fractional
allocation problems for essentially all well-studied minimization and maximization objectives
in the literature. The existence of this overarching framework is rather surprising because
the corresponding worst-case problems exhibit a wide range of behavior in terms of the best
competitive ratio achievable, as well as the techniques required to achieve those bounds.
It would be interesting to gain further understanding of the optimal learned parameters
introduced in this paper. One natural conjecture is that these are optimal dual variables
for a suitably defined convex program (for instance, such convex programs are known for
restricted assignment and b-matching [1]). Another interesting direction of future work would
be to explore other polytopes beyond the simple assignment polytope considered in this
paper, such as that corresponding to congestion minimization problems.

References
1 Shipra Agrawal, Morteza Zadimoghaddam, and Vahab Mirrokni. Proportional allocation:

Simple, distributed, and diverse matching with high entropy. In International Conference on
Machine Learning, pages 99–108. PMLR, 2018.

2 Antonios Antoniadis, Themis Gouleakis, Pieter Kleer, and Pavel Kolev. Secretary and
online matching problems with machine learned advice. In Advances in Neural Information
Processing Systems 33: Annual Conference on Neural Information Processing Systems
2020, NeurIPS 2020, 2020. URL: https://proceedings.neurips.cc/paper/2020/hash/
5a378f8490c8d6af8647a753812f6e31-Abstract.html.

3 James Aspnes, Yossi Azar, Amos Fiat, Serge A. Plotkin, and Orli Waarts. On-line routing
of virtual circuits with applications to load balancing and machine scheduling. J. ACM,
44(3):486–504, 1997. doi:10.1145/258128.258201.

4 Baruch Awerbuch, Yossi Azar, Edward F. Grove, Ming-Yang Kao, P. Krishnan, and
Jeffrey Scott Vitter. Load balancing in the lp norm. In 36th Annual Symposium on
Foundations of Computer Science, pages 383–391. IEEE Computer Society, 1995. doi:
10.1109/SFCS.1995.492494.

5 Yossi Azar, Stefano Leonardi, and Noam Touitou. Flow time scheduling with uncertain
processing time. In STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of
Computing, pages 1070–1080. ACM, 2021. doi:10.1145/3406325.3451023.

ICALP 2023

https://proceedings.neurips.cc/paper/2020/hash/5a378f8490c8d6af8647a753812f6e31-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/5a378f8490c8d6af8647a753812f6e31-Abstract.html
https://doi.org/10.1145/258128.258201
https://doi.org/10.1109/SFCS.1995.492494
https://doi.org/10.1109/SFCS.1995.492494
https://doi.org/10.1145/3406325.3451023

43:20 A General Framework for Learning-Augmented Online Allocation

6 Yossi Azar, Stefano Leonardi, and Noam Touitou. Distortion-oblivious algorithms for
minimizing flow time. In Proceedings of the 2022 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2022, pages 252–274. SIAM, 2022. doi:10.1137/1.9781611977073.13.

7 Yossi Azar, Joseph Naor, and Raphael Rom. The competitiveness of on-line assignments. J.
Algorithms, 18(2):221–237, 1995. doi:10.1006/jagm.1995.1008.

8 Étienne Bamas, Andreas Maggiori, Lars Rohwedder, and Ola Svensson. Learning augmented
energy minimization via speed scaling. In Advances in Neural Information Processing
Systems 33, NeurIPS 2020, 2020. URL: https://proceedings.neurips.cc/paper/2020/
hash/af94ed0d6f5acc95f97170e3685f16c0-Abstract.html.

9 Siddhartha Banerjee, Vasilis Gkatzelis, Artur Gorokh, and Billy Jin. Online nash social welfare
maximization with predictions. In Proceedings of the 2022 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2022, pages 1–19. SIAM, 2022.

10 Siddharth Barman, Arindam Khan, and Arnab Maiti. Universal and tight online algorithms
for generalized-mean welfare. In Thirty-Sixth AAAI Conference on Artificial Intelligence,
pages 4793–4800. AAAI Press, 2022.

11 DK Callebaut. Generalization of the cauchy-schwarz inequality. Journal of mathematical
analysis and applications, 12(3):491–494, 1965.

12 Ioannis Caragiannis. Better bounds for online load balancing on unrelated machines. In
Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2008, pages 972–981. SIAM, 2008.

13 Justin Y. Chen and Piotr Indyk. Online bipartite matching with predicted degrees. CoRR,
2021. arXiv:2110.11439.

14 MohammadTaghi Hajiaghayi, MohammadReza Khani, Debmalya Panigrahi, and Max Springer.
Online algorithms for the santa claus problem. In Advances in Neural Information Processing
Systems 35, NeurIPS 2022, 2022.

15 Sungjin Im, Ravi Kumar, Mahshid Montazer Qaem, and Manish Purohit. Non-clairvoyant
scheduling with predictions. In SPAA ’21: 33rd ACM Symposium on Parallelism in Algorithms
and Architectures, Virtual Event, USA, 6-8 July, 2021, pages 285–294. ACM, 2021. doi:
10.1145/3409964.3461790.

16 Ravi Kumar, Manish Purohit, Aaron Schild, Zoya Svitkina, and Erik Vee. Semi-online bipartite
matching. In 10th Innovations in Theoretical Computer Science Conference, ITCS 2019, volume
124 of LIPIcs, pages 50:1–50:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019.
doi:10.4230/LIPIcs.ITCS.2019.50.

17 Silvio Lattanzi, Thomas Lavastida, Benjamin Moseley, and Sergei Vassilvitskii. Online
scheduling via learned weights. In Proceedings of the 2020 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2020, pages 1859–1877. SIAM, 2020. doi:10.1137/1.9781611975994.114.

18 Thomas Lavastida, Benjamin Moseley, R. Ravi, and Chenyang Xu. Learnable and instance-
robust predictions for online matching, flows and load balancing. In 29th Annual European
Symposium on Algorithms, ESA 2021, volume 204 of LIPIcs, pages 59:1–59:17, 2021. doi:
10.4230/LIPIcs.ESA.2021.59.

19 Thomas Lavastida, Benjamin Moseley, R. Ravi, and Chenyang Xu. Using predicted weights
for ad delivery. In Applied and Computational Discrete Algorithms, ACDA 2021, 2021.
doi:10.1137/1.9781611976830.3.

20 Shi Li and Jiayi Xian. Online unrelated machine load balancing with predictions revisited.
In Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 2021.
URL: http://proceedings.mlr.press/v139/li21w.html.

21 Thodoris Lykouris and Sergei Vassilvitskii. Competitive caching with machine learned advice.
J. ACM, 68(4):24:1–24:25, 2021. doi:10.1145/3447579.

22 Mohammad Mahdian, Hamid Nazerzadeh, and Amin Saberi. Online optimization with
uncertain information. ACM Trans. Algorithms, 8(1):2:1–2:29, 2012. doi:10.1145/2071379.
2071381.

https://doi.org/10.1137/1.9781611977073.13
https://doi.org/10.1006/jagm.1995.1008
https://proceedings.neurips.cc/paper/2020/hash/af94ed0d6f5acc95f97170e3685f16c0-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/af94ed0d6f5acc95f97170e3685f16c0-Abstract.html
https://arxiv.org/abs/2110.11439
https://doi.org/10.1145/3409964.3461790
https://doi.org/10.1145/3409964.3461790
https://doi.org/10.4230/LIPIcs.ITCS.2019.50
https://doi.org/10.1137/1.9781611975994.114
https://doi.org/10.4230/LIPIcs.ESA.2021.59
https://doi.org/10.4230/LIPIcs.ESA.2021.59
https://doi.org/10.1137/1.9781611976830.3
http://proceedings.mlr.press/v139/li21w.html
https://doi.org/10.1145/3447579
https://doi.org/10.1145/2071379.2071381
https://doi.org/10.1145/2071379.2071381

I. R. Cohen and D. Panigrahi 43:21

23 EA Milne. Note on rosseland’s integral for the stellar absorption coefficient. Monthly Notices
of the Royal Astronomical Society, 85:979–984, 1925.

24 Michael Mitzenmacher. Scheduling with predictions and the price of misprediction. In
11th Innovations in Theoretical Computer Science Conference, ITCS 2020, volume 151 of
LIPIcs, pages 14:1–14:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:
10.4230/LIPIcs.ITCS.2020.14.

25 Michael Mitzenmacher and Sergei Vassilvitskii. Algorithms with predictions. In Beyond
the Worst-Case Analysis of Algorithms, pages 646–662. Cambridge University Press, 2020.
doi:10.1017/9781108637435.037.

26 Michael Mitzenmacher and Sergei Vassilvitskii. Algorithms with predictions. Commun. ACM,
65(7):33–35, 2022. doi:10.1145/3528087.

27 Manish Purohit, Zoya Svitkina, and Ravi Kumar. Improving online algorithms
via ML predictions. In Advances in Neural Information Processing Systems
31, NeurIPS 2018, 2018. URL: https://proceedings.neurips.cc/paper/2018/hash/
73a427badebe0e32caa2e1fc7530b7f3-Abstract.html.

ICALP 2023

https://doi.org/10.4230/LIPIcs.ITCS.2020.14
https://doi.org/10.4230/LIPIcs.ITCS.2020.14
https://doi.org/10.1017/9781108637435.037
https://doi.org/10.1145/3528087
https://proceedings.neurips.cc/paper/2018/hash/73a427badebe0e32caa2e1fc7530b7f3-Abstract.html
https://proceedings.neurips.cc/paper/2018/hash/73a427badebe0e32caa2e1fc7530b7f3-Abstract.html

Sample-Based Distance-Approximation for
Subsequence-Freeness
Omer Cohen Sidon #

Tel Aviv University, Israel

Dana Ron # Ñ

Tel Aviv University, Israel

Abstract
In this work, we study the problem of approximating the distance to subsequence-freeness in the
sample-based distribution-free model. For a given subsequence (word) w = w1 . . . wk, a sequence
(text) T = t1 . . . tn is said to contain w if there exist indices 1 ≤ i1 < · · · < ik ≤ n such that tij = wj

for every 1 ≤ j ≤ k. Otherwise, T is w-free. Ron and Rosin (ACM TOCT 2022) showed that the
number of samples both necessary and sufficient for one-sided error testing of subsequence-freeness
in the sample-based distribution-free model is Θ(k/ϵ).

Denoting by ∆(T, w, p) the distance of T to w-freeness under a distribution p : [n] → [0, 1], we
are interested in obtaining an estimate ∆̂, such that |∆̂ − ∆(T, w, p)| ≤ δ with probability at least
2/3, for a given distance parameter δ. Our main result is an algorithm whose sample complexity is
Õ(k2/δ2). We first present an algorithm that works when the underlying distribution p is uniform,
and then show how it can be modified to work for any (unknown) distribution p. We also show that
a quadratic dependence on 1/δ is necessary.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms

Keywords and phrases Property Testing, Distance Approximation

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.44

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2305.01358

Funding Dana Ron: Supported by the Israel Science Foundation (grant number 1146/18) and the
Kadar-family award.

1 Introduction

Distance approximation algorithms, as defined in [29], are sublinear algorithms that approx-
imate (with constant success probability) the distance of objects from satisfying a prespecified
property P. Distance approximation (and the closely related notion of tolerant testing) is
an extension of property testing [31, 20], where the goal is to distinguish between objects
that satisfy a property P and those that are far from satisfying the property.1 In this work
we consider the property of subsequence-freeness. For a given subsequence (word) w1 . . . wk

over some alphabet Σ, a sequence (text) T = t1 . . . tn over Σ is said to be w-free if there do
not exist indices 1 ≤ j1 < · · · < jk ≤ n such that tji = wi for every i ∈ [k].2

In most previous works on property testing and distance approximation, the algorithm is
allowed query access to the object, and distance to satisfying the property in question, P,
is defined as the minimum Hamming distance to an object that satisfies P, normalized by

1 Tolerant testing algorithms are required to distinguish between objects that are close to satisfying a
property and those that are far from satisfying it.

2 For an integer x, we use [x] to denote the set of integers {1, . . . , x}

EA
T
C
S

© Omer Cohen Sidon and Dana Ron;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 44; pp. 44:1–44:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:omercs123@gmail.com
mailto:danaron@tau.ac.il
https://www.danaron.sites.tau.ac.il/
https://orcid.org/0000-0001-6576-7200
https://doi.org/10.4230/LIPIcs.ICALP.2023.44
https://arxiv.org/abs/2305.01358
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

44:2 Sample-Based Distance-Approximation for Subsequence-Freeness

the size of the object. In this work we consider the more challenging, and sometimes more
suitable, sample-based model in which the algorithm is only given a random sample from the
object. In particular, when the object is a sequence T = t1 . . . tn, each element in the sample
is a pair (j, tj).

We study both the case in which the underlying distribution according to which each
index j is selected (independently) is the uniform distribution over [n], and the more general
case in which the underlying distribution is some arbitrary unknown p : [n] → [0, 1]. We refer
to the former as the uniform sample-based model, and to the latter as the distribution-free
sample-based model. The distance (to satisfying the property) is determined by the underlying
distribution. Namely, it is the minimum total weight according to p of indices j such that tj

must be modified so as to make the sequence w-free. Hence, in the uniform sample-based
model, the distance measure is simply the Hamming distance normalized by n.

The related problem of testing the property of subsequence-freeness in the distribution-free
sample-based model was studied by Ron and Rosin [30]. They showed that the sample-
complexity of one-sided error testing of subsequence-freeness in this model is Θ(k/ϵ) (where
ϵ is the given distance parameter). A natural question is whether we can design a sublinear
algorithm, with small sample complexity, that actually approximates the distance of a text
T to w-freeness. It is worth noting that, in general, tolerant testing (and hence distance-
approximation) for a property may be much harder than testing the property [18, 3].

1.1 Our results
In what follows, when we say that a sample is selected uniformly from T , we mean that for
each sample point (j, tj), j is selected uniformly and independently from [n]. This generalizes
to the case in which the underlying distribution is an arbitrary distribution p.

We start by designing a distance-approximation algorithm in the uniform sample-based
model. Let ∆(T, w) denote the distance under the uniform distribution of T from being
w-free (which equals the fraction of symbols in T that must be modified so as to obtain a
w-free text), and let δ ∈ (0, 1) denote the error parameter given to the algorithm.

▶ Theorem 1. There exists a sample-based distance-approximation algorithm for subsequence-
freeness under the uniform distribution, that takes a sample of size Θ

(
k2

δ2 · log
(

k
δ

))
and

outputs an estimate ∆̂ such that |∆̂ − ∆(T, w)| ≤ δ with probability at least 2/3.3

We then turn to extending this result to the distribution-free sample-based model. For a
distribution p : [n] → [0, 1], we use ∆(T, w, p) to denote the distance of T from w-freeness
under the distribution p (i.e., the minimum weight, according to p, of the symbols in T that
must be modified so as to obtain a w-free text).

▶ Theorem 2. There exists a sample-based distribution-free distance-approximation algorithm
for subsequence-freeness, that takes a sample of size Θ

(
k2

δ2 · log
(

k
δ

))
from T , distributed

according to an unknown distribution p, and outputs an estimate ∆̂ such that |∆̂−∆(T, w, p)| ≤
δ with probability at least 2

3 .

Finally, we address the question of how tight is our upper bound. We show (using a fairly
simple argument) that the quadratic dependence on 1/δ is indeed necessary, even for the
uniform distribution. To be precise, denoting by kd the number of distinct symbols in w, we

3 As usual, we can increase the success probability to 1 − η, for any η > 0 at a multiplicative cost of
O(log(1/η)) in the sample complexity.

O. Cohen Sidon and D. Ron 44:3

give a lower bound of Ω(1/(kdδ2)) under the uniform distribution (that holds for every w

with kd distinct symbols, sufficiently large n and sufficiently small δ – for a precise statement,
see Theorem 27).

1.2 A high-level discussion of our algorithms
Our starting point is a structural characterization of the distance to w-freeness under the
uniform distribution, which is proved in [30, Sec. 3.1].4 In order to state their characterization,
we introduce the notion of copies of w in T , and more specifically, role-disjoint copies.

A copy of w = w1 . . . wk in T = t1 . . . tn is a sequence of indices (j1, . . . , jk) such that
1 ≤ j1 < · · · < jk ≤ n and tj1 . . . tjk

= w. It will be convenient to represent a copy as an
array C of size k where C[i] = ji. A set of copies {Cℓ} is said to be role-disjoint if for every
i ∈ [k], the indices in {Cℓ[i]} are distinct (though it is possible that Cℓ[i] = Cℓ′ [i′] for i ̸= i′

(and ℓ ̸= ℓ′)). In the special case where the symbols of w are all different from each other, a
set of copies is role disjoint simply if it consists of disjoint copies. Ron and Rosin prove [30,
Theorem 3.4 + Claim 3.1] that ∆(T, w) equals the maximum number of role-disjoint copies
of w in T , divided by n.

Note that the analysis of the sample complexity of one-sided error sample-based testing
of subsequence-freeness translates to bounding the size of the sample that is sufficient
and necessary for ensuring that the sample contains evidence that T is not w-free when
∆(T, w) > ϵ. Here evidence is in the form of a copy of w in the sample, so that the testing
algorithm simply checks whether such a copy exists. On the other hand, the question of
distance-approximation has a more algorithmic flavor, as it is not determined by the problem
what must be done by the algorithm given a sample.

Focusing first on the uniform case, Ron and Rosin used their characterization (more
precisely, the direction by which if ∆(T, w) > ϵ, then T contains more than ϵn role-disjoint
copies of w), to prove that a sample of size Θ(k/ϵ) contains at least one copy of w with
probability at least 2/3. In this work we go further by designing an algorithm that actually
approximates the number of role-disjoint copies of w in T (and hence approximates ∆(T, w)),
given a uniformly selected sample from T . It is worth noting that the probability of obtaining
a copy in the sample might be quite different for texts that have exactly the same number of
role-disjoint copies of w (and hence the same distance to being w-free).5

In the next subsection we discuss the aforementioned algorithm (for the uniform case),
and in the following one address the distribution-free case.

1.2.1 The uniform case
Let R(T, w) denote the number of role-disjoint copies of w in T . In a nutshell, the algorithm
works by computing estimates of the numbers of occurrences of symbols of w in a relatively
small number of prefixes of T , and using them to derive an estimate of R(T, w). The more
precise description of the algorithm and its analysis are based on several combinatorial claims
that we present and which we discuss shortly next.

Let Rj
i (T, w) denote the number of role-disjoint copies of the length-i prefix of w, w1 . . . wi,

in the length-j prefix of T , t1 . . . tj , and let N j
i (T, w) denote the number of occurrences of

the symbol wi in t1 . . . tj . In our first combinatorial claim, we show that for every i ∈ [k]

4 Indeed, Ron and Rosin note that: “The characterization may be useful for proving further results
regarding property testing of subsequence-freeness, as well as (sublinear) distance approximation.”

5 For example, consider w = 1 . . . k, T1 = (1 . . . k)n/k and T2 = 1n/k . . . kn/k.

ICALP 2023

44:4 Sample-Based Distance-Approximation for Subsequence-Freeness

and j ∈ [n], the value of Rj
i (T, w) can be expressed in terms of the values of N j′

i (T, w) for
j′ ∈ [j] (in particular, N j

i (T, w)) and the values of Rj′−1
i−1 (T, w) for j′ ∈ [j]. In other words,

we establish a recursive expression which implies that if we know what are Rj′−1
i−1 (T, w) and

N j′

i (T, w) for every j′ ∈ [j], then we can compute Rj
i (T, w) (and as an end result, compute

R(T, w) = Rn
k (T, w)).

In our second combinatorial claim we show that if we only want an approximation of
R(T, w), then it suffices to define (also in a recursive manner) a measure that depends on
the values of N j

i (T, w) for every i ∈ [k] but only for a relatively small number of choices of j,
which are evenly spaced. To be precise, each such j belongs to the set J = {r · γn}1/γ

r=1 for
γ = Θ(δ/k). We prove that since each interval [(r − 1)γn + 1, rγn] is of size γn for this choice
of γ, we can ensure that the aforementioned measure (which uses only j ∈ J) approximates
R(T, w) to within O(δn).

We then prove that if we replace each N j
i (T, w) for these choices of j (and for every

i ∈ [k]) by a sufficiently good estimate, then we incur a bounded error in the approximation
of R(T, w). Finally, such estimates are obtained using (uniform) sampling, with a sample of
size Õ(k2/δ2).

1.2.2 The distribution-free case
In [30, Sec. 4] it is shown that, given a word w, a text T and a distribution p, it is possible
to define a word w̃ and a text T̃ for which the following holds. First, ∆(T, w, p) is closely
related to ∆(T̃ , w̃). Second, the probability of observing a copy of w in a sample selected
from T according to p is closely related to the probability of observing a copy of w̃ in a
sample selected uniformly from T̃ .

We use the first relation stated above (i.e., between ∆(T, w, p) and ∆(T̃ , w̃)). However,
since we are interested in distance-approximation rather than one-sided error testing, the
second relation stated above (between the probability of observing a copy of w in T and that
of observing a copy of w̃ in T̃) is not sufficient for our needs, and we need to take a different
(once again, more algorithmic) path, as we explain shortly next.

Ideally, we would have liked to sample uniformly from T̃ , and then run the algorithm
discussed in the previous subsection using this sample (and w̃). However, we only have
sampling access to T according to the underlying distribution p, and we do not have direct
sampling access to uniform samples from T̃ . Furthermore, since T̃ is defined based on (the
unknown) p, it is not clear how to determine the aforementioned subset of (evenly spaced)
indices J .

For the sake of clarity, we continue the current exposition while making two assumptions.
The first is that the distribution p is such that there exists a value β, such that pj/β is an
integer for every j ∈ [n] (the value of β need not be known). The second is that in w there are
no two consecutive symbols that are the same. Under these assumptions, T̃ = t

p1/β
1 . . . t

pn/β
n ,

w̃ = w, and ∆(T̃ , w̃) = ∆(T, w, p) (where tx
j for an integer x is the subsequence that consists

of x repetitions of tj).
Our algorithm for the distribution-free case (working under the aforementioned as-

sumptions), starts by taking a sample distributed according to p and using it to select a
(relatively small) subset of indices in [n]. Denoting these indices by b0, b1, . . . , bℓ, where
b0 = 0 < b1 < · · · < bℓ−1 < bℓ = n, we would have liked to ensure that the weight according
to p of each interval [bu−1 + 1, bu] is approximately the same (as is the case when considering
the intervals defined by the subset J in the uniform case). To be precise, we would have
liked each interval to have relatively small weight, while the total number of intervals is not

O. Cohen Sidon and D. Ron 44:5

too large. However, since it is possible that for some single indices j ∈ [n], the probability pj

is large, we also allow intervals with large weight, where these intervals consist of a single
index (and there are few of them).

The algorithm next takes an additional sample, to approximate, for each i ∈ [k] and
u ∈ [ℓ], the weight, according to p, of the occurrences of the symbol wi in the length-bu

prefix of T . Observe that prefixes of T correspond to prefixes of T̃ . Furthermore, the weight
according to p of occurrences of symbols in such prefixes, translates to numbers of occurrences
of symbols in the corresponding prefixes in T̃ , normalized by the length of T̃ . The algorithm
then uses these approximations to obtain an estimate of ∆(T̃ , w̃).

We note that some pairs of consecutive prefixes in T̃ might be far apart, as opposed to
what we had in the algorithm for the uniform case described in Section 1.2.1. However, this
is always due to single-index intervals in T (for j such that pj is large). Each such interval
corresponds to a consecutive subsequence in T̃ with repetitions of the same symbol, and we
show that no additional error is incurred because of such intervals.

1.3 Related results
As we have previously mentioned, the work most closely related to ours is that of Ron
and Rosin on distribution-free sample-based testing of subsequence-freeness [30]. For other
related results on property testing (e.g., testing other properties of sequences, sample-based
testing of other types of properties and distribution-free testing (possibly with queries)), see
the introduction of [30], and in particular Section 1.4. For another line of work, on sublinear
approximation of the longest increasing subsequence, see [27] and references within. Here we
shortly discuss related results on distance approximation / tolerant testing.

As already noted, distance approximation and tolerant testing were first formally defined
in [29], and were shown to be significantly harder for some properties in [18, 3]. Almost
all previous results are query-based, and where the distance measure is with respect to the
uniform distribution. These include [21, 19, 1, 26, 16, 11, 23, 7, 25, 17, 28]. Kopparty and
Saraf [24] present results for query-based tolerant testing of linearity under several families
of distributions. Berman, Raskhodnikova and Yaroslavtsev [5] give tolerant (query based)
Lp-testing algorithms for monotonicity. Berman, Murzbulatov and Raskhodnikova [4] give a
sample-based distance-approximation algorithms for image properties that works under the
uniform distribution.

Canonne et al. [12] study the property of k-monotonicity of Boolean functions over various
posets. A Boolean function over a finite poset domain D is k-monotone if it alternates
between the values 0 and 1 at most k times on any ascending chain in D. For the special
case of D = [n], the property of k-monotonicity is equivalent to being free of w of length
k + 2 where w1 ∈ {0, 1} and wi = 1 − wi−1 for every i ∈ [2, k + 2]. One of their results
implies an upper bound of Õ

(
k
δ3

)
on the sample complexity of distance-approximation for

k-monotonicity of functions f : [n] → {0, 1} under the uniform distribution (and hence for
w-freeness when w is a binary subsequence of a specific form). This result generalizes to
k-monotonicity in higher dimensions (at an exponential cost in the dimension d).

Blum and Hu [9] study distance-approximation for k-interval (Boolean) functions over
the line in the distribution-free active setting. In this setting, an algorithm gets an unlabeled
sample and asks queries on a subset of sample points. Focusing on the sample complexity,
they show that for any underlying distribution p on the line, a sample of size Õ

(
k
δ2

)
is

sufficient for approximating the distance to being a k-interval function up to an additive
error of δ. This implies a sample-based distribution-free distance-approximation algorithm
with the same sample complexity for the special case of being free of the same pair of w’s
described in the previous paragraph, replacing k + 2 by k + 1.

ICALP 2023

44:6 Sample-Based Distance-Approximation for Subsequence-Freeness

Blais, Ferreira Pinto Jr. and Harms [8] introduce a variant of the VC-dimension and use
it to prove lower and upper bounds on the sample complexity of distribution-free testing for
a variety of properties. In particular, one of their results implies that the linear dependence
on k in the result of [9] is essentially optimal.

Finally we mention that our procedure in the distribution-free case for constructing
“almost-equal-weight” intervals by sampling is somewhat reminiscent of techniques used in
other contexts of testing when dealing with non-uniform distributions [6, 22, 10].

1.4 Further research
The main open problem left by this work is closing the gap between the upper and lower
bounds that we give, and in particular understanding the precise dependence on k, or possibly
other parameters determined by w (such as kd). One step in this direction can be found in
the Master Thesis of the first author [13].

1.5 Organization
In Section 2 we present our algorithm for distance-approximation under the uniform distri-
bution. Some of the main details of the distribution-free case appears in Section 3, and in
Section 4 we prove our lower bound. All missing details and proofs can be found in the full
version of this paper [14].

2 Distance approximation under the uniform distribution

In this section, we address the problem of distance approximation when the underlying
distribution is the uniform distribution. As mentioned in the introduction, Ron and Rosin
showed [30, Thm. 3.4] that ∆(T, w) (the distance of T from w-freeness under the uniform
distribution), equals the number of role-disjoint copies of w in T , divided by n = |T | (where
role-disjoint copies are as defined in the introduction – see Section 1.2). We may use T [j] to
denote the jth symbol of T (so that T [j] = tj).

We start by introducing the following notations.

▶ Definition 3. For every i ∈ [k] and j ∈ [n], let N j
i (T, w) denote the number of occurrences

of the symbol wi in the length j prefix of T , T [1, j] = T [1] . . . T [j].6 Let Rj
i (T, w) denote the

number of role-disjoint copies of the subsequence w1 . . . wi in T [1, j]. When i = k and j = n,
we use the shorthand R(T, w) for Rn

k (T, w) (the total number of role-disjoint copies of w

in T).

Observe that Rj
1(T, w) equals N j

1 (T, w) for every j ∈ [n].

Since, as noted above, ∆(T, w) = R(T, w)/n, we would like to estimate R(T, w). More
precisely, given δ > 0 we would like to obtain an estimate R̂, such that:

∣∣∣R̂ − R(T, w)
∣∣∣ ≤ δn.

To this end, we first establish two combinatorial claims. The first claim shows that the
value of each Rj

i (T, w) can be expressed in terms of the values of N j′

i (T, w) for j′ ∈ [j] (in
particular, N j

i (T, w)) and the values of Rj′−1
i−1 (T, w) for j′ ∈ [j]. In other words, if we know

what are Rj′−1
i−1 (T, w) and N j′

i (T, w) for every j′ ∈ [j], then we can compute Rj
i (T, w).

▷ Claim 4. For every i ∈ {2, . . . , k} and j ∈ [n],

Rj
i (T, w) = N j

i (T, w) − max
j′∈[j]

{
N j′

i (T, w) − Rj′−1
i−1 (T, w)

}
.

6 Indeed, if wi = wi′ for i ̸= i′, then N j
i (T, w) = N j

i′ (T, w) for every j.

O. Cohen Sidon and D. Ron 44:7

Clearly, Rj
i (T, w) ≤ N j

i (T, w) (for every i ∈ {2, . . . , k} and j ∈ [n]), since each role-disjoint
copy of w1 . . . wi in T [1, j] must end with a distinct occurrence of wi in T [1, j]. Claim 4 states
by exactly how much is Rj

i (T, w) smaller than N j
i (T, w). Roughly speaking, the expression

maxj′∈[j]

{
N j′

i (T, w) − Rj′−1
i−1 (T, w)

}
accounts for the number of occurrences of wi in T [1, j]

that cannot be used in role-disjoint copies of w1 . . . wi in T [1, j].

Proof. For simplicity (in terms of notation), we prove the claim for the case that i = k and
j = n. The proof for general i ∈ {2, . . . , k} and j ∈ [n] is essentially the same up to renaming
of indices. Since T and w are fixed throughout the proof, we shall use the shorthand N j

i for
N j

i (T, w) and Rj
i for Rj

i (T, w).
For the sake of the analysis, we start by describing a simple greedy procedure, that

constructs R = Rn
k role-disjoint copies of w in T . The correctness of this procedure follows

from [30, Claim 3.5] and a simple inductive argument (details are provided in the full version
of the paper [14]). Every copy Cm, for m ∈ [R] is an array of size k whose values are
monotonically increasing, where for every i ∈ [k] we have that Cm[i] ∈ [n], and T [Cm[i]] = wi.
Furthermore, for every i ∈ [k] the indices C1[i], . . . , CR[i] are distinct. For every m = 1, . . . , R

and i = 1, . . . , k, the procedure scans T , starting from T [Cm[i − 1] + 1] (where we define
Cm[0] to be 0) and ending at T [n] until it finds the first index j such that T [j] = wi and
j /∈ {C1[i], . . . , Cm−1[i]}. It then sets Cm[i] = j. For i > 1 we say in such a case that the
procedure matches j to the partial copy Cm[1], . . . , Cm[i − 1].

For i ∈ [k], define: Gi = {j ∈ [n] : T [j] = wi}. Also define: G+
i = {j ∈ Gi : ∃m, Cm[i] =

j} and G−
i = {j ∈ Gi : ∄m, Cm[i] = j} (recall that Cm[i] is the i-th index in the m-th

greedy copy).
It is easy to verify that |Gi| = Nn

i ,
∣∣G+

i

∣∣ = Rn
i and |Gi| =

∣∣G+
i

∣∣+ ∣∣G−
i

∣∣. To complete the
proof, we will show that

∣∣G−
i

∣∣ = maxj∈[n]

{
N j

i − Rj−1
i−1

}
.

Let j∗ be an index j that maximizes
{

N j
i − Rj−1

i−1

}
. In the interval [j∗] we have N j∗

i

occurrences of wi, and in the interval [j∗ − 1] we only have Rj∗−1
i−1 role-disjoint copies of

w1 . . . wi−1. This implies that in the interval [j∗] there are at least N j∗

i − Rj∗−1
i−1 occurrences

of wi that cannot be the i-th index of any greedy copy, and so we have∣∣G−
i

∣∣ ≥ N j∗

i − Rj∗−1
i−1 = max

j∈[n]

{
N j

i − Rj−1
i−1

}
. (1)

On the other hand, denote by j∗∗ the largest index in G−
i . Since each index j ∈ [j∗∗]

such that T [j] = wi is either the i-th element of some copy or is not the i-th element of any
copy, N j∗∗

i = Rj∗∗−1
i +

∣∣G−
i

∣∣. We claim that Rj∗∗−1
i = Rj∗∗−1

i−1 . Otherwise, Rj∗∗−1
i < Rj∗∗−1

i−1 ,
in which case the index j∗∗ would have to be the the i-th element of a greedy copy. Hence,∣∣G−

i

∣∣ = N j∗∗

i − Rj∗∗−1
i−1 ≤ max

j∈[n]

{
N j

i − Rj−1
i−1

}
. (2)

In conclusion,∣∣G−
i

∣∣ = max
j∈[n]

{
N j

i − Rj−1
i−1

}
, (3)

and the claim follows. ◀

In order to state our next combinatorial claim, we first introduce one more definition,
which will play a central role in obtaining an estimate for R(T, w).

ICALP 2023

44:8 Sample-Based Distance-Approximation for Subsequence-Freeness

▶ Definition 5. For ℓ ≤ n, let N be a k × ℓ matrix of non-negative numbers, where we shall
use N r

i to denote N [i][r]. For every r ∈ [ℓ] let Mr
1 (N) = N r

1 , and for every i ∈ {2, . . . , k},
let

Mr
i (N) def= N r

i − max
r′≤r

{
N r′

i − Mr′

i−1(N)
}

.

When i = k and r = ℓ we use the shorthand M(N) for M ℓ
k(N).

In our second combinatorial claim we show that for an appropriate choice of a matrix
N , whose entries are a subset of all values in

{
N j

i (T, w)
}j∈[n]

i∈[k]
, we can bound the difference

between M(N) and R(T, w). We later use sampling to obtain an estimated version of N .
▷ Claim 6. Let J = {j0, j1, . . . , jℓ} be a set of indices satisfying j0 = 0 < j1 < j2 < · · · <

jℓ = n. Let N = N (J, T, w) be the matrix whose entries are N r
i = N jr

i (T, w), for every
i ∈ [k] and r ∈ [ℓ]. Then we have

|M(N) − R(T, w)| ≤ (k − 1) · max
τ∈[ℓ]

{jτ − jτ−1} .

Proof. Recall that M(N) = M ℓ
k(N) and R(T, w) = Rjℓ

k (T, w). We shall prove that for every
i ∈ [k] and for every r ∈ [ℓ],

∣∣∣Mr
i (N) − Rjr

i (T, w)
∣∣∣ ≤ (i − 1) · maxτ∈[r] {jτ − jτ−1}. We prove

this by induction on i.
For i = 1 and every r ∈ [ℓ],∣∣∣Mr

1 (N) − Rjr

1 (T, w)
∣∣∣ =

∣∣∣N jr

1 (T, w) − N jr

1 (T, w)
∣∣∣ = 0 ≤ (1 − 1) · max

τ∈[1]
{jτ − jτ−1} , (4)

where the first equality follows from the setting of N and the definitions of Mr
1 (N) and

Rjr

1 (T, w).
For the induction step, we assume the claim holds for i − 1 ≥ 1 (and every r ∈ [ℓ]) and prove
it for i. We have,

Mr
i (N) − Rjr

i (T, w)

= N jr

i (T, w) − max
b∈[r]

{
N jb

i (T, w) − M b
i−1(N)

}
− Rjr

i (T, w) (5)

= max
j∈[jr]

{
N j

i (T, w) − Rj−1
i−1 (T, w)

}
− max

b∈[r]

{
N jb

i (T, w) − M b
i−1(N)

}
, (6)

where Equation (5) follows from the setting of N and the definition of Mr
i (N), and Equa-

tion (6) is implied by Claim 4. Denote by j∗ an index j ∈ [jr] that maximizes the first max
term and let b∗ be the largest index such that jb∗ ≤ j∗. We have:

max
j∈[jr]

{
N j

i (T, w) − Rj−1
i−1 (T, w)

}
− max

b∈[r]

{
N jb

i (T, w) − M b
i−1(N)

}
≤ N j∗

i (T, w) − Rj∗−1
i−1 (T, w) − N jb∗

i (T, w) + M b∗

i−1(N)

= N j∗

i (T, w) + Rjb∗
i−1(T, w) − Rjb∗

i−1(T, w) − Rj∗−1
i−1 (T, w) − N jb∗

i (T.w) + M b∗

i−1(N)

≤
(

M b∗

i−1(N) − Rjb∗
i−1(T, w)

)
+
(

N j∗

i (T, w) − N jb∗
i (T, w)

)
+
(

Rjb∗
i−1(T, w) − Rj∗−1

i−1 (T, w)
)

≤ (i − 2) max
τ∈[r]

{jτ − jτ−1} +
(

j∗ − jb∗
)

+
(

jb∗
− (j∗ − 1)

)
(7)

= (i − 2) max
τ∈[r]

{jτ − jτ−1} + 1

≤ (i − 2) max
τ∈[r]

{jτ − jτ−1} + max
τ∈[r]

{jτ − jτ−1}

= (i − 1) max
τ∈[r]

{jτ − jτ−1} , (8)

O. Cohen Sidon and D. Ron 44:9

where in Equation (7) we used the induction hypothesis. By combining Equations (6) and (8),
we get that

Mr
i (N) − Rjr

i (T, w) ≤ (i − 1) max
τ∈[r]

{jτ − jτ−1} . (9)

Similarly to Equation (6),

Rjr

i (T, w)−Mr
i (N) = max

b∈[r]

{
N jb

i (T, w) − M b
i−1(N)

}
−max

j∈[jr]

{
N j

i (T, w) − Rj−1
i−1 (T, w)

}
. (10)

Let b∗∗ be the index b ∈ [r] that maximizes the first max term. We have

max
b∈[r]

{
N jb

i (T, w) − M b
i−1(N)

}
− max

j∈[jr]

{
N j

i (T, w) − Rj−1
i−1 (T, w)

}
≤ N jb∗∗

i (T, w) − M b∗∗

i−1(N) − N jb∗∗
i (T, w) + Rjb∗∗ −1

i−1 (T, w)

≤ Rjb∗∗
i−1 (T, w) − M b∗∗

i−1(N) ≤
∣∣∣Rjb∗∗

i−1 (T, w) − M b∗∗

i−1(N)
∣∣∣

≤ (i − 2) max
τ∈[r]

{jτ − jτ−1} ≤ (i − 1) max
τ∈[r]

{jτ − jτ−1} . (11)

Hence (combining Equations (10) and (11)),7

Rjr

i (T, w) − Mr
i (N) ≤ (i − 1) max

τ∈[r]
{jτ − jτ−1} . (12)

Together, Equations (9) and (12) give us that∣∣∣Mr
i (N) − Rjr

i (T, w)
∣∣∣ ≤ (i − 1) max

τ∈[r]
{jτ − jτ−1} , (13)

and the proof is completed. ◁

In our next claim we bound the difference between M(N̂) − M(Ñ) for any two matrices
(with dimensions k × ℓ), given a bound on the L∞ distance between them. We later apply
this claim with Ñ = N for N as defined in Claim 6, and N̂ being a matrix that contains
estimates N̂r

i of N jr

i (T, w) (respectively). We discuss how to obtain N̂ in Claim 8.
▷ Claim 7. Let γ ∈ (0, 1), and let N̂ and Ñ be two k × ℓ matrices. If for every i ∈ [t] and
r ∈ [ℓ],

∣∣∣N̂ r
i − Ñ r

i

∣∣∣ ≤ γn, then
∣∣∣M(N̂) − M(Ñ)

∣∣∣ ≤ (2k − 1)γn.

Proof. We shall prove that for every t ∈ [k] and for every r ∈ [ℓ],
∣∣∣Mr

t (N̂) − Mr
t (Ñ)

∣∣∣ ≤
(2t − 1)γn. We prove this by induction on t.
For t = 1 and every r ∈ [ℓ], we have∣∣∣Mr

1 (N̂) − Mr
1 (Ñ)

∣∣∣ =
∣∣∣N̂ r

1 − Ñ r
1

∣∣∣ ≤ γn . (14)

Now assume the claim is true for t − 1 ≥ 1 and for every r ∈ [ℓ], and we prove it for t. For
any r ∈ [ℓ], by the definition of Mr

t (·),∣∣∣Mr
t (N̂) − Mr

t (Ñ)
∣∣∣

=
∣∣∣∣N̂ r

t − max
r′′∈[r]

{
N̂ r′′

t − Mr′′

t−1(N̂)
}

− Ñ r
t + max

r′∈[r]

{
Ñ r′

t − Mr′

t−1(Ñ)
}∣∣∣∣

≤ γn +
∣∣∣∣max
r′∈[r]

{
Ñ r′

t − Mr′

t−1(Ñ)
}

− max
r′′∈[r]

{
N̂ r′′

t − Mr′′

t−1(N̂)
}∣∣∣∣ , (15)

7 It actually holds that Mr
i (N) ≥ Rjr

i (T, w), so that Rjr

i (T, w) − Mr
i (N) ≤ 0, but for the sake of

simplicity of the inductive argument, we prove the same upper bound on Rjr

i (T, w) − Mr
i (N) as on

Mr
i (N) − Rjr

i (T, w).

ICALP 2023

44:10 Sample-Based Distance-Approximation for Subsequence-Freeness

where in the last inequality we used the premise of the claim. Assume that the first max
term in Equation (15) is at least as large as the second (the case that the second term is
larger than the first is dealt with analogously), and let r∗ be the index that maximizes the
first max term. Then,∣∣∣∣max

r′∈[r]

{
Ñ r′

t − Mr′

t−1(Ñ)
}

− max
r′′∈[r]

{
N̂ r′′

t − Mr′′

t−1(N̂)
}∣∣∣∣

≤
∣∣∣(Ñ r∗

t − N̂ r∗

t

)
+
(

Mr∗

t−1(N̂) − Mr∗

t−1(Ñ)
)∣∣∣

≤
∣∣∣Ñ r∗

t − N̂ r∗

t

∣∣∣+
∣∣∣Mr∗

t−1(N̂) − Mr∗

t−1(Ñ)
∣∣∣

≤ γn + (2t − 3)γn = (2t − 2)γn , (16)

where we used the premise of the claim once again, and the induction hypothesis. The claim
follows by combining Equation (15) with Equation (16). ◁

The next claim states that we can obtain good estimates for all values in
{

N jr

i (T, w)
}r∈[ℓ]

i∈[k]
(with a sufficiently large sample). Its (standard) proof is deferred to the full version of this
paper [14].

▷ Claim 8. For any γ ∈ (0, 1) and J = {j1, . . . , jℓ} (such that 1 ≤ j1 < · · · < jℓ = n), by
taking a sample of size Θ

(
log(k·ℓ)

γ2 ·
)

from T , we can obtain with probability at least 2/3

estimates
{

N̂ r
i

}r∈[ℓ]

i∈[k]
, such that∣∣∣N̂ r

i − N jr

i (T, w)
∣∣∣ ≤ γn , (17)

for every i ∈ [k] and r ∈ [ℓ].

We can now restate and prove our main theorem for distance approximation under the
uniform distribution.
▶ Theorem 1. There exists a sample-based distance-approximation algorithm for subsequence-
freeness under the uniform distribution, that takes a sample of size Θ

(
k2

δ2 · log
(

k
δ

))
and

outputs an estimate ∆̂ such that |∆̂ − ∆(T, w)| ≤ δ with probability at least 2/3.8

While our focus is on the sample complexity of the algorithm, we note that its running time
is linear in the size of the sample.

Proof. The algorithm sets γ = δ/(3k) and J = {γn, 2γn, . . . , n}. It first applies Claim 8
with the above setting of γ to obtain the estimates

{
N̂ r

i

}
for every i ∈ [k] and r ∈ [ℓ], which

with probability at least 2/3 are as stated in Equation (17). If we take Ñ = N for N as
defined in Claim 6, then the premise of Claim 7 holds. We can hence apply Claim 7, and
combining with Claim 6 and the definition of J , we get that with probability at least 2/3,
for the matrix N̂ ,∣∣∣M(N̂) − R(T, w)

∣∣∣ ≤ (2k − 1)γn + (k − 1)γn = (3k − 2)γn ≤ δn . (18)

The algorithm hence computes M(N̂) = M ℓ
k(N̂) in an iterative manner, based on Definition 5,

and outputs ∆̂ = M(N̂)/n. Since R(T, w)/n = ∆(T, w), the theorem follows. ◀

8 As usual, we can increase the success probability to 1 − η, for any η > 0 at a multiplicative cost of
O(log(1/η)) in the sample complexity.

O. Cohen Sidon and D. Ron 44:11

3 Distribution-free distance approximation

As noted in the introduction, our algorithm for approximating the distance from subsequence-
freeness under a general distribution p works by reducing the problem to approximating
the distance from subsequence-freeness under the uniform distribution. However, we won’t
be able to use the algorithm presented in Section 2 as is. There are two main obstacles,
explained shortly next. In the reduction, given a word w and access to samples from a
text T , distributed according to p, we define a word w̃ and a text T̃ such that if we can
obtain a good approximation of ∆(T̃ , w̃) then we get a good approximation of ∆(T, w, p).
(Recall that ∆(T, w, p) denotes the distance of T from being w-free under the distribution p.)
However, first, we don’t actually have direct access to uniformly distributed samples from T̃ ,
and second, we cannot work with a set J of indices that induce equally sized intervals (of a
bounded size), as we did in Section 2.

We address these challenges (as well as precisely define T̃ and w̃) in several stages. We
start, in Sections 3.1 and 3.2, by using sampling according to p, in order to construct intervals
in T that have certain properties (with sufficiently high probability). The role of these
intervals will become clear as we proceed. Due to space constraints, several proofs are
deferred to the full version of this paper [14].

3.1 Interval construction and classification
We begin this subsection by defining intervals in [n] that are determined by p (which is
unknown to the algorithm). We then construct intervals by sampling from p, where the latter
intervals are in a sense approximations of the former (this will be formalized subsequently).
Each constructed interval will be classified as either “heavy” or “light”, depending on its
(approximated) weight according to p. Ideally, we would have liked all intervals to be light,
but not too light, so that their number won’t be too large (as was the case when we worked
under the uniform distribution and simply defined intervals of equal size). However, for a
general distribution p we might have single indices j ∈ [n] for which pj is large, and hence
we also need to allow heavy intervals (each consisting of a single index). We shall make use
of the following two definitions.

▶ Definition 9. For any two integers j1 ≤ j2, let [j1, j2] denote the interval {j1, . . . , j2}.
For every j1, j2 ∈ [n], define wtp([j1, j2]) def=

∑j2
j=j1

pj to be the weight of the interval [j1, j2]
according to p. We shall use the shorthand wtp(j) for wtp([j, j]).

▶ Definition 10. Let S be a multiset of size s, with elements from [n]. For every j ∈ [n],
let NS(j) be the number of elements in S that equal j. For every j1, j2 ∈ [n], define
wtS([j1, j2]) def= 1

s

∑j2
j=j1

NS(j) to be the estimated weight of the interval [j1, j2] according to
S. We shall use the shorthand wtS(j) for wtS([j, j]).

In the next definition, and the remainder of this section, we shall use

z = cz
k

δ
, (19)

where let cz = 100.
We next define the aforementioned set of intervals, based on p. Roughly speaking, we

try to make the intervals as equally weighted as possible, keeping in mind that some indices
might have a large weight, so we assign each to an interval of its own.

ICALP 2023

44:12 Sample-Based Distance-Approximation for Subsequence-Freeness

▶ Definition 11. Define a sequence of indices in the following iterative manner. Let h0 = 0
and for ℓ = 1, 2, . . . , as long as hℓ−1 < n, let hℓ be defined as follows. If wtp(hℓ−1 + 1) > 1

8z ,
then hℓ = hℓ−1 + 1. Otherwise, let hℓ be the maximum index h′

ℓ ∈ [hℓ−1 + 1, n] such that
wtp([hℓ−1 + 1, h′

ℓ]) ≤ 1
4z and for every h′′

ℓ ∈ [hℓ−1 + 1, h′
ℓ], wtp(h′′

ℓ) ≤ 1
8z . Let L be such that

hL = n.
Based on the indices {hℓ}L

ℓ=0 defined above, for every ℓ ∈ [L], let Hℓ = [hℓ−1 + 1, hℓ] and
let H = {Hℓ}L

ℓ=1. We partition H into three subsets as follows. Let Hsin be the subset of
all H ∈ H such that |H| = 1 and wtp(H) > 1

8z . Let Hmed be the set of all H ∈ H such that
|H| ̸= 1 and 1

8z ≤ wtp(H) ≤ 1
4z . Let Hsml be the set of all H ∈ H such that wtp(H) < 1

8z .

Observe that since wtp(T) = 1, then |Hsin ∪ Hmed| ≤ 8z. In addition, since between each
H ′, H ′′ ∈ Hsml there has to be at least one H ∈ Hsin, then we also have |Hsml| ≤ 8z + 1.

By its definition, H is determined by p. We next construct a set of intervals B based on
sampling according to p (in a similar, but not identical, fashion to Definition 11). Consider
a sample S1 of size s1 selected according to p (with repetitions), where s1 will be set
subsequently.

▶ Definition 12. Given a sample S1 (multiset of elements in [n]) of size s1, determine a
sequence of indices in the following iterative manner. Let b0 = 0 and for u = 1, 2, . . . , as
long as bu−1 < n, let bu be defined as follows. If wtS1(bu−1 + 1) > 1/z, then bu = bu−1 + 1.
Otherwise, let bu be the maximum index b′

u ∈ [bu−1 + 1, n] such that wtS1([bu−1 + 1, b′
u]) ≤ 1

z .
Let U be such that bU = n.

Based on the indices {bu}U
u=0 defined above, for every u ∈ [U], let Bu = [bu−1 + 1, bu],

and let B = {Bu}U
u=1. For every u ∈ [U], if wtS1(Bu) > 1

z , then we say that Bu is heavy,
otherwise it is light.

Observe that each heavy interval consists of a single element.
In order to relate between H and B, we introduce the following event, based on the

sample S1.

▶ Definition 13. Denote by E1 the event where

∀H ∈ Hsin ∪ Hmed,
1
2wtp(H) ≤ wtS1(H) ≤ 3

2wtp(H) , (20)

∀H ∈ Hsml, wtS1(H) ≤ 1
2z

. (21)

▷ Claim 14. If the size of the sample S1 is s1 = 120z log(240z), then Pr [E1] ≥ 8
10 , where

the probability is over the choice of S1.

▷ Claim 15. Conditioned on the event E1, for every u ∈ [U] such that Bu is light,
wtp(Bu) < 6

z .

3.2 Estimation of symbol density and weight of intervals
In this subsection we estimate the weight, according to p, of every interval [bu] for u ∈ U , as
well as its symbol density, focusing on symbols that occur in w. Note that [bu] is the union
of the intervals B1, . . . , Bu. We first introduce some notations.

For any word w∗, text T ∗, i ∈ [|w∗|] and j ∈ [|T ∗|], let Ij
i (T ∗, w∗) = 1 if T ∗[j] = w∗

i and
0 otherwise. We next set

ξu
i =

∑
j∈[bu]

Ij
i (T, w)pj . (22)

O. Cohen Sidon and D. Ron 44:13

Consider a sample S2 of size s2 selected according to p (with repetitions), where s2 will
be set subsequently. For every u ∈ [U] and i ∈ [k], set

ξ̆u
i = 1

s2

∑
j∈[bu]

Ij
i (T, w)NS2(j) . (23)

▶ Definition 16. The event E2 (based on S2) is defined as follows. For every i ∈ [k] and
u ∈ [U],∣∣∣ξ̆u

i − ξu
i

∣∣∣ ≤ 1
z

, (24)

and for every u ∈ [U]

|wtS2([bu]) − wtp([bu])| ≤ 1
z

. (25)

▷ Claim 17. If the size of the sample S2 is s2 = z2 log (40kU), then Pr [E2] ≥ 9
10 , where the

probability is over the choice of S2.

3.3 Reducing from distribution-free to uniform
In this subsection we give the aforementioned reduction from the distribution-free case to the
uniform case, using the intervals and estimators that were defined in the previous subsections.
We start by providing three definitions, taken from [30], which will be used in the reduction.
The first two definitions are for the notion of splitting (variants of this notion were also used
in previous works, e.g., [15]).

▶ Definition 18. For a text T = t1 . . . tn, a text T̃ is said to be a splitting of T if T̃ = tα1
1 . . . tαn

n

for some α1 . . . αn ∈ N+. We denote by ϕ the splitting map, which maps each (index of a)
symbol of T̃ to its origin in T . Formally, ϕ : [|T̃ |] → [n] is defined as follows. For every
ℓ ∈ [|T̃ |] = [

∑n
i=1 αi], let ϕ(ℓ) be the unique i ∈ [n] that satisfies

∑i−1
r=1 αr < ℓ <

∑i
r=1 αr.

Note that by this definition, ϕ is a non-decreasing surjective map, satisfying T̃ [ℓ] = T [ϕ(ℓ)]
for every ℓ ∈ [|T̃ |]. For a set S ⊆ [|T̃ |] we let ϕ(S) = {ϕ(ℓ) : ℓ ∈ S}. With a slight abuse of
notation, for any i ∈ [n] we use ϕ−1(i) to denote the set

{
ℓ ∈ [|T̃ |] : ϕ(ℓ) = i

}
, and for a set

S ⊆ [n] we let ϕ−1(S) =
{

ℓ ∈ [|T̃ |] : ϕ(ℓ) ∈ S
}

▶ Definition 19. Given text T = t1 . . . tn and a corresponding probability distribution
p = (p1, . . . , pn), a splitting of (T, p) is a text T̃ along with a corresponding probability
distribution p̂ = (p̂1, . . . , p̂|T̃ |), such that T̃ is a splitting of T and

∑
ℓ∈ϕ−1(i) p̂ℓ = pi for every

i ∈ [n].

The third definition is of a set of words, where no two consecutive symbols are the same.

▶ Definition 20. Let Wc = {w : wj+1 ̸= wj , ∀j ∈ [k − 1]} .

3.3.1 A basis for reducing from distribution-free to uniform
Let w̃ be a word of length k̃ and T̃ a text of length ñ. In this subsection we establish a claim,
which gives sufficient conditions on a (normalized version) of an estimation matrix N̂ , under
which it can be used to obtain an estimate of ∆(T̃ , w̃) with a small additive error.

We first state a claim that is similar to Claim 6, with a small, but important difference,
that takes into account intervals in T̃ (determined by a set of indices J) that consist of
repetitions of a single symbol. Recall that M(·) was defined in Definition 5, and that R(T̃ , w̃)
denotes the number of role-disjoint copies of w̃ in T̃ .

ICALP 2023

44:14 Sample-Based Distance-Approximation for Subsequence-Freeness

▷ Claim 21. Let J = {j0, j1, . . . , jℓ} be a set of indices satisfying j0 = 0 < j1 < j2 < · · · <

jℓ = ñ. Let N be the matrix whose entries are N r
i = N jr

i (T̃ , w̃) for every i ∈ [k̃] and r ∈ [ℓ].
Let J ′ = {r ∈ [ℓ] : T̃ [jr−1 + 1] = · · · = T̃ [jr]}. Then∣∣∣M(N) − R(T̃ , w̃)

∣∣∣ ≤ (k̃ − 1) · max
r∈[ℓ]\J ′

{(jr − jr−1)} .

The following observation can be easily proved by induction.

▶ Observation 22. Let N̂ be a matrix of size k̃ × ℓ. Then

1
ñ

M(N̂) = M

(
N̂
ñ

)
. (26)

The next claim will serve as the basis for our reduction from the general, distribution-free
case, to the uniform case.

▷ Claim 23. Let N̂ be a k̃ × ℓ matrix, J = {j0, j1, j2, . . . , jℓ} be a set of indices satisfying
j0 = 0 < j1 < j2 < · · · < jℓ = ñ and let c1 and c2 be constants. Suppose that the following
conditions are satisfied.
1. For every r ∈ [ℓ], if jr − jr−1 > c1 · δñ

k̃
, then T̃ [jr−1 + 1] = · · · = T̃ [jr].

2. For every i ∈ [k̃] and r ∈ [ℓ],
∣∣∣N̂ r

i − N jr

i (T̃ , w̃)
∣∣∣ ≤ c2 · δñ

k̃
.

Then,∣∣∣∣∣M
(

N̂
ñ

)
− ∆(T̃ , w̃)

∣∣∣∣∣ ≤ (c1 + 2c2)δ .

3.3.2 Establishing the reduction for w ∈ Wc and quantized p

For the ease of readability, in this subsection we address the special case in which w ∈ Wc

(recall Definition 20), and in the full version of this paper [14] we show how to deal with the
general case.

For the case considered in this subsection, let T̃ = tα1
1 . . . tαn

n where αj = pj

β for every
j ∈ [n], so that |T̃ | = 1

β . Define p̃ by p̃j = β for every j ∈ [|T̃ |], so that p̃ is the uniform
distribution. Since pj = β · αj , for every j ∈ [n], we get that (T̃ , p̃) is a splitting of (T, p)
(recall Definition 19), and hence by [30, Clm. 4.4] (using the assumption that w ∈ Wc),

∆(T̃ , w, p̃) = ∆(T, w, p) . (27)

Denote ñ = |T̃ |. We begin by defining a set of intervals of [ñ], where {b0, . . . , bU } and
B = {B1, . . . , BU } are as defined in Section 3.1, and ϕ is as in Definition 19.

▶ Definition 24. Let b̃0 = 0, and for every u ∈ [U], let b̃u = max {h ∈ [ñ] : ϕ(h) = bu}. For

every u ∈ [U] let B̃u = [̃bu−1 + 1, b̃u], and define B̃ =
{

B̃u

}U

u=1
.

We next introduce a notation for the weights, according to p̃, of unions of these intervals.
For every i ∈ [k] and u ∈ [U],

ξ̃u
i =

∑
j∈[̃bu]

Ij
i (T̃ , w)p̃j . (28)

Note that

ξ̃u
i = 1

ñ
N bu

i (T̃ , w) . (29)

O. Cohen Sidon and D. Ron 44:15

▷ Claim 25. For every i ∈ [k] and u ∈ [U] ξ̃u
i = ξu

i , where ξu
i is as defined in Equation (22).

We can now state and prove the following lemma.

▶ Lemma 26. Let w be a word of length k in Wc, T a text of length n, and p a distribution
over [n] for which there exists β ∈ (0, 1) such that pj/β is an integer for every j ∈ [n]. There
exists an algorithm that, given a parameter δ ∈ (0, 1), takes a sample of size Θ

(
k2

δ2 · log
(

k
δ

))
from T , distributed according to p, and outputs an estimate ∆̂ such that |∆̂ − ∆(T, w, p)| ≤ δ

with probability at least 2/3.

As in the uniform case, the running time of the algorithm is linear in the size of the sample.

Proof. The algorithm first takes a sample S1 of size s1 = 120z log(240z) and constructs a set
of intervals B as defined in Definition 12. Next the algorithm takes another sample, S2, of size
s2 = z2 log(40kU) according to which it defines an estimation matrix ξ̂ of size k×U as follows.
For every i ∈ [k] and u ∈ [U], it sets ξ̂[i][u] = ξ̆u

i , where ξ̆u
i is as defined in Equation (23).

Lastly the algorithm outputs ∆̂ = M(ξ̂), where M is as defined in Definition 5.
We would like to apply Claim 23 in order to show that |∆̂ − ∆(T̃ , w)| ≤ δ with probability

of at least 2
3 . By the setting of s1, applying Claim 14 gives us that with probability at least

8
10 , the event E1, as defined in Definition 13, holds. By the setting of s2, applying Claim 17
gives us that with probability at least 9

10 , the event E2, as defined in Definition 16, holds.
We henceforth condition on both events (where they hold together with probability at least
7/10).

In order to apply Claim 23, we set w̃ = w, J =
{

b̃0, b̃1, . . . , b̃U

}
(recall Definition 24) and

N̂ = ñξ̂, for ξ̂ as defined above. Also, we set c1 = 1
2 and c2 = 1

4 . We next show that both
items in the premise of the claim are satisfied.

To show that Item 1 is satisfied, we first note that since p̃ is uniform, then for every
u ∈ U , wt

p̃
(bu) = b̃u−̃bu−1

ñ
. We use the consequence of Claim 15 (recall that we condition

on E1) by which for every u such that b̃u−̃bu−1

ñ
≥ 6

z , Bu is heavy (since for every u ∈ U ,
wt

p̃
(B̃u) = wtp(Bu)). By Definition 12 this implies that Bu contains only one index, and so

T̃ [̃bu−1 + 1] = · · · = T̃ [̃bu]. By the definition of z (Equation (19)) and the setting of c1, the
item is satisfied.

To show that Item 2 is satisfied, we use the definition of E2 (Definition 16, Equation (24))
together with Claim 25, which give us |ξ̂u

i − ξ̃u
i | ≤ 1

z for every i ∈ [k] and u ∈ [U]. By
Equation (29), the definition of z and the setting of c2, we get that the item is satisfied.

After applying Claim 23 we get that |∆̂ − ∆(T̃ , w)| ≤ (c1 + 2c2)δ, which by the setting of
c1 and c2 is at most δ. Since p̃ is the uniform distribution, ∆(T̃ , w) = ∆(T̃ , w, p̃) and since
∆(T̃ , w, p̃) = ∆(T, w, p) (by Equation (27)), the lemma follows. ◀

In the full version of this paper [14] we address the general case where we do not necessarily
have that w ∈ Wc or that there exists a value β such that for every j ∈ [n], pj/β is an
integer.

4 A lower bound for distance approximation

In this section we give a lower bound for the number of samples required to perform distance-
approximation from w-freeness of a text T . The lower bound holds when the underlying
distribution is the uniform distribution.

ICALP 2023

44:16 Sample-Based Distance-Approximation for Subsequence-Freeness

▶ Theorem 27. Let kd be the number of distinct symbols in w. Any distance-approximation
algorithm for w-freeness under the uniform distribution must take a sample of size Ω(1

kdδ2),
conditioned on δ ≤ 1

300kd
and n > max

{
8k
δ , 200

kdδ2

}
.

Note that if δ ≥ 1/kd, then the algorithm can simply output 0. This is true since the number
of role disjoint copies of w in T is at most the number of occurrences of the symbol in w

that is least frequent in T . This number is upper bounded by n
kd

, and so the distance from
w-freeness is at most 1

kd
. In this case no sampling is needed, so only the trivial lower bound

holds. The proof will deal with the case of δ ∈ (0, 1
300kd

].

Proof. The proof is based on the difficulty of distinguishing between an unbiased coin and a
coin with a small bias. Precise details follow.

Let V = {v1, . . . , vkd
} be the set of distinct symbols in w, and let 0 be a symbol that

does not belong to V . We define two distributions over texts, T1 and T2 as follows. For each
τ ∈ [n

kd
] and ρ ∈ [0, 1], let λτ

ρ be a random variable that equals 0 with probability ρ and
equals v1 with probability 1 − ρ. Let δ′ = 3kdδ and consider the following two distributions
over texts

T1 =
[
λ1

1
2
, v2, v3, . . . , vkd

, λ2
1
2
, v2, v3, . . . , vkd

, , λ
n/kd
1
2

, v2, v3, . . . , vkd

]
, (30)

T2 =
[
λ1

1
2 +δ′ , v2, v3, . . . , vkd

, λ2
1
2 +δ′ , v2, v3, . . . , vkd

, , λ
n/kd
1
2 +δ′ , v2, v3, . . . , vkd

]
. (31)

Namely, the supports of both distributions contain texts that consist of n/kd blocks of size
kd each. For i ∈ {2, . . . , kd}, the i-th symbol in each block is vi. The distributions differ only
in the way the first symbol in each block is selected. In T1 it is 0 with probability 1/2 and v1
with probability 1/2, while in T2 it is 0 with probability 1/2 + δ′ = 1/2 + 3δkd, and v1 with
probability 1/2 − δ′.

For b ∈ {1, 2}, consider selecting a text Tb according to Tb (denoted by Tb ∼ Tb), and
let Ob be the number of occurrences of v1 in the text (so that Ob is a random variable).
Observe that E[O1] = n

2kd
and E[O2] = n

2kd
− 3δn. By applying the additive Chernoff bound

(Theorem 28) and using the premise of the theorem regarding n,

PrT1∼T1 [O1 < E[O1] − δn/8] ≤ exp(−2(kdδ/8)2 · n/kd) ≤ 1
100 , (32)

and

PrT2∼T2 [O2 < E[O2] + δn/8] ≤ exp(−2(kdδ/8)2 · n/kd) ≤ 1
100 . (33)

For b ∈ {1, 2} let Rb = R(Tb, w) (recall that R(Tb, w) denotes the number of disjoint copies
of w in Tb, and note that Rb is a random variable). Observe that R1 ≥ O1 − k + 1, and
R2 ≤ O2.

Hence, by Equation (32), if we select T1 according to T1 and use the premise that n > 8k
δ ,

then R(T1, w) ≥ n
2kd

− 1
8 δn − k + 1 ≥ n

2kd
− 2

8 δn with probability at least 99/100, and by
Equation (33), if we select T2 according to T2, then R(T2, w) ≤ n

2kd
−3δn+ 1

8 δn = n
2kd

− 23
8 δn

with probability at least 99/100.
Assume, contrary to the claim, that we have a sample-based distance-approximation

algorithm for subsequence-freeness that takes a sample of size Q(kd, δ) = 1/(ckdδ2), for some
sufficiently large constant c, and outputs an estimate of the distance to w-freeness that has
additive error at most δ, with probability at least 2/3. Consider running the algorithm on
either T1 ∼ T1 or T2 ∼ T2. Let L denote the number of times that the sample landed on an
index of the form j = ℓ · kd + 1 for an integer ℓ. By Markov’s inequality, the probability that
L > 10 · Q(kd, δ)/kd = 10/(ck2

dδ2) is at most 1/10.

O. Cohen Sidon and D. Ron 44:17

By the above, if we run the algorithm on T1 ∼ T1, then with probability at least
2/3 − 1/100 − 1/10 the algorithm outputs an estimate ∆̂ ≥ n

2kd
− 10

8 while L ≤ 10/(ck2
dδ2).

Similarly, if we run it on T2 ∼ T2, then with probability at least 2/3 − 1/100 − 1/10 the
algorithm outputs an estimate ∆̂ ≤ n

2kd
− 15

8 while L ≤ 10/(ck2
dδ2). (In both cases the

probability is taken over the selection of Tb ∼ Tb, the sample that the algorithm gets, and
possibly additional internal randomness of the algorithm.) Based on the definitions of T1 and
T2, this implies that it is possible to distinguish between an unbiased coin and a coin with
bias 3kdδ with probability at least 2/3 − 1/100 − 1/10 > 8

15 , using a sample of size 1
c′k2

d
δ2 in

contradiction to the result of Bar-Yosef [2, Thm. 8] (applied with m = 2, ϵ = 3kdδ. Since we
have δ < 1

300kd
, then ϵ < 1

96 , as the cited theorem requires). ◀

References
1 Nir Ailon, Bernard Chazelle, Seshadhri Comandur, and Ding Liu. Estimating the distance to

a monotone function. Random Structures and Algorithms, 31(3):371–383, 2007.
2 Ziv Bar-Yossef. Sampling lower bounds via information theory. In Proceedings of the 35th

Annual ACM Symposium on the Theory of Computing, pages 335–344, 2003.
3 Omri Ben-Eliezer, Eldar Fischer, Amit Levi, and Ron D. Rothblum. Hard properties with

(very) short PCPPs and their applications. In Proceedings of the 11th Innovations in Theoretical
Computer Science conference (ITCS), pages 9:1–9:27, 2020.

4 Piotr Berman, Meiram Murzabulatov, and Sofya Raskhodnikova. Tolerant testers of image
properties. ACM Transactions on Algorithms, 18(4):1–39, 2022. Article number 37.

5 Piotr Berman, Sofya Raskhodnikova, and Grigory Yaroslavtsev. Lp-testing. In Proceedings of
the 46th Annual ACM Symposium on the Theory of Computing, pages 164–173, 2014.

6 Hadley Black, Deeparnab Chakrabarty, and C. Seshadhri. Domain reduction for monotonicity
testing: A o(d) tester for boolean functions in d-dimensions. In Proceedings of the 31st Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 1975–1994, 2020.

7 Eric Blais, Clément L Canonne, Talya Eden, Amit Levi, and Dana Ron. Tolerant junta testing
and the connection to submodular optimization and function isomorphism. ACM Transactions
on Computation Theory, 11(4):1–33, 2019.

8 Eric Blais, Renato Ferreira Pinto Jr., and Nathaniel Harms. VC dimension and distribution-free
sample-based testing. In Proceedings of the 53rd Annual ACM Symposium on the Theory of
Computing, pages 504–517, 2021.

9 Avrim Blum and Lunjia Hu. Active tolerant testing. In Proceedings of the 31st Conference on
Computational Learning Theory (COLT), pages 474–497, 2018.

10 Mark Braverman, Subhash Khot, Guy Kindler, and Dor Minzer. Improved monotonicity
testers via hypercube embeddings. In Proceedings of the 13th Innovations in Theoretical
Computer Science conference (ITCS), pages 25:1–25:24, 2024.

11 Andrea Campagna, Alan Guo, and Ronitt Rubinfeld. Local reconstructors and tolerant
testers for connectivity and diameter. In Proceedings of the 17th International Workshop on
Randomization and Computation, pages 411–424, 2013.

12 Clément L Canonne, Elena Grigorescu, Siyao Guo, Akash Kumar, and Karl Wimmer. Testing
k-monotonicity: The rise and fall of boolean functions. Theory of Computing, 15(1):1–55,
2019. This paper appeared in the proceedings of ITCS 2017.

13 Omer Cohen Sidon. Sample-based distance-approximation for subsequence-freeness. MSc
thesis, Tel Aviv University, 2023.

14 Omer Cohen Sidon and Dana Ron. Sample-based distance-approximation for subsequence-
freeness. arXiv preprint, 2023. arXiv:2305.01358.

15 Ilias Diakonikolas and Daniel Kane. A new approach for testing properties of discrete
distributions. In Proceedings of the 56th Annual IEEE Symposium on Foundations of Computer
Science, pages 685–694, 2016.

ICALP 2023

https://arxiv.org/abs/2305.01358

44:18 Sample-Based Distance-Approximation for Subsequence-Freeness

16 Shahar Fattal and Dana Ron. Approximating the distance to monotonicity in high dimensions.
ACM Transactions on Algorithms, 6(3):1–37, 2010.

17 Nimrod Fiat and Dana Ron. On efficient distance approximation for graph properties. In
Proceedings of the 32nd Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1618–
1637, 2021.

18 Eldar Fischer and Lance Fortnow. Tolerant versus intolerant testing for boolean properties.
Theory of Computing, 2:173–183, 2006.

19 Eldar Fischer and Ilan Newman. Testing versus estimation of graph properties. SIAM Journal
on Computing, 37(2):482–501, 2007.

20 Oded Goldreich, Shafi Goldwasser, and Dana Ron. Property testing and its connections to
learning and approximation. Journal of the ACM, 45:653–750, 1998.

21 Venkat Guruswami and Atri Rudra. Tolerant locally testable codes. In Proceedings of the 9th
International Workshop on Randomization and Computation, pages 306–317, 2005.

22 Nathaniel Harms and Yuichi Yoshida. Downsampling for testing and learning in product
distributions, 2022.

23 Carlos Hoppen, Yoshiharu Kohayakawa, Richard Lang, Hanno Lefmann, and Henrique Stagni.
Estimating the distance to a hereditary graph property. Electronic Notes in Discrete Mathem-
atics, 61:607–613, 2017.

24 Swastik Kopparty and Shubhangi Saraf. Tolerant linearity testing and locally testable codes.
In Proceedings of the 13th International Workshop on Randomization and Computation, pages
601–614, 2009.

25 Amit Levi and Erik Waingarten. Lower bounds for tolerant junta and unateness testing via
rejection sampling of graphs. In Proceedings of the 10th Innovations in Theoretical Computer
Science conference (ITCS), pages 52:1–52:20, 2019.

26 Sharon Marko and Dana Ron. Distance approximation in bounded-degree and general sparse
graphs. Transactions on Algorithms, 5(2), 2009. Article number 22.

27 Ilan Newman and Nithin Varma. New sublinear algorithms and lower bounds for LIS estimation.
In Automata, Languages and Programming: 48th International Colloquium, pages 100:1–100:20,
2021.

28 Ramesh Krishnan S Pallavoor, Sofya Raskhodnikova, and Erik Waingarten. Approximating the
distance to monotonicity of boolean functions. Random Structures & Algorithms, 60(2):233–260,
2022.

29 Michal Parnas, Dana Ron, and Ronitt Rubinfeld. Tolerant property testing and distance
approximation. Journal of Computer and System Sciences, 72(6):1012–1042, 2006.

30 Dana Ron and Asaf Rosin. Optimal distribution-free sample-based testing of subsequence-
freeness with one-sided error. ACM Transactions on Computation Theory, 14(4):1–31, 2022.
An extended abstract of this work appeared in the proceedings of SODA 2021.

31 Ronitt Rubinfeld and Madhu Sudan. Robust characterization of polynomials with applications
to program testing. SIAM Journal on Computing, 25(2):252–271, 1996.

A Chernoff bounds

▶ Theorem 28. Let χ1, . . . , χm be m independent random variables where χi ∈ [0, 1] for
every 1 ≤ i ≤ m. Let p

def= 1
m

∑
i E[χi]. Then, for every γ ∈ (0, 1], the following bounds hold:

(Additive Form)

Pr
[

1
m

m∑
i=1

χi > p + γ

]
< exp

(
−2γ2m

)
(34)

Pr
[

1
m

m∑
i=1

χi < p − γ

]
< exp

(
−2γ2m

)
(35)

O. Cohen Sidon and D. Ron 44:19

(Multiplicative Form)

Pr
[

1
m

m∑
i=1

χi > (1 + γ)p
]

< exp
(
−γ2pm/3

)
(36)

Pr
[

1
m

m∑
i=1

χi < (1 − γ)p
]

< exp
(
−γ2pm/2

)
(37)

ICALP 2023

New Partitioning Techniques and Faster
Algorithms for Approximate Interval Scheduling
Spencer Compton #

Stanford University, CA, USA

Slobodan Mitrović #

University of California Davis, CA, USA

Ronitt Rubinfeld #

MIT, Cambridge, MA, USA

Abstract
Interval scheduling is a basic problem in the theory of algorithms and a classical task in combinatorial
optimization. We develop a set of techniques for partitioning and grouping jobs based on their
starting and ending times, that enable us to view an instance of interval scheduling on many jobs
as a union of multiple interval scheduling instances, each containing only a few jobs. Instantiating
these techniques in dynamic and local settings of computation leads to several new results.

For (1 + ε)-approximation of job scheduling of n jobs on a single machine, we develop a fully
dynamic algorithm with O(log n/ε) update and O(log n) query worst-case time. Further, we design
a local computation algorithm that uses only O(log N/ε) queries when all jobs are length at least 1
and have starting/ending times within [0, N]. Our techniques are also applicable in a setting where
jobs have rewards/weights. For this case we design a fully dynamic deterministic algorithm whose
worst-case update and query time are poly(log n, 1

ε
). Equivalently, this is the first algorithm that

maintains a (1 + ε)-approximation of the maximum independent set of a collection of weighted
intervals in poly(log n, 1

ε
) time updates/queries. This is an exponential improvement in 1/ε over the

running time of a randomized algorithm of Henzinger, Neumann, and Wiese [SoCG, 2020], while
also removing all dependence on the values of the jobs’ starting/ending times and rewards, as well
as removing the need for any randomness.

We also extend our approaches for interval scheduling on a single machine to examine the setting
with M machines.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis;
Theory of computation → Approximation algorithms analysis

Keywords and phrases interval scheduling, dynamic algorithms, local computation algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.45

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2012.15002

Funding S. Compton was supported in part by the National Defense Science & Engineering
Graduate (NDSEG) Fellowship Program. S. Mitrović was supported by the Swiss NSF grant
No. P400P2_191122/1, NSF award CCF-1733808, and FinTech@CSAIL. R. Rubinfeld was sup-
ported by the NSF TRIPODS program (awards CCF-1740751 and DMS-2022448), NSF award
CCF-2006664, and FinTech@CSAIL.

Acknowledgements We thank Benjamin Qi (MIT) for helpful discussions.

1 Introduction

Job scheduling is a fundamental task in optimization, with applications ranging from resource
management in computing [21, 22] to operating transportation systems [14]. Given a collection
of machines and a set of jobs (or tasks) to be processed, the goal of job scheduling is to
assign those jobs to the machines while respecting certain constraints. Constraints set on

EA
T
C
S

© Spencer Compton, Slobodan Mitrović, and Ronitt Rubinfeld;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 45; pp. 45:1–45:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:comptons@stanford.edu
mailto:smitrovic@ucdavis.edu
mailto:ronitt@csail.mit.edu
https://doi.org/10.4230/LIPIcs.ICALP.2023.45
https://arxiv.org/abs/2012.15002
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

45:2 Faster Approximate Interval Scheduling

jobs may significantly vary. In some cases a job has to be scheduled, but the starting time of
its processing is not pre-specified. In other scenarios a job can only be scheduled at a given
time, but there is a flexibility on whether to process the job or not. Frequent objectives for
this task can include either maximizing the number of scheduled jobs or minimizing needed
time to process all the given jobs.

An important variant of job scheduling is the task of interval scheduling: here each job
has a specified starting time and its length, but a job is not required to be scheduled. Given
M machines, the goal is to schedule as many jobs as possible. More generally, each job is also
assigned a reward or weight, which can be thought of as a payment received for processing
the given job. If a job is not processed, the payment is zero, i.e., there is no penalty. We
refer to this variant as weighted interval scheduling. This problem in a natural way captures
real-life scenarios. For instance, consider an assignment of crew members to flights, where
our goal is to assign (the minimum possible) crews to the specified flights. In the context of
interval scheduling, flights can be seen as jobs and the crew members as machines [14, 17].
Interval scheduling also has applications in geometrical tasks – it can be seen as a task of
finding a collection of non-overlapping geometric objects. In this context, its prominent
applications are in VLSI design [13] and map labeling [1, 25].

The aforementioned scenarios are executed in different computational settings. For
instance, some use-cases are dynamic in nature, e.g., a flight gets cancelled. Then, in certain
cases we have to make online decisions, e.g., a customer must know immediately whether
we are able to accept its request or not. While in some applications there might be so
many requests that we would like to design extremely fast ways of deciding whether a
given request/job can be scheduled or not, e.g., providing an immediate response to a user
submitting a job for execution in a cloud. In this work, our aim is to develop methods for
interval scheduling that can be turned into efficient algorithms across many computational
settings:

Can we design unified techniques for approximating interval scheduling very fast?

In this paper we develop fast algorithms for the dynamic and local settings of computation.
We also give a randomized black-box approach that reduces the task of interval scheduling on
multiple machines to that of interval scheduling on a single machine by paying only 2 − 1/M

in the approximation factor for unweighted jobs, where M is the number of machines, and e

in approximation factor for weighted jobs. A common theme in our algorithms is partitioning
jobs over dimensions (time and machines). It is well studied in the dynamic setting how to
partition the time dimension to enable fast updates. It is also studied how to partition over
the machines to enable strong approximation ratios for multiple-machine scheduling problems.
We design new partitioning methods for the time dimension (starting and ending times
of jobs), introduce a partitioning method over machines, and examine the relationship of
partitioning over the time dimension and machines simultaneously in order to solve scheduling
problems. We hope that, in addition to improving the best-known results, our work provides
a new level of simplicity and cohesiveness for this style of approach.

1.1 Computation Models
In our work, we focus on the following two models of computation.

Dynamic setting. Our algorithms for the fully dynamic setting design data structures that
maintain an approximately optimal solution to an instance of the interval scheduling problem
while supporting insertions and deletions of jobs/intervals. The data structures also support
queries of the maintained solution’s total weight and whether or not a particular interval is
used in the maintained solution.

S. Compton, S. Mitrović, and R. Rubinfeld 45:3

Local computation algorithms (LCA). The LCA model was introduced by Rubinfeld et
al. [20] and Alon et al. [2]. In this setting, for a given job J we would like to output whether
J is scheduled or not, but we do not have a direct access to the entire list of input jobs.
Rather, the LCA is given access to an oracle that returns answers to questions of the form:
“What is the input job with the earliest ending time among those jobs that start after time x?”
The goal of the LCA in this setting is to provide (yes/no) answers to user queries that ask
“Is job i scheduled?” (and, if applicable, “On which machine?”), in such a manner that all
answers should be consistent with the same valid solution, while using as few oracle-probes
as possible.

1.2 Our Results
Our first result, given in Section 4, focuses on designing an efficient dynamic algorithm for
unweighted interval scheduling on a single machine. Prior to our work, the state-of-the-art
result for this unweighted interval scheduling problem was due to [4], who design an algorithm
with O(log n/ε2) update and query time. We provide an improvement in the dependence on ε.

▶ Theorem 1 (Unweighted dynamic, single machine). Let J be a set of n jobs. For any
ε > 0, there exists a fully dynamic algorithm for (1 + ε)-approximate unweighted interval
scheduling for J on a single machine performing updates in O

(
log(n)

ε

)
and queries in

O(log(n)) worst-case time.

Theorem 1 can be seen as a warm-up for our most challenging and technically involved
result, which is an algorithm for the dynamic weighted interval scheduling problem on a single
machine. We present our approach in detail in the full version. As a function of 1/ε, our result
constitutes an exponential improvement compared to the running times obtained in [12]. We
also remove all use of randomness, remove all dependence on the job starting/ending times
(previous work crucially used assumptions on the coordinates to bound the ratio of jobs’
lengths by a parameter N), and remove all dependence on the value of the job rewards.

▶ Theorem 2 (Weighted dynamic, single machine). Let J be a set of n weighted jobs. For
any ε > 0, there exists a fully dynamic algorithm for (1 + ε)-approximate weighted interval
scheduling for J on a single machine performing updates and queries in worst-case time
T ∈ poly(log n, 1

ε). The exact complexity of T is given by

O

(
log12(n)

ε7 + log13(n)
ε6

)
.

1.2.1 Implications in Other Settings
Local Computation Algorithms. We show that the ideas we developed to obtain Theorem 1
can also be efficiently implemented in the local setting, as we explain in detail in the full
version and prove the following claim. This is the first non-trivial local computation algorithm
for the interval scheduling problem.

▶ Theorem 3 (Unweighted LCA, single machine). Let J be a set of n jobs with length at least
1 and ending times upper-bounded by N . For any ε > 0, there exists a local computation
algorithm for (1 + ε)-approximate unweighted interval scheduling for J on a single machine
using O

(
log N

ε

)
probes.

ICALP 2023

45:4 Faster Approximate Interval Scheduling

Multiple machines. By building on techniques we introduced to prove Theorems 1 and 3,
we show similar results in the full version in the case of interval scheduling on multiple
machines at the expense of slower updates. To the best of our knowledge, these results
initiate a study of dynamic and local interval scheduling in the general setting, i.e., in the
setting of maximizing the total reward of jobs scheduled on multiple machines.

1.3 Related Work

The closest prior work to ours is that of Henzinger et al. [12] and of Bhore et al. [4]. [12]
studies (1+ε)-approximate dynamic interval scheduling for one machine in both the weighted
and unweighted setting. Unlike our main result in Theorem 2, they assume jobs have rewards
within [1, W], assume jobs have length at least 1, and assume all jobs start/end within
times [0, N]. They obtain randomized algorithms with O(exp(1/ε) log2 n · log2 N) update
time for the unweighted and O(exp(1/ε) log2 n · log5 N · log W) update time for the weighted
case. They cast interval scheduling as the problem of finding a maximum independent set
among a set of intervals lying on the x-axis. The authors extend this setting to multiple
dimensions and design algorithms for approximating maximum independent set among a set
of d-dimensional hypercubes, achieving a (1 + ε)2d-approximation in the unweighted and a
(4 + ε)2d-approximation in the weighted regime.

The authors of [4] primarily focus on the unweighted case of approximating maximum
independent set of a set of cubes. For the 1-dimensional case, which equals interval scheduling
on one machine, they obtain O(log n/ε2) update time, which is slower by a factor of 1/ε than
our approach. They also show that their approach generalizes to the d-dimensional case,
requiring poly log n amortized update time and providing O(4d) approximation.

The problem of dynamically maintaining an exact solution to interval scheduling on
one or multiple machines is studied by [11]. They attain a guarantee of Õ(n1/3) update
time for unweighted interval scheduling on M = 1 machine, and Õ(n1−1/M) for M ≥ 2.
Moreover, they show an almost-linear time conditional hardness lower bound for dynamically
maintaining an exact solution to the weighted interval scheduling problem on even just M = 1
machine. This further motivates work such as ours that dynamically maintains approximate
solutions for weighted interval scheduling.

The authors of [9] consider dynamic interval scheduling on multiple machines in the
setting in which all the jobs must be scheduled. The worst-case update time of their algorithm
is O(log(n) + d), where d refers to the depth of what they call idle intervals (depth meaning
the maximal number of intervals that contain a common point); they define an idle interval
to be the period of time in a schedule between two consecutive jobs in a given machine. The
same set of authors, in [10], study dynamic algorithms for the monotone case as well, in
which no interval completely contains another one. For this setup they obtain an algorithm
with O(log(n)) update and query time.

In the standard model of computing (i.e. one processor, static), there exists an O(n + m)
running time algorithm for (exactly) solving the unweighted interval scheduling problem
on a single machine with n jobs and integer coordinates bounded by m [8]. An algorithm
with running time independent of m is described in [24], where it is shown how to solve this
problem on M machines in O(n log(n)) time. An algorithm is designed in [3] for weighted
interval scheduling on M machines that runs in O(n2 log(n)) time.

We refer a reader to [14] and references therein for additional applications of the interval
scheduling problem.

S. Compton, S. Mitrović, and R. Rubinfeld 45:5

Other related work. There has also been a significant interest in job scheduling problems
in which our goal is to schedule all the given jobs across multiple machines, with the
objective to minimize the total scheduling time. Several variants have been studied, including
setups which allow preemptions, or setting where jobs have precedence constraints. We
refer a reader to [15, 7, 19, 23, 5, 18, 16] and references therein for more details on these
and additional variants of job scheduling. Beyond dynamic algorithms for approximating
maximum independent sets of intervals or hypercubes, [6] show results for geometric objects
such as disks, fat polygons, and higher-dimensional analogs. After we had published a
preprint of this work, [6] proved a result that captures Theorem 1 with a more general class
of fat objects.

2 Overview of Our Techniques

Our primary goal is to present unified techniques for approximating scheduling problems
that can be turned into efficient algorithms for many settings. In this section, we discuss key
insights of our techniques.

In the problems our work tackles, partitioning the problem instance into independent,
manageable chunks is crucial. Doing so enables an LCA to determine information about a
job of interest without computing an entire schedule, or enables a dynamic data structure to
maintain a solution without restarting from scratch.

2.1 Unweighted Interval Scheduling – Partitioning Over Time
(Section 4)

For simplicity of presentation, we begin by examining our method for partitioning over
time for just the unweighted interval scheduling problem on one machine (i.e., M = 1). In
particular, we first focus on doing so for the dynamic setting.

Recall that in this setting the primary motivation for partitioning over time, is to divide
the problem into independent, manageable chunks that can be utilized by a data structure
to quickly modify a solution while processing an update. In our work, we partition the time
dimension by maintaining a set of borders that divide time into some number of contiguous
regions. By doing so, we divide the problem into many independent regions, and we ignore
jobs that intersect multiple regions; equivalently, we ignore jobs that contain a border. Our
goal is then to dynamically maintain borders in a way such that we can quickly recompute
the optimal solution completely within some region, and that the suboptimality introduced
by these borders does not affect our solution much. In Section 4, we show that by maintaining
borders where the optimal solution inside each region, i.e., a time-range between two borders,
is of size Θ(1

ε), we can maintain a (1 + ε)-approximation of an optimal solution as long as we
optimally compute the solution within each region.

Here, the underlying intuition is that because each region has a solution of size Ω(1
ε), we

can charge any suboptimality caused by a border against the selected jobs in an adjacent
region. Likewise, because each region’s solution has size O(1

ε), we are able to recompute
the optimal solution within some region quickly using a balanced binary search tree. We
dynamically maintain borders satisfying our desired properties by adding a new border when
a region becomes too large, or merging with an adjacent region when a region becomes
too small. As only O(1) regions will require any modification when processing an update,

ICALP 2023

45:6 Faster Approximate Interval Scheduling

this method of partitioning time, while simple, enables us to improve the fastest known
update/query time to O(log(n)/ε).1 In Section 2.2 we build on these ideas to design an
algorithm for the weighted interval scheduling problem.

2.2 Weighted Interval Scheduling

In our most technically involved result, we design the first deterministic (1+ε) approximation
algorithm for weighted interval scheduling that runs in poly(log n, 1

ε) time. In this section we
give an outline of our techniques and discuss key insights. For full details we refer a reader
to the full version.

2.2.1 Job data structure

Let E be the set of all the endpoints of given jobs, i.e., E contains si and fi for each job
[si, fi]. We build a hierarchical data structure over E as follows. This structure is organized
as a binary search tree T . Each node Q of T contains value key(Q) ∈ E , with “1-1” mapping
between E and the nodes of T . Each node Q is responsible for a time range. The root of T ,
that we denote by Qroot, is responsible for the entire time range (−∞, ∞). Each node Q has
at most two children, that we denote by QL and QR. If Q is responsible for the time range
[X, Y], then QL is responsible for [X, key(Q)], while QR is responsible for [key(Q), Y].

Jobs are then assigned to nodes, where a job J is assigned to every node Q such that J

is contained within the Q’s responsible time range.

−∞ ∞

−∞ ∞

−∞ ∞

2 5

7

72 10

7

10

20

2

1 5

4

Figure 1 Visual example for hierarchical decomposition. Consider we are given jobs with the
following ranges of (1, 5), (2, 10), (7, 20), (4, 5). On the left is T , a balanced binary search tree over
the set of all si and fi. On the right is the hierarchical decomposition that corresponds to T . That
is, in each row, the intervals on the right correspond to the [lQ, rQ] for the nodes on the left. For
instance, in the third row, (−∞, 2] corresponds to the node Q with KEY (Q) = 1.

1 The main advantage of this techniques is that it leads to worst-case O(log (n)/ε) update time, as opposed
to only an amortized one. We point out that it is not difficult to obtain such amortized guarantee in
the following way: after each ε · OP T many updates, recompute the optimum solution from scratch.
Given access to the balanced binary tree structure described above, this re-computation can be done in
O(OP T · log n) time.

S. Compton, S. Mitrović, and R. Rubinfeld 45:7

2.2.2 Organizing computation
We now outline how the structure T is used in computation. As a reminder, our main goal is
to compute a (1 + ε)-approximate weighted interval scheduling. This task is performed by
requesting Qroot to solve the problem for the range (−∞, ∞). However, instead of computing
the answer for the entire range (−∞, ∞) directly, Qroot partitions the range (−∞, ∞) into:

a number of ranges over which it is relatively easy to compute approximate solutions,
such ones are called sparse, and
the remaining ranges over which it is relatively hard to compute approximate solutions
at the level of Qroot.

These hard-to-approximate ranges are deferred to the children of Qroot, and are hard to
approximate because any near-optimal solution for the range contains many jobs. On the
other hand, solutions in sparse ranges are of size O(1/ε). As we discuss later, approximate
optimal solutions within sparse ranges can be computed very efficiently; for details, see the
paragraph Approximate dynamic programming below.

In general, a child QC of Qroot might receive multiple ranges from Qroot for which it is
asked to find an approximately optimal solution. QC performs computation in the same
manner as Qroot did – the cell QC partitions each range it receives into “easy” and “hard”
to compute subranges. The first type of subranges is computed by QC , while the second
type if deferred to the children of QC . The same as in Section 2.3, these “hard” ranges have
large weight and allow for drawing a boundary and hence dividing a range into two or more
independent ranges. We now discuss how the partitioning into ranges is undertaken.

2.2.3 Auxiliary data structure
To divide a range into “easy” and “hard” ranges at the level of a node Q, we design an
auxiliary data structure, which relates to a rough approximation of the problem. This
structure, called Z(Q), maintains a set of points (we call these points grid endpoints) that
partition Q into slices of time. We use slice to refer to a time range between two consecutive
points of Z(Q). Recall how for unweighted interval scheduling, we maintained a set of borders
and ignored a job that crossed any border. In the weighted version, we will instead use Z(Q)
as a set of partitions from which we will use some subset to divide time. Our method of
designing Z(Q) reduces the task of finding a partitioning over time Z(Q) within a cell for the
(1 + ε)-approximate weighted interval scheduling problem to finding multiple partitionings
for the (1 + ε)-approximate unweighted problem.

It is instructive to think of Z(Q) in the following way. First, we view weighted interval
scheduling as O(log n) independent instances of unweighted interval scheduling – instance
i contains the jobs having weights in the interval (wmax(Q)/2i+1, wmax(Q)/2i]. Then, for
each unweighted instance we compute borders as described in Section 2.1. Z(Q) constitutes
a subset of the union of those borders across all unweighted instances. We point out that
the actual definition of Z(Q) contains some additional points that are needed for technical
reasons, but in this section we will adopt this simplified view. In particular, as we will see,
Z(Q) is designed such that the optimal solution within each slice has small total reward
compared to the optimal solution over the entirety of Q. This enables us to partition the
main problem into subproblems such that the suboptimality of discretizing the time towards
slices, that we call snapping, is negligible.

However, a priori, it is not even clear that such structure Z(Q) exists. So, one of the
primary goals in our analysis is to show that there exists a near-optimal solution of a desirable
structure that can be captured by Z(Q). The main challenge here is to detect/localize sparse

ICALP 2023

45:8 Faster Approximate Interval Scheduling

and dense ranges efficiently and in a way that yields a fast dynamic algorithm. As an
oversimplification, we define a solution as having nearly-optimal sparse structure if it can be
generated with roughly the following process:

Each cell Q receives a set of disjoint time ranges for which it is supposed to compute
an approximately optimal solution using jobs assigned to Q or its descendants. Each
received time range must have starting and ending time in Z(Q).
For each time range R that Q receives, the algorithm partitions R into disjoint time
ranges of three types: sparse time ranges, time ranges to be sent to QL for processing,
and time ranges to be sent to QR for processing. In particular, this means that subranges
of R are deferred to the children of Q for processing.
For every sparse time range, Q computes an optimal solution using at most 1/ε jobs.
The union of the reward/solution of all sparse time ranges on all levels must be a (1 + ε)-
approximation of the globally optimal solution without any structural requirements.

Moreover, we develop a charging method that enables us to partition each cell with
only |Z(Q)| = poly(1/ε, log(n)) points and still have the property that it contains a (1 + ε)-
approximately optimal solution with nearly-optimal sparse structure. Then, we design an
approximate dynamic programming approach to efficiently compute near-optimal solutions
for sparse ranges. Combined, this enables a very efficient algorithm for weighted interval
scheduling. On a high-level, Z(Q) enables us to eventually decompose an entire solution into
sparse regions.

2.2.4 The charging method
We now outline insights of our charging arguments that enable us to convert an optimal
solution OPT into a near-optimal solution OPT ′ with nearly-optimal sparse structure while
relaxing our partitioning to only need |Z(Q)| = poly(1/ε, log(N)) points. For a visual aid,
see Figure 2.

Q

received rangeR

sparse rangechild subproblem child subproblem

G G GBY Y Y Y Y Y

Figure 2 Visual example for charging argument.

As outlined in our overview of the nearly-optimal sparse structure, each cell Q receives a
set of disjoint time ranges, with each time range having endpoints in Z(Q), and must split
them into three sets: sparse time ranges, time ranges for QL, and time ranges for QR. We
will now modify OPT by deleting some jobs. This new solution will be denoted by OPT ′

and will have the following properties:
(1) OPT ′ exhibits nearly-optimal sparse structure; and
(2) OPT ′ is obtained from OPT by deleting jobs of total reward at most O(ε · w(OPT)).

S. Compton, S. Mitrović, and R. Rubinfeld 45:9

We outline an example of one such time range a cell Q may receive in Figure 2, annotated
by “received range R”. We will color jobs in Figure 2 to illustrate aspects of our charging
argument, but note that jobs do not actually have a color property beyond this illustration.
Since our structure only allows a cell Q to use a job within its corresponding time range, any
relatively valuable job that crosses between QL and QR must be used now by Q putting it
in a sparse time range. One such valuable job in Figure 2 is in blue marked by “B”. To have
“B” belong to a sparse range, we must divide the time range R somewhere, as otherwise our
solution in the received range will be dense. If we naively divide R at the partition of Z(Q)
to the left and right of the job “B”, we might be forced to delete some valuable jobs; such
jobs are pictured in green and marked by “G”. Instead, we expand the division outwards in a
more nuanced manner. Namely, we keep expanding outwards and looking at the job that
contains the next partition point (if any). If the job’s value exceeds a certain threshold, as
those pictured as green and marked by “G” in Figure 2, we continue expanding. Otherwise,
the job crossing a partition point is below a certain threshold, pictured as brown and not
marked in Figure 2, and its deletion can be charged against the blue job. We delete such
brown jobs and the corresponding partition points, i.e., the vertical red lines crossing those
brown jobs, constitute the start and the end of the sparse range. By the end, we decided the
starting and ending time of the sparse range, and what remains inside are blue job(s), green
job(s), and yellow job(s) (also marked by “Y”). Note that yellow jobs must be completely
within a partition slice of Z(Q). Since we define Z(Q) such that the optimal total reward
within any grid slice is small, the yellow jobs have relatively small rewards compared to
the total reward of green and blue jobs that we know must be large. Accordingly, we can
delete the yellow jobs (to help make this time range’s solution sparse) and charge their cost
against a nearby green or blue job. In Figure 2, an arrow from one job to another represents
a deleted job pointing towards the job who we charge its loss against. Finally, each sparse
range contains only green job(s) and blue job(s). If there are more than 1/ε jobs in such a
sparse range, we employ a simple sparsifying step detailed in the full proof.

It remains to handle the time ranges of the received range that were not put in sparse
ranges. These will be time ranges that are sent to QL and QR. In Figure 2, these ranges
are outlined in yellow and annotated by “child subproblem”. However, the time ranges do
not necessarily align with Z(QL) or Z(QR) as is required by nearly-optimal sparse structure.
We need to adjust these ranges such that they align with Z(QL) or Z(QR) so we can send
the ranges to the children. See Figure 3 for intuition on why we cannot just immediately
“snap” these child subproblems to the partition points in Z(QL) and Z(QR). (We say that
a range R is snapped inward (outward) within cell Q if R is shrunk (extended) on both
sides to the closest points in Z(Q). Inward snapping is illustrated in Figure 3.) Instead, we
employ a similar charging argument to deal with snapping. As an analog to how we expanded
outwards from the blue job for defining sparse ranges, we employ a charging argument where
we contract inwards from the endpoints of the child subproblem. In summary, these charging
arguments enabled us to show a solution of nearly-optimal sparse structure exists even when
only partitioning each cell Q with |Z(Q)| = poly(1/ε, log(n)) points.

2.2.5 Approximate dynamic programming
Now, we outline our key advance for more efficiently calculating the solution of nearly-
optimal sparse structure. This structure allows us to partition time into ranges with sparse
solutions. More formally, we are given a time range and we want to approximate an optimal
solution within that range that uses at most 1/ε jobs. We outline an approximate dynamic
programming approach that only requires polynomial time dependence on 1/ε.

ICALP 2023

45:10 Faster Approximate Interval Scheduling

Q

QL
Y QR

YY

denserange

snap snap

Figure 3 This example illustrates why the snapping we perform has to be done with care. The
horizontal segments in this figure represent jobs. We show an initial dense range (outlined in purple)
with endpoints in Z(Q). With dashed vertical lines, we show where these endpoints are in QL.
Importantly, they are not aligned with Z(QL), i.e., the vertical dashed lines do not belong to Z(QL).
However, our structure requires that dense ranges align with Z(Qchild), so we must address this. If
we were to naively snap the endpoints of the dense range inwards to the endpoints of Z(QL), then
we would need to delete some jobs (these deleted jobs are colored in yellow and marked by “Y”),
while some other jobs would not be affected (like the remaining jobs in this example, those colored
in blue). While this naive snapping may be fine in some cases, it will incur significant loss in cases
in which the “Y” jobs have large weight. Notice that naively snapping outward to define a new
region corresponding to the purple one is not a solution neither, as this could cause the dense time
range to overlap with a previously selected sparse time range. Having overlapping ranges can cause
us to choose intersecting jobs, and thus an invalid solution. Thus, we detail a more comprehensive
manner of dealing with snapping.

The relatively well-known dynamic programming approach for computing weighted
interval scheduling is to maintain a dynamic program where the state is a prefix range of
time and the output is the maximum total reward that can be obtained in that prefix range
of time. However, for our purposes, there are too many possibilities for prefix ranges of
time to consider. Instead, we invert the dynamic programming approach, and have a state
referencing some amount of reward, where the dynamic program returns the minimum length
prefix range of time in which one can obtain a given reward. Unfortunately, there are also
too many possible amounts of rewards. We observe that we do not actually need this exact
state, but only an approximation. In particular, we show that one can round this state down
to powers of (1 + ε2) and hence significantly reduce the state-space. In the full version, we
show how one can use this type of observation to quickly compute approximate dynamic
programming for a near-optimal sparse solution inside any time range.

2.2.6 Comparison with Prior Work

The closest to our work is the one of [12]. In terms of improvements, we achieve the
following: we remove the dependence on N and wmax in the running-time analysis; we obtain
a deterministic approach; and, we design an algorithm with poly(1/ε, log n) update/query
time, which is exponentially faster in 1/ε compared the prior work.

S. Compton, S. Mitrović, and R. Rubinfeld 45:11

In this prior work, jobs are assumed to have length at least 1 and belong in the time-
interval [1, N]. To remove the dependence on N and such assumptions, we designed a new
way of bookkeeping jobs. Instead of using a complete binary tree on [1, N] to organize jobs
as done in the prior work, we employ binary balanced search tree on the endpoints of jobs.
A complete binary tree on [1, N] is oblivious to the density of jobs. On the other hand, and
intuitively, our approach allows for “instance-based” bookkeeping: the jobs are in a natural
way organized with respect to their density. Resorting to this approach incurs significant
technical challenges. Namely, the structure of solution our tree maintains is hierarchically
organized. However, each tree update, which requires node-rotations, breaks this structure
which requires additional care in efficiently maintaining approximate solution after an update,
as well as requiring an entirely different approach for maintaining a partitioning of time Z(Q)
within cells. Moreover, we show how to further leverage these ideas to obtain a deterministic
approach.

In our work, we use borders to define the so-called sparse and dense ranges. This idea
is inspired by the work of [12]. We emphasize, though, that one of our main contributions
and arguably the most technically involved component is showing how to algorithmically
employ those borders in running-time only polynomially dependent on 1/ε, while [12] require
exponential dependence on 1/ε.

Our construction of auxiliary data structure Z(Q) enables us to boost an O(log(n))-
approximate solution into a decomposition enabling a (1 + ε)-approximate solution is inspired
by the approach of [12]. They similarly develop Z(Q) to boost an instead O(1)-approximation
that fundamentally relies on the bounded coordinate assumptions of jobs being within [1, N]
and having length at least 1. Our different approach towards Z(Q) enables simplification of
some arguments as well as not relying on randomness, or on length or bounded coordinate
assumptions. Further, we note that the dynamic programming approach for sparse regions
that we develop is significantly faster than the enumerative approach used in the prior work,
that eventually enables us to obtain a poly(1/ε) dependence in the running time. The way
we combine solutions over sparse regions is similar to the way it is done in the prior work.

2.3 Localizing the Time-Partitioning Method
We also show that this method of partitioning over time can be used to develop local
algorithms for interval scheduling. Here, we desire to answer queries about whether a
particular job is in our schedule. We hope to answer each of these queries consistently (i.e.,
they all agree with some approximately optimal schedule) and in less time than it would
take to compute an entire schedule from scratch. Partitioning over time seems helpful for
this setting, because this would enable us to focus on just the region of the job being queried.
However, our previously mentioned method for maintaining borders does so in a sequential
manner that we can no longer afford to do in this model of computation. Instead, we use a
hierarchical approach to more easily compute the locations of borders that create regions
with solutions not too big or too small.

For simplicity, we again focus on the unweighted setting with only one machine. In the
standard greedy algorithm for computing unweighted interval scheduling on one machine,
we repeatedly select the job successor(x): “What is the interval with the earliest endpoint,
of those that start after point x?” (where x is the endpoint of the previously chosen job).
As reading the entire problem instance would take longer than desired, an LCA requires
some method of probing for information about the instance. Our LCA utilizes such successor
probes to do so. For further motivation, see the full version. We outline a three-step approach
towards designing an LCA that utilizes few probes:

ICALP 2023

45:12 Faster Approximate Interval Scheduling

Hierarchizing the greedy. Instead of just repeatedly using successor(x) to compute the
solution as the standard greedy does, we add hierarchical structure that adds no immediate
value but serves as a helpful stepping stone. Consider a binary search tree (BST) like
structure, where the root node corresponds to the entire time range [0, N]. Each node in
the structure has a left-child and a right-child corresponding to the 1st and the 2nd half,
respectively, of that node’s range. Eventually, leaf nodes have no children and correspond to
a time range of length one unit. At a high-level, we add hierarchical structure by considering
jobs contained in some node’s left-child, then considering jobs that go between the node’s
left-child and right-child, and then considering jobs contained in the node’s right-child. This
produces the same result as the standard greedy, but we do so with a hierarchical structure
that will be easier to utilize.

Approximating the hierarchical greedy. Now, we modify the hierarchical greedy so that it
is no longer exactly optimal but is instead an approximation. At first this will seem strictly
worse, but it will yield an algorithm that is easier to localize. When processing each node,
we will first check whether it is the case that both the left-child and the right-child have
optimal solutions of size > 1

ε . A key observation here is that checking whether a time range
has an optimal solution of size > 1

ε can be done by making at most 1 + 1
ε successor probes

(i.e., one does not necessarily need to compute the entire optimal solution to check if it is
larger than some relatively small threshold). If both the left-child and the right-child would
have optimal solutions of size > 1

ε , then we can afford to draw a border at the midpoint of
our current node and solve the left-child and right-child independently. Jobs intersecting a
border are ignored, and we charge the number of such ignored jobs, i.e., the number of drawn
borders, to the size of solution in the corresponding left- and right-child. Ultimately, we show
that the addition of these borders makes our algorithm (1 + ε)-approximate. Moreover, and
importantly, these borders introduce independence between children with large solutions.

Localizing the approximate, hierarchical greedy. Finally, we localize the approximate,
hierarchical greedy. To do so, we note that when some child of a node has a small optimal
solution, then we can get all the information we need from that child in O(1

ε) probes. As
such, if a node has a child with a small optimal solution, we can make the required probes
from the small child and recurse to the large child. Otherwise, if both children have large
solutions, we can draw a border at the midpoint of the current node and only need to recurse
down the child which contains the job the LCA is being queried about.

With these insights, we have used our partitioning method over time for local algorithms
to produce an LCA only requiring O(log(N)

ε) successor probes.

3 Problem Setup

In the interval scheduling problem, we are given n jobs and M machines. With each job
j are associated two numbers sj and lj > 0, referring to “start” and “length” respectively,
meaning that the job j takes lj time to be processed and its processing can only start at
time sj . While prior work such as [12] used assumptions such as sj ≥ 0, lj ≥ 1 and have
an upper-bound N on sj + lj , we utilize such assumptions only in our LCA results. In
addition, with each job j is associated weight/reward wj > 0, that refers to the reward for
processing the job j. The task of interval scheduling is to schedule jobs across machines
while maximizing the total reward and respecting that each of the M machines can process
at most one job at any point in time.

S. Compton, S. Mitrović, and R. Rubinfeld 45:13

4 Dynamic Unweighted Interval Scheduling on a Single Machine

In this section we prove Theorem 1. As a reminder, Theorem 1 considers the case of interval
scheduling in which wj = 1 for each j and M = 1, i.e., the jobs have unit reward and there
is only a single machine at our disposal. This case can also be seen as a task of finding a
maximum independent set among intervals lying on the x-axis. The crux of our approach is
in designing an algorithm that maintains the following invariant:

▶ Invariant 1. The algorithm maintains a set of borders such that an optimal
solution schedules between 1/ε and 2/ε intervals within each two consecutive borders.

We will maintain this invariant unless the optimal solution has fewer than 1/ε intervals, in
which case we are able to compute the solution from scratch in negligible time. We aim for
our algorithm to maintain Invariant 1 while keeping track of the optimal solution between
each pair of consecutive borders. The high level intuition for this is that if we do not maintain
too many borders, then our solution must be very good (our solution decreases by size at
most one every time we add a new border). Furthermore, if the optimal solution within
borders is small, it is likely easier for us to maintain said solutions. We prove that this
invariant enables a high-quality approximation:

▶ Lemma 4. A solution that maintains an optimal solution within consecutive pairs of a
set of borders, where the optimal solution within each pair of consecutive borders contains at
least K intervals, maintains a K+1

K -approximation.

Proof. For our analysis, suppose there are implicit borders at −∞ and +∞ so that all jobs
are within the range of borders. Consider an optimal solution OPT . We will now design a
K-approximate optimal solution OPT ′ as follows: given OPT , delete all intervals in OPT

that overlap a drawn border. Fix an interval J appearing in OPT but not in OPT ′. Assume
that J intersects the i-th border. Recall that between the (i − 1)-st and the i-th border
there are at least K intervals in OPT ′. Moreover, at most one interval from OPT intersects
the i-th border. Hence, to show that OPT ′ is a K+1

K -approximation of OPT , we can charge
the removal of J to the intervals appearing between the (i − 1)-st and the i-th border in
OPT ′. ◀

Not only does Invariant 1 enable high-quality solutions, but it also assists us in quickly
maintaining such a solution. We can maintain a data structure with O(log(n)

ε) updates and
O(log(n)) queries that moves the borders to maintain the invariant and thus maintains an
(1 + ε)-approximation as implied by Lemma 4.

▶ Theorem 1 (Unweighted dynamic, single machine). Let J be a set of n jobs. For any
ε > 0, there exists a fully dynamic algorithm for (1 + ε)-approximate unweighted interval
scheduling for J on a single machine performing updates in O

(
log(n)

ε

)
and queries in

O(log(n)) worst-case time.

Proof. Our goal now is to design an algorithm that maintains Invariant 1, which by Lemma 4
and for K = 1/ε will result in a (1 + ε)-approximation of Maximum-IS.

On a high-level, our algorithm will maintain a set of borders. When compiling a solution
of intervals, the algorithm will not use any interval that contains any of the borders, but
proceed by computing an optimal solution between each two consecutive borders. The
union of those between-border solutions is the final solution. Moreover, we will maintain the
invariant that the optimal solution for every contiguous region is of size within [1

ε , 2
ε).

In the rest, we show how to implement these steps in the claimed running time.

ICALP 2023

45:14 Faster Approximate Interval Scheduling

Maintained data-structures. Our algorithm maintains a balanced binary search tree Tall of
intervals sorted by their starting points. Each node of Tall will also maintain the end-point
of the corresponding interval. It is well-known how to implement a balanced binary search
tree with O(log n) worst-case running time per insertion, deletion and search query. Using
such an implementation, the algorithm can in O(log n) time find the smallest ending-point
in a prefix/suffix on the intervals sorted by their starting-points. That is, in O(log n) time
we can find the interval that ends earliest, among those that start after a certain time.

In addition, the algorithm also maintains a balanced binary search tree Tborders of the
borders currently drawn.

Also, we will maintain one more balanced binary search tree Tsol that will store the
intervals that are in our current solution.

We will use that for any range with optimal solution of size S, we can make O(S) queries
to these data structures to obtain an optimal solution for the range in O(S · log n) time.

Update after an insertion. Upon insertion of an interval J , we add J to Tall. We make a
query to Tborders to check whether J overlaps a border. If it does, we need to do nothing; in
this case, we ignore J even if it belongs to an optimal solution. If it does not, we recompute
the optimal solution within the two borders adjacent to J . If after recomputing, the new
solution between the two borders is too large, i.e, it has at least 2

ε intervals, then draw/add
a border between the 1

ε -th and the (1 + 1
ε)-th of those intervals.

Update after a deletion. Upon deletion of an interval J , we delete J from Tall. If J was
not in our solution, we do nothing else. Otherwise, we recompute the optimal solution within
the borders adjacent to J and modify Tsol accordingly. Let those borders be the i-th and
the (i + 1)-st. If the new solution between borders i and i + 1 now has size less than 1/ε (it
would be size exactly 1/ε), we delete an arbitrary one of the two borders (thus combining
this region with an adjacent region). Then, we recompute the optimal solution within the
(now larger) region J is in. If this results in a solution of size at least 2/ε, we will need to
split the newly created region by adding a border. Before splitting, the solution will have
size upper-bounded by one more than the size of the solutions within the two regions before
combining them as an interval may have overlapped the now deleted border (one region
with size exactly 1

ε − 1 and the other upper-bounded by 2
ε − 1). Thus, the solution has size

at in range [2/ε, 3
ε). We can add a border between interval 1/ε and 1/ε + 1 of the optimal

solution, and will have a region with exactly 1/ε intervals and another with [1/ε, 2/ε) intervals,
maintaining our invariant.

In all of these, the optimal solution for each region has size O(1/ε), so recomputing takes
O(log(n)/ε) time.

For queries, we will have maintained Tsol in our updates such that it contains exactly the
intervals in our solution. So each query we just need to do a lookup to see if the interval is
in Tsol in O(log n) time. ◀

This result improves the best-known time complexities [4, 12]. Unfortunately, it does not
immediately generalize well to the weighted variant. In the full version, we show our more
technically-challenging result for the weighted variant.

References
1 Pankaj K Agarwal and Marc J Van Kreveld. Label placement by maximum independent set in

rectangles, volume 1998. Utrecht University: Information and Computing Sciences, 1998.

S. Compton, S. Mitrović, and R. Rubinfeld 45:15

2 Noga Alon, Ronitt Rubinfeld, Shai Vardi, and Ning Xie. Space-efficient local computation
algorithms. In Proceedings of the twenty-third annual ACM-SIAM symposium on Discrete
Algorithms, pages 1132–1139. Society for Industrial and Applied Mathematics, 2012.

3 Esther M Arkin and Ellen B Silverberg. Scheduling jobs with fixed start and end times.
Discrete Applied Mathematics, 18(1):1–8, 1987.

4 Sujoy Bhore, Jean Cardinal, John Iacono, and Grigorios Koumoutsos. Dynamic geometric
independent set. arXiv preprint, 2020. arXiv:2007.08643.

5 Giorgio C Buttazzo, Marko Bertogna, and Gang Yao. Limited preemptive scheduling for
real-time systems. a survey. IEEE Transactions on Industrial Informatics, 9(1):3–15, 2012.

6 Jean Cardinal, John Iacono, and Grigorios Koumoutsos. Worst-case efficient dynamic geometric
independent set. In 29th Annual European Symposium on Algorithms (ESA 2021), volume
204, page 25. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

7 José R Correa and Andreas S Schulz. Single-machine scheduling with precedence constraints.
Mathematics of Operations Research, 30(4):1005–1021, 2005.

8 A FRANK. Some polynomial algorithms for certain graphs and hypergraphs. In Proceedings
of the 5th British Combinatorial Conference, 1975. Utilitas Mathematica, 1975.

9 Alexander Gavruskin, Bakhadyr Khoussainov, Mikhail Kokho, and Jiamou Liu. Dynamic
interval scheduling for multiple machines. In International Symposium on Algorithms and
Computation, pages 235–246. Springer, 2014.

10 Alexander Gavruskin, Bakhadyr Khoussainov, Mikhail Kokho, and Jiamou Liu. Dynamic
algorithms for monotonic interval scheduling problem. Theoretical Computer Science, 562:227–
242, 2015.

11 Paweł Gawrychowski and Karol Pokorski. Sublinear dynamic interval scheduling (on one or
multiple machines). arXiv preprint, 2022. arXiv:2203.14310.

12 Monika Henzinger, Stefan Neumann, and Andreas Wiese. Dynamic approximate maximum
independent set of intervals, hypercubes and hyperrectangles. In 36th International Symposium
on Computational Geometry (SoCG 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik,
2020.

13 Dorit S Hochbaum and Wolfgang Maass. Approximation schemes for covering and packing
problems in image processing and vlsi. Journal of the ACM (JACM), 32(1):130–136, 1985.

14 Antoon WJ Kolen, Jan Karel Lenstra, Christos H Papadimitriou, and Frits CR Spieksma.
Interval scheduling: A survey. Naval Research Logistics (NRL), 54(5):530–543, 2007.

15 Jan Karel Lenstra and AHG Rinnooy Kan. Complexity of scheduling under precedence
constraints. Operations Research, 26(1):22–35, 1978.

16 Elaine Levey and Thomas Rothvoss. A (1+ epsilon)-approximation for makespan scheduling
with precedence constraints using lp hierarchies. SIAM Journal on Computing, pages STOC16–
201, 2019.

17 Aristide Mingozzi, Marco A Boschetti, Salvatore Ricciardelli, and Lucio Bianco. A set
partitioning approach to the crew scheduling problem. Operations Research, 47(6):873–888,
1999.

18 Michael Pinedo. Scheduling, volume 29. Springer, 2012.
19 Julien Robert and Nicolas Schabanel. Non-clairvoyant scheduling with precedence constraints.

In Proceedings of the nineteenth annual ACM-SIAM symposium on Discrete algorithms, pages
491–500, 2008.

20 Ronitt Rubinfeld, Gil Tamir, Shai Vardi, and Ning Xie. Fast local computation algorithms.
arXiv preprint, 2011. arXiv:1104.1377.

21 Pinal Salot. A survey of various scheduling algorithm in cloud computing environment.
International Journal of Research in Engineering and Technology, 2(2):131–135, 2013.

22 Raksha Sharma, Vishnu Kant Soni, Manoj Kumar Mishra, and Prachet Bhuyan. A survey
of job scheduling and resource management in grid computing. world academy of science,
engineering and technology, 64:461–466, 2010.

ICALP 2023

https://arxiv.org/abs/2007.08643
https://arxiv.org/abs/2203.14310
https://arxiv.org/abs/1104.1377

45:16 Faster Approximate Interval Scheduling

23 Martin Skutella and Marc Uetz. Stochastic machine scheduling with precedence constraints.
SIAM Journal on Computing, 34(4):788–802, 2005.

24 Eva Tardos and Jon Kleinberg. Algorithm design, 2005.
25 Bram Verweij and Karen Aardal. An optimisation algorithm for maximum independent set

with applications in map labelling. In European Symposium on Algorithms, pages 426–437.
Springer, 1999.

Optimal (Degree+1)-Coloring in Congested Clique
Sam Coy # Ñ

University of Warwick, Coventry, UK

Artur Czumaj # Ñ

University of Warwick, Coventry, UK

Peter Davies # Ñ

Durham University, UK

Gopinath Mishra # Ñ

University of Warwick, Coventry, UK

Abstract
We consider the distributed complexity of the (degree+1)-list coloring problem, in which each node u

of degree d(u) is assigned a palette of d(u) + 1 colors, and the goal is to find a proper coloring using
these color palettes. The (degree+1)-list coloring problem is a natural generalization of the classical
(∆ + 1)-coloring and (∆ + 1)-list coloring problems, both being benchmark problems extensively
studied in distributed and parallel computing.

In this paper we settle the complexity of the (degree+1)-list coloring problem in the Congested
Clique model by showing that it can be solved deterministically in a constant number of rounds.

2012 ACM Subject Classification Theory of computation → Massively parallel algorithms; Theory
of computation → Distributed algorithms; Theory of computation → Pseudorandomness and
derandomization; Mathematics of computing → Graph algorithms

Keywords and phrases Distributed computing, graph coloring, parallel computing

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.46

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2306.12071

Funding Sam Coy: Research supported in part by the Centre for Discrete Mathematics and its
Applications (DIMAP), by an EPSRC studentship, and by the Simons Foundation Award No. 663281
granted to the Institute of Mathematics of the Polish Academy of Sciences for the years 2021–2023.
Artur Czumaj: Research supported in part by the Centre for Discrete Mathematics and its Applica-
tions, by EPSRC award EP/V01305X/1, by a Weizmann-UK Making Connections Grant, by an IBM
Award, and by the Simons Foundation Award No. 663281 granted to the Institute of Mathematics
of the Polish Academy of Sciences for the years 2021–2023.
Gopinath Mishra: Research supported in part by the Centre for Discrete Mathematics and its
Applications (DIMAP), by EPSRC award EP/V01305X/1, and by the Simons Foundation Award
No. 663281 granted to the Institute of Mathematics of the Polish Academy of Sciences for the years
2021–2023.

1 Introduction

Graph coloring problems are among the most extensively studied problems in the area of
distributed graph algorithms. In the distributed graph coloring problem, we are given an
undirected graph G = (V, E) and the goal is to properly color the nodes of G such that no
edge in E is monochromatic. In the distributed setting, the nodes of G correspond to devices
that interact by exchanging messages throughout some underlying communication network
such that the nodes communicate with each other in synchronous rounds by exchanging

EA
T
C
S

© Sam Coy, Artur Czumaj, Peter Davies, and Gopinath Mishra;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 46; pp. 46:1–46:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:s.coy@warwick.ac.uk
https://warwick.ac.uk/fac/sci/dcs/people/u1502327/
https://orcid.org/0000-0001-8500-8690
mailto:a.czumaj@warwick.ac.uk
https://www.dcs.warwick.ac.uk/~czumaj/
https://orcid.org/0000-0002-7743-438X
mailto:Peter.W.Davies@durham.ac.uk
https://sites.google.com/view/peterdavies
https://orcid.org/0000-0003-3739-5352
mailto:gopinath.mishra@warwick.ac.uk
https://sites.google.com/view/gopinathmishra
https://orcid.org/0000-0003-0540-0292
https://doi.org/10.4230/LIPIcs.ICALP.2023.46
https://arxiv.org/abs/2306.12071
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

46:2 Optimal (Degree+1)-Coloring in Congested Clique

messages over the edges in the network. Initially, the nodes do not know anything about G

(except possibly for some global parameters, e.g., the number of nodes n or the maximum
degree ∆). At the end of computation, each node v ∈ V should output its color (from a given
palette) in the computed coloring. The time or round complexity of a distributed algorithm
is the total number of rounds until all nodes terminate.

If adjacent nodes in G can exchange arbitrarily large messages in each communication
round (and hence the underlying communication network is equal to the input graph G),
this distributed model is known as the LOCAL model [30], and if messages are restricted
to O(log n) bits per edge (limited bandwidth) in each round, the model is known as the
CONGEST model [38]. If we allow all-to-all communication (i.e., the underlying network is
a complete graph and thus the communication is independent of the input graph G) using
messages of size O(log n) bits then the model is known as the CongestedClique model [31].

The most fundamental graph coloring problem in distributed computing (studied in the
seminal paper by Linial [30] that introduced the LOCAL model) is (∆+1)-coloring: assuming
that the input graph G is of maximum degree ∆, the objective is to color nodes of G using
∆ + 1 colors from {1, 2, . . . , ∆ + 1}. The (∆ + 1)-coloring problem can be easily solved by a
sequential greedy algorithm, but the interaction between local and global aspects of graph
coloring create some non-trivial problems in a distributed setting. The problem has been
used as a benchmark to study distributed symmetry breaking in graphs, and it is at the
very core of the area of distributed graph algorithms. (∆ + 1)-list coloring is a natural
generalization of (∆ + 1)-coloring: each node has a an arbitrary palette of ∆ + 1 colors, and
the goal is to compute a legal coloring in which each node is assigned a color from its own
palette. A further generalization is the (degree+1)-list coloring (D1LC) problem, which is
the same as the (∆ + 1)-list coloring problem except that the size of each node v’s palette is
d(v) + 1, which might be much smaller than ∆ + 1. These three problems always have a
legal coloring (easily found sequentially using a greedy approach), and the main challenge in
the distributed setting is to find the required coloring in as few rounds as possible.

These three graph coloring problems have been studied extensively in distributed com-
puting, though (∆ + 1)-coloring, as the simplest, has attracted most attention. However,
one can also argue that (degree+1)-list coloring, as the most versatile, is more algorith-
mically fundamental than (∆ + 1)-coloring. For example, given a partial solution to a
(∆ + 1)-coloring problem, the remaining coloring problem on the uncolored nodes is an
instance of the (degree+1)-list coloring problem. The (degree+1)-list coloring problem is
self-reducible: after computing a partial solution to a (degree+1)-list coloring problem, the
remaining problem is still a (degree+1)-list coloring problem. It also naturally appears as
a subproblem in more constrained coloring problems: for example, it has been used as a
subroutine in distributed ∆-coloring algorithms (see, e.g., [19]), in efficient (∆ + 1)-coloring
and edge-coloring algorithms (see, e.g., [28]), and in other graph coloring applications (see,
e.g. [4]).

Following an increasing interest in the distributed computing community for (degree+1)-
list coloring, it is natural to formulate a central challenge relating it to (∆ + 1)-coloring:

Can we solve the (degree+1)-list coloring problem in asymptotically
the same round complexity as the simpler (∆ + 1)-coloring problem?

This challenge has been elusive for many years and only in the last year the affirmative
answer was given for randomized algorithms in LOCAL and CONGEST. First, in a recent
breakthrough, Halldórsson, Kuhn, Nolin, and Tonoyan [24] gave a randomized O(log3 log n)-

S. Coy, A. Czumaj, P. Davies, and G. Mishra 46:3

round distributed algorithm for (degree+1)-list coloring in the LOCAL model, matching the
state-of-the-art complexity for the (∆ + 1)-coloring problem [10, 40]. This has been later
extended to the CONGEST model by Halldórsson, Nolin, and Tonoyan [25], who designed a
randomized algorithm for (degree+1)-list coloring that runs in O(log5 log n)-round, matching
the state-of-the-art complexity for the (∆ + 1)-coloring problem in CONGEST [23].

The main contribution of our paper is a complete resolution of this challenge in the
CongestedClique model, and in fact, even for deterministic algorithms. We settle the com-
plexity of the (degree+1)-list coloring problem in CongestedClique by showing that it can be
solved deterministically in a constant number of rounds.

▶ Theorem 1. There is a deterministic CongestedClique algorithm which finds a
(degree+1)-list coloring of any graph in a constant number of rounds.

1.1 Background and Related Works

Distributed graph coloring problems have been extensively studied in the last three decades,
starting with a seminal paper by Linial [30] that introduced the LOCAL model and originated
the area of local graph algorithms. Since the (∆ + 1)-coloring problem can be solved
by a simple sequential greedy algorithm, but it is challenging to be solved efficiently in
distributed (and parallel) setting, the (∆ + 1)-coloring problem became a benchmark problem
for distributed computing and a significant amount of research has been devoted to the study
of these problems in all main distributed models: LOCAL, CONGEST, and CongestedClique.
The monograph [6] gives a comprehensive description of many of the earlier results.

It is long known from research on parallel algorithms that (∆ + 1)-coloring can be
computed in O(log n) rounds by randomized algorithms in the LOCAL model [2, 32]. Linial
[30] observed that for smaller values of ∆, one can do better: he showed that it is possible
to deterministically color arbitrary graphs of maximum degree ∆ with O(∆2) colors in
O(log∗ n) rounds; this can be easily extended to obtain a deterministic LOCAL algorithm for
(∆ + 1)-coloring that runs in O(∆2 + log∗ n) rounds, and thus in bounded degree graphs,
a (∆ + 1)-coloring can be computed in O(log∗ n) rounds. Improve results have since been
found for general values of ∆: the current state-of-the-art for the (∆ + 1)-coloring problem
in LOCAL is O(log3 log n) rounds for randomized algorithms [10, 40] and O(log2 ∆ · log n)
for deterministic algorithms [22]. Furthermore, the fastest algorithms mentioned above can
be modified to work also for the more general (∆ + 1)-list coloring problem in the LOCAL
model. (In fact, many of those algorithms critically rely on this problem as a subroutine.)

For the CONGEST model, the parallel algorithms mentioned above [2, 32] can be imple-
mented in the CONGEST model to obtain randomized algorithms for both the (∆+1)-coloring
and (∆ + 1)-list coloring problems that run in O(log n) rounds. Only recently this bound
has been improved for all values of ∆: In a seminal paper, Halldórsson et al. [23] designed a
randomized CONGEST algorithm that solves the (∆ + 1)-coloring and (∆ + 1)-list coloring
problems in O(log5 log n) rounds. For deterministic computation, the best LOCAL algorithm
[22] works directly in CONGEST, running in O(log2 ∆ · log n) rounds.

As for the lower bounds, one of the first results in distributed computing was a lower
bound in LOCAL of Ω(log∗ n) rounds for computing an O(1)-coloring of a graph of maximum
degree ∆ = 2, shown by Linial [30] for deterministic algorithms, and by Naor [35] for
randomized ones. Improved coloring lower bounds have not been forthcoming, and Ω(log∗ n)
rounds is still the best known lower bound complexity for the (∆ + 1)-coloring problem in
LOCAL and CONGEST.

ICALP 2023

46:4 Optimal (Degree+1)-Coloring in Congested Clique

This lower bound does not hold in the CongestedClique model, and in fact we can color
faster. After years of gradual improvements, Parter [36] exploited the LOCAL shattering
approach from [10] to give the first sublogarithmic-time randomized (∆+1)-coloring algorithm
for CongestedClique, which runs in O(log log ∆·log∗ ∆) rounds. This bound was later improved
by Parter and Su [37] to O(log∗ ∆) rounds. Finally, Chang et al. [9] settled the randomized
complexity of (∆ + 1)-coloring (and also for (∆ + 1)-list coloring) and obtained a randomized
CongestedClique algorithm that runs in a constant number of rounds. This result has been
later simplified and extended into a deterministic constant-round CongestedClique algorithm
by Czumaj et al. [15].

(degree+1)-list coloring (DILC). The D1LC problem in distributed setting has been
studied both on its own, and also as a tool in designing distributed algorithms for other
coloring problems, like (∆ + 1)-coloring, (∆ + 1)-list coloring, and ∆-coloring. The problem
is more general than the (∆ + 1)-coloring and the (∆ + 1)-list coloring problems, and the
difficulty of dealing with vertices having color palettes of significantly different sizes adds
an additional challenge. As the result, until very recently the obtained complexity bounds
have been significantly weaker than the bounds for the (∆ + 1)-coloring problem, see, e.g.,
[5, 20, 28]. This changed last year, when in a recent breakthrough Halldórsson et al. [24] gave
a randomized O(log3 log n)-round distributed algorithm for D1LC in the LOCAL distributed
model. Observe that this bound matches the state-of-the-art complexity for the (easier)
(∆ + 1)-coloring problem [10]. This work has been later extended to the CONGEST model
by Halldórsson et al. [25], who designed a randomized CONGEST algorithm for D1LC that
runs in O(log5 log n) rounds. Similarly as for the LOCAL model, this bound matches the
state-of-the-art complexity for the (∆ + 1)-coloring problem in CONGEST [23].

Specifically for the CongestedClique model, the only earlier D1LC result we are aware of
is by Bamberger et al. [5], who extended their own CONGEST algorithm for the problem to
obtain a deterministic D1LC algorithm requiring O(log ∆ log log ∆) rounds in CongestedClique.
However, the randomized state-of-the-art D1LC bound in the CongestedClique model follows
from the aforementioned O(log5 log n)-round CONGEST algorithm by Halldórsson et al. [25],
which works directly in CongestedClique. This should be compared with the state-of-the-art
O(1)-round CongestedClique algorithms for (∆ + 1)-coloring [9, 15].

Recent work in DILC on MPC. Various coloring problems have been also studied in a
related model of parallel computation, the so-called Massively Parallel Computation (MPC)
model. The MPC model, introduced by Karloff et al. [27], is now a standard theoretical
model for parallel algorithms. The MPC model with O(n) local space and n machines is
essentially equivalent to the CongestedClique model (see, e.g., [7, 26]), and this implies that
many MPC algorithms can be easily transferred to the CongestedClique model. (However,
this relationship requires that the local space of MPC is O(n) words, not more.)

Both the (∆ + 1)-coloring and (∆ + 1)-list coloring problems have been studied in MPC
extensively (see, e.g., [5, 15] for linear local space MPC and [5, 9, 14] for sublinear local space
MPC). We are aware only of a few works for the D1LC problem on MPC, see [5, 11, 24].
The work most relevant to our paper is the result of Halldórsson et al. [24]. They give a
constant-round MPC algorithm assuming the local MPC space is slightly superlinear, i.e.,
Ω(n log4 n) [24, Corollary 2]. This result relies on the palette sparsification approach due
to Alon and Assadi [1] (see also [3]) to the D1LC problem, which reduces the problem to
a sparse instance of size O(n log4 n); hence, on an MPC with Ω(n log4 n) local space one
can put the entire graph on a single MPC machine and then solve the problem in a single

S. Coy, A. Czumaj, P. Davies, and G. Mishra 46:5

round. Given the similarity of CongestedClique and the MPC model with linear local space,
one could hope that the use of “slightly superlinear” MPC local space in [24] can be overcome
and the approach can allow the problem to be solved in linear local space, resulting in a
CongestedClique algorithm with a similar performance. Unfortunately, we do not think this is
the case. The palette sparsification approach of Alon and Assadi does not reduce the number
of vertices in an input graph, and can only hope to reduce the maximum degree of the graph
down to, at best, Θ(log n). It has no effect on graphs that already have ∆ = O(log n), and
these sparse graphs are still hard instances for D1LC, with no better known upper bound
than on general graphs.

Further, we have recently seen a similar situation in (∆ + 1)-coloring. The palette
sparsification by Assadi et al. [3] trivially implies a constant-round MPC algorithm for
(∆ + 1)-coloring with local space Ω(n log2 n), but does not give a constant-round algorithm
for (∆ + 1)-coloring in CongestedClique. Only by using a fundamentally different approach
were Chang et al. [9] and then (deterministically) Czumaj et al. [13] able to obtain constant-
round (∆+1)-coloring algorithms in CongestedClique. Hence, despite having a constant-round
algorithm for D1LC in MPC with local space Ω(n log4 n), possibly a different approach than
palette sparsification is needed to achieve a similar performance for D1LC in CongestedClique.

Derandomization tools for distributed coloring algorithms. In our paper we rely on a
recently developed general scheme for derandomization in the CongestedClique model (and
used also extensively in the MPC model) by combining the methods of bounded independence
with efficient computation of conditional expectations. This method was first applied by
Censor-Hillel et al. [8], and has since been used in several other works for graph coloring
problems, (see, e.g., [15, 36]), and for other problems in CongestedClique and MPC.

The underlying idea begins with the design of a randomized algorithm using random
choices with only limited independence, e.g., O(1)-wise-independence. Then, each round of
the randomized algorithm can be simulated by giving all nodes a shared random seed of
O(log n) bits. Next, the nodes deterministically compute a seed which is at least as good
as a random seed is in expectation. This is done by using an appropriate estimation of the
local quality of a seed, which can be aggregated into a global measure of the quality of the
seed. Combining this with the techniques of conditional expectation, pessimistic estimators,
and bounded independence, this allows selection of the bits of the seed “batch-by-batch,”
where each batch consists of O(log n) bits. Once all bits of the seed are computed, we can
used it to simulate the random choices of that round, as it would have been performed by a
randomized algorithm. A more detailed explanation of this approach is given in Section 2.2.

1.2 Technical Overview
The core part of our constant-round deterministic CongestedClique D1LC algorithm (given as
BucketColor, Algorithm 4) does not follow the route of recent D1LC algorithms for LOCAL
and CONGEST due to Halldórsson et al. [24, 25]. Instead, it uses fundamentally different
techniques, extending the approach developed recently in a simple deterministic O(1)-round
CongestedClique algorithm for (∆ + 1)-list coloring of Czumaj, Davies, and Parter [15]. Their
(∆ + 1)-list coloring algorithm works by partitioning nodes into ∆ε buckets, for a small
constant ε. (This partitioning is initially at random, but then it is derandomized using the
method of conditional expectations). The available colors are also distributed among all
buckets, except for one “leftover” bucket, which is left without colors and is set aside to
be colored later. Then, each node’s palette is restricted to only the colors assigned to its
bucket (except those in the leftover bucket, whose palettes are not restricted). This ensures

ICALP 2023

46:6 Optimal (Degree+1)-Coloring in Congested Clique

that nodes in different buckets have entirely disjoint palettes, and therefore edges between
different buckets can be removed from the graph, since they would never cause a coloring
conflict. One important property is that nodes still have sufficient colors when their palettes
are restricted in this way. This is achieved in [15] using two main arguments: firstly, the
fact that colors are distributed among one fewer buckets than nodes provides enough “slack”
to ensure that with reasonably high probability, a node would receive more colors than
neighbors in its bucket. Secondly, the few nodes that do not satisfy this property induce a
small graph (of size O(n)), and therefore can be collected onto a single network node and
colored separately.

Using the approach from [15] sketched above, a (∆ + 1)-list coloring instance can be
reduced into multiple smaller (∆ + 1)-list coloring instances (i.e., on fewer nodes and with a
new, lower maximum degree) that are independent (since they had disjoint palettes), and so
can be solved in parallel without risking coloring conflicts. The final part of the analysis
of [15] was to show that, after recursively performing this bucketing process O(1) times,
these instances are of O(n) size and therefore they could be collected to individual nodes
and solved in a constant number of rounds in CongestedClique.

There are major barriers to extending this approach to (degree+1)-list coloring. Crucially,
it required the number of buckets to be dependent on ∆, and all nodes’ palette sizes to be
at least ∆. Dividing nodes among too few buckets would cause the induced graphs to be
too large, and the algorithm would not terminate in O(1) rounds; using too few buckets
would fail to provide nodes with sufficient colors in their bucket. In the D1LC problem, we no
longer have a uniform bound on palette size, so it is unclear how to perform this bucketing.

Our first major conceptual change is that, rather than simply partitioning among a
number (dependent on ∆) of equivalent buckets, we instead use a tree-structured hierarchy of
buckets, with the O(log log ∆) levels in the hierarchy corresponding to doubly-exponentially
increasing degree ranges (see Figure 1). Nodes with degree d(v) will be mapped to a bucket in
a level containing (very approximately) d(v)0.7 buckets. Colors will be mapped to a top-level
(leaf) bucket, but will also be assigned to every bucket on the leaf-root path in the bucket
tree (see Figure 2). We can therefore discard all edges between different buckets that do not
have an ancestor-descendant relationship, since these buckets will have disjoint palettes.

This change allows nodes to be bucketed correctly according to their own degree. However,
it introduces several new difficulties:

We no longer get a good bound on the number of lower-degree neighbors of a node v

that may share colors with it. We can only hope to prove that v receives enough colors
relative to its higher (or same)-degree neighbors.
The technique of having a leftover bucket which is not assigned colors no longer works to
provide slack (nor even makes sense - we would need a leftover bucket at every level, but,
for example, level 0 only contains one bucket).

In order to cope with these challenges, firstly, we employ the observation that if we were
to greedily color in non-increasing order of degree, we would require nodes to have a palette
size of d+(v) + 1 (where d+(v) is the number of v’s neighbors of equal or higher degree),
rather that d(v) + 1 (since d+(v) of v’s neighbors will have been colored at the point v is
considered). Therefore, we argue that we can still show that the graph is colorable even
though our bucketing procedure may leave nodes with many more lower-degree neighbors
than palette colors. (It is not necessarily clear how to find such a coloring in a parallel
fashion, but in our analysis, we will be able to address this issue.)

This observation also helps us with the problem of generating slack without a leftover
bucket. We show that, since lower-degree neighbors are now effectively providing slack,

S. Coy, A. Czumaj, P. Davies, and G. Mishra 46:7

Figure 1 Bucket structure. Figure 2 Partitioning nodes and colors.

only nodes with very few lower-degree neighbors may not receive enough colors (relative
to higher-degree neighbors) in their bucket. It transpires that we can easily generate slack
for these nodes prior to BucketColor via derandomizations of fairly standard procedures
(ColorTrial, Algorithm 2, and Subsample, Algorithm 3). The randomized bases for
all these procedures would inevitably result in some nodes failing to meet the necessary
properties for the next stage. To overcome this, we derandomize all of these procedures,
using the method of conditional expectations. As well as making the algorithm deterministic,
this has the important property of ensuring that failed nodes form an O(n)-size induced
graph, which can be easily dealt with later.

Having solved the problem of slack for the bucketing process (by showing that nodes
have received palettes of size at least d+(v) + 1 within their buckets), it remains to find a
parallel analog to greedily coloring in non-increasing order of degree. Our approach here
is to repeatedly move all nodes from their current bucket to a child of that bucket in the
bucket tree (which further restricts their neighborhood and available palette). We show that,
by correct choice of bucket and order of node consideration, we will always be able to find
child buckets such that each node still has palette size at least d+(v) + 1 according to the
new bucket assignment. We also show that, after O(1) iterations of this process, nodes only
have one palette color in their bucket, and zero neighbors earlier in the coloring order. Then,
all nodes can safely color themselves this palette color, and the coloring is complete.

The overall structure of the main algorithm Color (Algorithm 1) is more complicated,
since Subsample produces a graph G′ of leftover nodes that are deferred to be colored later.
We recursively run Algorithm 1 on this graph G′, and show that it is sufficiently smaller
than the original input graph that after O(1) recursive calls, the remaining graph has size
O(n) and can be collected and solved on a single node.

If we combine all these tools together then we will be able to obtain a randomized
CongestedClique algorithm that finds a (degree+1)-list coloring of any graph in O(1) rounds.
Using the method of conditional expectation using bounded-independence hash function (see
Section 2.2 and Appendix A), each randomized step of our algorithm can be derandomized.

2 Preliminaries

The main model considered in this paper is CongestedClique, as introduced by Lotker et al.
[31]. It is a variant of CONGEST, in which nodes can send a message of size O(log n) to
each neighboring node in the graph in each communication round: the difference is that
CongestedClique allows all-to-all communication, and hence the underlying communication

ICALP 2023

46:8 Optimal (Degree+1)-Coloring in Congested Clique

network is a complete graph on the nodes V . In particular, this allows the communication
to be performed between all pairs of nodes rather than being restricted to the edges of the
input graph. CongestedClique has been introduced as a theoretical model to study overlay
networks: an abstraction that separates the problems emerging from the topology of the
communication network from the problems emerging from the structure of the problem at
hand. It allows us to study a model in which each pair of nodes can communicate, and we do
not consider any details of how this communication is executed by the underlying network.

The degree+1 list coloring (D1LC) problem is for a given graph G = (V, E) on n

nodes and given color palettes Ψ(u) assigned to each node u ∈ V , such that |Ψ(u)| ≥ d(u)+1,
the objective to find a proper coloring of nodes in G such that each node as assigned to a
color from its color palette (and, as in proper coloring, no edge in G is monochromatic). The
input to the D1LC problem in CongestedClique is a graph G, where each node v of G has
assigned a network node and this network node knows Ψ(v) and all neighbors of v in G.

A useful property of the CongestedClique model is that thanks to the constant-round
routing algorithm of Lenzen [29], information can be redistributed essentially arbitrarily
in the communication network, so there is no need to associate the computational entities
with nodes in the input graph G. (This is in stark contrast to the related LOCAL and
CONGEST distributed models in which the link between computation and input graph
locality is integral.) In particular, this allows us to collect graphs of size O(n) on a single
node in O(1) rounds. Because of this “decoupling” of the computation from the input graph,
where appropriate we will distinguish the nodes in their roles as computational entities
(“network nodes”) from the nodes in the input graph (“graph nodes”).

2.1 Notation

For k ∈ N we let [k] := {1, . . . , k}. We consider a graph G = (V (G), E(G)) with V (G) as the
node set and E(G) as the edge set. The size of a graph G refers to the number of edges in G

and is denoted by |G|. The set of neighbors of a node v is denoted by NG(v) and the degree of
a node v is denoted by dG(v). The maximum degree of any node in G is denoted by ∆G. For
any node v, we partition its neighbors into two sets N+

G (v) := {u ∈ NG(v) : dG(u) ≥ dG(v)}
and N−

G (v) := {u ∈ NG(v) : dG(u) < dG(v)}, and let d+
G(v) := |N+

G (v)| and d−
G(v) := |N−

G (v)|.
When G is clear from the context, we suppress G from the subscripts of the notation.

For the coloring problem, for a node v, ΨG(v) denotes the list of colors in the color palette
of v and pG(v) := |ΨG(v)|. As we proceed in coloring the nodes of the input graph G the
graph will be changing and the color palettes of the nodes may also change. We will ensure
that at any moment, if G denotes the current graph then we have pG(v) ≥ dG(v) + 1. We
use C to denote the set of all colors present in the palette of any node (in a given moment).

For binary strings a and a′ in {0, 1}∗, a ⊑ a′ denotes that a is a prefix of a′, and a ⊏ a′

denotes that it is a strict prefix of a′. Furthermore, a′ ⊒ a iff a ⊑ a′, and a′ ⊐ a iff a ⊏ a′.
Due to the space constraint, the missing proofs are deferred to the full version.

2.2 Derandomization in CongestedClique

The method of conditional expectations using bounded-independence hash functions is a
nowadays classical technique for the derandomization of algorithms [17, 33, 34, 39]. Starting
with the recent work of Censor-Hillel et al. [8], this approach has been found very powerful also
in the setting of distributed and parallel algorithms, see e.g., [5, 12, 13, 14, 15, 16, 18, 21, 36].

S. Coy, A. Czumaj, P. Davies, and G. Mishra 46:9

This technique requires that we show that our randomized algorithm can be made to
work in expectation using only bounded-independence. It is known that small families of
bounded-independence hash functions exist, and that hash functions in these families can be
specified by a short seed. It is also known that such a family must contain a hash function
which beats the expectation due to the probabilistic method. Using these facts, we can
perform an efficient search for a hash function which beats the expectation by iteratively
setting a larger and larger prefix of the seed of the hash function.

We give a more detailed explanation of bounded-independence hash functions and the
method of conditional expectations with its implementation in Appendix A.

3 The DILC Algorithm

The framework of our CongestedClique algorithm is Color(G, x) (Algorithm 1), which colors
graph G relying on three main procedures: ColorTrial, Subsample, and BucketColor.

ColorTrial is a derandomized version of a simple and frequently used coloring procedure:
all nodes nominate themselves with some constant probability, and nominated nodes then
pick a color from their palette. If no neighbors choose this same color, the node is successful
and takes this color permanently. For our algorithm, the goal of ColorTrial is to provide
permanent slack for nodes whose neighbors mostly have higher degree than their own.

Subsample is a derandomized version of sampling: nodes v defer themselves to S (to be
colored later) with probability d(v)−0.1. The purpose of this is to provide temporary slack to
nodes whose neighbors mostly have similar degrees to their own. We will then recursively
run the whole algorithm on S, and we will show that after O(1) recursive calls the remaining
graph will be of size O(n), which can be trivially colored in CongestedClique in O(1) rounds.

BucketColor is our main coloring procedure, and is designed to color all nodes for
which ColorTrial and Subsample have generated sufficient slack, as well as all nodes
whose neighbors mostly have lower degree than their own.

All these three algorithms begin with a randomized procedure, and use the method of
conditional expectations on a family of O(1)-wise independent hash functions to derandomize
it. Note that this derandomization is an essential part of the algorithm even if one is only
concerned with probabilistic success guarantees. This is because in low-degree graphs, we
cannot obtain the necessary properties with high probability, and some nodes will fail. The
method of conditional expectations ensures that these graphs of failed nodes are of O(n) size
(and hence can collected onto a single network node in O(1) rounds to color sequentially).

Using ColorTrial, Subsample, and BucketColor, we can present our main algorithm
Color(G, x) (Algorithm 1) to color graph G. The algorithm assumes that ∆G ≤ O(

√
n)

and it uses a parameter x, 0 ≤ x ≤ 0.9, that quantifies the size of the remaining graph over
recursive calls (the algorithm starts with x = 0 and recursively increases by 0.1 until x = 1).
In Section 6 (Lemma 19), we extend the analysis to arbitrary graphs, allowing arbitrary ∆G.

Step 1 in Color(G, x) uses the fact that if G is of size O(n), then in CongestedClique,
the entire graph can be collected onto a single network node in O(1) rounds and the coloring
can be done locally. In the same way, since L0 consists of vertices of constant degree, we
can color them in step 7 in O(1) rounds. Similarly, we will argue that the graph F (of failed
nodes in ColorTrial) is of size O(n), and hence it can be colored in step 7 in O(1) rounds.
The central part of our analysis will be to show that after a constant number of recursive
calls the algorithm terminates with a correct solution to D1LC of G.

To prove the correctness of our algorithm, we show the following properties of
Color(G, x):

ICALP 2023

46:10 Optimal (Degree+1)-Coloring in Congested Clique

Algorithm 1 Color(G, x): ∆G ≤ O(
√

n); 0 ≤ x ≤ 0.9; C is a sufficiently large constant.

1 If |G| = O(n), then collect G in a single network node and solve the problem locally.
2 Set L0 := {v ∈ G : pG(v) < C} and G0 := G \ L0.
3 G1, F ← ColorTrial(G0).
4 G2, G′ ← Subsample(G1, x).
5 BucketColor(G2).
6 Color(G′, x + 0.1).
7 Collect and solve L0 and then F at a single node.

1. ColorTrial, Subsample, and BucketColor run deterministically in O(1) rounds.
2. The size of F is O(n).
3. Each node in G2 has sufficient slack to be colored by BucketColor. For each node v

of G2, either pG2(v) ≥ dG2(v) + 1
4 dG2(v)0.9, or |N−

G2
(v)| ≥ 1

3 dG2(v).
4. The size of the (remaining) graph reduces over recursive calls in the following sense:∑

v∈G′

dG1(v)x+0.1 ≤ Cn + 2
∑

v∈G1

dG1(v)x . (1)

Observe that when x = 0.9, expression (1) bounds the number of edges of G′. In particular,
we show that the total size of the remaining graph is O(n) after 10 recursive calls.

In Section 4, we describe the procedures ColorTrial and Subsample. Also, we prove
the desired properties of F , G2, and G′ in Section 4. In Section 5, we describe the procedure
BucketColor. Finally, we prove our main theorem (Theorem 1) in Section 6.

For simplicity of the presentation, in the pseudocode of our algorithms in the following
sections, we will only present the randomized bases of each procedure. In each case, the full
deterministic procedure comes from applying the method of conditional expectations to the
randomized bases, with some specific cost function we will make clear in the analysis.

4 ColorTrial and Subsample

We describe procedure ColorTrial and Subsample in Section 4.1 and Section 4.2, re-
spectively, along with some of their crucial useful properties. In particular, we show that
|F | = O(n) in Lemma 9 of Section 4.1 and show that graph G′ has the desired property in
Lemma 11 of Section 4.2. Finally, we give a lemma capturing the desired property of graph
G2 (which is the input to BucketColor).

4.1 ColorTrial
We first note that, because nodes with palette size less than C are removed immediately
prior to ColorTrial(G0) in Color(G, x), we may assume that all nodes v in G0 have
pG0(v) ≥ C. The randomized procedure on which ColorTrial is based is Algorithm 2.
ColorTrial has two major steps: nomination step (line 1) and coloring step (line 3). The
coloring of a node can be deferred if it is a failed node either in nomination step and coloring
step. Note that the notions of failed nodes are different in nomination step and coloring step,
and we will define both the notions in the following part of this section.

We define some notions that will be useful to define failed nodes in both the nomination
step and the coloring step of ColorTrial.

S. Coy, A. Czumaj, P. Davies, and G. Mishra 46:11

Algorithm 2 ColorTrial(G0) – Randomized Basis.

1 Each node v in G0 independently self-nominates with probability 1
4 .

2 Each node v decides if it is successful or failed in the nomination step.
3 For each self-nominated node v (that is successful in the nomination step):

v chooses a random palette color c(v) ∈ ΦG0(v);
v colors itself with color c(v) if no neighbor u of v choose c(u) = c(v);
v decides if it is successful or failed in the coloring step.

Return
G1, the induced graph of remaining (non-failed) uncolored nodes, with updated
palettes,
F , the induced graph of failed nodes (either in nomination step or in the coloring
step), with updated palettes.

▶ Definition 2. N∗(v) ⊆ NG0(v) is defined as the subset of neighbors u of v that have
dG0(u) ≥ 3dG0(v). Nomv ⊆ NG0(v) is defined as the subset of v’s neighbors that self-
nominate, and Nom∗

v := Nomv ∩N∗(v).

Next, we define the notion of failed nodes in the nomination step.

▶ Definition 3. A node v is successful during the nomination step of ColorTrial if both
of the following hold (if either condition does not hold, node v fails):
|Nomv| ≤ 1

4 dG0(v) + pG0(v)0.7;
|Nom∗

v| ≥ 1
4 |N

∗(v)| − pG0(v)0.7.

To derandomize ColorTrial, we replace each of the random choices of lines 1 and
3 (the nomination step and the coloring step respectively) with choices determined by a
random hash function from a O(1)-wise independent family [nO(1)] → [nO(1)]. We show
that, under such a choice of hash function, the subgraph induced by the failed nodes in the
nomination step is of size O(n) in expectation (Lemma 4). We are then able to derandomize
this selection using the method of conditional expectations to obtain Lemma 5.

▶ Lemma 4. When nomination choices of ColorTrial are determined by a random hash
function from a O(1)-wise independent hash family [nO(1)]→ [nO(1)], any node v fails in the
nomination step of ColorTrial with probability at most 1/pG0(v).

▶ Lemma 5. We can deterministically choose a hash function in O(1) rounds, from a
O(1)-wise independent family [nO(1)]→ [nO(1)], to run the nomination step of ColorTrial
such that the size of the subgraph induced by the failed nodes (in the nomination step) is O(n).

Besides the nomination step, a node can also fail in the coloring step of ColorTrial.
Now we formally define what it means for a node to fail in the coloring step.

▶ Definition 6. A node v is successful during the coloring step of ColorTrial if any of
the following hold (if none hold, node v fails):

pG0(v) ≥ 1.1dG0(v);
|N∗(v)| < 1

3 dG0(v);
at least 0.03dG0(v) of v’s neighbors failed in the nomination step;
at least 0.01pG0(v) of v’s neighbors successfully color themselves a color not in v’s palette.

ICALP 2023

46:12 Optimal (Degree+1)-Coloring in Congested Clique

Notice that the first three properties are already determined by the nomination step.
Here, we need to handle the fourth property. Similar to our analysis for the nomination step,
we are able to show that choosing a hash function uniformly at random from a O(1)-wise
independent family to make decisions in the coloring step yields a subgraph of failed nodes of
size O(n) in expectation (Lemma 7). We can then derandomize this result using the method
of conditional expectations, achieving Lemma 8.

▶ Lemma 7. When color choices in the coloring step of ColorTrial are determined by a
random hash function from a O(1)-wise independent hash family [nO(1)]→ [nO(1)], any node
v that did not fail in the nomination step fails in the coloring step of ColorTrial with
probability at most 1/pG0(v).

▶ Lemma 8. We can deterministically choose a hash function in O(1) rounds, from a
O(1)-wise independent family [nO(1)] → [nO(1)], to run the coloring step of ColorTrial
such that the size of the subgraph induced by the failed nodes (in the coloring step) is at
most n.

Note that Lemma 8 is the only lemma whose prove requires the assumption ∆G = O(
√

n).
Recall that F denotes the subgraph of G induced by the nodes that is either failed in the

nomination step or in the coloring step of ColorTrial. The following lemma bounds |F |,
and follows immediately from Lemma 5 and Lemma 8.

▶ Lemma 9. We can deterministically choose hash functions in O(1) rounds, from a O(1)-
wise independent hash family [nO(1)]→ [nO(1)], to run each step of ColorTrial such that
the size of the subgraph induced by the failed nodes is at most O(n), i.e., |F | = O(n).

4.2 Subsample
After executing ColorTrial(G0), Color(G, x) executes procedure Subsample(G1, x).
The randomized procedure on which Subsample is based is Algorithm 3. To derandomize
Subsample, we replace the random choice of line 1 (to generate a set S of vertices) with a
choice determined by a hash function from a O(1)-wise independent family [nO(1)]→ [nO(1)].

Algorithm 3 Subsample(G1, x) – Randomized Basis.

1 Each node v in G1 independently joins S with probability dG1(v)−0.1

2 Each node v decides whether it succeeds or fails. Let F1 be the set of failed nodes.
3 Let L denote the nodes with pG1(v) < C. Return:

G2, consisting of G1 \ (F1 ∪ S ∪ L)
G′ = (S ∪ F1 ∪ L)

Note that while x is not used explicitly in Algorithm 3, it increases by 0.1 in each recursive
call to Color, and this plays a significant role in the analysis (see Lemma 11). Our aim is
to show that after 10 levels of recursion of Color(G, 0), the remaining graph is of size O(n).

We start by defining the notion of failed nodes in Subsample:

▶ Definition 10. Let us define N≈(v) ⊆ NG1(v) to be the subset of v’s neighbors u with
1
2 dG1(v) ≤ dG1(u) ≤ 6dG1(v). A node v is classed as successful during Subsample if either

pG1(v) ≥ 1.1dG1(v); or
|N≈(v)| ≤ 1

3 dG1(v); or
at least 1

4 pG1(v)0.9 of v’s neighbors join S.

S. Coy, A. Czumaj, P. Davies, and G. Mishra 46:13

v is classed as failed if none of the above three conditions hold.

In a similar way to the analysis in Section 4.1, we can express the analysis of SubSample
in terms of bounded-independence hash functions and derandomize it, obtaining the following:

▶ Lemma 11. Let x be such that 0 ≤ x ≤ 0.9. We can deterministically choose a hash
function in O(1) rounds, from a O(1)-wise indepedenet hash family, to execute line 1 of
Subsample to generate set S such that the following holds:∑

v ∈ G′

dG1(v)x+0.1 ≤ Cn + 2
∑

v ∈ G1

dG1(v)x.

We end with a lemma which explains what properties the graph G2 has. Recall that G2
is the graph of successful nodes that results from running ColorTrial and SubSample on
our input graph, and it is the input graph to our main coloring procedure BucketColor
in Section 5. Here, we show that each node in G2 has sufficient slack to be colored in O(1)
rounds by BucketColor.

▶ Lemma 12. For any v ∈ G2, either pG2(v) ≥ dG2(v) + 1
4 dG2(v)0.9, or |N−

G2
(v)| ≥ 1

3 dG2(v).

5 BucketColor

In this section, we describe our core coloring procedure BucketColor(G2). Note that,
each node in the input graph G2 to BucketColor has sufficient slack as mentioned in
Lemma 12. Throughout this section, the graph under consideration is always G2, so we omit
the subscript G2 from NG2(v), d(v), N+

G2
(v), d+

G2
(v), N−

G2
(v), d−

G2
(v), Ψ(v), p(v) and ∆G.

In Section 5.1, we first formalize the bucket structure of nodes (as discussed in Section 1.2),
and then introduce some useful definitions. Then we describe algorithm BucketColor in
Section 5.1. In Sections 5.2, we analyze the correctness of BucketColor.

5.1 Assigning nodes to buckets
We use two special functions in the description of our algorithm in this section: l : V (G2)→
N≥0 and b : N≥0 → N≥0. l is defined as l(v) := max{⌊log1.1 log2 d(v)⌋, 0} for node v, and
b is defined as b(i) := ⌊0.7 · 1.1i⌋ for i ∈ N≥0. If d(v) is at least a suitable constant, then
b(l(v)) = Θ(log d(v)) and b(l(v)) ≤ 0.7 log2 d(v).

We consider a partition of the nodes of G2 into O(log log ∆) levels, with the level of a
node v equal to l(v) = max{⌊log1.1 log2 d(v)⌋, 0}. The nodes of a particular level will be
further partitioned into buckets. The level of a bucket x is the level of a possible node that
can be put into this bucket, and is denoted by level(x). The buckets of level i (or level-i
buckets) are identified by binary strings of length b(i), where i ∈ N≥0, as well as their level.
1 So, there are 2b(i) level-i buckets. To put a node v to a bucket, (in our algorithm) we
generate a random binary string of length b(l(v)).

The set of buckets forms a hierarchical tree structure as described below. We say that
a bucket a′ is a child of a (and a is the parent of a′) if level(a′) = level(a) + 1 and a ⊑ a′.
We say that a′ is a descendant of a (and a is an ancestor of a′) if level(a′) ≥ level(a) and

1 Note that, at low levels, buckets in different levels can be identified by the same string, because the
function b(i) = ⌊0.7 · 1.1i⌋ is not injective for i ≤ 24. Therefore, for example, b(0) = b(1) = 0, and so
levels 0 and 1 both in fact contain a single bucket specified by the empty string. We treat these as
different buckets in order to conform to a standard rooted tree structure, and therefore must identify
buckets by their level as well as their specifying string.

ICALP 2023

46:14 Optimal (Degree+1)-Coloring in Congested Clique

a ⊑ a′ (note that by definition a is a descendant and ancestor of itself). The buckets form
a rooted tree structure: the root is the single level 0 bucket, specified by the empty string;
each bucket in level i > 0 has one parent in level i− 1 and multiple children in level i + 1.

We also put colors into the buckets. For any color c, we put c into a bucket of level
⌊log1.1 log2 ∆⌋ by generating a random binary string of length b(⌊log1.1 log2 ∆⌋+20). Consider
a bucket a and a color c which is put in a. We say c is assigned to bucket a′ (and that bucket
a′ contains c) iff a′ ⊑ a. Note that a′ is a leaf, since the string generated for c is of maximum
length; note also that c is assigned to all buckets on the path from a to the root bucket.

Our algorithm uses a hash function to generate the binary strings (and hence the buckets)
for the colors and nodes. Based on the partition of the nodes and colors into buckets, it is
sufficient to color a set of reduced instances (one per bucket) of the original D1LC instance.
The following definition formalizes the effective palettes and neighborhoods of a node under
any function mapping nodes and colors to strings.

▶ Definition 13. Let h : (C ∪ V (G2))→ {0, 1}∗ be a function mapping colors and nodes to
binary strings. For each node v ∈ G2, define:

the graph G+
h(v) to contain all edges {u, w} ∈ G2 with d(u) ≤ d(w) for which h(u) = h(v)

and h(w) ⊒ h(v), and all nodes which are endpoints of such edges;
Ψh(v)(v) = {c ∈ Ψ(v) : h(c) ⊒ h(v)} {Ψh(v)(v) is the set of palette colors v has in h(v)};
N+

h(v)(v) := {w ∈ N+(v) : h(w) ⊒ h(v)} {d+
h(v)(v) is the number of neighbors u that v has in

descendants of h(v) with d(v) ≤ d(u)};
ph(v)(v) =

∣∣Ψh(v)(v)
∣∣ and d+

h(v)(v) =
∣∣∣N+

h(v)(v)
∣∣∣.

Observe that there is a reduced instance for each bucket. Notice that each node u is
present in only one reduced instance, i.e., in G+

h(u) (the reduced instance corresponding
to the bucket where u is present); and each edge {u, w} with dG2(u) ≤ dG2(w) is present
in at most one reduced instance, i.e., possibly in G+

h(u) only when h(u) ⊑ h(w) (i.e., w is
present in some descendent bucket of u). Consider a node u in the reduced instance G+

x

(i.e., h(u) = x). N+
x (u) and d+

x (u) denote the set of neighbors and the degree of u in G+
x ,

respectively. Moreover, for coloring the reduced instance G+
x , let Ψx(u) and px(u) denote

the color palette and the size of the the color palette of u, respectively.
Observe that the reduced G+

x instances are not independent, and they can be of size ω(n).
Also, it may be the case that G+

x may not be a valid D1LC instance. To handle the issue, we
define the notion of bad nodes in Definition 14. Intuitively, bad nodes are those who do not
behave as expected when mapped to their bucket (e.g. have too many neighbors or too few
colors therein), and we will show that the subgraphs of buckets restricted to good nodes are
of size O(n) and can be colored in O(1) rounds. If we choose our hash function uniformly at
random from a O(1)-wise independent family of hash functions, the subgraph Gbad (induced
by the bad nodes) has size O(n) in expectation. We also show that it is possible to choose a
of hash function deterministically in O(1) rounds such that the size of Gbad is O(n).

▶ Definition 14. Given a hash function h : (C ∪ V (G2))→ {0, 1}∗ mapping colors and nodes
to binary strings, define a node v to be bad if any of the following occur:
1. d+

h(v)(v) ≥ d+(v)2−b(l(v)) + 1
8 d(v)0.92−b(l(v));

2. ph(v)(v) ≤ p(v)2−b(l(v)) − 1
8 d(v)0.92−b(l(v));

3. any of v’s level l(v) + 20 descendant buckets contain more than one of v’s palette colors;
4. more than 2n2−b(l(v)) nodes v′ have h(v) = h(v′).

S. Coy, A. Czumaj, P. Davies, and G. Mishra 46:15

(1) and (2) ensure that each reduced instance (after removing the bad nodes) are valid
D1LC instances; (3) ensure that the dependencies among the reduced instances are limited;
and (4) when combined with (1) ensures that the subgraph induced by bad nodes is O(n).

Now we are ready to discuss our algorithm BucketColor. The randomized procedure
on which BucketColor is based is Algorithm 4. Note that only line 1 of Algorithm 4 is a
randomized step, and it can be derandomized by replacing its random choices with choices
determined by a hash function from a O(1)-wise independent family [nO(1)]→ [nO(1)]. The
subgraph induced by the bad nodes, Gbad, is deferred to be colored later. Then in Lines 3 to
11, BucketColor colors the (good) nodes in G2 \Gbad in O(1) rounds deterministically.

Algorithm 4 BucketColor(G2) – Randomized Basis.

1 Each node v uniformly randomly chooses a b(l(v))-bit binary string h(v), and each
color is uniformly randomly assigned a b(⌊log1.1 log2 ∆⌋+ 20)-bit binary string h(c).

2 Each node v decides whether it is bad or good. Let Gbad be the subgraph induced by
the bad nodes.

3 for O(1) iterations do
4 Each node v ∈ G2 \Gbad restricts its palettes to colors c with h(v) ⊑ h(c), i.e.,

Ψh(v)(v) = {c ∈ Ψ(v) : h(c) ⊐ h(v)} is the current palette of v.
5 for each i ∈ [⌊log1.1 log2 ∆⌋+ 20] and each string x ∈ {0, 1}b(i) do
6 collect the graph G+

x to a dedicated network node nodex.
7 end
8 for each node v ∈ G2 \Gbad in a bucket h(v), in non-increasing order of degree,

performed on nodeh(v) do
9 h(v)← h∗, where h∗ ⊒ h(v) is a child bucket of h(v) with d+

h∗(v) < ph∗(v).
10 end
11 end
12 Color each node v ∈ G2 \Gbad with the only palette color in its current bucket.
13 Update the palettes of Gbad, collect to a single node, and color sequentially.

Overview of coloring good nodes. To color the (good) nodes in G2 \ Gbad, we proceed
in non-increasing order of node degree and start with the hash function h chosen in Line 1
of BucketColor. Recall that h(v) denotes the bucket in which node v is present. The
algorithm goes over iterations and the bucket status of the nodes change over iterations.

In every iteration, for every node v, we restrict the color palettes of v to the colors present
in the descendant bucket of (current) h(v). Also, for every binary string x such that the
bucket x has at least one node, we gather the graph having set of edges with one endpoint in
bucket x and the other endpoint in some descendent bucket of x, i.e., G+

x (of size O(n)) at a
network node in O(1) rounds. Though all G+

x ’s are a valid D1LC instance in any iteration,
G+

x ’s are not necessarily independent: there can be an edge between a node v in G+
x and a

node w outside G+
x such that the current palettes of v intersects with the current palette of

w. We can show that every node v satisfies d+
h(v)(v) < ph(v)(v) in the first iteration – i.e.,

each node has enough colors in its bucket to be greedily colored in the non-increasing order
of degree. That is, (in first iteration) each graph G+

x is a valid D1LC instance.
In each iteration, we move each node down to a child bucket h∗ of its current bucket

h(v), in such a way that we maintain this colorability property (having more colors in the
palette than the degree). This will imply that, when we find graphs G+

x in the next iteration,
those are also valid D1LC instances. We will show that after O(1) iterations, each node has

ICALP 2023

46:16 Optimal (Degree+1)-Coloring in Congested Clique

only 1 palette color in its bucket (and therefore zero higher-degree neighbors in descendant
buckets, since d+

h∗(v) < ph∗(v)). At this point, nodes can safely color themselves the single
palette color in their bucket. To decide on child buckets for the nodes in any iteration, it is
essential that each G+

x will always fit onto a single network node (which is in fact the case).

5.2 Correctness of BucketColor
To prove the correctness of BucketColor formally, we give Lemma 15 and Lemma 16,
which jointly imply Lemma 17.

▶ Lemma 15. All network nodes can simultaneously choose a hash function (in line 1 of
BucketColor) such that the size of Gbad is O(n).

▶ Lemma 16. After 20 iterations of the outer for-loop of BucketColor, all nodes in
G2 \Gbad can be colored without conflicts.

▶ Lemma 17. BucketColor successfully colors graph G2 in O(1) rounds.

6 Proof of the main theorem

Now, we are ready to complete our analysis of a constant-round CongestedClique and prove
Theorem 1. We begin with a theorem summarizing the properties of Color(G, 0).

▶ Theorem 18. Color(G, 0) colors any D1LC instance G with ∆G ≤ O(
√

n) in O(1) rounds.

Proof. From the description of Color(G, 0) and its subroutines, it is evident that
Color(G, 0) colors a graph G successfully when ∆G ≤ O(

√
n). It remains to analyze

the total number of rounds spent by Color(G, 0).
Note that the steps of Color(G, 0), other than the call to subroutines ColorTrial, Sub-

sample, BucketColor and recursive call, can be executed in O(1) rounds. ColorTrial
and Subsample can be executed in O(1) rounds by Lemma 9 and Lemma 11, respectively.
Also, O(1) rounds are sufficient for BucketColor due to Lemma 17.

To analyze the round complexity of recursive calls in Color(G, 0), let Gi denote the graph
on which the ith-level recursive call of Color, i.e., Color(Gi, 0.1i) is made. Color(Gi, 0.1i)
does O(1) rounds of operations and makes a recursive call Color(Gi+1, 0.1(i + 1)).

We show by induction that
∑

v ∈ Gi
dGi(v)0.1i ≤ 3iCn for i ≤ 10. This is true for G0 = G,

since
∑

v ∈ G dG(v)0 = n. For the inductive step, for 1 ≤ i ≤ 9, by Lemma 11 using x = 0.1i,∑
v∈Gi+1

dGi+1 (v)0.1(i+1) ≤
∑

v∈Gi+1

dGi (v)0.1(i+1) ≤ Cn + 2
∑

v∈Gi

dGi (v)0.1i ≤ Cn + 2 · 3iCn ≤ 3i+1Cn .

So, |E(G10)| ≤
∑

v ∈ G10 dG10 ≤ 310Cn = O(n). Therefore, after 10 recursive calls, the
remaining uncolored graph can simply be collected to a single network node and solved. ◀

While Theorem 18 requires that ∆G ≤ O(
√

n), we note that we can generalize this result
to any maximum degree:

▶ Lemma 19. In O(1) rounds of CongestedClique, we can recursively partition an input
D1LC instance into sub-instances, such that each sub-instance has maximum degree O(

√
n).

The sub-instances can be grouped into O(1) groups where each group can be colored in parallel.

S. Coy, A. Czumaj, P. Davies, and G. Mishra 46:17

Proof. We use the LowSpacePartition procedure from [14], which reduces a coloring
instance to O(1) sequential instances of maximum degree nε for any constant ε > 0. The
procedure is for ∆ + 1-coloring, but it extends immediately to D1LC, as discussed in
Section 5 of [11]. Since we can simulate low-space MPC in CongestedClique, we can execute
LowSpacePartition, setting ε appropriately to reduce the maximum degree of all instances
to O(

√
n). By subsequent arguments in [14], O(1) sequential sets of base cases are created. ◀

Now the proof of Theorem 1 follows immediately from Theorem 18 and Lemma 19. ◀

References

1 Noga Alon and Sepehr Assadi. Palette sparsification beyond (∆ + 1) vertex coloring. In Pro-
ceedings of the 24th International Workshop on Randomization and Approximation Techniques
in Computer Science (RANDOM), pages 6:1–6:22, 2020.

2 Noga Alon, László Babai, and Alon Itai. A fast and simple randomized parallel algorithm for
the maximal independent set problem. Journal of Algorithms, 7(4):567–583, 1986.

3 Sepehr Assadi, Yu Chen, and Sanjeev Khanna. Sublinear algorithms for (∆+1) vertex coloring.
In Proceedings of the 30th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
767–786, 2019.

4 Étienne Bamas and Louis Esperet. Distributed coloring of graphs with an optimal number of
colors. In Proceedings of the 36th International Symposium on Theoretical Aspects of Computer
Science (STACS), pages 10:1–10:15, 2019.

5 Philipp Bamberger, Fabian Kuhn, and Yannic Maus. Efficient deterministic distributed
coloring with small bandwidth. In Proceedings of the 39th ACM Symposium on Principles of
Distributed Computing (PODC), pages 243–252, 2020.

6 Leonid Barenboim and Michael Elkin. Distributed Graph Coloring: Fundamentals and Recent
Developments. Morgan & Claypool Publishers, 2013.

7 Soheil Behnezhad, Mahsa Derakhshan, and MohammadTaghi Hajiaghayi. Brief announcement:
Semi-MapReduce meets Congested Clique. Preprint arXiv, 2018. arXiv:1802.10297.

8 Keren Censor-Hillel, Merav Parter, and Gregory Schwartzman. Derandomizing local distributed
algorithms under bandwidth restrictions. Distributed Computing, 33(3):349–366, 2020.

9 Yi-Jun Chang, Manuela Fischer, Mohsen Ghaffari, Jara Uitto, and Yufan Zheng. The
complexity of (∆ + 1) coloring in Congested Clique, Massively Parallel Computation, and
centralized local computation. In Proceedings of the 38th ACM Symposium on Principles of
Distributed Computing (PODC), pages 471–480, 2019.

10 Yi-Jun Chang, Wenzheng Li, and Seth Pettie. Distributed (∆ + 1)-coloring via ultrafast graph
shattering. SIAM Journal on Computing, 49(3):497–539, 2020.

11 Sam Coy, Artur Czumaj, Peter Davies, and Gopinath Mishra. Fast parallel degree+1 list
coloring. Preprint arXiv, 2023. arXiv:2302.04378.

12 Artur Czumaj, Peter Davies, and Merav Parter. Component stability in low-space massively
parallel computation. In Proceedings of the 40th ACM Symposium on Principles of Distributed
Computing (PODC), pages 481–491, 2021.

13 Artur Czumaj, Peter Davies, and Merav Parter. Graph sparsification for derandomizing
massively parallel computation with low space. ACM Transactions on Algorithms, 17(2), May
2021.

14 Artur Czumaj, Peter Davies, and Merav Parter. Improved deterministic (∆ + 1) coloring in
low-space MPC. In Proceedings of the 40th ACM Symposium on Principles of Distributed
Computing (PODC), pages 469–479, 2021.

15 Artur Czumaj, Peter Davies, and Merav Parter. Simple, deterministic, constant-round coloring
in Congested Clique and MPC. SIAM Journal on Computing, 50(5):1603–1626, 2021.

ICALP 2023

https://arxiv.org/abs/1802.10297
https://arxiv.org/abs/2302.04378

46:18 Optimal (Degree+1)-Coloring in Congested Clique

16 Janosch Deurer, Fabian Kuhn, and Yannic Maus. Deterministic distributed dominating set
approximation in the CONGEST model. In Proceedings of the 38th ACM Symposium on
Principles of Distributed Computing (PODC), pages 94–103, 2019.

17 Paul Erdös and John L. Selfridge. On a combinatorial game. Journal of Combinatorial Theory,
Series A, 14(3):298–301, 1973.

18 Manuela Fischer, Jeff Giliberti, and Christoph Grunau. Improved deterministic connectivity
in massively parallel computation. In Proceedings of the 36th International Symposium on
Distributed Computing (DISC), pages 22:1–22:17, 2022.

19 Manuela Fischer, Magnús M. Halldórsson, and Yannic Maus. Fast distributed Brooks’ theorem.
In Proceedings of the 34th ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
2567–2588, 2023.

20 Pierre Fraigniaud, Marc Heinrich, and Adrian Kosowski. Local conflict coloring. In Proceedings
of the 57th IEEE Symposium on Foundations of Computer Science (FOCS), pages 625–634,
2016.

21 Mohsen Ghaffari and Fabian Kuhn. Derandomizing distributed algorithms with small messages:
Spanners and dominating set. In Proceedings of the 32nd International Symposium on
Distributed Computing (DISC), pages 29:1–29:17, 2018.

22 Mohsen Ghaffari and Fabian Kuhn. Deterministic distributed vertex coloring: Simpler,
faster, and without network decomposition. In Proceedings of the 62nd IEEE Symposium on
Foundations of Computer Science (FOCS), pages 1009–1020, 2021.

23 Magnús M. Halldórsson, Fabian Kuhn, Yannic Maus, and Tigran Tonoyan. Efficient randomized
distributed coloring in CONGEST. In Proceedings of the 53rd Annual ACM Symposium on
Theory of Computing (STOC), pages 1180–1193, 2021.

24 Magnús M. Halldórsson, Fabian Kuhn, Alexandre Nolin, and Tigran Tonoyan. Near-optimal
distributed degree+1 coloring. In Proceedings of the 54th Annual ACM Symposium on Theory
of Computing (STOC), pages 450–463, 2022.

25 Magnús M. Halldórsson, Alexandre Nolin, and Tigran Tonoyan. Overcoming congestion in
distributed coloring. In Proceedings of the 41st ACM Symposium on Principles of Distributed
Computing (PODC), pages 26–36, 2022.

26 James W. Hegeman and Sriram V. Pemmaraju. Lessons from the Congested Clique applied
to MapReduce. Theoretical Computer Science, 608:268–281, 2015.

27 Howard J. Karloff, Siddharth Suri, and Sergei Vassilvitskii. A model of computation for
MapReduce. In Proceedings of the 21st ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 938–948, 2010.

28 Fabian Kuhn. Faster deterministic distributed coloring through recursive list coloring. In
Proceedings of the 31st ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1244–
1259, 2020.

29 Christoph Lenzen. Optimal deterministic routing and sorting on the Congested Clique. In
Proceedings of the 32nd ACM Symposium on Principles of Distributed Computing (PODC),
pages 42–50, 2013.

30 Nathan Linial. Locality in distributed graph algorithms. SIAM Journal on Computing,
21(1):193–201, February 1992.

31 Zvi Lotker, Boaz Patt-Shamir, Elan Pavlov, and David Peleg. Minimum-weight spanning tree
construction in O(log log n) communication rounds. SIAM Journal on Computing, 35(1):120–
131, 2005.

32 Michael Luby. A simple parallel algorithm for the maximal independent set problem. SIAM
Journal on Computing, 15(4):1036–1053, 1986.

33 Michael Luby. Removing randomness in parallel computation without a processor penalty.
Journal of Computer and System Sciences, 47(2):250–286, 1993.

34 Rajeev Motwani, Joseph Naor, and Moni Naor. The probabilistic method yields deterministic
parallel algorithms. Journal of Computer and System Sciences, 49(3):478–516, 1994.

35 Moni Naor. A lower bound on probabilistic algorithms for distributive ring coloring. SIAM
Journal on Discrete Mathematics, 4(3):409–412, 1991.

S. Coy, A. Czumaj, P. Davies, and G. Mishra 46:19

36 Merav Parter. (∆ + 1) coloring in the Congested Clique model. In Proceedings of the 45th
Annual International Colloquium on Automata, Languages and Programming (ICALP), pages
160:1–160:14, 2018.

37 Merav Parter and Hsin-Hao Su. Randomized (∆ + 1)-coloring in O(log∗ ∆) Congested Clique
rounds. In Proceedings of the 32nd International Symposium on Distributed Computing (DISC),
pages 39:1–39:18, 2018.

38 David Peleg. Distributed Computing: A Locality-Sensitive Approach. SIAM Monographs on
Discrete Mathematics and Applications. SIAM, Philadelphia, PA, 2000.

39 Prabhakar Raghavan. Probabilistic construction of deterministic algorithms: Approximating
packing integer programs. Journal of Computer and System Sciences, 37(2):130–143, 1988.

40 Václav Rozhoň and Mohsen Ghaffari. Polylogarithmic-time deterministic network decomposi-
tion and distributed derandomization. In Proceedings of the 52nd Annual ACM Symposium
on Theory of Computing (STOC), pages 350–363, 2020.

A Derandomization in CongestedClique

In this section we first give some useful lemmas regarding O(1)-wise independence and the
existence of small families of O(1)-wise independent hash functions, and then we give a
formal description of the method of conditional expectations and how it is implemented in
the CongestedClique model.

A.1 Bounded Independence
Our algorithm will be finding a hash function of sufficient quality from a family of O(1)-
independent hash functions. In the following, we recall the standard notions of k-wise
independent hash functions and k-wise independent random variables. Then, we recall that
we can construct small families of bounded-independence hash functions, and that each hash
function in this family can be specified by a short seed.

▶ Definition 20. Let k ≥ 2 be an integer. A set {X1, . . . , Xn} of n random variables taking
values in S are said to be k-wise independent if for any I ⊂ [n] with |I| ≤ k and any xi ∈ S

for i ∈ I, we have

Pr

 ∧
i∈[k]

Xi = xi

 =
k∏

i=1
Pr [Xi = xi] .

▶ Definition 21. A family of hash functions H : {h : X → Y } is said to be k-wise independent
if {h(x) : x ∈ X} are k-wise independent when h is drawn uniformly at random from H.

We use the property that small families of O(1)-wise independent hash functions can be
constructed, and each hash function in such a family can be specified with a small number of
bits:
▶ Remark 22. For all positive integers c1, c2, there is a family of k-wise independent hash
functions H = {h : [nc1] → [nc2]} such that each function from H can be specified using
O(k log n) bits.

A.2 The Method of Conditional Expectations
We now describe in more detail the method of conditional expectations and its implementation
in CongestedClique. We briefly recall the setup to the problem: we have a randomized
algorithm which “succeeds” if a “bad” outcome occurs for less than some number T of

ICALP 2023

46:20 Optimal (Degree+1)-Coloring in Congested Clique

nodes. This algorithm succeeds in expectation using bounded-independence randomness.
We would like to derandomize this algorithm. In order to achieve this, given a family of
O(1)-independent hash functions H, we need to find a “good” hash function h∗ ∈ H which
solves our problem, when used to make decisions for nodes instead of randomness.

First, we define some cost function f : H×V → {0, 1} such that f(h, v) = 1 if the node v

has a “bad” outcome when h is the selected hash function, and f(h, v) = 0 if the outcome is
“good”. We further define F (h) =

∑
v∈V f(h, v) as the total cost of the hash function h: i.e.,

the number of bad nodes when h is the selected hash function. Finally, we use Eh∈Hx(h)
to denote the expected value of some function x(h) when h is drawn uniformly at random
from H.

To successfully derandomize our algorithm, we need to find a hash function h∗ ∈ H such
that F (h∗) ≤ T . We need the following conditions to hold for our derandomization to work:

Eh∈H[F (h)] ≤ T (i.e., the expected cost of a hash function selected uniformly at random
from H is at most T); and
Node v can locally (i.e., without communication) evaluate f(h, v) for all h ∈ H.

We can now use the method of conditional expectations to find a h∗ ∈ H for which
F (h∗) ≤ T . We first recall that each hash function in our family of O(1)-wise independent
hash functions H can be specified using O(log n) bits, by Remark 22. Next, let Π = {0, 1}log n

be the set of binary strings of length log n, and for each π ∈ Π, let Hπ denote the hash
functions in H whose seeds begin with the prefix π.

Our goal is to find some seed-prefix π ∈ Π for which Eh∈Hπ
[F (h)] ≤ T : the existence

of such a prefix is guaranteed by the probabilistic method. Since each node v can locally
evaluate f(h, v) for all h ∈ H, nodes can also compute Eh∈Hπ

[f(h, v)] for all π ∈ Π. Since
|Π| = n, each node v can be made responsible for a prefix πv ∈ Π. Node v can then collect
the value of Eh∈Hπv

[f(h, u)] for each u ∈ V \ {v}: since this requires all nodes sending and
receiving O(n) messages it can be done in O(1) rounds using Lenzen’s routing algorithm [29].
Now, by linearity of expectation:∑

v∈V

(
Eh∈Hπv

[f(h, v)]
)

= Eh∈Hπv
[F (h)] .

Therefore v can compute the expected value of F for the sub-family of hash functions
which are prefixed with πv. Nodes can broadcast this expected value to all other nodes in
O(1) rounds, again using Lenzen’s routing algorithm [29]. All nodes then know the expected
value of F for all (log n)-bit prefixes and can, without communication (breaking ties in a
predetermined and arbitrary way), pick the prefix with the lowest expected value of F . Recall
that this prefix is guaranteed to have an expected value of at most T by the probabilistic
method.

We have now fixed the first (log n) bits of the prefix and obtained a smaller set H1 ⊂ H
of hash functions. We can then perform the same procedure described above on H1 to set
the next (log n) bits of the seed, obtaining a smaller set H2 ⊂ H1 ⊂ H of hash functions.
After repeating this procedure O(1) times we will have fixed the entire seed, since we fix
(log n) bits each time and the seeds of hash functions in H were O(log n) bits in length.

Incremental Maximization via Continuization
Yann Disser # Ñ

TU Darmstadt, Germany

Max Klimm # Ñ

TU Berlin, Germany

Kevin Schewior #

University of Southern Denmark, Odense, Denmark

David Weckbecker #

TU Darmstadt, Germany

Abstract
We consider the problem of finding an incremental solution to a cardinality-constrained maximization
problem that not only captures the solution for a fixed cardinality, but also describes how to gradually
grow the solution as the cardinality bound increases. The goal is to find an incremental solution that
guarantees a good competitive ratio against the optimum solution for all cardinalities simultaneously.
The central challenge is to characterize maximization problems where this is possible, and to
determine the best-possible competitive ratio that can be attained. A lower bound of 2.18 and an
upper bound of φ + 1 ≈ 2.618 are known on the competitive ratio for monotone and accountable
objectives [Bernstein et al., Math. Prog., 2022], which capture a wide range of maximization problems.
We introduce a continuization technique and identify an optimal incremental algorithm that provides
strong evidence that φ+1 is the best-possible competitive ratio. Using this continuization, we obtain
an improved lower bound of 2.246 by studying a particular recurrence relation whose characteristic
polynomial has complex roots exactly beyond the lower bound. Based on the optimal continuous
algorithm combined with a scaling approach, we also provide a 1.772-competitive randomized
algorithm. We complement this by a randomized lower bound of 1.447 via Yao’s principle.

2012 ACM Subject Classification Theory of computation → Online algorithms; Mathematics of
computing → Combinatorial algorithms; Mathematics of computing → Combinatorial optimization

Keywords and phrases incremental optimization, competitive analysis, robust matching, submodular
function

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.47

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2305.01310 [5]

Funding Max Klimm: Supported by Deutsche Forschungsgemeinschaft under Germany’s Excellence
Strategy, Berlin Mathematics Research Center (grant EXC-2046/1, Project 390685689).
Kevin Schewior : Supported in part by the Independent Research Fund Denmark, Natural Sciences,
grant DFF-0135-00018B.
David Weckbecker : Supported by DFG grant DI 2041/2.

1 Introduction

A classical optimization problem takes as input a single instance and outputs a single solution.
While this paradigm can be appropriate in static situations, it fails to capture scenarios that
are characterized by perpetual growth, such as growing infrastructure networks, expanding
companies, or private households with a steady income. In these cases, a single static solution
may be rendered useless unless it can be extended perpetually into larger, more expansive
solutions that are adequate for the changed circumstances.

EA
T
C
S

© Yann Disser, Max Klimm, Kevin Schewior, and David Weckbecker;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 47; pp. 47:1–47:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:disser@mathematik.tu-darmstadt.de
https://www2.mathematik.tu-darmstadt.de/~disser
https://orcid.org/0000-0002-2085-0454
mailto:klimm@math.tu-berlin.de
https://tu.berlin/disco/klimm
https://orcid.org/0000-0002-9061-2267
mailto:kevs@sdu.dk
https://orcid.org/0000-0003-2236-0210
mailto:weckbecker@mathematik.tu-darmstadt.de
https://orcid.org/0000-0003-3381-058X
https://doi.org/10.4230/LIPIcs.ICALP.2023.47
https://arxiv.org/abs/2305.01310
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

47:2 Incremental Maximization via Continuization

To capture scenarios like this more adequately, we adopt the incremental optimiza-
tion framework formalized as follows. An instance of the Incremental Maximization
(IncMax) problem is given by a countable set U of elements and a monotone objective
function f : 2U → R≥0 that assigns each subset X ⊆ U a value f(X). A solution for an
IncMax instance is an order σ = (e1, e2, . . .) of the elements of U such that each prefix of σ

yields a good solution with respect to the objective function f . Formally, for k ∈ [n], let
Opt(k) = max{f(X) : |X| = k, X ⊆ U} denote the optimal value of the problem of maximiz-
ing f(X) under the cardinality-constraint |X| = k. A deterministic solution σ = (e1, e2, . . .)
is called α-competitive if Opt(k)/f({e1, . . . , ek}) ≤ α for all k ∈ [n]. A randomized solution
is a probability distribution Σ = (E1, E2, . . .) over deterministic solutions (where E1, E2, . . .

are random variables). It is called α-competitive if Opt(k)/E[f({E1, . . . , Ek})] ≤ α for
all k ∈ [n]. In both cases, we call the infimum over all α ≥ 1, such that the solution is
α-competitive, the (randomized) competitive ratio of the solution. A (randomized) algorithm
is called α-competitive for some α ≥ 1 if, for every instance, it produces an α-competitive
solution, and its (randomized) competitive ratio is the infimum over all such α. The (ran-
domized) competitive ratio of a class of problems (or a problem instance) is the infimum over
the competitive ratios of all (randomized) algorithms for it.

Clearly, in this general form, no meaningful results regarding the existence of competitive
solutions are possible. For illustration consider the instance U = {a, b, c} where for some
M ∈ N we have

f(X) =
{

M, if {b, c} ⊆ X,

|{a} ∩ X|, otherwise
for all X ⊆ U .

Then, every solution needs to start with element a in order to be competitive for k = 1,
but any such order cannot be better than M -competitive for k = 2. The underlying
issue is that the optimal solution for k = 2 given by {b, c} does not admit a competitive
partial solution of cardinality k = 1. To circumvent this issue, Bernstein et al. [1] consider
accountable functions, i.e., functions f , such that, for every X ⊆ U , there exists e ∈ X

with f(X \ {e}) ≥ f(X) − f(X)/|X|. They further show that many natural incremental
optimization problems are monotone and accountable such as the following.
Weighted matching: U is the set of edges of a weighted graph, and f(X) is the maximum

weight of a matching contained in X;
Set packing: U is a set of weighted subsets of a ground set, and f(X) is the maximum

weight of a set of mutually disjoint subsets of X;
Submodular function maximization: U is arbitrary, and f is monotone and submodular;
(Multi-dimensional) Knapsack: U is a set of items with (multi-dimensional) sizes and values,

and f(X) is the maximum value of a subset of items of X that fits into the knapsack.

Bernstein et al. [1] gave an algorithm to compute a (1 + φ)-competitive incremental
solution and showed that the competitive ratio of the IncMax problem is at least 2.18.
Throughout this work, we assume that the objective f is accountable.

Our results. As a first step, we reduce the general IncMax problem to the special case of
IncMaxSep, where the elements of the instance can be partitioned into a (countable) set of
uniform and modular subsets such that the overall objective is the maximum over the modular
functions on the subsets. We then define the IncMaxCont problem as a continuization,
where there exists one such subset with (fractional) elements of every size c ∈ R>0. The
smooth structure of this problem better lends itself to analysis.

Y. Disser, M. Klimm, K. Schewior, and D. Weckbecker 47:3

We consider the continuous algorithm GreedyScaling(c1, ρ) that adds a sequence of
these subsets, starting with the subset of size c1 > 0 and proceeding along a sequence of
subsets of largest possible sizes under the constraint that ρ-competitiveness is maintained for
as long as possible. We first show that there always exists an optimal solution of this form.

▶ Theorem 1. For every instance of IncMaxCont, there exists a starting value c1 such that
the algorithm GreedyScaling(c1, ρ∗) achieves the best-possible competitive ratio ρ∗ ≥ 1.

Our continuous embedding allows us to view every algorithm as an increasing sequence
of sizes of subsets that are added one after the other. Using elementary calculus, we can
show that, with the golden ratio φ := 1

2 (1 +
√

5) ≈ 1.618, GreedyScaling(c1, ρ) achieves
the known upper bound of φ + 1 for a range of starting values. Here, d(c) refers to the
density, i.e., value per size, of the subset of size c (see Sec. 2).

▶ Theorem 2. GreedyScaling(c1, φ + 1) is (φ + 1)-competitive if and only if d(c1) ≥ 1
φ+1 .

On the other hand, we are able to, for every starting value c1, construct an instance of
IncMaxCont where GreedyScaling(c1, ρ) is not better than (φ + 1)-competitive for any
ρ > 1. We emphasize that the optimum value of φ + 1 emerges naturally from the geometry
of complex roots. Based on this evidence, we conjecture that φ + 1 is the best-possible
competitive ratio.

Of course, proving a general lower bound requires to construct a single instance such that
GreedyScaling is not better than (φ + 1)-competitive for every starting value. Careful
chaining of our construction for a single starting value yields the following.

▶ Proposition 3. For every countable set S ⊂ R>0 of starting values, there exists an instance
of IncMaxCont such that GreedyScaling(c1, ρ) is not ρ-competitive for any c1 ∈ S and
any ρ < φ + 1.

Crucially, while this gives a lower bound if we only allow rational starting values c1 ∈ Q,
transferring the lower bound back to IncMax requires excluding all reals. Even though we
are not able to achieve this, we can extrapolate our analysis in terms of complex calculus to
any IncMaxCont algorithm. With this, we beat the currently best known lower bound
of 2.18 in [1].

▶ Theorem 4. The IncMax problem has a competitive ratio of at least 2.246.

We can also apply our technique, specifically the reduction to separable problem instances
and the structure of the GreedyScaling algorithm, to the analysis of randomized algorithms
for IncMax. We employ a scaling approach based on the algorithms in [1], combined with
a randomized selection of the starting value c1 inspired by a randomized algorithm for the
CowPath problem in [16]. The resulting algorithm has a randomized competitive ratio that
beats our deterministic lower bound.

▶ Theorem 5. IncMax admits a 1.772-competitive randomized algorithm.

We complement this result with a lower bound via Yao’s principle for separable instances
of IncMax.

▶ Theorem 6. Every randomized IncMax algorithm has competitive ratio at least 1.447.

ICALP 2023

47:4 Incremental Maximization via Continuization

Related work. Our work is based on the incremental maximization framework introduced
by Bernstein et al. [1]. We provide a new structural understanding that leads to a better
lower bound and new randomized bounds.

A similar framework is considered for matchings by Hassin and Rubinstein [13]. Here,
the objective f is the total weight of a set of edges and the solution is additionally required
to be a matching. Hassin and Rubinstein [13] show that the competitive ratio in this setting
is

√
2 and Matuschke, Skutella, and Soto [19] show that the randomized competitive ratio

is ln(4) ≈ 1.38. The setting was later generalized to the intersection of matroids [7] and to
independence systems with bounded exchangeability [15, 21]. Note that, while our results
hold for a broader class of objective functions, we require monotonicity of the objective
and cannot model the constraint that the solution must be a matching. We can, however,
capture the matching problem by letting the objective f be the largest weight of a matching
contained as a subset in the solution (i.e., not all parts of the solution need to be used).
That being said, it is easy to verify that the lower bound of

√
2 on the competitiveness of

any deterministic algorithm in the setting of [13] also applies in our case.
Hassin and Segev [14] studied the problem of finding a small subgraph that contains,

for all k, a path (or tree) of cardinality at most k with weight at least α times the optimal
solution and show that for this α|V |/(1 − α2) edges suffice. There are further results on
problems where the items have sizes and the cardinality-constraint is replaced by a knapsack
constraint [4, 6, 17, 20]. Goemans and Unda [9] studied general incremental maximization
problems with a sum-objective.

Incremental minimization problems further been studied for a variety of minimzation
problems such as k-median [3, 22, 18], facility location [18, 23], and k-center [10, 18]. As
noted by Lin et al. [18], the results for the minimum latency problem in [2, 8] implicitly
yield results for the incremental k-MST problem. There are further results on incremental
optimization problems where in each step the set of feasible solution increases [11, 12].

2 Separability of Incremental Maximization

As a first step to bound the competitive ratio of IncMax, we introduce a subclass of instances
of a relatively simple structure, and show that it has the same competitive ratio as IncMax.
Thus, we can restrict ourselves to this subclass in our search for bounds on the competitive
ratio.

▶ Definition 7. An instance of IncMax with objective f : 2U → R>0 is called separable if
there exist a partition U = R1 ∪ R2 ∪ . . . of U and values di > 0 such that

f(X) = max
i∈N

{|X ∩ Ri| · di} for all X ⊆ U.

We refer to di as the density of set Ri and to vi := |Ri| · di as the value of set Ri. The
restriction of IncMax to separable instances will be denoted by IncMaxSep.

We start our analysis of IncMaxSep with the following immediate observation.

▶ Lemma 8. Any instance of IncMaxSep can be transformed into one with the same or a
worse competitive, that satisfies the following properties.
1. There is exactly one set of every cardinality, i.e., |Ri| = i.
2. Densities are decreasing, i.e., 1 ≥ d1 ≥ d2 ≥
3. Values are increasing, i.e., v1 ≤ v2 ≤

Y. Disser, M. Klimm, K. Schewior, and D. Weckbecker 47:5

R1 R2 R3 R4 R5

Figure 1 Illustration of an instance of IncMaxSep with N = 5 sets. Each set Ri consists of i

elements. The height of the elements represents their value. As in Lemma 8, the values of the single
elements becomes less the larger i is, while the value of the whole set Ri increases.

Proof. We will show that every instance that does not satisfy the assumptions can be
transformed into one that does, without changing the optimum value for any size, and
without changing the value of the best incremental solution. Thus the competitive ratio of
the two instances coincide.

If there are two sets Ri, Rj with |Ri| = |Rj |, it only makes sense to consider the one
with higher density, as every solution adding elements from the set of lower density can be
improved by adding elements from the other set instead. If there is i ∈ N≥2 such that there
is no set with i elements, we can add a new set with i elements to the instance. This new set
will have value vi−1 . Then, every solution that adds elements from the newly introduced
set can be improved by adding elements from set Ri−1 instead. If there is no set R1 with 1
element, we can introduce it with density d2. Then, every solution that adds this one element
can instead also add one element from R2. Thus, the first assumption can be made.

The assumption that 1 ≥ d1 is without loss of generality by rescaling the objective f . If
there was i ∈ N with di < di+1, every solution to the problem instance that adds elements
from the set Ri could be improved by adding elements from the set Ri+1 instead. Since
|Ri+1| ≥ |Ri|, this is possible.

The third assumption can be made because, if there was i ∈ N with vi > vi+1, a solution
that adds elements from Ri+1 can be improved by adding elements from Ri instead. ◀

In the following, we assume that every instance satisfies the properties from Lemma 8.

▶ Definition 9. We say that a solution for IncMaxSep is represented by a sequence of sizes
(c1, c2, . . .) if it first adds all elements from the set Rc1 , then all elements from the set Rc2 ,
and so on.

A solution of IncMaxSep can only improve if it is altered in a way that it is represented by
a sequence of sizes. Indeed, if not all elements of one set are added, the solution does not
degrade if a smaller set is added instead because the density of the smaller set is at least as
large as the density of the larger set. Moreover, adding all elements of one set consecutively
is better because the value of the solution increases faster this way.

▶ Lemma 10 ([1], Observation 2). There is an algorithm achieving the best-possible competitive
ratio for IncMaxSep such that the solution generated by this algorithm can be represented
by a sequence (c1, c2, . . .). We can assume that vci < vci+1 and thus, since the values (vi)i∈N
are non-decreasing, ci < ci+1 for all i ∈ N.

ICALP 2023

47:6 Incremental Maximization via Continuization

From now on, we will only consider solutions of this form and denote a solution X by the
sequence it is represented by, i.e., X = (c1, c2, . . .). For a size C ∈ N, we denote by X(C) the
first C elements added by X, i.e., |X(C)| = C and, with Oi := arg max{f(S) | S ⊆ U, |S| = i},
we have X

(∑k
i=1 ci

)
=
⋃k

i=1 Oci
.

▶ Proposition 11. The competitive ratios of IncMax and IncMaxSep coincide.1

Proof Sketch. As IncMaxSep is a subclass of IncMax, the competitive ratio of Inc-
MaxSep is not larger than that of IncMax.

It remains to show that the competitive ratio of IncMax is smaller or equal to that of
IncMaxSep. To see this, consider an instance of IncMax. We will construct an instance
of IncMaxSep such that every ρ-competitive solution to this problem instance induces a
ρ-competitive solution for the initial instance of IncMax.

To define the instance of IncMaxSep, let R1, R2, . . . be disjoint sets with |Ri| = i for all
i ∈ N. For i ∈ N, let di = Opt(i)/i. By modularity of the value function within one set Ri,
the value of the optimal solution of a given size in this instance is the same as that in the
instance of IncMax.

For ρ ≥ 1, let (c1, c2, . . .) be a ρ-competitive solution for the separable instance. We
consider the solution for the initial problem that starts by adding the optimal solution of
size c1, then adds the optimal solution of size c2, and so on. Accountability guarantees that
it is possible to add the elements within one optimal solution such that the value of the
partially added solution grows at least proportionally with the size of the solution. Since the
values of the optimal solutions of a given size in the two instances coincide, the value of the
solution for the initial instance we defined above is always greater or equal to that of the
solution (c1, c2, . . .). Thus, the solution for the initial instance is also ρ-competitive, which
implies that the competitive ratio of IncMax is smaller or equal to that of IncMaxSep. ◀

3 Continuization Results

In order to find lower bounds on the competitive ratio of IncMaxSep, we transform the
problem into a continuous one.

▶ Definition 12. In the IncMaxCont problem, we are given a density function
d : R≥0 → (0, 1] and a value function v(c) := cd(c). As for the discrete problem, we de-
note an incremental solution X for IncMaxCont by a sequence of sizes X = (c1, c2, . . .).
For a given size c ≥ 0, we denote the solution of this size by X(c). With n ∈ N such that∑n−1

i=1 ci < c ≤
∑n

i=1 ci, the value of X(c) is defined as

f(X(c)) := max
{

max
i∈{1,...,n−1}

v(ci),
(

c −
n−1∑
i=1

ci

)
d(dn)

}
.

An incremental solution X is ρ-competitive if ρ ·f(X(c)) ≥ v(c) for all c > 0. The competitive
ratio of X is defined as inf{ρ ≥ 1 | X is ρ-competitive}.

The interpretation of the functions d and v is that the instance is partitioned into sets,
one for every positive size c ∈ R, each consisting of c fractional units with a value of d(c) per
unit, for a total value of v(c) for the set. The solution can be interpreted in the following way:
It starts by adding the set of size c1, then the set of size c2, and so on. With n ∈ N such that

1 A full proof of this and all other results can be found in [5].

Y. Disser, M. Klimm, K. Schewior, and D. Weckbecker 47:7

∑n−1
i=1 ci < c ≤

∑n
i=1 ci, the solution X(c) has added all of the sets of sizes c1, . . . , cn−1 and

c −
∑n−1

i=1 ci units of the set of size cn. Unlike the IncMaxSep problem, the IncMaxCont
problem includes subsets of all real sizes instead of only integer sizes and, furthermore, allows
fractional elements to be added to solutions instead of only an integral number of elements.

As for the discrete version of the problem, without loss of generality, we assume that
the density function d is non-increasing and the value function v is non-decreasing. These
assumptions imply that d is continuous: If this was not the case and d was not continuous for
some size c′, i.e., limc↗c′ d(c) > limc↘c′ d(c), then limc↗c′ v(c) > limc↘c′ v(c) by definition
of v, i.e., v would not be increasing in c. So d is continuous, and, by definition of v, also v is
continuous. Furthermore, without loss of generality, we assume that d(0) = 1.

For a fixed size c ≥ 0, we define p(c) = max{c′ ≥ 0 | v(c′) ≤ ρv(c)}. This value gives
the size up to which a solution with value v(c) is ρ-competitive. Throughout our analysis,
we assume that p(c) is defined for every c ≥ 0, i.e., that limc→∞ v(c) = ∞. Otherwise, any
algorithm can terminate when the value of its solution is at least 1

ρ supc∈R≥0
v(c).

▶ Proposition 13. The competitive ratio of IncMaxSep is greater or equal to that of
IncMaxCont.

Proof Sketch. Given a lower bound construction for the competitive ratio of IncMaxCont,
one can discretize it with arbitrary resolution such that, with an arbitrarily small loss, it
carries over to the IncMaxSep problem. ◀

This proposition implies that instead of devising a lower bound for the IncMaxSep
problem, we can construct a lower bound for the IncMaxCont problem.

Note that it is not clear whether the competitive ratio of IncMaxSep and IncMaxCont
coincide. This is due to the fact that a solution to the IncMaxCont problem may add
fractional elements while a solution to the IncMaxSep problem may only add an integral
number of items. There are even discrete instances where every continuization of the instance
has a competitive ratio smaller than the initial instance.

▶ Observation 14. There exists an instance of IncMaxSep that has a competitive ratio that
is strictly larger than that of every instance of IncMaxCont that monotonically interpolates
the IncMaxSep instance.

Proof Sketch. We show that the instance of IncMaxSep with N = 16 sets and

d1 = 1,

d3 = d4 = 17
40 ,

d12 = d13 = d14 = d15 = d16 = 16473
107200 .

has a competitive ratio of at least 1.446, while every monotone interpolation of it has a
competitive ratio of at most 1.425. ◀

Note that, even though this shows that there are instances where the continuous problem is
easier than the discrete one, this does not rule out that the competitive ratios of IncMaxSep
and IncMaxCont coincide. This is due to the fact that the instance in the proof is not a
worst-case instance.

ICALP 2023

47:8 Incremental Maximization via Continuization

3.1 Optimal Continuous Online Algorithm
In this section, we present an algorithm to solve the IncMaxCont problem, and analyze
it. To get an idea what the algorithm does, consider the following lemma. It gives a
characterization of a solution (c1, c2, . . .) being ρ-competitive, depending on (c1, c2, . . .), v

and d.

▶ Lemma 15. A solution (c1, c2, . . .) for an instance of the IncMaxCont problem is
ρ-competitive if and only if d(c1) ≥ 1

ρ and, for all i ∈ N, d(ci+1) ≥ v(ci)
p(ci)−

∑i

j=1
cj

.

The intuition behind the fraction

v(ci)
p(ci) −

∑i
j=1 cj

is the following: The value of the solution (c1, . . . , ci−1, ci) is v(ci) and this value is
ρ-competitive up to size p(ci). The size required for this solution is

∑i
j=1 cj . Thus, in

order to stay competitive, the size added next, namely ci+1, needs to be chosen such that(
p(ci) −

∑i
j=1 cj

)
d(ci+1) ≥ v(ci), i.e., the density d(ci+1) is large enough such that the value

of the solution of size p(ci) is
(
p(ci) −

∑i
j=1 cj

)
d(ci+1).

We use this fraction to define an algorithm for solving the IncMaxCont Problem. For
the algorithm, we assume that v is strictly increasing and d is strictly decreasing to make
the choice of our algorithm unique. Every instance of IncMaxCont can be transformed to
satisfy this with an arbitrarily small loss by simpliy “tilting” constant parts of d and v by a
small amount. The algorithm GreedyScaling(c1, ρ) starts by adding the optimal solution
of size c1 > 0 and chooses the size ci+1 such that

d(ci+1) = v(ci)
p(ci) −

∑i
j=1 cj

, (1)

i.e., as large as possible while still satisfying the inequality in Lemma 15. An illustration of
the algorithm can be found in Figure 2.

Using the definition of the algorithm in (1) and Lemma 15, we are able to prove the
following.

▶ Proposition 16. The algorithm GreedyScaling(c1, ρ) is ρ-competitive if and only if it
produces a solution (c1, c2, . . .) with ci < ci+1 for all i ∈ N and d(c1) ≥ 1

ρ .

Proof Sketch. “⇐”: If ci < ci+1 for all i ∈ N and d(c1) ≥ 1/ρ, we can simply apply
Lemma 15 and obtain that the solution is ρ-competitive.

“⇒”: If d(c1) < 1/ρ, Lemma 15 yields that the solution is not ρ-competitive. If ck+1 ≤ ck

for some k ∈ N, one can iteratively show that ci+1 ≤ ci for all i ∈ {k, k +1, . . . }. This implies
that the value of the solution (c1, c2, . . .) is smaller or equal to v(ck) for all sizes. Yet, for
large sizes C ∈ N, we have v(C) > ρv(ck) as limc→∞ v(c) = ∞. ◀

The algorithm GreedyScaling(c1, ρ) only depends on the desired competitive ratio ρ

and the starting value c1. Given that some algorithm can achieve a competitive ratio of ρ,
we can show that GreedyScaling(c∗

1, ρ) with the correct starting value c∗
1 > 0 also gives a

ρ-competitive solution.

▶ Theorem 1. For every instance of IncMaxCont, there exists a starting value c1 such that
the algorithm GreedyScaling(c1, ρ∗) achieves the best-possible competitive ratio ρ∗ ≥ 1.

Y. Disser, M. Klimm, K. Schewior, and D. Weckbecker 47:9

∑i
j=1 cj

p(ci) ci+1 ∑i+1
j=1 cj

v(ci)

v(ci+1)

c

v(c)

1
ρ
v(c)

GreedyScaling(c)

Figure 2 Illustration how GreedyScaling(c1, ρ) works. Between size
∑i

j=1 cj and size
∑i+1

j=1 cj ,
the algorithm adds the optimal solution of size ci+1. This size is chosen in a way that the value of
the partially added solution has value v(ci) exactly at size p(ci), i.e., when the previously added
solution of size ci loses ρ-competitiveness.

Proof sketch. The idea of the proof is to start with a ρ∗-competitive solution (c1, c2, . . .)
for the instance of IncMaxCont. For every k ∈ N, we define a new ρ∗-competitive solution
(ck

1 , ck
2 , . . .) as follows. For i ∈ N with

∑i
j=1 cj ≥ k, we set ck

i = ci. For i ∈ N with∑i
j=1 cj < k, we choose ck

i ≥ 0 as small as possible without losing ρ∗-competitiveness. This
new solution satisfies the inequality

d(ck
i+1) ≥ v(ck

i)
p(ck

i) −
∑i

j=1 ck
j

from Lemma 15 with equality for i ∈ {1, . . . , k − 1}. This implies, that we can calculate
ck

2 , . . . , ck
k solely based on ck

1 , d, and v. For every k ∈ N, we obtain such a solution (ck
1 , ck

2 , . . .).
For all k ∈ N, we have d(ck

1) ≥ 1/ρ∗, which implies that all sizes in {c1
1, c2

1, . . . } are from
the finite interval [0, d−1(1/ρ∗)]. By the Bolzano-Weierstrass theorem, this implies that
the sequence (c1

1, c2
1, . . .) contains a converging sub-sequence. If we choose the limit of this

sub-sequence to be the starting value c∗
1 of the algorithm GreedyScaling(c∗

1, ρ∗), we obtain
a ρ∗-competitive algorithm. ◀

For a range of starting values c1, we are able to show the upper bound on the competitive
ratio of GreedyScaling(c1, φ + 1) in Theorem 2, where φ = 1

2 (1 +
√

5) ≈ 1.618 is the
golden ratio.

▶ Theorem 2. GreedyScaling(c1, φ + 1) is (φ + 1)-competitive if and only if d(c1) ≥ 1
φ+1 .

Proof Sketch. By Proposition 16, it suffices to show that, for the solution (c1, c2, . . .) pro-
duced by GreedyScaling(c1, φ + 1), we have ci+1 > ci for every c1 > 0 with d(c1) > 1

φ+1 .
We show iteratively that ci+1 ≥ (φ + 1)ci. In order to do this, we observe that

p(ci) = (φ + 1)v(ci)
d(p(ci))

≥ (φ + 1)ci.

ICALP 2023

47:10 Incremental Maximization via Continuization

By a straighforward induction that uses the fact that (φ+1)i−jcj ≤ ci for all j ∈ {1, . . . , i−1}
as well as the definition of GreedyScaling(c1, φ + 1) we obtain that d(ci+1) < d(p(ci)).
This implies ci+1 > p(ci) ≥ (φ + 1)ci. ◀

Since GreedyScaling(c1, ρ) with the correct starting value c1 is the best-possible
algorithm for a fixed instance, we can give a lower bound of ρ > 1 for the IncMaxCont
problem by finding an instance that is a lower bound for GreedyScaling(c1, ρ) with all
starting values c1 > 0 that satisfy d(c1) ≤ 1/ρ. In the following, we show that, for every
countable set of starting values, there is an instance where GreedyScaling(c1, ρ) cannot
have a competitive ratio of better than φ + 1 for any of these starting values. In order to do
this, we need the following lemma.

▶ Lemma 17. For α, β, ρ, ϵ ∈ R≥0 with β > 0, consider the recursively defined sequence
(tn)n∈N with

t0 = β, tn+1 = 1
ρ

tn(1−ϵ) −
(∑n

j=0
(ρ+ϵ)j−n

tj

)
− α

(ρ+ϵ)n

for all n ∈ N ∪ {0}.

If 1 < ρ < φ + 1, then there exists ϵ′ > 0 such that, for all ϵ ∈ (0, ϵ′], there is ℓ ∈ N with
tℓ < 0.

Proof sketch. We define an auxiliary sequence (an)n∈N with an = 1
tn

for all n ∈ N ∪ {0}.
This sequence becomes negative if and only if (tn)n∈N∪{0} becomes negative. We show that
(an)n∈N∪{0} is fully described by the homogeneous recurrence relation

an+1 = an

(
1

ρ + ϵ
+ ρ

1 − ϵ
− 1
)

− an−1
ρ

(1 − ϵ)(ρ + ϵ)

for all n ∈ N, together with the start values a0 = 1/β and

a1 = 1
t1

= ρ

β(1 − ϵ) − 1
β

− α.

Its characteristic polynomial is

0 = x2 −
(

1
ρ + ϵ

+ ρ

1 − ϵ
− 1
)

x + ρ

(1 − ϵ)(ρ + ϵ) .

We show that the roots x and y of this polynomial are complex if ρ < φ + 1 and ϵ > 0 small
enough. Thus, they are also distinct which implies that the sequence (an)n∈N∪{0} has the
closed-form expression

an = λxn + µyn

for all n ∈ N∪{0} where λ, µ ∈ C are chosen accordingly. The fact that the starting values a0
and a1 are real valued imply that λ and µ are complex conjugate. Thus, we obtain

an = 2R(λxn)

for all n ∈ N ∪ {0}, where R(λxn) denotes the real part of λxn. We analyze this equation by
visualizing it on the complex plane (cf. Figure 3). Since x is not real valued, multiplying by x

corresponds to a rotation by an angle that is not 0 and not π. Thus, for some n ∈ N ∪ {0},
R(λxn) must become negative. ◀

Y. Disser, M. Klimm, K. Schewior, and D. Weckbecker 47:11

-3 -2 -1 1 2 3

-2i

2i

3i

−i

i

x

λ λx

λx7

Figure 3 Multiplying λ repeatedly by x ∈ (C \ R) is equivalent to a rotation around the origin
that, at some point, reaches the half-plane corresponding to negative real parts.

▶ Proposition 3. For every countable set S ⊂ R>0 of starting values, there exists an instance
of IncMaxCont such that GreedyScaling(c1, ρ) is not ρ-competitive for any c1 ∈ S and
any ρ < φ + 1.

Proof Sketch. We give an overview how to construct an instance where the algorithm
GreedyScaling(c1, ρ) is not ρ-competitive for one fixed starting value c1 > 0 and every
ρ ∈ [1, φ + 1). For the sake of simplicity, in this overview, we describe an instance where the
density function d and the value function v are locally constant. In the final construction,
we avoid this by slightly tilting constant parts of the function.

Let ϵ > 0 be arbitrarily small. The beginning of the instance up to size c1 can be chosen
arbitrarily. We set d(c) = d(c1) for all c ∈ [c1, (ρ + ϵ)c1]. By doing this, we ensure that the
value obtained by adding the optimal solution of the first size c1 is ρ-competitive for as few
sizes as possible, i.e., until p(c1) = ρc1. Then, d(c2) = v(c1)

ρc1−c1
can be calculated. We set

v(c) = v((ρ+ϵ)c1) for all c ∈ [(ρ + ϵ)c1, v((ρ+ϵ)c1)
d(c2)]. This ensures that c2 is as small as possible,

namely c2 = v((ρ+ϵ)c1)
d(c2) . Now we repeat what we did for c1, i.e., we define d to be constant so

that the value v(c2) is ρ-competitive for as few sizes as possible. Then, we calculate d(c3)
and define v to be constant so that c3 is as small as possible. We continue doing this for all
larger ci with i ≥ 3. It turns out that we have d(ci) = ti where the sequence (ti)i∈N is defined
as in Lemma 17. Thus, at some point, the density GreedyScaling(c1, ρ) calculates the
next capacity to be negative, which is not possible, i.e., the algorithm is not ρ-competitive.

We have seen how to construct an instance that excludes one starting value. This instance
is finite and the beginning can be chosen arbitrarily. Thus, we can chain together multiple
of these instances by scaling an instance for some set of starting values and modifying the
beginning such that it contains an instance for an additional starting value. ◀

3.2 General Lower Bound
Now we want to employ the techniques we used to prove Lemma 17 and Proposition 3 in
order to prove a lower bound on the competitive ratio of IncMaxCont. Let ρ∗ be the
unique real root ρ ≥ 1 of the polynomial −4ρ6 + 24ρ4 − ρ3 − 30ρ2 + 31ρ − 4. As before, we
need to show that a recursively defined sequence becomes negative at some point.

ICALP 2023

47:12 Incremental Maximization via Continuization

▶ Lemma 18. For ρ ∈ R≥0 and ϵ > 0, consider the recursively defined sequence (tn)n∈N with

t0 = 1, t1 = 1 − ϵ

ρ
, tn = 1 − ϵ

ρ
tn−1

− 1
tn−2

− 1
ρ

(∑n−3
j=0

(ρ+ϵ)j+2−n

tj

) for all n ∈ N≥2.

If 1 < ρ < ρ∗, then there exists ϵ′ > 0 such that, for all ϵ ∈ [0, ϵ′], there is ℓ ∈ N with tℓ < 0.

The proof of this lemma is along the same lines as the proof of Lemma 17, with additional
technical difficulties because the recurrence relation of the sequence is of order 3. With this
lemma, we are ready to construct our lower bound on the competitive ratio of IncMaxCont
and thus, via Propositions 11 and 13, of IncMax.

▶ Theorem 4. The IncMax problem has a competitive ratio of at least 2.246.

Proof sketch. We fix a competitive ratio ρ < ρ∗ and some small ϵ > 0. Similarly to the
construction in the proof of Proposition 3, the lower bound in Theorem 4 is a construction
where we have intervals on which, alternatingly, either the density function or the value
function is constant (cf. Figure 4). For i ∈ N, on the (2i)-th interval, the value is constant
and equals (ρ + ϵ)i−1. On the (2i − 1)-th interval, the density is constant and equal to ti−1,
where (tn)n∈N is defined as in Lemma 18. Every solution that contains a size from an interval
of constant value can be improved by picking the largest size from the preceding interval
of constant density instead. This size has the same value and is smaller. Thus, we assume
that algorithms only pick sizes from the intervals with constant density. We denote the
solution by (c1, c2, . . .). We have d(c1) = t0 = 1 because t1 < 1/ρ is too small. In order to be
competitive for the first constant value interval of value 1, the solution has to satisfy c1 ≥ 1/ρ

to achieve a value of at least 1/ρ. Then, the following recursive argument is made. Fix i ∈ N.
Whenever, for all j ∈ {1, . . . , i}, the solution satisfies d(cj) = tj−1 and cj ≥ (ρ+ϵ)i−1

ρ , then
we have d(ci+1) = ti and ci+1 ≥ (ρ+ϵ)i

ρ . The equality d(ci+1) = ti is due to the definition
of the sequence (tn)n∈N and Lemma 15. The inequality ci+1 ≥ (ρ+ϵ)i

tiρ follows from the fact
that, after the size ci+1 is added to the solution, the solution has to be competitive on the
(2i + 2)-th interval of value (ρ + ϵ)i. Since the sequence (tn)n∈N becomes negative at some
point, the solution is not ρ-competitive. ◀

4 Randomized Incremental Maximization

We turn to analyzing randomized algorithms to solve the (discrete) IncMaxSep problem. In
contrast to deterministic algorithms, we do not compare the value obtained by the algorithm
to an optimum solution, but rather the expected value obtained by the algorithm. This
enables us to find an algorithm with randomized competitive ratio smaller than the lower
bound of 2.24 on the competitive ratio of deterministic algorithms in Theorem 4.

4.1 Randomized Algorithm
Scaling algorithms, i.e., algorithms where the size ci is chosen such that ci = δci−1 with an
appropriate scaling factor δ > 1, have been proven to perform well for the deterministic
version of the problem. The best known algorithm is, in fact, a scaling algorithm [1]. In the
analysis, it turns out that, on average, a scaling algorithm performs better than the actual
competitive ratio, which is only tight for few sizes. By randomizing the initial size c0, we
manage to average out the worst-case sizes in the analysis.

Y. Disser, M. Klimm, K. Schewior, and D. Weckbecker 47:13

ρ + ϵ
(ρ + ϵ)2

(ρ + ϵ)3

(ρ + ϵ)4

(ρ + ϵ)5

c

d(c) = t3 d(c) = t4 d(c) = t5

Figure 4 Lower bound construction for ρ = 2.1.

We describe the randomized algorithm RandomizedScaling for IncMaxSep. Let r > 1
be some scaling parameter to be determined later. The algorithm RandomizedScaling
starts by choosing ϵ ∈ (0, 1) uniformly at random. For all i ∈ N0, it calculates c̃i := ri+ϵ and
ci := ⌊c̃i⌋ and returns the solution (c0, c1, c2, . . .).2 This approach is similar to a randomized
algorithm to solve the CowPath problem in [16], which also calculates such a sequence with
a different choice of r ∈ R in order to explore a star graph.

We define

t̃i :=
i∑

j=0
c̃j = rϵ ri+1 − 1

r − 1 and ti :=
i∑

j=0
cj .

For better readability, we let c̃−1 = c−1 = t̃−1 = t−1 = 0. Note that, for all i ∈ N0, we have

ti−1 ≤ t̃i−1 = rϵ ri − 1
r − 1

r>2
≤ ri+ϵ − rϵ ≤ ri+ϵ − 1 = c̃i − 1 ≤ ci. (2)

For every size c ∈ N0, we denote the solution created by the algorithm RandomizedScaling
by XAlg(c). Note that the optimum solution of size c ∈ N0 is given by the set Rc because
v1 ≤ v2 ≤ . . . and d1 ≥ d2 ≥ Thus, the value of the optimum solution of size c is vc.

In order to find an upper bound on the randomized competitive ratio of Randomized-
Scaling, we need the following lemma. It gives an estimate on the expected value of the
solution for a fixed size C ∈ N of RandomizedScaling depending on the interval in which C

falls.

▶ Lemma 19. Let C ∈ N.
1. For i ∈ N ∪ {0} with P[C ∈ (ci−1, ci]] > 0, we have

E
[
f(XAlg(C)) | C ∈ (ci−1, ci]

]
≥ E

[
max

{ci−1

C
,

C − ti−1

max{C, ci}

} ∣∣∣ C ∈ (ci−1, ci]
]

· vC .

2 With this definition, the algorithm does not terminate on finite instances. To avoid this, it suffices to
stop calculating the sizes ci until they are larger than the number of elements in the instance.

ICALP 2023

47:14 Incremental Maximization via Continuization

2. For i ∈ N with P[C ∈ (c̃i, t̃i − 1]] > 0, we have

E
[
f(XAlg(C)) | C ∈ (c̃i, t̃i − 1]

]
≥ E

[
1 − t̃i−1

C

∣∣∣ C ∈ (c̃i, t̃i − 1]
]

· vC .

3. For i ∈ N with P[C ∈ (t̃i−1 − 1, c̃i]] > 0, we have

E
[
f(XAlg(C)) | C ∈ (t̃i−1−1, c̃i]

]
≥ E

[
max

{ c̃i−1 − 1
C

,
C − t̃i−1

c̃i

} ∣∣∣ C ∈ (t̃i−1−1, c̃i]
]
·vC .

By choosing r ≈ 5.1646 to be the unique maximum of

g(x) =
1 −

√(
x3−1
x−1 xz − 1

)2 + 4x5+2z

2 log(x)x3+z
− (1 − δ)1 − x−3

x − 1 + z − 1 − x−3

2(x − 1) log(x)

−
(1 − x−3

x − 1 − 1
x3+z

)(
logx

(√(x3 − 1
x − 1 xz − 1

)2 + 4x5+2z − x3 − 1
x − 1 xz + 1

)
− logx(2) − 3

)
− 2x2+z(√(

x3−1
x−1 xz − 1

)2 + 4x5+2z − x3−1
x−1 xz + 1

)
log(x)

+ 2
log(x) −

(
1 + 1

x3+z

)(
logx(x3+z + 1) + logx(x − 1) − logx(x4 − 1)

)
,

we can show that the following holds.

▶ Lemma 20. Let k ∈ N and δ ∈ (0, 1] such that rk+δ ≥
∑3

i=0 ri. Then

g(r) ≤ I(k, δ) :=
∫ 1

min
{

1,µ(k−1)
} 1 − t̃k−2

rk+δ
dϵ +

∫ min{1,µ(k−1)}

min{1,ν(k−1)}

c̃k−1 − 1
rk+δ

dϵ

+
∫ min{1,ν(k−1)}

δ

rk+δ − t̃k−1

c̃k
dϵ +

∫ δ

max
{

0,µ(k)
} 1 − t̃k−1

rk+δ
dϵ

+
∫ max{0,µ(k)}

max{0,ν(k)}

c̃k − 1
rk+δ

dϵ +
∫ max{0,ν(k)}

0

rk+δ − t̃k

c̃k+1
dϵ

where

µ(i) = logr(rk+δ + 1) + logr(r − 1) − logr(ri+1 − 1),

ν(i) = logr

(√(
rk+δ

1 − r−(i+1)

r − 1 −1
)2

+ 4r2k+2δ−1 − rk+δ 1 − r−(i+1)

r − 1 + 1
)

−logr(2) − i.

With these lemmas, we are ready to prove an upper bound of 1/g(r) < 1.772 on the
randomized competitive ratio of RandomizedScaling.

▶ Theorem 5. IncMax admits a 1.772-competitive randomized algorithm.

Proof Sketch. In order to find this estimate, we start by fixing k ∈ N such that
C ∈ [rk, r(k+1)). Then, depending on the value of ϵ, C is from one of the intervals

I1 = (c̃k−1, t̃k−1 − 1], I2 = (t̃k−1 − 1, c̃k], I3 = (c̃k, t̃k − 1], I4 = (t̃k − 1, c̃k+1].

Yet, not all of these intervals are relevant to calculate the randomized competitive ratio.
Depending on where in the interval [rk, r(k+1)) the value C lies, only 2 or 3 of the intervals I1
to I4 have a non-zero probability to contain C. Thus, we distinguish the different cases,
where C lies in [rk, r(k+1)) and use Lemma 19 to calculate the randomized competitive ratio
to be the integral expression in Lemma 20. Applying this lemma gives the desired bound on
the randomized competitive ratio. ◀

Y. Disser, M. Klimm, K. Schewior, and D. Weckbecker 47:15

4.2 Randomized Lower Bound
We turn to proving the lower bound in Theorem 6 for IncMaxSep.

▶ Theorem 6. Every randomized IncMax algorithm has competitive ratio at least 1.447.

Proof. We fix N to be the number of sets R1, . . . , RN , leaving d1, . . . , dN as parameters
to determine the instance; we denote the resulting instance by I(d1, . . . , dN). Note that,
given a probability distribution p1, . . . , pN over the elements {1, . . . , N} in addition, Yao’s
principle [24] yields

inf
Alg∈AN

N∑
i=1

pi · i · di

Alg(I(d1, . . . , dN), i)

as a lower bound on the randomized competitive ratio of the problem. Here, Alg(I, i)
denotes the value of the first i elements in the solution produced by Alg on instance I,
and AN is the set of all deterministic algorithms on instances with N sets R1, . . . , RN . As
observed earlier, we may assume that

AN :=
{

Algc1,...,cℓ

∣∣∣ 1 ≤ c1 < · · · < cℓ ≤ N,
ℓ∑

i=1
ci ≤ N

}
,

where Algc1,...,cℓ
is the algorithm that first includes all elements of Rc1 into the solution,

then all elements of Rc2 , and so on. Once it has added the cℓ elements of Rcℓ
, it adds some

arbitrary elements from then onwards.
We can formulate the problem of maximizing the lower bound on the competitive ratio

as an optimization problem:

max ρ

s.t. ρ ≤
N∑

i=1
pi · i · di

Alg(I(d1, . . . , dN), i) ∀Alg ∈ AN ,

N∑
i=1

pi = 1,

d1, . . . , dN ≥ 0,

p1, . . . , pN ≥ 0.

Note that the expression Algc1,...,cℓ
(I(d1, . . . , dN), i) can also be written as a function

of c1, . . . , cℓ, d1, . . . , dN , and i by taking the maximum over all sets from which Algc1,...,cℓ

selects elements:

Algc1,...,cℓ
(I(d1, . . . , dN), i) = max

1≤j≤ℓ

max
{

i −
∑

1≤j′<j

cj′ , cj

}
· dcj

 .

A feasible solution to the above optimization problem with N = 10 is given by

(ρ; d1, . . . , d10; p1, . . . , p10)
= (1.447; 1, 1/2, 1/2, 1/2, 2/5, 1/3, 1/3, 1/3, 1/3, 1/3; 0.132, 0, 0, 0.395, 0, 0, 0, 0, 0, 0.473),

with objective value 1.447. ◀

ICALP 2023

47:16 Incremental Maximization via Continuization

References
1 Aaron Bernstein, Yann Disser, Martin Groß, and Sandra Himburg. General bounds

for incremental maximization. Math. Program., 191(2):953–979, 2022. doi:10.1007/
s10107-020-01576-0.

2 Avrim Blum, Prasad Chalasani, Don Coppersmith, William R. Pulleyblank, Prabhakar
Raghavan, and Madhu Sudan. The minimum latency problem. In Proceedings of the Twenty-
Sixth Annual ACM Symposium on Theory of Computing (STOC), pages 163–171. ACM, 1994.
doi:10.1145/195058.195125.

3 Marek Chrobak, Claire Kenyon, John Noga, and Neal E. Young. Incremental medians via
online bidding. Algorithmica, 50(4):455–478, 2008. doi:10.1007/s00453-007-9005-x.

4 Yann Disser, Max Klimm, Nicole Megow, and Sebastian Stiller. Packing a knapsack of unknown
capacity. SIAM J. Discret. Math., 31(3):1477–1497, 2017. doi:10.1137/16M1070049.

5 Yann Disser, Max Klimm, Kevin Schewior, and David Weckbecker. Incremental maximization
via continuization. arXiv:2305.01310v1.

6 Yann Disser, Max Klimm, and David Weckbecker. Fractionally subadditive maximization
under an incremental knapsack constraint. In Proceedings of the 19th International Workshop
on Approximation and Online Algorithms (WAOA), pages 206–223. Springer, 2021. doi:
10.1007/978-3-030-92702-8_13.

7 Ryo Fujita, Yusuke Kobayashi, and Kazuhisa Makino. Robust matchings and matroid
intersections. SIAM J. Discret. Math., 27(3):1234–1256, 2013. doi:10.1137/100808800.

8 Michel X. Goemans and Jon M. Kleinberg. An improved approximation ratio for the minimum
latency problem. Math. Program., 82:111–124, 1998. doi:10.1007/BF01585867.

9 Michel X. Goemans and Francisco Unda. Approximating incremental combinatorial op-
timization problems. In Proceedings of the 20th International Workshop on Approxima-
tion Algorithms for Combinatorial Optimization Problems (APPROX), pages 6:1–6:14, 2017.
doi:10.4230/LIPIcs.APPROX-RANDOM.2017.6.

10 Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theor.
Comput. Sci., 38:293–306, 1985. doi:10.1016/0304-3975(85)90224-5.

11 Jeff Hartline and Alexa Sharp. An incremental model for combinatorial maximization problems.
In Proceedings of the 5th International Workshop on Experimental Algorithms (WEA), pages
36–48, 2006. doi:10.1007/11764298_4.

12 Jeff Hartline and Alexa Sharp. Incremental flow. Networks, 50(1):77–85, 2007. doi:10.1002/
net.20168.

13 Refael Hassin and Shlomi Rubinstein. Robust matchings. SIAM J. Discret. Math., 15(4):530–
537, 2002. doi:10.1137/S0895480198332156.

14 Refael Hassin and Danny Segev. Robust subgraphs for trees and paths. ACM Trans. Algorithms,
2(2):263–281, 2006. doi:10.1145/1150334.1150341.

15 Naonori Kakimura and Kazuhisa Makino. Robust independence systems. SIAM J. Discret.
Math., 27(3):1257–1273, 2013. doi:10.1137/120899480.

16 Ming-Yang Kao, John H Reif, and Stephen R Tate. Searching in an unknown environment:
An optimal randomized algorithm for the cow-path problem. Information and Computation,
131(1):63–79, 1996.

17 Max Klimm and Martin Knaack. Maximizing a submodular function with bounded curvature
under an unknown knapsack constraint. In Proceedings of the 25th International Workshop
on Approximation Algorithms for Combinatorial Optimization Problems (APPROX), pages
49:1–49:19, 2022. doi:10.4230/LIPIcs.APPROX/RANDOM.2022.49.

18 Guolong Lin, Chandrashekhar Nagarajan, Rajmohan Rajaraman, and David P. Williamson. A
general approach for incremental approximation and hierarchical clustering. SIAM J. Comput.,
39(8):3633–3669, 2010. doi:10.1137/070698257.

19 Jannik Matuschke, Martin Skutella, and José A. Soto. Robust randomized matchings. Math.
Oper. Res., 43(2):675–692, 2018. doi:10.1287/moor.2017.0878.

https://doi.org/10.1007/s10107-020-01576-0
https://doi.org/10.1007/s10107-020-01576-0
https://doi.org/10.1145/195058.195125
https://doi.org/10.1007/s00453-007-9005-x
https://doi.org/10.1137/16M1070049
https://arxiv.org/abs/2305.01310v1
https://doi.org/10.1007/978-3-030-92702-8_13
https://doi.org/10.1007/978-3-030-92702-8_13
https://doi.org/10.1137/100808800
https://doi.org/10.1007/BF01585867
https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2017.6
https://doi.org/10.1016/0304-3975(85)90224-5
https://doi.org/10.1007/11764298_4
https://doi.org/10.1002/net.20168
https://doi.org/10.1002/net.20168
https://doi.org/10.1137/S0895480198332156
https://doi.org/10.1145/1150334.1150341
https://doi.org/10.1137/120899480
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.49
https://doi.org/10.1137/070698257
https://doi.org/10.1287/moor.2017.0878

Y. Disser, M. Klimm, K. Schewior, and D. Weckbecker 47:17

20 Nicole Megow and Julián Mestre. Instance-sensitive robustness guarantees for sequencing with
unknown packing and covering constraints. In Proceedings of the 4th Innovations in Theoretical
Computer Science Conference (ITCS), pages 495–504, 2013. doi:10.1145/2422436.2422490.

21 Julián Mestre. Greedy in approximation algorithms. In Proceedings of the 14th Annual
European Symposium on Algorithms (ESA), pages 528–539, 2006. doi:10.1007/11841036_48.

22 Ramgopal R. Mettu and C. Greg Plaxton. The online median problem. SIAM J. Comput.,
32(3):816–832, 2003. doi:10.1137/S0097539701383443.

23 C. Greg Plaxton. Approximation algorithms for hierarchical location problems. J. Comput.
Syst. Sci., 72(3):425–443, 2006. doi:10.1016/j.jcss.2005.09.004.

24 Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified measure of complexity.
In 18th Annual Symposium on Foundations of Computer Science (sfcs 1977), pages 222–227,
1977. doi:10.1109/SFCS.1977.24.

ICALP 2023

https://doi.org/10.1145/2422436.2422490
https://doi.org/10.1007/11841036_48
https://doi.org/10.1137/S0097539701383443
https://doi.org/10.1016/j.jcss.2005.09.004
https://doi.org/10.1109/SFCS.1977.24

Local Computation Algorithms for Hypergraph
Coloring – Following Beck’s Approach
Andrzej Dorobisz #

Theoretical Computer Science Department, Faculty of Mathematics and Computer Science,
Jagiellonian University, Kraków, Poland

Jakub Kozik #

Theoretical Computer Science Department, Faculty of Mathematics and Computer Science,
Jagiellonian University, Kraków, Poland

Abstract
We investigate local computation algorithms (LCA) for two-coloring of k-uniform hypergraphs. We
focus on hypergraph instances that satisfy strengthened assumption of the Lovász Local Lemma
of the form 21−αk(∆ + 1)e < 1, where ∆ is the bound on the maximum edge degree. The main
question which arises here is for how large α there exists an LCA that is able to properly color such
hypergraphs in polylogarithmic time per query. We describe briefly how upgrading the classical
sequential procedure of Beck from 1991 with Moser and Tardos’ Resample yields polylogarithmic
LCA that works for α up to 1/4. Then, we present an improved procedure that solves wider range
of instances by allowing α up to 1/3.

2012 ACM Subject Classification Mathematics of computing → Hypergraphs; Mathematics of
computing → Probabilistic algorithms; Theory of computation → Streaming, sublinear and near
linear time algorithms

Keywords and phrases Local Computation Algorithms, Hypergraph Coloring, Property B

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.48

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2305.02831 [8]

Funding This work was partially supported by Polish National Science Center (2016/21/B/
ST6/02165).

1 Introduction

The problem of hypergraph coloring often serves as a benchmark for various probabilistic
techniques. The task is to answer whether there exist (or to explicitly find) a proper coloring,
that is, such an assignment of colors to the vertices of a hypergraph that no edge contains
vertices all of the same color. In fact, the problem of two-coloring1 of linear hypergraphs was
one of the main motivations for introducing Local Lemma in the seminal paper of Erdős and
Lovász [9]. It is well known that determining whether the given hypergraph admits proper
two-coloring is NP-complete [15]. This result holds even for hypergraphs with all edges of
size 3. In this work, we discuss sublinear algorithms for two-coloring of uniform hypergraphs
within the framework of Local Computation Algorithms.

We are going to work with k-uniform hypergraphs2. For the rest of the paper, n is used
to denote the number of vertices of considered uniform hypergraph, m its number of edges,
and k size of the edges. We assume that k is fixed (but sufficiently large to avoid technical

1 In two-coloring problem we can assign to each vertex one of two available colors.
2 In k-uniform hypergraph each edge contains exactly k vertices.

EA
T
C
S

© Andrzej Dorobisz and Jakub Kozik;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 48; pp. 48:1–48:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:andrzej.dorobisz@tcs.uj.edu.pl
https://orcid.org/0000-0002-0910-4370
mailto:jakub.kozik@uj.edu.pl
https://orcid.org/0000-0002-1362-7780
https://doi.org/10.4230/LIPIcs.ICALP.2023.48
https://arxiv.org/abs/2305.02831
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

48:2 Local Computation Algorithms for Hypergraph Coloring – Following Beck’s Approach

details) and that n tends to infinity. For a fixed hypergraph, we denote by ∆ its maximum
edge degree. In the instances with which we are going to work, ∆ is bounded by a function
of k, so in terms of n it is O(1). This implies that the number of edges m is at most linear
in n. We also assume that the considered hypergraphs do not have isolated vertices. Then,
we also have m = Θ(n).

1.1 Local Computation Algorithms
Rubinfeld, Tamir, Vardi and Xie proposed in [21] a general model of sublinear sequential
algorithms called Local Computation Algorithms (LCA). The model is intended to capture
the situation where some computation has to be performed on a large instance but, at any
specific time, only parts of the answer are required. The interaction with a local computation
algorithm is organized in the sequence of queries about fragments of a global solution. The
algorithm shall answer each consecutive query in sublinear time (wrt the size of the instance),
systematically producing a partial answer that is consistent with some global solution. The
model allows for randomness, and algorithm may occasionally fail.

For example, for the hypergraph two-coloring problem, the aim of an LCA procedure
is to find a proper coloring of a given hypergraph. The algorithm can be queried about
any vertex, and in response, it has to assign to the queried vertex one of the two available
colors. For any sequence of queries, with high probability, it should be possible to extend the
returned partial coloring to a proper one.

Formally, for a fixed problem, a procedure is a (t, s, δ)-local computation algorithm, if
for any instance of size n and any sequence of queries, it can consistently answer each of
them in time t(n) using up to s(n) space for computation memory. The time t(n) has to be
sublinear in n, but a polylogarithmic dependence is desirable. The value δ(n) shall bound the
probability of failure for the whole sequence of queries. It is usually demanded to be small.
The computation memory, the input, and the source of random bits are all represented as
tapes with random access (the last two are not counted in s(n) limit). The computation
memory can be preserved between queries. In particular, it can store some partial answers
determined in the previous calls. For the precise general definition of the model consult [21].

A procedure is called query oblivious if the returned solution does not depend on the
order of the queries (i.e. it depends only on the input and the random bits). It usually
indicates that the algorithm uses computation memory only to answer the current query and
that there is no need to preserve information between queries. It is a desirable property, since
it allows to run queries to algorithm in parallel. In a follow-up paper [3], Alon, Rubinfeld,
Vardi, and Xie presented generic methods of removing query order dependence and reducing
necessary number of random bits in LCA procedures. In the same paper, these techniques
were applied to the example procedures (including hypergraph coloring) from [21] converting
them to query oblivious LCAs. The improved procedures work not only in polylogarithmic
time but also in polylogarithmic space. Mansour, Rubinstein, Vardi, and Xie in [16] improved
analysis of this approach.

1.2 Constructive Local Lemma and LCA
The Lovász Local Lemma (LLL) is one of the most important tools in the field of local
algorithms. In its basic form, it allows one to non-constructively prove the existence of
combinatorial objects omitting a collection of undesirable properties, so-called bad events.
A brief introduction to this topic and a summary of various versions of LLL can be found in
the recent survey by Faragó [11].

A. Dorobisz and J. Kozik 48:3

For a fixed k-uniform hypergraph, let p = 2−k denote the probability that, in a uniformly
random coloring, a fixed edge is monochromatic in a specific color. A straighforward
application of the symmetric version of Local Lemma (see e.g., [11]) proves that the condition
2p (∆ + 1) e < 1, is sufficient for a hypergraph with the maximum edge degree ∆, to be
two-colorable.

For many years, Local Lemma resisted attempts to make it efficiently algorithmic. The
first breakthrough came in 1991, when Beck [5], working on the example of hypergraph two-
coloring, showed a method of converting some of LLL existence proofs into polynomial-time
algorithmic procedures. However, in order to achieve that, the assumptions of Local Lemma
had to be strengthened and took form

2 pα (∆ + 1) e < 1. (1)

For α = 1 the inequality reduces to the standard assumption. The above inequality constraints
∆, and the constraint becomes more restrictive as α gets smaller. The original proof of Beck
worked for α < 1/48. From that time, a lot of effort has been put into studying applications
to specific problems and pushing α forward, as close as possible to standard LLL criterion
[2, 18, 7, 22, 19].

The next breakthrough was made by Moser in 2009. In cooperation with Tardos, Moser’s
ideas have been recasted in [20] into general constructive formulation of the lemma. They
showed that, assuming so called variable setting of LLL, a natural randomized procedure
called Resample3 quickly finds an evaluation of involved random variables for which none
of the bad events hold. They also proved that, in typical cases, the expected running time
of the procedure is linear in the size of the instance. For the problem of two-coloring of
k-uniform hypergraphs, the total expected number of resamplings is bounded by m/∆ (see
Theorem 7 in [11]).

Adjusting constructive LLL to LCA model remains one of the most challenging problems
in the area. It turns out, however, that previous results on algorithmization of Local Lemma
can be adapted in the natural way. In fact, the first LCA algorithm for the hypergraph
coloring from [21], is built on the variant of Beck’s algorithm that is described in the book
by Alon and Spencer [4]. That version works for α < 1/11, and runs in polylogarithmic time
per query. Later refinements focused on optimizing space and time requirements ([3], [16]),
however, for polylogarithmic LCAs the bound on α has not been improved. In a recent work,
Achlioptas, Gouleakis, and Iliopoulos [1] showed how to adjust Resample to LCA model.
They did not manage, however, to obtain a polylogarithmic time. Their version answers
queries in time t(n) = nβ(α). They establish some trade-off between the bound on α and the
time needed to answer a query. In particular, when α approaches 1/2 then β(α) tends to 1,
which results in a very weak bound on the running time per query.

1.3 Main result

Our research focuses on the following general question in the area of local constructive versions
of the Lovász Local Lemma: up to what value of α there exists a polylogarithmic LCA for
the problem of two-coloring of k-uniform hypergraphs satisfying condition 2(∆ + 1)e < 2αk.
We prove the following theorem:

3 As long as some bad events are violated, the procedure picks any such event and resamples all variables
on which that event depends.

ICALP 2023

48:4 Local Computation Algorithms for Hypergraph Coloring – Following Beck’s Approach

▶ Theorem 1 (main result). For every α < 1/3 and all large enough k, there exists a local
computation algorithm that, in polylogarithmic time per query, with probability 1−O(1/n)
solves the problem of two-coloring for k-uniform hypergraphs with maximum edge degree ∆,
that satisfies 2e(∆ + 1) < 2αk.

Within the notation of [21] we present (polylog(n),O(n),O(1/n))-local computation algo-
rithm that properly colors hypergraphs that satisfy the above assumption. Our algorithm is
not query oblivious. Moreover, typical methods of eliminating the dependence on the order
of queried vertices do not seem to be applicable without sacrificing constant α. Consult the
full version of this paper [8] for the complete proof of the theorem.

For comparison, Alon et al. [3] after Rubinfeld et al. [21] present a query oblivious
(polylog(n), polylog(n),O(1/n))-local computation algorithm working for hypergraphs satis-
fying

16 ∆(∆− 1)3(∆ + 1) < 2k1 ,

16 ∆(∆− 1)3(∆ + 1) < 2k2 , (2)
2e(∆ + 1) < 2k3 ,

where k1, k2 and k3 are positive integers such that k = k1 + k2 + k3. These assumptions
correspond to α < 1/11.

The analysis of the LCA procedure from [3] guarantees only that the running time is of
the order O

(
log∆(n)

)
. Mansour et al. in [16] focus on improving time and space bounds

within polylogarithmic class, removing the dependency on the maximal edge degree from
the exponent. They obtain an LCA working in O

(
log4(n)

)
time and space, assuming that

k ≥ 16 log(∆) + 19, so it requires even stronger bound on α.

1.4 LOCAL distributed algorithms
The model of Local Computation Algorithms is related to the classical model of local
distributed computations by Linial [14] (called LOCAL). For comparison of these two models,
see work of Even, Medina, and Ron [10]. Chang and Pettie observed recently in [6] that within
LOCAL model, the general problem of solving Local Lemma instances with a dependency
graph of bounded degree is in some sense complete for a large class of problems (these are the
problems which can be solved in sublogarithmic number of rounds). They also conjectured
that for sufficiently strengthened condition of Local Lemma (like taking small enough α

in (1)) there exists a distributed LOCAL algorithm that solves the problem in O(log log n)
rounds. The straightforward simulation of such an algorithm within LCA framework would
yield a procedure that, at least for fixed maximum degree, answers queries in polylogarithmic
time.

Recently, progress towards this conjecture has been made by Fischer and Ghaffari [12], who
proved that there exists an algorithm for Local Lemma instances that works in 2O

(√
log log n

)
rounds. The influence of the degree of underlying dependency graph on running time has been
later improved by Ghaffari, Harris and Kuhn in [13]. In particular, for sufficiently constrained
problem of hypergraph two-coloring, that result allows one to obtain an LCA procedure
that answers queries in sublinear time. The time, however, would be superpolylogarithmic.
Moreover, the necessary strengthening of Local Lemma assumptions appears to be much
stronger than the one required to apply the result of Rubinfeld et al. [21].

The possibility of simulation of LOCAL algorithms within LCA model implies that if
Chang and Pettie conjecture holds, then any problem satisfying sufficiently strengthened LLL
conditions can be solved in LCA model in polylogarithmic time per query. We can therefore

A. Dorobisz and J. Kozik 48:5

formulate a weaker conjecture that for some α every such α-strengthened problem can be
solved in LCA in polylogarithmic time per query. For the specific problem of hypergraph
coloring, this property is known to hold. We can, however, ask what is the maximum such α

for a fixed problem. That is precisely the general problem stated at the beginning of Section
1.3. It is interesting to note that our algorithms make essential use of the sequential nature
of LCA. For that reason, they cannot be translated to O(log log n) LOCAL algorithms. This
also illustrates an important difference between the models.

2 Main techniques and ideas of the proof

The algorithmic procedure of Beck [5] is divided into two phases. In the first one, which we
call the shattering phase, it builds a random partial coloring that guarantees that a fraction
of all edges are already properly colored. Moreover, the edges which are not yet taken care
of have sufficiently many non-colored vertices to make sure that the partial coloring can
be completed to a proper one. They also form connected components of logarithmic sizes
which can be colored independently. Then, in the second phase, which we call the final
coloring phase, an exhaustive search is used to complete the coloring of each component.
This results in a sequential procedure with polynomial running time. In order to reduce
the running time to almost linear, the shattering phase can be applied twice. Then, the
final components w.h.p. are of size O(log log(n)). The polylogarithmic LCA procedure for
hypergraph coloring from [21] followed that approach and simulates locally two shattering
phases and an exhaustive search when answering a single query. Division into these three
phases is directly reflected in the conditions (2) required by the procedure.

While it is not known whether it is possible to design an LCA algorithm based solely on
Resample, combining it with previous local algorithms brings significant improvements. It
turns out that, within polylogarithmic time, after only one shattering phase, the coloring can
be completed with the use of Resample. This simple modification, with slightly improved
analysis, is sufficient to derive Theorem 1 for α ≤ 1/4. This is our first contribution. That
procedure provides a reference point for explaining the intuitions and motivations that
underlie the further improvements that we derive. In particular, we define a notion of
component-hypergraph that allows for a more fine-grained analysis of the components of the
residual hypergraph. For that reason, we present our base algorithm in detail in Section 3.

The first modification that we make in order to improve the base algorithm is that
within the shattering phase we sample colors for all vertices. Then, for some vertices, the
color is final, and for others, it is allowed to change the assigned color in the final coloring
phase. Coloring all the vertices during the first phase somehow blurs the border between the
shattering and final coloring phases. Its main purpose is to enable a more refined partition
of the residual hypergraph into independent fragments. It also allows to determine some
components of the residual hypergraph for which no recoloring would be necessary. This
corresponds to a situation in which the first sampled colors in Resample happen to define a
proper coloring. Altogether, we managed to significantly reduce the pessimistic size of the
independent fragments colored in the final coloring phase, which enables further relaxation of
the necessary conditions on α to α < 1/3. The improved procedure is described in Section 4.

In order to analyze the procedures, we employ a common technique of associating some
tree-like witness structures with components that require recoloring. Every such structure
describes a collection of events associated with some edges of the hypergraph. All these
events are determined by the colors assigned in the shattering phase. For the base algorithm,
these structures are quite typical. However, in order to achieve the better bound on α, we

ICALP 2023

48:6 Local Computation Algorithms for Hypergraph Coloring – Following Beck’s Approach

developed more sophisticated structures that are capable of tracking different kinds of events,
which can also depend on the colors that are allowed to be recolored. Different kinds of events
come with different bounds on probability. An important aspect of the analysis concerns
amortization of different kinds of events within a single structure. The construction of these
structures is our main technical contribution. Its detailed description can be found in the
full version of this paper [8].

We finally note that, while our methods are not general enough to work for all instances
satisfying the strengthened assumptions of LLL, they can be applied to a number of problems
similar to hypergraph coloring, like, e.g. k-SAT.

3 Establishing base result

In this section we show how the Beck’s algorithm can be combined with Resample to
construct a local computation algorithm that works in polylogarithmic time per query for α

up to 1/4. In other words, we prove Theorem 1 under the stronger assumption that α ≤ 1/4.
To keep the exposition simple, we first present a global randomized algorithm. Then, we
comment on how to adapt this procedure to LCA model. The analysis of the procedure can
be found in the full version of this paper [8].

Let H = (V, E) be a hypergraph that satisfies the assumptions of Theorem 1 for a fixed
α ≤ 1/4. For technical convenience, we assume that αk is an integer4. By assigning a random
color, we mean choosing uniformly one of the two available colors. For a set of edges S, by
V (S) we mean all vertices covered by the edges from S. For an edge f , N(f) denotes the set
of edges intersecting f . We use a naming convention that is similar to other works on the
subject – in particular, our view of Beck’s algorithm is influenced by its descriptions by Alon
and Spencer [4] and Molloy and Reed [17], as well as LCA realization given in [21].

3.1 Global coloring procedure
The algorithm starts with choosing an arbitrary order of vertices. Then, it proceeds in
two phases: the shattering phase and the final coloring phase. The shattering phase colors
some vertices of the input hypergraph and then splits the edges of the hypergraph that
are not properly colored yet into final components – subhypergraphs that can be colored
independently. The final coloring phase completes the coloring by considering the final
components separately, one by one.

3.1.1 The shattering phase
The procedure processes vertices sequentially according to the fixed ordering. For every
vertex, it either assigns a random color to the vertex or leave it non-colored in case it belongs
to a bad edge. An edge is called bad if it contains (1− α)k colored vertices and is still not
colored properly (that is, all these vertices have the same color). Once an edge becomes bad,
no more vertices from that edge will be colored – such vertices are called troubled. Vertices
with assigned colors are called accepted.

Upon completion of the shattering phase, there are three types of edges:
safe edges – properly colored by the accepted vertices,
bad edges – containing exactly (1− α)k accepted vertices, all of the same color,
unsafe edges – containing fewer than (1− α)k accepted vertices, all of the same color.

4 In fact, for the given k it is only reasonable to take α in the form of t/k, where t is an integer 2 ≤ t ≤ k.

A. Dorobisz and J. Kozik 48:7

Observe that in the resulting (partial) coloring, every edge that is not colored properly has
at least αk troubled vertices, which will be colored in the next phase. Note also that it might
happen that some unsafe edge has no colored vertices at all.

The colors of accepted vertices are not going to be changed, so the safe edges are already
taken care of. Therefore, we focus on bad and unsafe edges. Let Ebad denote the set of all
bad edges. Consider hypergraph (V (Ebad), Ebad). It is naturally decomposed into connected
components.

▶ Definition 2. Every component of the hypergraph (V (Ebad), Ebad) is called a bad-
component.

Note that every troubled vertex belongs to some bad-component. On top of them we build an
abstract structure to express dependencies between bad-components through unsafe edges.

▶ Definition 3. A component-hypergraph is constructed as follows: its vertices are bad-
components of H and for every unsafe edge f intersecting more than one bad-component, an
edge that contains all bad-components intersected by f is added to it.

For each connected component of the component-hypergraph (that is, a maximal set
of bad-components that is connected in the component-hypergraph) we construct a final
component by taking the union of those bad-components (hence a final component is a
subhypergraph of H). The shattering phase is successful if each final component contains at
most 2(∆ + 1) log(m) bad edges. If this is not the case, the procedure declares a failure. It
turns out that this is very unlikely to happen.

3.1.2 The final coloring phase
For each final component C determined during the shattering phase, we add to C all unsafe
edges intersecting it, and then, we restrict C to troubled vertices5. We obtain a hypergraph
C′ containing at most 2(∆ + 1)2 log(m) edges, and each of them has at least αk vertices. The
maximum edge degree in C′ cannot be larger than ∆, which is the maximum edge degree
in H. Since 2e(∆ + 1) < 2αk (by the assumptions of Theorem 1), Lovász Local Lemma
ensures that C′ is two-colorable. Hence, by the theorem of Moser and Tardos Resample
finds a proper coloring of it using on average |E(C′)|/∆ resamplings (see Theorem 7 in [11]).

When the final coloring phase is over, all final components are properly colored. Since
each bad or unsafe edge is dealt within some final component, and each safe edge was properly
colored during the shattering phase, it is now guaranteed that the constructed coloring is
proper for the whole H.

3.2 LCA realization
We employ quite standard techniques to obtain an LCA realization of the described algorithm.
We articulate it below to provide a context for the description of our main algorithm. An
important property of the described procedure is that the ordering of vertices does not have
to be fixed a priori. In fact it can be even chosen in an on-line manner by an adversary.
Following [21], we are going to exploit the freedom of choice of ordering. The LCA version
of the algorithm is going to simulate the global version run with a specific ordering. That
ordering is constructed dynamically during the evaluation and is driven by the queries. Apart

5 Restriction of H = (V, E) to V ′ ⊆ V is defined as H ′ = (V ′, {e ∩ V ′| e ∈ E, e ∩ V ′ ̸= ∅}).

ICALP 2023

48:8 Local Computation Algorithms for Hypergraph Coloring – Following Beck’s Approach

from some minor adjustment (resulting from adaptation to LCA model) when the algorithm
is queried about vertex v, it performs all the work of the standard algorithm needed to assign
a final color to v. The LCA version is presented in Listings 1, 2, 3, and 4. All colors assigned
during work of the algorithm are stored in the computation memory (which is preserved
between queries). For convenience, we also store there the status of each vertex – uncolored,
accepted or troubled. Initially all vertices are uncolored.

Algorithm 1 LCA for uniform hypergraph coloring – main function.

1 Procedure query(v - vertex):
2 if v is uncolored then
3 if all edges containing v are not bad then
4 assign a random color to v and mark it as accepted // shattering
5 else mark v as troubled
6 if v is troubled then
7 Cv ← build_final_component(v) // shattering
8 color_final_component(Cv) // final coloring
9 return color assigned to v

3.2.1 query

When a vertex v has been already marked as accepted, its color is immediately returned. If it
has not been processed before, the algorithm checks whether v belongs to any bad edge (that
requires inspecting the current statuses of all the edges that contain v). If not, a random color
is assigned to v, the vertex is marked as accepted, and the procedure returns the assigned color.
On the other hand, when v belongs to a bad edge, it is marked as troubled. The algorithm
then determines the final component containing v in procedure build_final_component.
These steps can be viewed as the shattering phase. Afterwards, the final coloring phase is
performed for the final component in procedure color_final_component.

Algorithm 2 Building the final component for v that belongs to some bad edge.

1 Procedure build_final_component(v - troubled vertex):
2 B ← ∅ // initialize set of bad edges of the component
3 U ← ∅ // initialize set of unsafe edges to process
4 e← any bad edge containing v

5 mark e as explored and run expand_bad_component(e, B, U)
6 // process surrounding unsafe edges
7 while U is not empty do
8 f ← next edge from U (remove it from U)
9 expand_via_unsafe(f , B, U)

10 // return hypergraph built on set of bad edges
11 return C = (V (B), B)

A. Dorobisz and J. Kozik 48:9

3.2.2 build_final_component
This procedure builds the set B of bad edges of the final component of v, exploring the line
graph of H6. It uses a temporary flag explored to mark visited edges (this flag is not preserved
between queries). The construction starts from a bad edge containing troubled vertex v and
expands it to a bad-component. Then, as long as possible, set B is extended by edges of
neighboring bad-components, which can be reached through unsafe edges adjacent to B. If at
some point the number of bad edges in B exceeds the prescribed bound 2(∆+1) log(m), then
the procedure declares a failure (note that it cannot be restarted since LCA model does not
allow to change colors returned for previous queries). Construction of the final component is
done when there are no more bad edges to add. Then, the hypergraph C = (V (B), B) built
on the collected bad edges is returned.

The expansion of bad-components is done within subprocedure expand_bad_component.
It starts from the given bad edge and explores the line graph by inspecting the adja-
cent edges. For each adjacent edge, its type (safe, unsafe, or bad) is determined using
determine_edge_status. Determining status of an edge may require processing some un-
colored vertices of that edge. For each of them, the procedure check whether it is troubled.
If it is not, a random color is assigned to the vertex and the vertex is marked as accepted.

Algorithm 3 Subprocedures for the final component construction.

1 Procedure expand_bad_component(e - bad edge, B - bad edges, U - unsafe edges):
2 Q← {e} // initialize set of bad edges to process
3 while Q is not empty do
4 f ← next edge from Q (remove it from Q)
5 add f to B and if |B| > 2(∆ + 1) log(m) then FAIL
6 for g ∈ N(f) which are not explored do
7 mark g as explored and determine_edge_status(g)
8 if g is bad then add g to Q

9 if g is unsafe then add g to U

10

11 Procedure expand_via_unsafe(f - unsafe edge, B - bad edges, U - unsafe edges):
12 for g ∈ N(f) which are not explored do
13 determine_edge_status(g)
14 if g is bad then
15 mark g as explored and run expand_bad_component(g, B, U)
16

17 Procedure determine_edge_status(g - edge):
18 for each w in g that is uncolored unless g becomes safe do
19 if some edge containing w (including g) is bad then mark w as troubled
20 else assign a random color to w and mark it as accepted
21 count accepted vertices and check their colors to determine status of g

During the expansion through unsafe edges we keep a set U of not processed unsafe
edges that intersects any edge of B. As long as U is not empty, we pick any unsafe f

from U and process it by expand_via_unsafe. Here we determine the statuses of all edges

6 The line graph L(H) is the graph built on E(H) in which two distinct vertices (representing edges of
H) are adjacent if the corresponding edges intersect.

ICALP 2023

48:10 Local Computation Algorithms for Hypergraph Coloring – Following Beck’s Approach

adjacent to f and if we encounter a bad edge which is not in B, then we add it and expand
a bad-component containing it. For technical convenience, during bad-component expansion
we collect non-explored adjacent unsafe edges and add them to U .

Algorithm 4 Finding coloring inside the final component.

1 Procedure color_final_component(C - hypergraph):
2 add to C all unsafe edges intersecting C
3 C′ ← restriction of C to troubled vertices
4 te ← |E(C′)|/∆ // expected time of one RESAMPLE trial
5 for trial = 1 to 2 log(m) do
6 // RESAMPLE with limited number of steps
7 assign random colors to V (C′)
8 for step = 1 to 2te do
9 if there is monochromatic f ∈ E(C′) then

10 assign new random colors to all vertices of f

11 else
12 // C′ is properly colored
13 mark all vertices of C′ as accepted and return
14 FAIL

3.2.3 color_final_component
Final component C is extended with unsafe edges that intersect it. Then it is restricted to
the set of its troubled vertices. The resulting hypergraph is denoted by C′. The algorithm
tries to find a proper coloring of C′ using Resample procedure. To ensure polylogarithmic
time, it is run only for the limited number of resampling steps. To decrease the probability
of a failure, the procedure may be restarted a few times. When a proper coloring is found,
each vertex of C′ is marked as accepted. From now on, all edges of C are treated as safe.
However, if all trials were unsuccessful, the procedure declares a failure.

4 Main result – algorithm

We show how to improve the base procedure described in the previous section to obtain
an algorithm that can be used to prove Theorem 1, that is, an algorithm that works
in polylogarithmic time per query on input hypergraphs that satisfy strengthened LLL
condition (1) for α < 1/3. Actually, our procedure can be used to find a proper coloring
also for instances that satisfy that condition with any α ∈ (0, 1), but the running time is
not guaranteed for α ≥ 1/3. We start with introducing the main ideas behind algorithm
improvement and describe its global version. Then, we discuss how to adapt it to the model of
the local computation algorithms, and finally we present a description of the LCA procedure.
The analysis of the algorithm can be found in the full version of this paper [8].

4.1 A general idea
It is a common approach in randomized coloring algorithms to start from an initial random
coloring and then make some correction to convert it to a proper one (like in Resample [20]
or in Alon’s parallel algorithm [2]). This is not the case of Beck’s procedure, in which a

A. Dorobisz and J. Kozik 48:11

proper coloring is constructed incrementally, but coloring of some vertices (those marked
as troubled) is postponed to the later phase. Our approach lies somewhere in between. We
generally try to follow the latter one, but we sample colors for the troubled vertices already in
the shattering phase. Such colors are considered as proposed, and we reserve the possibility of
changing them in the final coloring phase. We use the information about the proposed colors
to shrink the area that will be processed in the final coloring phase. In particular, if we look
at the colors proposed for troubled vertices, then only those final components that contain
a monochromatic edge require recoloring. Moreover, if we carefully track dependencies
between bad-components (see Definition 2), it is also possible to decrease the sizes of the
final components. We explain this idea in more detail in the following subsections.

4.1.1 Activation of bad-components

Imagine that all the vertices were colored in the shattering phase and we want to determine
the final components. We look at the component-hypergraph (see Definition 3) and have to
decide which of the bad-components should be recolored. We start from bad-components
that are intersected by monochromatic edges - we mark them as initially active and treat
them as seeds of final components. The remaining ones are currently inactive. Our intention
is to recolor only active components in the final coloring phase. Note that it might not
be sufficient to alter the coloring in a way that makes initially active components properly
colored, because after their recoloring, it is possible that some unsafe edge which get both
colors in the shattering phase becomes monochromatic. That is why the activation has to be
propagated. We use the following propagation rule:

let At be the set of troubled vertices that are covered by active bad-components, and
f be an unsafe edge that intersects At; if f \ At is monochromatic, then all inactive
bad-components that intersect f become active and all bad-components that intersect f

are merged into one (eventually final) component.
The above propagation rule is applied as long as possible. When it stops, it is guaranteed
that all monochromatic edges are inside active components and all unsafe and bad edges
outside of active components are properly colored by the vertices that are outside of active
bad-components. In particular, we can accept all the colors proposed for inactive vertices.

4.1.2 Edge trimming

We employ an additional technique, which can further reduce the area of the final components.
Observe that, in order to guarantee two-colorability of the final components, it is enough
to ensure that each edge has at least αk vertices to recolor inside one final component. It
means that if some active component already contains αk troubled vertices of some edge,
then it is not necessary to propagate activation through that edge. Thus, we can improve
the propagation rule in the following way. Consider an unsafe edge f for which f \ At is
monochromatic (recall that At denotes the set of currently active troubled vertices). If some
active component contains at least αk troubled vertices of f , then f is trimmed to that
active component. Otherwise, all bad-components intersected by f are activated and merged
into one component (as described in the previous section).

We point out that the direct inspiration for this technique came from the work of Czumaj
and Scheideler [7] in which the edge trimming is actively used during the construction of
the area to be recolored. One of the consequences of using it is that the shapes of the final
components depend on the specific order in which activation is propagated.

ICALP 2023

48:12 Local Computation Algorithms for Hypergraph Coloring – Following Beck’s Approach

4.2 Global coloring procedure
Similarly to the base algorithm from Section 3.1, the improved procedure performs the
shattering phase and then the final coloring phase. The former is modified according to the
ideas described in the previous subsection. In particular, each vertex gets a color but we
use the notions of proposed and accepted colors to distinguish colors that can be changed.
The latter phase is almost the same. Pseudocode of the whole procedure can be found in
Listing 5 in Appendix A.

4.2.1 The shattering phase
The procedure processes the vertices in a fixed order. For each vertex, it marks it as accepted
or troubled, and then chooses a random color for it. A vertex is accepted if, at the time of
processing, it does not belong to any of the bad edges. Otherwise, it is troubled. An edge
becomes bad when its set of accepted vertices reaches size (1−α)k and is still monochromatic.

After processing all the vertices, safe and unsafe edges are determined in the same way as
in the base algorithm. Additionally, by a monochromatic edge, we mean an edge for which all
its vertices (accepted and troubled) have the same color. The colors of the accepted vertices
are called accepted colors. The colors of the troubled vertices are called proposed colors. By
accepting a color assigned to a vertex, we mean changing its status to accepted.

The next step involves determining the final components. We work with the component-
hypergraph. We are going to mark some bad-components and unsafe edges as active. By
an active component, we mean a maximal set of active bad-components which is connected
in the component-hypergraph via active unsafe edges. We start with marking as active all
monochromatic unsafe edges and all bad-components that are intersected by any (bad or
unsafe) monochromatic edge. Let At denote the set of troubled vertices that are currently
covered by active bad-components. Then, as long as there exists an inactive unsafe edge f

satisfying the following conditions:
f is monochromatic outside the active troubled area (i.e., f \At is monochromatic), and
each active component contains less than αk troubled vertices of f ,

we activate f and activate all bad-components intersected by f . When this propagation
rule can no longer be applied, we accept the colors of all the troubled vertices from inactive
bad-components. At that time, each active component determines a final component as
the union of its bad-components. Just like in the base algorithm, the shattering phase is
successful if each final component contains at most 2(∆ + 1) log(m) bad edges. Otherwise,
the procedure declares a failure.

4.2.2 The final coloring phase
We implement one modification at the beginning of the final coloring phase. For each final
component C, we add to C not all unsafe edges intersecting it, but only those that have at
least αk troubled vertices in V (C). Then, we proceed exactly as in the base algorithm: we
restrict C to the troubled vertices and apply Resample.

4.3 Ideas behind LCA realization
In the base case, the conversion of the global algorithm to LCA is straightforward. In fact,
the LCA version determines the same area to recolor (assuming that both versions process the
vertices in the same order). For the improved algorithm described in the previous subsection,
conversion to LCA is more complex and alters the behavior of the algorithm. The main

A. Dorobisz and J. Kozik 48:13

difficulty is that for a bad-component alone that is not initially active, it is not easy to quickly
decide whether it is going to be activated or not. There might exist a long chain of activation
leading to an activation of the considered bad-component, and we do not know in which
direction to search for the sources of this eventual activation. Moreover, even if we find out
that it will be activated, it is not obvious what the shape of the final component containing
it will be, since it requires performing activation propagation and determining activation
statuses of neighboring bad-components as well. To address these problems, when a troubled
vertex of some bad-component is queried, we focus on finding an area containing that vertex
that can be recolored independently from the remaining part of the input hypergraph. It
means that from the beginning of the procedure the component of that vertex is treated as
active and we allow trimming unsafe edges to that component. Moreover, we use additional
techniques described below to limit the expansion of the processed area in a single query.

4.3.1 Trimming to bad-component
We extend edge trimming to the case when an unsafe edge f has at least αk troubled vertices
in some bad-component S, and the set of those vertices together with the accepted vertices of
f is not monochromatic. In such a case, f can be trimmed by removing from it the troubled
vertices that do not belong to S. Note that we do not check here whether S is active or not.
The idea behind this step is that from now on S is responsible for the proper coloring of f .
If at some point, the colors of the vertices of S get accepted without any resamplings, then f

will be obviously colored properly. Otherwise, if S becomes active, then f will be trimmed
anyway, and S has enough troubled vertices of f to not break two-colorability of S.

4.3.2 Activation exclusion
The necessary condition for an inactive bad-component S to be activated is that there is
an unsafe edge f whose accepted vertices and troubled vertices in f ∩ V (S) are of the same
color. When there is no such edge or all such edges were trimmed to other components, then
S cannot be activated. Therefore if it is not initially active, it stays inactive. In such a case,
we can accept all the proposed colors for the vertices of S. As a result, some unsafe edges
become properly colored, and we can treat them as safe. This, in turn, may enable proving
that neighboring bad-components will also not be activated. The same reasoning can be
applied to a set C of bad-components. If none of the bad-components in C is initially active
and there are no unsafe edges intersecting some bad-component outside C that may activate
bad-component from C, then we can conclude that all bad-components in C remain inactive.

4.3.3 Conditional expansion
The idea described in the previous subsection can be used for a bad-component to perform
some kind of search for a potential reason of activation. If S1 is not initially active, we
inspect unsafe edges that may cause the activation of S1. We can select any such f , and ask
whether other bad-component S2 intersected by f may become active. We can continue that
procedure as long as there is a risk of activating any Si from the group of bad-components
visited so far. In the end, we either find some initially active component or we prove that all
the considered bad-components cannot be activated. It turns out that, if we do not follow
the edges that can be trimmed with the trimming to bad-component technique, then the
processed area during such a search is unlikely to be large.

The possibility of finding an initially active bad-component can be used in expansion of
the component to extend it by a neighboring area. For a selected bad-component adjacent to
the currently constructed eventually final component, we launch a search and either we find

ICALP 2023

48:14 Local Computation Algorithms for Hypergraph Coloring – Following Beck’s Approach

some monochromatic edge (initially active component) and extend the component with the
whole searched area, or convince ourselves that this area cannot be activated. In the latter
case we can simply accept the proposed colors in that area. In the former we can perform
the expansion because the occurrence of a monochromatic edge, as an unlikely event, in
a sense amortizes the expansion of the component. In fact, we can stop the search procedure
not only when we find a monochromatic edge but also in a less restrictive case when we find
an unsafe edge intersecting at least two disjoint bad edges outside the search area. This
possibility follows from the technical details of the analysis.

4.4 LCA procedure
We describe the improved LCA procedure in reference to the base algorithm presented in
Section 3.2. As previously, the ordering of the vertices is constructed dynamically and is
driven by the queries and the work of the algorithm. For a set of edges S, by Vt(S) we mean
all troubled vertices in V (S). For an edge f , we denote by f |t the set of troubled vertices of
f , and by f |a the set of accepted vertices of f .

4.4.1 query
The main procedure is almost identical to its counterpart in the base algorithm (Listing 1).
The only difference is that when processing a vertex v of a bad edge, it is not only marked
as troubled, but also a random color is assigned to v.

4.4.2 build_final_component
This procedure is the heart of the algorithm and is substantially more complex than its
analogue in the base version. It is presented in Listings 6 and 7 available in Appendix A.
It also makes use of subprocedures defined earlier (see Listing 3), with one modification in
determine_edge_status – once a vertex w is marked as troubled, a random color is also
assigned to w. As previously, the procedure works on the line graph of H and grows a set B of
bad edges that will be converted to a final component at the end of the procedure. It always
starts from the bad-component containing the queried vertex v, and expands it by neighbor
bad-components via unsafe edges. The main change is that in the base algorithm each unsafe
edge causes expansion of the component, here unsafe edges are processed more carefully.
Throughout the procedure we make sure that the size of B does not exceed 2(∆ + 1) log(m)
bound on number of edges – if that happens, the procedure stops and declares a failure.

Let U be the set of not processed unsafe edges intersecting V (B). If some edge can be
trimmed to V (B), it can be safely removed from U . Thus, we may assume that each f in
U has fewer than αk troubled vertices in V (B). Since every unsafe edge has more than αk

troubled vertices, each f from U has to intersect at least one bad-component outside V (B).
The procedure applies the following extension rules as long as possible:

(r1) if there exists f in U that intersects at least two disjoint bad edges outside B, or
(r2) if there exists f in U for which all the vertices of f outside of Vt(B) are monochromatic,

then B is extended with all bad edges from the bad-components intersected by f ;
(r3) if there are no edges in U that meet the conditions (r1) or (r2), but there exists f in
U that has fewer than αk troubled vertices outside V (B),

then call expand_or_accept procedure (described in the following subsection) for f , which
implements the conditional expansion technique, and extend B with the returned set of bad
edges (which may happen to be empty).

A. Dorobisz and J. Kozik 48:15

Note that, when there are no edges that meet conditions (r1) or (r2), then for any
remaining f from U it is guaranteed that f intersects exactly one bad-component outside
V (B) and f \ Vt(B) is not monochromatic. If such f does not satisfy condition (r3), it has
at least αk troubled vertices in that external bad-component, so it can be trimmed to it
(according to trimming to bad-component technique). Thus, f can be removed from U .

After each extension rule, the processed edge is removed from U . On the other hand,
when B is extended, new unsafe edges may be added to U , but we remove those that can
now be trimmed to V (B). Since edges which do not fulfill any of the extension rules are also
removed from U , finally U becomes empty and the procedure stops. At this point, B is a set
of bad edges which are surrounded only by safe and trimmed unsafe edges.

4.4.3 expand_or_accept
This procedure is an implementation of the conditional expansion technique, through a given
unsafe edge e. Similarly to build_final_component, it grows a set A of bad edges, which
we call a search area, and makes sure that its size does not exceed 2(∆ + 1) log(m) bound (if
that happens, the whole algorithm stops and declares a failure). Initially, A is empty. Then
it becomes expanded by bad-components which may lead to initially active bad-component,
starting from the not explored bad-component intersected by e. The expansion naturally
stops when there are no more candidate bad-components. The procedure, however, can also
stop earlier in case when some monochromatic edge or unsafe edge intersecting two disjoint
not explored bad edges is found.

Let Q be the set of unsafe edges to be processed (initially it is empty). Let C be the set
of bad edges of the currently expanded bad-component. Let UC denote the set of unsafe
edges intersecting V (C) but not adjacent to the edges of B and A (these are simply those
unsafe edges adjacent to the edges in C that were not explored before expansion of C). The
procedure extends A with all edges from C, and then looks for the following amortizing
configuration:

(e1) if C contains monochromatic edge f

then the procedure stops and returns set A;
(e2) if UC contains a monochromatic edge f , or
(e3) if UC contains an edge f , which intersects at least two disjoint bad edges outside C,

then first set A is extended with all the bad edges of the bad-components intersected by f ,
and then the procedure stops and returns A.

When no such configuration is found, all unsafe edges in UC are not monochromatic and,
moreover, each intersects at most one bad-component outside A. We focus on the edges from
UC that can cause an activation of C – these are the edges whose troubled vertices in V (C)
together with accepted vertices are monochromatic. Each such an edge f has to intersect
exactly one external bad-component and troubled vertices of that component together with
f |a ensure a proper coloring of f . If there are at least αk troubled vertices of f in that
external bad-component, f can be trimmed to it (according to the technique of trimming
to bad-component). That is why we add to Q only those edges from UC that may cause
activation of C and have fewer than αk troubled vertices outside of V (C).

When processing of C is finished, we pick any edge from Q (the set of unsafe edges to be
processed) and repeat the above steps for the external bad-component intersected by the
selected edge. It may happen that this component has already been added to A, in a such
case the procedure continues picking edges from Q. When the procedure finishes without
encountering amortizing configuration, there are no monochromatic edges in A and all unsafe
edges intersecting V (A) are either properly colored by the colors of the accepted vertices and

ICALP 2023

48:16 Local Computation Algorithms for Hypergraph Coloring – Following Beck’s Approach

the vertices from Vt(A), or are trimmed to bad-components outside it. Thus, an activation
of whole A is excluded. Then we mark all vertices in Vt(A) as accepted and treat edges
properly colored by their colors as safe. In that case, the procedure returns the empty set.

Note that during this procedure, we do not apply edge trimming to V (A) when it covers
at least αk troubled vertices of some unsafe edge, since it can result in a false activation (in
case the edge is monochromatic inside V (A)). We also ignore all unsafe edges intersecting
V (B) (they were explored before call to expand_or_accept) since, due to not satisfying (r1)
and (r2) they cannot be used in an amortizing configuration or cause an activation (it is
guaranteed that they are not monochromatic outside Vt(B)).

4.4.4 color_final_component
The last procedure is almost identical to its counterpart in the base algorithm (Listing 4).
Recall that the only change is at the beginning of the procedure. Instead of extending C
with all unsafe edges intersecting it, only those unsafe edges that have at least αk troubled
vertices in V (C) are added. Then we proceed as in the base algorithm.

References
1 Dimitris Achlioptas, Themis Gouleakis, and Fotis Iliopoulos. Simple local computation algo-

rithms for the general Lovász Local Lemma. In Christian Scheideler and Michael Spear, editors,
SPAA ’20: 32nd ACM Symposium on Parallelism in Algorithms and Architectures, Virtual
Event, USA, July 15-17, 2020, pages 1–10. ACM, 2020. doi:10.1145/3350755.3400250.

2 Noga Alon. A parallel algorithmic version of the local lemma. Random Structures Algorithms,
2(4):367–378, 1991. doi:10.1002/rsa.3240020403.

3 Noga Alon, Ronitt Rubinfeld, Shai Vardi, and Ning Xie. Space-efficient local computation
algorithms. In Yuval Rabani, editor, Proceedings of the Twenty-Third Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages
1132–1139. SIAM, 2012. doi:10.1137/1.9781611973099.89.

4 Noga Alon and Joel H. Spencer. The Probabilistic Method, Second Edition. John Wiley, 2000.
doi:10.1002/0471722154.

5 József Beck. An algorithmic approach to the Lovász local lemma. I. Random Structures
Algorithms, 2(4):343–365, 1991. doi:10.1002/rsa.3240020402.

6 Yi-Jun Chang and Seth Pettie. A time hierarchy theorem for the LOCAL model. SIAM J.
Comput., 48(1):33–69, 2019. doi:10.1137/17M1157957.

7 Artur Czumaj and Christian Scheideler. Coloring non-uniform hypergraphs: a new algorithmic
approach to the general Lovász local lemma. In David B. Shmoys, editor, Proceedings of the
Eleventh Annual ACM-SIAM Symposium on Discrete Algorithms, January 9-11, 2000, San
Francisco, CA, USA, pages 30–39. ACM/SIAM, 2000. URL: https://dl.acm.org/doi/10.
5555/338219.338229.

8 Andrzej Dorobisz and Jakub Kozik. Local computation algorithms for hypergraph coloring –
following Beck’s approach (full version), 2023. arXiv:2305.02831.

9 Paul Erdős and László Lovász. Problems and results on 3-chromatic hypergraphs and some
related questions. In Infinite and finite sets (Colloq., Keszthely, 1973; dedicated to P. Erdős
on his 60th birthday), Vol. II, volume 10 of Colloquia Mathematica Societatis János Bolyai,
pages 609–627. North-Holland, Amsterdam, 1975.

10 Guy Even, Moti Medina, and Dana Ron. Best of two local models: Centralized local and
distributed local algorithms. Inf. Comput., 262:69–89, 2018. doi:10.1016/j.ic.2018.07.001.

11 András Faragó. A meeting point of probability, graphs, and algorithms: The Lovász Local
Lemma and related results – A survey. Algorithms, 14(12):355, 2021. doi:10.3390/a14120355.

https://doi.org/10.1145/3350755.3400250
https://doi.org/10.1002/rsa.3240020403
https://doi.org/10.1137/1.9781611973099.89
https://doi.org/10.1002/0471722154
https://doi.org/10.1002/rsa.3240020402
https://doi.org/10.1137/17M1157957
https://dl.acm.org/doi/10.5555/338219.338229
https://dl.acm.org/doi/10.5555/338219.338229
https://arxiv.org/abs/2305.02831
https://doi.org/10.1016/j.ic.2018.07.001
https://doi.org/10.3390/a14120355

A. Dorobisz and J. Kozik 48:17

12 Manuela Fischer and Mohsen Ghaffari. Sublogarithmic distributed algorithms for Lovász
Local Lemma, and the complexity hierarchy. In Andréa W. Richa, editor, 31st International
Symposium on Distributed Computing, DISC 2017, October 16-20, 2017, Vienna, Austria,
volume 91 of LIPIcs, pages 18:1–18:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2017. doi:10.4230/LIPIcs.DISC.2017.18.

13 Mohsen Ghaffari, David G. Harris, and Fabian Kuhn. On derandomizing local distributed
algorithms. In Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 662–673. IEEE
Computer Society, 2018. doi:10.1109/FOCS.2018.00069.

14 Nathan Linial. Distributive graph algorithms global solutions from local data. In 28th
Annual Symposium on Foundations of Computer Science (sfcs 1987), pages 331–335, 1987.
doi:10.1109/SFCS.1987.20.

15 László Lovász. Coverings and coloring of hypergraphs. In Proceedings of the Fourth Southeastern
Conference on Combinatorics, Graph Theory, and Computing (Florida Atlantic Univ., Boca
Raton, Fla., 1973), pages 3–12, 1973.

16 Yishay Mansour, Aviad Rubinstein, Shai Vardi, and Ning Xie. Converting online algorithms to
local computation algorithms. In Artur Czumaj, Kurt Mehlhorn, Andrew M. Pitts, and Roger
Wattenhofer, editors, Automata, Languages, and Programming – 39th International Colloquium,
ICALP 2012, Warwick, UK, July 9-13, 2012, Proceedings, Part I, volume 7391 of Lecture Notes
in Computer Science, pages 653–664. Springer, 2012. doi:10.1007/978-3-642-31594-7_55.

17 Michael Molloy and Bruce Reed. Graph colouring and the probabilistic method. Springer, 2002.
doi:10.1007/978-3-642-04016-0.

18 Michael Molloy and Bruce A. Reed. Further algorithmic aspects of the Local Lemma. In
Jeffrey Scott Vitter, editor, Proceedings of the Thirtieth Annual ACM Symposium on the
Theory of Computing, Dallas, Texas, USA, May 23-26, 1998, pages 524–529. ACM, 1998.
doi:10.1145/276698.276866.

19 Robin A. Moser. Derandomizing the Lovasz Local Lemma more effectively. CoRR,
abs/0807.2120, 2008. arXiv:0807.2120.

20 Robin A. Moser and Gábor Tardos. A constructive proof of the general lovász local lemma. J.
ACM, 57(2):11:1–11:15, 2010. doi:10.1145/1667053.1667060.

21 Ronitt Rubinfeld, Gil Tamir, Shai Vardi, and Ning Xie. Fast local computation algorithms. In
Bernard Chazelle, editor, Innovations in Computer Science – ICS 2011, Tsinghua University,
Beijing, China, January 7-9, 2011. Proceedings, pages 223–238. Tsinghua University Press,
2011.

22 Aravind Srinivasan. Improved algorithmic versions of the Lovász Local Lemma. In Shang-
Hua Teng, editor, Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2008, San Francisco, California, USA, January 20-22, 2008, pages 611–620.
SIAM, 2008. URL: https://dl.acm.org/doi/10.5555/1347082.1347150.

ICALP 2023

https://doi.org/10.4230/LIPIcs.DISC.2017.18
https://doi.org/10.1109/FOCS.2018.00069
https://doi.org/10.1109/SFCS.1987.20
https://doi.org/10.1007/978-3-642-31594-7_55
https://doi.org/10.1007/978-3-642-04016-0
https://doi.org/10.1145/276698.276866
https://arxiv.org/abs/0807.2120
https://doi.org/10.1145/1667053.1667060
https://dl.acm.org/doi/10.5555/1347082.1347150

48:18 Local Computation Algorithms for Hypergraph Coloring – Following Beck’s Approach

A Listings of the improved procedure

A.1 Listing of the global algorithm
Algorithm 5 Improved algorithm for uniform hypergraph coloring.

1 Procedure hypergraph_coloring(H - hypergraph):
2 // I. SHATTERING PHASE
3 let (v1, v2, ...vn) be an ordering of V (H)
4 for i = 1 to n do
5 if all edges containing vi are not bad then
6 mark vi as accepted
7 else
8 mark vi as troubled
9 assign a random color to vi

10 determine status of each e ∈ E(H) // e is bad, safe, or unsafe
11 explore the line graph and build component-hypergraph HC = (VC , EC)
12 // activation of bad-components
13 // - let UC be the set of unsafe edges corresponding to EC

14 // - let U(B) denote unsafe edges intersecting component B

15 // - let UC(B) = U(B) ∩ UC

16 // - let Vt(C) denote set of troubled vertices in component C
17 A ← ∅ // initialize set of active components
18 Q← ∅ // unsafe edges to process
19 // - initial activation
20 foreach B ∈ VC do
21 if some e ∈ E(B) or f ∈ U(B) is monochromatic then
22 mark B as active
23 add B to A and add all edges from UC(B) to Q

24 else mark B as inactive
25 foreach f ∈ UC do
26 if f is monochromatic then merge in A all C ∈ A intersected by f

27 // - activation propagation
28 while Q is not empty do
29 f ← next edge from Q (remove it from Q)
30 if ∀C∈A |f ∩ Vt(C)| < αk and f \ Vt(

⋃
A) is monochromatic then

31 // - activate new bad-components through f

32 foreach B ∈ VC such that B is inactive and f intersects B do
33 mark B as active
34 add B to A and add all edges from UC(B) to Q

35 // - merge active components through f

36 merge in A all C ∈ A intersected by f

37

38 // II. FINAL COLORING PHASE - color each final component
39 foreach C ∈ A do
40 foreach f ∈ U(C) such that |f ∩ Vt(C)| ≥ αk do add f to C
41 C′ ← restriction of C to troubled vertices
42 Resample(C′)

A. Dorobisz and J. Kozik 48:19

A.2 Listing of build_final_component (LCA)

Algorithm 6 Improved LCA procedure for the final component construction.

1 Procedure build_final_component(v - troubled vertex):
2 B ← ∅ // initialize set of bad edges of the component
3 U ← ∅ // initialize set of unsafe edges to process
4 Us ← ∅ // unprocessed unsafe edges able to launch search
5 e← any bad edge containing v

6 mark e as explored and run expand_bad_component(e, B, U)
7 // process surrounding unsafe edges according to extension rules
8 while U ̸= ∅ or Us ̸= ∅ do
9 while U is not empty do

10 f ← next edge from U (remove it from U)
11 if f has < αk troubled vertices in V (B) then
12 if f satisfies rule (r1) or (r2) then
13 expand_via_unsafe(f , B, U)
14 else if f can satisfy rule (r3) then
15 add f to Us // f \ V (B) has < αk troubled vertices
16 if Us is not empty then
17 f ← next edge from Us (remove it from Us)
18 if f has < αk troubled vertices in V (B) then
19 // f satisfies rule (r3)
20 (A, UA)← expand_or_accept(f , B, U)
21 B = B ∪A and if |B| > 2(∆ + 1) log(m) then FAIL
22 U = U ∪ UA

23 // return hypergraph built on set of bad edges
24 return C = (V (B), B)

ICALP 2023

48:20 Local Computation Algorithms for Hypergraph Coloring – Following Beck’s Approach

A.3 Listing of expand_or_accept (LCA)

Algorithm 7 Conditional expansion via unsafe edge e (exploring a search area).

1 Procedure expand_or_accept(e - unsafe edge):
2 A← ∅ // initialize set of bad edges of the search area
3 UA ← ∅ // initialize set of unsafe edges around search area
4 Q← {e} // unprocessed unsafe edges allowing expansion
5 // process selected surrounding unsafe edges
6 while Q is not empty do
7 f ← next edge from Q (remove it from Q)
8 // expand with the external component to which leads f

9 (C, UC)← (∅, ∅)
10 expand_via_unsafe(f , C, UC)
11 A = A ∪ C and if |A| > 2(∆ + 1) log(m) then FAIL
12 UA = UA ∪ UC

13 // inspect new edges – look for amortizing configuration
14 if (e1) is satisfied (there is a monochromatic edge in C) then
15 return (A, UA)
16 else if there is an unsafe edge f in UC satisfying (e2) or (e3) then
17 expand_via_unsafe(f , A, UA)
18 return (A, UA)
19 // select edges that may cause an activation
20 else
21 for g in UC do
22 if g|a ∪ (g|t ∩ V (C)) is monochromatic then
23 if g \ V (C) has < αk troubled vertices then add g to Q

24 // activation exclusion
25 mark all troubled vertices in V (A) as accepted
26 return (∅, ∅)

An EPTAS for Budgeted Matching and Budgeted
Matroid Intersection via Representative Sets
Ilan Doron-Arad #

Computer Science Department, Technion, Haifa, Israel

Ariel Kulik #

CISPA Helmholtz Center for Information Security, Saarbrücken, Germany

Hadas Shachnai #

Computer Science Department, Technion, Haifa, Israel

Abstract
We study the budgeted versions of the well known matching and matroid intersection problems.
While both problems admit a polynomial-time approximation scheme (PTAS) [Berger et al. (Math.
Programming, 2011), Chekuri, Vondrák and Zenklusen (SODA 2011)], it has been an intriguing
open question whether these problems admit a fully PTAS (FPTAS), or even an efficient PTAS
(EPTAS).

In this paper we answer the second part of this question affirmatively, by presenting an EPTAS
for budgeted matching and budgeted matroid intersection. A main component of our scheme is
a construction of representative sets for desired solutions, whose cardinality depends only on ε,
the accuracy parameter. Thus, enumerating over solutions within a representative set leads to
an EPTAS. This crucially distinguishes our algorithms from previous approaches, which rely on
exhaustive enumeration over the solution set.

2012 ACM Subject Classification Theory of computation

Keywords and phrases budgeted matching, budgeted matroid intersection, efficient polynomial-time
approximation scheme

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.49

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2209.04654 [5]

Funding Ariel Kulik: Research supported by the European Reseach Concil (ERC) consolidator grant
no. 725978 SYSTEMATICGRAPH.

Acknowledgements We thank an anonymous reviewer for pointing us to the work of Huang and
Ward [9], and for other helpful comments and suggestions.

1 Introduction

A wide range of NP-hard combinatorial optimization problems can be formulated as follows.
We are given a ground set E and a family M of subsets of E called the feasible sets. The
elements in the ground set are associated with a cost function c : E → R≥0 and a profit
function p : E → R, and we are also given a budget β ∈ R≥0. A solution is a feasible set
S ∈M of bounded cost c(S) ≤ β.1 Generally, the goal is to find a solution S of maximum
profit, that is:

max p(S) s.t. S ∈M, c(S) ≤ β. (1)

1 For a function f : A → R and a subset of elements C ⊆ A, we define f(C) =
∑

e∈C
f(e).

EA
T
C
S

© Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 49; pp. 49:1–49:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:idoron-arad@cs.technion.ac.il
mailto:ariel.kulik@cispa.de
mailto:hadas@cs.technion.ac.il
https://doi.org/10.4230/LIPIcs.ICALP.2023.49
https://arxiv.org/abs/2209.04654
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

49:2 An EPTAS for Budgeted Matching and Budgeted Matroid Intersection

Notable examples include shortest weight-constrained path [7], constrained minimum spanning
trees [16], and knapsack with a conflict graph [15]. In this work, we focus on two prominent
problems which can be formulated as (1).

In the budgeted matching (BM) problem we are given an undirected graph G = (V, E),
profit and cost functions on the edges p, c : E → R≥0, and a budget β ∈ R≥0. A solution is
a matching S ⊆ E in G such that c(S) ≤ β. The goal is to find a solution S such that the
total profit p(S) is maximized. Observe that BM can be formulated using (1), by letting M
be the set of matchings in G.

In the budgeted matroid intersection (BI) problem we are given two matroids (E, I1) and
(E, I2) over a ground set E, profit and cost functions on the elements p, c : E → R≥0, and a
budget β ∈ R≥0. Each matroid is given by a membership oracle. A solution is a common
independent set S ∈ I1 ∩ I2 such that c(S) ≤ β; the goal is to find a solution S of maximum
total profit p(S). The formulation of BI as (1) follows by defining the feasible sets as all
common independent sets M = I1 ∩ I2.

Let OPT(I) be the value of an optimal solution for an instance I of a maximization
problem Π. For α ∈ (0, 1], we say that A is an α-approximation algorithm for Π if, for
any instance I of Π, A outputs a solution of value at least α ·OPT(I). A polynomial-time
approximation scheme (PTAS) for Π is a family of algorithms (Aε)ε>0 such that, for any
ε > 0, Aε is a polynomial-time (1 − ε)-approximation algorithm for Π. As ε gets smaller,
a running time of the form nΘ(1

ε) for a PTAS may become prohibitively large and thus
impractical; therefore, it is natural to seek approximation schemes with better running times.
Two families of such schemes have been extensively studied: an efficient PTAS (EPTAS)
is a PTAS (Aε)ε>0 whose running time is of the form f

(1
ε

)
· nO(1), where f is an arbitrary

computable function, and n is the bit-length encoding size of the input instance. In a fully
PTAS (FPTAS) the running time of Aε is of the form

(
n
ε

)O(1). For comprehensive surveys
on approximation schemes see, e.g., [18, 19].

The state of the art for BM and BI is a PTAS developed by Berger et al. [1]. Similar
results for both problems follow from a later work of Chekuri et al. [3] for the multi-budgeted
variants of BM and BI. The running times of the above schemes are dominated by exhaustive
enumeration which finds a set of Θ

(1
ε

)
elements of highest profits in the solution. In this

paper we optimize the enumeration procedure by substantially reducing the size of the
domain over which we seek an efficient solution. Our main results are the following.

▶ Theorem 1. There is an EPTAS for the budgeted matching problem.

▶ Theorem 2. There is an EPTAS for the budgeted matroid intersection problem.

1.1 Related Work
BM and BI are immediate generalizations of the classic 0/1-knapsack problem. While the
knapsack problem is known to be NP-hard, it admits an FPTAS. This raises a natural
question whether BM and BI admit an FPTAS as well. The papers [1, 3] along with our
results can be viewed as first steps towards answering this question.

Berger et al. [1] developed the first PTAS for BM and BI. Their approach includes an
elegant combinatorial algorithm for patching two solutions for the Lagrangian relaxation
of the underlying problem (i.e., BM or BI); one solution is feasible but has small profit,
while the other solution has high profit but is infeasible. The scheme of [1] enumerates
over solutions containing only high profit elements and uses the combinatorial algorithm to
add low profit elements. This process may result in losing (twice) the profit of a low profit
element, leading to a PTAS.

I. Doron-Arad, A. Kulik, and H. Shachnai 49:3

Chekuri et al. [3] developed a PTAS for multi-budgeted matching and a randomized
PTAS for multi-budgeted matroid intersection; these are variants of BM and BI, respectively,
in which the costs are d-dimensional, for some constant d ≥ 2. They incorporate a non-trivial
martingale based analysis to derive the results, along with enumeration to facilitate the
selection of profitable elements for the solution. The paper [3] generalizes a previous result of
Grandoni and Zenklusen [8], who obtained a PTAS for multi-budgeted matching and multi-
budgeted matroid intersection in representable matroids.2 For d ≥ 2, the multi-budgeted
variants of BM and BI generalize the two-dimensional knapsack problem, and thus do not
admit an EPTAS unless W[1] = FPT [11].

An evidence for the difficulty of attaining an FPTAS for BM comes from the exact
variant of the problem. In this setting, we are given a graph G = (V, E), a cost function
c : E → R≥0, and a target B ∈ R≥0; the goal is to find a perfect matching S ⊆ E with
exact specified cost c(S) = B. There is a randomized pseudo-polynomial time algorithm for
exact matching [13]. On the other hand, it is a long standing open question whether exact
matching admits a deterministic pseudo-polynomial time algorithm [14]. Interestingly, as
noted by Berger et al. [1], a deterministic FPTAS for BM would give an affirmative answer
also for the latter question. A deterministic FPTAS for BI would have similar implications for
the exact matroid intersection problem, which admits a randomized (but not a deterministic)
pseudo-polynomial time algorithm for linear matroids [2]. While the above does not rule
out the existence of an FPTAS for BM or BI, it indicates that improving our results from
EPTAS to FPTAS might be a difficult task.

For the budgeted matroid independent set (i.e., the special case of BI with two identical
matroids), the paper [6] gives an EPTAS using representative sets to enhance enumeration
over elements of high profits. Their scheme exploits integrality properties of matroid polytopes
under budget constraints (introduced in [8]) to efficiently combine elements of low profit into
the solution.

1.2 Contribution and Techniques
Given an instance I of BM or BI, we say that an element e is profitable if p(e) > ε ·OPT(I);
otherwise, e is non-profitable. The scheme for BM and BI of Berger et al. [1] distinguishes
between profitable and non-profitable elements. In the main loop, the algorithm enumerates
over all potential solutions containing only profitable elements.3 Each solution is extended
to include non-profitable elements using a combinatorial algorithm. The algorithm outputs
a solution of highest profit. Overall, this process may lose at most twice the profit of a
non-profitable element compared to the optimum, effectively preserving the approximation
guarantee; however, an exhaustive enumeration over the profitable elements renders the
running time nΩ(1

ε). In stark contrast, in this paper we introduce a new approach which
enhances the enumeration over profitable elements, leading to an EPTAS.

We restrict the enumeration to only a small subset of elements called representative set;
that is, a subset of elements R ⊆ E satisfying the following property: there is a solution
S such that the profitable elements in S are a subset of R, and the profit of S is at least
(1−O(ε)) ·OPT(I). If one finds efficiently a representative set R of cardinality |R| ≤ f

(1
ε

)
for

some computable function f , obtaining an EPTAS is straightforward based on the approach
of [1].

2 Representable matroids are also known as linear matroids.
3 A similar technique is used also by Chekuri et al. [3].

ICALP 2023

49:4 An EPTAS for Budgeted Matching and Budgeted Matroid Intersection

Our scheme generalizes the representative set framework in [6], developed originally for
budgeted matroid independent set. In [6], a representative set is a basis of minimum cost
of a matroid, which can be found using a greedy algorithm. Alas, a greedy analogue for
the setting of matching and matroid intersection fails; we give an example in Figure 1.4

Hence, we take a different approach. Our main technical contribution is in the construction
of representative sets for each of our problems.

For BM we design a surprisingly simple algorithm which finds a representative set using a
union of multiple matchings. To this end, we partition the edges in G into profit classes such
that each profit class contains edges of similar profits. We then use the greedy approach to
repeatedly find in each profit class a union of disjoint matchings, where each matching has
a bounded cardinality and is greedily selected to minimize cost. Intuitively, to show that
the above yields a representative set, consider a profitable edge e in some optimal solution.
Suppose that e is not chosen in our union of matchings, then we consider two cases. If each
matching selected in the profit class of e contains an edge that is adjacent to (i.e., shares a
vertex with) e, we show that at least one of these edges can be exchanged with e; otherwise,
there exists a matching with no edge adjacent to e. In this case, we show that our greedy
selection guarantees the existence of an edge in this matching which can be exchanged with
e, implying the above is a representative set (see the details in Section 4).

For BI, we design a recursive algorithm that relies on an asymmetric interpretation of the
two given matroids. We have learnt recently that a similar and more powerful construction
was already proposed in [9]; we include the full details for completeness. In each recursive
call of the algorithm, we are given an independent set S ∈ I1. The algorithm adds to
the constructed representative set a minimum cost basis BS of the second matroid (E, I2),
with the crucial restriction that any element e ∈ BS must satisfy S ∪ {e} ∈ I1. Succeeding
recursive calls will then use the set S ∪ {e}, for every e ∈ BS . Thus, we limit the search
space to I1, while bases are constructed w.r.t. I2. To show that the algorithm yields a
representative set, consider a profitable element f in an optimal solution. We construct a
sequence of elements which are independent w.r.t. I1 and can be exchanged with f w.r.t. I2.
Using matroid properties we show that one of these elements can be exchanged with f w.r.t.
both matroids (see the details in Section 5).

Interestingly, our framework for solving BM and BI (presented in Section 3) can be
extended to solve other problems formulated as (1) which possess similar exchange properties.
We elaborate on that in Section 6.

Organization of the paper. In Section 2 we give some definitions and notation. Section 3
presents our framework that yields an EPTAS for each of the problems. In Sections 4 and 5
we describe the algorithms for constructing representative sets for BM and BI, respectively.
We conclude in Section 6 with a summary and some directions for future work. Due to space
constraints, some of the proofs are given in the full version of the paper [5].

2 Preliminaries

For simplicity of the notation, for any set A and an element e, we use A + e and A− e to
denote A ∪ {e} and A \ {e}, respectively. Also, for any k ∈ R let [k] = {1, 2, . . . , ⌊k⌋}. For a
function f : A→ R≥0 and a subset of elements C ⊆ A, let f |C : C → R≥0 be the restriction
of f to C, such that ∀e ∈ C : f |C(e) = f(e).

4 The example becomes clear once the reader is familiar with the definitions given in Section 3.

I. Doron-Arad, A. Kulik, and H. Shachnai 49:5

2.1 Matching and Matroids
Given an undirected graph G = (V, E), a matching of G is a subset of edges M ⊆ E such
that each vertex appears as an endpoint in at most one edge in M , i.e., for all v ∈ V it holds
that |{{u, v} ∈M | u ∈ V }| ≤ 1. We denote by V (M) = {v ∈ V | ∃u ∈ V s.t. {u, v} ∈M}
the set of endpoints of a matching M of G.

Let E be a finite ground set and I ⊆ 2E a non-empty set containing subsets of E called
the independent sets of E. Then M = (E, I) is a matroid if it satisfies the following.
1. (Hereditary Property) For all A ∈ I and B ⊆ A, it holds that B ∈ I.
2. (Exchange Property) For any A, B ∈ I where |A| > |B|, there is e ∈ A \ B such that

B + e ∈ I.

A basis of a matroid G = (E, I) is an independent set B ∈ I such that for all e ∈ E \B

it holds that B + e /∈ I. Given a cost function c : E → R≥0, we say that a basis B of G is a
minimum basis of G w.r.t. c if, for any basis A of G it holds that c(B) ≤ c(A). A minimum
basis of G w.r.t. c can be easily constructed in polynomial-time using a greedy approach (see,
e.g., [4]). In the following we define several matroid operations. Note that the structures
resulting from the operations outlined in Definition 3 are matroids (see, e.g., [17]).

▶ Definition 3. Let G = (E, I) be a matroid.
1. (restriction) For any F ⊆ E define I∩F = {A ∈ I | A ⊆ F} and G ∩ F = (F, I∩F).
2. (thinning) For any F ∈ I define I/F = {A ⊆ E\F | A∪F ∈ I} and G/F = (E\F, I/F).5

3. (truncation) For any q ∈ N define I≤q = {A ∈ I | |A| ≤ q} and [G]≤q = (E, I≤q).

2.2 Instance Definition
We give a unified definition for instances of budgeted matching and budgeted matroid
intersection. Given a ground set E of elements, we say that C is a constraint of E if one of
the following holds.
C = (V, E) is a matching constraint, where C is an undirected graph. Let M(C) = {M ⊆
E | M is a matching in C} be the feasible sets of C. Given a subset of edges F ⊆ E, let
E/F = {{u, v} ∈ E | u, v /∈ V (F)} be the thinning of F on E, and let C/F = (V, E/F)
be the thinning of F on C.
C = (I1, I2) is a matroid intersection constraint, where (E, I1) and (E, I2) are matroids.
Throughout this paper, we assume that each of the matroids is given by an independence
oracle. That is, determining whether F ⊆ E belongs to I1 or to I2 requires a single
call to the corresponding oracle of I1 or I2, respectively. Let M(C) = I1 ∩ I2 be the
collection of feasible sets of C. In addition, given some F ⊆ E, let C/F = (I1/F, I2/F)
be the thinning of F on C. We say that C is a single matroid constraint if I1 = I2

When understood from the context, we simply use M =M(C). Define an instance of the
budgeted constrained (BC) problem as a tuple I = (E, C, c, p, β), where E is a ground set of
elements, C is a constraint of E, c : E → R≥0 is a cost function, p : E → R≥0 is a profit
function, and β ∈ R≥0 is a budget. If C is a matching constraint then I is a BM instance;
otherwise, I is a BI instance. A solution of I is a feasible set S ∈M(C) such that c(S) ≤ β.
The objective is to find a solution S of I such that p(S) is maximized. Let |I| denote the
encoding size of a BC instance I, and poly(|I|) be a polynomial size in |I|.

5 Thinning is generally known as contraction; we use the term thinning to avoid confusion with edge
contraction in graphs.

ICALP 2023

49:6 An EPTAS for Budgeted Matching and Budgeted Matroid Intersection

3 The Algorithm

In this section we present an EPTAS for the BC problem. Our first step is to determine
the set of profitable elements in the constructed solution.6 To this end, we generalize the
representative set notion of [6] to the setting of BC. Our scheme relies on initially finding a
set of profitable elements of small cardinality, from which the most profitable elements are
selected for the solution using enumeration. Then, non-profitable elements are added to the
solution using techniques of [1].

For the remainder of this section, fix a BC instance I = (E, C, c, p, β) and an error
parameter 0 < ε < 1

2 . Let H(I, ε) = {e ∈ E | p(e) > ε · OPT(I)} be the set of profitable
elements in I, and E \ H(I, ε) the set of non-profitable elements; when understood from
the context, we use H = H(I, ε). Now, a representative set is a subset of elements which
contains the profitable elements of an almost optimal solution. Formally,

▶ Definition 4. Let I = (E, C, c, p, β) be a BC instance, 0 < ε < 1
2 and R ⊆ E. We say that

R is a representative set of I and ε if there is a solution S of I such that the following holds.
1. S ∩H ⊆ R.
2. p (S) ≥ (1− 4ε) ·OPT(I).

The work of [6] laid the foundations for the following notions of replacements and strict
representative sets (SRS), for the special case of BC where C is a single matroid constraint.
Below we generalize the definitions of replacements and SRS.

Intuitively, a replacement of a solution S for I of bounded cardinality is another solution
for I which preserves the attributes of the profitable elements in S (i.e., S∩H). In particular,
the profit of the replacement is close to p(S ∩ H), whereas the cost and the number of
profitable elements can only be smaller. An SRS is a subset of elements containing a
replacement for any solution for I of bounded cardinality.

The formal definitions of replacement and SRS for general BC instances are given in
Definitions 5 and 6, respectively. Let q(ε) =

⌈
ε−ε−1

⌉
, and M≤q(ε) = {A ∈M | |A| ≤ q(ε)}

be all bounded feasible sets of C and ε. Recall that we use M =M(C) for the feasible sets of
C; similar simplification in notation is used also for bounded feasible sets.

▶ Definition 5. Given a BC instance I = (E, C, c, p, β), 0 < ε < 1
2 , S ∈ M≤q(ε), and

ZS ⊆ E, we say that ZS is a replacement of S for I and ε if the following holds:
1. (S \H) ∪ ZS ∈M≤q(ε).
2. c(ZS) ≤ c(S ∩H).
3. p ((S \H) ∪ ZS) ≥ (1− ε) · p(S).
4. |ZS | ≤ |S ∩H|.

▶ Definition 6. Given a BC instance I = (E, C, c, p, β), 0 < ε < 1
2 , and R ⊆ E, we say

that R is a strict representative set (SRS) of I and ε if, for any S ∈ M≤q(ε), there is a
replacement ZS ⊆ R of S for I and ε.

Observe that given any solution S of I such that |S| ≤ q(ε), it holds that S ∩ H is a
replacement of S; also, E is an SRS. In the next result, we demonstrate the power of SRS in
solving BC. Specifically, we show that any SRS R ⊆ E is also a representative set. Hence,
using enumeration on subsets of R we can find a subset of elements that can be extended by
only non-profitable elements to an almost optimal solution (see Algorithm 2).

6 A similar approach is used, e.g., in [8, 1, 6].

I. Doron-Arad, A. Kulik, and H. Shachnai 49:7

▶ Lemma 7. Let I = (E, C, c, p, β) be a BC instance, let 0 < ε < 1
2 , and let R be an SRS of

I and ε. Then R is a representative set of I and ε.

The proof of Lemma 7 is given in [5]. We proceed to construct an SRS whose cardinality
depends only on ε. First, we partition the profitable elements (and possibly some more
elements) into a small number of profit classes, where elements from the same profit class
have similar profits. The profit classes are derived from a 2-approximation α for OPT(I),
which can be easily computed in polynomial time. Specifically, for all r ∈ [log1−ε

(
ε
2
)

+ 1]
define the r-profit class as

Kr(α) =
{

e ∈ E

∣∣∣∣ p(e)
2 · α ∈

(
(1− ε)r, (1− ε)r−1]}

. (2)

In the following we give a definition of an exchange set for each profit class. This facilitates
the construction of an SRS. In words, a subset of elements X is an exchange set for some
profit class Kr(α) if any feasible set ∆ and element a ∈ (∆ ∩ Kr(α)) \X can be replaced
(while maintaining feasibility) by some element b ∈ (X ∩ Kr(α)) \∆, such that the cost of b

is no larger than the cost of a. Formally,

▶ Definition 8. Let I = (E, C, c, p, β) be a BC instance, 0 < ε < 1
2 , OPT(I)

2 ≤ α ≤ OPT(I),
r ∈ [log1−ε

(
ε
2
)

+ 1], and X ⊆ Kr(α). We say that X is an exchange set for I, ε, α, and r if:
For all ∆ ∈M≤q(ε) and a ∈ (∆ ∩ Kr(α)) \X there is b ∈ (Kr(α) ∩X) \∆ satisfying

c(b) ≤ c(a).
∆− a + b ∈M≤q(ε).

The similarity between SRS and exchange sets is not coincidental. We show that if a set
R ⊆ E satisfies that R ∩ Kr(α) is an exchange set for any r ∈ [log1−ε

(
ε
2
)

+ 1], then R is an
SRS, and thus also a representative set by Lemma 7. This allows us to construct an SRS
using a union of disjoint exchange sets, one for each profit class.

▶ Lemma 9. Let I = (E, C, c, p, β) be a BC instance, 0 < ε < 1
2 , OPT(I)

2 ≤ α ≤ OPT(I) and
R ⊆ E. If for all r ∈ [log1−ε

(
ε
2
)

+ 1] it holds that R ∩ Kr(α) is an exchange set for I, ε, α,

and r, then R is a representative set of I and ε.

We give the formal proof in [5]. We now present a unified algorithm for finding a
representative set for both types of constraints, namely, matching or matroid intersection
constraints. This is achieved by taking the union of exchange sets of all profit classes.
Nevertheless, for the construction of exchange sets we distinguish between the two types
of constraints. This results also in different sizes for the obtained representative sets. Our
algorithms for finding the exchange sets are the core technical contribution of this paper.

For matching constraints, we design an algorithm which constructs an exchange set for
any profit class by finding multiple matchings of C from the given profit class. Each matching
has a bounded cardinality, and the edges are chosen using a greedy approach to minimize
the cost. We give the full details and a formal proof of Lemma 10 in Section 4.

▶ Lemma 10. There is an algorithm ExSet-Matching that given a BM instance I, 0 < ε < 1
2 ,

OPT(I)
2 ≤ α ≤ OPT(I), and r ∈ [log1−ε

(
ε
2
)

+ 1], returns in time q(ε) · poly(|I|) an exchange
set X for I, ε, α, and r, such that |X| ≤ 18 · q(ε)2.

Our algorithm for matroid intersection constraints is more involved and generates an
exchange set by an asymmetric interpretation of the two given matroids. As the technique
was introduced by Huang and Ward [9], the proof of the next lemma follows immediately
from Theorem 3.6 in [9]. For completeness, we give the full details in Section 5.

ICALP 2023

49:8 An EPTAS for Budgeted Matching and Budgeted Matroid Intersection

▶ Lemma 11. There is an algorithm ExSet-MatroidIntersection that given a BI instance I, 0 <

ε < 1
2 , OPT(I)

2 ≤ α ≤ OPT(I), and r ∈ [log1−ε

(
ε
2
)

+ 1], returns in time q(ε)O(q(ε)) · poly(|I|)
an exchange set X for I, ε, α, and r, such that |X| ≤ q(ε)O(q(ε)).

Using the above, we design an algorithm that returns a representative set for both types
of constraints. This is done by computing a 2-approximation α for OPT(I), and then finding
exchange sets for all profit classes, for the corresponding type of constraint. Finally, we
return the union of the above exchange sets. The pseudocode of our algorithm, RepSet, is
given in Algorithm 1.

Algorithm 1 RepSet(I = (E, C, c, p, β), ε).

input : A BC instance I and error parameter 0 < ε < 1
2 .

output : A representative set R of I and ε.
1 Compute a 2-approximation S∗ for I using a PTAS for BC with parameter ε′ = 1

2 .
2 Set α← p(S∗).
3 Initialize R← ∅.
4 for r ∈ [log1−ε

(
ε
2
)

+ 1] do
5 if I is a BM instance then
6 R← R ∪ ExSet-Matching(I, ε, α, r).
7 else
8 R← R ∪ ExSet-MatroidIntersection(I, ε, α, r).
9 Return R.

▶ Lemma 12. Given a BC instance I = (E, C, c, p, β) and 0 < ε < 1
2 , Algorithm 1 returns

a representative set R of I and ε, such that one of the following holds.
If C is a matching constraint the running time is q(ε)2 · poly(|I|), and |R| ≤ 54 · q(ε)3.
If C is a matroid intersection constraint the running time is q(ε)O(q(ε)) · poly(|I|), and
|R| ≤ q(ε)O(q(ε)).

The proof of the lemma is given in [5]. Next, we use a result of [1] for adding elements of
smaller profits to the solution. The techniques of [1] are based on a non-trivial patching of
two solutions of the Lagrangian relaxation of BC (for both matching and matroid intersection
constraints). This approach yields a feasible set of almost optimal profit; in the worst case,
the difference from the optimum is twice the maximal profit of an element in the instance.
Since we use the latter approach only for non-profitable elements, this effectively does not
harm our approximation guarantee. The following is a compact statement of the above result
of [1].

▶ Lemma 13. There is a polynomial-time algorithm NonProfitableSolver that given a BC
instance I = (E, C, c, p, β) computes a solution S for I of profit p(S) ≥ OPT(I) − 2 ·
maxe∈E p(e).

Using the algorithm above and our algorithm for computing a representative set, we
obtain an EPTAS for BC. Let R be the representative set returned by RepSet(I, ε). Our
scheme enumerates over subsets of R to select profitable elements for the solution. Using
algorithm NonProfitableSolver of [1], the solution is extended to include also non-profitable
elements. Specifically, let OPT(I)

2 ≤ α ≤ OPT(I) be a 2-approximation for the optimal profit
for I. In addition, let E(α) = {e ∈ E | p(e) ≤ 2ε · α} be the set including the non-profitable
elements, and possibly also profitable elements e ∈ E such that p(e) ≤ 2ε ·OPT(I). Given a
feasible set F ∈M, we define a residual BC instance containing elements which can extend
F by adding elements from E(α). More formally,

I. Doron-Arad, A. Kulik, and H. Shachnai 49:9

▶ Definition 14. Given a BC instance I = (E, C, c, p, β), OPT(I)
2 ≤ α ≤ OPT(I), and F ∈

M(C), the residual instance of F and α for I is the BC instance IF (α) = (EF , CF , cF , pF , βF)
defined as follows.

EF = E(α) \ F .
CF = C/F .
pF = p|F (i.e., the restriction of p to F).
cF = c|F .
βF = β − c(F).

▶ Observation 15. Let I = (E, C, c, p, β) be a BC instance, OPT(I)
2 ≤ α ≤ OPT(I), F ∈

M(C), and let T be a solution for IF (α). Then, T ∪ F is a solution for I.

For all solutions F ⊆ R for I with |F | ≤ ε−1, we find a solution TF for the residual
instance IF (α) using Algorithm NonProfitableSolver and define KF = TF ∪F as the extended
solution of F . Our scheme iterates over the extended solutions KF , for all such solutions
F , and chooses an extended solution KF ∗ of maximal total profit. The pseudocode of the
scheme is given in Algorithm 2.

Algorithm 2 EPTAS(I = (E, C, c, p, β), ε).

input : A BC instance I and an error parameter 0 < ε < 1
2 .

output : A solution for I.
1 Construct the representative set R← RepSet(I, ε).
2 Compute a 2-approximation S∗ for I using a PTAS for BC with parameter ε′ = 1

2 .
3 Set α← p(S∗).
4 Initialize an empty solution A← ∅.
5 for F ⊆ R s.t. |F | ≤ ε−1 and F is a solution of I do
6 Find a solution for IF (α) by TF ← NonProfitableSolver(IF (α)).
7 Let KF ← TF ∪ F .
8 if p (KF) > p(A) then
9 Update A← KF

10 Return A.

The running time of Algorithm 2 crucially depends on the cardinality of the representative
set. Roughly speaking, the running time is the number of subsets of the representative set
containing at most ε−1 elements, multiplied by a computation time that is polynomial in the
encoding size of the instance. Moreover, since R = RepSet(I, ε) is a representative set (by
Lemma 12), there is an almost optimal solution S of I such that the profitable elements in
S are a subset of R. Thus, there is an iteration of the for loop in Algorithm 2 such that
F = S ∩H. In the proof of Lemma 16 we focus on this iteration and show that it yields a
solution KF of I with an almost optimal profit.

▶ Lemma 16. Given a BC instance I = (E, C, c, p, β) and 0 < ε < 1
2 , Algorithm 2 returns a

solution for I of profit at least (1− 8ε) ·OPT(I) such that one of the following holds.
If I is a BM instance the running time is 2O(ε−2 log 1

ε) · poly(|I|).
If I is a BI instance the running time is q(ε)O(ε−1·q(ε)) · poly(|I|), where q(ε) =

⌈
ε−ε−1

⌉
.

The proof of Lemma 16 is given in [5]. We are ready to prove our main results.

Proofs of Theorem 1 and Theorem 2. Given a BC instance I and 0 < ε < 1
2 , using Al-

gorithm 2 for I with parameter ε
8 we have by Lemma 16 the desired approximation guarantee.

Furthermore, the running time is 2O(ε−2 log 1
ε) ·poly(|I|) or q(ε)O(ε−1·q(ε)) ·poly(|I|), depending

on whether I is a BM instance or a BI instance, respectively. ◀

ICALP 2023

49:10 An EPTAS for Budgeted Matching and Budgeted Matroid Intersection

d

a

b

c

Figure 1 An example showing that bipartite matching may not yield an exchange set. Consider
the two matchings ∆1 = {a, c}, ∆2 = {b, d} marked in red and blue, and suppose that Kr(α) = {a, b}
is a profit class. The only exchange set for Kr(α) is {a, b}, which is not a matching. Note that a
bipartite matching can be cast as matroid intersection. For a bipartite graph G = (L ∪ R, E), define
the matroids M1 = (E, I1) and M2 = (E, I2), where I1 = {F ⊆ E| ∀v ∈ L : |F ∩ N(v)| ≤ 1}, and
I2 = {F ⊆ E| ∀v ∈ R : |F ∩ N(v)| ≤ 1}, where N(v) is the set of neighbors of v. Thus, bipartite
matching is a special case of both matching and matroid intersection.

4 Exchange Set for Matching Constraints

In this section we design an algorithm for finding an exchange set for a BM instance and a
profit class, leading to the proof of Lemma 10. For the remainder of this section, fix a BM
instance I = (E, C, c, p, β), an error parameter 0 < ε < 1

2 , a 2-approximation for OPT(I),
OPT(I)

2 ≤ α ≤ OPT(I), and an index r ∈ [log1−ε

(
ε
2
)

+ 1] of the profit class Kr(α).
We note that for a single matroid constraint an exchange set can be constructed by finding

a minimum cost basis in the matroid [6]. More specifically, given a matroid G = (E, I), it is
shown in [6] that a minimum cost basis in the matroid [G ∩Kr(α)]≤q(ε) is an exchange set for
Kr(α). Such exchange set can be easily computed using a greedy approach. An analogue for
the setting of matching constraints is to find a matching of cardinality Ω(q(ε)) and minimum
total cost in Kr(α). However, as shown in Figure 1, this idea fails. Thus, we turn to use a
completely different approach.

A key observation is that even if a greedy matching algorithm may not suffice for the
construction of an exchange set, applying such an algorithm multiple times can be the
solution. Thus, as a subroutine our algorithm finds a matching using a greedy approach.
The algorithm iteratively selects an edge of minimal cost while ensuring that the selected set
of edges is a matching. This is done until the algorithm reaches a given cardinality bound, or
no more edges can be added. The pseudocode of GreedyMatching is given in Algorithm 3.7

Algorithm 3 GreedyMatching(G = (V, E), N, c).

input : A graph G, an integer N ∈ N \ {0}, and a cost function c : E → R≥0.
output : A matching M of G.

1 Initialize M ← ∅.
2 while |M | < N and E/M ̸= ∅ do
3 Find e ∈ E/M of minimal cost w.r.t. c.
4 Update M ←M + e.
5 Return M .

7 Given a graph G = (V, E) and a matching M of G, the definition of thinning E/M is given in Section 2.

I. Doron-Arad, A. Kulik, and H. Shachnai 49:11

Given a graph G = (V, E) and two edges a, b ∈ E, we say that a, b are adjacent if there
are x, y, z ∈ V such that a = {x, y} and b = {y, z}; for all e ∈ E, let AdjG(e) be the set of
edges adjacent to e in G. In the next result we show that if an edge a is not selected for the
solution by GreedyMatching, then either the algorithm selects an adjacent edge of cost at
most c(a), or all of the selected edges have costs at most c(a).

▶ Lemma 17. Given a graph G = (V, E), N ∈ N \ {0}, and c : E → R≥0, Algorithm 3
returns in polynomial time a matching M of G such that for all a ∈ E \M one of the
following holds.
1. |M | ≤ N and there is b ∈ AdjG(a) ∩M such that c(b) ≤ c(a).
2. |M | = N , for all b ∈M it holds that c(b) ≤ c(a), and M + a is a matching of G.

Proof. Clearly, Algorithm 3 returns in polynomial time a matching M of G. Observe that
|M | ≤ N by Step 2. To prove that either 1. or 2. hold, we distinguish between two cases.

a /∈ E/M . Then AdjG(a) ∩M ̸= ∅. Let e be the first edge in AdjG(a) ∩M that is
added to M in Step 4; also, let L be the set of edges added to M before e. Then
a ∈ E/L, since L does not contain edges adjacent to a. By Step 3, it holds that
c(e) = mine′∈E/L c(e′) ≤ c(a).
a ∈ E/M . Thus, |M | = N ; otherwise, a would be added to M . Also, M +a is a matching
of G. Now, let b ∈M , and let K be the set of edges added to M before b. Since M +a is a
matching of G, by the hereditary property of (E,M(G)) it holds that K +a is a matching
of G; thus, a ∈ E/K and by Step 3 it follows that c(b) = mine′∈E/K c(e′) ≤ c(a). ◀

By Lemma 17, we argue that an exchange set can be found by using Algorithm
GreedyMatching iteratively. Specifically, let k(ε) = 6 · q(ε) and N(ε) = 3 · q(ε). We run
Algorithm GreedyMatching for k(ε) iterations, each iteration with a bound N(ε) on the
cardinality of the matching. In iteration i, we choose a matching Mi from the edges of
the profit class Kr(α) and remove the chosen edges from the graph. Therefore, in the
following iterations, edges adjacent to previously chosen edges can be chosen as well. A
small-scale illustration of the algorithm is presented in Figure 2. The pseudocode of Algorithm
ExSet-Matching, which computes an exchange set for the given profit class, is presented in
Algorithm 4.

Algorithm 4 ExSet-Matching(I = (E, C, c, p, β), ε, α, r).

input : a matching-BC instance I , 0 < ε < 1
2 , OPT(I)

2 ≤ α ≤ OPT(I),
r ∈ [log1−ε

(
ε
2
)

+ 1].
output : An exchange set for I, ε, α, and r.

1 Initialize X ← ∅ and E0 ← Kr(α).
2 for i ∈ {1, . . . , k(ε)} do
3 Define Gi = (V, Ei−1) where V is the vertex set of C.
4 Compute Mi ← GreedyMatching

(
Gi, N(ε), c|Ei−1

)
.

5 Update X ← X ∪Mi and define Ei ← Ei−1 \Mi.
6 Return X.

Algorithm ExSet-Matching outputs a union X of disjoint matchings M1, . . . , Mk(ε) taken
from the edges of the profit class Kr(α). For some ∆ ∈M(C) and a ∈ (∆ ∩ Kr(α)) \X, by
Lemma 17, there are two options summarizing the main idea in the proof of Lemma 10.

ICALP 2023

49:12 An EPTAS for Budgeted Matching and Budgeted Matroid Intersection

1

1

5

11

4
2

2

3

1

3

4

Figure 2 An execution of Algorithm ExSet-Matching with the (illegally small) parameters
N(ε) = k(ε) = 3. The numbers by the edges are the costs. The edges chosen in iterations i = 1, 2, 3
are marked in blue, red, and green, respectively.

all matchings Mi contain some bi adjacent to a such that c(bi) ≤ c(a). Then, as k(ε) is
sufficiently large, one such bi is not adjacent to any edge in ∆− a. Hence, ∆− a + bi is a
matching.
One such Mi contains only edges of costs at most c(a); as N(ε) is sufficiently large, there
is b ∈Mi such that ∆− a + b is a matching.

Proof of Lemma 10. For all i ∈ {1, . . . , k(ε)}, let Gi and Mi be the outputs of Steps 3 and 4
in iteration i of the for loop in ExSet-Matching(I, ε, α, r), respectively. Also, let X be the
output of the algorithm; observe that X =

⋃
i∈[k(ε)] Mi. We show that X is an exchange set

for I, ε, α and r (see Definition 8). Let ∆ ∈ M≤q(ε) and a ∈ (∆ ∩ Kr(α)) \X. We use the
next inequality in the claim below.

k(ε)
2 = N(ε) = 3 · q(ε) > 2 · |∆| = |V (∆)|. (3)

The inequality holds since ∆ ∈M≤q(ε). The last equality holds since each vertex appears as
an endpoint in a matching at most once.

▷ Claim 18. There is b ∈ (X ∩ Kr(α)) \∆ such that ∆− a + b ∈M≤q(ε), and c(b) ≤ c(a).

Proof. Let a = {x, y}, I = (E, C, c, p, β), and C = (V, E). Since a /∈ X, for all i ∈
{1, . . . , k(ε)} it holds that a /∈ Mi; thus, a ∈ Ei = Ei−1 \Mi. Hence, by Lemma 17, one of
the following holds.
1. For all i ∈ [k(ε)] there is bi ∈ AdjGi

(a) ∩Mi such that c(bi) ≤ c(a). For z ∈ {x, y} let

Jz = {i ∈ [k(ε)] | ∃u ∈ V : bi = {z, u}}

be the set of indices of edges bi neighboring to z. Since bi ∈ AdjGi
(a) it holds that

Jx ∪ Jy = [k(ε)]. Thus, there is z ∈ {x, y} such that |Jz| ≥ k(ε)
2 > |V (∆)|, where the last

inequality follows from (3). For any i ∈ Jz let vi ∈ V be the vertex connected to z in bi,
that is bi = {z, vi}. Since the matchings M1, . . . Mk(ε) are disjoint and bi ∈Mi it follows
that the vertices vi for i ∈ Jz are all distinct. As |Jz| > |V (∆)| there is i∗ ∈ Jz such that
vi∗ /∈ V (∆). Therefore, ∆− a + bi∗ ∈M≤q(ε) and c(bi∗) ≤ c(a).

2. There is i ∈ {1, . . . , k(ε)} such that |Mi| = N(ε), and for all b ∈ Mi it holds that
c(b) ≤ c(a). Then,

|Mi| = N(ε) > |V (∆)|. (4)

I. Doron-Arad, A. Kulik, and H. Shachnai 49:13

The equality follows by the definition of Mi in Case 2. The inequality follows from (3).
Since each vertex appears as an endpoint in a matching at most once, by (4) there is
b ∈ Mi such that both endpoints of b are not in V (∆). Thus, ∆ + b ∈ M; by the
hereditary property and since a ∈ ∆, it holds that ∆− a + b ∈M≤q(ε). ◁

By Claim 18 and Definition 8, we have that X is an exchange set for I, ε, α, and r as required.
To complete the proof of the lemma we show (in [5]) the following.

▷ Claim 19. |X| ≤ 18 · q(ε)2, and the running time of Algorithm 4 is q(ε) · poly(|I|). ◀

5 Exchange Set for Matroid Intersection Constraints

In this section we design an algorithm for finding an exchange set for a profit class in a BI
instance. For the remainder of this section, fix a BI instance I = (E, C, c, p, β), an error
parameter 0 < ε < 1

2 , a 2-approximation for OPT(I), OPT(I)
2 ≤ α ≤ OPT(I), and an index

r ∈ [log1−ε

(
ε
2
)
+1] of the profit class Kr(α). Also, let C = (I1, I2) be the matroid intersection

constraint C of I. For simplicity, when understood from the context, some of the lemmas in
this section consider the given parameters (e.g., I) without explicit mention. The proofs of
the lemmas in this section are given in the full version of the paper [5].

As shown in Figure 1, a simple greedy approach which finds a feasible set of minimum
cost (within Kr(α)) in the intersection of the matroids may not output an exchange set for
Kr(α). Instead, our approach builds on some interesting properties of matroid intersection.
The next definition presents a shifting property for a feasible set ∆ ∈M≤q(ε) and an element
a ∈ ∆ ∩ Kr(α) w.r.t. the two matroids. We use this property to show that our algorithm
constructs an exchange set.

▶ Definition 20. Let ∆ ∈ M≤q(ε), a ∈ ∆ ∩ Kr(α) and b ∈ Kr(α) \∆. We say that b is a
shift to a for ∆ if c(b) ≤ c(a) and ∆− a + b ∈M≤q(ε). Furthermore, b is a semi-shift to a

for ∆ if c(b) ≤ c(a) and ∆− a + b ∈ I2 but ∆− a + b /∈ I1.

As a starting point for our exchange set algorithm, we show how to obtain small cardinality
sets which contain either a shift or a semi-shift for every pair ∆ ∈M≤q(ε) and a ∈ ∆∩Kr(α).

▶ Lemma 21. Let U ⊆ Kr(α), ∆ ∈M≤q(ε), and B be a minimum basis of [(E, I2)∩U]≤q(ε)
w.r.t. c. Also, let a ∈ (U ∩∆) \B. Then, there is b ∈ B \∆ such that b is a semi-shift to a

for ∆, or b is a shift to a for ∆.

Observe that to obtain an exchange set, our goal is to find a subset of Kr(α) which
contains a shift for every pair ∆ ∈M≤q(ε) and a ∈ ∆ ∩ Kr(α). Thus, using Lemma 21 we
design the following recursive algorithm ExtendChain, which finds a union of minimum bases
of matroids w.r.t I2, of increasingly restricted ground sets w.r.t. I1. The pseudocode of
Algorithm ExtendChain is given in Algorithm 5.

We can view the execution of ExtendChain as a tree, where each node (called below a
branch) corresponds to the subset S ⊆ Kr(α) in a specific recursive call. We now describe
the role of S in Algorithm ExtendChain. If |S| ≥ q(ε) + 1, we simply return ∅; such a branch
is called a leaf, and does not contribute elements to the constructed exchange set. Otherwise,
define the universe of the branch S as US = {e ∈ Kr(α) \ S | S + e ∈ I1}; that is, elements
in the universe of S which can be added to S to form an independent set w.r.t. I1. Next, we
construct a minimum basis BS w.r.t. c of the matroid [(E, I2) ∩ US]≤q(ε). Observe that BS

contains up to q(ε) elements, selected from the universe of S, and that BS is independent
w.r.t. I2. Note that the definition of the universe relates to I1 while the construction of the
bases to I2; thus, the two matroids play completely different roles in the algorithm.

ICALP 2023

49:14 An EPTAS for Budgeted Matching and Budgeted Matroid Intersection

∅

{a} {b}

{b, e} {b, f}{a, c} {a, d}

Figure 3 An illustration of the branches in Algorithm 5 for S = ∅. Note that B∅ = {a, b},
B{a} = {c, d} and B{b} = {e, f}. Also, {a, c} and {a, d} are the child branches of {a}.

For every element e ∈ BS we apply Algorithm ExtendChain recursively with S′ = S + e to
find the corresponding basis BS+e. The algorithm returns (using recursion) the union of the
constructed bases over all branches. Finally, algorithm ExSet-MatroidIntersection constructs
an exchange set for I, ε, α, and r by calling Algorithm ExtendChain with the initial branch
(i.e., root) S = ∅:

ExSet-MatroidIntersection(I, ε, α, r) = ExtendChain(I, ε, α, r, ∅). (5)

For an illustration of the algorithm, see Figure 3.

Algorithm 5 ExtendChain(I = (E, C, c, p, β), ε, α, r, S).

input : a matroid-BC instance I , where C = (I1, I2), 0 < ε < 1
2 ,

OPT(I)
2 ≤ α ≤ OPT(I), r ∈ [log1−ε

(
ε
2
)

+ 1], and S ⊆ E.
output : (for S = ∅) An exchange set X for I, ε, α, and r.

1 if |S| ≥ q(ε) + 1 then
2 Return ∅
3 Define US = {e ∈ Kr(α) \ S | S + e ∈ I1}.
4 Compute a minimum basis BS w.r.t. c of the matroid [(E, I2) ∩ US]≤q(ε).
5 Return BS ∪

(⋃
e∈BS

ExtendChain(I, ε, α, r, S + e)
)
.

In the analysis of the algorithm, we consider branches with useful attributes, called chains;
these are essentially sequences of semi-shifts to some ∆ ∈M≤q(ε) and a ∈ ∆ ∩ Kr(α). Let
X = ExSet-MatroidIntersection(I, ε, α, r), and let S be the set of all branches S ⊆ Kr(α) such
that ExtendChain(I, ε, α, r, S) is computed during the construction of X.

▶ Definition 22. Let S ∈ S, ∆ ∈ M≤q(ε), and a ∈ (Kr(α) ∩∆) \X. We say that S is a
chain of a and ∆ if a ∈ US, and for all e ∈ S it holds that e is a semi-shift to a for ∆.

Note that there must be a chain for a and ∆ since the empty set satisfies the conditions of
Definition 22. Moreover, we can bound the cardinality of a chain by q(ε) using the exchange
property of the matroid (E, I1). The above arguments are formalized in the next lemmas.

▶ Lemma 23. For all ∆ ∈M≤q(ε) and a ∈ (Kr(α) ∩∆) \X there is S ⊆ X such that S is
a chain of a and ∆.

▶ Lemma 24. For all ∆ ∈M≤q(ε), a ∈ (Kr(α)∩∆) \X, and a chain S of a and ∆, it holds
that |S| ≤ q(ε).

I. Doron-Arad, A. Kulik, and H. Shachnai 49:15

For a chain S of a and ∆, let BS be the result of the first computation of Step 4 (i.e.,
not within a recursive call) in ExtendChain(I, ε, α, r, S). The key argument in the proof of
Lemma 11 is that for a chain S∗ of maximal cardinality, BS∗ contains a shift to a and ∆,
using the maximality of S∗ and Lemma 21.

▶ Lemma 25. For all ∆ ∈ M≤q(ε), a ∈ (Kr(α) ∩∆) \X, and a chain S∗ of a and ∆ of
maximum cardinality, there is a shift b∗ ∈ BS∗ to a for ∆.

In the proof of Lemma 11, for every ∆ ∈ M≤q(ε) and a ∈ (Kr(α) ∩∆) \X, we take a
chain S∗ of a and ∆ of maximum cardinality (which exists by Lemma 23 and Lemma 24).
Then, by Lemma 25, there is a shift b∗ to a for ∆, and it follows that X is an exchange set
for I, ε, α, and r. The formal proof is given in [5].

6 Discussion

In this paper we present the first EPTAS for budgeted matching and budgeted matroid
intersection, thus improving upon the existing PTAS for both problems. We derive our
results via a generalization of the representative set framework in [6]; this ameliorates the
exhaustive enumeration applied in similar settings [1, 3].

We note that the framework based on representative sets may be useful for solving other
problems formulated as (1). Indeed, the proofs of Lemma 7 and Lemma 9, which establish
the representative set framework, are oblivious to the exact type of constraints and only
require having a k-exchange system for some constant k.8

Furthermore, our exchange sets algorithms can be applied with slight modifications to
other variants of our problems and are thus of independent interest. In particular, we
can use a generalization of Algorithm 4 to construct an exchange set for the budgeted b-
matching problem. Also, using the techniques of [9], Algorithm 5 can be generalized to
construct exchange sets for budgeted multi-matroid intersection for any constant number of
matroids; this includes the budgeted multi-dimensional matching problem. While this problem
does not admit a PTAS unless P=NP [10], our initial study shows that by constructing a
representative set we may obtain an FPT-approximation scheme by parameterizing on the
number of elements in the solution.9

Finally, to resolve the complexity status of BM and BI, the gripping question of whether
the problems admit an FPTAS needs to be answered. Unfortunately, this may be a very
difficult task. Even for special cases of a single matroid, such as graphic matroid, the
existence of an FPTAS is still open. Moreover, a deterministic FPTAS for budgeted matching
would solve deterministically the exact matching problem, which has been open for over four
decades [14].

References
1 André Berger, Vincenzo Bonifaci, Fabrizio Grandoni, and Guido Schäfer. Budgeted matching

and budgeted matroid intersection via the gasoline puzzle. Mathematical Programming,
128(1):355–372, 2011.

2 Paolo M. Camerini, Giulia Galbiati, and Francesco Maffioli. Random pseudo-polynomial
algorithms for exact matroid problems. Journal of Algorithms, 13(2):258–273, 1992.

8 A set system (E, I) satisfies the k-exchange property if for all A ∈ I and e ∈ E there is B ⊆ A, |B| ≤ k,
such that (A \ B) ∪ {e} ∈ I.

9 We refer the reader, e.g., to [12] for the definition of parameterized approximation algorithms running
in fixed-parameter tractable (FPT)-time.

ICALP 2023

49:16 An EPTAS for Budgeted Matching and Budgeted Matroid Intersection

3 Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Multi-budgeted matchings and matroid
intersection via dependent rounding. In Proceedings of the twenty-second annual ACM-SIAM
symposium on Discrete Algorithms, pages 1080–1097. SIAM, 2011.

4 Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
algorithms. MIT press, 2022.

5 Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai. An EPTAS for budgeted matching and
budgeted matroid intersection. arXiv preprint, 2023. arXiv:2302.05681.

6 Ilan Doron-Arad, Ariel Kulik, and Hadas Shachnai. An EPTAS for budgeted matroid
independent set. In Symposium on Simplicity in Algorithms (SOSA), pages 69–83, 2023.

7 Michael R Garey and David S Johnson. Computers and intractability, volume 174. freeman
San Francisco, 1979.

8 Fabrizio Grandoni and Rico Zenklusen. Approximation schemes for multi-budgeted independ-
ence systems. In European Symposium on Algorithms, pages 536–548. Springer, 2010.

9 Chien-Chung Huang and Justin Ward. FPT-algorithms for the ℓ-matchoid problem with a
coverage objective. arXiv preprint, 2020. arXiv:2011.06268.

10 Viggo Kann. Maximum bounded 3-dimensional matching is MAX SNP-complete. Information
Processing Letters, 37(1):27–35, 1991.

11 Ariel Kulik and Hadas Shachnai. There is no EPTAS for two-dimensional knapsack. Information
Processing Letters, 110(16):707–710, 2010.

12 Dániel Marx. Parameterized complexity and approximation algorithms. The Computer Journal,
51(1):60–78, 2008.

13 Ketan Mulmuley, Umesh V Vazirani, and Vijay V Vazirani. Matching is as easy as matrix
inversion. In Proceedings of the nineteenth annual ACM symposium on Theory of computing,
pages 345–354, 1987.

14 Christos H Papadimitriou and Mihalis Yannakakis. The complexity of restricted spanning
tree problems. Journal of the ACM (JACM), 29(2):285–309, 1982.

15 Ulrich Pferschy and Joachim Schauer. The knapsack problem with conflict graphs. J. Graph
Algorithms Appl., 13(2):233–249, 2009.

16 Ram Ravi and Michel X Goemans. The constrained minimum spanning tree problem. In
Scandinavian Workshop on Algorithm Theory, pages 66–75. Springer, 1996.

17 Alexander Schrijver et al. Combinatorial optimization: polyhedra and efficiency, volume 24.
Springer, 2003.

18 Petra Schuurman and Gerhard J Woeginger. Approximation schemes – A tutorial. Lectures
on scheduling, 2001.

19 Hadas Shachnai and Tami Tamir. Polynomial time approximation schemes. In Handbook of
Approximation Algorithms and Metaheuristics, Second Edition, Volume 1: Methologies and
Traditional Applications, pages 125–156. CRC Press, 2018.

https://arxiv.org/abs/2302.05681
https://arxiv.org/abs/2011.06268

Connected k-Center and k-Diameter Clustering
Lukas Drexler #

Heinrich-Heine Universität Düsseldorf, Germany

Jan Eube #

Universität Bonn, Germany

Kelin Luo #

Universität Bonn, Germany

Heiko Röglin #

Universität Bonn, Germany

Melanie Schmidt #

Heinrich-Heine Universität Düsseldorf, Germany

Julian Wargalla #

Heinrich-Heine Universität Düsseldorf, Germany

Abstract
Motivated by an application from geodesy, we study the connected k-center problem and the connected
k-diameter problem. These problems arise from the classical k-center and k-diameter problems by
adding a side constraint. For the side constraint, we are given an undirected connectivity graph G on
the input points, and a clustering is now only feasible if every cluster induces a connected subgraph
in G. Usually in clustering problems one assumes that the clusters are pairwise disjoint. We study
this case but additionally also the case that clusters are allowed to be non-disjoint. This can help to
satisfy the connectivity constraints.

Our main result is an O(1)-approximation algorithm for the disjoint connected k-center and
k-diameter problem for Euclidean spaces of low dimension (constant d) and for metrics with constant
doubling dimension. For general metrics, we get an O(log2 k)-approximation. Our algorithms work
by computing a non-disjoint connected clustering first and transforming it into a disjoint connected
clustering.

We complement these upper bounds by several upper and lower bounds for variations and special
cases of the model.

2012 ACM Subject Classification Theory of computation → Facility location and clustering

Keywords and phrases Approximation algorithms, Clustering, Connectivity constraints

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.50

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2211.02176

Funding This work has been funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – 390685813; 459420781.

Acknowledgements The authors thank anonymous reviewers of a previous draft for helpful comments
and pointing out relevant related work. We thank Jürgen Kusche and Christian Sohler for raising the
problem and for fruitful discussion on the modeling. We also thank Xiangyu Guo for the discussion
on the algorithm design and analysis.

EA
T
C
S

© Lukas Drexler, Jan Eube, Kelin Luo, Heiko Röglin, Melanie Schmidt, and
Julian Wargalla;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 50; pp. 50:1–50:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lukas.drexler@hhu.de
mailto:eube@informatik.uni-bonn.de
mailto:kluo@uni-bonn.de
mailto:roeglin@cs.uni-bonn.de
mailto:mschmidt@hhu.de
mailto:julian.wargalla@hhu.de
https://doi.org/10.4230/LIPIcs.ICALP.2023.50
https://arxiv.org/abs/2211.02176
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

50:2 Connected k-Center and k-Diameter Clustering

27

119114

Figure 1 Gauge stations around the globe, with station location data from PSMSL
(http://www.psmsl.org/data/obtaining/), plotted onto the map from the Natural Earth data
set (https://www.naturalearthdata.com/downloads/10m-physical-vectors/10m-coastline/).
Highlighted are three stations in Central America, and the numbers are Fréchet distances computed
on the curves defined by sea levels between 1953 and 1968.

1 Introduction

Clustering problems occur in a wide range of application domains. Because of the general
importance and interesting combinatorial properties, well-known k-clustering problems like
k-center, k-median, and k-means have also been vastly studied in theory. These problems are
NP-hard and APX-hard, but many constant-factor approximation algorithms for them are
known. All k-clustering problems ask to partition a set of points (usually in a general metric
space or in Euclidean space) into k clusters, often by picking k centers and assigning every
point to its closest center. The clusters are then evaluated based on the distances between
the points and their corresponding centers. For example in the case of k-center, the objective
is to minimize the maximum distance between any point and its closest center.

In applications, clustering problems are often subject to side constraints. Consequently,
clustering with side constraints has also become a thriving topic for designing approximation
algorithms. Probably the most known example is clustering with capacities where the number
of points in a cluster is limited. Notice how this constraint prevents us from assigning points
to their closest center because there might not be enough space. So, for example, uniform
capacitated (center-based) clustering consists of finding k centers and an assignment of
points to those centers such that every center gets at most U points (and then evaluating
the desired objective). Finding a constant factor approximation for uniform capacitated
k-median clustering is a long standing open problem. Other constraints that have been
studied are for example lower bounds (here, a cluster has to have a certain minimum number
of points, so it may be beneficial to open less than k clusters) and clustering with outliers
(here we are allowed k + z clusters, but z of them have to be singletons, i.e. outliers). There
are also results on constraints that restrict the choice of centers, for example by demanding
that the centers satisfy a given matroid constraint. Among the newer clustering problems
with constraints are those that evolve around aspects of fairness. These constraints are
typically more complex and can either be point-based or center-based. Each constrained
clustering problem, old or new, comes with a unique combinatorial structure, giving rise to a
plethora of insights on designing approximation algorithms.

In this paper, we study a constraint that stems from the area of sea level geodesy but
which is also of interest for other domains (discussed briefly below). For the application
that motivated our work, consider the left picture in Figure 1. We see the location of tide
gauge stations around the globe from the PSMSL data set [13, 9]. At every station, sea level
heights have been collected over the years, constituting monthly time series. These records

http://www.psmsl.org/data/obtaining/
https://www.naturalearthdata.com/downloads/10m-physical-vectors/10m-coastline/

L. Drexler, J. Eube, K. Luo, H. Röglin, M. Schmidt, and J. Wargalla 50:3

can be used to reconstruct regional or global mean sea levels. However, the tide gauges have
usually been constructed for practical purposes and not for sea level science. As a result,
they are unevenly distributed over the globe. One way out of this is to replace clusters of
tide gauges by representative records to thin out the data set. Our general goal is therefore
to cluster the tide gauges into a given number k of clusters. However, the objective is not
based on the gauge stations’ geographic distance but on the time series. We wish to combine
gauge stations with similar time series into one, i.e., when we cluster, we want to find clusters
where the center’s time series is similar to the records collected at the tide gauges represented
by that center. We can model the distance between time series by a metric distance measure
for time series or curves (like the Fréchet distance). As the objective we pick k-center, so we
want to minimize the maximum distance between the center and the points that are replaced
by it. Now we get to the complication: The gauge stations are also points on the map. We
do not want to have points in the same cluster that are geographically very far away.

It is not immediately clear how to best model this scenario. We could resort to bicriteria
approximation and look for solutions where both the time series of points in a cluster are
similar and the radius of clusters is small, by either looking at the Pareto front or weighting
the two objectives. Alternatively, we could fix a threshold and limit the geographic distance
between centers and points, i.e., demand that a point x can only be assigned to center c if
its geographic distance is at most some T . Both modelings have the drawback that they
really only capture the distance on the map, while in reality, we would like to have somewhat
coherent clusters that correspond to non-overlapping areas on the map. Indeed, we might be
fine with having points of large geographic distance in the same cluster if all points ‘between’
them are also in the same cluster (i.e., that larger area of the sea behaves very similar with
respect to the gauge station measurements).

The modeling that we study incorporates this via a preprocessing step. We assume that
the points have been preprocessed such that we get a connectivity graph like shown on the
right in Figure 1. The graph on the map was computed by finding a minimum spanning tree
of the points, but it could be computed in other ways, too. The important part is that it
captures a neighborhood structure. To model coherence, we now demand that clusters are
connected in this graph. Figure 2 gives an example.

▶ Problem 1. In a connected k-clustering problem, we are given points V , a metric d

on V , a number k, and an unweighted and undirected connectivity graph G = (V, E). A
feasible solution is a partitioning of V into k clusters C1, . . . , Ck which satisfies that for every
i ∈ {1, . . . , k} the subgraph of G induced by Ci is connected.

For the connected k-center problem, a solution also contains centers c1, . . . , ck corre-
sponding to the clusters C1, . . . , Ck and the objective is to minimize the maximum radius
maxi∈[k],x∈Ci

d(x, ci). For the connected k-diameter problem the objective is to minimize
the maximum diameter maxi∈[k] maxx,y∈Ci d(x, y). It is easy to see that the connected k-
clustering problem generalizes the classic k-center and k-diameter problem whose connectivity
graph G is a complete graph.

Interestingly, the connected k-center problem was independently defined in an earlier
paper by Ge et al. [4] (previously unknown to us. We thank the anonymous reviewer who
pointed us to this reference). In that paper, connected clustering is motivated in the context
of applications where both attribute and relationship data is present. It is applied to scenarios
of community detection and gene clustering, showing the wide applicability of the modeling.
We discuss their work further in the related work section.

ICALP 2023

50:4 Connected k-Center and k-Diameter Clustering

a b c d e f

a

b

cd

e

f

Figure 2 An example. The solid edges form the metric: Vertices connected by a solid edge have
distance 1 and all other distances are 2. The dashed edges form the connectivity graph. Both
pictures show the same graph. The optimal k-center solution with centers {c, d} and clusters {a, b, d}
and {c, e, f} is not connected. Any optimal (disjoint) connected k-center solution has radius 2.

Disjoint vs non-disjoint clusters, restricted graph classes

Notice that we demand that the Ci are disjoint. For some clustering problems with constraints
the objective value can be decreased when we are allowed to assign points to more than
one cluster: For example, lower bounds are easier to satisfy when points can be reused.
The same is true for connected clustering: It is easier to satisfy connectivity when we can
put important points into multiple clusters. For our application, we want to have disjoint
clusters, but we still study the variation for completeness and also since it allows for better
approximation algorithms that can be at least tested for their usefulness in the application
(e.g., leaving it to the user to resolve overlaps). Notice that in Figure 2, allowing non-disjoint
clusters enables the solution {c, d} with clusters {a, b, c, d}, {c, d, e, f} which has cost 1.

▶ Definition 2. We distinguish between connected k-clustering with disjoint clusters and
with non-disjoint clusters, referring to whether the clusters Ci have to be pairwise disjoint or
not.

Finally, we observe that in our application the connectivity graph is not necessarily
arbitrary. Depending on the way that we build the graph, it could be a tree (the minimum
spanning tree) or even a line (if we follow the coast line). Thus, we are interested in the
problem on restricted graph classes as well.

Results and techniques

Our main result is an approximation algorithm that works for both the disjoint connected
k-center problem and the disjoint connected k-diameter problem for general connectivity
graphs G. For general metrics, the algorithm computes an O(log2 k)-approximation. If the
metric has bounded doubling dimension D, the approximation ratio improves to O(23·D),
and for Euclidean spaces, to O(d · 2d). To obtain these results we first compute a non-
disjoint clustering. Then we develop a method using a concept of a layered partitioning (see
Definition 10) to make the clusters disjoint. We show how to obtain such a partitioning for
different metrics. Both steps are novel and form the main contribution of this paper. In
addition, in the full version of this paper we study how to compute well-separated partitions
if the number of clusters is small, particularly when k = 2.

We also study restricted connectivity graphs (lines, stars and trees) and also the easier
case of non-disjoint connected clustering. In this context we discuss greedy algorithms and
obtain hardness results via reductions. The rest hardness proof in the full version of this
paper is technically more involved. An overview of our results is given in Table 1, the more
details are given in Section 2.

L. Drexler, J. Eube, K. Luo, H. Röglin, M. Schmidt, and J. Wargalla 50:5

Table 1 An overview of the bounds shown in this paper and the literature for connected k-
clustering. The notation [ℓ, u] stands for a lower bound ℓ and an upper bound u on the best possible
approximation factor (achievable in polynomial time and assuming P ̸= NP). Results marked by
“*” are proven in the full version of this paper.

Restriction
Objective k-Center k-Diameter

disjoint non-disjoint disjoint non-disjoint
G is a line

1
Ge et al. [4]

1
Cor. 4

1
Cor. 4

G is a star / tree [2, 2]
Lem. 5, Thm. 6

Doubling dimension D O(23D)
Thm. 23

[2, 2]
Cor. 7, Lem. 9

O(23D)
Thm. 23

[2, 2]
Cor. 7, Lem. 9

Lp metric in dimension d O(d · 2d)
Thm. 20

O(d · 2d)
Thm. 20

No Restrictions [3∗, O(log2 k)]
Thm. 18

[2, O(log2 k)]
Lem. 5, Thm. 18

Related work

The k-center problem and the k-diameter problem are both NP-hard to approximate better
than by a factor of 2 (see [10, 7] for k-center, k-diameter follows along the same lines). There
are two popular 2-approximation algorithms for k-center which both also work for k-diameter
with the same approximation guarantee [5, 8]. There are various results on side constraints
for k-center and related k-clustering problems, including [1, 2, 3, 11] and many others. A
more extensive list of results is contained in the full version of this paper, and we only review
closely related work in the following. The connected k-center problem with disjoint clusters
has been introduced and studied by Ge et al. [4]1. Besides other results, Ge et al. present
a greedy algorithm for the problem and claim that it computes a 6-approximation. In the
full version of this paper we present an example showing that this greedy algorithm actually
only obtains an Ω(k)-approximation. The greedy algorithm is based on the approach of
transforming a non-disjoint clustering into a disjoint one. In this transformation, it does
not change the centers, i.e., it uses the given centers of the non-disjoint clustering also as
centers for the disjoint clustering. In addition, we prove in the full version of this paper a
lower bound showing that no algorithm based on transforming a non-disjoint clustering into
a disjoint one with the same centers can compute an O(1)-approximation. Hence, without
fundamental changes of the algorithm, no O(1)-approximation can be obtained. We even
show that in general the optimal non-disjoint clustering can be better than the optimal
disjoint clustering by a factor of Ω(log log k). Hence, if one uses only the radius of an optimal
non-disjoint clustering as a lower bound for the radius of an optimal disjoint clustering, one
cannot show a better approximation factor than Ω(log log k). To the best of our knowledge,
no other approximation algorithms with provable guarantees for the connected k-center or
k-diameter problem are known.

Ge et al. introduce the connected k-center problem to model clustering problems where
both attribute and relationship data is present. They perform experiments in the context of
gene clustering and community detection and demonstrate that for both these applications
modelling them as connected clustering problems leads to superior results compared to
standard clustering formulations without connectivity constraint. For community detection
for example, they construct datasets from DBLP2 where researchers are supposed to be

1 We thank an anonymous reviewer for pointing us to this reference
2 https://dblp.org/

ICALP 2023

https://dblp.org/

50:6 Connected k-Center and k-Diameter Clustering

clustered according to their main research area. Based on keyword frequencies they defined a
distance measure for the researchers. At the same time, the coauthor network can be used as
a connectivity graph. The advantage of connected clustering compared to traditional models
is that it naturally takes into account both the distance measure and the coauthor network.
For their experiments, Ge et al. develop a heuristic called NetScan for the connected k-center
problem with disjoint clusters, which is reminiscent of the k-means method, and efficient on
large datasets. In their experiments, the outcomes of this heuristic were significantly better
than the outcomes of state-of-the-art clustering algorithms that take into account either only
the distance measure or only the coauthor network. The work of Ge et al. has attracted some
attention and it is cited in many other articles on community detection and related subjects.

Furthermore, Ge et al. show that already for k = 2, the connected k-center problem
with disjoint clusters is NP-hard. They also argue that it is even NP-hard to obtain a
(2− ϵ)-approximation for any ϵ > 0. Additionally they give an algorithm based on dynamic
programming with running time O(n2 log n) that solves the connected k-center problem with
disjoint clusters optimally when the connectivity graph is a tree.

Gupta et al. [6] study the connected k-median and k-means problem and prove upper
and lower bounds on their approximability. Related to our motivation, Liao and Peng [12]
consider the connected k-means problem to model clustering of spatial data with a geo-
graphic constraint. They develop a local-search based heuristic and conduct an experimental
evaluation.

Outline

In Section 2 we discuss the general setting and results for restricted graph classes. Section 3
covers the case of non-disjoint connected clustering. Then in Section 4, we show the results
on the connected clustering problems for general connectivity graphs and disjoint clusterings.

2 Setup and review of results on restricted graph classes

For all approximation algorithms in this paper, we use the following well-known framework
for k-center approximation due to Hochbaum and Shmoys [8]. It is built upon the following
fact: For the k-diameter or k-center problem (connected or not), the value of the cost function
is always equal to one of the at most n2 different distances between two points in V where
n = |V |. This is true because it is either the distance between two points in the same
cluster (k-diameter) or it is the distance between a point and its center (k-center). Thus, a
standard scheme to follow is to sort these distances in time O(n2 log n) and then search for
the optimum value by binary search. The problem then reduces to finding a subroutine for
the following task.

▶ Problem 3. If there is a solution which costs r for a given r, find a solution that costs at
most α · r. Otherwise, report that r is too small.

An algorithm that solves this task can easily be turned into an α-approximation by
searching for the smallest r for which the algorithm returns a solution. The running time of
the resulting algorithm is O(n2 log n) for the preprocessing plus O(log n) times the running
time of the subroutine.

Lines, stars and trees

Connected k-clustering demands that the clusters are connected in a given connectivity graph
G. How tricky is this condition? Maybe it can actually help to solve the problem? This is
true if G is very simple, i.e., a line. We include the following proof as a warm-up.

L. Drexler, J. Eube, K. Luo, H. Röglin, M. Schmidt, and J. Wargalla 50:7

▶ Corollary 4. When the connectivity graph G is a line graph, then the connected k-center
problem and the connected k-diameter problem can be solved optimally in time O(n2 log n)
both with disjoint and non-disjoint clusters. This is true even if the distances are not a
metric.

Proof. We only show how to solve the connected k-center problem with non-disjoint clusters.
The full proof can be found in the full version of this paper. The line graph G is defined by
vertices V = {v1, v2, ..., vn} and edges E = {{vi, vi+1} | i ∈ {1, . . . , n− 1}}. Assume that r

is given.
Notice that any connected cluster is a subpath of G. We start by precomputing for

every vi how far a cluster with center at vi can stretch to the left and right: Let ai be the
smallest ℓ such that d(vj , vj′) ≤ r for all j, j′ ∈ {ℓ, . . . , i} and let bi be the largest ℓ such that
d(vj , vj′) ≤ r for all j, j′ ∈ {i, . . . , ℓ}. We can compute all ai and all bi in time O(n2). Now
we cut the line into clusters. We start by finding an index i with ai = 1 for which bi is as
large as possible because we have to cover the first vertex and want to cover as many other
vertices as possible. We place a center at vi and know that all vertices until vbi

are covered
by the cluster. Now we know that the next cluster has to contain vbi+1, so we search for an
i′ which satisfies bi + 1 ∈ {ai′ , . . . , bi′}, if there are multiple, we take the one with maximum
bi′ . This finds the center which covers vbi+1 and the largest number of additional vertices.
We place a center at vi′ . It may be that i′ < i as in Figure 2) and thus the clusters have
to overlap (recall that we are in the non-disjoint case). The process is iterated until vn is
covered. If the number of clusters is more than k, we report that r was too small, otherwise,
we report the clustering. This way we solve Problem 3 for α = 1 in time O(n2). ◀

For trees, k-center and k-diameter differ. Surprisingly, the connected k-diameter problem
is already NP-hard if G is a star. We prove the following lemma by a reduction from the
uniform minimum multicut problem on stars in the full version of this paper.

▶ Lemma 5. Let ϵ > 0. Assuming P ̸= NP, there is no (2− ϵ)-approximation algorithm for
the connected k-diameter problem with disjoint clusters even if G is a star.

Notice how the connected k-diameter problem with G being a star is thus very different
from the k-diameter problem where the metric is given by a graph metric that is a star. The
latter problem can be solved optimally by sorting the edges by weight and then deleting
the k − 1 most expensive edges to form k connected components which form an optimal
clustering. Say we have distances d(e1) ≥ d(e2) ≥ . . . ≥ d(en), then this optimal clustering
has cost d(ek) + d(ek+1). However, any clustering that keeps an edge from {e1, . . . , ek−1}
costs at least d(ek+1) + d(ek−1) ≥ d(ek) + d(ek+1) since it deletes at most k − 1 edges.

Ge et al. [4] show that the connected k-center problem is still solvable optimally for trees
by dynamic programming.

▶ Theorem 6 (Ge et al. [4]). When the connectivity graph G is a tree, then the connected
k-center problem with disjoint clusters can be solved optimally in time O(n2 log n). This is
true even if the distances are not a metric.

It follows immediately that the connected k-diameter problem with disjoint clusters on
trees can be 2-approximated by the same algorithm because the diameter of the produced
solution is always at most twice the radius. This is interesting because our reduction
in Lemma 5 shows that this is tight, i.e., using the dynamic programming algorithm for
k-diameter achieves the best possible approximation ratio (assuming P ̸= NP).

ICALP 2023

50:8 Connected k-Center and k-Diameter Clustering

3 General G, non-disjoint clusters

The connected k-center and k-diameter problems with non-disjoint clusters behave similarly
to the unconstrained versions. On the positive side, there is a 2-approximation; on the
negative side, it is NP-hard to approximate these problems better than 2. In contrast to the
case of disjoint clusters, APX-hardness starts with stars for both k-center and k-diameter.
We show this via reductions from clique cover and set cover in the full version of this paper.

▶ Corollary 7. Let ϵ > 0. Assuming P ̸= NP, there is no (2− ϵ)-approximation algorithm
for the connected k-diameter problem with non-disjoint clusters, even if G is a star. The
same is true for the connected k-center problem with non-disjoint clusters.

For the positive result, the classical result by Hochbaum and Shmoys [8] can be used. We
discuss it in detail because we need it as a basis for our algorithms. For the unconstrained
k-center problem, Problem 3 for α = 2 can be solved as follows: Given input V , k, and a
radius r, one picks an arbitrary point x ∈ V and puts all nodes within distance 2r of x into
one cluster. When r is at least the radius of the optimal k-clustering, this cluster will contain
all nodes that are in the same optimal cluster as x. The cluster is then removed from V and
the process is repeated until all nodes are covered. If the number of clusters is at most k,
the solution is returned, otherwise, it is reported that r was too small.

This algorithm can easily be adapted to the connected k-center problem with non-disjoint
clusters by the following observation: Let x and y be two nodes from the same optimal
cluster with center c and radius r. Then x and y are connected in the connectivity graph by
a path that contains only nodes within distance 2r from x and y. So the algorithm is: When
a node x is selected, put all nodes into a cluster that have distance at most 2r from x and are
reachable from x in the connectivity graph via a path on which all nodes have a distance of
at most 2r from x. This set can be determined by the BFS-type algorithm ComputeCluster
(see Algorithm 1 with R = 2r). Say the resulting cluster is T . Do not remove T from G

Algorithm 1 ComputeCluster(G, M, R, c).

Input: points V , graph G = (V, E), metric M = (V, d), radius R, node c ∈ V

1 T ← {c};
2 N ← {u ∈ V \ T | ∃v ∈ T, (v, u) ∈ E : d(u, c) ≤ R};
3 while N ̸= ∅ do
4 T ← T ∪N ;
5 N ← {u ∈ V \ T | ∃v ∈ T, (v, u) ∈ E : d(u, c) ≤ R};

Output: cluster T

but only mark all nodes in T as covered. As long as there are uncovered nodes, pick an
arbitrary such node and form a cluster of radius 2r around it (in general this cluster will
also contain nodes that are already covered). This will result in at most k connected clusters
with radius 2r if r is at least the radius of an optimal connected k-clustering. We call this
algorithm GreedyClustering and we give its pseudocode as Algorithm 2. In general, the
sets Tc computed by this algorithm are not disjoint but the centers are pairwise distinct.

▶ Lemma 8. Let r∗ denote the radius of an optimal connected k-center clustering with
non-disjoint clusters. For r ≥ 2r∗, Algorithm 2 computes a center set C with |C| ≤ k.

Proof. Consider a node c ∈ V that is chosen as a center by the algorithm and the optimal
cluster O node c is contained in. This cluster is centered around some node c′ and has a
radius of at most r∗. Hence, by the triangle inequality all nodes in O have a distance of at

L. Drexler, J. Eube, K. Luo, H. Röglin, M. Schmidt, and J. Wargalla 50:9

Algorithm 2 GreedyClustering(G, M, r).

Input: graph G = (V, E), metric M = (V, d), radius r

1 C ← ∅; // center nodes
2 V ′ ← V ; // uncovered nodes
3 while V ′ ̸= ∅ do
4 select a node c ∈ V ′ and add it to C;
5 Tc ← ComputeCluster(G, M, r, c);
6 V ′ ← V ′ \ Tc;

Output: centers C, sets Tc for all c ∈ C

x

u

e

z

c

r 2r

r

r

The optimal connected 2-clustering has centers x and z

with clusters {x, u} and {z, c, e} and a radius of r. The
greedy algorithm started with x forms {x, u, z} as the
first cluster. After that, only c and e remain. Without
z, they are not connected anymore and have to go into
different clusters.

Figure 3 An example where greedy disconnects an optimum cluster.

most 2r∗ from c. Also since O is connected, all nodes in O are reachable from c. In particular,
all nodes in O are reachable from c on paths that contain only nodes within distance 2r∗

of c. This implies that for r ≥ 2r∗, the set Tc is a superset of the optimal cluster O. Since
the centers in Algorithm 2 are chosen among the uncovered nodes, all chosen centers must
be from distinct optimal clusters. This implies that there can be at most k centers in C. ◀

The same algorithm works for the connected k-diameter problem when ComputeCluster
is evoked with R = r (not 2r) if r is at least the optimal diameter. By adding all points in
distance r to the cluster of the chosen center x, it is ensured that the optimum cluster is
added if r is at least the optimum value (since the distance between two points is then at most
r). Furthermore, the resulting cluster has diameter at most 2r by the triangle inequality.

▶ Lemma 9. There exists a 2-approximation algorithm for the connected k-center problem
with non-disjoint clusters and also for the connected k-diameter problem with non-disjoint
clusters.

4 General G, disjoint clusters

The disjoint case for general connectivity graphs is more challenging. To keep the presentation
simple, we focus in the following on the connected k-center problem: Given an unweighted
graph G = (V, E) and a metric space M = (V, d) with d : V × V → R, find k node-disjoint
connected subgraphs of G (clusters) that cover all vertices and minimize the maximum radius
of these subgraphs. An adaptation to the connected k-diameter problem can be found in the
full version of this paper.

We start with the algorithm GreedyClustering from the previous section on the non-
disjoint case. Notice that in general, the output of this algorithm is not node-disjoint. We
could opt to delete the nodes in T computed by Algorithm 1 to enforce disjointness, however,
the problem is this: The first cluster that the algorithm forms around a vertex x is guaranteed
to be a superset of the optimal cluster that x is contained in. It might be a strict superset
and contain a node that belongs to a different optimal cluster. This node will get removed
from G together with all other nodes in the cluster around x. However, its removal might

ICALP 2023

50:10 Connected k-Center and k-Diameter Clustering

make the optimal cluster it is contained in unconnected. This is problematic because then k

connected clusters might not suffice anymore to cover all points from G even if we guessed
the optimal radius r correctly. See Figure 3 for an example where this happens.

4.1 Making the clusters disjoint
In this section we describe how to transform the set of non-disjoint clusters computed by
GreedyClustering into a set of pairwise disjoint clusters that cover all points at the cost of
increasing the radius or diameter. This transformation has to be performed very carefully in
order to not increase the radius or diameter by too much.

Let C with |C| ≤ k denote the set of centers around which the non-disjoint clusters have
been formed by the algorithm and let r denote their radius. The following two observations
are helpful: (1) When two centers are more than 2r apart then their corresponding clusters
are disjoint. (2) If a set of centers have pairwise distance at most L then merging the
corresponding clusters results in a single cluster with radius at most r + L and diameter at
most 2r + L.

If it is possible to partition the centers into groups such that all centers within the same
group have a distance of at most L and all centers from different groups have a distance
of more than 2r, we could make the clusters disjoint as follows: as long as there are two
non-disjoint clusters whose centers are in the same group of the partition, merge them into
a single cluster. In the end, the algorithm will return no more than |C| ≤ k clusters. By
isolating some singletons as new clusters, we obtain a solution with exactly k clusters as
required without worsening the solution. After this, all clusters whose centers are in the
same group are disjoint (if not they would have been merged) and clusters whose centers
are in different groups are disjoint because their centers are far enough from each other.
Hence, such a partition results in a solution with disjoint clusters with radius r + L and
diameter 2r + L. A key idea in our algorithm for the general case is to find such a partition
of the centers in C with small L. However, observe that this is not possible in general. A
simple counterexample would be that all centers are equally spaced on a line with distance r

between two consecutive centers. Then all centers have to be in the same group and L would
be (k − 1)r, resulting in an approximation factor of Ω(k).

To circumvent this problem, we do not partition all centers from C at once but we start
with a partition of a subset of C that satisfies the properties above (i.e., centers in the same
group have distance at most L, while centers in different groups have a distance of more
than 2r). We call this the first layer of the partition. Then we remove all centers contained
in the first layer from C and proceed with the remaining centers analogously: Let C ′ denote
the set of centers not contained in the first layer. We find a partition of a subset of C ′ that
satisfies the properties above and call this the second layer of the partition. We repeat this
process until all points from C are in some layer. We call such a partition a well-separated
partition. Figure 4 shows possible partitions for the example above.

▶ Definition 10. Let M = (C, d) be a metric and r > 0. An r-well-separated parti-
tion with ℓ ∈ N layers and with parameters (h1, . . . , hℓ) is a partition of C into groups
{C1,1, . . . , C1,ℓ1}, {C2,1, . . . , C2,ℓ2}, . . . , {Cℓ,1, . . . , Cℓ,ℓℓ

} with the following properties.
(i) The groups cover all points from C, i.e.,

⋃
i∈[ℓ],j∈[ℓi] Ci,j = C.

(ii) The groups are pairwise disjoint, i.e., ∀i, i′, j, j′ with i ̸= i′ or j ̸= j′, Ci,j ∩ Ci′,j′ = ∅.
(iii) For i ∈ [ℓ], we call the sets Ci,1, . . . , Ci,ℓi the sets on layer i. Two different sets from

the same layer are more than 2r away, i.e., ∀i ∈ [ℓ], v ∈ Ci,j , v′ ∈ Ci,j′ with j ̸= j′,
d(v, v′) > 2r.

(iv) For i ∈ [ℓ], the maximum diameter of a group on layer i is at most hi, i.e.,
maxj maxv,v′∈Ci,j

d(v, v′) ≤ hi.

L. Drexler, J. Eube, K. Luo, H. Röglin, M. Schmidt, and J. Wargalla 50:11

r r r r r r

Figure 4 We consider an instance with 7 centers on a line where consecutive centers have a
distance of r. The top figure shows a well-separated partition of this instance with L = 0 and ℓ = 3
layers. The colors depict the different layers and the colored rectangles depict the clusters of radius R

around these centers. On the blue layer there are, e.g., three groups where each group consists
of a single blue center. The bottom figure shows a well-separated partition of the same instance
with L = r and ℓ = 2. The blue layer contains two groups of two centers each, while the red layer
contains two groups, one with two centers and one with only one center.

It is not clear at first glance why a well-separated partition is helpful for obtaining a
solution with disjoint clusters. For every layer of the partition, we can use the reasoning
above. That is, we merge all non-disjoint clusters whose centers are in the same group to
obtain disjoint clusters with radius r + L and diameter 2r + L. However, a cluster is then
only disjoint from all clusters on the same layer but in general not from clusters on other
layers (see Figure 4). A main ingredient of our algorithm is a non-trivial way to merge
clusters on different layers. For this, we add the layers one after another. Consider the case
of two layers. The clusters from the first layer are disjoint from each other. We add the
clusters of the second layer one after another. For each cluster from the second layer, we
first check with which clusters from the first layer it overlaps. If there is more than one, we
split the cluster from the second layer into multiple parts and merge the parts with different
clusters from the first layer with which they overlap. This is done in such a way that the
final result is a set of disjoint connected clusters. We prove with an inductive argument that
the radius and diameter of these clusters is O(ℓ · L), where ℓ denotes the number of layers of
the well-separated partition.

The following lemma describes an algorithm that adjusts the clusters layer by layer to
make them pairwise disjoint.

▶ Lemma 11. Consider an instance (G = (V, E), M = (V, d), k) of the connected k-center
problem and assume that Algorithm 2 computes a center set C ⊆ V with |C| ≤ k for some
radius r. Furthermore, let an r-well-separated partition of C with ℓ layers and parame-
ters (h1, . . . , hℓ) be given. Then we can efficiently find a feasible solution for the connected
k-center problem with disjoint clusters with radius at most (2ℓ− 1)r +

∑ℓ
i=1 hi.

Proof. According to Definition 10 and Algorithm 2, we have the following properties:
(i)

⋃
i∈[ℓ],j∈[ℓi] Ci,j = C

(ii) ∀i, i′, j, j′ with i ̸= i′ or j ̸= j′: Ci,j ∩ Ci′,j′ = ∅
(iii) ∀i ∈ [ℓ], c ∈ Ci,j , c′ ∈ Ci,j′ with j ̸= j′: d(c, c′) > 2r and Tc ∩ Tc′ = ∅
(iv) ∀i ∈ [ℓ], j ∈ [ℓi], c, c′ ∈ Ci,j : d(c, c′) ≤ hi

(v)
⋃

i∈[ℓ],j∈[ℓi]
⋃

c∈Ci,j
Tc = V

In the first step, we adjust the clusters by merging all non-disjoint clusters whose centers
belong to the same group. To be precise, for each group Ci,j we do the following: As long as
there are two different centers c ∈ Ci,j and c′ ∈ Ci,j with Tc ∩ Tc′ ̸= ∅, we remove c′ from

ICALP 2023

50:12 Connected k-Center and k-Diameter Clustering

Ci,j and replace Tc by Tc ∪ Tc′ . That is, we merge the two clusters Tc and Tc′ and define
c as its center. Since centers in the same group on layer i have a distance of at most hi,
after this step the clusters in each group Ci,j are pairwise disjoint and have a radius of at
most r + hi and a diameter of at most 2r + hi. They are still connected because we only
merge connected clusters that have at least one node in common.

Since clusters in different groups of the same layer are pairwise disjoint anyway, all clusters
on the same layer are pairwise disjoint after this step. Hence, in the next step we only need
to describe how clusters from different layers can be made disjoint. For this, it will be helpful
to view the clusters as trees. To make this more precise, consider a cluster Tc with center c.
We know that the subgraph of G induced by Tc is connected. For any cluster Tc we choose
an arbitrary spanning tree in this induced subgraph and consider c to be the root of this tree.
Let Ti denote the set of all such trees in the i-th layer for i ∈ [ℓ]. In the following we will use
the terms clusters and trees synonymously. By abuse of notation we will use Tc to denote
both the cluster with center c and the spanning tree with root c, depending on the context.

For every i ∈ [ℓ], all trees in Ti are node-disjoint. We will now describe how to ensure
that trees on different layers are also node-disjoint. For this, we will go through the
layers i = 1, 2, . . . , ℓ in this order and replace Ti by an adjusted set of trees T ′

i . We will
construct these trees so that at each step i ∈ [ℓ] all trees from ∪j∈[i]T ′

j are pairwise disjoint.
Furthermore, at step i the radius of any tree from ∪j∈[i]T ′

j will be bounded from above by
(2i− 1)r +

∑
j∈[i] hj . Finally, our construction ensures that in the end, the trees in ∪i∈[ℓ]T ′

i

cover all nodes in V . Hence, these trees form a feasible solution to the connected k-center
problem with disjoint clusters with the desired radius.

We set T ′
1 = T1. Then for i = 1, the desired properties are satisfied because the trees

on layer 1 are pairwise disjoint and have a radius of at most r + h1. Now assume that
the properties are true for some i and let us discuss how to ensure them also for i + 1.
We start with T ′

i+1 = ∅ and add trees to it one after another. Consider an arbitrary tree
T ∈ Ti+1 = (V ′, E′) with center c and let V ∗ ⊆ V ′ denote the nodes that also occur in
some tree T ′ ∈ T ′

j for some j ∈ [i]. Observe that any node from V ∗ can be contained in at
most one such tree T ′ because by the induction hypothesis all trees in ∪j∈[i]T ′

j are pairwise
disjoint. If V ∗ is empty then the tree T is disjoint from all trees in ∪j∈[i+1]T ′

j and does not
need to be adjusted. In this case we simply add it to T ′

i+1.
If V ∗ contains only a single node v then we merge the tree T with the unique tree T ′

from T ′
j for some j ≤ i that also contains node v, i.e., we replace T ′ by T ∪ T ′ in T ′

j . Tree T ′

has a radius of at most (2i− 1)r +
∑

j∈[i] hj . Since the diameter of T is at most 2r + hi+1,
the radius of the union of T and T ′ with respect to the center of T ′ is at most (see Figure 5)

(2r + hi+1) + (2i− 1)r +
∑
j∈[i]

hj = (2(i + 1)− 1)r +
∑

j∈[i+1]

hj . (1)

Now consider the case that V ∗ contains more than one node. In this case we cannot
simply merge T with some tree from ∪j∈[i]T ′

j because the resulting tree would not be disjoint
from the other trees. We also cannot merge all trees that contain nodes from V ′ into a single
cluster because the radius of the resulting cluster could be too large. Instead we split the
tree T into multiple components and we merge these components separately with different
trees from ∪j∈[i]T ′

j . For each node v ∈ V ∗ that is not the root c of T we consider the path
from c to v and let e denote the last edge on this path (i.e., the edge leading to v). We
remove edge e from the tree T and thereby split the tree T into two components. Since we do
this for every node from V ∗ \ {c}, the tree T will be split into |V ∗ \ {c}|+ 1 pairwise disjoint
connected components. Each of these components that does not contain the root c contains

L. Drexler, J. Eube, K. Luo, H. Röglin, M. Schmidt, and J. Wargalla 50:13

c′
v c

Figure 5 This figure shows the tree T ′ with center c′ in black and the tree T with center c in
gray. These trees have node v in common. When T and T ′ are merged into a single tree, the radius
of this new tree with respect to c′ is larger than the radius of T ′ by at most the diameter of T .

c

Figure 6 This figure shows the tree T in black. The nodes in V ∗ are marked gray and the edges
that are removed from T are shown dotted. The orange trees depict the trees on lower layers that
contain the nodes from V ∗ and with which the corresponding components are merged.

exactly one node from V ∗. Hence, for each of these components there is a unique tree from
∪j∈[i]T ′

j from which it is non-disjoint. We merge every component with the tree from which
it is non-disjoint (see Figure 6). In the component that contains the root, only the root might
belong to V ∗. If this is the case, we merge it with the unique tree from ∪j∈[i]T ′

j from which
it is non-disjoint. Otherwise, we add this component to T ′

i+1. Since T has a diameter of at
most 2r + hi+1, the same is true for each of the components. By the induction hypothesis,
each tree from ∪j∈[i]T ′

j has a radius of at most (2i− 1)r +
∑

j∈[i] hj . Hence, as in (1), the
radius of the merged clusters is bounded from above by (2(i + 1)− 1)r +

∑
j∈[i+1] hj . ◀

▶ Corollary 12. If there exists a polynomial-time algorithm that computes for any metric (C, d)
and any r an r-well-separated partition with ℓ layers and parameters (h1, . . . , hℓ) then there
exists an approximation algorithm for the connected k-center problem with disjoint clusters
that achieves an approximation factor of 4ℓ− 2 + 2

∑ℓ
i=1 hi/r.

Proof. To obtain the desired approximation factor, we first determine the smallest r for which
Algorithm 2 returns a center set C with |C| ≤ k. Due to Lemma 8, this radius r will be at
most 2r∗, where r∗ denotes the radius of an optimal connected k-clustering with non-disjoint
clusters. Let r∗

D denote the radius of an optimal connected k-clustering with disjoint clusters.
Then r∗

D ≥ r∗ ≥ r/2. According to Lemma 11, the polynomial-time algorithm for computing
an r-well-separated partition can then be used to compute a connected k-clustering with
disjoint clusters and radius at most (2ℓ− 1)r +

∑
i∈[ℓ] hi. The approximation factor of this

k-clustering is

(2ℓ− 1)r +
∑

i∈[ℓ] hi

r∗
D

≤
(2ℓ− 1)r +

∑
i∈[ℓ] hi

r/2 = 4ℓ− 2 + 2
∑
i∈[ℓ]

hi

r
. ◀

ICALP 2023

50:14 Connected k-Center and k-Diameter Clustering

The same algorithm that we developed in this sections for the connected k-center problem
can also be used for the connected k-diameter problem without any modifications. Only the
analysis of the approximation factor needs to be adapted slightly.

Lemma 8 is changed as follows.

▶ Lemma 13. Let r∗ denote the diameter of an optimal connected k-diameter clustering
with non-disjoint clusters. For r ≥ r∗, Algorithm 2 computes a center set C with |C| ≤ k.

Observe that the diameter of the clusters Tc that are computed by Algorithm 2 for some r

can be at most 2r.
A straightforward adaption of Lemma 11 yields the following result.

▶ Lemma 14. Consider an instance (G = (V, E), M = (V, d), k) of the connected k-diameter
problem and assume that Algorithm 2 computes a center set C ⊆ V with |C| ≤ k for some
radius r. Furthermore, let an r-well-separated partition of C with ℓ layers and parame-
ters (h1, . . . , hℓ) be given. Then we can efficiently find a feasible solution for the connected
k-diameter problem with disjoint clusters with diameter at most (4ℓ− 2)r + h1 + 2

∑ℓ
i=2 hi.

Overall we obtain the following corollary.

▶ Corollary 15. If there exists a polynomial-time algorithm that computes for any metric (C, d)
and any r an r-well-separated partition with ℓ layers and parameters (h1, . . . , hℓ) then there
exists an approximation algorithm for the connected k-diameter problem with disjoint clusters
that achieves an approximation factor of 4ℓ− 2 + h1/r + 2

∑ℓ
i=2 hi/r.

4.2 Finding well-separated partitions
With the discussion above, finding a good approximation algorithm is reduced to finding
an efficient algorithm for computing an r-well-separated partition with small L and few
layers. For general metrics, we present an efficient algorithm that computes a well-separated
partition with L = O(r · log k) and ℓ = O(log k). This yields a clustering of radius and
diameter O(r · log2 k). Details can be found in the proof of Theorem 18 in the next section.
We give better results for computing well-separated partitions for Lp-metrics and metric
spaces with bounded doubling dimension in Theorem 20 and Theorem 23. Overall, we get
the following results.

▶ Theorem 16. There exists an O(log2 k)-approximation algorithm for the connected k-center
problem with disjoint clusters and for the connected k-diameter problem with disjoint clusters.
The approximation ratio improves

to O(23·dim(M)) if the metric space has bounded doubling dimension dim(M), and
to O(d · 2d) if the distance is an Lp-metric in Rd.

It is an intriguing question if better well-separated partitions exist for general metrics
and for the special metrics that we have considered. By our framework, better partitions
would immediately give rise to better approximation factors.

We prove in the full version a lower bound of Ω(log log k) for our algorithmic framework.
To be precise, we construct an instance in a general metric space together with a set of
k centers C that could be produced by the algorithm GreedyClustering such that even
the optimal disjoint solution with centers C is worse than the optimal disjoint solution for
arbitrary centers by a factor of Ω(log log k). Hence, to prove a constant-factor approximation
in general metric spaces, one cannot rely on the centers chosen by GreedyClustering.

L. Drexler, J. Eube, K. Luo, H. Röglin, M. Schmidt, and J. Wargalla 50:15

4.2.1 Well-separated partitions in general metrics
According to Corollaries 12 and 15, we only need to find an efficient algorithm for computing
an r-well-separated partition to obtain an approximation algorithm for the connected k-center
and k-diameter problem.

Algorithm 3 computes an r-well separated partition layer by layer. For each layer it
creates the groups in a greedy fashion: At the beginning of a layer i, the set U ′ of all nodes
that are not assigned to previous layers is considered. The goal is to assign as many of these
nodes to the current layer i as possible. For this, we start with an arbitrary node u ∈ U ′

that is not assigned to any previous layer and we create a group around u. First the group
consists only of u itself. Then we iteratively augment the group by adding all nodes to
the group that have a distance of at most 2r from some node that already belongs to the
group. We repeat this augmentation step multiple times one after another. We stop when
the number of new nodes that join the group is smaller than twice the number of nodes
that have already been added to the group for the first time. Then the group around u is
finished and added to layer i. All nodes in the group are removed from U ′. Furthermore, we
also remove all nodes that have a distance of at most 2r from this group from U ′. These
nodes have to be assigned to other layers that are created later to ensure property (iii) in
Definition 10. As long as U ′ is not empty, we repeat the process to create another group on
layer i. The pseudocode is shown as Algorithm 3.

Algorithm 3 PartitionGeneralMetric((C, d), r).

Input: metric (C, d), radius r

1 U ← C; // nodes that still have to be assigned
2 i← 0;
3 while U ̸= ∅ do
4 i← i + 1; // start a new layer
5 j ← 0;
6 U ′ ← U ; // nodes that could still be assigned on i-th layer
7 while U ′ ̸= ∅ do
8 j = j + 1; // create a new group in i-th layer
9 select a node u ∈ U ′, Ci,j ← {u} and N0(u)← {u};

10 U ′ ← U ′ \ {u};
11 U ← U \ {u};
12 s = 1;
13 while s ̸= 0 and U ′ ̸= ∅ do
14 Ns(u)← {x ∈ U ′ | ∃v ∈ Ns−1(u) : d(v, x) ≤ 2r};

// nearby nodes of nodes Ci,j in U ′

15 if |Ns(u)| ≥ 2 · |Ci,j | then
16 Ci,j ← Ci,j ∪Ns(u); // add nearby nodes to Ci,j

17 U ′ ← U ′ \Ns(u);
18 U ← U \Ns(u);
19 s = s + 1;
20 else
21 U ′ ← U ′ \Ns(u); // nearby nodes cannot be on i-th layer
22 s = 0; // end group of node u

Output: {C1,1, C1,2, . . .}, {C2,1, C2,2, . . .}, . . .

ICALP 2023

50:16 Connected k-Center and k-Diameter Clustering

▶ Lemma 17. Let (C, d) be an arbitrary metric with k := |C| and r > 0. Let ℓ = 1+⌊log 3
2
(k)⌋

and h = 4r⌊log3 k⌋. The output of Algorithm 3 is an r-well-separated partition with at most
ℓ layers and parameters (h, . . . , h).

Proof. Let {C1,1, . . . , C1,ℓ1}, {C2,1, . . . , C2,ℓ2}, . . . , {Cℓ,1, . . . , Cℓ,ℓℓ
} denote the output of Al-

gorithm 3. The algorithm ensures that every point from C is contained in exactly one
group Ci,j because when nodes are deleted from U in Line 18 they have been added to Ci,j

in Line 16. Furthermore U ′ is always a subset of U and so no node can be assigned to
multiple clusters. Furthermore, Lines 14 and 21 ensure that nodes in different groups of
the same layer are more than 2r apart. This shows that the properties (i), (ii), and (iii) in
Definition 10 are satisfied.

Next we show property (iv) that the maximum diameter of every group is h. As long as
the number of nearby nodes in Ns(u) is at least twice the number of the previously grouped
nodes in ∪s−1

t=1 Nt(u), we add these nearby nodes to the current group. As long as this is true
we have

|Ns(u)| ≥ 2 ·
s−1∑
t=0
|Nt(u)|.

Together with |N0(u)| = 1, this implies | ∪s
t=1 Nt(u)| ≥ 3s for every s by a simple inductive

argument. Since this set cannot contain more than k = |C| nodes, we have Ci,j =
⋃h

s=1 Ns(u)
for some h ≤ ⌊log3 k⌋. For any s ≥ 1, any node in Ns(u) has a distance of at most 2r

from some node in Ns−1(u). Since u is the only node in N0(u), this implies that any node
has a distance of at most 2rh from u. Hence, the diameter of every group is at most
4rh ≤ 4r⌊log3 k⌋. This shows property (iv) in Definition 10.

Now it only remains to bound the number of layers of the partition. When a new layer is
started, U ′ is set to U , the set of yet unassigned nodes in Line 6. When a group is formed
then its current neighbors Ns(u) get removed from U ′ in Line 21. These are exactly the
nodes that do not get assigned to the current layer and have to be assigned to other layers
afterwards. Since line 21 is only reached if |Ns(u)| is smaller than twice |Ci,j |, at least one
third of the initially unassigned nodes get assigned to groups on the current layer and at
most two thirds are postponed to other layers afterwards. This implies that after ℓ layers,
there are no more than (2

3)ℓ · k nodes left to be assigned. Hence, the number of layers cannot
be more than 1 + ⌊log 3

2
(k)⌋. ◀

Based on Corollaries 12 and 15, it is now easy to prove the following theorem.

▶ Theorem 18. There exists an O(log2 k)-approximation algorithm for the connected k-center
problem and for the connected k-diameter problem with disjoint clusters.

Proof. According to Lemma 17, one can efficiently compute for any metric an r-well-separated
partition with at most ℓ layers and parameters (h, . . . , h) for ℓ = 1 + ⌊log 3

2
(k)⌋ = O(log k)

and h = 4r⌊log3 k⌋ = O(r · log k).
By Corollary 12 this implies that we can efficiently find a solution for the connected

k-center problem with disjoint clusters with approximation factor

4ℓ− 2 + 2
ℓ∑

i=1
h/r = O(ℓ + ℓh/r) = O(log k + log2 k) = O(log2 k).

L. Drexler, J. Eube, K. Luo, H. Röglin, M. Schmidt, and J. Wargalla 50:17

Figure 7 In the upper row, colorings for d = 1 and d = 2 are shown. In the lower row on the
right, a coloring for d = 3 is shown. It is composed of alternatingly using the 2-dimensional colorings
shown on the left.

By Corollary 15, it also implies that we can efficiently find a solution for the connected
k-diameter problem with disjoint clusters with approximation factor

4ℓ− 2 + h1/r + 2
ℓ∑

i=2
hi/r = O(ℓ + ℓh/r) = O(log k + log2 k) = O(log2 k). ◀

4.2.2 Well-separated partitions in Euclidean metrics
In this section, we study how to compute an r-well-separated partition if the metric is an
Lp-metric in the d-dimensional space Rd for some p ∈ {1, 2, . . . ,∞}.

▶ Lemma 19. For any Lp-metric in Rd, an r-well-separated partition with 2d layers and
parameters (h, . . . , h) with h = 3d1/pr can be computed in polynomial time.

Proof. First we partition the space Rd into d-dimensional hypercubes with side length 3r.
These hypercubes are chosen such that they are pairwise disjoint and that they cover the
entire space. Then we color these hypercubes such that no two neighboring hypercubes get
the same color where also diagonal neighbors are taken into account (see Figure 7). Based on
this coloring we create the following r-well-separated partition: each color corresponds to one
layer of the partition and within a layer all nodes that belong to the same hypercube form a
group. Since the distance of two hypercubes of the same color is at least 3r, property (iii) of
Definition 10 is satisfied. Properties (i) and (ii) are satisfied because the hypercubes partition
the space Rd. Finally, the diameter of any of the hypercubes is bounded from above by
(
∑d

i=1(3r)p)1/p = 3d1/pr, which also proves property (iv).
It remains to bound the number of layers, i.e., the number of different colors necessary to

color the hypercubes. One can prove by induction that 2d colors are sufficient. For d = 1,
one simply colors the hypercubes alternatingly with two different colors. For d ≥ 2, we first
pick two different colorings of Rd−1 with 2d−1 colors each such that the two colorings do not
have a color in common. Then we color the hypercubes in Rd by alternatingly using one
of the two (d− 1)-dimensional colorings. This way, we obtain a coloring of the hypercubes
in Rd with 2d colors (see Figure 7). ◀

ICALP 2023

50:18 Connected k-Center and k-Diameter Clustering

Based on Corollaries 12 and 15, it is now easy to prove the following theorem.

▶ Theorem 20. For any Lp-metric in Rd, there exists an O(d · 2d)-approximation algorithm
for the connected k-center problem and for the connected k-diameter problem with disjoint
clusters.

Proof. According to Lemma 19, we can efficiently compute an r-well-separated partition
with 2d layers and parameters (h, . . . , h) for h = 3d1/pr.

By Corollary 12 this implies that we can efficiently find a solution for the connected
k-center problem with disjoint clusters with approximation factor

4ℓ− 2 + 2
ℓ∑

i=1
h/r = O(d · 2d).

By Corollary 15, it also implies that we can efficiently find a solution for the connected
k-diameter problem with disjoint clusters with approximation factor

(4ℓ− 2) + h1/r + 2
ℓ∑

i=2
hi/r = O(d · 2d). ◀

4.2.3 Well-separated partitions in metrics with small doubling dimension
In this section, we study how to compute an r-well-separated partition if the metric has
constant doubling dimension. This generalizes Lemma 19 for Euclidean spaces.

▶ Definition 21 (doubling dimension). The doubling constant of a metric space M = (X, d)
is the smallest number k such that for all x ∈ X and r > 0, the ball Br(x) := {y ∈ X |
d(x, y) ≤ r} can be covered by at most k balls of radius r/2, i.e.,

∀x ∈ X : ∀r > 0 : ∃Y ⊆ X, |Y | ≤ k : Br(x) ⊆
⋃

y∈Y

Br/2(y).

The doubling dimension of M is defined as dim(M) = ⌈log2 k⌉.

▶ Lemma 22. For any metric M = (X, d) with doubling dimension dim(M), an r-well-
separated partition with 23·dim(M) layers and parameters (h, . . . , h) with h = 2r can be
computed in polynomial time.

Proof. First we partition X greedily into balls of radius r: As long as not all points of X

are covered, we choose arbitrarily an uncovered point x from X and put x into one group
together with all uncovered points that have a distance of at most r from x. This way, we
get a partition of X into groups with radius at most r.

Next, we try to reduce the number of groups by local improvements. We say that two
groups are neighboring if the distance of their centers is at most 4r. As long as there is
a group that has at least 23·dim(M) neighbors, we replace this group and its neighbors by
23·dim(M) groups as follows: Let x be a center of a group that has at least 23·dim(M) neighbors,
and let the centers of the neighbors be Y ⊆ X. Since x has a distance of at most 4r from all
centers in Y , we have

Br(x) ∪y∈Y Br(y) ⊆ B5r(x).

By definition of the doubling dimension, the ball B5r(x) can be covered by 2dim(M) balls
of radius 5r/2, each of these can be covered by 2dim(M) balls of radius 5r/4 < 2r, and
each of these can be covered by 2dim(M) balls of radius 5r/8 < r. Hence, the points in

L. Drexler, J. Eube, K. Luo, H. Röglin, M. Schmidt, and J. Wargalla 50:19

Br(x)∪y∈Y Br(y) can be covered by 23·dim(M) balls of radius r. In our partition, we replace the
groups around x and around y ∈ Y by the groups induced by these balls. Since this reduces
the number of groups by at least one, after a linear number of these local improvements, no
local improvement is possible anymore, i.e., every group has less than 23·dim(M) neighbors.

We have obtained a partition of X into groups, where each group has a radius of at most r.
Furthermore, each group has a center and two groups are neighbors if their centers have a
distance of at most 4r. Furthermore, every group has less than 23·dim(M) neighbors. The
groups will form the groups in the r-well-separated partition. Since points from groups that
are not neighbored have a distance of more than 2r, two groups that are not neighbored can
be on the same layer of the partition without contradicting property (iii) from Definition 10.
The diameter of each group is at most h = 2r. It remains to distribute the groups to the
different layers of the partition. For this we find a coloring of the groups such that neighboring
groups get different colors. The neighborhood defines implicitly a graph with the groups as
vertices with degree at most 23·dim(M) − 1. Any such graph can be colored with 23·dim(M)

colors by a greedy algorithm. Now we assign the groups according to the colors to different
layers, resulting in an r-well-separated partition with at most 23·dim(M) layers. ◀

Based on Corollaries 12 and 15, it is now easy to prove the following theorem.

▶ Theorem 23. For any metric M = (X, d) with doubling dimension dim(M), there exists
an O(23·dim(M))-approximation algorithm for the connected k-center problem and for the
connected k-diameter problem with disjoint clusters.

Proof. According to Lemma 19, we can efficiently compute an r-well-separated partition
with 23·dim(M) layers and parameters (h, . . . , h) for h = 2r.

By Corollary 12 this implies that we can efficiently find a solution for the connected
k-center problem with disjoint clusters with approximation factor

4ℓ− 2 + 2
ℓ∑

i=1
h/r = O(23·dim(M)).

By Corollary 15, it also implies that we can efficiently find a solution for the connected
k-diameter problem with disjoint clusters with approximation factor

4ℓ− 2 + h1/r + 2
ℓ∑

i=2
hi/r = O(23·dim(M)). ◀

5 Conclusions

We studied the connected k-center and k-diameter problem and proved several new results
on the approximability of different variants of these problems. In particular, we developed
a general framework to obtain approximation algorithms for the disjoint versions of these
problems that relies on the existence of well-separated partitions. While we obtain constant-
factor approximations for Lp-metrics in constant dimension and metrics with constant
doubling dimension, our general upper bound is O(log2 k). Since all our lower bounds are
constant, an obvious open question is to close the gaps between the upper and lower bounds.
One possibility to approach this would be to derive better well-separated partitions. However,
we also show that with our approach no bound better than O(log log k) can be shown.

ICALP 2023

50:20 Connected k-Center and k-Diameter Clustering

References
1 Moses Charikar, Samir Khuller, David M. Mount, and Giri Narasimhan. Algorithms for facility

location problems with outliers. In S. Rao Kosaraju, editor, Proceedings of the Twelfth Annual
Symposium on Discrete Algorithms (SODA), pages 642–651. ACM/SIAM, 2001.

2 Marek Cygan, MohammadTaghi Hajiaghayi, and Samir Khuller. LP rounding for k-centers
with non-uniform hard capacities. In Proceedings of the 53rd Annual IEEE Symposium on
Foundations of Computer Science (FOCS), pages 273–282. IEEE Computer Society, 2012.
doi:10.1109/FOCS.2012.63.

3 Hu Ding and Jinhui Xu. A unified framework for clustering constrained data without locality
property. In Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1471–1490. SIAM, 2015.

4 Rong Ge, Martin Ester, Byron J. Gao, Zengjian Hu, Binay K. Bhattacharya, and Boaz Ben-
Moshe. Joint cluster analysis of attribute data and relationship data: The connected k-center
problem, algorithms and applications. ACM Trans. Knowl. Discov. Data, 2(2):7:1–7:35, 2008.
doi:10.1145/1376815.1376816.

5 Teofilo F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical
Computer Science, 38:293–306, 1985.

6 Neelima Gupta, Aditya Pancholi, and Yogish Sabharwal. Clustering with internal con-
nectedness. In Proc. of 5th Intl. Workshop on Algorithms and Computation (WALCOM),
volume 6552 of Lecture Notes in Computer Science, pages 158–169. Springer, 2011. doi:
10.1007/978-3-642-19094-0_17.

7 Dorit S. Hochbaum. When are np-hard location problems easy? Ann. Oper. Res., 1(3):201–214,
1984. doi:10.1007/BF01874389.

8 Dorit S. Hochbaum and David B. Shmoys. A unified approach to approximation algorithms
for bottleneck problems. Journal of the ACM, 33(3):533–550, 1986.

9 Simon J. Holgate, Andrew Matthews, Philip L. Woodworth, Lesley J. Rickards, Mark E.
Tamisiea, Elizabeth Bradshaw, Peter R. Foden, Kathleen M. Gordon, Svetlana Jevrejeva,
and Jeff Pugh. New data systems and products at the permanent service for mean sea level.
Journal of Coastal Research, 29:493–504, 2013.

10 Wen-Lian Hsu and George L. Nemhauser. Easy and hard bottleneck location problems.
Discrete Applied Mathematics, 1(3):209–215, 1979.

11 Ravishankar Krishnaswamy, Shi Li, and Sai Sandeep. Constant approximation for k-median
and k-means with outliers via iterative rounding. In Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing (STOC), pages 646–659, 2018.

12 Zhung-Xun Liao and Wen-Chih Peng. Clustering spatial data with a geographic constraint: ex-
ploring local search. Knowl. Inf. Syst., 31(1):153–170, 2012. doi:10.1007/s10115-011-0402-8.

13 Permanent Service for Mean Sea Level (PSMSL). Tide gauge data, retrieved on 03 February
2022 from http://www.psmsl.org/data/obtaining/.

https://doi.org/10.1109/FOCS.2012.63
https://doi.org/10.1145/1376815.1376816
https://doi.org/10.1007/978-3-642-19094-0_17
https://doi.org/10.1007/978-3-642-19094-0_17
https://doi.org/10.1007/BF01874389
https://doi.org/10.1007/s10115-011-0402-8
http://www.psmsl.org/data/obtaining/

On Sparsification of Stochastic Packing Problems
Shaddin Dughmi # Ñ

University of Southern California, Los Angeles, CA, USA

Yusuf Hakan Kalayci # Ñ

University of Southern California, Los Angeles, CA, USA

Neel Patel #

University of Southern California, Los Angeles, CA, USA

Abstract
Motivated by recent progress on stochastic matching with few queries, we embark on a systematic
study of the sparsification of stochastic packing problems more generally. Specifically, we consider
packing problems where elements are independently active with a given probability p, and ask whether
one can (non-adaptively) compute a “sparse” set of elements guaranteed to contain an approximately
optimal solution to the realized (active) subproblem. We seek structural and algorithmic results
of broad applicability to such problems. Our focus is on computing sparse sets containing on the
order of d feasible solutions to the packing problem, where d is linear or at most polynomial in 1

p
.

Crucially, we require d to be independent of the number of elements, or any parameter related to
the “size” of the packing problem. We refer to d as the “degree” of the sparsifier, as is consistent
with graph theoretic degree in the special case of matching.

First, we exhibit a generic sparsifier of degree 1
p

based on contention resolution. This sparsifier’s
approximation ratio matches the best contention resolution scheme (CRS) for any packing problem
for additive objectives, and approximately matches the best monotone CRS for submodular objectives.
Second, we embark on outperforming this generic sparsifier for additive optimization over matroids
and their intersections, as well as weighted matching. These improved sparsifiers feature different
algorithmic and analytic approaches, and have degree linear in 1

p
. In the case of a single matroid,

our sparsifier tends to the optimal solution. In the case of weighted matching, we combine our
contention-resolution-based sparsifier with technical approaches of prior work to improve the state of
the art ratio from 0.501 to 0.536. Third, we examine packing problems with submodular objectives.
We show that even the simplest such problems do not admit sparsifiers approaching optimality. We
then outperform our generic sparsifier for some special cases with submodular objectives.

2012 ACM Subject Classification Theory of computation → Packing and covering problems

Keywords and phrases Stochastic packing, sparsification, matroid

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.51

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/pdf/2211.07829.pdf

Funding Supported by NSF grant CCF-2009060.

Acknowledgements We are grateful to the anonymous reviewers for their thoughtful feedback on
the earlier version of this paper.

1 Introduction

Our starting point for this paper is the beautiful line of recent work on variants of the
stochastic matching problem, seeking approximate solutions with limited query access to the
(stochastic) data [9, 3, 2, 4, 8, 7, 6, 5]. Notably, many of the algorithms in these works are
non-adaptive, and can therefore be interpreted as “sparsifiers” for the stochastic problem.

EA
T
C
S

© Shaddin Dughmi, Yusuf Hakan Kalayci, and Neel Patel;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 51; pp. 51:1–51:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shaddin@usc.edu
https://viterbi-web.usc.edu/~shaddin/
https://orcid.org/0000-0002-2784-1868
mailto:kalayci@usc.edu
https://yhkalayci.github.io/
https://orcid.org/0009-0005-9524-4677
mailto:neelbpat@usc.edu
https://orcid.org/0000-0002-1942-778X
https://doi.org/10.4230/LIPIcs.ICALP.2023.51
https://arxiv.org/pdf/2211.07829.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

51:2 On Sparsification of Stochastic Packing Problems

These works feature powerful new algorithmic and analytic sparsification techniques of
possibly more general interest, suggesting that effective sparsifiers might exist well beyond
matching and closely related problems.

Our goal in this paper is to coalesce a broader agenda on the sparsification of combinatorial
stochastic optimization problems more generally, beginning with the natural and broad class
of packing problems. We ask, and make progress on, the fundamental questions: For which
stochastic packing problems is effective sparsification possible? What are the algorithmic
techniques and blueprints which are broadly applicable? What are the barriers to progress?

Concretely, we examine stochastic packing problems (SPPs) of the following (fairly
general) form. We are given a set system (E, I), where E is a finite set of elements and
I ⊆ 2E is a downwards-closed family of feasible sets (often also referred to as independent
sets, in particular for matroids). Also given is an objective function f : 2E → R+, which we
assume to be either additive (a.k.a. modular) or submodular. The stochastic uncertainty is
described by a given probability p ∈ [0, 1]: We assume that each element of E is active, i.e.,
viable for being selected, independently with probability p. The goal of the SPP is to select
a feasible set of active elements maximizing the objective function.

When the set R of active elements is given, or can be queried without restriction, this
reduces to non-stochastic optimization for the induced subproblem on R. We refer to the
output of such an omniscient [approximation] algorithm as an [approximate] stochastic
optimum solution. We are instead concerned with algorithms that approximate the stochastic
optimum by querying the activity status of only a small, a.k.a. “sparse”, set of elements
Q ⊆ E. In particular, as in much of the prior work we require the queried set Q to be chosen
non-adaptively. Such algorithms can equivalently be thought of as factoring into two steps:
First, a sparsification algorithm (or sparsifier for short) computes a (possibly random) set of
elements Q. Second, we learn R∩Q, and an [approximate] optimization algorithm is applied
to the (now fully-specified) subproblem induced by R ∩Q. Since the second (optimization)
step is familiar and well-studied, our focus is on the first step, namely sparsification.

We evaluate a sparsifier by two quantities. The first quantity is a familiar one, namely
its approximation ratio. Specifically, a sparsifier is α-approximate if it guarantees an α-
approximation to the stochastic optimum solution when combined with a suitable algorithm
in the second (optimization) step. The second quantity is a measure of the “sparsity” of
the set Q selected by the sparsifier. We say our sparsifier is of degree d if it guarantees
E[|Q|] ≤ d · r, where r = max{|S| : S ∈ I} is the rank of the set system (E, I). Intuitively,
the sparsification degree refers to the level of “contingency” or “redundancy” in the sparsified
instance, relative to the size of maximal feasible solutions. Loosely speaking, the degree of
a sparsifier roughly measures “how many” feasible solutions are maintained to account for
uncertainty in the problem. Somewhat fortuitously, our definition of degree specializes to the
(average) graph-theoretic degree in the special case of matching, lending consistency with
prior work on stochastic matching with few queries.

We study sparsifiers whose degree admits an upperbound that is independent of the
size of the system; The degree bound can not depend on the number of elements or the
rank of the set system, for example. We focus especially on the “polynomial regime”, where
the degree is restricted to be at most polynomial in 1

p . We pursue sparsifiers which are
constant-approximate, or in the best case (1− ϵ)-approximate for arbitrarily small ϵ > 0.

Results and Techniques
We begin with the observation that a degree of at least 1

p is necessary for constant-approximate
sparsification, even for the simplest of packing problems: a rank one matroid and the
unweighted additive objective. We then establish a “baseline” of possibility for all stochastic

S. Dughmi, Y. H. Kalayci, and N. Patel 51:3

packing problems, through a generic sparsifier with this same degree 1
p . This sparsifier is

simple: it computes (or estimates) the marginals {qe}e∈E of the stochastic optimum solution,
and outputs a set Q which includes each element e independently with probability qe

p . For
SPPs with an additive objective, we show that this sparsifier’s approximation ratio matches
the balance ratio of the best contention resolution scheme (CRS)1. for the set system. When
the objective is submodular, we approximately match the balance ratio of the best monotone
CRS up to a factor of 1− 1

e . We note that contention resolution is only used as a proof tool
to certify our sparsifier’s approximation guarantee, and is not invoked algorithmically. In
settings where the marginals {qe}e∈E are intractable to compute, this sparsifier can be made
computationally efficient by resorting to approximation, in which case its approximation
ratio degrades in the expected manner. This generic result yields constant-approximate
sparsifiers of degree 1

p for a large variety of set systems for which contention resolution has
been studied, including matroids and their intersections.

Next, we embark on “beating” this contention resolution baseline for natural SPPs. We
succeed at doing so for additive (weighted) optimization over matroids, matroid intersections,
and matchings. For a single matroid, we derive a simple greedy sparsifier which is (1− ϵ)-
approximate and has degree 1

p · log(1/ϵ). This sparsifier repeatedly adds a maximum weight
independent set of the matroid to the sparse set Q, and removes it from the matroid, until
the desired degree is reached. Though our sparsifier is simple, its analysis is (we believe
necessarily) less so.

For matroid intersections, we first argue that adaptations of our single-matroid sparsifier
cannot succeed, due to feasible sets not “combining well” as they do in the case of a single
matroid. Instead, our sparsifier for matroid intersections repeatedly samples the stochastic
optimum solution and adds it to the sparse set Q, for a degree of O(1

pϵ · log(1/ϵ)). The
approximation ratio of our sparsifier for the intersection of k matroids is 1−ϵ

k+1/(k+1) , which
beats the best known bound on the correlation gap of 1/(k + 1) [1]. The analysis of this
sparsifier is again nontrivial, and utilizes basis exchange maps.

For matroids and matroid intersections, we note that analysis techniques employed by
prior work on matching do not appear to suffice. In particular, prior work on matching
often employs concentration arguments on the active degree of matroid “flats” containing
an element; this is sufficient in the case of matching, since each element is in at most two
binding flats (one for each partition matroid). For general matroids, such concentration
arguments fail to bound the degree in a manner independent of the number of elements,
necessitating alternative proof approaches like ours.

For general (non-bipartite) matching, we augment our contention-resolution-baseline
sparsifier with samples from the stochastic optimum solution, for a total degree of O(1/p).
We show that the samples from the stochastic optimum combine well with our baseline
sparsifier. We obtain an approximation ratio which is a function of the (as yet not fully
known) correlation gap of the matching polytope. This function exceeds the identity function
everywhere, implying that our sparsifier strictly improves on the contention resolution
baseline. Plugging in the best known lowerbound of 0.474 on the correlation gap from [17],
we guarantee that our sparsifier is 0.536 approximate. This improves on the state of the
art in the polynomial regime, 0.501-approximate sparsifier of degree poly (1/p) due to [8].
In addition, assuming the conjecture from [20] which states the existence of 0.544 balanced
CRS for general matching polytope implies that our sparsifier is 0.598 approximate.

1 This is equal to the set system’s correlation gap, as shown by [12].

ICALP 2023

51:4 On Sparsification of Stochastic Packing Problems

Table 1 Summary of information theoretic sparsifiers for additive objectives. Here, n is the
number of elements and W is the maximum element weight.

Previous Results This Work

Constraint Approx.
Ratio Sparsification Degree Approx.

Ratio
Sparsification

Degree
Matroid 1 − ϵ [14] O

(
1
p

log Rank
ϵ

)
1 − ϵ 1

p
· log

(
1
ϵ

)
k-Matroid

Intersection
1−ϵ
2k

[18] O
(

W
p

log n log
(

n
ϵ

)
k
ϵ3

)
1−ϵ

k+ 1
k+1

1
ϵ·p · log

(
1
ϵ

)
General

Matching 1 − ϵ [6] O (exp(exp(exp(1/p)))) 0.536 O
(

1
p

)
General

Matching 0.501 [8] O
(

1
p

)
0.536 O

(
1
p

)

Finally, we further examine stochastic packing problems with submodular objectives.
Our (1− ϵ)-approximate sparsifier for weighted matroid optimization might tempt one to
conjecture a similar result for submodular optimization over simple enough set systems.
However, we show by way of an information-theoretic impossibility result that no sparsifier
with degree bound independent of the number of elements can beat (1 − 1/e), even for
optimizing a coverage function subject to a uniform matroid constraint. We complement this
impossibility result with algorithmic sparsification results for optimizing coverage functions
over matroids, improving over the guarantees provided by our baseline generic sparsifier.
Due to limited space, the results for submodular SPPs are detailed in the full version of this
paper [13](Section 8).

Additional Discussion of Related Work
The exploration of sparsifying SPPs was initiated by [9], who focus on the unweighted
stochastic matching problem. This problem has since been studied extensively in a series
of works [4, 8, 7, 6] which attempt to beat the benchmark set by [9]. In the “polynomial-
degree regime”, the state-of-the-art sparsifier for unweighted stochastic matching is a 0.66-
approximation due to [2]. Recent work by [5] improves this approximation to e

e+1 for
unweighted bipartite matching. For weighted stochastic matching in the polynomial-degree
regime, the current best known sparsifier is a 0.501-approximation due to [8]. Going
beyond polynomial degree, [7, 6] constructed a (1− ϵ)-approximate sparsifier with degree
exp(exp(exp(1/p)))the weighted general matching problem. The sparsifiers designed for the
stochastic matching problems rely heavily on structural properties particular to matching.
Our techniques, on the other hand, are targeted at more general packing problems.

To the best of our knowledge, the work of [18, 19] stands alone in directly studying the
sparsification of SPPs beyond matching. In [18], they proposed a general framework for
solving stochastic packing integer programs. As a corollary of their techniques, they obtain
non-adaptive sparsifiers for several additive SPPs. However, the degree of their sparsification
algorithms intrinsically depends on the number of elements in settings where a single element
may be in an exponential number of binding constraints (as is the case for matroids). Our
work, in contrast, proposes several algorithmic techniques that yield approximate sparsifiers
with degree independent of the number of elements.

Also related is the work of [14], which studies the covering analogue of our question for
matroids. They show how to construct a set of size O(Rank

p log Rank
ϵ) which is guaranteed

to contain a minimum-weight base of the matroid with high probability. This implicitly

S. Dughmi, Y. H. Kalayci, and N. Patel 51:5

Table 2 Summary of information theoretic sparsifiers for monotone submodular objectives. All
mentioned results are shown in this paper.

Constraint Approximation Ratio Sparsification
Degree Note

r-Uniform
Matroid

(
1 − 1

e

)
·
(

1 − 1√
r+3

)
1
p

(
1 − 1

e

)
upperbound,

Optimal when r → ∞
Matroid

(
1 − 1

e

)2 1
p

1 − 1
e

upperbound
k-Matroid

Intersection
(
1 − 1

e

)
· 1

k+1
1
p

implies an O(1
p log Rank

ϵ)-degree sparsifier for weighted stochastic packing on matroids. Their
analysis is tight for the covering setting, and it appears nontrivial to adapt their techniques
for the packing setting in order to remove the degree’s dependence on the rank. We compare
our results for additive SPPs with prior work in Table 1.

The manuscript [19] proposes sparsifiers for SPPs with a monotone submodular objectives.
However, their sparsification algorithms are intrinsically adaptive in nature. To the best of
our knowledge, ours is the first work that analyzes SPPs with submodular objectives in the
non-adaptive setting. We summarize our results for submodular SPPs in Table 2.

2 Problem Definition

We consider packing problems of the form ⟨E, I, f⟩ where E is a ground set of elements with
cardinality n, f : 2E → R≥0 is an objective function, and I ⊆ 2E is a downwards-closed
family of independent sets (a.k.a. feasible sets). We use r = argmax{|I| : I ∈ I} to denote
the rank of the set system I. The aim of the packing problem is to select an independent set
O ∈ I that maximizes f(O).

In this paper, we study packing problems in a particular setting with uncertainty paramet-
rized by p ∈ [0, 1]. In a stochastic packing problem (SPP) ⟨E, I, f, p⟩, nature selects a random
set R ⊆ E of active elements such that Pr[e ∈ R] = p independently for all e ∈ E. We
are then tasked with solving the induced (random) packing problem on the active elements,
namely ⟨R, I|R, f |R⟩ where I|R and f |R denote the restriction of I and f to subsets of
R, respectively. We refer to an [approximately] optimum solution to ⟨R, I|R, f |R⟩ as an
[approximate] stochastic optimum solution. We use OPT to denote the expected value of a
stochastic optimum solution, i.e.,

OPT(E, I, f, p) = ER

max
T ∈I
T ⊆R

f(T)

 ,

where R ⊆ E is the random set which each element of E independently with probability p.
We assume that the set R of active elements is a-priori unknown, and that we can query

elements in E to check their membership in R. Motivated by settings in which queries are
costly, we seek algorithms which query a small (we say “sparse”) subset of the elements, and
moreover choose those queries non-adaptively. Such non-adaptive algorithms can be thought
of as factoring into two steps: A sparsification step which selects the small set Q ⊆ E of
queries, and an optimization step which solves the packing problem ⟨R∩Q, I|R∩Q, f |R∩Q⟩
induced by the queried active elements. For the optimization step, we assume access to a
traditional [approximation] algorithm. Our focus is on algorithms for the sparsification step,
which we define formally next.

ICALP 2023

51:6 On Sparsification of Stochastic Packing Problems

A sparsification algorithm (or sparsifier for short) A takes as input an SPP J = ⟨E, I, f, p⟩
from some family of SPPs, and outputs a (possibly random) set of elements Q ⊆ E. The
twin goals here are for Q to be “sparse” in a quantified formal sense we describe shortly,
while guaranteeing that optimally solving the “sparsified” SPP J |Q = ⟨Q, I|Q, f |Q, p⟩ yields
an approximate solution to the original SPP J . We say that the sparsification algorithm A
is α-approximate if it guarantees OPT(J |Q) ≥ α OPT(J) – i.e., an optimal solution to the
sparsified SPP is an α-approximate solution to the original SPP. We sometimes identify the
sparsified SPP J |Q with Q when J is clear from the context.

To quantify sparsity, we say that A has sparsification degree d if it guarantees that
E[|Q|]

r ≤ d, where r is the rank of the set system I, and expectation is over the internal
random coins of A. Intuitively, the degree of sparsification refers to the level of “contingency”
or “redundancy” in the sparsified instance, relative to the size of maximal feasible solutions.
Loosely speaking, the degree of a sparsifier roughly measures “how many” feasible solutions
it maintains to account for uncertainty in the problem.

In the absence of a bound on degree, an approximation factor of α = 1 is trivially
achievable. We aim to construct approximate sparsifiers of low degree for natural classes of
SPPs. We begin by observing that a degree of Ω(1/p) is necessary for constant approximation,
even for the simplest of constraints.

▶ Example 1. Consider the SPP with n elements, the unweighted additive objective function
f(S) = |S|, a rank-one matroid constraint, and activation probability p = 1/n. There is at
least one active element with probability 1− (1− p)n ≥ 1− 1/e, therefore OPT ≥ 1− 1/e.
On the other hand, a set of elements Q will contain no active elements with probability
(1− p)|Q| ≥ 1− |Q| · p = 1− |Q|

n . When |Q| = o(1/p) = o(n), there are no active elements
in Q with probability 1− o(1). Therefore, any constant-approximate sparsifier must have
degree Ω(1/p).

We also show in in the full version of this paper [13] that, unsurprisingly, there exist
stochastic packing problems which do not admit constant approximate sparsifiers with degree
poly(1/p). Given these simple impossibility results, we ask a natural question:

▶ Question 2. Which stochastic packing problems admit constant approximate sparsifiers of
degree O

(
1
p

)
, or more loosely poly

(
1
p

)
?

In this paper, we focus on designing sparsification algorithms for stochastic packing
problems with additive or nonnegative monotone submodular objectives.

A Note on Input Representation

Many of our results are information theoretic, and therefore make no assumptions on
how a stochastic packing problem is represented. Most of our algorithmic results, on the
other hand, only require solving realized (non-stochastic) instances of the packing problem,
possibly approximately. Specifically, for a stochastic packing problem ⟨E, I, f, p⟩ we often
assume access to a [β-approximate] stochastic optimal oracle. Such an oracle samples a
[β-approximate] solution to the (random) packing problem ⟨R, I|R, f |R⟩, where R includes
each element of E independently with probability p, and I|R and f |R denote the restriction
of I and f to R respectively. For our algorithmic results on matroids, we additionally assume
access to an independence oracle, as is standard.

S. Dughmi, Y. H. Kalayci, and N. Patel 51:7

3 Sparsification from Contention Resolution

In this section, we show how to generically derive a sparsifier for a stochastic packing problem
from bounds on contention resolution for the associated set system. First, we recall the
relevant definition of contention resolution.

▶ Definition 3 ([12]). Let (E, I) be a set system, and let PI = convexhull{1I : I ∈ I} denote
the associated polytope. A Contention Resolution Scheme (CRS) π for PI is a (randomized)
algorithm which takes as input a point x ∈ PI and a set of active elements R(x) ⊆ E,
including each element i ∈ E independently with probability xi, and outputs a feasible subset
πx(R(x)) ⊆ R(x), πx(R(x)) ∈ I. For b, c ∈ [0, 1], we say a CRS is (b, c)-balanced if for all
i ∈ E and x ∈ b · PI , Pr[i ∈ πx(R(x)) | i ∈ R(x)] ≥ c. A CRS π is monotone if for every
S ⊆ T ⊆ E we have that Pr[i ∈ π(S) | i ∈ S] ≥ Pr[i ∈ π(T) | i ∈ T].

Our generic sparsifier is randomized, has degree 1
p , and is shown in Algorithm 1. Our

sparsifier computes estimated marginals q for the stochastic optimum solution. For an
information-theoretic result, we can assume these to be exact. Then it samples each element
e ∈ E in a sparse set Q with probability qe

p .
When the objective function f is additive, our sparsifier has an approximation factor that

matches the balance ratio of the best CRS for PI .2 For nonnegative monotone submodular
functions, the approximation factor matches the balance ratio of the best monotone CRS for
PI . This is due to the observation that each element e ∈ E is included in the active subset
of the sparse set Q with probability qe and the fact that q ∈ PI . The detailed proof for
Theorem 4 can be found in the full version [13].

Algorithm 1 Generic Sparsifier for a Stochastic Packing Problem ⟨E, I, f, p⟩.
Input: Stochastic packing problem ⟨E, I, f, p⟩

Compute the marginals q of the stochastic optimum solution, or an approximation thereof.
Q← ∅;
for all e ∈ E do

Add e to Q with probability qe

p (independently)
end for
Output: Sparse set Q.

▶ Theorem 4. Consider Algorithm 1, implemented with exact (possibly non-polynomial-
time) computation of the marginals q. When f is additive, and PI admits a c-balanced
CRS, the algorithm is a c-approximate sparsifier of degree 1

p . When f is a nonnegative
monotone submodular, and PI admits a c-balanced monotone CRS, the algorithm is a
c

(
1− 1

e

)
-approximate sparsifier of degree 1

p .

To make our sparsifier algorithmically efficient, q may be estimated by sampling from a
(possibly approximate) stochastic optimum oracle, in which case our guarantees degrade in
the expected manner due to sampling errors and/or the approximation inherent to the oracle.
We present the detailed analysis with approximate stochastic optimal oracles in Appendix B
in the full version [13]. Theorem 4 and Theorem 4.3 (In full version [13]) together with
contention resolution schemes from prior work [1, 12, 17] and approximate stochastic optimal
oracles that employ approximation algorithms from [11, 16], imply constant approximate
sparsifier for a broad class of packing constrains summarized in Table 3.

2 This balanced ratio is equal to the correlation gap of the set system I, as per [12].

ICALP 2023

51:8 On Sparsification of Stochastic Packing Problems

Table 3 Approximation Ratio of Generic Sparsifier of degree 1
p

for various packing constraint
families with additive and non-negative monotone submodular function.

Additive Objective Submodular Objective

Constraint Information
Theoretic Poly-Time Information

Theoretic Poly-Time

Matroid
(
1 − 1

e

)
(1 − ϵ) ·

(
1 − 1

e

) (
1 − 1

e

)2 (1 − ϵ) ·
(
1 − 1

e

)3

k-matroid
intersection

1
k+1 (1 − ϵ) · 1

k2−1 · 1−1/e
k+1 (1 − ϵ) · 1−1/e

k2−1 ·

Matching 0.474 (1 − ϵ) · 0.474 (1 − 1
e
) · 0.43 (1 − 1

e
)2 · 0.43

The following proposition (whose proof is delegated to the full version [13]) shows that
Algorithm 1 is optimal for matroids and additive objectives among sparsifiers of degree 1/p.
This strongly suggests that sparsification is intimately tied to contention resolution when
the degree is restricted to 1/p. In particular, exceeding degree 1/p appears necessary for
outperforming the correlation gap of a set system in general.

▶ Proposition 5. Consider the family of stochastic packing problems with matroid constraints
and additive objectives. There is no degree 1

p sparsifier for this family that achieves an
approximation ratio 1− 1/e + Ω(1).

We note that 1− 1/e is the best possible balance ratio for contention resolution on the
rank one matroid, as shown in [12] through the correlation gap. Given the above discussion,
it is natural to ask whether we can design sparsifiers of degree O(1/p), or even poly(1/p),
whose approximation ratio α exceeds the best CRS balance ratio c, i.e., can we have α > c

with degree linear or polynomial in 1/p? Recent progress on this question for bipartite
matching constraints came in a pair of recent works. Behnezhad et.al. [5] designed a

e
e+1 ≈ 0.731-approximate sparsifier with degree poly(1/p) for unweighted bipartite matching.
Their approximation factor is strictly better than a known upper bound of 0.544 on the
correlation gap (and hence the best balance ratio) of bipartite matching, due to [15]. To
our knowledge, this is the only sparsifier in the literature with degree polynomial in 1

p and
approximation ratio provably exceeding the correlation gap of the set system. Another recent
result due to Behnezhad et al [7] achieves a 0.501-approximate sparsification with degree
polynomial in 1/p for weighted matching. This outperforms the best known contention
resolution scheme for matching[10], though not clearly the best possible. Prior to our work,
there was no known sparsifier for any weighted stochastic packing problem which provably
outperforms the correlation gap using degree poly(1/p).

In the following sections, we will construct degree O(1/p) sparsifiers for matroids, matroid
intersections, and matching which improve on the contention-resolution-based guarantees
provided in this section. For matroids and matchings, our sparsifiers provably outperform
contention resolution. For matroid intersections, we outperform the best known CRS.

4 Additive Optimization over a Matroid

In this section, we design an improved sparsifier for the stochastic packing problem ⟨E, I, f, p⟩
when M = (E, I) is a matroid and f is additive. For an arbitrary ϵ > 0, our sparsifier
is (1− ϵ)-approximate and has degree 1

p log 1
ϵ . Throughout, we use {we}e∈E to denote the

weights associated with the additive function f , and use R ⊆ E to denote the (random) set
of active elements which includes each e ∈ E independently with probability p. We also
sometimes use r as shorthand for Rank(M). We present basic preliminaries of matroid
theory in the full version [13]

S. Dughmi, Y. H. Kalayci, and N. Patel 51:9

▶ Theorem 6. Let M = (E, I) be a matroid, f be an additive function and p ∈ [0, 1].
Algorithm 2 is a (1− ϵ)-approximate polynomial time sparsifier for the stochastic packing
problem ⟨E, I, f, p⟩ with sparsification degree 1

p · log
(1

ϵ

)
.

Previously, the best known sparsifer for matroid was (1 − ϵ)-approximate with degree
O (1/p log (Rank/ϵ)) implicit in [14]. In contrast, the sparsification degree of our algorithm
is independent of the “size” of the matroid. As we argued in introduction, such a size-
independent guarantee appears to be beyond the techniques used in earlier works [14, 18].

Algorithm 2 Sparsifier for (M, f, p), when M is a matroid and f is additive.

Set M0 =M and Q = ∅.
for t in {1, . . . , τ} where τ = 1

p · log(1
ϵ)

Let It ← argmaxI∈It−1
f(I), where It−1 is the collection of independent sets in Mt−1.

Update Mt ←Mt−1 \ It.
Output: Q =

⋃τ
t=1 It.

It is clear that the sparsifier in Algorithm 2 has degree τ = 1
p · log(1

ϵ), and can be
implemented in polynomial time given an independence oracle for the matroid M. The
remainder of this section is devoted to proving that it is (1− ϵ)-approximate, as needed to
complete the proof of Theorem 6. Our proof will consist of two parts. First, we will analyze
Algorithm 2 in the special case of unit weights (a.k.a. unweighted). Second, we reduce the
analysis of the weighted problem to that of the unweighted problem.

4.1 Special Case: Unweighted Optimization

In this subsection, we assume that elements of the matroid M all have unit weight. In this
case, observe that Algorithm 2 repeatedly removes an arbitrary basis of the matroid and
adds it to the sparse set Q. More precisely, in iteration t the set It is a basis of the remaining
matroid Mt−1 :=M\

⋃t−1
j=1 Ij .

In this unweighted case, the stochastic optimal value is the expected rank of the active
elements R, and our claimed approximation guarantee can be expressed as E[Rank(Q∩R)] ≥
(1− ϵ)E[Rank(R)]. To establish this, consider the following informal (but ultimately flawed)
argument, starting with the observation that It ∩ R spans a p fraction of the rank of the
remaining matroidMt−1 in expectation. This observation suggests that the rank of elements
not spanned by Q ∩ R should shrink by a factor of (1− p) with each iteration. Induction
would then guarantee that after 1

p · log
(1

ϵ

)
iterations we have covered a (1− ϵ) fraction of

the rank of the matroid.
The above rough argument is a good starting point. Indeed, it succeeds when all (or many)

of the bases I1, . . . , Iτ are full-rank or close to it. These are precisely the scenarios in which
E[Rank(R)] ≈ Rank(M). However, in general OPT = E[Rank(R)] can be significantly
smaller than Rank(M) – in the worst case up to a factor of p smaller – in which case the the
rank of It may drop precipitously with t and the above inductive analysis falls apart. Such
scenarios are not simply outliers that we can assume away: they are unavoidable products of
the weighted-to-unweighted reduction we present in the next subsection, and can account for
a large fraction of the weighted stochastic optimal. This seems to necessitate a more nuanced
proof approach in which we compare E[Rank(Q ∩R)] with E[Rank(R)]. We present such a
proof next, built upon the following definitions and structural properties.

ICALP 2023

51:10 On Sparsification of Stochastic Packing Problems

▶ Definition 7. A nested system of spanning sets (NSS) for a matroid M is a sequence
I1, I2, . . . Iτ of sets such that for any j ∈ [τ], Ij is a full rank set of elements in M\ I1:j−1,
where I1:j−1 =

⋃j−1
ℓ=1 Iℓ.

▶ Observation 8. The sets I1, . . . , Iτ from Algorithm 2 are an NSS of M.

The following lemma states that the property of being an NSS is preserved under contraction.

▶ Lemma 9. Let M = (E, I) be a matroid and let I1, . . . Iτ be an NSS of M. For an
arbitrary independent set S of M, let I ′

j = Ij \ S for all j. Then, the sequence I ′
1, . . . I ′

τ is
an NSS of M/S.

Proof. Fix an arbitrary j ∈ {1, . . . , τ}. It is clear that I ′
j is a subset of the elements of

M/S \ I ′
1:j−1. It remains to show that I ′

j is full rank in M/S \ I ′
1:j−1, as follows.

RankM/S(I ′
j) = RankM(Ij ∪ S)− |S| (By (2) and definition of I ′

j)

= RankM((E \ I1:j−1) ∪ S)− |S| (Ij is full rank in M\ I1:j−1)
= RankM((E \ S \ I ′

1:j−1) ∪ S)− |S| (By definition of I ′
j)

= RankM/S(E \ S \ I ′
1:j−1) (By (2))

= Rank(M/S \ I ′
1:j−1) ◀

▶ Observation 10. If I1, . . . , Iτ is an NSS of M, then I2, . . . Iτ is an NSS of M\ I1.

Now, we will prove the desired result for unweighted matroids.

▶ Lemma 11. Let M be a matroid, and let I1, . . . Iτ be an NSS of M. Then,

E[Rank(I1:τ ∩R)] ≥ (1− (1− p)τ) · E[Rank(R)]

Proof. Let E denote the elements of M. We will apply induction on τ to prove this result.
The base case of τ = 0 is trivial.

Consider τ ≥ 1. Let S be an arbitrary maximal independent subset of R ∩ I1, and let
Rank′ denote the rank function of the (random) matroid M′ =M/S \ I1 with elements
E \ I1. Using (2) we can write

Rank(R ∩ I1:τ) = Rank(R ∩ I1) + Rank′(R ∩ I2:τ) (1)

The expectation of the first term is E[Rank(R ∩ I1)] = r · p. To bound the expectation
of the second term, we first condition on R ∩ I1, which also fixes S and M′. It follows from
Lemma 9 and Observation 10, as well as the fact that S ⊆ I1 is disjoint from I2:τ , that
I2, . . . Iτ is an NSS of M′. This allows us to invoke the inductive hypothesis to obtain

E[Rank′(R ∩ I2:τ)] ≥ (1− (1− p)τ−1) · E[Rank′(R \ I1)].

We use a well-known fact about the rank function of the contracted matroid given by

RankM/S(T) = RankM(T ∪ S)−RankM(S) = RankM(T ∪ S)− |S|. (2)

Equation (2) and the definition of S implies that Rank′(R \ I1) = Rank((R \ I1) ∪ S) −
Rank(S) = Rank(R) −Rank(R ∩ I1). Also using the fact E[Rank(R ∩ I1)] = r · p, we
obtain

S. Dughmi, Y. H. Kalayci, and N. Patel 51:11

E[Rank′(R ∩ I2:τ)] ≥ (1− (1− p)τ−1) · E[Rank′(R \ I1)]
= (1− (1− p)τ−1)(E[Rank(R)]− E[Rank(R ∩ I1)])
= (1− (1− p)τ−1)E[Rank(R)]− (1− (1− p)τ−1) · r · p (3)

Finally, we combine (1), and (3) to conclude

E[Rank(R ∩ I1:τ)] ≥ (1− (1− p)τ−1)E[Rank(R)] + (1− p)τ−1 · r · p
≥ (1− (1− p)τ−1 + p(1− p)τ−1)E[Rank(R)]
= (1− (1− p)τ)E[Rank(R)] ◀

By observation 8, we get the following corollary of Lemma 11.

▶ Corollary 12. Consider a stochastic matroid optimization problem ⟨E, I, f, p⟩ for p ∈ [0, 1]
and f(S) = |S| for all S ⊆ E. Algorithm 2 is a (1− ϵ)-approximate sparsifier with degree
1
p · log

(1
ϵ

)
.

4.2 Proof of Theorem 6

In this section, we will complete the proof of Theorem 6 by reducing the analysis for a general
(weighted) additive function to that of the unweighted case. We order the elements e1, . . . en

in decreasing order of their weights w1 ≥ . . . ≥ wn. Without loss of generality we assume
wn > 0, and for notational convenience we define wn+1 = 0. The following lemma says that
if a sparsifier is α-approximate for the unweighted problem on elements above any given
weight threshold, then it is also α-approximate for the weighted problem.

▶ Lemma 13. For all j ∈ [n] with wj > wj+1, if a set Q ⊆ E satisfies

E[Rank(Q ∩R ∩ {e1, . . . ej})] ≥ (1− ϵ)E[Rank(R ∩ {e1, . . . ej})], (4)

then E[f(opt(Q ∩ R))] ≥ (1 − ϵ)E[f(opt(R))]. Here, we denote opt(S) ∈ argmaxI⊆S
I∈I

f(I),
with ties broken arbitrarily.

The above lemma follows from the optimality of the greedy algorithm for weighted
optimization over matroids. We relegate the (fairly standard) proof to the full version [13].

To conclude the proof of Theorem 6, we show in the following lemma that the output of
Algorithm 2 satisfies condition (4).

▶ Lemma 14. For all j ∈ [n] with wj > wj+1, the output set Q of Algorithm 2 satisfies

E[Rank(Q ∩R ∩ {e1, . . . , ej})] ≥ (1− (1− p)τ)E[Rank(R ∩ {e1, . . . , ej})]

To provide more intuition, let I1, . . . , Iτ be the sets defined in Algorithm 2, and E =
{e1, . . . ej} be the top weight j elements. It is sufficient to show that the sets It ∩ E form a
sequence of nested spanning sets for the restricted matroid M on elements E. The optimal
choice of of It in Algorithm 2, together with the matroid structure, implies that It ∩ E has
full rank in M\ I1:t−1. We complete the proof in the in the full version [13]. Combining
Lemmas 13 and 14 completes the proof of Theorem 6.

ICALP 2023

51:12 On Sparsification of Stochastic Packing Problems

5 Improved Sparsifier for Stochastic Weighted Matching

In the instance of stochastic weighted matching ⟨E, I, f, p⟩, the elements E are the edges of
a known weighted graph G := (V, E, w), I is the set of all matchings in the graph G, and f

is an additive function with element weights {we}e∈E . For simplicity, we sometimes denote
the stochastic matching instance ⟨E, I, f, p⟩ by ⟨G, p⟩ when it is clear from the context.

The aim of a sparsifier for this problem is to query a poly (1/p)-degree subgraph H of G

such that the expected weight of the maximum matching on active edges of H approximates
the optimum value of ⟨G, p⟩. The current state-of-the-art poly (1/p)-degree sparsifier for
the stochastic weighted matching problem achieves a 0.501 approximation ratio due to [8]3.
In this section, we present a new poly(1/p)-degree sparsifier for the stochastic weighted
matching that improves the approximation ratio to 0.536.

Our sparsifier for the stochastic weighted matching problem consists of two phases. In the
first phase, it samples a set of edges QCRS using the generic sparsifier described in Algorithm 1.
In the second phase, we independently select T samples Q1, . . . , QT from the stochastic
optimum oracle Dopt, which is similar to the method used in [8]. This second phase alone
already provides a 0.501 approximation, but by incorporating the edges sampled in the first
phase, we are able to improve the approximation ratio to 0.536. The main result of this
section is presented in the following theorem.

Algorithm 3 Sparsifier for Weighted Stochastic Matching Problem ⟨G, p⟩.

1: Compute the marginals q of the stochastic optimum solution.
2: Add each edge e ∈ E to the set QCRS independently with probability qe

p .
3: Sample Q1, . . . , QT ∼ Dopt independently and add them to QGreedy for T = 1/ϵ8p.
4: Output: Q = QCRS ∪QGreedy.

▶ Theorem 15. Let G = (V, E, w) be a weighted graph and p ∈ (0, 1). If the matching
polytope of G admits an α-balanced contention resolution scheme, then Algorithm 3 is the
(1 − O(ϵ)) · max

{
1
2 ,

(
1+αe2

1+e2

)}
-approximate polynomial time sparsifier for the stochastic

weighted matching problem ⟨G, p⟩ with sparsification degree O(1/ϵ8p).

Our theorem combined with 0.474-balanced CRS for machining polytope from [17] implies
0.536-approximate sparsifier for stochastic weighted matching. Assuming the conjecture from
[20] which states the existence of 0.544 balanced CRS for general matching polytope implies
that Algorithm 3 is ∼ 0.6 approximate.

The proof of Theorem 15 relies on p being small. So, before we prove the theorem, in
Lemma 16, we show that for any ϵ > 0 (constant), without loss of generality we can assume
p ≤ ϵ4. The proof of this part is rather technical and, we defer it to the full version [13] due
to space constraints.

▶ Lemma 16 (Reduction Lemma). If there exists an α-approximate sparsifier with degree d/p

for the class of stochastic weighted matching with p ≤ ϵ4 then there exists an α-approximate
sparsifier for the same problem class and arbitrary p ∈ (0, 1) with sparsification degree d

p·ϵ4 .

For the rest of the section, we assume that p ≤ ϵ4. We first define the set of crucial edges
and non-crucial edges formally in the following definition.

3 Recent work by [6] constructs (1−ϵ)-approximate sparsifier with degree exp(exp(exp(1/ϵ, 1/p))), however,
in this work, we focus on sparsifiers with degree poly(1/p)

S. Dughmi, Y. H. Kalayci, and N. Patel 51:13

▶ Definition 17. Given ⟨G, p⟩, let qe be the probability of an edge e being in the stochastic
optimum solution. We define crucial edges as C := {e ∈ E : qe ≥ τ(ϵ)} and non-crucial
edges as NC := {e ∈ E : qe < τ(ϵ)} where τ(ϵ) := ϵ3p

20·log 1
ϵ

is the threshold.

Given ⟨G, p⟩ and set of crucial and non-crucial edges C and NC, we let OPTC and
OPTNC be the contributions of crucial and non-crucial edges in the stochastic optimum, i.e.∑

e∈C we · qe and
∑

e∈NC we · qe. Note that

OPT = OPTC + OPTNC .

In order to prove Theorem 15, we provide a procedure to construct a matching M ⊆ Q∩R

such that E
[∑

i∈M we

]
≥ (1−O(ϵ)) ·max

{
1
2 ,

(
1+αe2

1+e2

)}
·OPT. Our procedure constructs

three matchings MC, MNC, MAUG ⊆ R ∩ Q and then picks the matching with the maximum
weight. We construct matchings MC, MNC on the queried active crucial and non-crucial edges
in QGreedy similar to the [8] which satisfies the desired properties described in Lemma 18
and Lemma 19. First, we state that each crucial edge e ∈ C appears in the QGreedy with
probability 1 − ϵ which shows the existence of matching MC ⊆ Q ∩ R ∩ C with expected
weight at least (1− ϵ) ·OPTC.

▶ Lemma 18 (Crucial Edge Lemma [8]). Given a stochastic weighted matching instance ⟨G, p⟩
and QGreedy is the set defined in Algorithm 3, let MC be the maximum weight matching in the
graph QGreedy ∩ C ∩R, then E

[∑
e∈MC

we

]
≥ (1− ϵ) ·OPTC .

Now, following the [8, Lemma 4.7], in Lemma 19, we construct a matching MNC ⊆
R ∩QGreedy ∩ NC on active queried non-crucial edges, such that each e ∈ NC is present in MNC

with probability at least (1 − O(ϵ)) · qe. We further prove an important property of MNC

that states that for any non-crucial edge e ∈ NC, the probability of e ∈MNC can not decrease
when we condition on the events that some of the neighbors of e are inactive4.

▶ Lemma 19 (Non-Crucial Edges). Given a stochastic weighted matching instance ⟨G, p⟩, let
QGreedy be the set defined in Algorithm 3. There exists a matching MNC ⊆ QGreedy ∩ NC ∩R

such that for any non-crucial edge e ∈ NC, Pr[e ∈ MNC] ≥ (1− 12ϵ) · qe. This implies that,
E

[∑
e∈MNC

we

]
≥ (1− 12ϵ) ·OPTNC. Moreover, for any subset S ⊆ N(e) where N(e) is the

set of edges incident to e in graph G, we have

Pr[e ∈MNC | S ∩R = ∅] ≥ (1− 12 · ϵ) · qe. (5)

The proof of the lemma is technically involved and therefore it is delegated to the full
version [13]. Lemma 18 and Lemma 19 together imply that our sparsifier is at least 1/2
approximate.

We note that QCRS is the output of generic sparsifier discussed in Algorithm 1 (Section 3).
Let MCRS := π(QCRS∩R) be the matching constructed by an α-balanced CRS π which ensures
Pr[e ∈ MCRS] ≥ α · qe for all e ∈ E. We refer MCRS as CRS-BaseMatching. Crucially, MCRS

is independent of the edges sampled in QGreedy as well as MNC and MC. Using Independ-
ence between MCRS and MNC, we construct the third matching MAUG on the set of edges
QCRS ∪ (QGreedy ∩ NC) ∪ R. Our augmentation simply adds a non-crucial edge e ∈ MNC to
CRS-BaseMatching if both endpoints of the edge e are unmatched in CRS-BaseMatching.
Algorithm 4 describes our augmentation procedure in detail.

4 We noticed a bug in the proof of a similar lemma presented in [8], further used in [7, 6]. In order to
prove the lemma and the monotonicity property (5), we require slightly different proof techniques.

ICALP 2023

51:14 On Sparsification of Stochastic Packing Problems

Our key observation is that any non-crucial edge e ∈ NC has a small probability of being
sampled in the set QCRS. However, with some non-trivial probability, both endpoints of
the edge e will be unmatched in CRS-BaseMatching. More formally, first we show that
for any non-crucial edge e := (u, v) ∈ NC, both endpoints of e are unmatched in the
CRS-BaseMatching with probability at least 1/e2. The intuition here is that as p ≤ ϵ4, the
number of incident edges on the endpoints of the edge e in the set QCRS are concentrated
around 2/p with high probability. Such a property ensures that if all these incident edges
are inactive, then both endpoints of e are unmatched in CRS-BaseMatching.

Later, we use the property (5) of MNC from Lemma 19 to guarantee that when a non-
crucial edge e /∈ QCRS and both endpoints of e are unmatched in CRS-BaseMatching, we can
guarantee that e ∈ MNC with probability approximately qe. Therefore, we can add such a
non-crucial edge e to CRS-BaseMatching with probability approximately qe

e2 . Combining this
intuition, we prove the following key lemma whose proof is delegated to the full version [13].

▶ Lemma 20. Let MAUG be the output of the procedure described in Algorithm 4 then,

Pr[e ∈MAUG] ≥ qe · α ∀e ∈ C and Pr[e ∈MAUG] ≥ qe ·
(

α + 1−O(ϵ)
e2

)
∀e ∈ NC.

Algorithm 4 Construction of the matching MAUG on Q ∩ R.

1: MNC be the matching on QGreedy ∩R ∩ NC satisfying property of stated Lemma 19.
2: MCRS ← π(QCRS ∩R) be the matching produced by α-balanced truncated CRS.
3: MAUG ←MCRS.
4: ∀e ∈MNC, add e to the matching MAUG if both endpoints of e are unmatched in MAUG.

Combining Lemma 18, Lemma 19 and Lemma 20, we show that the expected weight of
the best matching among MCRS, MNC, and MAUG exhibits the desired approximation ratio. We
complete the proof of Theorem 15 in the full version [13].

6 Additive Optimization over the Intersection of k Matroids

Given our (1 − ϵ)-approximate sparsifier for additive optimization over a single matroid
constraint, a natural question is whether the natural generalization of this algorithm to the
intersection of matroids is (1− ϵ)-approximate. This turns out to not be the case even for
bipartite matching (the intersection of two partition matroids) due to [9]. The main challenge
here is that, unlike for a single matroid, multiple solutions for matroid intersection do not
always “combine” well. In this section, we prove a slightly weaker sparsification result for
additive optimization over the intersection of k matroid constraints, which nevertheless beats
the best known bound of 1/(k + 1) on the correlation gap of k-matroid intersection (see [1]),
and therefore outperforms our generic sparsifier for this problem. The following theorem is
the main result of this section.

▶ Theorem 21. For each ϵ > 0, there is a (1−ϵ)
k+ 1

k+1
-approximate sparsifier of degree

O
(

1
ϵ·p log 1

ϵ

)
for stochastic packing problem ⟨E, I, f, p⟩ when (E, I) is the intersection of k

matroids and f is additive.

Our sparsifier samples Q1, . . . , Qτ independently from stochastic optimum oracle Dopt as a
sparsifier. Similar algorithms with degree poly(1/p) have been considered for the stochastic
matching [8, 7], and were shown to be 0.6568-approximate for the unweighted and 0.501-
approximate for a weighted matching with degree poly(1/p).

S. Dughmi, Y. H. Kalayci, and N. Patel 51:15

Algorithm 5 Sparsifier for additive optimization over the intersection of k matroid constraints.
Input: ⟨E, I, f, p⟩ with the intersection of k matroids constraints and additive f ; DOPT

Sample Q1, . . . , Qτ ∼ DOPT independently for τ ← 2
ϵp log 2

ϵ ;
Output: Q = ∪τ

i=1Qi.

In order to prove Theorem 21, we provide a procedure for constructing a feasible solution
I ⊆ Q ∩ R such that E[

∑
i∈I we] ≥ (1−ϵ)

k+1/(k+1) OPT. The backbone of our analysis lies in
Lemma 22. As a first step, let S1 and S2 be two independent sets of the same matroid and
R ⊆ E be the (random) set of active elements with parameter p. We propose a procedure
(details in Algorithm 6 in the full version [13]) that swaps active elements from S1, i.e. S1∩R,
with elements of S2 such that each element of S2 is “protected” independently with probability
1− p. Hence, the expected value of updated set S2 is ≥ E[f(S1 ∩R)] + (1− p) · f(S2).

The key intuition here is that the exchange property of matroids allows us to swap
any element e ∈ S1 with a different element f ∈ S2 without violating the feasibility of S2.
Therefore, if e is inactive then e can not swap out f from S2 and hence we “protect” f in
S2 with probability 1− p. However, the main challenge here is after a single swap between
e and f , sets S1 and S2 get updated and f can potentially be swapped with some f ′ ∈ S2.
Our procedure overcomes this challenge by carefully choosing swaps of elements between S1
and S2 while maintaining feasibility.

We extend this idea to when S1 and S2 are two independent sets in the intersection of k

matroids. We run the procedure described in Algorithm 6 in the full version [13] for each
matroid and obtain sets T feasible in the intersection of all matroids such that each element
of S2 is added to T independently with probability (1− p)k. The details of procedure and
proof of Lemma 22 is relegated to the full version of the paper [13]

▶ Lemma 22. Let M1, . . .Mk be matroids with Mℓ = (E, Iℓ), and let I =
⋂k

ℓ=1 Iℓ be their
common independent sets. Let S1 and S2 be in I. Let R ⊆ E include each element of E

independently with probability p. Let T (ℓ) ∈ Iℓ be the output of Algorithm 6 in full version
[13] for matroid Mℓ, for each ℓ ∈ [k]. The set T :=

⋂k
ℓ=1 T (ℓ) satisfies:

1. S1 ∩ S2 ⊆ T with probability 1.
2. T ∈ I with probability 1.
3. (S1 \ S2) ∩R ⊆ T , i.e. Pr[e ∈ T] = p for all e ∈ S1 \ S2.
4. Pr[f ∈ T] ≥ (1− p)k for all f ∈ S2 \ S1

We utilize the above lemma and propose a procedure to construct a feasible set I ⊆ Q∩R.
At a high level, our procedure iteratively observes active elements in the set Qi and swaps
elements in Qi+1, . . . , Qn by Qi ∩ R using Lemma 22. To this end, Lemma 22 ensures
that each element in Qj for j > i is not swapped (“protected”) with probability at least
(1−p). Using this argument inductively, we prove the following lemma that lower bounds the
probability of selecting each element e ∈ Q whose proof is in the full version [13]. We then
use the lemma and carefully analyze the probability of each element e ∈ E in the constructed
set I ⊆ R ∩Q to conclude the proof of Theorem 21.

▶ Lemma 23. Let I∗ = I(τ) be the output of Algorithm 7 in full version [13]. For any
e ∈ E, we have

Pr[e ∈ I∗ | e ∈ Qi \ ∪i−1
ℓ=1Qi] ≥ p · (1− p)k(i−1)

ICALP 2023

51:16 On Sparsification of Stochastic Packing Problems

7 Open Questions

We believe that our results portend a deeper connection between the sparsification and
contention resolution. The results of Section 3 show that contention resolution serves to
lower-bound the sparsification ratio. We ask whether the connection goes both ways. In
particular, does the existence of a c-sparsifier of degree 1/p imply a contention resolution
scheme with balance c? This is intimated by Proposition 5. Does the existence of a
c-sparsifier of degree poly(1/p) imply a contention resolution scheme with balance Ω(c)
(or some other expression involving c and the degree)? Formalizing a tighter connection
between sparsification and contention resolution (equivalently, the correlation gap) might
lead to new structural and computational insights for the latter.
In Section 4, we show that a greedy sparsifier 1 − ϵ approximate with degree O(1/p)
for additive optimization subject to a matroid constraint. We conjecture that a similar
greedy sparsifier exists for the intersection of k matroids, obtaining a 1−ϵ

k -approximation
with degree O(1/p). A similar greedy sparsifier, albeit with degree O(1/p1/ϵ), was shown
to be 1/2-approximate for the special case of unweighted bipartite matching in [9].
Our results in Section 5 improve the state of the art sparsifier for weighted (non-bipartite)
matching in the polynomial degree regime. Moreover, since our approximation guarantee
is a function of the correlation gap, progress on the correlation gap of the matching
polytope will lead to further improved sparsifiers. Finding the best possible sparsification
ratio in the polynomial degree regime remains open, however, with 1− ϵ still on the table.
Beyond polynomial degree, a 1− ϵ approximate sparsifier with degree exp(exp(exp(1/p)))
was already shown by [6].

References
1 Marek Adamczyk and Michał Włodarczyk. Random order contention resolution schemes. In

2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pages
790–801. IEEE, 2018.

2 Sepehr Assadi and Aaron Bernstein. Towards a unified theory of sparsification for matching
problems. arXiv preprint, 2018. arXiv:1811.02009.

3 Sepehr Assadi, Sanjeev Khanna, and Yang Li. The stochastic matching problem: Beating half
with a non-adaptive algorithm. In Proceedings of the 2017 ACM Conference on Economics
and Computation, pages 99–116, 2017.

4 Sepehr Assadi, Sanjeev Khanna, and Yang Li. The stochastic matching problem with (very)
few queries. ACM Transactions on Economics and Computation (TEAC), 7(3):1–19, 2019.

5 Soheil Behnezhad, Avrim Blum, and Mahsa Derakhshan. Stochastic vertex cover with few
queries. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1808–1846. SIAM, 2022.

6 Soheil Behnezhad and Mahsa Derakhshan. Stochastic weighted matching: (1−ϵ) approximation.
arXiv preprint, 2020. arXiv:2004.08703.

7 Soheil Behnezhad, Mahsa Derakhshan, and MohammadTaghi Hajiaghayi. Stochastic matching
with few queries:(1-ε) approximation. In Proceedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, pages 1111–1124, 2020.

8 Soheil Behnezhad, Alireza Farhadi, MohammadTaghi Hajiaghayi, and Nima Reyhani.
Stochastic matching with few queries: New algorithms and tools. In Proceedings of the
Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2855–2874. SIAM,
2019.

9 Avrim Blum, John P Dickerson, Nika Haghtalab, Ariel D Procaccia, Tuomas Sandholm, and
Ankit Sharma. Ignorance is almost bliss: Near-optimal stochastic matching with few queries. In
Proceedings of the Sixteenth ACM Conference on Economics and Computation, pages 325–342,
2015.

https://arxiv.org/abs/1811.02009
https://arxiv.org/abs/2004.08703

S. Dughmi, Y. H. Kalayci, and N. Patel 51:17

10 Simon Bruggmann and Rico Zenklusen. An optimal monotone contention resolution scheme
for bipartite matchings via a polyhedral viewpoint. Mathematical Programming, pages 1–51,
2020.

11 Gruia Calinescu, Chandra Chekuri, Martin Pal, and Jan Vondrák. Maximizing a monotone
submodular function subject to a matroid constraint. SIAM Journal on Computing, 40(6):1740–
1766, 2011.

12 Chandra Chekuri, Jan Vondrák, and Rico Zenklusen. Submodular function maximization via
the multilinear relaxation and contention resolution schemes. SIAM Journal on Computing,
43(6):1831–1879, 2014.

13 Shaddin Dughmi, Yusuf Hakan Kalayci, and Neel Patel. On sparsification of stochastic packing
problems. arXiv preprint, 2022. arXiv:2211.07829.

14 Michel X. Goemans and Jan Vondrák. Covering minimum spanning trees of random subgraphs.
In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
’04, pages 934–941, USA, 2004. Society for Industrial and Applied Mathematics.

15 Richard M Karp and Michael Sipser. Maximum matching in sparse random graphs. In 22nd
Annual Symposium on Foundations of Computer Science (sfcs 1981), pages 364–375. IEEE,
1981.

16 Jon Lee, Maxim Sviridenko, and Jan Vondrák. Submodular maximization over multiple
matroids via generalized exchange properties. Mathematics of Operations Research, 35(4):795–
806, 2010.

17 Calum MacRury, Will Ma, and Nathaniel Grammel. On (random-order) online contention
resolution schemes for the matching polytope of (bipartite) graphs, 2022. doi:10.48550/
arXiv.2209.07520.

18 Takanori Maehara and Yutaro Yamaguchi. Stochastic packing integer programs with few quer-
ies. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA ’18, pages 293–310, USA, 2018. Society for Industrial and Applied Mathematics.

19 Takanori Maehara and Yutaro Yamaguchi. Stochastic monotone submodular maximization
with queries. arXiv preprint, 2019. arXiv:1907.04083.

20 Pranav Nuti and Jan Vondrák. Towards an optimal contention resolution scheme for matchings.
arXiv preprint, 2022. arXiv:2211.03599.

ICALP 2023

https://arxiv.org/abs/2211.07829
https://doi.org/10.48550/arXiv.2209.07520
https://doi.org/10.48550/arXiv.2209.07520
https://arxiv.org/abs/1907.04083
https://arxiv.org/abs/2211.03599

Triangle Counting with Local Edge Differential
Privacy
Talya Eden # Ñ

Bar Ilan University, Ramat Gan, IL

Quanquan C. Liu # Ñ

Northwestern University, Evanston, IL, US

Sofya Raskhodnikova # Ñ

Boston University, MA, US

Adam Smith # Ñ

Boston University, MA, US

Abstract

Many deployments of differential privacy in industry are in the local model, where each party releases
its private information via a differentially private randomizer. We study triangle counting in the
noninteractive and interactive local model with edge differential privacy (that, intuitively, requires
that the outputs of the algorithm on graphs that differ in one edge be indistinguishable). In this
model, each party’s local view consists of the adjacency list of one vertex.

In the noninteractive model, we prove that additive Ω(n2) error is necessary, where n is the
number of nodes. This lower bound is our main technical contribution. It uses a reconstruction
attack with a new class of linear queries and a novel mix-and-match strategy of running the local
randomizers with different completions of their adjacency lists. It matches the additive error of
the algorithm based on Randomized Response, proposed by Imola, Murakami and Chaudhuri
(USENIX2021) and analyzed by Imola, Murakami and Chaudhuri (CCS2022) for constant ε. We
use a different postprocessing of Randomized Response and provide tight bounds on the variance of
the resulting algorithm.

In the interactive setting, we prove a lower bound of Ω(n3/2) on the additive error. Previously,
no hardness results were known for interactive, edge-private algorithms in the local model, except
for those that follow trivially from the results for the central model. Our work significantly improves
on the state of the art in differentially private graph analysis in the local model.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness

Keywords and phrases local differential privacy, reconstruction attacks, lower bounds, triangle
counting

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.52

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2305.02263

Funding T.E. was supported by the NSF TRIPODS program, award DMS-2022448, and Boston
University. This work was partially done while affiliated with Boston University and MIT. A.S. was
supported in part by NSF awards CCF-1763786 and CNS-2120667 as well as Faculty Awards from
Google and Apple.

Acknowledgements We thank Iden Kalemaj and Satchit Sivakumar for helpful comments on the
initial version of our results.

EA
T
C
S

© Talya Eden, Quanquan C. Liu, Sofya Raskhodnikova, and Adam Smith;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 52; pp. 52:1–52:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:talyaa01@gmail.com
https://sites.google.com/view/edentalya/home
https://orcid.org/0000-0001-8470-9508
mailto:quanquan@mit.edu
https://quanquancliu.com/
https://orcid.org/0000-0003-1230-2754
mailto:sofya@bu.edu
https://cs-people.bu.edu/sofya/
https://orcid.org/0000-0002-4902-050X
mailto:ads22@bu.edu
https://cs-people.bu.edu/ads22/
https://orcid.org/0000-0001-9393-1127
https://doi.org/10.4230/LIPIcs.ICALP.2023.52
https://arxiv.org/abs/2305.02263
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

52:2 Triangle Counting with Local Edge Differential Privacy

1 Introduction

Triangle counting is a fundamental primitive in graph analysis, used in numerous applications
and widely studied in different computational models [3, 12, 26, 37, 7, 44, 45, 48, 50]. Statistics
based on triangle counts reveal important structural information about networks (as discussed,
e.g., in [30, 46, 51]). They are used to perform many computational tasks on social networks,
including community detection [49], link prediction [25], and spam filtering [5]. See [1] for a
survey on algorithms for and applications of triangle counting.

In applications where a graph (e.g., a social network) holds sensitive information, the
algorithm that computes on the graph has to protect personal information, such as friendships
between specific individuals. Differential privacy [22] has emerged as the standard of rigorous
privacy guarantees. See [53] for a survey of differentially private graph analysis. The most
investigated setting of differential privacy is called the central model. It implicitly assumes
a curator that collects all the data, computes on it, and provides data releases. In some
situations, however, it might be undesirable to collect all information in one place, for instance,
because of trust or liability issues. To address this, the local model of differential privacy was
proposed [29, 22, 40] and is now used in many industry deployments [28, 8, 14, 2, 17].

In this model, each party releases its private information via a differentially private
randomizer. Then the algorithm processes the information and, in the case of the local
noninteractive model, outputs the answer. In the case of the local interactive model, the
algorithm may have multiple rounds where it asks all parties to run different randomizers on
their private data. These randomizers can have arbitrary dependencies on previous messages.
Differential privacy in the local model is defined with respect to the whole transcript of
interactions between the parties and the algorithm. In the local model applied to graph
data, each vertex represents a party. It receives the list of its neighbors as input and applies
local randomizers to it. In contrast to the typical datasets, where information belongs to
individual parties, in the graph setting, each pair of parties (vertices) share the information
of whether there is an edge between them.

Differential privacy, intuitively, guarantees that, for any two neighboring datasets, the
output distributions of the algorithm are roughly the same. There are two natural notions of
neighboring graphs: edge-neighboring and node-neighboring. Two graphs are edge-neighboring
if they differ in one edge; they are node-neighboring if they differ in one node and its adjacent
edges. Edge differential privacy is, in general, easier to attain, but node differential privacy
provides stronger guarantees. Edge differential privacy was introduced and first applied to
triangle counting in [47]. The edge-differentially private algorithm from [47] was generalized
and implemented in [38]. The first node-differentially private algorithms appeared in [9, 41, 13],
and all three of these articles considered the problem of triangle counting. Edge differential
privacy in the local model has been studied in [52, 31, 54, 56, 33, 34, 16] with most of the
listed articles focusing on triangle counting.

In this work, we investigate edge differentially private algorithms for estimating the
number of triangles in a graph in the local model. Our goal is to understand the additive
error achievable by such algorithms both in the noninteractive and in the interactive model.
For the noninteractive model, we provide upper and lower bounds on additive error. Our
bounds are tight in terms of n, the number of nodes in the input graph. For the interactive
model, we provide the first lower bound specific to local, edge differentially private (LEDP)
algorithms. There are trivial lower bounds for the central model (based on global sensitivity)
which apply to the local model, but no lower bounds specific to the local model were previously
known for any graph problem, even for 2-round algorithms. Together, our results improve
our understanding of both noninteractive and interactive LEDP algorithms.

T. Eden, Q. C. Liu, S. Raskhodnikova, and A. Smith 52:3

1.1 Results

Our results and comparison to previous work are summarized in Table 1.

Table 1 Summary of lower and upper bounds on the additive error for triangle counting in the
noninteractive and interactive models. Note that the largest value of C4(G) is

(
n
4

)
= Θ(n4). For

ease of comparison, the results of [33] and [34] are stated for graphs with dmax = Θ(n).

Model Previous Results Our Results

Non-
interactive

Lower Bound Ω(n3/2) [33] Ω(n2) Thm. 1.1

Upper Bound O(n2) (constant ε) [35] O
(√

C4(G)
ε

+ n3/2

ε3

)
Thm. 1.2

Interactive
Lower Bound Ω(n) easy Ω(n3/2

ε
) Thm. 1.3

Upper Bound O
(√

C4(G)
ε

+ n3/2

ε2

)
[34]

1.1.1 Lower Bound for the Noninteractive Local Model

Our main technical contribution is a lower bound in the noninteractive setting. It uses a
reconstruction attack (for the central model) with a new class of linear queries and a novel
mix-and-match strategy of running local randomizers with different completions of their
adjacency lists. While reconstruction attacks are a powerful tool in proving lower bounds
in the central model of differential privacy, they have not been used to obtain bounds in
the local model. Previous lower bounds in the local model are based on quite different
techniques – typically, information-theoretic arguments (see, for example, [40, 6, 19] and
many subsequent works).

▶ Theorem 1.1 (Noninteractive Lower Bound, informal version). Let ε ∈ (0, 1/20) and δ ≥ 0 be
a sufficiently small constant. There exists a family of graphs such that every noninteractive
(ε, δ)-local edge differentially private algorithm that gets an n-node graph from the family as
input and approximates the number of triangles in the graph within additive error at most α

(with sufficiently high constant probability) must have α = Ω(n2).

Our lower bound holds for all small δ ≥ 0 (the case referred to as “approximate” differential
privacy). Observe that such lower bounds are stronger than those for δ = 0 (the case referred
to as “pure” differential privacy), because they include δ = 0 as a special case. The only
previously known lower bound, due to Imola et al. [33], showed that noninteractive algorithms
must have error Ω(

√
n · dmax).

To prove the lower bound in Theorem 1.1, we develop a novel mix-and-match technique
for noninteractive local model. For a technical overview of the proof of Theorem 1.1, see
Section 1.2.

Our lower bound matches the upper bound of O(n2) proved by [35, Theorem G.3] (for
constant ε) for an algorithm based on randomized response. In this work, we give a simpler
variant of the algorithm and a more refined analysis, which works for all ε.

ICALP 2023

52:4 Triangle Counting with Local Edge Differential Privacy

1.1.2 Tight Analysis of Randomized Response
The most natural algorithm for the noninteractive model is Randomized Response, which
dates back to Warner [55]. In this algorithm, each bit is flipped with probability 1

eε+1 , where
ε is the privacy parameter. In the case of graphs, each bit represents a presence or absence
of an edge. An algorithm based on Randomized Response for triangle counting was first
analyzed by [33] for the special case of Erdős-Rényi graphs, and then [35] proved that this
algorithm has O(n2) additive error for constant ε for general graphs. These works first
compute the number of triangles and other induced subgraphs with three vertices as though
the noisy edges are real edges and then appropriately adjust the estimate using these counts
to make it unbiased.

We use a different postprocessing of Randomized Response. We rescale the noisy edges
right away, so we need not compute counts for graphs other than triangles, which makes
the analysis much simpler. We obtain tight upper and lower bounds on the variance of the
resulting algorithm that hold for all ε. Our bounds are more refined, as they are stated in
terms of C4(G), the number of four cycles in the graph.

▶ Theorem 1.2 (Analysis of Randomized Response). For all ε > 0, there exists a noninteractive
ε-LEDP algorithm based on Randomized Response that gets an n-node graph as input and
returns an unbiased estimate T̂ of the number of triangles in a graph that has variance
Θ

(
C4(G)

ε2 + n3

ε6

)
.

In particular, with high constant probability, T̂ has additive error α = O
(√

C4(G)
ε + n3/2

ε3

)
.

Note that for constant ε, Theorem 1.2 implies an upper bound of O(n2) on the additive
error of the algorithm’s estimate. Thus, Randomized Response is optimal for graphs that have
C4 = Θ(n4) by our lower bound in Theorem 1.1. Also, observe that Randomized Response
achieves pure differential privacy (with δ = 0), whereas the lower bound in Theorem 1.1
holds even for approximate differential privacy. Even though allowing δ > 0 results in better
accuracy for many problems, it does not give any additional utility for noninteractive triangle
counting. The proof of Theorem 1.2 is deferred to the full version.

1.1.3 Lower Bound for the Interactive Local Model
Next, we investigate triangle counting in the interactive setting. Imola et al. [33] present an
ε-LEDP for triangle counting in the interactive model with additive error of O

(√
C4(G)/ε +√

n · dmax/ε2)
, where dmax is an upper bound on the maximum degree.

We give a lower bound on the additive error of LEDP algorithms for triangle counting in
the interactive model. Note that Ω(n) additive error is unavoidable for triangle counting
even in the central model, because the (edge) global sensitivity of the number of triangles is
n − 2 (and this lower bound is tight in the central model). There were no previously known
lower bounds for this problem (or any other problem on graphs) specific to the interactive
LEDP model that applied to even 2-round algorithms. Our lower bound applies to interactive
algorithms with any number of rounds.

▶ Theorem 1.3 (Interactive Lower Bound). There exist a family of graphs and a constant
c > 0 such that for every ε ∈ (0, 1), n ∈ N, α ∈ (0, n2] and δ ∈

[
0, 1

105 · ε3α2
0

n5 ln(n3/εα0)

]
, every

(potentially interactive) (ε, δ)-local edge differentially private algorithm that gets an n-node
graph from the family as input and approximates the number of triangles in the graph with
additive error at most α (with probability at least 2/3) must have α ≥ c · n3/2

ε .

T. Eden, Q. C. Liu, S. Raskhodnikova, and A. Smith 52:5

Our lower bound is obtained via a reduction from the problem of computing the summation of
n randomly sampled bits in {0, 1} in the LDP model, studied in a series of works [6, 10, 20, 36].
Our lower bound matches the upper bound of [33] for constant ε and for graphs where
dmax = Θ(n) and C4(G) = O(n3). It is open whether additive error of o(n2) can be achieved
for general graphs.

1.2 Technical Overview of the Noninteractive Lower Bound
Typical techniques for proving lower bounds in the local model heavily rely on two facts
that hold for simpler datasets: first, each party’s information is not seen by other parties;
second, arbitrary changes to the information of one party have to be protected. Both of these
conditions fail for graphs in the LEDP model: each edge is shared between two parties, and
only changes to one edge are protected in the strong sense of neighboring datasets, imposed
by differential privacy.

To overcome these difficulties, we develop a new lower bound method, based on recon-
struction attacks in the central model. Such attacks use accurate answers to many queries to
reconstruct nearly all the entries of a secret data set [18, 23, 24, 42, 43, 15]. They are usually
applied to algorithms that release many different values. However, a triangle-estimation
algorithm returns a single number. Consider a naïve attempt to mount an attack using the
algorithm as a black box, that is, by simulating every query using a separate invocation of
the triangle counting algorithm. This would require us to run the local randomizers many
times, degrading their privacy parameters and making a privacy breach vacuous.

To overcome this difficulty, in our attack, we use the noninteractive triangle-estimation
algorithm as a gray box. Since the algorithm is noninteractive, it is specified by local
randomizers for all vertices and a postprocessing algorithm that runs on the outputs of the
randomizers. We use a secret dataset X to create a secret subgraph, run the randomizers for
the vertices in the secret subgraph only twice, and publish the results. By properties of the
randomizers and by composition, the resulting procedure is differentially private. In the next
phase, we postprocess the published information to complete the secret subgraph to different
graphs corresponding to the queries needed for our attack. Then we feed these graphs to
the triangle approximation algorithm, except that for the vertices in the secret subgraph,
we rely only on the published outputs. If the triangle counting algorithm is accurate, we
get accurate answers to our queries. Even though the randomness used to answer different
queries is correlated, we show that a good approximation algorithm for triangle counts allows
us to get most of the queries answered correctly. Finally, we use a novel anti-concentration
bound (Lemma 1.4, below) to demonstrate that our attack succeeds in reconstructing most
of the secret dataset with high probability. This shows that the overall algorithm we run
in this process is not differentially private, leading to the conclusion that a very accurate
triangle counting algorithm cannot exist in the noninteractive LEDP setting.

We call the queries used in our attack outer-product queries. The queries are linear, but
their entries are dependent. To define this class of queries, we represent the secret dataset X

with n2 bits as an n × n matrix. An outer-product query to X specifies two vectors A and
B of length n with entries in {−1, 1} and returns AT XB, that is,

∑
i,j∈[n] AiXijBj .

To analyze our reconstruction attack, we prove the following anti-concentration bound
for random outer-product queries, which might be of independent interest.

▶ Lemma 1.4 (Anti-concentration for random outer-product queries). Let M be an n × n

matrix with entries Mij ∈ {−1, 0, 1} for all i, j ∈ [n] and m be the number of nonzero entries
in M. Let A and B be drawn uniformly and independently from {−1, 1}n. If m ≥ γn2 for
some constant γ, then

Pr
[
|AT MB| >

√
m

2

]
≥ γ2

16 .

ICALP 2023

52:6 Triangle Counting with Local Edge Differential Privacy

The literature on reconstruction attacks describes other classes of dependent queries [42];
the outer-product queries arising here required a new and qualitatively different analysis.

1.3 Additional Related Work

One of the difficulties with proving lower bounds in the local model is that Randomized
Response, despite providing strong privacy guarantees, supplies enough information to
compute fairly sophisticated statistics. For example, Gupta, Roth and Ullman [32] show how
the output of Randomized Response can be used to estimate the density of all cuts in a graph.
Karwa et al. [39] show how to fit exponential random graph models based on randomized
response output. For certain model families, this would entail estimation of the number of
triangles; however, they provide no theoretical error analysis, only experimental evidence
for convergence. Randomized Response has also been studied in the statistics literature
with a focus on small probabilities of flipping an edge. Balachandran et al. [4] analyze the
distribution of the naive estimator that counts the number of triangles in the randomized
responses (when flip probabilities are very low). Chang et al. [11] give estimation strategies
for settings where the flip rate is unknown but multiple replicates with independent noise
are available. To the best of our understanding, these works do not shed light on the regime
most relevant to privacy, where edge-flip probabilities are close to 1/2.

A number of works have looked at triangle counting and other graph problems in the
empirical setting [54, 52, 31, 56] in “decentralized” privacy models. In all but [54], the local
view consists of the adjacency list. The local views in Sun et al. [54] consist of two-hop
neighborhoods. Such a model results in less error since nodes can see all of their adjacent
triangles and can report their adjacent triangles using the geometric mechanism.

1.4 Organization

Various models of differential privacy, including LEDP, are defined in Section 2. Our proof
of the lower bound for the noninteractive model, Theorem 1.1, appears in Section 3. The
anti-concentration lemma for out-product queries (Lemma 1.4) is proved in Section 3.2.
Our analysis of Randomized Response and the proof of Theorem 1.2 appears in the full
version [27]. The proof of Theorem 1.3 for the interactive LEDP model appears in Section 4.

2 Background on Differential Privacy

We begin with the definition of differential privacy that applies to datasets represented as
vectors as well as to graph datasets.

▶ Definition 2.1 (Differential Privacy [22, 21]). Let ε > 0 and δ ∈ [0, 1). A randomized
algorithm A is (ε, δ)-differentially private (DP) (with respect to the neighbor relation on the
universe of the datasets) if for all events S in the output space of A and all neighboring
datasets X and X ′,

Pr[A(x) ∈ S] ≤ exp(ε) · Pr[A(X ′) ∈ S] + δ.

When δ = 0, the algorithm is ε-differentially private (sometimes also called “purely differen-
tially private”).

T. Eden, Q. C. Liu, S. Raskhodnikova, and A. Smith 52:7

Differential privacy can be defined with respect to any notion of neighboring datasets.
When datasets are represented as vectors, datasets X and Y are consider neighbors if they
differ in one entry. In the context of graphs, there are two natural notions of neighboring
graphs that can be used in the definition: edge-neighboring and node-neighboring. We use
predominantly the former, but define both to make discussion of previous work clear.

▶ Definition 2.2. Two graphs G = (V, E) and G′ = (V ′, E′) are edge-neighboring if G and
G′ differ in exactly one edge, that is, if V = V ′ and E and E′ differ in exactly one element.
Two graphs are node-neighboring if one can be obtained from the other by removing a node
and its adjacent edges.

If the datasets are graphs with edge (respectively, node) neighbor relationship, we call a
differentially private algorithm simply edge-private (respectively, node-private).

2.1 The local model
The definition of differential privacy implicitly assumes a trusted curator that has access
to the data, runs a private algorithm on it, and releases the result. This setup is called the
central model of differential privacy. In contrast, in the local model of differential privacy,
each party participating in the computation holds its own data. The interaction between
the parties is coordinated by an algorithm A that accesses data via local randomizers. A
local randomizer is a differentially private algorithm that runs on the data of one party. In
the context of graph datasets, the input graph is distributed among the parties as follows:
each party corresponds to a node of the graph and its data is the corresponding row in the
adjacency matrix of the graph. In each round of interaction, the algorithm A assigns each
party a local randomizer (or randomizers) that can depend on the information obtained in
previous rounds.

We adapt the definition of local differential privacy from [36, 40] to the graph setting.
Consider an undirected graph G = ([n], E) represented by an n × n adjacency matrix A.
Each party i ∈ [n] holds the i-th row of A, denoted ai∗. We sometimes refer to ai∗ as the
adjacency vector of party i. Entries of A are denoted aij for i, j ∈ [n].

▶ Definition 2.3 (Local Randomizer). Let ε > 0 and δ ∈ [0, 1). An (ε, δ)-local randomizer
R : {0, 1}n → Y is an (ε, δ)-edge DP algorithm that takes as input the set of neighbors of
one node, represented by an adjacency vector a ∈ {0, 1}n. In other words, Pr [R(a) ∈ Y] ≤
eε · Pr [R(a′) ∈ Y] + δ for all a and a′ that differ in one bit and all sets of outputs Y ⊆ Y.
The probability is taken over the random coins of R (but not over the choice of the input).
When δ = 0, we say that R is an ε-local randomizer.

A randomized algorithm A on a distributed graph is (ε, δ)-LEDP if it satisfies Defini-
tion 2.4.

▶ Definition 2.4 (Local Edge Differential Privacy). A transcript π is a vector consisting of
5-tuples (St

U , St
R, St

ε, St
δ, St

Y) – encoding the set of parties chosen, set of randomizers assigned,
set of randomizer privacy parameters, and set of randomized outputs produced – for each
round t. Let Sπ be the collection of all transcripts and SR be the collection of all randomizers.
Let ⊥ denote a special character indicating that the computation halts. An algorithm in this
model is a function A : Sπ → (2[n] × 2SR × 2R≥0 × 2R≥0) ∪ {⊥} mapping transcripts to sets
of parties, randomizers, and randomizer privacy parameters. The length of the transcript, as
indexed by t, is its round complexity.

ICALP 2023

52:8 Triangle Counting with Local Edge Differential Privacy

Given ε ≥ 0 and δ ∈ [0, 1), a randomized algorithm A on a (distributed) graph G is
(ε, δ)-locally edge differentially private (LEDP) if the algorithm that outputs the entire
transcript generated by A is (ε, δ)-edge differentially private on graph G. When δ = 0, we
say that A is an ε-LEDP.

If t = 1, that is, if there is only one round, then A is called noninteractive. Otherwise,
A is called interactive.

Observe that a noninteractive LEDP algorithm is specified by a local randomizer for each
node and a postprocessing algorithm P that takes the outputs of the local randomizers as
input.

We use a local algorithm known as randomized response, initially due to [55], but since
adapted to differential privacy [40].

▶ Definition 2.5 (Randomized Response). Given a privacy parameter ε > 0 and a k-bit vector
a, the algorithm RandomizedResponseε(a) outputs a k-bit vector, where for each i ∈ [k], bit i

is ai with probability eε

eε+1 and 1 − ai otherwise.

▶ Theorem 2.6 (Randomized Response is ε-LR). Randomized response is an ε-local randomizer.

Additional privacy tools are described in the full version of this paper.

3 The Noninteractive Lower Bound

In this section, we prove Theorem 1.1, which we restate formally here.

▶ Theorem 3.1. There exists a family of graphs, such that every noninteractive (ε, δ)-LEDP
algorithm with ε ∈ (0, 1

20) and δ ∈ [0, 1
100) that gets an n-node graph from the family as an

input and approximates the number of triangles in the graph within additive error α with
probability at least 1 − 1

36·27 , must have α = Ω(n2).

At a high level, the lower bound is proved by showing that a noninteractive local algorithm
for counting triangles can be used to mount a reconstruction attack on a secret dataset X in
the central model of differential privacy. A groundbreaking result of Dinur and Nissim [18]
– generalized in subsequent works [23, 24, 42, 43, 15] – shows that if an algorithm answers
too many random linear queries on a sensitive dataset of N bits too accurately then a large
constant fraction of the dataset can be reconstructed. This is referred to as a “reconstruction
attack”. Specifically, Dinur and Nissim show that N random linear queries answered to
within ±O(

√
N) are sufficient for reconstruction. It is well known that if the output of an

algorithm on a secret dataset can be used for reconstruction, then this algorithm is not
differentially private. This line of reasoning leads to a lower bound of Ω(

√
N) on the additive

error of any differentially private algorithm answering N random linear queries.
Suppose we could show that an LEDP triangle counting algorithm with O(n2) additive

error can be used to construct a DP algorithm for answering n linear queries with O(
√

n)
additive error on some data set of size n – then by the above, we reach a contradiction to
the privacy of the algorithm. While indeed a triangle counting algorithm can be used to
answer a single linear query, the main challenge is that the Dinur-Nissim reconstruction
attack requires answering not one, but rather n, linear queries on the same dataset. Let
A be an (ε, δ)-LEDP triangle counting algorithm. If we naively try to answer each linear
query to X using a new invocation of the triangle counting algorithm in a black-box manner,
this would result in n invocations of A. This in turn would cause the privacy parameters to
grow linearly with n, making the privacy breach vacuous. That is, the result would be of

T. Eden, Q. C. Liu, S. Raskhodnikova, and A. Smith 52:9

the following sort. An (ε, δ)-LEDP algorithm for triangle counting with low additive error
implies an (O(εn), O(nδ))-DP algorithm for answering linear queries with low additive error.
Since the latter statement is too weak to be used with the results of Dinur and Nissim, we
take a different approach.

In order to avoid making n invocations of a triangle counting algorithm, we develop a new
type of reconstruction attack on a secret dataset X, where the set of allowed linear queries
has a special combinatorial structure. We call the new type of queries outer-product queries.
We show that, given access to an (ε, δ)-LEDP algorithm A that approximates the number of
triangles up to O(n2) additive error, we can design a (2ε, 2δ)-DP algorithm B for answering
Θ(n2) outer-product queries on dataset X of size N = n2, so that a constant fraction of
them is answered with O(n) additive error. (The dataset size is n2, so asymptotically the
number of random queries and the required accuracy are the same as in the Dinur-Nissim
attack.) The main insight is that instead of using A as a black-box, we use it in a “gray-box”
manner. This allows us to answer all Θ(n2) queries without degrading the privacy parameters
of B. This in turn allows us to reconstruct X, which is a contradiction to the privacy of
algorithm B, and thus also to the privacy of algorithm A. Hence, we conclude that any
LEDP triangle-counting algorithm must have Ω(n2) additive error.

The rest of Section 3.1 is organized as follows. In Section 3.1, we define outer-product
queries, and show that an (ε, δ)-DP algorithm A for triangle-counting with low additive
error can be used to construct a (2ε, 2δ)-DP algorithm B for answering outer-product queries
with low additive error. In Section 3.2, we prove an anti-concentration result for random
outer-product queries. In Section 3.3, we use the anti-concentration result to show that an
algorithm B that accurately answers Θ(n2) outer-product queries on a sensitive data set
X ∈ {0, 1}n×n can be used to reconstruct most of X and complete the proof of Theorem 3.1.

3.1 Reduction from Outer-product Queries to Triangle Counting
In this section, we prove Lemma 3.3, which is at the heart of our reduction. It shows that,
given access to an (ε, δ)-LEDP algorithm A for approximating the number of triangles with
low additive error, we can construct an (2ε, 2δ)-DP algorithm B (in the central model) that
accurately answers Θ(n2) outer-product queries on a sensitive data set X. We start by
formally defining this new class of queries.

▶ Definition 3.2 (Outer-product queries). Let X ∈ {0, 1}n×n. An outer-product query to X

specifies two vectors A and B of length n with entries in {−1, 1} and returns AT XB, that is,∑
i,j∈[n] AiXijBj.

Let γ be the desired reconstruction parameter that indicates that the attack has been
successful if we reconstruct at least (1 − γ)n2 bits of X correctly. (Later, in Section 3.3, γ

will be set to 1
9 and the number of queries, k, will be set to Θ(n2).)

▶ Lemma 3.3 (Answering Outer-product Queries via Triangle Counting). Let ε, δ > 0 and
γ ∈ (0, 1/2). Assume that there is a noninteractive (ε, δ)-LEDP algorithm A that, for every
3n-node graph, approximates the number of triangles with probability at least 1 − γ2

9·128 and
has additive error at most

√
γn2

20 . Then there is an (2ε, 2δ)-DP algorithm B in the central
model that, for every secret dataset X ∈ {0, 1}n×n and every set of k outer-product queries
(A(1), B(1)), . . . , (A(k), B(k)), gives answers a1, . . . , ak satisfying

Pr
[∣∣∣∣{ℓ ∈ [k] :

∣∣∣(A(ℓ))T XB(ℓ) − aℓ

∣∣∣ >

√
γn

4

}∣∣∣∣ >
γ2k

64

]
≤ 1

6 .

ICALP 2023

52:10 Triangle Counting with Local Edge Differential Privacy

𝒖𝒖𝟏𝟏𝟏𝟏 𝒖𝒖𝟏𝟏𝟏𝟏 … 𝒖𝒖𝟏𝟏𝟏𝟏

𝒘𝒘𝟏𝟏
𝒘𝒘𝟐𝟐

𝒘𝒘𝒏𝒏

…

𝒖𝒖𝟐𝟐𝟐𝟐 𝒖𝒖𝟐𝟐𝟐𝟐 … 𝒖𝒖𝟐𝟐𝟐𝟐

…

…

𝑿𝑿𝒊𝒊𝒊𝒊

𝑼𝑼𝟏𝟏

𝑼𝑼𝟐𝟐

𝑾𝑾

𝑮𝑮𝑿𝑿

present if 𝑄𝑄𝑖𝑖
1 = 1

present if 𝑄𝑄𝑗𝑗
2 = 1

Figure 1 The construction of the query graph GX,Q. Each of the parts U1, U2, W consists of n

nodes. The dashed line is an edge iff Xij = 1. Only the subgraph GX (induced by U1 ∪ U2) holds
secret information.

That is, with probability at most 5/6, for every dataset X and a set of k outer-product queries,
Algorithm B answers inaccurately at most γ2k

64 of the k queries, where by inaccurately we
mean with additive error more than

√
γn

4 .

Proof. Consider an algorithm A described in the premise of the lemma. Since A is local
noninteractive, it is specified by a local randomizer Rv(a) for each vertex v, as well as a
postprocessing algorithm P . Each randomizer takes an adjacency vector a ∈ {0, 1}n as input
and passes its output to P. Next, we define algorithm B that, given a sensitive dataset X

and a set of k outer-product queries, uses the randomizers and the postprocessing algorithm
as subroutines to obtain accurate answers to the outer-product queries.

Fix a dataset X ∈ {0, 1}n×n. For each outer-product query (A, B), algorithm B constructs
several corresponding query graphs. All query graphs are on the same vertex set V of size
3n, partitioned into three sets U1, U2, and W of size n. The vertices in Ut for t ∈ {1, 2}
are denoted ut1, . . . , utn. The vertices of W are denoted w1, . . . , wn. See Figure 1 for an
illustration.

Algorithm B first forms a bipartite graph GX with parts U1 and U2 with X as the
adjacency matrix; that is, it adds an edge (u1i, u2j) for each i, j ∈ [n] with Xij = 1. We call
GX the secret subgraph, because it will be included as a subgraph in every query graph and it
will be the only part of that graph that contains any information about the original sensitive
dataset X. Note that GX does not depend on the outer-product query. The remaining edges
of each query subgraph are between U1 ∪ U2 and W and are specific to each query graph,
so that overall the resulting graph is tripartite. For each v ∈ U1 ∪ U2, let ΓX(v) denote the
neighbors of v in the secret subgraph GX . A key idea in the construction is that every node
in the secret subgraph GX will have one of only two possible neighborhoods in each query
graph. This allows algorithm B to simulate triangle-counting computations on all query
graphs by invoking a local randomizer on each vertex in U1 ∪ U2 only twice. For each vertex
v ∈ U1 ∪ U2, algorithm B runs its local randomizer Rv(·) twice: once with the adjacency list
specified by ΓX(v) and once with the adjacency list specified by ΓX(v) ∪ W . Algorithm B
then records the output of the former invocation as as r0(v), and the latter as r1(v).

By the composition property of differential privacy, the algorithm that simply outputs
the vector of all 4n responses of the local randomizers is (2ε, 2δ)-DP by composition, because
each bit of X is encoded as a potential edge and used in two executions of the randomizers
for its endpoints, where each execution (of all randomizers) is (ε, δ)-LEDP. In the remaining
steps, algorithm B only postprocesses the vector of responses, and thus it is (2ε, 2δ)-DP.

T. Eden, Q. C. Liu, S. Raskhodnikova, and A. Smith 52:11

Next, we describe how to postprocess the vector of responses to obtain an answer to
an outer-product query (A, B). To answer each outer-product query, algorithm B will first
obtain answers to three linear queries that we call submatrix queries. Submatrix queries are
defined the same way as outer-product queries, except that vectors A and B have entries in
{0, 1} instead of {−1, 1}. Next, we explain how to answer submatrix queries on X, deferring
to Claim 3.5 the description of the simulation of each outer-product query with submatrix
queries.

To answer a submatrix query Q = (Q(1), Q(2)) on dataset X, algorithm B completes the
secret subgraph GX to a query graph GX,Q as follows. For each vertex uti ∈ U1 ∪ U2, where
t ∈ {1, 2} and i ∈ [n], it adds edges determined by Q(t): specifically, if Q

(t)
i = 1, it adds

edges from uti to all vertices in W . Next claim states the relationship between the number
of triangles in GX,Q and the answer to the submatrix query Q.

▷ Claim 3.4. The number of triangles in graph GX,Q is equal to n · (Q(1))T XQ(2).

Proof. Observe that GX,Q is tripartite with parts (U1, U2, W), so all triangles must have one
vertex in each part. The answer to the submatrix query Q = (Q(1), Q(2)) is

(Q(1))T XQ(2) =
∑

i,j∈[n]

Q
(1)
i Q

(2)
j Xij .

For each term in the sum, both u1i and u2j are adjacent to all nodes in W iff Q
(1)
i = Q

(2)
j = 1.

If the edge (u1i, u2j) is present in the graph, then this results in n triangles. Thus, each term
where Q

(1)
i = Q

(2)
j = Xij = 1 corresponds to n triangles of the form (u1i, u2j , wℓ), where

ℓ ∈ [n]. All other terms create no triangles, since either Xij = 0, in which case the edge
(u1i, u2j) is not present in the graph, or either Q

(1)
i = 0 or Q

(2)
j = 0, in which case u1i and

u2j do not have common neighbors. ◁

To answer a submatrix query Q, algorithm B simulates a call to the triangle-counting
algorithm A on the corresponding query graph GX,Q. First, B runs the local randomizers
for the vertices in W with their adjacency vectors specified by the graph GX,Q. Note that
these vertices do not have access to any private information, so this operation does not affect
privacy. For each vertex uti ∈ U1 ∪ U2, where t ∈ {1, 2} and i ∈ [n], algorithm B uses the
result rb(uti) from the previously run randomizer, where b = Q

(t)
i . E.g., if Q

(1)
i = 0, then

B uses the result r0(u1i), and if Q
(1)
i = 1, it uses the result r1(u1i). Now algorithm B has

results from all vertex randomizers on the graph GX,Q and it simply runs the postprocessing
algorithm P on these results. To obtain the answer to the submatrix query, B divides the
output of P by n.

Finally, algorithm B answers each outer-product query as specified in the following claim,
by getting answers to three submatrix queries.

▷ Claim 3.5. An outer-product query to X can be simulated with three submatrix queries
to X. Moreover, if all three submatrix queries are answered with additive error at most α,
then the outer product query can be answered with additive error at most 5α.

Proof. Consider an outer-product query to an n × n matrix X specified by A, B ∈ {−1, 1}n.

Define n-bit vectors A′ = 1
2 (A + 1⃗) and A′′ = 1

2 (−A + 1⃗), where 1⃗ denotes a vector of 1s of
length n. Define B′ and B′′ analogously. Then, as illustrated in Figure 2,

AT XB = 2((A′)T XB′ + (A′′)T XB′′) − 1⃗T X 1⃗.

ICALP 2023

52:12 Triangle Counting with Local Edge Differential Privacy

1 -1
-1 1

𝐴𝐴
𝐵𝐵

𝐴𝐴⊗𝐵𝐵

= 2 ⋅

𝐴𝐴𝑒𝐵𝐵𝐵

𝐴𝐴𝐴 ⊗ 𝐵𝐵𝐵

+

𝐴𝐴𝑒𝑒
𝐵𝐵𝐵𝐵

𝐴𝐴𝐴𝐴 ⊗ 𝐵𝐵𝐵𝐵

−

1 … 1 -1 … -1

1
…
1

-1
…
-1

1 0
0 0

1 … 1 0 … 0

1
…
1

0
…
0

0 0
0 1

0 … 0 1 … 1

0
…
0

1
…
1

1 ⊗ 1

1 1
1 1

1 … 1 1 … 1

1
…
1

1
…
1

1 1

Figure 2 Every outer-product query can be simulated using three submatrix queries. For the
illustration, the entries of all vectors are rearranged to group the same values together. The outer
product is denoted ⊗.

That is, the answer to the outer-product query (A, B) can be computed from the answers to
the submatrix queries (A′, B′), (A′′, B′′), and (⃗1, 1⃗), and the additive error increases from α

to 5α, as stated. ◁

It remains to prove the following claim.

▷ Claim 3.6. Let A be as in the premise of Lemma 3.3. For every secret dataset X ∈ {0, 1}n×n

and every set of k outer-product queries {(A(ℓ), B(ℓ))}ℓ∈[k], algorithm B gives answers
a1, . . . , ak satisfying

Pr
[∣∣∣∣{ℓ ∈ [k] :

∣∣∣(A(ℓ))T XB(ℓ) − aℓ

∣∣∣ >

√
γn

4

}∣∣∣∣ >
γ2k

64

]
≤ 1

6 .

That is, the number of “incorrectly” answered outer-product queries exceeds γ2k
64 with

probability at most 1/6.

Proof. By the assumption on A, for every graph G, algorithm A returns the number of
triangles in G within an additive error at most

√
γn2

20 with probability at least 1 − γ2

9·128 .
Given a secret dataset X and k outer-product queries, algorithm B first creates k triples

of submatrix queries corresponding to the outer-product queries. Then B uses A as a gray
box, to answer all 3k submatrix queries simultaneously. Recall that this is achieved by
invoking the local randomizers on vertices holding private information (that is, vertices in
parts U1, U2) twice, once for each potential value of the bit that corresponds to this vertex in
a specific query. Then for each individual submatrix query, one local randomizer is invoked
on each of the n vertices in W with the adjacency list that corresponds to that specific query
graph. Then, to answer each specific submatrix query, algorithm B combines the new outputs
of the vertices from W with the stored outputs from running randomizers on U1 ∪ U2 that
correspond to that specific query, and invokes the postprocessing algorithm P on this vector
of 3n outputs. Finally, B divides P’s answer by n to obtain the answer to the submatrix
query.

Each invocation of P by B simulates one triangle-counting computation. Overall, we
have 3k (dependent) simulated triangle-counting computations. By the assumption on A,
stated in the premise of Lemma 3.3, the postprocessing algorithm P answers each simulated
triangle-counting computation inaccurately (i.e., with additive error exceeding

√
γn2

20) with
probability at most γ2

9·128 (where this probability is taken over the random coins of the
individual 3n local randomizers, as well as the random coins of P). Overall, there are
3k (dependent) simulations, and so the expected number of simulated triangle-counting
computations for which A returns additive error greater than

√
γn2

20 is at most γ2·(3k)
9·128 = γ2·k

6·64 .
Hence, by Markov’s inequality, the probability that the number of inaccurate simulated
triangles queries exceeds γ2·k

64 is at most 1
6 .

T. Eden, Q. C. Liu, S. Raskhodnikova, and A. Smith 52:13

Condition on the event that at most γ2·k
64 of the triangle-counting computations are

answered inaccurately, so that the remaining computations are answered with error at most
α =

√
γn2

20 , and denote this even by E. Recall that each triangle-counting computation
is used to answer a single submatrix query, and that by Claim 3.4, if a triangle-counting
computation is answered with additive error α, then the corresponding submatrix query
is answered with additive error α/n. Hence, by the above conditioning, at most γ2·k

64 of
the submatrix queries are answered with additive error greater than α/n. Each inaccurate
answer to a triangle-counting computation can spoil the answer to at most one outer-product
query. Furthermore, by Claim 3.5, if all three submatrix queries used to compute a single
outer-product query are answered to within additive error α/n, then the outer-product query
is answered to within additive error 5α/n. Hence, by the above conditioning, at most γ2·k

64 of
the outer-product queries are answered with additive error greater than 5α/n =

√
γn

4 . Since
event E occurs with probability at least 5/6, we get that with probability at least 5/6, the
fraction of outer-product queries that is answered with additive error greater than

√
γn

4 is at
most γ2·k

64 , so that Claim 3.6 holds. ◁

This completes the proof of Lemma 3.3. ◀

3.2 Anti-Concentration for Random Outer-Product Queries

In this section, we prove Lemma 1.4. To analyze our reconstruction attack, we will consider
the differences between the true dataset X and a potential reconstructed dataset Y . Let M

denote X − Y . Then, for an outer-product query (A, B), the difference between the answers
to this query on dataset X and on dataset Y is AT XB − AT Y B = AT MB. The main result
of this section shows that if X and Y differ on many entries (that is, M has lots of nonzero
entries) then a random outer-product query is likely to produce significantly different answers
on X and Y .

Proof of Lemma 1.4. Let Zij = AiBj for all i, j ∈ [n], and U = AT MB. We prove the
lemma by computing the expectation and the second and the fourth moments of U , and then
apply the Paley-Zigmund inequality to U2.

By independence of Ai and Bj for all i, j ∈ [n], we have E[Zij] = E[Ai] · E[Bj] = 0 and
Var[Zij] = E[Z2

ij] = E[A2
i B2

j] = 1. By definition of U and the linearity of expectation,

E[U] = E[AT MB] = E
[∑

i,j∈[n]

Mi,jZi,j

]
=

∑
i,j∈[n]

Mi,jE[Zi,j] = 0.

Note that random variables Zij are pairwise independent. This is an important feature
of random outer-product queries and the main reason to use them instead of the submatrix
queries. This feature greatly simplifies the analysis. Since U is unbiased, E[U2] = Var[U].
By pairwise independence of Zij ,

Var[U] = Var
[∑

i,j∈[n]

MijZij

]
=

∑
i,j∈[n]

M2
ij Var[Zij] =

∑
i,j∈[n]

M2
ij = m.

ICALP 2023

52:14 Triangle Counting with Local Edge Differential Privacy

Next, we give an upper bound on the 4th moment of U .

▷ Claim 3.7. E[U4] ≤ 9n4.

Proof. We use the definition of U , write it out as a sum, and multiply out the terms of the
product:

E[U4] = E[(AT MB)4] = E
[(∑

i,j∈[n]

MijZij

)4]
=

∑
(i1,j1),...,(i4,j4)∈[d]×[d]

Mi1j1Mi2j2Mi3j3Mi4j4 E[Zi1j1Zi2j2Zi3j3Zi4j4], (1)

where Equation (1) is obtained by using the linearity of expectation. Next, we evaluate the
expectation of the product in Equation (1):

E[Zi1j1Zi2j2Zi3j3Zi4j4] = E[Ai1Bj1Ai2Bj2Ai3Bj3Ai4Bj4]
= E[Ai1Ai2Ai3Ai4] E[Bj1Bj2Bj3Bj4],

where the last equality follows by independence of Ai and Bj for all i, j ∈ [n]. The expression
E[Ai1Ai2Ai3Ai4] is 0 if at least one of the indices appears only once in the tuple (i1, i2, i3, i4),
since, in this case, we can use the independence of the corresponding factor Ai from the
remaining factors to represent this expression as E[Ai] multiplied by the expectation of the
product of the remaining factors. Since E[Ai] = 0 for all i ∈ [n], the overall expression
evaluates to 0.

Note that if one of the factors appears exactly three times, then another factor appears
exactly once. Therefore, the remaining case is when each factor appears an even number
of times. If there are two factors, say Ai and Aj that appear twice, then the expression
evaluates to E[A2

i A2
j] = 1. It also evaluates to 1 when i = j.

Thus, each term in Equation (1) is either 0 or 1. By symmetry, it can potentially be 1
only if each index in the tuple (i1, i2, i3, i4) and each index in the tuple (j1, j2, j3, j4) appears
an even number of times. It remains to give an upper bound on the number of such terms.
There are

(
n
2
)

ways to choose two distinct i-indices and
(4

2
)

= 6 possible positions for them
in the 4-tuple. In addition, there are n ways to choose an index that appears 4 times in
the 4-tuple. So, the number of possibilities for nonzero E[Ai1Ai2Ai3Ai4] is at most 3n2. The
same bounds holds for E[Bj1Bj2Bj3Bj4]. Consequently, the number of terms equal to 1 in
Equation (1) is at most 9n4. Thus, the sum evaluates to at most 9n4. This completes the
proof of Claim 3.7. ◁

Since U2 is a nonnegative random variable with finite variance, the Paley-Zygmund
inequality gives that, for all θ ∈ [0, 1],

Pr
[
U2 > θ E[U2]

]
≥ (1 − θ)2 (E[U2])2

E[U4] ≥ (1 − θ)2 m2

9n4 ≥ (1 − θ)2 (γn2)2

9n4 = (1 − θ)2 γ2

9 ,

where the last inequality uses the bound m ≥ γn2 stated in the lemma. Finally, we set
θ = 1/4 and get:

Pr
[
|AT MB| >

√
m

2

]
= Pr

[
|U | >

√
m

2

]
= Pr

[
U2 >

m

4

]
≥ 32

42
γ2

9 = γ2

16 ,

completing the proof of Lemma 1.4. ◀

T. Eden, Q. C. Liu, S. Raskhodnikova, and A. Smith 52:15

3.3 Reconstruction Attack Using Outer-Product Queries
To simplify notation in this section, we represent our datasets and outer-product queries
as vectors. Formally, X here denotes the vectorization of the original sensitive dataset, i.e.,
a vector in {0, 1}n2

. For an outer-product query (A, B), we let Q ∈ {0, 1}n2 represent the
vectorization of A ⊗ B, the outer product of A and B. (In other words, Q is the Kronecker
product of A and B.) Then the answer to the query is the dot product Q · X.

In this section, we define and analyze the attacker’s algorithm C and complete the proof
of Theorem 3.1. The attacker C runs algorithm B from Section 3.1 on the sensitive dataset
X and a set of k random outer-product queries Q1, . . . , Qk to obtain answers a1, . . . , ak. For
all ℓ ∈ [k], we call the answer aℓ accurate for a dataset Y if |Qℓ · Y − aℓ| ≤

√
γn

4 ; otherwise,
we call aℓ inaccurate for Y . The attacker C outputs any dataset Y ∗ ∈ {0, 1}n2 for which at
most γ2k

64 answers among a1, . . . , ak are inaccurate for Y ∗. By Lemma 3.3, the probability
that X satisfies this requirement is at least 5

6 . If this event occurs, algorithm C will be able
to output some Y ∗. (Otherwise, the attack fails.)

Next, we analyze the attack. Let ∥X − Y ∥1 denote the Hamming distance between
datasets X and Y . Call a dataset Y bad if ∥X − Y ∥1 > γn2, i.e., if it differs from X on
more than γn2 entries. We will show that C is unlikely to choose a bad data set as Y ∗.

Fix a bad dataset Y . Let M = X − Y, and observe that M has m > γn2 nonzero entries.
We say that a set of queries {Q1, . . . , Qk} catches the dataset Y if more than γ2k

32 entries in
(|Q1 · M |, . . . , |Qk · M |) exceed

√
γn

2 .

▶ Lemma 3.8. Suppose the attacker C makes k = 128n2

γ2 uniformly random outer-product
queries. Then the probability that there exists a bad dataset not caught by the attacker’s set
of queries is at most 1

6 .

Proof. Consider a set of k uniformly random outer-product queries {Qℓ}ℓ∈[k]. Fix a bad
dataset Y . Then ∥X − Y ∥1 > γn2. Let M = X − Y.

For every ℓ ∈ [k], let χℓ = 1 if |Qℓ · M | >
√

γn

2 , and otherwise let χℓ = 0. Also, let
χ =

∑k
ℓ=1 χℓ. By definition, the difference vector M = X − Y has more than γn2 nonzero

entries. By the anti-concentration bound in Lemma 1.4, Pr
[
|Qℓ ·M | >

√
γn

2

]
≥ γ2

16 . Therefore,

E[χℓ] ≥ γ2

16 . By the Chernoff bound, we have that for k = 128n2

γ2 and for n ≥ 3,

Pr
[
χ ≤ γ2 · k

32

]
≤ exp

(
− γ2k

128

)
= exp

(
− n2

)
<

1
6 · 2n2 .

Hence, the set {Qℓ}ℓ∈[k] fails to catch each specific bad dataset with probability at most
1

6·2n2 . By a union bound over at most 2n2 bad datasets, the probability that there exists a
bad dataset not caught by the attacker’s queries is at most 1/6. ◀

▶ Lemma 3.9 (Reconstruction Lemma). If algorithm B has additive error at most
√

γn

4 on
all but at most γ2k

64 answers, and the set of queries it uses catches all bad datasets Y , then
the reconstruction attack is successful, that is, the attacker C outputs Y ∗ that differs from X

on at most γn2 entries, i.e., ∥X − Y ∗∥1 ≤ γn2.

Proof. By the first premise of the lemma, the dataset X “disagrees” with at most γ2k
64

of the answers aℓ. Hence, necessarily, the attacker C outputs some dataset Y ∗. Assume
towards a contradiction that Y ∗ is a bad dataset. Let {Qℓ}ℓ∈[k] be the set of queries
chosen by B. Let M∗ = X − Y ∗ be the difference vector. By the triangle inequality,
|QℓM

∗| = |QℓX − QℓY
∗| ≤ |QℓX − aℓ| + |QℓY

∗ − aℓ|. From the first assumption in the

ICALP 2023

52:16 Triangle Counting with Local Edge Differential Privacy

lemma, |QℓX − aℓ| ≤
√

γn

4 for all but at most γ2k
64 of the queries. By the description of the

attack C, the output Y ∗ is such that for all but at most γ2k
64 of the queries, |QℓY

∗ −aℓ| ≤
√

γn

4 .
Therefore, for all but at most γ2k

32 of the queries, |QℓM
∗| ≤ |QℓX − aℓ| + |QℓY

∗ − aℓ| ≤
√

γn

2 .
Since {Qℓ}ℓ∈[k] catches all bad datasets, it in particular catches Y ∗, because Y ∗ is bad. By
definition of catching, |QℓM

∗| >
√

γn

2 for more than γ2k
32 of the values QℓM

∗. Hence, we
have reached a contradiction, implying that Y ∗ is a good dataset. ◀

The final ingredient for proving Theorem 3.1 is the following lemma, which is based on
an argument of [15]. Any algorithm that outputs a large fraction of its secret dataset is
definitely not private, for any reasonable notion of privacy. Lemma 3.10 states that such an
algorithm is not differentially private.

▶ Lemma 3.10. Let C be an algorithm that takes as input a secret data set X in {0, 1}N

and outputs a vector in the same set, {0, 1}N . If C is (ε, δ)-differentially private and X is
uniformly distributed in {0, 1}N , then

E [∥C(X) − X∥1] ≥ e−ε
(1

2 − δ
)
N .

Lemma 3.10 above only bounds the expectation of ∥C(X) − X∥1. The more sophisticated
argument in [15] yields much tighter concentration results. We use the simpler version here
since it allows for a self-contained presentation.

Proof. Fix an index i ∈ [N] and a bit r ∈ {0, 1}. Let Xi→r denote the vector obtained by
replacing the i-th entry of X with the bit r.

Consider the pair of random variables (X, C(X)). Because C is (ε, δ)-differentially private,
this is distributed similarly to the pair (Xi→R, C(X)), where R is a uniformly random bit
independent of the other values. Specifically, for any event E ⊆ {0, 1}N × {0, 1}N ,

Pr[(Xi→R, C(X)) ∈ E] ≤ eε Pr[(X, C(X)) ∈ E] + δ.

Applying this inequality to the event Ei = {(x, y) : xi ̸= yi} shows that

1
2 = Pr[C(X)i ̸= R] ≤ eε Pr[C(X)i ̸= Xi] + δ and thus Pr[C(X)i ̸= Xi] ≥ e−ε(1

2 − δ) .

The Hamming distance ∥C(X) − X∥1 is the sum of the indicator random variables for
the events C(X)i ̸= Xi. By linearity of expectation, the expected Hamming distance is at
least e−ε

(1
2 − δ

)
N . ◀

Finally, we use Lemmas 3.3 and 3.8–3.10 to compete the proof of the main theorem.

Proof of Theorem 3.1. We set γ = 1
9 . Assume towards a contradiction that for some ε

and δ as in the statement of the theorem, there exists an (ε, δ)-LEDP algorithm A that for
every 3n-node graph approximates the number of triangles in the graph up to additive error
α =

√
γn2

20 with probability at least 1 − γ2

9·128 = 1 − 1
36·27 . Then by Lemma 3.3, there exists a

(2ε, 2δ)-DP algorithm B that, for every secret dataset X and every set of k outer-product
queries, answers inaccurately (i.e., with additive error more than

√
γn

4) on at most γ2k
64 of the

k queries with probability at least 5
6 . By Lemma 3.8, the probability that a set of k = 128n2

γ2

random outer-product queries chosen by the attacker C does not catch all bad datasets
is at most 1

6 . By a union bound, with probability at least 2
3 , the attacker C satisfies the

premise of Lemma 3.9 and the set of chosen queries catches all bad data sets. Hence, with
probability at least 2

3 , the attacker C outputs a dataset Y ∗ which coincides with X on at
least (1 − γ)n2 entries. The expected Hamming distance E[∥X − Y ∗∥1] is therefore at most
2
3 · γn2 + 1

3 n2 = 1+2γ
3 n2. When γ = 1

9 , the expected distance is less than 0.41n2.

T. Eden, Q. C. Liu, S. Raskhodnikova, and A. Smith 52:17

Recall that the attacker C runs (2ε, 2δ)-DP algorithm B on a secret dataset X and then
post processes the output of B. Thus, C is (2ε, 2δ)-DP, and we can apply Lemma 3.10 to
conclude that the expected Hamming distance E∥C(X) − X∥1 is at most e−2ε(1

2 − 2δ)n2.
Since, by assumption, ε ≤ 1/20 and δ ≤ 1/100, we have E∥C(X) − X∥1 ≥ 0.43n2. This
contradicts the upper bound of 0.41n2 above. ◀

4 The Interactive Lower Bound

In this section, we present an Ω
(

n3/2

ε

)
lower bound on the additive error of every ε-LEDP

algorithm for estimating the number of triangles in a graph, stated formally in Theorem 1.3.
We reduce from the problem of computing the summation in the LDP model.

▶ Definition 4.1 (Summation function). Let SUMn be the following function. For all
x1, . . . , xn ∈ {0, 1}, SUMn (x1, . . . , xn) =

∑n
i=1 xi.

This problem was shown to have an additive error lower bound of Ω(
√

n/ε) [36, Theorem
5.3 of arxiv v2]. We substitute α = α0/n and β = εα0/n to obtain the following lemma.

▶ Lemma 4.2 ([10, 6, 36]). There exists a constant c > 0 such that for every ε ∈ (0, 1),
n ∈ N, α0 ∈ (0, n] and δ ∈

[
0, 1

105 · ε3α2
0

n3 ln(n2/εα0)

]
, if B is an (ε, δ)-LDP algorithm where

each party i receives input xi ∈ {0, 1} and B estimates SUMn up to additive error α0 with
probability at least 2/3, then α0 ≥ c ·

√
n/ε.

Proof of Theorem 1.3. We reduce from SUMn in the local model. By Lemma 4.2, every
(potentially interactive) algorithm that approximates SUMn with additive error at most α0
(with sufficiently high constant probability) must have α0 = Ω(

√
n

ε). In our reduction, we
will set the additive error of the triangle-counting algorithm, α = α0n.

Our reduction is black-box. Given an instance of SUMn, where each local party holds
one bit Xi of the vector (X1, . . . , Xn), the parties implicitly create the following graph G.
The vertex set consists of two sets of nodes, V1 and V2, where V1 has size n and V2 has size
2n. The nodes in V1 will not have any secret information and can be simulated by any local
party. The nodes in V2 are [2n], and each party i ∈ [n] is responsible for simulating nodes
2i − 1 and 2i in V2. To create the edges of G, we add edges of the complete bipartite graph
between V1 and V2. In addition, each pair of nodes (2i − 1, 2i) in V2 has an edge between
them if and only if xi = 1. See Figure 3 for an illustration.

Let S = x1 + . . . xn. Observe that any triangle in G must have two vertices in V2 and an
edge between a pair of matched nodes. Any such edge contributes exactly n triangles. So,
the total number of triangles in G is T = Sn.

For the sake of contradiction, suppose there is an (ε, δ)-LEDP algorithm A that estimates
the number of edges with error o(n3/2

ε). We run it on G. By construction, party i can simulate
the two nodes assigned to it, and anybody can simulate nodes in V1. When the algorithm
gets an estimate T̂ for the number of triangles, it outputs Ŝ = T̂ /n. If T̂ = T ± o(n3/2

ε), then
Ŝ = T̂ /n = T/n ± o(

√
n

ε) = S ± o(
√

n
ε), which is a contradiction to Lemma 4.2.

Moreover, if A is (ε, δ)-LEDP, then the reduction algorithm is (ε, δ)-LDP with respect to
the secret dataset X. However, the latter contradicts Lemma 4.2. Thus, A cannot exist. ◀

ICALP 2023

52:18 Triangle Counting with Local Edge Differential Privacy

v1 v2 v3 vn

1 2 3 4 2n − 1 2n

V1

V2

Figure 3 An instance of the interactive Ω(n3/2) lower bound consists of a complete bipartite
graph with parts V1, V2 of sizes n and 2n, respectively; in addition, there is an edge between each
pair {2i − 1, 2i} iff the secret input bit Xi = 1.

References
1 Mohammad Al Hasan and Vachik S Dave. Triangle counting in large networks: a review.

Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(2):e1226, 2018.
2 Differential Privacy Team Apple. Learning with privacy at scale differential, 2017.
3 Sepehr Assadi, Michael Kapralov, and Sanjeev Khanna. A simple sublinear-time algorithm

for counting arbitrary subgraphs via edge sampling. In ITCS, volume 124 of LIPIcs, pages
6:1–6:20. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2019.

4 Prakash Balachandran, Eric D. Kolaczyk, and Weston D. Viles. On the propagation of low-rate
measurement error to subgraph counts in large networks. JMLR, 18(61):1–33, 2017.

5 Luca Becchetti, Paolo Boldi, Carlos Castillo, and Aristides Gionis. Efficient semi-streaming
algorithms for local triangle counting in massive graphs. In Proceedings of the 14th ACM
SIGKDD, pages 16–24, 2008.

6 Amos Beimel, Kobbi Nissim, and Eran Omri. Distributed private data analysis: Simultaneously
solving how and what. In CRYPTO, pages 451–468. Springer, 2008.

7 Amartya Shankha Biswas, Talya Eden, Quanquan C. Liu, Ronitt Rubinfeld, and Slobodan
Mitrovic. Massively parallel algorithms for small subgraph counting. In Amit Chakrabarti and
Chaitanya Swamy, editors, Approximation, Randomization, and Combinatorial Optimization.
Algorithms and Techniques, APPROX/RANDOM 2022, September 19-21, 2022, University
of Illinois, Urbana-Champaign, USA (Virtual Conference), volume 245 of LIPIcs, pages
39:1–39:28. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.
APPROX/RANDOM.2022.39.

8 Andrea Bittau, Úlfar Erlingsson, Petros Maniatis, Ilya Mironov, Ananth Raghunathan, David
Lie, Mitch Rudominer, Ushasree Kode, Julien Tinnes, and Bernhard Seefeld. Prochlo: Strong
privacy for analytics in the crowd. In Proceedings of the 26th SOSP, SOSP ’17, pages 441–459,
New York, NY, USA, 2017.

9 Jeremiah Blocki, Avrim Blum, Anupam Datta, and Or Sheffet. Differentially private data
analysis of social networks via restricted sensitivity. In Robert D. Kleinberg, editor, ITCS ’13,
Berkeley, CA, USA, January 9-12, 2013, pages 87–96. ACM, 2013. doi:10.1145/2422436.
2422449.

10 TH Hubert Chan, Elaine Shi, and Dawn Song. Optimal lower bound for differentially private
multi-party aggregation. In ESA, pages 277–288. Springer, 2012.

11 Jinyuan Chang, Eric D. Kolaczyk, and Qiwei Yao. Estimation of subgraph densities in noisy
networks. Journal of the American Statistical Association, 117(537):361–374, 2022.

12 Justin Y Chen, Talya Eden, Piotr Indyk, Honghao Lin, Shyam Narayanan, Ronitt Rubinfeld,
Sandeep Silwal, Tal Wagner, David Woodruff, and Michael Zhang. Triangle and four cycle
counting with predictions in graph streams. In ICLR, 2021.

https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.39
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.39
https://doi.org/10.1145/2422436.2422449
https://doi.org/10.1145/2422436.2422449

T. Eden, Q. C. Liu, S. Raskhodnikova, and A. Smith 52:19

13 Shixi Chen and Shuigeng Zhou. Recursive mechanism: towards node differential privacy
and unrestricted joins. In Kenneth A. Ross, Divesh Srivastava, and Dimitris Papadias,
editors, Proceedings of the ACM SIGMOD International Conference on Management of
Data, SIGMOD 2013, New York, NY, USA, June 22-27, 2013, pages 653–664. ACM, 2013.
doi:10.1145/2463676.2465304.

14 Graham Cormode, Somesh Jha, Tejas Kulkarni, Ninghui Li, Divesh Srivastava, and Tianhao
Wang. Privacy at scale: Local differential privacy in practice. In Proceedings of the 2018
SIGMOD, SIGMOD ’18, pages 1655–1658, New York, NY, USA, 2018.

15 Anindya De. Lower bounds in differential privacy. In TCC, pages 321–338. Springer, 2012.
16 Laxman Dhulipala, Quanquan C. Liu, Sofya Raskhodnikova, Jessica Shi, Julian Shun, and

Shangdi Yu. Differential privacy from locally adjustable graph algorithms: k-core decomposi-
tion, low out-degree ordering, and densest subgraphs. In FOCS 2022, Denver, CO, USA, Octo-
ber 31 – November 3, 2022, pages 754–765. IEEE, 2022. doi:10.1109/FOCS54457.2022.00077.

17 Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin. Collecting telemetry data privately.
In Proceedings of the 31st International Conference on Neural Information Processing Systems,
NIPS’17, pages 3574–3583, Red Hook, NY, USA, 2017. Curran Associates Inc.

18 Irit Dinur and Kobbi Nissim. Revealing information while preserving privacy. In Frank Neven,
Catriel Beeri, and Tova Milo, editors, Proceedings of the Twenty-Second ACM SIGACT-
SIGMOD-SIGART PODS, June 9-12, 2003, San Diego, CA, USA, pages 202–210. ACM, 2003.
doi:10.1145/773153.773173.

19 John Duchi, Michael Jordan, and Martin Wainwright. Local privacy and statistical minimax
rates. In IEEE Symposium on Foundations of Computer Science, FOCS ’13, pages 429–438,
Berkeley, CA, USA, 2013. arXiv:1302.3203.

20 John C Duchi, Michael I Jordan, Martin J Wainwright, et al. Minimax optimal procedures for
locally private estimation. Journal of the American Statistical Association, 113(521):182–201,
2018.

21 Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor.
Our data, ourselves: Privacy via distributed noise generation. In Serge Vaudenay, editor,
EUROCRYPT 2006, St. Petersburg, Russia, May 28 – June 1, 2006, Proceedings, volume
4004 of Lecture Notes in Computer Science, pages 486–503. Springer, 2006. doi:10.1007/
11761679_29.

22 Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In Proceedings of the Third Conference on Theory of
Cryptography, TCC’06, pages 265–284, Berlin, Heidelberg, 2006. Springer-Verlag.

23 Cynthia Dwork, Frank McSherry, and Kunal Talwar. The price of privacy and the limits of
LP decoding. In Proceedings of the Thirty-Ninth ACM STOC, pages 85–94. ACM, 2007.

24 Cynthia Dwork and Sergey Yekhanin. New efficient attacks on statistical disclosure control
mechanisms. In CRYPTO, pages 469–480. Springer, 2008.

25 Jean-Pierre Eckmann and Elisha Moses. Curvature of co-links uncovers hidden thematic layers
in the world wide web. Proceedings of the national academy of sciences, 99(9):5825–5829, 2002.

26 Talya Eden, Amit Levi, Dana Ron, and C Seshadhri. Approximately counting triangles in
sublinear time. SIAM Journal on Computing, 46(5):1603–1646, 2017.

27 Talya Eden, Quanquan C. Liu, Sofya Raskhodnikova, and Adam D. Smith. Triangle counting
with local edge differential privacy. CoRR, abs/2305.02263, 2023. doi:10.48550/arXiv.2305.
02263.

28 Úlfar Erlingsson, Vasyl Pihur, and Aleksandra Korolova. Rappor: Randomized aggregatable
privacy-preserving ordinal response. In Proceedings of the 2014 ACM SIGSAC CCS, CCS ’14,
pages 1054–1067, New York, NY, USA, 2014.

29 Alexandre V. Evfimievski, Johannes Gehrke, and Ramakrishnan Srikant. Limiting privacy
breaches in privacy preserving data mining. In Frank Neven, Catriel Beeri, and Tova Milo,
editors, Proceedings of the Twenty-Second ACM SIGACT-SIGMOD-SIGART PODS, June
9-12, 2003, San Diego, CA, USA, pages 211–222. ACM, 2003. doi:10.1145/773153.773174.

ICALP 2023

https://doi.org/10.1145/2463676.2465304
https://doi.org/10.1109/FOCS54457.2022.00077
https://doi.org/10.1145/773153.773173
https://arxiv.org/abs/1302.3203
https://doi.org/10.1007/11761679_29
https://doi.org/10.1007/11761679_29
https://doi.org/10.48550/arXiv.2305.02263
https://doi.org/10.48550/arXiv.2305.02263
https://doi.org/10.1145/773153.773174

52:20 Triangle Counting with Local Edge Differential Privacy

30 Illés J Farkas, Imre Derényi, Albert-László Barabási, and Tamas Vicsek. Spectra of “real-world”
graphs: Beyond the semicircle law. Physical Review E, 64(2):026704, 2001.

31 Tianchong Gao, Feng Li, Yu Chen, and XuKai Zou. Local differential privately anonymizing
online social networks under hrg-based model. IEEE Transactions on Computational Social
Systems, 5(4):1009–1020, 2018.

32 Anupam Gupta, Aaron Roth, and Jonathan R. Ullman. Iterative constructions and private
data release. In Ronald Cramer, editor, Theory of Cryptography – 9th Theory of Cryptography
Conference, TCC 2012, Taormina, Sicily, Italy, March 19-21, 2012. Proceedings, volume
7194 of Lecture Notes in Computer Science, pages 339–356. Springer, 2012. doi:10.1007/
978-3-642-28914-9_19.

33 Jacob Imola, Takao Murakami, and Kamalika Chaudhuri. Locally differentially private
analysis of graph statistics. In 30th USENIX Security Symposium, USENIX Security 2021,
August 11-13, 2021, pages 983–1000, 2021. URL: https://www.usenix.org/conference/
usenixsecurity21/presentation/imola.

34 Jacob Imola, Takao Murakami, and Kamalika Chaudhuri. Communication-efficient triangle
counting under local differential privacy. In 31st USENIX Security Symposium, USENIX
Security 2022, August 10-12, 2022, 2022. arXiv:2110.06485.

35 Jacob Imola, Takao Murakami, and Kamalika Chaudhuri. Differentially private subgraph
counting in the shuffle model. CoRR, abs/2205.01429, 2022. arXiv:2205.01429, doi:10.
48550/arXiv.2205.01429.

36 Matthew Joseph, Jieming Mao, Seth Neel, and Aaron Roth. The role of interactivity in
local differential privacy. In David Zuckerman, editor, 60th IEEE Annual FOCS 2019,
Baltimore, Maryland, USA, November 9-12, 2019, pages 94–105. IEEE Computer Society,
2019. doi:10.1109/FOCS.2019.00015.

37 John Kallaugher and Eric Price. A hybrid sampling scheme for triangle counting. In Proceedings
of the Annual ACM-SIAM SODA, pages 1778–1797, 2017.

38 Vishesh Karwa, Sofya Raskhodnikova, Adam D. Smith, and Grigory Yaroslavtsev. Private
analysis of graph structure. ACM Trans. Database Syst., 39(3):22:1–22:33, 2014. doi:10.
1145/2611523.

39 Vishesh Karwa, Aleksandra B. Slavković, and Pavel Krivitsky. Differentially private exponential
random graphs. In Privacy in Statistical Databases, pages 143–155. Springer International
Publishing, 2014.

40 Shiva Prasad Kasiviswanathan, Homin K Lee, Kobbi Nissim, Sofya Raskhodnikova, and Adam
Smith. What can we learn privately? SIAM Journal on Computing, 40(3):793–826, 2011.

41 Shiva Prasad Kasiviswanathan, Kobbi Nissim, Sofya Raskhodnikova, and Adam D. Smith.
Analyzing graphs with node differential privacy. In Amit Sahai, editor, 10th Theory of
Cryptography Conference, TCC 2013, Tokyo, Japan, March 3-6, 2013. Proceedings, volume
7785 of Lecture Notes in Computer Science, pages 457–476. Springer, 2013. doi:10.1007/
978-3-642-36594-2_26.

42 Shiva Prasad Kasiviswanathan, Mark Rudelson, Adam Smith, and Jonathan Ullman. The price
of privately releasing contingency tables and the spectra of random matrices with correlated
rows. In Proceedings of the 42nd ACM STOC, STOC ’10, pages 775–784. ACM, 2010.

43 Shiva Prasad Kasiviswanathan, Mark Rudelson, and Adam D. Smith. The power of linear
reconstruction attacks. In Sanjeev Khanna, editor, Proceedings of the Twenty-Fourth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA,
January 6-8, 2013, pages 1415–1433. SIAM, 2013. doi:10.1137/1.9781611973105.102.

44 Andrew McGregor and Sofya Vorotnikova. Triangle and four cycle counting in the data stream
model. In ACM SIGMOD-SIGACT-SIGART PODS, pages 445–456, 2020.

45 Andrew McGregor, Sofya Vorotnikova, and Hoa T Vu. Better algorithms for counting triangles
in data streams. In Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI PODS, pages
401–411, 2016.

https://doi.org/10.1007/978-3-642-28914-9_19
https://doi.org/10.1007/978-3-642-28914-9_19
https://www.usenix.org/conference/usenixsecurity21/presentation/imola
https://www.usenix.org/conference/usenixsecurity21/presentation/imola
https://arxiv.org/abs/2110.06485
https://arxiv.org/abs/2205.01429
https://doi.org/10.48550/arXiv.2205.01429
https://doi.org/10.48550/arXiv.2205.01429
https://doi.org/10.1109/FOCS.2019.00015
https://doi.org/10.1145/2611523
https://doi.org/10.1145/2611523
https://doi.org/10.1007/978-3-642-36594-2_26
https://doi.org/10.1007/978-3-642-36594-2_26
https://doi.org/10.1137/1.9781611973105.102

T. Eden, Q. C. Liu, S. Raskhodnikova, and A. Smith 52:21

46 Ron Milo, Shai Shen-Orr, Shalev Itzkovitz, Nadav Kashtan, Dmitri Chklovskii, and Uri Alon.
Network motifs: simple building blocks of complex networks. Science, 298(5594):824–827,
2002.

47 Kobbi Nissim, Sofya Raskhodnikova, and Adam D. Smith. Smooth sensitivity and sampling
in private data analysis. In David S. Johnson and Uriel Feige, editors, Proceedings of the 39th
Annual ACM Symposium on Theory of Computing, San Diego, California, USA, June 11-13,
2007, pages 75–84. ACM, 2007. Full paper: http://www.cse.psu.edu/~asmith/pubs/NRS07.
doi:10.1145/1250790.1250803.

48 Rasmus Pagh and Charalampos E Tsourakakis. Colorful triangle counting and a mapreduce
implementation. Information Processing Letters, 112(7):277–281, 2012.

49 Gergely Palla, Imre Derényi, Illés Farkas, and Tamás Vicsek. Uncovering the overlapping
community structure of complex networks in nature and society. Nature, 435(7043):814–818,
2005.

50 Ha-Myung Park, Francesco Silvestri, U Kang, and Rasmus Pagh. Mapreduce triangle enumera-
tion with guarantees. In Proceedings of the 23rd ACM International Conference on Conference
on Information and Knowledge Management, pages 1739–1748, 2014.

51 Arnau Prat-Pérez, David Dominguez-Sal, Josep M. Brunat, and Josep Lluís Larriba-Pey. Put
three and three together: Triangle-driven community detection. ACM Trans. Knowl. Discov.
Data, 10(3):22:1–22:42, 2016. doi:10.1145/2775108.

52 Zhan Qin, Ting Yu, Yin Yang, Issa Khalil, Xiaokui Xiao, and Kui Ren. Generating synthetic
decentralized social graphs with local differential privacy. In Proceedings of the 2017 ACM
SIGSAC CCS, CCS ’17, pages 425–438, New York, NY, USA, 2017.

53 Sofya Raskhodnikova and Adam D. Smith. Differentially private analysis of graphs. In Encyc-
lopedia of Algorithms, pages 543–547. Springer, 2016. doi:10.1007/978-1-4939-2864-4_549.

54 Haipei Sun, Xiaokui Xiao, Issa Khalil, Yin Yang, Zhan Qin, Hui (Wendy) Wang, and Ting Yu.
Analyzing subgraph statistics from extended local views with decentralized differential privacy.
In Proceedings of the 2019 ACM CCS, CCS ’19, pages 703–717, New York, NY, USA, 2019.

55 Stanley L Warner. Randomized response: A survey technique for eliminating evasive answer
bias. Journal of the American Statistical Association, 60(309):63–69, 1965.

56 Qingqing Ye, Haibo Hu, Man Ho Au, Xiaofeng Meng, and Xiaokui Xiao. Towards locally
differentially private generic graph metric estimation. In 2020 IEEE 36th ICDE, pages
1922–1925, 2020.

ICALP 2023

http://www.cse.psu.edu/~asmith/pubs/NRS07.
https://doi.org/10.1145/1250790.1250803
https://doi.org/10.1145/2775108
https://doi.org/10.1007/978-1-4939-2864-4_549

Protecting Single-Hop Radio Networks from
Message Drops
Klim Efremenko #

Ben-Gurion University, Beer Sheva, Israel

Gillat Kol #

Princeton University, NJ, USA

Dmitry Paramonov #

Princeton University, NJ, USA

Raghuvansh R. Saxena #

Microsoft Research, Cambridge, MA, USA

Abstract
Single-hop radio networks (SHRN) are a well studied abstraction of communication over a wireless
channel. In this model, in every round, each of the n participating parties may decide to broadcast
a message to all the others, potentially causing collisions. We consider the SHRN model in the
presence of stochastic message drops (i.e., erasures), where in every round, the message received by
each party is erased (replaced by ⊥) with some small constant probability, independently.

Our main result is a constant rate coding scheme, allowing one to run protocols designed to work
over the (noiseless) SHRN model over the SHRN model with erasures. Our scheme converts any
protocol Π of length at most exponential in n over the SHRN model to a protocol Π′ that is resilient
to constant fraction of erasures and has length linear in the length of Π.

We mention that for the special case where the protocol Π is non-adaptive, i.e., the order of
communication is fixed in advance, such a scheme was known. Nevertheless, adaptivity is widely
used and is known to hugely boost the power of wireless channels, which makes handling the general
case of adaptive protocols Π both important and more challenging. Indeed, to the best of our
knowledge, our result is the first constant rate scheme that converts adaptive protocols to noise
resilient ones in any multi-party model.

2012 ACM Subject Classification Theory of computation → Communication complexity

Keywords and phrases Radio Networks, Interactive Coding, Error Correcting Codes

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.53

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://eccc.weizmann.ac.il/report/2023/066/

Funding Klim Efremenko: Supported by the Israel Science Foundation (ISF) through grant
No. 1456/18 and European Research Council Grant number: 949707.
Gillat Kol: supported by a National Science Foundation CAREER award CCF-1750443 and by a
BSF grant No. 2018325.

1 Introduction

Over the last decades, wireless communication found many applications and has transformed
technology. On the theoretical side, wireless systems were studied by numerous works, many
of which consider the single-hop radio networks (SHRN) model of Chlamtac and Kutten [7],
which abstracts a simple broadcast channel.

The classical model of SHRN assumes that the communication is noiseless, guaranteeing
that (if no “collisions” occur) the message broadcast in a round will be received correctly
by all the parties. In contrast, recently, Censor-Hillel, Haeupler, Hershkowitz, and Zuzic [6],

EA
T
C
S

© Klim Efremenko, Gillat Kol, Dmitry Paramonov, and Raghuvansh R. Saxena;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 53; pp. 53:1–53:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:klimefrem@gmail.com
mailto:gillat.kol@gmail.com
mailto:dp20@cs.princeton.edu
mailto:raghuvansh.saxena@gmail.com
https://doi.org/10.4230/LIPIcs.ICALP.2023.53
https://eccc.weizmann.ac.il/report/2023/066/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

53:2 Protecting Single-Hop Radio Networks from Message Drops

initiated the study of the radio networks model under stochastic message drops (a.k.a,
stochastic erasures). In their model, each party only gets the message that was broadcast
with probability 1 − ϵ, independently, for some small constant ϵ. Otherwise, the round
is “erased” for this party, meaning that it is received as a silent round, as if nothing was
broadcast.

While the (noiseless) radio networks model is, by now, mostly well understood, and while
noise is inherent in almost all communication systems, the relative power of noisy radio
networks is far less explored. In this work we study the power of the SHRN model under the
message drop noise of [6].

1.1 Our Result
Our main result is that the model of SHRN with message drops is as powerful as that of
(noiseless) SHRN, in the sense that any protocol that was designed to work over the latter
can be made to work over the former with a small overhead to the communication. An
informal statement of our main result is in Theorem 1 (see Theorem 2 for a formal statement,
the assumed model is discussed next).

▶ Theorem 1. Let n ∈ N be the number of participants, ϵ ∈ (0, 1) be the noise rate, and Γ
be a non-empty alphabet set. For any protocol Π of length T ≤ 2n over the (n, Γ)-broadcast
channel, there is a protocol Π′ with O(T) rounds over the (n, ϵ, Γ)-noisy broadcast channel
that simulates1 Π, and errs with probability polynomially small in T .

We mention that our scheme works for protocols of length T ≤ 2n, as, if T is much larger
than 2n, there will be rounds where the messages received by all parties are erased (see
Section 2.4). We also mention that our scheme uses a combinatorial building block called a
tree code (see Section 2.2), and like other works that use tree codes, it is not computationally
efficient, as no efficient tree code construction is known. Whether or not longer protocols can
be handled with constant rate, and whether computationally efficient schemes are possible,
are two intriguing questions we leave open.

The collision-as-silence-as-erasures SHRN model

We next overview the noise model of [6] used by Theorem 1 (for formal definitions, see
Section 3): A protocol over the (n, ϵ, Γ)-noisy broadcast channel is a communication protocol
between n communicating parties that proceeds in synchronous rounds. In each round, each
party can decide to either broadcast a symbol from Γ or stay silent. If more than one party
broadcasts in a given round (a collision), or none of the parties broadcast (a silent round),
then the “⊥” symbol is received by all the parties2. Otherwise, exactly one of the parties
broadcasts a symbol, and each party receives the broadcast symbol with probability 1− ϵ,
and ⊥ with probability ϵ, independently3. A protocol over the (n, Γ)-broadcast channel is a
protocol over the (n, 0, Γ)-noisy broadcast channel, i.e., one where erasures do not occur.

1 By “Π′ that simulates Π”, we mean that a transcript for Π can be retrieved from a transcript for Π′,
see Theorem 2.

2 The name collision-as-silence is because the same ⊥ symbol is received in both collision and silent
rounds. This model is, perhaps, the most common model in the literature. Another very popular model
is the collision detection model, where collision and silence are perceived as different symbols. Theorem 1
is stated for the collision-as-silence model, but applies to the collision detection model as well.

3 Modeling erasures as the same symbol as collisions/silences only makes our result stronger. As explained
in Section 2.3, this makes our erasure model closer to the corruption model.

K. Efremenko, G. Kol, D. Paramonov, and R. R. Saxena 53:3

1.2 Corruption Noise and Adaptivity
The corruption noise model

One of the original motivations for our work was exploring the power of the SHRN model
under stochastic corruption noise, a noise model that received quite a bit of attention over
the last few years (see, e.g., [10, 11]). In this model, in every round, each party receives
the correct symbol output by the channel with probability 1 − ϵ, and receives one of the
other symbols with probability ϵ, independently4. Observe that protecting protocols against
corruptions is at least as hard as protecting them against message drops.

Adaptivity and the [10] scheme

An encouraging piece of evidence, indicating that it may be possible to make SHRN protocols
resilient to corruption noise with small overhead, was recently given by Efremenko, Kol, and
Saxena [10], who designed such a scheme for a restricted set of protocols called non-adaptive
protocols. Still, our initial belief was that such a scheme is impossible in the general case of
adaptive protocols.

Non-adaptive (a.k.a, oblivious or static) protocols are a restricted set of protocols where
it is known ahead of time which party broadcasts in what round, while adaptive protocols
allow the parties to decide whether or not they wish to broadcast at a given round based on
their input and their received transcript up until the current round.

While non-adaptive protocols are useful, they do not fully utilize the power of the
wireless channel, and communication-efficient protocols for some central problems are, in fact,
adaptive (e.g., the celebrated Decay protocol for computing the size of a network [3]). This
additional power of adaptive protocols is what makes their conversion to noise-resilient ones
more challenging, and, indeed, the [10] scheme may fail when applied to adaptive protocols Π.

When starting this project, we identified two inherent reasons (see Section 2.1) for the
failure of [10] when applied to adaptive protocols and hoped to show that these must lead to
a blowup of Ω̃(log n) in the communication. As most interactive coding lower bounds for
multi-party protocols also extend to the message drop model (e.g., [4, 11]), as a first step, we
attempted to convince ourselves that no constant rate simulation scheme exists even for the
SHRN model with message drop noise.

To our surprise, we were able to overcome both problems in the message drop model
and design a scheme that also works for adaptive protocols. As far as we know, the scheme
converting noiseless to noise-resilient protocols we construct in our proof of Theorem 1 is the
first constant overhead scheme that handles adaptive protocols in any multi-party setting.

We are still very interested in the more general question of making SHRN protocols
resilient to corruption noise, as we believe it is a basic and “clean” coding question. Our
result can be interpreted as saying that (at least for protocols that are not extremely long)
either a high-rate scheme is possible or a novel lower bound approach is required.

1.3 Related Work
Interactive coding. Interactive error correcting codes encode interactive communication

protocols designed to work over noiseless channels to protocols that also work over noisy
channels. The study of interactive codes was initiated by a seminal paper of Schulman [25]

4 Care needs to be taken while defining an error model for corruptions, as some definitions may allow for
signaling-based protocols [20].

ICALP 2023

53:4 Protecting Single-Hop Radio Networks from Message Drops

that considered two-party protocols, which was also the topic of many follow-up works.
Interactive codes for multi-party distributed channels received quite a bit of attention over
the last few years. These include codes for peer-to-peer channels [24, 21, 20, 1, 4, 16, 17]
and codes for various wireless channels [5, 10, 6, 11, 12, 2, 8].

Coding for wireless systems. The models of wireless communication considered in the con-
text of noise-resilience differ on a few axes. The first axis is the adaptivity of the simulation
protocol: in some papers the target simulation protocol is allowed to be adaptive and
in others it must be non-adaptive. (Of course, if the noiseless protocols considered are
adaptive, the simulation needs to be adaptive. However, simulations of non-adaptive
noiseless protocols by adaptive noise-resilient protocols have been considered). The
second axis is whether single or multi-hop networks are considered. Finally, the last
axis is whether the noise is modeled as stochastic erasures (message drops) or stochastic
corruptions (change of symbols).

Non-adaptive simulations. The study of noise in wireless systems can be traced back to [14]
that answered an open problem of [15] by giving an O(n log log n) length communication
protocol for the bit exchange problem (all n parties have an input bit and all parties want
to know the input of all the other parties). The underlying model was the noisy broadcast
channel, which is a non-adaptive, single-hop model with corruption errors. A matching
lower bound for this problem was later given by [18]. The communication complexity of
other specific n-bit functions, like the OR, majority, and parity functions, were studied
under related models by [27, 22, 13, 23, 18]. The non-adaptive single-hop model was
studied under erasure noise by [19], where an O(n log∗ n) protocol is given for the bit
exchange problem, breaking the Ω(n log log n) lower bound proved for corruption errors.
The general case of simulating any non-adaptive protocol by an noise resilient non-
adaptive protocol was very recently studied by [9]. Their main result is that, for protocols
of length polynomial in n, such a simulation requires Θ̃(

√
log n) multiplicative overhead

in the communication complexity.
Adaptive simulations. The work of [10] gave a scheme for converting any non-adaptive

noiseless protocol to an adaptive noise-resilient one with only a constant multiplicative
overhead, over a single-hop network with corruption errors (in particular, implying an
adaptive noise-resilient bit exchange protocol with O(n) communication).

Multi-hop radio networks. The work of [10] (and our current work) consider the setting
where the parties are connected in a clique (a single-hop network), as it is assumed that
when a party transmits, all other parties can hear the transmission. As mentioned above,
this topology is the single most extensively studied, as it represents the simplest broadcast
channel. However, wireless systems can have arbitrary topologies.
In contrast to [10], in [11] it is shown that such a scheme is impossible over general
multi-hop networks, where each of the n communicating parties is associated with a node
in the graph, and when a party broadcasts, its message is only received by its neighbors
in the graph (if there are no collisions). Specifically, [11] shows that in some networks, the
cost of noise-resilience is Ω(log n), even for simulating non-adaptive protocols by adaptive
protocols. A matching O(log n)-overhead scheme for converting any noiseless protocol to
a noise resilient one over any network is also given by [11].
The recent work of [6], considered general radio networks under message drop noise.
They show that any protocol over any network can be converted to a noise resilient
one with a multiplicative O(∆ log2 ∆) overhead to the communication, where ∆ is the
maximum degree of a node in the network. For the special case in which the noiseless
protocol we wish to convert is non-adaptive, a scheme with an improved overhead of

K. Efremenko, G. Kol, D. Paramonov, and R. R. Saxena 53:5

poly(log ∆, log log n) is shown [6]. For networks with small ∆, this implies an efficient
simulation of noiseless protocols. However, for networks with large ∆, the [6] simulation
can have a huge overhead. This is not for no reason, as the Ω(log n) lower bound of [11]
mentioned above also applies to the message drop noise and implies that there exist
network topologies with large ∆ for which an Ω(log ∆) overhead is necessary. Our result
shows for the important single-hop topology, these communication overheads can be
avoided altogether.

2 Proof Sketch

In this section, we give a detailed sketch of our protocol.
As mentioned in Section 1.2, one of the main motivations for our work was studying the

rate of interactive codes over the SHRN model with corruptions. The restricted case where
the protocol Π to be simulated is non-adaptive was studied by [10], but their scheme fails for
adaptive protocols. We next explain the inherent reasons for this failure and then outline
our solutions for erasure noise.

2.1 The [10] Scheme
The rewind-if-error framework

The [10] scheme utilizes the rewind-if-error framework, which was initially designed for the
two-party setting [25]. Rewind-if-error coding schemes consist of many iterations, where each
iteration consists of two phases: a simulation phase, where a small number of rounds of the
noiseless protocol Π are executed, and a consistency check phase where the parties attempt
to check if they have the same received transcript or whether an error occurred (e.g., by
comparing hashes of their received transcripts). If the check phase passes, parties continue
the simulation, otherwise they rewind and re-simulate the last few rounds.

A careful examination of the [10] scheme shows that it breaks down when applied to
adaptive protocols for the following two fundamental reasons:
Repeated rewinds. The first problem is that with noise rate ϵ, we should expect about ϵn

parties to experience message drops in every round of the simulation phase. Since ϵ is
constant, ϵn≫ 1. This implies that the consistency check phase will almost always fail
and trigger a rewind, and no progress will ever be made. This situation can be trivially
corrected by repeating each broadcast symbol O(log n) times, and thereby effectively
reducing the noise rate to less than 1

n . However, this is unaffordable for a constant
overhead simulation.
We note that this repeated rewinds problem is avoided by [10] as, although the total
number of parties n is large, the assumed non-adaptivity of Π can be used to determine a
small subset S of parties that critically need to know the simulated transcript. These are
the parties that will broadcast in the rounds immediately following the current one. The
remaining parties broadcast later in the future and therefore have more time to decode
the symbol broadcast in the current round. Then, [10] show that it is enough to make
sure that parties in S are not experiencing message drops, which helps reduce overhead
down to a constant. Since in the adaptive case, it is possible that any of the n parties
broadcasts next, this approach cannot be implemented.

Message certification. An even bigger problem we encounter when attempting to run the [10]
scheme on adaptive protocols is that it crucially uses the fact that the symbol received
from the channel in every round can be certified by at least one of the parties: Since Π is

ICALP 2023

53:6 Protecting Single-Hop Radio Networks from Message Drops

assumed to be non-adaptive, it can also be assumed that a single party broadcasts in
every round (collisions and silences can be eliminated ahead of time). Furthermore, this
party (and all other parties) knows that it is the only one to broadcast. Therefore, if
party i broadcast the symbol σ in round t of Π and some claimed transcript of Π has a
symbol different from σ in round t, party i can “object” to this transcript to trigger a
rewind.
The adaptive setting is different though. Consider, for example, the case where Π is
adaptive and in some rounds has multiple parties broadcasting simultaneously, causing a
collision. We call such collisions intended collisions. Suppose, however, that in round t,
party i was the only one to broadcast, but the claimed transcript for Π has ⊥ in round t.
Since party i may no longer know that it is the only one to broadcast in this round, it
may deem it possible that others have broadcast as well, leading to an intended collision,
and thus will not object. The other, silent, parties may not object either as they may
think that this is a collision or a silent round.

2.2 Avoiding The Repeated Rewinds Problem

A protocol Π exhibiting repeated rewinds

To explain how our scheme handles the first (and easier) repeated rewinds problem described
above, consider the following protocol Π that exhibits it (the second, message certification
problem, does not occur): The protocol is played over an underlying complete binary tree
of depth T < 2n. Each of the n parties gets as input, one symbol bv ∈ {0, 1, ⋆} for each
vertex v in the tree, where the inputs are sampled as follows: First, we select one of the
root-to-leaf paths in the tree uniformly at random and call it the “correct path”. We assign
each of the vertices v on this path to exactly one of the n parties uniformly at random. Here,
by “assigning vertex v to party i” we mean that party i gets a bit bv ∈ {0, 1} for vertex v. If
vertex v is not assigned to party i, party i gets bv = ⋆. Additionally, each of the vertices v

outside this path is assigned to many parties, say, to a set of n
2 parties selected uniformly at

random.
In the noiseless protocol Π, all parties start from the root of the tree, and, upon reaching

node v, a party that was not assigned v (has bv = ⋆) stays silent, and a party that was
assigned v broadcasts its bit bv. Since each of the vertices on the correct path was assigned
to exactly one party, exactly one party broadcasts a bit, and all parties then progress to the
child of v indicated by this bit (that is, if 0 is broadcast they update v to be the left child of
v, otherwise to the right child). This is done until a leaf is reached, which is also the output
of the protocol.

Observe that since on every vertex of the correct path a single party broadcasts (and
the parties know that this is the case), the message certification problem does not occur.
However, since any of the n parties may potentially be the one to broadcast in the next
round, the repeated rewinds problem occurs.

The play-it-safe simulation scheme

To avoid repeated rewinds in our simulation of Π, we make sure that parties never go off
the correct path (i.e., no party ever reaches a vertex v that is not on the correct path) by
guaranteeing that the parties never broadcast when it is not their turn to broadcast. To this
end, our policy for the parties is that they always play it safe and never broadcast unless
they know the entire transcript so far.

K. Efremenko, G. Kol, D. Paramonov, and R. R. Saxena 53:7

Of course, it may be the case that the received transcript of the party who should
broadcast next contains erasures, causing it to refrain from broadcasting. Since no other
party broadcasts, this will be a silent round and all parties will receive ⊥. Upon receiving ⊥,
parties do not update their current node v in the tree. Thus, no progress is made in this
round, where progress is measured as the number of steps taken on the correct path (the
depth of v in the tree). Note, however, that indeed in this protocol parties never go off the
correct path.

To allow progress to resume, we need to ensure that the erasures in the transcript of the
party that should broadcast next are resolved (hopefully, within a few rounds). To this end,
we pick one of the parties (say, the first party) to be the leader. After every communication
round, this leader re-broadcasts the symbol it received from the channel on a tree code
[26]. A tree code is essentially an error correcting code that can be computed “online” and
ensures that the messages sent until round t will eventually be decoded correctly, where the
probability of correct decoding greatly increases with the number of rounds that have passed
since round t. Thus, parties that suffer an erasure will be able to recover the missing symbol
over the next few iterations by observing what was received from the leader on the tree code.
This means that, while progress may pause, it will resume within a few rounds.

2.3 Avoiding The Message Certification Problem
A harder-to-simulate protocol Π

Now let us address the second (and more severe) problem of message certification. Observe
that in our simulation of the above protocol Π we did not encounter this problem. The
reason is that on every vertex on the correct path a single party is scheduled to broadcast.
We now consider the more general case where some of the vertices on the correct path are
given to more than one party. For concreteness, say that a quarter of the vertices v on the
correct path are given to exactly 2 parties, and an additional quarter is given to n

2 parties
(that is, in total, there is an intended collision on half of the vertices on the correct path).
Additionally, assume that the underlying tree is ternary (instead of binary), and the children
of every non-leaf vertex are labeled by {0, 1,⊥}. In a case of an intended collision, the ⊥
child of the current vertex should be taken.

Erasures can cause errors

Observe that the play-it-safe simulation protocol we had before has to change: When
designing it, we assumed that there are no collisions on the correct path, thus progress was
paused when a ⊥ symbol was received (that is, the parties did not update their current
vertex v in the tree). As intended collisions are now possible, we ask that, upon receiving ⊥,
the parties update v to the ⊥ child of v.

Observe however, that since the parties are unable to differentiate intended collisions
from erasures, as both are received as ⊥, they may go off the correct path and will need to
eventually detect the error and rewind. We note that working in the erasure model typically
means that a party that does not have the correct transcript knows that it does not have the
correct transcript. However, as is evident here, this reasoning does not apply to our erasure
model. In this sense, our model is closer to the corruptions model than other erasure models.

In our simulation, parties can go off the correct path in round t if the party that was
supposed to broadcast in round t (say party i) did not do so as it did not know the full
transcript so far. By not broadcasting, party i potentially converts the output of the channel
in round t from a bit to ⊥ (this happens when party i was supposed to be the only one

ICALP 2023

53:8 Protecting Single-Hop Radio Networks from Message Drops

to broadcast) or from ⊥ to a bit (this happens when one additional party was supposed
to broadcast). Recall that, owing to the usage of a tree code, party i eventually learns the
complete transcript until the missed round t. When this happens, we can have party i object
in the next consistency check in order to trigger a rewind. However, because the rate of
erasures is constant and parties broadcast very often (recall that a quarter of the vertices on
the correct path are given to n

2 parties), there are likely to be too many missed rounds and
such objections will once again cause repeated rewinds.

Critical parties

To implement a rewind-if-error mechanism without repeated rewinds, we observe that rewinds
are required only when the output symbol was changed due to party i (a party that was
scheduled to broadcast in round t) not broadcasting in round t. Note that this only happens
if the output symbol in round t is not a collision. In this case, we say that party i is critical5
for round t. We use the policy that party i only objects to round t if it is critical to round t6.
Note that this policy does not cause repeated rewinds: if many parties were supposed to
broadcast in round t, none of them is critical (this round will be a collision round even if one
of these parties will not broadcast). Otherwise, if few parties were supposed to broadcast
in round t, then there is a good chance that round t is not erased in any of the received
transcripts of these parties.

Collision-not-as-silence

To be able to implement the policy, party i needs to know if it was critical to the round t that
it missed. Observe that if round t was a collision round even without party i broadcasting,
then party i is not critical for round t, and no rewind is necessary. It is not hard to see that
this is in fact the only case where a party who missed a round is not critical for this round.
This means that testing criticality boils down to the ability to differentiate a collision round
from a silent round.

To differentiate collision rounds from silent rounds, we use a known radio networks
collision detection trick. Assume for the purposes of this sketch that there is some player,
say the leader, that is known to not broadcast in this round7. We “run” the round twice,
once in a black-box way (without the leader broadcasting), and once again while having the
leader broadcast. If the round was a silent round, then the parties receive a ⊥ in the first
run, and a bit (non-⊥ symbol) in the second, while if the round was a collision, they will
receive ⊥ in both the runs. As they receive a different combination of symbols, they can
distinguish between collisions and silences8. Note that the argument above assumes sender
collision-detection, i.e., the parties that are transmitting also receive a symbol in that round.
However, this assumption is not needed, see Footnote 10 and Remark 3.

5 We mention that this definition differs slightly from the technical sections, but implements a similar
idea.

6 Observe that a priori, it is not clear if the parties know they are critical. We deal with this later in this
section. We also note that the notion of critical parties does not appear in the algorithm description
and is used only in the analysis.

7 This assumption can easily be removed by, e.g, running the round an extra time where only the leader
will broadcast.

8 We note that noise can erase the symbol broadcast by the leader in the second run and effectively erase
a silence out to look like a collision. We distinguish between these and regular collisions using the
method described in Section 2.4.

K. Efremenko, G. Kol, D. Paramonov, and R. R. Saxena 53:9

2.4 Erasures To And From The Leader
Recall from Section 2.2 that after every round the leader re-transmits the symbol that it
received from the channel in this round. We next discuss issues that can arise when the
communication to/from the leader is erased.

Erasures to the leader

Consider the case where the true output of the channel in a given round is a bit, but the leader
receives ⊥ due to an erasure (re-transmitting this ⊥ may cause the execution of the protocol
to go off the correct path). However, since erasures are assumed to happen independently,
then with probability exponentially small in n, at least one of the other parties receives
the erased bit and can object in the next consistency check to trigger a rewind. Using the
assumption that the length of the protocol is at most exponential in n, we get that all such
leader errors will be corrected with high probability. We mention that this is the only place
in our proof where we use the bound on the length of the protocol.

Erasures from the leader: Collision-as-silence-not-as-erasures

Now consider the situation where the leader receives a bit and re-transmits it, but, due to
erasures, some parties receive a ⊥. By updating their current node v using this ⊥, these
parties may fall off the correct path. As mentioned in Section 2.3, this type of error occurs
as the channel does not distinguish between erasures and collisions/silences.

To circumvent this problem, we convert our collision-as-silence-as-erasures channel to a
collision-as-silence-not-as-erasures channel. This is done by having the leader broadcast a
special symbol9 other than 0, 1, and ⊥, in the case it receives ⊥. As the other parties know
that the leader never broadcasts ⊥, they can deduce that any ⊥ they may receive from it is
due to an erasure. On the other hand, if they receive the special symbol, they can conclude
that the round is a collision/silence.

2.5 Implementing Check Phases
The simulation scheme we discuss so far is in the rewind-if-error framework. In this sketch
we attempted to show that whenever the parties go off the correct path due to erasures, at
least one of the parties is able to detect the problem and object in the next check phase.

To implement a check phase, we ask parties that wish to object to broadcast a bit (say, 1),
and ask all other parties to keep silent. Then, the collision detection subroutine described
above allows the parties to tell whether 0, 1, or more than 1 parties were broadcasting, and
thus also allows them to tell whether there exists an objecting party and a rewind should
take place.

3 The Model

In this paper, we study the broadcast channel with random erasures, assuming the collision-
as-silence-as-erasures model. To define the model and throughout this paper, we will use the
following notation. For a string s, we shall use |s| to denote the length of s. For i ∈ [|s|],
let si denote the ith coordinate of s and s<i, s≤i denote the prefix of the first i − 1 and i

9 The actual proof does not require an additional symbol. Rather, we encode every symbol by two
symbols.

ICALP 2023

53:10 Protecting Single-Hop Radio Networks from Message Drops

coordinates of s, respectively. For two strings s, t over the same alphabet, denote by ∆(s, t)
the Hamming distance between s and t, by LCP(s, t) the longest common prefix of the strings
s and t, and by s∥t the concatenation of s and t.

The (n, ϵ, Γ)-noisy broadcast channel is defined by a number n ≥ 0 of parties, an error
parameter ϵ > 0, and an alphabet set Γ satisfying |Γ| > 1. We shall refer to player 1 as the
leader Ld, use ⊥ to denote a special symbol not in Γ (this symbol will represent collisions,
silences, and deletions), and define Γc = Γ∪{⊥}. We also define the (n, Γ)-broadcast channel
to be the noiseless version of this channel, i.e., when ϵ = 0.

Definition of a protocol

A (deterministic) protocol Π over the (n, ϵ, Γ)-noisy broadcast channel is defined as:

Π =
(

T,
{
X i

}
i∈[n],Y,

{
M i

j

}
i∈[n],j∈[T], out

)
. (1)

Here, T = ∥Π∥ is the number of rounds (or the length) of the protocol, X i is the input space
for player i, Y is the output space of the protocol, M i

j : X i × Γj−1
c → Γc is the function

player i uses to determine what message to send in round j, and out : ΓT
c → Y is the function

the leader uses to determine the output from its received transcript. As usual, we define a
randomized protocol to be a distribution over (deterministic) protocols.

Execution of a protocol

The protocol Π starts with all players i ∈ [n] having an input xi ∈ X i and proceeds in T

rounds, maintaining the invariant that before round j, for all j ∈ [T], all players i have a
transcript πi

<j ∈ Γj−1
c . In round j, player i broadcasts zi = M i

j

(
xi, πi

<j

)
∈ Γc. Define the

function:

combine
(
z1, · · · , zn

)
=

{
zi, if ∃ unique i ∈ [n] such that zi ̸= ⊥
⊥, otherwise

. (2)

Now, the symbol πi
j received by player i in round j equals combine

(
z1, · · · , zn

)
, with

probability 1− ϵ, and equals ⊥, with probability ϵ, independently for all i ∈ [n] and j ∈ [T].10

In the latter case, we say the message to player i in round j was erased by the noise. Player
i appends πi

j to πi
<j to get a transcript πi

≤j and continues the execution of the protocol.
After T rounds, the leader outputs ΠLd(X) = out(πLd

≤T) ∈ Y. (Note that using only
O(max{T, log n}) additional transmissions, the leader can communicate the output to all
the other parties in a reliable manner by encoding with a standard error correcting code.)
We shall sometimes omit Ld when the channel is noiseless, as in this case, all the players
receive the same transcript and can compute the output.

4 Our Simulation Protocol

We formalize Theorem 1 as Theorem 2 (below). (Note that by having the parties repeat
every round of the original protocol Π constantly many times and taking the majority of the
outputs, we get the channel noise rate to be smaller than 10−10).

10 We remark that in the literature (e.g., [6]), the broadcast channel (single-hop radio networks) is often
defined such that a player that broadcasts a symbol (other than ⊥) in a round does not receive any
symbol from the channel in that round (in other words, there is no sender collision-detection). However,
for simplicity of presentation, in this paper we assume this stronger model. We explain how to make
our protocol work with no sender collision-detection in Remark 3.

K. Efremenko, G. Kol, D. Paramonov, and R. R. Saxena 53:11

▶ Theorem 2 (Formal Version of Theorem 1). There exists a constant C such that the following
holds: Fix ϵ = 10−10, n > 0, an alphabet set Γ satisfying |Γ| > 1. For any protocol Π of
length T ≤ 2n in the (n, Γ)-broadcast channel, there is a protocol Π′ over the (n, ϵ, Γ)-noisy
broadcast channel, with ∥Π′∥ ≤ CT , and such that for all inputs X =

(
x1, x2, · · · , xn

)
for

the players, we have:

Pr
(
Π′Ld(X) ̸= Π(X)

)
≤ 2− min(n,T),

where the probability is over the noise in the channel.

We note that when n is small, so is T , so Π can be simulated by simply repeating each
round sufficiently many times. As such, without loss of generality, we may assume that n is
large.

The proof of Theorem 2 spans the rest of this paper. In this section we give the simulation
protocol Π′, and in Appendix B we give its analysis.

Let n, ϵ, Γ be as in the theorem statement and assume without loss of generality that
Γ = [|Γ|]. Fix a protocol Π. Observe that fixing Π also fixes T,

{
X i

}
i∈[n],

{
M i

j

}
i∈[n],j∈[T],

etc. as in Equation (1). As a randomized protocol is simply a distribution over deterministic
protocols, we can assume without loss of generality, that the protocol Π is deterministic. We
also assume without loss of generality that the output of Π is just its transcript. In order to
define the protocol Π′, we first set up some notation.

Protocol notation

Define the sets PLd = [n] (all parties including the leader), and P = {2, 3, . . . , n} (all parties
excluding the leader).

As motivated in Section 2, our protocol shall implicitly implement a collision detection
model, having two separate symbols for collisions and silences. We shall use a special symbol
⊥C /∈ Γ to denote a collision and ⊥S /∈ Γ to denote a silence. Define Γcs = Γ ∪ {⊥C ,⊥S}.

Additionally let R /∈ Γ be a special symbol indicating that the leader wants to rewind a
round, and denote by Γcsr = Γcs ∪{R}. We shall treat both ⊥C and ⊥S as ⊥ in our protocol,
and output a string in ΓT

cs. We also redefine the message functions, M i
j , to take inputs from

Γj−1
cs instead of Γj−1

c , treating both ⊥C and ⊥S as ⊥, e.g., M i
j(xi,⊥C∥⊥S) = M i

j(xi,⊥∥⊥).
For simplicity, we shall pad the protocol Π with ⊥ infinitely many times and correspondingly
define, for all i ∈ [n], j > T , the value M i

j(·, ·) = ⊥.
Our protocol will use a (Γcsr, Γ, RTC, 0.4)-tree code TC, where RTC ≥ max

(
105, 10R

)
is a

sufficiently large constant and R is as promised by Theorem 5. This tree code will only be
written to by the leader, and will be used to log the leader’s simulated transcript. In our
protocol, when we say the leader writes s ∈ Γcsr to the tree code, we mean that it computes
and broadcasts TC(ρ∥s), where ρ is the string of all the symbols it wrote to the tree code
before the current s. We shall also use D-TC to denote the tree code decoding function from
Definition 6.

We give a formal description of our protocol Π′ in Algorithm 1.

▶ Remark 3. Recall from Footnote 10 that we are assuming a broadcast model with sender
collision-detection. In other words, we assume that players that are talking (broadcasting
a symbol other than ⊥) also receive an output symbol from the channel. We next claim
that our simulation protocol Π′ can be made to work over the channel with no sender
collision-detection, that is, when only players that listen (broadcast ⊥), get the output
symbol from the channel.

ICALP 2023

53:12 Protecting Single-Hop Radio Networks from Message Drops

Algorithm 1 The simulation protocol Π′.

Input: Each party i ∈ PLd holds an input xi ∈ X i.
Output: The leader outputs π ∈ ΓT

cs, that represents a transcript for Π.
1: for t ∈

[
105T

]
do

2: Each player i ∈ PLd runs parse on τ i to get output
(
πi, ri

)
, where:

τ i, for i ∈ P , is the concatenation of all messages received by player i at Line 8 up
to this point (possibly none).
τLd is the concatenation of all messages broadcast (as opposed to received) by the
leader at Line 8 up to this point (possibly none).

3: Each player i ∈ PLd computes zi ←M i
|πi|+1

(
xi, πi

)
. Set zi ← ⊥ if πi = fail.

4: The parties run detect-collisions, using zi as the input for player i ∈ P .
Let wi be the output for player i ∈ PLd.

5: The leader represents wLd ∈ Γcs as an element of Γ4 and broadcasts it in 4 rounds.
Let w̃i be the symbol decoded by player i ∈ P , or ⊥ if the player fails to decode.

6: Each player i ∈ P sets a flag ei ∈ {1,⊥} as follows:

ei ←

{
1, if ri = true or w̃i = ⊥C ̸= wi

⊥, otherwise
.

7: The parties run detect-collisions, using ei as the input for player i ∈ P .
Let eLd be the output for the leader.

8: The leader writes sLd ∈ Γcsr to the tree code, where

sLd ←


R, if eLd ̸= ⊥S

wLd, else if zLd = ⊥
zLd, else if wLd = ⊥S

⊥C , otherwise

.

9: end for
10: The leader runs parse on τLd to get output

(
πLd, rLd)

, where τLd is as in Line 2. The
leader then outputs πLd

≤T .

Algorithm 2 Algorithm detect-collisions, that distinguishes between collisions and silence.

Input: Each player i ∈ P has a symbol zi ∈ Γc that it wishes to broadcast in this round.
Output: Each player i ∈ PLd outputs a guess wi ∈ Γcs for the combined symbol.
11: In one round of communication, each player i ∈ P broadcasts zi and the leader broad-

casts ⊥.
Let ui be the symbol heard by player i ∈ PLd.

12: In one round of communication, each player i ∈ P broadcasts zi and leader broadcasts 1.
Let ui be the symbol heard by player i ∈ PLd.

13: Each player i ∈ PLd returns wi, where

wi ←


ui, if ui ̸= ⊥
⊥S , else if ui ̸= ⊥
⊥C , otherwise

.

K. Efremenko, G. Kol, D. Paramonov, and R. R. Saxena 53:13

Algorithm 3 Algorithm parse, run locally by a player i ∈ PLd to decode and parse the tree code.

Input: Player i has τ ∈ Γ∗
c , its view of the symbols encoded over the tree code.

Output: Player i outputs a transcript π ∈ Γ∗
c or fail if it failed to decode the tree code, and

a rewind flag r ∈ {true, false} which is true if the player found a problem with π.
14: Initialize π to be the empty string, ℓ←∞.
15: Let ρ← D-TC(τ).
16: If ρ = fail, terminate and return (fail, false).
17: for k ∈ [|ρ|] do
18: if ρk = R then
19: π ← π<|π|.
20: if |π| < ℓ then
21: ℓ←∞.
22: end if
23: else
24: π ← π∥ρk.
25: if D-TC

(
τ≤(k−1)RTC

)
= fail and M i

|π|
(
xi, π<|π|

)
̸= ⊥ and ρk ̸= ⊥C then

26: ℓ← min(ℓ, |π|).
27: end if
28: end if
29: end for
30: Return (π, ℓ ̸=∞).

There are two sources of problems if we assume no sender collision-detection. The first
is that players i ∈ P are expected to get their own wi at Line 4, which they use to detect
erasures experienced by the leader (compute ei in Line 6). However, as erasures are one-sided,
if at least two different players i ̸= i′ ∈ P talk in the same round, the leader and all listening
players will receive the correct symbol, i.e., ⊥C , as the value of wi. As such, if an erasure
causes the leader to get an incorrect wLd, there is at most one player i ∈ P who is talking.
Thus, almost all players in P are listening, so they will have their own wi, and this erasure
is likely to be detected.

The second issue that arises is that the leader is expected to both talk and listen at
Line 12. Recall that the purpose of algorithm detect-collisions is to run a round of the original
protocol and essentially tell whether 0, 1, or ≥ 2 players in P are talking. The leader acts as
a “noisemaker” in Line 12 to distinguish the case of 0 talking players from the case of ≥ 2
talking players. However, the role of a noisemaker can be handled by any other player, as
long as that player would never have talked in this round otherwise.

This gives rise to the following modification of algorithm detect-collisions: We partition
the parties in P into two non-empty sets P1 and P2. We then have parties in P1 perform
algorithm detect-collisions with an arbitrary player in P2 acting as a noisemaker, and vice
versa. This allows the leader to determine whether there were 0, 1, or ≥ 2 players talking in
P1 and in P2, from which they can tell if there were 0, 1, or ≥ 2 players talking in P.

As there are no other cases in the protocol Π′ where a player both talks and uses the
value given to it by the channel, these changes are sufficient to make the algorithm work
with no sender collision-detection.

ICALP 2023

53:14 Protecting Single-Hop Radio Networks from Message Drops

References
1 Noga Alon, Mark Braverman, Klim Efremenko, Ran Gelles, and Bernhard Haeupler. Reli-

able communication over highly connected noisy networks. In Symposium on Principles of
Distributed Computing (DISC), pages 165–173. ACM, 2016.

2 Yagel Ashkenazi, Ran Gelles, and Amir Leshem. Brief announcement: Noisy beeping networks.
In Symposium on Principles of Distributed Computing (PODC), pages 458–460, 2020.

3 Reuven Bar-Yehuda, Oded Goldreich, and Alon Itai. On the time-complexity of broadcast
in multi-hop radio networks: An exponential gap between determinism and randomization.
Journal of Computer and System Sciences, 45(1):104–126, 1992.

4 Mark Braverman, Klim Efremenko, Ran Gelles, and Bernhard Haeupler. Constant-rate coding
for multiparty interactive communication is impossible. In Symposium on Theory of Computing
(STOC), pages 999–1010. ACM, 2016.

5 Keren Censor-Hillel, Bernhard Haeupler, D Ellis Hershkowitz, and Goran Zuzic. Broadcasting
in noisy radio networks. In Symposium on Principles of Distributed Computing (PODC), pages
33–42, 2017.

6 Keren Censor-Hillel, Bernhard Haeupler, D Ellis Hershkowitz, and Goran Zuzic. Erasure
correction for noisy radio networks. In International Symposium on Distributed Computing
(DISC), 2019.

7 Imrich Chlamtac and Shay Kutten. On broadcasting in radio networks-problem analysis and
protocol design. IEEE Trans. Communications, 33(12):1240–1246, 1985.

8 Klim Efremenko, Gillat Kol, Dmitry Paramonov, and Raghuvansh R. Saxena. Computation
over the noisy broadcast channel with malicious parties. In Innovations in Theoretical Computer
Science Conference, (ITCS), volume 185, pages 82:1–82:19, 2021.

9 Klim Efremenko, Gillat Kol, Dmitry Paramonov, and Raghuvansh R. Saxena. Tight bounds for
general computation in noisy broadcast networks. In Symposium on Foundations of Computer
Science (FOCS), pages 634–645, 2021.

10 Klim Efremenko, Gillat Kol, and Raghuvansh Saxena. Interactive coding over the noisy
broadcast channel. In Symposium on Theory of Computing (STOC), pages 507–520. ACM,
2018.

11 Klim Efremenko, Gillat Kol, and Raghuvansh Saxena. Radio network coding requires logar-
ithmic overhead. In Foundations of Computer Science (FOCS), pages 348–369, 2019.

12 Klim Efremenko, Gillat Kol, and Raghuvansh R. Saxena. Noisy beeps. In Yuval Emek and
Christian Cachin, editors, Symposium on Principles of Distributed Computing (PODC), pages
418–427, 2020.

13 Uriel Feige and Joe Kilian. Finding OR in a noisy broadcast network. Information Processing
Letters, 73(1-2):69–75, 2000.

14 Robert G. Gallager. Finding parity in a simple broadcast network. IEEE Transactions on
Information Theory, 34(2):176–180, 1988.

15 Abbas El Gamal. Open problems presented at the 1984 workshop on specific problems in
communication and computation sponsored by bell communication research. “Open Problems
in Communication and Computation”, by Thomas M. Cover and B. Gopinath (editors).
Springer-Verlag, 1987.

16 Ran Gelles and Yael T Kalai. Constant-rate interactive coding is impossible, even in constant-
degree networks. IEEE Transactions on Information Theory, 65(6):3812–3829, 2019.

17 Ran Gelles, Yael Tauman Kalai, and Govind Ramnarayan. Efficient multiparty interactive
coding for insertions, deletions, and substitutions. In Symposium on Principles of Distributed
Computing (PODC), pages 137–146, 2019.

18 Navin Goyal, Guy Kindler, and Michael Saks. Lower bounds for the noisy broadcast problem.
SIAM Journal on Computing, 37(6):1806–1841, 2008.

19 Ofer Grossman, Bernhard Haeupler, and Sidhanth Mohanty. Algorithms for noisy broadcast
with erasures. In Colloquium on Automata, Languages, and Programming (ICALP), volume
107 of LIPIcs, pages 153:1–153:12, 2018.

K. Efremenko, G. Kol, D. Paramonov, and R. R. Saxena 53:15

20 William M. Hoza and Leonard J. Schulman. The adversarial noise threshold for distributed
protocols. In Symposium on Discrete Algorithms (SODA), pages 240–258, 2016.

21 Abhishek Jain, Yael Tauman Kalai, and Allison Bishop Lewko. Interactive coding for multiparty
protocols. In Symposium on Theory of computing (STOC), pages 1–10, 2015.

22 Eyal Kushilevitz and Yishay Mansour. Computation in noisy radio networks. SIAM Journal
on Discrete Mathematics (SIDMA), 19(1):96–108, 2005.

23 Ilan Newman. Computing in fault tolerance broadcast networks. In Computational Complexity
Conference (CCC), pages 113–122, 2004.

24 Sridhar Rajagopalan and Leonard J. Schulman. A coding theorem for distributed computation.
In Symposium on the Theory of Computing (STOC), pages 790–799, 1994.

25 Leonard J Schulman. Communication on noisy channels: A coding theorem for computation.
In Foundations of Computer Science (FOCS), pages 724–733. IEEE, 1992.

26 Leonard J Schulman. Deterministic coding for interactive communication. In Symposium on
Theory of computing (STOC), pages 747–756. ACM, 1993.

27 Andrew Chi-Chih Yao. On the complexity of communication under noise. invited talk in the
5th ISTCS Conference, 1997.

A Technical Preliminaries

A.1 Tree Codes
Our algorithms make use of tree codes, first introduced in [26].

▶ Definition 4 (Tree Codes). Let X and Γ be two alphabet sets, RTC > 0 be an integer,
and δ ∈ (0, 1). An (X , Γ, RTC, δ)-tree code is a function TC : X ∗ → ΓRTC such that for any
integer k ≥ 0 and strings x, x′ ∈ X k, defining TC(x) = TC(x≤1)∥TC(x≤2)∥ · · · ∥TC(x), we
have:

∆
(
TC(x), TC(x′)

)
≥ δRTC · (k − |LCP(x, x′)|).

▶ Theorem 5 ([26]). There exists a constant R ≥ 0 such that for any alphabet sets X , Γ
and all RTC ≥ R · log|X |

log|Γ| , there exists an (X , Γ, RTC, 0.4)-tree code.

We will also need a way of decoding tree codes from erasures. Recall the notation Γ,⊥, Γc

from above, and let wi,j = (wi)j .

▶ Definition 6 (Decoding from Erasures). Let TC be an (X , Γ, RTC, δ)-tree code. The decoding
function of TC, denoted D-TC : (ΓRTC

c)∗ → X ∗ ∪ {fail}, is given by the following: For an
integer k ≥ 0 and w ∈ (ΓRTC

c)k,

D-TC(w) =
{

z, if ∃ unique z ∈ X k : ∀i ∈ [k], j ∈ [RTC] : wi,j ∈ {⊥, TCj(z≤i)}
fail, otherwise

.

▷ Claim 7. Let TC be an (X , Γ, RTC, δ)-tree code and let D-TC be its decoding function.
Let k ≥ 0 be an integer and let z ∈ X k. Then, for any τ̃ ∈

(
ΓRTC

c

)k such that ∀i ∈ [k], j ∈
[RTC] : τ̃i,j ∈ {⊥, TCj(z≤i)}, it holds that D-TC(τ̃) ∈ {z, fail}.

B Analyzing the Protocol

In this section we prove that the simulation protocol Π′ given in Section 4 satisfies Theorem 2.
We omit the proofs of lemmas in this section for space. They can be found in the full

version of the paper.

ICALP 2023

53:16 Protecting Single-Hop Radio Networks from Message Drops

Iterations and rounds

Observe that our protocol Π′ has T ′ = 105T iterations and each iteration has R′ = RTC + 8
rounds of communication: 2 rounds in the call to detect-collisions in Line 4, 4 rounds in
Line 5, 2 rounds in the call to detect-collisions in Line 7, and RTC rounds in Line 8.

The noise indicator

For t ∈ [T ′], r ∈ [R′], and i ∈ [n], we define the indicator random variable Nt,r,i to be
1 if and only if the message received by player i in the rth round of communication in
iteration t is erased due to noise. For a set S ⊆ [T ′], we shall use NS to denote the collection
N = {Nt,r,i}t∈S,r∈[R′],i∈[n] and sometimes abbreviate N[T ′] as N and N[t] as N≤t for all t ∈ [T ′].
Observe that our definition implies that the variables in N are mutually independent and
identically distributed, and take the value 1 with probability ϵ.

Note that fixing any instantiation N of N together with the inputs X to the parties fixes
the entire execution of Π′. In fact, for all t ∈ [T ′], fixing any instantiation N≤t of N≤t fixes
the execution of the first t iterations of Π′. This means that it also fixes the values of all the
variables in these iterations.

Variables

For i ∈ [n] and a variable var in Algorithms 1 and 3,11 we shall use vari
t(N) to denote the

value of variable var as seen by player i at the end of iteration t when the noise is N . We
shall use t = 0 to denote the values at the start of the execution and drop N when it is
clear from context. As explained above, these values are determined by N≤t. We also use
πLd

T ′+1(N) to refer to the leader’s πLd at Line 10.

The collision-not-as-silence model

To help with our analysis, we define a function combine-CD that intuitively captures the beha-
vior of a broadcast channel with collision-detection. Formally, we have, for z1, z2, · · · , zn ∈ Γ∗

c ,

combine-CD
(
z1, · · · , zn

)
=


⊥S , if ∀i ∈ [n] : zi = ⊥
zi, if ∃ unique i ∈ [n] such that zi ̸= ⊥
⊥C , otherwise

. (3)

For the rest of the text, fix inputs X =
(
x1, x2, · · · , xn

)
for the players. We abuse

notation slightly and denote by Π = Π(X) the transcript of the noiseless protocol Π when the
inputs to the parties are as in X and the model uses combine-CD in place of combine (thus,
Π ∈ ΓT

cs). This is without loss of generality as a transcript in the collision-not-as-silence
model only has more information than one in the collision-as-silence model.

B.1 Technical Lemmas and One-Sided Error
A key property of our model is the fact that our noise is one-sided: After collisions are
resolved, the resulting symbol will either be received correctly, or will be replaced by a ⊥.
This means that if a player hears a symbol that is not ⊥, that player will accurately know
that that is the “correct” symbol, and that they were not affected by noise.

11 We do not use this notation for variables in Algorithm 2 as that is invoked twice in every iteration.

K. Efremenko, G. Kol, D. Paramonov, and R. R. Saxena 53:17

This property means that we can make several very useful claims, which we use throughout
the rest of this paper.

▶ Lemma 8. For all t ∈ [T ′], all i ∈ [n], and all instantiations N of N,

πi
t(N) ∈

{
fail, πLd

t (N)
}

.

As a player i ∈ [n] sets zi as a deterministic function of xi and πi at Line 3, we also
directly get the following corollary.

▶ Corollary 9. For all t ∈ [T ′], all i ∈ [n], and all instantiations N of N,

zi
t(N) ∈

{
⊥, M i

|πLd
t (N)|+1

(
xi, πLd

t (N)
)}

.

Likewise, we can also analyse the behaviour of Algorithm 2, during the two calls at Line 4
and Line 7, to see the way the noise can affect the executions of this algorithm.

▶ Lemma 10. For all t ∈ [T ′], all i ∈ [n], and all instantiations N of N,

wi
t(N) ∈

{
⊥C , combine-CD

(
⊥, z2

t (N), . . . , zn
t (N)

)}
.

▶ Lemma 11. For t ∈ [T ′] and any instantiation N of N, we have:

eLd
t (N) = ⊥S =⇒ combine-CD

(
⊥, e2

t (N), e3
t (N), · · · , en

t (N)
)

= ⊥S .

We also show some properties of the symbol sLd, and how it relates to the transcript that
players maintain.

▶ Lemma 12. For all t ∈ [T ′] and any instantiation N of N such that eLd
t (N) = ⊥S and

wLd
t (N) = combine-CD

(
⊥, z2

t (N), . . . , zn
t (N)

)
, we have

sLd
t (N) = combine-CD

(
zLd

t (N), z2
t (N), . . . , zn

t (N)
)
.

We also analyse the behaviour of Algorithm 3, and in particular how π and ρ behave in
that algorithm.

▶ Lemma 13. For all t ∈ [T ′] and all instantiations N of N,

ρLd
t (N) = sLd

1 (N)∥ · · · ∥sLd
t−1(N).

▶ Lemma 14. For all t ∈ [T ′], all i ∈ [n], and all instantiations N of N,
If sLd

t (N) ̸= R, then

πLd
t+1(N) = πLd

t (N)∥sLd
t (N).

If sLd
t (N) = R, then

πLd
t+1(N) =

(
πLd

t (N)
)

<|πLd
t (N)|.

B.2 Bad Events
B.2.1 Noise Events
Next, we define and analyze some events based on the variable N.

ICALP 2023

53:18 Protecting Single-Hop Radio Networks from Message Drops

The event Ewo
t,r

For t ∈ [T ′], r ∈ [R′], the event Ewo
t,r occurs if the communication in round r in iteration t is

erased for a significant fraction of the players (it is “wiped out”). Formally, we have:

Ewo
t,r :=

 ∑
i∈[n]

Nt,r,i ≥
n

10

. (4)

The event Edc
t,i

For t ∈ [T ′], i ∈ [n], the event Edc
t,i occurs if the communication in the first execution of

detect-collisions, i.e., at least one of rounds 1 and 2, in iteration t is erased for player i.
Formally, we have:

Edc
t,i := (∃r ∈ [2] : Nt,r,i = 1). (5)

The event Eor
t

For t ∈ [T ′], we define the event Eor
t to occur if the communication in the second execution

of detect-collisions (which effectively computes a logical OR of the ei’s), i.e., in at least one
of rounds 7 and 8 in iteration t is erased for the leader. Formally, we have:

Eor
t := (∃r ∈ {7, 8} : Nt,r,Ld = 1). (6)

The event Etc
t′,t,i

For 0 ≤ t′ < t ≤ T ′ and i ∈ [n], define the following event concerning the rounds 9 to R′ in
each iteration, i.e., the rounds where the leader broadcasts on the tree code:

E tc
t′,t,i :=

 t∑
s=t′+1

R′∑
r=9

Ns,r,i ≥
2RTC

5 · (t− t′)

. (7)

B.2.2 Bad Iterations

We now define sets of “bad” iterations for a given execution. Intuitively, these are iterations
where our protocol does not make progress. For an instantiation N of N, we have:

Bwo(N) =
{

t ∈ [T ′] | ∃r ∈ [R′] : N ∈ Ewo
t,r

}
.

Bdc(N) =
{

t ∈ [T ′] | N ∈ Edc
t,Ld

}
.

Bor(N) = {t ∈ [T ′] | N ∈ Eor
t }. (8)

▶ Lemma 15. It holds that:
1. Pr(Bwo(N) ̸= ∅) ≤ 2.25−n.

2. Pr
(∣∣Bdc(N) ∪ Bor(N)

∣∣ ≥ T ′

50

)
≤ e− T ′

100 .

We note that our assumption that T ≤ 2n is only used in Item 1 of Lemma 15.

K. Efremenko, G. Kol, D. Paramonov, and R. R. Saxena 53:19

B.3 Bad Intervals
B.3.1 Critical Players
We now define and show results about players “critical” to the protocol, i.e., those needed to
make sure we make progress in our simulation. For a set S of integers and an integer k define
S≤k to be the set consisting of the k smallest elements of S. If |S| ≤ k, we define S≤k = S.
For a transcript π ∈ Γ∗

cs, we define the set S(π) to be the set of all non-leader players who
would broadcast in the noiseless protocol when their received transcript is π. Formally,

S(π) =
{

i ∈ P |M i
|π|+1

(
xi, π

)
̸= ⊥

}
.

▶ Definition 16 (Critical Players). For π ∈ Γ∗
cs, we define the set of players that are π-critical

as Crit(π) = S(LCP(π, Π))≤2.

We note that this definition is made for analysis purposes and no single player can
necessarily compute the set Crit(·).

B.3.2 Bad Intervals
Next, we define the set of possible augmented transcripts and bad intervals.

▶ Definition 17. For 0 ≤ t′ ≤ t ≤ T ′ and an instantiation N≤t′ of N≤t′ , define the set:

Augt(N≤t′) =
{

π ∈ Γ∗
cs | ∃N(t′,t] : πLd

t (N≤t) = π
}

.

▶ Definition 18. Let N be an instantiation of N. We define B†(N) to be the set of all
intervals (t′, t] satisfying 0 ≤ t′ < t ≤ T ′ for which there exists π ∈ Augt(N≤t′) and i ∈ Crit(π)
such that E tc

t′,t,i occurs when N = N . We also define:

B(N) =
⋃

(t′,t]∈B†(N)

(t′, t].

▶ Lemma 19. It holds that:

Pr
(
|B(N)| ≥ T ′

50

)
≤ 10− T ′

50 .

To finish this subsection, we show that B(·) has all the iterations where a critical player
fails to decode the tree code.

▶ Lemma 20. For any instantiation N of N and all t /∈ B(N), for all i ∈ Crit(πLd
t (N)), we

have πi
t(N) = πLd

t (N).

B.4 A Potential Function
We now define the potential function that we shall use in the analysis. For t ∈ {0} ∪ [T ′] and
an instantiation N of N, we define:

Φt(N) = 2 ·
∣∣LCP

(
πLd

t+1(N), Π
)∣∣− ∣∣πLd

t+1(N)
∣∣. (9)

Our definition clearly implies Φ0(N) = 0 and Φt(N) ≤
∣∣LCP

(
πLd

t+1(N), Π
)∣∣ for all N .

Moreover, as either one symbol is appended to or removed from the end of πLd in every
iteration, we have that Φt(N) ≥ Φt−1(N)− 1 for all N and t ∈ [T ′]. In Lemma 25 we will
now show that if t is not in one of the bad sets defined above, then the potential increases by
at least 1. But first, we state some helpful lemmas.

ICALP 2023

53:20 Protecting Single-Hop Radio Networks from Message Drops

▶ Lemma 21. For any instantiation N of N and any t /∈ Bwo(N), we have:

sLd
t (N) ∈

{
R, combine-CD

(
zLd

t (N), z2
t (N), . . . , zn

t (N)
)}

For i ∈ [n], define the variable r̂i to be the value of r output by Algorithm 3, when run
by player i, with Line 15 replaced12 by ρ← D-TC

(
τLd)

. This value is only used for analysis
purposes and cannot be computed by the player during the execution of the protocol (as they
may not know τLd). We now claim several useful properties of r̂i

t, and how it relates to ri
t.

▶ Lemma 22. For t ∈ [T ′] and any instantiation N of N such that Bwo(N) = ∅, we have:(
∄j ∈

[∣∣πLd
t (N)

∣∣] :
(
πLd

t (N)
)

j
̸= Πj

)
=⇒

(
∄i ∈ P : r̂i

t(N) = true
)

.

We also prove a modified converse version of the previous lemma.

▶ Lemma 23. For t ∈ [T ′] and any instantiation N of N such that Bwo(N) = ∅, we have:(
∃j ∈

[∣∣πLd
t (N)

∣∣] :
(
πLd

t (N)
)

j
̸= Πj

)
=⇒

(
∃i ∈ Crit(πLd

t (N)) : r̂i
t(N) = true

)
,

▶ Lemma 24. For t ∈ [T ′], i ∈ [n] and any instantiation N of N, ri
t(N) ∈

{
r̂i

t(N), false
}

.
Furthermore, if πi

t(N) = πLd
t (N), then ri

t(N) = r̂i
t(N).

▶ Lemma 25. For t ∈ [T ′] and any instantiation N of N such that Bwo(N) = ∅, we have:

t /∈ Bdc(N) ∪ Bor(N) ∪ B(N) =⇒ Φt(N) ≥ Φt−1(N) + 1.

B.5 Finishing the proof of Theorem 2
We are now ready to finish the proof of Theorem 2.

Proof of Theorem 2. Let C ≥ 100RTC. Fix ϵ, n and Γ as in the statement of the theorem.
We claim that the algorithm provided in Algorithm 1 satisfies all the properties claimed by
the theorem. It can be observed that Algorithm 1 takes at most CT rounds of communication,
so it just suffices to just show that Pr

(
Π′Ld(X) ̸= Π(X)

)
≤ 2− min(n,T).

By Lemmas 15 and 19 and a union bound, we get that an instantiation N of N satisfies∣∣Bdc(N) ∪ Bor(N) ∪ B(N)
∣∣ ≤ T ′

25 and Bwo(N) = ∅ except with probability at most

10− 1
50 T ′

+ e− 1
100 T ′

+ 2.25−n ≤ 2− min(n, 1
100 T ′) ≤ 2− min(n,T).

Lemma 25 then states that for all such N , for all t /∈ Bdc(N) ∪ Bor(N) ∪ B(N), Φt(N) ≥
Φt−1(N) + 1. At the same time, we recall that Equation (9) also gives that for all t ∈ [T ′],
Φt(N) ≥ Φt−1(N)− 1. Thus, we see that

ΦT ′(N) ≥
(

T ′ − T ′

25

)
− T ′

25 ≥
9
10T ′ ≥ T.

Furthermore, we consult Equation (9) to get that∣∣LCP
(
πLd

T ′+1(N), Π
)∣∣ ≥ ΦT ′(N) ≥ T,

which implies that
(
πLd

T ′+1(N)
)

≤T
= Π≤T . so the leader’s output at Line 10 is equal to Π≤T .

As this happens except with probability at most 2− min(n,T), this concludes the proof. ◀

12 We stress that Line 25 still uses τ i and not τLd.

On the Mixing Time of Glauber Dynamics
for the Hard-Core and Related Models on
G(n, d/n)
Charilaos Efthymiou #

Computer Science, University of Warwick, Coventry, UK

Weiming Feng #

School of Informatics, University of Edinburgh, Edinburgh, UK

Abstract
We study the single-site Glauber dynamics for the fugacity λ, Hard-Core model on the random
graph G(n, d/n). We show that for the typical instances of the random graph G(n, d/n) and for
fugacity λ < dd

(d−1)d+1 , the mixing time of Glauber dynamics is n1+O(1/ log log n).
Our result improves on the recent elegant algorithm in [Bezáková, Galanis, Goldberg and

Štefankovič; ICALP’22]. The algorithm there is an MCMC-based sampling algorithm, but it is
not the Glauber dynamics. Our algorithm here is simpler, as we use the classic Glauber dynamics.
Furthermore, the bounds on mixing time we prove are smaller than those in Bezáková et al. paper,
hence our algorithm is also faster.

The main challenge in our proof is handling vertices with unbounded degrees. We provide
stronger results with regard the spectral independence via branching values and show that the our
Gibbs distributions satisfy the approximate tensorisation of the entropy. We conjecture that the
bounds we have here are optimal for G(n, d/n).

As corollary of our analysis for the Hard-Core model, we also get bounds on the mixing time
of the Glauber dynamics for the Monomer-Dimer model on G(n, d/n). The bounds we get for this
model are slightly better than those we have for the Hard-Core model

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Randomness, geometry and discrete structures; Mathematics of computing
→ Discrete mathematics

Keywords and phrases spin-system, spin-glass, sparse random (hyper)graph, approximate sampling,
efficient algorithm

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.54

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2302.06172

Funding Charilaos Efthymiou: EPSRC New Investigator Award (grant no. EP/V050842/1) and
Centre of Discrete Mathematics and Applications (DIMAP), The University of Warwick.
Weiming Feng: European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreement No. 947778).

Acknowledgements Weiming Feng would like to thank Heng Guo for the helpful discussions.

1 Introduction

The Hard-Core model and the related problem of the geometry of independent sets on the
sparse random graph G(n, d/n) is a fundamental area of study in discrete mathematics
[17, 11], in computer science they are studied in the context of the random Constraint
Satisfaction Problems [10, 20], while in statistical physics they are studied as instances of
disordered systems. Using the so-called Cavity method [25, 2], physicists make some impressive

EA
T
C
S

© Charilaos Efthymiou and Weiming Feng;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 54; pp. 54:1–54:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:charilaos.efthymiou@warwick.ac.uk
mailto:wfeng@ed.ac.uk
https://doi.org/10.4230/LIPIcs.ICALP.2023.54
https://arxiv.org/abs/2302.06172
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

54:2 Mixing Time of Glauber Dynamics

predictions about the independent sets of G(n, d/n), such as higher order replica symmetry
breaking etc. Physicists’ predictions are (typically) mathematically non-rigorous. Most of
these predictions about independent sets still remain open as basic natural objects in the
study such as the partition function, or the free energy are extremely challenging to analyse.

The Hard-Core model with fugacity λ > 0, is a distribution over the independent sets of
an underlying graph G such that every independent set σ is assigned probability measure µ(σ)
which is proportional to λ|σ|, where |σ| is the cardinality of σ. Here, we consider the case
where the underlying graph is a typical instance of the sparse random graph G(n, d/n). This
is the random graph on n vertices, while each edge appears independently with probability
p = d/n. The quantity d > 0 corresponds to the expected degree. For us here the expected
degree is a bounded constant, i.e., we have d = Θ(1), hence the graph is sparse.

Our focus is on approximate sampling from the aforementioned distribution using Glauber
dynamics. This is a classic, very popular, algorithm for approximate sampling. The popularity
of this process, mainly, is due to its simplicity and the strong approximation guarantees that
provides. The efficiency of Glauber dynamics for sampling is studied by means of the mixing
time.

Recently, there has been an “explosion” of results about the mixing time of Glauber
dynamics for worst-case instances the problem, e.g. [1, 9, 8, 12]. Combined with the earlier
hardness results in [29, 30, 19] one could claim that for worst-case instances the behaviour
of Glauber dynamics for the Hard-Core model, but also the related approximate sampling-
counting problem, is well understood. Specifically, for the graphs of maximum degree ∆,
Glauber dynamics exhibits O(n log n) mixing time for any fugacity λ < (∆−1)∆−1/(∆−2)∆,
while the hardness results support that this region of λ is best possible.

The aforementioned upper bound on λ coincides with the critical point for the
uniqueness/non-uniqueness phase transition of the Hard-Core model on the infinite ∆-regular
tree [24]. At this point in the discussion, perhaps, it is important to note the dependency of
the critical point on the maximum degree. This is the point where the situation with the
random graph G(n, d/n) differentiates from the worst case one.

For G(n, d/n) and for the range of the expected degree d we consider here, typically,
almost all of the vertices in the graph, e.g., say 99%, are of degree very close to d. On the other
hand, the maximum degree of G(n, d/n) is as large as Θ(log n

log log n), i.e., it is unbounded. In
light of this observation, it is natural to expect that the Glauber dynamics on the Hard-Core
model mixes fast for values of the fugacity that depend on the expected degree, rather the
maximum degree. Note that, this implies to use Glauber dynamics to sample from the
Hard-Core model with fugacity λ taking much larger values than what the worst-case bound
implies.

For d > 1, let λc(d) = dd

(d−1)(d+1) . One of the main result in our paper is as follows: we
show that for any d > 1 and for typical instances of G(n, d/n), the Glauber dynamics on the
Hard-Core with any fugacity λ < λc(d), exhibits mixing time which is n1+ C

log log n = n1+o(1),
for some absolute constant C > 0 which depends only on λ and d.

It is our conjecture that the bound on the mixing time for the hard-core is tight. Further-
more, following intuitions from [10], as well as from statistical physics predictions in [2], it is
our conjecture that the bound λc(d) on the fugacity λ is also tight, in the following sense:
for λ > λc(d) it is not precluded that there is a region where efficient approximate sampling
is possible, however, the approximation guarantees are weaker than those we have here.

Our result improves on the elegant sampling algorithm that was proposed recently in [3]
for the same distribution, i.e., the Hard-Core model on G(n, d/n). That algorithm, similarly
to the one we consider here, relies on the Markov Chain Monte Carlo method. The authors

C. Efthymiou and W. Feng 54:3

use Spectral Independence [1, 9] to show that the underlying Markov chain exhibits mixing
time which is O

(
n1+θ

)
for any λ < λc(d) and arbitrary small consant θ > 0. The idea

that underlies the algorithm in [3] is reminiscent of the variable marking technique that was
introduced in [26] for approximate counting with the Lovász Local Lemma, and was further
exploited in [14, 16, 21, 18]. Here, we use a different, more straightforward, approach and
analyse directly the Glauber dynamics.

Note that both algorithms, i.e., here and in [3], allow for the same range for the fugacity
λ. On the other hand, the algorithm we study here is the (much simpler) Glauber dynamics,
while the running time guarantees we obtain here are asymptotically better.

Previous works in the area, i.e., even before [3], in order to prove their results and avoid
the use of maximum degree, have been focusing on various parameters of G(n, d/n) such as
the expected degree [13], or the connective constant [28]. Which, as it turns out are not that
different with each other. Here, we utilise the notion of branching value, which is somehow
related to the previous ones.

The notion of the branching value as well as its use for establishing Spectral Independence
was introduced in [3]. Unfortunately, the result there were not sufficiently strong to imply
rapid mixing of Glauber dynamics. Their analytic tools for Spectral Independence (and
others) seems to not be able to handle all that well vertices with unbounded degree. Here we
derive stronger results for Spectral independence than those in [3] in the sense that they are
more general and more accurate. Specifically, in our analysis we are able to accommodate
vertices of all degrees, while we use a more elaborate matrix norm to establish spectral
independence, reminiscent of those introduced in [12]. Furthermore, we utilise results from
[8] that allow us deal with the unbounded degrees of the graph in order to establish our
rapid mixing results.

2 Results

Consider the fixed graph G = (V, E) on n vertices. Given the parameter λ > 0, which we call
fugacity, we define the Hard-Core model µ = µG,λ to be a distribution on the independent
sets of the graph G, Specifically, every independent set σ is assigned probability measure
µ(σ) defined by

µ(σ) ∝ λ|σ| , (1)

where |σ| is equal to the size of the independent set σ.
We use {±1}V to encode the configurations of the Hard-Core model, i.e., the independent

sets of G. Particularly, the assignment +1 implies that the vertex is in the independent set,
while −1 implies the opposite. We often use physics’ terminology where the vertices with
assignment +1 are called “occupied”, whereas the vertices with −1 are “unoccupied”.

We use the discrete time, (single site) Glauber dynamics to approximately sample from
the aforementioned distributions. Glauber dynamics is a Markov chain with state space the
support of the distribution µ. Typically, we assume that the chain starts from an arbitrary
configuration X0 ∈ {±1}V . For t ≥ 0, the transition from the state Xt to Xt+1 is according
to the following steps:
1. Choose uniformly at random a vertex v.
2. For every vertex w different than v, set Xt+1(w) = Xt(w).
3. Set Xt+1(v) according to the marginal of µ at v, conditional on the neighbours of v

having the configuration specified by Xt+1.

ICALP 2023

54:4 Mixing Time of Glauber Dynamics

It is standard that when a Markov chain satisfies a set of technical conditions called
ergodicity, then it converges to a unique stationary distribution. For the cases we consider here,
Glauber dynamics is trivially ergodic, while the stationary distribution is the corresponding
Hard-Core model µ.

Let P be the transition matrix of an ergodic Markov chain {Xt} with a finite state space
Ω and equilibrium distribution µ. For t ≥ 0 and σ ∈ Ω, let P t(σ, ·) denote the distribution
of Xt when the initial state of the chain satisfies X0 = σ. The mixing time of the Markov
chain {Xt}t≥0 is defined by

Tmix = max
σ∈Ω

min
{

t > 0 | ∥P t(σ, ·) − µ∥TV ≤ 1
2e

}
.

Our focus is on the mixing time of Glauber dynamics for the Hard-Core model for the case
where the underlying graph is a typical instance of G(n, d/n), where the expected degree
d > 0 is a assumed to be a fixed number.

2.1 Mixing Time for Hard-Core Model
For z > 1, we let the function λc(z) = zz

(z−1)(z+1) . It is a well-known result from [24] that the
uniqueness region of the Hard-Core model on the k-ary tree, where k ≥ 2, holds for any λ

such that

λ < λc(k) .

The following theorem is the main result of this work.

▶ Theorem 1. For fixed d > 1 and any λ < λc(d), there is a constant C > 0 such that the
following is true:

Let µG be the Hard-Core model with fugacity λ on the graph G ∼ G(n, d/n). With
probability 1 − o(1) over the instances of G, Glauber dynamics on µG exhibits mixing time

Tmix ≤ n(1+ C
log log n) .

2.2 Extensions to Monomer-Dimer Model
Utilising the techniques we develop in order to prove Theorem 1, we get mixing time bounds
for the Glauber dynamics on the Monomer-Dimer model on G(n, d/n).

Given a fixed graph G = (V, E) and a parameter λ > 0, which we call edge weight, we
define the Monomer-Dimer model µ = µG,λ to be a distribution on the matchings of the
graph G such that every matching σ is assigned probability measure µ(σ) defined by

µ(σ) ∝ λ|σ| , (2)

where |σ| is equal to the number of edges in the matching σ.
Note that the Hard-Core model considers configurations on the vertices of G, while the

Monomer-Dimer model considers configurations on the edges. Similarly to the independent
sets, we use {±1}E to encode the matchings of G. Specifically, the assignment +1 on the
edge e implies that the edge is in matching, while −1 implies the opposite.

For the Monomer-Dimer model the definition of Glauber dynamics {Xt}t≥0 extends in
the natural way. That is, assume that the chain starts from an arbitrary configuration
X0 ∈]±1E . For t ≥ 0, the transition from the state Xt to Xt+1 is according to the following
steps:

C. Efthymiou and W. Feng 54:5

1. Choose uniformly at random an edge e.
2. For every edge f different than e, set Xt+1(f) = Xt(f).
3. Set Xt+1(e) according to the marginal of µ at e, conditional on the neighbours of e having

the configuration specified by Xt+1.

We consider the case of the Monomer-Dimer distribution where the underlying graph is
an instance of G(n, d/n). We prove the following result.

▶ Theorem 2. For fixed d > 1 and any λ > 0, there is a constant C > 0 such that the
following is true:

Let µG be the Monomer-Dimer model with edge weight λ on the graph G ∼ G(n, d/n).
With probability 1 − o(1) over the instances of G, Glauber dynamics on µG exhibits mixing
time

Tmix ≤ n

(
1+C

√
log log n

log n

)
.

The proof of Theorem 2 can be found in the full version of this paper.
For the Monomer-Dimer model on general graphs, the best-known result is the Õ(n2m)

mixing time of the Jerrum-Sinclair chain [23], where m = |E| is the number of edges. For
graphs with bounded maximum degree ∆ = O(1), the spectral independence technique
proved the O(n log n) mixing time of Glauber dynamics [9]. However, this result cannot be
applied directly to the random graph G(n, d/n), because the maximum degree of a random
graph is typically unbounded. For the Monomer-Dimer model on G(n, d/n), [3] gave a
sampling algorithm with running time n1+θ, where θ > 0 is an arbitrarily small constant, and
[22] also proved the n2+o(1) mixing time of Glauber dynamics in a special case λ = 1. Our
result in Theorem 2 proves the n1+o(1) mixing time of Glauber dynamics, which improves
all the previous results for the Monomer-Dimer model on the random graph G(n, d/n) with
constant λ. It is an open problem to improve the mixing time in Theorem 2. Moreover, for
general graphs, the tight mixing time of Glauber dynamics for the Monomer-Dimer model is
also a challenging open problem.

We remark that for the Monomer-Dimer model, we actually proved the n1+o(1) mixing
time of Glauber dynamics on all graphs satisfying ∆ log2 ∆ = o(log2 n). See the full version
of this paper for a more general result.

This version of the paper focuses on the Hard-Core model, i.e., proving Theorem 1. The
proofs for the Monomer-Dimer model is in the full version.

Notation
Suppose that we are given a Gibbs distribution µ on the graph G = (V, E). We denote with
Ω the support of µ.

Suppose that Ω is a set of configurations at the vertices of G. Then, for any Λ ⊆ V and
any τ ∈ {±1}Λ, we let µΛ,τ (or µτ if Λ is clear from the context) denote the distribution µ

conditional on that the configuration at Λ is τ . Alternatively, we use the notation µ(· | (Λ, τ))
for the same conditional distribution. We let Ωτ ⊆ Ω be the support of µΛ,τ . We call τ

feasible if Ωτ is nonempty.
For any subset S ⊆ V , let µS denote the marginal of µ at S, while let ΩS denote the

support of µS . In a natural way, we define the conditional marginal. That is, for Λ ⊆ V \ S

and σ ∈ {±1}Λ, we let µΛ,σ
S (or µσ

S if Λ is clear from the context) denote the marginal at
S conditional on the configuration at Λ being σ. Alternatively we use µS(· | (Λ, σ)) for µσ

S .
We let Ωσ

S denote the support of µσ
S .

ICALP 2023

54:6 Mixing Time of Glauber Dynamics

All the above notation for configurations on the vertices of G can be extended naturally
for configurations on the edges of the graph G. We omit presenting it, because it is very
similar to the above.

2.3 Hard-Core Model – Entropy Tensorisation for Rapid Mixing
We prove Theorem 1 by exploiting the notion of approximate tensorisation of the entropy.

Let µ be a distribution with support Ω ⊆ {±1}V . For any function f : Ω → R≥0, we let
µ(f) =

∑
x∈Ω µ(x)f(x), i.e., µ(f) is the expected value of f with respect to µ. Define the

entropy of f with respect to µ by

Entµ(f) = µ
(

f log f
µ(f)

)
,

where we use the convention that 0 log 0 = 0.
Let τ ∈ ΩV \S for some S ⊂ V . Define the function fτ : Ωτ

S → R≥0 by having fτ (σ) =
f(τ ∪ σ) for all σ ∈ Ωτ

S
1. Let Entτ

S(fτ) denote the entropy of fτ with respect to the
conditional distribution µτ

S . Furthermore, we let

µ(EntS(f)) =
∑

τ∈ΩV \S

µV \S(τ)Entτ
S(fτ) ,

i.e., µ(EntS(f)) is the average of the entropy Entτ
S(fτ) with respect to the measure µV \S(·).

When S = {v}, i.e., the set S is a singleton, we abbreviate µ(Ent{v}(f)) to µ(Entv(f)).

▶ Definition 3 (Approximate Tensorisation of Entropy). A distribution µ with support Ω ⊆
{±1}V satisfies the approximate tensorisation of entropy with constant C > 0 if for all
f : Ω → R≥0 we have that

Entµ(f) ≤ C ·
∑
v∈V

µ (Entv(f)) .

On can establish bounds on the mixing time of Glauber dynamics by means of the approx-
imate tensorisation of entropy of the equilibrium distribution µ. Specifically, if µ satisfies
the approximate tensorisation of entropy with constant C, then after every transition of
Glauber dynamics, the Kullback–Leibler divergence2 between the current distribution and
the stationary distribution decays by a factor which is at least (1 − C/n), where n = |V | is
the number of variables.

As far as the mixing time of Glauber dynamics is concerned, if a distribution µ satisfies
the approximate tensorisation of entropy with parameter C then we have following well
known relation (e.g. see [9, Fact 3.5]),

Tmix ≤
⌈

Cn

(
log log 1

µmin
+ log(2) + 2

)⌉
, where µmin = min

x∈Ω
µ(x) . (3)

In light of the above, Theorem 1 follows as a corollary from the following result.

1 With a slight abuse of notation we use τ ∪ σ to indicate the configuration what agrees with τ at S and
with σ at V \ S.

2 For discrete probability distributions P and Q on a discrete space X , the Kullback–Leibler divergence
is defined by DKL(P ||Q) =

∑
x∈X P (x) log P (x)

Q(x) .

C. Efthymiou and W. Feng 54:7

▶ Theorem 4 (Hard-Core Model Tensorisation). For any fixed d > 1 and any λ < λc(d), there
is a constant A > 0 that depends only on d and λ such that the following is true:

Let µG be the Hard-Core model with fugacity λ on the graph G ∼ G(n, d/n). With
probability 1 − o(1) over the instances of G, µG satisfies the approximate tensorisation of
entropy with parameter nA/ log log n.

Proof of Theorem 1. Theorem 1 follows from Theorem 4 and (3).
Specifically, plugging the result from Theorem 4 into (3) we get the following: with

probability 1 − o(1) over the instances of G we have that

Tmix ≤ n1+ A
log log n

(
log log 1

µmin
+ log(2) + 2

)
≤ n1+ A

log log n

(
log log

(
1 + λ + λ−1)n + log(2) + 2

)
= n1+ A

log log n
(
log n + log log(1 + λ + λ−1)

)
≤ n1+ 2A

log log n .

For the second derivation, we note that for the Hard-Core distribution µ = µG, we have that
µmin is at least min{1, λn}/(1 + λ)n, which implies that µmin ≥ (1 + λ + λ−1)−n.

Note that Theorem 1 follows from the above, by setting C = 2A. ◀

3 Our Approach & Contributions

In this section we describe our approach towards establishing our results. Our focus is on
the Hard-Core model.

3.1 Tensorisation and Block-Factorisation of Entropy
We establish the tensorisation of the entropy, described in Theorem 4, by exploiting the
recently introduced notion of block factorisation of entropy in [5]. Specifically, we build on
the framework introduced in [9] to relate the tensorisation and the block factorisation of the
entropy.

The framework in [9] relies on the assumption that the maximum degree of the underlying
graph is bounded. Otherwise, the results it implies are not strong. In our setting here, a
vanilla application of this approach would not be sufficient to give the desirable bounds
on the tensorisation constant due to the fact that the typical instances of G(n, d/n) have
unbounded maximum degree. To this end, we employ techniques from [8].

Given the graph G = (V, E), and the integer ℓ ≥ 0, we let
(

V
ℓ

)
denote all subsets S ⊆ V

with |S| = ℓ.

▶ Definition 5 (ℓ-block Factorisation of Entropy). Let µ be a distribution over {±1}V and
1 ≤ ℓ ≤ |V | = n be an integer. The distribution µ satisfies the ℓ block factorisation of entropy
with parameter C if for all f : Ω → R≥0 we have that

Entµ(f) ≤ C(
n
ℓ

) ∑
S∈(V

ℓ)
µ (EntS(f)) . (4)

The notion of the ℓ block factorisation of entropy generalises that of the approximate
tensorisation of entropy. Specifically, a distribution that satisfies the ℓ = 1 block factorisation
of entropy with parameter C, also satisfies the approximate tensorisation of entropy with
parameter C/n.

ICALP 2023

54:8 Mixing Time of Glauber Dynamics

As far as the Hard-Core model on G(n, d/n) is concerned, we show the following theorem
via the spectral independence technique, which is one of the main technical results in our
paper.

▶ Theorem 6. For fixed d > 1 and any 0 < λ < λc(d), consider G ∼ G(n, d/n) and let µG

be the Hard-Core model on G with fugacity λ. With probability 1 − o(1) over the instances of
G the following is true: There is a constant K = K(d, λ) > 0, such that for

1
α

= K log n
log log n ,

for any 1/α ≤ ℓ < n, µG satisfies the ℓ-block factorisation of entropy with parameter
C = (en

ℓ)1+1/α.

Let us have a high level overview of how we use the ℓ-block factorisation and particularly
Theorem 6 to establish our entropy tensorisation result in Theorem 4.

Note that Theorem 6 essentially implies the following: Suppose that G = (V, E) is a
typical instance of G(n, d/n). Then, the Hard-Core model µ on G, with fugacity λ < λc(d),
is such that for any f : Ω → R>0 we have

Entµ(f) ≤
(e

θ

)1+1/α 1(
n
ℓ

) ∑
S∈(V

ℓ)
µ (EntS(f)) , (5)

where ℓ = ⌈θn⌉ and θ ∈ (0, 1) is a constant satisfying ⌈θn⌉ ≥ 1/α = Ω(log n/ log log n).
Let G[S] be the subgraph of G that is induced by the vertices in the set S. On the RHS

of (5), the entropy is evaluated with respect to conditional distributions µτ
S , which is the

Hard-Core model on the subgraph G[S] given the boundary condition τ on V \ S.
We let C(S) denote the set of connected components in G[S]. With a slight abuse of

notation, we use U ∈ C(S) to denote the set of vertices in the component U , as well. It is not
hard to see that the Hard-Core model µτ

S , for τ ∈ ΩV \S , factorises as a product distribution
over Gibbs marginals at the components U ∈ C(S), i.e.,

µτ
S =

⊗
U∈C(S)

µτ
U .

We use the following result for the factorisation of entropy on product distributions [6, 4, 9].

▶ Lemma 7 ([9, Lemma 4.1]). For any S ⊆ V , any τ ∈ ΩV \S, any f : Ωτ
S → R≥0,

Entτ
S(f) ≤

∑
U∈C(S)

µτ
S [EntU (f)] .

Combining Lemma 7 and (5) we get that

Entµ(f) ≤
(e

θ

)1+1/α

ES∼(V
ℓ)

[∑
U∈C(S) µ (EntU (f))

]
, (6)

where S ∼
(

V
ℓ

)
denotes that S is a uniformly random element from

(
V
ℓ

)
.

The above step allows us to reduce the proof of approximate tensorisation to that of the
components in C(S). We choose the parameter ℓ = ⌈θn⌉ so that the connected components
in C(S) are typically small.

In light of the above, Theorem 4 follows by establishing two results: The first one is
to derive a bound on the constant of the approximate tensorisation of entropy for the
components of size k in C(S), for each k > 0. The second result is to derive tail bounds on
the size of the components in C(S) for S ∼

(
V
ℓ

)
. Since the components are small with high

probability, the following crude bound on the approximate tensorisation of entropy is enough
for our analysis.

C. Efthymiou and W. Feng 54:9

▶ Lemma 8. For any fixed d > 0, for any λ < λc(d), consider G ∼ G(n, d/n). With
probability 1 − o(1) over the instances of G, the following is true:

For any k ≥ 1 and H ⊆ V such that |H| = k, the Hard-Core model µH on G[H] with
fugacity λ satisfies the approximate tensorisation of entropy with constant

AT(k) ≤ min
{

2k2 (1 + λ + 1/λ)2k+2
, 3 log (1 + λ + 1/λ) · ((1 + λ)k)2+2η

}
, (7)

where η = B(log n)1/r, while B = B(d, λ) and r = r(d) ∈ (1, 2) are constants that depend on
d, λ.

As far as size of the components in C(S) is concerned, we use the following result from [3].

▶ Lemma 9 ([3]). Let d > 1 be a constant. There is a constant L = L(d) such that the
following holds with probability at least 1 − o(1) over the G ∼ G(n, d/n). Let S ∼

(
V
ℓ

)
, while

let Cv ⊆ S be the set of vertices that are in the same component as vertex v in G[S]. For
any integer k ≥ log n, it holds that

Pr[|Cv| = k] ≤ (2e)eLk

(
2ℓ

n

)k

≤ (2e)eLk (2θ)k
.

Theorem 4 follows by combining Theorem 6, with Lemmas 9 and 8. For a full proof of
Theorem 4, see Section 5.

3.2 Spectral Independence with Branching Values
An important component in our proof of Theorem 6 is to establish Spectral Independence
bounds for the Hard-Core model on typical instances of G(n, d/n).

For worst-case graph instances (i.e., non random), typically, we establish Spectral Inde-
pendence for a region of the parameters of the Gibbs distribution which is expressed in terms
of the maximum degree ∆ of the underlying graph G. As far as G(n, d/n) is concerned, the
maximum degree does not seem to be the appropriate graph parameter to consider for this
problem.

Here, we utilise the notion of branching value. The notion of the branching value as well
as its use for establishing Spectral Independence was introduced in [3]. Unfortunately, the
result there were not sufficiently strong to imply rapid mixing of Glauber dynamics. Here we
derive stronger results for Spectral independence than those in [3] in the sense that they are
more general and more accurate. Specifically, in our analysis we are able to accommodate
vertices of all degrees, while we use a more elaborate matrix norm to establish spectral
independence, reminiscent of those introduced in [12]. Furthermore, we utilise results from
[8] that allow us deal with the unbounded degrees of the graph in order to establish our
rapid mixing results.

Before getting to further details in our discussion, let us first introduce some basic
notions. We start with the pairwise influence matrix IΛ,τ

G and the related notion of Spectral
Independence. These notions were first introduced in [1]. In this paper, we use the absolute
version introduced in [15].

Consider a fixed graph G = (V, E). Assume that we are given a Gibbs distribution µ on
the configuration space {±1}V . We define the pairwise influence matrix IΛ,τ

G as follows: for
a set of vertices Λ ⊂ V and a configuration τ at Λ, the matrix IΛ,τ

G is indexed by the vertices
in V \ Λ, while for any two vertices, different with each other u, w ∈ V \ Λ, if w can take
both values ±1 given τ , we have that

ICALP 2023

54:10 Mixing Time of Glauber Dynamics

IΛ,τ
G (w, u) = ||µu(· | (Λ, τ), ({w}, +)) − µu(· | (Λ, τ), ({w}, −))||TV ; (8)

if w can only take one value in ±1 given τ , we have IΛ,τ
G (w, u) = 0. Also, we have that

IΛ,τ
G (w, w) = 0 for all w ∈ V \ Λ. That is, the diagonal of IΛ,τ

G is always zero.
Recall that, above, µu(· | (Λ, τ), ({w}, 1)) is the Gibbs marginal that vertex u, conditional

that the configuration at Λ is τ and the configuration at w is 1. We have the analogous for
µu(· | (Λ, τ), ({w}, −1)).

▶ Definition 10 (Spectral Independence). For a real number η > 0, the Gibbs distribution µG

on G = (V, E) is η-spectrally independent, if for every 0 ≤ k ≤ |V | − 2, Λ ⊆ V of size k and
τ ∈ {±1}Λ the spectral radius of IΛ,τ

G satisfies that ρ(IΛ,τ
G) ≤ η.

We bound the spectral radius of IΛ,τ
G by means of matrix norms. Specifically, we use the

following norm of IΛ,τ
G∣∣∣∣∣∣D−1 · IΛ,τ

G · D
∣∣∣∣∣∣

∞
, (9)

where D is the diagonal matrix indexed by the vertices in V \ Λ such that

D(u, u) =
{

degG(v)1/χ if degG(v) ≥ 1
1 if degG(v) = 0 ,

(10)

where the parameter χ is being specified later.
Let G = (V, E) be a fixed graph. For any vertex v ∈ V and integer ℓ ≥ 0, we use Nv,ℓ

to denote the number of simple paths with ℓ + 1 vertices that start from v in graph G. By
definition, we have that Nv,0 = 1.

▶ Definition 11 (d-branching value). Let d ≥ 1 be a real number and G = (V, E) be a graph.
For any vertex v ∈ V , the d-branching value Sv is defined by

∑
ℓ≥0 Nv,ℓ/dℓ.

We establish spectral independence results that utilise the notion of d-branching value
that was introduced in [3]. The following theorem is an example of the Spectral Independence
results we derive here. In our proof, we actually use the stronger result in Theorem 19 . This
analysis of spectral independence is of independent interest.

▶ Theorem 12. Let d > 1 be a real number and G = (V, E) be a graph. Let µG be the
Hard-Core model with fugacity λ < λc(d). For any α > 0 such that the d-branching value
Sv ≤ α for all v ∈ V the following is true: µG is η-spectrally independent for

η ≤ C0 · α1/r ,

where C0 = C0(d, λ) and r = r(d) ∈ (1, 2) are constants.

There are a couple of interesting point about Theorem 12 to make. The first one is that
the bound on η does not have any dependence on the degrees of the graph G. This is because
we utilise the matrix norm ∥D−1 · IΛ,τ

G · D∥∞ instead of ∥IΛ,τ
G ∥∞ that is typically used to

establish the bound on the spectral independence. Furthermore, note that Theorem 12 is
not necessarily about G(n, d/n), i.e., it applies to an arbitrary graph. As a matter of fact
in order to use the above result for G(n, d/n) we need to establish bounds on its branching
value. To this end, we use the following result from [3] so that we can take α = log n in
Theorem 12.

C. Efthymiou and W. Feng 54:11

▶ Lemma 13 ([3, Lemma 9]). Let d ≥ 1. For any fixed d′ > d, with probability 1 − o(1) over
G ∼ G(n, d/n), the d′-branching factor of every vertex in G is at most log n.

It is worth mentioning that Lemma 13, here, is a weaker version of Lemma 9 in [3], i.e.,
we do not really need the the full strength of the result there.

In light of the above results, an interesting open problem is to turn the branching-value
based spectral independence result in Theorem 12 into rapid mixing bound one for Glauber
dynamics on a general graphs with bounded branching value. Note that this is not possible
with the techniques we develop here.

Concluding this short introductory section about Spectral Independence, let us remark
that for our results we work with the so-called Complete Spectral Independence for the
Hard-Core model, introduced in [7, 8]. This is more general a notion compared to the
(standard) Spectral Independence. For further discussion see Section 4.2.

4 Entropy Factorisation from Stability and Spectral Independence

In this section we establish the ℓ-block factorisation of entropy for the Hard-Core model on
G(n, d/n) as it is described in Theorem 6. To this end, we employ techniques from [8]. This
means that we study the Hard-Core model on G(n, d/n) in terms of the stability of ratios of
the marginals and the so-called Complete Spectral Independence.

4.1 Ratios of Gibbs Marginals & Stability
Consider the fixed graph G = (V, E) and a Gibbs distribution µ on this graph. For a vertex
w ∈ V , the region K ⊆ V \ {w} and τ ∈ {±1}K , we consider the ratio of marginals at w

denoted as RK,τ (w) such that

RK,τ
G (w) = µw(+1 | K, τ)

µw(−1 | K, τ) . (11)

Recall that µw(· | K, τ) denotes the marginal of the Gibbs distribution µ(· | K, τ) at
vertex w. Also, note that the above allows for RK,τ (w) = ∞, e.g., when µw(−1 | K, τ) = 0
and µw(+1 | K, τ) ̸= 0.

▶ Definition 14 (Marginal stability). Let ζ > 0 be a real number. The Gibbs distribution
µG on G = (V, E) is called ζ-marginally stable if for any Λ ⊂ V , any w ∈ V \ Λ, for any
configuration τ at Λ and any S ⊆ Λ we have that

RΛ,τ
G (w) ≤ ζ and RΛ,τ

G (w) ≤ ζ · RS,τS

G (w) . (12)

As far as the stability of the Hard-Core marginals at G(n, d/n) is concerned, we prove
the following result.

▶ Theorem 15 (Stability Hard-Core Model). For any fixed d > 0, for any λ < λc(d), consider
G ∼ G(n, d/n) and let µG be the Hard-Core model on G with fugacity λ. With probability
1 − o(1) over the instances G, µG is 2(1 + λ)

2 log n
log log n -marginally stable.

Proof. Let ζ = 2(1 + λ)2 log n
log log n . Also, let N(w) be the set of the neighbours of w.

For any Λ ⊆ V and any τ ∈ {±}Λ, we have that µw(+1 | Λ, τ) ≤ λ
1+λ . One can see that

the equality holds if N(w) ⊆ Λ and for every u ∈ N(w) we have that τ(w) = −1. Noting
that RΛ,τ

G (w) is increasing in the value of the Gibbs marginal µw(+1 | Λ, τ), it is immediate
that

ICALP 2023

54:12 Mixing Time of Glauber Dynamics

Pr
[
RΛ,τ

G (w) ≤ λ < ζ ∀Λ ⊆ V, ∀w ∈ V \ Λ
]

= 1 . (13)

It remains to show that

Pr
[
RΛ,τ

G (w) ≤ ζ · RS,τS

G (w) ∀Λ ⊂ V, ∀S ⊂ Λ, ∀w ∈ V \ Λ
]

= 1 − o(1) . (14)

In light of (13), (14) follows by showing that

Pr
[
RS,τS

G (2) > 2λ (1 + λ)−2 log n
log log n ∀Λ ⊂ V, ∀S ⊂ Λ, ∀w ∈ V \ Λ

]
= 1 − o(1) . (15)

If there is u ∈ N(w) such that τ(u) = +1, then RΛ,τ
G (w) = 0 and (14) holds trivially since

RS,τS

G (w) ≥ 0. We focus on the case that all vertices u ∈ N(w) ∩ Λ satisfy τ(u) = −1.
Let E be the event that none of the vertices in N(w) is occupied, while let γS be the

probability of the event E under the Gibbs distribution µ(· | S, τS). It is standard to show
that

RS,τS

G (w) =
λ

1+λ γS

1 − λ
1+λ γS

.

Noting that the function f(x) = x
1−x is increasing in x ∈ (0, 1), while γS ≥ (1

1+λ)degG(w), we
have that

RS,τS

G (w) ≥
λ

1+λ (1
1+λ)degG(w)

1 − λ
1+λ (1

1+λ)degG(w) = λ

(1 + λ)degG(w)+1 − λ
.

From the above, it is immediate to get (15). Specifically, it follows from the above inequality
and a standard bound on the maximum degree of random graph which implies that for any
fixed number ϵ > 0, the maximum degree in G is less than (1 + ϵ) log n

log log n with probability
1 − o(1) .

This concludes the proof of Theorem 15. ◀

4.2 (Complete) Spectral Independence
The notions of the pairwise influence matrix IΛ,τ

G and the Spectral Independence, as we
introduce them in Section 3.2, are typically used to establish bounds on the spectral gap for
Glauber dynamics and hence derive bounds on the mixing time of the chain.

The authors in [9], make a further use of Spectral Independence to obtain the approximate
tensorisation of entropy. Unfortunately, a vanilla application of their technique is not sufficient
to prove our tensorisation results, mainly, because of the unbounded degrees we typically
have in G(n, d/n).

In this work, we exploit ideas from [9] together with the related notion of the Complete
Spectral Independence, in order to establish our factorisation results for the entropy in
Theorem 6. Specifically, we utilise the connection between complete spectral independence
and the ℓ block factorisation of entropy that was established in [8] (see further details in the
following section).

Since the notions of the pairwise influence matrix IΛ,τ
G and the Spectral Independence

are so important, let us recall them once more, even though they have already been defined
in Section 3.2. Consider a fixed graph G = (V, E). Assume that we are given a Gibbs
distribution µ on the configuration space {±1}V .

C. Efthymiou and W. Feng 54:13

We define the pairwise influence matrix IΛ,τ
G as follows: for a set of vertices Λ ⊂ V and a

configuration τ at Λ, the matrix IΛ,τ
G is indexed by the vertices in V \ Λ, while for any two

vertices v, w ∈ V \ Λ, different with each other, if w can take both values ±1 given τ , we
have that

IΛ,τ
G (w, u) = ||µu(· | (Λ, τ), ({w}, +)) − µu(· | (Λ, τ), ({w}, −))||TV ; (16)

if w can only take one value in ±1 given τ , we have IΛ,τ
G (w, u) = 0. Also, we have that

IΛ,τ
G (w, w) = 0 for all w ∈ V \ Λ. That is, the diagonal of IΛ,τ

G is always zero.
Recall that, above, µu(· | (Λ, τ), ({w}, 1)) is the Gibbs marginal that vertex u, conditional

that the configuration at Λ is τ and the configuration at w is 1. We have the analogous for
µu(· | (Λ, τ), ({w}, −1)).

▶ Definition 16 (Spectral Independence). For a real number η > 0, the Gibbs distribution µG

on G = (V, E) is η-spectrally independent, if for every 0 ≤ k ≤ |V | − 2, Λ ⊆ V of size k and
τ ∈ {±1}Λ the spectral radius of IΛ,τ

G satisfies that ρ(IΛ,τ
G) ≤ η.

We proceed to introduce the Complete Spectral Independence. First, consider the notion
of the Magnetising operation.

▶ Definition 17 (Magnetising operation). Let µG be a Gibbs distribution on the graph
G = (V, E). For any local fields ϕ⃗ ∈ RV

>0, the magnetised distribution ϕ⃗ ∗ µ satisfies

∀σ ∈ {±1}V , (ϕ⃗ ∗ µ)(σ) ∝ µ(σ)
∏

v∈V :σv=+1
ϕv .

We denote ϕ⃗ ∗ µ by ϕ ∗ µ if ϕ⃗ is a constant vector with value ϕ.

Suppose that µ is the Hard-Core model on G with fugacity λ. It is immediate that the
magnetisied distribution ϕ⃗ ∗ µ can be viewed as the non-homogenious Hard-Core model such
that each vertex v has its own fugacity λv = λ · ϕv.

▶ Definition 18 (Complete Spectral Independence). For two reals η > 0 and s > 0, the Gibbs
distribution µG on G = (V, E) is (η, s)-completely spectrally independent, if the magnetised
distribution ϕ⃗ ∗ µ is η-spectrally independent for all ϕ⃗ ∈ (0, 1 + s]V .

As far as the Hard-Core model on the random graph G(n, d/n) is concerned, we prove
the following result.

▶ Theorem 19. For any fixed d > 1 and λ < λc(d), there exist bounded constants r =
r(d, λ) ∈ (1, 2), B = B(d, λ) > 0 and s = s(d, λ) > 0 such that the following holds:

Consider G ∼ G(n, d/n) and let µG be the Hard-Core model on G with fugacity λ. With
probability 1 − o(1) over the instances of G, µG is (B · (log n)1/r, s)-completely spectrally
independent.

The proof of Theorem 19 appears in the full version of this paper, where we first relate the
influence matrix on the graph to the influence matrix on the self-avoiding walk tree [31, 27]
and then use the potential function in [28] to analysis the weighted total influence on the
self-avoiding walk tree.

4.3 Entropy Block Factorisation - Proof of Theorem 6
The following theorem, from [8], allows us to derive a bound on the ℓ- block factorisation
parameter of the entropy by using the result in Theorem 15 for the stability of Gibbs
marginals and the result in Theorem 19 for Complete Spectral Independence.

ICALP 2023

54:14 Mixing Time of Glauber Dynamics

▶ Theorem 20 ([8, Lemma 2.3]). Let η > 0, ξ > 0 and ζ > 0 be parameters. Let µG be
a Gibbs distribution on G = (V, E). If µG is (η, ξ)-completely spectrally independent and
ζ-marginally stable, then for any 1/α ≤ ℓ < n, µG satisfies the ℓ block factorisation of
entropy with parameter C = (en

ℓ)1+1/α, where

α = min
{

1
2η

,
log(1 + ξ)

log(1 + ξ) + log 2ζ

}
.

Proof of Theorem 6. From Theorem 19 we have the following: with probability 1 − o(1)
over the instances of G we have that µG is (η, s)-completely spectrally independent where
s = s(d, λ) is constant, while

η = B · (log n)1/r = o

(
log n

log log n

)
,

where B = B(d, λ) and r = r(d, λ) ∈ (1, 2) are constants specified in the statement of
Theorem 19. The second equality above follows by noting that 1/r < 1, bounded away from
1.

Furthermore, from Theorem 15 we have the following: With probability 1 − o(1) over the
instances of G, the distribution µG is ζ-marginally stable, where

ζ ≤ 2(1 + λ)2 log n
log log n .

In light of all the above, the theorem follows by plugging the above values into Theorem 20.
◀

5 Approximate Tensorisation of Entropy

In this section we prove our results related to the approximate tensorisation of the entropy.
These are Theorem 4 and Lemma 8.

5.1 Proof of Theorem 4
In this section we give the full proof of Theorem 4. Recall the high level description of the
steps we follow towards this endeavour in Section 3.1.

Proof of Theorem 4. From Theorem 6 we have the following: For d > 1 and λ < λc(d),
consider G ∼ G(n, d/n), while let µ = µG be the Hard-Core model on G with fugacity λ.
Let the number θ = θ(d, λ) in the interval (0, 1) be a parameter whose value is going to be
specified later. Then, with probability 1 − o(1) over the instances of G, for ℓ = ⌈θn⌉ and for
any f : Ω → R>0 we have that

Entµ(f) ≤
(e

θ

)1+1/α 1(
n
ℓ

) ∑
S∈(V

ℓ)
µ (EntS(f)) . (17)

Recall that C(S) denotes the set of connected components in G[S], the subgraph that is
induced by vertices in S. With a slight abuse of notation, we use U ∈ C(S) to denote the
set of vertices in the component U . By the conditional independence property of the Gibbs
distribution and Lemma 7, we have

C. Efthymiou and W. Feng 54:15

Entµ(f) ≤
(e

θ

)1+1/α 1(
n
ℓ

) ∑
S∈(V

ℓ)

∑
U∈C(S)

µ (EntU (f))

(by Lemma 8) ≤
(e

θ

)1+1/α 1(
n
ℓ

) ∑
S∈(V

ℓ)

∑
U∈C(S)

AT(|U |)
∑
v∈U

µ[Entv(f)]

≤
(e

θ

)1+1/α ∑
v∈V

µ[Entv(f)]
∑
k≥1

AT(k) Pr[|Cv| = k] , (18)

where Cv is the connected component in G[S], where S is sampled from
(

V
ℓ

)
uniformly at

random. In order to bound the innermost summation on the R.H.S. of (18) we distinguish
two cases for k. For 1 ≤ k ≤ log n, we use the trivial bound Pr[|Cv| = k] ≤ 1, while Lemma 8
implies that

log n∑
k=1

AT(k) Pr[|Cv| = k] ≤
log n∑
k=1

AT(k) =
log n∑
k=1

3 log
(
1 + λ + λ−1)

· ((1 + λ)k)2+2η

≤ 3 log
(
1 + λ + λ−1)

· log n · ((1 + λ) log n)2+2η

≤ 3 log
(
1 + λ + λ−1)

· ((1 + λ) log n)3+2η ,

where η = B(log n)1/r, for constants B = B(d, λ) and r = r(d) ∈ (1, 2). Elementary
calculations imply that

log n∑
k=1

AT(k) Pr[|Cv| = k] ≤ 3 log
(
1 + λ + λ−1)

· ((1 + λ) log n)3+2η ≤ nx , (19)

for x = o
(

1
log log n

)
.

For k ≥ log n, we use the bound in Lemma 9 for Pr[|Cv| = k], while from Lemma 8 we
have ∑

k≥log n

AT(k) Pr[|Cv| = k] ≤ 2k2 (
1 + λ + λ−1)2k+2 (2e)eLk(2θ)k ,

where L = L(d) is the parameter in Lemma 9. We choose sufficiently small θ = θ(d, λ) such
that

∀k ≥ 1, 2k2 (
1 + λ + λ−1)2k+2 (2e)eLk(2θ)k ≤ (1/2)k

.

This implies that

∑
k≥log n

AT(k) Pr[|Cv| = k] ≤
∑

k≥log n

(
1
2

)k

≤ 1 . (20)

Plugging (19), (20) into (18), we get the following: With probability 1 − o(1) over the
instances of G we have that

Entµ(f) ≤
(e

θ

)1+1/α (
n(1

log log n) + 1
) ∑

v∈V

µ[Entv(f)] .

ICALP 2023

54:16 Mixing Time of Glauber Dynamics

Since, by Theorem 6 we have that 1
α = K(log n

log log n), for a constant K = K(d, λ), and
θ = θ(d, λ) is also a constant, the above inequality can be written as follows: there is a
constant A = A(d, λ) such that

Entµ(f) ≤ n(A
log log n) ∑

v∈V

µ[Entv(f)] .

The above concludes the proof of Theorem 4. ◀

References
1 Nima Anari, Kuikui Liu, and Shayan Oveis Gharan. Spectral independence in high-dimensional

expanders and applications to the hardcore model. In FOCS, pages 1319–1330, 2020.
2 Jean Barbier, Florent Krzakala, Lenka Zdeborová, and Pan Zhang. The hard-core model on

random graphs revisited. Journal of Physics: Conference Series, 473(1):012021, December
2013.

3 Ivona Bezáková, Andreas Galanis, Leslie Ann Goldberg, and Daniel Štefankovič. Fast sampling
via spectral independence beyond bounded-degree graphs. In ICALP, volume 229 of LIPIcs,
pages 21:1–21:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

4 Pietro Caputo, Georg Menz, and Prasad Tetali. Approximate tensorization of entropy at high
temperature. Ann. Fac. Sci. Toulouse Math. (6), 24(4):691–716, 2015.

5 Pietro Caputo and Daniel Parisi. Block factorization of the relative entropy via spatial mixing.
arXiv preprint, 2020. arXiv:2004.10574.

6 Filippo Cesi. Quasi-factorization of the entropy and logarithmic Sobolev inequalities for Gibbs
random fields. Probab. Theory Related Fields, 120(4):569–584, 2001.

7 Xiaoyu Chen, Weiming Feng, Yitong Yin, and Xinyuan Zhang. Rapid mixing of glauber
dynamics via spectral independence for all degrees. In FOCS, pages 137–148. IEEE, 2021.

8 Xiaoyu Chen, Weiming Feng, Yitong Yin, and Xinyuan Zhang. Optimal mixing for two-state
anti-ferromagnetic spin systems. In FOCS, pages 588–599. IEEE, 2022.

9 Zongchen Chen, Kuikui Liu, and Eric Vigoda. Optimal mixing of Glauber dynamics: Entropy
factorization via high-dimensional expansion. In STOC, 2021. arXiv:2011.02075. arXiv:
2011.02075.

10 Amin Coja-Oghlan and Charilaos Efthymiou. On independent sets in random graphs. Random
Struct. Algorithms, 47(3):436–486, 2015.

11 Varsha Dani and Cristopher Moore. Independent sets in random graphs from the weighted
second moment method. In RANDOM, volume 6845 of Lecture Notes in Computer Science,
pages 472–482. Springer, 2011.

12 Charilaos Efthymiou. Spectral independence beyond uniqueness using the topological method.
CoRR, abs/2211.03753, 2022. arXiv:2211.03753.

13 Charilaos Efthymiou, Thomas P. Hayes, Daniel Stefankovic, and Eric Vigoda. Sampling
random colorings of sparse random graphs. In SODA, pages 1759–1771, 2018.

14 Weiming Feng, Heng Guo, Yitong Yin, and Chihao Zhang. Fast sampling and counting k-SAT
solutions in the local lemma regime. J. ACM, 68(6):40:1–40:42, 2021.

15 Weiming Feng, Heng Guo, Yitong Yin, and Chihao Zhang. Rapid mixing from spectral
independence beyond the boolean domain. In SODA, pages 1558–1577, 2021.

16 Weiming Feng, Kun He, and Yitong Yin. Sampling constraint satisfaction solutions in the
local lemma regime. In STOC, pages 1565–1578. ACM, 2021.

17 Alan M. Frieze. On the independence number of random graphs. Discret. Math., 81(2):171–175,
1990.

18 Andreas Galanis, Leslie Ann Goldberg, Heng Guo, and Kuan Yang. Counting solutions to
random CNF formulas. SIAM J. Comput., 50(6):1701–1738, 2021.

https://arxiv.org/abs/2004.10574
https://arxiv.org/abs/2011.02075
https://arxiv.org/abs/2011.02075
https://arxiv.org/abs/2211.03753

C. Efthymiou and W. Feng 54:17

19 Andreas Galanis, Daniel Štefankovič, and Eric Vigoda. Inapproximability of the partition
function for the antiferromagnetic Ising and hard-core models. Combinatorics, Probability and
Computing, 25(04):500–559, 2016.

20 David Gamarnik and Madhu Sudan. Limits of local algorithms over sparse random graphs. In
ITCS, pages 369–376. ACM, 2014.

21 Vishesh Jain, Huy Tuan Pham, and Thuy-Duong Vuong. On the sampling Lovász local lemma
for atomic constraint satisfaction problems. arXiv preprint, 2021. arXiv:2102.08342.

22 Vishesh Jain, Huy Tuan Pham, and Thuy Duong Vuong. Spectral independence, coupling
with the stationary distribution, and the spectral gap of the Glauber dynamics. arXiv preprint,
2021. arXiv:2105.01201.

23 Mark Jerrum and Alistair Sinclair. Approximating the permanent. SIAM J. Comput.,
18(6):1149–1178, 1989.

24 F. P. Kelly. Stochastic models of computer communication systems. Journal of the Royal
Statistical Society. Series B (Methodological), 47:379–395, 1985.

25 Florent Krzakala, Andrea Montanari, Federico Ricci-Tersenghi, Guilhem Semerjian, and Lenka
Zdeborová. Gibbs states and the set of solutions of random constraint satisfaction problems.
Proc. Natl. Acad. Sci. USA, 104(25):10318–10323, 2007.

26 Ankur Moitra. Approximate counting, the Lovász local lemma, and inference in graphical
models. J. ACM, 66(2):10:1–10:25, 2019.

27 Jesús Salas and Alan D Sokal. Absence of phase transition for antiferromagnetic Potts models
via the Dobrushin uniqueness theorem. J. Stat. Phys., 86(3):551–579, 1997.

28 Alistair Sinclair, Piyush Srivastava, Daniel Štefankovič, and Yitong Yin. Spatial mixing and
the connective constant: optimal bounds. Probab. Theory Related Fields, 168(1-2):153–197,
2017.

29 Allan Sly. Computational transition at the uniqueness threshold. In FOCS, pages 287–296,
2010.

30 Allan Sly and Nike Sun. Counting in two-spin models on d-regular graphs. Ann. Probab.,
42(6):2383–2416, 2014.

31 Dror Weitz. Counting independent sets up to the tree threshold. In STOC, pages 140–149,
2006.

ICALP 2023

https://arxiv.org/abs/2102.08342
https://arxiv.org/abs/2105.01201

Broadcasting with Random Matrices
Charilaos Efthymiou #

Computer Science, University of Warwick, Coventry, UK

Kostas Zampetakis #

Computer Science, University of Warwick, Coventry, UK

Abstract
Motivated by the theory of spin-glasses in physics, we study the so-called reconstruction problem
on the tree, and on the sparse random graph G(n, d/n). Both cases reduce naturally to analysing
broadcasting models, where each edge has its own broadcasting matrix, and this matrix is drawn
independently from a predefined distribution.

We establish the reconstruction threshold for the cases where the broadcasting matrices give
rise to symmetric, 2-spin Gibbs distributions. This threshold seems to be a natural extension of
the well-known Kesten-Stigum bound that manifests in the classic version of the reconstruction
problem. Our results determine, as a special case, the reconstruction threshold for the prominent
Edwards–Anderson model of spin-glasses, on the tree.

Also, we extend our analysis to the setting of the Galton-Watson random tree, and the (sparse)
random graph G(n, d/n), where we establish the corresponding thresholds. Interestingly, for the
Edwards–Anderson model on the random graph, we show that the replica symmetry breaking
phase transition, established by Guerra and and Toninelli in [21], coincides with the reconstruction
threshold.

Compared to classical Gibbs distributions, spin-glasses have several unique features. In that
respect, their study calls for new ideas, e.g. we introduce novel estimators for the reconstruction
problem. The main technical challenge in the analysis of such systems, is the presence of (too) many
levels of randomness, which we manage to circumvent by utilising recently proposed tools coming
from the analysis of Markov chains.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms;
Theory of computation → Randomness, geometry and discrete structures; Mathematics of computing
→ Discrete mathematics

Keywords and phrases spin-system, spin-glass, sparse random graph, reconstruction, phase trans-
itions

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.55

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2302.11657

Funding Charilaos Efthymiou: EPSRC New Investigator Award (grant no. EP/V050842/1) and
Centre of Discrete Mathematics and Applications (DIMAP), The University of Warwick.
Kostas Zampetakis: EPSRC New Investigator Award (grant no. EP/V050842/1) and Centre of
Discrete Mathematics and Applications (DIMAP), The University of Warwick.

Acknowledgements We are grateful to the anonymous reviewers for their thorough review of our
submission, and for their insightful comments and suggestions.

1 Introduction

Motivated by the theory of spin-glasses in physics, we study the so-called reconstruction
problem with respect to the related distributions, on the tree, and on the sparse random
graph G(n, d/n).

EA
T
C
S

© Charilaos Efthymiou and Kostas Zampetakis;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 55; pp. 55:1–55:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:charilaos.efthymiou@warwick.ac.uk
mailto:kostas.zampetakis@warwick.ac.uk
https://doi.org/10.4230/LIPIcs.ICALP.2023.55
https://arxiv.org/abs/2302.11657
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

55:2 Broadcasting with Random Matrices

Spin-glasses are disordered magnetic materials that are studied by physicists (not neces-
sarily the theoretical ones). It has been noted that even though they are a type of magnet,
actually, “they are not very good at being magnets”. Metallic spin-glasses are “unremarkable
conductors”, and the insulating spin-glasses are “fairly useless as practical insulators . . . ”,
e.g. see [30].

However, the research on spin-glasses has provided tools to analyse some exciting, and
extremely challenging, problems in mathematics, physics, but also real world ones. Through
their study, we have garnered a deep understanding of the nature of complex systems. A
case in point is the pioneering work of Giorgio Parisi in ‘70s on the so-called Sherrington-
Kirkpatrick spin-glass, which introduces the formulation of the renowned replica symmetry
breaking [27]. Parisi’s ideas were highly influential in physics community, and later, in
mathematics, and computer science. The theory of replica symmetry breaking was among
the groundbreaking ideas which got Parisi the Nobel Prise in Physics in 2021.

Perhaps one of the most successful, and extensively studied, spin-glass models, is the
famous Edwards-Anderson model (EA-model for short), introduced back in ‘70s by Sam
Edwards and Philip Anderson in [16]. Few months after the work of Edwards and Anderson,
David Sherrington and Scott Kirkpatrick, in [28], introduced their own model of spin-glasses,
the well-known in computer science literature, Sherrington-Kirkpatrick model (or SK-model
for short). As it turns out, the SK-model corresponds to the mean field version of the
EA-model.

Given a fixed graph G = (V,E), the Edwards-Anderson model with inverse temperature
β > 0, is the random Gibbs distribution µ on the configuration space {±1}V defined as
follows: let {Je : e ∈ E} be independent identically distributed (i.i.d.) standard Gaussians.
Then each configuration σ ∈ {±1}V receives probability mass µ(σ), defined by

µ(σ) ∝ exp

β ·
∑

{u,w}∈E

1{σ(u) = σ(w)} · J{u,w}

 , (1)

where ∝ stands for “proportional to”. We usually refer to {Je}e∈E as the coupling parameters.
Let us comment here that, traditionally, the Gibbs distribution is defined by replacing
the indicator 1{σ(u) = σ(w)} in (1), with the product σ(u)σ(w), in the physics literature.
However, the two formulations are equivalent, as a simple transformation converts one to
the other (see the full version). We also note that there is a simpler version of the Edwards-
Anderson model, in which coupling parameters take independently ±1 values, uniformly at
random.

Apart from its mathematical elegance, and theoretical importance, the Edwards-Anderson
model, and the related spin-glass distributions, arise also in applications such as neural
networks (e.g. the so-called Hopfield model), protein folding, and conformational dynamics.
We refer the interested reader to [30], and references therein.

In this work, we largely study the Edwards-Anderson model on trees, and the (locally
tree-like) random graph G(n, d/n) with constant expected degree d. This is the random
graph on n vertices, such that each edge appears independently with probability d/n.

Since the Edwards-Anderson model on G(n, d/n) shares essential features with random
Constraint Satisfaction Problems (r-CSPs for short), it is not surprising that has been studied
extensively in terms of phase transitions, in physics, e.g. [19, 25], mathematics, e.g. [21, 12],
but also in computer science, e.g. for sampling algorithms [17, 2].

In contrast to the standard Gibbs distributions on trees, e.g. the Ising model, the
Hard-core model, and the Potts model, the Edwards-Anderson model, despite being the
most basic distribution for spin-glasses, has not been sufficiently studied. As a result, several
fundamental questions about it still remain open. Here, we consider the tree reconstruction
problem for the Edwards-Anderson model (and some natural extensions).

C. Efthymiou and K. Zampetakis 55:3

The reconstruction problem studies the effect of the configuration at a vertex, r, on that
of the vertices at distance h from r, as h → ∞. Specifically, we want to distinguish the
region of parameters where the effect is vanishing, from that where the effect is non-vanishing.
Typically, the two regions are specified in terms of a sharp threshold, i.e., we have an abrupt
transition from one region to the other as we vary the parameters of the model. We usually
call this phenomenon reconstruction threshold, and it has been the subject of intense study,
e.g. [26, 1, 22, 7, 29, 10]. In the context of r-CSPs, the onset of reconstruction has been
linked to an abrupt deterioration of the performance of algorithms (both searching and
counting), e.g. see [1].

In this work, among other results, we establish precisely the reconstruction threshold
for the Edwards-Anderson model on the ∆-ary tree, the Galton-Watson tree with general
offspring distribution, and the random graph G(n, d/n). Furthermore, as far as the Edwards-
Anderson model on G(n, d/n) is concerned, we combine our results with [21, 12], to conclude
that the reconstruction threshold coincides with the so-called Replica Symmetry Breaking
phase transition.

Interestingly, for the ∆-ary tree, we establish the reconstruction threshold, not only for
the Edwards-Anderson model, but also for the general version of the Gibbs distribution µ

defined in (1). That is, the coupling parameters are i.i.d. following a general distribution,
not necessary the standard Normal.

It turns out that the corresponding reconstruction problems on the Galton-Watson tree
with Poisson(d) offspring, and on the sparse random graph G(n, d/n), are not too different
from each other. Connections have been established between these two Gibbs distributions,
e.g. see [4, 15, 11, 14]. We relate the two reconstruction results, i.e., for the tree and the
graph, by exploiting the idea of planted-model (Teacher-Student model [31]) and the notion
of mutual contiguity [12]. In that respect, our basic analysis involves the complete ∆-tree,
and the Galton-Watson tree, while, subsequently, we extend these results to the random
graph G(n, d/n).

We study the reconstruction problem on trees by means of the broadcasting models.
These are abstractions of noisy transmission of information over the edges of the tree, i.e.,
the edges act as noisy channels. To our knowledge, the study of the broadcasting models,
and the closely related reconstruction problem, dates back to ‘60s with the seminal work of
Kesten and Stigum [24].

Establishing the reconstruction threshold for the Edwards-Anderson model on the ∆-ary
tree, as well as the generalisation of this distribution, turns out to be a challenging problem.
The difficulty of these models stems from the manifestation of local frustration phenomena,
i.e., mixed ferromagnetic and antiferromagnetic interaction in the same neighbourhood, but
also from the “many levels of randomness” we need to deal with in their analysis.

To this end, we make an extensive use of various potentials in order to simplify the
analysis. To establish non-reconstruction, we employ some newly introduced techniques in
the area of Markov chains and Spectral Independence [3, 9], that combine potential functions
to analyse tree recursions. To establish reconstruction, we use a carefully crafted potential
as an estimator for the root configuration. We call this estimator flip-majority vote.

1.1 Broadcasting, Reconstruction and the Kesten-Stigum bound
Consider the ∆-ary tree T = (V,E), of height h > 0. Let r be the root of the tree T .
Broadcasting on T , is a stochastic process which abstracts noisy transmission of information
over the edges of the tree.

ICALP 2023

55:4 Broadcasting with Random Matrices

There is a finite set of spins A, and an A × A stochastic matrix M , which we call the
broadcasting matrix, or transition matrix. With the broadcasting we obtain a configuration
σ ∈ AV by working recursively as follows: assume that the configuration at the root r is
obtained according to some predefined distribution over A. If for the non-leaf vertex u in
T we have σ(u) = i, then for each vertex w, child of u, we have σ(w) = j with probability
M(i, j), independently of the other children, i.e.,

Pr[σ(w) = j | σ(u) = i] = M(i, j) .

Here we assume that σ(r) is distributed uniformly at random in A.
A natural problem to study in this setting is the so-called reconstruction problem. Suppose

that µh is the marginal distribution of the configuration of the vertices at distance h from the
root. The reconstruction problem amounts to studying the influence of the configuration at
the root of the tree to the marginal µh. Specifically, we want to compare the two distributions
µh(· | σ(r) = i), and µh(· | σ(r) = j) for different i, j ∈ A, i.e., µh conditional on the
configuration at the root being i and j, respectively. The comparison is by means of the
total variation distance, i.e.,

||µh(· | σ(r) = i) − µh(· | σ(r) = j)||TV .

Typically, we focus on the behaviour of the quantity above, as h grows.

▶ Definition 1. We say that the distribution µ exhibits reconstruction if there exist spins
i, j ∈ A such that

lim sup
h→∞

||µh(· | σ(r) = i) − µh(· | σ(r) = j)||TV > 0 .

On the other hand, if for all i, j ∈ A the above limit is zero, then we have non-reconstruction.

The broadcasting process we describe above gives rise to well-known Gibbs distributions
on T such as the Ising model, the Potts model etc. In terms of the Gibbs distributions on
the tree, the reconstruction problem can be formulated as to whether the free-measure on
the tree is extremal, or not. The extremality here is considered with respect to whether the
Gibbs distribution can be expressed as a convex combination of two, or more measures, e.g.
see [20]. It is interesting to compare the extremality condition with various spatial mixing
conditions of the Gibbs distribution. Perhaps the most interesting case is to compare it with
the Gibbs tree uniqueness. Then, it is standard to show that the extremality is a weaker
condition than uniqueness.

The reconstruction problem has been studied since 1960s. Perhaps the most general
result in the area is the so-called Kesten-Stigum bound [24], or KS-bound (for short). Let
∆KS = ∆KS(M) be such that

∆KS = λ−2
2 (M) , (2)

where λ2(M) is the second largest, in magnitude, eigenvalue of the transition matrix M . The
result of [24] implies that if ∆ > ∆KS, then we have reconstruction.

In light of the above, a natural question is whether the condition ∆ < ∆KS implies that
we have non-reconstruction. In general, the answer to this question is no, e.g. see [5, 29].
However, for several important distributions, including the Ising model, the KS-bound is tight,
in the sense that the condition ∆ < ∆KS indeed implies non-reconstruction, see [7, 18, 22].

C. Efthymiou and K. Zampetakis 55:5

1.2 Broadcasting with random matrices
Here, we consider the natural problem of broadcasting on a tree, where the transition matrix
is random. In this setting, as before, we consider the ∆-ary tree T = (V,E), of height h > 0,
rooted at r. Also, we have a finite set of spins A. Rather than using the same matrix for
every edge of the tree, each edge has its own matrix, which is an independent sample from a
predefined distribution ψ.

More formally, every A × A stochastic matrix can be viewed as a point in the |A|2
Euclidean space. We endow the set of all A × A stochastic matrices with the σ-algebra
induced by the Borel algebra. Then, ψ is a distribution over the set of these matrices.

Once we have a matrix for each edge of T , the broadcasting proceeds with the same rules
as in the deterministic case. If for the non-leaf vertex u in T we have σ(u) = i, then the
vertex w, child of u, gets σ(w) = j with probability Me(i, j), independently of the other
children of u, i.e.,

Pr[σ(w) = j | σ(u) = i] = Me(i, j) ,

where e = {u,w}.
The above setting gives rise to a random probability measure on the set of configurations

AV which we denote as µ = µT,ψ. Hence, the configuration σ ∈ AV we get from the
broadcasting, consists of two-levels of randomness. The first level is due to the fact that the
measure µ is induced by the random instances of the broadcasting matrices {Me}e∈E . Once
these matrices have been fixed, the second level of randomness emerges from the random
choices of the broadcasting process. The above formulation gives rise to well-studied Gibbs
distributions, such as the Edwards–Anderson model of spin-glasses, by choosing appropriately
the distribution ψ.

In this new setting, we study the reconstruction problem. Here, the definition of recon-
struction differs slightly from Definition 1 above. Denote with µh the marginal of µ on
the vertices at distance h from the root of the tree T . Then, the reconstruction problem is
defined as follows:

▶ Definition 2. For a distribution ψ on A × A stochastic matrices , we say that the random
measure µ = µT,ψ exhibits reconstruction if there exist spins i, j ∈ A such that

lim sup
h→∞

E [||µh(· | σ(r) = i) − µh(· | σ(r) = j)||TV] > 0 ,

where the expectation is with respect to the randomness of µ.
On the other hand, if for all i, j ∈ A the above limit is zero, then we have non-

reconstruction.

We consider the reconstruction problem in terms of the KS-bound, i.e., we examine whether
it is tight, or not. Before addressing this question, we need to specify what the parameter
∆KS might be in this setting.

It turns out that a natural candidate for ∆KS can be defined as follows:
Let M be a matrix sampled from the distribution ψ, and define

Ξ = E [M ⊗ M] , (3)

i.e., the matrix Ξ is the expectation of the tensor product of the matrix M with itself. Let
1 ∈ RA denote the vector whose entries are all equal to one. Also, write

E =
{
z ∈ RA ⊗ RA : ∀y ∈ RA⟨z,1 ⊗ y⟩ = ⟨z, y ⊗ 1⟩ = 0

}
,

ICALP 2023

55:6 Broadcasting with Random Matrices

where ⟨·, ·⟩ is the standard inner product operation. Then, we define ∆KS(ψ) to be such that

∆KS(ψ) =
(

max
x∈E:||x||=1

⟨Ξx, x⟩
)−1

. (4)

The above quantity, ∆KS, arises in the study of phases transitions in random CSPs [12].
Specifically, it signifies an upper bound on the density of the so-called Replica Symmetric
phase, of symmetric Gibbs distributions. The value ∆KS is derived in [12] by means of a
stability analysis of the so-called free-energy functional. Note that the above definition for
∆KS(ψ) applies to any set of spins A, and any distribution ψ on A × A matrices.

Here, we prove that the above is indeed the analogue of KS-bound for symmetric, 2-spin
distributions µ. That is, for any value of the parameter β > 0, and for any distribution
ψ over the broadcasting matrices whose support is comprised of symmetric 2 × 2 matrices,
we prove that the ∆-ary tree T exhibits reconstruction when ∆ > ∆KS(ψ), while we have
non-reconstruction when ∆ < ∆KS(ψ).

Furthermore, we go beyond the basic case of the ∆-ary tree. Firstly, we extend our results
to the cases where the underlying graph is the Galton-Watson random tree with general
offspring distribution. Secondly, we exploit the notion of contiguity of measures to derive
non-reconstruction results for the Edwards-Anderson model on the random graph G(n, d/n).

2 Results

We start the presentation of our results on the 2-spin, symmetric distributions, by considering
the ∆-ary tree. Specifically, for integers ∆ > 0 and h > 0, let T = (V,E) be the ∆-ary tree
of height h, rooted at vertex r. We let A = {±1} be the set of spins.

Assume that each edge of the tree is equipped with its own broadcasting matrix, each
matrix drawn independently from the distribution induced by the following experiment: We
have two parameters, a real number β > 0, and a distribution ϕ on the real numbers R,
i.e., we have the probability space (R,F , ϕ) where F is the σ-algebra induced by the Borel
algebra. We generate a matrix M following the two steps below:
Step 1 Draw J ∈ R from the distribution ϕ.
Step 2 Generate the A × A matrix M such that

M = 1
exp(βJ) + 1

[
exp(βJ) 1

1 exp(βJ)

]
. (5)

Note that our broadcasting matrices are always symmetric.
The above broadcasting process gives rise to configurations in AV following the Gibbs

distribution µβ,ϕ specified as follows: Let {Je}e∈E be independent, identically distributed
(i.i.d.) random variables such that each one of them is distributed as in ϕ (this is the same
distribution used to generate matrix M). Each σ ∈ AV is assigned probability mass µβ,ϕ(σ)
defined by

µβ,ϕ(σ) ∝ exp
(
β
∑

{w,u}∈E 1{σ(u) = σ(w)} · J{u,w}

)
, (6)

where ∝ stands for “proportional to”.
At this point, it is immediate that by choosing ϕ to be the standard Gaussian distribution,

we retrieve the Edwards-Anderson model in (1). Note however, that (6) above generates a
whole family of “spin-glass” distributions with the EA-model being a special case.

C. Efthymiou and K. Zampetakis 55:7

The definition of the distribution of the broadcasting matrix in (5) allows us to derive an
explicit formula for the quantity ∆KS in (4). Specifically, for J distributed according to ϕ, it
is not hard to prove (see the full version) that

∆KS(β, ϕ) =
(
E
[(

1−exp(βJ)
1+exp(βJ)

)2
])−1

, (7)

where the expectation is with respect to the random variable J . In light of the above, we
prove the following result for the general Gibbs distribution.

▶ Theorem 3. For a real number β > q0, and a distribution ϕ on the real numbers R let
∆KS = ∆KS(β, ϕ) be defined as in (7).

For any integer ∆ > ∆KS, the Gibbs distribution µβ,ϕ, defined as in (6), on the ∆-ary
tree exhibits reconstruction. On the other hand, if ∆ < ∆KS the distribution µβ,ϕ exhibits
non-reconstruction.

The proof of Theorem 3 appears in the full version. Let us state the implications of
Theorem 3 for the Edwards-Anderson model on the ∆-ary tree.

▶ Corollary 4. For β > 0 and the standard Gaussian J , let

∆EA(β) =
(
E
[(

1−exp(βJ)
1+exp(βJ)

)2
])−1

,

where the expectation is with respect to J .
For any integer ∆ > ∆EA(β), the distribution µβ, the Edwards-Anderson model with

inverse temperature β on the ∆-ary tree, exhibits reconstruction. On the other hand, if
∆ < ∆EA(β) the distribution µβ exhibits non-reconstruction.

2.1 The case of the Galton-Watson tree

As a further step, we study the reconstruction problem on the Galton-Watson tree. Even
though this is a very interesting problem on its own, we make use of our results for the
Galton-Watson tree to derive subsequent results for G(n, d/n), see Section 2.2.

Let ζ : Z≥0 → [0, 1] be a distribution over the non-negative integers. Then, the rooted
tree T is a Galton-Watson tree with offspring distribution ζ, if the number of children for
each vertex in T is distributed according to ζ, independently from the other vertices.

Note that broadcasting with random matrices over the Galton-Watson tree T , gives
rise to configurations that consist of three levels of randomness. One of the challenges we
circumvent with our analysis, is to disentangle all of three levels of randomness, and make
clear the contribution of each one of them. Before getting there, we need to clarify what we
mean by (non-)reconstruction in the current setting.

▶ Definition 5. Consider the distributions ϕ over R and ζ over Z≥0, and a real number
β ≥ 0. Let the Galton-Watson tree T with offspring distribution ζ, while let the measure
µ = µβ,ϕ be defined as in (6), on the tree T . We say that µ exhibits reconstruction if

lim sup
h→∞

ET [Eµ [||µh(· | σ(r) = +1) − µh(· | σ(r) = −1)||TV | T]] > 0 .

On the other hand, if the above limit is zero, then we have non-reconstruction.

ICALP 2023

55:8 Broadcasting with Random Matrices

For the above, recall that µh is the marginal of µ on the set of vertices at distance h from
the root. Note that if T has no vertex at level h, then the total variation distance above is,
degenerately, equal to zero. We use the double expectation in Definition 5 for the sake of
clarity: we can just replace it by a single expectation with respect to both the random tree
T , and the random measure µ.

As far as the reconstruction problem on the Galton-Watson trees is concerned, we have
the following result.

▶ Theorem 6. For any real numbers d > 0, β > 0, for any distribution ϕ on R, for any
distribution ζ on Z≥0 with expectation d, and bounded second moment, let T be the Galton-
Watson tree with offspring distribution ζ. Let also µβ,ϕ be the Gibbs distribution defined as
in (6), on the tree T . Finally, let ∆KS = ∆KS(β, ϕ) be defined as in (7).

The distribution µβ,ϕ exhibits reconstruction if d > ∆KS. On the other hand, if d < ∆KS,
the distribution µβ,ϕ exhibits non-reconstruction.

Let us now state the implications of Theorem 6 for the Edwards-Anderson model on the
Galton-Watson tree.

▶ Corollary 7. For β > 0, consider the quantity ∆EA(β) defined in Corollary 4. For any
real number d > 0, and any distribution ζ : Z≥0 → [0, 1] with expectation d, and bounded
second moment, let T be the Galton-Watson tree with offspring distribution ζ.

Then, for µβ the Edwards-Anderson model with inverse temperature β, on the tree T , the
following is true. The distribution µβ exhibits reconstruction if d > ∆EA(β). On the other
hand, if d < ∆EA(β), the distribution µβ exhibits non-reconstruction.

2.2 The Edwards-Anderson model on G(n, d/n)
For integer n ≥ 1, and real p ∈ [0, 1], let G = G(n, p) be the random graph on Vn =
{x1, . . . , xn}, whose edge set E(G) is obtained by including each edge with probability, p
independently.

The Edwards-Anderson model on G at inverse temperature β > 0, is defined as follows:
for J = {Je}e∈E(G) a family of independent standard Gaussians, we let

µG,J,β(σ) = 1
Zβ(G,J) exp

(
β
∑
x∼y 1{σ(y) = σ(x)} · J{x,y}

)
, (8)

where

Zβ(G,J) =
∑
τ∈{±1}Vn exp

(
β
∑
x∼y 1{τ(y) = τ(x)} · J{x,y}

)
.

Here we assume that p = d
n , where d > 0 is a fixed number. Typically, we study this

distribution as n → ∞. The natural question we ask here is how does the model change
as we vary d. According to the physics predictions, for any β there exists a condensation
threshold, denoted as dcond(β), where the function

d 7→ lim
n→∞

1
n
E[lnZβ(G,J)]

is non-analytic [19]. This conjecture was proved by Guerra and Toninelli [21]. The regime
d < dcond(β) is called the replica symmetric phase. This region has several interesting
properties; here we consider one that seems to be most relevant to our discussion. For any
d < dcond(β) the distribution µG,J,β satisfies the following property: for σ distributed as

C. Efthymiou and K. Zampetakis 55:9

in µG,J,β , for two randomly chosen vertices x and y, the configurations σ(x) and σ(y) are
asymptotically independent. Formally, the above can be expressed as follows: for d < dcond(β)
and any i, j ∈ {±1}, we have that

lim sup
n→∞

1
n2

∑
x,y∈Vn

E [⟨1{σ(x) = i} × 1{σ(y) = j}⟩ − ⟨1{σ(x) = i}⟩ × ⟨1{σ(y) = j}⟩] = 0 ,

where ⟨·⟩ denotes expectation with respect to the Gibbs distribution µG,J,β . Note that the
above holds not only for pairs of vertices, but also for sets of k vertices, for any fixed integer
k > 0. Using our notation, the work by Guerra and Toninelli [21] implies the following result.

▶ Theorem 8 ([21]). For any β > 0, for the distribution µG,J,β defined as in (8), we have
that

dcond(β) =
(
E
[(

1−exp(βJ)
1+exp(βJ)

)2
])−1

,

where J is a standard Gaussian random variable.

Interestingly, one obtains the above by combining our Theorem 6 and using results from
[12, 13]. Our main focus is on the reconstruction threshold for the Edwards-Anderson model
on G. The reconstruction for µG,J,β(·) is defined in a slightly different way than what we
have for the random tree.

▶ Definition 9. For d > 0, for β > 0, consider the Gibbs distribution µG,J,β as this is
defined in (8). We say that the measure µ = µG,J,β exhibits reconstruction if

lim sup
h→∞

lim
n→∞

1
n

∑
x∈Vn

E
[
||µx,h(· | σ(x) = +1) − µx,h(· | σ(x) = −1)||TV

]
> 0 ,

where µx,h denote the Gibbs marginal at the vertices at distance h from vertex x. On the
other hand, if the above limit is zero, then we have non-reconstruction.

Perhaps, it is interesting to notice the order with which we take the double limit in the
above definition. We let the reconstruction threshold, denoted as drecon, to be the infimum
over d > 0 such that

lim sup
h→∞

lim
n→∞

1
n

∑
x∈Vn

E [||µh(· | σ(x) = +1) − µh(· | σ(x) = −1)||TV] > 0 .

The region of values of d such that d < drecon is called the non-reconstruction phase. It is
immediate from Definition 9 that, for any d < drecon, we have that non-reconstruction.

In the following result, we prove that the replica symmetric phase coincides with the
non-reconstruction phase of the Edwards-Anderson model on G.

▶ Theorem 10. For any β > 0, for the distribution µG,J,β defined as in (8), we have that
drecon(β) = dcond(β).

The above follows from Theorems 8, 7 and [12, Corollary 1.5].

Notation
For the graph G = (V,E) and the Gibbs distribution µ on the set of configurations {±1}V .
For a configuration σ, we let σ(Λ) denote the configuration that σ specifies on the set of
vertices Λ. We let µΛ denote the marginal of µ at the set Λ. We let µ(· | Λ, σ), denote
the distribution µ conditional on the configuration at Λ being σ. Also, we interpret the
conditional marginal µΛ(· | Λ′, σ), for Λ′ ⊆ V , in the natural way.

ICALP 2023

55:10 Broadcasting with Random Matrices

3 Approach

A major challenge in our setting is that we have to deal with multiple levels of randomness,
i.e., we have two levels of randomness in the case of the ∆-ary tree, while the levels increase
with the Galton-Watson trees. To circumvent this problem, we follow an analysis that allows
us to disentangle the different sources of randomness in our models. In this section, we
provide a high-level description of our approach. We restrict our discussion on the ∆-ary
tree.

Non-reconstruction
Consider the ∆-ary tree T = (V,E) rooted at r. Suppose that we have a distribution µ as in
(6) on T , while assume that each edge e ∈ E has its own coupling parameter Je. Assume,
for the moment, that the coupling parameters at the edges are fixed, e.g. the reader may
assume that are arbitrary real numbers. That is, each Je can be either positive, or negative.
Hence, one might consider the aforementioned distribution as a non-homogenous Ising model
which involves both ferromagnetic and anti-ferromagnetic interactions. Let us focus on
non-reconstruction. We derive an upper bound on

||µh(· | σ(r) = +1) − µh(· | σ(r) = −1)||TV ,

which is expressed in terms of the influence between neighbouring vertices. The notion of
influence between vertices is the same as the one developed in the context of Spectral Inde-
pendence technique for establishing rapid mixing of Glauber dynamics [3, 9]. These influences
are used in the context of the so-called down-up coupling to establish non-reconstruction.
This is a coupling approach from [6], which also relies on ideas in [29].

Let us be more specific. For the probability measure µ we consider, let Rr be the ratio of
Gibbs marginals at the root r defined by

Rr = µr(+1)
µr(−1) . (9)

Recall that µr(·) denotes the marginal of the Gibbs distribution µ(·) at the root r. For a
vertex u ∈ V , we let Tu be the subtree of T that includes u, and all its descendants. Also,
we let Ru be the ratio of marginals at vertex u, where the Gibbs distribution is, now, with
respect to the subtree Tu.

Suppose that the vertices w1, . . . , w∆ are the children of the root r. Our focus is on
expressing logRr recursively, as a function of logRw1 , . . . , logRw∆

. Note that we study the
logarithm of the ratios involved, which can be viewed as applying the potential function
log(·) to the tree recursions. We have that log (Rr) = H (logRw1 , . . . , logRw∆

) where

H(x1, x2, . . . , x∆) =
∆∑
i=1

log
(

exp
(
xi + βJ{r,wi}

)
+ 1

exp(xi) + exp
(
βJ{r,wi}

)) . (10)

Note that J{r,wi} is the coupling parameter that corresponds to the edge between the root r
with its child wi. All the above extends naturally in the case where we impose boundary
conditions. That is, for a region K ⊆ V , and τ ∈ {±1}K , we define the ratio of marginals
RK,τr at the root, where now the ratio is between the conditional marginals µr(+1 | K, τ)
and µr(−1 | K, τ). The recursive function H for the conditional ratios is exactly the same
as the one above.

C. Efthymiou and K. Zampetakis 55:11

Our interest is on the gradient of the function H. Specifically, for every i ∈ [∆], we let

Γ{r,wi} = sup
x1,...,x∆

∣∣∣∣ ∂∂xiH(x1, x2, . . . , x∆)
∣∣∣∣ . (11)

It turns out that, in our case, Γ{r,wi} has a simple form

Γ{r,wi} =
∣∣1 − exp

(
βJ{r,w}

)∣∣
1 + exp

(
βJ{r,wi}

) .

Utilising the idea of down-up coupling from [6], we prove the following:

||µh(· | σ(r) = +1) − µh(· | σ(r) = −1)||TV ≤
√∑
v∈Λ

∏
e∈path(r,v)

Γ 2
e , (12)

where Λ = Λ(h) denotes the set of vertices at distance h from the root r. Note that the above
provides a bound for the total variation distance of the the marginals for fixed, i.e., non-
random, couplings {Je}e∈E . Inequality (12), extends naturally when we study reconstruction
for the distribution µ defined in (6), i.e., when the coupling parameters Je are i.i.d. samples
from a distribution ϕ. Indeed, averaging yields

E
[
(||µh(· | σ(r) = +1) − µh(· | σ(r) = −1)||TV)2

]
≤
∑
v∈Λ

∏
e∈path(r,v)

E
[
Γ 2
e

]
, (13)

where we have Γe = |1−exp(βJe)|
1+exp(βJe) , for each e ∈ E. Note that the above holds, since each Γe

depends only on Je, while the coupling parameters Je are assumed to be independent with
each other.

At this point, and since the Je’s are identically distributed, we further observe that for
any e ∈ E, we have that

∆KS(β, ϕ) =
(
E
[
Γ 2
e

])−1
.

Since the underlying tree T is ∆-ary, it is immediate to see that for ∆ < ∆KS(β, ϕ), the r.h.s.
of (13) tends to zero as h → ∞. From this point on, it is standard to prove non-reconstruction.

Our analysis allows to deal with the randomness of the spin-glass measure µ by utilising
the bound in (12). That is, the upper bound on the total variation distance has a nice
product form of the quantities Γe, which, in turn, expresses the dependence of the total
variation distance on the edge couplings {Je}e∈E . This product form of the bound, behaves
rather nicely when we need to take averages over the randomness of the coupling parameters
{Je}e∈E of the the spin-glass measure µ.

Reconstruction
In the reconstruction regime, the configuration at the root has a non-vanishing effect on
the configuration of the vertices at distance h, regardless of the height h. Specifically, the
corresponding leaf configurations from the measure conditioned on root’s spin being +1,
and −1, are so different with each other, that discrepancies cannot be attributed to random
fluctuations. Therefore, a question that naturally arises is how can we take advantage of the
discrepancies so that we infer the spin of the root.

For the standard ferromagnetic Ising, several approaches have been developed to establish
reconstruction (see [18], [8], [23]). Here, we build on an elegant argument in [18]. The authors
in this work, show that a simple majority vote of the leaf spins, conveys information sufficient
to reconstruct root’s spin, The majority vote on the leaves is defined by

Mh =
∑
u∈Λ

σ(u) . (14)

ICALP 2023

55:12 Broadcasting with Random Matrices

The estimation rule is to infer that the spin at the root is sgn{Mh}, i.e., the sign of Mh.
Impressively, it turns out that this estimator is optimal, i.e., it coincides with the maximum
likelihood one. For the ∆-ary tree, one establishes reconstruction for the ferromagnetic Ising
model by employing a second moment argument on the estimator Mh.

For the distributions we consider here, the above estimator is far from sufficient. This is
due to various facts. Firstly, we allow for mixed couplings on the edges, i.e., certain edges
can be ferromagnetic, and others can be anti-ferromagnetic. Secondly, the strength of the
interaction, i.e., the magnitude of Je’s, is expected to vary from one edge to the other. To
this end, we introduce a new estimator, and we establish reconstruction by building on the
second moment argument from [18]. The starting point towards deriving this estimator,
comes from just considering the standard anti-antiferromagnetic Ising. The statistic from
(14), clearly does not work for this distribution. However, there is an easy remedy, by taking
into account the parity of the height h, i.e., if h is an even, or an odd number. We infer that
the spin at the root is equal to sgn

{
M̂h

}
, where

M̂h = (−1)h
∑
u∈Λ

σ(u) .

For the spin-glass distributions we consider here, we need to get the above idea even further.
Firstly, in order to accommodate the mixed ferromagnetic and anti-ferromagnetic couplings
on the edges of the tree. It seems meaningful to use the estimator sgn

{
M̃h

}
for the root

configuration, where

M̃h =
∑
u∈Λ

σ(u)
∏

e∈path(r,u)

sign{Je} ,

with path(r, u) denoting the set of edges along the unique path connecting r to u. So that
in M̃h, for each leaf we essentially examine the parity of the number of antiferromagnetic
couplings along the path that connects it to the root. Unfortunately, for the above estimator,
our second moment argument does not seem to work all that well.

The estimator we end up using, is a reweighted version of M̃h, which we call the “flip
majority” vote, and is defined by

Fh =
∑
u∈Λ

σ(u)
∏

e∈path(r,u)

1−exp(βJe)
1+exp(βJe) .

Note that the absolute value of the weight for the edge e, above, coincides with the quantity
Γe in (13). Naturally, the estimation rule is to infer that the root spin is sgn {Fh}.

References
1 Dimitris Achlioptas and Amin Coja-Oghlan. Algorithmic barriers from phase transitions. In

2008 49th Annual IEEE Symposium on Foundations of Computer Science, pages 793–802.
IEEE, 2008.

2 Ahmed El Alaoui, Andrea Montanari, and Mark Sellke. Sampling from the Sherrington-
Kirkpatrick Gibbs measure via algorithmic stochastic localization. In 63rd IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO, USA, October 31
- November 3, 2022, pages 323–334. IEEE, 2022. doi:10.1109/FOCS54457.2022.00038.

3 Nima Anari, Kuikui Liu, and Shayan Oveis Gharan. Spectral independence in high-dimensional
expanders and applications to the hardcore model. SIAM Journal on Computing, 0(0):FOCS20–
1–FOCS20–37, 2021. doi:10.1137/20M1367696.

https://doi.org/10.1109/FOCS54457.2022.00038
https://doi.org/10.1137/20M1367696

C. Efthymiou and K. Zampetakis 55:13

4 Victor Bapst, Amin Coja-Oghlan, and Charilaos Efthymiou. Planting colourings silently.
Combinatorics, probability and computing, 26(3):338–366, 2017.

5 Nayantara Bhatnagar, Allan Sly, and Prasad Tetali. Reconstruction threshold for the hardcore
model. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques: 13th International Workshop, APPROX 2010, and 14th International Workshop,
RANDOM 2010, Barcelona, Spain, September 1-3, 2010. Proceedings, pages 434–447. Springer,
2010.

6 Nayantara Bhatnagar, Juan Vera, Eric Vigoda, and Dror Weitz. Reconstruction for colorings
on trees. SIAM Journal on Discrete Mathematics, 25(2):809–826, 2011.

7 Pavel M Bleher, Jean Ruiz, and Valentin A Zagrebnov. On the purity of the limiting Gibbs
state for the Ising model on the Bethe lattice. Journal of Statistical Physics, 79:473–482, 1995.

8 Christian Borgs, Jennifer Chayes, Elchanan Mossel, and Sébastien Roch. The Kesten-Stigum
reconstruction bound is tight for roughly symmetric binary channels. In 2006 47th Annual
IEEE Symposium on Foundations of Computer Science (FOCS’06), pages 518–530. IEEE,
2006.

9 Zongchen Chen, Kuikui Liu, and Eric Vigoda. Rapid mixing of Glauber dynamics up to
uniqueness via contraction. In 2020 IEEE 61st Annual Symposium on Foundations of Computer
Science (FOCS), pages 1307–1318. IEEE, 2020.

10 Amin Coja-Oghlan and Charilaos Efthymiou. On independent sets in random graphs. Random
Structures & Algorithms, 47(3):436–486, 2015.

11 Amin Coja-Oghlan, Charilaos Efthymiou, and Nor Jaafari. Local convergence of random
graph colorings. Combinatorica, 38(2):341–380, 2018.

12 Amin Coja-Oghlan, Charilaos Efthymiou, Nor Jaafari, Mihyun Kang, and Tobias Kapetan-
opoulos. Charting the replica symmetric phase. Communications in Mathematical Physics,
359:603–698, 2018.

13 Amin Coja-Oghlan, Andreas Galanis, Leslie Ann Goldberg, Jean Bernoulli Ravelomanana,
Daniel Stefankovic, and Eric Vigoda. Metastability of the Potts Ferromagnet on Random
Regular Graphs. In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff, editors,
49th International Colloquium on Automata, Languages, and Programming, ICALP 2022,
July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 45:1–45:20. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ICALP.2022.45.

14 Amin Coja-Oghlan, Tobias Kapetanopoulos, and Noela Müller. The replica symmetric phase
of random constraint satisfaction problems. Combinatorics, Probability and Computing,
29(3):346–422, 2020.

15 Amin Coja-Oghlan, Florent Krzakala, Will Perkins, and Lenka Zdeborová. Information-
theoretic thresholds from the cavity method. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, pages 146–157, 2017.

16 Samuel Frederick Edwards and Phil W Anderson. Theory of spin glasses. Journal of Physics
F: Metal Physics, 5(5):965, 1975.

17 Charilaos Efthymiou. On Sampling Symmetric Gibbs Distributions on Sparse Random Graphs
and Hypergraphs. In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff, editors,
49th International Colloquium on Automata, Languages, and Programming, ICALP 2022,
July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 57:1–57:16. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ICALP.2022.57.

18 William Evans, Claire Kenyon, Yuval Peres, and Leonard J Schulman. Broadcasting on trees
and the Ising model. Annals of Applied Probability, pages 410–433, 2000.

19 Silvio Franz, Michele Leone, Federico Ricci-Tersenghi, and Riccardo Zecchina. Exact solutions
for diluted spin glasses and optimization problems. Physical review letters, 87(12):127209,
2001.

20 Hans-Otto Georgii. Gibbs measures and phase transitions, volume 9. Walter de Gruyter, 2011.
21 Francesco Guerra and Fabio Lucio Toninelli. The high temperature region of the Viana-Bray

diluted spin glass model. Journal of statistical physics, 115:531–555, 2004.

ICALP 2023

https://doi.org/10.4230/LIPIcs.ICALP.2022.45
https://doi.org/10.4230/LIPIcs.ICALP.2022.57

55:14 Broadcasting with Random Matrices

22 Yasunari Higuchi. Remarks on the limiting Gibbs states on a (d+ 1)-tree. Publications of the
Research Institute for Mathematical Sciences, 13(2):335–348, 1977.

23 Dmitry Ioffe. On the extremality of the disordered state for the Ising model on the Bethe
lattice. Letters in Mathematical Physics, 37:137–143, 1996.

24 Harry Kesten and Bernt P Stigum. Additional limit theorems for indecomposable multidi-
mensional Galton-Watson processes. The Annals of Mathematical Statistics, 37(6):1463–1481,
1966.

25 Marc Mézard and Andrea Montanari. Reconstruction on trees and spin glass transition.
Journal of statistical physics, 124:1317–1350, 2006.

26 Michael Molloy. The freezing threshold for k-colourings of a random graph. In Proceedings of
the forty-fourth annual ACM symposium on Theory of computing, pages 921–930, 2012.

27 Giorgio Parisi. Infinite number of order parameters for spin-glasses. Physical Review Letters,
43(23):1754, 1979.

28 David Sherrington and Scott Kirkpatrick. Solvable model of a spin-glass. Physical review
letters, 35(26):1792, 1975.

29 Allan Sly. Reconstruction of random colourings. Communications in Mathematical Physics,
288(3):943–961, 2009.

30 Daniel L Stein and Charles M Newman. Spin glasses and complexity, volume 4. Princeton
University Press, 2013.

31 Lenka Zdeborová and Florent Krzakala. Statistical physics of inference: Thresholds and
algorithms. Advances in Physics, 65(5):453–552, 2016.

Improved Mixing for the Convex Polygon
Triangulation Flip Walk
David Eppstein #

Department of Computer Science, University of California, Irvine, CA, USA

Daniel Frishberg #

Department of Computer Science, University of California, Irvine, CA, USA

Abstract
We prove that the well-studied triangulation flip walk on a convex point set mixes in time O(n3 log3 n),
the first progress since McShine and Tetali’s O(n5 log n) bound in 1997. In the process we give
lower and upper bounds of respectively Ω(1/(

√
n log n)) and O(1/

√
n) – asymptotically tight up to

an O(log n) factor – for the expansion of the associahedron graph Kn. The upper bound recovers
Molloy, Reed, and Steiger’s Ω(n3/2) bound on the mixing time of the walk. To obtain these results,
we introduce a framework consisting of a set of sufficient conditions under which a given Markov
chain mixes rapidly. This framework is a purely combinatorial analogue that in some circumstances
gives better results than the projection-restriction technique of Jerrum, Son, Tetali, and Vigoda.
In particular, in addition to the result for triangulations, we show quasipolynomial mixing for the
k-angulation flip walk on a convex point set, for fixed k ≥ 4.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases associahedron, mixing time, mcmc, Markov chains, triangulations, quad-
rangulations, k-angulations, multicommodity flow, projection-restriction

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.56

Category Track A: Algorithms, Complexity and Games

Related Version This paper includes results from two of our arXiv preprints:
Previous Version: https://arxiv.org/abs/2207.09972v1
Previous Version: https://arxiv.org/abs/2111.03898
Full Version: https://arxiv.org/abs/2207.09972

1 Introduction and background

The study of mixing times – the art and science of proving upper and lower bounds on the
efficiency of Markov chain Monte Carlo sampling methods – is a well-established area of
research, of interest for combinatorial sampling problems, spin systems in statistical physics,
probability, and the study of subset systems. Work in this area brings together techniques
from spectral graph theory, combinatorics, and probability, and dates back decades; for
a comprehensive survey of classic methods, results, and open questions see the canonical
text by Levin, Wilmer, and Peres [27]. Recent breakthroughs [1, 2, 3, 8, 9, 10, 24, 26] –
incorporating techniques from the theory of abstract simplicial complexes – have led to a
recent slew of results for the mixing times of combinatorial chains for sampling independent
sets, matchings, Ising model configurations, and a number of other structures in graphs,
injecting renewed energy into an already active area.

We focus on a class of geometric sampling problems that has received considerable
attention from the counting and sampling [4, 22] and mixing time [29, 31, 35, 6] research
communities over the last few decades, but for which tight bounds have been elusive: sampling
triangulations. A triangulation is a maximal set of non-crossing edges connecting pairs of
points (see Figure 1) in a given n-point set. Every pair of triangles sharing an edge forms a

EA
T
C
S

© David Eppstein and Daniel Frishberg;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 56; pp. 56:1–56:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:eppstein@uci.edu
mailto:dfrishbe@uci.edu
https://orcid.org/0000-0002-1861-5439
https://doi.org/10.4230/LIPIcs.ICALP.2023.56
https://arxiv.org/abs/2207.09972v1
https://arxiv.org/abs/2111.03898
https://arxiv.org/abs/2207.09972
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

56:2 Improved Mixing for the Convex Polygon Triangulation Flip Walk

quadrilateral. A triangulation flip consists of removing such an edge, and replacing it with
the only other possible diagonal within the same quadrilateral. Flips give a natural Markov
chain (the flip walk): one selects a uniformly random diagonal from a given triangulation
and (if possible) flips the diagonal.

McShine and Tetali gave a classic result in a 1997 paper [29], showing that in the special
case of a convex two-dimensional point set (a convex n-gon), the flip walk mixes (converges
to approximately uniform) in time O(n5 log n), improving on the best-known prior (and first
polynomial) upper bound, O(n25), by Molloy, Reed, and Steiger [31]. McShine and Tetali
applied a Markov chain comparison technique due to Diaconis and Saloff-Coste [12] and to
Randall and Tetali [32] to obtain their bound, using a bijection between triangulations and a
structure known as Dyck paths. They noted that they could not improve on this bound using
this bijection. Furthermore, they believed that an earlier lower bound of Ω(n3/2), also by
Molloy, Reed, and Steiger [31], should be tight. We show the following result (see Section 3
for the precise definition of mixing time):

▶ Theorem 1. The triangulation flip walk on the convex n + 2-point set mixes in time
O(n3 log3 n).

Prior to the present paper, no progress had been made either on upper or lower bounds
for this chain in 25 years – even as new polynomial upper bounds and exponential lower
bounds were given for other geometric chains, from lattice point set triangulations [35, 6]
to quadrangulations of planar maps [7], and despite many breakthroughs using the newer
techniques for other problems.

In addition to this specific result, we give a general decomposition theorem – which we
will state as Theorem 13 once we have built up enough preliminaries, for bounding mixing
times by recursively decomposing the state space of a Markov chain. This theorem is a purely
combinatorial alternative to the spectral result of Jerrum, Son, Tetali, and Vigoda [21].

1.1 Decomposition framework
To prove our result, we develop a general decomposition framework that applies to a
broad class of Markov chains, as an alternative to prior work by Jerrum, Son, Tetali, and
Vigoda [21] that used spectral methods. We obtain our new mixing result for triangulations,
then generalize our technique to obtain the first nontrivial mixing result for k-angulations.
In a companion paper [15] we further generalize this work to obtain the first rapid mixing
bounds for Markov chains for sampling independent sets, dominating sets, and b-edge covers
(generalizing edge covers) in graphs of bounded treewidth, and for maximal independent sets,
b-matchings, and maximal b-matchings in graphs of bounded treewidth and degree. In that
work we also strengthen existing results [18, 14] for proper q-colorings in graphs of bounded
treewidth and degree.

The key observation that unifies these chains is that, when viewing their state spaces
as graphs (exponentially large graphs relative to the input), they all admit a recursive
decomposition satisfying key properties. First, each such graph, called a “flip graph,” can be
partitioned into a small number of induced subgraphs, where each subgraph is a Cartesian
product of smaller graphs that are structurally similar to the original graph – and thus can
be partitioned again into even smaller product graphs. Second, at each level of recursion,
pairs of subgraphs are connected by large matchings. Intuitively, we can “slice” a flip graph
into subgraphs that are well connected to each other, then “peel” apart the subgraphs
using their Cartesian product structure, and repeat the process recursively. Each recursive
level of slicing cuts through many edges (the large matchings), and indeed the peeling also

D. Eppstein and D. Frishberg 56:3

disconnects many mutually well-connected subgraphs from one another. Prior work exists
applying this “slicing” and “peeling” paradigm – albeit with spectral methods instead of
purely combinatorial methods – using Jerrum, Son, Tetali, and Vigoda’s decomposition
theorem (Theorem 14) for combinatorial chains [21, 18, 14]. One of our contributions is to
unify these applications, along with the geometric chains, into a sufficient set of conditions
under which one can apply the existing decomposition theorem: Lemma 15.

A more substantial technical contribution is our Theorem 13, a combinatorial analogue to
Jerrum, Son, Tetali, and Vigoda’s Theorem 14. One can use our theorem in place of theirs
and, in some cases, obtain better mixing bounds. In particular, in the case of triangulations,
we obtain polynomial mixing via an adaptation of our (combinatorial) technique (Lemma 19)
– and it is not clear how to adapt the existing spectral methods to get even a polynomial
bound. In the case of k-angulations, our theorem gives a bound that has better dependence
on the parameter k.

1.2 Paper organization
In the remainder of this section we will define the Markov chains we are analyzing and
summarize our main results. Then, in Section 2, we will give intuition for the decomposition
by describing its application to triangulations. In Section 4 we will present our general
decomposition meta-theorems, and compare our contribution to prior work by Jerrum, Son,
Tetali, and Vigoda [21]. In particular, we will discuss why our purely combinatorial machinery
is needed for obtaining new bounds in the case of triangulations. In the full version of our
paper [16] we will prove a general result that gives a coarse bound on triangulation mixing; we
will then improve this bound to near tightness in the full paper version, and give a matching
upper bound (up to logarithmic factors) in the full version. Also in the full version, we show
that general k-angulations admit a decomposition satisfying a relaxation (Lemma 18) of
our general theorem that implies quasipolynomial-time mixing. We analyze the particular
quasipolynomial bound we obtain, and show that our combinatorial technique (Theorem 13)
gives a better dependence on k than one would obtain with the prior decomposition theorem.
In the full version of the paper we prove our general combinatorial decomposition theorem,
Theorem 13. In the full version we prove a theorem about lattice triangulations, and fill in a
few remaining proof details.

1.3 Triangulations of convex point sets and lattice point sets
Let Pn be the regular polygon with n vertices. Every triangulation t of Pn+2 has n − 1
diagonals, and every diagonal can be flipped: every diagonal D belongs to two triangles
forming a convex quadrilateral, so D can be removed and replaced with the diagonal D′ lying
in the same quadrilateral and crossing D. The set of all triangulations of Pn+2, for n ≥ 1, is
the vertex set of a graph that we denote Kn (this notation is standard), whose edges are
the flips between adjacent triangulations. The graph Kn is known to be realizable as the
1-skeleton of an n − 1-dimensional polytope [28] called the associahedron (we also use this
name for the graph itself). It is also known to be isomorphic to the rotation graph on the set
of all binary plane trees with n+1 leaves [34], and equivalently the set of all parenthesizations
of an algebraic expression with n + 1 terms, with “flips” defined as applications of the
associative property of multiplication.

The structure of this graph depends only on the convexity and the number of vertices of
the polygon, and not on its precise geometry. That is, Pn+2 need not be regular for Kn to
be well defined.

ICALP 2023

56:4 Improved Mixing for the Convex Polygon Triangulation Flip Walk

McShine and Tetali [29] showed that the mixing time (see Section 3) of the uniform
random walk on K3,n+2 is O(n5 log n), following Molloy, Reed, and Steiger’s [31] lower
bound of Ω(n3/2). These bounds together can be shown, using standard inequalities [33], to
imply that the expansion of K3,n+2 is Ω(1/(n4 log n)) and O(n1/4). It is easy to generalize
triangulations to k-angulations of a convex polygon P(k−2)n+2, and to generalize the definition
of a flip between triangulations to a flip between k-angulations: a k-angulation is a maximal
division of the polygon into k-gons, and a flip consists of taking a pair of k-gons that share a
diagonal, removing that diagonal, and replacing it with one of the other diagonals in the
resulting 2k − 2-gon. One can then define the k-angulation flip walk on the k-angulations of
P(k−2)n+2. An analogous graph to the associahedron is defined over the triangulations of the
integer lattice (grid) point set with n rows of points and n columns. Substantial prior work
has been done on bounds for the number of triangulations in this graph ([4, 22]), as well as
characterizing the mixing time of random walks on the graph, when the walks are weighted
by a function of the lengths of the edges in a triangulation ([6, 5]).

1.4 Convex triangulation flip walk and mixing time
Consider the following random walk on the triangulations of the convex n + 2-gon:

for t = 1, 2, . . . do
Begin with an arbitrary triangulation t.
Flip a fair coin.
If the result is tails, do nothing.
Else, select a diagonal in t uniformly at random, and flip the diagonal.

end for
(The “do nothing” step is a standard MCMC step that enforces a technical condition

known as laziness, required for the arguments that bound mixing time.) At any given time
step, this walk induces a probability distribution π over the triangulations of the n + 2-gon.
Standard spectral graph theory shows that π converges to the uniform distribution in the
limit. Formally, what McShine and Tetali showed [29] is that the number of steps before π is
within total variation distance 1/4 of the uniform distribution is bounded by O(n5 log n) –
in other words, that the mixing time is O(n5 log n). Any polynomial bound means the walk
mixes rapidly. We formally define total variation distance:

The total variation distance between two probability distributions µ and ν over the same
set Ω is defined as

d(µ, ν) = 1
2

∑
S∈Ω

|π(S) − π∗(S)|.

Consider a Markov chain with state space Ω. Given a starting state S ∈ Ω, the chain
induces a probability distribution πt at each time step t. Under certain mild conditions, all
of which are satisfied by the k-angulation flip walk, this distribution is known to converge in
the limit to a stationary distribution π∗, which for the k-angulation flip walk is the uniform
distribution on the k-angulations of the convex polygon. The mixing time is defined as
follows: Given an arbitrary ε > 0, the mixing time, τ(ε), of a Markov chain with state
space Ω and stationary distribution π∗ is the minimum time t such that, regardless of starting
state, we always have

d(πt, π∗) < ε.

Suppose that the chain belongs to a family of chains, whose size is parameterized by a value
n. (It may be that Ω is exponential in n.) If τ(ε) is upper bounded by a function that is
polynomial in log(1/ε) and in n, say that the chain is rapidly mixing. It is common to omit
the parameter ε, assuming its value to be the arbitrary constant 1/4.

D. Eppstein and D. Frishberg 56:5

1.5 Main results
We show the following result for the expansion of the associahedron:

▶ Theorem 2. The expansion of the associahedron K3,n+2 is Ω(1/(
√

n log n)) and O(1/
√

n).

We will prove the lower bound in the full paper version [16] using the multicommodity flow-
based machinery we introduce in Section 4, after giving intuition in Section 2. Combining
this result with the connection between flows and mixing [33] – with some additional effort
in the full version – gives our new O(n3 log3 n) bound (Theorem 1) for triangulation mixing.

Although the expansion lower bound is more interesting for the sake of rapid mixing, the
upper bound in Theorem 2 – which we prove in the full version – recovers Molloy, Reed,
and Steiger’s Ω(n3/2) mixing lower bound [31]. It is also the first result showing that the
associahedron has combinatorial expansion o(1). By contrast, Anari, Liu, Oveis Gharan, and
Vinzant recently proved [3, 2], settling a conjecture of Mihail and Vazirani [30], that matroids
have expansion one. (Mihail and Vazirani in fact conjectured that all graphs realizable as
the 1-skeleton of a 0-1 polytope have expansion one.) Although the set of convex n-gon
triangulations is not a matroid, it is an important subset system – and this work shows that
it does not have expansion one. More generally, we give the following quasipolynomial bound
for k-angulations:

▶ Theorem 3. For every fixed k ≥ 3, the k-angulation flip walk on the convex (k−2)n+2-point
set mixes in time nO(k log n).

In the full version of the paper [16], we give a lower bound on the treewidth of the n × n

integer lattice point set triangulation flip graph:

▶ Theorem 4. The treewidth of the triangulation flip graph Fn on the n × n integer lattice
point set is Ω(N1−o(1)), where N = |V (Fn)|.

2 Decomposing the convex point set triangulation flip graph

2.1 Bounding mixing via expansion
We have a Markov chain that is in fact a random walk on the associahedron Kn. We wish to
bound the mixing time of this walk. It turns out that one way to do this is by lower-bounding
the expansion of the same graph Kn. Intuitively, expansion concerns the extent to which
“bottlenecks” exist in a graph. More precisely, it measures the “sparsest” cut – the minimum
ratio of the number of edges in a cut divided by the number of vertices on the smaller side of
the cut:

The edge expansion (or simply expansion), h(G), of a graph G = (V, E) is the quantity

min
S⊆V :|S|≤|V |/2

|∂S|/|S|,

where ∂S = {(s, t)|s ∈ S, t /∈ S} is the set of edges across the (S, V \ S) cut. It is
known [20, 33] that a lower bound on edge expansion leads to an upper bound on mixing:

▶ Lemma 5. The mixing time of the Markov chain whose transition matrix is the normalized
adjacency matrix of a ∆-regular graph G is

O

(
∆2 log(|V (G)|)

(h(G))2

)
.

One can do better [13, 33] if the paths in a multicommodity flow are not too long (Section 3).

ICALP 2023

56:6 Improved Mixing for the Convex Polygon Triangulation Flip Walk

2.2 “Slicing and peeling”
We would like to show that there are many edges in every cut, relative to the number of
vertices on one side of the cut. We partition the triangulations V (Kn) into n equivalence
classes, each inducing a subgraph of Kn. We show that many edges exist between each pair
of the subgraphs. Thus the partitioning “slices” through many edges. After the partitioning,
we show that each of the induced subgraphs has large expansion. To do so, we show that
each such subgraph decomposes into many copies of a smaller flip graph Ki, i < n. This
inductive structure lets us assume that Ki has large expansion – then show that the copies of
the smaller flip graph are all well connected to one another. We call this “peeling,” because
one must peel the many Ki copies from one another – removing many edges – to isolate
each copy. Molloy, Reed, and Steiger [31] obtained their O(n25) mixing upper bound via a
different decomposition, namely using the central triangle, via a non-flow-based method. That
decomposition is the one we use for our quasipolynomial bound for general k-angulations in
the full paper version. However, we use a different decomposition here, one with a structure
that lets us obtain a nearly tight bound, via a multicommodity flow construction. We
formalize the slicing step now:

Fix a “special” edge e∗ of the convex n + 2-gon Pn+2. For each triangle T having e∗ as
one of its edges, define the oriented class C∗(T) to be the set of triangulations of Pn+2 that
include T as one of their triangles. Let Tn be the set of all such triangles; let Sn be the set
of all classes {C∗(T)|T ∈ Tn}.

Orient Pn+2 so that e∗ is on the bottom. Then say that T (respectively C∗(T)) is to the
left of T ′ (respectively C∗(T ′)) if the topmost vertex of T lies counterclockwise around Pn+2
from the topmost vertex of T ′. Say that T ′ lies to the right of T . Write T < T ′ and T ′ > T .

See Figure 1.

l r j

i

k

Figure 1 Left: A triangulation of the regular octagon. Center: a class C∗(T) ∈ Sn, represented
schematically by the triangle T that induces it. We depict the regular n + 2-gon as a circle (which it
approximates as n → ∞), for ease of illustration. Each triangulation t ∈ C∗(T) consists of T (the
triangle shown), and an arbitrary triangulation of the two polygons on either side of T . Notice
that C∗(T) ∼= Kl□Kr, where T partitions the n + 2-gon into an l-gon and an r-gon. Right: the
matching E∗(T, T ′) between classes C∗(T) ∼= Ki□Kj+k and C∗(T ′) ∼= Ki+j□Kk, is in bijection with
the triangulations in Ki□Kj□Kk (induced by the quadrilateral containing T and T ′). Therefore,
|E∗(T, T ′)| = CiCjCk.

We make observations about the structure of each class as an induced subgraph of Kn.
The Cartesian product graph G□H of graphs G and H has vertices V (G) × V (H) and

edges

{((u, v), (u′, v))|(u, u′) ∈ E(G), v ∈ V (H)}

∪{((u, v), (u, v′))|(v, v′) ∈ E(H), u ∈ V (G)}.

Given a vertex w = (u, v) ∈ V (G)×V (H), call u the projection of w onto G, and similarly
call v the projection of w onto H. (Applying the obvious associativity of the Cartesian
product operator, one can naturally define the product G1□G2□ · · ·□Gk = □k

i=1Gi.)

D. Eppstein and D. Frishberg 56:7

We can now characterize the structure of each class as an induced subgraph of Kn:

▶ Lemma 6. Each class C∗(T) is isomorphic to a Cartesian product of two associahedron
graphs Kl and Kr, with l + r = n − 1.

Proof. Each triangle T partitions the n + 2-gon into two smaller convex polygons with side
lengths l + 1 and r + 1, such that l + r = n − 1. Thus each triangulation in C∗(T) can be
identified with a tuple of triangulations of these smaller polygons. The Cartesian product
structure then follows from the fact that every flip between two triangulations in C∗(T) can
be identified with a flip in one of the smaller polygons. ◀

Lemma 6 will be central to the peeling step. For the slicing step, building on the idea in
Lemma 6 will help us characterize the edge sets between classes:

Given classes C∗(T), C∗(T ′) ∈ Sn, denote by E∗(T, T ′) the set of edges (flips) between C∗(T)
and C∗(T ′). Let B∗

n,T ′(T) and B∗
n,T (T ′) be the boundary sets – the sets of endpoints of edges

in E∗(T, T ′) – that lie respectively in C∗(T) and C∗(T ′).

▶ Lemma 7. For each pair of classes C∗(T) and C∗(T ′), the boundary set B∗
n,T ′(T) induces

a subgraph of C∗(T) isomorphic to a Cartesian product of the form Ki□Kj□Kk, for some i +
j + k = n − 2.

Proof. Each flip between triangulations in adjacent classes C∗(T) involves flipping a diagonal
of T to transform the triangulation t ∈ C∗(T) into triangulation t′ ∈ C∗(T ′). Whenever this
is possible, there must exist a quadrilateral Q, sharing two sides with T (the sides that are
not flipped), such that both t and t′ contain Q. Furthermore, every t ∈ C∗(T) containing
Q has a flip to a distinct t′ ∈ C∗(T ′). The set of all such boundary vertices t ∈ C∗(T) can
be identified with the Cartesian product described because Q partitions Pn+2 into three
smaller polygons, so that each triangulation in B∗

n,T ′(T) consists of a tuple of triangulations
in each of these smaller polygons, and such that every flip between triangulations in B∗

n,T ′(T)
consists of a flip in one of these smaller polygons. ◀

▶ Lemma 8. The set E∗(T, T ′) of edges between each pair of classes C∗(T) and C∗(T ′) is a
nonempty matching. Furthermore, this edge set is in bijection with the vertices of a Cartesian
product Ki□Kj□Kk, i + j + k = n − 2.

Proof. The claim follows from the reasoning in Lemma 7 and from the observation that each
triangulation in B∗

n,T ′(T) has exactly one flip (namely, flipping a side of the triangle T) to a
neighbor in B∗

n,T (T ′). ◀

Lemma 8 characterizes the structure of the edge sets (namely matchings) between classes;
we would also like to know the sizes of the matchings. We will use the following formula:

Let Cn be the nth Catalan number, defined as Cn = 1
n+1

(2n
n

)
.

▶ Lemma 9 ([25, 19]). The number of vertices in the associahedron Kn is Cn, and this
number grows as 1√

π·n3/2 · 22n.

We will prove the following in the full version of our paper [16]:

▶ Lemma 10. For every T, T ′ ∈ Tn,

|E∗(T, T ′)| ≥ |C∗(T)||C∗(T ′)|
Cn

.

ICALP 2023

56:8 Improved Mixing for the Convex Polygon Triangulation Flip Walk

Lemma 10 – which states that the number of edges between a pair of classes is at least
equal to the product of the cardinalities of the classes, divided by the total number of vertices
in the graph |V (Kn)| = Cn – is crucial to this paper. To explain why this is, we will need to
present our multicommodity flow construction (in the full version of the paper [16]). We will
give intuition in Section 4. For now, it suffices to say that Lemma 10 implies that there are
many edges between a given pair of classes, justifying (intuitively) the slicing step. For the
peeling step, we need the fact that Cartesian graph products preserve the well-connectedness
of the graphs in the product [17]:

▶ Lemma 11. Given graphs G1, G2, . . . , Gk, Cartesian product G1□G2□ · · ·□Gk satisfies

h(G1□G2□ · · ·□Gk) ≥ 1
2 min

i
h(Gi).

Lemma 6 says that each of the classes C∗(T) ∈ Sn is a Cartesian graph product of
associahedron graphs Kl, Kr, l < n, r < n, allowing us to “peel” (decompose) C∗(T) into
graphs that can then be recursively sliced into classes and peeled. Lemma 11 implies that
the peeling must disconnect many edges, as it involves splitting a Cartesian product graph
into many subgraphs (copies of Kl).

We will make all of this intuition rigorous in the full paper version by constructing our
flow. The choice of paths through which to route flow will closely trace the edges in this
recursive “slicing and peeling” decomposition. We will then show that, with this choice of
paths, the resulting congestion – the maximum amount of flow carried along an edge – is
bounded by a suitable polynomial factor. This will provide a lower bound on the expansion.

Figure 2 Left: The associahedron graph K5, with each vertex representing a triangulation of the
regular heptagon. Flips are shown with edges (in blue and red). The vertex set V (Kn) is partitioned
into a set Sn of five equivalence classes (of varying sizes). Within each class, all triangulations
share the same triangle containing the bottom edge e∗. Flips (edges) between triangulations in the
same class are shown in blue. Flips between triangulations in different classes are shown in red.
To “slice” K5 into its subgraphs, one must cut through these red matchings. Right: A class C∗(T)
from the graph K5 on the left-hand side, viewed as an induced subgraph of K5. The identifying
triangle T is marked with a blue dot. This subgraph is isomorphic to a Cartesian product of two K2

graphs; each copy of K2 induced by fixing the rightmost diagonal is outlined in green. “Peeling”
apart this product requires disconnecting the two red edges connecting the K2 copies.

3 Bounding expansion via multicommodity flows

The way we will lower-bound expansion is by using multicommodity flows [33, 23]. A
multicommodity flow ϕ in a graph G = (V, E) is a collection of functions {fst : A → R | s, t ∈
V }, where A =

⋃
{u,v}∈E{(u, v), (v, u)}, combined with a demand function D : V × V → R.

D. Eppstein and D. Frishberg 56:9

Each fst is a flow sending D(s, t) units of a commodity from vertex s to vertex t through
the edges of G. We consider the capacities of all edges to be infinite. Let fst(u, v) be the
amount of flow sent by fst across the arc (u, v). (It may be that fst(u, v) ̸= fst(v, u).) Let

f(u, v) = 1
|V |

∑
s,t∈V ×V

fst(u, v),

and let ρ = max(u,v)∈A f(u, v). Call ρ the congestion. Unless we specify otherwise, we will
mean by “multicommodity flow” a uniform multicommodity flow, i.e. one in which D(s, t) = 1
for all s, t. The following is well established and enables the use of multicommodity flows as
a powerful lower-bounding technique for expansion:

▶ Lemma 12. Given a uniform multicommodity flow f in a graph G = (V, E) with conges-
tion ρ, the expansion h(G) is at least 1/(2ρ).

Lemma 12, combined with Lemma 5, gives an automatic upper bound on mixing time
given a multicommodity flow with an upper bound on congestion – but with a quadratic loss.
As we will discuss in the full paper version, one can do better if the paths used in the flow
are short [13, 33].

4 Our framework

In addition to the new mixing bounds for triangulations and for general k-angulations, we
make general technical contributions, in the form of three meta-theorems, which we present
in this section. Our first general technical contribution, Theorem 13, provides a recursive
mechanism for analyzing the expansion of a flip graph in terms of the expansion of its
subgraphs. Equivalently, viewing the random walk on such a flip graph as a Markov chain,
this theorem provides a mechanism for analyzing the mixing time of a chain, in terms of the
mixing times of smaller restriction chains into which one decomposes the original chain – and
analyzing a projection chain over these smaller chains. We obtain, in certain circumstances
such as the k-angulation walk, better mixing time bounds than one obtains applying similar
prior decomposition theorems – which used a different underlying machinery.

The second theorem, Lemma 15, observes and formalizes a set of conditions satisfied
by a number of chains (equivalently, flip graphs) under which one can apply either our
Theorem 13, or prior decomposition techniques, to obtain rapid mixing reuslts. Depending
on the chain, one may then obtain better results either by applying Theorem 13, or by
applying the prior techniques. Lemma 15 does not require using our Theorem 13; instead,
one can use the spectral gap or log-Sobolev constant as the underlying techincal machinery
using Jerrum, Son, Tetali, and Vigoda’s Theorem 14. Prior work exists applying these
techniques (using Theorem 14) to sampling q-colorings [18] in bounded-treewidth graphs and
independent sets in regular trees [21], as well as probabilistic graphical models in machine
learning [11] satisfying certain conditions. Lemma 15 amounts to an observation unifying
these applications. We apply this observation to general k-angulations, noting that they
satisfy a relaxation of this theorem (Lemma 18), giving a quasipolynomial bound. This
bound will come from incurring a polynomial loss over logarithmic recursion depth.

The third theorem, Lemma 19, adapts the machinery in Theorem 13 to eliminate this
multiplicative loss altogether, assuming that a chain satisfies certain properties. One such key
property is the existence large matchings in Lemma 10 in Section 2. Another property, which
we will discuss further after presenting Lemma 19, is that the boundary sets – the vertices
in one class (equivalently, states in a restriction chain) having neighbors in another class –

ICALP 2023

56:10 Improved Mixing for the Convex Polygon Triangulation Flip Walk

are well connected to the rest of the first class. When these properties are satisfied, one can
apply our flow machinery to overcome the multiplicative loss and obtain a polynomial bound.
However, the improvement relies on observations about congestion that do not obviously
translate to the spectral setting.

4.1 Markov chain decomposition via multicommodity flow
In this section we state our first general theorem. To place our contribution in context with
prior work, we cast our flip graphs in the language of Markov chains. As we discussed in
Section 1.4, any Markov chain satisfying certain mild conditions has a stationary distribu-
tion π∗ (which in the case of our triangulation walks is uniform). We can view such a chain
as a random walk on a graph M (an unweighted graph in the case of the chains we consider,
which have uniform distributions and regular transition probabilities). In the case of convex
polygon triangulations, we have M = Kn.

The flip graph M has vertex set Ω and (up to normalization by degree) adjacency matrix P

– and we abuse notation, identifying the Markov chain M with this graph. When π∗ is
not uniform, it is easy to generalize the flip graph to a weighted graph, with each vertex
(state) t assigned weight π(t), and each transition (edge) (t, t′) assigned weight π(t)P (t, t′) =
π(t′)P (t′, t). We assume here that this latter equality holds, a condition on the chain M known
as reversibility. We then replace a uniform multicommodity flow with one where D(t, t′) =
π(t)π(t′) (up to normalization factors).

Consider a Markov chain M with finite state space Ω and probability transition
matrix P , and stationary distribution π. Consider a partition of the states of Ω into
classes Ω1, Ω2, . . . , Ωk. Let the restriction chain, for i = 1, . . . , k, be the chain with state
space Ωi, probability distribution πi, with πi(x) = π(x)/(

∑
y∈Ωi

π(y)), for x ∈ Ωi, and
transition probabilities Pi(x, y) = P (x, y)/(

∑
z∈Ωi

P (x, z)). Let the projection chain be the
chain with state space Ω̄ = {1, 2, . . . , k}, stationary distribution π̄, with π̄(i) =

∑
x∈Ωi

π(i),
and transition probabilities P̄ (i, j) =

∑
x∈Ωi,y∈Ωj

P (x, y).

▶ Theorem 13. Let M be a reversible Markov chain with finite state space Ω prob-
ability transition matrix P , and stationary distribution π∗. Suppose M is connec-
ted (irreducible). Suppose M can be decomposed into a collection of restriction
chains (Ω1, P1), (Ω2, P2), . . . , (Ωk, Pk), and a projection chain (Ω̄, P̄). Suppose each restric-
tion chain admits a multicommodity flow (or canonical paths) construction with congestion at
most ρmax. Suppose also that there exists a multicommodity flow construction in the projection
chain with congestion at most ρ̄. Then there exists a multicommodity flow construction in M
(viewed as a weighted graph in the natural way) with congestion

(1 + 2ρ̄γ∆)ρmax,

where γ = maxi∈[k] maxx∈Ωi

∑
y /∈Ωi

P (x, y), and ∆ is the degree of M.

We give a full proof in the full version of the paper. Jerrum, Son, Tetali, and Vigoda [21]
presented an analogous (and classic) decomposition theorem, which we restate below as
Theorem 14, and which has become a standard tool in mixing time analysis. The key
difference between our theorem and theirs is that our theorem uses multicommodity flows,
while their theorem uses the so-called spectral gap – another parameter that can use to
bound the mixing time of a chain. Often, the spectral gap gives tighter mixing bounds
than combinatorial methods. Their Theorem 14 gave bounds analogous to our Theorem 13,
but with the multicommodity flow congestion replaced with the spectral gap of a chain

D. Eppstein and D. Frishberg 56:11

– and with a 3γ term in place of our 2γ. (They also gave an analogous version for the
log-Sobolev constant – yet another parameter for bounding mixing times.) The spectral gap of
a chain M = (Ω, P), which we denote λ, is the difference between the two largest eigenvalues
of the transition matrix P (which we can view as the normalized adjacency matrix of the
corresponding weighted graph). The key point is that while on the one hand the mixing
time τ satisfies τ ≤ λ−1 log |Ω|, the bound on mixing using expansion in Lemma 5 comes
from passing through the spectral gap: λ ≥ (h(M))2

2∆2 , where ∆ is the degree of the flip graph
and h(M) is the expansion of M. The quadratic loss in passing from expansion to mixing is
not incurred when bounding the spectral gap directly, so one can obtain better bounds via
the spectral gap. Jerrum, Son, Tetali, and Vigoda gave a mechanism for doing precisely this:

▶ Theorem 14 ([21]). Let M be a reversible Markov chain with finite state space Ω
probability transition matrix P , and stationary distribution π∗. Suppose M is con-
nected (irreducible). Suppose M can be decomposed into a collection of restriction
chains (Ω1, P1), (Ω2, P2), . . . , (Ωk, Pk), and a projection chain (Ω̄, P̄). Suppose each re-
striction chain has spectral gap at least λmin. Suppose also that the projection chain has
spectral gap at least λ̄. Then M has gap at least

min
{

λmin

3 ,
λ̄λmin

3γ + λ̄

}
,

where γ is as in Theorem 13.

Our Theorem 13 has a simple, purely combinatorial proof (in the full paper version), and
fills a gap in the literature by showing that such a construction can be used in place of the
spectral machinery from the earlier technique. We also obtain a tighter bound on expansion
than would result from a black-box application of Theorem 14. The cost to our improvement
is in passing from expansion to mixing via the spectral gap. Nonetheless, we will show
that in the case of triangulations, our Theorem 13 can be adapted to give a new mixing
bound whereas, by contrast, it is not clear how to obtain even a polynomial bound adapting
Jerrum, Son, Tetali, and Vigoda’s spectral machinery. We will also show that for general
k-angulations, one can, with our technique, use a combinatorial insight to eliminate the γ

factor in our decomposition in favor of a ∆−1 factor (for k-angulations we have γ = k/∆) –
whereas it is not clear how to do so with the spectral decomposition.

4.2 General pattern for bounding projection chain congestion
Our second decomposition theorem, which we will apply to general k-angulations, states that
if one can recursively decompose a chain into restriction chains in a particular fashion, and if
the projection chain is well connected, then Theorem 13 gives an expansion bound:

▶ Lemma 15. Let F = {M1, M2, . . . } be a family of connected graphs, parameterized by a
value n. Suppose that every graph Mn = (Vn, En) ∈ F , for n ≥ 2, can be partitioned into a
set Sn of classes satisfying the following conditions:
1. Each class in Sn is isomorphic to a Cartesian product of one or more graphs C(T) ∼=

Mi1□ · · · Mik
, where for each such graph Mij

∈ F , ij ≤ n/2.
2. The number of classes is O(1).
3. For every pair of classes C(T), C(T ′) ∈ Sn that share an edge, the number of edges between

the two classes is Ω(1) times the size of each of the two classes.
4. The ratio of the sizes of any two classes is Θ(1).
Suppose further that |V1| = 1. Then the expansion of Mn is Ω(n−O(1)).

ICALP 2023

56:12 Improved Mixing for the Convex Polygon Triangulation Flip Walk

Lemma 15 is easy to prove given Theorem 13. An analogue in terms of spectral gap is
easy to prove given Theorem 14. Furthermore, as we will prove in the full paper version, a
precise statement of the bounds given by Lemma 15 is as follows:

▶ Lemma 16. Suppose a flip graph Mn = (Vn, En) belongs to a family F of graphs satisfying
the conditions of Lemma 15. Suppose further that every graph Mk = (Vk, Ek) ∈ F , k < n,
satisfies

|Vk|/|Ek,min| ≤ f(k),

for some function f(k), where Ek,min is the smallest edge set between adjacent classes
C(T), C(T ′) ∈ Sk, where Sk is as in Lemma 15. Then the expansion of Mn is

Ω(1/(2f(n))log n)),

where γ is as in Theorem 13, and ∆ is the degree of Mn.

Proof. Constructing an arbitrary multicommodity flow (or set of canonical paths) in the
projection graph at each inductive step gives the result claimed. The term |Vk|/|Ek,min|
bounds the (normalized) congestion in any such flow because the total amount of flow
exchanged by all pairs of vertices (states) combined is |Vk|2, and the minimum weight of an
edge in the projection graph is |Ek,min|.

Notice that we do not incur a γ∆ term here, because even if a state (vertex) in Ωi ⊆ Vk

has neighbors x ∈ Ωj , y ∈ Ωl, z still only receives no more than |Vk|2/Ek,min} flow across the
edges (z, x) and (z, y) combined. ◀

▶ Remark 17. The γ∆ factor in Theorem 13, which does not appear in Lemma 16, does
appear in a straightforward appliation of Jerrum, Son, Tetali, and Vigoda’s Theorem 14.

We will show that k-angulations (with fixed k ≥ 4) satisfy a relaxation of Lemma 15:

▶ Lemma 18. Suppose a family F of graphs satisfies the conditions of Lemma 15, with
the Ω(1), O(1), and Θ(1) factors in Conditions 3, 2, and 4 respectively replaced by Ω(n−O(1)),
O(nO(1)), and Θ(nO(1)). Then for every Mn ∈ F , the expansion of Mn is Ω(n−O(log n)).

Lemma 15 enables us to relate a number of chains admitting a certain decomposition
process in a black-box fashion, unifying prior work applying Theorem 14 separately to
individual chains. Marc Heinrich [18] presented a similar but less general construction
for the Glauber dynamics on q-colorings in bounded-treewidth graphs; other precursors
exist, including for the hardcore model on certain trees [21] and a general argument for a
class of graphical models [11]. In the companion paper [15] we mentioned in Section 1, we
apply Lemma 15 to chains for sampling independent sets and dominating sets in bounded-
treewidth graphs, as well as chains on q-colorings, maximal independent sets, and several
other structures, in graphs whose treewidth and degree are bounded.

4.3 Eliminating inductive loss: nearly tight conductance for
triangulations

We now give the meta-theorem that we will apply to triangulations. Lemma 15 – using
either Theorem 13 or Theorem 14 – gives a merely quasipolynomial bound when applied
straightforwardly to k-angulations, including the case of triangulations – simply because the
f(n) term in Lemma 16 is ω(1) and thus the overall congestion is ω(1)log n (not polynomial).
However, it turns out that the large matchings given by Lemma 10 between pairs of classes

D. Eppstein and D. Frishberg 56:13

in the case of triangulations (but not general k-angulations), combined with some additional
structure in the triangulation flip walk, satisfy an alternative set of conditions that suffice
for rapid mixing. The conditions are:

▶ Lemma 19. Let F = {M1, M2, . . . } be an infinite family of connected graphs, parameter-
ized by a value n. Suppose that for every graph Mn = (Vn, En) ∈ F , for n ≥ 2, the vertex
set Vn can be partitioned into a set Sn of classes inducing subgraphs of Mn that satisfy the
following conditions:
1. Each subgraph is isomorphic to a Cartesian product of one or more graphs C(T) ∼=

Mi1□ · · · Mik
, where for each such graph Mij ∈ F , ij < n.

2. The number of classes is nO(1).
3. For every pair of classes C(T), C(T ′) ∈ Sn, the set of edges between the subgraphs induced

by the two classes is a matching of size at least |C(T)||C(T ′)|
|Vn| .

4. Given a pair of classes C(T), C(T ′) ∈ Sn, there exists a graph Mi in the Cartesian
product C(T), and a class C(U) ∈ Si within the graph Mi, such that the set of vertices
in C(T) having a neighbor in C(T ′) is precisely the set of vertices in C(T) whose projection
onto Mi lies in C(U). Furthermore, no class C(U) within Mi is the projection of more
than one such boundary.

Suppose further that |V1| = 1. Then the expansion of Mn is Ω(1/(κ(n)n)), where κ(n) =
max1≤i≤n |C(Si)| is the maximum number of classes in any Mi, i ≤ n.

Unlike Lemma 15, this lemma requires a purely combinatorial construction; it is not clear
how to apply spectral methods to obtain even a polynomial bound. Condition 4 is crucial.
To give more intuition for this condition, we state and prove the following fact about the
triangulation flip graph (visualized in Figure 3):

T T
′

Tk

C(T) C(T ′)

BT ′(T)

BT (T
′)

E(T, T ′)

C(T) ∼= Mj1� · · ·�Mi� · · ·�Mjk

Mi

BT ′(T) ∼= Mj1� · · ·�C(U)� · · ·�Mjk

Mi

C(U)

Mi

Mi Mi Mi

C(U) C(U)

C(U)C(U)C(U)

Figure 3 Left: (Lemma 20) The set of edges E∗(T, T ′) has Ki□C∗(Tk) as its set of boundary
vertices in C∗(T). Center: An illustration of Condition 3 in Lemma 19, showing a large match-
ing E(T, T ′) between two classes (subgraphs) C(T) and C(T ′). Right: An illustration of Conditions 1
and 4 in Lemma 19: C(T) as a Cartesian product of smaller graphs Mj1 , . . . , Mi, . . . , Mjk in the
family F . The schematic view shows this Cartesian product as a collection of copies of Mi, connected
via perfect matchings between pairs of the copies – with the pairs to connect determined by the
structure of the Cartesian product. The boundary BT ′ (T) (center) is isomorphic to a class C(U)
(right) within Mi, a graph in the product. Within each copy of Mi, many edges connect C(U) to
the rest of Mi.

▶ Lemma 20. Given T, T ′ ∈ Tn, suppose T ′ lies to the right of T . Then the subgraph of C∗(T)
induced by B∗

n,T ′(T) is isomorphic to a Cartesian product Kl□C∗(Tk), where l + r = n − 1,
and where Tk has as an edge the right diagonal of T , and as the vertex opposite this edge the
topmost vertex of T ′. A symmetric fact holds for B∗

n,T (T ′).

Proof. Every triangulation in B∗
n,T ′(T) (i) includes the triangle T and (ii) is a single flip

away from including the triangle T ′. As we observed in the proof of Lemma 7, this implies
that B∗

n,T ′(T) consists of the set of triangulations in C∗(T) containing a quadrilateral Q.

ICALP 2023

56:14 Improved Mixing for the Convex Polygon Triangulation Flip Walk

Specifically, Q shares two sides with T : one of these is e∗, and the other is the left side of T .
One of the other two sides of Q is the right side of C∗(T ′). Combining this side with the “top”
side of Q and with the right side of T , one obtains the triangle Tk, proving the claim. ◀

Lemma 20 implies that there are many edges between the boundary set B∗
n,T ′(T) and the

rest of C∗(T): C∗(T) ∼= Kl□Kr, where Kl and Kr are smaller associahedron graphs, so C∗(T)
is a collection of copies of Kr, with pairs of copies connected by perfect matchings. Each Kr

copy can itself be decomposed into a set Sr of classes, one of which, namely C∗(Tk), is the
intersection of B∗

n,T ′(T) with the Kr copy. Applying Condition 3 to the Kr copy implies that
there are many edges between boundary vertices in C∗(Tk) to other subgraphs (classes) in
the Kr copy. That is, the boundary set B∗

n,T ′(T) is well connected to the rest of C∗(T).
Figure 3 visualizes this situation in general terms for the framework. We have now proven:

▶ Lemma 21. The associahedron graph Kn, along with the oriented partition we have defined,
satisfies the conditions of Lemma 19.

Proof. The connectedness of Kn is known [29]. Conditions 1 and 3 follow from Lemma 6,
Lemma 8, and Lemma 10. Concerning the boundary sets, Condition 4 follows from Lemma 20
and from the discussion leading to this lemma. ◀

Together with Lemma 5 and the easy fact that Kn is a Θ(n)-regular graph, Lemma 21
implies rapid mixing, pending the proof of Lemma 19 – which we prove in the full paper
version [16].

4.4 Intuition for the flow construction for triangulations
We will prove Lemma 19 in the full paper version, from which a coarse expansion lower bound
for triangulations – and a corresponding coarse (but polynomial) upper bound for mixing –
will be immediate by Lemma 21. We give some intuition now for the flow construction we
will give in the proof of Lemma 19, and in particular for the centrality of Condition 3 and
Condition 4 (corresponding respectively to Lemma 10 and Lemma 20 for triangulations).
Consider the case of triangulations, for concreteness. Every t ∈ C∗(T), t′ ∈ C∗(T ′) must
exchange a unit of flow. This means that a total of |C∗(T)||C∗(T ′)| flow must be sent across
the matching E∗(T, T ′). To minimize congestion, it will be optimal to equally distribute this
flow across all of the boundary matching edges. We can decompose the overall problem of
routing flow from each t ∈ C∗(T) to each t′ ∈ C∗(T ′) into three subproblems: (i) concentrating
flow from every triangulation in C∗(T) within the boundary set B∗

n,T ′(T), (ii) routing flow
across the matching edges E∗(T, T ′), i.e. from B∗

n,T ′(T) ⊆ C∗(T) to B∗
n,T (T ′) ⊆ C∗(T ′), and

(iii) distributing flow from the boundary B∗
n,T (T ′) to each t′ ∈ C∗(T ′). Now, the amount of

flow that must be concentrated from C∗(T) at each boundary triangulation u ∈ B∗
n,T ′(T)

(and symmetrically distributed from each v ∈ B∗
n,T (T ′) throughout C∗(T ′)) is equal to

|C∗(T)||C∗(T ′)|
|B∗

n,T ′(T)| = |C∗(T)||C∗(T ′)|
|B∗

n,T (T ′)| = |C∗(T)||C∗(T ′)|
|E∗(T, T ′)| ≤ Cn,

where we have used the equality |B∗
n,T ′(T)| = |B∗

n,T (T ′)| = |E∗(T, T ′)| by Lemma 7 and
Lemma 8, and where the inequality follows from Lemma 10. As a result, in the “concen-
tration” and “distribution” subproblems (i) and (iii), at most Cn flow is concentrated at or
distributed from any given triangulation (Figure 4). This bound yields a recursive structure:
the concentration (respectively distribution) subproblem decomposes into a flow problem

D. Eppstein and D. Frishberg 56:15

C(T) C(T ′)

BT ′(T)

BT (T
′)

E(T, T ′)

Mi

C(U)

C(U) C(U ′)

BU ′(U)

BU (U
′)

E(U,U ′)

Figure 4 Left: The problem of sending flow from each t ∈ C∗(T) to each t′ ∈ C∗(T ′), decomposed
into subproblems: (i) concentrating flow within B∗

n,T ′ (T), (ii) transmitting the flow across the bound-
ary matching E∗(T, T ′), and (iii) distributing the flow from B∗

n,T (T ′) throughout C∗(T ′). Center:
Within each copy of Mi in the product C∗(T ′) ∼= Mj1□ · · ·□Mi□ · · ·□Mjk , the distribution prob-
lem in Figure 4 induces the problem of distributing flow from a class C∗(U) – namely the projection
of B∗

n,T (T ′) onto Mi – throughout the rest of Mi. Right: The problem in the center figure induces
subproblems in which C∗(U) ⊆ Mi must send flow to each C∗(U ′) ⊆ Mi. These subproblems are of
the same form as the original C∗(T), C∗(T ′) problem (left), and can be solved recursively. The large
matchings E∗(T, T ′), E∗(U, U ′) guaranteed by Condition 3 prevent any recursive congestion increase.

within C∗(T) (respectively C∗(T ′)), in which, by the inequality, each triangulation has Cn

total units of flow it must receive (or send). We will then apply Condition 4, observing
(see Figure 4) that the concentration (symmetrically) distribution of this flow can be done
entirely between pairs of classes C∗(U), C∗(U ′) within copies of a smaller flip graph Mi in
the Cartesian product C∗(T ′) ∼= Mj1□ · · ·□Mi□ · · ·□Mjk

.

The C∗(U), C∗(U ′) subproblem is of the same form as the original C∗(T), C∗(T ′) problem
(Figure 4), and we will show that the Cn bound on the flow (normalizing to congestion one)
across the E∗(T, T ′) edges will induce the same Cn bound across the E∗(U, U ′) edges in the
induced subproblem. We further decompose the C∗(U), C∗(U ′) problem into concentration,
transmission, and distribution subproblems without any gain in overall congestion. To see
this, view the initial flow problem in Kn as though every triangulation t ∈ V (Kn) is initially
“charged” with |V (Kn)| = Cn total units of flow to distribute throughout Kn. Similarly, in
the induced distribution subproblem within each copy of Mi = Ki in the product C∗(T ′),
each vertex on the boundary B∗

n,T ′(T) is initially “charged” with Cn total units to distribute
throughout Ki. Just as the original problem in Kn results in each E∗(T, T ′) carrying at
most Cn flow across each edge, similarly (we will show in the full paper version) the induced
problem in Ki results in each E∗(U, U ′) carrying at most Cn flow across each edge. This
preservation of the bound Cn under the recursion avoids any congestion increase.

One must be cautious, due to the linear recursion depth, not to accrue even a constant-
factor loss in the recursive step (the coefficient 2 in Theorem 13). In Theorem 13, it turns
out that this loss comes from routing outbound flow within a class C∗(T) – flow that must be
sent to other classes – and then also routing inbound flow. The combination of these steps
involves two “recursive invocations” of a uniform multicommodity flow that is inductively
assumed to exist within C∗(T). We will show in the full paper version that one can avoid the
second “invocation” with an initial “shuffling” step: a uniform flow within C∗(T) in which
each triangulation t ∈ C∗(T) distributes all of its outbound flow evenly throughout C∗(T).

It is here that Jerrum, Son, Tetali, and Vigoda’s spectral Theorem 14 breaks down, giving
a 3-factor loss at each recursion level, due to applying the Cauchy-Schwarz inequality to a
Dirichlet form that is decomposed into expressions over the restriction chains. Although
Jerrum, Son, Tetali, and Vigoda gave circumstances for mitigating or eliminating their
multiplicative loss, this chain does not satisfy those conditions in an obvious way.

ICALP 2023

56:16 Improved Mixing for the Convex Polygon Triangulation Flip Walk

References
1 Nima Anari, Kuikui Liu, and Shayan Oveis Gharan. Spectral independence in high-dimensional

expanders and applications to the hardcore model. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), pages 1319–1330, 2020. doi:10.1109/FOCS46700.
2020.00125.

2 Nima Anari, Kuikui Liu, Shayan Oveis Gharan, and Cynthia Vinzant. Log-concave polynomials
II: High-dimensional walks and an FPRAS for counting bases of a matroid. In Proceedings of
the 51st Annual ACM SIGACT Symposium on Theory of Computing (STOC 2019), New York,
NY, USA, 2019. Association for Computing Machinery. doi:10.1145/3313276.3316385.

3 Nima Anari, Shayan Oveis Gharan, and Cynthia Vinzant. Log-concave polynomials, entropy,
and a deterministic approximation algorithm for counting bases of matroids. In 2018 IEEE
59th Annual Symposium on Foundations of Computer Science (FOCS), pages 35–46, 2018.
doi:10.1109/FOCS.2018.00013.

4 Emile E. Anclin. An upper bound for the number of planar lattice triangulations. Journal
of Combinatorial Theory, Series A, 103(2):383–386, 2003. doi:10.1016/S0097-3165(03)
00097-9.

5 Pietro Caputo, Fabio Martinelli, Alistair Sinclair, and Alexandre Stauffer. Dynamics of
lattice triangulations on thin rectangles. Electronic Journal of Probability, 21, May 2015.
doi:10.1214/16-EJP4321.

6 Pietro Caputo, Fabio Martinelli, Alistair Sinclair, and Alexandre Stauffer. Random lattice
triangulations: structure and algorithms. Annals of Applied Probability, 25:1650–1685, 2015.

7 Alessandra Caraceni and Alexandre Stauffer. Polynomial mixing time of edge flips on
quadrangulations. Probability Theory and Related Fields, 176(1):35–76, February 2020.
doi:10.1007/s00440-019-00913-5.

8 Zongchen Chen, Andreas Galanis, Daniel Štefankovič, and Eric Vigoda. Rapid mixing for
colorings via spectral independence. In Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1548–1557, 2021. doi:10.1137/1.9781611976465.94.

9 Zongchen Chen, Kuikui Liu, and Eric Vigoda. Rapid mixing of Glauber dynamics up to
uniqueness via contraction, 2020. arXiv:2004.09083.

10 Zongchen Chen, Kuikui Liu, and Eric Vigoda. Optimal mixing of glauber dynamics: Entropy
factorization via high-dimensional expansion. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, pages 1537–1550, 2021.

11 Christopher M De Sa, Ce Zhang, Kunle Olukotun, and Christopher Ré. Rapidly Mixing Gibbs
Sampling for a Class of Factor Graphs Using Hierarchy Width. In C. Cortes, N. Lawrence,
D. Lee, M. Sugiyama, and R. Garnett, editors, Advances in Neural Information Processing
Systems, volume 28. Curran Associates, Inc., 2015. URL: https://proceedings.neurips.cc/
paper/2015/file/b29eed44276144e4e8103a661f9a78b7-Paper.pdf.

12 Persi Diaconis and Laurent Saloff-Coste. Comparison theorems for reversible markov chains.
The Annals of Applied Probability, 3(3):696–730, 1993.

13 Persi Diaconis and Daniel Stroock. Geometric Bounds for Eigenvalues of Markov Chains. The
Annals of Applied Probability, 1(1):36–61, 1991. doi:10.1214/aoap/1177005980.

14 Martin Dyer, Leslie Ann Goldberg, and Mark Jerrum. Matrix norms and rapid mixing for spin
systems. The Annals of Applied Probability, 19(1):71–107, 2009. URL: http://www.jstor.
org/stable/30243572.

15 David Eppstein and Daniel Frishberg. Rapid mixing of the hardcore Glauber dynamics and
other Markov chains in bounded-treewidth graphs. CoRR, 2021. doi:10.48550/arXiv.2111.
03898.

16 David Eppstein and Daniel Frishberg. Improved mixing for the convex polygon triangulation
flip walk. CoRR, abs/2207.09972, 2022. doi:10.48550/arXiv.2207.09972.

17 F. Graham and P. Tetali. Isoperimetric inequalities for cartesian products of graphs. Comb.
Probab. Comput., 7:141–148, 1998.

https://doi.org/10.1109/FOCS46700.2020.00125
https://doi.org/10.1109/FOCS46700.2020.00125
https://doi.org/10.1145/3313276.3316385
https://doi.org/10.1109/FOCS.2018.00013
https://doi.org/10.1016/S0097-3165(03)00097-9
https://doi.org/10.1016/S0097-3165(03)00097-9
https://doi.org/10.1214/16-EJP4321
https://doi.org/10.1007/s00440-019-00913-5
https://doi.org/10.1137/1.9781611976465.94
https://arxiv.org/abs/2004.09083
https://proceedings.neurips.cc/paper/2015/file/b29eed44276144e4e8103a661f9a78b7-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/b29eed44276144e4e8103a661f9a78b7-Paper.pdf
https://doi.org/10.1214/aoap/1177005980
http://www.jstor.org/stable/30243572
http://www.jstor.org/stable/30243572
https://doi.org/10.48550/arXiv.2111.03898
https://doi.org/10.48550/arXiv.2111.03898
https://doi.org/10.48550/arXiv.2207.09972

D. Eppstein and D. Frishberg 56:17

18 Marc Heinrich. Glauber dynamics for colourings of chordal graphs and graphs of bounded
treewidth, 2020. arXiv:2010.16158.

19 Peter J. Hilton and Jean J. Pedersen. Catalan numbers, their generalization, and their uses.
The Mathematical Intelligencer, 13:64–75, 1991.

20 Mark Jerrum and Alistair Sinclair. Conductance and the rapid mixing property for Markov
chains: The approximation of permanent resolved. In Proceedings of the Twentieth Annual
ACM Symposium on Theory of Computing, STOC ’88, 1988. doi:10.1145/62212.62234.

21 Mark Jerrum, Jung-Bae Son, Prasad Tetali, and Eric Vigoda. Elementary bounds on Poincaré
and log-Sobolev constants for decomposable Markov chains. The Annals of Applied Probability,
14(4):1741–1765, 2004. URL: http://www.jstor.org/stable/4140446.

22 V. Kaibel and G. Ziegler. Counting lattice triangulations. arXiv: Combinatorics, 2002.
23 Volker Kaibel. On the expansion of graphs of 0/1-polytopes. In The Sharpest Cut: The Impact

of Manfred Padberg and His Work, pages 199–216. SIAM, 2004.
24 Tali Kaufman and Izhar Oppenheim. High order random walks: Beyond spectral gap.

Combinatorica, 40(2):245–281, 2020.
25 David A. Klarner. Correspondences between plane trees and binary sequences. Journal of

Combinatorial Theory, 9(4):401–411, 1970. doi:10.1016/S0021-9800(70)80093-X.
26 Vedat Levi Alev and Lap Chi Lau. Improved analysis of higher order random walks and

applications. arXiv e-prints, 2020. arXiv:2001.02827.
27 David A Levin, Yuval Peres, and Elizabeth Wilmer. Markov chains and mixing times, volume

107. American Mathematical Soc., 2017.
28 J. Loday. The multiple facets of the associahedron. In Proc. 2005 Academy Coll. Series, 2005.
29 Lisa McShine and P. Tetali. On the mixing time of the triangulation walk and other catalan

structures. In Randomization Methods in Algorithm Design, 1997.
30 Milena Mihail and Umesh Vazirani. On the expansion of 0-1 polytopes. Journal of Combinat-

orial Theory, Series B, 1989.
31 Michael Molloy, Bruce Reed, and William Steiger. On the mixing rate of the triangulation

walk. In Randomization Methods in Algorithm Design, 1997.
32 Dana Randall and Prasad Tetali. Analyzing glauber dynamics by comparison of markov chains.

In Latin American Symposium on Theoretical Informatics, pages 292–304. Springer, 1998.
33 Alistair Sinclair. Improved bounds for mixing rates of Markov chains and multicommod-

ity flow. Combinatorics, Probability and Computing, 1(4):351–370, 1992. doi:10.1017/
S0963548300000390.

34 Daniel D Sleator, Robert E Tarjan, and William P Thurston. Rotation distance, triangulations,
and hyperbolic geometry. Journal of the American Mathematical Society, 1(3):647–681, 1988.

35 Alexandre Stauffer. A Lyapunov function for Glauber dynamics on lattice triangulations.
Probability Theory and Related Fields, 169:469–521, 2015.

ICALP 2023

https://arxiv.org/abs/2010.16158
https://doi.org/10.1145/62212.62234
http://www.jstor.org/stable/4140446
https://doi.org/10.1016/S0021-9800(70)80093-X
https://arxiv.org/abs/2001.02827
https://doi.org/10.1017/S0963548300000390
https://doi.org/10.1017/S0963548300000390

Optimal Adjacency Labels for Subgraphs of
Cartesian Products
Louis Esperet #

Laboratoire G-SCOP, Grenoble, France

Nathaniel Harms #

EPFL, Lausanne, Switzerland

Viktor Zamaraev #

University of Liverpool, UK

Abstract
For any hereditary graph class F , we construct optimal adjacency labeling schemes for the classes
of subgraphs and induced subgraphs of Cartesian products of graphs in F . As a consequence, we
show that, if F admits efficient adjacency labels (or, equivalently, small induced-universal graphs)
meeting the information-theoretic minimum, then the classes of subgraphs and induced subgraphs
of Cartesian products of graphs in F do too. Our proof uses ideas from randomized communication
complexity and hashing, and improves upon recent results of Chepoi, Labourel, and Ratel [Journal
of Graph Theory, 2020].

2012 ACM Subject Classification Mathematics of computing → Graph theory; Mathematics of
computing → Combinatorics

Keywords and phrases Adjacency labeling schemes, Cartesian product, Hypercubes

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.57

Category Track A: Algorithms, Complexity and Games

Funding Louis Esperet: Partially supported by the French ANR Projects GATO (ANR-16-CE40-0009-
01), GrR (ANR-18-CE40-0032), TWIN-WIDTH (ANR-21-CE48-0014-01) and by LabEx PERSYVAL-
lab (ANR-11-LABX-0025).
Nathaniel Harms: This work was partly funded by NSERC, and was done while the author was a
student at the University of Waterloo, visiting Laboratoire G-SCOP and the University of Liverpool.

Acknowledgements We are very grateful to Sebastian Wild, who prevented us trying to reinvent
perfect hashing.

1 Introduction

In this paper, we present optimal adjacency labeling schemes (equivalently, induced-universal
graph constructions) for subgraphs of Cartesian products, which essentially closes a recent
line of work studying these objects [1, 2, 3, 4, 8, 10].

Adjacency labeling

A class of graphs is a set F of graphs closed under isomorphism, where the set Fn ⊆ F
of graphs on n vertices has vertex set [n]. It is hereditary if it is also closed under taking
induced subgraphs, and monotone if it is also closed under taking subgraphs. An adjacency
labeling scheme for a class F consists of a decoder D : {0, 1}∗ × {0, 1}∗ → {0, 1} such that
for every G ∈ F there exists a labeling ℓ : V (G) → {0, 1}∗ satisfying

∀x, y ∈ V (G) : D(ℓ(x), ℓ(y)) = 1 ⇐⇒ xy ∈ E(G) .

EA
T
C
S

© Louis Esperet, Nathaniel Harms, and Viktor Zamaraev;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 57; pp. 57:1–57:11

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:louis.esperet@grenoble-inp.fr
https://orcid.org/0000-0001-6200-0514
mailto:nathaniel.harms@epfl.ch
https://orcid.org/0000-0003-0259-9355
mailto:viktor.zamaraev@liverpool.ac.uk
https://orcid.org/0000-0001-5755-4141
https://doi.org/10.4230/LIPIcs.ICALP.2023.57
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

57:2 Optimal Adjacency Labels for Subgraphs of Cartesian Products

The size of the adjacency labeling scheme (or labeling scheme for short) is the function
n 7→ maxG∈Fn

maxx∈V (G) |ℓ(x)|, where |ℓ(x)| is the number of bits of ℓ(x). Labeling schemes
have been studied extensively since their introduction by Kannan, Naor, & Rudich [13] and
Muller [15]. If F admits a labeling scheme of size s(n), then a graph G ∈ Fn can be recovered
from the n · s(n) total bits in the adjacency labels of its vertices, so a labeling scheme is
an encoding of the graph, distributed among its vertices. The information-theoretic lower
bound on any encoding is log |Fn|, so the question is, when can the distributed adjacency
labeling scheme approach this bound? In other words, which classes of graphs admit labeling
schemes of size O(1

n log |Fn|)? We will say that a graph class has an efficient labeling scheme
if it either has a labeling scheme of size O(1) (i.e. it satisfies log |Fn| = o(n log n) [16]), or
O(1

n log |Fn|).

Cartesian products

Write G□H for the Cartesian product of G and H , write Gd for the d-wise Cartesian product
of G, and for any class F write F□ = {G1□G2□ · · ·□Gd : d ∈ N, Gi ∈ F} for the class of
Cartesian products of graphs in F . A vertex x of G1□ · · ·□Gd can be written x = (x1, . . . , xd)
where xi ∈ V (Gi) and two vertices x, y are adjacent if and only if they differ on exactly
one coordinate i ∈ [d], and on this coordinate xiyi ∈ E(Gi). Write mon(F□) and her(F□),
respectively, for the monotone and hereditary closures of this class, which are the sets of all
graphs G that are a subgraph (respectively, induced subgraph) of some H ∈ F□.

We will construct optimal labeling schemes for mon(F□) and her(F□) from an optimal
labeling scheme for F . Cartesian products appear several times independently in the recent
literature on labeling schemes [3, 8, 2] (and later in [10, 1, 4]), and are extremely natural for
the problem of adjacency labeling for a few reasons.

First, for example, if F is the class of complete graphs, a labeling scheme for her(F□) is
equivalent to an encoding ℓ : T → {0, 1}∗ of strings T ⊆ Σ∗, with Σ being an arbitrarily large
finite alphabet, such that a decoder who doesn’t know T can decide whether x, y ∈ T have
Hamming distance 1, using only the encodings ℓ(x) and ℓ(y). Replacing complete graphs
with, say, paths, one obtains induced subgraphs of grids in arbitrary dimension. Switching
to mon(F□) allows arbitrary edges of these products to be deleted.

Second, Cartesian product graphs admit, by definition, a natural but inefficient “implicit
representation”, meaning (informally) that the adjacency between two vertices x and y can
be verified by examining their representation (in this case, the tuples x = (x1, . . . , xd) and
y = (y1, . . . , yd)). Formalizing and quantifying this general notion was the motivation for
labeling schemes in [13], who also observed that adjacency labeling schemes are equivalent
to induced-universal graphs (or simply universal graphs). A sequence of graphs (Un)n∈N
are universal graphs of size n 7→ |Un| for a class F if each n-vertex graph G ∈ F is an
induced subgraph of Un. A labeling scheme of size s(n) is equivalent to a universal graph of
size 2s(n), and Cartesian product graphs admit natural but inefficient universal graphs: if
(Un)n∈N are universal graphs for F then for large enough d = d(n), the graphs (Ud

n)n∈N are
universal for her(F□). In general, this construction has exponential size: the hypercubes Kd

2
are themselves universal for her({K2}□), but a star with n − 1 leaves cannot be embedded
in Kd

2 for d < n − 1, so these universal graphs are of size at least 2n−1. It is not clear a
priori whether it is possible to use the universal graphs for the base class F to obtain more
efficient universal graphs for her(F□), and even less clear for mon(F□), but we will show in
this paper how to do so.

Finally, there was the possibility that subgraphs of Cartesian products could provide
the first explicit counterexample to the Implicit Graph Conjecture (IGC) of [13, 17], which
suggested that the condition log |Fn| = O(n log n) was sufficient for F to admit a labeling

L. Esperet, N. Harms, and V. Zamaraev 57:3

scheme of size O(log n); this was refuted by a non-constructive counting argument in a recent
breakthrough of Hatami & Hatami [11]. There is a labeling scheme of size O(log2 n) for the
subgraphs of hypercubes, due to a folklore bound of log n on the degeneracy of this class
(see [5]) and a general O(k log n) labeling scheme for classes of degeneracy k [13]. Designing
an efficient labeling scheme for induced subgraphs of hypercubes (rather, the weaker question
of proving bounds on |Fn| for this family) was an open problem of Alecu, Atminas, &
Lozin [2], resolved concurrently and independently in [8]; this also gave an example of a
class with an efficient labeling scheme but unbounded functionality, answering another open
question of [2]. Also independently, Chepoi, Labourel, & Ratel [3] studied the structure of
general Cartesian products, motivated by the problem of designing labeling schemes for the
classes mon(F□). They give upper bounds (via bounds on the degeneracy) for a number of
special cases but do not improve on the O(log2 n) bound for hypercubes. The following 3
observations then suggested that subgraphs of Cartesian products could give the first explicit
counterexample to the IGC (and this was posed as an open problem in [4]):
1. It is shown in [4] that, while induced subgraphs of hypercubes have a constant-size

adjacency sketch (a probabilistic version of a labeling scheme), the subgraphs of hypercubes
do not, so, with respect to randomized labels, subgraphs are more complex than induced
subgraphs.

2. The above result shows that the class of subgraphs of hypercubes is a counterexample
to a conjecture of [10]. That conjecture was refuted earlier by a construction of [7] that,
with some extension, refuted the IGC itself [11].

3. The previous work considering Cartesian products [3, 8, 10, 2, 1] had not improved on
the O(log2 n) bound for subgraphs.

Alas, a consequence of our main result is that subgraphs of Cartesian products are not
counterexamples to the IGC.

Results and techniques

We improve the best-known O(log2 n) bound for subgraphs of hypercubes to the optimal
O(log n), and in general show how to construct optimal labels for all subgraphs and induced
subgraphs of Cartesian products. Our proof is short, and departs significantly from standard
techniques in the field of labeling schemes: we do not rely on any structural results, graph
width parameters, or decompositions, and instead use communication complexity (as in
[8, 10]), encoding, and hashing arguments, which may be useful for future work on labeling
schemes. We prove:

▶ Theorem 1. Let F be a hereditary class with an adjacency labeling scheme of size s(n).
Then:
1. her(F□) has a labeling scheme of size at most 4s(n) + O(log n).
2. mon(F□) has a labeling scheme where each G ∈ mon(F□) on n vertices is given labels of

size at most 4s(n) + O(k(G) + log n), where k(G) is the degeneracy of G.
We allow F to be finite, in which case s(n) = O(1); in particular, setting F = {K2, K1}, we
get the result for hypercubes:

▶ Corollary 2. Let H be the class of hypercube graphs. Then mon(H) has a labeling scheme
of size O(log n).

All of the labeling schemes of Chepoi, Labourel, & Ratel [3] are obtained by bounding
k(G) and applying the black-box O(k(G) · log n) bound of [13]. For example, they get
labels of size O(d log2 n) when the base class F has degeneracy d, by showing that mon(F□)
has degeneracy O(d log n). Our result can be substituted for that black-box, replacing the

ICALP 2023

57:4 Optimal Adjacency Labels for Subgraphs of Cartesian Products

multiplicative O(log n) with an additive O(log n), thereby improving all of the results of [3]
when combined with their bounds on k(G); for example, achieving O(d log n) when F has
degeneracy d.

For subgraphs of hypercubes, [3] observed that a bound of O(vc(G) log n) follows from the
inequality k(G) ≤ vc(G) due to Haussler [12], where vc(G) is the VC dimension1, which can
be as large as log n but is often much smaller; they generalize this inequality in various ways
to other Cartesian products. Our result supercedes the VC dimension result for hypercubes.

Theorem 1 is optimal up to constant factors (which we have not tried to optimize), and
yields the following corollary (see Section 3 for proofs).

▶ Corollary 3. If a hereditary class F has an efficient labeling scheme, then so do her(F□)
and mon(F□).

One of our main motivations was to find explicit counterexamples to the IGC; a con-
sequence of the above corollary is that, counterexamples to the IGC cannot be obtained
by taking the monotone closure of Cartesian products of some hereditary class F , unless
F itself is already a counterexample. This leaves open the problem of finding an explicit
counterexample to the IGC, which would require developing the first lower-bound technique
for adjacency labeling schemes.

2 Adjacency Labeling Scheme

Notation

For two binary strings x, y, we write x ⊕ y for the bitwise XOR. For two graphs G and H,
we will write G ⊂ H if G is a subgraph of H, and G ⊂I H if G is an induced subgraph of
H. We will write V (G) and E(G) as the vertex and edge set of a graph G, respectively. All
graphs in this paper are simple and undirected. A graph G has degeneracy k if all subgraphs
of G have a vertex of degree at most k.

Strategy

Suppose G ⊂ G1□ · · ·□Gd is a subgraph of a Cartesian product. Then V (G) ⊆ V (G1)×· · ·×
V (Gd). Let H ⊂I G1□ · · ·□Gd be the subgraph induced by V (G), so that E(G) ⊆ E(H).
One may think of G as being obtained from the induced subgraph H by deleting some edges.
Then two vertices x, y ∈ V (G) are adjacent if and only if:
1. There exists exactly one coordinate i ∈ [d] where xi ̸= yi;
2. On this coordinate, xiyi ∈ E(Gi); and,
3. The edge xy ∈ E(H) has not been deleted in E(G).

We construct the labels for vertices in G in three phases, which check these conditions in
sequence.

2.1 Phase 1: Exactly One Difference
We give two proofs for Phase 1. The first is a reduction to the k-Hamming Distance
communication protocol. The second proof is direct and self-contained; it is an extension of
the proof of the labeling scheme for induced subgraphs of hypercubes, in the unpublished
note [9] (adapted from [8, 10]). In both cases the labels are obtained by the probabilistic
method, and are efficiently computable by a randomized algorithm.

1 See [3] for the definition of VC dimension

L. Esperet, N. Harms, and V. Zamaraev 57:5

For any alphabet Σ and any two strings x, y ∈ Σd where d ∈ N, write dist(x, y) for the
Hamming distance between x and y, i.e. dist(x, y) = |{i ∈ [d] : xi ̸= yi}|.

For the first proof, we require a result in communication complexity (which we translate
into our terminology). A version with two-sided error appears in [18], the one-sided error
version below is implicit in [10] (and may appear elsewhere in the literature, which we did
not find).

▶ Theorem 4 ([18, 10]). There exists a constant c > 0 satisfying the following. For any
k ∈ N, there exists a function D : {0, 1}∗ × {0, 1}∗ → {0, 1} such that, for any d ∈ N
and set S ⊆ {0, 1}d of size |S| = n, there exists a probability distribution L over functions
ℓ : S → {0, 1}ck2 , where for all x, y ∈ S,
1. If dist(x, y) ≤ k then P

ℓ∼L
[D(ℓ(x), ℓ(y)) = 1] = 1; and,

2. If dist(x, y) > k then P
ℓ∼L

[D(ℓ(x), ℓ(y)) = 0] ≥ 2/3.

We transform these randomized labels into deterministic labels using standard arguments:

▶ Proposition 5. There exists a constant c > 0 satisfying the following. For any k ∈ N,
there exists a function D : {0, 1}∗ × {0, 1}∗ → {0, 1} such that, for any d ∈ N and set
S ⊆ {0, 1}d of size |S| = n, there exists a function ℓ : S → {0, 1}ck2 log n where for all
x, y ∈ S, D(ℓ(x), ℓ(y)) = 1 if and only if dist(x, y) ≤ k.

Proof. Let D′ : {0, 1}∗ × {0, 1}∗ → {0, 1}, c > 0, and L be the function, the constant, and
the probability distribution given for S by Theorem 4. Let q = ⌈2 log3 n⌉, and let L′ be the
distribution over functions defined by choosing ℓ1, . . . , ℓq ∼ L independently at random, and
setting ℓ(x) = (ℓ1(x), ℓ2(x), . . . , ℓq(x)) for each x ∈ S. Define D : {0, 1}∗ × {0, 1}∗ → {0, 1}
such that

D(ℓ(x), ℓ(y)) =
q∧

i=1
D′(ℓi(x), ℓi(y)) .

Observe that, if x, y ∈ S have dist(x, y) ≤ k then P [D(ℓ(x), ℓ(y)) = 1] = 1 since for each
i ∈ [q] we have P [D′(ℓi(x), ℓi(y)) = 1] = 1. On the other hand, if x, y ∈ S have dist(x, y) > k,
then

P [D(ℓ(x), ℓ(y)) = 1] < (1/3)q ≤ 1/n2 .

By the union bound, the probability that there exist x, y ∈ S such that D(ℓ(x), ℓ(y)) takes the
incorrect value is strictly less than 1. Therefore there exists a fixed function ℓ : S → {0, 1}ck2q

satisfying the required conditions, where ck2q = Ck2 log n for an appropriate constant C. ◀

We reduce the problem for alphabets Σ to the 2-Hamming Distance labeling problem above.

▶ Lemma 6. There exists a function D : {0, 1}∗ × {0, 1}∗ → {0, 1} and a constant c > 0
such that, for any countable alphabet Σ, any d ∈ N, and any set S ⊆ Σd of size |S| = n,
there exists a function ℓ : S → {0, 1}k for k ≤ c log n, where D(ℓ(x), ℓ(y)) = 1 if and only if
dist(x, y) = 1.

Proof. Since ⌈log n⌉ bits can be added to any ℓ(x) to ensure that ℓ(x) is unique, it suffices
to construct functions D, ℓ where D(ℓ(x), ℓ(y)) = 1 if and only if dist(x, y) ≤ 1, instead of
dist(x, y) = 1 exactly.

ICALP 2023

57:6 Optimal Adjacency Labels for Subgraphs of Cartesian Products

Since S has at most n elements, we may assume that Σ has a finite number N of elements,
since we may reduce to the set of elements which appear in the strings S. We may then
identify Σ with [N] and define an encoding enc : [N] → {0, 1}N where for any σ ∈ [N], enc(σ)
is the string that takes value 1 on coordinate σ, and all other coordinates take value 0.

Abusing notation, for any x ∈ Σd, we may now define the concatenated encoding
enc(x) = enc(x1)◦enc(x2)◦· · ·◦enc(xd), where ◦ denotes concatenation. It is easy to verify that
for any x, y ∈ Σd, dist(enc(x), enc(y)) = 2 · dist(x, y). We may therefore apply Proposition 5
with k = 2 on the set S′ = {enc(x) : x ∈ S} to obtain a function D : {0, 1}∗ ×{0, 1}∗ → {0, 1},
a constant C > 0, and a function ℓ′ : S′ → {0, 1}C log n such that for all x, y ∈ S,

D(ℓ′(enc(x)), ℓ′(enc(y))) = 1 ⇐⇒ dist(enc(x), enc(y)) ≤ 2 ⇐⇒ dist(x, y) ≤ 1 .

We may then conclude the proof by setting ℓ(x) = ℓ′(enc(x)) for each x ∈ S. ◀

Below, we give an alternative, direct proof that does not reduce to k-Hamming Distance.

▶ Proposition 7. For any set S ⊆ {0, 1}d, there exists a random function ℓ : S → {0, 1}4

such that, for all x, y ∈ S,
1. If dist(x, y) ≤ 1 then P

ℓ
[dist(ℓ(x), ℓ(y)) ≤ 1] = 1, and

2. If dist(x, y) > 1 then P
ℓ

[dist(ℓ(x), ℓ(y)) ≤ 1] ≤ 3/4.

Proof. Choose a uniformly random map p : [d] → [4] and partition [d] into four sets
Pj = p−1(j). For each i ∈ [4], define ℓ(x)i :=

⊕
j∈Pi

xj .
Let x, y ∈ S and write w = ℓ(x) ⊕ ℓ(y). Note that dist(ℓ(x), ℓ(y)) = |w|, which is the

number of 1s in w. If dist(x, y) = 0 then dist(ℓ(x), ℓ(y)) = 0 ≤ 1. Now suppose dist(x, y) = 1.
For any choice of p : [d] → [4], one of the sets Pi contains the differing coordinate and will
have wi = 1, while the other three sets Pj will have wj = 0, so P

ℓ
[dist(ℓ(x), ℓ(y)) ≤ 1] = 1.

Now suppose dist(x, y) = t ≥ 2. We will show that |w| ≤ 1 with probability at most
3/4. Note that w is obtained by the random process where 0⃗ = w(0), w = w(t), and w(i) is
obtained from w(i−1) by flipping a uniformly random coordinate.

Observe that, for i ≥ 1, P
[
w(i) = 0⃗

]
≤ 1/4. This is because w(i) = 0⃗ can occur only if

|w(i−1)| = 1, so the probability of flipping the 1-valued coordinate is 1/4. If |w(i−1)| ≥ 1 then
P

[
|w(i)| ≤ 1 | |w(i−1)| ≥ 1

]
≤ 1/2 since either |w(i−1)| = 1 and then |w(i)| = 0 ≤ 1 with

probability 1/4, or |w(i−1)| ≥ 2 and |w(i)| = 1 with probability at most 1/2. Then, for t ≥ 2,

P
[
|w(t)| ≤ 1

]
= P

[
w(t−1) = 0⃗

]
+ P

[
|w(t−1)| ≥ 1

]
· P

[
|w(t)| = 1 | |w(t−1)| ≥ 1

]
≤ 1

4 + 1
2 = 3

4 . ◀

▶ Proposition 8. There exists a function D : {0, 1}4 × {0, 1}4 → {0, 1} such that, for any
countable alphabet, Σ, any d ∈ N, and any S ⊆ Σd of size n = |S|, there exists a random
function ℓ : S → {0, 1}4 such that, for all x, y ∈ S,
1. If dist(x, y) ≤ 1, then P

ℓ
[D(ℓ(x), ℓ(y)) = 1] = 1, and

2. If dist(x, y) > 1, then P
ℓ

[D(ℓ(x), ℓ(y)) = 1] ≤ 15/16.

Proof. For each σ ∈ Σ and i ∈ [d], generate an independently and uniformly random
bit qi(σ) ∼ {0, 1}. Then for each x ∈ S define p(x) = (q1(x1), . . . , qd(xd)) ∈ {0, 1}d and
S′ = {p(x) : x ∈ S}, and let ℓ′ be the random function S′ → {0, 1}4 guaranteed to exist by
Proposition 7. We define the random function ℓ : S → {0, 1}4 as ℓ(x) = ℓ′(p(x)). We define
D(ℓ(x), ℓ(y)) = 1 if and only if dist(ℓ′(p(x)), ℓ′(p(y))) ≤ 1.

L. Esperet, N. Harms, and V. Zamaraev 57:7

Let x, y ∈ S. If dist(x, y) ≤ 1, so there is a unique i ∈ [d] with xi ̸= yi, then

P [dist(p(x), p(y)) = 1] = P [qi(xi) ̸= qi(yi)] = P [dist(p(x), p(y)) = 0] = 1/2 ,

so P [dist(p(x), p(y)) ≤ 1] = 1. Then by Proposition 7,

P [D(ℓ(x), ℓ(y)) = 1] = P [dist(ℓ′(p(x)), ℓ′(p(y))) ≤ 1] = 1 .

If dist(x, y) > 1 so that there are distinct i, i′ ∈ [d] such that xi ̸= yi and xi′ ̸= yi′ , then

P [dist(p(x), p(y)) ≥ 2] ≥ P [qi(xi) ̸= qi(yi) ∧ qi′(xi′) ̸= qi′(yi′)] = 1/4 .

Then by Proposition 7,

P [D(ℓ(x), ℓ(y)) = 1] = P [dist(ℓ′(p(x)), ℓ′(p(y))) ≤ 1]
= P [dist(p(x), p(y)) ≤ 1 ∨ dist(ℓ′(p(x)), ℓ′(p(y))) ≤ 1]
≤ 3/4 + (1 − 3/4)(3/4) = 15/16 . ◀

The alternative proof of Lemma 6 now concludes by using Proposition 8 with a nearly
identical derandomization argument as in Proposition 5.

2.2 Phase 2: Induced Subgraphs
After the first phase, we are guaranteed that there is a unique coordinate i ∈ [d] where
xi ̸= yi. In the second phase we wish to determine whether xiyi ∈ E(Gi). It is convenient
to have labeling schemes for the factors G1, . . . , Gd where we can XOR the labels together
while retaining the ability to compute adjacency. Define an XOR-labeling scheme the same
as an adjacency labeling scheme, with the restriction that for each s ∈ N there is some
function gs : {0, 1}s → {0, 1} such that on any two labels ℓ(x), ℓ(y) of size s, the decoder
outputs D(ℓ(x), ℓ(y)) = gs(ℓ(x) ⊕ ℓ(y)). Any labeling scheme can be transformed into an
XOR-labeling scheme with at most a constant-factor loss:

▶ Lemma 9. Let F be any class of graphs with an adjacency labeling scheme of size s(n).
Then F admits an XOR-labeling scheme of size at most 4s(n).

Proof. Let D : {0, 1}∗ × {0, 1}∗ → {0, 1} be the decoder of the adjacency labeling scheme for
F , fix any n ∈ N, and write s = s(n). Note that D must be symmetric, so D(a, b) = D(b, a)
for any a, b ∈ {0, 1}s. Let ϕ : {0, 1}s → {0, 1}4s be uniformly randomly chosen, so that for
every z ∈ {0, 1}s, ϕ(z) ∼ {0, 1}4s is a uniform and independently random variable. For any
two distinct pairs {z1, z2}, {z′

1, z′
2} ∈

({0,1}s

2
)

where z1 ̸= z2, z′
1 ̸= z′

2, and {z1, z2} ≠ {z′
1, z′

2},
the probability that ϕ(z1) ⊕ ϕ(z2) = ϕ(z′

1) ⊕ ϕ(z′
2) is at most 2−4s, since at least one of the

variables ϕ(z1), ϕ(z2), ϕ(z′
1), ϕ(z′

2) is independent of the other ones. Therefore, by the union
bound,

P [∃{z1, z2}, {z′
1, z′

2} : ϕ(z1) ⊕ ϕ(z2) = ϕ(z′
1) ⊕ ϕ(z′

2)] ≤
(

2s

2

)2
2−4s ≤ 1

4 .

Then there is ϕ : {0, 1}s → {0, 1}4s such that each distinct pair {z1, z2} ∈
({0,1}s

2
)

is assigned
has a distinct unique value ϕ(z1) ⊕ ϕ(z2). So the function Φ({z1, z2}) := ϕ(z1) ⊕ ϕ(z2)
is a one-to-one map

({0,1}s

2
)

→ {0, 1}4s. Then for any graph G ∈ F on n vertices, with
labeling ℓ : V (G) → {0, 1}s, we may assign the new label ϕ(ℓ(x)) to each vertex x. On
labels ϕ(ℓ(x)), ϕ(ℓ(y)) ∈ {0, 1}s, the decoder for the XOR-labeling scheme simply computes
{ℓ(x), ℓ(y)} = Φ−1(ϕ(ℓ(x)) ⊕ ϕ(ℓ(y))) and outputs D(ℓ(x), ℓ(y)), where we are using the
fact that D(ℓ(x), ℓ(y)) = D(ℓ(y), ℓ(x)), so that the ordering of the pair {ℓ(x), ℓ(y)} does not
matter. ◀

ICALP 2023

57:8 Optimal Adjacency Labels for Subgraphs of Cartesian Products

We can now prove the first part of Theorem 1.

▶ Lemma 10. Let F be a hereditary class of graphs that admits an adjacency labeling scheme
of size s(n). Then her(F□) admits an adjacency labeling scheme of size 4s(n) + O(log n).

Proof. By Lemma 9, there is an XOR-labeling scheme for F with labels of size 4s(n). Let
D : {0, 1}∗ × {0, 1}∗ → {0, 1} be the decoder for this scheme, with D(a, b) = g(a ⊕ b) for
some function g. Design the labels for her(F□) as follows. Consider a graph G ∈ her(F□),
so that G ⊂I G1□G2□ · · ·□Gd for some d ∈ N and Gi ∈ F for each i ∈ [d]. Since F is
hereditary, we may assume that each Gi has at most n vertices; otherwise we could simply
replace it with the subgraph of Gi induced by the vertices {xi : x ∈ V (G)}. For each
x = (x1, . . . , xd) ∈ V (G), construct the label as follows:
1. Treating the vertices in each Gi as characters of the alphabet [n], use O(log n) bits to

assign the label given to x = (x1, . . . , xd) ∈ [n]d by Lemma 6.
2. Using 4s(n) bits, append the vector

⊕
i∈[d] ℓi(xi), where ℓi(xi) is the label of xi ∈ V (Gi)

in graph Gi, according to the XOR-labeling scheme for F .

The decoder operates as follows. Given the labels for x, y ∈ V (G):
1. If x and y differ on exactly one coordinate, as determined by the first part of the label,

continue to the next step. Otherwise output “not adjacent”.
2. Now guaranteed that there is a unique i ∈ [d] such that xi ̸= yi, output “adjacent” if and

only if the following is 1:

D

⊕
j∈[d]

ℓj(xj) ,
⊕
j∈[d]

ℓj(yj)

 = g

⊕
j∈[d]

ℓj(xj) ⊕
⊕

ℓj(yj)


= g

ℓi(xi) ⊕ ℓi(yi) ⊕
⊕
j ̸=i

ℓj(xj) ⊕ ℓj(yj)


= g(ℓi(xi) ⊕ ℓi(yi)) ,

where the final equality holds because xj = yj for all j ̸= i, so ℓj(xj) = ℓj(yj). Then the
output value is 1 if and only xiyi is an edge of Gi; equivalently, xy is an edge of G.

This concludes the proof. ◀

The XOR-labeling trick can also be used to simplify the proof of [10] for adjacency
sketches of Cartesian products. That proof is similar to the one above, except it uses a
two-level hashing scheme and some other tricks to avoid destroying the labels of xi and yi

with the XOR (with sufficiently large probability of success). This two-level hashing approach
does not succeed in our current setting, and we avoid it with XOR-labeling.

2.3 Phase 3: Subgraphs
Finally, we must check whether the edge xy ∈ E(H) in the induced subgraph H ⊂I

G1□ · · ·□Gd has been deleted in E(G). There is a minimal and perfect tool for this task:

▶ Theorem 11 (Minimal Perfect Hashing). For every m, k ∈ N, there is a family Pm,k of hash
functions [m] → [k] such that, for any S ⊆ [m] of size k, there exists h ∈ Pm,k where the
image of S under h is [k] and for every distinct i, j ∈ S we have h(i) ̸= h(j). The function h

can be stored in k ln e + log log m + o(k + log log m) bits of space and it can be computed by a
randomized algorithm in expected time O(k + log log m).

L. Esperet, N. Harms, and V. Zamaraev 57:9

Minimal perfect hashing has been well-studied. A proof of the space bound appears
in [14] and significant effort has been applied to improving the construction and evaluation
time. We take the above statement from [6]. We now conclude the proof of Theorem 1 by
applying the next lemma to the class G = her(F□), using the labeling scheme for her(F□)
obtained in Lemma 10 (note that mon(her(F□)) = mon(F□)).

▶ Lemma 12. Let G be any graph class which admits an adjacency labeling scheme of size
s(n). Then mon(G) admits an adjacency labeling scheme where each G ∈ mon(G) on n

vertices has labels of size s(n) + O(k(G) + log n), where k(G) is the degeneracy of G.

Proof. Let G ∈ mon(G) have n vertices, so that it is a subgraph of H ∈ G on n vertices. The
labeling scheme is as follows.
1. Fix a total order ≺ on V (H) such that each vertex x has at most k = k(G) neighbors y

in H such that x ≺ y; this exists by definition. We will identify each vertex x with its
position in the order.

2. For each vertex x, assign the label as follows:
a. Use s(n) bits for the adjacency label of x in H.
b. Use log n bits to indicate x (the position in the order).
c. Let N+(x) be the set of neighbors x ≺ y. Construct a perfect hash function hx :

N+(x) → [k] and store it, using O(k + log log n) bits.
d. Use k bits to write the function edgex : [k] → {0, 1} which takes value 1 on i ∈ [k]

if and only if xy is an edge of G, where y is the unique vertex in N+(x) satisfying
hx(y) = i.

Given the labels for x and y, the decoder performs the following:
1. If xy are not adjacent in H, output “not adjacent”.
2. Otherwise xy are adjacent. If x ≺ y, we are guaranteed that y is in the domain of hx,

so output “adjacent” if and only if edgex(hx(y)) = 1. If y ≺ x, output “adjacent” if and
only if edgey(hy(x)) = 1.

This concludes the proof. ◀

3 Optimality

We now prove the optimality of our labeling schemes, and Corollary 3. We require:

▶ Proposition 13. For any hereditary class F , let k(n) be the maximum degeneracy of an
n-vertex graph G ∈ her(F□). Then her(F□) contains a graph H on n vertices with at least
n · k(n)/4 edges, so mon(F□) contains all 2n·k(n)/4 spanning subgraphs of H.

Proof. Since G has degeneracy k = k(n), it contains an induced subgraph G′ ⊂I G with
minimum degree k and n1 ≤ n vertices. If n1 ≥ n/2 then G itself has at least kn1/2 ≥ kn/4
edges, and we are done. Now assume n1 < n/2. Since G ∈ her(F□), G ⊂I H1□ · · ·□Ht for
some t ∈ N and Hi ∈ F . So for any d ∈ N, the graph (G′)d ⊂I (H1□ · · ·□Ht)d belongs to
her(F□). Consider the graph H ⊂I (G′)d defined as follows. Choose any w ∈ V (G′), and for
each i ∈ [d] let

Vi = {(v1, v2, . . . , vd) : vi ∈ V (G′) and ∀j ̸= i, vj = w} ,

and let H be the graph induced by vertices V1 ∪ · · · ∪ Vd. Then H has dn1 vertices, each of
degree at least k, since each v ∈ Vi is adjacent to k other vertices in Vi. Set d = ⌈n/n1⌉, so
that H has at least n vertices, and let m = dn1 − n, which satisfies m < n1. Remove any m

vertices of V1. The remaining graph H ′ has n vertices, and at least (d − 1)n1 ≥ n − n1 > n/2
vertices of degree k. Then H ′ has at least kn/4 edges. ◀

ICALP 2023

57:10 Optimal Adjacency Labels for Subgraphs of Cartesian Products

The next proposition shows that Theorem 1 is optimal up to constant factors. It is
straightforward to check that this proposition implies Corollary 3.

▶ Proposition 14. Let F be a hereditary class whose optimal adjacency labeling scheme has
size s(n) and which contains a graph with at least one edge. Then any adjacency labeling
scheme for her(F□) has size at least Ω(s(n) + log n), and any adjacency labeling scheme for
mon(F□) has size at least Ω(s(n) + k(n) + log n), where k(n) is the maximum degeneracy of
any n-vertex graph in mon(F□).

Proof. Since F ⊆ her(F□) and F ⊆ mon(F□), we have a lower bound of s(n) for the labeling
schemes for both of these classes. Since F contains a graph G with at least one edge, the
Cartesian products contain the class of hypercubes: her({K2}□) ⊆ her(F□) ⊆ mon(F□). A
labeling scheme for her({K2}□) must have size Ω(log n) (which can be seen since each vertex
of Kd

2 has a unique neighborhood and thus requires a unique label). This establishes the lower
bound for her(F□), since the labels must have size max{s(n), Ω(log n)} = Ω(s(n) + log n).
Finally, by Proposition 13, the number of n-vertex graphs in mon(F□) is at least 2Ω(nk(n)),
so there is a lower bound on the label size of Ω(k(n)), which implies a lower bound of
max{s(n), Ω(log n), Ω(k(n))} = Ω(s(n) + k(n) + log n) for mon(F□). ◀

References
1 Bogdan Alecu, Vladimir E. Alekseev, Aistis Atminas, Vadim Lozin, and Viktor Zamaraev.

Graph parameters, implicit representations and factorial properties. In submission, 2022.
2 Bogdan Alecu, Aistis Atminas, and Vadim Lozin. Graph functionality. Journal of Combinatorial

Theory, Series B, 147:139–158, 2021.
3 Victor Chepoi, Arnaud Labourel, and Sébastien Ratel. On density of subgraphs of Cartesian

products. Journal of Graph Theory, 93(1):64–87, 2020.
4 Louis Esperet, Nathaniel Harms, and Andrey Kupavskii. Sketching distances in monotone

graph classes. In International Conference on Randomization and Computation (RANDOM
2022), 2022.

5 Ron L Graham. On primitive graphs and optimal vertex assignments. Annals of the New
York academy of sciences, 175(1):170–186, 1970.

6 Torben Hagerup and Torsten Tholey. Efficient minimal perfect hashing in nearly minimal
space. In Annual Symposium on Theoretical Aspects of Computer Science (STACS 2001),
pages 317–326. Springer, 2001.

7 Lianna Hambardzumyan, Hamed Hatami, and Pooya Hatami. A counter-example to the
probabilistic universal graph conjecture via randomized communication complexity. Discrete
Applied Math., 2022.

8 Nathaniel Harms. Universal communication, universal graphs, and graph labeling. In 11th
Innovations in Theoretical Computer Science Conference (ITCS 2020), volume 151, page 33.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik, 2020.

9 Nathaniel Harms. Adjacency labeling and sketching for induced subgraphs of the hypercube.
https://cs.uwaterloo.ca/~nharms/downloads/hypercube_sketch.pdf, 2022. URL: https:
//cs.uwaterloo.ca/~nharms/downloads/hypercube_sketch.pdf.

10 Nathaniel Harms, Sebastian Wild, and Viktor Zamaraev. Randomized communication and
implicit graph representations. In 54th Annual Symposium on Theory of Computing (STOC
2022), 2022.

11 Hamed Hatami and Pooya Hatami. The implicit graph conjecture is false. In 63rd IEEE
Symposium on Foundations of Computer Science (FOCS 2022), 2022.

12 David Haussler. Sphere packing numbers for subsets of the Boolean n-cube with bounded
Vapnik-Chervonenkis dimension. Journal of Combinatorial Theory, Series A, 69(2):217–232,
1995.

https://cs.uwaterloo.ca/~nharms/downloads/hypercube_sketch.pdf
https://cs.uwaterloo.ca/~nharms/downloads/hypercube_sketch.pdf
https://cs.uwaterloo.ca/~nharms/downloads/hypercube_sketch.pdf

L. Esperet, N. Harms, and V. Zamaraev 57:11

13 Sampath Kannan, Moni Naor, and Steven Rudich. Implicit representation of graphs. SIAM
Journal on Discrete Mathematics, 5(4):596–603, 1992.

14 Kurt Mehlhorn. Data Structures and Algorithms 1 Sorting and Searching. Monographs
in Theoretical Computer Science. An EATCS Series, 1. Springer Berlin Heidelberg, Berlin,
Heidelberg, 1st ed. 1984. edition, 1984.

15 John H Muller. Local structure in graph classes, 1989.
16 Edward R Scheinerman. Local representations using very short labels. Discrete mathematics,

203(1-3):287–290, 1999.
17 Jeremy P Spinrad. Efficient graph representations. American Mathematical Society, 2003.
18 Andrew Chi-Chih Yao. On the power of quantum fingerprinting. In Proceedings of the

Thirty-Fifth Annual ACM Symposium on Theory of Computing (STOC), pages 77–81, 2003.

ICALP 2023

Truthful Matching with Online Items and Offline
Agents
Michal Feldman #

Blavatnik School of Computer Science, Tel Aviv University, Israel
Microsoft Research, Herzliya, Israel

Federico Fusco #

Department of Computer, Control and Management Engineering “Antonio Ruberti”,
Sapienza University of Rome, Italy

Simon Mauras #

Blavatnik School of Computer Science, Tel Aviv University, Israel

Rebecca Reiffenhäuser #

Institute for Logic, Language and Computation, University of Amsterdam, The Netherlands

Abstract
We study truthful mechanisms for welfare maximization in online bipartite matching. In our (multi-
parameter) setting, every buyer is associated with a (possibly private) desired set of items, and
has a private value for being assigned an item in her desired set. Unlike most online matching
settings, where agents arrive online, in our setting the items arrive online in an adversarial order
while the buyers are present for the entire duration of the process. This poses a significant challenge
to the design of truthful mechanisms, due to the ability of buyers to strategize over future rounds.
We provide an almost full picture of the competitive ratios in different scenarios, including myopic
vs. non-myopic agents, tardy vs. prompt payments, and private vs. public desired sets. Among
other results, we identify the frontier up to which the celebrated e/(e − 1) competitive ratio for
the vertex-weighted online matching of Karp, Vazirani and Vazirani extends to truthful agents and
online items.

2012 ACM Subject Classification Theory of computation → Online algorithms; Applied computing
→ Online auctions

Keywords and phrases Online matching, Karp-Vazirani-Vazirani, truthfulness

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.58

Category Track A: Algorithms, Complexity and Games

Funding Michal Feldman was supported by the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation program (grant agreement No. 866132) and
by the NSF-BSF (grant number 2020788). Federico Fusco and Rebecca Reiffenhäuser were supported
by the ERC Advanced Grant 788893 AMDROMA “Algorithmic and Mechanism Design Research in
Online Markets” and MIUR PRIN grant Algorithms, Games, and Digital Markets (ALGADIMAR).
Federico Fusco was also partially supported by PNRR MUR project PE0000013-FAIR” and PNRR
MUR project IR0000013-SoBigData.it. Part of the work of Federico Fusco was done while visiting
Michal Feldman at Tel Aviv University.

Acknowledgements The authors are grateful to Amos Fiat and Stefano Leonardi for many useful
conversations that have tremendously contributed to this paper.

1 Introduction

Matching in bipartite graphs is a fundamental model that has gained massive importance
in numerous applications with the growth of the Internet. Some examples include items
and buyers in e-commerce, drivers and passengers in ride-sharing platforms, ad slots and

EA
T
C
S

© Michal Feldman, Federico Fusco, Simon Mauras, and Rebecca Reiffenhäuser;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 58; pp. 58:1–58:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mfeldman@tauex.tau.ac.il
https://orcid.org/0000-0002-2915-8405
mailto:fuscof@diag.uniroma1.it
https://orcid.org/0000-0001-6250-945X
mailto:smauras@tauex.tau.ac.il
https://orcid.org/0000-0003-4080-3118
mailto:r.e.m.reiffenhauser@uva.nl
https://orcid.org/0000-0002-0959-2589
https://doi.org/10.4230/LIPIcs.ICALP.2023.58
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

58:2 Truthful Matching with Online Items and Offline Agents

advertisers in online ad auctions, and jobs and workers in online labor markets. In these
applications, it is common that vertices on one side are known from the outset, while vertices
from the other side arrive one-by-one in an online fashion. Upon the arrival of an online
vertex, its information is revealed (containing, e.g., its set of adjacent edges, and their
weights), and the algorithm has to immediately and irrevocably decide either to match it
with an available offline partner or leave it unmatched forever. The goal is to maximize the
sum of the weights along the matched edges.

A celebrated result in online matching by Karp, Vazirani, and Vazirani [18] shows that, in
the unweighted setting, a simple randomized strategy called Ranking achieves a competitive
ratio of e/(e−1), and this is optimal. This result extends to the setting where the vertices on
the offline side are weighted and the objective is to maximize the sum of the weights of the
matched vertices. Although the original algorithm for this problem, Perturbed-Greedy [1],
was designed for non-strategic settings, online matching problems have also been studied in
the presence of strategic agents e.g., [21, 25, 11, 7]. This is not a mere theoretical exercise:
in many applications of online matching the parties involved are interested in misreporting
their true valuations to obtain a better outcome, e.g., combinatorial and ad-auctions, kidney
exchange, school-student matching, and house allocation. In the presence of strategic agents,
an agent’s value is her private information, and is not directly available to the mechanism
designer. The main challenge here is to design incentive-compatible or truthful mechanisms
which, besides finding a good matching, also ensure that it is in the agents’ best interest to
report their true values. In addition to making decisions regarding the matching itself, such
mechanisms can also charge some payment from the agents in order to incentivize them to
truthfully report their values. Here, each agent strives to maximize her quasi-linear utility,
i.e. the value she obtains from her assigned item, minus the payment she has to make.

In almost all previous studies, the agents are represented by the vertices on the online
side, while the items they are competing over are available offline. In many natural internet
applications, e.g. selling advertising opportunities via repeated auctions, the agents are fixed
and observe a stream of items arriving online. This motivates the study of a reversed online
matching problem, where each vertex on the offline side is strategic on her value, and her
set of desired items that arrive online. This variant has been considered thus far only in
very restricted settings [8, 9]. This is not a coincidence: when agents are present throughout
the entire matching process, many new manipulation opportunities arise, and incentivizing
truthful behavior is significantly more challenging. Indeed, the online nature of the problem
forces any mechanism to repeatedly make irrevocable decisions upon the arrival of goods,
lacking knowledge about future opportunities that might arise to the participating agents.
The agents – possibly aware of those future opportunities – may strategize to gain benefits
in the future, defying standard tools applicable when agents arrive online.

Our work provides a systematic analysis of this scenario, and gives (almost) tight competit-
ive ratios under a rich variation of natural assumptions. We study the problem along different
dimensions, as follows. First, we consider two types of agents – myopic and non-myopic –
that are characterized by the different information they have on the instance. Myopic agents
make strategic considerations that are limited to the current time step, without looking
forward into the future (see, e.g., Deng, Panigrahi and Zhang [9]), whereas non-myopic agents
optimize across multiple time steps, using the up-front knowledge of the underlying (online)
graph. The assumption of myopic agents clearly eradicates some of the difficulties of designing
(almost tight) online mechanisms with offline strategic agents, thus allowing us to derive
efficient mechanisms from known online matching algorithms, e.g., from Aggarwal et al. [1].
Second, we consider two types of private information. In the first scenario we consider, an

M. Feldman, F. Fusco, S. Mauras, and R. Reiffenhäuser 58:3

Table 1 Summary of our results, with ν = min(m, n), where n is the number of agents and m

the number of items.

deterministic randomized

prompt 2 e/(e − 1)
(Theorem 12) (Theorem 13)

(a) Myopic agents.

deterministic randomized

tardy 2 e/(e − 1)
(Theorem 14) (Theorem 14)

prompt ≥ ν Ω(log ν/ log log ν)
(Theorem 3) (Theorem 4)

(b) Non-myopic agents
with public graph edges.

deterministic randomized

tardy equiv. to prompt equiv. to prompt

prompt ≤ ν O(log ν)
(Theorem 9) (Theorem 10)

(c) Non-myopic agents
with private graph edges.

agent’s private information consists only of her private value for her desired items, but the
set of desired items is publicly known. In the second scenario, both the value and the set of
desired items are private information. Notably, in both cases the graph structure is revealed
to the mechanism step-by-step, upon the arrival of every item. Finally, we distinguish
between prompt and tardy mechanisms. Both types of mechanisms make allocation decisions
immediately. However, they differ in the time at which they make payment decisions. Prompt
mechanisms make payment decisions immediately upon allocation, while tardy mechanisms
may delay payment decisions to the end of the entire process.

1.1 Our Results and Techniques
We conduct a systematic study of online bipartite matching with online items and offline
agents, in a variety of scenarios and we provide (almost) tight bounds for the settings of
interest, as summarized in Table 1.

Myopic agents. The simpler setting we investigate is that of myopic agents. These agents
care only about their instantaneous utility, and do not strategize over the future. As such, we
only consider prompt mechanisms for this type of agents. By exploiting the myopic nature
of the agents, it is not difficult to turn the best (non-truthful) algorithms into (truthful)
mechanisms. In particular, we construct a deterministic prompt mechanism based on the
greedy matching algorithm that is guaranteed to achieve at least a half of the optimal welfare.
We also give a randomized prompt mechanism based on the algorithm for weighted online
matching [1], which is e/(e−1)-competitive. This shows that the transition from non-strategic
agents to strategic myopic agents does not lead to a deterioration in efficiency guarantees.
Notably, for the special case we study, our bounds for myopic online matching improve vastly
over those obtained by Deng, Panigrahi and Zhang [9] for general XOS valuations. The
results for myopic agents are reported in Appendix A.

Non-myopic agents with public graph edges. In a more general setting, we consider non-
myopic agents who can strategize about their values, but not about their desired items: upon
the arrival of an item, the set of agents interested in it is revealed (no strategizing involved),
but the agent values are reported by the agents themselves. This variant is single-parameter,
for which Myerson’s lemma applies [24]. We prove that, if the mechanism is allowed to
wait until the end of the online phase to set prices (i.e., tardy mechanism), it is possible to

ICALP 2023

58:4 Truthful Matching with Online Items and Offline Agents

achieve the same bounds as in the myopic case – by showing that our algorithms Greedy
and Perturbed-Greedy maintain a certain form of global monotonicity. In contrast, when
prices have to be fixed upon item arrival, an agent might hope to receive an item, i.e. one
over which there is not as much competition, for a better price later if she waits instead of
truthfully reporting her interest in the current item. To avoid this, prompt prices need to be
non-decreasing throughout the mechanism, which allows us to show a sharp deterioration
from tardy to prompt mechanisms: for deterministic mechanisms, we prove a ν = min(m, n)
competitive lower bound, where n and m denote the number of agents and items, respectively.
For randomized prompt mechanisms obtaining such a lower bound is much more challenging,
but as a central result we manage to establish an Ω(log ν/ log log ν) lower bound, using Yao’s
minimax principle. Starting from a carefully designed distribution of problem instances with
exponentially increasing agent valuations, we employ a primal-dual approach together with
our previous observations on the behavior of deterministic truthful mechanisms to bound the
achievable competitive ratio. Almost matching deterministic and randomized upper bounds
for prompt mechanisms are inherited from non-myopic prompt mechanisms with private
graph edges. See Section 3 for our results for public graph edges.

Non-myopic agents with private graph edges. We finally consider non-myopic agents when
both valuations and the set of desired items are private information. For deterministic prompt
mechanisms, the ν lower bound from the case of public graph edges applies. Moreover, we
show that in the case of private edges, every deterministic truthful mechanism is essentially
prompt. Thus, tardy mechanisms for this case retain the ν lower bound, exhibiting a large
gap between tardy mechanisms for public vs. private edges. We then provide a prompt
truthful deterministic mechanism that is ν-competitive, matching the lower bound. For
randomized prompt truthful mechanisms, the Ω(log ν/ log log ν) lower bound from the case
of public edges applies to tardy randomized mechanisms as well, since these are probability
distributions over deterministic mechanisms and, as stated above, all deterministic truthful
mechanisms for private edges are prompt. On the positive side, we provide a randomized
prompt truthful mechanism that gives an almost matching competitive ratio of O(log ν).
This algorithm is based on a tailored explore-exploit approach. Our results for private graph
edges are reported in Section 4.

Ex-post vs. ex-ante truthfulness. Finally, we explore the notion of ex-ante truthfulness, as
opposed to ex-post truthfulness, where agents’ true declarations maximize their expected
utility instead of their utility in any realization of the random choices of the mechanism.
Clearly, ex-post truthfulness implies ex-ante truthfulness. In the setting with myopic buyers,
we only need to consider ex-post truthfulness as we obtain tight approximation in this
stronger model that closes the problem also for the ex-ante analogue. In the setting of
non-myopic buyers, we show that the additional hardness introduced by truthfulness cannot
be fully attributed to the fact that we require ex-post truthfulness. Specifically, we establish
a lower bound of 2 for the competitive ratio of ex-ante truthful mechanisms for this setting
(even with respect to randomized tardy ones), exhibiting a gap to the corresponding e/(e− 1)
upper bound for myopic buyers. Our proof utilizes an instance for which we establish lower
bounds on the expected utility of various types of agents. We then employ these to show
a contradiction to the mechanism’s correctness. Our results for ex-ante truthfulness are
reported in Section 6.

M. Feldman, F. Fusco, S. Mauras, and R. Reiffenhäuser 58:5

Remark. Throughout the paper, we assume that weights are assigned to vertices (agents)
rather than edges; note, it is well known that for the more general case of edge weights even
the algorithmic problem is hopeless (see, e.g., Appendix G of [1]). One may also wonder why
we do not study non-myopic agents with public valuations but private edges. The reason
is that in the case of public valuations, it is easy to see that agents cannot benefit from
misreporting their edges, implying that Greedy and Perturbed-Greedy are truthful.

1.2 Further Related Work
Karp, Vazirani and Vazirani [18] introduce the online matching problem, and study it under
one-sided bipartite arrivals. They observe that the trivial 1/2-competitive greedy algorithm
(which matches any arriving vertex to an arbitrary unmatched neighbor, if one exists) is
optimal among deterministic algorithms for this problem. They also provide a groundbreaking
and elegant randomized algorithm for this problem, called Ranking, which achieves an
optimal e/(e − 1) competitive ratio. The work of Karp, Vazirani and Vazirani [18] was
extended to vertex weighted settings by Aggarwal et al. [1], who give an optimal e/(e− 1)-
competitive, randomized algorithm using random perturbations of weights by appropriate
multiplicative factors. The same bound has been re-proven over the years [6, 10, 14, 12].
Various extensions of one sided online matching and its economic applications (e.g., display
ads) have been widely studied, see e.g. the excellent survey of Mehta [22] for further reference.
Online matching has also been studied under edge and general vertex arrivals, as well as in
different stochastic settings (see e.g., [19, 20, 13, 17, 15, 16]).

An important generalization of assignment problems in the form of matchings are com-
binatorial auctions, where buyers can obtain a subset of the available items, instead of just
one. Combinatorial auctions with offline strategic buyers and online items have been recently
studied by [9] for submodular and XOS valuations in the case of myopic buyers – considered
also in this work – and in the less constrained setting of items that must not be irrevocably
assigned at time of arrival. Deng, Panigrahi and Zhang [9] show (for myopic buyers) a sharp
separation between submodular valuations, which admit a logarithmic competitive ratio, and
XOS valuations, for which a polynomial lower bound is proven. In our work, we prove tight
constant bounds for myopic buyers in the important special case of a unit-demand matching.

Cole, Dobzinski and Fleischer [8] formally introduced the notions of prompt and tardy for
mechanisms, after observing the severe negative aspects of many existing (tardy) methods.
They study prompt truthful mechanisms for an online problem that is related to ours, but with
some restrictions: while agents are still on the offline side of the graph, their items of interest
are restricted to form an interval over the online steps (which corresponds to the interval
buyers are present). Further, agents report their departure time (which can be public/private)
once they arrive, and their arrival time is public knowledge. Babaioff, Blumrosen and Roth [4]
later investigated truthful prompt mechanisms for allocating an unknown number of identical
items arriving online, which can be phrased in our model as having all desired sets equal
to the same prefix of the sequence of items. Both of these works [8, 4] are close to ours in
spirit. They present logarithmic-competitive prompt mechanisms in restricted settings, and
prove lower bounds using Yao’s pinciple (≥ 2 in [8], and Ω(log log n) in [4]). The notions of
tardy and prompt mechanisms have since been adopted in the literature, see e.g. [3, 28]. The
model of offline agents and online items has been the subject of extensive investigation in
economic theory in dynamic mechanism design. Despite this obvious relation to our setting,
there are fundamental differences (see for example [23, 2, 5]). In dynamic mechanism design,
a strategic buyer learns her valuations at time of arrival of each item. Opposed to our setting,
priors on agents’ valuations for each online item are usually known beforehand. Finally,

ICALP 2023

58:6 Truthful Matching with Online Items and Offline Agents

in our matching setting the agents’ valuations can assume only two values, vi and 0, and
we consider unit demand buyers instead of additive valuation agents as it is customary in
dynamic mechanism design.

2 Preliminaries

We are given a bipartite graph G = (B, I; E), where B is a set of n vertices, corresponding
to buyers, I is a set of m vertices, corresponding to items, and E ⊆ B × I is the set of edges.
We denote by ν the smallest between the number of buyers n and the items m. The set of
buyers is known beforehand, while the items arrive one by one in some unknown, possibly
adversarial, order. Without loss of generality we assume that item j arrives at time j. Each
buyer i has two pieces of private information: the set of items she is interested in, and her
value vi if she gets at least one of them (the value for other items is 0). Upon the arrival
of a new item, every buyer declares if she is interested in the current item and, if yes, her
value. Let bi,j denote the bid of buyer i for item j (with the convention that bi,j = 0 if buyer
i is not interested in item j). Without loss of generality, we may assume that buyers cannot
change their declared valuation after they have declared it once1, i.e. every nonzero bid of
the same buyer is the same value bi, and that every buyer is assigned at most one item.

A mechanism M is composed of an allocation scheme and a payment scheme. Upon the
arrival of every item, and based on buyer bids, the mechanism decides immediately and
irrevocably to either assign the new item to some buyer who has not been assigned an item
yet, or leave it unassigned forever. Thus, the resulting allocation is a matching in G: every
buyer receives at most one item, and every item is allocated to at most one buyer. We denote
by µ the induced matching, so that µj denotes the buyer to whom item j is assigned (we
assume that an item j can only be assigned to a buyer who declares interest in j). If j is
unassigned, we write µj = ∅. We also write µ−1

i to denote the item assigned to buyer i, with
the convention that µ−1

i = ∅ if i is left unassigned. The allocation is computed online; i.e.,
µj is determined using only the bids on items up to j. In addition to the allocation, the
mechanism decides how much each buyer should pay. A payment scheme is denoted by p,
where pi denotes the non-negative payment of buyer i. We distinguish between two types of
payment schemes, according to the time at which the mechanism determines the payment. A
tardy mechanism is one where the payment vector p is computed in the end of the process.
A prompt mechanism is one where the payment pi of every buyer i is determined upon the
assignment of buyer i (i.e., upon the arrival of item µ−1

i). The mechanism’s objective is to
maximize the social welfare of the allocation µ, which is the sum of the buyer values for their
assigned items. The social welfare is given by SW(µ) =

∑
i∈B vi · 1{(i,µ−1

i
)∈E}. Note that a

mechanism can also be randomized, so that its allocation is a distribution over matchings.
In case of a randomized mechanism, we measure its efficiency by the expected social welfare.
We say that a mechanism gives an α approximation, or is α-competitive (where α ≥ 1), if
its (expected) social welfare is at least an 1/α fraction of the welfare of a maximum weight
matching. That is, µ is α-competitive if OPT = SW(µ⋆) ≤ α · E [SW(µ)] , where µ⋆ is the
maximum weight matching in G.

A bidding strategy Bi for buyer i is a sequence of bids bi,j that specifies, every time a new
item j arrives, whether to declare interest in it and which value to report. The bid Bi might
depend on the bids of the other agents, the actions of the mechanism, and the knowledge the
buyers have on the sequence of items. Recall that once an agent declares a positive valuation

1 Mechanisms can “punish” such behavior by discarding the buyer from further consideration

M. Feldman, F. Fusco, S. Mauras, and R. Reiffenhäuser 58:7

bi,j = bi > 0 for some item j, she cannot change her value thereafter; namely, all bids for
future items j′ can take the value of either bi or 0. Let B denote the profile of buyer bidding
strategies, and B−i denote the profile of all buyer strategies excluding buyer i. We assume
that every buyer has a quasi-linear utility function: ui(M,Bi,B−i) = vi · 1{(i,µ−1

i
)∈E} − pi.

A buyer is called myopic if upon the arrival of every item j, she cares only about
maximizing her utility in that round, without considering its effect on future rounds. I.e.,
upon the arrival of item j, she maximizes the utility function ui,j = vi · 1{µj=i, (i,j)∈E} − pi.

We consider myopic agents only in the context of prompt mechanisms, where the price pi

is determined immediately. We study the following ex-post notion of truthfulness: (i) A
mechanism for myopic agents is truthful if it is always in the best interest of a myopic buyer
to declare her value truthfully. (ii) A mechanism for non-myopic agents is truthful if an agent
maximizes her utility for every realization of the mechanism by declaring her value truthfully.
Finally, we only consider mechanisms that are ex-post individually rational, meaning that all
agents (myopic or not) have non-negative utility, for every realization of the mechanism.

3 Prompt mechanisms with public graph edges

We start with the setting where agents are assumed to know, and strategize about, the whole
sequence of items arriving. Note that this is a strong information asymmetry between agents
and mechanism, as the latter only discovers the items as they are revealed online and has
no information on the future. As a first step in this challenging model, in this section we
study the case where agents may only lie on their valuations. Our main focus here is on
establishing lower bounds, which will naturally extend to the case where the edges of the
graph are private information.

3.1 Deterministic truthful mechanisms
When mechanisms are required to be prompt, the problem becomes much harder despite the
fact that each agent’s private information is just a single value. This is due to the online
nature of the problem versus the possibly universal knowledge of the buyers, as outlined
before. We first concentrate on deterministic prompt truthful mechanisms, and prove that
the scope of these is quite limited. The critical item property is also used in [4] to prove a
lower bound analogous to Theorem 3.

▶ Definition 1 (critical item property). We say that a deterministic mechanism satisfies the
critical item property if and only if for every buyer i, there exists some j ∈ I such that for
any reported value bi of i, the mechanism assigns i with item j, or none at all. Note that j

may depend on the edges of the graph, and on the values of other buyers.

▶ Lemma 2. Prompt deterministic truthful mechanisms for the problem with public graph
edges satisfy the critical item property.

Proof. For the sake of contradiction, assume that there is a buyer i who gets item j1 at price
p1 if she reports a value β1 and gets item j2 at price p2 if she reports a value β2. Without
loss of generality, let j1 < j2. By truthfulness, the mechanism must give item j1 to buyer
i if she reports a value ≥ p1 (as far as the mechanism knows, i might not like items after
j1, and she would have incentive to lie and report β1 if she is not given j1). Thus, we have
p2 ≤ β2 < p1, where the first inequality comes from individual rationality. But now, buyer i

has incentive to report β2, in order to get j2 and pay p2 which is less than p1. ◀

ICALP 2023

58:8 Truthful Matching with Online Items and Offline Agents

▶ Theorem 3. Any prompt deterministic truthful mechanism for the problem with public
graph edges has competitive ratio of at most ν = min(m, n).

Proof. Consider an instance with n buyers with value 1 that are all interested in the first
item. If there is a buyer i who will never get item 1 no matter what she reports, then we
change the instance so that i has an arbitrary large value and is only interested in item 1, in
which case i will get nothing and the mechanism does not even approximate the optimal
social welfare. Conversely, if there is no such buyer, then the critical item property states
that no other item can be allocated, which gives an approximation ratio of min(m, n). ◀

3.2 Randomized truthful mechanisms
Somewhat surprisingly, the previous result has revealed a large gap between tardy and
prompt deterministic mechanisms, when the topology of the graph is public knowledge: while
tardy mechanisms can be implemented for free, i.e., maintaining the efficiency guarantees
of (non-strategic) combinatorial algorithms, for prompt mechanisms the story is different.
After showing that deterministic mechanisms cannot achieve anything better than ν, we turn
our focus towards impossibility results for randomized mechanisms. We utilize a well-known
property of randomized truthful mechanisms, which (by definition) make truthful reports
utility-maximizing for any outcome of a mechanism’s random decisions, even in hindsight:
this implies that they are lotteries over deterministic truthful mechanisms, which satisfy the
properties shown in the previous section. By Yao’s minimax principle [29], it is then enough
to construct a distribution over instances, such that the optimal solutions have welfare
Ω(log n), and a best-possible deterministic mechanism M, since it satisfies the critical item
property, outputs solutions with expected value O(log log n).

▶ Theorem 4. Any prompt randomized truthful mechanism for the problem with public graph
edges has competitive ratio of at least Ω(log ν/ log log ν).

Proof. Fix any prompt randomized ex-post truthful mechanism for public graph edges.
We argue by Yao’s principle [29] that its competitive ratio is at least Ω(log ν/ log log ν).
This holds due to the upcoming Lemma 5, which shows that there exists a distribution
over instances, such that the optimal solutions have welfare at least n log(n)/2 with high
probability, and such that any deterministic mechanism (since it satisfies the critical item
property) outputs solutions with expected value O(n log log n). More precisely, given a
random instance r and a mechanismMs with random coin flips s, recall that Yao’s principle
states that:

min
r

[
Es[Ms(r)]
OPT(r)

]
≤ Er

[
Es[Ms(r)]
OPT(r)

]
= Es

[
Er

[
Ms(r)

OPT(r)

]]
≤ max

s

[
Er

[
Ms(r)

OPT(r)

]]
In particular, fixing the coin flips s, the mechanism Ms is deterministic and truthful. Hence,
Lemma 5 bounds its expected approximation ratio over the random instance r, with

Er

[
Ms(r)

OPT(r)

]
≤ Er

[
Ms(r)

log(n)/2 + 1{OPT(r)≤log(n)/2}

]
≤ O(log log n)

log(n)/2 +O(1/ log2 n),

where the first inequality holds by the disjunction of whether or not OPT(r) ≤ log(n)/2 for
a given r. Combining the two inequalities concludes the proof. ◀

▶ Lemma 5. There is a distribution over instances with n buyers and n items, for which
any deterministic mechanism satisfying the critical item property outputs solutions with
expected value O(n log log n), and such that the optimal solution has value ≥ n log(n)/2 with
probability at least 1−O(1/ log2 n).

M. Feldman, F. Fusco, S. Mauras, and R. Reiffenhäuser 58:9

︷︸︸︷︷
︸︸

︷ ︷
︸︸

︷

Buyers/items of type 3:
expected number
= n · β3 = 9 · 1/7

Buyers/items of type 2:
expected number
= n · β2 = 9 · 2/7

Buyers/items of type 1:
expected number
= n · β3 = 9 · 4/7

1

2

3

4

5

6

7

8

9

22 1 3 1/β3 = 7/1

99 2 3 1/β3 = 7/1

11 3 2 1/β2 = 7/2

33 4 2 1/β2 = 7/2

55 5 2 1/β2 = 7/2

44 6 1 1/β1 = 7/4

66 7 1 1/β1 = 7/4

77 8 1 1/β1 = 7/4

88 9 1 1/β1 = 7/4

i σ(i) t(i) value vi

Figure 1 The instance from Lemma 5 with k = 3 and n = 9. Items are ordered (from top to bottom)
according to their arrival times, and buyers are ordered (from top to bottom) according to σ (sort by
decreasing types, breaking ties with indices). Preferences of buyers are given by the edges of the graph.

Proof. Let k ≥ 1 be a parameter, which corresponds to the number of types of buyers, and
let β1 > · · · > βk > 0 be the probabilities of each type (β1 + · · · + βk = 1). We choose
βt = 2−t/(1 − 2−k) for all t, and we set n = 1 + 2k. Consider the following distribution
over instances, with n buyers and n items. Each buyer i draws independently a type
t(i) ∈ {1, . . . , k} with probability βt(i), and we set her value to vi = 1/βt(i). Then, we sort
buyers by decreasing t(i), breaking ties using indices, and call σ(i) ∈ {1, . . . , n} the rank of
buyer i in this ordering. We decide that buyer i is interested in all items up to the σ(i)-th
one. To visualize this procedure, we refer to Figure 1. It is easy to find the optimal allocation:
it consists in assigning each buyer of rank σ(i) the σ(i)-th item, in a perfect matching. Thus
the expected optimal social welfare is equal to

E [OPT] =
n∑

i=1

k∑
t=1

βt · 1/βt = n · k.

Moreover, because each type is drawn independently the variance of OPTis

Var(OPT) =
n∑

i=1
Var(vi) ≤

n∑
i=1

E[v2
i] = n ·

k∑
t=1

1
βt
≤ 2n2.

In particular, if we apply Chebyshev’s inequality, we obtain

P

[
OPT ≤ nk

2

]
≤ P

[
|OPT− nk| ≥ nk

2

]
≤ Var(OPT)

(nk/2)2 ≤ 8
k2 .

We now define the type s(j) = t(σ−1(j)) of an item j as the type of the j-th buyer in
the ordering σ, which corresponds to the type of its buyer in the abovementioned optimal
matching. Observe that of each type, there are as many items as buyers, and that buyer i

cannot be allocated an item j of type s(j) < t(i). For each buyer i and for all types t ≤ s,
let xi

s,t be the probability (over the randomness of the types of all buyers except i) that i

gets an item of type s, conditioning on the fact that i has type t. Let xs,t =
∑

i xi
s,t/n, that

is, the average probability that a type t buyer will be assigned a type s item. The expected
social welfare of our deterministic mechanism is equal to

ICALP 2023

58:10 Truthful Matching with Online Items and Offline Agents

E [SW(µ)] =
n∑

i=1

k∑
t=1

βt · 1/βt ·
k∑

s=t

xi
s,t = n

k∑
t=1

k∑
s=t

xs,t.

In expectation, the mechanism sells
∑

i

∑s
t=1 βt · xi

s,t items of type s. Because there are
equally many items and buyers of each type, the expected number of items of type s is βs · n.
Thus, we have the linear constraint

∀1 ≤ s ≤ k,
s∑

t=1
βt · xs,t ≤ βs.

We are now going to use the critical item property. Fix a buyer i, and condition on the
types of all buyers except her. We show that there exists an item j(i) ∈ {1, . . . , n}, such that
for every type t(i), either i gets item j(i), or she gets nothing. Denote as It the instance
given by the fixed types of all buyers except i, together with buyer i who has type t. Using
the critical item property with instance I1, where i instead is of type 1 (meaning that i is
interested in maximally many items), there is an item j(i) such that buyer i either gets
j(i) or nothing. From the perspective of the mechanism, any other instance It (defined
analogously) is identical to instance I1 up to the point when i stops being interested in items.
At this point, if buyer i has already been allocated an item, then it must be j(i). Otherwise,
she will not get anything.

Now that j(i) is well-defined (and only depends on types of other buyers), let yi
s be the

probability (over the randomness of the types of all buyers except i) that there exists some
type t such that if t is the type of i, then item j(i) has type s. Let ys =

∑
i yi

s/n. Because
buyer i can only get item j(i), and because j(i) is independent from t(i), we have xi

s,t ≤ yi
s.

Thus, summing over all buyers, we have the linear constraint xs,t ≤ ys, for all 1 ≤ t ≤ s ≤ k.
Finally, conditioning on the types of all buyers except i, we show that there is only a small
number of types that j(i) can take. Recall that s(j(i)) = t(σ−1(j(i))), that is, the type
of item j(i) is by definition the type of the j(i)-th buyer in the ordering σ, where σ was
obtained by sorting buyers in decreasing order of type. Consider the ordering induced by σ

after excluding buyer i, and denote i1 and i2 the buyers of rank j(i) − 1 and j(i). In the
original ordering σ, either i comes before i1 (in which case s(j(i)) = t(i1)), or i comes after i2
(in which case s(j(i)) = t(i2)), or i comes between i1 and i2 (in which case s(j(i)) = t(i)). In
any case, t(i1) ≥ s(j(i)) ≥ t(i2). This shows that there are at most 2+z possible values for
s(j(i)), where z denotes the number of types not seen among other buyers. By a standard
computation, the expected value of z is smaller than

∑k
t=1(1−βt)n−1. Recall that ys denotes

the average probability over i that there exists a type for i which can make j(i) have type s,
where the randomness is over the instance without i. Since for every fixed such instance, j(i)
can only possibly take two of the types seen in buyers except i, for any fixed i, it holds that∑k

s=1 yi
s ≤ α, where α = 2 +

∑k
t=1(1−βt)n−1, and therefore, the same holds also on average,

i.e. for the ys. Thus, averaging over possible types for the other buyers, and summing over i,
we have the linear constraint

∑k
s=1 ys ≤ α. If we choose n = 1 + 2k and βt = 2−t/(1− 2−k),

we have
k∑

t=1
(1− βt)n−1 ≤

k∑
t=1

e−2k−t/(1−2−k) ≤
+∞∑
t=0

e−2t

≤ 1,

and thus α ≤ 3. To conclude the proof, we use the linear constraints obtained to define
a linear program (P) whose objective function is the expected value of the social welfare

M. Feldman, F. Fusco, S. Mauras, and R. Reiffenhäuser 58:11

max
k∑

t=1

k∑
s=t

xs,t (P)

s.t. xs,t ≤ ys∑s
t=1βt · xs,t ≤ βs∑k
s=1ys ≤ α

xs,t, ys ≥ 0

min α · w +
k∑

s=1
βs · vs (D)

s.t. us,t + βt · vs ≥ 1
w ≥

∑s
t=1us,t

us,t, vs, w ≥ 0

obtained by a deterministic truthful mechanism. We want to show that the objective function
of our linear program is at most O(n log k). To this end, Lemma 6 builds a solution for the
dual linear program (D), whose value is an upper bound on the value of the primal linear
program (for convenience, the objective function is divided by n). ◀

▶ Lemma 6. Consider the linear program (P), parameterized by α > 0 and β1 > · · · > βk > 0.
If βt = 2−t/(1 − 2−k) for all 1 ≤ t ≤ k, then the dual (D) has a feasible solution of value
O(α log k).

Proof. Set δ = ⌈log2 k⌉, then following solution of the dual is feasible and yields the desired
objective value: w = δ, vs = 0 if s < δ and 2s−δ otherwise, while the us,t are defined as:

∀1 ≤ t ≤ s ≤ k, us,t =


1 if s < δ

1− 2s−δ−t if 0 ≤ s− δ ≤ t

0 otherwise
◀

4 Mechanisms with private graph edges

We move to the (harder) case where the graph edges are private information of the agents.
The additional hardness, interestingly, severely affects the competitive guarantees for tardy
truthful mechanisms. We begin by characterizing deterministic mechanisms, and then move
on to results for randomized mechanisms.

4.1 Deterministic truthful mechanisms
In the previous section we assumed that the agents could not misreport their interest in
items, thus reducing the problem to a single-parameter one. We now lift this assumption,
and investigate the effect on the competitive ratio of deterministic truthful mechanisms.
We show that deterministic truthful mechanisms can always be implemented in a prompt
manner. Then, we give matching upper and lower bounds on the best approximation ratio
for the social welfare.

▶ Lemma 7. Tardy deterministic truthful mechanisms for the problem with private graph
edges satisfy the critical item property (see Definition 1).

Proof. For the sake of contradiction, assume that there is a buyer i who gets item j1 at
price p1 if she reports a value β1, and gets item j2 at price p2 if she reports a value β2.
Without loss of generality, we assume that j1 < j2. First, we argue that p1 = p2. Indeed, if
p1 > p2 then i with value β1 has incentive to lie and report β2; whereas if p1 < p2 then i

with value β2 has incentive to lie and report β1. Second, we slightly change the instance,

ICALP 2023

58:12 Truthful Matching with Online Items and Offline Agents

such that buyer i has value β2 and is not interested in items after j1. When allocating j1,
the mechanism has not seen any difference to the original instance, hence i has incentive to
lie and report β1 to get j1, then lie and pretend she was interested in subsequent items to
make sure she is charged p1. ◀

▶ Lemma 8. Tardy deterministic truthful mechanisms for the problem with private graph
edges are prompt.

Proof. Assume that our mechanism assigns an item j to buyer i, who reports value bi. By
Lemma 7, the mechanism satisfies the critical item property, and j is the only item which
can be assigned to i. Let π be the minimum value that i could have reported and still be
assigned j. By truthfulness, i must be charged exactly π. Indeed, if she is charged p > π

then i with value bi has incentive to lie and report π; whereas if she is charged p < π then i

with value p would have incentives to lie and report bi. Now, when the mechanism assigns j

to i, it can retrospectively compute π, which proves that the mechanism is prompt. ◀

▶ Theorem 9. There exists a deterministic truthful mechanism that achieves an ν =
min(m, n) approximation of the offline optimum. This result is tight in the class of determ-
inistic truthful mechanisms, when graph edges are private.

Proof. Consider the simple mechanism which only assigns an item to a buyer if she has the
highest value seen so far (breaking ties arbitrarily), charging her the second highest value
seen so far. This is a ν-competitive deterministic truthful mechanism. For the tightness,
Lemma 8 shows that deterministic tardy mechanisms are in fact prompt, thus the lower
bound from Theorem 4 (public graph edges) applies to this setting. ◀

5 Randomized truthful mechanisms

Recall that randomized (ex-post) truthful mechanisms are lotteries over deterministic truthful
mechanisms, which in turn satisfy the characterizing properties we obtain for the deterministic
case. The proof of our lower bound in Theorem 4 was based on this fact. This same argument
also applies to mechanisms for private edges, even when they are tardy. On the positive side,
we construct a prompt randomized truthful mechanism, the Explore-Exploit Mechanism,
that yields a logarithmic approximation. The Explore-Exploit Mechanism divides the
buyers into two types: “explore” buyers will not receive any item but are used to set the
price for the “exploit” buyers. To guarantee truthfulness, we enforce monotonicity of the
prices proposed by the seller during the routine: with prices always increasing, there is no
way a buyer can benefit from withholding information in previous stages of the process to
get something at a cheaper price later.

▶ Theorem 10. The Explore-Exploit Mechanism is truthful, and computes a O(log n)
approximation to the optimal social welfare. This result is nearly tight (up to log log n) in
the class of randomized truthful mechanisms when the edges are private information, even
for tardy mechanisms.

Proof. Buyers of type Explore will not get any item, and thus have no incentive to lie.
Buyers of type Exploit only need to say if they are interested to buy an item at a given
price. Because prices are non-decreasing, they have no incentive to misreport their value or
their interest in an item. For each item j, we define xj as the maximum value seen among
buyers interested in items up to j.

∀j ∈ I, xj = max{vi with i ∈ B such that ∃j′ ≤ j, (i, j′) ∈ E}

M. Feldman, F. Fusco, S. Mauras, and R. Reiffenhäuser 58:13

Algorithm 1 Explore-Exploit Mechanism.
1: Initialization:
2: Set p← 0 and draw k ← Unif({0, 1, . . . , ⌈log2 n⌉})
3: For each buyer i, draw type ti ← Unif({Explore, Exploit}).
4: When an item arrives:
5: Buyers report if they are interested in the item.
6: For each buyer i of type ti = Explore who is interested in the item, do
7: Set p← max(p, vi/2k)
8: Sell the item at price p to a buyer i of type ti = Exploit, who is interested
9: in the item and does not yet have an item, chosen arbitrarily (e.g. lowest index).

For the sake of analysis, we look at a maximum weight matching µ ⊆ E, having a total
value of OPT. Each edge (i, j) ∈ µ from the optimal solution is assigned to a bucket
ℓ(i,j) = ⌈log2(xj/vi)⌉ ∈ N. Then for each ℓ ∈ N we define OPTℓ as the total weight of the
restriction of the optimal solution to bucket ℓ.

OPT =
∑
ℓ≥0

OPTℓ where ∀ℓ ≥ 0, OPTℓ =
∑

(i,j)∈µ

vi · 1{ℓ(i,j)=ℓ}

Let V be maximum value among buyers who are interested in at least one item. By optimality
of µ, the corresponding buyer must be given an item, and thus OPT0 ≥ V . Now observe that
for each (i, j) ∈ µ such that ℓ(i,j) > ⌈log2 n⌉, we have vi < xj/n ≤ V/n ≤ OPT0/n. Thus,
the sum of OPTℓ for ℓ > ⌈log2 n⌉ is smaller than OPT0. Therefore, buckets 0, 1, . . . , ⌈log2 n⌉
contain at least half of OPT, that is

OPT
2 ≤

⌈log2 n⌉∑
ℓ=0

OPTℓ

For all ℓ ∈ {0, 1 . . . , ⌈log2 n⌉}, we will now show that if k = ℓ then the Explore-Exploit
Mechanism gives a solution of expected cost at least Ω(OPTℓ). Then we will conclude the
proof using the law of total probability: summing over k shows that the Explore-Exploit
Mechanism computes a solution of expected cost at least Ω(OPT/ log n). First, assume
that k = 0. For each edge (i, j) ∈ µ in bucket ℓ(i,j) = 0, then i is the best buyer seen by the
time j arrives. With probability 1/4, buyer i has type Exploit and the second best buyer
has type Explore. In that case, the Explore-Exploit Mechanism gives buyer i an item
(either j or one of the previous items). Using linearity of expectation, the Explore-Exploit
Mechanism outputs a solution of expected value at least OPT0/4. Second, assume that
k = ℓ with ℓ ∈ {1, . . . , ⌈log2 n⌉}. This case requires an amortized analysis: for each buyer i,
denote Xi the random variable equal to vi if i gets an item and 0 otherwise; and for each
item j, denote Yj the random variable equal to the value of the buyer to whom j is assigned,
and 0 if j is unassigned. Notice that the Explore-Exploit Mechanism outputs a solution
of value =

∑
i∈B Xi =

∑
j∈I Yj . Let (i, j) ∈ µ be an edge from bucket ℓ(i,j) = ℓ. We are

going to show that

E [Xi + 4Yj | k = ℓ and ti = Exploit] ≥ vi.

We condition on the fact that k = ℓ and ti = Exploit. If buyer i already has an item
when item j arrives, then Xi = vi. Otherwise, the best buyer seen so far has type Explore

with probability 1/2, in which case the Explore-Exploit Mechanism gives item j to a

ICALP 2023

58:14 Truthful Matching with Online Items and Offline Agents

buyer of value ≥ xj/2ℓ ≥ vi/2. Buyer i has type ti = Exploit with probability 1/2, thus
vi ≤ E[2Xi + 8Yj | k = ℓ]. Summing this last inequality over edges from bucket ℓ shows that
the Explore-Exploit Mechanism outputs a solution of expected value at least OPTℓ/10.

Let’s move our attention to the lower bound . Fix all random decisions of an ex-post
truthful randomized mechanism. This yields a deterministic algorithm, that together with
the original mechanism’s payment scheme yields a (tardy) mechanism. This mechanism is
deterministic, and truthful due to the definition of truthfulness. Also, such a mechanism
fulfills the critical item property (Lemma 7), and can even be made prompt (Lemma 8).
With this, we can follow the original proof of the lower bound. ◀

6 Ex-ante truthfulness

One might wonder if the hardness of truthful mechanisms for our problem is mainly due to
the very restrictive notion of ex-post truthfulness. We state here that also for the much looser
ex-ante truthfulness, the setting of non-myopic buyers separates clearly from the myopic
case. The proof is via a nontrivial construction allowing bounds on agents’ expected utilities.

▶ Theorem 11. There exists no randomized ex-ante truthful mechanism that yields an
α-approximation to the optimal social welfare, for the problem with private edges and any
α < 2. This is true even for tardy mechanisms.

Proof. Fix α < 2 and assume mechanism M guarantees an expected approximation ratio of
α. Consider the following problem instance: there are n′ buyers and m = n′ + 1 items. Every
item j has exactly one interested buyer, ij , and all ij have some small value vij

= ϵ > 0.
There exist some additional buyers B1 ⊆ B with different values who are interested only
in item 1, and one buyer, i, whom we fix for our considerations. Note that |B| = n′ + n1,
with n1 = |B1|. For n′ large enough, clearly, n′ϵ > maxi′∈B1 vi′ and the contribution of item
1 to the optimum becomes negligible with growing n′. Therefore, for M to guarantee an
α-approximation, there must exist j ∈ {2, . . . , n′ + 1} such that ij is assigned the according
item with probability at least 1

α , or in case item 1 is worth more than ϵ, at least probability
1
α −∆1, where ∆1 arbitrarily small for large n′.

Now, if we choose i = ij , then M will assign item j to ij w.pr. ≥ 1
α −∆1, and charge an

expected price of at most ϵ. The latter is because the price cannot depend on i’s bid due to
incentive compatibility, and it needs to be below i’s value. Assume we replace i’s valuation
by some v > ϵ, and call this new buyer i(1). Since M is ex-ante truthful, still, the exp. utility
ui(1) achieved with a truthful report must be at least as large as when reporting ϵ instead of
v, i.e. at least (v − ϵ)(1

α −∆1) > 1
2 v, which is at least half of v because α is < 2 and ϵ, ∆1

can be chosen arbitrarily small. We replace i(1) again by a different buyer i = i(2). She still
has valuation v, however, she is now interested in items 1 and j. We consider the first step
of M , i.e. the assignment decision made for item 1. Assuming that v is the largest value bid
on item 1, and given the fact that M has no idea if any additional value will present itself in
the later steps, the probability that M assigns item 1 to i(2) is at least 1

α −∆2, where ∆2
approaches 0 since the other bids on item 1 might be, in comparison, too small to matter.
Note again that the assignment decision cannot depend on v itself, but only on the fact that
it is the largest value bid on item 1.

We know that i(2) can get utility larger than v
2 by simply reporting type i(1) instead. We

also know that since she is assigned item 1 w.pr. > 1
2 , she is assigned item j w.pr. < 1

2 . This,
intuitively, means that not all of the guaranteed utility is generated by item j, not even if the
price of j is always 0 – but some must be generated because her expected price paid when

M. Feldman, F. Fusco, S. Mauras, and R. Reiffenhäuser 58:15

item 1 is assigned is bounded away from v, i.e. pi(2)(1) = v −∆3. In fact, the exp. price M

charges from i(2) when assigning item 1 cannot be smaller if i(2) later reports interest in item
j, since this would give a buyer of type i(1) incentive to also report interest in j. Also, the
price charged from i(2) when assigning item j cannot be less than 0, and when there is no
item assigned, i(2) is not charged anything (see preliminaries). This implies that, for Pk(i)
denoting the assignment probability of item k to buyer i,

ui(2) = (v − pi(2)(1)) · P1(i(2)) + (v − pi(2)(j)) · Pj(i(2))

= ∆3 · P1(i(2)) + (v − pi(2)(j)) · Pj(i(2)) >
v

2

Otherwise, we would have a contradiction on the utility being larger than v
2 , i.e. it would be

beneficial for i(2) to only report interest in item j. In consequence, it also holds

ui(2) = ∆3 · P1(i(2)) + (v − pi(2)(j)) · Pj(i(2)) ≥ ∆3 · P1(i(2)) + (v − v) · Pj(i(2)) > 0.

This is true because the exp. price when receiving item j can be no more than v, and
Pj(i(2)) < 1

2 . Therefore, there exists some v− < v for which it holds that

ui−(1) = ui(2)(1)− P1(i(2))(v − v−) = (∆3 − (v − v−))P1(i(2))

Here, ui−(1) denotes the utility obtained from being assigned item 1 of some buyer with
valuation v− for item 1, and 0 otherwise, when she reports i(2) as her type. Note that if
buyer i− reports value v for item 1 and 0 for all others, she will also obtain ui−(1) from
being assigned the first item: the assignment decision is made before the algorithm can know
the difference, and the expected price paid cannot depend on the buyer’s later reports due
to truthfulness.

We use this to show a contradiction to the approximation ratio of M . Assume there
exists, in absence of i(2), such a buyer i− with smaller value v− and utility of u−(1) > 0 when
reporting to have value v, who is interested in purchasing item 1, i.e. i− ∈ B1. Since M is
ex-ante truthful, a truthful report for her will also result in positive expected utility of at least
u−(1). As a direct consequence, it holds also that the probability P1(i−) for assigning item 1
to i− (when she reports truthfully) is lower bounded, in order to achieve above expected
utility, as follows: P1(i−) ≥ ui− (1)

v− . Finally, we copy buyer i− at least v−

ui− (1) + 1 times. If
necessary for tie-breaking, we distort their values a bit. Our conclusions about i(2)’s utility
hold once i(2) reports the largest value for item 1, regardless of other values. This means, if
either of our copied v− should decide to deviate and report to be valued like i(2) instead,
they can recover utility ui−(1). As a result, each one of the copies, when reporting truthfully,
has at least the same utility, and therefore an assignment probability of at least P1(i−). This,
in sum, results in a probability of more than 1 for assigning item 1, i.e., a contradiction. ◀

7 Conclusions

We have studied vertex-weighted bipartite online matching with offline agents in various
settings, obtaining an almost-complete picture of the competitive ratios achievable by
mechanisms under different truthfulness notions. Our results encompass that for myopic
truthfulness, the best algorithmic results [18, 1] transfer to the online agents setting. This
showcases that the very general myopic bounds of [9] are far from tight for restricted settings
like ours. On the other hand, we also show that equally near-optimal approximations
are impossible under the assumption of classic truthfulness, even ex-ante; and for ex-post

ICALP 2023

58:16 Truthful Matching with Online Items and Offline Agents

truthfulness our seemingly simple problem already exhibits lower bounds almost matching
the myopic, logarithmic competitive ratio for submodular combinatorial auctions in [9]. We
leave open to what extent this additional hardness (moving from a tight e/(e− 1) myopic to
Ω(log n/ log log n) truthful) already happens when imposing ex-ante truthfulness. This is an
interesting subject of investigation, also for different scenarios than the one of our ≥ 2 lower
bound (private edges).

References
1 Gagan Aggarwal, Gagan Goel, Chinmay Karande, and Aranyak Mehta. Online vertex-weighted

bipartite matching and single-bid budgeted allocations. In SODA, pages 1253–1264. SIAM,
2011.

2 Susan Athey and Ilya Segal. An efficient dynamic mechanism. Econometrica, 81(6):2463–2485,
2013.

3 Yossi Azar and Ety Khaitzin. Prompt mechanism for ad placement over time. In International
Symposium on Algorithmic Game Theory SAGT, pages 19–30. Springer, 2011.

4 Moshe Babaioff, Liad Blumrosen, and Aaron Roth. Auctions with online supply. Games Econ.
Behav., 90:227–246, 2015.

5 Dirk Bergemann and Juuso Välimäki. Dynamic mechanism design: An introduction. Journal
of Economic Literature, 57(2):235–74, June 2019.

6 Benjamin Birnbaum and Claire Mathieu. On-line bipartite matching made simple. Acm Sigact
News, 39(1):80–87, 2008.

7 Constantine Caramanis, Paul Dütting, Matthew Faw, Federico Fusco, Philip Lazos, Stefano
Leonardi, Orestis Papadigenopoulos, Emmanouil Pountourakis, and Rebecca Reiffenhäuser.
Single-sample prophet inequalities via greedy-ordered selection. In SODA, pages 1298–1325.
SIAM, 2022.

8 Richard Cole, Shahar Dobzinski, and Lisa Fleischer. Prompt mechanisms for online auctions.
In International Symposium on Algorithmic Game Theory, pages 170–181. Springer, 2008.

9 Yuan Deng, Debmalya Panigrahi, and Hanrui Zhang. Online combinatorial auctions. In SODA,
pages 1131–1149. SIAM, 2021.

10 Nikhil R. Devanur, Kamal Jain, and Robert D. Kleinberg. Randomized primal-dual analysis
of RANKING for online bipartite matching. In SODA, pages 101–107. SIAM, 2013.

11 Paul Dütting, Federico Fusco, Philip Lazos, Stefano Leonardi, and Rebecca Reiffenhäuser.
Efficient two-sided markets with limited information. In STOC, pages 1452–1465. ACM, 2021.

12 Alon Eden, Michal Feldman, Amos Fiat, and Kineret Segal. An economics-based analysis of
RANKING for online bipartite matching. In SOSA, pages 107–110. SIAM, 2021.

13 Tomer Ezra, Michal Feldman, Nick Gravin, and Zhihao Gavin Tang. Online stochastic max-
weight matching: Prophet inequality for vertex and edge arrival models. In EC, pages 769–787.
ACM, 2020.

14 Uriel Feige. Tighter bounds for online bipartite matching. In Building Bridges II, pages
235–255. Springer, 2019.

15 Buddhima Gamlath, Sagar Kale, and Ola Svensson. Beating greedy for stochastic bipartite
matching. In SODA, pages 2841–2854. SIAM, 2019.

16 Buddhima Gamlath, Michael Kapralov, Andreas Maggiori, Ola Svensson, and David Wajc.
Online matching with general arrivals. In FOCS, pages 26–37. IEEE Computer Society, 2019.

17 Nick Gravin, Zhihao Gavin Tang, and Kangning Wang. Online stochastic matching with
edge arrivals. In ICALP, volume 198 of LIPIcs, pages 74:1–74:20. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2021.

18 Richard M. Karp, Umesh V. Vazirani, and Vijay V. Vazirani. An optimal algorithm for on-line
bipartite matching. In STOC, pages 352–358. ACM, 1990.

19 Thomas Kesselheim, Klaus Radke, Andreas Tönnis, and Berthold Vöcking. An optimal online
algorithm for weighted bipartite matching and extensions to combinatorial auctions. In ESA,
volume 8125 of Lecture Notes in Computer Science, pages 589–600. Springer, 2013.

M. Feldman, F. Fusco, S. Mauras, and R. Reiffenhäuser 58:17

20 Nitish Korula and Martin Pál. Algorithms for secretary problems on graphs and hypergraphs.
In ICALP (2), volume 5556 of Lecture Notes in Computer Science, pages 508–520. Springer,
2009.

21 Piotr Krysta and Berthold Vöcking. Online mechanism design (randomized rounding on
the fly). In ICALP (2), volume 7392 of Lecture Notes in Computer Science, pages 636–647.
Springer, 2012.

22 Aranyak Mehta. Online matching and ad allocation. Found. Trends Theor. Comput. Sci.,
8(4):265–368, 2013.

23 Vahab S. Mirrokni, Renato Paes Leme, Pingzhong Tang, and Song Zuo. Non-clairvoyant
dynamic mechanism design. In EC, page 169. ACM, 2018.

24 Roger B Myerson. Optimal auction design. Mathematics of operations research, 6(1):58–73,
1981.

25 Rebecca Reiffenhäuser. An optimal truthful mechanism for the online weighted bipartite
matching problem. In SODA, pages 1982–1993. SIAM, 2019.

26 Tim Roughgarden. Twenty lectures on algorithmic game theory. Cambridge University Press,
2016.

27 William Vickrey. Counterspeculation, auctions, and competitive sealed tenders. The Journal
of finance, 16(1):8–37, 1961.

28 Xiangzhong Xiang. Prompt mechanism for online auctions with multi-unit demands. Journal
of Combinatorial Optimization, 30(2):335–346, 2015.

29 Andrew Chi-Chih Yao. Probabilistic computations: Toward a unified measure of complexity
(extended abstract). In FOCS, pages 222–227. IEEE Computer Society, 1977.

A Mechanisms for Myopic Buyers

In this section we study myopic buyers. We show that for this class of agents, one can obtain
strategy proof versions of the best (non-truthful) algorithms [18]. Formally, we construct
a deterministic prompt mechanism that achieves at least half of the welfare of the best
offline matching, and a randomized prompt mechanism that is (in expectation) e/(e− 1)-
competitive with the best offline matching. We start describing our deterministic mechanism
HonestGreedy, which mimics the classical Greedy algorithm for online weighted matching
in a way that is robust to strategic bidding. Every time a new item arrives, HonestGreedy
runs a second price auction [27] to allocate it between the remaining (interested) buyers.
Since the buyers are myopic, every time a new item arrives, they behave like if it was the last:
clearly there is no point in lying about being interested in an item. Moreover, the truthfulness
in each step (as well as the individual rationality) is guaranteed by the well-known properties
of the second price auction. Note that the mechanism sets the price for item i immediately, so
it is prompt. The analysis of the approximation guarantee is also quite simple: the allocation
output by HonestGreedy is the same one that the standard Greedy algorithm would have
computed on the same input. It is well known that Greedy is 2-competitive with respect to
the best offline matching (see, e.g., Appendix B of [1]), and that this approximation is tight
in the class of deterministic algorithms [18]. We summarize these observations.

▶ Theorem 12. The deterministic prompt mechanism HonestGreedy is truthful for myopic
agents and guarantees a 2 approximation to the best offline matching. The approximation is
tight even for (non-truthful) deterministic algorithms.

We complement this deterministic 2-competitive, simple mechanism with an optimal,
randomized e/(e − 1)−competitive alternative, HonestPerturbedGreedy, based on
Perturbed-Greedy of Aggarwal et al. [1]. There, each offline vertex is associated with a
random multiplier; then, every time one of the online vertices arrives, it is matched to the

ICALP 2023

58:18 Truthful Matching with Online Items and Offline Agents

Algorithm 2 HonestPerturbedGreedy.
1: For each buyer i, do
2: Draw xi uniformly at random from [0, 1]
3: Let yi = 1− exi−1

4: Reveal publicly all xi and yi

5: For item j arriving online, do
6: Receive bids for j and let N(j) be the set of agents interested in j

7: Allocate j to i⋆ ∈ arg max{bi · yi | i ∈ N(j)} ▷ Allocation Rule
8: Charge i⋆ with pi⋆ = max

{
yi

yi⋆
bi | i ∈ N(j) \ {i⋆}

}
▷ Payment Rule

9: Discard for further consideration i⋆

free neighbor with largest multiplier-value product. To protect from the strategic behavior
of agents, HonestPerturbedGreedy declares – before the beginning of the online phase –
publicly all random multipliers, and then implements Myerson’s payment rule [24] for every
round. For a formal description we refer to the pseudocode of HonestPerturbedGreedy,
where we maintain the convention that the max of an empty set is 0 and thus if N(j) is empty
in line 7, then j is discarded and the mechanism passes to the next item. The properties of
HonestPerturbedGreedy are summarized in the following Theorem, whose formal proof
is deferred to Appendix C.

▶ Theorem 13. The randomized prompt mechanism HonestPerturbedGreedy is truthful
for myopic agents and achieves (in expectation) a e/(e− 1) approximation to the best offline
matching. The approximation is tight even for (non-truthful) randomized algorithms.

B Tardy mechanisms with public graph edges

When the graph edges are public knowledge, we can turn once again to using the algorithmic
approaches outlined in the previous Section, i.e. Greedy and Perturbed-Greedy. Now
that agents cannot strategically withhold or misreport the existence of edges, a tardy truthful
mechanism can use the whole graph structure (but of course still not the reported value bi)
when computing the price charged from any buyer i. The prompt, round-wise payment rules
we designed for myopic buyers, however, do not guarantee non-myopic truthfulness. What
remains to prove therefore is that these algorithms can be augmented by a different (tardy)
payment rule to be made truthful. This is formally done in two steps: first, it is established
that the allocations produced are monotone, and then Myerson’s Lemma is employed to
enforce truthfulness. All in all, we have the following.

▶ Theorem 14. There exists a deterministic, respectively randomized, tardy mechanism that
is truthful for non-myopic agents with public graph edges and guarantees a 2, resp. e/(e− 1),
approximation to the best offline matching. The approximation is tight even for (non-truthful)
deterministic, resp. randomized, algorithms.

Note that the allocation computed by the mechanisms we just described are analogous to
the ones computed by HonestGreedy and HonestPerturbedGreedy, but the payments
are different! We are still using Myerson’s Lemma, but the critical prices2 are clearly different,
as they are computed considering the whole run of the algorithm. To see this, consider the
following example. There are two buyers, b1 and b2, and two items i1 and i2. b1 is interested

2 The critical price is the smallest bid that would have still resulted in the item being allocated to the
agent. See the Appendix C for a formal definition

M. Feldman, F. Fusco, S. Mauras, and R. Reiffenhäuser 58:19

in both the items and has a value of 1, while b2 only cares about i1, with a value of 0.9.
Assume also for the sake of simplicy that the perturbations y1 and y2 of Perturbed-Greedy
are both 1. Both versions of Perturbed-Greedy would only allocate i1 to b1, but at two
different prices: the mechanism for myopic agents would charge 0.9, while the tardy one for
non-myopic agents would wait until the end of the second round and charge 0.

C Proofs of Theorems 13 and 14

In this section we prove the properties of HonestPerturbedGreedy and of the tardy
versions of Greedy and Perturbed-Greedy presented in Appendices A and B. Starting
from the guarantees of their non-strategic counterparts it is immediate to see that the
approximation factor claimed are indeed correct. The only property to show is incentive
compatibility. A crucial ingredient to prove incentive compatibility is Myerson’s Lemma,
that we recall here for the sake of completeness. The Lemma has been proved in Myerson’s
seminal paper [24]; here we follow the more modern approach by Roughgarden [26]. Since in
this paper we study unit-demand agents, we restrict to consider only this type of agents.

We start introducing the notion of single-parameter environments. In such environments,
there are n agents and a set X of feasible allocations of items to agents. Each agents
is characterized by a private valuation to get an item and strives to maximize her quasi-
linear utility. To familiarize with this notion consider the model of non-myopic buyers
with public graph edges studied in the paper: those agents are indeed single-parameters, as
their valuations is their only private information. At the same time, note that the “edge
compatibility” is implicitly modeled by the following set of feasible allocations of items to
agents: an allocation x ∈ {0, 1}n is feasible if and only if it is corresponds with a matching
in the underlying buyers-items bipartite graph. As already mentioned in the main body, a
mechanism M is characterized by two features: an allocation x ∈ X and a payment rule p.
While the allocation specifies who gets what, the payment rule defines how much each agent
pays. Allocation and payments are functions of the bids; in particular, we use the notation
xi(bi, b−i) ∈ {0, 1} to specify whether the ith agent is allocated an item, given her bid bi and
the n− 1 bids b−i of the other agents. We are ready for the following crucial definitions.

▶ Definition 15 (Monotone allocation). An allocation rule x for a single-parameter envir-
onment is monotone if for every bidder i and bids b−i by the other bidders, the allocation
xi(z, b−i) to i is nondecreasing in its bid z.

▶ Definition 16 (critical prices). Fix and agent i and bids b−i of the other agents. Then
the critical price for i is defined as the smallest bid zi such that i is allocated an item,
if any. Formally, if we use the convention that the inf of an empty set is 0, we have
zi = inf{z |xi(z, b−i) = 1}

Clearly, the critical prices enforce ex-post individual rationality. Myerson showed that
they also induce (ex-post) truthfulness; we report here a version of Lemma 2 of Myerson [24]
that is tailored to our problem and then show the two Theorems.

▶ Theorem 17 (Myerson’s Lemma). Fix a single-parameter mechanism. Given any monotone
allocation x, it is possible to compute a payment scheme p such that the resulting mechanism
is truthful and individually rational. In particular, in p, each agents that receives an item
pays its critical price and 0 otherwise.

▶ Theorem 13. The randomized prompt mechanism HonestPerturbedGreedy is truthful
for myopic agents and achieves (in expectation) a e/(e− 1) approximation to the best offline
matching. The approximation is tight even for (non-truthful) randomized algorithms.

ICALP 2023

58:20 Truthful Matching with Online Items and Offline Agents

Proof. We start the proof by arguing that HonestPerturbedGreedy is truthful and
individually rational for myopic agents. First, note that when any item j arrives, there
is no point for the buyers still unallocated to lie about their interest for it: if they are
not interested and they bid, they would risk to get j and lose future opportunity to get
allocated to something they are interested in, while if they are interested they do not want
to lose the opportunity (since they have no information on the future, and the prices charged
never exceed their valuations). If we restrict to consider the buyers N(j) interested in item
j, we see that the problem reduces to a single-parameter auction: the agents are myopic
and just want to maximize their utility by getting j at a small price. All yi are public
knowledge and non-negative, so our allocation rule (line 7 of HonestPerturbedGreedy),
fixing these values, is clearly monotone (the more an agent i bids, the more likely she is
to exhibit the largest yi · bi). The allocation is therefore implementable using the Myerson
payment rule (line 8 of HonestPerturbedGreedy). We can conclude, by Myerson’s
Lemma, that our mechanism is truthful for myopic buyers. Moreover, it is easy to verify
that the payment rule enforces individual rationality. Once we have settled the truthfulness,
we can assume that all buyers declare their true bids and thus the allocation output by
HonestPerturbedGreedy is the same as Perturbed-Greedy for any realization of
the perturbations xi and inherits the same approximation: HonestPerturbedGreedy is
e/(e− 1)-competitive in expectation. ◀

▶ Theorem 14. There exists a deterministic, respectively randomized, tardy mechanism that
is truthful for non-myopic agents with public graph edges and guarantees a 2, resp. e/(e− 1),
approximation to the best offline matching. The approximation is tight even for (non-truthful)
deterministic, resp. randomized, algorithms.

Proof. It is easy to see how the two mechanisms are monotone, thus it is possible to
employ directly Myerson’s Lemma, as the problem is single-parameter (i.e., the only private
information of buyer i is the single value vi). Therefore, Greedy or Perturbed-Greedy
(with fixed perturbation factors) together with the critical payments defined in Myerson’s
Lemma result in a truthful mechanism. Note that the greedy algorithm clearly respects our
ex-post notion of truthfulness, since no randomization is involved. For the Perturbed-
Greedy algorithm, this is also true since we fix all random decisions (perturbation) up front,
and choose the payment rule accordingly. ◀

Completely Reachable Automata: A Polynomial
Algorithm and Quadratic Upper Bounds
Robert Ferens #

University of Wrocław, Poland

Marek Szykuła #

University of Wrocław, Poland

Abstract
A complete deterministic finite (semi)automaton (DFA) with a set of states Q is completely reachable
if every non-empty subset of Q can be obtained as the image of the action of some word applied to Q.
The concept of completely reachable automata appeared several times, in particular, in connection
with synchronizing automata; the class contains the Černý automata and covers a few separately
investigated subclasses. The notion was introduced by Bondar and Volkov (2016), who also raised
the question about the complexity of deciding if an automaton is completely reachable. We develop
a polynomial-time algorithm for this problem, which is based on a new complement-intersecting
technique for finding an extending word for a subset of states. The algorithm works in O(|Σ| · n3)
time, where n = |Q| is the number of states and |Σ| is the size of the input alphabet. Finally, we
prove a weak Don’s conjecture for this class of automata: a subset of size k is reachable with a word
of length smaller than 2n(n − k). This implies a quadratic upper bound in n on the length of the
shortest synchronizing words (reset threshold) for the class of completely reachable automata and
generalizes earlier upper bounds derived for its subclasses.

2012 ACM Subject Classification Theory of computation → Algorithm design techniques; Mathem-
atics of computing → Combinatorics; Theory of computation → Formal languages and automata
theory

Keywords and phrases Černý conjecture, complete reachability, DFA, extending word, reachability,
reset threshold, reset word, simple idempotent, synchronizing automaton, synchronizing word

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.59

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2208.05956

Funding Robert Ferens: Supported in part by the National Science Centre, Poland under project
number 2017/26/E/ST6/00191.
Marek Szykuła: Supported in part by the National Science Centre, Poland under project number
2021/41/B/ST6/03691.

Acknowledgements We thank the anonymous reviewer for careful proofreading and his suggestions.

1 Introduction

The concept of completely reachable automata origins from the theory of synchronizing
automata. A deterministic finite automaton is synchronizing if starting from the set of all
states, after reading a suitable reset word, we can narrow (reach) the set of possible states
to a singleton. On the other hand, an automaton is completely reachable if starting from
the set of all states, we can reach every non-empty subset of states. Thus, every completely
reachable automaton is synchronizing, and the class of completely reachable automata forms
a remarkable subclass of (synchronizing) automata.

EA
T
C
S

© Robert Ferens and Marek Szykuła;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 59; pp. 59:1–59:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:robert.ferens@cs.uni.wroc.pl
https://orcid.org/0000-0002-0079-1936
mailto:msz@cs.uni.wroc.pl
https://orcid.org/0000-0001-5349-468X
https://doi.org/10.4230/LIPIcs.ICALP.2023.59
https://arxiv.org/abs/2208.05956
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

59:2 Completely Reachable Automata: Polynomial Algorithm and Quadratic Bounds

Synchronizing automata are most famous due to a longstanding open problem: the Černý
conjecture, which states that every synchronizing n-state automaton admits a reset word of
length at most (n− 1)2. Applications of synchronizing automata include testing of reactive
systems [20] and synchronization of codes [2, 4]. The currently best upper bound for the
Černý problem is cubic in n [18, 21, 22]. Finding better bounds for particular cases was a
topic of extensive study. Some of the related computational problems such as checking if an
automaton is synchronizing are solved in polynomial time [11]. Other ones, such as finding a
reset word of the smallest length, are hard, but practical (heuristic and optimizing) methods
are developed [23]. Most of the research on the topic of synchronizing automata was collected
and comprehensively described in the recent survey [25]; we also refer to older ones [16, 24].

Other studies where completely reachable automata appear include the descriptional
complexity of formal languages. Here, the complete reachability of an automaton is often
juxtaposed with the maximality of the state complexity or the syntactic complexity of
languages recognized by automata [5, 15, 17].

The notion of completely reachable automata was first introduced in 2016 by Bondar and
Volkov [6], who also asked about the complexity of the computational problem of deciding
whether a given automaton is completely reachable. The analogous decision problem for
synchronizing automata is easily solvable in quadratic time in the number of states. Later
studies revealed a connection to the so-called Rystsov graph, whose generalization can be
used to characterize completely reachable automata [5, 7]. However, this does not yet lead
to an effective algorithm, as it is unknown how to compute these graphs. Recently, the case
of binary automata was solved with a quasilinear-time algorithm [8], which strongly relies on
the specificity of both letters when they ensure the complete reachability of the automaton.

The class of completely reachable automata contains several previously studied cases. It
contains the Černý automata [9], which meet the conjectured bound (n− 1)2 for the Černý
problem, and some of the so-called slowly synchronizing series [1]. The class of automata
with the full transition monoid [13], synchronizing automata with simple idempotents [19]
and aperiodically 1-contracting automata [10] are proper subclasses of completely reachable
automata. For the first two subclasses and a special case of the third one quadratic upper
bounds on the length of the shortest reset words instead of a cubic one were established for
the Černý problem. However, for the whole class of completely reachable automata, only
cubic bounds were known (though better than in the general case) [5].

In connection to the bounds, a remarkable conjecture and a generalization of the Černý
one is Don’s conjecture [10, Conjecture 18]. It states that for an n-state automaton, for
every 1 ≤ k < n, if a subset of states of size k is reachable, then it can be reached with a
word of length at most n(n− k). This conjecture was disproved in general [14] but weaker
versions were proposed: one restricting to completely reachable automata [14, Problem 4]
and another general one, in relation to avoiding words [12, Conjecture 15].

1.1 Contribution
We design a polynomial-time algorithm for the problem of deciding whether an automaton is
completely reachable, thus solving the 7-year-old open question [6]. For this solution, we
develop a complement-intersecting technique, which allows finding a short extending word
for a given subset of states (i.e., that gives a larger preimage). We optimize the complexity
of the algorithm to work in O(|Σ| · n3) time.

Based on the discovered properties, we prove that every non-empty subset of k < n states
in a completely reachable n-state automaton is reachable with a word of length smaller
than 2n(n− k). This is a weaker version (by the factor of 2) of Don’s conjecture stated for
completely reachable automata [14, Problem 4].

R. Ferens and M. Szykuła 59:3

It follows that a completely reachable n-state automaton has a reset word of length at
most 2n2 − n ln n− 4n + 2 (for n ≥ 3). This generalizes and improves the previous bounds
obtained with different techniques for known proper subclasses of completely reachable
automata: automata with a full transition monoid (with the previous upper bound 2n2 −
6n + 5) [13], synchronizing automata with simple idempotents (with the previous upper
bound 2n2 − 4n + 2) [19], and 1-contracting automata (only a special case was solved) [10].

2 Solving Complete Reachability in Polynomial Time

2.1 Reachability
A complete deterministic finite semiautomaton (called simply automaton) is a 3-tuple (Q, Σ, δ),
where Q is a finite set of states, Σ is an input alphabet, and δ : Q× Σ→ Q is the transition
function, which is extended to a function Q× Σ∗ → Q in the usual way. Throughout the
paper, by n we always denote the number of states in Q.

Given a subset S ⊆ Q, the image of S under the action of a word w ∈ Σ∗ is δ(S, w) =
{δ(q, w) | q ∈ S}. The preimage of S under the action of w is δ−1(S, w) = {q ∈ Q | δ(q, w) ∈
S}. For a state q, we also simplify δ−1(q, w) = δ−1({q}, w). Note that q ∈ δ(Q, w) if and
only if δ−1(q, w) ̸= ∅. For a subset S ⊆ Q, by S we denote its complement Q \ S.

For two subsets S, T ⊆ Q, if there exists a word w ∈ Σ∗ such that δ(T, w) = S, then we
say that S is reachable from T with the word w. Then we also say that T is a w-predecessor
of S. It is simply a predecessor of S if it is a w-predecessor for some word w. One set can
have many w-predecessors, but there is at most one maximal with respect to inclusion (and
size).
▶ Remark 1. For S ⊆ Q and w ∈ Σ∗, the preimage δ−1(S, w) is a w-predecessor of S if and
only if δ−1(q, w) ̸= ∅ for every state q ∈ S. Equivalently, we have δ(δ−1(S, w)) = S.
▶ Remark 2. For S ⊆ Q and w ∈ Σ∗, if δ−1(S, w) is a w-predecessor of S, then all w-
predecessors of S are contained in it, thus δ−1(S, w) is maximal in terms of inclusion and
size. If δ−1(S, w) is not a w-predecessor of S, then S does not have any w-predecessors.

A word w is called extending for a subset S, or w extends S, if |δ−1(S, w)| > |S|. It is
called properly extending if additionally δ−1(S, w) is a w-predecessor of S, i.e., δ−1(q, w) ̸= ∅
for all q ∈ S.

A subset S ⊆ Q is reachable in the automaton if S is reachable from Q with any
word. An automaton is completely reachable if all non-empty subsets S ⊆ Q are reachable.
Equivalently, Q is a predecessor of all its non-empty subsets. The latter leads to an alternative
characterization of completely reachable automata:
▶ Remark 3. An automaton (Q, Σ, δ) is completely reachable if and only if for every non-empty
proper subset of Q, there is a properly extending word.

The decision problem Completely Reachable is the following: Given an automaton
(Q, Σ, δ), is it completely reachable?

2.2 Witnesses
For an automaton (Q, Σ, δ), we consider unreachable sets that have the maximal size among
all unreachable subsets of Q. They play the role of witnesses for the non-complete reachability
of the automaton (or counterexamples for its complete reachability).

▶ Definition 4 (Witness). A non-empty set S ⊊ Q is a witness if it is unreachable and has
the maximal size of all unreachable subsets of Q.

ICALP 2023

59:4 Completely Reachable Automata: Polynomial Algorithm and Quadratic Bounds

Since Q is trivially reachable, the maximal size of unreachable subsets of Q is in
{0, . . . , n− 1}. It equals 0 (i.e., there is no witness) if and only if the automaton is completely
reachable.

Although any non-empty unreachable set is evidence that the automaton is not completely
reachable, it turns out that verifying if a set is a witness is computationally easier – later
we show that we can verify the complete reachability and also find a witness if it exists in
polynomial time. Verifying whether a given set is reachable (or unreachable) in general is
PSPACE-complete [6] and it remains hard in many variations of the problem [3].

We start with a simpler solution in co-NP, where we just guess a candidate for a witness
and verify it. A witness obviously cannot have a larger predecessor, as this predecessor or
maybe some other larger set would be unreachable and so a witness instead. Still, a set can
have exponentially many predecessors of the same size. The following observation allows us
to infer the existence of a larger predecessor indirectly.

▶ Lemma 5. Let S, T ⊆ Q be distinct. If a word u ∈ Σ∗ is properly extending S ∪ T , then u

is also properly extending S or T .

Proof. Let u be a properly extending word for U = S∪T ⊊ Q, thus there is a larger maximal
u-predecessor U ′ of U , i.e., δ(U ′, u) = U , δ−1(U, u) = U ′, and |U ′| > |U |. By Remark 1, we
have |δ−1(q, u)| ≥ 1 for all q ∈ U . As this holds for all the states of S and T , they also have
their u-predecessors δ−1(S, u) and δ−1(T, u), respectively. Suppose that |δ−1(S, u)| = |S|
and |δ−1(T, u)| = |T |. Then |δ−1(q, u)| = 1 for all q ∈ U , which gives a contradiction with
|U ′| > |U |. ◀

▶ Corollary 6. Let S, T ⊊ Q be two distinct witnesses. Then S ∪ T = Q.

Proof. Since S ̸= T , the union S ∪ T is larger than the witness size |S| = |T |, thus it must
be reachable. If S ∪ T ̸= Q, then S ∪ T has a larger predecessor. By Lemma 5, either S or T

also has a larger predecessor, which contradicts that they both are witnesses. ◀

Now, we focus on detecting sets that are potential witnesses. We relax the required
property for being a witness and introduce an auxiliary definition:

▶ Definition 7 (Witness candidate). A non-empty set S ⊊ Q is a witness candidate if it
does not have a larger predecessor and all its predecessors (which are of the same size) have
pairwise disjoint complements.

▶ Remark 8. For two sets T, T ′ ⊆ Q, the condition of disjoint complements T ∩ T ′ = ∅ is
equivalent to T ∪ T ′ = Q.

▶ Lemma 9. A witness is a witness candidate.

Proof. Let S be a witness and let T and T ′ be two distinct predecessors of S. As they are
of the same size |T | = |T ′| = |S| and S is reachable from both T and T ′, they also must
be witnesses. By Corollary 6, T ∪ T ′ = Q. Therefore, S meets the definition of a witness
candidate. ◀

Thus, every witness is a witness candidate and clearly, every witness candidate is un-
reachable (moreover, it is unreachable from every larger set). However, both converses do
not necessarily hold.

▶ Example 10. The automaton from Figure 1 (left) is not completely reachable, and:
All sets of size 5 are witnesses.
The sets Q \ {qi, q(i+1) mod 6} for i ∈ {0, . . . , 5} are reachable.

R. Ferens and M. Szykuła 59:5

q0 q1 q2

q3q4q5

b b

b

bb

b

a
a

a

a
a

a

q0

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

q11

b

b b

b

b

b

b

bb

b

b

b

a

a

a

a

a

a

a

a

a

a

a

a

Figure 1 Left: an example of an automaton that is not completely reachable. Right: an example
of a completely reachable automaton [8, Fig. 3]. (a’s transitions are solid, b’s transitions are dashed.)

The sets Q \ {qi, q(i+2) mod 6} for i ∈ {0, . . . , 5} are unreachable (only the action of b

yields a predecessor). They do not admit a properly extending word but they are not
witness candidates, since their complements are not disjoint.
The set {q0, q2, q4} and its complement {q1, q3, q5} are witness candidates but not wit-
nesses, as they have size 3.
All non-empty proper subsets of Q are extensible, e.g., δ−1(q1, (ab)3, a) = Q, but not
necessarily properly extensible.

The following remark will be useful for efficient checking if a set is a witness candidate:

▶ Remark 11. A witness candidate S has at most ⌊n/(n− |S|)⌋ predecessors.

Proof. The complements of the predecessors of S are pairwise disjoint, so each state is
contained in at most one complement of size n− |S|. ◀

2.3 An Algorithm in co-NP
We build a polynomial procedure that checks whether a given set S is a witness candidate.
It is shown in Algorithm 1. Starting from S, we process all its predecessors in a breath-first
search manner; for this, a FIFO queue Process is used. A next set T is taken in line 6. Then,
we verify whether T ∩ T ′ ̸= ∅, for some previously processed set T ′. For this, we maintain
Absent array, which for every state q indicates whether q occurred in the complement of some
previously processed set, and if so, this set is stored as Absent[q]. We additionally use this
array to check whether the same set T has been processed previously (line 9); if so, then it is
ignored. Otherwise, S is not a witness candidate as the complements of its two predecessors
have a non-empty intersection. We update this array in lines 12–13. Finally, in lines 14–19,
we add one-letter predecessors of T to the queue. If one of the predecessors is larger than
T , then this immediately implies that S is not a witness candidate. Since predecessors are
never smaller, this means that all processed sets that are put into the queue are of the same
size |S|. When all predecessors of S have been considered and neither of the two conditions
occurred, the function reports that S is a witness candidate.

The function is a base for our next algorithms. Hence, even though we do not need to
optimize it here, in the next lemma, we describe the technical details for achieving optimal
time complexity. In particular, an important optimization that lowers the time complexity

ICALP 2023

59:6 Completely Reachable Automata: Polynomial Algorithm and Quadratic Bounds

Algorithm 1 Verifying whether a given subset is a witness candidate from Definition 7.

Input: An n-state automaton A = (Q, Σ, δ) and a non-empty S ⊊ Q.
Output: true if S is a witness candidate; false otherwise.

1: function IsWitnessCandidate(A , S)
2: Process ← EmptyFifoQueue() ▷ It contains predecessors of S to be processed
3: Process.Push(S)
4: Absent ← Array indexed by q ∈ Q initialized with none
5: while not Process.Empty() do
6: T ← Process.Pop()
7: if Absent[q] ̸= none for some q ∈ T then ▷ Then T ∪ T ′ ̸= Q

8: T ′ ← Absent[q]
9: if T = T ′ then

10: continue ▷ T has been processed previously
11: return false ▷ T and T ′ are predecessors with non-disjoint complements
12: for all q ∈ T do
13: Absent[q]← T

14: for all a ∈ Σ do
15: if T has a-predecessor then
16: T ′ = δ−1(T, a)
17: if |T ′| > |S| then
18: return false
19: Process.Push(T ′)
20: return true ▷ All predecessors of S were checked

is storing each processed set T as a list of states in its complement. Then we can perform
all operations on a set T in O(n− |S|) time, which compensates the number of iterations,
which is at most O(n/(n− |S|)).

▶ Lemma 12. Function IsWitnessCandidate from Algorithm 1 is correct and can be
implemented to work in O(|Σ| · n) time.

Proof. Correctness: The function can end in line 11, 18, or 20. The first case means that S

has two distinct predecessors, T and T ′ such that T ∩ T ′ ̸= ∅, which implies that S is not a
witness candidate. The second case (line 18) means that we have found a larger predecessor
of S, thus S is not a witness candidate. The last possibility (line 20), where the function
ends with a positive answer, occurs when there are no more predecessors of S to consider
(Process becomes empty), so all predecessors of S have been checked and the two previous
cases have not occurred. Thus, S satisfies the conditions from Definition 7.
Running time: We separately consider the time complexity of two types of iterations of the
main loop: full and extra iterations. An extra iteration is where the case from line 7 holds;
then the iteration ends either in line 10 or 11. Otherwise, we count it as a full iteration.

In each iteration, T has size |S|, because a predecessor cannot be smaller than the set and
we check in line 18 if it is larger. The number of distinct processed predecessors (including S

itself) of the same size |S| < n with pairwise disjoint complements is at most ⌊n/(n− |S|)⌋.
This bounds the number of full iterations. In extra iterations, the same sets can be repeated.
As these sets are added in full iterations, and one full iteration adds at most |Σ| sets to the
queue, the number of extra iterations is at most |Σ| · (⌊n/(n− |S|)⌋).

R. Ferens and M. Szykuła 59:7

If we store T (and all sets in Process) as a list of states in its complement, then full one
iteration takes O(|Σ| · (n− |S|)) time: Lines 6–11 trivially take O(n− |S|) time. Updating
Absent in lines 12–13 also takes O(n−|S|) time, if we store a pointer/reference to T (line 14 in
O(1)) instead of copying. Computing one-letter predecessors in lines 15–19 can be performed
in O(|Σ| · (n− |S|)) time as follows. At the beginning of the function, we additionally do
some preprocessing of the automaton. For each a ∈ Σ and q ∈ Q, we compute the list of
states δ−1(q, a); note that for the same a, these lists are always disjoint. For each a ∈ Σ,
we also count the states q ∈ Q such that |δ−1(q, a)| = 0; let za be their number. Then
in line 15, we check if δ−1(T, a) is a-predecessor by counting the states p ∈ T such that
|δ−1(p, a)| = 0. The set δ−1(T, a) is a-predecessor if and only if the number of such states
p equals za, because if it is smaller, then some state q ∈ T has an empty preimage under
the action of a. Next, we compute δ−1(T , a) by joining the preprocessed lists for a for each
q ∈ T , and T ′ = Q \ δ−1(T , a) is also stored in the form of a list of states in the complement.
Since a predecessor is never smaller than the set, we have |T ′| ≥ |T | = |S|, thus the length of
this list is at most |S|, so we do this computation in O(n− |S|) time.

Also, the running time of an extra iteration (lines 6 up to 11) is easily bounded by
O(n− |S|) time.

Summarizing, full iterations take O(n/(n− |S|) · |Σ| · (n− |S|)) time and extra iterations
take O(|Σ| · n/(n − |S|) · (n − |S|)) time, which gives the same upper bound on the total.
The aforementioned preprocessing can be done in O(|Σ| · n) time as well. ◀

▶ Remark 13. The asymptotic running time of IsWitnessCandidate in terms of |Σ| and n

is the best possible because |Σ| · n is the number of automaton’s transitions that we have to
read in the worst case.

▶ Theorem 14. Problem Completely Reachable can be solved in co-NP.

Proof. To certify that a given automaton A is not completely reachable, we can guess a
witness candidate S ⊊ Q and call IsWitnessCandidate(A , S) to verify it. If the automaton
is not completely reachable, then there exists some witness, which is a witness candidate.
Otherwise, there are no unreachable non-empty sets, thus no witness candidates. ◀

2.4 A Polynomial-Time Algorithm
The overall idea to make the algorithm work in deterministic polynomial time is as follows.
We replace guessing a witness with a constructive procedure. We extend the function
from Algorithm 1 so that instead of a Boolean answer, it finds a properly extending word for
S. This works under a certain assumption that S is not a witness candidate and there are
no witness candidates of size larger than |S|. When S is a witness candidate, the function
returns none.

Then, we use this function to hunt for a witness. We iteratively reduce each set of size
n − 1 to smaller sets S in the way that if some witness is a subset of the initial set, then
this witness is also a subset of set S. As we process the sets from the largest size, we keep
the assumption that there are no witness candidates larger than the currently processed set.
Hence, the first found witness candidate will be a witness.

2.4.1 Finding Properly Extending Words
The function for finding properly extending words is shown in Algorithm 2. Here, together
with predecessor sets T of S, we also keep track of the words w such that δ(T, w) = S. The
main difference with IsWitnessCandidate is the case in line 7. For the union T ∪ T ′,

ICALP 2023

59:8 Completely Reachable Automata: Polynomial Algorithm and Quadratic Bounds

Algorithm 2 An algorithm finding a properly extending word (a larger predecessor) for a given
set (recursive version).

Input: An n-state automaton A = (Q, Σ, δ) and a non-empty S ⊊ Q.
Output: A properly extending word for S or none . If S is a witness candidate, then always

returns none . If S is not a witness candidate and there are no witness candidates
of size > |S|, then always returns a word.

1: function FindProperlyExtendingWord(A , S)
2: Process ← EmptyFifoQueue() ▷ It contains pairs (T, w) such that δ(T, w) = S

3: Process.Push((S, ε))
4: Absent ← Array indexed by q ∈ Q initialized with none
5: while not Process.Empty() do
6: (T, w)← Process.Pop()
7: if Absent[q] ̸= none for some q ∈ T then ▷ Then T ∪ T ′ ̸= Q

8: (T ′, w′)← Absent[q]
9: if T ′ = T then

10: continue ▷ T ′ has been processed previously
11: u← FindProperlyExtendingWord(A , T ∪ T ′)
12: if u = none then
13: return none
14: else ▷ u is a properly extending word for T ∪ T ′

15: if |δ−1(T, u)| > |T | then ▷ u properly extends T

16: return uw

17: else ▷ u properly extends T ′

18: return uw′

19: for all q ∈ T do
20: Absent[q]← (T, w)
21: for all a ∈ Σ do
22: if T has a-predecessor then
23: T ′ = δ−1(T, a)
24: if |T ′| > |S| then
25: return aw

26: Process.Push((T ′, aw))
27: return none ▷ S is a witness candidate

we aim at finding a properly extending word for it, which then turns out to be properly
extending either for T or T ′ by Lemma 5; this is done by a recursive call in line 11. This call
can return none instead, which means that a witness candidate larger than S was found.

▶ Example 15. For the automaton from Figure 1 (left) and S = {q0, q2, q4, q5} (this is
an unreachable and not properly extensible set, but not a witness candidate), FindProp-
erlyExtendingWord returns none using one recursive call.

Proof. Since letter a cannot be applied, the second iteration is with T = δ−1(S, b) =
{q5, q1, q3, q4}, and similarly, the third one is with T = δ−1(S, b2) = {q4, q0, q2, q3}. Now,
since the complements of {q4, q0, q2, q3} and S contain the common state q1, we recursively
call the function for the union Q \ {q1}. This union set is a witness and has 6 predecessors
(including itself). After processing all these predecessors, the function returns none. ◀

R. Ferens and M. Szykuła 59:9

▶ Example 16. For the automaton from Figure 1 (right) and let S = {q0, q10}, FindProp-
erlyExtendingWord returns the word ab2 using 8 recursive calls.

▶ Lemma 17. Function FindProperlyExtendingWord is correct and works in at most
O(|Σ| · n2 log n) time. Moreover, if a word is returned, then it has length at most O(n log n).

Proof sketch. The correctness can be proved by descending induction on the set size, using
similar arguments as for Lemma 12 and Lemma 5

Without counting the recursive call, the running time is O(|Σ| · n2/(n− |S|); for this, to
avoid higher complexity by copying potentially long words, we need to concatenate words
by storing pointers to both parts and maintain the induced transformations Q→ Q along
them. If we consider the recursive calls, in the worst case n− |S| we call the function on sets
of sizes n− |S|, n− |S|+ 1, . . . , n− 1; in the calculation we get the harmonic series what is
bounded by the logarithm, giving the final running time and word length bounds. ◀

2.4.2 Set Reduction for Witness Containment

Suppose that given a subset S ⊊ Q, we search for a witness that is contained within it.
Having a properly extending word w for S, we can reduce S to its proper subset by excluding
some states which surely cannot be in any witness contained in S. The next lemma shows
the criterion.

▶ Lemma 18. Let S ⊆ Q and δ−1(S, w) be a w-predecessor of S for some w. Then for every
witness candidate S′ ⊆ S, every state q ∈ S′ is such that |δ−1(q, w)| = 1.

Proof. Since δ−1(S, w) is a w-predecessor of S, by Remark 1, we have δ−1(q, w) ̸= ∅ for
every state q ∈ S. Suppose for a contradiction that there exists S′ ⊆ S that is a witness
candidate and contains a state p ∈ S′ such that |δ−1(p, w)| > 1. Note that the set δ−1(S′, w)
is a w-predecessor of S′, since its superset S has a w-predecessor, and:

|δ−1(S′, w)| = |δ−1(p, w)|+
∑

s∈S\{p}

|δ−1(s, w)| > 1 + (|S| − 1) = |S|.

Thus, S′ cannot be a witness candidate, since it has a larger predecessor. ◀

As a witness is also a witness candidate, the lemma also applies to witnesses. From the
lemma, we know that by having a properly extending word for S, we can remove at least
one state from S and all the witnesses will still be contained in the resulting set. Function
Reduce(A , S, w) in Algorithm 3 realizes this reduction and returns a set of states that can
be removed. If w is given as a transformation, the function trivially works in O(n) time.

Algorithm 3 Reducing a set for possible witness containment.

Input: An n-state automaton A = (Q, Σ, δ), a non-empty S ⊊ Q, and a properly extending
word w for S.

Output: A non-empty subset R ⊆ S such that all the witnesses contained in S are also
contained in S \R.

1: function Reduce(A , S, w)
2: return {p ∈ S : |δ−1(p, w)| > 1}

ICALP 2023

59:10 Completely Reachable Automata: Polynomial Algorithm and Quadratic Bounds

2.4.3 Finding a Witness
We have all ingredients to build a polynomial algorithm that solves the decision problem
Completely Reachable. It is shown in Algorithm 4. If the automaton is not completely
reachable, the algorithm also finds a witness. Starting from all sets of size n− 1, we process
sets in descending order by size. Processing a set consists of finding a properly extending
word for it and reducing the set for a witness containment by this word.

Algorithm 4 A polynomial-time algorithm verifying the complete reachability of an automaton
or finding a witness.

Input: An n-state automaton A = (Q, Σ, δ).
Output: none if A is completely reachable; a witness otherwise.

1: function FindWitness(A)
2: Queue ← EmptyPriorityQueue() ▷ Ordered by set size; the largest sets go first
3: for all q ∈ Q do
4: Queue.Push(Q \ {q}) ▷ Initialize with sets of size n− 1
5: while not Queue.Empty() do
6: S ← Queue.Pop() ▷ Get a set of the largest size
7: w ← FindProperlyExtendingWord(A , S)
8: if w = none then
9: return S ▷ Found witness

10: R← Reduce(A , S, w) ▷ R is non-empty
11: S′ ← S \R ▷ S′ ⊊ S

12: if S′ ̸= ∅ then
13: Queue.Push(S′)
14: return none ▷ No witnesses

▶ Lemma 19. Function FindWitness is correct and works in O(|Σ| · n4 log n) time.

▶ Remark 20. The number of witnesses of size k is at most ⌊n/k⌋, as their complements must
be pairwise disjoint – otherwise, we could properly extend at least one of them by Lemma 5.
Function FindWitness can be easily modified to find all the witnesses: after finding the
first witness of size k, we can continue the main loop until all sets of size k are processed.

2.5 Improving Running Time
The main idea for the improvement is to use already computed reductions instead of finding
a properly extending word recursively (Algorithm 2, line 13), which is required when we
encounter the case of non-disjoint complements. For lowering the time complexity by this
optimization, using adequate set representations is also crucial.

2.5.1 Reduction History
A reduction history RED is an array of size n of lists of states. For a state q ∈ Q, RED[q]
denotes the list of states assigned to q. Let |RED[q]| denote the length of this list, and let
RED[q][i] denote the i-th state for 1 ≤ i ≤ |RED[q]|. The states in the list must be pairwise
different and distinct from q.

A reduction history represents our current knowledge about possible witness containment
and will be progressively filled out in the algorithm, starting from the empty lists. For each
q ∈ Q, the reduction history defines a reduction chain that is a sequence of reduced sets

R. Ferens and M. Szykuła 59:11

Rq
0, Rq

1, . . . , Rq
|RED[q]|. The first set Rq

0 = Q \ {q}, and each next set is obtained from the
previous set by removing the corresponding state in the list: for 1 ≤ i ≤ |RED[q]|, we define
Rq

i = Rq
i−1 \ {RED[q][i]} (equivalently, Rq

i = Q \ ({q} ∪
⋃

i∈{1,...,|RED[q]|}{RED[q][i])}).
A reduction history RED is valid (for an automaton) if for each q ∈ Q and each 1 ≤ i ≤

|RED[q]|, there exists a properly extending word w for Rq
i−1 such that |δ−1(RED[q][i], w)| > 1.

This means that the reduction for witness containment of Rq
i−1 to Rq

i by removing the state
RED[q][i] is justified by Lemma 18, i.e., all witnesses contained in Rq

i−1 are also contained in
Rq

i . However, note that the reduction can be not exhaustive with respect to w, i.e., there
may exist other states p ∈ Rq

i−1 \ {RED[q][i]} such that |δ−1(p, w)| > 1, which also could
be removed by Lemma 18. In our algorithm, this situation will be possible because we do
not always compute properly extending words directly but infer their existence based on the
reductions computed for other sets, tracing only one state to remove.

Besides being valid, we need that our reduction history is sufficiently filled out. For
q ∈ Q, the deficiency of RED[q] is the length |RED[q]| thus equals the number of states to
be removed from Q \ {q}. The deficiency of the whole reduction history RED is its minimum
deficiency over q ∈ Q. Hence, a valid history reduction of deficiency d stores information for
reducing every set of size n− 1 to a set of size at most n− 1− d.

Algorithm 5 A fast reduction retrieval for witness containment for a given set from the past
stored reductions.

Input: An n-state automaton A = (Q, Σ, δ), a non-empty set S ⊊ Q, and a reduction
history RED.

Require: RED is a valid reduction history of deficiency at least n− |S|.
Output: A state p ∈ S such that there exists a properly extending word w for S such that
|δ−1(p, w)| > 1.

1: function GetStoredReduction(A , S, RED)
2: q ← any state from S

3: for i← 1, 2, . . . do
4: assert(i ≤ |RED[q]|)
5: p← RED[q][i]
6: if p ∈ S then
7: return p

Function GetStoredReduction from Algorithm 5 quickly finds a reduction of a given
set S, provided that a valid reduction history with a large enough deficiency is available. The
function starts from picking any q outside of S, and it repeats the reduction chain starting
from Q \ {q} ⊇ S. It seeks the first removed state that belongs to S. In this way, since the
same reduction was applied previously to a superset of S, it can be correctly applied to S as
well, i.e., the same word is properly extending word for both the superset and S. We note
that this may not hold for the states removed later, since then a properly extending word
inferred from the reduction history may not be properly extending for S (may not give a
predecessor of S).

Since the found state p ∈ S has the property that there exists a properly extending word
w for S such that |δ−1(p, w)| > 1, we can apply Lemma 18 and get a smaller S′ = S \{p} ⊊ S

such that every witness in S is also contained in S′.

▶ Lemma 21. Function GetStoredReduction is correct and can be implemented to work
in O(n) time.

ICALP 2023

59:12 Completely Reachable Automata: Polynomial Algorithm and Quadratic Bounds

2.5.2 Finding a Reduction
We redesign earlier Algorithm 2 for finding a properly extending word so that we return a
reduction (here, one state to remove) directly for the given S. GetStoredReduction can
be used for computing the reduction fast, but only if our reduction history has a large enough
deficiency, i.e., in each of the reduction chains, Q \ {q} is reduced to a set smaller than the
set that we want to reduce. We cannot ensure this for S, but if in the main algorithm, we
reduce the sets in descending order by their size, then we can fulfil the weaker requirement
that the reduction chains end with sets of size at most |S|. Then, to reduce S, we perform as
the previous algorithm until encountering the case of a non-empty complements intersection.
Then we can use GetStoredReduction for the obtained set of size at least |S|+ 1.

Function FindReduction from Algorithm 6 for a given S finds a state to remove or
none if S is a witness candidate. The most important difference with previous FindProp-
erlyExtendingWord is the use of GetStoredReduction in line 11 and processing its
result p.

To keep the time complexity low, as before, we need to store the sets T in the form of a
list of states in the complement. This time, we do not maintain the induced transformations
for words (they are too costly here). Instead, we compute δ(p, w) applying the letters one by
one, but only for this state, which is doable in O(n/(n− |S|)) time, avoiding quadratic time
complexity.

▶ Lemma 22. Function FindReduction is correct and can be implemented to work in
O(|Σ| · n) time.

2.5.3 The Optimized Algorithm
The optimized algorithm FindWitnessFaster is shown in Algorithm 7. For reducing
sets, it relies on FindReduction, which returns a state p such that there exists a properly
extending word w for S and |δ−1(p, w)| > 1. We can remove p from S by Lemma 18, i.e.,
every witness contained in S must be also contained in S′ = S \ {p}.

Additionally, the sets in Queue are stored together with their initially removed state q, to
know where to store their reductions in the reduction history. Note that in an iteration, the
set S taken from the queue is the currently last set Rq

|RED[q]| from the reduction chain for q,
and S′ will be a next set in this chain. Updating the reduction history with state p keeps
it valid, which also follows from the guaranteed existence of a properly extending word by
FindReduction. As we process the sets in descending order by size, our reduction history
always has the required deficiency when used in line 8.

▶ Lemma 23. Function FindWitnessFaster is correct and works in O(|Σ| · n3) time.

3 An Upper Bound on Reset Threshold

3.1 Synchronization
A reset word is a word w such that |δ(Q, w)| = 1. Equivalently, we have δ−1(q, w) = Q for
some q ∈ Q. If an automaton admits a reset word, then it is called synchronizing and its
reset threshold is the length of the shortest reset words.

The central problem in the theory of synchronizing automata is the famous Černý
conjecture, which states that every synchronizing n-state automaton has its reset threshold
at most (n− 1)2. For the subclass of completely reachable automata, the previously known
upper bound on the reset threshold was 7/48n3 +O(n2) [5], which has been obtained through
the technique of avoiding [22], that is, it follows in particular from the fact that every set of
size n− 1 is reachable with a word of length at most n.

R. Ferens and M. Szykuła 59:13

Algorithm 6 An algorithm finding a reduction for witness containment using a reduction history.

Input: An n-state automaton A = (Q, Σ, δ), a non-empty S ⊊ Q, and a reduction history
RED.

Require: RED is a valid reduction history of deficiency at least n− |S| − 1.
Output: If S is not a witness candidate: a state p ∈ S such that there exists a properly

extending word w for S such that |δ−1(p, w)| > 1. Otherwise: none.
1: function FindReduction(A , S, RED)
2: Process ← EmptyFifoQueue()
3: Process.Push((S, ε))
4: Absent ← Array indexed by q ∈ Q initialized with none
5: while not Process.Empty() do
6: (T, w)← Process.Pop()
7: if Absent[q] ̸= none for some q ∈ T then ▷ Then T ∪ T ′ ̸= Q

8: (T ′, w′)← Absent[q]
9: if T ′ = T then

10: continue ▷ T ′ has been processed previously
11: p← GetStoredReduction(A , T ∪ T ′, RED)
12: if p ∈ T then
13: return δ(p, w)
14: else ▷ Then p ∈ T ′

15: return δ(p, w′)
16: for all q ∈ T do
17: Absent[q]← (T, w)
18: for all a ∈ Σ do
19: if T has a-predecessor then
20: T ′ = δ−1(T, a)
21: if |T ′| > |S| then
22: p← any state such that |δ−1(T, a)| > 1
23: return δ(p, w)
24: Process.Push((T ′, aw))
25: return none ▷ S is a witness candidate

3.2 Finding Short Properly Extending Words

For a completely reachable automaton, function FindProperlyExtendingWord from Al-
gorithm 8 always finds a properly extending word. Therefore, using the well-known extension
method (e.g., [24]), we can construct a synchronizing word starting from some singleton {q}
and iteratively increasing the set by at least one in at most n− 1 iterations, finally obtaining
Q. This is an easy way to get the upper bound of order O(n2 log n) by Lemma 17. However,
it is not enough to prove a quadratic upper bound, so we are going to further adapt the
algorithm for that.

The idea is to keep track of all subsets for an intersection of complements, instead of
starting an independent search for a properly extending word recursively. This modification
is shown in Algorithm 8.

The function keeps Trace map, which stores for a given predecessor set, by the application
of what letter it has been obtained or, in the second case, of what two sets it is a union.
It also stores S′ as the current origin set, which is the set for which we are going to find a
larger predecessor currently.

ICALP 2023

59:14 Completely Reachable Automata: Polynomial Algorithm and Quadratic Bounds

Algorithm 7 A faster algorithm for finding a witness.

Input: An n-state automaton A = (Q, Σ, δ).
Output: none if A is completely reachable; a witness otherwise.

1: function FindWitnessFaster(A)
2: RED[q]← EmptyList for all q ∈ Q ▷ Empty reduction history
3: Queue ← EmptyPriorityQueue() ▷ Contains pairs (S, q); ordered by |S|
4: for all q ∈ Q do
5: Queue.Push((Q \ {q}, q))
6: while not Queue.Empty() do
7: (S, q)← Queue.Pop() ▷ Get a set of the largest size
8: p← FindReduction(A , S, RED)
9: if p = none then

10: return S ▷ Found witness
11: RED[q].append(p) ▷ Store the removed state
12: S′ ← S \ {p}
13: if S′ ̸= ∅ then
14: Queue.Push((S′, q))
15: return none ▷ No witnesses

The function has two phases. First, it searches for a larger predecessor or a non-empty
complement intersection as the previous variants. In the second case, it only changes the
origin set S′ (line 15), notes this in the map Trace and initiates a fresh search for S′.
In the second phase (from line 25), a properly extending word is reconstructed (like in
FindProperlyExtendingWord after a recursive call) until we reach our original S.

▶ Lemma 24. Function FindShortProperlyExtendingWord is correct.

The remaining effort is to prove an upper bound on the length of the returned word.

3.2.1 Nested Boxes
To bound the length of the found word, we consider an auxiliary combinatorial problem.
Consider an n-element universe Q. Two subsets S, T ⊆ Q are colliding if S ∩ T /∈ {∅, S, T}.
Thus, colliding sets have a non-trivial intersection. A family of non-empty subsets of Q is
called non-colliding if all the subsets are pairwise non-colliding.

▶ Definition 25. For an n ≥ 1, the number MaxNestedBoxes(n) is the maximum size of a
non-colliding family for an n-element universe.

The problem is equivalent to, e.g., the maximum number of boxes for n items, such that
a box must contain either an item or at least two boxes.

▶ Lemma 26. MaxNestedBoxes(n) = 2n− 1.

The generalized version of the problem limits the maximum size of the subsets:

▶ Definition 27. For an n ≥ 1, the number MaxNestedBoxes(n, k) is the maximum size of
a non-colliding family for an n-element universe where each subset from the family has size
at most k.

▶ Lemma 28. MaxNestedBoxes(n, k) = 2n− ⌈n/k⌉.

R. Ferens and M. Szykuła 59:15

Algorithm 8 An algorithm finding a short properly extending word.

Input: An n-state automaton A = (Q, Σ, δ) and a non-empty S ⊊ Q.
Require: A is completely reachable.
Output: A properly extending word w of S.

1: function FindShortProperlyExtendingWord(A , S)
2: Trace ← EmptyMap() ▷ For a processed set, it stores how this set was obtained; for

not yet processed sets, it gives none
3: Process ← EmptyFifoQueue()
4: S′ ← S ▷ Current origin set
5: Trace[S′]← ε

6: Process.Push(S′)
7: while true do
8: assert(not Process.IsEmpty()) ▷ Otherwise S′ is a witness candidate
9: T ← Process.Pop()

10: if |T | > |S′| then ▷ Found a properly extending word for S′

11: S′ ← T

12: break
13: if there is T ′ such that Trace[T ′] ̸= none and T ⊊ T ∪ T ′ ⊊ Q then
14: S′ ← T ∪ T ′ ▷ New origin set; |S′| > |S|
15: Trace[S′]← (T, T ′)
16: Process.Clear() ▷ Continue only for the new origin
17: Process.Push(S′)
18: else
19: for all a ∈ Σ do
20: if a is properly extending T then
21: T ′ ← δ−1(T, a)
22: if Trace[T ′] = none then ▷ A not yet processed set
23: Trace[T ′]← a ▷ δ(T ′, a) = T

24: Process.Push(T ′)
25: w ← ε ▷ Word reconstruction starts with the empty word
26: while S′ ̸= S do
27: assert(Trace[S′] ̸= none)
28: if Trace[S′] is a letter then
29: a← Trace[S′]
30: S′ ← δ(S′, a)
31: w ← wa

32: else
33: (T, T ′)← Trace[S′] ▷ w properly extends T ∪ T ′

34: if |δ−1(T, w)| > |T | then ▷ w properly extends T

35: S′ ← T

36: else ▷ w properly extends T ′

37: S′ ← T ′

38: return w

3.2.2 Final Bounding

We apply the above combinatorial problem to derive an upper bound on the length of a
word found by FindShortProperlyExtendingWord. The crucial property is that the
family of the complements of all subsets T that are processed in the block of lines 19–24 is

ICALP 2023

59:16 Completely Reachable Automata: Polynomial Algorithm and Quadratic Bounds

non-colliding, since for these subsets T , the condition in line 13 does not hold. The upper
bound follows since all the letters in the final word are added in line 31, where S′ is always
the complement of one of the sets from the family.

▶ Lemma 29. For a completely reachable automaton and a non-empty proper subset S ⊊ Q,
the word returned by FindShortProperlyExtendingWord from Algorithm 8 has length
at most MaxNestedBoxes(n, n− |S|) = 2n− ⌈n/(n− |S|)⌉.

Finally, using the standard extension method (starting from a subset S and iteratively
extending it to Q) and some calculations, we obtain a weaker Don’s conjecture (cf. [14,
Problem 4]):

▶ Theorem 30. For a completely reachable n-state automaton (Q, Σ, δ), every non-empty
proper subset S ⊆ Q is reachable with a word of length at most

(n− |S|)2n− n ln(n− |S|)− n/(n− |S|) < 2n(n− |S|).

▶ Corollary 31. The reset threshold of a completely reachable automaton with n ≥ 3 states
is at most

(n− 2)2n− n ln(n− 2)− n/(n− 2) < 2n2 − n ln n− 4n + 2.

References
1 D. S. Ananichev, M. V. Volkov, and V. V. Gusev. Primitive digraphs with large exponents

and slowly synchronizing automata. Journal of Mathematical Sciences, 192(3):263–278, 2013.
2 M. V. Berlinkov, R. Ferens, A. Ryzhikov, and M. Szykuła. Synchronizing Strongly Connected

Partial DFAs. In STACS, volume 187 of LIPIcs, pages 12:1–12:16. Schloss Dagstuhl, 2021.
3 M. V. Berlinkov, R. Ferens, and M. Szykuła. Preimage problems for deterministic finite

automata. Journal of Computer and System Sciences, 115:214–234, 2021.
4 J. Berstel, D. Perrin, and C. Reutenauer. Codes and Automata. Encyclopedia of Mathematics

and its Applications. Cambridge University Press, 2009.
5 E. A. Bondar, D. Casas, and M. V. Volkov. Completely reachable automata: an interplay

between automata, graphs, and trees, 2022. arXiv:2201.05075.
6 E. A. Bondar and M. V. Volkov. Completely Reachable Automata. In Cezar Câmpeanu,

Florin Manea, and Jeffrey Shallit, editors, DCFS, pages 1–17. Springer, 2016.
7 E. A. Bondar and M. V. Volkov. A Characterization of Completely Reachable Automata. In

Mizuho Hoshi and Shinnosuke Seki, editors, DLT, pages 145–155. Springer, 2018.
8 D. Casas and M. V. Volkov. Binary completely reachable automata. In Armando Castañeda

and Francisco Rodríguez-Henríquez, editors, LATIN 2022: Theoretical Informatics, pages
345–358. Springer, 2022. Full version at arXiv:2205.09404.

9 J. Černý. Poznámka k homogénnym experimentom s konečnými automatami. Matematicko-
fyzikálny Časopis Slovenskej Akadémie Vied, 14(3):208–216, 1964. In Slovak.

10 H. Don. The Černý Conjecture and 1-Contracting Automata. Electronic Journal of Combin-
atorics, 23(3):P3.12, 2016.

11 D. Eppstein. Reset sequences for monotonic automata. SIAM Journal on Computing, 19:500–
510, 1990.

12 R. Ferens, M. Szykuła, and V. Vorel. Lower Bounds on Avoiding Thresholds. In MFCS,
volume 202 of LIPIcs, pages 46:1–46:14. Schloss Dagstuhl, 2021.

13 F. Gonze, V. V. Gusev, B. Gerencser, R. M. Jungers, and M. V. Volkov. On the interplay
between Babai and Černý’s conjectures. In DLT, volume 10396 of LNCS, pages 185–197.
Springer, 2017.

https://arxiv.org/abs/2201.05075
https://arxiv.org/abs/2205.09404

R. Ferens and M. Szykuła 59:17

14 F. Gonze and R. M. Jungers. Hardly reachable subsets and completely reachable automata
with 1-deficient words. Journal of Automata, Languages and Combinatorics, 24(2–4):321–342,
2019.

15 S. Hoffmann. Completely Reachable Automata, Primitive Groups and the State Complexity
of the Set of Synchronizing Words. In Alberto Leporati, Carlos Martín-Vide, Dana Shapira,
and Claudio Zandron, editors, LATA, LNCS, pages 305–317. Springer, 2021.

16 J. Kari and M. V. Volkov. Černý conjecture and the road colouring problem. In Handbook of
automata, volume 1, pages 525–565. European Mathematical Society Publishing House, 2021.

17 M. Maslennikova. Reset complexity of ideal languages over a binary alphabet. International
Journal of Foundations of Computer Science, 30(06n07):1177–1196, 2019.

18 J.-E. Pin. On two combinatorial problems arising from automata theory. In Proceedings of the
International Colloquium on Graph Theory and Combinatorics, volume 75 of North-Holland
Mathematics Studies, pages 535–548, 1983.

19 I.K. Rystsov. Estimation of the length of reset words for automata with simple idempotents.
Cybern. Syst. Anal. 36, pages 339–344, 2000.

20 S. Sandberg. Homing and synchronizing sequences. In Model-Based Testing of Reactive
Systems, volume 3472 of LNCS, pages 5–33. Springer, 2005.

21 Y. Shitov. An Improvement to a Recent Upper Bound for Synchronizing Words of Finite
Automata. Journal of Automata, Languages and Combinatorics, 24(2–4):367–373, 2019.

22 M. Szykuła. Improving the Upper Bound on the Length of the Shortest Reset Word. In
STACS 2018, LIPIcs, pages 56:1–56:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2018.

23 M. Szykuła and A. Zyzik. An Improved Algorithm for Finding the Shortest Synchronizing
Words. In Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman, editors, 30th
Annual European Symposium on Algorithms (ESA 2022), volume 244 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 85:1–85:15. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2022.

24 M. V. Volkov. Synchronizing automata and the Černý conjecture. In Language and Automata
Theory and Applications, volume 5196 of LNCS, pages 11–27. Springer, 2008.

25 M. V. Volkov. Synchronization of finite automata. Uspekhi Matematicheskikh Nauk, 77:53–130,
2022. in Russian.

ICALP 2023

Approximating Long Cycle Above Dirac’s
Guarantee
Fedor V. Fomin #

Department of Informatics, University of Bergen, Norway

Petr A. Golovach #

Department of Informatics, University of Bergen, Norway

Danil Sagunov #

St. Petersburg Department of V.A. Steklov Institute of Mathematics, Russia

Kirill Simonov #

Hasso Plattner Institute, Universität Potsdam, Germany

Abstract

Parameterization above (or below) a guarantee is a successful concept in parameterized algorithms.
The idea is that many computational problems admit “natural” guarantees bringing to algorithmic
questions whether a better solution (above the guarantee) could be obtained efficiently. For example,
for every boolean CNF formula on m clauses, there is an assignment that satisfies at least m/2
clauses. How difficult is it to decide whether there is an assignment satisfying more than m/2 + k

clauses? Or, if an n-vertex graph has a perfect matching, then its vertex cover is at least n/2. Is
there a vertex cover of size at least n/2 + k for some k ≥ 1 and how difficult is it to find such a
vertex cover?

The above guarantee paradigm has led to several exciting discoveries in the areas of parameterized
algorithms and kernelization. We argue that this paradigm could bring forth fresh perspectives
on well-studied problems in approximation algorithms. Our example is the longest cycle problem.
One of the oldest results in extremal combinatorics is the celebrated Dirac’s theorem from 1952.
Dirac’s theorem provides the following guarantee on the length of the longest cycle: for every
2-connected n-vertex graph G with minimum degree δ(G) ≤ n/2, the length of the longest cycle L is
at least 2δ(G). Thus the “essential” part of finding the longest cycle is in approximating the “offset”
k = L − 2δ(G). The main result of this paper is the above-guarantee approximation theorem for k.
Informally, the theorem says that approximating the offset k is not harder than approximating the
total length L of a cycle. In other words, for any (reasonably well-behaved) function f , a polynomial
time algorithm constructing a cycle of length f(L) in an undirected graph with a cycle of length L,
yields a polynomial time algorithm constructing a cycle of length 2δ(G) + Ω(f(k)).

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of
computation → Approximation algorithms analysis; Theory of computation → Parameterized
complexity and exact algorithms

Keywords and phrases Longest path, longest cycle, approximation algorithms, above guarantee
parameterization, minimum degree, Dirac theorem

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.60

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: http://arxiv.org/abs/2305.02011 [26]

Funding Supported by the Research Council of Norway via the project BWCA (grant no. 314528)
and DFG Research Group ADYN via grant DFG 411362735.

EA
T
C
S

© Fedor V. Fomin, Petr A. Golovach, Danil Sagunov, and Kirill Simonov;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 60; pp. 60:1–60:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fedor.fomin@uib.no
mailto:petr.golovach@uib.no
mailto:danilka.pro@gmail.com
mailto:kirillsimonov@gmail.com
https://doi.org/10.4230/LIPIcs.ICALP.2023.60
http://arxiv.org/abs/2305.02011
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

60:2 Approximating Long Cycle Above Dirac’s Guarantee

1 Introduction

One of the concepts that had a strong impact on the development of parameterized algorithms
and kernelization is the idea of the above guarantee parameterization. Above guarantee
parameterization grounds on the following observation: the natural parameterization of a
maximization/minimization problem by the solution size is not satisfactory if there is a lower
bound for the solution size that is sufficiently large [23]. To make this discussion concrete,
consider the example of the classical NP-complete problem Max Cut. Observe that in
any graph with m edges there is always a cut containing at least m/2 edges. (Actually,
slightly better bounds are known in the literature [18, 10].) Thus Max Cut is trivially
fixed-parameter tractable (FPT) parameterized by the size of the max-cut. Indeed, the
following simple algorithm shows that the problem is FPT: If k ≤ m/2, then return yes;
else m ≤ 2k and any brute-force algorithm will do the job. However, the question about
Max Cut becomes much more meaningful and interesting, when one seeks a cut above the
“guaranteed” lower bound m/2.

The above guarantee approach was introduced by Mahajan and Raman [46] and it was
successfully applied in the study of several fundamental problems in parameterized complexity
and kernelization. For illustrative examples, we refer to [1, 4, 14, 23, 25, 33, 34, 35, 37, 38, 45],
see also the recent survey of Gutin and Mnich [36]. Quite surprisingly, the theory of the
above (or below) guarantee approximation remains unexplored. (Notable exceptions are the
works of Mishra et al. [47] on approximating the minimum vertex cover beyond the size
of a maximum matching and of Bollobás and Scott on approximating max-cut beyond the
m/2 +

√
m/8 bound [10].)

In this paper, we bring the philosophy of the above guarantee parameterization into the
realm of approximation algorithms. In particular,

The goal of this paper is to study the approximability of the classical problems
of finding a longest cycle and a longest (s, t)-path in a graph from the viewpoint
of the above guarantee parameterization.

Our results. Approximating the length of a longest cycle in a graph enjoys a lengthy and
rich history [6, 8, 21, 20, 29, 30, 49]. There are several fundamental results in extremal
combinatorics providing lower bounds on the length of a longest cycle in a graph. The oldest
of these bounds is given by Dirac’s Theorem from 1952 [17]. Dirac’s Theorem states that
a 2-connected graph G with the minimum vertex degree δ(G) contains a cycle of length
L ≥ min{2δ(G), |V (G)|}. Since every longest cycle in a graph G with δ(G) < 1

2 |V (G)|
(otherwise, G is Hamiltonian and a longest cycle can be found in polynomial time) always
has a “complementary” part of length 2δ(G), the essence of the problem is in computing
the “offset” k = L− 2δ(G). Informally, the first main finding of our paper is that Dirac’s
theorem is well-compatible with approximation. We prove that approximating the offset k is
essentially not more difficult than approximating the length L.

More precisely. Recall that f is subadditive if for all x, y it holds that f(x+y) ≤ f(x)+f(y).
Our main result is the following theorem.

▶ Theorem 1. Let f : R+ → R+ be a non-decreasing subadditive function and suppose that
we are given a polynomial-time algorithm finding a cycle of length at least f(L) in graphs with
the longest cycle length L. Then there exists a polynomial time algorithm that finds a cycle
of length at least 2δ(G) + Ω(f(L− 2δ(G))) in a 2-connected graph G with δ(G) ≤ 1

2 |V (G)|
and the longest cycle length L.

F. V. Fomin, P. A. Golovach, D. Sagunov, and K. Simonov 60:3

The 2-connectivity condition is important. As was noted in [24], deciding whether a
connected graph G contains a cycle of length at least 2δ(G) is NP-complete. Theorem 1
trivially extends to approximating the longest path problem above 2δ(G). For the longest
path, the requirement on 2-connectivity of a graph can be relaxed to connectivity. This can
be done by a standard reduction of adding an apex vertex v to the connected graph G, see
e.g. [24]. The minimum vertex degree in the new graph G + v, which is 2-connected, is equal
to δ(G) + 1, and G has a path of length at least L if and only if G + v has a cycle of length
at least L + 2. Thus approximation of the longest cycle (by making use of Theorem 1) in
G + v, is also the approximation of the longest path in G.

Related work. The first approximation algorithms for longest paths and cycles followed
the development of exact parameterized algorithms. Monien [48] and Bodlaender [9] gave
parameterized algorithms computing a path of length L in times O(L!2Ln) and O(L!nm)
respectively. These algorithms imply also approximation algorithms constructing in polyno-
mial time a path of length Ω(log L/ log log L), where L is the longest path length in graph G.
In their celebrated work on color coding, Alon, Yuster, and, Zwick [2] obtained an algorithm
that in time O(5.44Ln) finds a path/cycle of length L. The algorithm of Alon et al. implies
constructing in polynomial time a path of length Ω(log L). A significant amount of the
consecutive work targets to improve the base of the exponent cL in the running times of the
parameterized algorithms for longest paths and cycles [43, 50, 28, 5, 7]. The surveys [27, 44],
and [15, Chapter 10] provide an overview of ideas and methods in this research direction.
The exponential dependence in L in the running times of these algorithms is asymptotically
optimal: An algorithm finding a path (or cycle) of length L in time 2o(L)nO(1) would fail the
Exponential Time Hypothesis (ETH) of Impagliazzo, Paturi, and Zane [39]. Thus none of
the further improvements in the running times of parameterized algorithms for longest cycle
or path, would lead to a better than Ω(log L) approximation bound.

Björklund and Husfeldt [6] made the first step “beyond color-coding” in approximating
the longest path. They gave a polynomial-time algorithm that finds a path of length
Ω(log L/ log log L)2 in a graph with the longest path length L. Gabow in [30] enhanced and
extended this result to approximating the longest cycle. His algorithm computes a cycle of
length 2Ω(

√
log L/ log log L) in a graph with a cycle of length L. Gabow and Nie [32] observed

that a refinement of Gabow’s algorithm leads to a polynomial-time algorithm constructing
cycles of length 2Ω(

√
log L). This is better than (log(L))O(1) but worse than Lε. Pipelining the

algorithm of Gabow and Nie with Theorem 1 yields a polynomial time algorithm constructing
in a 2-connected graph G a cycle of length 2δ(G) + Ω(c

√
log k). For graphs of bounded vertex

degrees, better approximation algorithms are known [13, 21].
The gap between the upper and lower bounds for the longest path approximation is still

big. Karger, Motwani, and Ramkumar [41] proved that the longest path problem does not
belong to APX unless P = NP. They also show that for any ε > 0, it cannot be approximated
within 2log1−ε n unless NP ⊆ DTIME(2O(log1/ε n)). Bazgan, Santha, and Tuza [3] extended
these lower bounds to cubic Hamiltonian graphs. For directed graphs the gap between the
upper and lower bounds is narrower [8, 31].

Our approximation algorithms are inspired by the recent work Fomin, Golovach, Sagunov,
and Simonov [24] on the parameterized complexity of the longest cycle beyond Dirac’s
bound. Fomin et al. were interested in computing the “offset” beyond 2δ(G) exactly. Their
parameterizes algorithm decides whether G contains a cycle of length at least 2δ(G) + k in
time 2O(k)nO(1), and thus in polynomial time computes a cycle of length 2δ(G) + Ω(log k).
However, the tools developed in [24] are not sufficient to go beyond Ω(log k)-bound on the

ICALP 2023

60:4 Approximating Long Cycle Above Dirac’s Guarantee

offset. The main combinatorial tools from [24] are Erdős-Gallai decomposition and Dirac
decomposition of graphs. For the needs of approximation, we have to develop novel (“nested”)
variants or prove additional structural properties of these decompositions.

Dirac’s theorem is one of the central pillars of Extremal Graph Theory. The excellent
surveys [12] and [11] provide an introduction to this fundamental subarea of graph the-
ory. Besides [24], the algorithmic applications of Dirac’s theorem from the perspective of
parameterized complexity were studied by Jansen, Kozma, and Nederlof in [40].

Paper structure. Section 2 provides an overview of the techniques employed to achieve our
results. Then, Section 3 introduces notations and lists auxiliary results. Section 4 guides
through the proof of the approximation result for (s, t)-paths, which is the key ingredient
required for Theorem 1. Finally, we conclude with a summary and some open questions
in Section 5. Note that the proofs of technical statements are omitted from this extended
abstract due to space constraints. Detailed proofs of all results can be found in the full
version of the paper [26].

2 Overview of the proofs

In this section, we provide a high-level strategy of the proof of Theorem 1, as well as key
technical ideas needed along the way. The central concept of our work is an approximation
algorithm for the Longest Cycle problem. Formally, such an algorithm should run in
polynomial time for a given graph G and should output a cycle of length at least f(L),
where L is the length of the longest cycle in G. The function f here is the approximation
guarantee of the algorithm. In our work, we allow it to be an arbitrary non-decreasing
function f : R+ → R+ that is also subadditive (i.e., f(x) + f(y) ≥ f(x + y) for arbitrary
x, y). We also note that an f(L)-approximation algorithm for Longest Cycle immediately
gives a 1

2 f(2L)-approximation algorithm for Long (s, t)-Path in 2-connected graphs (by
Menger’s theorem, see Lemma 4 for details).

Our two main contributions assume that we are given such an f -approximation algorithm
as a black box. In fact, we only require to run this algorithm on an arbitrary graph as an
oracle and receive its output. We do not need to modify or know the algorithm routine.

While the basis of our algorithm comes from the structural results of Fomin et al. [24], in
the first part of this section we do not provide the details on how it is used.

The first of our contributions is a polynomial-time algorithm that finds a long (s, t)-path
in a given 2-connected graph G with two vertices s, t ∈ V (G). The longest (s, t)-path in G

always has length δ(G− {s, t}) + k for k ≥ 0 by Erdős-Gallai theorem, and the goal of the
algorithm is to find an (s, t)-path of length at least δ(G − {s, t}) + Ω(f(k)) in G. To find
such a path, this algorithm first recursively decomposes the graph G in a specific technical
way. As a result, it outputs several triples (Hi, si, ti) in polynomial time, where Hi is a
2-connected minor of G and si, ti ∈ V (Hi). For each triple, the algorithm runs the black
box to find a f -approximation of the longest (si, ti)-path in Hi. In the second round, our
algorithm cleverly uses constructed approximations to construct a path of length at least
δ(G− {s, t}) + Ω(f(k)) in the initial graph G. This is summarized as the following theorem.

▶ Theorem 2. Let f : R+ → R+ be a non-decreasing subadditive function and suppose
that we are given a polynomial-time algorithm computing an (s, t)-path of length at least
f(L) in graphs with given two vertices s and t having the longest (s, t)-path of length L.
Then there is a polynomial-time algorithm that outputs an (s, t)-path of length at least
δ(G− {s, t}) + Ω(f(L− δ(G− {s, t}))) in a 2-connected graph G with two given vertices s

and t having the longest (s, t)-path length L.

F. V. Fomin, P. A. Golovach, D. Sagunov, and K. Simonov 60:5

The second (and main) contribution of this paper is the polynomial-time algorithm that
approximates the longest cycle in a given 2-connected graph G such that 2δ(G) ≤ |V (G)|. It
employs the black-box f -approximation algorithm for Longest Cycle to find a cycle of
length 2δ(G) + Ω(f(k)), where 2δ(G) + k is the length of the longest cycle in G. By Dirac’s
theorem applied to G, k is always at least 0.

To achieve that, our algorithm first tries to decompose the graph G. However, in contrast
to the first contributed algorithm, here the decomposition process is much simpler. In fact,
the decomposition routine is never applied recursively, as the decomposition itself needs not
to be used: its existence is sufficient to apply another, simple, procedure.

Similarly to the first contribution, the algorithm then outputs a series of triples (Hi, si, ti),
where Hi is a 2-connected minor of G and si, ti ∈ V (Hi). The difference here is that for
each triple the algorithm runs not the initial black-box f -approximation algorithm, but the
algorithm of the first contribution, i.e. the algorithm of Theorem 2. Thus, the output of each
run is an (si, ti)-path of length δ(Hi − {si, ti}) + Ω(f(ki)) in Hi, where δ(Hi − {si, ti}) + ki

is the length of the longest (si, ti)-path in Hi.
Finally, from each approximation, our algorithm constructs a cycle of length at least

2δ(G) + Ω(f(ki)). It is guaranteed that ki = Ω(k) for at least one i, so the longest of all
constructed cycles is of length at least 2δ(G) + Ω(f(k)). The following theorem is in order.

▶ Theorem 1. Let f : R+ → R+ be a non-decreasing subadditive function and suppose that
we are given a polynomial-time algorithm finding a cycle of length at least f(L) in graphs with
the longest cycle length L. Then there exists a polynomial time algorithm that finds a cycle
of length at least 2δ(G) + Ω(f(L− 2δ(G))) in a 2-connected graph G with δ(G) ≤ 1

2 |V (G)|
and the longest cycle length L.

One may note that Theorem 2 actually follows from Theorem 1 (again, by Menger’s
theorem, see Lemma 4). However, as described above, the algorithm in Theorem 1 employs
the algorithm of Theorem 2, so we have to prove the latter before the former.

In the remaining part of this section, we provide more detailed proof overviews of both
theorems, in particular, we explain how the algorithms employ the structural results of [24].
In both proofs, we complement these results by showing useful properties of specific graph
decompositions. For clarity, we start with Theorem 1, as its proof is less involved.

2.1 Approximating long cycles
The basis of our algorithm is the structural result due to Fomin et al. [24]. In that work, the
authors show the following: There is an algorithm that, given a cycle in a 2-connected graph,
either finds a longer cycle or finds that G is of a “particular structure”. This algorithm can
be applied to any cycle of length less than (2 + σ1) · δ(G) (to be specific, we use σ1 = 1

24 ,
see [26] for details).

To see how this stuctural result is important, recall that we aim to find a cycle of length
at least 2δ(G) + Ω(f(k)) in a 2-connected graph G with the longest cycle length 2δ(G) + k.
Our algorithm simply starts with some cycle in G and applies the result of [24] to enlarge it
exhaustively. It stops when either a cycle is of length at least (2 + σ1) · δ(G), or the particular
structure of G is found.

The crucial observation here is that if a long cycle is found, we can trivially find a good
approximation. If σ1 · δ(G) is, e.g., less than σ1/10 · f(k), then 10δ(G) < f(k). If we just
apply the blackbox f -approximation algorithm for the Longest Cycle problem, we get
a cycle of length at least f(2δ(G) + k) ≥ f(k) ≥ 2δ(G) + 4/5 · f(k). Hence, by taking the
longest of the cycles of length (2 + σ1) · f(k) and of length f(2δ(G) + k) we always achieve a
good approximation guarantee on k.

ICALP 2023

60:6 Approximating Long Cycle Above Dirac’s Guarantee

The most important part of the algorithm is employed when the “particular structure”
outcome is received from the structural lemma applied on G and the current cycle C. Here
we need to be specific about this structure, and the outcome can be of two types. The
first outcome is a bounded vertex cover of the graph. This vertex cover is of size at most
δ(G) + 2(k′ + 1), where k′ ≥ 0 is such that |V (C)| = 2δ(G) + k′. Such vertex cover is a
guarantee that C is not much shorter than the longest cycle in G: the length of the longest
cycle is bounded by twice the vertex cover size, so k ≤ 4(k′ + 1). Hence, k′ = Ω(k) and C is
a sufficient approximation.

The second, and last, structural outcome is the Dirac decomposition, defined in [24].
Basically, this decomposition is obtained by finding a small separator of G (that consists
of just two subpaths P1, P2 of the cycle C), and the parts of this decomposition are the
connected components of G after the separation. The main result on Dirac decomposition
proved in [24] is that there always exists a longest cycle that contains an edge in at least one
of these parts.

While the definition and properties of Dirac decomposition may seem quite involved, our
algorithm does not even require the Dirac decomposition of G to be found. In fact, we show
a new nice property of Dirac decomposition. It guarantees that if a Dirac decomposition for
G exists, then there also exists a 2-vertex separator {u, v} of G that also divides the longest
cycle in G into almost even parts. Our contribution is formulated in the following lemma.

▶ Lemma 3. Let G be a 2-connected graph and P1, P2 induce a Dirac decomposition for a
cycle C of length at most 2δ(G) + κ in G such that 2κ ≤ δ(G). If there exists a cycle of
length at least 2δ(G) + k in G, then there exist u, v ∈ V (G) such that

G− {u, v} is not connected, and
there is an (u, v)-path of length at least δ(G) + (k − 2)/4 in G.
Our algorithm employs Lemma 3 in the following way. Since there are O(|V (G)|2) vertex

pairs in G, our algorithm iterates over all vertex pairs. If a pair u, v separates the graph
into at least two parts, then our algorithm finds a long (u, v)-path that contains vertices
in only one of the parts. Formally, it iterates over all connected components in G− {u, v}.
For a fixed connected component H, our algorithm applies the algorithm of Theorem 2 to
the graph G[V (H) ∪ {u, v}] + uv (the edge uv is added to ensure 2-connectivity), to find an
approximation of the longest (u, v)-path. By Lemma 3, if u, v is the required separating pair,
then for at least one H the length of the found (u, v)-path should be δ(G)+Ω(k). And if such
a path is found, a sufficiently long (u, v)-path outside H in G is guaranteed by Erdős-Gallai
theorem. Together, these two paths form the required cycle of length 2δ(G) + Ω(k).

With that, the proof overview of Theorem 1 is finished. The formal proof is presented
in [26].

2.2 Approximating long (s, t)-paths

While the algorithm of Theorem 1 does not use the underlying Dirac decomposition explicitly,
in the case of finding (s, t)-paths (and to prove Theorem 2), we require deeper usage of the
obtained graph decomposition. While the Dirac decomposition of Fomin et al. was originally
used in [24] to find long cycles above 2δ(G), for finding (s, t)-paths above δ(G− {s, t}) the
authors introduced the Erdős-Gallai decomposition.

In the formal proof of Theorem 2 in Section 4, we give a complete definition of Erdős-
Gallai decomposition. In this overview, we aim to avoid the most technical details in order to
provide an intuition of the structure of the decomposition and how our algorithm employs it.

F. V. Fomin, P. A. Golovach, D. Sagunov, and K. Simonov 60:7

Similarly to Dirac decomposition, the Erdős-Gallai decomposition is obtained through the
routine that, given a graph G and an (s, t)-path inside it, either enlarges the path or reports
that two subpaths P1 (that starts with s) and P2 (that starts with t) of the given path
induce (when deleted) an Erdős-Gallai decomposition in G. This routine can be applied to an
(s, t)-path until it reaches (1+σ2) · δ(G−{s, t}) in length (specifically, σ2 = 1

4 , see Lemma 13;
in this overview, we also skip the case of a Hamiltonian (s, t)-path for brevity). Note that,
in contrast to the cycle enlargement routine of the Dirac decomposition, here the bounded
vertex cover outcome is not possible. Similarly to the algorithm of the previous subsection,
the only non-trivial part of the algorithm is dealing with the Erdős-Gallai decomposition
outcome. In the other case, a single run of the black-box f -approximation algorithm for
Longest Cycle provides the desired approximation immediately.

The main property of this decomposition due to [24] is as follows: If an (s, t)-path
of length at least δ(G − {s, t}) + k exists in G, then there necessarily exists the path of
length at least δ(G− {s, t}) + k that goes through one of the connected components in the
decomposition. Moreover, for each of the connected components Gi there is exactly one pair
of distinct entrypoints si, ti: if an (s, t)-path in G goes through Gi, it should necessary enter
Gi in si (or ti) once and leave Gi in ti (or si) exactly once as well.

Additionally to that, we have that the degree of each Gi is not much different from
G: δ(Gi − {si, ti}) ≥ δ(G − {s, t}) − 2 holds true. And this constant difference is always
compensated by paths from s and t to si and ti: if we succeed to find an (si, ti)-path of
length at least δ(Gi − {si, ti}) + ki inside Gi, we can always complete it with any pair of
disjoint paths from {s, t} to {si, ti} into an (s, t)-path of length δ(G − {s, t}) + ki in G.
Should this pair be longer than the trivial lower bound of 2, it grants the additional length
above δ(G− {s, t}) + ki.

The previous paragraph suggests the following approach for our approximation algorithm:
for each Gi, si, ti, our algorithm applies itself recursively to find an (si, ti)-path of length
δ(Gi−{si, ti}+Ω(f(ki)), where ki comes from the longest (si, ti)-path length in Gi. Since the
other part of the additional length comes from two disjoint paths between {s, t}, and {si, ti},
we would like to employ the black-box f -approximation algorithm to find the f -approximation
of this pair of paths.

Unfortunately, finding such pair of paths reduces only to finding a long cycle through a
given pair of vertices (it is enough to glue s with t and si with ti in G, and ask to find the
long cycle through the resulting pair of vertices). In their work, Fomin et al. have shown
that the problem of finding such a cycle of length at least k can be done in 2O(k) · nO(1)

time. However, this is of little use to us, as k is only bounded by O(δ(G)), but we require
polynomial time. Simultaneously, we do not know of any way to force the black-box algorithm
to find an f -approximation for a cycle through the given pair of vertices.

These arguments bring us away from the idea of a recursive approximation algorithm.
Instead, our approximation algorithm will apply the black-box algorithm to a single “complete-
picture” graph that is obtained according to the structure brought by the Erdős-Gallai
decomposition. However, the recursion here remains in the sense that we apply the path-
enlarging routine to each component of the decomposition. This brings us to the idea of
the recursive decomposition, which we define as the nested Erdős-Gallai decomposition in
Section 4. This decomposition can be seen as a tree, where the root is the initial triple (G, s, t),
the children of a node represent the triples (Gi, si, ti) given by the Erdős-Gallai decomposition,
and the leaves of this decomposition are the graphs Gi where sufficient approximations of
long (si, ti)-paths are found (by taking the longest of (1 + σ2) · δ(G − {si, ti})-long path
from the enlarging routine and the approximation obtained from the blackbox algorithm). A
schematic picture of this novel decomposition is present in Figure 1.

ICALP 2023

60:8 Approximating Long Cycle Above Dirac’s Guarantee

s1 s3 t1s2 t3

t2 = t6

s4 t4

s5 t5

s6

s7 t7

s8 t8

s9 t9

s10 t10
s11 t11

s12 t12

G5

G6

G3

G7G12
G11

G10

G8

G9

G2

G4

G1

(G1, s1, t1)

(G2, s2, t2) (G3, s3, t3) (G4, s4, t4)

(G5, s5, t5) (G6, s6, t6)

(G7, s7, t7) (G8, s8, t8) (G9, s9, t9)

(G10, s10, t10) (G11, s11, t11) (G12, s12, t12)

Figure 1 A schematic example of a nested Erdős-Gallai decomposition (left) and the corresponding
recursion tree (right). Red straight paths inside Gi denote the pair of paths inducing an Erdős-Gallai
decomposition in Gi. Bold (si, ti)-paths are sufficient approximations of the longest (si, ti)-paths in
Gi. Dashed contours correspond to Gi with constant δ(Gi − {si, ti}), which is one of a few technical
cases in the proof.

In Section 4, we show that a long path found inside a leaf (Gi, si, ti) of the decomposition
can be contracted into a single edge siti. Moreover, if (Gj , sj , tj) is a child of a (Gi, si, ti)
in the decomposition, and the longest pair of paths from {si, ti} to {sj , tj} is just a pair of
edges (so it does not grant any additional length as described before), we contract these
edges. The crucial in our proof is the claim that after such a contraction, if an (s, t)-path of
length δ(G−{s, t}) + k exists in the initial graph, an (s, t)-path of length at least Ω(k) exists
in the graph obtained with described contractions. After doing all the contractions, the
algorithm applies the black-box algorithm to the transformed graph and finds an (s, t)-path
of length f(Ω(k)) (which is Ω(f(k)) by subadditivity) inside it.

The final part of our algorithm (and the proof of Theorem 2) is the routine that transforms
this (s, t)-path inside the contracted graph G into a path of length δ(G− {s, t}) + Ω(f(k))
in the initial graph G. In this part, we prove that it is always possible to transform an
(s, t)-path of length r in the contracted graph into a path of length Ω(r) that goes through
at least one edge corresponding to a leaf of the nested Erdős-Gallai decomposition (hence,
to a good approximation of (si, ti)-path inside Gi). Finally, we observe that reversing the
contractions in G transforms this path into the required approximation.

This finishes the overview of the proof of Theorem 2. Section 4 outlines the proof in
detail, providing the sequence of intermediate technical results leading to the proof of the
theorem.

3 Preliminaries

In this section, we define the notation used throughout the paper and provide some auxiliary
results. We use [n] to denote the set of positive integers {1, . . . , n}. We remind that a
function f : D → R is subadditive if f(x + y) ≤ f(x) + f(y) for all x, y ∈ D ⊆ R. We denote
the set of all nonnegative real numbers by R+.

F. V. Fomin, P. A. Golovach, D. Sagunov, and K. Simonov 60:9

Recall that our main theorems are stated for arbitrary nondecreasing subadditive func-
tions f : R+ → R, such that an algorithm achieving the respective approximation exists.
Throughout the proofs we will, additionally assume that f(x) ≤ x for every x ∈ R+. For any
integer x ≥ 3, this is already implied by the statement, since a consistent approximation
algorithm cannot output an (s, t)-path (respectively, cycle) of length greater than x in a
graph where the longest (s, t)-path (respectively, cycle) has length x. However, for a general
function f(·) this does not necessarily hold on the whole R+. If this is the case, for clarity of
the proofs we redefine f(x) := min{x, f(x)} for every x ∈ R+. Clearly, f remains subadditive
and non-decreasing, while also imposing exactly the same guarantee on the approximation
algorithm.

Graphs. We consider only finite simple undirected graphs and use the standard notation
(see, e.g., the book of Diestel [16]). The following useful observation follows immediately
from Menger’s theorem (see, e.g., [16, 42]).

▶ Lemma 4. For any 2-connected graph G with a cycle of length L, there is a path of length
at least L/2 between any pair of vertices in G. Moreover, given a cycle C and two distinct
vertices s and t, an (s, t)-path of length at least |V (C)|/2 can be constructed in polynomial
time.

We observe that given an approximation algorithm for a longest cycle, we can use it as a
black box to approximate a longest path between any two vertices.

▶ Lemma 5. Let A be a polynomial-time algorithm that finds a cycle of length at least f(L)
in a graph with the longest cycle length L. Then there is a polynomial-time algorithm using
A as a subroutine that, given a graph G and two distinct vertices s and t, finds an (s, t)-path
of length at least 1

2 f(2L), where L is the length of a longest (s, t)-path in G.

We will use as a subroutine an algorithm finding two disjoint paths between two pairs of
vertices of total length at least k, where k is the given parameter. For us, constant values
of k suffice, though in fact there exists an FPT algorithm for this problem parameterized
by the total length. It follows as an easy corollary from the following result of [24] about
Long (s, t)-Cycle, the problem of finding a cycle of length at least k through the given
two vertices s and t.

▶ Theorem 6 (Theorem 4 in [24]). There exists an FPT algorithm for Long (s, t)-Cycle
parameterized by k.

For completeness, we state the corollary next.

▶ Corollary 7. There is an FPT algorithm that, given a graph G with two pairs of vertices
{s, t} and {s′, t′}, and a parameter k, finds two disjoint paths between {s, t} and {s′, t′} in
G of total length at least k, or correctly determines that such paths do not exist.

Finally, it is convenient to use the following corollary, which generalizes the theorem of
Erdős and Gallai [19, Theorem 1.16].

▶ Corollary 8 (Corollary 3 in [24]). Let G be a 2-connected graph and let s, t be a pair of
distinct vertices in G. For any B ⊆ V (G) there exists a path of length at least δ(G − B)
between s and t in G. Moreover, there is a polynomial time algorithm constructing a path of
such length.

ICALP 2023

60:10 Approximating Long Cycle Above Dirac’s Guarantee

4 Approximating (s, t)-path

In this section, we outline the proof of Theorem 2, stating that any guarantee for approx-
imating the longest cycle in a 2-connected graph can be transferred to approximating the
longest (s, t)-path above minimum degree. For the convenience of the reader, we recall the
precise statement next.

▶ Theorem 2. Let f : R+ → R+ be a non-decreasing subadditive function and suppose
that we are given a polynomial-time algorithm computing an (s, t)-path of length at least
f(L) in graphs with given two vertices s and t having the longest (s, t)-path of length L.
Then there is a polynomial-time algorithm that outputs an (s, t)-path of length at least
δ(G− {s, t}) + Ω(f(L− δ(G− {s, t}))) in a 2-connected graph G with two given vertices s

and t having the longest (s, t)-path length L.

In order to obtain this result, we first recall the concept of Erdős-Gallai decomposition
introduced in [24] together with a few of its helpful properties established there. Then we
introduce the recursive generalization of this concept, called nested Erdős-Gallai decomposi-
tion, and show how to obtain with its help the compression of the graph such that a long
(s, t)-path in the compressed graph can be lifted to an (s, t)-path in the original graph with
a large offset.

4.1 Erdős-Gallai decomposition
This subsection encompasses the properties of an Erdős-Gallai decomposition, defined next.
The definition itself and most of the technical results presented here are due to [24]. Some of
the results from [24] need to be modified in order to be used for our purposes, we provide the
proofs of such results in [26]. Note that the statements in [24] hold in the more general case
where there is also a low-degree vertex subset in the graph, here while recalling the results
we automatically simplify the statements. Next, we recall the definition of an Erdős-Gallai
decomposition.

▶ Definition 9 (Erdős-Gallai decomposition and Erdős-Gallai component, Definition 2 in [24]).
Let P be a path in a 2-connected graph G. We say that two disjoint paths P1 and P2 in G

induce an Erdős-Gallai decomposition for P in G if
Path P is of the form P = P1P ′P2, where the inner path P ′ has at least δ(G − {s, t})
edges.
There are at least two connected components in G− V (P1 ∪ P2), and for every connected
component H, it holds that |V (H)| ≥ 3 and one of the following is fulfilled:

1. H is 2-connected and the maximum size of a matching in G between V (H) and V (P1)
is one, and between V (H) and V (P2) is also one;

2. H is not 2-connected, exactly one vertex of P1 has neighbors in H, that is |NG(V (H))∩
V (P1)| = 1, and no inner vertex from a leaf-block of H has a neighbor in P2;

3. The same as 2, but with P1 and P2 interchanged. That is, H is not 2-connected,
|NG(V (H)) ∩ V (P2)| = 1, and no inner vertex from a leaf-block of H has a neighbor
in P1.

The set of Erdős-Gallai components for an Erdős-Gallai decomposition is defined as follows.
First, for each component H of type 1, H is an Erdős-Gallai component of the Erdős-
Gallai decomposition. Second, for each H of type 2, or of type 3, all its leaf-blocks are also
Erdős-Gallai components of the Erdős-Gallai decomposition.

F. V. Fomin, P. A. Golovach, D. Sagunov, and K. Simonov 60:11

As long as an Erdős-Gallai decomposition is available, Erdős-Gallai components allow us
to bound the structure of optimal solutions in a number of ways. First, Fomin et al. [24]
observe that the longest (s, t)-path necessarily visits an Erdős-Gallai component.

▶ Lemma 10 (Lemma 7 in [24]). Let G be a graph and P1, P2 induce an Erdős-Gallai
decomposition for an (s, t)-path P in G. Then there is a longest (s, t)-path in G that enters
an Erdős-Gallai component.

Next, since an Erdős-Gallai component has a very restrictive connection to the rest of
the graph, it follows that any (s, t)-path has only one chance of entering the component.

▶ Lemma 11 (Lemma 5 in [24]). Let G be a 2-connected graph and P be an (s, t)-path
in G. Let paths P1, P2 induce an Erdős-Gallai decomposition for P in G. Let M be an
Erdős-Gallai component. Then for every (s, t)-path P ′ in G, if P ′ enters M , then all vertices
of V (M) ∩ V (P ′) appear consecutively in P ′.

For the purposes of recursion, it is convenient to enclose an Erdős-Gallai component
together with some of its immediate connections, so that this slightly larger subgraph behaves
exactly like an (s, t)-path instance. The subgraph K in the next lemma plays this role.

▶ Lemma 12 (Lemma 8 in [24]). Let paths P1, P2 induce an Erdős-Gallai decomposition
for an (s, t)-path P in graph G. Let M be an Erdős-Gallai component in G. Then there is
a polynomial time algorithm that outputs a 2-connected subgraph K of G and two vertices
s′, t′ ∈ V (K), such for that every (s, t)-path P ′ in G that enters M , the following hold:
1. V (K) = (V (M) ∪ {s′, t′});
2. P ′[V (K)] is an (s′, t′)-subpath of P ′ and an (s′, t′)-path in K;
3. δ(K − {s′, t′}) ≥ δ(G− {s, t, s′, t′}).

Most importantly, Erdős-Gallai decompositions capture extremal situations, where the
current (s, t)-path cannot be made longer in a “simple” way. The next lemma formalizes
that intuition, stating that in polynomial time we can find either a long (s, t)-path or an
Erdős-Gallai decomposition. The lemma is largely an analog of Lemma 4 in [24], however
our statement here is slightly modified. Next, we recall the statement from Section 2.

▶ Lemma 13. Let G be a 2-connected graph such that δ(G − {s, t}) ≥ 16. There is a
polynomial time algorithm that

either outputs an (s, t)-path P of length at least min{ 5
4 δ(G− {s, t})− 3, |V (G)| − 1},

or outputs an (s, t)-path P with paths P1, P2 that induce an Erdős-Gallai decomposition
for P in G. Additionally, there is no (s, t)-path in G that enters at least two Erdős-Gallai
components of this Erdős-Gallai decomposition.
Finally, to deal with (s, t)-paths that do not enter any Erdős-Gallai component, one can

observe the following. Intuitively, such a path should be far from optimal, as going through
an Erdős-Gallai component would immediately give at least δ(G− {s, t})−O(1) additional
edges of the path. The final lemma of this subsection establishes how precisely the length
of a path avoiding Erdős-Gallai components can be “boosted” in this fashion. To obtain
this result, we first need a technical lemma from [24] that yields long paths inside separable
components.

▶ Lemma 14 (Lemma 6 in [24]). Let H be a connected graph with at least one cut-vertex.
Let I be the set of inner vertices of all leaf-blocks of H. Let S ⊆ V (H) \ I separate at least
one vertex in V (H) \ I from I in H. For any vertex v that is not an inner vertex of a
leaf-block of H, there is a cut-vertex c of a leaf-block of H and a (c, v)-path of length at least
1
2 (δ(H)− |S|) in H. This path can be constructed in polynomial time.

ICALP 2023

60:12 Approximating Long Cycle Above Dirac’s Guarantee

Now we move to (s, t)-paths that avoid Erdős-Gallai components. The following Lemma 15
has been already stated in Section 2, here we recall the statement.

▶ Lemma 15. Let P be an (s, t)-path of length at most δ(G− {s, t}) + k and let two paths
P1, P2 induce a Erdős-Gallai decomposition for P in G. There is a polynomial time algorithm
that, given an (s, t)-path of length at least 4k + 5 in G that does not enter any Erdős-Gallai
component, outputs a path of length at least min{δ(G−{s, t})+k−1, 3

2 δ(G−{s, t})− 5
2 k−1}

in G.

4.2 Proof of Theorem 2
To deal with the recursive structure of the solution, we introduce the following nested
generalization of an Erdős-Gallai decomposition. Intuitively, it captures how the struc-
tural observations of the previous subsection allow us to recursively construct Erdős-Gallai
decompositions with the aim of finding a long (s, t)-path. For an illustration of a nested
Erdős-Gallai decomposition, see Figure 1. We recall the formal definition from Section 2.

▶ Definition 16 (Nested Erdős-Gallai decomposition). A sequence of triples (G1, s1, t1),
(G2, s2, t2), . . . , (Gℓ, sℓ, tℓ) is called a nested Erdős-Gallai decomposition for G and two
vertices s, t ∈ V (G) if

(G1, s1, t1) = (G, s, t);
for each i ∈ [ℓ], either

δ(Gi − {si, ti}) < 16, or
Lemma 13 applied to Gi, si, ti gives a path Pi of length at least
min{ 5

4 δ(Gi − {si, ti})− 3, |V (Gi)| − 1} in Gi, or
Lemma 13 applied to Gi, si, ti gives a path Pi and two paths Pi,1, Pi,2 that induce an
Erdős-Gallai decomposition for Pi in Gi, and for each Erdős-Gallai component M of
this decomposition there is j > i such that (Gj , sj , tj) is the result of Lemma 12 applied
to M in Gi. In this case, we say that Gi is decomposed.

for each i ∈ {2, . . . , ℓ}, there is e(i) < i such that (Gi, si, ti) is a result of Lemma 12
applied to some Erdős-Gallai component of the Erdős-Gallai decomposition of Ge(i) for
Pe(i).

The proof of Theorem 2 is performed in two steps: first, we show how to obtain a nested
Erdős-Gallai decomposition for a given graph G, and then we use the nested Erdős-Gallai
decomposition to recursively construct a good approximation to the longest (s, t)-path.
The first part is achieved simply by applying Lemma 13 recursively on each Erdős-Gallai
component until components are no longer decomposable. The main hurdle is the second
part, on which we focus for the rest of the section. For completeness, first we show that a
nested Erdős-Gallai decomposition can always be constructed in polynomial time.

▶ Lemma 17. There is a polynomial time algorithm that, given a 2-connected graph G and
its two vertices s and t, outputs a nested Erdős-Gallai decomposition for G, s, t.

Clearly, it follows that the size of a nested Erdős-Gallai decomposition returned by
Lemma 17 is also polynomial. Observe also that the construction algorithm invokes Lemma 13
for all sufficiently large Gi, thus in what follows we assume that the corresponding paths Pi

are already computed.
Now we focus on using a constructed nested Erdős-Gallai decomposition for approximating

the longest (s, t)-path. First of all, we present the algorithm long_nested_st_path that,
given a nested Erdős-Gallai decomposition of G, computes a long (s, t)-path by going over

F. V. Fomin, P. A. Golovach, D. Sagunov, and K. Simonov 60:13

the decomposition. The pseudocode of long_nested_st_path is present in Algorithm 3.
Intuitively, first the algorithm computes a compression H of the graph G that respects the
nested Erdős-Gallai decomposition: components that are not decomposed are replaced by
single edges, and edges that are “unavoidable” to visit a component are contracted. The
computation of this compression is encapsulated in the nested_compress function presented
in Algorithm 1. As a subroutine, this function uses the two_long_disjoint_paths algorithm
given by Corollary 7, that finds two disjoint paths of at least the given length between the
given pairs of vertices.

Next, the blackbox approximation algorithm long_st_path_approx is used to compute
an (s, t)-path Q in H. The function nested_decompress reconstructs then this path in
the original graph G, see Algorithm 2 for the pseudocode. Later we argue (Lemma 19)
that any (s, t)-path in H of length r yields in this way an (s, t)-path in G of length at
least δ(G − {s, t}) + r/8 − 3. Finally, either the length of Q in H was large enough and
the reconstructed path provides the desired approximation or a long path can be found
inside one of the components in a “simple” way, and then connected arbitrarily to {s, t}.
Specifically, in this component, it suffices to either take an approximation of the longest path
computed by long_st_path_approx, or a long Erdős–Gallai path returned by the algorithm
from Corollary 8, long_eg_st_path. Thus, in the final few lines long_nested_st_path
checks whether any of these paths is longer than the reconstructed path Q. The path
from inside the component is extended to an {s, t}-path in G by using the algorithm
two_long_disjoint_paths, given by Corollary 7, with the parameter 0.

Algorithm 1 The algorithm compressing a given graph G with a given nested Erdős-
Gallai decomposition.

nested_compress((G1, s1, t1), (G2, s2, t2), . . . , (Gℓ, sℓ, tℓ))
Input: a nested Erdős-Gallai decomposition for G, s and t.
Output: the compressed graph H.

1.1 H ←− G;
1.2 foreach i ∈ {2, . . . , ℓ} do
1.3 j ←− e(i);
1.4 di ←− |{sj , tj} \ {si, ti}|;
1.5 if two_long_disjoint_paths (Gi, {sj , tj}, {si, ti}, di + 1) is No then
1.6 contract all edges of a maximum matching between {sj , tj} and {si, ti} in

H;
1.7 end
1.8 if Gi is not decomposed then
1.9 remove all vertices in V (Gi) \ {si, ti} from H;

1.10 add edge siti to H and mark it with Gi;
1.11 end
1.12 end
1.13 return H;

Now, our goal is to show that the path that the long_nested_st_path algorithm con-
structs serves indeed as the desired approximation of the longest (s, t)-path in G. For the
rest of this section, let G1, . . . , Gℓ be the given nested Erdős-Gallai decomposition for G, s, t.
An important piece of intuition about nested Erdős-Gallai decomposition is that, as we go
deeper into the nested Erdős-Gallai components, the minimum degree of the component
δ(Gi \ {si, ti}) decreases, but we gain more and more edges that we collect while going

ICALP 2023

60:14 Approximating Long Cycle Above Dirac’s Guarantee

Algorithm 2 The algorithm decompressing a path in H into a long path in G.

nested_decompress((G1, s1, t1), (G2, s2, t2), . . . , (Gℓ, sℓ, tℓ), H, Q)
Input: a nested Erdős-Gallai decomposition for G, s and t, the compressed graph

H and an (s, t)-path Q in H of length r.
Output: an (s, t)-path of length at least δ(G− {s, t}) + r/8− 3 in G.

2.1 foreach i ∈ {2, . . . , ℓ} such that di > 0 and Q enters Gi do
2.2 j ←− e(i);
2.3 if an edge between {sj , tj} and {si, ti} was contracted in H then
2.4 replace si and/or ti in Q with the respective contracted edges;
2.5 else
2.6 S1, S2 ←− two_long_disjoint_paths(G, {sj , tj}, {si, ti}, di + 1);
2.7 replace the two subpaths of Q going from {sj , tj} to {si, ti} with S1 and S2

if the length of Q increases;
2.8 end
2.9 end

2.10 h←− largest h ∈ [ℓ] such that Q enters Gh;
2.11 if Gh is not decomposed then
2.12 replace shth in Q with Ph;
2.13 else
2.14 k′ ←− ⌊(|E(Q) ∩ E(Gh)| − 5)/8⌋;
2.15 if |E(Ph)| ≥ δ(Gh − {sh, th}) + k′ then
2.16 R←− Ph;
2.17 else
2.18 R←− result of Lemma 15 applied to Gh, Ph and the (sh, th)-subpath of Q;
2.19 end
2.20 if (sh, th)-subpath of Q is shorter than R then
2.21 replace the (sh, th)-subpath of Q with R;
2.22 end
2.23 end
2.24 return Q;

from {s, t} to {si, ti}. We introduce values that help us measure this difference between the
nested components: for each i ∈ [ℓ], denote di = |{se(i), te(i)} \ {si, ti}|. In particular, by
Lemma 12 we know that for any i ∈ [ℓ], δ(Gi) ≥ δ(Ge(i))− di. On the other hand, any pair
of disjoint paths that connects {se(i), te(i)} to {si, ti} contains at least di edges. This leads
to the following simple observation about extending an (sj , tj)-path in a component Gj to
an (s, t)-path in G.

▷ Claim 18. For each j ∈ [ℓ], let Gj1 , . . . , Gjc
be such that jc = j and j1 = 1 and

e(ji+1) = ji for each i ∈ [c− 1]. Let P be an (sj , tj)-path in Gj . Then P combined with any
pair of disjoint paths connecting {s, t} to {sj , tj} yields an (s, t)-path in G of length at least
|E(P)|+

∑
i∈[c−1] dji+1 .

However, there might also exist longer paths connecting nested components Ge(i) and
Gi. When we construct the compressed graph H in Algorithm 1, we distinguish between
two cases. Either any pair of such paths have the total length di, meaning that the only
option is to use the edges of a matching between {se(i), te(i)} and {si, ti}. In that case we
simply contract these edges as we know that there is no choice on how to reach Gi from
Ge(i). Or, there is a pair of disjoint paths of total length at least di + 1. This situation is

F. V. Fomin, P. A. Golovach, D. Sagunov, and K. Simonov 60:15

Algorithm 3 The algorithm finding a long (s, t)-path in a 2-connected graph with a
given nested Erdős-Gallai decomposition.

long_nested_st_path((G1, s1, t1), (G2, s2, t2), . . . , (Gℓ, sℓ, tℓ))
Input: a nested Erdős-Gallai decomposition for G, s and t.
Output: an (s, t)-path of length at least δ(G− {s, t}) + f(k)/32− 3 in G where

k = L− δ(G− {s, t}) for the longest (s, t)-path length L in G.
3.1 H ←− nested_compress((G1, s1, t1), (G2, s2, t2), . . . , (Gℓ, sℓ, tℓ));
3.2 Q←− long_st_path_approx(H, s, t);
3.3 Q←− nested_decompress((G1, s1, t1), (G2, s2, t2), . . . , (Gℓ, sℓ, tℓ), H, Q);
3.4 foreach i ∈ [ℓ] do
3.5 Pi ←− the longest of

{long_st_path_approx(Gi, si, ti), long_eg_st_path(Gi, si, ti)};
3.6 Q←− the longest of {Q, two_long_disjoint_paths(G, {s, t}, {si, ti}, 0)∪Pi};
3.7 end
3.8 return Q;

beneficial to us in a different way: since we can find such a pair of paths in polynomial time,
we can traverse at least di + 1 edges going from Ge(i) to Gi, while we only lose at most di in
the minimum degree. This dichotomy on the structure of the “slice” between two nested
components is the main leverage that allows us to lift the length of an (s, t)-path in H to
an offset above the minimum degree in G. We formally show this crucial property of the
compressed graph H and the nested_decompress routine in the next lemma.

▶ Lemma 19. The nested_decompress routine transforms an (s, t)-path Q in H of length
r into an (s, t)-path in G of length at least δ(G− {s, t}) + r/8− 3.

It will also be helpful to observe that in the “slice” between a decomposed component
and the nested components, at most two edges of any path can be contracted. Note that
this does not follow immediately, as a pair of edges to each of the nested components is
potentially contracted.

▷ Claim 20. Let Q be an (sj , tj)-path inside a decomposed graph Gj . Then all edges
E(Q) ∩ E(Gj) \

⋃
e(i)=j E(Gi) are unchanged in H except for, possibly, contraction of the

first and the last edge of Q.

Now we are ready to prove the main lemma that bounds the length of the (s, t)-path
returned by Algorithm 3.

▶ Lemma 21. long_nested_st_path outputs an (s, t)-path in G of length at least δ(G −
{s, t}) + f(k)/32−3, where k = L− δ(G−{s, t}) and L is the length of the longest (s, t)-path
in G.

Finally, observe that the running time of Algorithm 3 is polynomial in the size of the
given nested Erdős-Gallai decomposition. By Lemma 17, its size is polynomial in the size of
the input graph G. This concludes the proof of Theorem 2.

5 Conclusion

In this article, we have shown a general theorem that allows us to leverage all the algorithmic
machinery for approximating the length of the longest cycle to approximate the “offset” of
the longest cycle provided by the classical Dirac’s theorem. As far as one can compute

ICALP 2023

60:16 Approximating Long Cycle Above Dirac’s Guarantee

a cycle of length f(L) in a 2-connected graph G with the longest cycle length L, we can
also construct a cycle of length 2δ(G) + Ω(f(L − 2δ(G))). In particular, we can use the
state-of-the-art approximation algorithm for Longest Cycle due to Gabow and Nie [31]. They
achieve an algorithm finding a cycle of length f(L) = c

√
log L for some constant c > 1 in a

graph with the longest cycle length L. Note that f is non-decreasing and subadditive (as
f is concave on [1, +∞], and any concave function is subadditive; we also can formally set
f(x) = min{x, c

√
log x} for x ≥ 1 and f(x) = x for x < 1 to fit the statement of Theorem 1).

By substituting this to Theorem 1, we achieve a polynomial-time algorithm that outputs a
cycle of length 2δ(G) + 2Ω(

√
log(L−2δ(G))) in a 2-connected graph G with the longest cycle

length L > 2δ(G).
In the field of parameterized algorithms, there are many results on computing longest

cycles or paths above some guarantees. It is a natural question, whether approximation
results similar to ours hold for other types of “offsets”. To give a few concrete questions,
recall that the degeneracy dg(G) of a graph G is the maximum d such that G has an induced
subgraph of minimum degree d. By Erdős and Gallai [19], a graph of degeneracy d ≥ 2
contains a cycle of length at least d + 1. It was shown by Fomin et al. in [22] that a cycle
of length at least L = dg(G) + k in a 2-connected graph can be found in 2O(k) · nO(1) time.
This immediately yields a polynomial-time algorithm for computing a cycle of length at least
dg(G) + Ω(log(L− dg(G))). Is there a better approximation of the longest cycle above the
degeneracy?

Another concrete question. Bezáková et al. [4] gave an FPT algorithm that for s, t ∈ V (G)
finds a detour in an undirected graph G. In othere words, they gave an algorithm that finds
an (s, t)-path of length at least L = distG(s, t) + k in 2O(k) · nO(1) time. Here distG(s, t) is
the distance between s and t. Therefore, in undirected graph we can find an (s, t)-path of
length distG(s, t) + Ω(log(L− distG(s, t)) in polynomial time. The existence of any better
bound is open. For directed graphs, the question of whether finding a long detour is FPT is
widely open [4]. Nothing is known about the (in)approximability of long detours in directed
graphs.

References
1 Noga Alon, Gregory Gutin, Eun Jung Kim, Stefan Szeider, and Anders Yeo. Solving MAX-r-

SAT above a tight lower bound. In Proceedings of the 21st Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 511–517. SIAM, 2010.

2 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.
doi:10.1145/210332.210337.

3 Cristina Bazgan, Miklos Santha, and Zsolt Tuza. On the approximation of finding a(nother)
hamiltonian cycle in cubic hamiltonian graphs. J. Algorithms, 31(1):249–268, 1999. doi:
10.1006/jagm.1998.0998.

4 Ivona Bezáková, Radu Curticapean, Holger Dell, and Fedor V. Fomin. Finding detours is
fixed-parameter tractable. SIAM J. Discrete Math., 33(4):2326–2345, 2019. doi:10.1137/
17M1148566.

5 Andreas Björklund. Determinant sums for undirected hamiltonicity. SIAM J. Comput.,
43(1):280–299, 2014. doi:10.1137/110839229.

6 Andreas Björklund and Thore Husfeldt. Finding a path of superlogarithmic length. SIAM J.
Comput., 32(6):1395–1402, 2003. doi:10.1137/S0097539702416761.

7 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Narrow sieves for
parameterized paths and packings. CoRR, abs/1007.1161, 2010. arXiv:1007.1161.

8 Andreas Björklund, Thore Husfeldt, and Sanjeev Khanna. Approximating longest directed
paths and cycles. In Proceedings of the 31st International Colloquium on Automata, Languages
and Programming (ICALP), volume 3142 of Lecture Notes in Comput. Sci., pages 222–233.
Springer, 2004. doi:10.1007/978-3-540-27836-8_21.

https://doi.org/10.1145/210332.210337
https://doi.org/10.1006/jagm.1998.0998
https://doi.org/10.1006/jagm.1998.0998
https://doi.org/10.1137/17M1148566
https://doi.org/10.1137/17M1148566
https://doi.org/10.1137/110839229
https://doi.org/10.1137/S0097539702416761
https://arxiv.org/abs/1007.1161
https://doi.org/10.1007/978-3-540-27836-8_21

F. V. Fomin, P. A. Golovach, D. Sagunov, and K. Simonov 60:17

9 Hans L. Bodlaender. On linear time minor tests with depth-first search. J. Algorithms,
14(1):1–23, 1993. doi:10.1006/jagm.1993.1001.

10 B. Bollobás and A. D. Scott. Better bounds for Max Cut. In Contemporary combinatorics,
volume 10 of Bolyai Soc. Math. Stud., pages 185–246. János Bolyai Math. Soc., Budapest,
2002.

11 Béla Bollobás. Extremal graph theory. In Handbook of combinatorics, Vol. 1, 2, pages
1231–1292. Elsevier Sci. B. V., Amsterdam, 1995.

12 J. A. Bondy. Basic graph theory: paths and circuits. In Handbook of combinatorics, Vol. 1, 2,
pages 3–110. Elsevier Sci. B. V., Amsterdam, 1995.

13 Guantao Chen, Zhicheng Gao, Xingxing Yu, and Wenan Zang. Approximating longest cycles
in graphs with bounded degrees. SIAM Journal on Computing, 36(3):635–656, 2006.

14 Robert Crowston, Mark Jones, Gabriele Muciaccia, Geevarghese Philip, Ashutosh Rai, and
Saket Saurabh. Polynomial kernels for lambda-extendible properties parameterized above the
Poljak-Turzik bound. In IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science (FSTTCS), volume 24 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 43–54, Dagstuhl, Germany, 2013. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik.

15 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

16 Reinhard Diestel. Graph theory, volume 173 of Graduate Texts in Mathematics. Springer-Verlag,
Berlin, 5th edition, 2017.

17 G. A. Dirac. Some theorems on abstract graphs. Proc. London Math. Soc. (3), 2:69–81, 1952.
18 C. S. Edwards. Some extremal properties of bipartite subgraphs. Canad. J. Math., 3:475–485,

1973.
19 P. Erdős and T. Gallai. On maximal paths and circuits of graphs. Acta Math. Acad. Sci.

Hungar, 10:337–356, 1959.
20 Tomás Feder and Rajeev Motwani. Finding large cycles in Hamiltonian graphs. Discrete Appl.

Math., 158(8):882–893, 2010. doi:10.1016/j.dam.2009.12.006.
21 Tomás Feder, Rajeev Motwani, and Carlos Subi. Approximating the longest cycle problem in

sparse graphs. SIAM J. Comput., 31(5):1596–1607, 2002. doi:10.1137/S0097539701395486.
22 Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and

Meirav Zehavi. Going far from degeneracy. SIAM J. Discrete Math., 34(3):1587–1601, 2020.
doi:10.1137/19M1290577.

23 Fedor V. Fomin, Petr A. Golovach, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and
Meirav Zehavi. Multiplicative parameterization above a guarantee. ACM Trans. Comput.
Theory, 13(3):18:1–18:16, 2021. doi:10.1145/3460956.

24 Fedor V. Fomin, Petr A. Golovach, Danil Sagunov, and Kirill Simonov. Algorithmic extensions
of Dirac’s theorem. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 406–416, 2022. doi:10.1137/1.9781611977073.20.

25 Fedor V. Fomin, Petr A. Golovach, Danil Sagunov, and Kirill Simonov. Longest cycle above
erdős-gallai bound. In 30th Annual European Symposium on Algorithms, ESA 2022, September
5-9, 2022, Berlin/Potsdam, Germany, volume 244 of LIPIcs, pages 55:1–55:15. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ESA.2022.55.

26 Fedor V. Fomin, Petr A. Golovach, Danil Sagunov, and Kirill Simonov. Approximating long
cycle above dirac’s guarantee. CoRR, abs/2305.02011, 2023. arXiv:2305.02011.

27 Fedor V. Fomin and Petteri Kaski. Exact exponential algorithms. Commun. ACM, 56(3):80–88,
2013. doi:10.1145/2428556.2428575.

28 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient computation
of representative families with applications in parameterized and exact algorithms. J. ACM,
63(4):29:1–29:60, 2016. doi:10.1145/2886094.

29 Martin Fürer and Balaji Raghavachari. Approximating the minimum-degree steiner tree to
within one of optimal. J. Algorithms, 17(3):409–423, 1994. doi:10.1006/jagm.1994.1042.

30 Harold N. Gabow. Finding paths and cycles of superpolylogarithmic length. SIAM J. Comput.,
36(6):1648–1671, 2007. doi:10.1137/S0097539704445366.

ICALP 2023

https://doi.org/10.1006/jagm.1993.1001
https://doi.org/10.1016/j.dam.2009.12.006
https://doi.org/10.1137/S0097539701395486
https://doi.org/10.1137/19M1290577
https://doi.org/10.1145/3460956
https://doi.org/10.1137/1.9781611977073.20
https://doi.org/10.4230/LIPIcs.ESA.2022.55
https://arxiv.org/abs/2305.02011
https://doi.org/10.1145/2428556.2428575
https://doi.org/10.1145/2886094
https://doi.org/10.1006/jagm.1994.1042
https://doi.org/10.1137/S0097539704445366

60:18 Approximating Long Cycle Above Dirac’s Guarantee

31 Harold N. Gabow and Shuxin Nie. Finding a long directed cycle. ACM Transactions on
Algorithms, 4(1), 2008. doi:10.1145/1328911.1328918.

32 Harold N. Gabow and Shuxin Nie. Finding long paths, cycles and circuits. In Pro-
ceedings of the 19th International Symposium on Algorithms and Computation (ISAAC),
volume 5369 of Lecture Notes in Comput. Sci., pages 752–763. Springer, 2008. doi:
10.1007/978-3-540-92182-0_66.

33 Shivam Garg and Geevarghese Philip. Raising the bar for vertex cover: Fixed-parameter
tractability above a higher guarantee. In Proceedings of the Twenty-Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA), pages 1152–1166. SIAM, 2016. doi:
10.1137/1.9781611974331.ch80.

34 Gregory Gutin, Eun Jung Kim, Michael Lampis, and Valia Mitsou. Vertex cover problem
parameterized above and below tight bounds. Theory of Computing Systems, 48(2):402–410,
2011. doi:10.1007/s00224-010-9262-y.

35 Gregory Gutin, Leo van Iersel, Matthias Mnich, and Anders Yeo. Every ternary permutation
constraint satisfaction problem parameterized above average has a kernel with a quadratic
number of variables. J. Computer and System Sciences, 78(1):151–163, 2012. doi:10.1016/j.
jcss.2011.01.004.

36 Gregory Z. Gutin and Matthias Mnich. A survey on graph problems parameterized above and
below guaranteed values. CoRR, abs/2207.12278, 2022. doi:10.48550/arXiv.2207.12278.

37 Gregory Z. Gutin and Viresh Patel. Parameterized traveling salesman problem: Beating the
average. SIAM J. Discrete Math., 30(1):220–238, 2016.

38 Gregory Z. Gutin, Arash Rafiey, Stefan Szeider, and Anders Yeo. The linear arrangement
problem parameterized above guaranteed value. Theory Comput. Syst., 41(3):521–538, 2007.
doi:10.1007/s00224-007-1330-6.

39 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity. J. Computer and System Sciences, 63(4):512–530, 2001.

40 Bart M. P. Jansen, László Kozma, and Jesper Nederlof. Hamiltonicity below Dirac’s condition.
In Proceedings of the 45th International Workshop on Graph-Theoretic Concepts in Computer
Science (WG), volume 11789 of Lecture Notes in Computer Science, pages 27–39. Springer,
2019.

41 David R. Karger, Rajeev Motwani, and G. D. S. Ramkumar. On approximating the longest
path in a graph. Algorithmica, 18(1):82–98, 1997. doi:10.1007/BF02523689.

42 Jon M. Kleinberg and Éva Tardos. Algorithm design. Addison-Wesley, 2006.
43 Ioannis Koutis. Faster algebraic algorithms for path and packing problems. In Proceedings

of the 35th International Colloquium on Automata, Languages and Programming (ICALP),
volume 5125 of Lecture Notes in Comput. Sci., pages 575–586. Springer, 2008.

44 Ioannis Koutis and Ryan Williams. Algebraic fingerprints for faster algorithms. Commun.
ACM, 59(1):98–105, 2016. doi:10.1145/2742544.

45 Daniel Lokshtanov, N. S. Narayanaswamy, Venkatesh Raman, M. S. Ramanujan, and Saket
Saurabh. Faster parameterized algorithms using linear programming. ACM Trans. Algorithms,
11(2):15:1–15:31, 2014. doi:10.1145/2566616.

46 Meena Mahajan, Venkatesh Raman, and Somnath Sikdar. Parameterizing above or below
guaranteed values. J. Computer and System Sciences, 75(2):137–153, 2009. doi:10.1016/j.
jcss.2008.08.004.

47 Sounaka Mishra, Venkatesh Raman, Saket Saurabh, Somnath Sikdar, and C. R. Subramanian.
The complexity of König subgraph problems and above-guarantee vertex cover. Algorithmica,
61(4):857–881, 2011. doi:10.1007/s00453-010-9412-2.

48 B. Monien. How to find long paths efficiently. In Analysis and design of algorithms for
combinatorial problems (Udine, 1982), volume 109 of North-Holland Math. Stud., pages
239–254. North-Holland, Amsterdam, 1985. doi:10.1016/S0304-0208(08)73110-4.

49 Sundar Vishwanathan. An approximation algorithm for finding long paths in hamiltonian
graphs. J. Algorithms, 50(2):246–256, 2004. doi:10.1016/S0196-6774(03)00093-2.

50 Ryan Williams. Finding paths of length k in O∗(2k) time. Inf. Process. Lett., 109(6):315–318,
2009.

https://doi.org/10.1145/1328911.1328918
https://doi.org/10.1007/978-3-540-92182-0_66
https://doi.org/10.1007/978-3-540-92182-0_66
https://doi.org/10.1137/1.9781611974331.ch80
https://doi.org/10.1137/1.9781611974331.ch80
https://doi.org/10.1007/s00224-010-9262-y
https://doi.org/10.1016/j.jcss.2011.01.004
https://doi.org/10.1016/j.jcss.2011.01.004
https://doi.org/10.48550/arXiv.2207.12278
https://doi.org/10.1007/s00224-007-1330-6
https://doi.org/10.1007/BF02523689
https://doi.org/10.1145/2742544
https://doi.org/10.1145/2566616
https://doi.org/10.1016/j.jcss.2008.08.004
https://doi.org/10.1016/j.jcss.2008.08.004
https://doi.org/10.1007/s00453-010-9412-2
https://doi.org/10.1016/S0304-0208(08)73110-4
https://doi.org/10.1016/S0196-6774(03)00093-2

Compound Logics for Modification Problems
Fedor V. Fomin #

Department of Informatics, University of Bergen, Norway

Petr A. Golovach #

Department of Informatics, University of Bergen, Norway

Ignasi Sau #

LIRMM, Université de Montpellier, CNRS, France

Giannos Stamoulis #

LIRMM, Université de Montpellier, CNRS, France

Dimitrios M. Thilikos #

LIRMM, Université de Montpellier, CNRS, France

Abstract
We introduce a novel model-theoretic framework inspired from graph modification and based on
the interplay between model theory and algorithmic graph minors. The core of our framework
is a new compound logic operating with two types of sentences, expressing graph modification:
the modulator sentence, defining some property of the modified part of the graph, and the target
sentence, defining some property of the resulting graph. In our framework, modulator sentences
are in counting monadic second-order logic (CMSOL) and have models of bounded treewidth, while
target sentences express first-order logic (FOL) properties along with minor-exclusion. Our logic
captures problems that are not definable in first-order logic and, moreover, may have instances
of unbounded treewidth. Also, it permits the modeling of wide families of problems involving
vertex/edge removals, alternative modulator measures (such as elimination distance or G-treewidth),
multistage modifications, and various cut problems. Our main result is that, for this compound logic,
model-checking can be done in quadratic time. All derived algorithms are constructive and this,
as a byproduct, extends the constructibility horizon of the algorithmic applications of the Graph
Minors theorem of Robertson and Seymour. The proposed logic can be seen as a general framework
to capitalize on the potential of the irrelevant vertex technique. It gives a way to deal with problem
instances of unbounded treewidth, for which Courcelle’s theorem does not apply.

2012 ACM Subject Classification Theory of computation → Logic; Theory of computation →
Parameterized complexity and exact algorithms; Mathematics of computing → Graph algorithms

Keywords and phrases Algorithmic meta-theorems, Graph modification problems, Model-checking,
Graph minors, First-order logic, Monadic second-order logic, Flat Wall theorem, Irrelevant vertex
technique

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.61

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: http://arxiv.org/abs/2111.02755 [31]

Funding Fedor V. Fomin: Supported by the Research Council of Norway via the project BWCA
(grant no. 314528).
Petr A. Golovach: Supported by the Research Council of Norway via the project BWCA (grant no.
314528).
Ignasi Sau: Supported by the ANR projects ELIT (ANR-20-CE48-0008-01) and ESIGMA (ANR-17-
CE23-0010) and the French-German Collaboration ANR/DFG Project UTMA (ANR-20-CE92-0027).
Giannos Stamoulis: Supported by the ANR project ESIGMA (ANR-17-CE23-0010) and the French-
German Collaboration ANR/DFG Project UTMA (ANR-20-CE92-0027).
Dimitrios M. Thilikos: Supported by the ANR project ESIGMA (ANR-17-CE23-0010) and the
French-German Collaboration ANR/DFG Project UTMA (ANR-20-CE92-0027).

Acknowledgements We wish to thank the anonymous reviewers for their valuable remarks.

EA
T
C
S

© Fedor V. Fomin, Petr A. Golovach, Ignasi Sau, Giannos Stamoulis, and
Dimitrios M. Thilikos;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 61; pp. 61:1–61:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fedor.fomin@uib.no
mailto:petr.golovach@uib.no
mailto:ignasi.sau@lirmm.fr
mailto:giannos.stamoulis@lirmm.fr
mailto:sedthilk@thilikos.info
https://doi.org/10.4230/LIPIcs.ICALP.2023.61
http://arxiv.org/abs/2111.02755
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

61:2 Compound Logics for Modification Problems

1 Introduction

Our work is kindled by the current algorithmic advances in graph modification. The core of
our approach is a novel model-theoretic framework that is based on the interplay between
model theory and algorithmic graph minors. Departing from this new perspective, we obtain
algorithmic meta-theorems that encompass, unify, and extend all known meta-algorithmic
results on minor-closed graph classes.

1.1 State of the art and our contribution
Modification problems. A graph modification problem asks whether it is possible to apply
a series of modifications to a graph in order to transform it to a graph with some desired
target property. Such problems have been the driving force of Parameterized Complexity
where parameterization quantifies the concept of “distance from triviality” [48] and measures
the amount of the applied modification. Classically, modification operations may be vertex
or edge deletions, edge additions/contractions, or combinations of them like taking a minor.
In their generality, such problems are NP-complete [60] and much research in Parameterized
Complexity is on the design of algorithms in time f(k) · nO(1), where the parameter k is
some measure of the modification operation [20]. The target property may express desired
structural properties that respond to certain algorithmic or combinatorial demands. A
widely studied family of target properties are minor-closed graph classes such as edgeless
graphs [14], forests [13], bounded treewidth graphs [35,54], planar graphs [50,62], bounded
genus graphs [55], or, most generally, minor-excluding graphs [72,73]. However, other families
of target properties have also been considered, such as those that exclude an odd cycle [29],
a topological minor [36], an (induced) subgraph [22,69], an immersion [40], or an induced
minor [41]. A broad class of graph modification problems concerns cuts. In a typical cut
problem, one wants to find a minimum-size set of edges or vertices X in a graph G such
that in the new graph G \X, obtained by deleting X from G, some terminal-connectivity
conditions are satisfied. For example, the condition can be that a set of specific terminals
becomes separated or that at least one connected component in the new graph is of a specific
size. The development of parameterized algorithms for cut problems is a popular trend
in parameterized algorithms [21, 61]. More involved modification measures of vertex set
removals, related to treewidth or treedepth, have been considered very recently [1, 12, 27, 49].

Algorithmic meta-theorems. A vibrant line of research in Logic and Algorithms is the
development of algorithmic meta-theorems. According to Grohe and Kreutzer [45], algorithmic
meta-theorems state that certain families of algorithmic problems, typically defined by some
logical and some combinatorial condition, can be solved “efficiently”, under some suitable
definition of this term. Algorithmic meta-theorems play an important role in the theory of
algorithms as they reveal deep interplays between Algorithms, Logic, and Combinatorics. One
of the most celebrated meta-theorems is Courcelle’s theorem asserting that graph properties
definable in CMSOL (counting monadic second-order logic) are decidable in linear time on
graphs of bounded treewidth [15]; see also [2, 10]. Another stream of research concerns
identifying wide combinatorial structures where model-checking for FOL (first-order logic)
can be done in polynomial time. This includes graph classes of bounded degree [76], graph
classes of bounded local treewidth [37], minor-closed graph classes [30], graph classes locally
excluding a minor [23], and more powerful concepts of sparsity, such as having bounded
expansion [26,63], nowhere denseness [46], or having bounded twin-width [9]. (See [44,58] for
surveys. Also for results on the combinatorial horizon of FOL and CMSOL (and its variants)
see [8, 9, 46] and [57] respectively.)

F. V. Fomin, P. A. Golovach, I. Sau, G. Stamoulis, and D. M. Thilikos 61:3

Another line of research, already mentioned in [44], is to prove algorithmic meta-theorems
for extensions of FOL of greater expressibility. Two such extensions have been recently
presented. The first one consists in enhancing FOL with predicates that can express k-
connectivity for every k ≥ 1. This extension of FOL was introduced independently by
Schirrmacher, Siebertz, and Vigny in [75] (under the name FOL+conn) and by Bojańczyk
in [6] (under the name separator logic). The second and more expressive extension, also
introduced by Schirrmacher, Siebertz, and Vigny in [75], is FOL+DP, that enhances FOL with
predicates expressing the existence of disjoint paths between certain pairs of vertices. For
FOL+conn, an algorithmic meta-theorem for model-checking on graphs excluding a topological
minor has been very recently given by Pilipczuk, Schirrmacher, Siebertz, Torunczyk, and
Vigny [66]. For the more expressive FOL+DP, an algorithmic meta-theorem for model-
checking on graphs excluding a minor has been very recently given by Golovach, Stamoulis,
and Thilikos in [43] (see [42] for the full version).

Research on the meta-algorithmics of FOL is quite active and has moved to several
directions such as the study of FOL-interpretability [7, 39, 64, 65] or the enhancement of FOL
with counting/numerical predicates [25,47,59].

In this paper, we initiate an alternative approach consisting in combining the expressive
power of FOL and CMSOL. A typical family of problems where such an approach becomes
relevant is the one of modification problems. Courcelle’s theorem implies that if the target
property corresponds to a class of bounded treewidth and the modification conditions are
definable in CMSOL, then such modification problems are fixed-parameter tractable when
parameterized by the length of the sentence and the treewidth of the graph. However, when
the target class graph is of unbounded treewidth, none of the aforementioned algorithmic
meta-theorems encompasses broad families of modification problems. As an illustrative
example, consider the Planarization problem, which consists in deciding whether at
most k vertices can be removed from an input graph to make it planar (or equivalently,
minor-excluding K5 and K3,3). While this problem is definable in CMSOL, Courcelle’s
theorem cannot be applied as we cannot assume that yes-instances are of bounded treewidth.
On the other hand, we can easily assume that yes-instances minor-exclude Kk+6. However,
all known meta-theorems whose combinatorial condition encompasses the minor-exclusion
are about FOL, and FOL cannot express the Planarization problem. On the positive
side, an algorithm in time f(k) · n2 for Planarization is an algorithmic consequence of
Robertson-Seymour’s theorem [68] (combined with [51, 67]). This automatic implication
follows directly (albeit non-constructively) for a wide family of modification problems whose
yes-instances are minor-closed. There is a long line of research in parameterized algorithms
towards providing constructive and reasonable estimations of f(k) [50, 62, 72,73]. Note that
Robertson-Seymour’s theorem, besides not being constructive in general, automatically offers
results only for problems whose yes-instances are minor-closed.

Our contribution. We introduce a compound logic that models computational problems
through the lens of the “modulator vs target” duality of graph modification problems. Each
sentence of this logic is a composition of two types of sentences. The first one, called the
modulator sentence, models a modification operation, while the second one, called the target
sentence, models a target property. Informally, our result, in its simplest form, asserts that if
some appropriate version of the modulator sentence meets the meta-algorithmic assumptions
of Courcelle’s theorem [15] (i.e., CMSOL-definability and bounded treewidth) and the target
sentence meets the meta-algorithmic assumptions of the theorem of Flum and Grohe [30]
(i.e., FOL-definability and minor-exclusion), then model-checking for the composed compound

ICALP 2023

61:4 Compound Logics for Modification Problems

sentence can be done, constructively, in quadratic time. Our main result (Theorem 5) can
be seen as a “two-dimensional product” of the two aforementioned meta-algorithmic results,
contains both of them as special cases, and automatically implies the tractability of wide
families of problems that neither are FOL-definable nor have instances of bounded treewidth.

1.2 Our results
In this subsection we give formal statements of our results. We need first some definitions.

Preliminaries on graphs. Given a graph G, we denote by cc(G) the set of all connected
components of G. For a graph G and a set X ⊆ V (G), the stellation of X in G is the graph
stell(G,X) obtained from G if, for every C ∈ cc(G \X), we contract all edges of C to a single
vertex vC . The torso of X in G is the graph torso(G,X) obtained from stell(G,X) if, for every
vC where C ∈ cc(G\X), we add all edges between neighbors of vC and finally remove all vC ’s
from the resulting graph. Given a family of graphs H, we define excl(H) as the class of all
graphs minor-excluding the graphs in H and note that excl(H) is minor-closed. The Hadwiger
number of a graph G, denoted by hw(G), is the minimum k where G ∈ excl({Kk}) and Kk

is the complete graph on k vertices. We also use the well-known parameter of treewidth of a
graph G, denoted by tw(G). Given a graph class G, we define tw(G) = max{tw(G) | G ∈ G}.
We define hw(G) analogously. We use Gall for the set of all graphs.

Preliminaries on logic. We use CMSOL (resp. FOL) for the set of sentences in counting
monadic second-order logic (resp. first-order logic). Given some vocabulary τ and a sentence
φ ∈ CMSOL[τ], we denote by Mod(φ) the set of all finite models of φ, i.e., all structures that
are models of φ. In this introduction, in order to simplify our presentation, all structures
that we consider are either graphs or annotated graphs, i.e., pairs (G,X) where G is a graph
and X ⊆ V (G). In the first case τ = {E}, and in the second τ = {E,X}.

Given a φ ∈ CMSOL[{E}], we define the connectivity extension φ(c) of φ so that G |= φ(c) if
∀C ∈ cc(G), C |= φ. Similarly, for every L ⊆ CMSOL[{E}], we define L(c) = L∪{φ(c) | φ ∈ L}.
Notice that {φ}(c) = {φ,φ(c)}. Also by PB(L) we denote the set of all positive Boolean
combinations (i.e., using only the Boolean connectives ∨ and ∧) of sentences in L. We next
define the following sets of sentences:

The set CMSOLtw[{E,X}] contains every sentence β ∈ CMSOL[{E,X}] for which there
exists some cβ such that the torsos of all the models of β have treewidth at most cβ .

Formally,
CMSOLtw[{E,X}] = {β ∈ CMSOL[{E,X}] | ∃cβ : tw{torso(G,X) | (G,X) |= β} ≤ cβ}.
The set EM[{E}] is the set of all sentences in CMSOL[{E}] that express the minor-exclusion
of a non-empty set of graphs. Formally,
EM[{E}] = {µ ∈ CMSOL[{E}] | ∃H ⊆ Gall,H ̸= ∅ : Mod(µ) = excl(H)}.
Θ0[{E}] contains every sentence σ ∧ µ where σ ∈ FOL[{E}] and µ ∈ EM[{E}].

For simplicity, we use CMSOLtw, EM, and Θ0 as shortcuts for CMSOLtw[{E,X}], EM[{E}],
and Θ0[{E}], respectively. Note that both CMSOLtw and Θ0 are undecidable.

Algorithmic meta-theorems. We are now in position to restate three major meta-algorithmic
results that were mentioned in the previous subsection.

▶ Proposition 1 (Courcelle [15]). For every β ∈ CMSOLtw, there is an algorithm deciding
Mod(β) in linear time.

F. V. Fomin, P. A. Golovach, I. Sau, G. Stamoulis, and D. M. Thilikos 61:5

▶ Proposition 2 (Robertson and Seymour [67,68] and Kawarabayashi, Kobayashi, and Reed [51]).
For every minor-closed graph class G, deciding membership in G can be done in quadratic
time.

▶ Proposition 3 (Flum and Grohe [30]). For every γ ∈ Θ0, there is an algorithm deciding
Mod(γ) in quadratic time.

Some comments are in order. The statements of Proposition 1 and Proposition 3 have
been adapted so to incorporate the combinatorial demands in the logical condition. While
they can both be stated for structures, we state Proposition 1 for annotated graphs and
Proposition 3 for graphs in order to facilitate our presentation. In the classic formulation
of Courcelle’s theorem, we are given a sentence β ∈ CMSOL and a tree decomposition of
bounded treewidth. As such a decomposition can be found in linear time, using e.g., [4, 56],
the linearity in the running time of Courcelle’s theorem is preserved when it is stated in
the form of Proposition 1. For the theorem of Flum and Grohe, the situation is different
as the combinatorial demand is minor-exclusion of a clique, which is not definable is FOL.
For this reason we state Proposition 3 using the logic Θ0 that contains compound sentences
of the form σ ∧ µ, where σ ∈ FOL and µ expresses minor-exclusion. For the running time
of the algorithm of Proposition 3, we also need to take into account Proposition 2. As we
already mentioned, Proposition 1 and Proposition 3 cannot deal, in general, with modification
problems to properties of unbounded treewidth. Moreover, recall that Proposition 2 applies
only to problems whose yes-instances are minor-closed.

We stress that Proposition 1, Proposition 2, and Proposition 3 are non-constructive.
In order to construct the algorithms promised by Proposition 1, one should also know the
bound cβ on the treewidth of the models of β ∈ CMSOLtw (note that bounded treewidth
is also CMSOL-definable since it is characterized by a finite set of forbidden minors) and
this appears in the hidden constants in the running time in Proposition 1. Similarly, for
Proposition 2 (resp. Proposition 3), one should have an upper bound on the Hadwiger
number of the graphs in G (resp. the models of γ).

A logic for modification problems. As a key ingredient of our result, we define the following
operation between sentences. Let β ∈ CMSOL[{E,X}] and γ ∈ CMSOL[{E}]. We refer to β
as the modulator sentence on annotated graphs and to γ as the target sentence on graphs.
We define β ▷ γ so that

G |= β ▷ γ if there is X ⊆ V (G) such that (stell(G,X), X) |= β and G \X |= γ. (1)

In other words, G |= β ▷ γ means that the stellation of X in G, along with X, is a model of
the modulator sentence β and the G \X is a model of the target sentence γ. That way, β
implies the modification operation and γ expresses the target graph property. It is easy to
see that β ▷ γ ∈ CMSOL[{E}]. This will allow us to apply the operation ▷ iteratively.

As an example, the problem of removing a set X of k vertices so that G \X is a triangle-
free planar graph can be expressed by β ▷ γ if β asks that X has k vertices and γ = σ ∧ µ,

where σ expresses triangle-freeness and µ expresses planarity by the exclusion of K3,3 and
K5.

Before we present our result in full generality, we give first the following indicative special
case, which already expresses the conditions of Proposition 1 and Proposition 3.

▶ Theorem 4. For every β ∈ CMSOLtw and every γ ∈ Θ0, there is an algorithm deciding
Mod(β ▷ γ) in quadratic time.

ICALP 2023

61:6 Compound Logics for Modification Problems

Indeed, Proposition 1 follows if β expresses that X = V (G) and γ demands that G \X is
the empty graph (in particular, Theorem 4 contains Proposition 1 as a linear-time black-box
procedure for deciding models of bounded treewidth) and Proposition 3 follows if β demands
that X = ∅. In other words, Proposition 1 follows if the target sentence becomes void while
Proposition 3 follows if the modulator sentence is void.

As a first step towards a more general statement, Theorem 4 also holds if we replace
γ ∈ Θ0 by γ ∈ Θ(c)

0 or even by positive Boolean combinations of sentences in Θ(c)
0 , i.e.,

γ ∈ PB(Θ(c)
0). Moreover, in order to present our result in full generality, we recursively

define, for every i ≥ 1,

Θi = {β ▷ γ | β ∈ CMSOLtw and γ ∈ PB(Θ(c)
i−1)}. (2)

Notice that the sentences of Theorem 4 (hence also of Proposition 1 and Proposition 3)
are already contained in Θ1. We set Θ =

⋃
i≥1 Θi. The full strength of our results, stated in

the vocabulary of graphs, is given by our main theorem.

▶ Theorem 5. For every θ ∈ Θ, model-checking for θ can be done in quadratic time.

An alternative statement. Our results can also be seen under the typical meta-algorithmic
framework where a logical and a combinatorial condition are given. For this, consider an
alternative of Θ, called Θ̃, that is defined as in (2) by taking Θ̃0 = FOL as the base case, i.e.,
by discarding the minor-exclusion from the definition of Θ0. Notice that Θ̃ contains FOL and
can be seen as a natural extension of it. A direct consequence of Theorem 5 is the following.

▶ Theorem 6. For every θ̃ ∈ Θ̃, model-checking for θ̃ can be done in quadratic time on every
graph class of bounded Hadwiger number.

FOL Θ̃ CMSOL Logic

Grohe, Kreutzer, & Siebertz [46] /
Bonnet, Kim, Thomassé, & Watrigant [9]

Courcelle [15–17], Borie, Parker, & Tovey [10],
and Arnborg, Lagergren, & Seese [2]

Theorem 6bounded Hadwiger number

bounded treewidth

nowhere dense /
bounded twin-width

Structure

Figure 1 Theorem 6 in the current meta-algorithmic landscape. The vertical axis is the combin-
atorial one and is marked by four different types of (structural) sparsity, while the horizontal one is
the logical one and is marked with FOL, Θ̃, and CMSOL.

Theorem 6 is a corollary of Theorem 5 and provides an alternative meta-algorithmic set
up between the logical and the combinatorial condition (see Figure 1): for each sentence θ in
Θ, one may consider a sentence θ̃ in Θ̃ where we discard minor-exclusion from all its target
sentences and then consider the problem of deciding Mod(θ) on some minor-excluding graph
class. This correspondence is many-to-one, as many different θ ∈ Θ correspond to the same
θ̃ ∈ Θ̃. We opted for presenting and proving our results in the form of Theorem 5, as it is
more general and more versatile in expressing modification problems. In the full version of
the paper [31], we define we define Θ on general structures.

F. V. Fomin, P. A. Golovach, I. Sau, G. Stamoulis, and D. M. Thilikos 61:7

Compound logics based on FOL+DP. In the full version of the paper [31], by combining our
proofs with the meta-algorithmic results of [42, 43], we extend Theorem 5 (resp. Theorem 6)
in the cases of the logic ΘDP (resp. Θ̃DP) that are obtained if in the definition of Θ (resp. Θ̃)
we now consider the (more expressive) logic FOL+DP instead of FOL in the target sentences.
That way, the derived extensions of Theorem 5 and Theorem 6 (that is, Theorem 8 and
Theorem 9) encompass, as special cases, all results and applications in [42, 43] (see Figure 3
for a visualization of the overall state-of-the-art on the related algorithmic meta-theorems on
subgraph-closed graph classes). While presenting our results and techniques, for the sake
of simplicity, we chose to focus on the statement and the proof of our meta-theorems for Θ
(Theorem 5) and Θ̃ (Theorem 6) and then, in the full version of the paper [31], present the
modifications that should be applied in order to extend them for ΘDP and Θ̃DP.

A parametric variant of our results. A graph parameter is a function p : Gall → N. We
say that p is treewidth-bounded if there is a function f : N → N such that for each G ∈ Gall,

p(G) ≤ f(tw(G)). We say that p is CMSOL-definable if for every k ∈ N there is a CMSOL-
sentence (on graphs) βk such that the set of all models of βk is Mod(βk) = {G | p(G) ≤ k}.
Clearly, if p is treewidth-bounded then we can also assume that each βk is a sentence in
CMSOLtw and in this case we say that p is CMSOLtw-definable. There are several known
graph parameters that are CMSOLtw-definable, such as treewidth, pathwidth, tree-depth,
bridge-depth, block tree-depth, vertex cover, feedback vertex set, branch-width, carving-width,
or cutwidth.

For a graph parameter p and a graph class G, we define the new graph parameter
pG : Gall → N such that

pG(G) = min{k | ∃X ⊆ V (G) | p(torso(G,X)) ≤ k ∧ G \X ∈ G}.

Thus pG measures by p the quality of a modulator X to property G. For example, when p
is the size of the modulator, then this is just the vertex deletion distance to G, that is, the
minimum number of vertices X such that G \X ∈ G. When p is the tree-depth of a graph,
then pG is the elimination distance to G. Or when p is the treewidth of a graph, then pG
corresponds to G-treewidth. We consider the general setting where p is a CMSOLtw-definable
graph parameter and G is a Θ-definable graph class, that is, Mod(θ) = G for some θ ∈ Θ.
By setting θk = βk ▷ θ ∈ Θ, we have that Mod(θk) = {G | pG(G) ≤ k}. Then the following
theorem is a direct consequence of Theorem 5 and Theorem 6.

▶ Theorem 7. Let p be a CMSOLtw-definable graph parameter and G = Mod(θ) for some
θ ∈ Θ. Then there is an algorithm that, with input a graph G and k ∈ N, checks whether
pG(G) ≤ k in time Ok,|θ|(n2). Moreover, if G = Mod(θ̃) for some θ̃ ∈ Θ̃, then there is an
algorithm that, with the same input, checks whether pG(G) ≤ k in time Ok,|θ|,hw(G)(n2).

All the results mentioned in this subsection, in what concerns minor-excluded graphs, are
subsumed by Theorem 7. Moreover, by allowing FOL-definability in the target sentence and
CMSOLtw-definability in the modulator sentence, we vastly extend Proposition 2 to graph
classes and parameters that are not necessarily minor-closed or hereditary. We stress that
none of the results in [43,66] is able to deal with the problems captured by Theorem 7 in
their full generality.

Constructibility. While Robertson-Seymour’s theorem (Proposition 2) implies the existence
of an algorithm, its proof is not constructive and cannot be used to construct such an
algorithm [28]. An extra feature of the proof of Theorem 5 (as well as of its corollary The-
orem 6) is that it is constructive, in the sense that the implied algorithms can be constructed

ICALP 2023

61:8 Compound Logics for Modification Problems

if we are given some bound on the Hadwiger number of the models of θ. This considerably
extends the constructibility horizon of Proposition 2 for graph classes that are not necessarily
minor-closed or even hereditary. See the full version of the paper [31] for more details.

Techniques. The algorithm and the proofs of Theorem 5 use as departure point core
techniques from the proofs of Propositions 1, 3, and 2 such as Courcelle’s theorem for
dealing with CMSOL-sentences, the use of Gaifman’s theorem for dealing with FOL-sentences,
and an extended version of the irrelevant vertex technique, introduced by Robertson and
Seymour in [67], along with some suitable version of the Flat Wall theorem which appeared
recently in [53, 71] (see also [3, 70,72, 73]). The algorithm produces equivalent and gradually
“strictly simpler” instances of an annotated version of the problem. Each equivalent instance
is produced in linear time and this simplification is repeated until the graph has bounded
treewidth (here we may apply Courcelle’s theorem, that is Proposition 1). This yields a
(constructive) quadratic-time algorithm. We stress that our approach avoids techniques that
have been recently used for this type of problems such as recursive understanding (in [1]) or
the use of important separators (in [49]) that give worst running times in n.

Natural limitations. We wish to comment on why the three basic ingredients of the definition
of our logic Θ are necessary for the statement and the proof of our meta-algorithmic results.

The first ingredient of Θ is that the modulator sentences belong in CMSOLtw[{E,X}]
which is defined so that the treewidth of torso(G,X) is bounded. While it is known that
bounding the treewidth is necessary for CMSOL-model-checking [19,58], one may ask why it
is not enough to just bound the treewidth of G[X]. To see why this unavoidable, consider
a graph G and let G′ be the graph obtained from G by subdividing each edge once. Then,
asking whether G is Hamiltonian, which is a well-known NP-complete problem, is equivalent
to asking whether G′ has a vertex set S′ such that G′[S′] is a cycle and such that G′ \ S′

is an edgeless graph, that is, a K2-minor-free graph. Notice that, while tw(G′[S′]) = 2,
torso(G′, S′) = G has unbounded treewidth.

The second ingredient of Θ is minor-exclusion, that is materialized by the conjunction
with µ in the definition of Θ0. Notice first that expressing whether a graph G contains a clique
on k vertices can be done by a FOL-sentence, while the k-Clique problem is W[1]-hard [20].
Therefore, the minor-exclusion condition cannot be dropped. Moreover, even if we consider
a fixed target FOL-sentence, it was proved in [33] that there exists a FOL-sentence σ such
that checking whether a graph G has a set S ⊆ V (G) with |S| = k such that G \ S |= σ is
a W[1]-hard problem, when parameterized by k. This implies that, even for this restricted
problem where the FOL-sentence σ is fixed, an algorithm running in time f(k) · nO(1) cannot
be expected.

The third ingredient of Θ is the FOL demand, that is materialized by the conjunction with
σ in the definition of Θ0. This is also necessary, as otherwise we may choose some property σ
not definable in FOL, such as Hamiltonicity, which is CMSOL-definable and NP-complete on
planar graphs. Without the restriction that σ needs to be FOL-definable, a void modulator
and a sentence µ expressing planarity would be able to model this NP-complete problem.
Nevertheless, we may consider extensions of FOL in the target sentence, as done in Section 3.

2 Overview of the proof

In this section we summarize some of the main ideas involved in the proof of Theorem 5,
while keeping the description at an intuitive level. We would like to stress that some of
the informal definitions given in this section are deliberately imprecise, since providing the

F. V. Fomin, P. A. Golovach, I. Sau, G. Stamoulis, and D. M. Thilikos 61:9

precise ones would result in a huge overload of technicalities that would hinder the flow of the
proof. Our algorithms consider as input a general structure A (not necessarily a graph), and
most of the arguments in the proofs concern its Gaifman graph GA. Dealing with general
structures, besides making our results more versatile, turns out to be useful in the proofs, in
particular for using tools such as the Backwards Translation Theorem [18, Theorem 1.40], or
for extending our results to other modification operations beyond vertex removal (see the
full version of the paper [31]). Since the Gaifman graph of a graph is the graph itself, in this
overview we will assume for simplicity that the input of our algorithms is a graph G, instead
of a general structure A. In Subsection 2.1 we present the general scheme of the algorithm.
In Subsection 2.2 we present a simplified and illustrative setting, where the input sentence θ
belongs to the fragment Θ̄1. This (very) particular case of Theorem 5 is helpful to illustrate
our main conceptual ideas. For a more detailed proof-overview and formal proofs (up to the
general compound logic Θ considered in Theorem 5), we refer the reader to the full version
of the paper [31].

2.1 General scheme of the algorithm
We use the irrelevant vertex technique introduced by Robertson and Seymour [67]. Our
overall strategy is the “typical” one when using this technique: if the treewidth of the input
graph G is bounded by an appropriately chosen function, depending only on the sentence
θ ∈ Θ, then we use Courcelle’s theorem [15] and solve the problem in linear time, using
the fact that our compound logic Θ is a fragment of counting monadic second-order logic.
Otherwise, we identify an irrelevant vertex in linear time, that is, a vertex whose removal
produces an equivalent instance. Naturally, the latter case concentrates all our efforts and,
in what follows, we sketch the main ingredients that we use in order to identify such an
irrelevant vertex. In a nutshell, our approach is based on introducing a robust combinatorial
framework for finding irrelevant vertices. In fact, what we find is annotation-irrelevant flat
territories, building on our previous recent work [3, 3, 32, 70–73], which is formulated with
enough generality so as to allow for the application of powerful tools such as Gaifman’s
locality theorem [38] or a variant of Courcelle’s theorem on boundaried graphs, intuitively
saying that the dynamic programming tables constructed by the proof of Courcelle’s theorem
are also definable in CMSOL (see [5, Lemma 3.2]).

Flat walls. An essential tool of our approach is the notion of flat wall, originating in the work
of Robertson and Seymour [67]. Informally speaking, a flat wall W is a structure made up of
(non-necessarily planar) pieces, called flaps, that are glued together in a bidimensional grid-
like way defining the so-called bricks of the wall. While such a structure may not be planar,
it enjoys topological properties similar to those of planar graphs, in the sense that two paths
that are not routed entirely inside a flap cannot “cross”, except at a constant-sized vertex set
A whose vertices are called apices. Hence, flat walls are only “locally non-planar”, and after
removing apices we can apply useful locality arguments, in the sense that two vertices that
are in “distant” flaps should also be “distant” in the whole graph without the apices. One of
the most celebrated results in the theory of Graph Minors by Robertson and Seymour [67,68],
known as the Flat Wall theorem (see also [53,71] for recently proved variants), informally
states that graphs of large treewidth contain either a large clique minor or a large flat wall.
In this article we use the framework recently introduced in [71] that provides a more accurate
view of some previously defined notions concerning flat walls, particularly in [53]. Precise
definitions of the concepts of flatness pair, homogeneity, regularity, tilt, and influence can be
found in the full version of this article [31] and we stress that they are not critical in order to

ICALP 2023

61:10 Compound Logics for Modification Problems

understand the main technical contributions of the current article (however, they are critical
for their formal correctness). In what follows, when considering a flat wall W with an apex
set A in a graph G, for simplicity we refer to W by using indistinguishably the terms “wall”
and “compass of a wall”, which can be roughly described as the component containing W in
the graph obtained from G by removing A and the “boundary” of W .

Working with an annotated version of the problem. We start by defining a convenient
equivalent version of the problem, by replacing our sentence θ ∈ Θ with an equivalent enhanced
sentence θR,c. This is done in two steps, as we explain in the following two paragraphs.

Assuming the existence of a flat wall and an apex set in our input graph G, we first
transform the question θ on G to a question on a structure obtained from G by “neutralizing”
the apex set (see the full version of the paper [31]). The goal of this step is to ask the final
FOL-sentences σ of our sentence θ in a “flattened” structure, where apices can no longer
“bring close” any distant parts of the wall. This transformation of the problem, which we
call apex-projection, will allow for the application of the locality-based strategy discussed in
the definition of the in-signature of a wall in Subsection 2.2. To do this, we introduce some
additional constant symbols c to our vocabulary that will be interpreted as the apex vertices.

The second step consists in defining an equivalent annotated version of the problem in
order to deal with the FOL-sentences of θ, inspired by the approach of [32]. To do so, we
introduce a vertex set R ⊆ V (G), and require, for each FOL-sentence σ of θ, that the vertices
interpreting the variables of (the equivalent Gaifman sentence of) σ belong to the annotated
set R. We prove that the initial sentence θ and the obtained sentence, denoted by θR,c and
called an enhanced sentence, are equivalent for any choice of the apex set interpreting c and
when R is interpreted as the whole vertex set of the graph. This independence of the choice
of the apex set is strongly used in the proofs since, as discussed below, we will consider a
number of different flat walls, each of which associated with a different apex set.

Our algorithms will work with the enhanced sentence θR,c. Starting with the input graph
G with V (G) as the annotated set R, we will create successive equivalent annotated instances,
in which vertices from G are removed and such that the annotated set R is only reduced.

Zooming inside a flat wall. Our next step is to find, in G, a large flat wall W0 to work
with. The definition of our logic Θ implies that models of θ exclude a fixed complete graph
Kc as a minor, where c depends only on θ. Therefore, we can apply the algorithmic version
of the Flat Wall Theorem [72, Proposition 10] (see also [53, 67, 71]) to the input graph G

and, assuming that the treewidth of G is large enough, we can find in linear time a flat wall
W0 and an apex set A in G such that the height of W0 is a sufficiently large function of θ.
Moreover, another crucial property guaranteed by this algorithm is that the treewidth of W0
is bounded from above by a function of θ. This will be exploited in Subsection 2.2 in order
to compute the so-called θ-characteristic of a wall. We will now apply a series of “zooming”
arguments to the wall W0, which are illustrated in Figure 2.

Find_Equiv_FlatPairs

W1 W2 W3 W W ⋆

Figure 2 Sequence of walls in the general scheme of our algorithm. The first wall is obtained by
applying the algorithm of [72, Proposition 14] for the wall W0 in the input graph G.

F. V. Fomin, P. A. Golovach, I. Sau, G. Stamoulis, and D. M. Thilikos 61:11

Starting from W0 and its associated apex set A, we apply the algorithm of [72, Pro-
position 14] and find, in linear time, a large (again, as a function of θ) subwall W1 that is
λ-homogeneous, where λ depends only on θ. The definition of a homogenous flat wall can
be found in the full version of the paper [31], and roughly means that each of its bricks can
route the same set of partial minors of the graphs corresponding to the minor-exclusion part
of the sentence θ. We now apply the algorithm of [73, Lemma 16] to W1, and obtain in linear
time a large subwall W2 that is irrelevant with respect to the minor-exclusion part of θ after
the removal of a vertex set X ⊆ V (G) of small enough bidimensionality (see Subsection 2.2).
Intuitively, working “inside” W2 allows us to “forget” the minor-exclusion part of θ in what
follows. As our next step, we obtain in linear time a still large subwall W3 of W2 such that
its associated apex set A3 is “tightly tied” to W3, in the sense that the neighbors in W3 of
every vertex in A3 are spread in a “bidimensional” way.

Finding an irrelevant subwall. So far, we have found a large wall W3 that satisfies the
conditions of the above paragraph. Now, in order to identify an irrelevant vertex inside W3,

we find, inside the wall W3, a collection W of pairwise disjoint subwalls, and to associate each
of these subwalls with an appropriately defined θ-characteristic that captures its behavior
with respect to the partial satisfaction of the sentence θ. Then the idea is that, if there are
sufficiently many subwalls in W with the same θ-characteristic (called θ-equivalent), then
some subwall in the interior of one of them can be declared annotation-irrelevant and this
implies some progress in simplifying the current problem instance.

The above strategy allows to identify a subwall W ⋆ inside W such that its central part can
be removed from the annotated set R, and such that a smaller central part can be removed
from G (the blue and grey subwalls in the rightmost wall of Figure 2, respectively). This
is done by an algorithm, called Find_Equiv_FlatPairs, that is based on an appropriate
definition of the θ-characteristic of a wall. In what follows we sketch the main ingredients
and key ideas.

2.2 A simplified and illustrative setting
In order to provide some intuition, in this subsection we focus on formulas θ ∈ Θ of a
particular form, i.e., belonging to Θ̄1, a set of formulas which we proceed to define informally
in a semantical level: Given a general graph G as input, we seek for a vertex set X ⊆ V (G),
called modulator, such that, using the notation defined in the introduction, stell(G,X)
satisfies the so-called modulator sentence β, and either every connected component C of
G \X, or the whole graph G \X, satisfies the so-called target sentence γ, where γ = σ ∧ µ

with σ being an arbitrary FOL-sentence and µ expressing the property of belonging to a
proper minor-closed graph class.

Note that when θ ∈ Θ̄1, the target sentence γ needs to be satisfied either by each of
the resulting connected components separately, or jointly by their union. We deal with this
easily, by introducing a ◦/• -flag into the corresponding sentences that distinguishes both
cases. The latter case is simpler, but in this description, in order to better illustrate our
techniques, we assume the former.

Identifying the privileged component. A very useful tool in our algorithms is to identify,
for every given X, a unique connected component among those of G \X, which we call the
privileged component, that contains “most” of the wall W3. Let us formalize a bit this idea.
For a positive integer q, a pseudogrid Wq, is a collection of q “vertical” and q “horizontal”
paths that intersect in a “grid-like” way. Note that the considered wall W3 naturally defines
a (large, as a function of θ) pseudogrid. A connected component C of a graph G is privileged

ICALP 2023

61:12 Compound Logics for Modification Problems

with respect to a set X ⊆ V (G) and a pseudogrid Wq if C is a connected component of
G \X that contains entirely at least one vertical and one horizontal path of Wq. It is easy
to see that such a privileged component, if it exists, is unique.

Moreover, when X is a modulator, the fact that torso(G,X) has bounded treewidth
implies that every connected component of G \X has a “small interface” to X and thus the
flat wall W0 (and any large subwall of it) is not significantly “damaged” by X, which we
formalize via the notion of having small bidimensionality. Intuitively for the definition), this
means that X intersects a small number of so-called “bags” of the wall. Informally, the bags
of a wall W in a graph G with apex set A define a partition of G \ A into connected sets,
such that each bag, except the external one, contains the part of the wall W between two
neighboring degree-3 vertices of the wall. This property is used extensively in the proofs and,
in particular, it defines, assuming the existence of a large flat wall W0 and a modulator X, a
unique privileged component C in G \X (regardless of the ◦/•-flag). In our sentences, in
order to identify such a component, we need to integrate the “recognition” of a pseudogrid
Wq and its associated privileged component with respect to a modulator X: it is easy to see
that these properties can be defined in CMSOL.

Splitting the sentence θR,c. The existence of a privileged component C allows us to see
the sentence θR,c as a conjunction of two subsentences: one that concerns the privileged
component C (where we will find the irrelevant vertex) and another one concerning the
modulator X and the other (non-privileged) components of G \ X. Namely, we define a
sentence θ̃q, called the split version of θR,c, that allows us to “break” θ into two questions:
one denoted by θout

q that is the conjunction of the modulator sentence β and the target
sentence γ in the non-privileged components of G \X and another one that concerns the
target sentence γ in the privileged component C. This latter question is composed of two
subsentences, namely one about the satisfaction of the FOL-sentence σ and another one
about the minor-exclusion given by µ. Given this decomposition of θ into three questions
(one “external” and two “internal” ones), our “irrelevancy” arguments also decompose into
three parts. Concerning the “irrelevancy” for minor-exclusion, as discussed above, the fact
that the whole wall W2 is irrelevant with respect to µ allows us to focus on the other two
questions. For this, we need to define the characteristic of a wall with respect to θ, denoted
by θ-char. This characteristic is composed of two parts: the out-signature corresponding to
the satisfiability of the sentence θout

q , and the in-signature corresponding to the FOL-sentence
σ. Let us now explain how we define the out-signature and the in-signature, and sketch why
we can eventually declare a subwall irrelevant.

Defining the out-signature of a wall. Dealing with the irrelevancy with respect to the
“external” sentence θout

q turns out to be the most interesting part of the proof and we introduce
several ideas which are, in our opinion, one of the main conceptual contributions of this article.
The goal is, for each wall W in the collection W, to encode all the necessary information
that concerns the satisfiability of θout

q in the “non-privileged” part of the graph and the
modulator X. To do this, for each W ∈ W with apex set A, we define a set of ℓ-boundaried
graphs (i.e., graphs in which ℓ “boundary” vertices are equipped with labels), constructed as
we describe below, and where ℓ depends only on θ. The boundary corresponds to where the
sentence has been “split” and we need to “guess” how to complement this boundary by the
part of the modulator that is not inside the wall. Note that, since θout

q is a CMSOL-sentence,
by a variant of Courcelle’s theorem for boundaried graphs [15], there exists a finite collection
rep(ℓ)(θout

q) of sentences on ℓ-boundaried graphs that are “representatives” of the sentence
θout

q and that can be effectively constructed. We next described how these ℓ-boundaried
graphs are constructed.

F. V. Fomin, P. A. Golovach, I. Sau, G. Stamoulis, and D. M. Thilikos 61:13

We observe that, using the bounded-treewidth property of the modulator sentence β,
there exists a “buffer” I in W, consisting of a set of consecutive layers of the wall, which is
disjoint from a hypothetical modulator X. We guess with an integer d where this “buffer” I
is placed in the wall and we denote its inner part by I(d). This naturally induces a partition
of X into Xin and Xout, with Xin being the part of X that is inside I(d). We also guess
which subset of the apex set A will belong to the modulator X and we denote it by VL(a),
where L is the set containing the indices of the corresponding apex vertices. Since parts of
the “non-privileged” vertex set of the graph may lie outside the considered wall, we need
to guess the part of the modulator (namely, its boundary towards the component) that lies
outside the wall. More precisely, we need to guess as well which subset F ′ of Xout, other
than VL(a), will belong to the neighborhood of the privileged component. This is achieved
by guessing all ways an (abstract) graph F ′ with a bounded number of vertices can extend
the boundary. We let F be the graph obtained from the union of VL(a) and F ′. Finally, we
also need to consider a set Z that corresponds to Xin together with the part inside I(d) that
has been “chopped off” by the modulator X, that is, the part of W inside I(d) that will not
belong to the privileged component after the removal of the modulator X. We denote by
∂(Z) the set of vertices in Z that have a neighbor in I(d). Altogether, these guesses result in
the ℓ-boundaried graph K(d,Z,L,F) obtained from the graph induced by I(d) and the set F,
whose boundary is the set ∂(Z) ∪ F .

With each such a guess (R, d, L, Z) we associate the out-signature defined as follows and
denoted by out-sig. Its elements are pairs (H, θ̄), where H encodes how the set VL(a) in
the boundary has been extended by the “abstract” graph F ′, and θ̄ ∈ rep(ℓ)(θout

q) prescribes
the equivalence class, within the set of Courcelle’s representatives mentioned above, of the
considered ℓ-boundaried graph. This concludes the description of the out-signature.

While this out-signature indeed encodes the behavior of the considered wall with respect
to the “external” sentence θout

q , a crucial issue has been overlooked so far: in order to be
able to identify an irrelevant subwall inside the collection W within the claimed running
time, we need to be able to compute the (in- and out-)signature of a wall in linear time. To
do this using Courcelle’s theorem, we need to consider a graph that has treewidth bounded
by a function of θ. Recall that θout

q is the conjunction of the modulator sentence β (which
is evaluated in the graph stell(G,X)) and the target sentence γ in the “non-privileged”
components of G \ X. It follows that the treewidth of W is bounded by a function of θ,
hence the treewidth of the ℓ-boundaried “subwall” K(d,Z,L,F), for which we want to compute
the out-signature, is also bounded by a function of θ. However, the graph K(d,Z,L,F) \ V (F)
“lives” inside the whole privileged component C, and we cannot guarantee that the treewidth
of C is bounded by a function of θ. We overcome this problem with the following trick. We
observe that the satisfaction of θout

q is preserved if, instead of the whole privileged component
C, we consider the graph K(d,Z,L,F), which is obtained by “shrinking” C to the subwall I(d),

and which has bounded treewidth as we need. Indeed, this modification does not change any
of the non-privileged components in which the target sentence γ is evaluated and, by adding
edges from the “guessed extended boundary” F ′ to I(d) in order to preserve connectivity,
the resulting graph stell(G,X) remains unchanged with this transformation, and therefore
the satisfaction of the modulator sentence β is also preserved.

Defining the in-signature of a wall. To deal with the irrelevancy with respect to the
FOL-sentence σ, we use arguments strongly inspired by those of [32]. The core tool here is
Gaifman’s locality theorem, which states that every FOL-sentence σ is a Boolean combination
of basic local sentences σ1, . . . , σp, in the sense that the satisfaction of each σi depends only

ICALP 2023

61:14 Compound Logics for Modification Problems

on the satisfaction of a set of sentences ψ1, . . . , ψℓi evaluated on single vertices that can be
assumed to be pairwise far apart. As discussed before, taking care of the domain of these
vertices is the main reason why we consider a annotated version of the problem, corresponding
to the enhanced sentence θR,c. Extending the approach of [32] (which does not deal with
apices), the in-signature of a wall, denoted by in-sig, encodes all (partial) sets of variables,
one set for each basic local sentence of the so-called Gaifman sentence σ̆, such that these
variables lie inside an “inner part” of the wall, they are scattered in the “apex-projection” of
this inner part, and they satisfy the local sentences ψi.

Declaring a subwall irrelevant. We now sketch the remaining of the proof for sentences in
Θ̄1. As mentioned above, suppose that we have already found, inside the collection W, a
large (as a function of θ) subcollection W ′ ⊆ W of walls all having the same θ-characteristic.
We pick one of these walls, say W ⋆ ∈ W ′, and we declare its central part irrelevant (see
Figure 2). We need to prove that, if the input graph G satisfies θ, then the graph G′ obtained
from G by removing the central part of W ⋆, also satisfies θ. That is, given a modulator X in
the original instance G, we need to construct another set X ′ ⊆ V (G) that is disjoint from
W ⋆ and that is a modulator in G′. For this, we proceed as follows.

The cardinality of W ′ and the fact that X intersects few bags of the wall W3 imply
that there is a large (again, as a function of θ) subcollection W ′′ ⊆ W ′ of walls that are
disjoint from X. We take such a wall Ŵ ∈ W ′′ and, using the fact that W ⋆ and Ŵ have
the same θ-characteristic, we show that we can “replace” the part of the modulator X that
intersects W ⋆ with another part in Ŵ , together with an alternative assignment of variables
that satisfies the corresponding sentences. This results in another set X ′ that is a modulator
in G′, hence yielding the annotation-irrelevancy of (the central part of) W ⋆.

Showing these facts is far from being easy and we need a number of technical details dealing
with the irrelevancy with respect to θout

q (which incorporates β), σ, and µ. In particular,
an important idea is that, changing from X to X ′, we obtain a new boundaried graph,
which is in fact the same graph but with a new boundary. The replacement arguments for
the in-signature work because of the aforementioned distance-preservation property of the
apex-projection. See the full version of the paper [31] for more details.

3 From FOL to FOL+DP: the compound logic ΘDP

In the definition of Θ0, the base case of Θ, we consider compound sentences σ ∧ µ, where
σ ∈ FOL and µ expresses minor-exclusion. However, one can consider extensions of FOL
in the compound sentences. A possible candidate is first-order logic with disjoint-paths
predicates defined in [75] (see the paragraph below for a formal definition). This way we can
define a more general logic ΘDP and prove an algorithmic meta-theorem that encompasses
also the results in [42, 43]. To ease reading, in this subsection we deal only with graphs and
not with general structures. However, our results can be straightforwardly be extended to
general structures. All proofs of the results of this section can be found in Section 3.

The disjoint-paths logic. We define the 2k-ary predicate dpk(x1, y1, . . . , xk, yk), which
evaluates true in a graph G if and only if there are paths P1, . . . , Pk of G of length at least
two between (the interpretations of) xi and yi for all i ∈ [k] such that for every i, j ∈ [k],
i ̸= j, V (Pi) ∩ V (Pj) = ∅. We let FOL+DP be the logic obtained from FOL after allowing
dpk(x1, y1, . . . , xk, yk), k ≥ 1 as atomic predicates.

F. V. Fomin, P. A. Golovach, I. Sau, G. Stamoulis, and D. M. Thilikos 61:15

The compound logic ΘDP. We define an extension ΘDP of Θ by considering, as the base
case, instead of Θ0, the logic ΘDP

0 = {σ ∧ µ | σ ∈ FOL+DP and µ ∈ EM[{E}]}.

▶ Theorem 8. For every θ ∈ ΘDP, there exists an algorithm that, given a graph G, outputs
whether G |= θ in time O|θ|(n2).

As we define the alternative Θ̃ of Θ, we can also define Θ̃DP by taking Θ̃DP
0 = FOL+DP

as the base case, i.e., by discarding the minor-exclusion from the definition of ΘDP
0 . Notice

that Θ̃DP contains FOL+DP and can be seen as a natural extension of it. As a corollary
of Theorem 8, we get the following analogue of Theorem 6.

▶ Theorem 9. For every θ̃ ∈ Θ̃DP, there exists an algorithm that, given a graph G, outputs
whether G |= θ in time O|θ|,hw(G)(n2).

Theorem 9 contains all results and applications of [42,43] as a (very) special case. For
a visualization of the current meta-algorithmic landscape on subgraph-closed classes, see
Figure 3.

FOL,

Courcelle [15–17], Borie, Parker & Tovey [10]
and Arnborg, Lagergren & Seese [2]

Pilipczuk, Schirrmacher, Siebertz, Torunczyk, & Vigny [66]

FOL+conn, FOL+DP, Θ̃DP, CMSOL

Theorem 9

Golovach, Stamoulis, & Thilikos [43]

Grohe, Kreutzer & Siebertz [46]

Structure

Logic

bounded Hadwiger number

bounded treewidth

nowhere dense

bounded Hajós number1

Figure 3 The current meta-algorithmic landscape on subgraph-closed classes and the position of
Theorem 9 in it.

4 Further research

The minor-exclusion framework. The graph-structural horizon in both Theorem 5 and
Theorem 6 is delimited by minor-exclusion. In the case of Theorem 5, this restriction is
applied to the target property defined by µ in the logic Θ, while in Theorem 6 this is the
promise combinatorial restriction that yields efficient model-checking for Θ̃. This restriction
is hard-wired in our proof in the way it combines the Flat Wall theorem with Gaifman’s
theorem. Recently, several efficient algorithms appeared for modification problems targeting
or assuming topological minor-freeness (see [1, 36, 49] and the meta-algorithmic results
in [66,74]). For such classes, to achieve efficient model-checking for Θ, or some fragment of
it, is an interesting open challenge.

Quadratic time. The proof of Theorem 5 can be seen as a possible “meta-algorithmization”
of the irrelevant vertex technique introduced by Robertson and Seymour [67], going further
than the two known recent attempts in this direction [32, 43]. The main routine of the

1 The Hajós number of a graph G is the maximum k for which G contains Kk as a topological minor.

ICALP 2023

61:16 Compound Logics for Modification Problems

algorithm transforms the input of the problem to a simpler graph by detecting territories
in it that can be safely discarded, therefore producing a simpler instance. This routine is
applied repetitively until the graph has “small” treewidth, so that the problem can be solved
in linear time by using Courcelle’s theorem. This approach gives an algorithm running in
quadratic time. Any improvement of this quadratic running time should rely on techniques
escaping the above scheme of gradual simplification. The only results in this direction are the
cases of making a graph planar by deleting at most k vertices (resp. edges) in [50] (resp. [52])
that run in time Ok(n).

Further than connectivity closure. One of the key operations defining Θ is the connectivity
extension operation, that is, given a sentence φ, to consider the (conjunctive) sentence
φ(c). We incorporated this operation to our logic in order to express elimination distance
modifications (such as those of tree-depth [12] and bridge-depth [11]) where, at each step,
we remove some tree-like structure and then we apply the current target sentence to the
connected components of the remaining graph. In [24], the notion of block elimination
distance has been introduced, where the target property is applied to the biconnected
components of the remaining graph (instead of the connected components). We are confident
that our results can be adapted so to include the biconnectivity extension – or even the
3-connectivity extension, as defined by Tutte’s decomposition. However, we prefer to avoid
this here as it would add undesirable burden to the statement of our results (and to the
proofs as well). Another direction is to consider different versions of φ(c). One of them might
be a disjunctive version, namely φ∨(c), where G |= φ∨(c) if at least one of the connected
components of G is a model of φ. Another one is a selective version, namely φ∃(c), where
G |= φ∧(c) if there is some subset of the connected components of G whose union is a model
of φ. Our proof fails if we wish to incorporate any of these two variants of φ(c) in Θ. However,
it can be easily adapted so to incorporate φ∨(c) in Θ̃.

Descriptive complexity and the Θ-hierarchy. Recall that Θ =
⋃

i∈N Θi, where each level
of the sentence set Θi is defined by adding an extra modulator sentence, followed by some
positive Boolean combination of the connectivity closure of the lower level. We extended our
result from Θ1 to every Θi because Θ is quite versatile and makes it easier to express more
complex hierarchical modification problems. However, it is an open problem whether this
hierarchy is proper with respect to the descriptive complexity of the problems that it defines
in each of its levels. In simple cases where the modulator sentence asks for a set of bounded
size, and under the absence of positive Boolean combinations, it is possible to express any
Θ-definable problem using Θ1. For instance, elimination ordering to some Θ0-definable class
can be straightforwardly expressed in Θ, however with a more technical proof one can also
express it in Θ1 (see [34]). Is this collapse maintained when we consider the full expressive
power of Θ? We conjecture a negative answer to this question for both Θ and ΘDP.

References

1 Akanksha Agrawal, Lawqueen Kanesh, Daniel Lokshtanov, Fahad Panolan, M. S. Ramanujan,
Saket Saurabh, and Meirav Zehavi. Deleting, Eliminating and Decomposing to Hereditary
Classes Are All FPT-Equivalent. In Proc. of the 32st Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 1976–2004, 2022. doi:10.1137/1.9781611977073.79.

2 Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-decomposable
graphs. Journal of Algorithms, 12:308–340, 1991. doi:10.1016/0196-6774(91)90006-K.

https://doi.org/10.1137/1.9781611977073.79
https://doi.org/10.1016/0196-6774(91)90006-K

F. V. Fomin, P. A. Golovach, I. Sau, G. Stamoulis, and D. M. Thilikos 61:17

3 Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. A complexity dichotomy for hitting
connected minors on bounded treewidth graphs: the chair and the banner draw the boundary.
In Proc. of the 31st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
951–970, 2020. doi:10.1137/1.9781611975994.57.

4 Hans L. Bodlaender. A linear time algorithm for finding tree-decompositions of small treewidth.
In Proc. of the 25th Annual ACM Symposium on Theory of Computing (STOC), pages 226–234,
1993. doi:10.1145/167088.167161.

5 Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh,
and Dimitrios M. Thilikos. (Meta) Kernelization. Journal of the ACM, 63(5):44:1–44:69, 2016.
doi:10.1145/2973749.

6 Mikołaj Bojańczyk. Separator logic and star-free expressions for graphs, 2021. arXiv:
2107.13953.

7 Édouard Bonnet, Jan Dreier, Jakub Gajarský, Stephan Kreutzer, Nikolas Mählmann, Pierre
Simon, and Szymon Torunczyk. Model checking on interpretations of classes of bounded
local cliquewidth. In Proc. of the 37th Annual ACM/IEEE Symposium on Logic in Computer
(LICS), pages 54:1–54:13. ACM, 2022. doi:10.1145/3531130.3533367.

8 Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Pierre Simon, Stéphan Thomassé,
and Szymon Torunczyk. Twin-width IV: ordered graphs and matrices. In Proc. of the 54th
Annual ACM Symposium on Theory of Computing (STOC). ACM, 2022. doi:10.1145/
3519935.3520037.

9 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I:
tractable FO model checking. In Proc. of the 61st IEEE Annual Symposium on Foundations
of Computer Science (FOCS), pages 601–612, 2020. doi:10.1109/FOCS46700.2020.00062.

10 Richard B. Borie, R. Gary Parker, and Craig A. Tovey. Automatic generation of linear-time
algorithms from predicate calculus descriptions of problems on recursively constructed graph
families. Algorithmica, 7(5-6):555–581, 1992. doi:10.1007/BF01758777.

11 Marin Bougeret, Bart M. P. Jansen, and Ignasi Sau. Bridge-depth characterizes which
structural parameterizations of vertex cover admit a polynomial kernel. In Proc. of the 47th
International Colloquium on Automata, Languages, and Programming (ICALP), volume 168
of LIPIcs, pages 16:1–16:19, 2020. doi:10.4230/LIPIcs.ICALP.2020.16.

12 Jannis Bulian and Anuj Dawar. Fixed-parameter tractable distances to sparse graph classes.
Algorithmica, 79(1):139–158, 2017. doi:10.1007/s00453-016-0235-7.

13 Jianer Chen, Fedor V. Fomin, Yang Liu, Songjian Lu, and Yngve Villanger. Improved
algorithms for feedback vertex set problems. Journal of Computer and System Sciences,
74(7):1188–1198, 2008. doi:10.1016/j.jcss.2008.05.002.

14 Jianer Chen, Iyad A. Kanj, and Ge Xia. Improved parameterized upper bounds for vertex
cover. In Proc. of the 31st International Symposium on Mathematical Foundations of Computer
Science (MFCS), volume 4162 of LNCS, pages 238–249, 2006. doi:10.1007/11821069_21.

15 Bruno Courcelle. The monadic second-order logic of graphs. I. recognizable sets of finite graphs.
Information and Computation, 85(1):12–75, 1990. doi:10.1016/0890-5401(90)90043-H.

16 Bruno Courcelle. The monadic second-order logic of graphs III: tree-decompositions, minor
and complexity issues. RAIRO - Theoretical Informatics and Applications, 26:257–286, 1992.
doi:10.1051/ita/1992260302571.

17 Bruno Courcelle. The expression of graph properties and graph transformations in monadic
second-order logic. In Handbook of Graph Grammars and Computing by Graph Transformations,
Volume 1: Foundations, pages 313–400. World Scientific, 1997.

18 Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Logic - A
Language-Theoretic Approach, volume 138 of Encyclopedia of mathematics and its applications.
Cambridge University Press, 2012.

19 Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory of Computing Systems, 33(2):125–150,
2000. doi:10.1007/s002249910009.

ICALP 2023

https://doi.org/10.1137/1.9781611975994.57
https://doi.org/10.1145/167088.167161
https://doi.org/10.1145/2973749
https://arxiv.org/abs/2107.13953
https://arxiv.org/abs/2107.13953
https://doi.org/10.1145/3531130.3533367
https://doi.org/10.1145/3519935.3520037
https://doi.org/10.1145/3519935.3520037
https://doi.org/10.1109/FOCS46700.2020.00062
https://doi.org/10.1007/BF01758777
https://doi.org/10.4230/LIPIcs.ICALP.2020.16
https://doi.org/10.1007/s00453-016-0235-7
https://doi.org/10.1016/j.jcss.2008.05.002
https://doi.org/10.1007/11821069_21
https://doi.org/10.1016/0890-5401(90)90043-H
https://doi.org/10.1051/ita/1992260302571
https://doi.org/10.1007/s002249910009

61:18 Compound Logics for Modification Problems

20 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

21 Marek Cygan, Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, and Saket Saurabh.
Minimum bisection is fixed-parameter tractable. SIAM Journal on Computing, 48(2):417–450,
2019. doi:10.1137/140988553.

22 Marek Cygan, Dániel Marx, Marcin Pilipczuk, and Michal Pilipczuk. Hitting forbidden
subgraphs in graphs of bounded treewidth. Information and Computation, 256:62–82, 2017.
doi:10.1016/j.ic.2017.04.009.

23 Anuj Dawar, Martin Grohe, and Stephan Kreutzer. Locally excluding a minor. In Proc.
of the 21st IEEE Symposium on Logic in Computer Science (LICS), pages 270–279, 2007.
doi:10.1109/LICS.2007.31.

24 Oznur Y. Diner, Archontia C. Giannopoulou, Giannos Stamoulis, and Dimitrios M. Thilikos.
Block elimination distance. In Proc. of the 50th International Workshop on Graph The-
oretic Concepts in Computer Science (WG), volume 12911 of LNCS, 2002. doi:10.1007/
978-3-030-86838-3_3.

25 Jan Dreier and Peter Rossmanith. Approximate evaluation of first-order counting queries.
In Dániel Marx, editor, Proc. of the 32nd ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1720–1739. SIAM, 2021. doi:10.1137/1.9781611976465.104.

26 Zdeněk Dvořák, Daniel Král, and Robin Thomas. Testing first-order properties for subclasses
of sparse graphs. Journal of the ACM, 60(5):36:1–36:24, 2013. doi:10.1145/2499483.

27 Eduard Eiben, Robert Ganian, Thekla Hamm, and O-joung Kwon. Measuring what matters:
A hybrid approach to dynamic programming with treewidth. Journal of Computer and System
Sciences, 121:57–75, 2021. doi:10.1016/j.jcss.2021.04.005.

28 Michael R. Fellows and Michael A. Langston. Nonconstructive tools for proving polynomial-
time decidability. Journal of the ACM, 35(3):727–739, 1988. doi:10.1145/44483.44491.

29 Samuel Fiorini, Nadia Hardy, Bruce A. Reed, and Adrian Vetta. Planar graph bipartization
in linear time. Discrete Applied Mathematics, 156(7):1175–1180, 2008. doi:10.1016/j.dam.
2007.08.013.

30 Jörg Flum and Martin Grohe. Fixed-parameter tractability, definability, and model-checking.
SIAM Journal on Computing, 31(1):113–145, 2001. doi:10.1137/S0097539799360768.

31 Fedor V. Fomin, Petr A. Golovach, Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos.
Compound logics for modification problems, 2021. arXiv:2111.02755.

32 Fedor V. Fomin, Petr A. Golovach, Giannos Stamoulis, and Dimitrios M. Thilikos. An
algorithmic meta-theorem for graph modification to planarity and FOL. In Proc. of the 28th
Annual European Symposium on Algorithms (ESA), volume 173 of LIPIcs, pages 51:1–51:17,
2020. doi:10.4230/LIPIcs.ESA.2020.51.

33 Fedor V. Fomin, Petr A. Golovach, and Dimitrios M. Thilikos. On the parameterized complexity
of graph modification to first-order logic properties. Theory of Computing Systems, 64(2):251–
271, 2020. doi:10.1007/s00224-019-09938-8.

34 Fedor V. Fomin, Petr A. Golovach, and Dimitrios M. Thilikos. Parameterized complexity
of elimination distance to first-order logic properties. ACM Transactions on Computational
Logic, 23(3):17:1–17:35, 2022. doi:10.1145/3517129.

35 Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar F-Deletion:
Approximation, Kernelization and Optimal FPT Algorithms. In Proc. of the 53rd Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pages 470–479, 2012. doi:
10.1109/FOCS.2012.62.

36 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi.
Hitting topological minors is FPT. In Proc. of the 52nd Annual ACM Symposium on Theory
of Computing (STOC), pages 1317–1326, 2020. doi:10.1145/3357713.3384318.

37 Markus Frick and Martin Grohe. Deciding first-order properties of locally tree-decomposable
structures. Journal of the ACM, 48(6):1184–1206, 2001. doi:10.1145/504794.504798.

https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1137/140988553
https://doi.org/10.1016/j.ic.2017.04.009
https://doi.org/10.1109/LICS.2007.31
https://doi.org/10.1007/978-3-030-86838-3_3
https://doi.org/10.1007/978-3-030-86838-3_3
https://doi.org/10.1137/1.9781611976465.104
https://doi.org/10.1145/2499483
https://doi.org/10.1016/j.jcss.2021.04.005
https://doi.org/10.1145/44483.44491
https://doi.org/10.1016/j.dam.2007.08.013
https://doi.org/10.1016/j.dam.2007.08.013
https://doi.org/10.1137/S0097539799360768
https://arxiv.org/abs/2111.02755
https://doi.org/10.4230/LIPIcs.ESA.2020.51
https://doi.org/10.1007/s00224-019-09938-8
https://doi.org/10.1145/3517129
https://doi.org/10.1109/FOCS.2012.62
https://doi.org/10.1109/FOCS.2012.62
https://doi.org/10.1145/3357713.3384318
https://doi.org/10.1145/504794.504798

F. V. Fomin, P. A. Golovach, I. Sau, G. Stamoulis, and D. M. Thilikos 61:19

38 Haim Gaifman. On local and non-local properties. In Proc. of the Herbrand Symposium,
volume 107 of Studies in Logic and the Foundations of Mathematics, pages 105–135. Elsevier,
1982. doi:10.1016/S0049-237X(08)71879-2.

39 Jakub Gajarský, Stephan Kreutzer, Jaroslav Nesetril, Patrice Ossona de Mendez, Michal
Pilipczuk, Sebastian Siebertz, and Szymon Torunczyk. First-order interpretations of bounded
expansion classes. ACM Transactions on Computational Logic, 21(4):29:1–29:41, 2020. doi:
10.1145/3382093.

40 Archontia C. Giannopoulou, Michal Pilipczuk, Jean-Florent Raymond, Dimitrios M. Thilikos,
and Marcin Wrochna. Linear kernels for edge deletion problems to immersion-closed graph
classes. SIAM Journal on Discrete Mathematics, 35(1):105–151, 2021. doi:10.1137/
18M1228839.

41 Petr A. Golovach, Dieter Kratsch, and Daniël Paulusma. Detecting induced minors in AT-free
graphs. Theoretical Computer Science, 482:20–32, 2013. doi:10.1016/j.tcs.2013.02.029.

42 Petr A. Golovach, Giannos Stamoulis, and Dimitrios M. Thilikos. Model-checking for first-
order logic with disjoint paths predicates in proper minor-closed graph classes, 2022. arXiv:
2211.01723.

43 Petr A. Golovach, Giannos Stamoulis, and Dimitrios M. Thilikos. Model-checking for first-order
logic with disjoint paths predicates in proper minor-closed graph classes. In Proc. of the
2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 3684–3699, 2023.
doi:10.1137/1.9781611977554.ch141.

44 Martin Grohe. Logic, graphs, and algorithms. In Logic and Automata: History and Perspectives,
in Honor of Wolfgang Thomas, volume 2 of Texts in Logic and Games, pages 357–422.
Amsterdam University Press, 2008. URL: https://eccc.weizmann.ac.il/report/2007/091/.

45 Martin Grohe and Stephan Kreutzer. Methods for algorithmic meta theorems. In Model
Theoretic Methods in Finite Combinatorics - AMS-ASL Joint Special Session, volume 558,
pages 181–206. AMS, 2009. URL: http://citeseerx.ist.psu.edu/viewdoc/download?doi=
10.1.1.395.8282&rep=rep1&type=pdf.

46 Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-order properties of
nowhere dense graphs. Journal of the ACM, 64(3):17:1–17:32, 2017. doi:10.1145/3051095.

47 Martin Grohe and Nicole Schweikardt. First-order query evaluation with cardinality conditions.
In Proc. of the 37th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems (PODS), pages 253–266. ACM, 2018. doi:10.1145/3196959.3196970.

48 Jiong Guo, Falk Hüffner, and Rolf Niedermeier. A structural view on parameterizing problems:
Distance from triviality. In Proc. of the 1st International Workshop on Parameterized and
Exact Computation (IWPEC), volume 3162 of LNCS, pages 162–173, 2004. doi:10.1007/
978-3-540-28639-4_15.

49 Bart M. P. Jansen, Jari J. H. de Kroon, and Michal Włodarczyk. Vertex deletion parameterized
by elimination distance and even less. In Proc. of the 53rd Annual ACM Symposium on Theory
of Computing (STOC), pages 1757–1769, 2021. doi:10.1145/3406325.3451068.

50 Bart M. P. Jansen, Daniel Lokshtanov, and Saket Saurabh. A near-optimal planarization
algorithm. In Proc. of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1802–1811, 2014. doi:10.1137/1.9781611973402.130.

51 Ken-ichi Kawarabayashi, Yusuke Kobayashi, and Bruce A. Reed. The disjoint paths problem
in quadratic time. Journal of Combinatorial Theory, Series B, 102(2):424–435, 2012. doi:
10.1016/j.jctb.2011.07.004.

52 Ken-ichi Kawarabayashi and Bruce A. Reed. Computing crossing number in linear time. In
Proc. of the 39th annual ACM symposium on Theory of computing (STOC), pages 382–390,
2007. doi:10.1145/1250790.1250848.

53 Ken-ichi Kawarabayashi, Robin Thomas, and Paul Wollan. A new proof of the flat wall
theorem. Journal of Combinatorial Theory, Series B, 129:204–238, 2018. doi:10.1016/j.
jctb.2017.09.006.

ICALP 2023

https://doi.org/10.1016/S0049-237X(08)71879-2
https://doi.org/10.1145/3382093
https://doi.org/10.1145/3382093
https://doi.org/10.1137/18M1228839
https://doi.org/10.1137/18M1228839
https://doi.org/10.1016/j.tcs.2013.02.029
https://arxiv.org/abs/2211.01723
https://arxiv.org/abs/2211.01723
https://doi.org/10.1137/1.9781611977554.ch141
https://eccc.weizmann.ac.il/report/2007/091/
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.395.8282&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.395.8282&rep=rep1&type=pdf
https://doi.org/10.1145/3051095
https://doi.org/10.1145/3196959.3196970
https://doi.org/10.1007/978-3-540-28639-4_15
https://doi.org/10.1007/978-3-540-28639-4_15
https://doi.org/10.1145/3406325.3451068
https://doi.org/10.1137/1.9781611973402.130
https://doi.org/10.1016/j.jctb.2011.07.004
https://doi.org/10.1016/j.jctb.2011.07.004
https://doi.org/10.1145/1250790.1250848
https://doi.org/10.1016/j.jctb.2017.09.006
https://doi.org/10.1016/j.jctb.2017.09.006

61:20 Compound Logics for Modification Problems

54 Eun Jung Kim, Alexander Langer, Christophe Paul, Felix Reidl, Peter Rossmanith, Ignasi
Sau, and Somnath Sikdar. Linear kernels and single-exponential algorithms via protrusion
decompositions. ACM Transactions on Algorithms, 12(2):21:1–21:41, 2016. doi:10.1145/
2797140.

55 Tomasz Kociumaka and Marcin Pilipczuk. Deleting vertices to graphs of bounded genus.
Algorithmica, 81(9):3655–3691, 2019. doi:10.1007/s00453-019-00592-7.

56 Tuukka Korhonen. A single-exponential time 2-approximation algorithm for treewidth. In
Proc. of the 62nd IEEE Annual Symposium on Foundations of Computer Science (FOCS),
pages 184–192, 2021. doi:10.1109/FOCS52979.2021.00026.

57 Stephan Kreutzer. On the parameterised intractability of monadic second-order logic. In Proc.
of the 18th EACSL Annual Conference on Computer Science Logic (CSL), pages 348–363,
2009. doi:10.1007/978-3-642-04027-6_26.

58 Stephan Kreutzer. Algorithmic meta-theorems. In Finite and Algorithmic Model Theory,
volume 379 of London Mathematical Society Lecture Note Series, pages 177–270. Cam-
bridge University Press, 2011. URL: http://www.cs.ox.ac.uk/people/stephan.kreutzer/
Publications/amt-survey.pdf.

59 Dietrich Kuske and Nicole Schweikardt. First-order logic with counting. In Proc. of the 32nd
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–12. IEEE
Computer Society, 2017. doi:10.1109/LICS.2017.8005133.

60 John M. Lewis and Mihalis Yannakakis. The Node-Deletion Problem for Hereditary Properties
is NP-Complete. Journal of Computer and System Sciences, 20(2):219–230, 1980. doi:
10.1016/0022-0000(80)90060-4.

61 Dániel Marx and Igor Razgon. Fixed-Parameter Tractability of Multicut Parameterized by
the Size of the Cutset. SIAM Journal on Computing, 43(2):355–388, 2014. doi:10.1137/
110855247.

62 Dániel Marx and Ildikó Schlotter. Obtaining a planar graph by vertex deletion. Algorithmica,
62(3-4):807–822, 2012. doi:10.1007/s00453-010-9484-z.

63 Jaroslav Nesetril and Patrice Ossona de Mendez. Sparsity - Graphs, Structures, and Al-
gorithms, volume 28 of Algorithms and combinatorics. Springer, 2012. doi:10.1007/
978-3-642-27875-4.

64 Jaroslav Nesetril, Patrice Ossona de Mendez, Michal Pilipczuk, Roman Rabinovich, and
Sebastian Siebertz. Rankwidth meets stability. In Proc. of the 32nd ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 2014–2033. SIAM, 2021. doi:10.1137/1.9781611976465.
120.

65 Jaroslav Nesetril, Patrice Ossona de Mendez, and Sebastian Siebertz. Structural properties of
the first-order transduction quasiorder. In Proc. of the 30th EACSL Annual Conference on
Computer Science Logic (CSL), volume 216 of LIPIcs, pages 31:1–31:16. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.CSL.2022.31.

66 Michal Pilipczuk, Nicole Schirrmacher, Sebastian Siebertz, Szymon Torunczyk, and Alex-
andre Vigny. Algorithms and data structures for first-order logic with connectivity un-
der vertex failures. In Proc. of the 49th International Colloquium on Automata, Lan-
guages, and Programming, (ICALP), volume 229 of LIPIcs, pages 102:1–102:18, 2022.
doi:10.4230/LIPIcs.ICALP.2022.102.

67 Neil Robertson and Paul D. Seymour. Graph minors. XIII. The disjoint paths problem. Journal
of Combinatorial Theory, Series B, 63(1):65–110, 1995. doi:10.1006/jctb.1995.1006.

68 Neil Robertson and Paul D. Seymour. Graph minors. XX. Wagner’s conjecture. Journal of
Combinatorial Theory, Series B, 92(2):325–357, 2004. doi:10.1016/j.jctb.2004.08.001.

69 Ignasi Sau and Uéverton dos Santos Souza. Hitting forbidden induced subgraphs on bounded
treewidth graphs. Information and Computation, 281:104812, 2021. doi:10.1016/j.ic.2021.
104812.

70 Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos. An FPT-Algorithm for Recognizing
k-Apices of Minor-Closed Graph Classes. In Proc. of the 47th International Colloquium on
Automata, Languages, and Programming (ICALP), volume 168 of LIPIcs, pages 95:1–95:20,
2020. doi:10.4230/LIPIcs.ICALP.2020.95.

https://doi.org/10.1145/2797140
https://doi.org/10.1145/2797140
https://doi.org/10.1007/s00453-019-00592-7
https://doi.org/10.1109/FOCS52979.2021.00026
https://doi.org/10.1007/978-3-642-04027-6_26
http://www.cs.ox.ac.uk/people/stephan.kreutzer/Publications/amt-survey.pdf
http://www.cs.ox.ac.uk/people/stephan.kreutzer/Publications/amt-survey.pdf
https://doi.org/10.1109/LICS.2017.8005133
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1137/110855247
https://doi.org/10.1137/110855247
https://doi.org/10.1007/s00453-010-9484-z
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1137/1.9781611976465.120
https://doi.org/10.1137/1.9781611976465.120
https://doi.org/10.4230/LIPIcs.CSL.2022.31
https://doi.org/10.4230/LIPIcs.ICALP.2022.102
https://doi.org/10.1006/jctb.1995.1006
https://doi.org/10.1016/j.jctb.2004.08.001
https://doi.org/10.1016/j.ic.2021.104812
https://doi.org/10.1016/j.ic.2021.104812
https://doi.org/10.4230/LIPIcs.ICALP.2020.95

F. V. Fomin, P. A. Golovach, I. Sau, G. Stamoulis, and D. M. Thilikos 61:21

71 Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos. A more accurate view of the Flat
Wall Theorem, 2021. arXiv:2102.06463.

72 Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos. k-apices of minor-closed graph
classes. II. Parameterized algorithms. ACM Transactions on Algorithms, 18(3), 2022. doi:
10.1145/3519028.

73 Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos. k-apices of minor-closed graph
classes. I. Bounding the obstructions. Journal of Combinatorial Theory, Series B, 161:180–227,
2023. doi:10.1016/j.jctb.2023.02.012.

74 Nicole Schirrmacher, Sebastian Siebertz, Giannos Stamoulis, Dimitrios M. Thilikos, and
Alexandre Vigny. Model checking disjoint-paths logic on topological-minor-free graph classes,
2023. arXiv:2302.07033.

75 Nicole Schirrmacher, Sebastian Siebertz, and Alexandre Vigny. First-Order Logic with
Connectivity Operators. In Proc. of the 30th EACSL Annual Conference on Computer Science
Logic (CSL), volume 216 of LIPIcs, pages 34:1–34:17, 2022. doi:10.4230/LIPIcs.CSL.2022.
34.

76 Detlef Seese. Linear time computable problems and first-order descriptions. Mathematical
Structures in Computer Science, 6(6):505–526, 1996. doi:10.1017/S0960129500070079.

ICALP 2023

https://arxiv.org/abs/2102.06463
https://doi.org/10.1145/3519028
https://doi.org/10.1145/3519028
https://doi.org/10.1016/j.jctb.2023.02.012
https://arxiv.org/abs/2302.07033
https://doi.org/10.4230/LIPIcs.CSL.2022.34
https://doi.org/10.4230/LIPIcs.CSL.2022.34
https://doi.org/10.1017/S0960129500070079

Cliques in High-Dimensional Geometric
Inhomogeneous Random Graphs
Tobias Friedrich #

Hasso Plattner Institute, Universität Potsdam, Germany

Andreas Göbel #

Hasso Plattner Institute, Universität Potsdam, Germany

Maximilian Katzmann #

Karlsruhe Institute of Technology, Germany

Leon Schiller #

Hasso Plattner Institute, Universität Potsdam, Germany

Abstract
A recent trend in the context of graph theory is to bring theoretical analyses closer to empirical
observations, by focusing the studies on random graph models that are used to represent practical
instances. There, it was observed that geometric inhomogeneous random graphs (GIRGs) yield good
representations of complex real-world networks, by expressing edge probabilities as a function that
depends on (heterogeneous) vertex weights and distances in some underlying geometric space that
the vertices are distributed in. While most of the parameters of the model are understood well, it
was unclear how the dimensionality of the ground space affects the structure of the graphs.

In this paper, we complement existing research into the dimension of geometric random graph
models and the ongoing study of determining the dimensionality of real-world networks, by studying
how the structure of GIRGs changes as the number of dimensions increases. We prove that, in the
limit, GIRGs approach non-geometric inhomogeneous random graphs and present insights on how
quickly the decay of the geometry impacts important graph structures. In particular, we study
the expected number of cliques of a given size as well as the clique number and characterize phase
transitions at which their behavior changes fundamentally. Finally, our insights help in better
understanding previous results about the impact of the dimensionality on geometric random graphs.

2012 ACM Subject Classification Mathematics of computing → Random graphs; Theory of compu-
tation → Computational geometry

Keywords and phrases random graphs, geometry, dimensionality, cliques, clique number, scale-free
networks

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.62

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2302.04113 [22]

Funding Andreas Göbel: is funded by the project PAGES (project No. 467516565) of the German
Research Foundation (DFG).

1 Introduction

Networks are a powerful tool to model all kinds of processes that we interact with in our
day-to-day lives. From connections between people in social networks, to the exchange of
information on the internet, and on to how our brains are wired, networks are everywhere.
Consequently, they have been in the focus of computer science for decades. There, one of the
most fundamental techniques used to model and study networks are random graph models.
Such a model defines a probability distribution over graphs, which is typically done by

EA
T
C
S

© Tobias Friedrich, Andreas Göbel, Maximilian Katzmann, and Leon Schiller;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 62; pp. 62:1–62:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tobias.friedrich@hpi.de
https://orcid.org/0000-0003-0076-6308
mailto:andreas.goebel@hpi.de
https://orcid.org/0000-0002-5180-7205
mailto:maximilian.katzmann@kit.edu
mailto:leon.schiller@student.hpi.de
https://doi.org/10.4230/LIPIcs.ICALP.2023.62
https://arxiv.org/abs/2302.04113
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

62:2 Cliques in High-Dimensional Geometric Inhomogeneous Random Graphs

specifying a random experiment on how to construct the graph. By analyzing the rules of the
experiment, we can then derive structural and algorithmic properties of the resulting graphs.
If the results match what we observe on real-world networks, i.e., if the model represents the
graphs we encounter in practice well, then we can use it to make further predictions that
help us understand real graphs and utilize them more efficiently.

The quest of finding a good model starts several decades ago, with the famous Erdős-Rényi
(ER) random graphs [19, 24]. There, all edges in the graph exist independently with the
same probability. Due to its simplicity, this model has been studied extensively. However,
because the degree distribution of the resulting graphs is rather homogeneous and they lack
clustering (due to the independence of the edges), the model is not considered to yield good
representations of real graphs. In fact, many networks we encounter in practice feature a
degree distribution that resembles a power-law [3, 38, 39] and the clustering coefficient (the
probability for two neighbors of a vertex to be adjacent) is rather high [35, 40]. To overcome
these drawbacks, the initial random graph model has been adjusted in several ways.

In inhomogeneous random graphs (IRGs), often referred to as Chung-Lu random graphs,
each vertex is assigned a weight and the probability for two vertices to be connected by
an edge is proportional to the product of the weights [1, 11, 12]. As a result, the expected
degrees of the vertices in the resulting graphs match their weight. While assigning weights
that follow a power-law distribution yields graphs that are closer to the complex real-world
networks, the edges are still drawn independently, leading to vanishing clustering coefficients.

A very natural approach to facilitate clustering in a graph model is to introduce an
underlying geometry. This was done first in random geometric graphs (RGGs), where vertices
are distributed uniformly at random in the Euclidean unit square and any two are connected
by an edge if their distance lies below a certain threshold, i.e., the neighborhood of a vertex
lives in a disk centered at that vertex [36]. Intuitively, two vertices that connect to a common
neighbor cannot be too far away from each other, increasing the probability that they are
connected by an edge themselves. In fact, random geometric graphs feature a non-vanishing
clustering coefficient [13]. However, since all neighborhood disks have the same size, they all
have roughly the same expected degree, again, leading to a homogeneous degree distribution.

To get a random graph model that features a heterogeneous degree distribution and
clustering, the two mentioned adjustments were recently combined to obtain geometric
inhomogeneous random graphs (GIRGs) [28]. There, vertices are assigned a weight and a
position in some underlying geometric space and the probability for two vertices to connected
increases with the product of the weights but decreases with increasing geometric distance
between them. As a result, the generated graphs have a non-vanishing clustering coefficient
and, with the appropriate choice of the weight sequence, they feature a power-law degree
distribution. Additionally, recent empirical observations indicate that GIRGs represent
real-world networks well with respect to certain structural and algorithmic properties [5].

We note that GIRGs are not the first model that exhibits a heterogeneous degree
distribution and clustering. In fact, hyperbolic random graphs (HRGs) [30] feature these
properties as well and have been studied extensively before (see, e.g., [7, 20, 21, 23, 26]).
However, in the pursuit of finding good models to represent real-world networks, GIRGs
introduce a parameter that sets them apart from prior models: the choice of the underlying
geometric space and, more importantly, the dimensionality of that space.

Unfortunately, this additional parameter that sets GIRGs apart from previous models,
has not gained much attention at all. In fact, it comes as a surprise that, while the underlying
dimensionality of real-world networks is actively researched [2, 8, 15, 25, 31] and there is a large
body of research examining the impact of the dimensionality on different homogeneous graph

T. Friedrich, A. Göbel, M. Katzmann, and L. Schiller 62:3

models [13, 17, 18] with some advancements being made on hyperbolic random graphs [41],
the effects of the dimension on the structure of GIRGs have only been studied sparsely. For
example, while it is known that GIRGs exhibit a clustering coefficient of Θ(1) for any fixed
dimension [28], it is not known how the hidden constants scale with the dimension.

In this paper, we initiate the study of the impact of the dimensionality on GIRGs. In
particular, we investigate the influence of the underlying geometry as the dimensionality
increases, proving that GIRGs converge to their non-geometric counterpart (IRGs) in the
limit. With our results we are able to explain seemingly disagreeing insights from prior
research on the impact of dimensionality on geometric graph models. Moreover, by studying
the clique structure of GIRGs and its dependence on the dimension d, we are able to quantify
how quickly the underlying geometry vanishes. In the following, we discuss our results in
greater detail. We note that, while we give general proof sketches for our results, the complete
proofs are deferred to the full version [22].

2 (Geometric) Inhomogeneous Random Graphs

Before stating our results in greater detail, let us recall the definitions of the two graph
models we mainly work with throughout the paper.

Inhomogeneous Random Graphs (IRGs). The model of inhomogeneous random graphs was
introduced by Chung and Lu [1, 11, 12] and is a natural generalization of the Erdős-Rényi
model. Starting with a vertex set V of n vertices, each v ∈ V is assigned a weight wv. Each
edge {u, v} ∈

(
V
2
)

is then independently present with probability

Pr [u ∼ v] = min
{

1,
λwuwv

n

}
,

for some constant λ > 0 controlling the average degree of the resulting graph. Note that
assigning the same weight to all vertices yields the same connection probability as in Erdős-
Rényi random graphs. For the sake of simplicity, we define κuv = min{λwuwv, n} such
that Pr [u ∼ v] = κuv/n. Additionally, for a set of vertices Uk = {v1, . . . , vk} with weights
w1, . . . , wk, we introduce the shorthand notation κij = κvivj

and write {κ}(k) = {κij | 1 ≤
i < j ≤ k}.

Throughout the paper, we mainly focus on inhomogeneous random graphs that feature
a power-law degree distribution in expectation, which is obtained by sampling the weights
accordingly. More precisely, for each v ∈ V , we sample a weight wv from the Pareto
distribution P with parameters 1 − β, w0 and distribution function

Pr [wv ≤ x] = 1 −
(

x

w0

)1−β

.

Then the density of wv is ρwv (x) = β−1
w1−β

0
x−β . Here, w0 > 0 is a constant that represents a

lower bound on the weights in the graph and β denotes the power-law exponent of the resulting
degree distribution. Throughout the paper, we assume β > 2 such that a single weight
has finite expectation (and thus the average degree in the graph is constant), but possibly
infinite variance. We denote a graph obtained by utilizing the above weight distribution and
connection probabilities with IRG(n, β, w0). For a fixed weight sequence {w}n

1 , we denote
the corresponding graph by IRG({w}n

1).

ICALP 2023

62:4 Cliques in High-Dimensional Geometric Inhomogeneous Random Graphs

Geometric Inhomogeneous Random Graphs (GIRGs). Geometric inhomogeneous random
graphs are an extension of IRGs, where in addition to the weight, each vertex v is also
equipped with a position xv in some geometric space and the probability for edges to form
depends on their weights and the distance in the underlying space [28]. While, in its raw
form, the GIRG framework is rather general, we align our paper with existing analysis
on GIRGs [6, 29, 34] and consider the d-dimensional torus Td equipped with L∞-norm as
the geometric ground space. More precisely, in what we call the standard GIRG model,
the positions x of the vertices are drawn independently and uniformly at random from Td,
according to the standard Lebesgue measure. We denote the i-th component of xv by xvi.
Additionally, the geometric distance between two points xu and xv, is given by

d(xu, xv) = ∥xu − xv∥∞ = max
1≤i≤d

{|xui − xvi|C},

where | · |C denotes the distance on the circle, i.e,

|xui − xvi|C = min{|xui − xvi|, 1 − |xui − xvi|}.

In a standard GIRG, two vertices u ̸= v are adjacent if and only if their distance d(xu, xv)
in the torus is less than or equal to a connection threshold tuv, which is given by

tuv = 1
2

(
λwuwv

n

)1/d

=
(wuwv

τn

)1/d

,

where τ = 2d/λ. Using L∞ is motivated by the fact that it is the most widely used metric in
the literature because it is arguably the most natural metric on the torus. In particular, it
has the “nice” property that the ball of radius r is a cube and “fits” entirely into Td for all
0 ≤ r ≤ 1.

Note that, as a consequence of the above choice, the marginal connection probability
Pr [u ∼ v] is the same as in the IRG model, i.e., Pr [u ∼ v] = κuv/n. However, while the
probability that any given edge is present is the same as in the IRG model, the edges
in the GIRG model are not drawn independently. We denote a graph obtained by the
procedure described above with GIRG(n, β, w0, d). As for IRGs, we write GIRG({w}n

1 , d)
when considering standard GIRGs with a fixed weight sequence {w}n

1 .

As mentioned above, the standard GIRG model is a commonly used instance of the more
general GIRG framework [28]. There, different geometries and distance functions may be
used. For example, instead of L∞-norm, any Lp-norm for 1 ≤ p < ∞ may be used. Then,
the distance between two vertices u, v is measured as

∥xu − xv∥p :=


(∑d

i=1 |xui − xvi|p
)1/p

if p < ∞

max1≤i≤d{|xui − xvi|} otherwise.

With this choice, the volume (Lebesgue measure) of the ball Bp(r) of radius r under Lp-norm
is equal to the probability that a vertex u falls within distance at most r of v (if r = o(1)).
We denote this volume by ν(r). We call the corresponding graphs standard GIRGs with
any Lp-norm and note that some of our results extend to this more general model. Finally,
whenever our insights consider an even broader variant of the model (e.g., variable ground
spaces, distances functions, weight distributions), we say that they hold for any GIRG and
mention the constraints explicitly.

T. Friedrich, A. Göbel, M. Katzmann, and L. Schiller 62:5

3 Asymptotic Equivalence

Our first main observations is that large values of d diminish the influence of the underlying
geometry until, at some point, our model becomes strongly equivalent to its non-geometric
counterpart, where edges are sampled independently of each other. We prove that the total
variation distance between the distribution over all graphs of the two models tends to zero
as n is kept fixed and d → ∞. We define the total variation distance of two probability
measures P and Q on the measurable space (Ω, F) as

∥P, Q∥TV = sup
A∈F

|P (A) − P (B)| = 1
2

∑
ω∈Ω

|P (ω) − Q(ω)|,

where the second equality holds if Ω is countable. In our case, Ω is the set G(n) of all possible
graphs on n vertices, and P, Q are distributions over these graphs. If G1, G2 are two random
variables mapping to Ω, we refer to ∥G1, G2∥TV as the total variation distance of the induced
probability measures by G1 and G2, respectively. Informally, this measures the maximum
difference in the probability that any graph G is sampled by G1 and G2.

▶ Theorem 1. Let G(n) be the set of all graphs with n vertices, let {w}n
1 be a weight sequence,

and consider GIRG = IRG({w}n
1) ∈ G(n) and a standard GIRG GGIRG = GIRG({w}n

1 , d) ∈
G(n) with any Lp-norm. Then,

lim
d→∞

∥GGIRG, GIRG∥TV = 0.

We note that this theorem holds for arbitrary weight sequences that do not necessarily
follow a power law and for arbitrary Lp-norms used to define distances in the ground
space. For p ∈ [1, ∞), the proof is based on the application of a multivariate central limit
theorem [37], in a similar way as used to prove a related statement for spherical random
geometric graphs (SRGGs), i.e., random geometric graphs with a hypersphere as ground
space [17]. Our proof generalizes this argument to arbitrary Lp-norms and arbitrary weight
sequences. For the case of L∞-norm, we present a proof based on the inclusion-exclusion
principle and the bounds we develop in the full version [22, Section 4].

Remarkably, while a similar behavior was previously established for SRGGs, there exist
works indicating that RGGs on the hypercube do not converge to their non-geometric
counterpart [13, 18] as d → ∞. We show that this apparent disagreement is due to the fact
that the torus is a homogeneous space while the hypercube is not. In fact, our proof shows
that GIRGs on the hypercube do converge to a non-geometric model in which edges are,
however, not sampled independently. This lack of independence is because, on the hypercube,
there is a positive correlation between the distances from two vertices to a given vertex,
leading to a higher tendency to form clusters, as was observed experimentally [18]. Due
to the homogeneous nature of the torus, the same is not true for GIRGs and the model
converges to the plain IRG model with independent edges.

4 Clique Structure

To quantify for which dimensions d the graphs in the GIRG model start to behave similar to
IRGs, we investigate the number and size of cliques. Previous results on SRGGs indicate
that the dimension of the underlying space heavily influences the clique structure of the
model [4, 17]. However, it was not known how the size and the number of cliques depends
on d if we use the torus as our ground space, and how the clique structure in high-dimensions
behaves for inhomogeneous weights.

ICALP 2023

62:6 Cliques in High-Dimensional Geometric Inhomogeneous Random Graphs

Table 1 Asymptotic behavior of the expected number of k-cliques. The behavior in the first
column is the same as in hyperbolic random graphs [7], and the behavior in the third column is the
same as in the IRG model [14]. Results marked with * were previously known for constant k [34].

E [Kk] for k ≥ 4

d = Θ(1) d = o(log(n)) d = ω(log(n))

2 < β < 3, k > 2
3−β

n
k
2 (3−β)Θ(k)−k* n

k
2 (3−β)Θ(k)−k n

k
2 (3−β)Θ(k)−k

2 < β < 3, k < 2
3−β

nΘ(k)−k* ne−Θ(1)dkΘ(k)−k n
k
2 (3−β)Θ(k)−k

β > 3 nΘ(k)−k ne−Θ(1)dkΘ(k)−k o(1)

We give explicit bounds on the expected number of cliques of a given size k, which we
afterwards turn into bounds on the clique number ω(G), i.e., the size of the largest clique in
the graph G. While the expected number of cliques in the GIRG model was previously studied
by Michielan and Stegehuis [34] when the power-law exponent of the degree distribution
satisfies β ∈ (2, 3), to the best of our knowledge, the clique number of GIRGs remains
unstudied even in the case of constant (but arbitrary) dimensionality. We close this gap,
reproduce the existing results, and extend them to the case β ≥ 3 and the case where d can
grow as a function of the number of vertices n in the graph. Furthermore, our bounds for the
case β ∈ (2, 3) are more explicit and complement the work of Michielan and Stegehuis, who
expressed the (rescaled) asymptotic number of cliques as converging to a non-analytically
solvable integral. Furthermore, we show that the clique structure in our model eventually
behaves asymptotically like that of an IRG if the dimension is sufficiently large. In summary,
our main contributions are outlined in Tables 1, 2, and Table 3.

We observe that the structure of the cliques undergoes three phase transitions in the size
of the cliques k, the dimension d, and the power-law exponent β.

Transition in k. When β ∈ (2, 3) and d ∈ o(log(n)), the first transition is at k = 2
3−β ,

as was previously observed for hyperbolic random graphs [7] and for GIRGs of constant
dimensionality [34]. The latter work explains this behavior by showing that for k < 2

3−β ,
the number of cliques is strongly dominated by “geometric” cliques forming among vertices
whose distance is of order n−1/d regardless of their weight. For k > 2

3−β , on the other hand,
the number of cliques is dominated by “non-geometric” cliques forming among vertices with
weights in the order of

√
n. This behavior is in contrast to the behavior of cliques in the

IRG model, where this phase transition does not exist and where the expected number of k

cliques is Θ
(

n
k
2 (3−β)

)
for all k ≥ 3 (if β ∈ (2, 3)) [14].

Transition in d. Still assuming β ∈ (2, 3), the second phase transition occurs as d becomes
superlogarithmic. More precisely, we show that in the high-dimensional regime, where
d = ω(log(n)), the phase transition in k vanishes, as the expected number of cliques of size
k ≥ 4 behaves asymptotically like its counterpart in the IRG model. Nevertheless, we can
still differentiate the two models as long as d = o(log3/2(n)), by counting triangles among
low degree vertices as can be seen in Table 2.

The reason for this behavior is that the expected number of cliques in the case d =
ω(log(n)) is already dominated by cliques forming among vertices of weight close to

√
n. For

those, the probability that a clique is formed already behaves like in an IRG although, for
vertices of small weight, said probability it is still larger.

T. Friedrich, A. Göbel, M. Katzmann, and L. Schiller 62:7

Table 2 Asymptotic behavior of the expected number of triangles. The case β = ∞ refers to the
case of constant weights. While in the case β < 3, the number of triangles already behaves like that
of the IRG model if d = ω(log(n)), in the case β > 3, the number of triangles remains superconstant
as long as d = o

(
log3/2(n)

)
.

Expected number of triangles E [K3]

d = o(log(n)) d = ω(log(n)) d = ω(log2(n))

2 < β < 7
3 n

3
2 (3−β)Θ (1) n

3
2 (3−β)Θ (1) n

3
2 (3−β)Θ (1)

7
3 < β < 3 ne−Θ(1)dΘ (1) n

3
2 (3−β)Θ (1) n

3
2 (3−β)Θ (1)

β > 3 ne−Θ(1)dΘ (1) Ω
(

exp
(

ln3(n)
d2

))
Θ(1)

β = ∞ ne−Θ(1)dΘ (1) Θ
(

exp
(

ln3(n)
d2

))
Θ(1)

Regarding the clique number, in the case β > 3, we observe a similar phase transition
in d. For constant d, the clique number of a GIRG is Θ(log(n)/ log log(n)) = ω(1). We
find that this asymptotic behavior remains unchanged if d = O(log log(n)). However, if
d = ω(log log(n)) but d = o(log(n)), the clique number scales as Θ(log(n)/d), which is still
superconstant. Additionally if d = ω(log(n)), we see that, again, GIRGs show the same
behavior as IRGs. That is, there are asymptotically no cliques of size larger than 3.

Transition in β. The third phase transition occurs at β = 3 in the high-dimensional case,
which is in line with the fact that networks with a power-law exponent β ∈ (2, 3) contain with
high probability (w.h.p., meaning with probability 1 − O(1/n)) a densely connected “heavy
core” of Θ

(
n

1
2 (3−β)

)
vertices with weight

√
n or above, which vanishes if β is larger than

3. This heavy core strongly dominates the number of cliques of sufficient size and explains
why the clique number is Θ

(
n

1
2 (3−β)

)
regardless of d if β ∈ (2, 3). As β grows beyond 3,

the core disappears and leaves only very small cliques. Accordingly for β > 3 IRGs contain
asymptotically almost surely (a.a.s., meaning with probability 1 − o(1)) no cliques of size
greater than 3. In contrast to that, for GIRGs of dimension d = o(log(n)) (and HRGs), the
clique number remains superconstant and so does the number of k-cliques for any constant
k ≥ 3. If d = ω(log(n)), there are no cliques of size greater than 3 like in an IRG. However,
as noted before, GIRGs feature many more triangles than IRGs as long as d = o(log3/2(n)).

Beyond the three mentioned phase transitions, we conclude that, for constant d, the
main difference between GIRGs and IRGs is that the former contain a significant number of
cliques that form among vertices of low weight, whereas, in the latter model only high-weight
vertices contribute significantly to the total number of cliques. In fact, here, the expected
number of k cliques in the heavy core is already of the same order as the total expectation
of Kk in the whole graph. Similarly, in the GIRG model, the expected number of cliques
forming in the low-weight subgraph G≤w for some constant w, is already of the same order as
the total number of cliques if k < 2

3−β or β ≥ 3 (otherwise, this number is, again, dominated
by cliques from the heavy core).

The proofs of our results (i.e., the ones in the above tables) are mainly based on bounds
on the probability that a set of k randomly chosen vertices forms a clique. To obtain
concentration bounds on the number of cliques as needed for deriving bounds on the clique
number, we use the second moment method and Chernoff bounds.

ICALP 2023

62:8 Cliques in High-Dimensional Geometric Inhomogeneous Random Graphs

For the case of d = ω(log(n)), many of our results are derived from the following general
insight. We show that for and all β > 2, the probability that a set of vertices forms a
clique already behaves similar as in the IRG model if the weights of the involved nodes are
sufficiently large. For d = ω(log(n)2), this holds in the entire graph, that is, regardless of the
weights of the involved vertices. In fact our statement holds even more generally. That is,
the described behavior not only applies to the probability that a clique is formed but also to
the probability that any set of edges (or a superset thereof) is created.

▶ Theorem 2. Let G be a standard GIRG and let k ≥ 3 be a constant. Furthermore, let
Uk = {v1, . . . , vk} be a set of vertices chosen uniformly at random and let {κ}(k) = {κij |
1 ≤ i, j ≤ k} describe the pairwise product of weights of the vertices in Uk. Let E(Uk) denote
the (random) set of edges formed among the vertices in Uk. Then, for d = ω

(
log2(n)

)
and

any set of edges A ⊆
(

Uk

2
)
,

Pr
[
E(Uk) ⊇ A | {κ}(k)

]
= (1 ± o(1))

∏
{i,j}∈A

κij

n
.

If d = ω (log(n)),

Pr
[
E(Uk) ⊇ A | {κ}(k)

]
= (1 ± o(1))

∏
{i,j}∈A

(κij

n

)1∓O
(

log(n)
d

)
.

For the proof we derive elementary bounds on the probability of the described events
and use series expansions to investigate their asymptotic behavior. Remarkably, in contrast
to our bounds for the case d = o(log(n)), the high-dimensional case requires us to pay closer
attention to the topology of the torus.

We leverage the above theorem to prove that GIRGs eventually become equivalent to
IRGs with respect to the total variation distance. Theorem 2 already implies that the
expected number of cliques in a GIRG is asymptotically the same as in an IRG for all k ≥ 3
and all β > 2 if d = ω(log2(n)). However, we are able to show that the expected number
of cliques for β ∈ (2, 3) actually already behaves like that of an IRG if d = ω(log(n)). The
reason for this is that the clique probability among high-weight vertices starts to behave like
that of an IRG earlier than it is the case for low-weight vertices and cliques forming among
these high-weight vertices already dominate the number of cliques. Moreover, the clique
number behaves like that of an IRG if d = ω(log(n)) for all β > 2. However, the number of
triangles among vertices of constant weight asymptotically exceeds that of an IRG as long as
d = o(log3/2(n)), which we prove by deriving even sharper bounds on the expected number
of triangles. Accordingly, convergence with respect to the total variation distance cannot
occur before this point (this holds for all β > 2).

In contrast to this, for the low-dimensional case (where d = o(log(n))), the underlying
geometry still induces strongly notable effects regarding the number of sufficiently small
cliques for all β > 2. However, even here, the expected number of such cliques decays
exponentially in dk. The main difficulty in showing this is that we have to handle the case of
inhomogeneous weights, which significantly influence the probability that a set of k vertices
chosen uniformly at random forms a clique. To this end, we prove the following theorem that
bounds the probability that a clique among k vertices is formed if the ratio of the maximal
and minimal weight is at most cd. Note that the vertices forming a star is necessary for a
clique to form. For this reason we consider the event Ec

star of the vertices forming a star
centered at the lowest weight vertex. The theorem generalizes a result of Decreusefond et
al. [16].

T. Friedrich, A. Göbel, M. Katzmann, and L. Schiller 62:9

Table 3 Asymptotic behavior of the clique number of G for different values of d in the GIRG
model. The behavior of the first column is the same as in hyperbolic random graphs established in
[7], and the behavior in the third column is the same as that of IRG graphs established in [27]. All
results hold a.a.s. and under L∞-norm.

ω(G)

d = O(log log(n)) d = o(log(n)) d = ω(log(n))

β < 3 Θ
(
n(3−β)/2)

Θ
(
n(3−β)/2)

Θ
(
n(3−β)/2)

β = 3 Θ
(

log(n)
log log(n)

)
Ω

(log(n)
d

)
O (1)

β > 3 Θ
(

log(n)
log log(n)

)
Θ

(log(n)
d

)
≤ 3

equivalent to HRGs [7] equivalent to IRGs [27]

▶ Theorem 3. Let G be a standard GIRG and consider k ≥ 3. Furthermore, let Uk =
{v1, v2, . . . , vk} be a set of vertices chosen uniformly at random and assume without loss
of generality that w1 ≤ . . . ≤ wk. Let Ec

star be the event that v1 connects to all vertices in
Uk \ {v1} and that wk ≤ cdw1 for some constant c ≥ 1 with c2 (

w2
1/(τn)

)1/d ≤ 1/4. Then,
the probability that Uk is a clique conditioned on Ec

star fulfills(
1
2

)d(k−1)
kd ≤ Pr [Uk is clique | Ec

star] ≤ cd(k−2)
(

1
2

)d(k−1)
kd.

Building on the variant by Decreusefond et al. [16], we provide an alternative proof of
the original statement, showing that the clique probability conditioned on the event Ec

star is
monotonous in the weight of all other vertices. Remarkably, this only holds if we condition
on the event that the center of our star is of minimal weight among the vertices in Uk.

We apply Theorem 3 to bound the clique probability in the whole graph (where the
ratio of the maximum and minimum weight of vertices in Uk is not necessarily bounded).
Afterwards, we additionally use Chernoff bounds and the second moment method to bound
the clique number.

5 Relation to Previous Analyses

In the following, we discuss how our results compare to insights obtained on similar graph
models that (apart from not considering weighted vertices) mainly differ in the considered
ground space. We not that, in the following, we consider GIRGs with uniform weights in
order to obtain a valid comparison.

Random Geometric Graphs on the Sphere. Our results indicate that the GIRG model on
the torus behaves similarly to the model of Spherical Random Geometric Graphs (SRGGs)
in the high-dimensional case. In this model, vertices are distributed on the surface of a d − 1
dimensional sphere and an edge is present whenever the Euclidean distance between two
points (measured by their inner product) falls below a given threshold. Analogous to the
behavior of GIRGs, when keeping n fixed and considering increasing d → ∞, this model
converges to its non-geometric counterpart, which in their case is the Erdős–Rényi model [17].
It is further shown that the clique number converges to that of an Erdős–Rényi graph (up to
a factor of 1 + o(1)) if d = ω(log3(n)).

ICALP 2023

62:10 Cliques in High-Dimensional Geometric Inhomogeneous Random Graphs

Although the overall behavior of SRGGs is similar to that of GIRGs, the magnitude of d

in comparison to n at which non-geometric features become dominant seems to differ. In
fact, it is shown in [10, proof of Theorem 3] that the expected number of triangles in sparse
SRGGs still grows with n as long as d = o(log3(n)), whereas its expectation is constant in
the non-geometric, sparse case (as for Erdős–Rényi graphs). On the other hand, in the GIRG
model, we show that the expected number of triangles in the sparse case converges to the
same (constant) value as that of the non-geometric model if only d = ω(log3/2(n)). This
indicates that, in the high-dimensional regime, differences in the nature of the underlying
geometry result in notably different behavior, whereas in the case of constant dimensionality,
the models are often assumed to behave very similarly.

Random Geometric Graphs on the Hypercube. The work of Dall and Christensen [13]
and the recent work of Erba et al. [18] show that RGGs on the hypercube do not converge
to Erdős–Rényi graphs as n is fixed and d → ∞. However, our results imply that this is the
case for RGGs on the torus. These apparent disagreements are despite the fact that Erba et
al. use a similar central limit theorem for conducting their calculations and simulations [18].

The tools established in our paper yield an explanation for this behavior. Our proof
of Theorem 1 relies on the fact that, for independent zero-mean variables Z1, . . . , Zd, the
covariance matrix of the random vector Z =

∑d
i=1 Zi is the identity matrix. This, in turn, is

based on the fact that the torus is a homogeneous space, which implies that the probability
measure of a ball of radius r (proportional to its Lebesgue measure or volume, respectively)
is the same, regardless of where this ball is centered. It follows that the random variables
Z(u,v) and Z(u,s), denoting the normalized distances from u to s and v, respectively, are
independent. As a result their covariance is 0 although both “depend” on the position of u.

For the hypercube, this is not the case. Although one may analogously define the distance
of two vertices as a sum of independent, zero-mean random vectors over all dimensions just
like we do in this paper, the random variables Z(u,v) and Z(u,s) do not have a covariance of 0.

6 Conjectures & Future Work

While making the first steps towards understanding GIRGs and sparse RGGs on the torus in
high dimensions, we encountered several questions whose investigation does not fit into the
scope of this paper. In the following, we give a brief overview of our conjectures and possible
starting points for future work.

In addition to investigating how the number and size of cliques depends on d, it remains
to analyze among which vertices k-cliques form dominantly. For constant d and β ∈ (2, 3)
this was previously done by Michielan and Stegehuis who noted that cliques of size k > 2

3−β

are dominantly formed among vertices of weight in the order of
√

n like in the IRG model,
whereas cliques of size k < 2

3−β dominantly appear among vertices within distance in the
order of n−1/d [34]. This characterizes the geometric and non-geometric nature of cliques
of size larger and smaller than 2

3−β , respectively. As our work indicates that this phase
transition vanishes as d = ω(log(n))), we conjecture that in this regime cliques of all sizes are
dominantly found among vertices of weight in the order

√
n. For the case β ≥ 3 it remains to

analyze the position of cliques of all sizes. It would further be interesting to find out where
cliques of superconstant size are dominantly formed as previous work in this regard only
holds for constant k.

Additionally, it would be interesting to extend our results to a noisy variant of GIRGs.
While the focus in this paper lies on the standard GIRGs, where vertices are connected
by an edge if their distance is below a given threshold, there is a temperate version of the
model, where the threshold is softened using a temperature parameter. That is, while the

T. Friedrich, A. Göbel, M. Katzmann, and L. Schiller 62:11

probability for an edge to exist still decreases with increasing distance, we can now have
longer edges and shorter non-edges with certain probabilities. The motivation of this variant
of GIRGs is based on the fact that real data is often noisy as well, leading to an even better
representation of real-world graphs.

We note that we expect our insights to carry over to the temperate model, as long as we
have constant temperature. Beyond that, we note that both temperature and dimensionality
affect the influence of the underlying geometry. Therefore, it would be interesting to see
whether a sufficiently high temperature has an impact on how quickly GIRGs converge to
the IRGs.

Furthermore, it remains to investigate the dense case of our model, where the marginal
connection probability of any pair of vertices is constant and does not decrease with n.
For dense SRGGs, an analysis of the high-dimensional case has shown that the underlying
geometry remains detectable as long as d = o(n3). As mentioned above, GIRGs and their
non-geometric counterpart can be distinguished as long as d = o(log3/2(n)), by considering
triangles among low-weight vertices. For dense SRGGs the geometry can be detected by
counting so-called signed triangles [10]. Although for the sparse case, signed triangles have
no advantage over ordinary triangles, they are much more powerful in the dense case and
might hence prove useful for our model in the dense case as well.

Another crucial question is under which circumstances the underlying geometry of our
model remains detectable by means of statistical testing, and when (i.e. for which values of d)
our model converges in total variation distance to its non-geometric counterpart. A large body
of work has already been devoted to this question for RGGs on the sphere [17, 10, 9, 33, 32]
and recently also for random intersection graphs [9]. While the question when these models
lose their geometry in the dense case is already largely answered, it remains open for the sparse
case (where the marginal connection probability is proportional to 1/n) and progress has only
been made recently [9, 32]. It would be interesting to tightly characterize when our model
loses its geometry both for the case of constant and for the case of inhomogeneous weights.
Our bounds show that the number of triangles in our model for the sparse case (constant
weights) is in expectation already the same as in a Erdős-Rényi graph if d = ω(log3/2(n)),
while on the sphere this only happens if d = ω(log3(n)) [10]. Accordingly, we expect that
our model loses its geometry earlier than the spherical model.

References
1 William Aiello, Fan Chung, and Linyuan Lu. A random graph model for power law graphs.

Experimental Mathematics, 10(1):53–66, 2001. doi:10.1080/10586458.2001.10504428.
2 Pedro Almagro, Marián Boguñá, and M. Ángeles Serrano. Detecting the ultra low di-

mensionality of real networks. Nature Communications, 13(1):6096, 2022. doi:10.1038/
s41467-022-33685-z.

3 Igor Artico, Igor E. Smolyarenko, Veronica Vinciotti, and Ernst C. Wit. How rare are
power-law networks really? Proceedings of the Royal Society A, 476(2241):20190742, 2020.
doi:10.1098/rspa.2019.0742.

4 Konstantin E. Avrachenkov and Andrei V. Bobu. Cliques in high-dimensional random geometric
graphs. Appl. Netw. Sci., 5:1–24, December 2020. doi:10.1007/s41109-020-00335-6.

5 Thomas Bläsius and Philipp Fischbeck. On the External Validity of Average-Case Analyses of
Graph Algorithms. In 30th Annual European Symposium on Algorithms (ESA 2022), pages
21:1–21:14, 2022. doi:10.4230/LIPIcs.ESA.2022.21.

6 Thomas Bläsius, Tobias Friedrich, Maximilian Katzmann, Ulrich Meyer, Manuel Penschuck,
and Christopher Weyand. Efficiently generating geometric inhomogeneous and hyperbolic
random graphs. Network Science, 10(4):361–380, 2022. doi:10.1017/nws.2022.32.

ICALP 2023

https://doi.org/10.1080/10586458.2001.10504428
https://doi.org/10.1038/s41467-022-33685-z
https://doi.org/10.1038/s41467-022-33685-z
https://doi.org/10.1098/rspa.2019.0742
https://doi.org/10.1007/s41109-020-00335-6
https://doi.org/10.4230/LIPIcs.ESA.2022.21
https://doi.org/10.1017/nws.2022.32

62:12 Cliques in High-Dimensional Geometric Inhomogeneous Random Graphs

7 Thomas Bläsius, Tobias Friedrich, and Anton Krohmer. Cliques in hyperbolic random graphs.
Algorithmica, 80(8):2324–2344, 2018. doi:10.1007/s00453-017-0323-3.

8 Anthony Bonato, David F. Gleich, Myunghwan Kim, Dieter Mitsche, Paweł Prałat, Yanhua
Tian, and Stephen J. Young. Dimensionality of social networks using motifs and eigenvalues.
PLOS ONE, 9(9):1–7, 2014. doi:10.1371/journal.pone.0106052.

9 Matthew Brennan, Guy Bresler, and Dheeraj Nagaraj. Phase transitions for detecting latent
geometry in random graphs. CoRR, August 2020. arXiv:1910.14167.

10 Sébastien Bubeck, Jian Ding, Ronen Eldan, and Miklós Rácz. Testing for high-dimensional
geometry in random graphs. CoRR, November 2015. arXiv:1411.5713.

11 Fan Chung and Linyuan Lu. The average distances in random graphs with given expected
degrees. Proceedings of the National Academy of Sciences, 99(25):15879–15882, 2002. doi:
10.1073/pnas.252631999.

12 Fan Chung and Linyuan Lu. Connected Components in Random Graphs with Given Expected
Degree Sequences. Annals of Combinatorics, 6(25):125–145, 2002. doi:10.1007/PL00012580.

13 Jesper Dall and Michael Christensen. Random geometric graphs. Physical Review E, 66:016121,
2002. doi:10.1103/PhysRevE.66.016121.

14 Fraser Daly, Alastair Haig, and Seva Shneer. Asymptotics for cliques in scale-free random
graphs. CoRR, August 2020. arXiv:2008.11557.

15 Li Daqing, Kosmas Kosmidis, Armin Bunde, and Shlomo Havlin. Dimension of spatially
embedded networks. Nature Physics, 7(6):481–484, 2011. doi:10.1038/nphys1932.

16 L. Decreusefond, E. Ferraz, H. Randriambololona, and A. Vergne. Simplicial homology of
random configurations. Advances in Applied Probability, 46(2):325–347, June 2014. doi:
10.1239/aap/1401369697.

17 Luc Devroye, András György, Gábor Lugosi, and Frederic Udina. High-dimensional random
geometric graphs and their clique number. Electronic Journal of Probability, 16(none):2481–
2508, January 2011. doi:10.1214/EJP.v16-967.

18 Vittorio Erba, Sebastiano Ariosto, Marco Gherardi, and Pietro Rotondo. Random geometric
graphs in high dimension. Physical Review E, 102(1):012306, 2020. doi:10.1103/PhysRevE.
102.012306.

19 P. Erdös and A. Rényi. On random graphs i. Publ. Math. Debrecen, 6, 1959.
20 Nikolaos Fountoulakis and Tobias Müller. Law of Large Numbers for the Largest Component

in a Hyperbolic Model of Complex Networks. The Annals of Applied Probability, 28(1):607–650,
2018. doi:10.1214/17-AAP1314.

21 Nikolaos Fountoulakis, Pim van der Hoorn, Tobias Müller, and Markus Schepers. Clustering in
a Hyperbolic Model of Complex Networks. Electronic Journal of Probability, 26(none):1–132,
2021. doi:10.1214/21-EJP583.

22 Tobias Friedrich, Andreas Göbel, Maximilian Katzmann, and Leon Schiller. Cliques in
high-dimensional geometric inhomogeneous random graphs. CoRR, abs/2302.04113, 2023.
doi:10.48550/arXiv.2302.04113.

23 Tobias Friedrich and Anton Krohmer. On the Diameter of Hyperbolic Random Graphs. SIAM
Journal on Discrete Mathematics, 32(2):1314–1334, 2018. doi:10.1137/17M1123961.

24 E. N. Gilbert. Random graphs. The Annals of Mathematical Statistics, 30:1141–1144, 1959.
25 Weiwei Gu, Aditya Tandon, Yong-Yeol Ahn, and Filippo Radicchi. Principled approach to the

selection of the embedding dimension of networks. Nature Communications, 12(1):3772, 2021.
doi:10.1038/s41467-021-23795-5.

26 Luca Gugelmann, Konstantinos Panagiotou, and Ueli Peter. Random hyperbolic graphs:
Degree sequence and clustering. In 39th International Colloquium on Automata, Languages,
and Programming (ICALP), pages 573–585, 2012. doi:10.1007/978-3-642-31585-5_51.

27 Svante Janson, Tomasz Łuczak, and Ilkka Norros. Large cliques in a power-law random
graph. Journal of Applied Probability, 47(4):1124–1135, December 2010. doi:10.1239/jap/
1294170524.

https://doi.org/10.1007/s00453-017-0323-3
https://doi.org/10.1371/journal.pone.0106052
https://arxiv.org/abs/1910.14167
https://arxiv.org/abs/1411.5713
https://doi.org/10.1073/pnas.252631999
https://doi.org/10.1073/pnas.252631999
https://doi.org/10.1007/PL00012580
https://doi.org/10.1103/PhysRevE.66.016121
https://arxiv.org/abs/2008.11557
https://doi.org/10.1038/nphys1932
https://doi.org/10.1239/aap/1401369697
https://doi.org/10.1239/aap/1401369697
https://doi.org/10.1214/EJP.v16-967
https://doi.org/10.1103/PhysRevE.102.012306
https://doi.org/10.1103/PhysRevE.102.012306
https://doi.org/10.1214/17-AAP1314
https://doi.org/10.1214/21-EJP583
https://doi.org/10.48550/arXiv.2302.04113
https://doi.org/10.1137/17M1123961
https://doi.org/10.1038/s41467-021-23795-5
https://doi.org/10.1007/978-3-642-31585-5_51
https://doi.org/10.1239/jap/1294170524
https://doi.org/10.1239/jap/1294170524

T. Friedrich, A. Göbel, M. Katzmann, and L. Schiller 62:13

28 Ralph Keusch. Geometric Inhomogeneous Random Graphs and Graph Coloring Games.
Doctoral thesis, ETH Zurich, 2018. doi:10.3929/ethz-b-000269658.

29 Christoph Koch and Johannes Lengler. Bootstrap Percolation on Geometric Inhomogeneous
Random Graphs. In 43rd International Colloquium on Automata, Languages, and Programming
(ICALP 2016), pages 147:1–147:15, 2016. doi:10.4230/LIPIcs.ICALP.2016.147.

30 Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and Marián
Boguñá. Hyperbolic geometry of complex networks. Physical Review E, 82:036106, 2010.
doi:10.1103/PhysRevE.82.036106.

31 Elizaveta Levina and Peter J. Bickel. Maximum likelihood estimation of intrinsic dimension.
In Proceedings of the 17th International Conference on Neural Information Processing Systems,
pages 777–784, 2004.

32 Siqi Liu, Sidhanth Mohanty, Tselil Schramm, and Elizabeth Yang. Testing thresholds for
high-dimensional sparse random geometric graphs. CoRR, November 2021. arXiv:2111.11316.

33 Suqi Liu and Miklos Z. Racz. Phase transition in noisy high-dimensional random geometric
graphs. CoRR, March 2021. arXiv:2103.15249.

34 Riccardo Michielan and Clara Stegehuis. Cliques in geometric inhomogeneous random graphs.
Journal of Complex Networks, 10(1), 2022. doi:10.1093/comnet/cnac002.

35 Mark Newman. Clustering and preferential attachment in growing networks. Physical Review
E, 64:025102, 2001. doi:10.1103/PhysRevE.64.025102.

36 Mathew Penrose. Random Geometric Graphs. Oxford University Press, 2003.
37 Martin Raič. A multivariate Berry–Esseen theorem with explicit constants. Bernoulli, 25(4A),

November 2019. doi:10.3150/18-BEJ1072.
38 Matteo Serafino, Giulio Cimini, Amos Maritan, Andrea Rinaldo, Samir Suweis, Jayanth R.

Banavar, and Guido Caldarelli. True scale-free networks hidden by finite size effects. Proceedings
of the National Academy of Sciences, 118(2), 2021. doi:10.1073/pnas.2013825118.

39 Ivan Voitalov, Pim van der Hoorn, Remco van der Hofstad, and Dmitri Krioukov. Scale-free
networks well done. Physical Review Research, 1:033034, 2019. doi:10.1103/PhysRevResearch.
1.033034.

40 Duncan J. Watts and Steven H. Strogatz. Collective dynamics of ‘small-world’ networks.
Nature, 393:440–442, 1998. doi:10.1038/30918.

41 Weihua Yang and David Rideout. High dimensional hyperbolic geometry of complex networks.
Mathematics, 8(11), 2020. doi:10.3390/math8111861.

ICALP 2023

https://doi.org/10.3929/ethz-b-000269658
https://doi.org/10.4230/LIPIcs.ICALP.2016.147
https://doi.org/10.1103/PhysRevE.82.036106
https://arxiv.org/abs/2111.11316
https://arxiv.org/abs/2103.15249
https://doi.org/10.1093/comnet/cnac002
https://doi.org/10.1103/PhysRevE.64.025102
https://doi.org/10.3150/18-BEJ1072
https://doi.org/10.1073/pnas.2013825118
https://doi.org/10.1103/PhysRevResearch.1.033034
https://doi.org/10.1103/PhysRevResearch.1.033034
https://doi.org/10.1038/30918
https://doi.org/10.3390/math8111861

An O(log k)-Approximation for Directed Steiner
Tree in Planar Graphs
Zachary Friggstad #

Department of Computing Science, University of Alberta, Canada

Ramin Mousavi #

Department of Computing Science, University of Alberta, Canada

Abstract
We present an O(log k)-approximation for both the edge-weighted and node-weighted versions
of Directed Steiner Tree in planar graphs where k is the number of terminals. We extend
our approach to Multi-Rooted Directed Steiner Tree1, in which we get a O(R + log k)-
approximation for planar graphs for where R is the number of roots.

2012 ACM Subject Classification Theory of computation → Routing and network design problems

Keywords and phrases Directed Steiner tree, Combinatorial optimization, approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.63

Category Track A: Algorithms, Complexity and Games

1 Introduction

In the Directed Steiner Tree (DST) problem, we are given a directed graph G = (V, E)
with edge costs ce ≥ 0, e ∈ E, a root node r ∈ V , and a collection of terminals X ⊆ V \ {r}.
The nodes in V \ (X ∪ {r}) are called Steiner nodes. The goal is to find a minimum cost
subset F ⊆ E such that there is an r − t directed path (dipath for short) using only edges in
F for every terminal t ∈ X. Note any feasible solution that is inclusion-wise minimal must
be an arborescence rooted at r, hence the term “tree”. Throughout, we let n := |V | and
k := |X|.

One key aspect of DST lies in the fact that it generalizes many other important problems,
e.g. Set Cover, (non-metric, multilevel) Facility Location, and Group Steiner Tree.
Halperin and Krauthgamer [13] show Group Steiner Tree cannot be approximated within
O(log2−ϵ n) for any ϵ > 0 unless NP ⊆ DTIME (npolylog (n)) and therefore the same result
holds for DST.

Building on a height-reduction technique of Calinescu and Zelikovsky [6, 21], Charikar et
al. give the best approximation for DST which is an O(kϵ)-approximation for any constant
ϵ > 0 [7] and also an O(log3 k)-approximation in O(npolylog(k)) time (quasi-polynomial
time). This was recently improved by Grandoni, Laekhanukit, and Li [12], who give a quasi-
polynomial time O(log2 k

log log k)-approximation factor for DST. They also provide a matching
lower bound in that no asymptotically-better approximation is possible even for quasi-
polynomial time algorithms, unless either the Projection Games Conjecture fails to
hold or NP ⊆ ZPTIME(2nδ) for some 0 < δ < 1.

The undirected variant of DST (i.e., Undirected Steiner Tree) is better understood.A
series of papers steadily improved over the simple 2-approximation [22, 14, 17, 19] culminating
in a ln 4 + ϵ for any constant ϵ > 0 [5]. Bern and Plassmann [3] showed that unless P = NP
there is no approximation factor better than 96

95 for Undirected Steiner Tree.

1 In general graphs Multi-Rooted Directed Steiner Tree and Directed Steiner Tree are easily
seen to be equivalent but in planar graphs this is not the case necessarily.

EA
T
C
S

© Zachary Friggstad and Ramin Mousavi;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 63; pp. 63:1–63:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:zacharyf@ualberta.ca
mailto:mousavih@ualberta.ca
https://doi.org/10.4230/LIPIcs.ICALP.2023.63
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

63:2 Directed Steiner Tree in Planar Graphs

Studying the complexity of network design problems on restricted metrics such as planar
graphs and more generally, graphs that exclude a fixed minor has been a fruitful research
direction. For example, [4] gives the first polynomial time approximation scheme (PTAS) for
Undirected Steiner Tree on planar graphs and more generally [2] obtains a PTAS for
Steiner Forest on graphs of bounded-genus. Very recently, Cohen-Addad [8] presented a
quasi-polynomial time approximation scheme (QPTAS) for Steiner tree on minor-free graphs.

A clear distinction in the complexity of Undirected Steiner Tree on planar graphs
and general graphs have been established; however, prior to our work we did not know if DST
on planar graphs is “easier” to approximate than in general graphs. Demaine, Hajiaghayi,
and Klein [9] show that if one takes a standard flow-based relaxation for DST in planar graphs
and further constraints the flows to be “non-crossing”, then the solution can be rounded
to a feasible DST solution while losing only a constant factor in the cost. However, the
resulting relaxation is non-convex and, to date, we do not know how to compute a low-cost,
non-crossing flow in polynomial time for DST instances on planar graphs. Recently, in [10] a
constant factor approximation for planar DST was given for quasi-bipartite instances (i.e. no
two Steiner nodes are connected by an edge). Though, we remark that the techniques in that
paper are quite different than the techniques we use in this paper; [10] uses a primal-dual
algorithm based on a standard LP relaxation whereas the techniques we use in this paper
rely on planar separators.

In this paper, we show DST on planar graphs admits a O(log k)-approximation, while
DST on general graphs does not have an approximation factor better than O(log2−ϵ n) for
any ϵ > 0 unless NP ⊆ DTIME (npolylog (n)).

Our approach is based on planar separators presented by Thorup [20]2 which states
given an undirected graph G with n vertices, one could find a “well-structured” subgraph
F such that each connected component of G \ F has at most n

2 vertices. We show using
this separator and an aggressive guessing of optimal value of each subproblems lead to an
O(log k)-approximation algorithm in quasi-polynomial time. Then, we show how to modify
the guessing part to make the algorithm run in polynomial time. Well-structured separators
are useful in enabling divide-and-conquer approach for some problems, such as Maximum
Independent Set and Pebbling [16]. Also very recently, Cohen-Addad [8] uses the same
separator we consider to design QPTASes for k-MST and Undirected Steiner Tree on
planar graphs. He also develops a new separator to deal with these problems in minor-free
graphs.

We show the separator theorem of Thorup can be used to obtain a simple logarithmic
approximation algorithm for planar DST.

▶ Theorem 1. There is a O(log k)-approximation for planar Directed Steiner Tree,
where k is the number of terminals.

We remark that it is trivial to generalize our algorithm to the node-weighted setting
of DST in planar graphs. That is, to instances where Steiner nodes v ∈ V \ (X ∪ {r})
have costs cv ≥ 0 and the goal is to find the cheapest S of Steiner Nodes such that the
graph G[{r} ∪X ∪ S] contains an r − t dipath for each t ∈ X. Clearly node-weighted DST
generalizes edge-weighted DST even in planar graphs settings since we can subdivide an
edge with cost ce and include this cost on the new node. In general graphs, edge-weighted
DST generalizes node-weighted DST because a node v with cost cv can be turned into two
nodes v+, v− connected by an edge (v+, v−) with cost cv; edges entering v now enter v+ and
edges exiting v now exit v−. But this operation does not preserve planarity, it is easy to find
examples where this results in a non-planar graph.

2 As stated in [20] this separator theorem was implicitly proved in [15].

Z. Friggstad and R. Mousavi 63:3

We also extend our result to multi-rooted case. In Multi-Rooted Directed Steiner
Tree (MR-DST), instead of one root, we are given multiple roots r1, . . . , rR and the set of
terminals X ⊆ V \ {r1, . . . , rR}. The goal here is to find a minimum cost subgraph such that
every terminal is reachable from one of the roots.

Note that MR-DST on general graphs is equivalent to DST by adding an auxiliary root
node r and adding edges (r, ri) for 1 ≤ i ≤ R with zero cost. However, this reduction also does
not preserve planarity. We prove our result for MR-DST by constructing a “well-structured”
separator for the multi-rooted case.

▶ Theorem 2. There is a O(R+log k)-approximation for planar Multi-Rooted Directed
Steiner Tree, where R is the number of roots and k is the number of terminals.

2 Preliminaries

For convenience, we allow our input graphs to contain multiple directed edges between
two nodes. All directed paths (dipath for short) in this paper are simple. Fix a digraph
G = (V, E) with edge costs ce ≥ 0 for all e ∈ E. We identify a dipath P by its corresponding
sequence vertices, i.e., P = v1, . . . , va and we say P is a v1 − va-dipath. The start and end
vertices of P are v1 and va, respectively. For a subgraph H of G, we define the cost of a
subgraph H by costc(H) :=

∑
e∈E(H)

ce

We say a vertex v is reachable from u if there is a dipath from u to v. We denote by
dc(u, v) the cost of a shortest dipath from u to v, in particular, dc(u, u) = 0. The diameter
of a digraph is defined as the maximum dc(u, v) for all u ≠ v where v is reachable from
u. For both dc(.) and costc(.) we drop the subscript c if the edge costs is clear from the
context. For a subset S ⊆ V and a vertex u, we define d(S, v) := min

u∈S
{d(u, v)}. Denote by

G[S] the induced subgraph of G on the subset of vertices S, i.e., G[S] = (S, E[S]) where E[S]
is the set of edges of G with both endpoints in S. A weakly connected component of G is a
connected component of the undirected graph obtained from G by ignoring the orientation
of the edges. The indegree of a vertex v with respect to F ⊆ E is the number of edges in F

oriented towards v.
A partial arborescence T = (VT , ET) rooted at r in G, is a (not necessarily spanning)

subgraph of G such that r ∈ VT and T is a directed tree oriented away from r. An
arborescence is a partial arborescence that spans all the vertices. A breadth first search (BFS)
arborescence BG rooted at r is a (perhaps partial) arborescence including all nodes reachable
from r where the dipath from r to any vertex v on BG is a shortest dipath from r to v.

For two disjoint subsets of vertices S, T ⊆ V denote by δ(S, T) the set of edges with one
endpoint in S and the other endpoint in T (regardless of the orientation).

Given a subgraph H of G, for notational simplicity we write G/H the resulting graph
from contracting all the edges in H . Also we denote by G\H the resulting graph by removing
H from G, i.e., removing all the vertices of H and the edges incident to these vertices.

Our algorithm is based on planar separators described by Thorup [20].

▶ Theorem 3 (Lemma 2.3 in [20]). Let G = (V, E) be a connected and undirected planar
graph with non-negative vertex weights, and let T be a spanning tree rooted at a vertex r ∈ V .
In linear time, one can find three vertices v1, v2, and v3 such that the union of vertices on
paths Pi between r and vi in V (T) for i = 1, 2, 3 forms a separator of G, i.e., every connected
component of G \ (P1 ∪ P2 ∪ P3) has at most half the weight of G.

ICALP 2023

63:4 Directed Steiner Tree in Planar Graphs

An immediate consequence of the above result is that given a directed graph and a BFS
arborescence rooted at r instead of a spanning tree, one can obtain a separator consisting
three shortest dipaths each starting at r.

▶ Corollary 4 (Directed separator). Let G = (V, E) be a planar digraph with edge costs ce ≥ 0
for all e ∈ E, and non-negative vertex weights such that every vertex v ∈ V is reachable from
r. Given a vertex r ∈ V , in polynomial time, we can find three shortest dipaths P1, P2, and
P3 each starting at r such that every weakly connected component of G \ (P1 ∪ P2 ∪ P3) has
at most half the weight of G.

Throughout this paper, we create subinstances from I by contracting a subset of edges F

in G. Whenever, we create a subinstance I ′ we let the edge cost for the subinstance to be
the natural restriction of c to G/F , i.e., if e is in both E(G) and E(G/F) then e has cost ce

in I ′ and if e is in E(G/F) but not in E(G), then its cost in I ′ is set to be the cost of the
corresponding edge in E(G).

Let I =
(
G = (V, E), c, {r1, . . . , rR}, X

)
be an instance of MR-DST on planar graphs

where G is a planar digraph, ce ≥ 0 for all e ∈ E is the edge costs, {r1, . . . , rR} are the
roots, and X ⊆ V \ {r1, . . . , rR} is the set of terminals. By losing a small factor in the
approximation guarantee, one can assume in an instance of MR-DST that all the costs are
positive integers and d

(
{r1, . . . , rR}, v

)
is polynomially bounded by n for all v ∈ V . The

very standard proof appears in Appendix 6.

▶ Lemma 5 (Polynomial bounded distances). For any constant ϵ > 0, if there is an α-
approximation for MR-DST instances in planar graphs where all edges e have positive integer
costs ce ≥ 1 and dc(r, v) ≤ |X|·|V |

ϵ + |V | for each v ∈ V , then there is an (α · (1 + ϵ))-
approximation for general instances of MR-DST in planar graphs.

3 Planar DST

In this section we prove Theorem 1. Fix an instance I =
(
G = (V, E), c, r, X

)
of DST on

planar graphs that satisfies the assumptions in Lemma 5 for, say, ϵ = 1/2. Let n := |V | and
k := |X|. Furthermore, fix an optimal solution OPT for this instance and let opt denote its
cost. So the distance of every vertex from r is at most O(n · k).

Our algorithm recursively constructs smaller subinstances based on a partial arborescence
(as a separator) and disjoint subsets of vertices (as the weakly connected components after
removing the separator). The following is a more formal definition of these subinstances.

▶ Definition 6 (Induced subinstances). Let I = (G = (V, E), c, r, X) be an instance of DST
on planar graphs. Let T be a partial arborescence rooted at r, and let C1, . . . , Ch be the weakly
connected components of G \ T . The subinstances of DST induced by tuple (G, T, C1, . . . , Ch)
are defined as follows: let Gcontract be the graph obtained from G by contracting T into
r. For each Ci where 1 ≤ i ≤ h we construct instance ICi

:=
(
GCi

, c, r, Ci ∩ X
)

where
GCi := Gcontract[Ci ∪ {r}]. See Figure 1.

Given solutions F1,F2, . . . ,Fh for the subinstances induced by (G, T, C1, . . . , Ch), one
can naturally consider the corresponding subset of edges of E(T) ∪ F1 ∪ F2 ∪ . . . ∪ Fh in G

and it is easy to see this forms a feasible solution for instance I. We formalize this in the
next lemma.

▶ Lemma 7 (Merged solution). Consider the subinstances ICi
for 1 ≤ i ≤ h as defined in

Definition 6. Let FCi
be a solution for ICi

. Let F ⊆ E(G) be the corresponding edges of
E(T) ∪ (

⋃h
i=1 FCi) in G. Then, F is a feasible solution for instance I and furthermore

cost(F) = cost(T) +
h∑

i=1
cost(FCi). See Figure 1.

Z. Friggstad and R. Mousavi 63:5

<latexit sha1_base64="RFhIse+geX5fEOT0XBVaFnnjMlE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipSQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTcmG4K2+vE7aV1XvpnrdvK7Ua3kcRTiDc7gED26hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBw0mM5A==</latexit>a
<latexit sha1_base64="WbjOqWGUu6YMogqMdBIn23mRkDg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipGQzKFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNWHNz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6reTfW6eV2p1/I4inAG53AJHtxCHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDxM2M5Q==</latexit>

b
<latexit sha1_base64="/z6pg4UKRgIP4DXO/+3T2pokOgM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipyQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTcmG4K2+vE7aV1XvpnrdvK7Ua3kcRTiDc7gED26hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBxlGM5g==</latexit>c

<latexit sha1_base64="b6Gm6+maAvyxQ3K5INYxbZr1faQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lspu3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5EPOqLFSMxyUK27VXYCsEy8nFcjRGJS/+mHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVVCMoyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNcOan3GZpAYlWy4apoKYmMy/JiFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W9m+p187pSr+VxFOEMzuESPLiFOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MHx9WM5w==</latexit>

d <latexit sha1_base64="OG91mP62lW4yCydMtsRVHNhzecM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipiYNyxa26C5B14uWkAjkag/JXfxizNEJpmKBa9zw3MX5GleFM4KzUTzUmlE3oCHuWShqh9rPFoTNyYZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTVjzMy6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmRD8FZfXiftq6p3U71uXlfqtTyOIpzBOVyCB7dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AyVmM6A==</latexit>e

<latexit sha1_base64="uvvbfj8q2flK51xBCY0PkuKzAbM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTcmG4K2+vE7aV1XvpnrdvK7Ua3kcRTiDc7gED26hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwB3Q2M9Q==</latexit>r

<latexit sha1_base64="lOW4B7OynRqK5A1HY5HygBgOnW4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMdCLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoJJY+53nlBpHstHM03Qj+hI8pAzaqz00Bh4g3LFrboLkHXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgrNRPNSaUTegIe5ZKGqH2s8WpM3JhlSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNWPMzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+2rqndTvb6/rtRreRxFOINzuAQPbqEOd9CEFjAYwTO8wpsjnBfn3flYthacfOYU/sD5/AG6z41q</latexit>

C1

<latexit sha1_base64="C4ZFy+kIuSw3Yds5nqVH40Q8O48=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY4kXDxilEcCGzI7NDBhdnYzM2tCNnyCFw8a49Uv8ubfOMAeFKykk0pVd7q7glhwbVz328ltbe/s7uX3CweHR8cnxdOzto4SxbDFIhGpbkA1Ci6xZbgR2I0V0jAQ2AmmjYXfeUKleSQfzSxGP6RjyUecUWOlh8agMiiW3LK7BNkkXkZKkKE5KH71hxFLQpSGCap1z3Nj46dUGc4Ezgv9RGNM2ZSOsWeppCFqP12eOidXVhmSUaRsSUOW6u+JlIZaz8LAdobUTPS6txD/83qJGdX8lMs4MSjZatEoEcREZPE3GXKFzIiZJZQpbm8lbEIVZcamU7AheOsvb5J2pezdlKv31VK9lsWRhwu4hGvw4BbqcAdNaAGDMTzDK7w5wnlx3p2PVWvOyWbO4Q+czx+8U41r</latexit>

C2

<latexit sha1_base64="lOW4B7OynRqK5A1HY5HygBgOnW4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMdCLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoJJY+53nlBpHstHM03Qj+hI8pAzaqz00Bh4g3LFrboLkHXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgrNRPNSaUTegIe5ZKGqH2s8WpM3JhlSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNWPMzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+2rqndTvb6/rtRreRxFOINzuAQPbqEOd9CEFjAYwTO8wpsjnBfn3flYthacfOYU/sD5/AG6z41q</latexit>

C1
<latexit sha1_base64="C4ZFy+kIuSw3Yds5nqVH40Q8O48=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY4kXDxilEcCGzI7NDBhdnYzM2tCNnyCFw8a49Uv8ubfOMAeFKykk0pVd7q7glhwbVz328ltbe/s7uX3CweHR8cnxdOzto4SxbDFIhGpbkA1Ci6xZbgR2I0V0jAQ2AmmjYXfeUKleSQfzSxGP6RjyUecUWOlh8agMiiW3LK7BNkkXkZKkKE5KH71hxFLQpSGCap1z3Nj46dUGc4Ezgv9RGNM2ZSOsWeppCFqP12eOidXVhmSUaRsSUOW6u+JlIZaz8LAdobUTPS6txD/83qJGdX8lMs4MSjZatEoEcREZPE3GXKFzIiZJZQpbm8lbEIVZcamU7AheOsvb5J2pezdlKv31VK9lsWRhwu4hGvw4BbqcAdNaAGDMTzDK7w5wnlx3p2PVWvOyWbO4Q+czx+8U41r</latexit>

C2

<latexit sha1_base64="RFhIse+geX5fEOT0XBVaFnnjMlE=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipSQflilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTcmG4K2+vE7aV1XvpnrdvK7Ua3kcRTiDc7gED26hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBw0mM5A==</latexit>a
<latexit sha1_base64="WbjOqWGUu6YMogqMdBIn23mRkDg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipGQzKFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNWHNz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6reTfW6eV2p1/I4inAG53AJHtxCHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDxM2M5Q==</latexit>

b <latexit sha1_base64="/z6pg4UKRgIP4DXO/+3T2pokOgM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipyQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTcmG4K2+vE7aV1XvpnrdvK7Ua3kcRTiDc7gED26hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBxlGM5g==</latexit>c
<latexit sha1_base64="b6Gm6+maAvyxQ3K5INYxbZr1faQ=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lspu3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5EPOqLFSMxyUK27VXYCsEy8nFcjRGJS/+mHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVVCMoyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNcOan3GZpAYlWy4apoKYmMy/JiFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX1W9m+p187pSr+VxFOEMzuESPLiFOtxDA1rAAOEZXuHNeXRenHfnY9lacPKZU/gD5/MHx9WM5w==</latexit>

d
<latexit sha1_base64="OG91mP62lW4yCydMtsRVHNhzecM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipiYNyxa26C5B14uWkAjkag/JXfxizNEJpmKBa9zw3MX5GleFM4KzUTzUmlE3oCHuWShqh9rPFoTNyYZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTVjzMy6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmRD8FZfXiftq6p3U71uXlfqtTyOIpzBOVyCB7dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AyVmM6A==</latexit>e

<latexit sha1_base64="uvvbfj8q2flK51xBCY0PkuKzAbM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTcmG4K2+vE7aV1XvpnrdvK7Ua3kcRTiDc7gED26hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwB3Q2M9Q==</latexit>r
<latexit sha1_base64="uvvbfj8q2flK51xBCY0PkuKzAbM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTcmG4K2+vE7aV1XvpnrdvK7Ua3kcRTiDc7gED26hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwB3Q2M9Q==</latexit>r

<latexit sha1_base64="lOW4B7OynRqK5A1HY5HygBgOnW4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMdCLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoJJY+53nlBpHstHM03Qj+hI8pAzaqz00Bh4g3LFrboLkHXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgrNRPNSaUTegIe5ZKGqH2s8WpM3JhlSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNWPMzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+2rqndTvb6/rtRreRxFOINzuAQPbqEOd9CEFjAYwTO8wpsjnBfn3flYthacfOYU/sD5/AG6z41q</latexit>

C1
<latexit sha1_base64="C4ZFy+kIuSw3Yds5nqVH40Q8O48=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY4kXDxilEcCGzI7NDBhdnYzM2tCNnyCFw8a49Uv8ubfOMAeFKykk0pVd7q7glhwbVz328ltbe/s7uX3CweHR8cnxdOzto4SxbDFIhGpbkA1Ci6xZbgR2I0V0jAQ2AmmjYXfeUKleSQfzSxGP6RjyUecUWOlh8agMiiW3LK7BNkkXkZKkKE5KH71hxFLQpSGCap1z3Nj46dUGc4Ezgv9RGNM2ZSOsWeppCFqP12eOidXVhmSUaRsSUOW6u+JlIZaz8LAdobUTPS6txD/83qJGdX8lMs4MSjZatEoEcREZPE3GXKFzIiZJZQpbm8lbEIVZcamU7AheOsvb5J2pezdlKv31VK9lsWRhwu4hGvw4BbqcAdNaAGDMTzDK7w5wnlx3p2PVWvOyWbO4Q+czx+8U41r</latexit>

C2

<latexit sha1_base64="WbjOqWGUu6YMogqMdBIn23mRkDg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipGQzKFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNWHNz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6reTfW6eV2p1/I4inAG53AJHtxCHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDxM2M5Q==</latexit>

b
<latexit sha1_base64="/z6pg4UKRgIP4DXO/+3T2pokOgM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipyQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTcmG4K2+vE7aV1XvpnrdvK7Ua3kcRTiDc7gED26hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBxlGM5g==</latexit>c

<latexit sha1_base64="OG91mP62lW4yCydMtsRVHNhzecM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipiYNyxa26C5B14uWkAjkag/JXfxizNEJpmKBa9zw3MX5GleFM4KzUTzUmlE3oCHuWShqh9rPFoTNyYZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTVjzMy6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmRD8FZfXiftq6p3U71uXlfqtTyOIpzBOVyCB7dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AyVmM6A==</latexit>e

<latexit sha1_base64="uvvbfj8q2flK51xBCY0PkuKzAbM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTcmG4K2+vE7aV1XvpnrdvK7Ua3kcRTiDc7gED26hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwB3Q2M9Q==</latexit>r
<latexit sha1_base64="uvvbfj8q2flK51xBCY0PkuKzAbM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTcmG4K2+vE7aV1XvpnrdvK7Ua3kcRTiDc7gED26hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwB3Q2M9Q==</latexit>r

<latexit sha1_base64="WbjOqWGUu6YMogqMdBIn23mRkDg=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipGQzKFbfqLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNWHNz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m5INwVt9eZ20r6reTfW6eV2p1/I4inAG53AJHtxCHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDxM2M5Q==</latexit>

b
<latexit sha1_base64="/z6pg4UKRgIP4DXO/+3T2pokOgM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipyQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTcmG4K2+vE7aV1XvpnrdvK7Ua3kcRTiDc7gED26hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwBxlGM5g==</latexit>c

<latexit sha1_base64="OG91mP62lW4yCydMtsRVHNhzecM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipiYNyxa26C5B14uWkAjkag/JXfxizNEJpmKBa9zw3MX5GleFM4KzUTzUmlE3oCHuWShqh9rPFoTNyYZUhCWNlSxqyUH9PZDTSehoFtjOiZqxXvbn4n9dLTVjzMy6T1KBky0VhKoiJyfxrMuQKmRFTSyhT3N5K2JgqyozNpmRD8FZfXiftq6p3U71uXlfqtTyOIpzBOVyCB7dQh3toQAsYIDzDK7w5j86L8+58LFsLTj5zCn/gfP4AyVmM6A==</latexit>e

<latexit sha1_base64="uvvbfj8q2flK51xBCY0PkuKzAbM=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipqQblilt1FyDrxMtJBXI0BuWv/jBmaYTSMEG17nluYvyMKsOZwFmpn2pMKJvQEfYslTRC7WeLQ2fkwipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmrDmZ1wmqUHJlovCVBATk/nXZMgVMiOmllCmuL2VsDFVlBmbTcmG4K2+vE7aV1XvpnrdvK7Ua3kcRTiDc7gED26hDvfQgBYwQHiGV3hzHp0X5935WLYWnHzmFP7A+fwB3Q2M9Q==</latexit>r

<latexit sha1_base64="lOW4B7OynRqK5A1HY5HygBgOnW4=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lEtMdCLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoJJY+53nlBpHstHM03Qj+hI8pAzaqz00Bh4g3LFrboLkHXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgrNRPNSaUTegIe5ZKGqH2s8WpM3JhlSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNWPMzLpPUoGTLRWEqiInJ/G8y5AqZEVNLKFPc3krYmCrKjE2nZEPwVl9eJ+2rqndTvb6/rtRreRxFOINzuAQPbqEOd9CEFjAYwTO8wpsjnBfn3flYthacfOYU/sD5/AG6z41q</latexit>

C1 <latexit sha1_base64="C4ZFy+kIuSw3Yds5nqVH40Q8O48=">AAAB6nicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY4kXDxilEcCGzI7NDBhdnYzM2tCNnyCFw8a49Uv8ubfOMAeFKykk0pVd7q7glhwbVz328ltbe/s7uX3CweHR8cnxdOzto4SxbDFIhGpbkA1Ci6xZbgR2I0V0jAQ2AmmjYXfeUKleSQfzSxGP6RjyUecUWOlh8agMiiW3LK7BNkkXkZKkKE5KH71hxFLQpSGCap1z3Nj46dUGc4Ezgv9RGNM2ZSOsWeppCFqP12eOidXVhmSUaRsSUOW6u+JlIZaz8LAdobUTPS6txD/83qJGdX8lMs4MSjZatEoEcREZPE3GXKFzIiZJZQpbm8lbEIVZcamU7AheOsvb5J2pezdlKv31VK9lsWRhwu4hGvw4BbqcAdNaAGDMTzDK7w5wnlx3p2PVWvOyWbO4Q+czx+8U41r</latexit>C2

(a) (b)

(c) (d)

Figure 1 Throughout, squares are terminals and circles are Steiner nodes or the root node r. In
(a) the separator is shown with dashed edges and solid vertices. The weakly connected components
of G \ T are shown as circles denoted by C1 and C2. Note that we did not show any edge directed
from C1 or C2 into the separator because we can safely remove these edges. In (b) the subinstances
IC1 and IC2 induced by (G, T, C1, C2) are depicted. In (c), the solutions for each subinstances are
shown. Finally, (d) shows how to merge the solutions in (c) to get a solution for the original instance.
Note that leaf nodes are not necessarily terminals. One could prune them as a post-processing step,
but that is not required by our algorithm.

Proof. The furthermore part is obvious so we prove that F is feasible for I. Consider a
terminal node t ∈ Ci. Since Fi is feasible for ICi

, then there is a dipath P from r to t. Let
(r, v) be the first edge on P and let (u, v) be the corresponding edge to (r, v) in E(G). Then,
we must have u ∈ V (T) as δ(Ci, Cj) = ∅ for all 1 ≤ i ≠ j ≤ h. So we can go from r to u in
T , then take the edge (u, v) and then go from v to t in FCi

. Since all these edges are present
in F and t is an arbitrary terminal, F is a feasible solution for I. ◀

We first present a high-level idea of a simple O(log k)-approximation that runs in quasi-
polynomial time and then with a little extra work, we can make it run in polynomial time
with small loss in the approximation guarantee.

3.1 Warm-up: An overview of a quasi-polynomial time approximation
The algorithm is simple. Fix an optimal solution OPT with cost opt. First we guess opt.
Note by Lemma 5, opt is polynomial in n and integral so there are polynomial guesses. Then,
we remove all vertices such that their distance from r is more than our guessed value (this is

ICALP 2023

63:6 Directed Steiner Tree in Planar Graphs

the preprocessing step). For the purpose of separating into subinstances with balanced weight,
we let the weight of each terminal to be 1 and the rest of vertices have zero weight. Apply
Corollary 4 and let P1, P2, and P3 be the resulting shortest dipaths each starting at r. Note
that cost(Pi) ≤ opt for i = 1, 2, 3 because of the preprocessing step. Let T := P1 ∪ P2 ∪ P3,
then T is a branching rooted at r. Let Ci for 1 ≤ i ≤ h be the weakly connected components
of G \ T . Then, we recursively solve the subinstances induced by (G, T, C1, . . . , Ch) (see
Definition 6), and finally return the corresponding solution of E(T) ∪

⋃h
i=1 FCi

in G. When
the number of terminals in a subinstance becomes one, we can solve the problem exactly by
finding the shortest dipath between the root and the only terminal.

Note that each recursive call reduces the number of terminals by half. The guess work
for each instance is polynomial in n. So it is easy to see the total number of recursive calls is
bounded by nO(log k). Since each time we apply the separator result on an instance I, we
buy a branching (union of up to three dipaths) of cost at most 3 · opt, and since the total
cost of optimal solutions across all of the resulting subinstances ICi

is at most opt, a simple
induction on the number of terminals shows the final cost is within (3 · log k +1) ·opt. A slight
improvement to the running time could be made by guessing OPT within a constant factor
(thus only making O(log n) guesses since all distances are integers bounded by a polynomial
in n), but the size of the recursion tree would still be O(log n)O(log k) which is still not quite
polynomial.

In the next section, we show how to avoid the above aggressive guessing which gives us
the polynomial running time. We remark there are some similarities between our algorithm
with the one presented in [11] for quasi-polynomial time algorithm for Submodular Tree
Orienteering in the sense that both need to guess some value (in our case opt and in their
case the budget) for the subproblems and performing this guess naively is too slow. However,
the approaches to overcoming this barrier are different.

3.2 The polynomial-time algorithm
The idea here is similar to the quasi-polynomial time algorithm; however, instead of guessing
the diameter of an optimal arborescence for each instance, we keep an estimate of it. Our
recursive algorithm tries two different recursive calls: (1) divide the current estimate by half
and recurse, or (2) buy a separator and divide the instance into smaller instances and recurs
on these instances using the current estimate as the current estimate passed to each smaller
instance.

The rationale behind this idea is that if the estimate is close to the optimal value, then
our separator is “cheap” compared to optimal value so (2) is a “good progress” otherwise
we make the estimate smaller so (1) is a “good progress”. The key idea here that leads to
polynomial time is that we do not “reset” our guess for the optimal solution cost in each
recursive call since we know that if our guess is correct for the current instance, then it is an
upper bound for the optimal solution cost in each subinstance.

As we mentioned at the beginning, the algorithm is recursive. The input to the algorithm
is a tuple (I, õpt) where õpt is an estimate of opt. The algorithm computes two solutions and
take the better of the two. One solution is by a recursive call to (I, õpt

2) and the other one
is obtained by applying Corollary 4 to get smaller subinstances and solve each subinstance
recursively and merge the solutions as described in Lemma 7. See Algorithm 1 for the
pseudocode.

By Lemma 5, we can assume the edge costs are positive integers and hence opt ≥ 1. So if
õpt < 1, then the output of DST(I, õpt) is infeasible. The algorithm will terminate since
each recursive call either halves õpt or halves the number of terminals.

Z. Friggstad and R. Mousavi 63:7

Algorithm 1 DST(I, õpt).

Input: I :=
(
G = (V, E), c, r, X

)
and an estimate õpt.

Output: A feasible solution for instance I or output infeasible.

if õpt < 1 or d(r, t) > õpt for some terminal t ∈ X then
return infeasible

else if |XI | = 1 then
Let F be the shortest dipath from r to the only terminal in XI .

else
F1 ← DST(I, õpt

2), if F1 is infeasible solution then set cost(F1)←∞.
Remove all vertices v with d(r, v) > õpt. {This is the preprocessing step.}
Apply Corollary 4 to obtain a partial arborescence T consists of up to 3 shortest dipaths
starting at r. Let C1, . . . , Ch be the weakly connected components of G \ T . Let ICi

be
the i-th subinstance induced by (G, T, C1, . . . , Ch) for i = 1, . . . , h.
for i = 1, . . . , h do
F ′

i ← DST(ICi , õpt)

F2 ← E(T) ∪ (
h⋃

i=1
F ′

i), if any F ′
i is infeasible then set cost(F2)←∞.

if both cost(F1) and cost(F2) are ∞ then
return infeasible
F ← arg min{cost(F1), cost(F2)}

return F .

3.3 Analysis
In this section, we analyze the cost and the running time of Algorithm 1.

▶ Lemma 8 (Cost and running time). Consider an instance I =
(
G = (V, E), c, r, X

)
and

a pair (I, õpt). Let ℓ and O be non-negative integers such that |X| ≤ 2ℓ and õpt ≤ 2O. If
õpt ≥ opt where opt is the optimal value of I, then DST(I, õpt) returns a solution with cost
at most (6 · ℓ + 1) · opt. Furthermore, the total number of recursive calls made by DST(I, õpt)
and its subsequent recursive calls is at most |X| · 22·ℓ+O.

Proof. First we analyze the cost of the output solution. If ℓ = 0 then we solve I exactly so
the statement holds. So for the rest of the proof we assume ℓ ≥ 1. We proceed by induction
on ℓ + O ≥ 1.

We assume õpt ≤ 2 · opt, otherwise we have DST(I, õpt) ≤ DST(I, õpt
2) ≤ (6 · ℓ + 1) · opt

by induction where the last inequality holds because log õpt
2 ≤ log(õpt)− 1.

Let F be the solution returned by DST(I, õpt). Since cost(F) ≤ cost(F2), it suffices to
prove cost(F2) ≤ (6 · ℓ + 1) · opt. Let F ′

i = DST(ICi , õpt) for i = 1, . . . , h be the solutions
constructed recursively for the subinstances. Note that each ICi

for i = 1 . . . , h has at most
2ℓ−1 terminals and õpt ≥ optICi

where optICi
is the optimal value of ICi . By the induction

hypothesis, we conclude

cost(F ′
i) ≤ (6 · (ℓ− 1) + 1) · optICi

≤ 6 · ℓ · optICi
, for i = 1, . . . , h (1)

Note that T is the union of up to three shortest dipaths and because of the preprocessing
step, each shortest dipath starting at r has cost at most õpt ≤ 2 · opt. So the following holds:

cost(T) ≤ 3 · õpt ≤ 6 · opt . (2)

ICALP 2023

63:8 Directed Steiner Tree in Planar Graphs

Combining (1) and (2) we get:

cost(F) = cost(T) +
h∑

i=1
cost(F ′

i)

≤ cost(T) +
h∑

i=1
6 · ℓ · optICi

≤ 6 · opt +6 · ℓ ·
h∑

i=1
optICi

≤ 6 · opt +6 · ℓ · opt
= (6 · ℓ + 1) · opt,

where the first equality follows from Lemma 7, the first and the second inequalities follow
from (1) and (2), respectively, and finally the last inequality follows from the fact that

h∑
i=1

optICi
≤ opt as the restriction of OPT on each GCi

is a feasible solution for ICi
and

GCi
’s are edge-disjoint.
Next, we analyze the number of recursive calls R(ℓ, O) in DST(I, õpt). We prove by

induction on ℓ + O that R(ℓ, O) ≤ |X| · 22·ℓ+O. If ℓ = 0, then there is no recursive call. So
suppose ℓ ≥ 1. Let Xi := |X ∩ Ci| ≤ |X|

2 be the number of terminals in subinstance ICi

and let ℓi be the smallest integer where |Xi| ≤ 2ℓi . Since the number of terminals in the
subinstances are halved, we have ℓi ≤ ℓ− 1 for all 1 ≤ i ≤ h. So we can write

R(ℓ, O) = 1 + R(ℓ, O − 1) +
h∑

i=1
R(ℓi, O)

≤ 1 + |X| · 22·ℓ+O−1 +
h∑

i=1
|Xi| · 22·ℓi+O

≤ 1 + |X| · 22·ℓ+O−1 + 22(ℓ−1)+O ·
h∑

i=1
|Xi|

≤ 1 + |X| · 22·ℓ+O−1 + 22·ℓ+O−2 · |X|
= 1 + |X| · 22·ℓ+O−1 + (22·ℓ+O−1 − 22·ℓ+O−2) · |X|
= 1 + |X| · 22·ℓ+O − |X| · 22·ℓ+O−2

≤ |X| · 22·ℓ+O,

where the first inequality follows from the induction hypothesis, the second inequality comes

from the fact that ℓi ≤ ℓ− 1, the third inequality holds because
h∑

i=1
|Xi| ≤ |X|, and the last

inequality follows from the fact that |X| ≥ 1 and ℓ ≥ 1. ◀

Proof of Theorem 1. For any ϵ > 0, we can assume all the shortest dipaths starting at the
root are bounded by poly(n, ϵ) by losing a (1 + ϵ) multiplicative factor in the approximation
guarantee, see Lemma 5. So we assume properties of Lemma 5 holds for the rest of the proof.

Let ∆ be the maximum distance from the root to any terminal. Let õpt := k ·∆ ≤ poly(n).
We find a solution by calling DST(I, õpt). Applying Lemma 8 with õpt := k ·∆, ℓ := ⌈log k⌉ ≤
log k + 1 and O := ⌈log õpt⌉ guarantees the solution has cost at most (6 · (log k + 1) + 1) · opt.

For running time of Algorithm 1, we have by Lemma 8 that the number of recursive calls
is at most k · 22·ℓ+O = O(k4 ·∆). So the total number of recursive calls is poly(n) (recall
k ·∆ = poly(n)). The running time within each recursive call is also bounded by poly(n) so
the algorithm runs in polynomial time. ◀

Z. Friggstad and R. Mousavi 63:9

4 Multi-rooted planar DST

The algorithm for the multi-rooted case is similar to Algorithm 1. We need analogous versions
of the separator, how we define the subinstances, and how we merge the solutions of smaller
subinstances to get a solution for the original instance for the multi-rooted case.

We start by a generalization of partial arborescence in the single rooted case to multiple
roots.

▶ Definition 9 (Multi-rooted partial arborescence). Given a digraph G = (V, E), R vertices
r1, . . . , rR designated as roots. We say a subgraph T of G is a multi-rooted partial arborescence
if it satisfies the following properties:
1. There are vertex-disjoint partial arborescences Ti1 , . . . , Tiq rooted at ri1 , . . . , riq , respect-

ively, and a subset of edges F ⊆ E \
(⋃q

j=1 E(Tij
)
)
, where the endpoints of each edge in

F belong to
⋃q

j=1 V (Tij
), such that T = F ∪ (

⋃q
j=1 Tiq

).
2. T is weakly connected and has no cycle (in the undirected sense).

If a multi-rooted partial arborescence T covers all the vertices in G, then we say T is a
multi-rooted arborescence for G. See Figure 2 for an example.

Fix an instance I = (G, c, {r1, . . . , rR}, X) of R-rooted DST on planar graphs. Next, we
present subinstnaces induced by a partial multi-rooted arborescence and bunch of disjoint
subsets analogous to Definition 6.

▶ Definition 10 (Induced subinstances, multi-rooted). Let I = (G, c, {r1, . . . , rR}, X) of R-
rooted DST on planar graphs. Let T = F ∪ (

⋃q
j=1 Tpj

) be a multi-rooted partial arborescence
where Tpj is a partial arborescence rooted at rpj for 1 ≤ j ≤ q. In addition, let C1, . . . , Ch be
the weakly connected components of G \ T . The subinstances of multi-rooted DST induced
by tuple (G, T, C1, . . . , Ch) are defined as follows: let Gcontract be the graph obtained from
G by contracting T into a singleton vertex called rT . For each Ci where 1 ≤ i ≤ h we

construct instance ICi
:=
(

GCi
, c, {rT } ∪

(
Ci ∩

(
{r1, . . . , rR} \ {rp1 , . . . , rpq

}
))

, Ci ∩X

)
where GCi

:= Gcontract[Ci ∪ {rT }].

The following is analogous to Lemma 7 for merging solution in the multi-rooted case.

▶ Lemma 11 (Merged solutions, multi-rooted). Let T = F ∪ (
⋃q

j=1 Tpj) be a partial multi-
rooted arborescence in G. Consider the subinstances ICi

for 1 ≤ i ≤ h as defined in
Definition 10 and let FCi be a solution for ICi . Let F ⊆ E(G) be the corresponding edges
in (E(T) \ F) ∪ (

⋃h
i=1 FCi

). Then, F is a feasible solution for instance I and furthermore

cost(F) = cost(T \ F) +
h∑

i=1
cost(FCi

).

Proof. The furthermore part follows directly from the definition of F . We prove F is feasible
for I.

Consider a terminal t. If t ∈ V (T), then t ∈ V (Tpj) for some 1 ≤ j ≤ q (recall the vertices
in T is the union of the vertices in all the partial arborescences Tpj

’s) so t is reachable from
rpj

, the root of Tpj
, in F . Suppose t ∈ Ci for some 1 ≤ i ≤ h. If t is reachable from a

root other than rT in FCi
then we are done because the same dipath exists in F . So we

suppose not and let P be the dipath in FCi
from rT to t. Let (u, v) be the corresponding

edge to (rT , v) in G. Note that u ∈ V (Tpj) for some 1 ≤ j ≤ q because δ(Cs, Cs′) = ∅ for
1 ≤ s ̸= s′ ≤ h. Hence, t is reachable from rpj

, the root of Tpj
, in F as E(Tpj

) ⊆ F . ◀

ICALP 2023

63:10 Directed Steiner Tree in Planar Graphs

Given an instance I with roots r1, . . . , rR, temporarily add an auxiliary node r and add
edges (r, ri) for all 1 ≤ i ≤ R with zero cost (it might destroy the planarity). Run the BFS
algorithm as usual rooted at r. Then, remove r and all the edges incident to r. The result
is a vertex-disjoint BFS arborescences A1, A2, . . . , AR rooted at r1, . . . , rR. Note that for
every v ∈ V (Ai), v is closest to ri than any other roots, i.e., the dipath from ri to v has cost
d
(
{r1, . . . , rR}, v

)
.

Finally, we present the separator result for the multi-rooted case.

▶ Lemma 12 (A structured separator, multi-rooted). Let I = (G = (V, E), c, {r1, . . . , rR}, X)
be an instance of multi-rooted DST on planar graphs, and let A1, . . . , AR be the vertex-
disjoint BFS arborescence rooted at r1, . . . , rR. There is a multi-rooted partial arborescence

T = F ∪ (
R⋃

j=1
Tij

), where Tij
could possibly be empty (i.e., with no vertices) such that the

following hold:
(a) Tj is either empty or is a subtree of Aj rooted at rj that consists of the union of up to

four shortest dipaths each starting at rj.
(b) Let C1, · · · , Ch be the weakly connected components of G \ T . Then, each subinstance

ICi
induced by (G, T, C1, . . . , Ch) has at most |X|

2 terminals for 1 ≤ i ≤ h.
(c) Let Fi be a solution to subinstance ICi

for 1 ≤ i ≤ h. Then, the corresponding solution

(E(T) \ F) ∪ (
h⋃

i=1
Fi) in G is feasible for I with cost exactly cost(T \ F) +

h∑
i=1

cost(Fi).

Proof. Figure 2 helps to visualize this proof.
Since G is weakly connected, there is a subset of edges F ′ in G such that T ′ := F ′ ∪

(
⋃R

i=1 Ai) is a multi-rooted arborescence of G (spanning all the vertices) and the endpoints

of edges in F are in
R⋃

i=1
V (Ai). Make T ′ rooted at an arbitrarily chosen root, say r1. Apply

Theorem 3 with terminal vertices having weight 1 and the rest of vertices having weight 0,
and T ′ as the spanning tree (in the undirected sense). This gives three paths P1, P2, and
P3 in T ′ each with starting vertex r1 such that every weakly connected component Ci of
G \ (P1 ∪ P2 ∪ P3) has at most |X|

2 terminals for 1 ≤ i ≤ h. Note, these three paths do not
necessarily follow the directions of the edges.

Fix Ai for some 1 ≤ i ≤ R and a path Pj := (r1 = v1), v2, . . . , vN for 1 ≤ j ≤ 3. Let a

and b (possibly a = b) be the smallest and the largest indices, respectively, such that va

and vb are in V (Ai). We claim the subpath P[a,b] := va, va+1, . . . , vb is a subgraph of Ai.
Suppose not, so there must be two indices a ≤ a′ < b′ ≤ b such that va′ , vb′ ∈ V (Ai) and
va′+1, va′+2, . . . , vb′−1 /∈ V (Ai). Let P a′

Ai
and P b′

Ai
be the paths from ri to a′ and b′ in V (Ai),

respectively. So P a′

Ai
∪ P b′

Ai
∪ P[a′,b′] forms a cycle in T ′, a contradiction. Furthermore, for

j = 1, 2, 3 let vj be the closest vertex to r1 on Pj (in terms of edge hops) that is in Ai as well
(if exists). Then, v1 = v2 = v3 as otherwise we have a cycle in T ′ because all Pj ’s start at r1.

For each 1 ≤ i ≤ R and 1 ≤ j ≤ 3, we mark the nodes with smallest and largest indices
in Pj that are in Ai. We proved above, that the number of these marked vertices in each Ai

is at most 4. Furthermore, (P1 ∪ P2 ∪ P3) ∩Ai is a subgraph of the union of dipaths from ri

to each marked vertices in Ai for all 1 ≤ i ≤ h.
We construct our partial multi-rooted arborescence T as follows: let Ti be the union of

(up to four) shortest dipaths from ri to the marked vertices in Ai. Let F := E
(
P1 ∪ P2 ∪

P3
)
\ (
⋃R

i=1 E(Ti)) which is the subset of edges whose endpoints are in different V (Ai)’s, i.e.,
F ⊆ F ′. Let T := F ∪ (

⋃R
i=1 Ti). Note that for Ai’s with no marked vertices, Ti is empty

Z. Friggstad and R. Mousavi 63:11

<latexit sha1_base64="vKwz7DbnlHWxCVKEJIGlKWng4/g=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD3pQG5QrbtVdgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGepohE3frY4dUYurDIkYaxtKSQL9fdERiNjplFgOyOKY7PqzcX/vF6K4Y2fCZWkyBVbLgpTSTAm87/JUGjOUE4toUwLeythY6opQ5tOyYbgrb68Ttq1qndVrd/XK41aHkcRzuAcLsGDa2jAHTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwACLo2U</latexit>r2

<latexit sha1_base64="ixnTP8mUDOcvFSeF/yQrFZ6phJg=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4Kkkt6rHgxWNF+wFtKJvtpF262YTdjVBCf4IXD4p49Rd589+4bXPQ1gcDj/dmmJkXJIJr47rfztr6xubWdmGnuLu3f3BYOjpu6ThVDJssFrHqBFSj4BKbhhuBnUQhjQKB7WB8O/PbT6g0j+WjmSToR3QoecgZNVZ6UP3LfqnsVtw5yCrxclKGHI1+6as3iFkaoTRMUK27npsYP6PKcCZwWuylGhPKxnSIXUsljVD72fzUKTm3yoCEsbIlDZmrvycyGmk9iQLbGVEz0sveTPzP66YmvPEzLpPUoGSLRWEqiInJ7G8y4AqZERNLKFPc3krYiCrKjE2naEPwll9eJa1qxbuq1O5r5Xo1j6MAp3AGF+DBNdThDhrQBAZDeIZXeHOE8+K8Ox+L1jUnnzmBP3A+fwADso2V</latexit>r3

<latexit sha1_base64="qlcDVt79K6bwBmd46VW3sD5f5zc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD3pQH5QrbtVdgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGepohE3frY4dUYurDIkYaxtKSQL9fdERiNjplFgOyOKY7PqzcX/vF6K4Y2fCZWkyBVbLgpTSTAm87/JUGjOUE4toUwLeythY6opQ5tOyYbgrb68Ttq1qndVrd/XK41aHkcRzuAcLsGDa2jAHTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwAFNo2W</latexit>r4

<latexit sha1_base64="99u3wad1MunDPdXNhRUyB7SNdyo=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lK/TgWvHisaGuhDWWznbRLN5uwuxFK6E/w4kERr/4ib/4bt20O2vpg4PHeDDPzgkRwbVz32ymsrW9sbhW3Szu7e/sH5cOjto5TxbDFYhGrTkA1Ci6xZbgR2EkU0igQ+BiMb2b+4xMqzWP5YCYJ+hEdSh5yRo2V7lX/ol+uuFV3DrJKvJxUIEezX/7qDWKWRigNE1Trrucmxs+oMpwJnJZ6qcaEsjEdYtdSSSPUfjY/dUrOrDIgYaxsSUPm6u+JjEZaT6LAdkbUjPSyNxP/87qpCa/9jMskNSjZYlGYCmJiMvubDLhCZsTEEsoUt7cSNqKKMmPTKdkQvOWXV0m7VvUuq/W7eqVRy+Mowgmcwjl4cAUNuIUmtIDBEJ7hFd4c4bw4787HorXg5DPH8AfO5w8Guo2X</latexit>r5
<latexit sha1_base64="TOakcU0S+nmLsBJqNb/8T9MDpAw=">AAAB6HicbVBNS8NAEJ34WetX1aOXxSJ4Kkkp6rHgxWML9gPaUDbbSbt2swm7G6GE/gIvHhTx6k/y5r9x2+agrQ8GHu/NMDMvSATXxnW/nY3Nre2d3cJecf/g8Oi4dHLa1nGqGLZYLGLVDahGwSW2DDcCu4lCGgUCO8Hkbu53nlBpHssHM03Qj+hI8pAzaqzUTAelsltxFyDrxMtJGXI0BqWv/jBmaYTSMEG17nluYvyMKsOZwFmxn2pMKJvQEfYslTRC7WeLQ2fk0ipDEsbKljRkof6eyGik9TQKbGdEzVivenPxP6+XmvDWz7hMUoOSLReFqSAmJvOvyZArZEZMLaFMcXsrYWOqKDM2m6INwVt9eZ20qxXvulJr1sr1ah5HAc7hAq7Agxuowz00oAUMEJ7hFd6cR+fFeXc+lq0bTj5zBn/gfP4A38uM8g==</latexit>u <latexit sha1_base64="gMqDM02K31sN9iRxh23E7TRnJDg=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY8kXjxCIo8ENmR2aGBkdnYzM0tCNnyBFw8a49VP8ubfOMAeFKykk0pVd7q7glhwbVz328ltbe/s7uX3CweHR8cnxdOzlo4SxbDJIhGpTkA1Ci6xabgR2IkV0jAQ2A4m9wu/PUWleSQfzSxGP6QjyYecUWOlxrRfLLlldwmySbyMlCBDvV/86g0iloQoDRNU667nxsZPqTKcCZwXeonGmLIJHWHXUklD1H66PHROrqwyIMNI2ZKGLNXfEykNtZ6Fge0MqRnrdW8h/ud1EzO881Mu48SgZKtFw0QQE5HF12TAFTIjZpZQpri9lbAxVZQZm03BhuCtv7xJWpWyd1OuNqqlWiWLIw8XcAnX4MEt1OAB6tAEBgjP8ApvzpPz4rw7H6vWnJPNnMMfOJ8/4U+M8w==</latexit>v

<latexit sha1_base64="beMwGDWsaodeuvKWTwaa/Ro2Ojk=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHYJUY8kXjxCIo8ENmR2aGBkdnYzM6shG77AiweN8eonefNvHGAPClbSSaWqO91dQSy4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS0eJYthkkYhUJ6AaBZfYNNwI7MQKaRgIbAeT27nffkSleSTvzTRGP6QjyYecUWOlxlO/WHLL7gJknXgZKUGGer/41RtELAlRGiao1l3PjY2fUmU4Ezgr9BKNMWUTOsKupZKGqP10ceiMXFhlQIaRsiUNWai/J1Iaaj0NA9sZUjPWq95c/M/rJmZ446dcxolByZaLhokgJiLzr8mAK2RGTC2hTHF7K2FjqigzNpuCDcFbfXmdtCpl76pcbVRLtUoWRx7O4BwuwYNrqMEd1KEJDBCe4RXenAfnxXl3PpatOSebOYU/cD5/AOLTjPQ=</latexit>w

<latexit sha1_base64="IhCunT2xzWQPSfkaGxQnwyLKW1o=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lKUY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD3rgDcoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+1a1buq1u/rlUYtj6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifPwCqjZM=</latexit>r1

Figure 2 A depiction of the multirooted separator in an instance with R = 5 roots. The solid
edges (thick and thin) are the shortest-path arborescences Ai for i = 1, . . . , R. The dashed edges are
F ′, they exist solely to allow us to apply Theorem 3 starting from a spanning tree of the underlying
undirected graph and to witness the contraction of all vertices on the thick edges results in a planar
graph. After applying Theorem 3, we get three vertices depicted as u, v, w. The vertices touching
the thick and solid edges then form the multirooted separator: these include all vertices lying on
paths from r to u, v, or w (as in Theorem 3). Additionally, for each i = 1, . . . , R that includes at
least one node from some r1 − a path for some a ∈ {u, v, w}, the multirooted separator includes
vertices on the unique path connecting ri to the r − a path (eg. the path from r2 to the r1 − u path).
In the algorithm, the solution will purchase the thick solid edges, but not the thick dashed edges.
However, we do contract all thick edges (dashed and solid) to generate the subproblems: the number
of roots also drops by 2 since the separator touches 3 shortest-path arborescences. Any solution
that is connected from the new contracted root will be connected from either r1, r2 or r4 using the
thick and solid edges after uncontracting.

(with no vertices not even ri). Since T is a partial multi-rooted arborescence that contains
P1 ∪ P2 ∪ P3 as a subgraph, every weakly connected components of G \ T has at most |X|

2
terminals. This finishes the proof of parts (a) and (b).

Property (c) follows from Lemma 11 and the fact that the conditions in Lemma 11 are
satisfied. ◀

The algorithm for the multi-rooted version is the same as Algorithm 1 with the following
two tweaks: (1) in the preprocessing step we remove vertices v where d

(
{r1, . . . , rR}, v

)
> õpt,

and (2) instead of Corollary 4 we apply Lemma 12 to obtain the subinstances.
Next, we analyze the cost and the running time of this algorithm.

▶ Lemma 13 (Cost and running time, multi-rooted). Consider an instance I =
(
G =

(V, E), w, {r1, . . . , rR}, X
)

and a pair (I, õpt). Let ℓ and O be non-negative integers such
that |X| ≤ 2ℓ and õpt ≤ 2O. If õpt ≥ opt where opt is the optimal value of I, then
DST(I, õpt) ≤

(
8 · (R + ℓ) + 1

)
· opt and the number of recursive calls is at most |X| · 22·ℓ+O.

Proof. The proof of the number of recursive calls is exactly the same as in the proof of
Lemma 8. So we turn to proving the bound on the returned solution’s cost.

The proof is by induction on R + ℓ + O. As in the proof of Lemma 8, we only need to
focus on the case that õpt ≤ 2 · opt and show that cost(F2) ≤

(
8 · (R + ℓ) + 1

)
· opt.

ICALP 2023

63:12 Directed Steiner Tree in Planar Graphs

Let T = F ∪ (
R⋃

i=1
Ti) be the partial multi-rooted arborescence obtained from Lemma 12.

Suppose T contains R′ many of the roots. Then, exactly R′ many of Ti’s are non-empty. By
Lemma 12 (a) we have that each non-empty Ti is consists of up to four shortest dipaths rooted
at ri so cost(Ti) ≤ 4 · õpt because of the preprocessing step plus the fact that õpt ≤ 2 · opt,
we conclude

cost(T \ F) ≤ 8 ·R′ · opt . (3)

Since T contains R′ many roots, each subinstance ICi
induced by (G, T, C1, . . . , Ch) has

at most R−R′ + 1 many roots for 1 ≤ i ≤ h. Furthermore, by Lemma 12 (b) each ICi
’s has

at most |X|
2 ≤ 2ℓ−1 many terminals. So by induction hypothesis, for i = 1, . . . , h we have

cost(FCi
) ≤

(
8 ·
(
(R−R′ + 1) + ℓ− 1

)
+ 1
)
· optICi

≤
(
8 · (R−R′ + ℓ) + 1

)
· optICi

. (4)

Using Lemma 12 (c), the bounds in (3) and (4) we have

cost(F) ≤ cost(T \ F) +
h∑

i=1
cost(FICi

)

≤ 8 ·R′ · opt +
(
8 · (R−R′ + ℓ) + 1

)
·

h∑
i=1

optICi

≤ 8 ·R′ · opt +
(
8 · (R−R′ + ℓ) + 1

)
· opt

=
(
8 · (R + ℓ) + 1

)
· opt,

where the third inequality follows from the fact that
h∑

i=1
optICi

≤ opt as the restriction of

OPT on each GCi
is a feasible solution for ICi

and GCi
’s are edge-disjoint.. ◀

Proof of Theorem 2. Note both of the tweaks in Algorithm 1 are implementable in polyno-
mial time. The proof has exactly the same structure as in the proof of Theorem 1 with the
difference that we use Lemma 13 here instead of Lemma 8. ◀

5 Concluding Remarks

One possible direction is to extend our result to minor-free families of graphs. However, as
pointed out in [1, 8], minor-free (undirected) graphs do not have shortest-path separators.
In [8], Cohen-Addad bypassed this difficulty by designing a new separator called a mixed
separator for undirected minor-free graphs. It is not clear that analogous separators exist
in directed graphs. For example, the mixed separators in [8] are obtained, in part, by
contracting certain paths. These paths are obtained using structural results in minor-free
graphs [18] and it is not clear how to find analogous paths in the directed case. Obtaining an
O(log k)-approximation for DST in minor-free graphs remains an interesting open problem.

References
1 Ittai Abraham and Cyril Gavoille. Object location using path separators. In Proceedings of

the twenty-fifth annual ACM symposium on Principles of distributed computing, pages 188–197,
2006.

2 MohammadHossein Bateni, MohammadTaghi Hajiaghayi, and Dániel Marx. Approximation
schemes for steiner forest on planar graphs and graphs of bounded treewidth. Journal of the
ACM (JACM), 58(5):1–37, 2011.

Z. Friggstad and R. Mousavi 63:13

3 Marshall Bern and Paul Plassmann. The steiner problem with edge lengths 1 and 2. Information
Processing Letters, 32(4):171–176, 1989.

4 Glencora Borradaile, Philip Klein, and Claire Mathieu. An O(n log n) approximation scheme
for steiner tree in planar graphs. ACM Transactions on Algorithms (TALG), 5(3):1–31, 2009.

5 Jarosław Byrka, Fabrizio Grandoni, Thomas Rothvoß, and Laura Sanità. Steiner tree ap-
proximation via iterative randomized rounding. Journal of the ACM (JACM), 60(1):1–33,
2013.

6 Gruia Calinescu and Alexander Zelikovsky. The polymatroid steiner problems. J. Combonat-
orial Optimization, 33(3):281–294, 2005.

7 Moses Charikar, Chandra Chekuri, To-Yat Cheung, Zuo Dai, Ashish Goel, Sudipto Guha,
and Ming Li. Approximation algorithms for directed steiner problems. Journal of Algorithms,
33(1):73–91, 1999.

8 Vincent Cohen-Addad. Bypassing the surface embedding: approximation schemes for network
design in minor-free graphs. In Proceedings of the 54th Annual ACM SIGACT Symposium on
Theory of Computing, pages 343–356, 2022.

9 Erik D Demaine, MohammadTaghi Hajiaghayi, and Philip N Klein. Node-weighted steiner
tree and group steiner tree in planar graphs. ACM Transactions on Algorithms (TALG),
10(3):1–20, 2014.

10 Zachary Friggstad and Ramin Mousavi. A constant-factor approximation for quasi-bipartite
directed steiner tree on minor-free graphs. arXiv preprint, 2021. arXiv:2111.02572.

11 Rohan Ghuge and Viswanath Nagarajan. Quasi-polynomial algorithms for submodular tree
orienteering and other directed network design problems. In Proceedings of the Fourteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1039–1048. SIAM, 2020.

12 Fabrizio Grandoni, Bundit Laekhanukit, and Shi Li. O(log 2k/ log log k)-approximation al-
gorithm for directed steiner tree: a tight quasi-polynomial-time algorithm. In Proceedings of
the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages 253–264, 2019.

13 Eran Halperin and Robert Krauthgamer. Polylogarithmic inapproximability. In Proceedings
of the thirty-fifth annual ACM symposium on Theory of computing, pages 585–594, 2003.

14 Marek Karpinski and Alexander Zelikovsky. New approximation algorithms for the steiner
tree problems. Journal of Combinatorial Optimization, 1(1):47–65, 1997.

15 Richard J Lipton and Robert Endre Tarjan. A separator theorem for planar graphs. SIAM
Journal on Applied Mathematics, 36(2):177–189, 1979.

16 Richard J Lipton and Robert Endre Tarjan. Applications of a planar separator theorem. SIAM
journal on computing, 9(3):615–627, 1980.

17 Hans Jürgen Prömel and Angelika Steger. A new approximation algorithm for the steiner tree
problem with performance ratio 5/3. Journal of Algorithms, 36(1):89–101, 2000.

18 Neil Robertson and Paul D Seymour. Graph minors. xvi. excluding a non-planar graph.
Journal of Combinatorial Theory, Series B, 89(1):43–76, 2003.

19 Gabriel Robins and Alexander Zelikovsky. Tighter bounds for graph steiner tree approximation.
SIAM Journal on Discrete Mathematics, 19(1):122–134, 2005.

20 Mikkel Thorup. Compact oracles for reachability and approximate distances in planar digraphs.
Journal of the ACM (JACM), 51(6):993–1024, 2004.

21 Alexander Zelikovsky. A series of approximation algorithms for the acyclic directed steiner
tree problem. Algorithmica, 18(1):99–110, 1997.

22 Alexander Z Zelikovsky. An 11/6-approximation algorithm for the network steiner problem.
Algorithmica, 9(5):463–470, 1993.

ICALP 2023

https://arxiv.org/abs/2111.02572

63:14 Directed Steiner Tree in Planar Graphs

6 Proof of Lemma 5

Proof. Let ∆ := maxt∈X

{
d
(
{r1, . . . , rR}, t

)}
, i.e., ∆ is the maximum distance from any

root to a terminal. Let optI be the optimal value of instance I. Then, ∆ ≤ optI ≤ k ·∆.
If ∆ = 0, then optI = 0 and the collection of all shortest dipaths from the roots to the

terminals is a solution of cost 0. So we assume ∆ > 0.
We can safely remove any edge e having ce > k ·∆ and any Steiner node v (along with

its incident edges) having d({r1, . . . , rR}, v) > k ·∆ since no optimal solution of I uses e or
v. Since we have only deleted elements of G, it remains planar.

Define a new edge costs c′
e := ⌈ce · n

ϵ·∆⌉ and form the instance I ′ = (G, c′, {r1, . . . , rR}, X).
Note for any shortest dipath P starting at root ri, we have

costc′(P) ≤
∑
e∈P

c′
e ≤

∑
e∈P

(ce ·
n

ϵ ·∆ + 1) ≤ costc(P) · n

ϵ ·∆ + n ≤ n · k
ϵ

+ n,

where the last inequality follows because all the distances from the root has length at most
k ·∆. So all the shortest dipaths starting at r in I ′ are bounded by O(n2

ϵ).
Let optI′ be the optimal value of instance I ′. Similar calculation as before shows

optI′ ≤ n
ϵ·∆ · optI +n.

Let F be an α-approximate solution for I ′. Then, we have

costc(F) ≤ ϵ ·∆
n
· costc′(F)

≤ ϵ ·∆
n
· α · optI′

≤ ϵ ·∆
n
· α · (n

ϵ ·∆ · optI +n)

≤ α · optI +α · ϵ ·∆
≤ α · (1 + ϵ) · optI ,

where the first inequality follows because c′
e ≥ ce · n

ϵ·∆ and the last because optI ≥ ∆. ◀

Parallel Self-Testing of EPR Pairs Under
Computational Assumptions
Honghao Fu #

CSAIL, Massachusetts Institute of Technology, Cambridge, MA, USA

Daochen Wang #

QuICS, University of Maryland, College Park, MD, USA

Qi Zhao #

QuICS, University of Maryland, College Park, MD, USA
QICI, The University of Hong Kong, China

Abstract
Self-testing is a fundamental feature of quantum mechanics that allows a classical verifier to force
untrusted quantum devices to prepare certain states and perform certain measurements on them. The
standard approach assumes at least two spatially separated devices. Recently, Metger and Vidick [39]
showed that a single EPR pair of a single quantum device can be self-tested under computational
assumptions. In this work, we generalize their results to give the first parallel self-test of N EPR pairs
and measurements on them in the single-device setting under the same computational assumptions.
We show that our protocol can be passed with probability negligibly close to 1 by an honest quantum
device using poly(N) resources. Moreover, we show that any quantum device that fails our protocol
with probability at most ϵ must be poly(N, ϵ)-close to being honest in the appropriate sense. In
particular, our protocol can test any distribution over tensor products of computational or Hadamard
basis measurements, making it suitable for applications such as device-independent quantum key
distribution [38] under computational assumptions. Moreover, a simplified version of our protocol is
the first that can efficiently certify an arbitrary number of qubits of a single cloud quantum computer
using only classical communication.

2012 ACM Subject Classification Theory of computation → Interactive proof systems

Keywords and phrases Quantum complexity theory, self-testing, LWE

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.64

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2201.13430 [21]

Funding Honghao Fu: NSF QLCI program (grant OMA-2016245).
Daochen Wang: Army Research Office (grant W911NF-20-1-0015); the Department of Energy, Office
of Science, Office of Advanced Scientific Computing Research, Accelerated Research in Quantum
Computing program; and the National Science Foundation (grant DMR-1747426).
Qi Zhao: Department of Defense through the QuICS Hartree Postdoctoral Fellowship.

Acknowledgements We especially thank Carl Miller, Tony Metger, and Thomas Vidick for many
helpful discussions and correspondence. We also thank Nai-Hui Chia, Shih-Han Hung, Yi Lee, Atul
Mantri, and Jiayu Zhang for helpful discussions.

1 Introduction

Self-testing is a fundamental feature of quantum mechanics that allows a classical verifier to
force a quantum device (sometimes called prover) to prepare certain states and measure them
in certain bases up to local isometries [4, 47, 50, 43, 7, 35, 48, 18, 25, 8, 36, 37, 41, 42, 13,
20, 46, 45, 19, 28]. In the standard nonlocal setting, the key assumption is that there are two

EA
T
C
S

© Honghao Fu, Daochen Wang, and Qi Zhao;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 64; pp. 64:1–64:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:honghaof@mit.edu
https://orcid.org/0000-0002-1934-3391
mailto:wdaochen@gmail.com
https://orcid.org/0000-0001-5472-1207
mailto:zhaoqi@cs.hku.hk
https://orcid.org/0000-0002-8091-0682
https://doi.org/10.4230/LIPIcs.ICALP.2023.64
https://arxiv.org/abs/2201.13430
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

64:2 Parallel Self-Testing of EPR Pairs Under Computational Assumptions

or more spatially separated devices. However, it is difficult to certify spatial separation in
practice, especially if the devices fall outside our physical control. Therefore, it is interesting
to ask whether we can replace this assumption by another one so that we can self-test a
single quantum device. We illustrate the nonlocal and single-device settings in Fig. 1.

Verifier

Device 1

Device 2

x

a
y

b

Verifier Device

x1

a1

x2

a2

Figure 1 Self-testing in the nonlocal setting (left) involves (at least) two spatially separated
devices that cannot communicate. In the single-device setting (right), there is only one device.

Computational self-testing. Recently, beginning with seminal work by Mahadev [33] on
the classical verification of quantum computations, a series of works, e.g., [24, 6, 14, 1, 52, 53,
29, 5, 27, 32, 55, 39, 38, 40], have explored how computational assumptions can be leveraged
by a classical verifier to control a single quantum device in certain ways. Typically, the
assumption used is that the Learning-With-Errors (LWE) [44] problem is hard to solve
efficiently, even for quantum computers, which is a standard assumption. However, except
for [24, 53, 39, 38, 40], the level of control established in these works is much weaker than in
nonlocal self-testing. For example, if a device passes Mahadev’s verification protocol [33], it
only means that, to quote [39], “there exists a quantum state such that the distribution over
the prover’s answers could have been produced by performing the requested measurements on
this state”. We do not know whether the prover actually prepared that state and performed
the requested measurements on it.

Metger and Vidick [39] are the first to explicitly propose the self-testing of a single device
under computational assumptions. The main limitation of [39] and follow-up work [40] is that
they only self-test two and three qubits, respectively. In this work, we introduce a self-test
that certifies the preparation and measurement of N EPR pairs in the computational (or
single-device) setting. Our work differs from the concurrent work [23] in that [23] certifies
the preparation (but not measurement) of BB84 states.

Main results. We give a self-test that certifies the EPR pairs:{
|τ⋄,v⟩ := 1√

2N

N⊗
i=1

(σX)vi ⊗ (σX)vN+i(|0⟩i |+⟩N+i + |1⟩i |−⟩N+i)
∣∣ v ∈ {0, 1}2N

}
,

and states {|τθ,v⟩ | θ ∈ {0, 1 . . . , 2N}, v ∈ {0, 1}2N}, which is a subset of BB84 states specified
in Section 3.

Moreover, our self-test certifies any distribution over tensor products of computational
(Pauli-Z) or Hadamard (Pauli-X) basis measurements on 2N qubits:{{

Πu
q := |Bu1

q1
⟩⟨Bu1

q1
| ⊗ . . .⊗ |Bu2N

q2N
⟩⟨Bu2N

q2N
|
∣∣ u ∈ {0, 1}2N} ∣∣∣ q ∈ {0, 1}2N

}
, (1)

where |B0
0⟩ := |0⟩ , |B1

0⟩ := |1⟩ , |B0
1⟩ := |+⟩, and |B1

1⟩ := |−⟩.
Our self-test generalizes protocols in [24, 39] and uses the Extended Noisy Trapdoor

Claw-Free function Families (ENTCFs) introduced by Mahadev in [33]. An ENTCF consists
of two function-pair families, a claw-free family F and an injective family G, that have certain
cryptographic properties under the LWE hardness assumption.

H. Fu, D. Wang, and Q. Zhao 64:3

In our self-test, the classical verifier first samples θ ∈ {0, 1, . . . , 2N} ∪ {⋄} uniformly at
random. Then it generates the public keys and trapdoors of 2N function pairs from F ∪ G
according to θ as follows.
1. θ = 0: all pairs are from G.
2. θ ∈ {1, . . . , 2N}: the θth pair is from F and the remaining 2N − 1 pairs are from G.
3. θ = ⋄: all pairs are from F .
The verifier sends the public keys to the device. The device then sends back 2N images,
y1, . . . , y2N , of these function pairs – these play the role of a commitment. In the second
round, the verifier either (i) checks the commitment by asking for preimages of the yis
and accepts or rejects accordingly, or (ii) asks for an equation involving the preimages
of the yis. In case (ii), there is a final round where the verifier sends with probability
1/2 a uniformly random q ∈ {02N , 12N , 0N1N , 1N0N} and with probability 1/2 a random
q ∈ {0, 1}2N according to some distribution µ of its choosing. The device sends back the
result u ∈ {0, 1}2N of performing some measurement {Puq }u. The verifier lastly checks that
u is consistent with measuring |τθ,v⟩ using {Πu

q }u , where v ∈ {0, 1}2N is some bitstring that
the verifier can compute efficiently using the trapdoors, and accepts or rejects accordingly.
We allow our verifier to pick any distribution µ on q ∈ {0, 1}2N so that our protocol can
be composed with other protocols. For example, in our applications, the distribution on
q ∈ {0, 1}2N is non-uniform.

▶ Theorem 1 (Informal). Let λ ∈ N be a security parameter and let N = poly(λ) be a fixed
polynomially-bounded function of λ. Assuming the LWE problem of size λ cannot be solved
in poly(λ) time, our self-test satisfies the following properties.
Completeness. Using poly(λ) qubits and quantum gates, a quantum device can prepare one

of the 2N -qubit states in {|τθ,v⟩ | θ ∈ {0, 1, . . . , 2N} ∪ {⋄}, v ∈ {0, 1}2N} and measure it
using {Πu

q | u ∈ {0, 1}2N} upon question q ∈ {0, 1}2N to pass our self-test with probability
≥ 1− negl(λ). Moreover, the verifier can be classical and run in poly(λ) time.

Soundness. If a quantum device passes our self-test in poly(λ) time with probability ≥ 1− ϵ,
then the device must have prepared a (sub-normalized) state σθ,v, measured it using {Puq }u,
and received outcome u, such that∑

v∈{0,1}2N

∥V σθ,vV † − |τθ,v⟩⟨τθ,v| ⊗ αθ,v∥1 ≤ O(N7/4ϵ1/32) and (2)

Eq←µ
[∑
u,v∈{0,1}2N

∥V Puq σθ,v Puq V † −Πu
q |τθ,v⟩⟨τθ,v|Πu

q ⊗ αθ,v∥1

]
≤ O(N2ϵ1/32), (3)

where θ ∈ {0, 1, . . . , 2N} ∪ {⋄}, µ is the distribution on {0, 1}2N chosen by the verifier
in our self-test, u, v ∈ {0, 1}2N are known to the verifier, V is an efficient isometry
independent of {θ, µ, u, v}, and the αθ,vs are some auxiliary states that are computationally
indistinguishable from some fixed state α.

Note that θ = ⋄ corresponds to self-testing EPR pairs. We also highlight the poly(N, ϵ)
soundness error (or robustness) that we achieve. Good robustness is critical if we want to
use our self-test in practice because real quantum devices are imperfect. The more imperfect
a device is, the more robust a self-test needs to be to control it.

Techniques. The main challenge is to prove soundness. We give a high-level overview here
and provide more details in Section 4. We start by defining 4N observables of the device
{Xi, Zi | i ∈ [2N]} using its measurement operators. The strategy is to characterize these
observables as the standard σXi and σZi Pauli observables on 2N qubits where i indexes

ICALP 2023

64:4 Parallel Self-Testing of EPR Pairs Under Computational Assumptions

those qubits. Then, we characterize the device’s states by their invariance under products of
projectors corresponding to these observables and the device’s measurements as products of
these projectors. To characterize Xi and Zj , we first generalize techniques in [39] to show
that Xi and Zj obey certain state-dependent commutation and anti-commutation relations
(Proposition 10). To carry out the generalization, it is important for the verifier to select
θ from the set [2N] ∪ {0, ⋄} for two reasons. The first is that they allow us to bound the
failure probability associated with each σθ by 2N + 2 (the number of possible θs) times the
average failure probability over all θs. The second is that this restricted set of θs suffices
for us to characterize Xi and Zi as σXi and σZi . Intuitively, θ = 0 is used to characterize
{Z1, . . . , Z2N}, θ ∈ [2N] is used to characterize Xθ, and θ = ⋄ is used to characterize EPR
pairs. We give a more precise correspondence in Table 1.

Then, we introduce new techniques to handle products of projectors corresponding to the
Xi, Zi observables. These techniques differ significantly from [39] because their techniques
are not susceptible to generalization to arbitrary N (as we discuss after Proposition 15).
These techniques also differ significantly from those used in nonlocal self-testing because
we lack the perfect state-independent commutation relations between observables on two
spatially-separated devices. More specifically, we introduce a “operator-state commutation”
relation (Proposition 11) that, together with the computational indistinguishability of the
σθs (which follows from the LWE hardness assumption), gives us the ability to “commute
an observable past a state”. We then use this ability to handle products of projectors.
The usefulness of the ability to commute can be seen in the following simple example.
Observe that X1Z2X3ψ = Z2X1X3ψ (1) does not follow from the commutation relation
X1Z2ψ = Z2X1ψ, where ψ is some density operator. However, (1) would follow if we could
commute X3 past ψ first because X1 and Z2 would then be directly next to ψ. Having all
(1)-like relations involving products of up to N Xi and Zi implies that these observables
can be characterized as σXi and σZi respectively, which follows from results in approximate
representation theory [51, 26]. We remark that the preceding discussion is for intuition only:
in fact, our proof directly shows that an explicit “swap” isometry (defined in Definition 12)
approximately maps Xi and Zi to σXi and σZi respectively.

Applications. We present two applications of our result, the first is for device-independent
(DI) quantum key distribution (QKD), and the second is for dimension testing. We stress
that for both applications, we crucially rely on the characterization of measurements in
Equation (3) of Theorem 1.

DIQKD. A DI protocol is one where the parties involved do not need to trust the inner
working of the devices they use to be sure that the devices have successfully implemented
the protocol. A QKD protocol is one for establishing information-theoretically secure keys
between two parties. Previous DIQKD protocols rely on the nonlocal assumption. This
assumption is usually justified experimentally by spatially separating two devices by a large
distance, which is difficult to implement. Recently, Metger et. al. [38] proposed a different
setting for DIQKD: they replace the nonlocal assumption with the assumption that the two
devices are computationally bounded. However, since their protocol sequentially repeats the
self-test in [39], their soundness proof relies on the IID assumption that the device behaves
identically and independently at each repetition to argue that it has prepared and measured
many EPR pairs.

Our DIQKD protocol consists of a random number of “test rounds” followed by a final
“generation round”, where both round types are based on our self-test. The N EPR pairs
certified in the generation round are used to generate Ω(N) shared keys. Because of the

H. Fu, D. Wang, and Q. Zhao 64:5

parallel nature of our self-test, our DIQKD protocol does not require the IID assumption.
We sketch a soundness proof that uses a “cut-and-choose” argument from [23, Theorem 4.33]
to upper bound the failure probability of the device in the generation round, conditioned
on the protocol not aborting in the test rounds. This argument does not require an IID
assumption between rounds. Then, we use Equation (3) of Theorem 1 to lower bound the
key rate, which does not require an IID assumption within any round. Hence we remove
the IID assumption overall. The application of our self-test to remove the IID assumption
from DIQKD in the computational setting can be viewed as analogous to the application
of the nonlocal self-test to remove the IID assumption from DIQKD in the usual nonlocal
setting [45].

Dimension testing. Our dimension-test is a simplified version of our self-test and is
inspired by the non-local dimension test in [11] and its exposition in [51, Section 2.5.2]. The
protocol in [11] works as follows. The verifier chooses a random bit θ ∈ {0, 1} and random
bitstring x ∈ {0, 1}n and sends n qubits to the device such that the qubits encode x in the
computational basis (θ = 0) or in the Hadamard basis (θ = 1). After the device has received
all n qubits, the verifier sends θ to the device and asks it to return a bitstring x′ ∈ {0, 1}n. If
x′ = x, the verifier certifies that the device has a large quantum dimension. Our protocol can
be viewed as a version of this protocol, where the verifier classically delegates the preparation
of the appropriate n-qubit states to the prover in a secure manner. Although our protocol is
inspired by [11], our security proof uses Theorem 1 and differs significantly from that in [11].

We prove that, under the same computational assumptions as in Theorem 1, if a quantum
device runs in poly(λ) time and passes our dimension-test with probability ≥ 1− ϵ, then its
quantum dimension is at least (1 − O(N2ϵ1/32))2N (∗). To obtain a non-trivial bound, it
suffices to estimate ϵ to precision 1/poly(N), which can be done by repeating the dimension-
test poly(N) times. Since a single run of the dimension test also only takes poly(N) time,
the total time taken is poly(N). Intuitively, we prove (∗) by using Equation (3) of Theorem 1
to argue that the Hilbert space H of the device must be able to accommodate all possible
post-measurement states that could result from performing a Hadamard basis measurement
of N qubits in a computational basis state. Since there are 2N such post-measurement states,
and they are all orthogonal, we deduce a quantum dimension lower bound of 2N . A formal
proof is more challenging because Equation (3) of Theorem 1 gives an approximation and we
need to prove that the rank of a quantum state is robust against the approximation error.

Compared to nonlocal dimension-tests [9, 10, 17], the advantage of ours is that we do
not need to assume spatial separation between multiple devices. Compared to prepare-and-
measure dimension-tests [22, 12, 13, 11], the advantage of ours is that the verifier does not
need to be quantum – all computations and communications are classical. To the best of our
knowledge, our dimension-test is the first1 that can test for an arbitrary quantum dimension
in the computational setting. In fact, whether this is possible was recently raised as an open
question by Vidick in [51, pg. 84].

Discussion. One interesting direction is to further improve the efficiency and robustness of
our protocol. When N = λ, one bottleneck in improving the efficiency is that sending (the
public key of) one function pair already requires poly(λ) = poly(N) bits of communication.
In recent work, it has been shown that, instead of sending the public keys, the verifier can
apply a succinct batch key generation algorithm to reduce the cost of sending public keys [3].
We expect that techniques in [3] can be used to shorten other messages of our protocol as

1 More recently, [34] also claims a dimension test using completely different methods.

ICALP 2023

64:6 Parallel Self-Testing of EPR Pairs Under Computational Assumptions

well. Turning to robustness, we note that there exists a nonlocal self-test [41] which uses
poly(N) bits of communication and achieves robustness poly(ϵ). It might be possible to
combine our techniques with those in [41] to achieve similar robustness in the computational
setting. Another interesting question to ask is what MIP∗ protocols can be compiled into
computation delegation protocols under computational assumptions. For comparison, it
has been shown that classical MIP protocols sound against non-signalling provers can be
turned into computation delegation protocols [49, 31]. It would also be interesting to see if
a systematic way exists to translate nonlocal self-tests into computational ones. We note
that [29] suggests that the two settings might not be too different at a conceptual level by
presenting a test of quantumness in the computational setting that closely resembles the
nonlocal CHSH test [16]. Recently, Kalai et. al. proposed a way to construct a proof-of-
quantumness protocol from any nonlocal game with a classical and quantum separation
using quantum homomorphic encryption [30]. However, it is unknown if the aforementioned
protocols are quantumly sound. Going beyond quantum dimension testing, it would be
interesting to see if our protocol can be combined with those that test quantum circuit
depth [15, 2] to give a protocol that tests the quantum volume of a quantum computer.

2 Preliminaries

Notation. N is the set of positive integers. For k ∈ N, we write [k] := {1, 2, . . . , k}. For a
probability distribution µ on X, we use the notation x ←µ X to mean that x is sampled
from X according to µ. H denotes a finite-dimensional Hilbert space, L(H) denotes the set
of linear operators on H, and Pos(H) denotes the set of positive semi-definite operators on
H. We sometimes refer to operators in Pos(H) or vectors in H, not necessarily normalized,
as (quantum) states. For an operator X ∈ L(H), we write ∥X∥p := Tr[|X|p]1/p, where
|X| :=

√
X†X, for the Schatten p-norm. For ϕ, ψ ∈ L(H), we write ϕ ≈ϵ ψ to mean

∥ϕ−ψ∥2
1 ≤ O(ϵ). For A,B ∈ L(H) and ψ ∈ Pos(H), we write ∥A∥2

ψ := Tr[A†Aψ] = ∥A
√
ψ∥2

2
and A ≈ϵ,ψ B ⇐⇒ ∥A − B∥2

ψ ≤ O(ϵ). The single-qubit Z and X Pauli operators are
denoted σZ :=

(1 0
0 −1

)
and σX := (0 1

1 0) which have eigenstates {|0⟩ := (1
0), |1⟩ := (0

1)} and
{|(−)0⟩ := 1√

2 (|0⟩+ |1⟩), |(−)1⟩ := 1√
2 (|0⟩ − |1⟩)}, respectively.

We write λ ∈ N for the security parameter. Most quantities in this work are dependent on
λ. Therefore, for convenience, we often make the dependence implicit. A function f : N→ R
is said to be negligible if for any polynomial p ∈ R[x], limλ→∞ f(λ)p(λ) = 0. We denote such
functions by negl(λ).

ENTCFs. We informally summarize the properties that we employ of Extended Noisy
Trapdoor Claw-free function Families (ENTCFs). For full details about the properties of
ENTCFs, see the arXiv version of [33].

Let λ ∈ N be a security parameter. Let X ⊆ {0, 1}w and Y be finite sets that depend on
λ, where w = w(λ) is some integer that is a polynomially-bounded function of λ. An ENTCF
consists of two families of function pairs, F and G. Function pairs from these two families
are labeled by public keys. The set of public keys for F is denoted by KF , and the set of
public keys for G is denoted by KG . For k ∈ KF , a function pair (fk,0, fk,1) from F is called
a claw-free pair. For k ∈ KG , a function pair (fk,0, fk,1) from G is called an injective pair.
For any k ∈ KF ∪ KG , the functions2 fk,0, fk,1 : X → Y. Note that the keys and function
pairs of an ENTCF are functions of λ. We use the terms “efficient” and “negligible” to refer
to poly(λ)-time and negl(λ) respectively. We need the following properties of ENTCFs:

2 This is a convenient simplification. These functions actually map to probability distributions on Y. See
Section 2.2 of the full version for details.

H. Fu, D. Wang, and Q. Zhao 64:7

1. Efficient function generation property [33, Definitions 4.1 (1), 4.2 (1)]. There exist
efficient classical probabilistic algorithms GenF and GenG for F and G respectively with
GenF (1λ)→ (k ∈ KF , tk) and GenG(1λ)→ (k ∈ KG , tk), where tk is known as a trapdoor.

2. (Disjoint) injective pair property [33, Definitions 4.1 (2), 4.2 (2)]. For all k ∈ KF ∪ KG ,
x, x′ ∈ X with x ̸= x′, and b ∈ {0, 1}, fk,b(x) ̸= fk,b(x′). For all k ∈ KF and x ∈ X , there
exists an x′ ̸= x such that fk,0(x) = fk,1(x′). We call any such pair of (x, x′) a claw.

3. Efficient range superposition property [33, Definitions 4.1 (3.c), 4.2 (3.b), 4.3 (1)]. Given
k ∈ KF ∪ KG , there exists an efficient quantum algorithm that prepares a state that is
negligibly close to |ψ⟩ := 1√

2·|X |

∑
b∈{0,1}

∑
x∈X |b⟩ |x⟩ |fk,b(x)⟩, in trace distance.

4. Efficient decoding property [33, Definitions 4.1 (2, 3.a, 3.b), 4.2 (2, 3.a), 4.3 (1)]. We define
the following “decoding maps” that decode the output of functions from an ENTCF.
For k ∈ (KF ∪ KG)m with m = poly(λ), kG ∈ KG , k0 ∈ KF ∪ KG , and kF ∈ KF

CHK(k, y, b, x) = 0 if yi = fki,bi
(xi) for all i ∈ [m], else = 1

b̂(kG , y) = b if y ∈ Im(fkG ,b), else =⊥
x̂(b, k0, y) := x if fk0,b(x) = y, else =⊥

ĥ(kF , y, d) := d · (x̂(0, kF , y)⊕ x̂(1, kF , y)) if y ∈ Im(fkF ,0) and d ̸= 0w, else =⊥ .

The efficient decoding property states that b̂, x̂, and ĥ can be computed efficiently given
a trapdoor tk for k by a classical deterministic algorithm and that CHK can be computed
efficiently even without a trapdoor by a classical deterministic algorithm.

5. Adaptive hardcore bit property [33, Definition 4.1 (4)]. There does not exist an efficient
quantum algorithm that, given k ← GenF (1λ)key, can compute b ∈ {0, 1} and xb ∈ X for
some b ∈ {0, 1}, d ∈ {0, 1}w\{0w}, and, with non-negligible advantage, a bit d ·(x0⊕x1) ∈
{0, 1} such that (x0, x1) is a claw.

6. Injective invariance property [33, Definition 4.3 (2)]. There does not exist an efficient
quantum algorithm that can distinguish between the marginal key distributions of
GenF (1λ) and of GenG(1λ) with non-negligible advantage.

3 Completeness of self-testing protocol

In this section, we present our self-testing protocol in Fig. 2. We sketch a proof of its
completeness (Theorem 2), partly to establish some notation. For details, see Section 3 of
the full version.

▶ Theorem 2. There exists an efficient quantum device that is accepted by our self-testing
protocol with probability ≥ 1− negl(λ). Moreover, the classical verifier is efficient.

Proof sketch. In the first round, for each i ∈ [2N], by the efficient range superposition
property of ENTCFs (Item 3), the device uses ki to efficiently prepare a state that is negligibly
close to

|ψi⟩ := 1√
2 · |X |

∑
b∈{0,1}

∑
x∈X
|b⟩ |x⟩ |fki,b(x)⟩ .

Then, the device measures the (image) y register of |ψi⟩ and sends the outcome to
the verifier. By the (disjoint) injective pair property of ENTCFs (Item 2), after the y

measurement, the state |ψi⟩ collapses to |ϕi⟩ |yi⟩, where

|ϕi⟩ :=
{
|b̂(ki, yi)⟩ |x̂(ki, yi)⟩ if ki ∈ KG ,

1√
2 (|0⟩ |x̂0(ki, yi)⟩+ |1⟩ |x̂1(ki, yi)⟩) if ki ∈ KF .

ICALP 2023

64:8 Parallel Self-Testing of EPR Pairs Under Computational Assumptions

1. Input: λ ∈ N. Set N = poly(λ). Given a distribution µ on {0, 1}2N . Sample θ ←U [2N] ∪ {0, ⋄} uniformly at random.
Sample 2N key-trapdoor pairs (k1, tk1), . . . , (k2N , tk2N) from an ENTCF according to θ as follows:

θ ∈ [2N]: the θ-th key-trapdoor pair is sampled from GenF (1λ) and the remaining 2N − 1 pairs are all sampled
from GenG(1λ).
θ = 0: all the key-trapdoor pairs are sampled from GenG(1λ).
θ = ⋄: all the key-trapdoor pairs are sampled from GenF (1λ).

Send the keys k = (k1, . . . , k2N) to the device.

2. Receive y = (y1, . . . , y2N) ∈ Y2N from the device.

3. Sample round type “preimage” or “Hadamard” uniformly at random and send to the device.

Case “preimage”: receive

(b, x) = (b1, . . . , b2N , x1, . . . , x2N)

from the device, where b ∈ {0, 1}2N and x ∈ {0, 1}2Nw.
If CHK(ki, yi, bi, xi) = 0 for all i ∈ [2N], accept, else reject.

Case “Hadamard”: receive

d = (d1, . . . , d2N) ∈ {0, 1}2Nw

from the device.

4. With probability 1/2, sample q ←U {02N , 12N , 0N 1N , 1N 0N} uniformly at random, and with probability 1/2 sample
q ←µ {0, 1}2N according to the distribution µ. Send q to the device.

Receive u ∈ {0, 1}2N from the device.
case A θ = 0 and

if qi = 0 and b̂(ki, yi) ̸= ui for some i ∈ [2N], reject,
else accept.

case B θ ∈ [2N] and
if qi = 0 and b̂(ki, yi) ̸= ui for some i ̸= θ, reject,
if qθ = 1 and ĥ(kθ, yθ, dθ)⊕ b̂(kθ+N , yθ+N) ̸= uθ, reject,
else accept.

case C θ = ⋄ and
if qi = 0, qN+i = 1 and ui ⊕ uN+i ̸= ĥ(kN+i, yN+i, dN+i) for some i ∈ [N], reject,
if qi = 1, qN+i = 0 and ui ⊕ uN+i ̸= ĥ(ki, yi, di) for some i ∈ [N], reject,
else accept.

Figure 2 A protocol that self-tests EPRs of a computationally efficient device.

In the following, we use the shorthand b̂i := b̂(ki, yi) ∈ {0, 1} and, for a ∈ {0, 1}, x̂a,i :=
x̂(a, ki, yi) ∈ X .

In the second round, there are two cases, “preimage” or “Hadamard”. In the “preimage”
case, the device measures the b and x registers of each |ϕi⟩ in the computational basis and
sends the outcome to the device. This will always be accepted by the device using the
definition of CHK.

In the “Hadamard” case, the device measures the x register of each |ϕi⟩ in the Hadamard
basis and sends the outcome d = (d1, d2, . . . , d2N) to the verifier. After this measurement,
|ϕi⟩ collapses to |αi⟩ |di⟩, where, if θ ∈ [2N], then

|αi⟩ =
{
|b̂i⟩ if i ̸= θ,

(|0⟩+ (−1)dθ·(x̂0,θ⊕x̂1,θ) |1⟩)/
√

2 if i = θ;

if θ = 0, then |αi⟩ = |b̂i⟩; and if θ = ⋄, then |αi⟩ = (|0⟩+ (−1)di·(x̂0,i⊕x̂1,i) |1⟩)/
√

2.
In the following, we use the shorthand ĥi := di · (x̂0,i ⊕ x̂1,i) ∈ {0, 1} and ĥ′ :=

(ĥN+1, . . . , ĥ2N , ĥ1, ĥ2, . . . , ĥN) ∈ {0, 1}2N .

H. Fu, D. Wang, and Q. Zhao 64:9

For v ∈ {0, 1}2N , we also define the state

|ψv⟩ := 1√
2N

N⊗
i=1

(σX)vi ⊗ (σX)vN+i(|0⟩i |+⟩N+i + |1⟩i |−⟩N+i), (4)

which consists of N (locally-rotated) EPR pairs.
Then, the device applies N controlled-σZ gates between the i-th and (N + i)-th qubits of⊗2N
i=1 |αi⟩ for all i ∈ [N] (note that the controlled-σZ gate is independent of which qubit is

the control and which qubit is the target). The device has now prepared the 2N -qubit state

|α⟩ :=


|b̂1, . . . , b̂θ−1⟩ |(−)b̂θ+N⊕ĥθ ⟩ |b̂θ+1, . . . , b̂2N ⟩ if θ ∈ [2N], θ ≤ N,
|b̂1, . . . , b̂θ−1⟩ |(−)b̂θ−N⊕ĥθ ⟩ |b̂θ+1, . . . , b̂2N ⟩ if θ ∈ [2N], θ > N,

|b̂1, . . . , b̂2N ⟩ if θ = 0,
|ψĥ′⟩ if θ = ⋄.

(5)

In the “Hadamard” case, there is a third and final round where the verifier sends a bitstring
q ∈ {0, 1}2N to the device. The device performs the following q-dependent measurements.
For i ∈ [2N], if qi = 0, measure the ith qubit of |α⟩ in the computational basis, otherwise,
measure the ith qubit of |α⟩ in the Hadamard basis. The device finally sends the outcome
u ∈ {0, 1}2N of these measurements to the verifier. The right-hand side of Equation (5)
implies that the device passes the last checks made by the verifier.

The “moreover” part of the theorem follows directly from the efficient function generation
and the efficient decoding properties of ENTCFs (Items 1 and 4). ◀

4 Soundness of self-testing protocol

In this section, we show that our self-testing protocol achieves poly(N, ϵ) soundness error.
Unlike the proof of completeness in Section 3, we use the adaptive hardcore bit and injective
invariance properties of ENTCFs to prove soundness in this section. Therefore, it is necessary
for us to make the LWE hardness assumption throughout this section. All proofs can be
found in Section 4 of the full version.

We start with a mathematical model of quantum devices.

▶ Definition 3. A device D = (S,M,Π, P) is specified by Hilbert spaces named HD, HY ,
and HR, with dim(HY) = |Y|2N and dim(HR) = 22Nw, and the following.
1. A set S := {ψθ | θ ∈ [2N] ∪ {0, ⋄}} ⊂ D(HD ⊗ HY) of states where each state ψθ is

classical on HY :

ψθ :=
∑

y∈Y2N

ψθy ⊗ |y⟩⟨y|.

The state ψθy models the device’s state immediately after returning y ∈ Y2N to the verifier
if the verifier initially sampled θ ∈ [2N] ∪ {0, ⋄}. More precisely, ψθy (and hence ψθ) is a
function of the public keys k ∈ (KF ∪ KG)2N that the verifier sampled according to θ, as
described in the protocol. We choose to make the k-dependence implicit for notational
convenience.

2. A projective measurement Π for the preimage test on HD ⊗HY :

Π :=
{

Πb,x :=
∑

y∈Y2N

Πb,x
y ⊗ |y⟩⟨y|

∣∣∣∣∣ b ∈ {0, 1}2N , x ∈ X 2N

}
.

The measurement outcome b, x is the device’s answer for the preimage test.

ICALP 2023

64:10 Parallel Self-Testing of EPR Pairs Under Computational Assumptions

3. A projective measurement M on HD ⊗HY for the device’s first answer in the Hadamard
test:

M :=
{
Md :=

∑
y∈Y2N

Md
y ⊗ |y⟩⟨y|

∣∣∣∣∣ d ∈ {0, 1}2Nw

}
. (6)

We write σθ(D) for the classical-quantum state that results from measuring M on ψθ

followed by writing measurement outcome d into another classical register whose Hilbert
space is denoted by HR. That is,

σθ(D) :=
∑

y∈Y2N , d∈{0,1}2Nw

σθy,d(D)⊗ |y, d⟩⟨y, d| ∈ HD ⊗HY ⊗HR, (7)

where σθy,d(D) := Md
yψ

θ
yM

d
y .

4. Projective measurements Pq on HD ⊗ HY ⊗ HR for the device’s second answer in the
Hadamard test when asked questions q ∈ {0, 1}2N :

Pq :=
{
Puq =

∑
y∈Y2N ,d∈{0,1}2Nw

Puq,y,d ⊗ |y, d⟩⟨y, d|

∣∣∣∣∣ u ∈ {0, 1}2N

}
. (8)

The measurement outcome v is the device’s answer for the question q.

▶ Definition 4. A device D = (S,Π,M, P) is efficient if all the states in S can be efficiently
prepared and all the measurements Π,M , and P are efficient.

We use P to define observables of the quantum device that we call Xi and Zi, which
should act as Pauli X and Z operators on the ith qubit respectively.

▶ Definition 5 (Marginal observables). Let D = (S,Π,M, P) be a device. For i ∈ [2N] and
q ∈ {0, 1}2N , we define the binary observables

Zq,i(D) :=
∑

v∈{0,1}2N

(−1)viP vq if qi = 0 and Xq,i(D) :=
∑

v∈{0,1}2N

(−1)viP vq if qi = 1.

Note that Zq,j(D) commutes with Xq,k(D) for j ̸= k according to these definitions.

In the rest of the paper, we use the abbreviations Zi(D) := Z02N ,i(D) and Xi(D) := X12N ,i(D)
for all i ∈ [2N]; Z̃i(D) := Z0N 1N ,i(D) if i ≤ N ; Z̃i(D) := Z0N 1N ,i(D) if i > N ; X̃i(D) :=
X1N 0N ,i(D) if i ≤ N ; and X̃i(D) := X0N 1N ,i(D) if i > N .

For different choices of θ, our goal is to characterize the actions of the observables Xi

and Zi on the state σθ, which is the post-M -measurement state defined below.

▶ Definition 6 (σθ,v). Let D be a device. For θ ∈ [2N] ∪ {0, ⋄} and v ∈ {0, 1}2N , we define
the state

σθ,v(D) :=
∑

(y,d)∈Σ(θ,v)

σθy,d(D)⊗ |y, d⟩ ⟨y, d| ∈ HD ⊗HY ⊗HR, (9)

where, Σ(θ, v) is set to
{

(y, d)
∣∣ b̂(ki, yi) = vi for all i ̸= θ and ĥ(kθ, yθ, dθ) = vθ ⊕ vmod(θ+N,2N)

}
if θ ∈ [2N],{

(y, d)
∣∣ b̂(ki, yi) = vi for all i

}
if θ = 0,{

(y, d)
∣∣ ĥ(ki, yi, di) = vmod(i+N,2N) for all i

}
if θ = ⋄.

In all cases, (y, d) ranges over Y2N ×{0, 1}2Nw, i ranges over [2N], and the state σθ,v(D)
implicitly depends on keys k ∈ (KF ∪KG)2N chosen according to θ as described in the protocol.

H. Fu, D. Wang, and Q. Zhao 64:11

Unlike the nonlocal self-testing case, where there is only one state, e.g. EPR pairs, to
characterize, we have multiple states and multiple observables to characterize. Hence, we first
decompose σθ ≈

∑
v∈{0,1}2N σθ,v, where σθ,v are defined above. We then characterize the

behavior of different observables on different σθ,v using the failure probabilities of different
test cases:

▶ Definition 7 (Failure probabilities). Let D be a device. For q ∈ {0, 1}2N , we define ϵP (D)
to be the probability that D fails the preimage test, ϵH,q(D) to be the probability that D
fails question q of the Hadamard test, and ϵH(D) to be the maximum of ϵH,q(D) over
q ∈ {02N , 12N , 0N1N , 1N0N}}. Then, the average failure probability is

ϵ(D) := ϵP (D)/2 +
(∑
q∈{02N ,12N ,0N 1N ,1N 0N}

1
4ϵH,q(D) +

∑
q∈{0,1}2N

µ(q)ϵH,q(D)
)
/4.

Henceforth, when D is clear from the context, we mostly omit the D dependence.
The probability that this device can pass the tests of our protocol allows us to say that

the operator acts in the same way as the ideal operator acts on the ideal state. Therefore,
we will use ϵP and ϵH,q to bound how far away the Zq,i, Xq,i observables and σθ,v states
are from the ideal observables and states. How we characterize the states and observables
using the passing probabilities of the four key questions: q = 02N , 12N , 0N1N and 1N0N is
summarized in Table 1. Note that q ∈ {0N1N , 1N0N} are for testing EPR pairs.

Table 1 Correspondence between the (θ, q) used in our protocol and the observables tested.

(qi, qi+N) with i ≤ N θ = 0 θ ∈ [2N] θ = ⋄

(0, 0) Zq,i and Zq,i+N - -

(1, 1) - Xq,θ if θ ∈ {i, i + N} -

(0, 1) - - Zq,i ·Xq,i+N

(1, 0) - - Xq,i · Zq,i+N

Our use of only 2N + 2 distinct θs allows us to bound the failure probability associated
with each σθ by O(Nϵ). If we had naively used θ ∈ {0, 1}2N , the robustness of our self-test
would be 2Ω(N)ϵ. The fact that using only 2N + 2 distinct θs is sufficient for self-testing
crucially relies on the following proposition, which can be proven using the injective invariance
property of ENTCFs (Item 6).

▶ Proposition 8. Any pair of states in {σθ | θ ∈ [2N] ∪ {0, ⋄}} of an efficient device D are
computationally indistinguishable.

In the next step, we use the computational indistinguishability of the σθs to argue that
for all (q, i), the observables Zq,i and Xq,i act like Zi and Xi on any σθ.

▶ Proposition 9. For all q ∈ {0, 1}2N , θ ∈ [2N] ∪ {0, ⋄}, and i ∈ [2N], we have

Zq,i ≈N(ϵH,q+ϵH +ϵP),σθ Zi if qi = 0, and Xq,i ≈N(ϵH,q+ϵH +ϵP),σθ Xi if qi = 1.

For self-testing, we not only need to characterize the action of a single operator on σθ as
sketched above, we also need to characterize the actions of products of the operators. Next,
we establish the commutation and anti-commutation relations of the observables with respect
to σθ. Proving commutation is straightforward, while proving anti-commutation relies on
the adaptive hardcore bit property. Our proof generalizes and refines techniques in [39, 24]:
one difference is that we associate error parameters to each σθ,v, where v ∈ {0, 1}2N , and
use them collectively to bound the overall approximation error associated with σθ.

ICALP 2023

64:12 Parallel Self-Testing of EPR Pairs Under Computational Assumptions

▶ Proposition 10. Let D be an efficient perfect device. For all i, j, θ ∈ [2N], we have

Commutation. [Zi, Zj] = 0, [Xi, Xj] = 0, and [Zi, Xj] ≈NϵH +negl(λ),σθ 0 if i ̸= j.

Anti-commutation. {Zi, Xi} ≈√NϵH +negl(λ),σθ 0.

The above relations allow us to handle products of two operators from {Zi, Xi}i∈[2N].
However, as mentioned in Section 1, we also want to show relations such as Z1X3Z2σ

3 ≈
X3Z1Z2σ

3 (⋆), which does not directly follow because Z1 and X3 are not directly next to the
state σ3. We want to establish relations like (⋆) involving products of multiple observables
Zi and Xi in order to characterize Zi and Xi as Pauli operators σZi and σXi under the swap
isometry defined later.

Our solution to this problem is the next proposition which shows observable-state
commutation relations for certain pairs of observables and states. For example, we can now
easily prove (⋆) by first using the proposition to commute Z2 past σ3. We view our use of
observable-state commutation relations, which has no analog in prior work, as one of the
main technical contributions of this work. These techniques should be useful in any future
work that aims to efficiently self-test more than one qubit.

▶ Proposition 11 (Operator-state commutation). Let D be an efficient perfect device. For all
i, θ ∈ [2N] with i ̸= θ and q ∈ {0, 1}2N , we have

Zq,i σθ ≈N(ϵH +ϵH,q)+negl(λ) σθ Zq,i if qi = 0 and Xq,θ σθ ≈N(ϵH +ϵH,q)+negl(λ) σθ Xq,θ if qθ = 1.

Observe that the proposition above does not say Zq,i and Xq,i commute with σθ for all pairs
(i, θ) as we would have desired to prove all (⋆)-like relations. To get around this problem,
we make use of the computational indistinguishability of the σθs to argue that efficient
observables must act similarly on different σθs. For example, consider the following relation
that looks similar to (⋆): Z1X3Z2σ

2 ≈ X3Z1Z2σ
2 (⋆′). In this case, we cannot directly apply

Proposition 11, since Z2 does not commute with σ2. Nevertheless, by using the computational
indistinguishability of σ2 and σ3, we can derive an “operational version” of (⋆′) from (⋆).
The operational version allows us to interchange the left-hand and right-hand sides of (⋆′)
when they appear inside traces (i.e., Tr). We can only derive such an operational version
because the computational indistinguishability of σ2 and σ3 only allows us to interchange σ2

and σ3 inside traces; see the lifting lemmas in the full version. For an example of our using
this technique, see the long aligned equation in the proof of Lemma 4.33 in the full version.

Next, we define our swap isometry V . We will show that V maps the states, observables,
and measurements of the device to their ideal counterparts. This swap isometry can be
viewed as a special case of the swap isometry proposed in [54, Figure 2] in the nonlocal
setting. It is not the obvious generalization of the swap isometry used in [39, Proof of Lemma
4.28] as that is more difficult to analyze.

▶ Definition 12. Let D be a device and let H := HD ⊗HY ⊗HR. The swap isometry is the
map V : H → C22N ⊗H defined by

V =
∑

u∈{0,1}2N

|u⟩ ⊗
∏

i∈[2N]

Xui
i

∏
j∈[2N]

Z
(uj)
j .

We illustrate V when 2N = 4 below.

H. Fu, D. Wang, and Q. Zhao 64:13

|0⟩

|0⟩

|0⟩

|0⟩

|ψ⟩

H

H

H

H

Z1 Z2 Z3 Z4

H

H

H

H

X1 X2 X3 X4

We proceed to analyze the effect of the swap isometry on the observables and states of the
device. More specifically, in Proposition 13, we show that V maps the Xi and Zi observables
approximately to σX and σZ operators acting on the ith qubit of an auxiliary system.
▶ Proposition 13. Let D be an efficient perfect device. For all k ∈ [2N], θ ∈ [2N] ∪ {0, ⋄},
and q ∈ {0, 1}2N , we have

V†(σZk ⊗ 1)V ≈N(ϵH +ϵH,q)+negl(λ),σθ Zq,k if qk = 0, and
V†(σXk ⊗ 1)V ≈N3/2√ϵH +NϵH,q,σθ Xq,k if qk = 1.

Moreover, for k ∈ [N] and θ ∈ [2N] ∪ {0, ⋄},

V†(σX
k ⊗ σZ

N+k ⊗ 1)V ≈
N3/8ϵ

1/8
H

,σθ X̃kZ̃N+k and V†(σZ
k ⊗ σX

N+k ⊗ 1)V ≈
N3/8ϵ

1/8
H

,σθ Z̃kX̃N+k.

In Proposition 15, we show that V maps the states of the device to states of the form
τθ,v ⊗ αθ,v, where τθ,v is the ideal state defined below and αθ,v is some junk state that is
computationally indistinguishable to a fixed state α for all θ and v.
▶ Definition 14 (density operators τθ,v). Let v ∈ {0, 1}2N . For θ ∈ [2N] ∪ {0, ⋄}, we define
the 2N -qubit density operator τθ,v := |τθ,v⟩⟨τθ,v|, according to the following three cases.

|τθ,v⟩ :=


|v1⟩ ⊗ · · · ⊗ |vθ−1⟩ ⊗ |(−)vθ ⟩ ⊗ |vθ+1⟩ ⊗ · · · ⊗ |v2N ⟩ if θ ∈ [2N],
|v⟩ := |v1⟩ ⊗ · · · ⊗ |v2N ⟩ if θ = 0,
|ψv⟩ if θ = ⋄,

(10)

where |ψv⟩ is as defined in Equation (4).
▶ Proposition 15. Let D be an efficient perfect device. For all θ ∈ [2N] ∪ {0, ⋄} and
v ∈ {0, 1}2N , there exists a state αθ,v ∈ Pos(H) such that∑

v∈{0,1}2N

∥Vσθ,vV† − τθ,v ⊗ αθ,v∥1 ≤ O(N7/4ϵ
1/4
H), for θ ̸= ⋄, and

∑
v∈{0,1}2N

∥Vσ⋄,vV† − τ⋄,v ⊗ α⋄,v∥1 ≤ O(N35/32ϵ
1/32
H).

Moreover, there exists a state α ∈ Pos(H) and numbers {δ(v) ≥ 0 | v ∈ {0, 1}2N} such that
any efficient device can distinguish between αθ,v and α/22N with advantage at most O(δ(v))
for all v ∈ {0, 1}2N , with

∑
v∈{0,1}2N δ(v) ≤ O(N49/32ϵ

1/32
H).

The proofs of the two propositions above rely heavily on Propositions 10 and 11 which
crucially allows us to bound the soundness error in Theorem 16 by O(poly(N, ϵ)). If we
directly generalize the soundness analysis of [39], we would obtain an O(2N ϵ1/2N) bound on
the soundness error which is extremely loose.3

3 [23, End of Section 1.3] explains why the technique in [39] would lead to such a loose bound.

ICALP 2023

64:14 Parallel Self-Testing of EPR Pairs Under Computational Assumptions

Lastly, we put everything together to give our main soundness result, Theorem 16. The
main task is to characterize the measurement operator Puq , which is approximately a product
of 2N binary projectors of the form Z

(ui)
q,i and X(ui)

q,i . We use the operator-state commutation
relation to sequentially replace each projector in the product by its ideal counterpart.

▶ Theorem 16. Let D be an efficient device. Let H := HD⊗HY ⊗HR be the Hilbert space of
D. Let V : H → C22N ⊗H be the swap isometry defined in Definition 12. For θ ∈ [2N]∪{0, ⋄}
and v ∈ {0, 1}2N , let σθ,v ∈ Pos(H) be the states that D prepares after returning the first
answer in the Hadamard round, as defined in Definition 6. Let {{Puq }u∈{0,1}2N | q ∈ {0, 1}2N}
be the measurements defined in Equation (8) of Definition 3.

Suppose that D fails the protocol in Fig. 2 (with an input distribution µ on {0, 1}2N and
N = poly(λ)) with probability at most ϵ. Then, there exist states {αθ,v | θ ∈ [2N]∪{0, ⋄}, v ∈
{0, 1}2N}, that are computationally indistinguishable from a single state α ∈ Pos(H) in the
way specified in Proposition 15, such that∑

v∈{0,1}2N

∥Vσθ,vV† − τθ,v ⊗ αθ,v∥1 ≤ O(N7/4ϵ1/32),

E
q←µ

[∑
u,v∈{0,1}2N

∥VPuq σθ,vPuq V† − ⟨Buq | τθ,v |Buq ⟩ |Buq ⟩⟨Buq | ⊗ αθ,v∥1

]
≤ O(N2ϵ1/32),

and, for all q ∈ {02N , 12N , 0N1N , 1N0N},∑
u,v∈{0,1}2N

∥VPuq σθ,vPuq V† − ⟨Buq | τθ,v |Buq ⟩ |Buq ⟩⟨Buq | ⊗ αθ,v∥1 ≤ O(N2ϵ1/32).

5 Applications

In this section, we briefly describe two applications of our self-test: DIQKD and dimension-
testing. For details, see Section 5 of the full version.

DIQKD. We describe how to adapt the protocol for DIQKD under computational assump-
tions in [38] to use our self-testing protocol as its main component. The resulting DIQKD
protocol operates under the same setting and assumptions as in [38] except we remove the
IID assumption. In particular, we highlight the fact that we retain the advantage of the
generated key being information-theoretically secure.

Recall that in our self-testing protocol, there is a single verifier interacting with a single
device. On the other hand, in DIQKD, there are two verifiers, Alice and Bob, that each
interact with their own (untrusted) device. In DIQKD under computational assumptions, the
two devices are not assumed to be non-communicating and are modeled as a single device
with two components, one on Alice’s side, and one on Bob’s. At a high level, to resolve the
difference in the number of verifiers, we will let Alice play the role of the single verifier in
our self-testing protocol while Bob will play a relaying role.

In Fig. 3, we describe a single test round of our DIQKD protocol. In Fig. 4, we describe
how to modify the test round to give a single generation round of our DIQKD protocol. We
construct our overall DIQKD protocol by using multiple test rounds followed by a single
generation round. After the generation round, Alice and Bob proceed to key extraction,
which is essentially the same as that in [38, Protocol 3].

H. Fu, D. Wang, and Q. Zhao 64:15

1. Alice samples θ ←U [2N] ∪ {0, ⋄} uniformly at randomly, generates 2N key-trapdoor pairs (k1, t1), . . . , (k2N , t2N)
according to θ, and sends kN+1, . . . , k2N to Bob. Note that Alice has all the trapdoors {ti}2N

i=1. Then Alice sends
k1, . . . , kN to her component. Bob sends kN+1, . . . , k2N to his component.

2. Alice receives back (y1, . . . , yN) ∈ YN and Bob receives back images (yN+1, . . . , y2N) ∈ YN .
3. Alice samples c ←U {preimage, Hadamard} uniformly at random, sends it to Bob, and they both send c to their

components.
Case c = preimage. Alice receives (b1, . . . bN , x1, . . . , xN) ∈ {0, 1}N+Nw from her component and Bob re-
ceives (bN+1, . . . , b2N , xN+1, . . . , x2N) ∈ {0, 1}N+Nw from his component and sends it to Alice. Alice verifies
(b1, . . . , b2N , x1, . . . , x2N) according to our self-testing protocol.
Case c = Hadamard.
a. Alice receives (d1, . . . , dN) ∈ {0, 1}Nw from her component and Bob receives (dN+1, . . . , d2N) ∈ {0, 1}Nw from his

component.
b. Alice samples a←U {0, 1} uniformly at random.

If a = 0, Alice samples q ←U {02N , 12N , 0N 1N , 1N 0N} uniformly at random.
If a = 1, Alice sets q = 1N 0N .

Note that the resulting distribution on (q1, . . . , q2N) ∈ {0, 1}2N is the same as in Step 4 of our self-testing protocol
(Fig. 2) with µ chosen as the distribution that always outputs 1N 0N .
Alice sends qN+1 to Bob. Alice sends q1, . . . , qN to her component. Bob sends qN+1, . . . , qN+1 (= qN+1, . . . , q2N)
to his component.

c. Alice receives (u1, . . . , uN) ∈ {0, 1}N from her component and Bob receives (uN+1, . . . , u2N) ∈ {0, 1}N from his
component. Alice sends “Test” to Bob. Bob sends {(yi, di, ui)}2N

i=N+1 to Alice. Alice verifies {(yi, di, ui)}2N
i=1

according to our self-testing protocol using the trapdoors that she holds, (t1, . . . , t2N).

Figure 3 Test round for device-independent quantum key distribution (DIQKD) protocol.

Same as the test round (see Fig. 3) except with the following modifications.
At Step 1, Alice chooses θ = ⋄.

At the start of Step 3, Alice chooses c = Hadamard.

At the start of Step 3(b), instead of sampling q, Alice sets q = 1N 0N .

Replace Step 3 (c) by the following. Alice receives (u1, . . . , uN) ∈ {0, 1}N from her component and Bob receives
(uN+1, . . . , u2N) ∈ {0, 1}N from his component. Alice sends “Generation” to Bob.

Figure 4 Generation round for device-independent quantum key distribution (DIQKD) protocol.

The completeness of this DIQKD protocol essentially follows from the completeness of our
self-testing protocol. The soundness follows from the soundness of our self-testing protocol
combined with the key rate analysis used to prove [38, Theorem 1] and the “cut-and-choose”
argument used to prove [23, Theorem 4.33].

Dimension-testing. We simplify our self-testing protocol to give a protocol that tests
if a quantum device can store N qubits. The simplifications are: 1. θ is sampled from
{0, 1, . . . , N}, 2. in the Hadamard case, there are only two questions q = 0N and q = 1N .
Details of this protocol can be found in Section 5.2 of the full version. The honest prover’s
behavior is similar to that of our self-test.

The intuition behind the soundness of this protocol is that, when it is passed with high
probability, Theorem 16 guarantees the existence of a quantum state ρ⋆ on the quantum part
of the device’s memory that is close to the maximally mixed state up to some isometry. More
specifically, ρ⋆ comes from using Theorem 16 to force the device to perform a Hadamard
basis measurement on N qubits that are in the computational basis and discarding the
measurement results. Then, the main proposition of this section, Proposition 17, shows that
the guarantee on ρ⋆ is strong enough for us to lower bound the rank of ρ⋆, which is also a
lower bound on the quantum dimension of the device’s memory.

ICALP 2023

64:16 Parallel Self-Testing of EPR Pairs Under Computational Assumptions

▶ Proposition 17. Let ρ, α ∈ D(H) be density operators. If there exists a unitary U ∈
L(C2n ⊗H) such that ∥U(|0⟩⟨0|⊗n ⊗ ρ)U† − 2−n1⊗ α∥1 ≤ ϵ, then Rank(ρ) ≥ (1− ϵ)2n.

We now use Proposition 17 to prove the main theorem of this section. Much of the proof
is devoted to bookkeeping to ensure that the (normalized) density operator condition in
Proposition 17 is satisfied and that we are bounding the quantum dimension.

▶ Theorem 18. Let D be an efficient device with Hilbert space H = HD ⊗HY ⊗HR. Let
the classical-quantum decomposition of H be HC ⊗HQ, so that all states and observables
of D on H are classical on HC , i.e., block-diagonal in a fixed basis {|c⟩ | c ∈ [dim(HC)]} of
HC . If D can pass the dimension test protocol with probability ≥ 1− ϵ, then the quantum
dimension of D, dim(HQ), is at least (1−O(N2ϵ1/32))2N .

References
1 Gorjan Alagic, Andrew M. Childs, Alex B. Grilo, and Shih-Han Hung. Non-interactive Classical

Verification of Quantum Computation. In Theory of Cryptography, pages 153–180. Springer
International Publishing, 2020. doi:10.1007/978-3-030-64381-2_6.

2 Atul Singh Arora, Andrea Coladangelo, Matthew Coudron, Alexandru Gheorghiu, Uttam Singh,
and Hendrik Waldner. Quantum depth in the Random Oracle Model, 2022. arXiv:2210.06454

3 James Bartusek, Yael Tauman Kalai, Alex Lombardi, Fermi Ma, Giulio Malavolta, Vinod
Vaikuntanathan, Thomas Vidick, and Lisa Yang. Succinct Classical Verification of Quantum
Computation, 2022. arXiv:2206.14929

4 J. S. Bell. On the Einstein Podolsky Rosen paradox. Physics Physique Fizika, 1:195–200, 1964.
doi:10.1103/PhysicsPhysiqueFizika.1.195.

5 Zvika Brakerski, Paul Christiano, Urmila Mahadev, Umesh Vazirani, and Thomas Vidick.
A Cryptographic Test of Quantumness and Certifiable Randomness from a Single Quantum
Device. Journal of the ACM, 68(5), 2021. doi:10.1145/3441309.

6 Zvika Brakerski, Venkata Koppula, Umesh V. Vazirani, and Thomas Vidick. Simpler Proofs of
Quantumness. In Proceedings of the 15th Conference on the Theory of Quantum Computation,
Communication, and Cryptography (TQC), 2020. doi:10.4230/LIPIcs.TQC.2020.8.

7 Samuel L. Braunstein, A. Mann, and M. Revzen. Maximal violation of Bell inequalities for
mixed states. Physical Review Letters, 68:3259–3261, 1992. doi:10.1103/PhysRevLett.68.
3259.

8 Spencer Breiner, Amir Kalev, and Carl A. Miller. Parallel Self-Testing of the GHZ State with
a Proof by Diagrams. Electronic Proceedings in Theoretical Computer Science, 287:43–66,
2019. doi:10.4204/eptcs.287.3.

9 Nicolas Brunner, Stefano Pironio, Antonio Acin, Nicolas Gisin, André Allan Méthot, and Valerio
Scarani. Testing the Dimension of Hilbert spaces. Physical Review Letters, 100(21):210503,
2008. doi:10.1103/PhysRevLett.100.210503.

10 Yu Cai, Jean-Daniel Bancal, Jacquiline Romero, and Valerio Scarani. A new device-independent
dimension witness and its experimental implementation. Journal of Physics A: Mathematical
and Theoretical, 49(30):305301, 2016. doi:10.1088/1751-8113/49/30/305301.

11 Rui Chao and Ben W. Reichardt. Quantum dimension test using the uncertainty principle,
2020. arXiv:2002.12432

12 Rui Chao, Ben W. Reichardt, Chris Sutherland, and Thomas Vidick. Overlapping Qubits.
In Proceedings of the 8th Innovations in Theoretical Computer Science Conference (ITCS),
volume 67 of Leibniz International Proceedings in Informatics (LIPIcs), pages 48:1–48:21,
2017. doi:10.4230/LIPIcs.ITCS.2017.48.

13 Rui Chao, Ben W. Reichardt, Chris Sutherland, and Thomas Vidick. Test for a large
amount of entanglement, using few measurements. Quantum, 2:92, 2018. doi:10.22331/
q-2018-09-03-92.

https://doi.org/10.1007/978-3-030-64381-2_6
https://arxiv.org/abs/2210.06454
https://arxiv.org/abs/2206.14929
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://doi.org/10.1145/3441309
https://doi.org/10.4230/LIPIcs.TQC.2020.8
https://doi.org/10.1103/PhysRevLett.68.3259
https://doi.org/10.1103/PhysRevLett.68.3259
https://doi.org/10.4204/eptcs.287.3
https://doi.org/10.1103/PhysRevLett.100.210503
https://doi.org/10.1088/1751-8113/49/30/305301
https://arxiv.org/abs/2002.12432
https://doi.org/10.4230/LIPIcs.ITCS.2017.48
https://doi.org/10.22331/q-2018-09-03-92
https://doi.org/10.22331/q-2018-09-03-92

H. Fu, D. Wang, and Q. Zhao 64:17

14 Nai-Hui Chia, Kai-Min Chung, and Takashi Yamakawa. Classical Verification of Quantum
Computations with Efficient Verifier. In Theory of Cryptography, pages 181–206. Springer
International Publishing, 2020. doi:10.1007/978-3-030-64381-2_7.

15 Nai-Hui Chia and Shih-Han Hung. Classical verification of quantum depth, 2022.
arXiv:2205.04656

16 John F Clauser, Michael A Horne, Abner Shimony, and Richard A Holt. Proposed experiment
to test local hidden-variable theories. Physical Review Letters, 23(15):880, 1969. doi:10.1103/
PhysRevLett.23.880.

17 Andrea Coladangelo. A two-player dimension witness based on embezzlement, and an ele-
mentary proof of the non-closure of the set of quantum correlations. Quantum, 4:282, 2020.
doi:10.22331/q-2020-06-18-282.

18 Andrea Coladangelo, Koon Tong Goh, and Valerio Scarani. All pure bipartite entangled states
can be self-tested. Nature Communications, 8(1):15485, 2017. doi:10.1038/ncomms15485.

19 Andrea Coladangelo, Alex B. Grilo, Stacey Jeffery, and Thomas Vidick. Verifier-on-
a-Leash: New Schemes for Verifiable Delegated Quantum Computation, with Quasilin-
ear Resources. In Advances in Cryptology – EUROCRYPT 2019, pages 247–277, 2019.
doi:10.1007/978-3-030-17659-4_9.

20 Honghao Fu. Constant-sized correlations are sufficient to self-test maximally entangled states
with unbounded dimension. Quantum, 6:614, 2022. doi:10.22331/q-2022-01-03-614.

21 Honghao Fu, Daochen Wang, and Qi Zhao. Parallel self-testing of EPR pairs under computa-
tional assumptions. arXiv preprint arXiv:2201.13430, 2022.

22 Rodrigo Gallego, Nicolas Brunner, Christopher Hadley, and Antonio Acín. Device-independent
tests of classical and quantum dimensions. Physical Review Letters, 105(23):230501, 2010.
doi:10.1103/PhysRevLett.105.230501.

23 Alexandru Gheorghiu, Tony Metger, and Alexander Poremba. Quantum cryptography with
classical communication: parallel remote state preparation for copy-protection, verification,
and more, 2022. arXiv:2201.13445

24 Alexandru Gheorghiu and Thomas Vidick. Computationally-Secure and Composable Remote
State Preparation. In Proceedings of the 60th IEEE Symposium on Foundations of Computer
Science (FOCS), pages 1024–1033, 2019. doi:10.1109/FOCS.2019.00066.

25 Koon Tong Goh, Jedrzej Kaniewski, Elie Wolfe, Tamás Vértesi, Xingyao Wu, Yu Cai, Yeong-
Cherng Liang, and Valerio Scarani. Geometry of the set of quantum correlations. Physical
Review A, 97:022104, 2018. doi:10.1103/PhysRevA.97.022104.

26 W T Gowers and O Hatami. Inverse and stability theorems for approximate representations
of finite groups. Sbornik: Mathematics, 208(12):1784–1817, 2017. doi:10.1070/sm8872.

27 Shuichi Hirahara and François Le Gall. Test of Quantumness with Small-Depth Quantum
Circuits. In Proceedings of the 46th International Symposium on Mathematical Foundations of
Computer Science (MFCS), pages 59:1–59:15, 2021. doi:10.4230/LIPIcs.MFCS.2021.59.

28 Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, and Henry Yuen. MIP*=RE,
2020. arXiv:2001.04383.

29 Gregory D. Kahanamoku-Meyer, Soonwon Choi, Umesh V. Vazirani, and Norman Y. Yao.
Classically verifiable quantum advantage from a computational Bell test. Nature Physics,
18(8):918–924, 2022. doi:10.1038/s41567-022-01643-7.

30 Yael Kalai, Alex Lombardi, Vinod Vaikuntanathan, and Lisa Yang. Quantum Advantage from
Any Non-Local Game, 2022. arXiv:2203.15877

31 Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. How to Delegate Computations: The
Power of No-Signaling Proofs. In Proceedings of the 46th ACM Symposium on the Theory of
Computing (STOC), pages 485–494, 2014. doi:10.1145/2591796.2591809.

32 Zhenning Liu and Alexandru Gheorghiu. Depth-efficient proofs of quantumness. Quantum,
6:807, 2022. doi:10.22331/q-2022-09-19-807.

ICALP 2023

https://doi.org/10.1007/978-3-030-64381-2_7
https://arxiv.org/abs/2205.04656
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.22331/q-2020-06-18-282
https://doi.org/10.1038/ncomms15485
https://doi.org/10.1007/978-3-030-17659-4_9
https://doi.org/10.22331/q-2022-01-03-614
https://doi.org/10.1103/PhysRevLett.105.230501
https://arxiv.org/abs/2201.13445
https://doi.org/10.1109/FOCS.2019.00066
https://doi.org/10.1103/PhysRevA.97.022104
https://doi.org/10.1070/sm8872
https://doi.org/10.4230/LIPIcs.MFCS.2021.59
https://arxiv.org/abs/2001.04383
https://doi.org/10.1038/s41567-022-01643-7
https://arxiv.org/abs/2203.15877
https://doi.org/10.1145/2591796.2591809
https://doi.org/10.22331/q-2022-09-19-807

64:18 Parallel Self-Testing of EPR Pairs Under Computational Assumptions

33 U. Mahadev. Classical Verification of Quantum Computations. In Proceedings of the 59th
IEEE Symposium on Foundations of Computer Science (FOCS), pages 259–267, 2018. doi:
10.1109/FOCS.2018.00033.

34 Urmila Mahadev, Umesh Vazirani, and Thomas Vidick. Efficient Certifiable Randomness from
a Single Quantum Device, 2022. arXiv:2204.11353

35 Dominic Mayers and Andrew Yao. Self Testing Quantum Apparatus. Quantum Info. Comput.,
4(4):273–286, 2004. doi:10.26421/QIC4.4-3.

36 M McKague, T H Yang, and V Scarani. Robust self-testing of the singlet. Journal of Physics A:
Mathematical and Theoretical, 45(45):455304, 2012. doi:10.1088/1751-8113/45/45/455304.

37 Matthew McKague. Self-testing in parallel with CHSH. Quantum, 1:1, 2017. doi:10.22331/
q-2017-04-25-1.

38 Tony Metger, Yfke Dulek, Andrea Wei Coladangelo, and Rotem Arnon-Friedman. Device-
independent quantum key distribution from computational assumptions. New Journal of
Physics, 2021. doi:10.1088/1367-2630/ac304b.

39 Tony Metger and Thomas Vidick. Self-testing of a single quantum device under computational
assumptions. Quantum, 5:544, 2021. doi:10.22331/q-2021-09-16-544.

40 Akihiro Mizutani, Yuki Takeuchi, Ryo Hiromasa, Yusuke Aikawa, and Seiichiro Tani. Com-
putational self-testing for entangled magic states. Physical Review A, 106:L010601, 2022.
doi:10.1103/PhysRevA.106.L010601.

41 Anand Natarajan and Thomas Vidick. A Quantum Linearity Test for Robustly Verifying
Entanglement. In Proceedings of the 49th ACM Symposium on the Theory of Computing
(STOC), pages 1003–1015, 2017. doi:10.1145/3055399.3055468.

42 Anand Natarajan and Thomas Vidick. Low-Degree Testing for Quantum States, and a Quantum
Entangled Games PCP for QMA. In Proceedings of the 59th IEEE Symposium on Foundations
of Computer Science (FOCS), pages 731–742, 2018. doi:10.1109/FOCS.2018.00075.

43 Sandu Popescu and Daniel Rohrlich. Which states violate Bell’s inequality maximally? Physics
Letters A, 169(6):411–414, 1992. doi:10.1016/0375-9601(92)90819-8.

44 Oded Regev. On Lattices, Learning with Errors, Random Linear Codes, and Cryptography.
Journal of the ACM, 56(6), 2009. doi:10.1145/1568318.1568324.

45 Ben W. Reichardt, Falk Unger, and Umesh Vazirani. Classical command of quantum systems.
Nature, 496(7446):456–460, 2013. doi:10.1038/nature12035.

46 Pavel Sekatski, Jean-Daniel Bancal, Sebastian Wagner, and Nicolas Sangouard. Certifying
the Building Blocks of Quantum Computers from Bell’s Theorem. Physical Review Letters,
121:180505, 2018. doi:10.1103/PhysRevLett.121.180505.

47 Stephen J. Summers and Reinhard Werner. Maximal violation of Bell’s inequalities is generic
in quantum field theory. Communications in Mathematical Physics, 110(2):247–259, 1987.
doi:10.1007/BF01207366.

48 Ivan Šupić and Joseph Bowles. Self-testing of quantum systems: a review. Quantum, 4:337,
2020. doi:10.22331/q-2020-09-30-337.

49 Yael Tauman Kalai, Ran Raz, and Ron D. Rothblum. Delegation for bounded space. In
Proceedings of the 45th ACM Symposium on the Theory of Computing (STOC), pages 565–574,
2013. doi:10.1145/2488608.2488679.

50 B. S. Tsirel’son. Quantum analogues of the Bell inequalities. The case of two spatially separated
domains. Journal of Soviet Mathematics, 36(4):557–570, 1987. doi:10.1007/BF01663472.

51 Thomas Vidick. Course FSMP, Fall 2020: Interactions with Quantum Devices, 2020. Lec-
ture notes available at: http://users.cms.caltech.edu/~vidick/teaching/fsmp/fsmp.pdf.
Date accessed: 29th March 2023.

52 Thomas Vidick and Tina Zhang. Classical zero-knowledge arguments for quantum computa-
tions. Quantum, 4:266, 2020. doi:10.22331/q-2020-05-14-266.

53 Thomas Vidick and Tina Zhang. Classical Proofs of Quantum Knowledge. In Advances in
Cryptology – EUROCRYPT 2021, pages 630–660, 2021. doi:10.1007/978-3-030-77886-6_22.

https://doi.org/10.1109/FOCS.2018.00033
https://doi.org/10.1109/FOCS.2018.00033
https://arxiv.org/abs/2204.11353
https://doi.org/10.26421/QIC4.4-3
https://doi.org/10.1088/1751-8113/45/45/455304
https://doi.org/10.22331/q-2017-04-25-1
https://doi.org/10.22331/q-2017-04-25-1
https://doi.org/10.1088/1367-2630/ac304b
https://doi.org/10.22331/q-2021-09-16-544
https://doi.org/10.1103/PhysRevA.106.L010601
https://doi.org/10.1145/3055399.3055468
https://doi.org/10.1109/FOCS.2018.00075
https://doi.org/10.1016/0375-9601(92)90819-8
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1038/nature12035
https://doi.org/10.1103/PhysRevLett.121.180505
https://doi.org/10.1007/BF01207366
https://doi.org/10.22331/q-2020-09-30-337
https://doi.org/10.1145/2488608.2488679
https://doi.org/10.1007/BF01663472
http://users.cms.caltech.edu/~vidick/teaching/fsmp/fsmp.pdf
https://doi.org/10.22331/q-2020-05-14-266
https://doi.org/10.1007/978-3-030-77886-6_22

H. Fu, D. Wang, and Q. Zhao 64:19

54 Tzyh Haur Yang and Miguel Navascués. Robust self-testing of unknown quantum systems into
any entangled two-qubit states. Physical Review A, 87:050102, 2013. doi:10.1103/PhysRevA.
87.050102.

55 Daiwei Zhu, Gregory D. Kahanamoku-Meyer, Laura Lewis, Crystal Noel, Or Katz, Bahaa
Harraz, Qingfeng Wang, Andrew Risinger, Lei Feng, Debopriyo Biswas, Laird Egan, Alexandru
Gheorghiu, Yunseong Nam, Thomas Vidick, Umesh Vazirani, Norman Y. Yao, Marko Cetina,
and Christopher Monroe. Interactive Protocols for Classically-Verifiable Quantum Advantage,
2021. arXiv:2112.05156

ICALP 2023

https://doi.org/10.1103/PhysRevA.87.050102
https://doi.org/10.1103/PhysRevA.87.050102
https://arxiv.org/abs/2112.05156

Matching Augmentation via Simultaneous
Contractions
Mohit Garg1 #

Department of Computer Science and Automation, Indian Institute of Science, Bengaluru, India

Felix Hommelsheim #

Faculty of Mathematics and Computer Science, Universität Bremen, Germany

Nicole Megow #

Faculty of Mathematics and Computer Science, Universität Bremen, Germany

Abstract
We consider the matching augmentation problem (MAP), where a matching of a graph needs to be
extended into a 2-edge-connected spanning subgraph by adding the minimum number of edges to it.
We present a polynomial-time algorithm with an approximation ratio of 13/8 = 1.625 improving
upon an earlier 5/3-approximation. The improvement builds on a new α-approximation preserving
reduction for any α ≥ 3/2 from arbitrary MAP instances to well-structured instances that do not
contain certain forbidden structures like parallel edges, small separators, and contractible subgraphs.
We further introduce, as key ingredients, the technique of repeated simultaneous contractions and
provide improved lower bounds for instances that cannot be contracted.

2012 ACM Subject Classification Theory of computation → Routing and network design problems

Keywords and phrases matching augmentation, approximation algorithms, 2-edge-connectivity

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.65

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2211.01912 [14]

Funding Mohit Garg: Supported by SERB Core Research Grant (CRG/2022/001176) on “Optimiz-
ation under Intractability and Uncertainty”.

1 Introduction

In the Matching Augmentation Problem (MAP), we are given an undirected graph G, where
each edge e ∈ E(G) has a weight in {0, 1}, and all the zero-weight edges form a matching.
The task is to compute a minimum weight 2-edge-connected spanning subgraph (2-ECSS) of
G, which is a connected graph (V (G), F) with F ⊆ E(G) that remains connected on deleting
an arbitrary edge.

MAP is a fundamental problem in the field of survivable network design and is known to be
MAX-SNP-hard with several better-than-2 approximation algorithms [3,5,6]. Prior to this
work, the best-known approximation ratio for MAP was 5

3 , achieved by Cheriyan et al. [6].
Both [5, 6] provide combinatorial algorithms for MAP, where the approximation ratios

are achieved by comparing the outputs against the minimum-cardinality 2-edge-cover (D2).
A 2-edge-cover of an undirected graph is a spanning subgraph in which each node has a
degree of at least 2, but it may not be connected. Thus, computing a D2 is a relaxation

1 A part of this work was done while the author was affiliated with the University of Bremen and the
University of Hamburg.

EA
T
C
S

© Mohit Garg, Felix Hommelsheim, and Nicole Megow;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 65; pp. 65:1–65:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mohitgarg@iisc.ac.in
mailto:fhommels@uni-bremen.de
mailto:nicole.megow@uni-bremen.de
https://doi.org/10.4230/LIPIcs.ICALP.2023.65
https://arxiv.org/abs/2211.01912
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

65:2 Matching Augmentation via Simultaneous Contractions

of MAP. In contrast to solving MAP, a D2 can be computed exactly in polynomial time by
extending Edmonds’ matching algorithm [10]. A weaker approximation result for MAP by
Bamas et al. [3] follows a very different approach: the output is compared against another
lower bound on an optimal MAP solution, obtained by solving a linear programming relaxation,
the so-called Cut LP. The integrality gap of the Cut LP is at least 4

3 [3].

Our result. We present a polynomial-time algorithm for MAP with an approximation ratio
of 13

8 = 1.625, improving the previous best ratio of 5/3.

▶ Theorem 1. There is a polynomial-time 13
8 -approximation algorithm for MAP.

This improvement builds on a new α-approximation preserving reduction for any α ≥ 3/2
from arbitrary MAP instances to well-structured instances that do not contain certain forbidden
structures like parallel edges, small separators, and contractible subgraphs. We further
introduce, as key ingredients, the technique of repeated simultaneous contractions and
provide improved lower bounds for instances that cannot be contracted.

Further related work. MAP sits between the minimum unweighted 2-ECSS and the minimum
weighted 2-ECSS problems. For the minimum weighted 2-ECSS problem, improving known
2-approximations [2, 18,19,27] is a major open problem. Whereas for the unweighted case,
in a recent breakthrough, Garg et al. [13] provided a 1.326-approximation, improving the
earlier 4

3 -approximations [17,24].
Research on the minimum weighted 2-ECSS problem assuming that the set of zero-weight

edges in the input graph has a certain structure such as forest, spanning tree, matching,
or disjoint paths has received a lot of attention recently. A general variant is the Forest
Augmentation Problem (FAP), where the edges in the input graph have 0/1 edge weights.
For FAP, only recently, Grandoni et al. [15] obtained a 1.9973-approximation, breaking
the approximation barrier of 2. A famous special case of FAP is the unweighted Tree
Augmentation Problem (TAP) where the zero-weight edges in the input graph form a single
connected component. In a long line of research, several better-than-2 approximations have
been achieved for TAP [1,4,7–9,11,12,16,20–23,25,26], culminating in a 1.393-approximation
by Cecchetto et al. [4].

Notice that MAP is somewhat orthogonal to TAP in terms of connectivity as it has many
small connected components as input instead of a single big one. Understanding both the
extreme cases well, TAP and MAP, seems promising for making further progress for FAP.

Organization of the rest of the paper. Section 2 contains preliminaries and a high-level
overview of our work along with some important definitions. Section 3 and Section 4 consist
of the description of our reduction and algorithm, respectively, along with the corresponding
theorem and lemma statements which we prove in the appendix of the full version of this
paper [14]. Using these theorems and lemmas, in Section 5 we prove Theorem 1. In Section 6,
we conclude with final remarks, pointing out the bottleneck for improving our algorithm.

In the full version [14] we have included detailed proofs of various lemmas in Appendices A–
F, which makes our write-up lengthy. A lot of material, especially in Appendices A, C,
and F are standard, but formally necessary; the new innovations are mainly contained in
Appendices B, D, and E. While some proofs admit a case analysis, no single proof has too
many cases. We have tried to keep the exposition reader-friendly and make the proofs easily
verifiable at the expense of making the write-up a bit lengthy; a terser style might have saved
some pages.

M. Garg, F. Hommelsheim, and N. Megow 65:3

2 Technical overview

2.1 Preliminaries
We use standard notation for graphs. We consider weighted undirected graphs where each
edge has a weight of either 0 or 1. A MAP instance consists of a graph G such that the
zero-weight edges of G form a matching, and the task is to compute a minimum weight
2-edge-connected spanning subgraph (2-ECSS) of G, which is a connected subgraph (V (G), F)
which remains connected on deletion of an arbitrary edge. Without loss of generality, we
may assume that the input graph G is 2-edge-connected; this can be checked in polynomial
time by testing for each edge whether its deletion results in a disconnected graph.

Given a set of edges F ⊆ E(G), ||F || denotes the weight of F , i.e., the number of unit
edges in F . With slight abuse of notation, we denote the weight of a subgraph H of G by ||H||.
Thus, ||H|| = ||E(H)||. Given a MAP instance G, let OPT(G) represent a 2-edge-connected
spanning subgraph of G of minimum total weight opt(G) := ||OPT(G)||. When G is clear
from the context we sometimes omit G.

Whenever we speak of components of a graph we refer to its connected components.

2.2 Algorithmic template and the previous 5
3-approximation

The algorithm and analysis of Cheriyan et al. [6], for obtaining a 5
3 -approximate solution for

MAP, exemplifies the general template for obtaining combinatorial algorithms for 2-edge-
connected spanning subgraphs used in several works [5, 11, 17, 20]. We first explain this
template, by giving an overview of the algorithm of Cheriyan et al. [6], and then in the next
subsection highlight our approach where we alter this template to achieve our improvement.

The algorithm consists of two parts. The first part is a preprocessing step which constitutes
a 5

3 -approximation preserving reduction from arbitrary MAP instances to well-structured
instances that do not contain certain forbidden structures. This is a key element of their
work, which helps them to improve upon an earlier 7

4 -approximation by getting rid of certain
hard instances.

In the second part, they handle instances that do not contain any of the forbidden
structures through a discharging scheme. Their algorithm starts by computing a minimum
2-edge-cover, D2 (in polynomial time). Additionally, all the zero-edges are added to the D2,
so that the edges not in the D2 are all unit-edges. Now, since a 2-ECSS is a 2-edge-cover,
||D2|| lower bounds opt, the weight of the minimum weight 2-ECSS. To output a (1 + c)-
approximate solution (for c = 2

3), one has (1 + c)||D2|| charge to work with. This charge is
used to buy the edges of the D2 and a charge of c is distributed to each of the unit edges
of the D2. Now, they incrementally transform this D2 into a 2-ECSS by adding edges to
it. For each edge that is added, a charge of 1 is used up from the available charge (which is
taken from nearby edges), i.e., their D2 incrementally evolves into a 2-ECSS at the expense
of discharging. This is an oversimplified view of their actual algorithm. In reality, sometimes
they even delete edges in the process which results in gaining charge.

We briefly describe the two steps involved in transforming the D2 into a 2-ECSS, namely
bridge covering and gluing. Note that a D2 can have several connected components. Some of
these components can be 2-edge-connected, whereas some might have bridges (i.e., deleting
those edges will result in increasing the number of components). The first step is to cover
all the bridges one by one. Given a bridge, they add edges so that the bridge becomes part
of a cycle; as a side effect, multiple components might merge into one. At the end of the
bridge-covering step, their graph has only 2-edge-connected components. They ensure that

ICALP 2023

65:4 Matching Augmentation via Simultaneous Contractions

after using up the charge for buying the edges in the process, each component with at least 3
unit-edges has at least a charge of 2 leftover. Components with exactly 2 unit-edges (cycles
of lengths 3 and 4) keep the initial charge of 2c = 4

3 .
Next, in the gluing step, the components are merged into a single component using the

leftover charge in the components resulting in a feasible solution. To see how this might
be done, momentarily assume that all components have at least 3 unit-edges, i.e., having a
leftover charge of at least 2. Here, one can simply contract each component into a single
node, find a cycle in the contracted graph, and buy all the edges in that cycle. This will
result in merging all the components corresponding to the nodes in the cycle into a single
component. To be able to repeat such merges, we need to ensure that we have a leftover
charge of at least 2 in this newly formed component. For a cycle of length k ≥ 2, initially
there was a charge of at least 2k in the corresponding components, and we need to buy
exactly k edges. Thus, after the merge, the leftover charge in the new component is at least
2k − k = k ≥ 2, maintaining the charge invariant. Repeating this process eventually leads to
a feasible solution. Unfortunately, this idea is not guaranteed to work if there are components
with 2 unit-edges; a cycle with 2 nodes corresponding to such components will have a total
charge of 2 × 4

3 = 8
3 , and after buying the 2 edges in the cycle, we will be left with a charge

of only 2
3 . On repeating such merges, the graph will run out of charge before the gluing

finishes. To handle such small components one needs to delete edges to gain charge.

2.3 Highlights of our approach and innovations for the 13
8 -approximation

Our approach follows the same broad framework explained above with some key innovations.
Formal definitions will be given in later sections.

Preprocessing

For all α ≥ 3
2 , we provide an α-approximation preserving reduction from arbitrary MAP

instances to structured graphs. Our list of forbidden structures subsumes the one by Cheriyan
et al. [6] and consists of parallel edges, cut vertices, small separators, and contractible
subgraphs.

Contractible subgraphs are a general form of contractible cycles as considered in [17]. A
2-edge-connected subgraph H of a graph G is contractible if each 2-ECSS(G) includes at
least 1

α ||H|| unit-edges from G[V (H)]. Since we are interested in only an α-approximate
solution, we may contract V (H) into a single node, solve the problem on the contracted
graph, and add the edges of H to the solution without any loss in the approximation ratio.
As an example, suppose a 6-cycle in G of weight 6 has 2 antipodal vertices that have degree
2 in G. Then, OPT(G) must include the 4 edges incident on these two vertices. As the cycle
costs 6, and OPT(G) is guaranteed to pick at least weight 4 from the subgraph induced on the
vertices of the cycle, for a 3

2 -approximation, it suffices to buy all edges of this cycle, contract
it and solve the reduced problem. We can detect all contractible subgraphs with constant-size
vertex sets in polynomial time and remove them during preprocessing. Interestingly, some
intricate structures considered in [6] are simply contractible subgraphs.

We further exclude several small separators, which is crucial for our bridge covering and
gluing steps as we have less charge at our disposal. Given a separator, we split the graph
into two or three parts, recursively solve the problem on the smaller parts, and then combine
the solutions arguing that the approximation ratio is preserved. If each of these parts has at
least 5 vertices, this step is relatively straightforward. But for parts containing at most 4
vertices, the argument becomes significantly more challenging, in particular, since we are

M. Garg, F. Hommelsheim, and N. Megow 65:5

aiming for a better guarantee than previous work. Handling the small separators forms a
substantial part of our work consisting of several innovations. In particular, given a separator
that splits the graph into two parts, the structure of the interaction of the separator with the
parts is exploited in carefully constructing the subproblems. Here, we sometimes introduce
pseudo-edges, representing possible connections via the other part, and suitably remove them
during the combining step. Our reduction, which works for any α ≥ 3

2 , might be useful for
future works. We only need α = 13

8 for our main result.

Bridge covering

Empowered by a stronger preprocessing, we can rule out more structures in the input graph,
which enables us to obtain a bridgeless 2-edge-cover of G, even for an approximation ratio
of (1 + c), for c = 5

8 . In fact, our bridge-covering works even for c = 3
5 , so it might also

be useful for future works. At the end of the bridge-covering step, we have the following
charges left in the 2-edge-connected components: 2 in the large components (containing 4
or more unit-edges), 3c = 15

8 < 2 in the medium components (containing 3 unit-edges) and
2c = 5

4 ≪ 2 in the small components (containing 2 unit-edges).

Gluing

In the gluing step, we are able to merge all the medium components into large components
even though medium components have strictly less than 2 charge. We are also able to handle
some small components that have a particular configuration by deleting edges and gaining
charge. Unfortunately, we were unable to handle all the small components as they have a
minuscule charge. In the end, we are left with a special configuration that has only large
(with charge ≥ 2) and small components (with charge 5

4) which cannot be merged.

Two-edge-connecting special configurations

The small components of the special configuration originate in the initial D2 and could not
be merged. So we ask the following question. How close are these small components to OPT
restricted to the vertices of the small components? Intuitively, if they are close, we should
be able to do something algorithmically as we are roughly doing what OPT is doing on this
part of the graph. Otherwise, if they are not close, we should be able to argue that OPT
does much worse than what the D2 does on this part of the graph, giving us an improved
lower bound. Our main conceptual innovation is in articulating a notion of closeness and
making this intuition work.

Method of simultaneous contractions

We now describe our measure of closeness. Let G be our input structured graph and let
H1, · · · , Hs be the small components of the special configuration obtained. We count the total
number of unit-edges bought by OPT from the following subgraphs G[V (H1)], · · · , G[V (Hs)].
If this number is more than 8

13 times the number of unit-edges in the small components of
our special configuration, which is precisely 2s, we say that the small components are close
to OPT. Otherwise, they are not close.

Observe when the small components are indeed close, on average, each Hi is contractible,
preserving an approximation ratio of 13

8 . Thus, algorithmically, we can simultaneously
contract each V (Hi) into a distinct single node, solve the problem on the reduced instance
(which can be done recursively, as contracting vertices into nodes decreases the size of the
graph), and add the edges of the small components to the solution, without incurring a loss
in approximation.

ICALP 2023

65:6 Matching Augmentation via Simultaneous Contractions

When the small components are not close to OPT, i.e., the Hi’s are not simultaneously
contractible, we rely on the gluing step of Cheriyan et al. [6] using a charge of 4

3 per small
component instead of our original charge of 5

4 , increasing our cost. Our improvement, in this
case, comes from improving the lower bound.

Note that it is not possible for us to check in polynomial time whether the small
components are simultaneously contractible or not; so what should we do – contract, or
use the gluing algorithm of Cheriyan et al. [6]? We do both and return the solution with a
smaller weight and argue that in either scenario the algorithm performs well.

Improved lower bound

In the case when the small components are not simultaneously contractible, OPT picks at
most 8

13 · 2s unit-edges from the G[V (Hi)]’s put together. Thus, at least 2s − 16
13 s = 10

13 s

unit-edges are not picked from within the small components. We show that for each unit-edge
not picked by OPT from this part, OPT buys on average at least 1 + 1

12 edges that go
between different small components. To argue this, we crucially use the fact that the special
configurations have a restricted structure, as certain merges are not possible in it. Thus,
we show that in total the number of unit-edges used by OPT on the vertices of the small
components is at least 8

13 · 2s + (1 + 1
12) 10

13 s = 161
78 s, which is strictly more than 2s, which is

the number of unit-edges used by the D2 on this part. Finally, through an elegant argument,
we are able to use this improved lower bound on OPT restricted only to the vertices of the
small components to show that it compensates for the increased cost incurred during gluing
the small components.

2.4 Important definitions
We give some definitions that we need for the presentation of our algorithm.

▶ Definition 2 (f(·)). Given a MAP instance G, let

f(G) = max{13
8 · opt(G) − 2, opt(G)}.

For a MAP instance G, we will compute a 2-ECSS of G with weight at most f(G). Observe
that the “−2” term gives us a slightly better bound than claimed, which we crucially exploit
in our preprocessing.

▶ Definition 3 (size of a graph s(·)). Given a graph G, its size is s(G) = 10·|V (G)|2 +|E(G)|.

We will show that the running time of our algorithm is upper bounded by a polynomial in
the size of the input graph.

▶ Definition 4 (notation graph contraction). Given a graph G and a set of vertices T ⊆ V (G),
G/T denotes the graph obtained from G after contracting all the vertices in T into a single
vertex. More generally, given disjoint vertex sets T1, · · · Tk ⊆ V (G), G/{T1, · · · , Tk} denotes
the graph obtained from G after contracting vertices of each Ti into single vertices.

Note that edges in G and G/{T1, · · · , Tk} are in one-to-one correspondence. Given a
subgraph H of the contracted graph, we use Ĥ to refer to the subgraph of G containing
precisely those edges that correspond to the edges of H.

▶ Definition 5 (contractible subgraphs). Let α ≥ 1 and t ≥ 2 be fixed constants. Given a 2-
edge-connected graph G, a collection of vertex-disjoint 2-edge-connected subgraphs H1, H2, ...,

Hk of G is called (α, t, k)-contractible if 2 ≤ |V (Hi)| ≤ t for every i ∈ [k] and every 2-ECSS
of G contains at least 1

α ||
⋃

i∈[k] E(Hi)|| unit-edges from
⋃

i∈[k] E(G[V (Hi)]).

M. Garg, F. Hommelsheim, and N. Megow 65:7

In our preprocessing, we will remove all (13
8 , 12, 1)-contractible subgraphs, which we simply

refer to as contractible subgraphs. Later, when considering a special configuration with ns

small components, we will work with a (13
8 , 4, ns)-contractible collection of small components;

we will refer to the special configuration simply as 13
8 -simultaneously contractible.

2.5 Algorithm overview
Here, we give a brief overview of our main algorithm.
Step 1: Preprocessing: We apply our reduction to obtain a collection of subproblems of MAP

on structured graphs (Section 3). We then assume that we are given some structured
graph G.

Step 2: Bridge covering: We compute a D2 in polynomial-time and apply bridge covering
to obtain an economical bridgeless 2-edge-cover H – a bridgeless 2-edge-cover of low cost
(Section 4.1).

Step 3: Special configuration: Given H, we compute a special configuration S of G (Sec-
tion 4.2).

Step 4: Contract vs. glue: We compute two feasible solutions S1 and S2: S2 is obtained by
applying the algorithm of [6] to G and S (Section 4.3); S1 is obtained by calling Step 1
for GS , which arises from G by contracting each small component of S to a single vertex.
Finally, we output arg min{||S1||, ||S2||}.

3 Preprocessing

We show that, for purposes of approximating MAP with any approximation ratio at least 3
2 ,

it suffices to consider MAP instances that do not contain certain forbidden configurations.
These configurations are cut vertex, parallel edge, contractible subgraph, S0, S1, S2, S{3,4},
S3, S4, S5, S6, S′

3, S′
4, S′

5, and S′
6. The formal definitions of these structures are provided in

Appendix B of the full version [14]. Each of these configurations is referred to as a type and
is of constant size. A MAP instance with at least 20 vertices that does not contain any of
these forbidden configurations is termed as structured.

We briefly describe some of the types that we forbid in a structured graph. Apart
from cut vertex, parallel edge, and contractible subgraph, the other forbidden structures
we consider can be broadly divided into two categories: (a) “Path-like”-separators and (b)
“Component-like”-separators. Path-like separators are certain paths which when removed
from the input graph disconnects it. Forbidding these structures in the structured graph is
mostly used in the bridge-covering step. Roughly speaking, the absence of these structures
helps us in finding sufficient credit while covering some path (consisting of bridges) between
2-edge connected blocks of the 2-edge-cover. Component-like structures, on the other hand,
are certain 2-edge-connected subgraphs that when removed from the input graph disconnects
it. Their absence from structured graphs is mainly exploited in the gluing step; it allows
us to find certain cycles through some small components which help us gain credit that is
needed for the gluing.

The reduction from MAP instances to structured graphs is given by the following algorithm
where we assume ALG is an algorithm that works on structured graphs. Our reduction is
essentially a divide-and-conquer algorithm. It searches for a forbidden configuration and if it
detects one, it divides the problem into a few subproblems (at most 3) of smaller sizes, solves
them recursively, and then combines the returned solutions into a solution for the original
instance. In case there are no forbidden configurations in the input (the input is structured),
it calls ALG to solve the problem.

ICALP 2023

65:8 Matching Augmentation via Simultaneous Contractions

Algorithm 1 Preprocessing.

function Reduce(G)
if G is simple and |V (G)| ≤ 20 then return opt(G). ▷ by brute force

Look for a forbidden configuration in G in the following type order:
cut vertex, parallel edge, contractible subgraph, S0, S1, S2, S{3,4}, Sk, S′

k for k ∈
{3, 4, 5, 6}.

Stop immediately on detecting a forbidden configuration.

if a forbidden configuration is detected then
Call it F and let T be the type of F .
(H1, H2, H3) = DivideT (G, F). ▷ H2 and/or H3 are always empty for certain types
H∗

i = Reduce(Hi) for all i ∈ {1, 2, 3}.
return CombineT (G, H∗

1 , H∗
2 , H∗

3).
▷ G is now structured

return ALG(G).

In the above algorithm, DivideT and CombineT are subroutines that are defined in
Appendix B of the full version [14], which also contains proofs of the following lemmas.

▶ Lemma 6. For all types T , DivideT and CombineT are polynomial time algorithms. Fur-
thermore, given a MAP instance G and a type T , one can check in polynomial time whether
G contains a forbidden configuration of type T .

▶ Lemma 7. Given a MAP instance G and a forbidden configuration F that appears in G

of type T from the list L =(cut vertex, parallel edge, contractible subgraph, S0, S1, S2, Sk,
S′

k, k ∈ {3, 4, 5, 6}) such that G does not contain any forbidden configuration of a type that
precedes T in the list L and DivideT (G, F) = (H1, H2, H3), then the following statements
hold:

(i) for each i ∈ {1, 2, 3} Hi is a MAP instance,
(ii) s(H1) + s(H2) + s(H3) < s(G), and
(iii) if for each i ∈ {1, 2, 3}, H∗

i is a 2-ECSS of Hi such that ||H∗
i || ≤ f(Hi), then

CombineT (G, H∗
1 , H∗

2 , H∗
3) is a 2-ECSS of G such that ||CombineT (G, H∗

1 , H∗
2 , H∗

3)|| ≤
f(G).

Using the above lemma, we can establish the following result: If for all structured graphs
G, ALG(G) is a 2-ECSS of G such that ||ALG(G)|| ≤ f(G), then for all MAP instances G,
Reduce(G) is a 2-ECSS of G such that ||Reduce(G)|| ≤ f(G).

We will produce an admissible ALG that calls Reduce on a smaller instance. Since Reduce
and ALG call each other, we need a slightly stronger result, which is obtained using an
induction argument. We first define an admissible algorithm.

▶ Definition 8 (admissible). An algorithm ALG is admissible if the following holds. If for all
MAP instances G with s(G) ≤ t, Reduce(G) is a 2-ECSS of G such that ||Reduce(G)|| ≤ f(G),
then for all structured graphs G such that s(G) = t + 1, ALG(G) is a 2-ECSS of G such that
||ALG(G)|| ≤ f(G). Furthermore, if T (s) denotes the running time of ALG for structured
graphs of size s, and T ′(s) denotes the running time of Reduce on MAP instances of size s′,
then T (s) ≤ T ′(s − 1) + poly(s).

Our main results in this section are the following.

M. Garg, F. Hommelsheim, and N. Megow 65:9

▶ Theorem 9. If ALG is an admissible algorithm, then for all MAP instances G, Reduce(G)
is a 2-ECSS of G such that ||Reduce(G)|| ≤ f(G).

▶ Theorem 10. If ALG is an admissible algorithm, then Reduce runs in polynomial time.

The proofs of the above two results follow from a straightforward application of Lemmas 6
and 7 and are included in Appendix A of the full version [14]. Now, if we can find an
admissible ALG, Theorem 9 and Theorem 10 immediately imply Theorem 1. In the next
subsections, we exhibit an admissible ALG.

4 Algorithm for structured graphs

We exhibit an admissible algorithm ALG that takes as input a structured graph G and
outputs a 2-ECSS of G with weight at most f(G). Our algorithm has three main steps.
First, we compute an “economical” bridgeless 2-edge-cover of G. Then, with the aid of this
2-edge-cover, we compute a “special” configuration of G. We two-edge-connect the special
configuration in two ways and return the solution with minimum weight. We define the
relevant terms and explain these steps below.

Algorithm 2 Main algorithm for structured graphs.

function ALG(G) ▷ G is structured
H = economical bridgeless 2-edge-cover(G)
S = special configuration(G, H)
R = Contract-vs-Glue(G, S)
return R

4.1 Computing an economical bridgeless 2-edge-cover
Given a structured graph G, we first compute an economical bridgeless 2-edge-cover of
it. Before we define an economical bridgeless 2-edge-cover, we need to first define small,
medium, and large, which is used to categorize a 2-edge-connected subgraph of G based on
its weight.

▶ Definition 11 (small, medium, large). For a weighted graph G, we call a 2-edge-connected
subgraph H of G small if ||H|| ≤ 2, medium if ||H|| = 3, and large if ||H|| ≥ 4.

Note that for structured graphs, the only possible small components are cycles of length 3 or
4 with exactly 2 unit-edges, and medium components are cycles of length 3, 4, 5, or 6 with
exactly 3 unit-edges.

▶ Definition 12. A bridgeless 2-edge-cover H of a graph G is economical if all the zero-edges
of G are in H, ||H|| ≤ 13

8 · ||D2(G)|| − 2nℓ − 15
8 nm − 5

4 ns, where nℓ, nm, and ns are the
number of large, medium, and small components of H, respectively. Furthermore, there exists
a D2 of G such that each small component of H is a small component of the D2.

Our main result for this subsection is as follows.

▶ Theorem 13. Given a structured graph G, we can compute an economical bridgeless
2-edge-cover of G in polynomial time.

ICALP 2023

65:10 Matching Augmentation via Simultaneous Contractions

To compute an economical bridgeless 2-edge-cover of G, we first find a D2 of G and
include all the zero-edges in it. Next, we transform this D2 into a “canonical” D2, which is
defined in Appendix C of the full version [14]. Then, we cover the bridges of the canonical
D2 to get an “economical” bridgeless 2-edge-cover. All of this can be done in polynomial
time. The details with the proof of Theorem 13 are in Appendix C of the full version [14].

4.2 Computing a special configuration
Next, given an economical bridgeless 2-edge cover H of a structured graph G, we compute a
“special” configuration of G. A special configuration is a bridgeless 2-edge-cover that satisfies
certain additional properties. In particular, it does not contain any medium components.

▶ Definition 14 (Special configuration). Given a structured graph G, we say H is a special
configuration of G if

(i) H is an economical bridgeless 2-edge-cover of G,
(ii) H does not contain medium-size components,
(iii) G/H does not contain good cycles
(iv) G/H does not contain open 3-augmenting paths, and
(v) H does not contain a small to medium merge or small to large merge.

The terms and notation used in conditions (iii)-(v) are formally defined in Appendix D
of the full version [14]. Without going into details, we briefly describe the structures defined
in (iii)-(v). A good cycle is a simple cycle C in G/H that contains either a) two large
components, b) one large component and one small component containing a shortcut, or
c) two small components each containing a shortcut. Here, we say a small component S

is shortcut w.r.t. C if in G[V (S)] there exists a Hamiltonian path from u to v of weight 1,
where u and v are the vertices incident to C when S is expanded. Hence, there is a unit-edge
in the small component S that is redundant for the 2-edge-connectivity of H after we add
the edges of C to it. An open 3-augmenting path is a simple path P in G/H through 4 small
components such that for each of the two interior small components there is a shortcut w.r.t.
P . Finally, a small to medium merge (or small to large merge) is a set of 3 small components
S1, S2, S3 ∈ H such that in G′ = G[V (S1 ∪ S2 ∪ S3)] there exists a set of edges that form
two medium components (or one large component) of weight precisely 6 spanning V (G′).

Essentially, these conditions restrict the structure of special configurations. For example,
in the graph G/H (the graph obtained by contracting the various components of H into
single nodes), there is no cycle that has 2 or more nodes corresponding to large components.
In particular, a special configuration contains at least one small component or is already
feasible. The restricted structure of special configurations will be crucially exploited while
proving an improved lower bound on OPT(G).

From an economical bridgeless 2-edge-cover H, we obtain a special configuration by
repeatedly searching for the four forbidden structures (properties (ii)-(v) above) and buying
and selling certain edges such that we turn H into an economical bridgeless 2-edge cover
H ′ with fewer components. One can show that searching for such structures can be done in
polynomial time.

We briefly explain this process by an example: Figure 1a. The black edges correspond to
the economical bridgeless 2-edge-cover H , where the dotted edges are of weight 0. The (bold
and faint) blue edges are edges of G that are not in H . The 3 blue edges e1, e2, and e3 form
an open 3-augmenting path in G/H (as it can “shortcut” the two black unit edges adjacent
to e2). By the properties of structured graphs, one can show that the blue edges f1 and f2
must exist, and hence four components of H can be merged into one large component by

M. Garg, F. Hommelsheim, and N. Megow 65:11

Rest

e1

e2

e3

f1 f1
g1 g2

(a) open 3-augmenting path.

L

Rest

g1
g2

(b) good cycle.

L

Rest

(c) after merges.

Figure 1 An example of obtaining a special configuration.

buying all the 5 bold blue edges and selling the 2 black unit edges adjacent to e2, which are
“shortcut” by the open 3-augmenting path, to obtain Figure 1b; as initially the 4 components
incident to the blue edges have a credit of 9 × 5

8 ≥ 5, we buy 5 blue and sell 2 black edges to
have a final credit of at least 2. One can show that this step is tight for our analysis with an
approximation ratio of 13/8. Now, in Figure 1b the blue edges g1 and g2 form a good cycle
in G/H (as it can be merged into a single large component). Initially, the credits in the large
and small components that are part of this good cycle have a credit of 2 + 2 × 5

8 ≥ 3. We
buy the edges g1 and g2 and sell the unit edge adjacent to both g1 and g2 to form a single
2-edge-connected component having a credit of at least 3 − 2 + 1 = 2, and thus the good
cycle merges into a large component as shown in Figure 1c. In general, we show the following
theorem, which is proved in Appendix D of the full version [14].

▶ Theorem 15. Given a structured graph G and an economical bridgeless 2-edge-cover of it,
we can compute a special configuration of G in polynomial time.

4.3 Two-edge-connecting special configurations
Finally, we present the last part of our algorithm, which we call “Contract-vs-Glue”, that
converts a special configuration into a 2-edge-connected graph. Recall, a special configuration
is an economical bridgeless 2-edge-cover of a structured graph that contains only small
and large components and satisfies certain additional properties. Our algorithm computes
two solutions and returns the one with a lower weight. The first solution is obtained by
contracting the small components into single nodes and recursively computing the solution
on the contracted graph (this is done by calling Reduce on the contracted graph) and then
adding the edges in the small components to the solution after expanding it back. The second
solution is obtained by following the “Gluing Algorithm” of Cheriyan et al. [6], which we call
“Glue”, and reproduce it below for completeness’ sake.

Algorithm 3 Contract-vs-Glue.

function Contract-vs-glue(G, S) ▷ G is structured, S is a special configuration of G

if S is a 2-ECSS of G then return S

Let H1, · · · , Hk be the small components of S. ▷ now S must have small components
G∗

1 = Reduce(G/{H1, · · · , Hk})
S1 = (V (G), E(Ĝ∗

1) ∪
⋃

i∈[k] E(Hi))
S2 = Glue(G, S)
return arg min{||S1||, ||S2||}

We will be using the following lemmas to prove our main result.

ICALP 2023

65:12 Matching Augmentation via Simultaneous Contractions

▶ Lemma 16. Let G be a structured graph, S be a special configuration of G with small
components H1, · · · , Hk, and let G∗

1 = Reduce(G/{H1, · · · , Hk}). If G∗
1 is a 2-edge-connected

spanning subgraph of G/{H1, · · · , Hk}, then (V (G), E(Ĝ∗
1) ∪

⋃
i∈[k] E(Hi)) is a 2-edge-

connected spanning subgraph of G. Furthermore, if H1, · · · , Hk is (13
8 , 4, k)-contractible

in G and ||G∗
1|| ≤ f(G/{H1, · · · , Hk}), then ||(V (G), E(Ĝ∗

1) ∪
⋃

i∈[k] E(Hi))|| ≤ f(G).

The first statement in the above lemma is straightforward to see. The second part is obtained
by specializing Lemma 33 of Appendix B of the full version [14] to our parameters.

The following lemma is proved implicitly in [6]. For completeness, we give a full proof in
Appendix F of the full version [14].

▶ Lemma 17. Let G be a structured graph and S be a special configuration of G with nℓ

large and ns small components. Then, Glue(G, S) is a 2-edge-connected spanning subgraph
of G with ||Glue(G, S)|| ≤ ||S|| + 2nℓ + 4

3 ns − 2.

Also, we prove the following lower bound result. Informally, if a 2-ECSS includes t fewer
edges from within the small components of a special configuration, it must include t(1 + 1

12)
edges going between different small components. The proof is given in Appendix E of the
full version [14]..

▶ Lemma 18. Let G be a structured graph and S be a special configuration of G with k small
components: H1, · · · , Hk. Let R be any 2-edge-connected spanning subgraph of G such that
2k −

∑
i∈[k] ||R[V (Hi)]|| = t, then

∑
i<j≤k eR(V (Hi), V (Hj)) ≥ (1 + 1

12)t, where eR(A, B)
represents the number of unit-edges going between vertex sets A and B in R.

Here, we give an intuition on how to prove Lemma 18. Fix a structured graph G together
with a special configuration S and a 2-edge-connected spanning subgraph R as specified in
Lemma 18. In order to simplify things, here we assume that each small component Hi of S

is a cycle of length 4 such that G does not contain any of the diagonals of Hi. Furthermore,
let H1, H2, . . . , Hℓ be the set of small components in S.

An edge between two small components is called crossing, whereas an edge inside a
small component is called inside. Informally speaking, Lemma 18 states that, on average,
for each inside edge e ∈ E(S) of some small component of S that is not present in R, E(R)
has to contain at least 1 + 1

12 crossing edges. First, one can show that the vertices incident
to an inside edge e that is not present in E(R) cannot be adjacent to vertices of a large
component of S, as otherwise this implies that S contains a good cycle, contradicting that S

is special. Hence, each vertex incident to an inside edge e that is not present in E(R) must
be incident to at least one crossing edge in R.

In order to show that R contains sufficiently many crossing edges, we define an assignment
ξ that distributes for each inside or crossing edge of R a total charge of one to the small
components H1, . . . , Hℓ. The sum over all charges of edges incident to some component Hi

then defines the load of the component Hi. Note that, by construction, the total load over
all small components is equal to the number of inside and crossing edges in R.

Each inside edge contributes one to the charge of its component, while each crossing edge
distributes a charge of one to the components incident to it: if only one of the two unit
edges of E(S) adjacent to a crossing edge is shortcut (absent) in R, then the component
with the shortcut edge receives a charge of one from that crossing edge. Otherwise, both
incident components receive a charge of 1

2 . Consider for example Figure 2b, where the bold
edges represent R. By the above assignment, the components incident to f3 receive a charge
of 1

2 each from f3, while only the component containing e3 receives a charge of 1 from f4.
The total load of the components (from left to right, top to bottom) then is 3, 5

2 , 2, 2, and 7
2 ,

respectively.

M. Garg, F. Hommelsheim, and N. Megow 65:13

L

(a) Special Configuration.

L

e1 e2

e3

f2

f1

f4

f3

(b) Optimal Solution.

Figure 2 Example: special configuration, optimal solution, and lower bound.

From our assignment, one can easily argue that the load of each small component is ≥ 2.
Furthermore, if there are no two shortcut edges that are adjacent to a crossing edge, then it
clearly follows that Lemma 18 holds. In fact, in this case, we could replace the 1 + 1

12 by 2
in the lemma – a much stronger result.

Hence, we may assume that there are some shortcuts that share crossing edges, e.g. edges
e1, e2, and e3 in Figure 2b. However, in this case, the edges f2 and f3 (which form an open
2-augmenting path) cannot be extended to an open 3-augmenting path (since S is special);
the edges f1 and f4 have to go back to the component containing e2. One can show that
in this case (since there are also no good cycles or local merges), the average load of the
components containing e1, e2, and e3 is at least 5

2 . In the remaining case when there are no
open 2-augmenting paths in R, using a similar argument we can also show that the average
load of a component is at least 2 + 1

6 . This load assignment then implies the statement of
Lemma 18.

5 ALG is admissible

As noted earlier, from Theorems 9 and 10, it follows that if we can show ALG is admissible,
Theorem 1 follows. Thus, we will now focus on proving that ALG is admissible.

▶ Lemma 19. ALG is admissible.

Before we proceed with the proof, we develop some key definitions and propositions that
will be used in the proof. Throughout this subsection, G is a structured graph and S is a
special configuration of G with small components H1, · · · , Hns .

▶ Definition 20 (simultaneously-contractible). We say S is 13
8 -simultaneously contractible if

the small components of S are (13
8 , 4, ns)-contractible in G.

▶ Definition 21 (OPTL, OPTR, DL
2 , DR

2). We partition the vertex set of G in two sets:
V (G) = L ∪ R, where L consists of the vertices in the large components of the special
configuration S and R is the set of remaining vertices, i.e., the set of vertices in the small
components of S. Let OPTL be the edges of OPT(G) that have at least one endpoint incident
on a vertex in L, and OPTR be the remaining edges of OPT(G), i.e., the edges whose both
endpoints are in R. DL

2 and DR
2 are defined analogously: DL

2 is the set of edges of D2(G)
that are incident on at least one vertex of L and DR

2 = E(D2(G)) \ DL
2 . optL, optR, dL

2 , and
dR

2 are defined to be ||OPTL||, ||OPTR||, ||DL
2 ||, and ||DR

2 ||, respectively.

The following relationships are immediate.

ICALP 2023

65:14 Matching Augmentation via Simultaneous Contractions

▶ Proposition 22.

||OPT(G)|| := opt = optL + optR.

||D2(G)|| := d2 = dL
2 + dR

2 .

The following proposition is key to proving our bound.

▶ Proposition 23.

optL ≥ dL
2

Proof. Assume for contradiction optL < dL
2 . Observe OPTL ∪ DR

2 forms a 2-edge-cover of
G, since each vertex of L has at least 2 edges incident on it from OPTL (as OPT is a feasible
2-ECSS of G) and each vertex of DR

2 has 2 edges incident on it from DR
2 (as DR

2 are the
edges of D2 restricted to the small components of S, which were originally small in D2). But

||OPTL ∪ DR
2 || = optL + dR

2 < dL
2 + dR

2 = d2,

which contradicts the fact that D2 is a minimum 2-edge-cover of G. ◀

Now, we are ready to prove that ALG is admissible.

Proof of Lemma 19. Fix a structured graph G. To show ALG is admissible, we need
to show two properties: (i) ALG(G) is a 2-edge-connected spanning subgraph of G with
||ALG(G)|| ≤ f(G) under the assumption that Reduce(G′) is a 2-edge-connected spanning
subgraph of G′ with ||Reduce(G′)|| ≤ f(G′) for all MAP instances G′ of size strictly smaller
than the size of G, and (ii) T (s(G)) ≤ T ′(s(G) − 1) + poly(s), where T is the running time of
ALG and T ′ is the running time of Reduce. Note that (ii) follows from the fact that each of
the three steps in ALG takes polynomial time and in the final step, namely Contract-vs-Glue,
ALG calls the subroutine Reduce only once on a smaller graph. Thus, we will focus on proving
(i) below.

Note that ALG on input G first computes a special configuration S and then applies
the algorithm Contract-vs-Glue on (G, S). If S is 2-ECSS, Contract-vs-Glue returns S, and
||S|| ≤ 13

8 d2 − 2nℓ − 5
4 ns, where nℓ = 1 is the number of large components and ns = 0 is the

number of small components in S (since S is an economical bridgeless 2-edge-cover of G).
Thus, ||ALG|| ≤ f(G). Otherwise, S must contain at least one small component as observed
in Section 4.2.

Let H1, . . . , Hns be the small components of S. Contract-vs-Glue on (G, S) computes
two solutions S1 and S2 and returns the one with lower weight. Recall S1 is obtained
by contracting the small components of S, calling Reduce on it, and then expanding the
contracted nodes and adding back the edges of the small components. S2 is computed
by calling the Glue(G, S) subroutine. In either case, the output is guaranteed to be a
2-edge-connected spanning subgraph of G from Lemmas 16 and 17.

Now, to show ||ALG(G)|| ≤ f(G), we have two cases based on whether the special
configuration S is 13

8 -simultaneously contractible in G. If S is a 13
8 -simultaneously contractible

in G, then by invoking Lemma 16 (whose precondition holds since the contracted graph has
size strictly smaller than G and then we have the guarantee that ||Reduce(G′)|| ≤ f(G′) for
all MAP instances G′), we have ||ALG(G)|| ≤ ||S1|| ≤ f(G) and we are done.

In the case S is not 13
8 -simultaneously contractible in G, we will first lower bound opt

and then upper bound ||S2|| to show ||ALG(G)|| ≤ f(G).

M. Garg, F. Hommelsheim, and N. Megow 65:15

Lower bound on opt

From Propositions 22 and 23 we have

opt = optL + optR ≥ dL
2 + optR.

We now focus on lower bounding optR. Recall OPTR consists of edges whose both endpoints
are contained in

⋃
i∈[ns] V (Hi). We categorize the edges of OPTR into two types.

An edge of OPTR is inside if both its endpoints belong to the same V (Hi) for some i.
An edge of OPTR is crossing if its endpoints lie in distinct V (Hi) and V (Hj) for some
i ̸= j.

Since S is not 13
8 -simultaneously contractible in G, the number of unit-edges that are inside

is at most 8
13 · 2ns. Let us say the number of inside edges is exactly t less than the number

of unit-edges in the small components of S, i.e., 2ns − t, and this number is at most 8
13 · 2ns.

Now, to lower bound the number of unit-edges that are crossing, we invoke Lemma 18,
which states that the number of unit-edges going between V (Hi) and V (Hj) for all i ̸= j is
at least (1 + 1

12)t.
Thus, we have the following lower bound for opt.

opt = optL + optR ≥ dL
2 + optR = dL

2 + ||inside|| + ||crossing||

≥ dL
2 + (2ns − t) +

(
1 + 1

12

)
t,

where 2ns − t ≤ 8
13 · 2ns. The lower bound is minimized when t is kept as small as

possible, i.e., when 2ns − t = 8
13 · 2ns, i.e., for t = 5

13 · 2ns. Thus,

opt ≥ dL
2 + 8

13 · 2ns +
(

1 + 1
12

)
5
13 · 2ns = dL

2 +
(

16
13 + 10

12

)
ns = dL

2 + 161
78 · ns.

Upper bound on ||ALG(G)||

Since S is an economical bridgeless 2-edge-cover of G, we have

||S|| ≤ 13
8 · d2 − 2nℓ − 5

4 · ns,

where nℓ and ns denote the number of large and small components of S, respectively. Also,
from Lemma 17, we have

||S2|| = ||Glue(G, S)|| ≤ ||S|| + 2nℓ + 4
3 · ns − 2.

Combing the two bounds we obtain

||S2|| ≤ 13
8 · d2 + 1

12 · ns − 2.

Now we can split d2 as dL
2 + dR

2 , and use the fact that dR
2 = 2ns to obtain our bound.

||ALG(G)|| ≤ ||S2|| ≤ 13
8 · d2 + 1

12 · ns − 2 =
(

13
8 · dL

2 + 13
8 · 2ns

)
+ 1

12 · ns − 2

= 13
8 · dL

2 + 10
3 · ns − 2 ≤ 13

8

(
dL

2 + 160
78 · ns

)
− 2 ≤ 13

8 · opt − 2 ≤ f(G),

where the second last inequality follows from the lower bound on opt obtained above. ◀

ICALP 2023

65:16 Matching Augmentation via Simultaneous Contractions

6 Conclusion

In this work, we presented a 13
8 -approximation for MAP, which is a fundamental problem in

network design. While several of our steps also work for smaller approximation ratios, two
of our steps are tight for 13

8 : First, constructing a special configuration is tight for 13
8 . In

particular, the merge involving 3-augmenting paths, in the worst case, uses all the available
credits. On the other hand, such a merge could not be avoided, as their absence from special
configurations helps us improve the lower bound later. Furthermore, the lower bound is tight.
Hence, simply obtaining a better construction of a special configuration is not enough as
one has to improve upon the lower bound as well. Finally, even if one can resolve these two
issues, our approximation ratio would still be tight for 1.6 at two places: First, constructing
a bridgeless 2-edge-cover is tight for 1.6, even though we believe that this result can be
strengthened. Second, in the construction of special configuration, handling the medium
components is also tight for precisely 1.6. Hence, also here new ideas are needed in order to
obtain an approximation ratio below 1.6.

Our result builds on a new 3
2 -approximation preserving reduction to instances not contain-

ing certain structures including small separators and contractible subgraphs. Furthermore,
we introduced the method of simultaneous contractions and improved lower bounds to achieve
our main result. These techniques seem general and applicable to other problems in network
design.

References
1 David Adjiashvili. Beating approximation factor two for weighted tree augmentation with

bounded costs. ACM Trans. Algorithms, 15(2):19:1–19:26, 2019.
2 Ajit Agrawal, Philip N. Klein, and R. Ravi. When trees collide: An approximation algorithm

for the generalized steiner problem on networks. SIAM J. Comput., 24(3):440–456, 1995.
3 Étienne Bamas, Marina Drygala, and Ola Svensson. A simple lp-based approximation algorithm

for the matching augmentation problem. In IPCO, volume 13265 of Lecture Notes in Computer
Science, pages 57–69. Springer, 2022.

4 Federica Cecchetto, Vera Traub, and Rico Zenklusen. Bridging the gap between tree and
connectivity augmentation: unified and stronger approaches. In STOC, pages 370–383. ACM,
2021.

5 Joe Cheriyan, Jack Dippel, Fabrizio Grandoni, Arindam Khan, and Vishnu V. Narayan. The
matching augmentation problem: a 7

4 -approximation algorithm. Math. Program., 182(1):315–
354, 2020.

6 Joseph Cheriyan, Robert Cummings, Jack Dippel, and Jasper Zhu. An improved approximation
algorithm for the matching augmentation problem. In ISAAC, volume 212 of LIPIcs, pages
38:1–38:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

7 Joseph Cheriyan and Zhihan Gao. Approximating (unweighted) tree augmentation via lift-
and-project, part I: stemless TAP. Algorithmica, 80(2):530–559, 2018.

8 Joseph Cheriyan and Zhihan Gao. Approximating (unweighted) tree augmentation via lift-
and-project, part II. Algorithmica, 80(2):608–651, 2018.

9 Nachshon Cohen and Zeev Nutov. A (1+ln2)(1+ln2)-approximation algorithm for minimum-
cost 2-edge-connectivity augmentation of trees with constant radius. Theor. Comput. Sci.,
489-490:67–74, 2013.

10 Jack Edmonds. Paths, trees, and flowers. Canadian Journal of mathematics, 17:449–467, 1965.
11 Guy Even, Jon Feldman, Guy Kortsarz, and Zeev Nutov. A 1.8 approximation algorithm for

augmenting edge-connectivity of a graph from 1 to 2. ACM Trans. Algorithms, 5(2):21:1–21:17,
2009.

M. Garg, F. Hommelsheim, and N. Megow 65:17

12 Samuel Fiorini, Martin Groß, Jochen Könemann, and Laura Sanità. Approximating weighted
tree augmentation via chvátal-gomory cuts. In SODA, pages 817–831. SIAM, 2018.

13 Mohit Garg, Fabrizio Grandoni, and Afrouz Jabal Ameli. Improved approximation for two-
edge-connectivity. In SODA (to appear), 2023. arXiv:2209.10265.

14 Mohit Garg, Felix Hommelsheim, and Nicole Megow. Matching augmentation via simultaneous
contractions. arXiv preprint, 2022. arXiv:2211.01912.

15 Fabrizio Grandoni, Afrouz Jabal Ameli, and Vera Traub. Breaching the 2-approximation
barrier for the forest augmentation problem. In STOC, pages 1598–1611. ACM, 2022.

16 Fabrizio Grandoni, Christos Kalaitzis, and Rico Zenklusen. Improved approximation for tree
augmentation: saving by rewiring. In STOC, pages 632–645. ACM, 2018.

17 Christoph Hunkenschröder, Santosh S. Vempala, and Adrian Vetta. A 4/3-approximation
algorithm for the minimum 2-edge connected subgraph problem. ACM Trans. Algorithms,
15(4):55:1–55:28, 2019.

18 Kamal Jain. A factor 2 approximation algorithm for the generalized steiner network problem.
Comb., 21(1):39–60, 2001.

19 Samir Khuller and Uzi Vishkin. Biconnectivity approximations and graph carvings. J. ACM,
41(2):214–235, 1994.

20 Guy Kortsarz and Zeev Nutov. A simplified 1.5-approximation algorithm for augmenting
edge-connectivity of a graph from 1 to 2. ACM Trans. Algorithms, 12(2):23:1–23:20, 2016.

21 Guy Kortsarz and Zeev Nutov. Lp-relaxations for tree augmentation. Discret. Appl. Math.,
239:94–105, 2018.

22 Hiroshi Nagamochi. An approximation for finding a smallest 2-edge-connected subgraph
containing a specified spanning tree. Discret. Appl. Math., 126(1):83–113, 2003.

23 Zeev Nutov. On the tree augmentation problem. Algorithmica, 83(2):553–575, 2021.
24 András Sebő and Jens Vygen. Shorter tours by nicer ears: 7/5-approximation for the graph-tsp,

3/2 for the path version, and 4/3 for two-edge-connected subgraphs. Comb., 34(5):597–629,
2014.

25 Vera Traub and Rico Zenklusen. A better-than-2 approximation for weighted tree augmentation.
In FOCS, pages 1–12. IEEE, 2021.

26 Vera Traub and Rico Zenklusen. Local search for weighted tree augmentation and steiner tree.
In SODA, pages 3253–3272. SIAM, 2022.

27 David P. Williamson, Michel X. Goemans, Milena Mihail, and Vijay V. Vazirani. A primal-dual
approximation algorithm for generalized steiner network problems. Comb., 15(3):435–454,
1995.

ICALP 2023

https://arxiv.org/abs/2209.10265
https://arxiv.org/abs/2211.01912

On Differentially Private Counting on Trees
Badih Ghazi # Ñ

Google, Mountain View, CA, US

Pritish Kamath # Ñ

Google, Mountain View, CA, US

Ravi Kumar # Ñ

Google, Mountain View, CA, US

Pasin Manurangsi # Ñ

Google, Bangkok, Thailand

Kewen Wu # Ñ

University of California at Berkeley, CA, US

Abstract
We study the problem of performing counting queries at different levels in hierarchical structures
while preserving individuals’ privacy. Motivated by applications, we propose a new error measure
for this problem by considering a combination of multiplicative and additive approximation to
the query results. We examine known mechanisms in differential privacy (DP) and prove their
optimality, under this measure, in the pure-DP setting. In the approximate-DP setting, we design
new algorithms achieving significant improvements over known ones.

2012 ACM Subject Classification Theory of computation → Theory of database privacy and security

Keywords and phrases Differential Privacy, Algorithms, Trees, Hierarchies

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.66

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2212.11967

Funding Kewen Wu: Most of this work was done while at Google.

Acknowledgements KW wants to thank Xin Lyu for helpful references on the sparse vector technique.
We thank anonymous ITCS’23 and ICALP’23 reviewers for helpful feedback.

1 Introduction

With the increasing need to preserve the privacy of users, differential privacy (DP) [18, 17]
has emerged as a widely popular notion that provides strong guarantees on user privacy and
satisfies compelling mathematical properties. There have been many deployments of DP in
the field of data analytics both in industry [4, 14] and by government agencies [3].

We start by recalling the formal definition of DP, tailored to our setting.

▶ Definition 1 (Differential Privacy). Let A be a randomized algorithm taking an integer
vector as input. We say A is (ε, δ)-differentially private (i.e., (ε, δ)-DP) if

Pr [A(x) ∈ S] ≤ eε ·Pr [A(x′) ∈ S] + δ,

holds for any measurable subset S of A’s range and any two neighboring inputs x, x′, where
x, x′ are considered neighbors iff ∥x− x′∥1 = 1.

When δ = 0, we say A is ε-DP (aka pure-DP); the case δ > 0 is approximate-DP.

EA
T
C
S

© Badih Ghazi, Pritish Kamath, Ravi Kumar, Pasin Manurangsi, and Kewen Wu;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 66; pp. 66:1–66:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:badihghazi@gmail.com
https://sites.google.com/view/badihghazi/home
https://orcid.org/0000-0001-8254-3268
mailto:pritish@alum.mit.edu
https://pritishkamath.github.io/
https://orcid.org/0000-0002-4296-2393
mailto:ravi.k53@gmail.com
https://sites.google.com/site/ravik53/
https://orcid.org/0000-0002-2203-2586
mailto:pasin@google.com
https://pasin30055.github.io/
https://orcid.org/0000-0002-1052-2801
mailto:shlw_kevin@hotmail.com
https://shlw.github.io/
https://orcid.org/0000-0002-5894-822X
https://doi.org/10.4230/LIPIcs.ICALP.2023.66
https://arxiv.org/abs/2212.11967
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

66:2 On Differentially Private Counting on Trees

Estimating Counts in Trees

A fundamental task in data analytics is to aggregate counts over hierarchical subsets (spe-
cifically, trees) of the input points. For example, the government might be interested in the
number of households, aggregated at the state, country, and city levels. As another example,
online advertisers might be interested in the number of user clicks on product ads, when there
is a category hierarchy on the products. The tree aggregation problem has been the subject
of several previous works in DP including in the context of range queries [13, 42, 21, 43],
the continuous release model [20, 10], private machine learning [31, 30], and the US census
top-down algorithms [2, 1, 12, 11], to name a few1. In this work, we revisit this basic problem
and present new perspectives and results.

Let T be a rooted tree of depth2 d and arity k; the structure of T is known a priori. Let
nodes(T) be the set of nodes and leaves(T) be the set of leaves in T . The problem of private
aggregation in trees can be formalized as follows.

▶ Problem 2 (Tree Aggregation). Given a tree T , the input to the problem is a vector
x ∈ Nleaves(T), where xv ∈ N is a value for v ∈ leaves(T). For each node u ∈ T , define its
weight wu by

wu =
∑

v is a leaf under u

xv.

The desired output is a DP estimate vector w̃ ∈ Rnodes(T) of w.

In the above formulation, the input xv represents the number of individuals that contribute
to the leaf v, and the weight wu counts all the number of individuals that contribute to any
of its descendants (or itself). As before, x, x′ are neighbors iff ∥x− x′∥1 = 1.

Besides being a natural problem on its own, algorithms for tree aggregation also serve as
subroutines for solving other problems such as range queries [13, 42, 21, 43].

Linear Queries and Error Measure

Tree aggregation in fact belongs to a class of problems called linear queries – one of the most
widely studied problems in DP (see, e.g., [15, 19, 28, 5, 39, 9, 37, 6, 24, 38]). In its most
general form, the problem can be stated as follows.

▶ Problem 3 (Linear Queries). For a given workload matrix W ∈ Rm×n, the input to the
W -linear query problem is a vector x ∈ Nn and the output is a DP estimate of W x.

It is easy to see that the tree aggregation problem can be viewed as a linear query
problem, where the binary workload matrix W T ∈ {0, 1}nodes(T)×leaves(T) encodes if each leaf
(corresponding to a column index) is a descendant of (or itself) each node (corresponding to
a row index).

Two error measures have been studied in the literature: the (expected) ℓ2
2-error3

ℓ2
2-error(M; W) := max

x∈Nn

√
1
m

E
[
∥M(x)−W x∥2

2

]
,

1 We remark that there is a reduction from our problem to that of releasing thresholds, which we discuss
in more detail in Section 1.3.

2 The depth is defined to be the maximum number of nodes along a root-to-leaf path of the tree.
3 In some previous work, ℓ2

2-error(M; W) is defined as maxx∈Nn
1
m E

[
∥M(x) − W x∥2

2

]
(without the

square root). We use the current version as it is more convenient to deal with in our error analysis. In
any case, we can obviously convert a bound in one version to the other.

B. Ghazi, P. Kamath, R. Kumar, P. Manurangsi, and K. Wu 66:3

and the (expected) ℓ∞-error

ℓ∞-error(M; W) := max
x∈Nn

E [∥M(x)−W x∥∞] ,

where M is a DP mechanism for the W -linear query problem. Indeed, previous works have
characterized the best possible errors in the approximate-DP case up to polylogarithmic
factors for any given workload W . (See the discussion in [24] for more details.)

It is worth noting that these measures focus only on the additive error of the query, i.e.,
M(x) −W x. In many scenarios, however, this is not the only possible measure of error.
Specifically, in this work, we seek to expand the error measure by additionally incorporating
multiplicative error. Intuitively, multiplicative errors are meaningful when the true answer
(i.e., (W x)i) is quite large; e.g., if the true error is 106, then we should not be distinguishing
whether the additive error is 10 or 100 as both of them are very small compared to 106. In
addition to this intuition, multiplicative errors have also been used in other contexts such as
in empirical evaluations of range queries (e.g., [13, 40, 43]).

With the above discussion in mind, we now proceed to define the error measure.

▶ Definition 4 (Multiplicative Root Mean Squared Error). Given parameter α > 0, we define
an α-multiplicative root mean squared error (α-RMSE) of an estimate z̃ of the true answer
z ≥ 0 as

RMSEα(z̃, z) :=
√

E
z̃

[
(max {|z̃ − z| − α · z, 0})2

]
.

For W -linear query, we define an α-multiplicative maximum root mean squared error
(α-mRMSE) of a mechanism M to be

mRMSEα(M; W) := max
x∈Zn

max
i∈[m]

RMSEα (M(x)i, (W x)i) .

Note that when α = 0 (i.e., the error is only additive), our notion of α-RMSE coincides
with that of the standard RMSE. By taking the maximum error across all queries when
defining the error for linear queries, we mitigate the weakness of ℓ2

2-error bound, which allows
some queries to incur huge errors, while still avoiding the “union bound issue” faced in the
ℓ∞-error. The latter can be significant as the number of queries here can be exponential in
the depth d.

We remark that our algorithms also achieve the usual with high probability guarantees,
i.e., with probability at most η, |z̃ − z| ≤ α ·max{z, τ} for some threshold τ . We defer such
a statement to later sections for simplicity of comparing the bounds. Furthermore, our error
notion implies upper bounds on “smoothed relative errors” used for empirical evaluations in
previous works [40, 43]. We provide a formal statement in the full version.

When α = 0, we drop the “α-multiplicative” or “α-” prefixes and refer to the errors
simply as maximum RMSE or mRMSE. Similarly, we also drop α from the subscript and
simply write mRMSE instead of mRMSE0.

1.1 Our Results
Two known baselines for tree aggregation are the ε-DP Laplace mechanism and (ε, δ)-DP
Gaussian mechanism, which achieve mRMSE of O(d/ε) and O(

√
d log(1/δ)/ε) respectively.

We start by showing that these are already tight for the additive-only errors:

▶ Theorem 5 (Informal; see Theorem 28). There is no ε-DP algorithm for tree aggregation
with mRMSE o(d/ε), even for binary trees.

ICALP 2023

66:4 On Differentially Private Counting on Trees

Table 1 Overview of results; entries indicate upper/lower bounds on α-mRMSE. Upper bounds
corresponding to Laplace and Gaussian mechanisms are formally stated in Corollary 15. For
simplicity we omit the dependence on α in the additive-multiplicative bounds here.

Type of error ε-DP (ε, δ)-DP

Additive-only (α = 0)
O(d/ε) : Laplace Oε,δ(

√
d) : Gaussian

Ω(d/ε) : Theorem 28 Ωε,δ(
√

d) : Theorem 29

Additive-Multiplicative (0 < α < 1) Ω(d/ε) : Theorem 28 Oε,δ(log d) : Theorem 21

▶ Theorem 6 (Informal; see Theorem 29). There is no (ε, δ)-DP algorithm for tree aggregation
with mRMSE oε,δ(

√
d), even for binary trees.

Given the above results, it is therefore natural to ask whether multiplicative errors can
help reduce the error bound. For pure-DP, we show that this unfortunately is not the case.

▶ Theorem 7 (Informal; see Theorem 28). For any constant α < 1, there is no ε-DP algorithm
for tree aggregation with α-mRMSE o(d/ε), even for binary trees.

Our next – and perhaps the most surprising – result is that, unlike in the pure-DP case,
allowing multiplicative approximation in approximate-DP allows us to reduce the upper
bounds exponentially from Oε,δ(

√
d) to Oε,δ(log d):

▶ Theorem 8 (Informal; see Theorem 21). For any constant α > 0, there is an efficient
(ε, δ)-DP algorithm for tree aggregation with α-mRMSE O(log(d/δ)/ε).

We remark that Theorem 8 has worse dependency on δ than the (ε, δ)-DP Gaussian
mechanism. Indeed, the former has log(1/δ) whereas the latter only has

√
log(1/δ). However

this gap is somewhat unavoidable as we will discuss in Remark 33 when δ is small, say,
δ = 2−Ω(d). Our results are summarized in Table 1.

Our bounds do not depend on the arity k of T . This is immediate for the lower bounds
(Theorems 5–7) since it suffices to prove it for binary trees k = 2. The reason for the upper
bounds (Theorem 8) is less clear, relying on the fact that the weights of two nodes are
correlated iff they are on the same root-to-leaf path, which is irrelevant of the arity.

1.2 Proof Overview
Probabilistic Utility Guarantee

Recall that we defined the error α-mRMSE as a variant of RMSE but with a multiplicative
error subtracted out. While this gives us a nice scalar quantity (once α is fixed) to work with
and state the results, it will be useful in the subsequent analyses to define a probabilistic
version of the guarantee with additional fixed thresholds.

In this different utility guarantee (formalized in (1)), every node u is given an additional
threshold τu, and a randomized output w̃ is accurate if for all u ∈ nodes(T) we have with
probability at least 1− η that

|w̃u − wu| ≤ α ·max {wu, τu} .

The smaller the thresholds τu’s are, the better the accuracy will be.
The benefit of having τu is that it is independent of wu and is explicitly available to

the algorithms; this formulation may be of independent interest. On the other hand, this
probabilistic guarantee is closely related to the original α-mRMSE in Definition 4:

B. Ghazi, P. Kamath, R. Kumar, P. Manurangsi, and K. Wu 66:5

1. Any algorithm with low α-mRMSE has good probabilistic guarantee (Lemma 19).
2. Any algorithm with good probabilistic guarantee can be converted into one with low

α-mRMSE (Lemma 20).

Improved Approximate-DP Algorithm

Given Item 2, it suffices to design an algorithm with a good probabilistic guarantee, i.e.,
works for thresholds τu’s as small as possible. Our algorithm can be decomposed into two
parts: a reduction step and a classification algorithm.

Reduction. Since the error measure is multiplicative when wu is large, we design a geometric
sequence of thresholds and classify each wu into the correct interval created by the thresholds.
To do so, every time we use a classification algorithm to find nodes that are above the current
threshold, and in the next round we only focus on the ones below the threshold. Assuming
previous classifications are all correct, the weights of the nodes above the current threshold
are actually below the previous threshold. Such a sandwiching relation provides a good
approximation if the granularity of the thresholds is not too large compared with the ratio α

(Lemma 26).
Moreover, we assign privacy and error parameters in the same geometric fashion, thus

their telescoping sum (from composition theorems) converges.

Classification. Given any fixed threshold τ , the goal is to correctly classify each wu to be
either above or below τ . Naively, to ensure every node is correctly classified, we need to apply
a union bound over all the nodes. This will incur a poly(d) overhead if we use Laplace noise
or Gaussian noise as in the standard mechanisms (Lemmas 13 and 14) since the tree can have
exponential size. To deal with this issue, we use a truncated Laplace mechanism where the
Laplace noise is truncated to be bounded (Lemma 16); this ensures that the estimation error
is always at most the truncation range and thus can obviate a union bound. However, we still
need to pay the privacy loss from compositions. If one node is the ancestor of another, then
the input leaves they depend on must overlap, which means simply estimating every node’s
weight will incur d rounds of composition. To improve this, our classification algorithm will
find the transition nodes in the tree: a transition node is one whose weight exceeds τ but
none of its children has weight above τ . Given the locations of the transition nodes, we can
easily classify the other nodes: a node is above τ iff it is the ancestor of (or itself) a transition
node. Assuming the previous classification with threshold τ ′ > τ succeeds, none of the nodes’
weights should exceed τ ′ now. Since there are at most τ ′/τ transition nodes in a tree, we
can use the sparse vector technique [22] to find them, and incur fewer rounds of composition.

We remark that the idea of using increasing thresholds and sparse vector techniques has
been used in [7, 26, 25].

Pure-DP Lower Bounds

Given Item 1, it suffices to rule out DP algorithms with very strong probabilistic guarantees,
i.e., works for thresholds τu’s that are too small.

Our proof uses the packing argument [28]: we construct extremal datasets where any two
datasets have a large distance. Then if the output has small error, we can correctly identify
the input dataset. On the other hand, by the privacy guarantee, the output distribution for
different datasets, though having a large distance, should not be too different, contradicting
the fact that they decode to different input datasets.

ICALP 2023

66:6 On Differentially Private Counting on Trees

Not surprisingly, our extremal datasets place the maximal value on a leaf and keep other
leaves empty. But the key issue is the decoding step. Indeed, previous packing arguments
work with ℓ∞-error, where the error on all output coordinates is small with high probability,
thus admitting simple decoding algorithms. We, however, can only guarantee the error on
any fixed node is small with high probability; we also cannot use a union bound since the
output size can be exponential.

The way we circumvent this is by designing a novel probabilistic decoding algorithm
where we will correctly decode to the input dataset with probability large enough to derive a
contradiction. The decoding algorithm itself performs a random walk on the tree where each
step favors the larger estimated weight. Then the success probability of decoding can be
lower bounded in terms of the number of correctly classified nodes, which in turn can be
lower bounded by its expectation and our probabilistic guarantee suffices.

Additive-Only Lower Bounds

The above packing argument only works for pure-DP setting (or (ε, δ)-DP but with exponen-
tially small δ). Indeed, as shown by our improved approximate-DP algorithm (Theorem 8),
the bound can be exponentially small if we allow both approximate-DP and α > 0. Therefore
we now turn to the only remaining case: approximate-DP and α = 0. In this case, by
Definition 4, α-mRMSE is an additive-only error.

Our proof starts by slightly modifying the error characterization of linear queries from [24].
This shows that mRMSE for W -linear query is characterized by a factorization norm of W .
Thus proving Theorem 6 boils down to showing a lower bound on this factorization norm of
the binary tree matrix. Following previous works on range queries (e.g., [36]), we do so by
invoking a dual (maximum-based) characterization of the factorization norm from [35, 33]
and give an explicit solution to this dual formulation.

1.3 Relation Between Tree Aggregation and Releasing Thresholds
There is a simple reduction from the tree aggregation problem (Problem 18) to the problem
of releasing thresholds. Recall that the problem of releasing thresholds is the same as linear
queries with the workload matrix W th ∈ {0, 1}m×m being the matrix with upper-triangular
entries (including the diagonal entries) equal to one.

The reduction works as follows. First, we may index the leaves from 1, . . . , |leaves(T)|
based, say, on their order in the DFS traversal of the tree. It is not hard to see that
wu of any node in the tree corresponds to (W thx)b − (W thx)a−1 =

∑
v∈[a,b] xv for some

a, b ∈ {1, . . . , |leaves(T)|}. Therefore, we may run any DP threshold releasing algorithm
(with m = |leaves(T)|) and solve the tree aggregation problem.

The above reduction yields an mRMSE error for the tree aggregation problem that is
of the same order as that of releasing thresholds (with m = |leaves(T)|). For the latter, it
is known that the tight error is Θε,δ(log m) [29]4. Assuming that each node at depth less
than d has at least two children, |leaves(T)| ≥ 2d and therefore, the error yielded by this
reduction is at least Ωε,δ(d). In other words, this is not even as good as the straightforward
Gaussian mechanism for our problem, which yields an error of Oε,δ(

√
d) (and we have shown

this to be tight in Theorem 29).
We note that there is another line of research that studies privately learning threshold

functions. Recent work has shown that learning threshold functions with (ε, δ)-DP in
the PAC model only requires Oα,ε,δ

(
(log∗ m)O(1)) samples [32]. Due to the connection

4 In fact, the lower bound in [29] is even stronger as it holds against the ℓ2
2-error.

B. Ghazi, P. Kamath, R. Kumar, P. Manurangsi, and K. Wu 66:7

between learning thresholds and releasing threshold functions presented in [8], this gives
an algorithm for the latter with an error bound of Oε,δ

(
(log∗ m)O(1) · (log n)2.5), where

n denotes ∥x∥1 (i.e., the total count across all leaves in our setting). When combining
this bound with the above reduction, one gets a tree aggregation algorithm with error
Oε,δ

(
(log∗ |leaves(T)|)O(1) · (log n)2.5). Although the term (log∗ |leaves(T)|)O(1) is very small,

this error bound is not directly comparable to the lower and upper bounds achieved in our
paper because our bounds are independent of n whereas there is a dependency of (log n)2.5

in this releasing threshold-based bound. (Note also that the dependency on n cannot be
removed while keeping the dependency on m sublogarithmic, as this would contradict with
the aforementioned lower bound of [29].)

Finally, we remark that the reduction does not work if we allow the threshold releasing
algorithm to incur multiplicative errors. This is because we need to subtract two thresholds
to get wu for each node u in the tree, and subtraction does not preserve multiplicative
approximation guarantees.

Paper Organization
We formalize the notation in Section 2. Then in Section 3 we introduce the error measure
we will actually use in designing algorithms and proving lower bounds; and relate it to the
α-mRMSE measure. The improved approximate-DP algorithm is presented in Section 4 and
the corresponding lower bounds are in Section 5. The concluding remarks are in Section 6.

2 Preliminaries

We use ln(·) and log(·) to denote the logarithm with base e and 2 respectively. For a positive
integer n, let [n] denote the set {1, . . . , n}. Let N denote the set of non-negative integers.

2.1 Norms
We use boldface uppercase (e.g., A) to denote matrices and boldface lowercase (e.g., x) to
denote vectors. We use 0, 1 to denote the all-zeros and all-ones vectors / matrices.

For x ∈ Rm, its ℓp-norm is defined as ∥x∥p :=
(∑

i∈[m] |xi|p
)1/p

for any 1 ≤ p <∞. Its
ℓ∞-norm is defined as ∥x∥∞ := maxi∈[m] |xi|.

2.2 Tools from Differential Privacy
Here we note some useful facts regarding differential privacy [18, 17, 41].

▶ Fact 9 (Post-Processing). Let A1 be an (ε, δ)-DP algorithm and A2 be a (randomized)
post-processing algorithm. Then the algorithm A(x) = A2(A1(x)) is still an (ε, δ)-DP
algorithm.

▶ Fact 10 (Group Privacy). Let A be an (ε, δ)-DP algorithm and x, x′ be two arbitrary inputs.
Define k = ∥x− x′∥1. Then for any measurable subset S of A’s range, we have

Pr [A(x) ∈ S] ≤ ek·ε ·Pr [A(x′) ∈ S] + δ · ek·ε − 1
eε − 1 .

▶ Fact 11 (Basic Composition). Let A1 be an (ε1, δ1)-DP algorithm and A2 be an (ε2, δ2)-DP
algorithm. Then A(x) = (A1(x),A2(A1(x), x)) is an (ε1 + ε2, δ1 + δ2)-DP algorithm.

ICALP 2023

66:8 On Differentially Private Counting on Trees

▶ Fact 12 (Parallel Composition). Let A1 be an (ε1, δ1)-DP algorithm and A2 be an (ε2, δ2)-
DP algorithm. Assume A1 and A2 depend on disjoint subsets of input coordinates. Then the
algorithm A(x) = (A1(x),A2(A1(x), x)) is a (max {ε1, ε2} , max {δ1, δ2})-DP algorithm.

Two of the most ubiquitous mechanisms in DP are the Laplace and Gaussian mechanisms
[16, 17, 23]. We use Lap(σ) to denote the Laplace distribution with parameter σ, whose
density function is 1

2σ exp
(
− |x|

σ

)
. We use N(µ, σ2) to denote the Gaussian distribution with

mean µ and variance σ2, whose density function is 1
σ

√
2π

exp
(
− 1

2
(x−µ)2

σ2

)
.

For matrix A and p ≥ 1, we use ∥A∥∞,p to denote the maximum ℓp-norm among all
column vectors of A. The Laplace and Gaussian mechanisms for linear queries are stated
next.

▶ Lemma 13 (Laplace Mechanism, [16, 34]). For the W -linear query problem, the algorithm
that outputs W x + z is ε-DP, where each entry of z is drawn i.i.d. from Lap

(
∥W ∥∞,1 /ε

)
.

▶ Lemma 14 (Gaussian Mechanism, [17, 23]). Assume ε, δ ∈ (0, 1). For the W -linear query
problem, the algorithm that outputs W x + z is (ε, δ)-DP, where each entry of z is drawn
i.i.d. from N

(
0, 2 ln (1.25/δ) ∥W ∥2

∞,2 /ε2
)

.

Recall that for a tree T , we let W T ∈ {0, 1}nodes(T)×leaves(T) be the indicator matrix
whether a leaf is a descendant of (or itself) a node. This represents the tree aggregation
problem as W T -linear queries. Observe also that

∥∥W T
∥∥

∞,1 = d and
∥∥W T

∥∥
∞,2 =

√
d.

Therefore, we can apply Lemma 13 and Lemma 14 (together with tail bounds for Laplace
and Gaussian distributions) to obtain the following baselines for tree aggregation.

▶ Corollary 15 (Baseline Algorithms). For the tree aggregation problem, there exists an ε-DP
(resp., (ε, δ)-DP) algorithm with mRMSE O(d/ε) (resp., O(

√
d · log(1/δ)/ε)).

We will also use the Laplace mechanism with a bounded range. For any R > 0, we use
TruncLap(σ, R) to denote the truncated Laplace distribution with parameter σ and range
[−R, R], whose density function is proportional to exp (−|x|/σ) for x ∈ [−R, R] and is 0 if
|x| > R. Note that Lap(σ) = TruncLap(σ, +∞).

▶ Lemma 16 (Truncated Laplace Mechanism, [27]). The algorithm that, on input x ∈ Z,
outputs x + z is (ε, δ)-DP, where z ∼ TruncLap

(1
ε , 1

ε ln
(
1 + eε−1

2δ

))
.

Our algorithm will also make use of the celebrated sparse vector technique [22]. For
convenience, we apply it in a black-box way as the following oracle.

▶ Lemma 17 (Sparse Vector Technique, [22, 23]). There exists an ε-DP algorithm
Sparse(x, {fi} ; η, c, τ, ε) such that:

Input. A dataset x, an adaptively chosen stream {fi}i=1,...,d of sensitivity-1 queries,
error probability η > 0, a cutoff point c ≥ 1, a threshold τ , and a privacy bound ε > 0.5
Output. A stream {ai}i=1,...,d ∈ {⊥,⊤}∗ of on-the-fly answers.
Accuracy. Let i∗ be the index of the cth ⊤ in {ai}i∈[d]; if there are less than c ⊤’s, let
i∗ = d. Then, for ∆ = 8c/ε · ln (2d/η), with probability at least 1− η the following holds
for all i ≤ i∗: If ai = ⊤, then fi(x) ≥ τ −∆; otherwise (i.e., ai = ⊥) fi(x) < τ + ∆.

The Sparse() algorithm is in [23, Algorithm 2] with δ = 0, where its privacy is proved
in [23, Theorem 3.25]. The accuracy part is also immediate from the algorithm description.
For completeness, we give a proof in the full version.

5 We say a query f is sensitivity-1 if
∣∣f(x) − f(x′)

∣∣ ≤ 1 for any two neighboring inputs x, x′.

B. Ghazi, P. Kamath, R. Kumar, P. Manurangsi, and K. Wu 66:9

3 Threshold-Based Utility

As mentioned in Section 1.2, we consider a probabilistic utility guarantee with a threshold
value supplied at each node in the tree. Then we relate it to the original α-mRMSE notion.

▶ Problem 18 (Tree Aggregation with Thresholds). Consider the tree aggregation problem
(i.e., Problem 2), wherein additionally, we have a threshold τu ≥ 0 corresponding to each
node u ∈ nodes(T) (both internal nodes and leaves). The desired output for the problem is
an estimate w̃ ∈ Rnodes(T) of w as before.

For parameters η, α ∈ [0, 1), we say that an algorithm for tree aggregation is (α, η)-
accurate (w.r.t. the given thresholds) if its output vector w̃ ∈ Rnodes(T) satisfies the following:

For all u ∈ nodes(T) : Pr
[
|w̃u − wu| ≤ α ·max {wu, τu}

]
≥ 1− η. (1)

Unless otherwise specified, for the rest of the paper, we assume that the input to the tree
aggregation problem includes a threshold at each node in the tree. Let τmin := minu∈nodes(T) τu

and τmax := maxu∈nodes(T) τu. Now, we show that any algorithm with low α-mRMSE also
yields a certain utility guarantee in the sense of (1).

▶ Lemma 19 (Proof in Full Version). For any α′ > α ≥ 0, η > 0, any tree aggregation
algorithm with α-mRMSE at most (α′ − α)√η · τmin is also (α′, η)-accurate.

In contrast to the above bound, our algorithms will satisfy much stronger exponential
tail bounds, which will be clear in the next section. To complement Lemma 19, we show
that any algorithm that is (α, η)-accurate, as per (1), can be made having small α-mRMSE.

▶ Lemma 20 (Proof in Full Version). If there is an (ε/2, δ/2)-DP algorithm that is (α, η)-
accurate for tree aggregation, then there is an (ε, δ)-DP algorithm for tree aggregation with
α-mRMSE at most O

(
α · τmax + d

√
η ·
(
1 + 1

ε log
(1

δ

)))
.

With the above two lemmas in mind, it essentially suffices for us to consider the accuracy
notion in (1), which will be convenient for the rest of the paper.

4 Upper Bounds

In this section, we present a new algorithm for tree aggregation in the approximate-DP
setting, achieving a significant improvement over the baseline algorithm (i.e., Corollary 15).

▶ Theorem 21. Let α > 0 be a parameter. For any ε > 0 and δ ∈ (0, 1), there is an (ε, δ)-DP
algorithm for tree aggregation with α-mRMSE at most O

(1
α3 ·

(1
ε log

(2d
δ

)
+ 1
))

.

By Lemma 20, it suffices to design an efficient algorithm for Problem 18 with small
thresholds for every node in the tree. This will be the focus of the section. To this end, we
will reduce the estimation problem to a classification problem, and design algorithms for the
classification task. We first present the classification algorithm in Section 4.1, then describe
the reduction in Section 4.2, and finally put them together in Section 4.3.

4.1 A Classification Problem
For later reduction, the classification task here needs to have a stronger notion of success:
the classification for nodes should be correct simultaneously with high probability, whereas
Problem 18 only requires the estimation of any fixed node to be correct with high probability.

ICALP 2023

66:10 On Differentially Private Counting on Trees

▶ Problem 22. Let T be a tree of depth d and arity k. Let τ ≥ 0 be the (common) threshold
for all nodes. Let M > 0, η ∈ [0, 1/2), α ∈ [0, 1) be parameters.

The input to the problem is non-negative integer values xv for each v ∈ leaves(T). For
each node u, its weight wu is wu =

∑
v is a leaf under u xv.

The desired output is a vector w′ ∈ {⊥,⊤}nodes(T) that with probability at least 1 − η

satisfies the following: when the weight of the root of T is at most M , for each u ∈ nodes(T),
if wu ≥ (1 + α) · τ , then w′

u = ⊤;
if wu < (1− α) · τ , then w′

u = ⊥;
otherwise (i.e., (1− α) · τ ≤ wu < (1 + α) · τ), w′

u can be arbitrary.

We now present our algorithm for this classification problem and its guarantees.

▶ Lemma 23. There is an (ε, δ)-DP algorithm Classification(T ; M, η, α, τ, ε, δ) such

that it solves Problem 22 assuming τ ≥
√

2M
αε ·max

{√
48 ln

(
2d
η

)
,

√
6 ln

(
1 + eε/2−1

δ

)}
.

Proof. Without loss of generality we assume α ≤ 1/2. Note that if M < τ , then we can
simply set w′

u ← ⊥ for all u ∈ nodes(T). Therefore we assume without loss of generality
M ≥ τ from now on. For any node u, let depth(u) denote the number of nodes on the path
from the root to u. Algorithm 1 contains the formal description.

We first prove the privacy bound. By Lemma 17, Line 7 is ε/2-DP. On the other hand,
by Lemma 16 and Fact 12, Lines 11–18 are (ε/(2c), δ/c)-DP; and since they are executed at
most c times, they are (ε/2, δ)-DP in total. Therefore by Fact 11, Algorithm 1 is (ε, δ)-DP.

Now we turn to the correctness of Algorithm 1. Define i∗ to be the index of the cth ⊤ in
ad, ad−1, If there are less than c ⊤’s, let i∗ ≥ 1 be the index of the last query. Define E
to be the event that the following holds for any i ≥ i∗:6 If ai = ⊤, then fi ≥ τ −∆; and if
ai = ⊥, then fi < τ + ∆. By Lemma 17, Pr [E] ≥ 1− η.

We first show, conditioned on E , there are always less than c ⊤’s. Assume towards
contradiction that there are c ⊤’s. Then, conditioned on E , for any ai = ⊤, there exists some
u ∈ Si such that wu = fi ≥ τ −∆. Therefore w̃u ≥ wu −R ≥ τ −∆−R, which implies it
will be assigned to ⊤ on Line 14. By design, all these u’s satisfying Line 13 form a subset of
T where none of them is an ancestor of another. Therefore the weight of the root is lower
bounded by the total weights of these nodes, which is at least c · (τ −∆) but at most M . On
the other hand, by the assumption on M and assuming ∆ < α · τ , we also have c > M

τ−∆ ,
which gives a contradiction.

Then for the correctness part, it suffices to show for any fixed node v ∈ nodes(T), we
have w′

v = ⊤ if wv ≥ (1 + α) · τ , and w′
v = ⊥ if wv < (1− α) · τ :

Case wv ≥ (1 + α) · τ . Assume towards contradiction that w′
v = ⊥. Let iv = depth(v).

Then it means when i = iv on Line 4, v ∈ Si. Thus fi ≥ wv ≥ (1 + α) · τ . On the other
hand since w′

v = ⊥, we must proceed to Line 9. Conditioned on E , this implies fi < τ + ∆,
which is a contradiction assuming ∆ ≤ α · τ .
Case wv < (1−α) · τ . Assume towards contradiction that w′

v = ⊤. Let r ∈ nodes(T) be
the deepest node in the subtree below v that is assigned ⊤. Let ir = depth(r). Then it
means when i = ir we execute Line 14 for r. Thus wr + R ≥ w̃r ≥ τ −∆−R. Meanwhile,
we also have wr ≤ wv < (1− α) · τ , which is a contradiction assuming ∆ + 2R ≤ α · τ .

6 Note that i goes from d down to 1 in our algorithm.

B. Ghazi, P. Kamath, R. Kumar, P. Manurangsi, and K. Wu 66:11

Algorithm 1 Classification.

Input: T and parameters M, η, α, τ, ε, δ described in Problem 22
Output: w′

u ∈ {⊥,⊤} for all u ∈ nodes(T)
1 if M < τ then set w′

u ← ⊥ for all u ∈ nodes(T) and return w′

2 Set c← M
(1−α)τ and

∆← 16c
ε ln

(
2d
η

)
, R← 2c

ε ln
(

1 + c·(eε/(2c)−1)
δ

)
Define Si ← {u ∈ nodes(T) | depth(u) = i} for each i ∈ [d]

3 foreach i = d to 1 do
4 if Si = ∅ then continue
5 Define query fi ← maxu∈Si

wu

6 Get ai ← Sparse(x, fi; η, c, τ, ε/2) /* x is the values of leaves(T) */
7 if ai = ⊥ then
8 Set w′

u ← ⊥ for all u ∈ Si and update Si ← ∅
9 else /* ai = ⊤ */

10 foreach u ∈ Si do
11 Compute w̃u ← wu + TruncLap(2c/ε, R)
12 if w̃u ≥ τ −∆−R then
13 Set w′

v ← ⊤ and remove v from Siv for each u’s ancestor v (including
u itself) where iv = depth(v).

14 else /* w̃u < τ −∆−R */
15 Set w′

u ← ⊥ and remove u from Si

16 end
17 end
18 end
19 end
20 return w′

Thus it suffices to make sure ∆, R ≤ α · τ/3. Since M ≥ τ , we have c ≥ 1 and
c ·
(
eε/(2c) − 1

)
≤ eε/2− 1, which gives the assumption in the statement by rearranging terms

and noticing 1− α ≥ 1/2. ◀

Eventually, we will use Classification(F ; M, η, α, τ, ε, δ) algorithm on a forest F of
disjoint trees with the same set of parameters. There we do not need all nodes in F to be
classified correctly. Instead, it suffices to have all nodes in any T ∈ F classified correctly.

▶ Problem 24. Let F = {T1, T2, . . .} be a forest of disjoint trees of depth d and arity k. Let
τ ≥ 0 be the threshold for every node. Let M > 0, η ∈ [0, 1/2), α ∈ [0, 1) be parameters.

The input to the problem is non-negative integer values xv for each leaf v in F . For each
node u, its weight wu is wu =

∑
v is a leaf under u xv.

The desired output is a vector w′ ∈ {⊥,⊤}nodes(F) that, for any T ∈ F with probability
at least 1 − η, satisfies the following: when the root of T has weight at most M , for each
u ∈ nodes(T),

if wu ≥ (1 + α) · τ , then w′
u = ⊤;

if wu < (1− α) · τ , then w′
u = ⊥;

otherwise (i.e., (1− α) · τ ≤ wu < (1 + α) · τ), w′
u can be arbitrary.

ICALP 2023

66:12 On Differentially Private Counting on Trees

The algorithm for Problem 24 is simply running Classification(T ; M, η, α, τ, ε, δ) for
each T ∈ F . Since the trees are disjoint, the privacy bound follows from Fact 12. Therefore
we omit the proof and summarize the following.

▶ Corollary 25. There is an (ε, δ)-DP algorithm Classification(F ; M, η, α, τ, ε, δ) such

that it solves Problem 24 assuming τ ≥
√

2M
αε ·max

{√
48 ln

(
2d
η

)
,

√
6 ln

(
1 + eε/2−1

δ

)}
.

4.2 A Reduction from Estimation to Classification
Now we present the reduction algorithm from the estimation problem (i.e., Problem 18) to
the classification problem (i.e., Problem 24). The reduction here is given with large flexibility
for choosing parameters. Later we will design geometric convergent sequences for simplicity
of calculation and derive the final bounds.

▶ Lemma 26. Let ℓ ≥ 1 be an integer. Let M, M0, and (Mi, ηi, αi, τi, εi, δi)i∈[ℓ] be a sequence
of parameters. There is an (ε, δ)-DP algorithm Reduction(T ; ℓ, (Mi, ηi, αi, τi, εi, δi)i∈[ℓ]),

where (ε, δ) =
(∑ℓ

i=1 εi,
∑ℓ

i=1 δi

)
such that it solves Problem 18 by carefully combining

results from Classification(·; Mi, ηi, αi, τi, εi, δi)’s and assuming the weight of the root of
T is at most M and

τi ≥
√

2Mi

αiεi
·max

{√
48 ln

(
2d
ηi

)
,

√
6 ln

(
1 + eεi/2−1

δi

)}
∀i ∈ [ℓ], (2)

η ≥
ℓ∑

i=1
ηi, (3)

Mi ≥ (1 + αi+1) · τi+1 ∀i = 0, 1, . . . , ℓ− 1 and Mℓ ≥ M, (4)
(1− αi) · τi ≤ Mi ≤ (1 + α)(1− αi) · τi ∀i ∈ [ℓ], (5)
0 ≤ M0 ≤ α · τmin. (6)

The reduction algorithm is formalized in Algorithm 2 and analyzed in the full version.

Algorithm 2 Reduction.

Input: T and parameters ℓ, M0, (Mi, ηi, αi, τi, εi, δi)i∈[ℓ] described above
Output: w̃u ∈ R for all node u ∈ nodes(T)

1 Initialize Fℓ ← {T }
2 foreach i = ℓ to 1 do
3 Initialize Fi−1 ← ∅
4 Compute w′ ← Classification(Fi; Mi, ηi, αi, τi, εi, δi)
5 For each node u in Fi, let Tu be the subtree of u in Fi

6 foreach node u satisfying w′
u = ⊤ and w′

v = ⊥ for all v ∈ nodes(Tu) \ {u} do
7 Set w̃v ←Mi for each u’s ancestor v (including u itself) in T
8 Update Fi−1 ← Fi−1 ∪ {T1, T2, . . .} where T1, T2, . . . are the disjoint trees of

Tu \ {u}
9 end

10 end
11 Set w̃v ←M0 for each node v in F0

B. Ghazi, P. Kamath, R. Kumar, P. Manurangsi, and K. Wu 66:13

4.3 Putting Everything Together
Now we give the algorithm for Problem 18. To this end, we carefully choose parameters and
apply Lemma 26, where the required upper bound M is privately estimated with Lemma 16.

▶ Corollary 27 (Proof in Full Version). There is an (ε, δ)-DP algorithm
Estimation(T , α, ε, δ, η) such that it solves Problem 18 assuming

τmin ≥
324 · (1 + α)2

α4 · ε
·max

{
8 ln

(
4d

η

)
, ln
(

1 +
2 ·
(
eε/4 − 1

)
δ

)}
.

Now we complete the proof of Theorem 21 using Lemma 20 and Corollary 27.

Proof of Theorem 21. We first note that if α ≥ 1 then the α-mRMSE is trivially zero by
outputting the all-zeros vector. Therefore we assume without loss of generality α ∈ (0, 1).

Let C > 0 be a constant to be optimized later. Fix η = d−2 and τ = C
α4 ·

(1
ε log

(2d
δ

)
+ 1
)
.

Let ε′ = ε/2 and δ′ = δ/2. Since α ∈ (0, 1), d ≥ 1, and δ ∈ (0, 1], we have

τ∗ := 324·(1+α)2

α4·ε′ ·max
{

8 ln
(

4d
η

)
, ln
(

1 +
2·
(

eε′/4−1
)

δ′

)}
≤ O

(1
α4 ·

(1
ε log

(2d
δ

)
+ 1
))

.

We set C large enough such that τ ≥ τ∗. By Corollary 27, there is an (ε′, δ′) = (ε/2, δ/2)-DP
algorithm for Problem 18 when τu ≡ τ for all u ∈ nodes(T).

The desired α-mRMSE bound now follows from Lemma 20 and the parameters above. ◀

5 Lower Bounds

In this section we prove lower bounds for DP tree aggregation algorithms. In particular,
Theorem 28 proves pure-DP lower bounds for all α-mRMSE whenever α ∈ [0, 1); and
Theorem 29 proves approximate-DP lower bounds for additive-only error, i.e., (α = 0)-
mRMSE.

▶ Theorem 28 (Pure-DP Lower Bound). Let α ∈ [0, 1) be a parameter. For any ε > 0,
any ε-DP algorithm for tree aggregation on the complete depth-d binary tree must incur
α-mRMSE at least Ω

(
(1− α)2 · d/ε

)
.

▶ Theorem 29 (Approximate-DP Lower Bound for α = 0). For any ε > 0 and any δ > 0
sufficiently small depending on ε, there is a constant Cε,δ > 0 that any (ε, δ)-DP algorithm
for tree aggregation on the complete depth-d binary tree must incur mRMSE at least Cε,δ ·

√
d.

Theorem 28 is proved in Section 5.1. The proof of Theorem 29 relies on results from [24]
and the factorization norm of the binary tree matrix, which we defer to the full version.

5.1 Pure-DP Lower Bound
To prove Theorem 28, by Lemma 19 it suffices to rule out DP algorithms for Problem 18
with small thresholds. Since Problem 18 is interesting on its own, we will present its lower
bound in the approximate-DP setting for full generality.

▶ Lemma 30. Assume T in Problem 18 is a complete binary tree of depth d. Let D =
2 · ⌈τmax/(1− α)⌉. If A is an (ε, δ)-DP algorithm for Problem 18 and suppose η ≤ 1/8 and

δ · eε·D−1
eε−1 ≤

1
8 · 2

−(d−1)·H(4η), (7)

ICALP 2023

66:14 On Differentially Private Counting on Trees

then

τmax = Ω ((1− α) · (d− 3− (d− 1) · H(4η)) /ε) ,

where H(x) = x log (1/x) + (1− x) log (1/(1− x)) is the binary entropy function.

Proof. We define input datasets x1, . . . , x2d where xi assigns D/2 to the ith leaf and 0 to
the remaining leaves. Let Pi be the path from root to the ith leaf. We define a randomized
decoding algorithm Dec as follows:

Dec takes the output w̃ of A as input and starts from the root of T .
Assume Dec is at node u ∈ nodes(T).

If u is a leaf, then output the index of u among all the leaves.
Otherwise let u0, u1 be the children of u and we divide into the following cases.
∗ If w̃u0 ≥ τmax and w̃u1 ≥ τmax, then we move to u0 or u1 with equal probability.
∗ If w̃u0 < τmax and w̃u1 < τmax, then we move to u0 or u1 with equal probability.
∗ Otherwise let p ∈ {0, 1} be such that w̃up

≥ τmax and w̃u1−p
< τmax, then we move to

up with probability κ and to u1−p with probability 1−κ, where κ = 1−4η ∈ [1/2, 1].

Now we fix an index i ∈ [2d]. Let Pi be u1, . . . , ud. Then for each j ∈ [d− 1], let u0
j , u1

j

be the children of uj and assume without loss of generality u0
j = uj+1; then we define the

following indicators:
aj = I[(w̃u0

j
≥ τmax and w̃u1

j
≥ τmax) or (w̃u0

j
< τmax and w̃u1

j
< τmax)].

bj = I[w̃u0
j
≥ τmax and w̃u1

j
< τmax].

cj = I[w̃u0
j

< τmax and w̃u1
j
≥ τmax].

Let A =
∑

j aj , B =
∑

j bj , and C =
∑

j cj . Then it is easy to see A + B + C = d− 1 and

Pr
[
Dec(A(xi)) = i

]
= E

[
2−AκB(1− κ)C

]
= κd−1 E

[
1/(2κ)d−1−B(2− 2κ)C

]
. (8)

Now we further fix the input to be xi defined above. Then wu = D/2 for u ∈ Pi and
wu = 0 if otherwise. For p ∈ {0, 1}, consider the event Ep

j :
∣∣∣w̃up

j
− wup

j

∣∣∣ ≤ α ·max
{

wup
j
, τup

j

}
.

Hence when E0
j happens, we have

w̃u0
j
≥ wu0

j
− α ·max

{
wu0

j
, τu0

j

}
≥ D/2− α ·max {D/2, τmax} = (1− α) ·D/2 ≥ τmax.

Similarly when E1
j happens, we have w̃u1

j
≤ wu1

j
+ α · max

{
wu1

j
, τu1

j

}
≤ α · τmax < τmax.

Meanwhile by the definition of Problem 18, we know Pr
[
Ep

j

]
≥ 1− η. Thus

Pr [bj = 1] ≥ Pr
[
E0

j ∧ E1
j

]
≥ 1−2η, and Pr [cj = 1] ≤ Pr

[
¬E0

j ∧ ¬E1
j

]
≤ Pr

[
¬E0

j

]
≤ η,

which implies E [d− 1−B] ≤ 2η · (d− 1) and E [C] ≤ η · (d− 1). Note that d− 1−B ≥ 0.
Define the event E : d−1−B ≤ 4η · (d−1) and C ≤ 4η · (d−1). Then by Markov’s inequality
and a union bound, we have Pr [E] ≥ 1− 1/2− 1/4 = 1/4. Plugging into (8), we have

Pr
[
Dec(A(xi)) = i

]
≥ κd−1/4 · E

[
1/(2κ)d−1−B(2− 2κ)C

∣∣ E]
≥ κd−1/4 · 1/(2κ)4η·(d−1) · (2− 2κ)4η·(d−1) (since κ ∈ [1/2, 1])

= 1
4 · 2

−(d−1)·H(4η). (setting κ = 1− 4η ∈ [1/2, 1])

Since
∑

i′ Pr
[
Dec(A(xi)) = i′] = 1, by an averaging argument there exists an i∗ such

that Pr
[
Dec(A(xi)) = i∗] ≤ 2−d. Since

∥∥xi − xi∗∥∥
1 ∈ {0, D}, by Fact 10 we have

Pr
[
Dec(A(xi∗

)) = i∗
]
≤ Pr

[
Dec(A(xi)) = i∗] · eε·D + δ · eε·D−1

eε−1 ≤ 2−d · eε·D + δ · eε·D−1
eε−1 .

B. Ghazi, P. Kamath, R. Kumar, P. Manurangsi, and K. Wu 66:15

In all, we have

1
4 · 2

−(d−1)·H(4η) ≤ Pr
[
Dec(A(xi∗

)) = i∗
]
≤ 2−d · eε·D + δ · eε·D−1

eε−1 ,

which proves the bound after plugging in Assumption (7) and rearranging the terms. ◀

To deal with general η from Problem 18, we simply run independent copies of the
algorithm to decrease the error probability.

▶ Corollary 31 (Proof in Full Version). Assume T in Problem 18 is a complete binary tree of
depth d. Define D = 2 ·

⌈
τmax
1−α

⌉
and s =

⌈
ln(4/κ)

2·(1/2−η)2

⌉
for any parameter κ ∈ (0, 1/2]. If A is

an (ε, δ)-DP algorithm for Problem 18 and suppose s · δ · es·ε·D−1
es·ε−1 ≤

1
8 · 2

−(d−1)·H(κ), then

τmax = Ω
(

(1− α) · (1/2− η)2 · (d− 3− (d− 1)H(κ))
ε · ln(4/κ)

)
.

▶ Remark 32 (General Tree Structures). The proof above works almost identically for binary
tree T that is not necessarily complete, where the bound is simply replacing d − 3 with
log(|leaves(T)|/8). To deal with general arity k, we can embed a binary tree T ′ into T where
we say T embeds a tree T ′ if we can obtain T ′ from T by deleting nodes and edges. Then
we can ignore nodes in nodes(T) \ nodes(T ′) and obtain lower bounds for T ′.

Now we are ready to establish Theorem 28 using Lemma 19 and Corollary 31.

Proof of Theorem 28. Let T be the complete binary tree of depth d. Let C, τ, η be para-
meters to be optimized later. We consider Problem 18 where τu ≡ τ for all u ∈ nodes(T).

Assume towards contradiction that there is an ε-DP tree aggregation algorithm with
α-mRMSE at most C · (1−α)2d/ε. Then by Lemma 19, the algorithm is also (α′, η)-accurate
for Problem 18 if α′ > α and (α′ − α)√η · τ ≤ C · (1− α)2d/ε.

Now we set η = 1/4 and apply Corollary 31 with δ = 0, κ = 1/4. This gives a lower
bound τ = Ω ((1− α′) · d/ε), which means C·(1−α)2·d

ε ≥ Ω
(

(α′−α)(1−α′)·d
ε

)
. Then we set

α′ = (1 + α)/2 > α and C = O(1) small enough to derive a contradiction. ◀

▶ Remark 33 (log(1/δ) Factor in the Approximate-DP Algorithm). As mentioned in Section 1.1,
our improved (ε, δ)-DP algorithm (See Theorem 8) has a log(1/δ) factor, which is worse than
the

√
log(1/δ) factor in the Gaussian mechanism (see Corollary 15). One may wonder if we

can further improve the dependency on δ to, say,
√

log(1/δ), without influencing the other
parameters. Combining Corollary 31, we show this is in some sense impossible.

Consider the complete binary tree of depth d. Let δ = 2−Ω(d). We consider the case
where α, η are constants and all the τu’s are equal to τ . In the approximate-DP setting, we
naturally seek bounds better than the ones in the pure-DP setting (recall we can obtain
τ = O(d/ε) from Corollary 15). Thus we assume τ = O(d/ε) in advance.

Then for a suitable choice of κ = Θ(1), the condition in Corollary 31 holds, which gives a
lower bound τ = Ω(d/ε) for Problem 18. Then by Lemma 19, this rules out the possibility
of improving the dependency on δ in Theorem 8 without worsening the dependency on d.

6 Conclusions

We study the problem of privately estimating counts in hierarchical data, and give several
algorithms and lower bounds. We propose a new error measure that takes the multiplicative
error into account. The commonly used ℓ2

2-error measure in evaluating utilities of DP

ICALP 2023

66:16 On Differentially Private Counting on Trees

mechanisms allows some queries to have huge error. On the other hand, the standard
measure ℓ∞-error has a “union bound issue” on particularly long output vector (which is the
case in Census and Ads applications).

To mitigate these weaknesses, we propose α-multiplicative root mean squared error
(α-mRMSE). Then we examine the standard Laplace mechanism for pure-DP and Gaussian
mechanism for approximate-DP, and prove their optimality. Informally, we show Laplace
mechanism already achieves optimal bounds in the pure-DP setting for all multiplicative
factor α and Gaussian mechanism is optimal in the approximate-DP setting when α = 0 (i.e.,
additive-only error).

For the remaining case where we allow α > 0 and an approximate-DP algorithm, we
design a new algorithm with exponential improvements over Gaussian mechanism. More
precisely, Gaussian mechanism incurs α-mRMSE of Oα,ε,δ(

√
d) while our algorithm gives

improved bounds of Oα,ε,δ(log(d)) (and O
(1

α3 ·
(1

ε log
(2d

δ

)
+ 1
))

specifically). It remains an
interesting question if the dependency on d or α can be improved further. Indeed, current
lower bounds do not preclude bounds of the form Oε,δ

(1
α · log∗(d)

)
or even Oε,δ(1/α).

Throughout this work, we assumed that the entries of the input x are non-negative.
Another interesting direction is to extend the study to the case where the entries of x can
be negative. Here, the multiplicative error would be with respect to the absolute value of
the true answer. Our algorithms do not apply here and it is unclear whether allowing a
multiplicative error can help reduce the additive error in this setting.

References
1 John Abowd, Daniel Kifer, Brett Moran, Robert Ashmead, Philip Leclerc, William Sex-

ton, Simson Garfinkel, and Ashwin Machanavajjhala. Census topdown: Differentially
private data, incremental schemas, and consistency with public knowledge, 2019. Avail-
able at https://github.com/uscensusbureau/census2020-das-e2e/blob/master/doc/201
90711_0945_Consistency_for_Large_Scale_Differentially_Private_Histograms.pdf.

2 John M. Abowd, Robert Ashmead, Ryan Cumings-Menon, Simson L. Garfinkel, Micah Heineck,
Christine Heiss, Robert Johns, Daniel Kifer, Philip Leclerc, Ashwin Machanavajjhala, Brett
Moran, William Sexton, Matthew Spence, and Pavel Zhuravlev. The 2020 census disclosure
avoidance system TopDown algorithm. Harvard Data Sci. Rev., 2022. Special Issue 2.

3 John M Abowd and Ian M Schmutte. An economic analysis of privacy protection and statistical
accuracy as social choices. Amer. Econ. Rev., 109(1):171–202, 2019.

4 Apple Differential Privacy Team. Learning with privacy at scale. Apple ML J., 2017.
5 Aditya Bhaskara, Daniel Dadush, Ravishankar Krishnaswamy, and Kunal Talwar. Uncon-

ditional differentially private mechanisms for linear queries. In STOC, pages 1269–1284,
2012.

6 Jaroslaw Blasiok, Mark Bun, Aleksandar Nikolov, and Thomas Steinke. Towards instance-
optimal private query release. In SODA, pages 2480–2497, 2019.

7 Jean Bolot, Nadia Fawaz, Shanmugavelayutham Muthukrishnan, Aleksandar Nikolov, and
Nina Taft. Private decayed predicate sums on streams. In ICDT, pages 284–295, 2013.

8 Mark Bun, Kobbi Nissim, Uri Stemmer, and Salil P. Vadhan. Differentially private release
and learning of threshold functions. In FOCS, pages 634–649, 2015.

9 Mark Bun, Jonathan R. Ullman, and Salil P. Vadhan. Fingerprinting codes and the price of
approximate differential privacy. SIAM J. Comput., 47(5):1888–1938, 2018. doi:10.1137/15
M1033587.

10 T.-H. Hubert Chan, Elaine Shi, and Dawn Song. Private and continual release of statistics.
ACM Trans. Inf. Syst. Secur., 14(3):26:1–26:24, 2011. doi:10.1145/2043621.2043626.

11 Aloni Cohen, Moon Duchin, J. N. Matthews, and Bhushan Suwal. Census topdown: The
impacts of differential privacy on redistricting. In FORC, pages 5:1–5:22, 2021.

https://github.com/uscensusbureau/census2020-das-e2e/blob/master/doc/20190711_0945_Consistency_for_Large_Scale_Differentially_Private_Histograms.pdf
https://github.com/uscensusbureau/census2020-das-e2e/blob/master/doc/20190711_0945_Consistency_for_Large_Scale_Differentially_Private_Histograms.pdf
https://doi.org/10.1137/15M1033587
https://doi.org/10.1137/15M1033587
https://doi.org/10.1145/2043621.2043626

B. Ghazi, P. Kamath, R. Kumar, P. Manurangsi, and K. Wu 66:17

12 Aloni Cohen, Moon Duchin, JN Matthews, and Bhushan Suwal. Private Numbers in Public
Policy: Census, Differential Privacy, and Redistricting. Harvard Data Sci. Rev., 2022.

13 Graham Cormode, Cecilia M. Procopiuc, Divesh Srivastava, Entong Shen, and Ting Yu.
Differentially private spatial decompositions. In ICDE, pages 20–31, 2012.

14 Bolin Ding, Janardhan Kulkarni, and Sergey Yekhanin. Collecting telemetry data privately.
In NeurIPS, pages 3571–3580, 2017.

15 Irit Dinur and Kobbi Nissim. Revealing information while preserving privacy. In PODS, pages
202–210, 2003.

16 Cynthia Dwork. Differential privacy: A survey of results. In TAMC, pages 1–19, 2008.
17 Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our

data, ourselves: Privacy via distributed noise generation. In EUROCRYPT, pages 486–503,
2006.

18 Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam D. Smith. Calibrating noise
to sensitivity in private data analysis. J. Priv. Confidentiality, 7(3):17–51, 2016. doi:
10.29012/jpc.v7i3.405.

19 Cynthia Dwork, Frank McSherry, and Kunal Talwar. The price of privacy and the limits of
LP decoding. In STOC, pages 85–94, 2007.

20 Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N. Rothblum. Differential privacy
under continual observation. In STOC, pages 715–724, 2010. doi:10.1145/1806689.1806787.

21 Cynthia Dwork, Moni Naor, Omer Reingold, and Guy N. Rothblum. Pure differential privacy
for rectangle queries via private partitions. In ASIACRYPT, pages 735–751, 2015.

22 Cynthia Dwork, Moni Naor, Omer Reingold, Guy N. Rothblum, and Salil P. Vadhan. On the
complexity of differentially private data release: efficient algorithms and hardness results. In
STOC, pages 381–390, 2009.

23 Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy. Found.
Trends Theor. Comput. Sci., 9(3-4):211–407, 2014. doi:10.1561/0400000042.

24 Alexander Edmonds, Aleksandar Nikolov, and Jonathan R. Ullman. The power of factorization
mechanisms in local and central differential privacy. In STOC, pages 425–438, 2020.

25 Alessandro Epasto, Jieming Mao, Andres Munoz Medina, Vahab Mirrokni, Sergei Vassilvitskii,
and Peilin Zhong. Differentially private continual releases of streaming frequency moment
estimations. In ITCS, pages 48:1–48:24, 2023.

26 Hendrik Fichtenberger, Monika Henzinger, and Wolfgang Ost. Differentially private algorithms
for graphs under continual observation. In ESA, pages 42:1–42:16, 2021.

27 Quan Geng, Wei Ding, Ruiqi Guo, and Sanjiv Kumar. Tight analysis of privacy and utility
tradeoff in approximate differential privacy. In AISTATS, pages 89–99, 2020.

28 Moritz Hardt and Kunal Talwar. On the geometry of differential privacy. In STOC, pages
705–714, 2010.

29 Monika Henzinger, Jalaj Upadhyay, and Sarvagya Upadhyay. Almost tight error bounds on
differentially private continual counting. In SODA, pages 5003–5039, 2023.

30 James Honaker. Efficient use of differentially private binary trees. In TPDP, 2015.
31 Peter Kairouz, Brendan McMahan, Shuang Song, Om Thakkar, Abhradeep Thakurta, and

Zheng Xu. Practical and private (deep) learning without sampling or shuffling. In ICML,
pages 5213–5225, 2021.

32 Haim Kaplan, Katrina Ligett, Yishay Mansour, Moni Naor, and Uri Stemmer. Privately
learning thresholds: Closing the exponential gap. In COLT, pages 2263–2285, 2020.

33 Troy Lee, Adi Shraibman, and Robert Spalek. A direct product theorem for discrepancy. In
CCC, pages 71–80, 2008.

34 Chao Li, Gerome Miklau, Michael Hay, Andrew McGregor, and Vibhor Rastogi. The matrix
mechanism: optimizing linear counting queries under differential privacy. VLDB J., 24(6):757–
781, 2015. doi:10.1007/s00778-015-0398-x.

35 Roy Mathias. The hadamard operator norm of a circulant and applications. SIAM J. Matr.
Anal. Appl., 14(4):1152–1167, 1993.

ICALP 2023

https://doi.org/10.29012/jpc.v7i3.405
https://doi.org/10.29012/jpc.v7i3.405
https://doi.org/10.1145/1806689.1806787
https://doi.org/10.1561/0400000042
https://doi.org/10.1007/s00778-015-0398-x

66:18 On Differentially Private Counting on Trees

36 Jiří Matoušek, Aleksandar Nikolov, and Kunal Talwar. Factorization norms and hereditary
discrepancy. Intl. Math. Res. Not., 2020(3):751–780, 2018.

37 Aleksandar Nikolov. An improved private mechanism for small databases. In ICALP, pages
1010–1021, 2015.

38 Aleksandar Nikolov. Private query release via the Johnson–Lindenstrauss transform. In SODA,
pages 4982–5002, 2023.

39 Aleksandar Nikolov, Kunal Talwar, and Li Zhang. The geometry of differential privacy: the
sparse and approximate cases. In STOC, pages 351–360, 2013.

40 Wahbeh H. Qardaji, Weining Yang, and Ninghui Li. Differentially private grids for geospatial
data. In ICDE, pages 757–768, 2013.

41 Salil P. Vadhan. The complexity of differential privacy. In Yehuda Lindell, editor, Tutorials
on the Foundations of Cryptography, pages 347–450. Springer International Publishing, 2017.
doi:10.1007/978-3-319-57048-8_7.

42 Yonghui Xiao, Li Xiong, Liyue Fan, Slawomir Goryczka, and Haoran Li. DPCube: Differentially
private histogram release through multidimensional partitioning. Trans. Data Priv., 7(3):195–
222, 2014.

43 Jun Zhang, Xiaokui Xiao, and Xing Xie. Privtree: A differentially private algorithm for
hierarchical decompositions. In SIGMOD, pages 155–170, 2016.

https://doi.org/10.1007/978-3-319-57048-8_7

Quantum Cryptography with Classical
Communication: Parallel Remote State
Preparation for Copy-Protection, Verification, and
More
Alexandru Gheorghiu #

Department of Computer Science and Engineering, Chalmers University of Technology,
Göteborg, Sweden
Institute for Theoretical Studies, ETH Zürich, Switzerland

Tony Metger #

Institute for Theoretical Physics, ETH Zürich, Switzerland

Alexander Poremba #

Computing and Mathematical Sciences, California Institute of Technology, Pasadena, CA, USA

Abstract
Quantum mechanical effects have enabled the construction of cryptographic primitives that are
impossible classically. For example, quantum copy-protection allows for a program to be encoded
in a quantum state in such a way that the program can be evaluated, but not copied. Many of
these cryptographic primitives are two-party protocols, where one party, Bob, has full quantum
computational capabilities, and the other party, Alice, is only required to send random BB84 states
to Bob. In this work, we show how such protocols can generically be converted to ones where
Alice is fully classical, assuming that Bob cannot efficiently solve the LWE problem. In particular,
this means that all communication between (classical) Alice and (quantum) Bob is classical, yet
they can still make use of cryptographic primitives that would be impossible if both parties were
classical. We apply this conversion procedure to obtain quantum cryptographic protocols with
classical communication for unclonable encryption, copy-protection, computing on encrypted data,
and verifiable blind delegated computation.

The key technical ingredient for our result is a protocol for classically-instructed parallel remote
state preparation of BB84 states. This is a multi-round protocol between (classical) Alice and
(quantum polynomial-time) Bob that allows Alice to certify that Bob must have prepared n

uniformly random BB84 states (up to a change of basis on his space). While previous approaches
could only certify one- or two-qubit states, our protocol allows for the certification of an n-fold tensor
product of BB84 states. Furthermore, Alice knows which specific BB84 states Bob has prepared,
while Bob himself does not. Hence, the situation at the end of this protocol is (almost) equivalent to
one where Alice sent n random BB84 states to Bob. This allows us to replace the step of preparing
and sending BB84 states in existing protocols by our remote-state preparation protocol in a generic
and modular way.

2012 ACM Subject Classification Theory of computation; Theory of computation → Cryptographic
protocols

Keywords and phrases Quantum cryptography, Remote state preparation, Self-testing, Learning
with errors, Quantum copy-protection, Unclonable encryption, Quantum verification

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.67

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2201.13445

Funding Alexandru Gheorghiu: Acknowledges support from the Knut and Alice Wallenberg Founda-
tion through the Wallenberg Centre for Quantum Technology (WACQT) and Dr. Max Rössler, the
Walter Haefner Foundation and the ETH Zürich Foundation, while at ETH.

EA
T
C
S

© Alexandru Gheorghiu, Tony Metger, and Alexander Poremba;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 67; pp. 67:1–67:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:aleghe@chalmers.se
https://orcid.org/0000-0001-6225-7168
mailto:tmetger@ethz.ch
https://orcid.org/0000-0002-3108-8100
mailto:aporemba@caltech.edu
https://orcid.org/0000-0002-7330-1539
https://doi.org/10.4230/LIPIcs.ICALP.2023.67
https://arxiv.org/abs/2201.13445
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

67:2 Quantum Cryptography with Classical Communication

Tony Metger : Acknowledges support from the QuantERA project “eDict” and the Air Force Office
of Scientific Research (AFOSR) Grant No. FA9550-19-1-0202.
Alexander Poremba: Acknowledges partial support from AFOSR YIP award number FA9550-16-
1-0495 and the Institute for Quantum Information and Matter (an NSF Physics Frontiers Center;
NSF Grant PHY-1733907)

Acknowledgements We thank Honghao Fu, Thomas Vidick, and Daochen Wang for helpful discus-
sions, and Jeffrey Champion and John Wright for allowing us to use the results in Section 4.3 of the
full version of the manuscript, which are based on unpublished joint work by them and the second
author. We also thank Matty Hoban for pointing out a typo in an earlier draft.

1 Introduction

A central distinction between classical and quantum information is that a classical string
can always be copied, but a quantum state cannot: the no-cloning theorem states that there
cannot exist a procedure that produces the state 𝜌 ⊗ 𝜌 when given as input an arbitrary
quantum state 𝜌 [51]. The first cryptographic protocols that made use of the no-cloning
theorem were Wiesner’s proposal to use quantum states as unforgeable banknotes [50] and
Bennett and Brassard’s protocol for information-theoretically secure quantum key-distribution
(the BB84 QKD protocol) [6]. These protocols rely on the idea of a conjugate coding scheme:
classical information can be encoded into a quantum state in (at least) two incompatible
bases, most commonly the standard basis {|0⟩, |1⟩} and the Hadamard basis {|+⟩, |−⟩},
where |±⟩ = 1√

2 (|0⟩ ± |1⟩). These four states are commonly referred to as BB84 states. If we
encode a bit b ∈ {0, 1} as either |b⟩ or |(−)b⟩ = 1√

2 (|0⟩+ (−1)b|1⟩), then an adversary who
does not know which basis we chose for the encoding cannot create a copy of this quantum
state. Furthermore, if the adversary tries to measure the state, with probability 1/2 they
will choose the “wrong” measurement basis, which disturbs the state and means that the
adversary’s tampering can be detected.

There is an important conceptual difference between the BB84 protocol and Wiesner’s
quantum money scheme. The former addresses the problem of key-distribution, which is a
task that can also be achieved classically under computational assumptions using public-key
cryptography [18]. In contrast, Wiesner’s quantum money scheme achieves a functionality
which is entirely impossible classically, even under computational assumptions. Recently
there has been renewed interest in this latter kind of application, i.e. to use BB84 states to
construct quantum cryptographic primitives that have no classical analogue. Perhaps the
most striking example of this is the idea of quantum copy-protection [1]. Suppose that a
vendor has created a piece of software (viewed as a function that maps some input to some
output) and wants to allow a user to run it (i.e. to evaluate the function), while preventing
the user from producing additional “pirated” copies of the original software. Clearly, this is
impossible classically: any piece of software is specified by a string of symbols, which can
easily be copied. Surprisingly, it has been shown that it is possible to encode certain narrow
classes of functions in the form of a quantum state in such a way that a user can evaluate
the function without being able to copy it [16].

Copy-protection and many related protocols require only limited quantum capabilities
from one party, e.g. the vendor in the case of copy-protection: they only need to prepare
random BB84 states and send them to the other party (e.g. the user in copy-protection), who
has full quantum computational capabilities. In particular, this requires a quantum channel
between the two parties to send the BB84 states. The purpose of this paper is to show that
such protocols, where one party’s quantum operations are limited to preparing and sending

A. Gheorghiu, T. Metger, and A. Poremba 67:3

random BB84 states, can be converted into protocols where that party is fully classical. This
dequantises such protocols in the sense that all communication becomes classical. To achieve
this, we need to construct a protocol between a classical verifier and a computationally
bounded quantum prover that achieves the same outcome as if the verifier had prepared
and sent random BB84 states to the prover. We call this task classically-instructed parallel
remote state preparation of BB84 states, or parallel RSP for short. Our protocol builds on
techniques introduced in [33, 7, 24] that allow the verifier to use post-quantum cryptography
to constrain the actions of an untrusted (but computationally bounded) prover and certify
the result of a certain computation or the preparation of certain states. In contrast to earlier
works on remote state preparation (or self-testing) in this setting, which could only certify
states comprised of a constant number of qubits, our protocol allows for the certification of an
n-fold tensor product of states. We discuss the difference between our approach and previous
approaches to RSP (in particular the protocol of [24]) in Section 4. Proving soundness for
this parallel RSP protocol is the main technical result of our work. We then use this result
to dequantise a number of cryptographic protocols, namely unclonable quantum encryption,
quantum copy-protection, quantum computing on encrypted data and blind verification of
quantum computation.

2 Main results

We start by first describing the soundness guarantee achieved by our parallel RSP protocol.
Intuitively, the goal of our protocol is to guarantee that the prover has prepared a quantum
state of the form H 𝜃1 |v1⟩⟨v1|H 𝜃1 ⊗ . . .⊗H 𝜃n |vn⟩⟨vn|H 𝜃n , where v⃗, 𝜃 ∈ {0, 1}n. Additionally,
the prover should not have any information about v⃗ and 𝜃 beyond what is contained in its
BB84 states, while the verifier should know both v⃗ and 𝜃. Our protocol achieves a guarantee
of this kind assuming the quantum-intractability of the Learning with Errors (LWE) problem
introduced by Regev [43]. Our main result is the following (see the full manuscript for the
corresponding formal statement):

▶ Theorem 1 (Informal). There exists an interactive protocol between a classical verifier
and a computationally bounded quantum prover such that the following holds assuming the
quantum-intractability of LWE (with quantum advice). Fix a number n of BB84 states.
Consider any efficient prover strategy and let W and P be the verifier’s and prover’s systems
at the end of the protocol, respectively. Then there exists an isometry V : P → QP ′ (for
HQ
∼= (C2)⊗n and P ′ arbitrary) and an additional (subnormalised) state 𝛼P ′ such that for

any basis choice 𝜃 ∈ {0, 1}n, the protocol’s final state 𝜎W P conditioned on the prover being
accepted satisfies

psuccessV 𝜎W P V † c
≈1/ poly(n)

1
2n

∑
v⃗∈{0,1}n

|v⟩⟨v|W ⊗
(
H 𝜃1 |v1⟩⟨v1|H 𝜃1 ⊗ . . .⊗H 𝜃n |vn⟩⟨vn|H 𝜃n

)
⊗ 𝛼P ′ .

Here, psuccess is the prover’s success probability in the protocol and c
≈1/ poly(n) denotes com-

putational indistinguishability up to inverse polynomial error.

We make two remarks regarding this security guarantee. Firstly, the theorem makes a
statement about the joint state of the verifier’s system W and the prover’s system P after
applying an isometry V that only acts on the prover’s space. This additional isometry is
unavoidable: it represents the prover’s freedom to use any basis of its choice on its space.

ICALP 2023

67:4 Quantum Cryptography with Classical Communication

Hence, we cannot guarantee that the prover prepares BB84 states (in the standard basis),
only that it prepares BB84 states up to a change of basis. However, crucially this change of
basis is independent of which BB84 state was supposed to be prepared, i.e., V is independent
of v⃗ and 𝜃 (but it can of course depend on the prover’s strategy). Put differently, the theorem
guarantees that the prover prepares one of 4n possible states whose relation to each other is
the same as the relation between the 4n BB84 states. This does not affect the utility of the
prover’s state for applications. In fact, this freedom also exists if the verifier sent n BB84
states to the prover via a quantum channel: the prover could apply an isometry V to these
states immediately upon receipt, but the security of any application using the BB84 states is
not impacted by this.

Secondly, the theorem holds for any basis choice 𝜃, but on average over the values v⃗. In
other words, in the protocol, the verifier gets to choose the bases at will, but the values will
be uniformly random and cannot be chosen by the verifier. Furthermore, the only dependence
on v⃗ and 𝜃 in the prover’s state is via the BB84 states. This means that the protocol forces
the prover to prepare these states “blindly”, i.e., the prover does not know which BB84
states were actually prepared. In contrast, the verifier does know, because they chose 𝜃 and
are in possession of the system W , which contains information about v⃗. This asymmetry of
knowledge about the prover’s state is the same as what is achieved by preparing and sending
BB84 states through a quantum channel and is crucial for applications.

We also note that a consequence of Theorem 1 is the certification of an n-fold tensor
product structure within the prover’s system. This can be interpreted as saying that any
successful prover must have a quantum memory capable of storing n-qubits. Being able to
certify an n-qubit state in the prover’s system is the main technical challenge towards proving
soundness, as we outline in the next subsection. This notion of a computational proof of
quantum space has been formalised in [21], who prove a similar parallel rigidity result to
ours, but for a different class of states that does not immediately allow for cryptographic
applications.

2.1 Soundness proof for parallel RSP protocol
The full RSP protocol is described as Protocol 3 (though our discussion here is restricted
to Protocol 1). Its soundness proof can be found in the full version of the manuscript.

We briefly explain the difference between Protocol 1 and Protocol 3: Protocol 1 is a
protocol to test the prover, i.e. in this protocol the prover is asked to prepare and measure a
quantum state, and the verifier runs checks on the prover’s answer. The soundness statement
for this protocol is a self-testing statement in the sense of [36], which characterises which
states and measurements the prover used in the protocol. Although we do not spell this out,
it is easy to obtain an explicit self-testing statement from our proof. In contrast, Protocol 3
is a protocol for remote state preparation, so the prover is supposed to prepare, but not yet
measure, a particular quantum state. Instead, this quantum state will be used for other
applications. This means that we do not want to make a statement about how the prover
measured its state, but rather what state remains in its quantum memory. The soundness
of Protocol 3 follows from that of Protocol 1 via a statistical argument. In the following,
we focus on Protocol 1. We do not explain the protocol and the cryptographic primitives
underlying it in detail; instead, we give a very high-level description of the relevant part of
the soundness proof of the RSP protocol from [24] and then explain our method for proving
a parallel rigidity statement based on that result.

The main cryptographic primitive underlying the RSP protocol is a so-called extended
noisy trapdoor claw-free function (ENTCF) family, which can be constructed assuming the
quantum hardness of LWE [43, 33]. An ENTCF family is a family of functions indexed by

A. Gheorghiu, T. Metger, and A. Poremba 67:5

▶ Protocol 1. Test round protocol.

Let 𝜆 ∈ N be the security parameter, (F ,G) an ENTCF family, and n = poly(𝜆) the
number of BB84 states that the verifier wishes to prepare.
1. The verifier selects a uniformly random basis 𝜃 $←−{0, 1}, where 0 corresponds to

the computational and 1 to the Hadamard basis.
2. The verifier samples keys and trapdoors (k1, tk1 ; . . . kn, tkn) by computing

(ki, tki
) ← GenK𝜃

(1𝜆). The verifier then sends (k1, . . . kn) to the prover (but
keeps the trapdoors tki private).

3. The verifier receives (y1, . . . , yn) ∈ Y×n from the prover.
4. The verifier selects a round type ∈ {preimage round, Hadamard round} uniformly

at random and sends the round type to the prover.
a. For a preimage round: The verifier receives (b1, x1; . . . bn, xn) from the

prover, with bi ∈ {0, 1} and xi ∈ X . The verifier sets flag ← failPre if
Chk(ki, yi, bi, xi) = 0.

b. For a Hadamard round: The verifier receives d1, . . . dn ∈ {0, 1}w from the prover
(for some w depending on the security parameter). The verifier sends q = 𝜃 to
the prover, and receives answers v1, . . . vn ∈ {0, 1}. The verifier performs the
following checks:

Case Verifier’s check
q = 𝜃 = 0 Set flag← failHad if b̂(ki, yi) ̸= vi for some i.
q = 𝜃 = 1 Set flag← failHad if û(ki, yi, di) ̸= vi.

Note. We denote the “question” separately by q (even though here we always have
q = 𝜃) because when the variant of this protocol in Protocol 2 is used in the context of
another cyrptographic task, the verifier can also send questions q which are different
from 𝜃.

▶ Protocol 2. Preparation round protocol.

Let 𝜆 ∈ N be the security parameter, (F ,G) an ENTCF family, and n = poly(𝜆) the
number of BB84 states that the verifier wishes to prepare.
1. The verifier selects bases 𝜃 $←−{0, 1}n, where 0 corresponds to the computational

and 1 to the Hadamard basis.
2. The verifier samples keys and trapdoors (k1, tk1 ; . . . kn, tkn

) by computing
(ki, tki

) ← GenK𝜃i
(1𝜆). The verifier then sends (k1, . . . kn) to the prover (but

keeps the trapdoors tki private).
3. The verifier receives y1, . . . yn ∈ Y from the prover.
4. The verifier sends “Hadamard round” to the prover as the round type.
5. The verifier receives d1, . . . dn ∈ {0, 1}w from the prover (for some w depending on

the security parameter). The verifier computes a string v⃗ according to

vi =
{

b̂(ki, yi) if 𝜃i = 0 ,

û(ki, yi, di) if 𝜃i = 1 .

ICALP 2023

67:6 Quantum Cryptography with Classical Communication

▶ Protocol 3. Multi-round protocol for preparation of BB84 states.

Let 𝜆 ∈ N be the security parameter, (F ,G) an ENTCF family, n = poly(𝜆) the
number of BB84 states that the verifier wishes to prepare, N = M2 the maximum
number of test rounds (for M ∈ N), and 𝛿 an error tolerance parameter. For j ∈ [M]
we denote by Bj = {(j − 1)M + 1, . . . , jM} the j-th “block” of M rounds.
1. The verifier (privately) samples S $←−{0, . . . , M−1} (the number of M -round blocks

of test rounds that will be performed).
2. The verifier performs SM executions of Protocol 1 with the prover. The verifier

aborts if for any j ∈ [S], the fraction of rounds in Bj for which flag = failPre or
flag = failHad exceeds 𝛿.

3. The verifier (privately) samples R $←− [M] and executes Protocol 1 with the prover
R− 1 times. Then, the verifier executes Protocol 2 with the prover and records
the basis choice 𝜃 and the string v⃗ from that execution.

a set of keys K0 ∪ K1. K0 and K1 are disjoint sets of keys with the property that given a
k ∈ K0 ∪ K1, it is computationally intractable to determine which set this key belongs to.
See [33, Section 4] for further details on ENTCF families.

In the RSP protocol from [24], for a given basis choice 𝜃 ∈ {0, 1} (where “0” corresponds
to the computational and “1” to the Hadamard basis), the verifier samples a key k ∈ K𝜃 ,
alongside some trapdoor information t. The verifier sends k to the prover and keeps t private.
The verifier and prover then interact classically; for us, the main point of interest is the
last round of the protocol, i.e. the last message from the verifier to the prover and back.
Let us denote the protocol’s transcript up to the last round by ts. Before the last round,
the remaining quantum state of an honest prover is the single-qubit state H 𝜃 |v⟩⟨v|H 𝜃 for
v ∈ {0, 1}. From the transcript and the trapdoor information, the verifier can compute v; in
contrast, the prover, who does not know the trapdoor, cannot efficiently compute 𝜃 or v. In
the last round, the verifier sends 𝜃 to the prover, who returns v′ ∈ {0, 1}; the verifier then
checks whether v′ = v. The honest prover would generate v′ by measuring its remaining
qubit H 𝜃 |v⟩⟨v|H 𝜃 in the basis 𝜃 and therefore always pass the verifier’s check.

We can model this last round of the protocol (with a potentially dishonest prover) as
follows: at the start, the prover has a state 𝜎(𝜃,v), which it produced as a result of the
previous rounds of the protocol. For an honest prover, 𝜎(𝜃,v) = H 𝜃 |v⟩⟨v|H 𝜃 . Of course, this
state can depend on all of ts, but we only make the dependence on 𝜃 and v explicit. Upon
receiving 𝜃 ∈ {0, 1} the prover measures a binary observable Z (if 𝜃 = 0) or X (if 𝜃 = 1) and
returns the outcome v′. An honest prover would simply use the Pauli observables Z = 𝜎Z

and X = 𝜎X . The key step in the proof of [24] is to show that, due to the properties of
ENTCF families, for any (potentially dishonest) prover that is accepted with high probability,
the observables X and Z must anti-commute when acting on the prover’s state. Then,
Theorem 1 (for n = 1) follows from known results [34, 39, 26].

For our parallel RSP protocol we run n independent copies of the protocol from [24] in
parallel, except that the basis choice 𝜃i is the same for each copy.1 The prover’s state before
the last round of each copy of the RSP protocol is now denoted by 𝜎(𝜃,v⃗), where v⃗ ∈ {0, 1}n

1 The advantage of this is that a prover that succeeds with high probability on average over 𝜃 must also
succeed with high probability for each 𝜃 individually. If we were to sample 𝜃 independently for each of
the parallel copies we could not conclude that a prover succeeds with high probability for any particular
choice of 𝜃1, . . . , 𝜃n as there are exponentially many such choices.

A. Gheorghiu, T. Metger, and A. Poremba 67:7

can be calculated by the verifier from the transcript ts by repeating the same calculation as
above for each parallel copy. Generalising from the single-qubit case, given 𝜃 ∈ {0, 1} the
prover performs a measurement to generate v⃗ ∈ {0, 1}n, which we can describe by binary
observables Zi, Xi (for 𝜃 = 0, 1 respectively) that correspond to the observable used to produce
the i-th entry of v⃗. (For an honest prover, 𝜎(𝜃,v⃗) = H 𝜃 |v1⟩⟨v1|H 𝜃 ⊗ . . .⊗H 𝜃 |vn⟩⟨vn|H 𝜃 and
Zi is a Pauli-Z measurement on the i-th qubit.)

The main challenge in the proof is to establish that the prover must treat all of the parallel
copies of the RSP protocol independently, i.e. to show that its (a priori uncharacterised)
Hilbert space can be partitioned into n identical subspaces, one for each copy of the protocol.
At first sight, it might look as though for this it suffices to show that Xi and Zj (approximately)
commute for all i ̸= j. However, this is not the case because any such commutation statement
can only be shown in a special state-dependent distance [47], which does not allow us to
combine individual commutation statements into the global statement that the Hilbert space
factorises into n subspaces. Instead, we need to consider the family {Z (⃗a)X (⃗b)}a⃗,⃗b∈{0,1}n of
4n binary observables, where Z (⃗a) = Za1

1 · · ·Zan
n . We then have to show that {Z (⃗a)X (⃗b)}

form an approximate representation of the Pauli group [26, 48].2 This means that when
acting on the prover’s (unknown) state 𝜎(𝜃) (where 𝜎(𝜃) is like 𝜎(𝜃,v⃗), but averaged over all
v⃗), the operators {Z (⃗a)X (⃗b)} behave essentially like Pauli operators. Formally, this means
showing that on average over a⃗, b⃗ ∈ {0, 1}n,

Tr
[
Z (⃗a)X (⃗b)Z (⃗a)X (⃗b)𝜎(𝜃)

]
≈ (−1)a⃗·⃗b . (2.1)

This is the appropriate generalisation of the statement that Z and X anti-commute in the
single-qubit case. It is easy to check that Equation (2.1) holds when Zi and Xi are the Pauli
observables.

Our proof of Equation (2.1) has five main steps, which we briefly sketch here with
references to the corresponding parts of the formal proof.
(1) Instead of working with the observables Xi, we define “inefficient observables” X̃i =

(−1)viXi, where vi is the i-th bit of the verifier’s string v⃗. X̃i is not an observable that
an efficient prover can implement because it depends on vi, which requires the trapdoor
information to be computed efficiently. Intuitively, while Xi describes the prover’s answer,
X̃i describes whether that answer is accepted by the verifier. This has the advantage that
the state 𝜎(𝜃=1) (averaged over v⃗) of a successful prover is an approximate +1-eigenstate
of X̃i, but not of Xi.

(2) We extend the family of states {𝜎(𝜃)}𝜃∈{0,1} to a larger family of “counterfactual states”
{𝜎(𝜃)}

𝜃∈{0,1}n , which are defined as the states the prover would have prepared if the
verifier had sent keys ki ∈ K𝜃i . In Protocol 1 the basis choice is the same for all i,
i.e. 𝜃 = 0⃗ or 𝜃 = 1⃗, so for other choices of 𝜃 these states are never actually prepared.
However, they are still well-defined because for any prover in the actual protocol, we
can fix that prover’s operations (as a quantum circuit acting on a given input) and then
consider what state those operations would produce if given keys with an arbitrary basis
choice 𝜃. The reason these counterfactual states are useful is that we can show that, as a
consequence of the properties of ENTCF families, the states {𝜎(𝜃)}

𝜃
are computationally

indistinguishable.

2 When we say “Pauli group” we always mean the Pauli group modulo complex conjugation, which is also
sometimes called the Heisenberg-Weyl group.

ICALP 2023

67:8 Quantum Cryptography with Classical Communication

(3) We now want to show various commutation and anti-commutation relations for the
observables Z (⃗a) and X̃ (⃗b). For example, we want to show that Zi and X̃i anti-commute,
but Zi and X̃j commute (for i ̸= j). To show these relations, we make use of the
counterfactual states 𝜎(𝜃) in the following way: for any particular relation, we can pick a
𝜃 that makes showing this relation especially convenient. For example, to show that Zi

and X̃j commute, we would choose a 𝜃 with 𝜃i = 0 and 𝜃j = 1 since the verifier can check
the outcomes of “Z-type observables” for 𝜃 = 0 and “X-type observables” for 𝜃 = 1.
Using the properties of ENTCF families, we can argue that the prover’s measurements
on these counterfactual states still yield outcomes that would pass the verifier’s checks
for each choice of 𝜃i. Based on this, we can show the desired relations for a “convenient”
choice of counterfactual state 𝜎(𝜃). Then, we can relate these statements back to the
prover’s actual states 𝜎(𝜃) using the computational indistinguishability of {𝜎(𝜃)}. This
is somewhat delicate because X̃i are inefficient.

(4) We can combine the various commutation and anti-commutation statements from the
previous step to show that the observables {Z (⃗a)X̃ (⃗b)} behave like Pauli observables on
𝜎(𝜃=1), i.e. we show Equation (2.1) but with X̃ instead of X. This step relies on the
fact that 𝜎(𝜃=1) is an approximate +1-eigenstate of X̃ (⃗b) for all b⃗.

(5) Since we now know that {Z (⃗a)X̃ (⃗b)} behave essentially like Pauli observables, we can
define an explicit isometry Ṽ which can be shown to map {Z (⃗a)X̃ (⃗b)} to the corresponding
Pauli observables. This means that we have good control over these inefficient observables,
and we know how the inefficient and efficient observables are related. We can use this
to define a modified isometry V that maps the efficient observables {Z (⃗a)X (⃗b)} to
the corresponding Pauli observables. This is a stronger version of Equation (2.1) and,
combined again with the verifier’s checks in the protocol and properties of ENTCF
families, can be used to show that the prover must have prepared BB84 states.

We briefly comment on the relation between our soundness proof and that in [36]. At a
high level, the soundness proof in [36] also shows a kind of “parallel rigidity” of two executions
of a remote state preparation protocol. However, their proof proceeds quite differently from
ours: they first show that observables “on the first qubit” anti-commute, which allows them
to make a partial statement about the prover’s state. This in turn can be used to extend
the statement about the prover’s observables to two-qubit observables, which is finally used
to prove a statement about the prover’s two-qubit state. This qubit-by-qubit approach is
extremely costly in terms of parameters due to switching back and forth between making
partial statements about the observables and state, and cannot reasonably be extended
to n qubits. In contrast, we can make a global statement about the prover’s 4n possible
observables without first characterising parts of the prover’s state. This allows us to prove a
parallel rigidity statement for n qubits without an exponential degradation of parameters.

3 Applications

Having introduced our parallel RSP theorem, we can turn to its cryptographic applications.
We consider various cryptographic primitives that have previously been defined and construc-
ted in a setting where one party sends random BB84 states to the other. For each primitive,
we give a formal definition of the “classical-client version” and show that this definition can be
satisfied using our parallel RSP protocol as a building block. Since our parallel RSP protocols
relies on the LWE assumption, so do the dequantised protocols we present here. Furthermore,
Theorem 1 only guarantees the preparation of BB84 states up to an inverse polynomial error,
so as a result, the dequantised protocols only have inverse polynomial security (see Section 5

A. Gheorghiu, T. Metger, and A. Poremba 67:9

for a discussion of this point). Some of these primitives have previously been dequantised
using an application-specific approach (and similarly relying on computational assumptions)
[24, 13, 42, 28, 32]; in contrast, our approach is generic and simply uses RSP to replace the
sending of BB84 states. We give a short overview of the different applications and refer to
the full manuscript for details.

Unclonable quantum encryption. As a first application of our parallel RSP protocol, we
consider the notion of unclonable quantum encryption. This cryptographic functionality was
coined by Gottesman [25] and then formalised by Broadbent and Lord [11]. In a private-key
unclonable quantum encryption scheme, a classical message is encrypted into a quantum state
(the quantum ciphertext) with the following property: given only a single quantum ciphertext,
it is impossible to create two states that can later both be decrypted with access to the
private key. We consider an unclonable conjugate coding hybrid encryption scheme which is
inspired by the work of Broadbent and Lord: a plaintext m⃗ ∈ {0, 1}n is encrypted with a
randomly chosen secret key k = (s⃗, 𝜃) $←−{0, 1}n × {0, 1}n and randomness v⃗ $←−{0, 1}n into
the quantum ciphertext given by Enck(m⃗) =

⊗n
i=1 H 𝜃i |vi⟩⟨vi|H 𝜃i ⊗ |v⃗ ⊕ s⃗⊕ m⃗⟩⟨v⃗ ⊕ s⃗⊕ m⃗| .

To decrypt using the secret key k = (s⃗, 𝜃), one applies H 𝜃1 ⊗ · · · ⊗H 𝜃n to the first half of
the ciphertext, measures in the computational basis with outcome x⃗, and then uncomputes
the one-time pad in the second half using x⃗ and s⃗. The fact that this scheme is unclonable is
a consequence of the monogamy of entanglement [11, 46].

To dequantise this protocol, we consider a scenario in which a classical client C wishes
to delegate an unclonable ciphertext to a quantum receiver R. As a first step, C and R
run our parallel RSP protocol to delegate a collection of random BB84 states of the form
H 𝜃1 |v1⟩ ⊗ · · · ⊗H 𝜃n |vn⟩, where v⃗, 𝜃 ∈ {0, 1}n are random strings known only to C. Then,
C can choose s⃗ ∈ {0, 1}n and output the string v⃗ ⊕ s⃗ ⊕ m⃗ and set k⃗ = (s⃗, 𝜃) as the secret
key. With this choice of key, the delegated parallel BB84 states are exactly the ciphertext
Enck(m⃗). Because the final output state of the protocol is computationally indistinguishable
from a tensor product of BB84 states (known to the client), we can follow a similar proof
as in [11] to obtain a classical-client unclonable encryption scheme with inverse-polynomial
security.

Quantum copy-protection. In quantum copy-protection (QCP), a vendor wishes to encode
a program into a quantum state in a way that enables a recipient to run the program, but
not to create functionally equivalent “pirated” copies. The notion of QCP was introduced
by Aaronson [1], who gave the first construction for unlearnable and efficiently computable
functions in a strong quantum oracle model, which has since been improved to only requiring
classical oracles [2]. Recent work [16] has also provided the first construction of QCP for
compute-and-compare programs in the quantum random oracle model (QROM) as well
as a scheme for multi-bit point functions in the QROM based on unclonable encryption
with wrong-key detection (WKD) – a property which enables the decryption procedure to
recognise incorrect keys.

Our QCP scheme for multi-bit point functions combines our unclonable hybrid encryption
scheme with the generic WKD transformation in the QROM proposed by Coladangelo et
al. [16]. The basic idea behind our QCP scheme is as follows. To encode a point function
Py⃗,m⃗ (which is defined as returning m⃗ on input y⃗ and 0n, otherwise) we simply output
Ency⃗(m⃗) together with h(y⃗), where h is a suitable hash function which we model as a truly
random function (in the QROM). To evaluate the program on an input x⃗ ∈ {0, 1}2n, we first
check whether x⃗ hashes to h(y⃗) under h. If true, we decrypt as in the aforementioned hybrid
encryption scheme and recover m⃗. Otherwise, we output 0n.

ICALP 2023

67:10 Quantum Cryptography with Classical Communication

We then show how to obtain a QCP scheme with a classical client through the use of
our parallel RSP protocol for preparing random BB84 states, similar to our aforementioned
classical-client unclonable encryption scheme. Our scheme enables a classical client to delegate
a correct copy-protected program from the class of multi-bit point functions consisting of
uniformly random marked inputs y⃗ and output strings m⃗ with inverse-polynomial security.

Quantum computing on encrypted data. Suppose a client wishes to perform some quantum
computation, represented as the action of a quantum circuit C on an input state |x⟩, with
x ∈ {0, 1}n. For simplicity, we will assume the desired output is classical and corresponds to
a computational basis measurement of C|x⟩. The client only has limited quantum capability
and therefore wishes to delegate the computation to a quantum server while ensuring the
privacy of the input |x⟩ and the output resulting from the measurement of C|x⟩. Essentially,
the client would like to send the server an encryption of the input and, after performing an
interactive protocol, obtain an encryption of the output (which the client can decrypt, but
the server cannot)3. This primitive is called quantum computing on encrypted data (QCED).

Many protocols for QCED with differing quantum requirements on the client have been
developed (see [20] for a survey). Here we will focus on the protocol of Broadbent [8] which
achieves QCED with a client that is only required to prepare BB84 states and send them
to the server. This makes the protocol well-suited for dequantisation via our parallel RSP
protocol. Before explaining this dequantisation, we (informally) define what a QCED protocol
with a classical client should achieve. As before, the client’s input is the string x ∈ {0, 1}n

and the goal is to obtain the outcome of measuring C|x⟩ in the computational basis. In
contrast to before, this must be achieved using only classical interaction with the quantum
server. The requirement that the client’s input must stay private is captured by the condition
that after interacting with the client, it must be computationally intractable for the server
to decide which one of two distinct inputs the client used.

Our QCED protocol with a classical client works as follows. The client first performs the
parallel RSP protocol with the server, resulting in the preparation of BB84 states (or the
client aborting). Provided the protocol succeeded, the client proceeds to run Broadbent’s
protocol [8] as if the server had received those BB84 states via a quantum channel. The
security proof is straightforward. First, we know that after performing RSP the server’s state
is computationally indistinguishable from a tensor product of BB84 states (known to the
client). Furthermore, the interaction in [8] preserves this computational indistinguishability.
Hence, the server’s state at the end of the protocol is indistinguishable from the state the
server would have obtained by executing the protocol with random BB84 states and the
security of our protocol follows from [8].

Verifiable delegated blind quantum computation. The final application we consider is
verifiable delegated blind quantum computation (VDBQC). VDBQC is an interactive protocol
between two parties, in this case denoted as the verifier and the prover. The verifier delegates
a computation to the prover and, in addition to ensuring input-output privacy as in QCED,
the protocol also ensures that the probability for the verifier to accept an incorrect output is
small. In other words, if the prover deviates from the protocol and does not perform the
verifier’s instructed computation, the verifier should be able to detect this and abort with
high probability. As with QCED, a number of such protocols have been developed and we
refer the reader to [23] for a survey.

3 This also allows the client to hide the computation itself from the server by suitably encoding it as part
of the input x and taking C to be a universal circuit. When the primary goal of the protocol is to hide
the computation, it is referred to as a blind quantum computing protocol [3, 9].

A. Gheorghiu, T. Metger, and A. Poremba 67:11

Here we focus on a protocol by Morimae [38]. This protocol achieves verifiability by
combining a protocol for blind quantum computation (or QCED) with the history state
construction, which is a special encoding of a quantum circuit into a quantum state [31, 30].
In Morimae’s protocol, for a given circuit C the verifier uses a QCED protocol to delegate to
the prover the preparation of two such history states (one for C and one for the complement
of C, where the output qubit is negated). The verifier then requests these states from the
prover and proceeds to measure them in the computational or Hadamard basis. This allows
the verifier to determine the output of the computation. The history state construction
guarantees that malicious behavior on the prover’s part would be detected by the verifier’s
measurement. Additionally, the use of a QCED protocol ensures that the prover is “blind”,
i.e. does not know which computation the verifier delegated.

To dequantise this protocol, we use our QCED protocol with a classical client to delegate
the preparation of the two history states to the quantum prover. We then replace the verifier’s
measurements on this state by a measurement protocol due to Mahadev [33], which allows
the classical verifier to delegate these measurements to the prover in a way that forces the
prover to report the correct outcomes. We thus obtain a VDBQC protocol with a classical
verifier. Crucially, through the use of the classical client QCED protocol and Mahadev’s
measurement protocol, the prover is “computationally blind”, i.e. unable to distinguish which
computation the verifier has performed. In contrast, Mahadev’s verification protocol [33]
does not have this property.4

4 Related work

A number recent of works starting with [7, 33] have developed techniques that allow a
classical verifier to use post-quantum cryptography to force an untrusted (but computationally
bounded) quantum prover to behave in a certain way. Here, we briefly describe these works
and explain their relation to our parallel RSP protocol.

In a breakthrough result [33], Mahadev introduced a protocol that allows a classical
verifier to delegate a quantum computation to a quantum computer and be able to verify
the correctness of the result. The key ingredient for this protocol is a measurement protocol,
which allows the verifier to securely delegate single-qubit measurements in the standard or
Hadamard basis to a quantum prover, assuming that the prover cannot break the LWE
assumption. This can then be applied to so-called prepare-and-measure protocols: if one
has a protocol that involves a quantum prover preparing and sending a quantum state to
the verifier and the verifier performing single-qubit measurements on this state, one can use
Mahadev’s measurement protocol to delegate these quantum measurements to the prover
itself. This yields a protocol in which the prover only sends classical measurement outcomes
to the verifier, hence making the verifier classical.

This measurement protocol is in many ways similar to what we seek to do in this paper: it
removes the need for quantum communication between a fully quantum prover and a verifier
with very limited quantum capabilities (only measuring single qubits in the computational or
Hadamard basis). The difference to our work is that we are concerned with prepare-and-send
protocols, in which the verifier sends random BB84 states to the prover instead of receiving
them.

4 In [24], the authors also construct a blind verification protocol based on RSP. However, they approach
the problem in a composable framework, which requires them to make an additional assumption on the
prover (called the measurement buffer in [24]). In contrast, our protocol requires no extra assumptions
on the prover. We describe the issue with the measurement buffer assumption in more detail in Section 4.

ICALP 2023

67:12 Quantum Cryptography with Classical Communication

It turns out that replacing the quantum communication of prepare-and-send protocols
requires significantly stronger control over the untrusted prover. At a high level, the reason
is the following: for Mahadev’s measurement protocol, it suffices to show that there exists a
quantum state that is consistent with the distribution of measurement outcomes reported
by the prover, in the sense that the measurement outcomes for different bases could have
been obtained by measurements on (copies of) the same state. In contrast, if we want to
replace the step of the verifier sending a physical quantum state to the prover, we need to
show that the prover has actually constructed a certain quantum state, not just that such a
quantum state exists mathematically.5 We give a more detailed description of what it means
to “actually construct” a quantum state in Section 2.1.

The first classical protocol that provably forced a quantum prover to prepare a certain
quantum state was the single-qubit RSP protocol of [24] (see also [13] for a related result).
This protocol essentially achieves our informal theorem as stated above for a single qubit,
i.e. n = 1.6 At first sight, it might seem as though a simple hybrid argument, which replaces
each BB84 qubit with a (sequential) instance of [24], suffices to achieve the multi-qubit task.
However, the single-qubit RSP protocol of [24] only ensures that each BB84 qubit can be
individually replaced by an RSP protocol up to a global isometry. Because the prover’s state
can be entangled in arbitrary ways between intermediate applications of the protocol, it is
difficult to justify that all of the individual replacements together form an actual n-qubit
BB84 state; as we explain below, the fact that the protocol from [24] is composable does not
remedy this situation, either. While some prior work [19] showed that composable single-qubit
RSP suffices in the context of quantum verification, one would have to show a similar result
for each application of interest. Our parallel RSP protocol, in contrast, can be used in a
plug-and-play manner for many cryptographic protocols and applications. In addition, our
protocol has fewer rounds than a sequential repetition of [24] and also immediately yields a
proof of quantum space (a certificate that the prover has a certain number of qubits). We
give a brief outline of [24] and its soundness proof in Section 2.1.

The main difficulty in going from [24] to our parallel RSP result is enforcing a tensor
product structure on the prover’s space: we would like to show that, if we execute multiple
instances of a single-qubit RSP protocol in parallel, a successful prover must treat each of
these copies independently. Mathematically, this means that we need to be able to split the
prover’s a priori uncharacterised Hilbert space into a tensor product, where each tensor factor
is supposed to correspond to one instance of the RSP protocol. This is a more demanding
version of the classic question of parallel repetition: there, one is interested in showing that
any prover’s winning probability in the protocol decays in essentially the same way as it
would for a prover who executes the instances independently. In contrast, we need to show
that the prover really does execute the different instances independently in a physically
meaningful sense. We call this stronger requirement parallel rigidity.

In [24], the authors show that their protocol has composable security. This may suggest
that one can obtain a parallel rigidity statement simply by composing the protocol with itself
in sequence or in parallel. However, this is not the case because the composable security

5 In fact, in [49] it was shown that Mahadev’s measurement protocol does ensure that the prover knows
(in the sense of a proof of knowledge) the state it is measuring, not just that it exists mathematically.
The notion of “knowing” a quantum state is quite subtle to define and we forego a detailed description
here, but point out that this is weaker than showing that the prover actually constructed the state
and (to the best of our knowledge) not sufficient to use Mahadev’s protocol for prepare-and-measure
scenarios.

6 The protocol in [24] allows for the qubit to be prepared in one of 10 possible states which includes the
4 BB84 states. Here, we only focus on the 4 BB84 states as this is the case we will deal with in our
parallel RSP protocol.

A. Gheorghiu, T. Metger, and A. Poremba 67:13

statement in [24] requires an additional assumption called a measurement buffer, which
effectively acts as a trusted intermediary between the verifier and the prover. A sequential
or parallel composition of the protocol in [24] would utilise a different measurement buffer
for each instance, thereby forcing the prover to treat the different instances in a (largely)
independent way. In particular, this means that one already assumes a tensor product
structure with n separate qubits in the prover’s space, whereas in our work enforcing this
tensor product structure is the key technical challenge. For cryptographic applications, we
do not want to place any such assumption on the prover and instead allow the prover to
perform arbitrary global operations involving all instances. This is what our parallel RSP
protocol achieves. Furthermore, as shown in [4], achieving a composable single-qubit RSP
without the measurement buffer is impossible. This means that one cannot hope to achieve
parallel RSP by showing a stronger composable version of single-qubit RSP; instead, it is
necessary to directly analyse parallel executions of the protocol, as we do in this paper.

The question of parallel rigidity has been studied extensively in the literature on quantum
self-testing [17, 14, 39, 40], where one considers a setting of two non-communicating provers.
Unfortunately, those techniques are not immediately transferable to the setting we consider
here, namely a single computationally bounded prover.

Some progress towards the question of parallel rigidity for single computationally bounded
provers was made in [36], which gives a protocol that allows a classical verifier to certify
that a quantum prover must have prepared and measured a Bell state, i.e. an entangled
2-qubit quantum state. This has since been applied to device-independent quantum key
distribution [35] and oblivious transfer [12], and been extended to work for magic states [37].
The protocol from [36] uses a 2-fold parallel repetition of [24] (with additional steps to
allow for the certification of an entangled state, not just product states). As part of their
soundness proof, [36] do show a kind of parallel rigidity result for 2 instances of the RSP
protocol. However, their method does not generalise to an n-fold parallel repetition without
an exponential decay in parameters. Hence, for our n-fold parallel rigidity proof, new
techniques are needed. A more detailed comparison between our new parallel rigidity proof
and the method in [36] can be found at the end of Section 2.1. We note that in independent
concurrent work, [21] also gave an n-fold parallel rigidity proof in the computational setting,
but the class of states they deal with is different from random BB84 pairs and they do not
consider the dequantisation of cryptographic protocols.

In addition to this line of work focused on rigidity statements, application-specific
dequantisations were already considered for private-key quantum money [22, 42], certifiable
deletion of quantum encryption [28] and secure software leasing [32]. In all these cases the
authors derived the desired security statement from properties of trapdoor claw-free functions,
a cryptographic primitive which is also the basis of our RSP protocol. While this is less
generic and modular than our approach and requires a new analysis for each application, it
does have the advantage that one can obtain negligible security, whereas with RSP we obtain
inverse polynomial security. We comment more on the possibility of negligible security from
RSP-like primitives in Section 5.

5 Discussion

We have shown how a classical verifier can certify a tensor product of BB84 states in the
memory of a quantum prover, assuming the quantum-intractability of the LWE problem.
Importantly, the prover does not know which BB84 states it has prepared, whereas the
verifier does. Hence, the result at the end of the protocol is as if the verifier had sent random

ICALP 2023

67:14 Quantum Cryptography with Classical Communication

BB84 states to the prover. This allows us to dequantise a number of quantum cryptographic
primitives, yielding a generic and modular way of translating these protocols to a setting
where only classical communication is used. We have demonstrated the versatility of this
approach by applying it to unclonable encryption, quantum copy-protection, computing
on encrypted data, and blind verification. Naturally, we expect that other primitives that
rely on BB84 states can also be dequantised using our approach. Examples of this include
quantum encryption with certified deletion [10, 41] and private key quantum money [50, 42].
We leave these and other applications to future work.

Apart from applying our technique to dequantise additional cryptographic primitives,
our work raises a number of further open problems. Firstly, while our RSP primitive is
based on the hardness of LWE, we can ask whether it is possible to achieve this functionality
from weaker computational assumptions. For instance, would it be possible to perform an
RSP-like protocol assuming only the existence of quantum-secure one-way functions? This is
of particular interest because recent results have shown that secure two-party computation
can be achieved from one-way functions and quantum communication [5, 27]. These results
are based on the fact that an oblivious-transfer protocol can be implemented from one-way
functions and quantum communication that consists of BB84 states. However, an RSP
primitive like ours would allow one to generically dequantise that quantum communication.
Hence if RSP (with sufficiently strong parameters) can be obtained from quantum-secure one-
way functions, then secure two-party computation can also be obtained from those functions,
together with classical communication. In light of earlier work [29, 45] we conjecture that
this is impossible. Formalising this intuition could lead to a better understanding of the
minimum assumptions required for performing RSP-like protocols.

Secondly, a more technical open problem concerns the parameters of our rigidity the-
orem, Theorem 1. As stated above, provided the prover accepts, the state the verifier
certifies is 1/ poly(n)-close to a tensor product of n BB84 states (up to an isometry). The
1/ poly(n) closeness means that the soundness error of our dequantised protocols also scales
as 1/ poly(n). It would be desirable to achieve negligible soundness error, particularly when
considering composable instances of these protocols. This is not possible with the approach
taken in this paper as the statistical argument used in deriving our main theorem will
necessarily introduce 1/ poly(n) factors. However, it might be possible to circumvent an
explicit RSP statement: the advantage of the RSP statement in our paper is that one can use
it to dequantise existing protocols easily, but these existing protocols typically only use BB84
states because of their no-cloning properties. Therefore, instead of using an RSP protocol to
prepare those states, one could instead try to show a “post-quantum cryptographic no-cloning
property” directly that could plausibly be used to dequantise these protocols while preserving
negligible soundness.

Finally, we mention that our derivation of the parameters in the rigidity theorem is likely
not optimal and could be optimised to improve the efficiency of our protocol. The situation
here is similar to that of parallel self-testing in the multi-prover setting, with the first works
having round complexity that scaled as a high-degree polynomial [44] and more recent works
achieving quasilinear scaling [39, 15]. It would be interesting to see whether ideas from these
newer works are also applicable in the setting of parallel remote state preparation.

References
1 Scott Aaronson. Quantum copy-protection and quantum money. 2009 24th Annual IEEE

Conference on Computational Complexity, July 2009. doi:10.1109/ccc.2009.42.
2 Scott Aaronson, Jiahui Liu, Qipeng Liu, Mark Zhandry, and Ruizhe Zhang. New approaches

for quantum copy-protection. In Annual International Cryptology Conference, pages 526–555.
Springer, 2021.

https://doi.org/10.1109/ccc.2009.42

A. Gheorghiu, T. Metger, and A. Poremba 67:15

3 Pablo Arrighi and Louis Salvail. Blind quantum computation. International Journal of
Quantum Information, 4(05):883–898, 2006.

4 Christian Badertscher, Alexandru Cojocaru, Léo Colisson, Elham Kashefi, Dominik Leichtle,
Atul Mantri, and Petros Wallden. Security limitations of classical-client delegated quantum
computing. In International Conference on the Theory and Application of Cryptology and
Information Security, pages 667–696. Springer, 2020.

5 James Bartusek, Andrea Coladangelo, Dakshita Khurana, and Fermi Ma. One-way functions
imply secure computation in a quantum world. In Annual International Cryptology Conference,
pages 467–496. Springer, 2021.

6 C. H. Bennett and G. Brassard. Quantum cryptography: Public key distribution and coin
tossing. In Proceedings of IEEE International Conference on Computers, Systems and Signal
Processing, pages 8, vol. 175, 1984.

7 Z. Brakerski, P. Christiano, U. Mahadev, U. Vazirani, and T. Vidick. A cryptographic
test of quantumness and certifiable randomness from a single quantum device. IEEE 59th
Annual Symposium on Foundations of Computer Science (FOCS), pages 320–331, 2018.
doi:10.1109/FOCS.2018.00038.

8 Anne Broadbent. Delegating private quantum computations. Canadian Journal of Physics,
93(9):941–946, 2015.

9 Anne Broadbent, Joseph Fitzsimons, and Elham Kashefi. Universal blind quantum computation.
In 2009 50th Annual IEEE Symposium on Foundations of Computer Science, pages 517–526.
IEEE, 2009.

10 Anne Broadbent and Rabib Islam. Quantum encryption with certified deletion. In The-
ory of Cryptography, pages 92–122. Springer International Publishing, 2020. doi:10.1007/
978-3-030-64381-2_4.

11 Anne Broadbent and Sébastien Lord. Uncloneable Quantum Encryption via Oracles. In
Steven T. Flammia, editor, 15th Conference on the Theory of Quantum Computation, Com-
munication and Cryptography (TQC 2020), volume 158 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 4:1–4:22, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-
Zentrum für Informatik. doi:10.4230/LIPIcs.TQC.2020.4.

12 Anne Broadbent and Peter Yuen. Device-independent oblivious transfer from the bounded-
quantum-storage-model and computational assumptions. arXiv preprint, 2021. arXiv:2111.
08595.

13 Alexandru Cojocaru, Léo Colisson, Elham Kashefi, and Petros Wallden. QFactory: Classically-
instructed remote secret qubits preparation. Advances in Cryptology - ASIACRYPT
2019, Lecture Notes in Computer Science, Springer, pages 615–645, 2019. doi:10.1007/
978-3-030-34578-5_22.

14 Andrea Coladangelo. Parallel self-testing of (tilted) EPR pairs via copies of (tilted) CHSH.
arXiv preprint, 2016. arXiv:1609.03687.

15 Andrea Coladangelo, Alex B Grilo, Stacey Jeffery, and Thomas Vidick. Verifier-on-a-leash:
new schemes for verifiable delegated quantum computation, with quasilinear resources. In
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
pages 247–277. Springer, 2019.

16 Andrea Coladangelo, Christian Majenz, and Alexander Poremba. Quantum copy-protection of
compute-and-compare programs in the quantum random oracle model. arXiv preprint, 2020.
arXiv:2009.13865.

17 Matthew Coudron and Anand Natarajan. The parallel-repeated magic square game is rigid.
arXiv preprint, 2016. arXiv:1609.06306.

18 W. Diffie and M. Hellman. New directions in cryptography. IEEE Transactions on Information
Theory, 22(6):644–654, 1976. doi:10.1109/TIT.1976.1055638.

19 Vedran Dunjko and Elham Kashefi. Blind quantum computing with two almost identical
states, 2016. doi:10.48550/arXiv.1604.01586.

ICALP 2023

https://doi.org/10.1109/FOCS.2018.00038
https://doi.org/10.1007/978-3-030-64381-2_4
https://doi.org/10.1007/978-3-030-64381-2_4
https://doi.org/10.4230/LIPIcs.TQC.2020.4
https://arxiv.org/abs/2111.08595
https://arxiv.org/abs/2111.08595
https://doi.org/10.1007/978-3-030-34578-5_22
https://doi.org/10.1007/978-3-030-34578-5_22
https://arxiv.org/abs/1609.03687
https://arxiv.org/abs/2009.13865
https://arxiv.org/abs/1609.06306
https://doi.org/10.1109/TIT.1976.1055638
https://doi.org/10.48550/arXiv.1604.01586

67:16 Quantum Cryptography with Classical Communication

20 Joseph F Fitzsimons. Private quantum computation: an introduction to blind quantum
computing and related protocols. npj Quantum Information, 3(1):1–11, 2017.

21 Honghao Fu, Daochen Wang, and Qi Zhao. Computational self-testing of multi-qubit states
and measurements. arXiv preprint, 2022. arXiv:2201.13430.

22 Dmitry Gavinsky. Quantum money with classical verification. In 2012 IEEE 27th Conference
on Computational Complexity, pages 42–52. IEEE, 2012.

23 Alexandru Gheorghiu, Theodoros Kapourniotis, and Elham Kashefi. Verification of quantum
computation: An overview of existing approaches. Theory of computing systems, 63(4):715–808,
2019.

24 Alexandru Gheorghiu and Thomas Vidick. Computationally-secure and composable remote
state preparation. IEEE 60th Annual Symposium on Foundations of Computer Science (FOCS),
pages 1024–1033, 2019. doi:10.1109/FOCS.2019.00066.

25 Daniel Gottesman. Uncloneable encryption. Quantum Information and Computation, pages
3:581–602, 2003.

26 William Timothy Gowers and Omid Hatami. Inverse and stability theorems for approximate
representations of finite groups. Sbornik: Mathematics, 208(12):1784, 2017. doi:10.1070/
SM8872.

27 Alex B Grilo, Huijia Lin, Fang Song, and Vinod Vaikuntanathan. Oblivious transfer is in mi-
niqcrypt. In Annual International Conference on the Theory and Applications of Cryptographic
Techniques, pages 531–561. Springer, 2021.

28 Taiga Hiroka, Tomoyuki Morimae, Ryo Nishimaki, and Takashi Yamakawa. Quantum en-
cryption with certified deletion, revisited: Public key, attribute-based, and classical commu-
nication. In Advances in Cryptology – ASIACRYPT 2021: 27th International Conference
on the Theory and Application of Cryptology and Information Security, Singapore, December
6–10, 2021, Proceedings, Part I, pages 606–636, Berlin, Heidelberg, 2021. Springer-Verlag.
doi:10.1007/978-3-030-92062-3_21.

29 Russell Impagliazzo and Steven Rudich. Limits on the provable consequences of one-way
permutations. In Proceedings of the twenty-first annual ACM symposium on Theory of
computing, pages 44–61, 1989.

30 Julia Kempe, Alexei Kitaev, and Oded Regev. The complexity of the local hamiltonian
problem. Siam journal on computing, 35(5):1070–1097, 2006.

31 Alexei Yu Kitaev, Alexander Shen, Mikhail N Vyalyi, and Mikhail N Vyalyi. Classical and
quantum computation, volume 47. American Mathematical Soc., 2002.

32 Fuyuki Kitagawa, Ryo Nishimaki, and Takashi Yamakawa. Secure software leasing from
standard assumptions. In Theory of Cryptography Conference, pages 31–61. Springer, 2021.

33 Urmila Mahadev. Classical verification of quantum computations. IEEE 59th Annual
Symposium on Foundations of Computer Science (FOCS), pages 259–267, 2018. doi:
10.1109/FOCS.2018.00033.

34 M McKague, T H Yang, and V Scarani. Robust self-testing of the singlet. Journal of Physics
A: Mathematical and Theoretical, 45(45):455304, October 2012. doi:10.1088/1751-8113/45/
45/455304.

35 Tony Metger, Yfke Dulek, Andrea Coladangelo, and Rotem Arnon-Friedman. Device-
independent quantum key distribution from computational assumptions. New Journal of
Physics, 23(12):123021, 2021.

36 Tony Metger and Thomas Vidick. Self-testing of a single quantum device under computational
assumptions. arXiv preprint, 2020. arXiv:2001.09161.

37 Akihiro Mizutani, Yuki Takeuchi, Ryo Hiromasa, Yusuke Aikawa, and Seiichiro Tani. Compu-
tational self-testing for entangled magic states. arXiv preprint, 2021. arXiv:2111.02700.

38 Tomoyuki Morimae. Blind quantum computing can always be made verifiable. arXiv preprint,
2018. arXiv:1803.06624.

https://arxiv.org/abs/2201.13430
https://doi.org/10.1109/FOCS.2019.00066
https://doi.org/10.1070/SM8872
https://doi.org/10.1070/SM8872
https://doi.org/10.1007/978-3-030-92062-3_21
https://doi.org/10.1109/FOCS.2018.00033
https://doi.org/10.1109/FOCS.2018.00033
https://doi.org/10.1088/1751-8113/45/45/455304
https://doi.org/10.1088/1751-8113/45/45/455304
https://arxiv.org/abs/2001.09161
https://arxiv.org/abs/2111.02700
https://arxiv.org/abs/1803.06624

A. Gheorghiu, T. Metger, and A. Poremba 67:17

39 Anand Natarajan and Thomas Vidick. A quantum linearity test for robustly verifying
entanglement. Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing (STOC), pages 1003–1015, 2017. doi:10.1145/3055399.3055468.

40 Anand Natarajan and Thomas Vidick. Low-degree testing for quantum states, and a quantum
entangled games PCP for QMA. In 2018 IEEE 59th Annual Symposium on Foundations of
Computer Science (FOCS), pages 731–742. IEEE, 2018.

41 Alexander Poremba. Quantum proofs of deletion for learning with errors, 2022. doi:10.48550/
ARXIV.2203.01610.

42 Roy Radian and Or Sattath. Semi-quantum money. In Proceedings of the 1st ACM Conference
on Advances in Financial Technologies, AFT ’19, pages 132–146, New York, NY, USA, 2019.
Association for Computing Machinery. doi:10.1145/3318041.3355462.

43 Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. J.
ACM, 56(6), 2009. doi:10.1145/1568318.1568324.

44 Ben W Reichardt, Falk Unger, and Umesh Vazirani. Classical command of quantum systems.
Nature, 496(7446):456–460, 2013.

45 Steven Rudich. The use of interaction in public cryptosystems. In Annual International
Cryptology Conference, pages 242–251. Springer, 1991.

46 Marco Tomamichel, Serge Fehr, Jedrzej Kaniewski, and Stephanie Wehner. A monogamy-
of-entanglement game with applications to device-independent quantum cryptography. New
Journal of Physics, 15(10):103002, October 2013. doi:10.1088/1367-2630/15/10/103002.

47 Thomas Vidick. The complexity of entangled games. PhD thesis, UC Berkeley, 2011.
URL: https://digitalassets.lib.berkeley.edu/etd/ucb/text/Vidick_berkeley_0028E_
11907.pdf.

48 Thomas Vidick. Course FSMP, Fall’20: Interactions with quantum devices. http://users.
cms.caltech.edu/~vidick/teaching/fsmp/fsmp.pdf, 2020.

49 Thomas Vidick and Tina Zhang. Classical proofs of quantum knowledge. In Annual Interna-
tional Conference on the Theory and Applications of Cryptographic Techniques, pages 630–660.
Springer, 2021.

50 Stephen Wiesner. Conjugate coding. SIGACT News, 15(1):78–88, January 1983. doi:
10.1145/1008908.1008920.

51 William K Wootters and Wojciech H Zurek. A single quantum cannot be cloned. Nature,
299(5886):802–803, 1982.

ICALP 2023

https://doi.org/10.1145/3055399.3055468
https://doi.org/10.48550/ARXIV.2203.01610
https://doi.org/10.48550/ARXIV.2203.01610
https://doi.org/10.1145/3318041.3355462
https://doi.org/10.1145/1568318.1568324
https://doi.org/10.1088/1367-2630/15/10/103002
https://digitalassets.lib.berkeley.edu/etd/ucb/text/Vidick_berkeley_0028E_11907.pdf
https://digitalassets.lib.berkeley.edu/etd/ucb/text/Vidick_berkeley_0028E_11907.pdf
http://users.cms.caltech.edu/~vidick/teaching/fsmp/fsmp.pdf
http://users.cms.caltech.edu/~vidick/teaching/fsmp/fsmp.pdf
https://doi.org/10.1145/1008908.1008920
https://doi.org/10.1145/1008908.1008920

Parameterised and Fine-Grained Subgraph
Counting, Modulo 2∗

Leslie Ann Goldberg
Department of Computer Science, University of Oxford, UK

Marc Roth
Department of Computer Science, University of Oxford, UK

Abstract
Given a class of graphs H, the problem ⊕Sub(H) is defined as follows. The input is a graph H ∈ H
together with an arbitrary graph G. The problem is to compute, modulo 2, the number of subgraphs
of G that are isomorphic to H. The goal of this research is to determine for which classes H the
problem ⊕Sub(H) is fixed-parameter tractable (FPT), i.e., solvable in time f(|H|) · |G|O(1).

Curticapean, Dell, and Husfeldt (ESA 2021) conjectured that ⊕Sub(H) is FPT if and only if the
class of allowed patterns H is matching splittable, which means that for some fixed B, every H ∈ H
can be turned into a matching (a graph in which every vertex has degree at most 1) by removing at
most B vertices.

Assuming the randomised Exponential Time Hypothesis, we prove their conjecture for (I) all
hereditary pattern classes H, and (II) all tree pattern classes, i.e., all classes H such that every
H ∈ H is a tree. We also establish almost tight fine-grained upper and lower bounds for the case of
hereditary patterns (I).

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness;
Mathematics of computing → Discrete mathematics

Keywords and phrases modular counting, parameterised complexity, fine-grained complexity, sub-
graph counting

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.68

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: http://arxiv.org/abs/2301.01696

Acknowledgements We want to thank Radu Curticapean, Holger Dell and Thore Husfeldt for
insightful discussions on an early draft of this work.

1 Introduction

The last two decades have seen remarkable progress in the classification of subgraph counting
problems: Given a small pattern graph H and a large host graph G, how often does H occur
as a subgraph if G? Since it was discovered that subgraph counts from small patterns reveal
global properties of complex networks [26, 27], subgraph counting has also found several
applications in fields such as biology [2, 30] genetics [32], phylogeny [25], and data mining [33].
Moreover, the theoretical study of subgraph counting and related problems has led to many
deep structural insights, establishing both new algorithmic techniques and tight lower bounds
under the lenses of fine-grained and parameterised complexity theory [19, 16, 10, 14, 13, 6, 4].

∗ For the purpose of Open Access, the authors have applied a CC BY public copyright licence to any
Author Accepted Manuscript version arising from this submission. All data is provided in full in the
results section of this paper.

EA
T
C
S

© Leslie Ann Goldberg and Marc Roth;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 68; pp. 68:1–68:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ICALP.2023.68
http://arxiv.org/abs/2301.01696
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

68:2 Parameterised and Fine-Grained Subgraph Counting, Modulo 2

Without any additional restrictions, the subgraph counting problem is infeasible. The
complexity class #W[1] is the parameterised complexity class analogous to NP (see Section 2
for more detail). Under standard assumptions, problems that are #W[1]-hard are not
fixed-parameter tractable (FPT). The canonical complete problem for #W[1], the problem
of counting k-cliques, corresponds to the special case of the subgraph counting problem
where H is a clique of size k. This problem cannot be solved in time f(k) · no(k) for any
function f unless the Exponential Time Hypothesis (ETH) fails [8, 9]. Due to this hardness
result, the research focus in this area shifted to the question: Under which restrictions on the
patterns H and the hosts G is algorithmic progress possible? More precisely, under which
restrictions can the problem be solved in time f(|H|) · |G|O(1), for some computable function
f? Instances that can be solved within such a run time bound are called fixed-parameter
tractable (FPT); allowing a potential super-polynomial overhead in the size of the pattern
|H| formalises the assumption that H is assumed to be (significantly) smaller than G.

If only the patterns are restricted, then the situation is fully understood. Formally, given
a class H of patterns, the problem #Sub(H) asks, given as input a graph H ∈ H and an
arbitrary graph G, to compute the number of subgraphs of G that are isomorphic to H.
Following initial work by Flum and Grohe [19] and by Curticapean [11], Curticapean and
Marx [14] proved that, under standard assumptions, #Sub(H) is FPT if and only if H has
bounded matching number, that is, if there is a positive integer B such that the size of
any matching in any graph in H is at most B. They also proved that all FPT cases are
polynomial-time solvable.

In stark contrast, almost nothing is known for the decision version Sub(H). Here, the
task is to correctly decide whether there is a copy of H ∈ H in G, rather than to count
the copies. It is known that Sub(H) is FPT whenever H has bounded treewidth (see e.g.
[20, Chapter 13]), and it is conjectured that those are all FPT cases. However, resolving
this conjecture belongs to the “most infamous” open problems in parameterised complexity
theory [18, Chapter 33.1].

1.1 Counting Modulo 2
To interpolate between the fully understood realm of (exact) counting and the barely
understood realm of decision, Curticapean, Dell and Husfeldt proposed the study of counting
subgraphs, modulo 2 [12]. Formally, they introduced the problem ⊕Sub(H), which expects
as input a graph H ∈ H and an arbitrary graph G, and the goal is to compute modulo 2 the
number of subgraphs of G isomorphic to H.

The study of counting modulo 2 received significant attention from the viewpoint of
classical, structural, and fine-grained complexity theory. For example, one way to state
Toda’s Theorem [31] is PH ⊆ P⊕P, implying that counting satisfying assignments of a CNF,
modulo 2, is at least as hard as the polynomial hierarchy. Another example is the quest to
classify the complexity of counting modulo 2 the homomorphisms to a fixed graph, which was
very recently resolved by Bulatov and Kazeminia [7]. There has also been work by Abboud,
Feller, and Weimann [1] on the fine-grained complexity of counting modulo 2 the number of
triangles in a graph that satisfy certain weight constraints.

In their work [12], Curticapean, Dell and Husfeldt proved that the problem of counting
k-matchings modulo 2, that is, the problem ⊕Sub(H) where H is the class of all 1-regular
graphs, is fixed-parameter tractable, where the parameter k is |H|. Since the exact counting
version of this problem is #W[1]-hard [11], their result provides an example where counting
modulo 2 is strictly easier than exact counting (subject to complexity assumptions). The
complexity class ⊕W[1] can be defined via the complete problem of counting k-cliques

L. A. Goldberg and M. Roth 68:3

modulo 2. Crucially, ⊕W[1]-hard problems are not fixed-parameter tractable, unless the
randomised ETH (rETH) fails. Curticapean et al. [12] proved that counting k-paths modulo
2 is ⊕W[1]-hard. Since finding a k-path in a graph G is fixed-parameter tractable via colour-
coding [3], this hardness result provides an example where counting modulo 2 is strictly
harder than decision (subject to complexity assumptions). Combining those observations,
it appears that counting subgraphs modulo 2 may lie strictly in between the complexity of
decision and the complexity of exact counting.

A matching is a graph whose maximum degree is at most 1. The matching-split number of
a graph H is the minimum size of a set S ⊆ V (H) such that H \ S is a matching. A class of
graphs H is called matching splittable if there is a positive integer B such that the matching-
split number of any H ∈ H is at most B. For example, the class of all matchings is matching
splittable while the class of all cycles is not. Curticapean, Dell and Husfeldt extended their
FTP algorithm for counting k-matchings modulo 2 to obtain an FPT algorithm for ⊕Sub(H)
for any matching-splittable class H. On this basis, they then made the following conjecture.

▶ Conjecture 1 ([12]). ⊕Sub(H) is FPT if and only if H is matching splittable.

A class H of graphs is called hereditary if it is closed under vertex removal. Intriguingly,
if Conjecture 1 is true, then the FPT criterion for counting subgraphs modulo 2 (⊕Sub(H))
would coincide with the polynomial-time criterion for finding subgraphs (Sub(H)) for hered-
itary pattern classes H as established by Jansen and Marx.

▶ Theorem 2 ([24]). Let H be a hereditary class of graphs and assume P ̸= NP. Then
Sub(H) is solvable in polynomial time if and only if H is matching splittable.

Jansen and Marx also conjecture that the condition of H being hereditary can be removed.

▶ Conjecture 3 ([24]). Sub(H) is solvable in polynomial time if and only if H is matching
splittable.

Conjectures 1 and 3 have the remarkable consequence that ⊕Sub(H) is FPT if and only
if Sub(H) is solvable in polynomial time. In the current work we establish this consequence
for all hereditary pattern classes.

1.2 Our Contributions
We resolve Conjecture 1 for all hereditary classes H, as well as for every class H consisting
only of trees; note that the upper bounds were shown in [12] and that the lower bounds are
the novel part.

▶ Theorem 4. Let H be a hereditary class of graphs. If H is matching splittable, then
⊕Sub(H) is fixed-parameter tractable. Otherwise, the problem is ⊕W[1]-complete and,
assuming rETH, cannot be solved in time f(|H|) · |G|o(|V (H)|/ log |V (H)|) for any function f .

▶ Theorem 5. Let T be a recursively enumerable class of trees. If T is matching splittable,
then ⊕Sub(T) is fixed-parameter tractable. Otherwise ⊕Sub(T) is ⊕W[1]-complete.

The requirement that the class of trees T needs to be recursively enumerable is a standard
technicality - the reason for it is that the function f in the running time in the standard
definition of an FPT algorithm is required to be computable. It turns out that having T
recursively enumerable is enough for this.

In order to prove our classifications, we adapt the by-now-standard technique for ana-
lysing subgraph counting problems established by Curticapean, Dell and Marx [13]. Let
#Sub(H → G) denote the number of subgraphs of a graph G that are isomorphic to a

ICALP 2023

68:4 Parameterised and Fine-Grained Subgraph Counting, Modulo 2

graph H and let #Hom(F → G) denotes the number of homomorphisms (edge-preserving
mappings) from a graph F to a graph G. Given a graph H, there is a function aH from
graphs to rationals with finite support such that the following holds for any graph G:

#Sub(H → G) =
∑

F

aH(F) · #Hom(F → G) , (1)

where the sum is over all (isomorphism types of) graphs. Since aH has finite support,
aH(F) = 0 for all but finitely-many graphs F . Thus, equation (1) allows us to express the
solution to the exact counting problem as a finite linear combination of homomorphism counts.
In a nutshell, the framework of [13] states that computing the function G 7→ #Sub(H → G)
is hard to compute if and only if there is a graph F of high treewidth with aH(F) ̸= 0.
This translates the complexity of (exact) subgraph counting to the purely combinatorial
problem of understanding the coefficients aH . One might hope that this strategy transfers
to counting modulo 2 as well. Unfortunately, this is not possible as Equation (1) might
not be well-defined if arithmetic is done modulo 2. The reason for this is the fact that the
coefficients aH(F) are of the form µ(F, H) × |Aut(H)|−1, where µ(F, H) is an integer, and
Aut(H) is the automorphism group of the graph H [13]. Thus there is, a priori, no hope
to extend the framework to counting modulo 2 for pattern graphs with an even number of
automorphisms. In fact, according to Curticapean, Dell and Husfeldt [12], the absence of a
comparable framework for counting modulo 2 is one of the main challenges for establishing
the hardness part of Conjecture 1, and it is the main reason why the reductions in [12] use
more classical, gadget-based reductions.

In this work, we solve the problem of patterns with an even number of automorphisms
by considering a colourful intermediate problem. More concretely, we will equip each edge
of the pattern H with a distinct colour and show that it will be sufficient to consider only
automorphisms that preserve the colours. If H has no isolated vertices, then this is only
the trivial automorphism. Formally, the coloured approach will be based on the notion of
so-called fractured graphs introduced by Peyerimhoff et al. [29].

In what follows (Section 2), we will first introduced all required notions and previous
results. In Section 3, we will prove the classification for hereditary pattern classes (Theorem 4).
On a technical level, this proof can be considered a warm-up for the significantly harder
challenge of establishing the classification for trees (Theorem 5), which we defer to the full
version due to the space constraints.

2 Preliminaries

Let f : A1 × A2 → B be a function. For each a1 ∈ A1 we write f(a1, ⋆) : A2 → B for the
function that maps a2 ∈ A2 to f(a1, a2).

Graphs in this work are undirected and without self loops. A homomorphism from a
graph H to a graph G is a mapping φ from the vertices V (H) of H to the vertices V (G)
of G such that for each edge e = {u, v} ∈ E(H) of H, the image φ(e) = {φ(u), φ(v)} is an
edge of G. A homomorphism is called an embedding if it is injective. We write Hom(H → G)
and Emb(H → G) for the sets of homomorphisms and embeddings, respectively, from H

to G. An embedding φ ∈ Emb(H → G) is called an isomorphism if it is bijective and
{u, v} ∈ E(H) ⇔ {φ(u), φ(v)} ∈ E(G). We say that H and G are isomorphic, denoted by
H ∼= G, if an isomorphism from H to G exists. A graph invariant ι is a function from graphs
to rationals such that ι(H) = ι(G) for each pair of isomorphic graphs H and G.

L. A. Goldberg and M. Roth 68:5

A subgraph of G is a graph G′ with V (G′) ⊆ V (G) and E(G′) ⊆ E(G). We write
Sub(H → G) for the set of all subgraphs of G that are isomorphic to H. Given a subset of
vertices S ⊆ V (G) of a graph G, we write G[S] for the graph induced by S, that is, G[S] has
vertices S and edges {{u, v} ⊆ S | {u, v} ∈ E(G)}.

We denote by tw(G) the treewidth of the graph G. Since we will rely on treewidth
purely in a black-box manner, we omit the technical definition and refer the reader to [15,
Chapter 7].

Given any graph invariant ι (such as treewidth) and a class of graphs G, we say that
ι is bounded in G if there is a non-negative integer B such that, for all G ∈ G, ι(G) ≤ B.
Otherwise we say that ι is unbounded in G.

Given a graph H = (V, E), a splitting set of H is a subset of vertices S such that every
vertex in H [V \S] has degree at most 1. The matching-split number of H is the minimum size
of a splitting set of H. A class of graphs H is called matching splittable if the matching-split
number of H is bounded.

2.1 Colour-Preserving Homomorphisms and Embeddings
A homomorphism c from a graph G to a graph Q is sometimes called a “Q-colouring” of G.
A Q-coloured graph is a pair consisting of a graph G and a homomorphism c from G to Q.
Note that the identity function idQ on V (Q) is a Q-colouring of Q. If a homomorphism c

from G to Q is vertex surjective, then we call (G, c) a surjectively Q-coloured graph.

▶ Definition 6 (cE). A Q-colouring c of a graph G induces a (not necessarily proper)
edge-colouring cE : E(G) → E(Q) given by cE({u, v}) = {c(u), c(v)}.

Notation. Given a Q-coloured graph (G, c) and a vertex u ∈ V (Q), we will use the
capitalised letter U to denote the subset of vertices of G that are coloured by c with u, that
is, U := c−1(u) ⊆ V (G).

Given two Q-coloured graphs (H, cH) and (G, cG), we call a homomorphism φ from H

to G colour-preserving if for each v ∈ V (H) we have cG(φ(v)) = cH(v). We note the
special case in which Q = H and cH is the identity idQ; then the condition simplifies to
cG(φ(v)) = v. A colour-preserving embedding of (H, cH) in (G, cG) is a vertex injective colour-
preserving homomorphism from (H, cH) to (G, cG). We write Hom((H, cH) → (G, cG)) and
Emb((H, cH) → (G, cG)) for the sets of all colour-preserving homomorphisms and embeddings,
respectively, from (H, cH) to (G, cG).

Let k be a positive integer, let H be a graph with k edges, and let (G, γ) be a pair
consisting of a graph G and a function that maps each edge of G to one of k distinct colours.
We refer to γ as a “k-edge colouring” of G. For example, in most of our applications we will fix
a graph Q with k edges and a Q-colouring c of G and we will take γ to be the edge-colouring
cE from Definition 6. We write ColSub(H → (G, γ)) for the set of all subgraphs of G that
are isomorphic to H and that contain each of the k edge colours precisely once.

2.2 Fractures and Fractured Graphs
In this work, we will crucially rely on and extend the framework of fractured graphs as
introduced in [29].

▶ Definition 7 (Fractures). Let Q be a graph. For each vertex v of Q, let EQ(v) be the set
of edges of Q that are incident to v. A fracture of Q is a tuple ρ = (ρv)v∈V (Q), where for
each vertex v of Q, ρv is a partition of EQ(v).

ICALP 2023

68:6 Parameterised and Fine-Grained Subgraph Counting, Modulo 2

v
vB1 vB2

Figure 1 Illustration of the construction of a fractured graph from [29]. The left picture shows
a vertex v of a graph Q with incident edges EQ(v) = { , , , , , }. The right picture shows the
splitting of v in the construction of the fractured graph Q♯ σ for a fracture σ satisfying that the
partition σv contains two blocks B1 = { , , }, and B2 = { , , }.

Note that a fracture describes how to split (or how to fracture) each vertex of a given
graph: for each vertex v, create a vertex vB for each block B in the partition ρv; edges
originally incident to v are made incident to vB if and only if they are contained in B. We
call the resulting graph the fractured graph H♯ ρ; a formal definition is given in Definition 8,
a visualisation is given in Figure 1.

▶ Definition 8 (Fractured Graph Q♯ ρ). Given a graph Q, we consider the matching MQ

containing one edge for each edge of Q; formally,

V (MQ) :=
⋃

e={u,v}∈E(Q)

{ue, ve} and E(MQ) := {{ue, ve} | e = {u, v} ∈ E(Q)}.

For a fracture ρ of Q, we define the graph Q♯ ρ to be the quotient graph of MQ under
the equivalence relation on V (MQ) which identifies two vertices ve, wf of MQ if and only if
v = w and e, f are in the same block B of the partition ρv of EQ(v). We write vB for the
vertex of Q♯ ρ given by the equivalence class of the vertices ve (for which e ∈ B) of MQ.

▶ Definition 9 (Canonical Q-colouring cρ). Let Q be a graph and let ρ be a fracture of Q.
The canonical Q-colouring of the fractured graph Q♯ ρ maps vB to v for each v ∈ V (Q) and
block B ∈ ρv, and is denoted by cρ.

Observe that cρ is the identity in V (Q) if ρ is the coarsest fracture (that is, each partition
ρv only contains one block, in which case Q♯ ρ = Q).

2.3 Parameterised and Fine-grained Computation

A parameterised computational problem is a pair consisting of a function P : Σ∗ → {0, 1} and
a computable parameterisation κ : Σ∗ → N. A fixed-parameter tractable (FPT) algorithm for
(P, κ) is an algorithm that computes P and runs, on input x ∈ Σ∗, in time f(κ(x)) · |x|O(1)

for some computable function f . We call (P, κ) fixed-parameter tractable (FPT) if an FPT
algorithm for (P, κ) exists.

A parameterised Turing-reduction from (P, κ) to (P ′, κ′) is an FPT algorithm for (P, κ)
that is equipped with oracle access to P ′ and for which there is a computable function g such
that, on input x, each oracle query y satisfies κ′(y) ≤ g(κ(x)). We write (P, κ) ≤fpt

T (P ′, κ′)
if a parameterised Turing-reduction from (P, κ) to (P ′, κ′) exists. This guarantees that
fixed-parameter tractability of (P ′, κ′) implies fixed-parameter tractability of (P, κ). For a
more comprehensive introduction, we refer the reader the standard textbooks [15] and [20].

L. A. Goldberg and M. Roth 68:7

Counting modulo 2 and the rETH

The lower bounds in this work will rely on the hardness of the parameterised complexity
class ⊕W[1], which can be considered a parameterised equivalent of ⊕P. Following [12], we
define ⊕W[1] via the complete problem ⊕Clique: Given as input a graph G and a positive
integer k, the goal is to compute the number of k-cliques in G modulo 2, i.e., to compute
⊕Sub(Kk → G). The problem is parameterised by k. A parameterised problem (P, κ) is
called ⊕W[1]-hard if ⊕Clique ≤fpt

T (P, κ), and it is called ⊕W[1]-complete if, additionally,
(P, κ) ≤fpt

T ⊕Clique.
Modifications of the classical Isolation Lemma (see e.g. [5] and [34]) yield a randomised

parameterised Turing reduction from finding a k-clique to computing the parity of the
number of k-cliques. In combination with existing fine-grained lower bounds for finding a
k-clique [8, 9], it can then be shown that ⊕Clique cannot be solved in time f(k) · |G|o(k)

for any function f , unless the randomised Exponential Time Hypothesis fails:

▶ Definition 10 (rETH, [23]). The randomised Exponential Time Hypothesis (rETH) asserts
that 3-SAT cannot be solved by a randomised algorithm in time exp o(n), where n is the
number of variables of the input formula.

As an immediate consequence, the rETH implies that ⊕W[1]-hard problems are not fixed-
parameter tractable.

For the lower bounds in this work, we won’t reduce from ⊕Clique directly, but instead
from the following, more general problem:

▶ Definition 11 (⊕cp-Hom). Let H be a class of graphs. The problem ⊕cp-Hom(H) has
as input a graph H ∈ H and a surjectively H-coloured graph (G, c). The goal is to compute
⊕Hom((H, idH) → (G, c)). The problem is parameterised by |H|.

The following lower bound was proved independently in [28, 29] and [12].

▶ Theorem 12. Let H be a recursively enumerable class of graphs. If the treewidth of H is
unbounded then ⊕cp-Hom(H) is ⊕W[1]-hard and, assuming the rETH, it cannot be solved
in time f(|H|) · |G|o(tw(H)/ log tw(H)) for any function f .

Next is the central problem in this work.

▶ Definition 13 (⊕Sub). Let H be a class of graphs. The problem ⊕Sub(H) has as input
a graph H ∈ H and a graph G. The goal is to compute ⊕Sub(H → G). The problem is
parameterised by |H|.

For example, writing K for the set of all complete graphs, the problem ⊕Sub(K) is
equivalent to ⊕Clique.

Complexity Monotonicity and Inclusion-Exclusion

Throughout this work, we will rely on two important tools introduced in [29]. For the sake
of being self-contained, we encapsulate them below in individual lemmas.

The first tool is an adaptation of the so-called Complexity Monotonicity principle to
the realm of fractured graphs and modular counting (see [29, Sections 4.1 and 6.3] for a
detailed treatment and for a proof). Intuitively, the subsequent lemma states that evaluating,
modulo 2, a linear combination of colour-prescribed homomorphism counts from fractured
graphs, is as hard as evaluating its hardest term with an odd coefficient.

ICALP 2023

68:8 Parameterised and Fine-Grained Subgraph Counting, Modulo 2

▶ Lemma 14 ([29]). There is a deterministic algorithm A and a computable function f such
that the following conditions are satisfied:
1. A expects as input a graph Q and a Q-coloured graph (G, c).
2. A is equipped with oracle access to a function

(G′, c′) 7→
∑

ρ

a(ρ) · ⊕Hom((Q♯ ρ, cρ) → (G′, c′)) mod 2 ,

where the sum is over all fractures of Q and a is a function from fractures of Q to integers.
3. Each oracle query (G′, c′) is of size at most f(|Q|) · |G|.
4. A computes ⊕Hom((Q♯ ρ, cρ) → (G, c)) for each fracture ρ with a(ρ) ̸= 0 mod 2.
5. The running time of A is bounded by f(|Q|) · |G|O(1).

The second tool is a standard application of the inclusion-exclusion principle (see e.g. [29,
Sections 4.2 and 6.3]). It will be used in the final steps of our reductions to remove the
colourings.

▶ Lemma 15 ([29]). There is a deterministic algorithm A that satisfies the following
conditions:
1. A expects as input a graph H with k edges, a graph G and a k-edge colouring γ of G.
2. A is equipped with oracle access to the function ⊕Sub(H → ⋆), and each oracle query G′

satisfies |G′| ≤ |G|.
3. A computes ⊕ColSub(H → (G, γ)).
4. The running time of A is bounded by 2|H| · |G|O(1).

3 Classification for Hereditary Graph Classes

In this section, we will completely classify the complexity of ⊕Sub(H) for hereditary classes.
Let us start by restating the classification theorem.

▶ Theorem 4. Let H be a hereditary class of graphs. If H is matching splittable, then
⊕Sub(H) is fixed-parameter tractable. Otherwise, the problem is ⊕W[1]-complete and,
assuming rETH, cannot be solved in time f(|H|) · |G|o(|V (H)|/ log |V (H)|) for any function f .

The proof of Theorem 4 is split in four cases, which stem from a structural property of
non matching splittable hereditary graph classes H due to Jansen and Marx [24]. For the
statement, we need to consider the following classes:

Fω is the class of all complete graphs.
Fβ is the class of all complete bipartite graphs.
FP2 is the class of all P2-packings, that is, disjoint unions of paths with two edges.1

FK3 is the class of all triangle packings, that is, disjoint unions of the complete graph of
size 3.

▶ Theorem 16 (Theorem 3.5 in [24]). Let H be a hereditary class of graphs. If H is not
matching splittable then at least one of the following are true: (1.) Fω ⊆ H, (2.) Fβ ⊆ H,
(3.) FP2 ⊆ H, or (4.) FK3 ⊆ H.

1 To avoid confusion, we remark that [24] uses P3 to denote the path of two edges (and three vertices). In
the current work, it will be more convenient to use the number of edges of a path as index.

L. A. Goldberg and M. Roth 68:9

Thus, it suffices to consider cases 1. – 4. to prove Theorem 4. We start with the easy cases
of cliques and bicliques; they follow implicitly from previous works [12, 17, 28] and we only
include a proof for completeness. Note that a tight bound under rETH is known for those
cases:

▶ Lemma 17. Let H be a hereditary class of graphs. If Fω ⊆ H or Fβ ⊆ H then ⊕Sub(H)
is ⊕W[1]-hard and, assuming rETH, cannot be solved in time f(|H|) · |G|o(|V (H)|) for any
function f .

Proof. If Fω ⊆ H then ⊕W[1]-hardness follows immediately from the fact that ⊕Clique
is the canonical ⊕W[1]-complete problem [12]. For the rETH lower bound, we can reduce
from the problem of deciding the existence of a k-clique via a (randomised) reduction using a
version of the Isolation Lemma due to Williams et al. [34, Lemma 2.1]. This reduction does
not increase k or the size of the host graph and is thus tight with respect to the well-known
lower bound for the clique problem due to Chen et al. [8, 9]: Deciding the existence of a
k-clique in an n-vertex graph cannot be done in time f(k) · no(k) for any function f , unless
ETH fails. Our lower bound under rETH follows since the reduction is randomised.

If Fβ ⊆ H, then the claim holds by [17, Theorem 5], which established the problem of
counting, modulo 2, the induced copies of a k-by-k-biclique in an n-vertex bipartite graph
to be ⊕W[1]-hard and not solvable in time f(k) · no(k) for any function f , unless rETH
fails. Since a copy of a biclique (with at least one edge) in a bipartite graph must always be
induced, the claim follows. This concludes the proof of Lemma 17. ◀

The more interesting cases are FP2 ⊆ H and FK3 ⊆ H. One reason for this is that, in
contrast to cliques and bicliques, the decision version of those instances are fixed-parameter
tractable. Hence a reduction from the decision version via e.g. an isolation lemma does not
help. In other words, establishing hardness for those cases requires us to rely on the full
power of counting modulo 2. More precisely, we will rely on the framework of fractures
graphs (see Section 2). Both cases can be considered simpler applications of the machinery
used in the later sections, so we will present all steps in great detail. While this might seem
unnecessary given the simplicity of the constructions, we hope that it enables the reader to
make themselves familiar with the general reduction strategies which will be used throughout
the later sections of this work.

3.1 Triangle Packings
The goal of this subsection is to establish hardness of ⊕Sub(FK3). To this end, let ∆ be an
infinite computable class of cubic bipartite expander graphs, and let Q = {L(H) | H ∈ ∆}
where L(H) is constructed as follows: Each v ∈ V (H) becomes a triangle with vertices vx,
vy, and vz corresponding to the three neighbours x, y, and z of v. Finally, for every edge
{u, v} ∈ E(H) we identify vu and uv. In fact, L(H) is just the line graph of H : Every edge of
H becomes a vertex in L(H), and two vertices of L(H) are made adjacent if and only if the
corresponding edges in H are incident. Since all H ∈ ∆ are bipartite (and thus triangle-free),
we can easily observe the following.2

▶ Observation 18. The mapping v 7→ (vx, vy, vz) is a bijection from vertices of H to triangles
in L(H).

2 Observation 18 is also an immediate consequence of Whitney’s Isomorphism Theorem implying that a
triangle of a line graph corresponds to either a claw or to a triangle in its primal graph.

ICALP 2023

68:10 Parameterised and Fine-Grained Subgraph Counting, Modulo 2

We also consider the fracture of L(H) that splits L(H) back into |V (H)| triangles; consider
Figure 2 for an illustration.

▶ Definition 19 (τ(H)). Let H ∈ ∆ and recall that each vertex w of L(H) is obtained by
identifying vu and uv for some edge {u, v} ∈ E(H). Moreover, w has four incident edges
ex, ey, ea, eb, to vx, vy, ua, ub, respectively, where x, y, u are the neighbours of v in H and
v, a, b are the neighbours of u in H. We define τ(H)w := {{ex, ey}, {ea, eb}}, and we proceed
similar for all vertices of L(H).

Next, we use that tw(L(H)) = Ω(tw(H)) (see e.g. [22]). Moreover, tw(L(H)) ≤ |V (L(H))|
since the treewidth of a graph is always bounded by the number of its vertices. Additionally,
|V (L(H))| = |E(H)| by construction. Since the graphs in ∆ are cubic, we further have that
|E(H)| = Θ(|V (H)|) for H ∈ ∆. We combine those bounds with the fact that expander
graphs have treewidth linear in the number of vertices (see e.g. [21]); therefore ∆ and thus
Q have unbounded treewidth. Putting these facts together, we obtain the following.

▶ Fact 20. Q has unbounded treewidth and tw(L(H)) = Θ(|V (L(H))|) = Θ(|V (H)|) for
H ∈ ∆.

We are now able to establish hardness of ⊕Sub(FK3). The proof will heavily rely on the
transformation from edge-coloured subgraphs to homomorphisms established in [29].

▶ Lemma 21. The problem ⊕Sub(FK3) is ⊕W[1]-hard. Furthermore, on input kK3 and G,
the problem cannot be solved in time f(k) · |G|o(k/ log k) for any function f , unless rETH fails.

Proof. We reduce from ⊕cp-Hom(Q), which, by Fact 20 and Theorem 12, is ⊕W[1]-hard
and for L(H) ∈ Q, it cannot be solved in time f(|L(H)|) · |G|o(|V (L(H))|/ log |V (L(H))|), unless
rETH fails.

Let L and (G, c) be an input instance to ⊕cp-Hom(Q). Recall that ∆ is computable –
that is, there is an algorithm that takes a graph H and determines whether it is in ∆. Thus,
there is an algorithm that takes input L ∈ Q and finds a graph H ∈ ∆ with L = L(H). The
run time of this algorithm depends on |L| but clearly not on (G, c). Let k = |V (H)| and
note that |E(L(H))| = 3k, since, by construction, each vertex v of H becomes a triangle of
L(H). We consider the graph G as a 3k-edge-coloured graph, coloured by cE . That is, each
edge e = {x, y} of G is assigned the colour cE(e) = {c(x), c(y)} which is an edge of L (see
Figure 2 for an illustration).

Now, for any L-coloured graph (G′, c′) recall that ColSub(kK3 → (G′, c′
E)) is the set of

subgraphs of G′ that are isomorphic to kK3 and that include each edge colour (each edge of
L) precisely once. We will see later that ⊕ColSub(kK3 → (G′, c′

E)) can be computed using
our oracle for ⊕Sub(FK3) using the principle of inclusion and exclusion.

It was shown in [29, Lemma 4.1] that there is a unique function a such that for every
L-coloured graph (G′, c′) we have3

#ColSub(kK3 → (G′, c′
E)) =

∑
ρ

a(ρ) · Hom(L♯ ρ → (G′, c′)) . (2)

where the sum is over all fractures of L. Additionally, it was shown in [29, Corollary 4.3]
that

a(⊤) =
∑

ρ∈F(kK3,L)

∏
w∈V (L)

(−1)|ρw|−1 · (|ρw| − 1)! , (3)

3 In the language of [29], Equation (2) is obtained by choosing Φ as the property of being isomorphic
to kK3.

L. A. Goldberg and M. Roth 68:11

Figure 2 (Top:) A cubic bipartite graph H ∈ ∆, its line graph L(H), and the fractured graph
induced by τ(H). (Below:) An L(H)-coloured graph (G, c); emphasised in distinct colours is the
edge-colouring cE of G induced by the mapping {u, v} 7→ {c(u), c(v)}. Additionally we depict an
element S ∈ ColSub(kK3 → (G, cE)), that is, a subgraph of G isomorphic to kK3 that contains each
edge colour of G precisely once.

where ⊤ is the fracture in which each partition consists only of one block (that is, L♯ ⊤ = L),
and F(kK3, L) is the set of all fractures ρ of L such that L♯ ρ ∼= kK3. However, note that,
by Observation 18, there is only way to fracture L into k disjoint triangles, and this fracture
is given by τ(H). Thus, (3) simplifies to

a(⊤) =
∏

w∈V (L)

(−1)|τ(H)w|−1 · (|τ(H)w| − 1)! , (4)

which is odd since each partition of τ(H) consists of precisely two blocks (so in fact the
expression in (4) is (−1)|V (L)|).

Note that the algorithm for ⊕cp-Hom(Q) is supposed to compute ⊕Hom((L, idL) → (G, c))
which is equal to ⊕Hom(L♯ ⊤ → (G, c⊤)). Since a(⊤) is odd, we can invoke Lemma 14 to
recover this term by evaluating the entire linear combination (2), that is, by evaluating
the function ⊕ColSub(kK3 → ⋆). More concretely, this means that we need to compute

ICALP 2023

68:12 Parameterised and Fine-Grained Subgraph Counting, Modulo 2

⊕ColSub(kK3 → (G′, c′
E)) for some L-coloured graphs (G′, c′) of size at most f(|L|) · |G| for

some computable function f (see 3. in Lemma 14). This can easily be done using Lemma 15
since we have oracle access to the function ⊕Sub(kK3 → ⋆). We emphasise that, by condition
2. of Lemma 15, each oracle query Ĝ satisfies |Ĝ| ≤ |G′|, where (G′, c′) is the L-coloured
graph for which we wish to compute ⊕ColSub(kK3 → (G′, c′

E)). Since |(G′, c′)| ≤ f(|L|) · |G|,
we obtain that |Ĝ| ≤ f(|L|) · |G| as well.

Since, by Fact 20, k = Θ(|kK3|) = Θ(|V (L)|) = Θ(tw(L)), our reduction yields ⊕W[1]-
hardness and transfers the conditional lower bound under rETH as desired. ◀

3.2 P2-packings
Next we establish hardness for the case of P2-packings. The strategy will be similar in spirit
to the construction for triangle packings; however, rather then identifying a unique fracture
for which the technique applies, we will encounter an odd number of possible fractures in the
current section.

Let ∆ be a computable infinite class of 4-regular expander graphs, and let Q be the class
of all subdivisions of graphs in ∆, that is Q = {H2 | H ∈ ∆}, where H2 is obtained from H

by subdividing each edge once.
We start by establishing an easy but convenient fact on the treewidth of the graphs in Q.

▶ Lemma 22. Q has unbounded treewidth and tw(H2) = Θ(|V (H)|) for H ∈ ∆.

Proof. As in Section 3.1, tw(H) = Θ(|V (H)|) for H ∈ ∆, since expanders have treewidth
linear in the number of vertices. Since H is a minor of H2, and since taking minors cannot
increase treewidth (see [15, Exercise 7.7]), we thus have that tw(H2) = Ω(|V (H)|)). Finally,
we have tw(H2) ≤ |V (H2)| since the treewidth is at most the number of vertices, and
|V (H2)| = O(|V (H)|) since H is 4-regular. In combination, we obtain tw(H2) = Θ(|V (H)|)
for H ∈ ∆. Note that this also implies that Q has unbounded treewidth (as ∆ is infinite). ◀

For what follows, given a subdivision H2 of a graph H, it will be convenient to assume
that V (H2) = V (H) ∪ SE , where SE = {se | e ∈ E(H}) is the set of the subdivision vertices.

▶ Definition 23 (Odd Fractures). Let H ∈ ∆ and let τ be a fracture of H2. We say that τ is
odd if the following two conditions are satisfied:
1. For each s ∈ SE the partition τs consists of two singleton blocks.
2. For each v ∈ V (H) the partition τv consists of two blocks of size 2.
Consider Figure 3 for a depiction of an odd fracture.

The following two lemmas are crucial for our construction.

▶ Lemma 24. Let H ∈ ∆. The number of odd fractures of H2 is odd.

Proof. The first condition in Definition 23 leaves only one choice for subdivision vertices.
Let us thus consider a vertex v ∈ V (H) = V (H2) \ SE . Since H is 4-regular, there are 4
incident edges to v. Now note that there are precisely 3 partitions of a 4-element set with two
blocks of size 2. Thus the total number of odd fractures of H2 is 3|V (H)|, which is odd. ◀

▶ Lemma 25. Let H ∈ ∆, let k = 2|V (H)| and let τ be a fracture of H2 such that τv consists
of at most 2 blocks for each v ∈ V (H2). Then H2♯ τ ∼= kP2 if and only if τ is odd.

L. A. Goldberg and M. Roth 68:13

Figure 3 (Top:) Subdividing a 4-regular expander in ∆ depicted by the neighbourhood of an
individual vertex. (Centre:) Illustrations of odd fractures (Definition 23). For each non-subdivision
vertex, there are only three ways to satisfy 2. in Definition 23. This observation is used in Lemma 24 to
show that the number of odd fractures is a power of 3. (Bottom:) Elements of ColSub(kP2 → (G, cE))
inducing fractures of H2 such that each partition has at most two blocks. Lemma 25 shows that
those are precisely the odd fractures of H2.

Proof. First observe that |E(H2)| = 2|E(H)| = 4|V (H)| = 2k. Thus the number of edges of
H2♯ τ is equal to 2k (for each fracture τ of H2), which is also equal to the number of edges
of kP2.

Thus, H2♯ τ is isomorphic to kP2 if and only if each connected component of H2♯ τ is
a path of length 2. It follows immediately by Definition 23 that τ being odd implies that
H2♯ τ consists only of disjoint P2. It thus remains to show the other direction.

Assume for contradiction that there is a subdivision vertex s ∈ SE of H2 such that τs

consists of only one block (recall that s has degree 2, thus τs either consists of two singleton
blocks, or of one block of size 2). Let e = {u, v} ∈ E(H) be the edge corresponding to s, that
is, s was created by subdividing e. Since H2♯ τ is a union of P2, we can infer that τv and τu

contain a singleton block (otherwise we would have created a connected component which is

ICALP 2023

68:14 Parameterised and Fine-Grained Subgraph Counting, Modulo 2

not isomorphic to P2). Now recall that both u and v have degree 4, since H is 4-regular. We
obtain a contradiction as follows: By assumption of the lemma, we know that τv and τu can
have at most two blocks. Since we have just shown that both contain a singleton block, it
follows that both τv and τu contain one further block of size 3. However, a block of size 3
yields a vertex of degree 3 in the fractured graph H2♯ τ , contradicting the fact that H2♯ τ

consists only of disjoint P2.
Thus we have established that, for each s ∈ SE , the partition τs consists of two singleton

blocks. Given this fact, the only way for H2♯ τ being a disjoint union of P2 is that each
partition τv, for v ∈ V (H) = V (H2) \ SE , consists of two blocks of size 2. ◀

We are now able to prove our hardness result.

▶ Lemma 26. The problem ⊕Sub(FP2) is ⊕W[1]-hard. Furthermore, on input kP2 and G,
the problem cannot be solved in time f(k) · |G|o(k/ log k) for any function f , unless rETH fails.

Proof. We reduce from ⊕cp-Hom(Q), which, by Lemma 22 and Theorem 12, is ⊕W[1]-hard
and for H ′ ∈ Q, it cannot be solved in time f(|H ′|) · |G|o(|V (H′)|/ log |V (H′)|), unless rETH
fails.

Let H ′ and (G, c) be an input instance to ⊕cp-Hom(Q). There is an algorithm that
takes as input a graph H ′ ∈ Q and finds a graph H ∈ ∆ with H ′ = H2 – this is basically
2-colouring. The run time of this algorithm depends on |H ′| but clearly not on (G, c). Let
k = 2|V (H)| and note that |E(H2)| = 2|E(H)| = 4|V (H)| = 2k. We consider the graph G

as a 2k-edge-coloured graph, coloured by cE . That is, each edge e = {x, y} of G is assigned
the colour cE(e) = {c(x), c(y)} which is an edge of H ′ = H2.

Now, for any H2-coloured graph (G′, c′) recall that ColSub(kP2 → (G′, c′
E)) is the set of

subgraphs of G′ that are isomorphic to kP2 and that include each edge colour (each edge of
H2) precisely once. We will see later that ⊕ColSub(kP2 → (G′, c′

E)) can be computed using
our oracle for ⊕Sub(FP2) using the principle of inclusion and exclusion.

It was shown in [29, Lemma 4.1] that there is a unique function a such that, for every
H2-coloured graph (G′, c′),

#ColSub(kP2 → (G′, c′
E)) =

∑
ρ

a(ρ) · Hom(H2♯ ρ → (G′, c′)) . (5)

where the sum is over all fractures of H2. As in Section 3.1 from [29, Corollary 4.3] we know
that

a(⊤) =
∑

ρ∈F(kP2,H2)

∏
w∈V (H2)

(−1)|ρw|−1 · (|ρw| − 1)! , (6)

where ⊤ is the fracture in which each partition consists only of one block and F(kP2, H2) is
the set of all fractures ρ of H2 such that H2♯ ρ ∼= kP2.

Our next goal is to show that a(⊤) = 1 mod 2. First, suppose that a fracture ρ contains
a partition ρw with at least three blocks. Then (|ρw| − 1)! = 0 mod 2. Thus such fractures
do not contribute to a(⊤) if arithmetic is done modulo 2. Next, note that if, for each w, the
partition ρw contains at most 2 blocks, then∏

w∈V (H2)

(−1)|ρw|−1 · (|ρw| − 1)! = 1 mod 2.

L. A. Goldberg and M. Roth 68:15

Let Odd(kP2, H2) be the set of all fractures ρ of H2 such that H2♯ ρ ∼= kP2 and each
partition of ρ consists of at most 2 blocks. Our analysis then yields a(⊤) = |Odd(kP2, H2)|
mod 2. Finally, Lemma 25 states that Odd(kP2, H2) is precisely the set of odd fractures, and
Lemma 24 thus implies that |Odd(kP2, H2)| = 1 mod 2. Consequently, a(⊤) = 1 mod 2 as
well, and we have achieved the goal.

Next we can proceed similarly to the case of triangle packings. As in that case, the goal
is to compute ⊕Hom((H2, idH2) → (G, c))) which is equal to ⊕Hom((H2♯ ⊤, c⊤) → (G, c)).
Since a(⊤) is odd, we can invoke Lemma 14 to recover this term by evaluating the entire
linear combination (5), that is, if we can evaluate the function ⊕ColSub(kP2 → ⋆). This can
be done by using Lemma 15. Each call to the oracle is of the form ⊕Sub(kP2 → Ĝ) where
|Ĝ| is bounded by f(k) · |G|.

Now recall that k ∈ Θ(|V (H)|). By Lemma 22, we thus have k = Θ(tw(H2)). Hence our
reduction yields ⊕W[1]-hardness and transfers the conditional lower bound under rETH as
desired. ◀

We can now conclude the treatment of hereditary pattern classes by proving Theorem 4,
which we restate for convenience.

▶ Theorem 4. Let H be a hereditary class of graphs. If H is matching splittable, then
⊕Sub(H) is fixed-parameter tractable. Otherwise, the problem is ⊕W[1]-complete and,
assuming rETH, cannot be solved in time f(|H|) · |G|o(|V (H)|/ log |V (H)|) for any function f .

Proof. The fixed-parameter tractability result was shown in [12]. For the hardness result,
using the fact that H is not matching splittable and Theorem 16 we obtain four cases.

If H contains all cliques or all bicliques, then hardness follows from Lemma 17.
If H contains all triangle packings, then hardness follows from Lemma 21.
If H contains all P2-packings, then hardness follows from Lemma 26.

Since the case distinction is exhaustive, the proof is concluded. ◀

References
1 Amir Abboud, Shon Feller, and Oren Weimann. On the fine-grained complexity of parity

problems. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th International
Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020,
Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages 5:1–5:19. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ICALP.2020.5.

2 Noga Alon, Phuong Dao, Iman Hajirasouliha, Fereydoun Hormozdiari, and S. Cenk Sahinalp.
Biomolecular network motif counting and discovery by color coding.Bioinformatics, 24(13):i241–
i249, 2008. doi:10.1093/bioinformatics/btn163.

3 Noga Alon, Raphael Yuster, and Uri Zwick. Color-coding. J. ACM, 42(4):844–856, 1995.
doi:10.1145/210332.210337.

4 Suman K. Bera, Lior Gishboliner, Yevgeny Levanzov, C. Seshadhri, and Asaf Shapira. Counting
subgraphs in degenerate graphs. J. ACM, 69(3):23:1–23:21, 2022. doi:10.1145/3520240.

5 Andreas Björklund, Holger Dell, and Thore Husfeldt. The parity of set systems under random
restrictions with applications to exponential time problems. In Magnús M. Halldórsson,
Kazuo Iwama, Naoki Kobayashi, and Bettina Speckmann, editors, Automata, Languages,
and Programming - 42nd International Colloquium, ICALP 2015, Kyoto, Japan, July 6-10,
2015, Proceedings, Part I, volume 9134 of Lecture Notes in Computer Science, pages 231–242.
Springer, 2015. doi:10.1007/978-3-662-47672-7_19.

6 Marco Bressan. Faster algorithms for counting subgraphs in sparse graphs. Algorithmica,
83(8):2578–2605, 2021. doi:10.1007/s00453-021-00811-0.

ICALP 2023

https://doi.org/10.4230/LIPIcs.ICALP.2020.5
https://doi.org/10.1093/bioinformatics/btn163
https://doi.org/10.1145/210332.210337
https://doi.org/10.1145/3520240
https://doi.org/10.1007/978-3-662-47672-7_19
https://doi.org/10.1007/s00453-021-00811-0

68:16 Parameterised and Fine-Grained Subgraph Counting, Modulo 2

7 Andrei A. Bulatov and Amirhossein Kazeminia. Complexity classification of counting graph
homomorphisms modulo a prime number. In Stefano Leonardi and Anupam Gupta, editors,
STOC ’22: 54th Annual ACM SIGACT Symposium on Theory of Computing, Rome, Italy,
June 20 - 24, 2022, pages 1024–1037. ACM, 2022. doi:10.1145/3519935.3520075.

8 Jianer Chen, Benny Chor, Mike Fellows, Xiuzhen Huang, David W. Juedes, Iyad A. Kanj,
and Ge Xia. Tight lower bounds for certain parameterized NP-hard problems. Inf. Comput.,
201(2):216–231, 2005. doi:10.1016/j.ic.2005.05.001.

9 Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Strong computational lower
bounds via parameterized complexity. J. Comput. Syst. Sci., 72(8):1346–1367, 2006. doi:
10.1016/j.jcss.2006.04.007.

10 Yijia Chen, Marc Thurley, and Mark Weyer. Understanding the Complexity of Induced
Subgraph Isomorphisms. In Proceedings of the 35th International Colloquium on Auto-
mata, Languages and Programming (ICALP), pages 587–596. Springer, 2008. doi:10.1007/
978-3-540-70575-8_48.

11 Radu Curticapean. Counting matchings of size k is w[1]-hard. In Fedor V. Fomin, Rusins
Freivalds, Marta Z. Kwiatkowska, and David Peleg, editors, Automata, Languages, and
Programming - 40th International Colloquium, ICALP 2013, Riga, Latvia, July 8-12, 2013,
Proceedings, Part I, volume 7965 of Lecture Notes in Computer Science, pages 352–363.
Springer, 2013. doi:10.1007/978-3-642-39206-1_30.

12 Radu Curticapean, Holger Dell, and Thore Husfeldt. Modular counting of subgraphs: Match-
ings, matching-splittable graphs, and paths. In Petra Mutzel, Rasmus Pagh, and Grzegorz
Herman, editors, 29th Annual European Symposium on Algorithms, ESA 2021, September 6-8,
2021, Lisbon, Portugal (Virtual Conference), volume 204 of LIPIcs, pages 34:1–34:17. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ESA.2021.34.

13 Radu Curticapean, Holger Dell, and Dániel Marx. Homomorphisms are a good basis for
counting small subgraphs. In Proceedings of the 49th Annual ACM SIGACT Symposium on
Theory of Computing (STOC), pages 210–223. ACM, 2017. doi:10.1145/3055399.3055502.

14 Radu Curticapean and Dániel Marx. Complexity of counting subgraphs: Only the boundedness
of the vertex-cover number counts. In 55th IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 130–139.
IEEE Computer Society, 2014. doi:10.1109/FOCS.2014.22.

15 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

16 Víctor Dalmau and Peter Jonsson. The complexity of counting homomorphisms seen from the
other side. Theoret. Comput. Sci., 329(1-3):315–323, 2004. doi:10.1016/j.tcs.2004.08.008.

17 Julian Dörfler, Marc Roth, Johannes Schmitt, and Philip Wellnitz. Counting induced subgraphs:
An algebraic approach to #W[1]-hardness. Algorithmica, 84(2):379–404, 2022. doi:10.1007/
s00453-021-00894-9.

18 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

19 Jörg Flum and Martin Grohe. The parameterized complexity of counting problems. SIAM J.
Comput., 33(4):892–922, 2004. doi:10.1137/S0097539703427203.

20 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006. doi:10.1007/3-540-29953-X.

21 Martin Grohe and Dániel Marx. On tree width, bramble size, and expansion. J. Comb. Theory,
Ser. B, 99(1):218–228, 2009. doi:10.1016/j.jctb.2008.06.004.

22 Daniel J. Harvey and David R. Wood. The treewidth of line graphs. J. Comb. Theory, Ser. B,
132:157–179, 2018. doi:10.1016/j.jctb.2018.03.007.

23 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst.
Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

https://doi.org/10.1145/3519935.3520075
https://doi.org/10.1016/j.ic.2005.05.001
https://doi.org/10.1016/j.jcss.2006.04.007
https://doi.org/10.1016/j.jcss.2006.04.007
https://doi.org/10.1007/978-3-540-70575-8_48
https://doi.org/10.1007/978-3-540-70575-8_48
https://doi.org/10.1007/978-3-642-39206-1_30
https://doi.org/10.4230/LIPIcs.ESA.2021.34
https://doi.org/10.1145/3055399.3055502
https://doi.org/10.1109/FOCS.2014.22
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1016/j.tcs.2004.08.008
https://doi.org/10.1007/s00453-021-00894-9
https://doi.org/10.1007/s00453-021-00894-9
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1137/S0097539703427203
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1016/j.jctb.2008.06.004
https://doi.org/10.1016/j.jctb.2018.03.007
https://doi.org/10.1006/jcss.2000.1727

L. A. Goldberg and M. Roth 68:17

24 Bart M. P. Jansen and Dániel Marx. Characterizing the easy-to-find subgraphs from the
viewpoint of polynomial-time algorithms, kernels, and turing kernels. In Piotr Indyk, editor,
Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2015, San Diego, CA, USA, January 4-6, 2015, pages 616–629. SIAM, 2015. doi:
10.1137/1.9781611973730.42.

25 Oleksii Kuchaiev, Tijana Milenković, Vesna Memišević, Wayne Hayes, and Nataša Pržulj.
Topological network alignment uncovers biological function and phylogeny. Journal of the
Royal Society Interface, 7(50):1341–1354, 2010. doi:10.1098/rsif.2010.0063.

26 R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Network
Motifs: Simple Building Blocks of Complex Networks. Science, 298(5594):824–827, 2002.
doi:10.1126/science.298.5594.824.

27 Ron Milo, Shalev Itzkovitz, Nadav Kashtan, Reuven Levitt, Shai Shen-Orr, Inbal Ayzenshtat,
Michal Sheffer, and Uri Alon. Superfamilies of evolved and designed networks. Science,
303(5663):1538–1542, 2004. doi:10.1126/science.1089167.

28 Norbert Peyerimhoff, Marc Roth, Johannes Schmitt, Jakob Stix, and Alina Vdovina. Paramet-
erized (modular) counting and cayley graph expanders. In Filippo Bonchi and Simon J. Puglisi,
editors, 46th International Symposium on Mathematical Foundations of Computer Science,
MFCS 2021, August 23-27, 2021, Tallinn, Estonia, volume 202 of LIPIcs, pages 84:1–84:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.MFCS.2021.84.

29 Norbert Peyerimhoff, Marc Roth, Johannes Schmitt, Jakob Stix, Alina Vdovina, and Philip
Wellnitz. Parameterized Counting and Cayley Graph Expanders. SIAM J. Discrete Math., to
appear.

30 Benjamin Schiller, Sven Jager, Kay Hamacher, and Thorsten Strufe. StreaM – A Stream-Based
Algorithm for Counting Motifs in Dynamic Graphs. In Proceedings of the 2nd International
Conference on Algorithms for Computational Biology (AlCoB), pages 53–67. Springer Interna-
tional Publishing, 2015. doi:10.1007/978-3-319-21233-3_5.

31 Seinosuke Toda. PP is as hard as the polynomial-time hierarchy. SIAM J. Comput., 20(5):865–
877, 1991. doi:10.1137/0220053.

32 Ngoc Hieu Tran, Kwok Pui Choi, and Louxin Zhang. Counting motifs in the human interactome.
Nature communications, 4(1):1–8, 2013. doi:10.1038/ncomms3241.

33 Charalampos E. Tsourakakis, Jakub Pachocki, and Michael Mitzenmacher. Scalable motif-
aware graph clustering. In Proceedings of the 26th International Conference on World Wide
Web (WWW), pages 1451–1460, 2017. doi:10.1145/3038912.3052653.

34 Virginia Vassilevska Williams, Joshua R. Wang, Richard Ryan Williams, and Huacheng Yu.
Finding four-node subgraphs in triangle time. In Piotr Indyk, editor, Proceedings of the Twenty-
Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San Diego, CA,
USA, January 4-6, 2015, pages 1671–1680. SIAM, 2015. doi:10.1137/1.9781611973730.111.

ICALP 2023

https://doi.org/10.1137/1.9781611973730.42
https://doi.org/10.1137/1.9781611973730.42
https://doi.org/10.1098/rsif.2010.0063
https://doi.org/10.1126/science.298.5594.824
https://doi.org/10.1126/science.1089167
https://doi.org/10.4230/LIPIcs.MFCS.2021.84
https://doi.org/10.1007/978-3-319-21233-3_5
https://doi.org/10.1137/0220053
https://doi.org/10.1038/ncomms3241
https://doi.org/10.1145/3038912.3052653
https://doi.org/10.1137/1.9781611973730.111

Efficient Data Structures for Incremental Exact
and Approximate Maximum Flow
Gramoz Goranci #

Faculty of Computer Science, Universität Wien, Austria

Monika Henzinger #

Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria

Abstract
We show an (1 + ϵ)-approximation algorithm for maintaining maximum s-t flow under m edge
insertions in m1/2+o(1)ϵ−1/2 amortized update time for directed, unweighted graphs. This constitutes
the first sublinear dynamic maximum flow algorithm in general sparse graphs with arbitrarily good
approximation guarantee.

Furthermore we give an algorithm that maintains an exact maximum s-t flow under m edge
insertions in an n-node graph in Õ(n5/2) total update time. For sufficiently dense graphs, this gives
to the first exact incremental algorithm with sub-linear amortized update time for maintaining
maximum flows.

2012 ACM Subject Classification Theory of computation → Dynamic graph algorithms

Keywords and phrases dynamic graph algorithms, maximum flow, data structures

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.69

Category Track A: Algorithms, Complexity and Games

Related Version Previous Version: https://arxiv.org/abs/2211.09606

Funding This project has received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation programme (Grant agreement No.
101019564 “The Design of Modern Fully Dynamic Data Structures (MoDynStruct)” and from the
Austrian Science Fund (FWF) project “Static and Dynamic Hierarchical Graph Decompositions”,
I 5982-N, and project “Fast Algorithms for a Reactive Network Layer (ReactNet)”, P 33775-N, with
additional funding from the netidee SCIENCE Stiftung, 2020–2024.

Acknowledgements This work was done in part while Gramoz Goranci was at Institute for Theoretical
Studies, ETH Zurich, Switzerland. There, he was supported by Dr. Max Rössler, the Walter Haefner
Foundation and the ETH Zürich Foundation. We also thank Richard Peng, Thatchaphol Saranurak,
Sebastian Forster and Sushant Sachdeva for helpful discussions, and the anonymous reviewers for
their insightful comments.

1 Introduction

The maximum flow problem and its dual, the minimum cut problem, are one of the corner-
stones problems in combinatorial optimization. They are often used as subroutine for
solving other prominent graph problems (e.g., Gomory-Hu Trees [11], Sparsest Cut [24]),
performing divide-and-conquer on graphs [8] and have found several applications across
many areas including computer vision [2], clustering [29] and scientific computing. Designing
fast maximum flow algorithms has been an active area of research for decades, with recent
advances making tremendous progress towards the quest of designing a near-linear time
algorithm [6, 30, 26, 23, 28, 27, 31, 25, 4]. This has culminated in a recent breakthrough
result due to Chen, Kyng, Liu, Peng, Probst Gutenberg, and Sachdeva [4], which computes
a maximum flow in m1+o(1) time, where m is the number of edges of the input graph.

EA
T
C
S

© Gramoz Goranci and Monika Henzinger;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 69; pp. 69:1–69:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gramoz.goranci@univie.ac.at
https://orcid.org/0000-0002-9603-2255
mailto:monika.henzinger@univieac.at
https://orcid.org/0000-0002-5008-6530
https://doi.org/10.4230/LIPIcs.ICALP.2023.69
https://arxiv.org/abs/2211.09606
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

69:2 Efficient Data Structures for Incremental Exact and Approximate Maximum Flow

Recently, we have witnessed a growing interest in designing dynamic algorithms for
computing maximum flows in dynamically changing graphs [20, 5, 1, 7, 14, 13, 3, 21]. Despite
this, the current fastest algorithms either incur super-constant approximation factors [13, 3]
or achieve competitive update times only for sufficiently dense graphs [1]. Moreover, all
previous works on dynamic flows are restricted to undirected graphs. From a (conditional)
lower bound perspective, for any δ > 0, it is known [7] that no algorithm can exactly maintain
maximum flow in O(m1−δ) amortized time per operation, even when restricted to algorithms
that support edge insertions, unless the OMv conjecture [16] is false. Nevertheless, the lower
bound construction from [7] is on dense graphs, i.e., m = Ω(n2), and thus for sparse graphs
yields only an Ω(m1/2) lower bound on the update time.

In this paper, we show a simple generic algorithmic framework for maintaining approximate
maximum flows under edge insertions.

▶ Theorem 1. Let G = (V, E) be an initially empty, directed, unweighted n-vertex graph, s

and t be any two vertices, and ϵ > 0, µ ∈ [0, n] be two parameters. If there is
(a) an incremental algorithm IncBMF(G, s, t, µ) for inserting m edges and maintaining s-t

maximum flow whose value is bounded by µ in ttotal(m, n, µ) total update time and q(m, n)
query time, and

(b) a static algorithm for computing exact s-t maximum flow in an n-vertex, m′-edge graph
in tstatic(m′, n) time, where m′ ≤ m,

then we can design an incremental algorithm for maintaining a (1 + ϵ)-approximate s-t
maximum flow under m edge insertions in

ttotal(m, n, µ + 1)
m

+ tstatic(m, n)
ϵµ

+ q(m, n)

amortized update time and q(m, n) query time.

For maintaining exact maximum flows whose value is bounded by µ, we slightly adapt
an incremental version of the Ford-Fulkerson [9] algorithm, which was initially observed by
Henzinger [17] and later by Gupta and Khan [14] (cf. Lemma 9). This gives an incremental
algorithm with O(mµ) total update time and O(1) query time. The recent breakthrough
result due to Chen, Kyng, Liu, Peng, Probst Gutenberg, and Sachdeva [4] (cf. Theorem 6)
gives a static exact maximum flow algorithm that runs in m1+o(1) time. Plugging these
bounds in Theorem 1 and choosing µ = m1/2+o(1)ϵ−1/2 yields the main result of this paper,
which we summarize in the theorem below.

▶ Theorem 2. Given an initially empty, directed, unweighted graph G = (V, E), any two
vertices s and t in V , and any ϵ > 0, there is an incremental algorithm that maintains
a (1 + ϵ)-approximate maximum s-t flow in G under m edge insertions in m1/2+o(1)ϵ−1/2

amortized update time. The algorithm supports queries about the value of the maintained
flow in O(1) time.

When the underlying graph is undirected and unweighted, we additionally show an
improved incremental version of an algorithm due to Karger and Levine [22] for maintaining
exact maximum flows whose value is bounded by µ. Concretely, our algorithm achieves
Õ(m + nµ3/2) total update time for handling m edge insertions (cf. Lemma 15). Since µ ≤ n

always holds in unweighted graphs, we immediately obtain the following result.

▶ Theorem 3. Given an initially empty, undirected, unweighted graph G = (V, E), any two
vertices s and t in V , and any ϵ > 0, there is an incremental algorithm that maintains an
exact maximum s-t flow in G under m edge insertions in Õ(n5/2) total update time. The
algorithm supports queries about the value of the maintained flow in O(1) time.

G. Goranci and M. Henzinger 69:3

For sufficiently dense graphs, this gives to the first exact incremental algorithm with
sub-linear amortized update time for maintaining maximum flows.

We believe that our approach to dynamic flows may serve as the basis for designing new
fully-dynamic maximum flow algorithms with competitive approximation ratio.

Independet Work. A recent independent work by Brand, Liu and Sidford [32] provides an
algorithm for incremental approximate maximum flow with n1/2+o(1)ϵ−1 amortized update
time on directed graphs. They achieve this result by implementing a dynamic variant of
the recent maximum flow algorithm based on the Interior Point Method (IPM) [4]. For
comparison, their result extends to capacitated graphs with polynomially bounded capacitites,
and achieves a speed up on the running time (albeit only on dense graphs). However, these
improvements come at the cost of employing the complicated machinery of IPMs. Our result
from Theorem 2 is simpler, matches their running time guarantee on sparse graphs and gives
a slightly better dependncy on the accuracy parameter ϵ.

2 Preliminaries

In the following, we settle some basic notation, as well as review definitions and algorithms
for computing flows on graphs.

Maximum Flow

Let G = (V, E) be a directed, unweighted graph with n vertices and m edges, let s ∈ V

be a source vertex, and let t ∈ V be a target vertex. A flow from s to t in G is a
function f : E → R+ that maps each edge to a non-negative real number; the value f(e)
represents the amount of flow sent along e. A flow must satisfy the following properties:
(i) for each e ∈ E, we have f(e) ≤ 1, known as capacity constraints, and (ii) for each
v ∈ V \ {s, t},

∑
(u,v)∈E f(u, v) =

∑
(v,u) f(v, u), known as conservation constraints. The

value of a flow f is the amount of flow leaving the source s minus the amount flow entering
s, i.e., v(f) =

∑
(s,u)∈E f(s, u) −

∑
(u,s)∈E f(u, s). In the maximum s-t flow problem,

the goal is to find a flow f with the largest v(f), called the maximum s-t flow. Let
F ∗ = max{v(f) | f is a flow in G}. Note that while F ∗ is unique, there might be multiple
maximum s-t flows attaining F ∗.

Residual graph and Augmenting Paths

Given a directed, unweighted graph G = (V, E), and a flow f from s to t in G, we let
Gf = (V, Ef) be the residual graph of G with respect to f , where Ef contains all edges of E,
except that their direction is reversed if f(e) = 1. An edge whose direction in Gf is reversed
is referred to as a backward edge. Otherwise, the edge is a forward edge. An augmenting
path P from s to t in G is a simple directed path from s to t in Gf . We next review a
powerful result relating the residual graphs and optimal flows.

▶ Lemma 4 ([9]). If there is no directed path from s to t in the residual graph Gf , then the
flow f is a maximum s-t flow.

Another useful fact is given in the lemma below.

▶ Lemma 5. If there exists a directed path P from s to t in Gf , pushing flow along P in G

increases the value of the flow f by at exactly one.

ICALP 2023

69:4 Efficient Data Structures for Incremental Exact and Approximate Maximum Flow

Exact Maximum Flow in Directed Graphs

Our incremental approximate algorithm heavily relies on the ability to compute a maximum s-
t flow quickly. Hence, we use the current fastest result [4] that achieves an exact, almost-linear
algorithm for the maximum flow problem on directed graphs.1

▶ Theorem 6 ([4]). For any directed, unweighted graph G = (V, E) and any two vertices s

and t, there is an algorithm that computes an exact maximum s-t flow in G in m1+o(1) time.

Approximate Maximum Flow

To measure the quality of approximate maximum flows, we will use the notion of α-
approximations, which indicates that the value of the current flow solution is at least
1/α of the optimum value. In other words, a flow f is α-approximate if F := v(f) ≥ 1

α F ∗.

3 A framework for Incremental Approximate Maximum Flow

In this section we show a simple generic algorithmic framework for maintaining a (1 + ϵ)-
approximate maximum s-t flow under edge insertions, i.e., prove Theorem 1. Our construction
is based on two important components: (i) incrementally maintaining maximum s-t flows
whose value is upper bounded by some parameter µ (one should think of µ being small
relative to the size of the network) and (ii) performing periodical rebuilds whenever the
maximum s-t flow of the current flow is larger than the parameter µ. The latter is a common
approach in dynamic algorithms and was used by Gupta and Peng [15] in their dynamic
algorithm for maintaining approximate matchings, and also recently leveraged in the context
of exact algorithms for the dynamic minimum cut problem [12]. We next further elaborate
on the precise requirements of both components and discuss how they lead to our algorithm.

To implement component (i), given a directed, unweighted n-vertex, m-edge graph G,
any two vertices s, t, and a parameter µ ∈ [0, n], the goal is to construct a data structure
denoted by IncBMF(G, s, t, µ), or simply IncBMF, that supports the following operations

Initialize(G, s, t, µ): Initializes the data structure.
Insert(u, v): Insert the edge (u, v) to G.
MaxFlow(s, t): Return the value of the maximum s-t flow in the current graph G if
this value is smaller than µ.

Ideally, we would like that IncBMF(G, s, t, µ) supports edge insertions in amortized time
proportional to the parameter µ, and queries in constant time. This would alone lead to an
efficient incremental maximum flow algorithm whenever the current flow value is bounded
by µ.

When the maximum flow is large (i.e., component (ii)), we can make use of the stability
of maximum flow and periodically invoke a fast static algorithm. Concretely, first note that
the value of the maximum s-t flow changes by at most one per insertion. Therefore, if we
have a large flow that is close to the maximum one, it will remain close to the maximum flow
over a large number of updates. This naturally leads to the following simple but powerful
approach: compute a flow at a certain time in the update sequence and do nothing for a
certain number of updates as long as the flow is a good approximation to the maximum
flow. This idea together with the data structure IncBMF(G, s, t, µ) yields an incremental
algorithm for approximating s-t maximum flow, which we formally describe below.

1 The algorithm extends to graphs with polynomially bound weights, but for the purposes of this paper
and simplifying the presentation, we only state the unweighted version of this result

G. Goranci and M. Henzinger 69:5

Given a directed, unweighted graph G = (V, E), any two vertices s, t, and two parameters
ϵ > 0, µ ∈ [0, n], our data structure maintains:

a flow estimate F to the maximum s-t flow F ∗,
a counter τ indicating the number of operations since the last rebuild,
an incremental algorithm IncBMF for maintaining graphs with the maximum flow
bounded by some parameter (µ + 1).

Initially, G is an empty graph, F ← 0, τ ← 0, and we invoke the operation Initialize of
IncBMF with (G, s, t, µ + 1) as an input. Upon insertion of an edge (u, v) to G, we query
IncBMF to determine whether the s-t maximum flow in the current graph is at most µ. If
so, we pass the edge insertion to the IncBMF data structure and update F accordingly.

On the other hand, if the current maximum s-t flow is larger than µ (and our algorithm
always correctly detects this since IncBMF run with the parameter (µ + 1) returns the
correct answer), we increment τ , which counts the number of insertions since the last reset
of τ that fall into this case. If τ ≥ ϵµ, we compute an exact maximum flow F ∗ for the
current graph from scratch using a static algorithm, update F using the value of F ∗ and set
τ = 0. We call such a step a rebuild step. Observe that since we are in the insertions-only
setting, once a maximum flow is larger than µ, it will always remain larger than that value.
Finally, to answer a query about the maximum s-t flow, we return F as an estimate. These
procedures are summarized in Algorithm 1.

Algorithm 1 Incremental Approximate Maximum Flow (IncApproxMF.)

1 Procedure Initialize(G = (V, E), s, t, ϵ, µ)
2 Set E ← 0 and F ← 0
3 Invoke IncBMF.Initialize(G, s, t, µ + 1)
4 Procedure Insert(u, v)
5 E ← E ∪ {(u, v)}
6 if IncBMF.MaxFlow(s, t) ≤ µ then
7 Invoke IncBMF.Insert(u, v)
8 Set F ← IncBMF.MaxFlow(s, t)
9 else

10 Set τ ← τ + 1
11 if τ ≥ ϵµ then
12 Compute an s-t maximum flow in G using a static algorithm
13 Set F to be the value of the flow computed in the previous step
14 Set τ ← 0

15 Procedure MaxFlow(s, t)
16 return F

▶ Theorem 7 (Restatement of Theorem 1). Let G = (V, E) be an initially empty, directed,
unweighted n-vertex graph, s and t be any two vertices, and ϵ > 0, µ ∈ [0, n] be two parameters.
If there is
(a) an incremental algorithm IncBMF(G, s, t, µ) for inserting m edges and maintaining s-t

maximum flow whose value is bounded by µ in total update time ttotal(m, n, µ) and q(m, n)
query time, and

ICALP 2023

69:6 Efficient Data Structures for Incremental Exact and Approximate Maximum Flow

(b) a static algorithm for computing exact s-t maximum flow in an n-vertex, m′-edge graph
in tstatic(m′, n) time, where m′ ≤ m,

then we can design an incremental algorithm for maintaining a (1 + ϵ)-approximate s-t
maximum flow under m edge insertions in

ttotal(m, n, µ + 1)
m

+ tstatic(m, n)
ϵµ

+ q(m, n)

amortized update time and q(m, n) query time.

Proof. We first prove the correctness of the algorithm. Let G be the current graph and let
F be the estimate maintained by the algorithm to the value of the maximum s-t flow F ∗ in
G. We will show that F is an (1 + ϵ)-approximation to F ∗. To this end, we distinguish the
following three cases.
(1) If F ∗ ≤ µ, then by assumption of the theorem, the data structure IncBMFensures that
F = F ∗ and thus our claim trivially holds.
(2) If F ∗ = µ + 1, the call IncBMF.MaxFlow(s, t) returns the value µ + 1 and, thus, the
algorithm reaches the else-case for the first time (here we slightly abuse the notation and
denote this as a rebuild step).
(3) If F ∗ > µ + 1, then this is not the first time that the algorithm reaches the else-case
and, thus, there was a prior rebuild. Note that F corresponded to the value of some s-t
maximum flow at the last prior rebuild. This in turn implies that F must be larger than
µ. Let F ∗

0 be the value of the maximum s-t flow of the graph at that rebuild. Since each
edge insertion can increase the value of the maximum flow by at most 1 and we recompute
a new maximum flow every ϵµ insertions, we have that F ∗ ≤ F ∗

0 + ϵµ. Since F ∗
0 > µ and

F = F ∗
0 ≥ 1, bringing these together yields:

F ∗

F
≤ F ∗

0 + ϵµ

F
≤ (1 + ϵ)F ∗

0
F ∗

0
≤ 1 + ϵ,

which proves our claimed approximation guarantee.
We next study the running time. Note that our algorithm passes the edge insertions to

the incremental algorithm IncBMF (invoked with the parameter µ + 1) only if the value of
the maximum flow in the current graph is bounded by µ. Hence, by the theorem assumption,
the total update time to handle these insertions is ttotal(m, n, µ + 1) + mq(m, n). Amortizing
the latter over m insertions gives an amortize cost of ttotal(m, n, µ + 1)/m + q(m, n), which
in turn gives the first and the third term of our claimed running time guarantee.

It remains to analyze the cost of periodical rebuilds. Note that if the current maximum
flow value is larger than µ, our algorithm updates the estimate F every ϵµ operations. By
assumption of the theorem, the time to compute an exact maximum flow is tstatic(m′, n) ≤
tstatic(m, n) as m′ ≤ m. Charging this time over ϵµ insertions, yields an amortized cost of
tstatic(m, n)/(ϵµ), which in turn gives the second term our of claimed runtime guarantee and
completes the proof of the theorem. ◀

4 Incremental Bounded Maximum Flow

In this section we give two incremental algorithms for exactly maintaining the maximum
flow as long as its value is bounded by a predefined parameter µ. The first is an incremental
version of the Ford-Fulkerson [9] algorithm, applies to directed graphs, and runs in O(mµ)
total update time, while the second one is an incremental version of an algorithm due to
Karger and Levine [22], applies to undirected graphs and runs in Õ(m + nµ3/2) total update
time.

G. Goranci and M. Henzinger 69:7

4.1 Directed Graphs
The algorithm we are about to discuss applies to directed, unweighted graphs, was initially
observed by Henzinger [17] and later by Gupta and Khan [14], and can be thought of as an
incremental version of the celebrated Ford-Fulkserson algorithm [9]. We review it below and
slightly adapt it for our purposes.

Henzinger [17] showed how to incrementally maintain maximum s-t flow in O(F ∗) amort-
ized update time, where F ∗ is the value of the maximum flow in the final graph. As there
are graphs where F ∗ = Ω(n), her running time guarantee is competitive only when F ∗ is
small, e.g., sub-linear on the size of the graph. We next show to slightly adapt her algorithm
so that it maintains a maximum flow as long as its value is bounded by a parameter µ.

The key observation behind this algorithm is that the insertions of an (unit-capacitated)
edge can only increase the maximum flow value by at most 1. To check whether this value
has increased, she uses Lemma 4 as a certificate, i.e., one determines whether the insertion
of the (forward) edge in the residual graph Gf creates a directed path from s to t in Gf . A
naive way to determine this is to run a graph search algorithm on Gf after each insertion,
which requires Ω(m) for a single update and is thus prohibitively expensive for our purposes.
However, one can exploit a data structure due to Italiano [19] for incrementally maintaining
single source reachability information from a source s which requires O(m) total update time
for handling m insertions. Let us briefly review this data structure before presenting the
incremental algorithm.

Incremental Single Source Reachability

In the incremental single source reachability problem, given an (initially empty) directed,
unweighted graph G = (V, E) and a distinguished vertex s, the goal is to construct a data
structure IncSSR that supports the following operations: (i) Initialize(G, s): initialize the
data structure in G with source s, (ii) Insert(u, v): insert the edge (u, v) in G, and (iii)
Reach(u): return True if u is reachable from s, and False otherwise.

Italiano [19] observed that an incremental version of graph search leads to an efficient
incremental IncSSR data structure. The main idea is to maintain a reachability tree T from
s. Initially, the tree is initialized to {s}. Upon insertion of an edge (u, v) to G, we need to
update T iff u ∈ T and v ̸∈ T . If this is the case, we add (u, v) to T and make the v the child
of u. Moreover, the algorithm examines all outgoing neighbors w incident to v, and if w ̸∈ T ,
processes the edge (v, w) recursively using the same procedure. To answer queries, we return
True if u ∈ T , and False otherwise. These procedures are summarized in Algorithm 2.

The correctness of the data structure immediately follows by construction as we always
maintain a correct rechability tree T from s for the current graph. For the running time,
note that the total time over all insertions is O(m) as each edge is processed at most O(1)
times; once when it is inserted into the graph and once when it is added to T .
▶ Lemma 8 ([19]). Given an initially empty directed, unweighted graph G = (V, E) and a
source vertex s, the incremental algorithm IncSSR maintains reachability information from
s to every other node in V while supporting insertions in O(1) amortized update time and
queries in O(1) in worst-case time.

The Algorithm

We now have all the necessary tools to present an incremental algorithm maintaining the
maximum flow whose value is bounded by µ. Let F ∗ denote the maximum s-t flow value on
the current graph.

ICALP 2023

69:8 Efficient Data Structures for Incremental Exact and Approximate Maximum Flow

Algorithm 2 Incremental Single Source Reachability (IncSSR).

1 Procedure Initialize(G = (V, E), s)
2 Set T ← {s} and E ← ∅
3 Procedure Insert(u, v)
4 E ← E ∪ {(u, v)}
5 UpdateTree(u, v)
6 Procedure UpdateTree(u, v)
7 if u ∈ T and v ̸∈ T then
8 Make v a child of u in T

9 foreach (v, w) ∈ E do
10 UpdateTree(v, w)

11 Procedure Reach(u)
12 if u ∈ T then
13 return True

14 else
15 return False

Initially, G and the residual graph Gf are empty graphs, F ∗ ← 0 and f(e)← 0 for each
e ∈ E. The algorithm proceeds in µ rounds, where a round ends when the value of the
current maximum flow increases by one. Each round starts by initializing an incremental
single source reachability data structure IncrSSR from the source s (Lemma 8) on the
residual graph Gf . Upon an edge insertion (u, v) to G, we pass the directed edge (u, v) to
the data structure IncrSSR and test whether t is reachable from s using this data structure.
If the latter holds, then we find a simple directed s-t path P in Gf , which in turn serves as
an augmenting path for G. We then send one unit of flow along the path P in G and update
the current flow and its value accordingly. To answer a query about the maximum flow
between s and t, we simply return F ∗. These procedures are summarized in Algorithm 3.

The correctness of this algorithm is immediate by Lemma 4, which correctly tells us when
to increase the value of the maximum flow, and Lemma 5, which asserts that the sending
one unit of flow along an augmenting path increases the value of the flow by exactly one.

For the running time, note that each round requires O(m) total time. As there are exactly
µ rounds, we get a total update time of O(mµ). The query time is O(1) as we simply return
the value of current maximum flow.

▶ Lemma 9. Given an initially empty directed, unweighted graph G = (V, E) with n vertices,
any two vertices s and t, and a parameter µ ∈ [0, n], the algorithm IncBMF(G, s, t, µ) exactly
maintains, under m edge insertions, the maximum s-t flow in G whose value is bounded by
µ in O(mµ) total update time and O(1) query time.

4.2 Undirected Graphs
We next give an incremental variant of the deterministic maximum flow algorithm for
unweighted, undirected graphs due to Karger and Levine [22]. For a threshold parameter µ

on the maximum flow value, we obtain a total update time of Õ(m + nµ3/2) for handling m

insertions.

G. Goranci and M. Henzinger 69:9

Algorithm 3 Incremental Bounded Maximum Flow (IncBMF).

1 Procedure Initialize(G = (V, E), s, t, µ)
2 Set E ← ∅
3 Set f(e)← 0 for each e ∈ E, Gf ← (V, E) and F ∗ ← 0
4 Invoke IncSSR.Initialize(Gf , s)
5 Procedure Insert(u, v)
6 if F ∗ ≤ µ then
7 Set E ← E ∪ {(u, v)}
8 Invoke IncSSR.Insert(u, v)
9 if IncSSR.Reach(t) then

10 Find a simple directed s-t path P in Gf

11 Augment f along the path P in G and let f ′ be the resulting flow
12 Set f ← f ′ and Gf ← Gf ′

13 Set F ∗ ← F ∗ + 1
14 Invoke IncSSR.Initialize(Gf , s)

15 Procedure MaxFlow(s, t)
16 return F ∗

The basic idea behind this improvement is to sparsify the residual graph on a flow problem
so that the augmenting paths can be found more efficiently than paying O(m) per path, as
we did in the incremental version of the Ford-Fulkerson algorithm. Two core components
that allow for a faster algorithm are: (i) using spanning forests for edges that do not carry
any flow in the residual graph (i.e, edges that remain undirected) and (ii) removing cycles
from the current flow after each augmentation step to make sure that the flow does not use
too many edges.

We next elaborate more on these two components. First, since we will need a different
treatment for directed and undirected edges, setting up some additional notation is useful.
For a graph G = (V, E) and a flow f on the edges of G, we let Eu

f denote the “undirected
edges” of G, i.e., edges e for which f(e) = 0, and let Ed

f denote the “directed edges” of G,
i.e., edges e for which f(e) = 1. Component (i) involves replacing the edges in Eu

f with a
spanning forest T . It is known that T captures the connectivity information among any pair
of vertices in Eu

f , and thus whenever searching for an augmenting path, it suffices to do so in
the graph induced by edge edges Ed

f and T . Another advantage is that T can have at most
(n− 1) edges, which is potentially much smaller than the size of Eu

f . One challenge with this
approach is that Eu

f evolves over time, i.e., edges might have flow added to it or flow is sent
on the reserve direction during an augmentation step. Fortunately, we have efficient data
structures to maintain such dynamic updates.

▶ Lemma 10 ([18]). Given an undirected graph G = (V, E), there is an algorithm DynSpanF
to maintain a spanning forest T of G that supports operations edge insertions and deletions
(i.e., operations Insert(u, v) and Delete(u, v)) in O(log2 n) amortized time per operation.

Unfortunately the above idea alone is not sufficient. The problem is that we do not have
any control on the size of Ed

f . It can be well the case that all edges in the graph become
eventually directed, which defeats the purpose of treating undirected edges differently. To get
around this, we first introduce the notion of acyclic flows and then review a result that shows
that integral acyclic flows use very few edges. This lays the foundations of component (ii).

ICALP 2023

69:10 Efficient Data Structures for Incremental Exact and Approximate Maximum Flow

Algorithm 4 Incremental Bounded Maximum Flow for Undirected Graphs (IncBMFU).

1 Procedure Initialize(G = (V, E), s, t, µ)
2 Set f(e)← 0 for each e ∈ E, Eu

f ← ∅, Ed
f ← ∅ and F ∗ ← 0

3 Invoke DynSpanF.Initialize(G = (V, Eu
f)) to maintain a spanning forest T

4 Invoke IncSSR.Initialize(Ed
f ∪ T, s)

5 Procedure Insert(u, v)
6 if F ∗ ≤ µ then
7 Set Eu

f ← Eu
f ∪ {(u, v)}

8 Invoke DynSpanF.Insert(u, v)
9 if (u, v) ∈ T then

10 Invoke IncSSR.Insert(u, v) and IncSSR.Insert(v, u)
11 if IncSSR.Reach(t) then
12 Find a simple directed s-t path P in Ed

f ∪ T

13 Augment f along the path P in G, let f ′ be the resulting flow and set
f ← f ′

14 Set f ← Decycle(f)
// delete any edge no longer in Eu

f because flow added
15 for each e ∈ Eu

f with f(e) > 0 do
16 Set Eu

f ← Eu
f \ {e} and Ed

f ← Ed
f ∪ {e}

17 Invoke DynSpanF.Delete(e)
// insert an edge to Eu

f because flow removed
18 for each e ∈ Ed

f with f(e) = 0 do
19 Set Ed

f ← Ed
f \ {e} and Eu

f ← Eu
f ∪ {e}

20 Invoke DynSpanF.Insert(e)
21 Set F ∗ ← F ∗ + 1
22 Invoke IncSSR.Initialize(Ed

f ∪ T, s)

23 Procedure MaxFlow(s, t)
24 return F ∗

▶ Definition 11. We say that a flow f is ayclic if there is no directed cycle on which every
edge has positive flow in the direction of the cycle.

▶ Lemma 12 ([10]). Any integral acylic flow f uses at most O(n
√

v(f)) edges.

Taking cue from the lemma above, our goal would be to ensure that at any time, the
current flow we maintain is acyclic. Note that even if a flow is initially acylic, an augmentation
step may destroy this property. This suggests that we need a decycling step to bring back the
flow to the desired state. More importantly, for unweighted, undirected graphs, the decycling
procedure takes time that is proportional to the number of edges that carry non-zero flow on
the current graph.

▶ Lemma 13 ([22]). Let G be an unweighted, undirected graph, and let f be a flow of G

that is non-zero on exactly x edges. Then there is an algorithm Decycle(f) that returns an
acyclic flow f ′ with v(f) = v(f ′) and runs in O(x) time.

G. Goranci and M. Henzinger 69:11

The Algorithm

We now show how the above ideas lead to an incremental algorithm that maintains a
maximum flow whose value is bounded by µ. As before, let F ∗ denote the maximum s-t flow
value on the current graph.

Initially, G and the edges sets Eu
f , Ed

f are empty, F ∗ ← 0 and f(e)← 0 for each e ∈ E.
The algorithm initializes a dynamic spanning forest data structure DynamicSpanF on Eu

f

to maintain a spanning forest T (Lemma 10). There are µ rounds, and each round ends when
the value of the current maximum flow increases by one. Each round starts by initializing an
incremental single source reachability data structure IncrSSR on Ed

f ∪ T from the source
s (Lemma 8).

Upon an edge insertion (u, v) to G, we first pass this insertion to the data structure
DynamicSpanF. If the edge (u, v) ends up being added to T , we then pass this insertion as
two edge insertions (u, v) and (v, u) to the data structure IncrSSR and test whether t is
reachable from s using this data structure. If the latter holds, then we find a simple directed
s-t path in Ed

f ∪ T , which in turn serves as an augmenting path for G. We then send one
unit of flow along the path P in G. To make sure that the flow remains acyclic, we invoke
procedure Decycle to remove potential directed cycles and update the current flow to be
acyclic. Using the dynamic data structure DynamicSpanF, we delete all edges that no
longer belong to Eu

f (because they now carry non-zero flow), and insert all new edges to Eu
f

(because flow was removed from them). Finally, we increment the current flow by exactly 1.
To answer a query about the maximum flow between s and t, we simply return F ∗. These

procedures are summarized in Algorithm 4.
We next argue about the correctness of the algorithm. We start by reviewing the result

below which shows that it is safe to restrict our attention to the graph Ed
f ∪T when searching

for an augmenting path.

▶ Lemma 14 ([22]). Let Gf be the residual graph of an undirected, unweighted graph G with
respect to the flow f . Then Ed

f ∪ T has an augmenting path if and only if Gf does.

In light of the lemma above, Lemma 4 and Lemma 5, it suffices to show that our
incremental algorithm correctly maintains Ed

f ∪ T . To this end, observe that this directly
follows from (i) the correctness of DynSpanF data structure for maintaining T (Lemma 10)
and (ii) by Lines 18-20 in Algorithm 4 which makes sure that the set Ed

f is correctly updated
after each augmentation step. This completes the correctness argument.

We prove the running time complexity of the algorithm in the lemma below.

▶ Lemma 15. Given an initially empty undirected, unweighted graph G = (V, E) with
n vertices, any two vertices s and t, and a parameter µ ∈ [0, n], the algorithm IncB-
MFU(G, s, t, µ) exactly maintains, under m edge insertions, the maximum s-t flow in G

whose value is bounded by µ in Õ(m + nµ3/2) total update time and O(1) query time.

Proof. Let us first study the work done to find augmenting paths. Since we decycle flows
after each augmentation and the spanning forest T can have at most 2(n− 1) edges (two
edges in reverse direction for each undirected edge), by Lemma 12, each augmentation step
is done on a graph with O(n√µ) edges and thus takes O(n√µ) time. Similarly, note that
before an augmentation step, the set Ed

f does not change, and we only report to IncSSR
data structure the edge insertions that ended up being added to T . There can be at most
2(n − 1) such edge insertions. Therefore, the total cost of running IncSSR per round is
O(|Ed

f ∪ T |) = O(n√µ). Since there are µ rounds, the total time is O(nµ3/2).

ICALP 2023

69:12 Efficient Data Structures for Incremental Exact and Approximate Maximum Flow

It remains to account for the dynamic operations handled by DynSpanF data structure.
Consider the cost of deletions. An edge is deleted from the data structure whenever we put
some non-zero flow on it. Since an augmenting path can have at most n edges, and there are
at most µ rounds, this can happen to at most nµ edges. The latter in turn leads to at most
nµ deletions for a total time of Õ(nµ) for handling them (Lemma 10).

We now turn our attention to the cost of insertions. Over the course of the incremental
algorithm we pass m edges insertions to DynSpanF, for a total time of Õ(m) (Lemma 10)).
We also also pass insertions to DynSpanF whenever flow has been removed on the edges.
However, for flow to be removed from an edge, it must have been first added an on edge, i.e.,
this edge was passed as a deletion to the data structure. Therefore, we can charge the total
cost of these insertions to the total cost of deletions, which we bounded by Õ(nµ). This
completes the proof of the lemma. ◀

5 Conclusion

In this paper we showed two algorithms for maintaining approximate and exact flows in
dynamic graphs undergoing edge insertions. Our dynamic approximation algorithm first
showed how to maintain small maximum flows efficiently in the incremental setting, and then
employed the well-known technique of periodical rebuilds. For the exact result, we showed
that the sparsifiers of residual graphs in the undirected setting can be maintained efficiently
under edge insertions.

In general, the dynamic complexity of maximum flows is a largely unexplored area, with
many fundamental questions remaining unanswered. For example, do there exist decremental
algorithms achieving comparable guarantees to the ones we obtained in the incremental
setting? Our framework from Theorem 6 readily extends to the graphs undergoing edge
deletions only. However, it is not known how to maintain small maximum flows in the
decremental setting.

Another fundamental open question is the existence of a fast fully dynamic algorithm
that approximates maximum flows up to a constant factor. For general undirected graphs,
recent research suggests that this question is intimately connected to efficient sparsifiers
constructions that (approximately) preserve the cut structure between terminal subset of
vertices on graphs. Thus, beyond dynamic graphs, any progress in answering this question
would potentially lead to understanding other fundamental problems in graph algorithms.

References
1 Ittai Abraham, David Durfee, Ioannis Koutis, Sebastian Krinninger, and Richard Peng. On

fully dynamic graph sparsifiers. In Symposium on Foundations of Computer Science (FOCS),
pages 335–344, 2016.

2 Yuri Boykov, Olga Veksler, and Ramin Zabih. Fast approximate energy minimization via
graph cuts. IEEE Transactions on pattern analysis and machine intelligence, 23(11):1222–1239,
2001.

3 Li Chen, Gramoz Goranci, Monika Henzinger, Richard Peng, and Thatchaphol Saranurak.
Fast dynamic cuts, distances and effective resistances via vertex sparsifiers. In Symposium on
Foundations of Computer Science (FOCS), 2020.

4 Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and
Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. In Annual
Symposium on Foundations of Computer Science (FOCS), pages 612–623, 2022.

5 Ho Yee Cheung, Tsz Chiu Kwok, and Lap Chi Lau. Fast matrix rank algorithms and
applications. J. ACM, 60(5):31:1–31:25, 2013.

G. Goranci and M. Henzinger 69:13

6 Paul Christiano, Jonathan A. Kelner, Aleksander Madry, Daniel A. Spielman, and Shang-Hua
Teng. Electrical flows, laplacian systems, and faster approximation of maximum flow in
undirected graphs. In Symposium on Theory of Computing (STOC), pages 273–282, 2011.

7 Søren Dahlgaard. On the hardness of partially dynamic graph problems and connections to
diameter. In International Colloquium on Automata, Languages, and Programming (ICALP),
pages 48:1–48:14, 2016.

8 Gary William Flake, Robert E Tarjan, and Kostas Tsioutsiouliklis. Graph clustering and
minimum cut trees. Internet Mathematics, 1(4):385–408, 2004.

9 L. R. Ford and D. R. Fulkerson. Maximal flow through a network. Canadian Journal of
Mathematics, 8:399–404, 1956.

10 Zvi Galil and Xiangdong Yu. Short length versions of menger’s theorem (extended abstract).
In Frank Thomson Leighton and Allan Borodin, editors, Symposium on Theory of Computing
(STOC), pages 499–508. ACM, 1995.

11 R. E. Gomory and T. C. Hu. Multi-terminal network flows. Journal of the Society for Industrial
and Applied Mathematics, 9(4):551–570, 1961.

12 Gramoz Goranci, Monika Henzinger, Danupon Nanongkai, Thatchaphol Saranurak, Mikkel
Thorup, and Christian Wulff-Nilsen. Fully dynamic exact edge connectivity in sublinear time.
In Symposium on Discrete Algorithms (SODA) 2023, pages 70–86, 2023.

13 Gramoz Goranci, Harald Räcke, Thatchaphol Saranurak, and Zihan Tan. The expander
hierarchy and its applications to dynamic graph algorithms. In Symposium on Discrete
Algorithms (SODA), 2021.

14 Manoj Gupta and Shahbaz Khan. Simple dynamic algorithms for maximal independent set,
maximum flow and maximum matching. In Symposium on Simplicity in Algorithms (SOSA)
2021, pages 86–91, 2021.

15 Manoj Gupta and Richard Peng. Fully dynamic (1+ e)-approximate matchings. In Symposium
on Foundations of Computer Science (FOCS), pages 548–557, 2013.

16 Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak.
Unifying and strengthening hardness for dynamic problems via the online matrix-vector
multiplication conjecture. In Symposium on Theory of Computing (STOC), pages 21–30, 2015.

17 Monika Rauch Henzinger. A static 2-approximation algorithm for vertex connectivity and in-
cremental approximation algorithms for edge and vertex connectivity. J. Algorithms, 24(1):194–
220, 1997.

18 Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Poly-logarithmic deterministic
fully-dynamic algorithms for connectivity, minimum spanning tree, 2-edge, and biconnectivity.
J. ACM, 48(4):723–760, 2001.

19 Giuseppe F. Italiano. Amortized efficiency of a path retrieval data structure. Theor. Comput.
Sci., 48(3):273–281, 1986.

20 Giuseppe F. Italiano, Yahav Nussbaum, Piotr Sankowski, and Christian Wulff-Nilsen. Improved
algorithms for min cut and max flow in undirected planar graphs. In Symposium on Theory
of Computing (STOC), pages 313–322, 2011.

21 Adam Karczmarz. Fully dynamic algorithms for minimum weight cycle and related problems.
In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors, International Colloquium on
Automata, Languages, and Programming (ICALP), volume 198 of LIPIcs, pages 83:1–83:20,
2021.

22 David R. Karger and Matthew S. Levine. Finding maximum flows in undirected graphs seems
easier than bipartite matching. In Symposium on the Theory of Computing (STOC), pages
69–78. ACM, 1998.

23 Jonathan A. Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. An almost-linear-
time algorithm for approximate max flow in undirected graphs, and its multicommodity
generalizations. In Symposium on Discrete Algorithms (SODA), pages 217–226, 2014.

24 Rohit Khandekar, Satish Rao, and Umesh V. Vazirani. Graph partitioning using single
commodity flows. J. ACM, 56(4):19:1–19:15, 2009.

ICALP 2023

69:14 Efficient Data Structures for Incremental Exact and Approximate Maximum Flow

25 Yang P. Liu and Aaron Sidford. Faster divergence maximization for faster maximum flow. In
Symposium on Foundations of Computer Science (FOCS), 2020.

26 Aleksander Madry. Navigating central path with electrical flows: From flows to matchings,
and back. In Symposium on Foundations of Computer Science (FOCS), pages 253–262, 2013.

27 Aleksander Madry. Computing maximum flow with augmenting electrical flows. In Symposium
on Foundations of Computer Science (FOCS), pages 593–602, 2016.

28 Richard Peng. Approximate undirected maximum flows in O(mpolylog(n)) time. In Symposium
on Discrete Algorithms (SODA), pages 1862–1867, 2016.

29 Thatchaphol Saranurak and Di Wang. Expander decomposition and pruning: Faster, stronger,
and simpler. In Timothy M. Chan, editor, Symposium on Discrete Algorithms (SODA), pages
2616–2635. SIAM, 2019.

30 Jonah Sherman. Nearly maximum flows in nearly linear time. In Symposium on Foundations
of Computer Science (FOCS), pages 263–269, 2013.

31 Jonah Sherman. Area-convexity, l∞ regularization, and undirected multicommodity flow. In
Symposium on Theory of Computing (STOC), pages 452–460, 2017.

32 Jan van den Brand, Yang P. Liu, and Aaron Sidford. Dynamic maxflow via dynamic interior
point methods. CoRR, abs/2212.06315, 2022. to appear at STOC’23. arXiv:2212.06315.

https://arxiv.org/abs/2212.06315

Low Sample Complexity Participatory Budgeting
Mohak Goyal1 # Ñ

Stanford University, CA, USA

Sukolsak Sakshuwong1 # Ñ

Stanford University, CA, USA

Sahasrajit Sarmasarkar1 # Ñ

Stanford University, CA, USA

Ashish Goel # Ñ

Stanford University, CA, USA

Abstract
We study low sample complexity mechanisms in participatory budgeting (PB), where each voter
votes for a preferred allocation of funds to various projects, subject to project costs and total
spending constraints. We analyse the distortion that PB mechanisms introduce relative to the
minimum-social-cost outcome in expectation. The Random Dictator mechanism for this problem
obtains a distortion of 2. In a special case where every voter votes for exactly one project, [11] obtain
a distortion of 4/3. We show that when PB outcomes are determined as any convex combination of
the votes of two voters, the distortion is 2. When three uniformly randomly sampled votes are used,
we give a PB mechanism that obtains a distortion of at most 1.66, thus breaking the barrier of 2
with the smallest possible sample complexity.

We give a randomized Nash bargaining scheme where two uniformly randomly chosen voters
bargain with the disagreement point as the vote of a voter chosen uniformly at random. This
mechanism has a distortion of at most 1.66. We provide a lower bound of 1.38 for the distortion
of this scheme. Further, we show that PB mechanisms that output a median of the votes of three
voters chosen uniformly at random, have a distortion of at most 1.80.

2012 ACM Subject Classification Applied computing

Keywords and phrases Social Choice, Participatory budgeting, Nash bargaining

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.70

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2302.05810 [17]

Supplementary Material Software (Source Code): https://github.com/Sahasrajit123/Low-
sample-complexity-PB

Acknowledgements We would like to thank Lodewijk Gelauff, (Stanford University), Geoff Ram-
seyer(Stanford University) and Kamesh Munagala(Duke University) for valuable insights and
discussions on the paper and the introduction.

1 Introduction

More than 1500 cities around the globe have begun adopting Participatory Budgeting (PB)
[22, 13], a process through which residents can vote directly on a city government’s use of
public funds. Residents might, for example, vote directly on how to allocate a budget of
reserved funds between projects like street repairs or library renovations. PB has been shown
to promote government transparency, resident engagement, and good governance [23].

1 In alphabetical order.

EA
T
C
S

© Mohak Goyal, Sukolsak Sakshuwong, Sahasrajit Sarmasarkar, and Ashish Goel;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 70; pp. 70:1–70:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mohakg@stanford.edu
https://sites.google.com/view/mohakg
https://orcid.org/0000-0002-1176-5549
mailto:sukolsak@gmail.com
https://sukolsak.com/
mailto:sahasras@stanford.edu
https://sahasrajit123.github.io/
https://orcid.org/0000-0002-6652-4881
mailto:ashishg@stanford.edu
https://web.stanford.edu/~ashishg/
https://doi.org/10.4230/LIPIcs.ICALP.2023.70
https://arxiv.org/abs/2302.05810
https://github.com/Sahasrajit123/Low-sample-complexity-PB
https://github.com/Sahasrajit123/Low-sample-complexity-PB
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

70:2 Low Sample Complexity Participatory Budgeting

We study a PB setup similar to [12] where each vote is an allocation of funds to projects
(we call it a “preferred budget”) subject to the constraint that the sum of allocations to all
projects is equal to one. Projects have a fixed cost, and allocations to any project cannot
exceed its cost. However, allocations less than the project’s cost are allowed. ([12] consider
all project costs equal to one). In this model, therefore, every vote and the outcome of the
PB election can be represented as a point on the unit simplex.

We study the distortion (Definition 5) that PB mechanisms introduce in expectation
relative to the social cost minimizing allocation in the worst case of PB instances, following
the lines of [1]. We adopt the ℓ1 distance as the cost function where a voter with preferred
budget a experiences a cost of d(a, b) = ∥a − b∥1 from an outcome budget b (Definition 2).

Several preference elicitation methods have been studied for PB [7, 2, 15, 5]. Policymakers
must then transform a list of votes into a real-world allocation of funds. Furthermore, even
though there may be an “optimal” allocation (under natural notions of social welfare), this
allocation may be intractable to compute [19, 21] or difficult to reliably estimate if turnout
is low [8]. In some situations, policymakers need to obtain a quick estimate of the budgetary
region in which preferences may lie. In these cases, and when running a fully-fledged PB
election is costly or difficult, low-sample complexity PB mechanisms are an attractive choice.

Low-sample complexity preference elicitation mechanisms have also been of interest
recently in computational social choice [11, 10, 1, 9] – in this work, we give low-sample
complexity mechanisms (using the preferred budgets of a small number of sampled voters)
for PB, which achieve a distortion of less than 2. Note that 2 is a natural barrier for the
distortion in this problem since the Random Dictator mechanism achieves a distortion of 2
in our model of PB. The Random Dictator mechanism chooses the outcome as the preferred
budget of a uniformly randomly chosen voter. From Theorem 5 of [1], its distortion is at
most 2, and from our Lemma 7, it is 2. We further prove that a mechanism that chooses
any linear combination of two randomly sampled votes (Random Diarchy) also attains a
distortion of 2 (Lemma 8). Another low sample-complexity mechanism, Random Referee [10],
asks a randomly chosen voter (“the referee”) to choose one out of two possible outcomes,
which are random samples from the preferred budgets of the voters. This mechanism also
attains a distortion of at least 2 in our setup (Lemma 9). We give a PB mechanism which
samples three voters uniformly at random and attains a distortion of at most 1.66.

1.1 Our Contributions
When the PB mechanism samples three voters uniformly at random, we show that aggregation
schemes that choose a median of their preferred budgets achieve a distortion of at most 1.80.
We refer to such schemes as the median schemes and denote this class of schemes by M.

We then turn to the case where two uniformly randomly chosen voters can come together
and “bargain” with a third voter’s preferred budget (again chosen uniformly at random) as the
“disagreement point.” We formulate the bargaining rules for the voters via the well-studied
Nash bargaining framework [6]. When these bargaining rules can be further specified by a
randomized rule (§4.2), we show that the distortion of the resulting mechanism is at most
1.66 (Theorem 35). We call this mechanism the randomized Nash bargaining scheme nrand.

A key technical tool we use is the analysis of pessimistic distortion (PD) (Definition 26)
first proposed by [10]. PD is a form of distortion where the comparison is made with a
counterfactual which chooses a separate outcome for every small subset of voters (of a fixed
size κ), thereby attaining a lower social cost than the true “optimal”. In this work, we use
κ = 6. This choice is due to computational constraints. We show that the PD with κ = 6 is
an upper bound on the distortion of our proposed mechanisms with any number of voters n.

We then reduce the problem of computing the PD into a set of linear programs for
the median schemes M and bilinear programs of constant size for the randomized Nash

M. Goyal, S. Sakshuwong, S. Sarmasarkar, and A. Goel 70:3

bargaining scheme nrand. For this, we use a projection of the preferred budgets of voters
into a space (we call it the incremental allocation space (§3)) that captures the common
preferences of a subset of voters relative to other voters. In the median schemes, funds are
allocated to projects ensuring that the final outcome is the median of the preferred budgets
of three randomly sampled voters. In the randomized Nash bargaining scheme nrand, the
expected funds allocated to a project satisfy additional proportionality constraints (§4.2),
resulting in bilinear programs. Since the proportionality constant is not fixed, this results in
another variable in the optimization formulation. The problem has a complex combinatorial
structure due to the nuances of Nash bargaining. However, we are able to exploit symmetries
of the problem, enabling us to solve it efficiently. Since the bilinear programs are of a constant
size (depends on κ, which we set to 6), we can solve these in fixed time.

Same as Random Dictator and Random Referee, our PB mechanism nrand also naturally
respects project interactions such as complementarity and substitution as long as the voters
are aware of these interactions. This is because the bargaining outcome between two voters
is guaranteed to be Pareto optimal for them. We describe this point in detail in §8.

1.2 Related Work
The sequential deliberation (SD) mechanism for social choice was proposed in [11] where
the two uniformly randomly chosen voters deliberate in each round under the rules of Nash
bargaining, and the outcome for every round is the disagreement point for the next round.
The SD for one round corresponds to the randomized Nash bargaining scheme nrand. They
analyzed the mechanism in median spaces, which include median graphs and trees, and
found an upper bound of the distortion of the mechanism to be 1.208. They also analyze
the distortion in the budget space (or unit simplex) in a special setting where each voter
only approved funds for a single project. In this case, they show that the distortion in the
equilibrium of SD is 4/3. This paper extends their work in the case of the unit simplex, such
that voters in our model do not have to restrict their vote to one project.

The authors of [16] study a model where voters’ opinions evolve via deliberations in small
groups over multiple rounds. Opinions in their model correspond to preferred budgets in
our model; however, unlike preferred budgets, opinions change as a result of deliberations.
They study the distortion in single-winner elections setting and show that it is bounded by

O

(
1 +

√
log n

n

)
when voters deliberate in groups of 3 (n is the number of voters).

The work most closely related to ours is [10]; they study the random referee mechanism.
We use their technique of analyzing the PD of 6 voters. However, they apply this technique
where the underlying decision space is the Euclidean plane and use the underlying geometric
structure to perform a grid search. In contrast, we study the PD with Nash bargaining, which
leads to a complex structure of outcomes that we capture in linear or bilinear programs.

The authors of [9] analyze low sample-complexity randomized mechanisms for PB. They
obtain constant factor guarantees for higher moments of distortion, and the distortion bound
they provide is much larger than 2. Several additional results and research directions in PB
are described in the survey [4].

1.3 Future Directions
A natural direction for future work is to analyze the distortion for multiple rounds of deliber-
ation in our model, with every round’s outcome serving as the next round’s disagreement
point. Another interesting modelling question is to study the deliberation or bargaining
process with more than two agents participating together. Closing the gap of the distortion
of nrand also remains an interesting open problem.

ICALP 2023

70:4 Low Sample Complexity Participatory Budgeting

1.4 Roadmap
We describe the model and preliminaries in §2, introduce a projection operation and give
some technical results in §3, characterize the outcome of different schemes in §4. We derive
the distortion of the class of median schemes in §5. We derive the distortion under nrand

in §6. We give empirical results on real-world Participatory Budget (PB) data in §7, and
discuss project interactions in §8.

2 Model and Preliminaries

Suppose we have m projects and are required to design a budget. A budget denotes the
fraction of the total funds that are to be spent on each project. Projects have a maximum
possible allocation or “project costs.” All votes respect these project costs, and consequently,
the outcomes of all our mechanisms also respect the project costs.2 For notational simplicity,
we drop the project costs from the model henceforth and operate under the assumption that
project costs are 1. All our results trivially follow for general project costs.

▶ Definition 1. Let bj denote the funds allotted to project j in budget b. We define the budget
simplex as the set of valid budgets i.e., B = {b ∈ Rm|

∑m
j=1 bj = 1 and bj ≥ 0, ∀j ∈ [m]}.

There are n voters, each with a preferred budget vi ∈ B. A vote profile P denotes the list of
preferred budgets of all voters, i.e, P = (v1, v2, . . . , vn). The funds allotted to project j by
voter i is vi,j . A vote profile defines an instance of PB. The outcome of an instance of PB is
a budget in B. Voters adopt the ℓ1 distance as the cost function. (Not to be confused with
the project costs, which is a different concept here.)

▶ Definition 2. For a, b ∈ B, the cost of an outcome b for a voter with preferred budget a is
d(a, b) =

∑m
j=1 |aj − bj |. The sum of cost over all budgets,

∑
i∈[n] d(vi, b), is the social-cost

of budget b.

We define the overlap utility which is closely related to the cost. Note that this notion of
overlap utility has been studied in knapsack voting [15, 12].

▶ Definition 3 (Overlap Utility). u(a, b) =
∑m

j=1 min(aj , bj).

▶ Lemma 4. For budgets a, b ∈ B, d(a, b) = 2 − 2u(a, b).

A proof is in Appendix A.13 of the extended version [17]. Lemma 4 implies that for a voter,
maximizing overlap utility is the same as minimizing the cost. Note that overlap utility is
symmetric, i.e, u(a, b) = u(b, a).

2.1 Distortion
Here we define distortion, which we use as a metric to quantify how good a outcome is in
comparison to the optimal solution for minimizing social-cost. We define distortion through
the cost d(·, ·).

▶ Definition 5. The distortion of budget b for vote profile P is

DistortionP (b) =
∑

v∈P d(v, b)
minb∗∈B

∑
v∈P d(v, b∗) .

2 There is no constraint on the minimum allocation to a project other than that it must be non-negative.

M. Goyal, S. Sakshuwong, S. Sarmasarkar, and A. Goel 70:5

Let h(P) be the output of mechanism h for vote profile P .

▶ Definition 6. The distortion of a class of voting mechanisms H is: Distortion(H) =
supn∈Z+, P ∈Bn, h∈H E[DistortionP (h(P))].

Note that distortion is defined as a supremum over all instances of PB and all mechanisms
in class H.3 The expectation is over the randomness of the mechanism, which also includes
the randomness in the selection of voters.

The distortion of a voting mechanism is widely used to evaluate its performance regarding
how close its output is to the social cost-minimizing outcome in expectation [1, 20, 3, 14, 10].
The Random Dictator [1] voting mechanism has a distortion of 2, as shown in Lemma 7. A
proof is given in Appendix A.1 in the extended version [17].

▶ Lemma 7. Any aggregation method constrained to choose its outcome as the preferred
budget of a uniformly randomly chosen voter has distortion 2.

Now, consider a mechanism that chooses the outcome via the deliberation between two
voters chosen uniformly at random with preferred budgets a and b. Within this class, we
consider mechanisms constrained to choose the outcome as a convex combination of budgets
a and b.

Now, consider a mechanism constrained to choose the outcome as a linear combination of
budgets a and b where a and b denote the preferred budgets of randomly sampled voters.
That is, α(P)a + (1 − α(P))b for α(P) ∈ [0, 1]. Note that α(P) may be optimized over the
entire vote profile.4 We refer to this class of mechanisms as Random Diarchy and denote it
by Q. Interestingly, the distortion of Q is 2, the same as that of Random Dictator.

▶ Lemma 8. For Random Diarchy infq∈Q Distortion(q) = 2.

A proof is given in Appendix A.2 in the extended version [17]. We further show that
Random Referee scheme described in [11] where one of the two preferred budgets of the
bargaining voters is chosen based on the preferred budget of third sampled voter also has a
distortion ratio of at least 2 in Lemma 9, proven in Appendix A.3 in the extended version
[17]. We denote the class of such mechanisms by R.

▶ Lemma 9. For Random Referee infq∈R Distortion(q) ≥ 2.

2.2 Model of preference aggregation
Let us define the mechanism formally in steps and we call it Triadic scheme.
1. Pick a voter i uniformly at random and set the disagreement point c as the preferred

budget of voter i.
2. Now choose two voters a and b uniformly at random with replacement and they bargain

with c as the disagreement point.

All our theoretical results in this paper are for the outcome of the triadic scheme. However,
as discussed in [11], we can extend this bargaining scheme to multiple rounds by setting the
outcome of the previous round as the disagreement point for the next round and sampling
the two bargaining voters uniformly at random without replacement. We provide empirical
results for this setup for multiple rounds (upto 10 rounds) in § 7.

3 We will often study the distortion of a single mechanism, i.e., not a class. In that case, Distortion(h)
simply denotes the distortion of the mechanism h.

4 All such outcomes maximize the sum of the overlap utilities of the deliberating agents.

ICALP 2023

70:6 Low Sample Complexity Participatory Budgeting

Our bound on pessimistic distortion assumes that the voters are chosen with replacement
as done in [10]. This directly gives us a bound on the distortion when voters are sampled
without replacement. It is easy to see that the difference in these bounds is of O(1

n). The
case where two or more identical voters are sampled out of three defaults to the Random
Dictator mechanism, which has constant distortion – the probability of this event is of O(1

n).
We consider bargaining schemes satisfying one or more of the following constraints,

namely a) Pareto efficiency, b) Invariance to Affine Transformation, c) Symmetry, and
d) Independence of Irrelevant Alternatives. Bargaining schemes that satisfy all of these
constraints are the class of Nash bargaining schemes denoted by N [6].

▶ Definition 10. An outcome of N (a, b, c), the Nash bargaining between two voters with
preferred budgets a and b and the disagreement point c, is a budget z which maximizes the Nash
product (u(a, z)−u(a, c))× (u(b, z)−u(b, c)), subject to individual rationality u(a, z) ≥ u(a, c)
and u(b, z) ≥ u(b, c), and in case of a tie between possible outcomes, maximizes u(c, z).

The fact that N breaks ties in favor of the disagreement point is crucial for the distortion
of triadic scheme with bargaining schemes in N to be smaller than 2. It is also crucial for
the membership of N in a class of bargaining schemes that maximize the sum of overlap
utilities of the bargaining agents and the disagreement point. We now define this class of
bargaining schemes.

▶ Definition 11. M is the class of median schemes if any outcome z ∈ M(a, b, c)
maximises the sum of utilities with budgets a, b and c i.e. u(z, a) + u(z, b) + u(z, c).

The following important result is proved in Appendix A.11 in the extended version [17].

▶ Theorem 12. Every scheme in N is also a median scheme i.e. N ⊆ M

3 Incremental allocation space

We now give a function that captures the marginal preferences of a subset of voters S

regarding the allocation to project j, relative to the preference of the other voters (i.e., P \S).
This function will be useful as an analytical tool in the paper. Specifically,

▶ Definition 13. Given a vote profile P = (v1, v2, . . . , vn), and project j, the incremental
project allocation Xj,P : 2[n] → [0, 1] maps a subset of budgets S to

Xj,P (S) = max
((

min
i∈S

vi,j

)
−

(
max

i∈P \S
vi,j

)
, 0

)
.

Here max and min over ∅ are defined as 0 and 1, respectively. Xj,P (S) denotes the amount
by which the budgets in S all agree on increasing the allocation to project j above the
maximum allocation to j by any budget in P\S. Summing this quantity over all projects
j ∈ [m] gives us XP (S), which is defined in the following.

▶ Definition 14. For a vote profile P, the incremental allocation XP : 2[n] → R is
XP (S) =

∑m
j=1 Xj,P (S) for all S ⊆ P.

We use XP (.) in §5 since its complexity is dependent only on the number of voters n and
not on the number of projects m. This helps us give results valid for arbitrarily large values
of m. We illustrate the functions Xj,P (·) and XP (·) in the following example.

M. Goyal, S. Sakshuwong, S. Sarmasarkar, and A. Goel 70:7

▶ Example 15. Consider an instance of PB with three projects and a vote profile P with three
budgets a = ⟨1, 0, 0⟩, b = ⟨0, 1, 0⟩, and c = ⟨0.25, 0.25, 0.5⟩. 5 Then, X1,P (a) = 0.75. This is
because the budget a has allocation 1 to project 1, out of which only 0.75 is incremental
on top of max(b1, c1). Also, X2,P (a) = X3,P (a) = 0. As a result, XP (a) = 0.75. Similarly
X2,P (b) = XP (b) = 0.75. Also, X3,P (c) = XP (c) = 0.5. Further, XP (ac) = 0.25. This is
because the subset {a, c} has a minimum allocation of 0.25 to project 1 among themselves.
It is also incremental since b1 = 0. Further, we have X1,P (abc) = X2,P (abc) = X3,P (abc) =
XP (abc) = 0. This is because the group of all three budgets has no allocation that is common
to all. Finally, XP (∅) = X3,P (∅) = 0.5 because no budget allocated funds more than 0.5 to
project 3.

We use P(P) to denote the power set of P . We now give an important corollary regarding
the function Xj,P (·).

▶ Corollary 16.
∑

S∈P(P) Xj,P (S) = 1, ∀j ∈ [m].

A proof is given in Appendix A.8 in the extended version [17]. Corollary 16 says that
every incremental allocation to project j by budgets in S adds up to 1 when summed over
all subsets S (this includes the empty set; Xj,P (∅) > 0 implies that no voter allocated the
full 1 unit budget to project j).

3.1 Projection On Incremental Allocations
We now give a projection of Xj,P from P to Q ⊆ P to get Xj,Q. This operation has two
applications in this paper. First, it enables us to study the allocations of an outcome z

relative to the vote profile P by making projections from P ∪ {z} to P. Second, it is used to
study the outcomes of bargaining with a subset Q ⊆ P of voters with respect to the entire
vote profile P via projections from P to Q.

▶ Lemma 17. For any vote profile P and Q ⊆ P , the projection from P to Q is
Xj,Q(S) =

∑
Ŝ∈P(P \Q) Xj,P (Ŝ ∪ S) for all S ∈ P(Q), and all j ∈ [m]. Summing over

j ∈ [m], XQ(S) =
∑

Ŝ∈P(P \Q) XP (Ŝ ∪ S).

A proof is given in Appendix A.9 in the extended version [17]. Lemma 17 captures an
important technical fact. To calculate the incremental project allocation function on S over
a vote profile Q ⊆ P , i.e., XQ(S), we may sum XP (·) over all subsets of budgets in P which
contain all elements of S but no element of Q \ S. Note that here S ⊆ Q ⊆ P.

We now consider the problem of analyzing an outcome z with the help of the incremental
allocation function. Towards this, we define the function Zj,P (S) with respect to an outcome
z with the help of the projection operation described in Lemma 17.

▶ Definition 18. For vote profile P and budget z, define Zj,P : 2[n] → [0, 1] as Zj,P (S) =
Xj,P ∪{z}(S ∪ {z}) ∀S ⊆ P.

Recall from Definition 13 that Xj,P (S) denotes the amount by which all budgets in S

want to increase the allocation to project j over the maximum allocation to j by any budget
in P \ S. The quantity Zj,P (S) denotes the amount by which the outcome budget z “accepts”
this preference of S. Naturally, Zj,P (S) ≤ Xj,P (S).

Analogous to summing Xj,P (S) over all j ∈ [m] to get XP (S), we can sum Zj,P (S) over
all j ∈ [m] to get ZP (S).

5 For brevity, we omit braces and commas in the argument of X.

ICALP 2023

70:8 Low Sample Complexity Participatory Budgeting

▶ Definition 19. For vote profile P and budget z, define ZP (S) : 2[n] → [0, 1] as ZP (S) =∑m
j=1 Zj,P (S) ∀S ⊆ P.

ZP (S) informally denotes the amount by which outcome budget z “accepts” the preference
of S for increasing allocations above the allocations of P \ S across all projects. See that
ZP (S) ≤ XP (S).

▶ Corollary 20. For any vote profile P and budget z, Zj,P (S) ≤ Xj,P (S) for all j ∈ [m].
Summing over j ∈ [m], ZP (S) ≤ XP (S).

Proof. Follows directly from Lemma 17 since Xj,P (S) = Zj,P (S) + Xj,P ∪{z}(S) (we are
projecting from P ∪ {z} to P). ◀

▶ Corollary 21.
∑

S∈P(P) Zj,P (S) = zj for all vote profiles P and z ∈ B. Summing over all
projects j ∈ [m], we get

∑
S∈P(P) ZP (S) = 1.

Proof. We have zj = Xj,{z}({z}) [Definition 13]. Apply Lemma 17 by doing a projection
from P ∪ {z} to {z}. ◀

This result captures, in the incremental common budget space, the fact that the total
funds allocated by a budget z to projects j ∈ [m] is 1. The following example illustrates
Zj,P (S).

▶ Example 22. Consider vote profile P = {a, b, c} with two projects. Let the budgets
a, b, and c be ⟨0.2, 0.8⟩, ⟨0.5, 0.5⟩, and ⟨0.8, 0.2⟩ respectively. Let the outcome budget z be
⟨0.4, 0.6⟩. In this case, X2,P (ab) = 0.3 and Z2,P (ab) = 0.3 since the excess allocation by
outcome z to project 2 over the allocation by budget c (i.e., 0.4) is larger than the least
excess allocation to project 2 by budgets a and b over allocation in budget c (i.e., X2,P (ab)
which is 0.3). In other words, the entire incremental allocation to project 2 by budgets
a and b is accepted by outcome z. However, X2,P (a) = 0.3 but Z2,P (a) = 0.1 since the
incremental allocation to project 2 by budget z over budgets b and c is 0.1. Thus only a
partial incremental allocation to project 2 by budget a is “accepted” by budget z.

4 Overview of Median and Nash bargaining schemes

Recall the triadic mechanism from § 2.2 and we characterize its outcome. Let the disagreement
point be c and the preferred budgets of the agents chosen randomly for the mechanism be a and
b. For simplicity of notation, we denote X{a,b,c}(S) by X(S) for S being any subset of {a, b, c}6.
We also denote the outcome budget of the bargaining by z and Z(a,b,c)(S) = X{a,b,c,z}(S∪{z})
by Z(S) for S ⊆ {a, b, c}.

4.1 Overview of class of schemes M and N
In Figure 1, we illustrate the incremental allocations {X(S)}S⊆{a,b,c} with budgets a, b, and c

on a Venn diagram. Recall from Definition 19 that Z(S) denotes what incremental allocation
from X(S) is “accepted” by outcome z. For the construction of Z(·), the bargaining agents
first select all the allocations “agreed” to by at least two of the three budgets. In Figure 1,
this corresponds to the area of the overlaps. Now, we have two cases, i.e. the total allocation
to Z is less than 1 or exceeds 1. We denote the difference between 1 and the total allocation
to Z by Excess.

6 Note that we do not consider XP (·) in this section where P is the set of the preferred budgets of all the
voters, even those not involved in the bargaining.

M. Goyal, S. Sakshuwong, S. Sarmasarkar, and A. Goel 70:9

Figure 1 Incremental allocations with two preferred budgets of bargaining agents a and b, and
disagreement point c.

Consider the case when the total allocation to Z(S) is less than 1. Here, the agents need
to make further allocations worth Excess. Under the class of median schemes M [described
in §4.3], they may select project allocations from X(a),X(b), and X(c) arbitrarily into the
outcome z and thus into Z(a), Z(b) and Z(c). In Figure 1, this corresponds to the area
covered by exactly one of the budgets. However, under Nash bargaining schemes N , they
select allocations worth excess

2 from each of X(a) and X(b).
Now, consider the case when the total allocation to Z(S) is more than 1. In this case,

under median schemes, M, the participating agents select total project allocations worth
Excess arbitrarily from X(ab),X(bc) and X(ca) and remove allocations to these projects. In
Figure 1, this corresponds to the area of the overlap of exactly two budgets. However, under
Nash bargaining schemes N , they select allocations worth |Excess|

2 from each of X(ac) and
X(bc) and remove allocations to these projects from the outcome z.

The following lemma characterizes the overlap of the outcome z ∈ N (a, b, c) with the
budgets a, b, and c, in terms of the incremental allocation functions X(·) and Z(·).

▶ Lemma 23. For any preferred budgets of bargaining agents a and b, disagreement point c,
and outcome z of N (a, b, c),

Z(abc) = X(abc), Z(ab) = X(ab),
Z(ac) = X(ac) + min(Excess/2, 0),
Z(bc) = X(bc) + min(Excess/2, 0),
Z(a) = Z(b) = max(0, Excess/2),
Z(c) = Z(∅) = 0.

Where, Excess = (1 − X(abc) − X(ab) − X(ac) − X(bc)).

Proof Sketch. In Nash bargaining, no part of z is such that it is not preferred by both a

and b. That is, Z(c) = Z(∅) = 0. Otherwise, we could construct a new outcome z′ that
reallocated the funds from Z(c) or Z(∅) to Z(a) and Z(b). This would increase u(a, z) and
u(b, z) and thus z would not be Pareto optimal. The parts of z that benefit both a and b

must be maximized. That is, Z(abc) = X(abc) and Z(ab) = X(ab). Otherwise, we could
construct a new outcome z′ that reallocates funds from any other project to the project that
benefits both a and b, thus showing that z is not Pareto optimal. The remaining part of the
proof is technical and is in Appendix A.12 in the extended version [17]. ◀

We give an explanation of the construction of the Nash bargaining solution z (and
correspondingly Z) in three steps.7

7 The steps are only for illustration purposes. There is no chronology or structure required in bargaining
processes. We can only characterize the outcome.

ICALP 2023

70:10 Low Sample Complexity Participatory Budgeting

Step 1: The voters with preferred budgets a and b mutually decide to allocate funds to
projects that benefit both of them. This means, for all projects j ∈ [m], zj = min(aj , bj).
In terms of X(·) and Z(·), this corresponds to Z(abc) = X(abc) and Z(ab) = X(ab). At this
point, Z(·) is zero for all other subsets of {a, b, c}.

Step 2: At this point, the total allocation to projects in the bargaining outcome z may
be less than 1. The bargaining agents now allocate more funds to the projects j ∈ [m] for
which zj < max(aj , bj) and zj < cj . Now zj is set to the “median” of (aj , bj , cj) for all
projects j ∈ [m]. In terms of X(·) and Z(·), this corresponds to setting Z(ac) = X(ac) and
Z(bc) = X(bc).
Step 3: Now, two possibilities arise for the total amount of funds allocated in z so far, i.e.,
the bargaining agents have either over-spent or under-spent the total funds. These cases are
central to the analysis in the paper and will be revisited several times.
Case 1: The total funds currently allocated in z is at most 1, i.e., Z(ab) + Z(bc) + Z(ac) +
Z(abc) ≤ 1. This is same as:

X(ab) + X(bc) + X(ac) + X(abc) ≤ 1. (1)

Recall the definition of Excess in Lemma 23. In this case, since there is a positive Excess,

the bargaining agents now allocate more funds to projects with zj < max(aj , bj). Since in
Nash bargaining we assume equal importance of the overlap utilities of both the bargaining
agents, they divide the Excess equally. They incrementally fund projects with zj < aj and
the projects with zj < bj with Excess/2 amount each. They ensure that zj ≤ max(aj , bj).
The precise manner of doing so is not important to satisfy the axioms of Nash bargaining.
In terms of Z(·), this corresponds to setting Z(a) = Z(b) = Excess/2.
Case 2: The total funds currently allocated in z exceeds 1, i.e., Z(ab) + Z(bc) + Z(ac) +
Z(abc) ≥ 1. This is same as:

X(ab) + X(bc) + X(ac) + X(abc) ≥ 1. (2)

If we are in this case, then the bargaining agents have overspent the funds and Excess
is negative. They need to remove −Excess amount of allocations from z. Recall that
at this point, zj is set to the median of (aj , bj , cj) for all projects j ∈ [m]. They remove
funds from projects with (zj > aj) and the projects with (zj > bj) with Excess/2 amount
each. They ensure that zj ≥ min(aj , bj). The precise manner of doing so is not important
to satisfy the axioms of Nash bargaining. In terms of Z(·), this corresponds to setting
Z(ac) = X(ac) + Excess/2, and Z(bc) = X(bc) + Excess/2.

We now give a randomized way of allocating the Excess funds in Step 3 while satisfying
the axioms of Nash bargaining.

4.2 Randomised Nash bargaining solution nrand

Case 1: Denote sa
j = max{aj − zj , 0} for all projects j.8 To projects with sa

j > 0, allocate
incremental funds ra

j at random such that E[ra
j] is proportional to sa

j . The sum of ra
j over all

j ∈ [m] is Excess/2 and no incremental allocation ra
j is more than sa

j .9 A similar process is
followed for projects j with zj < bj by defining sb

j = max{bj − zj , 0} and making incremental
allocations rb

j summing to Excess/2, E[rb
j] proportional to sb

j , and with rb
j ≤ sb

j .

8 This precisely corresponds to Xj,Q(a) in the incremental allocation space.
9 The randomness of this process is the same as the hypergeometric distribution with (discretized) sa

j

balls corresponding to each project j ∈ [m] in an urn, and we pick (discretized) Excess/2 balls without
replacement to provide incremental allocations.

M. Goyal, S. Sakshuwong, S. Sarmasarkar, and A. Goel 70:11

Case 2: Denote ta
j = max{zj − aj , 0} for all projects j ∈ [m].10 From projects with ta

j > 0,
remove ra

j amount of previously allocated funds at random such that E[ra
j] is proportional

to ta
j . The sum of ra

j over all j ∈ [m] is −Excess/2 and with ra
j ≤ ta

j . A similar process is
followed for projects with zj > bj by defining tb

j = max{zj − bj , 0} and removing allocations
rb

j from project j summing to Excess/2, E[rb
j] proportional to tb

j , and with rb
j ≤ tb

j .

We now give a characterization of median schemes M in terms of Z [recall that N ⊆ M
from Theorem 12 in §2.2].

4.3 Median schemes M
▶ Theorem 24. For any budgets a, b, c ∈ B, a budget z ∈ B is in M(a, b, c) if and only if it
satisfies the following conditions.
1. Z(abc) = X(abc) and Z(∅) = 0.
2. In Case 1: Z(ab) = X(ab), Z(bc) = X(bc), Z(ca) = X(ca).
3. In Case 2: Z(a) = Z(b) = Z(c) = 0.

The proof of this theorem is technical and is given in Appendix A.10 in the extended
version [17].

Note that all the conditions on the outcomes of the bargaining schemes in M are symmetric
in all three of {a, b, c}. However, outcomes in N also satisfy some additional conditions
which may not be symmetric in all three of {a, b, c}.

We now give a lower bound on Distortion(N). Since M contains N , this bound also
applies to Distortion(M). Moreover, the same bound also holds for the distortion of nrand.

▶ Theorem 25. Distortion(M) ≥ Distortion(N) > 1.38.

Also, Distortion(nrand) > 1.38.

Proof. The proof is by the following example of a PB instance. Suppose there are nA + nB

voters and nA + 1 projects for some nA, nB ≥ 1. Let oi denote the budget where the i-th
project receives allocation 1 and all the other projects get allocation 0. Each voter i in group
A (i ∈ [nA]) prefers budget oi. Each voter i in group B (i ∈ [nA + nB] \ [nA]) prefers budget
onA+1. The analysis of this example is in Appendix A.4 in the extended version [17] where
we set nA = 2200; nB = 3000. ◀

We now give upper bounds of the distortion of M.

5 Distortion Of Schemes in M

To find an upper bound of the distortion of triadic scheme with any bargaining scheme, we
use a technique introduced in [10], called pessimistic distortion (PD). In this technique, we
first analyze the distortion for a small group of voters, call it PD, and then show that the
distortion over all voters cannot be more than the PD. Specifically, in this paper, we analyze
the PD for a group of 6 voters. The idea is that we allow the counterfactual solution to
choose a separate “optimal” budget for every 6-tuple of voters, thereby attaining a smaller
social cost than a common outcome for all voters. On the other hand, for our mechanism, we
consider the expected social cost under one outcome. This is why the distortion calculated is
pessimistic. Formally:

10 This precisely corresponds to Xj,Q(bc) in the incremental allocation space.

ICALP 2023

70:12 Low Sample Complexity Participatory Budgeting

▶ Definition 26. The pessimistic distortion (PD) of the class of mechanisms M with
triadic scheme with 6 voters is:

PD(M) = sup
P ∈B6; h∈M

1
20

∑
Q∈C([6],3)

1
3

∑
i∈[6]\Q

d(h(Q), Pi)

min
p∈B

1
6

∑
i∈[6]

d(p, Pi)
.

Here C(S, k) denotes the set of all k-combinations of set S.11

Notice that in the definition of PD, we only consider the cost for the non-bargaining
agents (same as in [10]). We illustrate the PD in Figure 2, where the bargaining is over
budgets {a, b}, the disagreement point is c, and the cost is computed only for {d, e, f}, the
budgets not involved in the bargaining. This definition is more pessimistic than considering
all agents’ costs. Further, since the outcome of M is symmetric in {a, b, c}, we can use any
combination Q of three voters to compute the outcome of bargaining without designating
one of the budgets as the disagreement point. The next result, proved in Appendix A.14 in

Figure 2 Illustration of PD where a, b, c are sampled for the mechanism M, and {d, e, f} are the
other budgets for which we measure the cost of outcome z.

the extended version [17], is that the distortion of any bargaining scheme in M with triadic
scheme cannot be more than its PD with triadic scheme with only 6 voters.

▶ Lemma 27. Distortion(M) ≤ PD(M).

We now give a representation of the overlap utilities u(·, ·) (equivalently the cost d(·, ·)), in
terms of the incremental allocations XP (S). This representation is of technical importance
for proofs.

▶ Lemma 28. For budgets {a, b}, and a vote profile P that includes {a, b}, we have u(a, b) =
X(ab)(ab) (1)=

∑
Ŝ∈P(P \{a,b}) XP (Ŝ ∪ {a, b}).

Proof. From Definition 3, we have u(a, b) =
∑m

j=1 min(aj , bj). From Definition 13 we have∑m
j=1 min(aj , bj) =

∑m
j=1 Xj,(a,b)(ab) = X(ab)(ab). Now apply Lemma 17 with Q = S =

{a, b}, to obtain equality (1). ◀

11 For simplicity of notation, we use n(Q) in place of n(PQ1 , PQ2 , PQ3) in PD.

M. Goyal, S. Sakshuwong, S. Sarmasarkar, and A. Goel 70:13

Lemma 28 shows that the overlap utility between two budgets a, b is the same as the
sum of what a, b, and all subsets of the other budgets in P have in common via the
incremental allocation function XP (S). For example, if P = (a, b, c, d), then u(a, b) =
XP (ab) + XP (abc) + XP (abd) + XP (abcd).

Lemma 28 is useful for the proof of the following important result, which is an upper
bound for PD(M).

▶ Lemma 29. PD(M) ≤ 1.80.

We give a sketch of the proof here. The detailed proof is in Appendix A.15 in the extended
version [17].

Proof Sketch. Let pQ denote a budget obtained on bargaining with budgets in set Q using
a bargaining scheme in M. Note that mechanisms in M are symmetric in Q therefore, we
do not need to designate a disagreement point in Q for analysis.

PD(M) = sup
P ∈B6; h∈M

1
60

∑
Q∈C([6],3)

∑
i∈[6]\Q d(h(Q), Pi)

1
6 minv∈B

∑
i∈[6] d(v, Pi)

,

≤ sup
P ∈B6

1
60

∑
Q∈C([6],3) suppQ∈M(Q)

∑
i∈[6]\Q d(pQ, Pi)

1
6 minv∈B

∑
i∈[6] d(v, Pi)

.

Suppose that PD(M) > 1.80. Then the following optimization problem has an optimal
objective value strictly greater than 0.

maximize 1
60

∑
Q∈C([6],3)

∑
i∈[6]\Q

d(pQ, Pi) − 1.80 · 1
6

∑
i∈[6]

d(v, Pi),

subject to P ∈ B6,

pQ ∈ M(Q) ∀Q ∈ C([6], 3),
v ∈ B. (3)

To convert this problem into a linear program, we map it to the incremental allocation space
of the set of 6 budgets P = {P1, P2, . . . , P6}. Denote XP (·) by X(·) for simplicity of notation
in the optimization programs. Similar to Definition 19, we define V (S) = X(P ∪{v})(S ∪ {v})
via the “optimal” budget v and ZQ(S) = X(P ∪ {pQ})(S ∪ {pQ}) using the outcome of our
mechanism pQ, for each Q ∈ C([6], 3).

By Lemma 4, we write the cost in terms of the overlap utility d(pQ, Pi) = 2 − 2u(pQ, Pi),
which, by Lemma 28 and the definition of ZQ(S), equals 2 − 2

∑
S∈P(P \Pi) ZQ(S ∪ Pi).

Similarly, we have d(v, Pi) = 2−2
∑

S∈P(P \Pi) V (S∪Pi). To make the pQ ∈ M(Q) constraints
linear, we use case analysis.

Consider a given Q = {q1, q2, q3} ∈ C([6], 3) and a budget pQ ∈ B. Let X(S) = XQ(S)
and Z(S) = X(Q∪{pQ})(S ∪ {pQ}). Theorem 24 implies that pQ ∈ M(Q) if and only if the
following holds:

Case 1: If X(q1q2q3) + X(q1q2) + X(q1q3) + X(q2q3) ≥ 1, Z(q1) = Z(q2) = Z(q3) = 0.
Case 2: If X(q1q2q3) + X(q1q2) + X(q1q3) + X(q2q3) ≤ 1,
Z(q1q2) = X(q1q2), Z(q1q3) = X(q1q3), Z(q2q3) = X(q2q3).

We break each pQ ∈ M(Q) constraint into two cases. Since there are
(6

3
)

such constraints in
the optimization problem, there are 2(6

3) cases overall. We represent each case by a binary
string of length 20 where a 0 or 1 at each position denotes whether the triplet Q corresponding
to that position is in Case 1 or Case 2.

ICALP 2023

70:14 Low Sample Complexity Participatory Budgeting

However, most of these 2(6
3) cases are not unique up to the permutation of preferred

budgets, i.e. when the preferred budgets of different voters are permuted, we may move from
one case to another. Since these cases have the same objective value, we do not need to
solve all the cases. Exploiting further symmetries, we have 2136 unique cases, each of which
is formulated as a linear program with precise details in Appendix A.15 in the extended
version [17]. We obtain the optimal value for each case to be 0 hence, a contradiction. ◀

Using Lemmas 27 and 29, we get the following key result.

▶ Theorem 30. Distortion(M) ≤ 1.80.

6 Distortion of nrand

Recall the randomized Nash bargaining scheme nrand explained in § 4.2. In this section, we
derive an upper bound for it. Towards this, we first define a hypothetical bargaining scheme
ñrand. This scheme is hypothetical because it assumes that the bargaining agents use some
knowledge about the preferred budgets of the non-bargaining agents to break ties among
potential outcomes. We then show in Lemma 32 that the Distortion of nrand is at most as
much as that of ñrand. We then bound the Distortion of ñrand by its expected pessimistic
distortion (EPD), a quantity similar in essence to the PD. We define the EPD in Definition 33.
Our main technical contribution in this section is the analysis of the EPD of ñrand, which we
do by expressing it as the solution of a bilinear optimization problem.

6.1 Construction of bargaining solution in ñrand

Recall Definition 18 of Zj,P (·) for an outcome budget z. Also recall that Zj,P (·) satisfies
Corollaries 20 and 21. For ñrand, we characterize the outcome in the incremental allocation
space; denoted by Z̃j,P (·). Same as Zj,P (·), Z̃j,P (·) also satisfies Corollaries 20 and 21, i.e.,

0 ≤ Z̃j,P (S) ≤ Xj,P (S)∀S ∈ P(P) and all j ∈ [m]. (4)
m∑

j=1
Z̃j,P (S) = Z̃P (S) and,

∑
S∈P(P)

Z̃P (S) = 1. (5)

Before describing the construction of ñrand, we now give the following result on the overlap
utility u(a, z) of outcome budget z and any budget a ∈ P in terms of ZP (S).

▶ Lemma 31. For a vote profile P, a budget a ∈ P, and any budget z, the overlap utility is
u(a, z) =

∑
S∈P(P)|S∋a ZP (S).

Proof. In Lemma 28, use z for b, a for a, and P ∪ {z} for P . ◀

By Lemma 31, u(v, Z̃P) =
∑

S∈P(P)|S∋a Z̃P (S).12 Similarly, the cost can be given by
d(v, Z̃P) = 2 − 2u(v, Z̃P).

Let c be the disagreement point, and {a, b} be the preferred budgets of the agents chosen
to bargain. Denote Q = {a, b, c}. For the construction of Z̃P (·), we first do Step 1 and Step
2 from § 4. We then have for all j ∈ [m], Z̃j,P (S) = Xj,P (S) for all S ∈ P(P) such that S

contains at least 2 elements of Q and Z̃j,P (S) = 0 for all other S ∈ P(P). We then encounter
either Case 1 or Case 2, as in § 4.

12 Note the overload in the notation of the overlap utility; it was initially defined for a pair of budgets v
and z, here we define it for v and Z̃ where Z̃ captures z.

M. Goyal, S. Sakshuwong, S. Sarmasarkar, and A. Goel 70:15

Case 1: Here we need to allocate more funds to projects. Recall the construction of z

for nrand in § 4.2. Recall the random incremental allocations ra
j and rb

j used in nrand. For
the incremental allocations in ñrand we construct αj,P (S) = ra

j · (Xj,P (S)/Xj,Q(a))13 for
all {S | a ∈ S; b, c ̸∈ S} for all projects j ∈ [m]. Intuitively, this may be thought of as a
proportional selection of projects from every subset of budgets S. Similarly we construct
βj,P (S) = rb

j · (Xj,P (S)/Xj,Q(b)) for all {S | b ∈ S; a, c ̸∈ S} and all projects j ∈ [m].
Now, set Z̃j,P (S) = Z̃j,P (S) + αj,P (S) ∀ {S | a ∈ S; b, c ̸∈ S} and Z̃j,P (S) = Z̃j,P (S) +

βj,P (S) ∀ {S | b ∈ S; a, c ̸∈ S} and ∀ j ∈ [m].

Case 2: In this case we need to remove allocations from projects. Recall the construction
of z for nrand in § 4.2. Recall the removals of allocations ra

j and rb
j used in nrand. For

the removals of allocations in ñrand, we construct αj,P (S) = ra
j · (Xj,P (S)/Xj,Q(bc)) for all

{S | b, c ∈ S, a ̸∈ S} for all j ∈ [m]. Similarly we construct βj,P (S) = rb
j · (Xj,P (S)/Xj,Q(ac))

for all {S | a, c ∈ S; b ̸∈ S}.

Now, set Z̃j,P (S) = Z̃j,P (S) − αj,P (S) ∀ {S | b, c ∈ S; a ̸∈ S}, and Z̃j,P (S) = Z̃j,P (S) −
βj,P (S) ∀ {S | a, c ∈ S; b ̸∈ S} ∀ j ∈ [m].

We can now construct Z̃P (S) via Z̃P (S) =
∑m

j=1 Z̃j,P (S). With this, we now construct
Z̃Q as the outcome of the hypothetical bargaining process, via the projection from P to Q

That is, Z̃Q(S) =
∑

Ŝ∈P(P \Q) Z̃P (S ∪ Ŝ) [recall projection in Lemma 17].
See that {Z̃j,P (.)}j∈[m] satisfies Corollaries 20 and 21. Further, Z̃Q(.) satisfies all equations

of Lemma 23 [proof in Appendix A.16 in the extended version [17]].

6.2 Distortion under nrand

We now bound the distortion of the triadic scheme with bargaining scheme nrand by that of
the hypothetical scheme ñrand. A proof is in the Appendix A.18 in the extended version [17].

▶ Lemma 32. Distortion(nrand) ≤ Distortion(ñrand).

We now follow a similar approach as in §5 and define expected pessimistic distortion
under bargaining scheme ñrand as follows.

▶ Definition 33. The expected pessimistic distortion of ñrand with triadic scheme with
6 voters, EPD(ñrand) is

sup
P ∈B6

1
60

∑
c∈[6]

∑
{a,b}∈

C([6]\{c},2)

1
3

∑
i∈[6]\{a,b,c}

E[d(ñrand(a, b, c), Pi)]

min
p∈B

1
6

∑
i∈[6]

d(p, Pi)
.

▶ Lemma 34. Distortion(ñrand) ≤ EPD(ñrand).

The proof is similar to Lemma 27 and is in Appendix A.19 in the extended version [17].

▶ Lemma 35. EPD(ñrand) ≤ 1.66.

13 Note that αj,P (S) ≤ ra
j since Xj,P (S) ≤ Xj,Q(a) [follows from Lemma 17] and∑m

j=1

∑
S∈P(P)

S∋a,S ̸∋b,c

αj,P (S) = excess
2 since

∑
S∈P(P)

S∋a,S ̸∋b,c

Xj,P (S) = Xj,Q(S) [follows from Lemma 17]

and the fact that
∑m

j=1 ra
j = excess/2 [as defined in Case 1 in §4.2].

ICALP 2023

70:16 Low Sample Complexity Participatory Budgeting

The proof is similar to that of Lemma 29 and is presented in Appendix A.20 in the
extended version [17]. We present the key ideas of the proof here.

Proof Sketch. Recall the construction of Z̃j,P (.) ∼ ñrand(a, b, c) and consider Case 1. A
similar analysis holds for Case 2 as well.

We show in Appendix A.20 in the extended version [17] that E[Z̃P (S)] = γ1
aXP (S) for all

{S : S ∋ a; S ̸∋ b, c} and E[Z̃P (S)] = γ1
b XP (S) for all {S : S ∋ b; S ̸∋ a, c} for some variables

0 ≤ γ1
a, γ1

b ≤ 1. Here, γ1
a and γ1

b denote what fraction of allocation from the incremental
allocation XP (S) is “accepted” into Z̃P (S). In our optimization problem formulation
equation (29) in Appendix A.20 in the extended version [17], we use γ1

b , γ1
a as variables

of our optimization formulation, together with XP (S) and therefore we obtain a bilinear
program. We solve it with the Gurobi solver [18]. Similar to the proof of Lemma 27, we
remove the cases that are not unique to permutations of voters and use further symmetries
of the problem to reduce number of bilinear programs from 2(6

3) to 1244. ◀

Using Lemmas 32, 34, and 35, we get the following result.

▶ Theorem 36. Distortion(nrand) ≤ 1.66.

7 Empirical Results

Recall triadic scheme as described in §2.2. We now define a sequential deliberation mechanism
that could run bargaining over multiple rounds by setting the disagreement point for each
round as the outcome of the previous round as proposed in [11].

1. Pick a voter i uniformly at random. Set the disagreement point for the deliberation c to
their preferred budget vi.

2. Repeat the following process T times,
a. Pick two voters independently and uniformly at random with replacement. They

bargain with c as the disagreement point.
b. Set the disagreement point c to the outcome of the bargaining.

3. The outcome of the process is c.

Observe that on setting T = 1, we exactly get triadic scheme as §2.2. To evaluate
the distortion of sequential deliberation in PB empirically, we ran a simulation from the
online participatory budgeting elections in Boston in 2016 (n = 4, 482), Cambridge in 2015
(n = 3, 273), Greensboro in 2019 (n = 512), and Rochester in 2019 (n = 1, 563) where the
data were obtained from https://budget.pbstanford.org/. In these elections, projects
had a fixed cost, and voters participated in knapsack voting [15], in which they could choose
any number of projects as long as they fitted within the fund limits. Note that in this
simulation setup partial project funding is not allowed, unlike the setup in the theoretical
model. We further present simulation results in Figures 4a, 4b, 4c on real dataset from a
PB (participatory budgeting) process run by a non-profit organisation in Boston in 2016
where they used a fractional allocation setting, more aligned with our theoretical work.

To simulate sequential deliberation, we picked a voter uniformly at random to set their
preferred budget as the disagreement point. We then picked another two voters independently
and uniformly at random and calculated a Nash bargaining solution between them. We
assumed that everyone voted truthfully. We then made the bargaining outcome the new
disagreement point and repeated the deliberation process for T = 10 rounds. We repeated this
entire simulation 10, 000 times for each PB election. The average distortion after each round
of deliberation is shown in Figure 3a. The point corresponding to 0 rounds of deliberation is

https://budget.pbstanford.org/

M. Goyal, S. Sakshuwong, S. Sarmasarkar, and A. Goel 70:17

0 1 2 3 4 5 6 7 8 9 10

Rounds of deliberation

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7
D
is
to
rt
io
n

Cambridge, MA

Rochester, NY

Boston, MA

Greensboro, NC

(a) Average distortion.

0 1 2 3 4 5 6 7 8 9 10

Rounds of deliberation

0.00

0.02

0.04

0.06

0.08

0.10

S
D

of
b

u
d

ge
t

al
lo

ca
ti

on
s

(b) SD of distortion.

Figure 3 (a) The average distortion after each round of sequential deliberation in a simulation
using the data from PB elections in four cities. The simulation was run 10,000 times for each city.
(b) The standard deviation (SD) of the fund allocation to each project in the simulation of sequential
deliberation in the PB election in Cambridge. Each line represents a project.

(a) Histogram of triadic scheme. (b) Average distortion. (c) SD of distortion.

Figure 4 Distortion results on PB platform in Boston under the fractional allocation setup

the first disagreement point and is selected uniformly at random. Since voters did not have
to use all the budget available, we added an “unspent” project and allocated the unspent
budget of each voter to this project. We normalized the budget to sum to 1 in each election.

The mean and standard deviation of the distortion after each round of sequential delibera-
tion for the fractional allocation setting as in the PB process in Boston is shown in Figures 4b
and 4c, respectively. A histogram plot of the distortion after one round of deliberation is
in Figure 4a. As before, we observe a quick convergence within three rounds of sequential
deliberation with the point corresponding to zero rounds of deliberation being the first
disagreement point.

The results from all the PB elections show that the average distortion is quite low, even
after only two rounds of deliberation. It also shows that the distortion converges quickly
within three rounds. Further, we measured the stability of the fund allocation to the projects
after each round of deliberation. We simulated sequential deliberation on the data from
the PB in Cambridge 1, 000, 000 times, each time with 10 rounds of deliberation. The fund
allocation to each project after each round was recorded. The fund allocation’s standard
deviation (SD) is shown in Figure 3b. We can see that the SD stabilizes after only three
rounds of deliberation.

ICALP 2023

70:18 Low Sample Complexity Participatory Budgeting

8 Triadic Scheme With Project Interactions

Mathematically, we model project interactions as follows: if projects in group q are perfect
complements of each other, then the overlap utility that voters can derive from each project
in q is the minimum funding of any project in q. For example, consider a proposal of buying
some computers for the community. Within this, one project is for buying hardware and
another one is for buying software. If the software and hardware projects are funded 0.2 and
0.5, then the community members can only use 0.2 each, and the extra funding of 0.3 for the
hardware project is wasted 14.

On the other hand, if the projects in group r are perfect substitutes, then the utility
that voters can derive from group r is the maximum funding of a project in r. Thus, if two
companies are paid 0.2 and 0.5 to do the same work, only 0.5 will be used, and 0.2 is wasted.

We now give a formal model of the set of projects. Let mc denote the number of groups of
perfect complementary projects, ms denote the number of groups of perfect substitute projects,
and mr denote the number of regular projects. Let s(q) denote the number of projects in
group q. For groups of perfect complementary and perfect substitute projects, s(q) ≥ 2 and
for regular projects s(q) = 1. The total number of projects is m =

(∑mc+ms

q=1 s(q)
)

+ mr. For
simplicity, project groups are arranged such that groups 1, . . . , mc are perfect complementary,
groups mc + 1, . . . , mc + ms are perfect substitutes, and mc + ms + 1, . . . , mc + ms + mr are
regular projects.

Let f(b) be the efficiency function which quantifies how much budget b respects the
project interactions. Specifically, f(b) takes a budget b ∈ Rm and outputs a vector in
Rmc+ms+mr , where

f(b)q =


s(q) · min({bj | j ∈ group q}) if q ∈ [1, mc] (perfect complementary groups),
max({bj | j ∈ group q}) if q ∈ [mc + 1, mc + ms], (perfect substitute groups)
{bj | j ∈ group q} otherwise. (regular projects).

For a group of perfect complementary projects, the corresponding output element is the
bottle-neck allocation in the group, multiplied by the number of projects in the group. For a
group of perfect substitute projects, the corresponding output element is the largest allocation
in that group. For regular projects, the corresponding output elements are the same as the
allocation to the project. We now give a modified definition of the overlap utility, accounting
for project interactions.

▶ Definition 37. The overlap utility of budgets a and b, accounting for project interactions

is u(a, b) =
mc+ms+mr∑

q=1
min(f(a)q, f(b)q).

In the following definition we formally state the requirements for a budget to be consistent
with the project interactions.

▶ Definition 38. A budget b respects the project interactions if and only if projects in
each perfect complementary group are all funded equally, and at most one project in each
perfect substitute group is funded at all.

The following lemma states that the efficiency function f(b) sums to 1 if and only if the
budget b respects the project interactions.

14 This is a stylized model and in general, the scale of the funds required for each project can be very
different.

M. Goyal, S. Sakshuwong, S. Sarmasarkar, and A. Goel 70:19

▶ Lemma 39. Budget b respects the project interactions iff the efficiency function f(b)
satisfies

∑
q f(b)q = 1. Otherwise,

∑
q f(b)q < 1.

We now give a result that a Pareto improvement exists over a budget that does not
respect the project interactions.

▶ Lemma 40. If
∑

q f(b)q < 1, then for some k ∈ [mc + ms + mr], there exists a budget b′

for which f(b′)k > f(b)k and f(b′)q ≥ f(b)q for all project groups q.

The proofs of lemmas 39 and 40 are presented in Appendix A.5 and A.6 in [17].
We now give the main result of this section. We show that if either of the budgets of the

bargaining agents respect the project interactions (which will be true for rational agents),
then the outcome of any median scheme respects project interactions. Since the class of
median schemes contains the class of Nash bargaining schemes (Theorem 12), this result also
applied to N and therefore also to our randomized bargaining scheme nrand.

▶ Theorem 41. If budget a or b respects the project interactions, then for any budget c ∈ B,

M(a, b, c) respects the project interactions.

Proof. Let z be an outcome from M(a, b, c). Assume without loss of generality that budget
a respects the project interactions, and suppose that outcome z does not. By Lemma 39,∑

q f(a)q = 1 and
∑

q f(z)q < 1. Thus, there exists some k where f(a)k > f(z)k. By
Lemma 40, there exists a budget z′ which respects the project interactions and f(z′)q ≥ f(z)q

for all project groups q and f(z′)k > f(z)k. The overlap utility functions satisfy:

u(a, z′) =
∑

q

min(f(a)q, f(z′)q) >
∑

q

min(f(a)q, f(z)q) = u(a, z),

u(b, z′) =
∑

q

min(f(b)q, f(z′)q) ≥
∑

q

min(f(b)q, f(z)q) = u(b, z).

u(c, z′) =
∑

q

min(f(c)q, f(z′)q) ≥
∑

q

min(f(c)q, f(z)q) = u(c, z).

This implies that the sum of overlap utilities of a, b, and C with z′ is higher than that with
z, a contradiction for an outcome of M. ◀

Theorem 41 implies that if every voter has a preferred budget that respects the project
interactions, then the outcome of the sequential deliberation mechanism will also respect the
project interactions, no matter how many rounds it runs.

9 Conclusion

We study low sample-complexity mechanisms for PB, which are particularly attractive when
the policymakers are interested in obtaining a quick estimate of the voter’s preferences
or when a full-fledged PB election is difficult or costly to conduct. In our PB setup, the
distortion of mechanisms that obtain and use the votes of only one uniformly randomly
sampled voter is 2. Extending this result, we show that when two voters are sampled, and a
convex combination of their votes is used by the mechanism, the distortion cannot be made
smaller than 2. We then show that with 3 samples, there is a significant improvement in
the distortion – we give a PB mechanism that obtains a distortion of 1.66. Our mechanism
builds on the existing works on Nash bargaining between two voters with a third voter’s
preferred outcome as the disagreement point. We also give a lower bound of 1.38 for our
mechanism.

ICALP 2023

70:20 Low Sample Complexity Participatory Budgeting

References
1 Elliot Anshelevich and John Postl. Randomized social choice functions under metric preferences.

Journal of Artificial Intelligence Research, 58:797–827, 2017.
2 Kenneth J Arrow, Amartya Sen, and Kotaro Suzumura. Handbook of social choice and welfare,

volume 2. Elsevier, 2010.
3 Haris Aziz, Bo Li, and Xiaowei Wu. Approximate and strategyproof maximin share allocation

of chores with ordinal preferences. Mathematical Programming, pages 1–27, 2022.
4 Haris Aziz and Nisarg Shah. Participatory budgeting: Models and approaches. In Pathways

Between Social Science and Computational Social Science, pages 215–236. Springer, 2021.
5 Gerdus Benade, Swaprava Nath, Ariel D Procaccia, and Nisarg Shah. Preference elicitation

for participatory budgeting. Management Science, 67(5):2813–2827, 2021.
6 Ken Binmore, Ariel Rubinstein, and Asher Wolinsky. The nash bargaining solution in economic

modelling. The RAND Journal of Economics, pages 176–188, 1986.
7 Steven J Brams and Peter C Fishburn. Voting procedures. Handbook of social choice and

welfare, 1:173–236, 2002.
8 Hendrik Ewens and Joris van der Voet. Organizational complexity and participatory innovation:

participatory budgeting in local government. Public Management Review, 21(12):1848–1866,
2019.

9 Brandon Fain, William Fan, and Kamesh Munagala. Concentration of distortion: The value
of extra voters in randomized social choice. IJCAI, 2020.

10 Brandon Fain, Ashish Goel, Kamesh Munagala, and Nina Prabhu. Random dictators with a
random referee: Constant sample complexity mechanisms for social choice. AAAI, 2019.

11 Brandon Fain, Ashish Goel, Kamesh Munagala, and Sukolsak Sakshuwong. Sequential
deliberation for social choice. In Web and Internet Economics, pages 177–190. Springer, 2017.

12 Rupert Freeman, David M Pennock, Dominik Peters, and Jennifer Wortman Vaughan. Truthful
aggregation of budget proposals. Journal of Economic Theory, 193:105234, 2021.

13 Ernesto Ganuza and Gianpaolo Baiocchi. The power of ambiguity: How participatory budgeting
travels the globe. Journal of Public Deliberation, 8, 2012.

14 Nikhil Garg, Vijay Kamble, Ashish Goel, David Marn, and Kamesh Munagala. Iterative local
voting for collective decision-making in continuous spaces. Journal of Artificial Intelligence
Research, 64:315–355, 2019.

15 Ashish Goel, Anilesh K. Krishnaswamy, Sukolsak Sakshuwong, and Tanja Aitamurto. Knapsack
voting for participatory budgeting. ACM Transactions on Economics and Computation, 7(2),
2019.

16 Ashish Goel and David T Lee. Towards large-scale deliberative decision-making: Small groups
and the importance of triads. In Proceedings of the 2016 ACM Conference on Economics and
Computation, pages 287–303, 2016.

17 Mohak Goyal, Sukolsak Sakshuwong, Sahasrajit Sarmasarkar, and Ashish Goel. Low sample
complexity participatory budgeting, 2023. arXiv:2302.05810.

18 Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022. URL: https://www.
gurobi.com.

19 Pallavi Jain, Krzysztof Sornat, and Nimrod Talmon. Participatory budgeting with project
interactions. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial
Intelligence, IJCAI-20, pages 386–392, 2020.

20 Reshef Meir, Fedor Sandomirskiy, and Moshe Tennenholtz. Representative committees of
peers. Journal of Artificial Intelligence Research, 71:401–429, 2021.

21 Dominik Peters, Grzegorz Pierczyński, and Piotr Skowron. Proportional participatory budget-
ing with cardinal utilities. arXiv preprint, 2020. arXiv:2008.13276.

22 Hilary Wainwright. Making a people’s budget in porto alegre. NACLA Report on the Americas,
36:37–42, March 2003.

23 Brian Wampler. A guide to participatory budgeting. In Participatory Budgeting. World Bank,
2007.

https://arxiv.org/abs/2302.05810
https://www.gurobi.com
https://www.gurobi.com
https://arxiv.org/abs/2008.13276

The Impacts of Dimensionality, Diffusion, and
Directedness on Intrinsic Cross-Model Simulation
in Tile-Based Self-Assembly
Daniel Hader #

Department of Computer Science and Computer Engineering,
University of Arkansas, Fayetteville, AR, USA

Matthew J. Patitz #

Department of Computer Science and Computer Engineering,
University of Arkansas, Fayetteville, AR, USA

Abstract
Algorithmic self-assembly occurs when components in a disorganized collection autonomously combine
to form structures and, by their design and the dynamics of the system, are forced to intrinsically
follow the execution of algorithms. Motivated by applications in DNA-nanotechnology, theoretical
investigations in algorithmic tile-based self-assembly have blossomed into a mature theory with
research strongly leveraging tools from computability theory, complexity theory, information theory,
and graph theory to develop a wide range of models and to show that many are computationally
universal, while also exposing a wide variety of powers and limitations of each. In addition to
computational universality, the abstract Tile-Assembly Model (aTAM) was shown to be intrinsically
universal (FOCS 2012), a strong notion of completeness where a single tile set is capable of simulating
the full dynamics of all systems within the model; however, this result fundamentally required
non-deterministic tile attachments. This was later confirmed necessary when it was shown that the
class of directed aTAM systems, those in which all possible sequences of tile attachments eventually
result in the same terminal assembly, is not intrinsically universal (FOCS 2016). Furthermore,
it was shown that the non-cooperative aTAM, where tiles only need to match on 1 side to bind
rather than 2 or more, is not intrinsically universal (SODA 2014) nor computationally universal
(STOC 2017). Building on these results to further investigate the impacts of other dynamics, Hader
et al. examined several tile-assembly models which varied across (1) the numbers of dimensions
used, (2) restrictions imposed on the diffusion of tiles through space, and (3) whether each system is
directed, and determined which models exhibited intrinsic universality (SODA 2020). Such results
have shed much light on the roles of various aspects of the dynamics of tile-assembly and their effects
on the universality of each model. In this paper we extend that previous work to provide direct
comparisons of the various models against each other by considering intrinsic simulations between
models. Our results show that in some cases, one model is strictly more powerful than another, and
in others, pairs of models have mutually exclusive capabilities. This direct comparison of models
helps expose the impacts of these three important aspects of self-assembling systems, and further
helps to define a hierarchy of tile-assembly models analogous to the hierarchies studied in traditional
models of computation.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness

Keywords and phrases Tile-Assembly, Tiles, aTAM, Intrinsic Simulation, Simulation

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.71

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2305.01877 [8]

Funding Daniel Hader : Supported in part by National Science Foundation Grant CAREER-1553166.
Matthew J. Patitz : Supported in part by National Science Foundation Grant CAREER-1553166.

EA
T
C
S

© Daniel Hader and Matthew J. Patitz;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 71; pp. 71:1–71:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dhader@uark.edu
mailto:patitz@uark.edu
https://doi.org/10.4230/LIPIcs.ICALP.2023.71
https://arxiv.org/abs/2305.01877
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

71:2 Intrinsic Cross-Model Simulation in Tile-Based Self-Assembly

1 Introduction

Self-assembling systems are those in which a disorganized collection of simple components
spontaneously combine to form complex, organized structures through random motion and
local interactions. From the pristine, periodic arrangements formed by crystallizing atoms
to the robust coordination of dividing cells in developing organisms, such systems are the
source of much complexity in nature and a topic of critical importance to many fields of
research. Among them is the field of DNA nanotechnology, wherein artificial DNA strands
are used as structural units that self-assemble according to the dynamics of DNA base pairing,
which has seen immense success over the past several decades in harnessing the power of
self-assembly to create microscopic structures with incredible precision [3, 11, 12, 18] and
even perform algorithmic tasks at the nano-scale [4, 6, 13, 14, 17, 20, 24, 25]. Because it’s
difficult and expensive to accurately model the chemistry of DNA, a variety of simplifying
models have been proposed to facilitate the design of DNA-based self-assembling systems.
Among the more popular and effective ones are tile-assembly (TA) models where components,
made of several bound DNA strands exposing small unbound portions with which other
components can bind, are abstractly represented as geometric tiles whose labeled sides
attach to one another according to predefined affinity rules [5, 16, 22]. The advantage of
these models lies not only in their success as design tools, but in their similarity to existing
models studied heavily in computer science such as Wang tiles and cellular automata. This
similarity isn’t a coincidence either; the first TA model proposed, the abstract Tile-Assembly
Model (aTAM), was designed, at least in part, to show that the dynamics of DNA-based
self-assembly are algorithmically universal [22]. Consequently, DNA nanotechnology shares a
unique relationship with the theory of computation, with theorists frequently borrowing ideas
from complexity, computability, and information theory to study questions regarding, among
many other things, what kinds of structures can be self-assembled, the relative difficulty of
assembling different shapes, and how variations in a model’s dynamics affect its algorithmic
power. This paper is particularly focused on that latter question. As with more conventional

Figure 1 During an intrinsic simulation, the dynamics of individual tile attachments are simulated
so that blocks of tiles in the simulating system “look like” individual tiles at scale.

models of computation, we generally study such questions by proving whether one model
is capable of simulating all systems of another. We have to be careful about our definition
of simulation however, as it’s generally straightforward to show that many TA models are
capable of universal computation. Consequently, most TA models are capable of “simulating”
all others in that they can simulate a Turing machine which can in turn simulate the other
model. To learn something useful about the relative power of two TA models therefore, we
have to consider the geometry of the tile-assembly dynamics. We do this by adapting a
tool from the theory of cellular automata, namely intrinsic simulation. For a simulation

D. Hader and M. J. Patitz 71:3

to be intrinsic, we require that the simulation is not merely symbolic (i.e. how a Turing
machine can simulate an aTAM system by storing an internal representation of the tiles as
symbols on its tape), but rather geometric wherein blocks of tiles in the simulating system
correspond to individual tiles in the simulated system and the order of tile attachments
in these blocks follow those in the simulated system up to a fixed scale factor. In other
words, such a simulation would appear identical to the system being simulated if we “zoomed
out” sufficiently far. This approach is not novel to our results, in fact there is already a
relatively mature theory of intrinsic simulations in tile-assembly which has resulted in a
“kind of computational complexity theory for self-assembly” [23]. Such efforts have been
instrumental in characterizing the relative power of TA models and has lead to a deeper
understanding how different dynamics can be used for the same algorithmic purpose.

Our results
In an attempt to extend several previous results regarding intrinsic simulation, here we
consider 3 specific variations of the aTAM: dimensionality, where both 2D and 3D systems
are considered, diffusion, where tiles cannot attach in regions which have been surrounded by
previously attached tiles, and directedness, where tile attachments in a system are required
to result in exactly one terminal assembly. It’s important to note that these variations aren’t
arbitrary either. The difference between directed and undirected systems is analogous to the
difference between deterministic and probabilistic algorithms and, among other things, plays
a role in the study of the complexity of shape assembly [21, 10]. The diffusion restriction on
the other hand is often used to make 3D tile-assembly models more “realistic” by limiting
tile attachments to those locations in which a tile could reasonably diffuse (i.e. not in a
region completely surrounded by other tiles). These variations can be introduced into the
aTAM in any combination to yield 8 different models and, considering all ordered pairs of
these 8 models gives rise to a table consisting of 64 entries each representing one model’s
ability or inability to intrinsically simulate the dynamics of another. Generally speaking,
results regarding these cross-model simulations are complex, involving intricate tile-assembly
constructions and counterexamples; consequently, only a handful of these entries have been
proved in past literature.

In this paper, we fill a considerable number of missing entries. Table 1 lays out our results
along with past results denoted by an asterisk. In it, entries are labeled to indicate whether
the model in the row’s header can simulate the model in the column’s header. There are of
course a few entries for which the answer is obvious, which we state as observations with
justification rather than full theorems, but many of our results are distinctly non-trivial and
some were rather unexpected. For instance, while we initially suspected that the diffusion
restricted version of the aTAM (i.e. the Planar aTAM or PaTAM) was, as it’s name suggests,
a weaker version of the aTAM, we found that both models exhibit dynamics which cannot
be simulated by the other. While the table is still missing a few entries, our contributions
have brought the number of known entries up to 52 from the 16 which previously existed
in published literature (8 of which were technically not explicitly stated, but were trivial
observations based on the tile sets and proofs presented in [7]).1 The rest of our paper is laid
out as follows. In Section 2, we provide definitions of the various models and concepts used.

1 It should also be noted that most of the remaining unknown entries involve simulating directed, diffusion
restricted systems. While we do hope to fill these entries in the future, we suspect that their proofs will
be quite complicated since simulating diffusion restricted systems is tricky and counterexamples are
often harder to find in directed systems.

ICALP 2023

71:4 Intrinsic Cross-Model Simulation in Tile-Based Self-Assembly

Table 1 Table of our results, outlining whether the row’s model can intrinsically simulate the
column’s model. PaTAM is the Planar aTAM, 3DaTAM the 3-dimensional aTAM, and SaTAM
is the Spatial aTAM (see Section 2.2 for full definitions). All refers to the set of all systems in a
model and dir refers to the subset of directed systems. Cells marked with an asterisk (*) are existing
results and those marked with a dagger (†) are trivial observations using tile sets from existing
results. All other results are novel.

aTAM PaTAM
all dir all dir

aTAM
all yes* [2] no

(thm. 11, obs. 5)
?

dir no (thm. 9) no* [9] ?

PaTAM
all

no (thm. 10, obs. 5)
no* [7] yes (thm. 13)

dir no (thm. 9) no* [7]

3DaTAM
all yes†(obs. 7) ? ?
dir no (thm. 9) yes† (obs. 7) no (thm. 9) ?

SaTAM
all yes† (obs. 7) ? ?
dir no (thm. 9) yes† (obs. 7) no (thm. 9) ?

3DaTAM SaTAM
all dir all dir

aTAM
all

no (obs. 6)
dir

PaTAM
all
dir

3DaTAM
all yes* [7] no

(thm. 12, obs. 5)
?

dir no (thm. 9) yes* [7] ?

SaTAM
all yes† (obs. 8) yes* [7] ?
dir no (thm. 9) yes† (obs. 8) no (thm. 9) ?

Then in Section 3 we state our results explicitly and sketch their proofs. That section is
perhaps the most important since it is where we intuitively explain our results and describe
how they follow from the dynamics of the model. Complete proofs and technical details can
be found in a full version of the paper on arXiv [8].

2 Preliminary definitions

Throughout this paper we will use Z, Z+, and N to denote the set of integers, positive
integers, and non-negative integers respectively. We will also assume Zd has the additional
structure of a lattice graph so that each point is a vertex and two points are adjacent (i.e.
share an edge) exactly when their Euclidean distance is 1.

2.1 Definition of the abstract Tile-Assembly Model
In this section, we define the abstract Tile-Assembly Model in 2 and 3 dimensions. We will
use the abbreviation aTAM to refer to the 2D model and 3DaTAM for the 3D model. These
definitions are borrowed from [7] and we note that [19] is a good introduction to the model
for unfamiliar readers.

D. Hader and M. J. Patitz 71:5

Fix d ∈ {2, 3} to be the number of dimensions and Σ to be some alphabet with Σ∗ its
finite strings. A glue g ∈ Σ∗ × N consists of a finite string label and non-negative integer
strength. A tile type is a tuple t ∈ (Σ∗ × N)2d, thought of as a unit square or cube with a
glue on each side. A tile set is a finite set of tile types. We always assume a finite set of tile
types, but allow an infinite number of copies of each tile type to occupy locations in the Zd

lattice, each called a tile.
Given a tile set T , a configuration is an arrangement (possibly empty) of tiles in the

lattice Zd, i.e. a partial function α : Zd 99K T . Two adjacent tiles in a configuration interact,
or are bound or attached, if the glues on their abutting sides are equal (in both label and
strength) and have positive strength. Each configuration α induces a binding graph Bα whose
vertices are those points occupied by tiles, with an edge of weight s between two vertices
if the corresponding tiles interact with strength s. An assembly is a configuration whose
domain (as a graph) is connected and non-empty. The shape Sα ⊆ Zd of assembly α is the
domain of α. For some τ ∈ Z+, an assembly α is τ -stable if every cut of Bα has weight at
least τ , i.e. a τ -stable assembly cannot be split into two pieces without separating bound
tiles whose shared glues have cumulative strength τ . Given two assemblies α, β, we say α is
a subassembly of β (denoted α ⊑ β) if Sα ⊆ Sβ and for all p ∈ Sα, α(p) = β(p).

A tile-assembly system (TAS) is a triple T = (T, σ, τ), where T is a tile set, σ is a finite
τ -stable assembly called the seed assembly, and τ ∈ Z+ is called the binding threshold. Given
a TAS T = (T, σ, τ) and two τ -stable assemblies α and β, we say that α T -produces β in
one step (written α →T

1 β) if α ⊑ β and |Sβ \ Sα| = 1. That is, α →T
1 β if β differs from α

by the addition of a single tile. The T -frontier is the set ∂T α =
⋃

α→T
1 β Sβ \ Sα of locations

in which a tile could τ -stably attach to α.
We use AT to denote the set of all assemblies of tiles in tile set T . Given a TAS

T = (T, σ, τ), a sequence of k ∈ Z+ ∪ {∞} assemblies α0, α1, . . . over AT is called a T -
assembly sequence if, for all 1 ≤ i < k, αi−1 →T

1 αi. The result of an assembly sequence is
the unique limiting assembly of the sequence. For finite assembly sequences, this is the final
assembly; whereas for infinite assembly sequences, this is the assembly consisting of all tiles
from any assembly in the sequence. We say that α T -produces β (denoted α →T β) if there is
a T -assembly sequence starting with α whose result is β. We say α is T -producible if σ →T α

and write A[T] to denote the set of T -producible assemblies. We say α is T -terminal if α is
τ -stable and there exists no assembly which is T -producible from α. We denote the set of
T -producible and T -terminal assemblies by A□[T].

When T is clear from context, we may omit T from the notation above.

Cooperative Attachment

Given a TAS T = (T, σ, τ), for a tile to attach to an assembly it must match glues whose
cumulative strength is at least τ in order to result in a τ -stable assembly. This can happen
if, for instance, one of the matched glues has strength at least τ , in which case any other
matching glues are superfluous. Alternatively, a tile may still attach without any τ -strength
glues though this requires multiple glues to match whose strengths sum to at least τ . We
refer to such attachments as cooperative.

2.2 Model Variations
In this paper we consider 3 variations of the aTAM. Other than the 3D aTAM, these include
directed and diffusion restricted versions of the models. We say that a TAS T is directed if
|A□[T]| = 1, i.e. T admits only a single producible terminal assembly. When we refer to a
directed model we simply mean the set of all directed systems in a model. Directed systems
are desirable for self-assembly since we often want our tiles to grow into a single target shape.

ICALP 2023

71:6 Intrinsic Cross-Model Simulation in Tile-Based Self-Assembly

For diffusion restricted models, we note that in the aTAM it’s possible for tiles to attach
within a region of space which has been completely surrounded by other tiles. In 2D, we can
imagine that the tiles are able to navigate around the assembly through the 3rd dimension,
but in 3D such attachments are difficult to justify. Consequently, we also consider models
where such attachments are forbidden. In 2D, this restriction could model a self-assembly
process on the surface of a droplet of water where surface tension prevents the components
from taking advantage of the 3rd dimension. We call the 2D diffusion restricted aTAM the
Planar aTAM or PaTAM, and we call the 3D diffusion restricted aTAM the Spatial aTAM
or SaTAM. In these models, and their directed subsets, we refer to regions which have been
completely surrounded (in which no tile attachments are allowed to occur) constrained. To
formally model this restriction, we first note that given a finite d-dimensional assembly α, the
graph Zd \ Sα consists of a finite number of connected components, exactly one of which will
be infinite in size. We say that this component graph is the outside of α while the finite-sized
components are constrained. In a diffusion restricted system we only allow tile attachments
on the outside of an assembly.

2.3 Intrinsic Simulation

First we provide a high-level definition of the notion of intrinsic simulation which should be
sufficient for understanding our results. A full technical definition follows afterward. For
brevity, in this paper, unless explicitly stated, “simulation” will refer to intrinsic simulation.

High-Level Description of Simulation

Simulation of system T by system S occurs at a scale factor m, so that m×m (or m×m×m

in 3D) blocks of tiles from S, which we refer to as macrotiles, correspond to individual
tiles in T . For a given simulation, we define a macrotile representation function R which
describes this mapping of macrotiles to tiles. Additionally for convenience, using R we define
an assembly representation function R∗ which maps entire assemblies from S to assemblies
in T , essentially evaluating R on each macrotile location for a given assembly in S. Note
that we don’t require all locations within a macrotile to contain a tile and macrotile blocks
containing tiles can still be mapped to empty space under R. When a tile attachment causes
the representation of a macrotile location to map to a tile for the first time, we say that
the attachment has caused the macrotile to resolve and once a macrotile has resolved, any
additional tile attachments within the macrotile cannot change its representation under
R. While we do allow macrotile locations to map to empty space, for a simulation to be
valid there must be restrictions on where tiles are allowed to attach in S. For our notion of
simulation to be useful as a metric of comparing the relative capabilities of models, we require
that S only place tiles within the macrotile regions immediately adjacent (not diagonally) to
those which have already resolved, and we call such locations fuzz. This allows tiles in S
to attach only in macrotiles which could potentially resolve during a valid simulation, since
only the locations in T mapped to by the fuzz locations could possibly receive tiles in T .
If a class of systems C can all be simulated by another class of systems C ′ sharing a single
tile set (though each may have a different seed assembly), we say that class C ′ intrinsically
simulates C with a universal tile set. We can also say that C ′ is intrinsically universal (IU)
for C.

D. Hader and M. J. Patitz 71:7

Formal Definition of Simulation

Now we provide formal definitions for intrinsic simulation. The definitions here are taken
from [7] and specifically refer to 3D systems. Similar definitions for 2D intrinsic simulation
are given in [9]. For simulation of a 2D system by a 3D system, we use the 3D definitions
and assume that all systems in the 2D system are defined in 3D so that assemblies occupy
only the z = 0 plane.

From this point on, let T be a tile set and let the scale factor be m ∈ Z+. An m-block
macrotile over T is a partial function α : Z3

m 99K T , where Zm = {0, 1, . . . , m − 1}. Let
BT

m be the set of all m-block macrotiles over T . The m-block with no domain is said to
be empty. For a general assembly α : Z3 99K T and (x′, y′, z′) ∈ Z3, define αm

(x′,y′,z′) to be
the m-block macrotile defined by αm

(x′,y′,z′)(ix, iy, iz) = α(mx′ + ix, my′ + iy, mz′ + iz) for
0 ≤ ix, iy, iz < m. For some tile set S, a partial function R : BS

m 99K T is said to be a valid
m-block macrotile representation from S to T if for any α, β ∈ BS

m such that α ⊑ β and
α ∈ dom R, then R(α) = R(β).

For a given valid m-block macrotile representation function R from tile set S to tile set
T , define the assembly representation function2 R∗ : AS → AT such that R∗(α′) = α if and
only if α(x, y, z) = R

(
α′m

(x,y,z)

)
for all (x, y, z) ∈ Z3. For an assembly α′ ∈ AS such that

R∗(α′) = α, α′ is said to map cleanly to α ∈ AT under R∗ if for all non empty blocks α′m
(x,y,z),

(x, y, z) + (ux, uy, uz) ∈ dom (α) for some (ux, uy, uz) ∈ U3 such that u2
x + u2

y + u2
z ≤ 1, or if

α′ has at most one non-empty m-block αm
0,0. In other words, α′ may have tiles on macrotile

blocks representing empty space in α, but only if that position is adjacent to a tile in α. We
call such growth “around the edges” of α′ fuzz and thus restrict it to be adjacent to only
valid macrotiles, but not diagonally adjacent (i.e. we do not permit diagonal fuzz).

In the following definitions, let T = (T, σT , τT) be a TAS, let S = (S, σS , τS) be a TAS,
and let R be an m-block representation function R : BS

m → T .

▶ Definition 1. We say that S and T have equivalent productions (under R), and we write
S ⇔ T if the following conditions hold:
1. {R∗(α′)|α′ ∈ A[S]} = A[T].
2. {R∗(α′)|α′ ∈ A□[S]} = A□[T].
3. For all α′ ∈ A[S], α′ maps cleanly to R∗(α′).

▶ Definition 2. We say that T follows S (under R), and we write T ⊣R S if α′ →S β′, for
some α′, β′ ∈ A[S], implies that R∗(α′) →T R∗(β′).

The next definition essentially specifies that every time S simulates an assembly α ∈ A[T],
there must be at least one valid growth path in S for each of the possible next steps that T
could make from α which results in an assembly in S that maps to that next step. While
this definition is unfortunately dense, it accommodates subtle situations such as where S
must “commit to” a subset of possible representations in T before being explicitly mapped,
under R, to any one in particular.

▶ Definition 3. We say that S models T (under R), and we write S |=R T , if for every
α ∈ A[T], there exists Π ⊂ A[S] where Π ̸= ∅ and R∗(α′) = α for all α′ ∈ Π, such that, for
every β ∈ A[T] where α →T β, (1) for every α′ ∈ Π there exists β′ ∈ A[S] where R∗(β′) = β

and α′ →S β′, and (2) for every α′′ ∈ A[S] where α′′ →S β′, β′ ∈ A[S], R∗(α′′) = α, and
R∗(β′) = β, there exists α′ ∈ Π such that α′ →S α′′.

2 Note that R∗ is a total function since every assembly of S represents some assembly of T ; the functions
R and α are partial to allow undefined points to represent empty space.

ICALP 2023

71:8 Intrinsic Cross-Model Simulation in Tile-Based Self-Assembly

Figure 2 An illustration of the window movie lemma. On the left are two producible assemblies
α = αL ∪ αR and β = βL ∪ βR made from the same tile set, which are each divided into two
subassemblies by the window w. For both assemblies, the window w has the same window movie, i.e.
the order in which tiles present glues along the window, depicted by numbers on the tiles describing
the relative order in which they attached. Since all growth within the windowed regions depends
only on the glues presented along the window, we can splice these assemblies to get αL ∪ βR or
βL ∪ αR (illustrated on the right). The window movie lemma then guarantees that both of these
assemblies are producible.

▶ Definition 4. We say that S intrinsically simulates T (under R) if S ⇔R T (equivalent
productions), T ⊣R S and S |=R T (equivalent dynamics).

2.4 Window Movie Lemma

In [15], the authors proved the Window Movie Lemma, a pumping lemma of sorts for the
aTAM (and its variants) which has since seen much use as a powerful tool for proving that
certain tile-assembly simulations are impossible. Since it appears in several of our proofs,
we first informally describe the lemma, then explicitly state it. A window is an edge cut
which partitions the lattice graph (Z2 in 2D or Z3 in 3D) into two regions. Given some
window w and some assembly sequence α⃗ in a TAS T , a window movie M is defined to be
the ordered sequence of glues presented along w by tiles in T during the assembly sequence α⃗.
Informally, if we think of the window w as a thin pane dividing two regions of tile locations
and imagine stepping through the assembly sequence α⃗ one tile attachment at a time, M is
constructed by recording the glues which appear on the surface of the pane and their relative
order. More formally, a window movie is the sequence M α⃗

w = {(vi, gi)} of pairs of grid graph
vertices vi and glues gi, given by order of appearance of the glues along window w during α⃗.
Furthermore, if k glues appear along w during the same assembly step in α⃗, then these glues
appear contiguously and are listed in lexicographical order of the unit vectors describing
their orientation in M α⃗

w .
Informally, the Window Movie Lemma states that any tile attachments that occur within

the region bounded by a window are possible in a region bounded by the same window (up
to translation) with an identical window movie. This allows us to splice assembly sequences
together and, consequently, pump a sequence of tile attachments so long as we can ensure the
existence of identical window movies. Figure 3 illustrates how the Window Movie Lemma
can be used to pump growth.

D. Hader and M. J. Patitz 71:9

Figure 3 Using the Window Movie Lemma to “pump” assembly sequences. The top assembly
depicts a ribbon of tiles growing horizontally to the right and numbers on tiles describe a relative
order of attachment. If such a ribbon of tiles grows long enough, then by pigeonhole principle,
eventually there must exist two identical vertical slices along its length. Because every tile attachment
inside a window w depends only on the tiles and their relative order of attachment along the window,
we can thus find an assembly sequence where growth repeats after the second identical vertical slice.
This can be performed indefinitely to “pump” the ribbon.

Window Movie Lemma

Let α⃗ = {αi} and β⃗ = {βi} be assembly sequences in TAS T and let α, β be the result
assemblies of each respectively. Let w be a window that partitions α into two configurations
αL and αR and let w′ = w + c⃗ be a translation of w that partitions β into two configurations
βL and βR (with αL and βL being the configurations containing their respective seed tiles).
Furthermore define M α⃗

w and M β⃗
w to be the window movies for α⃗, w and β⃗, w′ respectively.

Then if M α⃗
w = M β⃗

w, the assemblies αL ∪β′
R and β′

L ∪αR (where β′
L = βL − c⃗ and β′

R = βR − c⃗)
are also producible.

3 Results

In this section we sketch our results. Detailed proofs can be found in the full version on
arXiv [8]. We begin with some trivial observations which allow us to fill in several boxes
from Table 1.

▶ Observation 5. If there exists a directed system T in tile-assembly model M which cannot
be simulated by any system in tile-assembly model M ′, then (1) there exists a system in M

which cannot be simulated by any system in M ′, (2) there exists a system in M which cannot
be simulated by any directed system in M ′, and (3) there exists a directed system in M which
cannot be simulated by any directed system in M ′.

▶ Observation 6. There exists systems, both directed and undirected, in the 3D models
(3DaTAM and SaTAM) which cannot be simulated by any systems in any of the 2D models
(aTAM and PaTAM, both directed and undirected).

Observation 5 holds because the set of directed systems in a model is a subset of all
systems in that model. Consequently, T is a system in both M and in the directed subset
of M . By assumption, T cannot be simulated by any system in M ′ and therefore cannot

ICALP 2023

71:10 Intrinsic Cross-Model Simulation in Tile-Based Self-Assembly

be simulated by any subset of systems of M ′, particularly the subset of directed systems.
Regarding Observation 6, while we restrict the notion of simulation to use square macrotiles,
simulations of systems on triangular lattices have been implemented using roughly hexagonal
macrotiles made from square tiles [1], so one might imagine the possibility that by loosening
our definition of simulation to use more interesting macrotiles, it could be possible to capture
the geometry of 3D square tiles using 2D tiles. In our case however, we note that there
can exist no planar embedding of the lattice graph of Z3 as a consequence of Kuratowski’s
theorem. Consequently, there can be no way to divide Z2 into connected regions of macrotile
locations which preserves the adjacency of points in Z3 and therefore simulation could not
be possible even if we generalized our notion of macrotiles. This is true for any 3D systems
which have producible assemblies whose domains, as graphs, are non-planar as is trivially
possible in all 3D models considered.

3.1 Simulations using existing tile sets

In [7], it was shown that there exists IU tile sets for the 3DaTAM, SaTAM, and both models’
subsets of directed systems. While the main focus of that result was intrinsic simulation
within a model, those IU tile sets can be used to trivially fill in a few boxes of Table 1. First
we note that any aTAM system can also be thought of as a 3DaTAM system (or even SaTAM
system since tiles occupying only a single plane of 3D space can’t constrain a 3D region)
with glues only appearing on 4 of the 6 faces of any tile. Second, we note that the IU tile sets
for the 3DaTAM and SaTAM differed only by the addition of a few tile types responsible
for growing a wall around each face of a macrotile before resolving. This was necessary for
intrinsic universality in the SaTAM since without them, the tiles making up a macrotile
were sparse enough to necessarily allow a diffusion path for tiles to pass through a resolved
macrotile. Consequently, if we don’t include those tile types, then the IU tile set can simulate
3DaTAM systems even in the SaTAM since without walls surrounding each macrotile, the
diffusion restriction does not interfere with the attachment of any tiles. Finally, by design,
this tile set preserves directedness when simulating a directed system. Therefore, using the
IU tile set and proofs from [7], the following observations hold.

▶ Observation 7. There exists a universal tile set in both the 3DaTAM and SaTAM which
intrinsically simulates all systems in the aTAM, preserving directedness.

▶ Observation 8. There exists a universal tile set in the SaTAM which intrinsically simulates
all systems in the 3DaTAM, preserving directedness.

3.2 Directed systems cannot simulate undirected systems

▶ Theorem 9. There exist systems in the aTAM, 3DaTAM, PaTAM, and SaTAM, which
cannot be simulated by any directed system in any of these models.

Whereas directed systems only have one terminal assembly, undirected systems can have
several. Figure 4 illustrates the tile set and terminal assemblies of a simple undirected system
T which can be a system in the aTAM, 3DaTAM, PaTAM, or SaTAM without modification
as it does not use any dynamics unique to any of those models. Because directed systems can
only have a single terminal assembly, any directed system attempting to simulate T would
necessarily fail since any assembly representation function R∗ could not map one terminal
assembly to both terminal assemblies of T .

D. Hader and M. J. Patitz 71:11

(a) (b)

Figure 4 (a) Tile set of an undirected system for the proof of Theorem 9 and (b) Its two terminal
assemblies.

Figure 5 System T of the proof of Theorem 10. An infinite planter grows to the east from the
seed and initiates upward growth of an infinite series of counters, each taller than the last, which
initiate single-tile-wide paths that grow to the left then crash downward into the planter. To the left
of each counter, at its base, it is possible for a red tile to attach.

3.3 The PaTAM cannot simulate the aTAM
Here we show that there are aTAM systems which cannot be correctly simulated by any
PaTAM systems. To show this, we take advantage of the fact that aTAM systems are capable
of growth inside of constrained regions while PaTAM systems are not. Specifically, we show
that the PaTAM can’t simulate the directed aTAM and, by Observation 5, note that this
also implies that the PaTAM can’t simulate the aTAM.

▶ Theorem 10. There exists a system T which is a directed aTAM system, and therefore
also an aTAM system, which cannot be simulated by any PaTAM system.

Figure 5 is a schematic diagram of the terminal assembly of T , a directed aTAM system
which we claim is impossible to simulate in the PaTAM. Note that T is more complex than
a system in which tiles attach to constrain a region which could have another tile attach
within. This is because the definition of intrinsic simulation allows for macrotiles to resolve
even when they aren’t completely filled with tiles. Consequently, while macrotiles may map
to tiles constraining a region, the tiles making up the macrotiles may not constrain a region.
Our construction is designed to ensure that at some point, any supposed simulating system
must constrain a region before the tiles inside are able to attach. In our directed aTAM
system T , this is done by first initiating the growth of a planter, a gadget that counts up
in binary as it grows eastward, initiating the growth of increasingly tall arms at defined
intervals. These arms are essentially binary counter gadgets which each grow upward to a
distance, encoded in the glues of the tiles provided by the planter, and initiate the growth of
thin arms when they finish. The thin arms are just a single tile wide and begin by growing
a fixed distance to the west before growing south to crash into the planter below. By this
process, each arm initiated by the planter constrains increasingly large regions of space
which each contain a single location between the planter and arms, in which a single tile

ICALP 2023

71:12 Intrinsic Cross-Model Simulation in Tile-Based Self-Assembly

Figure 6 A schematic of system P for the proof of Theorem 11. Tiles grow in a rectangular shape,
periodically spawning arms which can crash into the walls and constrain a region. It is undirected
and its size depends non-deterministically on the number of tiles that attach between each corner.

can cooperatively attach (denoted by the red squares in Figure 5). Each of the tiles making
up the southward growing portion of the thin arms are of the same tile type, each with
identical glues on their north and south faces. While it is possible for different macrotiles
to map to the same tile in T , there are only so many combinations of tiles that make up a
macrotile. Consequently, regardless of scale factor, if we look far enough down the planter,
there will be an arm which grows tall enough that the simulating set must repeat a macrotile
representation in two places along the same thin arm. We can then use the Window Movie
Lemma to show that this arm “pumps” in our supposed simulating system, before crashing
into the planter. It is therefore impossible for any simulating PaTAM system to prevent
a region from becoming constrained before the macrotile inside is able to resolve, yielding
terminal assemblies which aren’t correctly mapped to a terminal assembly in T .

3.4 The aTAM cannot simulate the PaTAM
Given that the PaTAM is just the aTAM with an added restriction on tile attachment,
it’s not terribly surprising that the PaTAM can’t simulate the full dynamics of the aTAM;
however, less obvious is the fact that the planarity restriction also gives the PaTAM some
capabilities not possible in the aTAM, namely the ability to constrain a region and stop
growth within. We utilize this ability in our proof of Theorem 11 which is sketched here.
Also, by Observation 5, this also holds for the directed aTAM.

▶ Theorem 11. There exists a PaTAM system P which cannot be simulated by any aTAM
system.

As with the proof for Theorem 10, in the definition of intrinsic simulation, we consider
all possible representation functions and scale factors to prove impossibility. Figure 6 is a
schematic diagram of PaTAM system P which is impossible to correctly simulate in the
aTAM. Growth of P begins with tiles attaching in a row growing east. The length of this
row is non-deterministic as at any point along the row, it’s possible for a corner tile to
attach, initiating growth to the north. Consequently, P is an undirected system so any
potential simulating system must be able to simulate all possible assemblies of P . Similarly,

D. Hader and M. J. Patitz 71:13

northward and eastward growing rows of tiles attach with some length depending on how
many tiles attached before each corner. Finally, a column of tiles begins growing south
and, as it does, initiates the growth of several arms eastward, each spaced 4 tiles apart.
Both the southward growing column of tiles and the arms continue growth until they are
constrained or crash into another part of the assembly. To show that P cannot be simulated
in the aTAM, we assume the existence of a simulating aTAM system T and prove that it
must admit some assembly sequences which don’t correspond to those in P. To do this, we
consider an assembly sequence in P where the rectangle of tiles grows to a size, based on the
scale factor of the simulation, so that a sufficiently large number of sufficiently long arms are
spawned by the south growing column of tiles. We also choose an assembly sequence where
the south growing column will eventually collide with the seed tile, constraining the region
containing the arms. Because we’ve chosen the assembly to be sufficiently large, each arm
is capable of being “pumped” as per the window movie lemma. We then grow the bottom
arm until just after it has collided with the east wall and note that, while T is an aTAM
system and can still grow tiles inside of the constrained region, tiles on the inside and outside
will no longer be able to affect each other’s growth. There are a few cases to be considered,
depending on whether or not the representation function has resolved the last tile of the
bottom arm, but essentially we then show that we can continue the growth of the west wall
until its macrotiles have resolved to tiles in P that constrain the rectangle’s interior. By
a counting argument and our choice of the number of arms, we can then show that one of
the other arms must be able to continue growth within the constrained region, and that the
assembly sequence in T maps to one invalid in P.

3.5 The 3DaTAM cannot simulate the SaTAM
The proof of Theorem 12 is similar in principle to the proof of Theorem 11, albeit with a
slightly different system which takes advantage of the differences between 2D and 3D. We
sketch the proof here.

▶ Theorem 12. There exists an SaTAM system S which cannot be simulated by any 3DaTAM
system.

Figure 7 Cut-away view of system S from the proof of Theorem 12. Two chambers are connected
by a thin tunnel. Pillars growing inside the outer west chamber will eventually constrain the region
within the chambers, at which point, the pillar growing in the inner east chamber will no longer be
able to continue growth.

ICALP 2023

71:14 Intrinsic Cross-Model Simulation in Tile-Based Self-Assembly

The system S for this result, as illustrated in Figure 7, initially grows 2 nearly sealed
chambers connected by a thin tunnel which allows for a diffusion path between them. These
chambers both have a fixed base size of 9 × 9, but they can grow to have an arbitrary height
in a way similar to the frame of the system used in the proof of Theorem 11. Once fully
grown, the ceiling of one chamber contains a single tile wide opening which is the only way
for tiles to diffuse into the chambers from outside; we call the chamber with this hole the
outer chamber and the other one the inner chamber. Additionally, from the bottoms of both
chambers, pillars can grow upwards to an arbitrary height by the attachment of copies of tiles
with identical tile types. The pillar in the inner chamber will eventually crash into the ceiling
or until the pillar in the outer chamber grows tall enough to plug the opening in its ceiling
and constrain the space inside. We show that S cannot be simulated by any 3DaTAM system
by showing that, in any potential simulating system, under the right conditions, although
unwanted, it must still possible for the inner chamber pillar to continue growth even after
the outer chamber pillar has sealed the chambers. To do this, we note that during some
supposed simulation, the only way for the pillar in the inner chamber to “know” that the
chambers have been sealed, is for tiles to attach inside of the tunnel. Consequently, because
the tunnel is thin with a cross-section made of a hollow 3 × 3 square, the chambers can only
communicate with each other a finite amount of times during a simulation. Specifically, if
the scale factor of the simulation is c, then the number of tiles that can be placed in any
x-coordinate corresponding to the tunnel is bounded by 5c × 5c which includes any potential
tiles growing in the fuzz adjacent to the macrotiles of the tunnel. Therefore, by a simple
counting argument, if we initially grew our chambers to have a sufficiently large height, then
there must exist some assembly sequence where both pillars grow by any desired number
of macrotiles (which we choose to be long enough to allow pumpable growth) and during
which no tile is placed in the center of the tunnel. Using the Window Movie Lemma, we then
construct an assembly sequence where the outer chamber pumps to constrain the chambers.
Because during this assembly sequence, no tiles are placed in the center of the tunnel, there
is nothing to stop the inner chamber pillar from also being pumped. Such an assembly
sequence must be possible in any 3DaTAM system which supposedly simulates our system S,
and since this assembly sequence corresponds to one which is invalid in the SaTAM, such a
simulation is impossible.

3.6 The PaTAM can simulate the directed PaTAM
▶ Theorem 13. There exists a universal Planar aTAM tile set S that can simulate any
directed PaTAM system.

Despite the fact that both the PaTAM and directed PaTAM are not intrinsically universal
for themselves[7], using tools from [7] and [2] we are able to construct a PaTAM tile set
capable of simulating arbitrary directed PaTAM systems. Here we outline the process by
which a PaTAM tileset S can simulate any given directed PaTAM system T . The tileset S

is universal, meaning that regardless of the directed PaTAM system T , the same tileset will
be used at a fixed binding threshold, with only the seed of the simulating system changing
to accommodate T .

Given a directed PaTAM system T , we define a simulating system S using a fixed tile set
at binding threshold 2. The seed of S consists of already-resolved macrotiles in the same
configuration as the seed of T . Each macrotile in S consists of a 9 × 9 grid of structures we
call component blocks (CBs) which are each made of many smaller tile-based constructions
and which each store an encoding of the system T along with a bit of extra data in the form

D. Hader and M. J. Patitz 71:15

Figure 8 A schematic describing the 9 × 9 grid of potential component blocks which may appear
in a macrotile location. Squares containing two arrows indicate a grid location which may contain
a probe region. The surrounding macrotiles are illustrated using colored tiles to represent their
relative direction from the current macrotile. Colors of CB locations indicate which surrounding
macrotile the CB may have information about.

of specific glues on some of its tiles. The CBs of a macrotile each perform calculations using
tiles which emulate Turing machines to determine how they should grow and whether or not
the macrotile can resolve given the current information regarding the surrounding macrotiles.

Each CB essentially behaves like an individual tile on the 9 × 9 grid and we can think of
CBs as growing in one of two ways. Either the CB grows using tile attachments from another
adjacent CB in a way analogous to a τ -strength tile attachment, or a CB can grow in the gap
between two adjacent CBs in certain locations of the grid designated as probe regions. This
is analogous to a tile attachment that occurs by cooperative binding between two opposing
tiles (which we refer to as across-the-gap cooperation). These “cooperative attachments”
between CBs are used to consolidate information between the CBs. For instance, one CB
might contain information encoded about the north adjacent macrotile and one might contain
information about the west; in the probe region between them, a new CB can grow which will
contain the information about both which it can then use to determine if a tile attachment in
T would be possible in the tile location corresponding to the macrotile. Figure 8 illustrates
the layout of a macrotile into CB locations with these probe regions indicated by squares
with two opposing arrows.

Probe regions are CB locations in which two adjacent CBs, on opposite sides, can present
structures called probes which are long, thin structures that grow from the surrounding CBs
towards the center of a CB location. Each probe that grows in a probe region, indicates
some possible combination of information from surrounding macrotiles and grows in a unique
position according to this information. The length of a probe is chosen to be just shy of the
center of the CB location, so that when two probes align from opposing sides of the probe
region, there will be exactly a single tile wide gap between them. This gap allows a tile to
cooperatively attach and grow along the sides of the probes to recover the information from
both. Otherwise, if no probes in a probe region align, there will be enough room for the
components that make up a CB to squeeze in between the probes from one side of the probe
region to another. Figure 9 illustrates two scenarios involving probe regions.

Probe regions were introduced in [2] to solve the problem illustrated in Figure 10. Naively
when simulating a tile system, to check for macrotiles which may cooperate across-the-gap,
tiles must grow to query both adjacent macrotiles and determine if the attachment is possible.

ICALP 2023

71:16 Intrinsic Cross-Model Simulation in Tile-Based Self-Assembly

Figure 9 Probe regions between component blocks. The red and blue CBs grow probes to the
center of the CB location in the middle while the green CB attempts to grow through the probe
region. On the left, two probes happen to align, in which case a path of tiles containing information
from the green CB cannot pass and the CB to the east results from the cooperative tile attachment
between the probes. On the right, no probes align meaning the path of tiles from the green CB can
squeeze between the probes to influence the growth of the CB to the east.

Figure 10 When checking for across-the-gap cooperation during a simulation, tiles can’t naively
span the entire gap without disconnecting two regions of space.

This however necessarily separates regions of space and in the case of planar systems also
constrains one before it has been determined if the attachment can even occur. If it cannot,
then tiles will no longer be able to attach in the constrained region and the simulation will
likely end up being invalid. Probes avoid this problem by aligning exactly when across-the-gap
cooperation is possible while still allowing tile structures to grow through if they don’t align.

Figure 11 Hands made of component blocks growing from surrounding macrotiles.

Now that we have an idea of how the component blocks and probe regions behave we
describe the protocol for resolving a macrotile by highlighting a few important cases. Growth
within a macrotile begins when one or more of the surrounding macrotiles resolve and tiles
begin to attach within the macrotile. From a surrounding macrotile, the protocol always
begins by the growth of two “T”-shaped structures made from CBs called hands illustrated
in Figure 11. Note that two adjacent surrounding macrotiles may both attempt to grow
hands in the same location. This is handled by a single point of competition and the first
surrounding macrotile for placing a tile in the closest corner of the shared hand locations
is allowed to place theirs. Between the hands and the surrounding macrotiles probes are
grown in the regions indicated on the right of Figure 11 which allows a CB to “attach”

D. Hader and M. J. Patitz 71:17

cooperatively to combine information from both the hand and nearby macrotile. In some
cases this information may be redundant, but with two or more surrounding macrotiles at
least one location will always be able to combine information from two macrotiles.

Figure 12 Once the hands have grown, CBs cooperate until information from all sides has been
combined into a single CB. Then the macrotile can resolve.

The CBs resulting from cooperation between the hands and surrounding macrotiles then
cooperate once again and CBs grow along the hands to form clockwise elbows with additional
probe regions between them. CBs then cooperatively attach between these elbows and
cooperate again near the center of the tile to eventually combine all of the information from
the surrounding macrotiles. Once this occurs, the CB which “attaches” in the center of the
tile contains the information from all sides. If the surrounding macrotiles represent tiles
in T capable of placing a tile, additional CBs can grow to the remaining sides to present
this information to the remaining sides and repeat the procedure in the adjacent macrotile
locations.

Figure 13 Probe regions between opposing macrotiles can check for across-the-gap cooperation.

In the case that an across-the-gap cooperation is possible in T , the protocol deviates
slightly. Illustrated in Figure 13, if across-the-gap cooperation is possible between the east
and west macrotiles, their hands will share a probe region with aligned probes. Consequently,
a CB can grow in that location and resolve the macrotile. This growth may constrain the
region to the south, halting any tile attachments and CB growth in the south side of the
macrotile, but this doesn’t matter since the macrotile will only need to start the process in
adjacent macrotiles that haven’t yet resolved. The described protocol is robust to different
orders of hand growth and different numbers of surrounding macrotiles, including those
that don’t end up contributing to macrotile resolution. If at any time a CB has sufficient
information to determine how the macrotile should resolve, it begins growth to the center
and then surrounding edges of the macrotile. This process will not be interrupted by other
CBs since we are simulating a directed system where at most one unique tile can attach in
each location.

ICALP 2023

71:18 Intrinsic Cross-Model Simulation in Tile-Based Self-Assembly

References
1 John Calvin Alumbaugh, Joshua J Daymude, Erik D Demaine, Matthew J Patitz, and

Andréa W Richa. Simulation of programmable matter systems using active tile-based self-
assembly. In International Conference on DNA Computing and Molecular Programming, pages
140–158. Springer, 2019.

2 David Doty, Jack H. Lutz, Matthew J. Patitz, Robert T. Schweller, Scott M. Summers, and
Damien Woods. The tile assembly model is intrinsically universal. In Proceedings of the 53rd
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2012, pages 302–310,
2012.

3 Shawn M. Douglas, Hendrik Dietz, Tim Liedl, Björn Högberg, Franziska Graf, and William M.
Shih. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature, 459:414–418,
May 2009. doi:10.1038/nature08016.

4 Constantine Glen Evans. Crystals that count! Physical principles and experimental investiga-
tions of DNA tile self-assembly. PhD thesis, California Institute of Technology, 2014.

5 Bin Fu, Matthew J. Patitz, Robert T. Schweller, and Robert Sheline. Self-assembly with
geometric tiles. In Artur Czumaj, Kurt Mehlhorn, Andrew M. Pitts, and Roger Wattenhofer,
editors, Automata, Languages, and Programming – 39th International Colloquium, ICALP
2012, Warwick, UK, July 9-13, 2012, Proceedings, Part I, volume 7391 of LNCS, pages 714–725.
Springer, 2012.

6 Hongzhou Gu, Jie Chao, Shou-Jun Xiao, and Nadrian C. Seeman. A proximity-based
programmable dna nanoscale assembly line. Nature, 465(7295):202–205, May 2010. doi:
10.1038/nature09026.

7 Daniel Hader, Aaron Koch, Matthew J. Patitz, and Michael Sharp. The impacts of dimen-
sionality, diffusion, and directedness on intrinsic universality in the abstract tile assembly
model. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 2607–2624.
SIAM, 2020.

8 Daniel Hader and Matthew J. Patitz. The impacts of dimensionality, diffusion, and directedness
on intrinsic cross-model simulation in tile-based self-assembly, 2023. arXiv:2305.01877.

9 Jacob Hendricks, Matthew J. Patitz, and Trent A. Rogers. Universal simulation of directed
systems in the abstract tile assembly model requires undirectedness. In Proceedings of the 57th
Annual IEEE Symposium on Foundations of Computer Science (FOCS 2016), New Brunswick,
New Jersey, USA October 9-11, 2016, pages 800–809, 2016.

10 Ming-Yang Kao and Robert T. Schweller. Randomized self-assembly for approximate shapes. In
Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir,
and Igor Walukiewicz, editors, ICALP (1), volume 5125 of Lecture Notes in Computer Science,
pages 370–384. Springer, 2008. doi:10.1007/978-3-540-70575-8_31.

11 Yonggang Ke, Luvena L Ong, William M Shih, and Peng Yin. Three-dimensional structures
self-assembled from DNA bricks. Science, 338(6111):1177–1183, 2012.

12 Wenyan Liu, Hong Zhong, Risheng Wang, and Nadrian C. Seeman. Crystalline two-dimensional
dna-origami arrays. Angewandte Chemie International Edition, 50(1):264–267, 2011. doi:
10.1002/anie.201005911.

13 Kyle Lund, Anthony J. Manzo, Nadine Dabby, Nicole Michelotti, Alexander Johnson-Buck,
Jeanette Nangreave, Steven Taylor, Renjun Pei, Milan N. Stojanovic, Nils G. Walter, Erik Win-
free, and Hao Yan. Molecular robots guided by prescriptive landscapes. Nature, 465(7295):206–
210, May 2010. doi:10.1038/nature09012.

14 Kyle Lund, Anthony T. Manzo, Nadine Dabby, Nicole Micholotti, Alexander Johnson-Buck,
Jeanetter Nangreave, Steven Taylor, Renjun Pei, Milan N. Stojanovic, Nils G. Walter, Erik
Winfree, and Hao Yan. Molecular robots guided by prescriptive landscapes. Nature, 465:206–
210, 2010.

https://doi.org/10.1038/nature08016
https://doi.org/10.1038/nature09026
https://doi.org/10.1038/nature09026
https://arxiv.org/abs/2305.01877
https://doi.org/10.1007/978-3-540-70575-8_31
https://doi.org/10.1002/anie.201005911
https://doi.org/10.1002/anie.201005911
https://doi.org/10.1038/nature09012

D. Hader and M. J. Patitz 71:19

15 Pierre-Étienne Meunier, Matthew J. Patitz, Scott M. Summers, Guillaume Theyssier, Andrew
Winslow, and Damien Woods. Intrinsic universality in tile self-assembly requires cooperation.
In Proceedings of the ACM-SIAM Symposium on Discrete Algorithms (SODA 2014), (Portland,
OR, USA, January 5-7, 2014), pages 752–771, 2014.

16 Jennifer E. Padilla, Matthew J. Patitz, Raul Pena, Robert T. Schweller, Nadrian C. Seeman,
Robert Sheline, Scott M. Summers, and Xingsi Zhong. Asynchronous signal passing for
tile self-assembly: Fuel efficient computation and efficient assembly of shapes. In UCNC,
volume 7956 of Lecture Notes in Computer Science, pages 174–185. Springer, 2013. doi:
10.1007/978-3-642-39074-6_17.

17 Jennifer E. Padilla, Ruojie Sha, Martin Kristiansen, Junghuei Chen, Natasha Jonoska, and
Nadrian C. Seeman. A signal-passing DNA-strand-exchange mechanism for active self-assembly
of DNA nanostructures. Angewandte Chemie International Edition, 54(20):5939–5942, March
2015.

18 Paul W. K. Rothemund. Folding DNA to create nanoscale shapes and patterns. Nature,
440(7082):297–302, March 2006. doi:10.1038/nature04586.

19 Paul W. K. Rothemund and Erik Winfree. The program-size complexity of self-assembled
squares (extended abstract). In STOC ’00: Proceedings of the thirty-second annual ACM
Symposium on Theory of Computing, pages 459–468, Portland, Oregon, United States, 2000.
ACM.

20 Paul WK Rothemund, Nick Papadakis, and Erik Winfree. Algorithmic self-assembly of dna
sierpinski triangles. PLoS biology, 2(12):e424, 2004.

21 David Soloveichik and Erik Winfree. Complexity of self-assembled shapes. SIAM Journal on
Computing, 36(6):1544–1569, 2007. doi:10.1137/S0097539704446712.

22 Erik Winfree. Algorithmic Self-Assembly of DNA. PhD thesis, California Institute of Technology,
June 1998.

23 Damien Woods. Intrinsic universality and the computational power of self-assembly. Philosoph-
ical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences, 373(2046), 2015. doi:10.1098/rsta.2014.0214.

24 Damien Woods, David Doty, Cameron Myhrvold, Joy Hui, Felix Zhou, Peng Yin, and Erik
Winfree. Diverse and robust molecular algorithms using reprogrammable dna self-assembly.
Nature, 567(7748):366–372, 2019.

25 Yin Zhang, Angus McMullen, Lea-Laetitia Pontani, Xiaojin He, Ruojie Sha, Nadrian C.
Seeman, Jasna Brujic, and Paul M. Chaikin. Sequential self-assembly of dna functionalized
droplets. Nature Communications, 8(1):21, 2017. doi:10.1038/s41467-017-00070-0.

ICALP 2023

https://doi.org/10.1007/978-3-642-39074-6_17
https://doi.org/10.1007/978-3-642-39074-6_17
https://doi.org/10.1038/nature04586
https://doi.org/10.1137/S0097539704446712
https://doi.org/10.1098/rsta.2014.0214
https://doi.org/10.1038/s41467-017-00070-0

Parameter Estimation for Gibbs Distributions
David G. Harris #

Department of Computer Science, University of Maryland, College Park, MD, USA

Vladimir Kolmogorov #

Institute of Science and Technology Austria, Klosterneuburg, Austria

Abstract
A central problem in computational statistics is to convert a procedure for sampling combinatorial
objects into a procedure for counting those objects, and vice versa. We will consider sampling
problems which come from Gibbs distributions, which are families of probability distributions over
a discrete space Ω with probability mass function of the form µΩ

β (ω) ∝ eβH(ω) for β in an interval
[βmin, βmax] and H(ω) ∈ {0} ∪ [1, n].

The partition function is the normalization factor Z(β) =
∑

ω∈Ω eβH(ω), and the log partition
ratio is defined as q = log Z(βmax)

Z(βmin)

We develop a number of algorithms to estimate the counts cx using roughly Õ(q
ε2) samples

for general Gibbs distributions and Õ(n2

ε2) samples for integer-valued distributions (ignoring some
second-order terms and parameters), We show this is optimal up to logarithmic factors. We illustrate
with improved algorithms for counting connected subgraphs and perfect matchings in a graph.

2012 ACM Subject Classification Mathematics of computing → Probabilistic algorithms; Applied
computing → Physics

Keywords and phrases Gibbs distribution, sampling

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.72

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2007.10824

Acknowledgements We thank Heng Guo for helpful explanations of algorithms for sampling con-
nected subgraphs and matchings, Maksym Serbyn for bringing to our attention the Wang-Landau
algorithm and its use in physics.

1 Introduction

A central problem in computational statistics is to convert a procedure for sampling combin-
atorial objects into a procedure for counting those objects, and vice versa. We will consider
sampling algorithms for Gibbs distributions. Formally, given a real-valued function H(·)
over a finite set Ω, the Gibbs distribution is defined as a family of distributions µΩ

β over Ω,
parameterized by β, of the form

µΩ
β (ω) = eβH(ω)

Z(β)

These distributions occur in a number of sampling algorithms, as we describe shortly;
they also frequently occur in physics, where the parameter −β corresponds to the inverse
temperature, the function H(ω) is called the Hamiltonian of the system, and the normalizing
constant Z(β) =

∑
ω∈Ω eβH(ω) is called the partition function.

EA
T
C
S

© David G. Harris and Vladimir Kolmogorov;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 72; pp. 72:1–72:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:davidgharris29@gmail.com
mailto:vnk@ist.ac.at
https://doi.org/10.4230/LIPIcs.ICALP.2023.72
https://arxiv.org/abs/2007.10824
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

72:2 Parameter Estimation for Gibbs Distributions

Suppose we have access to an oracle which return a sample from µΩ
β for any chosen query

value β ∈ [βmin, βmax]. We will seek to estimate the vector of counts (also known as the
(discrete) density of states (DOS)), defined as

cx = |H−1(x)|, x ≥ 0

In statistical physics, for instance, this essentially gives full information about the system
and physically relevant quantities such as entropy, free energy, etc. Another parameter,
whose role is less intuitive, is the partition ratio function

Q(β) = Z(β)
Z(βmin) ,

and in particular the value Q(βmax) = Z(βmax)
Z(βmin) . This can interpreted as a measure of the

“diversity” of the distribution as β varies.
As is common in this setting, we assume that (after rescaling if necessary) we are given

known parameters n, q with

log Q(βmax) ≤ q, H(Ω) ⊆ F def= {0} ∪ [1, n]

In some cases, the domain is integer-valued, i.e. H(Ω) ⊆ H def= F ∩ Z = {0, 1, . . . , n} for
integer n. We call this the general integer setting. A special case of the integer setting, which
we call the log-concave setting, is when the counts c0, c1, c2, . . . , cn−1, cn are non-zero and
satisfy ck/ck−1 ≥ ck+1/ck for k = 1, . . . , n− 1. The general case, where H(ω) takes values
in F , is called the continuous setting.1

There is an associated probability distribution we call the gross Gibbs distribution µβ(x)
over F given by

µβ(x) = cxeβx

Z(β) , Z(β) =
∑

x

cxeβx

We will only require oracle access to µβ , for any chosen query value β ∈ [βmin, βmax]; this
is provided automatically given access to µΩ

β . We let γ denote the target failure probability
and ε the target accuracy of our algorithms, i.e. with probability at least 1−γ, the algorithms
should return estimates within a factor of [e−ε, eε] of the correct value. Throughout, “sample
complexity” refers to the number of calls to the oracle; for brevity, we also define the cost of
a sampling algorithm to be its expected sample complexity.

To avoid degenerate cases, we assume n, q ≥ 2 and ε, γ ∈ (0, 1
2) throughout. If upper

bounds n and/or q are not available directly, they can often be estimated by simple algorithms
(up to constant factors), or can be guessed by exponential back-off strategies.

1.1 Algorithmic sampling-to-counting
To make our problem setting more concrete, consider the following scenario: we have a
combinatorial system, where the objects have a “weight”, and we have an algorithm to
sample objects from the corresponding Gibbs distribution for any parameter β. This may
be an exact sampler, or it may be an approximate sampler such as a Markov chain whose
stationary distribution is the Gibbs distribution. The runtime (e.g. the mixing time of the
Markov chain) may depend on β. As a few prominent examples:

1 The log-concave algorithms still work if some of the counts ci are equal to zero; in this case, the non-zero
counts must form a discrete interval {i0, i0 + 1, . . . , i1 − 1, i1} and the required bound must hold for
k = i0 + 1, . . . , i1 − 1.

D. G. Harris and V. Kolmogorov 72:3

1. Connected subgraphs of a given graph; the weight of a subgraph is its cardinality [10].

2. Matchings of a given graph; the weight of a matching, again, is its cardinality [15, 13].

3. Independent sets in bounded-degree graphs; the weight is the size of the independent
set [7, 13].

4. Assignments to a given k-SAT instance; the weight is the number of unsatisfied clauses [8].

5. Vertex cuts for the ferromagnetic Ising model; the weight is the imbalance of the cut [5].

We may wish to know the number of objects of a given weight class, e.g. connected
subgraphs of a given size. This can be viewed in terms of estimating the counts ci. In a
number of these applications, such as connected subgraphs and matchings, the count sequence
is further known to be log-concave.

Our estimation algorithms can be combined with these prior sampling algorithms to
yield improved algorithmic results, essentially for free. As some examples, we will show the
following:

▶ Theorem 1. Let G = (V, E) be a connected graph, and for each i = 0, . . . , |E| − |V |+ 1
let ci be the number of connected subgraphs with |E| − i edges. There is an fully-polynomial
randomized approximation scheme (FPRAS) to estimate all values ci in time complexity
Õ(|E|3|V |/ε2).

▶ Theorem 2. Let G = (V, E) be a graph of maximum degree D and for each i = 0, . . . , |V |
let ci be the number of independent sets of size i. For any constant ξ > 0 there is an FPRAS
with runtime Õ(|V |2/ε2) to simultaneously estimate all values c0, . . . , ct for t = (αc − ξ)|V |,
where αc is the computational hardness threshold shown in [7].

▶ Theorem 3. Let G = (V, E) be a graph with |V | = 2v and for each i = 0, . . . , v let ci be
the number of matchings in G with i edges. Suppose cv > 0 and cv−1/cv ≤ f for a known
parameter f . There is an FPRAS for all ci running in time Õ(|E||V |3f/ε2). In particular,
if G has minimum degree at least |V |/2, the time complexity is Õ(|V |7/ε2).

Theorem 1 improves by a factor of |E| over the algorithm in [11]. Similarly, Theorem 3
improves by a factor of |V | compared to the FPRAS for counting matchings in [15]. Theorem 2
matches the runtime of an FPRAS for a single value ik given in [13].

There are two minor technical issues we should clarify here. First, to obtain a randomized
estimation algorithm, we must also bound the computational complexity of our procedures in
addition to the number of oracle calls. In all the algorithms we develop, the computational
complexity is a small logarithmic factor times the query complexity. The computational
complexity of the oracle is typically much larger than this overhead. Thus, our sampling
procedures translate directly into efficient randomized algorithms, whose runtime is the
expected sample complexity multiplied by the oracle’s computational complexity. We will
not comment on computational issues henceforth.

Second, we may only have access to some approximate oracle µ̃β that is close to µβ

in terms of total variation distance (e.g. by running an MCMC sampler). By a standard
coupling argument (see e.g. [19, Remark 5.9]), our results remain valid if exact oracles are
replaced with sufficiently close approximate oracles.

ICALP 2023

72:4 Parameter Estimation for Gibbs Distributions

1.2 Our contributions
Before we can formally describe our algorithm for count estimation, we need to clear up
two technical issues. The first is that counts can only be recovered up to scaling, so some
(arbitrary) normalization must be chosen. For sake of consistency with other algorithms, we
use the parameter π(x) defined as:

π(x) def= µβmin(x) = cxeβminx

Z(βmin)

The second, much trickier, issue is that if a count cx is relatively small, then it is inherently
hard to estimate accurately. To explain this, suppose that maxβ∈[βmin,βmax] µβ(x) = µ∗. In
this case, Ω(1/µ∗) samples are clearly needed to distinguish between cx = 0 and cx > 0; with
fewer samples, we will never draw x from the oracle. Moreover, Ω(1

µ∗ε2) samples are needed
to estimate cx to relative error ε. Since we can vary β, the complexity of estimating cx must
depend on the best case µβ(x), over all allowed values of β. This gives rise to the parameter
∆(x) defined as

∆(x) def= max
β∈[βmin,βmax]

µβ(x)

With these two provisos, let us define the problem P δ,ε
count for parameters δ, ε ∈ (0, 1) as

follows. We seek to obtain a pair of vectors (π̂, u), to satisfy two properties:
(i) for all x ∈ F with cx ̸= 0, there holds |π̂(x)− π(x)| ≤ u(x) ≤ επ(x)(1 + δ/∆(x)).
(ii) for all x ∈ F with cx = 0, there holds π̂(x) = 0, and u(x) can be set to an arbitrary

value.

In other words, [π̂(x) − u(x), π̂(x) + u(x)] should be a confidence interval for π(x). In
particular, if ∆(x) ≥ δ, then P δ,ε

count provides a (1 ± O(ε)) relative approximation to π(x).
When ∆(x)≪ δ, then it still provides meaningful approximation guarantees which are critical
in some of our other algorithms.

We develop three main algorithmic results:

▶ Theorem 4. P δ,ε
count can be solved with the following complexities:

In the continuous setting, with cost O
(

q log n+
√

q log n/δ

ε2 log q
δγ

)
.

In the general integer setting, with cost O
(

n2+n/δ
ε2 log2 nq

γ

)
.

In the log-concave setting, with cost O
(

min{(q+n) log n,n2}+1/δ
ε2 log nq

γ

)
.

where recall that cost refers to the expected number of queries to the oracle.

Our full results are somewhat more precise, see Theorems 13, 20 and 21 for more details.
We also show lower bounds for P δ,ε

count; we summarize these results here as follows:

▶ Theorem 5. Let n ≥ n0, q ≥ q0, ε < ε0, δ < δ0, γ < 1/4 for certain absolute constants
n0, q0, ε0, δ0. There are problem instances µ which satisfy the given bounds n and q such that:
(a) P δ,ε

count requires cost Ω((q+√
q/δ) log 1

γ

ε2).
(b) P δ,ε

count requires cost Ω(min{q+√
q/δ,n2+n/δ} log 1

γ

ε2), and µ is integer-valued.
(c) P δ,ε

count requires cost Ω((1/δ+min{q,n2}) log 1
γ

ε2), and µ is log-concave.

These first two results match Theorem 4 up to logarithmic factors in n and q. The
result for the log-concave setting has an additive discrepancy Õ(n

ε2) in the regime when
1/δ + q = o(n). (Throughout, we use the notation Õ(x) = x polylog(x).) See Theorem 36 for
a more precise and general statement of these bounds. We emphasize that these lower bounds
only apply to estimation algorithms which make use of the Gibbs oracle in a black-box way.

D. G. Harris and V. Kolmogorov 72:5

Some count-estimation algorithms have been considered for specific problems, e.g. in [14]
for counting matchings or in [7] for counting independent sets. These procedures depended
on specific properties of the Gibbs distribution, e.g. log-concavity. In addition, the algorithm
in [14] was roughly worse by a factor of n compared to Theorem 4. By swapping in our new
algorithm for P δ,ε

count, we will immediately obtain simpler, and more efficient, algorithms for
these problems.

The general problem Pcount has not been theoretically analyzed, to our knowledge. In
practice, the Wang-Landau (WL) algorithm [20] is a popular heuristic to estimate counts
in physical applications. This uses a completely different methodology from our algorithm,
based on a random walk on F with a running count estimate ĉ. As discussed in [18], there
are more than 1500 papers on the WL algorithm as well as variants such as the 1/t-WL
algorithm [3]. These algorithms are not well understood; some variants are guaranteed to
converge asymptotically [9], but bounds on convergence rate or accuracy seem to be lacking.
For a representative example, see for example [17], which describes a Gibbs distribution
model of protein folding, and uses the WL algorithm to determine relevant properties.

Estimating partition ratio

As a key building block, we develop new subroutines to estimate partition ratios. Formally, let
us define the problem P all

ratio to compute a data structure D with an associated deterministic
function Q̂(α|D) satisfying the property

| log Q̂(α|D)− log Q(α)| ≤ ε for all α ∈ (βmin, βmax]

We say in this case that D is ε-close. We emphasize that, although generating D will
require sampling from the Gibbs distribution, using it will not. Our main result here will be
the following:

▶ Theorem 6. P all
ratio can be solved with the following complexities:

In the continuous setting, with cost O
(

q log n
ε2 log 1

γ

)
.

In the general integer setting, with cost O
(

n2 log n
ε2 log 1

γ + n log q
)
.

In the log-concave integer setting, with cost O
(

n2

ε2 log 1
γ + n log q

)
.

A number of algorithms have been developed for pointwise estimation of Q(βmax), with
steadily improving sample complexities [4, 19, 12]. We denote this problem by P point

ratio .
The best prior algorithm for P

point
ratio in the continuous setting [16] had cost O

(
q log n

ε2 log 1
γ

)
(matching our algorithm for P all

ratio). No specialized algorithms were known for the integer
setting. We also show matching lower bounds:

▶ Theorem 7. Let n ≥ n0, q ≥ q0, ε < ε0, δ < δ0, γ < 1/4 for certain absolute constants
n0, q0, ε0, δ0. There are problem instances µ which satisfy the given bounds n and q such that:
(a) P point

ratio requires cost Ω(q log 1
γ

ε2).

(b) P point
ratio requires cost Ω(min{q,n2} log 1

γ

ε2). and µ is log-concave

Thus, Theorem 6 is optimal up to logarithmic factors; this essentially settles the complexity
of Pratio as functions of n and q.

The first algorithm of Theorem 6, for the continuous setting, is similar to the pointwise
algorithm in [16]; we defer it the to the full version of the paper.

ICALP 2023

72:6 Parameter Estimation for Gibbs Distributions

1.3 Overview
We will develop two, quite distinct, types of algorithms: the first uses “cooling schedules”
similar to [12, 16], and the second is based on a new type of “covering schedule” for the
integer setting. In Section 6, we use these algorithms for approximate counting of matching
and connected subgraphs. In Section 7, we show the lower bounds for the problems Pratio
and Pcount.

We remark that when q ≤ n2 in the integer setting, general continuous algorithms may
be more efficient than the specialized integer algorithms for some tasks. These will be used
for our algorithms to count independent sets and connected subgraphs, for instance.

Before the technical details, let us provide a high-level roadmap. For simplicity, we
assume that tasks need to be solved with constant success probability.

The continuous setting

We can use a variant on an algorithm of [16] to solve P all
ratio. Assuming this problem can be

solved, let us examine the problem P δ,ε
count. As a starting point, consider the identity

π(x) = e−(β−βmin)x · µβ(x) ·Q(β) for all x ∈ F , β ∈ [βmin, βmax]. (1)

For any value β, we can estimate Q(β) using our algorithm for P all
ratio, and we can estimate

µβ(x) by drawing Θ(1
µβ(x)ε2) samples from µβ . We then make use of the following important

result: if µβ([0, x]) and µβ([x, n]) are both bounded below by constants, then µβ(x) ≥
Ω(∆(x)).

Therefore, we do the following: (i) use binary search to find value β with µβ([0, x]) ≈
µβ([x, n]); and (ii) estimate µβ(x) using O(1

δε2) samples; (iii) use Eq. (1) to determine π(x).
From standard concentration bounds, this satisfies the conditions of P δ,ε

count; for example, if
∆(x) ≥ δ, then µβ(x), and hence π(x), is estimated within relative error ε.

To estimate all the counts, we find cut-points y1, . . . , yt, where each interval [yi, yi+1] has
a corresponding value βi with µβi

([yi, n]) ≥ Ω(1) and µβi
([0, yi+1]) ≥ Ω(1). Any x ∈ [yi+1, yi]

then has µβi(x) ≥ Ω(∆(x)), so we can use samples from µβi to estimate cx simultaneously for
all x ∈ [yi, yi+1]. We show that only t = O(

√
q log n) distinct intervals are needed, leading to

a cost of O(
√

q log n

δε2) plus the cost of solving P all
ratio. The formal analysis appears in Section 3.

The integer setting

To solve P δ,ε
count, we develop a new data structure we call a covering schedule. This consists of

a sequence βmin = β0, β1, . . . , βt = βmax and corresponding values k1, . . . , kt so that µβi(ki)
and µβi

(ki+1) are large for all i. (The definition is adjusted slightly for the endpoints i = 0
and i = t). Define wi = min{µβi

(ki), µβi
(ki+1)} (“weight” of i). If we take Ω(1/wi) samples

from µβi , we can accurately estimate the quantities µβi(ki), µβi(ki+1), in turn allowing us to
estimate

Q(βi)
Q(βi−1) = e(βi−βi−1)ki

µβi−1(ki)
µβi

(ki)

By telescoping products, this in turn allows us to estimate every value Q(βi).
Next, for each index x ∈ H, we use binary search to find α with µα([0, x]) ≈ µα([x, n])

and then estimate µα(x) by taking O(1
δε2) samples. If α lies in interval [βi, βi+1] of the

covering schedule, we can use the estimates for Q(βi) and Q(βi+1) to estimate Q(α) and
hence π(x). Since we do this for each x ∈ H, the overall cost of this second phase is roughly
O(n

δε2).

D. G. Harris and V. Kolmogorov 72:7

There is a more efficient algorithm for P δ,ε
count for log-concave counts. In this case, for a

fixed β and x ∈ [σ−, σ+] we have µβ(x) ≥ min{µβ(σ−), µβ(σ+)}. Thus, a single value βi in a
covering schedule “covers” the interval [ki, ki+1]. We can solve P δ,ε

count with O(1
δε2 +

∑
i

1
wiε2)

samples, by drawing Θ(1
wiε2) samples at βi and Θ(1

δε2) samples at βmin and βmax.
After solving P δ,ε

count, we can then solve P all
ratio essentially for free, by estimating Q̂(α |

D) =
∑

i e(α−βmin)iπ̂(i). So P all
ratio in the integer setting reduces to a special case of Pcount.

(Interestingly, the continuous-case algorithm works very differently – there, P all
ratio is a

subroutine used to solve Pcount.)

Obtaining a covering schedule

The general Pcount algorithm described above uses O(
∑

i
n

wiε2) samples to estimate the values
Q(βi), and similarly the log-concave algorithm uses O(1

δε2 +
∑

i
1

wiε2) samples. We thus refer
to the quantity

∑
i

1
wi

as the inverse weight of the schedule. In the most technically involved
part of the paper, we produce a covering schedule with inverse weight O(n log n) (or O(n) in
the log-concave setting). Here we just sketch some key ideas.

First, we construct a “preschedule” where each interval can choose two different indices
σ−

i , σ+
i instead of a single index ki, with the indices interleaving as σ−

i ≤ σ−
i+1 ≤ σ+

i ≤ σ+
i+1.

The algorithm repeatedly fill gaps: if some half-integer ℓ + 1/2 is not currently covered,
then we can select a value β with µβ([0, ℓ]) ≈ µβ([ℓ + 1, n]). For this β, there is a value
σ+ ∈ [ℓ + 1, n] with µβ(σ+) · (σ+ − ℓ) ≥ Ω(1

log n), and similarly a value σ− ∈ [0, k] with
µβ(σ−) · (ℓ− σ− + 1) ≥ Ω(1

log n). The interval [σ−, σ+] then fills the gap and also has weight
w ≥ Ω(1

(σ+−σ−) log n).
At the end of the process, we throw away redundant intervals so each x is covered by

at most two intervals, and “uncross” them into a schedule with ki ∈ {σ+
i−1, σ−

i }. Since
1

wi
≤ O((σ+

i − σ−
i) log n) for each i, this gives an O(n log n) bound of the inverse weight of

the schedule.

2 Preliminaries

Define z(β) = log Z(β) and z(β1, β2) = log Z(β2)
Z(β1) = log Q(β2)

Q(β1) ; note that z(βmin, βmax) ≤ q by
definition. We write z′(β) for the derivative of function z.

Define the Chernoff separation functions F+(x, t) =
(

eδ

(1+δ)1+δ

)x and F−(x, t) =
(

e−δ

(1−δ)1−δ

)x,
where δ = t/x. These are well-known upper bounds on the probability that a binomial
random variable with mean x is larger than x + t or smaller than x− t, respectively. We also
define F (x, t) = F+(x, t) + F−(x, t).

For a random variable X, we write V(X) for the variance of X, and S[X] = E[X2]
(E[X])2 − 1 =

V(X)
(E[X])2 for the relative variance of X.

We write µβ(x, y), µβ [x, y) instead of µβ((x, y)), µβ([x, y)), etc. for readability.

2.1 The Balance subroutine
Given a target χ, we sometimes need to find a value β with µβ [0, χ] ≈ 1/2 ≈ µβ [χ, n]. That
is, χ is the “balancing point” in the distribution µβ . Formally, for values βleft ≤ βright, let us
denote by Λτ (βleft, βright, χ) the set of values β ∈ [βleft, βright] which satisfy the following
two properties:

Either β = βleft or µβ [0, χ) ≥ τ

Either β = βright or µβ [χ, n] ≥ τ

ICALP 2023

72:8 Parameter Estimation for Gibbs Distributions

To find this, we use a subroutine Balance. To summarize briefly, since µβ [0, χ] is a
monotonic function of β and can be estimated by sampling, the value β is found via a noisy
binary search. Our main result is the following:

▶ Theorem 8. Suppose that τ is an arbitrary constant and βmin ≤ βleft < βright ≤ βmax.
Then β ← Balance(βleft, βright, χ, γ, τ) has cost O(log nq

γ). With probability at least 1− γ,
there holds β ∈ Λτ (βleft, βright, χ) (we say in this case that the call is good).

The details appear in the full paper. The following observation explains the motivation
for the definition.

▶ Proposition 9. If β ∈ Λτ (βmin, βmax, x), then µβ(x) ≥ τ∆(x).

Proof. Consider α ∈ [βmin, βmax] with µα(x) = ∆(x). The result is clear if α = β. Suppose
that α < β; the case α > β is completely analogous. So β > βmin = βleft, and since
β ∈ Λτ (βmin, βmax, x), this implies that µβ [0, x] ≥ τ . We then have:

µα(x) = cxeαx∑
y cyeαy

≤ cx∑
y≤x cyeα(y−x) ≤

cx∑
y≤x cyeβ(y−x)

= cxeβx∑
y≤x cyeβy

= µβ(x)
µβ [0, x] ≤

µβ(x)
τ

. ◀

2.2 Statistical sampling
We can obtain an unbiased estimator of the probability vector µβ by computing empirical
frequencies µ̂β from N independent samples from µβ ; we denote this process as µ̂β ←
Sample(β; N). We record the following standard concentration bound, which we will use
repeatedly:

▶ Lemma 10. For ε, γ ∈ (0, 1
2), p◦ ∈ (0, 1], suppose we draw random variable p̂ ∼

1
N Binom(N, p) where N ≥ 3eε log(4/γ)

(1−e−ε)2p◦
. Then, with probability at least 1 − γ, the follow-

ing two bounds both hold:

|p̂− p| ≤ ε(p + p◦), and (2)

p̂ ∈

{
[e−εp, eεp] if p ≥ e−εp◦

[0, p◦) if p < e−εp◦
(3)

In particular, if Eq. (3) holds and min{p, p̂} ≥ p◦, then | log p̂− log p| ≤ ε.

Proof. See full paper. ◀

Many of our algorithms are based on calling µ̂β ← Sample(β; N) and making decisions
depending on the values µ̂β(I) for certain sets I ⊆ F ; they succeed when the estimates
µ̂β(I) are close to µβ(I). We say the execution of Sample well-estimates I if Eqs. (2),(3)
hold for p = µβ(I) and p̂ = µ̂β(I); otherwise it mis-estimates I. Likewise we say Sample
well-estimates k if it well-estimates the singleton set I = {k}. Since this comes up so
frequently, we write

µ̂β ← Sample(β; ε, γ, p◦)

as shorthand for µ̂β ← Sample(β;
⌈ 3eε log(4/γ)

(1−e−ε)2p◦

⌉
). Note that this has cost O(log(1/γ)

ε2p◦
), and

each set I is well-estimated with probability at least 1− γ.
As we have touched upon, our algorithms for P δ,ε

count estimate each value π(x) by sampling
µ̂α(x) for a well-chosen value α. We use similar formulas to produce the estimates π̂(x), u(x)
in all these cases. We record the following general result:

D. G. Harris and V. Kolmogorov 72:9

▶ Lemma 11. Suppose that for x ∈ F , we are given α ∈ [βmin, βmax] and non-negative
parameters Q̂(α), µ̂α(x), p◦ (all of which may depend upon x), satisfying the following bounds:
(A1) | log Q̂(α)− log Q(α)| ≤ 0.1ε.
(A2) p◦ ≤ µα(x)(1 + δ/∆(x))
(A3) |µ̂α(x)− µα(x)| ≤ 0.1ε(µα(x) + p◦).

Then the estimated values

π̂(x) = Q̂(α)e(βmin−α)xµ̂α(x), u(x) = 0.4Q̂(α)e(βmin−α)xε(µ̂α(x) + p◦)

satisfy the criteria for the problem P δ,ε
count.

Proof. See full paper. ◀

Since this formula comes up so often, we write

EstimatePi(x, α, p◦)

as shorthand for setting π̂(x), u(x) according to the formula in Lemma 11. The values Q̂(α)
and µ̂α(x) should be clear from the context.

In a number of places, we need to estimate certain telescoping products. Direct Monte
Carlo sampling does not give strong tail bounds, so we use a standard method based on
median amplification. See the full paper for a description and proof.

▶ Theorem 12. Suppose we can sample non-negative random variables X1, . . . , XN . The
subroutine EstimateProducts(X, τ, ε, γ) takes input ε, γ ∈ (0, 1) and τ > 0, and returns
a vector of estimates (X̂prod

1 , . . . , X̂prod
N). It uses O(N(1 + τ/ε2) log 1

γ) total samples of
the X variables. If τ ≥

∑N
i=1 S[Xi], then with probability at least 1 − γ, it holds that

X̂
prod
i∏i

j=1
E[Xj]

∈ [e−ε, eε] for all i = 1, . . . , N .

In this case, it is also convenient to define X̂
prod
0 = 1 =

∏0
j=1 E[Xj].

3 Solving P δ,ε
count in the continuous setting

In this section, we develop Algorithm 1 for P δ,ε
count. Here, we use a general algorithm to solve

P all
ratio in the continuous setting with cost O

(
q log n

ε2 log 1
γ

)
.

Algorithm 1 Solving P δ,ε
count for error parameter γ.

1 call D ← PratioAll(ε/10, γ/4).
2 initialize x0 ← n, α0 ← βmax
3 for t = 1 to T = 10 min{q,

√
q log n} do

4 set αt ← Balance(βmin, αt−1, xt−1, γ
100T , 1/4)

5 set µ̂αt
← Sample(αt;

108 log 50T
δγ

δε2)
6 if αt > βmin then
7 set xt to be the minimum value with µ̂αt [0, xt] ≥ 1/100
8 foreach y ∈ (xt, xt−1] do EstimatePi(y, αt, δ/200) with Q̂(αt) = Q̂(αt | D)
9 else if αt = βmin then

10 foreach y ∈ [0, xt−1] do EstimatePi(y, αt, δ/200) with Q̂(αt) = Q̂(αt | D)
11 return

ICALP 2023

72:10 Parameter Estimation for Gibbs Distributions

▶ Theorem 13. Algorithm 1 solves P δ,ε
count with cost

O
(min{q,

√
q log n} log q

δγ

δε2 +
q log n log 1

γ

ε2

)
.

The complexity bound follows immediately from specification of suborutines. We next analyze
the success probability; this will require a number of intermediate calculations.

▶ Proposition 14. With probability at least 1− γ/10, the following conditions hold for all
iterations t:

(i) αt ∈ Λ1/4(βmin, αt−1, xt−1) and xt < xt−1 and and µαt [0, xt) ≤ 1
70

(ii) αt = βmin or µαt
[0, xt] ≥ 1

200 .

Proof. See full paper. ◀

For the remainder of the analysis, we suppose that the bounds of Proposition 14 hold.

▶ Proposition 15. For all iterations t, we have αt+1 < αt strictly and µαt+1 [xt, n] ≥ 1/4.
Furthermore, if αt+1 ̸= βmin, then z(αt+1, αt) ≥ 2 + xt+1

xt−1−xt+1
.

Proof. See full paper. ◀

▶ Lemma 16. The loop at line 3 terminates before iteration T .

Proof. Suppose not; by Proposition 14, we have x1 > x2 > · · · > xT −1 > βmin strictly. Since
each xi comes from F , we must have x1 ≤ n and xT −2 ≥ 1. Let g = T − 4; note that due to
bounds on n, q. we have g ≥ T/2 > 0. For each ℓ = 1, . . . , g, consider the non-negative value
aℓ = log(xℓ−1

xℓ+1
). We note the following bound:

g∑
ℓ=1

aℓ = log x1

x3
+ log x2

x4
+ log x3

x5
+ · · ·+ log xg−2

xg
+ log xg−1

xg+1

= log x1 + log x2 − log xg − log xg+1 by telescoping sums
≤ log n + log n− 0− 0 = 2 log n

By using Proposition 15 for each iteration 1, . . . , g, we can compute:

q ≥ z(βmax, βmin) ≥
g∑

i=1
z(αi+1, αi) ≥

g∑
i=1

2 + xi+1

xi−1 − xi+1
= 2g +

g∑
ℓ=1

1
eaℓ − 1 . (4)

By Jensen’s inequality applied to the concave function y 7→ 1
ey−1 , we have

g∑
ℓ=1

1
eaℓ − 1 ≥

g

exp(1
g

∑g
ℓ=1 aℓ)− 1

≥ g

exp(2 log n
g)− 1

. (5)

If q > 2 log n, then Eq. (4) shows g ≤ q/2. If q ≥ 2 log n, then exp(2 log n
g)− 1 ≤ 4e log n

g ,
and then Eq. (5) implies q ≥ g

(4e log n)/g ≥ g2/20, i.e. g ≤
√

20q log n. Either way, we have
g ≥ min{

√
20q log n, q/2}. Since g ≥ T/2, this is a contradiction to the definition of T . ◀

▶ Proposition 17. With probability at least 1 − γ/10, the preconditions of Lemma 11 for
EstimatePi (with p◦ = δ/200) hold for all y ∈ F .

Proof. See full paper. ◀

Overall, the total failure probability is at most γ/10 (from Proposition 14) plus γ/10
(from Proposition 17). This concludes the proof of Theorem 13. It also shows the first part
of Theorem 4.

D. G. Harris and V. Kolmogorov 72:11

4 Solving Pcount and P all
ratio for integer-valued Gibbs distributions

The algorithms in the integer setting hinge on a data structure called the covering schedule.
Formally, we define a covering schedule to be a sequence of the form

(β0, w0, k1, β1, w1, k2, . . . , βt−1, wt−1, kt, βt, wt)

which satisfies the following additional constraints:
(i) βmin = β0 < . . . < βt = βmax;
(ii) k1 < k2 < · · · < kt

(iii) wi ∈ [0, 1] for i = 0, . . . , t.

Note that t ≤ n + 1. We say that I is proper if for all i = 1, . . . , t it satisfies

µβi−1(ki) ≥ wi−1 and µβi
(ki) ≥ wi.

We define

InvWeight(I) =
t∑

i=0

1
wi

.

Our algorithm to solve Pcount will have four stages. As a high-level summary, it proceeds
as follows:
1. Construct a suitable covering schedule I = (β0, w0, k1, . . . , kt, βt, wt).
2. Estimate the values Q(βi) for i = 0, . . . , t.
3. Use these estimates Q̂(βi) to estimate the counts ci

4. Use the estimated counts ĉi to estimate the entire function Q(β)

The first stage is quite involved, so we defer it to Section 5 where we show the following
result:

▶ Theorem 18. There is a procedure FindCoveringSchedule(γ) which produces a covering
schedule I, which is proper with probability at least 1− γ. In the general integer setting, the
procedure has cost O(n log3 n + n log n log 1

γ + n log q) and has InvWeight(I) ≤ O(n log n).
In the log-concave setting, the procedure has cost O(n log2 n + n log 1

γ + n log q) and has
InvWeight(I) ≤ O(n).

The second stage is summarized in the following result:

▶ Theorem 19. There is an algorithm PratioCoveringSchedule(I, ε, γ) which takes as input
a covering schedule I = (β0, w0, k1, . . . , kt, βt, wt) and produces estimates Q̂(β0), . . . , Q̂(βt).

The overall algorithm cost is O
(min{nW,q log n} log 1

γ
ε2

)
where W = InvWeight(I). If I is

proper, then with probability at least 1−γ it satisfies | log Q̂(βi)−Q(βi)| ≤ ε for all i. (When
this latter condition holds, we say that the call to PratioCoveringSchedule is good).

Proof. To get the cost O
(

q log n
ε2 log 1

γ

)
, we simply run the algorithm D ← PratioAll(ε, γ)

for the continuous setting as in Theorem 6, and output Q̂(βi | D) for all i. To get the other
cost bound (in terms of W), we use the following algorithm:

ICALP 2023

72:12 Parameter Estimation for Gibbs Distributions

Algorithm 2 Estimating values Q(βi) via EstimateProducts.

1 for i = 1, . . . t form random variables Xi ∼ Bernoulli(µβi−1(ki)) and
Yi ∼ Bernoulli(µβi

(ki))
2 set X̂prod ← EstimateProducts(X, W, ε/2, γ/4)
3 set Ŷ prod ← EstimateProducts(Y, W, ε/2, γ/4)
4 for i = 0, . . . , t set Q̂(βi) = exp

(∑i
j=1(βj − βj−1)kj

)
· X̂prod

i /Ŷ prod
i

Here, assuming that I is proper, we have S[Xi] = 1
µβi−1 (ki)−1 ≤

1
wi−1

for each i, so∑
i S[Xi] ≤W . Likewise

∑
i S[Yi] ≤W . So with probability at least 1− γ/2 the estimates

X̂
prod
i , Ŷ

prod
i are all within e±ε/2 of

∏i
j=1 E[Xj],

∏i
j=1 E[Yj] respectively. Observe that

E[
∏i

j=1 Xj]
E[

∏i
j=1 Yj]

=
i−1∏
j=1

µβj−1(kj)
µβj (kj) =

∏
j

e(βj−1−βj)kj
Z(βj)

Z(βj−1) = Z(βi)
Z(β0) · exp

(i∑
j=1

(βj−1−βj)kj

)

so in that case, the values Q̂(βi) are also within e±ε of Z(βi)/Z(β0) = Q(βi) as required. ◀

4.1 Solving P δ,ε
count

We now move on to the third stage, of using the covering schedule to solve Pcount. There
are two quite distinct algorithms here: one for generic integer-valued distributions, and a
specialized algorithm for log-concave distributions. We begin with the following algorithm
for general integer distributions:

Algorithm 3 Solving problem P δ,ε
count.

1 set I = (β0, w0, k1, . . . , kt, βt, wt)← FindCoveringSchedule(γ/10)
2 set (Q̂(β0), . . . , Q̂(βt))← PratioCoveringSchedule(I, ε/100, γ/10)
3 for i = 0, . . . , t do let µ̂βi

← Sample(βi; ε/100, γ
10(n+1)2 , wi)

4 for j ∈ H do
5 set α← Balance(βmin, βmax, j, γ

10(n+1)2 , 1/4)
6 find index i < t with α ∈ [βi, βi+1]
7 let µ̂α ← Sample(α; ε/100, γ

10(n+1)2 , δ/4)
8 if µ̂α(ki+1) ≥ δ then EstimatePi(j, α, δ/4) where

Q̂(α) = µ̂βi
(ki+1)

µ̂α(ki+1) e(α−βi)ki+1Q̂(βi)
9 else if j ≥ ki+1 then EstimatePi(j, βi+1, wi+1/8) where Q̂(βi+1) is set at line

2.
10 else if j < ki+1 then EstimatePi(j, βi, wi/8) where Q̂(βi) is set at line 2.

▶ Theorem 20. Algorithm 3 solves P δ,ε
count with cost O

((n/δ) log n
γ +n2 log n log 1

γ
ε2 + n log q

)
.

Proof. See full paper. ◀

This gives the second part of Theorem 4. As we have mentioned, there is an alternative
algorithm to estimate counts in the log-concave setting:

D. G. Harris and V. Kolmogorov 72:13

Algorithm 4 Solving P δ,ε
count in the log-concave setting.

1 set I = (β0, w0, k1, . . . , kt, βt, wt)← FindCoveringSchedule(γ/10)
2 set (Q̂(β0), . . . , Q̂(βt))← PratioCoveringSchedule(I, 0.1ε, γ/6)
3 update δ ← min{δ, 1/n, 1/InvWeight(I)}.
4 for i = 1, . . . t− 1 do
5 let µ̂βi ← Sample(βi; 0.01ε, γ

6(n+1) , wi)
6 foreach j ∈ {ki + 1, ki + 2, . . . , ki+1} do EstimatePi(j, βi, δ/4)
7 let µ̂βmin ← Sample(βmin; 0.01ε, γ

6(n+1) , w′
0) for w′

0 = min{w0, δ/2}
8 foreach j ∈ {0, 1, . . . , k1} do EstimatePi(j, βmin, w′

0).
9 let µ̂βmax ← Sample(βmax; 0.01ε, γ

6(n+1) , w′
t) for w′

t = min{wt, δ/2})
10 foreach j ∈ {kt + 1, kt + 2, . . . , n} do EstimatePi(j, βmax, w′

t).

▶ Theorem 21. In the log-concave setting, Algorithm 4 solves P δ,ε
count with cost

O
(

n log2 n + n log q +
min{n2, q log n} log 1

γ + (n + 1/δ) log n
γ

ε2

)
Proof. See full paper. ◀

Again, with some simplification of parameters, this gives the third part of Theorem 4.

4.2 Solving P all
ratio

Finally, having estimated the counts, we can proceed to use these estimates to fill in the
entire function Q(β). This is a black-box reduction from Pcount to P all

ratio.

▶ Theorem 22. Given a solution (π̂, u) for P
1/n,0.1ε
count in the integer setting, we can solve

P all
ratio with probability one and no additional queries to the oracle.

Proof. The data structure D is the vector π̂, and for a query value α we set Q̂(α | D) =∑
i∈H π̂(i)e(α−βmin)i. See full paper for proof details. ◀

Our P δ,ε
count algorithms thus solve P all

ratio with cost O
(n2 log n log 1

γ
ε2 + n log q

)
in the general

integer setting, and O
(n2 log 1

γ

ε2 + n log q
)

in the log-concave setting. This shows the two
bounds of Theorem 6.

5 Constructing a covering schedule

In the full paper, we show that any non-negative log-concave sequence a1, . . . , am satisfying
ak ≤ 1

k for each k ∈ [m] satisfies a1 + · · ·+ am ≤ e. Without the log-concavity assumption
we would have a1 + . . . + am ≤

∑m
k=1

1
k ≤ 1 + log m (by a well-known inequality for the

harmonic series). Motivated by these facts, we define the following parameter in this section:

ρ
def=

{
1 + log(n + 1) in the general integer setting
e in the log-concave setting

We will show the following more precise bound on the weight of the schedule.

ICALP 2023

72:14 Parameter Estimation for Gibbs Distributions

▶ Theorem 23. In the integer setting, the procedure FindCoveringSchedule(γ) produces a
covering schedule I with InvWeight(I) ≤ a(n + 1)ρ and P[I is proper] ≥ 1− γ, where a > 4
is an arbitrary constant. It has cost O(nρ(log2 n + log 1

γ) + n log q).

This immediately implies Theorem 18. In order to build the covering schedule, we first
build an object with relaxed constraints called a preschedule, discussed in Sections 5.1. In
Section 5.2, we convert this into a schedule.

5.1 Constructing a preschedule

Let us fix constants τ ∈ (0, 1
2), λ ∈ (0, 1), and set ϕ = τλ3/ρ. Let us introduce basic

terminology and definitions.
An H-interval is a discrete set of points {σ−, σ− + 1, . . . , σ+ − 1, σ+}, for integers

0 ≤ σ− ≤ σ+ ≤ n. We also write this more compactly as σ = [σ−, σ+]. We define
span(σ) = σ+ − σ− + 1, i.e. the cardinality of σ when viewed as a subset of H.

A segment is a tuple θ = (β, σ) where β ∈ [βmin, βmax], and σ is an H-segment. We say θ

is ϕ-proper (or just proper if ϕ is understood) if it satisfies the following two properties:
Either β = βmin or µβ(σ−) ≥ ϕ/span(σ)
Either β = βmax or µβ(σ+) ≥ ϕ/span(σ)

A preschedule is a sequence of distinct segments J = ((β0, σ0), . . . , (βt, σt)) satisfying the
following properties:
(I0) σ−

i+1 ≤ σ+
i for i = 0, . . . , t− 1.

(I1) βmin = β0 ≤ . . . ≤ βt = βmax.
(I2) 0 = σ−

0 ≤ . . . ≤ σ−
t ≤ n and 0 ≤ σ+

0 ≤ . . . ≤ σ+
t = n

We say that I is ϕ-proper if all segments θi are ϕ-proper.
The main idea of the algorithm is to maintain a sequence of proper segments satisfying

properties (I1) and (I2), and grow it until it satisfies (I0). This uses an additional subroutine
σ ← FindInterval(β, σleft, σright), where β ∈ [βmin, βmax], and σleft, σright are two discrete
intervals in H and the returned interval σ = [σ−, σ+] has σ− ∈ σleft, σ+ ∈ σright. Deferring
for the moment the definition of FindInterval, the details are provided below.

Algorithm 5 Computing an initial preschedule.

1 call σmin ← FindInterval(βmin, {0},H) and σmax ← FindInterval(βmax,H, {n})
2 initialize J to contain the two segments (βmin, σmin), (βmax, σmax)
3 while J does not satisfy (I0) do
4 pick arbitrary consecutive segments θleft = (βleft, σleft) and

θright = (βright, σright) in J with σ+
left < σ−

right.

5 let M =
⌊ σ+

left+σ−
right

2
⌋

+ 1
2

6 call β ← Balance(βleft, βright, M, 1
4n , τ)

7 call

σ ←


FindInterval(β, [σ−

left, M − 1
2], [M + 1

2 , σ+
right]) if βleft < β < βright

FindInterval(β, {σ−
left}, [M + 1

2 , σ+
right]) if β = βleft

FindInterval(β, [σ−
left, M − 1

2], {σ+
right}) if β = βright

8 insert (β, σ) into J between θleft and θright

9 return J

D. G. Harris and V. Kolmogorov 72:15

Now let us say that a segment (β, σ, w) is extremal if it satisfies the following conditions:

µβ(k) ≤ 1
λ
· span(σ)

span(σ) + (σ− − k) · µβ(σ−) ∀k ∈ {0, . . . , σ− − 1} (6a)

µβ(k) ≤ 1
λ
· span(σ)

span(σ) + (k − σ+) · µβ(σ+) ∀k ∈ {σ++1, . . . , n} (6b)

There are two additional invariants we hope to maintain in Algorithm 5:
(I3) Each segment θ of J is ϕ-proper.
(I4) Each segment θ of J is extremal.

We say the call σ ← FindInterval(β, σleft, σright) is good if the segment θ = (β, σ)
satisfies (I3) and (I4), and we say the call at line 7 is valid if β ∈ Λτ (βleft, βright, M) and
both θleft and θright satisfy (I3), (I4). The calls at line 1 are always valid. The following
result summarizes FindInterval.

▶ Theorem 24. FindInterval(β, σleft, σright) has cost O
(
ρ(σ+

right−σ−
left + 1) log n

)
. If the

call is valid, then the call is good with probability at least 1− 1
4(n+2) .

We defer the proof, which is quite technical, the full paper. Putting it aside for the
moment, we have the following results:

▶ Proposition 25. Algorithm 5 outputs a preschedule, and it is ϕ-proper with probability at
least 1/2.

Proof. If all calls to Balance and FindInterval are good, then J maintains properties (I3)
and (I4), and in particular it is ϕ-proper. The loop in lines 3 – 8 is executed at most n times,
since each time it covers a new half-integer value M . So the algorithm calls FindInterval
at most n + 2 times and Balance at most n times. Since Balance or FindInterval fail with
probability at most 1

4n and 1
4(n+2) respectively, properties (I3) and (I4) are maintained with

probability at least 1/2. ◀

▶ Proposition 26. Algorithm 5 has cost O(n log q + nρ log2 n).

Proof. See full paper. ◀

5.2 Converting the preschedule into a covering schedule
There are two steps to convert the preschedule into a covering schedule. First, we throw
away redundant intervals. Second, we “uncross” the adjacent intervals. While we are doing
this, we also check if the resulting schedule is proper; if not, we will discard it and generate a
new preschedule from scratch.

▶ Proposition 27. Given a preschedule J , there is a procedure MinimizePreschedule(J),
which has zero sample complexity, to generate a preschedule J ′ = ((β0, σ0), . . . , (βt, σt))
satisfying the following three properties:
(J1) σ+

i < σ−
i+2 for i = 0, . . . , t− 2.

(J2) β0 < β1 < · · · < βt strictly.
(J3) For any k ∈ H, there are at most two segments θi = (βi, σi) ∈ J ′ with k ∈ σi.
Furthermore, if J is ϕ-proper, then so is J ′ with probability one.

Proof. Start with J and repeatedly apply two operations: (i) discard a segment i ∈
{1, . . . , t− 1} if σ−

i+1 ≤ σ+
i−1 or (ii) merge adjacent segments with βi = βi+1, namely, replace

the two segments (βi, σi), (βi+1, σi+1) with a single segment (βi, [σ−
i , σ+

i+1]). The operations
are performed in any order until no further changes are possible; let J ′ be the result of this
process. ◀

ICALP 2023

72:16 Parameter Estimation for Gibbs Distributions

We next describe the procedure to uncross a preschedule. Here ν > 0 is some arbitrary
constant.

Algorithm 6 UncrossSchedule(J , γ) for preschedule J = ((β0, σ0), . . . , (βt, σt)).

1 for i = 0, . . . , t do let µ̂βi ← Sample(βi; ν
2 , γ

4(t+1) , e−ν/2wi) where wi = ϕ/span(σi)
2 for i = 1, . . . , t do
3 if ∃ k ∈ {σ+

i−1, σ−
i } s.t. µ̂βi−1(k) ≥ e−ν/2wi−1 and µ̂βi

(k) ≥ e−ν/2wi then
4 set ki = k for arbitrary such k

5 else return ⊥
6 return covering schedule I = (β0, e−νw0, k1, β1, e−νw1, k2, . . . , kt, βt, e−νwt)

▶ Theorem 28. Suppose that preschedule J satisfies properties (J1), (J2), (J3). Then:
(a) The output is either ⊥ or a covering schedule I with InvWeight(I) ≤ 2eν (n+1)

ϕ .
(b) It outputs an improper covering schedule with probability at most γ, irrespective of J .
(c) If J is ϕ-proper, then it outputs a proper covering schedule with probability at least 1− γ.
(d) The cost is O(nρ log n

γ).

Proof. See full paper. ◀

We can finish by combining all the preschedule processing algorithms, as follows:

Algorithm 7 Algorithm FindCoveringSchedule(γ).

1 while true do
2 call Algorithm 5 with appropriate constants ν, λ, τ to compute preschedule J
3 call J ′ ← MinimizePreschedule(J)
4 call I ← UncrossSchedule(J ′, γ/4)
5 if I ̸= ⊥ then return I

By Proposition 25 and Theorem 28, each iteration of Algorithm 7 terminates with
probability at least 1

2 (1 − γ/4) ≥ 3/8, so there are O(1) expected iterations. Each call to
UncrossSchedule has cost O(nρ log n

γ). By Proposition 26, each call to Algorithm 5 has
cost O(n log q + nρ log n).

By Theorem 28(a), InvWeight(I) ≤ 2ρ(n + 1) · eν

τλ3 . The term eν

τλ3 gets arbitrarily close
to 2 for constants ν, λ, τ sufficiently close to 0, 1, 1

2 respectively.
Finally, by Proposition 28, each iteration of Algorithm 7 returns a non-proper cover-

ing schedule with probability at most γ/4 (irrespective of the choice of J). Thus, the
total probability of returning a non-proper covering schedule over all iterations is at most∑∞

i=0(3/8)iγ/4 = 2γ/5 ≤ γ as desired.
This shows Theorem 23.

6 Combinatorial applications

Consider a combinatorial setting with ci objects of weights i = 0, . . . , n, and we can sample
from a Gibbs distribution at rate β (for certain values of β). If we know at least one of the
counts, then estimates for π(x) directly translate into estimate of ci. Our usual strategy here
will be to solve P δ,ε

count for δ = O(minx ∆(x)), for chosen boundary parameters βmin, βmax;
in this case, it can easily be seen that the resulting estimated counts ĉi = c0π̂(i)/π̂(0) are
accurate within e±ε relative error.

D. G. Harris and V. Kolmogorov 72:17

In many of these combinatorial applications, the counts are known to be log-concave; in
this case, there are natural choices for algorithm parameters which lead to particularly clean
bounds. When counts are not log-concave, more involved properties of the Gibbs distribution
(e.g. it approaches a normal distribution) must be used.

▶ Theorem 29. Suppose the counts are log-concave and non-zero. If βmin ≤ log c0
c1

and
βmax ≥ log cn−1

cn
, then ∆(k) ≥ 1

n+1 for all k = 0, . . . , n, and log Q(βmax) ≤ q := 3nΓ where
Γ := max{βmax, log c1

c0
, 1}. In particular, for δ = 1

n+1 , we can solve P δ,ε
count with cost

O
(

min
{nΓ log n log 1

γ

ε2 ,
n2 log 1

γ

ε2 + n log Γ
})

Proof. See full paper. ◀

Theorem 3 follows directly from Theorem 29 combined with an MCMC sampler for
matchings appearing [15]. (See full paper for details).

6.1 Counting connected subgraphs
Consider a connected graph G = (V, E). In [11], Guo & Jerrum described an algorithm
to sample a connected subgraph G′ = (V, E′) with probability proportional to

∏
f∈E′(1−

p(f))
∏

f∈E−E′ p(f), for any weighting function p : E → [0, 1]. If we set p(f) = 1
1+eβ for all

edges f , then their algorithm samples from the Gibbs distribution with ci being the number
of connected subgraphs of G with |E| − i edges. Guo & He [10] subsequently improved the
algorithm runtime; we summarize their result as follows:

▶ Theorem 30 ([10], Corollary 10). There is an algorithm to sample from the Gibbs distribution
with counts ci for any value of β > 0; the expected runtime is O(|E|+ |E||V |eβ).

Proof of Theorem 1. The sequence ci counts the number of independent sets in the co-
graphic matroid, where n = |E| − |V |+ 1. By the result of [1], this sequence ci is log-concave;
also c0 = 1 so it suffices to estimates counts up to any scaling. The ratios cn−1/cn and c1/c0
are both at most |E|, since to enumerate a connected graph with |V | edges we may select a
spanning tree and any other edge in the graph, and to enumerate a graph with |E| − 1 edges
we simply select an edge of G to delete.

So we can apply Theorem 29, setting βmax = log |E| ≥ log cn−1
cn

, βmin = − log |E| ≤ log c0
c1

and Γ = log |E|. The definition of an FPRAS traditionally sets γ = O(1), and here n = |E|.
So the algorithm uses O(|E| log2 |E|

ε2) samples in expectation. With these parameters, each
call to the sampling oracle of Theorem 30 has runtime O(|E|2|V |). The total runtime is then
O(|E|3|V | log2 |E|

ε2). ◀

The work [11] sketches an FPRAS for this problem as well; the precise complexity is
unspecified and appears to be much larger than Theorem 1. We also note that Anari et
al. [2] provide a general FPRAS for counting the number of independent sets in arbitrary
matroids, which would include the number of connected subgraphs. This uses a very different
sampling method, which is not based on the Gibbs distribution. They do not provide concrete
complexity estimates for their algorithm.

6.2 Counting independent sets in bounded-degree graphs
For a graph G = (V, E) of maximum degree D, let Ik denote the collection of independent
sets of size k for k = 0, . . . , |V |. A key problem in statistical physics is to sample efficiently
from Ik. Here, there is critical hardness threshold defined by λc = (D−1)D−1

(D−2)D ≈ e/D, such

ICALP 2023

72:18 Parameter Estimation for Gibbs Distributions

that, for β > λc, it is intractable to sample from the Gibbs distribution at rate λ; on the
other, for β < λc, there is a polynomial-time sampler for the Gibbs distribution. We quote
the following result of [6].

▶ Theorem 31 ([6]). Let D ≥ 3 and ξ > 0 be any fixed constants. There is an algorithm
to approximately sample from the Gibbs distribution at β ∈ [0, λc − ξ], up to total variation
distance ρ, with runtime O(n log n log(n/ρ)).

The related problem of estimating the values ik was considered in [7]. Based on this
sampling result, they identified a related computational threshold for estimating the counts
ck = |Ik|. Namely, they define the threshold value αc = λc

1+(D+1)λc
and then show that,

for k > αc|V |, it is intractable to estimate ck or to sample approximately uniformly from
Ik; on the other hand, for constant D ≥ 3 and ξ > 0 and k < (αc − ξ)|V |, then describe
an algorithm to estimate ck in polynomial time. A follow-up work [13] provided tighter
estimates for the Gibbs distribution and improved algorithms; specifically, it showed how to
estimate a given count ci for i < (α− ξ)|V | with runtime Õ(n2/ε2).

A key analytical technique of [13] was to show that the Gibbs distribution for independent
sets closely approximated to a normal distribution, i.e. it obeyed a type of Central Limit
Theorem. Using Theorem 3.1 of [13], we have the following crude estimate:

▶ Lemma 32 ([13]). Let D ≥ 3 and ξ > 0 be any fixed constants. There is a constant ξ′ > 0
such that, for any k ≤ (αc−ξ)|V |, there is some value β ∈ [0, λc−ξ′] with µβ(k) ≥ Ω(1/

√
|V |).

By using Lemma 32, we immediately get the following result:

▶ Theorem 33. Let D ≥ 3 and ξ > 0 be any fixed constants. There is an algorithm to
estimate all counts c0, . . . c⌊(αc−ξ)|V |⌋ with runtime Õ(n2 log(1/γ)

ε2).

Proof. We set βmin = 0, βmax = λc − ξ′, n = |V |. Note that the Gibbs distribution is not
necessarily log-concave. Since c0 = 1 and clearly ci ≤ 2n for all i, we have Q(βmax)/Q(βmin) ≤
(2neβmaxn)/1; in particular, since βmax = O(1) (for fixed D), we have Q(βmax)/Q(βmin) ≤
eO(n) and we can take q = Θ(n). By Lemma 32, we have ∆(k) ≥ Ω(1/

√
n) for these

parameters. Thus, it suffices to solve P δ,0.1ε
count for δ = Ω(1/

√
n).

For this purpose, we will actually use the continuous-setting algorithm – it is more efficient
than the general integer-setting algorithm. By Theorem 13, this algorithm has cost

O
(min{q,

√
q log n} log q

δγ

δε2 +
q log n log 1

γ

ε2

)
= O

(n log3/2 n + n log n log 1
γ

ε2

)
.

Accordingly, we need to run the approximate sampler of Theorem 31 with ρ =
poly(n, 1/ε, log 1

γ) leading to a computational complexity of O(n log n log(n log 1/γ
ε)). With

some simplification of parameters, the overall runtime becomes

O
(n2 log5/2 n log(n/ε) + n2 log2 n log 1

γ log(n log 1/γ
ε)

ε2

)
= Õ

(n2 log 1
γ

ε2

)
. ◀

We note that the algorithm in [13] has this same runtime, but only estimates a single count
ci; our algorithm simultaneously produces estimates for all values ci up to the threshold value
i < (αc − ξ)|V | with the same runtime. It also does not depend on the precise distributional
properties of the Gibbs distribution; it only requires the much cruder estimate in Lemma 32.

D. G. Harris and V. Kolmogorov 72:19

7 Lower bounds on sample complexity

Following [16], our strategy is to construct a target instance c(0) surrounded by an envelope
of d alternate instances c(1), . . . , c(d), such that solving P point

ratio or Pcount on an unknown
instance c(r) distinguishes between the cases r = 0 and r > 0. On the other hand, an
“indistinguishability lemma” gives a lower bound on the sample complexity of any such
procedure to distinguish the distributions.

Define µ
(r)
β to be the Gibbs distribution with parameter β for instance c(r), and Z(r)(β)

to be its partition function, and z(r) = log Z(r), and ∆(r)(x) = maxβ∈[βmin,βmax] µ
(r)
β (x).

We will require that the instances are balanced, namely, that they satisfy the property∏d
r=1 c

(r)
x = (c(0)

x)d for all x ∈ F . We also define parameters

U(β) =
d∏

r=1

Z(r)(β)
Z(0)(β)

, Ψ = max
β∈[βmin,βmax]

log U(β).

▶ Lemma 34 ([16]). Let A be an algorithm which generates queries β1, . . . , βT ∈ [βmin, βmax]
and receives values x1, . . . , xT , where each xi is drawn from µβi . At some point the procedure
stops and outputs TRUE or FALSE. The queries βi and the stopping time T may be adaptive
and may be randomized.

Suppose that A outputs TRUE on input c(0) with probability at least 1− γ and outputs
FALSE on inputs c(1), . . . , c(d) with probability at least 1− γ, for some parameter γ < 1/4.

If the instances are balanced, then the cost of A on instance c(0) is Ω(d log(1/γ)
Ψ).

To get more general lower bounds for count estimation, we consider a problem variant
called P̌ δ,ε

count, namely, to compute a vector ĉ ∈ (R>0 ∪ {?})F satisfying the following two
properties:

(i) for all pairs x, y with ĉx, ĉy ̸= ?, there holds | log ĉx

ĉy
− log cx

cy
| ≤ ε

(ii) for all x with ∆(x) ≥ δ there holds ĉx ̸= ?.

Given a solution (π̂, u) to P δ,0.1ε
count , we can solve P̌ δ,ε

count with zero sample complexity and
probability one (see full paper for details). Problem P̌ δ,ε

count is easier than P δ,ε
count (up to constant

factors in parameters), in two ways: first, it does not require any specific normalization of
the counts, only pairwise consistency. Second, it only provides approximation guarantees for
cx if ∆(x) ≥ δ, while P δ,ε

count provides meaningful bounds over a wide range of scales.

▶ Corollary 35.
(a) Suppose that |z(0)(βmin, βmax) − z(r)(βmin, βmax)| > 2ε for all r = 1, . . . , d. Then any

algorithm for P point
ratio must have cost Ω(d log(1/γ)

Ψ) on instance c(0).
(b) Suppose that for each r = 1, . . . , d there are x, y with ∆(0)(x), ∆(0)(y) ≥ δ, and
| log(c(0)

x /c
(0)
y) − log(c(r)

x /c
(r)
y)| > 2ε. (We refer to the values x, y as the witnesses

for r.) Then any algorithm for P̌ δ,ε
count must have cost Ω(d log(1/γ)

Ψ) on instance c(0).

Proof. We show how to convert these algorithms into procedures distinguishing c(0) from
c(1), . . . , c(d):
(a) Given a solution Q̂(βmax) to P point

ratio , output TRUE if | log Q̂(βmax)−z(0)(βmin, βmax)| ≤ ε,
else output FALSE.

(b) Given a solution ĉ to P̌ δ,ε
count, output TRUE if ĉ ≠ ? for all x with ∆(0)(x) ≥ δ, and

every pair x, y with ∆(x), ∆(y) ≥ δ satisfy | log(ĉx/ĉy)− log(c(0)
x /c

(0)
y)| ≤ ε, else output

FALSE. ◀

By applying Corollary 35 to carefully constructed instances, we will show the following:

ICALP 2023

72:20 Parameter Estimation for Gibbs Distributions

▶ Theorem 36. Let n ≥ n0, q ≥ q0, ε < ε0, δ < δ0, γ < 1/4 for certain absolute constants
n0, q0, ε0, δ0. There are problem instances µ which satisfy the given bounds n and q such that:
(a) P̌ δ,ε

count requires cost Ω(min{q+√
q/δ,n2+n/δ} log 1

γ

ε2), and µ is integer-valued.

(b) P̌ δ,ε
count requires cost Ω((1/δ+min{q,n2}) log 1

γ

ε2), and µ is log-concave.

(c) P
point
ratio requires cost Ω(min{q,n2} log 1

γ

ε2), and µ is log-concave.

(d) P̌ δ,ε
count requires cost Ω((q+√

q/δ) log 1
γ

ε2).

(e) P point
ratio requires cost Ω(q log 1

γ

ε2).

The lower bounds on P̌ δ,ε
count immediately imply lower bounds on P δ,ε

count, in particular,
they give Theorems 5 and 7. Result (e) was already shown in [16], but we include it here
since it is a corollary of other results.

The proofs and constructions appear in the full paper.

References
1 K. Adiprasito, J. Huh, and E. Katz. Hodge theory for combinatorial geometries. Annals of

Mathematics, 188(2):381–452, 2018.
2 N. Anari, K. Liu, S. O. Gharan, and C. Vinzant. Log-concave polynomials II: High-dimensional

walks and an FPRAS for counting bases of a matroid. In Proc. 51st annual ACM Symposium
on Theory of Computing (STOC), pages 1–12, 2019.

3 R. E. Belardinelli and V. D. Pereyra. Wang-Landau algorithm: A theoretical analysis of the
saturation of the error. The Journal of Chemical Physics, 127(18):184105, 2007.

4 I. Bezáková, D. Štefankovič, V. V. Vazirani, and E. Vigoda. Accelerating simulated annealing
for the permanent and combinatorial counting problems. SIAM J. Comput., 37:1429–1454,
2008.

5 Charlie Carlson, Ewan Davies, Alexandra Kolla, and Will Perkins. Computational thresholds
for the fixed-magnetization ising model. In Proc. 54th annual ACM Symposium on Theory of
Computing (STOC), pages 1459–1472, 2022.

6 Zongchen Chen, Kuikui Liu, and Eric Vigoda. Optimal mixing of Glauber dynamics: Entropy
factorization via high-dimensional expansion. In Proc. 53rd annual ACM Symposium on
Theory of Computing (STOC), pages 1537–1550, 2021.

7 Ewan Davies and Will Perkins. Approximately counting independent sets of a given size in
bounded-degree graphs. In Proc. 48th International Colloquium on Automata, Languages, and
Programming (ICALP), pages 62:1–62:18, 2021.

8 W. Feng, H. Guo, Y. Yin, and C. Zhang. Fast sampling and counting k-SAT solutions in the
local lemma regime. In Proc. 52nd annual ACM Symposium on Theory of Computing (STOC),
pages 854–867, 2020.

9 G. Fort, B. Jourdain, E. Kuhn, T. Leliévre, and G. Stoltz. Convergence of the Wang-Landau
algorithm. Mathematics of Computation, 84(295):2297–2327, 2015.

10 H. Guo and K. He. Tight bounds for popping algorithms. Random Struct. Algorithms,
57(2):371–392, 2020.

11 H. Guo and M. Jerrum. A polynomial-time approximation algorithm for all-terminal network
reliability. SIAM J. Comput., 48(3):964–978, 2019.

12 M. Huber. Approximation algorithms for the normalizing constant of Gibbs distributions. The
Annals of Applied Probability, 25(2):974–985, 2015.

13 Vishesh Jain, Will Perkins, Ashwin Sah, and Mehtaab Sawhney. Approximate counting and
sampling via local central limit theorems. In Proc. 54th annual ACM Symposium on Theory
of Computing (STOC), pages 1473–1486, 2022.

14 M. Jerrum and A. Sinclair. Approximating the permanent. SIAM J. Comput., 18(6):1149–1178,
1989.

D. G. Harris and V. Kolmogorov 72:21

15 M. Jerrum and A. Sinclair. The Markov Chain Monte Carlo method: an approach to
approximate counting and integration. Approximation algorithms for NP-hard problems, pages
482–520, 1996.

16 V. Kolmogorov. A faster approximation algorithm for the Gibbs partition function. Proceedings
of Machine Learning Research, 75:228–249, 2018.

17 Pedro Ojeda, Martin E Garcia, Aurora Londoño, and Nan-Yow Chen. Monte Carlo simulations
of proteins in cages: influence of confinement on the stability of intermediate states. Biophysical
journal, 96(3):1076–1082, 2009.

18 L. N. Shchur. On properties of the Wang-Landau algorithm. Journal of Physics: Conference
Series, 1252, 2019.

19 D. Štefankovič, S. Vempala, and E. Vigoda. Adaptive simulated annealing: A near-optimal
connection between sampling and counting. J. of the ACM, 56(3) Article #18, 2009.

20 F. Wang and D. P. Landau. Efficient, multiple-range random walk algorithm to calculate the
density of states. Phys. Rev. Lett., 86(10):2050–2053, 2001.

ICALP 2023

On Finding Constrained Independent Sets in Cycles
Ishay Haviv
School of Computer Science, The Academic College of Tel Aviv-Yaffo, Israel

Abstract
A subset of [n] = {1, 2, . . . , n} is called stable if it forms an independent set in the cycle on the
vertex set [n]. In 1978, Schrijver proved via a topological argument that for all integers n and k with
n ≥ 2k, the family of stable k-subsets of [n] cannot be covered by n − 2k + 1 intersecting families.
We study two total search problems whose totality relies on this result.

In the first problem, denoted by Schrijver(n, k, m), we are given an access to a coloring of the
stable k-subsets of [n] with m = m(n, k) colors, where m ≤ n − 2k + 1, and the goal is to find a
pair of disjoint subsets that are assigned the same color. While for m = n − 2k + 1 the problem is
known to be PPA-complete, we prove that for m < d · ⌊ n

2k+d−2 ⌋, with d being any fixed constant,
the problem admits an efficient algorithm. For m = ⌊n/2⌋ − 2k + 1, we prove that the problem is
efficiently reducible to the Kneser problem. Motivated by the relation between the problems, we
investigate the family of unstable k-subsets of [n], which might be of independent interest.

In the second problem, called Unfair Independent Set in Cycle, we are given ℓ subsets V1, . . . , Vℓ

of [n], where ℓ ≤ n − 2k + 1 and |Vi| ≥ 2 for all i ∈ [ℓ], and the goal is to find a stable k-subset S of
[n] satisfying the constraints |S ∩ Vi| ≤ |Vi|/2 for i ∈ [ℓ]. We prove that the problem is PPA-complete
and that its restriction to instances with n = 3k is at least as hard as the Cycle plus Triangles
problem, for which no efficient algorithm is known. On the contrary, we prove that there exists
a constant c for which the restriction of the problem to instances with n ≥ c · k can be solved in
polynomial time.

2012 ACM Subject Classification Mathematics of computing → Graph theory; Mathematics of
computing → Combinatorial algorithms; Theory of computation → Problems, reductions and
completeness

Keywords and phrases Schrijver graph, Kneser graph, Stable sets, PPA-completeness

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.73

Category Track A: Algorithms, Complexity and Games

Funding Ishay Haviv: Research partly supported by the Israel Science Foundation (grant
No. 1218/20).

1 Introduction

For integers n and k with n ≥ 2k, the Kneser graph K(n, k) is the graph whose vertices
are all the k-subsets of [n] = {1, 2 . . . , n}, where two such sets are adjacent in the graph
if they are disjoint. The graph K(n, k) admits a proper vertex coloring with n − 2k + 2
colors. This indeed follows by assigning the color i, for each i ∈ [n − 2k + 1], to all the
vertices whose minimal element is i, and the color n − 2k + 2 to the remaining vertices,
those contained in [n] \ [n − 2k + 1]. In 1978, Lovász [22] proved, settling a conjecture of
Kneser [20], that fewer colors do not suffice, that is, the chromatic number of the graph
satisfies χ(K(n, k)) = n − 2k + 2. Soon later, Schrijver [28] strengthened Lovász’s result by
proving that the subgraph S(n, k) of K(n, k) induced by the stable k-subsets of [n], i.e., the
vertices of K(n, k) that form independent sets in the cycle on the vertex set [n], has the same
chromatic number. It was further shown in [28] that the graph S(n, k) is vertex-critical, in
the sense that any removal of a vertex from the graph decreases its chromatic number.

EA
T
C
S

© Ishay Haviv;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 73; pp. 73:1–73:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.ICALP.2023.73
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

73:2 Finding Constrained Independent Sets in Cycles

It is interesting to mention that despite the combinatorial nature of Kneser’s conjec-
ture [20], Lovász’s proof [22] relies on the Borsuk–Ulam theorem [6], a fundamental result in
the area of algebraic topology. Several alternative proofs and extensions were provided in
the literature over the years (see, e.g., [24, 25]). Although they are substantially different
from each other, they all essentially rely on topological tools.

The computational search problem associated with Kneser graphs, denoted by Kneser,
was proposed by Deng, Feng, and Kulkarni [7] and is defined as follows. Its input consists
of integers n and k with n ≥ 2k and an access to a coloring of the vertices of K(n, k)
with n − 2k + 1 colors. The goal is to find a monochromatic edge in the graph, i.e., two
disjoint k-subsets of [n] that are assigned the same color by the given coloring. Since the
number of colors used by the input coloring is strictly smaller than the chromatic number
of K(n, k) [22], it follows that this search problem is total, in the sense that every input
is guaranteed to have a solution. Note that the input coloring may be given as an oracle
access that provides the color of any queried vertex, and that an algorithm for the problem
is considered efficient if its running time is polynomial in n. In other variants of the problem,
the input coloring is given by some succinct representation, e.g., a Boolean circuit or an
efficient Turing machine. The computational search problem Schrijver is defined similarly,
where the input represents a coloring of the vertices of S(n, k) with n − 2k + 1 colors, and the
goal is to find a monochromatic edge, whose existence is guaranteed by the aforementioned
result of Schrijver [28].

The computational complexity of the Schrijver problem was determined in [15], where
it was shown to be complete in the complexity class PPA. This complexity class, introduced
in 1994 by Papadimitriou [26], is known to capture the complexity of several additional total
search problems whose totality is based on the Borsuk–Ulam theorem, e.g., Consensus Halving,
Bisecting Sandwiches, and Splitting Necklaces [12]. Note that this line of PPA-completeness
results is motivated not only from the computational complexity perspective, but also from
a mathematical point of view, as one may find those results as an indication for the necessity
of topological arguments in the existence proof of the solutions of these problems. As for
the Kneser problem, it is an open question whether it is also PPA-hard, as was suggested
by Deng et al. [7]. We remark that its complexity is related to that of the Agreeable Set
problem from the area of resource allocation (see [23, 16]). The Kneser and Schrijver
problems were also investigated in the framework of parameterized algorithms [16, 17], where
it was shown that they admit randomized fixed-parameter algorithms with respect to the
parameter k, namely, algorithms whose running time is nO(1) · kO(k) on input colorings of
K(n, k) and S(n, k).

Before turning to our results, let us mention another computational search problem,
referred to as the Cycle-Plus-Triangles problem. Its input consists of an integer k and a
graph on 3k vertices, whose edge set is the disjoint union of a Hamilton cycle and k pairwise
vertex-disjoint triangles. The goal is to find an independent set of size k in the graph. The
existence of a solution for every input of the problem follows from a result of Fleischner and
Stiebitz [13], which settled in the early nineties a conjecture of Du, Hsu, and Hwang [9] as
well as its strengthening by Erdös [10]. Their proof in fact shows that every such graph is
3-choosable, and thus 3-colorable, so in particular, it contains an independent set of size k.
Here, however, the existence of a solution for every input of the problem is known to follow
from several different arguments. While the proof of [13] relies on the polynomial method in
combinatorics (see also [3]), an elementary proof was given slightly later by Sachs [27], and
another proof, based on the chromatic number of S(n, k), was provided quite recently by
Aharoni et al. [1]. Yet, none of these proofs is constructive, in the sense that they do not

I. Haviv 73:3

suggest an efficient algorithm for the Cycle-Plus-Triangles problem. The question of
whether the problem admits an efficient algorithm was asked by several authors and is still
open (see, e.g., [14, 1, 4]). Interestingly, the approach of [1] implies that the problem is not
harder than the restriction of the Schrijver problem to colorings of S(n, k) with n = 3k.

1.1 Our Contribution
In this paper, we introduce two total search problems concerned with finding stable sets
under certain constraints. The totality of the problems relies on the chromatic number
of the graph S(n, k) [28]. We study these problems from algorithmic and computational
perspectives. In what follows, we describe the two problems and our results on each of them.

1.1.1 The Generalized Schrijver Problem
We start by considering a generalized version of the Schrijver problem, which allows the num-
ber of colors used by the input coloring to be any prescribed number. Let Schrijver(n, k, m)
denote the problem which asks to find a monochromatic edge in S(n, k) for an input coloring
that uses m = m(n, k) colors. Note that every input of the problem is guaranteed to have a
solution whenever m ≤ n − 2k + 1, and that for m = n − 2k + 1, the problem coincides with
the standard Schrijver problem.

The Schrijver(n, k, m) problem obviously becomes easier as the number of colors m

decreases. For example, it is not difficult to see that for m = ⌊n/k⌋ − 1, the problem can be
solved efficiently, in time polynomial in n. Indeed, the clique number of the graph S(n, k) is
⌊n/k⌋, which is strictly larger than m, so by querying the input coloring for the colors of the
vertices of a clique of maximum size, one can find two adjacent vertices with the same color.
Our first result extends this observation and essentially shows that the Schrijver(n, k, m)
problem can be solved efficiently for any number of colors m satisfying m = O(n/k).

▶ Theorem 1. For every integer d ≥ 2, there exists an algorithm for the Schrijver(n, k, m)
problem with m < d · ⌊ n

2k+d−2 ⌋ whose running time is nO(d).

Our next result relates the generalized Schrijver(n, k, m) problem to the Kneser
problem.

▶ Theorem 2. Schrijver(n, k, ⌊n/2⌋ − 2k + 1) is polynomial-time reducible to Kneser.

The simple proof of Theorem 2 involves a proper coloring of the subgraph of K(n, k)
induced by the unstable k-subsets of [n], i.e., the vertices of K(n, k) that do not form vertices
of S(n, k). This graph, which we denote by U(n, k), can be properly colored using ⌈n/2⌉
colors. Indeed, every unstable k-subset of [n] includes an odd element, hence by assigning to
each vertex of U(n, k) some odd element that belongs to its set, we obtain a proper coloring
of the graph with the desired number of colors. Since U(n, k) is a subgraph of K(n, k), it
follows that for all admissible values of n and k, we have χ(U(n, k)) ≤ min(n − 2k + 2, ⌈n/2⌉).

Motivated by the reduction given by Theorem 2, we further explore the graph U(n, k),
whose study may be of independent interest. We prove that the above upper bound on the
chromatic number is essentially tight (up to an additive 1 in certain cases; see Corollary 19 and
the discussion that follows it). The proof is topological and applies the Borsuk–Ulam theorem.
We further determine the independence number of the graph U(n, k) (see Theorem 20), using
a structural result of Hilton and Milner [18] on the largest non-trivial intersecting families of
k-subsets of [n].

ICALP 2023

73:4 Finding Constrained Independent Sets in Cycles

The motivation for Theorem 2 comes from the fact that the Schrijver problem is
known to be PPA-hard, whereas no hardness result is known for the Kneser problem. It
would be interesting to figure out whether or not the Schrijver(n, k, m) problem with
m = ⌊n/2⌋ − 2k + 1 admits an efficient algorithm. While this challenge is left open, the
following result shows that the problem is not harder than the restriction of the standard
Schrijver problem to colorings of S(n, k) with n = 4k.

▶ Theorem 3. If there exists a polynomial-time algorithm for the restriction of the Schrijver
problem to colorings of S(n, k) with n = 4k, then there exists a polynomial-time algorithm
for the Schrijver(n, k, m) problem where m = ⌊n/2⌋ − 2k + 1.

We finally observe that the restriction of Schrijver(n, k, m) with m = ⌊n/2⌋ − 2k + 1
to instances satisfying n = Ω(k4) admits an efficient randomized algorithm. This essentially
follows from the fixed-parameter algorithm presented in [17] (see Section 3 for details).

1.1.2 The Unfair Independent Set in Cycle Problem
The second problem studied in this paper is the Unfair Independent Set in Cycle problem,
denoted by Unfair-IS-Cycle and defined as follows. Its input consists of two integers n and
k with n ≥ 2k and ℓ subsets V1, . . . , Vℓ of [n], where ℓ ≤ n − 2k + 1 and |Vi| ≥ 2 for all i ∈ [ℓ].
The goal is to find a stable k-subset S of [n] that satisfies the constraints |S ∩ Vi| ≤ |Vi|/2
for i ∈ [ℓ]. The name of the problem essentially borrows the terminology of [1], where a set
is said to fairly represent a set Vi if it includes at least roughly half of its elements, hence the
desired stable set in the Unfair-IS-Cycle problem is required to unfairly represent each
of the given sets Vi. It is not difficult to show, using the chromatic number of S(n, k), that
every input of the Unfair-IS-Cycle problem has a solution (see Lemma 13). Note that
the requirement that the input sets satisfy |Vi| ≥ 2 for all i ∈ [ℓ] is discussed in Section 2.4.

It is natural to compare the definition of the Unfair-IS-Cycle problem to that of the
Fair Independent Set in Cycle problem, denoted by Fair-IS-Cycle and studied in [15] (see
Definition 11). While the goal in the former is to find a stable subset of [n] with a prescribed
size k that includes no more than half of the elements of each Vi, the goal in the latter is,
roughly speaking, to find a stable subset of [n], of an arbitrary size, that includes at least half
of the elements of each Vi. The specification of the size k in the inputs of Unfair-IS-Cycle
makes the problem non-trivial and allows us to study it for various settings of the quantities
n and k.

The following result shows that the complexity of the Unfair-IS-Cycle problem
is perfectly captured by the class PPA. This is established using the Schrijver and
Fair-IS-Cycle problems which are PPA-complete [15].

▶ Theorem 4. The Unfair-IS-Cycle problem is PPA-complete.

We next consider some restrictions of the Unfair-IS-Cycle problem to instances in
which the integer n is somewhat larger than 2k. On the one hand, the restriction of the
problem to instances with n = 3k is at least as hard as the Cycle-Plus-Triangles problem,
for which no efficient algorithm is known (see Proposition 15). On the other hand, we prove
that on instances whose ratio between n and k is above some absolute constant, the problem
can be solved in polynomial time.

▶ Theorem 5. There exists a constant c > 0, such that there exists a polynomial-time
algorithm for the restriction of the Unfair-IS-Cycle problem to instances with n ≥ c · k.

I. Haviv 73:5

The proof of Theorem 5 is based on a probabilistic argument with alterations, which is
derandomized into a deterministic algorithm using the method of conditional expectations
(see, e.g., [5, Chapters 3 and 16.1]). The approach is inspired by a probabilistic argument of
Kiselev and Kupavskii [19], who proved that for n ≥ (2 + o(1)) · k2, every proper coloring
of the Kneser graph K(n, k) with n − 2k + 2 colors has a trivial color class (all of whose
members share a common element).

1.2 Outline
The rest of the paper is organized as follows. In Section 2, we collect some definitions
and results that will be used throughout the paper. In Section 3, we study the gener-
alized Schrijver problem and prove Theorems 1, 2, and 3. In Section 4, we study the
Unfair-IS-Cycle problem and prove Theorems 4 and 5. Finally, in Section 5, we consider
the family of unstable k-subsets of [n] and study the chromatic and independence numbers
of the graph U(n, k). Some proofs are omitted and can be found in the full version of this
paper.

2 Preliminaries

2.1 Kneser and Schrijver Graphs
For integers n and k, let

([n]
k

)
denote the family of all k-subsets of [n]. A subset of [n] is

called stable if it does not include two consecutive elements nor both 1 and n, equivalently, it
forms an independent set in the cycle on the vertex set [n] with the natural order along the
cycle. Otherwise, the set is called unstable. The family of stable k-subsets of [n] is denoted
by

([n]
k

)
stab. The Kneser graph and the Schrijver graph are defined as follows.

▶ Definition 6. For integers n and k with n ≥ 2k, the Kneser graph K(n, k) is the graph on
the vertex set

([n]
k

)
, where two sets A, B ∈

([n]
k

)
are adjacent if they satisfy A ∩ B = ∅. The

Schrijver graph S(n, k) is the subgraph of K(n, k) induced by the vertices of
([n]

k

)
stab.

Obviously, the number of vertices in K(n, k) is
(

n
k

)
. The number of vertices in S(n, k) is

given by the following lemma (see, e.g., [16, Fact 4.1]).

▶ Lemma 7. For all integers n and k with n ≥ 2k, the number of stable k-subsets of [n] is
n
k ·

(
n−k−1

k−1
)
.

As usual, we denote the independence number of a graph G by α(G), and its chro-
matic number by χ(G). The chromatic numbers of K(n, k) and S(n, k) were determined,
respectively, by Lovász [22] and by Schrijver [28], as stated below.

▶ Theorem 8 ([22, 28]). For all integers n and k with n ≥ 2k,

χ(K(n, k)) = χ(S(n, k)) = n − 2k + 2.

2.2 Intersecting Families
A family F of sets is called intersecting if for every two sets A, B ∈ F it holds that A ∩ B ̸= ∅.
Note that a family of k-subsets of [n] is intersecting if and only if it forms an independent
set in the graph K(n, k). An intersecting family F is said to be trivial if there exists an
element that belongs to all members of F . Otherwise, the family F is non-trivial. The
famous Erdös-Ko-Rado theorem [11] asserts that the largest size of an intersecting family

ICALP 2023

73:6 Finding Constrained Independent Sets in Cycles

of k-subsets of [n] is
(

n−1
k−1

)
, which is attained by the maximal trivial intersecting families.

The following result of Hilton and Milner [18] determines the largest size of a non-trivial
intersecting family in this setting and characterizes the extremal families attaining it.

▶ Theorem 9 (Hilton–Milner Theorem [18]). For integers k ≥ 3 and n ≥ 2k, let F ⊆
([n]

k

)
be

a non-trivial intersecting family. Then,

|F| ≤
(

n − 1
k − 1

)
−

(
n − k − 1

k − 1

)
+ 1.

Moreover, if n > 2k then equality holds if and only if there exist an element i ∈ [n] and a
k-subset A of [n] with i /∈ A such that F =

{
F ∈

([n]
k

) ∣∣∣ i ∈ F, F ∩ A ̸= ∅
}

∪ {A}, or k = 3

and there exists a 3-subset A of [n] such that F =
{

F ∈
([n]

3
) ∣∣∣ |F ∩ A| ≥ 2

}
.

2.3 Complexity Classes
The complexity class TFNP consists of the total search problems in NP, i.e., the search
problems in which every input has a solution, where a solution can be verified in polynomial
time. The complexity class PPA (Polynomial Parity Argument [26]) consists of the problems
in TFNP that can be reduced in polynomial time to a problem called Leaf. The definition
of the Leaf problem is not needed in this paper, but we mention it briefly below for
completeness.

The Leaf problem asks, given a graph with maximum degree 2 and a leaf (i.e., a vertex of
degree 1), to find another leaf in the graph. The input graph, though, is not given explicitly.
Instead, the vertex set of the graph is defined to be {0, 1}n for some integer n, and the graph
is succinctly represented by a Boolean circuit that for a vertex of the graph computes its (at
most two) neighbors. Note that the size of the graph might be exponential in the size of its
description.

2.4 Computational Problems
We gather here several computational problems that will be studied and used throughout
the paper. We start with a computational search problem associated with Schrijver graphs.
This problem is studied in Section 3.

▶ Definition 10 (Generalized Schrijver Problem). For m = m(n, k), the Schrijver(n, k, m)
problem is defined as follows. The input is a coloring c :

([n]
k

)
stab → [m] of the vertices of

the graph S(n, k) with m colors, and the goal is to find a monochromatic edge, i.e., two
vertices A, B ∈

([n]
k

)
stab such that A ∩ B = ∅ and c(A) = c(B). In the black-box input model,

the coloring c is given as an oracle access that given a vertex A outputs its color c(A). In
the white-box input model, the coloring c is given by a Boolean circuit that for a vertex A

computes its color c(A). For m = n − 2k + 1, the problem Schrijver(n, k, m) is denoted by
Schrijver.

The Kneser problem is defined similarly to the Schrijver problem. Here, the input
coloring c :

([n]
k

)
→ [n − 2k + 1] is defined on the entire vertex set of K(n, k). By Theorem 8,

every input of the Schrijver and Kneser problems is guaranteed to have a solution.
Moreover, whenever m = m(n, k) ≤ n − 2k + 1, every input of the Schrijver(n, k, m)
problem has a solution as well.

We remark that algorithms for the Schrijver(n, k, m) problem are considered in this
paper with respect to the black-box input model. The running time of such an algorithm is
referred to as polynomial if it is polynomial in n. Observe that a polynomial-time algorithm

I. Haviv 73:7

for the Schrijver(n, k, m) problem in the black-box input model yields an algorithm for the
analogue problem in the white-box input model, whose running time is polynomial as well (in
the input size). For computational complexity results, like reductions and PPA-completeness,
we adopt the more suitable white-box input model. For example, the Schrijver problem in
the white-box input model was shown in [15] to be PPA-complete.

Another search problem studied in [15] is the following.

▶ Definition 11 (Fair Independent Set in Cycle Problem). In the Fair-IS-Cycle problem,
the input consists of integers n and m along with a partition V1, . . . , Vm of [n] into m sets.
The goal is to find a stable subset S of [n] satisfying |S ∩ Vi| ≥ 1

2 · |Vi| − 1 for all i ∈ [m].

The existence of a solution for every input of the Fair-IS-Cycle problem was proved in [1].
It was shown in [15] that the Fair-IS-Cycle problem is PPA-complete, even restricted to
instances in which each part Vi of the given partition has an odd size larger than 2.

We next define the Unfair-IS-Cycle problem, studied in Section 4.

▶ Definition 12. The input of the Unfair-IS-Cycle problem consists of two integers n and
k with n ≥ 2k and ℓ subsets V1, . . . , Vℓ of [n], where ℓ ≤ n − 2k + 1 and |Vi| ≥ 2 for all i ∈ [ℓ].
The goal is to find a stable k-subset S of [n] that satisfies the constraints |S ∩ Vi| ≤ |Vi|/2 for
i ∈ [ℓ].

Note that Definition 12 requires the sets V1, . . . , Vℓ of an instance of the Unfair-IS-Cycle
problem to satisfy |Vi| ≥ 2 for all i ∈ [ℓ]. This requirement is justified by the observation
that if |Vi| = 1 for some i ∈ [ℓ], then any solution for the instance does not include the single
element of Vi. Hence, by removing this element from the given sets and from the ground set,
such an instance can be reduced to an instance with ground set of size smaller by one. By
repeatedly applying this reduction, one can get a “core” instance that fits Definition 12.

We observe that the Unfair-IS-Cycle problem is total. The argument relies on the
chromatic number of the graph S(n, k).

▶ Lemma 13. Every instance of the Unfair-IS-Cycle problem has a solution.

Proof. Consider an instance of the Unfair-IS-Cycle problem, i.e., integers n and k with
n ≥ 2k and ℓ subsets V1, . . . , Vℓ of [n], where ℓ ≤ n − 2k + 1 and |Vi| ≥ 2 for all i ∈ [ℓ]. For
every i ∈ [ℓ], let

Fi =
{

S ∈
(

[n]
k

)
stab

∣∣∣ |S ∩ Vi| > |Vi|/2
}

,

and notice that every two sets of Fi have a common element of Vi, hence Fi is an intersecting
family. However, by Theorem 8, the chromatic number of S(n, k) is n − 2k + 2, hence the
family of stable k-subsets of [n] cannot be covered by fewer than n − 2k + 2 intersecting
families. By ℓ ≤ n − 2k + 1, this implies that there exists a set S ∈

([n]
k

)
stab that does not

belong to any of the families Fi, hence it satisfies |S ∩ Vi| ≤ |Vi|/2 for all i ∈ [ℓ]. This implies
that S is a valid solution for the given instance, and we are done. ◀

We end this section with the definition of the Cycle-Plus-Triangles problem.

▶ Definition 14 (Cycle plus Triangles Problem). In the Cycle-Plus-Triangles problem,
the input consists of an integer k and a graph G on 3k vertices, whose edge set is the disjoint
union of a Hamilton cycle and k pairwise vertex-disjoint triangles. The goal is to find an
independent set in G of size k.

The existence of a solution for every input of the Cycle-Plus-Triangles problem follows
from a result of [13] (see also [27, 1]).

ICALP 2023

73:8 Finding Constrained Independent Sets in Cycles

3 The Generalized Schrijver Problem

In this section, we prove our results on the Schrijver(n, k, m) problem (see Definition 10).
We start with Theorem 1.

Proof of Theorem 1. Fix some integer d ≥ 2. For integers n and k with n ≥ 2k, put
t = ⌊ n

2k+d−2 ⌋ and m = d · t − 1, and consider an instance of the Schrijver(n, k, m) problem,
i.e., a coloring c :

(
n
k

)
stab → [m] of the vertices of S(n, k). The definition of t allows us

to consider t pairwise disjoint subsets J1, . . . , Jt of [n], where each of the subsets includes
2k + d − 2 consecutive elements. For each i ∈ [t], let Si denote the family of all stable
k-subsets of Ji with respect to the natural cyclic order of Ji (where the largest element
precedes the smallest one), and notice that Si ⊆

(
n
k

)
stab. Consider the algorithm that given

an oracle access to a coloring c as above, queries the oracle for the colors of all the sets of
S1 ∪ · · · ∪ St, and returns a pair of disjoint sets from this collection that are assigned the
same color by c.

For correctness, we show that the collection of sets S1 ∪ · · · ∪ St necessarily includes two
vertices that form a monochromatic edge. Indeed, since the number of colors used by the
coloring c does not exceed d · t − 1, it follows that either there exist distinct i, j ∈ [t] for
which a vertex of Si and a vertex of Sj have the same color, or there exists an i ∈ [t] for
which the vertices of Si are colored using fewer than d colors. For the former case, notice
that for distinct i and j, every vertex of Si is disjoint from every vertex of Sj , hence the
collection includes two vertices that form a monochromatic edge. For the latter case, let
i ∈ [t] be an index for which the vertices of Si are colored using fewer than d colors. Observe
that the subgraph of S(n, k) induced by Si is isomorphic to the graph S(2k + d − 2, k), hence
by Theorem 8, its chromatic number is (2k + d − 2) − 2k + 2 = d. Since the vertices of Si

are colored using fewer than d colors, it follows that they include two vertices that form a
monochromatic edge, and we are done.

We finally analyze the running time of the algorithm. By Lemma 7, the number of vertices
in the graph S(n, k) is

n

k
·
(

n − k − 1
k − 1

)
= n

k
·
(

n − k − 1
n − 2k

)
≤ n · (n − k − 1)n−2k ≤ nn−2k+1.

Since the subgraph of S(n, k) induced by each Si is isomorphic to S(2k+d−2, k), it follows that
the total number of queries that the algorithm makes does not exceed t·(2k+d−2)d−1 ≤ nO(d).
This implies that in running time nO(d), it is possible to enumerate all the sets of S1 ∪· · ·∪St,
to query the oracle for their colors, and to find the desired monochromatic edge. This
completes the proof. ◀

We consider now the Schrijver(n, k, m) problem with m = ⌊n/2⌋ − 2k + 1. We first
prove Theorem 2 that says that the problem is efficiently reducible to the Kneser problem
(whose definition is given in Section 2.4).

Proof of Theorem 2. Put m = ⌊n/2⌋ − 2k + 1, and let c :
([n]

k

)
stab → [m] be an instance of

the Schrijver(n, k, m) problem. Consider the reduction that maps such a coloring c to a
coloring c′ :

([n]
k

)
→ [n − 2k + 1] of the vertices of K(n, k) defined as follows. For every set

A ∈
([n]

k

)
, if A is unstable then it includes an odd element, so denote its smallest odd element

by 2i − 1, and define c′(A) = i. Notice that this i satisfies 1 ≤ i ≤ ⌈n/2⌉. Otherwise, A is a
stable k-subset of [n], and we define c′(A) = c(A)+⌈n/2⌉. Notice that m+⌈n/2⌉ = n−2k+1,
hence the colors used by c′ are all in [n − 2k + 1], as needed for an instance of the Kneser
problem. Notice further that given a Boolean circuit that computes the coloring c, it is
possible to efficiently produce a Boolean circuit that computes the coloring c′.

I. Haviv 73:9

For correctness, we simply show that any solution for the produced instance of the
Kneser problem is also a solution for the given instance of the Schrijver(n, k, m) problem.
To see this, consider a solution for the former, i.e., two disjoint k-subsets A and B of [n]
with c′(A) = c′(B). By the definition of c′, the color assigned by c′ to A and B cannot be
some i ≤ ⌈n/2⌉ because this would imply that the element 2i − 1 belongs to both A and
B, which are disjoint. It thus follows that A and B are stable k-subsets of [n] satisfying
c′(A) = c(A)+⌈n/2⌉ and c′(B) = c(B)+⌈n/2⌉. By c′(A) = c′(B), it follows that c(A) = c(B),
hence A and B form a monochromatic edge in S(n, k) and thus a solution for the given
instance of the Schrijver(n, k, m) problem. This completes the proof. ◀

The reduction presented in the proof of Theorem 2 extends a given coloring of S(n, k) to
a coloring of the entire graph K(n, k). To do so, it uses a proper coloring with ⌈n/2⌉ colors of
the subgraph U(n, k) of K(n, k) induced by the unstable k-subsets of [n]. However, in order
to obtain a coloring of K(n, k) with n−2k +1 colors, as required for instances of the Kneser
problem, one has to reduce from the Schrijver(n, k, m) problem with m = ⌊n/2⌋ − 2k + 1.
This suggests the question of whether U(n, k) can be properly colored using fewer colors.
Motivated by this question, we study some properties of this graph in Section 5, where we
essentially answer this question in the negative (see Corollary 19 and the discussion that
follows it).

We next show that the Schrijver(n, k, m) problem with m = ⌊n/2⌋ − 2k + 1 is not
harder than the restriction of the standard Schrijver problem to colorings of S(n, k) with
n = 4k. This confirms Theorem 3.

Proof of Theorem 3. Suppose that there exists a polynomial-time algorithm, called Algo,
for the restriction of the Schrijver problem to colorings of S(n, k) with n = 4k. Such an
algorithm is able to efficiently find a monochromatic edge in the graph S(4k, k) given an
access to a coloring of its vertices with fewer than χ(S(4k, k)) colors. By Theorem 8, it holds
that χ(S(4k, k)) = 2k + 2. Suppose without loss of generality that the algorithm Algo queries
the oracle for the colors of the two vertices of the monochromatic edge that it returns.

For integers n and k with n ≥ 4k, put m = ⌊n/2⌋ − 2k + 1, and let c :
(

n
k

)
stab → [m] be

an instance of the Schrijver(n, k, m) problem, i.e., a coloring of the vertices of S(n, k) with
m colors. We present an algorithm that finds a monochromatic edge in S(n, k). It may be
assumed that n > 8k. Indeed, otherwise it holds that m ≤ 2k + 1 < χ(S(4k, k)), hence a
monochromatic edge can be found by running the given algorithm Algo on the restriction
of the coloring c to the subgraph of S(n, k) induced by the stable k-subsets of [4k]. Since
this graph is isomorphic to S(4k, k), Algo is guaranteed to find a monochromatic edge in this
subgraph, which also forms a monochromatic edge in the entire graph S(n, k).

Now, put t = ⌊ n
4k ⌋, and let J1, . . . , Jt be t pairwise disjoint subsets of [n], where each of

the subsets includes 4k consecutive elements. For each i ∈ [t], let Si denote the family of
all stable k-subsets of Ji with respect to the natural cyclic order of Ji (where the largest
element precedes the smallest one). Observe that the subgraph of S(n, k) induced by the
vertices of each Si is isomorphic to S(4k, k). Observe further that

t · (2k + 2) >
(n

4k
− 1

)
· (2k + 2) = n

2 + n

2k
− 2k − 2 >

⌊n

2

⌋
− 2k + 1 = m, (1)

where the last inequality holds because n > 8k.
Consider the algorithm that given an oracle access to a coloring c as above, for each

i ∈ [t], simulates the algorithm Algo on the restriction of the coloring c to the subgraph of
S(n, k) induced by the vertices of Si. If all the vertices queried throughout the ith simulation
have at most 2k + 1 distinct colors, then the algorithm returns the monochromatic edge

ICALP 2023

73:10 Finding Constrained Independent Sets in Cycles

returned by Algo. Otherwise, for each i ∈ [t], the algorithm uses the queries made in the ith
simulation of Algo to produce a set Fi ⊆ Si of 2k + 2 vertices with distinct colors. Then,
the algorithm finds a monochromatic edge that involves two vertices of F1 ∪ · · · ∪ Ft and
returns it. This completes the description of the algorithm. Since the running time of Algo
is polynomial, the described algorithm can be implemented in polynomial time.

Let us prove the correctness of the algorithm. Suppose first that for some i ∈ [t], all the
vertices queried throughout the ith simulation of Algo have at most 2k + 1 distinct colors
(including the two vertices of the returned edge). In this case, the answers of the oracle in the
ith simulation is consistent with some coloring with at most 2k + 1 colors of the subgraph of
S(n, k) induced by Si. Since this graph is isomorphic to S(4k, k), whose chromatic number
is 2k + 2, Algo is guaranteed to find in the graph a monochromatic edge, which is also a
monochromatic edge in S(n, k), and thus a valid output of the algorithm. Otherwise, for
each i ∈ [t], the attempt to simulate Algo on the subgraph of S(n, k) induced by Si provides
a set Fi of 2k + 2 vertices of Si with distinct colors. By (1), the total number m of colors
used by the coloring c is smaller than t · (2k + 2). This implies that there exist distinct
indices i, j ∈ [t] for which a vertex of Fi and a vertex of Fj have the same color. Since the
vertices of Si are disjoint from those of Sj , these two vertices form a monochromatic edge in
S(n, k) and form a valid output of the algorithm. ◀

We end this section with the observation that there exists an efficient randomized algorithm
for the Schrijver(n, k, m) problem with m = ⌊n/2⌋ − 2k + 1 on instances with n = Ω(k4).
This follows from the paper [17], which yields that for such n and k, the Schrijver(n, k, m)
problem is essentially reducible to the Schrijver(n − 1, k, m − 1) problem in randomized
polynomial time (with exponentially small failure probability). By applying this reduction
m − 1 times, it follows that the Schrijver(n, k, m) problem with m = ⌊n/2⌋ − 2k + 1 where
n = Ω(k4), is efficiently reducible to the Schrijver(⌈n/2⌉ + 2k, k, 1) problem, which can
obviously be solved efficiently.

4 The Unfair Independent Set in Cycle Problem

In this section, we study the Unfair-IS-Cycle problem (see Definition 12).

4.1 Hardness
We prove now Theorem 4, which asserts that Unfair-IS-Cycle is PPA-complete.

Proof of Theorem 4. We first show that the Unfair-IS-Cycle problem belongs to PPA.
To do so, we show a polynomial-time reduction to the Schrijver problem in the white-box
input model, which lies in PPA [15] (see Definition 10).

Consider an instance of the Unfair-IS-Cycle problem, i.e., integers n and k with n ≥ 2k

and ℓ subsets V1, . . . , Vℓ of [n], where ℓ ≤ n − 2k + 1 and |Vi| ≥ 2 for all i ∈ [ℓ]. For such
an instance, the reduction produces a Boolean circuit that given a stable k-subset A of [n],
outputs the smallest index i ∈ [ℓ] such that |A ∩ Vi| > |Vi|/2 if such an i exists, and outputs
ℓ otherwise. Note that this circuit represents a coloring c :

([n]
k

)
stab → [ℓ] of the vertices

of the graph S(n, k) with ℓ ≤ n − 2k + 1 colors, hence it is an appropriate instance of the
Schrijver problem. Clearly, the Boolean circuit that computes c can be constructed in
polynomial time.

For correctness, we show that a solution for the constructed Schrijver instance can
be used to efficiently find a solution for the given Unfair-IS-Cycle instance. Consider
a monochromatic edge of S(n, k), i.e., two disjoint sets A, B ∈

([n]
k

)
stab with c(A) = c(B).

I. Haviv 73:11

Since A and B are disjoint, it is impossible that |A ∩ Vi| > |Vi|/2 and |B ∩ Vi| > |Vi|/2 for
some i ∈ [ℓ]. By the definition of the coloring c, it follows that c(A) = c(B) = ℓ, hence
|A ∩ Vi| ≤ |Vi|/2 and |B ∩ Vi| ≤ |Vi|/2 for all i ∈ [ℓ − 1]. Moreover, at least one of A and B

intersects Vℓ at no more than |Vℓ|/2 elements, and thus forms a valid solution for the given
Unfair-IS-Cycle instance. Since it is possible to check in polynomial time which of the
sets A and B satisfies this requirement, the proof of the membership of Unfair-IS-Cycle
in PPA is completed.

We next prove that the Unfair-IS-Cycle problem is PPA-hard. To do so, we reduce
from the Fair-IS-Cycle problem (see Definition 11). We use here the fact, proved in [15],
that this problem is PPA-hard even when it is restricted to the instances in which the
parts of the given partition have odd sizes larger than 2. Consider such an instance of the
Fair-IS-Cycle problem, i.e., integers n and m along with a partition V1, . . . , Vm of [n] such
that |Vi| is odd and satisfies |Vi| ≥ 3 for all i ∈ [m]. Notice that n and m have the same
parity, and define k = n−m

2 . Our reduction simply returns the integers n and k, which
clearly satisfy n ≥ 2k, and the sets V1, . . . , Vm. Note that |Vi| ≥ 2 for all i ∈ [m] and that
the number m of sets is n − 2k. Since the latter does not exceed n − 2k + 1, this is a valid
instance of the Unfair-IS-Cycle problem.

For correctness, we show that a solution for the constructed Unfair-IS-Cycle instance
is also a solution for the given Fair-IS-Cycle instance. Let S be a solution for the
Unfair-IS-Cycle instance, i.e., a stable k-subset of [n] such that for all i ∈ [m] it holds that
|S∩Vi| ≤ |Vi|/2. Since the sizes of the sets V1, . . . , Vm are odd, it follows that |S∩Vi| ≤ |Vi|−1

2
for all i ∈ [m]. Since the sets V1, . . . , Vm form a partition of [n], it further follows that

|S| =
∑

i∈[m]

|S ∩ Vi| ≤
∑

i∈[m]

|Vi|−1
2 = n − m

2 = k. (2)

However, by |S| = k, we derive from (2) that |S ∩ Vi| = |Vi|−1
2 for all i ∈ [m]. This implies

that S is a stable k-subset of [n] satisfying |S ∩ Vi| ≥ |Vi|/2 − 1 for all i ∈ [m], hence it forms
a valid solution for the given Fair-IS-Cycle instance. This completes the proof. ◀

Given the PPA-hardness of the Unfair-IS-Cycle problem, it is interesting to identify
the range of the parameters n and k for which the hardness holds. One can verify, using
properties of the hard instances constructed in [15], that the hardness given in Theorem 4
holds for instances with n = (2 + o(1)) · k, where the o(1) term tends to 0 as n and k tend
to infinity. The following simple result shows that for n = 3k the problem is at least as
hard as the Cycle-Plus-Triangles problem, whose tractability is an open question (see
Definition 14). The proof can be found in the full version of this paper.

▶ Proposition 15. The Cycle-Plus-Triangles problem is polynomial-time reducible to
the restriction of the Unfair-IS-Cycle problem to instances that consist of k sets of size 3
that form a partition of [n] where n = 3k.

4.2 Algorithms
We next prove Theorem 5, which states that the Unfair-IS-Cycle problem can be solved
efficiently on instances with n ≥ c · k for some absolute constant c.

Proof of Theorem 5. We start by presenting a randomized algorithm, based on a probabil-
istic argument with alterations, and then derandomize it using the method of conditional
expectations.

ICALP 2023

73:12 Finding Constrained Independent Sets in Cycles

Consider an instance of the Unfair-IS-Cycle problem, i.e., integers n and k with
n ≥ 2k and ℓ subsets V1, . . . , Vℓ of [n], where ℓ ≤ n − 2k + 1 and |Vi| ≥ 2 for all i ∈ [ℓ]. Put
ri = |Vi| ≥ 2 for each i ∈ [ℓ]. Suppose further that n ≥ c · k for a sufficiently large constant
c to be determined later. Let p = 2k/n ≤ 2/c, and consider the following randomized
algorithm.
1. Pick a random subset A of [n] by including in A every element of [n] independently with

probability p.
2. Remove from A every element j ∈ [n] that satisfies {j, j + 1} ⊆ A (where for j = n, the

element j + 1 is considered as 1). Let A′ denote the obtained set.
3. For every i ∈ [ℓ] that satisfies |A′ ∩ Vi| > ri/2, remove from A′ arbitrary |A′ ∩ Vi| − ⌊ri/2⌋

elements of Vi. Let A′′ denote the obtained set.
4. If |A′′| ≥ k, then return an arbitrary k-subset of A′′. Otherwise, return “failure”.

We first claim that unless the algorithm returns “failure”, it returns a valid output. Indeed,
Item 2 of the algorithm guarantees that the set A′ is stable. Further, Item 3 guarantees
that its subset A′′ satisfies |A′′ ∩ Vi| ≤ ⌊ri/2⌋ for all i ∈ [ℓ]. Therefore, in the case where
|A′′| ≥ k, any k-subset of A′′ returned in Item 4 of the algorithm is a valid solution for the
given Unfair-IS-Cycle instance.

We next estimate the expected size of the set A′′ produced by the algorithm. The set A

chosen in Item 1 of the algorithm includes every element of [n] with probability p. Hence, its
expected size satisfies E [|A|] = p · n. In Item 2 of the algorithm, the probability of every
element of [n] to be removed from A is equal to the probability that both the element and
its successor modulo n belong to A, which is p2. By linearity of expectation, this implies
that the expected size of the set A′ satisfies E [|A′|] = (p − p2) · n. It remains to estimate the
expected number of elements removed from A′ in Item 3 of the algorithm. Observe that for
each i ∈ [ℓ], the algorithm removes from A′ the smallest possible number of elements of Vi

ensuring that the obtained set A′′ includes at most ⌊ri/2⌋ of them. Therefore, the number of
removed elements of Vi does not exceed the number of subsets of Vi of size ⌊ri/2⌋ + 1 that
are contained in A (because it suffices to remove one element from each of them). It thus
follows that the expected number of elements of Vi that are removed from A′ in Item 3 of
the algorithm is at most(

ri

⌊ri/2⌋ + 1

)
· p⌊ri/2⌋+1 ≤ 2ri · p⌊ri/2⌋+1 ≤ (4p)⌊ri/2⌋+1 ≤ (4p)2,

where in the last inequality we use the assumption ri ≥ 2 and the fact that p ≤ 1/4 (which
holds for any sufficiently large choice of the constant c). It therefore follows, using again the
linearity of expectation, that the expected size of A′′ satisfies

E [|A′′|] ≥ (p − p2) · n − ℓ · (4p)2 ≥ (p − 17p2) · n ≥ k,

where the second inequality holds by ℓ ≤ n, and the last inequality by the definition of
p = 2k/n, assuming again that n ≥ c · k for a sufficiently large constant c (say, c = 68). This
implies that there exists a random choice for the presented randomized algorithm for which
it returns a valid solution.

We next apply the method of conditional expectations to derandomize the above algorithm.
Let us start with a few notations. For a set S ⊆ [n], define

f(S) = |S| − |{j ∈ [n] | {j, j + 1} ⊆ S}| −
∑
i∈[ℓ]

∣∣∣{B ⊆ S ∩ Vi

∣∣∣ |B| = ⌊ri/2⌋ + 1
}∣∣∣. (3)

I. Haviv 73:13

In words, f(S) is determined by subtracting from the size of S the number of pairs of
consecutive elements in S (modulo n) as well as the number of subsets of S ∩ Vi of size
⌊ri/2⌋ + 1 for each i ∈ [ℓ]. For a vector x ∈ {0, 1, ∗}n, let Sx denote a random subset of
[n] such that for every i ∈ [n], if xi = 1 then i ∈ Sx, if xi = 0 then i /∈ Sx, and if xi = ∗
then i is chosen to be included in Sx independently with probability p = 2k/n. We refer to
the vector x as a partial choice of a subset of [n]. We further define a potential function
ϕ : {0, 1, ∗}n → R that maps every vector x ∈ {0, 1, ∗}n to the expected value of f(S) where
S is chosen according to the distribution Sx, that is, ϕ(x) = E [f(Sx)].

We observe that given a partial choice x ∈ {0, 1, ∗}n, the value of ϕ(x) can be calculated
efficiently, in time polynomial in n. Indeed, to calculate the expected value of f(Sx), it
suffices, by linearity of expectation, to calculate the expected value of each of the three terms
in (3) evaluated at the set Sx. It is easy to see that the expected value of the first term is

|{j ∈ [n] | xj = 1}| + p · |{j ∈ [n] | xj = ∗}|,

and that the expected value of the second term is∣∣∣{j ∈ [n]
∣∣∣xj = xj+1 = 1

}∣∣∣ + p ·
∣∣∣{j ∈ [n]

∣∣∣{xj , xj+1} = {1, ∗}
}∣∣∣

+ p2 ·
∣∣∣{j ∈ [n]

∣∣∣xj = xj+1 = ∗
}∣∣∣.

As for the third term, by linearity of expectation, it suffices to determine the expected
value of∣∣∣{B ⊆ Sx ∩ Vi

∣∣∣ |B| = ⌊ri/2⌋ + 1
}∣∣∣

for i ∈ [ℓ]. Letting si = |{j ∈ Vi | xj = ∗}| and ti = |{j ∈ Vi | xj = 1}|, one can check that
the required expectation is precisely

⌊ri/2⌋+1∑
m=0

(
si

m

)
·
(

ti

⌊ri/2⌋ + 1 − m

)
· pm.

Since all the terms can be calculated in time polynomial in n, so can ϕ(x).
We describe a deterministic algorithm that finds a set S ⊆ [n] satisfying f(S) ≥ k.

Given such a set, the algorithm is completed by applying Items 2, 3, and 4 of the algorithm
presented above. Indeed, by applying Items 2 and 3 we obtain a stable set S′′ such that
|S′′ ∩ Vi| ≤ ri/2 for all i ∈ [ℓ]. The fact that f(S) ≥ k guarantees that this set S′′ satisfies
|S′′| ≥ k, hence Item 4 returns a valid solution.

To obtain the desired set S ⊆ [n] with f(S) ≥ k, our algorithm maintains a partial choice
x ∈ {0, 1, ∗}n satisfying ϕ(x) ≥ k. We start with x = (∗, . . . , ∗), for which the analysis of the
randomized algorithm guarantees that ϕ(x) ≥ k, provided that n ≥ c · k for a sufficiently
large constant c. We then choose the entries of x, one by one, to be either 0 or 1. In the
ith iteration, in which x1, . . . , xi−1 ∈ {0, 1}, the algorithm evaluates ϕ at the two partial
choices xi←0 = (x1, . . . , xi−1, 0, ∗, . . . , ∗) and xi←1 = (x1, . . . , xi−1, 1, ∗, . . . , ∗), and continues
to the next iteration with one of them which maximizes the value of ϕ. By the law of total
expectation, it holds that ϕ(x) = p · ϕ(xi←1) + (1 − p) · ϕ(xi←0), implying that the choice
of the algorithm preserves the inequality ϕ(x) ≥ k. At the end of the process, we get a
vector x ∈ {0, 1}n with ϕ(x) ≥ k, which fully determines the desired set S with f(S) ≥ k.
Since the evaluations of ϕ can be calculated in time polynomial in n, the algorithm can be
implemented in polynomial time. This completes the proof. ◀

ICALP 2023

73:14 Finding Constrained Independent Sets in Cycles

Given the above result, it would be interesting to determine the smallest constant c for
which the Unfair-IS-Cycle problem can be solved efficiently on instances with n ≥ c ·k. Of
particular interest is the restriction of the problem to instances with n = 3k and with pairwise
disjoint sets of size 3, because as follows from Proposition 15, an efficient algorithm for
this restriction would imply an efficient algorithm for the Cycle-Plus-Triangles problem.
Interestingly, it turns out that the restriction of the Unfair-IS-Cycle problem to instances
with n = 4k and with pairwise disjoint sets of size 4 does admit an efficient algorithm. This
is a consequence of the following result derived from an argument of Alon [2] (see also [4]).

▶ Proposition 16. There exists a polynomial-time algorithm that given an integer k and a
partition of [4k] into k subsets V1, . . . , Vk with |Vi| = 4 for all i ∈ [k], finds a partition of
[4k] into four stable k-subsets S1, S2, S3, S4 of [4k] such that |Sj ∩ Vi| = 1 for all j ∈ [4] and
i ∈ [k].

5 Unstable Sets

In this section, we consider two subgraphs of the Kneser graph K(n, k) induced by families
of unstable k-subsets of [n]. These subgraphs are defined as follows.

▶ Definition 17. Let n and k be integers with n ≥ 2k. Let Ũ(n, k) denote the subgraph
of K(n, k) induced by the family of all k-subsets of [n] that include a pair of consecutive
elements (where the elements n and 1 are not considered as consecutive for n > 2). Let
U(n, k) denote the subgraph of K(n, k) induced by the family of all k-subsets of [n] that
include a pair of consecutive elements modulo n, i.e., the family of unstable k-subsets of [n].

5.1 Chromatic Number
We study now the chromatic numbers of the graphs U(n, k) and Ũ(n, k). It is worth
mentioning here that a result of Dol’nikov [8] generalizes the lower bound of Lovász [22]
on the chromatic number of K(n, k) to general graphs, using a notion called colorability
defect (see also [24, Chapter 3.4] and [21]). This generalization implies a tight lower bound
of n − 2k + 2 on the chromatic number of K(n, k) and a somewhat weaker lower bound of
n − 4k + 4 on the chromatic number of S(n, k) (see, e.g., [25]). It turns out, though, that this
generalized approach of [8] does not yield any meaningful bounds on the chromatic numbers
of the graphs from Definition 17.

The following theorem determines the exact chromatic number of the graph Ũ(n, k).

▶ Theorem 18. For all integers n and k with n ≥ 2k,

χ(Ũ(n, k)) = min(n − 2k + 2, ⌊n/2⌋).

The proof of Theorem 18 relies on a topological argument and can be found in the full
version of the paper. We derive the following result on the chromatic number of U(n, k).

▶ Corollary 19. For all integers n and k with n ≥ 2k,

min(n − 2k + 2, ⌊n/2⌋) ≤ χ(U(n, k)) ≤ min(n − 2k + 2, ⌈n/2⌉).

Proof. For the upper bound, apply first Theorem 8 to obtain that

χ(U(n, k)) ≤ χ(K(n, k)) = n − 2k + 2.

I. Haviv 73:15

Next, since every vertex of U(n, k) includes two consecutive elements modulo n, it must
include an odd element. By assigning to every such vertex its minimal odd element, we obtain
a proper coloring of U(n, k) with ⌈n/2⌉ colors, hence χ(U(n, k)) ≤ ⌈n/2⌉. This completes
the proof of the upper bound. The lower bound follows by combining Theorem 18 with the
fact that Ũ(n, k) is an induced subgraph of U(n, k). ◀

We conclude this section with a discussion on the tightness of Corollary 19. Notice that
the upper and lower bounds provided in Corollary 19 coincide whenever the integer n is even
or satisfies n ≤ 4k − 4. For other values of n and k the two bounds differ by 1. Yet, it turns
out that the proof technique of Theorem 18 can be used to show that the upper bound in
Corollary 19 is tight for all integers n that are congruent to 1 modulo 4. This leaves us with
a gap of 1 between the upper and lower bounds in Corollary 19 only for those integers n and
k, where n is congruent to 3 modulo 4 and satisfies n ≥ 4k − 1.

We further observe that for an odd integer n and for every proper coloring of U(n, k) that
includes a trivial color class (all of whose members share a common element), the number
of used colors is at least the upper bound in Corollary 19. Indeed, the restriction of such a
coloring to the vertices that do not include the common element of the trivial color class is
a proper coloring of a graph isomorphic to Ũ(n − 1, k), so by Theorem 18 it uses at least
min(n − 2k + 1, (n − 1)/2) colors. Together with the additional color of the trivial color class,
the total number of colors is at least min(n − 2k + 2, ⌈n/2⌉), as claimed.

5.2 Independence Number
We next determine the largest size of an independent set in the graph U(n, k). The proof
uses the Hilton–Milner theorem (Theorem 9) and can be found in the full version of the
paper.

▶ Theorem 20. For all integers k ≥ 2 and n ≥ 2k, it holds that

α(U(n, k)) =
(

n − 1
k − 1

)
−

(
n − k − 1

k − 1

)
.

References
1 Ron Aharoni, Noga Alon, Eli Berger, Maria Chudnovsky, Dani Kotlar, Martin Loebl, and Ran

Ziv. Fair representation by independent sets. In M. Loebl, J. Nešetřil, and R. Thomas, editors,
A Journey Through Discrete Mathematics: A Tribute to Jiří Matoušek, pages 31–58. Springer,
2017.

2 Noga Alon. The strong chromatic number of a graph. Random Struct. Algorithms, 3(1):1–8,
1992.

3 Noga Alon. Combinatorial Nullstellensatz. Combinatorics, Probability and Computing, 8(1–
2):7–29, 1999.

4 Noga Alon. Fair partitions. In A. Nixon and S. Prendiville, editors, Surveys in Combinatorics
2022, pages 1–20. Cambridge University Press, 2022.

5 Noga Alon and Joel H. Spencer. The Probabilistic Method. Wiley-Interscience series in discrete
mathematics and optimization. Wiley, fourth edition, 2016.

6 Karol Borsuk. Drei Sätze über die n-dimensionale euklidische Sphäre. Fundamenta Mathemat-
icae, 20(1):177–190, 1933.

7 Xiaotie Deng, Zhe Feng, and Rucha Kulkarni. Octahedral Tucker is PPA-complete. Electronic
Colloquium on Computational Complexity (ECCC), 24:118, 2017.

8 Vladimir Dol’nikov. Transversals of families of sets. In Studies in the theory of functions of
several real variables (Russian), volume 29, pages 30–36. Yaroslavl’, 1981.

ICALP 2023

73:16 Finding Constrained Independent Sets in Cycles

9 Ding-Zhu Du, D. Frank Hsu, and Frank K. Hwang. The Hamiltonian property of consecutive-d
digraphs. Math. and Computer Modelling, 17(11):61–63, 1993.

10 Paul Erdös. On some of my favourite problems in graph theory and block designs. Matematiche,
45(1):61–73, 1990.

11 Paul Erdös, Chao Ko, and Richard Rado. Intersection theorems for systems of finite sets.
Quart. J. Math., 12(1):313–320, 1961.

12 Aris Filos-Ratsikas and Paul W. Goldberg. The complexity of splitting necklaces and bisecting
ham sandwiches. In Proc. of the 51st Annual ACM SIGACT Symposium on Theory of
Computing (STOC’19), pages 638–649, 2019.

13 Herbert Fleischner and Michael Stiebitz. A solution to a colouring problem of P. Erdös.
Discret. Math., 101(1–3):39–48, 1992.

14 Herbert Fleischner and Michael Stiebitz. Some remarks on the cycle plus triangles problem.
In The Mathematics of Paul Erdös II, volume 14, pages 136–142. Springer, 1997.

15 Ishay Haviv. The complexity of finding fair independent sets in cycles. Comput. Complex.,
31(2):14, 2022. Preliminary version in ITCS’21.

16 Ishay Haviv. A fixed-parameter algorithm for the Kneser problem. In Proc. of the 49th
International Colloquium on Automata, Languages, and Programming (ICALP’22), pages
72:1–72:18, 2022.

17 Ishay Haviv. A fixed-parameter algorithm for the Schrijver problem. In Proc. of the 17th
International Symposium on Parameterized and Exact Computation (IPEC’22), pages 16:1–
16:16, 2022.

18 Anthony J. W. Hilton and Eric Charles Milner. Some intersection theorems for systems of
finite sets. Quart. J. Math., 18(1):369–384, 1967.

19 Sergei Kiselev and Andrey Kupavskii. Trivial colors in colorings of Kneser graphs. arXiv,
abs/2012.14528, 2020. arXiv:2012.14528.

20 Martin Kneser. Aufgabe 360. Jahresbericht der Deutschen Mathematiker-Vereinigung, 58(2):27,
1955.

21 Igor Kriz. Equivariant cohomology and lower bounds for chromatic numbers. Trans. Amer.
Math. Soc., 333(2):567–577, 1992.

22 László Lovász. Kneser’s conjecture, chromatic number, and homotopy. J. Comb. Theory, Ser.
A, 25(3):319–324, 1978.

23 Pasin Manurangsi and Warut Suksompong. Computing a small agreeable set of indivisible
items. Artif. Intell., 268:96–114, 2019. Preliminary versions in IJCAI’16 and IJCAI’17.

24 Jiří Matoušek. Using the Borsuk-Ulam Theorem: Lectures on Topological Methods in Combin-
atorics and Geometry. Springer Publishing Company, Incorporated, 2007.

25 Jiří Matoušek and Günter M. Ziegler. Topological lower bounds for the chromatic number: A
hierarchy. Jahresbericht der DMV, 106(2):71–90, 2004.

26 Christos H. Papadimitriou. On the complexity of the parity argument and other inefficient
proofs of existence. J. Comput. Syst. Sci., 48(3):498–532, 1994.

27 Horst Sachs. Elementary proof of the cycle-plus-triangles theorem. In Combinatorics, Paul
Erdös is eighty, volume 1, pages 347–359. Bolyai Soc. Math. Stud., 1993.

28 Alexander Schrijver. Vertex-critical subgraphs of Kneser graphs. Nieuw Arch. Wiskd., 26(3):454–
461, 1978.

https://arxiv.org/abs/2012.14528

Faster Submodular Maximization for Several
Classes of Matroids
Monika Henzinger #

Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria

Paul Liu #

Stanford University, CA, USA

Jan Vondrák #

Stanford University, CA, USA

Da Wei Zheng #

University of Illinois Urbana-Champaign, IL, USA

Abstract
The maximization of submodular functions have found widespread application in areas such as
machine learning, combinatorial optimization, and economics, where practitioners often wish to
enforce various constraints; the matroid constraint has been investigated extensively due to its
algorithmic properties and expressive power. Though tight approximation algorithms for general
matroid constraints exist in theory, the running times of such algorithms typically scale quadratically,
and are not practical for truly large scale settings. Recent progress has focused on fast algorithms
for important classes of matroids given in explicit form. Currently, nearly-linear time algorithms
only exist for graphic and partition matroids [12]. In this work, we develop algorithms for monotone
submodular maximization constrained by graphic, transversal matroids, or laminar matroids in time
near-linear in the size of their representation. Our algorithms achieve an optimal approximation
of 1 − 1/e − ε and both generalize and accelerate the results of Ene and Nguyen [12]. In fact, the
running time of our algorithm cannot be improved within the fast continuous greedy framework of
Badanidiyuru and Vondrák [6].

To achieve near-linear running time, we make use of dynamic data structures that maintain
bases with approximate maximum cardinality and weight under certain element updates. These data
structures need to support a weight decrease operation and a novel Freeze operation that allows
the algorithm to freeze elements (i.e. force to be contained) in its basis regardless of future data
structure operations. For the laminar matroid, we present a new dynamic data structure using the
top tree interface of Alstrup, Holm, de Lichtenberg, and Thorup [2] that maintains the maximum
weight basis under insertions and deletions of elements in O(log n) time. This data structure needs
to support certain subtree query and path update operations that are performed every insertion
and deletion that are non-trivial to handle in conjunction. For the transversal matroid the Freeze
operation corresponds to requiring the data structure to keep a certain set S of vertices matched,
a property that we call S-stability. While there is a large body of work on dynamic matching
algorithms, none are S-stable and maintain an approximate maximum weight matching under vertex
updates. We give the first such algorithm for bipartite graphs with total running time linear (up to
log factors) in the number of edges.

2012 ACM Subject Classification Theory of computation → Data structures design and analysis;
Mathematics of computing → Submodular optimization and polymatroids; Theory of computation
→ Dynamic graph algorithms

Keywords and phrases submodular optimization, dynamic data structures, matching algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.74

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2305.00122

EA
T
C
S

© Monika Henzinger, Paul Liu, Jan Vondrák, and Da Wei Zheng;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 74; pp. 74:1–74:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:monika.henzinger@ist.ac.at
mailto:paulliu@stanford.edu
https://orcid.org/0000-0002-9386-6609
mailto:jvondrak@stanford.edu
https://orcid.org/0009-0001-6021-679X
mailto:dwzheng2@illinois.edu
https://orcid.org/0000-0002-0844-9457
https://doi.org/10.4230/LIPIcs.ICALP.2023.74
https://arxiv.org/abs/2305.00122
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

74:2 Faster Submodular Maximization for Several Classes of Matroids

Funding Monika Henzinger : This project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant
agreement No. 101019564 “The Design of Modern Fully Dynamic Data Structures (MoDynStruct)”
and from the Austrian Science Fund (FWF) project “Static and Dynamic Hierarchical Graph
Decompositions”, I 5982-N, and project “Fast Algorithms for a Reactive Network Layer (ReactNet)”,
P 33775-N, with additional funding from the netidee SCIENCE Stiftung, 2020–2024.
Jan Vondrák: Supported by NSF Award 2127781.

1 Introduction

Submodular optimization is encountered in a variety of applications – combinatorial optimiz-
ation, information retrieval, and machine learning, to name a few [7]. Many such applications
involve constraints, which are often in the form of cardinality or weight constraints on certain
subsets of elements, or combinatorial constraints such as connectivity or matching. A conveni-
ent abstraction which has been studied heavily in this context is that of a matroid constraint1.
For instance, transversal matroids appear in ad placement and matching applications [4, 3],
laminar and partition matroids capture capacity constraints on subsets which are widely
used in recommendation settings (e.g. YouTube video recommendation algorithm [25]), and
graphic matroids appear in applications for approximating Metric TSP [26]. Maximization
of a submodular function subject to any of these constraints is an APX-hard problem, but
a (1 − 1/e)-approximation is known in this setting for any matroid constraint [11], and
the factor of 1− 1/e is also known to be optimal [22, 13]. Considering this, it has been a
long-standing quest to develop fast algorithms for the submodular maximization problem
that achieve an approximation close to the optimal factor of 1− 1/e. In this work, we achieve
this goal for several common classes of matroids.

Perhaps the first step in this direction was the threshold-greedy technique which gives
a fast (1/2 − ε)-approximation [5] for the cardinality constraint. With more work, this
technique can be extended to give approximations close to 1 − 1/e [6] and ultimately a
(1−1/e−ε)-approximation in running time O(n/ε) was found for the cardinality constraint.2

For general matroids, the fastest known algorithm is the fast continuous greedy algorithm,
which uses O(nrε−4 log2(n/ε)) oracle, where n is the number of elements in the matroid
and r is the rank of the matroid [6]. (The exact running time would depend on the
implementation of these queries, which [6] does not address.) We can assume that the rank r

scales polynomially with n and hence this algorithm is not near-linear. Further work on fast
submodular optimization developed in the direction of parallelized and distributed settings
(see [18, 20, 21] and the references therein); we do not discuss these directions in this paper.

A recent line of work initiated by Ene and Nguyen [12] attempts to develop a “nearly-
linear” continuous greedy algorithm, i.e., with a running time of n · poly(1/ε, log n). They
achieved this goal for partition and graphic matroids. Prior to their work, the fastest known
algorithm for any matroid class beyond cardinality was the work of Buchbinder, Feldman,
and Schwartz [10], who showed an O(n3/2)-time algorithm for partition matroids.

This immediately leads to the question of whether such improvements are also possible for
other classes of matroid constraints. As observed by Ene and Nguyen [12], even determining
feasibility may take longer than linear time for certain matroids. One such example is for

1 A matroid on N is a family of “independent sets” I ⊂ 2N which is down-closed, and satisfies the
extension axiom: For any A, B ∈ I, if |A| < |B| then there is an element e ∈ B \A such that A∪{e} ∈ I.

2 Running time in this paper includes value queries to the objective function f(S) as unit-time operations.

M. Henzinger, P. Liu, J. Vondrák, and D. Zheng 74:3

matroids represented by linear systems, as simply checking the independence of a linear
system takes O(rank(M)ω) time, where rank(M) is the rank of the linear system and ω is
the exponent for fast matrix multiplication.

1.1 Our contributions
In this paper, we generalize and significantly improve the work of Ene and Nguyen [12],
to develop a (1− 1/e− ε)-approximation for maximizing a monotone submodular function
subject to a matroid constraint, for several important classes of matroids: namely for graphic,
laminar, and transversal matroids. The technical developments behind these results are on
two fronts:
(i) a refinement of the optimization framework of [12] and formulation of abstract data
structures required for this framework;
(ii) implementation of such data structures for graphic, laminar and transversal matroids.
(See Section 2 for definitions of these classes of matroids.)

To describe our results in more detail, the efficiency of optimizing a submodular function
f can be broken down into two components: the number of oracle calls to f , and the number
of additional arithmetic operations needed to support the algorithm optimizing f . The
number of oracle calls to f that our framework need to achieve a (1− 1/e− ε)-approximation
is Oε(n log2(n)) regardless of the matroid, where n is the number of elements in the matroid
constraint. Thus for all results below, the running time is measured in the number of the
number of arithmetic operations needed by the data structures supporting the optimization
of f . Our contributions are as follows:

We give nearly-linear time versions of continuous greedy for laminar, graphic, and
transversal matroids. These algorithms are accelerated by special data structures we
developed for each matroid and which might be of independent interest. For all of our
matroids, it is impossible to improve our running time without improving the continuous
greedy algorithm itself.
For graphic matroids on n vertices and m edges, we improve the running time of [12]
from Oε(n log5 n + m log2 n) to Oε(m log2 n).
We generalize the partition matroids results of [12] to laminar matroids, and match their
running time of Oε(n log2 n) for continuous greedy. As a by-product, we also develop the
first data structure that maintains the maximum weight basis on a laminar matroid with
O(log n) update time for insertions and deletions that may be of independent interest.
This data structure uses the top tree interface of Alstrup, Holm, de Lichtenberg, and
Thorup [2].
For transversal matroids represented by a bipartite graph with m edges and the ground
set being one side of the partition with n vertices, we give an algorithm running in
Oε(m log n + n log2 n) time.3 This is the first such fast algorithm for transversal matroids.
For this we develop a dynamic matching algorithm in a vertex-weighted, bipartite graph
with a weighted vertex sets L and an unweighted vertex set R with the following conditions:
(i) There exists a dynamically changing set S ⊆ L such that every vertex in S must be
matched in the current matching. (ii) The matching must give both an approximation in
terms of cardinality in comparison to the maximum cardinality matching as well as the
weight of the matching in comparison to the best matching that matches all vertices of S,
where the weight of the matching is the sum of the weights of the matched vertices of L.

3 Any transversal matroid with n elements can be represented as the family of matchable sets the left-hand
side of an n × n2 bipartite graph, with degrees at most n. See Section 2 for more details.

ICALP 2023

74:4 Faster Submodular Maximization for Several Classes of Matroids

We emphasize that our results are true running times, as opposed to black-box independence
queries to the matroid. The only black box operation we need is the query to the objective
function f(S).

The performance of the dynamic matching data structure used in our transversal matroid
algorithm is interesting as none of the earlier work on dynamic matching can maintain both
a constant approximation to the weight as well as to the cardinality of the matching. Our
algorithm builds on a recent fast algorithm for maximum-weight matching by Zheng and
Henzinger [27]. We briefly mention a few relevant works:

There is a conditional lower bound based on the OMv conjecture [16] that shows that
maintaining a maximum weight matching in an edge weighted bipartite graph with only
edge weight increase operations cannot be done in amortized time O(n1−δ) per edge
weight increase and amortized time O(n2−δ) per query operation for any δ > 0 [17].
The reduction from [17] can be adapted to the setting with only edge weight decrement
operations, achieving the same lower bound. Thus, this shows that our running time
bound cannot achieved if a exact maximum weight matching has to be maintained under
edge weight decrement operations.
Le, Milenkovic, Solomon, and Vassilevska-Williams [19] studied one-sided vertex updates
(insertions and deletions) in bipartite graphs and gave a maximal matching algorithm
whose total running time is O(K), where K is the total number of inserted and deleted
edges. Bosek el al. [8] studied one-sided vertex updates (either insertions-only or deletions-
only) in bipartite graphs and gave algorithms that for any ε > 0 maintain a (1 − ε)-
approximate maximum cardinality matching in total time O(m/ε). Gupta and Peng [15]
developed the best known dynamic algorithm that allows both edge insertions and deletions
and maintains a (1 − ε)-approximate maximum cardinality matching (for any ε > 0).
It requires time O(

√
m/ε) amortized time per operation. For all these algorithms, they

either cannot be extended to the weighted setting, or cannot maintain both a constant
approximation to the weight as well as to the cardinality of the matching.

1.2 Technical Overview
The submodular optimization framework. Our framework is an adaptation and improve-
ment over that of Ene and Nguyen [12]. The framework consists of two phases:
(1) a LazySamplingGreedy phase, which aims to build a partial solution that either

provides a good approximation on its own, or reduces the problem to a residual instance
with bounded marginal values of elements.

(2) a ContinuousGreedy phase, which is essentially the original fast continuous greedy
algorithm [11, 6], with an improved analysis based on the fact the marginal values are
bounded.

The original fast ContinuousGreedy runs in time Oε(nr log2 n), where the factor of r log2 n

is due to the cost in evaluating the multilinear extension of f . The multilinear extension is an
average over values of f on randomly drawn subsets of the input. In ContinuousGreedy,
O(r log2 n) samples are needed to estimate the multilinear extension to sufficient accuracy.

The LazySamplingGreedy phase transforms f into a function f̃ such that (a) the
number of samples required in ContinuousGreedy for f̃ is reduced by a factor of r

and (b) the optimal solution of f̃ is within a (1 − ε) factor of the optimal solution f .
LazySamplingGreedy does this by constructing an initial independent set S in our
matroid M such that f̃(T) = f(T ∪ S) has relatively small marginal values. The final
solution is obtained by running ContinuousGreedy on f̃ constrained by M \ S and

M. Henzinger, P. Liu, J. Vondrák, and D. Zheng 74:5

combining the solution with S. The construction of S relies on a fast data structure to get
the maximum weight independent set of M at any given time, subject to weight changes on
each element.

We begin by simplifying and improving the LazySamplingGreedy phase (Section 3.2).
A significant part of LazySamplingGreedy in [12] is dedicated to randomly checking and
refreshing estimates of marginal values for each element in the matroid. We show that (a)
this random checking can be dramatically reduced, and (b) the maximum-weight independent
set requirement for the data structure can be relaxed to a constant-factor approximation
of the maximum-weight independent set. The relaxation to constant-factor approximations
enables us to design much more efficient data structures than the previous work of [12], and
also allows us to handle more classes of matroids.

In the ContinuousGreedy phase (Section 3.3), a subroutine requires an independence
oracle to check if proposed candidate solutions are independent sets of the matroid. Ene
and Nguyen use fully dynamic independence oracles to implement this, where independence
queries require O(polylog n) time. We show that only incremental independence oracles
are needed. This opens the door to implementing such oracles for new classes of matroids,
as sublinear fully dynamic independence oracles are provably hard in many settings (e.g.
bipartite maximum-cardinality matchings are hard to maintain exactly in faster than O(n2−ε)
amortized time per update [1], which corresponds to finding the maximum independent set
in a transversal matroid).

Dynamic data structures for various matroid constraints. From a data structures point
of view, we give the first efficient data structure for two settings. (We refer the reader to
Section 2 for definitions of laminar, graphic and transversal matroids.)

Maximum-weight basis in a laminar matroid. In a laminar matroid with n elements we are
able to output the maximum-weight basis under an online sequence of insertions and deletions
of weighted elements with O(log n) time per update, which we show to be worst-case optimal.
The biggest challenge for laminar matroids is that each element may have as many as O(n)
constraints that need to be kept track of on each insertion and deletion. We leverage the tree
structure induced by a laminar set system to build data structures. Specifically, we show
there exists a data structure with O(log2 n) query time using the heavy-light decomposition
technique of [24]. Since the heavy-light decomposition technique decomposes the tree into
paths, we store some carefully chosen auxiliary information at each vertex to transform our
subtree queries into path queries. We further improve this to O(log n) using the top tree
interface of Alstrup, Holm, de Lichtenberg, and Thorup [2] that more naturally support
both path and subtree operations using a similar idea of carefully storing the right auxiliary
information at each top tree node combined with lazily propagating path changes.

Approximate maximum-weight basis in a transversal matroid. In the case of transversal
matroids, our LazySamplingGreedy+ algorithm requires what we call a (c, d)-approximate
maximum weight matching oracle: a matching that is an c-approximation in weight and at
least d of the cardinality of the maximum cardinality matching. In addition, the oracle must
implement two update operations, (a) a Freeze operation that adds a vertex of L to S and
(b) a Decrement operation that reduces the weight of a vertex of L to a given value. We
give a novel algorithm that maintains a maximal (inclusion-wise) matching M in a weighted
graph such that the weight of the matching is a (1− ε)-approximation of the max-weight
solution in total time O(m(1/ε + log n)). Thus our algorithm is a (1− ε, 1/2)-approximate
maximum weight matching oracle. Due to standard rescaling techniques we can assume that
the maximum weight W = O(n).

ICALP 2023

74:6 Faster Submodular Maximization for Several Classes of Matroids

To illustrate the challenges introduced by Freeze operations, assume we want to maintain
a (1/2, 1/2)-approximate maximum weight matching oracle and let n ≥ 5 be an odd integer.
Consider a graph consisting of the path ℓ0, r0, ℓ1, r2, . . . , ℓ(n+1)/2 of length n−1 where the first
and last edge have large weight W < say W = 100n, and all other edges have weight 1. If the
initial (Ω(1), Ω(1))-approximate matching has greedily picked every second edge, it achieves a
weight of W + n−1

2 − 1 versus an optimum weight of 2W + n−1
2 − 2. Now if the weight of the

first edge is halved, the weight of the computed solution drops to W/2 + n−1
2 − 1, which is no

longer a 2-approximation of the weight of the optimum solution (for large enough W). Thus
the algorithm needs to match the last edge in order to maintain a 2-approximation to the
weight. This would only require two changes to the matching, namely un-matching the edge
(ℓ(n−1)/2, r(n−1)/2) and matching the last edge. However, if prior Freeze operations added
the vertices ℓ1, ℓ2, ...ℓ(n−1)/2 to S, i.e. S = V \{ℓ0}, then we cannot un-match ℓ(n−1)/2. Thus,
the edge (ℓ(n−1)/2, r(n−3)/2) needs to be unmatched, which in turn un-matches the vertex
ℓ(n−3)/2, leading to further un-matchings and matchings along the path. More specifically,
all (n− 1)/2 matched edges need to change. Next, the weight of the last edge is divided by
4 and the process along the path starts again. Thus, due to the prior Freeze operations,
each Decrement operation can lead to Θ(n) = Θ(m) changes in the graph. As this can
be repeated Θ(log W) = Θ(log n) times it shows that work Ω(m log n) is unavoidable if a
2-approximation to the weight is maintained with Freeze operations. This is the running
time that we achieve.

More precisely, for any ε > 0, we give an (1 − ε, 1/2)-approximate maximum weight
matching oracle under Freeze and Decrement operations with total time O(m(log n+1/ε)).
It follows that O(m(log n + 1/ε)) is also an upper bound on the number of matching and
un-matching operations of the algorithm. To do so we extend a recent algorithm [27] for
fast (1− ε)-approximate maximum weight matching algorithm in bipartite graphs based on
the multiplicative weight update idea. The analysis within [27] shows stability properties
that makes the Freeze operation trivial to implement. However, LazySamplingGreedy+
requires that the maintained matching is at least 1/2 the size of the maximum matching.
Furthermore, we need to support the Decrement operation. We show that both extensions
are possible and obtain an algorithm with total time (for all operations) of O(m(1/ε + log n)).

2 Preliminaries

Set notation shorthands. Given a set S ⊆ N and an element u ∈ N , we denote S ∪ {u}
and S \ {u} by S + u and S−u respectively. Similarly, given sets S, T ⊆ N , we denote S ∪T

and S \ T by S + T and S − T respectively.

Submodular functions. Given a set N , a set function f : 2N → R is called submodular if
for any two sets S and T we have

f(S) + f(T) ≥ f(S + T) + f(S − T).

We only consider monotone submodular functions, where f(S) ≤ f(T) for any sets S ⊆ T .

Matroids. A set system is a pair M = (N , I), where I ⊆ 2N . We say that a set S ⊆ N is
independent in M if S ∈ I. The rank of the set system M is defined as the maximum size of
an independent set in it. The independent sets must satisfy (i) S ⊆ T, T ∈ I =⇒ S ∈ T ,
and (ii) S, T ∈ I, |S| < |T | =⇒ ∃e ∈ T \ S such that S + e ∈ I.

A matroid constraint means that f is optimized over the independent sets of a matroid.

M. Henzinger, P. Liu, J. Vondrák, and D. Zheng 74:7

Graphic matroids. Let G = (V, E) be a graph. A graphic matroid has N = E and I
equal to the forests of G. The rank of M is |V | − C where C is the number of connected
components in G.

Laminar matroids. Let {S1, S2, . . . , Sm} be a collection of subsets of a set N such that for
any two intersecting sets Si and Sj where i ̸= j, either Si ⊂ Sj or Sj ⊂ Si. Furthermore,
let there be non-negative integers {c1, c2, . . . , cm} associated with the Si’s. Let I be the
sets S ⊆ N for which |S ∩ Si| ≤ ci for all i. I is then the collection of independent sets in
a laminar matroid on N . A laminar matroid has a natural representation as a tree on m

nodes, which we describe in the full version.

Transversal matroids. Let G = ((L, R), E) be a bipartite graph with a bipartition of
vertices (L, R). Let I be the collection of sets S ⊆ L such that there is a matching of all
vertices in S to |S| vertices in R. A transversal matroid has N = L and I as its independent
sets. From the definition, it is clear that rank(M) is the size of the maximum cardinality
matching in G. It is known that every transveral matroid can be represented by a bipartite
graph where L is the ground set of the matroid and |R| = rank(M) (see [23], Volume B,
equation (39.18)).

3 Improved nearly-linear submodular maximization

In what follows, f is the submodular function we want to maximize, M is the matroid
constraint, n is the number of elements in M, and OPT is the optimal independent set.
Additionally, we can assume that rank(M) = ω(log n), as the standard ContinuousGreedy
would run in O(n polylogn) time otherwise.

Our high-level framework adapts and improves upon the nearly-linear time framework of
Ene and Nguyen [12]. We will do the following:

Algorithm 3.1: Overall Framework.

1. Run LazySamplingGreedy+ (see below), to obtain a partial solution S0.
2. Run ContinuousGreedy on f̃(T) = f(S0 ∪ T) − f(S0) with the constraint
M/S0, to obtain a solution S1.

3. Return S0 ∪ S1.

As previously discussed, the original ContinuousGreedy runs in time Oε(nr log2 n),
where the r log2 n is due to the number of samples needed to evaluate the multilinear extension
of f . LazySamplingGreedy+ finds a set S0 such that f̃(T) := f(T | S0) = f(S0∪T)−f(S0)
has a tighter range of marginal values. This allows us to reduce the number of samples used
in ContinuousGreedy by a factor of r.

The overall idea is to run LazySamplingGreedy+ until the marginals in f̃ are small
enough to guarantee good performance in the ContinuousGreedy phase of our overall
framework (Algorithm 3.1). To accelerate our algorithms, we construct specialized data
structures for both LazySamplingGreedy+ and ContinuousGreedy.

3.1 Data structure requirements
We next describe the data structures needed for the two phases of our algorithm. In the
LazySamplingGreedy+ phase we need a c-approximate dynamic max-weight independent
set oracle. In the CountinuousGreedy phase we have two options of dynamic independence

ICALP 2023

74:8 Faster Submodular Maximization for Several Classes of Matroids

oracles, both of them unweighted. In addition, our LazySamplingGreedy+ requires the
ability to obtain a weighted sample from the approximate max-weight independent set. Since
we use these data structures as subroutines in our static algorithm which uses the answers
of the data structure to determine future updates, it is important that their running time
bounds are valid against an adaptive adversary.

Dynamic (c, d)-approximate maximum weight oracle. Let M = (E, I) be a matroid.
Given an independent set S ⊆ E the independent sets relative to S are the independent sets
of M that contain S. Let rank(M) denote the size of the largest independent set, which
equals the size of the largest independent set containing S. The weight of an independent
set is the sum of the weights of its elements. A maximum weight basis in M relative to S is
a basis B∗ that maximizes the sum of we over all bases of M that contain S.

Let c < 1 and d < 1 be constants. An independent set B is called an (c, d)-approximate
independent set relative to S if it fulfills the following conditions: (a) its size is at least
rank(M) · d and (b) its weight is at least a c-approximation to the weight of a maximum
weight basis relative to S.

We study the dynamic setting where each element e ∈ E has a dynamically changing
weight we ∈ R+ and where S is a dynamically growing subset of E. A (c, d)-approximate
dynamic maximum weight oracle is a data structure which maintains a (c, d)-approximate
independent set B relative to S (i.e. in the matroidM/S) while S and the weight of elements
not in S can change. Initially S is an empty set and the data structure supports the following
operations:

Freeze(e): Add to S the element e, where e must belong to the current (c, d)-approximate
basis relative to (the old) S and return the changes to B.
Decrement(e, w): Return the weight we of e /∈ S to w, which is guaranteed to be
smaller than the current weight of e and return the changes to B.
ApproxBaseWeight(): Return the weight of the (c, d)-approximate independent set
maintained by this data structure.

If c = 1 and d = 1 we call such a data structure a dynamic maximum weight oracle
relative to S.

We will use (c, d)-approximate maximum weight oracles in the LazySamplingGreedy+
phase of the algorithm.

We will also need to augment this data structure with two additional sampling operations.
Whenever the independent set B maintained by the data structure changes, we need to
spend an extra O(1) time updating a sampling data structure. This sampling data structure
can be generically and efficiently implemented to augment any (c, d)-approximate maximum
weight oracle as long as the (c, d)-approximate maximum weight oracle does not change the
independent set B too much amortized over all calls to the data structure. This is described
in the full version of the paper.

Sample(t): Return a subset of B \S, where each element is included independently with
probability min

(
1, t

w(B\S) we

)
.

UniformSample(): Return a uniformly random element from B \ S.

(1 − ε)-approximate independence oracles. For the second phase of our algorithm Con-
tinuousGreedy we have a choice between two data structures. Both of them are unweighted,
i.e., elements have no associated weights. We can either use an incremental (i.e. insertions-
only) exact data structure or a dynamic (1 − ε)-approximate data structure, for a small
ε > 0. Next we define both in more details.

M. Henzinger, P. Liu, J. Vondrák, and D. Zheng 74:9

Incremental independence oracle. The incremental independence oracle data structure
maintains an independent set B and supports the following operation:

Test(e): Given an element e, decide if B ∪ {e} is independent. If so, output YES,
otherwise output NO.
Insert(e): Given an element e such that B ∪ {e} is independent, add e to B.

(1− ε)-approximate dynamic maximum independent set data structure. Let ε > 0 be a
small constant and let us call an independent set B of a matroid M that contains at least
(1− ε) · rank(M) elements an (1− ε)-approximate basis ofM. The (1− ε)-approximate data
structure maintains an (1− ε)-approximate basis B for a dynamically changing matroid M
and supports the following operations.

Batch-Insert(E′): Given a set E′ of new elements, insert all elements of E′ into the
matroid M and compute a new (1− ε)-approximate basis B such that all elements that
were in the basis before the update belong to B. Return all new elements that were
introduced to B.
Delete(e): Given an element e of M, delete e from M and update the independent set
B such that it consists of at least (1− ε) · rank(M) elements of the new M. If any new
elements were added to B, return this set of new elements. Otherwise, return ∅.

Depending on which version of the algorithm we use, we will need either an exact
incremental oracle or a (1−ε)-approximate dynamic maximum independent set data structure.

3.2 The LAZYSAMPLINGGREEDY+ algorithm
In this section, we describe the implementation of LazySamplingGreedy+.

The LazySamplingGreedy+ algorithm is inspired by the Random Greedy algorithm
of Buchbinder, Feldman, Naor, and Schwartz [9] and the Lazy Sampling Greedy algorithm of
Ene and Nguyen [12]. The algorithm begins with an initially empty solution S, and runs until
the function f̃(T) = f(T |S) has small enough marginals to reduce the sampling requirements
of ContinuousGreedy.

We denote the weight of an element by we(S) := f(S ∪ {e})− f(S), and weight(T) to
denote

∑
e∈T we(S). The algorithm will only ever add elements to S, so by submodularity,

we(S) can only decrease as the algorithm runs (satisfying the requirements of Section 3.1).
Throughout this algorithm, we use a (c, d)-approximate maximum-weight oracle (Section 3.1)
that maintains a maximum-weight independent set B as the weights we(S) are updated. For
the sake of exposition, we defer proofs to the full version of the paper and assume c ≥ 1/2,
and d ≥ 1/2.

Discretizing the marginal weights. Whenever S is changed, the weight we(S) of all elements
e can be changed. To reduce the number of weight changes, we use a standard rounding trick.
Assume we have some constant-factor approximation M to f(OPT) (which can be computed
in O(n) time via well-known algorithms [10]). Instead of maintaining we(S) exactly, we
round we(S) to one of logarithmically many weight classes, that is, we(S) belongs to weight
class j if we(S) ∈ ((1 − ε)j+1M, (1 − ε)jM], with the lowest class containing all weights
from [0, O(εM/r)]. The value of the rounded weight is then w̃e = (1 − ε)je . We denote
by bucket B(j) all elements that belong to weight class j. Throughout the algorithm, we
maintain estimates j̃e for the weight class that e is in (and thus estimates of we as well). An
estimate is called stale if we(S) is not actually in the weight class indicated by j̃e. To achieve
a multiplicative error of (1− ε), it suffices for the number of different weight classes to be at
most O(ε−1 log(r/ε)), where r is the rank of the matroid. We denote by weight(B) the sum
of current weight estimates over the set B.

ICALP 2023

74:10 Faster Submodular Maximization for Several Classes of Matroids

The analysis of our algorithm works with any constant-factor approximation to f(OPT)
and any constant c-approximate maximum weight independent set data structure, albeit
with slight changes in the approximation factors.

Algorithm 3.2: LazySamplingGreedy+.

S ← ∅, and set the weight estimate w̃e to we(∅) for all e ∈M.
D ← (c, d)-approximate dynamic maximum weight oracle on M and w̃.

While D.ApproxBaseWeight() ≥ 50
ε f(OPT):

1. B′ ← D.Sample(128 log n)
(a random subset of B \ S, each element included independently with probability
pe = min{1, 128 log n

w̃(B\S) w̃e})
2. Update the weights of all stale elements e ∈ B′ by computing je, w̃e = (1− ε)je

and then calling D.Decrement(e, w̃e).
3. If less than half of the elements in B′ where pe = 1 were stale (i.e. needed an

update), and less than half of the elements in B′ where pe < 1 were stale, then
add e = D.UniformSample() to S by calling D.Freeze(e).

Note that in each iteration, we check and update only the weights of some random sample
of elements. This is for efficiency; we show the estimated weight w̃(B) is still correct in
expectation up to a constant multiplicative factor. We begin the correctness proof by showing
the following lemma.

▶ Lemma 1. Assume 0 < ε < 1/3. With high probability, if less than 1
2 of the estimated

weight of B′ is in elements which are stale, then∑
e∈B\S

we(S) ≥ 4
ε

f(OPT).

Next, we show a bound on the computational complexity of LazySamplingGreedy+.

▶ Lemma 2. LazySamplingGreedy+ uses at most O(nε−1 log(r/ε)) arithmetic operations,
calls to f , and calls to the maximum weight data structure.

Next we observe that S cannot have too many elements, otherwise f(S) is close to
f(OPT) and we are done.

▶ Observation 3. With high probability, S at the end of the algorithm has at most εr/2
elements.

▶ Theorem 4. Let S be the set returned at the end of LazySamplingGreedy+, OPT :=
arg maxT ∈M f(T), and OPT ∗ := arg maxT ∈M/S f(T |S). The following inequality holds:

E[f(OPT ∗ ∪ S)] ≥ (1− 2ε)f(OPT).

3.3 The CONTINUOUSGREEDY algorithm
In this section we discuss our implementation of the ContinuousGreedy algorithm. The
basis of our algorithm is the fast implementation from [6], with additional speed-up due to the
fact that the LazySamplingGreedy+ stage reduces the marginal values of the remaining
elements. The previous section shows that our LazySamplingGreedy+ algorithm runs

M. Henzinger, P. Liu, J. Vondrák, and D. Zheng 74:11

with at most Oε(n log r) arithmetic operations, calls to f , and calls to the maximum weight
data structure. In this section, we describe how LazySamplingGreedy+ helps the runtime
of ContinuousGreedy. The proofs are given in the full version of the paper.

At the termination of LazySamplingGreedy+ it holds that w̃(B) ≤ 50
ε f(OPT). Stale

weights in B have true weights lower than its weight estimate w̃e. Therefore, the true
weight of elements of B must be also at most 50

ε f(OPT). Furthermore, since B is a
constant-factor approximation to the true maximum weight basis B⋆, this implies that
weight(B⋆) = O(1

ε f(OPT)).
Let f̃(T) = f(T |S), where S is the set output at the termination of LazySampling-

Greedy+. We observe that for any set T ∈M/S,
∑

e∈T f̃(e) = O(1
ε f(OPT)). When this

is the case, [10] (Corollary 3.2) gives the following result:

▶ Lemma 5 ([10]). ContinuousGreedy to obtain a (1 − 1/e − ε)-approximation uses
O(nε−2 log(n/ε)) independent set data structure operations and O(nε−5 log2(n/ε)) queries
to f̃ .

In this section, we make two observations that improve the number of independent set
queries by a log factor. The inner loop of the ContinuousGreedy algorithm is essentially
a greedy algorithm which operates on a function derived from the multilinear extension of f̃ :
g(T) = F (x + ε1T) where F (x) = E[f̃(R)], R sampled independently with probabilities xe.
The inner loop of ContinuousGreedy finds an increment of the current fractional solution
x by running a greedy algorithm to approximate a maximum-weight basis with respect to the
function g. Let us define we(T) = g(T + e)− g(T) to be the marginal values of this function.

A fast implementation of this inner loop is the DescendingThreshold subroutine of
Badanidiyuru and Vondrák [6], which also appears in the algorithm of [10]. This subroutine
uses the marginal values we(B) defined above; the expectation requires O(ε−1 log2(n/ε))
samples to estimate for the required accuracy of ContinuousGreedy. In the algorithms
below, we(S) can be thought of as a black-box that issues O(ε−1 log2(n/ε)) calls to the
function f̃ .

Algorithm 3.3: DescendingThreshold.

B ← ∅
τ ← max{e}∈M we(∅)
While τ ≥ ε

r f(O):
1. Iterate through e ∈ E one by one. If B ∪ {e} ∈ I and we(B) ≥ τ , add e to B.

Otherwise, if B ∪ {e} /∈ I, remove e from E.
2. τ ← (1− ε)τ
Return B

The number of independent set queries in ContinuousGreedy is dominated by the first
line of the while loop in DescendingThreshold.

We make two observations about the DescendingThreshold algorithm of Badanidiyuru
and Vondrák [6], resulting in two modifications to DescendingThreshold that uses the
incremental independence oracle and approximate maximum independent set data structure
outlined in Section 3.1.

▶ Observation 6. Only O(n/ε) independence oracle queries are required. Furthermore, it is
sufficient to use an incremental independence oracle.

ICALP 2023

74:12 Faster Submodular Maximization for Several Classes of Matroids

Thus, we can modify the DescendingThreshold of [6] by simply ignoring elements
that have been previously rejected within the descending threshold greedy subprocedure (see
Algorithm 3.4). This yields the following:

▶ Lemma 7. ContinuousGreedy uses O(n/ε) incremental independent set data structure
operations and O(nε−5 log2(n/ε)) queries to f̃ .

Algorithm 3.4: DT-Incremental.

D ← Incremental independence oracle maintaining a set B (Section 3.1)
τ ← max{e}∈M we(∅)
While τ ≥ ε

r f(O):
1. Eτ ← {e | we(B) ≥ τ, e ∈ E \B}
2. Iterate through e ∈ Eτ one by one. If D.Test(e) returns YES and we(B) ≥ τ ,

call D.Insert(e) and add e to B. Otherwise, if B ∪ {e} /∈ I, remove e from E.
3. τ ← (1− ε)τ
Return B

An alternative observation
In the case of transversal matroids, exact incremental independence oracle with polylogar-
ithmic update times are not known. Instead, we will make the following observation: An
approximate decremental maximal independent set data structure can be used instead of an
incremental independence oracle. This results in the modification of descending threshold
described in Algorithm 3.5.

Algorithm 3.5: DT-ApproxIndepSet.

D ← Approximate dynamic maximum independent set data structure maintaining
a set B (Section 3.1)

τ ← max{e}∈M we(∅)
While τ ≥ ε

r f(O):
1. Eτ ← {e | we(B) ≥ τ, e ∈ E \B}
2. B+ ← D.Batch-Insert(Eτ)
3. While B+ ̸= ∅:

a. Get any e ∈ B+. If we(B) < τ , D ← D.Delete(e) and set B+ ← B+ ∪D.
b. Remove e from B+.

4. τ ← (1− ε)τ

Return B

▶ Observation 8. Instead of an incremental independence oracle, ContinuousGreedy can
be implemented with a decremental approximate maximum independent set data structure.
Furthermore, ContinuousGreedy will only make O(ε−1 log r) calls to Batch-Insert and
O(nε−1 log r) calls to Delete.

Rounding the fractional solutions. The ContinuousGreedy algorithm makes O(1/ε)
calls to Algorithm 3.3, and outputs a fractional solution that is a convex combination of the
O(1/ε) bases returned by these calls [6]. This fractional solution then needs to be rounded
to an integral solution efficiently. In the full version, we show that the data structures we
develop can speed up the rounding as well, leading to the overall cost being dominated by
the LazySamplingGreedy+ and ContinuousGreedy phases.

M. Henzinger, P. Liu, J. Vondrák, and D. Zheng 74:13

3.4 Analysis of the overall framework
▶ Lemma 9. The approximation returned by our framework has approximation ratio at least
1− 1/e− ε.

Proof. Let S0 be the set returned by LazySamplingGreedy+. Recall that f̃(T) := f(T |S0).
By the results in the previous sections, there exists a set OPT ⋆ such that OPT ⋆ ∪S0 is inde-
pendent and E[f̃(OPT ⋆)] ≥ (1−ε/2)f(OPT)−f(S0) (by running LazySamplingGreedy+
with ε/4 instead of ε). Running continuous greedy on f̃ yields a (1−1/e−ε/2)-approximation
S1 to OPT ⋆. Thus the final value of our solution f(S0 + S1) is:

E[f(S0 + S1)] = E[f̃(S1) + f(S0)]
≥ (1− 1/e− ε/2)E[f̃(OPT ⋆) + f(S0)]
≥ (1− 1/e− ε/2)(1− ε/2)f(OPT)
≥ (1− 1/e− ε)f(OPT). ◀

▶ Observation 10. Our framework uses at most:
O(nε−5 log2(n/ε)) calls to the submodular function oracle f .
O(nε−1 log(r/ε)) calls to an approximate maximum weight oracle (Section 3.2).
Either O(n/ε) incremental oracle data structure operations or O(ε−1 log r) calls to Batch-
Insert and O(nε−1 log r) calls to Delete on a decremental approximate maximum
independent set data structure (Section 3.3).

The cost of evaluating f is dominated by the ContinuousGreedy phase (see Lemma 7), as
LazySamplingGreedy+ only uses O(nε−1 log(r/ε)) oracle calls to f , where r is the rank
of the matroid (Lemma 2).

4 Data structures for various matroids

In this section, we give dynamic (c, d)-approximate maximum weight oracles and (1 − ε)-
approximate independence oracles for laminar matroids, graphic matroids, and transversal
matroids.

Limitations for further improvements. For both the laminar, graphic, and transversal
matroid, the total runtime of the data structure operations in LazySamplingGreedy+ and
ContinuousGreedy is Oε(|M| log2 |M|), where |M| is the number of matroid elements.
Without improving the original ContinuousGreedy algorithm itself, it is impossible to
improve the runtime further. This is because the ContinuousGreedy phase requires at
least Oε(|M| log2 |M|) oracle calls to f , which is at least O(1) cost in any reasonable model
of computing.

Weighted sampling on (c, d)-approximate independent sets. Our (c, d)-approximate
maximum weight oracles in Section 3.1 require the ability to sample from the independent
set they maintain. This sampling operation can be handled independently from the other
operations of the data structure, by augmenting the Decrement and Freeze operations.
As this augmentation is the same in all our data structures, we describe it in the full version.

4.1 Laminar matroids
Laminar matroids generalize uniform and partition matroids. In the full version of the
paper we present a data structure D using top trees [2] that maintains a fully dynamic
maximum weight basis for a laminar matroid under insertions and deletions of elements with

ICALP 2023

74:14 Faster Submodular Maximization for Several Classes of Matroids

arbitrary weights in O(log n) update time. This data structure satisfies the (c, d)-approximate
maximum weight oracle requirements with c = d = 1 and satisfies the (1− ε)-approximate
independence oracle requirements with ε = 0.

Dynamic maximum weight oracle. The data structure D maintains the maximum weight
basis under insertion and deletions. For Freeze(e) operations, we don’t need to do anything.
For Decrement(e, w) operations, we can simulate a decrement with the deletion of e and
an insertion of e with the changed weight. As we show in the appendix of the full version,
deleting and inserting an element removes at most the deleted element and adds at most one
element to the maximum weight basis, and thus would never remove a frozen element from
the basis whose weight never decreases.

Incremental independence oracle. This data structure can also be used to implement an
incremental independence oracle as follows: Run the data structure D where every element
has the same weight and that maintains a maximum basis B. Both Test and Insert can
easily be handled by our data structure.

4.2 Graphic matroids
A graphic matroid can be represented with a weighted undirected graph G = (V, E, w) where
the weight of and edge e ∈ E is given by w(e).

Dynamic (1/2, 1/2)-approximate maximum weight oracle. To obtain an approximate
maximum spanning tree of a graph G = (V, E), take the largest edge incident to every vertex,
with ties broken according to the edge numbering. For every vertex v ∈ V , let Ev denote
the set of edges incident to v. We can store the weights of edges in Ev in a heap Hv and
maintain that the maximum element of Hv is part of our approximate maximum spanning
tree. It is easy to show that the set of edges maintained, F , is a forest with at least 1/2 the
weights and 1/2 the number of edges of the optimal maximum spanning tree T .

For the correctness of the algorithm we show first that there cannot be any cycle in F .
Assume by contradiction that there is a cycle C in F . Direct each edge in C towards the
vertex where it was the maximum weight edge, breaking ties according to the vertex number.
If C is a cycle, then C must give a directed cycle, where each edge is larger than the next
edge in the directed cycle in the lexicographic order induced by the edge weight and the
vertex number. This is a contradiction.

Approximation factor. Root T at an arbitrary vertex and consider the vertices of T

starting at the leaves. We will use a simple charging argument to show that F has at least
1/2 the weight of T and that |F | ≥ |T |/2. The edge of a vertex v going to its parent u in the
tree T can be charged to the largest weight edge leaving v, which is in F . Since each edge of
e ∈ F can be charged at most twice from the two endpoints of e by edges of lesser or the
same weight, F has at least half the weight of T and at least half the edges as well.

Decrement(e, w): When the weight of an edge e = (u, v) ∈ E changes to w, we update
Hu and Hv accordingly. This may change the maximum weight edge incident to u or v, but
we can lookup and accordingly modify our approximate maximum spanning tree with the
new maximum weight edge of Tu and Tv in O(log n) time and report these changes.

Freeze(e): When we freeze an edge e = (u, v) ∈ F , we can contract the graph along the
edge. To do so, we can merge the heaps Hu and Hv and associate the merged heap with the
new merged vertex. This can be done in O(log n) time with binomial heaps or O(1) time
using the Fibonacci heaps of Fredman and Tarjan [14]. When we merge two vertices, the
maximum weight edge incident to the new merged vertex may be added to the approximate
maximum spanning tree.

M. Henzinger, P. Liu, J. Vondrák, and D. Zheng 74:15

Incremental independence oracle. Unweighted incremental maximum spanning tree in-
volves checking if inserting any edge increases the size of the spanning tree. This can be done
in O(α(n)) update and query time with the disjoint set union data structure of Tarjan [24].

4.3 Transversal matroids
Representation of transversal matroids. As stated in Section 2, we assume that our
transversal matroids are given as minimal representations. This means that the matroid
M is represented by a bipartite graph G = ((L, R), E) where |R| = rank(M). For sake of
notation let n = |L| and m = |E|. As a reminder, each element of the matroid corresponds
to a node in L, and an independent set I is a subset of L such that there exists a matching
in G that matches every element of I. We will let N(v) denote the neighbors of v in G, that
is N(v) = {u | (u, v) ∈ E}. If m > n2 we can remove neighbours from each vertex in L until
their degree is at most n. This doesn’t affect whether a vertex belongs to an independent
set, as it can always be matched. This reduces m to at most O(n2).

Dynamic (1 − ε, 1/2)-approximate maximum weight oracles. Recall that in the case of
transversal matroids, the weighted setting of LazySamplingGreedy+ leads to a dynamic
matching problem on a vertex-weighted bipartite graph G = ((L, R), E), where each vertex
ℓ ∈ L has a non-negative weight w(ℓ) and all edges incident to L have weight w(ℓ). We
assume that each vertex in L has a value wmin ≥ O(wmaxε/n) such that we may ignore the
weight of any vertex that drops below wmin. For the purposes of LazySamplingGreedy+,
we stop if the maximum weight basis decreases below O(f(OPT)) ≥ wmax, and so even if we
discard all items with weight less than O(wmaxε/n), we can discard at most an ε fraction of
f(OPT). Thus after appropriate multiplicative rescaling, we may assume that wmin = 1 and
wmax = (1 + ε)k for k = O(log1+ε n). Furthermore we may assume that the weight of any
ℓ ∈ L is (1+ε)j for some j ≥ 0 as we can round all weights in the range of [(1+ε)j , (1+ε)j+1]
down to the nearest (1 + ε)j and lose only a (1 + ε)−1 factor in the value of the solution.

We will design a data structure that maintains a matching M such that whenever a
Decrement(ℓ, w) operation is performed on ℓ ∈ L, then ℓ will be the only node of L that
may potentially become unmatched in M . We will call a data structure that has this property
L-stable. The basis we output will be the set of nodes of L matched in M . Note that L-stable
data structures can handle the Freeze operation by not doing anything and always returning
an empty set. No frozen element will be removed from the basis because frozen elements are
never decremented.

The high level idea of our algorithm is as follows: We want to maintain a maximal
matching according to some weights, as this guarantees that at least half as many nodes of
L are matched as in the optimum solution. The question is just which weights to choose
and which algorithm to use to guarantee maximality while fulfilling L-stability. Note that
L-stability allows edges in the matching to change, just un-matching a matched vertex of
L is forbidden. For this reason we chose an algorithm that is greedy for the vertices in R,
i.e., each vertex in R is matched with a neighbor of largest weight for a suitable choice of
weight. In order to maintain the invariant at every vertex r of R our greedy algorithm allows
r to “steal” the matched neighbor l of another vertex r′ of R. This maintains L-stability as
l remains matched. However, the newly un-matched vertex r′ might want to steal l right
back from r. To avoid this, we do not use the original weights in the greedy algorithm, but
instead we use “virtual weights” that are initialized by the original weights and that decrease
by a factor of (1 + ε) whenever l is (re-)matched. This makes l less attractive for r′ and, as l

ICALP 2023

74:16 Faster Submodular Maximization for Several Classes of Matroids

is never re-matched when its weight is below 1, it also guarantees that l is only re-matched
Õε(1) times in total over all decrement operations. For formal details and the proof, see the
full version of the paper.

▶ Theorem 11. Given a bipartite graph G = ((L, R), E) and a value wmin, there exists a
L-stable data structure that handles Decrement operations and maintains a (1− ε, 1/2)-
approximate maximum weighted matching provided that the maximum weighted matching has
cost at least wmin. The total running time for preprocessing and all operations as well as the
total number of changes to the set of matched vertices is O(|E|(1/ε + log |L|)). Furthermore,
the matching maintained is maximal.

(1 − ε)-approximate dynamic maximum independent set data structure. The fastest
known algorithm for incremental maximum bipartite matching takes O(m

√
n) total time

[8]. However, given a bipartite graph G = (L, R) there is a (1− ε)-approximate maximum
matching data structure DM for deletions of vertices in L [8]. It has three properties that
are crucial for our algorithm: (1) It does not unmatch a previously matched vertex of L

as long as it is not deleted, (2) it maintains an explicit integral matching, i.e., it stores at
each vertex whether and if so, along which edge it is matched, and (3) the total time for
computing the initial matching and all vertex deletions is O((m + |L|)/ε), where m is the
number of edges in the initial graph.

Given an initial graph G0 and a partial matching B of G0 this algorithm can be modified
to guarantee that the initial (1 − ε)-approximate matching computed for G0 matches all
vertices of B ∩ L. See teh full version of the paper for details. We use this data structure
DM to implement a (1− ε)-approximate dynamic maximum independent set data structure
for the transversal matroid as follows:

Batch-Insert(E′): Let B be the (1 − ε)-approximate matching before the update.
Initialize a new data DM with all current elements and compute an initial (1−ε)-approximate
matching computed for G0 matching all vertices in B ∩ L. This is possible by the discussion
above.

Delete(e): Execute a vertex deletion of vertex e in DM .
Test(e): Return YES if e is matched and NO otherwise.

▶ Lemma 12. Given a transversal matroid there exists a (1 − ε)-approximate dynamic
maximum independent set data structure such that each Batch-Insert(B, E1, E2) and all
Delete operations until the next Batch-Insert take O((m′ +|E1|+|E2|)/ε) total worst-case
time and each Test operation takes O(1) worst-case time.

References
1 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower

bounds for dynamic problems. In 55th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 434–443. IEEE
Computer Society, 2014. doi:10.1109/FOCS.2014.53.

2 Stephen Alstrup, Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Maintaining
information in fully dynamic trees with top trees. ACM Trans. Algorithms, 1(2):243–264, 2005.
doi:10.1145/1103963.1103966.

3 Moshe Babaioff, Jason Hartline, and Robert Kleinberg. Selling banner ads: Online algorithms
with buyback. In Fourth workshop on ad auctions, 2008.

https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.1145/1103963.1103966

M. Henzinger, P. Liu, J. Vondrák, and D. Zheng 74:17

4 Moshe Babaioff, Nicole Immorlica, and Robert Kleinberg. Matroids, secretary problems, and
online mechanisms. In Nikhil Bansal, Kirk Pruhs, and Clifford Stein, editors, Proceedings of
the Eighteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2007, New
Orleans, Louisiana, USA, January 7-9, 2007, pages 434–443. SIAM, 2007. URL: http:
//dl.acm.org/citation.cfm?id=1283383.1283429.

5 Ashwinkumar Badanidiyuru, Baharan Mirzasoleiman, Amin Karbasi, and Andreas Krause.
Streaming submodular maximization: massive data summarization on the fly. In Sofus A.
Macskassy, Claudia Perlich, Jure Leskovec, Wei Wang, and Rayid Ghani, editors, The 20th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
’14, New York, NY, USA – August 24 – 27, 2014, pages 671–680. ACM, 2014. doi:10.1145/
2623330.2623637.

6 Ashwinkumar Badanidiyuru and Jan Vondrák. Fast algorithms for maximizing submodular
functions. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014,
pages 1497–1514. SIAM, 2014. doi:10.1137/1.9781611973402.110.

7 Jeff A. Bilmes. Submodularity in machine learning and artificial intelligence. CoRR,
abs/2202.00132, 2022. arXiv:2202.00132.

8 Bartlomiej Bosek, Dariusz Leniowski, Piotr Sankowski, and Anna Zych. Online bipartite
matching in offline time. In 55th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2014, Philadelphia, PA, USA, October 18-21, 2014, pages 384–393. IEEE
Computer Society, 2014. doi:10.1109/FOCS.2014.48.

9 Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. Submodular maximization
with cardinality constraints. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA,
January 5-7, 2014, pages 1433–1452. SIAM, 2014. doi:10.1137/1.9781611973402.106.

10 Niv Buchbinder, Moran Feldman, and Roy Schwartz. Comparing apples and oranges: Query
trade-off in submodular maximization. Math. Oper. Res., 42(2):308–329, 2017. doi:10.1287/
moor.2016.0809.

11 Gruia Călinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a monotone
submodular function subject to a matroid constraint. SIAM J. Comput., 40(6):1740–1766,
2011. doi:10.1137/080733991.

12 Alina Ene and Huy L. Nguyen. Towards nearly-linear time algorithms for submodu-
lar maximization with a matroid constraint. In Christel Baier, Ioannis Chatzigiannakis,
Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Auto-
mata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume
132 of LIPIcs, pages 54:1–54:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019.
doi:10.4230/LIPIcs.ICALP.2019.54.

13 Uriel Feige. A threshold of ln n for approximating set cover. J. ACM, 45(4):634–652, 1998.
doi:10.1145/285055.285059.

14 Michael L. Fredman and Robert Endre Tarjan. Fibonacci heaps and their uses in improved
network optimization algorithms. J. ACM, 34(3):596–615, 1987. doi:10.1145/28869.28874.

15 Manoj Gupta and Richard Peng. Fully dynamic (1 + ε)-approximate matchings. In 54th
Annual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October,
2013, Berkeley, CA, USA, pages 548–557. IEEE Computer Society, 2013. doi:10.1109/FOCS.
2013.65.

16 Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak.
Unifying and strengthening hardness for dynamic problems via the online matrix-vector
multiplication conjecture. In Rocco A. Servedio and Ronitt Rubinfeld, editors, Proceedings of
the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC 2015, Portland,
OR, USA, June 14-17, 2015, pages 21–30. ACM, 2015. doi:10.1145/2746539.2746609.

ICALP 2023

http://dl.acm.org/citation.cfm?id=1283383.1283429
http://dl.acm.org/citation.cfm?id=1283383.1283429
https://doi.org/10.1145/2623330.2623637
https://doi.org/10.1145/2623330.2623637
https://doi.org/10.1137/1.9781611973402.110
https://arxiv.org/abs/2202.00132
https://doi.org/10.1109/FOCS.2014.48
https://doi.org/10.1137/1.9781611973402.106
https://doi.org/10.1287/moor.2016.0809
https://doi.org/10.1287/moor.2016.0809
https://doi.org/10.1137/080733991
https://doi.org/10.4230/LIPIcs.ICALP.2019.54
https://doi.org/10.1145/285055.285059
https://doi.org/10.1145/28869.28874
https://doi.org/10.1109/FOCS.2013.65
https://doi.org/10.1109/FOCS.2013.65
https://doi.org/10.1145/2746539.2746609

74:18 Faster Submodular Maximization for Several Classes of Matroids

17 Monika Henzinger, Ami Paz, and Stefan Schmid. On the complexity of weight-dynamic
network algorithms. In Zheng Yan, Gareth Tyson, and Dimitrios Koutsonikolas, editors, IFIP
Networking Conference, IFIP Networking 2021, Espoo and Helsinki, Finland, June 21-24,
2021, pages 1–9. IEEE, 2021. doi:10.23919/IFIPNetworking52078.2021.9472803.

18 Ehsan Kazemi, Marko Mitrovic, Morteza Zadimoghaddam, Silvio Lattanzi, and Amin Karbasi.
Submodular streaming in all its glory: Tight approximation, minimum memory and low
adaptive complexity. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings
of the 36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019,
Long Beach, California, USA, volume 97 of Proceedings of Machine Learning Research, pages
3311–3320. PMLR, 2019. URL: http://proceedings.mlr.press/v97/kazemi19a.html.

19 Hung Le, Lazar Milenkovic, Shay Solomon, and Virginia Vassilevska Williams. Dynamic
matching algorithms under vertex updates. In Mark Braverman, editor, 13th Innovations in
Theoretical Computer Science Conference, ITCS 2022, January 31 – February 3, 2022, Berkeley,
CA, USA, volume 215 of LIPIcs, pages 96:1–96:24. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2022. doi:10.4230/LIPIcs.ITCS.2022.96.

20 Wenxin Li, Moran Feldman, Ehsan Kazemi, and Amin Karbasi. Submodular maximization in
clean linear time. CoRR, abs/2006.09327, 2022. arXiv:2006.09327.

21 Paul Liu and Jan Vondrák. Submodular optimization in the mapreduce model. In Jeremy T.
Fineman and Michael Mitzenmacher, editors, 2nd Symposium on Simplicity in Algorithms,
SOSA 2019, January 8-9, 2019, San Diego, CA, USA, volume 69 of OASIcs, pages 18:1–18:10.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:10.4230/OASIcs.SOSA.2019.
18.

22 George L. Nemhauser and Laurence A. Wolsey. Best algorithms for approximating the
maximum of a submodular set function. Math. Oper. Res., 3(3):177–188, 1978.

23 Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, volume 24. Springer,
2003.

24 Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm. J. ACM,
22(2):215–225, 1975. doi:10.1145/321879.321884.

25 Mark Wilhelm, Ajith Ramanathan, Alexander Bonomo, Sagar Jain, Ed H. Chi, and Jennifer
Gillenwater. Practical diversified recommendations on youtube with determinantal point
processes. In Alfredo Cuzzocrea, James Allan, Norman W. Paton, Divesh Srivastava, Rakesh
Agrawal, Andrei Z. Broder, Mohammed J. Zaki, K. Selçuk Candan, Alexandros Labrinidis,
Assaf Schuster, and Haixun Wang, editors, Proceedings of the 27th ACM International Confer-
ence on Information and Knowledge Management, CIKM 2018, Torino, Italy, October 22-26,
2018, pages 2165–2173. ACM, 2018. doi:10.1145/3269206.3272018.

26 Zhou Xu and Brian Rodrigues. A 3/2-approximation algorithm for the multiple tsp with a
fixed number of depots. INFORMS Journal on Computing, 27(4):636–645, 2015.

27 Da Wei Zheng and Monika Henzinger. Multiplicative auction algorithm for approximate
maximum weight bipartite matching. CoRR, abs/2301.09217, 2023. doi:10.48550/arXiv.
2301.09217.

https://doi.org/10.23919/IFIPNetworking52078.2021.9472803
http://proceedings.mlr.press/v97/kazemi19a.html
https://doi.org/10.4230/LIPIcs.ITCS.2022.96
https://arxiv.org/abs/2006.09327
https://doi.org/10.4230/OASIcs.SOSA.2019.18
https://doi.org/10.4230/OASIcs.SOSA.2019.18
https://doi.org/10.1145/321879.321884
https://doi.org/10.1145/3269206.3272018
https://doi.org/10.48550/arXiv.2301.09217
https://doi.org/10.48550/arXiv.2301.09217

Twin-Width of Planar Graphs Is at Most 8, and at
Most 6 When Bipartite Planar
Petr Hliněný # Ñ

Masaryk University, Brno, Czech republic

Jan Jedelský #

Masaryk University, Brno, Czech republic

Abstract
Twin-width is a structural width parameter introduced by Bonnet, Kim, Thomassé and Watrigant
[FOCS 2020]. Very briefly, its essence is a gradual reduction (a contraction sequence) of the given
graph down to a single vertex while maintaining limited difference of neighbourhoods of the vertices,
and it can be seen as widely generalizing several other traditional structural parameters. Having
such a sequence at hand allows us to solve many otherwise hard problems efficiently. Graph classes
of bounded twin-width, in which appropriate contraction sequences are efficiently constructible, are
thus of interest in combinatorics and in computer science. However, we currently do not know in
general how to obtain a witnessing contraction sequence of low width efficiently, and published upper
bounds on the twin-width in non-trivial cases are often “astronomically large”.

We focus on planar graphs, which are known to have bounded twin-width (already since the
introduction of twin-width), but the first explicit “non-astronomical” upper bounds on the twin-width
of planar graphs appeared just a year ago; namely the bound of at most 183 by Jacob and Pilipczuk
[arXiv, January 2022], and 583 by Bonnet, Kwon and Wood [arXiv, February 2022]. Subsequent
arXiv manuscripts in 2022 improved the bound down to 37 (Bekos et al.), 11 and 9 (both by Hliněný).
We further elaborate on the approach used in the latter manuscripts, proving that the twin-width
of every planar graph is at most 8, and construct a witnessing contraction sequence in linear time.
Note that the currently best lower-bound planar example is of twin-width 7, by Král’ and Lamaison
[arXiv, September 2022]. We also prove that the twin-width of every bipartite planar graph is at
most 6, and again construct a witnessing contraction sequence in linear time.

2012 ACM Subject Classification Mathematics of computing → Graph theory

Keywords and phrases twin-width, planar graph

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.75

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2210.08620 [17]

Funding Jan Jedelský was partially supported by Masaryk University project MUNI/I/1677/2018.

1 Introduction

Twin-width is a relatively new structural width measure of graphs and relational structures
introduced in 2020 by Bonnet, Kim, Thomassé and Watrigant [10]. Informally, twin-width of
a graph measures how diverse the neighbourhoods of the graph vertices are. E.g., cographs –
the graphs which can be built from singleton vertices by repeated operations of a disjoint
union and taking the complement, have the lowest possible value of twin-width, 0, which
means that the graph can be brought down to a single vertex by successively identifying
twin vertices. (Two vertices x and y are called twins in a graph G if they have the same
neighbours in V (G) \ {x, y}.) Hence the name, twin-width, for the parameter.

EA
T
C
S

© Petr Hliněný and Jan Jedelský;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 75; pp. 75:1–75:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hlineny@fi.muni.cz
https://www.fi.muni.cz/~hlineny/
https://orcid.org/0000-0003-2125-1514
mailto:484988@mail.muni.cz
https://orcid.org/0000-0001-9585-2553
https://doi.org/10.4230/LIPIcs.ICALP.2023.75
https://arxiv.org/abs/2210.08620
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

75:2 Twin-Width of Planar Graphs Is at Most 8, and at Most 6 When Bipartite Planar

Importance of this new concept is clearly witnessed by numerous recent papers on the
topic, such as the follow-up series [5–9,11] and more related research papers represented by,
e.g., [1, 2, 4, 13,15,20].

Twin-width definition. In general, the concept of twin-width can be considered over arbitrary
binary relational structures of a finite signature, but here we will define it and deal with
it for only finite simple graphs, i.e., graphs without loops and multiple edges. A trigraph
is a simple graph G in which some edges are marked as red, and with respect to the red
edges only, we naturally speak about red neighbours and red degree in G. However, when
speaking about edges, neighbours and/or subgraphs without further specification, we count
both ordinary and red edges together as one edge set denoted by E(G). The edges of G

which are not red are sometimes called (and depicted) black for distinction. For a pair of
(possibly not adjacent) vertices x1, x2 ∈ V (G), we define a contraction of the pair x1, x2 as
the operation creating a trigraph G′ which is the same as G except that x1, x2 are replaced
with a new vertex x0 (said to stem from x1, x2) such that:

the (full) neighbourhood of x0 in G′ (i.e., including the red neighbours), denoted by
NG′(x0), equals the union of the neighbourhoods NG(x1) of x1 and NG(x2) of x2 in G

except x1, x2 themselves, that is, NG′(x0) = (NG(x1) ∪ NG(x2)) \ {x1, x2}, and
the red neighbours of x0, denoted here by Nr

G′(x0), inherit all red neighbours of x1
and of x2 and add those in NG(x1)∆NG(x2), that is, Nr

G′(x0) =
(
Nr

G(x1) ∪ Nr
G(x2) ∪

(NG(x1)∆NG(x2))
)

\ {x1, x2}, where ∆ denotes the symmetric set difference.
A contraction sequence of a trigraph G is a sequence of successive contractions turning G

into a single vertex, and its width d is the maximum red degree of any vertex in any trigraph
of the sequence. We also then say that it is a d-contraction sequence of G. The twin-width
of a trigraph G is the minimum width over all possible contraction sequences of G. In other
words, a graph has twin-width at most d, if and only if it admits a d-contraction sequence.

To define the twin-width of an ordinary (simple) graph G, we consider G as a trigraph
with no red edges.

Algorithmic aspects. Twin-width, as a structural width parameter, has naturally many
algorithmic applications in the FPT area. Among the most important ones we mention that
the first order (FO) model checking problem – that is, deciding whether a fixed first-order
sentence holds in an input graph – can be solved in linear FPT-time [11]. This and other
algorithmic applications assume that a contraction sequence of bounded width is given
alongside with the input graph. Deciding the exact value of twin-width (in particular,
twin-width 4) is in general NP-hard [4], but for many natural graph classes we know that
they are of bounded twin-width. However, published upper bounds on the twin-width in
non-trivial cases are often non-explicit or “astronomically large”, and it is not usual that
we could, alongside such a bound, compute a contraction sequence of provably “reasonably
small” width efficiently and practically. We pay attention to this particular aspect; and we
will accompany our fine mathematical upper bounds on the twin-width with rather simple
linear-time algorithms for computing contraction sequences of the claimed widths.

Twin-width of planar graphs. The fact that the class of planar graphs is of bounded
twin-width was mentioned already in the pioneering paper [10], but without giving any
explicit upper bound on the twin-width. The first explicit (numeric) upper bounds on the
twin-width of planar graphs have been published only quite recently; chronologically on
arXiv, the bound of 183 by Jacob and Pilipczuk [18], of 583 by Bonnet, Kwon and Wood [12]

P. Hliněný and J. Jedelský 75:3

(this paper more generally bounds the twin-width of k-planar graphs by asymptotic 2O(k)),
and of 37 by Bekos, Da Lozzo, Hliněný, and Kaufmann [3] (this paper more generally bounds
the twin-width of so-called h-framed graphs by O(h)).

It is worth to mention that all three papers [3, 12, 18], more or less explicitly, use the
product structure machinery of planar graphs (cf. [14]). We have then developed an alternative
decomposition-based approach, leading to a single-digit upper bound of 9 for all planar
graphs in [16], followed by an upper bound of 6 on the twin-width of bipartite planar graphs
thereafter. However, the approach of [16] seems to be stuck right at 9, and new ideas were
needed to obtain further improvements, even by 1.

Here we give the following strengthened upper bound, which uses an improved approach
over previous [16] and also simplifies some cumbersome technical details of the former:

▶ Theorem 1. The twin-width of any simple planar graph is at most 8, and a corresponding
contraction sequence can be found in linear time.

It is worth to note that, recently, Král’ and Lamaison [19] have found a construction
(with a proof) of a planar graph with twin-width 7. Hence, the lower bound is by just one
off our upper bound, but the right maximum value (7 or 8?) is still an open question.

In an addition, we also prove an upper bound for bipartite planar graphs, which follows
from an adaptation of our new techniques specially to the bipartite case. While the bipartite-
case bound stays the same as in previous [16], its proof is significantly simpler now.

▶ Theorem 2. The twin-width of any simple bipartite planar graph is at most 6, and a
corresponding contraction sequence can be found in linear time.

Due to space restrictions, proofs of the *-marked statements are left for the full paper [17].

2 Notation and Tools

We start with a few technical definitions and claims needed for the proofs.

BFS layering and contractions. Let G be a connected graph and r ∈ V (G) a fixed vertex.
The BFS layering of G determined by r is the vertex partition L = (L0 = {r}, L1, L2, . . .)
of G such that Li contains all vertices of G at distance exactly i from r. A path P ⊆ G is
r-geodesic if P is a subpath of some shortest path from r to any vertex of G (in particular,
P intersects every layer of L in at most one vertex). Let T be a BFS tree of G rooted at the
vertex r as above (that is, for every vertex v ∈ V (G), the distance from v to r is the same in
G as in T). A path P ⊆ G is T -vertical, or shortly vertical with respect to implicit T , if P is
a subpath of some root-to-leaf path of T . Notice that a T -vertical path is r-geodesic, but
the converse may not be true. Analogously, an edge e ∈ E(G) is horizontal (with respect to
implicit L) if both ends of G are in the same L-layer.

Observe the following trivial claim (cf. also Claim 5):

▷ Claim 3. For every edge {v, w} of G with v ∈ Li and w ∈ Lj , we have |i − j| ≤ 1, and so
a contraction of a pair of vertices from Li may create new red edges only to the remaining
vertices of Li−1 ∪ Li ∪ Li+1.

Plane graphs; Left-aligned BFS trees. We will deal with plane graphs, which are planar
graphs with a given (combinatorial) embedding in the plane, and one marked outer face (the
remaining faces are then bounded). A plane graph is a plane triangulation if every face of its
embedding is a triangle. Likewise, a plane graph is a plane quadrangulation if every face of

ICALP 2023

75:4 Twin-Width of Planar Graphs Is at Most 8, and at Most 6 When Bipartite Planar

its embedding is of length 4. It is easy to turn an embedding of any simple planar graph into
a simple plane triangulation by adding vertices and incident edges into each non-triangular
face. Furthermore, twin-width is non-increasing when taking induced subgraphs, and so it
suffices to focus on plane triangulations in the proof of Theorem 1, and to similarly deal with
plane quadrangulations in the proof of Theorem 2.

For algorithmic purposes, we represent a plane graph G in the standard combinatorial
way – as a graph (the vertices and their adjacencies) with the counter-clockwise cyclic orders
of the incident edges of each vertex, and we additionally mark the outer face of G.

In this planar setting, consider now a plane graph G, and a BFS tree T spanning G

and rooted in a vertex r of the outer face of G, and picture (for clarity) the embedding
G such that r is the vertex of G most at the top. For two adjacent vertices u, v ∈ V (G),
{u, v} ∈ E(G), we say that u is to the left of v (wrt. T) if neither of u, v lies on the vertical
path from r to the other, and the following holds; if r′ is the least common ancestor of u and
v in T and Pr′,u (resp., Pr′,v) denote the vertical path from r′ to u (resp., v), then the cycle
(Pr′,u ∪ Pr′,v) + uv has the triple (r′, u, v) in this counter-clockwise cyclic order.

A BFS tree T of G with the BFS layering L = (L0, L1, . . .) is called left-aligned if there
is no edge f = uv of G such that, for some index i, u ∈ Li−1 and v ∈ Li, and u is to the left
of v (an informal meaning is that one cannot choose another BFS tree of G which is “more
to the left” of T in the geometric picture of G and T , such as by picking the edge uv instead
of the parental edge of v in T).

▶ Lemma 4. Given a simple plane graph G, and a vertex r on the outer face, there exists a
left-aligned BFS tree of G and it can be found in linear time.

Proof. For this proof, we have to extend the above relation of “being left of” to edges
emanating from a common vertex of G. So, for an arbitrary BFS tree T of G and edges
f1, f2 ∈ E(G) incident to v ∈ V (G), such that neither of f1, f2 is the parental edge of v

in T , we write f1 ≤l f2 if there exist adjacent vertices u1, u2 ∈ V (G) such that u1 is to the
left of u2, the least common ancestor of u1 and u2 in T is v and, for i = 1, 2, the edge fi

lies on the vertical path from ui to v. Observe the following; if f0 is the parental edge of v

in T (or, in case of v = r, f0 is a “dummy edge” pointing straight up from r), then f1 ≤l f2
implies that the counter-clockwise cyclic order around v is (f0, f1, f2). In particular, ≤l can
be extended into a linear order on its domain.

We first run a basic linear-time BFS search from r to determine the BFS layering L of G.
Then we start the construction of a left-aligned BFS tree T ⊆ G from T := {r}, and we
recursively (now in a “DFS manner”) proceed as follows:

Having reached a vertex v ∈ V (T) ⊆ V (G) such that v ∈ Li, and denoting by X :=
(NG(v) ∩ Li+1) \ V (T) all neighbours of v in Li+1 which are not in T yet, we add to T

the nodes X and the edges from v to X.
We order the vertices in X using the cyclic order of edges emanating from v to have it
compatible with ≤l at v, and in this increasing order we recursively (depth-first, to be
precise) call the procedure for them.

The result T is clearly a BFS tree of G. Assume, for a contradiction, that T is not left-aligned,
and let u1 ∈ Li−1 and u2 ∈ Li be a witness pair of it, where {u1, u2} ∈ E(G) and u1 is to
the left of u2. Let v be the least common ancestor of u1 and u2 in T , and let v1 and v2 be
the children of v on the T -paths from v to u1 and u2, respectively. So, by the definition,
vv1 ≤l vv2 at v, and hence when v has been reached in the construction of T , its child v1 has
been taken for processing before the child v2. Consequently, possibly deeper in the recursion,
u1 has been processed before the parent of u2 and, in particular, the procedure has added
the edge u1u2 into T , a contradiction to u1 being to the left of u2.

P. Hliněný and J. Jedelský 75:5

This recursive computation is finished in linear time, since every vertex of G is processed
only in one branch of the recursion, and one recursive call takes time linear in the number of
incident edges (to v). ◀

Notice that we have not assumed G to be a triangulation in the previous definition and
in Lemma 4, which will be useful for the case of bipartite planar graphs.

Vertex levels in contraction sequences. We are going to work with contraction sequences
which, preferably, preserve the BFS layers of L of connected G. However, we do not always
preserve the layers, and so we need a notion which is related to the layers of L, but it can
differ from these layers when needed – informally, when this “causes no harm at all”. For
the graph G itself, we define λ[G](v) = i if and only if v ∈ Li ∈ L. If G′ is a trigraph
along a contraction sequence of G, and a vertex v′ ∈ V (G′) stems from a set X ⊆ V (G)
by (possible) contractions, then λ[G′](v′) equals the minimum i such that Li ∩ X ̸= ∅. We
say that λ[G′](v′) is the level of v′ in G′ along the considered contraction sequence of G, or
simply the level of v′ when the particular graph of a sequence is implicit. In other words,
we can inductively say that if v′′ of G′′ results by the contraction of u′ and v′ of G′, then
λ[G′′](v′′) := min(λ[G′](u′), λ[G′](v′)). If w′ does not participate in a contraction along the
subsequence from G′ to G′′, then λ[G′′](w′) := λ[G′](w′).

A partial contraction sequence of G is defined in the same way as a contraction sequence
of G, except that it does not have to end with a single-vertex graph. A partial contraction
sequence of G is level-respecting if every step contracts, in a trigraph G′ along the sequence,
only a pair x, y ∈ V (G′) such that the following inductively holds; the levels of x and y are
the same, i.e. λ[G′](y) = λ[G′](x), or all neighbours of y (red or black) in G′ are on the same
level as x is on, i.e. λ[G′](z) = λ[G′](x) for all z such that {y, z} ∈ E(G′). (The conditions
in the latter case, in particular, imply that λ[G′](y) = λ[G′](x) + 1; cf. Claim 5.)

Usefulness of level-respecting contraction sequences lies in the subsequent claim. Inform-
ally, we may say that our levels in G′ behave analogously to the BFS layers of G; the levels
form a layering (in the usual sense), albeit not ncessarily a BFS layering.

▷ Claim 5. Let a trigraph G′ result from a level-respecting partial contraction sequence of a
connected graph G. Then any vertex z ∈ V (G′) may have neighbours (red or black) only on
the levels λ[G](z) − 1, λ[G](z) and λ[G](z) + 1. Moreover, z must have some neighbour on
the level λ[G](z) − 1.

Proof. We proceed easily by induction. The claim is trivial from the definition of a BFS
layering when G′ = G and G is connected. Assume that z ∈ V (G′′) results from a contraction
of a pair x, y ∈ V (G′), where λ[G′′](z) = λ[G′](x). Then λ[G′](y) ∈ {λ[G′](x), λ[G′](x) + 1}
by the definition of a level-respecting contraction and connectivity of G. So, there cannot be
any neighbour of z on the levels lower than λ[G′′](z) − 1 = λ[G′](x) − 1 from the induction.
Regarding levels higher than λ[G′′](z) + 1, they cannot host any neighbour of x in G′ by the
induction, and no neighbour of y as well by the definition of a level-respecting contraction (if
λ[G′](y) = λ[G′](x) + 1). Lastly, since x has a neighbour on the level λ[G′′](z) − 1 in G′, so
does z in G′′. ◁

3 Proof of Theorem 1

3.1 Induction setup for a bounded region of the graph
Our main proof proceeds by induction on suitably defined subregions of the assumed plane
triangulation G. In this subsection, we define the setup of this induction in Lemma 6, and
show how it will imply the main result.

ICALP 2023

75:6 Twin-Width of Planar Graphs Is at Most 8, and at Most 6 When Bipartite Planar

For a plane graph G and its cycle C, the subgraph of G bounded by C, denoted by GC ,
is the subgraph of G formed by the vertices and edges of C and the vertices and edges of
G drawn inside C – formally, in the region of the plane bounded by C and not containing
the outer face. Let the vertices in the set U := V (GC) \ V (C) be called the interior vertices
of C. We call a set U0 ⊆ U an interior section of C in G if all neighbours of vertices of U0
belong to U0 ∪ V (C) (in other words, U0 is a collection of connected components of G[U]).

Consider a now fixed BFS tree T of G. Assume that a cycle C of G is formed as
C = (P1 ∪ P2) + f , where P1 and P2 are two T -vertical paths of length at least 1 with a
common end u ∈ V (P1) ∩ V (P2) and f ∈ E(G) is an edge joining the other ends v1 of P1
and v2 of P2. Observe that u is the (unique) vertex of GC closest to the root r of T . Then
we say that C is a V-separator in G with respect to implicit T (‘V’ as vertical), and we call
u the sink of C and f the lid of C. If the vertices u, v1, v2 lie on C in this counter-clockwise
order (equivalently, if v1 is to the left of v2 with respect to T), then we say that P1 is the
left path of C and P2 is the right path of C (picture the sink at the top).

▶ Lemma 6. Let G be a simple plane triangulation, and T be a left-aligned BFS tree of G

rooted at a vertex r ∈ V (G) of the outer triangular face and defining the initial levels λ[G](·).
Assume that a cycle C of G is a V-separator of G, that GC is the subgraph of G bounded
by C, and u is the sink of C. Let the distance of u from the root r be ℓ, so λ[G](u) = ℓ, and
the maximum distance from a vertex of C to r be m ≥ ℓ + 1. Let U ⊆ V (GC) be an interior
section of C in G, and denote by W := V (G)\ (V (C)∪U) the set of the “remaining” vertices.

Then there exists a level-respecting partial contraction sequence of G which contracts
only pairs of vertices that are in or stem from U , results in a trigraph G∗, and satisfies the
following conditions for every trigraph G′ along this sequence from G to G∗:

(I) For U ′ := V (G′) \ (V (C) ∪ W) (which are the vertices that are in or stem from U

in G′), every vertex of U ′ in G′ has red degree at most 8,
(II) every vertex of the left path of C has at most 5 red neighbours and every vertex of the

right path of C has at most 3 red neighbours in U ′,
(III) the sink u of C has no red neighbour in U ′, and if the least level of a vertex of U in G

is k ≥ ℓ + 2, then the vertices of C on levels up to k − 2 in G have no red neighbours
in U ′ as well and each of the (two) vertices of C on the level k − 1 in G has at most 1
red neighbour in U ′, and

(IV) at the end of the partial contraction sequence, for the set U∗ := V (G∗) \ (V (C) ∪ W)
that stems from U in G∗, we have that if z ∈ U∗ is of level i, then ℓ < i ≤ max(m, ℓ+2)
and z is the only vertex in U∗ of level i.

Before proceeding further, we comment on two important things. First, we remark that,
in Lemma 6, all vertices of U have the distance from r greater than ℓ, but on the other hand
the distance from r to some vertices in U may be much larger than m (and our coming proof
is aware of this possibility). Second, we observe that all vertices of U on level ℓ + 1 must be
adjacent to the sink u, since all other potential neighbours of them have the distance from r

greater than ℓ. Consequently, contracting U on level ℓ + 1 into one vertex within the claimed
sequence indeed does not create a red edge to u, as long as we do not contract into it from
higher levels (which we will explicitly avoid in the proof). We illustrate Lemma 6 in Figure 1.

We also observe that the assumptions and conditions of Lemma 6 directly imply some
other properties useful for the coming proofs.

▷ Claim 7. Respecting the notation and assumptions of Lemma 6, we also have that:
(V) Every red edge in G′ has one end in U ′ and the other end in U ′ ∪ V (C),

(VI) if P1 and P2 are the left and right paths of C, respectively, and v ∈ V (P2) is of level j

in G′, then there is no edge of G′ (red or black) from v to a vertex of U ′ ∪ (V (P1)\{u})
of level j − 1 in G′,

P. Hliněný and J. Jedelský 75:7

r

v1
v2

u

P1 P2

C

U

f

W

⇝

r

v1
v2

u

P1 P2

U∗ W
(≤8)

(≤5) (≤3)

Figure 1 (left) The setup of Lemma 6, where P1 and P2 are the left and right paths of the chosen
V-separator C. (right) The outcome of the claimed partial contraction sequence which contracts
only vertices of U inside the shaded region from the left, and which maintains bounded red degrees
in the region and on its boundary C. No other vertex than the sketched ones is affected by the
contraction sequence. Not all depicted red edges do exist, and some of them may actually be black.

(VII) at the end, that is, in G∗, every vertex of the left path of C has at most 3 red neighbours
and every vertex of the right path of C has at most 2 red neighbours in U∗.

Proof. Regarding (V), observe that since only vertices that stem from U participate in
contractions, every red edge of G′ must have an end in U ′. Furthermore, since U is an
interior section of C, no vertex of U is adjacent to a vertex of W in G, and hence no vertex
of W is ever adjacent to a vertex being contracted in our sequence from G to G∗.

Concerning (VI), if v were adjacent to x ∈ V (P1) of level j − 1, then this was already
true in G; {x, v} ∈ E(G). If v were adjacent to x′ ∈ U ′ of level j − 1 in G′, then, among the
vertices of U contracted into x′, there had to be x ∈ U such that {x, v} ∈ E(G). By the
definition of a level-respecting sequence, possible vertices of level higher than j − 1 contracted
into x′ cannot be adjacent to v of level j, and so λ[G](x) = j − 1, too. Since, in both cases,
such x would be to the left of v in G, this contradicts the assumption that T is left-aligned.

Finally, (VII) directly follows from Claim 5 and (IV) for the left path of C. For the
right path we additionally apply (VI), which for x ∈ V (P2) of level j says that potential red
neighbours of x are only on levels j and j + 1. ◁

We also show how Lemma 6 implies the first part of our main result:

Proof of Theorem 1 (the upper bound). We start with a given simple planar graph H,
and extend any plane embedding of H into a simple plane triangulation G such that H is
an induced subgraph of G. Then we choose a root r on the outer face of G and, for some
left-aligned BFS tree of G rooted in r which exists by Lemma 4, the facial cycle C of the
outer face incident to r, and u = r, we apply Lemma 6.

This way we get a partial contraction sequence from G to a trigraph G∗ of maximum red
degree 8 (along the sequence). Observe by (IV) that the set U∗ = V (G∗) \ V (C) contains
only two vertices, on levels 1 and 2. In the final phase, we may hence pairwise contract the
remaining vertices in an arbitrary order. The restriction of this whole contraction sequence
of G to only V (H) then certifies that the twin-width of H is at most 8. ◀

ICALP 2023

75:8 Twin-Width of Planar Graphs Is at Most 8, and at Most 6 When Bipartite Planar

v1

v2

u

v3

u3

P1 P2P3

C2

x2 y2

x1 y1
h1

h2

f

f1
f2

v1

v2

u = u3

v3

P1 P2P3

C2
e :

x2 y2

x1 y1
h1

h2

f

f1
f2

v1

v2

u

v3

u3

P1 P2P3

C2

x2 y2

x1
y1h1

h2

f

f1
f2

Figure 2 Three schematic cases of the vertical-horizontal division of GC discussed in Section 3.2.
The (possible) dotted horizontal edge e in the middle case is not counted as h1 since no vertex of U

is on a level above it in the picture.

3.2 Vertical-horizontal division into subregions
In order to apply induction in the proof of Lemma 6, we need to decompose the considered
subgraph into suitable subregions, based on the plane drawing. Here we formulate the general
decomposition step, while possible degenerate cases will be handled later in Section 3.3.

Let C be a V-separator in the plane triangulation G, formed by the left path P1, the
right path P2 and the lid edge f = {v1, v2} where vi is an end of Pi. Let GC be the subgraph
bounded by C and U ⊆ V (GC) be an interior section of C in G. Moreover, assume that
there exists a triangular face in G incident to f with the vertices v1, v2, v3 where v3 ∈ U , and
that the T -vertical path from v3 to the root r contains neither v1 nor v2. In particular, since
T is left-aligned, we have that λ[G](v2) ≤ λ[G](v1) and λ[G](v3) ≤ λ[G](v1). Under these
assumptions, we are going to define the vertical-horizontal division of GC as follows.

Let P ⊆ T be the vertical path connecting v3 to the root r where, by r ̸∈ U and planarity
of G, we have that P contains the sink u. Let P3 ⊆ P be the subpath of P from v3 to the
first vertex u3 ∈ V (P) ∩ V (C) shared with the cycle C. We have u3 ̸= v3. (It may be that
u3 ∈ V (P1) or u3 ∈ V (P2) or even u3 = u; see in Figure 2.) Let P31 denote the subpath of P

from v3 to the first intersection x with P1 (x ∈ {u3, u}), and P11 the subpath of P1 from v1
till x. Similarly, let P32 denote the subpath of P from v3 to the first intersection y with P2,
and P22 be the subpath of P2 from v2 till y. Let f1 = {v1, v3} and f2 = {v2, v3}. Observe
that P31, P32 ⊆ GC , and that C1 := (P11 ∪ P31) + f1 and C2 := (P22 ∪ P32) + f2 are again
V-separators in G, such that P31 is the right path of C1 and P32 is the left path of C2.

Furthermore, let h1, . . . , ha, a ≥ 0, be the collection of all horizontal edges of GC such that,
for hi = {xi, yi}, we have xi ∈ V (P1), yi ∈ V (P3) \ V (C) and λ[G](xi) = λ[G](yi), and that
λ[G](z) ≤ λ[G](xi) − 1 holds for some z ∈ U (the reason for this strange-looking restriction
is in property (III) of Lemma 6). These edges h1, . . . , ha are ordered by their increasing
level λ[G](xi). This is illustrated in Figure 2 (where the ordering of hi’s is top-down). For
i = 1, . . . , a, let C1,i−1 denote the cycle passing through the sink of C1 (which is u3 or u) and
formed by relevant subpaths of P11, P31 and the edge hi. Let C1,a = C1. Let U1,0 denote the
set of the interior vertices of C1,0 in G, and for i = 1, . . . , a, let U1,i := X \ U1,i−1 where X

is the set of the interior vertices of C1,i in G. Let U2 denote the set of the interior vertices of
C2 in G.

P. Hliněný and J. Jedelský 75:9

The system of the cycles C1,0, . . . , C1,a, C2 and of the sets U1,0, . . . , U1,a, U2 is called the
vertical-horizontal division of GC . The following is straightforward from the definition:

▷ Claim 8. For i = 0, 1, . . . , a, the cycle C1,i is a V-separator in G, and each vertex of U1,i

has neighbours only in U1,i ∪ V (C1,i). Hence, U1,i is an interior section of C1,i. Consequently,
for every z ∈ U1,i where i ≥ 1, we have λ[G](z) ≥ λ[G](xi) + 1 (where {xi, yi} = hi above).

The intended purpose of a vertical-horizontal division in the proof of Lemma 6 is to start
the induction step, as precisely formulated in the next lemma with a straightforward proof:

▶ Lemma 9. Assume the notation and assumptions of Lemma 6 for the graph G, cycle C

and set U , and consider the vertical-horizontal division of the subgraph GC as defined above;
that is, the cycles C1,0, . . . , C1,a, C2 and the sets U1,0, . . . , U1,a, U2. Then the following hold:
a) Each cycle C1 ∈ {C1,0, . . . , C1,a, C2} and the corresponding set U1 ∈ {U1,0, . . . , U1,a, U2}
satisfy the assumptions of Lemma 6 (in the place of C and U).
b) Let τ1,i, i = 0, . . . , a, denote the level-respecting partial contraction sequence of G claimed
by Lemma 6 for the input as in (a) C1 := C1,i and U1 := U1,i, and likewise, τ2 be that
for the input C1 := C2 and U1 := U2. Then the concatenated partial contraction sequence
σ0 := τ2 · τ1,0 · . . . τ1,a, i.e., one starting with τ2 and ending with τ1,a, again satisfies the
properties (I), (II) and (III) of Lemma 6.

Proof. Part (a) immediately follows from the definition and Claim 8.
In part (b), we first argue that the concatenation σ0 is well-founded; that contractions in

one of the subsequences of σ0 have no effect on vertices being contracted in another of the
subsequences. This is since, by Claim 8, neighbours of contracted pairs of one subsequence
are only in the interior section of the same subsequence or on the bounding cycles which
together form V (C) ∪ V (P3) (and the latter set is not participating in the contractions of σ0).

Following on the previous argument, we have that the only vertices of GC that may
potentially receive red edges from more than one of the subseqeunces forming σ0, are those
of V (C) ∪ V (P3). See Figure 2. For all other vertices of GC , we have that (I) is true for
them along whole σ0 since it has been true for them along their subsequences of σ0.

For a vertex z ∈ V (P3) \ V (C), we see that z belongs to C2 and to each of C1,i, . . . , C1,a

for some i ∈ {0, . . . , a}. However, even if i ≤ a − 2, vertices of U1,i+2 cannot be neighbours
of z in GC due to a combination of Claim 5 and Claim 8. Therefore, z may have neighbours
(and so can get red edges from by contractions) only in the interior sections U2 and U1,i, and
possibly in U1,i+1 if z is an end of the horizontal edge hi+1. Recall also that z belongs to
the right path of C1,i. Along the sequence σ0, but before τ1,i+1, the vertex z has red degree
at most 5 + 3 = 8 by (II) applied to U2 and U1,i. After τ1,i is finished, z has red degree at
most 3 + 2 = 5 < 8 by (VII) of Claim 7. So, along the rest of σ0, (I) stays true for z with
red degree at most 5 + 1 = 6 by (III) applied possibly to U1,i+1.

For the vertex u itself, (III) is true automatically. For z ∈ V (P1) \ {u} and i ∈ {0, . . . , a}
being the least index such that z ∈ V (C1,i), we get that the properties are true along τ1,i

and before by (II), and since τ1,i ends, the vertex z has at most 3 red neighbours in U1,i by
(VII). Additionally, z may get at most 1 red neighbour in U1,i+1 (and none in U1,i+2, . . .) by
(III), altogether at most 4, satisfying (II). In the special case of z ∈ V (P1) \ {u} covered by
property (III) with respect to C, that is when all vertices belonging to the interior of C1 are
on levels higher than λ[G](z), we get that this property is satisfied by (III) with respect to
C1,i, and there are no more red neighbours of z from elsewhere.

Finally, for z ∈ V (P2) \ {u}, the conditions are simply true by (II) and possibly (III) for
τ2 and then along the whole sequence σ0. ◀

ICALP 2023

75:10 Twin-Width of Planar Graphs Is at Most 8, and at Most 6 When Bipartite Planar

3.3 Finishing the proof
Now we get to the core proof of Lemma 6 which will conclude our main result.

Proof of Lemma 6. We first resolve several special cases. If U = ∅, we are immediately
done with the empty partial contraction sequence. So, assume U ̸= ∅.

Recall the edge f = {v1, v2} ∈ E(G) connecting the other ends of the left path P1 and the
right path P2 of C. See again Figure 2. If v1 has no neighbour in U , then {v2, v3} ∈ E(G)
where v3 is the neighbour of v1 on P1. In such case, we simply apply Lemma 6 inductively to
P1 − v1 and P2, while the rest of the assumptions remain the same. The symmetric argument
is applied when v2 has no neighbour in U .

Otherwise, let v3 ∈ U be the vertex (unique in U) such that (v1, v2, v3) bound a triangular
face of G. Let P ⊆ T be the vertical path connecting v3 to the root r. If v1 ∈ V (P),
then P ⊃ P1 and we (similarly as above) apply Lemma 6 inductively to the V-separator
C1 = P ∪ P2 with the lid {v2, v3}, while the rest of the assumptions again remain the same.
Note that in this case, λ[G](v1) = λ[G](v3) − 1 = λ[G](v2) since T is left-aligned. In the
resulting trigraph G1, we have the set U1 := V (G1)\ (V (C1)∪W) that stems by contractions
from the interior of C1. There is no vertex in U1 of level higher than λ[G](v3) ≥ 2 and at
most one of level equal to λ[G](v3), by (IV) of Lemma 6. We contract the latter vertex with
v3, and then with the vertex of U1 of the previous level λ[G](v1) unless v1 is a neighbour of
u (cf. the special case in (IV)). This clearly does not exceed red degree 8 there, and does not
add new potential red neighbours to the vertices of C. Since (IV) is now satisfied, too, we
are done. If v2 ∈ V (P), we solve the case similarly by induction applied to the V-separator
C1 = P1 ∪ P with the lid {v1, v3}.

In all other cases, we have got a vertical-horizontal division of the subgraph GC , with
P3 ≠ {v3, u}, with the horizontal edges h1, . . . , ha, hi = {xi, yi}, the cycles C1,0, . . . , C1,a, C2
and the interior sets U1,0, . . . , U1,a, U2, and we apply Lemma 9 to it. This way we get
a level-respecting partial contraction sequence σ0, which satisfies the properties (I), (II)
and (III) of Lemma 6. Let G0 denote the trigraph which results from G by σ0, and let
U0

1,0, . . . , U0
1,a, U0

2 denote the vertex sets of G0 that stem from U1,0, . . . , U1,a, U2, respectively.
We first consider a subcase, that P3 consists of a single edge {v3, u3} and there is no

vertex z ∈ U in G such that λ[G](z) ≤ λ[G](u3). This subcase has to be treated specially
to fulfill (III) of Lemma 6. Then a = 0 in the vertical-horizontal division of GC , and
λ[G](v1) ≤ λ[G](v3) + 1 = λ[G](u3) + 2. Each of the sets U0

1,0 and U0
2 hence contains vertices

at most on the levels λ[G](v3) and λ[G](v3) + 1, by (IV) of Lemma 6.
We finish the desired partial contraction sequence from G0 in this subcase by firstly

contracting the two (if existing) vertices of U0
1,0 ∪ U0

2 on the level λ[G](v3) + 1, and secondly
by contracting each of the vertices of U0

1,0 ∪ U0
2 on the level λ[G](v3) with v3. If u3 = u is

the sink of C, then the only vertex on the level λ[G](v3) − 1 = λ[G](u) in GC is u, and so
every vertex of U0

1,0 ∪ U0
2 on the level λ[G](v3) must be adjacent to u (cf. Claim 5), and this

is by a black edge due to an inductive invocation of (III). Therefore, the contractions into v3
do not create a red edge to u. If u3 ̸= u, then let u′

3 denote the other vertex of P1 ∪ P2 on
the level λ[G](u3). Analogously to the previous case, one of the contractions into v3 does not
create a red edge to {u3, u′

3} and the other contraction can do so, but at most one red edge
to each of u3, u′

3. Therefore, (IV) is true here, and the remaining properties of Lemma 6 are
fulfilled easily.

In the remaining cases, we possibly add the following bit in a sequence σ1 after σ0 (while
this bit has not been possible in the special subcase above): If u3 ∈ V (P1) \ {u} and u3 is a
neighbour of both x1, y1 (of h1), then U0

1,0 by (IV) consists of at most two vertices, which we

P. Hliněný and J. Jedelský 75:11

v1

v2

u

v3

u3
P1 P2

U1
1,0

U1
1,1

U1
1,2 U1

2

h2 : x2 y2

h1 : x1 y1

S0

S1

S2

f v1

v2

u

v3

u3

P1 P2

U1
1,0

U1
1,1

U1
1,2

U1
2

h2 : x2 y2

h1 : x1
y1

S0

S1

S2

f

Figure 3 Proof of Lemma 6: a schematic picture of the situation after the parts of the depicted
vertical-horizontal division of GC have been recursively contracted (right before the σ2-contractions
start). The cases of u3 on the left and right paths are not symmetric in general.

contract into one vertex in σ1 – this move adds one red edge incident to u3. Analogously, if
u3 ∈ V (P2) \ {u} and u3 is a neighbour of both v2, v3 (of f2), then we contract the at most
two vertices of U0

2 into one within σ1. Although this contraction in σ1 does not preserve
levels, it is level-respecting by Claim 5 since U1,0 and U2 were interior sections of the triangles
C1,0 and C2, respectively. In both cases, the added red edge incident to u3 does not violate
the properties of Lemma 6; this follows from the bounds in (VII) of Claim 7 which are by at
least one lower than the bounds in (II) of Lemma 6, and property (III) is void for u3 unless
we have got the previous special subcase. Otherwise, we leave σ1 = ∅.

After applying σ1 to U0
1,0, . . . , U0

1,a, U0
2 in G0, we get the trigraph G1 and the sets

U1
1,0, . . . , U1

1,a, U1
2 (which are identical to the former ones except possibly U0

1,0 or U0
2). See

Figure 3.
In the next steps, we are going to define level-respecting partial contraction sequences

σ2,a, σ2,a−1, . . . , σ2,0 which, when concatenated after σ0 · σ1, give the desired outcome. If
a = 0, the sequence σ2,0 is going to contract the sets U1

1,0 with S0 := V (P3) \ {u3} and
U1

2,0 := U1
2 . If a > 0, the sequence σ2,a is going to contract U1

1,a with the sets Sa and U1
2,a,

where Sa ⊆ V (P3) \ {u3} and U1
2,a ⊆ U2 are both the subsets of those vertices on levels

greater than λ[G](ya). The sequence σ2,i for 0 ≤ i < a is going to contract U1
1,i with the

sets Si and U1
2,i, where Si ⊆ V (P3) \ {u3} and U1

2,i ⊆ U1
2 are the subsets of those vertices on

levels greater (if i ≥ 1) than λ[G](yi) and not greater than λ[G](yi+1). Of course, some of
these sets may be empty, and hence some contractions may not happen.

Specifically, for i ∈ {0, . . . , a} let p = maxz∈C1,iλ[G](z) and q = 1 + minz∈C1,iλ[G](z).
Observe that there is no vertex in U1

1,i ∪ U1
2,i of level lower than q or greater than p. This

follows from an inductive invocation of (IV) of Lemma 6, and from the sequence σ1. So, the
union U1

1 := U1
1,0 ∪ . . . ∪ U1

1,a has at most one vertex on each level. Likewise, each of the
sets V (P3) and U1

2 has at most one vertex on each level. The sequence σ2,i first runs over
j = p, p − 1, . . . , q in this order, and contracts the pair of vertices of Si ∪ U1

2,i of the equal
level j in G1 (or nothing if there is at most one such vertex there). In its second round, σ2,i

again runs over j = p, p − 1, . . . , q in this order, and contracts the vertex of level j that stems
from Si ∪ U1

2,i in the first round, with the vertex of U1
1,i of equal level j in G1.

ICALP 2023

75:12 Twin-Width of Planar Graphs Is at Most 8, and at Most 6 When Bipartite Planar

Let σ2 be the concatenation of the described sequences, σ2 := σ2,a · σ2,a−1 · . . . σ2,0
in this order, and G2 denote the trigraph which results from G1 by applying σ2. Let
U2 := V (G2) \ (V (C) ∪ W) denote the contracted vertices in the interior of C in G2. Then
G2 and U2 satisfy property (IV) of Lemma 6 (in the place of G∗ and U∗), which is immediate
from the previous definition of σ2. It thus remains to verify the properties (I), (II) and (III)
of Lemma 6 along the sequence σ2 from G1 to G2, that is, for every trigraph G′ along σ2.

Denote by U ′ := V (G′)\(V (C)∪W) all interior vertices of C in G′, and by U ′′ := U ′\V (G1)
the (new) interior vertices that stem by σ2-contractions from G1 to G′, and recall (from
Section 3.2) that P31 ⊇ P3 is the right path of C1 and P32 ⊇ P3 is the left path of C2 in GC .

We start with verification of (III) which has already been in parts addressed above.
Regarding the sink vertex u, it has got red edges neither from the sequence σ0 by an
inductive invocation of (III), nor from the sequence σ1. The vertices of C on levels up
to k − 2 as in (III) do not have any neighbour in U ′ by Claim 5. Consider the vertices
z, z′ ∈ V (C) on the level k − 1 as in (III) (if k ≥ ℓ + 2 there). If λ[G](u3) ≥ k, then no
contraction on the level k happens within σ2 (Figure 3), and so z and z′ have each at most
one red edge to U ′ by an inductive invocation of (III). Otherwise, up to symmetry, z′ = u3.
Similarly as argued earlier in this proof, u3 then has a black edge to U1

1,0 (if u3 ∈ V (P1)) or
to U1

2 (if u3 ∈ V (P2)) in G1, and so the contraction on the level k incident with this black
edge does not create a new red edge to either of z, u3. At the same time, each of z, u3 has at
most one red edge in G1 by an inductive invocation of (III), and this stays true also (with
the set U ′) during and after contractions on the level k within σ2.

We move towards verification of (I). Let z ∈ U ′ for the rest. If z ∈ U1
2 , then no σ2-

contraction has touched z so far. In this case z may have red edges to up to 3 vertices of
V (P2) ∪ U1

2 ∪ V (P32) of level λ[G1](z) − 1, to 2 vertices of V (P2) ∪ V (P32) of level λ[G1](z),
and to 2 vertices of V (P32) ∪ U1

2 ∪ U ′′ of level λ[G1](z) + 1, altogether at most 7. Note
that there is no edge from z to the vertex of P2 of level λ[G1](z) + 1 by (VI) of Claim 7. If
z ∈ V (P3) \ {u3}, then similarly, z may have red edges to up to 2 + 2 vertices of U1

1 ∪ U1
2 on

the levels λ[G1](z) − 1 and λ[G1](z), and to up to 2 vertices of U1
1 ∪ U1

2 ∪ U ′′ on the level
λ[G1](z) + 1. The case of z ∈ U1

1 (not-yet touched by a σ2-contraction) is similarly easy.
Assume now that z ∈ U ′′ has been created in G′ by a contraction of z2 ∈ U1

2 and
z3 ∈ V (P3) \ {u3} (i.e., within the first round of some σ2,i above), but z is not contracted
with a vertex of U1

1 yet. Let t ∈ V (P1) \ V (P3) denote the possible (unless equal to u3)
vertex of P1 of level λ[G1](z3) − 1. Then there is no edge in G1 from t to z2 by planarity, and
no from t to z3 by (VI) of Claim 7. The same applies to the possible vertex t′ ∈ U1

1 of level
λ[G1](z3) − 1. Consequently, z may have red edges to up to 3 vertices of V (P2) ∪ U1

2 ∪ V (P32)
of level λ[G′](z) − 1, to 3 vertices of V (P2) ∪ V (U1

1) ∪ V (P1) of level λ[G′](z), and to up to 3
vertices of U ′′∪V (U1

1)∪V (P1) of level λ[G′](z)+1, again using (VI). This sums to 3+3+3 = 9,
but we are going to show that this maximum of 9 cannot be achieved. Let z1 ∈ V (P1) be
such that λ[G′](z1) = λ[G′](z). If {z1, z3} ̸∈ E(G), then no red edge {z1, z} is created by the
current contraction and the sum is at most 8, as needed. If {z1, z3} = hi ∈ E(G), then the
sequence σ2,i has already contracted Si ∪ U1

1,i into U ′′, and so there are only 2 red neighbours
of z in U ′′ ∪ V (P1) on the level λ[G′](z) + 1, again summing to at most 8. If {z1, z3} ∈ E(G),
but {z1, z3} has not been chosen as any hi in the vertical-horizontal division above, then
there are no vertices in U1

2 ∪ (V (P3) \ {u3}) on the level λ[G′](z) − 1, and so the sum is at
most 8.

Assume that z ∈ U ′′ has already been created in G′ by a contraction of all vertices in
U1

2 ∪ V (P3) ∪ U1
1 of the same level. Let this contraction be part of σ2,i for some 0 ≤ i ≤ a.

Then z may have red edges to up to 2 vertices of V (P2) ∪ V (P1) of level λ[G′](z), to 2

P. Hliněný and J. Jedelský 75:13

vertices of U ′′ ∪ V (P1) of level λ[G′](z) + 1 (but not to V (P2) due to (VI)), and to vertices
of V (P2) ∪ U1

2 ∪ V (P3) ∪ V (U1
1) ∪ U ′′ ∪ V (P1) =: Y of level λ[G′](z) − 1. However, at most 4

of the vertices of Y are potential red neighbours of z (so summing to at most 8), as we now
show. If contractions on the level λ[G′](z) − 1 are part of σ2,i, too, then red neighbours of
z in Y of level λ[G′](z) − 1 actually belong to V (P2) ∪ U ′′ ∪ V (U1

1) ∪ V (P1) with an upper
bound of 4. Otherwise, if contractions on the level λ[G′](z) − 1 are part of σ2,i−1, then
there is no edge from z to a vertex of U1

i−1, or U1
i−1 on the level λ[G′](z) − 1 has already

been contracted into U ′′, too. Then red neighbours of z in Y of level λ[G′](z) − 1 belong to
V (P2) ∪ U1

2 ∪ V (P3) ∪ V (P1) or to V (P2) ∪ U ′′ ∪ V (P1), and we again get a bound of 4.
Finally, we want to verify (II) of Lemma 6. Consider z ∈ V (P2) \ {u}. By the definition

of σ2, the vertex z may have at most one red neighbour of each level in U ′ (at any moment
of σ2). Then the bound of at most 3 red edges from z to U ′ follows immediately in view
of Claim 5. Consider now z ∈ V (P1) \ {u}, which is a bit more complicated case. On each
of the levels λ[G1](z) − 1, λ[G1](z) and λ[G1](z) + 1 of U ′, there are clearly at most 2 red
neighbours of z. Although, we now show that the maximum sum of 6 cannot be achieved. If
z = u3, then there is actually at most red neighbour of z on the level λ[G1](z)−1. Otherwise,
we denote the following vertices of G1 of level λ[G1](z) + 1 by z1, z2, z3 such that z1 ∈ U1

1 ,
z2 ∈ U1

2 , z3 ∈ V (P3), and λ[G1](z1) = λ[G1](z2) = λ[G1](z3) = λ[G1](z) + 1. Then z3 has no
edge to z ̸= u3 by (VI) of Claim 7, and z2 has no edge to z by planarity. If z3 ∈ U ′ (i.e., not
contracted yet), then only z1 may be a red neighbour of z. If z2 and z3 have already been
contracted in G′, but z1 ∈ U ′, then the new vertex again has no edge to z. Finally, if all of
z1, z2, z3 have been contracted in G′, then U ′ has only (this) one vertex of level λ[G1](z) + 1.
In any case, z has at most 5 red neighbours in U ′.

We have verified all conditions of Lemma 6 for the partial contraction sequence σ0 · σ1 · σ2,
and so we can set G∗ := G2 and the proof is done. ◀

Proof of Theorem 1 (the algorithmic part). We can construct a simple plane triangulation
G ⊇ H in linear time using standard planarity algorithms, and then construct a left-aligned
BFS tree T ⊆ G again in linear time by Lemma 4. In the rest, we straightforwardly implement
the recursive vertical-horizontal division of G as used in the proof of Lemma 6, and construct
the contraction sequence of H on return from the recursive calls as defined in the proof. Note
that we do not need at all to construct the intermediate trigraphs along the constructed
contraction sequence, and so the construction of the sequence is very easy – each recursive
call returns just a simple list of the vertices which stem from the recursive contractions,
indexed by the levels. Then these (up to) two lists are easily in linear time “merged” together
with the dividing path P3, as specified by the proof of Lemma 6, into the resulting list of
this call.

We may account total runtime in the “division part” of the algorithm to the edge(s) of v3
into v1 or v2 and the edges of the path P3 starting in v3 in each call of the recursion, and
these edges are not counted multiple times in different branches of the recursion. Likewise,
runtime of the “merging” part of each recursive call can be counted to the individual steps of
the resulting contraction sequence, which is of linear length. Hence, altogether, the algorithm
runs in linear time. ◀

4 Proof of Theorem 2

On a high level, the proof will still proceed in the same way as in [16], and will prove the
same bound. However, there are significant changes in the technical details, in which ideas
from the previous section can save a lot of difficulties of the cumbersome proof from [16].

ICALP 2023

75:14 Twin-Width of Planar Graphs Is at Most 8, and at Most 6 When Bipartite Planar

r

v1

v2

u

P1 P2

C

U

f

W
⇝

r

v1

v2

u

P1 P2

U∗ W
(≤6)

(≤4) (≤1)

Figure 4 (left) The setup of Lemma 11, where P1 and P2 are the left and right paths of the chosen
V-separator C. (right) The outcome of the claimed partial contraction sequence which contracts
only vertices of U inside the shaded region from the left, and which maintains bounded red degrees
in the region and on its boundary C.

In a nutshell, the bipartite case carries two major differences from the proof of the general
planar case in Section 3:

Since our graph is now bipartite, we will work with a plane quadrangulation (instead
of a triangulation). However, with a suitable detailed analysis, it does not bring any
significant new challenges to the proof.
Since, again, our graph is bipartite, we immediately get that in any BFS layering, each
layer is an independent set, and so we will never create a red edge inside the same layer.
This is the crucial saving which allows us to derive a better upper bound on the red
degree along the constructed sequence.

Before proceeding further, we need to adjust the concept of a level-respecting contraction
sequence (beacuse of the fact that the definition from Section 2 possibly allowed to create
new (red) edges inside the same level).

A partial contraction sequence of G is bi-level-respecting if every step contracts, in a
trigraph G′ along the sequence, only a pair x, y ∈ V (G′) such that the following inductively
holds; the levels of x and y are the same, i.e. λ[G′](y) = λ[G′](x), or all neighbours of y (red
or black) in G′ are on the level λ[G′](x) + 1, i.e. λ[G′](z) = λ[G′](x) + 1 is true for all z such
that {y, z} ∈ E(G′). Again, we easily get by induction as in Claim 5:

▷ Claim 10. Let a trigraph G′ result from a bi-level-respecting partial contraction sequence
of a bipartite connected graph G. Then any vertex z ∈ V (G′) may have neighbours (red or
black) only on the levels λ[G](z) − 1 and λ[G](z) + 1. In particular, the trigraph G′ is again
bipartite. Moreover, z must have some neighbour on the level λ[G](z) − 1.

Our proof is again by induction, precisely as set up in the following lemma. We illustrate
this lemma in Figure 4. Before starting, note that a plane quadrangulation is always bipartite,
and so it has all cycles (not only the faces) of length at least 4.

▶ Lemma 11.* Let G be a simple plane quadrangulation, and T be a left-aligned BFS tree of
G rooted at a vertex r ∈ V (G) of the outer face and defining the initial levels λ[G](·). Assume
that a cycle C of G is a V-separator of G, that GC is the subgraph of G bounded by C, and u

P. Hliněný and J. Jedelský 75:15

v1

v2

u

v3

v4

P1 P2P3

C1 C2

f

u3

f1 f2

v1

v2

u

v3
v4

P1 P2P3

C1 C2

f

u3

f1

f2

v1

v2

u

v3
v4

P1 P2

C1

f

f1

Figure 5 Three schematic cases of decomposing the drawing of GC into subregions (bounded by
C1 and C2) discussed in Lemma 13. They generally cover all possibilities in which v3, v4 ̸∈ V (P1 ∪P2).
Vertical positions of the vertices of the 4-cycle A = (v1, v2, v3, v4) outline their levels in G. Note
that, in the right-most case, we have only one “nested” V-separator C1, which is however not equal
to C = (P1 ∪ P2) + f , but instead C1 passes through v2, v3, v4, v1 and has the lid edge f1 = {v3, v4}.

is the sink of C. Let the distance of u from the root r be ℓ, so λ[G](u) = ℓ, and the maximum
distance from a vertex of C to r be m ≥ ℓ+2. Let U := V (GC)\V (C) be the interior vertices
of C, and denote by W := V (G) \ (V (C) ∪ U) the set of the “remaining” vertices.

Then there exists a bi-level-respecting partial contraction sequence of G which contracts
only pairs of vertices that are in or stem from U , results in a trigraph G∗, and satisfies the
following conditions for every trigraph G′ along this sequence from G to G∗:

(I)’ For U ′ := V (G′) \ (V (C) ∪ W) (which are the vertices that are in or stem from U

in G′), every vertex of U ′ in G′ has red degree at most 6,
(II)’ every vertex of the left path of C has at most 4 red neighbours and every vertex of the

right path of C has at most 1 red neighbour in U ′,
(III)’ the sink u of C has no red neighbour in U ′,
(IV)’ if the next step of the sequence is going to contract a pair x, y ∈ U ′ such that

λ[G′](y) > λ[G′](x), then y has no neighbour in the right path of C, and
(V)’ at the end of the partial contraction sequence, for the set U∗ := V (G∗) \ (V (C) ∪ W)

that stems from U in G∗, we have that if z ∈ U∗ is of level i, then ℓ < i ≤ m + 1 and
z is the only vertex in U∗ of level i.

Lemma 11 already easily implies the first combinatorial part of Theorem 2, as we have
seen with Theorem 1 in Section 3.1. Details of the algorithmic part again tightly follow the
detailed proof steps which are present in the full paper.

In the proof of Lemma 11, we proceed analogously to Section 3. Namely, we start with a
decomposition step analogous to Lemma 9 and illustrated in Figure 5. With a bit of technical
work, we prove:

▶ Lemma 13.* Assume the setting of Lemma 11, and with respect to it, let U ̸= ∅
and A ⊆ GC , A = (v1, v2, v3, v4), denote the cycle bounding the 4-face incident to the lid
edge f of the V-separator C and drawn in the closed disk of C.
a) There exists a vertical path P3 ⊆ GC (internally disjoint from C ∪ A and possibly empty)

such that the plane subgraph C ∪ A ∪ P3 has two (if P3 = ∅) or three distinct bounded
faces, one of them being the face of A. The one or two bounded faces of C ∪ A ∪ P3 other
than that of A are bounded by cycles C1 and C2, where v1 ∈ V (C1), and each of C1 and
C2 (or just C1 if P3 = ∅) is again a V-separator whose lid edge is from E(A) \ {f}.

ICALP 2023

75:16 Twin-Width of Planar Graphs Is at Most 8, and at Most 6 When Bipartite Planar

b) Assume now that C ∪ A ∪ P3 has three bounded faces. Then C1 ∩ C2 = P3, and the sinks
of C1 and C2 are in some order the sink u of C and the end u3 of P3 not in A (which may
be the same vertex). If τi, i = 1, 2, is the bi-level-respecting partial contraction sequence
of G obtained by inductively applying Lemma 11 to the cycle Ci, then the concatenation
σ0 := τ2 · τ1 of these two sequences is a bi-level-respecting partial contraction sequence of
G which satisfies the properties (I)’ to (IV)’ of Lemma 11.

Then, we follow on the partial contraction sequence of Lemma 13 analogously to the proof
in Section 3.3, albeit with slightly simpler arguments thanks to a simpler decomposition step
with only at most two subregions. In this way we finish both Lemma 11 and Theorem 2, and
the details are now left for the full paper [17].

5 Concluding Remarks

We have further improved by one the previous best upper bound [16] on the twin-width of
planar graphs. This seemingly small improvement has required a careful reconsideration of
the previous method and several new ideas, and although our new approach has simplified
some cumbersome technical details in [16], new technical difficulties emerged which makes
some parts of the proof again quite technical. This is probably to be expected since we are
now very close to the currently best lower bound of 7 on the twin-width of planar graphs [19].

To recapitulate the fine improvements leading to the upper bound of 8 on the twin-
width compared to previous larger bounds in [12, 18] and [3]; we communicate that the
biggest (numerical) jump comes from the use of a specially tailored BFS-based decomposition
formulated in Section 3.2, but we regard as the most important contribution in the quest
the use of a left-aligned BFS tree (Section 2), which essentially “slashes down” additional
up to three possible red neighbours from the analysis in the proof of Lemma 6. While both
previous improvements have been introduced already in [16], the use of the “horizontal items”
in the vertical-horizontal division of Section 3.2 then gives a final touch improving the bound
to 8 (while 9 seemed to be unbeatable without this final trick).

Related to the twin-width is the notion of reduced bandwidth [12] which, informally
stating, requires the subgraph induced by the red edges (along the sequence) to not only have
bounded degrees, but also bounded bandwidth. Strictly speaking, as our construction of the
contraction sequence creates arbitrarily large “red grids” in some cases, it does not directly
imply any constant upper bound on the reduced bandwidth of planar graphs. However, a
simple modification of the construction (informally, delaying contractions that would create
red edges to the vertices of P2 as in Figure 4) can easily bring a reasonable two-digit upper
bound on the reduced bandwidth of planar graphs, which can possibly be further tightened
with a specialized refined argument.

Besides the core question of the maximum twin-width of planar graphs, one may also
reconsider the fact that our proof method is (distantly) based on the proof of the product
structure of planar graphs [14] and ask whether we could possibly improve the product
structure over the currently best variant in [21]. Unfortunately, our recursive decomposition
of planar graphs is very tailored to the purpose of proving a good upper bound on the
twin-width and it currently does not seem to yield an improvement in the planar product
struture, or in the maximum queue number of planar graphs. This direction, however, is the
subject of our ongoing research.

In the end we would like to dwell on the very idea of left-aligned BFS trees from Section 2.
This seems like a quite general idea about planar graphs, related to other specialized BFS-
and DFS-search routines in the algorithmic world, but we have not found this exact idea

P. Hliněný and J. Jedelský 75:17

anywhere in the published literature (the existing related concepts we are aware of do not
feature the BFS property). We believe that this new idea could possibly find its use in other
problems regarding planar graphs and drawings.

To finally conclude, the problem to determine the exact maximum value of the twin-width
over all planar graphs is still open, but our continuing research suggests that the value of 7
is much more likely (than 8) to be the right answer. Likewise, the problem to determine the
exact maximum value of the twin-width over bipartite planar graphs is open, and we cannot
now decide whether the value of 6 is the right maximum value over bipartite planar graphs,
or whether the upper bound may possibly be 5 (while an upper bound lower than 5 is not
likely since a bipartite construction analogous to [19] seems to exclude it, but we are not
aware of this claim being written up as a formal statement).

References
1 Jungho Ahn, Kevin Hendrey, Donggyu Kim, and Sang-il Oum. Bounds for the twin-width of

graphs. CoRR, abs/2110.03957, 2021. arXiv:2110.03957.
2 Jakub Balabán and Petr Hliněný. Twin-width is linear in the poset width. In IPEC, volume

214 of LIPIcs, pages 6:1–6:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.
3 Michael A. Bekos, Giordano Da Lozzo, Petr Hliněný, and Michael Kaufmann. Graph product

structure for h-framed graphs. CoRR, abs/2204.11495v1, 2022. arXiv:2204.11495v1.
4 Pierre Bergé, Édouard Bonnet, and Hugues Déprés. Deciding twin-width at most 4 is

NP-complete. In ICALP, volume 229 of LIPIcs, pages 18:1–18:20. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2022.

5 Édouard Bonnet, Dibyayan Chakraborty, Eun Jung Kim, Noleen Köhler, Raul Lopes, and
Stéphan Thomassé. Twin-width VIII: delineation and win-wins. In IPEC, volume 249 of
LIPIcs, pages 9:1–9:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

6 Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant.
Twin-width II: small classes. In SODA, pages 1977–1996. SIAM, 2021.

7 Édouard Bonnet, Colin Geniet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant.
Twin-width III: max independent set, min dominating set, and coloring. In ICALP, volume
198 of LIPIcs, pages 35:1–35:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

8 Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Pierre Simon, Stéphan Thomassé,
and Szymon Torunczyk. Twin-width IV: ordered graphs and matrices. In STOC, pages
924–937. ACM, 2022.

9 Édouard Bonnet, Eun Jung Kim, Amadeus Reinald, and Stéphan Thomassé. Twin-width VI:
the lens of contraction sequences. In SODA, pages 1036–1056. SIAM, 2022.

10 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I:
tractable FO model checking. In FOCS, pages 601–612. IEEE, 2020.

11 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I:
tractable FO model checking. J. ACM, 69(1):3:1–3:46, 2022.

12 Édouard Bonnet, O-joung Kwon, and David R. Wood. Reduced bandwidth: a qualitative
strengthening of twin-width in minor-closed classes (and beyond). CoRR, abs/2202.11858,
2022. arXiv:2202.11858.

13 Édouard Bonnet, Jaroslav Nesetril, Patrice Ossona de Mendez, Sebastian Siebertz, and Stéphan
Thomassé. Twin-width and permutations. CoRR, abs/2102.06880, 2021. arXiv:2102.06880.

14 Vida Dujmovic, Gwenaël Joret, Piotr Micek, Pat Morin, Torsten Ueckerdt, and David R.
Wood. Planar graphs have bounded queue-number. J. ACM, 67(4):22:1–22:38, 2020. doi:
10.1145/3385731.

15 Jakub Gajarský, Michal Pilipczuk, Wojciech Przybyszewski, and Szymon Torunczyk. Twin-
width and types. In ICALP, volume 229 of LIPIcs, pages 123:1–123:21. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022.

ICALP 2023

https://arxiv.org/abs/2110.03957
https://arxiv.org/abs/2204.11495v1
https://arxiv.org/abs/2202.11858
https://arxiv.org/abs/2102.06880
https://doi.org/10.1145/3385731
https://doi.org/10.1145/3385731

75:18 Twin-Width of Planar Graphs Is at Most 8, and at Most 6 When Bipartite Planar

16 Petr Hliněný. Twin-width of planar graphs is at most 9, and at most 6 when bipartite planar.
CoRR, abs/2205.05378, 2022. arXiv:2205.05378.

17 Petr Hliněný and Jan Jedelský. Twin-width of planar graphs is at most 8, and at most 6 when
bipartite planar. CoRR, abs/2210.08620, 2022. arXiv:2210.08620.

18 Hugo Jacob and Marcin Pilipczuk. Bounding twin-width for bounded-treewidth graphs, planar
graphs, and bipartite graphs. In WG, volume 13453 of Lecture Notes in Computer Science,
pages 287–299. Springer, 2022.

19 Daniel Král and Ander Lamaison. Planar graph with twin-width seven. CoRR, abs/2209.11537,
2022. arXiv:2209.11537.

20 Michal Pilipczuk, Marek Sokolowski, and Anna Zych-Pawlewicz. Compact representation for
matrices of bounded twin-width. In STACS, volume 219 of LIPIcs, pages 52:1–52:14. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022.

21 Torsten Ueckerdt, David R. Wood, and Wendy Yi. An improved planar graph product
structure theorem. CoRR, abs/2108.00198, 2021. arXiv:2108.00198.

https://arxiv.org/abs/2205.05378
https://arxiv.org/abs/2210.08620
https://arxiv.org/abs/2209.11537
https://arxiv.org/abs/2108.00198

A Sparse Johnson-Lindenstrauss Transform Using
Fast Hashing
Jakob Bæk Tejs Houen #

BARC, Department of Computer Science, University of Copenhagen, Denmark

Mikkel Thorup #

BARC, Department of Computer Science, University of Copenhagen, Denmark

Abstract
The Sparse Johnson-Lindenstrauss Transform of Kane and Nelson (SODA 2012) provides a linear
dimensionality-reducing map A ∈ Rm×u in ℓ2 that preserves distances up to distortion of 1 + ε with
probability 1 − δ, where m = O(ε−2 log 1/δ) and each column of A has O(εm) non-zero entries.
The previous analyses of the Sparse Johnson-Lindenstrauss Transform all assumed access to a
Ω(log 1/δ)-wise independent hash function. The main contribution of this paper is a more general
analysis of the Sparse Johnson-Lindenstrauss Transform with less assumptions on the hash function.
We also show that the Mixed Tabulation hash function of Dahlgaard, Knudsen, Rotenberg, and
Thorup (FOCS 2015) satisfies the conditions of our analysis, thus giving us the first analysis of a
Sparse Johnson-Lindenstrauss Transform that works with a practical hash function.

2012 ACM Subject Classification Theory of computation → Random projections and metric
embeddings; Theory of computation → Pseudorandomness and derandomization

Keywords and phrases dimensionality reduction, hashing, concentration bounds, moment bounds

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.76

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2305.03110

Funding Research supported by Investigator Grant 16582, Basic Algorithms Research Copenhagen
(BARC), from the VILLUM Foundation.

1 Introduction

Dimensionality reduction is an often applied technique to obtain a speedup when working with
high dimensional data. The basic idea is to map a set of points X ⊆ Ru to a lower dimension
while approximately preserving the geometry. The Johnson-Lindenstrauss lemma [24] is a
foundational result in that regard.

▶ Lemma 1 ([24]). For any 0 < ε < 1, integers n, u, and X ⊆ Ru with |X| = n, there exists
a map f : X → Rm with m = O(ε−2 log n) such that

∀w, w′ ∈ X, |∥f(w) − f(w′)∥2 − ∥w − w′∥2| ≤ ε ∥w − w′∥2 .

It has been shown in [6, 30] that the target dimension m is optimal for nearly the entire
range of n, u, ε. More precisely, for any n, u, ε there exists a set of points X ⊆ Ru with
|X| = n such that for any map f : X → Rm where the Euclidean norm is distorted by at
most (1 ± ε) must have m = Ω(min

{
u, n, ε−2 log(ε2n)

}
).

EA
T
C
S

© Jakob Bæk Tejs Houen and Mikkel Thorup;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 76; pp. 76:1–76:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jakob@tejs.dk
https://orcid.org/0000-0002-8033-2130
mailto:mikkel2thorup@gmail.com
https://orcid.org/0000-0001-5237-1709
https://doi.org/10.4230/LIPIcs.ICALP.2023.76
https://arxiv.org/abs/2305.03110
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

76:2 A Sparse Johnson-Lindenstrauss Transform Using Fast Hashing

All known proofs of the Johnson-Lindenstrauss lemma constructs a linear map f . The
original proof of Johnson and Lindenstrauss [24] chose f(x) = Πx where Π ∈ Rm×u is an
appropriately scaled orthogonal projection into a random m-dimensional subspace. Another
simple construction is to set f(x) = 1√

m
Ax where A ∈ Rm×u and each entry is an independent

Rademacher variable.1 In both cases, it can be shown that as long as m = Ω(ε−2 log 1/δ)
then

∀w ∈ Ru, Pr
[∣∣∣∥f(w)∥2

2 − ∥w∥2
2

∣∣∣ ≥ ε ∥w∥2
2

]
≤ δ. (1)

The Johnson-Lindenstrauss lemma follows by setting δ < 1/
(

n
2
)

and taking w = z − z′ for
all pairs z, z′ ∈ X together with a union bound. (1) is also known as the distributional
Johnson-Lindenstrauss lemma and it has been shown that the target dimension m is tight,
more precisely, m must be at least Ω(min

{
u, ε−2 log 1/δ

}
) [23, 26].

Sparse Johnson-Lindenstrauss Transform

One way to speed up the embedding time is replacing the dense A of the above construction
by a sparse matrix. The first progress in that regard came by Achlioptas in [3] who showed
that A can be chosen with i.i.d. entries where Aij = 0 with probability 2/3 and otherwise
Aij is chosen uniformly in ±

√
3
m . He showed that this construction can achieve the same m

as the best analyses of the Johnson-Lindenstrauss lemma. Hence this achieves essentially a
3x speedup, but the asymptotic embedding time is still O(m ∥x∥0) where ∥x∥0 is number of
non-zeros of x.

Motivated by improving the asymptotic embedding time, Kane and Nelson in [28],
following the work in [14, 27, 8], introduced the Sparse Johnson-Lindenstrauss Trans-
form which maps down to essentially optimal dimension m = O(ε−2 log n) and only has
s = O(ε−1 log n) non-zeros entries per column. This speeds up the embedding time to
O(ε−1 log n ∥x∥0) = O(εm ∥x∥0) thus improving the embedding time by a factor of ε−1. It
nearly matches a sparsity lower bound by Nelson and Nguyen [31] who showed that any
sparse matrix needs at least s = Ω(ε−1 log(n)/ log(1/ε)) non-zeros per column.

Using Hashing

When the input dimension, u, is large it is not feasible to store the matrix A explicitly.
Instead, we use a hash function to calculate the non-zero entries of A. Unfortunately, the
previous analyses of the Sparse Johnson-Lindenstrauss Transform [28, 10] assume access to a
Ω(log 1/δ)-wise independent hash function which is inefficient. This motivates the natural
question:

What are the sufficient properties we need of the hash function for a Sparse
Johnson-Lindenstrauss Transform to work?

The goal of this work is to make progress on this question. In particular, we provide a
new analysis of a Sparse Johnson-Lindenstrauss Transform with fewer assumptions on the
hash function. This improved analysis allows us to conclude that there exists a Sparse
Johnson-Lindenstrauss Transform that uses Mixed Tabulation hashing which is efficient.

1 A Rademacher variables, X, is a random variable that is chosen uniformly in ±1, i.e., Pr[X = 1] =
Pr[X = −1] = 1

2 .

J. B. T. Houen and M. Thorup 76:3

Mixed Tabulation Hashing

Before introducing Mixed Tabulation hashing, we will first discuss Simple Tabulation hashing
which was introduced by Zobrist [39]. Simple Tabulation hashing takes an integer parameter
c > 1, and we view a key x ∈ [u] = {0, . . . , u − 1} as a vector of c characters, x0, . . . , xc−1 ∈
Σ = [u1/c]. For each character, we initialize a fully random table Ti : Σ → [2r] and the hash
value of x is then calculated as

h(x) = T0[x0] ⊕ . . . ⊕ Tc−1[xc−1],

where ⊕ is the bitwise XOR-operation. We say that h is a Simple Tabulation hash function
with c characters.

We can now define Mixed Tabulation hashing which is a variant of Simple Tabulation
hashing that was introduced in [11]. As with Simple Tabulation hashing, Mixed Tabulation
hashing takes c > 1 as a parameter, and it takes a further integer parameter d ≥ 1. Again,
we view a key x ∈ [u] as vector of c characters, x0, . . . , xc−1 ∈ Σ = [u1/c]. We then let
h1 : Σc → [2r], h2 : Σc → Σd, and h3 : Σd → [2r] be independent Simple Tabulation hashing.
Mixed Tabulation hashing is then defined as follows

h(x) = h1(x) ⊕ h3(h2(x)).

We say that h a mixed tabulation hash function with c characters and d derived characters.
We call h2(x) ∈ Σd the derived characters. Mixed Tabulation hashing can be efficiently
implemented by storing h1 and h2 as a single table with entries in [2r] × Σd, so the whole
hash function can be computed with just c + d lookups.

Our Contributions

Our main contribution is a new analysis of a Sparse Johnson-Lindenstrauss Transform that
does not rely on the high independence of the hash function. Instead we show that it
suffices that the hash function supports a decoupling-decomposition combined with strong
concentration bounds.

We show that Mixed Tabulation hashing satisfies these conditions. This gives the first
instance of a practical hash function that can support a Sparse Johnson-Lindenstrauss
Transform.

1.1 Sparse Johnson-Lindenstrauss Transform
As mentioned earlier, the Sparse Johnson-Lindenstrauss Transform was introduced by Kane
and Nelson [28] and they provided two different constructions with the same sparsity. Later a
simpler analysis was given in [10] which also generalized the result to a more general class of
constructions. In this paper, we will only focus on one of the constructions which is described
below.

Before we discuss the construction of the Sparse Johnson-Lindenstrauss Transform, we
will first consider the related CountSketch which was introduced in [9] and was analyzed
for dimensionality reduction in [36]. In CountSketch, we construct the matrix A as follows:
We pick a pairwise independent hash function, h : [u] → [m], and a 4-wise independent sign
function σ : [u] → {−1, 1}. For each x ∈ [u], we set Ah(x),x = σ(x) and the rest of the x’th
column to 0. Clearly, this construction has exactly 1 non-zero entry per column. It was
shown in [36] that if m = Ω(ε−2δ−1) then it satisfies the distributional Johnson-Lindenstrauss
lemma, Equation (1). The result follows by bounding the second moment of ∥Ax∥2

2 − ∥x∥2
2

for any x ∈ Rd and then apply Chebyshev’s inequality.

ICALP 2023

76:4 A Sparse Johnson-Lindenstrauss Transform Using Fast Hashing

The bad dependence in the target dimension, m, on the failure probability, δ, is because
we only use the second moment. So one might hope that you can improve the dependence by
looking at higher moments instead. Unfortunately, it is not possible to improve the dependence
for general x ∈ Rd, and it is only possible to improve the dependence if ∥x∥2

∞ / ∥x∥2
2 is small.

Precisely, how small ∥x∥2
∞ / ∥x∥2

2 has to be, has been shown in [17]. So to improve the
dependence on δ, we need to increase the number of non-zero entries per column.

We are now ready to describe the construction of the Sparse Johnson-Lindenstrauss
Transform. The construction is to concatenate s CountSketch matrices and scale the
resulting matrix by 1√

s
. This clearly gives a construction that has s non-zero entries per

column and as it has been shown in [28, 10] if s = Ω(ε−1 log(1/δ)) then we can obtain the
optimal target dimension m = O(ε−2 log(1/δ)). More formally, we construct the matrix A

as follows:
1. We pick a hash function, h : [s] × [u] → [m/s] and a sign function σ : [s] × [u] → {−1, 1}.
2. For each x ∈ [u], we set Ai·m/s+h(i,x),x = σ(i,x)√

s
for every i ∈ [s] and the rest of the x’th

column to 0.
In the previous analyses [28, 10], it was shown that if h and σ are Ω(log 1/δ)-wise independent
then the construction works. Unfortunately, it is not practical to use a Ω(log 1/δ)-wise
independent hash function so the goal of this work is to obtain an analysis of a Sparse
Johnson-Lindenstrauss Transform with fewer assumptions about the hash function. In
particular, we relax the assumptions of the hash function, h, and the sign function, σ, to
just satisfying a decoupling-decomposition and a strong concentration property. The formal
theorem is stated in Section 3.

We also show that Mixed Tabulation satisfies these properties and thus that the Sparse
Johnson-Lindenstrauss Transform can be implemented using Mixed Tabulation. Let us
describe more formally, what we mean by saying that Mixed Tabulation can implement the
Sparse Johnson-Lindenstrauss Transform. We let h1 : Σc = [u] → [m/s], h2 : Σc → Σd, and
h3 : Σd → [m/s] be the independent Simple Tabulation hash functions that implement the
Mixed Tabulation hash function, h1(x)⊕h3(h2(x)). We then extend it to the domain [s]× [u]
as follows:
1. Let h′

2 : [s] × Σc → Σd be defined by h′
2(i, x) = h2(x) ⊕ (i, . . . , i)︸ ︷︷ ︸

d times

, i.e., each derived

character gets xor’ed by i.
2. We then define h : [s] × [u] → [m/s] and σ : [s] × [u] → {−1, 1} by h(i, x) = h1(x) ⊕

h3(h′
2(i, x)) and σ(i, x) = σ1(x) · σ3(h′

2(i, x)), where h1 and h3 are the Simple Tabulation
hash functions described above, and σ1 : Σc → {−1, 1} and σ3 : Σd → {−1, 1} are
independent Simple Tabulation functions.

1.2 Hashing Speed
When we use tabulation schemes, it is often as a fast alternative to Ω(log n)-independent
hashing. Typically, we implement a q-independent hash function using a degree q − 1
polynomial in O(q) time, and Siegel [34] has proved that this is best possible unless we use
large space. More precisely, for some key domain [u], if we want to do t < q memory accesses,
then we need space at least u1/t. Thus, if we want higher than constant independence but
still constant evaluation times, then we do need space uΩ(1). In our application, we have to
compute many hash values simultaneously, so an alternative strategy would be to evaluate
the polynomial using multi-point evaluation. This would reduce the time per hash value to
O(log2 q) but this is still super constant time.

J. B. T. Houen and M. Thorup 76:5

With tabulation hashing, we use tables of size O(|Σ|) where |Σ| = u1/c and c = O(1). The
table lookups are fast if the tables fit in cache, which is easily the case for 8-bit characters.
In connection with each lookup, we do a small number of very fast AC0 operations: a cast, a
bit-wise xor, and a shift. This is incomparable to polynomial in the sense of fast cache versus
multiplications, but the experiments from [1, Table 1] found Simple Tabulation hashing to
be faster than evaluation a 2-wise independent polynomial hashing.

Tabulation schemes are most easily compared by the number of lookups. Storing h1
and h2 in the same table, Mixed Tabulation hashing uses c + d lookups. With d = c, the
experiments from [1] found Mixed Tabulation hashing to be slightly more than twice as
slow as Simple Tabulation hashing, and the experiments from [12] found Mixed Tabulation
hashing to be about as fast as 3-wise independent polynomial hashing. This motivates our
claim that Mixed Tabulation hashing is practical.

In theory, we could also use a highly independent hash function that uses large space, but
we don’t know of any efficient construction. Siegel states about his construction, it is “far
too slow for any practical application” [34], and while Thorup [35] has presented a simpler
construction than Siegel’s, it is still not efficient. The experiments in [1] found it to be more
than an order magnitude slower than Mixed Tabulation hashing.

2 Related Work

Even Sparser Johnson-Lindenstrauss Transforms

As touched upon earlier, there is a lower bound by Nelson and Nguyen [31] that rules out
significant improvements, but never the less there has been research into sparser embedding.
In the extreme, Feature Hashing of [38] considers the case of s = 1. The lower bound excludes
Feature Hashing from working for all vectors, but in [17] they gave tight bounds for which
vectors it works in terms of the measure ∥w∥2

∞ / ∥w∥2
2. This was later generalized in [21] to

a complete understanding between the tradeoff between s and the measure ∥w∥2
∞ / ∥w∥2

2. In
this paper, we will only focus on the case s = Θ(ε−1 log 1/δ) and m = Θ(ε−2 log 1/δ)

Fast Johnson-Lindenstrauss Transform

Another direction to speed-up the evaluation of Johnson-Lindenstrauss transforms is to
exploit dense matrices with fast matrix-vector multiplication. This was first done by Ailon
and Chazelle [4] who introduced the Fast Johnson-Lindenstrauss Transform. Their original
construction was recently [16] shown to give an embedding time O(u log u + m(log 1/δ +
ε log2(1/δ)/ log(1/ε))).

This has generated a lot follow-up work that has tried to improve the run-
ning to a clean O(u log u). Some of the work sacrifice the optimal target dimen-
sion, m = O(ε−2 log 1/δ), in order to speed-up the construction, and are satis-
fied with sub-optimal m = O(ε−2 log n log4 u) [29], m = O(ε−2 log3 n) [15], m =
O(ε−1 log3/2 n log3/2 u + ε−2 log n log4 u) [29], m = O(ε−2 log2 n) [19, 37, 18], and m =
O(ε−2 log n log2(log n) log3 u) [22]. Another line of progress is to assume that the target
dimension, m, is substantially smaller then the starting dimension, u. Under the assump-
tion that m = o(u1/2) the work in [5, 7] achieves embedding time O(u log m). The only
construction that for some regimes improves on the original Fast Johnson-Lindenstrauss
Transform is the recent analysis [22] of the Kac Johnson-Lindenstrauss Transform, which
uses the Kac random walk [25]. They show that it can achieve an embedding time of
O(u log u + min

{
u log n, m log n log2(log n) log3 u

}
).

ICALP 2023

76:6 A Sparse Johnson-Lindenstrauss Transform Using Fast Hashing

Previous Work on Tabulation Hashing

The work by Patrascu and Thorup [33] initiated the study of tabulation based hashing
that goes further than what 3-wise independence of constructions would suggest. A long
line of papers have shown tabulation based hashing to work for min-wise hashing [32, 13],
hashing for k-statistics [11], and the number of non-empty-bins [2]. Furthermore, multiple
papers have been concerned with showing strong concentration results for tabulation based
hashing [33, 32, 1, 20]. Tabulation based hashing has also been studied experimentally where
they have been shown to exhibit great performance [12, 1].

Preliminaries
In this section, we will introduce the notation which will be used throughout the paper. First
we introduce p-norms.

▶ Definition 2 (p-norm). Let p ≥ 1 and X be a random variable with E[|X|p] < ∞. We then
define the p-norm of X by ∥X∥p = E[|X|p]1/p.

Throughout the paper, we will repeatedly work with value functions v : U × [m] → R.
We will allow ourself to sometime view them as vectors, and in particular, we will write

∥v∥2 =
√∑

x∈U

∑
j∈[m/s]

v(x, j)2,

∥v∥∞ = max
x∈U,j∈[m/s]

|v(x, j)| .

We will also use the Ψp-function introduced in [20].

▶ Definition 3. For p ≥ 2 we define the function Ψp : R+ × R+ → R+ as follows,

Ψp(M, σ2) =


(

σ2

pM2

)1/p

M if p < log pM2

σ2

1
2
√

pσ if p < e2 σ2

M2

p

e log pM2
σ2

M if max
{

log pM2

σ2 , e2 σ2

M2

}
≤ p

.

It was shown in [20] that Ψp(1, λ) is within a constant factor of the p-norm of a Poisson
distributed random variable with parameter λ. They also showed that Ψp(M, σ2) can be
used to upper bound expressions involving a fully random hash function h : U → [m]. Let
v : U × [m] → R be a value function then they showed that∥∥∥∥∥∑

x∈U

v(x, h(x))

∥∥∥∥∥
≤

CΨp(∥v∥∞ , ∥v∥2
2 /m) ,

where C is a universal constant.

3 Overview of the New Analysis

Our main technical contribution is a new analysis of the Sparse Johnson-Lindenstrauss
Transform that relaxes the assumptions on the hash function, h. We show that if h satisfies
a decoupling decomposition property and a strong concentration property then we obtain

J. B. T. Houen and M. Thorup 76:7

the same bounds for the Sparse Johnson-Lindenstrauss Transform. Both of these properties
are satisfied by h if h is Ω(log 1/δ)-wise independent so our assumptions are weaker than
those of the previous analyses.

In this section, we will give an informal overview of new approach. The technical details
and the formal statement of the result will be in Section 4.

In order to describe our approach, we look at the random variable

Z = ∥Aw∥2
2 − 1 = 1

s

∑
i∈[s]

∑
x ̸=y∈[u]

σ(i, x)σ(i, y) [h(i, x) = h(i, y)] wxwy. (2)

Here w ∈ Ru is a unit vector. With this notation the goal becomes to bound Pr[|Z| ≥ ε].
The first step in our analysis is that we want to decouple Equation (2). Decoupling

was also used in one of the proofs in [10], but since we want to prove the result for more
general hash functions, we cannot directly use the standard decoupling inequalities. We will
instead assume that our hash function allows a decoupling-decomposition. This will formally
be defined in Section 4 and we will for now assume that our hash function allows for the
standard decoupling inequality. If we apply Markov’s inequality and a standard decoupling
inequality for fully random hashing we obtain the expression.

Pr[|Z| ≥ ε] ≤ ε−p E[|Z|p]

≤
(

ε−1 4
s

)p

E

∣∣∣∣∣∣
∑
i∈[s]

∑
x,y∈[u]

σ(i, x)σ′(i, y) [h(i, x) = h′(i, y)] wxwy

∣∣∣∣∣∣
p (3)

where (h′, σ′) are independent copies of (h, σ) and p ≥ 2. The power of decoupling stems
from the fact that it breaks up some of the dependencies and allows for a simpler analysis.

The goal is now to analyse
∥∥∥∑i∈[s]

∑
x,y∈[u] σ(i, x)σ′(i, y) [h(i, x) = h′(i, y)] wxwy

∥∥∥
p
. This

is done by first fixing (h′, σ′) and bounding
∥∥∥∑i∈[s],j∈[m/s]

∑
x∈[u] σ(i, x) [h(i, x) = j] wxaij

∥∥∥
p

using the randomness of (h, σ) where aij =
∑

y∈[u] σ′(i, y) [h′(i, y) = j] wy. In order to do
this, we will assume that the pair (h, σ) is strongly concentrated. Again the formal definition
of this is postponed to Section 4, but informally, we say that the pair is strongly concentrated
if it has concentration results similar to those of fully random hashing.

We now take the view that |aij | is the load of the bin (i, j) ∈ [s] × [m/s]. The idea is
then to split [s] × [m/s] into heavy and light bins and handle each separately. We choose a
parameter k and let I be the heaviest k bins. Using the triangle inequality, we then get that∥∥∥∥∥∥

∑
i∈[s],j∈[m/s]

∑
x∈[u]

σ(i, x) [h(i, x) = j] wxaij

∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥
∑

(i,j)∈I

∑
x∈[u]

σ(i, x) [h(i, x) = j] wxaij

∥∥∥∥∥∥
p

+

∥∥∥∥∥∥
∑

(i,j)∈[s]×[m/s]\I

∑
x∈[u]

σ(i, x) [h(i, x) = j] wxaij

∥∥∥∥∥∥
p

.

We show that the contribution from the light bins is as if the collisions are independent.
This should be somewhat intuitive since if we only have few collisions in each bin then the
collisions behave as if they were independent. In contrast, we show that the contribution
from the heavy bins is dominated by the heaviest bin. This turns out to be exactly what we
need to finish the analysis.

ICALP 2023

76:8 A Sparse Johnson-Lindenstrauss Transform Using Fast Hashing

4 Technical Results

In this section, we will expand on the description from Section 3 and formalize the ideas.

Decoupling

Ideally, we would like to use the standard decoupling inequality, Equation (3). Unfortunately,
we cannot expect more general hash functions to support such a clean decoupling. We
therefore introduce the notion of a decoupling-decomposition.

▶ Definition 4 (Decoupling-decomposition). Let p ≥ 2, L ≥ 1, and 0 ≤ γ ≤ 1. We say that
a collection of possibly randomized sets, (Uα), is a (p, L, γ)-decoupling-decomposition for
a property P of a pair (h, σ), if there exist hash functions hα : [s] × Uα → [m/s] and sign
functions s : [s] × Uα → {−1, 1} for all α such that

Pr[|Z| ≥ ε]

≤

ε−1
∑

α

L

s

∥∥∥∥∥∥
∑
i∈[s]

∑
x,y∈Uα

σα(i, x)σ′
α(i, y) [hα(i, x) = h′

α(i, y)] wxwy

∥∥∥∥∥∥
p

p

+ γ (4)

where (hα, σα) and (h′
α, σ′

α) has the same distribution, and (hα, σα) satisfies the property P

when conditioned on (h′
α, σ′

α) and Uα.

The reader should compare Equation (3) for fully random hashing with Equation (4).
There are 3 main differences between the expressions.
1. The first thing to notice is that, in the decoupling-decomposition we sum over different

sets (Uα), where this is not needed for fully random hashing. We allow the decoupling-
decomposition to use a different decoupling on each of the sets Uα. This is very powerful
since general hash functions are not necessarily uniform over the input domain.

2. For the decoupling-decomposition, we allow an additive error probability γ. This is useful
if the hash function allows for decoupling most of the time except when some unprobable
event is happening.

3. The last difference is that a much larger loss-factor is allowed by the decoupling-
decomposition than Equation (3). In the case of fully random hashing, we only lose a
factor of 4 but for more general hash functions this loss might be bigger.

Finally, we note that Equation (3) implies if (h, σ) is 2p-wise independent for an integer
p ≥ 2 then [u] is a decoupling-decomposition of (h, σ) for any property P that is satisfied
by (h, σ).

Strong Concentration

The second property we need is that the hash function is strongly concentrated.

▶ Definition 5 (Strong concentration). Let h : [s] × U → [m/s] be a hash function and
σ : [s] × U → {−1, 1} be a sign function. We say that the pair (h, σ) is (p, L)-strongly-
concentrated if

J. B. T. Houen and M. Thorup 76:9

1. For all value functions, v : [s] × [m/s] → R, and all vectors, w ∈ RU ,∥∥∥∥∥∥
∑
i∈[s]

∑
x∈U

σ(i, x)v(i, h(i, x))wx

∥∥∥∥∥∥
p

≤ Ψp

(
L ∥v∥∞ ∥w∥∞ , L

s

m
∥v∥2

2 ∥w∥2
2

)
, (5)

∥∥∥∥∥∥
∑
i∈[s]

∑
x∈U

σ(i, x)v(i, h(i, x))wx

∥∥∥∥∥∥
p

≤
√

L
p

log(m/s) ∥v∥2
2 ∥w∥2

2 . (6)

2. For all vectors, w ∈ RU ,∥∥∥∥∥∥
∑
i∈[s]

∑
j∈[m/s]

(∑
x∈U

σ(i, x) [h(i, x) = j] wx

)2
∥∥∥∥∥∥

p/2

≤ L max
{

s ∥w∥2
2 ,

p

log m/s
∥w∥2

2

}
.

(7)

3. If p ≤ log m,∥∥∥∥∥ max
i∈[s],j∈[m/s]

∣∣∣∣∣∑
x∈U

σ(i, x) [h(i, x) = j] wx

∣∣∣∣∣
∥∥∥∥∥

p

≤ e

√
L

log m

log m/s
∥w∥2 . (8)

We need essentially 3 different properties of our hash function to say that it is strongly
concentrated.
1. The first property is a concentration result on the random variable∑

i∈[s]

∑
x∈U

σ(i, x)v(i, h(i, x))wx.

Here we need two different concentration results: The first concentration result, Equa-
tion (5), roughly corresponds to a p-norm version of what you would obtain by applying
Bennett’s inequality to a fully random hash function, while the second concentration
result, Equation (5), corresponds to the best hypercontractive result you can obtain for
weighted sums of independent Bernoulli-Rademacher variables with parameter s/m.2

2. The second property bounds the sum of squares

W =
∑
i∈[s]

∑
j∈[m/s]

(∑
x∈U

σ(i, x) [h(i, x) = j] wx

)2

.

The condition, Equation (7), bounds ∥W∥p/2 by the maximum of two cases. The first
case corresponds to E[W], and the second case is motivated by applying Equation (6) to

sup
z∈R[s]×[m/s],

∥z∥2=1

∥∥∥∥∥∥
∑
i∈[s]

∑
j∈[m]

∑
x∈U

σ(i, x)zi,h(i,x)wx

∥∥∥∥∥∥
2

p

.

While this at first glance might seem odd, it is roughly the best you can do, since one
can show that

max

E[W] , sup
z∈R[s]×[m/s],

∥z∥2=1

∥∥∥∥∥∥
∑
i∈[s]

∑
j∈[m]

∑
x∈U

σ(i, x)zi,h(i,x)wx

∥∥∥∥∥∥
2

p

 ≤ ∥W∥p/2 .

2 A Bernoulli-Rademacher variable with parameter α is random variable, X ∈ {−1, 0, 1}, with Pr[X = 1] =
Pr[X = −1] = α/2 and Pr[X = 0] = 1 − α.

ICALP 2023

76:10 A Sparse Johnson-Lindenstrauss Transform Using Fast Hashing

3. The final property is a bound on the largest coordinate,
maxi∈[s],j∈[m/s]

∣∣∑
x∈U σ(i, x) [h(i, x) = j] wx

∣∣. The bound is a natural consequence of
Equation (6) for fully random hashing. Namely, for fully random hashing we get that∥∥∥∥∥ max

i∈[s],j∈[m/s]

∣∣∣∣∣∑
x∈U

σ(i, x) [h(i, x) = j] wx

∣∣∣∣∣
∥∥∥∥∥

p

≤

∥∥∥∥∥ max
i∈[s],j∈[m/s]

∣∣∣∣∣∑
x∈U

σ(i, x) [h(i, x) = j] wx

∣∣∣∣∣
∥∥∥∥∥

log m

≤ e max
i∈[s],j∈[m/s]

∥∥∥∥∥
∣∣∣∣∣∑
x∈U

σ(i, x) [h(i, x) = j] wx

∣∣∣∣∣
∥∥∥∥∥

log m

≤ e

√
L

log m

log m/s
∥w∥2 .

This derivation is not true for general hash function, but the hash function can still satisfy
Equation (8).

The results of [20] show that if the hash function h : [s] × U → [m/s] and the sign
function σ : [s] × U → [m/s] is p-wise independent for an integer p ≥ 2 then the pair (h, σ) is
(p, K)-strongly-concentrated where K is a universal constant.

The Main Result

We are now ready to state our main result which is a new analysis of a Sparse Johnson-
Lindenstrauss Transform that only assumes that the hash function has a decoupling-
decomposition for the strong concentration property.

▶ Theorem 6. Let h : [s] × [u] → [m/s] be a hash function and σ : [s] × [u] → {−1, 1} be a
sign function. Furthermore, let 0 < ε < 1 and 0 < δ < 1 be given, and define p = log 1/δ.

Assume that there exists constants L1, L2, L3, and 0 ≤ γ < 1, that only depends on (h, σ)
and p, such that
1. There exists a (p, L1, γ)-decoupling-decomposition, (Uα), for the (p, L2)-strong-

concentration property of (h, σ)
2. For all vectors w ∈ Ru,

∑
α

∑
x∈Uα

w2
x ≤ L3 ∥w∥2

2.
3. m ≥

(
16e7L2

1L3
2L2

3
)

· ε−2 log(1/δ).
4. s ≥

(
64e3L1L

3/2
2 L3

)
· ε−1 log(1/δ).

Then the following is true

Pr[|Z| ≥ ε] ≤ δ + γ.

As discussed earlier, a fully random hash function satisfies all the property needed of the
theorem and thus gives a new analysis of the Sparse Johnson-Lindenstrauss Transform for
fully random hashing. We will also later show that Mixed Tabulation satisfies the assumption
of the theorem hence giving the first analysis of a Sparse Johnson-Lindenstrauss Transform
with a practical hash function that works.

The main difficulty in the analysis of Theorem 6 is contained in the following technical
lemma. The idea in the proof of Theorem 6 is to use the decoupling-decomposition and apply
the following lemma to each part.

J. B. T. Houen and M. Thorup 76:11

▶ Lemma 7. Let h, h : [s] × U → [m/s] be hash functions and σ, σ : [s] × U → {−1, 1} be
sign functions. Let p ≥ 2 and assume that there exists a constant L such that (h, σ) is (p, L)-
strongly concentrated when conditioning on (h, σ), and similarly, (h, σ) is (p, L)-strongly
concentrated when conditioning on (h, σ). Then for all vectors w ∈ RU ,

∥∥∥∥∥∥
∑
i∈[s]

∑
x,y∈U

σ(i, x)σ(i, y)
[
h(i, x) = h(i, y)

]
wxwy

∥∥∥∥∥∥
p

≤ Ψp

(
32e3L3/2 ∥w∥2

2 , 32e6L3 s2

m
∥w∥4

2

)
+ 36e3L

p

log m/s
∥w∥2

2 .

The lemma shows that the expression has two different regimes. The first regime,
Ψp

(
32e3L3/2 ∥w∥2

2 , 32e6L3 s2

m ∥w∥4
2

)
, is essentially what we would expect if each of the colli-

sions,
[
h(i, x) = h(i, y)

]
, are independent of each other. The other regime, 36e3L p

log m/s ∥w∥2
2,

is essentially what you expect the largest coordinate to contribute.
Our analysis is inspired by these two regimes and tries to exploit them explicitly. We

start by fixing (h, σ) and divide the coordinates into heavy and light coordinates. We
then show that contribution of the light coordinates is Ψp

(
32e3L3/2 ∥w∥2

2 , 32e6L3 s2

m ∥w∥4
2

)
which matches the intuition that if we only have few collisions on each coordinate then the
collisions behave as if they were independent. Similarly, we show that the contribution of
the heavy coordinates is dominated by the heaviest coordinate, namely, the contribution is
36e3L p

log m/s ∥w∥2
2.

Mixed Tabulation Hashing

Our main result for Mixed Tabulation hashing is the following.

▶ Theorem 8. Let h : [s] × [u] → [m/s] and σ : [s] × [u] → {−1, 1} be Mixed Tabulation
functions as described in Section 1.1. Furthermore, let 0 < ε < 1 and 0 < δ < 1 be given,
and define p = log 1/δ.

If m ≥ γ3c
p ε−2 log(1/δ) and s ≥ γ

3/2c
p ε−1 log(1/δ) where γp = Kc max

{
1, p

log|Σ|

}
for a

universal constant K.
Then the following is true

Pr[|Z| ≥ ε] ≤ δ + ε3c |Σ|−d
.

The result follows by proving that Mixed Tabulation hashing has a
(p, 4c+2, 4ε−23c s

m |Σ|−d)-decoupling-decomposition and that Mixed Tabulation has
the strong concentration property. The main new part is in showing the decoupling-
decomposition while the analysis of the strong concentration property is modification of the
analysis in [20].

Due to space constraints, the proof is deferred to the full version.

ICALP 2023

76:12 A Sparse Johnson-Lindenstrauss Transform Using Fast Hashing

5 Analysis of the Sparse Johnson-Lindenstrauss Transform

Lets us start by showing how Lemma 7 implies our main result, Theorem 6.

Proof of Theorem 6. We start by using Equation (4) of the decoupling decomposition to
get that

Pr[|Z| ≥ ε]

≤

ε−1
∑

α

L1

s

∥∥∥∥∥∥
∑
i∈[s]

∑
x,y∈Uα

σα(i, x)σ′
α(i, y) [hα(i, x) = h′

α(i, y)] vxvy

∥∥∥∥∥∥
p

p

+ γ

Now we fix α and apply Lemma 7 while fixing Uα∥∥∥∥∥∥
∑
i∈[s]

∑
x,y∈Uα

σα(i, x)σ′
α(i, y) [hα(i, x) = h′

α(i, y)] vxvy

∥∥∥∥∥∥
p

≤ Ψp

(
32e3L

3/2
2 , 32e6L3 s2

m

) ∑
x∈Uα

w2
x + 36e3L2

p

log m/s

∑
x∈Uα

w2
x

Using this we get that

∑
α

L1

s

∥∥∥∥∥∥
∑
i∈[s]

∑
x,y∈Uα

σα(i, x)σ′
α(i, y) [hα(i, x) = h′

α(i, y)] vxvy

∥∥∥∥∥∥
p

≤
∑

α

L1

s

(
Ψp

(
32e3L

3/2
2 , 32e6L3 s2

m

) ∑
x∈Uα

w2
x + 36e3L2

p

log m/s

∑
x∈Uα

w2
x

)

We now use that
∑

α

∑
x∈Uα

w2
x ≤ L3 ∥w∥2

2 to get that

∑
α

L1

s

(
Ψp

(
32e3L

3/2
2 , 32e6L3 s2

m

) ∑
x∈Uα

w2
x + 36e3L2

p

log m/s

∑
x∈Uα

w2
x

)

≤ L3L1

s

(
Ψp

(
32e3L

3/2
2 , 32e6L3 s2

m

)
+ 36e3L2

p

log m/s

)
∥w∥2

2

It can now be checked that if m and s satisfies the stated assumptions then

L3L1

s

(
Ψp

(
32e3L

3/2
2 , 32e6L3 s2

m

)
+ 36e3L2

p

log m/s

)
∥w∥2

2 ≤ e−1ε

Combining all the facts, we get that

Pr[|Z| ≥ ε] ≤
(
ε−1(e−1ε)

)p + γ = δ + γ.

This finishes the proof. ◀

The rest of the section is concerned with proving our main technical lemma, Lemma 7.
First we need the following two lemmas from [20].

J. B. T. Houen and M. Thorup 76:13

▶ Lemma 9. Let f : Rn
≥0 → R≥0 be a non-negative function which is monotonically increasing

in every argument, and assume that there exists positive reals (αi)i∈[n] and (ti)i∈[n] such that
for all λ ≥ 0,

f(λα0t0, . . . , λαn−1tn−1) ≤ λf(t0, . . . , tn−1) .

Let (Xi)i∈[n] be non-negative random variables. Then for all p ≥ 1 we have that

∥f(X0, . . . , Xn−1)∥p ≤ n1/p max
i∈[n]

(
∥Xi∥p/αi

ti

)1/αi

f(t0, . . . , tn−1) .

▶ Lemma 10. Let p ≥ 2, M > 0, and σ2 > 0 then

1
2

√
pσ ≤ Ψp(M, σ2) ≤ max

{
1
2

√
pσ,

1
2e

pM

}
.

We are now ready to prove Lemma 7.

Proof of Lemma 7. We start by defining vh, vh̄ : [s] × [m/s] → R by,

vh(i, j) =
∑
x∈U

σ(i, x)wx [h(i, x) = j] ,

vh̄(i, j) =
∑
y∈U

σ(i, y)wy

[
h(i, y) = j

]
.

We then want to prove that∥∥∥∥∥∥
∑

i∈[s],j∈[m/s]

vh(i, j)vh̄(i, j)

∥∥∥∥∥∥
p

≤ Ψp

(
32e3L3/2 ∥w∥2

2 , 32e6L3 ∥w∥4
2

)
+ 4e3L

p

log m/s
∥w∥2

2 .

First we consider the case where p
log m/s ∥w∥2

2 ≥ s ∥w∥2
2. By Cauchy-Schwartz and

Equation (7) we get that∥∥∥∥∥∥
∑

i∈[s],j∈[m/s]

vh(i, j)vh̄(i, j)

∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥
∑

i∈[s],j∈[m/s]

vh(i, j)2

∥∥∥∥∥∥
p

≤ L
p

log m/s
∥w∥2

2 .

We now focus on the case where p
log m/s ∥w∥2

2 < s ∥w∥2
2. We define π : [m] → [s] × [m/s]

to be a bijection which satisfies that

|vh(π(0))| ≥ |vh(π(1))| ≥ . . . ≥ |vh(π(m − 1))| .

We note that π is a random function but we can define π such that it only depends on the
randomness of h and σ. We define k = ⌊p/ log(m/p)⌋, I = {π(i) | i ∈ [k]}, and the random
functions v′

h, v′′
h : [s] × [m/s] → R by

v′
h(i, j) = vh(i, j) [(i, j) ∈ I] ,

v′′
h(i, j) = vh(i, j) [(i, j) ̸∈ I] .

ICALP 2023

76:14 A Sparse Johnson-Lindenstrauss Transform Using Fast Hashing

Again we note that v′
h and v′′

h only depends on the randomness of h and σ. We can then
write our expression as

∥∥∥∥∥∥
∑

i∈[s],j∈[m/s]

vh(i, j)vh̄(i, j)

∥∥∥∥∥∥
p

=

∥∥∥∥∥∥
∑
i∈[s]

∑
y∈U

σ(i, y)vh(i, h(i, y))wy

∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥
∑
i∈[s]

∑
y∈U

σ(i, y)v′
h(i, h(i, y))wy

∥∥∥∥∥∥
p

+

∥∥∥∥∥∥
∑
i∈[s]

∑
y∈U

σ(i, y)v′′
h(i, h(i, y))wy

∥∥∥∥∥∥
p

.

We will bound each of the term separately. We start by bounding∥∥∥∑i∈[s]
∑

y∈U σ(i, y)v′
h(i, h(i, y))wy

∥∥∥
p
. We fix h and σ and use Equation (6) to get

that

∥∥∥∥∥∥
∑
i∈[s]

∑
y∈U

σ(i, y)v′
h(i, h(i, y))wy

∥∥∥∥∥∥
p

≤
∥∥∥∥√L

p

log m/s
∥w∥2

2 ∥v′
h∥2

2

∥∥∥∥
p

=
√

L
p

log m/s
∥w∥2

∥∥∥∥∥∥
√ ∑

(i,j)∈I

v′
h(i, j)2

∥∥∥∥∥∥
p

.

We note that
∑

(i,j)∈I v′
h(i, j)2 = maxJ⊆[s]×[m/s],|J|=k

∑
(i,j)∈J vh(i, j)2. We then get that

∥∥∥∥∥∥
√ ∑

(i,j)∈I

v′
h(i, j)2

∥∥∥∥∥∥
p

=

∥∥∥∥∥∥
√

max
J⊆[s]×[m/s],|J|=k

∑
(i,j)∈J

vh(i, j)2

∥∥∥∥∥∥
p

≤

 ∑
J⊆[s]×[m/s],|J|=k

∥∥∥∥∥∥
√ ∑

(i,j)∈J

vh(i, j)2

∥∥∥∥∥∥
p

p


1/p

≤
(

ms

k

)1/p

max
J⊆[s]×[m/s],|J|=k

∥∥∥∥∥∥
√ ∑

(i,j)∈J

vh(i, j)2

∥∥∥∥∥∥
p

We use Sterling’s bound and get that
(

ms
k

)1/p ≤
(

ems
k

)k/p ≤
(

ems log(ms/p)
p

)1/ log(ms/p)
≤ e3.

So we get that

∥∥∥∥∥∥
√ ∑

(i,j)∈I

v′
h(i, j)2

∥∥∥∥∥∥
p

≤ e3 max
J⊆[s]×[m/s],|J|=k

∥∥∥∥∥∥
√ ∑

(i,j)∈J

vh(i, j)2

∥∥∥∥∥∥
p

A standard volumetric argument gives that there exists a 1/4-net, Z ⊆ RJ , with |Z| ≤ 9k,
such that

J. B. T. Houen and M. Thorup 76:15

∥∥∥∥∥∥
√ ∑

(i,j)∈J

vh(i, j)2

∥∥∥∥∥∥
p

=

∥∥∥∥∥∥ sup
z∈RJ ,∥z∥2=1

∑
(i,j)∈J

zi,jvh(i, j)

∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥sup
z∈Z

∑
(i,j)∈J

zi,jvh(i, j)

∥∥∥∥∥∥
p

+

∥∥∥∥∥∥ sup
z∈RJ ,∥z∥2=1

∑
(i,j)∈J

(zi,j − z′
i,j)vh(i, j)

∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥sup
z∈Z

∑
(i,j)∈J

zi,jvh(i, j)

∥∥∥∥∥∥
p

+ sup
z∈RJ ,∥z∥2=1

∥z − z′∥2

∥∥∥∥∥∥
√ ∑

(i,j)∈J

vh(i, j)2

∥∥∥∥∥∥
p

where z′ ∈ Z is the closest element to z, and as such ∥z − z′∥2 ≤ 1/4. Since there are at most
9k elements in Z then

∥∥∥supz∈Z

∑
(i,j)∈J zi,jvh(i, j)

∥∥∥
p

≤ 9 supz∈Z

∥∥∥∑(i,j)∈J zi,jvh(i, j)
∥∥∥

p
,

where we used that k ≤ p. Collecting the fact we get that∥∥∥∥∥∥
√ ∑

(i,j)∈J

vh(i, j)2

∥∥∥∥∥∥
p

≤ 36 sup
z∈Z

∥∥∥∥∥∥
∑

(i,j)∈J

zi,jvh(i, j)

∥∥∥∥∥∥
p

Using this we get that

e3 max
J⊆[s]×[m/s],|J|=k

∥∥∥∥∥∥
√ ∑

(i,j)∈J

vh(i, j)2

∥∥∥∥∥∥
p

≤ 36e3 max
J⊆[s]×[m/s],|J|=k

max
z∈Z

∥∥∥∥∥∥
∑

(i,j)∈J

zi,jvh(i, j)

∥∥∥∥∥∥
p

= 36e3 max
J⊆[s]×[m/s],|J|=k

max
z∈Rs×m/s,

∥z∥2=1

∥∥∥∥∥∥
∑
i∈[s]

∑
x∈U

σ(i, x)zi,h(i,x) [(i, h(i, x)) ∈ J] wx

∥∥∥∥∥∥
p

We can then use Equation (6) to get that

36e3 max
J⊆[s]×[m/s],|J|=k

max
z∈Rs×m/s,

∥z∥2=1

∥∥∥∥∥∥
∑
i∈[s]

∑
x∈U

σ(i, x)zi,h(i,x) [(i, h(i, x)) ∈ J] wx

∥∥∥∥∥∥
p

≤ 36e3 max
J⊆[s]×[m/s],|J|=k

max
z∈Rs×m/s,

∥z∥2=1

√
L

p

log m/s
∥w∥2 ∥z∥2

= 36e3
√

L
p

log m/s
∥w∥2

Combining the facts, we get that
∥∥∥∑i∈[s]

∑
y∈U σ(i, y)v′

h(i, h(i, y))wy

∥∥∥
p

≤ 36e3L p
log m/s ∥w∥2

2.

ICALP 2023

76:16 A Sparse Johnson-Lindenstrauss Transform Using Fast Hashing

We will now bound
∥∥∥∑i∈[s]

∑
y∈U σ(i, y)v′′

h(i, h(i, y))wy

∥∥∥
p
. We fix h and ε and use

Equation (5) to get that∥∥∥∥∥∥
∑
i∈[s]

∑
y∈U

σ(i, y)v′′
h(i, h(i, y))wy

∥∥∥∥∥∥
p

≤
∥∥∥Ψp

(
L ∥w∥∞ ∥v′

h∥∞ , L
s

m
∥w∥2

2 ∥v′
h∥2

2

)∥∥∥
p

≤
∥∥∥Ψp

(
L ∥w∥∞ |v′

h(π(k + 1))| , L
s

m
∥w∥2

2 ∥vh∥2
2

)∥∥∥
p

.

Now we use Lemma 9 to get that,∥∥∥Ψp

(
L ∥w∥∞ |v′

h(π(k + 1))| , L
s

m
∥w∥2

2 ∥vh∥2
2

)∥∥∥
p

≤
√

2Ψp

(
L ∥w∥∞ ∥|v′

h(π(k + 1))|∥p , L
s

m
∥w∥2

2

∥∥∥∥vh∥2
2

∥∥∥
p/2

)
.

Since we assume that p
log m ∥w∥2

2 < s ∥w∥2
2 then Equation (7) give us that

∥∥∥∥vh∥2
2

∥∥∥
p/2

≤

Ls ∥w∥2
2.

We will now bound ∥v′
h(π(k + 1))∥p. For this, we will distinguish between two cases:

Either p ≥ log m or p < log m. Let us first case where p ≥ log m. We will use that

|v′
h(π(k + 1))| ≤

∑
i∈[k+1]|v′

h(π(i))|
k+1 . We then get that

∥v′
h(π(k + 1))∥p

≤

∥∥∥∥∥
∑

i∈[k+1] |v′
h(π(i))|

k + 1

∥∥∥∥∥
p

≤

(m

k + 1

)
2k+1 max

J⊆[s]×[m/s],
|J|=k+1

max
(σi,j)(i,j)∈J ∈{−1,1}J


∥∥∥∑(i,j)∈J σi,jvh(i, j)

∥∥∥
p

k + 1


p

1/p

≤ max
J⊆[s]×[m/s],

|J|=k+1

max
(si,j)(i,j)∈J ∈{−1,1}J

2
(

m

k + 1

)1/p

∥∥∥∑(i,j)∈J σi,jvh(i, j)
∥∥∥

p

k + 1

We note that
∥∥∥∑(i,j)∈J σi,jvh(i, j)

∥∥∥
p

=
∥∥∥∑x∈U

∑
(i,j)∈J σ(i, x)si,j [h(i, x) = j] wx

∥∥∥
p
. Since

we have that p ≥ log m then k ≥ 1 which implies that k + 1 ≤ 2 p
log(m/p) . We then get that(

m
k+1
)1/p ≤

(
em

2p/ log(m/p)

)2/ log(m/p)
≤ 2e3. We now use Equation (6) to get that,

∥∥∥∥∥∥
∑
x∈U

∑
(i,j)∈J

σ(i, x)si,j [h(i, x) = j] wx

∥∥∥∥∥∥
p

=

∥∥∥∥∥∥
∑
i∈[s]

∑
x∈U

σ(i, x) [(i, h(i, x)) ∈ J] si,h(i,x)wx

∥∥∥∥∥∥
p

≤
√

L
p

log m/s

√
|J | ∥w∥2

=
√

L
p

log m/s

√
k + 1 ∥w∥2

J. B. T. Houen and M. Thorup 76:17

Combining this we get that ∥v′
h(π(k + 1))∥p ≤ 4e3

√
L p

log m/s

∥w∥2√
k+1 . We then obtain that,

∥∥∥∥∥∥
∑
i∈[s]

∑
y∈U

σ(i, y)v′′
h(i, h(i, y))wy

∥∥∥∥∥∥
p

≤
√

2Ψp

(
4e3L

√
L

p

(k + 1) log m/s
∥w∥∞ ∥w∥2 , L2 s2

m
∥w∥4

2

)

≤
√

2Ψp

(
4e3L

√
L

log m/p

log m/s
∥w∥2

2 , L2 s2

m
∥w∥4

2

)

If log m/p ≤ 4 log m/s then we get that,∥∥∥∥∥∥
∑
i∈[s]

∑
y∈U

σ(i, y)v′′
h(i, h(i, y))wy

∥∥∥∥∥∥
p

≤
√

2Ψp

(
16e3L3/2 ∥w∥2

2 , L2 s2

m
∥w∥4

2

)

≤ Ψp

(
32e3L3/2 ∥w∥2

2 , 2L2 s2

m
∥w∥4

2

)
If log m/p > 4 log m/s then m/p > (m/s)4 which implies that pm

s2 ≤ √
pm. Using this

we get that
p16e6L3 log m/p

log m/s
∥w∥4

2

L2 s2
m ∥w∥4

2
≤ 16e6L

√
pm log m/p ≤ 16e6L. Where we have used that

√
s log 1/x ≤ 1. Now we use Lemma 10 to get that∥∥∥∥∥∥
∑
i∈[s]

∑
y∈U

σ(i, y)v′′
h(i, h(i, y))wy

∥∥∥∥∥∥
p

≤
√

2Ψp

(
32e3L3/2 ∥w∥2

2 , L2 s2

m
∥w∥4

2

)

≤
√

2
√

pL316e6 s2

m
∥w∥4

2

≤ Ψp

(
8e3L3/2 ∥w∥2 , 32e6L3 s2

m
∥w∥4

2

)
Now let us consider the case where p < log m. By Equation (8), we get that

∥v′
h(π(k + 1))∥p ≤

∥∥∥∥∥ max
i∈[s],j∈[m/s]

∣∣∣∣∣∑
x∈U

σ(i, x) [h(i, x) = j] wx

∣∣∣∣∣
∥∥∥∥∥

p

≤ e

√
L

log m

log m/s
∥w∥2

We then obtain that,∥∥∥∥∥∥
∑
i∈[s]

∑
y∈U

σ(i, y)v′′
h(i, h(i, y))wy

∥∥∥∥∥∥
p

≤
√

2Ψp

(
eL

√
L

log m

log m/s
∥w∥∞ ∥w∥2 , L

s2

m
∥w∥4

2

)

≤
√

2Ψp

(
eL

√
L

log m

log m/s
∥w∥2

2 , L
s2

m
∥w∥4

2

)

If s ≤ m3/4 then we get that log m ≤ 4 log m/s and

√
2Ψp

(
eL

√
L

log m

log m/s
∥w∥2

2 , L
s2

m
∥w∥4

2

)
≤

√
2Ψp

(
4eL3/2 ∥w∥2

2 , L
s2

m
∥w∥4

2

)

ICALP 2023

76:18 A Sparse Johnson-Lindenstrauss Transform Using Fast Hashing

as wanted. If s ≥ m3/4 then we get that peL3 log m
L2s2/m ≤ eLm log2 m

s2 ≤ eL log2 m
m1/2 ≤ 16/eL, where

we have used that
√

x log2 1/x ≤ 16/e2. Again we use Lemma 10 to get that

√
2Ψp

(
4eL3/2 ∥w∥2

2 , L
s2

m
∥w∥4

2

)
≤
√

p32/eL3 s2

m
∥w∥2

2

≤ Ψp

(
8L3/2 ∥w∥2

2 , 32L3 s2

m
∥w∥4

2

)
.

Combining everything we get that∥∥∥∥∥∥
∑
i∈[s]

∑
y∈U

σ(i, y)v′′
h(i, h(i, y))wy

∥∥∥∥∥∥
p

≤ Ψp

(
32e3L3/2 ∥w∥2 , 32e6L3 s2

m
∥w∥4

2

)
,

∥∥∥∥∥∥
∑
i∈[s]

∑
y∈U

σ(i, y)v′
h(i, h(i, y))wy

∥∥∥∥∥∥
p

≤ 4e3L
p

log m/s
∥w∥2

2 .

Now we conclude that∥∥∥∥∥∥
∑

i∈[s],j∈[m/s]

vh(i, j)vh̄(i, j)

∥∥∥∥∥∥
p

≤

∥∥∥∥∥∥
∑
i∈[s]

∑
y∈U

σ(i, y)v′
h(i, h(i, y))wy

∥∥∥∥∥∥
p

+

∥∥∥∥∥∥
∑
i∈[s]

∑
y∈U

σ(i, y)v′′
h(i, h(i, y))wy

∥∥∥∥∥∥
p

≤ Ψp

(
32e3L3/2 ∥w∥2

2 , 32e6L3 ∥w∥4
2

)
+ 4e3L

p

log m/s
∥w∥2

2 .

Thus finishing the proof. ◀

References
1 Anders Aamand, Jakob Bæk Tejs Knudsen, Mathias Bæk Tejs Knudsen, Peter Michael Reich-

stein Rasmussen, and Mikkel Thorup. Fast hashing with strong concentration bounds. In
Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC
2020, pages 1265–1278, New York, NY, USA, 2020. Association for Computing Machinery.
doi:10.1145/3357713.3384259.

2 Anders Aamand and Mikkel Thorup. Non-empty bins with simple tabulation hashing. In
Timothy M. Chan, editor, Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2019, San Diego, California, USA, January 6-9, 2019, pages
2498–2512. SIAM, 2019. doi:10.1137/1.9781611975482.153.

3 Dimitris Achlioptas. Database-friendly random projections: Johnson-lindenstrauss with binary
coins. Journal of Computer and System Sciences, 66(4):671–687, 2003. Special Issue on PODS
2001. doi:10.1016/S0022-0000(03)00025-4.

4 Nir Ailon and Bernard Chazelle. The fast johnson–lindenstrauss transform and approxim-
ate nearest neighbors. SIAM Journal on Computing, 39(1):302–322, 2009. doi:10.1137/
060673096.

5 Nir Ailon and Edo Liberty. Fast dimension reduction using rademacher series on dual
BCH codes. In Shang-Hua Teng, editor, Proceedings of the Nineteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2008, San Francisco, California, USA, January
20-22, 2008, pages 1–9. SIAM, 2008. URL: http://dl.acm.org/citation.cfm?id=1347082.
1347083.

https://doi.org/10.1145/3357713.3384259
https://doi.org/10.1137/1.9781611975482.153
https://doi.org/10.1016/S0022-0000(03)00025-4
https://doi.org/10.1137/060673096
https://doi.org/10.1137/060673096
http://dl.acm.org/citation.cfm?id=1347082.1347083
http://dl.acm.org/citation.cfm?id=1347082.1347083

J. B. T. Houen and M. Thorup 76:19

6 Noga Alon and Bo’az Klartag. Optimal compression of approximate inner products and
dimension reduction. In 2017 IEEE 58th Annual Symposium on Foundations of Computer
Science (FOCS), pages 639–650, October 2017. doi:10.1109/FOCS.2017.65.

7 Stefan Bamberger and Felix Krahmer. Optimal fast johnson-lindenstrauss embeddings for
large data sets. Sampling Theory, Signal Processing, and Data Analysis, 19, June 2021.
doi:10.1007/s43670-021-00003-5.

8 Vladimir Braverman, Rafail Ostrovsky, and Yuval Rabani. Rademacher chaos, random
eulerian graphs and the sparse johnson-lindenstrauss transform. CoRR, abs/1011.2590, 2010.
arXiv:1011.2590.

9 Moses Charikar, Kevin Chen, and Martin Farach-Colton. Finding frequent items in data
streams. Theoretical Computer Science, 312(1):3–15, 2004. Automata, Languages and Pro-
gramming. doi:10.1016/S0304-3975(03)00400-6.

10 Michael B. Cohen, T. S. Jayram, and Jelani Nelson. Simple analyses of the sparse johnson-
lindenstrauss transform. In Raimund Seidel, editor, 1st Symposium on Simplicity in Algorithms,
SOSA 2018, January 7-10, 2018, New Orleans, LA, USA, volume 61 of OASIcs, pages 15:1–
15:9. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/OASIcs.SOSA.
2018.15.

11 S. Dahlgaard, M. B. T. Knudsen, E. Rotenberg, and M. Thorup. Hashing for statistics over
k-partitions. In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science,
pages 1292–1310, 2015. doi:10.1109/FOCS.2015.83.

12 Søren Dahlgaard, Mathias Bæk Tejs Knudsen, and Mikkel Thorup. Practical hash functions
for similarity estimation and dimensionality reduction. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, NIPS’17, pages 6618–6628, USA, 2017.
Curran Associates Inc. URL: http://dl.acm.org/citation.cfm?id=3295222.3295407.

13 Søren Dahlgaard and Mikkel Thorup. Approximately minwise independence with twisted
tabulation. In R. Ravi and Inge Li Gørtz, editors, Algorithm Theory – SWAT 2014, pages
134–145, Cham, 2014. Springer International Publishing.

14 Anirban Dasgupta, Ravi Kumar, and Tamás Sarlos. A sparse johnson: Lindenstrauss transform.
In Proceedings of the Forty-Second ACM Symposium on Theory of Computing, STOC ’10,
pages 341–350, New York, NY, USA, 2010. Association for Computing Machinery. doi:
10.1145/1806689.1806737.

15 Thong T. Do, Lu Gan, Yi Chen, Nam Nguyen, and Trac D. Tran. Fast and efficient
dimensionality reduction using structurally random matrices. In 2009 IEEE International
Conference on Acoustics, Speech and Signal Processing, pages 1821–1824, 2009. doi:10.1109/
ICASSP.2009.4959960.

16 Ora Nova Fandina, Mikael Møller Høgsgaard, and Kasper Green Larsen. Barriers for faster
dimensionality reduction, 2022. doi:10.48550/arXiv.2207.03304.

17 Casper Freksen, Lior Kamma, and Kasper Green Larsen. Fully understanding the hashing
trick. In Proceedings of the 32nd International Conference on Neural Information Processing
Systems, NIPS’18, pages 5394–5404, Red Hook, NY, USA, 2018. Curran Associates Inc.

18 Casper Benjamin Freksen and Kasper Green Larsen. On using toeplitz and circulant matrices
for johnson-lindenstrauss transforms. Algorithmica, 82(2):338–354, 2020. doi:10.1007/
s00453-019-00644-y.

19 Aicke Hinrichs and Jan Vybíral. Johnson-lindenstrauss lemma for circulant matrices. Random
Structures & Algorithms, 39(3):391–398, 2011. doi:10.1002/rsa.20360.

20 Jakob Bæk Tejs Houen and Mikkel Thorup. Understanding the moments of tabulation
hashing via chaoses. In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff, editors,
49th International Colloquium on Automata, Languages, and Programming, ICALP 2022,
July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 74:1–74:19. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ICALP.2022.74.

ICALP 2023

https://doi.org/10.1109/FOCS.2017.65
https://doi.org/10.1007/s43670-021-00003-5
https://arxiv.org/abs/1011.2590
https://doi.org/10.1016/S0304-3975(03)00400-6
https://doi.org/10.4230/OASIcs.SOSA.2018.15
https://doi.org/10.4230/OASIcs.SOSA.2018.15
https://doi.org/10.1109/FOCS.2015.83
http://dl.acm.org/citation.cfm?id=3295222.3295407
https://doi.org/10.1145/1806689.1806737
https://doi.org/10.1145/1806689.1806737
https://doi.org/10.1109/ICASSP.2009.4959960
https://doi.org/10.1109/ICASSP.2009.4959960
https://doi.org/10.48550/arXiv.2207.03304
https://doi.org/10.1007/s00453-019-00644-y
https://doi.org/10.1007/s00453-019-00644-y
https://doi.org/10.1002/rsa.20360
https://doi.org/10.4230/LIPIcs.ICALP.2022.74

76:20 A Sparse Johnson-Lindenstrauss Transform Using Fast Hashing

21 Meena Jagadeesan. Understanding sparse jl for feature hashing. In Proceedings of the 33rd
International Conference on Neural Information Processing Systems, NeurIPS’19, Red Hook,
NY, USA, 2019. Curran Associates Inc.

22 Vishesh Jain, Natesh S. Pillai, Ashwin Sah, Mehtaab Sawhney, and Aaron Smith. Fast and
memory-optimal dimension reduction using Kac’s walk. The Annals of Applied Probability,
32(5):4038–4064, 2022. doi:10.1214/22-AAP1784.

23 T. S. Jayram and David P. Woodruff. Optimal bounds for johnson-lindenstrauss transforms
and streaming problems with subconstant error. ACM Trans. Algorithms, 9(3), June 2013.
doi:10.1145/2483699.2483706.

24 William Johnson and Joram Lindenstrauss. Extensions of lipschitz maps into a hilbert space.
Contemporary Mathematics, 26:189–206, January 1984. doi:10.1090/conm/026/737400.

25 Mark Kac. Foundations of kinetic theory. In Proceedings of The third Berkeley symposium on
mathematical statistics and probability, volume 3, pages 171–197, 1956.

26 Daniel Kane, Raghu Meka, and Jelani Nelson. Almost optimal explicit johnson-lindenstrauss
families. In Leslie Ann Goldberg, Klaus Jansen, R. Ravi, and José D. P. Rolim, editors,
Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques,
pages 628–639, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

27 Daniel M. Kane and Jelani Nelson. A derandomized sparse johnson-lindenstrauss transform,
2010. doi:10.48550/arXiv.1006.3585.

28 Daniel M. Kane and Jelani Nelson. Sparser johnson-lindenstrauss transforms. J. ACM, 61(1),
January 2014. doi:10.1145/2559902.

29 Felix Krahmer and Rachel Ward. New and improved johnson–lindenstrauss embeddings via
the restricted isometry property. SIAM Journal on Mathematical Analysis, 43(3):1269–1281,
2011. doi:10.1137/100810447.

30 Kasper Green Larsen and Jelani Nelson. Optimality of the johnson-lindenstrauss lemma. In
2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS), pages
633–638, 2017. doi:10.1109/FOCS.2017.64.

31 Jelani Nelson and Huy L. NguyÅn. Sparsity lower bounds for dimensionality reducing
maps. In Proceedings of the Forty-Fifth Annual ACM Symposium on Theory of Computing,
STOC ’13, pages 101–110, New York, NY, USA, 2013. Association for Computing Machinery.
doi:10.1145/2488608.2488622.

32 Mihai Patrascu and Mikkel Thorup. Twisted tabulation hashing. In Sanjeev Khanna, editor,
Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages 209–228. SIAM, 2013.
doi:10.1137/1.9781611973105.16.

33 Mihai Pǎtraşcu and Mikkel Thorup. The power of simple tabulation hashing. J. ACM, 59(3),
June 2012. doi:10.1145/2220357.2220361.

34 Alan Siegel. On universal classes of extremely random constant-time hash functions. SIAM
Journal on Computing, 33(3):505–543, 2004. Announced at FOCS’89.

35 Mikkel Thorup. Simple tabulation, fast expanders, double tabulation, and high independence.
In 54th Annual Symposium on Foundations of Computer Science (FOCS), pages 90–99, 2013.

36 Mikkel Thorup and Yin Zhang. Tabulation-based 5-independent hashing with applications to
linear probing and second moment estimation. SIAM Journal on Computing, 41(2):293–331,
2012. doi:10.1137/100800774.

37 Jan Vybíral. A variant of the johnson–lindenstrauss lemma for circulant matrices. Journal of
Functional Analysis, 260(4):1096–1105, 2011. doi:10.1016/j.jfa.2010.11.014.

38 Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and Josh Attenberg. Fea-
ture hashing for large scale multitask learning. In Proceedings of the 26th Annual International
Conference on Machine Learning, ICML ’09, pages 1113–1120, New York, NY, USA, 2009.
Association for Computing Machinery. doi:10.1145/1553374.1553516.

39 Albert Lindsey Zobrist. A new hashing method with application for game playing. Technical
Report 88, Computer Sciences Department, University of Wisconsin, Madison, Wisconsin,
1970.

https://doi.org/10.1214/22-AAP1784
https://doi.org/10.1145/2483699.2483706
https://doi.org/10.1090/conm/026/737400
https://doi.org/10.48550/arXiv.1006.3585
https://doi.org/10.1145/2559902
https://doi.org/10.1137/100810447
https://doi.org/10.1109/FOCS.2017.64
https://doi.org/10.1145/2488608.2488622
https://doi.org/10.1137/1.9781611973105.16
https://doi.org/10.1145/2220357.2220361
https://doi.org/10.1137/100800774
https://doi.org/10.1016/j.jfa.2010.11.014
https://doi.org/10.1145/1553374.1553516

Approximating Max-Cut on Bounded Degree
Graphs: Tighter Analysis of the FKL Algorithm
Jun-Ting Hsieh # Ñ

Carnegie Mellon University, Pittsburgh, PA, USA

Pravesh K. Kothari # Ñ

Carnegie Mellon University, Pittsburgh, PA, USA

Abstract
In this note, we describe a αGW + Ω̃(1/d2)-factor approximation algorithm for Max-Cut on weighted
graphs of degree ⩽ d. Here, αGW ≈ 0.878 is the worst-case approximation ratio of the Goemans-
Williamson rounding for Max-Cut. This improves on previous results for unweighted graphs by Feige,
Karpinski, and Langberg [1] and Florén [3]. Our guarantee is obtained by a tighter analysis of the
solution obtained by applying a natural local improvement procedure to the Goemans-Williamson
rounding of the basic SDP strengthened with triangle inequalities.

2012 ACM Subject Classification Theory of computation → Approximation algorithms analysis

Keywords and phrases Max-Cut, approximation algorithm, semidefinite programming

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.77

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2206.09204

Funding Jun-Ting Hsieh: Supported by NSF CAREER Award #2047933.
Pravesh K. Kothari: Supported by NSF CAREER Award #2047933, Alfred P. Sloan Fellowship and
a Google Research Scholar Award.

Acknowledgements We thank Prasad Raghavendra for his Simons Institute talk1 on approximation
algorithms for bounded degree constraint satisfaction problems and various related discussions that
directly motivated this work. We thank Simons Institute Berkeley for hosting us in the Fall 2021
research program on Computational Complexity of Statistical Inference.

1 Introduction

In 1994, Goemans and Williamson [4] described a polynomial time algorithm based on round-
ing the natural semidefinite relaxation for the Max-Cut problem to obtain an approximation
ratio of αGW ≈ 0.878. Assuming the Unique Games Conjecture [5], this rounding algorithm
is in fact worst-case optimal [6].

When the underlying graph has bounded degree, the complexity landscape of Max-Cut
is much less clear. In particular, the Goemans-Williamson (GW) rounding algorithm can
be improved by an elementary local-search based post-processing step applied to the cut
obtained by GW rounding of the SDP relaxation strengthened by adding triangle inequalities.
The first such result was shown by Feige, Karpinski, and Langberg [1] (FKL) to obtain
an approximation ratio of αGW + ϵ(d) for ϵ(d) = Ω(1/d4) for unweighted degree d graphs.
Florén [3] later improved the FKL analysis to obtain ϵ(d) = Ω(1/d3) in the same setting.

In this note, we refine the local search scheme of FKL and give a tighter analysis to show
that ϵ(d) = Ω̃(1/d2). Moreover, we extend the result to weighted instances of Max-2LIN,
which generalizes Max-Cut.

▶ Theorem 1. There is a polynomial time algorithm that takes input a (weighted) Max-2LIN
instance φ on a graph with n vertices and degree ⩽ d and outputs an assignment that satisfies
a number of constraints that is within an αGW + Ω

(
1

d2 log d

)
of the optimum.

1 https://simons.berkeley.edu/talks/title-tba-5

EA
T
C
S

© Jun-Ting Hsieh and Pravesh K. Kothari;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 77; pp. 77:1–77:7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:juntingh@cs.cmu.edu
https://jthsieh.github.io/
mailto:praveshk@cs.cmu.edu
http://praveshkkothari.org/
https://doi.org/10.4230/LIPIcs.ICALP.2023.77
https://arxiv.org/abs/2206.09204
https://simons.berkeley.edu/talks/title-tba-5
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

77:2 Approximating Max-Cut on Bounded Degree Graphs

As in FKL, the high-level plan is to show that when the “edgewise” analysis of the
Goemans-Williamson rounded solution is “tight” (otherwise, we already obtain an improve-
ment on the worst-case GW guarantee), the rounded solution is locally suboptimal. That
is, there is a cd-fraction of vertices, for some constant cd depending only on d, such that
switching them to the other side should cut more of the edges to their neighbors and thus
increase the cut by at least one edge. But flipping a vertex may kill the increase from others.
So we may not be able to “win” from every one of the candidates. The analysis then involves
managing this dependency and lower bounding cd. Specifically, FKL and Florén accomplish
this by analyzing the chance that more than half of a vertex’s neighbors lie on the same side
of the partition generated by GW rounding. In such a plan, they have to handle vertices of
odd and even degrees slightly differently and generalizations to weighted graphs seem to lose
additional factors in the approximation ratio.

Instead of trying to gain only a single edge from a vertex flip, our analysis directly focuses
on lower bounding the quantitative gain in the weighted cut by such an operation. This
strategy also allows us to easily generalize our results to Max-2LIN and to arbitrary weighted
graphs.

There is still a wide gap between approximation algorithms and hardness for Max-Cut
in the bounded degree setting. In particular, for every ϵ > 0, the best known hardness
result by Trevisan [7] rules out polynomial time algorithms with an approximation ratio
> αGW +5/

√
d+ϵ for graphs of large enough constant degree d. Improving the approximation

ratio to get closer to this bound (this will likely need a scheme different from FKL’s) or
obtaining a better inapproximability results are outstanding open questions.

2 The Algorithm and Analysis

▶ Algorithm 2 (Max-2LIN on bounded degree graphs).
Given: A graph G = (V, E) on n vertices, m edges and maximum degree d, signs

bij ∈ {±1}, and non-negative weights wij > 0 for each {i, j} ∈ E.
Operation:

1. Find unit vectorsa v1, . . . , vn ∈ Rn that maximize 1
m

∑
{i,j}∈E wij

1
2 (1+bij⟨vi, vj⟩),

and, satisfy ∥aivi − ajvj∥2 + ∥ajvj − akvk∥2 ⩾ ∥aivi − akvk∥2 for every triple
{i, j, k} and (ai, aj , ak) ∈ {±1}3.

2. Sample g ∼ N (0, In)b , and set xi = sgn(⟨g, vi⟩) ∈ {±1}.
3. Set ε = 1

Cd
√

log d
for some large enough constant C > 0. Define S := {i ∈ V :

⟨g, vi⟩ ∈ (−ε, ε)} to be the candidate set of suboptimal vertices. For each i ∈ S,
partition its neighbors N(i) into 3 disjoint sets:

(a) Ai = N(i) ∩ S = {j ∈ N(i) : ⟨g, vj⟩ ∈ (−ε, ε)},
(b) Bi = {j ∈ N(i) : bijxi⟨g, vj⟩ ⩽ −ε},
(c) Ci = {j ∈ N(i) : bijxi⟨g, vj⟩ ⩾ ε}.

4. Output x′ obtained by flipping xi for every i ∈ S such that
∑

j∈Bi
wij >∑

j∈Ai∪Ci
wij .

a Approximately solving an SDP in poly(n) time produces such vectors with value at most 2− poly(n)

smaller.
b As in standard implementations of the GW rounding scheme, truncating Gaussian samples to

rationals of poly(n)-bits suffices to recover the stated guarantees up to a loss of an additive
2− poly(n) in the approximation ratio. We will omit a detailed discussion of issues of numerical
precision in this note.

J.-T. Hsieh and P. K. Kothari 77:3

Analysis. We will appeal to the following three elementary facts.

▶ Fact 3 (Gaussian Measure in the Core). For any ε > 0,

ε√
2π

e−ε2/2 ⩽ Pr
g∼N (0,1)

[g ∈ (0, ε)] ⩽ ε√
2π

.

▶ Fact 4 (Sheppard’s Lemma [2]). Let g1, g2 be standard Gaussian variables with covariance
σ = E[g1g2] ∈ [−1, 1]. Then, Pr[g1 ⩾ 0 ∧ g2 ⩾ 0] = 1

2 − 1
2π arccos(σ).

▶ Fact 5 (Corollary of Schur Product Theorem). Let A ∈ Rn×n be positive semidefinite. For
any t ∈ N, the matrix B ∈ Rn×n with entries Bij = At

ij is positive semidefinite.

Our analysis crucially relies on the following basic fact about the arcsin function.

▶ Lemma 6 (Basic Facts about Taylor Approximation for arcsin). Let the Taylor expansion of
the arcsin function be arcsin(x) =

∑∞
k=0 ckx2k+1 for |x| ⩽ 1 where ck = (2k)!

22k(k!)2(2k+1) . For
any τ ∈ N, τ > τ0 where τ0 is a universal constant,
(1) for x > 0, arcsin(x) ⩾

∑τ
k=0 ckx2k+1,

(2) for |x| ⩽ 1/2, arcsin(x) ⩾
∑τ

k=0 ckx2k+1 − O(τ−1/2 · 2−2τ),
(3) for x = 1, arcsin(1) = π

2 =
∑τ

k=0 ck + Θ(τ−1/2).

Proof. We first show that ck = Θ(k−3/2) by Stirling’s approximation:

ck = (1 + O(1/k)) ·
√

4πk(2k/e)2k

22k · 2πk(k/e)2k · (2k + 1) = 1
2
√

π
k−3/2(1 + O(1/k)) .

Therefore, for any τ > τ0 where τ0 is a universal constant,
∞∑

k=τ

ck = Θ(1)
∞∑

k=τ

k−3/2 = Θ(1)
∫ ∞

τ

x−3/2 dx = Θ(τ−1/2) .

Now we prove the lemma. (1) is straightforward because ck > 0 for all k. (2) holds since∣∣∣∣∣
∞∑

k=τ+1
ckx2k+1

∣∣∣∣∣ ⩽
∞∑

k=τ+1
ck|x|2k+1 ⩽ 2−2τ

∞∑
k=τ+1

ck ⩽ O(τ−1/2 · 2−2τ) .

Finally, (3) follows directly from
∑∞

k=τ+1 ck = Θ(τ−1/2). ◀

Lemma 6 states that for some large threshold τ , the Taylor approximation error for
|x| ⩽ 1/2 is a factor 2−2τ smaller than the error for x = 1. This gap allows us to prove the
key lemma below:

▶ Lemma 7. Let d ∈ N, d ⩾ 2. Let A ∈ Rd×d be a positive semidefinite matrix such that
Aii = 1 and Aij ⩾ −1/2 for all i, j ∈ [d]. Let w ∈ Rd

⩾0 be a vector with non-negative entries.
Then,

d∑
i,j=1

wiwj arcsin(Aij) ⩾ Ω
(

∥w∥2
1

d
√

log d

)
.

Proof. Pick a threshold τ = C log2 d for a large enough constant C. Since we have the
assumption that Aij ⩾ −1/2 and wi ⩾ 0 for all i, j, we can bound the off-diagonal entries
using (1) and (2) of Lemma 6,

ICALP 2023

77:4 Approximating Max-Cut on Bounded Degree Graphs

d∑
i̸=j

wiwj arcsin(Aij) ⩾
d∑

i̸=j

wiwj

(
τ∑

k=0
ckA2k+1

ij − O(τ−1/22−2τ)
)

=
τ∑

k=0
ck

d∑
i̸=j

wiwjA2k+1
ij − Õ

(
∥w∥2

1
d2C

)
.

The diagonal entries are arcsin(1) =
∑τ

k=0 ck + Θ(τ−1/2) by (3) of Lemma 6. Thus, we get

d∑
i,j=1

wiwj arcsin(Aij) ⩾
τ∑

k=0
ck

d∑
i,j=1

wiwjA2k+1
ij +

d∑
i=1

w2
i · Ω(τ−1/2) − Õ

(
∥w∥2

1
d2C

)

=
τ∑

k=0
ck

d∑
i,j=1

wiwjA2k+1
ij + Ω

(
∥w∥2

2√
log d

)
− Õ

(
∥w∥2

1
d2C

)
.

Since A ⪰ 0, by Fact 5 we know that
∑d

ij=1 wiwjA2k+1
ij ⩾ 0 for all k ⩾ 0. Finally, any

w ∈ Rd satisfies ∥w∥2
2 ⩾ 1

d ∥w∥2
1. This completes the proof. ◀

2.1 Proof of Theorem 1
Let ρ∗ = arg minρ∈[−1,1]

1+ 2
π arcsin(ρ)

1+ρ ≈ 0.689 such that 1+ 2
π arcsin(ρ∗)

1+ρ∗
= αGW. Following [1],

we can assume without loss of generality that for all (i, j) ∈ E with sign bij , the SDP solution
satisfies bij⟨vi, vj⟩ ∈ [ρ∗ − 0.01, ρ∗ + 0.01].

Observe that after Item 2 of Algorithm 2, for every i in the candidate set S, by definition
all edges between i and Bi are violated, while all edges between i and Ci are satisfied.
Moreover, it is crucial that Bi and Ci are disjoint from S, so their assignments will not be
flipped in Item 4. For edges between i and Ai, in the worst case all of them are violated after
flipping. Thus, if

∑
j∈Bi

wij >
∑

j∈Ai∪Ci
wij , then flipping xi will increase the Max-2LIN

value.
We will prove that the expected gains from such local updates are large. For a vertex

i ∈ S, let Wi :=
∑

j∈N(i) wij be the total weight of edges incident to i. Define the local gain
from i to be

∆i :=

∑
j∈Bi

wij −
∑

j∈Ai∪Ci

wij


+

=

2
∑
j∈Bi

wij − Wi


+

,

where we denote (z)+ = max(0, z). The following is the key lemma of our analysis showing
that conditioned on i ∈ S, the expected local gain from vertex i is at least Ω̃(Wi

d).

▶ Lemma 8 (Expected local gain). Let d ∈ N, d ⩾ 2 and ε = 1
Cd

√
log d

for a large enough
constant C. For a vertex i ∈ V with degree d, the expected local gain E[∆i|i ∈ S] ⩾

Ω
(

Wi

d
√

log d

)
.

Proof. Consider vertex i ∈ S and its d neighbors, denoted [d]. We first introduce some
notations for the analysis.

We can assume that vi = (1, 0, . . . , 0) without loss of generality due to rotational symmetry.
For every neighbor j ∈ [d], let vj = (ρj , v′

j) where the first coordinate is ρj ∈ bij ·[ρ∗ ±0.01]
and v′

j ∈ Rn−1 since we assume that bij⟨vi, vj⟩ ≈ ρ∗ for all (i, j) ∈ E.

J.-T. Hsieh and P. K. Kothari 77:5

Denote the unit vector v̂j = v′
j/∥v′

j∥2.
Let g = (g1, . . . , gn) ∼ N (0, In) be the sampled Gaussian vector, and let g′ = (g2, . . . , gn).
Let hj := bijxi⟨v̂j , g′⟩. The random vector h = (h1, . . . , hd) is a multivariate Gaussian
variable with covariance matrix Σ ∈ Rd×d where Σjj = 1 and Σjk = bijbik⟨v̂j , v̂k⟩.

Since ∥vj∥2 = 1, we have ∥v′
j∥2 =

√
1 − ρ2

j ∈ [0.726 ± 0.01], and ⟨vj , g⟩ = ρjg1 +√
1 − ρ2

j ⟨v̂j , g′⟩. Recall that S = {i ∈ V : ⟨g, vi⟩ ∈ (−ε, ε)}. Thus, i ∈ S means that
⟨vi, g⟩ = g1 ∈ (−ε, ε). Next, we define the following random variable

Z :=
d∑

j=1
wij · 1 (hj ⩽ −3ε) .

Conditioned on the event that |g1| < ε,

hj ⩽ −3ε =⇒ bijxi⟨vj , g⟩ ⩽ |ρjg1| +
√

1 − ρ2
j · hj ⩽ −ε .

Therefore, we have Z ⩽
∑

j∈Bi
wij (recall that Bi = {j ∈ N(i) : bijxi⟨vj , g⟩ ⩽ −ε}). Then,

∆i =

2
∑
j∈Bi

wij − Wi


+

⩾ (2Z − Wi)+ .

Thus, it suffices to lower bound E[(2Z − Wi)+].
First, every hj is a standard Gaussian, so let p := Pr[hj ⩽ −3ε] = 1

2 − cε for some
c ⩽ 3√

2π
by Fact 3. Then, E[Z] = pWi. Next, we lower bound E[(Z − Wi/2)2].

E
[
(Z − Wi/2)2] = E

 d∑
j=1

wij

(
1(hj ⩽ −3ε) − 1

2

)2

= 1
4

d∑
j=1

w2
ij +

d∑
j ̸=k

wijwik

(
Pr [hj ⩽ −3ε ∧ hk ⩽ −3ε] − p + 1

4

)

⩾
1
4

d∑
j=1

w2
ij +

d∑
j ̸=k

wijwik

(
1
2 − 1

2π
arccos(Σjk) − 2cε −

(
1
4 − cε

))

⩾
1

2π

d∑
j,k=1

wijwik arcsin(Σjk) − cεW 2
i . (1)

The third line follows from Pr[hj ⩽ −3ε ∧ hk ⩽ −3ε] ⩾ Pr [hj ⩽ 0 ∧ hk ⩽ 0] − 2 · Pr[−3ε ⩽
hj ⩽ 0] and applying Fact 4. The final inequality is because π

2 − arccos(θ) = arcsin(θ) and
arcsin(Σjj) = arcsin(1) = π

2 .
By the triangle inequality of the SDP solution, for any j ̸= k, ∥vi−bijvj∥2+∥vi−bikvk∥2 ⩾

∥bijvj − bikvk∥2. Expanding this, we get

bijbik

(
ρjρk +

√
1 − ρ2

j

√
1 − ρ2

k⟨v̂j , v̂k⟩
)

⩾ bijρj + bikρk − 1 .

Since bijρj ∈ [ρ∗ ± 0.01] for all j ∈ [d], we have

Σjk = bijbik⟨v̂j , v̂k⟩ ⩾ −0.2 .

ICALP 2023

77:6 Approximating Max-Cut on Bounded Degree Graphs

This is crucial since we can now apply Lemma 7 to Equation (1) and get

E
[
(Z − Wi/2)2] ⩾ Ω

(
W 2

i

d
√

log d

)
− O(εW 2

i) .

Finally, we lower bound E[(2Z − Wi)+]. Let Z = Z − Wi/2, and let Z+ = max(0, Z) and
Z− = max(0, −Z). Thus, Z = Z+ − Z− and Z

2 = Z
2
+ + Z

2
− by definition, and both Z+ and

Z− lie in [0, Wi/2]. Furthermore, E[Z] = E[Z+] − E[Z−] = pWi − Wi/2 = −cεWi. Then,

E
[
Z

2] = E
[
Z

2
+ + Z

2
−

]
⩽

Wi

2 · E
[
Z+ + Z−

]
= Wi · E[Z+] + c

2εW 2
i .

Setting ε ⩽ 1
Cd

√
log d

for a large enough C, we have E[Z+] ⩾ Ω
(

Wi

d
√

log d

)
. This completes

the proof. ◀

We can now prove Theorem 1.

Proof of Theorem 1. We first assume that for all (i, j) ∈ E with sign bij , the SDP solution
satisfies bij⟨vi, vj⟩ ∈ [ρ∗ − 0.01, ρ∗ + 0.01] where ρ∗ ≈ 0.689. Recall that in Algorithm 2, for
every i ∈ S, all edges between i and Bi are violated, and all edges between i and Ci are
satisfied. Further, since Bi and Ci are disjoint from S, the vertices in Bi and Ci will not be
flipped. For edges between i and Ai, in the worst case all of them are violated after flipping.
Thus, we have a local gain of at least ∆i = (

∑
j∈Bi

wij −
∑

j∈Ai∪Ci
wij)+.

The expected total gain from the local updates (over the random sample of g) is

E[∆] = E
∑
i∈S

∆i =
∑
i∈V

E [1(i ∈ S)∆i] =
∑
i∈V

Pr[i ∈ S] ·E[∆i|i ∈ S] ⩾ Ω(ε)
∑
i∈V

E[∆i|i ∈ S] ,

where Pr[i ∈ S] = Ω(ε) is due to Fact 3. Then, setting ε = 1
Cd

√
log d

for a large enough

constant C, by Lemma 8 and the fact that the total weight W = 1
2
∑

i∈V Wi, we have

E[∆] ⩾ Ω(ε) ·
∑
i∈V

Ω
(

Wi

d
√

log d

)
= W · Ω

(
1

d2 log d

)
.

Therefore, if the Max-2LIN instance φ has optimum OPT ⩽ W , then in expectation we can
find an assignment that satisfies

φ(x) ⩾ αGW · OPT + W · Ω
(

1
d2 log d

)
⩾

(
αGW + Ω

(
1

d2 log d

))
· OPT .

From here on, we follow the same argument as [1]. Let δ = Ω(1
d2 log d) be the improvement

above. If more than δ/2 fraction of the (weighted) edges satisfy bij⟨vi, vj⟩ /∈ [ρ∗ ± 0.01],
then hyperplane rounding already gives us αGW + Ω(δ) approximation ratio. If at most δ/2
fraction of the edges have bij⟨vi, vj⟩ /∈ [ρ∗ ± 0.01], then we can simply ignore those edges and
get an approximation of (1 − δ/2)(αGW + δ) ⩾ αGW + Ω(δ). This completes the proof. ◀

References
1 Uriel Feige, Marek Karpinski, and Michael Langberg. Improved approximation of max-cut on

graphs of bounded degree. Journal of Algorithms, 43(2):201–219, 2002.
2 Noah Fleming, Pravesh Kothari, and Toniann Pitassi. Semialgebraic Proofs and Efficient

Algorithm Design. Foundations and Trends in Theoretical Computer Science, 14(1-2):1–221,
2019.

J.-T. Hsieh and P. K. Kothari 77:7

3 Mikael Florén. Approximation of max-cut on graphs of bounded degree, 2016.
4 Michel X Goemans and David P Williamson. Improved approximation algorithms for maximum

cut and satisfiability problems using semidefinite programming. Journal of the ACM (JACM),
42(6):1115–1145, 1995.

5 Subhash Khot. On the power of unique 2-prover 1-round games. In Proceedings of the
thiry-fourth annual ACM symposium on Theory of computing, pages 767–775, 2002.

6 Subhash Khot, Guy Kindler, Elchanan Mossel, and Ryan O’Donnell. Optimal inapproximability
results for max-cut and other 2-variable csps? SIAM Journal on Computing, 37(1):319–357,
2007.

7 Luca Trevisan. Non-approximability results for optimization problems on bounded degree
instances. In Proceedings of the thirty-third annual ACM symposium on Theory of computing,
pages 453–461, 2001.

ICALP 2023

Ellipsoid Fitting up to a Constant
Jun-Ting Hsieh # Ñ

Carnegie Mellon University, Pittsburgh, PA, USA

Pravesh K. Kothari # Ñ

Carnegie Mellon University, Pittsburgh, PA, USA

Aaron Potechin # Ñ

University of Chicago, IL, USA

Jeff Xu # Ñ

Carnegie Mellon University, Pittsburgh, PA, USA

Abstract
In [11, 13], Saunderson, Parrilo, and Willsky asked the following elegant geometric question: what is
the largest m = m(d) such that there is an ellipsoid in Rd that passes through v1, v2, . . . , vm with
high probability when the vis are chosen independently from the standard Gaussian distribution
N(0, Id)? The existence of such an ellipsoid is equivalent to the existence of a positive semidefinite
matrix X such that v⊤

i Xvi = 1 for every 1 ⩽ i ⩽ m – a natural example of a random semidefinite
program. SPW conjectured that m = (1 − o(1))d2/4 with high probability. Very recently, Potechin,
Turner, Venkat and Wein [10] and Kane and Diakonikolas [8] proved that m ≳ d2/ logO(1)(d) via a
certain natural, explicit construction.

In this work, we give a substantially tighter analysis of their construction to prove that m ≳ d2/C

for an absolute constant C > 0. This resolves one direction of the SPW conjecture up to a constant.
Our analysis proceeds via the method of Graphical Matrix Decomposition that has recently been
used to analyze correlated random matrices arising in various areas [3, 2]. Our key new technical
tool is a refined method to prove singular value upper bounds on certain correlated random matrices
that are tight up to absolute dimension-independent constants. In contrast, all previous methods
that analyze such matrices lose logarithmic factors in the dimension.

2012 ACM Subject Classification Theory of computation → Semidefinite programming

Keywords and phrases Semidefinite programming, random matrices, average-case complexity

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.78

Category Track A: Algorithms, Complexity and Games

Funding Jun-Ting Hsieh: Supported by NSF CAREER Award #2047933.
Pravesh K. Kothari: Supported by NSF CAREER Award #2047933, Alfred P. Sloan Fellowship and
a Google Research Scholar Award.
Aaron Potechin: Supported in part by NSF grant CCF-2008920.
Jeff Xu: Supported in part by NSF CAREER Award #2047933, and a Cylab Presidential Fellowship.

1 Introduction

Given vectors v1, . . . , vm ∈ Rd, we say that these vectors satisfy the ellipsoid fitting property
if there exists an origin-centered ellipsoid that passes through all these points, i.e., if there
exists a matrix Λ such that
1. vT

i Λvi = 1 for all i ∈ [m],
2. Λ ⪰ 0.
In this work, we study vectors sampled i.i.d. from the standard Gaussian distribution. It is
known that when m ⩽ d + 1, the vectors satisfy the ellipsoid fitting property with probability
1 [12]. On the other hand, when m >

(
d+1

2
)
, by a simple dimension argument, the vectors

EA
T
C
S

© Jun-Ting Hsieh, Pravesh K. Kothari, Aaron Potechin, and Jeff Xu;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 78; pp. 78:1–78:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:juntingh@cs.cmu.edu
https://jthsieh.github.io/
mailto:praveshk@cs.cmu.edu
http://praveshkkothari.org/
mailto:aaronpotechin@gmail.com
http://www.potechin.org/aaronpotechin/
mailto:jeffxusichao@cmu.edu
https://www.andrew.cmu.edu/user/sichaoxu/
https://doi.org/10.4230/LIPIcs.ICALP.2023.78
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

78:2 Ellipsoid Fitting up to a Constant

don’t satisfy the ellipsoid fitting property with probability 1. This prompts the question:
what is the largest m = m(d) such that v1, . . . , vm ∼ N (0, Id) satisfy the ellipsoid fitting
property with probability at least 1 − od(1) (taking d → ∞)?

In a series of work, Saunderson et. al. [11, 12, 13] studied this problem in the context
of diagonal and low-rank matrix decomposition. Motivated by numerical experiments, they
conjectured that the ellipsoid fitting property for Gaussian random vis exhibits a phase
transition at m ∼ d2

4 (see also the experiments presented in [10]).

▶ Conjecture 1 (SCPW conjecture). Let ε > 0 be a constant and v1, . . . , vm ∼ N (0, Id) be
i.i.d. standard Gaussian vectors in Rd. Then,
1. If m ⩽ (1 − ε) d2

4 , then v1, . . . , vm have the ellipsoid fitting property with probability
1 − od(1).

2. If m ⩾ (1 + ε) d2

4 , then v1, . . . , vm have the ellipsoid fitting property with probability od(1).

Prior works have focused on establishing the positive result – that is, part (1) of the
above conjecture. Early works [11, 13] established that the ellipsoid fitting property holds for
m ⩽ O(d6/5−ε) independent Gaussian vector whp. In the context of proving Sum-of-Squares
lower bounds for the Sherringtin-Kirkpatrick model, the work [4] obtains a result that, as
an immediate corollary, improves the above bound to O(d3/2−ε). In fact, their work gives
an implicit bound of m ⩽ O(d2/ polylog(d)) for ellipsoid fitting when restricted to degree-2
Sum-of-Squares.

Very recently, two independent works of Potechin et. al. [10] and Kane and Diakonikolas [8]
proposed new constructions of Λ (that differ from the constructions obtained by the method
of pseudo-calibration in [4]) and recovered the bound of m ⩽ O(d2/ polylog(d)). In their
works [10, 8], the authors ask the question of analyzing their construction (or a different one)
to obtain an improved and almost optimal estimate of m = d2/C for some absolute constant
C > 0. The main result of this paper accomplishes this goal. Specifically, we prove:

▶ Theorem 2 (Main result). There is a universal constant c > 0 such that if m ⩽ cd2, then
v1, . . . , vm ∼ N (0, Id) have the ellipsoid fitting property with probability 1 − od(1).

We establish Theorem 2 by analyzing the construction of Kane and Diakonikolas [8]
(which is a variant of the construction proposed in [10]). Our key idea is to depart from the
analysis conducted by [8] and instead rely on the graphical matrix decomposition method.
This method decomposes a random matrix with correlated entries into a sum of structured
random matrices called graph matrices. Graph matrices can be thought of as an analog of
the Fourier basis in the analysis of functions over product spaces. This method was first
employed in the works establishing tight sum-of-squares lower bound on the planted clique
problem [5, 1, 3, 7] and has since then been employed in several follow-up works on proving
sum-of-squares lower bounds and more recently in analyzing well-conditionedness of linear
algebraic algorithms for generalizations of tensor decomposition [2]).

The key technical work in the analysis then becomes understanding the smallest and
largest singular values of graph matrices. All prior works rely on arguments that establish
bounds on the largest singular values that are accurate up to polylogarithmic factors in the
underlying dimension of the matrices. The work of [2] recently showed how to use such
bounds to also obtain estimates of the smallest singular values of graph matrices (which,
otherwise are significantly more challenging to prove). Nevertheless, the slack in such bounds
does not allow us to obtain any improvement on the previous estimates [8] in our application.

J.-T. Hsieh, P. K. Kothari, A. Potechin, and J. Xu 78:3

Our main technical contribution is a new technique to establish bounds on the largest
singular values of graph matrices that are tight up to dimension-independent absolute
constants. This allows us to obtain substantially improved estimates for the SCPW conjecture.
Given the host of previous applications of such bounds, we expect that our results will have
many more applications down the line.

Table 1 Comparison of our result with prior work.

Construction Bound on m

Conjectured d2/4
[11, 13] O(d6/5−ε)
[4] O(d3/2−ε) ∗

[10] O(d2/ polylog(d))
[8] O(d2/ log4(d))
this paper O(d2)

∗The bound O(d2/ polylog(d)) is implicit in their work.

1.1 Technical overview
Following the convention of [8], for the rest of the paper we will assume that v1, . . . , vm ∼
N (0, 1

d Id) such that each vector has expected norm 1. Note that this does not change the
problem as we can simply scale Λ.

Our construction of Λ is the “identity perturbation construction”, which is the same
one analyzed in [8] and was proposed in [10]. As an intuition, observe that Λ = Id almost
works: vT

i Idvi = ∥vi∥2
2 ≈ 1. Thus, the idea is to define Λ as a perturbation of Id: Λ =

Id −
∑m

i=1 wiviv
T
i , where w = (w1, . . . , wm) ∈ Rm. To determine w, observe that the

constraints vT
i Λvi = 1 give m linear constraints on w, and this can be written as a linear

system represented by a matrix M ∈ Rm×m with entries M [i, j] = ⟨vi, vj⟩2. Thus, given
that M is full rank, w is uniquely determined by w = M−1η for some vector η (see Eq. (2)).
This construction satisfies vT

i Λvi = 1 automatically, so the next thing is to prove that Λ ⪰ 0.
Therefore, we have two high-level goals:
1. Prove that M is full rank and analyze M−1.
2. Prove that R :=

∑n
i=1 wiviv

T
i has spectral norm bounded by 1.

Proving the second statement immediately implies that Λ is a valid construction.
To achieve the first goal, we decompose M into several components. Roughly, we write

M = A+B where A is a perturbed identity matrix A = Im −T and B is a rank-2 matrix (see
Section 2.2). We first show that ∥T∥op ⩽ O(

√
m
d) < 0.5 with m ⩽ O(d2) (Lemma 9), hence

A is well-conditioned. Then, using the fact that B has rank 2, we can apply the Woodbury
matrix identity (Fact 7 and Fact 8) – a statement on the inverse of low-rank corrections
of matrices – to conclude that M is invertible and obtain an expression for M−1. This is
carried out in Section 2.3.

Next, for the second goal, we need to further expand A−1. Since ∥T∥op < 1, we can apply
the Neumann series and write A−1 = (Im − T)−1 =

∑∞
k=0 T k. For the analysis, we select

certain thresholds to truncate this series such that the truncation error is small. Then, we
write M−1 in terms of the truncated series plus a small error, which will be useful later for
the analysis of R. This is carried out in the full version.

Finally, given the expression of M−1, R naturally decomposes into 4 matrices. Then, all
we need to do is to bound the spectral norm of each of these matrices (see the full version).
Bounding ∥R∥op ⩽ 1 implies that Λ ⪰ 0, completing the proof.

ICALP 2023

78:4 Ellipsoid Fitting up to a Constant

Requiring tight norm bounds. Our main technical lemmas are the spectral norm bounds
of T (Lemma 9) and the matrices in the decomposition of R. Clearly, we need our norm
bound ∥T∥op ⩽ O(

√
m
d) to be tight without polylog factors so that m ⩽ O(d2) suffices, and

similarly for matrices from R.
The standard starting point is the trace moment method: for any symmetric matrix

M ∈ Rn×n and q ∈ N (usually taking q = polylog(n) suffices),

∥M∥2q
op ⩽ tr(M2q) =

∑
i1,i2,...,i2q∈[n]

M [i1, i2]M [i2, i3] · · · M [i2q, i1] .

We view the summand as a closed walk i1 → i2 → · · · → i2q → i1 on n vertices. For a
random matrix, we study the expected trace E tr(M2q). In the simple case when M is a
Gaussian matrix (GOE), we see that after taking the expectation, the non-vanishing terms
are closed walks where each edge (u, v) is traversed even number of times. This is in fact
true for any symmetric M with independent random entries as long as the odd moments of
the entries are zero. Thus, a precise upper bound on E tr(M2q) can be obtained by carefully
counting such closed walks (see [14]).

Our matrices are more complicated; each entry is a mean-zero polynomial of Gaussian
random variables. To carry out the trace method, we represent the matrices as graphs, hence
the term graph matrices. The framework of graph matrices was first introduced by [3], and
over the years, off-the-shelf norm bounds (e.g. [1]) for graph matrices have been developed
and successfully used in several works [9, 4, 6, 7, 2]. However, the currently known norm
bounds are only tight up to polylog factors, hence not sufficient for us. Therefore, the bulk
of our paper is to prove norm bounds for these matrices that are tight up to constant factors.
In fact, some of our bounds on graph matrices are even tight in the constant factor. However,
we do not pursue the exact constants for two reasons. First, obtaining bounds which are
tight in the constant factor would require additional technical work. Second, numerical
experiments from [10] show that the identity perturbation construction we analyze has a
threshold of d2

CIP
where CIP ≈ 10, so it falls short of the d2

4 threshold and we would need a
different construction to reach this threshold.

Key idea towards tight norm bounds. Here, we briefly discuss the high-level ideas for
proving tight norm bounds. To illustrate our techniques, in Section 3 we will give a full proof
for a matrix that arises in our analysis as an example, and also discuss key ideas that allow
us to analyze more complicated matrices.

The key to counting walks is to specify an encoding, which we view as information
required for a walker to complete a walk. If we can show that such an encoding uniquely
identifies a walk, then we can bound the walks by bounding the number of possible encodings.
Thus, it suffices to come up with an (efficient) encoding scheme and prove that the walker
is able to complete a walk. Using standard encoding schemes, we quickly realize that the
walker may be confused during the walk, i.e., the walker does not have enough information
to perform the next step. Thus, we need to pay for additional information in the encoding
to resolve confusions. So far, this is the same high-level strategy that was used in prior
work [14, 1, 7], and this extra pay is often the source of extra log factors in the norm bounds.

Our key innovation is to pay for the extra information during steps that require much
less information than normal. Roughly speaking, we label each step of the walk as either
(1) visiting a new vertex, (2) visiting an old vertex via a new edge, (3) using an old edge
but not the last time, (4) using an old edge the last time (see Definition 20). The high level
idea is that the dominating walks in the trace are the ones that use only the 1st and 4th

J.-T. Hsieh, P. K. Kothari, A. Potechin, and J. Xu 78:5

types, while the 2nd and 3rd types require less information (which we call gaps). The main
observation is that the walker will be confused only when there are steps of the 2nd and
3rd type involved, but we can pay extra information during these steps to resolve potential
(future) confusions. This is illustrated in Section 3.5.

1.2 Comparison to prior work
Comparison to Kane and Diakonikolas [8]. Our candidate matrix Λ is the same as theirs.
A slight difference is that they write Λ = Id +

∑m
i=1 δiviv

T
i where v1, . . . , vm are the vectors

normalized to the unit sphere. Then, same as our w vector, (δ1, . . . , δm) must satisfy a linear
system represented by a matrix M ∈ Rm×m where M [i, j] = ⟨vi, vj⟩2. This is closely related
to our M matrix, and to prove that M is invertible, they also decompose M into several
components and bound their spectral norms. However, they were only able to bound the
spectral norm by O(

√
m log2 d

d), which requires m ⩽ O(d2/ log4(d)). We also point out that
they explicitly emphasize the gap from spectral norm bound poses a significant hurdle in
their analysis, which is indeed a major contribution of our work.

Next, to bound the spectral norm of R :=
∑m

i=1 δiviv
T
i , they use an elegant cover (or

ε-net) argument which is significantly different than ours. They show that for any fixed
unit vector u ∈ Sd−1, |uT Ru| = |

∑m
i=1 δi⟨vi, u⟩2| ⩽ 1/2 with exponentially small failure

probability. This allows then to take a union bound over all 2O(d) unit vectors in an ε-net.
To do this, they use the elegant trick that vi and ∥vi∥2 are independent random variables,
so uT Ru can be written as a sum of independent variables: uT Ru = ⟨ε, γ⟩, where εi only
depends on ∥vi∥2 and γ is a function of u and the vi’s. By Hoeffding’s inequality, they get a
tail probability of exp

(
− Ω

(
d3

m log2(d)

))
. In order to union bound over 2O(d) vectors, this

also requires that m ⩽ O(d2/ log2(d)). Thus, while the main source of their polylog gap is
their matrix norm bound, another source is the epsilon-net argument. This is partially why
we adopt the proof strategy of using graph matrix decompositions which is seemingly more
complicated.

Comparison to Potechin, Turner, Venkat and Wein [10]. They study a construction of
“least-square minimization” proposed by [11], which is equivalent to projecting out the identity
mass onto the subspace of matrices satisfying the constraints. In particular, their matrix
analysis proceeding via Woodbury expansion and Neumann series using graph matrices serves
as a road-map for our current work, and gives rise to a motivating question in the beginning
for our work: can a more careful analysis get us all the way to a constant factor gap, or is
the polylog gap inherent in the analysis? A priori, it is not clear whether this kind of matrix
analysis, forsaking the underlying geometric insight, might get us anywhere beyond a single
polylog factor, as it is conceivable that some polylog factor is inherent for matrices that may
arise in the analysis. In this work, we answer this question affirmatively and en-route we
develop a more refined understanding of the structured random matrices that we believe
would be useful in further and more fine-grained investigations of problems in average-case
complexity.

Comparison to Ghosh et. al. [4]. In the context of the Planted Affine Plane problem, and its
downstream application for the Sherrington-Kirkpatrick Hamiltonian, Ghosh et. al. reaches
the threshold of Õ(d3/2−ε) for nO(ε)-degree Sum-of-Squares. They adopt the framework of
pseudo-calibration [3] to obtain a candidate matrix, and follow a similar recipe as ours via
graph matrix decompositions and spectral analysis. Even though their stated result falls

ICALP 2023

78:6 Ellipsoid Fitting up to a Constant

short of the Õ(d2) threshold for fitting ellipsoid, it is folklore among the SoS lower bounds
community that their proof implicitly extends to Õ(d2) when restricted to degree-2 SoS.
That said, it is an interesting question whether solutions coming from a pseudo-calibration
type of construction might give us some extra mileage in ultimately closing the constant gap.
A natural idea is to analyze the planted distribution pioneered in [9, 4]: unfortunately, it
can be easily verified that the low-degree polynomial hardness for the particular planted
distribution actually falls apart even if we assume an arbitrary constant gap. Since the
low-degree hardness is usually deemed as a precursor for SoS lower bounds, an analysis based
on pseudo-calibration that gets us the right constant (or in fact, any constant) lands one on
a pursuit for a ”quieter” planting.

2 Proof of main result

Given v1, v2, . . . , vm that are i.i.d. samples from N (0, 1
d Id), recall that we must construct a

matrix Λ such that (1) vT
i Λvi = 1 for any i ∈ [m], and (2) Λ ⪰ 0.

In this section, we describe our candidate matrix (Definition 3). To prove that it satisfies
the two conditions above, we need to analyze certain random matrices (and their inverses) that
arise in the construction, which involves decomposing the matrices into simpler components.
We will state our key spectral norm bounds (Lemma 9 and Lemma 13) whose proofs are
deferred to later sections, and complete the proof of Theorem 2 in Section 2.4.

2.1 Candidate construction
The following is our candidate matrix Λ, which is the same as the one used in [8].

▶ Definition 3 (Candidate matrix). Given v1, . . . , vm ∼ N (0, 1
d Id), we define the matrix

Λ ∈ Rd×d to be

Λ := Id −
m∑

i=1
wiviv

T
i (1)

where we take w = (w1, w2, . . . , wm) to be the solution to the linear system Mw = η for
η ∈ Rm given by

ηi := ∥vi∥2
2 − 1, ∀i ∈ [m] , (2)

and M ∈ Rm×m with entries given by

M [i, j] := ⟨vi, vj⟩2, ∀i, j ∈ [m] . (3)

We first make the following simple observation.

▶ Observation 4. For any i ∈ [m], the constraint vT
i Λvi = 1 is satisfied.

Proof. For any i ∈ [m],

vT
i Λvi = vT

i Idvi −
∑

j∈[m]

wj⟨vi, vj⟩2 = ∥vi∥2
2 − ⟨M [i], w⟩ = ∥vi∥2

2 − ηi = 1 .

Here M [i] is the i-th row of M , and the equality above follows from Mw = η and ηi = ∥vi∥2
2−1

from Eq. (2). ◀

J.-T. Hsieh, P. K. Kothari, A. Potechin, and J. Xu 78:7

Structure of subsequent sections. For Λ to be well-defined, we require that M is full rank
(hence invertible). Note that it is easy to see that M is positive semidefinite, since M is a
Gram matrix with M [i, j] = ⟨v⊗2

i , v⊗2
j ⟩. To analyze M , we will show a decomposition of M

in Section 2.2 that allows us to more easily analyze its inverse. In Section 2.3, we will prove
that M is in fact positive definite (Lemma 12).

Next, to prove that Λ ⪰ 0, we will write Λ = Id − R where

R :=
m∑

i=1
wiviv

T
i =

m∑
i=1

(
M−1η

)
[i] · viv

T
i , (4)

and prove that ∥R∥op is bounded by 1. Finally, combining the analyses, we finish the proof
of Theorem 2 in Section 2.4.

2.2 Decomposition of M

The proof of Theorem 2 requires careful analysis of the matrix M from Eq. (3) and its inverse.
To this end, we first decompose M as M = A + B such that intuitively, A is perturbation of
a (scaled) identity matrix and B has rank 2. We will later see how this decomposition allows
us to analyze M−1 more conveniently.

▶ Proposition 5 (Decomposition of M).

M = Mα + Mβ + MD +
(

1 + 1
d

)
Im︸ ︷︷ ︸

:=A

+ 1
d

Jm + 1
d

(
1m · ηT + η · 1T

m

)
︸ ︷︷ ︸

:=B

(5)

where Jm is the all-ones matrix, Mα, Mβ are matrices with zeros on the diagonal and MD is
a diagonal matrix, defined as follows:

Mα[i, j] :=
∑

a ̸=b∈[d] vi[a] · vi[b] · vj [a] · vj [b] for i ̸= j ∈ [m],
Mβ [i, j] :=

∑
a∈[d]

(
vi[a]2 − 1

d

) (
vj [a]2 − 1

d

)
for i ̸= j ∈ [m],

MD[i, i] := ∥vi∥4
2 − 2

d ∥vi∥2
2 − 1 for i ∈ [m].

Proof. For any off-diagonal entry i ̸= j ∈ [m], on the right-hand side we have

M [i, j] = ⟨vi, vj⟩2 =

∑
a∈[d]

vi[a]vj [a]

2

=
∑

a ̸=b∈[d]

vi[a] · vi[b] · vj [a] · vj [b] +
∑

a∈[d]

vi[a]2 · vj [a]2 .

The first term is exactly Mα[i, j]. For the second term,

∑
a∈[d]

vi[a]2 · vj [a]2 =
∑

a∈[d]

(
vi[a]2 − 1

d

)(
vj [a]2 − 1

d

)
+ 1

d

(
∥vi∥2

2 + ∥vj∥2
2
)

− 1
d

=
∑

a∈[d]

(
vi[a]2 − 1

d

)(
vj [a]2 − 1

d

)
︸ ︷︷ ︸

Mβ [i,j]

+ ∥vi∥2
2 − 1
d︸ ︷︷ ︸

1
d ηi

+ ∥vj∥2
2 − 1
d︸ ︷︷ ︸

1
d ηj

+1
d

.

Thus, M [i, j] = Mα[i, j] + Mβ [i, j] + 1
d + 1

d

(
1m · ηT + η · 1T

m

)
[i, j].

ICALP 2023

78:8 Ellipsoid Fitting up to a Constant

For the diagonal entries, the right-hand side of the (i, i) entry is

MD[i, i] +
(

1 + 1
d

)
+ 1

d
+ 2

d
ηi =

(
∥vi∥4

2 − 2
d

∥vi∥2
2 − 1

)
+ 1 + 2

d
+ 2

d
(∥vi∥2

2 − 1)

= ∥vi∥4
2 = M [i, i] .

This completes the proof. ◀

▶ Remark 6. The intention behind this decomposition is that for vi ∼ N (0, 1
d Id), Mα,

Mβ , MD are all mean 0 (though their variances are not the same) since E∥vi∥2
2 = 1 and

E∥vi∥4
2 = 1 + 2

d . Therefore, we expect ∥Mα + Mβ + MD∥op to be small, which implies that
A is positive definite and well-conditioned. Furthermore, observe that B has rank 2:

B = 1
d

Jm + 1
d

(
1m · ηT + η · 1T

m

)
= 1

d

[
1m η

]
·
[
1 1
1 0

]
·
[
1m

η

]
. (6)

2.3 Inverse of M

The decomposition of M into A and a rank-2 matrix B (Eq. (5)) allows us to apply the
Woodbury matrix identity about the inverse of low-rank corrections of invertible matrices.

▶ Fact 7 (Matrix Invertibility). Suppose A ∈ Rn1×n1 and C ∈ Rn2×n2 are both invertible
matrices, and U ∈ Rn1×n2 and V ∈ Rn2×n1 are arbitrary. Then, A + UCV is invertible if
and only if C−1 + V A−1U is invertible.

▶ Fact 8 (Woodbury matrix identity [15]). Suppose A ∈ Rn1×n1 and C ∈ Rn2×n2 are both
invertible matrices, and U ∈ Rn1×n2 and V ∈ Rn2×n1 are arbitrary. Then

(A + UCV)−1 = A−1 − A−1U
(
C−1 + V A−1U

)−1
V A−1 .

In light of Fact 8, we can write B in Eq. (6) as B = UCUT where U = V T = 1√
d

[
1m η

]
∈

Rm×2 and C =
[
1 1
1 0

]
, and M = A + UCUT . Note that C−1 =

[
0 1
1 −1

]
, and we have

C−1 + UT A−1U =
[

1T
mA−11m

d 1 + ηT A−11m

d

1 + ηT A−11m

d −1 + ηT A−1η
d

]
:=
[
r s

s u

]
. (7)

We first need to show that A is invertible. Recall from Eq. (5) that A = (1 + 1
d)Im + Mα +

Mβ + MD. We will prove the following lemma, whose proof is deferred to the full version.

▶ Lemma 9 (Mα, Mβ , MD are bounded). Suppose m ⩽ cd2 for a small enough constant c.
With probability 1 − od(1), we have
1. ∥Mα∥op ⩽ 0.1,
2. ∥Mβ∥op ⩽ 0.1,
3. ∥MD∥op ⩽ O

(√ log d
d

)
.

As an immediate consequence, we get the following:

▶ Lemma 10 (A is well-conditioned). With probability 1 − od(1), the matrix A from Eq. (5)
is positive definite (hence full rank), and

0.5Im ⪯ A ⪯ 1.5Im .

J.-T. Hsieh, P. K. Kothari, A. Potechin, and J. Xu 78:9

Proof. Since A = (1 + 1
d)Im + Mα + Mβ + MD, by Lemma 9 the eigenvalues of A must lie

within 1 ± 0.2 ± Õ(1/
√

d) ∈ (0.5, 1.5) (we assume d is large). ◀

Next, from Fact 7, we can prove that M is invertible (Lemma 12) by showing that the
2 × 2 matrix C−1 + UT A−1U is invertible, which is in fact equivalent to ru − s2 ≠ 0. We
first need the following bound on the norm of η, whose proof is deferred to the full version.

▷ Claim 11. With probability at least 1 − od(1), ∥η∥2
2 ⩽ (1 + od(1)) 2m

d .

▶ Lemma 12 (Bounds on r, s, u; M is invertible). Suppose m ⩽ cd2 for a small enough
constant c. Let r, s, u ∈ R be defined as in Eq. (7). With probability at least 1 − od(1), we
have
1. r ∈ m

d · [2/3, 2],
2. |s| ⩽ O(

√
d),

3. u ∈ [−1, −1/2].
Thus, we have s2 − ru ⩾ Ω

(
m
d

)
. As a consequence, M is invertible.

Proof. By Lemma 10, we know that 2
3 Im ⪯ A−1 ⪯ 2Im. Thus, r = 1

d 1T
mA−11m ∈ 1

d ∥1m∥2
2 ·

[2/3, 2], hence r ∈ m
d · [2/3, 2].

For s, we know that ∥η∥2
2 ⩽ (1 + o(1)) 2m

d by Claim 11. Thus,

1
d

∣∣ηT A−11m

∣∣ ⩽ 1
d

∥A−1∥op · ∥η∥2 · ∥1m∥2 < (1 + od(1)) · 2
√

2m2

d3 ⩽ O(
√

d) .

Thus, |s| =
∣∣∣1 + ηT A−11m

d

∣∣∣ ⩽ O(
√

d).
For u, we have
1
d

∣∣ηT A−1η
∣∣ ⩽ 1

d
∥A−1∥op · ∥η∥2

2 < (1 + od(1)) · 4m

d2 <
1
2 ,

where the last inequality follows for some m < cd2 for small enough c. Thus, u = −1 +
ηT A−1η

d ∈ [−1, −1/2].
With the bounds on r, s and u, we immediately get s2 − ru ⩾ Ω(m

d).
To prove that M is invertible, let us first recall that we write M = A + UCUT where A

is defined in Eq. (5) and U = V T = 1√
d

[
1m η

]
∈ Rm×2 and C =

[
1 1
1 0

]
.

By Lemma 10, A is invertible. Then by Fact 7, we know that M is invertible if and only

if C−1 + UT A−1U :=
[
r s

s u

]
(see Eq. (7)) is invertible, which is equivalent to ru − s2 ̸= 0.

Thus, s2 − ru ⩾ Ω(m
d) suffices to conclude that M is invertible. ◀

2.4 Finishing the proof of Theorem 2
The final piece of proving Theorem 2 is to show that R =

∑m
i=1 wiviv

T
i has spectral norm

bounded by 1, which immediately implies that the candidate matrix Λ = Id − R ⪰ 0.

▶ Lemma 13 (R is bounded). There exists some absolute constant cR s.t.for m ⩽ d2

cR
, whp

∥R∥op ⩽
1
2 .

The proof is deferred to the full version. In particular, we will write an expanded
expression of M−1 and obtain a decomposition of R. Then, we prove tight spectral norm
bounds for matrices in the decomposition, which then completes the proof of Lemma 13.

Combining Lemma 12 and Lemma 13 we can finish the proof of Theorem 2.

ICALP 2023

78:10 Ellipsoid Fitting up to a Constant

Proof of Theorem 2. The matrix M (recall Eq. (3)) is invertible due to Lemma 12, thus
our candidate matrix Λ = Id − R matrix defined in Definition 3 is well-defined. Furthermore,
by the norm bound in Lemma 13, we have ∥R∥op < 1. This proves that Λ ≻ 0. ◀

3 Machinery for tight norm bounds of graph matrices

One of the main technical contributions of this paper is providing tight spectral norm bounds
(up to constants per vertex/edge) for structured random matrices with correlated entries
(a.k.a. graph matrices). We note that prior to this work, most known norm bounds for such
matrices are only tight up to some logarithmic factors [1], while not much is known in terms
of precise bounds without log factors except for several specific cases (see e.g. [14]).

3.1 Preliminaries
We first give a lightweight introduction to the theory of graph matrices. For interested readers
who seek a thorough introduction or a more formal treatment, we refer them to its origin
in a sequence of works in Sum-of-Squares lower bounds [3, 1]. We will follow the notations
used in [1]. Throughout this section, we assume that there is an underlying (random) input
matrix G and a Fourier basis {χt}t∈N.

We first define shapes, which are representations of structured matrices whose entries
depend on G.

▶ Definition 14 (Shape). A shape τ is a tuple (V (τ), Uτ , Vτ , E(τ)) associated with a (multi)
graph (V (τ), E(τ)). Each vertex in V (τ) is associated with a vertex-type that indicates the
range of the labels for the particular vertex. Each edge e ∈ E(τ) is also associated with a
Fourier index t(e) ∈ N. Moreover, we have Uτ , Vτ ⊆ V (τ) as the left and right boundary of
the shape.

We remind the reader that Vτ should be distinguished from V (τ), where Vτ is the right
boundary set, while V (τ) is the set of all vertices in the graph.

Figure 1 show the shapes for matrices Mα and Mβ defined in Proposition 5. For these
shapes, there are two vertex-types (square and circle). The two ovals in each shape indicate
the left and right boundaries Uτ and Vτ .

We next describe how to associate a shape to a matrix (given the underlying matrix G).

Uτ Vτ

(a) GOE, zero diagonal.

Uτ Vτ

(b) Mα.

2 2

Uτ Vτ

(c) Mβ .

Figure 1 Graph matrix representation of a d × d GOE matrix with zero diagonal, and the m × m

matrices Mα and Mβ as defined in Proposition 5. Square vertices take labels in [m] and circle
vertices take labels in [d]. The two ovals indicate the left and right boundaries of the shapes. If an
edge e is not labeled with an index, then t(e) = 1 by default.

▶ Definition 15 (Mapping of a shape). Given a shape τ , we call a function σ : V (τ) → N a
mapping of the shape if
1. σ assigns a label for each vertex according to its specified vertex-type;
2. σ is an injective mapping for vertices of the same type.

J.-T. Hsieh, P. K. Kothari, A. Potechin, and J. Xu 78:11

▶ Definition 16 (Graph matrix for shape). Given a shape τ , we define its graphical matrix
Mτ to be the matrix indexed by all possible boundary labelings of S, T , and for each of its
entry, we define

Mτ [S, T] =
∑

σ:V (τ)→N
σ(Uτ)=S, σ(Vτ)=T

∏
e∈E(τ)

χt(e)(G[σ(e)]) .

Observe that for each entry Mτ [S, T], since σ must map Uτ and Vτ to S and T , Mτ [S, T]
is simply a sum over labelings of the “middle” vertices V (τ) \ (Uτ ∪ Vτ). Take Figure 1
for example. Suppose G ∈ Rm×d and square and circle vertices take labels in [m] and [d]
respectively, then we can write out the entries of the matrix: for i ̸= j ∈ [m],

Mα[i, j] =
∑

a ̸=b∈[d]

χ1(G[i, a]) · χ1(G[i, b]) · χ1(G[j, a]) · χ1(G[j, b]) ,

Mβ [i, j] =
∑

a∈[d]

χ2(G[i, a]) · χ2(G[j, a]) .

Note also that since σ must be injective for vertices of the same type and Uτ ̸= Vτ in
both examples, there is no mapping such that σ(Uτ) = σ(Vτ). Thus, by Definition 16, both
matrices have zeros on the diagonal.

Adaptation to our setting. The above is a general introduction for graph matrices. In this
work, we specialize to the following setting:

G ∈ Rm×d is a random Gaussian matrix whose rows are v1, . . . , vm ∼ N (0, 1
d Id).

The Fourier characters {χt}t∈N are the (scaled) Hermite polynomials.
For all graph matrices that arise in our analysis,

|S| = |T | = 1,
There are two vertex-types: square vertices take labels in [m] and circle vertices take
labels in [d].

▶ Remark 17. For our technical analysis, we also employ our techniques on a generalization
of graph matrices where we relax the injectivity condition. That said, for the purpose of
illustrating our techniques, it suffices to consider ordinary graph matrices.

▶ Definition 18 (DV size constraint). Let DV be a size constraint such that for each graph
matrix τ considered in this work, |V (τ)| ⩽ DV .

For concreteness, we will take DV = polylog(d) throughout this work.

Trace moment method. For all our norm bounds, we will use the trace moment method:
for any graph matrix Mτ with underlying random matrix G and any q ∈ N,

E∥Mτ ∥2q
op ⩽ E tr

(
(Mτ MT

τ)q
)

= E
∑

S1,T1,S2,T2,...Sq−1,Tq−1:
boundaries

Mτ [S1, T1]MT
τ [T1, S2] · · · MT

τ [Tq−1, S1] .

where the expectation is taken over G.
Notice that the summation is over closed walks across the boundaries: S1 → T1 → S2 →

T2 → · · · → S1, where S1, T1, . . . are boundary labelings of Mτ . In particular, the walk is
consist of 2q-steps of a “block walk”, with the (2t − 1)-th step across a block described by
Mτ and the (2t)-th step across a block described by MT

τ .

ICALP 2023

78:12 Ellipsoid Fitting up to a Constant

The crucial observation is that after taking expectation, all closed walks must walk on
each labeled edge (i.e., Fourier character) an even number of times, since all odd moments of
the Fourier characters are zero. Therefore, bounding the matrix norm is reduced to bounding
the contribution of all such walks.

E∥Mτ ∥2q
op ⩽

∑
P: closed walk

∏
e∈E(P)

E
[
χt(e)(G[e])mulP (e)

]
, (8)

where E(P) denotes the set of labeled edges used by the walk P, mulP(e) denotes the
number of times e appears in the walk, and t(e) denotes the Fourier index (with slight abuse
of notation).

▶ Remark 19. We remind the reader not to confuse vertices/edges in the walk with ver-
tices/edges in the shape. The vertices in a walk are “labeled” by elements in [m] or [d]
(depending on the vertex-type). Similarly, each edge e ∈ E(P) in a walk is labeled by an
element in [m] × [d]. We will use the terms “labeled vertex” and “labeled edge” unless it is
clear from context.

3.2 Global bounds via a local analysis
Observe that Eq. (8) is a weighted sum of closed walks of length 2q. To obtain an upper bound,
the standard approach is to specify an efficient encoding scheme that uniquely identifies each
closed walk, and then upper bound the total number of such encodings.

We begin by defining a step-labeling – a categorization of each step in the closed walk.

▶ Definition 20 (Step-labeling). For each step throughout the walk, we assign it the following
label,
1. F (a fresh step): it uses a new labeled edge making the first appearance and leads to a

destination not seen before;
2. S (a surprise step): it uses a new labeled edge to arrive at a vertex previously visited in

the walk;
3. H (a high-mul step): it uses a labeled edge that appears before, and the edge is making a

middle appearance (i.e., it will appear again in the subsequent walk);
4. R (a return step): it uses a labeled edge that appears before, and the edge is making its

last appearance.
Analogously, for any shape τ , we call Lτ : E(τ) → {F, R, S, H} a step-labeling of the block.
The subscript τ is ignored when it is clear.

We note that the terms “fresh”, “high-mul” and “return” are adopted from the GOE
matrix analysis in [14]. Next, to obtain a final bound for Eq. (8), we consider two factors for
each step (which depend on the step-label):
1. Vertex factor: a combinatorial factor that specifies the destination of the step;
2. Edge factor: an analytical factor from the edge which accounts for the E[χt(e)(G[e])mul(e)]

term in Eq. (8).

For example, a vertex factor for an F step to a circle vertex can be d, an upper bound
on the number of possible destinations. One can think of vertex factors as the information
needed for a decoder to complete a closed walk. Essentially, the step-labeling and appropriate
vertex factors should uniquely identify a closed walk, and combined with edge factors, we
can obtain an upper bound for Eq. (8).

J.-T. Hsieh, P. K. Kothari, A. Potechin, and J. Xu 78:13

We note that the approach stated above is a global encoding scheme. One may proceed
via a global analysis – carefully bounding the number of step-labelings allowed (e.g., using
the fact that the F and R steps must form a Dyck word [14]), and then combining all vertex
and edge factors to obtain a final bound. However, to get tight norm bounds for complicated
graph matrices (like Mα), the global analysis becomes unwieldy.

Local analysis. One of our main insights is to use a local analysis. We now give a high-
level overview of our strategy while deferring the specific details of our vertex/edge factor
assignment scheme to subsequent sections. Recall that a closed walk consists of “block-steps”
described by the shape τ . Thus, we treat each walk as a “block walk” and bound the
contributions of a walk block by block. This prompts us to bound the contribution of the
walk at a given block-step to the final trace in Eq. (8) by

vtxcost · edgeval ⩽ Bq(τ)

where Bq(τ) is some desired upper bound that depends on the vertex/edge factor assignment
scheme. We define it formally in the following.

▶ Definition 21 (Block value function). Fix q ∈ N and a shape τ . For any vertex/edge factor
assignment scheme, we call Bq(τ) a valid block-value function for τ of the given scheme if

E
[
tr
(
(Mτ MT

τ)q
)]

⩽ (matrix dimension) · Bq(τ)2q ,

and for each block-step BlockStepi throughout the walk,

vtxcost(BlockStepi) · edgeval(BlockStepi) ⩽ Bq(τ) .

We point out that the block-value function B should be considered as a function of both the
shape τ and the length of the walk q (we will drop the subscript when it is clear throughout
this work), and it also depends on the assignment scheme. Thus, our task is to find a
vertex/edge factor assignment scheme such that Bq(τ) is as small as possible. Moreover, the
matrix dimension, which is at most poly(d) in our case, is the factor that comes up in the
start of the walk to specify the original vertex, and can be ignored as it is ultimately an
1 + o(1) factor once we take a long enough walk.

Given Definition 21, the norm bound follows immediately.

▶ Proposition 22. Let Mτ be a graph matrix with dimension poly(d), and let q = Ω(log2 d).
Suppose Bq(τ) is a valid block-value function. Then, with probability 1 − 1

poly(d) ,

∥Mτ ∥op ⩽ (1 + od(1)) · Bq(τ) .

Proof. We apply Markov’s inequality: for any ε > 0,

Pr [∥Mτ ∥op > (1 + ε)Bq(τ)] ⩽ Pr
[
tr
(
(Mτ MT

τ)q
)

> (1 + ε)2qBq(τ)2q
]

⩽ (1 + ε)−2q poly(d)

⩽
1

poly(d)

for q = Ω(1
ε log d). Setting ε = 1

log d , we can conclude that ∥Mτ ∥op ⩽ (1 + od(1)) · Bq(τ) with
high probability. ◀

The next proposition shows that we can easily obtain a valid Bq(τ) once we have an
appropriate factor assignment scheme.

ICALP 2023

78:14 Ellipsoid Fitting up to a Constant

▶ Proposition 23. For any graph matrix Mτ and any valid factor assignment scheme,

Bq(τ) =
∑

L:step-labelings for E(τ)

vtxcost(L) · edgeval(L)

is a valid block-value function for τ .

Proof. The second requirement in Definition 21 is clear. For the first requirement, observe
that the trace can be bounded by the matrix dimension (specifying the start of the walk)
times

∑
L1,...,L2q :

step-labelings for E(τ)

2q∏
i=1

vtxcost(Li) ·edgeval(Li) ⩽

(∑
L:step-labelings for E(τ)

vtxcost(L) · edgeval(L)

)2q

. ◀

With this set-up, the main task is then to find an appropriate vertex/edge factor assign-
ment scheme and obtain a good upper bound on Bq(τ).

3.3 Vertex factor assignment scheme

We now proceed to bound the vertex factors for each step-label. We note that in this section,
“vertices” refer to “labeled vertices” in the walk (having labels in [m] or [d]; recall Remark 19).
First, we define the weight of a square (resp. circle) vertex to be m (resp. d), since we need
an element in [m] (resp. [d]) to specify which vertex to go to in the walk.

We first show a “naive” vertex factor assignment scheme. In the following scheme, we use
a potential unforced return factor, denoted Pur, to specify the destination of any R step. We
will defer the specific details of Pur to Section 3.5.

Vanilla vertex factor assignment scheme.

1. For each vertex i that first appears via an F step, a label in weight(i) is required;
2. For each vertex i that appears beyond the first time:

If it is arrived via an R step, the destination may need to be specified, and this is
captured by the Pur factor.
If it is not arrived via an R step, then it must be an S or H step. A vertex cost
in 2q · DV is sufficient to identify the destination, where we recall 2q is the length
of our walk, and DV the size upper bound of each block.

The first thing to check is that this scheme combined with an step-labeling uniquely
identifies a closed walk (given the start of the walk). This is immediate for F and R steps by
definition. For S and H steps, since the destination is visited before in the walk, 2q · DV is
sufficient as it is an upper bound on the number of vertices in the walk.

A potential complication with analyzing the above assignment scheme directly is that it
exhibits a significant difference in the vertex factors. For example, consider a vertex that
appears only twice in the walk on a tree. Its first appearance requires a label in [n], while its
subsequent appearance does not require any cost if it is reached using an R step because
backtracking from a tree is fixed (since there is only one parent). This disparity can result
in a very loose upper bound for the trace when applying Proposition 23; in fact, the norm
bound for Mτ obtained in this manner is equivalent to using the naive row-sum bound.

J.-T. Hsieh, P. K. Kothari, A. Potechin, and J. Xu 78:15

Redistribution. One of our main technical insights is to split the factors such that both first
and last appearance contributes a factor of comparable magnitude; we call this redistribution.

We first formally define “appearance” in a block-step to clarify our terminology,

▶ Definition 24 (Vertex appearance in block-step). Each labeled vertex appearance can be
“first”, “middle” and “last”. Moreover, each vertex on the block-step boundary (Uτ or Vτ)
appears in both adjacent blocks.

For example, suppose a vertex first appears in the right-boundary of block i and last
appears in the left-boundary of block j, then it will make middle appearances in the left-
boundary of block i + 1 and right-boundary of block j − 1 as well.

We are now ready to introduce the following vertex-factor assignment scheme with
redistribution that assigns vertex-factor to each vertex’s appearance to handle the disparity.

Vertex factor assignment scheme with redistribution.

1. For each vertex i that makes its first appearance, assign a cost of
√

weight(i);
2. For any vertex’s middle appearance, if it is not arrived at via an R step, assign a cost

of 2q · DV (where we recall 2q is the length of our walk, and DV the size constraint
of each block);

3. For any vertex’s middle appearance, if it is at arrived via an R step, its cost is
captured by Pur;

4. For each vertex i that makes its last appearance, assign a cost of
√

weight(i) that
serves as a backpay.

Deducing vertex factor from local step-labeling. As presented, the vertex factor assignment
scheme requires knowing which vertex is making first/middle/last appearance. We further
show that the vertex appearances, or more accurately, an upper bound of the vertex factors,
can be deduced by a given step-labeling of the block. Fix traversal direction from U to V ,

Localized vertex factor assignment from step-labeling.

1. For any vertex v that is on the left-boundary U , it cannot be making the first
appearance since it necessarily appears in the previous block;

2. For any vertex v that is on the right-boundary V , it cannot be making the last
appearance since it necessarily appears in the subsequent block;

3. For any vertex v reached via some S/R/H step, it cannot be making its first
appearance;

4. For any vertex v that incident to some F/S/H step, it cannot be making its last
appearance since the edge necessarily appears again.

The first two points are due to Definition 24. The last point is because each labeled edge
(i.e., Fourier character) must be traversed by an R step to close it.

3.4 Bounding edge-factors
To bound the contribution of the walks, we need to consider factors coming from the edges
traversed by the walk. Recall from Eq. (8) that each edge e in a closed walk P gets a factor
E[χmulP (e)

t(e)], where t(e) is the Fourier index associated with the edge.
In our case, the Fourier characters are the scaled Hermite polynomials. Recall that we

assume that our vectors are sampled as vi ∼ N (0, 1
d Id). Thus, we define the polynomials

{Ht}t∈N such that they are orthogonal and Ex∼N (0,1/d)[Ht(x)2] = t! · d−t. Specifically,

ICALP 2023

78:16 Ellipsoid Fitting up to a Constant

1. H1(x) = x,
2. H2(x) = x2 − 1

d .
We first state the following bound on the moments of Ht, which follows directly from standard
bounds on the moments of Hermite polynomials:

▶ Fact 25 (Moments of Hermite polynomials). Let d ∈ N. For any t ∈ N and even k ∈ N,

Ex∼N (0,1/d)
[
Ht(x)k

]
⩽

1
dkt/2 (k − 1)kt/2(t!)k/2 ⩽ (t!)k/2

(
k

d

)kt/2
.

For matrices that arise in our analysis, we only have H1 and H2 edges. The following is
our edge-factor assignment scheme to account for contributions from the Fourier characters.

Edge-factor assignment scheme.

For an H1 edge,
1. F/S: assign a factor of 1√

d
for its first appearance;

2. H: assign a factor of 2q√
d

for its middle appearance;
3. R: assign a factor of 1√

d
for its last appearance.

For an H2 edge,
1. F/S: assign a factor of

√
2

d for its first appearance (equivalently, we can view a single
H2 edge as two edge-copies of H1 and assign each a factor of

√
2√
d

which is a valid
upper bound);

2. H: assign a factor of 8q2

d for its middle appearance;
3. R: assign a factor of

√
2

d for its last appearance (equivalently, we can view a single
H2 edge as two edge-copies of H1 and assign each a factor of

√
2√
d

which is a valid
upper bound).

▶ Proposition 26. The above scheme correctly accounts for the edge factors from H1 and
H2 edges.

Proof. If an edge has multiplicity 2, then it must be traversed by one F/S step and one R

step.
If it is an H1 edge, then the scheme assigns a factor 1

d , which equals Ex∼N (0,1/d)[H1(x)2].
If it is an H2 edge, then the scheme assigns a factor 2

d2 , which equals Ex∼N (0,1/d)[H2(x)2].
For an edge with multiplicity k > 2, it must be traversed by one F/S step, one R step and
k − 2 H steps. Moreover, since k is even and 2q is the length of the walk, we have 4 ⩽ k ⩽ 2q.

If it is an H1 edge, then the scheme assigns a factor 1
d · (2q√

d
)k−2 ⩾ d−k/2(2q)k/2 ⩾ (k

d)k/2.
By Fact 25, it is an upper bound on Ex∼N (0,1/d)[H1(x)k].
If it is an H2 edge, then the scheme assigns a factor 2

d2 · (8q2

d)k−2 ⩾ d−k2k/2(2q)k ⩾
2k/2(k

d)k. By Fact 25, it is an upper bound on Ex∼N (0,1/d)[H2(x)k].
This shows that the edge factor assignment scheme above is correct. ◀

3.5 Bounding return cost (Pur factors)
In our vertex factor assignment scheme described in Section 3.3, we use a potential unforced
return factor, denoted Pur, to specify the destination of any return (R) step. Note that the
term “unforced return” is adopted from [14] as well. In this section, we complete the bound
of vertex factors by bounding the Pur factor.

J.-T. Hsieh, P. K. Kothari, A. Potechin, and J. Xu 78:17

For starters, we will define a potential function for each vertex at time t, which measures
the number of returns R pushed out from the particular vertex by time t that may require a
label in 2q · DV . Notice that a label in 2q · DV is sufficient for any destination vertex arrived
via an R step because the vertex appears before; however, this may be a loose bound.

We observe the following: a label in 2q · DV may be spared if the vertex is incident to
only one un-closed F/S edge; we call this a forced return. Formally, we define a return step
as unforced if it does not fall into the above categories,

▶ Definition 27 (Unforced return). We call a return (R) step an unforced return if the source
vertex is incident to more than 1 (or 2 in the case of a square vertex) unclosed edge.

We now proceed to formalize the above two observations by introducing a potential function
to help us bound the number of unforced returns from any given vertex throughout the walk.
The number of unforced returns throughout the walk would then be immediately given once
we sum over all vertices in the walk.

▶ Definition 28 (Potential-unforced-return factor Pur). For any time t and vertex v, let
Purt(v) be defined as the number of potential unforced return from v throughout the walk
until time t.

3.5.1 Pur bound for circle vertices
In our setting, each circle vertex pushes out at most 1 edge during the walk, analogous to
the case of typical adjacency matrix. This serves as a starting point for our Pur bound for
circle vertices.

▶ Lemma 29 (Bounding Purt for circle vertices). For any time t, suppose the walker is
currently at a circle vertex v, then

Purt(v) ⩽ #(R steps closed from v) + #(unclosed edges incident to v at time t) − 1
⩽ 2 · st(v) + ht(v) ,

where we define the following counter functions:
1. st(v) is the number of S steps arriving at v by time t;
2. ht(v) is the number of H steps arriving at v by time t.

Proof. We first prove the first inequality. The R steps closed from v may all be unforced
returns, and the unclosed edges incident to v may be closed by unforced returns in the future.
Note that we have a −1 in the above bound because for each vertex we may by default
assume the return is using a particular edge, hence at each time we know there is an edge
presumed-to-be forced.

We prove the second inequality by induction. Define Pt(v) := #(R steps closed from v) +
#(unclosed edges incident to v at time t) − 1 for convenience. At the time when v is first
created by an F step, Pt(v) = 0 (1 open edge minus 1) and st(v) = ht(v) = 0.

At time t, suppose the last time v was visited was at time t′ < t, and suppose that the
inequality holds true for t′. Note that at time t′ + 1, Pt′+1(v) = Pt′(v) + 1 if a new edge was
created by an F or N step leaving v, otherwise Pt′+1(v) = Pt′(v) (for R step it adds 1 to the
number of closed edges closed from v, but decreases 1 open edge). On the other hand, st′(v)
and ht′(v) remain the same (we don’t count out-going steps for st(v), ht(v)).

When we reach v at time t, we case on the type of steps:

ICALP 2023

78:18 Ellipsoid Fitting up to a Constant

Arriving by an R step: the edge is now closed, but the R step was not from v. So
Pt(v) = Pt′+1(v) − 1 ⩽ Pt′(v), while st(v) = st′(v) and ht(v) = ht′(v).
Arriving by an S step: the edge is new, so Pt(v) = Pt′+1(v) + 1 ⩽ Pt′(v) + 2, and we have
st(v) = st′(v) + 1.
Arriving by an H step: Pt(v) = Pt′+1(v) ⩽ Pt′(v) + 1, and ht(v) = ht′(v) + 1.

In all three cases, assuming Pt′(v) ⩽ 2 · st′(v) + ht′(v), we have Pt(v) ⩽ 2 · st(v) + ht(v),
completing the induction. ◀

3.5.2 Pur bound for square vertices
The argument of Lemma 29 does not apply well for vertices incident to multiple edges in a
single step. In particular, this may happen for square vertices in Mα as each is arrived via 2
edges and each pushes out 2 edges (recall Figure 1). This is not an issue for Mβ , but we
will treat square vertices in Mβ the same way to unify the analysis; in the context of Pur for
square vertices, one may think of Mβ as collapsing the two circle vertices in Mα.

To handle this issue, we observe that it suffices for us to pay an extra cost of [2] for
each square vertex, which would allow us to further presume 2 edges being forced. We then
generalize the prior argument to capture this change.

▶ Lemma 30 (Bounding Purt for square vertices). For any time t, suppose the walker is
currently at a square vertex v, then

Purt(v) ⩽ #(R steps closed from v) + #(unclosed edges incident to v at time t) − 2
⩽ 2(st(v) + ht(v)) .

where st(v) and ht(v) are the number of S and H steps arriving at v by time t, respectively.

Proof. We prove this by induction. Note that this is immediate for the base case
when v first appears since a square vertex is incident to 2 edges. Define Pt(v) :=
#(R steps closed from v) + #(unclosed edges incident to v at time t) − 2 for convenience.
Suppose the inequality is true at time t′, and assume vertex v appears again at time t. The
departure at time t′ + 1 from v may open up at most 2 edges, hence Pt′+1(v) ⩽ Pt′(v) + 2.

When we reach v at time t (via 2 edges), we case on the type of steps:
Arriving by two R steps: the two edges closed by the R steps are not closed from v. So
Pt(v) = Pt′+1 − 2 ⩽ Pt′(v), while st(v) = st′(v) and ht(v) = ht′(v).
Arriving by one S/H and one R step: in this case, Pt(v) = Pt′+1(v) ⩽ Pt′(v) + 2 and
st(v) + ht(v) = st′(v) + ht′(v) + 1.
Arriving by two S/H steps: in this case, Pt(v) = Pt′+1(v) + 2 ⩽ Pt′(v) + 4, whereas
st(v) + ht(v) = st′(v) + ht′(v) + 2.

In all three cases, we have Pt(v) ⩽ 2(st(v) + ht(v)), completing the induction. ◀

▶ Corollary 31. For each surprise/high-mul visit, it suffices for us to assign a Pur factor of
2, which is a cost of (2q · DV)2 so that each Pur factor throughout the walk is assigned.

3.6 Wrapping up with a toy example
Recall Proposition 23 that for a graph matrix of shape τ ,

Bq(τ) =
∑

L: step-labelings for E(τ)

vtxcost(L) · edgeval(L) (9)

J.-T. Hsieh, P. K. Kothari, A. Potechin, and J. Xu 78:19

is a valid block-value function for τ (Definition 21). Moreover, by Proposition 22, we can
take q = polylog(d) and conclude that with probability 1 − o(1),

∥Mτ ∥op ⩽ (1 + o(1)) · Bq(τ) .

For each given shape, it suffices for us to bound the block-value for each edge-labeling. We
demonstrate how this may be readily done given the above bounds using the GOE example,
and defer the analysis of the specific matrices that show up in our setting to the full version
of the paper.

3.6.1 Tight bound for GOE
We now show how the above framework allows us to readily deduce a tight norm bound for
G ∼ GOE(0, 1

d), where G is a d × d symmetric matrix with each (off-diagonal) entry sampled
from N (0, 1

d). It is well-known that the correct norm of G is 2 + od(1) [14]. Figure 1a shows
the shape τ associated with G, which simply consists of one edge. We now proceed to bound
Eq. (9).
Edge factor. According to our edge factor scheme described in Section 3.4 (for H1 edges),

an F/R/S step-label gets a factor of 1√
d

while an H step-label gets 2q√
d
.

Pur factor. By Lemma 29, there is no Pur factor for F/R, while S and H get 2 and 1 Pur
factors respectively.

Vertex factor. The weight of a circle vertex is d, thus any vertex making a first or last
appearance gets a factor of

√
d. We now case on the step-label and apply the vertex

factor assignment scheme described in Section 3.3.

F : the vertex in Uτ must be making a middle appearance; it is not first due to Definition 24,
and it is not last as otherwise the edge appears only once throughout the walk. The
vertex in Vτ is making a first appearance, so it gets a factor of

√
d;

R: the vertex in Vτ is making a middle appearance, since it is incident to an R edge
(hence not first appearance), and it is on the boundary hence bound to appear again the
next block. The vertex in Uτ may be making its last appearance, so it gets a factor of√

d;
S: the vertex in Uτ is making a middle appearance (same as F), and the vertex in Vτ is
making a middle appearance since it cannot be first and must appear again. In addition,
it gets 2 factors of Pur, which gives a bound of (2q · DV)2;
H: analogous to the above, both vertices are making middle appearance, and it gets 1
factor of Pur, giving a bound of 2q · DV .

Combining the vertex and edge factors, we can bound Eq. (9):

Bq(τ) =
√

d · 1√
d

+
√

d · 1√
d

+ (2q · DV)2 · 1√
d

+ (2q · DV) · 2q√
d
⩽ 2 + od(1) ,

since q and DV are both polylog(d). Therefore, by Proposition 22, we can conclude that
∥G∥op ⩽ 2 + od(1) with high probability, which is the correct bound.

References
1 Kwangjun Ahn, Dhruv Medarametla, and Aaron Potechin. Graph matrices: Norm bounds

and applications. arXiv preprint, 2016. arXiv:1604.03423.
2 Mitali Bafna, Jun-Ting Hsieh, Pravesh K Kothari, and Jeff Xu. Polynomial-Time Power-Sum

Decomposition of Polynomials. In 2022 IEEE 63rd Annual Symposium on Foundations of
Computer Science (FOCS), pages 956–967. IEEE, 2022.

ICALP 2023

https://arxiv.org/abs/1604.03423

78:20 Ellipsoid Fitting up to a Constant

3 Boaz Barak, Samuel Hopkins, Jonathan Kelner, Pravesh K Kothari, Ankur Moitra, and Aaron
Potechin. A Nearly Tight Sum-of-Squares Lower Bound for the Planted Clique Problem.
SIAM Journal on Computing, 48(2):687–735, 2019.

4 Mrinalkanti Ghosh, Fernando Granha Jeronimo, Chris Jones, Aaron Potechin, and Goutham
Rajendran. Sum-of-squares lower bounds for Sherrington-Kirkpatrick via planted affine planes.
In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS), pages
954–965. IEEE, 2020.

5 Christopher Hoffman, Matthew Kahle, and Elliot Paquette. Spectral gaps of random graphs
and applications. International Mathematics Research Notices, 2019.

6 Jun-Ting Hsieh and Pravesh K Kothari. Algorithmic Thresholds for Refuting Random
Polynomial Systems. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1154–1203. SIAM, 2022.

7 Chris Jones, Aaron Potechin, Goutham Rajendran, Madhur Tulsiani, and Jeff Xu. Sum-of-
squares lower bounds for sparse independent set. In 2021 IEEE 62nd Annual Symposium on
Foundations of Computer Science (FOCS), pages 406–416. IEEE, 2022.

8 Daniel M Kane and Ilias Diakonikolas. A Nearly Tight Bound for Fitting an Ellipsoid to
Gaussian Random Points. arXiv preprint, 2022. arXiv:2212.11221.

9 Sidhanth Mohanty, Prasad Raghavendra, and Jeff Xu. Lifting sum-of-squares lower bounds:
degree-2 to degree-4. In Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory
of Computing, pages 840–853, 2020.

10 Aaron Potechin, Paxton Turner, Prayaag Venkat, and Alexander S Wein. Near-optimal fitting
of ellipsoids to random points. arXiv preprint, 2022. arXiv:2208.09493.

11 James Saunderson. Subspace identification via convex optimization. PhD thesis, Massachusetts
Institute of Technology, 2011.

12 James Saunderson, Venkat Chandrasekaran, Pablo A Parrilo, and Alan S Willsky. Diagonal
and low-rank matrix decompositions, correlation matrices, and ellipsoid fitting. SIAM Journal
on Matrix Analysis and Applications, 33(4):1395–1416, 2012.

13 James Saunderson, Pablo A Parrilo, and Alan S Willsky. Diagonal and low-rank decompositions
and fitting ellipsoids to random points. In 52nd IEEE Conference on Decision and Control,
pages 6031–6036. IEEE, 2013.

14 Terence Tao. Topics in random matrix theory, volume 132. American Mathematical Soc.,
2012.

15 Max A Woodbury. Inverting modified matrices. Memorandum Rept. 42, Statistical Research
Group, 1950.

https://arxiv.org/abs/2212.11221
https://arxiv.org/abs/2208.09493

Finding Almost Tight Witness Trees
Dylan Hyatt-Denesik #

Eindhoven University of Technology, The Netherlands

Afrouz Jabal Ameli #

Eindhoven University of Technology, The Netherlands

Laura Sanità #

Bocconi University, Milano, Italy

Abstract
This paper addresses a graph optimization problem, called the Witness Tree problem, which seeks
a spanning tree of a graph minimizing a certain non-linear objective function. This problem is of
interest because it plays a crucial role in the analysis of the best approximation algorithms for two
fundamental network design problems: Steiner Tree and Node-Tree Augmentation. We will show
how a wiser choice of witness trees leads to an improved approximation for Node-Tree Augmentation,
and for Steiner Tree in special classes of graphs.

2012 ACM Subject Classification Theory of computation → Routing and network design problems

Keywords and phrases Algorithms, Network Design, Approximation

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.79

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2211.12431 [15]

Funding The second and the third authors are grateful for the support received from the NWO-
VIDI grant VI.Vidi.193.087.

Acknowledgements The authors would like to thank Haris Angelidakis for his valuable discussion
on this project. Furthermore, the authors would like to acknowledge the 2021 Hausdorff trimester
program “Discrete Optimization”, during which this work was started.

1 Introduction

Network connectivity problems play a central role in combinatorial optimization. As a general
goal, one would like to design a cheap network able to satisfy some connectivity requirements
among its nodes. Two of the most fundamental problems in this area are Steiner Tree and
Connectivity Augmentation.

Given a network G = (V,E) with edge costs, and a subset of terminals R ⊆ V , Steiner
Tree asks to compute a minimum-cost tree T of G connecting the terminals in R. In
Connectivity Augmentation, we are instead given a k-edge-connected graph G = (V,E)
and an additional set of edges L ⊆ V × V (called links). The goal is to add a minimum-
cardinality subset of links to G to make it (k + 1)-edge-connected. It is well-known that the
problem for odd k reduces to k = 1 (called Tree Augmentation), and for even k reduces to
k = 2 (called Cactus Augmentation) (see [9]). All these problems are NP-hard, but admit
a constant factor approximation. In the past 10 years, there have been several exciting
breakthrough results in the approximation community on these fundamental problems
(see [5, 13, 4, 16, 17, 6, 19, 14, 1, 7, 8, 11, 2, 18, 20]).

EA
T
C
S

© Dylan Hyatt-Denesik, Afrouz Jabal Ameli, and Laura Sanità;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 79; pp. 79:1–79:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:d.v.p.hyatt-denesik@tue.nl
mailto:a.jabal.ameli@tue.nl
mailto:laura.sanita@unibocconi.it
https://doi.org/10.4230/LIPIcs.ICALP.2023.79
https://arxiv.org/abs/2211.12431
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

79:2 Finding Almost Tight Witness Trees

1 1 1

1

3 2

4 1

Figure 1 In black, the tree T = (R ∪ S, E). The dashed edges represent a witness tree W . The
labels on edges of E and vertices of S indicate w̄(e) and w(v), respectively. We have νT (W) = (H4 +
H1)/2 = 1.5416̄. Assuming unit cost on the edges of E, we have ν̄T (W) = (4H1 + H2 + H3)/6 = 1.2̄.

Several of these works highlight a deep relation between Steiner Tree and Connectivity
Augmentation: the approximation techniques used for Steiner Tree have been proven to
be useful for Connectivity Augmentation and vice versa. This fruitful exchange of tools
and ideas has often lead to novel results and analyses. This paper continues bringing new
ingredients in this active and evolving line of work.

Specifically, we focus on a graph optimization problem which plays a crucial role in the
analysis of some approximation results mentioned before. This problem, both in its edge- and
node-variant, is centered around the concept of witness trees. We now define this formally
(see Figure 1 for an example).

Edge Witness Tree (EWT) problem. Given is a tree T = (V,E) with edge costs c :
E → R≥0. We denote by R the set of leaves of T . The goal is to find a tree W =
(R,EW), where EW ⊆ R×R, which minimizes the non-linear objective function ν̄T (W) =

1
c(E)

∑
e∈E c(e)Hw̄(e), where c(E) =

∑
e∈E c(e), the function w̄ : E → Z≥0 is defined as

w̄(e) := |{pq ∈ EW : e is an internal edge of the p-q path in T}|

and Hℓ denotes the ℓth harmonic number (Hℓ = 1 + 1
2 + 1

3 + · · ·+ 1
ℓ).

Node Witness Tree (NWT) problem. Given is a tree T = (V,E). We denote by R

the set of leaves of T , and S = V \ R. The goal is to find a tree W = (R,EW), where
EW ⊆ R×R, which minimizes the non-linear objective function νT (W) = 1

|S|
∑

v∈S Hw(v),
where w : S → Z≥0 is defined as

w(v) := |{pq ∈ EW : v is an internal node of the p-q path in T}|

and again Hℓ denotes the ℓth harmonic number.
We refer to a feasible solution W to either of the above problems as a witness tree. We call
w̄ (resp. w) the vector imposed on E (resp. S) by W . We now explain how these problems
relate to Steiner Tree and Connectivity Augmentation.

EWT and relation to Steiner Tree

Currently, the best approximation factor for Steiner Tree is (ln(4)+ε), which can be achieved
by three different algorithms [13] [5] [20]. These algorithms yield the same approximation
because in all three of them, the analysis at some point relies on constructing witness trees.

More in detail, suppose we are given a Steiner Tree instance (G = (V,E), R, c) where
c : E → R≥0 gives the edge costs. We can define the following:

γ(G,R,c) := min
T ∗=(R∪S∗,E∗): T ∗ is

optimal Steiner tree of (G,R,c)

min
W : W is a
witness tree

of T ∗

ν̄T ∗(W)

D. Hyatt-Denesik, A. Jabal Ameli, and L. Sanità 79:3

We also define the following constant γ:

γ := sup{γ(G,R,c) : (G,R, c) is an instance of Steiner Tree}.

Byrka et al. [5] were the first to essentially prove the following.

▶ Theorem 1. For any ε > 0, there is a (γ + ε)-approximation algorithm for Steiner Tree.

Furthermore, the authors in [5] showed that γ ≤ ln(4), and hence they obtained the previously
mentioned (ln(4) + ε)-approximation for Steiner Tree.

NWT and relation to Connectivity Augmentation

Basavaraju et al [3] introduced an approximation-preserving reduction from Cactus Aug-
mentation (which is the hardest case of Connectivity Augmentation)1 to special instances of
Node-Steiner Tree, named CA-Node-Steiner-Tree instances in [2]: the goal here is to connect
a given set R of terminals of a graph G via a tree that minimizes the number of non-terminal
nodes (Steiner nodes) in it. The special instances have the crucial property that each Steiner
node is adjacent to at most 2 terminals.

Byrka et al. [4] built upon this reduction to prove a 1.91-approximation for CA-Node-
Steiner-Tree instances. This way, they were the first to obtain a better-than-2 approximation
factor for Cactus Augmentation (and hence, for Connectivity Augmentation). Interestingly,
Nutov [16] realized that a similar reduction also captures a fundamental node-connectivity
augmentation problem: the Node-Tree Augmentation (defined exactly like Tree Augmentation,
but replacing edge-connectivity with node-connectivity). This way, he could improve over an
easy 2-approximation for Node-Tree Augmentation that was also standing for 40 years [12].
Angelidakis et al. [2] subsequently explicitly formalized the problem at the heart of the
approximation analysis: namely, the NWT problem.

More in detail, given a CA-Node-Steiner-Tree instance (G = (V,E), R), we can define
the following:

ψ(G,R) := min
T ∗=(R∪S∗,E∗): T ∗ is

optimal Steiner tree of (G,R)

min
W : W is a
witness tree

of T ∗

νT ∗(W),

We also define the constant ψ:

ψ := sup{ψ(G,R) : (G,R) is an instance of CA-Node-Steiner-Tree}.

Angelidakis et al. [2] proved the following.

▶ Theorem 2. For any ε > 0, there is a (ψ+ε)-approximation algorithm for CA-Node-Steiner
Tree.

Furthermore, the authors of [2] proved that ψ < 1.892, and hence obtained a 1.892-
approximation algorithm for Cactus Augmentation and Node-Tree Augmentation. This is
currently the best approximation factor known for Node-Tree Augmentation (for Cactus
Augmentation there is a better algorithm [6]).

1 Tree Augmentation can be easily reduced to Cactus Augmentation by introducing a parallel copy of
each initial edge.

ICALP 2023

79:4 Finding Almost Tight Witness Trees

Our results and techniques

Our main result is an improved upper bound on ψ. In particular, we are able to show
ψ < 1.8596. Combining this with Theorem 2, we obtain a 1.8596-approximation algorithm
for CA-Node-Steiner-Tree. Hence, due to the above mentioned reduction, we improve the
state-of-the-art approximation for Node-Tree Augmentation.

▶ Theorem 3. There is a 1.8596-approximation algorithm for CA-Node-Steiner-Tree (and
hence, for Node-Tree Augmentation).

Our result is based on a better construction of witness trees for the NWT problem.
At a very high level, the witness tree constructions used previously in the literature use
a marking-and-contraction approach, that can be summarized as follows. First, root the
given tree T at some internal Steiner node. Then, every Steiner node v chooses (marks)
an edge which connects to one of its children: this identifies a path from v to a terminal.
Contracting the edges along this path yields a witness tree W . The way this marking choice
is made varies: it is random in [5], it is biased depending on the nature of the children in
[4], it is deterministic and taking into account the structure of T in [2]. However, all such
constructions share the fact that decisions can be thought of as being taken “in one shot”,
at the same time for all Steiner nodes. Instead, here we consider a bottom-up approach
for the construction of our witness tree, where a node takes a marking decision only after
the decisions of its children have been made. A sequential approach of this kind allows
a node to have a more precise estimate on the impact of its own decision to the overall
non-linear objective function cost, but it becomes more challenging to analyze. Overcoming
this challenge is the main technical contribution of this work, and the insight behind our
improved upper-bound on ψ.

We complement this result with an almost-tight lower-bound on ψ, which improves over
a previous lower bound given in [2].

▶ Theorem 4. For any ε > 0, there exists a CA-Node-Steiner-Tree instance (Gε, Rε) such
that ψ(Gε,Rε) > 1.8416̄− ε.

The above theorem implies that, in order to significantly improve the approximation for
Node-Tree Augmentation, very different techniques need to be used. To show our lower-bound
we prove a structural property on optimal witness trees, called laminarity, which in fact
holds for optimal solutions of both the NWT problem and the EWT problem.

As an additional result, we also improve the approximation bound for Steiner Tree in the
special case of Steiner-claw free instances. A Steiner-Claw Free instance is a Steiner-Tree
instance where the subgraph G[V \R] induced by the Steiner nodes is claw-free (i.e., every
node has degree at most 2). These instances were introduced in [10] in the context of
studying the integrality gap of a famous LP relaxation for Steiner Tree, called the bidirected
cut relaxation, that is long-conjectured to have integrality gap strictly smaller than 2.

▶ Theorem 5. There is a (991
732 + ε < 1.354)-approximation for Steiner Tree on Steiner-claw

free instances.

We prove the theorem by showing that, for any Steiner-Claw Free instance (G,R, c),
γ(G,R,c) ≤ 991

732 . The observation we use here is that an optimal Steiner Tree solution T in
this case is the union of components that are caterpillar graphs2: this knowledge can be

2 A caterpillar graph is defined as a tree in which every leaf is of distance 1 from a central path.

D. Hyatt-Denesik, A. Jabal Ameli, and L. Sanità 79:5

e1 e2r1

r2
r3

r4

P(a)

e1 e2r1

r2
r3

r4

P(b)

Figure 2 In both figures we have a tree, T , shown with black edges and green edges, with leaves,
R, denoted by squares. Crossing edges e1 and e2 are shown with solid red edges. The green edges
denote the path P . Figure (a): In this case, r1 and r3 are in the same component of W \{e1, e2},
represented by the dashed black edge. We can replace e1 with r2r3 or replace e2 with r1r4 (red
dashed edges). Figure (b): In this case, r3 and r2 are in the same component, denoted by the black
dashed edge. We can replace e1 and e2 with r1r3 and r2r4 (red dashed edges).

exploited to design ad-hoc witness trees. Interestingly, we can also show that this bound
is tight: once again, the proof of this lower-bound result relies on showing laminarity for
optimal witness trees.

▶ Theorem 6. For any ε > 0, there exists Steiner-Claw Free instance (Gε, Rε, cε) such that
γ(Gε,Rε,cε) >

991
732 − ε.

As a corollary of our results, we also get an improved bound on the integrality gap of the
bidirected cut relaxation for Steiner-Claw Free instances (this follows directly from combining
our upper bound with the results in [10]). Though these instances are quite specialized,
they serve the purpose of passing the message: exploiting the structure of optimal solutions
helps in choosing better witnesses, hopefully arriving at tight (upper and lower) bounds on
γ and ψ.

2 Laminarity

In this section, we prove some key structural properties of witness trees. We assume to
be given a Node (Edge) Witness Tree instance T = (V,E) with leaves R (and edge costs
c : E → R≥0), where R denotes the leaves of T , we will show that we can characterize witness
trees minimizing νT (W) (ν̄T (W)) using the following notion of laminarity. Given a witness
tree W = (R,EW), we say edges f1f2, f3f4 ∈ EW cross if the f1-f2 and f3-f4 paths in T

share an internal node but not an endpoint. We say that W is laminar if it has no crossing
edges. For nodes u, v ∈ V , we denote by Tuv the path in T between the nodes u and v.
Similarly, for e ∈ EW , we denote by Te the path in T between the endpoints of e.

The following Theorem shows that there is always a witness tree minimizing νT (W) that
is laminar.

▶ Theorem 7. Given an instance of the Node Witness Tree problem T = (V,E), let W be
the family of all witness trees for T . Then there exists a laminar witness tree W such that
νT (W) = minW ′∈W νT (W ′).

Proof. We first show that there is a witness tree W minimizing νT (W) such that the induced
subgraph of W on any maximal set of terminals that share a neighbour in V \R is a star. We
assume for the sake of contradiction that there is a maximal set of terminals S ⊆ R sharing
a neighbour v ∈ V \R, such that the induced subgraph of W on S is a set of connected
components W1, . . . ,Wi for i > 1. Without loss of generality, suppose the shortest path

ICALP 2023

79:6 Finding Almost Tight Witness Trees

between two components is from W1 to W2, and let e denote the edge of this path incident
to W2. We define W ′ := W ∪ {f}\{e}, where f is an arbitrary edge between W1 and W2.
Since {v} = Tf\R ⊊ Te\R, we have νT (W ′) < νT (W), contradicting the minimality of W .
Therefore, the induced subgraph on S is connected. We can rearrange the edges of this
subgraph to be a star as this will not affect νT (W), so we assume this holds on W for any
such S.

For a maximal set of terminals S ⊆ R that share a neighbour, by a slight abuse of
notation, we denote by S the induced star subgraph of W on S, and denote its center by
s ∈ S. We will assume without loss of generality that edges of W incident to S have endpoint
s. To see this, as S is a connected subgraph of W , any pair of edges incident to S cannot
share an endpoint outside of S, otherwise we have found a cycle in W . Furthermore, for any
edge of W incident to S where s is not an endpoint, we can change the endpoint in S of that
edge to be s and maintain the connectivity of W since S is connected. Edges changed in
this way will have the same interior nodes between their endpoints, so this does not increase
νT (W).

We assume for the sake of contradiction that the witness tree W minimizing νT (W) is not
a laminar witness tree. As W is not laminar, there exist distinct leaves r1, r2, r3, r4 ∈ R such
that e1 = r1r2, e2 = r3r4 ∈ EW are crossing. We denote the path Te1 ∩ Te2 by P . We denote
by Pi the (potentially empty) set of internal nodes of the shortest path from P to ri in T .

Since e1 and e2 are crossing edges, one of Tr1r3 or Tr1r4 contains exactly one node of P .
The same is true for r2. Without loss of generality, let us assume that the paths Tr1r3 and
Tr2r4 contain exactly one node of P . We consider by cases which component of W\{e1, e2}
contains two nodes among r1, r2, r3 and r4. See Figure 2 for an example.

Case: r1 and r3 (or similarly, r2 and r4) are in the same component of W\{e1, e2}. If
P1 = P3 = ∅, then r1 and r3 share a neighbour and thus, as shown above, e1 and e2 are
assumed to share an endpoint, and are thus not crossing.
Consider W ′ := W ∪ {r2r3}\{e1} and W ′′ := W ∪ {r1r4}\{e2}. If νT (W)− νT (W ′) > 0,
this contradicts the minimality of νT (W). Therefore, we can see

0 ≤ |V \R|(νT (W ′)− νT (W)) =
∑

u∈P3

1
w(u) + 1 −

∑
u∈P1

1
w(u)

<
∑

u∈P3

1
w(u) −

∑
u∈P1

1
w(u) + 1 = |V \R|(νT (W)− νT (W ′′))

Clearly, we have νT (W ′′) < νT (W), contradicting minimality of νT (W).
Case: r2 and r3 (or similarly, r1 and r4) are in the same component of W\{e1, e2}.
Without loss of generality we can assume that |V (P)| > 1, because if |V (P)| = 1 then we
can reduce to the previous case by relabelling the nodes r1, r2, r3 and r4. In this case,
consider W ′ := W ∪ {r1r3, r2r4} \ {e1, e2}. Therefore, we can see

|V \R| (νT (W ′)− νT (W)) ≤ −
∑
u∈P

1
w(u) < 0

Thus, we have νT (W ′) < νT (W), contradicting the minimality of νT (W). ◀

The following theorem, similar to Theorem 7, shows that there are laminar witness trees that
are optimal for the EWT problem. The proof is deferred to the full version of the paper.

▶ Theorem 8. Given an instance of the Edge Witness Tree problem T = (V,E) with edge
costs c, let W be the family of all witness trees for T . Then there exists a laminar witness
tree W such that ν̄T (W) = minW ′∈W ν̄T (W ′).

D. Hyatt-Denesik, A. Jabal Ameli, and L. Sanità 79:7

We now show that laminar witness trees are precisely the set of trees that one could
obtain with a marking-and-contraction approach. The proof of this Theorem can be found
in the full version of the paper.

▶ Theorem 9. Given a tree T = (V,E) with leaves R, a witness tree W = (R,EW) for T
can be found by marking-and-contraction if and only if W is laminar.

Incidentally, this has the following side implication. The authors of [13] gave a dynamic
program (that is also a bottom-up approach) to compute the best possible witness tree
obtainable with a marking-and-contraction scheme. Our structural results imply that their
dynamic program computes an optimal solution for the EWT problem (though for the
purpose of the approximation analysis, being able to compute the best witness tree is not
that relevant: being able to bound ψ and γ is what matters).

3 Improved approximation for CA-Node-Steiner Tree

The goal of this section is to prove Theorem 3. We will achieve this by showing ψ < 1.8596,
and by using Theorem 2. From now on, we assume we are given a tree T = (R ∪ S∗, E∗),
where each Steiner node is adjacent to at most two terminals.

3.1 Preprocessing
We first apply some preprocessing operations as in [2], that allow us to simplify our witness
tree construction. The first one is to remove the terminals from T , and then decompose T
into smaller components which will be held separately. We start by defining a final Steiner
node as a Steiner node that is adjacent to at least one terminal. We let F ⊆ S∗ denote
the set of final Steiner nodes. Since we remove the terminals from T , we will construct a
spanning tree W on F with edges in F × F . With a slight abuse of notation, we refer to
W as a witness tree: this is because [2, Section 4.1] showed that one can easily map W to
a witness tree for our initial tree T (with terminals put back), and the following can be
considered the vector imposed on S∗ by W :

w(v) := |{pq ∈ EW : v belongs to the p-q path in T [S∗]}|+ 1[v ∈ F] (1)

where 1[v ∈ F] denotes the indicator of the event “v ∈ F”, and T [S∗] is the subtree of T
induced by the Steiner nodes. See Figure 3.

So, from now on, we consider T = T [S∗]. The next step is to root T at an arbitrary
final node r ∈ F . Following [2] we can decompose T into a collection of rooted components
T1, . . . Tτ , where a component is a subtree whose leaves are final nodes and non-leaves are
non-final nodes. The decomposition will have the following properties: each Ti is rooted at a
final node ri that has degree one in Ti, r1 := r is the root of T1, ∪j<iTj is connected, and
T = ∪τ

i=1Ti. We will compute a witness tree Wi for each component Ti, and then show that
we can join these witness trees {Wi}i≥1 together to get a witness tree W for T .

3.2 Computing a witness tree Wi for a component Ti
Here we deal with a component Ti rooted at ri, and describe how to construct a witness tree
Wi. If Ti is a single edge e = riv, we simply let Wi = ({ri, v}, {riv}).

Now we assume that Ti is not a single edge. We will construct a witness tree with a
bottom-up procedure. At a high level, each node u ∈ Ti\ri looks at the subtree Qu of Ti

rooted at u, and constructs a portion of the witness tree: namely, a subtree Wu spanning

ICALP 2023

79:8 Finding Almost Tight Witness Trees

2
2

2
1

5

22 3
3 2

(a) (b)

Figure 3 Figure (a): A tree T is shown by black edges. The terminals are shown by grey squares.
The final Steiner nodes are shown by white squares, non-final Steiner nodes are shown by black dots.
Figure (b): The tree T after the terminals have been removed. The color edges indicate the three
components. A witness tree W is shown by the black dashed lines. The numbers indicate the values
of w imposed on T computed according to (1). Red dashed lines in Figure (a) show how W can be
mapped back.

the leaves of Qu (note that, in case the degree of u is 1 in Qu, we do not consider u to be a
leaf of Qu but just its root). Assume u has children u1, . . . , uk. Because of the bottom-up
procedure, each child uj has already constructed a subtree Wuj . That is, u has to decide
how to join these subtrees to get Wu.

To describe how this is done formally, we first need to introduce some more notation. For
every node u ∈ Ti\F , we select one of its children as the “marked child” of u (according to
some rule that we will define later). In this way, for every u ∈ Ti there is a unique path along
these marked children to a leaf. We denote this path by P (u), and we let ℓ(u) denote the
leaf descendent of this path. For final nodes u ∈ F , we define ℓ(u) := u and P (u) := u. For
a subtree Qu of Ti rooted at u and a witness tree Wu over the leaves of Qu, let wu be the
vector imposed on the nodes of Qu by Wu according to (1). Next, we define the following
quantity (which, roughly speaking, represents the cost-increase incurred after increasing
wu(v) for each v ∈ P (u)\ℓ(u) for the (j + 1)th time):

Cu
j :=

∑
v∈P (u)\ℓ(u)

(
Hwu(v)+j+1 −Hwu(v)+j

)
=

∑
v∈P (u)\ℓ(u)

1
wu(v) + j + 1

Algorithm 1 Computing the tree W
u.

1 u has Steiner node children u1, u2, . . . , uk, and W
uj have been defined

2 if u1, . . . , uk are all non-final, then
3 The marked child is um, minimizing Cum

1
4 else
5 Assume {u1, . . . , uk1}, 1 ≤ k1 ≤ k, are final node children of u
6 if k1 = k, or, for all j ∈ {k1 + 1, . . . , k}, Cuj

1 ≥ ϕ− δ −H2 then
7 The marked child of u is um for 1 ≤ m ≤ k1 such that Cum

1 is minimized.
8 if There is a j ∈ {k1 + 1, . . . , k} such that Cuj

1 < ϕ− δ −H2 then
9 The marked child of u is um for k1 < m ≤ k such that Cum

1 is minimized.

10 W
u ←

(⋃k
j=1 V [Quj

],
⋃k

j=1 W
uj ⋃

j ̸=m{ℓ(um)ℓ(uj)}
)

11 Return W
u

We can now describe the construction of the witness tree more formally. We begin
by considering the leaves of Ti; for a final node (leaf) u, we define a witness tree on the
(single) leaf of Qu as Wu = ({u}, ∅). For a non-final node u, with children u1, . . . , uk and

D. Hyatt-Denesik, A. Jabal Ameli, and L. Sanità 79:9

corresponding witness trees Wu1
, . . . ,W

uk , we select a marked child um for u as outlined
in Algorithm 1, setting ϕ = 1.86− 1

2100 and δ = 97
420 . With this choice, we compute Wu by

joining the subtrees Wu1
, . . . ,W

uk via the edges ℓ(um)ℓ(uj) for j ̸= m. Finally, let v be the
unique child of ri. We let Wi be equal to the tree W v plus the extra edge ℓ(v)ri, to account
for the fact that ri is also a final node.

3.3 Bounding the cost of Wi

It will be convenient to introduce the following definitions. For a component Ti and a node
u ∈ Ti \ ri, we let Wu be the tree W

u plus one extra edge eu, defined as follows. Let
a(u) be the first ancestor node of u with ℓ(a(u)) ̸= ℓ(u) (recall ℓ(ri) = ri). We then let
the edge eu := ℓ(u)ℓ(a(u)). We denote by wu the vector imposed on the nodes of Qu by
Wu := W

u + eu. Note that, with this definition, Wi = W v for v being the unique child of ri.
We now state two useful lemmas. The first one relates the functions wu and wuj for a

child uj of u. The statements (a)-(c) below can be proved similarly to Lemma 4 of [2]. We
defer its proof to the full version of the paper.

▶ Lemma 10. Let u ∈ Ti \ ri have children u1, . . . , uk, and u1 be its marked child. Then:
a wu(u) = k.
b For every j ∈ {2, . . . , k} and every node v ∈ Quj , wu(v) = wuj (v).
c For every v ∈ Qu1 \ P (u1), wu(v) = wu1(v).
d
∑

v∈P (u1)\ℓ(u1) Hwu(v) =
∑

v∈P (u1)\ℓ(u1) Hwu1 (v) +
∑k−1

j=1 C
u1
j .

Next lemma relates the “increase” of cost Cu
j to the degree of some nodes in Ti.

▶ Lemma 11. Let u ∈ Ti \ ri have children u1, . . . , uk, and u1 be its marked child. Then,
Cu

1 = Cu1
k + 1

k+1 . Furthermore, if u1 is non-final and has degree d in Ti, then:
1)
∑k

j=1(Cu1
j − C

uj

1) ≤
∑k−1

j=1

(
1

d+j −
1
d

)
; 2) Hwu(ℓ(u1)) −Hwu1 (ℓ(u1)) ≤

∑k−1
j=1

1
d+j

Proof.
1. First observe that since Cu1

1 = minj∈[k] C
uj

1 , we have Cu1
j − C

uj

1 ≤ C
u1
j − C

u1
1 . Consider

j ≥ 1, Cu1
j − C

u1
1 is equal to

=
∑

v∈P (u1)\ℓ(u)

(
Hwu1 (v)+j −Hwu1 (v)+j−1 −Hwu1 (v)+1 +Hwu1 (v)

)
=

∑
v∈P (u1)\ℓ(u)

(
1

wu1(v) + j
− 1
wu1(v) + 1

)
≤ 1
wu1(u1) + j

− 1
wu1(u1) + 1

Where the inequality follows since every term in the sum is negative. We know that
wu1(u1) = d− 1 by Lemma 10.(a), therefore, Cu1

j − C
u1
1 ≤ 1

d+j−1 −
1
d , and the claim is

proven by summing over j = 1, . . . , k.
2. To prove the second inequality, first observe that wu(ℓ(u1)) = wu1(ℓ(u1)) + k − 1.

This follows by recalling that Wu is equal to W
u1
, . . . ,W

uk plus the edges ℓ(u1)ℓ(uj)
for j ̸= 1, and eu. Thus, Hwu(ℓ(u1)) − Hwu1 (ℓ(u1)) = Hwu1 (ℓ(u1))+k−1 − Hwu1 (ℓ(u1)) =∑k−1

i=1
1

wu1 (ℓ(u1))+i . Recall u1 is not a final node, so wu1(ℓ(u1)) > d. Therefore,

k−1∑
i=1

1
wu1(ℓ(u1)) + i

≤
k−1∑
i=1

1
d+ i

. ◀

ICALP 2023

79:10 Finding Almost Tight Witness Trees

3.4 Key Lemma
To simplify our analysis, we define hW u(Qu) :=

∑
ℓ∈Qu

Hwu(ℓ), and we let |Qu| be the number
of nodes in Qu. The next lemma is the key ingredient to prove Theorem 3.

▶ Lemma 12. Let δ = 97
420 and ϕ = 1.86− 1

2100 . Let u ∈ Ti \ ri and k be the number of its
children. Let β(k) be equal to 0 for k = 0, . . . , 8 and 1

3 − δ for k ≥ 9. Then

hW u(Qu) + Cu
1 + δ + β(k) ≤ ϕ · |Qu|

Proof. The proof of Lemma 12 will be by induction on |Qu|. The base case is when |Qu| = 1,
and hence u is a leaf of Ti. Therefore, Wu is just the edge eu, and so by definition of wu we
have wu(u) = 2. We get hW u(Qu) = 1.5, Cu

1 = 0, β(k) = 0 and the claim is clear.
For the induction step: suppose that u has children u1, . . . , uk. We will distinguish 2

cases: (i) u has no children that are final nodes; (ii) u has some child that is a final node
(which is then again broken into subcases). We report here only the proof of case (i), and
defer the proof of the other case to the full version of the paper as the reasoning follows
similar arguments.

Case (i): No children of u are final

According to Algorithm 1, we mark the child um of u that minimizes Cuj

1 . Without loss of
generality, let um = u1. Furthermore, let ℓ := ℓ(u1). We note the following.

hW u(Qu) =
k∑

j=1
hW u(Quj

) +Hwu(u)

By applying Lemma 10.(a) we have Hwu(u) = Hk. By Lemma 10.(b) we see hW u(Quj) =
hW uj (Quj

) for j ≥ 2. Using Lemma 10.(c) and (d) we get hW u(Qu1) = hW u1 (Qu1) +∑k−1
j=1 C

u1
j +Hwu(ℓ) −Hwu1 (ℓ). Therefore:

hW u(Qu) =
k∑

j=1
hW uj (Quj

) +
k−1∑
j=1

Cu1
j +Hk +Hwu(ℓ) −Hwu1 (ℓ)

We apply our inductive hypothesis on Qu1 , . . . , Quk
, and use β(j) ≥ 0 for all j:

hW u(Qu) ≤
k∑

j=1

(
ϕ|Quj

| − δ − Cuj

1
)

+
k−1∑
j=1

Cu1
j +Hk +Hwu(ℓ) −Hwu1 (ℓ)

=ϕ(|Qu| − 1)− kδ − Cu1
k +

k∑
j=1

(
Cu1

j − C
uj

1
)

+Hk +Hwu(ℓ) −Hwu1 (ℓ)

Using Lemma 11, we get

≤ϕ(|Qu| − 1)− kδ − Cu
1 +

k−1∑
j=1

(
1

d+ j
− 1
d

)
+Hk+1 +

k−1∑
j=1

1
d+ j

≤ϕ|Qu| − δ − Cu
1 − β(k)

where the last inequality follows since one checks that for any k ≥ 1 and d ≥ 2 we have
−ϕ− (k− 1)δ+

∑k−1
j=1

(
1

d+j −
1
d

)
+Hk+1 +

∑k−1
j=1

1
d+j ≤ −β(k). We show this inequality the

full version of the paper. ◀

D. Hyatt-Denesik, A. Jabal Ameli, and L. Sanità 79:11

3.5 Merging and bounding the cost of W
Once the {Wi}i≥1 are computed for each component Ti, we let the final witness tree be
simply the union W = ∪iWi. Our goal now is to prove the following.

▶ Lemma 13. νT (W) ≤ ϕ = 1.86− 1
2100 .

Proof. Recall that we decomposed T into components {Ti}τ
i=1, such that ∪j≤iTj is connected

for all i ∈ [τ]. For a given i, define T ′ = ∪j<iTj , W ′ = ∪j<iWi, and let w′ be the vector
imposed on the nodes of T ′ by W ′ (for i = 1, set T ′ = ∅, W ′ = ∅, and w′ = 0). Finally,
define W ′′ = Wi ∪W ′ and let w′′ be the vector imposed on the nodes of T ′′ := T ′ ∪ Ti. By
induction on i, we will show that νT ′′(W ′′) ≤ ϕ. The statement will then follow by taking
i = τ . Recall that, for any i, ri is adjacent to a single node v in Ti, and Wi = W v.

First consider i = 1. Hence, W ′′ = W1 = W v and w′′(r1) = 2. By applying Lemma 12 to
the subtree Qv we get∑

u∈T ′′

Hw′′(u) = hW v (Qv) +Hw′′(ri) ≤ ϕ(|Qv|) +H2 ≤ ϕ(|Qv|+ 1)⇒ νT ′′(W ′′) ≤ ϕ

Now consider i > 1. In this case, w′′(ri) = w′(ri) + 1 ≥ 3. Therefore:∑
u∈T ′′

Hw′′(u) =
∑

u∈Ti\ri

Hwv(u) +
∑

u∈T ′

Hw′(u) −Hw′(ri) +Hw′(ri)+1

=
∑

u∈Ti\ri

Hwv(u) +
∑

u∈T ′

Hw′(u) + 1
w′(ri) + 1 ≤

∑
u∈Ti\ri

Hwv(u) +
∑

u∈T ′

Hw′(u) + 1
3

If v is a final node, then
∑

u∈Ti\ri
Hwv(u) = Hwv(v) = H2 and by induction∑

u∈T ′′

Hw′′(u) ≤ H3 +
∑

u∈T ′

Hw′(u) ≤ ϕ|T ′′| ⇒ νT ′′(W ′′) ≤ ϕ

If v is not a final node, then by induction on T ′ and by applying Lemma 12 to the subtree
Qv, assuming that v has k children, we can see∑

u∈T ′′

Hw′′(u) ≤ ϕ|T ′′| − Cv
1 − δ − β(k) + 1

3 ≤ ϕ|T
′′| − 1

k + 1 − δ − β(k) + 1
3

If 1 ≤ k ≤ 8, then β(k) = 0, but we have 1
3 < 431/1260 = 1

9 + δ ≤ 1
k+1 + δ. If k ≥ 9,

β(k) = 1
3 − δ and 1

3 − δ − β(k) = 0. In both cases, νT ′′(W ′′) ≤ ϕ. ◀

Note that we did not make any assumption on T , other than being a CA-Node-Steiner-Tree.
Hence, Lemma 13 yields the following corollary.

▶ Corollary 14. ψ ≤ 1.86− 1
2100 < 1.8596.

Combining Corollary 14 with Theorem 2 yields a proof of Theorem 3.

4 Improved Lower Bound on ψ

The goal of this section is to prove Theorem 4. For the sake of brevity, we will omit several
details. (see the full version of the paper for a completed proof).

ICALP 2023

79:12 Finding Almost Tight Witness Trees

Figure 4 Lower bound instance shown in black. The white squares are terminals and black circles
are Steiner nodes. Red edges form the laminar witness tree W ∗.

Sketch of Proof of Theorem 4

Consider a CA-Node-Steiner-Tree instance (G,R), where G consists of a path of Steiner
nodes s1, . . . , sq such that, for all i ∈ [q], si is adjacent to Steiner nodes ti1, ti2, ti3, and each
tij is adjacent to two terminals r1

ij and r2
ij . See Figure 4. We will refer to Bi as the subgraph

induced by si, tij , r
1
ij , r

2
ij (j = 1, 2, 3). Since G is a tree connecting the terminals, clearly the

optimal Steiner tree for this instance is T = G.
Let W ∗ be a witness tree that minimizes νT (W ∗). Recall that we can assume W ∗ to be

laminar by Theorem 7. We arrive at an explicit characterization of W ∗ in three steps. First,
we observe that, without loss of generality, we can assume that every pair of terminals r1

ij

and r2
ij are adjacent in W ∗ and that r2

ij is a leaf of W ∗. Second, using the latter of these
observations and laminarity, we show that for all i, the subgraph of W induced by r1

i1, r
1
i2, r

1
i3

can only be either (a) a star, or (b) three singletons, adjacent to a unique terminal f /∈ Bi.
We say that Bi is a center in W ∗ if (a) holds. Finally, we get rid of case (b), and essentially
arrive at the next lemma, whose proof can be found in the full version of the paper.

▶ Lemma 15. Let W be the family of all laminar witness trees over T , and let W ∗ be a
laminar witness tree such that for every i ∈ [q], Bi is a center in W ∗. Then νT (W ∗) =
minW ∈W νT (W).

Once we impose the condition that all Bi are centers, one notes that the tree W ∗ essentially
must look like the one shown in Figure 4. So it only remains to compute νT (W ∗). For every
Bi, we can compute

∑
v∈Bi

Hw∗(v), where w∗ is the vector imposed on the set S of Steiner
nodes by W ∗. For i ∈ {2, . . . , q− 1}, one notes that 1

4
∑

v∈Bi
Hw∗(v) = 1

4 (2H2 +H4 +H5) =
221/120 = 1.8416̄. Similarly, for i = 1 and q we have 1

4
∑

v∈B1
Hw∗(v) = 1

4
∑

v∈Bq
Hw∗(v) =

1
4 (2H2 +H3 +H4) = 83

48 = 1.72916̄. Therefore, we can see that νT (W ∗) =
∑

v∈S
Hw∗(v)

|S| =
1.8416̄q−2(1.8416̄−1.72916̄)

q . Thus, for q > 1
ε we have νT (W ∗) > 1.8416̄− 1

q .

5 Tight bound for Steiner-Claw Free Instances

We here prove Theorem 5. Our goal is to show that for any Steiner-Claw Free instance
(G,R, c), γ(G,R,c) ≤ 991

732 , improving over the known ln(4) bound that holds in general. From
now on, we assume that we are given an optimal solution T = (R ∪ S∗, E∗) to (G,R, c).

Simplifying Assumptions

As standard, note that T can be decomposed into components T1, . . . , Tτ , where each
component is a maximal subtree of T whose leaves are terminals and internal nodes are
Steiner nodes. Since components do not share edges of T , it is not difficult to see that one
can compute a witness tree Wi for each component Ti separately, and then take the union
of the {Wi}i≥1 to get a witness tree W whose objective function ν̄T (W) will be bounded

D. Hyatt-Denesik, A. Jabal Ameli, and L. Sanità 79:13

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11

Figure 5 Edges of T are shown in black. Red edges show W . Here, q = 11, tα = 5 and σ = 5.
Initially r5 and r10 are picked as the centers of stars in W . Since σ > ⌈ tα

2 ⌉, r1 is also the center of a
star. Since σ + tα⌊ q−σ

tα
⌋ > q − ⌈ tα

2 ⌉, rq is not the center of a star.

by the maximum among ν̄Ti
(Wi). Hence, from now on we assume that T is made by one

single component. Since T is a solution to a Steiner-claw free instance, each Steiner node
is adjacent to at most 2 Steiner nodes. In particular, the Steiner nodes induce a path in
T , which we enumerate as s1, . . . , sq. We will assume without loss of generality that each
sj is adjacent to exactly one terminal rj ∈ R: this can be achieved by replacing a Steiner
node incident to p terminals, with a path of length p made of 0-cost edges, if p > 1, and
with an edge of appropriate cost connecting its 2 Steiner neighbors, if p = 0. We will also
assume that q > 4. For q ≤ 4, it is not hard to compute that γ(G,R,c) ≤ 991

732 . (For sake of
completeness we explain this in the full version of the paper)

Witness tree computation and analysis

We denote by L ⊆ E∗ the edges of T incident to a terminal, and by O = E∗ \ L the edges of
the path s1, . . . , sq. Let α := c(O)/c(L). For a fixed value of α ≥ 0, we will fix a constant tα
as follows: If α ∈ [0, 32/90], then tα = 5, if α ∈ (32/90, 1), then tα = 3, and if α ≥ 1, then
tα = 1. Given α (and thus tα), we construct W using the randomized process outlined in
Algorithm 2. At a high level, starting from a random offset, Algorithm 2 adds sequential
stars of tα terminals to W , connecting the centers of these stars together in this sequence.
See Figure 5 for an example.

Algorithm 2 Computing the witness tree W .

1 Initialize W = (R,EW = ∅)
2 Sample uniformly at random σ from {1, . . . , tα}.
3 EW ← {rσrσ+k|1 ≤ |k| ≤

⌊
tα

2
⌋
, 1 ≤ σ + k ≤ q}

4 Initialize j=1
5 while j ≤ q−σ

tα
do

6 ℓ := σ + tαj

7 EW ← EW ∪ {rℓrℓ+k|1 ≤ |k| ≤
⌊

tα

2
⌋
, 1 ≤ ℓ+ k ≤ q}

8 EW ← EW ∪ {rσ+tα(j−1)rσ+tαj}
9 j ← j + tα

10 if σ > ⌈ tα

2 ⌉ then
11 EW ← EW ∪

{
r1rk|2 ≤ k ≤ σ − ⌈ tα

2 ⌉
}
∪ {r1rσ}

12 j ← ⌊ q−σ
tα
⌋

13 if σ + tαj ≤ q − ⌈ tα

2 ⌉ then
14 EW ← EW ∪ {rkrq|σ + tαj + ⌈ tα

2 ⌉ ≤ k ≤ q − 1} ∪ {rσ+tαjrq}
15 Return W

Under this random scheme, we define λL(tα) := maxe∈L E[Hw̄(e)], and λO(tα) :=
maxe∈O E[Hw̄(e)].

ICALP 2023

79:14 Finding Almost Tight Witness Trees

▶ Lemma 16. For any α ≥ 0, λL(tα) ≤ 1
tα
Htα+1 + tα−1

tα
, and λO(tα) ≤ 1

tα
+ 2

tα

∑⌈ tα
2 ⌉

i=2 Hi.

Proof. Let W = (R,EW) be a witness tree returned from running Algorithm 2 with α and
t := tα, and let w be the vector imposed on E∗ by W . If Algorithm 2 samples σ ∈ {1, . . . , t},
then we say that the terminals rσ+tj are marked by the algorithm. Moreover, if σ > ⌈ tα

2 ⌉
(resp. σ + tα⌊ q−σ

tα
⌋ ≤ q − ⌈ tα

2 ⌉) then r1 (resp. rq) is also considered marked.
1. Consider edge e = sjsj+1 ∈ O, with j ∈ {⌈ t

2⌉, . . . , q−⌈
t
2⌉}. Let m ∈ {j−⌊ t

2⌋, . . . , j+⌊ t
2⌋},

such that σ mod t = m mod t. Observe that in this case rm is marked. If m = j−x for
x ∈ {0, . . . , ⌊ t

2⌋}, then w(sjsj+1) = ⌈ t
2⌉ − x. Similarly if m = j + x for x ∈ {1, . . . , ⌊ t

2⌋},
then w(sjsj+1) = ⌈ t

2⌉ − x+ 1. Since m mod t = σ mod t with probability 1
t , we have

E[Hw(sjsj+1)] = 1
t + 2

t

∑⌈ t
2 ⌉

k=2 Hk.
Now assume j < ⌈ t

2⌉ (the case j > q − ⌈ t
2⌉ can be handled similarly). Recalling that

since t is odd it is not hard to determine the value of w(sjsj+1) by cases, depending on
the value of σ.
a. 1 ≤ σ ≤ j: Then w(sjsj+1) = ⌈ t

2⌉+ σ − j.
b. j + 1 ≤ σ ≤ ⌈ t

2⌉: Then w(sjsj+1) = j.
c. ⌈ t

2⌉+ 1 ≤ σ ≤ j + ⌊ t
2⌋: Then w(sjsj+1) = ⌈ t

2⌉ − σ + j + 1.
d. j + ⌈ t

2⌉ ≤ σ ≤ t: Then w(sjsj+1) = σ − j − ⌈ t
2⌉+ 1.

E[Hw(sjsj+1)] =

= 1
t

 j∑
σ=1

H⌈ t
2 ⌉+σ−j +

⌈ t
2 ⌉∑

σ=j+1
Hj +

j+⌊ t
2 ⌋∑

σ=⌈ t
2 ⌉+1

H⌈ t
2 ⌉−σ+j+1 +

t∑
σ=j+⌈ t

2 ⌉

Hσ−j−⌈ t
2 ⌉+1


= 1
t

 ⌈ t
2 ⌉∑

i=⌈ t
2 ⌉−j+1

Hi +
(⌈

t

2

⌉
− j
)
Hj +

j∑
i=2

Hi +
⌈ t

2 ⌉−j∑
i=1

Hi



= 1
t

⌈ t
2 ⌉∑

i=1
Hi +

(⌈
t

2

⌉
− j
)
Hj +

j∑
i=2

Hi

 <
1
t

1 + 2
⌈ t

2 ⌉∑
i=2

Hi

 .

2. Consider edge e = sjrj ∈ L. We first show the bound for j ∈ {1, . . . , q}. Algorithm 2
marks terminal ri with probability 1

t . If ri is marked, then w(e) ≤ t. If ri is not marked,
then w(e) = 1. Therefore, E[Hw(e)] ≤ 1

tHt+1 + t−1
t

Now consider edge e = s1r1 (the case e = sqrq can be handled similarly). We consider
specific values of σ ∈ {1, . . . , t} sampled by Algorithm 2. With probability 1

t , we have
σ = 1, so r1 is marked initially and w(e) = ⌈t/2⌉. For σ = 2, . . . , ⌈t/2⌉, r1 is unmarked
and w(e) = 1. If σ > ⌈t/2⌉, then r1 is marked by the algorithm and w(e) = σ − ⌈t/2⌉.
Therefore, we can see

E[Hw(r1s1)] = 1
t

H⌈t/2⌉ +
⌊
t

2

⌋
+

t−⌈t/2⌉∑
k=1

Hk


We let g(t) be equal to the equality above. It remains to show that g(t) ≤ 1

tHt+1 + t−1
t

:=
f(t) for t ∈ {1, 3, 5}.

g(1) = H1 = 1 < H2 = f(1)

g(3) = 1
3 (H2 + 1 +H1) = 1.16̄ < 1.361̄ = 1

3(H4 + 2) = f(3)

g(5) = 1
5 (H3 + 2 +H1 +H2) = 1.26̄ < 1.29 = 1

5(H6 + 4) = f(5)

Combining these two facts gives us the bound on λLi
(t), for t ∈ {1, 3, 5}. ◀

D. Hyatt-Denesik, A. Jabal Ameli, and L. Sanità 79:15

122

1 4 1

122

1 4 1

122

1 4 1

122

1 4 1 11

1

Figure 6 Lower bound instance shown in black with c(e) = 1 for all the edges in L and c(e) = α

for all the edges in O, for α = 32
90 . The white squares are terminals and black circles are Steiner

nodes. Red edges form the laminar witness tree W ∗, with the numbers next to each edge the value
of w imposed on T .

The following Lemma is proven in the full version of the paper.

▶ Lemma 17. For any α ≥ 0, the following bounds holds:

1
α+ 1

(
1
tα
Htα+1 + tα − 1

tα
+ α

(
1
tα

+ 2
tα

⌈ tα
2 ⌉∑

i=2
Hi

))
≤ 991

732

We are now ready to prove the following:

▶ Lemma 18. E[ν̄T (W)] ≤ 991
732 .

Proof. One observes:∑
e∈L∪O

c(e)E[Hw̄(e)] ≤
∑
e∈L

c(e)λL(tα) +
∑
e∈O

c(e)λO(tα) = (λL(tα) + αλO(tα))
∑
e∈L

c(e)

Therefore E[νT (W)] is bounded by:∑
e∈L∪O c(e)E[Hw̄(e)]∑

e∈L∪O c(e)
≤

(λL(tα) + αλO(tα))
∑

e∈L c(e)
(α+ 1)

∑
e∈L c(e)

= λL(tα) + αλO(tα)
α+ 1 ≤ 991

732 .

where the last inequality follows using Lemma 16 and 17. ◀

Now Theorem 5 follows by combining Lemma 18 with Theorem 1 in which γ is replaced by
the supremum taken over all Steiner-claw free instances (rather than over all Steiner Tree
instances).

Tightness of the bound

We conclude this section by spending a few words on Theorem 6. Our lower-bound instance is
obtained by taking a tree T on q Steiner nodes, each adjacent to one terminal, with c(e) = 1
for all the edges in L and c(e) = α for all the edges in O, for α = 32

90 . Similar to Section 3, a
crucial ingredient for our analysis is in utilizing Theorem 8 stating that there is an optimal
laminar witness tree. See Figure 6. We use this to show that there is an optimal witness
tree for our tree T , whose objective value is at least 991

732 − ε. Details can be found in the full
version of the paper.

References
1 David Adjiashvili. Beating approximation factor two for weighted tree augmentation with

bounded costs. ACM Trans. Algorithms, 15(2):19:1–19:26, 2019.
2 Haris Angelidakis, Dylan Hyatt-Denesik, and Laura Sanità. Node connectivity augmentation

via iterative randomized rounding. Mathematical Programming, pages 1–37, 2022.

ICALP 2023

79:16 Finding Almost Tight Witness Trees

3 Manu Basavaraju, Fedor V. Fomin, Petr A. Golovach, Pranabendu Misra, M. S. Ramanujan,
and Saket Saurabh. Parameterized algorithms to preserve connectivity. In Proceedings of the
41st International Colloquium on Automata, Languages, and Programming (ICALP), pages
800–811, 2014.

4 Jaroslaw Byrka, Fabrizio Grandoni, and Afrouz Jabal Ameli. Breaching the 2-approximation
barrier for connectivity augmentation: a reduction to Steiner tree. In Proceedings of the 52nd
Annual ACM SIGACT Symposium on Theory of Computing (STOC), pages 815–825, 2020.

5 Jaroslaw Byrka, Fabrizio Grandoni, Thomas Rothvoß, and Laura Sanità. Steiner tree approx-
imation via iterative randomized rounding. J. ACM, 60(1):6:1–6:33, 2013.

6 Federica Cecchetto, Vera Traub, and Rico Zenklusen. Bridging the gap between tree and
connectivity augmentation: unified and stronger approaches. In Proceedings of the 53rd Annual
ACM SIGACT Symposium on Theory of Computing (STOC), pages 370–383. ACM, 2021.

7 Joseph Cheriyan and Zhihan Gao. Approximating (unweighted) tree augmentation via lift-
and-project, part I: stemless TAP. Algorithmica, 80(2):530–559, 2018.

8 Joseph Cheriyan and Zhihan Gao. Approximating (unweighted) tree augmentation via lift-
and-project, part II. Algorithmica, 80(2):608–651, 2018.

9 Efim A Dinitz, Alexander V Karzanov, and Michael V Lomonosov. On the structure of the
system of minimum edge cuts in a graph. Issledovaniya po Diskretnoi Optimizatsii, pages
290–306, 1976.

10 Andreas Emil Feldmann, Jochen Könemann, Neil Olver, and Laura Sanità. On the equivalence
of the bidirected and hypergraphic relaxations for steiner tree. Mathematical programming,
160(1):379–406, 2016.

11 Samuel Fiorini, Martin Groß, Jochen Könemann, and Laura Sanità. Approximating weighted
tree augmentation via chvátal-gomory cuts. In Proceedings of the 29th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 817–831. SIAM, 2018.

12 Greg N. Frederickson and Joseph JáJá. Approximation algorithms for several graph augment-
ation problems. SIAM J. Comput., 10(2):270–283, 1981.

13 Michel X. Goemans, Neil Olver, Thomas Rothvoß, and Rico Zenklusen. Matroids and integrality
gaps for hypergraphic steiner tree relaxations. In Proceedings of the Forty-Fourth Annual
ACM Symposium on Theory of Computing, STOC ’12, pages 1161–1176, New York, NY, USA,
2012. Association for Computing Machinery. doi:10.1145/2213977.2214081.

14 Fabrizio Grandoni, Christos Kalaitzis, and Rico Zenklusen. Improved approximation for
tree augmentation: saving by rewiring. In Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing (STOC), pages 632–645. ACM, 2018.

15 Dylan Hyatt-Denesik, Afrouz Jabal Ameli, and Laura Sanità. Finding almost tight witness
trees, 2023. arXiv:2211.12431.

16 Zeev Nutov. 2-node-connectivity network design. In Proceedings of the 18th International
Workshop on Approximation and Online Algorithms (WAOA), volume 12806 of Lecture Notes
in Computer Science, pages 220–235. Springer, 2020.

17 Zeev Nutov. Approximation algorithms for connectivity augmentation problems. In Proceedings
of the 16th International Computer Science Symposium in Russia (CSR), volume 12730, pages
321–338. Springer, 2021.

18 Vera Traub and Rico Zenklusen. A (1.5+ε)-approximation algorithm for weighted connectivity
augmentation, 2022. doi:10.48550/arXiv.2209.07860.

19 Vera Traub and Rico Zenklusen. A better-than-2 approximation for weighted tree augmentation.
In 2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pages
1–12. IEEE, 2022.

20 Vera Traub and Rico Zenklusen. Local search for weighted tree augmentation and steiner tree.
In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 3253–3272. SIAM, 2022.

https://doi.org/10.1145/2213977.2214081
https://arxiv.org/abs/2211.12431
https://doi.org/10.48550/arXiv.2209.07860

Efficient Caching with Reserves via Marking
Sharat Ibrahimpur # Ñ

Department of Mathematics, London School of Economics and Political Science, UK

Manish Purohit # Ñ

Google Research, USA

Zoya Svitkina #

Google Research, USA

Erik Vee #

Google Research, USA

Joshua R. Wang # Ñ

Google Research, USA

Abstract
Online caching is among the most fundamental and well-studied problems in the area of online
algorithms. Innovative algorithmic ideas and analysis – including potential functions and primal-dual
techniques – give insight into this still-growing area. Here, we introduce a new analysis technique
that first uses a potential function to upper bound the cost of an online algorithm and then pairs that
with a new dual-fitting strategy to lower bound the cost of an offline optimal algorithm. We apply
these techniques to the Caching with Reserves problem recently introduced by Ibrahimpur et al. [10]
and give an O(log k)-competitive fractional online algorithm via a marking strategy, where k denotes
the size of the cache. We also design a new online rounding algorithm that runs in polynomial time
to obtain an O(log k)-competitive randomized integral algorithm. Additionally, we provide a new,
simple proof for randomized marking for the classical unweighted paging problem.

2012 ACM Subject Classification Theory of computation → Caching and paging algorithms

Keywords and phrases Approximation Algorithms, Online Algorithms, Caching

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.80

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2305.02508 [11]

Funding Sharat Ibrahimpur : Received funding from the following sources: NSERC grant 327620-09
and an NSERC DAS Award, European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement no. ScaleOpt–757481), and
Dutch Research Council NWO Vidi Grant 016.Vidi.189.087.

1 Introduction

Caching is a critical component in many computer systems, including computer networks,
distributed systems, and web applications. The idea behind caching is simple: store frequently
used data items in a cache so that subsequent requests can be served directly from the
cache to reduce the resources required for data retrieval. In the classical unweighted caching
problem, a sequence of page requests arrives one-by-one and an algorithm is required to
maintain a small set of pages to hold in the cache so that the number of requests not served
from the cache is minimized.

Traditional caching algorithms, both in theory and practice, are designed to optimize the
global efficiency of the system and aim to maximize the hit rate, i.e., fraction of requests
that are served from the cache. However, such a viewpoint is not particularly suitable for

EA
T
C
S

© Sharat Ibrahimpur, Manish Purohit, Zoya Svitkina, Erik Vee, and Joshua R. Wang;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 80; pp. 80:1–80:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:s.ibrahimpur@lse.ac.uk
http://www.math.uwaterloo.ca/~s26ibrah
https://orcid.org/0000-0002-1575-9648
mailto:mpurohit@google.com
https://sites.google.com/view/manishpurohit
https://orcid.org/0000-0002-8650-2022
mailto:zoya@google.com
mailto:erikvee@google.com
mailto:joshuawang@google.com
https://sites.google.com/site/joshw0/
https://doi.org/10.4230/LIPIcs.ICALP.2023.80
https://arxiv.org/abs/2305.02508
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

80:2 Efficient Caching with Reserves via Marking

cache management in a multi-user or multi-processor environment. Many cloud computing
services allow multiple users to share the same physical workstations and thereby share the
caching system. In such multi-user environments, traditional caching policies can lead to
undesirable outcomes as some users may not be able to reap any benefits of the cache at all.
Recently, Ibrahimpur et al. [10] introduced the Caching with Reserves model that ensures
certain user-level fairness guarantees while still attempting to maximize the global efficiency
of the system. In this formulation, a cache of size k is shared among m agents and each agent
i is guaranteed a reserved cache size of ki. An algorithm then attempts to minimize the total
number of requests that are not served from the cache while guaranteeing that any time step,
each agent i holds at least ki pages in the cache. Unlike the classical paging problem, Caching
with Reserves is NP-complete even in the offline setting when the algorithm knows the entire
page request sequence ahead of time and Ibrahimpur et al. [10] gave a 2-approximation
algorithm. They also gave an O(log k)-competitive online fractional algorithm for Caching
with Reserves via a primal-dual technique and then design a rounding scheme to obtain
an O(log k)-competitive online randomized algorithm. Unfortunately, the rounding scheme
presented in [10] does not run in polynomial time and the fractional primal-dual algorithm,
while simple to state, also does not yield itself to easy implementation.

Caching and its many variants have been among the most well-studied problems in
theoretical computer science. It has long been a testbed for novel algorithmic and analysis
techniques and it has been investigated via general techniques such as potential function
analysis, primal-dual algorithms, and even learning-augmented algorithms. For the classical
unweighted caching problem, a particularly simple algorithm, randomized marking [9], is
known to yield the optimal competitive ratio (up to constant factors). At any point in
time, the randomized marking algorithm partitions the set of pages in cache into marked
and unmarked pages and upon a cache miss, it evicts an unmarked page chosen uniformly
at random. Cache hits and pages brought into the cache are marked. When a cache miss
occurs, but there are no more unmarked pages, a new phase begins, and all pages in the
cache become unmarked. In this paper, we build upon this algorithm, adapting it to caching
with reserves.

Our Contributions
We study the Caching with Reserves model of Ibrahimpur et al. [10] in the online setting
and improve upon those results. Our first main result is a simpler fractional algorithm that
is a generalization of randomized marking for classical caching.

▶ Theorem 1. There is an O(log k)-competitive fractional marking algorithm for online
Caching with Reserves. The competitive guarantee holds even when the optimal offline
algorithm is allowed to hold fractional pages in the cache.

We remark that our algorithm in Theorem 1 and its analysis are more involved than
those of the classical randomized marking algorithm. One complication is that due to the
reserve constraints, a marking-style algorithm for the caching with reserves setting cannot
evict an arbitrary unmarked page. Another key difficulty comes from the fact that even
the notion of a phase is non-trivial to define in our setting. In particular, unlike in classical
caching, it can happen that the cache still contains unmarked pages, but none of them can
be evicted to make space for a new page, because of the reserve constraints. Thus, we need a
rule to isolate agents whose reserve constraints prevent the algorithm from having a clean
end of a phase, while also ensuring that the already marked pages of such isolated agents are
not erased prematurely. To this end, we introduce the notion of global and local phases to
effectively model the state of each agent. We elaborate on this in Section 3.1.

S. Ibrahimpur, M. Purohit, Z. Svitkina, E. Vee, and J. R. Wang 80:3

Our analysis of the fractional marking algorithm introduces two novel components that
may be of independent interest. First, we upper-bound the total cost incurred by our fractional
marking algorithm using a new potential function. This potential function, introduced in
Section 3.3, depends only on the decisions of the algorithm and is independent of the optimal
solution. To the best of our knowledge, all previous potential function based analyses of
(variants of) caching [4, 5, 6, 10] define a potential function that depends on the optimal
solution. Second, we introduce a new lower bound for the cost of the optimal solution via
the dual-fitting method. Our techniques also yield a new simple proof that the classical
randomized marking [9] for unweighted paging is O(log k)-competitive (see the full version
[11] for more details).

We also design a new online rounding algorithm that converts a deterministic, fractional
algorithm into a randomized, integral algorithm while only incurring a constant factor loss
in the competitive ratio. Via a careful discretization technique (inspired by Adamaszek et al.
[2]), the new rounding algorithm runs in polynomial time and only uses limited randomization.
Our fractional marking algorithm (Algorithm 1) maintains that at any point in time, a
particular page p is either completely in the cache or at least 1/k fraction of the page has
been evicted. We exploit this key property to show that the fractional solution at any time
t can be discretized so that the fraction of any page that is evicted is an integral multiple
of 1/k3. This discretization allows us to maintain a distribution over feasible integer cache
states with bounded support.

▶ Theorem 2. There is a polynomial-time O(log k)-competitive randomized integral algorithm
for online caching with reserves.

Other Related Work
The unweighted caching (also known as paging) problem has been widely studied and its
optimal competitive ratio is well-understood even up to constant factors. Tight algorithms
[1, 14] are known that yield a competitive ratio of exactly Hk, where Hk is the kth harmonic
number. Recently, Agrawal et al. [3] consider the parallel paging model where a common
cache is shared among p agents – each agent is presented with a request sequence of pages and
the algorithm must decide how to partition the cache among agents at any time. It allows the
p processors to make progress simultaneously, i.e., incur cache hits and misses concurrently.
Multi-agent paging has also been extensively studied in the systems community [7, 16, 17]
often in the context of caching in multi-core systems. Closely related to the Caching with
Reserves setting, motivated by fairness constraints in multi-agent settings, a number of recent
systems [12, 13, 15, 18] aim to provide isolation guarantees to each user, i.e., guarantee
that the cache hit rate for each user is at least as much as what it would be if each user is
allocated its own isolated cache. Also motivated by fairness constraints, Chiplunkar et al. [8]
consider the Min-Max paging problem where the goal is to minimize the maximum number
of page faults incurred by any agent.

2 Preliminaries and Notation

Formally, an instance of the Caching with Reserves problem consists of the following. We are
given a number of agents m and a total (integer) cache capacity k. Let [m] denote the set
{1, . . . , m}. Each agent i ∈ [m] owns a set of pages P(i) (referred to as i-pages) and has a
reserved cache size ki ≥ 0. Pages have a unique owner, i.e. P(i)∩P(j) = ∅ for all i ̸= j, and
we use P ≜ ∪i∈[m]P(i) to refer to the universe of all pages. For any page p ∈ P , let ag(p) be

ICALP 2023

80:4 Efficient Caching with Reserves via Marking

the unique agent that owns p. We assume without loss of generality that at least one unit of
cache is not reserved:

∑
i∈[m] ki < k.1 At each timestep t, a page pt ∈ P is requested. We

can wrap all these into an instance tuple: σ = (m, k, {P(i)}, {ki}, {pt}).
An integral algorithm for the Caching with Reserves problem maintains a set of k pages

in the cache such that for each agent i, the cache always contains at least ki pages from P(i).
At time t, the page request pt is revealed to the algorithm. If this page is not currently in the
cache, then the algorithm is said to incur a cache miss and it must fetch pt into the cache by
possibly evicting another page qt. For any (integral) algorithm A we write its total cache
misses on instance σ as costA(σ).

A fractional algorithm for the Caching with Reserves problem maintains a fraction
xp ∈ [0, 1] for how much each page p ∈ P is in the cache such that the total size of pages
in the cache is at most k, i.e,

∑
p∈P xp ≤ k, and the total size of i-pages is at least ki, i.e.,∑

p∈P(i) xp ≥ ki. At time t, the page request pt is revealed to the algorithm, which incurs
a fractional cache miss of size 1 − xpt

. The algorithm must then fully fetch pt into cache
(xpt ← 1) by possibly evicting other pages. For any (fractional) algorithm A we again write
its total size of cache misses on instance σ as costA(σ).

Let costOP T (σ) be the cost of the optimal offline algorithm on instance σ.

▶ Definition 3 (Competitive Ratio). An online algorithm A for Caching with Reserves is
said to be c-competitive, if for any instance σ, E[costA(σ)] ≤ c · costOP T (σ) + b, where b is a
constant independent of the number of page requests in σ. The expectation is taken over all
the random choices made by the algorithm (if any).

3 Fractional O(log k)-Competitive Algorithm for Caching with
Reserves

For any time t and page p ∈ P , the algorithm maintains a variable yt
p ∈ [0, 1] representing the

portion of page p that is outside the cache. Then xt
p ≜ 1− yt

p represents the portion of p that
is in cache. Algorithm 1 ensures feasibility at all times t: the total of all y values is exactly
the complementary cache size |P|−k, i.e.,

∑
p∈P yt

p = |P|−k; and the total y value for pages
of any agent i is within its respective complementary reserve size,

∑
p∈P(i) yt

p ≤ |P(i)| − ki.
When a request for page pt arrives at time t, the algorithm fully fetches pt into the cache
by paying a fetch-cost of yt

pt
while simultaneously evicting a total of yt

pt
amount of other

suitably chosen pages.

3.1 Fractional Algorithm
The complete algorithm (referred to as Algorithm A in the proofs) is presented in Algorithm 1.
We present a high-level discussion here. At any time t, we say that an agent i is tight if∑

p∈P(i) xt
p = ki, i.e., the algorithm is not allowed to further evict any pages (even fractionally)

of agent i. Conversely, an agent i is non-tight if
∑

p∈P(i) xt
p > ki.

The algorithm is a fractional marking algorithm and runs in phases where each phase
corresponds to a maximal sequence of page requests that can be served while maintaining
feasibility and ensuring that no “marked” pages are evicted. Within each phase, the currently
requested page pt is fully fetched into cache by continuously evicting an infinitesimal amount
of an “available” (described below) unmarked page q with the smallest yq value; if there are
multiple choices of q, then all of them are simultaneously evicted at the same rate. Page pt

gets marked after it has been served and this mark may only be erased at the end of a phase.

1 If all of cache is reserved, the problem decomposes over agents into the standard caching task.

S. Ibrahimpur, M. Purohit, Z. Svitkina, E. Vee, and J. R. Wang 80:5

At the end of a phase, an agent i is designated as isolated if strictly fewer than ki i-pages
are marked in the cache at this time point. This designation changes to non-isolated as soon
as ki i-pages get marked at some point in the future. An isolated agent essentially runs a
separate instance of caching on its own pages and in its own reserved space. At the end of a
phase, the marks of pages owned by non-isolated agents (i.e., agents with at least ki marked
i-pages) are erased.

It remains to describe when a page q is considered available for eviction. Clearly, yt
q < 1

must hold, since otherwise page q is already fully outside the cache. Moreover, ag(q) must
be non-tight, i.e., evicting page q must not violate the reserve constraint of the agent that
owns it. The last condition for q to be considered available for eviction depends on whether
the agent it := ag(pt) is isolated or not: (i) if agent it is isolated, then ag(q) = it should
hold, i.e., only unmarked it-pages are available for eviction; and (ii) if agent it is not isolated,
then ag(q) should also be non-isolated. We recall again that among all available pages for
eviction, pages with the smallest yt

q value are evicted first.

Notation. Let I(t) ⊊ [m] denote the set of isolated agents at time t. For a global phase r0,
we use I(r0) to denote the set of isolated agents at the end of phase r0. Let T (t) denote
the set of tight agents at time t. At any time t, let rt

i denote the value of the local phase
counter ri for agent i, and let Ri = rT

i be the total number of local phases for agent i. By
definition, for any agent i ∈ [m], P (i, ri − 1) and P (i, ri) denote the set of i-pages in the
cache (integrally) at the beginning of the rith local phase and the end of the rith local phase
for agent i, respectively. For any agent i ∈ [m], let M(i, t) ⊆ P(i) denote the set of marked
i-pages in the cache and U(i, t) = P (i, rt

i − 1) \M(i, t) denote the set of unmarked i-pages.
We emphasize that the notion of unmarked pages will only be relevant while referring to

pages in P (i, rt
i − 1) for some i, t; in particular, every i-page q ∈ P(i) \ (P (i, rt

i − 1)∪M(i, t))
is not marked, but we do not refer to it as unmarked. Analogous to the notion of clean and
stale pages used by the randomized marking algorithm [9], we define clean, pseudo-clean
and stale pages as follows. Fix an agent i and let ri be its local phase counter at time t.
Any i-page q ∈ P (i, ri − 1) is considered stale. The currently requested page pt is said to be
clean if pt /∈ P (i, ri − 1). Next, we say that the currently requested page pt is pseudo-clean if
pt ∈ P (i, ri − 1) and yt

pt
= 1 holds right before Algorithm A starts to fetch pt into the cache.

Lemmas 7 and 8 show that a pseudo-clean page necessarily belongs to an agent who was
isolated at the start of (global) phase r0 but is non-isolated at time t. To simplify notation,
we drop the superscript t from all notation whenever the time index is clear from the context.

The following lemma compiles a list of key invariants that are maintained throughout the
execution of the algorithm that follow directly from an examination of Algorithm 1.

▶ Lemma 4. Algorithm 1 maintains the following invariants.
(i) When a new phase begins, all marked pages belong to isolated agents.
(ii) At any time t, all isolated agents are tight.
(iii) At any time t and for any agent i, all unmarked pages of agent i have the same y value.
(iv) Any page belonging to an isolated agent is (fractionally) evicted only in those timesteps

when a different page of the same agent has been requested.

The following lemmas show that the algorithm is well-defined and that the operations in
Lines 12 and 18 of Algorithm 1 are always feasible.

2 Agent it is considered non-tight here because fetching pt while evicting other q ∈ P(it) \ pt does not
violate reserve feasibility.

ICALP 2023

80:6 Efficient Caching with Reserves via Marking

Algorithm 1 Fractional Marking Algorithm for Caching with Reserves.

1 /* Initialization */
2 r0 ← 1 /* global phase counter */
3 ri ← 1, ∀i ∈ [m] /* local phase counters */
4 Let P (i, 0) ⊂ P(i) be set of i-pages in the initial cache (assume |P (i, 0)| ≥ ki) ∀i ∈ [m]
5 All agents i ∈ [m] are non-isolated and all pages p in the cache are unmarked
6 for each page request pt of agent it do
7 if ypt = 0, i.e., xpt = 1, then
8 Mark page pt and serve the request.
9 else if agent it is isolated, then

10 /* Continuously fetch page pt while uniformly evicting all unmarked
it-pages. */

11 Set ypt ← 0, mark page pt and serve the request.
12 Increase yq at the same rate for all unmarked it-pages in the cache until the cache

becomes feasible, i.e.
∑

p∈P yp ≥ |P| − k holds.
13 if agent it now has ki marked pages then
14 Designate it as non-isolated

15 else if ∃ page q owned by some non-tight agent2and satisfying yq < 1, then
16 /* Continuously fetch page pt while uniformly evicting all unmarked

pages (belonging to any non-tight agent) with the least y-value. */
17 Set ypt ← 0, mark page pt and serve the request.
18 Increase yq at the same rate for all unmarked pages of non-tight agents with the

smallest y values until the cache becomes feasible, i.e.
∑

p∈P yp ≥ |P| − k holds.
19 else
20 /* End of phase */
21 for each agent i ∈ [m] do
22 if i has strictly fewer than ki marked pages, then
23 Designate i as isolated.
24 else
25 /* i is non-isolated and undergoes a phase reset */
26 Set P (i, ri)← collection of all (integral and marked) i-pages in cache.
27 Set ri ← ri + 1
28 All marked i-pages are now unmarked

29 Set r0 ← r0 + 1
30 Re-process the current page request pt in the new phase

▶ Lemma 5. If the requested page pt has xt
pt
∈ [0, 1) and agent it is isolated, then pt can be

fetched fully by evicting unmarked pages of agent it.

Proof. As agent it is isolated when page pt is requested,
∑

p∈P(i) xt
p = ki (by invariant (ii)

in Lemma 4) and it has fewer than ki marked pages in cache. Hence
∑

p∈U(i,t) xt
p ≥ 1 and∑

p∈U(i,t)\{pt} xt
p ≥ 1− xt

pt
. ◀

▶ Lemma 6. If the requested page pt has 0 < xt
pt

< 1 and its owner it is non-isolated, then
there is always enough fractional mass of pages belonging to non-tight agents that can be
evicted to fully fetch page pt. In particular, line 18 of Algorithm 1 is well-defined.

Proof. Suppose page pt is fetched in a continuous manner. To show that page pt can be
fetched fully, it suffices to show that at any instantaneous time t when xt

pt
< 1, there always

exists an unmarked page q belonging to a non-tight agent i such that xt
q > 0, i.e. page

S. Ibrahimpur, M. Purohit, Z. Svitkina, E. Vee, and J. R. Wang 80:7

q can be evicted. Observe that k =
∑

q∈P xt
q =

∑
i∈T (t) ki +

∑
i/∈T (t)

∑
q∈P(i) xt

q. Due to
integrality of k and {ki}i∈[m], we must have

∑
i/∈T (t)

∑
q∈P(i) xt

q is an integer. Since any
marked page q always has xt

q = 1, µ :=
∑

i/∈T (t)
∑

q∈U(i,t) xt
q is also an integer. Further,

since it /∈ T (t) and xt
pt

> 0, we must have µ ≥ 1 and hence there exists a page q belonging
to some non-tight agent i with xt

q > 0 as desired. ◀

Since we always evict an available page with the least y value, at any time step t, all
available pages (i.e., unmarked pages q belonging to non-tight agents and satisfying yq < 1)
have the same y value at all times. We denote this common y-value by h∗ and refer to the
corresponding set of evictable pages (with y-value h∗) as the frontier. The following two key
structural lemmas formalize this property.

▶ Lemma 7. At any time t, let i be an agent that was isolated at the beginning of the current
phase, and let q be one of its unmarked pages. Then yt

q < 1 if and only if i is still isolated at
time t.

Proof. For the if direction, suppose that i is still isolated. By invariant (ii), it is also tight.
By invariant (iii), all its unmarked pages have the same x-value and in total they occupy
ki − |M(i, t)| > 0 units of cache space. Thus, xt

q > 0 and yt
q < 1.

For the only if direction, suppose that i is no longer isolated. Just before the kith i-page
to be marked was requested, (ki − 1) i-pages were marked. Since i was tight, the total x

value of all its unmarked pages must have been 1. Then the algorithm replaced all of them
with the kith marked page, and the x-value of all remaining unmarked pages became 0. Thus,
the property holds for a newly non-isolated agent i. This property continues to hold for the
rest of the phase since yq never decreases for an unmarked page. ◀

▶ Lemma 8. At any time t, there is a value h∗
t ∈ [0, 1] such that: for any agent i that was

non-isolated at the beginning of the current phase and any unmarked i-page q, yq ≤ h∗
t holds

and yq = h∗
t holds whenever i is non-tight.

Proof. We prove the lemma by induction. Clearly, the lemma holds at the start of the phase:
all unmarked pages belonging to non-isolated agents have y-value 0. Now consider a time t

during phase r such that the lemma holds for all timepoints before t in this phase. We may
also assume that ypt

> 0, since otherwise none of the variables are modified in this timestep.
By induction hypothesis, any unmarked i-page q satisfies yq ≤ h∗

t−1, and this inequality
is tight whenever i is non-tight. If agent it is non-tight, then its unmarked pages are already
part of the frontier. Otherwise, Algorithm A fetches pt fully into the cache by increasing the
y-value of other unmarked it-pages until one of the following happens: (a) pt is fully fetched.
In this case, it continues to remain tight; or (b) The y-value of unmarked it-pages becomes
equal to the frontier’s y-value, h∗

t−1. In the latter case, unmarked it-pages become part of
the frontier and the y-value of the frontier is uniformly increased until pt gets fully fetched
into the cache. If some agent i′ becomes tight before the fetch operation is completed, then
its unmarked pages get excluded from the frontier and the corresponding y-values remain
unchanged for the rest of this timestep. In all cases, the lemma continues to hold since
the y-value of the frontier is never decreased and only tight agents get dropped from the
frontier. ◀

▶ Remark 9. Within any phase, h∗
t is non-decreasing over time and takes values 0 and 1 at

the endpoints. This follows from the fact that A never decreases yq for an unmarked page
q ̸= pt.

ICALP 2023

80:8 Efficient Caching with Reserves via Marking

The following lemma shows that any page that is not completely in Algorithm A’s
cache must be evicted to at least a 1/k portion. This property will be useful to us in
Sections 3.3 and 4.

▶ Lemma 10. At the end of any time step t, for any page p ∈ P, we have yt
p = 0 or yt

p ≥ 1/k.

Proof. First, note that for all marked pages, we have yt
p = 1− xt

p = 0. Let i ∈ T (t) be any
tight agent. Then we have ki =

∑
p∈P(i) xt

p = |M(i, t)|+
∑

p∈U(i,t) xt
p. By Lemma 4 (part

iii), all unmarked pages of agent i have the same y value: yt
p = 1− xt

p = hi (say). Since ki is
integral, we have either hi = 0 or hi. Rearranging, we have |U(i, t)|hi = |M(i, t)|+|U(i, t)|−ki.
Since all terms on the RHS are integral, we have either hi = 0 or hi ≥ 1/|U(i, t)| ≥ 1/k.

By Lemma 8, all unmarked pages p belonging to non-tight agents satisfy yt
p = h∗

t . Let
U(t) be the set of all unmarked pages belonging to all non-tight agents that were also
non-isolated at the beginning of the phase. Recall that by definition, we have |U(t)| ≤ k

since all pages in U(t) must have been fully in the cache at the beginning of the current
phase. Since we have k =

∑
i∈T (t) ki +

∑
i/∈T (t)

∑
p∈P(i) xt

p, once again by integrality of k

and {ki}, we must have that
∑

p∈U(t) yt
p =

∑
p∈U(t) h∗

t is an integer. Hence, either h∗
t = 0 or

h∗
t ≥ 1/|U(t)| ≥ 1/k. ◀

3.2 Analysis Overview
At any time t, we consider the set of y values of pages in

⋃
i∈[m] P (i, ri − 1) as the state of

the system. We define a non-negative potential function Ψ that is purely a function of this
state. For any page request pt, we attempt to bound the algorithm’s cost by an increase in
the potential function, thereby bounding the total cost incurred by the algorithm by the
final value of the potential function. There are two difficulties with this approach: (i) when
a phase ends, the potential function abruptly drops since all the unmarked pages that were
fully evicted no longer contribute to the state, and (ii) when the agent it was isolated at
the beginning of the phase but is now non-isolated, the change in potential is not sufficient
to cover the fetch cost. In both these situations we charge the cost incurred by the online
algorithm to a new quantity that is a function of the sets {P (i, ri)}. To complete the analysis,
we show that this quantity is upper-bounded by the cost of the optimal solution.

3.3 Potential Function Analysis
Consider the function ϕ : [0, 1]→ R≥0 defined as:

ϕ(h) ≜ 2h · ln(1 + kh) (1)

As h goes from 0 to 1, ϕ(h) increases from 0 to 2 ln(1 + k).
The potential at any time t is defined as follows:

Ψ(t) ≜
m∑

i=1

∑
p∈U(i,t)

ϕ(yt
p) (2)

Note that only unmarked pages at any time t contribute to the potential. So when page
pt is fetched at time t and marked, it stops contributing to the potential. But since ϕ is
monotone, the newly evicted pages increase their contribution to the potential. We remark
that the potential is purely a function of the state of the system as defined by the y values of
unmarked pages in the cache and is thus always bounded by a quantity independent of the
length of the page request sequence.

S. Ibrahimpur, M. Purohit, Z. Svitkina, E. Vee, and J. R. Wang 80:9

▶ Lemma 11. For any h ≥ 1/k, we have ϕ(h) ≥ h and ϕ′(h) ≥ 1 + 2 ln(1 + kh).

Proof. The first conclusion follows from the logarithmic inequality ln(1 + x) ≥ x/(1 + x)
which holds for any nonnegative x: we have ϕ(h) = 2h ln(1 + kh) ≥ h · 2kh/(1 + kh) ≥ h

whenever kh ≥ 1. Next, ϕ′(h) = dϕ
dh = 2(1− 1/(1 + kh) + ln(1 + kh)). So, for any h ≥ 1/k

we have 1/2 ≥ 1/(1 + kh), which gives the other conclusion. ◀

The rest of this section is devoted to proving the following theorem where we bound
the total cost incurred by the algorithm in terms of the sets {P (i, ri)} and the number of
requests to pseudo-clean pages.

▶ Theorem 12. The following bound holds on the cost incurred by A to process the first T

page requests:

costA(σ) ≤ 2 ln(1 + k) ·

mk +
T∑

t=1
1pt is pseudo-clean +

∑
i∈[m]

Ri∑
ri=1
|P (i, ri − 1) \ P (i, ri)|

 .

Recall that the algorithm incurs a cost of yt
pt

to fetch page pt at time t. So the total cost
incurred by the algorithm is simply costA(σ) =

∑
t yt

pt
. We first bound this cost for time

steps when the requested page pt is at least partially in the cache, i.e., yt
pt

< 1. Recall by
Lemmas 5 and 6, the algorithm does not undergo a phase transition in this time step.

▶ Lemma 13. Consider any time step t such that yt
pt

< 1 for the currently requested
(unmarked) page pt. Let ∆Ψ(t) denote the change in the potential function during time step
t. Then yt

pt
≤ ∆Ψ(t).

Proof. We assume that yt
pt
≥ 1

k , since otherwise by Lemma 10, we must have yt
pt

= 0 and
the lemma follows trivially. Since yt

pt
< 1, by Lemma 8, either agent it is tight or we have

yt
q = yt

pt
for every unmarked page q owned by any non-tight agent i that was non-isolated at

the start of this phase. In either case, the pages that get evicted to make space for pt have
their initial y values at least yt

pt
≥ 1/k. The potential function Ψ changes in this step due

to two factors: (i) Ψ drops as page pt stops contributing to the potential as soon as it gets
marked; and (ii) Ψ increases as the y-value of (fractionally) evicted pages increases in this
step.

Let h ≜ yt
pt

. At the beginning to time t, page pt contributed exactly ϕ(h) = 2h ln(1 + kh)
to the potential; This contribution is lost as soon as pt gets marked. To prove the lemma, it
suffices to show that the rate of increase in the potential function (without including pt’s
contribution) is at least 1 + 2 ln(1 + kh) throughout the eviction of an h amount of unmarked
pages belonging to non-tight agents: the 1 term in total pays for the fetch-cost of h and the
2 ln(1 + kh) term in total pays for the 2h ln(1 + kh) loss in potential. This directly follows
from Lemma 11 from the fact that the y-values of pages that are fractionally evicted in this
timestep were already at least h ≥ 1/k. Here, we also use the monotonicity of the function
h′ 7→ ln(1 + kh′). ◀

We still need to bound the cost incurred by the algorithm when the incoming request is
to a page that is fully outside the cache. Note that the algorithm incurs exactly unit cost for
all such time steps. The following lemma shows that the total cost incurred by the algorithm
can be bounded by the drop in potential function at the end of a phase and by a term that
depends only on the change in the potential function while processing a request to a page
fully outside the cache.

ICALP 2023

80:10 Efficient Caching with Reserves via Marking

▶ Lemma 14. For any global phase r0, let ∆Ψ(r0) denote the change in the potential function
at the end of phase r0 (line 30 in Algorithm 1). Let R0 denote the total number of global
phases and T denote the time at the end of phase R0. Then we have the following upper
bound on the cost incurred by A for processing the first T page requests:

costA(σ) ≤ 2mk ln(1 + k) +
∑

t∈[T]:yt
pt

=1

(1−∆Ψ(t))−
R0∑

r0=1
∆Ψ(r0)

Proof. We have:

costA(σ) =
∑

t∈[T]

yt
pt

=
∑

t∈[T]:yt
pt

<1

yt
pt

+ |{t ∈ [T] : yt
pt

= 1}|

≤
∑

t:yt
pt

<1

∆Ψ(t) + |{t : yt
pt

= 1}| (Using Lemma 13)

= Ψ(T)−Ψ(0)−
∑

t:yt
pt

=1

∆Ψ(t)−
R0∑

r0=1
∆Ψ(r0) + |{t : yt

pt
= 1}|.

The lemma follows since Ψ(T) ≤ 2mk ln(1 + k) and Ψ(0) = 0. The bound on Ψ(T) is because
we have m agents each with |P (i, ri − 1)| ≤ k, and ϕ(1) = 2 ln(1 + k). ◀

So, it is enough to bound the total cost and drop in potential for time steps when the
requested page is fully outside the cache and also to bound the drop in potential when the
phase changes.

Proof of Theorem 12. Consider any time step t such that the currently requested page pt is
fully outside the cache, i.e. yt

pt
= 1. We differentiate such requests into two cases depending

on whether the page pt is in the set P (it, rit
− 1) at the time or not. In other words, we

do a case analysis on pt being clean or pseudo-clean. (Recall that only unmarked pages in
P (it, rit

− 1) contribute to the potential).

Case 1: pt /∈ P (it, rit
− 1), i.e, pt is clean. Since page pt /∈ U(i, t), it does not contribute

to the potential before (or after) the request has been served. Consider any page q that is
evicted (fractionally) by the algorithm in this step. By Lemma 4, before the eviction, we
have yq = 0 or yq ≥ 1/k. In either case, by Lemma 11, we have ∆ϕ(yq) ≥ ∆yq where ∆yq

denotes the change in y-value of page q in this step. Since we have
∑

q ∆yq = yt
pt

= 1, we
have ∆Ψ(t) =

∑
q ∆ϕ(yq) ≥ 1.

Case 2: pt ∈ P (it, rit−1), i.e., pt is pseudo-clean. By the same reasoning as above, we have∑
q ̸=pt

∆ϕ(yq) ≥ 1. However, in this case, page pt also contributed exactly 2 ln(1 + k) to the
potential at the beginning of the time step. So we have ∆Ψ(t) =

∑
q ̸=pt

∆ϕ(yq)−2 ln(1+k) ≥
1− 2 ln(1 + k).

Combining the two cases we get:∑
t:yt

pt
=1

(1−∆Ψ(t)) ≤ 2 ln(1 + k) · |{t : ypt = 1 and pt ∈ P (it, rit − 1)}| (3)

Consider the end of some phase r0 and let i be a non-isolated agent. Let ri denote the
current local phase of agent i that must also end along with the global phase r0. Consider
any unmarked page q in U(i, t). As the phase r0 is ending, page q must be fully evicted
and thus contributes ϕ(1) to the potential. Once phase r0 ends and phase r0 + 1 begins,

S. Ibrahimpur, M. Purohit, Z. Svitkina, E. Vee, and J. R. Wang 80:11

page q no longer contributes to the potential. Note that the set of such unmarked pages is
exactly P (i, ri − 1) \ P (i, ri). Hence, the change in potential at the end of (global) phase r0
is given by:

∆Ψ(r0) = −2 ln(1 + k) ·
∑

i/∈I(r0)

|P (i, ri − 1) \ P (i, ri)|

Since an agent only changes its local phase when it is non-isolated at the end of a global
phase, we have:

R0∑
r0=1

∆Ψ(r0) = −2 ln(1 + k) ·
∑

i∈[m]

Ri∑
ri=1
|P (i, ri − 1) \ P (i, ri)|. (4)

The theorem now follows from Lemma 14. ◀

3.4 A Lower Bound on OPT through Dual Fitting
In this section, we give a novel LP-based lower bound on the cost of any offline algorithm for
caching with reserves via dual-fitting. This lower bound analysis is new even for the classical
unweighted paging setting. Crucially, the lower bound derived here perfectly matches the
two terms used to bound the cost of the fractional algorithm A in Theorem 12, thereby
completing the proof of our main result (Theorem 1).

We now describe the linear relaxation of the caching with reserves problem and its dual
program. The following notation will be useful. For any page q ∈ P, let tq,1 < tq,2 < ...

denote the time steps when q is requested in the online sequence. For an integer a ≥ 0, define
I(q, a) = {tq,a + 1, . . . , tq,a+1 − 1} to be the time interval between the ath and (a + 1)th
requests for q. We define tq,0 ≜ 0 for all pages. Let a(q, t) denote the number of requests
to page q that have been seen until time t (inclusive). Hence, by definition, for any time t

and page q ∈ P \ {pt}, we have t ∈ I(q, a(q, t)). The primal LP has variables y(q, a) ∈ [0, 1]
which denote the portion of page q that is evicted between its ath and (a + 1)th requests, i.e.,
1−y(q, a) portion of q is held in the cache during the time-interval I(q, a). For convenience, we
define n ≜ |P| and ni ≜ |P(i)| for any i ∈ [m]. The first and second set of primal constraints
encode the cache size constraint and the agent-level reserve constraints for all times. The dual
LP has variables α(t) and β(t, i) corresponding to these primal constraints. We also have
dual variables γ(q, a) corresponding to the primal constraint encoding y(q, a) ≤ 1. Besides
nonnegativity, the dual has a single constraint for each interval I(q, a). The primal and dual
LPs are stated below. We emphasize that we use these linear programs purely for analysis
and the algorithm itself does not need to solve any linear program.

Primal LP

min
∑
q∈P

∑
a≥1

y(q, a)

subject to:∑
q∈P,q ̸=pt

y(q, a(q, t)) ≥ n− k ∀t (5)

∑
q∈P(i),q ̸=pt

y(q, a(q, t)) ≤ ni − ki ∀t, ∀i (6)

y(q, a) ≤ 1 ∀q, ∀a (7)
y ≥ 0 (8)

Dual LP

max
∑

t

(n− k)α(t)−
∑

t,i

(ni − ki)β(t, i)

−
∑
q,a

γ(q, a)

subject to:∑
t∈I(q,a)

(
α(t)− β(t, ag(q))

)
− γ(q, a)

≤ 1 ∀q, ∀a (9)
α, β, γ ≥ 0 (10)

ICALP 2023

80:12 Efficient Caching with Reserves via Marking

Consider time T that marks the end of a global phase R0 for some integer R0. Let
OPT = costOPT(σ) denote the total cost incurred by an optimal offline algorithm. By weak
LP duality, the objective function of the Dual LP yields a lower bound on OPT for any
feasible dual solution. We now construct an explicit dual solution (α, β, γ) whose objective
value is roughly equal to the total number of clean and pseudo-clean pages seen by the
algorithm. See Section 3.1 to recall relevant notation and terminology. The dual solution is
updated at the end of each (global) phase in two stages. Updates in the first stage, denoted
update(r0, 1), are simple and account for stale pages belonging to non-isolated agents that got
evicted in the most recent local phase for that agent. Updates in the second stage, denoted
update(r0, 2), are more involved and account for the pseudo-clean pages of agents who lost
their isolated status in the current phase. The dual solution that we maintain will always be
approximately feasible up to O(1) factors, so the objective value of this dual solution serves
as a lower bound on OPT(T) within a constant factor. We remark that the assumption
that T marks the end of a phase is without loss of generality since it can lead to at most an
additive O(k) loss in the lower bound. Formally, we show the following.

▶ Theorem 15. Let T denote the timepoint when global phase R0 ends, and let (Ri)i∈[m]
denote the corresponding local phase counters. Let (α, β, γ) denote the dual solution that is con-
structed by the end of time T , i.e., the solution that arises from a sequential application of dual
updates in the order update(1, 1), update(1, 2), update(2, 1), update(2, 2), . . . , update(R0, 1),
and update(R0, 2). We have:
(a) The dual solution is approximately feasible: for any i-page q and an integer a ≥ 0,∑

t∈I(q,a)(α(t)− β(t, i))− γ(q, a) ≤ 5 holds.
(b) The dual objective value of (α, β, γ) is:

dual(R0) ≜
T∑

t=1
(n− k)α(t)−

T∑
t=1

∑
i∈[m]

(ni − ki)β(t, i)−
∑
q∈P

a(q,T)∑
a=1

γ(q, a)

=
∑

i∈[m]

Ri∑
ri=1
|P (i, ri−1)\P (i, ri)|+

R0∑
r0=1

∑
i∈I(r0−1)\I(r0)

(|P (i, ri−1)∪P (i, ri)|−ki).

We first show how Theorem 15 implies that our fractional algorithm A is O(log k)-
competitive.

Proof of Theorem 1. In Theorem 12 we proved the following upper bound on the cost
incurred by A for processing the first T page requests:

costA(σ) ≤ 2 ln(1 + k) ·
(

mk +
T∑

t=1
1pt is pseudo-clean +

∑
i∈[m]

Ri∑
ri=1
|P (i, ri − 1) \ P (i, ri)|

)
.

Clearly, the second nontrivial term in the above cost-expression matches the first term in
the expression for dual(R0). Now consider an arbitrary global phase r0 ∈ {1, . . . , R0} and
a timestep t in this phase. By definition, a pseudo-clean page pt is necessarily stale, i.e.,
pt ∈ P (it, rit

− 1) holds, and it must be that agent it was isolated at the start of phase r0
but is non-isolated by time t. Therefore, it ∈ I(r0 − 1) \ I(r0) and the following holds:

|P (i, ri − 1) ∪ P (i, ri)| − ki ≥ |P (i, ri)| − ki ≥ |{t ∈ phase r0 : pt is pseudo-clean}|.

In the above, the final inequality is because among all pages in P (i, ri) (w.r.t. the order
in which they were marked by A), the first ki pages are not pseudo-clean. Thus, the first
nontrivial term in the cost-expression for A can be bounded by the second term in dual(R0).

Overall, we have shown that costA(σ) ≤ 2 ln(1 + k) ·
(
mk + dual(R0)

)
holds. Since the

dual solution is O(1)-feasible, we get that A is O(log k)-competitive. ◀

S. Ibrahimpur, M. Purohit, Z. Svitkina, E. Vee, and J. R. Wang 80:13

We now furnish the details of our dual updates. Initially, all our dual variables
{α(t)}, {β(i, t)}, {γ(q, a)} with t ∈ [T], i ∈ [m], q ∈ P , a ∈ [a(q, T)] are set to zero. We
assume that the dual updates are applied in the sequence given in Theorem 15. That is, the
set of updates in {update(r0, s)}r0∈[R0],s∈{1,2} are applied in increasing order of r0 and within
each phase first stage updates are applied first. With a slight abuse of notation, let dual(r0, s)
denote the objective value of the dual solution right after updates until update(r0, s) (inclusive)
have been applied where r0 ∈ [R0], s ∈ {1, 2}. Note that dual(R0) = dual(R0, 2). We also
define dual(0, 1) = dual(0, 2) := 0. Throughout our updates, we ensure that the dual objec-
tive value never decreases, i.e., 0 ≤ dual(1, 1) ≤ dual(1, 2) ≤ · · · ≤ dual(R0, 1) ≤ dual(R0, 2)
holds. We remark that β variables may decrease and this only happens in the second stage;
However, the α and γ variables never decrease.

In Section 3.4, we describe the first stage of updates and show that the gain in the dual
objective corresponds to the first term in Theorem 15(b). In Section 3.4, we describe the
second stage of updates and show that the gain in the dual objective corresponds to the
second term in Theorem 15(b). Lastly, in Section 3.4, we show that the dual solution that we
maintain is always feasible up to constant factors and thus complete the proof of Theorem 15.

First Stage of Dual Updates

Fix a phase r0 ∈ [R0] and consider the set I(r0) ⊊ [m] of agents that are designated as
isolated at the end of phase r0. Let C(r0) denote the set of timesteps t (in this phase) when
the following two conditions hold: (a) yt

pt
= 1 in the fractional algorithm A just before pt is

requested; and (b) it is not isolated at time t. Define ℓ(r0) ≜ |C(r0)|. It is not hard to see
that the following is an equivalent expression for ℓ(r0).

ℓ(r0) :=
∑

i/∈I(r0−1)∪I(r0)

|P (i, ri) \ P (i, ri − 1)|+
∑

i∈I(r0−1)\I(r0)

(|P (i, ri)| − ki). (11)

Observe that for agents who are non-isolated both at the start and end of phase r0, ℓ(r0)

counts all their clean pages. However, for agents who were isolated at the start of this phase
but are no longer isolated by the end, ℓ(r0) only counts clean and pseudo-clean pages that
are requested after the agent has become non-isolated. Roughly speaking, the motivation for
the definition of ℓ(r0) comes from the intuition that an offline algorithm should incur, on an
average, a cost of Ω(ℓ(r0)) to serve page requests in phase r0.

Description of update(r0, 1). For each time t ∈ C(r0), we separately apply the following
updates. First, we increase α(t) by 1/ℓ(r0). Next, we increase β(t, i) by 1/ℓ(r0) for every
agent i ∈ I(r0). Last, for each agent i /∈ I(r0), we increase γ(q, a(q, t)) by 1/ℓ(r0) for every
i-page q ∈ P(i) \ (P (i, ri − 1) ∪ P (i, ri)).

It will be clear from the description of our updates that the α and β variables that were
modified in update(r0, 1) were previously at 0. However, no such guarantee holds for the
affected γ variables. We also remark that the same γ(q, a) variable can be increased more
than once during update(r0, 1); this happens when there are multiple times t ∈ C(r0) with
the same a(q, t) value. In fact, since the γ(q, a) variables arise from intervals I(q, a) that can
possibly span across multiple phases, it is possible that the same γ variable is increased by
different 1/ℓ(r0) amounts across different update(r0, 1) steps.

For convenience, let t ∈ phase r0 be a shorthand for all timepoints in phase r0. The
following result will be useful to us.

ICALP 2023

80:14 Efficient Caching with Reserves via Marking

▶ Lemma 16. Let (α, β, γ) denote the dual solution that is obtained right after update(r0, 1)
has been applied. We have: (a)

∑
t∈phase r0

α(t) = 1; and (b)
∑

t∈phase r0
β(t, i) = 1 for any

agent i ∈ I(r0).

Proof. Follows directly from our choice of ℓ(r0) = |C(r0)|. ◀

Our key technical result in this section is that the gain in the dual objective value that
comes from update(r0, 1) is equal to the number of stale pages owned by non-isolated agents
that were not requested in their most recent local phases. For convenience, we use the prefix
∆ to refer to changes that occured during update(r0, 1).

▶ Lemma 17. We have ∆dual(r0, 1) =
∑

i/∈I(r0) |P (i, ri−1)\P (i, ri)|, where ∆dual(r0, 1) ≜
dual(r0, 1)− dual(r0 − 1, 2) is the change in the dual objective after update(r0, 1).

Proof. Since the only affected α(t) and β(t, i) variables have are those with t ∈ C(r0) and
they are all increased by exactly 1/|C(r0)|, we get:

∆dual(r0, 1) =
∑

t

(n− k)∆α(t)−
∑
t,i

(ni − ki)∆β(t, i)−
∑
q,a

∆γ(q, a)

= (n− k)−
∑

i∈I(r0)

(ni − ki)−
∑
q,a

∆γ(q, a)

=
(∑

i/∈I(r0)

ni

)
− k +

(∑
i∈I(r0)

ki

)
−

∑
q,a

∆γ(q, a)

Now observe that for every t ∈ C(r0) and i /∈ I(r0), the update(r0, 1) step increases the
γ(q, a) variable corresponding to exactly ni − |P (i, ri − 1) ∪ P (i, ri)| unique i-pages, each by
an amount 1/ℓ(r0). So we have

∑
q,a ∆γ(q, a) = (1/ℓ(r0)) ·

∑
t∈C(r0)

∑
i/∈I(r0)(ni − |P (i, ri −

1) ∪ P (i, ri)|) =
∑

i/∈I(r0)(ni − |P (i, ri − 1) ∪ P (i, ri)|). Substituting back into the equation
above, we get:

∆dual(r0, 1) =
(∑

i/∈I(r0)

ni

)
− k +

(∑
i∈I(r0)

ki

)
−

∑
i/∈I(r0)

(ni − |P (i, ri − 1) ∪ P (i, ri)|)

=
(
−k +

∑
i∈I(r0)

ki +
∑

i/∈I(r0)

|P (i, ri)|
)

+
∑

i/∈I(r0)

|P (i, ri − 1) \ P (i, ri)|

The lemma follows from observing that the above group of terms within the parentheses is 0:
this is because the cache (of size k) at the end of phase r0 consists exactly ki (fractional)
pages for isolated agents i ∈ I(r0) and exactly |P (i, ri)| (integral) pages for non-isolated
agents i /∈ I(r0). ◀

Second Stage of Dual Updates

We now describe the second stage of dual updates that are carried out at the end of each
phase r0 ∈ [R0]. Unlike the first stage, where we only increased the α and β variables of
time steps in phase r0, in the second stage we decrease the β variables of time steps in the
previous phase r0 − 1.

Description of update(r0, 2). These dual updates correspond to agents that were isolated
at the end of phase r0−1 but are no longer isolated at the end of phase r0. Consider an agent
i ∈ I(r0−1)\I(r0). For every time t in phase r0−1 with β(t, i) > 0 (i.e., t ∈ C(r0−1)), we do
the following: we increase γ(q, a(q, t)) by β(t, i) for all i-pages q ∈ P(i)\

(
P (i, ri−1)∪P (i, ri)

)
followed by resetting β(t, i) to 0.

S. Ibrahimpur, M. Purohit, Z. Svitkina, E. Vee, and J. R. Wang 80:15

For clarity, we note the following: (i) resetting β(t, i) to zero is the only dual update
when a variable is decreased; (ii) the β(t, i) updates are applied to timepoints in phase r0 − 1
(i.e., the previous phase); and (iii) the γ(q, a(q, t)) variables that we updated above were
unchanged while applying update(r0 − 1, 1) at the end of phase r0 − 1 because their owner i

was designated as isolated at that time. The reason for decreasing the β(t, i) variables is that
it leads to an increase in the dual objective, which will be needed to pay for costs associated
with pseudo-clean pages. We formalize this in the following lemma.

▶ Lemma 18. We have ∆dual(r0, 2) =
∑

i∈I(r0−1)\I(r0) (|P (i, ri − 1) ∪ P (i, ri)| − ki) where
∆dual(r0, 2) ≜ dual(r0, 2)− dual(r0, 1) is the change in the dual objective after update(r0, 2).

Proof. Fix an agent i ∈ I(r0−1)\I(r0). In Lemma 16 we showed that after update(r0−1, 1),∑
t∈phase r0−1 β(t, i) = 1 and β(t, i) ∈ {0, 1/ℓ(r0−1)}. Consider any time t in phase r0−1 with

β(t, i) > 0. By the definition of update(r0, 2), we decrease β(t, i) by 1/ℓ(r0−1) while increasing
γ(q, a(q, t)) by the same amount for all pages q ∈ P(i) \

(
P (i, ri − 1) ∪ P (i, ri)

)
. Recalling

the coefficients in the dual objective function, we see that the updates corresponding to agent
i increases the dual objective by exactly:

(ni − ki)− |P(i) \ (P (i, ri) ∪ P (i, ri − 1))| = |(P (i, ri) ∪ P (i, ri − 1))| − ki. ◀

Approximate Dual Feasibility

We finish this section by showing that the dual solution is always approximately feasible.

▶ Lemma 19. Let (α, β, γ) denote the dual solution that is obtained right after update(r0, s)
has been applied for some r0 ∈ [R0] and s ∈ {0, 1}. For any i-page q and an integer a ≥ 1
satisfying a ≤ a(q, T), we have

∑
t∈I(q,a)(α(t)− β(t, i))− γ(q, a) ≤ 5.

Proof. First of all, for the purposes of this proof, the specific values of r0 and s are irrelevant,
so we ignore them. Fix some i-page q and an integer a satisfying a ≤ a(q, T). Recall that
I(q, a) = {tq,a + 1, . . . , tq,a+1 − 1}, where tq,a′ denotes the time when q is requested for the
a′th time; We redefine tq,a+1 to be T + 1 if tq,a+1 > T holds.

The lemma holds trivially if I(q, a) is empty, so we assume otherwise. Let rb
0, re

0 ∈ [R0]
denote the global phases that contain timesteps tq,a + 1 and tq,a+1 − 1, respectively. Clearly,
rb

0 ≤ re
0. Another easy case of the lemma is when re

0 ≤ rb
0 + 1 holds. The desired conclusion

follows easily because all the dual variables are nonnegative and the sum of all α(t) variables
in any phase is at most 1 (by Lemma 16). Formally,∑

t∈I(q,a)

(
α(t)− β(t, i)

)
− γ(q, a) ≤

∑
t∈phase rb

0

α(t) +
∑

t∈phase re
0

α(t) ≤ 2.

Now suppose that rb
0 + 2 ≤ re

0 holds. Define Z := {rb
0 + 1, . . . , re

0 − 1}. Repeating the
above calculation, we get:

∑
t∈I(q,a)

(α(t)− β(t, i))− γ(q, a) ≤ 2 +

 ∑
r0∈Z

∑
t∈phase r0

(
α(t)− β(t, i)

)− γ(q, a),

so the crux of the lemma is to show that the sum of δ(t) ≜ α(t) − β(t, i) over timepoints
spanning phases in Z is not much larger than γ(q, a). For a phase r0 ∈ Z, we overload
the notation δ(r0) to mean

∑
t∈phase r0

δ(t). Note that by nonnegativity of β variables and
Lemma 17, δ(r0) ≤ 1 for every r0 ∈ Z. We do a case analysis on phase r0 ∈ Z to get a better
handle on the changes that happens during our dual update procedures.

ICALP 2023

80:16 Efficient Caching with Reserves via Marking

(a) Suppose that i ∈ I(r0)∩I(r0+1) holds. Since i is isolated by the end of phase r0, we know
that any increase in α(t) (as part of update(r0, 1)) for some t ∈ C(r0) is accompanied
with the same increase in β(t, i). Since i ∈ I(r0 + 1) holds, update(r0 + 1, 2) does not
decrease/reset any of the {β(t, i)}t∈phase r0 variables to 0. Thus, δ(r0) = 0 holds. Note
that there can be an arbitrary number of phases r0 that fall under this case, but this is
not a problem for us since δ(r0) = 0.

(b) Suppose that i ∈ I(r0) \ I(r0 + 1) and q ∈ P (i, ri − 1) ∪ P (i, ri) hold. We rely on the
trivial bound δ(r0) ≤ 1 for this case. Since i is isolated by the end of phase r0 but is
non-isolated by the end of phase r0 +1, the local phase counter ri goes up by 1 at the end
of phase r0 + 1, and subsequently the P (i, ·) set gets updated with some new collection
of marked i-pages. By definition of I(q, a), there are no page-requests for q during any of
the phases in Z. Thus, there can be at most 2 local phase increments for agent i before
q gets dropped from the P (i, ·) set; By the design of A, page q cannot enter any of the
future P (i, ri) until the next time it is requested, which does not happen during any of
the phases in Z.

(c) Suppose that i ∈ I(r0) \ I(r0 + 1) and q /∈ P (i, ri − 1) ∪ P (i, ri) hold. Similar to
case (a) above, we know that any increase in α(t) (as part of update(r0, 1)) for some
t ∈ C(r0) is accompanied with the same increase in β(t, i). Now, although update(r0+1, 2)
decreases/resets all the {β(t, i)}t∈C(r0) variables to 0, it also increases γ(q, a) by the
same amount since q /∈ P (i, ri − 1) ∪ P (i, ri). Thus,

∑
t∈phase r0

α(t) equals the increase
in γ(q, a) due to update(r0 + 1, 2). So, the difference is essentially 0.

(d) Suppose i /∈ I(r0) and q ∈ P (i, ri − 1) ∪ P (i, ri) hold. We rely on the trivial bound
δ(r0) ≤ 1 for this case. Since i is non-isolated by the end of phase r0, the local phase
counter ri goes up by 1 at the end of phase r0. Repeating the argument from case (c),
there can be at most 1 more local phase increment for agent i before q gets dropped
from the P (i, ·) set for the rest of the phases in Z.

(e) Suppose i /∈ I(r0) and q /∈ P (i, ri − 1) ∪ P (i, ri) hold. Since i is non-isolated by the
end of phase r0 and q is not in P (i, ri − 1) ∪ P (i, ri), we know that any increase in α(t)
(as part of update(r0, 1)) for some t ∈ C(r0) is accompanied with the same increase in
γ(q, a). Thus,

∑
t∈phase r0

α(t) equals the increase in γ(q, a) due to update(r0, 1). So, the
difference is essentially 0.

From the above case analysis, it follows that {
∑

r0∈Z

∑
t∈phase r0

(
α(t)−β(t, i)

)
}−γ(q, a)

is bounded by the number of phases r0 ∈ Z for which case (b) or (d) hold. Since we argued
that there can be at most 3 such occurences,

∑
t∈I(q,a)(α(t)− β(t, i))− γ(q, a) ≤ 2 + 3 = 5

holds. ◀

We now prove the main theorem in this section by combining the above lemmas.

Proof of Theorem 15. The first part of the theorem follows from Lemma 19. The second
part follows directly from Lemmas 17 and 18 since we have dual(R0) =

∑R0
r0=1

(
∆dual(r0, 1)+

∆dual(r0, 2)
)

◀

4 Rounding

In this section we show how to convert the fractional Algorithm 1 into a randomized integral
online algorithm for Caching with Reserves, each step of which runs in polynomial time.

The algorithm maintains a uniform distribution on N = k3 valid cache states. In each step,
these states are updated based on the actions of the fractional algorithm. The randomized
algorithm selects one of these states uniformly at random in the beginning, and then follows
it throughout the run.

S. Ibrahimpur, M. Purohit, Z. Svitkina, E. Vee, and J. R. Wang 80:17

Initially, all N cache states in the distribution are the same as the initial cache state in
Algorithm 1. Given the fractional algorithm values xt

p after each page request, the distribution
is updated in two steps. First, we produce a discretized version of these fractions, x̃t

p, which
are also a feasible fractional solution. This is based on the technique in [2]. Second, we
update the N cache states so that all of them remain valid, and for each page p, exactly
N · x̃t

p of the states contain p. This is based on the technique in [10]. We note that the
rounding procedure can be done online, as it does not need the knowledge of any future page
requests.

4.1 Discretization Procedure
In this subsection, we explain how to perform the first step: discretizing the fractional
algorithm’s values xt

p into x̃t
p which are multiples of 1

N . Our procedure is quite simple: we
iterate over the pages in any order π that arranges all pages belonging to the same agent
consecutively (i.e., order the agents arbitrarily and order each agent’s pages arbitrarily, but
do not interleave pages from different agents). Then for i ∈ [|P|], set:

x̃t
π(i) ≜

 i∑
j=1

xt
π(j)


1/N

−

i−1∑
j=1

xt
π(j)


1/N

where ⌊a⌋b denotes rounding a down to the nearest multiple of b; formally: ⌊a⌋b ≜ b ⌊a/b⌋.

▶ Lemma 20. Discretization satisfies the following guarantees:
1. x̃t

p is a multiple of 1/N

2.
∣∣x̃t

p − xt
p

∣∣ < 1/N

3. for each agent i,
∣∣∣∑p∈P(i) x̃t

p −
∑

p∈P(i) xt
p

∣∣∣ < 1/N

4. if xt
p ∈ {0, 1}, then x̃t

p = xt
p

Due to space constraints, the proof of the above lemma is deferred to the full version [11].

▶ Corollary 21. If {xt
p} satisfy total cache capacity (

∑
p∈P xt

p ≤ k) and reserve requirements
(
∑

p∈P(i) xt
p ≥ ki), then so do {x̃t

p}.

Proof. The total cache capacity constraint continues to hold due to a telescoping argument:

∑
p∈P

x̃t
p =

∑
i∈[|P|]

x̃t
π(i) =

∑
i∈[|P|]


 i∑

j=1
xt

π(j)


1/N

−

i−1∑
j=1

xt
π(j)


1/N


=

 |P|∑
j=1

xt
π(j)


1/N

≤
|P|∑
j=1

xt
π(j) ≤ k

Next, we will prove that reserve cache sizes are satisfied. For the sake of contradiction,
suppose that for some agent i,

∑
p∈P(i) x̃t

p < ki. Since the right-hand side of this inequality
is an integer and therefore a multiple of 1/N , the left-hand side, which is also a multiple of
1/N due to being a sum of multiples of 1/N (by Lemma 20’s first guarantee), must be at
least a full multiple of 1/N less than the right-hand side:

∑
p∈P(i) x̃t

p ≤ ki − 1/N . But this

contradicts Lemma 20’s third guarantee,
∣∣∣∑p∈P(i) x̃t

p −
∑

p∈P(i) xt
p

∣∣∣ < 1/N . Therefore for
all agents i,

∑
p∈P(i) x̃t

p ≥ ki, completing the proof. ◀

ICALP 2023

80:18 Efficient Caching with Reserves via Marking

▶ Corollary 22.
∑

p

∣∣x̃t
p − xt

p

∣∣ ≤ k2/N

Proof. Without loss of generality, there are at most k agents since we can combine all agents
that do not have any reserve. Each agent i has at most k fractional pages by the algorithm
(the i-pages that were in cache when i’s local phase began). The x value of each fractional
page is distorted by at most 1/N by Lemma 20’s second guarantee, while not being distorted
for non-fractional pages by the fourth guarantee. This completes the proof. ◀

▶ Lemma 23. Let xt
p and xt+1

p be the amounts of each page p in cache in the fractional
algorithm for two consecutive time steps, and x̃t

p and x̃t+1
p be the corresponding discretized

values. Then the cost of cache update from x̃t to x̃t+1 (call it c̃) is at most twice the cost of
cache update from xt to xt+1 (call it c).

Proof. Lemma 10 implies that either c = 0 (i.e., the requested page was already in cache
and there is no change to the cache state), or c ≥ 1/k. In the first case, there is no change
to the discretized cache state either, so c̃ = 0. So we focus on the second case. By triangle
inequality, for any page p,

|x̃t
p − x̃t+1

p | ≤ |x̃t
p − xt

p|+ |xt
p − xt+1

p |+ |xt+1
p − x̃t+1

p |.

We note that since cost is incurred for adding pages to cache, and both the original fractional
solution and the discretized one add as much page mass to cache as they evict, 2c =∑

p |xt
p − xt+1

p |, and similarly for c̃. Summing the above inequality over p, we get

2c̃ =
∑

p

|x̃t
p − x̃t+1

p | ≤
∑

p

|xt
p − xt+1

p |+ 2k2/N = 2c + 2/k ≤ 4c,

where we used
∑

p(|x̃t
p − xt

p|+ |xt+1
p − x̃t+1

p |) ≤ 2k2/N by Corollary 22, then N = k3, then
c ≥ 1/k. ◀

4.2 Updating the Distribution of Cache States
In this subsection, we explain how to perform the second step: updating the N cache
states. We would like (i) all cache states to be valid, (ii) exactly N · x̃t

p (integral due to our
discretization step) of the states to contain page p, and (iii) to not use too many evictions.

Formally, let X be a set of N cache states with k pages each, which corresponds to the
discretized values x̃t

p for time step t. Given the discretized values x̃t+1
p for time step t + 1,

we show how to transform X into X ′, in which each page p appears in exactly N · x̃t+1
p cache

states and such that each cache state satisfies all the reserve requirements.
Let P be a multiset of pages whose fraction in the cache increased from time t to t + 1,

with each page p appearing max(0, (x̃t+1
p − x̃t

p)N) times. Let Q be an analagous multiset for
decreases, with each page appearing max(0, (x̃t

p − x̃t+1
p)N) times. Since the total amount of

pages in the cache is unchanged, |P | = |Q|. We find a matching between pages in P and Q

and use it to transform X into X ′ gradually, one pair at a time. The matching is constructed
as follows. First, any pages from P and Q that belong to the same agent are matched up.
Then, the remaining pages in P and Q are matched up arbitrarily.

▶ Lemma 24. Let (p1, q1), (p2, q2), ... be the matching between P and Q described above.
Then for any j, the fractional solution that adds 1/N fraction of pages p1, ..., pj to x̃t and
removes 1/N fraction of pages q1, ..., qj from it satisfies all the reserve requirements.

S. Ibrahimpur, M. Purohit, Z. Svitkina, E. Vee, and J. R. Wang 80:19

We defer the proof of the above lemma to the full version [11].
We now show how to modify X with the next pair (p, q) from the matching. This follows

the procedure in [10], with the difference that we work on a limited number of N sets, and
the amount of increase in p and decrease in q is fixed at 1/N .

Let X be the current set of cache states (possibly modified by the previous page pairs).
If there is a cache state S ∈ X such that p /∈ S and q ∈ S, add p to S and remove q from S.
Otherwise, find cache states S ∈ X and T ∈ X with p /∈ S and q ∈ T , add p to S and remove
q from T . Next, move some page r ∈ S \ T from S to T to adjust the set sizes back to k.

At this point, each page is in the correct number of cache states. However, reserve
requirements could be violated by one page for ag(q) or ag(r) in the cache states from which
the corresponding pages were removed. In such a case, suppose the requirement is violated for
agent i in a cache state V ∈ X . Since, by Lemma 24, each reserve requirement is satisfied on
average, there must be another set W ∈ X which has strictly more than ki pages belonging
to agent i. We move one such page from W to V . Now V has k + 1 pages, so there must be
an agent j which has more than kj pages in V . We move one of j’s pages from V to W to
restore the sizes. This completes the update, resulting in new valid sets corresponding to the
fractions x̃t+1.

We conclude by bounding the cost of update to X , and thus the expected cost of the
randomized algorithm, relative to the cost of the fractional algorithm.

▶ Lemma 25. The cost of update to X is at most 6 times the cost of fractional cache update
from x̃t to x̃t+1.

Proof. Each pair (p, q) in the matching corresponds to a cost of 1/N incurred by the
discretized fractional solution. In the updates to sets in X , each time a page is removed
from one of the cache states incurs a cost of 1/N to the randomized algorithm. At most,
the following six removals are done: remove q from T ; remove r from S; two pages each are
swapped to fix the reserve requirements for ag(q) and ag(r). ◀

The proof of Theorem 2 follows by combining Lemmas 23 and 25.

References
1 Dimitris Achlioptas, Marek Chrobak, and John Noga. Competitive Analysis of Randomized

Paging Algorithms. Theoretical Computer Science, 234(1):203–218, 2000. doi:10.1016/
S0304-3975(98)00116-9.

2 Anna Adamaszek, Artur Czumaj, Matthias Englert, and Harald Räcke. An O(log k)-
Competitive Algorithm for Generalized Caching. ACM Transactions on Algorithms, 15(1):6:1–
6:18, 2018. doi:10.1145/3280826.

3 Kunal Agrawal, Michael A. Bender, Rathish Das, William Kuszmaul, Enoch Peserico, and
Michele Scquizzato. Tight Bounds for Parallel Paging and Green Paging. In Proceedings
of the 32nd Symposium on Discrete Algorithms, pages 3022–3041, 2021. doi:10.1137/1.
9781611976465.180.

4 Nikhil Bansal, Niv Buchbinder, and Joseph Seffi Naor. A Simple Analysis for Randomized
Online Weighted Paging. Unpublished Manuscript, 2010.

5 Nikhil Bansal, Niv Buchbinder, and Joseph (Seffi) Naor. Towards the Randomized k-Server
Conjecture: A Primal-Dual Approach: (Extended Abstract). In Proceedings of the 21st
Symposium on Discrete Algorithms, pages 40–55, 2010. doi:10.1137/1.9781611973075.5.

6 Nikhil Bansal, Christian Coester, Ravi Kumar, Manish Purohit, and Erik Vee. Learning-
Augmented Weighted Paging. In Proceedings of the 33rd Symposium on Discrete Algorithms,
pages 67–89, 2022. doi:10.1137/1.9781611977073.4.

ICALP 2023

https://doi.org/10.1016/S0304-3975(98)00116-9
https://doi.org/10.1016/S0304-3975(98)00116-9
https://doi.org/10.1145/3280826
https://doi.org/10.1137/1.9781611976465.180
https://doi.org/10.1137/1.9781611976465.180
https://doi.org/10.1137/1.9781611973075.5
https://doi.org/10.1137/1.9781611977073.4

80:20 Efficient Caching with Reserves via Marking

7 Jichuan Chang and Gurindar S Sohi. Cooperative Cache Partitioning for Chip Multiprocessors.
In Proceedings of the 21st ACM International Conference on Supercomputing, pages 242–252,
2007. doi:10.1145/1274971.1275005.

8 Ashish Chiplunkar, Monika Henzinger, Sagar Sudhir Kale, and Maximilian Vötsch. Online
Min-Max Paging. In Proceedings of the 34th Symposium on Discrete Algorithms, pages
1545–1565, 2023. doi:10.1137/1.9781611977554.ch57.

9 Amos Fiat, Richard M. Karp, Michael Luby, Lyle A. McGeoch, Daniel D. Sleator, and
Neal E. Young. Competitive Paging Algorithms. Journal of Algorithms, 12(4):685–699, 1991.
doi:10.1016/0196-6774(91)90041-V.

10 Sharat Ibrahimpur, Manish Purohit, Zoya Svitkina, Erik Vee, and Joshua R. Wang. Caching
with Reserves. In Proceedings of the 25th International Conference on Approximation Algo-
rithms for Combinatorial Optimization Problems (APPROX), volume 245, pages 52:1–52:16,
2022. doi:10.4230/LIPIcs.APPROX/RANDOM.2022.52.

11 Sharat Ibrahimpur, Manish Purohit, Zoya Svitkina, Erik Vee, and Joshua R. Wang. Efficient
Caching with Reserves via Marking. CoRR, abs/2305.02508, 2023. doi:10.48550/arXiv.
2305.02508.

12 Wu Kan, Tu Kaiwei, Patel Yuvraj, Sen Rathijit, Park Kwanghyun, Arpaci-Dusseau An-
drea, and Remzi Arpaci-Dusseau. NyxCache: Flexible and Efficient Multi-tenant Persistent
Memory Caching. In Proceedings of the 20th USENIX Conference on File and Storage Tech-
nologies (FAST), pages 1–16, 2022. URL: https://www.usenix.org/conference/fast22/
presentation/wu.

13 Mayuresh Kunjir, Brandon Fain, Kamesh Munagala, and Shivnath Babu. ROBUS: Fair
Cache Allocation for Data-parallel Workloads. In Proceedings of the 2017 ACM International
Conference on Management of Data (SIGMOD), pages 219–234, 2017. doi:10.1145/3035918.
3064018.

14 Lyle A. McGeoch and Daniel D. Sleator. A Strongly Competitive Randomized Paging
Algorithm. Algorithmica, 6:816–825, 1991. doi:10.1007/BF01759073.

15 Qifan Pu, Haoyuan Li, Matei Zaharia, Ali Ghodsi, and Ion Stoica. FairRide: Near-Optimal,
Fair Cache Sharing. In Proceedings of the 13th USENIX Symposium on Networked Systems
Design and Implementation (NSDI), pages 393–406, 2016. URL: https://www.usenix.org/
conference/nsdi16/technical-sessions/presentation/pu.

16 Harold S. Stone, John Turek, and Joel L. Wolf. Optimal Partitioning of Cache Memory. IEEE
Transactions on Computers, 41(9):1054–1068, 1992. doi:10.1109/12.165388.

17 G Edward Suh, Larry Rudolph, and Srinivas Devadas. Dynamic Partitioning of Shared Cache
Memory. The Journal of Supercomputing, 28(1):7–26, 2004. doi:10.1023/B:SUPE.0000014800.
27383.8f.

18 Yinghao Yu, Wei Wang, Jun Zhang, and Khaled Ben Letaief. LACS: Load-Aware Cache
Sharing with Isolation Guarantee. In Proceedings of the 39th IEEE International Conference
on Distributed Computing Systems (ICDCS), pages 207–217. IEEE, 2019. doi:10.1109/ICDCS.
2019.00029.

https://doi.org/10.1145/1274971.1275005
https://doi.org/10.1137/1.9781611977554.ch57
https://doi.org/10.1016/0196-6774(91)90041-V
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.52
https://doi.org/10.48550/arXiv.2305.02508
https://doi.org/10.48550/arXiv.2305.02508
https://www.usenix.org/conference/fast22/presentation/wu
https://www.usenix.org/conference/fast22/presentation/wu
https://doi.org/10.1145/3035918.3064018
https://doi.org/10.1145/3035918.3064018
https://doi.org/10.1007/BF01759073
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/pu
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/pu
https://doi.org/10.1109/12.165388
https://doi.org/10.1023/B:SUPE.0000014800.27383.8f
https://doi.org/10.1023/B:SUPE.0000014800.27383.8f
https://doi.org/10.1109/ICDCS.2019.00029
https://doi.org/10.1109/ICDCS.2019.00029

Rerouting Planar Curves and Disjoint Paths
Takehiro Ito #

Graduate School of Information Sciences,
Tohoku University, Sendai, Japan

Yuni Iwamasa #

Graduate School of Informatics,
Kyoto University, Japan

Naonori Kakimura #

Faculty of Science and Technology,
Keio University, Yokohama, Japan

Yusuke Kobayashi #

Research Institute for Mathematical Sciences,
Kyoto University, Japan

Shun-ichi Maezawa #

Department of Mathematics,
Tokyo University of Science, Japan

Yuta Nozaki #

Faculty of Environment and Information Sciences,
Yokohama National University, Japan
SKCM2, Hiroshima University, Japan

Yoshio Okamoto #

Graduate School of Informatics and Engineer-
ing, The University of Electro-Communications,
Tokyo, Japan

Kenta Ozeki #

Faculty of Environment and Information Sciences,
Yokohama National University, Japan

Abstract
In this paper, we consider a transformation of k disjoint paths in a graph. For a graph and a
pair of k disjoint paths P and Q connecting the same set of terminal pairs, we aim to determine
whether P can be transformed to Q by repeatedly replacing one path with another path so that the
intermediates are also k disjoint paths. The problem is called Disjoint Paths Reconfiguration.
We first show that Disjoint Paths Reconfiguration is PSPACE-complete even when k = 2.
On the other hand, we prove that, when the graph is embedded on a plane and all paths in P
and Q connect the boundaries of two faces, Disjoint Paths Reconfiguration can be solved in
polynomial time. The algorithm is based on a topological characterization for rerouting curves on
a plane using the algebraic intersection number. We also consider a transformation of disjoint s-t
paths as a variant. We show that the disjoint s-t paths reconfiguration problem in planar graphs
can be determined in polynomial time, while the problem is PSPACE-complete in general.

2012 ACM Subject Classification Theory of computation → Design and analysis of algorithms

Keywords and phrases Disjoint paths, combinatorial reconfiguration, planar graphs

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.81

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2210.11778

Funding Takehiro Ito: JSPS KAKENHI Grant Numbers JP18H04091, JP19K11814, JP20H05793.
Yuni Iwamasa: JSPS KAKENHI Grant Numbers JP20K23323, JP20H05795, JP22K17854.
Naonori Kakimura: JSPS KAKENHI Grant Numbers JP20H05795, JP21H03397, JP22H05001.
Yusuke Kobayashi: JSPS KAKENHI Grant Numbers JP20K11692, JP20H05795, JP22H05001.
Shun-ichi Maezawa: JSPS KAKENHI Grant Numbers JP20H05795, JP22K13956.
Yuta Nozaki: JSPS KAKENHI Grant Numbers JP20H05795, JP20K14317, JP23K12974.
Yoshio Okamoto: JSPS KAKENHI Grant Numbers JP20H05795, JP20K11670, JP23K10982.
Kenta Ozeki: JSPS KAKENHI Grant Numbers JP18K03391, JP19H01803, JP20H05795, 23K03195.

Acknowledgements We thank Naoyuki Kamiyama for the discussion and the anonymous referees
for their helpful comments.

EA
T
C
S

© Takehiro Ito, Yuni Iwamasa, Naonori Kakimura, Yusuke Kobayashi,
Shun-ichi Maezawa, Yuta Nozaki, Yoshio Okamoto, and Kenta Ozeki;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 81; pp. 81:1–81:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:takehiro@tohoku.ac.jp
https://orcid.org/0000-0002-9912-6898
mailto:iwamasa@i.kyoto-u.ac.jp
https://orcid.org/0000-0002-6794-3543
mailto:kakimura@math.keio.ac.jp
https://orcid.org/0000-0002-3918-3479
mailto:yusuke@kurims.kyoto-u.ac.jp
https://orcid.org/0000-0001-9478-7307
mailto:maezawa.mw@gmail.com
https://orcid.org/0000-0003-1607-8665
mailto:nozaki-yuta-vn@ynu.ac.jp
https://orcid.org/0000-0003-3223-0153
mailto:okamotoy@uec.ac.jp
https://orcid.org/0000-0002-9826-7074
mailto:ozeki-kenta-xr@ynu.ac.jp
https://orcid.org/0000-0003-3118-0086
https://doi.org/10.4230/LIPIcs.ICALP.2023.81
https://arxiv.org/abs/2210.11778
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

81:2 Rerouting Planar Curves and Disjoint Paths

1 Introduction

1.1 Disjoint Paths and Reconfiguration
The disjoint paths problem is a classical and important problem in algorithmic graph theory
and combinatorial optimization. In the problem, the input consists of a graph G = (V, E)
and 2k distinct vertices s1, . . . , sk, t1, . . . , tk, called terminals, and the task is to find k

vertex-disjoint paths P1, . . . , Pk such that Pi connects si and ti for i = 1, . . . , k if they exist.
A tuple P = (P1, . . . , Pk) of paths satisfying this condition is called a linkage. The disjoint
paths problem has attracted attention since the 1970s because of its practical applications to
transportation networks, network routing [46], and VLSI-layout [16, 29]. When the number k

of terminal pairs is part of the input, the disjoint paths problem was shown to be NP-hard by
Karp [25], and it remains NP-hard even for planar graphs [30]. For the case when the graph
is undirected and k is a fixed constant, Robertson and Seymour [42] gave a polynomial-time
algorithm based on the graph minor theory, which is one of the biggest achievements in
this area. Although the setting of the disjoint paths problem is quite simple and easy to
understand, a deep theory in discrete mathematics is required to solve the problem, which is
a reason why this problem has attracted attention in the theoretical study of algorithms.

In this paper, we consider a transformation of linkages in a graph. Roughly, in a
transformation, we pick up one path among the k paths in a linkage and replace it with
another path to obtain a new linkage. To give a formal definition, suppose that G is a
graph and s1, . . . , sk, t1, . . . , tk are distinct terminals. For two linkages P = (P1, . . . , Pk)
and Q = (Q1, . . . , Qk), we say that P is adjacent to Q if there exists i ∈ {1, . . . , k} such
that Pj = Qj for j ∈ {1, . . . , k} \ {i} and Pi ≠ Qi. We say that a sequence ⟨P1, P2, . . . , Pℓ⟩
of linkages is a reconfiguration sequence from P1 to Pℓ if Pi and Pi+1 are adjacent for
i = 1, . . . , ℓ − 1. If such a sequence exists, we say that P1 is reconfigurable to Pℓ. In this
paper, we focus on the following reconfiguration problem, which we call Disjoint Paths
Reconfiguration.

Disjoint Paths Reconfiguration
Input. A graph G = (V, E), distinct terminals s1, . . . , sk, t1, . . . , tk, and two linkages P
and Q.
Question. Is P reconfigurable to Q?

The problem can be regarded as the problem of deciding the reachability between linkages
via rerouting paths. Such a problem falls in the area of combinatorial reconfiguration; see
Section 1.3 for prior work on combinatorial reconfiguration. Note that Disjoint Paths
Reconfiguration is a decision problem that just returns “YES” or “NO” and does not
necessarily find a reconfiguration sequence when the answer is YES1.

Although our study is motivated by a theoretical interest in the literature on combinatorial
reconfiguration, the problem can model a rerouting problem in a telecommunication network
as follows. Suppose that a linkage represents routing in a telecommunication network, and
we want to modify linkage P to another linkage Q which is better than P in some sense. If
we can change only one path in a step in the network for some technical reasons, and we have
to keep a linkage in the modification process, then this situation is modeled as Disjoint
Paths Reconfiguration.

1 Our positive results in this paper hold also for the problem of finding a reconfiguration sequence.

T. Ito et al. 81:3

We also study internally vertex-disjoint s-t paths instead of disjoint paths. In the disjoint
s-t paths problem, for a graph and two terminals s and t, we seek for k internally vertex-
disjoint paths connecting s and t. It is well-known that the disjoint s-t paths problem can be
solved in polynomial time. The study of disjoint s-t paths originated from Menger’s min-max
theorem [33] and the max-flow algorithm by Ford and Fulkerson [14]. Faster algorithms for
finding maximum disjoint s-t paths or a maximum s-t flow have been actively studied in
particular for planar graphs; see e.g. [12, 24, 26, 51].

In the same way as Disjoint Paths Reconfiguration, we consider a reconfiguration
of internally vertex-disjoint s-t paths. Let G = (V, E) be a graph with two distinct terminals
s and t. We say that a set P = {P1, . . . , Pk} of k paths in G is an s-t linkage if P1, . . . , Pk

are internally vertex-disjoint s-t paths. Note that P is not a tuple but a set, that is, we
ignore the ordering of the paths in P. We say that s-t linkages P and Q are adjacent if
Q = (P \ P) ∪ {Q} for some s-t paths P and Q with P ̸= Q. We define the reconfigurability
of s-t linkages in the same way as linkages. We consider the following problem.

Disjoint s-t Paths Reconfiguration
Input. A graph G = (V, E), distinct terminals s and t, and two s-t linkages P and Q.
Question. Is P reconfigurable to Q?

1.2 Our Contributions
Since finding disjoint s-t paths is an easy combinatorial optimization problem, we may wonder
whether Disjoint s-t Paths Reconfiguration is also tractable. In this paper, we show
that Disjoint s-t Paths Reconfiguration is PSPACE-hard even when k = 2.

▶ Theorem 1. The Disjoint s-t Paths Reconfiguration is PSPACE-complete even when
k = 2 and the maximum degree of G is four.

Note that Disjoint s-t Paths Reconfiguration can be easily reduced to Disjoint
Paths Reconfiguration by splitting each of s and t into k terminals. Thus, this theorem
implies the PSPACE-hardness of Disjoint Paths Reconfiguration with k = 2.

In this paper, we mainly focus on the problems in planar graphs. To better understand
Disjoint Paths Reconfiguration in planar graphs, we show a topological necessary
condition.

Topological conditions play important roles in the disjoint paths problem. If there exist
disjoint paths connecting terminal pairs in a graph embedded on a surface Σ, then there must
exist disjoint curves on Σ connecting them. For example, when terminals s1, s2, t1 and t2 lie
on the outer face F in a plane graph G in this order, there exist no disjoint curves connecting
the terminal pairs in the disk Σ = R2 \ F , and hence we can conclude that G contains no
disjoint paths. Such a topological condition is used to design polynomial-time algorithms
for the disjoint paths problem with k = 2 [44, 45, 49], and to deal with the problem on a
disk or a cylinder [40]. When Σ is a plane (or a sphere), we can always connect terminal
pairs by disjoint curves on Σ, and hence nothing is derived from the above argument. Indeed,
Robertson and Seymour [41] showed that if the input graph is embedded on a surface and
the terminals are mutually “far apart,” then desired disjoint paths always exist.

In contrast, as we will show below in Theorem 2, there exists a topological necessary
condition for the reconfigurability of disjoint paths. Thus, even when the terminals are
mutually far apart, the reconfiguration of disjoint paths is not always possible. This shows a
difference between the disjoint paths problem and Disjoint Paths Reconfiguration.

ICALP 2023

81:4 Rerouting Planar Curves and Disjoint Paths

s1

s2

t1

t2

Q2
Q1

P1

P2

s1 s2 t2 t1

P1

P2

Q1

Q2

Figure 1 (Left) An example on the plane where (P1, P2) is not reconfigurable to (Q1, Q2). (Right)
An example in a graph where the condition in Theorem 2 holds but (P1, P2) is not reconfigurable to
(Q1, Q2).

To formally discuss the topological necessary condition, we consider the reconfiguration
of curves on a surface. Suppose that Σ is a surface and let s1, . . . , sk, t1, . . . , tk be distinct
points on Σ. By abuse of notation, we say that P = (P1, . . . , Pk) is a linkage if it is a
collection of disjoint simple curves on Σ such that Pi connects si and ti. We also define the
adjacency and reconfiguration sequences for linkages on Σ in the same way as linkages in
a graph. Then, the reconfigurability between two linkages on a plane can be characterized
with a word wj associated to Qj which is an element of the free group2 Fk generated by
x1, . . . , xk as follows; see Section 3 for the definition of wj .

▶ Theorem 2. Let P = (P1, . . . , Pk) and Q = (Q1, . . . , Qk) be linkages on a plane (or a
sphere). Then, P is reconfigurable to Q if and only if wj ∈ ⟨xj⟩ for any j ∈ {1, . . . , k}, where
⟨xj⟩ denotes the subgroup generated by xj.

See Figure 1 (left) for an example. It is worth noting that, if k = 2 and Σ is a connected
orientable closed surface of genus g ≥ 1, then such a topological necessary condition does not
exist, i.e., the reconfiguration is always possible; see the full version [20].

For a graph embedded on a plane, we can identify paths and curves. Then, Theorem 2 gives
a topological necessary condition for Disjoint Paths Reconfiguration in planar graphs.
However, the converse does not necessarily hold: even when the condition in Theorem 2
holds, an instance of Disjoint Paths Reconfiguration may have no reconfiguration
sequence. See Figure 1 (right) for a simple example. The polynomial solvability of Disjoint
Paths Reconfiguration in planar graphs is open even for the case of k = 2.

With the aid of the topological necessary condition, we design polynomial-time algorithms
for special cases, in which all the terminals are on a single face (called one-face instances), or
s1, . . . , sk are on some face and t1, . . . , tk are on another face (called two-face instances). Note
that one/two-face instances have attracted attention in the disjoint paths problem [40, 47, 48],
in the multicommodity flow problem [18, 35, 36], and in the shortest disjoint paths problem [8,
9, 11, 28]. We show that any one-face instance of Disjoint Paths Reconfiguration has a
reconfiguration sequence (Proposition 13). Moreover, we prove a topological characterization
for two-face instances of Disjoint Paths Reconfiguration with a certain condition
(Theorem 14), which leads to a polynomial-time algorithm in this case.

▶ Theorem 3. When the instances are restricted to two-face instances, Disjoint Paths
Reconfiguration can be solved in polynomial time.

2 Each element of the free group can be expressed as a word consisting of x1, x−1
1 , . . . , xk, x−1

k in which
xi and x−1

i are not adjacent.

T. Ito et al. 81:5

Based on this theorem, we give a polynomial-time algorithm for Disjoint s-t Paths
Reconfiguration in planar graphs.

▶ Theorem 4. There is a polynomial-time algorithm for Disjoint s-t Paths Reconfigur-
ation in planar graphs.

Note that the number k of paths in Theorems 3 and 4 can be part of the input.
It is well known that G has an s-t linkage of size k if and only if G has no s-t separator

of size k − 1 (Menger’s theorem). The characterization for two-face instances (Theorem 14)
implies the following theorem, which is interesting in the sense that one extra s-t connectivity
is sufficient to guarantee the existence of a reconfiguration sequence.

▶ Theorem 5. Let G = (V, E) be a planar graph with distinct vertices s and t, and let P
and Q be s-t linkages of size k. If there is no s-t separator of size k, then P is reconfigurable
to Q.

As mentioned above, the polynomial solvability of Disjoint Paths Reconfiguration
in planar graphs is open even for the case of k = 2. On the other hand, when k is not
bounded, Disjoint Paths Reconfiguration is PSPACE-complete as the next theorem
shows.

▶ Theorem 6. The Disjoint Paths Reconfiguration is PSPACE-complete when the
graph G is planar and of bounded bandwidth.

Here, we recall the definition of the bandwidth of a graph. Let G = (V, E) be an
undirected graph. Consider an injective map π : V → Z. Then, the bandwidth of π is
defined as max{|π(u) − π(v)| | {u, v} ∈ E}. The bandwidth of G is defined as the minimum
bandwidth of all injective maps π : V → Z.

1.3 Related Work
There are a lot of studies on the disjoint paths problem and its variant. For the case of k = 2,
polynomial-time algorithms were presented in [44, 45, 49], while the directed variant was
shown to be NP-hard [15]. In the early stages of the study of the disjoint paths problem,
for the case when G is embedded on a plane and all the terminals are on one face or two
faces, polynomial-time algorithms were given in [40, 47, 48]. For fixed k, Robertson and
Seymour [41] gave a polynomial time algorithm for the disjoint paths problem on a plane or
a fixed surface. By extending this result, for the case when the graph is undirected and k is
a fixed constant, Robertson and Seymour [42] gave a polynomial-time algorithm based on
the graph minor theory, which is one of the biggest achievements in this area. For the planar
case, faster algorithms were presented in [1, 38, 39]. The directed variant of the problem can
be solved in polynomial time if the input digraph is planar and k is a fixed constant; an XP
algorithm was given by Schrijver [43] and an FPT algorithm was given by Cygan et al. [10]
for the parameter k.

Combinatorial reconfiguration is an emerging field in discrete mathematics and theoretical
computer science. In typical problems of combinatorial reconfiguration, we consider two
discrete structures and ask whether one can be transformed to the other by a sequence of
local changes. See surveys of Nishimura [34] and van den Heuvel [50]. Refer to [22] for a
general solver.

Path reconfiguration problems have been studied in this framework. The first problem is
the shortest path reconfiguration, introduced by Kaminski et al. [23]. In this problem, we are
given an undirected graph with two designated vertices s, t and two s-t shortest paths P and

ICALP 2023

81:6 Rerouting Planar Curves and Disjoint Paths

Q. Then, we want to decide whether P can be transformed to Q by a sequence of one-vertex
changes in such a way that all the intermediate s-t paths remain the shortest. Bonsma [6]
proved that the shortest path reconfiguration is PSPACE-complete, but polynomial-time
solvable when the input graph is chordal or claw-free. Bonsma [7] further proved that the
problem is polynomial-time solvable for planar graphs. Wrochna [52] proved that the problem
is PSPACE-complete even for graphs of bounded bandwidth. Gajjar et al. [17] proved that
the problem is polynomial-time solvable for circle graphs, circular-arc graphs, permutation
graphs, and hypercubes. They also considered a variant where a change can involve k

successive vertices; in this variant, they proved that the problem is PSPACE-complete even
for line graphs. Properties of the adjacency relation in the shortest path reconfiguration have
also been studied [4, 5].

Another path reconfiguration problem has been introduced by Amiri et al. [3] who were
motivated by a problem in software-defined networks. In their setup, we are given a directed
graph with edge capacity and two designated vertices s, t. We are also given k pairs of
s-t paths (Pi, Qi), i = 1, 2, . . . , k, where the number of paths among P1, P2, . . . , Pk (and
among Q1, Q2, . . . , Qk respectively) traversing an edge is at most the capacity of the edge.
The problem is to determine whether one set of paths can be transformed into the other
set of paths by a sequence of the following type of changes: specify one vertex v and then
switch the usable outgoing edges at v from those in the Pi to those in the Qi. In each of the
intermediate situations, there must be a unique path through usable edges in Pi ∪ Qi for
each i. See [3] for the precise problem specification. Amiri et al. [3] proved that the problem
is NP-hard even when k = 2. For directed acyclic graphs, they also proved that the problem
is NP-hard (for unbounded k) but fixed-parameter tractable with respect to k. A subsequent
work [2] studied an optimization variant in which the number of steps is to be minimized
when a set of “disjoint” changes can be performed simultaneously.

Matching reconfiguration in bipartite graphs can be seen as a certain type of disjoint paths
reconfiguration problems. In matching reconfiguration, we are given two matchings (with
extra properties) and want to determine whether one matching can be transformed to the
other matching by a sequence of local changes. There are several choices for local changes.
One of the most studied local change rules is the token jumping rule, where we remove
one edge and add one edge at the same time. Ito et al. [19] proved that the matching
reconfiguration (under the token jumping rule) can be solved in polynomial time.3

To see a connection of matching reconfiguration with disjoint paths reconfiguration,
consider the matching reconfiguration problem in bipartite graphs G under the token jumping
rule, where we are given two matchings M, M ′ of G. Then, we add two extra vertices s, t to G,
and for each edge e ∈ M (and M ′) we construct a unique s-t path of length three that passes
through e. This way, we obtain two s-t linkages P and P ′ from M and M ′, respectively. It is
easy to observe that P can be reconfigured to P ′ in Disjoint s-t Paths Reconfiguration
if and only if M can be reconfigured to M ′ in the matching reconfiguration problem in G.

1.4 Organization
In Section 2, we introduce some notation and basic concepts in topology. Section 3 deals
with rerouting disjoint curves, giving the proof of Theorem 2. In Sections 4 and 5, we prove
Theorems 3, 4, and 5. Hardness results (Theorems 1 and 6) are proven in the full version [20].

3 The theorem by Ito et al. [19] only gave a polynomial-time algorithm for a different local change, the
so-called token addition and removal rule. However, their result can easily be adapted to the token
jumping rule, too. See [21].

T. Ito et al. 81:7

C1

C2

εp(C1, C2) = 1 εp(C1, C2) = −1

p C1

C2

p

Figure 2 Local intersection numbers of curves C1 and C2 at p.

2 Preliminaries

For a positive integer k, let [k] = {1, 2, . . . , k}.
Let G = (V, E) be a graph. For a subgraph H of G, the vertex set of H is denoted by

V (H). Similarly, for a path P , let V (P) denote the set of vertices in P . For X ⊆ V , let
N(X) = {v ∈ V \ X | {u, v} ∈ E for some u ∈ X}. For a vertex set U ⊆ V , let G \ U denote
the graph obtained from G by removing all the vertices in U and the incident edges. For
a path P in G, we denote G \ V (P) by G \ P to simplify the notation. For disjoint vertex
sets X, Y ⊆ V , we say that a vertex subset U ⊆ V \ (X ∪ Y) separates X and Y if G \ U

contains no path between X and Y . For distinct vertices s, t ∈ V , U ⊆ V \ {s, t} is called an
s-t separator if U separates {s} and {t}.

For Disjoint Paths Reconfiguration (resp. Disjoint s-t Paths Reconfiguration),
an instance is denoted by a triplet (G, P, Q), where G is a graph and P and Q are linkages
(resp. s-t linkages). Note that we omit the terminals because they are determined by P and
Q. Since any instance has a trivial reconfiguration sequence when k = 1, we may assume
that k ≥ 2. For linkages (resp. s-t linkages) P and Q, we denote P ↔ Q if P and Q are
adjacent. Recall that P = (P1, . . . , Pk) is adjacent to Q = (Q1, . . . , Qk) if there exists i ∈ [k]
such that Pj = Qj for j ∈ [k] \ {i} and Pi ̸= Qi.

For a graph G embedded on a surface Σ, each connected region of Σ \ G is called a face of
G. For a face F , its boundary is denoted by ∂F . When a graph G is embedded on a surface
Σ, a path in G is sometimes identified with the corresponding curve in Σ. A graph embedded
on a plane is called a plane graph. A graph is said to be planar if it has a planar embedding.

The following notion is well-known in topology. See [13, Section 1.2.3] for instance.

▶ Definition 7. Let C1 and C2 be piecewise smooth oriented curves on an oriented surface and
let p ∈ C1 ∩ C2 be a transverse double point4. The local intersection number εp(C1, C2) of C1
and C2 at p is defined by εp(C1, C2) = 1 if C1 crosses C2 from left to right and εp(C1, C2) = −1
if C1 crosses C2 from right to left (see Figure 2). When ∂C1 ∩ C2 = C1 ∩ ∂C2 = ∅, the
algebraic intersection number µ(C1, C2) ∈ Z is defined to be the sum of εp(C1, C2) over all
p ∈ C1 ∩ C2 (after a small perturbation if necessary). Note that ∂Ci denotes the set of
endpoints of Ci.

When a graph is embedded on an oriented surface, paths in the graph are piecewise
smooth curves, and hence we can define the algebraic intersection number for a pair of paths
(see Figure 3).

4 Intuitively, a “transverse double point” means that at the intersection two curves are not tangent with
each other and no three segments of curves do not intersect simultaneously.

ICALP 2023

81:8 Rerouting Planar Curves and Disjoint Paths

C1

C2C1

C2 C2 C1

+1 −1

µ(C1, C2) = 0 µ(C1, C2) = 2 µ(C1, C2) = −1

Figure 3 Algebraic intersection numbers of paths C1 and C2 on a graph.

s1

s2

t2

t1
Q1

Q2
P1

P2

+

−

+− −

−

+

− +

+

−

−

+

−

Figure 4 An example of linkages with w1 = x2x−1
1 x−1

2 x1x−1
2 x−1

1 x2 and
w2 = x1x−1

2 x−1
1 x2x−1

1 x−1
2 x1.

3 Curves on a Plane

In this section, we consider the reconfiguration of curves on a plane and prove Theorem 2.
Suppose that we are given distinct points s1, . . . , sk, t1, . . . , tk on a plane and linkages P and
Q that consist of curves on the plane connecting si and ti.

Throughout this section, all intersections of curves are assumed to be transverse double
points. Fix j ∈ [k] and let

⋃
i∈[k] Pi ∩ Qj = {sj , p1, . . . , pn, tj}, where the n + 2 points are

aligned on Qj in this order. We now define wj ∈ Fk by

wj =
∏

ℓ∈[n]

x
εpℓ

(Piℓ
,Qj)

iℓ
,

where iℓ ∈ [k] satisfies pℓ ∈ Piℓ
∩ Qj . Recall that Fk denotes the free group generated by

x1, . . . , xk. We give an example in Figure 4.

▶ Remark 8. Let ab: Fk → Zk denote the abelianization, that is, the ℓth entry of ab(w) is
the sum of the exponents of xℓ’s in w. For distinct i, j ∈ [k], the ith entry of ab(wj) is equal
to the algebraic intersection number µ(Pi, Qj) ∈ Z of Pi and Qj . Thus, wj ∈ ⟨xj⟩ implies
that µ(Pi, Qj) = 0 for any i ∈ [k] \ {j}.

In the following two lemmas, we observe the behavior of wj under certain moves of curves.
For j ∈ [k], let w′

j denote the word defined by a linkage P ′ and the curve Qj .

▶ Lemma 9. Let i ∈ [k] and let P ′ = (P ′
1, . . . , P ′

k) be a linkage such that P ′
ℓ = Pℓ if ℓ ̸= i,

and P ′
i is isotopic5 to Pi relative to {si, ti} in R2 \

⋃
ℓ̸=i Pℓ. Then, w′

j = wj for j ∈ [k] \ {i},
and w′

i = xe1
i wix

e2
i for some e1, e2 ∈ Z.

5 Intuitively, this means P ′
i can be obtained from Pi by a continuous deformation in the plane that fixes

the endpoints si and ti and avoids passing any point in
⋃

ℓ ̸=i
Pℓ.

T. Ito et al. 81:9

Pi

Qi
(I) (II)

Pi

Qℓ

Figure 5 Local pictures of isotopies of Pi.

Pi

Pj
sj

tjγ

P ′
i

Qj

Qℓ

Figure 6 (Left) A move of Pi along γ.
(Right) Intersections of P ′

i and
⋃

ℓ
Qℓ.

Pi

Qj∗

P ′
i

Qj∗

Figure 7 A reconfiguration of Pi to P ′
i .

Proof. By the definition of an isotopy (see [13, Section 1.2.5]), P ′
i is obtained from Pi by a

finite sequence of the moves illustrated in Figure 5. By (I), one intersection of Pi and Qi is
created or eliminated, and thus (I) changes wi to wix

±1
i or x±1

i wi. In (II), two intersections
of Pi and Qℓ are created or eliminated for some ℓ ∈ [k]. Since x±1

i x∓1
i = 1, wj is unchanged

under (II) for any j ∈ [k]. ◀

Recall here that ⟨xℓ⟩ denotes the subgroup of Fk generated by xℓ.

▶ Lemma 10. Let γ be a simple curve connecting Pi and sj (i ̸= j) whose interior is disjoint
from

⋃
ℓ∈[k] Pℓ, and define P ′

i as illustrated in Figure 6. Let P ′ be the linkage obtained from
P by replacing Pi with P ′

i . For ℓ ∈ [k], if wℓ ∈ ⟨xℓ⟩, then w′
ℓ = wℓ.

Proof. Define a group homomorphism fij : Fk → Fk by fij(xℓ) = xℓ if ℓ ̸= j, and fij(xj) =
xixjx−1

i . Then, one can check that w′
ℓ = fij(wℓ) if ℓ ̸= j, and w′

j = x−1
i fij(wj)xi (see

Figure 6). Since wℓ = xeℓ

ℓ for some eℓ ∈ Z by the assumption, we have w′
ℓ = wℓ if ℓ ̸= j.

Also, one has

w′
j = x−1

i fij(wj)xi = x−1
i (xixjx−1

i)ej xi = wj .

This completes the proof. ◀

As a consequence of Lemmas 9 and 10, we obtain the following key lemma.

▶ Lemma 11. Suppose that P is reconfigurable to P ′. For j ∈ [k], if wj ∈ ⟨xj⟩, then
w′

j ∈ ⟨xj⟩.

Proof. It suffices to consider the case when there is i ∈ [k] such that P ′
ℓ = Pℓ if ℓ ̸= i, and

P ′
i ̸= Pi. Since Pi is isotopic to P ′

i (relative to {si, ti}) in R2, the curve P ′
i is obtained from

Pi by the moves in Lemmas 9 and 10. Therefore, these lemmas imply that if wj ∈ ⟨xj⟩ then
w′

j ∈ ⟨xj⟩. ◀

With this key lemma, we can prove Theorem 2 stating that P is reconfigurable to Q if
and only if wj ∈ ⟨xj⟩ for any j ∈ [k].

Proof of Theorem 2. First suppose that P is reconfigurable to Q, namely P is reconfigurable
to P ′ such that P ′

i ∩ Qi = {si, ti} and P ′
i ∩ Qj = ∅ for j ∈ [k] \ {i}. Then, w′

j = 1 for any
j ∈ [k]. Since P ′ is reconfigurable to P, Lemma 11 implies that wj ∈ ⟨xj⟩ for any j ∈ [k].

The converse is shown by induction on the number, say n, of intersections of P and
Q except their endpoints. The case n = 0 is obvious. Let us consider the case n ≥ 1.
If Pi ∩ Qj = ∅ for any pair of distinct i, j ∈ [k], then the reconfiguration is obviously

ICALP 2023

81:10 Rerouting Planar Curves and Disjoint Paths

possible. Otherwise, there exists xix
−1
i or x−1

i xi in the product of the definition of wj∗ for
some i, j∗ ∈ [k] (possibly i = j∗). This means that Pi can be reconfigured to a curve P ′

i

as illustrated in Figure 7. This process eliminates at least two intersections and we have
w′

j ∈ ⟨xj⟩ for any j ∈ [k] by Lemma 11. Thus, the induction hypothesis concludes that P ′ is
reconfigurable to Q. ◀

By Theorem 2 and Remark 8, we obtain the following corollary.

▶ Corollary 12. Let P = (P1, . . . , Pk) and Q = (Q1, . . . , Qk) be linkages on a plane (or a
sphere). If P is reconfigurable to Q, then µ(Pi, Qj) = 0 for any distinct i, j ∈ [k].

It is worth mentioning that the converse is not necessarily true as illustrated in Figure 4.
This means that a “non-commutative” tool such as the free group Fk is essential to describe
the complexity of the reconfiguration of curves on a plane.

4 Algorithms for Planar Graphs

In this section, we consider the reconfiguration in planar graphs and prove Theorems 3,
4, and 5. We deal with one-face instances and two-face instances of Disjoint Paths
Reconfiguration in Section 4.1. Then, we discuss Disjoint s-t Paths Reconfiguration
in Section 4.2. A proof of a key theorem (Theorem 14) is postponed to Section 5.

4.1 One-Face Instance and Two-Face Instance
We say that an instance (G, P, Q) of Disjoint Paths Reconfiguration is a one-face
instance if G is a plane graph and all the terminals are on the boundary of some face. We
show that P is always reconfigurable to Q in a one-face instance, whose proof is given in the
full version [20].

▶ Proposition 13. For any one-face instance (G, P, Q) of Disjoint Paths Reconfigura-
tion, P is reconfigurable to Q.

Let k ≥ 2. We say that an instance (G, P, Q) of Disjoint Paths Reconfiguration is
a two-face instance if G = (V, E) is a plane graph, s1, . . . , sk are on the boundary of some
face S, and t1, . . . , tk are on the boundary of another face T . The objective of this subsection
is to present a polynomial-time algorithm for two-face instances.

It suffices to consider the case when the graph is 2-connected since otherwise we can
easily reduce to the 2-connected case. Hence, we may assume that the boundary of each
face forms a cycle. For ease of explanation, without loss of generality, we assume that G is
embedded on R2 so that S is an inner face and T is the outer face. Furthermore, we may
assume that s1, . . . , sk lie on the boundary of S clockwise in this order and t1, . . . , tk lie on
the boundary of T clockwise in this order, because there is a linkage.

A vertex set U ⊆ V is called a terminal separator if U separates {s1, . . . , sk} and
{t1, . . . , tk}. For two curves (or paths) P and Q between ∂S and ∂T that share no endpoints,
define µ(P, Q) as in Definition 7. That is, µ(P, Q) is the number of times P crosses Q from
left to right minus the number of times P crosses Q from right to left, where we suppose
that P and Q are oriented from ∂S to ∂T . Since µ(Pi, Qj) takes the same value for distinct
i, j ∈ [k] (see the full version [20] for details), this value is denoted by µ(P, Q). Roughly,
µ(P, Q) indicates the difference in the numbers of rotations around S of the linkages.

The existence of a linkage shows that the graph has no terminal separator of size less
than k. If the graph has no terminal separator of size k, then we can characterize the
reconfigurability by using µ(P, Q). The following is a key theorem in our algorithm, whose
proof is given in Section 5.

T. Ito et al. 81:11

▶ Theorem 14. Let k ≥ 2. Suppose that a two-face instance (G, P, Q) of Disjoint Paths
Reconfiguration has no terminal separator of size k. Then, P is reconfigurable to Q if
and only if µ(P, Q) = 0.

By using this theorem, we can design a polynomial-time algorithm for two-face instances
of Disjoint Paths Reconfiguration and prove Theorem 3.

Proof of Theorem 3. Suppose that we are given a two-face instance I = (G, P, Q) of
Disjoint Paths Reconfiguration.

We first test whether I has a terminal separator of size k, which can be done in polynomial
time by a standard minimum cut algorithm. If there is no terminal separator of size k, then
Theorem 14 shows that we can easily solve Disjoint Paths Reconfiguration by checking
whether µ(P, Q) = 0 or not.

Suppose that we obtain a terminal separator U of size k. Then, we obtain subgraphs
G1 and G2 of G such that G = G1 ∪ G2, V (G1) ∩ V (G2) = U , {s1, . . . , sk} ⊆ V (G1), and
{t1, . . . , tk} ⊆ V (G2). We test whether V (Pi) ∩ U = V (Qi) ∩ U holds for any i ∈ [k] or
not, where we note that each of V (Pi) ∩ U and V (Qi) ∩ U consists of a single vertex. If
this does not hold, then we can immediately conclude that P is not reconfigurable to Q,
because V (Pi) ∩ U does not change in the reconfiguration. If V (Pi) ∩ U = V (Qi) ∩ U for
i ∈ [k], then we consider the instance Ii = (Gi, Pi, Qi) for i = 1, 2, where Pi and Qi are the
restrictions of P and Q to Gi. That is, Ii is the restriction of I to Gi. Then, we see that
P is reconfigurable to Q if and only if Pi is reconfigurable to Qi for i = 1, 2. Since I1 and
I2 are one-face or two-face instances, by solving them recursively, we can solve the original
instance I in polynomial time. ◀

4.2 Reconfiguration of s-t Paths
In this subsection, for Disjoint s-t Paths Reconfiguration in planar graphs, we show
results that are analogous to Theorems 14 and 3, which have been already stated in Section 1.2.

▶ Theorem 5. Let G = (V, E) be a planar graph with distinct vertices s and t, and let P
and Q be s-t linkages of size k. If there is no s-t separator of size k, then P is reconfigurable
to Q.

Proof. Suppose that G, s, t, P , and Q are as in the statement, and assume that there is no
s-t separator of size k. We fix an embedding of G on the plane. If there is an edge connecting
s and t, then s and t are on the boundary of some face, and hence P is reconfigurable to Q
in the same way as Proposition 13. Thus, it suffices to consider the case when there is no
edge connecting s and t.

We now construct an instance of Disjoint Paths Reconfiguration by replacing s

and t with large “grids” as follows. Let e1, e2, . . . , eℓ be the edges incident to s clockwise in
this order. Note that ℓ ≥ k + 1 holds, because G has no s-t separator of size k. For i ∈ [ℓ],
we subdivide ei by introducing p new vertices v1

i , v2
i , . . . , vp

i such that they are aligned in this
order and v1

i is closest to s, where p is a sufficiently large integer (e.g., p ≥ |V |2). For i ∈ [ℓ]
and for j ∈ [p], we introduce a new edge connecting vj

i and vj
i+1, where vj

ℓ+1 = vj
1. Define

si = v1
i for i ∈ [k] and remove s. Then, the graph is embedded on the plane and s1, . . . , sk

are on the boundary of some face clockwise in this order; see Figure 8. By applying a similar
procedure to t, we modify the graph around t and define t1, . . . , tk that are on the boundary
of some face counter-clockwise in this order. Let G′ be the obtained graph. Observe that G′

contains no terminal separator of size k, because G has no s-t separator of size k.

ICALP 2023

81:12 Rerouting Planar Curves and Disjoint Paths

s1s2
s3

s

e1

e2

e3

sk

Figure 8 (Left) Original graph G. (Right) Modification around s.

X WU Y

G2G1 G3

s
t

Figure 9 Construction of G1, G2, and G3.

By rerouting the given s-t linkages P and Q around s and t, we obtain linkages P ′

and Q′ from {s1, . . . , sk} to {t1, . . . , tk} in G′. Note that the restrictions of P and Q to
G \ {s, t} coincide with those of P ′ and Q′, respectively. Then, we can take P ′ and Q′ so
that |µ(P ′, Q′)| ≤ |V |. Furthermore, using at most |V | concentric cycles around s and t, we
can reroute the linkages so that the value µ(P ′, Q′) decreases or increases by one. Therefore,
using p ≥ |V |2 concentric cycles, we can reroute P ′ and Q′ so that µ(P ′, Q′) becomes zero.

By Theorem 14, P ′ is reconfigurable to Q′ in G′ (in terms of Disjoint Paths Reconfig-
uration). Then, the reconfiguration sequence from P ′ to Q′ corresponds to that from P to
Q in G (in terms of Disjoint s-t Paths Reconfiguration). Therefore, P is reconfigurable
to Q in G. ◀

▶ Theorem 4. There is a polynomial-time algorithm for Disjoint s-t Paths Reconfigur-
ation in planar graphs.

Proof. Suppose that we are given a planar graph G = (V, E) with s, t ∈ V and s-t linkages
P = {P1, . . . , Pk} and Q = {Q1, . . . , Qk} in G. We first test whether G has an s-t separator
of size k. If there is no such a separator, then we can immediately conclude that P is
reconfigurable to Q by Theorem 5.

Suppose that G has an s-t separator of size k. Let X be the inclusionwise minimal vertex
set subject to s ∈ X and N(X) is an s-t separator of size k. Note that such X is uniquely
determined by the submodularity of |N(X)| and it can be computed in polynomial time by a
standard minimum cut algorithm. Similarly, let Y be the unique inclusionwise minimal vertex
set subject to t ∈ Y and N(Y) is an s-t separator of size k. Let U = N(X), W = N(Y),
G1 = G[X ∪ U], G2 = G \ (X ∪ Y), and G3 = G[Y ∪ W]; see Figure 9. Since V (Pi) ∩ U and
V (Pi) ∩ W do not change in the reconfiguration, we can consider the reconfiguration in G1,
G2, and G3, separately.

T. Ito et al. 81:13

We first consider the reconfiguration in G1. Observe that each path in P contains exactly
one vertex in U , and the restriction of P to G1 consists of k paths from s to U that are
vertex-disjoint except at s. The same for Q. By the minimality of X, G1 contains no vertex
set of size k that separates {s} and U . Therefore, by the same argument as Theorem 5, the
restriction of P to G1 is reconfigurable to that of Q.

If U ∩ W ≠ ∅, then G \ X contains no vertex set of size k that separates U and {t} by
the minimality of Y . In such a case, by applying the same argument as above, the restriction
of P to G \ X is reconfigurable to that of Q. By combining the reconfiguration in G1 and
that in G \ X, we obtain a reconfiguration sequence from P to Q.

Therefore, it suffices to consider the case when U ∩ W = ∅. In the same way as G1,
we see that the restriction of P to G3 is reconfigurable to that of Q. This shows that the
reconfigurability from P to Q in G is equivalent to that in G2. By changing the indices if
necessary, we may assume that Pi ∩ U = Qi ∩ U for i ∈ [k]. If Pi ∩ W ≠ Qi ∩ W for some
i ∈ [k], then we can conclude that P is not reconfigurable to Q. Otherwise, let P ′ and Q′ be
the restrictions of P and Q to G2, respectively. Since (G2, P ′, Q′) is a one-face or two-face
instance of Disjoint Paths Reconfiguration, we can solve it in polynomial time by
Proposition 13 and Theorem 3. Therefore, we can test the reconfigurability from P to Q in
polynomial time; ◀

5 Proof of Theorem 14

The necessity (“only if” part) in Theorem 14 is immediately derived from Corollary 12.
In what follows in this section, we show the sufficiency (“if” part) in Theorem 14, which

is one of the main technical contributions of this paper. Assume that µ(P, Q) = 0 and there
is no terminal separator of size k. The objective is to show that P is reconfigurable to Q.
Our proof is constructive, and based on topological arguments. A similar technique is used
in [27, 32, 31, 37].

5.1 Preliminaries for the Proof
Let C be a simple curve connecting the boundaries of S and T such that C contains no
vertex in G, C intersects the boundaries of S and T only at its endpoints, and µ(Pi, C) = 0
for i ∈ [k]. Note that such C always exists, because the last condition is satisfied if C is
disjoint from P. Note also that µ(Qi, C) = 0 holds for i ∈ [k], because µ(P, Q) = 0.

Since T is the outer face, R2 \ (S ∪ T) forms an annulus (or a cylinder).6 Thus, by cutting
it along C, we obtain a rectangle whose boundary consists of ∂S, ∂T , and two copies of
C. We take infinite copies of this rectangle and glue them together to obtain an infinitely
long strip R. That is, for j ∈ Z, let Cj be a copy of C, let Rj be a copy of the rectangle
whose boundary contains Cj and Cj+1, and define R =

⋃
j∈Z Rj ; see Figure 10. By taking

C appropriately, we may assume that the copies of s1, . . . , sk lie on the boundary of Rj in
this order so that s1 is closest to Cj and sk is closest to Cj+1. The same for t1, . . . , tk. Note
that R is called the universal cover of R2 \ (S ∪ T) in the terminology of topology.

Since G is embedded on R2 \ (S ∪ T), this operation naturally defines an infinite periodic
graph Ĝ = (V̂ , Ê) on R that consists of copies of G. A path in Ĝ is identified with the
corresponding curve in R. For v ∈ V and j ∈ Z, let vj ∈ V̂ denote the unique vertex in Rj

6 More precisely, the annulus is degenerated when ∂S ∩ ∂T ≠ ∅, but the same argument works even for
this case.

ICALP 2023

81:14 Rerouting Planar Curves and Disjoint Paths

tj1
T

C

t1

t2

t3

tk Cj Cj+1 Cj+2

Rj Rj+1

tj2 tjk tj+1
1 tj+1

k

sj1 s
j
2 sjk sj+1

1 sj+1
k

s1
s2
s3

sk
S

T̂

Ŝ

Figure 10 (Left) Curve C in R2 \ (S ∪ T). (Right) Construction of R.

T̂

Ŝ

P
L(P)

Figure 11 Definition of L(P).

that corresponds to v. Since µ(Pi, C) = 0 for i ∈ [k], each path in Ĝ corresponding to Pi is
from sj

i to tj
i for some j ∈ Z, and we denote such a path by P j

i . We define Qj
i in the same

way. Since P and Q are linkages in G, {P j
i | i ∈ [k], j ∈ Z} and {Qj

i | i ∈ [k], j ∈ Z} are
sets of vertex-disjoint paths in Ĝ.

A path in Ĝ connecting the boundary of R corresponding to ∂S and that corresponding
to ∂T is called an Ŝ-T̂ path. For an Ŝ-T̂ path P , let L(P) be the region of R \ P that is
on the “left-hand side” of P . Formally, let r be a point in Rj for sufficiently small j, and
define L(P) as the set of points x ∈ R \ P such that any curve in R between r and x crosses
P an even number of times; see Figure 11. For two Ŝ-T̂ paths P and Q, we denote P ⪯ Q

if L(P) ⊆ L(Q), and denote P ≺ Q if L(P) ⊊ L(Q). For two linkages P = (P1, . . . , Pk)
and Q = (Q1, . . . , Qk) in G with µ(Pi, C) = µ(Qi, C) = 0 for i ∈ [k], we denote P ⪯ Q if
P j

i ⪯ Qj
i for any i ∈ [k] and j ∈ Z, and denote P ≺ Q if P ⪯ Q and P ̸= Q.

5.2 Case When P ⪯ Q
In this subsection, we consider the case when P ⪯ Q, and the general case will be dealt with
in Section 5.3. To show that P is reconfigurable to Q, we show the following lemma.

▶ Lemma 15. If P ≺ Q, then there exists a linkage P ′ such that P ↔ P ′ and P ≺ P ′ ⪯ Q.

Proof. Let Ŵ := {v̂ ∈ V̂ | v̂ ∈ P j
i \ Qj

i for some i ∈ [k] and j ∈ Z} and let W be the subset
of V corresponding to Ŵ . If W = ∅, then take an index i ∈ [k] such that Pi ̸= Qi and let
P ′ = (P ′

1, . . . , P ′
k) be the set of paths obtained from P by replacing Pi with Qi. Since Q is

a linkage and all the vertices in P ′
h are contained in Qh for h ∈ [k], P ′ is a desired linkage.

Thus, it suffices to consider the case when W ̸= ∅.
Let u ∈ W . Let û ∈ Ŵ be a vertex corresponding to u and let i ∈ [k] and j ∈ Z be the

indices such that û ∈ P j
i \ Qj

i . Since û ∈ P j
i \ Qj

i implies û ∈ L(Qj
i) \ L(P j

i), there exists
a face F̂ of Ĝ such that ∂F̂ contains an edge of P j

i incident to û and F̂ ⊆ L(Qj
i) \ L(P j

i).
Define (P j

i)′ as the sj
i -tj

i path in Ĝ with maximal L((P j
i)′) subject to (P j

i)′ ⊆ P j
i ∪ ∂F̂ ; see

Figure 12. Note that such a path is uniquely determined, it satisfies P j
i ≺ (P j

i)′ ⪯ Qj
i , and it

can be found in polynomial time.

T. Ito et al. 81:15

T̂

Ŝ

F̂P j
i

P j
i+1

û

v̂

(P j
i)

′

tji tji+1

sji sji+1

Figure 12 The blue thick paths are P j
i and

P j
i+1, and the red dashed path is (P j

i)′. There
exists a vertex v̂ ∈ ∂F̂ ∩ P j

i+1.

T

t1

tk

s1 s2
s3S

v1
v2

v3

v4

v5

v6

J3

J2

J1

sk

t2

t3

Figure 13 Each blue path represents Pi.
The dotted curve is part of J and the red
dotted thick curve is C∗.

Let P ′
i be the si-ti path in G that corresponds to (P j

i)′. If P ′
i is disjoint from Ph for

any h ∈ [k] \ {i}, then we can obtain a desired linkage P ′ from P by replacing Pi with P ′
i .

Otherwise, P ′
i intersects Ph for some h ∈ [k] \ {i}. This together with P j

i ≺ (P j
i)′ shows that

(P j
i)′ intersects P j

i+1, where P j
k+1 means P j+1

1 . Since P j
i and P j

i+1 are vertex-disjoint, the
intersection of (P j

i)′ and P j
i+1 is contained in ∂F̂ , which implies that ∂F̂ ∩ P j

i+1 contains a
vertex v̂ ∈ V̂ ; see Figure 12 again. Since F̂ ⊆ L(Qj

i), we obtain v̂ ∈ L(Qj
i) ∪ Qj

i ⊆ L(Qj
i+1),

and hence v̂ ̸∈ Qj
i+1. Let v and F be the vertex and the face of G that correspond to v̂ and

F̂ , respectively. Then, v̂ ∈ P j
i+1 \ Qj

i+1 implies that v̂ ∈ Ŵ and v ∈ W . Note that there
exists a curve in F from u to v.

By the above argument, for any u ∈ W , we can obtain
(i) a desired linkage P ′, or
(ii) a vertex v ∈ W on Pi+1 and a curve from u to v contained in some face of G, where i

is the index with u ∈ V (Pi).
Therefore, it suffices to show that we obtain the outcome (i) for some u ∈ W . To derive a
contradiction, assume to the contrary that we obtain the outcome (ii) for any u ∈ W .

By using the outcome (ii) repeatedly and by shifting the indices of Pi if necessary, we
obtain vi and Ji for i = 1, 2, . . . such that vi ∈ W is on Pi (where the index is modulo k)
and Ji is a curve from vi to vi+1 contained in some face. We consider the curve J obtained
by concatenating J1, J2, . . . in this order. Since |W | is finite, this curve visits the same point
more than once, and hence it contains a simple closed curve C∗. Since C∗ is simple and visits
vertices on Pi, Pi+1, . . . in this order, C∗ surrounds S exactly once in the clockwise direction;
see Figure 13. In particular, C∗ contains exactly one vertex on Pi for each i ∈ [k]. Let U

be the set of vertices in V contained in C∗. Then, |U | = k and G \ U has no path between
{s1, . . . , sk} and {t1, . . . , tk} by the choice of C∗. Furthermore, U contains no terminals,
because U ⊆ W and W contains no terminals. Therefore, U is a terminal separator of size k,
which contradicts the assumption. ◀

As long as P ̸= Q, we apply this lemma and replace P with P ′, repeatedly. Then, this
procedure terminates when P = Q, and gives a reconfiguration sequence from P to Q. This
completes the proof for the case when P ⪯ Q.

We now give a remark on the length of the reconfiguration sequence. For Ŝ-T̂ paths
P and Q with the same endpoints, we see that L(Q) \ L(P) contains O(|V |2) faces of Ĝ.
Therefore, in the reconfiguration sequence from P to Q obtained above, each path in P is
replaced with another path O(|V |2) times, which shows that the number of applications of
Lemma 15 is O(k|V |2) in total.

ICALP 2023

81:16 Rerouting Planar Curves and Disjoint Paths

tji T̂

Ŝsji

Qj
i

P j
i

P j
i ∨Qj

i

Figure 14 Construction of P j
i ∨ Qj

i .

5.3 General Case
In this subsection, we consider the case when P ⪯ Q does not necessarily hold. For
i ∈ [k] and j ∈ Z, define P j

i ∨ Qj
i as the sj

i -tj
i path in Ĝ with maximal L(P j

i ∨ Qj
i) subject

to P j
i ∨ Qj

i ⊆ P j
i ∪ Qj

i ; see Figure 14. Note that such a path is uniquely determined,
P j

i ⪯ P j
i ∨ Qj

i , and Qj
i ⪯ P j

i ∨ Qj
i . Since Ĝ is periodic, for any j ∈ Z, P j

i ∨ Qj
i corresponds

to a common si-ti walk Pi ∨ Qi in G. Actually, P ∨ Q := (P1 ∨ Q1, . . . , Pk ∨ Qk) is a linkage
in G.

▶ Lemma 16. P ∨ Q is a linkage in G.

Proof. We first show that Pi ∨ Qi is a path for each i ∈ [k]. Assume to the contrary that
Pi ∨ Qi visits a vertex v ∈ V more than once. Then, for j ∈ Z, there exist j1, j2 ∈ Z with
j1 < j2 such that P j

i ∨ Qj
i contains both vj1 and vj2 . Since the path P j

i ∨ Qj
i is contained in

the subgraph P j
i ∪ Qj

i , without loss of generality, we may assume that P j
i contains vj2 . This

shows that vj1 ∈ L(P j
i) ⊆ L(P j

i ∨ Qj
i), which contradicts that vj1 is contained in P j

i ∨ Qj
i .

We next show that P1 ∨ Q1, . . . , Pk ∨ Qk are pairwise vertex-disjoint. Assume to the
contrary that Pi ∨ Qi and Pi′ ∨ Qi′ contain a common vertex v ∈ V for distinct i, i′ ∈ [k].
Since Ĝ is periodic, there exist j, j′ ∈ Z such that P j

i ∨ Qj
i and P j′

i′ ∨ Qj′

i′ contain v0 (i.e.,
the copy of v in R0). We may assume that (j, i) is smaller than (j′, i′) in the lexicographical
ordering, that is, either j < j′ holds or j = j′ and i < i′ hold. Since P j

i ∨ Qj
i ⊆ P j

i ∪ Qj
i ,

we may also assume that v0 ∈ P j
i by changing the roles of P j

i and Qj
i if necessary. Then,

we obtain v0 ∈ P j
i ⊆ L(P j′

i′) ⊆ L(P j′

i′ ∨ Qj′

i′), which contradicts that v0 is contained in
P j′

i′ ∨ Qj′

i′ . ◀

We also see that µ(Pi ∨ Qi, C) = 0 for i ∈ [k] by definition, and hence µ(P, P ∨ Q) = 0.
Since P ⪯ P ∨Q and µ(P, P ∨Q) = 0, P is reconfigurable to P ∨Q as described in Section 5.2.
Similarly, Q is reconfigurable to P ∨ Q, which implies that P ∨ Q is reconfigurable to Q.
By combining them, we see that P is reconfigurable to Q, which completes the proof of the
sufficiency in Theorem 14.

Note that the reconfiguration sequence from P to Q can be constructed in polynomial
time by the discussion in Section 5.2.

6 Concluding Remarks

Although Disjoint Paths Reconfiguration and Disjoint s-t Paths Reconfiguration
are decision problems, the proofs for our positive results (Theorems 3, 4, 5, and 14) show
that we can find a reconfiguration sequence in polynomial time if it exists.

We leave several open problems for future research. We proved that Disjoint Paths
Reconfiguration can be solved in polynomial time when the problem is restricted to
the two-face instances. On the other hand, we do not know whether Disjoint Paths
Reconfiguration in planar graphs can be solved in polynomial time for fixed k, and even
when k = 2, if we drop the requirement that inputs are two-face instances.

T. Ito et al. 81:17

We did not try to minimize the number of reconfiguration steps when a reconfiguration
sequence exists. It is an open problem whether a shortest reconfiguration sequence can
be found in polynomial time for Disjoint Paths Reconfiguration restricted to planar
two-face instances.

A natural extension of our studies is to consider a higher-genus surface. As a preliminary
result, in the full version [20], we give a proof (sketch) to show that when the number k

of curves is two, the reconfiguration is always possible for any connected orientable closed
surface Σg of genus g ≥ 1. Note that this result does not refer to graphs embedded on Σg,
but only refers to the case when curves can pass through any points on the surface. It is not
clear what we can say for Disjoint Paths Reconfiguration for graphs embedded on Σg,
g ≥ 1.

References
1 Isolde Adler, Stavros G Kolliopoulos, Philipp Klaus Krause, Daniel Lokshtanov, Saket Saurabh,

and Dimitrios M Thilikos. Irrelevant vertices for the planar disjoint paths problem. Journal
of Combinatorial Theory, Series B, 122:815–843, 2017. doi:10.1016/j.jctb.2016.10.001.

2 Saeed Akhoondian Amiri, Szymon Dudycz, Mahmoud Parham, Stefan Schmid, and Sebastian
Wiederrecht. On polynomial-time congestion-free software-defined network updates. In 2019
IFIP Networking Conference, Networking 2019, Warsaw, Poland, May 20-22, 2019, pages 1–9.
IEEE, 2019. doi:10.23919/IFIPNetworking.2019.8816833.

3 Saeed Akhoondian Amiri, Szymon Dudycz, Stefan Schmid, and Sebastian Wiederrecht.
Congestion-free rerouting of flows on DAGs. In Ioannis Chatzigiannakis, Christos Kaklamanis,
Dániel Marx, and Donald Sannella, editors, 45th International Colloquium on Automata,
Languages, and Programming, ICALP 2018, July 9-13, 2018, Prague, Czech Republic, volume
107 of LIPIcs, pages 143:1–143:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2018.
doi:10.4230/LIPIcs.ICALP.2018.143.

4 John Asplund, Kossi D. Edoh, Ruth Haas, Yulia Hristova, Beth Novick, and Brett Werner.
Reconfiguration graphs of shortest paths. Discret. Math., 341(10):2938–2948, 2018. doi:
10.1016/j.disc.2018.07.007.

5 John Asplund and Brett Werner. Classification of reconfiguration graphs of shortest path
graphs with no induced 4-cycles. Discret. Math., 343(1):111640, 2020. doi:10.1016/j.disc.
2019.111640.

6 Paul S. Bonsma. The complexity of rerouting shortest paths. Theor. Comput. Sci., 510:1–12,
2013. doi:10.1016/j.tcs.2013.09.012.

7 Paul S. Bonsma. Rerouting shortest paths in planar graphs. Discret. Appl. Math., 231:95–112,
2017. doi:10.1016/j.dam.2016.05.024.

8 Glencora Borradaile, Amir Nayyeri, and Farzad Zafarani. Towards single face shortest vertex-
disjoint paths in undirected planar graphs. In Proceedings of 23rd Annual European Symposium
on Algorithms (ESA), volume 9294 of Lecture Notes in Computer Science, pages 227–238,
2015. doi:10.1007/978-3-662-48350-3_20.

9 Éric Colin de Verdière and Alexander Schrijver. Shortest vertex-disjoint two-face paths in planar
graphs. ACM Transactions on Algorithms, 7(2):1–12, 2011. doi:10.1145/1921659.1921665.

10 Marek Cygan, Dániel Marx, Marcin Pilipczuk, and Michal Pilipczuk. The planar directed
k-vertex-disjoint paths problem is fixed-parameter tractable. In 54th Annual IEEE Symposium
on Foundations of Computer Science (FOCS 2013), pages 197–206, 2013. doi:10.1109/FOCS.
2013.29.

11 Samir Datta, Siddharth Iyer, Raghav Kulkarni, and Anish Mukherjee. Shortest k-disjoint
paths via determinants. In 38th IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS 2018), volume 122, pages 19:1–19:21,
2018. doi:10.4230/LIPIcs.FSTTCS.2018.19.

ICALP 2023

https://doi.org/10.1016/j.jctb.2016.10.001
https://doi.org/10.23919/IFIPNetworking.2019.8816833
https://doi.org/10.4230/LIPIcs.ICALP.2018.143
https://doi.org/10.1016/j.disc.2018.07.007
https://doi.org/10.1016/j.disc.2018.07.007
https://doi.org/10.1016/j.disc.2019.111640
https://doi.org/10.1016/j.disc.2019.111640
https://doi.org/10.1016/j.tcs.2013.09.012
https://doi.org/10.1016/j.dam.2016.05.024
https://doi.org/10.1007/978-3-662-48350-3_20
https://doi.org/10.1145/1921659.1921665
https://doi.org/10.1109/FOCS.2013.29
https://doi.org/10.1109/FOCS.2013.29
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.19

81:18 Rerouting Planar Curves and Disjoint Paths

12 Julian Enoch, Kyle Fox, Dor Mesica, and Shay Mozes. A faster algorithm for maximum flow in
directed planar graphs with vertex capacities. In Hee-Kap Ahn and Kunihiko Sadakane, editors,
32nd International Symposium on Algorithms and Computation, ISAAC 2021, December 6-8,
2021, Fukuoka, Japan, volume 212 of LIPIcs, pages 72:1–72:16. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ISAAC.2021.72.

13 Benson Farb and Dan Margalit. A primer on mapping class groups, volume 49 of Princeton
Mathematical Series. Princeton University Press, Princeton, NJ, 2012.

14 Lester R. Ford and Delbert R. Fulkerson. Maximal flow through a network. Canadian Journal
of Mathematics, 8:399–404, 1956. doi:10.4153/CJM-1956-045-5.

15 Steven Fortune, John Hopcroft, and James Wyllie. The directed subgraph homeomorphism
problem. Theoretical Computer Science, 10(2):111–121, 1980. doi:10.1016/0304-3975(80)
90009-2.

16 András Frank. Packing paths, circuits, and cuts – A survey. In Paths, Flows, and VLSI-Layout,
pages 47–100. Springer, 1990.

17 Kshitij Gajjar, Agastya Vibhuti Jha, Manish Kumar, and Abhiruk Lahiri. Reconfiguring
shortest paths in graphs. In Thirty-Sixth AAAI Conference on Artificial Intelligence, AAAI
2022, pages 9758–9766. AAAI Press, 2022.

18 Refael Hassin. On multicommodity flows in planar graphs. Networks, 14(2):225–235, 1984.
doi:10.1002/net.3230140204.

19 Takehiro Ito, Erik D. Demaine, Nicholas J. A. Harvey, Christos H. Papadimitriou, Martha
Sideri, Ryuhei Uehara, and Yushi Uno. On the complexity of reconfiguration problems. Theor.
Comput. Sci., 412(12-14):1054–1065, 2011. doi:10.1016/j.tcs.2010.12.005.

20 Takehiro Ito, Yuni Iwamasa, Naonori Kakimura, Yusuke Kobayashi, Shun ichi Maezawa, Yuta
Nozaki, Yoshio Okamoto, and Kenta Ozeki. Rerouting planar curves and disjoint paths.
arXiv:2210.11778, 2022. doi:10.48550/arXiv.2210.11778.

21 Takehiro Ito, Naonori Kakimura, Naoyuki Kamiyama, Yusuke Kobayashi, and Yoshio Okamoto.
Reconfiguration of maximum-weight b-matchings in a graph. J. Comb. Optim., 37(2):454–464,
2019. doi:10.1007/s10878-018-0289-3.

22 Takehiro Ito, Jun Kawahara, Yu Nakahata, Takehide Soh, Akira Suzuki, Junichi Teruyama,
and Takahisa Toda. ZDD-based algorithmic framework for solving shortest reconfiguration
problems. arXiv:2207.13959, 2022. doi:10.48550/arXiv.2207.13959.

23 Marcin Kaminski, Paul Medvedev, and Martin Milanic. Shortest paths between shortest paths.
Theor. Comput. Sci., 412(39):5205–5210, 2011. doi:10.1016/j.tcs.2011.05.021.

24 Haim Kaplan and Yahav Nussbaum. Maximum flow in directed planar graphs with vertex
capacities. Algorithmica, 61(1):174–189, 2011. doi:10.1007/s00453-010-9436-7.

25 Richard M Karp. On the computational complexity of combinatorial problems. Networks,
5(1):45–68, 1975. doi:10.1002/net.1975.5.1.45.

26 Samir Khuller and Joseph Naor. Flow in planar graphs with vertex capacities. Algorithmica,
11(3):200–225, 1994. doi:10.1007/BF01240733.

27 Yusuke Kobayashi and Kensuke Otsuki. Max-flow min-cut theorem and faster algorithms
in a circular disk failure model. In 2014 IEEE Conference on Computer Communications
(INFOCOM), pages 1635–1643, 2014. doi:10.1109/INFOCOM.2014.6848100.

28 Yusuke Kobayashi and Christian Sommer. On shortest disjoint paths in planar graphs. Discrete
Optimization, 7(4):234–245, 2010. doi:10.1016/j.disopt.2010.05.002.

29 Mark R Kramer. The complexity of wire-routing and finding minimum area layouts for
arbitrary VLSI circuits. Advances in Computing Research, 2:129–146, 1984.

30 James F Lynch. The equivalence of theorem proving and the interconnection problem. ACM
SIGDA Newsletter, 5(3):31–36, 1975. doi:10.1145/1061425.1061430.

31 Colin J. H. McDiarmid, Bruce A. Reed, Alexander Schrijver, and F. Bruce Shepherd. Non-
interfering network flows. In Proceedings of the Third Scandinavian Workshop on Algorithm
Theory (SWAT), pages 245–257, 1992. doi:10.1007/3-540-55706-7_21.

https://doi.org/10.4230/LIPIcs.ISAAC.2021.72
https://doi.org/10.4153/CJM-1956-045-5
https://doi.org/10.1016/0304-3975(80)90009-2
https://doi.org/10.1016/0304-3975(80)90009-2
https://doi.org/10.1002/net.3230140204
https://doi.org/10.1016/j.tcs.2010.12.005
https://doi.org/10.48550/arXiv.2210.11778
https://doi.org/10.1007/s10878-018-0289-3
https://doi.org/10.48550/arXiv.2207.13959
https://doi.org/10.1016/j.tcs.2011.05.021
https://doi.org/10.1007/s00453-010-9436-7
https://doi.org/10.1002/net.1975.5.1.45
https://doi.org/10.1007/BF01240733
https://doi.org/10.1109/INFOCOM.2014.6848100
https://doi.org/10.1016/j.disopt.2010.05.002
https://doi.org/10.1145/1061425.1061430
https://doi.org/10.1007/3-540-55706-7_21

T. Ito et al. 81:19

32 Colin J. H. McDiarmid, Bruce A. Reed, Alexander Schrijver, and F. Bruce Shepherd. Induced
circuits in planar graphs. Journal of Combinatorial Theory, Series B, 60(2):169–176, 1994.
doi:10.1006/jctb.1994.1011.

33 Karl Menger. Zur allgemeinen Kurventheorie. Fundamenta Mathematicae, 10:96–115, 1927.
34 Naomi Nishimura. Introduction to reconfiguration. Algorithms, 11(4):52, 2018. doi:10.3390/

a11040052.
35 Haruko Okamura. Multicommodity flows in graphs. Discrete Applied Mathematics, 6(1):55–62,

1983. doi:10.1016/0166-218X(83)90100-2.
36 Haruko Okamura and Paul D. Seymour. Multicommodity flows in planar graphs. Journal of

Combinatorial Theory, Series B, 31(1):75–81, 1981. doi:10.1016/S0095-8956(81)80012-3.
37 Kensuke Otsuki, Yusuke Kobayashi, and Kazuo Murota. Improved max-flow min-cut algorithms

in a circular disk failure model with application to a road network. Eur. J. Oper. Res.,
248(2):396–403, 2016. doi:10.1016/j.ejor.2015.07.035.

38 Bruce Reed. Rooted routing in the plane. Discrete Applied Mathematics, 57:213–227, 1995.
doi:10.1016/0166-218X(94)00104-L.

39 Bruce Reed, Neil Robertson, Alexander Schrijver, and Paul D. Seymour. Finding disjoint trees
in planar graphs in linear time. In Contemporary Mathematics 147, pages 295–301. American
Mathematical Society, 1993. doi:10.1090/conm/147/01180.

40 Neil Robertson and Paul D. Seymour. Graph minors. VI. Disjoint paths across a disc. Journal of
Combinatorial Theory, Series B, 41(1):115–138, 1986. doi:10.1016/0095-8956(86)90031-6.

41 Neil Robertson and Paul D. Seymour. Graph minors. VII. Disjoint paths on a surface. Journal of
Combinatorial Theory, Series B, 45(2):212–254, 1988. doi:10.1016/0095-8956(88)90070-6.

42 Neil Robertson and Paul D. Seymour. Graph minors. XIII. The disjoint paths problem. Journal
of combinatorial theory, Series B, 63(1):65–110, 1995. doi:10.1006/jctb.1995.1006.

43 Alexander Schrijver. Finding k disjoint paths in a directed planar graph. SIAM Journal on
Computing, 23(4):780–788, 1994. doi:10.1137/S0097539792224061.

44 Paul D. Seymour. Disjoint paths in graphs. Discrete Mathematics, 29:293–309, 1980. doi:
10.1016/0012-365X(80)90158-2.

45 Yossi Shiloach. A polynomial solution to the undirected two paths problem. Journal of the
ACM, 27(3):445–456, 1980. doi:10.1145/322203.322207.

46 Anand Srinivas and Eytan Modiano. Finding minimum energy disjoint paths in wireless
ad-hoc networks. Wireless Networks, 11(4):401–417, 2005. doi:10.1007/s11276-005-1765-0.

47 Hitoshi Suzuki, Takehiro Akama, and Takao Nishizeki. Algorithms for finding internally disjoint
paths in a planar graph. Electronics and Communications in Japan (Part III: Fundamental
Electronic Science), 72(10):55–67, 1989. doi:10.1002/ecjc.4430721006.

48 Hitoshi Suzuki, Takehiro Akama, and Takao Nishizeki. Finding Steiner forests in planar
graphs. In Proceedings of the first annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 444–453, 1990.

49 Carsten Thomassen. 2-linked graphs. European Journal of Combinatorics, 1:371–378, 1980.
doi:10.1016/S0195-6698(80)80039-4.

50 Jan van den Heuvel. The complexity of change. In Simon R. Blackburn, Stefanie Gerke, and
Mark Wildon, editors, Surveys in Combinatorics 2013, volume 409 of London Mathematical
Society Lecture Note Series, pages 127–160. Cambridge University Press, 2013. doi:10.1017/
CBO9781139506748.005.

51 Yipu Wang. Max flows in planar graphs with vertex capacities. ACM Trans. Algorithms,
18(1), 2022. doi:10.1145/3504032.

52 Marcin Wrochna. Reconfiguration in bounded bandwidth and tree-depth. J. Comput. Syst.
Sci., 93:1–10, 2018. doi:10.1016/j.jcss.2017.11.003.

ICALP 2023

https://doi.org/10.1006/jctb.1994.1011
https://doi.org/10.3390/a11040052
https://doi.org/10.3390/a11040052
https://doi.org/10.1016/0166-218X(83)90100-2
https://doi.org/10.1016/S0095-8956(81)80012-3
https://doi.org/10.1016/j.ejor.2015.07.035
https://doi.org/10.1016/0166-218X(94)00104-L
https://doi.org/10.1090/conm/147/01180
https://doi.org/10.1016/0095-8956(86)90031-6
https://doi.org/10.1016/0095-8956(88)90070-6
https://doi.org/10.1006/jctb.1995.1006
https://doi.org/10.1137/S0097539792224061
https://doi.org/10.1016/0012-365X(80)90158-2
https://doi.org/10.1016/0012-365X(80)90158-2
https://doi.org/10.1145/322203.322207
https://doi.org/10.1007/s11276-005-1765-0
https://doi.org/10.1002/ecjc.4430721006
https://doi.org/10.1016/S0195-6698(80)80039-4
https://doi.org/10.1017/CBO9781139506748.005
https://doi.org/10.1017/CBO9781139506748.005
https://doi.org/10.1145/3504032
https://doi.org/10.1016/j.jcss.2017.11.003

Hardness of Finding Combinatorial Shortest Paths
on Graph Associahedra
Takehiro Ito #

Graduate School of Information Sciences,
Tohoku University, Japan

Naonori Kakimura #

Faculty of Science and Technology,
Keio University, Yokohama, Japan

Naoyuki Kamiyama #

Institute of Mathematics for Industry,
Kyushu University, Fukouka, Japan

Yusuke Kobayashi #

Research Institute for Mathematical Sciences,
Kyoto University, Japan

Shun-ichi Maezawa #

Department of Mathematics,
Tokyo University of Science, Japan

Yuta Nozaki #

Faculty of Environment and Information Sciences,
Yokohama National University, Japan
SKCM2, Hiroshima University, Japan

Yoshio Okamoto #

Graduate School of Informatics and Engineer-
ing, The University of Electro-Communications,
Tokyo, Japan

Abstract
We prove that the computation of a combinatorial shortest path between two vertices of a graph
associahedron, introduced by Carr and Devadoss, is NP-hard. This resolves an open problem raised
by Cardinal. A graph associahedron is a generalization of the well-known associahedron. The
associahedron is obtained as the graph associahedron of a path. It is a tantalizing and important
open problem in theoretical computer science whether the computation of a combinatorial shortest
path between two vertices of the associahedron can be done in polynomial time, which is identical
to the computation of the flip distance between two triangulations of a convex polygon, and the
rotation distance between two rooted binary trees. Our result shows that a certain generalized
approach to tackling this open problem is not promising. As a corollary of our theorem, we prove
that the computation of a combinatorial shortest path between two vertices of a polymatroid base
polytope cannot be done in polynomial time unless P = NP. Since a combinatorial shortest path on
the matroid base polytope can be computed in polynomial time, our result reveals an unexpected
contrast between matroids and polymatroids.

2012 ACM Subject Classification Mathematics of computing → Combinatorics; Theory of compu-
tation → Problems, reductions and completeness

Keywords and phrases Graph associahedra, combinatorial shortest path, NP-hardness, polymatroids

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.82

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2304.14782

Funding Takehiro Ito: JSPS KAKENHI Grant Numbers JP18H04091, JP19K11814, JP20H05793.
Naonori Kakimura: JSPS KAKENHI Grant Numbers JP20H05795, JP21H03397, JP22H05001.
Naoyuki Kamiyama: JSPS KAKENHI Grant Number JP20H05795.
Yusuke Kobayashi: JSPS KAKENHI Grant Numbers JP20K11692, JP20H05795, JP22H05001.
Shun-ichi Maezawa: JSPS KAKENHI Grant Numbers JP20H05795, JP22K13956.
Yuta Nozaki: JSPS KAKENHI Grant Numbers JP20H05795, JP20K14317, JP23K12974.
Yoshio Okamoto: JSPS KAKENHI Grant Numbers JP20H05795, JP20K11670, JP23K10982.

Acknowledgements This work was motivated by the talks of Vincent Pilaud and Jean Cardinal at
Workshop “Polytope Diameter and Related Topics,” held online on September 2, 2022. We thank
them for inspiration. We are also grateful to Yuni Iwamasa and Kenta Ozeki for the discussion and
to the anonymous reviewers for their helpful comments.

EA
T
C
S

© Takehiro Ito, Naonori Kakimura, Naoyuki Kamiyama, Yusuke Kobayashi,
Shun-ichi Maezawa, Yuta Nozaki, and Yoshio Okamoto;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 82; pp. 82:1–82:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:takehiro@tohoku.ac.jp
https://orcid.org/0000-0002-9912-6898
mailto:kakimura@math.keio.ac.jp
https://orcid.org/0000-0002-3918-3479
mailto:kamiyama@imi.kyushu-u.ac.jp
https://orcid.org/0000-0002-7712-2730
mailto:yusuke@kurims.kyoto-u.ac.jp
https://orcid.org/0000-0001-9478-7307
mailto:maezawa.mw@gmail.com
https://orcid.org/0000-0003-1607-8665
mailto:nozaki-yuta-vn@ynu.ac.jp
https://orcid.org/0000-0003-3223-0153
mailto:okamotoy@uec.ac.jp
https://orcid.org/0000-0002-9826-7074
https://doi.org/10.4230/LIPIcs.ICALP.2023.82
https://arxiv.org/abs/2304.14782
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

82:2 Hardness of Finding Combinatorial Shortest Paths on Graph Associahedra

1 Introduction

Graph associahedra were introduced by Carr and Devadoss [8]. These polytopes generalize
associahedra. In an associahedron, each vertex corresponds to a binary tree over a set of n

elements, and each edge corresponds to a rotation operation between two binary trees. For
the historical account of associahedra, see the introduction of the paper by Ceballos, Santos,
and Ziegler [9].

A binary tree can be obtained from a labeled path. Let V = {1, 2, . . . , n} be the set of
vertices of the path, and E = {{i, i + 1} | 1 ≤ i ≤ n − 1} be the set of edges of the path.
To construct a labeled binary tree, we choose an arbitrary vertex from the path. Let it be
i ∈ V . Then, the removal of i from the path results in at most two connected components:
the left subpath and the right subpath, which may be empty. Then, in the corresponding
binary tree, we set i as a root, and append recursively a binary tree of the left subpath as
a left subtree and a binary tree of the right subpath as a right subtree. Note that in this
construction, each node of the binary tree is labeled by a vertex of the path.

In the construction of graph associahedra, we follow the same idea. Since we are only
interested in the graph structure of graph associahedra in this work, we only describe their
vertices and edges. To define a graph associahedron, we first fix a connected undirected
graph G = (V, E).1 Then, in the G-associahedron, the vertices correspond to the so-called
elimination trees of G, and the edges correspond to swap operations between two elimination
trees. The following description follows that of Cardinal, Merino, and Mütze [5].

An elimination tree of a connected undirected graph G = (V, E) is a rooted tree defined
as follows. It has V as the vertex set and is composed of a root v ∈ V that has as children
elimination trees for each connected component of G − v (Figure 1). A swap from an
elimination tree T to another elimination tree T ′ of G is defined as follows. Let v be a
non-root vertex of T , and let u be the parent of v in T . Denote by H the subgraph of G

induced by the subtree rooted at v in T . Then, the swap of u with v transforms T to T ′ as
follows. (1) The tree T ′ has v as the parent of u, and T ′ has v as a child of the parent of u

in T . (2) The subtrees rooted at u in T remain subtrees rooted at u in T ′. (3) A subtree S

rooted at v in T remains a subtree rooted at v in T ′, unless the vertices of S belong to the
same connected component of H − v as u, in which case S becomes a subtree rooted at u in
T ′. The G-associahedron for a claw G is given in Figure 2. Note that a swap operation is
reversible.

In this paper, among graph properties of graph associahedra, we concentrate on the
computation of a combinatorial shortest path (i.e., the graph-theoretic distance) between
two vertices of the polytope, which we call the combinatorial shortest path problem on graph
associahedra. In this problem, we are given a graph G and two elimination trees T, T ′ of
G, and want to compute the shortest length of a graph-theoretic path from T to T ′ on the
G-associahedron. In the literature, we only find the studies in the case where G is a complete
graph or (a generalization of) a star. When G is a complete graph, the G-associahedron
is called a permutahedron, and each of its vertices corresponds to a permutation. Since
an edge corresponds to an adjacent transposition, the graph-theoretic distance between
two vertices is equal to the number of inversions between the corresponding permutations.
This can be computed in polynomial time. When G is a star, the G-associahedron is called
stellohedron [26]. Recently, Cardinal, Pournin, and Valencia-Pabon [7] gave a polynomial-

1 A graph associahedron can also be defined for disconnected graphs, but in this paper, we concentrate
on connected graphs.

T. Ito et al. 82:3

a j

b

c

d

e

f

G

i
i

j e f

b c da

T

i

j

e f

b

c d

a

T ′

Figure 1 An example of elimination trees. Two trees T and T ′ are elimination trees of the graph
G. The tree T ′ is obtained from T by the swap of i with j. The example is borrowed from Cardinal,
Merino, and Mütze [5].

1

2

3 4

G

1

32 4

3

1

42

4

1

32

2

3

4

1

2

3

1

4

3

2

4

1

3

2

1

4

2

4

1

3

4

2

3

1

4

2

1

3

3

4

1

2

4

3

2

1

4

3

1

2

2

1

43

2

4

3

1

3

4

2

1

Figure 2 An example of a graph associahedron. Each vertex of the polytope corresponds to an
elimination tree of the graph G.

time algorithm to compute a combinatorial shortest path on stellohedra, and they generalize
the algorithm when G is a complete split graph (i.e., a graph obtained from a star by replacing
the center vertex with a clique).

On the other hand, it is a tantalizing open problem whether a combinatorial shortest
path can be computed in polynomial time when G is a path. In this case, the graph-
theoretic distance corresponds to the rotation distance between two binary trees. By Catalan
correspondences, this is equivalent to the flip distance between two triangulations of a convex
polygon. A possible strategy to resolve this open problem is to generalize the problem and
solve the generalized problem. In our case, a generalization is achieved by considering graph
associahedra for general graphs.

Our main result states that the combinatorial shortest path problem on G-associahedra is
NP-hard when G is also given as part of the input. This implies that the strategy mentioned
above is bound to fail.

First, we formally state the problem Combinatorial Shortest Path on Graph
Associahedra as follows.

Combinatorial Shortest Path on Graph Associahedra
Input: A graph G and two elimination trees Tini, Ttar of G

Output: The distance between Tini and Ttar on the graph of the G-associahedron

ICALP 2023

82:4 Hardness of Finding Combinatorial Shortest Paths on Graph Associahedra

Our first theorem states the NP-hardness of Combinatorial Shortest Path on Graph
Associahedra. This solves an open problem raised by Cardinal (see [3, Section 4.2]).

▶ Theorem 1. Combinatorial Shortest Path on Graph Associahedra is NP-hard.

Theorem 1 yields the following corollary, which is related to polymatroids introduced by
Edmonds [13]. A pair (U, ρ) of a finite set U and a function ρ : 2U → R is called a polymatroid
if ρ satisfies the following conditions: (P1) ρ(∅) = 0; (P2) if X ⊆ Y ⊆ U , then ρ(X) ≤ ρ(Y);
(P3) if X, Y ⊆ U , then ρ(X ∪ Y) + ρ(X ∩ Y) ≤ ρ(X) + ρ(Y). The function ρ is called the
rank function of the polymatroid (U, ρ).

For a polymatroid (U, ρ), we define the base polytope of (U, ρ) as

B(ρ) := {x ∈ RU | x(X) ≤ ρ(X) (∀ X ⊆ U), x(U) = ρ(U)},

where we define x(X) :=
∑

u∈X x(u) for each subset X ⊆ U . Then, B(ρ) is a polytope
because 0 ≤ ρ(U) − ρ(U \ {u}) = x(U) − ρ(U \ {u}) ≤ x(u) ≤ ρ({u}) for every element e ∈ E.

A polymatroid is seen as a polyhedral generalization of a matroid. For example, the
greedy algorithm for matroids can be treated as an algorithm to maximize a linear function
over the base polytope of a matroid,2 and the algorithm is readily generalized to the base
polytope of a polymatroid. A lot of combinatorial properties of the base polytopes of matroids
also hold for the base polytopes of polymatroids. Since it is known that a combinatorial
shortest path on the base polytope of a matroid can be computed in polynomial time [18],
we are interested in generalizing this result to polymatroids, which leads to the following
problem definition.

Combinatorial Shortest Path on Polymatroids
Input: An oracle access to a polymatroid (U, ρ) and two extreme points xini, xtar of the
base polytope B(ρ)
Output: The distance between xini and xtar on B(ρ)

We note that a polymatroid (U, ρ) is given as an oracle access that returns the value
ρ(X) for any set X ⊆ U . The running time of an algorithm is also measured in terms of the
number of oracle calls. This is a standard assumption when we deal with polymatroids [16]
since if we would input the function ρ as a table of the values ρ(X) for all X ⊆ U , then
it would already take at least 2|U | space. We also note that the adjacency of two extreme
points of the base polytope of a polymatroid can be tested in polynomial time [31].

The next theorem states that this problem is hard, which is proved as a corollary of
Theorem 1, and reveals an unexpected contrast between matroids and polymatroids.

▶ Theorem 2. There exists no polynomial-time algorithm for Combinatorial Shortest
Path on Polymatroid unless P = NP.

Our proof relies on the fact that graph associahedra can be realized as the base polytopes
of some polymatroids [26]. However, we need careful treatment since in the reduction we
require the rank function of our polymatroid to be evaluated in polynomial time. To this
end, we give an explicit inequality description of the realization of a graph associahedron
due to Devadoss [12],3 which is indeed the base polytope of a polymatroid.

2 This can further be seen as a generalization of Kruskal’s algorithm for the minimum spanning tree
problem.

3 We note here that the original definition of a graph associahedron by Carr and Devadoss [8] does not
give explicit vertex coordinates of the polytope. Therefore, we rely on the realization by Devadoss [12]
who gave the explicit vertex coordinates.

T. Ito et al. 82:5

Related Work
Paths on polytopes have been studied thoroughly. One of the initial motivations for this
research direction is to design and understand path-following algorithms for linear optimiza-
tion such as simplex methods. In his chapter of Handbook of Discrete and Computational
Geometry [17], Kalai stated as an open problem “Find an efficient routing algorithm for
convex polytopes.” Here, a routing algorithm means one that finds a short path from a given
initial vertex to a given target vertex.

Paths on graph associahedra have been receiving much attention. The diameter is perhaps
the most frequently studied quantity, which is defined as the maximum distance between two
vertices of the polytope. A famous result by Sleator, Tarjan, and Thurston [30] states that the
diameter of the (n − 1)-dimensional associahedron (i.e., a graph associahedron of an n-vertex
path) is at most 2n − 6 when n ≥ 11 and this bound is tight for all sufficiently large n. This
bound is refined by Pournin [27], who proved that the diameter of the (n − 1)-dimensional
associahedron is exactly 2n − 6 when n ≥ 11.

For a general n-vertex graph G, Manneville and Pilaud [24] proved that the diameter
of G-associahedron is at most

(
n
2
)

and at least max{m, 2n − 20}, when m is the number of
edges of G. The upper bound is attained by the case where G is a complete graph (i.e., the
G-associahedron is a permutahedron). When G is an n-vertex star (i.e., K1,n−1), n ≥ 6,
Manneville and Pilaud [24] showed that the diameter is 2n − 2. When G is a cycle (i.e., the
polytope is a cyclohedron), Pournin [28] gave the asymptotically exact diameter. When G is a
tree, Manneville and Pilaud [24] gave the upper bound O(n log n) while Cardinal, Langerman,
and Pérez-Lantero [4] gave an example of trees for which the diameter is Ω(n log n) (such an
example is chosen as a complete binary tree). Cardinal, Pournin, and Valencia-Pabon [6]
proved that the diameter is Θ(m) for m-edge trivially perfect graphs, and gave upper and
lower bounds for the diameter in terms of treewidths, pathwidths, and treedepths of graphs.
Berendsohn [2] proved that the diameter is Θ(n + mH) for a caterpillar with n spine vertices,
m leg vertices, and the Shannon entropy H of the so-called leg distribution.

To the authors’ knowledge, the complexity of computing the diameter of graph associa-
hedra has not been investigated. When polytopes are not restricted to graph associahedra,
a few hardness results have been known. Frieze and Teng [15] proved that computing the
diameter of a polytope, given by inequalities, is weakly NP-hard. Sanità [29] proved that
computing the diameter of the fractional matching polytope of a given graph is strongly
NP-hard. Kaibel and Pfetsch [19] raised an open problem about the complexity of computing
the diameter of simple polytopes.

The computation of a combinatorial shortest path on a G-associahedron has also been
studied. It is a long-standing open problem whether a combinatorial shortest path in an
associahedron (i.e., a G-associahedron when G is a path) can be computed in polynomial
time. Polynomial-time algorithms are only known when G is a complete graph (folklore),
a star, or a complete split graph (Cardinal, Pournin, and Valencia-Pabon [7]). When G is
a path, a polynomial-time approximation algorithm of factor two [11] and fixed-parameter
algorithms when the distance is a parameter [10, 20, 21, 23] are known.

Since a combinatorial shortest path on an associahedron is equivalent to a shortest flip
sequence of triangulations of a convex polygon, the computation of a shortest flip sequence
of triangulations has been studied in more general setups. For triangulations of point sets,
the problem is NP-hard [22] and even APX-hard [25]. For triangulations of simple polygons,
the problem is also NP-hard [1].

Elimination trees have appeared in a lot of branches of mathematics and computer science.
For a good summary, see Cardinal, Merino, and Mütze [5].

ICALP 2023

82:6 Hardness of Finding Combinatorial Shortest Paths on Graph Associahedra

Technique Overview
To prove the hardness of the combinatorial shortest path problem on graph associahedra,
we first consider a “weighted” version of the combinatorial shortest path problem on graph
associahedra, which is newly introduced in this paper for our reduction. In this problem,
each vertex of a given graph has a positive weight, and the swap of two vertices incurs the
weight that is defined as the product of the weights of these two vertices. The weight of a
swap sequence is defined as the sum of weights of swaps in the sequence. As our intermediate
theorem, we prove that this weighted version is strongly NP-hard.

To this end, we reduce the NP-hard problem of finding a balanced minimum s-t cut in
a graph [14] to the weighted version of the combinatorial shortest path problem on graph
associahedra. In the balanced minimum s-t cut problem, we want to determine whether
there exists a minimum s-t cut of a given graph G that is a bisection of the vertex set. In
the reduction, we construct a vertex-weighted graph H from G and two elimination trees
Tini, Ttar of H. The weighted graph H is constructed by replacing s and t by large cliques,
subdividing each edge, and duplicating each vertex; the weights are assigned so that the
subdivision vertices receive small weights, and duplicated vertices and vertices in large cliques
receive large weights. Elimination trees Tini and Ttar are constructed so that swapping two
vertices of large weights is forbidden and identifying a few vertices of small weights (that
corresponds to a balanced minimum s-t cut of G) gives a shortest path.

In the second step, we reduce the weighted version to the original unweighted version
of the problem. To this end, a vertex of weight w is replicated by a clique of size w. We
want to make sure that a swap of the vertices u, v of weights w(u), w(v), respectively in the
weighted instance is mapped to consecutive w(u) · w(v) swaps of the vertices of cliques that
correspond to u and v in the constructed unweighted instance. This is proved via the useful
operation of projections combined with the averaging argument.

2 Preliminaries

For a positive integer k, let [k] denote {1, 2, . . . , k}.
For a graph G = (V, E) and two elimination trees Tini and Ttar of G, we say that a

sequence T = ⟨T0, T1, . . . , Tℓ⟩ of elimination trees of G is a reconfiguration sequence from
Tini to Ttar if T0 = Tini, Tℓ = Ttar, and Ti is obtained from Ti−1 by applying a single swap
operation for i ∈ [ℓ]. We sometimes regard T as a sequence of swap operations if no confusion
may arise. The length of T is defined as the number ℓ of swaps in T, which we denote
length(T). Then, Combinatorial Shortest Path on Graph Associahedra is the
problem of finding a reconfiguration sequence T from Tini to Ttar that minimizes length(T).

When u ∈ V is a child of v ∈ V in an elimination tree T , an operation swapping u and v

is represented by swap(u, v). Note that we distinguish swap(u, v) and swap(v, u). For an
elimination tree T and for a vertex v ∈ V (T), let ancT (v) (resp. desT (v)) denote the set
of all ancestors (descendants) of v in T . Note that u ∈ ancT (v) if and only if v ∈ desT (u).
Note also that neither ancT (v) nor desT (v) contains v. We say that distinct vertices u and v

are comparable in T if u ∈ ancT (v) or v ∈ ancT (u). Otherwise, they are called incomparable
in T . A linear ordering ≺ on V defines an elimination tree T uniquely so that u ∈ ancT (v)
implies u ≺ v.

Let G = (V, E) be an undirected graph. For X ⊆ V , let δG(X) denote the set of edges
between X and V \ X. For s, t ∈ V , we say that X ⊆ V is an s-t cut if s ∈ X and t ̸∈ X. An
edge set F ⊆ E is called an s-t cut set if F = δG(X) for some s-t cut X ⊆ V . A minimum s-t
cut is an s-t cut X minimizing |δG(X)|. For X ⊆ V , let G[X] denote the subgraph induced
by X and let E[X] denote its edge set.

T. Ito et al. 82:7

3 Hardness of the Weighted Problem

We consider a weighted variant of Combinatorial Shortest Path on Graph As-
sociahedra, which we call Weighted Combinatorial Shortest Path on Graph
Associahedra. In the problem, we are given a graph G = (V, E), two elimination trees
Tini and Ttar, and a weight function w : V → Z>0. For u, v ∈ V , the weight of swap(u, v) is
defined as w(u) · w(v). This value is sometimes denoted by w(swap(u, v)). The weighted
length (or simply the weight) of a reconfiguration sequence T is defined as the total weight of
swaps in T, which we denote by lengthw(T). The objective of Weighted Combinatorial
Shortest Path on Graph Associahedra is to find a reconfiguration sequence T from
Tini to Ttar that minimizes lengthw(T).

In this section, we show that the weighted variant is strongly NP-hard.

▶ Theorem 3. Weighted Combinatorial Shortest Path on Graph Associahedra
is strongly NP-hard, that is, it is NP-hard even when the input size is

∑
v∈V w(v).

3.1 Reduction
To show Theorem 3, we reduce Balanced Minimum s-t Cut to Weighted Combinatorial
Shortest Path on Graph Associahedra. In Balanced Minimum s-t Cut, the input
consists of a connected graph G = (V, E) with s, t ∈ V , and the objective is to determine
whether G contains a minimum s-t cut X with |X| = |V \ X|. Without loss of generality,
we may assume that |V | is even. Let V = {s, t, v1, v2, . . . , v2n} and E = {e1, . . . , em}, where
|V | = 2n + 2 and |E| = m. It is known that Balanced Minimum s-t Cut is NP-hard [14].
For an instance of Balanced Minimum s-t Cut, we construct an instance of Weighted
Combinatorial Shortest Path on Graph Associahedra as follows.

Let N be a sufficiently large integer (e.g., N = 10n3m). We first subdivide each edge
e ∈ E by introducing a new vertex ue. Then, for each v ∈ V , we introduce a copy v′ of v. We
replace s with a clique {s1, . . . , sN3} of size N3 and replace t with another clique {t1, . . . , tN3}
of size N3. Let H be the obtained graph. Formally, the graph H = (V (H), E(H)) is defined
as follows:

V (H) = (V \ {s, t}) ∪ {v′ | v ∈ V } ∪ {ue | e ∈ E} ∪ {s1, . . . , sN3} ∪ {t1, . . . , tN3},

E(H) = {{v, ue} | v ∈ V \ {s, t}, e ∈ δG(v)} ∪ {{v′, ue} | v ∈ V, e ∈ δG(v)}
∪ {{si, sj} | i, j ∈ [N3], i ̸= j} ∪ {{ti, tj} | i, j ∈ [N3], i ̸= j}
∪ {{si, ue} | i ∈ [N3], e ∈ δG(s)} ∪ {{ti, ue} | i ∈ [N3], e ∈ δG(t)}.

Define w : V (H) → Z>0 as follows:

w(v) = N (v ∈ V \ {s, t}),
w(v′) = N8 (v ∈ V),
w(ue) = 1 (e ∈ E),
w(si) = w(ti) = N4 (i ∈ [N3]).

The initial elimination tree Tini is defined by the following linear ordering:

v1 ≺ · · · ≺ v2n ≺ s1 ≺ t1 ≺ s2 ≺ t2 ≺ · · · ≺ sN3 ≺ tN3

≺ ue1 ≺ · · · ≺ uem ≺ v′
1 ≺ · · · ≺ v′

2n ≺ s′ ≺ t′.

ICALP 2023

82:8 Hardness of Finding Combinatorial Shortest Paths on Graph Associahedra

G

s t

H

large clique large clique

heavy copy

Tinia

b

c

d

ve
ry

lo
n
g

Ttar

ve
ry

lo
n
g

a
b
c
d

d
c
b
a

e1

e2

e3

e4

e5

e6

e7

ue1
ue2
ue3
ue4
ue5

a′
b′

ue6

c′
d′

ue1
ue2
ue3
ue4
ue5

a′
b′

ue6

c′
d′

ue7 ue7

Figure 3 Reduction for Theorem 3.

Note that, in Tini, the vertices v1, . . . , v2n, s1, t1, s2, t2, . . . , sN3 , tN3 are aligned on a path,
while the other elements are not necessarily aligned sequentially. The target elimination tree
Ttar is the elimination tree defined by the following linear ordering:

v2n ≺ · · · ≺ v1 ≺ t1 ≺ s1 ≺ t2 ≺ s2 ≺ · · · ≺ tN3 ≺ sN3

≺ ue1 ≺ · · · ≺ uem
≺ v′

1 ≺ · · · ≺ v′
2n ≺ s′ ≺ t′.

We consider an instance (H, w, Tini, Ttar) of Weighted Combinatorial Shortest Path
on Graph Associahedra. In this instance, we reverse the ordering of the first 2n elements
and reverse the ordering of si and ti for each i. See Figure 3 for an illustration.

To prove Theorem 1, it suffices to show the following proposition.

▶ Proposition 4. Let λ be the minimum size of an s-t cut set in G. There is a reconfiguration
sequence from Tini to Ttar of weight less than 4λN7 + (n2 − n + 1)N2 if and only if G has a
minimum s-t cut X with |X| = |V \ X|.

3.2 Proof of Proposition 4
Sufficiency (“if” part)
Suppose that G has a minimum s-t cut X with |X| = |V \ X| = n + 1. Let U = {ue |
e ∈ δG(X)}. Note that |U | = |δG(X)| = λ. Starting from Tini, we swap an element
in U and its parent repeatedly so that we obtain an elimination tree T1 in which each
element in U is an ancestor of V (H) \ U . See Figure 4. The total weight of swaps from
Tini to T1 is at most |U |(2nN + 2N7 + m). Since G − δG(X) consists of two connected
components, so does H − U . Thus, T1 − U consists of two elimination trees Ts and Tt such
that Ts contains (X \ {s}) ∪ {s1, . . . , sN3} ∪ {ue | e ∈ E[X]} ∪ {v′ | v ∈ X} and Tt contains
((V \ X) \ {t}) ∪ {t1, . . . , tN3} ∪ {ue | e ∈ E[V \ X]} ∪ {v′ | v ∈ V \ X}.

In Ts, by swapping u and v for every pair of u, v ∈ X \ {s}, we obtain an elimination
tree in which vi is an ancestor of vj for vi, vj ∈ X \ {s} with i > j. The total weight of
these swaps is

(|X|−1
2

)
· N2. Similarly, by applying swaps with weight

(|V \X|−1
2

)
· N2 to Tt,

we obtain an elimination tree in which vi is an ancestor of vj for vi, vj ∈ (V \ X) \ {t} with
i > j. Let T2 be the elimination tree obtained from T1 by applying these operations.

T. Ito et al. 82:9

G

s t

Tini

a

b

c

d

Ttar

a
b
c
d

d
c
b
a

e1

e2

e3

e4

e5

e6

e7

ue1
ue2
ue3
ue4
ue5

a′
b′

ue6

c′
d′

ue1
ue2
ue3
ue4
ue5

a′
b′

ue6

c′
d′

ue7 ue7

X ue1

ue3
ue5

a
b

c
d

a′

ue2

b′

ue6
c′

ue7

d′

T1 T2

ue4

ue1

ue5
b
a

d
c

a′

ue2

b′

ue6
c′

ue7

d′
ue4

ue3

Figure 4 A reconfiguration sequence from Tini to Ttar.

Starting from T2, we swap an element in U and its child repeatedly so that we obtain
an elimination tree Ttar. This can be done by applying swaps whose total weight is at most
|U |(2nN + 2N7 + m).

Therefore, the total weight of the above swaps from Tini to Ttar is at most

2|U |(2nN + 2N7 + m) +
(

|X| − 1
2

)
· N2 +

(
|V \ X| − 1

2

)
· N2

= 4λN7 + n(n − 1)N2 + 4λnN + 2λm

< 4λN7 + (n2 − n + 1)N2,

where we note that |U | = λ and |X| = |V \ X| = n + 1. This shows the sufficiency.

Necessity (“only if” part)
Let T be a reconfiguration sequence from Tini to Ttar whose weight is less than 4λN7 + (n2 −
n + 1)N2. Since this weight is less than N8, we observe the following.

▶ Observation 5. For v ∈ V , vertex v′ is not swapped with other vertices in T. For
i, j ∈ [N3], none of swap(si, sj), swap(ti, tj), swap(si, tj), and swap(ti, sj) is applied in
T.

By Observation 5, we cannot swap s1 and t1 directly, and hence T contains an elimination
tree T ∗ in which s1 and t1 are incomparable. Then, there exists a vertex set V ∗ ⊆ V (H)
such that s1 and t1 are contained in different connected components of H − V ∗, and each
vertex in V ∗ is an ancestor of s1 and t1 in T ∗. By Observation 5 again, V ∗ does not contain
v′ for v ∈ V , that is, V ∗ ⊆ V ∪ {ue | e ∈ E}. Note that removing V ∗ ∩ V does not affect the
connectedness of H since each vertex v ∈ V ∗ ∩ V has its copy v′ in H. Let

F := {e ∈ E | ue ∈ V ∗}.

Then, s and t are contained in different connected components of G − F , i.e., F contains an
s-t cut set in G.

Since removing V does not affect the connectedness of H , we also observe the following.

ICALP 2023

82:10 Hardness of Finding Combinatorial Shortest Paths on Graph Associahedra

▶ Observation 6. Let T and T ′ be elimination trees in T and let e1, e2 ∈ E be distinct edges.
If ue1 ∈ ancT (ue2) and ue2 ∈ ancT ′(ue1), then swap(ue3 , ue4) is applied for some e3, e4 ∈ E

(possibly {e1, e2} ∩ {e3, e4} ̸= ∅) between T and T ′.

We divide T into two reconfiguration sequences T1 and T2, where T1 is from Tini to T ∗

and T2 is from T ∗ to Ttar. By symmetry, we may assume that

lengthw(T1) ≤ lengthw(T)
2 < 2λN7 + N3.

For i ∈ [N3], define

Li = {e ∈ E | swap(ue, si) is applied in T1},

Ri = {e ∈ E | swap(ue, ti) is applied in T1}.

For i ∈ [N3], let swap(Li) denote the set of all swaps swap(ue, si) in T1 with e ∈ Li.
Similarly, let swap(Ri) denote the set of all swaps swap(ue, ti) in T1 with e ∈ Ri.

▷ Claim 7. For i ∈ [N3], we have the following:
if an edge e ∈ E is contained in the connected component of G − Li containing s, then
ue ∈ desT (si) for any elimination tree T in T1, and
if an edge e ∈ E is contained in the connected component of G − Ri containing t, then
ue ∈ desT (ti) for any elimination tree T in T1.

Proof. For each edge e ∈ E in the connected component of G − Li containing s, vertices
si and ue are contained in the same connected component in H − {uf | f ∈ Li}. Since
ue ∈ desTini(si) holds and swap(ue, si) is not applied in T1 as e ̸∈ Li, we have that
ue ∈ desT (si) for any elimination tree T in T1. The same argument works for the second
statement. ◁

To simplify the notation, let L0 = R0 = F . For i ∈ [N3] ∪ {0}, let Xi ⊆ V be the vertex
set of the connected component of G − Li containing s. Similarly, let Yi ⊆ V be the vertex
set of the connected component of G − Ri containing t.

▷ Claim 8. For i, j ∈ [N3] ∪ {0} with j > i, we have the following:
(i) (E[Xj] \ Lj) ∩ Li = ∅, and
(ii) (E[Yj] \ Rj) ∩ Ri = ∅.

Proof. To show (i), assume to the contrary that there exists e ∈ (E[Xj] \ Lj) ∩ Li for some
j > i. Note that j ∈ [N3]. Since e ∈ E[Xj] \ Lj , Claim 7 shows that ue ∈ desT (sj) for any
elimination tree T in T1. If i ≥ 1, then since ue ∈ desT (sj) and si ∈ ancT (sj), we see that
ue and si are not adjacent in T . This implies that swap(ue, si) is not applied in T1, which
contradicts e ∈ Li. If i = 0, then e ∈ L0 = F implies that ue ∈ ancT ∗(s1) ⊆ ancT ∗(sj),
which contradicts ue ∈ desT (sj) for any T . The same argument works for (ii). ◁

▷ Claim 9. X0 ⊇ X1 ⊇ X2 ⊇ · · · ⊇ XN3 and Y0 ⊇ Y1 ⊇ Y2 ⊇ · · · ⊇ YN3 .

Proof. Let i, j ∈ [N3] ∪ {0} be indices with j > i. Since (E[Xj] \ Lj) ∩ Li = ∅ by Claim 8
(i), all vertices in Xj are contained in the same connected component of G − Li. Since both
Xi and Xj contain s, we obtain Xj ⊆ Xi. This shows that X0 ⊇ X1 ⊇ X2 ⊇ · · · ⊇ XN3 .
Similarly, we obtain Y0 ⊇ Y1 ⊇ Y2 ⊇ · · · ⊇ YN3 . ◁

▷ Claim 10. For i ∈ [N3], we have |Li| = |Ri| = λ, Li = δG(Xi), and Ri = δG(Yi).

T. Ito et al. 82:11

Proof. Since F contains an s-t cut set, it holds that X0 ⊆ V \ {t}. For i ≥ 1, since
s ∈ Xi ⊆ X0 ⊆ V \ {t} by Claim 9, we see that δG(Xi) is an s-t cut set contained in Li.
Similarly, Ri contains an s-t cut set in G. Therefore, we obtain |Li|, |Ri| ≥ λ for any i ∈ [N3].
By considering the weight of T1, we obtain

2λN7 + N3 > lengthw(T1)

≥
N3∑
i=1

(w(si)|Li| + w(ti)|Ri|)

= 2λN7 + N4
N3∑
i=1

((|Li| − λ) + (|Ri| − λ)),

which shows that |Li| = |Ri| = λ for any i ∈ [N3]. Therefore, each of Li and Ri is a minimum
s-t cut set in G, and hence Li = δG(Xi) and Ri = δG(Yi) hold. ◁

Since the total weight of swap(Li) and swap(Ri) is at least 2λN7 by this claim, we see
that ue and si (resp. ti) are swapped exactly once in T1 for e ∈ Li (resp. e ∈ Ri) and for
i ∈ [N3]. For i ∈ [N3], let Ti (resp. T ′

i) be the elimination tree that appears in T1 after all
the swaps in swap(Li) (resp. swap(Ri)) are just applied.

▷ Claim 11. Elimination trees T ′
N3 , TN3 , T ′

N3−1, TN3−1, . . . , T ′
1, T1 appear in this order in T1.

Proof. We first show that Ti appears after T ′
i for i ∈ [N3]. Let e ∈ Ri be the edge such that

swap(ue, ti) is applied just before obtaining T ′
i . Ler f ∈ Li \ (Ri \ {e}), where the existence

of such f is guaranteed by |Li| = |Ri|. Since Ri is a minimum s-t cut set by Claim 10, we
see that G − (Ri \ {e}) is connected. Then, for any elimination tree T before T ′

i , we have
ue′ ∈ desT (ti) for any e′ ∈ E \ (Ri \ {e}). In particular, uf ∈ desT (ti). Since si ∈ ancT (ti),
we see that uf and si are not adjacent in T . This shows that we cannot apply swap(uf , si)
before T ′

i . Therefore, Ti appears after T ′
i in T1.

By the same argument, we can show that T ′
i appears after Ti+1 for i ∈ [N3 −1]. Therefore,

T ′
N3 , TN3 , T ′

N3−1, TN3−1, . . . , T ′
1, T1 appear in this order. ◁

▷ Claim 12. For i ∈ [N3], we have the following:
ue ∈ ancTi(ue′) for any e ∈ Li and e′ ∈ E \ Li, and
ue ∈ ancT ′

i
(ue′) for any e ∈ Ri and e′ ∈ E \ Ri.

Proof. Let T be an elimination tree in T1 just before Ti. Then, there exists an edge
f ∈ Li such that Ti is obtained from T by applying swap(uf , si). Since G − (Li \ {f})
is connected by Claim 10, we have ue ∈ ancT (si) for e ∈ Li \ {f} and ue′ ∈ desT (si) for
e′ ∈ E \ (Li \ {f}). Therefore, after applying swap(uf , si), we obtain ue ∈ ancTi

(f) for
e ∈ Li \ {f} and ue′ ∈ desTi(f) for e′ ∈ E \ Li. This shows that ue ∈ ancTi(ue′) for any
e ∈ Li and e′ ∈ E \ Li. By the same argument, we obtain ue ∈ ancT ′

i
(ue′) for any e ∈ Ri

and e′ ∈ E \ Ri. ◁

▷ Claim 13. X1 = V \ Y1.

Proof. Observe that X0 and Y0 are disjoint since F = L0 = R0 contains an s-t cut set in G.
Since X1 ⊆ X0 and Y1 ⊆ Y0 by Claim 9, we see that X1 and Y1 are disjoint. To derive a
contradiction, assume that X1 ̸= V \Y1, that is, X1 and Y1 are disjoint sets with X1 ∪Y1 ⊊ V .
Then, by Claim 9, we obtain Xi ̸= V \ Yi for any i ∈ [N3]. This shows that Li ̸= Ri for any
i ∈ [N3]. Since |Li| = |Ri| = λ, there exist fi ∈ Li \ Ri and f ′

i ∈ Ri \ Li. By Claim 12, we

ICALP 2023

82:12 Hardness of Finding Combinatorial Shortest Paths on Graph Associahedra

obtain ufi ∈ ancTi(uf ′
i
) and uf ′

i
∈ ancT ′

i
(ufi). By Observation 6, swap(ue, ue′) is applied

for some e, e′ ∈ E between T ′
i and Ti. Since such a swap is required for each i ∈ [N3], by

Claim 11, we have to swap pairs in {ue | e ∈ E} at least N3 times in T1. Therefore, we
obtain

lengthw(T1) ≥
N3∑
i=1

(w(si)|Li| + w(ti)|Ri|) + N3 = 2λN7 + N3,

which contradicts lengthw(T1) < 2λN7 + N3. ◁

▷ Claim 14. F = δG(X1) = δG(Y1).

Proof. Claims 10 and 13 show that L1 = R1 = δG(X1) = δG(Y1). This together with Claim 8
shows that F ∩ E[X1] = F ∩ E[Y1] = ∅. Since F contains an s-t cut set in G, we obtain
F = δG(X1) = δG(Y1). ◁

▷ Claim 15. Let T be an elimination tree in T1. If two vertices u, v ∈ V \{s, t} are contained
in the same connected component in G − F , then u and v are comparable in T .

Proof. By Claim 14, G − F consists of two connected components G[X1] and G[Y1]. We
first consider the case when u, v ∈ X1 \ {s}. By Claims 7 and 14, we obtain ue ∈ desT (s1)
for any e ∈ E[X1]. Furthermore, since lengthw(T1) < 2λN7 + N3 holds and the total
weight of swap(Li) and swap(Ri) is 2λN7, neither swap(s1, u) nor swap(s1, v) is applied
in T1, because w(s1)w(u) = w(s1)w(v) = N5. Therefore, we obtain u ∈ ancT (s1) and
v ∈ ancT (s1), which shows that u and v are comparable in T . The same argument works
when u, v ∈ Y1 \ {t}. ◁

Since the weight of T1 is at least
∑N3

i=1(w(si)|Li| + w(ti)|Ri|) = 2λN7, we obtain

lengthw(T2) = lengthw(T) − lengthw(T1) < 2λN7 + N3.

Hence, the above argument (Claims 7–15) can be applied also to the reverse sequence of
T2. In particular, Claim 15 holds even if T1 is replaced with T2. Therefore, if two vertices
u, v ∈ V \ {s, t} are contained in the same connected component in G − F , then u and v are
comparable in any elimination tree in T. For such a pair of vertices u and v, the only way to
reverse the ordering of u and v is to apply swap(u, v) or swap(v, u).

Recall that G − F consists of two connected components G[X1] and G[Y1] by Claim 14.
Since the ordering of v1, . . . , v2n are reversed from Tini to Ttar, we see that swap(u, v) or
swap(v, u) has to be applied in T if u, v ∈ X1 \ {s} or u, v ∈ Y1 \ {t} = (V \ X1) \ {t}.
Furthermore, we have to swap some elements in {ue | e ∈ E} and {s1, t1, . . . , sN3 , tN3} in
T2, whose total weight is at least 2λN7 in the same way as T1. With these observations, we
evaluate the weight of T as follows, where we denote k = |X1| to simplify the notation:

lengthw(T) ≥ 2λN7 + 2λN7 +
(

|X1| − 1
2

)
· N2 +

(
|V \ X1| − 1

2

)
· N2

= 4λN7 + (k − 1)(k − 2)
2 N2 + (2n − k + 1)(2n − k)

2 N2

= 4λN7 + (k2 − 2(n + 1)k + 2n2 + n + 1)N2

= 4λN7 + (n2 − n)N2 + (k − n − 1)2N2.

This together with lengthw(T) < 4λN7 + (n2 − n + 1)N2 shows that (k − n − 1)2 < 1, and
hence k = n + 1 by the integrality of k and n.

Therefore, we obtain |X1| = k = n + 1 and |Y1| = |V \ X1| = n + 1. Since |δG(X1)| =
|L1| = λ, this shows that X1 is a desired s-t cut in G.

T. Ito et al. 82:13

d

c

b

a

e

g

f

G

d

b

c

a

g

e f

d

b

c

a

g

e

f

d

c

b

a

g

e f

swap(b, c) swap(f, g)

T T ′ T ′′

T |{b,c,d} T ′|{b,c,d}
d

b c

d

b c

T ′|{d,f,g}
d

g

f

T ′′|{d,f,g}
d

f

g

Figure 5 An example of projections. Note that T |{b,c,d} = T ′|{b,c,d} since b and c are incomparable
in T |{b,c,d}, and T ′′|{d,f,g} is obtained from T ′|{d,f,g} by swapping f and g since f and g are adjacent
in T ′|{d,f,g}.

4 Hardness of the Unweighted Problem (Proof of Theorem 1)

To show Theorem 1, we reduce Weighted Combinatorial Shortest Path on Graph
Associahedra to Combinatorial Shortest Path on Graph Associahedra. An
operation called projection (e.g. [6]) plays an important role in our validity proof.

4.1 Useful Operation: Projection
Let G = (V, E) be a graph and let T be an elimination tree associated with G. For U ⊆ V

such that G[U] is connected, let T |U be the elimination tree associated with G[U] that
preserves the ordering in T . That is, u ∈ ancT |U

(v) if and only if u ∈ ancT (v) and u are v

are connected in G[U] − ancT (u) for u, v ∈ U . Note that such T |U is uniquely determined.
We call T |U the projection of T to U . See Figure 5 for illustration.

▶ Lemma 16. Let U ⊆ V be a vertex set such that G[U] is connected. Let T and T ′ be
elimination trees associated with G such that T ′ is obtained from T by applying swap(u, v),
where u, v ∈ V .
1. If {u, v} ⊆ U , then either T ′|U = T |U or T ′|U is obtained from T |U by applying

swap(u, v).
2. Otherwise, T ′|U = T |U .

Proof. Since all the vertices in V \ U are removed when we construct T |U , swap(u, v) affects
T |U only if {u, v} ⊆ U , which proves the second item. For the first item, suppose that
{u, v} ⊆ U . Then, u and v are adjacent or incomparable in T |U . If they are adjacent,
then T ′|U is obtained from T |U by applying swap(u, v). If they are incomparable, then
T ′|U = T |U . ◀

4.2 Reduction
Suppose we are given a graph G = (V, E), two elimination trees Tini and Ttar, and a weight
function w : V → Z>0, which form an instance of Weighted combinatorial Shortest
Path on Graph Associahedra. Then, we replace each vertex v ∈ V with a clique of size
w(v). Formally, consider a graph G′ = (V ′, E′) such that V ′ = {vi | v ∈ V, i ∈ {1, . . . , w(v)}},

ICALP 2023

82:14 Hardness of Finding Combinatorial Shortest Paths on Graph Associahedra

and {ui, vj} ∈ E′ if {u, v} ∈ E or u = v. Let T ′
ini (resp. T ′

tar) be the elimination tree obtained
from Tini (resp. Ttar) by replacing a vertex v ∈ V with a path v1, v2, . . . , vw(v). That is, for
distinct u, v ∈ V , there is an arc (u, v) in Tini (resp. Ttar) if and only if (uw(u), v1) is an arc of
T ′

ini (resp. T ′
tar). Note that the obtained elimination tree is associated with G′. This defines

an instance of Combinatorial Shortest on Graph Associahedra.

4.3 Validity
In what follows, we show that the obtained instance of Combinatorial Shortest Path
on Graph Associahedra has a reconfiguration sequence of length at most ℓ if and
only if the original instance of Weighted Combinatorial Shortest Path on Graph
Associahedra has a reconfiguration sequence T with lengthw(T) ≤ ℓ.

Sufficiency (“if” part)
Suppose that the original instance of Weighted Combinatorial Shortest Path on
Graph Associahedra has a reconfiguration sequence T from Tini to Ttar. Then, we construct
a reconfiguration sequence T′ from T ′

ini to T ′
tar by replacing each swap swap(u, v) in T

with w(u) · w(v) swaps {swap(ui, vj) | i ∈ [w(u)], j ∈ [w(v)]}. This gives a reconfiguration
sequence from T ′

ini to T ′
tar whose length is lengthw(T), which shows the sufficiency.

Necessity (“only if” part)
Suppose that the obtained instance of Combinatorial Shortest Path on Graph
Associahedra has a reconfiguration sequence T′ from T ′

ini to T ′
tar of length at most ℓ. For

any v ∈ V , since v1, . . . , vw(v) form a clique, they are comparable in any elimination tree in
T′. Furthermore, since v1, . . . , vw(v) are aligned in this order in both T ′

ini and T ′
tar, we may

assume that swap(vi, vj) is not applied in T′ for any i, j ∈ [w(v)].
Let Φ be the set of all maps ϕ : V → Z such that ϕ(v) ∈ {1, . . . , w(v)} for any v ∈ V .

Note that |Φ| =
∏

v∈V w(v). For ϕ ∈ Φ, define Uϕ = {vϕ(v) | v ∈ V }. Note that G′[Uϕ]
is isomorphic to G, and hence it is connected. By projecting each elimination tree in
T′ to Uϕ, we obtain a sequence of elimination trees. Lemma 16 shows that this forms a
reconfiguration sequence, say Tϕ, if we remove duplications when the same elimination tree
appears consecutively. Since G′[Uϕ] is isormorphic to G, by idenfitying vϕ(v) with v for
each v ∈ V , we can regard Tϕ as a recofiguration sequence from Tini to Ttar. That is, Tϕ

is regarded as a feasible solution of the original instance of Weighted Combinatorial
Shortest Path on Graph Associahedra.

In what follows, we consider reconfiguration sequences {Tϕ | ϕ ∈ Φ} and show that a
desired sequence exists among them. Suppose that swap(ui, vj) is applied in T′, where
u, v ∈ V , i ∈ [w(u)], and j ∈ [w(v)]. Then, Lemma 16 shows that the corresponding swap
operation swap(ui, vj), which is identified with swap(u, v), is applied in Tϕ only if ϕ(u) = i

and ϕ(v) = j. Thus, such a swap is applied in at most |{ϕ ∈ Φ | ϕ(u) = i, ϕ(v) = j}| =
|Φ|/(w(u) · w(v)) sequences in {Tϕ | ϕ ∈ Φ}. Therefore, we obtain∑

ϕ∈Φ
lengthw(Tϕ) =

∑
ϕ∈Φ

∑
swap(u,v)∈Tϕ

w(swap(u, v))

≤
∑

swap(ui,vj)∈T′

w(swap(u, v)) · |Φ|
w(u) · w(v)

= length(T′) · |Φ| ≤ ℓ · |Φ|,

T. Ito et al. 82:15

where each reconfiguration sequence is regarded as a multiset of swaps. Therefore,

min
ϕ∈Φ

(lengthw(Tϕ)) ≤ 1
|Φ|

∑
ϕ∈Φ

lengthw(Tϕ) ≤ ℓ.

Hence, there exists ϕ ∈ Φ such that Tϕ is a desired sequence. This shows the necessity.
Therefore, the weighted problem can be reduced to the unweighted problem, and hence

Theorem 3 implies Theorem 1.

5 Hardness for Polymatroids (Proof of Theorem 2)

In this section, we give a proof sketch of Theorem 2.
We reduce Combinatorial Shortest Path on Graph Associahedra to Combi-

natorial Shortest Path on Polymatroids. Assume that we are given an instance
G = (V, E), Tini, and Ttar of Combinatorial Shortest Path on Graph Associahedra.
To this end, we construct a polymatroid (V, f) satisfying the following conditions.
1. B(f) is a realization of the G-associahedron.
2. For each subset X ⊆ V , we can evaluate the value f(X) in time bounded by a polynomial

in the size of G.
3. We can find the extreme points xini, xtar of B(f) corresponding to Tini, Ttar, respectively,

in time bounded by a polynomial in the size of G.

We first argue that the conditions above suffice for our proof. Suppose the existence of a
polymatroid (V, f) with the properties above. Then, we may construct a polynomial-time
algorithm for Combinatorial Shortest Path on Graph Associahedra with a fictitious
polynomial-time algorithm for Combinatorial Shortest Path on Polymatroids as
follows. Let (G, Tini, Ttar) be an instance of Combinatorial Shortest Path on Graph
Associahedra. From Properties 1 and 3, we can construct an instance ((V, f), xini, xtar) of
Combinatorial Shortest Path on Polymatroids in polynomial time. By the fictitious
polynomial-time algorithm, we can solve the instance in time bounded by a polynomial in
|V | and the number of oracle calls to f . By Property 2, this running time is bounded by
a polynomial in |V |. Thus, we find a solution to (G, Tini, Ttar) in polynomial time, and the
proof is completed.

In our construction of such a polymatroid (V, f), we use the realization of the G-
associahedron by Devadoss [12], which can be described as follows. Let T be an elimination
tree of G. For each vertex v ∈ V , we define T (v) as the vertex set of the subtree of T rooted
at v. Then, we define the vector xT ∈ RV by choosing the coordinate xT (v) at every vertex
of v from the leaves to the root according to the following rule.

If v is a leaf of T , then we define xT (v) := 0.
If v is not a leaf of T , then we define xT (v) so that∑

u∈T (v)

xT (u) = 3|T (v)|−2.

Define E := {xT | T is an elimination tree of G}. Then, Devadoss [12] proved that the
convex hull of E is a realization of the G-associahedron, and for each elimination tree T of G,
the point xT is an extreme point of the G-associahedron.

ICALP 2023

82:16 Hardness of Finding Combinatorial Shortest Paths on Graph Associahedra

In our proof, we define the function f : 2V → R by

f(X) := 3|V |−2 −
∑

C∈C∗(X)

3|C|−2

for each subset X ⊆ V , where C∗(X) is the family of connected components of G − X with
at least two vertices.

Properties 2 and 3 above are immediate: it is not difficult to see that we can evaluate the
values of the function f in time bounded by a polynomial in the size of G; we can construct
xini and xtar from Tini and Ttar, respectively, as xini = xTini and xtar = xTtar . In the full
version, we prove that (V, f) is a polymatroid and B(f) coincides with the convex hull of E .
This completes the reduction. Therefore, Theorem 2 follows from Theorem 1.

6 Conclusion

We prove that the combinatorial shortest path computation is hard on graph associahedra
and base polytopes of polymatroids. This evaporates our hope for resolving an open problem
to obtain a polynomial-time algorithm for finding a shortest flip sequence between two
triangulations of convex polygons and the rotation distance between two binary trees by
generalizing the setting to graph associahedra. However, that open problem is still open,
and we should pursue another way of attacking it.

References
1 Oswin Aichholzer, Wolfgang Mulzer, and Alexander Pilz. Flip distance between triangulations

of a simple polygon is NP-complete. Discret. Comput. Geom., 54(2):368–389, 2015. doi:
10.1007/s00454-015-9709-7.

2 Benjamin Aram Berendsohn. The diameter of caterpillar associahedra. In Artur Czumaj and
Qin Xin, editors, 18th Scandinavian Symposium and Workshops on Algorithm Theory, SWAT
2022, June 27-29, 2022, Tórshavn, Faroe Islands, volume 227 of LIPIcs, pages 14:1–14:12.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.SWAT.2022.14.

3 Maike Buchin, Anna Lubiw, Arnaud de Mesmay, and Saul Schleimer. Computation and
reconfiguration in low-dimensional topological spaces (Dagstuhl Seminar 22062). Dagstuhl
Reports, 12(2):17–66, 2022. doi:10.4230/DagRep.12.2.17.

4 Jean Cardinal, Stefan Langerman, and Pablo Pérez-Lantero. On the diameter of tree associa-
hedra. Electron. J. Comb., 25(4):4, 2018. doi:10.37236/7762.

5 Jean Cardinal, Arturo I. Merino, and Torsten Mütze. Efficient generation of elimination trees
and graph associahedra. In Joseph (Seffi) Naor and Niv Buchbinder, editors, Proceedings of
the 2022 ACM-SIAM Symposium on Discrete Algorithms, SODA 2022, Virtual Conference /
Alexandria, VA, USA, January 9 - 12, 2022, pages 2128–2140. SIAM, 2022. doi:10.1137/1.
9781611977073.84.

6 Jean Cardinal, Lionel Pournin, and Mario Valencia-Pabon. Diameter estimates for graph
associahedra. Ann. Comb., 26:873–902, 2022. doi:10.1007/s00026-022-00598-z.

7 Jean Cardinal, Lionel Pournin, and Mario Valencia-Pabon. The rotation distance of brooms,
2022. doi:10.48550/arXiv.2211.07984.

8 Michael Carr and Satyan L. Devadoss. Coxeter complexes and graph-associahedra. Topology
and its Applications, 153(12):2155–2168, 2006. doi:10.1016/j.topol.2005.08.010.

9 Cesar Ceballos, Francisco Santos, and Günter M. Ziegler. Many non-equivalent realizations of
the associahedron. Combinatorica, 35(5):513–551, 2015. doi:10.1007/s00493-014-2959-9.

10 Sean Cleary and Katherine St. John. Rotation distance is fixed-parameter tractable. Inf.
Process. Lett., 109(16):918–922, 2009. doi:10.1016/j.ipl.2009.04.023.

https://doi.org/10.1007/s00454-015-9709-7
https://doi.org/10.1007/s00454-015-9709-7
https://doi.org/10.4230/LIPIcs.SWAT.2022.14
https://doi.org/10.4230/DagRep.12.2.17
https://doi.org/10.37236/7762
https://doi.org/10.1137/1.9781611977073.84
https://doi.org/10.1137/1.9781611977073.84
https://doi.org/10.1007/s00026-022-00598-z
https://doi.org/10.48550/arXiv.2211.07984
https://doi.org/10.1016/j.topol.2005.08.010
https://doi.org/10.1007/s00493-014-2959-9
https://doi.org/10.1016/j.ipl.2009.04.023

T. Ito et al. 82:17

11 Sean Cleary and Katherine St. John. A linear-time approximation algorithm for rotation
distance. J. Graph Algorithms Appl., 14(2):385–390, 2010. doi:10.7155/jgaa.00212.

12 Satyan L. Devadoss. A realization of graph associahedra. Discrete Mathematics, 309(1):271–276,
2009. doi:10.1016/j.disc.2007.12.092.

13 Jack Edmonds. Submodular functions, matroids, and certain polyhedra. In Richard Guy,
Haim Hanani, Norbert Sauer, and Johanan Schönheim, editors, Combinatorial Structures and
their Applications, pages 69–87. Gordon and Breach, New York, NY, 1970.

14 Uriel Feige and Mohammad Mahdian. Finding small balanced separators. In Jon M. Kleinberg,
editor, Proceedings of the 38th Annual ACM Symposium on Theory of Computing, Seattle,
WA, USA, May 21-23, 2006, pages 375–384. ACM, 2006. doi:10.1145/1132516.1132573.

15 Alan M. Frieze and Shang-Hua Teng. On the complexity of computing the diameter of a
polytope. Comput. Complex., 4:207–219, 1994. doi:10.1007/BF01206636.

16 Satoru Fujishige. Submodular Functions and Optimization, volume 58 of Annals of Discrete
Mathematics. Elsevier, Amsterdam, The Netherlands, 2nd edition, 2005.

17 Jacob E. Goodman, Joseph O’Rourke, and Csaba D. Tóth, editors. Handbook of Discrete and
Computational Geometry, Third Edition. CRC Press LLC, 2017.

18 Takehiro Ito, Erik D. Demaine, Nicholas J. A. Harvey, Christos H. Papadimitriou, Martha
Sideri, Ryuhei Uehara, and Yushi Uno. On the complexity of reconfiguration problems. Theor.
Comput. Sci., 412(12-14):1054–1065, 2011. doi:10.1016/j.tcs.2010.12.005.

19 Volker Kaibel and Marc E. Pfetsch. Some algorithmic problems in polytope theory. In Michael
Joswig and Nobuki Takayama, editors, Algebra, Geometry, and Software Systems [outcome of
a Dagstuhl seminar], pages 23–47. Springer, 2003. doi:10.1007/978-3-662-05148-1_2.

20 Iyad A. Kanj, Eric Sedgwick, and Ge Xia. Computing the flip distance between triangulations.
Discret. Comput. Geom., 58(2):313–344, 2017. doi:10.1007/s00454-017-9867-x.

21 Haohong Li and Ge Xia. An O(3.82k) time FPT algorithm for convex flip distance. In Petra
Berenbrink, Patricia Bouyer, Anuj Dawar, and Mamadou Moustapha Kanté, editors, 40th
International Symposium on Theoretical Aspects of Computer Science, STACS 2023, March
7-9, 2023, Hamburg, Germany, volume 254 of LIPIcs, pages 44:1–44:14. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2023. doi:10.4230/LIPIcs.STACS.2023.44.

22 Anna Lubiw and Vinayak Pathak. Flip distance between two triangulations of a point set is
NP-complete. Comput. Geom., 49:17–23, 2015. doi:10.1016/j.comgeo.2014.11.001.

23 Joan M. Lucas. An improved kernel size for rotation distance in binary trees. Inf. Process.
Lett., 110(12-13):481–484, 2010. doi:10.1016/j.ipl.2010.04.022.

24 Thibault Manneville and Vincent Pilaud. Graph properties of graph associahedra. Seminaire
Lotharingien de Combinatoire, 73:B73d, 2015.

25 Alexander Pilz. Flip distance between triangulations of a planar point set is APX-hard.
Comput. Geom., 47(5):589–604, 2014. doi:10.1016/j.comgeo.2014.01.001.

26 Alex Postnikov, Victor Reiner, and Lauren Williams. Faces of generalized permutohedra. Doc.
Math., 13:207–273, 2008.

27 Lionel Pournin. The diameter of associahedra. Advances in Mathematics, 259:13–42, 2014.
doi:10.1016/j.aim.2014.02.035.

28 Lionel Pournin. The asymptotic diameter of cyclohedra. Israel Journal of Mathematics,
219(2):609–635, 2017. doi:10.1007/s11856-017-1492-0.

29 Laura Sanità. The diameter of the fractional matching polytope and its hardness implications.
In Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2018, Paris, France, October 7-9, 2018, pages 910–921. IEEE Computer Society, 2018.
doi:10.1109/FOCS.2018.00090.

30 Daniel D. Sleator, Robert E. Tarjan, and William P. Thurston. Rotation distance, tri-
angulations, and hyperbolic geometry. J. Amer. Math. Soc., 1:647–681, 1988. doi:
10.1090/S0894-0347-1988-0928904-4.

31 Donald M. Topkis. Adjacency on polymatroids. Math. Program., 30(2):229–237, 1984.
doi:10.1007/BF02591887.

ICALP 2023

https://doi.org/10.7155/jgaa.00212
https://doi.org/10.1016/j.disc.2007.12.092
https://doi.org/10.1145/1132516.1132573
https://doi.org/10.1007/BF01206636
https://doi.org/10.1016/j.tcs.2010.12.005
https://doi.org/10.1007/978-3-662-05148-1_2
https://doi.org/10.1007/s00454-017-9867-x
https://doi.org/10.4230/LIPIcs.STACS.2023.44
https://doi.org/10.1016/j.comgeo.2014.11.001
https://doi.org/10.1016/j.ipl.2010.04.022
https://doi.org/10.1016/j.comgeo.2014.01.001
https://doi.org/10.1016/j.aim.2014.02.035
https://doi.org/10.1007/s11856-017-1492-0
https://doi.org/10.1109/FOCS.2018.00090
https://doi.org/10.1090/S0894-0347-1988-0928904-4
https://doi.org/10.1090/S0894-0347-1988-0928904-4
https://doi.org/10.1007/BF02591887

Searching for Regularity in Bounded Functions
Siddharth Iyer # Ñ

University of Washington CSE, Seattle, WA, USA

Michael Whitmeyer # Ñ

University of Washington CSE, Seattle, WA, USA

Abstract
Given a function f on Fn

2 , we study the following problem. What is the largest affine subspace U
such that when restricted to U , all the non-trivial Fourier coefficients of f are very small?

For the natural class of bounded Fourier degree d functions f : Fn
2 → [−1, 1], we show that there

exists an affine subspace of dimension at least Ω̃(n1/d!k−2), wherein all of f ’s nontrivial Fourier
coefficients become smaller than 2−k. To complement this result, we show the existence of degree d

functions with coefficients larger than 2−d log n when restricted to any affine subspace of dimension
larger than Ω(dn1/(d−1)). In addition, we give explicit examples of functions with analogous but
weaker properties.

Along the way, we provide multiple characterizations of the Fourier coefficients of functions
restricted to subspaces of Fn

2 that may be useful in other contexts. Finally, we highlight applications
and connections of our results to parity kill number and affine dispersers.

2012 ACM Subject Classification Mathematics of computing

Keywords and phrases regularity, bounded function, Boolean function, Fourier analysis

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.83

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2207.13312

Funding Siddharth Iyer : Research supported by NSF grant CCF-2131899.
Michael Whitmeyer : Research supported by NSF grant CCF-2006359.

Acknowledgements We thank Anup Rao for posing the question that launched this project and for
his invaluable advice and feedback. We are also grateful Paul Beame for his extremely helpful advice,
discussions, and feedback. Finally, we thank Sandy Kaplan for detailed feedback on this writeup.

1 Introduction

The search for structure within large objects is an old one that lies at the heart of Ramsey
theory. For example, a famous corollary of Ramsey’s theorem is that any graph on n vertices
must contain a clique or an independent set of size Ω(log n). Another example is Roth’s1

theorem [19] on 3-term arithmetic progressions, which essentially says that every subset of
{1, . . . , n} of density δ > Ω(1/ log log n) must contain a 3-term arithmetic progression.2

Szemerédi’s Regularity Lemma is also a well known example of this phenomenon. Roughly
speaking, it states that any graph G can be partitioned into k := M(δ) parts V1, . . . , Vk,
wherein most pairs of parts (Vi, Vj) are δ-regular. In this setting, the δ-regularity of (Vi, Vj)
roughly corresponds to saying that the bipartite graph induced across Vi and Vj appears as
though its edges were sampled randomly. This powerful statement has found applications

1 The related Hales-Jewett theorem [10] is also a classic result in Ramsey theory.
2 See also the recent quantitative improvement due to Kelley and Meka [13] which gives the same result

for all subsets of density at least Ω(2− log1/11(n)).

EA
T
C
S

© Siddharth Iyer and Michael Whitmeyer;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 83; pp. 83:1–83:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:siyer@cs.washington.edu
https://sites.google.com/view/sviyer/home
mailto:mdwhit@cs.washington.edu
https://mwhitmeyer.github.io/
https://doi.org/10.4230/LIPIcs.ICALP.2023.83
https://arxiv.org/abs/2207.13312
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

83:2 Searching for Regularity in Bounded Functions

in both pure mathematics (e.g., Szemerédi’s [23] generalization of Roth’s result to k-term
arithmetic progressions) and theoretical computer science (to test triangle-freeness in dense
graphs [20, 1, 22]).

Similar to the definition of regular partitions in Szemerédi’s Regularity Lemma, one can
also define a notion of regularity for functions. In particular, for functions f : Fn

2 → R,
we follow Green [9] and O’Donnell [17] and define a function to be δ-regular if all its
nontrivial Fourier coefficients are at most δ in magnitude.3 This definition can be viewed as
a pseudorandomness condition; in particular, a randomly chosen Boolean function f : Fn

2 →
{±1} is δ-regular with very high probability, even for δ = 2−Ω(n).4

The prior works surrounding graph regularity [23, 7, 22] and function regularity [9, 12] have
been concerned with obtaining δ-regular partitions, which, roughly speaking, are partitions
of the object at hand into (mostly) pseudorandom parts. Often, these results have quite poor
dependencies on the parameter δ so as not to be practical for any reasonably small value of
δ (see Proposition 3 and Proposition 4 for detailed statements). Motivated by this, and by
applications in theoretical computer science, we relax our requirement and look to find just
one δ-regular part. Namely, we seek to understand the following quantity:

r(f, δ) := min{codim(U) : U is an affine subspace such that fU is δ-regular},

where here and throughout this work fU : U → R denotes the restriction of f to inputs
coming from U .

Before stating our main results as well as prior work, we make a few remarks about the
quantity r(f, δ). In the special case when δ = 0, the quantity r(f, 0) has been previously
studied in the literature, under the name of parity kill number [18]. This is the smallest
number of parities that need to be fixed in order to make f constant. The value r(f, 0) is also
a measure associated with affine dispersers, objects that have received significant attention in
the study of pseudorandomness, see e.g. [21, 14, 5, 6, 3]. An affine disperser of dimension k is
a coloring of Fn

2 such that no affine subspace of dimension k is monochromatic. If we view an
affine disperser as a function f : Fn

2 → {0, 1, . . . , C}, then its dimension is just n− r(f, 0) + 1.
Now, we briefly discuss the bounds on r(f, δ) most relevant to our work. For a general

function f : Fn
2 → [−1, 1], it is known that r(f, δ) ≤ 1/δ; this follows from a well-known

density-increment argument, see [15] (for a short proof of this, see Proposition 5). One
might ask if r(f, δ) is small when we assume f is structured, and a natural example of
such functions is the class of functions with low Fourier degree. For general degree d

functions f : Fn
2 → [−1, 1], the best bound on r(f, δ) until this work was just the above

mentioned bound of 1/δ. However, for the class of degree d Boolean functions, we know
that r(f, δ) ≤ r(f, 0) = O(d3); this follows from the polynomial relationship between Fourier
degree and decision tree depth, see [16], and [2, 4] for surveys. We emphasize that this result
relies crucially on Booleanity (and is independent of δ), and one can ask if the more general
class of degree d functions bounded in the interval [−1, 1] also have small r(f, δ) values. Our
main result answers exactly this question, and provides an upper bound for r(f, δ) in this
setting.

▶ Theorem 1. For any δ ∈ (0, 1) and any degree d function f : Fn
2 → [−1, 1], we have

r(f, δ) ≤ n− Ω
(
n1/d!(log(n/δ))−2) .

3 For a formal definition, see Definition 11, and for more background on Fourier analysis, see Section 2.
4 See for example [17], Exercise 1.7 and Proposition 6.1.

S. Iyer and M. Whitmeyer 83:3

Note that the general bound r(f, δ) ≤ 1/δ that we mentioned earlier, is only meaningful
when δ > 1/n, however, our theorem allows for δ to be much smaller. The regime of small δ

is particularly interesting from the perspective of pseudorandomness. Indeed, in a qualitative
sense, we see that by decreasing δ, we are asking for affine subspaces where the restricted
function looks increasingly like a random function. Using Theorem 1 together with our
connection between r(f, 0) and the dimension of affine disperse, we obtain the following
corollary which says that low degree polynomials cannot serve as good affine dispersers.

▶ Corollary 2. If f : Fn
2 → {0, . . . , C} has Fourier degree d, then f cannot be an affine

disperser of dimension k for any k ≥ Ω
(
n1/d!(d + log(nC))−2).

Lower Bounds on r(f, δ). To complement Theorem 1, we present in Table 1 several
examples of functions (bounded as well as Boolean) for which r(f, δ) is large. For each row
in the table, we exhibit a class of functions (whose degree and range is as specified), such
that for any δ′ ≤ δ, no affine subspace of dimension larger than n− r(f, δ) is δ′-regular.

Table 1 Table of functions with large r(f, δ) values.

δ ≤ r(f, δ) ≥ deg(f) range(f) Ref.

1/n n/2 − 1 1 [−1, 1] Lemma 26(
n
d

)−1
n − 2dn1/(d−1) d [−1, 1] Lemma 27

Θ(n−1/2) Θ(
√

n) n {±1} Lemma 32
1
2 · n−d (for d ≤ log n

log log n+1) n − 2dn1/(d−1) Ω(n) {±1} Corollary 30
1/22k+1 (for integer k) Ω

(
(log 1

δ
)log2(3)) 2k {±1} Lemma 31

Observe that Lemma 27 provides a somewhat of a converse to Theorem 1. However there
is a noticeable gap between the two results, and we conjecture that Lemma 27 is closer to
being tight, and that Theorem 1 could be improved. We also note that Lemma 27 and
Corollary 30 are not explicit – it would be interesting to find more explicit examples.

1.1 Related Work
To the best of our knowledge, r(f, δ) has not been explicitly studied before. However, it is
closely related to well-studied notions of function regularity as well as the concepts of parity
kill number and affine dispersers. In this section, we give a detailed description of both these
connections.

Parity Kill Number and Affine Dispersers. As we have already mentioned, r(f, 0) has been
studied under the name of parity kill number, denoted C⊕

min[f] (see [18]). Parity kill number
can be considered as a further generalization of the minimum certificate complexity of f ,
denoted Cmin[f], which is the minimum number of bits one must fix in order to make f

constant. In particular, for any δ ≥ 0, we have r(f, δ) ≤ r(f, 0) ≤ Cmin[f]. The minimum
certificate complexity is one of several natural complexity measures that have been well
studied for Boolean functions f : Fn

2 → {±1} (see [4, 2] for surveys).
As we have already alluded to, the quantity r(f, 0) is also closely related to efficacy of

f : Fn
2 → {0, . . . , C} as an affine disperser. In the case of C = 1, Cohen and Tal [6] rule out

F2-polynomials of degree d as affine dispersers by showing that any such function satisfies
r(f, 0) ≤ n− Ω(d · n1/(d−1)). This result resembles our Corollary 2; however, the two results
are incomparable for two reasons. First, degree d functions over F2 can have very large

ICALP 2023

83:4 Searching for Regularity in Bounded Functions

Fourier degree; moreover, the corresponding result of [6] applies to functions whose range is
F2, while ours applies to functions that take values in the set {0, . . . , C}, which can have a
much larger size. Furthermore, for f : Fn

2 → {0, . . . , C}, a standard argument (analogous to
the one in [16]) shows that r(f, 0) ≤ O(Cd3), where d here is the Fourier degree. However,
this does not address the case where C = Ω(n), which is when Corollary 2 becomes useful.

Pseudorandom Partitions. As we have mentioned, much prior work on function regularity
has been focused on finding pseudorandom partitions of Fn

2 . To the best of our knowledge,
the earliest result in this direction is due to Green [9]; below, the notation twr(x) refers to

an exponential tower of 2’s 22. . .

of height x.

▶ Proposition 3 (Theorem 2.1 in [9]). For any f : Fn
2 → {0, 1} and δ > 0, there exists a

subspace V of co-dimension M(δ) ≤ twr(⌈1/δ3⌉) such that for all but a δ-fraction of the
affine subspaces U = α + V, fU is δ-regular.

In the same paper, Green showed that M(δ) ≥ twr(Ω(log(1/δ))) was necessary. Sub-
sequently, Hosseini et al. [12] exhibited a better counterexample showing co-dimension
M(δ) ≥ twr(⌈1/16δ⌉) is required.

In the above upper and lower bound of [9, 12], the partition of Fn
2 is of a specific form –

namely, it is every affine shift of a given subspace. Given this observation, one can ask if
there is a partition of Fn

2 into affine subspaces of smaller co-dimension so that in most parts
f is δ-regular. As the next proposition, due to Girish et al. [8] shows, this is indeed the case.

▶ Proposition 4 (Proposition A.1 in [8]). For any f : Fn
2 → [0, 1] and δ > 0, there exists a

partition Π of Fn
2 , where every π ∈ Π is an affine subspace of co-dimension at most 1

δ3 such
that for all but a δ-fraction of the parts, fπ is δ-regular.

The proof of Proposition 4 is based on a simple algorithm that greedily fixes the parit-
ies corresponding to the largest Fourier coefficients; it is included in Appendix A.1 for
completeness.

Although, both these results partition Fn
2 into several affine subspaces where f is δ-regular,

they are only meaningful when δ is relatively large. Indeed, Proposition 3 is trivial when
δ < (log∗(n))−1/3, and Proposition 4 when δ < n−1/3. As we mentioned earlier, if we relax
our requirement to finding just one affine subspace, there is a simple upper bound on r(f, δ)
based on a density-increment argument, which goes back to the works of Roth [19] and
Meshulam [15].

▶ Proposition 5 (Folklore). For any f : Fn
2 → [−1, 1], we have r(f, δ) ≤ 1

δ .

We provide a proof of Proposition 5 in Appendix A.1 for completeness.

1.2 Techniques
Upper bound on r(f, δ). We give a brief proof sketch of Theorem 1. The proof proceeds
by induction over the Fourier degree. The base case corresponds to degree one functions.
Our intuition is derived from the following fact. If we have any k real numbers a1, . . . , ak

such that the sum of any subset of them has magnitude at most one, then by the pigeonhole
principle, there is a non-empty subset S ⊆ [k], and a signing of the numbers in S so that the
signed sum has magnitude at most 2−Ω(k). In the degree one case, we partition {1, . . . , n}
into consecutive disjoint intervals of size k = O(log 1/δ). We apply the above intuition to
the k Fourier coefficients in each interval, to obtain signed sums that have small magnitude.

S. Iyer and M. Whitmeyer 83:5

Then, by appropriately choosing an affine subspace, U of dimension Ω(n/ log(1/δ)), we show
that these signed sums are exactly the Fourier coefficients of the function restricted to U
(see Proposition 13 for a more general statement). We give a more detailed description of
how this works in Section 3.

At a high level, we reduce the problem for degree d functions to degree d−1 by restricting
to an affine subspace of dimension Ω̃

(
n1/d

)
, where the function is degree d and all Fourier

coefficients at the d-th level are extremely small ≪ δ/nd. For a detailed statement, see
Lemma 19. When we use the inductive hypothesis for d− 1, the last constraint ensures that
the degree d coefficients cannot increase the new coefficients by more than O(δ), even if they
combine in the most constructive way possible.

Lemma 19 is also obtained by repeatedly applying the pigeonhole principle. However, the
key issue now is that several Fourier coefficients could be affected when we apply a restriction,
unlike the degree one case. To avoid this, we apply restrictions iteratively so that each one
preserves the small Fourier coefficients from past iterations while still ensuring that several
new Fourier coefficients are also small. The cost of this procedure is that, in each step, we
must apply the pigeonhole principle over larger and larger subsets of coordinates.

Lower Bounds. Here, we give a very high level overview of our lower bounds on r(f, δ).
The basic idea is to consider functions f with the property that their Fourier spectrum is
concentrated on a small number of Fourier coefficients. It turns out (see Proposition 13)
that when we restrict to an affine subspace, say U , the Fourier coefficients of fU are simply
signed sums of the Fourier coefficients of f . By our choice of f , if the restricted function
was δ-regular, then the large coefficients of f involved in the signed sums somehow cancelled
each other out. We show that by choosing the vectors corresponding to the large Fourier
coefficients in f appropriately, such a cancellation would imply that the co-dimension of U
must be large. For more detailed sketches of the entries in Table 1, see Appendix A.2.

2 Preliminaries

Notation. 1{·} denotes an indicator function that takes the value 1 if the clause is satisfied
and 0 otherwise. For a set J ⊆ [n], we use span(J) to denote the subspace spanned by the
standard basis vectors corresponding to the elements in J . We refer to the L1 norm of γ ∈ Fn

2
by ∥γ∥1. Given a subset S ⊆ Fn

2 , we denote S=t := S ∩ {u : ∥u∥1 = t}. Further, we define
the degree of a function f : Fn

2 → R to be max{∥γ∥1 : f̂(γ) ̸= 0}. We frequently interpret
a linear transformation M : Fn

2 → Fn
2 as a matrix and refer to the linear map obtained by

taking the transpose of the matrix as MT. At several points, we consider the compositions of
functions with linear maps. For a function f and a map M : Fn

2 → Fn
2 , we denote by f ◦M

the composition of the functions f with M . In particular, f ◦M(x) = f(M(x)).

Probability. The following basic facts from probability theory are useful for us.

▶ Fact 6 (Hoeffding, [11]). Suppose X1, . . . , Xn are such that a ≤ Xi ≤ b for all i. Let
M = X1+...Xn

n . Then,

Pr
[
|Mn −EMn| ≥ t

]
≤ 2 exp

(
−2t2n

|b− a|

)
.

ICALP 2023

83:6 Searching for Regularity in Bounded Functions

▶ Definition 7 (Statistical Distance). Let X and Y be two random variables taking values in
a set S. Then we define the statistical distance between X and Y as

|X − Y | := max
T ⊆S

∣∣∣Pr[X ∈ T]− Pr[Y ∈ T]
∣∣∣ = 1

2
∑
s∈S

∣∣∣Pr[X = s]− Pr[Y = s]
∣∣∣.

Linear Algebra. We recap two concepts from linear algebra, namely, orthogonal subspaces
and direct sum, since they become useful for studying the Fourier spectrum of functions
defined over subspaces of Fn

2 . For a subspace A of Fn
2 , we denote the orthogonal subspace

of A as A⊥ = {γ ∈ Fn
2 : ⟨γ, γ′⟩ = 0, ∀ γ′ ∈ A}. We denote by dim(A), the dimension of A

and codim(A) = n− dim(A).
We now define the notion of the direct sum of two subspaces.

▶ Definition 8 (Independence, Direct Sum). Two subspaces A,B are independent if a + b ̸= 0
for any non-trivial choice of a ∈ A and b ∈ B. In addition, if {a+b : a ∈ A and b ∈ B} = Fn

2 ,
we say that Fn

2 is a direct sum of A and B, written as A⊕ B = Fn
2 .5

If A⊕B = Fn
2 , then dim(A)+dim(B) = n. It is also well known that dim(A⊥)+dim(A) =

n. Note, however, that A⊥ and A need not be independent,6 and often in fact must not be.

▶ Fact 9. Let A,B be independent subspaces of Fn
2 . Then for all distinct b, b′ ∈ B, the affine

subspaces b +A and b′ +A are mutually disjoint.

Proof. If b + a = b′ + a′, then a non-trivial sum of a vector from each A and B equals zero,
contradicting the fact that A⊕ B = Fn

2 . ◀

Fourier Analysis. For f : Fn
2 → R, we can write f in the Fourier representation as

f(x) =
∑

γ∈Fn
2

f̂(γ)χγ(x),

where χγ(x) := (−1)⟨γ,x⟩ and f̂(γ) = Ex[f(x)χγ(x)]. We say f has degree d if
max

γ:f̂(γ) ̸=0 ∥γ∥1 = d, and we refer to the degree d part of f by f=d(x) :=
∑

∥γ∥1=d f̂(γ)χγ(x).
For more on this topic, see [17], which uses notation consistent with ours.

Restrictions. We are ultimately concerned with understanding the Fourier coefficients of a
function when it is restricted to some affine subspace of Fn

2 . In the special case where the
coordinates in a set J ⊆ [n] are fixed using the vector b ∈ FJ

2 , we denote the restriction of f

thus obtained as the function fJ b : span(J)→ R, which can be written as fJ b(x) = f(x+b).
Next, we recall the formula of the Fourier coefficients of the restricted function. Note that
{χγ(x) := (−1)⟨γ,x⟩ : γ ∈ span(J)} is a Fourier basis of the restricted function.

▶ Fact 10 (Fourier Coefficients of Restricted Functions (see [17], Proposition 3.21)). For every
γ ∈ span(J) and b ∈ span(J),

f̂J b(γ) =
∑

β∈span(J)

f̂(β + γ)χβ(b).

5 Such a subspace B is sometimes called a complement of A. However, this term can be confused with
the orthogonal subspace/complement, so we avoid using this terminology.

6 this might be unexpected at first for those used to working over the reals, but it is essentially because
the inner product over F2 allows self-orthogonal vectors in Fn

2 .

S. Iyer and M. Whitmeyer 83:7

2.1 Fourier Analysis on Subspaces
We move to the general setting of restricting functions to arbitrary affine subspaces.7 Let
U = V + α be an affine subspace of Fn

2 . By the restriction of f to U , we mean the function
fU : V → R defined as fU (x) = f(x + α).

For the remainder of this section (and paper), let W be such that W ⊕ V⊥ = Fn
2 . For

each element γ ∈ W, consider the function χγ : V → {±1} as χγ(x) = (−1)⟨γ,x⟩. It is easy
to verify that {χγ : γ ∈ W} form an orthonormal basis of real-valued functions defined over
V under the inner product given by ⟨p, q⟩ = Ex∈V [p(x)q(x)]. We can therefore uniquely
associate each vector γ ∈ W with the function χγ , and for U = α + V, we can write

fU (x) =
∑

γ∈W
f̂U (γ)(−1)⟨γ,x⟩. (1)

We now state the formal definition of δ-regularity.

▶ Definition 11 (δ-regularity). Let V be a subspace of Fn
2 and g : V → R. For δ ≥ 0, we say

g is δ-regular if maxγ ̸=0 |ĝ(γ)| ≤ δ.

In this section, we present three separate formulas (Fact 12, Proposition 13 and Proposi-
tion 16) for the Fourier coefficients of fU , each of which is useful in different contexts. With
the exception of Fact 12, which is direct, the proofs of the statements in this section can be
found in Appendix B.

First, using the above observations, we have the following simple formula for the Fourier
coefficients of fα+V , which follows from the orthogonality of the χγ we have defined.

▶ Fact 12. Let V,W be subspaces such that W ⊕V⊥ = Fn
2 and U = α + V. For any γ ∈ W,

we have that

f̂U (γ) = Ex∈V [f(x + α) · (−1)⟨γ,x⟩] = (−1)⟨γ,α⟩Ex∈U [f(x) · (−1)⟨γ,x⟩].

Fact 12 represents a simple and analogous formula for Fourier coefficients of functions
restricted to affine subspaces. It also highlights that the magnitude of the Fourier coefficients
of a restricted function are unaffected by the choice for shift α as long it corresponds to the
same affine subspace.

Our next formula, which shows how the Fourier coefficients of fU can be written in terms
of the Fourier coefficients of f , is an easy consequence of Fact 12.

▶ Proposition 13. Let V,W be subspaces such that W ⊕V⊥ = Fn
2 and U = α + V. For any

γ ∈ W, we have

f̂U (γ) =
∑

β∈γ+V⊥

f̂(β) · (−1)⟨β,α⟩.

For a proof of Proposition 13 as well as proofs for the rest of the statements in this
section, see Appendix B. We note that Proposition 13 gives a formula analogous to Fact 10
for restrictions to general affine subspaces. This fact will be useful to construct functions and
argue that they never become δ-regular when restricted to any sufficiently large subspace.
Before we give our final formula, we highlight one particular choice of W such thatW⊕V⊥ =
Fn

2 .

7 For an arbitrary subspace V, there is no canonical mapping between vectors and characters when
V ≠ Fn

2 , and we cannot simply define the vectors χγ , for each γ ∈ V, as we did in the case of Fn
2 to be

the characters of V.

ICALP 2023

83:8 Searching for Regularity in Bounded Functions

▶ Definition 14 (M mapping V to span(J)). Given a k-dimensional subspace V, let B =
{β1, . . . , βn} be a basis for Fn

2 such that V = span({β1, . . . , βk}. For any subset J ⊆ [n] of
size k, let M : Fn

2 → Fn
2 be an invertible linear map such that {Mβi : i ∈ [k]} = {ej : j ∈ J}.

▶ Proposition 15 (Choice of W). Let V, M and J be defined as in Definition 14. The
subspaces W = {MTγ : γ ∈ span(J)} and V⊥ are independent, and W ⊕V⊥ = Fn

2 .

Finally, we show that the Fourier coefficients of a function restricted to an affine subspace
are the same as the Fourier coefficients of the function f ◦M under a suitable (normal)
restriction and for a particular choice of M .

▶ Proposition 16. Let V, M and J be defined as in Definition 14 and U = α + V. For any
γ ∈ span(J), we have

∣∣∣f̂U (MTγ)
∣∣∣ =

∣∣∣ĥU ′(γ)
∣∣∣ , where h = f ◦M−1 and U ′ = {Mu : u ∈ U} =

Mα + span(J) is a standard restriction.

Proposition 16 implies the following important corollary.

▶ Corollary 17. There exists an affine subspace U of dimension k such that fU is δ-regular
if and only if there exists an invertible linear map M : Fn

2 → Fn
2 , a set J ⊆ [n] of size k, and

a fixing of coordinates outside J given by b ∈ FJ
2 such that the function hJ b is δ-regular,

where h = f ◦M .

We use Corollary 17 crucially in the proof of Theorem 1, wherein we construct M and
b such that f ◦M [k] b

has small Fourier coefficients. In the proof of this theorem we must
understand the Fourier coefficients of f ◦M in terms of the Fourier coefficients of f . The
following fact gives an identity relating the Fourier coefficients of the two functions. For
completeness, we include the proof in Appendix B.

▶ Fact 18 ([17], Exercise 3.1). Let M be an invertible linear transformation, and consider
the function g = f ◦M−1 : Fn

2 → R. Then we have that ĝ(γ) = f̂(MTγ).

3 Upper Bound on r(f, δ)

Now we prove our main theorem, restated here for convenience.

▶ Theorem 1. For any δ ∈ (0, 1) and any degree d function f : Fn
2 → [−1, 1], we have

r(f, δ) ≤ n− Ω
(
n1/d!(log(n/δ))−2) .

First, we gain some intuition from degree one functions.

Base Case/Toy Example. Suppose f is a Fourier degree one function. In this case our
function has the form

f(x) = f̂(0) +
∑

i

f̂(ei)(−1)xi .

For a parameter t ≥ 1 and a subset S ⊆ [t], consider the sum gS = f̂(0) +
∑

i∈S f̂(ei).
Note that gS = E[f(x)|xi = 0 ∀i ∈ S] ∈ [−1, 1]. The pigeonhole principle implies that for
t = Ω(log 1/δ) there must exist two distinct sets S, S′ such that the difference |gS − gS′ | ≤ δ.
We can further write gS − gS′ =

∑
i∈S△S′ f̂(ei)(−1)|{i}∩S′|.

We now use the set S△S′ and the signs to construct an affine subspace where at least
one Fourier coefficient will have small magnitude. Assume without loss of generality that
1 ∈ S \ S′ and S△S′ = [t′] for some t′ ≤ t. Consider restricting f to the affine subspace U

S. Iyer and M. Whitmeyer 83:9

defined by the linear equations x1 + xi = bi for each i ∈ {2, . . . , t′}, where bi = |{i} ∩ S′|.
We can reason about the Fourier spectrum of fU by plugging in xi = bi + x1. Under this
restriction, we see that the Fourier coefficients of et′+1, . . . , en stay the same, and the new
Fourier coefficient of e1 is exactly equal to

f̂(e1) +
t′∑

i=2
f̂(ei)(−1)bi = gS − gS′ ,

which we observed has magnitude at most δ. Repeatedly applying this argument roughly
n(log(1/δ))−1 times for the remaining standard basis vectors and fixing remaining coordinates
arbitrarily, we obtain an affine subspace of dimension at least Ω

(
n

log(1/δ)

)
.

Theorem 1 is proved via induction using the following lemma.

▶ Lemma 19. For τ ∈ (0, 1) and any degree d function f : Fn
2 → [−1, 1], there exists an

invertible linear map M : Fn
2 → Fn

2 , a set J ⊆ [n] with size at least d
4e

(
n

log 5/τ

)1/d

, and
b ∈ span(J) such that h = f ◦M satisfies

∣∣∣ĥJ b(γ)
∣∣∣ ≤ {τ if ∥γ∥1 = d,

0 for all ∥γ∥1 > d.

We now prove Theorem 1 using Lemma 19.

Proof. The proof proceeds by induction over the degree. Our inductive hypothesis is that
for any δ > 0 and any degree d function f , there exists an invertible linear map M , a set
I ⊆ [n], and b ∈ span(I) such that the following two items hold:
1. hĪ b is δ-regular, where h = f ◦M , and
2. for Cd =

∑d
i=1(i!)−1, we have

|I| ≥ n1/d!

(8e)Cd−1 (log(n/δ))Cd
.

Note that Cd ≤ e− 1 < 2 for all d ≥ 1. The existence of the desired affine subspace is
then given by Corollary 17, and its dimension is equal to |I| ≥ Ω

(
n1/d! (log(n/δ))−2

)
.

The base case corresponds to the degree being one. Let us apply Lemma 19 for degree
one with τ = δ and denote g = f ◦M , where M is the linear map M promised by the lemma.
Additionally, we have a set J of size at least n

4e log 5/δ ≥ Ω
(

n
log n/δ

)
, and b ∈ span(J) such

that

∣∣ĝJ b(γ)
∣∣ ≤ {τ if ∥γ∥1 = 1,

0 for all ∥γ∥1 > 1.
=⇒

∣∣ĝJ b(γ)
∣∣ ≤ δ, for all γ ̸= 0.

Assuming both items hold for some degree d− 1, we show them for degree d. Applying
Lemma 19 with degree d and τ = n−dδ/3, we denote p := (f ◦M)J b, where M , J and b

are as promised by the lemma. Note that, by Lemma 19, p has degree at most d, and for
any γ with ∥γ∥1 = d, we have, |p̂(γ)| ≤ δ/(3nd). Consider the functions p<d and p=d, which
are the degree at most d− 1 part of p and the degree d part of p, respectively. We note that

p<d

(1+δ/3) is bounded in the interval [−1, 1] because for any x,

∣∣p<d(x)
∣∣ ≤ |p(x)|+

∣∣p=d(x)
∣∣ ≤ 1 +

∑
γ:∥γ∥1=d

|p̂(γ)| ≤ 1 + δ

3 .

ICALP 2023

83:10 Searching for Regularity in Bounded Functions

Applying the inductive hypothesis8 to p<d

1+δ/3 for the choice of δ/3, we get a linear map M ′, a

set I ⊆ J , and b′ ∈ span(J \ I) such that
(

q
1+δ/3

)
J\I b′

is δ/3-regular, where q := p<d ◦M ′.

Therefore, for any γ ̸= 0, we have
∣∣q̂J\I b′(γ)

∣∣ ≤ (1 + δ
3
)

δ
3 < 2δ

3 . Denoting p′ := p ◦M ′ and
r := p=d ◦M ′, we have for any γ ̸= 0 that∣∣∣ ̂p′

J\I b′(γ)
∣∣∣ ≤ ∣∣∣q̂J\I b′(γ)

∣∣∣+
∣∣∣r̂J\I b′(γ)

∣∣∣ < 2δ/3 +
∑

β:∥β∥1=d

|ĝ(β)| ≤ δ.

This shows that p′
J\I b′ is δ-regular. Moreover, if we extend M ′ to act as the identity map

on the coordinates in J , we can write

p′
J\I b′(x) = (p ◦M ′)J\I b′(x) = p(M ′(x + b′))

= (f ◦M)J b(M ′(x + b′)) = f(MM ′(x + b′ + b)),

which implies that item 1 of the inductive hypothesis is satisfied by applying the linear map
MM ′ and restricting to the set I by fixing the coordinates outside according to b + b′.

We now show that the size of I satisfies item 2 above. Note that Lemma 19 promises
that |J | ≥ d

4e

(
n

log(15nd/δ)

)1/d

. Moreover, we have

log(15nd/δ) ≤ d log n/δ + log 15 ≤ 4d log n/δ,

where the last inequality follows for sufficiently large n. Therefore, |J | ≥ 1
8e

(
n

log(n/δ)

)1/d

.
Moreover, we assume without loss of generality that 3|J | ≤ n because, if not, we can
arbitrarily fix coordinates in J until it is, which does not affect the crucial property that all
remaining degree d Fourier coefficients have small magnitude. Using the bounds on |J | and
applying item 2 of the inductive hypothesis for degree d− 1, we get

|I| ≥ |J |1/(d−1)!

(8e)Cd−2 (log(3|J |/δ))Cd−1
≥ n1/d!

(8e)Cd−1 log(n/δ)1/d! (log(3|J |/δ))Cd−1

≥ n1/d!

(8e)Cd−1 (log(n/δ))Cd
.

This shows item 2 of the inductive hypothesis as desired. ◀

To prove Lemma 19, we need the following claim, which ultimately lets us bound Fourier
coefficients in certain affine subspaces.

▷ Claim 20 (Pigeonhole Principle). Let f : Fn
2 → [−1, 1] be degree d. For every K ⊆ [n] of

size k such that n− k ≥
(

k
d−1
)

log(5/τ), there exists S ⊆ [n] \K and z ∈ {±1}S such that
1. ∀γ ∈ span(K) with ∥γ∥1 = d− 1, we have

∣∣∣∑j∈S f̂(γ + ej) · zj

∣∣∣ ≤ τ , and
2. 1 < |S| ≤

(
k

d−1
)

log(5/τ).

Proof. Consider any subset of T ⊆ K of size
(

k
d−1
)

log(5/τ). For any U ⊆ T , consider the
sum

aU (γ) := f̂(γ) +
∑
j∈U

f̂(γ + ej).

8 Technically, p<d

1+δ/3 : span(J) → [−1, 1]. However, we can abuse notation slightly and consider it as a
function from FJ

2 to [−1, 1] in order to apply the inductive hypothesis.

S. Iyer and M. Whitmeyer 83:11

We must have that aU (γ) ∈ [−1, 1] since it is exactly equal to the Fourier coefficient
corresponding to γ if we restricted everything in U to be one. This follows because f is
degree d.

Now, divide the interval [−1, 1] into 2/τ intervals of length τ . For a fixed U ⊆ T of even
size, consider putting the values of aU (γ) for all γ ∈ span(K)=d−1 into a vector vU of length(

k
d−1
)
. First, note that the number of even subsets of T is at least 2(k

d−1) log(5/τ)−1 > (2/τ)(
k

d−1).
Moreover, the number of possible interval vectors is at most (2/τ)(

k
d−1). Therefore, by the

pigeonhole principle, there must be two distinct sets U, U ′ ⊆ T such that ∥vU − vU ′∥∞ ≤ τ .
Thus, we have that

∥vU − vU ′∥∞ ≤ τ ⇐⇒
∑

i∈U△U ′

(−1)|{i}∩U ′|f̂(γ + ei) ≤ τ ∀ γ ∈ span(K)=d−1.

Since U, U ′ have even size and are not equal, U△U ′ has even size as well, so we can set our
S = U△U ′ ⊆ T and zi = (−1)|{i}∩U ′|, and the claim follows. ◁

We can now prove Lemma 19.

Proof of Lemma 19. We build the map M , the set J , and the vector b iteratively. Through-
out the iterations, we seek to maintain a set K of coordinates for which (under a suitable
linear transformation M) every Fourier coefficient corresponding to a vector of weight d

in span(K) has magnitude at most τ . We build K one coordinate at a time by repeatedly
invoking Claim 20 and arguing that the quantities guaranteed to be small by Claim 20 are
exactly the (new) Fourier coefficients. When we can no longer add more coordinates to K,
we fix any remaining coordinates (outside of K that are still alive), and we are left with a
function, over only the coordinates in K, that has the desired property.

Note that we can start with K being an arbitrary subset of size d − 1 (w.l.o.g. let it
be [d− 1]) since any such subset has no Fourier coefficients of degree d. Therefore, we can

assume without loss of generality that τ ≥ 5 · 2−n/(4e)d , since otherwise d
4e

(
n

log(5/τ)

)1/d

< d

and the lemma becomes trivial. In each iteration, we maintain the following invariant for
M , J and b. In iteration i, there exists some K ⊆ J of size d + i− 1 such that the function
g = (f ◦M)J b satisfies

|ĝ(γ)| ≤
{

τ if γ ∈ span(K) and ∥γ∥1 = d,

0 for all ∥γ∥1 > d.

Assume without loss of generality that J = [j] for some j ≤ n and K = [d + i− 1] ⊆ J .
Since g has degree d, we can apply Claim 20 to g and obtain a subset S ⊆ J \K of size at
most

(
d+i−1

d−1
)
(log(5/τ) and a sign vector z ∈ {±1}S so that∣∣∣∑

j∈S

ĝ(γ + ej) · zj

∣∣∣ ≤ τ, for all γ ∈ span([d + i− 1]) such that ∥γ∥1 = d− 1. (2)

We can also assume that d + i ∈ S and zd+i = 1. Now consider the invertible linear
transformation Mi : Fn

2 → Fn
2 that maps ed+i to

∑
j∈S ej and behaves as the identity map on

the remaining standard basis vectors. Further, denote Ji := S \ {d + i} and let bi ∈ span(Ji),
where (bi)j := (1 − zj)/2 for each j ∈ Ji. Intuitively, applying the linear transformation
Mi and then fixing the coordinates in Ji to bi corresponds to restricting the affine subspace
described by the equations xj + xd+i = (1− zj)/2 for all j ∈ Ji.

ICALP 2023

83:12 Searching for Regularity in Bounded Functions

After this iteration, we show that if we set M ′ ←MMi, J ′ ← J \ Ji and b′ ← b + bi, the
invariant holds with K ′ ← K ∪ {d + i}. For these choices, we have

(f ◦M ′)J′ b′(x) = f ◦M(Mi(x + b′)) = f ◦M(Mi(x + bi + b))
= f ◦M(Mi(x + bi) + b)
= g ◦Mi(x + bi) = (g ◦Mi)Ji bi

(x),

and it therefore suffices to show that (g ◦Mi)Ji bi
– denoted by h henceforth, for shorthand

– is degree d and
∣∣∣ĥ(γ)

∣∣∣ ≤ τ for all γ ∈ span([d + i]) with ∥γ∥1 = d. We start by analyzing
the Fourier coefficients of h, for which by Fact 10 we have

ĥ(γ) =
∑

β∈span(Ji)

ĝ ◦Mi(γ + β)(−1)⟨β,bi⟩. (3)

Next, we observe the following relation between the Fourier coefficients of g ◦Mi and
those of g, which we use to simplify Equation (3). Denoting v :=

∑
j∈Ji

ej , we claim that,
for any γ,

ĝ ◦Mi(γ) = ĝ(γ + ed+i⟨γ, v⟩). (4)

Before proving Equation (4), we use it to prove that h has the desired properties. Note
that since g is degree d, Equation (4) implies that if ĝ ◦Mi(γ) ̸= 0, then ∥γ +ed+i⟨γ, v⟩∥1 ≤ d,
which in turn implies that ∥γ∥1 ≤ d + 1. This immediately tells us that g ◦Mi has degree at
most d + 1; therefore, h also has degree at most d + 1 since the degree cannot increase under
restrictions. Now, for any γ, Equation (3) reduces to

ĥ(γ) =
∑

β∈span(Ji),
∥β∥1≤d+1−∥γ∥1

ĝ ◦Mi(γ + β)(−1)⟨β,bi⟩

= ĝ ◦Mi(γ) +
∑

β∈span(Ji),
0<∥β∥1≤d+1−∥γ∥1

ĝ ◦Mi(γ + β)(−1)⟨β,bi⟩

= ĝ(γ + ed+i⟨γ, v⟩) +
∑

β∈span(Ji),
0<∥β∥1≤d+1−∥γ∥1

ĝ(γ + β + ed+i⟨γ + β, v⟩)(−1)⟨β,bi⟩, (5)

where, in the first equality, we used the fact that if ∥β∥1 > d+1−∥γ∥1, then ∥β +γ∥1 > d+1
and the corresponding Fourier coefficient in g ◦Mi is just zero, and in the last equality, we
used Equation (4). Moreover, for any γ ∈ span(J \ Ji), we have ⟨γ, v⟩ = 0, which means
that ĝ(γ + ed+i⟨γ, v⟩) = ĝ(γ). We can now conclude that h has degree at most d. Indeed, if
∥γ∥1 ≥ d + 1, then Equation (5) implies that ĥ(γ) = ĝ(γ) = 0 since g has degree at most d.

Next, we show that for any γ ∈ span([d + i]) with ∥γ∥1 = d, it must be that |ĥ(γ)| ≤ τ .
Applying Equation (5) for such γ, we note that

ĥ(γ) = ĝ(γ) +
∑
j∈Ji

ĝ(γ + ej + ed+i⟨γ + ej , v⟩)(−1)⟨ej ,bi⟩

= ĝ(γ) +
∑
j∈Ji

ĝ(γ + ej + ed+i)zj .

We now consider two cases. First, when γd+i = 0, the above equation implies that ĥ(γ) = ĝ(γ)
since ∥γ + ed+i + ej∥1 = d + 2 for every j ∈ Ji, and g has degree at most d. Therefore, in

S. Iyer and M. Whitmeyer 83:13

this case,
∣∣∣ĥ(γ)

∣∣∣ = |ĝ(γ)| ≤ τ by the inductive hypothesis. Otherwise, γd+i = 1, and now
using both Equation (2) and the fact that γ + ed+i ∈ span({e1, . . . , ed+i−1}), we conclude
that

∣∣∣ĥ(γ)
∣∣∣ =

∣∣∣∑j∈S ĝ((γ + ed+i) + ej)zj

∣∣∣ ≤ τ .
It remains to show Equation (4). We start by observing that Mi = M−1

i , which can
be verified by noting that M−1

i ed+i = M−1
i (ed+i + v + v) = ed+i + v and M−1

i acts as
the identity map on the remaining standard basis vectors. From Fact 18, we know that
ĝ ◦Mi(γ) = ̂g ◦M−1

i (γ) = ĝ(MT
i γ). Since the rows of MT

i are the same as the columns of
Mi, we have

(MT
i γ)j =

{
⟨v + ed+i, γ⟩ if j = d + i,

γj otherwise.

Therefore, we can write MT
i γ =

∑
j ̸=d+i γjej + ed+i⟨v + ed+i, γ⟩ = γ + ed+i⟨v, γ⟩, as claimed.

We conclude the argument by calculating how many times we can repeat the above
procedure. Note that, in the i-th iteration, we fixed at most

(
d+i−1

d−1
)

log 5/τ − 1 coordinates
and we added exactly one coordinate to K. We can thus continue this process until iteration
t for the largest value of t such that

log(5/τ) ·
(

t∑
i=1

(
d + i− 1

d− 1

))
≤ n− d + 1.

Simplifying the binomial sum, we get

t∑
i=1

(
d + i− 1

d− 1

)
=

t∑
i=1

(
d + i− 1

i

)
=

t∑
i=1

(
d + i− 1

i

)
+
(

d

0

)
− 1

=
(

d + t

t

)
− 1 <

(
e(d + t)

d

)d

,

where the last equality follows by repeatedly using the identity
(

a
i

)
+
(

a
i−1
)

=
(

a+1
i

)
. Thus,

we can set t = d
e

(
n−d+1
log 5/τ

)1/d

− d. Adding in the initial d− 1 coordinates, at the end of the t

iterations, we can bound |K| as,

|K| = d

e

(
n− d + 1
log 5/τ

)1/d

− d + d− 1

≥ d

e

(
n

log 5/τ

(
1− d− 1

n

))1/d

− 1

≥ d

e

(
n

log 5/τ
· 1

d

)1/d

− 1

≥ d

2e

(
n

log 5/τ

)1/d

− 1 (d1/d ≤ 2 ∀d ≥ 1)

= d

4e

(
n

log 5/τ

)1/d

+ d

4e

(
n

log 5/τ

)1/d

− 1

≥ d

4e

(
n

log 5/τ

)1/d

+ d− 1 (since τ ≥ 5 · 2−n/(4e)d)

≥ d

4e

(
n

log 5/τ

)1/d

. (d ≥ 1)

ICALP 2023

83:14 Searching for Regularity in Bounded Functions

At the end of t iterations, we can fix any coordinates outside the set K arbitrarily to
ensure that the only non-zero Fourier coefficients with L1 norm d in the resulting function
must correspond to vectors in span(K), which do not change under the restriction. ◀

4 Applications

We now present an application of Theorem 1 that shows a tradeoff between the dimension
of a disperser and its Fourier degree, and a connection to extractors, as well. First, we
introduce a definition that generalizes Boolean functions and helps us reason about the
Fourier spectrum of dispersers.

▶ Definition 21. We say a function f : Fn
2 → R is G-granular if for every x ∈ Fn

2 , we have
that f(x) is an integer multiple of G.

▷ Claim 22. If a degree d function f : Fn
2 → R is G-granular, then for every γ ∈ Fn

2 , we
have that f̂(γ) is an integer multiple of 2−d ·G.

We defer the proof of Claim 22 to the full version. Assuming the claim, we now show
that low degree granular functions cannot have a large parity kill number. As a consequence,
we get that low-degree affine dispersers cannot have small dimension (Corollary 2).

▶ Lemma 23. Every degree d function f : Fn
2 → [−1, 1] that is G-granular satisfies

C⊕
min[f] ≤ n− Ω

(
n1/d!(d + log n/G)−2

)
.

Proof. If f is G-granular and degree d, then from Claim 22 we know that all its Fourier
coefficients must be integer multiples of 2−d ·G. Moreover, a Fourier coefficient of f in any
affine subspace is simply a signed sum of the Fourier coefficients of f and therefore it must
also be an integer multiple of 2−d ·G. This shows that if f is δ-regular in some affine subspace
U with δ < 2−d ·G, then fU must be constant. The lemma follows by using Theorem 1 for
δ = 2−d−1 ·G. ◀

Proof of Corollary 2. Using f , we can construct a degree d function h : Fn
2 → [−1, 1] as

h(x) = 1− 2f(x)
C . Noting that h is 2/C-granular and using the above lemma, it follows that

C⊕
min[f] = C⊕

min[h] ≤ n− Ω
(

n1/d!(d + log(nC))−2
)

,

which shows that there is some affine subspace of dimension at least Ω
(
n1/d!(2d + log(nC))−2)

where f is constant. ◀

▶ Remark 24. Affine dispersers can be viewed as a relaxation of affine extractors, objects
that have been well studied in the pseudorandomness literature. In a similar vein, we observe
a connection between the notion of δ-regularity and affine extractors. In particular, we note
that affine extractors can be viewed as functions that are δ-regular in all affine subspaces of
sufficiently large dimension. We detail this connection in the full version of this work.

5 Lower Bounds on r(f, δ)

In this section, we prove lower bounds on r(f, δ). With the exception of Lemma 26, we defer
the proofs of all the statements to the appendices. We start with lower bounds for functions
f that are bounded in the interval [−1, 1]; in the subsequent section, we give lower bounds for
Boolean functions. For detailed sketches of all the results in this section, see Appendix A.2.

S. Iyer and M. Whitmeyer 83:15

5.1 Bounded Functions
We begin with a simple bound on the number of standard basis vectors in low-dimensional
affine subspaces, which is crucial in the analysis of the lower bounds.

▶ Observation 25. For a subspace V ⊆ Fn
2 of co-dimension C, andW such thatW⊕V⊥ = Fn

2 ,
there exists a set S ⊆ W of size at least n− C such that for every u ∈ S,

|
(
u + V⊥)=1 | ≥ 1.

Moreover, there exists a subset S1 ⊆ S of size at least n − 2C whose corresponding shifts
contain exactly one standard basis vector.

The proof of Observation 25 can be found in Appendix C. Using this observation, we
provide an example of a degree one function f that witnesses large values for r(f, δ).

▶ Lemma 26. There is a degree one function f : Fn
2 → [−1, 1] for which r(f, δ) ≥ n/2, for

all δ < 1/n.

Proof. The counterexample is given by the function f(x) = 1
n ·
∑

i(−1)ei·x. Let V be a
subspace of Fn

2 of co-dimension C, and suppose we restrict the function to the affine subspace
U = α + V. By Observation 25, if C ≤ n/2− 1, there exists at least two vectors γ, γ′ ∈ W
(where W is such that W ⊕V⊥ = Fn

2) such that |(γ + V⊥)=1| = |(γ′ + V⊥)=1| = 1. Assume
without loss of generality that γ ̸= 0. Then, by Proposition 13, we have that

|f̂U (γ)| =
∣∣∣ ∑
η∈u+V⊥

f̂(η)(−1)⟨η,α⟩
∣∣∣ = 1

n
> δ,

which follows by observing that exactly one of the summands in the last sum corresponds to
a weight one vector and is non-zero. Therefore, r(f, δ) ≥ n/2. ◀

We next show that Lemma 26 can be generalized to degree d bounded functions.

▶ Lemma 27. For d > 2 and δ <
(

n
d

)−1, there exists a degree d function f : Fn
2 → [−1, 1]

for which r(f, δ) ≥ n− 2dn1/(d−1).

The proof of Lemma 27 can also be found in Appendix C. We note that unlike the
degree one case, the functions achieving the lower bound in the above lemma are not explicit.
Additionally, when d = 2, we see that Lemma 27 is trivial; it would be interesting to obtain
a tighter result in this case.

5.2 Boolean Functions
This section has two parts. The first gives non-explicit lower bounds on r(f, δ) for Boolean
functions, and the second gives explicit lower bounds.

5.2.1 Non-explicit Lower Bounds on r(f, δ)

We can turn our lower bounds on r(f, δ) for bounded functions into (non-explicit) lower
bounds for Boolean functions. To do so, we use the following simple but powerful lemma of
[12], which states that given a bounded function with a large r(f, δ), there must exist some
Boolean function g with similarly a large r(g, 2δ).

ICALP 2023

83:16 Searching for Regularity in Bounded Functions

▶ Proposition 28 ([12], Claim 1.2). Let τ > 0 and f : Fn
2 → [−1, 1]. There exists a Boolean

function g : Fn
2 → {±1} satisfying, for every affine subspace U such that |U| ≥ 4n2

τ2 and any
γ ∈ Fn

2 , that
∣∣∣f̂U (γ)− ĝU (γ)

∣∣∣ ≤ τ.

Using Proposition 28, we have the following lemma.

▶ Lemma 29. For all d ≥ 3 and δ < 1
2 ·
(

n
d

)−1, there exists a Boolean function f with

r(f, δ) ≥ n−max
{

2d · n1/(d−1), log
(
16n2/δ2)} .

Proof. By Lemma 27, there exists a bounded f that is not δ-regular in any affine subspace
of dimension at least 2dn1/(d−1) for all δ <

(
n
d

)−1. Proposition 28 tells us that there exists
a Boolean function g whose Fourier coefficients agree up to an additive error δ/2 with the
Fourier coefficients of f on all affine subspaces of dimension at least log

(
16n2/δ2). Therefore,

if f is not δ-regular on all of these affine subspaces, then g is also not δ/2-regular on any of
these subspaces. ◀

We can plug some parameters into Lemma 29 and achieve the following more parsable
corollary.

▶ Corollary 30. For every 3 ≤ d ≤ log n
log log n+1 and δ = 1

2 ·n
−d, there exists a Boolean function

f with r(f, δ) ≥ n− 2d · n1/(d−1).

We include the proofs of Proposition 28 and Corollary 30 in Appendix C.

5.2.2 Explicit Lower Bounds on r(f, δ)
We now turn to lower bounds on r(f, δ) given by explicit Boolean functions. Our first example
comes from analyzing certain Boolean functions studied by [18] that provide lower bounds
for r(f, 0).

▶ Lemma 31 (Related to Corollary 1.1 in [18]). For each δ > 0, there exists an explicit
Boolean function f : Fn

2 → {0, 1} with r(f, δ) = Ω
(
(log 1

δ)log2(3)).
Our second example is the majority function; we show that the majority function, denoted

by MAJn, has a large r(f, δ) value when δ = O(1/
√

n). This in particular rules out the
possibility of proving a bound of the form r(f, δ) ≤ poly(log(1/δ)) for Boolean f .

▶ Lemma 32. There is an absolute constant C > 0, such that for all sufficiently large n,
r(MAJn, δ) ≥ Ω(n1/2) for any δ ≤ C/

√
n.

The proofs of Lemma 31 and Lemma 32 can be found in the full version of this work.

References
1 Noga Alon, Eldar Fischer, Michael Krivelevich, and Mario Szegedy. Efficient testing of large

graphs. Combinatorica, 20, May 2001. doi:10.1007/s004930070001.
2 Shalev Ben David. Quantum speedups in query complexity. PhD thesis, Massachusetts Institute

of Technology, 2017.
3 Eli Ben-Sasson and Swastik Kopparty. Affine dispersers from subspace polynomials. SIAM J.

Comput., 41(4):880–914, 2012.
4 Harry Buhrman and Ronald de Wolf. Complexity measures and decision tree complexity:

a survey. Theoretical Computer Science, 288(1):21–43, 2002. doi:10.1016/S0304-3975(01)
00144-X.

5 Eshan Chattopadhyay, Jesse Goodman, and Jyun-Jie Liao. Affine extractors for almost
logarithmic entropy. In FOCS, pages 622–633. IEEE, 2021.

https://doi.org/10.1007/s004930070001
https://doi.org/10.1016/S0304-3975(01)00144-X
https://doi.org/10.1016/S0304-3975(01)00144-X

S. Iyer and M. Whitmeyer 83:17

6 Gil Cohen and Avishay Tal. Two structural results for low degree polynomials and applications.
In APPROX-RANDOM, volume 40 of LIPIcs, pages 680–709. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2015.

7 Alan M. Frieze and Ravi Kannan. The regularity lemma and approximation schemes for dense
problems. In FOCS, pages 12–20. IEEE Computer Society, 1996.

8 Uma Girish, Justin Holmgren, Kunal Mittal, Ran Raz, and Wei Zhan. Parallel repetition
for the GHZ game: A simpler proof. In APPROX-RANDOM, volume 207 of LIPIcs, pages
62:1–62:19. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

9 Ben Green. A szemerédi-type regularity lemma in abelian groups. Geometric and Functional
Analysis, 15:340–376, January 2005. doi:10.1007/s00039-005-0509-8.

10 A. W. Hales and R. I. Jewett. Regularity and positional games. Transactions of the American
Mathematical Society, 106(2):222–229, 1963.

11 Wassily Hoeffding. Probability inequalities for sums of bounded random variables. Journal
of the American Statistical Association, 58(301):13–30, 1963. URL: http://www.jstor.org/
stable/2282952.

12 Kaave Hosseini, Shachar Lovett, Guy Moshkovitz, and Asaf Shapira. An improved lower
bound for arithmetic regularity. Mathematical Proceedings of the Cambridge Philosophical
Society, 161(2):193–197, 2016. doi:10.1017/S030500411600013X.

13 Zander Kelley and Raghu Meka. Strong bounds for 3-progressions, 2023. arXiv:2302.05537.
14 Xin Li. Improved two-source extractors, and affine extractors for polylogarithmic entropy. In

FOCS, pages 168–177. IEEE Computer Society, 2016.
15 Roy Meshulam. On subsets of finite abelian groups with no 3-term arithmetic progressions. J.

Comb. Theory Ser. A, 71(1):168–172, July 1995. doi:10.1016/0097-3165(95)90024-1.
16 Gatis Midrijanis. Exact quantum query complexity for total boolean functions, 2004. doi:

10.48550/arXiv.quant-ph/0403168.
17 Ryan O’Donnell. Analysis of boolean functions. CoRR, abs/2105.10386, 2021. arXiv:

2105.10386.
18 Ryan O’Donnell, John Wright, Yu Zhao, Xiaorui Sun, and Li-Yang Tan. A composition

theorem for parity kill number. In Computational Complexity Conference, pages 144–154.
IEEE Computer Society, 2014.

19 K. F. Roth. On certain sets of integers. Journal of the London Mathematical Society, s1-
28(1):104–109, 1953. doi:10.1112/jlms/s1-28.1.104.

20 I. Ruzsa and E. Szemerédi. Triple systems with no six points carrying three triangles.
Combinatorica, 18, January 1976.

21 Ronen Shaltiel. Dispersers for affine sources with sub-polynomial entropy. In 2011 IEEE
52nd Annual Symposium on Foundations of Computer Science, pages 247–256, 2011. doi:
10.1109/FOCS.2011.37.

22 Asaf Shapira. Graph Property Testing and Related Problems. University of Tel-Aviv, 2006.
23 Endre Szemerédi. Regular partitions of graphs. Technical report, Stanford Univ Calif Dept of

Computer Science, 1975.
24 Avishay Tal. Properties and applications of boolean function composition. In ITCS, pages

441–454. ACM, 2013.

A Section 1 Omissions

A.1 Omitted Proofs
In this section we provide the proofs of Proposition 4 and Proposition 5. We first begin with
a corollary of Proposition 13 which will be useful in the analysis of the claims.

▶ Corollary 33. If V has dimension n − 1 and V⊥ = span({γ}), we have that f̂α+V(0) =
f̂(0)± f̂(γ). Moreover, there exists a choice of α such that |f̂α+V(0)| = |f̂(0)|+ |f̂(γ)|.

ICALP 2023

https://doi.org/10.1007/s00039-005-0509-8
http://www.jstor.org/stable/2282952
http://www.jstor.org/stable/2282952
https://doi.org/10.1017/S030500411600013X
https://arxiv.org/abs/2302.05537
https://doi.org/10.1016/0097-3165(95)90024-1
https://doi.org/10.48550/arXiv.quant-ph/0403168
https://doi.org/10.48550/arXiv.quant-ph/0403168
https://arxiv.org/abs/2105.10386
https://arxiv.org/abs/2105.10386
https://doi.org/10.1112/jlms/s1-28.1.104
https://doi.org/10.1109/FOCS.2011.37
https://doi.org/10.1109/FOCS.2011.37

83:18 Searching for Regularity in Bounded Functions

Proof. By Proposition 13, we have

f̂α+V(0) = (−1)⟨0,α⟩f̂(0) + (−1)⟨γ,α⟩f̂(γ) = f̂(0) + (−1)⟨γ,α⟩f̂(γ).

This immediately implies both parts of the corollary. ◀

Proof of Proposition 4. Given some f : Fn
2 → [−1, 1], consider the following simple proced-

ure:
While at least δ fraction of π ∈ Π have some γπ such that |f̂π(γπ)| > δ, further partition
each π into π ∩ {x : ⟨γπ, x⟩ = 0} and π ∩ {x : ⟨γπ, x⟩ = 1}.

We would like to show that we cannot perform the above partitioning action more that 1
δ3 times.

Towards this end, define the potential function Φ(Π) := Eπ∈Πf̂π(0)2 = Eπ∈Π[(Efπ)2] ∈
[0, 1]. Whenever we partition further, by Corollary 33 each |f̂π(0)| is updated to either
|f̂π(0) + f̂π(γπ)| or |f̂π(0)− f̂π(γπ)|. Therefore, the contribution of π to Φ in one step of the
partitioning process is

1
2

(
(f̂π(0) + f̂π(γπ))2 + (f̂π(0)− f̂π(γπ))2

)
− f̂π(0)2 = f̂π(γπ)2.

Since we assume at least δ fraction of π ∈ Π had some γπ such that |f̂π(γπ)| > δ, at each
step of the refinement Φ must increase by at least δ3, completing the proof. ◀

Proof of Proposition 5. Suppose without loss of generality, Ef ≥ 0. Start with the trivial
subspace, π0 = Fn

2 . While there exists γ such that |f̂πt
(γ)| > δ, by Corollary 33 we can fix the

parity corresponding to γ in such a way that ensures that |f̂πt+1(0)| =
∣∣∣f̂πt

(0) + |f̂πt
(γ)|

∣∣∣ >

f̂πt
(γ) + δ. Since f̂π(0) ≤ 1 for all π, this process can happen at most 1

δ times. ◀

A.2 Omitted Sketches
We give the main ideas behind the lower bounds in Table 1.

Sketch of Lemma 26. The proof of this claim is based on the homogeneous degree-one
function f(x) = 1

n

∑
i(−1)xi . Its key idea comes from Observation 25, which we use to

show that if the dimension of codim(V) < n/2, then at least one shift of V⊥ must contain
exactly one standard basis vector. By the preceding discussion, this implies that fα+V has a
non-trivial Fourier coefficient with magnitude exactly 1/n > δ.

We remark that Lemma 26 is tight. The function f is symmetric, and for any such
function, we can fix n/2 parities to obtain an affine subspace where every vector has weight
n/2, which in turn fixes the function.

Sketch of Lemma 27 and Corollary 30. To achieve Lemma 27, one might expect to extend
the above argument to the homogeneous degree d function f(x) =

(
n
d

)−1∑
γ:∥γ∥1=d(−1)⟨γ,x⟩.

Unfortunately, this function is symmetric, and we have r(f, 0) ≤ n/2. We therefore consider
a random homogeneous degree d function fz(x) =

(
n
d

)−1∑
γ:∥γ∥1=d zγ · (−1)⟨γ,x⟩, where each

zγ is a random sign. A simple argument, again utilizing Observation 25, shows that there
must be at least

(
k
d

)
affine subspaces of V⊥ with at least one vector of weight d. By our

earlier reasoning, each of those subspaces must in fact contain at least two vectors of weight
d so that the restricted function would have a non-trivial Fourier coefficient with magnitude(

n
d

)−1
> δ. Moreover, the probability (over the signs zγ ’s) that each of the

(
k
d

)
signed sums

cancels is at most 2−(k
d), and a union bound over all the possible affine subspaces of dimension

k = Θ(dn1/(d−1)) completes the argument.

S. Iyer and M. Whitmeyer 83:19

If we restrict our attention to Boolean functions, we might hope to obtain strong upper
bounds for r(f, δ); however, Corollary 30 rules this out. The proof of this claim is based on
a simple lemma of [12] (Proposition 28), which uses the probabilistic method to convert a
bounded function that is not δ-regular in large affine subspaces to a Boolean function with
the same property. Applying this lemma to the lower bound from Lemma 27 achieves the
result.

Sketch of Lemma 32. This lower bound is based on the majority function. Its key idea is
that there exists a non-trivial affine subspace of V⊥ containing exactly one weight-1 vector
and relatively few vectors of higher weight (see the full version of the work for details on
this). Then, we use properties of the Fourier spectrum of the majority function to show
that the signed sum of the Fourier coefficients of majority corresponding to vectors in this
affine subspace, is on the order of

∣∣∣f̂(e1)
∣∣∣ = Ω(n−1/2). Specifically, we argue that even if the

coefficients coming from higher weight vectors in the aforementioned sum combined in the
most constructive way possible, they cannot combine to more than

∣∣∣f̂(e1)
∣∣∣/2. We also note

that Lemma 32 is tight up to constant factors via Proposition 5. Conversely, Lemma 32
implies that for δ ≥ n−1/2, the majority function on O(1/δ2) variables is an explicit Boolean
function for which r(f, δ) ≥ Ω(1/δ).

Rationale for Lemma 31. The last entry in the table corresponds to Lemma 31 and is
based on a simple function f on 4 inputs that is composed with itself k times. We use key
properties of the composition of Boolean functions (from [24, 18]) to achieve the bound. The
function itself is the same one considered in [18], and we use their main theorem crucially to
obtain our lower bound. We present a slightly generalized version of the main theorem of
[18], so we include a proof this in the full version of this work.

We make some final comments about the lower bounds from Corollary 30. The Boolean
functions that achieve the lower bounds share the property that the magnitudes of their
Fourier coefficients are extremely close to their bounded counterparts in Lemma 27. However,
even though the bounded functions themselves have low degree, the Boolean functions are
very far from being low-degree functions; in fact, almost all their Fourier mass comes from
the high-degree terms. Notably, these functions are also non-explicit affine dispersers with
small dimension, and it would be interesting to find explicit Boolean functions with similar
strong lower bounds on the r(f, δ).

B Section 2 Omitted Proofs

Proof of Proposition 13. Using Fact 12, we can write

f̂U (γ) = Ex∈V [f(x + α) · (−1)⟨γ,x⟩] = Ex∈V
∑

β

f̂(β)(−1)⟨β,x+α⟩(−1)⟨γ,x⟩

=
∑

β

f̂(β)(−1)⟨β,α⟩Ex∈V [(−1)⟨β+γ,x⟩]

=
∑

β∈γ+V⊥

f̂(β)(−1)⟨β,α⟩,

where the last equality follows by observing that Ex∈V
[
(−1)⟨γ+β,x⟩] = 1 if β ∈ γ + V⊥, and

zero otherwise. ◀

ICALP 2023

83:20 Searching for Regularity in Bounded Functions

Proof of Proposition 15. We first show that W and V⊥ are independent. Suppose that
MTγ + u = 0, where γ ∈ span(J) and u ∈ V⊥. For any v ∈ V such that v ̸= 0, we have

0 = ⟨v, MTγ + u⟩ = ⟨v, MTγ⟩ = ⟨Mv, γ⟩,

which is impossible unless γ = 0 since this implies Mv ∈ span(J)⊥ = span(J) and Mv ̸= 0.
This in turn implies that u = 0 and therefore that W and V⊥ are independent. The claim
follows by noting that dim(W ⊕V⊥) = dim(W) + dim(V⊥) = k + n− k = n. ◀

Proof of Proposition 16. Repeatedly using Fact 12, we have that∣∣∣f̂U (MTγ)
∣∣∣ =

∣∣∣Ex∈U

[
f(x)(−1)⟨MTγ,x⟩

]∣∣∣ =
∣∣∣Ex∈U

[
f(x)(−1)⟨γ,Mx⟩

]∣∣∣
=
∣∣∣Ez∈U ′

[
f(M−1z)(−1)⟨γ,z⟩

]∣∣∣ = |ĝU ′(γ)| . ◀

Proof of Fact 18. We have that

ĝ(γ) = Ex[g(x)χγ(x)] = E[f(Mx)χγ(x)]
= Ey[f(y)χγ(M−1y)]

= Ey[f(y)χM−Tγ(y)] = f̂(M−Tγ),

where we have used the fact that χγ(M−1y) = (−1)⟨γ,M−1y⟩ = (−1)⟨M−Tγ,y⟩. ◀

C Proofs from Section 5

C.1 Proofs from Section 5.1
Proof of Observation 25. Let S = {u : u ∈ W and |(u+V⊥)=1| ≥ 1}. Since every standard
basis vector can be expressed as u+v for some u ∈ S and v ∈ V⊥, we have that dim(span(S∪
V⊥)) = n. However, we also know that dim(span(S ∪ V⊥)) ≤ |S|+ C, and rearranging we
get |S| ≥ n−C. Next, let S1 = {u ∈ S : |(u + V⊥)=1| = 1}. By Fact 9, for any u, u′ ∈ S, we
have u + V⊥ ̸= u′ + V⊥. Therefore,

n =
∑
u∈S

|(u + V⊥)=1| =
∑

u∈S1

|(u + V⊥)=1|+
∑

u∈S\S1

|(u + V⊥)=1| ≥ |S1|+ 2(|S| − |S1|),

and rearranging, we get |S1| ≥ 2|S| − n ≥ n− 2C. ◀

Fully Dynamic Shortest Paths and Reachability in
Sparse Digraphs
Adam Karczmarz #

University of Warsaw, Poland
IDEAS NCBR, Warsaw, Poland

Piotr Sankowski #

University of Warsaw, Poland
IDEAS NCBR, Warsaw, Poland

Abstract
We study the exact fully dynamic shortest paths problem. For real-weighted directed graphs, we
show a deterministic fully dynamic data structure with Õ(mn4/5) worst-case update time processing
arbitrary s, t-distance queries in Õ(n4/5) time. This constitutes the first non-trivial update/query
tradeoff for this problem in the regime of sparse weighted directed graphs.

Moreover, we give a Monte Carlo randomized fully dynamic reachability data structure processing
single-edge updates in Õ(n

√
m) worst-case time and queries in O(

√
m) time. For sparse digraphs,

such a tradeoff has only been previously described with amortized update time [Roditty and Zwick,
SIAM J. Comp. 2008].

2012 ACM Subject Classification Theory of computation → Dynamic graph algorithms; Theory of
computation → Shortest paths

Keywords and phrases dynamic shortest paths, dynamic reachability, dynamic transitive closure

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.84

Category Track A: Algorithms, Complexity and Games

Funding Adam Karczmarz : Partially supported by the ERC CoG grant TUgbOAT no 772346.
Piotr Sankowski: Partially supported by the ERC CoG grant TUgbOAT no 772346 and National
Science Center (NCN) grant no. 2020/37/B/ST6/04179.

1 Introduction

Computing all-pairs shortest paths (APSP) is among the most fundamental algorithmic
problems on directed graphs. This classical problem is often generalized into a data structure
“oracle” variant: given a graph G, preprocess G so that efficient point-to-point distance
or shortest paths queries are supported. Computing APSP can be viewed as an extreme
solution to the oracle variant; if one precomputes the answers to all the n2 possible queries
in Õ(nm) time, the queries can be answered in constant time. The other extreme solution is
to not preprocess G at all and run near-linear-time Dijkstra’s algorithm upon each query.
Interestingly, for general directed weighted graphs, no other tradeoffs for the exact oracle
variant of static APSP beyond these trivial ones are known.

In this paper, we consider the exact APSP problem, and its easier relative all-pairs
reachability (or, in other words, transitive closure), in the fully dynamic setting, where the
input graph G evolves by both edge insertions and deletions.

1.1 Prior work
There has been extensive previous work on APSP and transitive closure in the fully dynamic
setting. Notably, Demetrescu and Italiano [16] showed that APSP in a real-weighted
digraph can be maintained deterministically in Õ(n2) amortized time per vertex update

EA
T
C
S

© Adam Karczmarz and Piotr Sankowski;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 84; pp. 84:1–84:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:a.karczmarz@mimuw.edu.pl
https://orcid.org/0000-0002-2693-8713
mailto:sank@mimuw.edu.pl
https://orcid.org/0000-0002-0907-3754
https://doi.org/10.4230/LIPIcs.ICALP.2023.84
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

84:2 Fully Dynamic Shortest Paths and Reachability in Sparse Digraphs

(changing all edges incident to a single vertex). Thorup [36] later slightly improved and
simplified their result. These data structures maintain an explicit distance matrix and the
corresponding collection of shortest paths, and thus allow querying distances and shortest
paths in optimal time. Similar amortized bounds have been earlier obtained for transitive
closure [17, 30, 32] albeit using different combinatorial techniques. Polynomially worse (but
nevertheless subcubic) worst-case update bounds for real-weighted fully dynamic APSP are
also known: randomized Õ(n2+2/3) [2, 24] and slightly worse deterministic Õ(n2+41/61) [13].

For dense unweighted digraphs, non-trivial fully dynamic data structures for all-pairs
reachability and APSP can be obtained using algebraic techniques. Via a reduction to
dynamic matrix inverse, Sankowski [35] obtained O(n2) worst-case update bound for explicitly
maintaining the transitive closure, and also gave update/query tradeoffs. In particular, he
showed a reachability data structure with subquadratic O(n1.529) update time and sublinear
O(n0.529) query time. Using the same general algebraic framework, van den Brand, Nanongkai,
and Saranurak [40] showed O(n1.407) worst-case update bound for st-reachability (that is,
fixed single-pair reachability), whereas van den Brand, Forster, and Nazari [38] gave an
O(n1.704) worst-case update bound for maintaining exact st-distance in unweighted digraphs.1
That framework, however, inherently leads to Monte Carlo randomized solutions and does
not generally allow reporting (shortest) paths within the stated query bounds.2

Interestingly, neither the known fully dynamic APSP data structures for real-weighted
digraphs (or even for integer weights between 1 and n) nor the algebraic data structures
tailored to dense graphs yield any improvement over the extreme recompute-from-scratch
approaches for sparse graphs with m = Õ(n). This is especially unfortunate as such graphs are
ubiquitous in real-world applications. Indeed, for m = Õ(n), recomputing APSP from scratch
takes Õ(n2) worst-case update time and O(1) query time (which matches the amortized
bound in [17, 36]), whereas naively running Dijkstra’s algorithm upon query costs Õ(n) time
(which already improves upon the update bound of the algebraic st-distance data structure
of [38]). The only non-trivial fully dynamic APSP data structure in the sparse regime has
been described by Roditty and Zwick [34]. Their randomized data structure has Õ(m

√
n)

amortized update time and O(n3/4) query time. Unfortunately, it works only for unweighted
digraphs. To the best of our knowledge, no non-trivial update/query tradeoffs for fully
dynamic APSP in sparse weighted digraphs have been described to date. A step towards
this direction has been made by Karczmarz [27] who showed that some fixed – in a crucial
way – m distance pairs can be maintained in Õ(mn2/3) worst-case time per update.

For the simpler fully dynamic reachability problem, the O(n1.529) update time and
O(n0.529) query time algebraic tradeoff of [35] is already non-trivial for all graph densi-
ties. However, specifically for sparse graphs, a deterministic and combinatorial tradeoff
of Roditty and Zwick [33] is more efficient; they showed a data structure with O(m

√
n)

amortized update time and O(
√

n) query time. Moreover, the data structure of [35] requires
fast matrix multiplication algorithms [3, 21] and these are considered impractical. That
being said, the downside of [33] is that the update bound holds only in the amortized sense.

1 The single-pair data structures [40, 38] can be easily extended to support arbitrary-pair queries. Then,
the query time matches the update time.

2 As shown quite recently, reporting (shortest) paths in subquadratic time can be possible via a combination
of algebraic and combinatorial techniques [8, 28]. However, this comes with a polynomial time overhead.

A. Karczmarz and P. Sankowski 84:3

1.2 Our results

Dynamic shortest paths. Most importantly, we show the first fully dynamic APSP data
structure with non-trivial update and query bounds for sparse weighted digraphs.

▶ Theorem 1. Let G be a real-weighted directed graph. There exists a deterministic data
structure maintaining G under fully dynamic vertex updates and answering arbitrary s, t-
distance queries with Õ(mn4/5) worst-case update time and Õ(n4/5) query time and using
Õ(n2) space. The queries are supported only when G has no negative cycles. After answering a
distance query, some corresponding shortest path P = s → t can be reported in O(|P |) time.

Compared to the data structure of Roditty and Zwick [34] for the unweighted case, our
obtained update/query bounds are polynomially higher. However, our data structure has
some very significant advantages. It is deterministic, handles real-edge-weighted graphs
(possibly with negative edge weights and negative cycles), and the update time bounds holds
in the worst case, as opposed to only in the amortized sense in [34]. Moreover, if path
reporting is required, then the bounds in [34] hold only against an oblivious adversary. We
also remark that a slightly more efficient variant of Theorem 1, with Õ(mn3/4) worst-case
update time and Õ(n3/4) query time, can be obtained for the unweighted case.

The near-quadratic space requirement in Theorem 1 is clearly undesirable in the sparse
setting, but also applies to all the other known fully dynamic reachability and shortest paths
data structures. Moreover, this phenomenon is not specific to the dynamic setting. To the
best of our knowledge, even for the static transitive closure problem, it is not known whether
one can preprocess a general sparse directed graph into a data structure of size O(n2−ϵ)
supporting arbitrary reachability queries in O(n1−ϵ) time.3

Dynamic reachability. For fully dynamic all-pairs reachability in sparse digraphs, we show
that the amortized update bound of Roditty and Zwick [33] can also hold in the worst case.

▶ Theorem 2. Let G be a directed graph. Let t ∈ [1,
√

m]. There exist a Monte Carlo
randomized data structure maintaining G subject to fully dynamic single-edge updates with
Õ(mn/t) worst-case update time and supporting arbitrary-pair reachability queries in O(t)
time. The answers produced are correct with high probability4.

Note that for t =
√

m, Theorem 2 yields O(n2−ϵ) update time and O(n1−ϵ) for some
ϵ > 0 for all but dense graphs. The data structure of Roditty and Zwick [33], on the other
hand, has amortized update time at least Θ(m

√
n), which is o(n2) only if m = o(n3/2).

However, the downsides of Theorem 2 compared to [33] are: supporting more restricted single
edge (as opposed to vertex-) updates, using randomization, and not being able to report the
underlying path efficiently.

Our data structure should also be compared with the O(n1.529)/O(n0.529) worst-case
update/query bounds obtained in [35]. Theorem 2 gives polynomially better bounds for very
sparse graphs, with m = O(n1.057). Moreover, although it is also algebraic in nature, it does
not rely on fast matrix multiplication [3, 21], thus avoiding this potential practical efficiency
bottleneck.

3 Such a tradeoff is possible, for example, if the graph has a sublinear minimum path cover, see, e.g., [31].
4 That is, with probability at least 1 − 1/nc, where the constant c ≥ 1 can be set arbitrarily. We will also

use the standard abbreviation w.h.p.

ICALP 2023

84:4 Fully Dynamic Shortest Paths and Reachability in Sparse Digraphs

1.3 Technical overview
Shortest paths. In order to obtain a basic randomized variant of Theorem 1, we combine
ideas from the known data structures for fully dynamic APSP with subcubic worst-case
update bound [2, 24, 27]. These data structures all build upon hitting set arguments (dating
back to the work of Ullman and Yannakakis [37]) yielding a sublinear Õ(n/h)-sized set of
vertices of the graph that lie on the shortest paths whose number of edges (hops) is at
least h = poly n. With this in hand, the main challenge is to recompute pairwise small-hop
shortest paths, i.e., those with at most h hops, under edge deletions. As usual, edge insertions
are rather easy to handle since the potential new paths created by insertions necessarily pass
through the inserted edges’ endpoints.

For efficient recomputation of small-hop paths, our data structure once in a while chooses a
collection Π of n2 pairwise ≤ h-hop paths in G, and a set C ⊆ V of congested vertices of truly
sublinear (in n) size, so that the chosen paths are at least as short as shortest ≤ h-hop paths
in G − C (i.e., the graph G with edges incident to the vertices C removed). The congested
vertices are picked in such a way that no individual vertex v ∈ V appears on the chosen paths
too often. As a result, the number of precomputed paths destroyed by a vertex deletion that
have to be restored is bounded. This idea is due to Probst Gutenberg and Wulff-Nilsen [24].
However, as opposed to [24], we cannot afford to recompute shortest ≤ h-hop paths upon
update in a hierarchical way which is inherently quadratic in n (albeit advantageous in
the case of dense graphs). Instead, recomputation upon deletions is performed using a
Dijkstra-like procedure (as in [2]), crucially with the sparsity-aware enhancements of [27]
(such as the degree-weighted congestion scheme). These techniques, combined with the
standard random hitting set argument [37] are enough to get the stated bounds, albeit Monte
Carlo randomized.

Derandomization. Randomization above is only required for the sake of the hitting set
argument. Curiously, we do not (and do not know how to) exploit the often-used property
that a random hitting set, once sampled, is valid through multiple versions of the evolving
graph as long as the adversary is oblivious to the hitting set. Therefore, we may as well
sample the hitting set from scratch after each update. This is as opposed to [2, 27], where
avoiding that leads to polynomially better bounds. If a fresh hitting set can be used upon
each update, the standard derandomization method is to use a folklore greedy algorithm (see
Lemma 8) for constructing a minimum hitting set that is O(log n)-approximate, first used in
the context of static and dynamic APSP algorithms in [30, 42]. The greedy algorithm runs
in linear time in the input size. For constructing a hitting set of explicitly given pairwise
≤ h-hop paths, this gives an O(n2h) time bound per update. This is enough for deterministic
variants of [2] and [42]. However, the incurred cost is prohibitive in the sparse case.

Derandomization of our data structure without a polynomial slowdown turns out to be
non-trivial and requires some new tools. First, when precomputing ≤ h-hop paths Π, we
construct a hitting set H0 of those paths in Π that have Θ(h) hops. When G is subject to
deletions, H0 hits the precomputed paths in Π that are not destroyed as a result of deletions.
Hence, in order to lift H0 into a hitting set after an update, it is enough to extend it so
that it hits all the restored paths. If we wanted to run the greedy algorithm on the restored
paths, the data structure would suffer from a factor-h polynomial slowdown. This is because
the representation of the restored paths (constructed using Dijkstra’s algorithm) can be
computed more efficiently that their total hop-length and encoded using a collection of
shortest paths trees Z. The goal can be thus achieved by finding a hitting set of all Θ(h)-hop
root-leaf paths in Z. King [30] gave a variant of the aforementioned deterministic greedy

A. Karczmarz and P. Sankowski 84:5

algorithm precisely for this task. The algorithm of [30] runs in O(min(Nh, |Z|n)) time, where
N denotes the total size of trees in Z. While this is optimal when Z contains Θ(n) trees of
size Θ(n) (as required in [30]), for small enough N and large enough |Z|, this is not better
than the standard greedy algorithm which could also solve the task in O(Nh) time.

We deal with this problem by designing a novel near-optimal deterministic algorithm
computing an Õ(n/h)-sized hitting set of h-hop root-leaf path in a collection of trees that
runs in O(N log2 N) time independent of h (see Theorem 9). We believe that this algorithm
might be of independent interest. The main idea here is to simulate the greedy algorithm
only approximately, which enables taking advantage of dynamic tree data structures [4].

Reachability and sparse matrix inverse. Our improved worst-case bounds for fully dynamic
reachability in sparse digraphs are obtained via a small change in the subquadratic update-
sublinear query tradeoff of [35] based on dynamic matrix inverse. That algorithm once in a
while explicitly recomputes the inverse of a certain matrix associated with the graph using
fast rectangular matrix multiplication. That inverse encodes the transitive closure of the
graph G. We observe that for sparse graphs, it is beneficial to recompute the inverse in a
more naive way, entirely from scratch. This is because for large enough finite fields (with
more than n2 elements), it is in fact possible to compute the inverse of a sparse matrix with
m = Θ̃(n) non-zero elements in near-optimal Õ(mn) time without fast Strassen-style matrix
multiplication algorithms (see Theorem 13). This is a relatively easy consequence of the
classical work of Kaltofen and Pan [26], and has been, to the best of our knowledge, overlooked
and not explicitly stated before. Sparse matrix inversion has been recently viewed (see,
e.g., [12, 18]) mainly through the lens of black-box matrix computations, i.e., parameterized
by the cost ϕ(n) of multiplying the input matrix (or its transpose) by a vector. For sparse
matrices, we clearly have ϕ(n) = Õ(n), but the best described bound for sparse matrix
inversion in finite fields in that literature seems to be O(n2.214) [12]. However, ϕ(n) = Õ(n)
holds for sparse matrices even in a less general so-called straight-line program computation
model (also called the algebraic circuit model) which allows employing powerful tools such
as the Baur-Strassen theorem [7].

1.4 Further related work
Exact all-pairs shortest paths in unweighted graphs have been studied also in partially
dynamic settings: incremental [5] and decremental [6, 19]. Fully dynamic data structures are
also known for (1+ ϵ)-approximate distances in weighted directed graphs [9, 39]. A significant
research effort has been devoted to finding fully- and partially dynamic (approximate) all-pairs
shortest paths data structures for undirected graphs, e.g., [10, 14, 15, 20, 38].

Dynamic reachability and shortest paths problems have also been studied from the
perspective of conditional lower bounds [1, 23, 25, 34, 40].

2 Preliminaries

We work with directed graphs G = (V, E). We denote by wG(e) ∈ R the weight of an edge
uv = e ∈ E. The graph G is called unweighted if wG(e) = 1 for all e ∈ E. If the graph
whose edge we refer to is clear from the context, we may sometimes skip the subscript
and write w(e). For simplicity, we do not allow parallel directed edges between the same
endpoints of G, as those with non-minimum weights can be effectively ignored in reachability
and shortest paths problems we study. As a result, we sometimes write wG(uv) or w(uv).

ICALP 2023

84:6 Fully Dynamic Shortest Paths and Reachability in Sparse Digraphs

For u, v ∈ V , an u → v path P in G is formally a sequence of vertices v1 . . . vk ∈ V , where
k ≥ 1, u = v1, v = vk, such that vivi+1 ∈ E for all i = 1, . . . , k − 1. The hop-length |P | of P

equals k − 1. The length ℓ(P) of P is defined as
∑k−1

i=1 wG(vivi+1). P is a simple path if
|V (P)| = |E(P)| + 1. We sometimes view P as a subgraph of G with vertices {v1, . . . , vk}
and edges (hops) {v1v2, . . . , vk−1vk}.

For any k ≥ 0, δk
G(s, t) is the minimum length of an s → t path in G with at most k

hops. A shortest k-hop-bounded s → t path in G is an s → t path with length δk
G(s, t) and

at most k hops. We define the s, t-distance δG(s, t) as infk≥0 δk
G(s, t). For s, t ∈ V , we say

that t is reachable from s in G if there exists an s → t path in G, that is, δG(s, t) < ∞. If
δG(s, t) is finite, there exists a simple s → t path of length δG(s, t). Then, we call any s → t

path of length δG(s, t) a shortest s, t-path.
If G contains no negative cycles, then δG(s, t) = δn−1

G (s, t) for all s, t ∈ V . Moreover,
in such a case there exists a feasible price function p : V → R such that reduced weight
wp(e) := w(e) + p(u) − p(v) ≥ 0 for all uv = e ∈ E. For any path s → t = P ⊆ G, the
reduced length ℓp(P) (i.e., length wrt. weights wp) is non-negative and differs from the
original length ℓ(P) by the value p(s) − p(t) which does not depend on the shape of P .

For any S ⊆ V , we denote by G−S the subgraph of G on V obtained from G by removing
all edges incident to vertices S.

We sometimes talk about rooted out-trees T with all edges directed from a parent to a
child. In such a tree T with root s, a root path T [s → t] is the unique path from the root to
the vertex t of T . A subtree of T rooted in some of its vertices v is denoted by T [v].

3 Fully dynamic shortest paths data structure

This section is devoted to proving the main theorem of this paper.

▶ Theorem 1. Let G be a real-weighted directed graph. There exists a deterministic data
structure maintaining G under fully dynamic vertex updates and answering arbitrary s, t-
distance queries with Õ(mn4/5) worst-case update time and Õ(n4/5) query time and using
Õ(n2) space. The queries are supported only when G has no negative cycles. After answering a
distance query, some corresponding shortest path P = s → t can be reported in O(|P |) time.

First, let us assume that all the edge weights are non-negative. Let us also make a
simplifying assumption that any shortest k-hop-bounded s → t path in G always has a
minimum possible number of hops and is simple. If there are no negative cycles, this is easy
to guarantee by replacing each edge weight w(e) in G with a pair (w(e), 1), adding weights
coordinate-wise, and comparing them lexicographically. We discuss how to extend the data
structure to also handle negative edge weights and negative cycles later in Section 3.7.

We will first present a simple Monte Carlo randomized data structure, and show how to
make it deterministic with no asymptotic time penalty (wrt. Õ(·) notation) in Section 3.5.

Some further variants of the data structure are sketched in the Appendix. A variant
for unweighted digraphs is given in Section A.1. In the weighted case, one can also achieve
polynomially faster update at the cost of polynomially slower query and randomization. For
details, see Section A.2.

The data structure operates in phases of ∆ vertex updates. At the beginning of each
phase, we apply a rather costly preprocessing described in the next subsection.

3.1 Preprocessing at the beginning of a phase
The preprocessing follows the general approach of [24] adjusted with some ideas from [27].

A. Karczmarz and P. Sankowski 84:7

Let h ∈ [2, n], and let τ be a congestion threshold, to be set later. We compute a certain
collection of paths Π in G containing, for every pair s, t ∈ V , at most one s → t path πs,t,
satisfying |πs,t| = O(h), and a subset C ⊆ V of congested vertices.

First of all, the collection Π and the set C satisfy:

δh
G(s, t) ≤ ℓ(πs,t) ≤ δh

G−C(s, t), for all s, t ∈ V. (1)

Above, we abuse the notation a bit and set ℓ(πs,t) := ∞ if there is no path πs,t in Π.
Moreover, for any v ∈ V , let us define:

Π(v) := {πs,t ∈ Π : v ∈ V (πs,t)},

α(v) :=
∑

πs,t∈Π(v)

deg(t).

Crucially, Π additionally satisfies:

α(v) ≤ τ, for all v ∈ V. (2)

▶ Lemma 3. Let h ∈ [1, n]. For any τ ≥ 2m, in O(nmh) time one can compute the congested
set C ⊆ V and a set of paths Π satisfying conditions (1) and (2) so that |C| = O(nmh/τ).

Proof. We start with empty sets C and Π. Note that (2) is satisfied initially since all values
α(·) are zero. We will gradually add new paths to Π while maintaining (2) and ensuring
that (1) holds for more and more pairs s, t. While introducing new paths to Π, we will also
maintain the values α(v) (as defined above) for all v ∈ V .

We process source vertices s ∈ V one by one, in arbitrary order. For each such s, we first
move to C all the vertices v ∈ V \ C with α(v) > τ/2. Next, we compute, for all t ∈ V , a
shortest h-hop-bounded path πs,t = s → t in G − C (if such a path exists). For a fixed s, all
the paths πs,t can be computed in O(mh) time using a variant of Bellman-Ford algorithm.
We add the newly computed paths to Π. Afterwards, (1) clearly holds for s and all t ∈ V .
Moreover, (1) also holds for all πs′,t′ ∈ Π that have been added for a source s′ processed
earlier than s. Indeed, extending the set C only weakens the upper bound in (1). The values
α(v) can be updated easily in O(nh) time. Observe that for any v ∈ V \ C, α(v) grows
by at most

∑
t∈V deg(t) = m when processing s. As a result, after processing s, we have

α(v) ≤ τ/2 + m ≤ τ/2 + τ/2 = τ and hence (2) is satisfied. At the same time, since we use
paths from G − C, for any y ∈ C, α(y) does not increase and thus we still have α(y) ≤ τ .

Finally, note that for any πs,t added to Π, since |πs,t| ≤ h, α(v) grows by deg(t) for at
most h distinct vertices v. As a result, we have

∑
v∈V α(v) ≤

∑
t∈V deg(t)·

(∑
s∈V h

)
≤ m·nh.

But for each y ∈ C, we have α(y) > τ/2, so there is at most 2nmh/τ such vertices y. ◀

Applying Lemma 3 constitutes the only preprocessing that we apply at the beginning
of a phase in the Monte Carlo randomized variant. The computed paths Π are stored
explicitly and thus the used space might be Θ(n2h). Note that with the help of additional
O
(∑

πs,t∈Π |πs,t|
)

= O(n2h) vertex-path pointers, we can report the elements of any Π(v),

v ∈ V , in constant time per element. We will discuss how to improve the space to Õ(n2)
using a trick due to Probst Gutenberg and Wulff-Nilsen [24] in Section 3.6.

3.2 Update
When a phase proceeds, let D be the set of at most ∆ affected vertices in the current phase,
that is, D contains every v such that a vertex update around v has been issued in this phase.

ICALP 2023

84:8 Fully Dynamic Shortest Paths and Reachability in Sparse Digraphs

In the query procedure, we will separately consider paths going through C ∪ D, and those
lying entirely in G − (C ∪ D). To handle the former, upon each update we simply compute
single-source shortest-path trees from and to each s ∈ C ∪ D in the current graph G. This
takes Õ(|C ∪ D|m) worst-case time using Dijkstra’s algorithm.

As a matter of fact, we will not quite compute shortest paths in G − (C ∪ D), but instead,
we will find paths in G−D that are not longer than the distances between their corresponding
endpoints in G − (C ∪ D). This is acceptable since G − D ⊆ G.

To prepare for queries about the paths in G − (C ∪ D), we do the following. We will
separately handle short ≤ h-hop shortest paths, and long > h-hop shortest paths.

Short paths. Denote by G0 the graph at the beginning of the phase. Recall that we use G

to refer to the current graph. Clearly, we have G − D ⊆ G0. Fix some s ∈ V . First of all,
note that if for some t ∈ V , V (πs,t) ∩ D = ∅, then πs,t ⊆ G − D, so by (1):

δG−D(s, t) ≤ ℓ(πs,t) ≤ δh
G0−C(s, t) ≤ δh

G−(C∪D)(s, t).

The paths πs,t going through D are not preserved in G − (C ∪ D) and thus we cannot use
them. We replace them with other paths π′

s,t constructed using the following lemma.

▶ Lemma 4. For s ∈ V , let Qs contain all t such that V (πs,t)∩D ̸= ∅. In Õ
(∑

t∈Qs
deg(t)

)
time we can compute a representation of paths π′

s,t ⊆ G − D (where t ∈ Qs), each with
possibly Θ(n) hops, satisfying:

δG−D(s, t) ≤ ℓ(π′
s,t) ≤ δh

G−(C∪D)(s, t).

The representation is a tree Ts rooted at s such that:
(1) some edges sv ∈ E(Ts) represent paths πs,v ⊆ G − D from Π and have corresponding

weights ℓ(πs,v),
(2) all other edges of Ts come from E(G − D),
(3) for all t ∈ Qs, π′

s,t equals Ts[s → t] with possibly the first edge sw of that path uncom-
pressed into the corresponding path πs,w ∈ Π.

Proof. Let Y be an edge-induced directed graph obtained as follows. For all t ∈ Qs, and
every of at most deg(t) edges vt ∈ E(G − D), we add to Y the following:

the edge vt itself (with the same weight),
if V (πs,v) ∩ D = ∅, an edge sv of weight ℓ(πs,v) corresponding to the path πs,v ∈ Π.

The algorithm is to simply compute a shortest paths tree Ts from s in Y in
Õ(|E(Y)|) = Õ

(∑
t∈Qs

deg(t)
)

time using Dijkstra’s algorithm. Clearly, any path Ts[s → t]
corresponds to an s → t path in G − D. It is thus sufficient to prove that for all t ∈ Qs, we
have ℓ(Ts[s → t]) ≤ δh

G−(C∪D)(s, t).
If t is unreachable in G − (C ∪ D) from s using a path with at most h hops, there is

nothing to prove. Otherwise, let a simple path P be a shortest h-hop-bounded s → t path
in G − (C ∪ D). Let p be the last vertex on P such that V (πs,p) ∩ D = ∅, that is, p /∈ Qs.
Note that p exists since δh

G−C(s, v) ̸= ∞ for all v ∈ V (P) (which implies πs,v ∈ Π) and p ̸= t.
Let P ′ be the s → p subpath of P . Let e1, . . . , ek ∈ E(G − (C ∪ D)) be the edges following p
on P . Here, p is the tail of e1. By the definition of Y and p, we have ei ∈ E(Y) for all
i = 1, . . . , k since the head of each ei is in Qs. Moreover, there is an edge sp of weight ℓ(πs,p)
in Y . Now, since πs,p is a path in G − D of length at most δh

G0−C(s, p), whereas the path
P ′ ⊆ G − (C ∪ D) = G0 − (C ∪ D) has less than h hops, we obtain ℓ(πs,p) ≤ ℓ(P ′) and hence:

ℓ(Ts[s → t]) = δY (s, t) ≤ ℓ(πs,p) +
k∑

i=1

w(ei) ≤ ℓ(P ′) +
k∑

i=1

w(ei) = ℓ(P) = δh
G−(C∪D)(s, t). ◀

A. Karczmarz and P. Sankowski 84:9

We compute the paths π′
s,t from Lemma 4 for all s ∈ V , t ∈ Qs. Recall that t ∈ Qs

implies that V (πs,t) ∩ D ̸= ∅ and thus πs,t ∈ Π(d) for some d ∈ D. Therefore, the time
needed for computing the paths π′

s,t can be bounded as follows:

Õ

∑
s∈V

∑
t∈Qs

deg(t)

 = Õ

∑
d∈D

∑
πs,t∈Π(d)

deg(t)

 = Õ

(∑
d∈D

α(d)
)

= Õ(|D|τ) = Õ(∆τ).

Note that the sets Qs can also be constructed within this bound, since they can be read
from

⋃
d∈D Π(d) which also has size Õ(∆τ) and the paths from any Π(v) can be reported in

O(1) time per path.
For all s ∈ V and t /∈ Qs, let us simply set π′

s,t := πs,t and put Π′ = {π′
s,t : s, t ∈ V }.

To summarize, in Õ(∆τ) time we can find, for all s, t ∈ V , a representation of paths π′
s,t in

G − D that are at least as short as the corresponding shortest h-hop-bounded s → t paths in
G − (C ∪ D). Storing a representation of the paths Π′ \ Π requires Õ(min(∆τ, n2)) additional
space since, by the construction of Lemma 4, each of these paths can be encoded using its
last edge and a pointer to another path in Π′ with less hops.

Long paths. In order to handle long paths, we use the following standard hitting set trick
from [37].

▶ Lemma 5. Let G = (V, E) be a directed graph with no negative cycles. For any s, t ∈ V ,
fix some simple shortest s → t path ps,t in G. Let H ⊆ V be obtained by sampling, uniformly
and independently (also from the choice of paths ps,t), c · (n/h) log n elements of V , where
c ≥ 1 is a constant. Then, with high probability (controlled by the constant c), for all s, t ∈ V ,
if |ps,t| ≥ h, then V (ps,t) ∩ H ̸= ∅.

On update, we simply apply Lemma 5 to the graph G − (C ∪ D) and an arbitrary choice
of pairwise shortest paths therein. This way, with high probability, we obtain an Õ(n/h)-
sized hitting set H of shortest paths in G − (C ∪ D) that have at least h hops. Finally,
we simply compute shortest paths trees from and to the vertices H in G − (C ∪ D) in
Õ(|H|m) = Õ(mn/h) worst-case time using Dijkstra’s algorithm.

3.3 Query

To answer a query about s, t distance in the current graph, we simply return:

min
(

min
v∈C∪D

{δG(s, v) + δG(v, t)} , min
v∈H

{
δG−(C∪D)(s, v) + δG−(C∪D)(v, t)

}
, ℓ(π′

s,t)
)

. (3)

The first term above is responsible for considering all s, t paths in G going through C ∪ D.
If all shortest s, t paths in G do not pass through C ∪ D, then the second term captures
(with high probability) one of such paths provided that it has at least h hops. Finally, if
every shortest s, t path in G does not go through C ∪ D and has less than h hops, then
δG(s, t) = δG−D(s, t) = δh

G−(C∪D)(s, t). Moreover, by Lemma 4, π′
s,t belongs to G − D ⊆ G

and δG(s, t) = δG−D(s, t) ≤ ℓ(π′
s,t) ≤ δh

G−(C∪D)(s, t) = δG(s, t), so indeed δG(s, t) = ℓ(π′
s,t).

Finally, note that finding the minimizer in (3) allows for reconstruction of some shortest
s, t path P in G in O(|P |) time using the stored data structures.

ICALP 2023

84:10 Fully Dynamic Shortest Paths and Reachability in Sparse Digraphs

3.4 Time analysis
The total time spent handling a single update is:

Õ ((|D| + |C| + |H|)m + ∆τ) = Õ(m∆ + nm2h/τ + mn/h + ∆τ).

There is also an O(mnh) preprocessing cost spent every ∆ updates which yields an amortized
cost of Õ(mnh/∆) per update. Since τ ≥ 2m, the term m∆ is negligible above.

Balancing the terms mnh/∆ and mn/h yields ∆ = h2. Next, balancing with ∆τ yields
τ = mn/h3 under the assumption h = O(n1/3). Finally, balancing mn/h and nm2h/τ = mh4

yields h = n1/5, ∆ = n2/5, and τ = mn2/5. For such a choice of parameters, the amortized
update time is Õ(mn4/5). Since the only source of amortization here is a costly preprocessing
step happening in a coordinated way every ∆ updates, the bounds can be made worst-case
using a standard technique, see, e.g., [2, 40].

The query time is O(|C| + |D| + |H| + 1). For the obtained parameters, the bound
becomes Õ(∆ + nmh/τ + n/h) = Õ(h4 + n/h) = Õ(n4/5).

▶ Remark 6. In the above analysis, we have silently assumed that the “current” number
of edges m does not decrease significantly (say, by more than a constant factor) during a
phase due to vertex deletions, so that m = Ω(m0) holds at all times, where m0 = |E(G0)|.
Since the preprocessing of Lemma 3 is applied to G0, for the chosen parameters h, ∆, and
τ = m0n2/5, the update bound should more precisely be bounded by Õ(max(m, m0) · n4/5).
In general, it might happen that m becomes polynomially smaller that m0 while the phase
proceeds, e.g., if m0 = O(n∆). This could make the update bound higher than Õ(mn4/5).

There is a simple fix to this shortcoming, described in [27]: when a phase starts, it is
enough to put aside a set B ⊆ V of ∆ vertices with largest degrees in G0 and preprocess
the graph G0 − B instead. The edges incident to vertices B can be viewed as added during
the first ∆ “auxiliary” updates in the phase, and effectively included in the affected set D

from the beginning of the phase. One can easily prove that this guarantees that m = Ω(m0)
throughout the phase, where m0 is now defined as |E(G0 − B)|.

3.5 Derandomization
The only source of randomization so far was sampling a subset of vertices that hits shortest
paths in G − (C ∪ D) with at least h hops. To derandomize the data structure, we will
construct a hitting set H of size Õ(n/h) such that H hits all the paths in Π′ = {π′

s,t : s, t ∈ V }
(constructed during update) with at least h distinct vertices. Recall that the paths Π′ have
been used to handle short paths so far. We first show that a hitting set H defined this way
can serve the same purpose as the randomly sampled hitting set.

▶ Lemma 7. Let H ⊆ V be such that for all s, t ∈ V satisfying |V (π′
s,t)| ≥ h, V (π′

s,t)∩H ̸= ∅
holds. Let a, b ∈ V be such that every shortest a → b path in G has more than h hops and
does not go through C ∪ D. Then there exists a shortest a → b path in G that goes through a
vertex of H.

Proof. Let Q be the shortest a → b path in G that has the minimum number of hops. By
the assumption, |Q| > h and V (Q) ∩ (C ∪ D) = ∅. Let Q = RS, where R = a → c is the
h-hop prefix of Q. We have R ⊆ G − (C ∪ D) and, since Q is a shortest path in G, R is also
shortest in G and

ℓ(R) = δG(a, c) = δh
G(a, c) = δh

G−(C∪D)(a, c).

A. Karczmarz and P. Sankowski 84:11

Since δh
G−(C∪D)(a, c) is finite, the path π′

a,c ⊆ G − D ⊆ G satisfies

δG(a, c) ≤ δG−D(a, c) ≤ ℓ(π′
a,c) ≤ δh

G−(C∪D)(a, c) = δG(a, c).

We conclude that the path Q′ = π′
a,c · S satisfies ℓ(Q′) = ℓ(Q) and thus Q′ is also a shortest

a → b path in G. Since G has no negative cycles, one can obtain a simple a → c path
π′′

a,c from π′
a,c by eliminating zero-weight cycles, so that ℓ(π′′

a,c) = ℓ(π′
a,c) = δG(a, c) and

V (π′′
a,c) ⊆ V (π′

a,c). By the definition of Q, |V (π′
a,c)| ≥ |π′′

a,c| ≥ |R| ≥ h, since otherwise Q

would not have a minimum number of hops. By the assumption we have V (π′
a,c) ∩ H ̸= ∅,

so Q′ is a shortest a → b path in G going through a vertex of H. ◀

Additional preprocessing. When a phase starts, we additionally do the following. Let Π0
be a set of paths obtained as follows. For all πs,t ∈ Π, if |πs,t| ≥ h/2, we add πs,t to Π0.

Let us now recall a folklore greedy algorithm (used, e.g., in [42]) for computing a hitting
set of a collection of sufficiently large sets over a common ground set, summarized by the
following lemma.

▶ Lemma 8. Let X be a ground set of size n and let Y be a family of subsets of X, each
with at least k elements. Then, in O

(∑
Y ∈Y |Y |

)
time one can deterministically compute a

hitting set H ⊆ X of size O(n/k · log n) such that H ∩ Y ̸= ∅ for all Y ∈ Y.

We skip the proof of Lemma 8 since we later prove a more general result in Theorem 9. Using
Lemma 8 we can compute a hitting set H0 ⊆ V of Π0 in O(n2h) time. H0 has size Õ(n/h).

Computing a hitting set upon update. To compute a hitting set H ⊆ V \ D as required
by Lemma 7, we perform the following additional steps upon update. Recall that the
precomputed set H0 ⊆ V hits all (simple) paths in Π ∩ Π′ with at least h/2 hops, and thus
also those that have at least h distinct vertices. We will augment H0 into H so that it also
hits all the paths in Π′ \ Π with at least h distinct vertices.

Recall from Lemma 4 that for a fixed s ∈ V , all the paths π′
s,t, where t ∈ Qs, are encoded

using a tree Ts. By construction, for each edge e of Ts, we have that the tail of e is s,
or the head of e is in Qs. Consider a subtree Ts[u] rooted at some child u of s in Ts. If
the edge su in Ts corresponds to the path πs,u with |πs,u| ≥ h/2 then H0 hits πs,u. As a
result, for all t ∈ Qs ∩ V (Ts[u]), V (πs,u) ⊆ V (π′

s,t) and hence if |V (π′
s,t)| ≥ h then H0 hits

V (π′
s,t). Otherwise either su is a single edge from G − D, or it corresponds to a path πs,u

with |πs,u| < h/2. In either of these cases, if some t is at depth less than h/2 − 1 in Ts[u],
then |V (π′

s,t)| < h/2 + 1 + (h/2 − 1) = h, so the path π′
s,t does not need to be hit by H.

Consequently, observe that it is enough for H to hit all the (h/2 − 1)-hop root paths in Ts[u]
in order to have V (π′

s,t) ∩ H ̸= ∅ for each t ∈ Ts[u] with |V (π′
s,t)| ≥ h.

Let Z be the collection of all the subtrees Ts[u], where s ∈ V and su ∈ E(Ts). It is now
enough to compute an Õ(n/h)-sized hitting set H1 of each of the (h/2 − 1)-hop root paths
in all trees in Z. Then, H0 ∪ H1 will form a desired hitting set H of all the paths in Π′

with at least h distinct vertices. To this end, we could use a well-known variant of Lemma 8
due to King [30, Lemma 5.2]. However, the running time of that algorithm cannot be easily
bounded with the total size N of Z (i.e., N =

∑
T ∈Z |T |) exclusively; its running time is

O
(
N +

∑
T ∈Z min(n log n, |T |k)

)
= O(min(Nk, |Z|n log n)) if one desires to hit k-hop root

paths. Though, for some important cases, e.g., when Z contains n trees with Θ(n) vertices
each, the running time is near-linear in N for any k. Unfortunately, this might not be the
case in our scenario. Instead, we present a more sophisticated near-linear (independent of k)
time algorithm for this task.

ICALP 2023

84:12 Fully Dynamic Shortest Paths and Reachability in Sparse Digraphs

▶ Theorem 9. Let V be a vertex set of size n and let Z be a family of trees on V . Let
N =

∑
T ∈Z |T |. For any k ∈ [1, n], in O(N log2 n) time one can deterministically compute

an O(n/k · log n)-sized hitting set H ⊆ V of all the k-hop root paths in all the trees in Z.

Proof. We first iteratively prune the trees in Z of all the leaves at depths not equal to k:
this does not alter the set of subpaths required to be hit. Afterwards, the task is to hit all
the root-leaf paths in the collection Z, each of exactly k hops.

Similarly as in [30], we would like to simulate the greedy algorithm behind Lemma 8,
that is, repeatedly pick a vertex v ∈ V hitting the largest number of paths not yet hit, and
add it to the constructed set H. However, we cannot afford to follow this approach directly.
Instead, when L ≥ 1 paths are remaining to be hit, and there is n′ ≥ k + 1 vertices V \ H

that have not yet been chosen, we pick a vertex hitting at least L(k+1)
2n′ remaining paths. Note

that there always exists a vertex hitting at least L(k+1)
n′ remaining paths, since otherwise

some of the remaining paths would contain a vertex from outside V \ H, a contradiction.
A single step in our approach reduces L to at most

(
1 − k+1

2n′

)
L, so ⌈2n′/(k + 1)⌉ = O(n/k)

steps reduce L to at most L/e. Hence, since L is an integer, after O
(

n
k ln L

)
= O

(
n
k ln N

)
steps L will drop to 0, i.e., all required paths will be hit.

Our strategy can be also rephrased as follows: maintain 2-approximate counters
{cv : v ∈ V } such that the vertex v hits between cv and 2cv of the remaining paths, and
repeatedly pick a vertex z with the maximum value of cz. By the above discussion, the
picked z will always satisfy cz ≥ L(k + 1)/2n′, as desired. To implement this strategy, we
proceed as follows.

For each T ∈ Z, and v ∈ V (T), let dv,T be the exact number of previously not hit root-leaf
paths in T that v hits. Note that through the entire collection, v hits Dv :=

∑
T ∈Z dv,T

paths not yet hit. Observe that when a root-leaf path to the leaf l in T is hit for the first
time, the value dv,T of all the ancestors v of l gets decreased by one. In fact, the algorithm
of [30] can be seen to maintain such values dv,T and Dv explicitly. However, this is too costly
for us; we will instead maintain the exact values dv,T only implicitly, in a data structure.

For each T ∈ Z, we keep V (T) (explicitly) partitioned into subsets VT,0, . . . , VT,ℓ, where
ℓ = O(log |V (T)|), so that v ∈ VT,i iff dv,T ∈ [2i, 2i+1). Throughout the process, the values
dv,T will only decrease, so a vertex v ∈ V (T) can only move O(log n) times to a subset VT,j

with a lower value j. Let us first argue that maintaining such partitions yields the desired
2-approximate counters rather straightforwardly.

For v ∈ V , let us define cv =
∑

T,j:v∈VT,j
2j . Then, we have:

Dv =
∑
T ∈Z

dv,T ≥
∑

T,j:v∈VT,j

2j = cv =
∑

T,j:v∈VT,j

2j = 1
2

∑
T,j:v∈VT,j

2j+1 >
1
2
∑
T ∈Z

dv,T = 1
2Dv.

As a result, the counters cv indeed 2-approximate the values Dv and can be maintained subject
to changes in the partitions VT,i, for all T, i, in O

(∑
T ∈Z |T | log n

)
= O(N log n) time.

Fix some T ∈ Z. To maintain the partition VT,0, . . . , VT,ℓ, we maintain the values dv,T

using ℓ data structures ST,0, . . . , ST,ℓ. The data structure ST,i associates (implicitly) the
following vertex weights to the individual vertices v of T . If dv,T ≥ 2i, then v has weight dv,T

in ST,i. Otherwise, if dv,T < 2i, then v has weight ∞ in ST,i. In particular, ST,0 associates
the exact values dv,T to the vertices of T .

Fix some i = 0, . . . , ℓ. ST,i is implemented using, e.g., a top-tree [4, Theorem 2.4] that
allows performing the following operations, both in O(log n) time5:

5 As a matter of fact, in [4] this is shown for edge weights. However, vertex weights can be simulated
easily using edge weights by assigning each vertex its parent edge, and explicitly maintaining the weight
of the root.

A. Karczmarz and P. Sankowski 84:13

(1) adding the same δ ∈ R to the weights of vertices on some specified path in the tree, and
(2) querying for a vertex of the tree with minimum weight.
Clearly, ST,i can be initialized at the beginning of the process in O(|T | log n) time. When a
new vertex z is added to H, and z ∈ V (T), we iterate through all the (previously unvisited)
descendants of z to identify the (original) leaves y at depth k such that the root-to-y path
in T has not been previously hit. For each such y, we decrease the weights of all the ancestors
of y in T (all lying on a single path in T) by 1. This requires a single top-tree operation
on ST,i. Afterwards, for all w ∈ V (T) whose value dw,T was at least 2i before adding z to H ,
ST,i contains (in an implicit way) the correctly updated exact value dw,T . Some of these
values in ST,i might drop below 2i, though. To deal with this, we repeatedly attempt to
extract the minimum-valued vertex x ∈ V (T) from ST,i. If the value of x is less than 2i, we
reset the value of x in ST,i to ∞. Otherwise, we stop; at this point all the values in ST,i are
at least 2i; the invariant posed on ST,i is fixed.

The above update procedure is performed for each i. Observe that v ∈ VT,i iff i is the
maximum index such that v has assigned a finite value in ST,i. Since for all i we can explicitly
track which vertices in ST,i are assigned ∞ while performing updates, the time needed to
maintain the partition VT,0, . . . , VT,ℓ can be charged to the cost of maintaining the data
structures ST,0, . . . , ST,ℓ.

Let us now analyze the time cost of this algorithm. For each T ∈ Z, we iterate through
every vertex of T at most O(1) times. For i = 0, . . . , ℓ, at most O(|V (T)| + |H ∩ V (T)|) =
O(|V (T)|) top-tree operations are performed on ST,i. Hence, the cost of maintaining all ST,i

for all i = 0, . . . , O(log n) is O(|T | log2 n). Through all T ∈ Z, this is O(N log2 n).
To implement finding a next vertex z ∈ H with the largest cz, one may simply store the

counters cz in a priority queue. Since the counters are updated O(N log n) times in total,
the priority queue operations cost is O(N log2 n) as well. ◀

Observe that through all s, the total number of edges in trees added to Z can be
bounded by the number of edges in the (compressed) trees Ts of Lemma 4, and thus also by
Õ(min(τ∆, n2)). As a result, by Theorem 9, the desired set H hitting all paths π′

s,t with
at least h distinct vertices can be computed in Õ(τ∆) time, using at most quadratic space.
This does not increase the running time of the update procedure in the asymptotic sense.

3.6 Reducing the space usage
So far, the space used by the preprocessing phase could only be bounded by O(n2h) as we
have explicitly stored the O(n2) preprocessed paths πs,t ∈ Π, each with O(h) hops.

We do not, however, need to store the paths πs,t ∈ Π explicitly. For performing updates
and answering distance queries, we only require storing the values ℓ(πs,t), |πs,t|, and being
able to efficiently access the sets Π(v), for any v ∈ V . If we want to also support path
queries, then constant-time reporting of the subsequent edges of πs,t is also needed. Probst
Gutenberg and Wulff-Nilsen [24, Section 4.2] showed an elegant way of achieving that in a
slightly relaxed way using only Õ(n2 log h) space.

▶ Lemma 10 ([24]). Let G = (V, E) be a real-weighted digraph with no negative cycles. Let
s ∈ V and let h ∈ [1, n]. Using O(mh) time and O(nh) space, one can build an Õ(n)-space
data structure representing a collection {πt : t ∈ V } of (not necessarily simple) O(h)-hop
paths from s to all other vertices in G such that for any t, ℓ(πt) ≤ δh

G(s, t).
For any v ∈ V , the data structure allows:
accessing ℓ(πv) and |πv| in O(1) time,
reporting the set Pv = {t ∈ V : v ∈ V (πt)} in Õ(|Pv|) time,
reporting the edges of πv in O(|πv|) time.

ICALP 2023

84:14 Fully Dynamic Shortest Paths and Reachability in Sparse Digraphs

Proof sketch. Suppose we compute shortest h-hop-bounded s → t paths pt from s to all
t ∈ V . This takes O(mh) time, but storing the computed paths explicitly would require
Θ(nh) space. Recall that if G has no negative cycles, then we may wlog. assume that the
paths pt are all simple. As a result, one can deterministically compute an Õ(n/h)-sized
hitting set H of the ⌈h/3⌉-hop infixes starting at the (⌈h/3⌉ + 2)-th hop of those of the
computed pt that satisfy |pt| ≥ ⌈2h/3⌉. We explicitly store the paths py for all y ∈ H which
costs only Õ(|H| · h) = Õ(n) space.

Let G′ be obtained from G be adding shortcut edges ey = sy of weight w(ey) = ℓ(py) for
all y ∈ H. Note that for all v ∈ V , δ

⌈2h/3⌉
G′ (s, v) ≤ δh

G(s, v) = ℓ(pv) and every ≤ ⌈2h/3⌉-hop
path in G′ corresponds to a path in G with at most h + ⌈h/3⌉ hops.

We recursively solve the problem on the graph G′ with hop-bound h′ = ⌈2h/3⌉. Let
{π′

t : t ∈ V } be the obtained set of paths. For every t ∈ V , we define πt to be π′
t with possibly

the first shortcut edge ez expanded to the corresponding path pz. One can easily prove by
induction that |πt| = O(h) and ℓ(πt) ≤ δh

G(s, t). The recursion depth is clearly O(log h).
Finally, each of the explicitly stored Õ(n/h) paths pt at some level of the recursion can

be imagined to point to at most one path of the previous level (corresponding to a shortcut
edge) and some O(h) distinct vertices of G. By keeping only the nodes reachable from the
paths at the last level of the recursion in this pointer system, and storing reverse pointers, we
can report the elements of each Pv so that every element gets reported O(log n) times. ◀

To reduce the space to Õ(n2), we simply replace the Bellman-Ford like procedure run
on G − C in the preprocessing of Lemma 3 with the construction of Lemma 10. The total
congestion of all the vertices can increase only by a constant factor then. In Section 3.5 we
have assumed that the preprocessed paths πs,t were simple when hitting all πs,t satisfying
|πs,t| ≥ h/2 with H0. But we can as well assume that H0 hits all πs,t with |V (πs,t)| ≥ h/2
instead. Even though the paths represented by the data structure of Lemma 10 might be
non-simple, we can compute the sizes |V (πv)| within the same bound easily. Moreover, the
algorithm behind Lemma 8 can be implemented so that it requires only O(n) additional
space if it is possible to (1) iterate through the elements of individual sets of Y in O(1) time
per element, and (2) report the sets Y ∈ Y containing a given x ∈ X in near-linear time in
the number of reported sets. This is precisely what Lemma 10 enables.

3.7 Negative edges and cycles
In this section we briefly describe the modifications to the data structure needed to handle
negative edge weights and possibly negative cycles.

First of all, we run in parallel a deterministic fully dynamic negative cycle detection
algorithm with Õ(m) worst-case update time (see, e.g., [27]). That algorithm also maintains a
feasible price function p of the current graph G. With this in hand, whenever G has a negative
cycle, we refrain from running the update procedure and forbid issuing queries. Otherwise, p

is also a feasible price function of G − D, and thus the Dijkstra-based update procedure can
simply use p to ensure that all the edge and path lengths accessed are non-negative.

In the basic randomized variant of our data structure we don’t need to alter the prepro-
cessing at the beginning of a phase at all. Indeed, our analysis did not require that the paths
π′

s,t are simple or with no negative cycles, and h-hop-bounded shortest paths are well-defined
even in presence of negative cycles. In the O(n2h)-space deterministic variant (Section 3.5),
similarly as in Section 3.6, we may compute the hitting set H0 only for those πs,t that satisfy
|V (πs,t)| ≥ h/2. Recall that if the update procedure is run, then G − D has no negative
cycle and hence no path πs,t containing a negative cycle survives in G − D anyway.

A. Karczmarz and P. Sankowski 84:15

Finally, the preprocessing algorithm behind Lemma 10 internally uses hitting-set argu-
ments (valid for simple paths) and requires, out-of-the-box, that there are no negative cycles.
We now sketch how to deal with negative cycles while using the space-saving Lemma 10.

Whenever the preprocessing in Lemma 10 for source s encounters a path pt containing a
negative cycle, we use it as the desired path πt, but discard it when computing a hitting set
and thus also in the recursive preprocessing in Lemma 10 – effectively making reporting πt

(in any way) during update or query impossible. Similarly, such a path is included as πs,t ∈ Π
in Lemma 3 only implicitly and marked as negative, but nevertheless used for updating the
congestion counters α(·) during the preprocessing. Note that during the update procedure,
if G has no negative cycles, then for each “negative” path πs,t, we have V (πs,t) ∩ D ̸= ∅.
The used charging scheme ensures that we can afford reconstructing the path π′

s,t within the
Õ(τ∆) bound even though we do not know which vertices of D lie on πs,t.

4 Algebraic fully dynamic reachability in sparse digraphs

In this section we show how the algebraic approach to dynamic reachability [35] can be applied
in the case of sparse graphs, even without resorting to fast matrix multiplication [3, 21].

Assume for simplicity that m = |E(G)| ≥ n at all times. We prove the following.

▶ Theorem 2. Let G be a directed graph. Let t ∈ [1,
√

m]. There exist a Monte Carlo
randomized data structure maintaining G subject to fully dynamic single-edge updates with
Õ(mn/t) worst-case update time and supporting arbitrary-pair reachability queries in O(t)
time. The answers produced are correct with high probability.

Let us first review the approach of [35]. Identify the vertices of G = (V, E) with {1, . . . , n}.
Assume G has a self-loop at every vertex, i.e., vv ∈ E for all v ∈ V ; self-loops do not change
the reachability relation in G. Let A(G) be an adjacency matrix of G, that is, an n × n

matrix with the entry A(G)ij equal to 1 if ij ∈ E(G), and 0 otherwise.
Let us choose a field F = Z/pZ, for a prime number p = Θ(nc), where c ≥ 3 is a constant.

Let the matrix Ã(G) be obtained from A(G) by replacing each 1 with a random element
from F. Sankowski [35, Theorem 6] showed the following.

▶ Theorem 11. [35] With high probability (controlled by the constant c), the matrix Ã(G)
is invertible over F and for all u, v ∈ V , (Ã(G)−1)u,v ̸= 0 holds if and only if there exists a
u → v path in G.

Theorem 11 reduces fully dynamic reachability to the dynamic matrix inverse problem. Note
that a single-edge update to G translates to a single-entry matrix update on Ã(G), whereas
a reachability query corresponds to an element query on the inverse Ã(G)−1.

Sankowski [35] studied update/query tradeoffs for the dynamic matrix inverse problem.
One tradeoff, summarized by the following theorem, is of our particular interest.

▶ Theorem 12. [35] Suppose a matrix A ∈ Fn×n is subject to single-element updates that
keep A non-singular at all times.

Let δ ∈ (0, 1). There exists a data structure maintaining A−1 with Õ(nω(1,δ,1)−δ + n1+δ)
worst-case update time and supporting element queries on A−1 in O(nδ) time.

Above, ω(1, δ, 1) ≥ 2 denotes the rectangular matrix multiplication exponent (see [21]), i.e.,
a value such that one can multiply an n × nδ matrix by an nδ × n matrix in Õ

(
nω(1,δ,1))

time. Here, the time is measured in field operations. By applying Theorem 12 with δ ≈ 0.529
such that ω(1, δ, 1) = 1 + 2δ to the matrix Ã(G) (whose inverse correctly encodes the

ICALP 2023

84:16 Fully Dynamic Shortest Paths and Reachability in Sparse Digraphs

transitive closure of G throughout poly n updates, w.h.p. against an adaptive adversary),
Sankowski [35] obtains a Monte Carlo randomized fully dynamic reachability algorithm with
Õ(n1.529) worst-case update and O(n0.529) query time.

To continue, we need to discuss some of the internals of the data structure of Theo-
rem 12 [35, Section 6]. That data structures operates in phases of nδ updates. At the end of
each phase, the inverse A−1 is explicitly recomputed from (1) the explicitly stored inverse
(A0)−1 of the matrix A0 from the beginning of the phase, and (2) the nδ updates in the
current phase, via rectangular matrix multiplication. This is the sole reason why the term
nω(1,δ,1)−δ appears in the update bound. In particular, at the beginning of each phase, we
could also recompute the inverse of the current matrix A from scratch in O(nω) time and
thus obtain a slightly worse update bound of Õ(nω−δ + n1+δ), which in turn leads to the
Õ(n(ω+1)/2) = O(n1.687) update bound if optimized wrt. δ. The query time is proportional
to the phase length nδ.

Speaking more generally, if we could compute the inverse of the maintained matrix at
any time in T time, then by following the approach behind Theorem 12, for any parameter
t ∈ [1, n] (denoting the phase length) we could obtain a data structure with Õ(T/t + nt)
worst-case update time and O(t) query time. For T = Ω(n), it only makes sense to use
t ∈

[
1,
√

T/n
]
, and the update bound then simplifies to Õ(T/t). To obtain our fully dynamic

reachability algorithm for sparse digraphs, we use this observation combined with the below
theorem following from a classical result on solving linear systems in parallel [26].

▶ Theorem 13. Let A ∈ Fn×n be a non-singular matrix with m = Ω(n) non-zero entries.
Assume the finite field F has at least n2+c elements, where c ≥ 1 is a constant.

There is a Las Vegas randomized algorithm that computes A−1 in Õ(nm) time. The
success probability is at least 1 − O(n−c).

Proof sketch. Kaltofen and Pan [26, Theorem 4] show, using techniques of [41], that finding
the determinant of A can be reduced, in Õ(n2) time, to solving the following subproblems:
(a) For a given vector v ∈ Fn×1, computing vectors Ãi · v, for i = 0, . . . , 2n − 1, where

Ã = A · H · D, H ∈ Fn×n is a Hankel matrix, and D ∈ Fn×n is a diagonal matrix.
(b) For a given vector v ∈ Fn×1, computing vectors T i ·v for i = 0, . . . , n−1, where T ∈ Fn×n

is a Toeplitz matrix.
Then, in [26, Section 4] it is proven that if the determinant algorithm is realized using a
randomized algebraic circuit, or, in other words, a straight-line program with no conditional
branches, loops, etc., that possibly can divide by zero with low probability, then the Baur-
Strassen theorem [7] implies that the matrix inverse can be computed within the same
asymptotic bound as the determinant, even in parallel.

The subproblems (a) and (b) for general dense n × n matrices can be solved within this
model in Õ(nω) time using a folklore combination of repeated squaring and fast matrix
multiplication (see, e.g., [29]). In our case, to obtain a desired Õ(mn)-time sparse matrix
inverse algorithm, it is enough to argue that the subproblems (a) and (b) admit Õ(mn) time
straight-line program (SLP) solutions for matrices with m non-zero entries.

Consider the subproblem (a), since (b) is very similar. We compute each subsequent
vector Ãi+1 · v as A · (H · (D · (Ãiv))). Multiplying a vector by a matrix with m = Ω(n)
non-zero entries can clearly be realized in O(m) time using an SLP with no conditional
statements. This justifies that multiplications by the matrices A and D can be realized in
the required model. It is also well-known that multiplying a vector by a Hankel/Toeplitz
matrix reduces to polynomial multiplication (see, e.g., [22]), and thus also can be realized

A. Karczmarz and P. Sankowski 84:17

using an Õ(n)-gate straight-line program (see, e.g., [11]). This proves that each Ãi+1v can
be obtained from Ãiv in Õ(m) time in the SLP model. This implies the desired Õ(nm) SLP
time bound for subproblem (a). The theorem follows. ◀

▶ Corollary 14. Suppose a matrix A ∈ Fn×n is subject to single-element updates that keep A

non-singular at all times and the number of non-zero elements in A is always O(m), where
m ≥ n. Let t ∈ [1,

√
m]. There exists a data structure maintaining A−1 with Õ(mn/t)

worst-case update time and supporting element queries on A−1 in O(t) time.

The above corollary applied to the matrix Ã(G) combined with Theorem 11 implies Theorem 2.

References
1 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower

bounds for dynamic problems. In 55th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2014, pages 434–443. IEEE Computer Society, 2014. doi:10.1109/FOCS.2014.
53.

2 Ittai Abraham, Shiri Chechik, and Sebastian Krinninger. Fully dynamic all-pairs shortest
paths with worst-case update-time revisited. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, pages 440–452. SIAM, 2017.
doi:10.1137/1.9781611974782.28.

3 Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix
multiplication. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2021, pages 522–539. SIAM, 2021. doi:10.1137/1.9781611976465.32.

4 Stephen Alstrup, Jacob Holm, Kristian de Lichtenberg, and Mikkel Thorup. Maintaining
information in fully dynamic trees with top trees. ACM Trans. Algorithms, 1(2):243–264, 2005.
doi:10.1145/1103963.1103966.

5 Giorgio Ausiello, Giuseppe F. Italiano, Alberto Marchetti-Spaccamela, and Umberto Nanni.
Incremental algorithms for minimal length paths. J. Algorithms, 12(4):615–638, 1991. doi:
10.1016/0196-6774(91)90036-X.

6 Surender Baswana, Ramesh Hariharan, and Sandeep Sen. Improved decremental algorithms
for maintaining transitive closure and all-pairs shortest paths. J. Algorithms, 62(2):74–92,
2007. doi:10.1016/j.jalgor.2004.08.004.

7 Walter Baur and Volker Strassen. The complexity of partial derivatives. Theor. Comput. Sci.,
22:317–330, 1983. doi:10.1016/0304-3975(83)90110-X.

8 Thiago Bergamaschi, Monika Henzinger, Maximilian Probst Gutenberg, Virginia Vassilevska
Williams, and Nicole Wein. New techniques and fine-grained hardness for dynamic near-
additive spanners. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2021, pages 1836–1855. SIAM, 2021. doi:10.1137/1.9781611976465.110.

9 Aaron Bernstein. Maintaining shortest paths under deletions in weighted directed graphs.
SIAM J. Comput., 45(2):548–574, 2016. doi:10.1137/130938670.

10 Aaron Bernstein, Maximilian Probst Gutenberg, and Thatchaphol Saranurak. Deterministic
decremental SSSP and approximate min-cost flow in almost-linear time. In 62nd IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2021, pages 1000–1008. IEEE, 2021.
doi:10.1109/FOCS52979.2021.00100.

11 David G. Cantor and Erich Kaltofen. On fast multiplication of polynomials over arbitrary
algebras. Acta Informatica, 28(7):693–701, 1991. doi:10.1007/BF01178683.

12 Sílvia Casacuberta and Rasmus Kyng. Faster sparse matrix inversion and rank computation
in finite fields. In 13th Innovations in Theoretical Computer Science Conference, ITCS 2022,
volume 215 of LIPIcs, pages 33:1–33:24. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2022. doi:10.4230/LIPIcs.ITCS.2022.33.

ICALP 2023

https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.1109/FOCS.2014.53
https://doi.org/10.1137/1.9781611974782.28
https://doi.org/10.1137/1.9781611976465.32
https://doi.org/10.1145/1103963.1103966
https://doi.org/10.1016/0196-6774(91)90036-X
https://doi.org/10.1016/0196-6774(91)90036-X
https://doi.org/10.1016/j.jalgor.2004.08.004
https://doi.org/10.1016/0304-3975(83)90110-X
https://doi.org/10.1137/1.9781611976465.110
https://doi.org/10.1137/130938670
https://doi.org/10.1109/FOCS52979.2021.00100
https://doi.org/10.1007/BF01178683
https://doi.org/10.4230/LIPIcs.ITCS.2022.33

84:18 Fully Dynamic Shortest Paths and Reachability in Sparse Digraphs

13 Shiri Chechik and Tianyi Zhang. Faster deterministic worst-case fully dynamic all-pairs
shortest paths via decremental hop-restricted shortest paths. In Proceedings of the 2023
ACM-SIAM Symposium on Discrete Algorithms, SODA 2023, pages 87–99. SIAM, 2023.
doi:10.1137/1.9781611977554.ch4.

14 Li Chen, Gramoz Goranci, Monika Henzinger, Richard Peng, and Thatchaphol Saranurak.
Fast dynamic cuts, distances and effective resistances via vertex sparsifiers. In 61st IEEE
Annual Symposium on Foundations of Computer Science, FOCS 2020, pages 1135–1146. IEEE,
2020. doi:10.1109/FOCS46700.2020.00109.

15 Julia Chuzhoy. Decremental all-pairs shortest paths in deterministic near-linear time. In
STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 626–639.
ACM, 2021. doi:10.1145/3406325.3451025.

16 Camil Demetrescu and Giuseppe F. Italiano. A new approach to dynamic all pairs shortest
paths. J. ACM, 51(6):968–992, 2004. doi:10.1145/1039488.1039492.

17 Camil Demetrescu and Giuseppe F. Italiano. Trade-offs for fully dynamic transitive closure
on dags: breaking through the O(n2) barrier. J. ACM, 52(2):147–156, 2005. doi:10.1145/
1059513.1059514.

18 Wayne Eberly, Mark Giesbrecht, Pascal Giorgi, Arne Storjohann, and Gilles Villard. Faster
inversion and other black box matrix computations using efficient block projections. In
Symbolic and Algebraic Computation, International Symposium, ISSAC 2007, Proceedings,
pages 143–150. ACM, 2007. doi:10.1145/1277548.1277569.

19 Jacob Evald, Viktor Fredslund-Hansen, Maximilian Probst Gutenberg, and Christian Wulff-
Nilsen. Decremental APSP in unweighted digraphs versus an adaptive adversary. In 48th
International Colloquium on Automata, Languages, and Programming, ICALP 2021, volume
198 of LIPIcs, pages 64:1–64:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.ICALP.2021.64.

20 Sebastian Forster, Yasamin Nazari, and Maximilian Probst Gutenberg. Deterministic incre-
mental APSP with polylogarithmic update time and stretch. CoRR, abs/2211.04217, 2022.
doi:10.48550/arXiv.2211.04217.

21 Francois Le Gall and Florent Urrutia. Improved rectangular matrix multiplication using
powers of the coppersmith-winograd tensor. In Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, pages 1029–1046. SIAM, 2018.
doi:10.1137/1.9781611975031.67.

22 Gene H Golub and Charles F Van Loan. Matrix computations. JHU press, 2013.
23 Maximilian Probst Gutenberg, Virginia Vassilevska Williams, and Nicole Wein. New algorithms

and hardness for incremental single-source shortest paths in directed graphs. In Proccedings
of the 52nd Annual ACM SIGACT Symposium on Theory of Computing, STOC 2020, pages
153–166. ACM, 2020. doi:10.1145/3357713.3384236.

24 Maximilian Probst Gutenberg and Christian Wulff-Nilsen. Fully-dynamic all-pairs shortest
paths: Improved worst-case time and space bounds. In Proceedings of the 2020 ACM-
SIAM Symposium on Discrete Algorithms, SODA 2020, pages 2562–2574. SIAM, 2020. doi:
10.1137/1.9781611975994.156.

25 Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak.
Unifying and strengthening hardness for dynamic problems via the online matrix-vector
multiplication conjecture. In Proceedings of the Forty-Seventh Annual ACM on Symposium on
Theory of Computing, STOC 2015, pages 21–30. ACM, 2015. doi:10.1145/2746539.2746609.

26 Erich Kaltofen and Victor Y. Pan. Processor efficient parallel solution of linear systems over
an abstract field. In Proceedings of the 3rd Annual ACM Symposium on Parallel Algorithms
and Architectures, SPAA ’91, pages 180–191. ACM, 1991. doi:10.1145/113379.113396.

27 Adam Karczmarz. Fully dynamic algorithms for minimum weight cycle and related problems.
In 48th International Colloquium on Automata, Languages, and Programming, ICALP 2021,
volume 198 of LIPIcs, pages 83:1–83:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPIcs.ICALP.2021.83.

https://doi.org/10.1137/1.9781611977554.ch4
https://doi.org/10.1109/FOCS46700.2020.00109
https://doi.org/10.1145/3406325.3451025
https://doi.org/10.1145/1039488.1039492
https://doi.org/10.1145/1059513.1059514
https://doi.org/10.1145/1059513.1059514
https://doi.org/10.1145/1277548.1277569
https://doi.org/10.4230/LIPIcs.ICALP.2021.64
https://doi.org/10.48550/arXiv.2211.04217
https://doi.org/10.1137/1.9781611975031.67
https://doi.org/10.1145/3357713.3384236
https://doi.org/10.1137/1.9781611975994.156
https://doi.org/10.1137/1.9781611975994.156
https://doi.org/10.1145/2746539.2746609
https://doi.org/10.1145/113379.113396
https://doi.org/10.4230/LIPIcs.ICALP.2021.83

A. Karczmarz and P. Sankowski 84:19

28 Adam Karczmarz, Anish Mukherjee, and Piotr Sankowski. Subquadratic dynamic path
reporting in directed graphs against an adaptive adversary. In STOC ’22: 54th Annual
ACM SIGACT Symposium on Theory of Computing, pages 1643–1656. ACM, 2022. doi:
10.1145/3519935.3520058.

29 Walter Keller-Gehrig. Fast algorithms for the characteristic polynomial. Theor. Comput. Sci.,
36:309–317, 1985. doi:10.1016/0304-3975(85)90049-0.

30 Valerie King. Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive
closure in digraphs. In 40th Annual Symposium on Foundations of Computer Science, FOCS
1999, pages 81–91. IEEE Computer Society, 1999. doi:10.1109/SFFCS.1999.814580.

31 Veli Mäkinen, Alexandru I. Tomescu, Anna Kuosmanen, Topi Paavilainen, Travis Gagie,
and Rayan Chikhi. Sparse dynamic programming on dags with small width. ACM Trans.
Algorithms, 15(2):29:1–29:21, 2019. doi:10.1145/3301312.

32 Liam Roditty. A faster and simpler fully dynamic transitive closure. ACM Trans. Algorithms,
4(1):6:1–6:16, 2008. doi:10.1145/1328911.1328917.

33 Liam Roditty and Uri Zwick. Improved dynamic reachability algorithms for directed graphs.
SIAM J. Comput., 37(5):1455–1471, 2008. doi:10.1137/060650271.

34 Liam Roditty and Uri Zwick. On dynamic shortest paths problems. Algorithmica, 61(2):389–
401, 2011. doi:10.1007/s00453-010-9401-5.

35 Piotr Sankowski. Dynamic transitive closure via dynamic matrix inverse (extended abstract).
In 45th Symposium on Foundations of Computer Science FOCS 2004, pages 509–517. IEEE
Computer Society, 2004. doi:10.1109/FOCS.2004.25.

36 Mikkel Thorup. Fully-dynamic all-pairs shortest paths: Faster and allowing negative cycles. In
Algorithm Theory – SWAT 2004, 9th Scandinavian Workshop on Algorithm Theory, Proceedings,
volume 3111 of Lecture Notes in Computer Science, pages 384–396. Springer, 2004. doi:
10.1007/978-3-540-27810-8_33.

37 Jeffrey D. Ullman and Mihalis Yannakakis. High-probability parallel transitive-closure algo-
rithms. SIAM J. Comput., 20(1):100–125, 1991. doi:10.1137/0220006.

38 Jan van den Brand, Sebastian Forster, and Yasamin Nazari. Fast deterministic fully dynamic
distance approximation. In 63rd IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2022, pages 1011–1022. IEEE, 2022. doi:10.1109/FOCS54457.2022.00099.

39 Jan van den Brand and Danupon Nanongkai. Dynamic approximate shortest paths and
beyond: Subquadratic and worst-case update time. In 60th IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2019, pages 436–455. IEEE Computer Society, 2019.
doi:10.1109/FOCS.2019.00035.

40 Jan van den Brand, Danupon Nanongkai, and Thatchaphol Saranurak. Dynamic matrix
inverse: Improved algorithms and matching conditional lower bounds. In 60th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2019, pages 456–480. IEEE Computer
Society, 2019. doi:10.1109/FOCS.2019.00036.

41 Douglas H. Wiedemann. Solving sparse linear equations over finite fields. IEEE Trans. Inf.
Theory, 32(1):54–62, 1986. doi:10.1109/TIT.1986.1057137.

42 Uri Zwick. All pairs shortest paths using bridging sets and rectangular matrix multiplication.
J. ACM, 49(3):289–317, 2002. doi:10.1145/567112.567114.

A Further variants of the fully dynamic shortest paths data structure

A.1 Unweighted digraphs
Similarly as in the case of previous fully dynamic APSP data structures [2, 24], improved
bounds can be obtained if the graph G is unweighted. This is simply because the preprocessing
of Lemma 3 can be completed in O(mn) time instead of O(mnh) time. Indeed, in an
unweighted graph, the shortest h-hop-bounded s, t path, if exists, coincides with the (globally)
shortest s, t path. As a result, the Bellman-Ford-based computation can be replaced with
breadth-first search. Similarly, the collection of paths Π can be represented using n BFS
trees and thus one can achieve quadratic space without resorting to Lemma 10.

ICALP 2023

https://doi.org/10.1145/3519935.3520058
https://doi.org/10.1145/3519935.3520058
https://doi.org/10.1016/0304-3975(85)90049-0
https://doi.org/10.1109/SFFCS.1999.814580
https://doi.org/10.1145/3301312
https://doi.org/10.1145/1328911.1328917
https://doi.org/10.1137/060650271
https://doi.org/10.1007/s00453-010-9401-5
https://doi.org/10.1109/FOCS.2004.25
https://doi.org/10.1007/978-3-540-27810-8_33
https://doi.org/10.1007/978-3-540-27810-8_33
https://doi.org/10.1137/0220006
https://doi.org/10.1109/FOCS54457.2022.00099
https://doi.org/10.1109/FOCS.2019.00035
https://doi.org/10.1109/FOCS.2019.00036
https://doi.org/10.1109/TIT.1986.1057137
https://doi.org/10.1145/567112.567114

84:20 Fully Dynamic Shortest Paths and Reachability in Sparse Digraphs

For unweighted graphs, the update bound becomes Õ(m∆+mn/∆+mn/h+nm2h/τ+∆τ),
whereas the query time remains Õ(∆ + nmh/τ + n/h). For ∆ = h = n1/4 and τ = mn1/2

the update and query time bounds become Õ(mn3/4) and Õ(n3/4), respectively.

A.2 A slight tradeoff
In the basic variant of the data structure, it is not clear whether pushing the update time
below Õ(n4/5) is possible even at the cost of increasing the query time. Here, we sketch that
a slight tradeoff is indeed possible with another trick of [24, Section 4.1]: to delegate handling
paths through the congested set to the data structure of [2, Section 3]. For simplicity, assume
again that the edge weights are non-negative. Since that data structure, in turn, is tailored
to dense graphs, we instead use the following sparse variant implicit in [27].

▶ Lemma 15. [2, 27] Let G = (V, E) be a directed graph and let C ⊆ V . Let h ∈ [1, n]. In
Õ(|C|mh) time one can build a data structure supporting the following.

For any query set D ⊆ V , update the data structure so that it supports queries computing
the length of some s → t path of length at most minc∈C{δh

G−D(s, c) + δh
G−D(c, t)} for any

s, t ∈ V . The worst-case update time is Õ(|D|mh) and the query time is O(|C|).

Proof sketch. For at most 2|C| centers c1, . . . , cℓ, repeatedly find shortest 2h-hop-bounded
paths from/to ci in G − {c1, . . . , ci−1}. While this computation proceeds, maintain vertex
congestions α(·) as in Lemma 3. When choosing the subsequent centers ci, alternate between
picking an unused vertex from C and the most congested vertex of V \ {c1, . . . , ci−1}, until
all vertices of C are used. This preprocessing costs O(ℓmh) = O(|C|mh) time.

Given the above preprocessing, one can prove that by proceeding as in Lemma 4, in
Õ(|D|mh) time one can recompute a representation of paths s → ci of length at most
δ2h

G−(D∪{c1,...,ci−1})(s, ci) and analogous paths ci → t, for all i and s, t ∈ V .
Upon a query (s, t), in O(ℓ) = O(|C|) time we can find an s → t path of length at most

y∗ = minℓ
i=1{yi}, where yi := δ2h

G−(D∪{c1,...,ci−1})(s, ci) + δ2h
G−(D∪{c1,...,ci−1})(ci, t). To see

that this is enough, let c∗ ∈ C be such that δh
G−D(s, c∗) + δh

G−D(c∗, t) is minimum. Let j be
minimum index such that the corresponding ≤ 2h-hop path Q = s → c∗ → t contains the
center cj . Then we have Q ⊆ G − (D ∪ {c1, . . . , cj−1}) and thus y∗ ≤ yj ≤ ℓ(Q). ◀

Note that by computing shortest-paths trees from and to a randomly sampled Õ(n/h)-
sized hitting set H we can in fact handle “long” shortest paths in the current graph G, and
not only in G − (C ∪ D). As a result, we don’t need to recompute full shortest paths trees
from C – instead, it would be enough to consider short paths in G − D through C upon
query. This is what we use Lemma 15 for. Every ∆ updates, when a new phase starts, a
fresh congested set C is computed. We additionally initialize the data structure of Lemma 15
for the current graph G and the congested set C. This way, that data structure is always
off from the current G by at most ∆ updates, and thus can be updated in Õ(∆mh) time.
Again, the data structure of Lemma 15 can be reinitialized in such a way that the additional
worst-case cost incurred is Õ(|C|mh/∆). The full worst-case update time becomes:

Õ(m∆ + mnh/∆ + mn/h + ∆τ + m2nh2/(τ∆) + ∆hm).

Balancing as before, for ∆ = h2 and τ = mn/h3, we obtain the update bound Õ(mn/h+mh3).
Note that this bound is Ω(mn3/4) for any h.

The query bound unfortunately remains Õ(∆ + |H| + mnh/τ) = Õ(n/h + h4). If we aim
at serving Θ(n) queries per update and the graph is sparse, then we get no improvement
over the basic approach. However, for a desired query time of Õ(t), where t ∈ [n4/5, n], we
can achieve Õ(mn/t1/4) worst-case update time this way.

New Additive Emulators
Shimon Kogan #

Weizmann Institute of Science, Rehovot, Israel

Merav Parter #

Weizmann Institute of Science, Rehovot, Israel

Abstract
For a given (possibly weighted) graph G = (V, E), an additive emulator H is a weighted graph in
V × V that preserves the (all pairs) G-distances up to a small additive stretch. In their breakthrough
result, [Abboud and Bodwin, STOC 2016] ruled out the possibility of obtaining o(n4/3)-size emulator
with no(1) additive stretch. The focus of our paper is in the following question that has been
explicitly stated in many of the prior work on this topic:

What is the minimal additive stretch attainable with linear size emulators?

The only known upper bound for this problem is given by an implicit construction of [Pettie, ICALP
2007] that provides a linear-size emulator with +Õ(n1/4) stretch. No improvement on this problem
has been shown since then.

In this work we improve upon the long standing additive stretch of Õ(n1/4), by presenting
constructions of linear-size emulators with Õ(n0.222) additive stretch. Our constructions improve
the state-of-the-art size vs. stretch tradeoff in the entire regime. For example, for every ϵ > 1/7, we
provide +nf(ϵ) emulators of size Õ(n1+ϵ), for f(ϵ) = 1/5 − 3ϵ/5. This should be compared with the
current bound of f(ϵ) = 1/4 − 3ϵ/4 by [Pettie, ICALP 2007].

The new emulators are based on an extended and optimized toolkit for computing weighted
additive emulators with sublinear distance error. Our key construction provides a weighted modific-
ation of the well-known Thorup and Zwick emulators [SODA 2006]. We believe that this TZ variant
might be of independent interest, especially for providing improved stretch for distant pairs.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis

Keywords and phrases Spanners, Emulators, Distance Preservers

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.85

Category Track A: Algorithms, Complexity and Games

Funding This project is funded by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (grant agreement No. 949083), and by
the Israeli Science Foundation (ISF), grant No. 2084/18.

1 Introduction

Emulators are well-studied compression schemes that approximately encode the distance
metric of a (dense) undirected input graph G = (V, E) by a sparse weighted graph H ⊆ V ×V .
This extends the notion of spanners which are required to be subgraphs of G. Along with their
spanner cousin, emulators admit a wide range of algorithmic applications, most notably in
settings related to graph compression, routing schemes, distributed computing, and all pairs
shortest paths approximation. The focus of this paper is in providing improved constructions
for additive emulators which only allow for additive stretch. For a given unweighted n-vertex
graph G = (V, E), a graph H ⊆ V × V is an f(d)-emulator if distG(u, v) ≤ distH(u, v) ≤
f(distG(u, v)) for every u, v ∈ V . An f(d)-emulator for f(d) = d + β for some fixed β is
denoted as additive emulator. There has been a long line of work on additive emulators, both
from an upper bound and lower bound perspectives, see Table 1.

EA
T
C
S

© Shimon Kogan and Merav Parter;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 85; pp. 85:1–85:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shimon.kogan@weizmann.ac.il
mailto:merav.parter@weizmann.ac.il
https://doi.org/10.4230/LIPIcs.ICALP.2023.85
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

85:2 New Additive Emulators

The first explicit construction for this setting obtained +4 emulators of size O(n4/3)
by Dor, Halperin and Zwick [11]. The question of whether sparser emulators exist for any
constant additive stretch has been one of the most major open problems in the area. In their
breakthrough result, Abboud and Bodwin [1] refuted this possibility by demonstrating that
any emulator with O(n4/3−ϵ) edges might induce a polynomially large additive stretch of
Ω(nδ(ϵ)), for any ϵ.

On the other side of the size vs. stretch tradeoff, additive emulators of linear size have
in particular attracted a lot of attention over the years [18, 7, 10, 9, 1, 16, 2, 14, 17]. To
this date, the best additive stretch known for linear size emulators is Õ(n1/4), as shown
(implicitly) by an earlier work of Pettie [18]. Bodwin and Vassilevska Williams [10] designed
linear-size spanners and emulators with additive stretch of +Õ(

√
n) (resp., +Õ(n1/3)). In

a follow-up work [9] , they cleverly improved the spanner’s stretch to the state-of-the-art
bound of +Õ(n3/7); Unfortunately, their improved spanner constructions do not seem to
imply improved bounds for emulators, and Pettie’s result [18] remains the state-of-the-art.

In this paper we focus on the following basic graph compression problem which despite
all efforts is still fairly open:

▶ Question 1.1. What is the minimal additive error that can be achieved with linear space?

This question on its various forms (e.g., spanners, emulators) has been raised in many of
the prior work on the topic, see e.g., [10, 3], especially in light of the “4/3 barrier” of [1].
Indeed in their seminal lower bound paper, Abboud and Bodwin [1] explicitly asked:

Our work shows that polynomial additive error must be suffered in order to obtain
near-linear size compression of graphs. Given this, it is natural to wonder how much
polynomial error is necessary to obtain compression in this regime.

While not much progress has been provided on the upper bound side, there has been
more movement on the lower bound aspects of the problem. Abboud and Bodwin showed
that any linear size emulator must suffer Ω(n1/22) additive stretch, in the worst case. Huang
and Pettie [16] improved this bound to +Ω(n1/18). This was further improved by Lu, Wein,
Vassilevska Williams, and Xu [17] to +Ω(n2/29). Very recently, Bodwin and Hoppenworth
[8] provided an +Ω(n1/7) stretch lower bound for linear spanners, by extending the known
obstacle product framework to support also non-layered graphs.

Our new constructions are built upon modifying and extending the existing constructions
for emulators with sublinear additive stretch and weighted additive spanners. While these
notions have been studied before, our primary conceptual contribution is in demonstrating
their usefulness for computing additive emulators of unweighted graphs. We next discuss the
prior work on each of these settings.

Sublinear additive stretch. Elkin and Peleg showed that the “4/3 barrier” could be broken
if one allows a (1 + ϵ) multiplicative stretch, in addition to a small additive stretch [15].
Thorup and Zwick gave an elegant construction of an O(kn1+1/(2k+1−1))-size emulator H

with O(1 + ϵ, O(k/ϵ)k−1)-type stretch1. Their emulator has the remarkable property that its
stretch bound holds for every ϵ > 0 simultaneously, as its size bound is independent in ϵ. For
any distance d, choosing ϵ = k/d1/k leads to an emulator with a sublinear additive stretch
function f(d) = d + O(d1−1/k + 3k). As noted in [2], an interesting open question is whether
one can match this size-stretch tradeoff for spanners.

1 I.e., for every u, v ∈ V , distH(u, v) ≤ (1 + ϵ)distG(u, v) + O(k/ϵ)k−1.

S. Kogan and M. Parter 85:3

Table 1 Upper and lower bounds for additive emulators. New bounds are marked in blue.

Emulator Size Additive Stretch Remark Citation
O(n3/2) 2 [5]
Õ(n4/3) 4 [11]
Ω(n1+1/k) 2k − 1 [20]
O(n4/3−ϵ) Ω(nδ(ϵ)) [1]
Õ(n1+ϵ) O(n1/2−3ϵ/2) implicit [7]
Õ(n1+ϵ) O(n1/3−2ϵ/3) [10]
Õ(n1+ϵ+o(1)) O(n3/11−9ϵ/11) [9]
Õ(n1+ϵ) O(n1/4−3ϵ/4) implicit [18]
Õ(n1+ϵ) O(n1/5−3ϵ/5) ϵ ≥ 1/7 new
Õ(n1+ϵ) O(n(25−87ϵ)/112) 0 ≤ ϵ ≤ 1/5 new
Õ(n) O(n2/9−1/1600−o(1)) new
Õ(n) Ω(n1/22) [1]
Õ(n) Ω(n1/18) [16]
Õ(n) Ω(n2/29) [17]

Weighted (near) additive stretch. Elkin, Gitlitz and Neiman [13] provided the first
constructions of near-additive spanners for weighted graphs. Their algorithm extends the
unweighted construction of near-additive spanners (e.g., by [15]) to provide stretch guarantees
of f(d) = (1 + ϵ)d + βW where W is the maximum edge weight. Ahmed et al. [3]
extended the constructions of spanners with purely additive stretch to weighted graphs
by an ingenious amortized argument (which plays a role in our constructions, as well).
Consequently, they provide +2W, +4W, +8W weighted spanners with Õ(n3/2), Õ(n7/5) and
Õ(n4/3) edges, respectively. Elkin, Gitlitz and Neiman [12] improve the latter stretch bound
to (6 + o(1))W , nearly matching the unweighted result for W = 1. Note that the above
mentioned constructions also provide a local stretch guarantee of +β ·Ws,t for every s, t pair,
where Ws,t is the largest edge weight on an s-t shortest path.

1.1 New Results
We provide a positive progress for Question 1.1 by improving upon the long-standing bound
of +Õ(n1/4) by Pettie [18] to an additive stretch of +O(n0.222−o(1)). Our end result is:

▶ Theorem 1.2. Any unweighted n-vertex graph G = (V, E) admit a linear-size
emulator with additive stretch Õ(n2/9−1/1600−o(1)).

The main novel aspect of this result is in our approach, which draws an interesting
connection between weighted additive emulators and unweighted emulators with polynomial
additive stretch. The final additive bound O(n0.222−o(1)) is obtained by taking a gradual
approach, containing two major steps of optimizations.

To illustrate our new algorithmic approach, we start by presenting a very simple con-
struction for recovering the state-of-the-art additive stretch of +Õ(n1/4). This construction
is obtained by using in a black-box manner the recent constructions of weighted additive

ICALP 2023

85:4 New Additive Emulators

spanners by Ahmed et al. [4] and Elkin, Gitlitz and Neiman [12] which provides an additive
stretch +βW . While such an additive term might be undesirable in many settings, these
constructions play a key role in providing additive emulators for unweighted graphs2.

Improved Stretch vs. Size Bounds via Weighted Additive Emulators. A careful inspection
of our +Õ(n1/4) additive construction reveals that our reduction yields in fact, a specialized
weighted graph instance with several convenient properties. In particular, we enjoy the fact
that our generated weighted graphs are in fact obtained from unweighted graphs, in the
sense that the edge weights corresponds to distances, rather than being arbitrary. We then
provide a designated construction of weighted additive emulators that takes advantage of
these specialized weighted graph instances. This leads to a quite general construction which
improves over the known bounds in the entire regime of sparsity, i.e., n to n4/3:

▶ Theorem 1.3. For any n-vertex graph G = (V, E, ω) where ω : E → {1, . . . , W} and
0 ≤ ϵ ≤ 1

3 , there exists a +Õ(W · nf(ϵ)) emulator H of size at most Õ(n1+ϵ) where:

f(ϵ) =


(1− 3ϵ)/5 if 1/7 ≤ ϵ ≤ 1/3;
(9− 31ϵ)/40 if 3/37 ≤ ϵ ≤ 1/7;
(3− 9ϵ)/14 if 1/15 ≤ ϵ ≤ 3/37;
(25− 87ϵ)/112 if 0 ≤ ϵ ≤ 1/15.

Setting ϵ = 0, provides a linear-size emulator with additive stretch n25/112 ∼ n0.223.

Discretization of the Thorup-Zwick (TZ) Emulator Construction. Our final emulator
result of Theorem 1.2 is based on a rather involved discretization of the TZ emulator
construction adapted for weighted graphs. The following (quite technically to state) result
serves as the core component of the final linear-size emulator:

▶ Theorem 1.4. For every n-vertex unweighted G = (V, E) a constant integer k ≥ 3 and
integer D ≥ 1, one can compute an emulator H with additive stretch O(D1−1/(k−1) log n) for
any distance d = O(D · log n). The size of H is bounded by

Õ(n1+1/(2k+1−1) + n1+1/(2k−1)/(D(2k−2k)/((2k−1)k(k−1))).

This should be compared with the original TZ construction that provides an additive
stretch of d1−1/k using n1+1/(2k+1−1) edges. Theorem 1.4 can also be shown to imply that
the stretch function of the TZ emulator is optimal only for a restricted regime of distances.
In particular, with a size bound of Õ(n1+1/(2k+1−1)), one can provide pairs at distances
d ≥ nk2/2k an additive stretch of O(d1−1/(k−1)), rather than O(d1−1/k) as provided by the
TZ bounds, which might be of independent interest.

1.2 Technical Overview
Our +Õ(n0.222)-additive linear-size emulator is obtained in a sequence of two intermediate
results, that gradually take advantage of several interesting degrees of freedom in the current
constructions of weighted (near) additive emulators. Our technique exhibits several directions

2 While our constructions utilizes the +βW stretch guarantees, it is unclear if the local +βWs,t stretch
guarantees can be useful in our context, as well.

S. Kogan and M. Parter 85:5

of optimizations in the emulator framework of Thorup and Zwick [19], which become useful in
the context of designing additive emulators with a small polynomial stretch. Note that while
all our constructions are implemented in polynomial time, in this paper we put emphasis on
the stretch vs. size tradeoff.

Beginner: +Õ(n1/4) Additive Stretch. As a warmup to our approach, we provide in Sec.
2 a new proof technique to obtain +Õ(n1/4) emulators of linear size, which simplifies the
(implicit) state-of-the-art construction of Pettie [18]. Interestingly, our argument follows
immediately by the weighted +O(W) additive spanners of Ahmed et al. [4] and Gitlitz,
Elkin, Neiman [12] with Õ(n4/3) edges, where W is the maximum edge weight of the graph.
This provides the starting indication for the potential connection between weighted additive
emulators and purely additive emulators for unweighted graphs.

On a high level, the construction works by computing a weighted net graph G′ for
the given (unweighted) graph G, obtained by sampling each G-vertex independently with
probability of Θ(1/n1/4). The edges of G′ connect every pair of sampled vertices u, v provided
that their G-distance is at most Θ(n1/4 log n). The net edges are weighted by the G-distance
between their endpoints. The output emulator is union of two spanners: (i) a O(log n)
multiplicative spanner for G (see Lemma 1.7), and (ii) a +O(W) additive spanner for G′

where W = Θ(n1/4 log n). It is easy to see that the size bound is (near) linear3. The stretch
argument for nearby pairs u, v at G-distance O(n1/4 log n) follows by the addition of the
O(log n) multiplicative spanner. The argument for distant pairs Ω(n1/4 log n) follows by
using the +O(W) additive spanner for G′.

Intermediate : +Õ(n0.223) Additive Stretch. The essence of the above mentioned con-
struction is to employ on a weighted additive algorithm on the computed (weighted) net
graph G′, in a black box manner. Our starting observation, to break the current +Θ(n1/4)
barrier, is the following: while G′ is indeed a weighted graph, it is obtained from a given
unweighted base graph G. Therefore it might be possible to treat G′ better than any arbitrary
input weighted graph. More specifically, by including the TZ emulator for G, one can provide
a sublinear stretch guarantee for any neighboring pairs in G′. This, in principle, is impossible,
for general weighted graphs. Since the sublinear stretch guarantees of the TZ emulators
require a superlinear size bound, we cannot employ them directly on G, but rather on a
subsampled net of G. This sub-sampling immediately converts the unweighted input instance
into a weighted instance. We therefore conclude that the key task should be concerned
with providing sparse constructions of weighted additive emulators. Our core construction
computes a superlinear-size emulator for any weighted graph whose weighted stretch and
size guarantees depend on the input integer parameters D, k, as follows:

▶ Theorem 1.5. Any n-vertex graph G = (V, E, ω) with max weight W and integers k ≥
2, D ≥ 1 admits a +O(WD) emulator of size Õ(n1+1/(2k+1−1) + n4/3/(D4/3 + 2/(3k))).

Theorem 1.5 serves as the key technical step in providing the improved additive stretch
vs. size bounds in almost the entire regime of parameters (see Theorem 1.3). In particular,
by using a suitable pre-sampling of a net graph G′ and applying Thm. 1.5 on G′, we obtain
linear-size emulator with +Õ(n25/112) stretch. Moreover, for any ϵ > 1/7, Thm. 1.5 allows
us to provide an +nf(ϵ) emulator with n1+ϵ edges, where f(ϵ) = 1/5− 3ϵ/5. This improves
the state-of-the-art bounds of 1/4− 3ϵ/4 due to [18].

3 One can make it linear by reducing the sampling probability an O(log n) factor.

ICALP 2023

85:6 New Additive Emulators

We prove 1.5 by presenting a three-step algorithm. The first step (which takes care of the
short distances) include a weighted variant of the TZ emulators which for integer stretch k

provides f(d)-emulator with Õ(n1+1/(2k+1−1)) edges and f(d) = d + d1−1/kW 1/k for d ≥W

and f(d) = O(W), otherwise. This variant can be obtained by a straightforward adaptation
of the TZ construction to the weighted setting. In particular, setting W = 1 recovers the TZ
bounds (see Thm. 1.8).

The second step is based on the useful tool of light-initialization introduced by Ahemd
et al. [3] in the context of translating the existing constructions of additive spanners for
unweighted graphs into suitable constructions for weighted graphs. For a given weighted
graph G and integer parameter t, the t light-initialization is a subgraph H ′ of G containing
the t-lightest (based on edge weight) edges4 incident to each vertex in G. Ahemd et al. [3]
provided a very elegant argument that in essence achieves the same net effect as obtained in
the unweighted setting (where one simply adds t arbitrary edges per vertex): Specifically,
the key property is that any u-v shortest path P that has misses ℓ edges in H ′ must contains
Ω(tℓ) vertices that are incident to the vertices of P via the edges of H ′. Our algorithm
employs the light-initialization tool on sampled net G′ of G, for a carefully chosen parameter
t. Each G-vertx is sampled into the net G′ with probability Θ(log n/D). The third and last
step further sub-samples the vertices of G′ and adds the complete weighted graph on this
sample to the output spanner.

The stretch analysis of this scheme has the following structure. First, using the TZ
emulators allows us to satisfy the stretch for pairs at distance O(WD log n) in G. The focus
is then on bounding the stretch for a pair of sampled vertices u, v ∈ V (G′). The argument
considers a u-v shortest path P in G′ and distinguishes between two cases: |P \H| ≤ q for
some chosen parameter q, and the complementarity case where |P \H| > q. For the first
case, we use the weighted-TZ spanner of G to obtain a sublinear stretch guarantee for every
edge on P \H, taking advantage of the fact that each such edge corresponds to a path in
the original graph G. The benefit that we get from the sublinear stretch bounds allows us to
accumulate it for each of the t missing edges.

To handle the complementary case where |P \H| > q, we use H ′ to claim that the final
sampled set V ′′ contains a pair u′′, v′′ that are sufficiently close to u and v. The stretch
bound is provided by the addition of the edge (u′′, v′′) to the final emulator.

Advanced: +Õ(n0.222) Additive Stretch. Our last and most involved improvement
performs a root treatment to the TZ emulator construction. Instead of using the weighted-TZ
variant in a black-box manner on our weighted sampled graph, we provide a discretization
variant for this algorithm in which we replace the continuous TZ stretch function by a step
function. The latter provides worse bounds for nearby pairs, with the benefit of using fewer
edges. More specifically, the construction is parameterized by integers D, k, p and show:

▶ Theorem 1.6. For every n-vertex G = (V, E, ω) with maximum weight W , a constant
integer k ≥ 3, integer D ≥ 1 and p ∈ (0, 1), one can compute an emulator H with additive
stretch O(D1−1/(k−1) ·W log n/p) for any distance d = O(D ·W log n/p). The size of H is
bounded by

|H| = Õ

(
n

1+ 1
2k+1−1 + (n · p)1+ 1

2k−1 /

(
(1/p)

2k−2
(2k−1)k ·D

2k−2k

(2k−1)k(k−1)

))
.

4 Each vertex sorts its incident edges in increasing edge weight, and the t first edges in this ordering are
taken.

S. Kogan and M. Parter 85:7

Our optimized variant of the weighted TZ emulators is fitted to the setting where the
given weighted graph provided as input to Theorem 1.6 is in fact a net graph G′ that
corresponds to some unweighted base graph5 G. We then aim at exploiting the fact that the
edges of G′ corresponds to G-paths already in the construction of the weighted TZ emulators.
To present our key ideas, we briefly describe the TZ algorithm. For a subset of vertices V ′

and probability q, let V ′[q] be the set of vertices obtained by sampling each vertex v ∈ V ′

independently with probability of q.
For a given parameter k, the algorithm computes a hierarchy V = V0 ⊃ V1 ⊃ V2 ⊃ . . . ⊃

Vk−1 of levels, where Vi = Vi−1[qi−1] for qi−1 = |Vi−1|/n1+1/(2k−1). For every vertex v ∈ Vi,
its (i + 1)th pivot pi+1(v) is the closest vertex to v in Vi+1. The bunch Bi(v) contains all
vertices in Vi that are closer to v than its pivot pi+1(v). The algorithm adds to the emulator
the edges between each v ∈ Vi to all vertices in its bunch Bi(v). The weights of the edges
are the G-distance of their endpoints. This is done for every i ∈ {1, . . . , k − 2}. Finally, all
edges in Vk−1 × Vk−1 are added to the emulator.

Our adaptation to weighted net graphs G′ (whose edges correspond to paths in a base
graph G) computes a hierarchy of 2(k−1) levels: V = V1/2 ⊇ V1 ⊇ V3/2 ⊇ V2 ⊇ . . . ⊇ Vk−1/2,
where V(j+1)/2 ← Vj/2[qj] for every j ∈ {1, . . . , 2(k− 1)}. Hence, we have k− 1 integral levels
V1, . . . , Vk−1 and k “half”-levels V1/2, V3/2, . . . , Vk−1/2. Intuitively, the “half” levels represent
an intermediate step that re-scales the “aggregate” benefit obtained by the existence of the
precomputed emulator H0 that takes care of the short distances in G′. The selection of the
sampling probabilities are made in a careful manner that depend on the properties of H0.
Once the hierarchy is computed, we have k − 1 steps which mimic the TZ algorithm with
one main distinction, we add to the emulator edges from the half -level Vi+1/2 to the next
integral-level Vi+1.

That is, for every i ∈ {0, . . . , k− 2} and every u ∈ Vi+0.5, the algorithm computes a pivot
pi+1(v) (closest vertex in Vi+1) and a bunch Bi+0.5(u), which consists of all Vi+0.5 vertices
that are closer to u than its pivot pi+1(u). The edges in {u} ×Bi+0.5(u) are added to the
emulator. Finally, in the last half level k − 0.5, we add all edges in Vk−0.5 × Vk−0.5.

Remark. We note that our approach for computing improved linear emulators of Thm.
1.2 can also be used to improve the general tradeoff provided in Thm. 1.3. The total
improvement, however, is limited to a small o(1) additive term, and therefore we make this
extra effort only for linear size emulators. We also note that our approach for the latter
could be further optimized by considering a large number of recursive sampling steps, but
again the net effect on the stretch is negligible (in particular, an additional sampling step
might reduce the stretch by an 0.0001 additive term).

Notations. For a possibly weighted graph G, let distG(u, v) be the length of a shortest path
from u to v. The length of a shortest-path Q is measured by the sum of its weighted edges.
Let |Q| be the number of edges on this path. We use Õ(·) notation to hide polylogarithmic
factors in n. For a set of elements X and p ∈ [0, 1], let X[p] be the set obtained by sampling
each X-element independently with probability p.

For a given (possibly) weighted graph G and integer t, a subgraph H ⊆ G is a t-spanner if
distH(u, v) ≤ t · distG(u, v) for every u, v ∈ V . Our constructions use the following algorithm
as a subroutine, mainly for t = O(log n).

5 I.e., in our constructions, the graph G provided as input to Theorem 1.6 is in fact a net graph G′ of
some base graph G.

ICALP 2023

85:8 New Additive Emulators

▶ Lemma 1.7 ([6]). For every n-vertex (possibly weighted) graph G and a given integer
k ≥ 1, one can compute a (2k − 1)-spanner H ⊆ G with |H| ≤ n1+1/k edges.

▶ Theorem 1.8 ([19]). For every n-vertex unweighted graph G and a given integer k ≥ 1,
one can compute an emulator H with Õ(n1+1/(2k+1−1)) edges, such that for every u, v ∈ V ,
it holds that distG(u, v) ≤ distH(u, v) ≤ distG(u, v) + (distG(u, v))1−1/k .

Roadmap. In Sec. 2, we present a simple approach to recover the state-of-the-art bound
of +Õ(n1/4) additive emulator. Sec. 3 provides an improved emulator construction for the
entire regime, proving Theorem 1.5 and consequently also Thm. 1.3. Finally, in Sec. 4 we
provide the proof of the key result, Thm. 1.2.

2 Warmup: +Õ(n1/4) Linear Emulators

We start by presenting a simple construction of linear size +Õ(n1/4)-emulators, which uses
the following theorem for weighted additive spanners by [4] (recently improved by [12]).

▶ Theorem 2.1 (Theorem 3 in [4]). Any n-vertex weighted graph G = (V, E, ω) with max
edge weight W admits a +8W additive spanner H ⊆ G with O(n4/3) edges.

Algorithm. The algorithm for computing +Õ(n1/4)-emulator has two steps. The first step
computes a O(log n)-multiplicative spanner H1 ⊆ G, which as we show later handles the
short distances in G. The second step computes a net graph G′ = (V ′, E′, ω′) defined over a
sampled subset V ′ = V [p] for p = log n/n1/4. The edge set E′ consists of all pairs in V ′ × V ′

whose distance in G is at most n1/4. The weights of the E′ are taken to be the G-distances.
Formally, E′ = {(x, y) ∈ V ′×V ′ | distG(x, y) ≤ n1/4} , ω((x, y)) = distG(x, y), ∀(x, y) ∈ E′ .

Note that, by definition, the maximum weight W ′ of G′ is O(n1/4). The algorithm then
applies Theorem 2.1 to compute +8W ′ emulator H2 for G′. The output emulator is given by
H = H1 ∪H2. This completes the description of the algorithm.

The size analysis is immediate as w.h.p. |V ′| = O(n3/4 log n) and thus by Theorem 2.1
|H2| = Õ(n). We now consider the stretch argument. Fix u, v ∈ V . Assume first that
distG(u, v) ≤ c · n1/4 for some constant c. Then, by including the O(log n)-multiplicative
spanner H1, we have that distH(u, v) = O(n1/4 log n), as desired.

Consider the complementary case where distG(u, v) > c · n1/4, and let P be a u-v
shortest path in G. Let P ′, P ′′ be the n1/4-length prefix (resp., suffix) of P . By the
Chernoff bound, w.h.p., we have that there exists a sampled vertex u′ ∈ P ′ ∩ V ′ and
v′ ∈ P ′′ ∩ V ′. By the previous argument (for short distances), it remains to show that
distH(u′, v′) ≤ distG(u′, v′) + O(n1/4 · log n).

Observe that since every n1/4-length consecutive segment on P contains, w.h.p., a sampled
vertex in V ′, we have that distG′(u′, v′) = distG(u′, v′). By the properties of H2, we then
have that distH2(u′, v′) ≤ distG′(u′, v′) + 8W ′ = distG(u′, v′) + 8n1/4. Overall, we have

distH(u, v) ≤ distH1(u, u′) + distH2(u′, v′) + distH1(v′, v)
≤ O(log n)(distG(u, u′) + distG(v′, v)) + distG(u′, v′) + 8n1/4

= distG(u, v) + O(n1/4 · log n) .

S. Kogan and M. Parter 85:9

3 New Weighted Additive Emulators

3.1 The Core Construction
We start by presenting the key construction which for n-vertex weighted graphs provides
emulators with +O(WD) stretch and with O(n4/3/f(D)) edges, for some monotone increasing
function f(·). These emulators serve the basis for improved emulator constructions in wide
range of parameters, and in particular computing linear emulators with improved additive
stretch +n0.222. We show:

▶ Theorem 3.1. There is an algorithm SuperLinEmulator that given any n-vertex graph
G = (V, E, ω) with maximum weight W , and integers k ≥ 2, D ≥ 1 computes a +O(WD)
emulator H of size Õ

(
n1+1/(2k+1−1) + n4/3

D4/3+2/(3k)

)
.

We start by presenting the two main tools used by Algorithm SuperLinEmulator.

Tool I: Weighted Near-Additive Emulator. We used the following adaptation of the Thorup
and Zwick emulators to the weighted setting. An adaptation for universal emulators has
been recently provided by Elkin, Gitlitz and Neiman [13]. In the full version, we show:

▶ Lemma 3.2. There is an algorithm WeightedTZEmulator that for any n-vertex graph
G = (V, E, ω) with maximum weight W , and any fixed integer k ≥ 2 computes an +f(d)
emulator H of size O(n1+1/(2k+1−1)), where f(d) = d + O(d1−1/k ·W 1/k) for any distance
d > W , and f(d) = d + O(W) for d ≤W .

Tool II: Light Initialization. A t-light initialization of a weighted graph G = (V, E, ω),
introduced by Ahmed et al. [4], is a subgraph H ⊆ G obtained by including the t lightest
edges incident to each vertex v (or all its edges when deg(v) ≤ t). Edge weight ties can be
broken arbitrarily; Let Initialization be the algorithm that given the graph G and a parameter
t, outputs the t-light initialization subgraph H. We say that v is a t-light neighbor of u if
the edge (u, v) is among the t-lightest edges incident on u.

▶ Theorem 3.3 (Theorem 5 in [4]). Let G = (V, E, ω) be an undirected weighted graph and
let H = Initialization(G, t) for some input integer t. Then, for every shortest path Pu,v that
is missing ℓ edges in H (i.e., |Pu,v \H| = ℓ), there is a set of vertices S ⊆ V such that (i)
|S| = Ω(t · ℓ) and (ii) for every a ∈ S, there is a vertex b ∈ Pu,v satisfying that a is a t-light
neighbor of b.

Tool III: Algorithm Net. Given an n-vertex weighted graph G = (V, E, ω) with maximum
edge weight W and a probability p ∈ (0, 1), the algorithm Net(G, p) outputs a graph
G′ = (V ′, E′, ω′), denoted as a net, defined as follows. Let V ′ = V [p] be a random
sample of V , obtained by sampling each v ∈ V independently with probability of p. Let
E′ = {(u, v) ∈ V ′×V ′ | distG(u, v) ≤ Θ(log n/p) ·W} and ω′((u, v)) = distG(u, v) for every
(u, v) ∈ E′. We use the following observation in our constructions:

▶ Observation 3.4. Let G′ = (V ′, E′, ω′) be the output net graph of Alg. Net(G, p) where
G = (V, E, ω) is an n-vertex graph with maximum edge weight W . Then w.h.p., the following
holds: (i) |V ′| = O(np log n), (ii) for every u, v ∈ V ′, distG′(u, v) = distG(u, v), and (iii) the
maximum edge weight of G′ is bounded by W ′ = Θ(W log n/p).

ICALP 2023

85:10 New Additive Emulators

Description of Alg. SuperLinEmulator. The algorithm has three main steps, each computes
an emulator graph H1, H2, H3 whose union provides the desired emulator. The first emulator
H1 is obtained by computing the weighted-variant of the Thorup-Zwick emulator using
Lemma 3.2. As we will see in the analysis, this would provide the desired stretch for short
distances. The second emulator H2 is obtained by computing the t-initialization of some net
graph G2 for t = n1/3/D(1+2/k)/3. The net G2 is defined by sampling a subset of vertices
V2 = V [p1] for p1 = 10 log n/D. The edges E2 of the net G2 are defined by connecting each
pair (u, v) ∈ V2×V2 provided that distG(u, v) ≤WD, every edge (u, v) in G2 is then weighted
by the G-distance between its endpoints. Finally, the last emulator graph H3 is obtained by
adding all the weighted edges between a sampled set V3 = V2[p2] for p2 = 10 log n/(t ·D1/k).
The weights are taken to be the G-distances between the endpoints. This completes the
algorithmic description.

Algorithm 1 SuperLinEmulator(G, k, D).

Input: Graph G = (V, E, ω) with maximum edge weight W , integers k, D.
Output: A +O(W ·D) emulator H of size Õ

(
n1+1/(2k+1−1) + n4/3

D4/3+2/(3k)

)
.

1. H1 ←WeightedTZEmulator(G, k) (using Lemma 3.2).
2. Let G2 = (V2, E2, ω2)← Net(G, p1) for p1 = 10 log n/D.
3. H2 ← Initialization(G2, t) for t = n1/3/D(1+2/k)/3 (using Thm. 3.3).
4. Let V3 ← V2[p2] for p2 = 10 log n/(t ·D1/k);
5. Set H3 ← (V3, V3 × V3, ω3) where ω3((u, v)) = distG(u, v) for every (u, v) ∈ H3.
6. Output H ← H1 ∪H2 ∪H3.

Size analysis. By Lemma 3.2, |H1| = O(n1+1/(2k+1−1)). By the Chernoff bound, w.h.p
|V2| = n · p1 and |H2| = t · |V2| = Õ

(
n4/3

D4/3+2/(3k)

)
. Finally, by the Chernoff bound, w.h.p,

|V3| = |V2| · p2, and as |H3| = |V3|2, we also get that |H3| = Õ
(

n4/3

D4/3+2/(3k)

)
.

Stretch analysis. We prove the following somewhat stronger lemma.

▶ Lemma 3.5. Let H ′ be an emulator for G with maximum edge weight W such that for any
u, v pair at G-distance at most WD, it holds that distH′(u, v) ≤ distG(u, v) + O(WD1−1/k).
Then, for every u, v ∈ V , it holds that distH′∪H2∪H3(u, v) ≤ distG(u, v) + O(WD).

By Lemma 3.2, we then have that distH1(u, v) ≤ distG(u, v) + O(WD1−1/k) for every u, v

pair at G-distance at most WD, hence by taking H ′ = H1, the stretch argument holds.

Proof of Lemma 3.5. Fix a pair u, v ∈ V and first consider the simpler case where
distG(u, v) ≤ WD. By the properties of H ′, distH′(u, v) ≤ O(WD). From now on, we
assume that distG(u, v) > WD. Let Pu,v be the u-v shortest path in G, and let u′, v′ be a
sampled vertex in V2 in the D/4-hop prefix (resp., suffix) of the path. By the above, we
have that distG(u, u′) ≤WD and distG(v′, v) ≤WD, and therefore H ′ provides an additive
+O(WD) term for each of these distances.

Our next goal is to bound the u′-v′ distance in H where u′, v′ ∈ V2. It is easy to see that
w.h.p., distG2(u′, v′) = distG(u′, v′), since each D-hop segment on the Pu,v path contains a
sampled vertex in V2. Let P ′ be a u′-v′ shortest path in G2. We distinguish between two
cases depending on the number of edges in P2 \H2.

S. Kogan and M. Parter 85:11

Case 1: |P ′\H2| ≤ D1/k. Each edge (x, y) in P ′ ⊆ G2 corresponds to an x-y shortest path
where distG(x, y) ≤WD. Using the H ′ emulator, we have that for each such edge (x, y) ∈ G2,
distH′(x, y) ≤ distG(u, v) + O(D1−1/k ·W). Since there are at most D1/k, the total additive
stretch introduced due to these edges is bounded by O(D1/k ·D1−1/k ·W) = O(WD), as
required. This is the critical point where we exploit the fact that the weighted edges of G2
correspond to short paths in G.

Case 2: |P ′ \ H2| > D1/k. We next turn to consider the case where H2 misses many
edges from P ′. Here we will exploit the expansion property guaranteed by the addition of the
t-light initialization. Let P1 (resp., P2) be a prefix (resp., suffix) of P ′ for which H2 misses
exactly D1/k/2. I.e., |Pi \H2| = D1/k/2 for i ∈ {1, 2}. By Theorem 3.3 the following claims
holds for every i ∈ {1, 2}: There exists a subset Si ⊆ V2 such that (i) |Si| = Ω(t ·D1/k) and
(ii) for every a ∈ Si, there is a vertex bi ∈ Pi such that a is t-light neighbor of bi. By the
value of p2, we get that w.h.p., there exists si ∈ Si ∩ V3 for every i ∈ {1, 2}. Therefore, the
emulator H3 contains the edge (s1, s2) with weight distG(s1, s2).

Since the maximum edge weight in G2 is at most W2 = WD, and (bi, si) ∈ H2, we have
that distH(b1, s1) + distH(s2, b2) = O(WD). By the triangle inequality,

distG(s1, s2) ≤ distG(b1, b2) + O(WD) . (3.1)

Since the segments P ′[u, b1] and P ′[b2, v], each has at most D1/k missing edges in H.
Therefore, by applying the argument for Case 1, we have:

distH(u, bi) ≤ distG(u, bi) + O(WD), for i ∈ {1, 2} . (3.2)

We are now ready to complete the stretch argument by showing:

distH(u′, v′) ≤ distH(u′, b1) + distH(b1, s1) + distH(s1, s2) + distH(s2, b2) + distH(b2, v′)
≤ distG(u′, b1) + distG(b1, b2) + distG(b2, v′) + O(WD) ,

where the inequalities follow by plugging Eq. (3.1,3.2), and using the fact that as (s1, s2) ∈ H3,
by the triangle inequality distH(s1, s2) = distG(s1, s2) ≤ distG(b1, b2) + O(WD). ◀

𝑣′𝑢′

𝑠2

𝑏1

𝑠1

𝑏2

𝑃1 𝑃2

Figure 1 An illustration for the stretch argument of Alg. SuperLinEmulator. Shown is a u′-v′ shortest
path P ′ ⊆ G2, the segments P1, P2 each containing D1/k/2 missing edges w.r.t H2. By the properties
of the t-initialization procedure, each these segments contains a vertex b1, b2 with at least one sampled
t-light neighbor, s1, s2. The added weighted edge (s1, s2) establishes the stretch guarantees.

ICALP 2023

85:12 New Additive Emulators

3.2 Improved Additive Emulators
Our improved additive stretch bounds are provided by using Theorem 3.1 with two sparsity
bounds determined by k = 2, 3. We have:

▶ Corollary 3.6. For any n-vertex graph G = (V, E) with max weight W , there exists a:
1. +O(W · n4/35) emulator of size Õ(n8/7), and
2. +O(W · n6/35) emulator of size Õ(n16/15).

Proof. (1) follows by setting k = 2 and D = n4/35 in Theorem 3.1, and (2) follows by setting
k = 3 and D = n6/35 in Theorem 3.1. ◀

Using these two emulator constructions, we show an improved stretch vs. size tradeoff in
almost the entire regime of interest.

Proof of Thm. 1.3 for 0 ≤ ϵ ≤ 1/15 and 3/37 ≤ ϵ ≤ 1/7. We describe Algorithm
ImprovedEmulator which given G = (V, E, ω) and ϵ ∈ [0, 1/15] ∪ (3/37, 1/7], computes the
desired emulator. The algorithm starts by computing a O(log n) multiplicative spanner H0,
which as always, takes care of the short distances in G. Next, the algorithm computes a net
graph G′ whose bounds depends on the value of ϵ, as follows. Define:

kϵ =
{

3, for ϵ ∈ [0, 1/15],
2, for ϵ ∈ (3/37, 1/7] .

(3.3)

Let nϵ = n(1−1/2kϵ+1)(1+ϵ) and q = n/nϵ. Then, the net graph G′ is obtained by applying
Alg. Net(G, p) for p = 10 log n/q. Finally, it applies Alg. SuperLinEmulator with the input
G′, kϵ and D = (nϵ)2kϵ/35. This results in the emulator H1. The output emulator is given by
H = H0 ∪H1.

Algorithm 2 ImprovedEmulator(G, ϵ).

Input: Graph G = (V, E, ω) with maximum weight W , ϵ ∈ [0, 1/15] ∪ (3/37, 1/7].
Output: +Õ(W · nf(ϵ)) emulator H of size Õ(n1+ϵ).
1. H0 ← MultSpanner(G, O(log n)).
2. Let nϵ = n(1−1/2kϵ+1)(1+ϵ) and q = n/nϵ (see Eq. (3.3)).
3. (G′ = (V ′, E′, ω′))← Net(G, p) for p = 10 log n/q.
4. H1 ← SuperLinEmulator(G′, kϵ, D) for D = (nϵ)2kϵ/35.
5. Output H0 ∪H1.

Analysis. We start with a stretch argument for a fixed pair u, v ∈ V . First, assume the
more interesting case where u′, v′ ∈ V ′. By the properties of H1, the additive stretch is:

Õ(D · q ·W) = Õ(nϵ)2kϵ/35 · n1/2kϵ+1
· nϵ(1/2kϵ+1−1) ·W) = Õ(W · nf(ϵ)) . (3.4)

Next assume that distG(u, v) ≤ W · q. By adding the multiplicative spanner H0,
we have distH0(u, v) ≤ O(Wq log n). Finally, assume that distG(u, v) ≥ Wq and let
u′, v′ ∈ V ′ be the closest sampled vertex to u (resp., v) on the u-v shortest path. W.h.p.,
distG(u, u′), distG(v, v′) ≤ Wq and therefore, distH0(u, u′), distH0(v, v′) ≤ O(Wq log n).
Since w.h.p. distG(u′, v′) = distG′(u′, v′), the stretch argument is completed by Eq. (3.4).
The size bound follows by plugging |H0| = Õ(n), and moreover, |H1| = Õ(n1+ϵ) by Corollary
3.6. We are now ready to complete the proof for the missing regimes.

S. Kogan and M. Parter 85:13

Complete proof of Thm. 1.3. For the range 1/7 ≤ ϵ ≤ 1/3, the proof follows by letting
H = SuperLinEmulator(G, k = 2, D) for D = n(1−3ϵ)/5. For the range 1/15 ≤ ϵ ≤ 3/37, the
proof follows by letting H = SuperLinEmulator(G, k = 3, D) for D = n(3−9ϵ)/14. ◀

4 +n0.222 Emulator of Linear Size

4.1 An Optimized Weighted Thorup-Zwick Emulator
In this section, we present an optimized variant of Thorup-Zwick that plays a key role in
the construction of our linear additive emulator. We prove the following theorem which in
particular implies Thm. 1.4.

▶ Theorem 4.1. For every n-vertex G = (V, E, ω) with maximum weight W , a constant
integer k ≥ 3, integer D ≥ 1 and p ∈ (0, 1), there is an Algorithm ImprovedTZEmulator for
computing an emulator H with additive stretch O(D1−1/(k−1) ·W log n/p) for any distance
d = O(D ·W log n/p). The size of H is bounded by

|H| = Õ

(
n

1+ 1
2k+1−1 + (n · p)1+ 1

2k−1 /

(
(1/p)

2k−2
(2k−1)k ·D

2k−2k

(2k−1)k(k−1)

))
.

We can also show interesting corollaries of Thm. 4.1 which demonstrate the sub-optimality
of the TZ construction for a wide-range of distances. For example, the following holds:

▶ Corollary 4.2. Every n-vertex unweighted graph G and given integer k ≥ 1 admits an
emulator H of size Õ(n1+1/(2k+1−1)) such that pairs at distances d ≥ nk2/2k have additive
stretch of O(d1−1/(k−1)).

This should be compared with the additive stretch of O(d1−1/k) provided by the TZ emulator
(which also marks the state-of-the-art bounds). Thus, while the original TZ emulator is
optimal for small distances as proven in [2], this optimality holds in a restricted range of
distances, especially for non-constant values of k, e.g., k = O(log log n). We now turn to
prove Thm. 4.1 which constitutes the key technical contribution in the linear emulator
construction.

Algorithm ImprovedTZEmulator. The algorithm starts by applying our weighted-variant
of the Thorup-Zwick emulator to obtain H1 ←WeightedTZEmulator(G, k), see Lemma 3.2.
Next, it computes a net G′ = Net(G, p) obtained by sampling each vertex in V into the net
G′ independently with probability p. By Obs. 3.4, we have that the maximum edge weight
G′ is bounded by W ′ = Θ(log n ·W/p). In addition, w.h.p. it also holds that the G′-distances
equal to the G-distances. The key technically involved step is in the computation of an
additional emulator that we denoted by H2 for G′. This emulator is computed by applying a
new variant of the TZ emulator which takes advantageous of the fact that each weighted
edge in G′ corresponds to some path in a prior graph G, and more specifically, that there is
a precomputed emulator (namely, H1) that handles short distances in G′.

The construction builds a hierarchy V = V1/2 ⊇ V1 ⊇ V3/2 ⊇ V2 ⊇ . . . ⊇ Vk−1/2, where
V(j+1)/2 ← Vj/2[qj] for every j ∈ {1, . . . , 2(k − 1)}. Note that in contrast to the classic TZ
emulator construction, our hierarchy has 2k − 1 levels: k − 1 integral levels V1, . . . , Vk−1 and
k “half”-levels V1/2, V3/2, . . . , Vk−1/2. Intuitively, the “half” levels represent an intermediate

ICALP 2023

85:14 New Additive Emulators

step that re-scales the extra-benefit obtained by the existence of the emulator H1 (that takes
care of short distances in G′). The definition of the sampling probabilities qj is somewhat
more involved compared to that of the classic construction. To define these probabilities, we
need the following function definitions, for every integer 0 ≤ i ≤ k:

h(i) = 1− 2i − 1
2k − 1 , f(i) = 2(2k − 1)i− 2k(2i − 1)− 2k + 2i

(2k − 1)k and g(i) = 2k − 2i

(2k − 1)k .

(4.1)

The probabilities qj for j ∈ {2i, 2i + 1} are chosen in order to satisfy the following, w.h.p.,
for every i ∈ {1, . . . , k − 1}:

|Vi| = Õ

(
nh(i) ·∆f(i) ·

(
W ′

W

)g(i)
)

and |Vi+1/2| = Õ

(
|Vi|/

(
∆(i−1)/k ·

(
W ′

W

)1/k
))

.

(4.2)

The sampling probabilities qj=2i for every i ∈ {1, . . . , k−1} have a simple to state expression:

q2i = Θ
(

log n

∆(i−1)/k ·
(

W ′

W

)1/k

)
. (4.3)

Let us give a concrete example for k = 4: For ease of notation, let Ŵ = W ′/W .
1. |V0.5| = n.

2. |V1| = Õ

(
n14/15 ·∆2/15 ·

(
Ŵ
)7/30

)
.

3. |V1.5| = Õ

(
|V1|/(Ŵ)1/4) = Õ(n14/15 ·∆2/15 ·

(
Ŵ
)7/30−1/4

)
.

4. |V2| = Õ

(
n12/15 ·∆6/15 ·

(
Ŵ
)1/5

)
.

5. |V2.5| = Õ
(
|V2|/(∆ · Ŵ)1/4

)
= Õ

(
n12/15 ·∆6/15−1/4 ·

(
Ŵ
)1/5−1/4

)
.

6. |V3| = Õ

(
n8/15 ·∆13/30 ·

(
Ŵ
)2/15

)
.

7. |V3.5| = Õ
(
|V3|/(∆2 · Ŵ)1/4

)
= Õ

(
n8/15 ·∆13/30−1/2 ·

(
Ŵ
)2/15−1/4

)
.

Given the qj ’s probabilities, the algorithm proceeds in a very similar manner to the TZ
emulator algorithm, with one main emphasis: There are k − 1 phases in which we add to
the emulator edges from the half -level Vi+1/2 to the next integral-level Vi+1. That is, no
edges are added between Vi+1 to Vi+1.5. For every i ∈ {0, . . . , k − 2} and every u ∈ Vi+0.5,
the algorithm computes a pivot pi+1(u) and a bunch Bi+0.5(u), as follows. The pivot pi+1(u)
is the closest6 vertex to u in the next integral-level, Vi+1. The bunch Bi+0.5(u) consists
of all vertices in Vi+0.5 that are strictly closer to u than its pivot pi+1(u). The edges in
{u}×Bi+0.5[u] are added to the emulator H2, weighted by their G′-distances (which by Obs.
3.4(ii) also equal to the G-distances). Finally, all edges between the vertices in the last-half
level Vk−0.5 are also added to H2. The output emulator is given by H1 ∪H2.

The analysis is deferred to the full version.

6 As usual, we can assume that the shortest-paths are unique.

S. Kogan and M. Parter 85:15

Algorithm 3 ImprovedTZEmulator(G, k, p, D).

Input: Graph G = (V, E, ω) with maximum weight W and parameters k ≥ 3, D ≥ 1,
p ∈ (0, 1).
Output: +O(D1−1/(k−1) ·W log n/p) emulator H for pairs at distance
d = O(D ·W log n/p)

1. H1 ←WeightedTZEmulator(G, k) (using Lemma 3.2), H2 ← ∅.
2. (G′ = (V ′, E′, ω′))← Net(G, p).
3. Set ∆ = D1/(k−1) and V0.5 = V .
4. For j ∈ {1, . . . , 2(k − 1)} do: V(j+1)/2 ← Vj/2[qj], where qj is defined based on Eq. (4.2).
5. For i = 0 to k − 2 do:

For every u ∈ Vi+0.5 do:
a. pi+1(u) = CLOSEST (Vi+1, u).
b. Bi+0.5(u)← {v ∈ Vi+0.5 | distG′(u, v) < dist(u, pi+1(u))}.
c. Bi+0.5[u]← Bi+0.5(u) ∪ {pi+1(u)}.
d. H2 ← H2 ∪ ({u} ×Bi+0.5[u]).

6. H2 ← H2 ∪ (Vk−0.5 × Vk−0.5) .
7. H = H1 ∪H2.

4.2 Improved Linear Emulators

This section is devoted to the proof of Theorem 1.2. Let ModifiedSuperLinEmulator be the
same algorithm as SuperLinEmulator only that we omit the computation of H1 in Step (1).
We next present Algorithm ImprovedLinearEmulator that computes the desired emulators, as
follows:

Algorithm 4 ImprovedLinearEmulator.

Input: An unweighted graph G = (V, E) on n vertices.
Output: +Õ(n2/9−1/1600) emulator H of size Õ(n).
1. H0 ← MultSpanner(G, k = O(log n)).
2. Set p1 = 10 log n/n1/32, p2 = 10 log n/n21/1060 and D = n723/4240.
3. (G1 = (V1, E1, ω1))← Net(G, p1).
4. H ′

1 ← ImprovedTZEmulator(G1, k = 4, p2, D = n723/4240) .
5. (G2 = (V2, E2, ω2))← Net(G1, p2).
6. H2 ← ModifiedSuperLinEmulator(G2, k = 3, D).
7. Output H0 ∪H ′

1 ∪H2.

Algorithm 5 ModifiedSuperLinEmulator(G, k, D).

1. Let G2 = (V2, E2, ω2)← Net(G, p1) for p1 = 10 log n/D.
2. H2 ← Initialization(G2, t) for t = n1/3/D(1+2/k)/3 (using Thm. 3.3).
3. Let V3 ← V2[p2] for p2 = 10 log n/(t ·D1/k);
4. Set H3 ← (V3, V3 × V3, ω3) where ω3((u, v)) = distG(u, v) for every (u, v) ∈ H3.
5. Output H ← H2 ∪H3.

ICALP 2023

85:16 New Additive Emulators

Size analysis. Clearly, |H0| = Õ(n). By Theorem 4.1, we have that:

|H ′
1| = Õ

(
(n · p1)1+ 1

24+1−1 + (n · p1 · p2)1+ 1
24−1 /

(
(1/p2)

24−2
(24−1)4 ·D

24−2·4
(24−1)4(4−1)

))
.

Therefore, |H ′
1| = Õ(n(1−1/32−21/1060)(16/15)−(21/1060)·(14/60)−(723/4240)·(8/(15·4·3))) = Õ(n1).

Finally, by the proof of Thm. 3.1, it holds that |H2| = O((|V2|)4/3/D4/3+2/(3k)). Therefore,

|H2| = (n · p1 · p2)4/3/D4/3+2/9 = Õ(n(1−1/32−21/1060)·(4/3)−(4/3+2/9)·(723/4240)) = Õ(n) .

Stretch analysis. Let W1 (resp. W2) be the maximum edge weight of G1 (reps., G2). By
Obs. 3.4, we have that W1 = Õ(1/p1) , W2 = Õ(W1 · (1/p2)). We show that the additive
stretch is O(W2 · D) = O(n2/9−1/1600). By Obs. 3.4, the G1-distances and G2-distances,
w.h.p., equal to the G-distances.
Case 1: Consider first a vertex pair u′, v′ ∈ V2, we shall compute the stretch argument for

the pair u′, v′. By Lemma 3.5 with H ′ = H ′
1 and W = W2 we have that the additive

stretch of the pair u′, v′ is given by:

Õ(D ·W2) = O(n2/9−1/1600) . (4.4)

Case 2: distG(u, v) ≤ W2. By adding the multiplicative spanner H0, distH0(u, v) ≤
O(W2 log n).

Case 3: distG(u, v) > W2. Let u′, v′ ∈ V2 be the closest sampled vertex to u (resp., v) on
the u-v shortest path in G. By the Chernoff bound, w.h.p., distG(u, u′), distG(v, v′) ≤W2
and therefore, by Case 2, distH0(u, u′), distH0(v, v′) ≤ O(W2 log n). By Obs. 3.4, w.h.p.,
distG(u′, v′) = distG2(u′, v′), and the stretch argument is completed by Eq. (4.4) of
Case 1.

References
1 Amir Abboud and Greg Bodwin. The 4/3 additive spanner exponent is tight. In Daniel Wichs

and Yishay Mansour, editors, Proceedings of the 48th Annual ACM SIGACT Symposium on
Theory of Computing, STOC 2016, Cambridge, MA, USA, June 18-21, 2016, pages 351–361.
ACM, 2016.

2 Amir Abboud, Greg Bodwin, and Seth Pettie. A hierarchy of lower bounds for sublinear
additive spanners. SIAM J. Comput., 47(6):2203–2236, 2018.

3 Abu Reyan Ahmed, Greg Bodwin, Faryad Darabi Sahneh, Keaton Hamm, Mohammad
Javad Latifi Jebelli, Stephen G. Kobourov, and Richard Spence. Graph spanners: A tutorial
review. Comput. Sci. Rev., 37:100253, 2020.

4 Abu Reyan Ahmed, Greg Bodwin, Faryad Darabi Sahneh, Stephen G. Kobourov, and Richard
Spence. Weighted additive spanners. In Isolde Adler and Haiko Müller, editors, Graph-
Theoretic Concepts in Computer Science – 46th International Workshop, WG 2020, Leeds,
UK, June 24-26, 2020, Revised Selected Papers, volume 12301 of Lecture Notes in Computer
Science, pages 401–413. Springer, 2020.

5 Donald Aingworth, Chandra Chekuri, Piotr Indyk, and Rajeev Motwani. Fast estimation of
diameter and shortest paths (without matrix multiplication). SIAM J. Comput., 28(4):1167–
1181, 1999.

6 Ingo Althöfer, Gautam Das, David P. Dobkin, and Deborah Joseph. Generating sparse
spanners for weighted graphs. In John R. Gilbert and Rolf G. Karlsson, editors, SWAT 90, 2nd
Scandinavian Workshop on Algorithm Theory, Bergen, Norway, July 11-14, 1990, Proceedings,
volume 447 of Lecture Notes in Computer Science, pages 26–37. Springer, 1990.

S. Kogan and M. Parter 85:17

7 Surender Baswana, Telikepalli Kavitha, Kurt Mehlhorn, and Seth Pettie. Additive spanners
and (alpha, beta)-spanners. ACM Trans. Algorithms, 7(1):5:1–5:26, 2010.

8 Greg Bodwin and Gary Hoppenworth. New additive spanner lower bounds by an unlayered
obstacle product. CoRR, abs/2207.11832, 2022. doi:10.48550/arXiv.2207.11832.

9 Greg Bodwin and Virginia Vassilevska Williams. Better distance preservers and additive
spanners. In Robert Krauthgamer, editor, Proceedings of the Twenty-Seventh Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2016, Arlington, VA, USA, January 10-12,
2016, pages 855–872. SIAM, 2016.

10 Gregory Bodwin and Virginia Vassilevska Williams. Very sparse additive spanners and
emulators. In Tim Roughgarden, editor, Proceedings of the 2015 Conference on Innovations
in Theoretical Computer Science, ITCS 2015, Rehovot, Israel, January 11-13, 2015, pages
377–382. ACM, 2015.

11 Dorit Dor, Shay Halperin, and Uri Zwick. All pairs almost shortest paths. In 37th Annual
Symposium on Foundations of Computer Science, FOCS ’96, Burlington, Vermont, USA,
14-16 October, 1996, pages 452–461. IEEE Computer Society, 1996.

12 Michael Elkin, Yuval Gitlitz, and Ofer Neiman. Improved weighted additive spanners. In Seth
Gilbert, editor, 35th International Symposium on Distributed Computing, DISC 2021, October
4-8, 2021, Freiburg, Germany (Virtual Conference), volume 209 of LIPIcs, pages 21:1–21:15.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

13 Michael Elkin, Yuval Gitlitz, and Ofer Neiman. Almost shortest paths with near-additive error
in weighted graphs. In Artur Czumaj and Qin Xin, editors, 18th Scandinavian Symposium and
Workshops on Algorithm Theory, SWAT 2022, June 27-29, 2022, Tórshavn, Faroe Islands,
volume 227 of LIPIcs, pages 23:1–23:22. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2022.

14 Michael Elkin and Shaked Matar. Ultra-sparse near-additive emulators. In Avery Miller, Keren
Censor-Hillel, and Janne H. Korhonen, editors, PODC ’21: ACM Symposium on Principles of
Distributed Computing, Virtual Event, Italy, July 26-30, 2021, pages 235–246. ACM, 2021.

15 Michael Elkin and David Peleg. (1+epsilon, beta)-spanner constructions for general graphs.
In Jeffrey Scott Vitter, Paul G. Spirakis, and Mihalis Yannakakis, editors, Proceedings on 33rd
Annual ACM Symposium on Theory of Computing, July 6-8, 2001, Heraklion, Crete, Greece,
pages 173–182. ACM, 2001.

16 Shang-En Huang and Seth Pettie. Lower bounds on sparse spanners, emulators, and diameter-
reducing shortcuts. SIAM J. Discret. Math., 35(3):2129–2144, 2021. doi:10.1137/19M1306154.

17 Kevin Lu, Virginia Vassilevska Williams, Nicole Wein, and Zixuan Xu. Better lower bounds
for shortcut sets and additive spanners via an improved alternation product. In Joseph (Seffi)
Naor and Niv Buchbinder, editors, Proceedings of the 2022 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2022, Virtual Conference / Alexandria, VA, USA, January 9–12, 2022,
pages 3311–3331. SIAM, 2022.

18 Seth Pettie. Low distortion spanners. In Lars Arge, Christian Cachin, Tomasz Jurdzinski,
and Andrzej Tarlecki, editors, Automata, Languages and Programming, 34th International
Colloquium, ICALP 2007, Wroclaw, Poland, July 9-13, 2007, Proceedings, volume 4596 of
Lecture Notes in Computer Science, pages 78–89. Springer, 2007.

19 Mikkel Thorup and Uri Zwick. Spanners and emulators with sublinear distance errors. In
Proceedings of the Seventeenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2006, Miami, Florida, USA, January 22-26, 2006, pages 802–809. ACM Press, 2006.

20 David P. Woodruff. Lower bounds for additive spanners, emulators, and more. In 47th Annual
IEEE Symposium on Foundations of Computer Science (FOCS 2006), 21-24 October 2006,
Berkeley, California, USA, Proceedings, pages 389–398. IEEE Computer Society, 2006.

ICALP 2023

https://doi.org/10.48550/arXiv.2207.11832
https://doi.org/10.1137/19M1306154

Nearly-Linear Time LP Solvers and Rounding
Algorithms for Scheduling Problems
Shi Li # Ñ

State Key Laboratory for Novel Software Technology, Nanjing University, China

Abstract
We study nearly-linear time approximation algorithms for non-preemptive scheduling problems in two
settings: the unrelated machine setting, and the identical machine with job precedence constraints
setting, under the well-studied objectives such as makespan and weighted completion time. For
many problems, we develop nearly-linear time approximation algorithms with approximation ratios
matching the current best ones achieved in polynomial time.

Our main technique is linear programming relaxation. For the unrelated machine setting,
we formulate mixed packing and covering LP relaxations of nearly-linear size, and solve them
approximately using the nearly-linear time solver of Young. For the makespan objective, we develop
a rounding algorithm with (2 + ϵ)-approximation ratio. For the weighted completion time objective,
we prove the LP is as strong as the rectangle LP used by Im and Li, leading to a nearly-linear time
(1.45 + ϵ)-approximation for the problem.

For problems in the identical machine with precedence constraints setting, the precedence
constraints can not be formulated as packing or covering constraints. To achieve the nearly-linear
running time, we define a polytope for the constraints, and leverage the multiplicative weight update
(MWU) method with an oracle which always returns solutions in the polytope.

2012 ACM Subject Classification Theory of computation → Scheduling algorithms

Keywords and phrases Nearly-Linear Time, Sheduling, Approximation Algorithms

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.86

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2111.04897

Funding Shi Li: Part of the work was supported by NSF-grant CCF-1844890.

1 Introduction

Scheduling theory is an important sub-area of combinatorial optimization, operations research
and approximation algorithms. Over the past few decades, advanced techniques have been
developed to design approximation algorithms for numerous scheduling problems, among
which mathematical relaxation is a prominent one. The algorithms based on the technique
follow a two-step framework: solve some linear/convex/semi-definite programming relaxation
for the problem to obtain a fractional schedule, and round it into an integral one. The main
focus of the algorithm design in the literature has been the best approximation ratios that
can be achieved in polynomial time. Many of the LPs used have size much larger than that
of the input, and a general convex/semi-definite program requires a large polynomial time to
solve, making these algorithms impractical.

To overcome the running time issue, we design approximate LP-based scheduling al-
gorithms that run in nearly-linear time. We focus on two well-studied non-preemptive
scheduling settings:
1. Unrelated machine setting. We are given a set J of n jobs, a set M of m machines, a

bipartite graph G = (M, J, E) between M and J , and a processing time pij ∈ Z>0 for
every ij ∈ E, indicating the time it takes to process job j on machine i. If ij /∈ E, then

EA
T
C
S

© Shi Li;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 86; pp. 86:1–86:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shili@nju.edu.cn
https://tcs.nju.edu.cn/shili/ \protect \@normalcr \relax Department of Computer Science and Engineering, University at Buffalo, NY, USA
https://orcid.org/0000-0001-9140-9415
https://doi.org/10.4230/LIPIcs.ICALP.2023.86
https://arxiv.org/abs/2111.04897
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

86:2 Nearly-Linear Time LP Solvers and Rounding Algorithms for Scheduling Problems

the job j can not be processed on machine i. The output of a problem in this setting
is an assignment σ ∈ MJ of jobs to machines so that σjj ∈ E for every j ∈ J . This
indicates that we process the job j on machine σj .

2. Identical machine with job precedence constraints setting. In this setting, we
are given a set J of n jobs, each job j ∈ J with a processing time pj ∈ Z≥0, and the
number m ≥ 1 of identical machines. There are precedence constraints of the form j ≺ j′,
indicating that the job j′ can only start after job j completes. The output of a problem
in the setting is a completion time vector (Cj)j∈J ∈ ZJ

≥0, meaning that a job j ∈ J

is processed during the time interval (Cj − pj , Cj]. We need Cj ≥ pj for every j ∈ J ,
Cj ≤ Cj′ − pj′ for every j ≺ j′, and every integer t ≥ 1 is contained in (Cj − pj , Cj] for
at most m jobs j ∈ J .1

The main objective function we focus on is weighted completion time: We are additionally
given a weight wj ∈ Z>0 for every job j ∈ J , and the goal of the problem is to minimize∑

j∈J wjCj , where Cj is the completion time of j on its assigned machine. For the second
setting, this is explicitly given by the output. For the first setting, given the assignment
σ ∈MJ of jobs to machines, it is well-known that the Smith’s rule2 gives the optimum order
on each machine i. For the first setting, we also consider the objective of minimizing the
makespan, which is defined as maxi

∑
j∈σ−1(i) pij , i.e., the maximum load over all machines.

It is convenient for us to use the classic three-field notation α|β|γ in [19] to denote schedul-
ing problems studied in this paper.3 The makespan and weighted completion time minimiz-
ation problems in the unrelated machine setting are denoted as R||Cmax and R||

∑
j wjCj

respectively. The problem to minimize weighted completion time in the identical machine
with job precedence constraint setting is denoted as P |prec|

∑
j wjCj . We will also consider

special cases of the problem, and give their notations when we discuss them.
There is a rich literature on designing approximation algorithms for these problems. For

the unrelated makespan minimization problem, i.e., R||Cmax, the classic result of Lenstra,
Shmoys and Tardos [32] gives a 2-approximation, which remains the state-of-the-art result.
The problem is NP-hard to approximate within a factor of better than 1.5. Plotkin, Shmoys
and Tardos [39] studied fast approximation algorithms for the problem, as an application of
their packing and covering LP solver. They developed a randomized (2 + ϵ)-approximation
algorithm in time Õϵ(mn).4 So their algorithm is nearly-linear if |E| = Θ(mn). Much work
on the problem has focused on a special setting called the restricted assignment setting
[49, 24, 25], where there is an intrinsic size pj ∈ Z>0 for every j ∈ J , and for every ij ∈ E

we have pij = pj .
For the unrelated machine weighted completion time problem, i.e., R||

∑
j wjCj , many

independent rounding algorithms achieve an approximation ratio of 1.5 [42, 47, 43, 35].
Bansal, Svensson and Srinivasan [5] showed that the barrier of 1.5 is inherent for this type of
algorithms. To overcome the barrier, they developed a novel dependent rounding scheme

1 It is a folklore that if the last property is satisfied, we can assign {(Cj − pj], j ∈ [J]} to m machines so
that the intervals assigned to each machine are disjoint.

2 By this rule, we schedule jobs j assigned to a machine i using non-decreasing order of pij/wj .
3 In the notation, α indicates the machine model, β gives the set of additional constraints, and γ is the

objective. α = R and α = P denote the unrelated and identical machine settings respectively, and
prec ∈ β indicates that jobs have precedence constraints. γ = Cmax and γ =

∑
j

wjCj denote the
makespan and weighted completion time objectives respectively.

4 In this paper, we use Õϵ(·) to hide a factor that is poly-logarithmic in the input size of the instance
being considered, which will be clear from the context, and polynomial in 1/ϵ, where ϵ is a precision
parameter. An algorithm is nearly-linear if its running time is Õϵ(input size).

S. Li 86:3

and a lifted SDP relaxation for the problem, leading to a (1.5− 1/2160000)-approximation
algorithm. The ratio has been improved to 1.5 − 1/6000 by Li [35], to 1.488 by Im and
Shadloo [23] and to the current best ratio of 1.45 by Im and Li [22]. The three subsequent
works are based on the rectangle LP relaxation for the problem.

There is a vast literature on the problem of minimizing weighted completion time in the
identical machine with job precedence constraints setting, i.e., the problem P |prec|

∑
j wjCj .

A special case of the problem where there is only one machine (i.e., m = 1), denoted as
1|prec|

∑
j wjCj , is already non-trivial. Hall et al. [20] developed a 2-approximation for the

problem, which is the best possible under some stronger version of the unique game conjecture
introduced by Bansal and Khot [4]. Another special case that is considered moderately in
the literature is when all jobs have unit-size, denoted as P |prec, pj = 1|

∑
j wjCj . Munier,

Queyranne and Schulz [37] gave approximation ratios of 3 and 4 for the special case and
the general problem P |prec|

∑
j wjCj respectively. The ratios were improved to 1 +

√
2 and

2 + 2 ln 2 by Li [35]. Most algorithms [20, 37, 41, 35] for P |prec|
∑

j wjCj and the two special
cases use the following framework: Solve some linear/convex program to obtain an order of
the jobs respecting the precedence constraints. For every job in this order, schedule it as
early as possible, without violating the precedence and m-machine constraints.

Most of the results we discussed focused on optimizing the approximation ratios with
polynomial time algorithms. Albeit being polynomial, the running times in these results are
often very large. For LP-based algorithms, this may be caused by two factors. First, the
size of an LP might already be large w.r.t the input size. Consider a typical time-indexed
LP relaxation in the unrelated machine setting, one need a variable for every triple ijs

with ij ∈ E and s being the starting time. Assuming the number of possible starting times
is linear in n, the number of variables in the LP is already Θ(n|E|); the size of the LP
can only be bigger. Second, these algorithms often use a general LP solver, which has a
large running time w.r.t the size of the LP. There is a vast literature in recent years on
designing exact and approximate general LP solvers. Here we could only include a few
representative results. To solve a linear program with n̄ variables, m̄ constraints and N̄

non-zero coefficients up to a precision of ϵ, Lee and Sidford [29] developed an algorithm
with running time Õ

(
(N̄ + m̄2)

√
m̄ log 1

ϵ

)
. Lee, Song and Zhang [30] gave an algorithm

with running time Õ(n̄ω log 1
ϵ),5 where ω ≈ 2.373 is the current best exponent for matrix

multiplication. Brand, Lee, Sidford and Song [8] provided a Õ(m̄n̄ + n̄3) time randomized
algorithm that solves the LP exactly with high probability; the running time is nearly linear
if the constraint matrix is dense and tall. However, to solve general linear programs, these
running times are at least quadratic, even if the LP has a linear size. Convex or semi-definite
programming based algorithms need to solve the CP/SDP using the interior point or ellipsoid
methods, which are often time-consuming.

1.1 Our Results
To overcome the above issue, we design approximation algorithms for scheduling problems,
that run in nearly-linear time, i.e., in time Õϵ(input size). So, up to a poly(log n, 1/ϵ)-factor,
our running times are the best possible. Some of the algorithms we developed have been
studied empirically [2]. In the unrelated machine setting, G = (M, J, E) denotes the bipartite
graph between M and J , and a nearly-linear time is of order Õϵ(|E|). For the identical
machine with precedence constraints setting, we use κ to denote the number of precedence

5 The result requires that the LP does not have redundant constraints.

ICALP 2023

86:4 Nearly-Linear Time LP Solvers and Rounding Algorithms for Scheduling Problems

constraints. A nearly-linear time algorithm runs in time Õϵ(n + κ). Unlike the polynomial
running time scenario, we can not assume ≺ is transitive, as it may dramatically increase
the number of precedence constraints to quadratic. Moreover, the best known algorithm
computing the transitive closure of the precedence constraints takes O(nκ) time [40].

For many problems, including R||Cmax, R||
∑

j wjCj , 1|prec|
∑

j wjCj and P |prec, pj =
1|

∑
j wjCj , our nearly-linear time algorithms achieve the correspondent best known

polynomial-time approximation ratios, due to Lenstra, Shmoys and Tardos [32], Im and
Li [22], Hall et al. [20], and Li [35] respectively.

▶ Theorem 1.1. For any ϵ > 0, there is a Õϵ(|E|)-time (2 + ϵ)-approximation algorithm for
R||Cmax, i.e., the makespan minimization problem on unrelated machines.

For the problem R||
∑

j wjCj , we believe that showing that the rectangle LP can be
approximated in nearly-linear time is interesting on its own. So we give two theorems for the
problem. Refer to LP(6) for the formal description of the rectangle LP for the problem.

▶ Theorem 1.2. Consider an instance of R||
∑

j wjCj and the rectangle LP (6) for the
instance. Let ϵ > 0 and lp(6) be the value of the LP. Then in Õϵ(|E|) time, we can construct
a solution z to the LP such that:

z satisfies all the constraints in the LP, except that the constraint at most one job is
processed on any machine at any time may be violated by a factor of 1 + ϵ. (Formally,
Constraint (8) is only satisfied with the right-side replaced by 1 + ϵ.)
The value of z to the LP is at most (1 + ϵ)lp(6).

In the theorem, our z will be represented by the list of non-zero coordinates and their
values. Then, we show that the rounding algorithm of Im and Li [22] can indeed run in time
nearly-linear on the support size of the LP solution. This gives the following theorem.

▶ Theorem 1.3. For any ϵ > 0, there is a Õϵ(|E|)-time (1.45+ϵ)-approximation algorithm for
R||

∑
j wjCj , i.e., the weighted completion time minimization problem on unrelated machines.

The following two theorems are for 1|prec|
∑

j wjCj and P |prec, pj = 1|
∑

j wjCj .

▶ Theorem 1.4. For any ϵ > 0, there is a Õϵ((n + κ) log pmax)-time (2 + ϵ)-approximation
algorithm for 1|prec|

∑
j wjCj , i.e., the weighted completion time problem on a single machine

with precedence constraints, where pmax := maxj∈J pj is the maximum job size.

So the algorithm runs in nearly-linear time only when pmax is polynomially bounded.

▶ Theorem 1.5. For any ϵ > 0, there is a Õϵ(n+κ)-time (1+
√

2+ϵ)-approximation algorithm
for P |prec, pj = 1|

∑
j wjCj , i.e., the weighted completion time problem on identical machines

with unit-size jobs and precedence constraints.

Along the way of algorithm design for the identical machine with precedence constraints
setting, we developed a nearly-linear time (1 + ϵ)-approximation algorithm for the single
commodity network flow problem in directed acyclic graphs, with bounded supplies and
demands on sources and sinks, but infinite capacities on edges.

Recently there has been a lot of progress on solving maximum flow problem on undirected
and directed graphs. For undirected graphs, the problem can be approximated within a factor
of 1 + ϵ in nearly-linear time [26, 38, 45], and solved exactly with a slightly weaker running
time of m1+o(1) (this is called almost-linear time) [7]. It was open whether an almost-linear

S. Li 86:5

running time can be achieved for solving maximum flow on directed graphs.6 This was
resolved in the affirmative by a recent breakthrough due to Chen et al. [14]: They developed
an algorithm that computes exact maximum flows on directed graphs with polynomially
bounded integral capacities in m1+o(1) time. Thus, we could use the result as a black-box
for our problem, if we allow the running time to be almost-linear. Nevertheless as our theme
is to design nearly-linear time algorithms, we include in the full version of the paper our
approximate maximum-flow algorithm for the special case with this running time. To the
best of our knowledge, this was not known before.

For the general precedence-constrained scheduling problem P |prec|
∑

j wjCj (on multiple
machines with variant job lengths), we achieve an O(1)-approximation algorithm in nearly-
linear time. However, the approximation ratio of the algorithm is 6 + ϵ, which is worse than
the best polynomial-time ratio of 2 + 2 ln 2 due to Li [35].

▶ Theorem 1.6. For any ϵ > 0, there is a Õϵ((n + κ) log pmax)-time (6 + ϵ)-approximation
algorithm for P |prec|

∑
j wjCj, i.e., the weighted completion time minimization problem on

identical machines with precedence constraints, where pmax := maxj∈J pj is the maximum
job size.

1.2 Our Techniques
All of our algorithms are based on linear programming: We design an LP relaxation of
nearly-linear size, solve it in nearly-linear time to obtain a (1 + ϵ)-approximate solution, and
round the solution into an integral schedule in nearly-linear time.

For R||Cmax, the natural LP relaxation has O(|E|) size, and the mixed packing and
covering form. Thus it can be solved within a factor of 1 + ϵ by the algorithm of Young [51]
in Õϵ(|E|) time. In particular, the algorithm outputs a (1 + ϵ)-approximate solution that
violates the constraints by a factor of 1± ϵ, in O

(
N̄ log m̄

ϵ2

)
= Õϵ(N̄) time, where m̄ and N̄

are the number of constraints and non-zero coefficients in the LP respectively. To round
the fractional solution, we apply the grouping technique of [46] for the so called generalized
assignment problem, but with a (1 + ϵ)-slack. This gives us a bipartite graph H = (V, J, EH)
satisfying |NH(J ′)| ≥ (1 + ϵ)|J ′| for every J ′ ⊆ J , where NH(J ′) is the set of neighbors of
J ′ in H. This allows us to find a matching in H that covers J in nearly-linear time, which
leads to a (2 + ϵ)-approximate solution, matching the current best approximation of 2 in
[32]. We remark that the Õϵ(mn)-running time of [39] comes from both solving the LP, and
rounding the LP solution. So even with the nearly-linear time mixed covering and packing
LP solver, the algorithm of [39] still requires Õϵ(mn) time.

For the problem R||
∑

j wjCj , we give a nearly-linear size mixed packing and covering
LP that (up to a factor of 1 + O(ϵ)) is equivalent to the rectangle LP used by Li [35], Im
and Shadloo [23], Im and Li [22]. In the rectangle LP, there is a variable xijs indicating if a
job j is scheduled on the machine i and has starting time s, and constraints that at most
one job is processed at any time on any machine. To reduce the size of the LP to Õϵ(|E|),
we partition the time horizon into windows, with lengths geometrically increasing by a factor
of 1 + ϵ. We distinguish between two types of scheduling intervals: If a job is scheduled
within a window on some machine i (we call this an inside-window interval), then we do not
need to capture the precise location of the scheduling interval. On the other hand, if the job

6 By repeatedly solving maximum flow instances on residual graphs, one can convert an approximate
maximum flow algorithm on directed graphs to an exact algorithm, without much loss on the running
time. So for directed graphs, allowing (1 + ϵ)-approximation does not give much advantage.

ICALP 2023

86:6 Nearly-Linear Time LP Solvers and Rounding Algorithms for Scheduling Problems

starts and ends at two different windows (we call the interval an cross-window interval), we
will approximately capture its starting and ending times. To do so, we divide each window
into 1/ϵ sub-windows, and let the LP variables capture the two sub-windows containing the
starting and completion times. In the LP, we require all the cross-window intervals incur a
congestion of 1: any point t is covered by at most 1 fraction of cross-window intervals. Then
we require the total volume of jobs processed inside each window is at most its length. We
show that up to a factor of 1 + O(ϵ), a solution to the LP can be converted to one for the
rectangle LP with no large cost. Roughly speaking, the width of window is small compared to
its position and so we do not need to know the precise location of an inside-window-interval.
For a cross-window-interval, we may incur an error on its length that is about ϵ times the
total length of its starting window and ending window. As a sub-window has a small length,
and a cross-window-interval covers some window-boundary, the total error incurred will also
be small.

We proceed to our techniques for the weighted completion time problems in the identical
machine with precedence constraints setting, i.e., the problem P |prec|

∑
j wjCj and its

special cases. Due to the precedence constraints, the LP relaxations do not have the mixed
packing and covering form anymore. Nevertheless, the multiplicative weight update (MWU)
framework can still be applied. We enclose the precedence constraints in a polytope Q. In
each iteration of the MWU framework, we guarantee that all these constraints are satisfied,
i.e., the vector we obtain is in Q. Other than the precedence constraints, we have Õϵ(log pmax)
packing inequalities correspondent the m-machine constraint. This is due to that we can
round completion times to integer powers of 1 + ϵ.

The number of iterations the MWU framework takes is Õϵ(m̄), where m̄ is the number
of packing constraints in the LP, without counting the constraints for Q. Fortunately we
have m̄ = Õϵ(log pmax). To obtain the claimed Õϵ((n + κ) log pmax) time, we need to run
each iteration of MWU in nearly-linear time. The bottleneck comes from finding a vector
in Q satisfying one aggregated packing constraint, that maximizes a linear objective with
non-negative coefficients.

A key technical contribution of our paper is an oracle for the problem. For an appropriately
defined directed acyclic graph G = (V, E), the polytope Q can be formulated as {y ∈ [0, 1]V :
yv ≤ yu, ∀vu ∈ E}. For two given row vectors a, b ∈ RV

≥0, the aggregated LP in each
iteration of MWU is: max ay subject to y ∈ Q and by ≤ 1. Using LP duality, the problem
is reduced to the special single commodity maximum flow problem we introduced: We have
bounded supplies and demands on sources and sinks, but infinite capacities on edges. When
allowing a (1 + ϵ)-approximation for the scheduling problem, we need to find a flow whose
value is at least the maximum value for the instance with sink capacities scaled by 1

1+ϵ . This
is done by our nearly-linear time maximum-flow algorithm for the special case.

1.3 Other Related Work
The makespan minimization problem in the identical machine setting with precedence con-
straints, i.e., the problem P |prec|Cmax, is another classic problem in scheduling theory. The
seminal work of Graham [18] gives a simple greedy algorithm that achieves a 2-approximation.
On the negative side, Lenstra and Rinnooy Kan [31] proved a (4/3 − ϵ)-hardness for the
problem. Under the stronger version of the Unique Game Conjecture (UGC) introduced by
Bansal and Khot [4], Svensson [48] showed that the problem is hard to approximate within a
factor of 2− ϵ for any ϵ > 0. Much work has focused on the special case where m = O(1) and
all jobs have size 1 [33, 17, 34], for which obtaining a PTAS is a long-standing open problem.

S. Li 86:7

The multiplicative weight update (MWU) method for solving linear programs has played
an important role in a wide range of applications. Some of its foundational work can be
found in a beautiful survey by Arora, Hazan and Kale [3]. There has been a vast literature
on solving packing, covering, and mixed packing and covering LPs approximately to a factor
of 1 + ϵ using iterative methods [44, 39, 36, 50, 16, 28, 27, 51, 1, 13]. In particular, to solve a
mixed packing and covering LP with n̄ variables, m̄ constraints and N̄ non-zero coefficients,
the algorithm of Young [51] returns (1 + ϵ)-approximation deterministically in O

(
N̄ ln m̄

ϵ2

)
time. The dependence on ϵ has been improved slightly by Chekuri and Quanrud [13],
who gave a randomized algorithm with running time Õ

(
N̄
ϵ + m̄

ϵ2 + n̄
ϵ3

)
, where Õ(·) hides a

poly-logarithmic factor.
There has been a recent surge of interest in designing fast or nearly-linear time approxim-

ation algorithms for combinatorial optimization problems [11, 12, 9, 15, 34, 6].

Organization. The rest of the paper is organized as follows. In Section 2, we define some
elementary notations used across the paper, and describe the result of Young [51] on solving
mixed packing and covering LPs, and a template solver for packing LPs over an “easy”
polytope. In Sections 3 and 4, we present our results for R||Cmax and R||

∑
j wjCj . Due

to the page limit, we leave our algorithms for P |prec|
∑

j wjCj and the two special cases
1|prec|

∑
j wjCj and P |prec, pj = 1|

∑
j wjCj to the full version of the paper. The full version

also contains other technicalities, such as how to handle the case where input integers are
not polynomially bounded, how to reduce problems to the promise versions and how to use
the self-balancing binary search tree data structure to run a list scheduling algorithm.

2 Preliminaries

We use bold lowercase letters to denote vectors, and their correspondent italic letters to
denote their coordinates. We use bold uppercase letters to denote matrices. 0 and 1 are used
to denote the all-0 and all-1 vectors whose domain can be inferred from the context. Given a
template vector v over some finite domain, and a subset S of the domain, let v(S) :=

∑
e∈S ve

be the sum of v-values over elements in S.
Given an (undirected) graph H = (VH , EH), we use δH(v), NH(v), δH(U), NH(U) to

respectively denote the sets of incident edges of v ∈ VH , neighbors of v, edges between the
set U ⊆ VH and VH \U , and vertices in VH \U with at least one neighbor in U , in the graph
H. Given a directed graph H = (VH , EH), for every v ∈ VH , we use δ+

H(v) and δ−
H(v) to

denote the sets of outgoing and incoming edges of v respectively. For every U ⊆ VH , let
δ+

H(U) := {uv ∈ EH : u ∈ U, v /∈ U} and δ−
H(U) := {uv ∈ EH : u /∈ U, v ∈ U} be the sets of

edges from U to VH \U and from VH \U to U respectively. When H = G for the graph G in
the context (which can be undirected or directed), we omit the subscript H in the notations.

For cleanness of exposition, we use Õϵ(·) to hide factors that are polynomial in 1
ϵ and

poly-logarithmic in the size of the input. As we gave the first nearly-linear time algorithms
for the studied problems, the hidden factors are small compared to the improvements we
make. The final approximation ratios we get have an additive factor of O(ϵ) (instead of ϵ);
but it can be reduced to ϵ if we start from a smaller ϵ. By default, for an (undirected or
directed) graph H = (VH , EH) we deal with, we assume every vertex is incident to at least
one edge so |EH | = Ω(VH). For any a ∈ R, we define (a)+ as max{a, 0}.

ICALP 2023

86:8 Nearly-Linear Time LP Solvers and Rounding Algorithms for Scheduling Problems

2.1 Nearly-Linear Time Mixed Packing and Covering LP Solver
A mixed packing and covering LP is an LP of the following form:

find x such that x ≥ 0, Px ≤ 1 and Cx ≥ 1, (MPC)

where P ∈ Rm̄P×n̄
≥0 and C ∈ Rm̄C×n̄

≥0 for some positive integers n̄, m̄P, m̄C. Let m̄ = m̄P +m̄C

and N̄ be the total number of non-zeros in P and C. Young [51] developed a nearly-linear
time algorithm that solves (MPC) approximately:

▶ Theorem 2.1 ([51]). Given an instance of (MPC) and ϵ > 0, there is an O
(

N̄ log m̄
ϵ2

)
-

time algorithm that either claims (MPC) is infeasible, or outputs an x ∈ Rn̄
≥0 such that

Px ≤ (1 + ϵ)1 and Cx ≥ 1
1+ϵ .

2.2 Template Packing LP Solver over a Simple Polytope
In this section, we describe a template MWU-based LP solver for a packing linear program
with an additional requirement that the solution is inside an “easy” polytope Q. The
framework we describe here is introduced in [10] and later reformulated in [11].

Let P ∈ Rm̄×n̄
≥0 be a non-negative matrix, with N̄ non-zero entries. Let a ∈ Rn̄

≥0 be a row
vector, and Q ⊆ Rn̄

≥0 be a polytope which is defined by “easy” constraints. We focus on the
following linear program:

max ax subject to x ∈ Q and Px ≤ 1. (PQ)

Throughout the paper, we make sure all instances of (PQ) we deal with are feasible.

▶ Definition 2.2. Let ϵ ∈ (0, 1), ϕ > 0 be two parameters. An (ϵ, ϕ)-approximate solution
to (PQ) is a vector x ∈ Q satisfying Px ≤ (1 + ϵ)1 and ax ≥ ax∗ − ϕ, where x∗ ∈ Q is the
optimum solution to (PQ).

As a hindsight, we only allow a loss of an additive factor ϕ in the objective function of
the LP for P |prec|

∑
j wjCj , which will be set to be a polynomially small term. As is typical

in a MWU framework, we need to solve the following LP where the constraints Px ≤ 1 are
aggregated into one constraint by ≤ 1, where b ∈ Rn̄

≥0 is a row vector:

max ay subject to y ∈ Q and by ≤ 1. (1)

Again we guarantee all instances of (1) we encounter are feasible.

▶ Definition 2.3. Let ϵ ∈ (0, 1), ϕ > 0 be two parameters. An (ϵ, ϕ)-approximate solution
to (1) is a vector y ∈ Q satisfying by ≤ 1 + ϵ and ay ≥ ay∗ − ϕ, where y∗ is the optimum
solution to the LP. An (ϵ, ϕ)-oracle for (1) is an algorithm that, given an instance of (1),
and ϵ ∈ (0, 1), ϕ > 0, outputs an (ϵ, ϕ)-approximate solution y to (1).

The template LP solver is described in Algorithm 1, where we use Pi to denote the i-th
row vector of P. By our assumption that (PQ) is feasible, the instance of (1) defined in
every execution of Step 3 is also feasible. The performance of the algorithm is summarized
in the following theorem.

▶ Theorem 2.4. Algorithm 1 will return an (O(ϵ), ϕ)-approximate solution x to (PQ), within
O(m̄ log m̄

ϵ2) iterations of Loop 2.

S. Li 86:9

Algorithm 1 LP Solver for (PQ).

Input: an instance of (PQ), ϵ ∈ (0, 1), ϕ > 0, and (ϵ, ϕ)-oracle O for (1)
Output: an (O(ϵ), ϕ)-approximate solution x for (PQ)

1: t← 0, ρ← ln m̄
ϵ2 , x(0) ← 0 ∈ Rn̄

≥0, u(0) ← 1 ∈ Rm̄
≥0

▷ x(t)’s are column vectors and u(t)’s are row vectors
2: while t < 1 do
3: define b := u(t)

|u(t)|P, and run the oracle O for (1) to obtain an (ϵ, ϕ)-approximate
solution y for (1)

4: δ ← min
{

min
i∈[m̄]

1
ρ ·Piy

, 1− t

}
5: for every i ∈ [m̄] do u

(t+δ)
i ← u

(t)
i · exp

(
δϵρ ·Piy

)
6: x(t+δ) ← x(t) + δy, t← t + δ

7: return x := x(1)

Proof. Focus on one iteration of Loop 2. Let t be the value of t at the beginning of the
iteration, y and δ be the y and δ obtained in Step 3 and 4 in the iteration respectively. Then
we have

|u(t+δ)| =
∑

i∈[m̄]

u
(t+δ)
i =

∑
i∈[m̄]

u
(t)
i exp(δϵρ ·Piy) ≤

∑
i∈[m̄]

u
(t)
i (1 + (1 + ϵ)ϵ · δρ ·Piy)

= |u(t)|+ (1 + ϵ)ϵδρ · u(t)Py ≤ |u(t)|+ (1 + ϵ)2ϵδρ · |u(t)| ≤ |u(t)| exp((1 + ϵ)2ϵδρ).

The inequality in the first line is by that δρ · Piy ∈ [0, 1] for every i ∈ [m̄] and eϵθ ≤
1 + ϵθ + (ϵθ)2 ≤ 1 + ϵθ + ϵ2θ for every ϵ ∈ [0, 1] and θ ∈ [0, 1]. The first inequality in the
second line is by that u(t)

|u(t)| Py = by ≤ 1 + ϵ.
Combining the inequality over all iterations, we have

|u(1)| ≤ |u(0)| exp
(
(1 + ϵ)2ϵρ

)
= m̄ · exp

(
(1 + ϵ)2ϵρ

)
. (2)

For every i ∈ [m̄], we have u
(1)
i = exp (ϵρ ·Pix), where x := x(1) is the returned solution. So,

by (2), we have exp(ϵρ ·Pix) ≤ m̄ · exp((1 + ϵ)2ϵρ), which implies Pix ≤ ln m̄
ϵρ + (1 + ϵ)2 ≤

(1 + ϵ)2 + ϵ = 1 + O(ϵ).
In the end x = x(1) is a convex combination of vectors y obtained in all iterations. As

each y is in Q, we have x ∈ Q. Moreover, for the instance of (1) in any iteration, x∗ is
a valid solution. So, the optimum solution y∗ to the instance of (1) has ay∗ ≥ ax∗, and
the y returned by the oracle has ay ≥ ay∗ − ϕ ≥ ax∗ − ϕ. This implies our final x has
ax ≥ ax∗ − ϕ. Therefore, x is a (O(ϵ), ϕ)-approximate solution to (PQ).

It remains to bound the number of iterations that Loop 2 can take. In every iteration
of loop 2 except for the last one, some i has 1

ρ·Piy = δ, i.e., δϵρ · Piy = ϵ. We say ui

is increased fully in the iteration. Notice by (2), each ui can be increased fully in at

most ln
(

m̄ exp((1+ϵ)2ϵρ)
)

ϵ = ln m̄+(1+ϵ)2ϵρ
ϵ = O

(ln m̄
ϵ2

)
iterations. This bounds the number of

iterations by O
(

m̄ log m̄
ϵ2

)
as there are m̄ different values of i. ◀

For each iteration of loop 2, the steps other than Step 3 takes O(N̄) time. Therefore,
the running time of Algorithm 1 is O

(
m̄ log m̄·N̄

ϵ2

)
, plus the time for running the oracle

O
(

m̄ log m̄
ϵ2

)
times.

ICALP 2023

86:10 Nearly-Linear Time LP Solvers and Rounding Algorithms for Scheduling Problems

3 Unrelated Machine Makespan Minimization

In this section, we give the nearly-linear time (2 + ϵ)-approximation algorithm for the
unrelated machine makespan minimization problem, i.e, the problem R||Cmax. Recall that
we are given a bipartite graph G = (M, J, E) and a pij ∈ Z>0 for every ij ∈ E. Recall that
N(j), N(i), δ(j) and δ(i) denote the set of neighbors or incident edges of a job j ∈ J or a
machine i ∈M , in the graph G.

Via a standard technique described in the full version of the paper, we can focus on the
following promise version:

We are given a number P ≥ opt, where opt is the optimal makespan of the instance, and
our goal is to construct an assignment of makespan at most (2 + O(ϵ))P .

For some ij ∈ E with pij > P , we remove ij from E, as the optimum solution does not use
the edge. The following is the natural LP relaxation for the problem:∑

j∈N(i)

pijxij ≤ P, ∀i ∈M (3)
∑

i∈N(j)

xij ≥ 1, ∀j ∈ J (4) xij ≥ 0, ∀ij ∈ E (5)

In the correspondent integer program, xij ∈ {0, 1} for every ij ∈ E indicates whether the
job j is assigned to machine i. (3) requires that the makespan of the schedule to be at most
P , (4) requires every job to be scheduled. In the linear program, we replace the requirement
that xij ∈ {0, 1} with the non-negativity constraint (5).

By the promise that P ≥ opt, the LP is feasible. Therefore, applying Theorem 2.1, we can
solve the LP in Õϵ(|E|) time to obtain an approximate solution x ∈ [0, 1]E . By scaling, we
can assume (4) holds with equalities, and (3) holds with right side replaced by (1 + O(ϵ))P .

To round the solution to an integral assignment in Õϵ(|E|)-time, we use the grouping
idea from [46]: For each machine i ∈ M , we break the fractional jobs assigned to i into
groups, each containing 1

1+ϵ fractional jobs. This gives us a bipartite graph H between
jobs and groups. Any perfect matching (i.e., a matching covering all jobs J) will give a
(2 + O(ϵ))-approximation for the makespan problem. In H, every subset J ′ ⊆ J of jobs has
at least (1 + ϵ)|J ′| neighbors. The (1 + ϵ)-factor allows us to design a Õϵ(|E|)-time algorithm
to find a matching covering all jobs J , as stated in the following lemma:

▶ Lemma 3.1. Assume we are given a bipartite graph H = (S, T, EH) and ϵ > 0 such that
|NH(S′)| ≥ (1 + ϵ)|S′| for every S′ ⊆ S. In O

(
|EH |

ϵ log |S|
)

-time, we can find a matching in
H covering all vertices in S.

Proof. Let L =
⌊
log1+ϵ |S|

⌋
+ 1 > log1+ϵ |S|. Then we use the shortest-augmenting path

algorithm of Hopcroft and Karp [21] to find a matching for which there is no augmenting path
of length at most 2L + 1. The running time of the algorithm can be made to O(|EH |L) =
O(|EH |

ϵ log |S|). It remains to show the following lemma:

▶ Lemma 3.2. Let F be a matching in H for which there is no augmenting path of length at
most 2L + 1. Then all vertices in S are matched in the matching F .

Proof. Let H⃗ be the residual graph of H w.r.t the F : H⃗ is a directed graph over S ∪ T ,
for every edge st ∈ EH , we have st ∈ H⃗, and for every st ∈ F , we have ts ∈ H⃗. We say
a vertex in S is free if it is unmatched in F . For every integer ℓ ∈ [0, L], define Sℓ (T ℓ

resp.) to be the set of vertices in S (T , resp.) to which there exists a path in H⃗ of length
at most 2ℓ (2ℓ + 1, resp.) from a free vertex. So, we have S0 ⊆ S1 ⊆ S2 ⊆ · · · ⊆ SL and
T 0 ⊆ T 1 ⊆ T 2 ⊆ · · · ⊆ T L.

S. Li 86:11

Notice that T ℓ = NH(Sℓ) for every ℓ ∈ [0, L]. So for every ℓ ∈ [0, L], we have (1 + ϵ)|Sℓ| ≤
|T ℓ| by the condition of the lemma. All vertices in T L are matched by our assumption that
there are no augmenting paths of length at most 2L + 1. So for every ℓ ∈ [0, L− 1], we have
|T ℓ| ≤ |Sℓ+1| as all vertices in T ℓ are matched to Sℓ+1.

Combining the two statements gives us (1 + ϵ)|Sℓ| ≤ |Sℓ+1| for every ℓ ∈ [0, L− 1]. Thus
|SL| ≥ (1 + ϵ)L|S0|, which contradicts the definition of L and that |S0| ≥ 1, |SL| ≤ |S|. ◀

This finishes the proof of Lemma 3.1. ◀

With the lemma, we prove the following theorem using the grouping technique from [39]:

▶ Theorem 3.3. Given x ∈ [0, 1]E satisfying x(δ(j)) = 1 for every j ∈ J , and ϵ ∈ (0, 1), there
is an O

(
|E|
ϵ log n

)
-time algorithm that outputs an assignment σ ∈MJ of jobs to machines

such that σjj ∈ E and xσjj > 0 for every j ∈ J , and for every i ∈M , we have∑
j∈σ−1(i)

pij ≤ (1 + ϵ)
∑

j∈N(i)

pijxij + max
j∈σ−1(i)

pij . (Assume the maximum over ∅ is 0.)

Proof. We construct a bipartite graph H = (V, J, EH), starting with V = ∅ and EH = ∅.
For every machine i ∈M , we run the following procedure. See Figure 1 for an illustration.
(The notations defined in the paragraph depend on i; if a notation does not contain i in the
subscript, it will only be used locally, in this paragraph.) Let Di be the number of jobs j

with positive xij values. Let j1, j2, · · · , jDi
be these jobs j, sorted in non-increasing order

of pij ; that is, we have pij1 ≥ pij2 ≥ · · · ≥ pijDi
. For every integer d ∈ [0, Di], we define

Zd =
∑d

d′=1 xijd′ . Let Ri = ⌈(1 + ϵ)ZDi
⌉ = ⌈(1 + ϵ)x(δ(i))⌉. For every r = 1, 2, 3, · · · , Ri,

we create a vertex ir and add it to V . We add to EH an edge between ir, r ∈ [Ri] and jd,
d ∈ [Di] if (r−1

1+ϵ , r
1+ϵ) ∩ (Zd−1, Zd) ̸= ∅, and we define y(ir)jd

to be the length of the interval.

This finishes the construction of H = (V, J, EH), along with a vector y ∈
(

0, 1
1+ϵ

]EH

.

i

··
·

··
·

j1

j2

j3

jDi

··
·

··
·

0
1

1+ε

2
1+ε

3
1+ε

Ri
1+ε

Ri−1
1+ε

xij1
xij2
xij3
xij4
xij5

··
·

··
·

xijDi

j1
j2
j3

jDi

j4
j5

i1

i2

i3

iRi

Figure 1 Construction of the H for the machine i ∈ M . In the bipartite graph between
{i1, i2, · · · , iDi} and {j1, j2, · · · , jDi } and there is an edge between jd and (ir) iff the interval
correspondent to jd intersects the interval (r−1

1+ϵ
, r

1+ϵ
).

The number of edges in H for each i is at most Di + Ri − 1 ≤ |δ(i)| + (1 + ϵ)x(δ(i)).
Therefore the total number of edges we created in H is at most |E|+ (1 + ϵ)|J | = O(|E|).
For every ij ∈ E, we have

∑
r:(ir)j∈EH

y(ir)j = xij . This implies that for every j ∈ J , we
have y(δH(j)) = 1. For every ir ∈ V , we have y

(
δH(ir)

)
≤ 1

1+ϵ , and the inequality holds
with equality except when r = Ri.

For every set J ′ ⊆ J , we have |NH(J ′)| ≥ (1 + ϵ)|J ′|, as we can view y as a fractional
matching in H where every j ∈ J is matched to an extent of 1 and every ir ∈ V is matched
to an extent of at most 1

1+ϵ . Then we can use Lemma 3.1 7 to find a matching in H that

7 We need to switch the left and right sides when going from the bipartite graph H in Theorem 3.3 to
that in Lemma 3.1. That is, we set S = J and T = V .

ICALP 2023

86:12 Nearly-Linear Time LP Solvers and Rounding Algorithms for Scheduling Problems

covers all jobs J . The running time of the algorithm is O
(

|EH |
ϵ log n

)
= O

(
|E|
ϵ log n

)
. The

matching gives an assignment σ ∈MJ : If j is matched to ir, then define σj = i. Fix some
i ∈M with σ−1(i) ̸= ∅; we upper bound

∑
j∈σ−1(i) pij :

∑
j∈σ−1(i)

pij ≤ max
j∈σ−1(i)

pij +
Ri∑

r=2
max

j∈NH (ir)
pij

≤ max
j∈σ−1(i)

pij + (1 + ϵ)
Ri∑

r=2

∑
j∈NH (i(r−1))

pijy(i(r−1))j

≤ max
j∈σ−1(i)

pij + (1 + ϵ)
Ri∑

r=1

∑
j∈NH (ir)

pijy(ir)j = max
j∈σ−1(i)

pij + (1 + ϵ)
∑

j∈N(i)

pijxij .

To see the first inequality, notice that the job j′ matched to i1 (if it exists) has pij′ ≤
maxj∈σ−1(i) pij , and the job j′ matched to each ir, r ∈ [2, Ri], has pij′ ≤ maxj∈δH ((ir)) pij .
Consider the second inequality. For every r ∈ [2, Ri], any j ∈ δH(ir) and any j′ ∈ δH(i(r−1)),
we have pij ≤ pij′ . Moreover, for every r ∈ [2, Ri], we have y

(
δH(i(r − 1))

)
= 1

1+ϵ . The
inequality in the third line follows from replacing r with r + 1. The equality holds since for
every ij ∈ E we have

∑
r:(ir)j∈EH

y(ir)j = xij . ◀

We can then apply Theorem 3.3 with the solution x we obtained from solving LP(3-5).
Clearly we have maxj∈σ−1(i) pij ≤ P for every i ∈M . So, the total load on any machine i

is at most P + (1 + ϵ) ·
∑

j∈N(i) pijxij ≤ P + (1 + ϵ) · (1 + O(ϵ))P = (2 + O(ϵ))P , as (3) is
satisfied with right side replaced by (1 + O(ϵ))P . This finishes the analysis of the algorithm
for R||Cmax and proves Theorem 1.1.

4 Unrelated Machine Weighted Completion Time Minimization

In this section, we give our nearly-linear time algorithm for R||
∑

j wjCj , with an approx-
imation ratio of 1.45 + ϵ, matching the current best ratio of Im and Li [22] achieved in
polynomial time. Our result is based on formulating an LP relaxation that is equivalent
to the rectangle LP introduced by Li [35]. The new LP relaxation has a nearly-linear size
and the mixed packing and covering form; thus it can be solved in nearly-linear time using
Theorem 2.1. We describe the rectangle LP (LP(6)), our new LP relaxation (LP(11)) and
show their equivalence in Sections 4.1, 4.2 and 4.3 respectively.

In the full version of the paper we show how to construct a solution to LP(6) from one
to LP(11) in nearly-linear time, finishing the proof of Theorem 1.2. We also show in the
full version that the rounding algorithm of Im and Li can run in nearly-linear time; this
finishes the proof of Theorem 1.3. Throughout the section, we assume all processing times
are integers bounded by a polynomial of n. The general case is handled in the full version.

4.1 Rectangle LP Relaxation
We describe the rectangle LP relaxation for R||

∑
j wjCj introduced by Li [35]. Let T =∑

j∈J maxi∈N(j) pij so that any schedule will complete by time T . The following is the
rectangle LP:

min
∑
j∈J

wj

∑
i∈N(j),s∈[0,T)

zijs(s + pij) (6)

S. Li 86:13

∑
i∈N(j),s∈[0,T)

zijs ≥ 1 ∀j ∈ J (7)

∑
j∈N(i),s∈[t−pij ,t)

zijs ≤ 1 ∀i ∈M, t ∈ [T] (8)

zijs = 0 ∀ij ∈ E, s > T − pij (9)

zijs ≥ 0 ∀ij ∈ E, s ∈ [0, T) (10)

In the correspondent integer program, zijs for every ij ∈ E and integer s ∈ [0, T) indicates
if job j is scheduled on machine i, with starting time s. The objective gives the weighted
completion time of the schedule. (7) requires that every job j is scheduled. (8) requires
that at any time on machine i, at most one job is being processed. (9) ensures that no
jobs complete after time T . (10) is the non-negativity constraint. Im and Li [22] showed
that given a solution z to LP(6), one can round it to an integral schedule, whose weighted
completion time in expectation is at most 1.45 times the value of z.

4.2 A Nearly-Linear Size LP Relaxation
In this section we formulate the relaxation that can be solved in nearly-linear time, and prove
its equivalence to LP(6) in Section 4.3. We create a list of time points as follows: T0 = 0,
Td = ⌊(1 + ϵ)Td−1⌋+1 for every integer d ≥ 1. Define D = O(log n

ϵ) to be the smallest integer
so that TD ≥ T . We call (Td−1, Td] the d-th window, and the time points T0, T1, · · · , TD

window boundaries (or simply boundaries). Define ∆d = Td − Td−1 to be the length of the
d-th window.

Let ηd := ⌈ϵ∆d⌉. We partition (Td−1, Td] into sub-windows of length ηd, except that the
last sub-window may be shorter. Then qd :=

⌈
∆d

ηd

⌉
≤ 1

ϵ is the number of sub-windows of

(Td−1, Td]. Let τ
(d)
0 = Td−1, τ

(d)
1 , τ

(d)
2 , · · · , τ

(d)
qd = Td be the boundaries of the qd sub-windows.

We describe the variables in the LP. For every ij ∈ E and d ∈ [D] with pij ≤ ∆d, we
introduce a variable xijd, indicating if j is scheduled on i inside the d-th window. Let Sj

and Cj be the starting and completion time of j in the target optimum schedule (which the
algorithm does not know). For every ij ∈ E, 1 ≤ d ≤ e < D, integers u ∈ [0, qd), v ∈ [0, qe+1),
we may introduce a variable yijdeuv indicating if j is scheduled on i, Sj ∈ [τ (d)

u , τ
(d)
u+1) and

Cj ∈ (τ (e+1)
v , τ

(e+1)
v+1]. That means, the scheduling interval (Sj , Cj] of j contains the d′-th

window for every d′ ∈ [d + 1, e], and a non-empty part of the d-th and (e + 1)-th windows.
u and v approximately give the volumes of j processed in the two windows. It is disjoint
from all other windows. As a hindsight, a sub-window is short enough and we can afford to
incur an error equaling its length for every window. We only introduce a y-variable if the
correspondent event can happen. That is, the following conditions need to be satisfied for
the existence of yijdeuv: τ

(e+1)
v − τ

(d)
u+1 + 2 ≤ pij ≤ τ

(e+1)
v+1 − τ

(d)
u . Notice when yijdeuv = 1,

then the scheduling interval (Sj , Cj] of j intersects at least two windows.
For a variable yijdeuv and an integer d′ ∈ [D], we define

Qijdeuvd′ :=


0 if d′ ≤ d− 1 or d′ ≥ e + 2
∆d′ if d + 1 ≤ d′ ≤ e

Td − τ
(d)
u+1 + 1 if d′ = d

τ
(e+1)
v − Te + 1 if d′ = e + 1

.

Assuming j starts at time τ
(d)
u+1 − 1 and ends at time τ

(e+1)
v + 1 on machine i, we have that

Qijdeuvd′ is the volume of job j processed in the d′-th window. So, if yijdeuv = 1 in a schedule,
then Qijdeuvd′ gives a lower bound on the volume.

ICALP 2023

86:14 Nearly-Linear Time LP Solvers and Rounding Algorithms for Scheduling Problems

We say the quadruple deuv left-covers the pair d′u′ if the sub-window (τ (d′)
u′−1, τ

(d′)
u′] is

between the sub-windows (τ (d)
u , τ

(d)
u+1] (exclusive) and (τ (e+1)

v , τ
(e+1)
v+1] (inclusive) in the time

horizon, or if (τ (d′)
u′−1, τ

(d′)
u′] = (τ (d)

u , τ
(d)
u+1] and τ

(d′)
u′ − τ

(d′)
u′−1 = 1. So if deuv left-covers d′u′ and

yijdeuv = 1, then the scheduling interval of j will surely cover the left-most time unit of the
sub-window (τ (d′)

u′−1, τ
(d′)
u′].

With the necessary definitions, we can formulate the LP relaxation as LP(11). For the
sake of convenience, we assume if a variable does not exist, then it is not included in a
summation.

min
∑
ijd

wj · (Td−1 + 1) · xijd +
∑

ijdeuv

wj · (Te + 1) · yijdeuv (11)

∑
id

xijd +
∑

ideuv

yijdeuv ≥ 1 ∀j ∈ J (12)∑
jdeuv : deuv

left-covers d′u′

yijdeuv ≤ 1 ∀i ∈M, d′ ∈ [D], u′ ∈ [qd′] (13)

∑
j

pij · xijd′ +
∑

jdeuv

Qijdeuvd′ · yijdeuv ≤ ∆d′ ∀i ∈M, d′ ∈ [D] (14)

all variables are non-negative (15)

Consider the correspondent integer program and an integral schedule. If xijd = 1, then
the completion time of j is in (Td−1, Td]. If yijdeuv = 1, then it is in (Te, Te+1]. So, the
objective (11) approximates and underestimates the total weighted completion time of the
schedule.8 (12) requires that every job is scheduled: either the scheduling interval of a job
j is inside some window, or it overlaps with at least two windows. (13) follows from the
definition of deuv left-covering d′u′. If xijd′ = 1, then the pij units of job j is processed in
the d′-th window on machine i. If yijdeuv = 1, then at least Qijdeuvd′ units is processed.
So (14) is valid as the volume of the jobs processed in the d′-th window is at most ∆d′ .
Therefore, LP(11) is valid, and its value is at most the weighted completion time of the
optimum schedule for the instance.

There are at most D|E| x-variables. We then count the number of tuples ijdeuv such
that yijdeuv is a variable in the LP. For fixed ij ∈ E, d ∈ D and u ∈ [0, qd), there are at
most O(1) possibilities for (e, v), as the lengths of sub-windows do not decrease from left
to right in the time horizon, except for the last sub-window of each window. Hence the
number of y-variables is at most O

(D|E|
ϵ

)
= O

(|E| log n
ϵ2

)
.9 The number of constraints is

O(n + m|D|
ϵ) = O

(
n + m log n

ϵ2

)
. The number of non-zeros is at most O

(|E| log2 n
ϵ4

)
as each

variable appears in at most O(D
ϵ) constraints.

Therefore, by Theorem 2.1, in O
(

|E| log3 n
ϵ6

)
= Õϵ(|E|) time, we can find a solution (x, y)

satisfying the following conditions: Its cost is at most 1 + ϵ times that of the optimum
solution to the LP, all variables are non-negative, (12) holds with equalities, and (13) and

8 A more precise estimation for the case yijdeuv = 1 is τ
(e+1)
v + 1. But the estimation Te + 1 is good

enough.
9 By cutting job lengths pij by a factor of ϵ, one can reduce the number of y variables to O

(
|E|

(
1
ϵ2 + log n

ϵ

))
.

But we prioritize on giving a clean algorithm, rather than optimizing the poly(log n, 1
ϵ)-factor in the

running time.

S. Li 86:15

(14) hold with right sides replaced by 1 + ϵ and (1 + ϵ)∆d′ respectively. For convenience, we
call such a solution a (1 + ϵ)-approximate solution to LP(11); but keep in mind that it may
violate (13) and (14) by a factor of 1 + ϵ.

4.3 Equivalence of LP(11) and LP(6)
We use lp(6) and lp(11) to denote the values of LP(6) and LP(11) respectively. It is easy
to show that lp(11) ≤ lp(6), as one can convert a solution to LP(6) into one to LP(11)
with smaller or equal value. The following theorem gives the other direction, proving the
equivalence of the two LPs up to a 1 + O(ϵ) factor:

▶ Theorem 4.1 (Equivalence of LP(11) and LP(6)). Let (x, y) be a (1 + ϵ)-approximate
solution to LP(11). Then in Õϵ(|E|)-time we can find a solution z to LP(6) except that (8)
is only satisfied with the right-side replaced by 1 + ϵ, such that the following is true for an
absolute constant c ≥ 1, every ij ∈ E and integer t ≥ 0:∑

s+pij>(1+cϵ)t

zijs ≤
∑

d:Td−1+1>t

xijd +
∑

deuv:Te+1>t

yijdeuv.

In words, for every ij ∈ E, and every time t ≥ 0, the fraction of job j scheduled on i with
completion time after (1 + cϵ)t in z is at most the fraction with completion time after t in
(x, y). Then, the following corollary is immediate:

▶ Corollary 4.2. Let (x, y) and z be defined as in Theorem 4.1. Then the value of z to LP(6)
is at most 1 + cϵ times that of (x, y) to LP(11). This implies that the value of z to LP(6) is
at most (1 + cϵ)(1 + ϵ) · lp(11) ≤ (1 + O(ϵ)) · lp(6).

To better present the ideas behind the proof, we only show the existence of such a vector
z in this section. That is, we are not concerned with the running time of the algorithm
that constructs z. In the full version of the paper we show how z can be constructed in
nearly-linear time.

So the rest of this section is dedicated to proving the existence of z satisfying the conditions
in Theorem 4.1. Till the end, we fix the solution (x, y). We assume all variables in (x, y)
have values being integer multiplies of 1/Φ, and (1 + ϵ)Φ is an integer, for a large enough
integer Φ > 0. We fix a machine i ∈ M and show how to construct the z values for this i.
We create (1 + ϵ)Φ mini-machines, each serving as 1/Φ fraction of the machine i. We create
two types of mini-jobs:

For every variable xijd with positive value, we create Φxijd mini-jobs of length pij ; we
call them inside-mini-jobs. Each such inside-mini-job has an intended completion time of
Td−1 + 1; this is the estimation used in the objective (11).
For every variable yijdeuv with positive value, we create Φyijdeuv mini-jobs of length
τ

(e+1)
v − τ

(d)
u+1 + 2; we call them cross-mini-jobs. Notice the length may be smaller than

pij . Similarly, the cross-mini-jobs have an intended completion time of Te + 1. We define
the blocking interval of these mini-jobs to be the union of the sub-windows (τ (d′)

u′−1, τ
(d′)
u′]

such that deuv left-covers d′u′. This is indeed an interval. As (13) holds with right side
replaced by 1 + ϵ, every time point is covered by blocking intervals of at most (1 + ϵ)Φ
cross-mini-jobs.

Our goal becomes to schedule all the mini-jobs on the (1 + ϵ)Φ mini-machines integrally,
guaranteeing that the completion time of each mini-job is at most 1 + 5ϵ times its intended
completion time (after we extend the lengths of cross-mini-jobs). The construction of the

ICALP 2023

86:16 Nearly-Linear Time LP Solvers and Rounding Algorithms for Scheduling Problems

schedule is given in Algorithm 2; recall that we are not concerned with the running time in
this proof. The solution z to LP(6) will be the integral schedule scaled by a factor of 1

Φ : zijs

is 1
Φ times the number of mini-jobs for j that start at time s in the schedule.

Algorithm 2 Scheduling of mini-jobs on mini-machines for a machine i ∈ M .

1: define a vector σ : cross-mini-jobs → mini-machines, so that for every mini-machine h,
the blocking intervals of σ−1(h) are disjoint.

2: for d′ ← 1 to D do
3: for every cross-mini-job k for some variable yijdeuv with d ≤ d′ ≤ e + 1 do
4: loadσk

← loadσk
+ Qijdeuvd′

5: if d′ = e + 1 then append k to the mini-machine σk

6: for every inside-mini-job k for some variable xijd′ do
7: let h be the mini-machine with the smallest loadh

8: loadh ← loadh + pij , append k to the mini-machine h

9: extend the length of each cross-mini-job for a variable yijdeuv to pij in the constructed
schedule

Step 1 of Algorithm 2 is possible since each point is covered by at most (1 + ϵ)Φ blocking
intervals. When we schedule an inside-mini-job k on a mini-machine h, we increase loadh by
the length of k (Step 8). The scheduling of a cross-mini-job k for some variable yijdeuv is
done differently. First the mini-machine σk for k is pre-defined. Second, we append k to σk

only in iteration d′ = e + 1 (Step 5), but we add the length of k to loadσk
piece by piece: In

iterations d′ = d, d + 1, · · · , e + 1, we increase the load by Qijdeuvd′ (Step 4). Still we ensure
that the load to σk contributed by k is equal to the length of k. A mini-job for a variable
yijdeuv may have length smaller than the desired length pij , so in Step 9 we extend these
mini-jobs.

▶ Lemma 4.3. At the end of iteration d′ of Loop 2, every mini-machine has a load of at
most Td′ − 1 + ∆d′ .

Proof. There are two types of loads added to mini-machines during iteration d′ of Loop 2:
those from cross-mini-jobs, and those from inside-mini-jobs. The total load (from both cross-
and inside-mini-jobs) added to all mini-machines is at most (1 + ϵ)Φ∆d′ : it is precisely Φ
times the left-side of (14) for the machine i and d′, which is at most (1 + ϵ)Φ∆d′ as the
constraint is violated only by a factor of 1 + ϵ.

The total load from cross-mini-jobs added to a mini-machine h in iteration d′ is at most
∆d′ as the blocking intervals of all mini-jobs in σ−1(h) are disjoint. We need to check the
case when one mini-job k ∈ σ−1(h) has blocking interval ending at τ

(d′)
u′ and another mini-job

k′ ∈ σ−1(h) has blocking interval starting at the time. If the length of the sub-window
(τ (d′)

u′−1, τ
(d′)
u′] is at least 2, then the statement holds as we only gave 1 unit length to k and k′

in this sub-window. If the length is 1, then because we handled the case in a special way in
the definition of left-covering, we did not give any length to k′ for the sub-window.

With the observations, we can prove the lemma. Before we add an inside-mini-job k

for xijd′ to a mini-machine h in iteration d′, the total load of all mini-machines is strictly
less than (1 + ϵ)Φ

∑d′

d′′=1 ∆d′′ = (1 + ϵ)ΦTd′ (as the length of k has not been added to
the loads yet). Therefore loadh < Td′ before we append k to h. After that, we have
loadh ≤ Td′ − 1 + pij ≤ Td′ − 1 + ∆d′ .

Assume towards the contradiction that the lemma does not hold and consider the first time
when the condition is violated. Assume this is at iteration d′, and some mini-machine has a
load of at least Td′ + ∆d′ . This must be due to that we add the loads from cross-mini-jobs to

S. Li 86:17

the machine. By our assumption, every mini-machine has a load of at most Td′−1− 1 + ∆d′−1
at the end of iteration d′−1. (A special case is when d′ = 1; but this can be handled trivially.)
As we argued, we add a load of at most ∆d′ from cross-mini-jobs to each mini-machine in
iteration d′. Therefore after we add the loads, every mini-machine has a load of at most
Td′−1 − 1 + ∆d′−1 + ∆d′ = Td′ − 1 + ∆d′−1 ≤ Td′ − 1 + ∆d′ , a contradiction. ◀

Now we consider how Step 9 changes the completion times. The length of a cross-mini-job
for a variable yijdeuv is increased by at most ηd− 1 + ηe+1− 1 ≤ ϵ∆d + ϵ∆e+1 ≤ 2ϵ(∆d + ∆e).
For all cross-mini-jobs assigned to the same mini-machine h, the correspondent intervals
{d, d + 1, · · · , e} are disjoint. Therefore, a mini-job scheduled in iteration d′ of Loop 2
is delayed by at most 2ϵ(∆1 + ∆2 + · · · + ∆d′) = 2ϵTd′ units time. In the final schedule
constructed by Algorithm 2 the completion time of a mini-job scheduled in iteration d is at
most

Td − 1 + ∆d + 2ϵTd ≤ Td − 1 + ((1 + ϵ)Td−1 + 1)− Td−1 + 2ϵTd

= Td + ϵTd−1 + 2ϵTd ≤ (1 + 5ϵ)(Td−1 + 1).

Setting c = 5, Theorem 4.1 follows from that Td−1 + 1 is the intended completion time of
the mini-job.

References
1 Zeyuan Allen-Zhu and Lorenzo Orecchia. Nearly-linear time positive LP solver with faster

convergence rate. In Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of
Computing (STOC 2015), pages 229–236, 2015.

2 Måns Alskog. Implementation of a fast approximation algorithm for precedence constrained
scheduling. Master’s thesis, Linköping University, Applied Mathematics, Faculty of Science
and Engineering, 2022.

3 Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights update method: a
meta-algorithm and applications. Theory of Computing, 8(6):121–164, 2012. doi:10.4086/
toc.2012.v008a006.

4 Nikhil Bansal and Subhash Khot. Optimal long code test with one free bit. In Proceedings of
the 50th Annual IEEE Symposium on Foundations of Computer Science (FOCS 2009), pages
453–462, 2009.

5 Nikhil Bansal, Aravind Srinivasan, and Ola Svensson. Lift-and-round to improve weighted
completion time on unrelated machines. In Proceedings of the Forty-eighth Annual ACM
Symposium on Theory of Computing (STOC 2016), pages 156–167, 2016.

6 Yair Bartal and Lee-Ad Gottlieb. Near-linear time approximation schemes for steiner tree
and forest in low-dimensional spaces. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing (STOC 2021), pages 1028–1041, 2021. doi:10.1145/
3406325.3451063.

7 A. Bernstein, M. Gutenberg, and T. Saranurak. Deterministic decremental sssp and ap-
proximate min-cost flow in almost-linear time. In Proceedings of the 62nd Annual IEEE
Symposium on Foundations of Computer Science (FOCS 2021), pages 1000–1008, 2021.
doi:10.1109/FOCS52979.2021.00100.

8 Jan van den Brand, Yin Tat Lee, Aaron Sidford, and Zhao Song. Solving tall dense linear
programs in nearly linear time. In Proceedings of the 52nd Annual ACM SIGACT Symposium
on Theory of Computing (STOC 2020), pages 775–788, 2020. doi:10.1145/3357713.3384309.

9 Chandra Chekuri, Sariel Har-Peled, and Kent Quanrud. Fast lp-based approximations for
geometric packing and covering problems. In Proceedings of the Thirty-First Annual ACM-
SIAM Symposium on Discrete Algorithms (SODA 2020), pages 1019–1038, 2020.

ICALP 2023

https://doi.org/10.4086/toc.2012.v008a006
https://doi.org/10.4086/toc.2012.v008a006
https://doi.org/10.1145/3406325.3451063
https://doi.org/10.1145/3406325.3451063
https://doi.org/10.1109/FOCS52979.2021.00100
https://doi.org/10.1145/3357713.3384309

86:18 Nearly-Linear Time LP Solvers and Rounding Algorithms for Scheduling Problems

10 Chandra Chekuri, T.S. Jayram, and Jan Vondrak. On multiplicative weight updates for
concave and submodular function maximization. In Proceedings of the 2015 Conference on
Innovations in Theoretical Computer Science (ITCS 2015), pages 201–210, 2015.

11 Chandra Chekuri and Kent Quanrud. Near-linear time approximation schemes for some
implicit fractional packing problems. In Proceedings of the Twenty-Eighth Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA 2017), pages 801–820, 2017.

12 Chandra Chekuri and Kent Quanrud. Fast approximations for metric-tsp via linear program-
ming. arXiv, abs/1802.01242, 2018. arXiv:1802.01242.

13 Chandra Chekuri and Kent Quanrud. Randomized MWU for positive LPs. In Proceedings
of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2018),
pages 358–377, 2018.

14 Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Gutenberg, and Sushant
Sachdeva. Maximum flow and minimum-cost flow in almost-linear time. In Proceedings of
the 63rd Annual IEEE Symposium on Foundations of Computer Science (FOCS 2022), pages
612–623, 2022. doi:10.1109/FOCS54457.2022.00064.

15 Julia Chuzhoy, Yu Gao, Jason Li, Danupon Nanongkai, Richard Peng, and Thatchaphol
Saranurak. A deterministic algorithm for balanced cut with applications to dynamic con-
nectivity, flows, and beyond. In Sandy Irani, editor, Proceedings of the 61st Annual IEEE
Annual Symposium on Foundations of Computer Science (FOCS 2020), pages 1158–1167, 2020.
doi:10.1109/FOCS46700.2020.00111.

16 Naveen Garg and Jochen Könemann. Faster and simpler algorithms for multicommodity flow
and other fractional packing problems. SIAM Journal on Computing, 37(2):630–652, 2007.
doi:10.1137/S0097539704446232.

17 Shashwat Garg. Quasi-PTAS for scheduling with precedences using LP hierarchies. In
Proceedings of 45th International Colloquium on Automata, Languages, and Programming
(ICALP 2018), pages 59:1–59:13, 2018.

18 R. L. Graham. Bounds on multiprocessing timing anomalies. Siam Journal on Applied
Mathematics, 17(2):416–429, 1969.

19 R. L. Graham, E. L. Lawler, J. K. Lenstra, and A. H. G. Rinnooy Kan. Optimization and
approximation in deterministic sequencing and scheduling: a survey. Ann. Discrete Math.,
4:287–326, 1979.

20 Leslie A. Hall, Andreas S. Schulz, David B. Shmoys, and Joel Wein. Scheduling to minimize
average completion time: Off-line and on-line approximation algorithms. Math. Oper. Res.,
22(3):513–544, August 1997.

21 John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum matchings in
bipartite graphs. SIAM Journal on Computing, 2(4):225–231, 1973. doi:10.1137/0202019.

22 Sungjin Im and Shi Li. Improved approximations for unrelated machine scheduling. In
Proceedings of the Thirty-Fourth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA 2023), pages 2917–2946, 2023. doi:10.1137/1.9781611977554.ch111.

23 Sungjin Im and Maryam Shadloo. Weighted completion time minimization for unrelated
machines via iterative fair contention resolution [extended abstract]. In Proceedings of the
Thirty-First Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2020), pages
2790–2809, 2020.

24 Klaus Jansen and Lars Rohwedder. On the configuration-LP of the restricted assignment
problem. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2017), pages 2670–2678, 2017.

25 Klaus Jansen and Lars Rohwedder. A quasi-polynomial approximation for the restricted
assignment problem. SIAM Journal on Computing, 49(6):1083–1108, 2020.

26 Jonathan A. Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sidford. An almost-linear-
time algorithm for approximate max flow in undirected graphs, and its multicommodity
generalizations. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2014), pages 217–226, 2014.

https://arxiv.org/abs/1802.01242
https://doi.org/10.1109/FOCS54457.2022.00064
https://doi.org/10.1109/FOCS46700.2020.00111
https://doi.org/10.1137/S0097539704446232
https://doi.org/10.1137/0202019
https://doi.org/10.1137/1.9781611977554.ch111

S. Li 86:19

27 Christos Koufogiannakis and N. Young. A nearly linear-time ptas for explicit fractional packing
and covering linear programs. Algorithmica, 70:648–674, 2013.

28 Christos Koufogiannakis and Neal E. Young. Beating simplex for fractional packing and
covering linear programs. In 48th Annual IEEE Symposium on Foundations of Computer
Science (FOCS 2007), pages 494–504, 2007. doi:10.1109/FOCS.2007.62.

29 Yin Tat Lee and Aaron Sidford. Efficient inverse maintenance and faster algorithms for linear
programming. In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science
(FOCS 2015), pages 230–249, 2015.

30 Yin Tat Lee, Zhao Song, and Qiuyi Zhang. Solving empirical risk minimization in the current
matrix multiplication time. In Proceedings of the Thirty-Second Conference on Learning
Theory (COLT 2019), pages 2140–2157, 2019.

31 J. K. Lenstra and A. H. G. Rinnooy Kan. Complexity of scheduling under precedence
constraints. Oper. Res., 26(1):22–35, 1978.

32 Jan Karel Lenstra, David B. Shmoys, and Éva Tardos. Approximation algorithms for scheduling
unrelated parallel machines. Mathematical Programming, 46:259–271, 1990.

33 Elaine Levey and Thomas Rothvo. A (1+ϵ)-approximation for makespan scheduling with
precedence constraints using lp hierarchies. SIAM Journal on Computing, 50(3):STOC16–201–
STOC16–217, 2021.

34 Jason Li. Deterministic mincut in almost-linear time. In Proceedings of the 53rd Annual
ACM SIGACT Symposium on Theory of Computing (STOC 2021), pages 384–395, 2021.
doi:10.1145/3406325.3451114.

35 Shi Li. Scheduling to minimize total weighted completion time via time-indexed linear
programming relaxations. SIAM Journal on Computing, 49(4):FOCS17–409–FOCS17–440,
2020.

36 Michael Luby and Noam Nisan. A parallel approximation algorithm for positive linear
programming. In Proceedings of the Twenty-Fifth Annual ACM Symposium on Theory of
Computing (STOC 1993), pages 448–457, 1993. doi:10.1145/167088.167211.

37 Alix Munier, Maurice Queyranne, and Andreas S. Schulz. Approximation bounds for a general
class of precedence constrained parallel machine scheduling problems. In Integer Programming
and Combinatorial Optimization (IPCO 1998), pages 367–382, 1998.

38 Richard Peng. Approximate undirected maximum flows in O(mpolylog(n)) time. In Proceedings
of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2016),
pages 1862–1867, 2016.

39 Serge A. Plotkin, David B. Shmoys, and Éva Tardos. Fast approximation algorithms for
fractional packing and covering problems. Mathematics of Operations Research, 20(2):257–301,
1995. doi:10.1287/moor.20.2.257.

40 Paul Purdom. A transitive closure algorithm. BIT Numerical Mathematics, 10:76–94, 1970.
41 Maurice Queyranne and Andreas S. Schulz. Approximation bounds for a general class of

precedence constrained parallel machine scheduling problems. SIAM J. Comput., 35(5):1241–
1253, May 2006.

42 Andreas S. Schulz and Martin Skutella. Scheduling unrelated machines by randomized rounding.
SIAM J. Discret. Math., 15(4):450–469, April 2002.

43 Jay Sethuraman and Mark S. Squillante. Optimal scheduling of multiclass parallel machines.
In Proceedings of the Tenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA
1999), pages 963–964, 1999.

44 Farhad Shahrokhi and D. W. Matula. The maximum concurrent flow problem. J. ACM,
37(2):318–334, April 1990. doi:10.1145/77600.77620.

45 Jonah Sherman. Area-convexity, ℓ∞ regularization, and undirected multicommodity flow. In
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing (STOC
2017), pages 452–460, 2017. doi:10.1145/3055399.3055501.

46 David B. Shmoys and Éva Tardos. An approximation algorithm for the generalized assignment
problem. Math. Program., 62(1–3):461–474, February 1993.

ICALP 2023

https://doi.org/10.1109/FOCS.2007.62
https://doi.org/10.1145/3406325.3451114
https://doi.org/10.1145/167088.167211
https://doi.org/10.1287/moor.20.2.257
https://doi.org/10.1145/77600.77620
https://doi.org/10.1145/3055399.3055501

86:20 Nearly-Linear Time LP Solvers and Rounding Algorithms for Scheduling Problems

47 Martin Skutella. Convex quadratic and semidefinite programming relaxations in scheduling.
J. ACM, 48(2):206–242, March 2001.

48 Ola Svensson. Conditional hardness of precedence constrained scheduling on identical machines.
In Proceedings of the Forty-second ACM Symposium on Theory of Computing (STOC 2010),
pages 745–754, 2010.

49 Ola Svensson. Santa Claus schedules jobs on unrelated machines. SIAM Journal on Computing,
41(5):1318–1341, 2012.

50 Neal E. Young. Randomized rounding without solving the linear program. In Proceedings
of the Sixth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 1995), pages
170–178, 1995.

51 Neal E. Young. Nearly linear-work algorithms for mixed packing/covering and facility-location
linear programs, 2014. arXiv:1407.3015.

https://arxiv.org/abs/1407.3015

Simulating Markovian Open Quantum Systems
Using Higher-Order Series Expansion
Xiantao Li #

Department of Mathematics, Pennsylvania State University, University Park, PA, USA

Chunhao Wang #

Department of Computer Science and Engineering, Pennsylvania State University,
University Park, PA, USA

Abstract
We present an efficient quantum algorithm for simulating the dynamics of Markovian open quantum
systems. The performance of our algorithm is similar to the previous state-of-the-art quantum
algorithm, i.e., it scales linearly in evolution time and poly-logarithmically in inverse precision.
However, our algorithm is conceptually cleaner, and it only uses simple quantum primitives without
compressed encoding. Our approach is based on a novel mathematical treatment of the evolution
map, which involves a higher-order series expansion based on Duhamel’s principle and approximating
multiple integrals using scaled Gaussian quadrature. Our method easily generalizes to simulating
quantum dynamics with time-dependent Lindbladians. Furthermore, our method of approximating
multiple integrals using scaled Gaussian quadrature could potentially be used to produce a more
efficient approximation of time-ordered integrals, and therefore can simplify existing quantum
algorithms for simulating time-dependent Hamiltonians based on a truncated Dyson series.

2012 ACM Subject Classification Theory of computation → Quantum computation theory

Keywords and phrases Quantum algorithms, open quantum systems, Lindblad simulation

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.87

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2212.02051 [43]

Funding Both XL and CW were supported by a seed grant from the Institute of Computational
and Data Science (ICDS).
Xiantao Li: XL’s research is supported by the National Science Foundation Grants DMS-2111221.
Chunhao Wang: CW acknowledges support from National Science Foundation grant CCF-2238766
(CAREER).

Acknowledgements We thank the anonymous reviewers for the valuable comments.

1 Introduction

The last few decades have witnessed the exciting progress in quantum information science to
understand and utilize systems that exhibit quantum properties. In the meantime, quantum
algorithms for simulating quantum dynamics have received extensive attention. This is
because such simulation algorithms are critical tools in many physics applications, and they
have the potential to become the first application (if it is not factoring integers!) once
large-scale fault-tolerant quantum computers are available. In fact, simulating quantum
dynamics was one of the original motivations Feynman proposed quantum computers [13],
who realized the unfavorable scaling for classical algorithms for this task and foresaw the
power of quantum computation back in 1982.

EA
T
C
S

© Xiantao Li and Chunhao Wang;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 87; pp. 87:1–87:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:xiantao.li@psu.edu
mailto:cwang@psu.edu
https://doi.org/10.4230/LIPIcs.ICALP.2023.87
https://arxiv.org/abs/2212.02051
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

87:2 Simulating Markovian Open Quantum Systems Using Higher-Order Series Expansion

Up to now, the majority of the research for simulating quantum dynamics is focused
on the “Hamiltonian regime”, where the system is governed by Schrödinger evolution and
it has no interaction with the environment. Such idealized systems are often referred to
as closed systems. However, if one believes that the universe is a closed system, then it is
reasonable to assume that every quantum system, as a subsystem of the whole universe, is an
open system because every realistic system is coupled to an uncontrollable environment in a
non-negligible way. For example, we always model quantum gates as unitary matrices, while
their implementations are always subject to noise induced by the environment no matter
how hard one pushes the technology forward.

A key challenge in simulating the dynamics of open quantum systems is the lack of a
microscopic description of the dynamics influenced by the physical law of the environment.
Even if such a description exists, the degrees of freedom will involve numerous information,
which would exceed the capacity of quantum computers. Fortunately, for a special class of
open quantum systems, their dynamics can be fully described by operators acting on the
system. This special class captures the scenario when the system is weakly coupled to the
environment and the dynamics of the environment occur at a much faster rate than the
system. Intuitively, the environment is fast enough so that the information only flows from
the system to the environment and there is no information flowing back. Precisely due to such
Markovianity, these open systems are called Markovian open quantum systems. Specifically,
such dynamics are described in terms of the density matrix ρ by the differential equation

d
dtρ = L(ρ) := −i[H, ρ] +

m∑
j=1

(
LjρL

†
j − 1

2

{
L†

jLj , ρ
})

(1)

which is referred to as the Lindblad equation [27, 15]. The superoperator L is called the
Lindbladian, and the Lj ’s are often called the jump operators. The solution to the Lindblad
equation is given by

ρt = eLt(ρ0). (2)

Here, the superoperator eLt is a quantum channel for all t ≥ 0.
It turns out that Markovian open quantum systems are general enough to model many

realistic quantum systems in quantum physics [24, 42], quantum chemistry [30, 32], and
quantum biology [12, 16, 31]. Computationally, such systems also arise in the context
of entanglement preparation [23, 18, 36], thermal state preparation [17], quantum state
engineering [41], and modeling the noise of quantum circuits [29, 33, 38].

The first quantum algorithm for simulating Markovian open quantum systems was
presented by Kliesch et al. in [20] in 2011 and the complexity has scaling O(t2/ϵ) for evolution
time t and precision ϵ. In 2017, Childs and Li [7] constructed an improved algorithm with cost
O(t1.5/

√
ϵ). Cleve and Wang [9] pushed the study further by reducing the complexity to nearly

optimal: O(t polylog(t/ϵ)), which was the first to achieve the complexity that scales linearly
in t and poly-logarithmically in 1/ϵ – that is exponentially better than previous approaches.
Recently, researchers have explored these simulation algorithms in various scenarios such as
simulating heavy-ion collisions [11], simulating the non-equilibrium dynamics in the Hubbard
model [40], simulating the non-equilibrium dynamics in the Schwinger model [10], and
preparing thermal states [35].

The quantum algorithm by Cleve and Wang [9] is based on the first-order approximation of
eLt, which can be further approximated by a completely positive map whose Kraus operators
involve H and Lj ’s. Due to the inefficiency of the first-order approximation, the building
blocks (the implementation of linear combination unitaries) of [9] need to be repeated many

X. Li and C. Wang 87:3

times to simulate a constant-time evolution, which tends to break the poly-logarithmic
dependence on 1/ϵ. However, it was shown in [9] that the state of the control qubits of the
building blocks concentrates to low-Hamming weight states. Thus a compression scheme had
to be employed in [9] to exponentially reduce the uses of the building blocks.

In the literature of Hamiltonian simulation, there is an elegant quantum algorithm that
uses a truncated Taylor series [3]. This algorithm is conceptually much simpler than its
first-order approximation predecessor [4] while keeping the same efficiency. Thus a natural
question arises: Can we generalize the truncated Taylor series approach to simulating
Lindblad evolution to obtain a much simpler algorithm? It was not known how to achieve
this due to the obstacle that higher powers of the Lindbladian are too intricate to keep
track of its completely positiveness, which is the key to implementing a superoperator. To
demonstrate this challenge, consider the expression of L2. For simplicity, let us assume
H = 0 and m = 1. We have

L2(ρ) = L2ρL†2 − 1
2LL

†LρL† − 1
2LρL

†LL† − 1
2L

†L2ρL† + 1
4L

†LL†Lρ

− 1
2LρL

†2L+ 1
2L

†LρL†L+ 1
4ρL

†LL†L.

(3)

As the above shows, it is highly nontrivial to maintain the completely positive structure in
the Taylor series eL ≈

∑K
ℓ=0

Lℓ

ℓ! even for this overly simplified case where H = 0 and m = 1.
In this paper, we present a quantum algorithm that takes advantage of a higher-order

series expansion based on Duhamel’s principle (this principle is briefly discussed in Section 2.1
for readers not familiar with this subject). Our quantum algorithm is conceptually simple
and it only contains straightforward applications of simple quantum primitives such as
oblivious amplitude amplification for isometries and linear combinations of unitaries (LCU)
for channels (presented in the language of block-encodings) [7]. Our approach is inspired by a
classical algorithm by Cao and Lu [6] based on the Duhamel’s principle. The basic idea is to
separate the Lindblad generator into two groups, the first group of which can be expressed as
a matrix exponential that immediately induces a completely positive map. By applying the
Duhamel’s principle repeatedly, a series expansion with arbitrary order of accuracy can be
obtained. We prove a rigorous error bound for this truncation. This procedure exhibits some
level of resemblance to the time-dependent Hamiltonian simulation method using Dyson
series [19]. However, an important focus in the simulation of Lindblad dynamics, due to the
presence of jump operators, is to maintain the completely positive property. In addition, we
apply Gaussian quadrature, which for any fixed number of quadrature points, has the optimal
order of accuracy, to treat the multiple integrals in the series expansion. This approach,
compared with the rectangle rule used in [19] and the mid-point rule used in [6], compressed
drastically the number of terms in the Kraus form of the completely positive maps. The
other added advantage is that it completely eliminates the need for time clocking, which
requires either a compression scheme or a quantum sorting network to implement.

We consider a very general model of input, namely, the operators are given by their
block-encodings. Informally, a unitary UA is the block-encoding of A with normalizing factor
α if the top-left block of UA is A/α. This input model abstract but general enough to
assume for most realistic physical models. In fact, traditional input models such as local
Hamiltonians, sparse Hamiltonians, and a linear combination of tensor product of Paulis
can all be efficiently converted to block-encodings. Suppose the operators H, and Lj ’s are
given as block-encodings with corresponding normalizing factors α0, αj ’s, respectively. We
define the following norm for the purpose of normalizing the magnitude of the Lindbladian
in Equation (1).

ICALP 2023

87:4 Simulating Markovian Open Quantum Systems Using Higher-Order Series Expansion

∥L∥be := α0 +
m∑

j=1
α2

j . (4)

Note that a similar norm ∥L∥pauli was defined in [7], which is a special case of ∥L∥be in the
context of linear combination of unitaries input model. Our main result is stated as follows.

▶ Theorem 1 (Informal version of Theorem 11). For a Lindbladian L with m jump operators.
Suppose we are given a block-encoding UH of H, and a block-encoding ULj

for each Lj. For
all t, ϵ > 0, there exists a quantum algorithm that approximates eLt in terms of the diamond
norm using O(τ polylog(t/ϵ)) queries to UH and ULj

and O(mτ polylog(t/ϵ)) additional 1-
and 2-qubit gates, where τ := t∥L∥be.

Our approach trades off mathematical simplicity for technical conciseness. In fact, the
majority of the analysis is devoted to proving the bound of the truncated series, and the
accuracy for using a scaled Gaussian quadrature to approximate each layer of a multiple
integral. Once the mathematical treatment is established, we obtain an approximate map
for eLt that is completely positive, represented in terms of Kraus operators. Then, it is
straightforward to use simple quantum primitives including LCU for channels and oblivious
amplitude amplification for isometries to implement this completely positive map. Moreover,
it is more direct to obtain the gate complexity that scales linearly in m, for which the
dependence was O(m2) as presented in [9] 1.

In this paper, we focus on time-independent Lindbladians. It is worth noting that our
approach easily generalizes to time-dependent Lindbladians. We sketch this generalization in
Appendix A.

The rest of the paper is structured as follows. We introduce the preliminaries, including
an introduction to Duhamel’s principle and the algorithmic tools in Section 2. In Section 3,
we present the series expansion based on Duhamel’s principle and prove the error bound.
In Section 4, we show how to use scaled Gaussian quadrature to approximate multiple
integrals. The main theorem is proved in Section 5 and our simulation algorithm is presented
in the proof. Finally, we sketch how to generalize our method to simulating time-dependent
Lindbladians in Appendix A.

2 Preliminaries

In this paper, we use ∥A∥ to denote the spectral norm of a square matrix A, and we use ∥A∥1
to denote its trace norm. We use I to denote the identity matrix and we leave its dimension
implicitly when it is clear from the context. We use calligraphic font, such as L, J to denote
superoperators. In particular, we use I to denote the identity map. We use K[A] to denote
the completely positive map induced by the Kraus operator A, i.e.,

K[A](ρ) := AρA† (5)

for all ρ. The induced trace norm of a superoperator M, denoted by ∥M∥1, is defined as
∥M∥1 := max{∥M(A)∥1 : ∥A∥ ≤ 1}. The diamond norm of a superoperator M, denoted by
∥M∥⋄, is defined as ∥M∥⋄ := ∥M ⊗ I∥1, where the identity map I acts on a Hilbert space
with the same dimension as the space M is acting on.

1 We realized that it is possible to improve the dependence to O(m) in [9] by a more careful construction
of the encoding gate in their compression scheme.

X. Li and C. Wang 87:5

We use block-encodings as the efficient description of the operators. Intuitively, we say a
unitary UA block-encodes a matrix A if A appears in the upper-left block of A, i.e.,

UA =
(
A/α ·

· ·

)
, (6)

where α is the normalizing factor. More formally, an (n+ b)-qubit unitary UA is an (α, b, ϵ)-
block-encoding of an n-qubit operator A if∥∥A− α(⟨0⊗b| ⊗ I)UA(|0⊗b⟩ ⊗ I)

∥∥ ≤ ϵ, (7)

where the identity operator is acting on n qubits.

2.1 Duhamel’s principle
For a differential equation written in the form of,

u′(t) = Lu+ f
(
t, u(t)

)
, u(0) = u0, (8)

where L is a linear operator, but f can in principle be a nonlinear function of u.
The Duhamel’s principle allows to separate the contribution to the solution from the

initial condition and the contribution from the non-homogeneous term. Specifically, we can
write the solution as

u = v + w, (9)

where v satisfies the equation without f ,

v′(t) = Lv, v(0) = u0, (10)

while w follows the equation

w′(t) = Lw + f
(
t, u(t)

)
, w(0) = 0, (11)

The solution v, due to the fact that Equation (10) is linear and homogeneous, can be
simply written as v(t) = etLu0. On the other hand, the equation for w can be rewritten as
(w(t)e−tL)′ = e−tLf

(
t, u(t)

)
, from which a direct integration yields,

w(t) =
∫ t

0
g(t, s)ds, g(t, s) := e(t−s)Lf

(
s, u(s)

)
. (12)

Notice that when s is held fixed, the function g(t, s) also follows a homogeneous equation
similar to Equation (10),

d

dt
g(t, s) = Lg(t, s), lim

t→s
g(t, s) = f

(
s, u(s)

)
, (13)

which is typically how the Duhamel’s principle is expressed.
The derivation of our algorithm will heavily involve the Duhamel’s principle, which can

be summarized into the following formula,

u(t) = etLu0 +
∫ t

0
e(t−s)Lf

(
s, u(s)

)
ds. (14)

ICALP 2023

87:6 Simulating Markovian Open Quantum Systems Using Higher-Order Series Expansion

2.2 Algorithmic tools
Given a completely positive map whose Kraus operators are given as block-encodings, we use
the following lemma to probabilistically implement this complete positive map. Note that
this lemma is a reformulation of the LCU for channels [7] in the language of block-encodings.

▶ Lemma 2 (Implementing completely positive maps via block-encodings of Kraus operators [26]).
Let A1, . . . , Am ∈ C2n be the Kraus operators of a completely positive map. Let U1, . . . , Um ∈
C2n+n′

be their corresponding (sj , n
′, ϵ)-block-encodings, i.e.,

∥Aj − sj(⟨0| ⊗ I)Uj |0⟩ ⊗ I)∥ ≤ ϵ, for all 1 ≤ j ≤ m. (15)

Let |µ⟩ := 1√∑m

j=1
s2

j

∑m
j=1 sj |j⟩. Then (

∑m
j=1 |j⟩⟨j| ⊗ Uj) |µ⟩ |0⟩ ⊗ I implements this com-

pletely positive map in the sense that∥∥∥∥∥∥I ⊗ ⟨0| ⊗ I

 m∑
j=1

|j⟩⟨j| ⊗ Uj

 |µ⟩ |0⟩ |ψ⟩ − 1√∑m
j=1 s

2
j

m∑
j=1

|j⟩Aj |ψ⟩

∥∥∥∥∥∥ ≤ mϵ√∑m
j=1 s

2
j

(16)

for all |ψ⟩.

The following lemma shows how to construct the block-encoding as a linear combination
of block-encodings.

▶ Lemma 3 (Block-encoding of a sum of block-encodings [26]). Suppose A :=
∑m

j=1 yjAj ∈
C2n×2n , where Aj ∈ C2n×2n and yj > 0 for all j ∈ {1, . . .m}. Let Uj be an (αj , a, ϵ)-
block-encoding of Aj, and B be a unitary acting on b qubits (with m ≤ 2b − 1) such that
B |0⟩ =

∑2b−1
j=0

√
αjyj/s |j⟩, where s =

∑m
j=1 yjαj . Then a (

∑
j yjαj , a+ b,

∑
j yjαjϵ)-block-

encoding of
∑m

j=1 yjAj can be implemented with a single use of
∑m−1

j=0 |j⟩⟨j| ⊗ Uj + ((I −∑m−1
j=0 |j⟩⟨j|) ⊗ IC2a ⊗ IC2n) plus twice the cost for implementing B.

Finally, we need the oblivious amplitude amplification for isometries.

▶ Lemma 4 (Oblivious amplitude amplification for isometries [9]). For all a, b ∈ N+, let |0̂⟩ :=
|0⟩⊗a and |µ⟩ be arbitrary b-qubit state. For any n-qubit state |ψ⟩, let |ψ̂⟩ := |0̂⟩ |µ⟩ |ψ⟩.
Also define |ϕ̂⟩ := |0̂⟩ |ϕ⟩, where |ϕ⟩ is a (b+n)-qubit state. Let P0 :=

∣∣0̂〉〈0̂∣∣⊗ I2b ⊗ I2n and
P1 :=

∣∣0̂〉〈0̂∣∣⊗ |µ̂⟩⟨µ̂| ⊗ I2n be two projectors. Suppose there exists an operator W satisfying

W |ϕ̂⟩ = 1
2 |ϕ̂⟩ +

√
3
4 |ϕ̂⊥⟩ , (17)

where |ϕ̂⟩ satisfies P0 |ϕ̂⊥⟩ = 0. Then it holds that

−W (I − 2P1)W †(I − 2P0)W |ψ̂⟩ = |ϕ̂⟩ . (18)

3 Higher order series expansion based on Duhamel’s principle

The goal of our quantum algorithm is to simulate the Lindblad equation defined in Equa-
tion (1). In the context of quantum trajectory theory [34], we view the commutator and
the anti-commutator terms as the drifting part, and the LjρL

†
j terms are regarded as jump

part. Accordingly, motivated by the numerical method in [6]. We decompose L into two
superoperators, the drifting part LD and the jump part LJ. Namely,

X. Li and C. Wang 87:7

L = LD + LJ, and (19)

LD(ρ) := Jρ+ ρJ†, LJ(ρ) :=
m∑

j=1
LjρL

†
j . (20)

Here we define J as

J := −iHeff . (21)

where an effective Hamiltonian Heff is given by,

Heff := H + 1
2i

m∑
j=1

L†
jLj . (22)

Thus LD can be viewed as a generalized anti-commutator.
By treating the term with LD as a non-homogeneous term, the Duhamel’s principle in

Equation (14) can be applied, and we get,

ρt = eLt(ρ0) = eLDt(ρ0) +
∫ t

0
eLD(t−s)(LJρs)ds. (23)

Note that the solution ρs is still involved in the integral on the right hand side. Therefore,
this equation does not provide an explicit formula for the solution; Rather, it offers an
integral representation of the Lindblad equation. Nevertheless, one can apply Equation (14)
again to ρs in the integral. After K such iterations, we arrive at

ρt = eLDt(ρ0)

+
K∑

k=1

∫
0≤s1≤···≤sk≤t

eLD(t−sk)LJe
LD(sk−sk−1)LJ · · · eLD(s2−s1)LJe

LD(s1)(ρ0)ds1 · · · dsk

+
∫

0≤s1≤···≤sK+1≤t

eLD(t−sK+1)LJe
LD(sK+1−sK)LJ · · · eLD(s2−s1)LJ(ρs1)ds1 · · · dsK+1.

(24)

Now notice that the first two terms on the right hand side only depend on the initial density
matrix, and thus they are amenable to numerical approximations. Meanwhile, the last term
will be regarded as a truncation error, which will be bounded later.

We first derive the Kraus representation of eLDt, which is the first term in the expansion,
but also appears in each integral. The Kraus form can be obtained from a Taylor series. To
see this, let us consider the case where LD is acting on a pure state |ψ⟩:

d
dt |ψ⟩ = J |ψ⟩ . (25)

Using the chain rule, we have

d
dt |ψ⟩⟨ψ| = J |ψ⟩⟨ψ| + |ψ⟩⟨ψ| J† = LD(|ψ⟩⟨ψ|). (26)

The above two equations also hold for general states ρ by linearity. Hence, solving Equa-
tion (25) and Equation (26) yields

eLDt = K
[
etJ
]
. (27)

ICALP 2023

87:8 Simulating Markovian Open Quantum Systems Using Higher-Order Series Expansion

Now, we adopt the notation from [6],

Fk(sk, . . . , s1) := K[eJ(t−sk)]LJK[eJ(sk−sk−1)]LJ · · · K[eJ(s2−s1)]LJK[eJ(s1−0)]. (28)

We further define

GK(t) := K[eJt] +
K∑

k=1

∫
0≤s1≤···≤sk≤t

Fk(sk, . . . , s1) ds1 · · · dsk. (29)

At this point, the problem is reduced to approximating eLt by GM (t). We first prove an error
bound.

▶ Lemma 5. It holds that∥∥eLt − GK(t)
∥∥

⋄ ≤
(2∥L∥bet)K+1

(K + 1)! . (30)

The proof of Lemma 5 is shown in the full version of this paper [43].
Eventually, we need to approximate the Kraus operator eJt in our quantum algorithm.

This can be done by a truncated Taylor series. For notational simplicity, we define

JK′ = K

 K′∑
ℓ=0

Jℓtℓ

ℓ!

 . (31)

We quantify the error of this approximation in the following lemma.

▶ Lemma 6. Suppose that k ∈ N such that (k + 1)! ≥ 2∥J∥k+1
tk+1. Let Jk be defined in

Equation (31). It holds that

∥∥K[eJt] − Jk(t)
∥∥

⋄ ≤
8e∥L∥bet∥L∥k+1

be tk+1

(k + 1)! . (32)

The proof of Lemma 6 is shown in the full version of this paper [43].
We also provide the following useful lemma, which will be used in the final analysis of

our algorithm

▶ Lemma 7. Suppose that k,K ′ ∈ N such that (K ′ + 1)! ≥ 8e∥L∥bet∥L∥K′+1
be tK

′+1. Let JK′

be defined in Equation (31), and Fk be defined in Equation (28). It holds that

∥JK′(t− sm)LJJK′(sm − sm−1)LJ · · · JK′(s2 − s1)LJJK′(s1) − Fk(sk, . . . , s1)∥⋄

≤
8e∥L∥bet∥L∥K′+1

be
(K ′ + 1)! (2∥L∥be)k2ktK

′+1.
(33)

The proof of Lemma 7 is shown in the full version of this paper [43].

4 Approximating multiple integrals using scaled Gaussian quadrature

To obtain an algorithm that can be directly implemented, we apply Gaussian quadrature
formulas to approximate the multiple integrals in Equation (29). Due to their optimal
accuracy, the number of terms in the approximation is significantly compressed. Typically,
quadrature error depends on the smoothness of the function. For this purpose, we first bound
the derivatives of Fk.

X. Li and C. Wang 87:9

▶ Lemma 8. For all k′ ∈ [k], it holds that∥∥∥∥∥ dk′

dsk′
j

Fk

∥∥∥∥∥
⋄

≤ 22k′+k∥L∥k
be∥J∥k′

. (34)

The proof of Lemma 8 is shown in the full version of this paper [43].
We now discuss the quadrature approximation for the integral in Equation (29):∫

0≤s1≤···≤sk≤t

LJK[eJ(sm−sm−1)]LJ · · · K[eJ(s2−s1)]LJK[eJ(s1−0)] ds1 · · · dsk. (35)

For optimal accuracy, we use Gaussian quadrature. In the Gaussian quadrature rule, the
interpolation nodes 0 ≤ ŝ1 ≤ · · · ≤ ŝq ≤ t and the weights w1, . . . , wq are independent of the
function and can be pre-computed. More specifically, let {Pi(x)}i be the standard Legendre
polynomials. They are an orthonormal family of polynomials in the sense that∫ 1

−1
Pr(x)Ps(x) dx =

{
0 r ̸= s,

1 r = s.
(36)

By a simple scaling,

P̂(x) := P

(
2x
t

− 1
)
. (37)

we obtain the functions P̂ that are orthogonal for the interval [0, t]. Let {ŝi}n
i=1 be the roots

of the n-th degree polynomial P̂q. We also define

πq(x) := (x− ŝ1)(x− ŝ2) · · · (x− ŝq). (38)

Then the i-th Lagrange polynomial for points ŝ1, . . . , ŝq is

Lq−1,i(x) = πq(x)
(x− ŝi)π′

q(ŝi)
. (39)

Once the quadrature points are selected, the weight of the Gaussian quadrature can be
expressed as

wi =
∫ t

0
Lq−1,i(x) dx, (40)

which can be direct deduced from a polynomial interpolation.
We refer to ŝ1, . . . , ŝq as the canonical quadrature points and w1, . . . , wq as the canonical

weights. In approximating
∫ t

0 f(x) dx using
∑q

j=1 f(ŝj)wj , the error follows the standard
bound,

Eq[f] =
∫ t

0
f(x) dx−

q∑
j=1

f(ŝj)wj = f (2q)(ξ)
(2q)!

∫ t

0
πq(x)2dx, (41)

for some ξ ∈ [0, t].
To estimate the integral term in the error, we notice that,

πq(x) = tqq!
2q(2q − 1)!!Pq

(
2x
t

− 1
)
, (42)

ICALP 2023

87:10 Simulating Markovian Open Quantum Systems Using Higher-Order Series Expansion

The coefficient on the right hand side is determined by observing that πq(x) is a monic
polynomial, and the leading coefficient of the standard Legendre polynomial is (2q − 1)!!/q!.
The notation !! indicates a double factorial, i.e., (2q − 1)!! = (2q − 1)(2q − 3) · · · 1 and we use
the convention that (−1)!! = 1.

Combining these formulas, we arrive at an explicit bound

|Eq[f]| =
∣∣f (2q)

∣∣(ξ)t2q+1(q!)2

(2q)!22q(2q − 1)!!(2q + 1)!! ≤
∣∣f (2q)

∣∣(ξ)t2q+1q

(2q)!24q−1 (43)

for some ξ ∈ [0, t], where the inequality follows from the fact that q!! = 2q/2(q/2)! for even q.
Here we also used the identity,∫ 1

−1
P2

q (x) dx = 2
2q + 1 .

We hold t fixed. For an interval [0, sk] with sk ≤ t, we use a scaled canonical quadrature
points and weights: skŝ1/t, . . . , skŝq/t, and skw1/t, . . . , skwq/t. Then,

∫ sk

0 f(x) dx can be
approximated by the scaled quadrature points and weights with the same error bound:∫ sk

0
f(x) dx =

n∑
j

f

(
skŝj

t

)
skwj

t
+ O

(∥∥f (2n)
∥∥

∞s
2n+1
k n

(2n)!24n−1

)
. (44)

For each j ∈ [n], define the functions uk and vk as

uj(x) := xŝj/t (45)
vj(x) := xwj/t. (46)

Note that for any sℓ, {uj(sℓ)}q
j=1 are the scaled canonical quadrature point and {vj(sℓ)}q

j=1
are the scaled weights.

To simplify the notation, we extend Equation (45) and define

x̂(jk) := ŝjk
, and x̂(jk,...,jk−ℓ) := ujk−ℓ

◦ · · · ◦ ujk−1(ŝjk
) for all 1 ≤ ℓ ≤ k − 1, (47)

ŵ(jk) := wjk
, and ŵ(jk,...,jk−ℓ) := vjk−ℓ

(x̂(jk,...,jk−ℓ+1)) for all 1 ≤ ℓ ≤ k − 1. (48)

With these notations, the approximation of the integral in Equation (35) becomes,

q∑
j1=1

· · ·
q∑

jk=1
Fk

(
x̂(jk), , . . . , x̂(jk,...,j1)

)
ŵ(jk) · · · ŵ(jk,...,j1). (49)

We first show some useful properties of the quadrature weights.

▶ Lemma 9. for all ℓ ∈ {0, . . . , q}, it holds that

q∑
j=1

wj ŝj
ℓ = tℓ+1

ℓ+ 1 . (50)

In particular, when ℓ = 0

q∑
j=1

wj = t. (51)

X. Li and C. Wang 87:11

For all positive integers k, ℓ with ℓ < k, it also holds that
q∑

jk=1
· · ·

q∑
jk−ℓ=1

ŵ(jk) · · · ŵ(jk,...,jk−ℓ) = tℓ+1

(ℓ+ 1)! . (52)

In particular, when ℓ = k − 1, it holds that
q∑

jk=1
· · ·

q∑
j1=1

ŵ(jk) · · · ŵ(jk,...,j1) = tk

(k + 1)! . (53)

The proof of Lemma 9 is shown in the full version of this paper [43].
With the bound on the derivatives of the integrand in Lemma 8 and the Gaussian

quadrature error Equation (43), we can estimate the overall quadrature error, as stated in
the following lemma,

▶ Lemma 10. It holds that∥∥∥∥∫
0≤s1≤···≤sk≤t

Fk(sk, . . . , s1) ds1 · · · dsk

−
q∑

j1=1
· · ·

q∑
jk=1

Fk

(
x̂(jk), , . . . , x̂(jk,...,j1)

)
ŵ(jk) · · · ŵ(jk,...,j1)

∥∥∥∥∥∥
⋄

= O

(
(2t)k−12k+1∥L∥k

be∥J∥(2q)
t2q+1q

(k − 1)!(2q)!

)
.

(54)

The proof of Lemma 10 is shown in the full version of this paper [43].

5 Quantum algorithm and the proof of the main theorem

In this section, we prove the main theorem and describe the algorithm in the proof. Our
algorithm constructs a segment for constant evolution time, i.e., t∥L∥be = Θ(1). For arbitrary
evolution time, we just repeat the simulation segment O(t∥L∥be) times with a scaled precision
parameter.

We first present the higher order approximation of eL as a completely positive map with
explicit Kraus operators. Then we use Lemma 2 to implement this completely positive map
with success probability 1/4, which can be calculated by analyzing the normalizing constants
of the block-encodings of the Kraus operators. Then we show that the special state |µ⟩
required by Lemma 2 can be efficiently prepared. Finally, we analyze the error introduced
by using a truncated Taylor series to approximate eJt, which is part of the Kraus operators.

▶ Theorem 11. Suppose we are given an (α0, a, ϵ
′)-block-encoding UH of H, and an (αj , a, ϵ

′)-
block-encoding ULj

for each Lj . For all t, ϵ ≥ 0 with ϵ′ ≤ ϵ/(t(∥L∥be), there exists a quantum
algorithm for simulating eLt using

O

(
t∥L∥be

log(t∥L∥be/ϵ)
log log(t∥L∥be/ϵ)

)
(55)

queries to UH and ULj and

O

(
mt∥L∥be

(
log(t∥L∥be/ϵ)

log log(t∥L∥be/ϵ)

)2
)

(56)

additional 1- and 2-qubit gates.

ICALP 2023

87:12 Simulating Markovian Open Quantum Systems Using Higher-Order Series Expansion

Proof. We describe our simulation algorithm and prove the theorem as follows.

Completely-positive approximation. The final approximation to eLt is

K[eJt] +
K∑

k=1

q∑
j1=1

· · ·
q∑

jk=1
FK

(
x̂(jk), , . . . , x̂(jk,...,j1)

)
ŵ(jk) · · · ŵ(jk,...,j1), (57)

which is a completely positive map and the block-encodings of its Kraus operators can be
easily obtained by a product of the block-encoding UH of H , and the block-encodings ULj

of
Lj as well as positive factors determined by Taylor’s expansion and the Gaussian quadrature
weights. More specifically, define the index sets I as

I := {k, ℓ1, . . . , ℓk, j1, . . . , jk : k ∈ [K], ℓ1, . . . , ℓk ∈ [m], j1 . . . , jk ∈ [q]} . (58)

The completely positive map in Equation (57) can be written as

A0ρA
†
0 +

∑
j∈I

AjρA
†
j , (59)

with A0 := eJt, and

Aj =
√
ŵ(jk) · · · ŵ(jk,...,j1)e

J(t−x̂(jk))Lℓk
· · · eJ(x̂(jk,...,j2)−x̂(jk,...,j1))Lℓ1e

J(x̂(jk,...,j1)), (60)

for j = (k, ℓ1, . . . , ℓk−1, j1, . . . , jk) ∈ I .

Setting parameters for 1/4 success probability. We use Lemma 2 to implement the above
map, and the success probability is determined by the sum-of-squares of the normalizing
constants of the Kraus operators.

We first consider the Kraus operators of

Fk(sk, . . . , s1) = K[eJ(t−sk)LJK[eJ(sk−sk−1)]LJ · · · K[eJ(s2−s1)]LJK[eJ(s1−0)], (61)

for any s1 ≤ · · · ≤ sk. For each K[eJs], we use Lemma 3 to approximate its block-encoding as
a truncated Taylor series. For the convenience of analysis, let us for now assume an infinite
Taylor series is implemented. The normalizing constant of the block-encoding for eJs is then

∞∑
ℓ=0

sℓ(α0 + 1
2
∑m

j=1 α
2
j)

ℓ! = es∥L∥be . (62)

As a result, the sum-of-squares of the normalizing constants of the Kraus operators of
Fk(sk, . . . , s1) is

m∑
j1,...,jk=0

e2∥L∥be(t−sk)e2∥L∥be(sk−sk−1) · · · e2∥L∥be(s1−0)α2
j1

· · ·α2
jk

= e2∥L∥bet

 m∑
j=1

α2
j

k

(63)

For the approximation of the integral,

q∑
j1=1

· · ·
q∑

jk=1
Fk

(
x̂(jk), , . . . , x̂(jk,...,j1)

)
ŵ(jk) · · · ŵ(jk,...,j1), (64)

X. Li and C. Wang 87:13

the sum-of-squares of the normalizing constants of its Kraus operators is

e2∥L∥bet

 m∑
j=1

α2
j

k
q∑

j1=1
· · ·

q∑
jk=1

ŵ(jk) · · · ŵ(jk,...,j1) = tk

(k − 1)!e
2∥L∥bet

 m∑
j=1

α2
j

k

. (65)

Finally, for the approximation

K[et] +
K∑

k=1

q∑
j1=1

· · ·
q∑

jk=1
Fk

(
x̂(jk), , . . . , x̂(jk,...,j1)

)
ŵ(jk) · · · ŵ(jk,...,j1), (66)

the sum-of-squares of the normalizing constants of its Kraus operators is

e2∥L∥bet +
K∑

k=1

tk

(k − 1)!e
2∥L∥bet

 m∑
j=1

α2
j

k

(67)

= e2∥L∥bet + te2∥L∥bet
∑

j

α2
j

K∑
k=1

tk−1(
∑

j α
2
j)k−1

(k − 1)! (68)

≤ e2∥L∥bet + t
∑

j

α2
je

2∥L∥bete
t
∑

j
α2

j . (69)

Note that the inequality above provides an upper bound for the sum-of-squares of the
normalizing constants. There is a closed-form expression for this quantity. By setting the
right hand side to 2, and solve the equation, the above upper bound implies that t must
satisfy

t∥L∥be = Θ(1). (70)

Then we use Lemma 4 to boost the success probability to 1 with only three application of
the circuit.
Determining truncation orders. Now, we analyze the error by setting t∥L∥be = Θ(1). By
Lemma 5 and Lemma 10, the total approximation error can be bounded by the following.∥∥∥∥∥∥eLt − K[eJt] −

K∑
k=1

q∑
j1=1

· · ·
q∑

jk=1
Fk

(
x̂(jk), , . . . , x̂(jk,...,j1)

)
ŵ(jk) · · · ŵ(jk,...,j1)

∥∥∥∥∥∥
⋄

(71)

≤
(2∥L∥be)K+1

(K + 1)! +O

(
K∑

k=1

(2t)k−12k+1∥L∥k
be∥J∥(2q)

t2q+1q

(k − 1)!(2q)!

)
(72)

=
(2∥L∥be)K+1

(K + 1)! + ∥J∥2q
t2q+1q

(2q)! O

(
K∑

k=1

(2t)k−12k+1∥L∥k
be

(k − 1)!

)
(73)

=
(2∥L∥be)K+1

(K + 1)! + ∥J∥2q
t2q+1q

(2q)! O
(
e4t∥L∥be

)
(74)

≤
(2∥L∥be)K+1

(K + 1)! +
∥L∥2q

bet
2q+1q

(2q)! O
(
e4t∥L∥be

)
, (75)

where the last inequality follows from

∥J∥ ≤ ∥H∥ + 1
2
∑

j

∥Lj∥2 ≤ α0 + 1
2
∑

j

α2
j = ∥L∥be. (76)

ICALP 2023

87:14 Simulating Markovian Open Quantum Systems Using Higher-Order Series Expansion

With t∥L∥be = Θ(1), it suffices to set

K, q = O

(
log(1/ϵ)

log log(1/ϵ)

)
(77)

to make the approximation error at most ϵ/2.
Applying the main algorithmic tool (Lemma 2). In Lemma 2, we need to prepare the
special state |µ⟩ which encodes a superposition of normalizing constants of all Kraus operators.
Now we show how to efficiently prepare this state. First observe that the normalizing constant
for Aj in Equation (60) is√

ŵ(jk) · · · ŵ(jk,...,j1)e
∥L∥be(t−x̂(jk))αℓk

· · · e∥L∥be(x̂(jk,...,j2)−x̂(jk,...,j1))αℓ1e
∥L∥be(x̂(jk,...,j1))

(78)

=
√
ŵ(jk) · · · ŵ(jk,...,j1)e

∥L∥betαℓk
· · ·αℓ1 (79)

= 1√
tk(k−1)/2

√
wjk

ŝk−1
jk

wjk−1 ŝ
k−2
jk−1

· · ·wj2 ŝj2wj1e
∥L∥betαℓk

· · ·αℓ1 , (80)

and the normalizing constant for A0 is e∥L∥bet. Note that e∥L∥bet appears in every amplitude
of |µ⟩ and therefore can be ignored. We use three registers in |µ⟩. The first register contains
K qubits and it encodes k in unary representation, i.e., we use

∣∣1k0K−1〉 to represent k.
The second register contains k subregisters of logm qubits to represent ℓ1, . . . , ℓk. The third
register contains k subregisters of log q qubits to represent j1, . . . , jk. We first prepare the
normalized version of the state

∑K
k=0

1√
tk(k−1)/2

∣∣1k0K−1〉, which can be done using O(K)
gates: we apply a rotation on the first qubit, and then apply a rotation on each subsequent
qubit controlled by the previous qubit. For the second register, in each subregister we
prepare the normalized version of

∑m
j=1 αj |j⟩. The total gate cost for the second register is

O(Km). For the ℓ-th subregister of the third register, we prepare the normalized version of∑q
j=1

√
wjs

ℓ−1
j |j⟩. The total gate cost for the third register is O(Kq). Note that each gate

acting on the ℓ-th subregister of the second and the third register is further controlled on the
ℓ-th qubit of the first register, which effects the truncation. Therefore, the total gate cost for
preparing |µ⟩ is O(K(m+ q)).

Now, we show how to use Lemma 3 to approximate the block-encoding Us of eJs for any
0 < s ≤ t, where s is provided in a time register containing |s⟩. Here we use K ′ to denote the
Taylor series truncation error. So we need to use Lemma 3 to implement a block-encoding of∑K′

k=0 s
kJk/k!. Recall that J = −iH − 1

2
∑m

j=1 L
†
jLj . In Lemma 3, we need to implement

the B gate for preparing a superposition of coefficients. We use K ′ + 1 control registers: the
first register contains K qubits which encode k in unary; each subsequent register contains
O(log(m)) qubits. The B gate is implemented as follows. Controlled by the time register
|s⟩, we implement the normalized version of the state

∑K′

k=0
√
sk/k!

∣∣∣1k0K′−k
〉

on the first
control register, which can be done with O(K) controlled-rotations. For each subsequent
control resister, we implement the normalized version of the state |0⟩ +

∑m
j=1

√
α2

j/2 |j⟩,
which costs O(m) gates. The controlled operation

∑
j |j⟩⟨j| ⊗ Aj can be implemented by

the controlled-UH and controlled-ULj controlled by the K + 1 control registers. Therefore,
the total gate cost for implementing B is O(K ′m). The controlled rotations on the first
control register controlled by the time register costs O(poly(b)) gates where b is the bits
used to represent s. It suffices to set b = O(log(1/ϵ)) for a precise representation of s within
ϵ. As a result, the cost O(poly(b)) is not dominating. As a result, the total gate cost for
implementing

∑
s |s⟩⟨s| ⊗ Us is O(Km).

X. Li and C. Wang 87:15

Additional approximation. It is important to note that by a direct application of Lemma 3,
the error of the block-encoding we implement is O(ϵ′es∥L∥be). However, a more careful
analysis shows a much better error bound: first assume we had implemented the infinity
Taylor series. Then the error ϵ′ of each block-encoding will cause error for the implementation
that is bounded by2 ∥eJs − eJ̃s∥ ≤

∥∥J − J̃
∥∥s ≤ ϵ′s∥L∥be. Further, Lemma 6 implies that

the error caused by the truncation is (2es∥L∥be)K′+1

(K′+1)′ . By assuming ϵ′ ≤ ϵ/(t(∥L∥be), the
truncation error will dominate by our choice of K ′.

In Lemma 2, we need |j⟩⟨j| ⊗ Aj , where Aj is defined in Equation (60). This can be
implemented by a sequence of at most K controlled-Us and at most K controlled-ULj . Note
that the time register required for implementing Us can be extracted from the index j, and
then uncomputed. Therefore, the gate cost for this is O(KK ′m). Therefore, the additional
1- and 2-qubits for this implementation is dominated by O(KK ′m).

Next, we analyze how the truncation of eJs at order K ′ affects the total error. By
Lemma 7, we have

∥JK′(t− sm)LJJK′(sm − sm−1)LJ · · · JK′(s2 − s1)LJJK′(s1) − Fk(sk, . . . , s1)∥⋄

≤
8e∥L∥bet∥L∥K′+1

be
(K ′ + 1)! (2∥L∥be)k2ktK

′+1.
(81)

Taking the weighted sum for quadrature points, the error is at most

8e∥L∥bet∥L∥K′+1
be

(K ′ + 1)! (2∥L∥be)k2ktK
′+1

q∑
j1=1

· · ·
q∑

jk=1
ŵ(jk) · · · ŵ(jk,...,j1)

=
8tke∥L∥bet∥L∥K′+1

be
(k − 1)!(K ′ + 1)! (2∥L∥be)k2ktK

′+1.

(82)

Therefore, the total error is

K∑
k=1

8tke∥L∥bet∥L∥K′+1
be

(k − 1)!(K ′ + 1)! (2∥L∥be)k2ktK
′+1 ≤

32e5∥L∥bet∥L∥K′+2
be tK

′+2

(K ′ + 1)! . (83)

With t∥L∥be = Θ(1), it suffices to set

K ′ = O

(
log(1/ϵ)

log log(1/ϵ)

)
(84)

to make this error ≤ ϵ/2. Therefore, the total error is bounded by ϵ.
Multiple simulation blocks. For arbitrary evolution time t, we divide it into O(t∥L∥be)
segments and set

K,K ′, q = O

(
log(t∥L∥be/ϵ)

log log(t∥L∥be/ϵ)

)
(85)

so that the total error of the O(t∥L∥be) segments is within ϵ. For the remaining smaller
segment of this division, the normalizing constant is smaller which yields a larger success
probability. However, the amplitude amplification will overshoot. We use standard technique
by adding an ancillary qubit and use a rotation to dilute the success probability to 1/4. ◀

2 The inequality ∥eJs − eJ̃s∥ ≤
∥∥J − J̃

∥∥s does not hold for general matrices J . However, in our case it
holds because J is dissipative and hence ∥eJs∥ ≤ 1 for all s ≥ 0.

ICALP 2023

87:16 Simulating Markovian Open Quantum Systems Using Higher-Order Series Expansion

6 Conclusion and open questions

In this paper, we presented a quantum algorithm for simulating Lindblad evolution, which
captures the dynamics of Markovian open quantum systems. The algorithm can be used to
forecast the dynamics of a quantum system interacting with an environment. Informally,
the complexity of our algorithm scales as O(t polylog(t/ϵ)), which matches the previous
state-of-the-art algorithm. Our algorithm is based on a conceptually novel mathematical
treatment of evolution channel to preserve its complete positivity: we use a higher-order
series expansion based on Duhamel’s principle, and we approximate the integrals by scaled
Gaussian quadrature, which exponentially reduces the number of terms in the summation.
Our mathematical treatment trades off mathematical simplicity for technical conciseness,
and it yields a much simpler algorithm based on linear combination of unitaries. We also
outlined how our algorithm can be generalized to simulate time-dependent Lindbladians.
Moreover, our approximation of multiple integrals using scaled Gaussian quadrature can be
potentially used to produce a more efficient approximation of time-ordered integrals, which
will simplify existing quantum algorithms for simulating time-dependent Hamiltonians based
on a truncated Dyson series, e.g., [18].

The open questions of this work are summarized as follows.
Can we achieve the additive complexity, i.e., O(t+polylog(1/ϵ))? This additive complexity
has been achieved for simulating Hamiltonian evolution by quantum signal processing [28]
and quantum singular transformation [14], and it is proved to be optimal [5]. As
Hamiltonian evolution is a special case of Lindblad evolution, the complexity for simulating
the latter is at least Ω(t + polylog(1/ϵ)). It is yet unknown how to generalize the
techniques of quantum signal processing and quantum singular value transformation to
superoperators.
What are the practical performances of our algorithm? For Hamiltonian simulation,
although LCU-based algorithms have a better asymptotic scaling, it was reported in [8]
that Trotter-based algorithms surprisingly perform just as well in practice. Regarding
simulating Lindblad evolution, do LCU-based algorithms, i.e., the algorithms presented
in this paper and [9], have a practical advantage compared with Trotter-based simulation
algorithms, e.g., [20, 7]? An empirical study on the performances of quantum algorithms
for simulating open quantum systems would be beneficial.

References
1 Robert Alicki. The quantum open system as a model of the heat engine. Journal of Physics

A: Mathematical and General, 12(5):L103, 1979.
2 Robert Alicki and David Gelbwaser-Klimovsky. Non-equilibrium quantum heat machines. New

Journal of Physics, 17(11):115012, 2015.
3 Dominic W Berry, Andrew M Childs, Richard Cleve, Robin Kothari, and Rolando D Somma.

Simulating Hamiltonian dynamics with a truncated Taylor series. Physical Review Letters,
114(9), 2015. doi:10.1103/physrevlett.114.090502.

4 Dominic W Berry, Andrew M Childs, Richard Cleve, Robin Kothari, and Rolando D Somma.
Exponential improvement in precision for simulating sparse Hamiltonians. Forum of Mathe-
matics, Sigma, 5, 2017. doi:10.1017/fms.2017.2.

5 Dominic W Berry, Andrew M Childs, and Robin Kothari. Hamiltonian simulation with nearly
optimal dependence on all parameters. In Proceedings of the 56th Annual IEEE Symposium
on Foundations of Computer Science (FOCS 2015), 2015.

6 Yu Cao and Jianfeng Lu. Structure-preserving numerical schemes for Lindblad equations.
arXiv:2103.01194 [quant-ph], March 2021. arXiv:2103.01194.

https://doi.org/10.1103/physrevlett.114.090502
https://doi.org/10.1017/fms.2017.2
https://arxiv.org/abs/2103.01194

X. Li and C. Wang 87:17

7 Andrew M Childs and Tongyang Li. Efficient simulation of sparse Markovian quantum
dynamics. Quantum Information & Computation, 17(11&12):0901–0947, 2017.

8 Andrew M Childs, Dmitri Maslov, Yunseong Nam, Neil J Ross, and Yuan Su. Toward the first
quantum simulation with quantum speedup. Proceedings of the National Academy of Sciences,
115(38):9456–9461, 2018.

9 Richard Cleve and Chunhao Wang. Efficient quantum algorithms for simulating Lindblad
evolution. In 44th International Colloquium on Automata, Languages, and Programming,
(ICALP 2017), pages 17:1–17:14, 2017.

10 Wibe A de Jong, Kyle Lee, James Mulligan, Mateusz Płoskoń, Felix Ringer, and Xiaojun Yao.
Quantum simulation of nonequilibrium dynamics and thermalization in the Schwinger model.
Physical Review D, 106(5):054508, 2022.

11 Wibe A de Jong, Mekena Metcalf, James Mulligan, Mateusz Płoskoń, Felix Ringer, and
Xiaojun Yao. Quantum simulation of open quantum systems in heavy-ion collisions. Physical
Review D, 104(5):L051501, 2021.

12 Ross Dorner, John Goold, and Vlatko Vedral. Towards quantum simulations of biological
information flow. Interface Focus, 2(4):522–528, 2012. doi:10.1098/rsfs.2011.0109.

13 Richard P. Feynman. Simulating physics with computers. International Journal of Theoretical
Physics, 21(6-7):467–488, 1982. doi:10.1007/bf02650179.

14 András Gilyén, Yuan Su, Guang Hao Low, and Nathan Wiebe. Quantum singular value
transformation and beyond: exponential improvements for quantum matrix arithmetics. In
Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, pages
193–204. ACM, 2019. arXiv:1806.01838.

15 Vittorio Gorini, Andrzej Kossakowski, and Ennackal Chandy George Sudarshan. Completely
positive dynamical semigroups of n-level systems. Journal of Mathematical Physics, 17(5):821–
825, 1976.

16 Susana F. Huelga and Martin B. Plenio. Vibrations, quanta and biology. Contemporary
Physics, 54(4):181–207, 2013. doi:10.1080/00405000.2013.829687.

17 Michael J. Kastoryano and Fernando G. S. L. Brandão. Quantum Gibbs samplers: the
commuting case. Communications in Mathematical Physics, 344(3):915–957, 2016. doi:
10.1007/s00220-016-2641-8.

18 Michael J. Kastoryano, Florentin Reiter, and Anders S. Sørensen. Dissipative preparation
of entanglement in optical cavities. Physical Review Letters, 106(9), 2011. doi:10.1103/
physrevlett.106.090502.

19 Mária Kieferová, Artur Scherer, and Dominic W Berry. Simulating the dynamics of time-
dependent hamiltonians with a truncated dyson series. Physical Review A, 99(4):042314,
2019.

20 Martin Kliesch, Thomas Barthel, Christian Gogolin, Michael J Kastoryano, and Jens Eisert.
Dissipative quantum Church-Turing theorem. Physical Review Letters, 107(12), 2011. doi:
10.1103/physrevlett.107.120501.

21 Christiane P Koch. Controlling open quantum systems: tools, achievements, and limitations.
Journal of Physics: Condensed Matter, 28(21):213001, 2016.

22 Ronnie Kosloff and Amikam Levy. Quantum heat engines and refrigerators: Continuous
devices. Annual Review of Physical Chemistry, 65:365–393, 2014.

23 Barbara Kraus, Hans P. Büchler, Sebastian Diehl, Adrian Kantian, Andrea Micheli, and Peter
Zoller. Preparation of entangled states by quantum Markov processes. Physical Review A,
78(4), 2008. doi:10.1103/physreva.78.042307.

24 Anthony J. Leggett, Sudip Chakravarty, Alan T. Dorsey, Matthew P. A. Fisher, Anupam
Garg, and Wilhelm Zwerger. Dynamics of the dissipative two-state system. Reviews of Modern
Physics, 59(1):1–85, 1987. doi:10.1103/revmodphys.59.1.

25 Amikam Levy, Anthony Kiely, Juan Gonzalo Muga, Ronnie Kosloff, and Erik Torrontegui. Noise
resistant quantum control using dynamical invariants. New Journal of Physics, 20(2):025006,
2018.

ICALP 2023

https://doi.org/10.1098/rsfs.2011.0109
https://doi.org/10.1007/bf02650179
https://arxiv.org/abs/1806.01838
https://doi.org/10.1080/00405000.2013.829687
https://doi.org/10.1007/s00220-016-2641-8
https://doi.org/10.1007/s00220-016-2641-8
https://doi.org/10.1103/physrevlett.106.090502
https://doi.org/10.1103/physrevlett.106.090502
https://doi.org/10.1103/physrevlett.107.120501
https://doi.org/10.1103/physrevlett.107.120501
https://doi.org/10.1103/physreva.78.042307
https://doi.org/10.1103/revmodphys.59.1

87:18 Simulating Markovian Open Quantum Systems Using Higher-Order Series Expansion

26 Xiantao Li and Chunhao Wang. Succinct description and efficient simulation of non-markovian
open quantum systems. arXiv preprint, 2021. arXiv:2111.03240.

27 Goran Lindblad. On the generators of quantum dynamical semigroups. Communications in
Mathematical Physics, 48(2):119–130, 1976.

28 Guang Hao Low and Isaac L Chuang. Optimal Hamiltonian simulation by quantum signal
processing. Physical Review Letters, 118(1), 2017. doi:10.1103/physrevlett.118.010501.

29 Easwar Magesan, Daniel Puzzuoli, Christopher E. Granade, and David G. Cory. Modeling
quantum noise for efficient testing of fault-tolerant circuits. Physical Review A, 87(1), 2013.
doi:10.1103/physreva.87.012324.

30 Volkhard May and Oliver Kühn. Charge and Energy Transfer Dynamics in Molecular Systems.
John Wiley & Sons, 2008.

31 Sarah Mostame, Patrick Rebentrost, Alexander Eisfeld, Andrew J Kerman, Dimitris I.
Tsomokos, and Alán Aspuru-Guzik. Quantum simulator of an open quantum system us-
ing superconducting qubits: exciton transport in photosynthetic complexes. New Journal of
Physics, 14(10):105013, 2012. doi:10.1088/1367-2630/14/10/105013.

32 Abraham Nitzan. Chemical Dynamics in Condensed Phases: Relaxation, Transfer and
Reactions in Condensed Molecular Systems. Oxford University Press, 2006.

33 Matthew Otten and Stephen K Gray. Accounting for errors in quantum algorithms via
individual error reduction. npj Quantum Information, 5(1):1–6, 2019.

34 Martin B Plenio and Peter L Knight. The quantum-jump approach to dissipative dynamics in
quantum optics. Reviews of Modern Physics, 70(1):101, 1998.

35 Patrick Rall, Chunhao Wang, and Pawel Wocjan. Thermal state preparation via rounding
promises. arXiv preprint, 2022. arXiv:2210.01670.

36 Florentin Reiter, David Reeb, and Anders S Sørensen. Scalable dissipative preparation of
many-body entanglement. Physical Review Letters, 117(4), 2016. doi:10.1103/physrevlett.
117.040501.

37 Yair Rezek and Ronnie Kosloff. Irreversible performance of a quantum harmonic heat engine.
New Journal of Physics, 8(5):83, 2006.

38 Jinzhao Sun, Xiao Yuan, Takahiro Tsunoda, Vlatko Vedral, Simon C Benjamin, and Suguru
Endo. Mitigating realistic noise in practical noisy intermediate-scale quantum devices. Physical
Review Applied, 15(3):034026, 2021.

39 Nishchay Suri, Felix C Binder, Bhaskaran Muralidharan, and Sai Vinjanampathy. Speeding
up thermalisation via open quantum system variational optimisation. The European Physical
Journal Special Topics, 227(3):203–216, 2018.

40 Sabine Tornow, Wolfgang Gehrke, and Udo Helmbrecht. Non-equilibrium dynamics of a
dissipative two-site Hubbard model simulated on IBM quantum computers. Journal of Physics
A: Mathematical and Theoretical, 55(24):245302, 2022.

41 Frank Verstraete, Michael M. Wolf, and Juan Ignacio Cirac. Quantum computation and
quantum-state engineering driven by dissipation. Nature Physics, 5(9):633–636, 2009. doi:
10.1038/nphys1342.

42 Ulrich Weiss. Quantum Dissipative Systems. World Scientific, 2012.
43 Chunhao Wang Xiantao Li. Simulating Markovian open quantum systems using higher-order

series expansion. arXiv preprint, 2022. arXiv:2212.02051.

A Simulating time-dependent Lindbladians

There exist natural generalizations to Lindblad equations. One such generalization is time-
dependent Markovian open quantum systems, which arises in the context of quantum heat
engine [1, 22, 2, 37] and controlling open quantum systems [21, 25, 39]. In this section,
we sketch how our simulation techniques can be generalized to the case of time-dependent
Lindbladians. More specifically, consider a time-dependent version of Equation (1):

https://arxiv.org/abs/2111.03240
https://doi.org/10.1103/physrevlett.118.010501
https://doi.org/10.1103/physreva.87.012324
https://doi.org/10.1088/1367-2630/14/10/105013
https://arxiv.org/abs/2210.01670
https://doi.org/10.1103/physrevlett.117.040501
https://doi.org/10.1103/physrevlett.117.040501
https://doi.org/10.1038/nphys1342
https://doi.org/10.1038/nphys1342
https://arxiv.org/abs/2212.02051

X. Li and C. Wang 87:19

d
dtρ = L(t)(ρ) := −i[H(t), ρ] +

m∑
j=1

(
Lj(t)ρL†(t)

j − 1
2
{
Lj(t)†Lj(t), ρ

})
. (86)

Now, H(t) and Lj(t) are time-dependent. We decompose this time-dependent Lindbladian
into drift terms and jump terms as:

L(t) = LD(t) + LJ(t), and (87)

LD(t)(ρ) := J(t)ρ+ ρJ(t)†, LJ(t)(ρ) =
m∑

j=1
Lj(t)ρLj(t)†. (88)

We express the evolution driven by LD as,

ρt = V(0, t) := V (0, t)ρ0V (0, t)†, (89)

where V (s, t) satisfies the equation,

d

dt
V (s, t) = J(t)V (s, t), and V (s, s) = I. (90)

One can express the unitary V (0, t) using time-ordered evolution operators,

V (s, t) = T e
∫ t

s
J(τ)dτ

. (91)

Further, for Equation (1), the Duhamel’s principle implies a generalization of Equa-
tion (23),

ρt = V(0, t)(ρ0) +
∫ t

0
V(s, t)(LJ(s)(ρs))ds. (92)

In the Hamiltonian simulation [19], Such an operator is approximated by Dyson series,

V (0, t) =
K∑

k=0

tk

Mkk!

M−1∑
j1,j2,...,jk=0

T J(tk) · · · J(t1) + O
(

(∥J∥maxt)K+1

(K + 1)! +
t2∥J̇∥ max

M

)
, (93)

where T indicates a strict time-ordering t1 ≤ t2 ≤ · · · ≤ tk in the product. The formula here
approximates the evolution from 0 to t. This can be easily extended to another interval, due
to the observation that,

V (s, t) = T e
∫ t

s
J(τ)dτ = T e

∫ t−s

0
J(s+τ)dτ

, (94)

which leads to

V (s, t) =
K∑

k=0

tk

Mkk!

M−1∑
j1,j2,...,jk=s

T J(tk) · · · J(t1) + O
(

(∥J∥maxt)K+1

(K + 1)! +
t2∥J̇∥ max

M

)
. (95)

This suggests that, by repeatedly applying Equation (23), we can adapt our series
expansion in Equation (29) to

GK(t) := K[V (0, t)] +
K∑

k=1

∫
0≤s1≤···≤sk≤t

Fk(sk, . . . , s1) ds1 · · · dsk, (96)

ICALP 2023

87:20 Simulating Markovian Open Quantum Systems Using Higher-Order Series Expansion

where

Fk(sk, . . . , s1)
:= K[V (sk, t)]LJ(sk)K[V (sk−1, sk)]LJ(sk−1) · · · K[V (s1, s2)]LJ(s1)K[V (0, s1)].

(97)

Then, we can approximate the integral using scaled Gaussian quadrature as in Section 4,
and implement the completely positive map using the techniques presented in Section 5.
Further note that we use a truncated Dyson series

JK = K

 K∑
k=0

tk

Mkk!

M−1∑
j1,j2,··· ,jk=s

J(tk) · · · J(t1)

 . (98)

to approximate V (s, t).

Space-Efficient Interior Point Method, with
Applications to Linear Programming and Maximum
Weight Bipartite Matching
S. Cliff Liu #

Carnegie Mellon University, Pittsburgh, PA, USA

Zhao Song #

Adobe Research, San Jose, CA, USA

Hengjie Zhang #

Columbia University, New York, NY, USA

Lichen Zhang #

Massachusetts Institute of Technology, Cambridge, MA, USA

Tianyi Zhou #

University of California San Diego, CA, USA

Abstract
We study the problem of solving linear program in the streaming model. Given a constraint matrix
A ∈ Rm×n and vectors b ∈ Rm, c ∈ Rn, we develop a space-efficient interior point method that
optimizes solely on the dual program. To this end, we obtain efficient algorithms for various different
problems:

For general linear programs, we can solve them in Õ(
√

n log(1/ϵ)) passes and Õ(n2) space for
an ϵ-approximate solution. To the best of our knowledge, this is the most efficient LP solver in
streaming with no polynomial dependence on m for both space and passes.
For bipartite graphs, we can solve the minimum vertex cover and maximum weight matching
problem in Õ(

√
m) passes and Õ(n) space.

In addition to our space-efficient IPM, we also give algorithms for solving SDD systems and
isolation lemma in Õ(n) spaces, which are the cornerstones for our graph results.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms; Theory of computation → Linear programming

Keywords and phrases Convex optimization, interior point method, streaming algorithm

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.88

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/pdf/2009.06106.pdf

Funding Lichen Zhang: Supported by NSF grant No. CCF-1955217 and NSF grant No. CCF-
2022448.

Acknowledgements The authors would like to thank Jonathan Kelner for many helpful discussions.

1 Introduction

Given a constraint matrix A ∈ Rm×n, vectors b ∈ Rm and c ∈ Rn, the linear program
problem asks us to solve the primal program (P) or its dual (D):

(P) = max
A⊤y≤c,y≥0

b⊤y and (D) = min
Ax≥b

c⊤x (1)

EA
T
C
S

© S. Cliff Liu, Zhao Song, Hengjie Zhang, Lichen Zhang, and Tianyi Zhou;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 88; pp. 88:1–88:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:cliffliu@andrew.cmu.edu
mailto:zsong@adobe.com
mailto:hengjie.z@columbia.edu
mailto:lichenz@mit.edu
mailto:t8zhou@ucsd.edu
https://doi.org/10.4230/LIPIcs.ICALP.2023.88
https://arxiv.org/pdf/2009.06106.pdf
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

88:2 Space-Efficient IPM for LP and Maximum Weight Bipartite Matching

is one of the most fundamental problems in computer science and operational research.
Many efforts have been dedicated to develop time-efficient linear program solvers in the
past half a century, such as the simplex method [23], ellipsoid method [44] and interior
point method [41]. In the last few years, speeding up linear program solve via interior point
method (IPM) has been heavily studied [20, 55, 13, 35, 65, 25, 71]. The state-of-the-art
IPM has the runtime of O(m2+1/18 + mω) when m ≈ n and O(mn + n3) when m≫ n. To
achieve these impressive improvements, most of these algorithms utilize randomized and
dynamic data structures to maintain the primal and dual solutions simultaneously. While
these algorithms are time-efficient, it is highly unlikely that they can be implemented in a
space-efficient manner: maintaining the primal-dual formulation requires Ω(m + n2) space,
which is particularly unsatisfactory when m≫ n.

In this paper, we study the problem of solving a linear program in the streaming model:
At each pass, we can query the i-th row of A and the corresponding of the b. The goal is to
design an LP solver that is both space and pass-efficient. By efficient, our objective is to
obtain an algorithm with no polynomial dependence on m, or more concretely, we present a
robust IPM framework that uses only Õ(n2) space and Õ(

√
n log(1/ϵ)) passes.1 To the best

of our knowledge, this is the most efficient streaming LP algorithm that achieves a space
and pass independent of m. Current best streaming algorithms for LP either require Ω(n)
passes or Ω(n2 + m2) space for O(

√
n) passes. For the regime of tall dense LP (m≫ n), our

algorithm achieves the best space and passes.
The key ingredient for obtaining these LP algorithms is a paradigm shift from the time-

efficient primal-dual IPM to a less time-efficient dual-only IPM [64]. From a time perspective,
dual-only IPM requires Õ(

√
n log(1/ϵ)) iterations, with each iteration can be computed in

Õ(mn + poly(n)) time. However, it is much more space-efficient than that of primal-dual
approach. Specifically, we show that per iteration, it suffices to maintain an n× n Hessian
matrix in place. To obtain Õ(

√
n log(1/ϵ)) passes, we show that non-trivial quantities such

as the Lewis weights [56, 21] can be computed recursively, in an in-place fashion with only
Õ(n2) space.

Now that we have a space and pass-efficient IPM for general LP in the streaming model,
we instantiate it with applications for graph problems in the semi-streaming model. In the
semi-streaming model, each edge is revealed along with its weight in an online fashion and
might subject to an adversarial order, and the algorithm is allowed to make multiples passes
over the stream in Õ(n) space.2 We particularly focus on the maximum weight bipartite
matching problem, in which the edges with weights are streamed to us, and the goal is to
find a matching that maximizes the total weights in it. While there is a long line of research
([2, 36, 24, 3, 9] to name a few) on this problem, most algorithms can only compute an
approximate matching, meaning that the weight is at least (1− ϵ) of the maximum weight.
For the case of exact matching, a recent work [6] provides an algorithm that takes n4/3+o(1)

passes in Õ(n) space for computing a maximum cardinality matching. It remains an open
question to compute an exact maximum weight bipartite matching in semi-streaming model,
with o(n) passes.

We answer this question by presenting a semi-streaming algorithm that uses Õ(n) space
and Õ(

√
m) passes, this means that as long as the graph is relatively sparse, i.e., m = o(n2),

we achieve o(n) passes. To obtain an Õ(n) space algorithm for any graph, we require

1 We use Õ(·) notation to hide polylogarithmic dependence on n and m.
2 Some authors define the space in the streaming model to be the number of cells, where each cell can

hold O(log n) bits or even a number with infinite precision. Our bounds remain unchanged even if each
cell only holds O(1) bits, i.e., when arithmetic only applies to O(1)-bits operands.

S. C. Liu, Z. Song, H. Zhang, L. Zhang, and T. Zhou 88:3

additional machinery; more specifically, for each iteration of our dual-only IPM, we need to
compute the Newton step via a symmetric diagonal dominant (SDD) solve in Õ(n) space.
Since the seminal work of Spielman and Teng [67], many efforts have been dedicated in
designing a time-efficient SDD system solver [45, 46, 43, 19]. This solvers run in Õ(m)
time with improved dependence on the logarithmic terms. However, all of them require
Θ̃(m) space. To achieve Õ(n) space, we make use of small-space spectral sparsifiers [38] as
preconditioners to solve the system in a space and pass-efficient manner.

Finally, we note that with Õ(n) space, we essentially solve the dual problem, which is
the generalized minimum vertex cover on bipartite graph. To turn a solution on vertices to a
solution on edges, we utilize the isolation lemma [60] and implement it in Õ(n) bits via a
construction due to [17].

1.1 Our contribution
In this section, we showcase three main results of this paper and discuss their consequences.

The first result regards solving a general linear program in the streaming model with
Õ(n2) space and Õ(

√
n log(1/ϵ)) passes.

▶ Theorem 1 (General LP, informal version of Theorem 7.4 in Full version [57]). Given a linear
program with m constraints and n variables and m ≥ n in the streaming model, there exists
an algorithm that outputs an ϵ-approximate solution to the dual program (Eq. (1)) in Õ(n2)
space and Õ(

√
n log(1/ϵ)) passes.

By ϵ-approximate solution, we mean that the algorithm finds x ∈ Rn such that c⊤x−
c⊤x∗ ≤ ϵ, where x∗ is the optimal solution. The key to obtain our result is a small space
implementation of leverage score and Lewis weights, so that we can utilize the Lee-Sidford
barrier [51], with the number of passes depending on the smaller dimension.

In conjunction with an SDD solver in Õ(n) space, our next result shows that in the
semi-streaming model, we can solve the minimum vertex cover problem on a bipartite graph
with Õ(

√
m) passes.

▶ Theorem 2 (Minimum vertex cover, informal version of Theorem 9.7 in Full version [57]).
Given a bipartite graph G with n vertices and m edges, there exists a streaming algorithm that
computes a minimum vertex cover of G in Õ(

√
m) passes and Õ(n) space with probability

1− 1/ poly(n).3

The reason we end up with Õ(
√

m) passes instead of Õ(
√

n) passes is that to compute
some fundamental quantities such as leverage scores or Lewis weights, we need to solve Θ(m)
SDD systems and result in a total of Õ(m

√
n) passes. By using the logarithmic barrier, we

only need to solve O(1) SDD systems per iteration, which gives the Õ(
√

m) passes.
We are now ready to present our result for bipartite matching in Õ(

√
m) passes, which

solves the longstanding problem of whether maximum weight matching can be solved in o(n)
passes for any m = n2−c with c > 0.

▶ Theorem 3 (Maximum weight bipartite matching, informal version of Theorem 10.1 in Full
version [57]). Given a bipartite graph G with n vertices and m edges, there exists a streaming
algorithm that computes an (exact) maximum weight matching of G in Õ(

√
m) passes and

Õ(n) space with probability 1− 1/ poly(n).

3 We can actually solve a generalized version of the minimum vertex cover problem in bipartite graph:
each edge e needs to be covered for at least be ∈ Z+ times, where the case of b = 1m is the classic
minimum vertex cover.

ICALP 2023

88:4 Space-Efficient IPM for LP and Maximum Weight Bipartite Matching

Our matching result relies on turning the solution to the dual minimum vertex cover
problem, to a primal solution for the maximum weight matching. We achieve so by an Õ(n)
space implementation of the isolation lemma [60, 17].

1.2 Related work
Interior point method for solving LP. The interior point method was originally proposed
by Karmarkar [41] for solving linear program. Since then, there is a long line of work on
speeding up interior point method for solving classical optimization problems, e.g., linear
program [68, 64, 69, 61, 22, 50, 51, 52, 20, 55, 53, 12, 13, 71, 35, 25, 65, 33]. In 1987, the
running time of LP solver becomes O(n3) [68, 64]. In 1989, Vaidya proposed an O(n2.5)
LP solver based on a specific implementation of IPMs, known as the central path algorithm
[68, 69]. Lee and Sidford show how to solve LP in

√
n(nnz(A) + nω) time [49, 50, 51], where

ω is the exponent of matrix multiplication [70, 48, 4]4 (the first
√

n-iteration IPM). In 2019,
[20] show how to solve LP in nω + n2.5−α + n2+1/6, where α is the dual exponent of matrix
multiplication [31]5. This is the first breakthrough result improving O(n2.5) from 30 years
ago. Later, [35] improved that running time to nω + n2.5−α + n2+1/18 by maintaining two
layers of data-structure instead of one layer of data-structure as [20]’s algorithm. In 2020, [13]
improved the running time of LP solver on tall matrices to mn when m ≥ poly(n). Another
line of work focuses on solving linear program with small treewidth [25, 71] in time Õ(mτ2).

Small space algorithms for solving LP. Simplex algorithm is another popular approach
to solve linear programs. It has an even better compatibility with streaming algorithms.
For instance, [15] shows that the non-recursive implementation of Clarkson’s algorithm [18]
gives a streaming LP solver that uses O(n) passes and Õ(n

√
m) space. They also show

that the recursive implementation gives a streaming LP solver that uses nO(1/δ) passes and
(n2 + mδ) poly(1/δ) space. [7] proposes a streaming algorithm for solving n-dimensional LP
that uses O(nr) pass and O(m1/r) poly(n, log m) space, where r ≥ 1 is a parameter. All
above algorithms needs space depending on m.

Streaming algorithms for approximate matching. Maximum matching has been extensively
studied in the streaming model for decades, where almost all of them fall into the category
of approximation algorithms. For algorithms that only make one pass over the edges
stream, researchers make continuous progress on pushing the constant approximation ratio
above 1/2, which is under the assumption that the edges are arrived in a uniform random
order [37, 5, 27, 11]. The random-order assumption makes the problem easier (at least
algorithmically). A more general setting is multi-pass streaming with adversarial edge arriving.
Under this setting, the first streaming algorithm that beats the 1/2-approximation of bipartite
cardinality matching is [29], giving a 2/3 · (1− ϵ)-approximation in 1/ϵ · log(1/ϵ) passes. The
first to achieve a (1− ϵ)-approximation is [59], which takes (1/ϵ)1/ϵ passes.6 Since then, there
is a long line of research in proving upper bounds and lower bounds on the number of passes
to compute a maximum matching in the streaming model [2, 26, 32, 26, 36, 24, 3, 8, 10, 9]
(see next subsection for more details). Notably, [2, 3] use linear programming and duality
theory (see the next subsection for more details).

4 Currently, ω ≈ 2.37.
5 Currently, α ≈ 0.31.
6 For the weighted case, there is a (1/2 − ϵ)-approximation algorithm that only takes one pass [62].

S. C. Liu, Z. Song, H. Zhang, L. Zhang, and T. Zhou 88:5

However, all the algorithms above can only compute an approximate maximum matching:
to compute a matching whose size is at least (1− ϵ) times the optimal, one needs to spend
poly(1/ϵ) passes (see [24, 3] and the references therein). For readers who are interested in
the previous techniques for solving matching, we refer to Section A in full version [57] which
contains a brief summary.

Recent developments for exact matching. Recently, [6] proposes an algorithm that
computes a (1− ϵ)-approximate maximum cardinality matching in O(ϵ−1 log n log ϵ−1) passes
and Õ(n) space. Their method leverages recent advances in ℓ1-regression with several ideas
for implementing it in small space, leading to a streaming algorithm with no dependence on
ϵ in the space usage, and thus improving over [3]. The resulted semi-streaming algorithm
computes an exact maximum cardinality matching (not for weighted) in n3/4+o(1) passes.

Streaming spectral sparsifer. Initialized by the study of cut sparsifier in the streaming
model [1], a simple one-pass semi-streaming algorithm for computing a spectral sparsifier of
any weighted graph is given in [42], which suffices for our applications in this paper. The
problem becomes more challenging in a dynamic setting, i.e., both insertion and deletion
of edges from the graph are allowed. Using the idea of linear sketching, [38] gives a single-
pass semi-streaming algorithm for computing the spectral sparsifier in the dynamic setting.
However, their brute-force approach to recover the sparsifier from the sketching uses Ω(n2)
time. An improved recover time is given in [39] but requires more spaces, e.g., ϵ−2n1.5 logO(1) n.
Finally, [40] proposes a single-pass semi-streaming algorithm that uses ϵ−2n logO(1) n space
and ϵ−2n logO(1) n recover time to compute an ϵ-spectral sparsifier which has O(ϵ−2n log n)
edges. Note that Ω(ϵ−2n log n) space is necessary for this problem [14].

SDD solver. There is a long line of work focusing on fast SDD solvers [66, 45, 46, 43,
19, 63, 47]. Spielman and Teng give the first nearly-linear time SDD solver, which is
simplified with a better running time in later works. The current fastest SDD solver runs in
O(m log1/2 n poly(log log n) log(1/ϵ)) time [19]. All of them require Θ̃(m) space.

2 Technical overview

We start with an overview of our IPM framework. We first note that many recent fast IPM
algorithms do not fit into Õ(n2) space. Algorithms such as [51, 35, 13] need to maintain
both primal and dual solutions, thus require Ω(m) space. In fact, any algorithms that
rely on the primal formulation will need Ω(m) space to maintain the solution. To bypass
this issue, we draw inspiration from the state-of-the-art SDP solver [34]: in their setting,
m = Ω(n2), which means any operation on the dimension m will be too expensive to perform.
They instead resort to the dual-only formulation. The dual formulation provides a more
straightforward optimization framework on small dimension and makes it harder to maintain
key quantities. This is exactly what we want: an algorithm that operates on the smaller
dimension, removing the polynomial dependence on m. While efficient maintenance is the
key to design time-efficient IPM, it is less a concern for us since our constraining resource is
space, not time. To this end, we show that Renegar’s IPM algorithm [64] can be implemented
in a streaming fashion with only Õ(n2) space. As the number of passes of an IPM crucially
depends on the barrier function being used, the [64] algorithm only gives a pass bound
of Õ(

√
m log(1/ϵ)). To further improve the number of passes required, we show that the

nearly-universal barrier of Lee and Sidford [51, 53] can also be implemented in Õ(n2) space.

ICALP 2023

88:6 Space-Efficient IPM for LP and Maximum Weight Bipartite Matching

This involves computing Lewis weights in an extremely space-efficient manner. We present a
recursive algorithm with Õ(1) depth, based on [28], that uses only Õ(n2) space. This gives
the desired Õ(

√
n log(1/ϵ)) passes.

We now turn to our graph results, which is a novel combination of the space-efficient
IPM, SDD solvers, duality and the isolation lemma. Note that for both graph problems only
allow Õ(n) space, so it won’t suffice to directly apply our IPM algorithms .

To give a better illustration of the Õ(n) space constraint, note that storing a matching
already takes Θ̃(n) space, meaning that we have only a polylogarithmic space overhead per
vertex to store auxiliary information. The conventional way of solving maximum bipartite
matching using an IPM solver would get stuck at the very beginning - maintaining the
solution of the relaxed linear program, which is a fractional matching, already requires Ω(m)
space for storing all LP constraints, which seems inevitable.

Our key insight is to show that solving the dual form of the above LP, which corresponds
to the generalized (fractional) minimum vertex cover problem, is sufficient, and therefore
only Õ(n) space is needed for maintaining a fractional solution. We use several techniques
to establish this argument. The first idea is to use complementary slackness for the dual
solution to learn which n edges will be in the final maximum matching and therefore reduce
the size of the graph from m to n. However, this is not always the case: For instance, in
a bipartite graph that admits a perfect matching, all left vertices form a minimum vertex
cover, but the complementary slackness theorem gives no information on which edges are in
the perfect matching. To circumvent this problem, we need to slightly perturb the weight on
every edge, so that the minimum vertex cover (which is now unique) indeed provides enough
information. We use the isolation lemma [60] to realize this objective.

It is then instructive to implement the isolation lemma in limited space. Perturbing the
weight on every edge requires storing Õ(m) bits of randomness, since the perturbation should
remain identical across two different passes. We bypass this issue by using the generalized
isolation lemma proposed by [17], in which only O(log(Z)) bits of randomness is needed,
where Z is the number of candidates. In our case, Z ≤ nn is the number of all possible
matchings. So Õ(n) space usage perfectly fits into the semi-streaming model. We design an
oracle that stores Õ(n) random bits and outputs the same perturbations for all edges in all
passes.

Now that we can focus on solving the minimum vertex cover problem in Õ(n) space. When
the constraint matrix is an incidence matrix, each iteration of our IPM can be implemented
as an SDD (or Laplacian) solver, so it suffices to show how to solve SDD system in the
semi-streaming model, which, to the best of our knowledge, has not been done prior to our
work.

In the following subsections we elaborate on each of the above components:

In Section 2.1, we provide a high-level picture of how our dual-only interior point method
works.

In Section 2.2, we show evidences that our interior point method can run in space
independent of m for all of the three different barriers.

In Section 2.3, we describe our contribution on our implementations of SDD solver, IPM,
and the isolation lemma in the streaming model. We show a novel application of the
isolation lemma to turn dual into primal.

S. C. Liu, Z. Song, H. Zhang, L. Zhang, and T. Zhou 88:7

2.1 Dual-only robust IPM

The cornerstone of our results is to design a robust IPM framework that works only on
the dual formulation of the linear program. The framework fits in barriers including the
logarithmic barrier, hybrid barrier and Lee-Sidford barrier. It is also robust enough as it can
tolerate approximation errors in many quantities, while preserving the convergence behavior.

Algorithm 1 is a simplified version of our dual-only IPM. The earlier works of Renegar’s
algorithm [64] require the Newton’s direction be computed exactly as ∆x = −H(x)−1∇ft(x),
in order to get double exponential convergence rate of Newton’s method. To strengthen its
guarantee, we develop a more robust framework for this IPM. Specifically, we show that
the Hessian of the barrier functions, the gradient and the Newton’s direction can all be
approximated. This requires a much more refined error analysis. Below, we carefully bound
the compound errors caused by three layers of approximations.

First, from ∆x to δx (Line 9), we allow our Hessian to be spectrally approximated within
any small constant factor. This provides us enough leeway to implement the Hessian of
barrier functions in a space-efficient manner. For example, the Hessian of the volumetric
barrier is H(x) = A⊤

x (3Σx − 2P
(2)
x)Ax, where Σx is a diagonal matrix and P

(2)
x is taking

entry-wise square of a dense projection matrix. But H̃(x) = A⊤
x ΣxAx is a 5-approximation

of H(x) and we can compute it in the same space as computing leverage scores.
Second, from δx (Line 9) to δ′

x (Line 11), we allow approximation on the gradient in
the sense that it has small local norm with respect to the true gradient, i.e., ∥∇ft(x) −
∇̃ft(x)∥H(x)−1 ≤ 0.1.7 To give a concrete example, let σ ∈ Rm denote the leverage score
vector, and suppose the Hessian matrix is in the form of H(x) = A⊤ΣA and the gradient
is ∇f(x) = A⊤σ. The leverage score σ can then be approximated in an entry-wise fashion:
each entry can tolerate a multiplicative (1±O(1/

√
n)) error. This is because

∥∇ft(x)− ∇̃ft(x)∥2
H(x)−1 = 1⊤

m(∆Σ)A(A⊤ΣA)−1A⊤(∆Σ)1m

= 1⊤
m(∆Σ)Σ−1/2Σ1/2A(A⊤ΣA)−1A⊤Σ1/2Σ−1/2(∆Σ)1m

≤ 1⊤
m(∆Σ)Σ−1(∆Σ)1m

=
m∑

i=1

(σi − σ̃i)2

σi

≤ 0.01
n
· n = 0.01,

where the first inequality follows from property of projection matrix (for any projection
matrix P , we have P ⪯ I. Then we know x⊤Px ≤ x⊤x for all vector x), the last inequality
follows from

∑m
i=1 σi = n.

Third, from δ′
x (Line 11) to δ̃ (Line 12), we can tolerate the approximation error on the

Newton’s direction ∥δ̃ − δ′
x∥H(x) ≤ 0.1. This is crucial for our graph applications, since we

need to use small space SDD solver to approximate the Newton’s direction.

2.2 Solve LP in small space

In this section, we show how to implement our IPM in space not polynomially dependent on
m for different barrier functions.

7 For a vector y and a positive semidefinite matrix A, we define ∥y∥A :=
√

y⊤Ay.

ICALP 2023

88:8 Space-Efficient IPM for LP and Maximum Weight Bipartite Matching

Algorithm 1 A simplified version of our algorithm.

1: procedure OurAlgorithm(A ∈ Rm×n, b ∈ Rm, c ∈ Rn)
2: Choose F (x) ∈ Rn → R to be any θ2-self concordant barrier function
3: Let ft(x) := t · c +∇F (x) ∈ Rn

4: Let H(x) := ∇2F (x) ∈ Rn×n

5: Let T be the number of iterations
6: Initialize x, t

7: for k ← 1 to T do
8: Let H̃(x) be any PSD matrix that 1

log m H̃(x) ⪯ H(x) ⪯ H̃(x)
9: Let δx := −H̃(x)−1 · ∇ft(x)

10: Let ∇̃ft(x) be that ∥∇̃ft(x)−∇ft(x)∥H(x)−1 ≤ 0.1
11: Let δ′

x := −H̃(x)−1 · ∇̃ft(x)
12: Let δ̃x be any vector that ∥δ̃x − δ′

x∥H(x) ≤ 0.1
13: x← x + δ̃x

14: t← t · (1 + θ−1)
15: end for
16: Output x

17: end procedure

For three barriers (logarithmic, hybrid and Lee-Sidford), all of their Hessians take the
form of A⊤HA ∈ Rn×n for an m × m non-negative diagonal matrix H. For logarithmic
barrier, Hi,i = si(x)−2, as si(x) can be computed in O(1) space, it is not hard to see that
the Gram matrix can be computed as

∑
i∈[m] Hi,i · aia

⊤
i in O(n2) space.

The more interesting case is to consider the hybrid barrier and Lee-Sidford barrier. The
gradient and Hessian of the hybrid barrier requires us to compute m leverage scores defined as
diag(

√
HA(A⊤HA)−1A⊤

√
H). Forming this projection matrix will require a prohibitive m2

space. To implement it in n2 space, we rely on an observation that σi = Hi,i ·a⊤
i (A⊤HA)−1ai,

thus, if we can manage to maintain (A⊤HA)−1 in O(n2) space, then we can compute the
leverage score. Similar to the logarithmic barrier scenario, A⊤HA can be computed in 1 pass
and O(n2) space, then the inverse can be computed in O(n2) space. Thus, we can supply
the i-th leverage score in O(n2) space, and compute the gradient and Hessian in designated
space constraint.

Given an oracle that can compute the i-th leverage score in O(n2) space, we can even
implement the ℓlog m Lewis weights in Õ(n2) space. To do so, we rely on an iterative scheme
introduced in [28]. Unfortunately, as we are only allowed a space budget of O(n2), we
cannot store the intermediate Lewis weights. To circumvent this issue, we develop a recursive
algorithm to query Lewis weights from prior iterations. Each recursion takes O(n2) space,
and the algorithm uses at most O(poly(log m)) iterations, therefore, we can compute the
Lewis weights in Õ(

√
n) space.

2.3 Semi-streaming maximum weight bipartite matching in Õ(
√

m)
passes

Recall that in the semi-streaming model, we are only allowed with Õ(n) space. For the IPMs
we’ve developed before, we can not meet such space constraint. For general graphs, we have
to invent more machinery to realize the Õ(n) space.

S. C. Liu, Z. Song, H. Zhang, L. Zhang, and T. Zhou 88:9

For matching, we start by noting that the constraint matrix A ∈ Rm×n is a graph
incidence matrix. This means that for logarithmic barrier, the Hessian matrix A⊤S−2A can
be treated as a Laplacian matrix with edge weight s−2

i . Therefore, computing the Newton
direction reduces to perform an SDD solve in Õ(n) space.

SDD solver in the semi-streaming model. Though solving SDD system can be done in an
extremely time-efficient manner, it is unclear how to compute them when only Õ(n) space is
allowed. To circumvent this problem, we rely on two crucial observations. Let LG denote
the SDD matrix corresponding to the Hessian.

Solving a system LG · x = b will require Ω̃(m) space, but multiplying LG with a vector
v ∈ Rn can be done in O(n) space: as LG =

∑
i∈[m]

aia⊤
i

s2
i

, LG · v can be computed as
ai(a⊤

i v)/s2
i in O(n) space, and accumulate the sum over a pass of the graph.

Suppose we have a sparse graph H with only Õ(n) edges, then the system LH · x = b can
be solved in Õ(n) space.

It turns out that these two observations are enough for us to solve a general SDD system
in Õ(n) space. Given the graph G, we first compute a (1 ± δ)-spectral sparsifier with
only Õ(δ−2n logO(1) n) edges in a single pass [40]. Let H denote this sparsifier, we then
use L−1

H as a preconditioner for solving our designated SDD system. More concretely, let
rt := b− LG · xt denote the residual at t-th iteration, we solve the system LH · yt = rt. As
yt = L−1

H · b− L−1
H LG · xt, we can then update the solution via the preconditioned-solution

xt+1 = xt + yt. The residual is then rt+1 = b−LG ·xt+1 = b−LG ·xt−LG · yt = rt−LG · yt,
i.e., we only need to implement one matrix-vector product with LG. After Õ(1) iterations,
we have refined an accurate enough solution for the SDD system.

From dual to primal. Though we can solve the dual in Õ(n) space, it only produces a
solution to the minimum vertex cover and we need to transform it to a solution to maximum
weight matching.

Turning an optimal dual solution to an optimal primal solution for general LP requires
at least solving a linear system, which takes O(nω) time and O(mn) space (Lee, Sidford
and Wong [54]), which is unknown to be implemented in the semi-streaming model even for
bipartite matching LP.8 We bypass this issue by using the complementary slackness theorem
to highlight n tight dual constraints and therefore sparsify the original graph from m edges
to n edges without losing the optimal matching. However, this is only true if the solution to
the primal LP is unique.

To give a better illustration, let us consider a simple example. Suppose the graph has a
(maximum weight) perfect matching (see Figure 1 for example). Then the following trivial
solution is optimal to the dual LP: choosing all vertices in VL. Let us show what happens
when applying the complementary slackness theorem. The complementary slackness theorem
says that when y is a feasible primal solution and x is a feasible dual solution, then y is
optimal to the primal and x is optimal to the dual if and only if

⟨y, Ax− 1m⟩ = 0 and ⟨x, 1n −A⊤y⟩ = 0. (2)

From the above case, we have Ax− 1m = 0, so the first equality ⟨y, Ax− 1m⟩ = 0 puts no
constraint on y. Therefore, any solution y ≥ 0m to the linear system a⊤

i yi = 1, ∀i ∈ VL is
an optimal solution, where ai is the i-th column of A. Note that this linear system has m

variables and |VL| equations, which is still hard to find a solution in Õ(n) space.

8 In general, the inverse of a sparse matrix can be dense, which means the standard Gaussian elimination
method for linear system solving does not apply in the semi-streaming model.

ICALP 2023

88:10 Space-Efficient IPM for LP and Maximum Weight Bipartite Matching

2

1

4

3

VL VR

e1

e2
e3

e4

x = (1, 1, 0, 0)>, Ax = (1, 1, 1, 1)>

y = (1, 0, 0, 1)>, A>y = (1, 1, 1, 1)>

2

1

4

3
e1

e2
e3

e4

VL VR

x = (1, 1, 0, 0)>, Ax = (1, 1, 1, 1)>

y = (0, 1, 1, 0)>, A>y = (1, 1, 1, 1)>

Figure 1 The red circle is a minimum vertex cover, which is an optimal dual solution. The blue
edge is a maximum matching, which is an optimal primal solution. In both examples, the primal
and dual satisfy complementary slackness Eq. (2).

Now consider perturbing the primal objective function by some vector b ∈ Rm such that
the optimal solution to the following primal LP is unique:

Primal max
y∈Rm

b⊤y, s.t. A⊤y ≤ 1n and y ≥ 0m.

Suppose we find the optimal solution x in the dual LP and we want to recover the optimal
solution y in the primal LP. Again by plugging in the complementary slackness theorem,
we get at most n equations from the second part ⟨x, 1n −A⊤y⟩ = 0. Since the optimal y is
unique and y has dimension m, the first part ⟨y, Ax− 1m⟩ must contribute to at least m− n

equations. Note that these equations have the form

yi = 0, ∀i ∈ [m] s.t. (Ax)i − 1 > 0.

This means that the corresponding edges are unnecessary in order to get one maximum
matching. As a result, we can reduce the number of edges from m to n, then compute a
maximum matching in Õ(n) space without reading the stream.

Isolation lemma in the semi-streaming model. It remains to show how to perturb the
objective so that the primal solution is unique. As the perturbation is over all edges, one
natural idea is to randomly perturb them using Õ(m) bits of randomness. This becomes
troublesome when the random bits need to be stored since the perturbation should remain
consistent across different passes. We resolve this problem via the isolation lemma.

Let us recall the definition of the isolation lemma (see Section C in full version [57] for
details).

▶ Definition 4 (Isolation lemma). Given a set system (S,F) where F ⊆ {0, 1}S. Given
weight wi to each element i in S, the weight of a set F in F is defined as

∑
i∈F wi. The

isolation lemma says there exists a scheme that can assign weight oblivious to F , such that
there is a unique set in F that has the minimum (maximum) weight under this assignment.

The isolation lemma says that if we randomly choose weights, then with a good probability
the uniqueness is ensured. However, this does not apply to the streaming setting since the
weight vector is over all edges, which require Ω(m) space.

To apply isolation lemma for bipartite matching, we note that the set S is all the edges
and the family F contains all possible matchings. The total number of possible matchings
is at most (n + 1)n, as each vertex can choose none or one of the vertices to match. We

S. C. Liu, Z. Song, H. Zhang, L. Zhang, and T. Zhou 88:11

leverage this parameterization and make use of [17], which requires log(|F |) random bits.
For matching, we only need O(n log n) bits, which suits in our space budget. To the best of
our knowledge, this is the first use of isolation lemma in the streaming model.

2.4 Discussions
For matching, improving

√
m passes to

√
n passes will require us to compute fundamental

quantities such as leverage scores and Lewis weights by solving Õ(1) SDD systems. As
reachability [58] and single source shortest path [30, 16] can be solved in n1/2+o(1) passes
in the semi-streaming model, we believe it is an important open problem to close the gap
between bipartite matching and these problems.

References
1 Kook Jin Ahn and Sudipto Guha. Graph sparsification in the semi-streaming model. In

International Colloquium on Automata, Languages, and Programming, pages 328–338. Springer,
2009.

2 Kook Jin Ahn and Sudipto Guha. Linear programming in the semi-streaming model with
application to the maximum matching problem. In ICALP, pages 526–538. Springer, 2011.

3 Kook Jin Ahn and Sudipto Guha. Access to data and number of iterations: Dual primal
algorithms for maximum matching under resource constraints. ACM Transactions on Parallel
Computing (TOPC), 4(4):1–40, 2018.

4 Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix
multiplication. In SODA, 2021.

5 Sepehr Assadi, MohammadHossein Bateni, Aaron Bernstein, Vahab Mirrokni, and Cliff Stein.
Coresets meet EDCS: algorithms for matching and vertex cover on massive graphs. In
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, pages
1616–1635. SIAM, 2019.

6 Sepehr Assadi, Arun Jambulapati, Yujia Jin, Aaron Sidford, and Kevin Tian. Semi-streaming
bipartite matching in fewer passes and optimal space. In SODA. arXiv preprint, 2022.
arXiv:2011.03495.

7 Sepehr Assadi, Nikolai Karpov, and Qin Zhang. Distributed and streaming linear programming
in low dimensions. In Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems (PODS), pages 236–253, 2019.

8 Sepehr Assadi, Gillat Kol, Raghuvansh R. Saxena, and Huacheng Yu. Multi-pass graph
streaming lower bounds for cycle counting, max-cut, matching size, and other problems. In
FOCS, 2020.

9 Sepehr Assadi, S. Cliff Liu, and Robert E. Tarjan. An auction algorithm for bipartite matching
in streaming and massively parallel computation models. In The SIAM Symposium on
Simplicity in Algorithms (SOSA@SODA’21), 2021.

10 Sepehr Assadi and Ran Raz. Near-quadratic lower bounds for two-pass graph streaming
algorithms. In FOCS, 2020.

11 Aaron Bernstein. Improved bounds for matching in random-order streams. In ICALP, 2020.
12 Jan van den Brand. A deterministic linear program solver in current matrix multiplication

time. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 259–278. SIAM, 2020.

13 Jan van den Brand, Yin Tat Lee, Aaron Sidford, and Zhao Song. Solving tall dense linear
programs in nearly linear time. In STOC, 2020.

14 Charles Carlson, Alexandra Kolla, Nikhil Srivastava, and Luca Trevisan. Optimal lower bounds
for sketching graph cuts. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 2565–2569. SIAM, 2019.

15 Timothy M Chan and Eric Y Chen. Multi-pass geometric algorithms. Discrete & Computational
Geometry, 37(1):79–102, 2007.

ICALP 2023

https://arxiv.org/abs/2011.03495

88:12 Space-Efficient IPM for LP and Maximum Weight Bipartite Matching

16 Yi-Jun Chang, Martin Farach-Colton, Tsan-Sheng Hsu, and Meng-Tsung Tsai. Streaming
complexity of spanning tree computation. In 37th international symposium on theoretical
aspects of computer science (STACS), 2020.

17 Suresh Chari, Pankaj Rohatgi, and Aravind Srinivasan. Randomness-optimal unique element
isolation with applications to perfect matching and related problems. SIAM Journal on
Computing, 24(5):1036–1050, 1995.

18 Kenneth L Clarkson. Las vegas algorithms for linear and integer programming when the
dimension is small. Journal of the ACM (JACM), 42(2):488–499, 1995.

19 Michael B Cohen, Rasmus Kyng, Gary L Miller, Jakub W Pachocki, Richard Peng, Anup B
Rao, and Shen Chen Xu. Solving sdd linear systems in nearly m log1/2 n time. In Proceedings
of the forty-sixth annual ACM symposium on Theory of computing(STOC), pages 343–352,
2014.

20 Michael B Cohen, Yin Tat Lee, and Zhao Song. Solving linear programs in the current
matrix multiplication time. In Proceedings of the 51st Annual ACM Symposium on Theory of
Computing (STOC), 2019.

21 Michael B. Cohen and Richard Peng. Lp row sampling by lewis weights. In Proceedings of the
Forty-Seventh Annual ACM Symposium on Theory of Computing, STOC ’15, 2015.

22 Samuel I Daitch and Daniel A Spielman. Faster approximate lossy generalized flow via
interior point algorithms. In Proceedings of the fortieth annual ACM symposium on Theory of
computing (STOC), pages 451–460, 2008.

23 George B. Dantzig. Maximization of a linear function of variables subject to linear inequalities.
In Activity Analysis of Production and Allocation, Cowles Commission Monograph No. 13. .,
1951.

24 Shahar Dobzinski, Noam Nisan, and Sigal Oren. Economic efficiency requires interaction. In
Proceedings of the forty-sixth annual ACM symposium on Theory of computing (STOC), pages
233–242, 2014.

25 Sally Dong, Yin Tat Lee, and Guanghao Ye. A nearly-linear time algorithm for linear programs
with small treewidth: A multiscale representation of robust central path. In STOC, 2021.
arXiv:2011.05365.

26 Sebastian Eggert, Lasse Kliemann, Peter Munstermann, and Anand Srivastav. Bipartite
matching in the semi-streaming model. Algorithmica, 63(1-2):490–508, 2012.

27 Alireza Farhadi, Mohammad Taghi Hajiaghayi, Tung Mah, Anup Rao, and Ryan A Rossi.
Approximate maximum matching in random streams. In Proceedings of the Fourteenth Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1773–1785. SIAM, 2020.

28 Maryam Fazel, Yin Tat Lee, Swati Padmanabhan, and Aaron Sidford. Computing lewis
weights to high precision. In SODA, 2021.

29 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang. On
graph problems in a semi-streaming model. In ICALP, pages 531–543. Springer, 2004.

30 Joan Feigenbaum, Sampath Kannan, Andrew McGregor, Siddharth Suri, and Jian Zhang.
Graph distances in the data-stream model. SIAM Journal on Computing, 38(5):1709–1727,
2009.

31 Francois Le Gall and Florent Urrutia. Improved rectangular matrix multiplication using powers
of the coppersmith-winograd tensor. In Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms(SODA), pages 1029–1046, 2018.

32 Ashish Goel, Michael Kapralov, and Sanjeev Khanna. On the communication and streaming
complexity of maximum bipartite matching. In Proceedings of the twenty-third annual ACM-
SIAM symposium on Discrete Algorithms (SODA), pages 468–485. SIAM, 2012.

33 Yuzhou Gu and Zhao Song. A faster small treewidth sdp solver. arXiv preprint, 2022.
arXiv:2211.06033.

34 Baihe Huang, Shunhua Jiang, Zhao Song, Runzhou Tao, and Ruizhe Zhang. Solving tall dense
sdps in the current matrix multiplication time. In FOCS, 2022.

https://arxiv.org/abs/2011.05365
https://arxiv.org/abs/2211.06033

S. C. Liu, Z. Song, H. Zhang, L. Zhang, and T. Zhou 88:13

35 Shunhua Jiang, Zhao Song, Omri Weinstein, and Hengjie Zhang. Faster dynamic matrix
inverse for faster lps. In STOC, 2021. arXiv:2004.07470.

36 Michael Kapralov. Better bounds for matchings in the streaming model. In Proceedings of the
twenty-fourth annual ACM-SIAM symposium on Discrete algorithms, pages 1679–1697. SIAM,
2013.

37 Michael Kapralov, Sanjeev Khanna, and Madhu Sudan. Approximating matching size from
random streams. In Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete
algorithms (SODA), pages 734–751. SIAM, 2014.

38 Michael Kapralov, Yin Tat Lee, Cameron Musco, Christopher Musco, and Aaron Sidford.
Single pass spectral sparsification in dynamic streams. SIAM J. Comput., 46(1):456–477, 2017.

39 Michael Kapralov, Aida Mousavifar, Cameron Musco, Christopher Musco, Navid Nouri, Aaron
Sidford, and Jakab Tardos. Fast and space efficient spectral sparsification in dynamic streams.
In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1814–1833. SIAM, 2020.

40 Michael Kapralov, Navid Nouri, Aaron Sidford, and Jakab Tardos. Dynamic streaming spectral
sparsification in nearly linear time and space. In arXiv preprint, 2019.

41 Narendra Karmarkar. A new polynomial-time algorithm for linear programming. In Proceedings
of the sixteenth annual ACM symposium on Theory of computing(STOC), pages 302–311.
ACM, 1984.

42 Jonathan A Kelner and Alex Levin. Spectral sparsification in the semi-streaming setting. In
STACS, 2011.

43 Jonathan A Kelner, Lorenzo Orecchia, Aaron Sidford, and Zeyuan Allen Zhu. A simple,
combinatorial algorithm for solving sdd systems in nearly-linear time. In Proceedings of the
forty-fifth annual ACM symposium on Theory of computing (STOC), pages 911–920, 2013.

44 Leonid G Khachiyan. Polynomial algorithms in linear programming. USSR Computational
Mathematics and Mathematical Physics, 20(1):53–72, 1980.

45 Ioannis Koutis, Gary L. Miller, and Richard Peng. Approaching optimality for solving sdd
linear systems. In FOCS, pages 235–244, 2010.

46 Ioannis Koutis, Gary L Miller, and Richard Peng. A nearly-m log n time solver for sdd linear
systems. In 52nd Annual Symposium on Foundations of Computer Science (FOCS), pages
590–598, 2011.

47 Rasmus Kyng and Sushant Sachdeva. Approximate gaussian elimination for laplacians-fast,
sparse, and simple. In 2016 IEEE 57th Annual Symposium on Foundations of Computer
Science (FOCS), pages 573–582. IEEE, 2016.

48 François Le Gall. Powers of tensors and fast matrix multiplication. In Proceedings of the
39th international symposium on symbolic and algebraic computation (ISSAC), pages 296–303.
ACM, 2014.

49 Yin Tat Lee and Aaron Sidford. Path finding i: Solving linear programs with Õ(
√

rank) linear
system solves. arXiv preprint, 2013. arXiv:1312.6677.

50 Yin Tat Lee and Aaron Sidford. Path finding ii: An Õ(m
√

n) algorithm for the minimum cost
flow problem. arXiv preprint, 2013. arXiv:1312.6713.

51 Yin Tat Lee and Aaron Sidford. Path finding methods for linear programming: Solving linear
programs in O(

√
rank) iterations and faster algorithms for maximum flow. In 2014 IEEE

55th Annual Symposium on Foundations of Computer Science, pages 424–433. IEEE, 2014.
52 Yin Tat Lee and Aaron Sidford. Efficient inverse maintenance and faster algorithms for linear

programming. In 2015 IEEE 56th Annual Symposium on Foundations of Computer Science,
pages 230–249. IEEE, 2015.

53 Yin Tat Lee and Aaron Sidford. Solving linear programs with sqrt (rank) linear system solves.
arXiv preprint, 2019. arXiv:1910.08033.

54 Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. A faster cutting plane method and its
implications for combinatorial and convex optimization. In 56th Annual IEEE Symposium on
Foundations of Computer Science (FOCS), 2015.

ICALP 2023

https://arxiv.org/abs/2004.07470
https://arxiv.org/abs/1312.6677
https://arxiv.org/abs/1312.6713
https://arxiv.org/abs/1910.08033

88:14 Space-Efficient IPM for LP and Maximum Weight Bipartite Matching

55 Yin Tat Lee, Zhao Song, and Qiuyi Zhang. Solving empirical risk minimization in the current
matrix multiplication time. In COLT, 2019.

56 D. Lewis. Finite dimensional subspaces of lp. Studia Mathematica, 1978.
57 S Cliff Liu, Zhao Song, Hengjie Zhang, Lichen Zhang, and Tianyi Zhou. Space-efficient

interior point method, with applications to linear programming and maximum weight bipartite
matching. arXiv, 2020. arXiv:2009.06106.

58 Yang P Liu, Arun Jambulapati, and Aaron Sidford. Parallel reachability in almost linear work
and square root depth. In 2019 IEEE 60th Annual Symposium on Foundations of Computer
Science (FOCS), pages 1664–1686. IEEE, 2019.

59 Andrew McGregor. Finding graph matchings in data streams. In Approximation, Randomiza-
tion and Combinatorial Optimization. Algorithms and Techniques, pages 170–181. Springer,
2005.

60 Ketan Mulmuley, Umesh V Vazirani, and Vijay V Vazirani. Matching is as easy as matrix
inversion. In Proceedings of the nineteenth annual ACM symposium on Theory of computing
(STOC), pages 345–354, 1987.

61 Yu Nesterov and Arkadi Nemirovsky. Self-concordant functions and polynomial-time methods
in convex programming. Report, Central Economic and Mathematic Institute, USSR Acad.
Sci, 1989.

62 Ami Paz and Gregory Schwartzman. A (2+ϵ)-approximation for maximum weight matching in
the semi-streaming model. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 2153–2161, 2017.

63 Richard Peng and Daniel A Spielman. An efficient parallel solver for sdd linear systems. In
Proceedings of the forty-sixth annual ACM symposium on Theory of computing (STOC), pages
333–342, 2014.

64 James Renegar. A polynomial-time algorithm, based on newton’s method, for linear program-
ming. Mathematical Programming, 40(1-3):59–93, 1988.

65 Zhao Song and Zheng Yu. Oblivious sketching-based central path method for solving linear
programming. In ICML, 2021.

66 Daniel A. Spielman and Shang-Hua Teng. Nearly-linear time algorithms for graph partitioning,
graph sparsification, and solving linear systems. In Proceedings of the 36th Annual ACM
Symposium on Theory of Computing (STOC), pages 81–90. arXiv:cs/0310051, divided into
arXiv:0809.3232, arXiv:0808.4134, arXiv:cs/0607105, 2004.

67 Daniel A. Spielman and Shang-Hua Teng. Nearly linear time algorithms for preconditioning and
solving symmetric, diagonally dominant linear systems. SIAM J. Matrix Analysis Applications,
35(3):835–885, 2014.

68 Pravin M Vaidya. An algorithm for linear programming which requires O(((m + n)n2 + (m +
n)1.5n)L)arithmetic operations. In FOCS. IEEE, 1987.

69 Pravin M Vaidya. Speeding-up linear programming using fast matrix multiplication. In FOCS.
IEEE, 1989.

70 Virginia Vassilevska Williams. Multiplying matrices faster than coppersmith-winograd. In
Proceedings of the forty-fourth annual ACM symposium on Theory of computing (STOC),
pages 887–898. ACM, 2012.

71 Guanghao Ye. Fast Algorithm for Solving Structured Convex Programs. Bachelor’s thesis,
University of Washington, 2021.

https://arxiv.org/abs/2009.06106
https://arxiv.org/abs/cs/0310051
https://arxiv.org/abs/0809.3232
https://arxiv.org/abs/0808.4134
https://arxiv.org/abs/cs/0607105

List Decoding of Rank-Metric Codes with
Row-To-Column Ratio Bigger Than 1

2
Shu Liu #

The National Key Laboratory on Wireless Communications,
University of Electronic Science and Technology of China, Chengdu, China

Chaoping Xing #

School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, China

Chen Yuan #

School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, China

Abstract
Despite numerous results about the list decoding of Hamming-metric codes, development of list
decoding on rank-metric codes is not as rapid as its counterpart. The bound of list decoding
obeys the Gilbert-Varshamov bound in both the metrics. In the case of the Hamming-metric, the
Gilbert-Varshamov bound is a trade-off among rate, decoding radius and alphabet size, while in the
case of the rank-metric, the Gilbert-Varshamov bound is a trade-off among rate, decoding radius
and column-to-row ratio (i.e., the ratio between the numbers of columns and rows). Hence, alphabet
size and column-to-row ratio play a similar role for list decodability in each metric. In the case of
the Hamming-metric, it is more challenging to list decode codes over smaller alphabets. In contrast,
in the case of the rank-metric, it is more difficult to list decode codes with large column-to-row
ratio. In particular, it is extremely difficult to list decode square matrix rank-metric codes (i.e., the
column-to-row ratio is equal to 1).

The main purpose of this paper is to explicitly construct a class of rank-metric codes C of rate R

with the column-to-row ratio up to 2/3 and efficiently list decode these codes with decoding radius
beyond the decoding radius (1 − R)/2 (note that (1 − R)/2 is at least half of relative minimum
distance δ). In literature, the largest column-to-row ratio of rank-metric codes that can be efficiently
list decoded beyond half of minimum distance is 1/2. Thus, it is greatly desired to efficiently design
list decoding algorithms for rank-metric codes with the column-to-row ratio bigger than 1/2 or even
close to 1. Our key idea is to compress an element of the field Fqn into a smaller Fq-subspace via a
linearized polynomial. Thus, the column-to-row ratio gets increased at the price of reducing the code
rate. Our result shows that the compression technique is powerful and it has not been employed in
the topic of list decoding of both the Hamming and rank metrics. Apart from the above algebraic
technique, we follow some standard techniques to prune down the list. The algebraic idea enables us
to pin down the message into a structured subspace of dimension linear in the number n of columns.
This “periodic” structure allows us to pre-encode the message to prune down the list.

2012 ACM Subject Classification Mathematics of computing → Coding theory

Keywords and phrases Coding theory, List-decoding, Rank-metric codes

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.89

Category Track A: Algorithms, Complexity and Games

Funding Shu Liu: Research supported in part by the National Key R&D Program of China under
Grant 2022YFA1004900, in part by the National Natural Science Foundation of China under Grant
12271084, in part by the National Key Laboratory of Science and Technology on Communications
under Contract G02214307.
Chaoping Xing: Research supported in part by the National Key Research and Development Projects
under Grant 2021YFE0109900 and in part by the National Natural Science Foundation of China
under Grant 12031011.
Chen Yuan: Research supported in part by the Natural Science Foundation of China under Grant
12101403.

EA
T
C
S

© Shu Liu, Chaoping Xing, and Chen Yuan;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 89; pp. 89:1–89:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shuliu@uestc.edu.cn
mailto:xingcp@sjtu.edu.cn
mailto:chen_yuan@sjtu.edu.cn
https://orcid.org/0000-0002-3730-8397
https://doi.org/10.4230/LIPIcs.ICALP.2023.89
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

89:2 List Decoding of Rank-Metric Codes

1 Introduction

Rank-metric codes were first introduced by Delsarte in [1] and have found various applications
[14, 16]. A rank-metric code C of rate R and relative minimum distance δ must obey the
Singleton bound 1 − R ⩾ δ (see Subsection 2.1). The equality 1 − R = δ holds if the code C
is maximum rank distance (MRD for short). As for every alphabet size q and ratio ρ, one
can always construct an MRD code. Therefore, we view decoding radius (1 − R)/2 as the
half of minimum distance decoding radius or unique decoding radius.

The unique decoding algorithms for rank-metric codes have been extensively studied
[3, 14]. However, the list decoding algorithm of the rank-metric codes are not understood very
well. Despite of many results about the list decoding of Hamming-metric codes in literature,
very few were known about the list decoding of rank-metric codes. In particular, for the
column-to-row ratio bigger than 1

2 , there are no known explicit constructions of rank-metric
codes that can be list decoded beyond half the minimum distance decoding radius. On the
other hand, with high probability, a square random rank-metric code of rate R can be list
decoded up to its decoding radius 1 −

√
R (see [2]). Note that 1 −

√
R is always bigger than

(1 − R)/2. This means that with high probability, a random square rank-metric code can be
list decoded beyond the half of minimum distance decoding radius.

In the the Hamming-metric case, it is more challenging to list decode codes over small
alphabets. As we will see in the next subsection, in contrast, it becomes more difficult to list
decode codes with large column-to-row ratio (i.e., the ratio between the numbers of rows and
columns). In particular, it is extremely difficult to list decoding of square matrix rank-metric
codes (i.e., the column-to-row ratio is equal to 1). Therefore, it is a great challenge to design
efficient algorithms to list decode rank-metric codes with the column-to-row ratio close to 1
and decoding radius beyond (1 − R)/2.

1.1 Known results
Let us fix some notations before stating known results. Denote by Ft×n

q the collection of
t × n matrices over Fq. We may assume that n ⩽ t. Otherwise, we can consider transpose
of matrices. One can define the rank-metric within Ft×n

q (see the detailed definition in
Subsection 2.1). A subset C of Ft×n

q equipped with rank-metric is called a rank-metric code.
Unlike Hamming-metric codes, apart from rate and minimum distance there is an important
parameter ρ(C) := n

t which is called the column-to-row ratio.

▶ Definition 1. Let τ ∈ (0, 1) and L ⩾ 1 be an integer. A rank-metric code C is (τ, L)-list
decodable if for every X ∈ Ft×n

q

|BR(X, τn) ∩ C| ≤ L,

where BR(X, τn) is a rank-metric ball defined in Subsection 2.1.

Limit to list decodability of rank-metric codes and list decodability of random rank-metric
codes are known [2, 15]. More precisely, we have the following result (see [2]):

(i) If the ratio n/t tends to a fixed real ρ, a rank-metric code C ⊆ Ft×n
q of rate R that is

(τ, L)-list decodable with L = poly(n) must obey the Gilbert-Varshamov bound, i.e.,
R ⩽ (1 − τ)(1 − ρτ).

(ii) With high probability a random rank-metric code can be list decoded up to the Gilbert-
Varshamov bound, i.e., a random rank-metric code of rate R in Ft×n

q is (τ, O(1/ε))-list
decodable with R = (1 − τ)(1 − ρτ) − ε for any small real ε > 0. In particular, if the

S. Liu, C. Xing, and C. Yuan 89:3

ratio n/t is a small constant ε, then with high probability a random rank-metric code
of rate R in Ft×n

q is (1 − R − ε, O(1/ε))-list decodable.

Let us introduce the state-of-art results by comparing list decoding of Hamming-metric
and rank-metric codes. First of all, we note that both Hamming-metric and rank-metric
codes obey the Gilbert-Varshamov bounds in each metric for list decoddability. In the case
of the Hamming-metric, the Gilbert-Varshamov bound is a trade-off among rate, decoding
radius and alphabet size, while in the case of the rank-metric, the Gilbert-Varshamov bound
is a trade-off among rate, decoding radius and column-to-row ratio. Hence, alphabet size
and column-to-row ratio play the similar role for list decodability in each metric. We will
see from the following paragraph that the small column-to-row ratio for list decoding of
rank-metric codes is compatible with large alphabet size for list decoding of Hamming-metric
codes and vice versa.

Recall that in the case of the Hamming-metric, the limit on list decodability is the
Hamming-metric Gilbert-Varshamov bound 1 − Hq(τ), where Hq(x) is the entropy function,
and a random code can be list decoded up to the Hamming-metric Gilbert-Varshamov
bound [5]. When alphabet size q = exp(Ω(1

ε)), the Hamming-metric Gilbert-Varshamov
bound 1 − Hq(τ) tends to the Singleton bound 1 − R − ε. Currently, for list decoding of
Hamming-metric codes over large alphabet q, the best result is that, for q = O(1

ε2), by
making use of folded algebraic geometry codes or algebraic geometry codes with evaluation
points in subfields (for convenience let us call them subfield algebraic geometry codes) one
can list decode Hamming-metric codes up to the Singleton bound 1 − R − ε (see [10, 11, 12]).
Thus, for list-decoding of Hamming-metric codes over large alphabet q, it remains an open
problem to design efficient algorithm to list decode up to 1 − R − ε for q-ary codes with
q = Ω(1

ε). On the other hand, for sufficiently small column-to-row ratio, say ρ = O(ε), the
rank-metric Gilbert-Varshamov also tends the Singleton bound 1−R −ε. Furthermore, when
the column-to-row ratio ρ = O(ε2), an efficient list decoding of rank-metric codes up to the
Singleton bound 1 − R − ε was introduced in [11, 12] by making use of subfield Gabidulin
codes. Hence again, it remains an open problem to design efficient algorithm to list decode
rank-metric codes up to 1 − R − ε for with column-to-row ratio ρ = Ω(ε).

For the regime of small alphabets q such as q = 2, there is not much work on efficient
list decoding algorithms for Hamming-metric codes except for the concatenation techniques.
Precisely speaking, by making use of concatenation technique, one can list decode binary
Hamming-metric codes up to the Blokh-Zyablov bound [7]. Similarly, in the case of rank-
metric codes, not much work has been done for large column-to-row ratio, in particular, for
ratio ρ = 1, i.e., the square matrix case. The largest column-to-row ratio ρ is 1

2 for which
the list decoding bound lies beyond the unique decoding radius. In [17], by making use of
folded Gabidulin codes, one can list decode beyond the unique decoding radius (1 − R)/2
with the column-to-row ratio ρ arbitrarily close to 1/2.

1.2 Our result
We propose a compression technique which is the key to construct list decodable rank-metric
codes with the ratio ρ up to 2

3 . This moves one step further towards the ratio ρ = 1. Our
list decodable rank-metric codes are obtained by compressing folded Gabidulin codes. The
following theorem summarizes our main result.

▶ Main Theorem 1. For every constant finite field Fq, any small real ε > 0 and integer
s > 1, there exists an explicit constriction of Fq-linear rank metric codes with the ratio ρ

and rate R that are
(

1−sR
ρ(s+1) − ε, qO((s−1)2/ε)

)
-list-decodable. The algorithm runs in time

ICALP 2023

89:4 List Decoding of Rank-Metric Codes

poly(n, q). Furthermore, if ρ < 2(1−R)
(s+1)(1−sR) , then the decoding radius τ = 1−sR

ρ(s+1) − ε exceeds
the unique decoding radius 1−R

2 .

▶ Remark 2. If we take s = 2, then we get rank-metric codes of the ratio ρ and rate R that
are

(
1−2R

3ρ − ε, qO(1/ε)
)

-list decodable. In particular, if ρ < 2(1−R)
3(1−2R) , then the list decoding

radius is bigger than (1 − R)/2. Furthermore, when the rate R tends to 0, there exists an
explicit construction of rank-metric codes with any ratio ρ < 2

3 . Note that our decoding
radius depends on the ratio ρ, while the unique decoding radius is independent of the ratio ρ.
Let us draw a diagram to illustrate our main result.

Figure 1 Comparison of our decoding radius with the unique decoding radius for different ratios.

Figure 2 Comparison of our decoding radius with the unique decoding radius for different rates.

1.3 Our Techniques
In the topics of list decoding, folded codes and subfield codes are used to increase decoding
radius. In the case of Hamming-metric, folding codes or taking evaluation points from
a subfield increases code alphabet size, while in the case of rank-metric, folding codes or
taking evaluation points from a subfield would reduce the column-to-row ratio. In the
Subsection 1.1, we reviewed some techniques employed in the explicit constructions of list
decodable rank-metric codes. We start from a family of list decodable rank-metric codes,
i.e., folded Gabidulin codes. The list decoding algorithm for this family was already known

S. Liu, C. Xing, and C. Yuan 89:5

[11, 12, 17]. In this paper, we introduce a new technique, namely the compression technique.
By combing our compression technique with the existing techniques of folded codes, we are
able to increase the column-to-row ratio.

Let us illustrate our idea by combining the compression technique with the techniques of
folded codes. The folded technique for list decoding of rank-metric codes was introduced
in [17]. Similar to list decoding of folded Reed-Solomon codes, one can list decode folded
Gabidulin codes. However, when Gabidulin codes are folded, the number of columns increases.
This means that the column-to-row ratio decreases. In order to make the column-to-row ratio
larger for folded Gabidulin codes, one can take a linear map that sends every element of Fqn

to a smaller Fq-subspace of Fqn . Thus, the number of columns shrinks. At the meantime, we
still want a large list decoding radius or at least a list decoding radius exceeding (1 − R)/2.
We can choose the compression map to be a linearized polynomial and use the existing linear
algebra list decoding technique [8, 10, 11, 12] to achieve our goal.

1.4 Organization of the paper
In Section 2, we introduce some preliminaries including definitions of rank-metric codes and
rank-metric balls, Gabidulin codes, subspace design and periodic subspaces. In Section 3, we
compress folded rank-metric code and design an efficient list decoding algorithm.

2 Preliminaries

2.1 Rank-metric codes
We first introduce some basic notations and properties about rank-metric codes. Denote by
Ft×n

q the collection of all t × n matrices over Fq. Without loss of generality, we assume that
n ≤ t in this paper or otherwise we can consider transpose of matrices. A rank-metric code
is a subset of Ft×n

q . Denote by ρ the column-to-row ratio, i.e, ρ = n
t , then we always have

ρ ≤ 1. For any X, Y ∈ Ft×n
q , the rank distance between X and Y is defined by

dR(X, Y) := rank(X − Y),

where rank denotes the rank of matrices. It is straightforward to verify that dR is indeed a
distance. Similar to classical block codes, we can define minimum rank distance and rate for
a rank-metric code C by

dR(C) = min
X ̸=Y ∈C

{rank(X − Y)} and R(C) =
logq |C|

nt
.

A rank-metric code in Ft×n
q with n ⩽ t must obey the following Singleton bound

dR(C) ⩽ n − R(C)n + 1. (1)

The rank-metric ball, an analog to the Hamming ball in classical block codes, is used to
count the number of matrices within a given rank distance. The formal definition is given as
follows.

▶ Definition 3. For a real τ ∈ [0, 1], the rank-metric ball with center X ∈ Ft×n
q and distance

τn is defined by

BR(X, τn) := {Y ∈ Ft×n
q : dR(X, Y) ≤ τn}.

The size of a rank-metric ball is independent of the center.
For convenience, a vector of length t over Fq is identified with a column vector of Fqt

under a fixed basis. Thus, a row vector in Fn
qt can be viewed as an t × n matrix over Fq. We

denote by dR(x, y) the rank distance dR(X, Y), where x, y are vectors in Ft
qn corresponding

to X, Y , respectively.

ICALP 2023

89:6 List Decoding of Rank-Metric Codes

2.2 Gabidulin codes
A code achieving the Singleton bound (1) is called Maximal Rank Distance (or MRD for
short) code. The most famous MRD codes are Gabidulin codes which are defined by using
polynomial evaluations.

To better understand our codes, we briefly review the construction of Gabidulin codes
[4]. A polynomial of the form f(x) =

∑ℓ
i=0 aix

qi is called q-linearized, where coefficients ai

belong to the algebraic closure of Fq. The q-degree of f(x), denoted by degq(f), is defined
to be ℓ if aℓ ̸= 0. Denote by Lq(n, k) the subset

Lq(n, k) :=
{

k−1∑
i=0

aix
qi

: ai ∈ Fqn

}
. (2)

Then Lq(n, k) is an Fqn-vector space of dimension k and it is also an Fq-vector space of
dimension kn. Denote by Lq(n) the union ∪∞

k=1Lq(n, k), i.e., Lq(n) is the collection of
q-linearized polynomials over Fqn .

Fix an Fq-linearly independent set {α1, . . . , αn} of Fqt . For every q-linearized polynomial
f ∈ Fqt [X] of q-degree at most k − 1 with 1 ⩽ k ⩽ n, we can encode f by the row vector(
f(α1), . . . , f(αn)

)
over Fqt . By fixing a basis of Fqt over Fq, we can also think of this row

vector as an t × n matrix over Fq. This yields the Gabidulin code

Gq(n, k) := {
(
f(α1), . . . , f(αn)

)
∈ Ft×n

q : f ∈ Lq(n, k)}. (3)

The Gabidulin code Gq(n, k) is an MRD code with rate k
n and minimum rank distance

n − k + 1.

2.3 Subspace design
Subspace design was introduced in [11] to reduce list size from a structured list. Let us recall
the definition.

▶ Definition 4. A collection S of Fq-subspaces H1, . . . , HM ⊆ Fn
q is called an (s, ℓ, n)q-

subspace design if for every Fq-linear space W ⊂ Fn
q of dimension s, one has

∑M
i=1 dimFq

(Hi ∩
W) ≤ ℓ.

Random subspace designs are studied in [11]. Guruswami and Kopparty [6] gives an explicit
subspace design based on Wronskian determinant.

▶ Lemma 5. For ε ∈ (0, 1), any prime power q and positive integers s, n with s < εn/4,
there is an explicit collection of M = qΩ(εn/s) subspaces in Fn

q , each of codimension at most
εn and form an (s, 2s2/ε, n)q-subspace design. Moreover, bases for N ⩽ M elements of this
collection can be computed in time poly(N, n, q).

▶ Remark 6.
(i) If q > n, one can improve the intersection size from 2s2/ε to 2s/ε by applying the

subspace design based on the folded Reed-Solomon directly. For q < n, the approach in
[6] first constructed a weak subspace design and then turn this weak subspace design
to a subspace design given in Definition 4. Such transformation yields a (s, 2s2/ε, n)-
subspace design instead of (s, 2s/ε, n)-subspace design.

(ii) If s = Ω(logq n), then a construction of subspace designs with better parameters was
given in [13]. For our applications, we are interested in the case where s is a constant.

S. Liu, C. Xing, and C. Yuan 89:7

2.4 Periodic Subspaces
The periodic subspace was introduced in [10] to characterize the list of candidates outputted
by the list decodable codes. By exploiting the structure of periodic subspace, they manage
to cut down the list size to polynomial size at cost of losing arbitrary small rate.

For a vector a = (a1, a2, . . . , aN) ∈ FN
q and positive integers t1 ⩽ t2 ⩽ m, we denote by

proj[t1,t2](a) ∈ Ft2−t1+1
q its projection onto coordinates t1 through t2, i.e., proj[t1,t2](a) =

(at1 , at1+1, . . . , at2). When t1 = 1, we use projt(a) to denote proj[1,t](a). These notions are
extended to subsets of strings in the obvious way: proj[t1,t2](S) = {proj[t1,t2](x) : x ∈ S}.

▶ Definition 7. For positive integers s, b, n, an affine subspace H ⊂ Fnb
q is (s, n, b)q-periodic

if there exists a subspace W ⊆ Fn
q of dimension at most s such that for every j = 1, 2, . . . , b,

and every “prefix” a ∈ F(j−1)n
q , the projected affine subspace of Fn

q defined as

{proj[(j−1)n+1,jn](x) : x ∈ H and proj(j−1)n(x) = a}

is contained in an affine subspace of Fn
q given by W + va for some vector va ∈ Fn dependent

on a.

By combining subspace design and periodic affine spaces, we can pin down list of massages
in Sections 3 and 4. The detailed result is shown below and was given in [11].

▶ Lemma 8. Suppose H1, H2, . . . , Hb is an (s, ℓ, n)-subspace design in Fn
q , and T is a (s, n, b)-

periodic affine subspace of Fnb
q . Then the set T = {(f1, f2, . . . , fb) ∈ T : fj ∈ Hj for j =

1, 2, . . . , b} is an affine subspace of Fnb
q of dimension at most ℓ.

3 Compressing the folded Gabidulin codes

In this section, we introduce the compression technique and combine this technique with
folded Gabidulin codes in order to increase the ratio of folded Gabidulin codes.

3.1 Encoding Algorithm
The encoding algorithm consists of two steps. The first step is to encode a linearized
polynomial f(x) to a codeword. In this step, we use α1, . . . , αn as the Fq-basis of Fqn and
evaluate f(x) as (f(α1), . . . , f(αn)). The second step is to choose a linearized polynomial
g(x) whose kernel is a σn-dimensional subspace of Fqn for some σ ∈ (0, 1) when g(x) is
viewed as an Fq-linear map from Fqn to itself, then the vector(

g(f)(α1), g(f)(α2), . . . , g(f)(αn)
)

belongs to a smaller subspace Im(g), where Im(g) stands for the image of g(x), i.e., g(Fqn).
As Fq(1−σ)n

∼= Im(g), the vector (g(f)(α1), g(f)(α2), . . . , g(f)(αn)) can be viewed as a matrix
in F(1−σ)n×n

q .
The choice of g(x) can be done as follows. Choose an Fq-subspace V ⊆ Fqn of dimension

σn and define the linearized polynomial g(x) =
∏

v∈V (x − v) over Fqn . It follows that
dimFq

(ker(g)) = σn and dimFq
(Im(g)) = (1 − σ)n. For a q-linearized polynomial a(x) =∑ℓ

i=0 aix
qi ∈ Fqn [x] and j ⩾ 0, we denote by a(j)(x) the polynomial

∑ℓ
i=0 aqj

i xqi , i.e., a(j)(x)
is obtained from a(x) by raising each coefficient to its qj-th power.

Denote by Wj the image space of g(j)(x). It is clear that Wj is of dimension (1 − σ)n
as well. Therefore, one can define the Fq-linear isomorphism ϕj : Wj → F(1−σ)n

q . Let
Fk(g) := {g(f(x)) ∈ Lq(n) : degq(f) < k}. The following lemma shows that if k is not too
large, the elements in Fk(g) are distinct.

ICALP 2023

89:8 List Decoding of Rank-Metric Codes

▶ Lemma 9. Let f1(x), f2(x) be linearized polynomial of q-degree at most k−1. If k+σn ⩽ n,
then g(f1(x)) = g(f2(x)) if and only if f1(x) = f2(x).

Proof. Assume that g(f1(x)) = g(f2(x)). Suppose that f1(x) ̸= f2(x). Then as a linear of
map from Fqn to Fqn , the kernel of f1 − f2 has dimension at most k − 1. Thus, the image of
f1 − f2 has dimension at least n − k + 1. Since g(x) is a q-linearized polynomial, we have

g(f1(x) − f2(x)) = g(f1(x)) − g(f2(x)) = 0.

This means that g(f1(x) − f2(x)) send every element of Fqn to 0. Hence, g(x) maps every
element in the the image of f1 − f2 to 0. This implies that the image of f1 − f2 is contained
in the kernel of g(x). On the other hand, the dimension of the kernel of g(x) is at most the
q-degree of g(x) which is σn. This gives that σn ⩾ n − k + 1, i.e., k + σn ⩾ n + 1. This
contradiction shows that f1(x) = f2(x).

The other direction is clear. The proof is completed. ◀

Given linearized polynomials g(x) and f(x), we denote by gf the linearized polynomial
g(f(x)). It is easy to see that g

(i)
f (x) = g(i)(f (i)(x)

)
. We encode g(f(x)) ∈ Fk(g) to the

codeword as follows:

Ms(g, f) :=


ϕ0

(
gf (α1)

)
ϕ0

(
gf (α2)

)
· · · ϕ0

(
gf (αn)

)
ϕ1

(
g

(1)
f (α1)

)
ϕ1

(
g

(1)
f (α2)

)
· · · ϕ1

(
g

(1)
f (αn)

)
...

...
. . .

...
ϕs−1

(
g

(s−1)
f (α1)

)
ϕs−1

(
g

(s−1)
f (α2)

)
· · · ϕs−1

(
g

(s−1)
f (αn)

)
 ∈ F(1−σ)sn×n

q ,

where ϕj is a fixed Fq-linear isomorphism from Wj to F(1−σ)n
q . Therefore, Ms(g, f) has

(1 − σ)sn rows and n columns. Each entry in the above matrix is viewed as a row vector of
F(1−σ)n

q .
Fix a q-linearized polynomial g(x) ∈ Lq(n, σn) with the kernel of dimension σn, let

Cq(n, k; s, σ) be the collection of Ms(g, f) for all f(x) ∈ Lq(n, k) defined in (2).

▶ Lemma 10. If k + σn ⩽ n, then the ratio, distance and rate of Cq(n, k; s, σ) satisfy

ρ = 1
(1 − σ)s , dR(Cq(n, k; s, σ)) ≥ n − k − σn + 1, and R(Cq(n, k; s, σ)) = k

s(1 − σ)n,

respectively.

Proof. The ratio is clear. Given a nonzero linearized polynomial f(x), suppose that Ms(g, f)
has rank less than n − k − σn + 1. The solution space U of Ms(g, f)xT = 0 has dimension
at least k + σn. Then, gf (x) has at least qk+σn roots. This implies that gf is a linearized
polynomial of q-degree at least k + σn. However, the q-degree of gf is upper bounded by
k + σn − 1 as the q-degree of g is σn and the q-degree of f is at most k − 1. This is a
contradiction. It is easy to see that the map f 7→ Ms(g, f) is Fq-linear and injective, our
rank-metric codes are Fq-linear space and its size is qkn. Hence, the rate of this code is
logq(Cq(n,k,σ))

s(1−σ)n2 = k
s(1−σ)n . ◀

3.2 List Decoding Algorithm
The list decoding algorithm consists of two subroutine algorithms. The first algorithm is an
interpolation algorithm which outputs the interpolation polynomial that passes through all
points in the vector space of the transmitted matrix. The second algorithm is a root-finding

S. Liu, C. Xing, and C. Yuan 89:9

algorithm which finds out all roots to the interpolation algorithm that belong to the message
space Lq(n, k). However, if our message space is the whole space of Lq(n, k), the output of
this list decoding algorithm may be exponentially large. To reduce the list size, we make
use of the subspace design [6] to “re-encode” our rank-metric codes. As far as we know, this
technique was the only known method to construct the explicit list-decodable rank-metric
codes [17, 9]. The resulting rank-metric code is a subcode of the original rank-metric code
with ε rate loss. The list size of our resulting rank-metric code is reduced to a constant
qO(1

ε).
Fix a positive integer e ≤ n − s. Suppose that a codeword Ms(g, f) is transmitted and

My = (yi,j)0≤i≤s−1,1≤j≤n is received with at most e errors, i.e., rank(Ms(g, f) − My) ≤ e.
Our goal is to recover the linearized polynomial f(x) from My. Note that ϕj is an Fq-
isomorphism for j = 0, . . . , s − 1. We define the matrix Mz = (zi,j)0≤i≤s−1,1≤j≤n, where
zi,j = ϕ−1

i (yi,j). That is, we apply the inverse maps ϕ−1
0 , . . . , ϕ−1

s−1 to My to retrieve sn × n

matrix Mz over Fq. Define the matrix

M ′
s(g, f) :=


gf (α1) gf (α2) · · · gf (αn)

g
(1)
f (α1) g

(1)
f (α2) · · · g

(2)
f (αn)

...
...

. . .
...

g
(s−1)
f (α1) g

(s−1)
f (α2) · · · g

(s−1)
f (αn)


The following lemma shows that the error rank(Ms(g, f) − My) does not amplify under the
inverse maps ϕ−1

0 , . . . , ϕ−1
s−1.

▶ Lemma 11. If rank(Ms(g, f) − My) ≤ e, then rank(M ′
s(g, f) − Mz) ≤ e.

Proof. Since rank(Ms(g, f) −My) ≤ e, the solution space U ⊆ Fn
q of (Ms(g, f) −My)xT = 0

has dimension at least n − e, i.e, for every (c1, c2, . . . , cn) ∈ U and i = 0, 1, . . . , s − 1,

ϕi

g
(i)
f

 n∑
j=1

cjαj

 =
n∑

j=1
cjϕi

(
g

(i)
f (αj)

)
=

n∑
j=1

cjyi,j .

By taking ϕ−1
i on the both sides of the above identity, we get

g
(i)
f

 n∑
j=1

cjαj

 =
n∑

j=1
ϕ−1

i (cjyi,j) =
n∑

j=1
cjϕ−1

i (yi,j) =
n∑

j=1
cjzi,j .

Since it holds for every (c1, c2, . . . , cn) ∈ U , we come to the conclusion that rank(M ′
s(g, f) −

Mz) ≤ e. ◀

Assuming rank(Ms(g, f) − Mz) ≤ e, we will show how to list decode Mz. To begin with, we
introduce the interpolation polynomials.

▶ Definition 12. Let L be the space of polynomials Q ∈ Fqn [X, Z1, Z2, . . . , Zs] of the form
Q(X, Z1, . . . , Zs) = A0(X) + A1(Z1) + · · · + As(Zs) with each A0 ∈ Lq(n, D + k + σn) and
Ai ∈ Lq(n, D) for i = 1, . . . , s.

The interpolation polynomial Q(X, Z1, . . . , Zs) was used to interpolate the points
(αj , z0,j , . . . , zs−1,j) for j = 1, . . . , n. Since our interpolation polynomial is q-linearized,
it means Q pass all points in the subspace spanned by (αj , z0,j , . . . , zs−1,j).

ICALP 2023

89:10 List Decoding of Rank-Metric Codes

▶ Lemma 13. Assume that D > 1
s+1 (n − k − σn). There exists a nonzero polynomial Q ∈ L

such that Q(αi, z0,i, . . . , zs−1,i) = 0 for i = 1, . . . , n. Furthermore, Q can be found in time
poly(n, log q).

Proof. We view coefficients of Ai(X) as variables. Since there are n equations and (s +
1)D + k + σn − 1 unknowns in Q(X, Z1, . . . , Zs), we require that (s + 1)D + k + σn − 1 > n

or equivalently D > 1
s+1 (n − k + 1 − σn). Note that the n constraints amount to n linear

equations. This implies that we can interpolate polynomial Q in running time O(n3) by
Gauss elimination. Moreover, as long as the number of unknowns is bigger than the number
of equations, there exists a nonzero polynomial Q satisfying all these n constraints. ◀

We next prove that those codewords with small distance from Mz are the roots of Q.
Then, it remains to design a root-finding algorithm to find all the roots of Q.

▶ Lemma 14. Let gf ∈ Fk(g) be a q-linearized polynomial. If rank(M ′
s(g, f) − Mz) ≤ e and

D + k + σn − 1 < n − e, then Q(x, gf (x), g
(1)
f (x), . . . , g

(s−1)
f (x)) = 0.

Proof. The condition that rank(M ′
s(g, f) − Mz) ≤ e implies that there exists an Fq-linear

subspace U of dimension at least n − e such that for every (c1, c2, . . . , cn) ∈ U , we have∑n
j=1 cjzi,j =

∑n
j=1 cjg

(i)
f (αj) for all i = 0, 1, . . . , s − 1. This gives

0 =
n∑

j=1
cjQ(αj , z0,j , . . . , zs−1,j) = Q

 n∑
j=1

cjαj ,
n∑

j=1
cjz0,j , . . . ,

n∑
j=1

cjzs−1,j


= Q

 n∑
j=1

cjαj ,
n∑

j=1
cjgf (αj), . . . ,

n∑
j=1

cjg
(s−1)
f (αj)


= Q

 n∑
j=1

cjαj , gf

 n∑
j=1

cjαj

 , . . . , g
(s−1)
f

 n∑
j=1

cjαj


Note that gf is a linearized polynomial of q-degree at most k + σn − 1. Then,
Q(x, gf (x), . . . , g

(s−1)
f x) is a q-linearized polynomial of q-degree at most D + k + σn − 1

which is less than the dimension n − e of the kernel. It must be the case that
Q(x, gf (x), . . . , g

(s−1)
f (x)) = 0. ◀

▶ Theorem 15. If e ≤ s
s+1 ((1 − σ)n − k), then Q(x, gf (x), . . . , g

(s−1)
f x) = 0 holds for all

linearized polynomials gf (x) with rank(M ′
gf

− Mz) ≤ e.

Proof. Set D =
⌊

1
s+1 (n − k − σn) + 1

⌋
. Then Lemma 14 ensures existence of a polynomial

Q(X, Z1, . . . , Zs) passing through points (αi, z0,i, . . . , zs−1,i) for i = 1, . . . , n. Furthermore,
Lemma 13 ensures that all linearized polynomials gf (x) with rank(M ′

s(g, f) − Mz) ≤ e is a
solution to Q(x, gf (x), . . . , g

(s−1)
f x) = 0. This completes the proof. ◀

Recall that the rate of Cq(n, k; s, σ) is R := k
s(1−σ)n . Plugging k = sR(1 − σ)n into the

expression of e ≤ s
s+1 ((1−σ)n−k), we obtain the list decoding radius τ = s

s+1 (1−σ)(1−sR).
As the ratio ρ = 1

(1−σ)s , τ can be expressed as 1−sR
ρ(s+1) in terms of the ratio ρ. If we want that

the list decoding radius τ exceeds the unique decoding, i.e., τ > 1−R
2 , then the rate R must

satisfy R < 2−(s+1)ρ
2s−(s+1)ρ . This implies that ρ < 2

s+1 .
If we set s = 2, then for any ratio ρ ∈ (0, 2

3), we obtain a list decodable rank-metric code
of the ratio ρ that exceeds the unique decoding radius 1−R

2 . However, we still need to make
sure that the list size of this code is at most polynomial in q, n and there exists explicit list

S. Liu, C. Xing, and C. Yuan 89:11

decoding algorithm to find all candidates. The following lemma tells us the structure of the
solutions to Q(x, gf (x), g

(1)
f (x), . . . , g

(s−1)
f (x)) = 0. We follow the idea given in [9] to show

how to obtain the structure of g(f(x)) from Q via the root-finding algorithm.

▶ Lemma 16. Let a(x) =
∑σn+k−1

i=0 aix
qi ∈ Lq(n). Then the set of solutions

(a0, a1, . . . , aσn+k−1) to the equation

Q(x, a(x), a(1)(x), . . . , a(s−1)(x)) = 0 (4)

forms an (s − 1, n, σn + k − 1)-periodic subspace.

Proof. Let D =
⌊

1
s+1 (n − k − σn) + 1

⌋
. Note that we have already recovered

A0(x), . . . , As(x) by interpolation that satisfy the indentity

Q(x, a(x), a(1)(x), . . . , a(s−1)(x)) = A0(x) + A1(a(x)) + · · · + As(a(s−1)(x)) = 0. (5)

Assume that A0(X) =
∑D+k+σn−1

i=0 b0,ix
qi and Aj(x) =

∑D−1
i=0 bj,ix

qi . If b0,0, . . . , bs,0 are
all zero, then (5) gives a new identity (A′

0(x) + A′
1(a(x)) + · · · + A′

s(a(s−1)(x)))q = 0, i.e.,

A′
0(x) + A′

1(a(x)) + · · · + A′
s(a(s−1)(x)) = 0 (6)

with degq(Ai) ⩾ degq(A′
i) for all i = 0, 1, . . . , s. Moreover, not all A′

i are zero polynomials.
Thus, without loss of generality, we may assume that at least one of b0,0, . . . , bs,0 is nonzero.

Let a(x) =
∑k+σn−1

i=0 aix
qi , where ai ∈ Fqn are variables. Plugging the expression of a(x)

into (5) and compareing the coefficient of x on both sides give

b0,0 +
s−1∑
i=0

bi+1,0aqi

0 = 0. (7)

The solution a0 to b0,j +
∑s

i=0 bi,jaqi−1

0 = 0 is an affine subspace of dimension at most s − 1.
For i = 0, . . . , k + σn − 1, define the linearized polynomial

Bi(x) =
s−1∑
j=1

bj,ix
qj

.

Our assumption shows B0(x) ̸= 0. The solutions β ∈ Fqn to B0(x) forms a subspace W of
dimension at most s − 1. Fix i ∈ {0, . . . , k + σ − 1}. By comparing the coefficient of xqi in
Equation (5), we get

b0,i + Bi(aqi

0) + Bi−1(aqi−1

1) + · · · + B1(aq
i−1) + B0(ai) = 0.

This implies ai ∈ W + θi for some θi ∈ Fqn that is determined by a0, . . . , ai. Thus, each
choice of ai−1 is contained in the coset of W . The proof is completed. ◀

▶ Remark 17. For each ai, we may have qs−1 solutions. Thus, the list of candidate gf (x)
could be exponentially large. To cut down the list size, we pick a subspace of Lq(n, k) by
subspace design. By imposing some constraints on our codeword, we can prune the list to a
constant size. We leave it to the next subsection.

Assume that we are given a solution a(x) to Q(x, a(x), a(1)(x), . . . , a(s−1)(x)). Next
lemma shows how to obtain f(x) from a(x). Note that not all solutions to

Q(x, a(x), a(1)(X), . . . , a(s−1)(x)) = 0

are of the form g(f(x)).

ICALP 2023

89:12 List Decoding of Rank-Metric Codes

▶ Lemma 18. Given a linearized polynomial a(x) of q-degree at most k + σn − 1, we can find
in time O(n2) whether there exists an unique linearized polynomial f(x) of q-degree at most
k − 1 such that a(x) = g(f(x)). Furthermore, f(x) can be uniquely determined if it exists.

Proof. Let a(x) =
∑k+σn−1

i=0 aix
qi , f(x) =

∑k−1
i=0 fix

qi and g(x) =
∑σn

i=0 gix
qi . Suppose that

a(x) = g(f(x)). It follows that

a(x) =
σn∑
i=0

gif(x)qi

.

Comparing the coefficient of x on both sides, we get f0g0 = a0. Recall that the roots of
g(x) form a σn-dimensional subspace which implies g(x) has qσn different roots including 0.
This implies g0 is nonzero and thus f0 is uniquely determined. Assume that f0, . . . , fi−1 are
determined. We compare the coefficient of xqi on both sides

ai = g0fi + g1fi−1 + g2fi−2 + · · · + gif0.

Thus, fi is uniquely determined. After all coefficients of f(x) are determined, we check
whether a(x) = g(f(x)). If the equation holds, f(x) is the unique solution. Otherwise, there
do not exist any solutions. It is easy to see that all operations run in time O(n2). ◀

3.3 Prune the list
We follow the standard list decoding procedure introduced in [10, 11, 12] to pre-encode and
prune the list size.

▶ Theorem 19. For every finite field Fq, small real γ > 0 and integer s > 1, there exists an
explicit constriction of Fq-linear rank metric codes with the column-to-row ratio ρ and rate
R that are

(
(1−sR)
ρ(s+1) − γ, qO((s−1)2/γ)

)
-list-decodable. The algorithm runs in time poly(n, q).

Furthermore, if ρ < 2
s+1 , then the decoding radius τ = (1−sR)

ρ(s+1) − γ exceeds the unique decoding
radius 1−R

2 .

Proof. Note that the message space of our rank metric code is Fk(g) = {g(f) : f ∈ Lq(n, k)}.
Lemma 5 says that there exists an explicit construction of ((s − 1), 2(s − 1)2/ε, n)q-subspace
design H0, . . . , Hσn+k−1 ⊆ Fqn , each has the Fq-dimension n(1 − ε). Define the polynomial
set S = {h(x) =

∑σn+k−1
i=0 hix

qi : hi ∈ Hi}. Our new message space is F ′
k(g) = Fk(g) ∩ S.

Note that

dimFq
(F ′

k(g)) = dimFq
(Fk(g)) + dimFq

(S) − dimFq
(Fk(g) + S)

⩾ dimFq
(Fk(g)) + dimFq

(S) − dimFq
(Fσn+k

qn)
= kn + (σn + k)(1 − ε)n − (σn + k)n = n(k − ε(σn + k))

Given a linearized polynomial g(f(x)) ∈ F ′
k(g), we encode it into the codeword Ms(g, f).

The new rank-metric code becomes C′(n, k; s, σ). The rate of this code is R = n(k−ε(σn+k))
n2s(1−σ) =

1
1−σ

(
k
n − ε

s

(
σ + k

n

))
⩾ 1

1−σ

(
k
n − ε

)
= R′ − ε

1−σ where R′ is the rate of C(n, k; s, σ) in
Lemma 10.

Since our new code is a subcode of the rank metric code proposed in the Subsection 3.1.
The same encoding and list decoding algorithm can be applied to this code. Assume
that there are at most τn = (1−sR′)n

ρ(s+1) rank errors, Lemma 16 says that all candidates
(a0, . . . , aσn+k−1) ∈ Fk(g) are contained in an (s − 1, n, σn + k)-periodic subspace. This
implies that the collection of such candidates (a0, . . . , aσn+k−1) ∈ F ′

k(g) is contained in an

S. Liu, C. Xing, and C. Yuan 89:13

affine space of dimension at most (s − 1)2/ε followed by the property of subspace design
Lemma 8. This implies there are at most q(s−1)2/ε codewords in the list. Put γ = 2εs

ρ(1−σ)(s+1) ,
then τ = (1−sR′)

ρ(s+1) = (1−sR)
ρ(s+1) − γ.

It takes at most O(n3q(s−1)2/γ) time to find all candidates. Thus, this list decoding
algorithm runs in polynomial time. Our proof is completed. ◀

References
1 Philippe Delsarte. Bilinear forms over a finite field, with applications to coding theory. J.

Comb. Theory, Ser. A, 25(3):226–241, 1978. doi:10.1016/0097-3165(78)90015-8.
2 Yang Ding. On list-decodability of random rank metric codes and subspace codes. IEEE

Trans. Inf. Theory, 61(1):51–59, 2015. doi:10.1109/TIT.2014.2371915.
3 Michael A. Forbes and Amir Shpilka. On identity testing of tensors, low-rank recovery and

compressed sensing. In Howard J. Karloff and Toniann Pitassi, editors, Proceedings of the 44th
Symposium on Theory of Computing Conference, STOC 2012, New York, NY, USA, May 19 -
22, 2012, pages 163–172. ACM, 2012. doi:10.1145/2213977.2213995.

4 Ernst Gabidulin. Theory of codes with maximum rank distance (translation). Problems of
Information Transmission, 21:1–12, January 1985.

5 Venkatesan Guruswami. List decoding of error correcting codes. PhD thesis, Massachusetts
Institute of Technology, 2001. URL: http://dspace.mit.edu/handle/1721.1/8700.

6 Venkatesan Guruswami and Swastik Kopparty. Explicit subspace designs. In 54th Annual IEEE
Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berkeley,
CA, USA, pages 608–617. IEEE Computer Society, 2013. doi:10.1109/FOCS.2013.71.

7 Venkatesan Guruswami and Atri Rudra. Better binary list decodable codes via multilevel
concatenation. IEEE Trans. Inf. Theory, 55(1):19–26, 2009. doi:10.1109/TIT.2008.2008124.

8 Venkatesan Guruswami and Carol Wang. Linear-algebraic list decoding for variants of reed-
solomon codes. IEEE Trans. Inf. Theory, 59(6):3257–3268, 2013. doi:10.1109/TIT.2013.
2246813.

9 Venkatesan Guruswami, Carol Wang, and Chaoping Xing. Explicit list-decodable rank-metric
and subspace codes via subspace designs. IEEE Trans. Inf. Theory, 62(5):2707–2718, 2016.
doi:10.1109/TIT.2016.2544347.

10 Venkatesan Guruswami and Chaoping Xing. Folded codes from function field towers and
improved optimal rate list decoding. In Howard J. Karloff and Toniann Pitassi, editors,
Proceedings of the 44th Symposium on Theory of Computing Conference, STOC 2012, New York,
NY, USA, May 19 - 22, 2012, pages 339–350. ACM, 2012. doi:10.1145/2213977.2214009.

11 Venkatesan Guruswami and Chaoping Xing. List decoding reed-solomon, algebraic-geometric,
and gabidulin subcodes up to the singleton bound. In Dan Boneh, Tim Roughgarden, and
Joan Feigenbaum, editors, Symposium on Theory of Computing Conference, STOC’13, Palo
Alto, CA, USA, June 1-4, 2013, pages 843–852. ACM, 2013. doi:10.1145/2488608.2488715.

12 Venkatesan Guruswami and Chaoping Xing. Optimal rate list decoding over bounded alphabets
using algebraic-geometric codes. J. ACM, 69(2):10:1–10:48, 2022. doi:10.1145/3506668.

13 Venkatesan Guruswami, Chaoping Xing, and Chen Yuan. Subspace designs based on algebraic
function fields. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl,
editors, 44th International Colloquium on Automata, Languages, and Programming, ICALP
2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 86:1–86:10. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.ICALP.2017.86.

14 Ralf Koetter and Frank R. Kschischang. Coding for errors and erasures in random network
coding. IEEE Trans. Inf. Theory, 54(8):3579–3591, 2008. doi:10.1109/TIT.2008.926449.

15 Antonia Wachter-Zeh. Bounds on list decoding of rank-metric codes. IEEE Trans. Inf. Theory,
59(11):7268–7277, 2013. doi:10.1109/TIT.2013.2274653.

ICALP 2023

https://doi.org/10.1016/0097-3165(78)90015-8
https://doi.org/10.1109/TIT.2014.2371915
https://doi.org/10.1145/2213977.2213995
http://dspace.mit.edu/handle/1721.1/8700
https://doi.org/10.1109/FOCS.2013.71
https://doi.org/10.1109/TIT.2008.2008124
https://doi.org/10.1109/TIT.2013.2246813
https://doi.org/10.1109/TIT.2013.2246813
https://doi.org/10.1109/TIT.2016.2544347
https://doi.org/10.1145/2213977.2214009
https://doi.org/10.1145/2488608.2488715
https://doi.org/10.1145/3506668
https://doi.org/10.4230/LIPIcs.ICALP.2017.86
https://doi.org/10.1109/TIT.2008.926449
https://doi.org/10.1109/TIT.2013.2274653

89:14 List Decoding of Rank-Metric Codes

16 Huaxiong Wang, Chaoping Xing, and Reihaneh Safavi-Naini. Linear authentication codes:
bounds and constructions. IEEE Trans. Inf. Theory, 49(4):866–872, 2003. doi:10.1109/TIT.
2003.809567.

17 Chaoping Xing and Chen Yuan. A new class of rank-metric codes and their list decoding
beyond the unique decoding radius. IEEE Trans. Inf. Theory, 64(5):3394–3402, 2018. doi:
10.1109/TIT.2017.2780848.

https://doi.org/10.1109/TIT.2003.809567
https://doi.org/10.1109/TIT.2003.809567
https://doi.org/10.1109/TIT.2017.2780848
https://doi.org/10.1109/TIT.2017.2780848

Breaking the All Subsets Barrier for Min k-Cut
Daniel Lokshtanov # Ñ

University of California Santa Barbara, CA, USA

Saket Saurabh # Ñ

The Institute of Mathematical Sciences, HBNI, Chennai, India
University of Bergen, Norway

Vaishali Surianarayanan # Ñ

University of California Santa Barbara, CA, USA

Abstract
In the Min k-Cut problem, the input is a graph G and an integer k. The task is to find a partition
of the vertex set of G into k parts, while minimizing the number of edges that go between different
parts of the partition. The problem is NP-complete, and admits a simple 3n · nO(1) time dynamic
programming algorithm, which can be improved to a 2n · nO(1) time algorithm using the fast subset
convolution framework by Björklund et al. [STOC’07]. In this paper we give an algorithm for Min
k-Cut with running time O((2 − ε)n), for ε > 10−50. This is the first algorithm for Min k-Cut
with running time O(cn) for c < 2.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases Exact algorithms, min k-cut, exponential algorithms, graph algorithms,
k-way cut

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.90

Category Track A: Algorithms, Complexity and Games

Funding Daniel Lokshtanov: NSF award CCF-2008838.
Saket Saurabh: European Research Council (ERC) under the European Union’s Horizon 2020

 research and innovation programme (grant no. 819416), and Swarnajayanti Fellowship grant

DST/SJF/MSA01/2017-18.
Vaishali Surianarayanan: NSF award CCF-2008838.

1 Introduction

A k-cut of a graph G is a partition of the vertex set V (G) into k non-empty parts. The weight
of a k-cut is the total number of edges with endpoints in different parts of the partition. In
the Min k-Cut problem the input is a graph G on n vertices and m edges, and an integer k.
The task is to find a k-cut of G of minimum weight.

The problem is known to be NP-complete [23] and is extremely well studied from the
perspective of approximation algorithms [42, 47, 48], parameterized algorithms [35, 13, 15],
extremal combinatorics [33, 27, 28], and more recently parameterized approximation [26, 25,
34, 40]. For all of the above perspectives the best known algorithmic results come quite close
to asymtotically matching existing combinatorial or complexity theoretic lower bounds: On
one hand, there are several 2(1 − 1

k)-approximation algorithms that run in time polynomial
in n and k [42, 47, 48]. On the other hand, this approximation ratio cannot be improved
assuming the Small Set Expansion Hypothesis (SSE) [41]. A (1 + ϵ)-approximation algorithm
with running time (k/ϵ)O(k)nO(1) was recently obtained by Lokshtanov et al. [40], the running
time of this algorithm cannot be substantially improved without violating the Exponential
Time Hypothesis (ETH).

EA
T
C
S

© Daniel Lokshtanov, Saket Saurabh, and Vaishali Surianarayanan;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 90; pp. 90:1–90:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:daniello@ucsb.edu
https://sites.cs.ucsb.edu/~daniello/
mailto:saket@imsc.res.in
https://sites.google.com/view/sakethome
https://orcid.org/0000-0001-7847-6402
mailto:vaishali@ucsb.edu
https://vaishalisurianarayanan.weebly.com/
https://orcid.org/0000-0003-3091-3823
https://doi.org/10.4230/LIPIcs.ICALP.2023.90
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

90:2 Breaking the All Subsets Barrier for Min k-Cut

The fastest known algorithm with parameter k by Gupta et al. [25] runs in time
O(f(k)nk+o(1)). At the same time, an algorithm with running time O(f(k)n(1−ϵ) ω

3 +o(1)) for
ϵ > 0, where ω < 2.373 [2] is the matrix multiplication exponent, would imply an improved
algorithm for k-Clique. An O(f(k)n(1−ϵ)k+o(1)) time algorithm for ϵ > 0 for the edge
weighted version of Min k-Cut would imply an improved algorithm for Max-Weight k-
Clique. This has been conjectured not to exist [1, 3]. The algorithm of Gupta et al. [27, 28]
also proves that the number of minimum weight k-cuts in a graph is upper bounded by
O(f(k)nk+o(1)), coming very close to matching the (n/k)k lower bound obtained from the
complete k-partite graph.

While exact algorithms for Min k-Cut for small values of k have received considerable
attention since the early 1990’s [23], exact exponential time algorithms whose running time
is measured in terms of the number n of vertices only remain largely unexplored.

Naive Algorithm. A simple 3nnO(1) time algorithm can be obtained by reduction to finding
a minimum weight path on exactly k edges in the following directed acyclic graph SG: The
graph SG has a vertex for every subset X of V (G). For every pair X, Y of vertex subsets,
SG has an edge from X to Y if X is a subset of Y . The weight of this edge is the number
of edges in G with one endpoint in X and the other in Y \ X. It is easy to see that SG is
a directed acyclic graph, and that there is a one to one correspondence between k-cuts in
G and paths from ∅ to V (G) in SG using exactly k edges. The graph SG has 2n vertices
and 3n edges because every edge XY in SG corresponds to a partition of V (G) into 3 parts,
namely (X, Y \ X, V (G) \ Y). Finding a minimum weight path using exactly k edges in a
DAG can be done in time O(k(|V (SG)| + |E(SG)|)) = 3nnO(1). Note that this beats O(nk)
time algorithms for instances where k ≥ 2n

log n .
In 2009 Björklund et al. [9] gave a general purpose approach, based on the inclusion-

exclusion principle, to solve partitioning problems in 2nnO(1) time. Their applications (see [9,
Proposition 6]) include a 2nnO(1) time algorithm for Min k-Cut. Prior to this work the
algorithm of Björklund et al. [9] has remained the state of the art.

When the best algorithm for a well-studied problem is stuck at 2n for a long time it is
prudent to ask whether it is possible to do better at all, or whether 2n really is the best possible.
On one hand, better than 2n time algorithms have been found for a number of problems,
including, among many others k-SAT [49, 46] and the satisfiability problem for a number of
circuit classes [10, 39, 38], Hamiltonian Cycle [4], k-Coloring for k ∈ {3, 4, 5, 6} [19, 57],
Bin Packing [45], Max-Cut [51], Chordal Vertex Deletion [11], Treewidth [21] and
Scheduling Partially Ordered Jobs [17]. On the other hand the failure to find better
than 2n time algorithms for the satisfiability of CNF formulas and Set Cover has led to
conjectures [14, 31] that no substantially better algorithms for these problems are possible,
driving the field of fine-grained complexity [53, 54, 52]. For problems such as Directed
Hamiltonicity, Travelling Salesman and Chromatic Number, obtaining better than
2n time algorithms are outstanding open problems [20, 44, 55, 56]. In this paper we give the
first algorithm for Min k-Cut with running time O((2 − ε)n) for ε > 0.

▶ Theorem 1. There exists an algorithm that takes as input an unweighted simple graph G

on n vertices, an integer k > 0 and returns the min k-cut of G in time O(2 − ε)n for some
ε > 0.

Observe that Theorem 1 only considers unweighted simple graphs. For Min k-Cut
on weighted graphs, previous to our work, the best algorithm was the O(2nW O(1)) time
algorithm of Björklund et al. [9]. Our naive O(3n) time algorithm described above can

D. Lokshtanov, S. Saurabh, and V. Surianarayanan 90:3

easily be made to work for weighted graphs with running time 3n(log W)O(1). As part of the
proof of Theorem 1 we make an alternative algorithm for weighted graphs that runs in time
2n+o(n)(log W)O(1).

▶ Theorem 2. There exists an algorithm that takes as input an edge-weighted graph G on n

vertices having weights on edges from [0, W], an integer k > 0 and returns the min k-cut of
G in time 2n+o(n)(log W)O(1).

Theorem 2 is the current best algorithm for Min k-Cut for the weighted case. A natural
question that arises here is whether one can improve the running time to (2 − ϵ)n(log W)O(1).
The answer seems to be leaning towards a no, or at the very least towards a “that’s a pretty
difficult question”. From the perspective of (2 − ϵ)n time algorithms it is folklore that (Edge
Weighted) Densest Subgraph is at least as hard as Edge Weighted Clique. In the
latter problem the goal is to find a maximum weight clique in an edge weighted graph having
edge weights that may be positive, negative, or even exponential in n. The best known
algorithms for Edge Weighted Clique are 2n · (log W)O(1) and 2 ω

3 nW O(1), where W is
the maximum edge weight and ω is the matrix multiplication exponent. Edge Weighted
Clique is a basic problem - nk hardness of the problem is a conjecture that is sometimes
used as a basis for hardness in fine grained complexity [1, 3]. From here it is not too big
of a leap to conjecture that it is hard to get (2 − ϵ)n · (log W)O(1) time algorithms as well.
So it makes a lot more sense to focus on a (2 − ϵ)n · (log W)O(1) time algorithm for Edge
Weighted Clique before attempting such an algorithm for (Edge Weighted) Min k-Cut.

At a very high level our algorithm for Min k-Cut is based on a dynamic programming
algorithm operating on a pruned state space having less than 2n states. Based on how
the input instance and optimal solution look, we use different methods to prune the state
space. We show that the cases for which such pruning strategies don’t work are “Densest t-
Subgraph instances in disguise” with the optimal solution having only one non-singleton part.
Here we apply the O(2 ωn

3 nO(1)) time matrix multiplication based algorithm for Densest
t-Subgraph by Chang et.al. [12]. The final running time is just the maximum over the
running time of the algorithms we design for the various cases we consider. Our algorithm
carefully balances various tools and techniques from past work on Min k-Cut, graph theory
and the exact algorithms world. This includes DP table sparsification, Thorup tree packing,
split and list, graph sparsification, as well as the

(
p+q

p

)
combinatorial bound for the number

of connected vertex sets of size p with q neighbors.
Admittedly our algorithm chops the input space into various pieces based on the properties

of the input instance and the optimal solution and thus uses quite a handful of cases. One
might ask to which degree this amount of case work is necessary. At the very least, the same
reduction1 that showed that weighted Min k-Cut is at least as hard as weighted Densest
t-Subgraph shows that unweighted Min k-Cut is at least as hard as unweighted Densest
t-Subgraph. The only known (2 − ϵ)n time algorithm [12] for Densest t-Subgraph is
based on the Split and List method of Williams [51]. Therefore, the set of inputs to Min
k-Cut contains both “Densest t-Subgraph instances in disguise”, as well as instances
that behave very differently. For an example instances with a few large cliques with few
edges between each other behave much more like instances of classic “cut and separation” or
clustering problems, and do not appear to be solvable by Split and List based approaches.
Hence, a (2− ϵ)n algorithm for unweighted Min k-Cut either has to invent a new method for
Densest t-Subgraph (which is a very interesting research goal in and of itself) or somehow

1 To reduce from Densest t-Subgraph to Min k-Cut, add a universal vertex and set k = n + 2 − t.

ICALP 2023

90:4 Breaking the All Subsets Barrier for Min k-Cut

separate the instances of Min k-Cut into ones that are “Densest t-Subgraph instances
in disguise” and the ones that can be handled by other means. Of course this only justifies
the split into two cases, as opposed to our rather large case tree. It is a nice open problem
whether it is possible to handle all of the non-Densest t-Subgraph instances in a more
uniform way. This would likely also result in a better running time bound.

We remark that the improvement over 2n obtained in Theorem 1 is small and holds only
for unweighted simple graphs. But importantly it shows that 2n is not the boundary for
Min k-Cut. We hope that this work will initiate a line of research on exact algorithms for
Min k-Cut just as the (2 − ϵ)-approximation by Gupta et.al [26] kick started a series of
work [25, 34, 40] on FPT approximation for Min k-Cut, or the O(kO(k)n(2ω

3 +o(1))k) time
algorithm of Gupta et al. [25] led to a chain of improvements [37, 27, 29, 30] for nO(k) time
algorithms for the problem.

1.1 Algorithm Overview
The first substantial hurdle in designing an algorithm for Min k-Cut that beats the bound
of 2n, is that even getting an algorithm with running time 2n is non-trivial. The Min k-Cut
problem is a graph partitioning problem, and thus the first approach to design an algorithm
for Min k-Cut is to explore methods developed for such problems. All known general
methods for set partitioning problems, such as those developed by Björklund et al. [9, 5],
rely on enumerating all vertex subsets. Known approaches to speed up such methods rely on
the input graph being sufficiently sparse, such as having bounded degree or bounded average
degree [6, 7, 8, 16, 24]. As we cannot make any such assumptions here we first design an
alternative stand-alone 2n+o(n) time algorithm that does not make use of the methods for
set partitioning problems of Björklund et al. [9].

Our new 2n+o(n) time algorithm is based on the fact that Min k-Cut is solvable in time
nO(k). Note that the running time of the naive algorithm, based on a reduction to finding
a minimum weight path on exactly k edges in the state graph SG, is 3n because SG has
many edges. If we restrict ourselves to only using edges of SG that correspond to parts of
size at most O(n

log n), then the out-degree of every vertex in the state graph drops to 2o(n),
leading to an algorithm of running time 2n+o(n), that computes for every subset S ⊆ V (G)
and integer k ≤ n the best way of partitioning S into k parts, each of size at most n

log n .
After doing this, in order to find the best partition of V (G) that may or may not use large
parts (i.e parts bigger than n

log n), we go over all choices of S and find the best partition of
V (G) \ S using the nO(k) time algorithm of Thorup [50]. Since, all the parts in V (G) \ S are
large we only need to invoke the nO(k) time algorithm with k = O(log n). In the remainder
of this outline, when we talk about the state graph SG we will refer to the sparsified state
graph with only 2n+o(n) edges whose paths correspond to cuts with parts of size at most n

log n

To design an algorithm for Min k-Cut with running time O((2 − ε)n), for some fixed
ε > 0, we consider many special cases and design faster algorithms for each individual case.
Some of the cases are handled by standard methods, while some require interesting new
insights. In Figure 1 we provide a case tree depicting the various cases our algorithm branches
into - we suggest the reader to refer to the case tree while reading the overview to get a
complete picture. The first case we consider is when k < 0.24n. Here, k is so small that one
would expect ideas from the nO(k) time algorithm to apply, but too large to use them as
black boxes because this leads to a running time of nO(n). We use the main object behind
the deterministic nO(k) time algorithm, namely Thorup trees [50].

Thorup’s algorithm is based on a tree-packing theorem which allows to efficiently find
a tree T that crosses the optimal k-cut at most 2k − 2 times. Using T one can design a(

n
2k

)
32k time algorithm [50]. If k < 0.24n then we can pick a random edge e from the tree and

D. Lokshtanov, S. Saurabh, and V. Surianarayanan 90:5

declare that it is not part of the cut. We know that we fail (i.e. that we picked an edge from
the optimal solution) with probability at most 2k

n ≤ 0.48. However, if we succeed we can
contract the edge e, leading to an instance with n−1 vertices. Standard running-time/success
probability trade-offs now yield that the running time of our algorithm is upper bounded by
the recurrence T (n) ≤ T (n−1)

0.52 , which solves to O(1.93n). Since we aim for a deterministic
algorithm, instead of picking edges at random we directly use a pseudo-random construction
from [18] instead.

k < 0.24n

Thorup Trees

Is Biased?

S ∪M > 0.51n

L ∪M > 0.51n

or

Bias DP
using state
graph

M ≤ εn

guess and
delete M

Many (> n
log2 n

)
edges between
large components?

- All small are singletons
- Reduce to one
non-singleton case by
subgraph sampling

Guess and delete
edges between large
components.
(Now no such edges)

Is neighbor-biased?
Group X of large components
s.t ||X| − |N(X)|| > αn

Guess S and L

yes

no

yes

no

yes

no

yes

no

Contains Heavy
large component?yes

no

- Guess non-singleton
small components
- Guess L \H
- Reduce to one
non-singleton case

Is Skipping cut?
Group X of large components
|X| > θn, | ∪ comp(N(X))| < 0.49n

yes

Use enhanced
state graph

no

Guess S and L

LS

L

S

S ∪M

X

N(X)

LS

H

LS

Figure 1 Case Tree depicting the various cases our algorithm branches into. Leaf cases are
denoted by dotted brown boxes. Supporting figures are inserted to visualize the cases. The notation
∪comp(N(X)) denotes the set of all vertices in components having vertices from N(X).

From now onwards we assume that k ≥ 0.24n. Let C be a hypothetical solution, that
is, an optimum k-cut. We split the parts of the solution into small, medium, and large, as
follows. A component is said to be small if its size is at most log n, medium if its size is
greater than log n and less than n

log n , and large if its size is at least n
log n . Given a cut C

ICALP 2023

90:6 Breaking the All Subsets Barrier for Min k-Cut

of G, we denote the set of all vertices in small, medium, and large components in C by S,
M and L, respectively. The next case we deal with is that |S| is at most n(1

2 − ϵ). Here,
our main observation is that we can make the 2n+o(n) time algorithm already run in time
O((2 − ε)n); only build the state graph, SG, for vertex sets of size at most n(1

2 − ϵ). For
each choice of S use the

(
n
2k

)
32k time algorithm to find the best partition of V (G) \ S into

medium and large size parts. Since, k ≤ n
log n , the

(
n
2k

)
32k time algorithm runs in time

(en
n/ log n)n/ log n3O(n/ log n) = 2o(n).

The next case we handle is when |S ∪ M | ≥ n(1
2 + ϵ). This is the first interesting case.

We use the fact that k > 0.24n to infer that there are many small parts. Indeed, observe that
at most 0.2n parts of C can have size at least 5. Thus, at least 0.04n parts of C have size at
most 4. To handle this case we extend the idea of Koivisto [36] for speeding up the algorithm
for Set Cover when all sets are small (also see the recent generalization by Nederlof [43]).
This case is similar to the Set Cover case handled by Nederlof in [43] and our algorithm is
based on ideas similar to those used in [36, 43, 45]. Nevertheless we are not able to directly
apply these results (it would not be surprising to us if the methods used in [43] do apply in
this setting).

Specifically, our algorithm proceeds as follows, we pick uniformly at random a set Q,
which has the following properties with probability close to 1.

|Q| = n
2 ± o(n),

|Q ∩ (S ∪ M)| = |S∪M |
2 ± o(n)

At least n
100 − o(n) parts P of C of size at most 10 satisfy that |P \ Q| > |P ∩ Q|.

At least n
100 − o(n) parts P of C of size at most 10 satisfy that |P \ Q| < |P ∩ Q|.

Consider now the ordered partition of parts in C in which: all parts with |P ∩ Q| > |P \ Q|
come first, ordered by size (smaller parts first). Then come all parts P with |P ∩ Q| = |P \ Q|
in any order, followed by all parts with |P ∩ Q| < |P \ Q| ordered by size (this time smaller
parts last). A simple counting argument shows that the path C ′ in the state graph that
corresponds to this ordered partition only visits sets X with the following property:

|X| ≤ n(1
2 − ϵ

10) or,
|X| ≥ n(1

2 + ϵ
10) or,

|X ∩ L| ≥ n
2 (1

2 + ϵ
100)

Thus, to find the path C ′ we only need to build the subgraph of the state graph with vertices
of the three types above. The total number of vertices of this types is upper bounded by
O((2 − ε)n), leading to an improved algorithm.

The instances not handled by any of the previously discussed cases must satisfy: k > 0.24n,
|S| and |L| are both between n(1

2 − ϵ) and n(1
2 + ϵ), and |M | is at most 2ϵn. Note that we

(the algorithm designers) have control over ϵ and we can choose it as small as we like. The
price we pay is that as ϵ becomes smaller the running time of our algorithm comes closer
and closer to 2n. This prevents us from choosing ϵ = o(1). We design an algorithm with
running time O((2 − δ)n) for instances where |S| and |L| are both between n(1

2 − τ) and
n(1

2 +τ) and M = ∅. This implies a O((2− ϵ)n) time algorithm for the case where |M | ≤ 2ϵn,
whenever ϵ is small enough compared to δ. We can just guess M , run the nO(k) algorithm
on G[M] and run the O((2 − δ)n) time algorithm on G − M . The total running time is at
most O(

(
n

2ϵn

)
(2o(n) + (2 − δ)n)), which beats 2n whenever ϵ is small enough.

We now turn our attention to the case when k > 0.24n, |S| and |L| are both between
n(1

2 − ϵ) and n(1
2 + ϵ), and M = ∅. Our initial intuition was that it should not be too hard to

extend the biasing argument from the case that |S ∪ M | ≥ n(1
2 + ϵ) to also handle these cases,

however we were unable to do this. In fact, for a long time we were only able to handle a very
special subcase: when all small parts of the optimal solution have size precisely 1, and there

D. Lokshtanov, S. Saurabh, and V. Surianarayanan 90:7

is one large part that covers all of L. We call this special case the at most one non-singleton
case. Observe that solving this case is equivalent to solving the Densest (n − k + 1)-subgraph
problem. Thus we can solve this case in O(2 ωn

3 nO(1)) time using a known algorithm for
Densest ℓ-subgraph by Chang et al. [12]. Their algorithm is an adaptation of the celebrated
split and list algorithm of Williams [51] for the Max-Cut problem. At a glance it would
appear that this very restricted special case is not useful at all for handling the general case.
However, this special case turns out to be pivotal! Indeed, the (rather long and technical)
remainder of our argument is to reduce most of the remaining instances of the problem to
precisely this special case.

Hard Case. We now provide a high level overview of the tools and techniques used to
handle the hard case where k > 0.24n, |S| and |L| are both between n(1

2 − ϵ) and n(1
2 + ϵ),

and M = ∅.
First we divide further into two cases based on whether the number of cut edges between

the large components in C is greater than n
log2 n

or not. The idea behind such a split is

that there are only
(

n2

n/ log2 n

)
≤ n2n/ log2 n = 2log n· 2n

log2 n = 2o(n) subsets of edges of size at
most n

log2 n
. So if there are only a few(≤ n

log2 n
) cut edges between the large components, we

guess and remove them with a 2o(n) overhead. This reduces the few cut edges between large
components case to one that has no such cut edges. But the no cut edges between large
components case turns out to be harder than the many(> n

log2 n
) cut edges between large

components case. We next show how to handle the latter case followed by the harder one.

1.) Many cut edges between large components. To handle this case, we first observe that
all small components are singletons. Indeed, there are at most log n large parts but there
are at least n

log2 n
cut edges between them. So there exists two large parts P1 and P2 having

more than log n cut edges between them. If there exists a non-singleton small part, then
combining P1 and P2 into a single part and removing a vertex from a non-singleton small
part, which by definition has size at most log n, as a singleton gives a strictly better cut.

We use this property to reduce to disjoint instances of the at most one non-singleton case.
Here, (a) except for at most log n many vertices in L, all vertices in L have at least n

log4 n

neighbors within their large component in C – Suppose a set X of log n vertices in L have at
most n

log4n neighbors within their large component. Then, making L − X one big component
and all other vertices in X a singleton yields a better cut than C. Also, (b) the number of
cut edges between large parts can be upper bounded by n log n – If not, we can remove log n

vertices in L as singletons and merge all other vertices in L into one big component to obtain
a strictly better cut. This is because there are at most log n large parts.

Next we sample a subgraph G′ of G having V (G′) = V (G). We keep every edge in G in
G′ with probability 1

log3 n
. We use (a) and (b) to show that G′ with high probability satisfies:

(A) contains only few (≤ n
log2 n

) cut edges between large components in C and (B) except
for (log n)O(1) many vertices in L, all vertices in L still have at least n

log8 n
neighbors in G′

within their large component in C.
In G′, because of (A), with just 2o(n) overhead we guess and remove all remaining cut

edges between large components in C. Next, using (B) we show that for each large component
X in C we have a set of (log n)O(1) vertices VX ⊂ X such that X ⊆ NG′(VX). For every large
component X, we guess VX – There are at most log n large components and for each, this
guessing incurs a n(log n)O(1) overhead. Recall that all small components in C are singletons.
Next because we removed all cut edges between large components in C in G′, VX has no
neighbors in any large component apart from X in G′. Thus for every distinct pair X1, X2

ICALP 2023

90:8 Breaking the All Subsets Barrier for Min k-Cut

of large components in C, every vertex in NG′(VX1) ∩ NG′(VX2) is a singleton in C and can
be removed. Finally, in the resulting graph each VX ∪ N(VX) is a disjoint instance of the at
most one non-singleton case.

2.) No cut edges between large components. We handle this case by either reducing to
the at most one non-singleton case or by identifying S and L. In the latter case, we use S and
L to obtain a cut as good as C. We now show how to efficiently compute a cut as good as C

given S and L. To find the part of the cut induced by L, we just use the nk exact algorithm
on G[L] as there are at most log n large parts. So we shift our focus to finding the part of
the cut induced by S. For this, we use the state graph with some guessing. Recall that the
vertices of the state graph SG correspond to subsets of vertices and the edges correspond
to components. A path from ∅ to any subset S in SG can be mapped to the cut containing
all parts corresponding to the edges in P and vice versa. Thus using less than 2n time, we
precompute and store for each state X having |X| ≤ n(1

2 − δ) the best ℓ-cut of X containing
only small components - small(X, ℓ). For this we only build SG for vertex sets of size at most
n(1

2 − ϵ) and edges corresponding to small parts. For bounding our run times, we use that
for τ ∈ [0, 1],

(
n

τn

)
≤ 2h(τ)n, where h is the binary entropy function [32]. So precomputing

small takes time at most O(2h(1
2 −δ)n+o(n)). Given S, we guess a union X of small parts in

C such that |S \ S′| ≤ n(1
2 − δ). Then we do a lookup of small(S′, ℓ) ∪ small(S \ S′, k − ℓ)

to obtain the part of the cut induced by S. Thus given S and L, we can compute C in time(n
2 +ϵn

(ϵ+δ)n

)
≤ 2h(ϵ+δ)n since |S − n

2 | ≤ ϵn.
Next, to explain the subcases we divide into, we introduce some properties of the cut.

Why we need these properties will become clear when we use them to solve the subcases. We
say that C is α-neighbor-biased if there is a union X of large components whose neighborhood
size substantially differs from its size. More precisely if ||X| − |N(X)|| > αn. If there is no
such union of large components, we say C is neighbor-balanced. We call a large component
θ-heavy if it contains all vertices of L except at most θn of them. Look at the order: ϵ, δ, α, θ,
in which we defined our parameters. We set these parameters such that for each parameter,
the ones before it in the order are small enough for our ideas to work. So we start by setting
θ which is the highest, followed by α, then δ and finally ϵ. Another nice tool that we use to
recover some sets and their neighborhoods is: all p-sized subsets of vertices having a q-sized
neighborhood in a graph can be enumerated in time O(n

(
p+q

q

)
) [22, Lemma 3.2].

With that, we divide into three subcases - (i) neighbor-biased (ii) neighbor-balanced with
a heavy large component and (iii) neighbor-balanced with no heavy large component.

2.1) α-Neighbor-biased. The core idea in this case is to use the bias in size between X

and N(X) to efficiently guess L. We guess X in time
(|X|+|N(X)|

|X|
)

and recover N(X). Next
we guess L \ X in time 2n−|X|−|N(X)|. This lets us recover L and S in time

(|X|+|N(X)|
|X|

)
·

2n−|X|−|N(X)|. Given S and L we do some guessing and lookup of small to compute C in time
2h(ϵ+δ)n as discussed above. Our final runtime ends up being

(|X|+|N(X)|
|X|

)
· 2n−|X|−|N(X)| ·

2h(ϵ+δ)n. A simple calculation simplifying
(|X|+|N(X)|

|X|
)

in terms of h shows that the final
runtime is substantially less than 2n as long as α is sufficiently large as compared to ϵ and δ.

2.2) α-Neighbor-balanced with a θ-heavy large component. Set θ = 10−5. Here we
reduce to the at most one non-singleton case. Recall that the case we reduce to can be solved
in O(2 ω

3 n) time. Thus we can afford an overhead of 2(0.999− ω
3)n to get to that case.

First we guess the set L \ H of vertices in L not in the heavy component H . This incurs a
cost of

(
n

θn

)
≤ 2h(θ)n. Then we guess the set X of vertices in non-singleton small components.

We show that |X| is actually very small and that the
(

n
|X|

)
overhead to guess X is acceptable.

D. Lokshtanov, S. Saurabh, and V. Surianarayanan 90:9

Observe that we can compute the cut induced by L \ H in 2o(n) time using the nk algorithm
and the cut induced by X in O(1) time by a lookup of small. Thus after guessing L \ H and
X we reduce to the one non-singleton case. All that remains to do now is to prove |X| is small
enough to be able to guess X. We bound |X| by 0.01n. Then

(
n

|X|
)

≤
(

n
0.01n

)
≤ 2h(0.01)n,

which is an easily affordable overhead.
Suppose |X| > 0.01n, we show that C can be improved. We call a non-singleton

component good if the heavy component is adjacent to 99% of the vertices in it. Since C

is neighbor-balanced and 0.01 >> (θ = 10−5), we can show that the heavy component is
adjacent to almost all vertices in many non-singleton components; that there are at least
n/(log n)O(1) good components. Because there are n/(log n)O(1) good components and good
components are all small, we can find an i(≤ log n) such that there are i good components of
size i. Merging i − 1 good components of size i with the heavy component and breaking one
good component of size i into singletons improves C; the extra cost to break is only 0.05

(
i
2
)

while the savings from merging is 0.99(i − 1)i.

2.3) Neighbor-balanced with no heavy large component. As a first step, we make our
state graph more robust to handle special cases. Recall that the edges of the state graph
correspond to components. We build the state graph for vertex sets of size either at most
n(1

2 − ϵ) or at least n(1
2 + ϵ) and edges corresponding to small parts. We then add a few

additional edges that correspond to groups of components. For each pair X, X ∪ Y of vertex
sets in the new state graph, we draw an edge from X to X ∪ Y if Y is a union of a set of
at most log n connected components in G[V \ X]. We call the constructed state graph the
enhanced state graph. Observe that the enhanced state graph has size O((2 − ε)n). Now we
demonstrate how the new edges help.
Skipping Cut. Suppose C has a union of small components S′ and union of large components
L′ such that (i) |S′| ≤ n(1

2 − θ) (ii) |S′ ∪ L′| ≥ n(1
2 + θ) and (iii) N(L′) ⊆ S′. Also recall

that C does not contain edges between large components. In this case, there is a path P in
the new state graph from ∅ to V corresponding to C. We decompose P into 4 portions: (1) a
path from ∅ to S′ using the edges corresponding to parts in S′, (2) a edge from S′ to S′ ∪ L′

corresponding to parts in L′, (3) a path from S′ ∪ L′ to S ∪ L′ using the edges corresponding
to parts in S \ S′ and (4) an edge from S ∪ L′ to V corresponding to parts in L \ L′. We say
C is a skipping cut if it satisfies (i), (ii) and (iii) as we can find C in the modified state graph
by skipping between states of size at most n(1

2 − θ) and states of size at least n(1
2 + θ) but

by avoiding states of size n
2 . In conclusion, if C is neighbor balanced with no heavy large

component but C is a skipping cut then we can find C using the enhanced state graph in
time O(2 − ϵ)n.

We now turn our attention to the final case: neighbor-balanced with no heavy large
component and not skipping. To solve this case we reduce to a special case in which S and
L can be identified efficiently using 2 n

2 time. Thus we can afford an overhead of 20.499n to
get to that case; but we incur a much smaller overhead. First we highlight the properties of
C required for the special case and show how to use them to obtain S and L. Then we show
how to guess a few vertices in S to reduce to the case we want.

Let C satisfy the following properties: (i) All large components in C can be grouped
into two parts L1 and L2 each having size nearly n

4 (ii) N(L1) ∩ N(L2) = ∅ (iii) All small
components in C are of size two and contain one vertex from N(L1) and the other from
N(L2). To find L and S, we first guess L1 in time 2|L1|+|N(L1)| and recover N(L1). We
then recover N(L2) as N(N(L1)) \ L1. Then the set of remaining vertices is L2, yielding
L = L1 ∪ L2. This in total only takes about 2|L1|+|N(L1)| ≤ 2 n

2 time since |L1| ∼ n
4 .

ICALP 2023

90:10 Breaking the All Subsets Barrier for Min k-Cut

Suppose property (i) is not satisfied, let L′ be a group of large components having size
at least θn but less than n

4 ; such a group exists because there is no heavy large component.
Then C is a skipping cut with witness L′ and S′ for some S′ ⊇ N(L′) which exists because C

is neighbor balanced. All that remains to be done is to show that we can guess some vertices
in S to satisfy properties (ii) and (iii). Let S′ be the set of vertices in small components of
size two that contain one vertex from N(L1) \ N(L2) and the other from N(L2) \ N(L1).
Also let F ′ be the family containing all such components. We guess S \ S′. One can easily
verify that removing S \ S′ guarantees properties (ii) and (iii). To conclude that such a
guess is feasible, we need to bound the size of S \ S′. We prove |S \ S′| ≤ 30(ϵ + θ + α)n.

Let F to be the family of all small components X in C that satisfy: (a) X has no vertex
from S \ N(L), (b) X has a vertex from N(L1) and a vertex from N(L2), and (c) X has no
vertex from N(L1) ∩ N(L2).
Observe that the subfamily of all components of size two in F is F ′. We use this to obtain
a bound on |S \ S′|. By definition, every component in F has at least two vertices, one in
N(L1)\N(L2) and one in N(L2)\N(L2). Thus |S|−2|F| will account for all but two vertices
in components of size three or more in F and for all vertices in S not in any component
in F . This in turn implies 3 · (|S| − 2|F|) is an upper bound for the number of vertices in
S not contained in any component of size two in F , i.e bound for |S \ S′|. We will show
|S| − 2|F| ≤ 10(ϵ + α + θ)n from which we can infer |S \ S′| ≤ 3(|S| − 2|F|) ≤ 30(ϵ + α + θ)n.

Next, for each of the properties (a) − (c), we bound the number of small components
that do not satisfy that property. Since |S| and |L| are both between n(1

2 − ϵ) and n(1
2 + ϵ)

and C is α-neighbor-balanced, there are at most (2ϵ + α)n vertices in S that are not
in N(L). Thus |S \ N(L)| ≤ (2ϵ + α)n. So at most (2ϵ + α)n small components do
not satisfy (a). At most (ϵ + θ/2)n small components do not have a neighbor in L1. If
not, since |S| ≤ n(1

2 + ϵ), we can show that C is a skipping cut with witness L′ = L1
and some S′ ⊃ N(L1). The same argument holds with respect to L2. Thus, at most
(2ϵ + θ)n small components do not satisfy (b). Next, since C is α-neighbor-balanced,
|N(L)| = |N(L1)| + |N(L2)| − |N(L1) ∩ N(L2)| ≤ |L1| + αn + |L2| + αn − |N(L1) ∩ N(L2)|.
So |N(L1) ∩ N(L2)| ≤ |L| − |N(L)| + 2αn ≤ 3αn. This bounds the number of small
components not satisfying (c) by 3αn.

For an easy read, until this point we mentioned k > 0.24n. But in our algorithm, we set
k > n

4 − ϵn and need it for this case to work. Since k > n
4 − ϵn, using all the three bounds

obtained, |F| ≥ 0.25n − ϵn − (2ϵ + α)n − (2ϵ + θ)n − 3αn ≥ 0.25n − (5ϵ + 4α + θ)n. Thus,
|S| − 2|F| ≤ (0.5 + ϵ)n − 2(0.25n − (5ϵ + 4α + θ)n) ≤ (10ϵ + 8α + 2θ)n ≤ 10(ϵ + α + θ)n.
Note that the main proof is structured differently for tighter bounds with these being the
core ideas.

2 Preliminaries

Given a graph G, we use V (G) and E(G) to denote the vertex sets and edge sets, respectively.
For any subset X ⊆ V (G), let G[X] denote the induced subgraph of G on X. A subset
X ⊆ V (G) is said to be connected if G[X] is a connected graph. We denote the number
of connected components in G by cc(G). Given a path P in G, let E(P) denote the edges
in the path. Given a subset E′ ⊆ E(G), we denote the subgraph G′ having V (G′) = V (G)
and E(G′) = E(G) \ E′ by G \ E′. For any subset X ⊆ V (G), let NG(X) denote the set of
vertices in G adjacent to some vertex in X and let NG[X] = NG(X) ∪ X. We will omit the
subscript when the graph is clear from context.

D. Lokshtanov, S. Saurabh, and V. Surianarayanan 90:11

A k-cut of a graph G is a partition of the vertex set V (G) into k non-empty parts. We
will refer to the parts of a cut as components of the cut. The weight of a k-cut is the total
number of edges with endpoints in different parts of the partition. We refer to the edges of
G having end points in different components in C as cut edges of C. We use best(X, l) to
denote a least weight l-cut of G[X]. For any two disjoint subsets A, B of V (G), we denote
the number of edges having one end point in A and the other in B by w(A, B). For every
E′ ⊆ E(G), we let w(E′) = |E′|. For every X ⊆ V (G), we let δ(X) denote the set of edges
having exactly one end point in X in G.

If G is an edge-weighted graph, then the weight of a k-cut is the sum of weights of edges
with endpoints in different parts of the partition. For any two disjoint subsets A, B of V (G),
we denote the sum of weights of edges having one end point in A and the other in B by
w(A, B). For every E′ ⊆ E(G), we denote the sum of weights of all edges in E′ by w(E′).
We consider G to be a simple unweighted graph throughout the paper except in Section
where we provide the 2n+o(n)(log W)O(1) time algorithm for edge-weighted graphs.

We also need the following lemma to enumerate connected sets of size b + 1 with at most
f neighbors in our algorithms.

▶ Lemma 3 ([22, Lemma 3.2]). All vertex sets of size b + 1 with f neighbors in a graph G

can be enumerated in time O(n
(

b+f
b

)
) by making use of polynomial space.

There exists an algorithm for Min k-Cut using Thorup trees that runs in time O(
(

n
2k

)
32k).

We express this runtime in this way because it enables us to obtain a 2o(n) algorithm for
k-cut whenever k ≤ n

log n . Given a polynomial in n, m, and log n sized family of spanning
trees that contains a Thorup tree, the algorithm for each tree guesses all possible sets of
edges of size at most 2k − 2, removes them and contracts the remaining forests into vertices
and solves k-cut on this contracted graph in time 32k.

▶ Lemma 4 (Exact Algorithm [50]). Given a graph G, positive integer k, the min k-cut of G

can be found in time O(
(

n
2k

)
32k).

The cut induced by a cut C of X on a subset Y of X is the cut obtained by taking the
intersection of each component in C with Y . We define the union of two disjoint cuts C1 of
vertex set X1 and C2 of vertex set X2 as the cut C of X1 ∪ X2 that induces cut C1 on X1
and cut C2 on X2. We define the union of a subfamily {Y0, · · · , Yz} of components of a cut
to be ∪i≤zYi, the set of all vertices in any component in the subfamily. Given a family F of
subsets of V (G), let U(F) = ∪X∈F X denote the set of all vertices in some set in F . We will
refer to a cut having a single component as just a set of vertices for convenience.

We also need the following classical single source shortest path algorithm to traverse the
state graph, SG (formally defined in later)2.

▶ Lemma 5 (Dijkstra’s Algorithm). Given an edge weighted directed graph D on n vertices
and m edges, with two special vertices s and t, we can find a minimum weight shortest path
from s to t in time O((n + m) log n).

We also need the following upper bounds on binomial coefficients for our purposes.

▶ Lemma 6 ([32]). Let n be a positive integer and α ∈ [0, 1], then
(

n
αn

)
≤ 2h(α)n, where h(α)

represents the entropy of a Bernoulli random variable with probability of success α, satisfying
h(α) = −α log α − (1 − α) log(1 − α). Further, for a positive integer k ≤ n,

(
n
k

)
≤

(
en
k

)k,
where e is the base of natural logarithms.

2 SG will be a DAG, so one can also resort to other means to find single source shortest paths.

ICALP 2023

90:12 Breaking the All Subsets Barrier for Min k-Cut

By truncating the Taylor series for h, given by

h(p) = 1 − 1
2 ln 2

∞∑
n=1

(1 − 2p)2n

n(2n − 1) ,

we get the following useful upper bound for h, when η is close to 1
2 .

▶ Lemma 7. For η ≤ 1/10, we have that h(1
2 − η) ≤ 1 − η2

ln 2 .

We also need the following definition of “contraction and uncontraction of edges”.

▶ Definition 8 ((Un)Contraction of Cuts and Graphs). Given a graph G and an edge e = uv,
the graph G/uv obtained by contracting the edge uv, is the one where we delete the vertices
{u, v}, and introduce a new vertex ve and add edges from ve to every vertex in N(u) and
N(v). If w ∈ N(u) ∩ N(v), then the process will make multi-edges.

Given a cut C and an edge uv such that, u, v belongs to the same part in C, then by
contraction of cut, denoted by C/uv, we mean the cut constructed from C, where we replace
the part P in C, that contains u and v with (P \ {u, v}) ∪ {ve}. Similarly, given a vertex set
X, we define uncontraction of a cut C, denoted by C/−1X, as a cut where we replace each
vertex x ∈ X, with the set of vertices that has been contracted into x.

3 Proof of Main Theorem and Case Breakdown

In this section we provide an overview of our algorithm with a case breakdown showing how
we organize our cases throughout the paper. We first introduce some basic terminology used
in the algorithm. Then we provide a guide to the different cases with pointers to various
subroutines called in the algorithm. Finally we define a data structure that is used by most
of our subroutines and state a known result for the at most one non-singleton case.

3.1 Properties of Cuts and Special Cases
In this section we define multiple properties of cuts that will be helpful for designing our
algorithm. Let G be a graph on n vertices. We will design algorithms to find a cut with
different combinations of these properties in G and then combine them to obtain our final
algorithm. We divide the components of any cut of G into three types depending on their
size.

▶ Definition 9 (Component Types). A component is said to be small if its size is at most
log n. A component is said to be medium if its size is greater than log n and less than n

log n .
A component is said to be large if its size is at least n

log n . Given a cut C of G, we denote
the set of all vertices in small, medium and large components in C by SC , MC and LC

respectively.

This notion is useful because the number of subsets of V (G) that can be small or medium
components is at most n

(
n
n

log n

)
≤ n(en

n/ log n)n/ log n = 2o(n). Also, for any subset L of V (G)
and ℓ ≤ log n, we can find a ℓ-cut of G[L] having weight no more than a minimum weight
an ℓ-cut of G[L] containing only large components in time 2o(n) using Lemma 4. This is
because there can be at most log n large components in any cut. We will use both these
facts crucially while designing our algorithms. The above discussion leads us to define the
following definitions.

D. Lokshtanov, S. Saurabh, and V. Surianarayanan 90:13

LC

LC

H

SC LC

L1

SC LC

SC SC

SC ∪MC

N(L1)

(a) Balanced (b) Biased

(c) Heavy large component (d) Neighbour-biased

Figure 2 Visualizing cut properties (a) Balanced cut has |SC | nearly equal to |LC | and no medium
components. (b) Biased cut has one of |SC ∪ MC | or |LC ∪ MC | substantially higher. (c) Heavy
large component H contains nearly all vertices in LC . (d) Neighbor-biased cut has a union of heavy
components L1 such that ||L1| − |N(L1)|| is high.

▶ Definition 10. For a subset X ⊆ V (G) and ℓ ≤ n, small(X, ℓ) represents an ℓ-cut of G[X]
having weight no more than the weight of a least weight ℓ-cut of G[X] containing only small
and medium components.

▶ Definition 11 (Biased and Balanced Cuts). For any 0 < δ < 1
2 , a cut C is said to be δ-biased

if either |MC ∪ SC | ≥ n(1
2 + δ) or |MC ∪ LC | ≥ n(1

2 + δ) and it is said to be δ-balanced if it
contains no medium components, |SC | ≤ n(1

2 + δ) and |LC | ≤ n(1
2 + δ).

▶ Definition 12 (Properties of Large Components). We say that a cut C of G has many edges
between large components if the number of cut edges of C having both end points in LC

is greater than n
log2 n

. We say that the cut has few edges between large components if the
number of such edges is at most n

log2 n
.

Observe that we can reduce the case of few edges between large components to no edges
by guessing the set of edges between the large components with just 2o(n) guesses. This
again will prove helpful for us to get more structure.

▶ Definition 13. For any 0 ≤ α < 1, we say that a large component X in a cut C of G is
α-heavy if it has all vertices in LC except for at most αn vertices, i.e |LC \ X| ≤ αn.

▶ Definition 14. For any 0 ≤ α < 1
2 and 0 < ρ < 1

2 , we say that a α-balanced cut C is
ρ-neighbor-biased if there is a union X of large components in C having p vertices such that
N(X) ⊆ SC , |N(X)| = q and |p−q| > ρn. Otherwise the cut is said to be ρ-neighbor-balanced.

ICALP 2023

90:14 Breaking the All Subsets Barrier for Min k-Cut

We note that we will use the last two properties only on balanced cuts having no edges
between large components. Figure 2 captures all the properties defined above.

3.2 Steps of Our Algorithm
Armed with all the technical definitions, we now provide a guide to the different cases our
algorithm for Min k-Cut handles. First, we summarize the different parameters that we use
in our algorithm and the final value we set them to obtain our main result.

α1 = 10−20: k < n
4 − α1n and k ≥ n

4 − α1n
α2 = 10−20: α2-balanced or α2

2 -biased cut
α3 = 10−5: α3-heavy large component
α4 = 10−2: number of non singletons
α5 = 10−5: α5-neighbor biased or balanced
δ = 10−20: δ-small cut data structure

Note that our results will work for a range of these parameters but for convenience we fix
these parameters to a particular value and obtain our final result. Given an input graph G

on n vertices and integer k, let C be a hypothetical min k-cut of G. Our goal is to compute
C. We divide into cases based on the value of k and the properties of C. We use Lemmas 6
and 7 to upper bound the running time for each case by (2 − ε)n for some ε > 10−50. In
the summary, for each case we mention which one of the two Lemmas is used to bound the
running time in parenthesis.
(Case 1: k < n

4 − α1n.) In this case we apply Lemma 15 and directly solve the problem
in time 2n+o(n)

(1+4α1)α1n (Lemma 6).
▶ Lemma 15 (*). There exists an algorithm that takes as input a graph G on n vertices,
an integer k < n

4 − α1n and returns the min k-cut of G in time 2n+o(n)

(1+4α1)α1n .
(Case 2: k ≥ n

4 − α1n) Since k is large, we have the property that the number of compon-
ents of size at most 4 is at least 0.04n. We then break this case based on how efficiently
we can use this property. We use it in the case when C is α2

2 -biased and handle the
balanced case separately, leading to the subsequent subcases. This case is handled in
Lemma 16 in time 2n 1

2 (1+h(1
2 + α2

20))+o(n) + 2(h(α2)+h(1
2 −α2))n+o(n) (Lemma 6).

▶ Lemma 16 (*). There exists an algorithm that takes as input a graph G on n vertices,
an integer k ≥ n

4 − α1n and returns the min k-cut of G in time 2n 1
2 (1+h(1

2 + α2
20))+o(n) +

2h(α2)+h(1
2 −α2)n+o(n), when α1 = α2 = 10−20.

Case 2a: (α2
2 -biased case) We completely handle this case in Lemma*3 5.3 in time

2 n
2 (1+h(1

2 + α2
20))+o(n) (Lemma 7).

Case 2b: (α2-balanced case) We further divide this case based on whether the number
of edges between large components in C is large (> n

log2 n
) or not. We handle this in

Lemma* 5.4 in time 2h(1
2 −α2)n+o(n) (Lemma 7).

Case 2b (i): (Many edges between large components) We solve this case by redu-
cing to the case of finding a cut having at most one non-singleton component. We
handle this case in Lemma* 7.1 using Lemma* 3.2 as a subroutine in time 2 ωn

3 +o(n)

(Lemma 6).

3 We use Lemma* to refer to the Lemmas stated and proved in the full version; Lemma* 5.3 is Lemma
5.3 in the full version.

D. Lokshtanov, S. Saurabh, and V. Surianarayanan 90:15

Case 2b (ii): (Few edges between large components) This is our final case and we
deal with this by designing algorithms for the following cases. This case can be
found in Lemma* 7.2 and the algorithm runs in time 2h(1

2 −α2)n+o(n) (Lemma 7).
(a) (α5-neighbor biased) This case is handled in Lemma* 7.3. Here we use the fact

that C is neighbor-biased to find a family of partitions of V (G) containing the
partition SC∪̇LC of V (G) and use Lemma* 3.1 to find a cut having weight no
more than a α2-balanced cut C ′ with SC = S′

C and LC = L′
C . We handle this

case in time 2h(1
2 −α2)n+o(n) (Lemma 7).

(b) (α5-neighbor balanced and α3-heavy component) In this case we argue that
there are not too many non-singleton components and solve the case by reducing
to the case of finding a cut having at most one non-singleton component. We
handle this case in Lemma* 7.4 using Lemma* 3.2 as a subroutine in time
2(h(α3)+h(α4)+ ω

3)n+o(n) (Lemma 6).
(c) (α5-neighbor balanced and no α3-heavy component) We handle this case

completely in Lemma* 7.5. Here we first run Lemma* 4.2 that involves using
the state graph. Then similar to Case A, here we find a family of partitions of
V (G) containing the partition SC∪̇LC of V (G) and use Lemma* 3.1 on it. This
case runs in time 2h(1

2 −α2)n+o(n) (Lemma 7).

A case tree depicting the various cases can be found in Figure 1. We now provide the
proof of our main Theorem assuming Lemma 15(k < n

4 − α1n) and Lemma 16(k ≥ n
4 − α1n).

Proof of Theorem 1. If k < n
4 −α1n we run Lemma 15 with G and k else we run Lemma 16

with G and k and return the obtained k-cut. The correctness follows from the corresponding
Lemmas. To bound the running time of the algorithm, we show that the running time
of each subroutine mentioned above in the summary is bounded by O(2 − ε)n, for some
ε > 10−50. To do this, we set the values of the parameters as summarized in the beginning
of this subsection and use Lemma 7 and 6 as mentioned in the summary. ◀

4 Conclusion

In this paper we designed the first algorithm for Min k-Cut running in time better than 2n.
In particular, we designed an algorithm with running time O((2 − ε)n), for ε > 10−50. We
hope that our methods will be useful to design O(cn) time algorithms for c < 2 for other
graph partitioning problems for which progress has stopped at 2n, including Cutwidth,
Edge Multiway Cut, and more generally Edge Multicut on undirected graphs. Finally,
it remains an interesting open problem to obtain a O(cn) time algorithm for Min k-Cut for
a constant c < 2 which is bounded away from 2 by more than a rounding error.

References
1 Amir Abboud, Virginia Vassilevska Williams, and Oren Weimann. Consequences of faster align-

ment of sequences. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias,
editors, Automata, Languages, and Programming – 41st International Colloquium, ICALP
2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part I, volume 8572 of Lecture
Notes in Computer Science, pages 39–51. Springer, 2014. doi:10.1007/978-3-662-43948-7_4.

2 Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix
multiplication. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 522–539.
SIAM, 2021.

ICALP 2023

https://doi.org/10.1007/978-3-662-43948-7_4

90:16 Breaking the All Subsets Barrier for Min k-Cut

3 Arturs Backurs and Christos Tzamos. Improving viterbi is hard: Better runtimes imply faster
clique algorithms. In Doina Precup and Yee Whye Teh, editors, Proceedings of the 34th
International Conference on Machine Learning, ICML 2017, Sydney, NSW, Australia, 6-11
August 2017, volume 70 of Proceedings of Machine Learning Research, pages 311–321. PMLR,
2017. URL: http://proceedings.mlr.press/v70/backurs17a.html.

4 Andreas Björklund. Determinant sums for undirected hamiltonicity. SIAM J. Comput.,
43(1):280–299, 2014. doi:10.1137/110839229.

5 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Fourier meets möbius:
fast subset convolution. In David S. Johnson and Uriel Feige, editors, Proceedings of the 39th
Annual ACM Symposium on Theory of Computing, San Diego, California, USA, June 11-13,
2007, pages 67–74. ACM, 2007. doi:10.1145/1250790.1250801.

6 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Trimmed moebius
inversion and graphs of bounded degree. Theory Comput. Syst., 47(3):637–654, 2010. doi:
10.1007/s00224-009-9185-7.

7 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. The traveling
salesman problem in bounded degree graphs. ACM Trans. Algorithms, 8(2):18:1–18:13, 2012.
doi:10.1145/2151171.2151181.

8 Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Counting connected
subgraphs with maximum-degree-aware sieving. In Wen-Lian Hsu, Der-Tsai Lee, and Chung-
Shou Liao, editors, 29th International Symposium on Algorithms and Computation, ISAAC
2018, December 16-19, 2018, Jiaoxi, Yilan, Taiwan, volume 123 of LIPIcs, pages 17:1–17:12.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.ISAAC.2018.
17.

9 Andreas Björklund, Thore Husfeldt, and Mikko Koivisto. Set partitioning via inclusion-
exclusion. SIAM J. Comput., 39(2):546–563, 2009. doi:10.1137/070683933.

10 Andreas Björklund, Petteri Kaski, and Ryan Williams. Solving systems of polynomial equations
over GF(2) by a parity-counting self-reduction. In Christel Baier, Ioannis Chatzigiannakis,
Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium on Automata,
Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece, volume 132
of LIPIcs, pages 26:1–26:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:
10.4230/LIPIcs.ICALP.2019.26.

11 Ivan Bliznets, Fedor V. Fomin, Michal Pilipczuk, and Yngve Villanger. Largest chordal
and interval subgraphs faster than 2n. Algorithmica, 76(2):569–594, 2016. doi:10.1007/
s00453-015-0054-2.

12 Maw-Shang Chang, Li-Hsuan Chen, Ling-Ju Hung, Peter Rossmanith, and Guan-Han Wu.
Exact algorithms for problems related to the densest k-set problem. Inf. Process. Lett.,
114(9):510–513, 2014. doi:10.1016/j.ipl.2014.04.009.

13 Rajesh Chitnis, Marek Cygan, MohammadTaghi Hajiaghayi, Marcin Pilipczuk, and Michał
Pilipczuk. Designing FPT algorithms for cut problems using randomized contractions. SIAM
J. Comput., 45(4):1171–1229, 2016. doi:10.1137/15M1032077.

14 Marek Cygan, Holger Dell, Daniel Lokshtanov, Dániel Marx, Jesper Nederlof, Yoshio Okamoto,
Ramamohan Paturi, Saket Saurabh, and Magnus Wahlström. On problems as hard as
CNF-SAT. ACM Trans. Algorithms, 12(3):41:1–41:24, 2016. doi:10.1145/2925416.

15 Marek Cygan, Pawel Komosa, Daniel Lokshtanov, Marcin Pilipczuk, Michal Pilipczuk, Saket
Saurabh, and Magnus Wahlström. Randomized contractions meet lean decompositions. ACM
Trans. Algorithms, 17(1):6:1–6:30, 2021. doi:10.1145/3426738.

16 Marek Cygan and Marcin Pilipczuk. Faster exponential-time algorithms in graphs of bounded
average degree. Inf. Comput., 243:75–85, 2015. doi:10.1016/j.ic.2014.12.007.

17 Marek Cygan, Marcin Pilipczuk, Michal Pilipczuk, and Jakub Onufry Wojtaszczyk. Scheduling
partially ordered jobs faster than 2n. Algorithmica, 68(3):692–714, 2014. doi:10.1007/
s00453-012-9694-7.

http://proceedings.mlr.press/v70/backurs17a.html
https://doi.org/10.1137/110839229
https://doi.org/10.1145/1250790.1250801
https://doi.org/10.1007/s00224-009-9185-7
https://doi.org/10.1007/s00224-009-9185-7
https://doi.org/10.1145/2151171.2151181
https://doi.org/10.4230/LIPIcs.ISAAC.2018.17
https://doi.org/10.4230/LIPIcs.ISAAC.2018.17
https://doi.org/10.1137/070683933
https://doi.org/10.4230/LIPIcs.ICALP.2019.26
https://doi.org/10.4230/LIPIcs.ICALP.2019.26
https://doi.org/10.1007/s00453-015-0054-2
https://doi.org/10.1007/s00453-015-0054-2
https://doi.org/10.1016/j.ipl.2014.04.009
https://doi.org/10.1137/15M1032077
https://doi.org/10.1145/2925416
https://doi.org/10.1145/3426738
https://doi.org/10.1016/j.ic.2014.12.007
https://doi.org/10.1007/s00453-012-9694-7
https://doi.org/10.1007/s00453-012-9694-7

D. Lokshtanov, S. Saurabh, and V. Surianarayanan 90:17

18 Fedor V. Fomin, Serge Gaspers, Daniel Lokshtanov, and Saket Saurabh. Exact algorithms via
monotone local search. J. ACM, 66(2):8:1–8:23, 2019. doi:10.1145/3284176.

19 Fedor V. Fomin, Serge Gaspers, and Saket Saurabh. Improved exact algorithms for counting
3- and 4-colorings. In Guohui Lin, editor, Computing and Combinatorics, 13th Annual
International Conference, COCOON 2007, Banff, Canada, July 16-19, 2007, Proceedings,
volume 4598 of Lecture Notes in Computer Science, pages 65–74. Springer, 2007. doi:
10.1007/978-3-540-73545-8_9.

20 Fedor V. Fomin and Dieter Kratsch. Exact Exponential Algorithms. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2010. doi:10.1007/978-3-642-16533-7.

21 Fedor V. Fomin, Dieter Kratsch, Ioan Todinca, and Yngve Villanger. Exact algorithms for
treewidth and minimum fill-in. SIAM J. Comput., 38(3):1058–1079, 2008. doi:10.1137/
050643350.

22 Fedor V. Fomin and Yngve Villanger. Treewidth computation and extremal combinatorics.
Comb., 32(3):289–308, 2012. doi:10.1007/s00493-012-2536-z.

23 Olivier Goldschmidt and Dorit S. Hochbaum. A polynomial algorithm for the k-cut problem
for fixed k. Math. Oper. Res., 19(1):24–37, 1994. doi:10.1287/moor.19.1.24.

24 Alexander Golovnev, Alexander S. Kulikov, and Ivan Mihajlin. Families with infants: Speeding
up algorithms for np-hard problems using FFT. ACM Trans. Algorithms, 12(3):35:1–35:17,
2016. doi:10.1145/2847419.

25 Anupam Gupta, Euiwoong Lee, and Jason Li. Faster exact and approximate algorithms for
k-cut. In Mikkel Thorup, editor, 59th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2018, Paris, France, October 7-9, 2018, pages 113–123. IEEE Computer
Society, 2018. doi:10.1109/FOCS.2018.00020.

26 Anupam Gupta, Euiwoong Lee, and Jason Li. An FPT algorithm beating 2-approximation
for k-cut. In Artur Czumaj, editor, Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January 7-10, 2018,
pages 2821–2837. SIAM, 2018. doi:10.1137/1.9781611975031.179.

27 Anupam Gupta, Euiwoong Lee, and Jason Li. The number of minimum k-cuts: improving
the karger-stein bound. In Moses Charikar and Edith Cohen, editors, Proceedings of the 51st
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ, USA,
June 23-26, 2019, pages 229–240. ACM, 2019. doi:10.1145/3313276.3316395.

28 Anupam Gupta, Euiwoong Lee, and Jason Li. The karger-stein algorithm is optimal for k-cut.
In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia
Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 473–484. ACM, 2020.
doi:10.1145/3357713.3384285.

29 Anupam Gupta, Euiwoong Lee, and Jason Li. The number of minimum k-cuts: Improving
the karger-stein bound. To appear in STOC 2020, abs/1906.00417, 2020. arXiv:1906.00417.

30 Zhiyang He and Jason Li. Breaking the nk barrier for minimum k-cut on simple graphs.
In Stefano Leonardi and Anupam Gupta, editors, STOC ’22: 54th Annual ACM SIGACT
Symposium on Theory of Computing, Rome, Italy, June 20 - 24, 2022, pages 131–136. ACM,
2022.

31 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-sat. J. Comput. Syst.
Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

32 Stasys Jukna. Extremal combinatorics: with applications in computer science. Springer Science
& Business Media, 2011.

33 David R. Karger and Clifford Stein. A new approach to the minimum cut problem. J. ACM,
43(4):601–640, 1996. doi:10.1145/234533.234534.

34 Ken-ichi Kawarabayashi and Bingkai Lin. A nearly 5/3-approximation FPT algorithm for
min-k-cut. In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 990–999.
SIAM, 2020. doi:10.1137/1.9781611975994.59.

ICALP 2023

https://doi.org/10.1145/3284176
https://doi.org/10.1007/978-3-540-73545-8_9
https://doi.org/10.1007/978-3-540-73545-8_9
https://doi.org/10.1007/978-3-642-16533-7
https://doi.org/10.1137/050643350
https://doi.org/10.1137/050643350
https://doi.org/10.1007/s00493-012-2536-z
https://doi.org/10.1287/moor.19.1.24
https://doi.org/10.1145/2847419
https://doi.org/10.1109/FOCS.2018.00020
https://doi.org/10.1137/1.9781611975031.179
https://doi.org/10.1145/3313276.3316395
https://doi.org/10.1145/3357713.3384285
https://arxiv.org/abs/1906.00417
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1145/234533.234534
https://doi.org/10.1137/1.9781611975994.59

90:18 Breaking the All Subsets Barrier for Min k-Cut

35 Ken-ichi Kawarabayashi and Mikkel Thorup. The minimum k-way cut of bounded size is
fixed-parameter tractable. In 52nd Annual IEEE Symposium on Foundations of Computer
Science, FOCS, 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 160–169. IEEE
Computer Society, 2011. doi:10.1109/FOCS.2011.53.

36 Mikko Koivisto. Partitioning into sets of bounded cardinality. In Jianer Chen and
Fedor V. Fomin, editors, Parameterized and Exact Computation, 4th International Work-
shop, IWPEC 2009, Copenhagen, Denmark, September 10-11, 2009, Revised Selected Pa-
pers, volume 5917 of Lecture Notes in Computer Science, pages 258–263. Springer, 2009.
doi:10.1007/978-3-642-11269-0_21.

37 Jason Li. Faster minimum k-cut of a simple graph. In David Zuckerman, editor, 60th
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2019, Baltimore,
Maryland, USA, November 9-12, 2019, pages 1056–1077. IEEE Computer Society, 2019.
doi:10.1109/FOCS.2019.00068.

38 Daniel Lokshtanov, Ivan Mikhailin, Ramamohan Paturi, and Pavel Pudlák. Beating brute
force for (quantified) satisfiability of circuits of bounded treewidth. In Artur Czumaj, editor,
Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2018, New Orleans, LA, USA, January 7-10, 2018, pages 247–261. SIAM, 2018.
doi:10.1137/1.9781611975031.18.

39 Daniel Lokshtanov, Ramamohan Paturi, Suguru Tamaki, R. Ryan Williams, and Huacheng
Yu. Beating brute force for systems of polynomial equations over finite fields. In Philip N.
Klein, editor, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta Fira, January 16-19, pages 2190–2202.
SIAM, 2017. doi:10.1137/1.9781611974782.143.

40 Daniel Lokshtanov, Saket Saurabh, and Vaishali Surianarayanan. A parameterized approxima-
tion scheme for min k-cut. In 61st IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 798–809. IEEE, 2020.
doi:10.1109/FOCS46700.2020.00079.

41 Pasin Manurangsi. Inapproximability of maximum biclique problems, minimum k-cut and
densest at-least-k-subgraph from the small set expansion hypothesis. Algorithms, 11(1):10,
2018. doi:10.3390/a11010010.

42 Joseph Naor and Yuval Rabani. Tree packing and approximating k-cuts. In S. Rao Kosaraju,
editor, Proceedings of the Twelfth Annual Symposium on Discrete Algorithms, January 7-9,
2001, Washington, DC, USA, pages 26–27. ACM/SIAM, 2001. URL: http://dl.acm.org/
citation.cfm?id=365411.365415.

43 Jesper Nederlof. Finding large set covers faster via the representation method. In Piotr
Sankowski and Christos D. Zaroliagis, editors, 24th Annual European Symposium on Algorithms,
ESA 2016, August 22-24, 2016, Aarhus, Denmark, volume 57 of LIPIcs, pages 69:1–69:15.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.ESA.2016.69.

44 Jesper Nederlof. Bipartite TSP in O(1.9999n) time, assuming quadratic time matrix multiplic-
ation. In Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and
Julia Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory
of Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 40–53. ACM, 2020.
doi:10.1145/3357713.3384264.

45 Jesper Nederlof, Jakub Pawlewicz, Céline M. F. Swennenhuis, and Karol Wegrzycki. A faster
exponential time algorithm for bin packing with a constant number of bins via additive
combinatorics. In Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on
Discrete Algorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 1682–1701.
SIAM, 2021. doi:10.1137/1.9781611976465.102.

46 Ramamohan Paturi, Pavel Pudlák, Michael E. Saks, and Francis Zane. An improved
exponential-time algorithm for k-sat. J. ACM, 52(3):337–364, 2005. doi:10.1145/1066100.
1066101.

47 R Ravi and Amitabh Sinha. Approximating k-cuts using network strength as a lagrangean
relaxation. European Journal of Operational Research, 186(1):77–90, 2008.

https://doi.org/10.1109/FOCS.2011.53
https://doi.org/10.1007/978-3-642-11269-0_21
https://doi.org/10.1109/FOCS.2019.00068
https://doi.org/10.1137/1.9781611975031.18
https://doi.org/10.1137/1.9781611974782.143
https://doi.org/10.1109/FOCS46700.2020.00079
https://doi.org/10.3390/a11010010
http://dl.acm.org/citation.cfm?id=365411.365415
http://dl.acm.org/citation.cfm?id=365411.365415
https://doi.org/10.4230/LIPIcs.ESA.2016.69
https://doi.org/10.1145/3357713.3384264
https://doi.org/10.1137/1.9781611976465.102
https://doi.org/10.1145/1066100.1066101
https://doi.org/10.1145/1066100.1066101

D. Lokshtanov, S. Saurabh, and V. Surianarayanan 90:19

48 Huzur Saran and Vijay V. Vazirani. Finding k cuts within twice the optimal. SIAM J.
Comput., 24(1):101–108, 1995. doi:10.1137/S0097539792251730.

49 Uwe Schöning. A probabilistic algorithm for k-sat and constraint satisfaction problems. In
40th Annual Symposium on Foundations of Computer Science, FOCS ’99, 17-18 October,
1999, New York, NY, USA, pages 410–414. IEEE Computer Society, 1999. doi:10.1109/
SFFCS.1999.814612.

50 Mikkel Thorup. Minimum k-way cuts via deterministic greedy tree packing. In Cynthia
Dwork, editor, Proceedings of the 40th Annual ACM Symposium on Theory of Computing,
Victoria, British Columbia, Canada, May 17-20, 2008, pages 159–166. ACM, 2008. doi:
10.1145/1374376.1374402.

51 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theor. Comput. Sci., 348(2-3):357–365, 2005. doi:10.1016/j.tcs.2005.09.023.

52 Virginia Vassilevska Williams. Hardness of easy problems: Basing hardness on popular
conjectures such as the strong exponential time hypothesis (invited talk). In Thore Husfeldt and
Iyad A. Kanj, editors, 10th International Symposium on Parameterized and Exact Computation,
IPEC 2015, September 16-18, 2015, Patras, Greece, volume 43 of LIPIcs, pages 17–29. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2015. doi:10.4230/LIPIcs.IPEC.2015.17.

53 Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity.
In Proceedings of the International Congress of Mathematicians: Rio de Janeiro 2018, pages
3447–3487. World Scientific, 2018.

54 Virginia Vassilevska Williams. Some open problems in fine-grained complexity. SIGACT News,
49(4):29–35, 2018. doi:10.1145/3300150.3300158.

55 Gerhard J. Woeginger. Exact algorithms for np-hard problems: A survey. In Michael Jünger,
Gerhard Reinelt, and Giovanni Rinaldi, editors, Combinatorial Optimization – Eureka, You
Shrink!, Papers Dedicated to Jack Edmonds, 5th International Workshop, Aussois, France,
March 5-9, 2001, Revised Papers, volume 2570 of Lecture Notes in Computer Science, pages
185–208. Springer, 2001. doi:10.1007/3-540-36478-1_17.

56 Gerhard J. Woeginger. Open problems around exact algorithms. Discret. Appl. Math.,
156(3):397–405, 2008. doi:10.1016/j.dam.2007.03.023.

57 Or Zamir. Breaking the 2n barrier for 5-coloring and 6-coloring. In Nikhil Bansal, Emanuela
Merelli, and James Worrell, editors, 48th International Colloquium on Automata, Languages,
and Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference),
volume 198 of LIPIcs, pages 113:1–113:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2021. doi:10.4230/LIPIcs.ICALP.2021.113.

ICALP 2023

https://doi.org/10.1137/S0097539792251730
https://doi.org/10.1109/SFFCS.1999.814612
https://doi.org/10.1109/SFFCS.1999.814612
https://doi.org/10.1145/1374376.1374402
https://doi.org/10.1145/1374376.1374402
https://doi.org/10.1016/j.tcs.2005.09.023
https://doi.org/10.4230/LIPIcs.IPEC.2015.17
https://doi.org/10.1145/3300150.3300158
https://doi.org/10.1007/3-540-36478-1_17
https://doi.org/10.1016/j.dam.2007.03.023
https://doi.org/10.4230/LIPIcs.ICALP.2021.113

A Tight (1.5 + ϵ)-Approximation for
Unsplittable Capacitated Vehicle Routing on Trees
Claire Mathieu # Ñ

CNRS Paris, France

Hang Zhou # Ñ

École Polytechnique, Institut Polytechnique de Paris, France

Abstract
In the unsplittable capacitated vehicle routing problem (UCVRP) on trees, we are given a rooted tree
with edge weights and a subset of vertices of the tree called terminals. Each terminal is associated
with a positive demand between 0 and 1. The goal is to find a minimum length collection of tours
starting and ending at the root of the tree such that the demand of each terminal is covered by a
single tour (i.e., the demand cannot be split), and the total demand of the terminals in each tour
does not exceed the capacity of 1.

For the special case when all terminals have equal demands, a long line of research culminated
in a quasi-polynomial time approximation scheme [Jayaprakash and Salavatipour, TALG 2023] and
a polynomial time approximation scheme [Mathieu and Zhou, TALG 2023].

In this work, we study the general case when the terminals have arbitrary demands. Our
main contribution is a polynomial time (1.5 + ϵ)-approximation algorithm for the UCVRP on trees.
This is the first improvement upon the 2-approximation algorithm more than 30 years ago. Our
approximation ratio is essentially best possible, since it is NP-hard to approximate the UCVRP on
trees to better than a 1.5 factor.

2012 ACM Subject Classification Theory of computation → Routing and network design problems

Keywords and phrases approximation algorithms, capacitated vehicle routing, graph algorithms,
combinatorial optimization

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.91

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2202.05691

Funding This work was partially funded by the grant ANR-19-CE48-0016 from the French National
Research Agency (ANR).

1 Introduction

In the unsplittable capacitated vehicle routing problem (UCVRP) on trees, we are given a
rooted tree with edge weights and a subset of vertices of the tree called terminals. Each
terminal is associated with a positive demand between 0 and 1. The root of the tree is called
the depot. The goal is to find a minimum length collection of tours starting and ending at the
depot such that the demand of each terminal is covered by a single tour (i.e., the demand
cannot be split), and the total demand of the terminals in each tour does not exceed the
capacity of 1.

The UCVRP on trees has been well studied in the special setting when all terminals have
equal demands:1 Hamaguchi and Katoh [17] gave a polynomial time 1.5-approximation; the
approximation ratio was improved to 1.35078 by Asano, Katoh, and Kawashima [3] and

1 Up to scaling, the equal demand setting is equivalent to the unit demand version of the capacitated
vehicle routing problem in which each terminal has unit demand, and the capacity of each tour is a
positive integer k.

EA
T
C
S

© Claire Mathieu and Hang Zhou;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 91; pp. 91:1–91:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:claire.mathieu@irif.fr
https://www.irif.fr/~claire/
mailto:hzhou@lix.polytechnique.fr
http://www.normalesup.org/~zhou/
https://doi.org/10.4230/LIPIcs.ICALP.2023.91
https://arxiv.org/abs/2202.05691
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

91:2 Unsplittable Capacitated Vehicle Routing on Trees

was further reduced to 4/3 by Becker [4]; Becker and Paul [5] gave a bicriteria polynomial
time approximation scheme; and very recently, Jayaprakash and Salavatipour [18] gave
a quasi-polynomial time approximation scheme, based on which Mathieu and Zhou [21]
designed a polynomial time approximation scheme.

In this work, we study the UCVRP on trees in the general setting when the terminals
have arbitrary demands. Our main contribution is a polynomial time (1.5 + ϵ)-approximation
algorithm (Theorem 1). This is the first improvement upon the 2-approximation algorithm
of Labbé, Laporte, and Mercure [20] more than 30 years ago. Our approximation ratio is
essentially best possible, since it is NP-hard to approximate the UCVRP on trees to better
than a 1.5 factor [14].

▶ Theorem 1. For any ϵ > 0, there is a polynomial time (1.5 + ϵ)-approximation algorithm
for the unsplittable capacitated vehicle routing problem on trees.

The UCVRP on trees generalizes the UCVRP on paths. The latter problem has been
studied extensively due to its applications in scheduling, see Section 1.1. As an immediate
corollary of Theorem 1, we obtain the first polynomial time (1.5+ϵ)-approximation algorithm
for the UCVRP on paths. This ratio is essentially best possible, since it is NP-hard to
approximate the UCVRP on paths to better than a 1.5 factor.

1.1 Related Work
Originally introduced by Dantzig and Ramser in 1959 [10], the UCVRP generalizes the
traveling salesman problem, and is one of the most basic problems in Operations Research.

UCVRP on general metrics

The classical tour partitioning algorithm [16] introduced by Haimovich and Rinnooy Kan in
1985 was proved to be a constant-factor approximation on general metrics [2]. Very recently,
Blauth, Traub, and Vygen [6] achieved the first improvement upon the tour partitioning
algorithm. The best-to-date approximation ratio for general metrics stands at roughly 3.194
due to Friggstad, Mousavi, Rahgoshay, and Salavatipour [13].

UCVRP on paths

The UCVRP on paths is equivalent to the scheduling problem of minimizing the makespan
on a single batch processing machine with non-identical job sizes [26]. Many heuristics have
been proposed and evaluated empirically, e.g., [26, 12, 22, 9, 19, 24, 7, 1, 23]. Prior to our
work, the best approximation ratio for the UCVRP on paths was 1.6 due to Wu and Lu [27].

The UCVRP on paths has also been studied in special cases. For example, when the
optimal value is at least Ω(1/ϵ6) times the maximum distance between any terminal and
the depot, asymptotic polynomial time approximation schemes are known [11, 25, 8].2 In
contrast, the algorithm in Theorem 1 applies to any path instance.

UCVRP in the Euclidean plane

In the two-dimensional Euclidean plane, the UCVRP admits a (2 + ϵ)-approximation [15].

2 The UCVRP on paths is called the train delivery problem in [11, 25, 8].

C. Mathieu and H. Zhou 91:3

2 Overview of Techniques

To prove Theorem 1, at a high level, our approach is to modify the problem and add enough
structural constraints so that the structured problem contains a (1.5 + O(ϵ))-approximate
solution and can be solved in polynomial time by dynamic programming.

2.1 Preprocessing
We start by some preprocessing as in [21]. We assume without loss of generality that
every vertex in the tree has two children, and the terminals are the leaf vertices of the
tree [21]. Furthermore, we assume that the tree has bounded distances (Section 3.2). Next,
we decompose the tree into components (Figure 1 and Section 3.3).

root of the tree

Figure 1 Decomposition of the tree into components. Figure extracted from [21]. Each brown
triangle represents a component. Each component has a root vertex and at most one exit vertex.

2.2 Solutions Within Each Component
A significant difficulty is to compute solutions within each component. It would be natural to
attempt to extend the approach in the setting when all terminals have equal demands [21]. In
that setting, the demands of the subtours3 in each component are among a polynomial number
of values; since the component is visited by a constant number of tours in a near-optimal
solution, that solution inside the component can be computed exactly in polynomial time
using a simple dynamic program. However, when the terminals have arbitrary demands,
the demands of the subtours in each component might be among an exponential number of
values.4 Indeed, unless P = NP , we cannot compute in polynomial time a better-than-1.5
approximate solution inside a component, since that problem generalizes the bin packing
problem.

To compute in polynomial time good approximate solutions within each component, at a
high level, we simplify the solution structure in each component, so that the demands of the
subtours in that component are among a constant Oϵ(1) number of values,5 while increasing
the cost of the solution by at most a multiplicative factor 1.5 + O(ϵ).

Where does the 1.5 factor come from? Intuitively, our construction creates an additional
subtour to cover a selected subset of terminals, charging each edge on that subtour to two
existing subtours using that edge, thus adding a 0.5 factor to the cost.

In the rest of this section, we explain our approach in more details.

3 The demand of a subtour is the total demand of the terminals visited by that subtour.
4 For example, consider a component that is a star graph with Θ(n) leaves, where the ith leaf has demand

1/2i.
5 The notation Oϵ(1) stands for O(f(ϵ)) where f(ϵ) is any function on ϵ.

ICALP 2023

91:4 Unsplittable Capacitated Vehicle Routing on Trees

root of the component

exit of the component

(a) Decomposition of a component into blocks. The orange nodes represent the big terminals in the
component. The black nodes represent the root and the exit vertices of the component (defined in
Lemma 6). The gray nodes are the branching vertices in the subtree spanning the orange and the black
nodes. Splitting the component at the orange, the black, and the gray nodes results in a set of blocks,
represented by green triangles. Each block has a root vertex and at most one exit vertex. See Section 4.1.

root of the block

exit of the block

(b) Decomposition of a block into clusters. The green triangle represents a block. Each blue triangle
represents a cluster. Each cluster has a root vertex and at most one exit vertex. A cluster is passing if it
has an exit vertex, and is ending otherwise. Each passing cluster has a spine (dashed). See Section 4.2.

root of the cluster

exit of the cluster

(c) Decomposition of a passing cluster into cells. The blue triangle represents a passing cluster. Removing
the thick edges from the cluster results in a set of at most 1/ϵ cells. Each red triangle represents a cell.
Each of those cells has a root vertex, an exit vertex, and a spine (dashed). See Section 4.3.

Figure 2 Three-level decomposition of a component.

C. Mathieu and H. Zhou 91:5

2.2.1 Multi-Level Decomposition (Section 4)
We partition each component into Oϵ(1) parts using a multi-level decomposition.

In the first level, the component is decomposed into Oϵ(1) blocks so that all terminals
strictly inside a block are small (we distinguish big and small terminals depending on their
demands). See Figure 2a and Section 4.1.

In the second level, each block is decomposed into Oϵ(1) clusters so that the overall
demand of each cluster is roughly an ϵ fraction of the demand of a component. See Figure 2b
and Section 4.2.

In the third level, each cluster is decomposed into Oϵ(1) cells so that the spine of each
cell is roughly an ϵ fraction of the spine of the cluster, where the spine of a cell (resp. a
cluster) is the path traversing that cell (resp. that cluster). See Figure 2c and Section 4.3.

component
block
cluster
cell

Figure 3 Relation of the multiple levels in the decomposition.

Comparison with the decomposition in [21]

The distinction between big and small terminals plays an important role in UCVRP. This
distinction does not exist in the equal demand setting in [21]. In the current paper, the
decomposition into blocks is new and enables us to deal with big and small terminals
separately; the decomposition into clusters is similar to the decomposition in [21]; the
decomposition into cells is a main novelty (see the usage of cells in Section 2.2.2).

2.2.2 Simplifying the Local Solution (Section 5)
The main technical contribution in this paper is the Local Theorem (Theorem 13), which
simplifies a local solution inside a component so that, in each cell, a single subtour visits all
small terminals, while increasing the cost of the local solution by at most a multiplicative
factor 1.5 + O(ϵ). The Local Theorem builds upon techniques from [5, 21] together with
substantial new ideas.

A first attempt is to reassign all small terminals of each cluster to a single subtour.
However, there are two obstacles. First, in order to maintain the connectivity of the resulting
subtours, we need to pay for an extra copy of the spines of the clusters, which is expensive.
Secondly, using a lemma of Becker and Paul [5], the resulting subtours exceed their capacities
slightly. To reduce the demands of the subtours exceeding capacities, an extra cost of only
an ϵ fraction of the solution cost is sufficient in the equal demand setting [21], but this is no
longer achievable in the arbitrary demand setting.

To overcome those obstacles, we decompose each cluster into cells and we reassign all
small terminals of each cell to a single subtour. In the analysis, we introduce the technical
concept of threshold cells (Figure 4a), and we ensure that each cluster contains at most

ICALP 2023

91:6 Unsplittable Capacitated Vehicle Routing on Trees

one threshold cell. In order to maintain the connectivity of the resulting subtours, we only
need to pay for an extra copy of the spines of the threshold cells (Figure 4b), whose cost is
negligible.

To reduce the demand of each resulting subtour exceeding capacity, we select some cells
from that subtour, and we remove all pieces in that subtour belonging to those cells. We
show that each removed piece is connected to the root through at least two subtours in the
solution (Lemma 20). That property is a main technical novelty in this paper. It enables
us to reconnect all removed pieces with an extra cost of at most half of the solution cost
(Lemma 21), hence an approximation ratio of 1.5 + O(ϵ).

2.3 Postprocessing
We modify the tree of components using the techniques in [21] so that the new tree has only
Oϵ(1) levels of components. Consider a near-optimal solution in the new tree. We apply
the Local Theorem (Theorem 13) to simplify the local solutions in all components. Then
we combine the simplified local solutions into a global solution. The combination requires
particular care to deal with the additional subtour in each component created in the Local
Theorem.

Next, we apply the adaptive rounding technique to the resulting global solution. The
adaptive rounding technique for capacitated vehicle routing was first used by Jayaprakash
and Salavatipour [18] in their design of a QPTAS in the equal demand setting. This technique
enables us reduce the number of subtour demands in each subtree to a constant Oϵ(1).

Finally, we design a polynomial time dynamic program to compute the best solution
that satisfies the structural constraints established previously. The computed solution is a
(1.5 + O(ϵ))-approximation.

This completes the proof of Theorem 1. See the full version of the paper for more details.

▶ Remark 2. When the overall cost of all edges in the tree is fixed, letting W denote this cost,
it is possible to adapt our analysis to obtain an asymptotic polynomial time approximation
scheme. To that end, we observe that in the proof of the Local Theorem (Theorem 13), the
extra cost to connect all removed pieces in a component is at most twice the overall cost of
all edges in that component, so the overall extra cost over all components is at most 2W .
Thus the cost of the computed solution is at most 1 + O(ϵ) times the optimal cost plus 2W .

3 Preliminaries

3.1 Formal Problem Description and Notations
Let T be a rooted tree (V, E) with edge weights w(u, v) ≥ 0 for all (u, v) ∈ E. Let n denote
the number of vertices in V . The cost of a tour (resp. a subtour) t, denoted by cost(t), is the
overall weight of the edges on t. For a set S of tours (resp. subtours), the cost of S, denoted
by cost(S), is

∑
t∈S cost(t).

▶ Definition 3 (UCVRP on trees). An instance of the unsplittable capacitated vehicle routing
problem (UCVRP) on trees consists of

an edge weighted tree T = (V, E) with root r ∈ V representing the depot,
a set V ′ ⊆ V of terminals,
for each terminal v ∈ V ′, a demand of v, denoted by demand(v), which belongs to (0, 1].

A feasible solution is a set of tours such that
each tour starts and ends at r,

C. Mathieu and H. Zhou 91:7

the demand of each terminal is covered by a single tour, i.e., the demand cannot be split,
the total demand of the terminals covered by each tour does not exceed the capacity of 1.

The goal is to find a feasible solution of minimum cost.

For any two vertices u, v ∈ V , let dist(u, v) denote the distance between u and v in the
tree T .

We say that a tour (resp. a subtour) visits a terminal if it covers the demand of that
terminal. For technical reasons, we allow dummy terminals of appropriate demands to be
included. The demand of a tour (resp. a subtour) t, denoted by demand(t), is defined to be
the total demand of all terminals (including dummy terminals) visited by t.

3.2 Reduction to Instances of Bounded Distances
▶ Definition 4 (bounded distances, Definition 2.1 in [21]). Let Dmin (resp. Dmax) denote the
minimum (resp. maximum) distance between the depot and any terminal in the tree T . We
say that T has bounded distances if Dmax < (1/ϵ)(1/ϵ)−1 · Dmin.

The next theorem (Theorem 5) enables us to assume without loss of generality that the
tree T has bounded distances.

▶ Theorem 5 (Theorem 2.3 and Section 9 in [21]). For any ρ ≥ 1, if there is a polynomial
time ρ-approximation algorithm for the UCVRP on trees with bounded distances, then there
is a polynomial time (1 + 5ϵ)ρ-approximation algorithm for the UCVRP on trees with general
distances.

3.3 Decomposition Into Components
The next lemma decomposes the tree T into components.

▶ Lemma 6 (Lemma 4.2 in [21]). Let Γ = 12/ϵ. There is a polynomial time algorithm to
compute a partition of the edges of the tree T into a set C of components (see Figure 1),
such that all of the following properties are satisfied:
1. Every component c ∈ C is a connected subgraph of T ; the root vertex of the component c,

denoted by rc, is the vertex in c that is closest to the depot.
2. A component c shares vertices with other components at vertex rc and possibly at one

other vertex, called the exit vertex of the component c and denoted by ec. We say that c

is an internal component if c has an exit vertex, and is a leaf component otherwise.
3. The total demand of the terminals in each component c ∈ C is at most 2Γ.
4. The number of components in C is at most max{1, 3 · demand(T)/Γ}, where demand(T)

denotes the total demand of the terminals in the tree T .

▶ Definition 7 (Definition 4.4 in [21]). Let c ∈ C be any component. A subtour in component c

is a path t that starts and ends at the root rc of component c, and such that every vertex on
t is in component c. We say that a subtour t is a passing subtour if c has an exit vertex and
that vertex belongs to t, and is an ending subtour otherwise.

4 Multi-Level Decomposition in a Component

Let c ∈ C be any component. We partition c using a multi-level decomposition: first,
c is decomposed into blocks (Section 4.1); next, each block is decomposed into clusters
(Section 4.2); and finally, each cluster is decomposed into cells (Section 4.3).

ICALP 2023

91:8 Unsplittable Capacitated Vehicle Routing on Trees

We introduce some notations. Let z denote any block (resp. any cluster or any cell).
Then z has a root vertex and at most one exit vertex. We say that a terminal v is strictly
inside z if v belongs to z and v is different from the root vertex and the exit vertex of z. The
demand of z is defined as the total demand of all terminals strictly inside z. If z has no exit
vertex, then z is called ending; otherwise z is called passing, and the path between the root
vertex and the exit vertex of z is called the spine of z.

We distinguish big and small terminals depending on their demands.

▶ Definition 8 (big and small terminals). Let α = ϵ(1/ϵ)+1. Let Γ′ = ϵ · α/Γ, where Γ is
defined in Lemma 6. We say that a terminal v is big if demand(v) > Γ′ and small otherwise.

4.1 Decomposition of a Component Into Blocks (Figure 2a)
Let c be a component. Let U ⊆ V denote the set of vertices consisting of the big terminals
in c, the root vertex of c, and possibly the exit vertex of c if c is an internal component (see
Lemma 6 for definitions). Let TU denote the subtree of c spanning the vertices in U . We
say that a vertex in TU is a key vertex if either it belongs to U or it has two children in
TU . We define a block to be a maximally connected subgraph of component c in which any
key vertex has degree 1; in other words, blocks are obtained by splitting the component at
the key vertices. Note that any terminal strictly inside a block is small. The blocks form a
partition of the edges of component c.

4.2 Decomposition of a Block Into Clusters (Figure 2b)
As an adaptation from Lemma 6, we decompose a block into clusters in Lemma 9.

▶ Lemma 9. Let b be any block. There is a polynomial time algorithm to compute a partition
of the edges of the block b into a set of clusters, such that all of the following properties are
satisfied:
1. Every cluster x is a connected subgraph of b; the root vertex of the cluster x, denoted by

rx, is the vertex in x that is closest to the depot.
2. A cluster x shares vertices with other clusters at vertex rx and possibly at one other vertex,

called the exit vertex of the cluster x and denoted by ex. If block b has an exit vertex eb,
then there is a cluster x in b such that ex = eb.

3. The demand of each cluster in b is at most 2Γ′.
4. The number of clusters in b is at most 3 · (demand(b)/Γ′ + 1).

4.3 Decomposition of a Cluster Into Cells (Figure 2c)
Let x be any cluster.
Case 1: x is an ending cluster. The decomposition of x consists of a single cell, which is

the entire cluster x.
Case 2: x is a passing cluster. Let ℓ denote the cost of the spine of cluster x. If ℓ = 0, the

decomposition of x consists of a single cell, which is the entire cluster x. Next, we assume
that ℓ > 0. For each integer i ∈ [1, (1/ϵ)−1], there exists a unique edge (u, v) on the spine
of cluster x satisfying min(dist(rx, u), dist(rx, v)) ≤ i · ϵ · ℓ < max(dist(rx, u), dist(rx, v));
let ei denote that edge. Removing the edges e1, e2, . . . , e(1/ϵ)−1 from cluster x results in
at most 1/ϵ connected subgraphs; each subgraph is called a cell. Observe that those cells
form a partition of the vertices of cluster x.

C. Mathieu and H. Zhou 91:9

The (unique) cell inside an ending cluster is an ending cell, and any cell inside a passing
cluster is a passing cell. Fact 10 follows directly from the construction.

▶ Fact 10. Let x be a passing cluster. The cost of the spine of any cell in x is at most an ϵ

fraction of the cost of the spine of x.

▶ Fact 11. In any component c, the number of cells and the number of big terminals are
both Oϵ(1).

Proof. By Lemma 6, the total demand of the terminals in component c is at most 2Γ. Since
the demand of a big terminal is at least Γ′, there are at most 2Γ/Γ′ = Oϵ(1) big terminals
in c.

From the construction in Section 4.1, the set U consists of at most 2 + 2Γ/Γ′ vertices.
Since each vertex in c has at most two children, the number of blocks in c is at most
2|U | ≤ 4 + 4Γ/Γ′. From the construction in Section 4.2, each block b is partitioned into
at most 3 · (demand(b)/Γ′ + 1) clusters, where demand(b) is at most the total demand of
the terminals in component c, which is at most 2Γ. From the construction in Section 4.3,
each cluster is partitioned into at most 1/ϵ cells. So the number of cells in c is at most
(4 + 4Γ/Γ′) · (3 · (2Γ/Γ′ + 1)) · (1/ϵ) = Oϵ(1). ◀

▶ Definition 12 (Adaptation from Definition 7). A subtour in a cluster (resp. cell) is a path t

that starts and ends at the root of that cluster (resp. cell), and such that every vertex on t is
in that cluster (resp. cell). We say that a subtour t is a passing subtour if that cluster (resp.
cell) has an exit vertex and that vertex belongs to t, and is an ending subtour otherwise. The
spine subtour in a passing cluster (resp. passing cell) consists of the spine of that cluster
(resp. cell) in both directions.

5 Simplifying the Local Solution

In this section, we prove the Local Theorem (Theorem 13).

▶ Theorem 13 (Local Theorem). Let c be any component. Let Sc denote a set of at most
(2Γ/α) + 1 subtours in component c visiting all terminals in c. Then there exists a set S∗

c of
subtours in component c visiting all terminals in c, such that all of the following properties
hold:
1. For each cell in c, a single subtour in S∗

c visits all small terminals in that cell;
2. S∗

c contains one particular subtour t̄ of demand at most 1, and the subtours in S∗
c \ {t̄}

are in one-to-one correspondence with the subtours in Sc, such that for every subtour t in
Sc and its corresponding subtour t∗ in S∗

c \ {t̄}, the demand of t∗ is at most the demand
of t, and in addition, if t is a passing subtour in c, then t∗ is also a passing subtour in c;

3. The cost of S∗
c is at most 1.5 + 2ϵ times the cost of Sc.

▶ Remark 14. Note that the cost to connect the newly generated subtour t̄ to the depot is
negligible thanks to the properties of the components.

5.1 Construction of S∗
c

The construction of S∗
c starts from Sc and proceeds in 5 steps. In particular, Step 2 uses a

new concept of threshold cells and is the main novelty in the construction.
The following lemma due to Becker and Paul [5] will be used in Step 1 and Step 3.

ICALP 2023

91:10 Unsplittable Capacitated Vehicle Routing on Trees

▶ Lemma 15 (Assignment Lemma, Lemma 1 in [5]). Let G = (V [G], E[G]) be an edge-weighted
bipartite graph with vertex set V [G] = A ⊎ B and edge set E[G] ⊆ A × B, such that each edge
(a, b) ∈ E[G] has a weight w(a, b) ≥ 0. For each vertex b ∈ B, let N(b) denote the set of
vertices a ∈ A such that (a, b) ∈ E[G]. We assume that N(b) ̸= ∅ and the weight w(b) of the
vertex b satisfies 0 ≤ w(b) ≤

∑
a∈N(b) w(a, b). Then there exists a function f : B → A such

that each vertex b ∈ B is assigned to a vertex a ∈ N(b) and, for each vertex a ∈ A, we have∑
b∈B|f(b)=a

w(b) −
∑

b∈B|(a,b)∈E[G]

w(a, b) ≤ max
b∈B

{
w(b)

}
.

Step 1: Combining ending subtours within each cluster

Let A0 denote Sc. We define a weighted bipartite graph G in which the vertices in one part
represent the subtours in A0 and the vertices in the other part represent the clusters in c.6
There is an edge in G between a subtour a ∈ A0 and a cluster x in c if and only if a contains
an ending subtour t in x; the weight of the edge is defined to be demand(t). For each cluster
x in c, we define the weight of x in G to be the sum of the weights of its incident edges in G.
We apply the Assignment Lemma (Lemma 15) to the graph G (deprived of the vertices of
degree 0) and obtain a function f that maps each cluster x in c to some subtour a ∈ A0 such
that (a, x) is an edge in G.

We construct a set of subtours A1 as follows: for every cluster x in c and for every subtour
a ∈ A0 containing an ending subtour t in x, the subtour t is removed from a and added
to the subtour f(x). Observe that each resulting subtour in A1 is connected. From the
construction, for each cluster x, at most one subtour in A1 has an ending subtour in x. In
particular, for any ending cell, which is equivalent to an ending cluster, a single subtour in
A1 visits all small terminals in that cell.

Step 2: Extending ending subtours within threshold cells

Let x be any passing cluster in c such that there is a subtour in A1 containing an ending
subtour in x. From Step 1 of the construction, such a subtour in A1 is unique; let te denote
the corresponding ending subtour in x.

We define the threshold cell of cluster x to be the deepest cell in x containing vertices
of te. See Figure 4a.

Then we add to te the part of the spine subtour in the threshold cell of x that does not
belong to te, resulting in a subtour t̃e; see Figure 4b.

Let A2 denote the resulting set of subtours in c after the extension within all threshold
cells. From the construction, for each passing cell s, all subtours in s that are contained in
A2 are passing subtours in s.

Step 3: Combining passing subtours within each passing cell

We define a weighted bipartite graph G′ in which the vertices in one part represent the
subtours in A2 and the vertices in the other part represent the passing cells in c.7 There is
an edge in G′ between a subtour a ∈ A2 and a passing cell s in c if and only if a contains a
non-spine passing subtour t in s; the weight of the edge is defined to be the total demand
of the small terminals on t. For each passing cell s in c, we define the weight of s in G′ to

6 With a slight abuse, we identify a vertex in G with either a subtour in A0 or a cluster in c.
7 With a slight abuse, we identify a vertex in G′ with either a subtour in A2 or a passing cell in c.

C. Mathieu and H. Zhou 91:11

threshold cell

(a) Subtour before extension. (b) Subtour after extension.

Figure 4 The threshold cell and the extension of an ending subtour. The outermost triangle in
blue represents a cluster x. In Figure 4a, the black segments represent the ending subtour te in
x. The threshold cell of cluster x is the deepest cell visited by te and is represented by the yellow
triangle. In Figure 4b, subtour te is extended within the threshold cell: the green segment represents
the part of the spine subtour of the threshold cell that is added to te, resulting in a subtour t̃e.

be the sum of the weights of its incident edges in G′. We apply the Assignment Lemma
(Lemma 15) to the graph G′ (deprived of the vertices of degree 0) and obtain a function f ′

that maps each passing cell s in c to some subtour a ∈ A2 such that (a, s) is an edge in G′.
We construct a set of subtours A3 as follows: for every passing cell s in c and for every

subtour a ∈ A2 containing a non-spine passing subtour t in s, the subtour t is removed from
a except for the spine subtour of s; the removed part is added to the subtour f ′(s). Observe
that each resulting subtour in A3 is connected. From the construction, for each passing cell
s, a single subtour in A3 visits all small terminals in s.

Step 4: Correcting subtour capacities

For each subtour t3 in A3, let t0 denote the corresponding subtour in A0. As soon as the
demand of t3 is greater than the demand of t0, we repeatedly modify t3 as follows: find a
terminal v that is visited by t3 but not visited by t0; let s denote the cell containing v and let
ts denote the subtour of t3 in cell s; if s is an ending cell, then remove ts from t3; and if s is
a passing cell, then remove ts from t3 except for the spine subtour of s.

Let A4 denote the resulting set of modified subtours. Observe that each subtour in A4 is
connected. From the construction, the demand of each subtour in A4 is at most the demand
of the corresponding subtour in A0. Note that the big terminals in each subtour in A4 are
the same as the big terminals in the corresponding subtour in A0.8

Let R denote the set of the removed pieces. We claim that the total demand of the pieces
in R is at most 1 (Lemma 22).

Step 5: Creating an additional subtour

We connect all pieces in R by a single subtour t̄, which is the minimal subtour in component c

that connects all pieces in R to the root of component c.

Finally, let S∗
c denote A4 ∪ {t̄ }.

8 Any big terminal cannot be removed, since it is the exit vertex of some cell, thus belongs to the spine of
that cell.

ICALP 2023

91:12 Unsplittable Capacitated Vehicle Routing on Trees

5.2 Analysis on the Cost of S∗
c

From the construction of S∗
c , we observe that the cost of S∗

c equals the cost of Sc plus the
extra costs in Step 2 and in Step 5 of the construction, denoted by W2 and W5, respectively.

To analyze the extra costs, first, in a preliminary lemma (Lemma 16), we bound the
overall cost of the spines of the threshold cells. Lemma 16 will be used to analyze both W2
(Corollary 17) and W5 (Lemma 21).

▶ Lemma 16. The overall cost of the spines of all threshold cells in the component c is at
most (ϵ/2) · cost(Sc).

Proof. Consider any threshold cell s. Let x be the passing cluster that contains s. By
Fact 10, the cost of the spine of cell s is at most an ϵ fraction of the cost of the spine of x.
Since x is a passing cluster, at least one subtour in Sc contains a passing subtour in x; let tx

denote that passing subtour in x. Observe that tx contains each edge of the spine of cluster
x in both directions (Definition 12), so the cost of the spine of x is at most cost(tx)/2. Thus
the cost of the spine of s is at most (ϵ/2) · cost(tx). We charge the cost of the spine of s to tx.

From the construction, each cluster contains at most one threshold cell. Thus the costs
of the spines of all threshold cells are charged to disjoint parts of Sc. The claim follows. ◀

Observe that the extra cost in Step 2 of the construction is at most the overall cost of
the spine subtours in all threshold cells in the component c, which equals twice the overall
cost of the spines of those cells by Definition 12.

▶ Corollary 17. The extra cost W2 in Step 2 of the construction is at most ϵ · cost(Sc).

Next, we bound the extra cost in Step 5 of the construction.

▶ Fact 18. Let t denote any subtour in Sc. Let x denote any cluster in c. Let rc and rx

denote the root vertices of component c and of cluster x, respectively; let ex denote the exit
vertex of cluster x. If the rc-to-rx path (resp. the rc-to-ex path) belongs to t, then that path
belongs to the corresponding subtour of t throughout the construction in Section 5.1.

▶ Definition 19 (nice edges). We say that an edge e in component c is nice if e belongs to at
least two subtours in A2.

The next Lemma (Lemma 20) is the main novelty in the analysis.

▶ Lemma 20. Any piece in R is connected to the root rc of component c through nice edges
in c.

Proof. Consider any piece q ∈ R. Let s be the cell containing q. Let x be the cluster
containing q. See Figure 5. Let rs and rx denote the root vertices of cell s and of cluster
x, respectively. Observe that the terminals in x are visited by at least two subtours in Sc.
This is because, if all terminals in cluster x are visited by a single subtour in Sc, then those
terminals belong to the corresponding subtour throughout the construction, thus none of
those terminals belongs to a piece in R, contradiction. Thus the rc-to-rx path belongs to at
least two subtours in Sc. By Fact 18, the rc-to-rx path belongs to at least two subtours in
A2, thus every edge on the rc-to-rx path is nice. It suffices to show the following Claim:

Piece q is connected to vertex rx through nice edges in c. (*)

There are two cases:

C. Mathieu and H. Zhou 91:13

rx

rc

(a) Case 1.

rx

rc

(b) Subcase 2(i).

rx

rc

es

(c) Subsubcase 2(ii)(α).

es

rx

rc

(d) Subsubcase 2(ii)(β).

Figure 5 Illustrations for the different cases in the proof of Lemma 20. A piece q ∈ R is in brown.
The cell s containing that piece is represented by the triangle in red; the cluster x containing that
piece is represented by the outermost triangle in blue. The black node rc is the root of component
c. In Figure 5a, x is an ending cluster. In Figure 5b, x is a passing cluster, and the solution Sc

contains two passing subtours in x. In Figures 5c and 5d, x is a passing cluster, and the solution Sc

contains a unique passing subtour in x; the yellow triangle represents the threshold cell of x. In
the case when q belongs to the threshold cell (Figure 5d), q is connected to rc through at least two
subtours, thanks to the extension of the ending subtour within the threshold cell.

Case 1: x is an ending cluster. See Figure 5a. From the decomposition in Section 4.3, s is
an ending cell and s equals x. Piece q is an ending subtour in x and in particular contains
rx. Claim (*) follows trivially.

Case 2: x is a passing cluster. Let es and ex denote the exit vertices of cell s and of cluster
x, respectively. Observe that at least one subtour in Sc contains a passing subtour in x.
There are two subcases.
Subcase 2(i): At least two subtours in Sc contain passing subtours in x.

See Figure 5b. Then the rc-to-ex path belongs to at least two subtours in Sc. By
Fact 18, the rc-to-ex path belongs to at least two subtours in A2, thus each edge on
the spine of x is nice. Since piece q contains a vertex on the spine of x, Claim (*)
follows.

Subcase 2(ii): Exactly one subtour in Sc contains a passing subtour in x.
See Figures 5c and 5d. Let tp denote that passing subtour in x. As observed previously,
at least two subtours in Sc visit terminals in x, so there must be at least one subtour
in Sc that contains an ending subtour in x. Let t1

e, . . . , tm
e (for some m ≥ 1) denote the

ending subtours in x contained in the subtours in Sc. In Step 1 of the construction, the
m ending subtours are combined into a single ending subtour, denoted by te (recall that
the threshold cell of x is defined with respect to te); and in Step 2 of the construction,
subtour te is extended to a subtour t̃e (Figure 4). Note that the passing subtour tp

remains unchanged in Steps 1 and 2 of the construction. We observe that cell s is
either above or equal to the threshold cell of x. This is because, if cell s is below the
threshold cell of x, then all terminals in s are visited by a single subtour in Sc, i.e., the
subtour tp, so those terminals belong to the corresponding subtour of tp throughout
the construction, thus none of those terminals belongs to a piece in R, contradiction.
Hence the following two subsubcases.
Subsubcase 2(ii)(α): s is above the threshold cell of x. See Figure 5c. Each edge

on the rx-to-es path belongs to both subtours tp and te, hence is nice. Since q

contains some vertex on the spine of s, Claim (*) follows.

ICALP 2023

91:14 Unsplittable Capacitated Vehicle Routing on Trees

Subsubcase 2(ii)(β): s equals the threshold cell of x. See Figure 5d. Observe that
each edge on the rx-to-es path belongs to t̃e due to the extension of the ending
subtour te within the threshold cell (Step 2 of the construction). Thus each edge on
the rx-to-es path belongs to both subtours tp and t̃e, hence is nice. Since q contains
some vertex on the spine of s, Claim (*) follows. ◀

▶ Lemma 21. The extra cost W5 in Step 5 of the construction is at most (0.5 + ϵ) · cost(Sc).

Proof. Let Wnice denote the overall cost of the nice edges in c. We show that W5 ≤ 2 · Wnice.
Let H be the multi-subgraph in c that consists of the pieces in R and two copies of each
nice edge in c (one copy for each direction). Since any piece in R is connected to the root rc

of component c through nice edges (Lemma 20), H induces a connected subtour in c. So
W5 ≤ 2 · Wnice.

Next, we analyze Wnice. From the construction, any nice edge e in c is of at least one of
the two cases:
Case 1: e belongs to at least two subtours in Sc. Then e has at least 4 copies in Sc, since

each subtour to which e belongs contains 2 copies of e (one for each direction). Thus the
overall cost of the edges e in this case is at most 0.25 · cost(Sc).

Case 2: e belongs to the spine of a threshold cell in component c. By Lemma 16, the
overall cost of the edges e in this case is at most (ϵ/2) · cost(Sc).

Hence the overall cost Wnice of the nice edges is at most (0.25 + ϵ/2) · cost(Sc).
Therefore, W5 ≤ 2 · Wnice ≤ (0.5 + ϵ) · cost(Sc). ◀

From Corollary 17 and Lemma 21, we conclude that

cost(S∗
c) = cost(Sc) + W2 + W5 ≤ (1.5 + 2ϵ) · cost(Sc).

Hence the third property of the claim in the Local Theorem (Theorem 13).

5.3 Feasibility
From the construction, S∗

c is a set of subtours in c visiting all terminals in c. The first
property of the claim in the Local Theorem (Theorem 13) follows from the construction.
The second property of the claim follows from the construction, Fact 18, and the following
Lemma 22.

▶ Lemma 22. The total demand of the pieces in R is at most 1.

Proof. Observe that the pieces in R are removed from subtours in A3. Let t3 denote any
subtour in A3. Let t0, t1, t2, and t4 denote the corresponding subtours of t3 in A0, A1,
A2, and A4, respectively. Let ∆ denote the overall demand of the pieces that are removed
from t3 in Step 4 of the construction. Observe that ∆ = demand(t3) − demand(t4). To
bound ∆, first, by Step 1 of the construction and the Assignment Lemma (Lemma 15),
the demand of each subtour in A0 is increased by at most the maximum demand of a
cluster. Thus demand(t1) − demand(t0) is at most the maximum demand of a cluster, which
is at most 2Γ′ by the definition of clusters (Section 4.2). By Step 2 of the construction,
demand(t2) = demand(t1). By Step 3 of the construction and the Assignment Lemma
(Lemma 15), the demand of each subtour in A2 is increased by at most the maximum
demand of a cell. Thus demand(t3) − demand(t2) is at most the maximum demand of a cell,
which is at most 2Γ′ by the definition of cells (Section 4.3). By Step 4 of the construction,
demand(t0) − demand(t4) is at most the maximum demand of a cell, which is at most 2Γ′.
Combining, we have ∆ = demand(t3) − demand(t4) ≤ 6Γ′.

C. Mathieu and H. Zhou 91:15

The number of subtours in A3 equals the number of subtours in Sc, which is at most
(2Γ/α)+1 by assumption. Thus total demand of the pieces in R is at most 6Γ′ ·((2Γ/α)+1) <

13ϵ < 1, assuming ϵ < 1/13. ◀

This completes the proof of the Local Theorem (Theorem 13).

References
1 Muhammad Al-Salamah. Constrained binary artificial bee colony to minimize the makespan

for single machine batch processing with non-identical job sizes. Applied Soft Computing,
29:379–385, 2015.

2 Kemal Altinkemer and Bezalel Gavish. Heuristics for unequal weight delivery problems with a
fixed error guarantee. Operations Research Letters, 6(4):149–158, 1987.

3 Tetsuo Asano, Naoki Katoh, and Kazuhiro Kawashima. A new approximation algorithm for
the capacitated vehicle routing problem on a tree. Journal of Combinatorial Optimization,
5(2):213–231, 2001.

4 Amariah Becker. A tight 4/3 approximation for capacitated vehicle routing in trees. In Inter-
national Conference on Approximation Algorithms for Combinatorial Optimization Problems,
volume 116, pages 3:1–3:15, 2018.

5 Amariah Becker and Alice Paul. A framework for vehicle routing approximation schemes in
trees. In Workshop on Algorithms and Data Structures, pages 112–125. Springer, 2019.

6 Jannis Blauth, Vera Traub, and Jens Vygen. Improving the approximation ratio for capacitated
vehicle routing. Mathematical Programming, pages 1–47, 2022.

7 Huaping Chen, Bing Du, and George Q. Huang. Scheduling a batch processing machine with
non-identical job sizes: a clustering perspective. International Journal of Production Research,
49(19):5755–5778, 2011.

8 Jing Chen, He Guo, Xin Han, and Kazuo Iwama. The train delivery problem revisited. In
International Symposium on Algorithms and Computation, pages 601–611. Springer, 2013.

9 Purushothaman Damodaran, Praveen Kumar Manjeshwar, and Krishnaswami Srihari. Min-
imizing makespan on a batch-processing machine with non-identical job sizes using genetic
algorithms. International Journal of Production Economics, 103(2):882–891, 2006.

10 George B. Dantzig and John H. Ramser. The truck dispatching problem. Management Science,
6(1):80–91, 1959.

11 Aparna Das, Claire Mathieu, and Shay Mozes. The train delivery problem-vehicle routing
meets bin packing. In International Workshop on Approximation and Online Algorithms, pages
94–105. Springer, 2010.

12 Lionel Dupont and Clarisse Dhaenens-Flipo. Minimizing the makespan on a batch machine with
non-identical job sizes: an exact procedure. Computers & Operations Research, 29(7):807–819,
2002.

13 Zachary Friggstad, Ramin Mousavi, Mirmahdi Rahgoshay, and Mohammad R. Salavatipour.
Improved approximations for capacitated vehicle routing with unsplittable client demands.
In International Conference on Integer Programming and Combinatorial Optimization, pages
251–261. Springer, 2022.

14 Bruce L. Golden and Richard T. Wong. Capacitated arc routing problems. Networks, 11(3):305–
315, 1981.

15 Fabrizio Grandoni, Claire Mathieu, and Hang Zhou. Unsplittable Euclidean Capacitated
Vehicle Routing: A (2 + ϵ)-Approximation Algorithm. In Innovations in Theoretical Computer
Science (ITCS), volume 251 of LIPIcs, pages 63:1–63:13, 2023.

16 Mordecai Haimovich and Alexander H. G. Rinnooy Kan. Bounds and heuristics for capacitated
routing problems. Mathematics of Operations Research, 10(4):527–542, 1985.

17 Shin-ya Hamaguchi and Naoki Katoh. A capacitated vehicle routing problem on a tree. In
International Symposium on Algorithms and Computation, pages 399–407. Springer, 1998.

ICALP 2023

91:16 Unsplittable Capacitated Vehicle Routing on Trees

18 Aditya Jayaprakash and Mohammad R. Salavatipour. Approximation schemes for capacitated
vehicle routing on graphs of bounded treewidth, bounded doubling, or highway dimension.
ACM Transactions on Algorithms (TALG), 19(2), 2023.

19 Ali Husseinzadeh Kashan, Behrooz Karimi, and Fariborz Jolai. Effective hybrid genetic
algorithm for minimizing makespan on a single-batch-processing machine with non-identical
job sizes. International Journal of Production Research, 44(12):2337–2360, 2006.

20 Martine Labbé, Gilbert Laporte, and Hélene Mercure. Capacitated vehicle routing on trees.
Operations Research, 39(4):616–622, 1991.

21 Claire Mathieu and Hang Zhou. A PTAS for capacitated vehicle routing on trees. ACM
Transactions on Algorithms (TALG), 19(2), 2023.

22 Sharif Melouk, Purushothaman Damodaran, and Ping-Yu Chang. Minimizing makespan
for single machine batch processing with non-identical job sizes using simulated annealing.
International Journal of Production Economics, 87(2):141–147, 2004.

23 İbrahim Muter. Exact algorithms to minimize makespan on single and parallel batch processing
machines. European Journal of Operational Research, 285(2):470–483, 2020.

24 N. Rafiee Parsa, Behrooz Karimi, and Ali Husseinzadeh Kashan. A branch and price algorithm
to minimize makespan on a single batch processing machine with non-identical job sizes.
Computers & Operations Research, 37(10):1720–1730, 2010.

25 Thomas Rothvoß. The entropy rounding method in approximation algorithms. In Proceedings
of the ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 356–372. SIAM, 2012.

26 Reha Uzsoy. Scheduling a single batch processing machine with non-identical job sizes. The
International Journal of Production Research, 32(7):1615–1635, 1994.

27 Yuanxiao Wu and Xiwen Lu. Capacitated vehicle routing problem on line with unsplittable
demands. Journal of Combinatorial Optimization, pages 1–11, 2020.

Online Demand Scheduling with Failovers
Konstantina Mellou #

Microsoft Research, Redmond, WA, USA

Marco Molinaro #

Microsoft Research, Redmond, WA, USA
PUC-Rio de Janeiro, Brazil

Rudy Zhou1 #

Carnegie Mellon University, Pittsburgh, PA, USA

Abstract
Motivated by cloud computing applications, we study the problem of how to optimally deploy
new hardware subject to both power and robustness constraints. To model the situation observed
in large-scale data centers, we introduce the Online Demand Scheduling with Failover problem.
There are m identical devices with capacity constraints. Demands come one-by-one and, to be
robust against a device failure, need to be assigned to a pair of devices. When a device fails (in a
failover scenario), each demand assigned to it is rerouted to its paired device (which may now run at
increased capacity). The goal is to assign demands to the devices to maximize the total utilization
subject to both the normal capacity constraints as well as these novel failover constraints. These
latter constraints introduce new decision tradeoffs not present in classic assignment problems such
as the Multiple Knapsack problem and AdWords.

In the worst-case model, we design a deterministic ≈ 1
2 -competitive algorithm, and show this is

essentially tight. To circumvent this constant-factor loss, which represents substantial capital losses
for big cloud providers, we consider the stochastic arrival model, where all demands come i.i.d. from
an unknown distribution. In this model we design an algorithm that achieves sub-linear additive
regret (i.e. as OPT or m increases, the multiplicative competitive ratio goes to 1). This requires a
combination of different techniques, including a configuration LP with a non-trivial post-processing
step and an online monotone matching procedure introduced by Rhee and Talagrand.

2012 ACM Subject Classification Theory of computation → Online algorithms

Keywords and phrases online algorithms, approximation algorithms, resource allocation

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.92

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2209.00710

Funding Marco Molinaro: Supported in part by the Coordenação de Aperfeiçoamento de Pessoal
de Nível Superior (CAPES, Brasil) - Finance Code 001, by Bolsa de Produtividade em Pesquisa
#312751/2021-4 from CNPq, FAPERJ grant “Jovem Cientista do Nosso Estado”.

Acknowledgements We thank the anonymous reviewers for their valuable suggestions. We also
thank Alok Gautam Kumbhare and Ishai Menache for useful discussions.

1 Introduction

A critical challenge faced by cloud providers is how to deploy new hardware to satisfy the
increasing demand for cloud resources, and the main bottleneck in this process is power. Data
centers consist of power devices with limited capacity and each demand for hardware (e.g.

1 Work performed as intern at Microsoft Research, Redmond.

EA
T
C
S

© Konstantina Mellou, Marco Molinaro, and Rudy Zhou;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 92; pp. 92:1–92:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kmellou@microsoft.com
mailto:mmolinaro@microsoft.com
mailto:rbz@andrew.cmu.edu
https://doi.org/10.4230/LIPIcs.ICALP.2023.92
https://arxiv.org/abs/2209.00710
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

92:2 Online Demand Scheduling with Failovers

rack of servers) has a power requirement. The goal is to assign demands to power devices
to fulfill their requirements while using the available power in the data centers efficiently.
This allows cloud providers to maximize return on investment on existing data centers before
incurring large capital expenses for new data centers to accommodate additional demand.

An important consideration that sets this demand assignment process apart from other
applications is reliability. Cloud users are promised a high availability of service which
mandates that cloud capacity can only be unavailable for very short durations (between a
few minutes and a few hours per year). As a result, assigning each demand to a single power
device leads to an unacceptable level of risk; if that device fails, the capacity for the demand
becomes unavailable, leading to potentially millions of dollars in costs for the provider and
jeopardizing the cloud business model that is highly dependent on users’ trust. To this end,
power redundancy is built into the assignment process.

We consider a specific model of redundancy used by large cloud providers [19]. In this
model, each demand gets assigned to two power devices. In normal operations (no device
failure), the demand obtains half of its required power from each device. If one of the devices
fails, the remaining device must provide the full power amount to the demand (see Figure 1
for an example). In these failover scenarios, the remaining devices may run at an increased
capacity temporarily to accommodate their increased load. The provider uses this time to
take ad-hoc corrective actions, for instance, shut down certain workloads and reduce the
power of others in order to bring the power utilization of each device back within its normal
limits. As in [19] we consider a single device failure at a time.

This architecture is favored in practice because it provides strong reliability guarantees
with a small increase in overhead and complexity. One could consider more complex
architectures, where demands could be assigned with a power split other than half-half to
each device or to more than two devices, but this comes at an increased cost in hardware
and operational complexity. Further, a common goal of large cloud providers is to provide
statistical guarantees for high service availability, e.g., 99.99% availability for certain cloud
resources or services; cloud operators have determined that accounting for a single device
failure with the described architecture provides such target guarantees.

11

22

11

33

22

33

a b c

Normal operations
a b c

Failover due to device c

11

22

11

33

Figure 1 In normal operations (left), each demand (denoted with a different pattern) is assigned
to two devices and gets half of its required power from each device. In the failover scenario where
device c has failed (right), the demands that were assigned to c now get their full power from the
remaining devices that may run at increased capacity.

We introduce the Online Demand Scheduling with Failover problem (Failover) to model
this issue of assigning demands to power devices with redundancy. Formally, in this problem
there are m identical devices (or machines) and n demands. Each device has two capacities:
a nominal capacity that is normalized to 1 and a failover capacity B ≥ 1. Each demand j has
some size sj ≥ 0, which for convenience is defined as its per-device power requirement (so the
total power requirement of the demand is 2sj). The demands arrive online one-by-one and
there is no knowledge about future demands. The goal is to irrevocably assign the arriving

K. Mellou, M. Molinaro, and R. Zhou 92:3

a b

c d

1
4 + 1

4

1
4 + 1

4

(a) Bad assignment.

a b

c d

1
4

1
4

1
4

1
4

1
4

1
4

(b) Good assignment.

Figure 2 Illustration of Example 1.

a b

c d

1
4ϵ

1
4ϵ

1
4ϵ

1
4ϵ

1
4ϵ

1
4ϵ

(a) Bad assignment.

a b

c d

1
46ϵ

1
40.5

(b) Good assignment.

Figure 3 Illustration of Example 2.

demands to pairs of devices (or edges, where we consider each device as a node) satisfying:
1. (Nominal Constraints) For every device u, its total load has to be at most 1, namely

Lu :=
∑

v ̸=u Luv ≤ 1, where we define Luv =
∑

j→uv sj to be the total load on edge uv

(i.e., all demands assigned to the pair of devices uv).
2. (Failover Constraints) For every device u, we have Lu + maxv ̸=u Luv ≤ B (i.e., if a device

v ̸= u fails, all demands assigned to uv have to be supplied solely by u, which sees its
load increased by the amount Luv that was formerly supplied to them by device v; the
increased load has to fit the failover capacity B).

We assume that each demand size sj fits on a pair of devices by itself, so sj ∈
[0, min(1, B/2)]. We are not allowed to reject demands, so the algorithm assigns arriv-
ing demands to the available devices until a demand cannot be scheduled, in which case the
algorithm terminates. Our objective is to maximize the total size of all assigned demands (i.e.,
the utilization). We compare the algorithm against the optimal offline strategy that knows
the demand sequence in advance (but still subject to the same no-rejection requirement).
We use OPT to denote the total utilization of this optimal offline strategy.

This problem has similarities with several classical packing problems. For example, in
the Multiple Knapsack problem (and related problems such as Generalized Assignment [18],
AdWords [14], etc.) we are given a set of items each with a weight and size, and the goal is
to select a subset of the items to pack in capacitated bins in order to maximize the total
weight. However, one fundamental difference in our setting, besides the need to assign each
demand to a pair of devices instead of a single device, is the failover constraint. Unlike in
previously studied resource allocation problems, here the capacity constraints are not just
determined by the total demand incident to a node, but rather they depend also on how the
demands are arranged across its edges. See the next example.

▶ Example 1. Consider an instance with 4 power devices a, b, c, d with failover capacity
B = 1. There are 6 demands of size 1

4 that arrive sequentially; suppose 4 demands have
arrived so far. One possible assignment has placed 2 demands on each of the pairs ab and cd

(see Figure 2a), while a different one may place each of the 4 demands on a different pair (see
Figure 2b, in solid lines). While in the second option all remaining demands can be placed
(dashed lines in Figure 2b), the first option cannot accommodate more demands due to the
Failover capacity. To see this, suppose we assign another demand to device a, say. If device
b fails, then the total load on a will become at least 5

4 violating its Failover capacity.

The above example suggests that due to the Failover constraints we should “spread out”
the demands by not putting too many demands on one edge, because if one of its endpoints
fails then this edge can have a large contribution to the Failover constraint of the other
endpoint. However, there is a danger in spreading out the demands too much and not leaving
enough devices free.

ICALP 2023

92:4 Online Demand Scheduling with Failovers

▶ Example 2. Consider again the same 4 power devices a, b, c, d with failover capacity
B = 1. Now, there are 7 demands; the first 6 have a small size ε > 0 and the last demand has
size 0.5. Assume the first 6 demands have arrived. A first option is to assign one demand of
size ϵ per device pair (see Figure 3a). In this case, the remaining demand of size 0.5 cannot
be placed, as the Failover capacities would be exceeded. The second option groups the first
6 demands on a single edge (see Figure 3b); in this case, all demands can be fulfilled by
assigning the last demand on a disjoint edge (dashed edge of Figure 3b).

Taking these two examples together, there is a delicate balance between spreading demands
out across edges to minimize their impact in failover scenarios and leaving enough devices
open for future demands, as to not prematurely end up with an unassignable demand.

1.1 Our results
We first consider the Failover problem in the worst-case and design a deterministic algorithm
with competitive ratio ≈ 1

2 . Since no deterministic algorithm can be better than 1
2 -competitive

(see the full version of the paper for upper bound), this result is almost best possible.

▶ Theorem 3. There is a deterministic poly-time online algorithm for Failover in the
worst-case model with competitive ratio 1

2 − O(1
m1/3),2 where m is the number of devices.

A 1
2 -competitive solution may, roughly speaking, underutilize by a factor of 1

2 the available
power; in the context of big cloud providers, this inefficiency translates to substantial capital
expenses due to the extra data centers required to accommodate the demands. Since
such losses are unavoidable in the worst-case model, we consider the Failover problem
in the stochastic arrival model. Here the demand sizes are drawn i.i.d. from an unknown
distribution µ supported on [0, min(1, B/2)].

We show that in this stochastic model it is possible to obtain sublinear additive regret.

▶ Theorem 4. For the Failover problem in the stochastic arrival model, there is a poly-time
algorithm that achieves utilization OPT − O(OPT5/6 log OPT) with probability 1 − O(1

m).

We remark that since OPT grows like Θ(ξ), where ξ := min{n, m} (see Lemma 9), this
guarantee implies the multiplicative approximation (1 − O(log ξ / ξ1/6)) · OPT. So as the
number of demands and devices grow, the competitive ratio of this algorithm goes to 1.

As a subroutine of this algorithm, we need to solve the natural offline minimization variant
of demand scheduling with failover: Given a collection of demands, minimize the number of
devices needed to assign all demands satisfying the Nominal and Failover constraints. We
also design an (offline) algorithm with sublinear additive regret for this problem (Section 4).

1.2 Technical Overview
We illustrate the main technical challenges in the Failover problem in both the worst-case
and stochastic models, as well as in the offline minimization subproblem needed for the latter.

Online Worst-Case (Section 2). The examples from Figure 2 and 3 show that the main
difficulty is dealing with the trade-off between spreading out the demands, which allows for
a better use of the failover budgets, and co-locating demands on fewer edges, keeping some
edges free for future big demands.

2 Throughout the paper we use O(x) to mean “≤ cst · x” for some constant cst independent of x.

K. Mellou, M. Molinaro, and R. Zhou 92:5

To effectively strike this balance and get near optimal guarantees, the main idea is to
group demands based on their sizes using intervals Ik and schedule each group separately on
cliques of size k. That is, we will “open” a set of k unused devices and assign the demands in
Ik only to the edges between these devices (opening new k-cliques as needed). Interestingly,
we assign at most one demand per edge of the clique (other than for tiny demands, which
are handled separately). This means the algorithm tries to co-locate demands in controlled
regions, which allows for the right use of the failover budgets.

Online Stochastic Arrivals (Section 3). First, note that because demands are i.i.d. from
a distribution with bounded support, the total utilization of the first ℓ demands grows as
ℓ · ES∼µS. Thus, it suffices to show that our algorithm “survives” for as many demand
arrivals as possible without needing to reject one due to lack of space. Our approach is to try
and assign prefixes of arrivals to the (approximately) minimum number of devices possible.
This ensures that if our algorithm fails due to needing more than m devices to feasibly assign
another demand, then OPT will fail shorty after.

Our algorithm is based on a learn-and-pack framework, where we use knowledge of the
first ℓ arrivals to compute a good template assignment for the next ℓ arrivals. To compute
this template, we need a subroutine that (approximately) solves the offline minimization
subproblem mentioned above. Concretely, we run the subroutine on the realized sizes of
the first ℓ arrivals, which gives a possible assignment of these demands into, say m′ unused
devices. We use the “slots” of this possible assignment as a template to assign the future ℓ

demands by employing the online monotone matching process of Rhee-Talgrand [16]: For
each future arrival, we assign it to a (carefully-chosen) open slot in the template that has
a larger size – if we cannot find such an open slot, then we assign this demand to its own
disjoint edge (using 2 more devices).

It is known that this matching process leaves o(ℓ) unmatched demands with high prob-
ability. Further, our offline minimization subroutine has sublinear additive regret, that is,
it uses only o(ℓ) more devices than the optimal offline assignment. Since these losses are
sublinear in the prefix size, it seems that by repeating this process together with doubling
the prefix size we should obtain a final sublinear regret guarantee.

But there is still a major issue: This strategy uses disjoint sets of devices to fulfill the
first ℓ demands and the next ℓ demands (for each doubling ℓ). But this is possibly very
wasteful: even using the optimal assignment for each of these ℓ demands separately may
require many more devices (up to double) compared to reusing the leftover space from the
first batch of ℓ demands for the next batch (i.e. assigning the batches to a common set
of devices). Wasting a constant fraction of devices would lead to the unwanted constant-
competitive loss. To overcome this, we show that Mℓ, the minimum number of devices to
assign ℓ i.i.d. demands, is approximately linear in ℓ (Theorem 8), e.g. Mℓ + Mℓ (assigning
batches separately) is approximately M2ℓ (assigning them together). This is a non-trivial
task (another Rhee-Talagrand paper [15] is entirely devoted to doing this for the simpler
Bin Packing problem). Perhaps surprisingly, our proof relies on our algorithm for the offline
device minimization problem, which is LP-based. The crucial property is that the optimal
LP value doubles if we duplicate the items on its input, which (with additional probabilistic
arguments) translates into the additivity of Mℓ.

Offline Minimization (Section 4). Our algorithm for offline minimization of the number
of devices needed to fulfill a set of demands is based on a configuration LP inspired by the
classic Gomory-Gilmore LP for the Bin Packing problem. Consider a fixed assignment of

ICALP 2023

92:6 Online Demand Scheduling with Failovers

demands to some number of devices. We want to interpret each device as a configuration,
which captures the arrangement of demands on this device’s edges. Our LP will minimize
the number of configurations needed in order to assign all demands.

There is a tension between two issues in this approach. First, the Failover constraint
depends not only on the subset of demands on this device’s edges, but also how they are
arranged within these edges (because the most-loaded edge contributes to the Failover
constraint). This suggests that a configuration should not only specify a subset of demands,
but also have enough information about the edge assignment to control the most-loaded edge.
Second, each demand must be assigned to a pair of devices rather than a single device, so our
configurations are not “independent” of each other. Thus, we need to “match” configurations
to ensure that a collection of configurations can be realized in an edge assignment. In
summary, our configurations should be expressive enough to capture the Failover constraints,
but also simple enough so that we can actually realize them in an actual assignment.

Our solution to this is to define a configuration to be a subcollection, say C, of demands
satisfying

∑
s∈C s ≤ 1 (the Nominal constraint) and

∑
s∈C s + maxs∈C s ≤ B (a relaxed

Failover constraint). Note that this notion of configuration does not capture the arrangement
of the demands C across a device’s edges – we assume the best case that every demand is on
its own edge to minimize their impact in failover scenarios. It is not clear that there even
exists a near-optimal assignment that assigns at most one demand per edge, let alone that
we can obtain one from the LP solution. However, our LP post-processing procedure will
show that – by opening slightly more devices – we can match configurations of this form to
realize them in a near-optimal assignment.

1.3 Related work

Despite a vast literature on assignment-type problems, none of the ones considered addresses
the main issue of redundancy, modeled in the Failover problem. Arguably the Coupled
Placement [11] problem is the closest to Failover. Given a bipartite graph with capacities
at the nodes and a set of jobs, the goal is to assign a subset of the jobs to the edges of the
graph to maximize the total value (each assigned job gives a value that also depends on
its assigned edge), while respecting the capacity of the nodes (each assigned job consumes
capacity from its edge’s endpoints). [11] gives a 1

15 -approximation to the offline version of this
problem (see also [1]). While this problem involves the allocation of jobs to a pair of nodes
(albeit on a bipartite graph) and has the additional difficulty that the value and consumption
of a job depends on which pair of nodes it is assigned, it does not have any Failover type
constraints, a crucial component of our problem.

As already mentioned, several classic assignment problems are related to ours, such as the
Multiple Knapsack [4], Generalized Assignment (GAP) [18], and AdWords problem [14, 7].
The latter is the closest to our problem: there are m bins (i.e. advertisers) of different
capacities, and jobs (i.e. keyword searches) that come one-by-one and need to be assigned to
the bins; each assignment consumes some of the bin’s capacity and incurs an equal amount
of value (i.e. bid). The goal is maximize total value subject to bin capacities. Despite the
similarities, this problem does not consider critical aspects of our problem, namely the need
to assign a job/demand to a pair of bins/devices and the Failover constraints.

There is also a large literature on survivable network design problems, where failures in
the network are explicitly considered [6], but the nature of the problems is quite different
from our assignment problem, as the focus there is typically on routing flows.

K. Mellou, M. Molinaro, and R. Zhou 92:7

Finally, a problem related to our device minimization problem, and from which we borrow
some tools and techniques, is Bin Packing. Here jobs of different sizes need to be assigned to a
minimum number of bins of size 1. Results are known in both offline [9] and online settings [2,
16]. In the online stochastic setting, [16] obtains an additive +O(

√
OPT·log3/4 OPT) sublinear

approximation (see [5, 8, 13] for improvements under different assumptions).

2 FAILOVER Problem in the Online Worst-Case Model

In this section we consider the Failover in the online worst-case model. We design an
algorithm that achieves competitive ratio ≈ 1

2 in this setting (restated from the introduction).

▶ Theorem 3. There is a deterministic poly-time online algorithm for Failover in the
worst-case model with competitive ratio 1

2 − O(1
m1/3),3 where m is the number of devices.

Recall that in the full version of the paper, we also show the almost matching upper
bound of 1

2 on such competitive ratio, and design another algorithm whose competitive ratio
approaches 1 as the size of the largest demand goes to 0. To convey the main ideas more
clearly, here we focus only on Theorem 3.

2.1 Algorithm
As suggested in the technical overview, our algorithm will group demands by size, and assign
each group of demands to sub-cliques of an appropriate size. To make this precise, set in
hindsight L := m1/3 and for k = 2, . . . , L − 1 define the interval

Ik :=
(

min
{

1
k

,
B

k + 1

}
, min

{
1

k − 1 ,
B

k

}]
.

(Notice there is no k = 1, because the upper limit of I2 is the max size of a demand.) This
definition ensures that it is feasible to assign one demand of such size to each edge of a
k-clique, as we argue in the next subsection. Also define the interval of small sizes

I≥L :=
[
0, min

{
1

L − 1 ,
B

L

}]
.

The algorithm is then the following:

Algorithm 1 FailoverWostCase.

1: When a demand arrives, determine the interval Ik (or I≥L) that it belongs to based on its size.

2: If it belongs to an interval Ik with k ∈ {2, . . . , L − 1}, assign the demand to any “empty” edge
(i.e. that has not received any demands) of a k-clique opened for Ik. If no such edge exists, then
open a new k-clique for Ik.

3: Otherwise it belongs to I≥L, so assign it to an edge of one of its L-cliques using first-fit (so here
we can assign multiple demands to the same edge) making sure that the total load on
each edge is at most min{ 1

L−1 , B
L

}. By first-fit we mean that the edges of the I≥L cliques are
arbitrarily ordered and the demand is assigned to the first possible edge. Open a new L-clique
for I≥L if need be.

4: If the demand cannot fit in the appropriate clique and it is not possible to open a new clique
(i.e. there are not enough unused machines to form a clique of the desired size), then stop.

3 Throughout the paper we use O(x) to mean “≤ cst · x” for some constant cst independent of x.

ICALP 2023

92:8 Online Demand Scheduling with Failovers

2.2 Analysis
We first quickly verify that the assignment done by the algorithm is feasible, i.e. satisfies the
Nominal and Failover constraints. Consider a node/machine u on an Ik clique opened by
the algorithm (for machines in an I≥L clique the argument is analogous). For the Nominal
capacity constraint: Every demand assigned to u is actually assigned to one of the k − 1
edges in this clique incident on u; each such edge receives at most 1 demand from Ik (and no
other demands), so using the upper limit of this interval we see that u receives total size at
most (k − 1) · min{ 1

k−1 , B
k } ≤ 1, so within its Nominal capacity. For the Failover capacity:

in a failover scenario one of these (k − 1) demands has “both ends” assigned to u, so the
total size it receives is now k · min{ 1

k−1 , B
k } ≤ B, so within the Failover capacity. Hence the

algorithm produces a feasible assignment.
Now we show that the value obtained by the algorithm is at least

(1
2 − O(1

m1/3)
)
OPT.

The idea is to show that for (essentially) each clique opened by the algorithm, we get on
average value at least ≈ 1

4 per vertex. Since each node has Nominal capacity 1 and each
demand must be scheduled on two nodes, OPT can only get at most 1

2 value from each node
on average, showing that our algorithm is a ≈ 1

2 -approximation. However, there are two
exceptions where we may get less than ≈ 1

4 per vertex on average. The first is the last clique
for each Ik, which may not be “fully used” (but by setting L appropriately there are not too
many nodes involved in this loss). More importantly, the second exception is the “big items”
I2, which may not allow us to get average value 1

4 per node (e.g. when the failover is B = 1,
a demand of size 1

3 + ε falls in the group I2 and is put by itself on an edge, giving value
1
6 + ε

2 ≪ 1
4 per node used). However, in this case we show that we can obtain a stronger

upper bound for these demands for OPT.
We now make this precise. Assume throughout that the algorithm has stopped before

the end of the input (else it scheduled everything, so it is OPT). We account for the value
obtained on each type of clique separately.

Cliques for I≥L. We will use two observations: (i) when the algorithm opens a new I≥L

clique, every edge of the previous I≥L cliques has some demand assigned to it, and (ii) across
all I≥L cliques, out of all edges with some demand assigned to them, at most one can have
total size assigned to it less than α := 1

2 min
{ 1

L−1 , B
L

}
(i.e. half of its “capacity”).

Both observations stem from the first-fit strategy used to assign these demands. In
particular, the algorithm will only open a new clique when a demand in I≥L does not fit in
the edges of the existing cliques, implying that all of these edges already have some demand
assigned; this shows the first statement. For the second statement, by contradiction assume
that at some point there are at least two edges on I≥L cliques with total load less than α.
Then the first demand that was assigned to the last such edge has size less than α. But this
means that it could have been assigned to an earlier edge with load less than α, contradicting
the first-fit procedure.

Let c≥L be the total number of I≥L cliques that the algorithm opened, and m≥L := c≥L ·L
the number of nodes associated with those cliques. Combining the above two observations,
at the end of the execution either: (i) every edge of the first c≥L − 1 of these cliques has load
at least α or; (ii) all but one edge in the first c≥L − 1 cliques has load at least α and some
edge of the last c≥L-th (e.g., the one that “opened” it) has load at least α. In both cases,
the total size of demands assigned by the algorithm to the edges of these cliques is at least

(c≥L − 1) ·
(

L

2

)
· α = (c≥L − 1) · L

4 · min
{

1,
(L − 1)B

L

}
≥ m≥L · 1

4

(
1 − 1

L

)
− O(L), (1)

yielding roughly average value 1
4 from each node of these cliques, as claimed.

K. Mellou, M. Molinaro, and R. Zhou 92:9

Cliques for Ik, for k ≥ 3. Consider any clique for Ik except the last one to be opened. All
edges of this clique have some demand from Ik assigned to it; given the lower limit for this
interval, this means that the algorithm has assigned to each such clique total size at least(

k

2

)
· min

{
1
k

,
B

k + 1

}
= k

2 · min
{

k − 1
k

,
B(k − 1)

k + 1

}
.

Since k ≥ 3 and B ≥ 1, the right-hand side is at least k
4 . Letting again ck denote the

number of cliques for Ik that the algorithm opens and mk the corresponding number of
nodes/machines, we can count the total value of all but the last Ik clique and we see that
the algorithm has assigned to them total size at least (ck − 1) · k

4 = mk · 1
4 − O(k).

Cliques for I2. (Recall that there is no k = 1, so this is the last case to consider.) Given
the lower limit of the interval I2, each I2 clique (which being a 2-clique is just an edge) has a
demand of size at least min{ 1

2 , B
3 } assigned to it. So the algorithm assigns total size at least

m2 · min{ 1
4 , B

6 } to these I2 cliques, where m2 is the number of nodes in these cliques.

Total value of Alg. Since we assumed that the algorithm stops at some point, it means
that it could not open more cliques. This means that all but at most L − 1 nodes belong
to one such clique (the worst case is that it tried to open an L-clique but could not), so
m≥L +

∑L−1
k=3 mk + m2 ≥ m − L. Then adding the above estimates for the values obtained

on each type of clique, we see that the algorithm gets total value at least

Alg ≥ 1
4

(
1 − 1

L

)
·
(

m − m2 − L

)
− O(L2) + m2 · min

{
1
4 ,

B

6

}
= 1

4 ·
(
m − m2

)
+ m2 · min

{
1
4 ,

B

6

}
− O(m2/3)

where the last inequality uses the fact that L = m1/3.
If the minimum in the last line is 1

4 , then we obtain Alg ≥
(1

2 − O(1
m1/3)

)
OPT as desired

(recall OPT ≤ m
2 since each machine has Nominal capacity 1 and each demand is assigned to

two machines). So assume this is not the case, namely B < 3
2 . Under this assumption

Alg
with ass.

≥ 1
4 ·

(
m − m2

)
+ B

6 · m2 − O(m2/3) (2)

Value of OPT. We analyze OPT again under the assumption B < 3
2 . The Failover

constraints also ensure that in order to accommodate the demand from I2 in case of
failure, any node that receives a demand from I2 can have total size assigned to it a most
B − min

{ 1
2 , B

3
} with ass.= 2B

3 , due to the assumption B < 3
2 . For all other nodes, OPT can

assign at most size 1 per node due to the Nominal capacity constraint. Let mOPT
2 be the

number of nodes where OPT schedules a demand from I2. Again, since the size of each
demand is counted towards the Nominal capacity of two nodes, the total size scheduled by
OPT is

OPT ≤ 1
2

(
mOPT

2 · 2B

3 + (m − mOPT
2) · 1

)
= 1

2 · (m − mOPT
2) + B

3 · mOPT
2 (3)

Notice that since every demand in I2 has size > min{ 1
2 , B

3 } ≥ 1
3 , the Failover constraints

ensure that in OPT (as well as in our algorithm) the demands from I2 that are scheduled
form a matching, i.e. no 2 such demands can share a node/machine. So mOPT

2 (resp. m2) is

ICALP 2023

92:10 Online Demand Scheduling with Failovers

just twice the number of I2 demands scheduled by OPT (resp. our algorithm). Moreover,
both Alg and OPT schedule a prefix of the instance. Since OPT gets at least as much value
as Alg, it means that it scheduled a prefix that is at least as long; in particular it schedules
at least as many I2 demands as our algorithm. Together these observations imply that that
mOPT

2 ≥ m2. Then given inequalities (2) and (3), under the assumption B < 3
2 we obtain

that Alg ≥
(1

2 − O(1
m1/3)

)
OPT as desired. This concludes the proof of Theorem 3.

3 Sublinear Additive Regret in the Stochastic Model

We now consider Failover in the online stochastic model, where, instead of being adversarial,
the size St of each demand now comes independently from an unknown distribution µ over
[0, min{1, B

2 }]. Again, at time t the algorithm observes the size St of the current demand
and irrevocably assigns it to two of the m machines. We still use OPT = OPT(S1, . . . , Sn)
to denote the value of (sum of the sizes scheduled by) the optimal strategy, which is now a
random quantity. Our main result is algorithm FailoverStochastic that achieves a sublinear
additive loss compared to OPT in this model (restated from the introduction for convenience).

▶ Theorem 4. For the Failover problem in the stochastic arrival model, there is a poly-time
algorithm that achieves utilization OPT − O(OPT5/6 log OPT) with probability 1 − O(1

m).

The algorithm relies on a learn-and-pack approach that uses previously seen items to
compute a template for packing the next items. This process is performed in rounds. Each
round starts by assigning the first demand of the round on a pair of (empty) machines. Then,
we iteratively create a template based on the first nk := 2k items of the round, which we use
to schedule the next nk items. When the number of machines needed for the template (along
with some slack) exceeds the number of available machines, the current round terminates and
the next round begins. The next round maintains no knowledge of the previous demands; it
only takes as input the number of empty machines m̃ which it is allowed to use.

Before describing the algorithm in more detail, an important question that arises is how
to use the templates to schedule the future demands. A crucial component in this process are
monotone matchings, which only match two values if the second is at least as big as the first.

▶ Definition 5 (Monotone matching). Given two sequences x1, . . . , xn ∈ R and y1, . . . , yn ∈ R,
a monotone matching π from the xt’s to the yt’s is an injective function from a subset
I ∈ {1, . . . , n} to {1, . . . , n} such that xi ≤ yπ(i) for all i ∈ I. We say that xi is matched to
yπ(i) if i ∈ I, and xi is unmatched otherwise.

Monotone matchings will allow us to match future demands (xi’s) to the demands that
are part of a template (yπ(i)’s) and put the former in the place of the latter (since xt ≤ yπ(i)).
A surprising result of Rhee and Talagrand [16] is that if the two sequences are sampled i.i.d.
from the same distribution, then almost all items can be matched, and moreover such a
matching can be found online (see the paper for a more general result where the sequences
may come form different distributions).

▶ Theorem 6 (Monotone Matching Theorem [16]). Suppose the random variables A1, . . . , An

and B1, . . . , Bn are all sampled independently from a distribution µ. Then there is a constant
cst such that with probability at least 1 − e−cst·log3/2 n there is a monotone matching π of the
Ai’s to the Bi’s where at most cst ·

√
n log3/4 n of the Ai’s are unmatched. Moreover, this

matching can be computed even if the sequence A1, . . . , An is revealed online.

K. Mellou, M. Molinaro, and R. Zhou 92:11

3.1 Algorithm
We are now ready to present the details of the FailoverStochastic algorithm.

FailoverStochastic. The algorithm just repeatedly calls the procedure OneRound below,
passing to it the number of machines that are still available/unopened (e.g. initially it calls
OneRound(m)); it does this for log m

log 4/3 rounds.

OneRound(m̃). This procedure receives as input the number m̃ of machines that it is
allowed to open. It is convenient to rename the demands and use Yt to denote the t-
th demand seen by OneRound (which are still sampled i.i.d. from µ). Similar to the
work of Rhee and Talagrand [16], this algorithm works in phases: As mentioned earlier,
each phase k sees the previous nk = 2k items and creates a template based on them,
which will then be used to schedule the next nk items. To create this template, we define
the offline problem OffMinFailover of minimizing the number of machines that are
required to schedule these nk items. To solve this problem, we design an approximation
algorithm OffMinFailoverAlg achieving a sublinear approximation guarantee (more on this
soon). Specifically, let OPTmach(x1, . . . , xn) be the number of machines that OffMinFailoverAlg
(with ε = 1/n

1/6
k) uses to schedule the demands x1, . . . , xn. OneRound is then as follows:

Algorithm 2 OneRound: Given a number of available machines m̃.

1: Assign the first demand Y1 to an empty edge by itself, opening 2 machines.

2: For phases k = 0, 1, 2, . . .

(a) See the first nk items Y1, . . . , Ynk . Run the algorithm OffMinFailoverAlg from Section 4 (with
ε = 1/n

1/6
k) to find a solution for them that uses OPTmach(Y1, . . . , Ynk) machines; let templ(t)

denote the pair of machines that Yt is assigned to. This solution is our template.
(b) STOP if

#{already open machines}+OPTmach(Y1, . . . , Ynk)︸ ︷︷ ︸
machines from template

+ cst1 ·
√

nk log3/4 nk︸ ︷︷ ︸
predicted unmatched demand

+2m5/6 > m̃.

(c) Else, open a clique of OPTmach(Y1, . . . , Ynk) machines. Upon the arrival of each of the next
nk demands Ynk+1, . . . , Y2nk , assign them to machines based on the template. More precisely,
find the Rhee-Talagrand monotone matching π guaranteed by Theorem 6 from the new to the
old demands (as the new ones arrive online). Schedule each matched new demand Yt to the
pair of machines that Yπ(t) occupied in the template, namely the machine pair templ(π(t)).
For each unmatched new demand, schedule it on an edge by itself (opening two more machines
for each). If at any point the execution tries to open more than m̃ machines, declare FAIL.

3.2 Analysis
We next discuss the main ideas for the analysis of the algorithm FailoverStochastic, leading
to the proof of Theorem 4. We assume throughout that m is at least a sufficiently large
constant, else the success probability 1 − O(1

m) trivially holds. Due to space constraints, we
mostly state and discuss at a high-level the main components of the proof and show how
they imply Theorem 4, deferring details to the full version of the paper.

First, we need to develop two important and complex components. Let OPTmach(J)
denote the minimum number of devices needed to assign all demands from a set of demands
J , satisfying the Nominal and Failover constraints.

ICALP 2023

92:12 Online Demand Scheduling with Failovers

First component. The first component is the aforementioned algorithm OffMinFailoverAlg
that is called within OneRound. It relies on a novel configuration LP, (LPmach), and a
post-processing algorithm to realize a rounded LP solution as a feasible assignment. It has
the following guarantee:

▶ Theorem 7. There exists a poly-time algorithm, OffMinFailoverAlg, that given ε ∈ (0, 1),
finds a solution for OffMinFailover with at most

(
1 + O(ε)

)
LPmach + O(1

ε5) ≤
(
1 +

O(ε)
)
OPTmach + O(1

ε5) machines.

Choosing ε appropriately, we can create a template using at most
EOPTmach(Y1, . . . , Ynk

) + o(nk) devices in expectation for the next nk arrivals. This result
is proved in Section 4.

Second component. Recall from the technical overview that a worrisome aspect of Failover-
Stochastic is that each call to OneRound does not re-use machines from previous rounds. To
show that this is not too wasteful, we prove that EOPTmach(X1, . . . , XT) is approximately lin-
ear in T . We do so by giving a quantitative convergence theorem of EOPTmach(X1, . . . , XT)
to T · c(µ), where c(µ) is a constant that characterizes the “average number of devices needed
per demand.” Furthermore, we use the bounded-differences inequality [3] to show that the
number of machines OPTmach(X1, . . . , XT) is concentrated around this mean. That is, in
the full version of the paper we show the following:

▶ Theorem 8. Let µ be a distribution supported on [0, min{1, B
2 }]. Then there exists a scalar

c(µ) such that for every T ∈ N and λ > 0, we have

OPTmach(X1, . . . , XT) ∈ T · c(µ) ± O(T 5/6) ± λ
√

T

with probability at least 1 − 2e− λ2
2 , where X1, . . . , XT are i.i.d. samples from µ.

Thus splitting the first 2nk demands into two rounds of nk demands each costs us only
an extra o(nk) devices.

With those two results in hand, the core of the analysis is that OneRound gets good
value density, i.e., the ratio of value over number of machines m. We use ES0 to denote the
expected value of the size of a demand (which is the same as ESt for any t).

Specifically, according to Theorem 8, there is a scalar c(µ) such that OPT is able to
fit roughly 1

c(µ) demands per machine. Each such demand gives value roughly ES0; so the
intuition is that the best possible density value/machine should be around ES0

c(µ) . We first
make this formal in the next lemma.

▶ Lemma 9. With probability at least 1 − 2
m2 we have

OPT ≤ m· ES0

c(µ) +O(m5/6) and OPT ≥ min
{

n·ES0 −
√

n log m , m· ES0

c(µ) −O(m5/6)
}

.

Crucially, the next lemma says that OneRound almost achieves this density.

▶ Lemma 10. Let Open be the number of machines opened by OneRound(m̃) (which is a
random variable). Then with probability at least 1 − 1

m2 , the total value of the demands
scheduled by OneRound(m̃) is at least

value of OneRound(m̃) ≥ ES0

c(µ) · Open − O(m5/6).

K. Mellou, M. Molinaro, and R. Zhou 92:13

Given this lemma, we see that the total value of the FailoverStochastic algorithm (which
repeatedly calls OneRound) is approximately ES0

c(µ) times the total machines opened during
the execution. By showing that the number of machines FailoverStochastic opens is ≈ m, we
then almost match the upper bound on OPT from Lemma 9.

▶ Lemma 11. There is a constant cst5 such that with probability 1−O(1
m), FailoverStochastic

opens at least m − 5cst5 · m5/6 machines.

These lemmas quickly lead to the proof of Theorem 4.

Proof of Theorem 4. Let L := log m
log 4/3 denote the number of calls to OneRound that Failover-

Stochastic makes, and let vali and Openi be the value obtained and number of machines
opened by the i-th call. Employing Lemma 10 on these L calls, we have that with probability
at least 1 − L

m2 the total value of FailoverStochastic is

algo value = val1 + . . . + valL ≥ ES0

c(µ) ·
∑
i≤L

Openi − O(m5/6 log m).

Moreover, from Lemma 11, with probability at least 1 − O(1
m) the total number of machines

open
∑

i≤L Openi is at least m − 5cst5 · m5/6, in which case we get

algo value ≥ m · ES0

c(µ) − O(m5/6 log m). (4)

Furthermore, from Lemma 9 we have that OPT ≤ m · ES0
c(µ) + O(m5/6) with probability at

least 1 − 2
m2 . So by taking a union bound and combining this with the above lower bound

on the algorithm’s value, we get that with probability 1 − O(1
m)

algo value ≥ OPT − O(m5/6 log m).

Since (4) also implies that OPT ≥ Ω(m), the previous bound is at least OPT −
O(OPT5/6 log OPT). This concludes the proof of Theorem 4. ◀

We conclude this section by proving the lower bound on the value density of OneRound
from Lemma 10. We defer the proofs of Lemma 9 and 11 to the full version of the paper.

3.2.1 Proof of Lemma 10
First, we control in high-probability the number of phases that OneRound(m̃) executes before
stopping or failing; this is important to avoid dependencies on the total number of demands
n in the instance, which can be arbitrarily bigger than the scale of the effective instance.

▷ Claim 12. With probability 1 − 1
m3 , the number of phases within OneRound is at most

k̄ := log
(

m̃

c(µ) + O(m̃5/6) + 3 log
3
2 m

)
. (5)

Proof. Recall that the demand sizes Y1, Y2, . . . that OneRound sees are still i.i.d. samples from
the original distribution µ. Using Theorem 8, it is not hard to show that with probability
at least 1 − 1

m3 OneRound can schedule at most m̃
c(µ) + O(m̃5/6) + 3 log

3
2 m many of these

demands (for intuition, Theorem 8 indicates that even OPT requires more than m̃ machines
to schedule these many demands). Since this quantity is exactly nk̄, OneRound cannot
complete phase k̄ (there are 2nk̄ demands by the end of it) and the claim holds. ◁

ICALP 2023

92:14 Online Demand Scheduling with Failovers

Next, we need to bound how many machines are opened by OneRound, which in particular
affects the probability of it failing. For a phase k, let Mk := OPTmach(Y1, . . . , Ynk

) denote the
number of machines in the template solution, and let Uk be the number of additional machines
that had to be open to accommodate the unmatched demands among Ynk+1, . . . , Y2nk

, namely
twice the number of unmatched items. Notice that these quantities are well defined even
for phases that the algorithm did not execute. The quantity Mk + Uk is then the number
machines that the algorithm OneRound opens in phase k (if it executes it). We have the
following bounds for the number of machines open, at least for a phase k where the number
of items nk is sufficiently large (but still sublinear in m).

▷ Claim 13. Let k0 := (2
cst2

log m)2/3 for a sufficiently small constant cst2. Then there is a
constant cst1 such that:
1. For k ≥ k0, we have Mk ∈ nk · c(µ) ± cst1 · n

5/6
k with probability ≥ 1 − 1

m3

2. For k ≥ k0, we have Uk ≤ cst1 · √
nk log3/4 nk with probability ≥ 1 − 1

m3

3. nk0 ≤ m5/6.

Proof. Consider a phase k ≥ k0. Since the demand sizes Y1, . . . , Y2nk
seen in this phase

are i.i.d. samples from the original distribution µ, we can bound the minimum number of
machines OPTmach(Y1, . . . , Ynk

) (using Theorem 8 with λ = n
1/3
k) as

OPTmach(Y1, . . . , Ynk
) ∈ nk · c(µ) ± O(n5/6

k)

with probability at least 1 − 2e−
n

2/3
k
2 . Moreover, employing the guarantee of the algorithm

OffMinFailoverAlg used to build the template (Theorem 7 with ε = 1/n
1/6
k), we get that Mk

is in the range nk · c(µ) ± cst1 · n
5/6
k with probability at least 1 − 2 exp(− n

2/3
k

2) for some
constant cst1. But since nk = 2k ≥ 2k0 , a quick calculation shows that this probability is at
least 1 − 1

m3 , proving the first item of the claim.
To control Uk, we can use the Monotone Matching Theorem (Theorem 6) with the first

sequence of sizes being the demands from the template, i.e., (B1, . . . , Bnk
) = (Y1, . . . , Ynk

),
and the second one being the demands that we attempted to match to them, namely
(A1, . . . , Ank

) = (Ynk+1, . . . , Y2nk
) to obtain that the number of unmatched demands is at

most cst · √
nk log3/4 nk with probability at least 1 − e−cst·log3/2 nk , and hence with this

probability Uk ≤ 2cst · √
nk log3/4 nk. Again because k ≥ k0, we get that this probability is

at least 1 − 1
m3 , proving Item 2 of the claim (by taking cst1 ≥ 2cst we can just replace the

latter by the former).
The last item nk0 ≤ m5/6 of the claim can be directly verified using the fact that we

assumed m is at least a sufficiently large constant. ◁

Recall that OneRound only fails when the number of machines Mk + Uk actually opened
in a phase is bigger than it “predicted” in Line 2.b, and this prediction is exactly Mk plus
the upper bound Uk from Claim 13 plus a slack of 2m5/6. By considering all phases, it is
now easy to upper bound the probability that OneRound fails (k̄ is defined in (5)).

▷ Claim 14. The probability that OneRound fails is at most k̄+1
m3 .

Proof. Fix any phase k, and we claim that the probability that OneRound fails on this phase
is at most 1

m3 . If OneRound fails on phase k, then it did not STOP in Line 2.b, so

[machines open before phase k] + OPTmach(Y1, . . . , Ynk) + cst1 ·
√

nk log3/4 nk + 2m5/6 ≤ m̃,

but it ran out of machines during phase k, namely

[machines open before phase k] + (Mk + Uk) > m̃.

K. Mellou, M. Molinaro, and R. Zhou 92:15

Since Mk = OPTmach(Y1, . . . , Ynk
), these observations imply that Uk > cst1 ·√nk log3/4 nk +

2m5/6. This is impossible if nk ≤ m5/6, because the number of machines Uk opened for
the unmatched demands is at most twice the number nk of demands considered for the
matching. So we must have nk > m5/6 (and so from Claim 13 k ≥ k0) and at least
Uk > cst1 · √

nk log3/4 nk; but again by Claim 13 the latter happens with probability at most
1

m3 . Thus, the probability that OneRound fails on phase k is at most 1
m3 .

Moreover, by Claim 12, with probability at least 1 − 1
m3 OneRound has at most k̄ phases.

Then taking a union bound, we see that the event that OneRound has at most k̄ phases and
in all of them it does not fail holds with probability at least 1 − k̄+1

m3 ; in particular, with at
least this much probability the algorithm does not fail in its execution, proving the claim.

◁

We now finally lower bound the value that OneRound gets. Let τ be the (random) index
of the last phase attempted by OneRound, namely where Line 2.c is executed. As long as it
does not fail on the last phase τ (which by the previous claim happens with probability at
least 1 − k̄+1

m3) OneRound gets the value of all items up until this phase, that is

value of OneRound ≥ Y1 + . . . + Y2nτ ≥ Y1 + . . . + Y2nmin{τ,k̄}
. (6)

Recall that the Yi’s are independent and each has mean ES0. Then employing the Chernoff
bound (Theorem 2.8 of [3]), for any fixed t ≤ nk̄ we have that

Y1 + . . . + Yt ≥ t · ES0 −
√

nk̄ log(m3 · nk̄) with probability at least 1 − 1
m3 · nk̄

.

Then taking a union bound over (6), the previous displayed inequality for all t ≤ nk̄, and
over the event that OneRound has at most k̄ phases (which holds with probability at least
1 − 1

m3) we get that

value of OneRound ≥ 2nmin{τ,k̄} · ES0 −
√

nk̄ log(m3 · nk̄)

= 2nτ · ES0 −
√

nk̄ log(m3 · nk̄)

≥ 2nτ · ES0 − O(m5/6) with probability ≥ 1 − k̄ + 3
m3 . (7)

To conclude the proof of Lemma 10 we just need to relate this quantity to the number
of machines opened by OneRound. Let Openℓ be the number of machines opened until
(including) phase ℓ, and recall that Open is the number of machines opened over all phases.
Since the number of machines opened on phase k is Mk + Uk (plus two machines for the first
demand Y1), we have

Openℓ = 2 + (M1 + U1) + . . . + (Mℓ + Uℓ) (8)

To upper bound the right-hand side, for the phases k < k0 we just use the fact that
Mk + Uk ≤ 2nk + 2nk = 4nk, since both in the template and for the unmatched demands we
never open more than 2 machines per demand considered (and nk demands are considered
in each part). For each phase k = k0, . . . , k̄ we can use Claim 13 to upper bound Mk + Uk

with probability at least 1 − 2
m3 by

Mk + Uk ≤ nk · c(µ) + cst1 · n
5/6
k + cst1 ·

√
nk log3/4 nk ≤ nk · c(µ) + cst3 · n

5/6
k

for some constant cst3. Together these bounds give that with probability at least 1 − 2ℓ
m3

Openℓ ≤ 2 +
∑

k<k0

4nk +
ℓ∑

k=k0

(
nk · c(µ) + cst3 · n

5/6
k

)
.

ICALP 2023

92:16 Online Demand Scheduling with Failovers

To further upper bound the first summation on the right-hand side, because of the exponential
relationship nk = 2k, we have

∑
k<k0

4nk ≤ 8nk0−1 ≤ O(m5/6), the last inequality coming
from Claim 13; for the second summation, we analogously have

∑ℓ
k=k0

nk ≤ 2nℓ and∑ℓ
k=k0

n
5/6
k ≤ O(n5/6

ℓ). Therefore,

Openℓ ≤ 2nℓ · c(µ) + O(n5/6
ℓ) + O(m5/6) with probability at least 1 − 2ℓ

m3 . (9)

Finally, since by Claim 12 the number of phases τ performed by OneRound is at most k̄ with
probability at least 1 − 1

m3 , the total number of machines open can be upper bounded

Open ≤ Openmin{τ,k̄} ≤ 2nτ · c(µ) + O(n5/6
k̄

) + O(m5/6) ≤ 2nτ · c(µ) + O(m5/6)

with probability at least 1 − 2k̄+1
m3 .

Finally, taking a union bound to combine this inequality with (7), we get that

value of OneRound ≥ ES0

c(µ) · Open − O(m5/6)

with probability at least 1 − 3k̄+4
m3 . Since m is at least a sufficiently large constant, we have

m ≥ 3k̄ + 4, and the bound from the displayed inequality holds with probability at least
1 − 1

m2 . This finally concludes the proof of Lemma 10.

4 Offline Machine Minimization

In this section we consider the aforementioned (offline) minimization version of Failover,
which we call OffMinFailover: Given a failover capacity B ≥ 1 and a collection of demands
such that demand j has size sj ∈ [0, min{1, B

2 }], we need to assign all demands to pairs of
machines while satisfying the Nominal and Failover constraints, and the goal is to minimize
the number of machines used. As before, we use OPTmach = OPTmach(s1, . . . , sn) to denote
the cost of (i.e. number of machines in) the optimal solution.

The main result of this section (Theorem 7, restated) is an efficient algorithm with a
sublinear additive regret for this problem (when ε is set appropriately). We remark that
a sublinear regret (compared to, say, a constant approximation) is necessary due to its
use in Section 3. In fact, the algorithm compares against the stronger optimum of an LP
relaxation for the problem (denoted by (LPmach), and defined below). We let LPmach denote
the optimal value of this LP.

▶ Theorem 7. There exists a poly-time algorithm, OffMinFailoverAlg, that given ε ∈ (0, 1),
finds a solution for OffMinFailover with at most

(
1 + O(ε)

)
LPmach + O(1

ε5) ≤
(
1 +

O(ε)
)
OPTmach + O(1

ε5) machines.

As hinted above, our algorithm is based on converting a solution of a configuration LP into
a good assignment of demands to pairs of machines. But crucially, while the configuration of
each machine controls the total size of demands serviced by it, it has no information how
these demands are distributed over the “edges” incident to the machine, which is important
for adequately handling the Failover constraints. The post-processing of the LP solution is
the one in charge of creating a feasible (and low-cost) assignment from this limited control
offered by the LP.

K. Mellou, M. Molinaro, and R. Zhou 92:17

4.1 Configuration LP
Consider an assignment of the demands into some number of machines. We can view the
collection of demands assigned to (the edges incident to) a given machine as a configuration.
Precisely, we define a configuration C to be a subset of the demands such that

∑
s∈C s ≤ 1

and
∑

s∈C s+maxs∈C s ≤ B. Note that the first constraint is exactly the Nominal constraint,
while the second is a relaxation of the Failover constraint, because the most-loaded edge
incident on some machine can be larger than the single largest demand assigned to that
machine. Thus, our notion of configuration does not take in to account how the demands are
assigned to the respective edges incident on each machine.

To define our configuration LP, we suppose the input collection of demands is partitioned
into T demand types such that type t consists of nt-many demands each with size st. Thus
each configuration C can be represented by a number nt(C) ∈ N of demands for each type t

such that
∑

t nt(C) · st ≤ 1 and
∑

t nt(C) · st + maxt| nt(C)>0 st ≤ B. We are ready to define
our configuration LP:

min
∑

C xC

s.t.
∑

C nt(C) · xC ≥ 2nt ∀t

x ≥ 0
(LPmach)

Note that the definition of (LPmach) depends on how the demands are partitioned into
types. We show in the full version of the paper that the optimal value of (LPmach) does
not depend on the particular type partition. Thus, throughout the analysis, we will use
whichever type partition is convenient (unless a particular one is specified).

It is immediate that (LPmach) is a relaxation of OffMinFailover by taking the natural
setting of the x-variables defined by a feasible assignment to machines: just let xC be the
number of machines whose collection of demand sizes assigned to its edges are exactly those
in C. In particular, we have that LPmach ≤ OPTmach.

Although (LPmach) has exponentially many variables in general, we can approximately
solve it via column generation similar to the standard bin packing configuration LP [10, 17]
(proof in the full version of the paper).

▶ Lemma 15. We can find in poly-time an extreme point solution of (LPmach) with objective
value at most LPmach + 1.

Further, observe that (LPmach) only has T non-trivial constraints, so by the standard
rank argument (see for example Lemma 2.1.3 of [12]) any extreme point solution of (LPmach)
has at most T non-zero variables. Thus, the next lemma follows immediately by rounding
up all the fractional variable of an extreme point solution.

▶ Lemma 16. Given an extreme point of (LPmach) with objective value Val, rounding up
all fractional variables to the next largest integer gives an integral solution to (LPmach) with
objective value at most Val + T .

To summarize this section, we can efficiently obtain a collection of configurations, each
corresponding to a machine, that “covers” all the demands. However, these configurations do
not specify how to actually assign the demands to the edges incident on the corresponding
machine. This is the goal of the next section.

4.2 Matching configurations
We say that a collection C of configurations is feasible if it comes from an integer solution for
(LPmach), i.e. setting xC to be the number of times C appears in C gives a feasible solution
for (LPmach). Our goal in this section is to realize such collection by actually assigning
demands to edges. The main challenge is satisfying the actual Failover constraints.

ICALP 2023

92:18 Online Demand Scheduling with Failovers

For simplicity assume
∑

C∈C nt(C) = 2nt for all types t, i.e. each demand appears on
exactly 2 configurations (drop from the configurations what is extra). We can think of C
(with, say, N configurations) as a graph on N nodes/machines, where node/machine C ∈ C
has nt(C) “slots” for demands of type t. While this gives the right number of slots 2nt to
accommodate the demands of each type t, we still need to specify to which edge (pair of
machines) each of the nt demands of type t is assigned in a way that satisfies the Nominal
and Failover constraints. (We can alternatively see this as a graph realization problem: each
node C as having a requirement nt(C) of “edges of type t” (which we call its t-degree) and
we want to create edges of different types (i.e., assignment of demands to pairs of nodes) to
satisfy these requirements while also satisfying the Nominal and Failover constraints.)

To see the challenge, consider a fixed node/configuration C. Regardless of how we assign
demands to edges (as long as it is consistent with the slots of the configurations), the Nominal
constraint of C is satisfied: it will receive total size

∑
t nt(C) · st =

∑
s∈C s, which is at most

1 by definition of a configuration. This is not the case for the Failover constraint. This is
again because the definition of configuration only gives us the relaxed version of the Failover
constraint

∑
s∈C s + maxs∈C s ≤ B, In particular, the blue term only considers the largest

demand assigned to machine C instead of the most-loaded edge incident to C. However,
these two quantities are the same if we are able to assign at most one demand per edge. (In
the graph realization perspective, it means that it suffices to construct a simple graph with
the desired t-degrees.) But it is not clear that such an assignment should even exist, let
alone be found efficiently.

The main result of this section is that – by opening slightly more machines – we can find
such an assignment that realizes any given collection of configurations satisfying both the
Nominal and Failover constraints.

▶ Theorem 17. Consider an instance of OffMinFailover with T demand types. Given
a collection C of N configurations that is feasible for (LPmach), we can find in poly-time a
feasible solution for OffMinFailover that uses at most N + O(DT) machines, where D is
the maximum number of demands in any configuration in C.

For that, we will need the following subroutine to assign some demands outside of their
respective configurations. This result easily follows by opening disjoint edges as needed, and
assigning demands arbitrarily to an already-opened edge is possible.

▶ Lemma 18. There is a poly-time algorithm for OffMinFailover that uses at most
8 · S + 2 machines, where S is the sum of the size of the demands in the instance.

The algorithm guaranteed by Theorem 17 is the following. In order to simplify the
notation, as before we assume without loss of generality that C has

∑
C∈C nt(C) = 2nt for

all types t.

Proof of Theorem 17. It is clear that MatchConfigs runs in polynomial time, and assigns
all demands to edges. Further, this assignment satisfies both the Nominal and Failover
constraints, because we assign at most one demand per edge in Step 4 (see discussion in the
beginning of this section), and Step 5 guarantees a feasible assignment for the remaining
demands.

It remains to show that it opens N + O(DT) machines. In particular, by Lemma 18 it
suffices to show that the total size of all unassigned demands that reach Step 5 is O(DT).
When considering demand type t, there are two possibilities:

K. Mellou, M. Molinaro, and R. Zhou 92:19

Algorithm 3 MatchConfigs: Given a collection C of N configurations.

1: Open N machines – one corresponding to each configuration in C.

2: Consider demand types in arbitrary order t = 1, . . . , T .

3: When considering demand type t, partition the collection C into two collections Lt and Rt such
that their total t-degrees

∑
C∈Lt

nt(C) and
∑

C∈Rt
nt(C) differ by at most Dt, where Dt is

the maximum number of type t demands in any configuration. (This can be achieved, e.g., by
initializing Lt, Rt = ∅, and adding configurations one-by-one to the set with minimum total
t-degree.)

4: Given this partition, as long as there exists a configuration C ∈ Lt that is currently assigned
less than nt(C) demands of type t, we pick such a configuration and assign a demand of type
t to an arbitrary edge (C, C ′) (for C′ ∈ Rt) that has not yet been assigned a demand of any
type and such that C′ is currently assigned less than nt(C′) demands of type t. If no such edge
exists, then we stop and move on to the next demand type.

5: Once we are done considering all demand types, assign all the currently unassigned demands to
new machines using Lemma 18.

Case 1: Step 4 assigns nt(C) type t demands to each C ∈ Lt. In this case it assigns∑
C∈Lt

nt(C) type t demands to edges between Lt and Rt, while the total number of
type t demands is

nt = 1
2

(∑
C∈Lt

nt(C) +
∑

C∈Rt

nt(C)
)

≤
∑

C∈Lt

nt(C) + Dt

2 , (10)

where the inequality uses the fact that the t-degree of Rt is at most that of Lt plus Dt.
Thus, at most Dt

2 demands of type t remain unassigned and reach Step 5. The total size
of these demands it at most 1

2 , since Dt demands of type t are in a valid configuration.
Hence the total size of the unassigned demands of all types is at most T

2 ≤ O(DT).
Case 2: Step 4 fails to assign nt(C̄) to a configuration C̄ ∈ Lt. In this case, for each C ′ ∈ Rt,

either the edge (C̄, C ′) is already assigned some demand (call such C ′ blocked) or C ′ has
already been assigned nt(C ′) demands of type t. But there are at most D blocked C ′’s,
since the configuration C̄ has at most D slots to receive demands. Thus the total number
of type-t demands assigned is at least∑

C′∈Rt\blocked

nt(C′) ≥
∑

C′∈Rt

nt(C′) − D · max
C′∈blocked

nt(C′) ≥
∑

C′∈Rt

nt(C′) − D · Dt.

Moreover, exchanging the roles of Lt and Rt in the argument from (10) we get that∑
C′∈Rt

nt(C ′) ≥ nt − Dt

2 , and thus at least nt − D · Dt − Dt

2 demands of type t are
assigned by Step 4. Thus at most O(D · Dt) demands (hence total size O(D)) of this
type remain unassigned and reach Step 5. This a total size of O(DT), over all demand
types, that reach the latter step, as desired. ◀

We summarize the main results of this section and the previous with the next theorem:
By approximately solving (LPmach) (Lemma 15), rounding the solution (Lemma 16), and
using the above algorithm to obtain an assignment of demands to edges (Theorem 17), we
obtain the following.

▶ Theorem 19. Consider an instance of OffMinFailover that has most T demands types
and where each configuration has at most D demands. Then there is a poly-time algorithm
that finds a feasible solution that uses at most LPmach + O(DT) machines.

ICALP 2023

92:20 Online Demand Scheduling with Failovers

To obtain our main result, Theorem 7, we need to modify the input instance to make D

and T small enough. In the full version of this paper – by losing a multiplicative (1 + O(ϵ))-
factor – we show how to ensure that D, T = poly(1

ϵ) by rounding demand sizes and handling
the small demands separately. This concludes the proof of Theorem 7.

References
1 Sara Ahmadian and Zachary Friggstad. Further approximations for demand matching: Matroid

constraints and minor-closed graphs. In 44th International Colloquium on Automata, Languages,
and Programming, ICALP, 2017. doi:10.4230/LIPIcs.ICALP.2017.55.

2 János Balogh, József Békési, György Dósa, Leah Epstein, and Asaf Levin. A New and Improved
Algorithm for Online Bin Packing. In 26th Annual European Symposium on Algorithms (ESA),
2018. doi:10.4230/LIPIcs.ESA.2018.5.

3 Stéphane Boucheron, Gábor Lugosi, and Pascal Massart. Concentration inequalities: A
nonasymptotic theory of independence. Oxford university press, 2013.

4 Chandra Chekuri and Sanjeev Khanna. A polynomial time approximation scheme for the
multiple knapsack problem. SIAM Journal on Computing, 35(3):713–728, 2005. doi:10.1137/
S0097539700382820.

5 Janos Csirik, David S Johnson, Claire Kenyon, James B Orlin, Peter W Shor, and Richard R
Weber. On the sum-of-squares algorithm for bin packing. Journal of the ACM (JACM),
53(1):1–65, 2006.

6 Anupam Gupta and Jochen Könemann. Approximation algorithms for network design: A
survey. Surveys in Operations Research and Management Science, 16(1):3–20, 2011. doi:
10.1016/j.sorms.2010.06.001.

7 Anupam Gupta and Marco Molinaro. How the experts algorithm can help solve lps online.
Mathematics of Operations Research, 41(4):1404–1431, 2016. doi:10.1287/moor.2016.0782.

8 Varun Gupta and Ana Radovanović. Interior-point-based online stochastic bin packing.
Operations Research, 68(5):1474–1492, 2020.

9 Rebecca Hoberg and Thomas Rothvoss. A logarithmic additive integrality gap for bin packing.
In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA, 2017.

10 Narendra Karmarkar and Richard M. Karp. An efficient approximation scheme for the one-
dimensional bin-packing problem. In 23rd Annual Symposium on Foundations of Computer
Science (SFCS 1982), pages 312–320, 1982. doi:10.1109/SFCS.1982.61.

11 Madhukar Korupolu, Adam Meyerson, Rajmohan Rajaraman, and Brian Tagiku. Coupled and
k-sided placements: Generalizing generalized assignment. Math. Program., 154(1–2):493–514,
December 2015. doi:10.1007/s10107-015-0930-1.

12 Lap-Chi Lau, R. Ravi, and Mohit Singh. Iterative Methods in Combinatorial Optimization.
Cambridge University Press, USA, 1st edition, 2011.

13 Shang Liu and Xiaocheng Li. Online bin packing with known T. arXiv preprint
arXiv:2112.03200, 2021.

14 Aranyak Mehta, Amin Saberi, Umesh Vazirani, and Vijay Vazirani. Adwords and generalized
online matching. J. ACM, 54(5):22–es, October 2007. doi:10.1145/1284320.1284321.

15 Wansoo T. Rhee and Michel Talagrand. Optimal bin packing with items of random sizes II.
SIAM Journal on Computing, 18(1):139–151, 1989. doi:10.1137/0218009.

16 Wansoo T Rhee and Michel Talagrand. On-line bin packing of items of random sizes, II. SIAM
Journal on Computing, 22(6):1251–1256, 1993.

17 Thomas Rothvoß. The entropy rounding method in approximation algorithms. In Proceedings
of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA, 2012.

18 David B Shmoys and Éva Tardos. An approximation algorithm for the generalized assignment
problem. Mathematical programming, 62(1):461–474, 1993.

19 Chaojie Zhang, Alok Gautam Kumbhare, Ioannis Manousakis, Deli Zhang, Pulkit A Misra,
Rod Assis, Kyle Woolcock, Nithish Mahalingam, Brijesh Warrier, David Gauthier, et al.
Flex: High-availability datacenters with zero reserved power. In ACM/IEEE 48th Annual
International Symposium on Computer Architecture (ISCA), 2021.

https://doi.org/10.4230/LIPIcs.ICALP.2017.55
https://doi.org/10.4230/LIPIcs.ESA.2018.5
https://doi.org/10.1137/S0097539700382820
https://doi.org/10.1137/S0097539700382820
https://doi.org/10.1016/j.sorms.2010.06.001
https://doi.org/10.1016/j.sorms.2010.06.001
https://doi.org/10.1287/moor.2016.0782
https://doi.org/10.1109/SFCS.1982.61
https://doi.org/10.1007/s10107-015-0930-1
https://doi.org/10.1145/1284320.1284321
https://doi.org/10.1137/0218009

Faster Parameterized Algorithms for Modification
Problems to Minor-Closed Classes
Laure Morelle #

LIRMM, Université de Montpellier, CNRS, France

Ignasi Sau #

LIRMM, Université de Montpellier, CNRS, France

Giannos Stamoulis #

LIRMM, Université de Montpellier, CNRS, France

Dimitrios M. Thilikos #

LIRMM, Université de Montpellier, CNRS, France

Abstract
Let G be a minor-closed graph class and let G be an n-vertex graph. We say that G is a k-apex of
G if G contains a set S of at most k vertices such that G \ S belongs to G. Our first result is an
algorithm that decides whether G is a k-apex of G in time 2poly(k) · n2. This algorithm improves the
previous one, given by Sau, Stamoulis, and Thilikos [ICALP 2020, TALG 2022], whose running time
was 2poly(k) · n3. The elimination distance of G to G, denoted by edG(G), is the minimum number of
rounds required to reduce each connected component of G to a graph in G by removing one vertex
from each connected component in each round. Bulian and Dawar [Algorithmica 2017] proved the
existence of an FPT-algorithm, with parameter k, to decide whether edG(G) ≤ k. This algorithm is
based on the computability of the minor-obstructions and its dependence on k is not explicit. We
extend the techniques used in the first algorithm to decide whether edG(G) ≤ k in time 222poly(k)

· n2.
This is the first algorithm for this problem with an explicit parametric dependence in k. In the
special case where G excludes some apex-graph as a minor, we give two alternative algorithms, one
running in time 22O(k2 log k)

· n2 and one running in time 2poly(k) · n3. As a stepping stone for these
algorithms, we provide an algorithm that decides whether edG(G) ≤ k in time 2O(tw·k+tw log tw) · n,
where tw is the treewidth of G. This algorithm combines the dynamic programming framework of
Reidl, Rossmanith, Villaamil, and Sikdar [ICALP 2014] for the particular case where G contains only
the empty graph (i.e., for treedepth) with the representative-based techniques introduced by Baste,
Sau, and Thilikos [SODA 2020]. In all the algorithmic complexities above, poly is a polynomial
function whose degree depends on G, while the hidden constants also depend on G. Finally, we
provide explicit upper bounds on the size of the graphs in the minor-obstruction set of the class of
graphs Ek(G) = {G | edG(G) ≤ k}.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases Graph minors, Parameterized algorithms, Graph modification problems,
Vertex deletion, Elimination distance, Irrelevant vertex technique, Flat Wall Theorem, Obstructions

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.93

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://doi.org/10.48550/arXiv.2210.02167

Funding Supported by the ANR projects ELIT (ANR-20-CE48-0008-01), ESIGMA (ANR-17-CE23-
0010), and the French-German Collaboration ANR/DFG Project UTMA (ANR-20-CE92-0027).

Acknowledgements We would like to thank the reviewers for helpful remarks that improved the
presentation of the article.

EA
T
C
S

© Laure Morelle, Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 93; pp. 93:1–93:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:laure.morelle@lirmm.fr
mailto:ignasi.sau@lirmm.fr
mailto:giannos.stamoulis@lirmm.fr
mailto:sedthilk@thilikos.info
https://doi.org/10.4230/LIPIcs.ICALP.2023.93
https://doi.org/10.48550/arXiv.2210.02167
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

93:2 Faster Parameterized Algorithms for Modification Problems to Minor-Closed Classes

1 Introduction

The distance from triviality is a concept formalized by Guo, Hüffner, and Niedermeier [24] to
express the closeness of a graph to a supposedly “simple” target graph class. One such a
measure of closeness is, for instance, the number of vertices or edges that one must delete/add
from/to a graph G to obtain a graph in the target graph class. This concept of distance to a
graph class has recently gained the interest of the parameterized complexity community. The
motivation is that, if a problem is tractable on a graph class G, it is natural to study other
classes of graphs according to their “distance to G”. In this paper, we focus on two such
measures of distance from triviality: Given a target graph class G, we consider the vertex
deletion distance to G and the elimination distance to G, which we formalize next.

Given a target graph class G and a non-negative integer k, we define Ak(G) as the set of
all graphs containing a set S of at most k vertices whose removal results in a graph in G. If
G ∈ Ak(G), then we say that G is a k-apex of G. We refer to S as a k-apex set of G for the
class G. In other words, we consider the following meta-problem for a fixed class G.

Vertex Deletion to G
Input: A graph G and a non-negative integer k.
Objective: Find, if it exists, a k-apex set of G for the class G.

Throughout the paper, we denote by n (resp. m) the number of vertices (resp. edges) of
the input graph of the problem under consideration. The importance of Vertex Deletion
to G can be illustrated by the variety of graph modification problems that it encompasses.
For instance, if G is the class of edgeless (resp. acyclic, planar, bipartite, (proper) interval,
chordal) graphs, then we obtain the Vertex Cover (resp. Feedback Vertex Set, Vertex
Planarization, Odd Cycle Transversal, (proper) Interval Vertex Deletion,
Chordal Vertex Deletion) problem.

The second measure of distance from triviality that we study was recently introduced by
Bulian and Dawar [10,11]. Given a graph class G, we define the elimination distance of a
graph G to G, denoted by edG(G), as follows:

edG(G) =


0 if G ∈ G,
1 + min{edG(G \ {v}) | v ∈ V (G)} if G is connected,
max{edG(H) | H is a connected component of G} otherwise.

Given that edG(G) ≤ k, a set S ⊆ V (G) of vertices recursively deleted from G to achieve
edG(G) is called a k-elimination set of G for G. We define the (parameterized) class of
graphs Ek(G) = {G | edG(G) ≤ k}. The above notion can be seen as a natural generalization
of treedepth (denoted by td), which corresponds to the case where G contains only the
empty graph. Treedepth, along with treewidth, are two of the most studied and widely
used parameters to measure the structural complexity of a graph [12, 36, 43]. The second
meta-problem that we consider is the following, again for a fixed graph class G.

Elimination Distance to G
Input: A graph G and a non-negative integer k.
Objective: Find, if it exists, a k-elimination set of G for the class G.

Unsurprisingly, Vertex Deletion to G is NP-hard for every non-trivial graph class
G [41], while Elimination Distance to G is NP-hard even when G contains only the empty
graph [45]. To circumvent this intractability, we study both problems from the parameterized

L. Morelle, I. Sau, G. Stamoulis, and D. M. Thilikos 93:3

complexity point of view and consider their parameterizations by k. In this setting, the most
desirable behavior is the existence of an algorithm running in time f(k) · nO(1), where f is
a computable function depending only on k. Such an algorithm is called fixed-parameter
tractable, or FPT-algorithm for short, and a parameterized problem admitting an FPT-
algorithm is said to belong to the parameterized complexity class FPT. Also, the function f

is called parametric dependence of the corresponding FPT-algorithm, and the challenge is to
design FPT-algorithms with small parametric dependencies and with a polynomial factor of
small degree [12, 14, 17, 44]. We may also consider XP-algorithms, i.e., algorithms running in
time f(k) · ng(k) for some computable functions f and g depending only on k.

In general, for any of the two considered problems, we cannot expect FPT-algorithms for
every graph class G. For instance, the two problems are NP-hard, even for k = 0, for every
graph class G whose recognition problem is NP-hard. This is the case of 3-colorable graphs,
which is a class closed under taking (induced) subgraphs. In this paper, we focus on a family
of graph classes that exhibits a nice behavior with respect to the considered problems (and
many others): we consider G to be a minor-closed graph class, i.e., such that every minor
of a graph in G (that is, obtained from a subgraph of a graph in G by contracting edges;
see Section 2 for the formal definition) is also in G. Indeed, it turns out that, for every such
a family G, the problems become fixed-parameter tractable, as we proceed to discuss.

The minor-obstruction set (in short obstruction set) of G is the set of minor-minimal
graphs that do not belong to G, and is denoted by obs(G). Notice that obs(G) gives a
complete characterization of G as, for every graph G, it holds that G ∈ G if and only if, for
every H ∈ obs(G), H is not a minor of G. Because of Robertson and Seymour’s theorem [49],
obs(G) is finite for every minor-closed graph class. As checking whether an h-vertex graph H
is a minor of G can be done in time f(h) · n2 [31, 47], the finiteness of obs(G) along with the
above characterization imply that, for every minor-closed graph class G, checking whether
G ∈ G can be done in time c · n2, where c is a constant depending on the graph class G.
This meta-theorem implies the existence of FPT-algorithms for a wide family of problems,
including Vertex Deletion to G and Elimination Distance to G. Indeed, this follows
by observing that if G is minor-closed, then for every non-negative integer k, the classes
Ak(G) and Ek(G) are also minor-closed.

As Robertson and Seymour’s theorem [49] does not give any way to construct the
corresponding obstruction sets, the aforementioned argument is not constructive, i.e., it cannot
construct the obstruction sets required for the corresponding FPT-algorithms. Moreover,
these algorithms are non-uniform in k, meaning that we have a distinct algorithm for every
value of k. Important steps towards the constructibility of such FPT-algorithms were done
by Adler, Grohe, and Kreutzer [1] and Bulian and Dawar [11], who respectively proved
that obs(Ak(G)) and obs(Ek(G)) are effectively computable. Hence, for both problems, it is
possible to construct uniform (in k) algorithms running in time f(k) ·n2 for some computable
function f . However, this does not imply any reasonable, or even explicit, parametric
dependence of the obtained algorithms.

The main focus of this paper is on the parametric and polynomial dependence of FPT-
algorithms to solve Vertex Deletion to G and Elimination Distance to G, i.e., for
recognizing the classes Ak(G) and Ek(G), when G is a minor-closed graph class.

Concerning Vertex Deletion to G, after a number of articles for particular cases of
minor-closed classes G, such as graphs of bounded treewidth [19,34], planar graphs [27, 42],
or graphs of bounded genus [37], an explicit FPT-algorithm for any minor-closed graph G was
recently proposed by Sau, Stamoulis, and Thilikos [51], running in time 2O(kc) · n3, where
c is a constant that depends on the maximum size of a graph in the obstruction set of G.

ICALP 2023

93:4 Faster Parameterized Algorithms for Modification Problems to Minor-Closed Classes

Moreover, in the case where obs(G) contains some apex-graph (that is, a 1-apex for the
class of planar graphs), Sau, Stamoulis, and Thilikos [51] gave an improved running time of
2O(kc) · n2. Note also that the more general variant where G is a topological-minor-closed
graph class is in FPT as well [20].

As for Elimination Distance to G when G is minor-closed, no explicit parametric
dependence was known, with the notable exception of treedepth, for which Reidl, Rossmanith,
Villaamil, and Sikdar [46] gave an algorithm deciding whether td(G) ≤ k in time 2O(k·tw) · n,
where tw := tw(G) (see also [9]). Using our terminology, and given that tw(G) ≤ td(G) for
every graph G, this yields an FPT-algorithm for Elimination Distance to G∅, where
G∅ is the class consisting of the empty graph, running in time 2O(k2) · n. Note that this
algorithm [46], combined with the fact that td(G) ≤ log(n) · tw(G) (see [9]), imply an XP-
algorithm for the problem of computing td when parameterized by tw, namely an algorithm
that computes the value of td(G) in time nO(tw(G)2). To the best of our knowledge, it is open
whether computing td parameterized by tw is in FPT.

Before describing our results, let us mention some recent relevant results dealing with
Elimination Distance to G for classes G that are not necessarily minor-closed. Agrawal
and Ramanujan [4] (resp. Agrawal, Kanesh, Panolan, Ramanujan, and Saurabh [3]) provided
FPT-algorithms, with parameter k, when G is the class of cliques (resp. graphs of bounded
degree). Fomin, Golovach, and Thilikos [18] identified sufficient and necessary conditions
for the existence of FPT-algorithms when G is definable in first-order logic (such as having
bounded degree). Jansen, de Kroon, and Włodarczyk [26] proved, among other results, that if
G is a hereditary union-closed graph class and Vertex Deletion to G can be solved in time
2kO(1) ·nO(1) (as it is the case for every minor-closed class G by the results of [51]), then there
is an algorithm that, given an n-vertex graph G, computes an O(edG(G)3)-elimination set of
G for G in time 2edG(G)O(1) · nO(1). Therefore, for union-closed minor-closed graph classes G,
the result of [26] yields an FPT-approximation algorithm for Elimination Distance to G.

Agrawal, Kanesh, Lokshtanov, Panolan, Ramanujan, Saurabh, and Zehavi [2] proved that
if G is hereditary, union-closed, and definable in monadic second-order logic, then Vertex
Deletion to G is (non-uniformly) in FPT if, and only if, Elimination Distance to G is
(non-uniformly) in FPT. Incidentally, they also showed that if G is defined by excluding a finite
number of connected topological minors, then Elimination Distance to G is (uniformly)
in FPT. We note that the results of [2] do not provide explicit parametric dependencies for
these FPT-algorithms. Also, let us mention that it was conjectured in [2] that Elimination
Distance to G is in FPT parameterized by a generalization of treewidth called G-treewidth
(see [2, 16,26]). Note that, if true, this conjecture would answer the open problem mentioned
above of whether computing td parameterized by tw is in FPT.

Our results. In this paper, we provide explicit FPT-algorithms for Vertex Deletion to
G and Elimination Distance to G for every fixed minor-closed graph class G. Our first
result is the following.

▶ Theorem 1. For every minor-closed graph class G, there exists an algorithm that solves
Vertex Deletion to G in time 2poly(k) · n2.

The degree of the polynomial function poly in the running time of Theorem 1 and of the
other results below, as well as the constants hidden in the O-notation in the running time of
the algorithms, depend on the maximum size of a graph in obs(G). Thus, the algorithm of
Theorem 1, while being uniformly FPT in k, is not uniform in the target class G, as one needs
to know an upper bound on the size of the minor-obstructions. This “meta-non-uniformity”

L. Morelle, I. Sau, G. Stamoulis, and D. M. Thilikos 93:5

applies to all the algorithms presented in this paper, and it is also the case, among many
others, of the FPT-algorithms in [51]. The algorithm of Theorem 1 improves the algorithm
of [51] from cubic to quadratic complexity in n while keeping the same parametric dependence
on k. This answers positively one of the open problems posed in [51].

Our next algorithmic results concern Elimination Distance to G and provide, to the
authors’ knowledge, the first FPT-algorithms for this problem, when G is minor-closed, with
an explicit parametric dependence.

▶ Theorem 2. For every minor-closed graph class G, there exists an algorithm that solves
Elimination Distance to G in time 222poly(k)

· n2. In the particular case where obs(G)
contains an apex-graph, this algorithm runs in time 22O(k2 log k) · n2.

Examples of classes G where obs(G) contains an apex-graph are graphs of bounded Euler
genus, such as planar graphs. Our next result improves the parametric dependence of the
algorithm of Theorem 2 when obs(G) contains an apex-graph, with a worse polynomial factor.

▶ Theorem 3. For every minor-closed graph class G such that obs(G) contains an apex-graph,
there exists an algorithm that solves Elimination Distance to G in time 2poly(k) · n3.

As discussed later, a crucial ingredient in the algorithms of Theorem 2 and Theorem 3 is
to solve Elimination Distance to G parameterized by the treewidth of the input graph.
The following result, which may be of independent interest, deals with this case.

▶ Theorem 4. For every minor-closed graph class G, there exists an algorithm that solves
Elimination Distance to G in time 2O(k·tw+tw log tw) · n, where tw denotes the treewidth of
the input graph.

The algorithm of Theorem 4 can be seen as a generalization of the algorithm of Reidl,
Rossmanith, Villaamil, and Sikdar [46] deciding whether td(G) ≤ k in time 2O(k·tw) · n.
Since, for any graph G and any graph class G, edG(G) ≤ td(G) ≤ tw(G) · log n, Theorem 4
implies the existence of an XP-algorithm for Elimination Distance to G parameterized
by treewidth, when G is minor-closed, running in time nO(tw2). Given that the conjecture
of [2] is still open, this is the best type of algorithm that one can expect for Elimination
Distance to G parameterized by treewidth.

Finally, for any minor-closed graph class G, we provide an upper bound on the size of the
graphs in the obstruction set of Ek(G).

▶ Theorem 5. For every minor-closed graph class G and for every positive integer k, each

graph in obs(Ek(G)) has at most 2222poly(k)

vertices. Moreover, if obs(G) contains an apex-graph,
this bound drops to 22poly(k) .

The only previously known bound for the graphs in obs(Ek(G)) is the one for treedepth
by Dvořák, Giannopoulou, and Thilikos [15], who proved that every graph in obs(Ek(G∅)) has
size at most 22k−1 . Theorem 5 can be seen as a generalization of the results of Sau, Stamoulis,
and Thilikos [52], who provided similar upper bounds for the graphs in obs(Ak(G)).

These two results are, to the authors’ knowledge, the first upper bounds on the size of
the graphs in the obstruction set for the elimination distance parameter, and give, as an
immediate consequence, the first known upper bound for the size of these obstruction sets.

ICALP 2023

93:6 Faster Parameterized Algorithms for Modification Problems to Minor-Closed Classes

Our techniques. This paper builds heavily on the techniques recently introduced in [51] in
order to deal with Vertex Deletion to G, which are based on exploiting the Flat Wall
Theorem of Robertson and Seymour [47], namely the version proved by Kawarabayashi,
Thomas, and Wollan [32] and its recent restatement by Sau, Stamoulis, and Thilikos [50]. In
a nutshell, the idea of Theorem 1, Theorem 2, and Theorem 3 is that, as far as the treewidth
of the input graph is sufficiently large as an appropriate function of k, it is possible to either
“branch” into a number of subproblems that depends only on k and where the value of the
parameter is strictly smaller, or to find an irrelevant vertex (i.e., a vertex that does not
change the answer to the considered problem) and remove it from the graph. The irrelevant
vertex technique originates from Robertson and Seymour [47] and is further developped
in [50–52]. Once the treewidth is bounded, what remains is to apply the most efficient
possible algorithm to solve the problem via dynamic programming on tree decompositions.

Let us focus more particularly on the techniques we use to prove Theorem 1. Contrary to
the algorithm of [51] that solves Vertex Deletion to G for any minor-closed class G, we
avoid using iterative compression. This explains the improvement from cubic to quadratic
complexity in n. The algorithm of Theorem 1 can be seen as an extension of the algorithm
of [51] that solves Vertex Deletion to G in the particular case where obs(G) contains
some apex-graph, and uses ideas that date back to the work of Marx and Schlotter [42] for
the Planarization problem, that is, when G is the class of planar graphs. In Section 3 we
provide a sketch of the algorithms claimed in Theorem 1, Theorem 2, and Theorem 3, and
in Section 4 we present the algorithm of Theorem 1 in full detail, along with a proof of its
correctness.

The proof of Theorem 4 consists of a dynamic programming algorithm that combines the
framework of [46] for the particular case where G contains only the empty graph (i.e., for
treedepth) with the representative-based techniques introduced in [5]. A bit more precisely,
the idea is to encode the partial solutions (called characteristic) via sets of annotated trees
with some additional properties. Here, the trees correspond to partial elimination trees and
the annotations indicate the representatives, in the leaves of the elimination trees, with
respect to the canonical equivalence relation defined for the target class G. The size of the
characteristic dominates the running time of the whole algorithm. As usual when dealing
with dynamic programming, the formal description of the algorithm is quite technical and
lengthy, and has been deferred to the full version of the paper.

Finally, to obtain the upper bound on the size of a graph G ∈ obs(Ek(G)) claimed in
Theorem 5, we proceed in two steps. First, we bound the treewidth of G by a function of k.
To do so, we observe that if the treewidth of G is big enough, then there is a big enough wall
in G, and we find an irrelevant vertex v for Elimination Distance to G in G. However,
G \ {v} ∈ Ek(G) and G /∈ Ek(G), hence we reach a contradiction. The second step is to bound
the size of a minor-minimal obstruction of small treewidth. This uses the classic technique of
Lagergren [39] (see also [21–23,28,29,38,40,52]) combined with the encoding of the tables of
the dynamic programming algorithm that we use to prove Theorem 4; see the full paper.

2 Preliminaries

In this section we give some basic definitions needed to understand the main body of the
paper. Due to space limitations and the length of all the formal definitions, the complete
preliminaries are provided in the full version of the paper (definitions and preliminary results
regarding treedepth, treewidth and boundaried graphs, and framework of flat walls).

L. Morelle, I. Sau, G. Stamoulis, and D. M. Thilikos 93:7

Minors and obstructions. A graph G′ is a minor of a graph G, denoted by G′ ⪯ G, if
G′ can be obtained from G by a sequence of vertex removals, edge removals, and edge
contractions. Let G be a graph class that is closed under taking minors. Recall that the
minor obstruction set of G is defined as the set of all minor-minimal graphs that are not in G,
and is denoted by obs(G). Given a finite non-empty collection of non-empty graphs F , we
denote by exc(F) the set containing every graph G that excludes all graphs in F as minors.
We call each graph in exc(F) F-minor-free.

Restating the problems. Let G be a minor-closed graph class and F be its obstruction set.
Clearly, Vertex Deletion to G is the same problem as asking, given a graph G and some
k ∈ N, for a vertex set S ⊆ V (G) of at most k vertices such that G \ S ∈ exc(F). Following
the terminology of [5–8, 19, 20, 34, 35, 51], we call this problem F-M-Deletion. Likewise,
Elimination Distance to G is the same problem as asking whether edexc(F)(G) ≤ k. We
thus follow a similar notation and call this problem F-M-Elimination Distance. Using
the notation, {K1}-M-Elimination Distance is the problem of asking whether td(G) ≤ k.

Some conventions. In the rest of the paper, we fix G to be a minor-closed graph class and F
to be the set obs(G). From Robertson and Seymour’s theorem [49], we know that F is a finite
collection of graphs. Given a graph G, we define its apex number to be the smallest integer a
for which there is a set A ⊆ V (G) of size at most a such that G \A is planar. An apex-graph
is a graph with apex number one. Also, we define the detail of G, denoted by detail(G), to be
the maximum among |E(G)| and |V (G)|. We define three constants depending on F that will
be used throughout the paper whenever we consider such a graph family F . We define aF as
the minimum apex number of a graph in F , we set sF := max{|V (H)| | H ∈ F}, and we
set ℓF := max{detail(H)| | H ∈ F}. Given a tuple t = (x1, . . . , xℓ) ∈ Nℓ and two functions
χ, ψ : N → N, we write χ(n) = Ot(ψ(n)) in order to denote that there exists a computable
function ϕ : Nℓ → N such that χ(n) = O(ϕ(t) · ψ(n)). Notice that sF ≤ ℓF ≤ sF (sF − 1)/2,
and thus OℓF (·) = OsF (·). Observe also that Ak(G) and Ek(G) are KsF +k-minor-free graph
classes, and thus, due to [53], we can always assume that G has OsF (k

√
log k · n) edges,

otherwise we can directly conclude that (G, k) is a no-instance for both problems.

Walls and flat walls. In this paper we extensively deal with walls and flat walls, following
the framework of [50]. Unfortunately, more than ten pages are required to provide all the
technical notions to correctly present all this framework, that is necessary to use the tools
developed in [50–52]. Thus, formal definitions are provided in the full version of the paper.
More precisely, we introduce walls and several notions concerning them (just look at Figure 1
to understand what a wall is). We then provide the definitions of a rendition and a painting
in order to define flat walls. There are a number of technical terms (such as tilts, influence,
regular flatness pairs, ...) that are not the main focus of this work. Let us just mention
that the perimeter of a flat wall of a graph G separates V (G) into two sets X and Y with Y
containing the wall. The compass of a flat wall is G[Y].

We define canonical partitions and the notion of bidimensionality. Informally speaking, a
canonical partition of a graph with respect to some wall W refers to a partition of the vertex
set of a graph in bags that follow the structure of a wall subgraph of the given graph; see
Figure 1 for an illustration. The bidimensionality of a vertex set X with respect to a wall W
of a graph G intuitively expresses the “spread” of a set X in a W -canonical partition of G.
The crucial idea is that a set X of small bidimensionality cannot “destroy” a large (flat) wall
too much.

ICALP 2023

93:8 Faster Parameterized Algorithms for Modification Problems to Minor-Closed Classes

Figure 1 A 5-wall and its canonical partition Q. The red bag is the external bag Qext.

Finally, we present homogeneous walls. Intuitively, homogeneous flat walls are flat walls
that allow the routing of the same set of (topological) minors in the augmented flaps (i.e., the
flaps together with the apex set) “cropped” by each one of their bricks. Such a homogeneous
wall can be detected in a big enough flat wall (Proposition 10) and this “homogeneity”
property implies that some central part of a big enough homogeneous wall can be declared
irrelevant (Proposition 11).

3 Sketch of the algorithms

In this section we provide a sketch of the algorithms claimed in Theorem 1, Theorem 2 and
Theorem 3. As mentioned in the introduction, Theorem 1 can be seen as a generalization of
the algorithm of [51] that solves F-M-Vertex Deletion in the particular case where F
contains some apex-graph. While many techniques taken from [51] remain the same, some
new ingredients are needed so as to deal with the possible existence of many apices in all
graphs in F . On the other hand, Theorem 2 and Theorem 3 can be seen as an adaptation of
Theorem 1 to F-M-Elimination Distance. Since these three algorithms follow a common
streamline, we sketch all of them simultaneously while pointing out the steps where they
differ. Moreover, the full proof of Theorem 1 is given in Section 4, while the proofs of
Theorem 2 and Theorem 3 can be found in the full version of the paper.

The first common step is to run the following algorithm that states that a graph G in
Ak(exc(F)) or Ek(exc(F)) either has bounded treewidth or contains a large wall. This result
was proved in [51] in the case of F-M-Deletion. The proof in the case of F-M-Elimination
Distance, necessary for Theorem 2 and Theorem 3, can be found in the full version of the
paper.

▶ Proposition 6 ([51], full paper). Let F be a finite collection of graphs. There exist a
function f1 : N → N and an algorithm with the following specifications:

Find-Wall(G, r, k)
Input: A graph G, an odd r ∈ N≥3, and k ∈ N.
Output: One of the following:

Case 1: Either a report that (G, k) is a no-instance of F-M-Deletion (resp. F-M-
Elimination Distance), or
Case 2: a report that G has treewidth at most f1(sF) · r + k, or
Case 3: an r-wall W of G.

Moreover, f1(sF) = 2O(s2
F ·log sF), and the algorithm runs in time 2OℓF (r2+(k+r)·log(k+r)) · n

(resp. 2OℓF (r2+k2) · n).

In Case 1, we can immediately conclude. In Case 2, since the treewidth of G is bounded,
we use a dynamic programming algorithm to solve the corresponding problem. Namely, we
solve F-M-Deletion on instances of bounded treewidth using the main result from [5].

L. Morelle, I. Sau, G. Stamoulis, and D. M. Thilikos 93:9

▶ Proposition 7 ([5]). For every finite collection of graphs F , there exists an algorithm that,
given a triple (G, tw, k) where G is a graph of treewidth at most tw and k is a non-negative
integer, solves F-M-Deletion in time 2OℓF (tw·log tw) · n.

For F-M-Elimination Distance, we use Theorem 4 to conclude. The proof of this
(quite technically involved) dynamic programming algorithm is given in the full version of
the paper.

Therefore, it only remains to deal with Case 3. Given an r-wall W of G, we want to
reduce the size of G. To do so, we observe that we can either:

Case 3a: find a subwall Wa of W and an apex set Aa such that Wa is flat in G \Aa and
has a compass of bounded treewidth, or
Case 3b: find a subwall Wb of W that is very “well connected” to an apex set Ab of
small size.

The above distinction is done using two algorithmic versions of the Flat Wall Theorem
consecutively. The first one comes from [32, Theorem 7.7] and is translated here in the new
framework with tilts of [50]. Informally, we say that a graph H is grasped by a wall W in a
graph G if there is a model of H in G such that the model of every node of H intersects W .

▶ Proposition 8 ([32]). There are two functions f2, f3 : N → N, such that the images of f2
are odd integers, and an algorithm with the following specifications:

Grasped-or-Flat(G, r, t,W)
Input: A graph G, an odd r ∈ N≥3, t ∈ N≥1, and an f2(t) · r-wall W of G.
Output: One of the following:

Either a model of a Kt-minor in G grasped by W , or
a set A ⊆ V (G) of size at most f3(t) and a flatness pair (W ′,R′) of G \ A of heigth r

such that W ′ is a W̃ ′-tilt of some subwall W̃ ′ of W .
Moreover, f2(t) = O(t26), f3(t) = O(t24), and the algorithm runs in time O(t24m+ n).

We would like to mention that the notion of being grasped by a wall is one of the new main
arguments yielding the improvement of the complexity for F-M-Deletion compared to [51].

The second one comes from [51] and adds the condition that W ′ has a compass of bounded
treewidth, at the price of dropping the condition that the model of Kt is grasped by W .

▶ Proposition 9 ([51]). There exist a function f4 : N → N and an algorithm with the
following specifications:

Clique-Or-twFlat(G, r, t)
Input: A graph G, an odd r ∈ N≥3, and t ∈ N≥1.
Output: One of the following:

Either a report that Kt is a minor of G, or
a tree decomposition of G of width at most f4(t) · r, or
a set A ⊆ V (G) of size at most f3(t) and a regular flatness pair (W ′,R′) of G \ A of
height r whose R′-compass has treewidth at most f4(t) · r.

Moreover, f4(t) = 2O(t2 log t) and this algorithm runs in time 2Ot(r2) ·n. The algorithm can be
modified to obtain an explicit dependence on t in the running time, namely 22O(t2 log t)·r3 log r ·n.

Grasped-or-Flat is used to find a big enough complete graph “controlled” by the input
wall, while we need Clique-or-twFlat to find a flat wall whose compass has bounded
treewidth. Unfortunately, we cannot obtain both conditions simultaneously, and this is why
we need both results. If, after using both algorithms, we obtain a flatness pair (W̃ ′,R′) of

ICALP 2023

93:10 Faster Parameterized Algorithms for Modification Problems to Minor-Closed Classes

G \Aa of heigth ra whose compass has bounded treewidth, then we are in Case 3a. In that
case, the following result from [51] provides an algorithm that, given a flatness pair of big
enough height, outputs a homogeneous flatness pair.

▶ Proposition 10 ([51]). There is a function f5 : N4 → N, whose images are odd integers,
and an algorithm with the following specifications:

Homogeneous(r, ã, a, ℓ, t, G,A,W,R)
Input: Five integers r ∈ N≥3, ã, a, ℓ, t ∈ N, where ã ≤ a, a graph G, a set A ⊆ V (G) of size
at most a, and a flatness pair (W,R) of G \A of height f5(r, a, ã, ℓ) whose R-compass has
treewidth at most t.
Output: A flatness pair (W̆ , R̆) of G \A of height r that is ℓ-homogeneous with respect to(

A
≤ã

)
and is a W ′-tilt of (W,R) for some subwall W ′ of W .

Moreover, f5(r, ã, a, ℓ) = O(rf6(ã,a,ℓ)) where f6(ã, a, ℓ) = 2aã·2O((ã+ℓ)·log(ã+ℓ)) and the algorithm
runs in time 2O(f6(ã,a,ℓ)·r log r+t log t) · (n+m).

Then we use the next result, that essentially says that the central vertex v of a big enough
homogeneous wall is irrelevant, i.e., (G, k) and (G \ v, k) are equivalent instances of the
corresponding problem. Here, bidG\A,W (X) denotes the bidimensionality of a set X in the
wall W with apex set A.

▶ Proposition 11 ([52]). Let F be a finite collection of graphs. There exist two functions
f7 : N4 → N and f8 : N2 → N, and an algorithm with the following specifications:

Find-Irrelevant-Vertex(k, a,G,A,W,R)
Input: Two integers k, a ∈ N, a graph G, a set A ⊆ V (G), and a regular flatness pair (W,R)
of G \A of height at least f7(a, ℓF , 3, k) that is f8(a, ℓF)-homogeneous with respect to

(
A

≤a

)
.

Output: A vertex v of G \A such that for every set X ⊆ V (G) with bidG\A,W (X) ≤ k and
|A \X| ≤ a, it holds that G \X ∈ exc(F) if and only if G \ (X \ v) ∈ exc(F).
Moreover, f7(a, ℓF , q, k) = O(k · (ful(16a + 12ℓF))3 + q), where ful is the function of the
Unique Linkage Theorem (see [33]) and f8(a, ℓF) = a+ ℓF + 3, and this algorithm runs in
time O(n+m).

We can prove that both k-apex sets and k-elimination sets have small bidimensionality.
If, for every k-apex set S, G \ S ∈ exc(F) if and only if G \ (S \ v) ∈ exc(F), then it is
straightforward to see that v is irrelevant for F-M-Deletion. It is slightly less trivial
to prove that, for each k-elimination set S, we can find some superset X ⊇ S of small
bidimensionality such that a similar statement holds. Additional details are available in the
full paper.

Therefore we can recursively solve the problems on the instance (G \ v, k).

If no flatness pair whose compass has bounded treewidth was found, then we are in
Case 3b. In this case, inspired by [42] and [51], we use the following result of [52] that
basically says that if there is a big enough flat wall W and an apex set A′ of aF vertices
that are all adjacent to many bags of a canonical partition of W , then each k-apex set or
k-elimination set intersects A′.

▶ Proposition 12 ([52]). There exist three functions f9, f10, f11 : N3 → N, such that if G is
a graph, k ∈ N, A is a subset of V (G), (W,R) is a flatness pair of G \A of height at least
f9(aF , sF , k), Q̃ is a W -canonical partition of G \A, A′ is a subset of vertices of A that are
adjacent, in G, to vertices of at least f10(aF , sF , k) many f11(aF , sF , k)-internal bags of Q̃,
and |A′| ≥ aF , then for every set X ⊆ V (G) such that G\X ∈ exc(F) and bidG\A,W (X) ≤ k,
it holds that X∩A′ ̸= ∅. Moreover, f9(a, s, k) = O(2a ·s5/2 ·k5/2), f10(a, s, k) = O(2a ·s3 ·k3),
and f11(a, s, k) = O((a2 + k) · s), where a = aF and s = sF .

L. Morelle, I. Sau, G. Stamoulis, and D. M. Thilikos 93:11

For the F-M-Deletion problem, if we find such a set A′, then we can branch by guessing
which vertex v ∈ A′ belongs to a k-apex set and recursively solving (G \ v, k− 1). Given that
A′ has size aF and that k decreases after each guess, this step is applied at most ak

F times.
However, for F-M-Elimination Distance, k does not decrease, given that the size of a

k-elimination set may not depend on k. Thus, this step may be done an
F times, which does

not give an FPT-algorithm. To circumvent this problem, we propose two alternatives:
Option 1: The first alternative is to only use Case 3a. This is possible given that (KsF +k, k)

is a no-instance of both problems. Thus, when using the algorithms Grasped-or-Flat
and Clique-or-twFlat, we force the outcome to be an apex set A and a flatness pair of
G \ A. However, the bound on the size of A now depends on k, and thus, so does the
variable a in the input of the algorithm Homogeneous. This explains the triple-exponential
parametric dependence on k in Theorem 2. Interestingly, a precise analysis of the time
complexity shows that if aF = 1, i.e., when F contains an apex graph, the parametric
dependence is only double-exponential on k (cf. Theorem 2).

Option 2: The second alternative is to restrict ourselves to the case where aF = 1. Thus, in
Case 3b, we find a vertex v that belongs to every k-elimination set. There is no need to
branch, and this step is done at most n times. However, the fact that the time complexity
of this step is quadratic in n explains the cubic complexity of the algorithm in Theorem 3.

It remains to show that if no flatness pair whose compass has bounded treewidth was
found, then we can find a flatness pair and a set A′ satisfying the conditions of Proposition 12.
To do so, using flow techniques, we find the set A of vertices with sufficiently many internally-
disjoint paths to W , independently from one another. If this set is too large, we can safely
declare a no-instance. Otherwise, we extend the canonical partition of W and just check
whether aF vertices of A are adjacent to many vertices of this new canonical partition. If
this happens, then we can safely use Proposition 12. The second main improvement with
respect to the algorithm in [51] is the new argument that the extension of the canonical
partition of W can be done in a totally arbitrary manner. The quadratic complexity of this
step stems from the search for internally-disjoint paths for every vertex of the input graph.

4 Vertex deletion to a minor-closed graph class

In this section we prove our main result for the F-M-Deletion problem, namely Theorem 1.
All the propositions necessary for this proof have already been stated in Section 3, aside

from the following result proved in [52] that intuitively states that, given a canonical partition
Q̃ of a flat wall (W,R) of big enough height, we can find a “packing” of subwalls of W that
are inside some central part of W and such that the vertex set of every bag of Q̃ intersects
the vertices of at most one of these walls.

▶ Proposition 13 ([52]). There exists a function f12 : N3 → N such that if p, l ∈ N≥1, r ∈ N≥3
is an odd integer, G is a graph, (W,R) is a flatness pair of G of height at least f12(l, r, p),
and Q̃ is a W -canonical partition of G, then there is a collection W = {W 1, . . . ,W l} of
r-subwalls of W such that

for every i ∈ [l],
⋃

influenceR(W i) is a subgraph of
⋃

{Q | Q is a p-internal bag of Q̃}
and
for every i, j ∈ [l], with i ̸= j, there is no internal bag of Q̃ that contains vertices of both
V (

⋃
influenceR(W i)) and V (

⋃
influenceR(W j)).

Moreover, f12(l, r, p) = O(
√
l · r + p) and W can be constructed in time O(n+m).

ICALP 2023

93:12 Faster Parameterized Algorithms for Modification Problems to Minor-Closed Classes

4.1 Description of the algorithm for F-M-DELETION

Our algorithm for F-M-Deletion has three steps. In Step 1, either we can easily conclude
with a positive or a negative answer (Cases 1 and 2) or we find a big wall. If we can find
a large flat wall of bounded treewidth inside this wall, then we go to Step 2 and find an
irrelevant vertex (Case 3a). Otherwise, we proceed to Step 3 where, by using flow techniques,
we find a set of vertices that intersects every solution, and we branch on this set or we report
a negative answer (Case 3b). The correctness of the algorithm is not trivial and will be
justified in Subsection 4.2.

Given a non-negative integer x, we denote by odd(x) the smallest odd number that is not
smaller than x. We define the following constants.

a = f3(sF + aF − 1), b = f3(sF),
q = f10(aF , sF , k), p = f11(aF , sF , k),
l = (q − 1) · (k + b), r6 = f7(a+ b, ℓF , 3, k)
d = f8(a+ b, ℓF) r5 = f5(r6, a+ b, a+ b, d),
t = f4(sF) · r5, r4 = odd(t+ 3),
r3 = f12(aF , r4, 1), r2 = odd(2 + f2(sF + aF − 1) · r3),
r′

2 = odd(max{f9(aF , sF , k), f12(l + 1, r2, p)}), r1 = odd(f2(sF) · r′
2 + k).

Note that r6 = OℓF (k), r5, r4, r3, r2, t = OℓF (kc), and r′
2, r1 = OℓF (kc+2) where c =

f6(a+ b, a+ b, d). Recall from Section 2 that we may assume that G has OsF (k
√

log k · n)
edges.

Step 1. Run the algorithm Find-Wall from Proposition 6 with input (G, r1, k) and, in time
2OℓF (r2

1+(k+r1) log(k+r1)) · n = 2OℓF (k2(c+2)) · n,
either report a no-instance, or
conclude that tw(G) ≤ f1(sF) · r1 + k and solve F-M-Deletion in time
2OℓF ((r1+k) log(r1+k)) · n = 2OℓF (kc+2·log k) · n using the algorithm of Proposition 7, or
obtain an r1-wall W1 of G.

If the output of Proposition 6 is an r1-wall W1, consider all the
(

r1
r2

)2 = 2OℓF (kc log k)

r2-subwalls of W1. For each one of them, say W2, let W ∗
2 be the central (r2 −2)-subwall of W2

and let DW2 be the graph obtained from G after removing the perimeter of W2 and taking the
connected component containing W ∗

2 . Run the algorithm Grasped-or-Flat of Proposition 8
with input (DW2 , r3, sF + aF − 1,W ∗

2). This can be done in time OsF (k
√

log k · n).
If for some of these subwalls the result is a set A ⊆ V (DW2) with |A| ≤ a and a flatness

pair (W3,R3) of DW2 \A of height r3 then, as in Proposition 13, compute a W3-canonical
partition Q̃ of DW2 \A and a collection W = {W 1, ...,W aF } of r4-subwalls of W3 such that
for every i ∈ [aF],

⋃
influenceR3(W i) is a subgraph of

⋃
{Q | Q is a p-internal bag of Q̃} and

for every i, j ∈ [aF], with i ̸= j, there is no internal bag of Q̃ that contains vertices of both
V (

⋃
influenceR3(W i)) and V (

⋃
influenceR3(W j)). This can be done in time OsF (k

√
log k ·n).

For i ∈ [aF], let W i∗ be the central (r4 − 2)-subwall of W i and let DW i be the graph
obtained from DW2 after removing A and the perimeter of W i and taking the connected
component containing W i∗. Run the algorithm Clique-or-twFlat of Proposition 9 with
input (DW i , r5, sF). This takes time 2OℓF (r2

5) · n = 2OℓF (k2c) · n. If for one of these subwalls
the result is a set A′ of size at most b and a regular flatness pair (W5,R5) of DW i \ A′ of
height r5 whose R5-compass has treewidth at most t, then we proceed to Step 2.

L. Morelle, I. Sau, G. Stamoulis, and D. M. Thilikos 93:13

If, for every flatness pair (W3,R3) and for every i ∈ [aF], the result is a report that KsF

is a minor of DW i , then we proceed to Step 3.

Step 2 (irrelevant vertex case). We obtain a 7-tuple R′
5 by adding all vertices of G \

V (CompassR5(W5)) to the set in the first coordinate of R5, such that (W5,R
′
5) is a regular

flatness pair of G\(A∪A′) whose R′
5-compass has treewidth at most t. We apply the algorithm

Homogeneous of Proposition 10 with input (r6, a + b, a + b, d, t, G,A ∪ A′,W5,R
′
5), which

outputs, in time 2OℓF (t log t+k log k) ·n = 2OℓF (kc log k) ·n, a flatness pair (W6,R6) of G\(A∪A′)
of height r6 that is d-homogeneous with respect to 2A∪A′ and is a W ∗-tilt of (W5,R

′
5) for some

subwall W ∗ of W5. We apply the algorithm Find-Irrelevant-Vertex of Proposition 11
with input (k, a+ b,G,A∪A′,W6,R6), which outputs, in time O(n+m) = OℓF (k

√
log k ·n),

a vertex v such that (G, k) and (G \ v, k) are equivalent instances of F-M-Deletion. Then
the algorithm runs recursively on the equivalent instance (G \ v, k).

Step 3 (branching case). Consider all the r′
2-subwalls of W1, which are at most

(
r1
r′

2

)2 =
2OℓF (kc+2 log k) many, and for each of them, say W ′

2, compute its canonical partition Q. Then,
contract each bag Q of Q to a single vertex vQ, and add a new vertex vall and make it
adjacent to all vQ’s. In the resulting graph G′, for every vertex y of G \ V (W ′

2), check, using
a path augmentation algorithm [13], whether there are q internally vertex-disjoint paths from
vall to y in time O(q ·m) = OℓF (k4√

log k · n). Let Ã be the set of all such y’s.
If |Ã| < aF , then report a no-instance.
If aF ≤ |Ã| ≤ k + b, then consider all the

(|Ã|
aF

)
= 2OℓF (log k) subsets of Ã of size aF . For

each one of them, say A∗, construct Q̃ by enhancing Q on G \ A∗. Then, we distinguish
two cases depending on whether for every A∗ all its vertices are adjacent to vertices of q
p-internal bags of Q̃.

If each vertex of A∗ is adjacent to vertices of q p-internal bags of Q̃, then (due to
Proposition 12) A∗ should intersect every solution of F-M-Deletion for the instance (G, k).
Therefore, the algorithm runs recursively on each instance (G \ y, k− 1) for y ∈ A∗. If one of
them is a yes-instance with (k − 1)-apex set S of G \ y, then (G, k) is a yes-instance with
k-apex set S ∪ {y} of G. If all of them are no-instances, then report a no-instance. This
concludes the case where each vertex of A∗ is adjacent to vertices of q p-internal bags of Q̃.

If for every subset A∗ of Ã of size aF , there is a vertex of A∗ that is not adjacent to
vertices of q p-internal bags of the given Q̃, then report a no-instance. This concludes the
case that aF ≤ |Ã| ≤ k + b.

If for every wall, |Ã| > k + b, then report that (G, k) is a no-instance of F-M-Deletion.
Notice that Step 3, when applied, takes time 2OℓF (kc+2 log k) · n2, because we apply the

flow algorithms to each of the 2OℓF (kc+2 log k) r′
2-subwalls and for each vertex of G. However,

the search tree created by the branching algorithm has at most aF branches and depth at
most k. So Step 3 cannot be applied more than aF

k times during the course of the algorithm.
Since Step 1 runs in time 2OℓF (k2(c+2)) · n, Step 2 runs in time 2OℓF (k2c) · n, and both may be
applied at most n times, the claimed time complexity follows: the algorithm runs in time
2OℓF (k2(c+2)) · n2.

4.2 Correctness of the algorithm
Suppose first that (G, k) is a yes-instance and let S be a k-apex set of G. The application of
the algorithm Find-Wall of Proposition 6 with input (G, r1, k) either returns a report that
tw(G) ≤ f1(sF) · r1 + k or returns an r1-wall. In the first case, i.e., if tw(G) ≤ f1(sF) · r1 + k,

ICALP 2023

93:14 Faster Parameterized Algorithms for Modification Problems to Minor-Closed Classes

the application of the algorithm of Proposition 7 correctly outputs a k-apex set of G. We
will focus on the latter case, i.e., where the algorithm Find-Wall returns an r1-wall of G, say
W1. Since r1 ≥ f2(sF) · r′

2 + k, there is an (f2(sF) · r′
2)-subwall of W1, say W ∗

1 , that does not
contain vertices of S. Since G \S does not contain KsF as a minor, there is no model of KsF

grasped by W ∗
1 and therefore, due to Proposition 8 with input (G \ S, r′

2, sF ,W
∗
1), we know

that there is a set B ⊆ V (G \ S), with |B| ≤ b, and a flatness pair (W ′
2,R

′
2) of G \ (S ∪B)

of height r′
2 such that W ′

2 is a W ′′-tilt of some subwall W ′′ of W ∗
1 .

Let Q be the canonical partition of W ′
2. Let G′ be the graph obtained by contracting

each bag Q of Q to a single vertex vQ, and adding a new vertex vall and making it adjacent
to all vQ’s. Let Ã be the set of vertices y of G \ V (W ′

2) such that there are q internally
vertex-disjoint paths from vall to y in G′. We claim that Ã ⊆ S ∪ B. To show this, we
first prove that, for every y /∈ S ∪ B, the maximum number of internally vertex-disjoint
paths from vall to y in G′ is k + b + 4. Indeed, if y is a vertex in the R′

2-compass of W ′
2,

there are at most k + b such paths that intersect the set S ∪ B and at most four paths
that do not intersect S ∪ B (in the graph G′ \ (S ∪ B)) due to the fact that (W ′

2,R
′
2) is a

flatness pair of G \ (S ∪B). If y is not a vertex in the R′
2-compass of W ′

2, then, since by the
definition of flatness pairs the perimeter of W ′

2 together with the set S ∪B separate y from
the R′

2-compass of W ′
2, every collection of internally vertex-disjoint paths from vall to y in

G′ should intersect the set {vQext} ∪ S ∪B, where Qext is the external bag of Q. Therefore,
in both cases, if y /∈ S ∪B, the maximum number of internally vertex-disjoint paths from
vall to y in G′ is k + b+ 4. Since k + b+ 4 < q, we have that y /∈ Ã. Hence, Ã ⊆ S ∪B and
therefore |Ã| ≤ k + b. Hence, if (G, k) is a yes-instance we cannot have that |Ã| > k + b, so
the algorithm correctly reports a no-instance at the end of Step 3.

Let Q̃ be a W ′
2-canonical partition of G\ (S ∪B) obtained by enhancing Q on G\ (S ∪B).

Let Ã′ be the set of vertices in S ∪ B that are adjacent to vertices of at least q p-internal
bags of Q̃ (recall that Ã is the set of vertices in S ∪ B that are adjacent to vertices of at
least q internal bags of Q̃). Note that Ã′ ⊆ Ã and therefore |Ã′| ≤ |Ã|.

If |Ã′| < aF , then at most aF − 1 vertices of S ∪B are adjacent to vertices of at least q
p-internal bags of Q̃. This means that the p-internal bags of Q̃ that contain vertices adjacent
to some vertex of (S ∪B) \ Ã′ are at most (q − 1) · (k + b) = l.

Consider a family W = {W 1, . . . ,W l+1} of l + 1 r2-subwalls of W ′
2 such that for every

i ∈ [l + 1],
⋃

influenceR′
2
(W i) is a subgraph of

⋃
{Q | Q is a p-internal bag of Q̃} and for

every i, j ∈ [l + 1], with i ̸= j, there is no internal bag of Q̃ that contains vertices of
both V (

⋃
influenceR′

2
(W i)) and V (

⋃
influenceR′

2
(W j)). The existence of W follows from

Proposition 13 and the fact that r′
2 ≥ f12(l + 1, r2, p).

The fact that the p-internal bags of Q̃ that contain vertices adjacent to some vertex
of (S ∪ B) \ Ã′ are at most l implies that there exists an i ∈ [l + 1] such that no vertex
of V (

⋃
influenceR′

2
(W i)) is adjacent, in G, to a vertex in (S ∪ B) \ Ã′. Let W2 := W i, let

W ∗
2 be the central (r2 − 2)-subwall of W2, and let DW2 be the graph obtained from G by

removing the perimeter of W2 and taking the connected component that contains W ∗
2 . Since

no vertex of V (
⋃

influenceR′
2
(W i)) is adjacent, in G, to a vertex in (S ∪B) \ Ã′, any path

in DW2 going from a vertex of W ∗
2 to a vertex in S must intersect a vertex of Ã′. Thus,

there is no model of KsF +aF −1 grasped by W ∗
2 in DW2 , because otherwise KsF would be

a minor of G \ S. So, by applying the algorithm Grasped-or-Flat of Proposition 8 with
input (DW2 , r3, sF + aF − 1,W ∗

2), since r2 − 2 ≥ f2(sF + aF − 1) · r3, we should find a set
A ⊆ V (DW2) with |A| ≤ a and a flatness pair (W3,R3) of DW2 \ A of height r3, such that
W3 is a tilt of some subwall W̃3 of W2.

L. Morelle, I. Sau, G. Stamoulis, and D. M. Thilikos 93:15

Let Q̃′ be a W3-canonical partition of DW2 \A. Let W ′ = {W 1, ...,W aF } be a collection
of r4-subwalls of W3 such that for every i ∈ [aF],

⋃
influenceR3(W i) is a subgraph of⋃

{Q | Q is an internal bag of Q̃′} and for every i, j ∈ [aF], with i ̸= j, there is no internal
bag of Q̃′ that contains vertices of both V (

⋃
influenceR3(W i)) and V (

⋃
influenceR3(W j)).

Since |Ã′| < aF , there is an i ∈ [aF] such that V (
⋃

influenceR3(W i)) does not intersect Ã′.
The existence of W ′ follows from Proposition 13 and the fact that r3 ≥ f12(aF , r4, 1).

Let W4 := W i. Let W ∗
4 be the central (r4 − 2)-subwall of W4 and let DW4 be the

graph obtained from DW2 after removing A and the perimeter of W4 and taking the
connected component containing W ∗

4 . Observe that any path between a vertex of S
and a vertex of V (

⋃
influenceR3(W4)) in DW2 intersects Ã′. Since Ã′ does not intersect

V (
⋃

influenceR3(W4)), it implies that Ã′ does not intersect DW4 , and thus S ∩ DW4 = ∅.
Therefore, DW4 is a minor of G \ S and KsF is not a minor of DW4 . Moreover, W ∗

4 is a wall
of DW4 of height r4 − 2 ≥ t+ 1, so tw(DW4) > t = f4(sF) · r5. Therefore, by applying the
algorithm Clique-or-twFlat of Proposition 9 with input (DW4 , r5, sF), we should obtain a
set A′ of size at most b and a regular flatness pair (W5,R5) of DW4 \A′ of height r5 whose
R5-compass has treewidth at most t. All this is checked in Step 1, and thus, the algorithm
should run Step 2.

If |Ã′| ≥ aF , then, due to Proposition 12 and the fact that r′
2 ≥ f9(aF , sF , k), for any

set X ⊆ V (G) such that bidG\(S∪B),W ′
2
(X) ≤ k and such that G \X ∈ exc(F), it holds that

X ∩ Ã′ ̸= ∅. In particular, for any k-apex set S′, bidG\(S∪B),W ′
2
(S′) ≤ |S′| ≤ k, and thus

S′ ∩ Ã′ ≠ ∅. Thus, there is a vertex y ∈ Ã′ such that (G \ y, k − 1) is a yes-instance. Hence,
if the algorithm runs Step 3, it finds a vertex y ∈ Ã′ such that (G \ y, k− 1) is a yes-instance.

Note that the enhancement Q̃ of the canonical partition Q is not unique. In particular,
Ã′ depends on Q̃. However, as long as there is such a Q̃ such that |Ã′| < aF , the algorithm
finds the wanted flatness pair (W4,R4) in Step 1 and then runs Step 2. Hence, if (G, k) is a
yes-instance, the algorithm runs Step 3 only if for all such Ã′, |Ã′| ≥ aF . Note that, since
|Ã| ≥ |Ã′|, in this case we have that, for all such Ã′, |Ã| ≥ aF . This justifies the arbitrary
canonical partition enhancement in Step 3 and the fact that, if |Ã| < aF in Step 3, then the
algorithm reports a no-instance.

Let us now show the correctness of Step 2, and for this we do not suppose anymore that
(G, k) is a yes-instance since the argument is the same for both types of instances. Suppose
that the algorithm finds in Step 1 a set A′ of size at most b and a regular flatness pair
(W5,R5) of DW4 \A′ of height r5 whose R5-compass has treewidth at most t. We obtain a
7-tuple R′

5 by adding all vertices of G \ V (CompassR5(W5)) to the set in the first coordinate
of R5. Since (W5,R5) is a regular flatness pair of DW4 \A′ and since the vertices added in
R′

5 are either in A, or adjacent at most to the perimeter of W4, then (W5,R
′
5) is a regular

flatness pair of G \ (A ∪ A′). Since CompassR5
(W5) = CompassR′

5
(W5), CompassR′

5
(W5)

has treewidth at most t. Thus, if we apply the algorithm Homogeneous of Proposition 10
with input (r6, a + b, a + b, d, t, G,A ∪ A′,W5,R

′
5), we obtain a flatness pair (W6,R6) of

G \ (A ∪ A′) of height r6 that is d-homogeneous with respect to 2A∪A′ and is a W ∗-tilt
of (W5,R

′
5) for some subwall W ∗ of W5. Since |A ∪ A′| ≤ a + b, for any set X ⊆ V (G),

|A \ X| ≤ a + b. Since G \ S ∈ exc(F) and bidG\(A∪A′),W6(S) ≤ |S| ≤ k, by applying the
algorithm Find-Irrelevant Vertex of Proposition 11 with input (k, a+b,G,A∪A′,W6,R6),
we obtain a vertex v such that G \ S ∈ exc(F) if and only if G \ (S \ v) ∈ exc(F). It follows
that (G, k) and (G \ v, k) are indeed equivalent instances of F-M-Deletion.

We now suppose that (G, k) is a no-instance. In the beginning of Step 1, the algorithm
either reports a no-instance or finds a wall. In the latter case, the algorithm either goes
to Step 2 or Step 3. If it runs Step 2, the previous paragraph justifies that the algorithm

ICALP 2023

93:16 Faster Parameterized Algorithms for Modification Problems to Minor-Closed Classes

finds a vertex v such that (G \ v, k) is a no-instance. If the algorithm runs Step 3, then it
either reports a no-instance or recursively runs on instances (G \ y, k − 1). If (G \ y, k − 1)
is yes-instance, then so is (G, k). Thus, (G \ y, k − 1) is a no-instance for every considered
vertex y and the algorithm always reports a no-instance. Hence, Theorem 1 follows.

5 Concluding remarks

For a minor-closed graph class G, we proved that Vertex Deletion to G can be solved in
time 2poly(k) · n2 and that Elimination Distance to G can be solved in time 222poly(k)

· n2,
and in time 22c·k2 log k · n2 and 2poly(k) · n3 in the case where the obstruction set of G contains
an apex-graph. Here the degree of poly and c heavily depend on the size of the obstructions
of G. An open question is whether poly(k) could be replaced by c · kd for some constant c
depending on G and some universal constant d (independent of G). We tend to believe that
this dependence on G in the exponent of the polynomial is unavoidable, at least if we want
to use the irrelevant vertex technique, and specially our definition of homogeneity.

On the other hand, we are not aware, for any of the two considered problems, of any
lower bound, assuming the Exponential Time Hypothesis [25], stronger than 2o(k) · nO(1),
which follows quite easily from known results for Vertex Cover. Proving stronger lower
bounds seems to be quite challenging.

Another open problem is whether it is possible to drop the time complexity of Elimination
Distance to G to 2poly(k) · n2 for every minor-closed graph class G. We tend to believe that
this should be possible. However, it seems to require to use branching ingeniously and, in
particular, to find equivalent instances of Elimination Distance to G with a decreasing
value of k.

As for the polynomial running time of our FPT-algorithms, a priori, nothing prevents the
existence of algorithms running in linear time, although we are quite far from achieving this.
Kawarabayashi [30] presented such a linear FPT-algorithm for the Planarization problem,
heavily relying on the embedding on the resulting planar graph. Extending this technique
to general minor-closed classes would require a very compact encoding of the (entangled)
structure of minor-free graphs [48] that would be possible to handle in linear time.

References
1 Isolde Adler, Martin Grohe, and Stephan Kreutzer. Computing excluded minors. In Proc.

of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 641–650,
2008. URL: http://dl.acm.org/citation.cfm?id=1347082.1347153.

2 Akanksha Agrawal, Lawqueen Kanesh, Daniel Lokshtanov, Fahad Panolan, M. S. Ramanujan,
Saket Saurabh, and Meirav Zehavi. Deleting, Eliminating and Decomposing to Hereditary
Classes Are All FPT-Equivalent. In Proc. of the 2022 ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1976–2004, 2022. doi:10.1137/1.9781611977073.79.

3 Akanksha Agrawal, Lawqueen Kanesh, Fahad Panolan, M. S. Ramanujan, and Saket Saurabh.
An FPT algorithm for elimination distance to bounded degree graphs. In Proc. of the 38th
International Symposium on Theoretical Aspects of Computer Science (STACS), volume 187
of LIPIcs, pages 5:1–5:11, 2021. doi:10.4230/LIPIcs.STACS.2021.5.

4 Akanksha Agrawal and M. S. Ramanujan. On the parameterized complexity of clique elimin-
ation distance. In Proc. of the 15th International Symposium on Parameterized and Exact
Computation (IPEC), volume 180 of LIPIcs, pages 1:1–1:13, 2020. doi:10.4230/LIPIcs.IPEC.
2020.1.

5 Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. A complexity dichotomy for hitting
connected minors on bounded treewidth graphs: the chair and the banner draw the boundary.
In Proc. of the 31st Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
951–970, 2020. doi:10.1137/1.9781611975994.57.

http://dl.acm.org/citation.cfm?id=1347082.1347153
https://doi.org/10.1137/1.9781611977073.79
https://doi.org/10.4230/LIPIcs.STACS.2021.5
https://doi.org/10.4230/LIPIcs.IPEC.2020.1
https://doi.org/10.4230/LIPIcs.IPEC.2020.1
https://doi.org/10.1137/1.9781611975994.57

L. Morelle, I. Sau, G. Stamoulis, and D. M. Thilikos 93:17

6 Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. Hitting minors on bounded treewidth
graphs. I. General upper bounds. SIAM Journal on Discrete Mathematics, 34(3):1623–1648,
2020. doi:10.1137/19M1287146.

7 Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. Hitting minors on bounded treewidth
graphs. II. Single-exponential algorithms. Theoretical Computer Science, 814:135–152, 2020.
doi:10.1016/j.tcs.2020.01.026.

8 Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. Hitting minors on bounded treewidth
graphs. III. Lower bounds. Journal of Computer and System Sciences, 109:56–77, 2020.
doi:10.1016/j.jcss.2019.11.002.

9 Hans L. Bodlaender, John R. Gilbert, Ton Kloks, and Hjálmtyr Hafsteinsson. Approximating
treewidth, pathwidth, and minimum elimination tree height. In Proc. of the 17th International
Workshop on Graph-Theoretic Concepts in Computer Science (WG), volume 570 of LNCS,
pages 1–12, 1991. doi:10.1007/3-540-55121-2_1.

10 Jannis Bulian and Anuj Dawar. Graph isomorphism parameterized by elimination distance to
bounded degree. Algorithmica, 75(2):363–382, 2016. doi:10.1007/s00453-015-0045-3.

11 Jannis Bulian and Anuj Dawar. Fixed-parameter tractable distances to sparse graph classes.
Algorithmica, 79(1):139–158, 2017. doi:10.1007/s00453-016-0235-7.

12 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

13 Reinhard Diestel. Graph Theory, volume 173. Springer-Verlag, 5th edition, 2017. doi:
10.1007/978-3-662-53622-3.

14 Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized Complexity.
Texts in Computer Science. Springer, 2013. doi:10.1007/978-1-4471-5559-1.

15 Zdeněk Dvořák, Archontia C. Giannopoulou, and Dimitrios M. Thilikos. Forbidden graphs for
tree-depth. European Journal of Combinatorics, 33(5):969–979, 2012. doi:10.1016/j.ejc.
2011.09.014.

16 Eduard Eiben, Robert Ganian, Thekla Hamm, and O-joung Kwon. Measuring what matters:
A hybrid approach to dynamic programming with treewidth. Journal of Computer and System
Sciences, 121:57–75, 2021. doi:10.1016/j.jcss.2021.04.005.

17 Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Texts in Theoretical
Computer Science. An EATCS Series. Springer, 2006. doi:10.1007/3-540-29953-X.

18 Fedor V. Fomin, Petr A. Golovach, and Dimitrios M. Thilikos. Parameterized complexity
of elimination distance to first-order logic properties. ACM Transactions on Computational
Logic, 23(3):17:1–17:35, 2022. doi:10.1145/3517129.

19 Fedor V. Fomin, Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. Planar F-deletion:
Approximation, kernelization and optimal FPT algorithms. In Proc. of the 53rd Annual
IEEE Symposium on Foundations of Computer Science (FOCS), pages 470–479, 2012. doi:
10.1109/FOCS.2012.62.

20 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, Saket Saurabh, and Meirav Zehavi.
Hitting topological minors is FPT. In Proc. of the 52nd Annual ACM Symposium on Theory
of Computing (STOC), pages 1317–1326, 2020. doi:10.1145/3357713.3384318.

21 Archontia C. Giannopoulou, O-joung Kwon, Jean-Florent Raymond, and Dimitrios M. Thilikos.
Lean tree-cut decompositions: Obstructions and algorithms. In Proc. of the 36th International
Symposium on Theoretical Aspects of Computer Science (STACS), volume 126 of LIPIcs, pages
32:1–32:14, 2019. doi:10.4230/LIPIcs.STACS.2019.32.

22 Archontia C. Giannopoulou, Michal Pilipczuk, Jean-Florent Raymond, Dimitrios M. Thilikos,
and Marcin Wrochna. Linear kernels for edge deletion problems to immersion-closed graph
classes. In Proc. of the 44th International Colloquium on Automata, Languages, and Program-
ming (ICALP), volume 80 of LIPIcs, pages 57:1–57:15, 2017. doi:10.4230/LIPIcs.ICALP.
2017.57.

ICALP 2023

https://doi.org/10.1137/19M1287146
https://doi.org/10.1016/j.tcs.2020.01.026
https://doi.org/10.1016/j.jcss.2019.11.002
https://doi.org/10.1007/3-540-55121-2_1
https://doi.org/10.1007/s00453-015-0045-3
https://doi.org/10.1007/s00453-016-0235-7
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1016/j.ejc.2011.09.014
https://doi.org/10.1016/j.ejc.2011.09.014
https://doi.org/10.1016/j.jcss.2021.04.005
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1145/3517129
https://doi.org/10.1109/FOCS.2012.62
https://doi.org/10.1109/FOCS.2012.62
https://doi.org/10.1145/3357713.3384318
https://doi.org/10.4230/LIPIcs.STACS.2019.32
https://doi.org/10.4230/LIPIcs.ICALP.2017.57
https://doi.org/10.4230/LIPIcs.ICALP.2017.57

93:18 Faster Parameterized Algorithms for Modification Problems to Minor-Closed Classes

23 Archontia C. Giannopoulou, Michal Pilipczuk, Jean-Florent Raymond, Dimitrios M. Thilikos,
and Marcin Wrochna. Cutwidth: Obstructions and algorithmic aspects.Algorithmica, 81(2):557–
588, 2019. doi:10.1007/s00453-018-0424-7.

24 Jiong Guo, Falk Hüffner, and Rolf Niedermeier. A structural view on parameterizing problems:
Distance from triviality. In Proc. of the 1st International Workshop on Parameterized and
Exact Computation (IWPEC), volume 3162 of LNCS, pages 162–173, 2004. doi:10.1007/
978-3-540-28639-4_15.

25 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? Journal of Computer and System Sciences, 63(4):512–530, 2001.
doi:10.1006/jcss.2001.1774.

26 Bart M. P. Jansen, Jari J. H. de Kroon, and Michał Włodarczyk. Vertex deletion parameterized
by elimination distance and even less. In Proc. of the 53rd Annual ACM-SIGACT Symposium
on Theory of Computing (STOC), pages 1757–1769, 2021. doi:10.1145/3406325.3451068.

27 Bart M. P. Jansen, Daniel Lokshtanov, and Saket Saurabh. A near-optimal planarization
algorithm. In Proc. of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1802–1811, 2014. doi:10.1137/1.9781611973402.130.

28 Mamadou Moustapha Kanté and O-joung Kwon. An upper bound on the size of obstructions
for bounded linear rank-width, 2014. arXiv:1412.6201.

29 Mamadou Moustapha Kanté and O-joung Kwon. Linear rank-width of distance-hereditary
graphs II. vertex-minor obstructions. European Journal of Combinatorics, 74:110–139, 2018.
doi:10.1016/j.ejc.2018.07.009.

30 Ken-ichi Kawarabayashi. Planarity allowing few error vertices in linear time. In Proc. of the
50th Annual IEEE Symposium on Foundations of Computer Science (FOCS), pages 639–648,
2009. doi:10.1109/FOCS.2009.45.

31 Ken-ichi Kawarabayashi, Yusuke Kobayashi, and Bruce A. Reed. The disjoint paths problem
in quadratic time. Journal of Combinatorial Theory, Series B, 102(2):424–435, 2012. doi:
10.1016/j.jctb.2011.07.004.

32 Ken-ichi Kawarabayashi, Robin Thomas, and Paul Wollan. A new proof of the flat wall
theorem. Journal of Combinatorial Theory, Series B, 129:204–238, 2018. doi:10.1016/j.
jctb.2017.09.006.

33 Ken-ichi Kawarabayashi and Paul Wollan. A Shorter Proof of the Graph Minor Algorithm:
The Unique Linkage Theorem. In Proc. of the 42nd ACM Symposium on Theory of Computing
(STOC), pages 687–694, 2010. doi:10.1145/1806689.1806784.

34 Eun Jung Kim, Alexander Langer, Christophe Paul, Felix Reidl, Peter Rossmanith, Ignasi
Sau, and Somnath Sikdar. Linear kernels and single-exponential algorithms via protrusion
decompositions. ACM Transactions on Algorithms, 12(2):21:1–21:41, 2016. doi:10.1145/
2797140.

35 Eun Jung Kim, Maria J. Serna, and Dimitrios M. Thilikos. Data-compression for parametrized
counting problems on sparse graphs. In Proc. of the 29th International Symposium on
Algorithms and Computation (ISAAC), volume 123 of LIPIcs, pages 20:1–20:13, 2018. doi:
10.4230/LIPIcs.ISAAC.2018.20.

36 Ton Kloks. Treewidth, Computations and Approximations, volume 842 of Lecture Notes in
Computer Science. Springer, 1994. doi:10.1007/BFb0045375.

37 Tomasz Kociumaka and Marcin Pilipczuk. Deleting Vertices to Graphs of Bounded Genus.
Algorithmica, 81(9):3655–3691, 2019. doi:10.1007/s00453-019-00592-7.

38 Jens Lagergren. An upper bound on the size of an obstruction. In Graph Structure Theory,
volume 147 of Contemporary Mathematics, pages 601–621. American Mathematical Society,
1991. doi:10.1090/conm/147/01202.

39 Jens Lagergren. Upper bounds on the size of obstructions and intertwines. Journal of
Combinatorial Theory, Series B, 73:7–40, 1998. doi:10.1006/jctb.1997.1788.

https://doi.org/10.1007/s00453-018-0424-7
https://doi.org/10.1007/978-3-540-28639-4_15
https://doi.org/10.1007/978-3-540-28639-4_15
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1145/3406325.3451068
https://doi.org/10.1137/1.9781611973402.130
https://arxiv.org/abs/1412.6201
https://doi.org/10.1016/j.ejc.2018.07.009
https://doi.org/10.1109/FOCS.2009.45
https://doi.org/10.1016/j.jctb.2011.07.004
https://doi.org/10.1016/j.jctb.2011.07.004
https://doi.org/10.1016/j.jctb.2017.09.006
https://doi.org/10.1016/j.jctb.2017.09.006
https://doi.org/10.1145/1806689.1806784
https://doi.org/10.1145/2797140
https://doi.org/10.1145/2797140
https://doi.org/10.4230/LIPIcs.ISAAC.2018.20
https://doi.org/10.4230/LIPIcs.ISAAC.2018.20
https://doi.org/10.1007/BFb0045375
https://doi.org/10.1007/s00453-019-00592-7
https://doi.org/10.1090/conm/147/01202
https://doi.org/10.1006/jctb.1997.1788

L. Morelle, I. Sau, G. Stamoulis, and D. M. Thilikos 93:19

40 Jens Lagergren and Stefan Arnborg. Finding minimal forbidden minors using a finite congruence.
In Proc. of the 18th International Colloquium on Automata, Languages and Programming
(ICALP), volume 510 of LNCS, pages 532–543, 1991. doi:10.1007/3-540-54233-7_161.

41 John M. Lewis and Mihalis Yannakakis. The node-deletion problem for hereditary properties
is NP-complete. Journal of Computer and System Sciences, 20(2):219–230, 1980. doi:
10.1016/0022-0000(80)90060-4.

42 Dániel Marx and Ildikó Schlotter. Obtaining a planar graph by vertex deletion. Algorithmica,
62(3-4):807–822, 2012. doi:10.1007/s00453-010-9484-z.

43 Jaroslav Nesetril and Patrice Ossona de Mendez. Sparsity – Graphs, Structures, and
Algorithms, volume 28 of Algorithms and combinatorics. Springer, 2012. doi:10.1007/
978-3-642-27875-4.

44 Rolf Niedermeier. Invitation to fixed parameter algorithms, volume 31. Oxford University
Press, 2006. doi:10.1093/ACPROF:OSO/9780198566076.001.0001.

45 Alex Pothen. The complexity of optimal elimination trees. Technical Report. Pennsylvania
State University. Dept. of Computer Science, 1988. URL: https://www.cs.purdue.edu/
homes/apothen/Papers/shortest-etree1988.pdf.

46 Felix Reidl, Peter Rossmanith, Fernando Sánchez Villaamil, and Somnath Sikdar. A faster
parameterized algorithm for treedepth. In Proc. of the 41st International Colloquium on
Automata, Languages, and Programming (ICALP), volume 8572 of LNCS, pages 931–942,
2014. doi:10.1007/978-3-662-43948-7_77.

47 Neil Robertson and Paul D. Seymour. Graph Minors. XIII. The Disjoint Paths Problem. Journal
of Combinatorial Theory, Series B, 63(1):65–110, 1995. doi:10.1006/jctb.1995.1006.

48 Neil Robertson and Paul D. Seymour. Graph Minors. XVI. Excluding a non-planar graph.
Journal of Combinatorial Theory, Series B, 89(1):43–76, 2003. doi:10.1016/S0095-8956(03)
00042-X.

49 Neil Robertson and Paul D. Seymour. Graph Minors. XX. Wagner’s conjecture. Journal of
Combinatorial Theory, Series B, 92(2):325–357, 2004. doi:10.1016/j.jctb.2004.08.001.

50 Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos. A more accurate view of the Flat
Wall Theorem, 2021. arXiv:2102.06463.

51 Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos. k-apices of minor-closed graph
classes. II. Parameterized algorithms. ACM Transactions on Algorithms, 18(3):21:1–21:30,
2022. Short version in Proc. of the 47th International Colloquium on Automata, Languages and
Programming (ICALP), volume 168 of LIPIcs, pages 95:1-95:20, 2020. doi:10.1145/3519028.

52 Ignasi Sau, Giannos Stamoulis, and Dimitrios M. Thilikos. k-apices of minor-closed graph
classes. I. Bounding the obstructions. Journal of Combinatorial Theory, Series B, 161:180–227,
2023. doi:10.1016/j.jctb.2023.02.012.

53 Andrew Thomason. The extremal function for complete minors. Journal of Combinatorial
Theory, Series B, 81(2):318–338, 2001. doi:10.1006/jctb.2000.2013.

ICALP 2023

https://doi.org/10.1007/3-540-54233-7_161
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1016/0022-0000(80)90060-4
https://doi.org/10.1007/s00453-010-9484-z
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1093/ACPROF:OSO/9780198566076.001.0001
https://www.cs.purdue.edu/homes/apothen/Papers/shortest-etree1988.pdf
https://www.cs.purdue.edu/homes/apothen/Papers/shortest-etree1988.pdf
https://doi.org/10.1007/978-3-662-43948-7_77
https://doi.org/10.1006/jctb.1995.1006
https://doi.org/10.1016/S0095-8956(03)00042-X
https://doi.org/10.1016/S0095-8956(03)00042-X
https://doi.org/10.1016/j.jctb.2004.08.001
https://arxiv.org/abs/2102.06463
https://doi.org/10.1145/3519028
https://doi.org/10.1016/j.jctb.2023.02.012
https://doi.org/10.1006/jctb.2000.2013

Nearly Tight Spectral Sparsification of Directed
Hypergraphs
Kazusato Oko #

Department of Mathematical Informatics, The University of Tokyo, Japan
Center for Advanced Intelligence Project, RIKEN, Tokyo, Japan

Shinsaku Sakaue # Ñ

Department of Mathematical Informatics, The University of Tokyo, Japan

Shin-ichi Tanigawa # Ñ

Department of Mathematical Informatics, The University of Tokyo, Japan

Abstract
Spectral hypergraph sparsification, an attempt to extend well-known spectral graph sparsification
to hypergraphs, has been extensively studied over the past few years. For undirected hypergraphs,
Kapralov, Krauthgamer, Tardos, and Yoshida (2022) have proved an ε-spectral sparsifier of the
optimal O∗(n) size, where n is the number of vertices and O∗ suppresses the ε−1 and log n factors.
For directed hypergraphs, however, the optimal sparsifier size has not been known. Our main
contribution is the first algorithm that constructs an O∗(n2)-size ε-spectral sparsifier for a weighted
directed hypergraph. Our result is optimal up to the ε−1 and log n factors since there is a lower
bound of Ω(n2) even for directed graphs. We also show the first non-trivial lower bound of Ω(n2/ε)
for general directed hypergraphs. The basic idea of our algorithm is borrowed from the spanner-based
sparsification for ordinary graphs by Koutis and Xu (2016). Their iterative sampling approach is
indeed useful for designing sparsification algorithms in various circumstances. To demonstrate this,
we also present a similar iterative sampling algorithm for undirected hypergraphs that attains one of
the best size bounds, enjoys parallel implementation, and can be transformed to be fault-tolerant.

2012 ACM Subject Classification Theory of computation → Sparsification and spanners

Keywords and phrases Spectral sparsification, (Directed) hypergraphs, Iterative sampling

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.94

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2204.02537

Funding This work was supported by JST PRESTO Grant Number JPMJPR2126, JST ERATO
Grant Number JPMJER1903, and JSPS KAKENHI Grant Number 20H05961.

1 Introduction

Graph sparsification is a fundamental idea for developing efficient algorithms and data
structures. One of the earliest developments in this context is a cut sparsifier due to
Benczúr and Karger [4], which approximately keeps the size of cuts (by adjusting edge
weights). Spielman and Teng [24] introduced a generalized notion called a spectral sparsifier,
which approximately preserves the spectrum of the Laplacian matrix of a given graph. Since
this seminal work, spectral sparsification of graphs has been extensively studied and used in
many applications. See, e.g., [27, 26, 23] for more details on spectral graph sparsification.

This paper studies spectral sparsification of undirected/directed hypergraphs. A hy-
pergraph is a standard tool for generalizing graph-theoretic arguments in a set-theoretic
setting, and extending a theory for graphs to hypergraphs is a common theoretical interest.

EA
T
C
S

© Kazusato Oko, Shinsaku Sakaue, and Shin-ichi Tanigawa;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 94; pp. 94:1–94:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:oko-kazusato@g.ecc.u-tokyo.ac.jp
mailto:sakaue@mist.i.u-tokyo.ac.jp
https://sites.google.com/view/shinsakusakaue/home
mailto:tanigawa@mist.i.u-tokyo.ac.jp
https://www.opt.mist.i.u-tokyo.ac.jp/~tanigawa/
https://doi.org/10.4230/LIPIcs.ICALP.2023.94
https://arxiv.org/abs/2204.02537
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

94:2 Nearly Tight Spectral Sparsification of Directed Hypergraphs

Besides, many hypergraph-based methods [12, 28, 25, 29, 31] have recently been attracting
much attention as extensions of graph-based methods, which also increases the demand for
advancing the theory of spectral hypergraph sparsification.

An undirected hypergraph is defined by a tuple H = (V, F, z), where V is a finite vertex
set, F is a set of subsets of V , and z : F → R+. Each element in F is called a hyperedge and
zf := z(f) is called the weight of f ∈ F in H . The Laplacian LH : RV → RV of H is defined
as a nonlinear operator such that

x⊤LH(x) =
∑
f∈F

zf max
u,v∈f

(xu − xv)2 for all x ∈ RV .

If x is restricted to {0, 1}V , x⊤LH(x) represents the cut function of H. In this sense, the
above definition gives a proper extension of the ordinary graph Laplacian. (Here, x⊤LH(x)
is an abuse of notation since LH(x) is not defined uniquely; nevertheless, this notation is
widely used in analogy to the case of ordinary graphs.)

A directed hypergraph H = (V, F, z) consists of a finite set V , a set F of hyperarcs, and
z : F ∋ f 7→ zf ∈ R+, where each hyperarc f ∈ F is a pair (t(f), h(f)) of non-empty subsets
of V , called the tail and the head (which may not be disjoint). The Laplacian LH : RV → RV

of H is defined as a nonlinear operator such that

x⊤LH(x) =
∑
f∈F

zf max
u∈t(f),v∈h(f)

(xu − xv)2
+ for all x ∈ RV ,

where (·)+ = max{·, 0} (and (·)2
+ = (max{·, 0})2). If x ∈ {0, 1}V , the definition of directed

hypergraph Laplacian LH also captures the cut function of H. Importantly, cut functions
of directed hypergraphs can represent a large class of submodular functions [10].1 Directed
hypergraphs are also useful for modeling higher-order directional relations that appear in,
e.g., propositional logic [11] and causal inference [14], which have constituted a motivation
for studying spectral properties of directed hypergraphs [7].

Given an undirected/directed hypergraph H = (V, F, z) and ε ∈ (0, 1), a hypergraph
H̃ = (V, F̃ , z̃) is called an ε-spectral sparsifier of H if it satisfies F̃ ⊆ F and

(1− ε)x⊤LH(x) ≤ x⊤LH̃(x) ≤ (1 + ε)x⊤LH(x) for all x ∈ RV .

One of the big motivations for studying spectral sparsification of directed hypergraphs comes
from the connection to the representation of submodular functions. Since such a cut-function
representation uses Ω(2|V |) hyperarcs in general, a spectral sparsifier of a directed hypergraph
can serve as a compact approximate representation (see the full version [20] for more details).

Soma and Yoshida [22] initiated the study of spectral hypergraph sparsification and
gave an algorithm for constructing an ε-spectral sparsifier with O(n3 log n/ε2) hyperedges,
where n is the number of vertices. Unlike ordinary graphs, the hypergraph size can be as
large as 2n (and 4n if directed). Thus, obtaining a polynomial bound is already nontrivial.
For undirected hypergraphs, the result by Soma and Yoshida [22] has been improved to
Õ(nr3/ε2) [3] and to Õ(nr/εO(1)) [15],2 where r denotes the maximum size of a hyperedge
in the input hypergraph H and is called the rank of H . Kapralov et al. [16] has removed the
dependence on r and obtained a nearly linear bound of Õ(n/ε4). Very recently, an improved
bound of Õ(n/ε2) has been shown in [13, 18] (concurrently to our work). This upper bound
is nearly tight since the Ω(n/ε2) lower bound applies even to ordinary graphs [2, 6].

1 In fact, any set function can be represented as a cut function of some directed hypergraph if negative
weights are allowed [10].

2 We use Õ to hide poly(log(n/ε)) factors.

K. Oko, S. Sakaue, and S.-i. Tanigawa 94:3

Table 1 Bounds on sparsification of directed hypergraphs. In the time complexity, additive
poly(n, 1/ε) terms are omitted. Note that Kapralov et al. [15] assume the unweighted case.

Method Cut/Spectral Bound Time complexity

Soma and Yoshida [22] Spectral O(n3 log n/ε2) O(mr2)
Kapralov et al. [15] Spectral O(n2r3 log2 n/ε2) O(mr2)

Rafiey and Yoshida [21] Cut O(n2r2/ε2) O(m2r)
This paper Spectral O(n2 log3(n/ε)/ε2) O(mr2)

As for spectral sparsification of directed hypergraphs, Soma and Yoshida [22] showed that
their algorithm is also applicable, and hence the O(n3 log n/ε2) bound also holds for directed
hypergraphs. Later, Kapralov et al. [15] gave an O(n2r3 log2 n/ε2) bound for unweighted
directed hypergraphs, where the rank r is defined by r = maxf∈F {|h(f)|+ |t(f)|} in the
directed case. Recently, for the case of cut sparsification, Rafiey and Yoshida [21] obtained
sparsifiers with O(n2r2/ε2) hyperarcs.3 See Table 1. On the other hand, a well-known Ω(n2)
lower bound for directed graphs [9] is valid for directed hypergraphs. Therefore, a central
open question in this context is: can we obtain an upper bound of Õ(n2/εO(1)) that has no
dependence on the rank r?

1.1 Main Results and Idea
Our main contribution is the first algorithm that constructs an ε-spectral sparsifier with
Õ(n2/ε2) hyperarcs for a directed hypergraph, thus settling the aforementioned question.

▶ Theorem 1. Let H = (V, F, z) be a directed hypergraph with n vertices. For any ε ∈ (0, 1),
our algorithm (shown in Algorithm 3) returns an ε-spectral sparsifier H̃ = (V, F̃ , z̃) of H such
that |F̃ | = O

(
n2

ε2 log3 n
ε

)
with probability at least 1−O

(1
n

)
. Its time complexity is O(mr2)

with probability at least 1−O
(1

n

)
, where m = |F | and r is the rank of H.

This bound improves the previous results and is optimal up to the ε−1 and logarithmic
factors due to the presence of the Ω(n2) lower bound for directed graphs. We prove Theorem 1
in Section 4 by providing a concrete algorithm and its analysis.

A natural next question would be whether the ε−1 term can be deleted. Our new lower
bound shows that the ε−1 term is indeed necessary, and an ε-spectral sparsifier of size O(n2)
may not exist in general, thus complementing our upper bound.

▶ Theorem 2. Let n ∈ Z>0. For any ε ∈
(1

4n , 1
)
, there is a directed hypergraph H = (V, F, z)

with 2n vertices, Ω
(

n2

ε

)
hyperarcs, and the rank three that has no sub-hypergraph H̃ = (V, F̃ , z̃)

such that F̃ ⊊ F and (1− ε)x⊤LH(x) ≤ x⊤LH̃(x) ≤ (1 + ε)x⊤LH(x) for all x ∈ {0, 1}V .

This gives a lower bound even for the case of cut sparsification and is the first nontrivial lower
bound for sparsification of directed hypergraphs. We give the proof in the full version [20].

The basic idea of our algorithm for Theorem 1 comes from a spanner-based sparsification
method for undirected graphs by Koutis and Xu [17], in contrast to the method of [16] for
nearly tight sparsification of undirected hypergraphs. The analysis of [16] uses a technique
called weight assignment [8], which crucially depends on linear algebraic arguments on the

3 This bound follows from their general result on sparsification of submodular functions.

ICALP 2023

94:4 Nearly Tight Spectral Sparsification of Directed Hypergraphs

linear Laplacian of some underlying undirected graph. Directed hypergraphs, however, do not
have such convenient underlying undirected graphs, and hence their idea cannot be utilized.
We thus take an alternative route and use the algorithmic framework of Koutis and Xu [17] –
iteratively select important edges and sample the remaining edges. Due to its combinatorial
nature, we can analyze errors via combinatorial arguments instead of linear algebraic tools.
Although our algorithm is as simple as theirs, our analysis for proving Theorem 1 involves
novel techniques. Specifically, while building on a recent chaining-based analysis [15, 16],
we develop a completely new discretization scheme based on a non-trivial combinatorial
observation to obtain the optimal upper bound. See Section 3 for an overview of our analysis.

1.2 Additional Results
We also present the following additional results in the full version [20].

Undirected hypergraph sparsification. The iterative sampling approach mentioned above
indeed has much potential in hypergraph sparsification. We exhibit its power by presenting
a natural extension of the spanner-based algorithm by Koutis and Xu [17] to undirected
hypergraphs. The concept of spanners in graphs can be naturally extended to undirected
hypergraphs, and accordingly, Koutis and Xu’s algorithm can also be extended to undirected
hypergraphs. Based on a result by Bansal et al. [3], we show that the resulting algorithm
constructs an ε-spectral sparsifier with O

(
nr3

ε2 log2 n
)

hyperedges, which is nearly optimal if
r is constant and matches the bound of [3] (up to a log n factor). Moreover, our algorithm
inherits advantages of the spanner-based approach in that it can be implemented in par-
allel [17] and can be converted to be fault-tolerant [32], demonstrating that the iterative
sampling approach can enjoy various useful extensions.

Application to learning of submodular functions. A notable application of directed hy-
pergraph sparsification due to [22] is agnostic learning of submodular functions. We apply
our method to this setting and obtain an Õ

(
n3

ε4 + 1
ε2 log 1

δ

)
sample complexity bound for

agnostic learning of nonnegative hypernetwork-type submodular functions on a ground set of
size n, improving the previous Õ

(
n4

ε4 + 1
ε2 log 1

δ

)
bound in [22]. Note that since the rank r of

a hypergraph representing a submodular function can be O(n), eliminating the dependence
on r in the sparsifier size (i.e., our improvement from [15]) is crucial in this application. It
should be mentioned that this application only requires cut sparsifiers. Nevertheless, since
our result gives the first near-optimal bound even on the size of cut sparsifiers of directed
hypergraphs, this application serves as a good motivation for our result.

1.3 Related Work
Besides the aforementioned application to agnostic learning of submodular functions, there
are many other potential applications that involve the quadratic form x⊤LH(x) (which is
sometimes called the energy of hypergraphs), e.g., clustering [25], semi-supervised learning [12,
28, 31, 19], and link prediction [29]. For example, Li et al. [19] use the quadratic form as
a smoothness regularizer. Our result on spectral sparsification can be useful when dealing
with such regularizers on dense directed hypergraphs.

Cohen et al. [9] studied directed graph sparsification under a different definition of
approximation based on Eulerian scaling. While their definition is compatible with fast
Laplacian solvers, how to extend it to directed hypergraphs seems non-trivial. Our definition
is based on a general notion called submodular transformations [30] and admits a natural
interpretation as a generalization of cut sparsification of directed hypergraphs.

K. Oko, S. Sakaue, and S.-i. Tanigawa 94:5

2 Preliminaries

We usually denote a directed hypergraph by H = (V, F, z), the numbers of vertices by n,
and the numbers of hyperarcs by m. The Laplacian LH : RV → RV is defined as a nonlinear
operator that satisfies x⊤LH(x) =

∑
f∈F zf maxu∈t(f),v∈h(f)(xu−xv)2

+ for all x ∈ RV , where
h(f), t(f) ⊆ V are the head and the tail of f , respectively. For each f ∈ F , we denote the
contribution of f to x⊤LH(x) by Qx

H(f) = zf maxu∈t(f),v∈h(f)(xu − xv)2
+, which we call the

energy of f . Note that x⊤LH(x) =
∑

f∈F Qx
H(f) holds. For any subset F ′ of F , we let

Qx
H(F ′) =

∑
f∈F ′ Qx

H(f), i.e., the sum of energies over F ′. For a hyperarc f ∈ F , we define
its biclique as an arc set C(f) = {(u, v) | u ∈ t(f), v ∈ h(f)}. For a subset F ′ ⊆ F , we let
C(F ′) =

⋃
f∈F ′ C(f). Below, we often take argmaxf∈F ′ ζ(f) for a function ζ : F → R and a

hyperarc subset F ′ ⊆ F . For convenience, we let such argmax (or argmin) operations always
return a singleton by using some tie-breaking rule with a pre-defined total order on F . For
example, if vertices are labeled by 1, . . . , n and each f ∈ F is labeled by vertices in f , we may
use the lexicographical order on F with respect to the labels. Similarly, we break ties when
taking argmax/argmin on any E′ ⊆ V × V . We will often use the following Chernoff bound.

▶ Proposition 3 ([1]). Let X1, X2, · · · , Xm be independent random variables in the range of
[0, a]. For any δ ∈ [0, 1] and µ ≥ E[

∑m
i=1 Xi], we have

P

[∣∣∣∣∣
m∑

i=1
Xi − E

[
m∑

i=1
Xi

]∣∣∣∣∣ > δµ

]
≤ 2 exp

(
−δ2µ

3a

)
.

3 Technical Overview

Our algorithm is an iterative algorithm whose each step goes as follows: given a hypergraph
H = (V, F, z) from a previous iteration, it constructs a set S of heavy hyperarcs, called a
coreset, which is kept deterministically in this step, and samples the remaining hyperarcs
with probability 1/2, where weights of sampled ones are doubled. This single step yields a
hypergraph with fewer hyperarcs, which is taken as input in the next step. We iterate this
until a sub-hypergraph of the desired size is obtained. Roughly speaking, the size of the coreset
is about Õ(n2/ε2), and after about O(log

(
mε2/n2)) iterations, we obtain a sub-hypergraph

of size Õ(n2/ε2). This algorithmic framework is identical to that of Koutis and Xu [17] for
ordinary undirected graph sparsification, which iteratively constructs a bundle of spanners
(instead of a coreset) and sample the remaining edges with probability 1/4.

We then describe how to analyze the sparsification error. Note that if a sub-hypergraph
produced in each step is a sparsifier of a hypergraph H = (V, F, z) given from the previous
step with a sufficiently large probability, then we can bound the error accumulated over the
iterations. Thus, we focus on the analysis of a single step (which is presented in Lemma 6). To
bound the sparsification error in Qx

H(F) = x⊤LH(x) for all x ∈ RV in each step, we adopted
a chaining-type argument [15, 16]; this enables us to derive a desired uniform bound on a
continuous domain from a pointwise bound via adaptive scaling of the domain discretization.
Here, how to design a discretization scheme crucially affects how sharp the resulting uniform
bound is. Therefore, we need to design an appropriate discretization scheme by carefully
looking at the structure of directed hypergraphs.

We below sketch our discretization scheme. Inspired by the previous studies [15, 16], we
classify hyperarcs f ∈ F \ S based on their energies Qx

H(f). Here, since the coreset S is
always selected, we can exclude it when discussing the following probabilistic arguments. For

ICALP 2023

94:6 Nearly Tight Spectral Sparsification of Directed Hypergraphs

each x ∈ RV , we consider a partition of F \ S into F x
i (i ∈ Z) such that each F x

i consists
of hyperarcs f with energies Qx

H(f) ≈ 2−iQx
H(F). Then, the Chernoff bound offers the

following pointwise guarantee for each x ∈ RV :

P
[
|Qx

H̃
(F̃ x

i)−Qx
H(F x

i)| ≥ εQx
H(F)

]
≲ exp

(
− ε2Qx

H(F)
2−iQx

H(F)

)
= exp

(
−ε22i

)
,

where H̃ is a sparsifier obtained from H and Qx
H̃

(F̃ x
i) denotes the energy of H̃ with hyperarcs

restricted to F x
i . To obtain a desired uniform bound using this inequality, we need to design

a discretization scheme that satisfies the following two requirements:
(R1) the discretization error is O(ε), and
(R2) the number of possible discretized energies is bounded by about exp(ε22i).
Kapralov et al. [15] obtained such a scheme by looking at underlying clique digraphs. By
contrast, we obtain a discretization scheme by directly looking at hypergraphs. This strategy
enables us to eliminate the extra r3 factor in their bound, but it also poses a new challenge.

We explain the challenge when designing such a discretization scheme by directly looking
at hypergraphs. Once x ∈ RV is fixed, the number of hyperarcs f with Qx

H(f) ≈ 2−iQx
H(F)

is bounded by about 2i; on the other hand, we need to prepare at least poly(n, 1/ε) possible
discretized energies for each f to satisfy requirement (R1). Thus, naive counting implies
that the number of total discretized energies for all f ∈ F x

i is (poly(n, 1/ε))2i ≈ exp(Õ(2i)),
which is too large to satisfy requirement (R2). To overcome this problem, we need an
additional combinatorial idea: we count the number of discretized energies by focusing on
the number of possible critical pairs. We say that (u, v) ∈ C(F \ S) is a critical pair of
f if (u, v) = argmaxu′∈t(f),v′∈h(f)(xu′ − xv′)2

+ (see also Figure 1b). Suppose that a lot of
hyperarcs in F x

i share a common critical pair for a given x ∈ RV , particularly when F x
i

contains as many as 2i hyperarcs. Then, since the energy of f is determined by the (xu−xv)2
+

value of the critical pair (u, v) of f , we may get a sharper bound on the number of discretized
energies by defining a discretization scheme based on (xu − xv)2

+ values so that hyperarcs
with the same critical pairs share the same discretized energies (up to scaling of weights).

To accomplish the counting based on this idea, we use the existence of a coreset kept
in each iteration. As we will see shortly from the definition, a λ-coreset S ⊆ F contains λ

heaviest hyperarcs for each (u, v) ∈ C(F) (see also Figure 1a). Roughly speaking, important
properties of λ-coresets are as follows:
(P1) |S| ≤ λn2,
(P2) for any fixed x ∈ RV , many hyperarcs with large energies are included in S, and
(P3) for any fixed x ∈ RV , the number of critical pairs of hyperarcs in F x

i is at most 2i/λ.4
If we set λ = Õ(ε−2), the size of λ-coreset S is Õ(n2/ε2) by property (P1), which is small
enough that the output size decreases geometrically in each iteration until we obtain an
Õ(n2/ε2) size sparsifier. Property (P2) bounds the range of i such that F x

i is non-empty.
Most importantly, property (P3) implies that if we count possible discretized energies over F x

i ,
the total number is at most (poly(n, 1/ε))2i/λ ≈ exp

(
Õ(ε22i)

)
, satisfying requirement (R2).

In summary, once the coreset is selected, we can categorize the remaining hyperarcs in
each F x

i based on a moderate number of critical pairs, which yields a sharp bound on the
number of possible discretized energies of the remaining hyperarcs. This is the key idea of
our discretization scheme, which, together with the chaining-type argument, provides the
desired uniform bound on the sparsification error.

4 For ease of exposition, λ is used differently from Section 4. In Section 4.2, we will instead define F x
i

based on 2−iQx
H(F)/λ values and, accordingly, bound the number of critical pairs by 2i (Lemma 11).

K. Oko, S. Sakaue, and S.-i. Tanigawa 94:7

4 Spectral Sparsification of Directed Hypergraphs

We prove Theorem 1 by presenting a concrete algorithm. Section 4.1 presents our algorithm
and key lemmas. Section 4.2 focuses on the analysis of a single iteration, and Section 4.3
bounds the overall sparsification error and the resulting sparsifier size, thus proving Theorem 1.
Section 4.4 shows the O(mr2) time complexity bound of our algorithm.

4.1 Algorithm Description
Our algorithm consists of CoresetFinder (Algorithm 1), DH-Onestep (Algorithm 2),
and DH-Sparsify (Algorithm 3). DH-Sparsify iteratively calls DH-Onestep, which uses
CoresetFinder as a subroutine. We below explain them one by one.

Algorithm 1 CoresetFinder(H, λ): greedy algorithm for coreset construction.

Input: H = (V, F, z) and λ > 0
Output: S ⊆ F

1: S ← ∅ and Suv ← ∅ for each (u, v) ∈ C(F)
2: Auv ← {f ∈ F | (u, v) ∈ C(f)} for each (u, v) ∈ C(F)
3: for each (u, v) ∈ C(F) :
4: if |Auv \ S| ≥ λ :
5: Find the first λ heaviest hyperarcs fuv

1 , fuv
2 , · · · , fuv

λ ∈ Auv \ S

6: Add fuv
1 , fuv

2 , · · · , fuv
λ to Suv

7: else
8: Suv ← Auv \ S

9: S ← S ∪ Suv

10: return S

Algorithm 2 DH-Onestep(H, λ): sampling algorithm called in each iteration in Algorithm 3.

Input: H = (V, F, z) and λ > 0
Output: H̃ = (V, F̃ , z̃)

1: S ← CoresetFinder(H, λ)
2: F̃ ← S and z̃f ← zf for f ∈ S

3: for each f ∈ F \ S :
4: With probability 1

2 , add f to F̃ and set z̃f ← 2zf

5: return H̃ = (V, F̃ , z̃)

The first building block of our algorithm is CoresetFinder(H, λ) given in Algorithm 1.
It takes a hypergraph H and a parameter λ as input, constructs a set, Suv, of up to λ

hyperarcs for each (u, v) ∈ C(F), and outputs S =
⋃

(u,v)∈C(F) Suv. For each pair (u, v)
(in arbitrary order), Suv is obtained by selecting up to the λ heaviest hyperarcs f with
(u, v) ∈ C(f) among those not selected yet. The parameter λ controls the size of output S.

▶ Lemma 4. Let H be a directed hypergraph and λ be a positive integer.
CoresetFinder(H, λ) returns a set S of at most λn2 hyperarcs that can be partitioned into
disjoints subsets {Suv | (u, v) ∈ C(F)} satisfying the following conditions:
1. for any (u, v) ∈ C(F), every f ∈ Suv satisfies (u, v) ∈ C(f),
2. if (u, v) ∈ C(F \ S), |Suv| = λ holds, and
3. for any (u, v) ∈ C(F), f ∈ Suv, and f ′ ∈ F \ S such that (u, v) ∈ C(f ′), zf ≥ zf ′ holds.

ICALP 2023

94:8 Nearly Tight Spectral Sparsification of Directed Hypergraphs

Algorithm 3 DH-Sparsify(H, ε): iterative algorithm that computes an ε-spectral sparsifier.

Input: H = (V, F, z) with |V | = n and |F | = m, and ε > 0
Output: H̃ = (V, F̃ , z̃)

1: m∗ ← n2

ε2 log3 n
ε ▷ This is the (asymptotic) target size of the resulting sparsifier.

2: T ←
⌈
log4/3

(
m

m∗

)⌉
3: i← 0, H̃0 = (V, F̃0, z̃0)← H, and m0 ← |F̃0|
4: while i < T and mi ≥ C2m∗ : ▷ C2 is a constant that is explained in Section 4.3.
5: εi ← ε

4 log2
4/3(mi

m∗) and λi ←
⌈

C1 log3 mi

ε2
i

⌉
▷ εi is used in the analysis.

6: H̃i+1 = (V, F̃i+1, z̃i+1)← DH-Onestep(H̃i, λi)
7: mi+1 ← |F̃i+1|
8: i← i + 1
9: iend ← i and H̃ ← H̃iend

10: return H̃ = (V, F̃ , z̃)

Proof. Since CoresetFinder(H, λ) constructs Suv for each (u, v) ∈ C(F) by selecting up
to the λ heaviest hyperarcs f with (u, v) ∈ C(f) among those that have not been selected yet,
Suv for (u, v) ∈ C(F) are mutually disjoint. This also implies |S| =

∑
(u,v)∈C(F) |Suv| ≤ λn2

and the first and third conditions. After S is constructed, if there is a hyperarc f ′ ∈ F \ S

such that (u, v) ∈ C(f ′), then λ hyperarcs must have been added to Suv. Hence |Suv| = λ if
(u, v) ∈ C(F \ S), implying the second condition. ◀

We call the set S shown in Lemma 4 a coreset, which plays a key role in the analysis.

▶ Definition 5. Given a directed hypergraph H = (V, F, z), a subset S ⊆ F , and a posit-
ive integer λ, we say S is a λ-coreset of H if S can be partitioned into disjoints subsets
{Suv | (u, v) ∈ C(F)} satisfying the three conditions in the statement of Lemma 4.

In short, if there is a hyperarc f ′ /∈ S with (u, v) ∈ C(f ′), Suv contains (at least) λ hyperarcs
that are at least as heavy as zf ′ . Figure 1a illustrates an example of a coreset. We use this
coreset as a counterpart of a bundle of spanners in the spanner-based sparsification.

Next, we explain DH-Onestep(H, λ) given in Algorithm 2, which is the main
subroutine in our algorithm. The algorithm first computes a λ-coreset S by calling
CoresetFinder(H, λ). The hyperarcs in the coreset S are deterministically added to
the output. Then, it randomly chooses the remaining hyperarcs with probability 1/2 and
doubles the weights if sampled, thus preserving the expected total weight. The main technical
observation is that, under an appropriate choice of λ, the output of DH-Onestep(H, λ) is
an ε-spectral sparsifier of H. Formally, we can show the following lemma, which is the main
technical contribution and will be proved in Section 4.2.

▶ Lemma 6. Let H = (V, F, z) be a directed hypergraph with |V | = n and |F | = m. For any
ε ∈ (0, 1) and λ ≥ C1 log3 m

ε2 , where C1 is a sufficiently large constant, DH-Onestep(H, λ)
returns an ε-spectral sparsifier H̃ = (V, F̃ , z̃) of H satisfying |F̃ | ≤ m

2 + (3m log n)
1
2 + λn2

with probability at least 1−O
(1

n2

)
.

Finally, we present our sparsification algorithm DH-Sparsify(H, ε) in Algorithm 3. In
the algorithm description, C1 denotes the constant given in the statement of Lemma 6, and
C2 is a sufficiently large constant (which we can compute explicitly by carefully expanding
the analysis in Section 4.3). The algorithm iteratively calls DH-Onestep(H̃i, λi), where H̃i

K. Oko, S. Sakaue, and S.-i. Tanigawa 94:9

!
"

(a) Coreset.

!!
!"

"" "!2
3

4
5

1

(b) Critical pairs.

Figure 1 Illustration of a coreset and critical pairs on (a part of) a given hypergraph. A circle is
a vertex, and a hyperarc is indicated by an arrow and two ellipses representing a head and a tail. A
hyperarc contains a vertex if the line originating from the vertex pierces its head or tail. Figure 1a
presents an image of a coreset, focusing on a vertex pair (u, v). Suppose that the hyperarcs are
aligned in decreasing order of their weights from top to bottom. The blue hyperarcs are the three
heaviest ones having u and v as elements of their tails and heads, respectively, and they are included
in a subset Suv of a coreset S. We suppose that gray hyperarcs are not in S. While the bottommost
gray hyperarc f also satisfies u ∈ t(f) and v ∈ h(f), the three blue hyperarcs are heavier than it.
Thus, the conditions of the λ-coreset with λ = 3 are satisfied for (u, v). Figure 1b presents an image
of critical pairs of three hyperarcs, which are missed by the coreset S in Figure 1a. Suppose that
vertices v have xv values of 2, 3, 4, 5, and 1 from left to right, respectively, as shown nearby the
vertices. Then, the green and yellow hyperarcs have (u1, v1) and (u2, v2), respectively, as x-ctirical
pairs. If the three hyperarcs constitute F x

i ⊆ F \ S, we have Ex
i = {(u1, v1), (u2, v2)}, and F x

i is
partitioned into F x,u1v1

i and F x,u2v2
i , shown in green and yellow, respectively.

is the sub-hypergraph obtained in the previous step. Here, the parameter λi is defined as
in Line 3, which makes H̃i+1 an εi-spectral sparsifier of H̃i by the condition in Lemma 6.5
The algorithm repeatedly calls DH-Onestep(H̃i, λi) until the size of H̃i becomes Õ(n2/ε2)
or the maximum number of iterations, T , is reached. With this choice of εi, we will show
that the size of H̃i decreases geometrically and that the accumulated sparsification error is
bounded by ε. Consequently, the final output is an ε-spectral sparsifier of the desired size,
which completes the proof of Theorem 1. We present the analysis in Section 4.3.

4.2 Proof of Lemma 6
We prove Lemma 6, which ensures the correctness of DH-Onestep. In this section, we let
H = (V, F, z), λ ≥ C1 log3 m

ε2 , and ε ∈ (0, 1) be as given in the statement of Lemma 6, and let
H̃ = (V, F̃ , z̃) be the output of DH-Onestep(H, λ).

To prove Lemma 6, we bound the size and sparsification error of H̃ from above. The former
is an easy consequence of the Chernoff bound. We below prove it assuming m > 12 log n;
otherwise, an input hypergraph is already sparsified and we do not run DH-Onestep.

▶ Lemma 7. Let H = (V, F, z) be a directed hypergraph with |V | = n and |F | = m, and
let λ be a positive integer. If m > 12 log n, DH-Onestep(H, λ) outputs a sub-hypergraph
H̃ = (V, F̃ , z̃) of H satisfying |F̃ | ≤ m

2 + (3m log n)
1
2 + λn2 with probability at least 1− 2

n2 .

Proof. Let S be a λ-coreset constructed in Line 2 in DH-Onestep(H, λ). By Lemma 4, S

has at most λn2 hyperarcs. To bound |F̃ \ S|, for each f ∈ F \ S, we let Xf be a random
variable that takes 1 if f is sampled and 0 otherwise. Note that |F̃ \ S| =

∑
f∈F \S Xf holds.

5 Unlike the existing spanner-based algorithm [17], we need to change εi adaptively since fixing εi = ε
T

does not yield a sparsifier of the desired size when the input hypergraph is exponentially large in n.

ICALP 2023

94:10 Nearly Tight Spectral Sparsification of Directed Hypergraphs

Since we have E
[∑

f∈F \S Xf

]
= (m− |S|)/2 ≤ m/2, for any t ∈ (0, 1), the Chernoff bound

(Proposition 3) implies

P

 ∑
f∈F \S

Xf − E

 ∑
f∈F \S

Xf

 >
m

2 t

 ≤ 2 exp
(
−mt2

6

)
.

By setting t =
(

12 log n
m

) 1
2 , which is smaller than 1 due to the lemma assumption, we obtain

P

 ∑
f∈F \S

Xf ≤
m

2 + (3m log n)
1
2

 ≥ 1− 2
n2 .

Thus, we have |F̃ | = |S|+
∑

f∈F \S Xf ≤ m
2 + (3m log n)

1
2 + λn2 with probability at least

1− 2
n2 . ◀

The rest of this section focuses on showing that H̃ is an ε-spectral sparsifier of H, i.e.,
(1 − ε)x⊤LH(x) ≤ x⊤LH̃(x) ≤ (1 + ε)x⊤LH(x) for any x ∈ RV . Since this relation is
invariant under scaling of x, it suffices to prove the relation for any x satisfying x⊤LH(x) = 1.
Let SH =

{
x ∈ RV

∣∣ x⊤LH(x) = 1
}

. A similar normalization is used in [15] with respect to
the total energy of the corresponding underlying clique digraphs. By contrast, we directly
normalize the total energy of a hypergraph, x⊤LH(x). This difference is a key to eliminating
the extra r3 factor, while it requires a new discretization scheme, as described later.

Since we analyze the contribution of each hyperarc to the energy of H, it is convenient
to use the notation of Qx

H(f) and Qx
H(F ′) for f ∈ F and F ′ ⊆ F , respectively, defined in

Section 2. Our goal is to prove (1− ε)Qx
H(F) ≤ Qx

H̃
(F̃) ≤ (1 + ε)Qx

H(F) for all x ∈ SH .
Given x ∈ SH and a λ-coreset S ⊆ F , our strategy is to partition F \S into subsets based

on the energies and evaluate the error caused by sparsification for each subset. Specifically,
we classify hyperarcs f ∈ F \ S into subsets F x

i defined for each i ∈ Z as follows:

F x
i :=

{
f ∈ F \ S

∣∣∣∣ Qx
H(f) ∈

[
1

2iλ
,

1
2i−1λ

)}
.

We also define F̃ x
i := F x

i ∩ F̃ for each i ∈ Z.
Since Qx

H(F \ S) =
∑

i∈Z Qx
H(F x

i) and Qx
H̃

(F̃ \ S) =
∑

i∈Z Qx
H̃

(F̃ x
i), our goal is to prove

that |Qx
H̃

(F̃ x
i)−Qx

H(F x
i)| is sufficiently small for all i ∈ Z and x ∈ SH . This is not difficult

if i is sufficiently large, as in the following lemma.

▶ Lemma 8. Let I = ⌈log2(9m)⌉. For any x ∈ SH ,
∣∣∣Qx

H(∪i≥I+1F x
i)−Qx

H̃

(
∪i≥I+1F̃ x

i

)∣∣∣ ≤ ε
3 .

Proof. Due to the assumption in Lemma 6, λε ≥ C1 log3 m
ε ≥ 1 holds for sufficiently large C1.

By the definition of F x
i , the energy of each hyperarc in ∪i≥I+1F x

i is less than 1
2I λ

, which is
at most ε

9m by I = ⌈log2(9m)⌉ and λε ≥ 1. Thus, it holds that

Qx
H(∪i≥I+1F x

i) =
∑

f∈∪i≥I+1F x
i

Qx
H(f) ≤ m · ε

9m
≤ ε

9 . (1)

As for F̃ ⊆ F , since the weight of each hyperarc in F̃ is doubled in DH-Onestep, we have

Qx
H̃

(
∪i≥I+1F̃ x

i

)
≤ 2 ·Qx

H(∪i≥I+1F x
i) ≤ 2ε

9 . (2)

Combining eqs. (1) and (2), we obtain the claim. ◀

K. Oko, S. Sakaue, and S.-i. Tanigawa 94:11

We then introduce additional definitions for the convenience of describing our discretization
scheme and analyzing the sparsification error.

▶ Definition 9. For x ∈ SH , we say (u, v) ∈ V × V is an x-critical pair of f ∈ F if we have
(u, v) = argmax(u,v)∈C(f)(xu−xv)2

+, breaking ties as in Section 2. For i ∈ Z and x ∈ SH , let

Ex
i = {(u, v) ∈ C(F) | (u, v) is an x-critical pair of some f ∈ F x

i }

and, for each (u, v) ∈ Ex
i , let

F x,uv
i = {f ∈ F x

i | (u, v) is an x-critical pair of f }.

Note that the collection of F x,uv
i for (u, v) ∈ Ex

i forms a partition of F x
i . Figure 1b presents

an example of x-critical pairs.
We now discuss how to bound |Qx

H̃
(F̃ x

i)−Qx
H(F x

i)| for i that is not covered in Lemma 8.
By using the Chernoff bound, it is easy to evaluate the probability that |Qx

H̃
(F̃ x

i)−Qx
H(F x

i)|
is small for each x ∈ SH . To convert it to a uniform bound over all x ∈ SH , we construct an
appropriate discretization scheme, as follows.

Let ∆ = ε
9m . For (u, v) ∈ Ex

i , we define the discretization width as ∆uv
i := ∆

maxf∈F
x,uv
i

zf
.

Note that F x,uv
i ̸= ∅ holds for (u, v) ∈ Ei by the definitions of Ei and F x,uv

i , and hence ∆uv
i

is well-defined. The denominator plays the role of scaling the width. Given any x ∈ SH ,
we consider discretizing (xu − xv)2

+ for each (u, v) ∈ Ex
i , not the energy itself. Specifically,

for each i ∈ Z and (u, v) ∈ Ex
i , we use

⌊
(xu−xv)2

+
∆uv

i

⌋
∆uv

i as a discretized value of (xu − xv)2
+.

Then, for each f ∈ F x,uv
i such that (u, v) ∈ Ex

i , we define the discretized energy Dx
H(f) by

Dx
H(f) := zf

⌊
(xu − xv)2

+
∆uv

i

⌋
∆uv

i .

It should be noted that the discretized energy of f ∈ F x,uv
i is defined by first discretizing

(xu − xv)2
+ and then scaling it by zf . This somewhat indirect discretization scheme will turn

out important when bounding the number of possible discretized energies.
For each sampled hyperarc f ∈ F x,uv

i ∩ F̃ with (u, v) ∈ Ex
i , we define the discretized

energy after sampling by Dx
H̃

(f) := 2Dx
H(f). We also let Dx

H(F x
i) =

∑
f∈F x

i
Dx

H(f) and
Dx

H̃
(F̃ x

i) =
∑

f∈F̃ x
i

Dx
H̃

(f). We can ensures that discretization errors are small as follows.

▶ Lemma 10. For any x ∈ SH , we have∑
i∈Z
|Dx

H(F x
i)−Qx

H(F x
i)| ≤ ε

9 and
∑
i∈Z

∣∣Dx
H̃

(F̃ x
i)−Qx

H̃
(F̃ x

i)
∣∣ ≤ 2ε

9 .

Proof. Recall that the discretized energy Dx
H(f) of each f ∈ F x,uv

i is obtained by discretizing
(xu−xv)2

+ with the width ∆uv
i and scaling it by zf . Therefore, the discretization error for each

f is bounded by zf ∆uv
i . From the definition of ∆uv

i , we have zf ∆uv
i = zf

∆
maxf∈F

x,uv
i

zf
≤ ∆.

Hence, the total discretization error over all f ∈ F \ S is bounded by m∆, which is at most
ε
9 since ∆ = ε

9m . Thus, we obtain the first inequality. The second inequality follows from
the fact that the weights of sampled hyperarcs are doubled. ◀

From Lemma 10, we can bound the sparsification error |Qx
H̃

(F̃ x
i)−Qx

H(F x
i)| for all x ∈ SH

by bounding |Dx
H̃

(F̃ x
i)−Dx

H(F x
i)| for all x ∈ SH . Since the number of possible discretized

energies is finite, we can use the standard Chernoff bound and union bound to evaluate the
sparsification error. Thus, what remains is to prove that the number of discretized energies is

ICALP 2023

94:12 Nearly Tight Spectral Sparsification of Directed Hypergraphs

small enough so that we can obtain the desired uniform bound. To this end, we first bound
the size of Ex

i and then bound the number of possible discretized values. The following
lemma bounds the size of Ex

i , in which the existence of a λ-coreset plays an important role.

▶ Lemma 11. For i ∈ Z, we have |Ex
i | < 2i.

Proof. By the definition of Ex
i , for each (u, v) ∈ Ex

i , there is a hyperarc fuv ∈ F x
i ⊆ F \ S

such that (u, v) is an x-critical pair of fuv. Since S is a λ-coreset, S admits a partition
{Suv | (u, v) ∈ C(F)} satisfying the three conditions in Lemma 4. Since fuv /∈ S, the third
condition in Lemma 4 implies zf ≥ zfuv for any f ∈ Suv. Hence, for any f ∈ Suv, we have

Qx
H(fuv) = zfuv (xu − xv)2

+ ≤ zf (xu − xv)2
+ ≤ max

(u′,v′)∈C(f)
zf (xu′ − xv′)2

+ = Qx
H(f). (3)

Since the second condition in Lemma 4 implies |Suv| = λ for (u, v) ∈ Ex
i ⊆ C(F \ S),

Qx
H(F) ≥

∑
(u,v)∈Ex

i

(Qx
H(Suv) + Qx

H(fuv)) (since all Suv and fuv /∈ S are disjoint)

≥
∑

(u,v)∈Ex
i

(λ + 1) ·Qx
H(fuv) (by eq. (3) and |Suv| = λ)

≥
∑

(u,v)∈Ex
i

(λ + 1) · (2iλ)−1 (by fuv ∈ F x
i).

holds, hence Qx
H(F) > 2−i|Ex

i |. Since Qx
H(F) = 1 by x ∈ SH , we obtain |Ex

i | < 2i. ◀

From Lemma 11, if i ≤ 0, we have |Ex
i | < 2i ≤ 1, which implies Ex

i = ∅ and F x
i = ∅. Thus,

the following corollary holds.

▶ Corollary 12. If i ≤ 0, we have F x
i = ∅.

Due to Corollary 12 and Lemma 8, we can focus on i ∈ Z with 1 ≤ i ≤ I = ⌈log2 9m⌉. In
this range, we have the following bound on the number of possible discretized values.

▶ Lemma 13. For each positive integer i, let Li =
{(

F x
i , {Dx

H(f)}f∈F x
i

) ∣∣ x ∈ SH

}
, where

{Dx
H(f)}f∈F x

i
is the list of the discretized energies over all hyperarcs in F x

i . If 1 ≤ i ≤ I =

⌈log2 9m⌉, we have |Li| ≤
(

648n4m4

λε

)2i

.

Since the proof of Lemma 13 is not short, we first complete the proof of Lemma 6 assuming
that Lemma 13 is true; then, we prove Lemma 13 in Section 4.2.1.

Proof of Lemma 6. Let I = ⌈log2(9m)⌉ as in Lemma 8 and define Li as in Lemma 13. Fix
i ∈ {1, 2, . . . , I} and consider any element of Li, which we denote by (F y

i , {Dy
H(f)}f∈F y

i
) for

some y ∈ SH . Since the discretized energy of each hyperarc is obtained by rounding down,
we have Dy

H(f) ≤ Qy
H(f). Thus, for every f ∈ F y

i , it holds that

Dy
H(f) ≤ Qy

H(f) <
1

2i−1λ
. (4)

For each f ∈ F \S, let Xf be a random variable that takes 1 with probability 1/2 and 0 other-
wise, which represents the randomness of sampling and hence Dy

H̃
(F̃ y

i) =
∑

f∈F y
i

2Xf Dy
H(f).

By Dy
H(f) ≤ Qy

H(f) again, we have

E

[∑
f∈F y

i

2Xf Dy
H(f)

]
=
∑

f∈F y
i

Dy
H(f) = Dy

H(F y
i) ≤ Qy

H(F y
i) ≤ Qy

H(F) = 1. (5)

K. Oko, S. Sakaue, and S.-i. Tanigawa 94:13

Due to eqs. (4) and (5), the Chernoff bound (Proposition 3) with µ = 1, a = 1
2i−2λ , and

δ = ε
3I implies

P
[∣∣∣Dy

H̃
(F̃ y

i)−Dy
H(F y

i)
∣∣∣ >

ε

3I

]
= P

∣∣∣∣∣∣
∑

f∈F y
i

2Xf Dy
H(f)− E

∑
f∈F y

i

2Xf Dy
H(f)

∣∣∣∣∣∣ >
ε

3I


≤ 2 exp

(
−2i · ε2λ

108I2

)
.

This bound is true for each (F y
i , {Dy

H(f)}f∈F y
i

) ∈ Li, and we can convert it to a uniform
bound over all (F y

i , {Dy
H(f)}f∈F y

i
) ∈ Li by using Lemma 13 and the union bound as follows:

P
[
∃(F y

i , {Dy
H(f)}f∈F

y
i

) ∈ Li,
∣∣Dy

H̃
(F̃ y

i) − Dy
H(F y

i)
∣∣ >

ε

3I

]
≤ 2 exp

(
−2i · ε2λ

108I2

)
·
(

648n4m4

λε

)2i

.

We may assume nm ≥ 648 (otherwise Lemma 6 is trivial for a sufficiently large C1). Letting
C1 be sufficiently large, we have λ ≥ C1 log3 m

ε2 ≥ 108I2

ε2 (6 log n + 5 log m) and λε ≥ 1. Thus,
we can further bound the right-hand side from above by

2 exp
(
−2i · ε2λ

108I2

)
·
(
n5m5)2i

≤ 2 exp
(
−2i · (6 log n + 5 log m)

)
·
(
n5m5)2i

≤ 2
n2i .

Therefore, P[∀(F y
i , {Dy

H(f)}f∈F y
i

) ∈ Li, |Dy

H̃
(F̃ y

i) −Dy
H(F y

i)| ≤ ε
3I] ≥ 1 − 2

n2i holds. Since
(F x

i , {Dx(f)}f∈F x
i

) ∈ Li holds for all x ∈ SH , we can equivalently rewrite the bound as

P
[
∀x ∈ SH ,

∣∣Dx
H̃

(F̃ x
i)−Dx

H(F x
i)
∣∣ ≤ ε

3I

]
≥ 1− 2

n2i .

By the union bound over 1 ≤ i ≤ I = ⌈log2(9m)⌉ and
∑I

i=1
2

n2i ≤
∑∞

i=1
2

n2i ≤ 2
n2−1 ≤

3
n2

(for n ≥ 2), we obtain

P

[
∀x ∈ SH ,

I∑
i=1

∣∣Dx
H̃

(F̃ x
i)−Dx

H(F x
i)
∣∣ ≤ ε

3

]
≥ 1− 3

n2 . (6)

Thus, for all x ∈ SH , we can bound |x⊤LH̃(x)− x⊤LH(x)| = |Qx
H̃

(F̃)−Qx
H(F)| as follows:∣∣Qx

H̃
(F̃)−Qx

H(F)
∣∣

= ε

3 +
I∑

i=1
|Qx

H̃
(F̃ x

i)−Qx
H(F x

i)| (by Lemma 8 and Corollary 12)

≤ ε

3 +
I∑

i=1

[
|Qx

H̃
(F̃ x

i)−Dx
H̃

(F̃ x
i)|+ |Dx

H̃
(F̃ x

i)−Dx
H(F x

i)|+ |Dx
H(F x

i)−Qx
H(F x

i)|
]

≤ ε

3 + ε

9 + ε

3 + 2ε

9 (by Lemma 10 and eq. (6))

= ε,

which holds with probability at least 1 − 3
n2 . Hence, H̃ is an ε-spectral sparsifier of H.

Combining this with the size bound in Lemma 7, we obtain Lemma 6. ◀

4.2.1 Proof of Lemma 13
We present the proof of Lemma 13. Our goal is to bound the size of Li defined in Lemma 13
for i ∈ Z with 1 ≤ i ≤ I = ⌈log2 9m⌉. To this end, we proceed in two steps: we first bound
the number of possible combinations of (F x

i , Ex
i , {F x,uv

i }f∈Ex
i
) over all x ∈ SH , and then

bound the number of possible lists {Dx
H(f)}f∈F x

i
of discretized energies. For convenience,

we define the following notion.

ICALP 2023

94:14 Nearly Tight Spectral Sparsification of Directed Hypergraphs

▶ Definition 14. Let (E, {fuv}(u,v)∈E , πE) be a tuple such that E ⊆ V ×V , {fuv}(u,v)∈E is a
list of hyperarcs indexed by (u, v) ∈ E, and πE is a total ordering on E. For i ∈ {1, 2, . . . , I},
we say (E, {fuv}(u,v)∈E , πE) is i-realized by x ∈ SH if the following conditions hold:
1. E = Ex

i ,
2. fuv = argminf∈F x,uv

i
zf for each (u, v) ∈ Ex

i , and
3. πE is the increasing order of the values of (xu − xv)2

+, i.e., (u, v) is smaller than (u′, v′)
in πE if and only if (xu − xv)2

+ ≤ (xu′ − xv′)2
+ (where the tie-breaking rule explained in

Section 2 is used when the equality holds).

The following lemma says that the i-realizability determines Ex
i , F x

i , and F x,uv
i , implying

that we can reduce the problem of counting the number of possible (F x
i , Ex

i , {F x,uv
i }f∈Ex

i
)

to that of counting the number of possible tuples (E, {fuv}(u,v)∈E , πE).

▶ Lemma 15. Let (E, {fuv}(u,v)∈E , πE) be a tuple as defined in Definition 14 and x, y ∈ SH .
If both x and y i-realize (E, {fuv}(u,v)∈E , πE) and

⋃i−1
j=1 F x

j =
⋃i−1

j=1 F y
j holds, then, for every

(u, v) ∈ E, we have Ex
i = Ey

i , F x
i = F y

i , and F x,uv
i = F y,uv

i .

Proof. By the definition of the i-realizability, we have Ex
i = E = Ey

i . If we can assume
F x,uv

i = F y,uv
i for every (u, v) ∈ E, we have F x

i =
⋃

(u,v)∈E F x,uv
i =

⋃
(u,v)∈E F y,uv

i = F y
i

since {F x,uv
i | (u, v) ∈ C(F)} and {F y,uv

i | (u, v) ∈ C(F)} are partitions of F x
i and F y

i ,
respectively. Therefore, we below focus on proving F x,uv

i = F y,uv
i for every (u, v) ∈ E.

For a contradiction, suppose F x,u1v1
i ̸= F y,u1v1

i for some (u1, v1) ∈ E. Without loss of
generality, we assume there is a hyperarc f∗ ∈ F x,u1v1

i \F y,u1v1
i . Since both x and y i-realize

(E, {fuv}(u,v)∈E , πE) and (u1, v1) ∈ E, the second condition of the i-realizability implies

argmin
f∈F

x,u1v1
i

zf = fu1v1 = argmin
f∈F

y,u1v1
i

zf . (7)

In particular, we have zfu1v1
≤ zf∗ for f∗ ∈ F x,u1v1

i . Hence

Qy
H(f∗) = zf∗ max

(u,v)∈C(f∗)
(yu − yv)2

+

≥ zfu1v1
(yu1 − yv1)2

+
(
by (u1, v1) ∈ C(f∗) and zf∗ ≥ zfu1v1

)
= zfu1v1

max
(u,v)∈C(fu1v1)

(yu − yv)2
+ (by fu1v1 ∈ F y,u1v1

i as in eq. (7))

≥ 2−i

λ
(by fu1v1 ∈ F y

i).

From Qy
H(f∗) ≥ 2−i

λ and f∗ ∈ F x,u1v1
i ⊆ F \ S, it must hold that f∗ ∈

⋃i
j=1 F y

j . Moreover,
since

⋃i−1
j=1 F x

j =
⋃i−1

j=1 F y
j by the lemma assumption and f∗ /∈

⋃i−1
j=1 F x

j by f∗ ∈ F x,u1v1
i , we

have f∗ /∈
⋃i−1

j=1 F y
j , hence f∗ ∈ F y

i . Since the orderings of E with respect to (xu − xv)2
+ and

(yu − yv)2
+ are both equal to πE and (u1, v1) is an x-critical pair of f∗, we have

(u1, v1) = argmax
(u,v)∈C(f∗)∩E

(yu − yv)2
+. (8)

Since f∗ ∈ F y
i , eq. (8) implies f∗ ∈ F y,u1v1

i , contradicting the assumption of f∗ /∈ F y,u1v1
i .

Therefore, F x,uv
i = F y,uv

i holds for every (u, v) ∈ E. ◀

Lemma 15 enables us to bound the number of possible (F x
i , Ex

i , {F x,uv
i }f∈Ex

i
) for x ∈ SH .

▶ Lemma 16. For each i ≥ 1,
∣∣{(F x

i , Ex
i , {F x,uv

i }f∈Ex
i
)
∣∣ x ∈ SH

}∣∣ ≤ (2in2m
)2i+1

holds.

K. Oko, S. Sakaue, and S.-i. Tanigawa 94:15

Proof. First, we suppose that F x
j for j = 1, . . . , i− 1 are fixed. Then, due to Lemma 15, we

can bound the number of possible combinations of (F x
i , Ex

i , {F x,uv
i }f∈Ex

i
) for all x ∈ SH by

counting the number of possible tuples (E, {fuv}(u,v)∈E , πE) that can be i-realized by some
x ∈ SH . Since |E| < 2i by Lemma 11, the number of possible E is

∑|E|
k=1

(
n2

k

)
≤
∑2i−1

k=1
(

n2

k

)
.

Once E is specified, there are up to m possible choices of fuv for each (u, v) ∈ E. Furthermore,
the number of possible total orderings πE of E is at most (|E|)! ≤ (2i)!. Thus, the number
of possible tuples (E, {fuv}(u,v)∈E , πE) that can be i-realized by some x ∈ SH is at most(∑2i−1

k=1
(

n2

k

))
·m2i ·(2i)!. This is further upper bounded by

(
2in2m

)2i

by a simple calculation.
We now remove the assumption that F x

j for j = 1, . . . , i − 1 are fixed. By inductively
using the above bound in increasing order of j, the number of possible combinations of
(F x

i , Ex
i , {F x,uv

i }f∈Ex
i
) over all x ∈ SH is at most

∏i
j=1
(
2jn2m

)2j

≤
(
2in2m

)∑i

j=1
2j

≤(
2in2m

)2i+1

, thus completing the proof. ◀

We then fix any tuple (F y
i , Ey

i , {F y,uv
i }f∈Ey

i
) for some representative y ∈ SH and upper

bound the number of possible lists of discretized energies, {Dx
H(f)}f∈F x

i
, over a subspace of

SH that consists of x with (F x
i , Ex

i , {F x,uv
i }f∈Ex

i
) = (F y

i , Ey
i , {F y,uv

i }f∈Ey
i
).

▶ Lemma 17. Let i ≥ 0 and fix y ∈ SH arbitrarily. The number of possible lists
{Dx

H(f)}f∈F x
i

for all x ∈ SH with (F x
i , Ex

i , {F x,uv
i }(u,v)∈Ex

i
) = (F y

i , Ey
i , {F y,uv

i }(u,v)∈Ey
i
)

is at most
(9m

2i−2λε

)2i

.

Proof. Let x ∈ SH satisfy the condition in the lemma statement and fix (u, v) ∈ Ex
i . Since

every f ∈ F x,uv
i ⊆ F x

i satisfies zf (xu − xv)2
+ = Qx

H(f) < 1
2i−1λ , the range of (xu − xv)2

+ is
restricted to

[
0, 1

2i−1λ minf∈F
x,uv
i

zf

)
. Hence, the number of possible discretized (xu − xv)2

+

values,
⌊
(xu − xv)2

+/∆uv
i

⌋
∆uv

i , over all x ∈ SH under the lemma condition is at most

1
∆uv

i 2i−1λ minf∈F x,uv
i

zf
= 1

∆2i−1λ
·

maxf∈F x,uv
i

zf

minf∈F x,uv
i

zf
≤ 1

∆2i−2λ
, (9)

where the equality is due to ∆uv
i = ∆/maxf∈F x,uv

i
zf and the inequality comes from zf (xu −

xv)2
+ = Qx

H(f) ∈
[1

2iλ , 1
2i−1λ

)
for f ∈ F x,uv

i ⊆ F x
i , i.e., maxf∈F x,uv

i
zf ≤ 2 minf∈F x,uv

i
zf .

Since the discretized energy of f ∈ F x,uv
i is defined by Dx

H(f) = zf

⌊
(xu − xv)2

+/∆uv
i

⌋
∆uv

i ,
fixing the discretization of (xu − xv)2

+ determines discretized energies of all f ∈ F x,uv
i .

Therefore, the number of possible lists {Dx
H(f)}f∈F x,uv

i
is also bounded by eq. (9) for each

(u, v) ∈ Ex
i . Since |Ex

i | < 2i by Lemma 11, the number of possible lists {Dx
H(f)}f∈F x

i
is at

most
(1

∆2i−2λ

)2i

. By substituting ∆ = ε
9m into it, we obtain the lemma. ◀

We are now ready to prove Lemma 13.

Proof of Lemma 13. We can uniquely specify any element of Li by first fixing
(F x

i , Ex
i , {F x,uv

i }f∈Ex
i
) and then {Dx

H(f)}f∈F x
i

. Therefore, we have |Li| ≤ (2in2m)2i+1 ·(9m
2i−2λε

)2i

=
(

36·2in4m3

λε

)2i

by Lemmas 16 and 17. Combining this with i ≤ I = ⌈log2 9m⌉
completes the proof. ◀

4.3 Proof of Theorem 1
Let H = (V, F, z) be a directed hypergraph with |V | = n and |F | = m, ε ∈ (0, 1), and
H̃ = (V, F̃ , z̃) the output of DH-Sparsify(H, ε). Our goal is to prove that H̃ is an ε-spectral
sparsifier of H and |F̃ | = O

(
n2

ε2 log3 n
ε

)
. We here use m∗, T , iend, (H̃i = (V, F̃i, z̃i), λi), mi,

ICALP 2023

94:16 Nearly Tight Spectral Sparsification of Directed Hypergraphs

and εi given in the description of DH-Sparsify(H, ε) (Algorithm 3), where m∗ = n2

ε2 log3 n
ε

is the target sparsifier size, T =
⌈
log4/3

(
m

m∗

)⌉
is the maximum number of iterations, iend is

the number of iterations performed, (H̃i = (V, F̃i, z̃i), λi) is the input of DH-Onestep at
the ith iteration, mi = |F̃i|, and εi = ε

4 log2
4/3(mi

m∗) , as in Line 3 of Algorithm 3.
We first show that the number of hyperarcs decreases geometrically in each step.

▶ Lemma 18. Let mi be the number of hyperarcs in H̃i. Assume mi ≥ C2m∗ = C2
n2

ε2 log3 n
ε

for a sufficiently large constant C2. Then, we have (3mi log n)
1
2 + λin

2 ≤ mi

4 .

Proof. It is easy to show that (3mi log n)
1
2 ≤ mi

8 holds if mi ≥ 192 log n, which is true if C2
is sufficiently large. Hence, the desired inequality holds if λin

2 ≤ mi

8 , which we show below.
By Line 3 in Algorithm 3, we have εi = ε

4 log2
4/3

mi
m∗

and λi =
⌈

C1 log3 mi

ε2
i

⌉
. Hence,

mi

8 − λin
2 ≥ mi

8 −
2500C1n2

ε2 log3 mi log4 mi

m∗ (by 42/ log4(4/3) < 2500).

Let mi = αm∗ and g(α) be the right-hand side of the above inequality, which we regard as a
function of α. Since m∗ = (n/ε)2 log3(n/ε), we have

g(α) = m∗

(
α

8 −
2500C1

log3(n/ε)
log3(αm∗) log4 α

)
≥ m∗

(
α

8 −
10000C1

log3(n/ε)
(log3 α + log3 m∗) log4 α

)
(by (a + b)3 ≤ 4(a3 + b3))

≥ m∗

(
α

8 − 10000C1

(
log3 α

log3(n/ε)
+ 125

)
log4 α

) (
by m∗ = n2

ε2 log3 n

ε
≤
(n

ε

)5)
.

Thus, there exists a sufficiently large constant C2, which is independent of n and ε, such
that g(α) ≥ 0 holds for all α ≥ C2. Using this constant C2, for all mi ≥ C2m∗, we have
λin

2 ≤ mi

8 as desired. ◀

Proof of Theorem 1. We say DH-Onestep(Hi, λi) is successful if H̃i+1 is an εi-spectral
sparsifier of H̃i and mi+1 ≤ 3

4 mi holds. DH-Sparsify(H, ε) calls DH-Onestep(Hi, λi)
only when mi ≥ C2m∗ and i ≤ T . Therefore, by Lemmas 6 and 18, with probability at
least 1−O

(
T
n2

)
≳ 1−O

(1
n

)
, DH-Onestep(Hi, λi) is successful for all i with 0 ≤ i ≤ iend.

Hence, assuming all DH-Onestep(Hi, λi) to be successful, we below prove that the output
hypergraph H̃ has O

(
n2

ε2 log3 n
ε

)
hyperarcs and that H̃ is an ε-spectral sparsifier of H.

We first discuss the size of H̃. If mi ≤ C2m∗ = C2n2 log3(n/ε)
ε2 occurs for some i ≤ T − 1,

then mi gives the size of H̃ by the termination rule of DH-Sparsify, which is already small
enough. Hence we below assume mi ≥ C2m∗ for all i < T . Since every DH-Onestep(Hi, λi)
is successful, mi+1 ≤ 3

4 mi holds for all i = 0, 1, · · · , T − 1. Thus, it holds that

mT ≤ m ·
(

3
4

)T

≤ m ·
(

3
4

)log4/3
mε2

n2 log3(n/ε)
= n2 log3(n/ε)

ε2 .

Therefore, we have |F̃ | = O
(

n2

ε2 log3 n
ε

)
.

We then show that H̃ is an ε-spectral sparsifier of H . Since H̃i+1 is an εi-spectral sparsifier
of H̃i for all i = 0, 1, · · · , iend−1, the output hypergraph H̃ = H̃iend is an ε̃-spectral sparsifier
of H, where

ε̃ = max
{

iend−1∏
i=0

(1 + εi)− 1, 1−
iend−1∏

i=0
(1− εi)

}
.

K. Oko, S. Sakaue, and S.-i. Tanigawa 94:17

A simple calculation yields the following upper bound on ε̃:

ε̃ ≤
iend∑
j=1

∑
0≤i1<···<ij≤iend−1

εi1εi2 · · · εij
≤

iend∑
j=1

(
iend−1∑

i=0
εi

)j

. (10)

Since mi+1 ≤ 3
4 mi and miend−1 ≥ C2m∗, we have miend−j ≥

(4
3
)j−1

C2m∗ ≥
(4

3
)j

m∗ for
sufficiently large C2 ≥ 4

3 , hence log4/3
(miend−j

m∗

)
≥ j. Using

∑∞
j=1

1
j2 ≤ π2

6 , we obtain

iend−1∑
i=0

εi =
iend−1∑

i=0

ε

4 log2
4/3
(

mi

m∗

) ≤ ∞∑
j=1

ε

4j2 ≤
ε

4 ·
π2

6 ≤
ε

2 .

Putting this into the right-hand side of eq. (10), we have

iend∑
j=1

(
iend−1∑

i=0
εi

)j

≤
iend∑
j=1

(ε

2

)j

≤
ε
2

1− ε
2
≤ ε. (11)

By eqs. (10) and (11), H̃ = H̃iend is an ε-spectral sparsifier of H.
To conclude, with probability at least 1−O

(1
n

)
, DH-Sparsify(H, ε) outputs an ε-spectral

sparsifier of H with O
(

n2

ε2 log3 n
ε

)
hyperarcs. ◀

4.4 Total Time Complexity
We show that our algorithm runs in O(r2m) time with probability at least 1−O(1/n).

▶ Theorem 19. For any directed hypergraph H = (V, F, z) with the rank r and m hyperarcs
and ε ∈ (0, 1), DH-Sparsify(H, ε) runs in O(r2m) time with probability at least 1−O(1/n).

Proof. We first discuss the running time of DH-Onestep(H̃i, λi), where H̃i = (V, F̃i, z̃i)
and |F̃i| = mi. It first constructs a λi-coreset by calling CoresetFinder(H̃i, λi). Coreset-
Finder first constructs Auv = {f ∈ F | C(f) ∋ (u, v)} for (u, v) ∈ C(F), which is done in
O(r2mi) time since we have |C(f)| = O(r2) for each f ∈ F̃i. Then, for each (u, v) ∈ C(F),
it selects the λi heaviest hyperarcs from Auv \ S in O(|Auv \ S|) time by using a selection
algorithm [5], thus taking O

(∑
(u,v)∈C(F) |Auv \ S|

)
= O(r2mi) time in total. Therefore,

CoresetFinder(H̃i, λi) takes O(r2mi) time. After that, DH-Onestep samples the remain-
ing hyperarcs in O(mi) time. Thus, DH-Onestep(H̃i, λi) takes O(r2mi) time.

We then bound the total time complexity. Since DH-Sparsify(H, ε) calls DH-
Onestep(H̃i, λi) for i = 0, 1, . . . , T − 1 (or stops earlier), the total time complexity is
at most O

(
r2∑T −1

i=0 mi

)
. From Lemmas 7 and 18, whenever DH-Onestep is called, we

have mi+1 ≤ 3
4 mi with probability at least 1 − O(1/n2). This implies that

∑T −1
i=0 mi ≤

m
∑T −1

i=0
(3

4
)i ≤ 4m holds with probability at least 1 − O(T/n2) ≳ 1 − O(1/n). Therefore,

the total time complexity is bounded by O(r2m) with probability at least 1−O(1/n). ◀

References
1 Noga Alon and Joel H. Spencer. The Probabilistic Method. John Wiley & Sons, 2016.
2 Alexandr Andoni, Jiecao Chen, Robert Krauthgamer, Bo Qin, David P. Woodruff, and Qin

Zhang. On sketching quadratic forms. In Proceedings of the 2016 ACM Conference on
Innovations in Theoretical Computer Science, pages 311–319, 2016.

ICALP 2023

94:18 Nearly Tight Spectral Sparsification of Directed Hypergraphs

3 Nikhil Bansal, Ola Svensson, and Luca Trevisan. New notions and constructions of sparsification
for graphs and hypergraphs. In Proceedings of the 2019 IEEE 60th Annual Symposium on
Foundations of Computer Science, pages 910–928. IEEE, 2019.

4 András A. Benczúr and David R. Karger. Approximating s-t minimum cuts in Õ(n2) time.
In Proceedings of the 28th Annual ACM Symposium on Theory of Computing, pages 47–55.
ACM, 1996.

5 Manuel Blum, Robert W. Floyd, Vaughan R. Pratt, Ronald L. Rivest, and Robert Endre
Tarjan. Time bounds for selection. Journal of Computer and System Sciences, 7(4):448–461,
1973.

6 Charles Carlson, Alexandra Kolla, Nikhil Srivastava, and Luca Trevisan. Optimal lower
bounds for sketching graph cuts. In Proceedings of the 30th Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 2565–2569. SIAM, 2019.

7 T.-H. Hubert Chan, Zhihao Gavin Tang, Xiaowei Wu, and Chenzi Zhang. Diffusion operator
and spectral analysis for directed hypergraph Laplacian. Theoretical Computer Science,
784:46–64, 2019.

8 Yu Chen, Sanjeev Khanna, and Ansh Nagda. Near-linear size hypergraph cut sparsifiers. In
Proceedings of the 2020 IEEE 61st Annual Symposium on Foundations of Computer Science,
pages 61–72. IEEE, 2020.

9 Michael B. Cohen, Jonathan Kelner, John Peebles, Richard Peng, Anup B. Rao, Aaron
Sidford, and Adrian Vladu. Almost-linear-time algorithms for Markov chains and new spectral
primitives for directed graphs. In Proceedings of the 49th Annual ACM SIGACT Symposium
on Theory of Computing, pages 410–419. ACM, 2017.

10 Satoru Fujishige and Sachin B. Patkar. Realization of set functions as cut functions of graphs
and hypergraphs. Discrete Mathematics, 226(1-3):199–210, 2001.

11 Giorgio Gallo, Giustino Longo, Stefano Pallottino, and Sang Nguyen. Directed hypergraphs
and applications. Discrete Applied Mathematics, 42(2-3):177–201, 1993.

12 Matthias Hein, Simon Setzer, Leonardo Jost, and Syama Sundar Rangapuram. The total
variation on hypergraphs - learning on hypergraphs revisited. In Advances in Neural Information
Processing Systems, volume 26. Curran Associates, Inc., 2013.

13 Arun Jambulapati, Yang P Liu, and Aaron Sidford. Chaining, group leverage score overestim-
ates, and fast spectral hypergraph sparsification. arXiv:2209.10539, 2022.

14 Mohammad Ali Javidian, Zhiyu Wang, Linyuan Lu, and Marco Valtorta. On a hypergraph
probabilistic graphical model. Annals of Mathematics and Artificial Intelligence, 88(9):1003–
1033, 2020.

15 Michael Kapralov, Robert Krauthgamer, Jakab Tardos, and Yuichi Yoshida. Towards tight
bounds for spectral sparsification of hypergraphs. In Proceedings of the 53rd Annual ACM
SIGACT Symposium on Theory of Computing, pages 598–611. ACM, 2021.

16 Michael Kapralov, Robert Krauthgamer, Jakab Tardos, and Yuichi Yoshida. Spectral hyper-
graph sparsifiers of nearly linear size. In Proceedings of the 2021 IEEE 62nd Annual Symposium
on Foundations of Computer Science, pages 1159–1170, 2022.

17 Ioannis Koutis and Shen Chen Xu. Simple parallel and distributed algorithms for spectral
graph sparsification. ACM Transactions on Parallel Computing, 3(2):1–14, 2016.

18 James R. Lee. Spectral hypergraph sparsification via chaining. arXiv:2209.04539, 2022.
19 Pan Li, Niao He, and Olgica Milenkovic. Quadratic decomposable submodular function

minimization: Theory and practice. Journal of Machine Learning Research, 21(106):1–49,
2020.

20 Kazusato Oko, Shinsaku Sakaue, and Shin ichi Tanigawa. Nearly tight spectral sparsification
of directed hypergraphs by a simple iterative sampling algorithm. arXiv:2204.02537, 2022.

21 Akbar Rafiey and Yuichi Yoshida. Sparsification of decomposable submodular functions.
In Proceedings of the 36th AAAI Conference on Artificial Intelligence, volume 36, pages
10336–10344, 2022.

K. Oko, S. Sakaue, and S.-i. Tanigawa 94:19

22 Tasuku Soma and Yuichi Yoshida. Spectral sparsification of hypergraphs. In Proceedings of the
30th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2570–2581. SIAM, 2019.

23 Daniel A. Spielman. Spectral and Algebraic Graph Theory, 2019. (visited on 02/03/2022).
URL: http://cs-www.cs.yale.edu/homes/spielman/sagt/sagt.pdf.

24 Daniel A. Spielman and Shang-Hua Teng. Spectral sparsification of graphs. SIAM Journal on
Computing, 40(4):981–1025, 2011.

25 Yuuki Takai, Atsushi Miyauchi, Masahiro Ikeda, and Yuichi Yoshida. Hypergraph clustering
based on pagerank. In Proceedings of the 26th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, pages 1970–1978. ACM, 2020.

26 Shang-Hua Teng. Scalable algorithms for data and network analysis. Foundations and Trends
in Theoretical Computer Science, 12(1-2):1–274, 2016. doi:10.1561/0400000051.

27 Nisheeth K. Vishnoi. Lx = b. Foundations and Trends in Theoretical Computer Science,
8(1-2):1–141, 2013. doi:10.1561/0400000054.

28 Naganand Yadati, Madhav Nimishakavi, Prateek Yadav, Vikram Nitin, Anand Louis, and
Partha Talukdar. HyperGCN: A new method of training graph convolutional networks on
hypergraphs. In Advances in Neural Information Processing Systems, volume 32. Curran
Associates, Inc., 2019.

29 Naganand Yadati, Vikram Nitin, Madhav Nimishakavi, Prateek Yadav, Anand Louis, and
Partha Talukdar. NHP: Neural hypergraph link prediction. In Proceedings of the 29th ACM
International Conference on Information & Knowledge Management, pages 1705–1714. ACM,
2020.

30 Yuichi Yoshida. Cheeger inequalities for submodular transformations. In Proceedings of the
30th Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2582–2601. SIAM, 2019.

31 Chenzi Zhang, Shuguang Hu, Zhihao Gavin Tang, and T.-H. Hubert Chan. Re-revisiting
learning on hypergraphs: Confidence interval, subgradient method, and extension to multiclass.
IEEE Transactions on Knowledge and Data Engineering, 32(3):506–518, 2020.

32 Chunjiang Zhu, Sabine Storandt, Kam-Yiu Lam, Song Han, and Jinbo Bi. Improved dynamic
graph learning through fault-tolerant sparsification. In Proceedings of the 36th International
Conference on Machine Learning, pages 7624–7633. PMLR, 2019.

ICALP 2023

http://cs-www.cs.yale.edu/homes/spielman/sagt/sagt.pdf
https://doi.org/10.1561/0400000051
https://doi.org/10.1561/0400000054

The Communication Complexity of Set
Intersection Under Product Distributions
Rotem Oshman #

Tel-Aviv University, Israel

Tal Roth #

Tel-Aviv University, Israel

Abstract
We consider a multiparty setting where k parties have private inputs X1, . . . , Xk ⊆ [n] and wish
to compute the intersection

⋂k

ℓ=1 Xℓ of their sets, using as little communication as possible. This
task generalizes the well-known problem of set disjointness, where the parties are required only
to determine whether the intersection is empty or not. In the worst-case, it is known that the
communication complexity of finding the intersection is the same as that of solving set disjointness,
regardless of the size of the intersection: the cost of both problems is Ω (n log k + k) bits in the
shared blackboard model, and Ω (nk) bits in the coordinator model.

In this work we consider a realistic setting where the parties’ inputs are independent of one
another, that is, the input is drawn from a product distribution. We show that this makes finding
the intersection significantly easier than in the worst-case: only Θ̃((n1−1/k (H(S) + 1)1/k) + k) bits
of communication are required, where H(S) is the Shannon entropy of the intersection S. We also
show that the parties do not need to know the exact underlying input distribution; if we are given
in advance O(n1/k) samples from the underlying distribution µ, we can learn enough about µ to
allow us to compute the intersection of an input drawn from µ using expected communication
Θ̃((n1−1/k E[|S|]1/k) + k), where |S| is the size of the intersection.

2012 ACM Subject Classification Theory of computation → Communication complexity

Keywords and phrases Communication complexity, intersection, set disjointness

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.95

Category Track A: Algorithms, Complexity and Games

Funding Research funded by the Israel Science Foundation, Grant No. 2801/20, and also supported
by Len Blavatnik and the Blavatnik Family foundation.

1 Introduction

Communication complexity is concerned with understanding the communication cost of
computing on data that is partitioned between k ≥ 2 parties, with each party holding a
private input Xi.1 The parties would like to jointly compute some function f(X1, . . . , Xk)
of their data, using as little communication as possible. Two models of communication
are typically studied: in the shared blackboard model, the parties communicate by writing
messages on a “board” that all the other parties can read (essentially, they communicate by
broadcast); in the private-channel model, the parties communicate over private channels.
For both models, there is a wealth of protocols and lower bounds characterizing the cost of
computing different functions, and obtaining applications in areas ranging from distributed
graph algorithms (see [30, 10, 6, 8, 9] and many more), to streaming algorithms (e.g., [1, 3, 15])

1 This is called number-in-hand because each party holds its own private input; in the number-on-forehead
model, each party can see the inputs of all the other parties, but not its own input. The number-on-
forehead model has compelling applications in circuit complexity, but it is not a realistic model of a
distributed system.

EA
T
C
S

© Rotem Oshman and Tal Roth;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 95; pp. 95:1–95:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:roshman@tau.ac.il
mailto:roth1@mail.tau.ac.il
https://doi.org/10.4230/LIPIcs.ICALP.2023.95
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

95:2 The Communication Complexity of Set Intersection Under Product Distributions

and beyond. We focus on the distributional setting, where the inputs X1, . . . , Xk are drawn
from a distribution µ, and our goal is to compute f(X1, . . . , Xk) with a low error probability
over µ.

In this paper we study the cost of computing an intersection: each party holds a set
Xi ⊆ [n], and our goal is to output the intersection, S =

⋂n
i=1 Xi. This fundamental

problem has many applications, including computing joins for distributed databases [10, 16];
computing the Jaccard similarity of data sets, the number of distinct elements, and rarity [10];
and algebraic function computation on reconciled data [19]. Recently this problem also found
applications in online advertising [14], notably at Google [18].

Computing the intersection of sets X1, . . . , Xk is as at least as hard as solving the set dis-
jointness problem, where we are required to determine whether ∩k

i=1Xi = ∅. Set disjointness
is known to require Ω(n) bits of communication for two-parties [26, 24], Ω(n log k) bits of
communication for k parties on the shared blackboard [8], and Ω(kn) bits of communication
for k parties with private channels [6]. However, all of these hardness results hold only when
the parties’ inputs are highly-correlated; if the input is drawn from a product distribution (i.e.,
the parties’ inputs are independent of one another), then two-party set disjointness requires
only Θ(

√
n) bits [2, 5], and this was recently extended to the multi-party setting, where it

was shown that the communication cost is Θ̃(n1−1/k) in both the shared blackboard and the
coordinator models [12]. We note that all the lower bounds mentioned above hold even for
input distributions where the intersection is of small constant size – that is, either the input
sets do not intersect at all, or they have a non-empty but constant-sized intersection, and
our goal is to distinguish between these two cases.

Our main question in this paper is whether under product distributions we can efficiently
compute the full intersection of the parties’ inputs, rather than merely determining whether
it is empty or not. We show that the answer is yes, at least when the intersection is not too
large: if the expected intersection size is E [S] = s, then we can compute the full intersection
using Θ̃(n1−1/ks1/k) bits of communication in expectation, in both the shared blackboard
and the coordinator models. This can be viewed as a natural extension of the tight bound
for set disjointness in the product case, which is Θ̃(n1−1/k), even when s = Θ(1) [12]. Our
protocol and lower bound bear some similarities to [12]. We generalize our result in two
ways, motivated by practical applications.

“Learning” the input distribution. In this scenario, instead of being told the input distri-
bution µ, we are given iid samples from µ, and must “learn” whatever we can about µ before
running the protocol on the actual input (which is also drawn from µ). Can we learn enough
about µ to exploit its product structure, without requiring a prohibitive number of samples?
In Section 4.1 we show that the answer is yes: Õ(n1/k) sample suffice to learn enough about
µ to solve any future instance with optimal communication cost.

▶ Theorem 1. Let δ > 0, and assume we have access to O
(
n1/k log (nk/δ)

)
iid samples from

an unknown product distribution µ. Then we can construct a zero-error two-round protocol Π
for computing the intersection, such that with probability at least 1−δ over the samples, the pro-
tocol Π that we constructed has expected communication cost O

(
kn1−1/k E [|S|+ 1]1/k log n

)
on inputs drawn from µ.

In particular, when k ≥ log n, we require only a single sample from µ. This is perhaps
surprising, since it is known that in order to fully learn a distribution over kn bits – that is,
in order to output a distribution µ′ that is ϵ-close to µ in statistical distance – the number
of samples required is Ω

(
2nk/(nk)

)
[28]. The key is that instead of learning the entire

distribution, we show that it suffices to estimate the marginal expectation of each input bit,
which is a much easier task.

R. Oshman and T. Roth 95:3

It remains open whether Ω(n1/k) samples are truly necessary to obtain the optimal
communication complexity, and more generally, what is the tradeoff between the number
of samples we have and the communication complexity we can obtain. However, we show
in Section 5 that if we do not have any prior information about the distribution µ (i.e., no
samples), then the fact that µ is a product distribution is not helpful at all: for any function
f , computing f under an unknown product distribution is as hard as computing f under
non-product distributions.

Large but predictable intersections. Although we assume that the parties have independent
inputs, we do not assume that the elements inside a given party’s input are independent
of one another: for example, if each party’s input is a list of items purchased by some
set of customers, then the elements may be highly correlated, as one item purchased by a
customer is likely to tell us a lot about other items the same customer is likely to purchase.
Correlations between elements can lead to a situation where the intersection is “large but
fairly predictable”, in the sense that while the intersection S has large expected size, its
Shannon entropy H(S) is much smaller. As an extreme example, if we have two parties with
inputs X, Y that are each either [n] or ∅ with probability 1/2, then the expected size of the
intersection is n/2, but its Shannon entropy is only 1.

In Section 4.3 we show that it is not the size of the intersection but its entropy that
matters: when the distribution µ is known, we can replace the size |S| of the intersection
with its entropy, H(S), and obtain the following.

▶ Theorem 2. Let µ be a product distribution known to all the parties. Then in the
coordinator model, there is an O (log n)-round zero-error deterministic protocol for finding the
intersection, with expected communication cost at most O

(
k2n1−1/k (H(S) + 1)1/k log n + k

)
,

where the expectation is with respect to the input distribution µ.

We remark that for non-product distributions this is not possible: in the hard distribution
of Razborov [24] for two-party set disjointness, the intersection has entropy O(log n), as
it is always either empty or contains a single element which is uniformly random over [n].
Nevertheless, even determining whether the intersection is empty or not requires Ω(n) bits
of communication, and this of course implies that finding the intersection also requires Ω(n)
communication.

Lower bounds. To complement our protocols above, in Section 5 we prove a matching lower
bound, up to polylogarithmic factors:

▶ Theorem 3. For every n, k ∈ N with 2 ≤ k ≤ log n, and for every s ∈ [1, n/2], there exists
a product distribution µ over {0, 1}n×k such that

Eµ [|S|] = s,
s ≤ H (S) ≤ (s + 1) log n, and
Any deterministic protocol for computing the intersection with error probability at most
1/10 over µ has expected communication complexity Ω(n1−1/ks1/k/k2).

Although the lower bound is stated only for k ≤ log n parties, we can “stretch” the lower
bound from k = log n to larger k by generating the inputs of the first log n parties using the
hard distribution from the theorem, and giving the remaining parties the set [n]. As a result,
for k > log n, we obtain a lower bound of Ω̃(n) regardless of the intersection size s, and this
is tight up to polylogarithmic factors.

ICALP 2023

95:4 The Communication Complexity of Set Intersection Under Product Distributions

Our lower bound actually applies to a weak output model, where every element of the
intersection can be output by a different party: at the end of the protocol, each party ℓ

outputs a list of decisions of the form “i ∈ S” or “i ̸∈ S”. We require that for every coordinate
i ∈ [n], one party must output a decision for i, but the identity of the party that output a
decision for i need not be known in advance (that is, it may be a function of the transcript).
The party j that outputs a decision for i may rely on its own input Xj when making the
decision. This output model is quite weak compared to the standard output model that we
assume in our protocols, where the output to the computation must be computable from the
transcript of the protocol. Making the lower bound work in this weak model is technically
challenging: our lower bound uses information-theoretic arguments, which typically rely on
the fact that an external observer must learn a lot of information about the inputs, but this
is not necessarily true in the weak output model.

We also remark that all of the results discussed up to this point (both upper and lower
bounds) assume that the protocol must output the entire intersection correctly with high
probability: if we output a set that differs from the true intersection in even a single element,
this is considered an error. One can also consider a weaker notion, which is more appealing
for lower bounds, where for every i ∈ [n], we only need to determine whether i ∈ S with
good marginal error probability, independent of the other elements. This weaker notion is
only meaningful when many coordinates have constant probability bounded away from 0
and 1 of being in the intersection, otherwise we can simply guess independently for each
coordinate whichever outcome is more likely for that coordinate; e.g., if Pr [i ∈ S] = 1/

√
n

for every i, we can guess that the intersection is empty, and still be correct on every element
with marginal probability 1− 1/

√
n. However, if every element has probability between 1/3

and 1/2 of being in the intersection, then we can also prove a tight lower bound even for
the case where the protocol only needs to succeed with good marginal probability on each
element (see the full version of this paper for a proof of this theorem).

2 Related Work

Set disjointness has been studied extensively, in many versions and models; we refer to the
surveys [11, 27] for more background. The problem of computing the intersection, or of finding
an element in the intersection, has also been studied, for two parties [7, 25, 10, 13, 29, 4, 17]
and for more than two parties [10, 23]; to our knowledge, all previously mentioned prior work
is for either worst-case hardness (that is, a non-distributional setting, where the inputs are
chosen adversarially), or for non-product distributions, and is thus not directly relevant to
the current paper. In addition, [20, 21, 22] studied a different scenario where two parties wish
to compute the bitwise-AND of their input vectors (as well as other functions), assuming the
coordinates of the vectors are iid, in the regime where the input length goes to infinity and
the error is vanishing. In contrast, here we consider multi-party intersection with a fixed
input length and constant error, and we do not assume that the coordinates are iid.

The hardness of set disjointness under product distributions was first studied in [2], which
proved a lower bound of Ω(

√
n) and an upper bound of O(

√
n log n) on the communication

complexity of the problem. Later, [5] eliminated the log-factor and improved the upper bound
to O(

√
n), and showed that in general, when the parties’ inputs have mutual information I

with one another, the communication cost of set disjointness is Θ̃(
√

n(I + 1)) (the product
case is the case where I = 0). It turns out that the techniques of [2, 5] do not scale to more
than 2 parties, but in [12], using different techniques, it was shown that Θ̃(n1−1/k) bits are
necessary and sufficient in the k-player setting.

R. Oshman and T. Roth 95:5

The protocols of [2, 5, 12] for set disjointness share the following feature: at any point
in the protocol, if we identify that given what we have learned so far the probability that
the inputs are disjoint is bounded by some small threshold ϵ, then we halt and output “not
disjoint”. If the probability of disjointness is greater than ϵ, we rely on this fact to make
progress: in [2, 5], we use it to efficiently sample a large set that is disjoint from one player’s
input, and those elements are then discarded from consideration; in [12], we exploit the fact
that no single element is likely to be in the intersection to show that each element i ∈ [n] is
probably missing from the input of some specific player p(i). We then ask each player j to
say only the elements Xj ∩ {i : p(i) = j}, as this set is likely to be small, but at the same
time it helps us learn of many elements that are definitely not in the intersection. If we want
to find the intersection in full, the basic approach of [12] continues to work if we know that
we have a small intersection, but it breaks down when the intersection is large.

Our work generalizes the basic approach of [12] to handle larger intersection sizes. This
yields a protocol for finding the intersection that depends on the entropy of the intersection
instead of its expected size (as already noted in the introduction, the former may be much
smaller than the latter). We also show that the basic protocol of [12] can be made robust, in
the sense that the players do not need to know the exact underlying input distribution.

When the number of players is k ≥ log n, [12] gives a different protocol that actually finds
the entire intersection, and has communication cost Õ(n). We show that this protocol can be
made robust as well, and in fact a single sample from the underlying product distribution is
enough, with high probability, for the players to be able to successfully execute the protocol.

As for lower bounds, [12] gave a lower bound on finding the intersection under a product
distribution, for the case where the expected intersection size is 1 (which coincides with the
set disjointness problem), when the transcript reveals the intersection to an external observer.
In this work, we generalize this lower bound in two ways. First, our lower bound must handle
larger intersections, up to linear in n. This large range of intersection sizes implies, naturally,
that the lower bound proof must handle both very small and very large probabilities, which
requires delicate handling. Secondly, our bound is proven in the weaker model where for
each coordinate, one of the players must decide whether this coordinate is in the intersection
or not, and the identity of this player may not even be known in advance.

3 Preliminaries

Notation. We use boldface letters to denote random variables. Given a vector v indexed
by {1, . . . , m} and a subset of coordinates J = {j1, . . . , jℓ}, we denote by vJ = vj1,...,jℓ

coordinates J of v. If A is a random variable and E is an event, then A|E denotes the
distribution of A conditioned on E .

The input to the k players is denoted X1, . . . , Xk ∈ {0, 1}n. It is convenient to sometimes
view the inputs to the players as sets, and sometimes as the characteristic vectors of their sets.
We use Xℓ

i to denote the i-th coordinate of player ℓ’s input, when viewed as a characteristic
vector. The intersection of the players’ inputs is denoted S =

⋂
ℓ∈[k] Xℓ, and for each i ∈ [n],

Si is an indicator for the event “i ∈ S”. We refer to S1, . . . , Sn as the bits of the intersection.
We sometimes abuse notation by conflating Bernoulli distributions with their expected

value: for example, if the input distribution is µ, we use µℓ
i to denote both the marginal

distribution of Xℓ
i , and the expected value of Xℓ

i .

The shared blackboard model. In this classical model of multiparty communication, we
have k players, with private inputs X1, . . . , Xk. The players communicate by writing on
a shared blackboard that all players can see. At any point in the protocol, the identity of

ICALP 2023

95:6 The Communication Complexity of Set Intersection Under Product Distributions

the next player to write on the board is determined by the current contents of the board.
We refer to the contents of the board as the transcript of the protocol, and denote it by the
random variable Π.

The coordinator model. In the coordinator model of multiparty computation, in addition
to the k players, we also have a coordinator, who has no input. The players communicate
with the coordinator over private channels, but players cannot communicate directly with
one another. The order of communication is governed by the coordinator, and the transcript
of the protocol consists of all messages sent and received by the coordinator.

Set intersection. In the k-player set intersection problem, our goal is to compute:

INTn,k(X1, . . . , Xk) = ∩k
ℓ=1Xℓ.

Since the intersection can be very large, it is crucial that we do not charge the players for
“writing” the output at the end of the protocol. Instead, we assume one of the following two
output models:

In our upper bounds, the output is some predetermined function of the transcript; in other
words, an external observer can learn the intersection just by observing the transcript of
the protocol, without knowing any of the inputs.
In our lower bounds, the output is jointly produced by the players, with each player j

choosing at the end of the protocol a set of indices Ij , and outputting the bits {Si : i ∈ Ij}.
The index set Ij may depend on the transcript of the protocol, but not on player j’s
input. However, the values that player j outputs for the bits {Si : i ∈ Ij} may depend on
player j’s input. Thus, an external observer that sees only the transcript of the protocol
is able to learn which player will output which bits, but not the values of the output bits.
We require that every bit Si must be output by some player; if more than one player
outputs the bit Si, and the players disagree, this is considered an error.

Information theory and entropy. The Shannon entropy of a random variable A ∼ µ is
given by

Hµ(A) =
∑

a∈supp(µ)

µ(a) log 1
µ(a) ,

where supp(µ) denotes the support of the distribution µ. We omit the subscript µ when the
distribution is clear from the context.

Given jointly-distributed variables (A, B) ∼ µ, with marginal distributions µA and µB

respectively, the conditional entropy of A given B is

Hµ(A|B) = E
b∼µB

[
Hµ|B=b

(A)
]

.

We sometimes abuse notation by writing Hµ(A|E) to denote Hµ|E (A) (here, E is an event,
not a random variable).

We rely on the following basic properties of the entropy:
1. Entropy is non-negative: H(A) ≥ 0.
2. Conditioning does not increase entropy: H(A|B) ≤ H(A).
3. The chain rule for entropy: H(A1, . . . , Am) =

∑m
i=1 H(Ai|Ai−1, . . . , A1).

4. Subadditivity: H(A1, . . . , Am) ≤
∑m

i=1 H(Ai), with equality iff A1, . . . , Am are indepen-
dent.

R. Oshman and T. Roth 95:7

For p ∈ [0, 1], we use H(p) as short-hand notation for the Shannon entropy of a Bernoulli
random variable with probability p of being 1. In our lower bound, we use the following fact:

▶ Fact 4. Let p ∈ [0, 1], Then min {p, 1− p} ≤ H (p).

To measure the amount of information a protocol reveals about its inputs, we use mutual
information. The mutual information between random variables A and B is given by
I(A ; B) := H(A) − H(A | B). For random variables A, B, C, the conditional mutual
information between A and B given C is I(A ; B | C) := H(A | C)−H(A | B, C).

The following Lemma will be useful in our lower bound:

▶ Lemma 5. Let A, B, Π be random variables, such that A and B are independent. Then
I (A ; Π |B) = I (A ; Π) + I (A ; B |Π).

For an event E , we sometimes abuse notation and denote I(A ; B | E) := I(A|E ; B|E).
To measure the difference between two distributions, we use KL divergence:

▶ Definition 6 (KL divergence). For two distributions µ,µ′ supported over a set χ, the KL
divergence of µ from µ′ is:

D (µ || µ′) :=
∑
x∈χ

µ(x) log µ(x)
µ′(x) .

We sometimes use D (p || p′) as short-hand notation for the divergence between the Bernoulli
distributions with probability p and p′ (resp.) of being 1.

KL divergence has the following monotonicity property, which will be useful in our upper
bound:

▶ Lemma 7. Let 0 < p < q ≤ a < 1/100 be constants, then D (p + a || p) ≥ D (q + a || q).

The proof of Lemma 7 will appear in the full version of this paper.
Our lower bound also uses Pinsker’s inequality, which asserts that for any p, p′ ∈ (0, 1)

we have |p− p′| ≤
√

D (p || p′) ln 2/2.
The mutual information between two variables A, B is equal to the expected divergence

of A’s posterior distribution given B, from A’s prior distribution (or vice-versa):

▶ Fact 8. For any random variables A, B we have I (A ; B) = Eb∼B [D (A|B=b ||A)].

The following technical lemmas will be useful in our lower bound. The first bounds the
“difference” between two Bernoulli random variables, in terms of their KL divergence:

▶ Lemma 9. Let p, q be constants in (0, 1), and let α ∈ (0, 1/2), such that D (q || p) <

pα2/(4 ln 2). Then we have q/p ∈ ((1− α)p, (1 + α)p).

In Section 4.2 we use the tight version of the additive Chernoff bound, which is stated
in terms of KL divergence: for a sum Y =

∑m
i=1 Yi of iid Bernoulli random variables with

E [Yi] = p, we have

Pr
[

n∑
i=1

Yi/n ≥ p + ϵ

]
≤ e−D(p+ϵ || p), and Pr

[
n∑

i=1
Yi/n ≤ p− ϵ

]
≤ e−D(p−ϵ || p).

ICALP 2023

95:8 The Communication Complexity of Set Intersection Under Product Distributions

4 Upper Bounds

In this section we give three upper bounds. The first two address the case where the number of
parties is k ≤ log n: we first give a protocol with expected communication Õ(n1−1/k E [S]1/k),
which can also handle input distributions that are known only approximately, and then build
on it to construct a protocol with expected communication Õ(n1−1/kH (S)1/k), replacing
the expected size of the intersection with its entropy. These two protocols can be used in
either the shared blackboard model or the coordinator model, since one model can simulate
the other with multiplicative cost at most O(k) = O(log n).

The third protocol is for the case where k > log n, in the coordinator model, which is the
harder of the two models when k is large. This final protocol relies on advance access to only
a single sample from the input distribution, and computes the intersection with expected
communication Õ(n + k).

Approximate knowledge of a distribution. As explained above, some of our protocols
assume that the players do not exactly know the underlying input distribution, and instead
are provided advanced access to samples from the distribution. We use these samples to
approximate the marginal distribution of every bit Xj

i in the input. It is crucial to allow both
multiplicative and additive approximation error, as allowing only one type of error would
make it costlier to obtain the approximation (in terms of the number of samples required;
see Section 4.2 below).

▶ Definition 10. Let ϵ ≥ 0, α ∈ [0, 1) and let b ∈ [0, 1]. We say that a value a ∈ [0, 1] is an
(α, ϵ)-approximation of b if (1 − α)a − ϵ ≤ b ≤ (1 + α)a + ϵ and also (1 − α)(1 − a) − ϵ ≤
1− b ≤ (1 + α)(1− a) + ϵ.

We extend this definition to a distribution µ over {0, 1}n×k by saying that a collection of
values

(
aℓ

i

)
i∈[n],ℓ∈[k] ⊆ [0, 1]n×k is an (α, ϵ)-approximation for the marginals of µ if aℓ

i is an
(α, ϵ)-approximation of the marginal µℓ

i for every i ∈ [n] and ℓ ∈ [k].

4.1 Basic Protocol for Computing Intersections (k ≤ log n)
In this section we give our protocol for computing the intersection of the players’ inputs
assuming approximate knowledge of the marginals of the input distribution. We assume that
the number of players is k ≤ log n.

▶ Theorem 11. Suppose all players know values
(
aℓ

i

)
i∈[n],ℓ∈[k] that (α, ϵ)-approximate the

marginals of a product distribution µ. Then there is a zero-error two-round protocol in the
coordinator model for finding the intersection, with expected communication cost

O

((
1 + α

1− α

)(
kn1−1/k E [|S|]1/k + 2ϵkn

)
log n + k

)
,

where the expectation is over the input distribution µ.

From here on, we will refer to this protocol as Πbase.

High-level overview. We begin with a high-level overview of Πbase, assuming for simplicity
that the players know the true marginals

(
µℓ

i

)
i∈[n],ℓ∈[k] of the input distribution.

For each coordinate i ∈ [n], the protocol checks whether i is in the intersection using one
of the following two strategies:

R. Oshman and T. Roth 95:9

“The 1-strategy”: this strategy is appropriate for coordinates i where some player ℓ has
a very small probability that Xℓ

i = 1. In this case we can make good progress at little
expected cost by asking player ℓ to speak up only if it has Xℓ

i = 1: with good probability,
player ℓ says nothing, and we learn that coordinate i is not in the intersection.
Concretely, we find the player ℓ that has the smallest probability that Xℓ

i = 1, that is,
the smallest value of µℓ

i (breaking ties arbitrarily), and ask this player to send index i iff
Xℓ

i = 1. If player ℓ did not send index i, we learn that Xℓ
i = 0, and therefore coordinate

i is not in the intersection. However, if player i did send index i, then Xℓ
i = 1, and

coordinate i might be in the intersection; to check, we simply ask all players ℓ′ ̸= ℓ to
send Xℓ′

i , and then we check if they all sent 1.
The expected communication cost of this strategy is at most k log n minℓ∈[k] µℓ

i : with
probability 1− µℓ

i we have Xℓ
i = 0, and in this case no bits are sent.2 With probability

minℓ∈[k] µℓ
i , the player that has the minimum µℓ

i sends index i, and the other players ℓ′

follow suit by announcing Xℓ′

i , for a total cost of at most k log n bits.
“The 0-strategy”: this strategy is appropriate for coordinates i where all players ℓ ∈ [k]
are fairly likely to have Xℓ

i = 1 (i.e., µℓ
i is fairly large). In this case, we ask each player

ℓ to announce index i iff Xℓ
i = 0, and we then know that i is in the intersection iff no

player sent index i.
The expected communication cost of this strategy is log n ·

∑
ℓ∈[k]

(
1− µℓ

i

)
.

To choose which strategy to pursue for a given coordinate i, we simply compare the
expected cost of the two strategies, and choose the strategy with the smaller expected cost;
however, since we do not have access to the true marginals

(
µℓ

i

)
i∈[n],ℓ∈[k], we use the estimates(

aℓ
i

)
i∈[n],ℓ∈[k] in their place. Thus, we estimate the cost of the 1-strategy to be k minℓ∈[k] aℓ

i ,
and the cost of the 0-strategy to be

∑
ℓ∈[k](1− aℓ

i) (ignoring the log n factor), and we choose
to follow the 1-strategy for coordinate i iff k minℓ∈[k] aℓ

i <
∑

ℓ∈[k](1− aℓ
i).

We remark that this protocol generalizes a protocol for set disjointness that appeared
in [12], but in [12] only the 1-strategy was required, because we could assume that no single
coordinate had high probability of being in the intersection – otherwise we could simply
guess that the intersection is not empty.

Detailed description of the protocol. The players first partition the coordinates into two
sets, I1 (for the 1-strategy) and I0 (for the 0-strategy), defined as follows:

I1 :=

i ∈ [n]

∣∣∣∣∣∣ k min
ℓ∈[k]

aℓ
i ≤

∑
ℓ∈[k]

(1− aℓ
i)

 , and I0 := [n] \ I1.

Note that this is done with no communication, as all players know (aℓ
i)i∈[n],ℓ∈[k].

Next, for any i ∈ I1, let owner(i) be the player ℓ believed to be most likely to have i ̸∈ Xℓ
i

(if there are several such players, we choose the first one):

owner(i) := min
{

ℓ ∈ [k]
∣∣∣∣ aℓ

i = min
m∈[k]

am
i

}
.

2 Technically, players are not allowed to convey information by staying silent. In our implementation
below, this is handled by having the players announce all their indices as a set, rather than going
over the coordinates one-by-one as we do in our informal overview here. The sets are encoded using a
variable-length encoding, and “no bits are sent for coordinate i” technically means that index i does not
appear in any player’s set.

ICALP 2023

95:10 The Communication Complexity of Set Intersection Under Product Distributions

We partition I1 into subsets I1
1 , . . . , Ik

1 by owner, with Iℓ
1 := {i ∈ I1 | owner(i) = ℓ} for each

i ∈ [k]. The protocol proceeds as follows.
1. Each player ℓ ∈ [k] announces Xℓ ∩ I0 and Xℓ ∩ Iℓ

1.
2. The coordinator can now deduce the intersection in the I0 coordinates, as it holds that
∪ℓ∈[k]

(
Xℓ ∩ I0

)
= I0 \ ∩ℓ∈[k]X

ℓ. The coordinator also sets T := ∪ℓ∈[k]
(
Xℓ ∩ Iℓ

1
)
, and

announces T to all players.
3. Each player ℓ ∈ [k] sends Xℓ ∩ T to the coordinator. The coordinator declares that the

intersection in I1 is
(
∩ℓ∈[k]X

ℓ
)
∩ T .

Expected communication cost. We prove a tighter bound than the one claimed in Theo-
rem 11, as the tighter bound will be useful to us in Section 4.3:

▷ Claim 12. When executed with an (α, ϵ)-approximation of the marginals of µ, the expected
communication cost of Πbase is

O

((
1 + α

1− α

)(
k

n∑
i=1

min
{
E [Si]1/k

, (1− E [Si])1/k
}

+ 2ϵkn

)
log n + k

)
. (1)

To obtain Theorem 11 from the claim, we apply Hölder’s inequality to the inner sum:

n∑
i=1

min
{
E [Si]1/k

, (1− E [Si])1/k
}
≤

n∑
i=1

E [Si]1/k ≤ n1−1/k E [|S|]1/k
.

Plugging this into (1) yields the theorem.
The proof of Claim 12 is given in the full version of this paper, but we give a sketch

here. We begin by considering an idealized version of the protocol, where the coordinates
are partitioned into subsets J0, J1 based on their true marginals (which are not known the
players):

J1 :=

i ∈ [n]

∣∣∣∣∣∣ k min
ℓ∈[k]

E
[
Xℓ

i

]
≤
∑
ℓ∈[k]

(
1− E

[
Xℓ

i

]) and J0 := [n] \ J1.

For each i ∈ J1, the idealized protocol follows the 1-strategy, paying k minℓ∈[k] E
[
Xℓ

i

]
in

expected communication; for each i ∈ J0, the idealized protocol follows the 0-strategy, paying∑
ℓ∈[k]

(
1− E

[
Xℓ

i

])
in expected communication.

Due to the way in which J0, J1 are defined, we are able to show that the idealized protocol
pays an expected cost per coordinate of at most k min

{
E [Si]1/k

, (1− E [Si])1/k
}

:

▶ Lemma 13. Let i ∈ [n]. If i ∈ J0, then∑
ℓ∈[k]

E
[
1−Xℓ

i

]
≤ k min

{
E [Si]1/k

, (1− E [Si])1/k
}

,

and if i ∈ J1, then

k min
ℓ∈[k]

E
[
Xℓ

i

]
≤ k min

{
E [Si]1/k

, (1− E [Si])1/k
}

.

R. Oshman and T. Roth 95:11

Proof. Fix a coordinate i ∈ [n]. Observe that since µ is a product distribution,

min
ℓ∈[k]

E
[
Xℓ

i

]
≤

∏
ℓ∈[k]

E
[
Xℓ

i

]1/k

=

E

∏
ℓ∈[k]

Xℓ
i

1/k

= E [Si]1/k
.

Hence if E [Si]1/k ≤ (1− E [Si])1/k and i ∈ J1, then we have:

min
ℓ∈[k]

E
[
Xℓ

i

]
≤ E [Si]1/k = min

{
E [Si]1/k

, (1− E [Si])1/k
}

.

Similarly, if E [Si]1/k ≤ (1− E [Si])1/k and i ∈ J0, then we have:∑
ℓ∈[k]

E
[
1−Xℓ

i

]
< k min

ℓ∈[k]
E
[
Xℓ

i

]
≤ k E [Si]1/k = k min

{
E [Si]1/k

, (1− E [Si])1/k
}

.

Now, if (1− E [Si])1/k
< E [Si]1/k, i.e., E [Si] > 1/2, then observe that this implies that

i ∈ J0, as we have that:

1/2 < E [Si] = E

∏
ℓ∈[k]

Xℓ
i

 =
∏

ℓ∈[k]

E
[
Xℓ

i

]
≤ min

ℓ∈[k]
E
[
Xℓ

i

]
,

where the last inequality is since all the expectations are upper bounded by 1. This in turn
implies that:∑

ℓ∈[k]

E
[
1−Xℓ

i

]
≤ k

2 < k min
ℓ∈[k]

E
[
Xℓ

i

]
,

and hence i ∈ J0. Now we have that:∑
ℓ∈[k]

E
[
1−Xℓ

i

]

= k

1− (1/k)
∑
ℓ∈[k]

E
[
Xℓ

i

]
≤ k

1−

∏
ℓ∈[k]

E
[
Xℓ

i

]1/k
 (AM-GM inequality.)

= k
(

1− E [Si]1/k
)

.

Finally, observe that

1− E [Si]1/k ≤ 1− E [Si] ≤ (1− E [Si])1/k = min
{
E [Si]1/k

, (1− E [Si])1/k
}

. ◀

Since the idealized protocol pays k min
{
E [Si]1/k

, (1− E [Si])1/k
}

per coordinate i, its
total cost matches the bound from Claim 12 with α = ϵ = 0. To prove the claim for the
actual protocol, we relate it to the idealized protocol, and show that its communication cost
is similar. The key here is to show that even if we “misclassify” a coordinate i by placing it
in I1 when the idealized protocol has it in J0 or vice-versa, the penalty is not too large: the
partition into I1 vs. I0 is based on the estimates

(
aℓ

i

)
i∈[n],ℓ∈[k], which are close to the true

ICALP 2023

95:12 The Communication Complexity of Set Intersection Under Product Distributions

marginals
(
µℓ

i

)
i∈[n],ℓ∈[k] on which the partition into J1 vs. J0 is based. If i ∈ I1 but i ∈ J0 or

vice-versa, then we must be close to the threshold where one strategy becomes preferable to
the other, and therefore it does not matter too much which strategy we choose to pursue. For
example, consider the case where i ∈ I1 but i ∈ J0. Then our actual protocol communicates
k E
[
X

owner(i)
i

]
bits in expectation for coordinate i, while an idealized protocol (where the

players use J0, J1) communicates
∑

ℓ∈[k] E
[
1−Xℓ

i

]
bits in expectation. Now, since i ∈ I1,

we have k minℓ∈[k] aℓ
i ≤

∑
ℓ∈[k](1− aℓ

i). Hence:

k E
[
X

owner(i)
i

]
≤ k

(
(1 + α)aowner(i)

i + ϵ
)

= (1 + α)k min
ℓ∈[k]

aℓ
i + ϵk

≤ (1 + α)
∑
ℓ∈[k]

(1− aℓ
i) + ϵk

≤ (1 + α)
∑
ℓ∈[k]

(1− E
[
Xℓ

i

]
) + ϵ

1− α
+ ϵk

≤ 1 + α

1− α

∑
ℓ∈[k]

E
[
1−Xℓ

i

]
+ 2ϵk

 .

Finally, showing a similar bound on the other possible types of misclassification, summing
over all coordinates and applying Lemma 13 completes the proof for Claim 12.

4.2 Approximating the Marginals
In this section we show how to compute an (1/4, n1/k)-approximation of a value b ∈ [0, 1],
given access to Θ̃(n1/k) iid samples from a Bernoulli distribution with probability b of
returning 1. We then apply this procedure to obtain the estimates

(
aℓ

i

)
i∈[n],ℓ∈[k] that are

used in the protocol of the previous section.
In general, to obtain an (α, ϵ)-approximation of a value b ∈ [0, 1], it suffices to take

Θ̃(1/(α2ϵ)) samples from Bernoulli(b). In fact, we can provide a stronger guarantee: with
high probability, our estimate a is either

Purely additive: a (0, ϵ)-approximation of b, that is, a− ϵ ≤ b ≤ a + ϵ; or,
Purely multiplicative: an (α, 0)-approximation of b, that is, (1− α)a ≤ b ≤ (1 + α)a and
(1− α)(1− a) ≤ 1− b ≤ (1 + α)(1− a).

However, we do not know in advance (or even in hindsight) whether the estimate that we get
will be purely additive or purely multiplicative. We note that if we were to insist on always
having a purely additive estimate or on always having a purely multiplicative estimate, then
we would require significantly more samples. For example, to obtain an purely additive
±ϵ approximation of a value b close to 1/2, we would require Ω(1/ϵ2) samples rather than
Ω(1/ϵ), which is important in our case, since ϵ is very small (roughly n−1/k); to obtain a
purely multiplicative (1±α)-approximation of a value b close to 0 we require Ω(1/b) samples
(i.e., an unbounded number of samples when b is unknown). Thus, it is important that our
protocol can handle the type of estimate that we produce here, which can have both types of
approximation error.

Obtaining the estimate is very simple, but the analysis is somewhat delicate:

▶ Lemma 14. For any α, ϵ, δ ∈ (0, 1) and b ∈ (0, 1), given access to O(1
α2ϵ log(1/δ)) iid

samples of Bernoulli(b), with probability 1− δ we can compute a value a that is either an
(α, 0)-approximation or a (0, ϵ)-approximation to b (or both).

R. Oshman and T. Roth 95:13

Proof. Let m = (100/(α2ϵ)) log(4/δ). Given samples B1, . . . , Bm ∼ Bernoulli(b), the esti-
mate we output is a =

∑m
i=1 Bi/m. We claim that this estimate (α, ϵ)-approximates b with

probability 1− δ. We divide into cases based on the values of ϵ and b.

Case 1: ϵ > 1
100 . In this case we prove that a is a (0, ϵ)-approximation to b with probability

1− δ. By the additive Chernoff bound,

Pr (a > b + ϵ) ≤ e−m·D(b+ϵ || b) ≤ e−m·ϵ2
≤ e−m·ϵ/100,

where the second step uses Pinsker’s inequality, and the last step uses the fact that ϵ > 1/100.
Similarly, Pr (a < b− ϵ) ≤ e−m·D(b−ϵ || b) ≤ e−m·ϵ2 ≤ e−m·ϵ/100. Since m ≥ (100/ϵ) log(4/δ)
we have e−m·ϵ/100 ≤ δ/4, so the probability that either a > b + ϵ or a < b− ϵ is less than δ.
In other words, with probability at least 1− δ, we have a− ϵ ≤ b ≤ a + ϵ, as required.

Case 2: ϵ < b < 1−ϵ. In this case we prove that a is an (α, 0)-approximation to b with prob-
ability 1− δ. By the multiplicative Chernoff bound, Pr (a ̸∈ (1± α/2)b) ≤ 2e−(α/2)2bm/3 ≤
2e−α2ϵm/12. Similarly, Pr (1− a ̸∈ (1± (α/2))(1− b)) ≤ 2e−(α/2)2(1−b)m/3 ≤ 2e−α2ϵm/12.

Since m = (100/(α2ϵ)) log(4/δ), we have e−α2ϵm/3 ≤ δ/4, and thus the probability that either
a /∈ (1±α/2)b or 1−a /∈ (1±α/2)(1−b) is at most δ. Note that if (1−α/2)b ≤ a ≤ (1+α/2)b,
then we also have b ≤ a/(1− α/2) ≤ (1 + α)a and b ≥ a/(1 + α/2) ≥ (1− α)a, as required,
and similarly for 1− b and 1− a.

Case 3: b ≤ ϵ ≤ 1/100 or 1 − b ≤ ϵ ≤ 1/100. In this case we prove that a is a
(0, ϵ)-approximation to b with probability 1− δ. Let us assume that b ≤ ϵ ≤ 1/100, as the
other case is symmetric. First, observe that Pr (a < b− ϵ) = 0, as b− ϵ < 0. For the other
side, by the additive Chernoff bound, Pr [a > b + ϵ] ≤ e−m·D(b+ϵ || b). Using Lemma 7 and
the fact that b ≤ ϵ, we can bound the divergence from below by D (b + ϵ || b) ≥ D (2ϵ || ϵ);
and using a technical lemma from [9] and the fact that ϵ ≤ 1/100, we have D (2ϵ || ϵ) ≥ 2ϵ/10.
All together, we see that Pr [a > b + ϵ] ≤ e−2ϵm/10 ≤ δ. ◀

Plugging in ϵ = n−1/k and α = 1/4, we see that O(n1/k) samples suffice to estimate a single
marginal µℓ

i with sufficient accuracy, and O(n1/k log(nk)) samples suffice to approximate the
entire distribution.

4.3 Entropy-Based Protocol (k ≤ log n)
In this section we refer to the protocol of Section 4.1 as the base protocol, Πbase. We show how
to build on the base protocol to obtain a better protocol in the case where the intersection
has small entropy. For convenience, we describe the new protocol in the shared blackboard
model (the protocol can be adapted to the coordinator model with a multiplicative overhead
of O(k) = O(log n) by having the coordinator forward every message to all players).

High-level overview. In this overview we assume for simplicity that Pr [Si = 1] ≤ 1/2 for
each i, which means that H(Si) ≥ E [Si]. This suffices to convey the main ideas; in the
actual protocol, we work with min (E [Si] , 1− E [Si]) instead of E [Si], and rely on the fact
that H(p) ≥ min(p, 1− p) for every p ∈ [0, 1].

Our protocol is motivated by the observation that the base protocol from Section 4.1
already has the desired communication cost of Õ(n1−1/kH(S)1/k) in the special case where
the intersection bits S1, . . . , Sn are independent: by our assumption that H(Si) ≥ E [Si] for
each i, we can use Claim 12 and Hölder’s inequality to see that the base protocol computes

ICALP 2023

95:14 The Communication Complexity of Set Intersection Under Product Distributions

the intersection with expected communication cost Õ
(

n1−1/k (
∑n

i=1 H (Si))
1/k
)

. In general,∑n
i=1 H(Si) can be much greater than H(S) (e.g., if S1 = . . . = Sn). However, if S1, . . . , Sn

are independent, then
∑n

i=1 H (Si) = H(S), and we are done.
What should we do when S1, . . . , Sn are not independent? In this case we show that we

can exploit the correlation between the bits. Given a set of coordinates I ⊆ [n], let us say
that the bits of SI are nearly-independent if∑

i∈I

H (Si) ≤ 2H (SI) . (2)

Intuitively, (2) requires that the bits of SI behave “almost as nicely” as independent bits, in
that the sum of their marginal entropies is not much greater than their joint entropy (where
for truly independent bits these would be equal).

Our protocol finds a maximal subset of coordinates I ⊆ [n] such that the bits SI are
nearly-independent, and uses the base protocol to compute SI . By (2), the communication
cost is Õ

(
n1−1/k

(∑
i∈I H (Si)

)1/k
)

= Õ
(

n1−1/kH (SI)1/k
)

. Each remaining coordinate
j ̸∈ I is “somewhat dependent” on SI , otherwise we could add j to I and obtain a larger
set, contradicting the maximality of I. Intuitively, this means that our uncertainty about Sj

should decrease after learning SI , and indeed we can prove that H (Sj | SI) ≤ (1/2)H (Sj)
(see Lemma 15 in the next section). We now recurse on the remaining coordinates.

After O(log n) iterations, for each coordinate j that we have not yet solved, the entropy of
Sj is reduced to at most 1/2log n = 1/n. We can now afford to simply call the base protocol
to solve all the remaining coordinates: if F ⊆ [n] is the set of remaining coordinates, then the
cost of solving all of them using the base protocol is roughly Õ

(
n1−1/k

(∑
i∈F H (Si)

)1/k
)

=

Õ
(

n1−1/k ·
(∑

i∈F (1/n)
)1/k

)
= Õ

(
n1−1/k · 1

)
.

Detailed description of the protocol. Throughout the protocol, the players maintain
a subset J ⊆ [n] of coordinates in which the intersection was already computed, and a
distribution µ′, which is the posterior input distribution given what the protocol has learned
so far. All entropies computed during the run of the protocol are with respect to the updated
distribution, µ′. The protocol is as follows.
1. Initialize J ← ∅, µ′ ← µ.
2. Repeat R = ⌈log n⌉ times, or until J = [n]:
2.1. Let I ⊆ [n] \ J be a maximal set of nearly-independent coordinates (see (2) above). If

there is more than one possible choice for I, we choose the lexicographically-smallest
one. This step does not require communication.

2.2. Execute the base protocol Πbase on the coordinates of I, using the distribution µ′. Let
τ be the transcript of Πbase, and let µ′|τ be the distribution µ′ conditioned on the
event that the transcript of Πbase is τ .

2.3. Update J ← J ∪ I, µ′ ← µ′|τ .
3. Finally, if J ̸= [n], call the protocol Πbase on the remaining coordinates [n] \ J , using the

distribution µ′.

At the end, we output all intersection elements found during any of the calls to Πbase.

Expected communication cost. In the analysis we rely on the finer bound given in Claim 12
for the communication cost of Πbase. The bound is stated in terms of the expectations E [Si],
but since H(p) ≥ min {p, 1− p} for every p ∈ [0, 1], Claim 12 and Hölder’s inequality imply
that the expected cost of Πbase when α = ϵ = 0 is

R. Oshman and T. Roth 95:15

O

(
k

n∑
i=1

H(Si)1/k + k

)
= O

kn1−1/k

(
n∑

i=1
H(Si)

)1/k
 . (3)

Our goal now is essentially to replace the term
∑n

i=1 H(Si) in the bound above by H(S).
The full analysis will be given in the full version of this paper. The main idea is that in

every iteration r ≤ ⌈log n⌉, if Ir is the set of coordinates on which we call Πbase in iteration
r, then by choice of Ir we have

∑
i∈Ir

Hµr
(Si) ≤ 2Hµr

(SIr
). Note that the expectation

here is taken with respect to the distribution µr, which is the input distribution conditioned
on the transcript up to iteration r (exclusive). Together with (3), this means that the cost of
calling Πbase on Ir is O(kn1−1/kHµr

(SIr
)1/k).

When we reach the last step of the protocol, the set of remaining coordinates may not be
nearly-independent. However, we claim that for every coordinate i ∈ [n], given the transcript
of the entire protocol so far, the conditional entropy of Si is reduced to at most 1/n. This is
because in every iteration, the protocol either determines Si, reducing its entropy to zero, or
solves a set of coordinates on which Si depends strongly, which also reduces its entropy.

▶ Lemma 15. Let Π<r denote the transcript of the protocol up to iteration r, exclusive. For
every i ∈ [n] and iteration r ≤ R, Hµ (Si |Π<r+1) ≤ 1

2 Hµ (Si |Π<r).

Proof. We prove that for every iteration r ≤ R and transcript τ<r,

Hµ (Si |Π<r+1, Π<r = τ<r) ≤ 1
2Hµ (Si |Π<r = τ<r) .

The lemma then follows by taking the expectation over τ<r.
The transcript τ<r determines the sets I1, . . . , Ir on which Πbase is called in every iteration

1, . . . , r, as well as SI1 = SI1 , . . . , SIr−1 = SIr−1 . The value of SIr
is not determined by τ<r,

but it is determined by Π<r+1, as it is computed in iteration r itself. Therefore,

H (Si |Π<r+1, τ<r) = H (Si |Π<r+1, τ<r, SI1 , . . . , SIr
) ≤ H (Si | τ<r, SI1 , . . . , SIr

) ,

where the last step uses the fact that conditioning does not increase entropy.
If there is some iteration t ≤ r such that i ∈ It, then clearly H (Si | τ<r, SI1 , . . . , SIr

) = 0,
and the lemma follows from the non-negativity of entropy. Otherwise, i is not an element of
any set I1, . . . , Ir, and in particular i ̸∈ Ir. We claim that H (Si | τ<r, SIr) ≤ (1/2)H (Si | τ<r),
which proves the claim, as H (Si | τ<r, SIr

) = H
(
Si

∣∣ τ<r, SIr
, SI1 , . . . , SIr−1

)
and similarly

H (Si | τ<r) = H
(
Si

∣∣ τ<r, SI1 , . . . , SIr−1

)
(as SI1 , . . . , SIr−1 are all determined by τ<r).

Suppose for the sake of contradiction that

H (Si | τ<r, SIr
) > (1/2)H (Si | τ<r) . (4)

Then we can write∑
j∈Ir∪{i}

H (Sj | τ<r) = H (Si | τ<r) +
∑
j∈Ir

H (Sj | τ<r)

≤ 2H (Si | τ<r, SIr
) + 2H (SIr

| τ<r) (by (4) and by choice of Ir)
= 2H

(
SIr∪{i}

∣∣ τ<r

)
,

which contradicts the maximality of Ir. ◀

▶ Corollary 16. For every i ∈ [n] we have Hµ (Si |Π<R+1) ≤ 1/n.

ICALP 2023

95:16 The Communication Complexity of Set Intersection Under Product Distributions

By the corollary, we can simply use (3) to bound the cost of calling Πbase on all the
remaining coordinates by O

(
kn1−1/k · (

∑n
i=1(1/n))1/k

)
= O

(
kn1−1/k

)
. The final step in

the proof is to carefully sum the costs of all the iterations, using Hölder’s inequality and the
chain rule for entropy to obtain the final bound of Theorem 2.

4.4 Upper Bound for Large k

For the case where we have k ≥ log n players, we show that a single sample from the
input distribution suffices to later compute the intersection on new inputs with expected
communication cost Õ(n + k). To do so, we modify a protocol from [12].

High-level overview. The protocol from [12] handles coordinates differently based on
whether they have a non-negligible probability of being in the intersection or not. Let us say
that a coordinate i is negligible if Pr [Si = 1] < δ/n. For negligible coordinates i, the protocol
simply guesses that Si = 0, without trying to actually compute Si. By union bound, this
contributes a total of at most O(δ) to our error probability. For non-negligible coordinates i,
it is observed in [12] that since µ is a product distribution, the expected number of players ℓ

that have Xℓ
i = 0 must be very small; otherwise, Pr [Si = 1] =

∏
ℓ∈[k] Pr

[
Xℓ

i = 1
]

would be
very small, but we assumed that Pr [Si = 1] ≥ δ/n. This means we can afford to have every
player ℓ that has Xℓ

i = 0 announce this fact to the coordinator, who then determines that
Si = 1 iff no player ℓ announced that Xℓ

i = 0.
In our setting we do not know the input distribution exactly, which can lead to two types

of mistakes:
Classifying a coordinate i as negligible when it is in fact non-negligible: we cannot afford
to make even one such mistake, because for such coordinates we always output Si = 0,
even though there is non-negligible probability that Si = 1. Thus, when we classify a
coordinate as negligible, it must truly be negligible under the unknown input distribution.
Classifying a coordinate i as non-negligible when it is in fact negligible: this type of mistake
does not lead to incorrect outputs, but it can increase our expected communication cost,
depending on the expected players that have 0 in coordinate i. Unlike the previous case,
here we can afford to make some mistakes, but we should avoid classifying a coordinate i

as non-negligible if
∑k

i=1 E
[
1−Xℓ

i

]
is large.

We show that when k ≥ log n, a single sample from the input distribution suffices to
classify coordinates well enough for our purposes. Let zi =

∑
ℓ∈[k]

(
1− E

[
Xℓ

i

])
be the

expected number of zeroes in coordinate i ∈ [n], under the unknown input distribution.
Given one sample A ∼ µ, we estimate zi by vi :=

∑
ℓ∈[k]

(
1−Aℓ

i

)
. Since k ≥ log n, the value∑

ℓ∈[k]
(
1−Aℓ

i

)
is concentrated about its mean, which is zi. This allows us to simultaneously

estimate z1, . . . , zn with enough precision that no non-negligible coordinate is classified as
negligible, and at the same time, every coordinate i that is classified as non-negligible has
small zi.

Detailed description of the protocol. As outlined above, we first take a sample A ∼ µ,
compute the estimates vi :=

∑
ℓ∈[k]

(
1−Aℓ

i

)
, and then choose the following set of coordinates

N ⊆ [n] to classify as non-negligible: N = {i ∈ [n] : vi ≤ β ln (n/δ)}, where β ≥ 1 is a
constant whose value will be fixed later.

The protocol then proceeds as follows: given input X ∼ µ,
1. For each coordinate i ̸∈ N , the coordinator declares that Si = 0, that is, i ̸∈

⋂
ℓ∈[k] Xℓ.

2. Simultaneously, each player ℓ sends N ℓ := N ∩
(
[n] \Xℓ

)
to the coordinator.

3. The coordinator outputs N \
⋃

ℓ∈[k] N ℓ as its estimate for the intersection S.

R. Oshman and T. Roth 95:17

Correctness and expected communication cost. Let zi =
∑

ℓ∈[k]
(
1− E

[
Xℓ

i

])
be the

expected number of zeroes in coordinate i ∈ [n], and let E be the event that for every
coordinate i ∈ [n],

If zi < ln (n/δ) then i ∈ N (that is, vi ≤ β ln (n/δ)), and
If zi > β2 ln (n/δ) then i ̸∈ N (that is, vi > β ln (n/δ)).

Intuitively, E is the event that we have classified every coordinate “well enough”. Using
Chernoff, it is easy to see that when β is large enough (say, β ≥ 8), the event E occurs
with probability ≥ 1 − δ over the sample A ∼ µ. This implies the correctness of the
protocol: whenever E occurs, every coordinate i ∈ [n] where zi < β ln(n/δ) is identified as
non-negligible, i ∈ N . The coordinates in N are correctly solved by the protocol, since every
player that has a zero in such a coordinate informs the coordinator. As for coordinates
i ̸∈ N , these coordinates must have zi ≥ β ln(n/δ). By Lemma 4 in [12], this implies that
Pr [Si = 1] ≤ δ/n. By union bound, the probability that any such coordinate is in the
intersection is at most δ. The error probability of the protocol is therefore bounded by
Pr
[
E
]

+ Pr [E] · δ ≤ 2δ.
To bound the expected communication, we again condition on the event E , which

implies that every coordinate i ∈ N that we actually solve has zi ≤ β2 ln(n/δ). Since
log n · zi = log n

∑
ℓ∈[k]

(
1− E

[
Xℓ

i

])
is the expected communication cost of solving i, this

means we send an expected O(log(n) log(n/δ)) bits per coordinate in N , for a total of
O(n log(n) log(n/δ)).

5 Lower Bounds

We begin by observing that when we know nothing about the input distribution other than
the fact that it is a product distribution, the distributional communication complexity of
computing any function f is the same as the worst-case cost. This justifies our need for
taking samples from the distribution before constructing the protocols of Sections 4.1, 4.4.

▶ Observation 17. Let f be a function over {0, 1}n×k, and let C be the worst-case randomized
communication complexity3 of f with error probability 1/3 (on any input). Let Π be a
(possibly randomized) protocol for computing f , such that under any product distribution µ

over {0, 1}n×k we have PrX∼µ [Π correctly computes f(X)] ≥ 2/3. Then there is a product
distribution µ such that the expected communication cost of Π under µ is C.

Proof. For each input X ∈ {0, 1}n×k, let µX be the product distribution µX that assigns
to each player ℓ the input Xℓ (this is a deterministic assignment, but it still qualifies as a
product distribution). Because µX is a product distribution, and Π can handle any product
distribution, when we run Π on inputs drawn from µX it has success probability at least
2/3, which means that it correctly computes f(X) with probability at least 2/3. Thus, Π
is in fact a protocol for computing f with worst-case error probability at most 1/3 on any
input. Therefore there must exist some input X, and hence some product distribution µX ,
on which Π sends C bits in expectation. ◀

Lower bound on the expected communication cost. To prove the lower bound of Theo-
rem 3, we follow the information-theoretic lower bound technique of [12]. We note that the
common information-theoretic strategy of using a direct sum argument, where we lower-bound

3 The randomized communication complexity of a function f is the minimum over all protocols that
compute f with worst-case error ≤ 1/3 of the expected number of bits sent in the worst case (i.e., on
any input) by the protocol. The error probability and the expectation are taken with respect to the
protocol’s internal randomness.

ICALP 2023

95:18 The Communication Complexity of Set Intersection Under Product Distributions

the cost of solving each bit of the problem correctly and then sum over the costs, cannot be
used in this context: it yields lower bounds on the cost of solving each coordinate with small
marginal error, but as we explained in Section 1, computing each bit Si of the intersection
with small marginal error is easy when the marginal probabilities that Si = 1 tend to be
small:

▶ Proposition 18. Let α ∈ (0, 1), ϵ ∈ (0, 1] be constants, n > (1/ϵ)2/α, k ≥ 2, and
let µ be a product distribution over ({0, 1}n)k, with expected intersection size s ≤ n1−α.
Then there exists a deterministic protocol that reveals the intersection to an external ob-
server, with per-coordinate error at most ϵ and expected communication cost at most
Õ
(
n(1−α/2)(1−1/k)(s + 1)1/k

)
.

Proof. First, observe that the average coordinate i ∈ [n] has expected intersection size
s/n = n−α. Denote by I the set of coordinates i ∈ [n] that have expected intersection size
E[Si] > n−α/2. Note that by Markov’s inequality |I| ≤ n−α/2 ·n = n1−α/2. Now, if k ≤ log n,
then the players execute the basic protocol of Theorem 11 on the coordinates of I. Note that
the protocol reveals the intersection in coordinates I to an external observer with zero error.
Since the overall expected intersection size for the coordinates is at most s, the protocol has
expected communication cost Õ

(
n(1−α/2)(1−1/k)(s + 1)1/k

)
.

Similarly, if k > log n, the players execute our protocol for k > log n (described at 4.4) on
the coordinates of I. Note that the protocol reveals the intersection to an external observer
with per-coordinate error at most ϵ/n1−α/2 < ϵ and expected communication cost at most
Õ
(
n(1−α/2)(1−1/k) + k

)
.

For any remaining coordinate i ̸∈ I, the external observer simply declares that i ̸∈
∩ℓ∈[k]X

ℓ, and has a per-coordinate error at most n−α/2 < ϵ. ◀

Fix an expected intersection size s. Our lower bound uses the distribution where each bit
of the input has iid probability (s/n)1/k of being 1 (that is, the distribution is also a product
distribution over the elements, not just the players). It is not hard to see that this yields the
desired expected intersection size of s, and also that the entropy of the intersection is Θ̃(s).

Now suppose we are given a protocol Π that sends o
(
n1−1/ks1/k

)
bits in expectation.

Following [12], we first show that for the average coordinate i ∈ [n] and transcript τ of the
protocol, for each player ℓ, the distribution of Xℓ

i conditioned on Π = τ is very close to its
prior: intuitively, to rule out an event with prior probability p, the protocol must spend
Ω(p) of its information budget; in our case the event is Xℓ

i = 1, and p = (s/n)1/k. The
protocol expends o

(
n1−1/ks1/k/n

)
= o

(
(s/n)1/k

)
of its total information budget on the

average coordinate, so the event Xℓ
i = 1 remains roughly as likely as it was originally.

Consider a specific coordinate i ∈ [n], and assume that for all the coordinates j < i,
the bits Si have been computed correctly; we denote this event by E<i. Since the protocol
computes the entire intersection correctly w.h.p., the event E<i has high probability. Assume
w.l.o.g. that player 1 is the one that outputs Si given the transcript τ : given on the transcript
τ , the event E , and the event X1

i = 1, player 1 must decide whether to output Si = 0 or
Si = 1 (if X1

i = 0 then player 1 knows that Si = 0 and does not need to work to learn the
answer). However, we can show that even conditioned on τ, E , and X1

i = 1, the distribution
of Si is still very close to its prior, and therefore player 1 has roughly the same uncertainty
about whether or not Si = 1 as it had originally, H(Si) = Θ̃(s/n).

After analyzing the uncertainty about the output in each coordinate i ∈ [n] conditioned
on τ, E and the event that the player ℓ deciding this coordinate has Xℓ

i = 1, we carefully
“collect” these uncertainties and add them up, to show that the players jointly have too much
uncertainty about the entire intersection and cannot output it correctly with sufficiently high

R. Oshman and T. Roth 95:19

probability. We note that unlike [12], in this process we need to handle conditioning on some
fairly high-probability events (e.g., the event that Xℓ

i = 1 has probability (s/n)1/k, which
is constant when s = Ω(n)). This has the potential of distorting the distributions we work
with by a lot if not handled properly.

References
1 Noga Alon, Yossi Matias, and Mario Szegedy. The space complexity of approximating the

frequency moments. Journal of Computer and System Sciences, 58(1):137–147, 1999.
2 László Babai, Peter Frankl, and Janos Simon. Complexity classes in communication complexity

theory. In 27th Annual Symposium on Foundations of Computer Science (sfcs 1986), pages
337–347, 1986.

3 Ziv Bar-Yossef, T. S. Jayram, Ravi Kumar, and D. Sivakumar. An information statistics
approach to data stream and communication complexity. In 43rd Symposium on Foundations
of Computer Science (FOCS 2002), pages 209–218, 2002.

4 Anup Bhattacharya, Sourav Chakraborty, Arijit Ghosh, Gopinath Mishra, and Manaswi
Paraashar. Disjointness through the lens of vapnik-chervonenkis dimension: Sparsity and
beyond. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, APPROX/RANDOM 2020, volume 176 of LIPIcs, pages 23:1–23:15, 2020.

5 Ralph Bottesch, Dmitry Gavinsky, and Hartmut Klauck. Correlation in hard distributions in
communication complexity. In Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques, APPROX/RANDOM, volume 40 of LIPIcs, pages 544–572,
2015.

6 Mark Braverman, Faith Ellen, Rotem Oshman, Toniann Pitassi, and Vinod Vaikuntanathan. A
tight bound for set disjointness in the message-passing model. In 54th Annual IEEE Symposium
on Foundations of Computer Science, FOCS 2013, pages 668–677, 2013.

7 Mark Braverman, Ankit Garg, Denis Pankratov, and Omri Weinstein. From information to
exact communication. In STOC, pages 151–160. ACM, 2013.

8 Mark Braverman and Rotem Oshman. On information complexity in the broadcast model.
In Proceedings of the 2015 ACM Symposium on Principles of Distributed Computing, PODC
2015, pages 355–364, 2015.

9 Mark Braverman and Rotem Oshman. A rounds vs. communication tradeoff for multi-party
set disjointness. In 58th IEEE Annual Symposium on Foundations of Computer Science, FOCS
2017, pages 144–155, 2017.

10 Joshua Brody, Amit Chakrabarti, Ranganath Kondapally, David P. Woodruff, and Grigory
Yaroslavtsev. Beyond set disjointness: The communication complexity of finding the intersec-
tion. In Proceedings of the 2014 ACM Symposium on Principles of Distributed Computing,
PODC ’14, pages 106–113, 2014.

11 Arkadev Chattopadhyay and Toniann Pitassi. The story of set disjointness. ACM SIGACT
News, 41(3):59–85, 2010.

12 Nachum Dershowitz, Rotem Oshman, and Tal Roth. The communication complexity of
multiparty set disjointness under product distributions. In STOC, pages 1194–1207. ACM,
2021.

13 Dmitry Gavinsky. The communication complexity of the inevitable intersection problem. Chic.
J. Theor. Comput. Sci., 2020, 2020.

14 Badih Ghazi, Ben Kreuter, Ravi Kumar, Pasin Manurangsi, Jiayu Peng, Evgeny Skvortsov, Yao
Wang, and Craig Wright. Multiparty reach and frequency histogram: Private, secure, and practi-
cal. Proc. Priv. Enhancing Technol., 2022(1):373–395, 2022. doi:10.2478/popets-2022-0019.

15 André Gronemeier. Asymptotically optimal lower bounds on the nih-multi-party informa-
tion complexity of the and-function and disjointness. In 26th International Symposium on
Theoretical Aspects of Computer Science, STACS 2009, volume 3 of LIPIcs, pages 505–516,
2009.

ICALP 2023

https://doi.org/10.2478/popets-2022-0019

95:20 The Communication Complexity of Set Intersection Under Product Distributions

16 Dirk Van Gucht, Ryan Williams, David P. Woodruff, and Qin Zhang. The communication
complexity of distributed set-joins with applications to matrix multiplication. In Proceedings
of the 34th ACM Symposium on Principles of Database Systems, PODS, pages 199–212, 2015.
doi:10.1145/2745754.2745779.

17 Dawei Huang, Seth Pettie, Yixiang Zhang, and Zhijun Zhang. The communication complexity
of set intersection and multiple equality testing. SIAM J. Comput., 50(2):674–717, 2021.

18 Mihaela Ion, Ben Kreuter, Ahmet Erhan Nergiz, Sarvar Patel, Shobhit Saxena, Karn Seth,
Mariana Raykova, David Shanahan, and Moti Yung. On deploying secure computing: Private
intersection-sum-with-cardinality. In IEEE European Symposium on Security and Privacy,
EuroS&P, pages 370–389. IEEE, 2020. doi:10.1109/EuroSP48549.2020.00031.

19 Ivo Kubjas and Vitaly Skachek. Two-party function computation on the reconciled data. In
55th Annual Allerton Conference on Communication, Control, and Computing, pages 390–396.
IEEE, 2017. doi:10.1109/ALLERTON.2017.8262764.

20 Nan Ma and Prakash Ishwar. Two-terminal distributed source coding with alternating messages
for function computation. In 2008 IEEE International Symposium on Information Theory,
pages 51–55. IEEE, 2008.

21 Nan Ma and Prakash Ishwar. Infinite-message distributed source coding for two-terminal
interactive computing. In 2009 47th Annual Allerton Conference on Communication, Control,
and Computing (Allerton), pages 1510–1517. IEEE, 2009.

22 Nan Ma and Prakash Ishwar. Some results on distributed source coding for interactive function
computation. IEEE Transactions on Information Theory, 57(9):6180–6195, 2011.

23 Jeff M. Phillips, Elad Verbin, and Qin Zhang. Lower bounds for number-in-hand multiparty
communication complexity, made easy. SIAM J. Comput., 45(1):174–196, 2016.

24 Alexander A Razborov. On the distributional complexity of disjointness. In International
Colloquium on Automata, Languages, and Programming, pages 249–253, 1990.

25 Mert Saglam and Gábor Tardos. On the communication complexity of sparse set disjointness
and exists-equal problems. In 54th Annual IEEE Symposium on Foundations of Computer
Science, FOCS 2013, pages 678–687, 2013.

26 Georg Schnitger and Bala Kalyanasundaram. The probabilistic communication complexity of
set intersection. In Proceedings of the Second Annual Conference on Structure in Complexity
Theory 1987, 1987.

27 Alexander A Sherstov. Communication complexity theory: Thirty-five years of set disjointness.
In International Symposium on Mathematical Foundations of Computer Science, pages 24–43,
2014.

28 Gregory Valiant and Paul Valiant. A CLT and tight lower bounds for estimating entropy.
Electron. Colloquium Comput. Complex., TR10-183, 2010. URL: https://eccc.weizmann.ac.
il/report/2010/183.

29 Thomas Watson. Communication complexity with small advantage. Comput. Complex.,
29(1):2, 2020.

30 David P. Woodruff and Qin Zhang. When distributed computation is communication expensive.
In Distributed Computing: 27th International Symposium, DISC 2013, pages 16–30, 2013.

https://doi.org/10.1145/2745754.2745779
https://doi.org/10.1109/EuroSP48549.2020.00031
https://doi.org/10.1109/ALLERTON.2017.8262764
https://eccc.weizmann.ac.il/report/2010/183
https://eccc.weizmann.ac.il/report/2010/183

An Optimal Separation Between Two Property
Testing Models for Bounded Degree Directed
Graphs
Pan Peng #

School of Computer Science and Technology, University of Science and Technology of China,
Hefei, China

Yuyang Wang #

School of Computer Science and Technology, University of Science and Technology of China,
Hefei, China

Abstract
We revisit the relation between two fundamental property testing models for bounded-degree directed
graphs: the bidirectional model in which the algorithms are allowed to query both the outgoing
edges and incoming edges of a vertex, and the unidirectional model in which only queries to the
outgoing edges are allowed. Czumaj, Peng and Sohler [STOC 2016] showed that for directed graphs
with both maximum indegree and maximum outdegree upper bounded by d, any property that can
be tested with query complexity Oε,d(1) in the bidirectional model can be tested with n1−Ωε,d(1)

queries in the unidirectional model. In particular, if the proximity parameter ε approaches 0, then
the query complexity of the transformed tester in the unidirectional model approaches n. It was left
open if this transformation can be further improved or there exists any property that exhibits such
an extreme separation.

We prove that testing subgraph-freeness in which the subgraph contains k source components,
requires Ω(n1− 1

k) queries in the unidirectional model. This directly gives the first explicit properties
that exhibit an Oε,d(1) vs Ω(n1−f(ε,d)) separation of the query complexities between the bidirectional
model and unidirectional model, where f(ε, d) is a function that approaches 0 as ε approaches 0.
Furthermore, our lower bound also resolves a conjecture by Hellweg and Sohler [ESA 2012] on the
query complexity of testing k-star-freeness.

2012 ACM Subject Classification Theory of computation → Streaming, sublinear and near linear
time algorithms

Keywords and phrases Graph property testing, Directed graphs, Lower bound, Subgraph-freeness

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.96

Category Track A: Algorithms, Complexity and Games

Funding This work has been supported in part by NSFC grant 62272431 and “the Fundamental
Research Funds for the Central Universities”.

1 Introduction

Graph property testing is a framework for studying extremely fast (randomized) algorithms
for solving a relaxation of classical decision problems on graphs. Given a graph property
P , we are interested in designing an algorithm, called a property tester, that with high
constant probability, accepts any graph G that satisfies P , and rejects any graph that is
“far” from satisfying P , i.e., one needs to modify a significant fraction of the representation
(e.g., adjacency matrix or adjacency list) of the graph to make it satisfy P . It is assumed
that the algorithm is given oracle access to the representation of the graph and the goal of
a property tester is to solve the above problem by making as few queries to the oracle as
possible. Since the seminal works by Rubinfeld and Sudan [20] (on algebraic property testing)

EA
T
C
S

© Pan Peng and Yuyang Wang;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 96; pp. 96:1–96:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ppeng@ustc.edu.cn
https://orcid.org/0000-0003-2700-5699
mailto:wangyvyang@mail.ustc.edu.cn
https://doi.org/10.4230/LIPIcs.ICALP.2023.96
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

96:2 Two Property Testing Models for Bounded Degree Directed Graphs

and Goldreich, Goldwasser and Ron [11] (on combinatorial and graph property testing), a
lot of efforts have been made on studying which properties can be tested within a sublinear
(e.g., constant) number of queries in several classical models, e.g., the dense graph model
[11, 1] and bounded-degree graph model [12]. In particular, we have see a rapid development
of property testing on undirected graphs in the past two decades. We refer to the recent
book [10] for a survey.

On the other hand, we still do not know much about property testing in directed graphs
(digraphs) so far. Bender and Ron [3] introduced two fundamental models for studying
directed graph property testing. The first is called bidirectional model, where the algorithm
is allowed to query both outgoing and incoming edges of a vertex; the second is called
unidirectional model, where the algorithm is only allowed to query the outgoing edges,
while not incoming edges. The latter model seems more realistic for some applications.
For example, consider the webgraphs. It is much easier to query the outgoing edges (u, v)
(which corresponds to a hyperlink from webpage u to webpage v) than querying the incoming
edges. In this paper, we focus on bounded-degree directed graphs. A digraph G is said to be
d-bounded, if both the maximum outdegree and maximum indegree of G are upper bounded
by d, which is assumed to be a constant.

Bender and Ron gave an algorithm for testing strong connectivity with Õ(1/ε) queries in
the bidirectional model, and showed that there is a lower bound of Ω(

√
n) queries for any

algorithm with two-sided error1 in the unidirectional model. Goldreich [9], and Hellweg and
Sohler [16] gave a lower bound of Ω(n) queries for testing strong connectivity with one-sided
error in the unidirectional model. The works [9, 16] also gave testers for strong connectivity
with n1−1/(d+1/ε) queries with two-sided error in the unidirectional model. In [16], the
authors gave testers for subgraph-freeness with O(n1− 1

k) queries in the unidirectional model,
where k is the number of connected components in the subgraph that have no incoming
edges. It is known that a few properties can be tested with a constant number of queries in
the bidirectional model, including Eulerianity [18], k-edge connectivity [18, 23, 8], k-vertex
connectivity [18, 8].

Towards a deeper understanding of testing properties of bounded degree directed graphs
(digraphs), Czumaj, Peng and Sohler [5] studied the relation between these two models and
provided a generic transformation that converts testers with constant query complexity in the
bidirectional model, to testers with sublinear query complexity in the unidirectional model.
Specifically, in [5], it was shown that any property P that can be tested with2 q = Oε,d(1)
queries in the bidirectional model can be tested with n1−d−Θ(q) = n1−Ωε,d(1) queries in the
unidirectional model (with two-sided error). In particular, if the proximity parameter ε

approaches 0, then the query complexity of the transformed tester in the unidirectional
model approaches n (as the term d−Θ(q) approaches 0).

One natural question that is left open is that is the above the transformation tight? Or
equivalently, can we achieve a much better query complexity, say nc−Ωε,d(1), in the latter
model, for some universal constant c < 1? Indeed, currently, the best known lower bound
for this transformation is for testing 3-star-freeness, where a 3-star is a 4-vertex directed
graph such that there exists one center vertex v, and for any other three vertices u, there
is an edge from u to v, and no other edges exist. Hellweg and Sohler [16] have shown that
3-star-freeness can be tested with a constant number of queries in bidirectional model, while

1 A tester for a property P is said to have one-sided error if it accepts every (di)graph satisfying P , and
it errs if the graph is far from having P . It is said to have two-sided error if it errs in both cases.

2 Throughout the paper, we use the notation Oε,d() (resp. Ωε,d()) to describe a function in the Big-O
(resp. Big-Omega) notation assuming that ε and d are constant.

P. Peng and Y. Wang 96:3

the query complexity of a tester for this property in the unidirectional model is Θ(n2/3)
for any constant ε > 0. Therefore, there is still a significant gap between the upper bound
(i.e., n1−Ωε,d(1)) in the bidirectional model in the transformation and the current best-known
lower bound (i.e., Ω(n2/3)).

Before we state our result, we formally introduce the definition of property testing in both
directional and unidirectional models. Let P = (Pn)n∈N be a d-bounded digraph property,
where Pn is a property of d-bounded digraphs with n vertices. An n-vertex graph G is said
to be ε-far from satisfying Pn if one needs to modify more than εdn edges to make it a
d-bounded digraph with property Pn, where ε > 0 is called the proximity parameter. We say
that P is q-query testable (or that P can be tested with query complexity q) if for every n, ε

and d, there exists a tester that makes q = q(n, ε, d) queries and with probability at least 2
3 ,

accepts any n-vertex d-bounded digraph G satisfying P , and rejects any n-vertex d-bounded
digraph G that is ε-far from satisfying P . We call such a tester an ε-tester for P .

We show that there exists a property that exhibits an Oε,d(1) vs Ω(n1−Θε,d(1)) separation
of the query complexities between the bidirectional model and unidirectional model, which
implies that the transformation of [5] is essentially tight.

▶ Theorem 1. For any sufficiently small constant ε > 0, there exists a digraph property
P = Pε,d such that P can be tested with Oε,d(1) queries in the bidirectional model, while
any ε-tester for P in the unidirectional model requires n1−f(ε,d) queries, where f(ε, d) is a
function that approaches 0 when ε approaches 0.

The above theorem is a direct corollary from the following result regarding testing
subgraph-freeness. Let H be a directed graph. A strongly connected component3 W is called
a source component of H, if there is no edge from V (H) \ W to W . A directed graph H

is said to be weakly connected if its underlying undirected graph (i.e., the graph that is
obtained by ignoring all the directions of the edges) is connected. For example, we note that
k-star is just a weakly connected digraph with k source components, where a directed graph
H with k + 1 vertices is called a k-star if there is a vertex v such that each of the other k

vertices has exactly one edge pointing to v, and H does not contain any other edges. Let G

and H be two directed graphs. The graph G is said to be H-free if H does not appear as a
subgraph in G. We have the following theorem on testing H-freeness for any (constant-size)
H with k source components.

▶ Theorem 2. Let k be any integer such that k ≥ 2. Let d be some constant. Let H be a
weakly connected4 directed graph with k source components. There exists an ε0 = Θd,k(1)
such that any ε0-tester for testing H-freeness of an n-vertex d-bounded graph requires at least
Ω(n1− 1

k) queries in the unidirectional model.

We remark that it has been shown by Hellweg and Sohler [16] that for any H with k source
components, H-freeness can be tested with query complexity Oε,d,k(1) in the bidirectional
model, and also can be tested with query complexity Oε,d,k(n1− 1

k) in the unidirectional
model5. Given the above result, we can easily prove Theorem 1.

3 We call W ⊆ V (H) a strongly connected component of H if the subgraph H[W] of H induced by W is
strongly connected, and there does not exist any set of vertices X ⊆ V (H) \ W such that the subgraph
of H induced by W ∪ X is strongly connected. That is, the subgraph of H[W] is a strongly connected
and maximal.

4 For graphs H that is not weakly connected, we can handle each of its weakly connected components
separately.

5 On the high level, their algorithms use the following observation: if a bounded-degree directed graph G

ICALP 2023

96:4 Two Property Testing Models for Bounded Degree Directed Graphs

Proof of Theorem 1. Let η > 0 and define property Pη to be the property of being H-free,
for any H that is weakly connected digraph with k = ⌈1/η⌉ source components. According
to Theorem 2, any ε0-tester for Pη requires at least Ω(n1− 1

k) > Ω(n1−η) queries in the
unidirectional model, where ε0 = ε0(d, η) is a function of d, η. Now given any sufficiently
small constant ε > 0, let η′ be a number satisfying that ε = ε0(d, η′). Then Theorem 1
follows by taking P = Pη′ and f(ε, d) = η′. ◀

Furthermore, it was conjectured in [16] that testing k-star-freeness requires Ω(n1− 1
k)

queries in the unidirectional model. Since k-star is a directed subgraph with k-source
components, our Theorem 2 resolves this conjecture.

1.1 Discussions of previous ideas and our techniques
We first sketch the main ideas of the lower bound for testing 3-star-freeness given by Hellweg
and Sohler [16]. Their proof makes use of a problem called testing 3-occurrence-freeness6 of
a sequence7. Let A be a length-n sequence of integers such that each element in A is from
[ℓ] := {1, · · · , ℓ} and occurs at most 3 times. We say A is 3-occurrence-free if no integer in A

occurs exactly 3 times in A. We say A is ε-far from being 3-occurrence-free if one needs to
change8 more than εn elements of A to obtain a 3-occurrence-free sequence. [16] gave a local
reduction from the problem of testing 3-occurrence-freeness of a sequence to the problem of
testing 3-star-freeness. That is, given an instance A with m elements of 3-occurrence-freeness,
they constructed a graph G with Θ(m) vertices, such that
1) if A is 3-occurrence-free, then G is 3-star-free; if A is ε-far from being 3-occurrence-free

then G is Θ(ε)-far from being 3-star-free;
2) every query to G can be answered by performing O(1) queries to A.

To obtain a lower bound for testing 3-occurrence-freeness, [16] constructed two classes
CA, CB of length-n sequences such that CA is a class of 3-occurrence-free sequences and CB

is a class of sequences that are Ω(1)-far from being 3-occurrence-free, and the frequency
variables, denoted by XA and XB , of the sequences from these two different classes have 2
proportional moments, i.e.,

E[XB]
E[XA] = E[X2

B]
E[X2

A] .

Then the lower bound Ω(n2/3) for testing 3-occurrence-freeness follows from a lower bound
for distinguishing random variables with 2-proportional moments given in [19].

Now we note that to obtain a lower bound for testing H-freeness for any H with k source
components, it suffices to give a lower bound for testing k-occurrence-freeness for general k

in the way similar as above. That is, we construct two classes CA, CB of length-n sequences
such that CA is a class of k-occurrence-free sequences and CB is a class of sequences that are
Ωk(1)-far from being k-occurrence-free, and the frequency variables, denoted by XA and XB ,
of the sequences from these two different classes have k − 1 proportional moments, i.e.,

E[XB]
E[XA] = E[X2

B]
E[X2

A] = · · · = E[Xk−1
B]

E[Xk−1
A]

.

is ε-far from H-freeness, then G contains Ω(εn) vertex-disjoint copies of H. Then in the bidirectional
model, one can sample a constant number of vertices and perform BFS from each sampled vertex to find
a copy of H; in the unidirectional model, one can sample many edges to see if some copy of H is formed.

6 In [16], the same problem was called 3-value freeness.
7 We use “sequence” rather than “multiset” as the position of each element affects our construction.
8 It is allowed to use integers that are larger than ℓ to change the elements of A.

P. Peng and Y. Wang 96:5

However, the main difficulty is to construct two classes of sequences satisfying the above
equations for general k ≥ 3, which was also pointed out in [16]. Besides the aforementioned
construction in [16] which only works for k = 3, we also note that in [19], a special pair of
random variables with k − 1 proportional moments is also constructed (for establishing their
lower bound for Distinct-Elements). That is, their random variables take values of the
form (B + 3)i, for any integers B > 1, k > 1 and i = 0, . . . , k − 1. This leads to a large gap
between the expectations of the corresponding variables. To show a lower bound for testing
k-occurrence-freeness, we need to construct random variables taking values 1, 2, . . . , k, for
any integer k > 1. This is more challenging as it corresponds to a much smaller gap (which
is arbitrarily close to 1) between the expectations of the corresponding variables (see Lemma
10). To construct such two random variables, we establish some identities related to binomial
coefficients, and use them to define two distributions satisfying a number of linear equations
which in turn are necessary conditions for two variables having proportional moments.

We then give a local reduction from testing k-occurrence-freeness to testing H-freeness
for H with k-source components. The reduction also non-trivially generalizes the one for
3-star-free in [16], as 3-star is a special subgraph with a nice symmetric property, while an
arbitrary subgraph H might contain different types of asymmetric structures. Our main
idea is as follows. Given a sequence S, we construct a graph G on the fly such that each
element in the sequence corresponds to a source component of H in G; an element in S

appears k times if and only if a copy of H is added in G. For the latter, we carefully add k

source components of H to G and add edges from these components to one center component
(which is the rest part of H after removing all the source components). Finally, we show
that this construction preserves the distance to the properties and each query to G can be
answered by querying at most 1 position in S.

1.2 Other Related work
Ito, Khoury and Newman [17] recently gave a characterization of monotone and hereditary
properties that can be tested with constant query complexity and one-sided error in both
bounded-degree bidirectional model and bounded-degree unidirectional model. For testing
acyclicity in the bidirectional model, Bender and Ron [3] gave a lower bound of Ω(n1/3)
queries for algorithms with two-sided error and a lower bound Ω(n1/2) queries for algorithms
with one-sided error. The latter lower bound has been improved to Ω̃(n5/9) queries by Chen,
Randolph, Servedio and Sun [4].

In the dense directed graph model (with different types of queries and notion of “ε-
far”), Alon and Shapira [2] gave an algorithm with constant query complexity for testing
subgraph-freeness.

There exists a class of properties which can be tested with constant number of queries
by the so-called proximity-oblivious testers [13]. Goldreich and Ron [14] showed that any
property that can be tested by a proximity-oblivious tester that makes q uniformly distributed
queries with constant detection probability can be tested by a sample-based testers of sample
complexity O(n1−1/q), where a sample-based tester only samples elements independently
from some distribution of the tested object. Building upon [7, 15], Dall’Agnol, Tom and
Lachish [6] recently showed that any property that is testable with q queries admits a sample-
based tester with sample complexity n1−1/O(q2 log2 q). Their algorithms are defined over a
constant-size output alphabet, which is very different from the bounded degree (directed)
graph model, in which a super constant alphabet is needed.

Valiant developed a wishful thinking theorem in [22], telling that two distributions whose
so-called k-based moments have small gap are indistinguishable by k-Poissonized samples.
This is a tool for establishing lower bounds of testing symmetric properties on distributions.

ICALP 2023

96:6 Two Property Testing Models for Bounded Degree Directed Graphs

On a very high level, both [22] and our work are constructing far distributions with the same
collision, while the details for the constructions differ significantly. For example, our proof
is built upon Corollary 5.7 of [19], which requires to carefully construct two distributions
that have proportional moments. In [22], it is required to construct two distributions whose
k-based moments have small gap. It is unclear if two distributions with small gap between
k-based moments have proportional moments, or vice versa. In addition, we are using very
different properties of Vandermonde matrix from those used in [22].

2 A Lower Bound for Testing k-Occurrence-freeness

In this section, we will prove the lower bound on the query complexity for testing k-occurrence-
freeness, which is defined as follows. Given a sequence A of n integers such that each entry
of A is from [n] := {1, . . . , n} and each element i ∈ [n] occurs at most k times, the problem
is to distinguish if A is k-occurrence-free, i.e., no element occurs in k positions of A, or A is
ε-far from k-occurrence-free, i.e., more than εn elements of A needs to be changed to make
it k-occurrence-free. We assume that the algorithm can query the element (or the value) of
any position of the sequence in constant time. The goal is to solve the problem by making as
few queries as possible. We will show the following result.

▶ Theorem 3. Any algorithm for testing k-occurrence-freeness with parameter ε = Ωk(1)
requires at least Ω(n1−1/k) queries, where n is the length of the input sequence.

2.1 Basic tools and notions
To prove the above theorem, we will make use of a lower bound by Raskhodnikova et al. [19]
for distinguishing two sequences satisfying some property. We first introduce two definitions.

▶ Definition 4 (Frequency variable). Let A be a sequence of integers. We define its frequency
variable XA as follows. Choose a number uniformly at random from the set of distinct
elements that occur in A and then let XA denote its frequency9, i.e., the number of times it
occurs.

Take the following sequence S = {1, 2, 1, 3, 2, 1, 4} as an example. There are 4 distinct
elements (or values) in S: value 1 occurs 3 times, value 2 occurs twice, value 3 and 4
each occurs once. Thus the frequency variable XS of S satisfies that Pr[XS = 1] = 0.5,
Pr[XS = 2] = 0.25, Pr[XS = 3] = 0.25.

▶ Definition 5 (Proportional moments). Two random variables X1 and X2 are said to have
k − 1 proportional moments, if E[X2]

E[X1] = E[X2
2]

E[X2
1] = · · · = E[Xk−1

2]
E[Xk−1

1] . We say that two sequences
have k −1 proportional moments if their frequency variables have k −1 proportional moments.

Let P denote a property defined on sequence of integers such that it is invariant under
any permutation of indices and values. [19] has shown that any tester for P that makes t

queries can be simulated by a Poisson-s algorithm that only looks at the histogram of the
samples as its input, and s = O(t). Relevant definitions are as follows.

▶ Definition 6 (Poisson-s algorithm). An algorithm is called a Poisson-s algorithm if the
number of samples of the algorithm is determined by a Poisson distribution with the expecta-
tion s.

9 We directly adopt the notion “frequency” from [19].

P. Peng and Y. Wang 96:7

▶ Definition 7 (Histogram). Given a sequence S, the histogram H of S is a function defined
as follows:

H(i) := |{s ∈ S|s occurs exactly i times in S}|

In [19], Raskhodnikova et al. proved that if two sequences have k−1 proportional moments
and s = o(n1− 1

k), then any Poisson-s algorithm can’t distinguish their histograms.Formally,
based on Lemma 5.3 and Corollary 5.7 in [19], we have the following Lemma.

▶ Lemma 8 ([19]). Let XA and XB be two random variables with k−1 proportional moments.
And let DXA

and DXB
be two length-n sequences of integers, whose frequency variables are XA

and XB, respectively. Let P be a property of sequences that is invariant under permutations
of indices and values, and let ε > 0 be a constant.

1. If A′ is a tester for P with t queries, i.e., A′ accepts the input sequence that satisfies P

with probability at least 2
3 ; it rejects any sequence that is ε-far from satisfying P , with

probability at least 2
3 .

Then there must be a Poisson-s algorithm A that gets only the histogram of the samples,
where s = O(t), satisfiying the following: if the input sequence satisfies P , A accepts with
probability at least 2

3 − o(1); if the input sequence is ε-far from satisfying P , A rejects
with probability at least 2

3 − o(1).
2. For any Poisson-s algorithm A with s = o(n1− 1

k), if A gets only access to the histogram
of samples, then we have

| Pr[A(DXA
) = True] − Pr[A(DXB

) = True]| = o(1).

Note that by the above Lemma, for a property P that is invariant under permutation of
indices and values, any tester for P can be well simulated by a Poisson-s algorithm, which
only accesses to the histogram of samples. Thus it suffices to only consider such Poisson-s
algorithms. Furthermore, if there exist two instances of P with proportional moments, then
it is hard to distinguish these two instances, for any Poisson-s algorithm that only accesses
to the histogram of samples.

2.2 Proof of Theorem 3
Now we give the proof of Theorem 3. We first note that k-occurrence-freeness is a property
that is invariant under permutation of indices and values. Suppose that there exist two
families of sequence instances, denoted by CA and CB , respectively, such that 1) CA and CB

have k − 1 proportional moments; 2) sequences in CA are k-occurrence-free, and sequences
in CB are far from k-occurrence-freeness. Now assume that there exist a tester A′ for
k-occurrence-freeness with s = o(n1− 1

k) queries. Then, according to Lemma 8, there must
be a Poisson-s algorithm A that gets only access to the histogram of samples. For such
algorithm A, we have

| Pr[A(DXA
) = True] − Pr[A(DXB

) = True]| = (2
3 − o(1)) − (1

3 + o(1)) ≥ 1
6 ,

which contradicts to the second part of Lemma 8 and thus implies the Ω(n1− 1
k) lower bound.

Therefore, to prove Theorem 3, it suffices to construct two families of sequences with the
above desired properties.

ICALP 2023

96:8 Two Property Testing Models for Bounded Degree Directed Graphs

Proof of Theorem 3. We first construct two classes, denoted by CA, CB, of length-n se-
quences, such that for any sequences A ∈ CA and B ∈ CB , it holds that 1) A is k-occurrence-
free and B is ε-far from k-occurrence-free, and 2) the frequency variables XA, XB of these
two instances A, B have k − 1 proportional moments.

To do so, we first prove the claim.

▷ Claim 9. It holds that
1 1 · · · 1
1 2 · · · k

1 22 · · · k2

...
...

. . .
...

1 2k−1 · · · kk−1

 ·


(−1)1(

k
1
)

(−1)2(
k
2
)

(−1)3(
k
3
)

...
(−1)k

(
k
k

)

 =


−1
0
0
...
0

 . (1)

Proof. We define a sequence of helper functions fj(x) to prove (1).

fj(x) =
{

(1 + x)k, j = 0
x · f

′

j−1(x), j = 1, 2, · · · , k − 1
(2)

To prove the claim, we note that it suffices to show the following:

f0(−1) = 1 +
k∑

i=1
(−1)·(k

j

)
= 0, (3)

fj(−1) =
k∑

i=1
ij · (−1)i ·

(
k
i

)
= 0, for any j = 1, . . . , k − 1. (4)

Note that if the above are true, then each line of Equations (1) holds, which finishes the
proof of the claim. In the following, we prove Equations (3) and (4).

Let us first consider the binomial expansion of f0(x). We have that

f0(x) = (1 + x)k =
k∑

i=0
xi ·

(
k
i

)
= 1+

k∑
i=1

xi ·
(

k
i

)
. (5)

Thus, f0 (−1) = (1 − 1)k = 1 +
∑k

i=1 (−1)i ·
(

k
i

)
= 0. That is, Equation (3) holds.

To prove Equation (4), we show that for any 1 ≤ j ≤ k − 1, it holds that
(a) fj(x) =

∑k
i=1 ij · xi ·

(
k
i

)
,

(b) fj(x) =
∑j

i=1 ai · xi · (1 + x)k−i, for some numbers a1, . . . , aj ≥ 0.
Note that by the above two items, we have that fj(−1) = 0 =

∑k
i=1 ij · xi ·

(
k
i

)
, for each

j = 1, . . . , k − 1, which finishes the proof of Equation (4) (and the claim).
In the following, we prove the above two items (a) and (b) by induction. Consider the

case j = 1. By definition of function fj(x) given by (2) and the expansion (5), it holds that

f ′
0 (x) = k · (1 + x)k−1 =

k∑
i=1

i · xi−1 ·
(

k
i

)
,

which implies that

f1(x) = x · f
′

0(x) = x · k · (1 + x)k−1 =
k∑

i=1
i · xi ·

(
k
i

)

P. Peng and Y. Wang 96:9

Now we assume that the items (a) and (b) hold for j ≤ k − 2, and we prove it for j + 1.
For item (a), since fj(x) =

∑k
i=1 ij · xi ·

(
k
i

)
, we have that f ′

j(x) =
∑k

i=1 ij+1 · xi−1 ·
(

k
i

)
.

Thus,

fj+1(x) =
k∑

i=1
ij+1 · xi ·

(
k
i

)
by Definition (2).

For item (b), since fj(x) =
∑j

i=1 ai · xi · (1 + x)k−i, for some numbers a1, . . . , aj ≥ 0, it
holds that

f ′
j(x) =

j∑
i=1

(ai · i · xi−1 · (1 + x)k−i + ai · xi · (k − i) · (1 + x)k−i−1).

Thus, by Definition (2),

fj+1(x) =
j∑

i=1
(ai · i · xi · (1 + x)k−i + ai · xi+1 · (k − i) · (1 + x)k−i−1) =

j+1∑
i=1

a′
i · xi · (1 + x)k−i,

for some numbers a′
1, · · · , a′

j+1 ≥ 0.
Therefore, both items (a) and (b) hold and this finishes the proof the claim. ◁

Now we define two distributions p, q over [k] as follows.
1. if k is even, define

pi =
{

0, if i is even
1

2k−1 ·
(

k
i

)
, if i is odd

qi =
{

1
2k−1−1 ·

(
k
i

)
, if i is even

0, if i is odd

2. if k is odd, define

pi =
{

1
2k−1−1 ·

(
k
i

)
, if i is even

0, if i is odd
qi =

{
0, if i is even

1
2k−1 ·

(
k
i

)
, if i is odd

Now we show the following Lemma.

▶ Lemma 10. Let p, q be defined as above. There exists d > 0 such that
q1
q2
q3
...

qk

 = d ·


p1
p2
p3
...

pk

 + (d − 1) ·


(−1)1(

k
1
)

(−1)2(
k
2
)

(−1)3(
k
3
)

...
(−1)k

(
k
k

)

 (6)

Proof. For the case that k is even, we let d = 1 + 1
2k−1−1 .

First note that pk = 0 and qk = (d − 1) ·
(

k
k

)
. Thus, the last equation holds. For

even i ∈ {2, 4, . . . , k}, pi = 0 and qi = d · pi + (d − 1) ·
(

k
i

)
. For odd i ∈ {1, 3, . . . , k − 1},

pi = d−1
d ·

(
k
i

)
and qi = d · pi + (d − 1) · (−1) ·

(
k
i

)
= 0. Thus, Equation (6) holds.

For the case that k is odd, we let d = 1 − 1
2k−1 .

Note that pk = 0 and qk = (1 − d) ·
(

k
k

)
. Thus, the last equation holds. For odd

i ∈ {1, 3, . . . , k}, pi = 0 and qi = d · pi + (1 − d) ·
(

k
i

)
. For even i ∈ {2, 4, . . . , k − 1},

pi = 1−d
d ·

(
k
i

)
and qi = d · pi + (d − 1) ·

(
k
i

)
= 0. Thus, Equation (6) holds. ◀

ICALP 2023

96:10 Two Property Testing Models for Bounded Degree Directed Graphs

▶ Lemma 11. Let k be any integer with k ≥ 2. Let p, q be distributions over [k] defined as
above. It holds that
1. pk = 0 and qk ≥ 1

2k ;
2. for any two random variables XA and XB with distributions p and q, respectively, it

holds that XA and XB have k − 1 proportional moments.

Proof. The first item follows from the definitions of p and q.
Now prove the second item. Let d > 0 be the number from Lemma 10. We will show that

E[XB]
E[XA] = E[X2

B]
E[X2

A] = · · · = E[Xk−1
B]

E[Xk−1
A]

= d,

or equivalently,
1

E[XB]
E[X2

B]
...

E[Xk−1
B]

 = d ·


1/d

E[XA]
E[X2

A]
...

E[Xk−1
A]

 . (7)

By the definition XA, it holds that for any 0 ≤ i ≤ k − 1, E[Xi
A] =

∑k
j=1 pj · ji. That is,

1
E[XA]
E[X2

A]
...

E[Xk−1
A]

 =


1 1 · · · 1
1 2 · · · k

1 22 · · · k2

...
...

. . .
...

1 2k−1 · · · kk−1




p1
p2
p3
...

pk

 (8)

Similarly, it holds that
1

E[XB]
E[X2

B]
...

E[Xk−1
B]

 =


1 1 · · · 1
1 2 · · · k

1 22 · · · k2

...
...

. . .
...

1 2k−1 · · · kk−1




q1
q2
q3
...

qk

 (9)

By Equations (8) and (9), we know that to prove Equation (7), it suffices to show that
1 1 · · · 1
1 2 · · · k

1 22 · · · k2

...
...

. . .
...

1 2k−1 · · · kk−1




q1
q2
q3
...

qk

 = d ·


1/d 1/d · · · 1/d

1 2 · · · k

1 22 · · · k2

...
...

. . .
...

1 2k−1 · · · kk−1




p1
p2
p3
...

pk

 . (10)

Recall that by Lemma 10, it holds that
q1
q2
q3
...

qk

 = d ·


p1
p2
p3
...

pk

 + (d − 1) ·


(−1)1(

k
1
)

(−1)2(
k
2
)

(−1)3(
k
3
)

...
(−1)k

(
k
k

)



P. Peng and Y. Wang 96:11

Substituting qi from the above equation to the left hand side of equation (10) gives us
that

d ·


1 1 · · · 1
1 2 · · · k

1 22 · · · k2

...
...

. . .
...

1 2k−1 · · · kk−1

 ·


p1
p2
p3
...

pk

 + (d − 1) ·


1 1 · · · 1
1 2 · · · k

1 22 · · · k2

...
...

. . .
...

1 2k−1 · · · kk−1

 ·


(−1)1(

k
1
)

(−1)2(
k
2
)

(−1)3(
k
3
)

...
(−1)k

(
k
i

)



=d ·


1

E[XA]
E[X2

A]
...

E[Xk−1
A]

 + (d − 1) ·


1 1 · · · 1
1 2 · · · k

1 22 · · · k2

...
...

. . .
...

1 2k−1 · · · kk−1

 ·


(−1)1(

k
1
)

(−1)2(
k
2
)

(−1)3(
k
3
)

...
(−1)k

(
k
i

)

 = d ·


1/d

E[XA]
E[X2

A]
...

E[Xk−1
A]

 ,

where the last equation follows from Claim 1.
On the other hand, by Equation (8), we know that the right hand side of (10) is,

d ·


1/d 1/d · · · 1/d

1 2 · · · k

1 22 · · · k2

...
...

. . .
...

1 2k−1 · · · kk−1




p1
p2
p3
...

pk

 = d ·


1/d

E[XA]
E[X2

A]
...

E[Xk−1
A]

 .

Therefore, Equation (10) holds and thus XA and XB have k − 1 proportional moments. This
finishes the proof of the Lemma. ◀

Now we construct class CA as follows: CA is a class of sequences, and the frequency
variable XA of every sequence A is Pr[XA = i] = pi. That is, for every sequence A, the
fraction of elements that occur i times is exactly pi. We can construct CB analogously by
substituting pi with qi.

By construction, sequence A is k-occurrence-free. Consider the sequence B. Suppose
that there are l distinct values in B, then at least qk · l values occur k times in B, which
means that B is at least qk·l

n -far from k-occurrence-free. As every value in B occurs in at
most k positions, there are at least n

k distinct values, i.e., l ≥ n
k . Thus, B is at least qk

k -far
from k-occurrence-free. According to previous analysis, A and B have k − 1 proportional
moments. The theorem then follows from Lemma 8. ◀

3 A Lower Bound for Testing Subgraph-Freeness

In this section, we give the proof of the lower bound on the query complexity for testing
subgraph-freeness, i.e., prove Theorem 2.

Proof of Theorem 2. We give a reduction from the problem of testing k-occurrence of a
sequence to the problem of testing H-freeness in the unidirectional model. That is, given
an instance of the former problem, i.e., a length-n sequence S such that each element is
promised to occur at most k times, we will construct an instance of the H-freeness testing
problem, i.e., a directed graph G with n′ = Θ(n) vertices and bounded degree. Then we
show that this construction preserves the distances of the properties and any algorithm
A′ for testing H-freeness in the unidirectional model can be invoked on G to test if S is

ICALP 2023

96:12 Two Property Testing Models for Bounded Degree Directed Graphs

k-occurrence-freeness. In particular, if A′ has query complexity o(n′1− 1
k), then this implies

an algorithm for testing k-occurrence-freeness with query complexity o(n1− 1
k), contradicting

to Theorem 3.

Preprocessing the subgraph H. Since H has k source components, we denote these
components by {C1, · · · , Ck}. Note that each Ci is a subgraph of H . We use Ncomp to denote
the maximum number of vertices in {C1, C2, · · · , Ck}, i.e., Ncomp = maxi=1,··· ,k |V (Ci)|
where V (C) denotes the vertex set of the graph C. We use C0 to denote the subgraph
induced by the remainder of vertices in V (H) and we call C0 the center component of H.
Let Ncenter = |V (C0)| = |V (H)| −

∑k
i=1 |V (Ci)|. Note that since C1, · · · , Ck are source

components, by definition, no edge exists between different such components. All the
edges leaving Ci (for i = 1, · · · , k) are entering C0. We can first decompose H into source
components and the center component (e.g., by using Tarjan’s algorithm [21]), index them,
and identify all the edges crossing different components in constant time (as the size of H is
constant).

We illustrate such a decomposition of a subgraph H̃ in Figure 1. Note that H̃ has 3
source components and 1 center component (see Figure 2). It can be partitioned into four
parts such V (C̃0) = {v2, v7}, V (C̃1) = {v1}, V (C̃2) = {v3, v4, v5}, V (C̃3) = {v6} as follows.
In this example, Ncomp = 3, Ncenter = 2.

In the construction of the graph G, we will treat each component Ci, 1 ≤ i ≤ k, as a
subgraph with Ncomp vertices. That is, for each such Ci, we add (Ncomp − |V (Ci)|) isolated
vertices to Ci to obtain a new component C ′

i so that |V (C ′
i)| = Ncomp. We can reassemble

these new components {C ′
1, C ′

2, · · · , C ′
k} with C0 to obtain a graph H ′.

v1

v2

v3

v4 v5 v6

v7

Figure 1 A subgraph H̃.

Now we index each vertex of H ′ by some integer in {1, · · · , Ncenter + k · Ncomp} as follows.
The index set of V (C ′

0) is [1, Ncenter], and the index set of V (C ′
i) is [Ncenter + (i − 1) ·

Ncomp + 1, Ncenter + i · Ncomp], for each 1 ≤ i ≤ k. Furthermore, for each component C ′
i with

0 ≤ i ≤ k, we sequentially index the vertices using the corresponding index set according to
the lexicographical ordering of the vertices in the aforementioned component decomposition.

Now we describe the reduction. Given a length-n sequence S, the directed graph
G = (V, E) can be constructed as follows. We first add n disjoint copies of the subgraph
C0 to G. Then we will add n copies of source components and add some edges from source
components to some copy of C0 constructed before. That is, each element in the sequence
corresponds to a source component. Note that there are no edges between different copies of
source components. The offline construction is formally described as follows.

P. Peng and Y. Wang 96:13

v1

(a) Source component C̃1.

v3

v4 v5

(b) Source component C̃2.

v6

(c) Source component C̃3.

v2

v7

(d) Center component C̃0.

Figure 2 Decomposing H̃ into 3 source components and 1 center component.

Figure 3 Constructing G̃ from the sequence S̃ and the decomposition of H̃.

Vertex set and vertex indices. We index vertices in G from 1 to n · (Ncenter + Ncomp). The
vertex set is decomposed into two parts: the center part and the source part. More precisely,
the source part contains n potential source components with vertex indices from 1 to n·Ncomp,
and the center part contains n disjoint copies of the center component C0 with vertex indices
from n · Ncomp + 1 to n · (Ncomp + Ncenter). Furthermore, the vertices in the i-th copy of
the source component are indexed from (i − 1) · Ncomp + 1 to i · Ncomp, while the vertices of
the j-th copy of the center component are indexed from n · Ncomp + (j − 1) · Ncenter + 1 to
n · Ncomp + j · Ncenter.

Adding components and edges. Add n disjoint copies of C0 to G. Initialize a size-n array
T such that Ta = 0 for each 1 ≤ a ≤ n. For each a = 1, 2, · · · , n:
1. let b be the value (or element) of S at position a

2. If b is a new value that algorithm sees for the first time, define an array Rb = {1, 2, · · · , k}.
3. Uniformly sample a number t from Rb. Add an copy of C ′

t. Ignoring isolated vertices in
C ′

t, add edges between this copy of C ′
t and the b-th copy of C0 in the same way as the

connections between their counterparts in the subgraph H . Delete t from Rb. Set Ta = t,
i.e., the a-th position of S is mapped to a source component C ′

t.

ICALP 2023

96:14 Two Property Testing Models for Bounded Degree Directed Graphs

Note that by construction, the graph G is d-bounded, and its maximum (in- or out-)
degree the same as the maximum (in- or out-) degree of H.

We give an illustration of the above construction in Figure 3. Given a sequence S̃ =
{1, 2, 1, 3, 2, 1}, and a subgraph H̃ as shown in Figure 1. The graph G̃ from the above
reduction is shown Figure 3. In this figure, edges of the same color correspond to positions
of the same value (or element) in S̃. For example, the 3 red edges correspond to the 3
occurrences of value 1. Together with the corresponding source and center components, these
red edges form an copy of H̃.

Construction on the fly. We show that the above construction of G can be done on the fly
and each query to G can be answered by querying at most 1 position in S. More precisely,
let A′ be an algorithm for testing H-freeness. When A′ queries the i-th outgoing neighbor of
a vertex v, we consider the following cases.

If v > n · Ncomp, then v belongs to a copy of C0, then we do not need to query sequence
S, and we can simply locate the vertex v′ = (v − n · Ncomp) mod Ncenter in C0. And by our
index in H ′, we know the corresponding vertex index in H ′ is also v′. Then we can check
the i-th neighbor of v′ in H ′, denoted by v′′. Thus we just return v − v′ + v′′.

If 1 ≤ v ≤ n · Ncomp, then v belongs to a copy of some source component. Calculate
a = ⌈v/Ncomp⌉ and query the a-th position of S. Let b denote the query answer. If Ta = 0,
which means that this element is queried for the first time, uniformly sample a type t from
the rest of types Rb for value b, and update Ta = t; otherwise simply set t = Ta. Note that
R and T are maintained as described in the construction. Then calculate v′ = v mod Ncomp.
Now we know that the queried vertex v corresponds to the v′-th vertex in a C ′

t component,
which is adjacent to the b-th copy of C0. We can look up vertex Ncenter + (t − 1) · Ncomp + v′

in H ′, which is isomorphic to vertex v in G. We use v′′ to denote the i-th neighbor of
Ncenter + (t − 1) · Ncomp + v′ in H ′. If v′′ belongs to the C ′

t part in H, we just return
v − v′ + v′′. Otherwise, if v′′ belongs to a C0 part, we return n · Ncomp + (b − 1) · Ncenter + v′′.

Thus, any query for a vertex v with v > n · Ncomp can be answered without querying S;
query for a vertex v with 1 ≤ v ≤ n · Ncomp can be answered by making one query to S.

Note that our construction generates a graph G from a distribution D = {G1, G2, · · · }.
We will show that if S is k-occurrence-free, then any graph from D is H-free; if S is far from
being k-occurrence-free, then every graph in D is far from H-freeness.

Preserving the distances. Note that in the above construction, if there exists some value
occurring k times in S, then these k occurrences of the same value results in k different
source components covering {C1, C2, · · · , Ck}, and they are adjacent to the same center.
That is, each element occurring k times in the sequence result in an occurrence of H in G.
For each element occurring less than k times, the center corresponding to this value will be
adjacent to less than k source components, which in turn implies that H does not occur
in this case. We mention that the auxiliary isolated vertices also do not contribute to any
occurrence of H.

Thus, if S is k-occurrence-free, then there can not be any occurrence of H, and thus
G must be H-free. If S is ε-far from being k-occurrence-free, then there will be at least
εn occurrences of H in G. This implies that G is at least ε′-far from H-freeness, for
ε′ = εn

d(Ncenter+Ncomp)n = ε
d(Ncenter+Ncomp) .

Putting things together. Let A′ be an algorithm for testing H-freeness with proximity
parameter ε = Θk,d(1). Suppose that the query complexity is o(n′1− 1

k) on an n′-vertex
digraph. Now we invoke the algorithm A′ on the graph G that was constructed as before.

P. Peng and Y. Wang 96:15

As we have seen, each query in G can be answered by making at most 1 query to the
sequence S. Furthermore, if S is k-occurrence-free, then G is H-free and if S is ε-far from
being k-occurrence-free, then G is ε′-far from H-free, for ε′ = ε

d·(Ncenter+Ncomp) = Θk,d(1).
Thus, the algorithm A′, together with the construction, also solves the problem of testing
k-occurrence-freeness with o(n1− 1

k) queries, which contradicts Theorem 3. Thus, the query
complexity of A′ is Ω(n1− 1

k). This finishes the proof of the theorem. ◀

References
1 Noga Alon, Eldar Fischer, Ilan Newman, and Asaf Shapira. A combinatorial characterization

of the testable graph properties: it’s all about regularity. SIAM Journal on Computing,
39(1):143–167, 2009.

2 Noga Alon and Asaf Shapira. Testing subgraphs in directed graphs. Journal of Computer and
System Sciences, 69(3):354–382, 2004.

3 Michael A Bender and Dana Ron. Testing properties of directed graphs: acyclicity and
connectivity. Random Structures & Algorithms, 20(2):184–205, 2002.

4 Xi Chen, Tim Randolph, Rocco A Servedio, and Timothy Sun. A lower bound on cycle-finding
in sparse digraphs. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, pages 2936–2952. SIAM, 2020.

5 Artur Czumaj, Pan Peng, and Christian Sohler. Relating two property testing models for
bounded degree directed graphs. In Proceedings of the forty-eighth annual ACM symposium
on Theory of Computing, pages 1033–1045, 2016.

6 Marcel Dall’Agnol, Tom Gur, and Oded Lachish. A structural theorem for local algorithms
with applications to coding, testing, and privacy. In Proceedings of the 2021 ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 1651–1665. SIAM, 2021.

7 Eldar Fischer, Oded Lachish, and Yadu Vasudev. Trading query complexity for sample-based
testing and multi-testing scalability. In 2015 IEEE 56th Annual Symposium on Foundations
of Computer Science, pages 1163–1182. IEEE, 2015.

8 Sebastian Forster, Danupon Nanongkai, Liu Yang, Thatchaphol Saranurak, and Sorrachai
Yingchareonthawornchai. Computing and testing small connectivity in near-linear time and
queries via fast local cut algorithms. In Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 2046–2065. SIAM, 2020.

9 Oded Goldreich. Introduction to testing graph properties. In Property testing, pages 105–141.
Springer, 2010.

10 Oded Goldreich. Introduction to property testing. Cambridge University Press, 2017.
11 Oded Goldreich, Shari Goldwasser, and Dana Ron. Property testing and its connection to

learning and approximation. Journal of the ACM (JACM), 45(4):653–750, 1998.
12 Oded Goldreich and Dana Ron. Property testing in bounded degree graphs. Algorithmica,

32(2):302–343, 2002.
13 Oded Goldreich and Dana Ron. On proximity-oblivious testing. SIAM Journal on Computing,

40(2):534–566, 2011.
14 Oded Goldreich and Dana Ron. On sample-based testers. ACM Transactions on Computation

Theory (TOCT), 8(2):1–54, 2016.
15 Tom Gur and Oded Lachish. On the power of relaxed local decoding algorithms. SIAM

Journal on Computing, 50(2):788–813, 2021.
16 Frank Hellweg and Christian Sohler. Property testing in sparse directed graphs: strong

connectivity and subgraph-freeness. In European Symposium on Algorithms, pages 599–610.
Springer, 2012.

17 Hiro Ito, Areej Khoury, and Ilan Newman. On the characterization of 1-sided error strongly
testable graph properties for bounded-degree graphs. computational complexity, 29(1):1–45,
2020.

ICALP 2023

96:16 Two Property Testing Models for Bounded Degree Directed Graphs

18 Yaron Orenstein and Dana Ron. Testing eulerianity and connectivity in directed sparse graphs.
Theoretical Computer Science, 412(45):6390–6408, 2011.

19 Sofya Raskhodnikova, Dana Ron, Amir Shpilka, and Adam Smith. Strong lower bounds for
approximating distribution support size and the distinct elements problem. SIAM Journal on
Computing, 39(3):813–842, 2009.

20 Ronitt Rubinfeld and Madhu Sudan. Robust characterizations of polynomials with applications
to program testing. SIAM Journal on Computing, 25(2):252–271, 1996.

21 Robert Tarjan. Depth-first search and linear graph algorithms. SIAM journal on computing,
1(2):146–160, 1972.

22 Paul Valiant. Testing symmetric properties of distributions. SIAM Journal on Computing,
40(6):1927, 2011.

23 Yuichi Yoshida and Hiro Ito. Testing k-edge-connectivity of digraphs. Journal of systems
science and complexity, 23(1):91–101, 2010.

Decidability of Fully Quantum Nonlocal Games
with Noisy Maximally Entangled States
Minglong Qin # Ñ

State Key Laboratory for Novel Software Technology, Nanjing University, China

Penghui Yao # Ñ

State Key Laboratory for Novel Software Technology, Nanjing University, China
Hefei National Laboratory, 230088, China

Abstract
This paper considers the decidability of fully quantum nonlocal games with noisy maximally entangled
states. Fully quantum nonlocal games are a generalization of nonlocal games, where both questions
and answers are quantum and the referee performs a binary POVM measurement to decide whether
they win the game after receiving the quantum answers from the players. The quantum value of a
fully quantum nonlocal game is the supremum of the probability that they win the game, where
the supremum is taken over all the possible entangled states shared between the players and all the
valid quantum operations performed by the players. The seminal work MIP∗ = RE [16, 17] implies
that it is undecidable to approximate the quantum value of a fully nonlocal game. This still holds
even if the players are only allowed to share (arbitrarily many copies of) maximally entangled states.
This paper investigates the case that the shared maximally entangled states are noisy. We prove
that there is a computable upper bound on the copies of noisy maximally entangled states for the
players to win a fully quantum nonlocal game with a probability arbitrarily close to the quantum
value. This implies that it is decidable to approximate the quantum values of these games. Hence,
the hardness of approximating the quantum value of a fully quantum nonlocal game is not robust
against the noise in the shared states.

This paper is built on the framework for the decidability of non-interactive simulations of joint
distributions [12, 7, 11] and generalizes the analogous result for nonlocal games in [26]. We extend
the theory of Fourier analysis to the space of super-operators and prove several key results including
an invariance principle and a dimension reduction for super-operators. These results are interesting
in their own right and are believed to have further applications.

2012 ACM Subject Classification Theory of computation → Quantum complexity theory

Keywords and phrases Fully quantum nonlocal games, Fourier analysis, Dimension reduction

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.97

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2211.10613

Funding This work was supported by National Natural Science Foundation of China (Grant No.
61972191), Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0302900)
and the Program for Innovative Talents and Entrepreneur in Jiangsu.
Penghui Yao: Grant No. 61972191, 2021ZD0302900.

Acknowledgements We thank Zhengfeng Ji for helpful discussion. We also thank the anonymous
reviewers for their careful reading and many helpful comments and suggestions.

1 Introduction

Nonlocal games are a core model in the theory of quantum computing, which has found
wide applications in quantum complexity theory, quantum cryptography, and the foundation
of quantum mechanics. A nonlocal game is executed by three parties, a referee and two

EA
T
C
S

© Minglong Qin and Penghui Yao;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 97; pp. 97:1–97:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:mlqin@smail.nju.edu.cn
https://tsdjh.github.io/
https://orcid.org/0009-0004-8760-5498
mailto:pyao@nju.edu.cn
http://penghuiyao.info/
https://orcid.org/0000-0002-4104-2069
https://doi.org/10.4230/LIPIcs.ICALP.2023.97
https://arxiv.org/abs/2211.10613
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

97:2 Decidability of Fully Quantum Games with Noisy MESs

non-communicating players, which are usually named Alice and Bob. Before the game starts,
the players may share an arbitrary bipartite quantum state. The referee samples a pair
of questions and sends each of them to the players, separately. Each player is supposed
to reply with a classical answer to the referee. They win the game if the questions and
the answers satisfy a given predicate. The distribution of the questions and the predicate
is known to the players. The quantum value is the supremum of the probability that
the players win the game. It is a central topic in quantum computing to understand the
computational complexity of computing the quantum value of a nonlocal game. After
decades of efforts [6, 21, 20, 14, 15, 24, 9], it has been finally settled by the seminal work
MIP∗ = RE [16, 17], where Ji, Natarajan, Vidick, Wright and Yuen proved that it is
undecidable to approximately compute the quantum value of a nonlocal game with constant
precision. This result implies that there is no computable upper bound on the preshared
entanglement for the players to win the game with a probability close to the quantum value.
Otherwise, the probability of success can be obtained by ε-netting all possible quantum
strategies and brute-force searching for the optimal value. Ji et al. essentially proved that it
is still uncomputable even if the players are only allowed to share (arbitrarily many) EPR
states.

In [26], the authors investigated the robustness of the hardness of the nonlocal games
under noise. More specifically, they considered a variant of nonlocal games, where the
preshared quantum states are corrupted. It is shown that the quantum value of a nonlocal
game is computable if the players are allowed to share arbitrarily many copies of noisy
maximally entangled states (MES). Hence, the hardness of the nonlocal games collapses in
the presence of noise from the preshared entangled states.

In this paper, we consider fully quantum nonlocal games, which are a broader class of
games where both questions and answers are quantum and the predicates are replaced
by quantum measurements with binary outcomes: win and loss. More specifically, a fully
quantum nonlocal game

G =
(
P,Q,R,A,B, ϕPQR

in ,
{
Pwin = MABR, Ploss = 1−MABR

})
consists of a referee and two non-communicating players: Alice and Bob, where P,Q,R,A,B

are quantum systems, ϕPQR
in is a tripartite quantum state in P⊗ Q⊗ R and {Pwin, Ploss} is a

measurement acting on A⊗B⊗ R. Alice, Bob, and the referee share the input state ϕPQR
in ,

where Alice, Bob, and the referee hold P,Q,R, respectively, at the beginning of the game. Alice
and Bob are supposed to perform quantum operations mapping P to A and Q to B, and then
send the quantum states in A and B to the referee, respectively. After receiving the quantum
messages from the players, the referee performs the POVM measurement {Pwin, Ploss}. Again,
the players are allowed to share arbitrary quantum states before the game starts. Both
players know the description of ϕin and the POVM. The quantum value of the game G is
the supremum of the probability that the players win the game. The supremum is over all
possible preshared quantum states and the quantum operations that can be implemented
by both parties. It is not hard to see if ϕin =

∑
x,y µ (x, y) |x⟩⟨x|P ⊗ |y⟩⟨y|Q ⊗ |xy⟩⟨xy|R and

both Pwin and Ploss are projectors on computational basis, where µ is a bipartite distribution,
then it boils down to a nonlocal game.

Fully quantum nonlocal games also capture the complexity class of two-prover one-round
quantum multi-prover interactive proof systems QMIP(2, 1). The variants of nonlocal games,
where either the questions or the answers are replaced by quantum messages have occurred
in much literature [3, 22, 27, 5, 10, 4, 2, 18]. In [3], Buscemi introduced the so-called semi-
quantum nonlocal games, which are nonlocal games with quantum questions and classical
answers, and proved that semi-quantum nonlocal games can be used to characterize LOSR
(local operations and shared randomness) paradigm. Such games are further used to study

M. Qin and P. Yao 97:3

the entanglement verification in the subsequent work [4, 2]. In a different context, Regev
and Vidick in [27] proposed quantum XOR games, where the questions are quantum and the
answers are still classical. In [22], Leung, Toner, and Watrous introduced a communication
task: coherent state exchange and its analogue in the setting of nonlocal games, where
both questions and answers are quantum. In [10], Fitzsimons and Vidick demonstrated
an efficient reduction that transforms a local Hamiltonian into a 5-players nonlocal game
allowing classical questions and quantum answers. They showed that approximating the
value of this game to a polynomial inverse accuracy is QMA-complete. In [5], Chung, Wu,
and Yuen further proved a parallel repetition for nonlocal games where again questions are
classical and answers are quantum.

As fully quantum nonlocal games are a generalization of nonlocal games, Ji et al.’s
result [16, 17] implies that it is also undecidable to approximately compute the quantum
value of a fully quantum nonlocal game, even if they are only allowed to share MESs.

In this paper, we continue the line of research in [26] to investigate whether the hardness
of fully quantum nonlocal games can be maintained against the noise. More specifically,
we consider the games where the players share arbitrarily many copies of noisy MES’s ψST.
Each ψST is a bipartite state in quantum system S⊗ T, where Alice and Bob hold S and T,
respectively. The value of a game can be written as

valQ(G, ψ) = lim
n→∞

max
ΦAlice,ΦBob

Tr
[
Pwin

(
(ΦAlice ⊗ ΦBob)

(
ϕPQR

in ⊗
(
ψST

)⊗n))]
.

where the maximum is taken over all quantum operations ΦAlice : P⊗ S⊗n → A and ΦBob :
Q⊗T⊗n → B. Noisy MESs were introduced in [26], which will be defined later. They include
depolarized EPR states (1− ε) |Ψ⟩⟨Ψ|+ ε1/2⊗1/2, where ε > 0 and |Ψ⟩ = (|00⟩+ |11⟩) /

√
2

is an EPR state. [16, 17] proved that it is undecidable to approximate valQ(G, |Ψ⟩) within
constant precision.

Main results

In this paper, we prove that it is computable to approximate valQ(G, ψ) within arbitrarily
small precision if ψ is a noisy MES.

▶ Theorem 1 (Main result, informal). Given integer m ≥ 2, δ ∈ (0, 1) and a fully quantum
nonlocal game G, where players are allowed to share arbitrarily many copies m-dimensional
noisy MESs ψ, there exists an explicitly computable bound D = D (ε, δ,m,G) such that it
suffices for the players to share D copies of ψ to achieve the winning probability at least
valQ(G, ψ)− δ. Thus it is feasible to approximate the quantum value of the game (G, ψ) to
arbitrarily precision.

As mentioned above, the class of noisy MESs includes (1− ε) |Ψ⟩⟨Ψ|+ ε1/2⊗ 1/2, where
ε > 0 and Ψ is an EPR state. It is as hard as Halting problem to approximate valQ(G, |Ψ⟩)
proved by [16, 17]. Therefore, our result implies that the hardness of fully quantum nonlocal
games is also not robust against the noise in the preshared states.

This result generalizes [26] where the authors proved that it is feasible to approximate
the values when both questions and answers are classical. Both works are built on the series
of works for the decidability of non-interactive simulations of joint distributions [12, 11, 7].
In the setting of non-interactive simulations of joint distributions, two non-communicating
players Alice and Bob are provided a sequence of independent samples (x1, y1) , (x2, y2) , . . .
from a joint distribution µ, where Alice observes x1, x2, . . . and Bob observes y1, y2, The
question is to decide what joint distribution ν Alice and Bob can sample. The research on
this problem has a long history and fruitful results (see, for example [19] and the references

ICALP 2023

97:4 Decidability of Fully Quantum Games with Noisy MESs

therein). The quantum analogue was first studied by Delgosha and Beigi [8], which is referred
to as local state transformation. The decidability of local state transformation is still widely
open. In this work, we prove that the local state transformation is decidable when the source
states are noisy MESs.

1.1 Contributions
The main contribution in this paper is developing a Fourier-analytic framework for the study
of the space of super-operators. Here we list some conceptual or technical contributions,
which are believed to be interesting in their own right and have further applications in
quantum information science.

1. Analysis in the space of super-operators.
The space of super-operators is difficult to understand in general. In this paper, we make
a crucial observation that the quantum value of a fully quantum nonlocal game can be
reformulated in terms of the Choi representations of the adjoint maps of the quantum
operations. Instead of the space of super-operators, we apply Fourier analysis to the
space spanned by those Choi representations. Then we prove an invariance principle for
super-operators as well as a dimension reduction for quantum operations, which generalize
the analogous results in [26].
Our understanding of Fourier analysis in the space of super-operators is still very limited,
although Boolean analysis has been studied extensively in both mathematics and theoret-
ical computer science for decades. The approach taken in this paper may pave the way
for the theory of Fourier analysis in the space of super-operators.

2. Invariance principle for super-operators.
The classical invariance principle is a central limit theorem for polynomials [23], which
asserts that the distribution of a low-degree and flat polynomial with random inputs
uniformly drawn from {±1}n is close to the distribution which is obtained by replacing
the inputs with i.i.d. standard normal distributions. Here a polynomial is flat means
that no variable has high influence on the value of the polynomial. In [26], the authors
established an invariance principle for matrix spaces. This paper further proves an
invariance principle for super-operators. This is essential to reduce the number of shared
noisy MESs.

3. Dimension reduction for quantum operations.
An important step in our proof is a dimension reduction for quantum operations, which
enables us to reduce the dimensions of both players’ quantum operations. It, in turn,
reduces the number of noisy MESs shared between the players. Dimension reductions for
quantum operations are usually difficult and sometimes even impossible [13, 28]. In this
paper, we prove a dimension reduction via an invariance principle for super-operators and
the dimension reduction for polynomials in Gaussian spaces [11]. we adopt the techniques
in [11] with a delicate analysis. It leads to an exponential upper bound in the main
theorem. which also improves the doubly exponential upper bound in [26].

1.2 Comparison with [26]
In [26], the authors applied Fourier analysis to the Hilbert space where both players’ meas-
urements stay, and proved hypercontractive inequalities, quantum invariance principles and
dimension reductions for matrices and random matrices. In a fully quantum nonlocal game,
both players perform quantum operations. Hence, a natural approach is to further extend
the framework in [12, 26] to the space of super-operators.

M. Qin and P. Yao 97:5

The first difficulty occurs as the answers are quantum. In [26], the authors applied the
framework to each pair of POVM elements (one from Alice and one from Bob). Further
taking a union bound, the result concludes. Hence, it suffices to work on the space where the
POVM elements stay, which is a tensor product of identical Hilbert spaces. This approach
fails when considering fully quantum nonlocal games as the answers are quantum. Hence, we
need to have a convenient representation of super-operators to work on. It is known that
there are several equivalent representations of super-operators [29]. In this paper, we choose
the Choi representations of super-operators, which view a super-operator as an operator in
the tensor product of the input space and the output space. Hence, the underlying Hilbert
space is a tensor product of a number of identical Hilbert spaces and the output Hilbert
space. Thus, the analysis in [26] cannot be generalized here directly.

The second difficulty occurs as the questions are quantum. In [26], the authors essentially
proved an upper bound on the number of noisy MESs for each pair of inputs. If the precision
of the approximation is good enough, then we can obtain an upper bound for all inputs again
by a union bound because the questions are finite in a nonlocal game. This argument cannot
be directly generalized to fully nonlocal games as the questions are the marginal state of the
input state with Alice and Bob. Fortunately, this difficulty can be avoided as the input state
is in a bounded-dimensional space and thus it suffices to prove the theorem for each basis
element from a properly chosen basis in the space, and then take a union bound.

The last difficulty is that the rounding argument in [26] does not apply to fully quantum
nonlocal games. In the end of the construction, the new super-operators are no longer valid
quantum operations. In [26], the construction gives a number of Hermitian operators in the
end. The rounding argument proves that it is possible to round these Hermitian operators
to valid POVMs with small deviation. For fully quantum nonlocal games we need a new
rounding argument which is able to round super-operators to valid quantum operations with
small deviation in the end of the construction.

1.3 Proof overview
The proof is built on the framework in [12, 11, 7] for the decidability of non-interactive
simulation of joint distributions. To explain the high-level idea of our proof, we start with
the decidability of a particular task of local state transformation. Then we explain how to
generalize it to nonlocal games.

Local state transformation
We are interested in the decidability of the following local state transformation problem.

Given δ > 0, a bipartite state σ and a noisy MES ψ, suppose Alice and Bob share
arbitrarily many copies of ψ.

Yes. Alice and Bob are able to jointly generate a bipartite state σ′ using only local
operations such that σ′ is δ-close to σ, i.e., ∥σ − σ′∥1 ≤ δ.
No. Any quantum state σ′ that Alice and Bob can jointly generate using only local
operations is 2δ-far from σ, i.e., ∥σ − σ′∥1 ≥ 2δ.

As there is no upper bound on the number of copies of ψ, the decidability of this question
is unclear. If it were proved that any quantum operation could be simulated by a quantum
operation in a bounded dimension, then the problem would be decidable as we could search

ICALP 2023

97:6 Decidability of Fully Quantum Games with Noisy MESs

all possible quantum operations in a bounded-dimensional space via an ε-net and brute
force. More specifically, suppose Alice and Bob share n copies of noisy MESs ψ and they
perform quantum operations ΦAlice and ΦBob. For any precision parameter δ ∈ (0, 1), we
need to construct quantum operations Φ̃Alice and Φ̃Bob acting on D copies of ψ, where D is
independent of n, such that

(ΦAlice ⊗ ΦBob)
(
ψ⊗n

)
≈
(

Φ̃Alice ⊗ Φ̃Bob

) (
ψ⊗D

)
. (1)

To explain the high-level ideas, we assume that ψ is a 2-qubit quantum state for simplicity.
Let {Xa}a∈{0,1,2,3} be an orthonormal basis in the space of 2× 2 matrices. We observe that
the left hand side of Equation (1) is determined by the following 42n values:{

Tr
[
(Xa ⊗Xb)

(
(ΦAlice ⊗ ΦBob)

(
ψ⊗n

))]}
a,b∈{0,1,2,3}n ,

where Xa = Xa1 ⊗ · · · ⊗ Xan . Notice that

Tr
[
(Xa ⊗Xb)

(
(ΦAlice ⊗ ΦBob)

(
ψ⊗n

))]
= Tr

[(
(ΦAlice)∗ (Xa)⊗ (ΦBob)∗ (Xb)

) (
ψ⊗n

)]
,

where (ΦAlice)∗ and (ΦBob)∗ are the adjoints of ΦAlice and ΦBob, respectively. Hence, Equa-
tion (1) is equivalent to

Tr
[(

(ΦAlice)∗ (Xa)⊗ (ΦBob)∗ (Xb)
)
ψ⊗n

]
≈ Tr

[((
Φ̃Alice

)∗
(Xa)⊗

(
Φ̃Bob

)∗
(Xb)

)
ψ⊗D

]
. (2)

Equation (2) resembles the setting considered in [26]. It is proved in [26] that for any POVM
{Mi ⊗Nj}i,j acting on ψ⊗n, there exists POVM

{
M ′i ⊗N ′j

}
i,j

acting on ψ⊗D such that

Tr
[
(Mi ⊗Nj)ψ⊗n

]
≈ Tr

[(
M ′i ⊗N ′j

)
ψ⊗D

]
,

for all i, j. However, (ΦAlice)∗ (Xa) and (ΦBob)∗ (Xb) are not positive. It is even not clear how
to characterize (ΦAlice)∗ (Xa) and (ΦBob)∗ (Xb) for valid quantum operations ΦAlice and ΦBob.
Thus we cannot directly apply the results in [26]. Instead of working on each of (ΦAlice)∗ (Xa)
and (ΦBob)∗ (Xb), we work on the Choi representations J

(
(ΦAlice)∗

)
and J

(
(ΦBob)∗

)
, which

include the information of (ΦAlice)∗ (Xa) and (ΦBob)∗ (Xb) for all a, b. One more advantage of
Choi representations is that we have a neat characterization of the Choi representations of
quantum operations. Thus it is more convenient to bound the deviations of the intermediate
super-operators from valid quantum operations throughout the construction. We consider
the Fourier expansions of J

(
(ΦAlice)∗

)
and J

(
(ΦBob)∗

)
, and reduce the dimensions of the

super-operators via the framework for the decidability of non-interactive simulations of
joint distributions in [12, 11, 7, 26]. To this end, we prove an invariance principle for
super-operators, and combine it with the dimension reduction for polynomials in Gaussian
spaces [11]. There are several prerequisites for the invariance principle. Firstly, the Choi
representation should have low degree. Secondly, all but a constant number of systems
are of low influence, that is, all but a constant number of subsystems do not influence the
super-operators much. The construction takes several steps to adjust the Fourier coefficients
of J

(
(ΦAlice)∗

)
and J

(
(ΦBob)∗

)
to meet those prerequisites. Meanwhile, the new super-

operators still need to be close to valid quantum operations so that the value of the game
does not change much. Once these prerequisites are satisfied, the basis elements in those
subsystems with low influence are replaced by properly chosen Gaussian variables, which
only causes a small deviation by the invariance principle.

Each step is sketched as follows.

M. Qin and P. Yao 97:7

1. Smoothing
This step is aimed to obtain bounded-degree approximations of J

(
(ΦAlice)∗

)
and

J
(
(ΦBob)∗

)
. We apply a noise operator ∆γ for some γ ∈ (0, 1) defined in Definition 10

to both J
(
(ΦAlice)∗

)
and J

(
(ΦBob)∗

)
on the input spaces. Note that both Choi rep-

resentations are positive operators. After smoothing the operation and truncating the
high-degree parts, we get bounded-degree approximations M (1) and N (1), of J

(
(ΦAlice)∗

)
and J

(
(ΦBob)∗

)
, respectively. Though the bounded-degree approximations may no longer

be positive, the deviation can be proved to be small.
2. Regularity

This step is aimed to prove that the number of subsystems having high influence is
bounded. The influence of a subsystem of a multipartite Hermitian operator is defined in
Definition 3. Informally speaking, the influence measures how much the subsystem can
affect the operator. For a bounded operator, the total influence, which is the summation of
the influences of all subsystems, is upper bounded by the degree of the operator. This is a
generalization of a standard result in Boolean analysis. Note that we have bounded-degree
approximations after the first step. The desired result follows by a Markov inequality.

3. Invariance principle
In this step, we use correlated Gaussian variables to substitute the basis elements in all
the subsystems with low influence in M (1) and N (1), after which we get random operators
M(2) and N(2), whose Fourier coefficients are low-degree multilinear polynomials in
Gaussian variables. We also need to prove that, M(2) and N(2) are close to positive
operators in expectation.

4. Dimension reduction
This step is aimed to reduce the number of Gaussian variables. After applying a dimension
reduction to M(2) and N(2), we get random operators M(3) and N(3) containing a bounded
number of Gaussian random variables. Unlike [26], we get an upper bound independent
of the number of quantum subsystems via a more delicate analysis. However, the Fourier
coefficients of M(3) and N(3) are no longer low-degree polynomials after the dimension
reduction.

5. Smooth random operators
The remaining steps are mainly concerned with removing the Gaussian variables. This
step is aimed to get low-degree approximations of the Fourier coefficients of M(3) and
N(3). We apply the Ornstein-Uhlenbeck operator (aka noise operators in Gaussian space)
to the Gaussian variables in M(3) and N(3) and truncate the high-degree parts to get M(4)

and N(4). We should note that the Fourier coefficients of M(4) and N(4) are polynomials,
but not multilinear.

6. Multilinearization
This step is aimed to get multilinear approximations of the Fourier coefficients of M(4)

and N(4). To this end, We apply the multilinearization lemma in [11] to get random
operators M(5) and N(5). Now we are ready to use the invariance principle again to
convert random operators back to operators.

7. Invariance to operators
In this step we substitute the Gaussian variables with properly chosen basis elements,
to get operators M (6) and N (6), which have a bounded number of quantum subsystems.
Again, we need to apply a quantum invariance principle to ensure that M (6) and N (6)

are close to positive operators.

ICALP 2023

97:8 Decidability of Fully Quantum Games with Noisy MESs

8. Rounding
We now have operators M (6) and N (6) that are close to positive operators. The last
thing to do is to round them to the Choi representations of the adjoints of some quantum
operations. After the rounding, the whole construction is done.

2 Preliminary

Given n ∈ Z>0, let [n] and [n]≥0 represent the sets {1, . . . , n} and {0, . . . , n− 1}, respectively.
For all a ∈ Zn≥0, we define |a| = |{i : ai > 0}|. In this paper, the lower-cased letters in bold
g,h, . . . are reserved for random variables, and the capital letters in bold M,N are reserved
for random operators.

2.1 Quantum mechanics
We denote the set of Hermitian operators in a quantum system S by HS. The identity
operator is denoted by 1S. We use the shorthand SA to represent S ⊗ A. The Hermitian
space of the composition of n Hermitian space HS is denoted by H⊗nS , or HnS for short.

Given quantum systems S,A, let L (S,A) denote the set of all linear maps from MS to
MA A quantum operation from the input system S to the output system A is represented by a
CPTP (completely positive and trace preserving) map Φ ∈ L (S,A). We define ψS = TrA ψSA

to represent the state obtained by tracing out system A from ψSA.
For a given map Φ ∈ L (S,A), the adjoint of Φ is defined to be the unique map Φ∗ ∈

L (A, S) that satisfies

Tr Φ∗(Q)†P = Tr Q†Φ(P) for all P ∈ L(S) and Q ∈ L(A). (3)

Given Ψ ∈ L (A, S), the Choi representation of Ψ is a linear map J : L (A, S)→ H (SA)
defined as follows:

J (Ψ) =
∑
a

Ψ
(
Ãa
)
⊗ Ãa, (4)

where Ãa = Aa/
√
|A|1, and

{
Aa : a ∈

[
|A|2

]
≥0

}
is an orthonormal basis in A. J is a linear

bijection. Ψ can be recovered from its Choi representation J (Ψ) as follows.

Ψ (P) = TrA
(
J (Ψ)

(
1S ⊗ P †

))
. (5)

▶ Fact 2. Φ ∈ L (S,A) is a quantum operation if and only if J (Φ∗) ≥ 0 and TrAJ (Φ∗) = 1S.

2.2 Fourier analysis in Gaussian space
Given n ∈ Z>0, let γn represent a standard n-dimensional normal distribution. A function
f : Rn → R is in L2 (R, γn) if

∫
Rn f(x)2γn (dx) <∞.

All the functions involved in this paper are in L2 (R, γn). We equip L2 (R, γn) with an
inner product ⟨f, g⟩γn

= Ex∼γn [f(x)g(x)] .

1 The denominator is because of the demoninator in the definition of the inner product 1
s Tr P †Q.

M. Qin and P. Yao 97:9

The set of Hermite polynomials forms an orthonormal basis in L2 (R, γ1) with respect to
the inner product ⟨·, ·⟩γ1

. The Hermite polynomials Hr : R→ R for r ∈ Z≥0 are defined as

H0 (x) = 1;H1 (x) = x;Hr (x) = (−1)r√
r!

ex
2/2 dr

dxr e−x
2/2.

For any σ ∈ (σ1, . . . , σn) ∈ Zn≥0, define Hσ : Rn → R as Hσ (x) =
∏n
i=1 Hσi

(xi) .
The set

{
Hσ : σ ∈ Zn≥0

}
forms an orthonormal basis in L2 (R, γn). Every function f ∈

L2 (R, γn) has an Hermite expansion as

f (x) =
∑
σ∈Zn

≥0

f̂ (σ) ·Hσ (x) ,

where f̂ (σ)’s are the Hermite coefficients of f , which can be obtained by f̂ (σ) = ⟨Hσ, f⟩γn
.

We say f ∈ L2 (R, γn) is multilinear if f̂ (σ) = 0 for σ /∈ {0, 1}n.

▶ Definition 3. The influence of the i-th coordinate(variable) on f , denoted by Infi (f), is
defined by

Infi (f) = E
x∼γn

[
Varx′

i
∼γ1 [f (x1, . . . ,xi−1,x′i,xi+1, . . .xn)]

]
.

The following fact summarizes some basic properties of variance and influence.

▶ Fact 4 ([25, Proposition 8.16 and Proposition 8.23]). Given f ∈ L2 (R, γn), it holds that
1. Var[f] =

∑
σ ̸=0n f̂ (σ)2 ≤

∑
σ f̂ (σ)2 = ∥f∥2

2 .

2. Infi (f) =
∑
σi ̸=0 f̂ (σ)2 ≤ Var[f] .

2.3 Fourier analysis in matrix space
Given 1 ≤ m, p ≤ ∞, and H ∈ Hm, the p-norm of H is defined to be

∥H∥p =
(

Tr
(
H2)p/2

)1/p
.

The normalized p-norm of H is defined as

|||H|||p =
(

1
m

Tr
(
H2)p/2

)1/p
.

Given P,Q ∈ Hm, we define an inner product over R:

⟨P,Q⟩ = 1
m

Tr PQ.

We need the following particular classes of bases in Hm on which our Fourier analysis is
based.

▶ Definition 5. Let {Bi}i∈[m2]≥0
be an orthonormal basis in Hm over R. We say {Bi}i∈[m2]≥0

is a standard orthonormal basis if B0 = 1m.

▶ Fact 6. Let {Bi}m
2−1

i=0 be a standard orthonormal basis in Hm. Then the set{
Bσ = ⊗ni=1Bσi

: σ ∈ [m2]n≥0
}

is a standard orthonormal basis in H⊗nm .

ICALP 2023

97:10 Decidability of Fully Quantum Games with Noisy MESs

Given a standard orthonormal basis {Bi}m
2−1

i=0 in Hm, every H ∈ H⊗nm has a Fourier
expansion:

H =
∑

σ∈[m2]n
≥0

Ĥ (σ)Bσ,

where Ĥ (σ) ∈ R are the Fourier coefficients. The basic properties of Ĥ (σ)’s are summarized
in the following fact, which can be easily derived from the orthonormality of {Bσ}σ∈[m2]n

≥0
.

▶ Fact 7 ([26, Fact 2.11]). Given a standard orthonormal basis {Bi}i∈[m2]≥0
in Hm and

M,N ∈ Hm, it holds that
1. ⟨M,N⟩ =

∑
σ M̂ (σ) N̂ (σ).

2. |||M |||22 = ⟨M,M⟩ =
∑
σ M̂ (σ)2.

3. ⟨1m,M⟩ = M̂ (0).

▶ Definition 8. Let B = {Bi}i∈[m2]≥0
be a standard orthonormal basis in Hm, P,Q ∈ H⊗nm

1. The degree of P is defined to be degP = max
{
|σ| : P̂ (σ) ̸= 0

}
.

2. For any i ∈ [n], the influence of i-th coordinate is defined to be

Infi (P) = |||P − 1m ⊗ TriP |||22,

where 1m is in the i’th quantum system, and Tri means tracing out the i’th system.
3. The total influence of P is defined to be Inf (P) =

∑
i Infi (P) .

▶ Fact 9 ([26, Lemma 2.16]). Given P ∈ H⊗nm , a standard orthonormal basis B = {Bi}i∈[m2]≥0

in Hm, it holds that
1. Infi (P) =

∑
σ:σi ̸=0

∣∣∣P̂ (σ)
∣∣∣2 .

2. Inf (P) =
∑
σ |σ|

∣∣∣P̂ (σ)
∣∣∣2 ≤ degP · |||P |||22.

▶ Definition 10. Given a quantum system S with dimension |S| = s, γ ∈ [0, 1], the depolarizing
operation ∆γ : HS → HS is defined as follows. For any P ∈ HS,

∆γ (P) = γP + 1− γ
s (Tr P) · 1S.

▶ Fact 11 ([26, Lemma 3.6 and Lemma 6.1]). Given n,m ∈ Z>0, γ ∈ [0, 1], a standard
orthonormal basis of Hm: B = {Bi}m

2−1
i=0 , the following holds:

1. For any P ∈ H⊗nm with a Fourier expansion P =
∑
σ∈[m2]n

≥0
P̂ (σ)Bσ, it holds that

∆γ (P) =
∑

σ∈[m2]n
≥0

γ|σ|P̂ (σ)Bσ.

2. For any P ∈ H⊗nm , |||∆γ (P)|||2 ≤ |||P |||2.
3. ∆γ is a quantum operation.
4. For any d ∈ Z>0, P ∈ H⊗nm , it holds that

∣∣∣∣∣∣∣∣∣(∆γ(P))>d
∣∣∣∣∣∣∣∣∣

2
≤ γd|||P |||2.

▶ Definition 12 (Maximal correlation). [1] Given quantum systems S,T with dimensions
s = |S| and t = |T|, ψST ∈ HST with ψS = 1S/s, ψT = 1T/t, the maximal correlation of ψST

is defined to be

ρ
(
ψST

)
= sup

{|Tr((P⊗Q)ψST)| :P∈HS,Q∈HT ,

Tr P=Tr Q=0,|||P |||2=|||Q|||2=1

}
.

M. Qin and P. Yao 97:11

2.4 Random operators
In this subsection, we introduce random operators defined in [26], which unifies Gaussian
variables and operators.

▶ Definition 13 ([26]). Given p, h, n,m ∈ Z>0, we say P is a random operator if it can be
expressed as

P =
∑

σ∈[m2]h
≥0

pσ (g)Bσ,

where {Bi}i∈[m2]≥0
is a standard orthonormal basis in Hm, pσ : Rn → R for all σ ∈ [m2]h≥0

and g ∼ γn. P ∈ Lp
(
H⊗hm , γn

)
if pσ ∈ Lp (R, γn) for all σ ∈ [m2]h≥0.

We say P is multilinear if pσ (·) is multilinear for all σ ∈ [m2]h≥0.

▶ Fact 14 ([26, Lemma 2.23]). Given n, h,m ∈ Z>0, let P ∈ L2 (H⊗hm , γn
)

with an associated
vector-valued function p under a standard orthonormal basis. It holds that E

[
|||P|||22

]
= ∥p∥2

2 .

2.5 Rounding maps
Define a function ζ : R→ R as follows.

ζ (x) =
{
x2 if x ≤ 0
0 otherwise

. (6)

The function ζ measures the distance between an Hermitian operator and the set of positive
semi-definite operators in 2-norm.

▶ Fact 15 ([26, Lemma 9.1]). Given m ∈ Z>0, H ∈ Hm, it holds that

Tr ζ (H) = min
{
∥H −X∥2

2 : X ≥ 0
}
.

3 Main results

▶ Theorem 16. Given ϵ ∈ (0, 1), n, s ∈ Z>0, and quantum systems P,Q,R, S,T,A,B with
dimensions p = |P| , q = |Q| , r = |R| , s = |S| , t = |T| , a = |A| , b = |B| . Let {Aa}a∈[a2]≥0

,
{Bb}b∈[b2]≥0

, {Rr}r∈[r2]≥0
be orthonormal bases in HA, HB and HR, respectively. Let

ψST ∈ HST be a noisy MES with the maximal correlation ρ = ρ
(
ψST

)
< 1, which is defined

in Definition 12. Let ϕPQR
in ∈ HPQR be an arbitrary tripartite quantum state. Then there exists

an explicitly computable D = D (ρ, ϵ, s, p, q, r, s, t, a, b), such that for all quantum operations
ΦAlice ∈ L (SnP,A), ΦBob ∈ L (TnQ,B), there exist quantum operations Φ̃Alice ∈ L

(
SDP,A

)
,

Φ̃Bob ∈ L
(
TDQ,B

)
such that for all a ∈

[
a2]
≥0, b ∈

[
b2]
≥0, r ∈

[
r2]
≥0, 2

∣∣∣Tr
[(

Φ∗Alice

(
Ãa
)
⊗ Φ∗Bob

(
B̃b
)
⊗ R̃r

)(
ϕPQR

in ⊗
(
ψST

)⊗n)]
− Tr

[(
Φ̃∗Alice

(
Ãa
)
⊗ Φ̃∗Bob

(
B̃b
)
⊗ R̃r

)(
ϕPQR

in ⊗
(
ψST

)⊗D)]∣∣∣ ≤ ϵ.

In particular, one may choose

D = exp
(

poly
(

a, b, p, q, r, log s, log t, 1
1− ρ ,

1
ϵ

))
.

2 Remind that Ãa = Aa/
√

a, B̃b = Bb/
√

b and R̃r = Rr/
√

r.

ICALP 2023

97:12 Decidability of Fully Quantum Games with Noisy MESs

▶ Theorem 17. Given parameters 0 < ϵ, ρ < 1, and a fully quantum nonlocal game

G =
(
P,Q,R,A,B, ϕin,

{
MABR,1−MABR

})
,

with dimensions p = |P| , q = |Q| , r = |R| , s = |S| , t = |T| , a = |A| , b = |B|, suppose the
two players are restricted to share an arbitrarily finite number of noisy MES states ψST,
i.e., ψS = 1S/s, ψT = 1T/t with the maximal correlation ρ < 1 as defined in Definition 12.
Let valQ(G, ψST) be the supremum of the winning probability that the players can achieve.
Then there exists an explicitly computable bound D = D (ρ, ϵ, p, q, r, s, t, a, b) such that it
suffices for the players to share D copies of ψST to achieve the winning probability at least
valQ(G, ψST)− ϵ. In particular, one may choose

D = exp
(

poly
(

a, b, p, q, r, log s, log t, 1
1− ρ ,

1
ϵ

))
.

Proof. To keep the notations short, the superscripts will be omitted whenever it is clear from
the context. Suppose the players share n copies of ψST and employ the strategy (ΦAlice,ΦBob)
with the winning probability valQ(G, ψST). We apply Theorem 16 to (ΦAlice,ΦBob) with
ϵ← ϵ/(abr)3/2 to obtain

(
Φ̃Alice, Φ̃Bob

)
. We claim that the strategy

(
Φ̃Alice, Φ̃Bob

)
wins the

game with probability at least valQ(G, ψST)− ϵ.
Let {Aa}a∈[a2]≥0

, {Bb}b∈[b2]≥0
, {Rr}r∈[r2]≥0

be orthonormal bases in HA, HB and HR,
respectively. From Theorem 16, for all a ∈

[
a2]
≥0, b ∈

[
b2]
≥0, r ∈

[
r2]
≥0, we have

∣∣∣Tr
[(

Φ∗Alice

(
Ãa
)
⊗ Φ∗Bob

(
B̃b
)
⊗ R̃r

) (
ϕin ⊗ ψ⊗n

)]
− Tr

[(
Φ̃∗Alice

(
Ãa
)
⊗ Φ̃∗Bob

(
B̃b
)
⊗ R̃r

) (
ϕin ⊗ ψ⊗D

)]∣∣∣ ≤ ϵ/(abr)3/2.

By Equation (3), it is equivalent to∣∣∣Tr
[(

(ΦAlice ⊗ ΦBob)
(
ϕin ⊗ ψ⊗n

)) (
Ãa ⊗ B̃b ⊗ R̃r

)]
−Tr

[((
Φ̃Alice ⊗ Φ̃Bob

) (
ϕin ⊗ ψ⊗D

))(
Ãa ⊗ B̃b ⊗ R̃r

)]∣∣∣ ≤ ϵ/(abr)3/2.

We finally get the desired result:∣∣∣Tr
[
MABR

(
(ΦAlice ⊗ ΦBob)

(
ϕin ⊗ ψ⊗n

)
−
(

Φ̃Alice ⊗ Φ̃Bob

) (
ϕin ⊗ ψ⊗D

))]∣∣∣
(⋆)
≤
∥∥MABR

∥∥ · ∥∥∥(ΦAlice ⊗ ΦBob)
(
ϕin ⊗ ψ⊗n

)
−
(

Φ̃Alice ⊗ Φ̃Bob

) (
ϕin ⊗ ψ⊗D

)∥∥∥
1

≤ (abr)1/2
∥∥∥(ΦAlice ⊗ ΦBob)

(
ϕin ⊗ ψ⊗n

)
−
(

Φ̃Alice ⊗ Φ̃Bob

) (
ϕin ⊗ ψ⊗D

)∥∥∥
2

=

abr
∑
a,b,r

(
Tr
[(

(ΦAlice ⊗ ΦBob)
(
ϕin ⊗ ψ⊗n

)) (
Ãa ⊗ B̃b ⊗ R̃r

)]

−Tr
[((

Φ̃Alice ⊗ Φ̃Bob

) (
ϕin ⊗ ψ⊗D

))(
Ãa ⊗ B̃b ⊗ R̃r

)])2
)1/2

≤ ϵ,

where (⋆) is by Hölder’s inequality. ◀

M. Qin and P. Yao 97:13

3.1 Notations and setup
The proof of Theorem 16 involves a number of notations. To keep the proof succinct, we
introduce the setup and the notations that are used frequently in the rest of the paper.

▶ Setup 18. Given quantum systems P,Q,R, S,T,A,B with dimensions

p = |P| , q = |Q| , r = |R| , s = |S| , t = |T| , a = |A| , b = |B| ,

let ϕPQR
in be the input state in P ⊗ Q ⊗ R shared among Alice, Bob and the referee, where

Alice, Bob and the referee hold P, Q and R, respectively. Let ψST ∈ HST be the noisy MES
shared between Alice and Bob, where Alice has S and Bob has T. Let ρ < 1 be the maximal
correlation of ψST. Let A and B be the answer registers of Alice and Bob, respectively.

Let {Ss}s∈[s2]≥0
, {Tt}t∈[t2]≥0

be standard orthonormal bases in HS,HT, respectively. Let
{Aa}a∈[a2]≥0

, {Bb}b∈[b2]≥0
, {Pp}p∈[p2]≥0

, {Qq}q∈[q2]≥0
, {Rr}r∈[r2]≥0

be orthonormal bases
(not necessary to be standard orthonormal) in HA,HB,HP,HQ,HR, respectively. For con-
venience, we denote Ãa to be Aa/

√
a. The same for B̃b, P̃p, Q̃q, R̃r.

When we use universal quantifiers, we omit the ranges of the variables whenever they
are clear in the context. For example, we say “for all a, b” to mean “for all a ∈

[
a2]
≥0,

b ∈
[
b2]
≥0”.

Given M ∈ HSnPA, for all p, a, we define Ma to be TrA
[(

1SnP ⊗ Ãa
)
M
]
, and Mp,a to

be TrP
[(

1Sn ⊗ P̃p
)
Ma

]
. Similar for N,Nb, Nq,b. In other words,

M =
∑

a∈[a2]≥0

Ma ⊗ Ãa, N =
∑

b∈[b2]≥0

Nb ⊗ B̃b. (7)

and

Ma =
∑

p∈[p2]≥0

Mp,a ⊗ P̃p, Nb =
∑

q∈[q2]≥0

Nq,b ⊗ Q̃q. (8)

3.2 Proof of Theorem 16
Proof of Theorem 16. Let δ, θ be parameters which are chosen later. The proof is composed
of several steps.

Smoothing
We apply a noise operator defined in Definition 10 to J (Φ∗Alice) and J (Φ∗Bob), and truncate
the high-degree parts to get M (1) and N (1), respectively. 3 They satisfy the following.

1. For all a, b,
∣∣∣∣∣∣∣∣∣M (1)

a

∣∣∣∣∣∣∣∣∣
2
≤ 1 and

∣∣∣∣∣∣∣∣∣N (1)
b

∣∣∣∣∣∣∣∣∣
2
≤ 1, where M (1)

a and N
(1)
b are defined in

Equation (7).
2. For all a, b, r:∣∣∣Tr

[(
Φ∗Alice

(
Ãa
)
⊗ Φ∗Bob

(
B̃b
)
⊗ R̃r

) (
ϕin ⊗ ψ⊗n

)]
− Tr

[(
M (1)
a ⊗N (1)

b ⊗ R̃r
) (
ϕin ⊗ ψ⊗n

)]∣∣∣ ≤ δ.

3 Readers may refer to the full version for details.

ICALP 2023

97:14 Decidability of Fully Quantum Games with Noisy MESs

3. For all a, b, p, q, M (1)
p,a and N

(1)
q,b have degree at most d1, where M (1)

p,a and N
(1)
q,b are

defined in Equation (8).
4.

1
snTr ζ

(
M (1)

)
≤ δ and 1

tnTr ζ
(
N (1)

)
≤ δ,

where ζ is defined in Equation (6).
5. M

(1)
0 = 1SnP/

√
a and N

(1)
0 = 1TnQ/

√
b.

Here d1 = O
(

a2b2pq
δ(1−ρ)

)
.

Regularization
We denote H ⊆ [n] to be the set of registers with high influence, satisfying h = |H| ≤
d1 (a + b) /θ such that for all i /∈ H:

Infi (M) ≤ θ, Infi (N) ≤ θ.

Invariance to random operators
Substituting the basis elements in the subsystems with low influence in M (1) and N (1),
we obtain joint random operators M(2) and N(2) satisfying the following.

1. For all a, b, p, q:

E
[∣∣∣∣∣∣∣∣∣M(2)

p,a

∣∣∣∣∣∣∣∣∣2
2

]1/2
=
∣∣∣∣∣∣∣∣∣M (1)

p,a

∣∣∣∣∣∣∣∣∣
2

and E
[∣∣∣∣∣∣∣∣∣N(2)

q,b

∣∣∣∣∣∣∣∣∣2
2

]1/2
=
∣∣∣∣∣∣∣∣∣N (1)

q,b

∣∣∣∣∣∣∣∣∣
2
.

2. For all a, b, r:

E
[
Tr
[(

M(2)
a ⊗N(2)

b ⊗ R̃r
) (
ϕin ⊗ ψ⊗h

)]]
= Tr

[(
M (1)
a ⊗N (1)

b ⊗ R̃r
) (
ϕin ⊗ ψ⊗n

)]
.

3. ∣∣∣∣ 1
sh E

[
Tr ζ

(
M(2)

)]
− 1

snTr ζ
(
M (1)

)∣∣∣∣ ≤ O(p10/3a4
(

3d1sd1/2
√
θd1

)2/3
)

and∣∣∣∣ 1
th E

[
Tr ζ

(
N(2)

)]
− 1

tnTr ζ
(
N (1)

)∣∣∣∣ ≤ O(q10/3b4
(

3d1td1/2
√
θd1

)2/3
)
.

4. M(2)
0 = 1ShP/

√
a and N(2)

0 = 1ThQ/
√

b.

Dimension Reduction
We then reducing the number of Gaussian variables in

(
M(2),N(2)) randomly. With

probability at least 3/4− δ/2 > 0, we get joint random operators
(
M(3),N(3)) such that

the following holds:

1. For all a, b, p, q:

E
[∣∣∣∣∣∣∣∣∣M(3)

p,a

∣∣∣∣∣∣∣∣∣2
2

]
≤ (1 + δ)E

[∣∣∣∣∣∣∣∣∣M(2)
p,a

∣∣∣∣∣∣∣∣∣2
2

]
and E

[∣∣∣∣∣∣∣∣∣N(3)
q,b

∣∣∣∣∣∣∣∣∣2
2

]
≤ (1 + δ)E

[∣∣∣∣∣∣∣∣∣N(2)
q,b

∣∣∣∣∣∣∣∣∣2
2

]
.

M. Qin and P. Yao 97:15

2.

E
x

[
Tr ζ

(
M(3)

)]
≤ 8E

g

[
Tr ζ

(
M(2)

)]
and E

y

[
Tr ζ

(
N(3)

)]
≤ 8E

h

[
Tr ζ

(
N(2)

)]
.

3. For all a, b, r:

∣∣∣∣ Ex,y[Tr
[(

M(3)
a ⊗N(3)

b ⊗ R̃r
)(

ϕin ⊗
(
ψST

)⊗h)]]
− E

g,h

[
Tr
[(

M(2)
a ⊗N(2)

b ⊗ R̃r
)(

ϕin ⊗
(
ψST

)⊗h)]]∣∣∣∣ ≤ δ.

4. M(3)
0 = 1ShP/

√
a and N(3)

0 = 1ThQ/
√

b.

Here n0 = O

(
(abr)12(pq)20d

O(d1)
1

δ6

)
.

Smoothing random operators
To get low-degree approximations of the Fourier coefficients of M(3) and N(3), we obtain
joint random operators

(
M(4),N(4)) satisfying the following.

1. For all a, b, p, q:

deg
(

M(4)
p,a

)
≤ d2 and deg

(
N(4)
q,b

)
≤ d2.

2. For all a, b, p, q:

E
[∣∣∣∣∣∣∣∣∣M(4)

p,a

∣∣∣∣∣∣∣∣∣2
2

]1/2
≤ E

[∣∣∣∣∣∣∣∣∣M(3)
p,a

∣∣∣∣∣∣∣∣∣2
2

]1/2
and E

[∣∣∣∣∣∣∣∣∣N(4)
q,b

∣∣∣∣∣∣∣∣∣2
2

]1/2
≤ E

[∣∣∣∣∣∣∣∣∣N(3)
q,b

∣∣∣∣∣∣∣∣∣2
2

]1/2
.

3.

E
[
Tr ζ

(
M(4)

)]
≤ E

[
Tr ζ

(
M(3)

)]
+ δ and E

[
Tr ζ

(
N(4)

)]
≤ E

[
Tr ζ

(
N(3)

)]
+ δ.

4. For all a, b, r:∣∣∣E[Tr
[(

M(4)
a ⊗N(4)

b ⊗ R̃r
) (
ϕin ⊗ ψ⊗h

)]]
−E

[
Tr
[(

M(3)
a ⊗N(3)

b ⊗ R̃r
) (
ϕin ⊗ ψ⊗h

)]]∣∣∣ ≤ δ.

5. M(4)
0 = 1ShP/

√
a and N(4)

0 = 1ThQ/
√

b.

Here d2 = O
(

a2b2pq
δ(1−ρ)

)
.

Multilinearization
Suppose that

M(4)
p,a =

∑
s∈[s2]h

≥0

m(4)
s,p,a (x)Ss and N(4)

q,b =
∑

t∈[t2]h
≥0

n
(4)
t,q,b (y) Tt.

To get multilinear approximations of the Fourier coefficients of M(4) and N(4), we obtain
multilinear random operators

(
M(5),N(5)) such that the following holds:

ICALP 2023

97:16 Decidability of Fully Quantum Games with Noisy MESs

1. For all a, b, p, q, M(5)
p,a and N(5)

q,b are degree-d2 multilinear random operators.
2. Suppose that

M(5)
p,a =

∑
s∈[s2]h

≥0

m(5)
s,p,a (x)Ss and N(5)

q,b =
∑

t∈[t2]h
≥0

n
(5)
t,q,b (y) Tt,

where (x,y) ∼ G⊗n0·n1
ρ . For all (i, j) ∈ [n0]× [n1], a, b, p, q, s, t,

Inf(i−1)n1+j

(
m(5)
s,p,a

)
≤ θ·Infi

(
m(4)
s,p,a

)
and Inf(i−1)n1+j

(
n

(5)
t,q,b

)
≤ θ·Infi

(
n

(4)
t,q,b

)
.

3. For all a, b:

E
[∣∣∣∣∣∣∣∣∣M(5)

a

∣∣∣∣∣∣∣∣∣2
2

]
≤ E

[∣∣∣∣∣∣∣∣∣M(4)
a

∣∣∣∣∣∣∣∣∣2
2

]
and E

[∣∣∣∣∣∣∣∣∣N(5)
b

∣∣∣∣∣∣∣∣∣2
2

]
≤ E

[∣∣∣∣∣∣∣∣∣N(4)
b

∣∣∣∣∣∣∣∣∣2
2

]
.

4.

1
sh
∣∣∣E[Tr ζ

(
M(5)

)]
− E

[
Tr ζ

(
M(4)

)]∣∣∣ ≤ δ
and

1
th
∣∣∣E[Tr ζ

(
N(5)

)]
− E

[
Tr ζ

(
N(4)

)]∣∣∣ ≤ δ.
5. For all a, b, r:

∣∣∣E[Tr
[(

M(5)
a ⊗N(5)

b ⊗ R̃r
) (
ϕin ⊗ ψ⊗h

)]]
−E

[
Tr
[(

M(4)
a ⊗N(4)

b ⊗ R̃r
) (
ϕin ⊗ ψ⊗h

)]]∣∣∣ ≤ δ.

6. M(5)
0 = 1ShP/

√
a and N(5)

0 = 1ThQ/
√

b.

Here n1 = O
(

a4b4p2q2d2
2

θ2

)
.

Invariance to operators
Applying item 2 above, Fact 4 and Fact 14, we have∑

s,p,a

Infi
(
m(5)
s,p,a

)
≤ θ · p · a · E

[∣∣∣∣∣∣∣∣∣M(4)
∣∣∣∣∣∣∣∣∣2

2

]
.

Similarly, we have∑
t,q,b

Infi
(
n

(5)
t,q,b

)
≤ θ · q · b · E

[∣∣∣∣∣∣∣∣∣N(4)
∣∣∣∣∣∣∣∣∣2

2

]
.

Let

θ0 = max
{
θE
[∣∣∣∣∣∣∣∣∣M(4)

∣∣∣∣∣∣∣∣∣2
2

]
, θE

[∣∣∣∣∣∣∣∣∣N(4)
∣∣∣∣∣∣∣∣∣2

2

]}
.

Substituting the Gaussian variables in
(
M(5),N(5)) with matrix basis elements to get(

M (6), N (6)) satisfying that:

M. Qin and P. Yao 97:17

1. For all a, b, p, q:∣∣∣∣∣∣∣∣∣M (6)
p,a

∣∣∣∣∣∣∣∣∣
2

= E
[∣∣∣∣∣∣∣∣∣M(5)

p,a

∣∣∣∣∣∣∣∣∣2
2

]1/2
and

∣∣∣∣∣∣∣∣∣N (6)
q,b

∣∣∣∣∣∣∣∣∣
2

= E
[∣∣∣∣∣∣∣∣∣N(5)

q,b

∣∣∣∣∣∣∣∣∣2
2

]1/2
.

2. For all a, b, r:

Tr
[(
M (6)
a ⊗N (6)

b ⊗ R̃r
) (
ϕin ⊗ ψ⊗n0n1+h)]

= E
[
Tr
[(

M(5)
a ⊗N(5)

b ⊗ R̃r
) (
ϕin ⊗ ψ⊗h

)]]
.

3. ∣∣∣∣ 1
sn0n1+hTr ζ

(
M (6)

)
− 1

sh E
[
Tr ζ

(
M(5)

)]∣∣∣∣ ≤ O(p10/3a4
(

3d2sd2/2
√
θ0d2

)2/3
)

and∣∣∣∣ 1
tn0n1+hTr ζ

(
N (6)

)
− 1

th E
[
Tr ζ

(
N(5)

)]∣∣∣∣ ≤ O(q10/3b4
(

3d2td2/2
√
θ0d2

)2/3
)
.

4. M
(6)
0 = 1Sn0n1+hP/

√
a and N

(6)
0 = 1Tn0n1+hQ/

√
b.

Rounding
At last, we round M (6) and N (6) to the Choi representations of the adjoints of some
quantum operations, M̃ and Ñ , satisfying

∑
a

∣∣∣∣∣∣∣∣∣M (6)
a − M̃a

∣∣∣∣∣∣∣∣∣2
2

= a ·
∣∣∣∣∣∣∣∣∣M (6) − M̃

∣∣∣∣∣∣∣∣∣2
2
≤ O

((
a7

psD Tr ζ
(
M (6)

))1/2)
, (9)

∑
b

∣∣∣∣∣∣∣∣∣N (6)
b − Ñb

∣∣∣∣∣∣∣∣∣2
2

= b ·
∣∣∣∣∣∣∣∣∣N (6) − Ñ

∣∣∣∣∣∣∣∣∣2
2
≤ O

((
b7

qtD Tr ζ
(
N (6)

))1/2)
. (10)

Let D = h+ n0n1. Then∣∣∣Tr
[(
M (6)
a ⊗N (6)

b ⊗ R̃r − M̃a ⊗ Ñb ⊗ R̃r
) (
ϕin ⊗ ψ⊗D

)]∣∣∣
≤
∣∣∣Tr
[(
M (6)
a ⊗

(
N

(6)
b − Ñb

)
⊗ R̃r

) (
ϕin ⊗ ψ⊗D

)]∣∣∣
+
∣∣∣Tr
[((

M (6)
a − M̃a

)
⊗ Ñb ⊗ R̃r

) (
ϕin ⊗ ψ⊗D

)]∣∣∣
≤ (pq)1/2

(∣∣∣∣∣∣∣∣∣M (6)
a

∣∣∣∣∣∣∣∣∣
2

∣∣∣∣∣∣∣∣∣N (6)
b − Ñb

∣∣∣∣∣∣∣∣∣
2

+
∣∣∣∣∣∣∣∣∣M (6)

a − M̃a

∣∣∣∣∣∣∣∣∣
2

∣∣∣∣∣∣∣∣∣Ñb∣∣∣∣∣∣∣∣∣
2

)
≤ (pq)1/2

∣∣∣∣∣∣∣∣∣M (6)
a

∣∣∣∣∣∣∣∣∣
2

(∑
b

∣∣∣∣∣∣∣∣∣N (6)
b − Ñb

∣∣∣∣∣∣∣∣∣2
2

)1/2

+
(∑

a

∣∣∣∣∣∣∣∣∣M (6)
a − M̃a

∣∣∣∣∣∣∣∣∣2
2

)1/2 ∣∣∣∣∣∣∣∣∣Ñb∣∣∣∣∣∣∣∣∣
2


(⋆)
≤
∣∣∣∣∣∣∣∣∣M (6)

a

∣∣∣∣∣∣∣∣∣
2
O

((
b7p2q

tD Tr ζ
(
N (6)

))1/4)

+
∣∣∣∣∣∣∣∣∣Ñb∣∣∣∣∣∣∣∣∣

2
O

((
a7pq2

sD Tr ζ
(
M (6)

))1/4)
,

where (⋆) is by Equation (9) and Equation (10).

ICALP 2023

97:18 Decidability of Fully Quantum Games with Noisy MESs

Smoothing

ϵ Regularization

δ, θ in Equation (11)
Given a, b, p, q,

r, s, t, ρ

Dimension reduction D = h + n0 · n1

Smoothing random operators

Multilinearization

determines

δ←δ

θ←θ

δ←δ/4(abpqr)2

δ←δ

δ←θ

d←d1=O
(

a2b2pq
δ(1−ρ)

)
h≤d1(a+b)/θ

n0=O

(
(abr)12(pq)20d

O(d1)
1

δ6

)

d←d2=O
(

a2b2pq
δ(1−ρ)

)
n1=O

(
a4b4p2q2d2

2
θ2

)

d←d1

Figure 1 Dependency of parameters in the proof of Theorem 16.

Keeping track of the parameters in the construction, we are able to upper bound
Tr ζ

(
M (6)) /sD and Tr ζ

(
N (6)) /tD. Finally, by the triangle inequality we are able to

upper bound∣∣∣Tr
[(

Φ∗Alice

(
Ãa
)
⊗ Φ∗Bob

(
B̃b
)
⊗Rr

) (
ϕin ⊗ ψ⊗n

)]
− Tr

[(
M̃a ⊗ Ñb ⊗Rr

) (
ϕin ⊗ ψ⊗D

)]∣∣∣
The dependency of the parameters is pictorially described in Figure 1.

We define ΨAlice ∈ L
(
A, SDP

)
, ΨBob ∈ L

(
B,TDQ

)
as follows:

ΨAlice (X) = TrA
(
M̃
(
1SDP ⊗X†

))
, ΨBob (Y) = TrB

(
Ñ
(
1TDQ ⊗ Y †

))
,

just as Equation (5). Let Φ̃Alice = Ψ∗Alice and Φ̃Bob = Ψ∗Bob. Then by Fact 2, Φ̃Alice and Φ̃Bob
are quantum operations. Furthermore,

Tr
[((

Φ̃Alice

)∗ (
Ãa
)
⊗
(

Φ̃Bob

)∗ (
B̃b
)
⊗ R̃r

) (
ϕin ⊗ ψ⊗D

)]
= Tr

[(
M̃a ⊗ Ñb ⊗ R̃r

) (
ϕin ⊗ ψ⊗D

)]
.

Choosing

δ = O(ϵ), θ = ϵ12

exp
(

a2b2pq log s log t
ϵ(1−ρ)

) , (11)

we finally conclude the result. ◀

References
1 Salman Beigi. A new quantum data processing inequality. Journal of Mathematical Physics,

54(8):082202, 2013. doi:10.1063/1.4818985.
2 Cyril Branciard, Denis Rosset, Yeong-Cherng Liang, and Nicolas Gisin. Measurement-device-

independent entanglement witnesses for all entangled quantum states. Phys. Rev. Lett.,
110:060405, February 2013. doi:10.1103/PhysRevLett.110.060405.

https://doi.org/10.1063/1.4818985
https://doi.org/10.1103/PhysRevLett.110.060405

M. Qin and P. Yao 97:19

3 Francesco Buscemi. All entangled quantum states are nonlocal. Phys. Rev. Lett., 108:200401,
May 2012. doi:10.1103/PhysRevLett.108.200401.

4 Eric G. Cavalcanti, Michael J. W. Hall, and Howard M. Wiseman. Entanglement verification
and steering when alice and bob cannot be trusted. Phys. Rev. A, 87:032306, March 2013.
doi:10.1103/PhysRevA.87.032306.

5 Kai-Min Chung, Xiaodi Wu, and Henry Yuen. Parallel Repetition for Entangled k-player Games
via Fast Quantum Search. In David Zuckerman, editor, 30th Conference on Computational
Complexity (CCC 2015), volume 33 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 512–536, Dagstuhl, Germany, 2015. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.
doi:10.4230/LIPIcs.CCC.2015.512.

6 Richard Cleve, Peter Hoyer, Benjamin Toner, and John Watrous. Consequences and limits of
nonlocal strategies. In Proceedings of the 19th IEEE Annual Conference on Computational
Complexity, CCC ’04, pages 236–249, Washington, DC, USA, 2004. IEEE Computer Society.
doi:10.1109/CCC.2004.9.

7 Anindya De, Elchanan Mossel, and Joe Neeman. Non interactive simulation of correlated
distributions is decidable. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA ’18, pages 2728–2746, Philadelphia, PA, USA, 2018. Society for
Industrial and Applied Mathematics. URL: http://dl.acm.org/citation.cfm?id=3174304.
3175478.

8 Payam Delgosha and Salman Beigi. Impossibility of local state transformation via hyper-
contractivity. Communications in Mathematical Physics, 332(1):449–476, November 2014.
doi:10.1007/s00220-014-2105-y.

9 Joseph Fitzsimons, Zhengfeng Ji, Thomas Vidick, and Henry Yuen. Quantum proof systems
for iterated exponential time, and beyond. In Proceedings of the 51st Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2019, New York, NY, USA, 2019. ACM.

10 Joseph Fitzsimons and Thomas Vidick. A multiprover interactive proof system for the local
hamiltonian problem. In Proceedings of the 2015 Conference on Innovations in Theoretical
Computer Science, ITCS ’15, pages 103–112, New York, NY, USA, 2015. Association for
Computing Machinery. doi:10.1145/2688073.2688094.

11 Badih Ghazi, Pritish Kamath, and Prasad Raghavendra. Dimension reduction for polynomials
over gaussian space and applications. In Proceedings of the 33rd Computational Complexity
Conference, CCC ’18, pages 28:1–28:37, Germany, 2018. Schloss Dagstuhl–Leibniz-Zentrum
fuer Informatik. doi:10.4230/LIPIcs.CCC.2018.28.

12 Badih Ghazi, Pritish Kamath, and Madhu Sudan. Decidability of non-interactive simulation
of joint distributions. In 2016 IEEE 57th Annual Symposium on Foundations of Computer
Science (FOCS), pages 545–554, Los Alamitos, CA, USA, October 2016. IEEE Computer
Society. doi:10.1109/FOCS.2016.65.

13 Aram W. Harrow, Ashley Montanaro, and Anthony J. Short. Limitations on quantum
dimensionality reduction. In Luca Aceto, Monika Henzinger, and Jiří Sgall, editors, Automata,
Languages and Programming, pages 86–97, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

14 Tsuyoshi Ito and Thomas Vidick. A multi-prover interactive proof for NEXP sound against
entangled provers. In Proceedings of the 2012 IEEE 53rd Annual Symposium on Foundations
of Computer Science, FOCS ’12, pages 243–252, Washington, DC, USA, 2012. IEEE Computer
Society. doi:10.1109/FOCS.2012.11.

15 Zhengfeng Ji. Classical verification of quantum proofs. In Proceedings of the Forty-eighth
Annual ACM Symposium on Theory of Computing, STOC ’16, pages 885–898, New York, NY,
USA, 2016. ACM. doi:10.1145/2897518.2897634.

16 Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, and Henry Yuen. MIP∗ = RE.
arXiv preprint, 2020. arXiv:2001.04383.

17 Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, and Henry Yuen. Quantum
soundness of the classical low individual degree test. arXiv preprint, 2020. arXiv:2009.12982.

ICALP 2023

https://doi.org/10.1103/PhysRevLett.108.200401
https://doi.org/10.1103/PhysRevA.87.032306
https://doi.org/10.4230/LIPIcs.CCC.2015.512
https://doi.org/10.1109/CCC.2004.9
http://dl.acm.org/citation.cfm?id=3174304.3175478
http://dl.acm.org/citation.cfm?id=3174304.3175478
https://doi.org/10.1007/s00220-014-2105-y
https://doi.org/10.1145/2688073.2688094
https://doi.org/10.4230/LIPIcs.CCC.2018.28
https://doi.org/10.1109/FOCS.2016.65
https://doi.org/10.1109/FOCS.2012.11
https://doi.org/10.1145/2897518.2897634
https://arxiv.org/abs/2001.04383
https://arxiv.org/abs/2009.12982

97:20 Decidability of Fully Quantum Games with Noisy MESs

18 Nathaniel Johnston, Rajat Mittal, Vincent Russo, and John Watrous. Extended non-
local games and monogamy-of-entanglement games. Proceedings of the Royal Society A:
Mathematical, Physical and Engineering Sciences, 472(2189):20160003, May 2016. doi:
10.1098/rspa.2016.0003.

19 S. Kamath and V. Anantharam. On non-interactive simulation of joint distributions. IEEE
Transactions on Information Theory, 62(6):3419–3435, June 2016. doi:10.1109/TIT.2016.
2553672.

20 J. Kempe, O. Regev, and B. Toner. Unique games with entangled provers are easy. SIAM
Journal on Computing, 39(7):3207–3229, 2010. doi:10.1137/090772885.

21 Julia Kempe, Hirotada Kobayashi, Keiji Matsumoto, Ben Toner, and Thomas Vidick. Entangled
games are hard to approximate. In Proceedings of the 2008 49th Annual IEEE Symposium on
Foundations of Computer Science, FOCS ’08, pages 447–456, Washington, DC, USA, 2008.
IEEE Computer Society. doi:10.1109/FOCS.2008.8.

22 Debbie Leung, Ben Toner, and John Watrous. Coherent state exchange in multi-prover quantum
interactive proof systems. Chicago Journal of Theoretical Computer Science, 2013(11), August
2013.

23 Elchanan Mossel, Ryan O’Donnell, and Krzysztof Oleszkiewicz. Noise stability of functions
with low influences: Invariance and optimality. Annals of Mathematics, 171:295–341, March
2010.

24 A. Natarajan and J. Wright. NEEXP is contained in MIP. In 2019 IEEE 60th Annual
Symposium on Foundations of Computer Science (FOCS), pages 510–518, Los Alamitos, CA,
USA, November 2019. IEEE Computer Society. doi:10.1109/FOCS.2019.00039.

25 Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, Cambridge, UK,
2013.

26 Minglong Qin and Penghui Yao. Nonlocal games with noisy maximally entangled states are
decidable. SIAM Journal on Computing, 50(6):1800–1891, 2021.

27 Oded Regev and Thomas Vidick. Quantum XOR games. ACM Trans. Comput. Theory, 7(4),
August 2015. doi:10.1145/2799560.

28 C. J. Stark and A. W. Harrow. Compressibility of positive semidefinite factorizations and
quantum models. IEEE Transactions on Information Theory, 62(5):2867–2880, 2016. doi:
10.1109/TIT.2016.2538278.

29 John Watrous. Theory of Quantum Information. Cambridge University Press, Cambridge,
UK, 2018.

https://doi.org/10.1098/rspa.2016.0003
https://doi.org/10.1098/rspa.2016.0003
https://doi.org/10.1109/TIT.2016.2553672
https://doi.org/10.1109/TIT.2016.2553672
https://doi.org/10.1137/090772885
https://doi.org/10.1109/FOCS.2008.8
https://doi.org/10.1109/FOCS.2019.00039
https://doi.org/10.1145/2799560
https://doi.org/10.1109/TIT.2016.2538278
https://doi.org/10.1109/TIT.2016.2538278

Scheduling Under Non-Uniform Job and Machine
Delays
Rajmohan Rajaraman #

Northeastern University, Boston, MA, USA

David Stalfa #

Northeastern University, Boston, MA, USA

Sheng Yang #

Shanghai, CN

Abstract
We study the problem of scheduling precedence-constrained jobs on heterogenous machines in the
presence of non-uniform job and machine communication delays. We are given a set of n unit size
precedence-ordered jobs, and a set of m related machines each with size mi (machine i can execute
at most mi jobs at any time). Each machine i has an associated in-delay ρin

i and out-delay ρout
i .

Each job v also has an associated in-delay ρin
v and out-delay ρout

v . In a schedule, job v may be
executed on machine i at time t if each predecessor u of v is completed on i before time t or on any
machine j before time t − (ρin

i + ρout
j + ρout

u + ρin
v). The objective is to construct a schedule that

minimizes makespan, which is the maximum completion time over all jobs.
We consider schedules which allow duplication of jobs as well as schedules which do not.

When duplication is allowed, we provide an asymptotic polylog(n)-approximation algorithm. This
approximation is further improved in the setting with uniform machine speeds and sizes. Our best
approximation for non-uniform delays is provided for the setting with uniform speeds, uniform
sizes, and no job delays. For schedules with no duplication, we obtain an asymptotic polylog(n)-
approximation for the above model, and a true polylog(n)-approximation for symmetric machine and
job delays. These results represent the first polylogarithmic approximation algorithms for scheduling
with non-uniform communication delays.

Finally, we consider a more general model, where the delay can be an arbitrary function of the job
and the machine executing it: job v can be executed on machine i at time t if all of v’s predecessors
are executed on i by time t − 1 or on any machine by time t − ρv,i. We present an approximation-
preserving reduction from the Unique Machines Precedence-constrained Scheduling (umps) problem,
first defined in [15], to this job-machine delay model. The reduction entails logarithmic hardness for
this delay setting, as well as polynomial hardness if the conjectured hardness of umps holds.

This set of results is among the first steps toward cataloging the rich landscape of problems in
non-uniform delay scheduling.

2012 ACM Subject Classification Theory of computation → Scheduling algorithms

Keywords and phrases Scheduling, Approximation Algorithms, Precedence Constraints, Communic-
ation Delay, Non-Uniform Delays

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.98

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2207.13121 [42]

Funding Rajmohan Rajaraman: Partially supported by NSF grant CCF-1909363.
David Stalfa: Partially supported by NSF grant CCF-1909363.
Sheng Yang: Work done when the author was at Northwestern University, supported by Samir
Khuller’s funding.

EA
T
C
S

© Rajmohan Rajaraman, David Stalfa, and Sheng Yang;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 98; pp. 98:1–98:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:r.rajaraman@northeastern.edu
mailto:stalfa.d@northeastern.edu
mailto:styang@fastmail.com
https://doi.org/10.4230/LIPIcs.ICALP.2023.98
https://arxiv.org/abs/2207.13121
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

98:2 Scheduling Under Non-Uniform Job and Machine Delays

1 Introduction

With the increasing scale and complexity of scientific and data-intensive computations,
it is often necessary to process workloads with many dependent jobs on a network of
heterogeneous computing devices with varying computing capabilities and communication
delays. For instance, the training and evaluation of neural network models, which involves
iterations of precedence constrained jobs, is often distributed over diverse devices such
as CPUs, GPUs, or other specialized hardware. This process, commonly referred to as
device placement, has gained significant interest [18, 21, 32, 33]. Similarly, many scientific
workflows are best modeled precedence constrained jobs, and the underlying high-performance
computing system as a heterogeneous networked distributed system with communication
delays [3, 44,49].

Optimization problems associated with scheduling under communication delays have been
studied extensively, but provably good approximation bounds are few and several challenging
open problems remain [1, 4, 14, 23, 26, 34, 35, 37, 39, 40, 43]. With a communication delay,
scheduling a set of precedence constrained uniform size jobs on identical machines is already
NP-hard [40,43], and several inapproximability results are known [4,23]. However, the field is
still underexplored and scheduling under communication delay was listed as one of the top ten
open problems in scheduling surveys [5,45]. While there has been progress on polylogarthmic-
approximation algorithms for the case of uniform communication delays [16, 26, 29, 31], little
is known for more general delay models.

This paper considers the problem of scheduling precedence-constrained jobs on machines
connected by a network with non-uniform communication delays. In general, the delay
incurred in communication between two machines could vary with the machines as well as
with the data being communicated, which in turn may depend on the jobs being excuted
on the machines. For many applications, however, simpler models suffice. For instance, the
machine delays model, where the communication between two machines incurs a delay given
by the sum of latencies associated with the two machines, is suitable when the bottleneck is
primarily at the machine interfaces. On the other hand, job delays model scenarios where the
delay incurred in the communication between two jobs running on two different machines is a
function primarily of the two jobs. This is suitable when the communication is data-intensive.
Recent work in [15] presents a hardness result for a model in which jobs are given as a DAG
and any edge of the DAG separating two jobs running on different machines causes a delay,
providing preliminary evidence that obtaining sub-polynomial approximation factors for
this model may be intractable. Given polylogarithmic approximations for uniform delays, a
natural question is which, if any, non-uniform delay models are tractable.

1.1 Overview of our results
A central contribution of this paper is to explore and catalog a rich landscape of problems
in non-uniform delay scheduling. We present polylogarithmic approximation algorithms
for several models with non-uniform delays, and a hardness result in the mold of [15] for a
different non-uniform delay model. Figure 2 organizes various models in this space, with
pointers to results in this paper and relevant previous work.

ρouti ρinji j

Figure 1 Communicating a result from i to j takes ρout
i + ρin

j time.

R. Rajaraman, D. Stalfa, and S. Yang 98:3

General Delays
Delays can depend on features of machines, features of jobs, or features of the schedule

Job-Job
For u ≺ v, delay from u to v on a
different machine is a function of

(u, v) [15]

Machine-Machine
Delay from machine i to j is a

function of (i, j)

General Metric
Delay from i to j is given by a

metric over the machines

Job Delays & Machine Delays
For u ≺ v, delay from u on j to v on i is

ρoutu + ρoutj + ρinv + ρini
Theorems 1, 2

Machine Delays
The delay from machine i to

machine j is ρouti + ρinj
Corollary 1.1

Uniform Delay
Fixed delay ρ
[16,26,29,31]

Layered DAG Edge Delays
Jobs given as a layered DAG. For

any edge u→ v, delay from u to v
on a different machine is ρ

Job-Machine
Delay from any predecessor on a different

machine to v on i is a function of (i, v)
Theorem 4

Job Delays
For u ≺ v, delay from u to v on a

different machine is ρoutu + ρinv
Lemma 2.11

Job Delays & Symmetric Machine Delays
For u ≺ v, delay from u on j to v on i is

ρoutu + ρj + ρinv + ρi
Theorem 3

Figure 2 Selection of scheduling models with communication delays. a −� b indicates that a is a
special case of b. We present approximation algorithms for models with machine delays and job
delays, and a hardness of approximation result for the job-machine delays model. Theorems and
citations point to results in this paper and in previous work, respectively. Those problems backed in
gray are ones for which approximation algorithms are known. Those in the gray box are ones for
which hardness results have been proven.

Machine delays and job delays (Section 2). We begin with a natural model where the
delay incurred in communication from one machine to another is the sum of delays at the two
endpoints. Under machine delays, each machine i has an in-delay ρin

i and out-delay ρout
i , and

the time taken to communicate a result from i to j is ρout
i + ρin

j . This model, illustrated in
Figure 1, is especially suitable for environments where data exchange between jobs occurs via
the cloud, an increasingly common mode of operation in modern distributed systems [28,30,50];
ρin

i and ρout
i represent the cloud download and upload latencies, respectively, for machine i.

The machine delays model does not account for heterogeneity among jobs, where different
jobs may be producing or consuming different amounts of data, which may impact the delay
between the processing of one job and that of another dependent job on a different machine.
To model this, we allow each job u to have an in-delay ρin

u and an out-delay ρout
u .

▶ Definition 1 (Scheduling under Machine Delays and Job Delays). We are given as input a
set of n precedence ordered jobs and a set of m machines. For any jobs u and v with u ≺ v,
machine i, and time t, u is available to v on i at time t if u is completed on i before time t

or on any machine j before time t− (ρout
j + ρout

u + ρin
i + ρin

v). (This model is illustrated in
Figure 3.) If job v is scheduled at time t on machine i, then all of its predecessors must be
available to v on i at time t. We define ρmax = maxx∈V ∪M{ρin

x + ρout
x }. The objective is to

construct a schedule that minimizes makespan.

Remark. In our model of Definition 1, communication delay is defined over all pairs of
precedence ordered jobs. An alternate model defines communication delay only over those
pairs that are adjacent in the job DAG. The two settings differ in general but are equivalent

ICALP 2023

98:4 Scheduling Under Non-Uniform Job and Machine Delays

time to
postprocess u

vi

time to upload a
result from j

time to download a
result to i

time to
preprocess v

ρoutu ρoutj ρini ρinv

uj

Figure 3 Communicating the result of job u on machine j to execute job v on machine i.

in many scenarios, for instance, when the delays are given by an underlying metric space
over the machines, or when communication delays are uniform. The models are equivalent
if all delays are machine delays, so our machine delay results hold in the alternate model.
The models differ in the presence of general job delays but are equivalent in several special
cases, for instance in the setting where the job DAG is transitively closed, which has been
extensively studied and proved useful in several important applications [2,19,46]. Transitively
closed DAGs capture scenarios where each job may be generating data used by upstream
jobs, and an upstream job may need to check the results of any of its predecessors. Examples
of such graphs arising in scheduling include interval orders [38], as well as Solution Order
Graphs in the context of SAT solvers [8].

We present the first approximation algorithms for scheduling under non-uniform commu-
nication delays. In the presence of delays, a natural approach to hide latency and reduce
makespan is to duplicate some jobs (for instance, a job that is a predecessor of many other
jobs) [1,39]. We consider both schedules that allow duplication (which we assume by default)
and those that do not. Our first result is a polylogarithmic asymptotic approximation for
scheduling under machine and job delays when duplication is allowed.

▶ Theorem 1. There exists a polynomial time algorithm for scheduling unit length,
precedence constrained jobs with duplication under machine and job delays, that produces
a schedule with makespan O((log9 n)(opt + ρmax)).

We emphasize that if the makespan of any schedule includes the delays incurred in distributing
the problem instance and collecting the output of the jobs, then the algorithm of Theorem 1
is, in fact, a true polylogarithmic approximation for makespan. (From a practical standpoint,
in order to account for the time incurred to distribute the jobs and collect the results, it
is natural to include in the makespan the in- and out-delays of every machine used in the
schedule.)

We note that when delays are uniform and duplication is not allowed, it is easy to check
if opt < ρ since any connected component of the job DAG must be placed on the same
machine. This is demonstrated in our true approximation without duplication in Theorem 3.
In the presence of duplication, the problem is closely related to the Min k-Union problem,
for which conditional hardness proofs are known [12]. This motivates the additive ρmax in
our approximation guarantee.

Related machines and multiprocessors. Theorem 1 is based on a new linear programming
framework for addressing non-uniform job and machine delays. We demonstrate the power
and flexibility of this approach by incorporating two more aspects of heterogeneity: speed
and number of processors. Each machine i has a number mi of processors and a speed si

at which each processor processes jobs. We generalize Theorem 1 to obtain the following
result.

R. Rajaraman, D. Stalfa, and S. Yang 98:5

▶ Theorem 2. There exists a polynomial time algorithm for scheduling unit length,
precedence constrained jobs with duplication on related multiprocessor machines under
machine and job delays, that yields a schedule with makespan polylog(n)(opt + ρmax)).

The exact approximation factor obtained depends on the non-uniformity of the particular
model. For the most general model we consider in Theorem 2, our proof achieves a O(log15 n)
bound. We obtain improved bounds when any of the three defining parameters – size, speed,
and delay – are uniform. For instance, we obtain an approximation factor of O(log5 n)
for scheduling uniform speed and uniform size machines under machine delays alone, i.e.,
when there are no job delays (Corollary 12 of Section 2). Further, with only job delays and
uniform machine delays, we provide a combinatorial asymptotic O(log6 n) approximation
(Lemma 15 of Section 2) which is improved to an asymptotic O(log n) approximation if the
input contains no out-delays. We note that despite some uniformity, special cases can model
certain two-level non-uniform network hierarchies with processors at the leaves, low delays
at the first level, and high delays at the second level.

No-duplication schedules. We next consider the problem of designing schedules that do not
allow duplication. We obtain a polylogarithmic asymptotic approximation via a reduction
to scheduling with duplication. Furthermore, if the delays are symmetric (i.e., ρout

i = ρin
i

for all i, and ρout
v = ρin

v for all v) we are able to find a true polylogarithmic-approximate
no-duplication schedule. To achieve this result, we present an approximation algorithm to
estimate if the makespan of an optimal no-duplication schedule is at least the delay of any
given machine; this enables us to identify machines that cannot communicate in the desired
schedule.1

▶ Theorem 3. There exists a polynomial time algorithm for scheduling unit length,
precedence constrained jobs on related multiprocessor machines under machine
delays and job delays, which produces a no-duplication schedule with makespan
polylog(n)(opt + ρmax). If ρin

i = ρout
i for all i, then there exists a polynomial time

polylog(n)-approximation algorithm for no-duplication schedules.

Pairwise delays. All of the preceding results concern models where the communication
associated with a precedence relation u ≺ v when u and v are executed on different machines
i and j is an additive combination of delays at u, v, i, and j. Additive delays are suitable
for capturing independent latencies incurred by various components of the system. A more
general class of models considers pairwise delays where the delay is an arbitrary function
of i and j (machine-machine), u and v (job-job), or either job and the machine on which
it executes (job-machine). The machine-machine delay model captures classic networking
scenarios, where the delay across machines is determined by the network links connecting
them. Job-job delays model applications where the data that needs to be communicated
from one job to another descendant job depends arbitrarily on the two jobs. The job-machine
model is well-suited for applications where the delay incurred for communicating the data
consumed or produced by a job executing on a machine is an arbitrary function of the size of

1 We note that the corresponding problem for duplication schedules is a min-max partitioning variant of
the Minimum k-Union problem and related to the Min-Max Hypergraph k-Partitioning problem, both
of which have been shown to be Densest-k-Subgraph-hard [9, 11]; this might suggest a similar hardness
result for deriving a true approximation when duplication is allowed.

ICALP 2023

98:6 Scheduling Under Non-Uniform Job and Machine Delays

the data and the bandwidth of the machine. Recent work in [15] shows that scheduling under
job-job delays is as hard as the Unique Machine Precedence Scheduling (UMPS) problem,
providing preliminary evidence that obtaining sub-polynomial approximation factors may
be intractable. We show that UMPS also reduces to scheduling under job-machine delays,
suggesting a similar inapproximability for this model.

▶ Theorem 4 (umps reduces to scheduling under job-machine delays). There is
a polynomial-time approximation-preserving reduction from umps to the scheduling
precedence constrained jobs under job-machine delays.

1.2 Overview of our techniques
Our approximation algorithms for scheduling under job delays and machine delays (The-
orem 1 proved in Section 2) and the generalization to related machines and multiprocessors
(Theorem 2 proved in [42]) rely on a framework composed of a carefully crafted linear
programming relaxation and a series of reductions that help successively reduce the level of
heterogeneity in the problem. While each individual component of the framework refines
established techniques or builds on prior work, taken together they offer a flexible recipe for
designing approximation algorithms for scheduling precedence-ordered jobs on a distributed
system of heterogeneous machines with non-uniform delays. Given the hardness conjectures
of [15] for the job-job delay setting (and for the job-machine setting via Theorem 4), we find
it surprising that a fairly general model incorporating both job delays and machine delays
on related machines is tractable.

Previous results on scheduling under (uniform) communication delays are based on three
different approaches: (a) a purely combinatorial algorithm of [26] that works only for uniform
delay machines; (b) an LP-based approach of [31] that handles related machines and uniform
delays, assuming jobs can be duplicated, and then extends to no-duplication via a reduction;
and (c) an approach of [16] based on a Sherali-Adams hierarchy relaxation followed by a
semi-metric clustering, which directly tackles the no-duplication model. At a very high level,
our main challenge, which is not addressed in any of the previous studies, is to tackle the
multi-dimensional heterogeneity of the problem space: in the nature of delays (non-uniform
values, in- and out-delays, job delays, machine delays) as well as the machines (delay, speed,
and size).

We pursue an LP-based framework, which significantly refines the approach of [31]. Their
algorithm organizes the computation in phases, each phase corresponding to a (uniform)
delay period, and develops a linear program that includes delay constraints capturing when
jobs have to be phase-separated and phase constraints bounding the amount of computation
within a phase. In non-uniform delay models, the delay constraints for a job v executing on
a machine i depend not only on the predecessors of v, but also on the machines on which
they may be scheduled. While there is a natural way to account for non-uniform in-delays in
the LP, incorporating out-delays or even symmetric delays poses technical difficulties. We
overcome this hurdle by first showing that out-delays can be eliminated by suitably adjusting
in-delays, at the expense of a polylogarithmic factor in approximation, thus allowing us to
focus on in-delays.

Despite the reduction to in-delays, extending the LP of [31] by replacing the uniform
delay parameter by the non-uniform delay parameters of our models fails and yields a high
integrality gap. This is because their algorithm crucially relies on an ordering of the machines
(on the basis of their speeds), which is exploited both in the LP (in the delay and phase
constraints) as well as how jobs get assigned and moved in the computation of the final

R. Rajaraman, D. Stalfa, and S. Yang 98:7

schedule. Given the multi-dimensional heterogeneity of the problems we study, there is
no such natural ordering of the machines. To address the above hurdle, we organize the
machines and jobs into groups based on their common characteristics (delay, speed, size),
and introduce new variables for assigning jobs to groups without regard to any ordering
among them. This necessitates new load and delay constraints and a change in rounding and
schedule construction. We now elaborate on these ideas, as we discuss our new framework in
more detail.

Reduction to in-delays. The first ingredient of our recipe is an argument that any instance
of the problem with machine delays and job delays can be reduced to an instance in which
all out-delays are 0, meaning that in the new instance delays depend only on the machine
and job receiving the data, at the expense of a polylogarithmic factor in approximation. This
reduction is given in Lemma 37 and Algorithm 2 in [42]. To convert from a given schedule
with out-delays to one without, we subtract ρout

i + ρout
v from the execution time of every job

v on machine i. However, in order to avoid collisions, we expand the given schedule into
phases of different length, organized in particular sequence so that the execution times within
each phase may be reduced without colliding with prior phases. This transforms the schedule
into one where the in-delay of every machine i is ρin

i + ρout
i and every job v is ρin

v + ρout
v .

This transformation comes at a constant factor cost for machine delays and an O(log2 ρmax)
cost for job delays. A similar procedure converts from an in-delay schedule to one with in-
and out-delays, completing the desired reduction.

The linear program (Sections 2.1–2.2). Before setting up the linear program, we partition
the machines and the jobs into groups of uniform machines and jobs, respectively; i.e. each
machine in a group can be treated as having the same in-delay, speed, and size (to within a
constant factor), and each job in a group can be treated as having the same in-delay. The
final approximation factor for the most general model grows as K3 and L, where L is the
number of job groups and K is the number of machine groups, which depends on the extent
of heterogeneity among the machines. We bound K by O(log3 n) in the case when the speeds,
sizes, and delays of machines are non-uniform. We emphasize that, even with the machines
partitioned in this way, we must carefully design our LP to judiciously distribute jobs among
the groups depending on the precedence structure of the jobs and the particular job and
machine parameters.

Our LP is inspired by that of [31], though significant changes are necessary to allow for
non-uniform delays. The key constraints of each LP are presented below (with the constraints
from [31] rewritten to include machine group variables). Here, C∗ represents the makespan
of the schedule and Cv represents the earliest execution time of job v. xv,k indicates if v is
placed on a machine in group ⟨k⟩ (= 1) or not (= 0). zu,v,k indicates whether xv,k = 1 and
Cv − Cu is less the time it takes to communicate the result of u from a different machine.
yv,k takes the maximum of xv,k and maxu{zv,u,k} to indicate whether some copy of v is
executed on a machine in group ⟨k⟩ (= 1) or not (= 0). Other notation used in the linear
program is explained in Section 2.

One main difference between our LP and that of [31] is in the constraint that regulates
the completion time of precedence ordered jobs in the presence of communication delay.

Delay Constraint in [31] New Delay Constraint

Cv ≥ Cu + ρ
(∑

k′≤k

xv,k′ − zu,v,k

)
⇒ Cv ≥ Cu + (ρ̄k + ρ̄ℓ)(xv,k − zu,v,k)

∀u, v, k : u ≺ v ∀u, v, k, ℓ : u ≺ v and v ∈ JℓK

ICALP 2023

98:8 Scheduling Under Non-Uniform Job and Machine Delays

The constraint of [31] states that if u ≺ v and v is executed on a machine in speed group
k, then the completion time of v is at least ρ greater than the completion time of u unless
some duplicate of u is executed on group k. The summation over machine groups orders
the groups by increasing speeds (similar to [13]). It turns out that the rounding technique
which uses this ordering of machine groups, which is used to eliminate a log factor in [13,31],
does not straightforwardly work in our context. The new constraint has an interpretation
similar to that of the delay constraint in [31]: if u ≺ v and v is executed on delay group k,
then the completion time of v is at least the in-delay of k plus the in-delay of v greater than
the completion time of u, unless some duplicate of u is also executed on group k. However,
in the new constraint, the summation over machine groups has been replaced by a single
machine group assignment variable.

The next change to the linear program regards the constraint which governs how many
jobs can be duplicated within a communication phase for a single job.

Phase Constraint in [31] New Phase Constraint

ρ ≥
∑
u≺v

zu,v,k ∀v, k ⇒ (ρ̄k + ρ̄ℓ)
∑

u

zu,v,k ∀v, k, ℓ : v ∈ JℓK

Both the old and new constraints state that the amount of duplication that can be performed
for a single job within a single communication phase on a given group of machines is at most
the length of the phase. The new constraint also incorporates the machine and job in-delays.

The final change is to the constraints which lower bound the makespan of the schedule
by the total load placed on a single machine.

Load Constraint in [31] New Load Constraints

C∗ · |⟨k⟩| ≥
∑

v

xv,k ∀k ⇒ C∗ · |⟨k⟩| ≥
∑

v

yv,k ∀k

yv,k ≥ xv,k ∀v, k

yu,k ≥ zu,v,k ∀u, v, k

Both constraints state that the makespan is at least the total number of jobs placed on any
group divided by the size of the group. The old constraint uses xv,k as the sole indicator
of whether or not a job is placed on machine group k, and does not need to account for
duplicates because of the optimized rounding scheme which utlizes the ordering of job groups
by increasing speed. Because the new constraint cannot rely on this ordering, we use the
y-variables to account for all duplicates as well.

In [31], the ordering of the groups was leveraged to construct the final schedule by always
placing a job on higher capacity groups than the one to which it is assigned by the LP. Since
the LP assigns all jobs to some group, we can infer that the total load over all groups does
not increase by more than a constant factor. With multidimensional heterogenous machines,
there is no clear ordering of machine groups to achieve a similar property (e.g. one set of jobs
may be highly parallelizable, while another requires a single fast machine). Using the new LP,
our solution is to place all jobs on those groups to which the LP assigns them, along with any
predecessors indicated by the z-variables. However, such a construction could vastly exceed
the value of the LP unless the load contributed by the z-variables is counted toward the
LP makespan. To this end, we introduce the y-variables and associated constraints, which
account for this additional, duplicated load. In the most general setting, we also introduce
constraints which govern the amount of duplication possible within a single communication
phase. These additional constrains model an optimal schedule of the duplicated jobs on the
uniform machines within a single group.

R. Rajaraman, D. Stalfa, and S. Yang 98:9

Rounding the LP solution and determining final schedule (Sections 2.3–2.4). The next
component rounds an optimal LP solution to an integer solution by placing each job on the
group for which the job’s LP mass is maximized. We also place duplicate predecessors of
each job v on its group according to the z-variables for v’s predecessors. This indicates a key
difference with [31], where the load contributed by duplicates was handled by the ordering
of the machines. A benefit of our simple rounding is that it accommodates many different
machine and job properties as long as the number of groups can be kept small. Finally, we
construct a schedule using the integer LP solution. This subroutine divides the set of jobs
assigned to each group into phases and constructs a schedule for each phase by invoking a
schedule for the uniform machines case, appending each schedule to the existing schedule for
the entire instance.

No-duplication schedules. The proof of the first part of Theorem 3 extends an asympototic
polylogarithmic approximation to no-duplication schedules for machine delays and job delays.
The theorem follows from the structure of the schedule designed in Theorem 2 and a
general reduction in [31] from duplication to no-duplication schedules in the uniform delay
case. Avoiding the additive delay penalty of the first part of Theorem 3 to achieve a true
approximation is much more difficult. When delays are symmetric (i.e., in-delays equal out-
delays), we can distinguish those machines whose delay is low enough to communicate with
other machines from those machines with high delay. One of the central challenges is then to
distribute jobs among the high-delay machines. We overcome this difficulty by revising the
LP in the framework of Theorem 2 to partition the jobs among low- and high-delay machines,
and rounding the corresponding solutions separately.

We then must distinguish between those jobs with delay low enough to communicate
with other jobs from those with high delay. We note that any predecessor or successor
of a high delay job must be executed on the same machine as that job. We leverage this
fact to construct our schedule, first placing all high delay jobs with their predecessors and
successors on individual machines. We then run our machine and job delay algorithm with
the remaining jobs on the low delay machines. This schedule is placed after the execution
of the downward closed high-delay components, and before the upward closed high-delay
components, ensuring that the schedule is valid.

We note that the design of no-duplication schedules via a reduction to duplication
schedules incurs a loss in approximation factor of an additional polylogarithmic factor. While
this may not be desirable in a practical implementation, our results demonstrate the flexibility
of the approach and highlight its potential for more general delay models.

Hardness for job-machine delay model. The algorithmic framework outlined above incor-
porates non-uniform job and machine delays that combine additively. It is natural to ask if
the techniques extend to other delay combinations or more broadly to pairwise delay models.
In the job-machine delay model we study, when a job u executed on machine i precedes job
v executed on machine j, then a delay ρv,j between the two executions is incurred. Our
reduction from umps to the job-machine delay problem follows the approach of [15] by
introducing new jobs with suitable job-machine delay parameters that essentially force each
job to be executed on a particular machine. This reduction does not require the flexibility of
assigning different delays for different job-job pairs, but it is unclear if the same technique can
be applied to machine-machine delay models. Delineating the boundary between tractable
models and those for which polylogarithmic approximations violate conjectured complexity
lower bounds is a major problem of interest.

ICALP 2023

98:10 Scheduling Under Non-Uniform Job and Machine Delays

1.3 Related work

Precedence constrained scheduling. The problem of scheduling precedence-constrained
jobs was initiated in the classic work of Graham who gave a constant approximation algorithm
for uniform machines [20]. Jaffe presented an O(

√
m) makespan approximation for the case

with related machines [24]. This was improved upon by Chudak and Shmoys who gave an
O(log m) approximation [13], then used the work of Hall, Schulz, Shmoys, and Wein [22] and
Queyranne and Sviridenko [41] to generalize the result to an O(log m) approximation for
weighted completion time. Chekuri and Bender [10] proved the same bound as Chudak and
Shmoys using a combinatorial algorithm. In subsequent work, Li improved the approximation
factor to O(log m/ log log m) [27]. The problem of scheduling precedence-constrained jobs is
hard to approximate even for identical machines, where the constant depends on complexity
assumptions [6, 25, 47]. Also, Bazzi and Norouzi-Fard [7] showed a close connection between
structural hardness for k-partite graph and scheduling with precedence constraints.

Precedence constrained scheduling under communication delays. Scheduling under
communication delays has been studied extensively [39,43,48]. For unit size jobs, identical
machines, and unit delay, a (7/3)-approximation is given in [35], and [23] proves the NP-
hardness of achieving better than a 5/4-approxmation. Other hardness results are given
in [4, 40, 43]. More recently, Davies, Kulkarni, Rothvoss, Tarnawski, and Zhang [16] give an
O(log ρ log m) approximation in the identical machine setting using an LP approach based on
Sherali-Adams hierarchy, which is extended to include related machines in [17]. Concurrently,
Maiti, Rajaraman, Stalfa, Svitkina, and Vijayaraghavan [31] provide a polylogarithmic
approximation for uniform communication delay with related machines as a reduction from
scheduling with duplication. The algorithm of [31] is combinatorial in the case with identical
machines.

Davies, Kulkarni, Rothvoss, Sandeep, Tarnawski, and Zhang [15] consider the problem of
scheduling precedence-constrained jobs on uniform machine in the presence of non-uniform,
job-pairwise communication delays. That is, if u ≺ v and u and v are scheduled on different
machines, then the time between their executions is at least ρu,v. The authors reduce to
this problem from Unique-Machines Precedence-constrained Scheduling (umps) in which
there is no communication delay, but for each job there is some particular machine on which
that job must be placed. The authors show that umps is hard to approximate to within a
logarithmic factor by a reduction from job-shop scheduling, and conjecture that umps is
hard to approximate within a polynomial factor.

Precedence constrained scheduling under communication delays with job duplication. Us-
ing duplication with communication delay first studied by Papadimitriou and Yannakakis [39],
who give a 2-approximation for DAG scheduling with unbounded processors and fixed delay.
Improved bounds for infinite machines are given in [1, 14, 36, 37]. Approximation algorithms
are given by Munier and Hanen [34,35] for special cases in which the fixed delay is very small
or very large, or the DAG restricted to a tree. The first bounds for a bounded number of
machines are given by Lepere and Rapine [26] who prove an asymptotic O(log ρ/ log log ρ)
approximation. Recent work has extended their framework to other settings: [31] uses
duplication to achieve an O(log ρ log m/ log log ρ) approximation for a bounded number of
related machines, and Liu, Purohit, Svitkina, Vee, and Wang [29] improve on the runtime
of [26] to a near linear time algorithm with uniform delay and identical machines.

R. Rajaraman, D. Stalfa, and S. Yang 98:11

1.4 Discussion and open problems

Our results indicate several directions for further work. First, we conjecture that our results
extend easily to the setting with non-uniform job sizes. We believe the only barriers to such
a result are the techinical difficulties of tracking the completion times of very large jobs that
continue executing long after they are placed on a machine. Also, while our approximation
ratios are the first polylogarithmic guarantees for scheduling under non-uniform delays, we
have not attempted to optimize logarithmic factors. There are obvious avenues for small
reductions in our ratio, e.g. the technique used in [26] to reduce the ratio by a factor of
log log ρ. More substantial reduction, however, may require a novel approach. Additionally,
in the setting without duplication, we incur even more logarithmic factors owing to our
reduction to scheduling with duplication. These factors may be reduced by using a more
direct method, possibly extending the LP-hierarchy style approach taken in [16,17].

Aside from improvements to our current results, our techniques suggest possible avenues
to solve related non-uniform delay scheduling problems. A special case of general machine
metrics is a machine hierarchy, where machines are given as leaves in a weighted tree. Our
incorporation of parallel processors allows our results to apply to a two-level machine hierarch.
We would like to explore extensions of our framework to constant-depth hierarchies and
tree metrics. More generally, scheduling under metric and general machine-machine delays
remains wide open (see Figure 2).

We also believe there are useful analogs to these machine delay models in the job-pairwise
regime. A job v with in-delay ρin

v and out-delay ρout
v has the natural interpretation of the

data required to execute a job, and the data produced by a job. A job tree hierarchy
could model the shared libraries required to execute certain jobs: jobs in different subtrees
require different resources to execute, and downloading these additional resources incurs a
delay. Given the hardness conjectures of [15] and our hardness result for the job-machine
delay model, further refining Figure 2 and exploring the tractability boundary would greatly
enhance our understanding of scheduling under non-uniform delays.

Finally, recall that our notion of job delays is defined in terms of the precedence relation
over the jobs. Another natural notion of job delay may be to consider a DAG defined over
the jobs, with a delay incurred only if there is a directed edge u→ v (rather than u ≺ v). In
this setting, while our results do not hold in the presence of general job delays, they do hold
for some significant special cases. These include instances where the job DAG is transitively
closed, or where job delays are uniform, or where job delays of predecessors are at most that
of their successors (i.e. u ≺ v implies ρout

u ≤ ρout
v and ρin

u ≤ ρin
v), or where there are only

machine delays. However, resolving the most general case is an interesting open problem
since this family of delay models provides an intuitive and important set of problems.

2 Machine Delays and Job Delays

In this section, we present an asymptotic approximation algorithm for scheduling under
machine delays and job delays for unit speed and size machines. As discussed in Section 1.2,
we can focus on the setting with no out-delays, at the expense of a polylogarithmic factor
in approximation; Lemma 37 of [42] presents the reduction to in-delays. Therefore, in
this section, we assume that ρout

i = 0 for all machines i and ρout
v = 0 for all jobs v. For

convenience, we use ρi to denote the in-delay ρin
i of machine i and ρv to denote the in-delay

ρin
v of machine v. Let ρmax = max{maxv{ρv}, maxi{ρi}}.

ICALP 2023

98:12 Scheduling Under Non-Uniform Job and Machine Delays

2.1 Partitioning machines and jobs into groups
In order to simplify our exposition and analysis, we introduce a new set of machines M ′ with
rounded delays. For each i ∈M , if 2k−1 ≤ ρi < 2k, we introduce i′ ∈M ′ with ρi′ = 2k. We
then partition M ′ according to machine delays: machine i ∈M ′ is in ⟨k⟩ if ρi = 2k; we set
ρ̄k = 2k. We also introduce a new set of jobs V ′ with rounded delays. For each v ∈ V , if
2ℓ−1 ≤ ρv < 2ℓ, we introduce v′ ∈ V ′ with ρv′ = 2ℓ. We then partition V ′ according to job
delays: job v ∈ V ′ is in JℓK if ρv = 2ℓ = ρ̄ℓ. For the remainder of the section, we work with
the machine set M ′ and the job set V ′, ensuring that all machines or jobs within a group
have identical delays. As shown in the following lemma, this partitioning is at the expense of
at most a constant factor in approximation.

▶ Lemma 2. The optimal makespan over the machine set V ′, M ′ is no more than a factor
of 2 greater than the optimal solution over V, M .

Proof. Consider any schedule σ on the machine set M . We first show that increasing the
delay of each machine by a factor of 2 increases the makespan of the schedule by at most
a factor of 2. We define the schedule σ′ as follows. For every i, t, if (i, t) ∈ σ(v), then
(i, 2t) ∈ σ′(v). It is easy to see that σ′ maintains the precedence ordering of jobs, and that
the time between the executions of any two jobs has been doubled. Therefore, σ′ is a valid
schedule with all communication delays doubled, and with the makespan doubled. ◀

We can assume that maxk{ρ̄k} ≤ n since if we ever needed to communicate to a machine
with delay greater than n we could schedule everything on a single machine in less time.
Therefore, we have K ≤ log n machine groups. Similarly, maxℓ{ρ̄ℓ} ≤ n, implying that we
have L ≤ log n job groups.

2.2 The linear program
In this section, we design a linear program LPα – Equations (1-11) – parametrized by
α ≥ 1, for machine delays. Following Section 2.1, we assume that the machines and jobs are
organized in groups, where each group ⟨k⟩ (resp., JℓK) is composed of machines (resp., jobs)
that have identical delay.

C∗
α ≥ Cv ∀v (1)

C∗
α · |⟨k⟩| ≥

∑
v

yv,k ∀k (2)

Cv ≥ Cu + (ρ̄k + ρ̄ℓ)(xv,k − zu,v,k) ∀u, v, k, ℓ : (3)
u ≺ v, v ∈ JℓK

Cv ≥ Cu + 1 ∀u, v : u ≺ v (4)

α(ρ̄k + ρ̄ℓ) ≥
∑

u

zu,v,k ∀v, k, ℓ : v ∈ JℓK (5)

∑
k

xv,k = 1 ∀v (6)

Cv ≥ 0 ∀v (7)
xv,k ≥ zu,v,k ∀u, v, k (8)
yv,k ≥ xv,k ∀v, k (9)
yu,k ≥ zu,v,k ∀u, v, k (10)
zu,v,k ≥ 0 ∀u, v, k (11)

Variables. C∗
α represents the makespan of the schedule. For each job v, Cv represents the

earliest completion time of v. For each job v and group ⟨k⟩, xv,k indicates whether or not
v is first executed on a machine in group ⟨k⟩. For each ⟨k⟩ and pair of jobs u, v such that
u ≺ v and v ∈ JℓK, zu,v,k indicates whether v is first executed on a machine in group ⟨k⟩ and
the earliest execution of u is less that ρ̄k + ρ̄ℓ time before the execution of v. Intuitively,
zu,v,k indicates whether there must be a copy of u executed on the same machine that first

R. Rajaraman, D. Stalfa, and S. Yang 98:13

executes v. For each job v and group ⟨k⟩, yv,k indicates whether xv,k = 1 or zu,v,k = 1 for
some u; that is, whether or not some copy of v is placed on group ⟨k⟩. Constraints (7 - 11)
guarantee that all variables are non-negative.

Makespan (2, 1). Constraint 1 states that the makespan is at least the maximum completion
time of any job. Constraint 2 states that the makespan is at least the load on any single
group.

Delays (3, 5). Constraint 3 states that the earliest completion time of v ∈ JℓK must be at
least ρ̄k + ρ̄ℓ after the earliest completion time of any predecessor u if v is first executed on a
machine in group ⟨k⟩ and no copy of u is duplicated on the same machine as v. Constraint 5
limits the amount of duplication that can be done to improve the completion time of any job:
if v ∈ JℓK first executes on a machine in group ⟨k⟩ at time t, then the number of predecessors
that may be executed in the ρ̄k + ρ̄ℓ steps preceding t is at most ρ̄k.

The remaining constraints enforce standard scheduling conditions. Constraint 4 states
that the completion time of v is at least the completion time of any of its predecessors, and
constraint 6 ensures that every job is executed on some group. Constraints 6 and 8 guarantee
that zu,v,k ≤ 1 for all u, v, k. This is an important feature of the LP, since a large z-value
could be used to disproportionately reduce the delay between two jobs in constraint 3.

▶ Lemma 3 (LP1 is a valid relaxation). The minimum of C∗
1 is at most opt.

Proof. Consider an arbitrary schedule σ with makespan Cσ, i.e. Cσ = maxv,i,t{t : (i, t) ∈
σ(v)}.

LP solution. Set C∗
1 = Cσ. For each job v, set Cv to be the earliest completion time of

v in σ, i.e. Cv = mini,t{t : (i, t) ∈ σ(v)}. Set xv,k = 1 if ⟨k⟩ is the group that contains the
machine on which v first completes (choosing arbitrarily if there is more than one) and 0
otherwise. For u, v, k, set zu,v,k = 1 if u ≺ v, xv,k = 1, v ∈ JℓK, and Cv − Cu < ρ̄k + ρ̄ℓ (0
otherwise). Set yu,k = max{xu,k, maxv{zu,v,k}}.

Feasibility. We now establish that the solution defined is feasible. Constraints (1, 7–11)
are easy to verify. We now establish constraints (2–5). Consider constraint 2 for fixed
group ⟨k⟩.

∑
v yv,k is upper bound by the total load Λ on ⟨k⟩. The constraint follows from

C∗
α ≥ Cσ ≥ Λ/|⟨k⟩|.

Consider constraint 3 for fixed u, v, k where u ≺ v. Let X = xv,k and let Z = zu,v,k. If
(X, Z) = (0, 0), (0, 1), or (1, 1) then the constraint follows from constraint 4. If (X, Z) = (1, 0),
then by the assignment of zu,v,k we can infer that Cv − Cu ≥ ρ̄k + ρ̄ℓ, which shows the
constraint is satisfied.

Consider constraint 5 for fixed v, k. If xv,k = 0 then the result follows from the fact
that zu,v,k = 0 for all u. If xv,k = 1, then we can infer that v ∈ JℓK. So, at most ρ̄k + ρ̄ℓ

predecessors of v that can be scheduled in the ρ̄k + ρ̄ℓ time before Cv, ensuring that the
constraint is satisfied. ◀

2.3 Deriving a rounded solution to the linear program
▶ Definition 4. (C, x, y, z) is a rounded solution to LPα if all values of x, y, z are either 0
or 1.

ICALP 2023

98:14 Scheduling Under Non-Uniform Job and Machine Delays

Let LP1 be defined over machine groups ⟨1⟩, ⟨2⟩, . . . , ⟨K⟩ and job groups J1K, J2K, . . . , JLK.
Given a solution (Ĉ, x̂, ŷ, ẑ) to LP1, we construct an integer solution (C, x, y, z) to LP2K as
follows. For each v, k, set xv,k = 1 if k = maxk′{x̂v,k′} (if there is more than one maximizing
k, arbitrarily select one); set to 0 otherwise. Set zu,v,k = 1 if xv,k = 1 and ẑu,v,k ≥ 1/(2K);
set to 0 otherwise. For all u, k, yu,k = max{xu,k, maxv{zu,v,k}}. Set Cv = 2K · Ĉv. Set
C∗

2K = 2K · Ĉ∗
1 .

▶ Lemma 5. If (Ĉ, x̂, ŷ, ẑ) is a valid solution to LP1, then (C, x, y, z) is a valid solution to
LP2K .

Proof. By constraint (6),
∑

k x̂v,k is at least 1, so maxk{x̂v,k} is at least 1/K. Therefore,
xv,k ≤ Kx̂v,k for all v and k. Also, zu,v,k ≤ 2Kẑu,v,k for any u, v, k by definition. By the
setting of Cv for all v, yv,k for all v, k, and C∗

2K , it follows that constraints (1, 4-11) of LP1
imply the respective constraints of LP2K . We first establish constraint (2). For any fixed
group ⟨k⟩,

2KĈ1 · |⟨k⟩| ≥ 2K
∑

v

ŷv,k = 2K
∑

v

max{x̂v,k, max
u

{ẑv,u,k}} by constraints 2, 11 of LP1

≥ 2K
∑

v

xv,k + maxu{zv,u,k}
2K

≥
∑

v

yv,k by definition of yv,k

which entails constraint (2) by C∗
2K = 2KĈ∗

1 . It remains to establish constraint (3) for fixed
u, v, k. We consider two cases. If xv,k − zu,v,k ≤ 0, then the constraint is trivially satisfied in
LP2K . If xv,k − zu,v,k = 1, then, by definition of x and z, x̂v,k − ẑu,v,k is at least 1/(2K).
This entails that Ĉv ≥ Ĉu + ((ρ̄k + ρ̄ℓ)/2K) which establishes constraint (3) of LP2K by
definition of Cv and Cu. ◀

▶ Lemma 6. C2K ≤ 4K · opt.

Proof. Lemma 2 shows that our grouping of machines does not increase the value of the LP
by more than a factor of 2. Therefore, by Lemmas 3 and 5, C2K = 2K · Ĉ1 ≤ 4K · opt. ◀

2.4 Computing a schedule given an integer solution to the LP
Suppose we are given a partition of M into K groups such that group ⟨k⟩ is composed of
identical machines (i.e. for all i, j ∈ ⟨k⟩, ρi = ρj). Also, suppose we are given a partition
of V into L groups such that group JℓK is composed of jobs with identical in-delay. Finally,
we are given a rounded solution (C, x, y, z) to LPα defined over machine groups ⟨1⟩, . . . , ⟨K⟩
and job groups J1K, . . . JLK. In this section, we show that we can construct a schedule that
achieves an approximation for machine delays in terms of α, K, and L. The combinatorial
subroutine that constructs the schedule is defined in Algorithm 1. In the algorithm, we
use a subroutine udps-Solver for Uniform Delay Precedence-Constrained Scheduling. An
O(log ρ/ log log ρ)-asympototic approximation is given in [26]. For completeness, we use
the udps-Solver presented and analyzed in [42], which generalizes the algorithm of [26] to
incorporate non-uniform machine sizes.

We now describe Algorithm 1 informally. The subroutine takes as input the rounded
LPα solution (C, x, y, z) and initializes an empty schedule σ and global parameters T, θ to
0. For a fixed value of T , we iterate through all machine groups ⟨k⟩ and job groups JℓK,
with decreasing ℓ. For a fixed value of T, k, ℓ, we check if there is some integer d such that
T = d(ρ̄k + ρ̄ℓ). If so, we define Vk,ℓ,d and Uk,ℓ,d as in lines 4 and 5. Vk,ℓ,d represents the set
of jobs in JℓK assigned by the LP to machine group ⟨k⟩ in a single phase of length ρ̄k + ρ̄ℓ.

R. Rajaraman, D. Stalfa, and S. Yang 98:15

Algorithm 1 Machine Delay Scheduling with Duplication.

Init: ∀v, σ(v)← ∅; T ← 0; θ ← 0
1 while T ≤ C∗

α do
2 forall machine groups ⟨k⟩ do
3 for job group JℓK = JLK to J1K: ∃ integer d, T = d(ρ̄k + ρ̄ℓ) do
4 Vk,ℓ,d ← {v ∈ JℓK : xv,k = 1 and T ≤ Cv < T + ρ̄k + ρ̄ℓ}
5 Uk,ℓ,d ← {u : ∃v ∈ Vk,ℓ,d, u ≺ v and T ≤ Cu < T + ρ̄k + ρ̄ℓ}
6 σ′ ← udps-Solver on (Vk,ℓ,d ∪ Uk,ℓ,d, ⟨k⟩, ρ̄k + ρ̄ℓ)
7 ∀v, i, t, if (i, t) ∈ σ′(v) then σ(v)← σ(v) ∪ {(i, θ + ρ̄k + ρ̄ℓ + t)}
8 θ ← θ + 2(ρ̄k + ρ̄ℓ)

9 T ← T + 1

Uk,ℓ,d represents predecessors of Vk,ℓ,d whose LP completion times are within ρ̄k + ρ̄ℓ of
their successor in Vk,ℓ,d. We then call udps-Solver to construct a udps schedule σ′ on jobs
Vk,ℓ,d∪Uk,ℓ,d, machines in ⟨k⟩, and delay ρ̄k + ρ̄ℓ. We then append σ′ to σ. Once all values of
k, ℓ have been checked, we increment T and repeat until all jobs are scheduled. The structure
of the schedule produced by Algorithm 1 is depicted in Figure 4. Lemma 7 (entailed by
Lemma 45 of [42]) provides guarantees for the udps-Solver subroutine.

▶ Lemma 7. Let U be a set of η jobs such that for any v ∈ U, |{u ∈ U : u ≺ v}| ≤ αδ. Given
input U , a set of µ identical machines, and delay δ, udps-Solver produces, in polynomial
time, a valid udps schedule with makespan at most 3αδ log(αδ) + (2η/µ).

▶ Lemma 8. Algorithm 1 outputs a valid schedule in polynomial time.

Proof. It is easy to see that the algorithm runs in polynomial time, and Lemma 7 entails
that precedence constraints are obeyed on each machine. Consider a fixed v, k, d such that
v ∈ Vk,ℓ,d. By line 7, we insert a communication phase of length ρ̄k + ρ̄ℓ before appending
the schedule of any set of jobs Vk,ℓ,d ∪ Uk,ℓ,d on any machine group ⟨k⟩. So, by the time
Algorithm 1 executes any job in Vk,ℓ,d, every job u such that Cu < d(ρ̄k + ρ̄ℓ) is available to
all machines, including those in group ⟨k⟩. So the only predecessors of v left to execute are
those jobs in Uk,ℓ,d. Therefore, all communication constraints are satisfied. ◀

▶ Lemma 9. If (C, x, y, z) is a rounded solution to LPα then Algorithm 1 outputs a schedule
with makespan at most 12α log(ρmax)(KLC∗

α + ρmax(K + L)).

Proof. Fix any schedule σ. Note that the schedule produced by the algorithm executes a
single job group on a single machine group at a time. Our proof establishes a bound for
the total time spent executing a single job group on a single machine group, then sums this
bound over all K machine groups and L job groups.

▷ Claim 10. For any v, u, k, ℓ, d, if v ∈ Vk,ℓ,d and Cv < Cu + (ρ̄k + ρ̄ℓ) then zu,v,k,ℓ = 1.

Proof. Fix u, v, k, ℓ, d such that v ∈ Vk,ℓ,d and Cv < Cu + (ρ̄k + ρ̄ℓ). By the definition of
Vk,ℓ,d, xv,k is 1. By constraint 3, Cv ≥ Cu + ρ̄k(1− zu,v,k), implying that zu,v,k cannot equal
0. Since zu,v,k is either 0 or 1, we have zu,v,k = 1. ◁

ICALP 2023

98:16 Scheduling Under Non-Uniform Job and Machine Delays

〈1〉
〈2〉
〈3〉

〈1〉
〈2〉
〈3〉

V1,1 V1,2 V1,3 V1,4 V1,5 V1,6 V1,7 V1,8

. . .V2,1 V2,2 V2,3 V2,4

V3,1 V3,2

. . .

LPα solution

Schedule

σ1,1

σ2,1

σ3,1

σ1,2 σ1,3

σ2,2

σ1,4 σ1,5

σ2,3

σ3,2

σ1,6 σ1,7

σ2,4

σ1,8

Figure 4 Structure of the schedule produced by Algorithm 1. σk,d denotes a schedule of Vk,ℓ,d

on the machines in group ⟨k⟩. The algorithm scans the LPα solution by increasing time (left to
right). At the start of each Vk,ℓ,d, the algorithm constructs a schedule of the set and appends it to
the existing schedule.

▷ Claim 11. For any k, ℓ, we show
a

∑
d |Vk,ℓ,d ∪ Uk,ℓ,d| ≤ C∗

α · |⟨k⟩| and
b for any d and v ∈ Vk,ℓ,d, the number of v’s predecessors in Vk,ℓ,d ∪ Uk,ℓ,d is at most

α(ρ̄k + ρ̄ℓ).

Proof. Fix k, ℓ. We first prove a. For any v in Vk,ℓ,d we have xv,k = 1 by the definition of
Vk,ℓ,d. Consider any u in Uk,ℓ,d. By definition, there exists a v′ ∈ Vk,ℓ,d such that xv′,k = 1
and Cv < Cu + (ρ̄k + ρ̄ℓ); fix such a v′. By claim 10, zu,v′,k = 1. So, by constraint 10,
yv,k = 1 for every job v ∈ Vk,ℓ,d ∪ Uk,ℓ,d. For any d′ ̸= d, Vk,ℓ,d and Vk,ℓ,d′ are disjoint. So∑

d |Vk,ℓ,d ∪ Uk,ℓ,d| is at most the right-hand side of constraint 2, which is at most C∗
α · |⟨k⟩|.

We now prove b. Fix v, d such that v ∈ Vk,ℓ,d. Consider any u in Vk,ℓ,d ∪ Uk,d such that
u ≺ v. By definition of Vk,ℓ,d and Uk,ℓ,d, Cv < Cu + (ρ̄k + ρ̄ℓ). By Claim 10, zu,v,k = 1. The
claim then follows from constraint (5). ◁

By Lemma 7 and Claim 11b, the time spent executing jobs in JℓK on machines in ⟨k⟩ is
at most∑

d

(
3α(ρ̄k + ρ̄ℓ) log(α(ρ̄k + ρ̄ℓ)) + 2 · |Vk,ℓ,d ∪ Uk,ℓ,d|

|⟨k⟩|

)
The summation over the first term is at most ⌈C∗

α/(ρ̄k + ρ̄ℓ)⌉ 3α(ρ̄k + ρ̄ℓ) log(α(ρ̄k + ρ̄ℓ))
which is at most 3C∗

αα log(α(ρ̄k + ρ̄ℓ)) + 3α(ρ̄k + ρ̄ℓ) log(α(ρ̄k + ρ̄ℓ)). The summation over
the second term is at most 2C∗

α by claim 11a. Summing over all K machine groups and
L job groups, and considering K, L ≤ log ρmax, the total length of the schedule is at most
12α log(ρmax)(KLC∗

α + ρmax(K + L)). ◀

▶ Theorem 1 (Job Delays and Machine Delays). There exists a polynomial time algorithm
to compute a valid machine delays and job precedence delays schedule with makespan
O((log n)9(opt + ρmax)).

Proof. Lemma 5 entails that (C, x, y, z) is a valid solution to LP2K . Lemma 6 entails that
C∗

2K ≤ 4K ·opt. With α = 2K, Lemma 9 entails that the makespan of our schedule is at most
12α log(ρmax)(KLC∗

α+ρmax(K+L)) = 48(log ρmax)5opt+24(log ρmax)3ρmax for the case with
no out-delays. By Lemma 37 of [42], the length of our schedule is O((log ρmax)9(opt + ρmax)
The theorem is entailed by ρmax ≤ n. This proves the theorem. ◀

R. Rajaraman, D. Stalfa, and S. Yang 98:17

▶ Corollary 12 (Machine Delays). There exists a polynomial time algorithm to compute a
valid machine delays schedule with makespan O((log n)5 · (opt + ρ)).

Proof. Lemma 5 entails that (C, x, y, z) is a valid solution to LP2K . Lemma 6 entails that
C∗

2K ≤ 4K · opt. With α = 2K, Lemma 9 entails that the makespan of our schedule
is at most 12α log(ρmax)(KLC∗

α + ρmax(K + L)) = 48(log ρmax)5opt + 24(log ρmax)3ρmax
for the case with no out-delays. By Lemma 41 of [42], the length of our schedule is
O((log ρmax)5(opt + ρmax) The theorem is entailed by ρmax ≤ n. ◀

2.5 Combinatorial Algorithm for Uniform Machine Delays

The only noncombinatorial subroutine of our algorithm is solving the linear program. In
this section, we describe how to combinatorially construct a rounded solution to LP1 when
machine delays are uniform (i.e. for all i, j, ρin

i = ρout
i = ρin

j = ρout
j), machine speeds are

unit, and machine capacities are unit. We let δ represent the uniform machine delay. By
Lemma 37 of [42], we focus on the case where all job out-delays are 0. We let ρv = δ + ρin

v

for any job v.
Since delays, speeds, and capacities are uniform, there is only one machine group: ⟨1⟩.

Set xv,1 = yv,1 = 1 for all v. For each job v, we define Cv as follows. If v has no predecessors,
we set Cv = 0. Otherwise, we order v’s predecessors such that Cui ≥ Cui+1 . We define
Cv = max1≤i≤ρv

{Cui
+ i}. We set C∗ = max{n/m, maxv{Cv}}. We set zu,v,1 = 1 if u ≺ v

and Cv − Cu < ρv; and set to 0 otherwise.

▶ Lemma 13. C∗ ≤ opt.

Proof. Consider an arbitrary schedule in which tv is the earliest completion time of any job
v. We show that, for any v, tv ≥ Cv, which is sufficient to prove the lemma.

We prove the claim by induction on the number of predecessors of v. The claim is trivial
if v has no predecessors. Suppose that the claim holds for all of v’s predecessors and let
y = arg max1≤i≤ρv

{Cui
+ i}. Then Cv = Cuy

+ y ≤ tuy
+ y (by IH) = ty + |{ux : 0 ≤ x ≤

y}| ≤ ty + ρv. This entails that all jobs u1, . . . uy must be executed on the same machine as v.
Now suppose, for the sake of contradiction, that tv < Cv. Then all jobs u ∈ {ux : 0 ≤ x < y}|
must be executed serially in the time tv − tuy < Cv − tuy = |{ux : 0 ≤ x ≤ y}| which gives
us our contradiction. ◀

▶ Lemma 14. (C, x, y, z) is a rounded solution to LP1.

Proof. It is easy to see that constraints (1, 2, 3, 4, 6, 7, 8, 9, 10 11) are satisfied by the
assignment. So we must only show that constraint (5) is satisfied for fixed v. We can see from
the definition of Cv, that maximum number of predecessors u such that Cv − Cu < ρv + ρ is
at most ρv + ρ. This proves the lemma. ◀

▶ Lemma 15 (Combinatorial Algorithm for Job Delays). There exists a purely combinat-
orial, polynomial time algorithm to compute a schedule for Job Delays with makespan
O((log n)6(opt + maxv{ρv})).

Proof. Lemma 9 entails that the length of the schedule is at most 12(log ρmax)2(opt + ρmax)
for the problem with job in-delays. By Lemma 37 of [42] we achieve a makespan of
O((log ρmax)6(opt + ρmax)) for job in- and out-delays. ◀

ICALP 2023

98:18 Scheduling Under Non-Uniform Job and Machine Delays

References
1 Ishfaq Ahmad and Yu-Kwong Kwok. On exploiting task duplication in parallel program

scheduling. IEEE Transactions on Parallel and Distributed Systems, 9(9):872–892, September
1998. doi:10.1109/71.722221.

2 Adil Amirjanov and Konstantin Sobolev. Scheduling of directed acyclic graphs by a genetic
algorithm with a repairing mechanism. Concurrency and Computation: Practice and Experience,
29(5):e3954, 2017. e3954 CPE-16-0237.R1. doi:10.1002/cpe.3954.

3 Pau Andrio, Adam Hospital, Javier Conejero, Luis Jordá, Marc Del Pino, Laia Codo, Stian
Soiland-Reyes, Carole Goble, Daniele Lezzi, Rosa M Badia, Modesto Orozco, and Josep Gelpi.
Bioexcel building blocks, a software library for interoperable biomolecular simulation workflows.
Scientific data, 6(1):1–8, 2019.

4 Evripidis Bampis, Aristotelis Giannakos, and Jean-Claude König. On the complexity of
scheduling with large communication delays. European Journal of Operational Research,
94:252–260, 1996.

5 Nikhil Bansal. Scheduling open problems: Old and new. The 13th Workshop on Models
and Algorithms for Planning and Scheduling Problems (MAPSP 2017), 2017. URL: http:
//www.mapsp2017.ma.tum.de/MAPSP2017-Bansal.pdf.

6 Nikhil Bansal and Subhash Khot. Optimal long code test with one free bit. 2009 50th
Annual IEEE Symposium on Foundations of Computer Science, pages 453–462, October 2009.
doi:10.1109/focs.2009.23.

7 Abbas Bazzi and Ashkan Norouzi-Fard. Towards tight lower bounds for scheduling problems.
Lecture Notes in Computer Science, pages 118–129, 2015. doi:10.1007/978-3-662-48350-3_
11.

8 Gregor Behnke, Daniel Höller, and Susanne Biundo. Bringing order to chaos – a compact
representation of partial order in sat-based htn planning. Proceedings of the AAAI Conference
on Artificial Intelligence, 33(01):7520–7529, July 2019. doi:10.1609/aaai.v33i01.33017520.

9 Karthekeyan Chandrasekaran and Chandra Chekuri. Min-max partitioning of hypergraphs
and symmetric submodular functions. In Proceedings of the Thirty-Second Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’21, pages 1026–1038, USA, 2021. Society for
Industrial and Applied Mathematics.

10 Chandra Chekuri and Michael Bender. An efficient approximation algorithm for minimizing
makespan on uniformly related machines. Journal of Algorithms, 41(2):212–224, November
2001. doi:10.1006/jagm.2001.1184.

11 Eden Chlamtáč, Michael Dinitz, and Yury Makarychev. Minimizing the union: Tight approx-
imations for small set bipartite vertex expansion. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, pages 881–899. SIAM, 2017.

12 Eden Chlamtáč, Michael Dinitz, and Yury Makarychev. Minimizing the union: Tight ap-
proximations for small set bipartite vertex expansion. In Proceedings of the 2017 Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 881–899, 2017.

13 Fabián A. Chudak and David B. Shmoys. Approximation algorithms for precedence-constrained
scheduling problems on parallel machines that run at different speeds. Journal of Algorithms,
30(2):323–343, 1999.

14 Sekhar Darbha and Dharma P. Agrawal. Optimal scheduling algorithm for distributed-memory
machines. IEEE Transactions on Parallel and Distributed Systems, 9:87–95, 1998.

15 Sami Davies, Janardhan Kulkarni, Thomas Rothvoss, Sai Sandeep, Jakub Tarnawski, and
Yihao Zhang. On the hardness of scheduling with non-uniform communication delays. In
Proceedings of the 2022 ACM-SIAM Symposium on Discrete Algorithms (SODA), pages
2958–2977, 2022. URL: https://epubs.siam.org/doi/abs/10.1137/1.9781611976465.176.

16 Sami Davies, Janardhan Kulkarni, Thomas Rothvoss, Jakub Tarnawski, and Yihao Zhang.
Scheduling with communication delays via lp hierarchies and clustering. In 2020 IEEE
61st Annual Symposium on Foundations of Computer Science (FOCS), pages 822–833, 2020.
doi:10.1109/FOCS46700.2020.00081.

https://doi.org/10.1109/71.722221
https://doi.org/10.1002/cpe.3954
http://www.mapsp2017.ma.tum.de/MAPSP2017-Bansal.pdf
http://www.mapsp2017.ma.tum.de/MAPSP2017-Bansal.pdf
https://doi.org/10.1109/focs.2009.23
https://doi.org/10.1007/978-3-662-48350-3_11
https://doi.org/10.1007/978-3-662-48350-3_11
https://doi.org/10.1609/aaai.v33i01.33017520
https://doi.org/10.1006/jagm.2001.1184
https://epubs.siam.org/doi/abs/10.1137/1.9781611976465.176
https://doi.org/10.1109/FOCS46700.2020.00081

R. Rajaraman, D. Stalfa, and S. Yang 98:19

17 Sami Davies, Janardhan Kulkarni, Thomas Rothvoss, Jakub Tarnawski, and Yihao Zhang.
Scheduling with communication delays via lp hierarchies and clustering ii: Weighted completion
times on related machines. In Proceedings of the 2021 ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 2958–2977, 2021. doi:10.1137/1.9781611976465.176.

18 Yuanxiang Gao, Li Chen, and Baochun Li. Spotlight: Optimizing device placement for training
deep neural networks. In Jennifer Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, volume 80 of Proceedings of Machine Learning
Research, pages 1676–1684. PMLR, 10–15 July 2018. URL: https://proceedings.mlr.press/
v80/gao18a.html.

19 M. R. Garey and David S. Johnson. Scheduling tasks with nonuniform deadlines on two
processors. J. ACM, 23(3):461–467, 1976. doi:10.1145/321958.321967.

20 Ronald L. Graham. Bounds on multiprocessing timing anomalies. SIAM Journal on Applied
Mathematics, 17:416–429, 1969.

21 Ubaid Ullah Hafeez, Xiao Sun, Anshul Gandhi, and Zhenhua Liu. Towards optimal placement
and scheduling of dnn operations with pesto. In Proceedings of the 22nd International
Middleware Conference, pages 39–51, 2021.

22 Leslie A. Hall, Andreas S. Schulz, David B. Shmoys, and Joel Wein. Scheduling to minimize
average completion time: Off-line and on-line approximation algorithms. Mathematics of
Operations Research, 22(3):513–544, August 1997. doi:10.1287/moor.22.3.513.

23 J.A. Hoogeveen, Jan Karel Lenstra, and Bart Veltman. Three, four, five, six, or the complexity
of scheduling with communication delays. Operations Research Letters, 16(3):129–137, 1994.
doi:10.1016/0167-6377(94)90024-8.

24 Jeffrey M. Jaffe. Efficient scheduling of tasks without full use of processor resources. Theoretical
Computer Science, 12(1):1–17, September 1980. doi:10.1016/0304-3975(80)90002-x.

25 Jan Karel Lenstra and A. H. G. Rinnooy Kan. Complexity of scheduling under precedence
constraints. Operations Research, 26(1):22–35, 1978. doi:10.1287/opre.26.1.22.

26 Renaud Lepere and Christophe Rapine. An asymptotic O(ln ρ/ ln ln ρ)-approximation al-
gorithm for the scheduling problem with duplication on large communication delay graphs.
In Annual Symposium on Theoretical Aspects of Computer Science, pages 154–165. Springer,
2002.

27 Shi Li. Scheduling to minimize total weighted completion time via time-indexed linear
programming relaxations. In 2017 58th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2017, pages 283–294, 2017. doi:10.1109/FOCS.2017.34.

28 Guanfeng Liang and Ulaş C. Kozat. Fast cloud: Pushing the envelope on delay performance
of cloud storage with coding. IEEE/ACM Transactions on Networking, 22(6):2012–2025,
December 2014. doi:10.1109/TNET.2013.2289382.

29 Quanquan C. Liu, Manish Purohit, Zoya Svitkina, Erik Vee, and Joshua R. Wang. Scheduling
with communication delay in near-linear time. In STACS, 2022.

30 Ashraf Mahgoub, Edgardo Barsallo Yi, Karthick Shankar, Eshaan Minocha, Sameh Elnikety,
Saurabh Bagchi, and Somali Chaterji. Wisefuse: Workload characterization and dag trans-
formation for serverless workflows. Proceedings of the ACM on Measurement and Analysis of
Computing Systems, 6(2), June 2022. doi:10.1145/3530892.

31 Biswaroop Maiti, Rajmohan Rajaraman, David Stalfa, Zoya Svitkina, and Aravindan Vi-
jayaraghavan. Scheduling precedence-constrained jobs on related machines with communication
delay. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science (FOCS),
pages 834–845, 2020. doi:10.1109/FOCS46700.2020.00082.

32 Azalia Mirhoseini, Anna Goldie, Hieu Pham, Benoit Steiner, Quoc V. Le, and Jeff Dean.
Hierarchical planning for device placement. In International Conference on Learning Repres-
entations, 2018. URL: https://openreview.net/pdf?id=Hkc-TeZ0W.

33 Azalia Mirhoseini, Hieu Pham, Quoc V. Le, Benoit Steiner, Rasmus Larsen, Yuefeng Zhou,
Naveen Kumar, Mohammad Norouzi, Samy Bengio, and Jeff Dean. Device placement op-
timization with reinforcement learning. In Proceedings of the 34th International Conference
on Machine Learning, ICML 2017, pages 2430–2439, 2017. URL: http://proceedings.mlr.
press/v70/mirhoseini17a.html.

ICALP 2023

https://doi.org/10.1137/1.9781611976465.176
https://proceedings.mlr.press/v80/gao18a.html
https://proceedings.mlr.press/v80/gao18a.html
https://doi.org/10.1145/321958.321967
https://doi.org/10.1287/moor.22.3.513
https://doi.org/10.1016/0167-6377(94)90024-8
https://doi.org/10.1016/0304-3975(80)90002-x
https://doi.org/10.1287/opre.26.1.22
https://doi.org/10.1109/FOCS.2017.34
https://doi.org/10.1109/TNET.2013.2289382
https://doi.org/10.1145/3530892
https://doi.org/10.1109/FOCS46700.2020.00082
https://openreview.net/pdf?id=Hkc-TeZ0W
http://proceedings.mlr.press/v70/mirhoseini17a.html
http://proceedings.mlr.press/v70/mirhoseini17a.html

98:20 Scheduling Under Non-Uniform Job and Machine Delays

34 Alix Munier. Approximation algorithms for scheduling trees with general communication
delays. Parallel Computing, 25(1):41–48, 1999.

35 Alix Munier and Claire Hanen. Using duplication for scheduling unitary tasks on m processors
with unit communication delays. Theoretical Computer Science, 178(1):119–127, 1997. doi:
10.1016/S0304-3975(97)88194-7.

36 Alix Munier and Jean-Claude König. A heuristic for a scheduling problem with communication
delays. Operations Research, 45(1):145–147, 1997.

37 Michael A. Palis, Jing-Chiou Liou, and David S. L. Wei. Task clustering and scheduling for
distributed memory parallel architectures. IEEE Transactions on Parallel and Distributed
Systems, 7(1):46–55, 1996.

38 Christos H. Papadimitriou and Mihalis Yannakakis. Scheduling interval-ordered tasks. SIAM
J. Comput., 8(3):405–409, 1979. doi:10.1137/0208031.

39 Christos H. Papadimitriou and Mihalis Yannakakis. Towards an architecture-independent
analysis of parallel algorithms. SIAM journal on computing, 19(2):322–328, 1990.

40 Christophe Picouleau. Two new NP-complete scheduling problems with communication delays
and unlimited number of processors. Inst. Blaise Pascal, Univ., 1991.

41 Maurice Queyranne and Maxim Sviridenko. Approximation algorithms for shop scheduling
problems with minsum objective. Journal of Scheduling, 5(4):287–305, 2002. doi:10.1002/
jos.96.

42 Rajmohan Rajaraman, David Stalfa, and Sheng Yang. Scheduling under non-uniform job and
machine delays, 2022. arXiv:2207.13121.

43 Victor J Rayward-Smith. UET scheduling with unit interprocessor communication delays.
Discrete Applied Mathematics, 18(1):55–71, 1987.

44 Juan A. Rico-Gallego, Juan C. Díaz-Martín, Ravi Reddy Manumachu, and Alexey L. Lastovet-
sky. A survey of communication performance models for high-performance computing. ACM
Computing Surveys, 51(6), January 2019. doi:10.1145/3284358.

45 Petra Schuurman and Gerhard J. Woeginger. Polynomial time approximation algorithms for
machine scheduling: ten open problems. Journal of Scheduling, 2(5):203–213, 1999.

46 Bastian Seifert, Chris Wendler, and Markus Püschel. Causal fourier analysis on directed
acyclic graphs and posets. CoRR, abs/2209.07970, 2022. doi:10.48550/arXiv.2209.07970.

47 Ola Svensson. Conditional hardness of precedence constrained scheduling on identical machines.
Proceedings of the 42nd ACM symposium on Theory of computing – STOC ’10, pages 745–754,
2010. doi:10.1145/1806689.1806791.

48 Bart Veltman, B. J. Lageweg, and Jan Lenstra. Multiprocessor scheduling with communication
delays. Parallel Computing, 16:173–182, 1990.

49 Laurens Versluis, Erwin Van Eyk, and Alexandru Iosup. An analysis of workflow formalisms for
workflows with complex non-functional requirements. In Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering, pages 107–112, 2018.

50 Guangyuan Wu, Fangming Liu, Haowen Tang, Keke Huang, Qixia Zhang, Zhenhua Li, Ben Y.
Zhao, and Hai Jin. On the performance of cloud storage applications with global measurement.
In 2016 IEEE/ACM 24th International Symposium on Quality of Service (IWQoS), pages
1–10, 2016. doi:10.1109/IWQoS.2016.7590449.

https://doi.org/10.1016/S0304-3975(97)88194-7
https://doi.org/10.1016/S0304-3975(97)88194-7
https://doi.org/10.1137/0208031
https://doi.org/10.1002/jos.96
https://doi.org/10.1002/jos.96
https://arxiv.org/abs/2207.13121
https://doi.org/10.1145/3284358
https://doi.org/10.48550/arXiv.2209.07970
https://doi.org/10.1145/1806689.1806791
https://doi.org/10.1109/IWQoS.2016.7590449

Zero-Rate Thresholds and New Capacity Bounds
for List-Decoding and List-Recovery
Nicolas Resch # Ñ

Informatics’ Institute, University of Amsterdam, The Netherlands

Chen Yuan #

School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, China

Yihan Zhang #

Institute of Science and Technology Austria, Klosterneuburg, Austria

Abstract
In this work we consider the list-decodability and list-recoverability of arbitrary q-ary codes, for
all integer values of q ě 2. A code is called pp, Lqq-list-decodable if every radius pn Hamming ball
contains less than L codewords; pp, ℓ, Lqq-list-recoverability is a generalization where we place radius
pn Hamming balls on every point of a combinatorial rectangle with side length ℓ and again stipulate
that there be less than L codewords.

Our main contribution is to precisely calculate the maximum value of p for which there exist
infinite families of positive rate pp, ℓ, Lqq-list-recoverable codes, the quantity we call the zero-rate
threshold. Denoting this value by p˚, we in fact show that codes correcting a p˚ ` ε fraction of errors
must have size Oεp1q, i.e., independent of n. Such a result is typically referred to as a “Plotkin
bound.” To complement this, a standard random code with expurgation construction shows that
there exist positive rate codes correcting a p˚ ´ ε fraction of errors. We also follow a classical proof
template (typically attributed to Elias and Bassalygo) to derive from the zero-rate threshold other
tradeoffs between rate and decoding radius for list-decoding and list-recovery.

Technically, proving the Plotkin bound boils down to demonstrating the Schur convexity of a
certain function defined on the q-simplex as well as the convexity of a univariate function derived
from it. We remark that an earlier argument claimed similar results for q-ary list-decoding; however,
we point out that this earlier proof is flawed.

2012 ACM Subject Classification Mathematics of computing Ñ Coding theory

Keywords and phrases Coding theory, List-decoding, List-recovery, Zero-rate thresholds

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.99

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2210.07754 [46]

Funding Nicolas Resch: Research supported in part by ERC H2020 grant No.74079 (AL-
GSTRONGCRYPTO).
Chen Yuan: Research supported in part by the National Key Research and Development Projects
under Grant 2022YFA1004900 and Grant 2021YFE0109900, the National Natural Science Foundation
of China under Grant 12101403 and Grant 12031011.

Acknowledgements YZ is grateful to Shashank Vatedka, Diyuan Wu and Fengxing Zhu for inspiring
discussions.

1 Introduction

Given a code C Ă rqsn, a fundamental problem of coding-theory is to determine how “well-
spread” C can be if we also insist that C have large rate R “

logq |C|
n . The most basic way of

quantifying “well-spread” is by insisting that all pairs of codewords are far apart. That is,

EA
T
C
S

© Nicolas Resch, Chen Yuan, and Yihan Zhang;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 99; pp. 99:1–99:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:n.a.resch@uva.nl
https://staff.fnwi.uva.nl/n.a.resch/
https://orcid.org/0000-0002-5133-5631
mailto:chen_yuan@sjtu.edu.cn
https://orcid.org/0000-0002-3730-8397
mailto:zephyr.z798@gmail.com
https://orcid.org/0000-0002-6465-6258
https://doi.org/10.4230/LIPIcs.ICALP.2023.99
https://arxiv.org/abs/2210.07754
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

99:2 Zero-Rate Thresholds

we hope that the minimum distance d :“ mintdHpc, c1q : c ‰ c1 P Cu is large, where dHp¨, ¨q

denotes Hamming distance, i.e., the number of coordinates on which the two strings differ.
Equivalently, given any word y P rqsn, we have that |BHpy, rq X C| ď 1, where r “ td{2u and
BHpy, rq “ tx P rqsn : dHpx, yq ď ru denotes the Hamming ball of radius r centered at y.

One can naturally relax this requirement to the notion of list-decodability: instead
of upper-bounding |BHpy, rq X C| by 1, we upper bound it by a larger integer L ´ 1.1
Equivalently, if we place Hamming balls of radius r on each codeword of C, no vector in rqsn

is covered by L or more balls. If C satisfies this property we call it pp, Lqq-list-decodable.
Initially introduced by Elias and Wozencraft in the 1950’s [16, 50, 17], this relaxed notion of
decoding has been intensively studied in recent years, in part motivated by purely coding-
theoretic concerns, but also due to its connections with theoretical computer science more
broadly [20, 3, 38, 37, 33, 47].

A further generalization of list-decoding is provided by list-recoverability. In this case,
one considers tuples of input lists Y “ pY1, . . . , Ynq where each Yi Ă rqs is of size at most ℓ,
and the requirement is that the number of codewords c satisfying |ti P rns : ci R Yiu| ď pn

is at most L ´ 1. Such a code is deemed pp, ℓ, Lqq-list-recoverable. Note that pp, 1, Lqq-list-
recoverability is the same as pp, Lqq-list-decoding, demonstrating that list-recoverability is a
more general notion. While it was originally defined as an abstraction required for the task of
uniquely-/list-decoding concatenated codes [21, 22, 23, 24], it has since found myriad further
applications in computer science more broadly, e.g., in cryptography [30, 31], randomness
extraction [29], hardness amplification [14], group testing [32, 41], streaming algorithms [15],
and beyond.

When it comes to list-decoding and list-recovery, the optimal tradeoff between decoding-
radius p and rate R is well-understood if one is satisfied with list-sizes L “ Op1q.2 That is,
there exist pp, ℓ, Opℓ{εqqq-list-recoverable codes of rate 1 ´ Hq,ℓppq ´ ε where3

Hq,ℓppq :“ p logq

ˆ

q ´ ℓ

p

˙

` p1 ´ pq logq

ˆ

ℓ

1 ´ p

˙

;

conversely, if the rate is at least 1 ´ Hq,ℓppq ` ε then it will not be list-recoverable for any
L “ o pqεnq [44, Theorem 2.4.12]. (Note that setting ℓ “ 1 recovers the more well-known list-
decoding capacity theorem.) While this already provides some “coarse-grained” information
concerning the list-decodability/-recoverability of codes, it leaves many questions unanswered.

For example, one can ask about the maximum rate of a pp, 3qq-list-decodable code. That is,
what is the maximum rate of a code that never contains more than 2 points from a Hamming
ball of radius pn? However, this question as stated appears be quite difficult to solve: any
improvement for the special case of L “ 2 and q “ 2 would require improving either on
the Gilbert-Varshamov bound [19, 48] (on the “possibility” side) or the linear programming
bounds [49, 39, 13] (on the “impossibility” side). Unfortunately, despite decades of interest in
this basic question hardly any asymptotic improvements on these bounds have been provided
in the past fifty years.

Zero-rate thresholds for list-decoding and -recovery. We therefore begin by targeting
a more modest question: what is the maximum p˚ “ p˚pq, ℓ, Lq such that for any p ă p˚
there exist infinite families of q-ary pp, ℓ, Lqq-list-recoverable codes of positive rate? That is,

1 We find it most convenient to let L denote 1 more than the list-size, which is admittedly nonstandard,
but will make our computations much cleaner.

2 Or indeed, if we insist on L just being subexponential.
3 For ℓ “ 1, Hq,1 reduces to the q-ary entropy function denoted by Hq.

N. Resch, C. Yuan, and Y. Zhang 99:3

imagining the curve describing the achievable tradeoffs with the rate R on the y-axis and
decoding radius p on the x-axis, instead of asking to describe this entire curve, we simply seek
to determine the point where this curve crosses the x-axis (clearly, this curve is monotonically
decreasing).

Over the binary alphabet, setting ℓ “ 1 and L “ 2 in this question we recover a famous
result of Plotkin [42]: the maximum fraction of errors that can be uniquely-decoded by an
infinite family of positive rate binary codes is 1{4. Over general q-ary alphabets, this value is
similarly known to be q´1

2q (folklore; see, e.g., [28, Theorem 4.4.1]). The value of p˚p2, 1, Lq

has been computed by Blinovsky [5] for all L, and is known to be

p˚p2, 1, Lq “
1
2 ´

`2k
k

˘

22k`1 if L “ 2k or L “ 2k ` 1.

While this expression is quite impenetrable at first glance, here is a natural probabilistic
interpretation: given x1, . . . , xL P t0, 1u, let plpx1, . . . , xLq denote the number of times the
more popular bit appears.4 We then have

p˚p2, 1, Lq “ 1 ´
1
L

E
pX1,¨¨¨ ,XLq„Bernp1{2qbL

rplpX1, ¨ ¨ ¨ , XLqs ,

where the notation pX1, ¨ ¨ ¨ , XLq „ Bernp1{2qbL denotes that L independent unbiased bits
are sampled.

It is then not difficult to conjecture the value for p˚pq, ℓ, Lq: if plℓpx1, . . . , xLq denotes
the top-ℓ-plurality value of x1, . . . , xL P rqs, i.e., plℓpx1, . . . , xLq “ maxΣĎrqs:|Σ|“ℓ |ti P rLs :
xi P Σu|, then it should be that

p˚pq, ℓ, Lq “ 1 ´
1
L

E
pX1,¨¨¨ ,XLq„UnifprqsqbL

rplℓpX1, ¨ ¨ ¨ , XLqs . (1)

This quantity is fairly natural: one can interpret it as the minimum radius of a list-recovery
ball (i.e., a set of the form tv P rqsn : vi P Yi for at least p1 ´ pqn i P rnsu) that will contain
L codewords in the “typical” case. For the case of ℓ “ 1, i.e., q-ary list-decoding, a proof is
claimed in [6, 7]; however, as we outline in Section 3 this proof is flawed. In this work we
provide a rigorous derivation of Equation (1) for all values of ℓ, L and q with 1 ď ℓ ď q.

More precisely, we obtain the following results:
A proof that pp, ℓ, Lqq-list-recoverable q-ary codes with p ą p˚pq, ℓ, Lq have constant-size,
i.e., independent of n. This should be interpreted as a generalization of the Plotkin
bound [42], which states that binary codes uniquely-decodable from a 1{4 ` ε fraction of
errors have size at most Op1{εq. For this reason we call our result a “Plotkin bound for
list-recovery.”
Adapting the Elias-Bassalygo argument [4], we subsequently derive upper bounds on the
rate of pp, ℓ, Lqq-list-recoverable q-ary codes when p ă p˚pq, ℓ, Lq.
To complement this, we show that there exist infinite families of positive rate q-ary codes
that are pp, ℓ, Lqq-list-recoverable whenever p ă p˚pq, ℓ, Lq. We are therefore justified in
calling p˚pq, ℓ, Lq the zero-rate threshold for list-recovery.

We now describe our techniques in more detail.

4 We use pl to stand for “plurality”. However, we caution that this function does not output a most
popular symbol (as is perhaps more in line with the standard meaning of plurality), but the number of
i P rLs for which xi equals a most popular symbol.

ICALP 2023

99:4 Zero-Rate Thresholds

1.1 Our techniques
Schur convexity of the function fq,L,ℓ. Following prior work [6],5 our task requires us to
answer the following question. Consider the function on distributions P over the alphabet
rqs defined as

fq,L,ℓpP q :“ E
pX1,¨¨¨ ,XLq„PbL

rplℓpX1, ¨ ¨ ¨ , XLqs .

Analogously to before, the notation pX1, ¨ ¨ ¨ , XLq „ PbL means that L independent samples
are taken from the distribution P . A crucial ingredient for deriving the Plotkin bound is a
demonstration that this function is minimized by the uniform distribution.

There is a well-studied class of functions on finite distributions with the property that
they are minimized by the uniform distribution: Schur convex functions. These are the
functions that are monotonically-increasing with respect to the majorization-ordering, which
compares vectors of real numbers by first sorting the vectors in descending order and then
checking to see if all the prefix sums of one vector is greater than or equal to the prefix
sums of the other. The important detail for us is that the uniform vector p1{q, . . . , 1{qq P Rq,
corresponding to the uniform distribution, is majorized by every other vector corresponding
to a distribution over rqs.

To demonstrate the Schur convexity of this function, we use the Schur-Ostrowski criterion,
which states that Schur-convexity is equivalent to the non-negativity of a certain expression
involving partial derivatives. Showing that this expression is non-negative boils down to a
combinatorial accounting game, where we can show that the positive contributions arising
from certain terms exceed the negative contributions arising from others.

Convexity of the univariate function gq,L,ℓ. Another important technical ingredient that
we need for the proof of the Plotkin bound is the convexity of the univariate function

gq,L,ℓpwq :“ fq,L,ℓpPq,ℓ,wq,

where the distribution Pq,ℓ,w “ pp1, . . . , pqq is defined as

pi “

#

w
q´ℓ if i ď q ´ ℓ
1´w

ℓ if i ě q ´ ℓ ` 1
.

In order to show the function is convex, we prove the second derivative is non-negative. In
differentiating, we use the expression for gq,L,ℓ in terms of fq,L,ℓ and apply the chain rule.
Showing the resulting expression is positive is again a sort of combinatorial accounting game:
we can show the positive terms contribute more than the negative terms.

Quite interestingly, for ℓ “ 1 (i.e., the case relevant for list-decoding) we only prove the
convexity of the function fq,1,L on the interval r0, pq´1q{qs. Fortunately, as we can also easily
show that gq,1,L decreases on the interval r0, pq ´ 1q{qs and then increases on the interval
rpq ´ 1q{q, 1s,6 convexity of fq,1,L on r0, pq ´ 1q{qs suffices for our purposes. And indeed, this
is not an artifact of the proof: Blinovsky had already observed that convexity of fq,1,L does
not hold on the entire interval r0, 1s [6, 7]. However, for ℓ ě 2 we obtain that convexity
of fq,ℓ,L does indeed hold on the entire interval r0, 1s. We note that the second derivative
does behave qualitatively differently, so this is perhaps not too surprising in hindsight; we
comment on this further in [46, Remark 5].

5 In fact, [6] only considers list-decoding, so a slight adaptation of this argument is required for list-recovery.
6 This is in fact an easy corollary of the Schur convexity of fq,1,L.

N. Resch, C. Yuan, and Y. Zhang 99:5

Plotkin bound. Armed with these (Schur-)convexity results, we aim to prove a Plotkin
bound for list-decoding/-recovery. That is, if a q-ary code is pp, ℓ, Lqq-list-recoverable with
p ě p˚pq, ℓ, Lq ` ε, how large can the code be? Following the template of the standard
argument (although certain subtleties arise when generalizing to list-recovery), we can show
that such a code must be of constant size, i.e., independent of n.

Informally, the argument begins with a “preprocessing step” that prunes away some
(but, crucially, not too many) codewords and yields a more structured subcode that we can
subsequently analyze. The codewords of this subcode are very “balanced” in the sense that
all patterns of symbols appear with roughly the same frequency. In particular, every pattern
of length t should appear roughly a 1{qt fraction of the time (or the code is very “biased,” in
which case a separate argument bounds its size).

To analyze this subcode C1 we apply a double-counting argument to the average radius (see
[46, Definition 10]) to cover L-subsets (where for list-recoverability, this radius is measured via
the distance to a tuple of input lists). The lower bound on this quantity follows quite naturally
from the list-decodability/-recoverability of the code, together with the “balancedness” of
the subcode. For the upper bound, we compute the radius of an L-subset in terms of the
empirical distribution of a coordinate k P rns, i.e., each x P rqs is assigned probability mass
Pkpxq “

1
M

ř

xPC1 1txk “ xu. By the Schur convexity of the function fq,L,ℓ and the convexity
of the univariate function gq,L,ℓ, we can bound this in terms of a distribution placing total
mass w ď

q´ℓ
q on the last ℓ elements of rqs and mass 1´w

q´ℓ on each of the others. The result
then follows.

We remark that, due to our use of Ramsey-theoretic arguments, the precise bound we
obtain on the code size is quite poor. We have made no effort to optimize this constant.
However, we do believe it would be interesting to improve this bound; we discuss this further
in Section 4.

Elias-Bassalygo-style bound. After deriving this Plotkin bound, a well-known argument
template (typically attributed to Elias and Bassalygo [4]) allows one to derive more general
tradeoffs between the rate R and the noise-resilience parameters pp, ℓ, Lqq. Informally, this
proceeds by covering the space rqsn by a bounded number of list-recovery balls. The radius
of these balls is carefully chosen to allow one to apply the Plotkin bound to the subcodes
obtained by taking the intersection of the code with these balls. On the other hand, the
number of list-recovery balls needed to cover rqsn, known as the covering number, can be
sharply estimated. From the above two bounds (the Plotkin bound and the covering number),
a bound on the size of the whole code can be derived.

Possibility result: random code with expurgation. To complement the Plotkin bound, we
show that if the decoding radius p is less than p˚pq, ℓ, Lq then there exist infinite families of
pp, ℓ, Lqq-list-recoverable q-ary codes. This justifies our “zero-rate threshold” terminology for
p˚pq, ℓ, Lq. The argument is completely standard, obtained by sampling a random code and
subsequently expurgating codewords to destroy all size-L lists that can fit into Hamming
balls of radius np. In fact, the lower bound on achievable rate is derived from the exact large
deviation exponent of a certain quantity known as the average radius (cf. [46, Definition
12]) of a tuple of random vectors. Therefore the bound holds under a stronger notion called
average-radius list-recovery: namely, for any subset of L codewords x1, . . . , xj and any tuple
of input lists pY1, . . . , Ynq, we have

L
ÿ

j“1
|ti P rns : xj,i R Yiu| ą Lpn .

ICALP 2023

99:6 Zero-Rate Thresholds

1.2 Discussion on related work
Lower bounds for small q and/or L. For the case of pp, 3q2-list-decoding, it was shown in
[26, Theorem 6.1] that the threshold rate7 of random binary linear codes equals

1
2 p2 ´ H2p3pq ´ 3p log2p3qq. (2)

The term threshold refers to the critical rate below which a random binary linear code is
pp, 3q2-list-decodable with high probability and above which it is not with high probability.
This result was recently extended to the following two cases [45]. For pp, 4q2-list-decoding,
the threshold rate of random binary linear code is lower bounded by [45, Theorem 1.3]

1
3 min

x1,x2ě0
x1`2x2ď4p

x1`x2ď1

3 ´ η2px1, x2q ´ 2x1 ´ x2 log2p3q. (3)

Here we use the notation

ηqpx1, . . . , xtq :“
t
ÿ

i“1
xi logq

1
xi

`

˜

1 ´

t
ÿ

i“1
xi

¸

logq

1
1 ´

řt
i“1 xi

for a partial probability vector px1, . . . , xtq P Rt
ě0 satisfying t ď q and x1 ` ¨ ¨ ¨ ` xt ď 1.

Note that η2pxq “ H2pxq, however, this is no longer the case for q ą 2. Moreover, for
pp, 3qq-list-decoding, [45, Theorem 1.5] showed that the threshold rate of random linear code
is at least

1
2 min

x1,x2ě0
x1`2x2ď3p

x1`x2ď1

2 ´ ηqpx1, x2q ´ x1 logqp3pq ´ 1qq ´ x2 logqpq ´ 1qpq ´ 2q. (4)

Our general lower bound (cf. Theorem 14) for list-recovery (numerically) matches Equa-
tions (2)–(4) upon particularizing the parameters q, ℓ, L suitably. See Figures 1a–1c. It is
possible to analytically prove this observation, though we do not pursue it in the current
paper. The rationale underlying this phenomenon is that the threshold rate of random
linear codes for list-recovery is expected to match the rate achieved by random codes with
expurgation (with the notable exception of zero-error list-recovery [25]). This conjecture, in
its full generality, remains unproved, although it is partially justified in several recent works
[40, 25, 26, 45].

Hash codes. One may note that for ℓ ě 2, our upper and lower bounds typically exhibit a
large gap even at p “ 0. See Figures 1e–1h. We provide evidence below indicating that closing
this gap is in general a rather challenging task and necessarily requires significantly new
ideas. Let us focus on the vertical axis p “ 0, known as zero-error list-recovery. We observe
that some configurations of q, ℓ, L in this regime encode several longstanding open questions
in combinatorics. Indeed, consider ℓ “ q ´ 1, L “ q. The p0, q ´ 1, qqq-list recoverability
condition can then be written as: for any Y1, ¨ ¨ ¨ , Yn P

`

rqs
q´1

˘

,

|tx P C : |tj P rns : xj R Yju| “ 0u| ď L ´ 1,

7 We warn the reader not not to confuse this concept with that of the zero-rate threshold.

N. Resch, C. Yuan, and Y. Zhang 99:7

i.e.,

|tx P C : @j P rns, xj P Yju| ď L ´ 1.

Taking the contrapositive, we note that this condition is further equivalent to: for any
tx1, ¨ ¨ ¨ , xLu P

`C
L

˘

, there exists j P rns such that |tx1,j , ¨ ¨ ¨ , xL,ju| “ q. In words, for any
q-tuple of codewords in a p0, q ´ 1, qqq-list-recoverable code, there must exist one coordinate
such that the corresponding q-ary symbols in the tuple are all distinct. Such a code is
also known as a q-hashing in combinatorics. It is well-known [18, 35] that a probabilistic
construction yields such codes of rate8 at least

Cp0,q´1,qqq
ě

1
q ´ 1 logq

1
1 ´

q!
qq

. (5)

In the same paper [18] also proved an upper bound

Cp0,q´1,qqq
ď

q!
qq´1 logqp2q. (6)

Another upper bound

Cp0,q´1,qqq
ď logq

q

q ´ 1 (7)

can be proved using either a double-counting argument (a.k.a. first moment method), or
(hyper)graph entropy [35, 36, 34]. Equation (6) is much better than Equation (7) for q ě 4.
However, the latter bound log3

3
2 remains the best known for q “ 3 (called the trifference

problem by Körner). For larger q, both lower [51] and upper bounds [2, 11, 27, 10, 12] can be
improved. However, improving the bound for q “ 3 is recognized as a formidable challenge.
We will show in [46, Remark 9] that our lower bound for list-recovery (cf. Theorem 14)
recovers Equation (5) for q-hashing upon setting ℓ “ q ´ 1, L “ q. Furthermore, our upper
bound Theorem 16 recovers Equation (7) for q-hashing (cf. [46, Remark 7]).

A generalization of q-hashing known as pq, Lq-hashing (q ě L) can also be cast as zero-error
list-recoverable codes with more general values of ℓ, L. Indeed, taking L “ ℓ`1 and ℓ ď q´1,
we can write p0, ℓ, ℓ ` 1qq-list-recoverability alternatively as: for any tx1, ¨ ¨ ¨ , xℓ`1u P

` C
ℓ`1

˘

,
there exists j P rns such that |tx1,j , ¨ ¨ ¨ , xℓ`1,ju| “ ℓ`1. This is in turn the precise definition
of pq, ℓ ` 1q-hashing. It can be immediately seen that pq, qq-hashing is nothing but q-hashing.
The upper and lower bounds in [18] also extend to pq, ℓ ` 1q-hashing and read as follows:

1
ℓ

logq

1

1 ´
p q

ℓ`1qpℓ`1q!
qℓ`1

ď Cp0,ℓ,ℓ`1qq
ď

`

q
ℓ

˘

ℓ!
qℓ

logqpq ´ ℓ ` 1q. (8)

Our lower bound for list-recovery in Theorem 14 also recovers the above lower bound for
pq, ℓ ` 1q-hashing by [18] upon setting L “ ℓ ` 1 (see [46, Remark 8]). The upper bound was
later improved in [36] for q ą L using the notion of hypergraph entropy:

Cp0,ℓ,ℓ`1qq
ď min

0ďjďℓ´1

`

q
j`1

˘

pj ` 1q!
qj`1 logq

q ´ j

ℓ ´ j
, (9)

though it coincides with Equation (6) when ℓ “ q ´ 1. Some improved upper bounds in
[27, 12] apply to pq, ℓ` 1q-hashing as well. To the best of our knowledge, no improvement on
lower bounds is known for ℓ ă q ´ 1.

8 The bounds in [36, 18] are slightly adjusted so that they are consistent with our definition of code rate
which adopts a logq normalization (cf. [46, Definition 6]).

ICALP 2023

99:8 Zero-Rate Thresholds

Zero-rate thresholds for general adversarial channels. The problem of locating the zero-
rate threshold has been addressed in a much more general context [52]. The results in [52]
on general adversarial channel model can be specialized to the list-recovery setting and read
as follows. Given q, p, ℓ, L, define the confusability set Kpp,ℓ,Lqq

as the set of types9 (cf. [46,
Definition 15]) of all “confusable” L-tuple of codewords in the sense that they can fit into a
certain list-recovery ball (cf. [46, Definition 3]) of radius np. Specifically,

Kpp,ℓ,Lqq
:“

$

’

’

’

&

’

’

’

%

ÿ

YPp
rqs
ℓ q

PX1,¨¨¨ ,XL,Y “Y P ∆
´

rqsL
¯

:

PX1,¨¨¨ ,XL,Y P ∆
´

rqsL ˆ
`

rqs

ℓ

˘

¯

@i P rLs,
ÿ

px,YqPrqsˆp
rqs
ℓ q

xRY

PXi,Y px, Yq ď p

,

/

/

/

.

/

/

/

-

.

In the above definition, we use the notation
ř

b PA,B“b to denote the marginalization of PA,B

onto the first variable A, and use PXi,Y to denote the marginal of PX1,¨¨¨ ,Xi,Y on pXi, Y q.
It is not hard to verify that the confusability set is piq “increasing” in p in the sense that
Kpp,ℓ,Lqq

Ă Kpp1,ℓ,Lqq
if p ď p1, and piiq convex. Define also the convex cone of completely

positive (CP) tensors of order L, i.e., tensors that can be written as a sum of element-wise
non-negative rank-one tensors:

CPbL
q :“

#

k
ÿ

i“1
pbL

i P pR
q
ě0q

bL : k P Zě1, pp1, ¨ ¨ ¨ , pkq P pR
q
ě0q

k

+

.

It is proved in [52] that the zero-rate threshold p˚pq, ℓ, Lq can be expressed as the smallest p

such that all completely positive distributions are confusable:

p˚pq, ℓ, Lq “ inf
!

p P r0, 1s : CPbL
q X ∆prqsLq Ă Kpp,ℓ,Lqq

)

. (10)

The above characterization is single-letter in the sense that it is independent of the blocklength
n. For q, ℓ, L independent of n (which is assumed to be the case in the current paper),
the optimization problem on the RHS of Equation (10) can be solved in constant time.
However, it does not immediately provide an explicit formula of p˚pq, ℓ, Lq and analytically
solving the optimization problem does not appear easy to the authors. On the other hand,
the characterization p˚pq, ℓ, Lq “ 1 ´ 1

LE rplℓpX1, ¨ ¨ ¨ , XLqs (where the expectation is over
pX1, ¨ ¨ ¨ , XLq „ UnifprqsqbL, cf. Equation (1)) in this paper can be seen as the explicit
solution to the optimization problem, though the way it is obtained is not by solving the
latter problem per se. Instead, we prove the characterization from the first principle by
leveraging specific structures of list-recovery. We hope that our characterization can shed
light on the geometry of the high-dimensional polytopes – the confusability set and the set
of CP distributions – involved in the characterization in Equation (10).

1.3 Organization

We state our main results in Section 2. We discuss the flaw in Blinovsky’s proof in Section 3.
We summarize our results and state open problems in Section 4. Additional notation,
definitions, preliminary results and missing proofs can be found in [46].

9 More precisely, the confusability set is the closure of the set of types of all confusable codeword tuples,
since types are dense in distributions.

N. Resch, C. Yuan, and Y. Zhang 99:9

2 Main results

2.1 q-ary list-decoding
Define fq,L : ∆prqsq Ñ Rě0 as

fq,LpP q :“ E
pX1,...,XLq„PbL

rplpX1, . . . , XLqs (11)

for P P ∆prqsq.
For w P r0, 1s, let Pq,w P ∆prqsq denote the following probability vector:

Pq,w :“
ˆ

w

q ´ 1 , . . . ,
w

q ´ 1 , 1 ´ w

˙

. (12)

Define gq,L : r0, 1s Ñ Rě0 as

gq,Lpwq :“ fq,LpPq,wq. (13)

▶ Definition 1 (Majorization). Let a, b P Rd. Let aÓ, bÓ
P Rd denote the vectors obtained by

sorting the elements in a and b in descending order, respectively. We say that a majorizes b,
written as a ľ b, if

k
ÿ

i“1
aÓ

i ě

k
ÿ

i“1
bÓi

for every k P rds, and
d
ÿ

i“1
ai “

d
ÿ

i“1
bi.

▶ Definition 2 (Schur convexity). A function f : Rd Ñ R is called Schur-convex if fpxq ě

fpyq for every x, y P Rd such that x ľ y (in the sense of Definition 1).

▶ Theorem 3 (Schur convexity of fq,L). For any q P Zě2 and L P Zě2, the function
fq,L : ∆prqsq Ñ Rě0 defined in Equation (11) is Schur convex.

Proof. See [46, Sec. 4]. ◀

▶ Theorem 4 (Convexity of gq,L). For any q P Zě2 and L P Zě2, the function gq,L : r0, 1s Ñ
Rě0 defined in Equation (13) is convex in the interval r0, pq ´ 1q{qs.

Proof. See [46, Sec. 5]. ◀

▶ Remark 5. In the binary case (i.e., q “ 2), understanding the functions f2,L and g2,L is an
easier task. In fact, f2,L collapses to a univariate function and coincides with g2,L. It can be
computed [8, Eqn. (2.15) and (2.16)] that for L “ 2k, 2k ` 1,

p˚p2, L; wq :“ 1 ´
1
L

g2,Lpwq “

k
ÿ

i“1

`2i´2
i´1

˘

i
pwp1 ´ wqqi,

and
B2

Bw2 p˚p2, L; wq “ ´k

ˆ

2k

k

˙

pwp1 ´ wqqk´1.

The concavity (see also [43, Lemma 8]) and monotonicity of p˚p2, L; wq immediately follow.
Such explicit computation cannot be performed in the q ą 2 case (and for list-recovery) and
we have to work with summations like in [46, Lemma 14]. Other approaches to arguing
monotonicity such as induction [1, Lemma 8(d)] do not seem to work well either for larger q.

ICALP 2023

99:10 Zero-Rate Thresholds

As convexity only holds in the interval r0, pq ´ 1q{qs, we will also require the following
monotonicity properties, which follow easily from the Schur convexity of fq,L.

▶ Lemma 6. For any q P Zě2 and L P Zě2, the function gq,L : r0, 1s Ñ Rě0 defined in
Equation (13) is non-increasing on r0, pq ´ 1q{qs and non-decreasing on rpq ´ 1q{q, 1s.

Proof. See [46, Appendix B]. ◀

Define

p˚pq, L; wq :“ 1 ´
1
L

gq,Lpwq. (14)

▶ Theorem 7 (Plotkin bound for q-ary list-decoding). Fix any q P Zě2 and L P Zě2. Let
C Ă rqsn be an arbitrary pp, Lqq-list-decodable code with p “ p˚

´

q, L; q´1
q

¯

` τ for any
constant τ P p0, 1q. Then there exists a constant M˚ “ M˚pq, L, τq independent of n such
that |C| ď M˚. As a consequence, in particular, we have

p˚pq, Lq ď p˚

ˆ

q, L; q ´ 1
q

˙

“ 1 ´
1
L

gq,L

ˆ

q ´ 1
q

˙

.

Proof. The proof of this theorem can be found in [46, Sec. 6]. Specifically, a theorem (cf.
[46, Theorem 16]) of the above kind will be first proved for approximately constant-weight
codes in which all codewords have approximately the same Hamming weight. This theorem
can then be used to prove Theorem 7 above (see [46, Corollary 18] for a more quantitative
version) by partitioning a general (weight-unconstrained) code into a constant number of
almost constant-weight subcodes. ◀

The upper bound on the zero-rate threshold in Theorem 7 is in fact sharp. It turns out
that positive rate pp, Lqq-list-decodable codes exist for any p strictly smaller than the bound
1 ´ 1

L gq,L

´

q´1
q

¯

in Theorem 7. Indeed, Blinovsky [6] proved the following lower bound on
the pp, Lqq-list-decoding capacity which remains the best known to date. It can also be
implied by our lower bound (Theorem 14 below) for list-recovery upon setting ℓ “ 1.

▶ Theorem 8 ([6, Sec. 2]). For any q P Zě2, L P Zě2 and 0 ď p ă p˚

´

q, L; q´1
q

¯

, the
following lower bound on the pp, Lqq-list-decoding capacity holds:

Cpp,Lqq
ě

L

L ´ 1 ´
1

L ´ 1

$

&

%

λ˚p ` logq

»

–

ÿ

aPAq,L

ˆ

L

a

˙

expq

ˆ

´λ˚

ˆ

1 ´
1
L

max tau

˙˙

fi

fl

,

.

-

,

where λ˚ “ λ˚pq, L, pq is the solution to the following equation

p “

ř

aPAq,L

`

L
a

˘

expq

`

´λ˚

`

1 ´ 1
L max tau

˘˘ `

1 ´ 1
L max tau

˘

ř

aPAq,L

`

L
a

˘

expq

`

´λ˚

`

1 ´ 1
L max tau

˘˘ .

Blinovsky’s lower bound is plotted in Figure 1d. It is not hard to verify that the lower bound
above vanishes at

p “ q´L
ÿ

aPAq,L

ˆ

L

a

˙ˆ

1 ´
1
L

maxtau
˙

,

and the corresponding λ˚ equals 0.
Theorems 7 and 8 together pin down the exact value of p˚pq, Lq shown in the following

corollary.

N. Resch, C. Yuan, and Y. Zhang 99:11

▶ Corollary 9. For any q P Zě2 and L P Zě2, the zero-rate threshold p˚pq, Lq for pp, Lqq-
list-decoding is given by

p˚pq, Lq “ p˚

ˆ

q, L; q ´ 1
q

˙

“ 1 ´
1
L

gq,L

ˆ

q ´ 1
q

˙

“ q´L
ÿ

aPAq,L

ˆ

L

a

˙ˆ

1 ´
1
L

maxtau
˙

.

(15)

From now on, we will use p˚pq, Lq to denote the RHS of Equation (15).

▶ Theorem 10 (Elias–Bassalygo bound for q-ary list-decoding). Fix any q P Zě2, L P Zě2 and
0 ď p ă p˚pq, Lq. Then the pp, Lqq-list-decoding capacity can be upper bounded as Cpp,Lqq

ď

1 ´ Hqpwq,Lq where wq,L is the solution to the equation p˚pq, L; wq “ p in w P r0, pq ´ 1q{qs.

Proof. The above theorem is implied by [46, Theorem 19] proved in [46, Sec. 7]. The latter
theorem shows that for any pp, Lqq-list-decodable code C Ă rqsn with p ă p˚pq, Lq and any
sufficiently small constant τ ą 0, |C| is at most B ¨n1.5 ¨qnp1´Hqpwq,L,τ qq, where B “ Bpq, L, τq

is a constant and wq,L,τ is the solution to p˚pq, L; wq “ p ´ τ . Taking τ Ñ 0 and neglecting
polynomial factors, we obtain the upper bound on the list-decoding capacity. ◀

The above upper bound is plotted in Figure 1d.

2.2 List-recovery
Define fq,L,ℓ : ∆prqsq Ñ Rě0 as

fq,L,ℓpP q :“ E
pX1,...,XLqPPbL

rplℓpX1, . . . , XLqs (16)

for P P ∆prqsq. Define gq,L,ℓ : r0, 1s Ñ Rě0 as

gq,L,ℓpwq :“ fq,L,ℓpPq,ℓ,wq, (17)

where the distribution Pq,ℓ,w P ∆prqsq is defined as

Pq,ℓ,wpiq “

#

w
q´ℓ , 1 ď i ď q ´ ℓ
1´w

ℓ , q ´ ℓ ` 1 ď i ď q
. (18)

▶ Theorem 11 (Schur convexity of fq,L,ℓ). For any q P Zě2, L P Zě2 and integer 1 ď ℓ ď q´1,
the function fq,L,ℓ : ∆prqsq Ñ Rě0 defined in Equation (16) is Schur convex.

Proof. See [46, Sec. 8]. ◀

▶ Theorem 12 (Convexity of gq,L,ℓ). For any q P Zě2, L P Zě2 and integer 2 ď ℓ ď q´1, the
function gq,L,ℓ : ∆prqsq Ñ Rě0 defined in Equation (17) is convex in the interval w P r0, 1s.

Proof. See [46, Sec. 9]. ◀

Define

p˚pq, ℓ, L; wq :“ 1 ´
1
L

gq,L,ℓpwq. (19)

ICALP 2023

99:12 Zero-Rate Thresholds

▶ Theorem 13 (Plotkin bound for list-recovery). Fix any q P Zě2, L P Zě2 and integer 2 ď ℓ ď

q´1. Let C Ă rqsn be an arbitrary pp, ℓ, Lqq-list-recoverable code with p “ p˚

´

q, ℓ, L; q´ℓ
q

¯

`τ

for any constant τ P p0, 1q. Then there exists a constant M˚ “ M˚pq, ℓ, τq independent of n

such that |C| ď M˚. This implies, in particular,

p˚pq, ℓ, Lq ď p˚

ˆ

q, ℓ, L; q ´ ℓ

q

˙

“ 1 ´
1
L

gq,L,ℓ

ˆ

q ´ ℓ

q

˙

.

Proof. The proof structure is similar to that of Theorem 7. We first prove the analogous
the statement for almost constant-weight codes (in which all codewords have approximately
the same list-recovery weight) in [46, Theorem 20] and then pass to general codes by weight
partitioning (cf. [46, Corollary 21]). Since the technical proofs bear many similarities to
those in the list-decoding case, we only present proof sketches in [46, Sec. 10]. ◀

To complement Theorem 13, we prove in [46, Sec. 12] the following lower bound on
the pp, ℓ, Lqq-list-recovery capacity. To the best of our knowledge, this is the first bound
for list-recovery with q, ℓ, L all being constants (independent of p and n). We believe that
improving it likely requires novel techniques beyond expurgation.

▶ Theorem 14. For any q P Zě2, L P Zě2, integer 2 ď ℓ ď q ´ 1 and 0 ď p ă

p˚

´

q, ℓ, L; q´ℓ
q

¯

, the following lower bound on the pp, ℓ, Lqq-list-recovery capacity holds:

Cpp,ℓ,Lqq ě
L

L ´ 1 ´
1

L ´ 1

$

&

%

λ˚p ` logq

»

–

ÿ

aPAq,L

˜

L

a

¸

expq

ˆ

´λ˚

ˆ

1 ´
1
L

maxℓ tau

˙˙

fi

fl

,

.

-

,

where λ˚ “ λ˚pq, ℓ, L, pq is the solution to the following equation

p “

ř

aPAq,L

`

L
a

˘

expq

`

´λ˚

`

1 ´ 1
L maxℓ tau

˘˘ `

1 ´ 1
L maxℓ tau

˘

ř

aPAq,L

`

L
a

˘

expq

`

´λ˚

`

1 ´ 1
L maxℓ tau

˘˘ .

Similar to the list-decoding case (Theorem 8), the above lower bound vanishes at

p “ q´L
ÿ

aPAq,L

ˆ

L

a

˙ˆ

1 ´
1
L

maxℓtau

˙

,

and the corresponding λ˚ equals 0.
Theorems 13 and 14 jointly determine the value of p˚pq, ℓ, Lq shown in the corollary

below.

▶ Corollary 15. For any q P Zě2, L P Zě2 and integer 2 ď ℓ ď q ´ 1, the zero-rate threshold
p˚pq, ℓ, Lq for pp, ℓ, Lqq-list-recovery is given by

p˚pq, ℓ, Lq “ p˚

ˆ

q, ℓ, L; q ´ ℓ

q

˙

“ 1 ´
1
L

gq,L,ℓ

ˆ

q ´ ℓ

q

˙

“ q´L
ÿ

aPAq,L

ˆ

L

a

˙ˆ

1 ´
1
L

maxℓtau

˙

. (20)

From now on, we use p˚pq, ℓ, Lq to refer to the same quantity as the RHS of Equation (20).

▶ Theorem 16 (Elias–Bassalygo bound for list-recovery). Fix any q P Zě2, L P Zě2, integer
2 ď ℓ ď q ´ 1 and 0 ď p ă p˚pq, ℓ, Lq. Then the pp, ℓ, Lqq-list-recovery capacity can be
upper bounded as Cpp,ℓ,Lqq

ď 1 ´ Hq,ℓpwq,ℓ,Lq where wq,ℓ,L is the solution to the equation
p˚pq, ℓ, L; wq “ p in w P r0, pq ´ ℓq{qs.

N. Resch, C. Yuan, and Y. Zhang 99:13

Proof. Parallel to Theorem 10, the above theorem is immediately implied by a finite-
blocklength version [46, Theorem 22] (analogous to [46, Theorem 19]) whose full proof is
presented in [46, Sec. 11]. ◀

3 Discussion of Blinovsky’s results [6, 7]

As mentioned in Section 1, part of the motivation of this work is to fill in the gaps in the
proofs in [6, 7] for q-ary list-decoding. We discuss in detail below the issues therein. The main
result in [6] is a Plotkin bound (as our Theorem 7) for an arbitrary q-ary list-decodable code
C Ă rqsn. For the sake of brevity, we assume in the proceeding discussion that C is w-constant
weight. Additional bookkeeping is needed to handle small deviations in the weight, as we did
in the proof of [46, Theorem 16]. The skeleton of the proof in [6] follows Blinovsky’s proof in
the binary case [5] which we adopt here as well: piq pass to an (approximately) equi-coupled
subcode C1 “ tx1, ¨ ¨ ¨ , xMu Ă C using a Ramsey reduction; piiq handle asymmetric coupling
using Komlós’s argument (and its order-L generalization [9]); piiiq prove an upper bound
on the size M of the subcode C1 using a double-counting argument. In completing the
double-counting argument, one is required to upper bound the average radius (averaged over
all L-lists in the subcode) by the zero-rate threshold p˚pq, L; wq “ 1 ´ 1

L gq,Lpwq:

1
ML

ÿ

pi1,¨¨¨ ,iLqPrMsL

radpxi1 , ¨ ¨ ¨ , xiL
q “

n
ÿ

k“1

ˆ

1 ´
1
L

fq,LpPkq

˙

ď n

ˆ

1 ´
1
L

gq,Lpwq

˙

, (21)

where rad is defined in [46, Definition 10] and Pk P ∆prqsq is the empirical distribution of
the k-th column of C1 P rqsMˆn. The equality in Equation (21) is by elementary algebraic
manipulations (see [46, Eqn. (58)] for details). To show the inequality in Equation (21), we
need the following properties of the functions fq,L and gq,L:
1. For any P “ pp1, ¨ ¨ ¨ , pqq P ∆prqsq, we have fq,LpP q ě gq,Lp1´pqq. In words, uniformizing

P except one entry will only make fg,L no larger.
2. gq,L is convex as a univariate real-valued function on r0, pq ´ 1q{qs.
If these properties hold, one can deduce [46, Eqn. (59) and (61)] from which Equation (21)
follows. However, we observe that the proofs in [6, 7] for both properties above are problem-
atic.

To show Item 1 above, the idea in [6] is to show instead monotonicity of fq,L under the
so-called Robin Hood operation which averages two distinct entries of P . Specifically, [6]
attempts to show

fq,L pp1, ¨ ¨ ¨ , pi, ¨ ¨ ¨ , pj , ¨ ¨ ¨ , pqq ě fq,L

ˆ

p1, ¨ ¨ ¨ ,
pi ` pj

2 , ¨ ¨ ¨ ,
pi ` pj

2 , ¨ ¨ ¨ , pq

˙

, (22)

for any 1 ď i ă j ď q. This suffices since a sequence of Robin Hood operations can turn P

into Pq,1´pq
(defined in Equation (12)). [6] then proceeds to show Equation (22) by checking

the derivative of a certain function related to the Robin Hood operation. Specifically, fix
ppkqkPrqszti,ju and assume pi`pj “ c (or equivalently

ř

kPrqszti,ju pi “ 1´c) for some constant
0 ď c ď 1. Consider the function Fq,L : r0, cs Ñ R defined as:

Fq,Lppq “ fq,L pp1, ¨ ¨ ¨ , p, ¨ ¨ ¨ , c ´ p, ¨ ¨ ¨ , pqq ,

i.e., fq,L evaluated at P with pi “ p, pj “ c ´ p. The proof of Equation (22) is reduced to
proving F 1

q,Lppq ď 0 for p P r0, c{2s and F 1
q,Lppq ě 0 for p P rc{2, cs. If true, it implies that

fq,LpP q is minimized at pi “ pj “ c{2 with fixed ppkqkPrqszti,ju. However, we note that the

ICALP 2023

99:14 Zero-Rate Thresholds

0 0.1 0.2 0.30

0.2

0.4

0.6

0.8

1

p

R

[26], linear, threshold
[5], expurgated, lower bound
[5], upper bound

(a) q “ 2, ℓ “ 1, L “ 3 (list-decoding).

0 0.1 0.2 0.3 0.40

0.2

0.4

0.6

0.8

1

p

R

[45], linear, lower bound
[5], expurgated, lower bound
[5], upper bound

(b) q “ 2, ℓ “ 1, L “ 4 (list-decoding).

0 0.1 0.2 0.3 0.40

0.2

0.4

0.6

0.8

1

p

R

[45], linear, lower bound
[6], expurgated, lower bound
[6], upper bound

(c) q “ 3, ℓ “ 1, L “ 3 (list-decoding).

0 0.1 0.2 0.3 0.4 0.50

0.2

0.4

0.6

0.8

1

p

R

[6], expurgated, lower bound
This work Theorem 10, upper bound

(d) q “ 3, ℓ “ 1, L “ 4 (list-decoding).

0 0.02 0.04 0.06 0.08 0.10

0.2

0.4

p

R

This work Theorem 14, lower bound
This work Theorem 16, upper bound

(e) q “ 3, ℓ “ 2, L “ 3 (list-recovery, 3-hashing).

0 0.01 0.02 0.030

0.1

0.2

0.3

p

R

This work Theorem 14, lower bound
This work Theorem 16, upper bound

(f) q “ 4, ℓ “ 3, L “ 4 (list-recovery, 4-hashing).

0 0.05 0.1 0.150

0.2

0.4

0.6

p

R

This work Theorem 14, lower bound
This work Theorem 16, upper bound

(g) q “ 4, ℓ “ 2, L “ 3 (list-recovery, p4, 3q-hashing).

0 0.05 0.1 0.150

0.2

0.4

p

R

This work Theorem 14, lower bound
This work Theorem 16, upper bound

(h) q “ 3, ℓ “ 2, L “ 5 (list-recovery).

Figure 1 Plots of upper and lower bounds in [5, 6, 26, 45] and this work for various values of
q ě 2, 1 ď ℓ ď q ´ 1, L ě 2.

N. Resch, C. Yuan, and Y. Zhang 99:15

expression of F 1
q,Lppq (see the second displayed equation on page 27 of [6]) is incorrect. Upon

correcting it, we do not see an easy way to argue its non-positivity/-negativity. In particular,
the claim in [6] that F 1

q,Lppq, as a sum of multiple terms, is term-wise non-positive/-negative
can be in general falsified by counterexamples.

The proof (attempt) of Item 2 is deferred to a subsequent paper [7]. The methodology
thereof is similar to ours, i.e., verifying g2

q,L ě 0. However, the expression of g2
q,L in [7] is not

exactly correct (see the first displayed equation on page 36 of [7] and compare it with ours in
[46, Eqn. (34)]10) and we have trouble verifying the case analysis of the values of Gp¨q (see
[46, Eqn. (35)] in our notation, denoted by γp¨q in [7]) following that expression.

In contrast to Blinovsky’s approach [6, 7], we deduce the monotonicity property of fq,L

(cf. Item 1 above) from a stronger property: Schur convexity (cf. Theorem 3). Also, we
believe that our proof of the convexity of gq,L (cf. Item 2 above) is cleaner, more transparent
and easier to verify. Both results can be extended to list-recovery setting. Another advantage
is that the monotonicity property of gq,L (specifically, gq,L is non-increasing in r0, pq ´ 1q{qs
and non-decreasing in rpq ´ 1q{q, 1s) which is needed in the proof of the Plotkin bound
appears to be a simple consequence of the Schur convexity of fq,L (see Lemma 6). In [7],
this is proved by checking the first derivative of gq,L which involves somewhat cumbersome
calculations and case analysis.

4 Conclusion

In this work, we addressed the basic question of determining the maximum achievable
decoding radius for positive rate list-recoverable codes, i.e., we pinned down the list-recovery
zero-rate threshold. We then adapted known techniques to show that codes correcting more
errors must in fact have constant size. Subsequently, we transferred this bound to give upper
bounds on the rate of list-recoverable codes for all values of decoding radius.

As we apply general Ramsey-theoretic tools in bounding the size of list-recoverable codes
in the zero-rate regime, our dependence on the corresponding parameters is quite poor, and
indeed, we made no efforts to optimize these constants. However, for list-decodable binary
codes in the zero-rate, a recent work of Alon, Bukh and Polyanskiy [1] derived new (and,
in some cases, tight) upper bounds on their size. Obtaining similarly improved size upper
bounds for q-ary list-decodable/-recoverable codes in the zero-rate regime therefore appears
to be a natural next step.

References
1 Noga Alon, Boris Bukh, and Yury Polyanskiy. List-decodable zero-rate codes. IEEE Transac-

tions on Information Theory, 65(3):1657–1667, 2018.
2 Erdal Arikan. Upper bound on the zero-error list-coding capacity. Information Theory, IEEE

Transactions on, 40:1237–1240, August 1994. doi:10.1109/18.335947.
3 László Babai, Lance Fortnow, Noam Nisan, and Avi Wigderson. BPP has subexponential time

simulations unless EXPTIME has publishable proofs. Comput. Complex., 3:307–318, 1993.
doi:10.1007/BF01275486.

4 L. A. Bassalygo. New upper bounds for error-correcting codes. Probl. of Info. Transm.,
1:32–35, 1965.

10 Note that the function considered in [7] is, in our notation, 1 ´
1
L gq,Lpwq instead of gq,Lpwq per se as

considered in Theorem 4.

ICALP 2023

https://doi.org/10.1109/18.335947
https://doi.org/10.1007/BF01275486

99:16 Zero-Rate Thresholds

5 Vladimir M Blinovsky. Bounds for codes in the case of list decoding of finite volume. Problems
of Information Transmission, 22:7–19, 1986.

6 Vladimir M Blinovsky. Code bounds for multiple packings over a nonbinary finite alphabet.
Problems of Information Transmission, 41:23–32, 2005.

7 Vladimir M Blinovsky. On the convexity of one coding-theory function. Problems of Information
Transmission, 44:34–39, 2008.

8 Volodia Blinovsky. Asymptotic combinatorial coding theory, volume 415 of The Kluwer
International Series in Engineering and Computer Science. Kluwer Academic Publishers,
Boston, MA, 1997. doi:10.1007/978-1-4615-6193-4.

9 Marco Bondaschi and Marco Dalai. A revisitation of low-rate bounds on the reliability function
of discrete memoryless channels for list decoding. IEEE Transactions on Information Theory,
68(5):2829–2838, 2022. doi:10.1109/TIT.2022.3145318.

10 Simone Costa and Marco Dalai. New bounds for perfect k-hashing. CoRR, abs/2002.11025,
2020. arXiv:2002.11025.

11 M. Dalai, V. G. Carnegie, and J. Radhakrishnan. An improved bound on the zero-error list-
decoding capacity of the 4/3 channel. In 2017 IEEE International Symposium on Information
Theory (ISIT), pages 1658–1662, June 2017. doi:10.1109/ISIT.2017.8006811.

12 Stefano Della Fiore, Simone Costa, and Marco Dalai. Improved bounds for (b, k)-hashing. IEEE
Transactions on Information Theory, 68(8):4983–4997, 2022. doi:10.1109/TIT.2022.3167608.

13 Philippe Delsarte. An algebraic approach to the association schemes of coding theory. Philips
Res. Rep. Suppl., 10:vi+–97, 1973.

14 Dean Doron, Dana Moshkovitz, Justin Oh, and David Zuckerman. Nearly optimal pseudoran-
domness from hardness. In 2020 IEEE 61st Annual Symposium on Foundations of Computer
Science (FOCS), pages 1057–1068. IEEE, 2020.

15 Dean Doron and Mary Wootters. High-probability list-recovery, and applications to heavy
hitters. In 49th International Colloquium on Automata, Languages, and Programming (ICALP
2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

16 Peter Elias. List decoding for noisy channels. Wescon Convention Record, Part 2, pages
94–104, 1957.

17 Peter Elias. Error-correcting codes for list decoding. IEEE Transactions on Information
Theory, 37(1):5–12, 1991.

18 M. Fredman and J. Komlós. On the size of separating systems and families of perfect hash
functions. SIAM Journal on Algebraic Discrete Methods, 5(1):61–68, 1984. doi:10.1137/
0605009.

19 Edgar N Gilbert. A comparison of signalling alphabets. The Bell System Technical Journal,
31(3):504–522, 1952.

20 Oded Goldreich and Leonid A Levin. A hard-core predicate for all one-way functions. In
Proceedings of the 21st Annual ACM Symposium on Theory of Computing (STOC), pages
25–32. ACM, 1989.

21 Venkatesan Guruswami and Piotr Indyk. Expander-based constructions of efficiently decodable
codes. In 42nd Annual Symposium on Foundations of Computer Science, FOCS 2001, 14-
17 October 2001, Las Vegas, Nevada, USA, pages 658–667, 2001. doi:10.1109/SFCS.2001.
959942.

22 Venkatesan Guruswami and Piotr Indyk. Near-optimal linear-time codes for unique decoding
and new list-decodable codes over smaller alphabets. In Proceedings of the thiry-fourth annual
ACM symposium on Theory of computing, pages 812–821, 2002.

23 Venkatesan Guruswami and Piotr Indyk. Linear time encodable and list decodable codes. In
Proceedings of the thirty-fifth annual ACM symposium on Theory of computing, pages 126–135,
2003.

24 Venkatesan Guruswami and Piotr Indyk. Efficiently decodable codes meeting gilbert-varshamov
bound for low rates. In SODA, volume 4, pages 756–757. Citeseer, 2004.

https://doi.org/10.1007/978-1-4615-6193-4
https://doi.org/10.1109/TIT.2022.3145318
https://arxiv.org/abs/2002.11025
https://doi.org/10.1109/ISIT.2017.8006811
https://doi.org/10.1109/TIT.2022.3167608
https://doi.org/10.1137/0605009
https://doi.org/10.1137/0605009
https://doi.org/10.1109/SFCS.2001.959942
https://doi.org/10.1109/SFCS.2001.959942

N. Resch, C. Yuan, and Y. Zhang 99:17

25 Venkatesan Guruswami, Ray Li, Jonathan Mosheiff, Nicolas Resch, Shashwat Silas, and
Mary Wootters. Bounds for list-decoding and list-recovery of random linear codes. IEEE
Transactions on Information Theory, 68(2):923–939, 2022. doi:10.1109/TIT.2021.3127126.

26 Venkatesan Guruswami, Jonathan Mosheiff, Nicolas Resch, Shashwat Silas, and Mary Wootters.
Threshold rates for properties of random codes. IEEE Transactions on Information Theory,
68(2):905–922, 2022. doi:10.1109/TIT.2021.3123497.

27 Venkatesan Guruswami and Andrii Riazanov. Beating Fredman-Komlós for Perfect k-Hashing.
In 46th International Colloquium on Automata, Languages, and Programming (ICALP 2019),
volume 132, pages 92:1–92:14, Dagstuhl, Germany, 2019. doi:10.4230/LIPIcs.ICALP.2019.
92.

28 Venkatesan Guruswami, Atri Rudra, and Madhu Sudan. Essential coding theory, January 31,
2022. Draft available at https://cse.buffalo.edu/faculty/atri/courses/coding-theory/
book/web-coding-book.pdf.

29 Venkatesan Guruswami, Christopher Umans, and Salil Vadhan. Unbalanced expanders and
randomness extractors from parvaresh–vardy codes. Journal of the ACM (JACM), 56(4):1–34,
2009.

30 Iftach Haitner, Yuval Ishai, Eran Omri, and Ronen Shaltiel. Parallel hashing via list recover-
ability. In Annual Cryptology Conference, pages 173–190. Springer, 2015.

31 Justin Holmgren, Alex Lombardi, and Ron D Rothblum. Fiat–shamir via list-recoverable
codes (or: parallel repetition of gmw is not zero-knowledge). In Proceedings of the 53rd Annual
ACM SIGACT Symposium on Theory of Computing, pages 750–760, 2021.

32 Piotr Indyk, Hung Q Ngo, and Atri Rudra. Efficiently decodable non-adaptive group testing.
In Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete Algorithms, pages
1126–1142. SIAM, 2010.

33 Jeffrey C Jackson. An efficient membership-query algorithm for learning DNF with respect to
the uniform distribution. Journal of Computer and System Sciences, 55(3):414–440, 1997.

34 J. Körner. Coding of an information source having ambiguous alphabet and the entropy of
graphs. In Transactions of the Sixth Prague Conference on Information Theory, Statistical
Decision Functions, Random Processes (Tech Univ., Prague, 1971; dedicated to the memory
of Antonín Špaček), pages 411–425. Academia, Prague, 1973.

35 J. Körner. Fredman-komlós bounds and information theory. SIAM Journal on Algebraic
Discrete Methods, pages 560–570, 1986.

36 J. Körner and K. Marton. New bounds for perfect hashing via information theory. European
Journal of Combinatorics, 9(6):523–530, 1988. doi:10.1016/S0195-6698(88)80048-9.

37 Eyal Kushilevitz and Yishay Mansour. Learning decision trees using the Fourier spectrum.
SIAM Journal on Computing, 22(6):1331–1348, 1993.

38 Richard J Lipton. Efficient checking of computations. In Proceedings of the 7th Annual
Symposium on Theoretical Aspects of Computer Science (STACS), pages 207–215. Springer,
1990.

39 Robert J. McEliece, Eugene R. Rodemich, Howard Rumsey, Jr., and Lloyd R. Welch. New
upper bounds on the rate of a code via the Delsarte-MacWilliams inequalities. IEEE Trans.
Inform. Theory, IT-23(2):157–166, 1977. doi:10.1109/tit.1977.1055688.

40 Jonathan Mosheiff, Nicolas Resch, Noga Ron-Zewi, Shashwat Silas, and Mary Wootters. LDPC
codes achieve list decoding capacity. In 2020 IEEE 61st Annual Symposium on Foundations
of Computer Science, pages 458–469. IEEE Computer Soc., Los Alamitos, CA, [2020] ©2020.
doi:10.1109/FOCS46700.2020.00050.

41 Hung Q Ngo, Ely Porat, and Atri Rudra. Efficiently decodable error-correcting list dis-
junct matrices and applications. In International Colloquium on Automata, Languages, and
Programming, pages 557–568. Springer, 2011.

42 Morris Plotkin. Binary codes with specified minimum distance. IRE Transactions on Infor-
mation Theory, 6(4):445–450, 1960.

ICALP 2023

https://doi.org/10.1109/TIT.2021.3127126
https://doi.org/10.1109/TIT.2021.3123497
https://doi.org/10.4230/LIPIcs.ICALP.2019.92
https://doi.org/10.4230/LIPIcs.ICALP.2019.92
https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book/web-coding-book.pdf
https://cse.buffalo.edu/faculty/atri/courses/coding-theory/book/web-coding-book.pdf
https://doi.org/10.1016/S0195-6698(88)80048-9
https://doi.org/10.1109/tit.1977.1055688
https://doi.org/10.1109/FOCS46700.2020.00050

99:18 Zero-Rate Thresholds

43 Yury Polyanskiy. Upper bound on list-decoding radius of binary codes. IEEE Transactions on
Information Theory, 62(3):1119–1128, 2016.

44 Nicolas Resch. List-decodable codes:(randomized) constructions and applications. School
Comput. Sci., Carnegie Mellon Univ., Pittsburgh, PA, USA, Tech. Rep., CMU-CS-20-113,
2020.

45 Nicolas Resch and Chen Yuan. Threshold rates of code ensembles: Linear is best. In Mikolaj
Bojanczyk, Emanuela Merelli, and David P. Woodruff, editors, 49th International Colloquium
on Automata, Languages, and Programming, ICALP 2022, July 4-8, 2022, Paris, France,
volume 229 of LIPIcs, pages 104:1–104:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2022. doi:10.4230/LIPIcs.ICALP.2022.104.

46 Nicolas Resch, Chen Yuan, and Yihan Zhang. Zero-rate thresholds and new capacity bounds
for list-decoding and list-recovery. CoRR, abs/2210.07754, 2022. doi:10.48550/arXiv.2210.
07754.

47 Madhu Sudan, Luca Trevisan, and Salil Vadhan. Pseudorandom generators without the XOR
lemma. Journal of Computer and System Sciences, 62(2):236–266, 2001.

48 RR Varshamov. Estimate of the number of signals in error correcting codes. Docklady Akad.
Nauk, SSSR, 117:739–741, 1957.

49 Lloyd R. Welch, Robert J. McEliece, and Howard Rumsey, Jr. A low-rate improvement on
the Elias bound. IEEE Trans. Inform. Theory, IT-20:676–678, 1974. doi:10.1109/tit.1974.
1055279.

50 Jack Wozencraft. List decoding. Quarter Progress Report, 48:90–95, 1958.
51 Chaoping Xing and Chen Yuan. Beating the probabilistic lower bound on perfect hashing. In

Dániel Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 33–41. SIAM, 2021. doi:
10.1137/1.9781611976465.3.

52 Yihan Zhang, Amitalok J. Budkuley, and Sidharth Jaggi. Generalized List Decoding. In
Thomas Vidick, editor, 11th Innovations in Theoretical Computer Science Conference (ITCS
2020), volume 151 of Leibniz International Proceedings in Informatics (LIPIcs), pages 51:1–
51:83, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:
10.4230/LIPIcs.ITCS.2020.51.

https://doi.org/10.4230/LIPIcs.ICALP.2022.104
https://doi.org/10.48550/arXiv.2210.07754
https://doi.org/10.48550/arXiv.2210.07754
https://doi.org/10.1109/tit.1974.1055279
https://doi.org/10.1109/tit.1974.1055279
https://doi.org/10.1137/1.9781611976465.3
https://doi.org/10.1137/1.9781611976465.3
https://doi.org/10.4230/LIPIcs.ITCS.2020.51
https://doi.org/10.4230/LIPIcs.ITCS.2020.51

Convergence of the Number of Period Sets in
Strings
Eric Rivals # Ñ

LIRMM, Université Montpellier, CNRS, France

Michelle Sweering # Ñ

CWI, Amsterdam, The Netherlands

Pengfei Wang # Ñ

LIRMM, Université Montpellier, CNRS, France

Abstract
Consider words of length n. The set of all periods of a word of length n is a subset of {0, 1, 2, . . . , n−1}.
However, any subset of {0, 1, 2, . . . , n − 1} is not necessarily a valid set of periods. In a seminal paper
in 1981, Guibas and Odlyzko proposed to encode the set of periods of a word into an n long binary
string, called an autocorrelation, where a one at position i denotes the period i. They considered
the question of recognizing a valid period set, and also studied the number of valid period sets
for strings of length n, denoted κn. They conjectured that ln(κn) asymptotically converges to a
constant times ln2(n). Although improved lower bounds for ln(κn)/ ln2(n) were proposed in 2001,
the question of a tight upper bound has remained open since Guibas and Odlyzko’s paper. Here, we
exhibit an upper bound for this fraction, which implies its convergence and closes this longstanding
conjecture. Moreover, we extend our result to find similar bounds for the number of correlations: a
generalization of autocorrelations which encodes the overlaps between two strings.

2012 ACM Subject Classification Mathematics of computing → Discrete mathematics

Keywords and phrases Autocorrelation, period, border, combinatorics, correlation, periodicity, upper
bound, asymptotic convergence

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.100

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2209.08926
Full Version: https://hal-lirmm.ccsd.cnrs.fr/lirmm-03780386

Funding Eric Rivals: European Union’s Horizon 2020 research and innovation programme under
the Marie Sklodowska-Curie grant agreement No 956229.
Michelle Sweering: The Netherlands Organisation for Scientific Research (NWO) through Gravitation-
grant NETWORKS-024.002.003.
Pengfei Wang: European Union’s Horizon 2020 research and innovation programme under the Marie
Sklodowska-Curie grant agreement No 956229.

1 Introduction

A linear word can overlap itself if one of its prefixes is equal to one of its suffixes. The
corresponding prefix (or suffix) is called a border and the shift needed to match the prefix
to the suffix is called a period. The dual notions of period and border are critical concepts
in word combinatorics: important definitions such as periodic and primitive words, or the
normal form of a word rely on them. These concepts play a role in key results of the field like
the Critical Factorization Theorem [14]. In computer science, in the field of string algorithms
(a.k.a. stringology), pattern matching algorithms heavily exploit borders/periods to optimize
the search of occurrences of a word in a text [21]. For clarity, note that the terms word and

EA
T
C
S

© Eric Rivals, Michelle Sweering, and Pengfei Wang;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 100; pp. 100:1–100:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:rivals@lirmm.fr
https://www.lirmm.fr/~rivals
https://orcid.org/0000-0003-3791-3973
mailto:michelle.sweering@cwi.nl
https://www.cwi.nl/en/people/michelle-sweering/
https://orcid.org/0000-0003-1200-6015
mailto:pengfei.wang@lirmm.fr
https://www.lirmm.fr/~rivals/authors/pengfei-wang/
https://orcid.org/0000-0001-8172-5270
https://doi.org/10.4230/LIPIcs.ICALP.2023.100
https://arxiv.org/abs/2209.08926
https://hal-lirmm.ccsd.cnrs.fr/lirmm-03780386
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

100:2 Convergence of the Number of Period Sets in Strings

string both mean a sequence of letters taken from an alphabet. These notions also play a
role in statistics. The set of periods of a word controls how two occurrences of the same word
can overlap in a text. Hence, the set of periods (or autocorrelation) is a key variable to study
the statistics of word occurrences in random texts (waiting time, distance between successive
occurrences, etc.) [19]. The notion of autocorrelation has been extended to describe how two
distinct words can have overlapping occurrences in the same text. This has been used for
instance to study the number of missing words in random texts [16] or to design procedures
for testing pseudo-random number generators [15].

An autocorrelation is a binary vector representing the set of periods of a word. The
concept of autocorrelation was introduced by Guibas and Odlyzko in [10]. They gave a
characterization of autocorrelations and proved the following bounds on κn - the cardinality
of the set Γn of autocorrelations of words of length n.

1
2 ln(2) + o(1) ≤ ln(κn)

ln2(n)
≤ 1

2 ln(3/2) + o(1)

They conjectured that ln(κn) is asymptotic to a constant times ln2(n). Rivals and Rah-
mann [18], later on studied the combinatorial structure of the set of autocorrelations Γn, and
improved the lower bound on κn as follows:

ln(κn)
ln2(n)

≥ 1
2 ln(2)

(
1 − ln(ln(n))

ln(n)

)2
+ 0.4139

ln(n) − 1.47123 ln(ln(n))
ln2(n)

+ O

(
1

ln2(n)

)
.

However, to date, no one has focused on improving the upper bound on κn. In this work, we
apply the notion of irreducible period sets introduced by Rivals and Rahmann [17, 18] to
prove that

ln(κn)
ln2(n)

≤ 1
2 ln(2) + 3

2 ln(n) ∀n ∈ N≥2.

Together with known asymptotic lower bounds [18], we find that

ln κn

ln2(n)
→ 1

2 ln(2) as n → ∞,

thus resolving the conjecture of Guibas and Odlyzko.
In their paper about autocorrelations [10], Guibas and Odlyzko also introduced the

notion of correlation between words. For two words u and v, the correlation of u over v is a
binary vector indicating all overlaps between suffixes of u and prefixes of v. In particular,
an autocorrelation is the correlation of a word with itself. We show that the number
of correlations between two words of length n, denoted by δn, has the same asymptotic
convergence behaviour as the number of autocorrelations of words of length n, that is

ln δn

ln2(n)
→ 1

2 ln(2) as n → ∞.

1.1 Related works
Apart from previously cited articles that deal with the combinatorics of period sets, some
related works exist in the literature.

For instance, the question of the average period of a random word has been investigated
in [13]. Clearly, the number of periods of a word of length n lies between one and n. A recent
work exhibits an upper bound on the number of periods of a word as a function of its initial

E. Rivals, M. Sweering, and P. Wang 100:3

critical exponent – a characteristic of the word related to its degree of periodicity [9], but this
has not been used to bound the number of period sets. Last, the combinatorics of period sets
has also been investigated in depth for a generalization of the notion of words, called partial
words [6]. In partial words, some positions may contain a don’t care symbol, which removes
some constraints of equality between positions. To study the combinatorics of period sets,
Blanchet-Sadri et al. defined weak and strong periods, and proved several important theorems
[4], including lower and upper bounds on the number of binary and ternary autocorrelations
[6, 5]. However, the cardinality of the family of period sets differs between normal words
and partial words, and a tight upper bound for normal words cannot be deduced from that
for partial words. Several works investigate sets of words with constraints (either absence
or presence) on their mutual overlaps: mutually bordered (overlapping) pairs of words are
studied in [8], while methods for constructing a set of mutually unbordered words (also called
cross-bifix-free words) are provided in [3, 1, 2].

2 Preliminaries

A string u = u[0 . . n − 1] ∈ Σn is a sequence of n letters over a finite alphabet Σ. For any
0 ≤ i ≤ j ≤ n − 1, we denote the substring starting at position i and ending at position j

with u[i . . j]. In particular, u[0 . . j] denotes a prefix and u[i . . n−1] a suffix of u. Throughout
this paper, all our strings and vectors will be zero-indexed.

2.1 Periodicity
In this subsection, we define the concepts of period, period set, basic period, and autocorrel-
ation, and then review some useful results. For the sake of self-containment, we provide in
Appendix A the proofs for all lemmas of this subsection.

▶ Definition 1 (Period). String u = u[0 . . n − 1] has a period p ∈ {1, . . . , n − 1} if and only if
for any 0 ≤ i, j ≤ n − 1 such that i ≡ j mod p, we have u[i] = u[j]. Moreover, we consider
that p = 0 is a period of any string of length n.

An equivalent definition is the following.

▶ Definition 2 (Period). The string u = u[0 . . n − 1] has period p ∈ {0, 1, . . . , n − 1} if and
only if u[0 . . n − p − 1] = u[p . . n − 1], i.e. for all 0 ≤ i ≤ n − p − 1, we have u[i] = u[i + p].

The smallest non-zero period of u is called its basic period. The period set of a string u is
the set of all its periods and is denoted by P (u). We will now list some useful properties
about periods, which we will need later on. Their proofs can be found in [10, 14] and in
Appendix A.

▶ Lemma 3. Let p be a period of u ∈ Σn and k ∈ Z≥0 such that kp < n. Then kp is also a
period of u.

▶ Lemma 4. Let p be a period of u ∈ Σn and q a period of the suffix w = u[p . . n − 1].
Then (p + q) is a period of u. Moreover, (p + kq) is also a period of u for all k ∈ Z≥0 with
p + kq < n.

▶ Lemma 5. Let p, q be periods of u ∈ Σn with 0 ≤ q ≤ p. Then the prefix and the suffix of
length (n − q) have the period (p − q).

▶ Lemma 6. Suppose p is a period of u ∈ Σn and there exists a substring v of u of length at
least p and with period r, where r|p. Then r is also a period of u.

ICALP 2023

100:4 Convergence of the Number of Period Sets in Strings

Table 1 This table illustrates the set of period and the autocorrelation of the word u = abbaabba
of length 8. A first copy of the word u is shown on the second line. Another copy of u is displayed
on (each) line (3 + i) shifted by i positions to the right, with i going from 0 to 7. If the suffix of the
copy of u matches the prefix of the first copy u on line 2, then i is a period, and both the line and
the corresponding position/shift (on the first line) are colored in blue. The last column contains the
autocorrelation of u, with 1 bits corresponding to periods colored in blue.

pos. 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
u a b b a a b b a - - - - - - - s

u a b b a a b b a - - - - - - - 1
- a b b a a b b a - - - - - - 0
- - a b b a a b b a - - - - - 0
- - - a b b a a b b a - - - - 0
- - - - a b b a a b b a - - - 1
- - - - - a b b a a b b a - - 0
- - - - - - a b b a a b b a - 0
- - - - - - - a b b a a b b a 1

We will also use the famous Fine and Wilf theorem [7], a.k.a. the periodicity lemma, for
which a short proof was provided by Halava and colleagues [12].

▶ Theorem 7 (Fine and Wilf). Let p, q be periods of u ∈ Σn. If n ≥ p + q − gcd(p, q), then
gcd(p, q) is a period of u.

2.2 Autocorrelation
We now give a formal definition of an autocorrelation.

▶ Definition 8 (Autocorrelation). For every string u ∈ Σn, its autocorrelation is the string
s ∈ {0, 1}n such that

s[i] =
{

1 if i is a period of u

0 otherwise
∀i ∈ {0, . . . , n − 1}.

To illustrate this concept, consider the following example (detailed in Table 1).

▶ Example 9. We consider the word u = abbaabba of length 8. Its period set is P (u) =
{0, 4, 7}, its basic period is 4 and its autocorrelation is s = 10001001. See Table 1.

Guibas and Odlyzko [10] show that any alphabet of size at least two will give rise to
the same set of correlations (Corollary 5.1). Autocorrelations have many other useful
properties [10, 18]. The most significant one for our work is the following.

▶ Lemma 10 (Lemma 3.1 [10] and Theorem 1.3 [18]). If s ∈ {0, 1}n is an autocorrelation
and s[i] = 1, then s[i . . n − 1] is the autocorrelation of u[i . . n − 1]

Proof. Note that s[i] = 1 means: i is a period of u. Suppose s[i + j] = 1. Then i + j is a
period of u. Thus u[i . . n − 1] has period (i + j) − i = j by Lemma 5. Conversely, suppose
u[i . . n − 1] has period (i + j) − i = j. Then i + j is a period of u by Lemma 4. Thus
s[i + j] = 1. Combining these results, we find that s[i + j] = 1 if and only of j is a period of
u[i . . n − 1], and equivalently s[i . . n − 1] is the autocorrelation of u[i . . n − 1]. ◀

E. Rivals, M. Sweering, and P. Wang 100:5

2.3 Irreducible Period Set
To prove the upper bound on the number of autocorrelations, we use the notion of irreducible
period sets as introduced by Rivals and Rahmann [18]. An irreducible period set is the
minimum subset of a period set that determines the period set using the Forward Propagation
Rule. Before formally introducing the irreducible period set, we will first explain what forward
propagation is.

▶ Lemma 11 (Forward Propagation Rule). Let p ≤ q be periods of a string u of length n and
let k ∈ Z≥0 such that p + k(q − p) < n. Then p + k(q − p) is a period of u[0 . . n − 1].

Proof. It follows from Lemma 5 that u[p . . n − 1] has period (q − p). Applying Lemma 4 we
find that u[0 . . n − 1] has period p + k(q − p) for all k ∈ Z≥0. ◀

The forward closure FCn(S) of a set S ⊆ {0, . . . , n−1} (not necessarily a period set, typically
a subset of one) is the closure of S under the forward propagation rule.

▶ Definition 12 (Forward Closure). Let S ⊆ {0, . . . , n − 1}. Its forward closure FCn(S) is
the minimum superset of S such that for any p, q ∈ FCn(S) and k ≥ 0 with p ≤ q and
p + k(q − p) < n, we have

p + k(q − p) ∈ FCn(S).

We can now define the irreducible period set.

▶ Definition 13 (Irreducible Period Set). Let P be the period set of a string u ∈ Σn. An
irreducible period set of P is a minimal subset R(P) ⊆ P with forward closure P .

Observe that there exists an irreducible period set for any period set P , because FCn(P) = P

by the forward propagation rule. We will now give a useful characterization of an irreducible
period set as the set of periods which are not in the forward closure of the set of all smaller
periods. Consequently, every period set has exactly one irreducible period set, whose elements
we will call irreducible periods.

Recall that for a given length n, we denote the set of all period sets by Γn. Formally
stated Γn is defined as:

Γn = {S ⊆ {0, 1, . . . , n − 1} : ∃u ∈ Σn such that P (u) = S}.

As in [18], for a given length n, we denote the set of all irreducible period sets by Λn:

Λn = {T ⊆ {0, 1, . . . , n − 1} : ∃u ∈ Σn such that R(P (u)) = T}.

The bijective relation between period sets and irreducible period sets implies that |Γn| = |Λn|.

▶ Lemma 14. Let P be the period set of a string u ∈ Σn and R(P) an irreducible period set
of P . Then

R(P) = {q ∈ P | q ̸∈ FCn(P ∩ [0, q − 1])} .

Proof. Let p ∈ P . We will prove the two alternative cases separately:
(a) p ̸∈ {q ∈ P | q ̸∈ FCn(P ∩ [0, q − 1])} =⇒ p ̸∈ R(P) and
(b) p ∈ {q ∈ P | q ̸∈ FCn(P ∩ [0, q − 1])} =⇒ p ∈ R(P).

ICALP 2023

100:6 Convergence of the Number of Period Sets in Strings

(a) Suppose p ̸∈ {q ∈ P | q ̸∈ FCn(P ∩ [0, q − 1])}, or equivalently p ∈ FCn(P ∩ [0, p − 1]).
Then

p ∈ FCn(P ∩ [0, p − 1]) = FCn(FCn(R(P)) ∩ [0, p − 1])
⊆ FCn(FCn(R(P) ∩ [0, p − 1]))
= FCn(R(P) ∩ [0, p − 1])
⊆ FCn(R(P) \ {p}).

It follows that FCn(R(P) \ {p}) = FCn(R(P)). By minimality of irreducible period sets,
we have p ̸∈ R(P).

(b) Suppose on the other hand that p ̸∈ FCn(P ∩ [0, p − 1]). Then p ̸∈ FCn(P \ {p}) either.
As

FCn(P \ {p}) ⊇ FCn(R(P) \ {p}),

then p ̸∈ FCn(R(P) \ {p}). However, as p ∈ P and P = FCn(R(P)), it follows that
p ∈ R(P). ◀

3 Asymptotic convergence of κn

In this section, we present a new upper bound on κn, the number of distinct autocorrelations
of strings of length n. Moreover, we shall prove that ln(κn) asymptotically converges to
c · ln2(n), where c = 1

2 ln(2) .

▶ Theorem 15 (Upper bound on κn). For all n ∈ N≥2 we have

ln(κn)
ln2(n)

≤ 1
2 ln(2) + 3

2 ln(n) .

Proof. To prove this theorem, we need several lemmas.

▶ Lemma 16. Let u ∈ Σn with autocorrelation s, period set P , and irreducible period
set R(P) = {0 = a0 < . . . < ai < . . . < ak < n}. Then for all 0 ≤ i ≤ k, there exists
qi ∈ {1, . . . , n − ai} such that
1. qi ≤ n/2i, and
2. ai + qi = n or ai + qi is in the forward closure of {a0, . . . , ai}.

Proof. We will prove this by induction.

Basis. By picking q0 = n ∈ {1, . . . , n − a0}, we satisfy both q0 ≤ n/20 and a0 + q0 = n.

Hypothesis. For some 0 ≤ i < k, there exists a qi ∈ {1, . . . , n − ai} such that
1. qi ≤ n/2i, and
2. ai + qi = n or ai + qi is in the forward closure of {a0, . . . , ai}.

Step. We first note that if n − ai+1 ≤ n/2i+1, then we can pick qi+1 = n − ai+1. Suppose
on the other hand that n − ai+1 > n/2i+1. We distinguish two cases.

If ai + qi = n, then

ai+1 − ai = (n − ai) − (n − ai+1)
< n/2i − n/2i+1

= n/2i+1

< n − ai+1.

Thus, we can pick qi+1 = ai+1 − ai ∈ {1, . . . , n − ai+1}, since

E. Rivals, M. Sweering, and P. Wang 100:7

1. it satisfies qi+1 ≤ n/2i+1 and
2. ai+1 + qi+1 = ai + 2(ai+1 − ai) is in the forward closure of {a0, . . . , ai+1}.
If ai + qi is in the forward closure of {a0, . . . , ai}, then

ai + λqi = ai + λ(ai + qi − ai)

is in the forward closure of {a0, . . . , ai} for all integers 0 ≤ λ ≤ (n − 1 − ai)/qi. Since ai+1
is an irreducible period, there must exist an integer λ0 ∈ [0, (n − 1 − ai)/qi] such that

ai + λ0qi < ai+1 < ai + (λ0 + 1)qi.

In other words, ai+1 is comprised between two successive, non-irreducible periods gener-
ated from ai and qi using the FPR (or n ≤ ai + (λ0 + 1)qi). We pick

qi+1 = min(ai+1 − (ai + λ0qi), (ai + (λ0 + 1)qi) − ai+1, n − ai+1)

and note that

qi+1 ≤ ai+1 − (ai + λ0qi) + (ai + (λ0 + 1)qi) − ai+1

2
= qi/2
≤ n/2i+1.

It follows that ai+1 + qi+1 < n. Consequently, either ai+1 + qi+1 = (ai + λ0qi) + 2(ai+1 −
(ai + λ0qi)) or ai+1 + qi+1 = ai + (λ0 + 1)(ai + qi − ai). Hence, ai+1 + qi+1 is in the
forward closure of {a0, . . . , ai+1}. Therefore qi+1 has all desired properties.

Conclusion. For all 0 ≤ i ≤ k, there exists qi ∈ {1, . . . , n − ai} such that
1. qi ≤ n/2i, and
2. ai + qi = n or ai + qi is in the forward closure of {a0, . . . , ai}. ◀

▶ Lemma 17. Let R(P) = {0 = a0 < a1 < . . . < ak} be the irreducible period set of a string
of length n. Then k ≤ log2(n).

Proof. It follows from the Lemma 16 that there exists an integer qk ∈ {1, . . . , n − ak} such
that n/2k ≥ qk. Hence k ≤ log2(n). ◀

To count the number of irreducible period sets, we count the number of possibilities for
each ai with 1 ≤ i ≤ k. We know that a0 = 0 is fixed. The other ai take values in the set
{1, . . . , n − 1}.

▶ Lemma 18. Let 0 ≤ i ≤ k − 1. Then ai+1 can take at most 21−in − 1 possible values given
a0, . . . , ai.

Proof. Let qi be defined as in Lemma 16. We distinguish 3 cases:
1. If ai+1 ≤ ai + qi, there are at most qi − 1 ≤ n/2i − 1 possible values for ai+1 (note that

ai+1 ̸= ai + qi, because ai+1 cannot be in the forward closure of {a0, . . . , ai}, nor can it
be equal to n).

2. If ai+1 ≥ n − qi, there are at most qi ≤ n/2i possible values for ai+1.
3. In the remaining case, ai+1 ∈ [ai + qi + 1, n − qi − 1].

ICALP 2023

100:8 Convergence of the Number of Period Sets in Strings

Let us first show that case 3 is impossible. For the sake of contradiction, assume we are in
case 3. Since ai + qi < n, we know that ai + qi is in the forward closure of {a0, . . . , ai} (by
property 2 from Lemma 16). Hence qi is a period of u[ai . . n − 1]. Moreover ai+1 − ai is also
a period of u[ai . . n − 1]. By the Fine and Wilf theorem, it follows that
(a) either n − ai < qi + (ai+1 − ai) − gcd(qi, ai+1 − ai)
(b) or gcd(qi, ai+1 − ai) is a period of u[ai . . n − 1].
We are not in subcase (a) since by hypothesis ai+1 ≤ n−qi −1. Suppose we are in subcase (b).
Note that ai + gcd(qi, ai+1 − ai) ≤ ai + qi < ai+1 and that ai+1 is in the forward propagation
of {a0, . . . , ai, ai + gcd(qi, ai+1 − ai)}. It follows that ai+1 is not an irreducible period, which
is a contradiction. Therefore both subcases (a) and (b) are impossible.

Summing over cases 1 and 2 (since case 3 is impossible), we conclude that, given a0, . . . , ai,
there are at most

(n/2i − 1) + n/2i + 0 = 21−in − 1

possibilities for ai+1. ◀

Note that the bound of Lemma 18 is not tight: indeed, there are n − 1 possible values for a1,
while the lemma gives an upper bound of 2n − 1. However, this bound suffices to prove our
asymptotic result. Since an autocorrelation is uniquely defined by its irreducible period set,
it suffices to count the possible such sets {a0, . . . , ak} for all possible values of k. Recall that
a0 is fixed at 0 and that k ≤ log2(n) by Lemma 17. We thus derive a bound on the total
number of autocorrelations by taking the product of all possibilities for ai+1 with i going
from 0 to k − 1 and sum this over all integers k from 1 to ⌊log2(n)⌋, as follows:

κn = |Γn| = |Λn| ≤
⌊log2(n)⌋∑

k=1

k−1∏
i=0

(
21−in − 1

)
≤

⌊log2(n)⌋∑
k=1

((
22−kn − 1

) k−2∏
i=0

21−in

)
.

Writing 22−kn
∏k−2

i=0 21−in and
∏k−2

i=0 21−in in exponential form, we get

κn ≤
⌊log2(n)⌋∑

k=1

(
exp

(
−k(k − 3) ln(2)

2 + k ln(n)
)

− exp
(

−(k − 1)(k − 4) ln(2)
2 + (k − 1) ln(n)

))
.

Observe that this is a telescoping sum, so all but two terms cancel out.

κn ≤ exp
(

−⌊log2(n)⌋(⌊log2(n)⌋ − 3) ln(2)
2 + ⌊log2(n)⌋ ln(n)

)
− 1

Since d
dk

(
−k(k−3) ln(2)

2 + k ln(n)
)

= (−2k+3) ln(2)
2 + ln(n) is positive for all k ≤ log2(n), we

have

κn < exp
(

ln(n)(3 ln(2) − ln(n))
2 ln(2) + ln2(n)

ln(2)

)
= exp

(
3 ln(n)

2 + ln2(n)
2 ln(2)

)
.

E. Rivals, M. Sweering, and P. Wang 100:9

Taking the natural logarithm of both sides and dividing by ln2(n), we get that

ln(κn)
ln2(n)

≤ 1
2 ln(2) + 3

2 ln(n) ,

thereby proving Theorem 15. ◀

▶ Corollary 19 (Asymptotic Convergence of κn). Let κn be the number of autocorrelations of
length n. Then

ln κn

ln2(n)
→ 1

2 ln(2) as n → ∞.

Proof. It follows from Theorem 15 that for n ∈ N≥2

ln(κn)
ln2(n)

≤ 1
2 ln(2) + 3

2 ln(n) = 1
2 ln(2) + o(1).

The lower bound for κn from Theorem 5.1 in [18] indicates that asymptotically

ln(κn)
ln2(n)

≥ 1
2 ln(2)

(
1 − ln(ln(n))

ln(n)

)2
+ 0.4139

ln(n) − 1.47123 ln(ln(n))
ln2(n)

+ O

(
1

ln2(n)

)
= 1

2 ln(2) − O

(
ln(ln(n))

ln(n)

)
.

Combining this lower bound with our upper bound, we obtain

1
2 ln(2) − O

(
ln ln n

ln n

)
≤ ln κn

ln2(n)
≤ 1

2 ln(2) + o(1).

Using the classic sandwich theorem, we conclude that

ln κn

ln2(n)
→ 1

2 ln(2) as n → ∞

thereby proving the conjecture by Guibas and Odlyzko. ◀

The known values of κn are recorded in entry A005434 (see https://oeis.org/A005434)
of the On-Line Encyclopedia of Integer Sequences [20]. Because the enumeration of Γn takes
exponential time, the list of κn values is limited to a few hundred. In Figure 1, we compare
the values of κn with the so-called Fröberg lower bound from [18], the upper bound of Guibas
and Odlyzko [10], and our new upper bound. The figure illustrates the improvement brought
by the new upper bound compared to that given by Guibas and Odlyzko [10]. At n = 500,
the lower bound, our new upper bound and the values of κn clearly differ, meaning the
sequences are far from convergence at n = 500.

4 Correlation

In this section, we show that the number of correlations between two strings of length n has
the same asymptotic convergence behaviour as the number of autocorrelations of strings of
length n.

In [11], Guibas and Odlyzko introduced the notion of correlation of two strings: it encodes
the offset of possible overlaps between these two strings. In [10], the same authors investigate
the self-overlaps of a string, which is then encoded in an autocorrelation. Before we start, let
us define precisely the notion of correlation (which is illustrated in Table 2).

ICALP 2023

https://oeis.org/A005434

100:10 Convergence of the Number of Period Sets in Strings

Figure 1 The true values of ln kn/ ln2(n) for n ≤ 500 are compared to: the upper bound of
Guibas & Odlyzko (G&O upper bound) [10], the Fröberg lower bound (R&R lower bound) [18], and
our upper bound. Our upper bound seems not so tight: the reason is that n is small, as ln 500 ≈ 6.2.

Table 2 The correlation of word u = aabbaa over word v = baabaa (both of length 6) is
t = 000100. This table is organized as Table 1 – see the corresponding caption for details.

pos. 0 1 2 3 4 5 6 7 8 9 10
u a a b b a a - - - - - t

v b a a b a a - - - - 0
- b a a b a a - - - - 0
- - b a a b a a - - - 0
- - - b a a b a a - - 1
- - - - b a a b a a - 0
- - - - - b a a b a a 0

▶ Definition 20 (Correlation). For every pair of strings (u, v) ∈ Σn × Σm, the correlation of
u over v is the vector t ∈ {0, 1}n such that for all k ∈ {0, . . . , n − 1}

t[k] =


1 if u[i] = v[j] for all i ∈ {0, . . . , n − 1}, j ∈ {0, . . . , m − 1}

with i = j + k,

0 otherwise.

Intuitively, we can find correlations as follows. For each index i ∈ {0, . . . , n − 1} we write
v below u starting under the ith character of u. Then the ith element of the correlation is
1, if all pairs of characters that are directly above each other match, and 0 otherwise. See
Table 2 for an example.

Observe, that if v ∈ Σm is longer than u ∈ Σn, then the correlation of u over v equals the
correlation of u over v[0 . . n − 1]. Conversely, any binary vector t ∈ {0, 1}n is the correlation
of u = t ∈ {0, 1}n over v = 1 ∈ {0, 1}1. Therefore we will restrict ourselves to the interesting
case where both strings have the same length.

E. Rivals, M. Sweering, and P. Wang 100:11

Let ∆n be the set of all correlations between two strings of the same length n and let δn

be the cardinality of ∆n. We can characterize ∆n as follows.

▶ Lemma 21. The set of correlations of length n is of the form

∆n =
{

0(n−j)sj | sj ∈ Γj , j ∈ [0, n]
}

,

where Γj is the set of autocorrelations of length j.

Proof. Let t = 0(n−j)sj with sj the autocorrelation of some string w of length j with
0 ≤ j ≤ n. Without loss of generality, w does not start with the letter a. Let u = a(n−j)w

and v = wb(n−j). Observe that the correlation of u over v is precisely 0(n−j)sj = t. Therefore{
0(n−j)sj | sj ∈ Γj , j ∈ [0, n]

}
⊆ ∆n.

Conversely, let u, v ∈ Σn and let t′ be the correlation of u over v. We can write t′ in
the form 0(n−j)sj , where sj is a binary string starting with 1 (or is empty). If sj is the
empty string, then it is the only autocorrelation of length 0. Otherwise, there is a 1 at
position n − j, which indicates that u[n − j . . n − 1] = v[0 . . j − 1]. Moreover, sj is the
correlation of u[n − j . . n − 1] over v. It follows that sj is exactly the autocorrelation of
u[n − j . . n − 1] = v[0 . . j − 1]. Therefore

∆n ⊆
{

0(n−j)sj | sj ∈ Γj , j ∈ [0, n]
}

. ◀

In the above characterization, we consider strings over a finite alphabet and found that a
correlation depends on some autocorrelation. As it is known that Γn is independent of the
alphabet size (provided |Σ| > 1), the reader may wonder whether the number of correlations
depends on it. In Appendix B, we show that the set of correlations for equally long strings is
independent of the alphabet size, provided that Σ is not unary.

Now we have characterized ∆n, we can easily deduce its cardinality.

▶ Lemma 22. Let κn be the number of autocorrelations of length n and δn the number of
correlations between two strings of length n. Then

δn =
n∑

j=0
κj .

Proof. Since autocorrelations do not start with a zero, no two strings of the form 0(n−j)sj

with sj ∈ Γj and j ∈ [0, n] are the same. Therefore

δn = |∆n| =
∣∣∣{0(n−j)sj | sj ∈ Γj , j ∈ [0, n]

}∣∣∣ =
n∑

j=0
|Γj | =

n∑
j=0

κj . ◀

▶ Theorem 23 (Asymptotic Convergence of δn). Let δn be the number of correlations between
two strings of length n. Then

ln δn

ln2(n)
→ 1

2 ln(2) as n → ∞.

Proof. From Lemma 18 we know that for all n ∈ N≥2

ln(κn) ≤ ln2(n)
2 ln(2) + 3 ln(n)

2 .

ICALP 2023

100:12 Convergence of the Number of Period Sets in Strings

It follows that for all n ∈ N≥2 we have

ln(δn)
ln2(n)

= ln
(

n∑
i=0

κn

)
/ ln2(n)

≤ ln
(

2 + (n − 1) exp
(

ln2(n)
2 ln(2) + 3 ln(n)

2

))
/ ln2(n)

≤
(

ln2(n)
2 ln(2) + 3 ln(n)

2 + ln(n)
)

/ ln2(n)

= 1
2 ln(2) + o(1) as n → ∞.

Conversely, using the fact that δn ≥ κn, we find

ln δn

ln2(n)
≥ ln κn

ln2(n)
= 1

2 ln(2) + o(1) as n → ∞.

Again, by the sandwich theorem we conclude

ln δn

ln2(n)
→ 1

2 ln(2) as n → ∞. ◀

References
1 Dragana Bajic and Tatjana Loncar-Turukalo. A simple suboptimal construction of cross-

bifix-free codes. Cryptography and Communications, 6(6):27–37, 2014. doi:10.1007/
s12095-013-0088-8.

2 Stefano Bilotta. Variable-length non-overlapping codes. IEEE Transactions on Information
Theory, 63(10):6530–6537, 2017. doi:10.1109/TIT.2017.2742506.

3 Stefano Bilotta, Elisa Pergola, and Renzo Pinzani. A new approach to cross-bifix-free sets. IEEE
Transactions on Information Theory, 58(6):4058–4063, 2012. doi:10.1109/TIT.2012.2189479.

4 Francine Blanchet-Sadri and S. Duncan. Partial words and the critical factorization theorem.
Journal of Combinatorial Theory, Series. A, 109(2):221–245, 2005. doi:10.1016/j.jcta.2004.
09.002.

5 Francine Blanchet-Sadri, Justin Fowler, Joshua D. Gafni, and Kevin H. Wilson. Combinatorics
on partial word correlations. Journal of Combinatorial Theory, Series. A, 117(6):607–624,
2010. doi:10.1016/j.jcta.2010.03.001.

6 Francine Blanchet-Sadri, Joshua D. Gafni, and Kevin H. Wilson. Correlations of partial words.
In Wolfgang Thomas and Pascal Weil, editors, STACS 2007, 24th Annual Symposium on
Theoretical Aspects of Computer Science, Aachen, Germany, February 22-24, 2007, Proceedings,
volume 4393 of Lecture Notes in Computer Science, pages 97–108. Springer, 2007. doi:
10.1007/978-3-540-70918-3_9.

7 Nathan J. Fine and Herbert S. Wilf. Uniqueness theorems for periodic functions.
Proceedings of the American Mathematical Society, 16(1):109–114, 1965. doi:10.1090/
S0002-9939-1965-0174934-9.

8 Daniel Gabric. Mutual borders and overlaps. IEEE Transactions on Information Theory,
68(10):6888–6893, 2022. doi:10.1109/TIT.2022.3167935.

9 Daniel Gabric, Narad Rampersad, and Jeffrey Shallit. An inequality for the number of periods
in a word. International Journal of Foundations of Computer Science, 32(05):597–614, June
2021. doi:10.1142/s0129054121410094.

10 Leonidas J. Guibas and Andrew M. Odlyzko. Periods in strings. Journal of Combinatorial
Theory, Series. A, 30:19–42, 1981. doi:10.1016/0097-3165(81)90038-8.

https://doi.org/10.1007/s12095-013-0088-8
https://doi.org/10.1007/s12095-013-0088-8
https://doi.org/10.1109/TIT.2017.2742506
https://doi.org/10.1109/TIT.2012.2189479
https://doi.org/10.1016/j.jcta.2004.09.002
https://doi.org/10.1016/j.jcta.2004.09.002
https://doi.org/10.1016/j.jcta.2010.03.001
https://doi.org/10.1007/978-3-540-70918-3_9
https://doi.org/10.1007/978-3-540-70918-3_9
https://doi.org/10.1090/S0002-9939-1965-0174934-9
https://doi.org/10.1090/S0002-9939-1965-0174934-9
https://doi.org/10.1109/TIT.2022.3167935
https://doi.org/10.1142/s0129054121410094
https://doi.org/10.1016/0097-3165(81)90038-8

E. Rivals, M. Sweering, and P. Wang 100:13

11 Leonidas J. Guibas and Andrew M. Odlyzko. String overlaps, pattern matching, and
nontransitive games. Journal of Combinatorial Theory, Series A, 30(2):183–208, 1981.
doi:10.1016/0097-3165(81)90005-4.

12 Vesa Halava, Tero Harju, and Lucian Ilie. Periods and binary words. Journal of Combinatorial
Theory, Series A, 89(2):298–303, 2000. doi:10.1006/jcta.1999.3014.

13 Stepan Holub and Jeffrey O. Shallit. Periods and borders of random words. In Nicolas Ollinger
and Heribert Vollmer, editors, 33rd Symposium on Theoretical Aspects of Computer Science,
STACS 2016, February 17-20, 2016, Orléans, France, volume 47 of LIPIcs, pages 44:1–44:10.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016. doi:10.4230/LIPIcs.STACS.2016.
44.

14 M. Lothaire, editor. Combinatorics on Words. Cambridge University Press, second edition,
1997.

15 Ora E. Percus and Paula A. Whitlock. Theory and Application of Marsaglia’s Monkey Test for
Pseudorandom Number Generators. ACM Transactions on Modeling and Computer Simulation,
5(2):87–100, April 1995. doi:10.1145/210330.210331.

16 Sven Rahmann and Eric Rivals. On the distribution of the number of missing words in
random texts. Combinatorics, Probability and Computing, 12(01), January 2003. doi:10.
1017/s0963548302005473.

17 Eric Rivals and Sven Rahmann. Combinatorics of Periods in Strings. In F. Orejas, P. Spirakis,
and J. van Leuween, editors, ICALP 2001, Proc. of the 28th International Colloquium on
Automata, Languages and Programming, (ICALP), Crete, Greece, July 8-12, 2001, volume
2076 of Lecture Notes in Computer Science, pages 615–626. Springer Verlag, 2001. doi:
10.1007/3-540-48224-5_51.

18 Eric Rivals and Sven Rahmann. Combinatorics of periods in strings. Journal of Combinatorial
Theory, Series A, 104(1):95–113, 2003. doi:10.1016/s0097-3165(03)00123-7.

19 Stéphane Robin, François Rodolphe, and Sophie Schbath. DNA, Words and Models. Cambrigde
University Press, 2005.

20 Neil J. A. Sloane. The on-line encyclopedia of integer sequences. Published electronically at
https://oeis.org, 2022.

21 William F. Smyth. Computating Pattern in Strings. Pearson – Addison Wesley, 2003.

A Omitted proofs

▶ Lemma 3. Let p be a period of u ∈ Σn and k ∈ Z≥0 such that kp < n. Then kp is also a
period of u.

Proof. If p = 0 or k = 0, the statement trivially holds. Suppose p ∈ {1, . . . , n − 1} and k > 0.
If i, j ∈ {0, . . . , n − 1} such that i ≡ j mod kp, then we also have i ≡ j mod p, and hence
u[i] = u[j] by Definition 1. This shows kp is a period of u by Definition 1. ◀

▶ Lemma 4. Let p be a period of u ∈ Σn and q a period of the suffix w = u[p . . n − 1]. Then
p + q is a period of u. Moreover, p + kq is also a period of u for all k ∈ Z≥0 with p + kq < n.

Proof. By Definition 2 of period, the fact that p is a period of u implies u[0 . . n − p − 1] =
u[p . . n − 1], while q is a period of w implies w[0 . . n − p − q − 1] = w[q . . n − p − 1]. As w is
the suffix of u starting at position p, we can combine the above results to find that

u[0 . . n − p − q − 1] = u[p . . n − q − 1] = w[0 . . n − p − q − 1]
= w[q . . n − p − 1] = u[p + q . . n − 1],

which indicates that p + q is a period of u. Moreover, if p + iq is a period of u for some
i ∈ N, then we can similarly show that p + (i + 1)q is also a period of u if p + (i + 1)q < n.
It follows by induction that p + kq is a period of u for all k ∈ N with p + kq < n. The case
k = 0 is trivial. ◀

ICALP 2023

https://doi.org/10.1016/0097-3165(81)90005-4
https://doi.org/10.1006/jcta.1999.3014
https://doi.org/10.4230/LIPIcs.STACS.2016.44
https://doi.org/10.4230/LIPIcs.STACS.2016.44
https://doi.org/10.1145/210330.210331
https://doi.org/10.1017/s0963548302005473
https://doi.org/10.1017/s0963548302005473
https://doi.org/10.1007/3-540-48224-5_51
https://doi.org/10.1007/3-540-48224-5_51
https://doi.org/10.1016/s0097-3165(03)00123-7
https://oeis.org

100:14 Convergence of the Number of Period Sets in Strings

▶ Lemma 5. Let p, q be periods of u ∈ Σn with 0 ≤ q ≤ p. Then the prefix and the suffix of
length n − q have the period p − q.

Proof. Since p, q be periods of u ∈ Σn with 0 ≤ q ≤ p, we have

u[0 . . n − p − 1] = u[p . . n − 1] (by periodicity p)
= u[p − q . . n − q − 1] (by periodicity q).

It follows that u[0 . . n − q − 1] has period p − q. Similarly the suffix of u of length (n − q)
also has period p − q. ◀

▶ Lemma 6. Suppose p is a period of u ∈ Σn and there exists a substring v of u of length at
least p and with period r, where r|p. Then r is also a period of u.

Proof. If p = 0, then r = 0 and the lemma trivially holds.
Otherwise p is non-zero. Let i, j ∈ [0, n − 1] with i ≡ j mod r. We can write v = u[h . . k]

with 0 ≤ h < k ≤ n−1. Since v has length at least p, there exist i′, j′ ∈ [h, k] such that i ≡ i′

mod p and j ≡ j′ mod p. By Definition 1 of period, we have u[i] = u[i′] and u[j] = u[j′].
Note that i′ ≡ i ≡ j ≡ j′ mod r, because r | p. Applying Definition 1 again, we obtain
u[i′] = u[j′]. It follows that u[i] = u[i′] = u[j′] = u[j]. Therefore r is a period of u. ◀

B Independence of alphabet

Guibas and Odlyzko showed that for every autocorrelation, there exists a string over a binary
alphabet with that autocorrelation [10]. A nice alternative constructive proof appears in [12].
We will now show that the same holds for arbitrary correlations of equally long strings.

▶ Corollary 24. For any t ∈ ∆n, there exist u, v ∈ {a, b}n such that the correlation of u over
v is t.

Proof. Let t be the correlation of u′ over v′ with u′, v′ ∈ Σn. By Lemma 21, we can write
t = 0(n−j)sj , where sj ∈ {0, 1}j is the autocorrelation of u′[n − j . . n − 1] = v′[0 . . j − 1].
By the result of Guibas and Odlyzko, we know that there also exists some binary string
w ∈ {a, b}j with the same autocorrelation. Without loss of generality, we can assume that w

starts with b. It follows that the constructed strings u = a(n−j)w and v = wb(n−j), which
have a correlation of t by the proof of Lemma 21, use the same binary alphabet. ◀

We conclude that the number of correlations between strings of equal length is alphabet-
independent (i.e. every alphabet of size at least 2 gives rise to the same set of correlations).

▶ Remark 25. Such a binary string w can be constructed from u′[n − j . . n − 1] in linear time
using the algorithm of Halava, Harju and Ilie [12]. Therefore u and v can also be constructed
in linear time given u′ and v′.

Lasserre Hierarchy for Graph Isomorphism and
Homomorphism Indistinguishability
David E. Roberson #

Department of Applied Mathematics and Computer Science,
Technical University of Denmark, Copenhagen, Denmark
QMATH, Department of Mathematical Sciences, University of Copenhagen, Denmark

Tim Seppelt #

RWTH Aachen University, Germany

Abstract
We show that feasibility of the tth level of the Lasserre semidefinite programming hierarchy for graph
isomorphism can be expressed as a homomorphism indistinguishability relation. In other words, we
define a class Lt of graphs such that graphs G and H are not distinguished by the tth level of the
Lasserre hierarchy if and only if they admit the same number of homomorphisms from any graph
in Lt. By analysing the treewidth of graphs in Lt we prove that the 3tth level of Sherali–Adams
linear programming hierarchy is as strong as the tth level of Lasserre. Moreover, we show that
this is best possible in the sense that 3t cannot be lowered to 3t − 1 for any t. The same result
holds for the Lasserre hierarchy with non-negativity constraints, which we similarly characterise
in terms of homomorphism indistinguishability over a family L+

t of graphs. Additionally, we give
characterisations of level-t Lasserre with non-negativity constraints in terms of logical equivalence
and via a graph colouring algorithm akin to the Weisfeiler–Leman algorithm. This provides a
polynomial time algorithm for determining if two given graphs are distinguished by the tth level of
the Lasserre hierarchy with non-negativity constraints.

2012 ACM Subject Classification Mathematics of computing → Combinatorics; Mathematics of
computing → Graph theory

Keywords and phrases Lasserre hierarchy, homomorphism indistinguishability, Sherali–Adams
hierarchy, treewidth, semidefinite programming, linear programming, graph isomorphism

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.101

Category Track A: Algorithms, Complexity and Games

Related Version Preprint: https://arxiv.org/abs/2302.10538 [28]

Funding David E. Roberson: Supported by the Carlsberg Foundation Young Researcher Fellowship
CF21-0682 – “Quantum Graph Theory”.
Tim Seppelt: German Research Council (DFG) within Research Training Group 2236 (UnRAVeL)

Acknowledgements Initial discussions for this work took place at Dagstuhl Seminar 22051 “Finite
and Algorithmic Model Theory”.

1 Introduction

The aim of this paper is to relate two rich sets of tools used to distinguish non-isomorphic
graphs: the Lasserre semidefinite programming hierarchy and homomorphism indistinguishab-
ility.

Distinguishing non-isomorphic graphs is a ubiquitous problem in the theoretical and
practical study of graphs. The ability of certain graph invariants to distinguish graphs has
long been a rich area of study, leading to fundamental questions such as the longstanding
open problem of whether almost all graphs are determined by their spectrum [35]. In practice,
deploying e.g. machine learning architectures powerful enough to distinguish graphs with
different features is of great importance [12]. This motivates an in-depth study of the power
of various graph invariants and tools used to distinguish graphs.

EA
T
C
S

© David E. Roberson and Tim Seppelt;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 101; pp. 101:1–101:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dero@dtu.dk
https://orcid.org/0000-0002-4463-8095
mailto:seppelt@cs.rwth-aachen.de
https://orcid.org/0000-0002-6447-0568
https://doi.org/10.4230/LIPIcs.ICALP.2023.101
https://arxiv.org/abs/2302.10538
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

101:2 Lasserre Hierarchy for Graph Isomorphism and Homomorphism Indistinguishability

Among such techniques is the Lasserre semidefinite programming hierarchy [17] which can
be used to relax the integer program for graph isomorphism ISO(G,H), cf. Section 2.4. This
yields a sequence of semidefinite programs, i.e. the level-t Lasserre relaxation of ISO(G,H) for
t ≥ 1, which are infeasible for more and more non-isomorphic graphs as t grows. In [33, 25, 5],
it was shown that in general only the level-Ω(n) Lasserre system of equations can distinguish
all non-isomorphic n-vertex graphs. In [4], the Lasserre hierarchy was compared with
the Sherali–Adams1 linear programming hierarchy [32], which is closely related to the
Weisfeiler–Leman algorithm [36, 3, 13], the arguably most relevant combinatorial method
for distinguishing graphs. It was shown in [4] that there exists a constant c such that, for
all graphs G and H, if the level-ct Sherali–Adams relaxation of ISO(G,H) is feasible then
so is the level-t Lasserre relaxation, which in turn implies that the level-t Sherali–Adams
relaxation is feasible, cf. [18].

Another set of expressive equivalence relations comparing graphs is given by homomorph-
ism indistinguishability, a notion originating from the study of graph substructure counts.
Two graphs G and H are homomorphism indistinguishable over a family of graphs F , in
symbols G ≡F H, if the number of homomorphisms from F to G is equal to the number of
homomorphisms from F to H for every graph F ∈ F . The study of this notion began in 1967,
when Lovász [19] showed that two graphs G and H are isomorphic if and only if they are ho-
momorphism indistinguishable over all graphs. In recent years, many prominent equivalence
relations comparing graphs were characterised as homomorphism indistinguishability relations
over restricted graph classes [9, 10, 11, 8, 20, 15, 2, 23, 1, 27, 26]. For example, a folklore
result asserts that two graphs have cospectral adjacency matrices iff they are homomorphism
indistinguishable over all cycle graphs, cf. [15]. Two graphs are quantum isomorphic iff they
are homomorphism indistinguishable over all planar graphs [20]. Furthermore, feasibility of
the level-t Sherali–Adams relaxation of ISO(G,H) has been characterised as homomorphism
indistinguishability over all graphs of treewidth at most t− 1 [3, 13, 10]. In this way, notions
from logic [10, 11, 26], category theory [8, 23, 1], algebraic graph theory [9, 15], and quantum
groups [20] have been related to homomorphism indistinguishability.

1.1 Contributions
Although feasibility of the level-t Lasserre relaxation of ISO(G,H) was sandwiched between
feasibility of the level-ct and level-t Sherali–Adams relaxation in [4], the constant c remained
unknown. In fact, this c is not explicit and depends on the implementation details of an
algorithm developed in that paper. Our main result asserts that c can be taken to be three
and that this constant is best possible.

▶ Theorem 1. For two graphs G and H and every t ≥ 1, the following implications hold:

G ≃SA
3t H =⇒ G ≃L

t H =⇒ G ≃SA
t H

Furthermore, for every t ≥ 1, there exist graphs G and H such that G ≃SA
3t−1 H and G ̸≃L

t H.

Here, G ≃L
t H and G ≃SA

t H denote that the level-t Lasserre relaxation and respectively the
level-t Sherali–Adams relaxation of ISO(G,H) are feasible.

Theorem 1 is proven using the framework of homomorphism indistinguishability. In
previous works [9, 22, 15, 26], the feasibility of various systems of equations associated
to graphs like the Sherali–Adams relaxation of ISO(G,H) was characterised in terms of

1 Following [4], when referring to the Sherali–Adams relaxation of ISO(G, H) in this article, we do not
refer to the original relaxation [32] but to its variant introduced by [3, 13], which corresponds more
directly to other graph properties, cf. Theorem 8 and [15].

D. E. Roberson and T. Seppelt 101:3

OP PW2t−1 T Wmax{2t−1,2}

T Wt−1 Lt L+
t T W3t−1

Figure 1 Relationship between Lt, L+
t , the classes of graphs of bounded treewidth, bounded

pathwidth, and the class of outerplanar graphs. An arrow A → B indicates that A ⊆ B and thus
that G ≡B H implies G ≡A H for all graphs G and H. For formal statements, see Sections 4.1
and 4.2.

homomorphism indistinguishability over certain graph classes. We continue this line of
research by characterising the feasibility of the level-t Lasserre relaxation of ISO(G,H) by
homomorphism indistinguishability of G and H over the novel class of graphs Lt introduced
in Definition 22.

▶ Theorem 2. For every integer t ≥ 1, there is a minor-closed graph class Lt of graphs of
treewidth at most 3t− 1 such that for all graphs G and H it holds that G ≃L

t H if and only
if G ≡Lt

H.

The bound on the treewidth of graphs in Lt in Theorem 2 yields the upper bound in
Theorem 1 given the result of [3, 13, 4, 10] that two graphs G and H satisfy G ≃SA

t H if
and only if they are homomorphism indistinguishable over the class T Wt−1 of graphs of
treewidth at most t− 1. To our knowledge, Theorem 1 is the first result which tightly relates
equivalence relations on graphs by comparing the graph classes which characterise them in
terms of homomorphism indistinguishability.

Our techniques extend to a stronger version of the Lasserre hierarchy which imposes non-
negativity constraints on all variables. Denoting feasibility of the level-t Lasserre relaxation
of ISO(G,H) with non-negativity constraints by G ≃L+

t H, we characterise ≃L+

t in terms
of homomorphism indistinguishability over the graph class L+

t , defined in Definition 22
as a super class of Lt. This is in line with previous work in [9, 15], where the feasibility
of the level-t Sherali–Adams relaxation of ISO(G,H) without non-negativity constraints
was characterised as homomorphism indistinguishable over the class PWt−1 of graphs of
pathwidth at most t− 1.

▶ Theorem 3. For every integer t ≥ 1, there is a minor-closed graph class L+
t of graphs of

treewidth at most 3t− 1 such that for all graphs G and H it holds that G ≃L+

t H if and only
if G ≡L+

t
H.

Given the aforementioned correspondence between the Sherali–Adams relaxation with
and without non-negativity constraints and homomorphism indistinguishability over graphs
of bounded treewidth and pathwidth, we conduct a detailed study of the relationship between
the class of graphs of bounded treewidth, pathwidth, and the classes Lt and L+

t . Their results,
depicted in Figure 1, yield independent proofs of the known relations between feasibility of
the Lasserre relaxation with and without non-negativity constraints and the Sherali–Adams
relaxation with and without non-negativity constraints [5, 4, 15] using the framework of
homomorphism indistinguishability.

In the course of proving Theorems 2 and 3, we derive further equivalent characterisations
of ≃L

t and ≃L+

t . These characterisations, which are mostly of a linear algebraic nature,
ultimately yield a characterisation of ≃L+

t in terms of a fragment of first-order logic with
counting quantifiers and indistinguishability under a polynomial time algorithm akin to

ICALP 2023

101:4 Lasserre Hierarchy for Graph Isomorphism and Homomorphism Indistinguishability

the Weisfeiler–Leman algorithm. In this way, we obtain the following algorithmic result.
It implies that exact feasibility of the Lasserre semidefinite program with non-negativity
constraints can be tested in polynomial time. In general, only the approximate feasibility of
semidefinite programs can be decided efficiently, e.g. using the ellipsoid method [16, 4].

▶ Theorem 4. Let t ≥ 1. Given graphs G and H, it can be decided in polynomial time
whether G ≃L+

t H.

Finally, for t = 1, we show that L1 and L+
1 are respectively equal to the class OP

of outerplanar graphs and to the class of graphs of treewidth at most 2. The following
Theorem 5 parallels a result of [20] asserting that two graphs G and H are indistinguishable
under the 2-WL algorithm iff G ≃L+

1 H.

▶ Theorem 5. Two graphs G and H satisfy G ≃L
1 H iff G ≡OP H.

1.2 Techniques
In the first part of the paper (Section 3), linear algebraic tools developed in [21, 20] are
generalised to yield reformulations of the entire Lasserre hierarchy with and without non-
negativity results. Section 4 is concerned with the graph theoretic properties of the graph
classes Lt and L+

t . For understanding the homomorphism indistinguishability relations over
these graph classes, the framework of bilabelled graphs and their homomorphism tensors
developed in [22, 15] is used. Despite this, our approach is different from [15, 26] in the sense
that here the graph classes Lt and L+

t are inferred from given systems of equations, namely
the Lasserre relaxation, rather than that a system of equations is built for a given graph
class.

2 Preliminaries

2.1 Linear Algebra
Let S+ denote the family of real positive semidefinite matrices, i.e. of matrices M of the
form Mij = vT

i vj for vectors v1, . . . , vn, the Gram vectors of M . Write M ⪰ 0 iff M ∈ S+.
Let DN N denote the family of doubly non-negative matrices, i.e. of entry-wise non-negative
positive semidefinite matrices.

A linear map Φ: Cm×m → Cn×n is trace-preserving if tr Φ(X) = trX for all X ∈ Cm×m,
unital if Φ(idm) = idn, K-preserving for a family of matrices K if Φ(K) ∈ K for all
K ∈ K, positive if it is S+-preserving, i.e. if Φ(X) is positive semidefinite for all positive
semidefinite X, completely positive if idr ⊗Φ is positive for all r ∈ N. The Choi matrix of Φ
is CΦ =

∑m
i,j=1 Eij ⊗ Φ(Eij) ∈ Cmn×mn.

A tensor is an element A ∈ Cnt×nt for some n, t ∈ N. The symmetric group S2t acts
on Cnt×nt by permuting the coordinates, i.e. for all u,v ∈ [n]t, Aσ(u,v) := A(x,y) where
xi := (uv)σ−1(i) and yj−t := (uv)σ−1(j) for all 1 ≤ i ≤ t < j ≤ 2t.

For two vectors v, w ∈ Cn, write v ⊙ w for their Schur product, i.e. (v ⊙ w)(i) := v(i)w(i)
for all i ∈ [n].

2.2 Bilabelled Graphs and Homomorphism Tensors
All graphs in this article are undirected, finite, and without multiple edges. A graph is
simple if it does not contain any loops. A homomorphism h : F → G from a graph F to a
graph G is a map V (F) → V (G) such that for all uv ∈ E(F) it holds that h(u)h(v) ∈ E(G).

D. E. Roberson and T. Seppelt 101:5

Note that this implies that any vertex in F carrying a loop must be mapped to a vertex
carrying a loop in G. Write hom(F,G) for the number of homomorphisms from F to G. For
a family of graphs F and graphs G and H write G ≡F H if G and H are homomorphism
indistinguishable over F , i.e. hom(F,G) = hom(F,H) for all F ∈ F . Since the graphs G and
H into which homomorphisms are counted, are throughout assumed to be simple, looped
graphs in F can generally be disregarded as they do not admit any homomorphisms into
simple graphs.

We recall the following definitions from [20, 15]. Let ℓ ≥ 1. An (ℓ, ℓ)-bilabelled graph is a
tuple F = (F,u,v) where F is a graph and u,v ∈ V (F)ℓ. The u are the in-labelled vertices of
F while the v are the out-labelled vertices of F . Given a graph G, the homomorphism tensor
of F for G is F G ∈ CV (G)ℓ×V (G)ℓ whose (x,y)-th entry is the number of homomorphisms
h : F → G such that h(ui) = xi and h(vi) = yi for all i ∈ [ℓ].

For an (ℓ, ℓ)-bilabelled graph F = (F,u,v), write soe F := F for the underlying unlabelled
graph of F . Write tr F for the unlabelled graph underlying the graph obtained from F by
identifying ui with vi for all i ∈ [ℓ]. For σ ∈ S2t, write F σ := (F,x,y) where xi := (uv)σ(i)
and yj−t := (uv)σ(j) for all 1 ≤ i ≤ t < j ≤ 2t, i.e. F σ is obtained from F by permuting
the labels according to σ. As a special case, define F ∗ := (F,v,u) the graph obtained by
swapping in- and out-labels.

For two (ℓ, ℓ)-bilabelled graphs F = (F,u,v) and F ′ = (F ′,u′,v′), write F · F ′ for the
graph obtained from them by series composition. That is, the underlying unlabelled graph
of F · F ′ is the graph obtained from the disjoint union of F and F ′ by identifying vi and u′

i

for all i ∈ [ℓ]. Multiple edges arising in this process are removed. The in-labels of F · F ′ lie
on u, the out-labels on v′. Moreover, write F ⊙ F ′ for the parallel composition of F and F ′.
That is, the underlying unlabelled graph of F ⊙ F ′ is the graph obtained from the disjoint
union of F and F ′ by identifying ui with u′

i and vi with v′
i for all i ∈ [ℓ]. Again, multiple

edges are dropped. The in-labels of F ⊙ F ′ lie on u, the out-labels on v.
As observed in [20, 15], the benefit of these combinatorial operations is that they have an

algebraic counterpart. Formally, for all graphs G and all (ℓ, ℓ)-bilabelled graphs F ,F ′, it holds
that soe F G = hom(soe F , G), tr F G = hom(tr F , G), (F G)σ = (F σ)G, (F ·F ′)G = F G ·F ′

G,
and (F ⊙ F ′)G = F G ⊙ F ′

G.
Slightly abusing notation, we say that two graphs G and H are homomorphism in-

distinguishable over a family of bilabelled graphs S, in symbols G ≡S H if G and H are
homomorphism indistinguishable over the family {soe S | S ∈ S} of the underlying unlabelled
graphs of the S ∈ S.

2.3 Pathwidth and Treewidth
▶ Definition 6. Let F and T be graphs. A T -decomposition of F is a map β : V (T) → 2V (F)

such that
1.

⋃
t∈V (T) β(t) = V (F),

2. for every e ∈ E(F), there is t ∈ V (T) such that e ⊆ β(t),
3. for every v ∈ V (F), the set of t ∈ V (T) such that v ∈ β(t) induces a connected component

of T .
The width of a T -decomposition β is maxt∈V (T) |β(t)| − 1. For a graph class T , the T -width
of F is the minimal width of a T -decomposition of F for T ∈ T .

The treewidth twF of a graph F is the minimal width of a T -decomposition of F where
T is a tree. Similarly, the pathwidth pwF is the minimal width of a P -decomposition of F
where P is a path. For every t ≥ 0, write T Wt and PWt for the classes of all graphs of
treewidth and respectively pathwidth at most t.

ICALP 2023

101:6 Lasserre Hierarchy for Graph Isomorphism and Homomorphism Indistinguishability

2.4 Systems of Equations for Graph Isomorphism
Two simple graphs G and H are isomorphic if and only if there exists a {0, 1}-solution to
the system of equations ISO(G,H) which comprises variables Xgh for gh ∈ V (G) × V (H)
and equations∑

h∈V (H)

Xgh − 1 = 0 for all g ∈ V (G), (1)

∑
g∈V (G)

Xgh − 1 = 0 for all h ∈ V (H), (2)

XghXg′h′ = 0 for all gh, g′h′ ∈ V (G) × V (H)
s.t. relG(g, g′) ̸= relH(h, h′). (3)

Here, relG(g, g′) = relH(h′, h′) if and only if both pairs of vertices are adjacent, non-adjacent,
or identical.

The Lasserre relaxation of ISO(G,H) is defined as follows. An element {g1h1, . . . gℓhℓ} ∈(
V (G)×V (H)

ℓ

)
is a partial isomorphism if gi = gj ⇔ hi = hj and gigj ∈ E(G) ⇔ hihj ∈ E(H)

for all i, j ∈ [ℓ]. See also [28] for a comparison to the version used in [4].

▶ Definition 7. Let t ≥ 1. The level-t Lasserre relaxation for graph isomorphism has
variables yI ranging over R for I ∈

(
V (G)×V (H)

≤2t

)
. The constraints are

Mt(y) := (yI∪J)
I,J∈(V (G)×V (H)

≤t) ⪰ 0, (4)∑
h∈V (H)

yI∪{gh} = yI for all I s.t. |I| ≤ 2t− 2 and all g ∈ V (G), (5)

∑
g∈V (G)

yI∪{gh} = yI for all I s.t. |I| ≤ 2t− 2 and all h ∈ V (H), (6)

yI = 0 if I s.t. |I| ≤ 2t is not partial isomorphism (7)
y∅ = 1. (8)

If the system is feasible for two graphs G and H, write G ≃L
t H. If the system together with

the constraint yI ≥ 0 for all I ∈
(

V (G)×V (H
≤2t

)
is feasible, write G ≃L+

t H.

For a definition of the Sherali–Adams relaxation of ISO(G,H) in the version used here
following [4], the reader is referred to [14, Appendix D.1]. Instead of feasibility of the level-t
Sherali–Adams relaxation, one may think of the following equivalent notions:

▶ Theorem 8 ([4, 10, 6]). Let t ≥ 1. For graphs G and H, the following are equivalent:
1. the level-t Sherali–Adams relaxation of ISO(G,H) is feasible, i.e. G ≃SA

t H,
2. G and H satisfy the same sentences of t-variable first order logic with counting quantifiers,
3. G and H are homomorphism indistinguishable over the graphs of treewidth at most t− 1,
4. G and H are not distinguished by the (t− 1)-dimensional Weisfeiler–Leman algorithm,

3 From Lasserre to Homomorphism Tensors

In this section, the tools are developed which will be used to translate a solution to the
level-t Lasserre relaxation into a statement on homomorphism indistinguishability. For this
purpose, three equivalent characterisations of ≃L

t and ≃L+

t are introduced. Theorems 9
and 10 summarise our results. The notions in items 2–4 and the graph classes Lt and L+

t

are defined in Sections 3.1, 3.2, 3.4, and 4, respectively. Most of the proofs are of a linear
algebraic nature. Graph theoretical repercussions are discussed in Section 4.

D. E. Roberson and T. Seppelt 101:7

▶ Theorem 9. Let t ≥ 1. For graphs G and H, the following are equivalent:
1. the level-t Lasserre relaxation of ISO(G,H) is feasible,
2. G and H are level-t S+-isomorphic,
3. there is a level-t S+-isomorphism map from G to H,
4. G and H are partially t-equivalent,
5. G and H are homomorphism indistinguishable over Lt.

▶ Theorem 10. Let t ≥ 1. For graphs G and H, the following are equivalent:
1. the level-t Lasserre relaxation of ISO(G,H) with non-negativity constraints is feasible,
2. G and H are level-t DN N -isomorphic,
3. there is a level-t DN N -isomorphism map from G to H,
4. G and H are t-equivalent,
5. G and H are homomorphism indistinguishable over L+

t .

Variants of the notions in items 2–4 have already been defined for the case t = 1 in [22].
Our contribution amounts to extending these definitions to the entire Lasserre hierarchy. A
recurring theme in this context is accounting for additional symmetries. The variables yI of
the Lasserre system of equations, cf. Definition 7, are indexed by sets of vertex pairs rather
than by tuples of such. Hence, when passing from such variables to tuple-indexed matrices,
one must impose the additional symmetries arising this way. This is formalised at various
points using an action of the symmetric group on the axes of the matrices. In the case t = 1,
such a set up is not necessary since indices I are of size at most 2 and all occurring matrices
can be taken to be invariant under transposition.

In the subsequent sections, Theorems 9 and 10 will be proven in parallel. The equivalence
of items 1 and 2, 2 and 3, and 3 and 4 are established in Section 3.3, Section 3.2, and
Section 3.4, respectively. The statements on homomorphism indistinguishability are proven
in Section 4.

3.1 Isomorphism Relaxations via Matrix Families
In this section, as a first step towards proving Theorems 9 and 10, the notion of level-t
K-isomorphic graphs for arbitrary families of matrices K is introduced. In [22], level-1
K-isomorphic graphs where studied for various families of matrices K. In this work, the main
interest lies on the family of positive semidefinite matrices S+ and the family of entry-wise
non-negative positive semidefinite matrices DN N . Level-t isomorphism for these families is
proven to correspond to ≃L

t and ≃L+

t respectively, cf. Theorems 16 and 17.

▶ Definition 11. Let K be a family of matrices. Graphs G and H are said to be level-t
K-isomorphic, in symbols G ∼=t

K H, if there is a matrix M ∈ K with rows and columns indexed
by (V (G) × V (H))t such that for every g1h1 . . . gtht, gt+1ht+1 . . . g2th2t ∈ (V (G) × V (H))t

the following equations hold:

For every i ∈ [2t],∑
gi∈V (G)

Mg1h1...gtht,gt+1ht+1...g2th2t
=

∑
hi∈V (H)

Mg1h1...gtht,gt+1ht+1...g2th2t
, (9)

∑
h′

1,...,h′
2t∈V (H)

Mg1h′
1...gth′

t,gt+1h′
t+1...g2th′

2t
= 1 =

∑
g′

1,...,g′
2t∈V (G)

Mg′
1h1...g′

tht,g′
t+1ht+1...g′

2th2t
.

(10)

ICALP 2023

101:8 Lasserre Hierarchy for Graph Isomorphism and Homomorphism Indistinguishability

...
...

1 1

2 2

t− 1 t− 1

t t

(a) J .

...
...

1 1

2 2

t− 1 t− 1

t t

(b) A2,2t.

...
...

1 1

2 2

t− 1 t− 1

t t

(c) I2,2t.

Figure 2 Examples of the atomic graphs from Definition 13. The gray lines (the wires [20])
indicate the in-labels (left) and out-labels (right).

If relG(g1, . . . , g2t) ̸= relH(h1, . . . , h2t) then

Mg1h1...gtht,gt+1ht+1...g2th2t
= 0. (11)

For all σ ∈ S2t,

Mg1h1...gtht,gt+1ht+1...g2th2t
= Mgσ(1)hσ(1)...gσ(t)hσ(t),gσ(t+1)hσ(t+1)...gσ(2t)hσ(2t) .

(12)

Note that for t = 1 and any family of matrices K closed under taking transposes
Equation (12) is vacuous.

Systems of equations comparing graphs akin to Equations (9)–(12) were also studied
by [15]. Feasibility of such equations is typically invariant under taking the complements of
the graphs as remarked below. This semantic property of the relation ∼=t

K is relevant in the
context of homomorphism indistinguishability as shown by [30].
▶ Remark 12. For a simple graph G, write G for its complement, i.e. V (G) := V (G) and
E(G) :=

(
V (G)

2
)

\E(G). For all graphs G and H and g1, . . . , g2t ∈ V (G), h1, . . . , h2t ∈ V (H),
it holds that

relG(g1, . . . , g2t) = relH(h1, . . . , h2t) ⇐⇒ relG(g1, . . . , g2t) = relH(h1, . . . , h2t).

Thus, G ∼=t
K H if and only if G ∼=t

K H for all families of matrices K and t ∈ N.

3.2 Choi Matrices and Isomorphism Maps
In this section, an alternative characterisation for level-t K-isomorphism is given. Intuitively,
the indices of the matrix M ∈ C(V (G)×V (H))t×(V (G)×V (H))t from Definition 11 are regrouped
yielding a linear map Φ: CV (G)t×V (G)t → CV (H)t×V (H)t . In linear algebraic terms, M is the
Choi matrix of Φ. The map Φ will later be interpreted as a function sending homomorphism
tensors of (t, t)-bilabelled graphs F G ∈ CV (G)t×V (G)t with respect to G to their counterparts
F H for H.

The most basic bilabelled graphs, so called atomic graphs, make their first appearance
in Theorem 14. These graphs are used to reformulate Equations (7) and (11). The atomic
graphs are also the graphs which the sets Lt and L+

t of Theorems 2 and 3 are generated by,
cf. Definition 22. Examples are depicted in Figures 2 and 3.

▶ Definition 13. Let t ≥ 1. A (t, t)-bilabelled graph F = (F,u,v) is atomic if all its vertices
are labelled. Write At for the set of (t, t)-bilabelled atomic graphs. Note that the the set of
atomic graphs At is generated under parallel composition by the graphs

D. E. Roberson and T. Seppelt 101:9

J := (J, (1, . . . , t), (t+ 1, . . . , 2t)) with V (J) = [2t], E(J) = ∅,
Aij := (Aij , (1, . . . , t), (t+ 1, . . . , 2t)) with V (Aij) = [2t], E(Aij) = {ij} for 1 ≤ i < j ≤
2t,
Iij for 1 ≤ i < j ≤ 2t which is obtained from Aij by contracting the edge ij.

The following Theorem 14 relates the properties of Φ and M . In Equation (15), J denotes
the all-ones matrix of appropriate dimension. Its proof is deferred to the full version [28].

▶ Theorem 14. Let t ≥ 1. Let G and H be graphs and K ∈ {DN N ,S+} be a family of
matrices. Let Φ: CV (G)t×V (G)t → CV (H)t×V (H)t be a linear map. Then the following are
equivalent.
1. The Choi matrix CΦ of Φ satisfies Equations (9)–(12) and CΦ ∈ K,
2. Φ is a level-t K-isomorphism map from G to H, i.e. it satisfies

Φ is completely K-preserving, (13)

Φ(AG ⊙X) = AH ⊙ Φ(X) for all atomic A ∈ At and all X ∈ CV (G)t×V (G)t

, (14)
Φ(J) = J = Φ∗(J), (15)

Φ(Xσ) = Φ(X)σ for all σ ∈ S2t and all X ∈ CV (G)t×V (G)t

. (16)

3. Φ∗ is a level-t K-isomorphism map from H to G.

We remark that Theorem 14 and in particular its Equation (15) has brought us closer
to interpreting the Lasserre system of equation from the perspective of homomorphism
indistinguishability. As argued in Remark 15, the map Φ, which will be understood as
mapping homomorphism tensors F G to F H , is sum-preserving. Since the sum of the entries
of these tensors equals the number of homomorphisms from their underlying unlabelled
graphs to G and H , respectively, for establishing a connection between K-isomorphism maps
and homomorphism indistinguishability.

▶ Remark 15. If a linear map Φ: Cn×n → Cm×m is such that J = Φ∗(J) then it is sum-
preserving, i.e. soeX = soe Φ(X) for all X ∈ Cn×n. Indeed, soeX = ⟨X, J⟩ = ⟨X,Φ∗(J)⟩ =
⟨Φ(X), J⟩ = soe Φ(X) where ⟨A,B⟩ := tr(AB∗). In particular, if there is Φ satisfying
Equations (14) and (15) for graphs G and H then |G| = |H|.

3.3 Connection to Lasserre

By the following Theorems 16 and 17, the notions introduced in Definition 11 and Theorem 14
are equivalent to the object of our main interest, namely feasibility of the level-t Lasserre
relaxation with and without non-negativity constraints. Our results extend those of [22,
Lemma 9.1] to the entire Lasserre hierarchy. The proofs are deferred to the full version [28].

▶ Theorem 16. Let t ≥ 1. Two graphs G and H are level-t S+-isomorphic if and only if
the level-t system of the Lasserre hierarchy for graph isomorphism, i.e. Equations (4)–(8), is
feasible.

▶ Theorem 17. Let t ≥ 1. Two graphs G and H are level-t DN N -isomorphic if and only if
the level-t system of the Lasserre hierarchy for graph isomorphism Equations (4)–(8) with
the additional constraint yI ≥ 0 for all I ∈

(
V (G)×V (H)

≤2t

)
is feasible.

ICALP 2023

101:10 Lasserre Hierarchy for Graph Isomorphism and Homomorphism Indistinguishability

1 1

(a) J .

1 1

(b) A1,2.

1 1

(c) I1,2.

Figure 3 The three atomic graphs in A1.

3.4 Isomorphisms between Matrix Algebras
To the two reformulations of ≃L

t and ≃L+

t from the previous sections, a third characterisation
is added in this section. It is shown that two graphs are level-t S+-isomorphic (DN N -
isomorphic) if and only if certain matrix algebras associated to them are isomorphic. These
algebras will be identified as the algebras of homomorphism tensors for graphs from the
families Lt and L+

t . The so called (partially) coherent algebras considered in this section are
natural generalisations of the coherent algebra which are well-studied in the context of the
2-dimensional Weisfeiler–Leman algorithm [7].

3.4.1 Partially Coherent Algebras and S+-Isomorphism Maps
Let S ⊆ Cnt×nt . A matrix algebra A ⊆ Cnt×nt is S-partially coherent if it is unital, self-
adjoint, contains the all-ones matrix, and is closed under Schur products with any matrix in
S. A matrix algebra A ⊆ Cnt×nt is self-symmetrical if for every A ∈ A and σ ∈ S2t also
Aσ ∈ A. Note that for t = 1, an algebra A is self-symmetrical if for all A ∈ A also AT ∈ A.

▶ Definition 18. Given a graph G, construct its t-partially coherent algebra Ât
G as the

minimal self-symmetrical S-partially coherent algebra where S is the set of homomorphism
tensors of (t, t)-bilabelled atomic graphs for G.

Two n-vertex graphs G and H are partially t-equivalent if there is a partial t-equivalence,
i.e. a vector space isomorphism φ : Ât

G → Ât
H such that

1. φ(M∗) = φ(M)∗ for all M ∈ Ât
G,

2. φ(MN) = φ(M)φ(N) for all M,N ∈ Ât
G,

3. φ(I) = I, φ(AG) = AH for all A ∈ At, and φ(J) = J ,
4. φ(AG ⊙M) = AH ⊙ φ(M) for all A ∈ At and any M ∈ Ât

G.
5. φ(Mσ) = φ(M)σ for all M ∈ Ât

G and all σ ∈ S2t.

The following Theorem 19 extends [22, Theorem 5.2]. Its proof is deferred to the full
version [28].

▶ Theorem 19. Let t ≥ 1. Two graphs G and H are partially t-equivalent if and only if
there is a level-t S+-isomorphism map from G to H.

3.4.2 Coherent Algebras and DN N -Isomorphism Maps
A matrix algebra A ⊆ Cn×n is coherent if it is unital, self-adjoint, contains the all-ones
matrix and is closed under Schur products.

For t = 1, the 1-adjacency algebra as defined below is equal to the well-studied adjacency
algebra of a graph G, cf. [7]. The latter is the smallest coherent algebra containing the
adjacency matrix of the graph. The former is generated by the homomorphism tensors of
(1, 1)-bilabelled atomic graphs. These graphs are depicted in Figure 3. Their homomorphism
tensors are the all-ones matrix, the adjacency matrix of the graph, and the identity matrix.

▶ Definition 20. Let t ≥ 1. The t-adjacency algebra At
G of a graph G is the self-symmetrical

coherent algebra generated by the homomorphism tensors of the atomic graphs At.

D. E. Roberson and T. Seppelt 101:11

1 1

2 2

·
1 1

2 2

=

1 1

2 2

1 1

2 2

�
1 1

2 2

=

1 1

2 2

Figure 4 The bilabelled graphs in Observation 23 for t = 2.

Two n-vertex graphs G and H are t-equivalent if there is t-equivalence, i.e. a vector
space isomorphism φ : At

G → At
H such that

1. φ(M∗) = φ(M)∗ for all M ∈ At
G,

2. φ(MN) = φ(M)φ(N) for all M,N ∈ At
G,

3. φ(I) = I, φ(AG) = AH for all A ∈ At, and φ(J) = J ,
4. φ(M ⊙N) = φ(M) ⊙ φ(N) for all M,N ∈ At

G.
5. φ(Mσ) = φ(M)σ for all M ∈ At

G and all σ ∈ S2t.

The following Theorem 21 extends [22, Theorem 6.3]. Its proof is deferred to the full
version [28].

▶ Theorem 21. Let t ≥ 1. Two graphs G and H are t-equivalent if and only if there is a
level-t DN N -isomorphism map from G to H.

4 Homomorphism Indistinguishability

Using techniques from [15], we finally establish a characterisation of when the level-t Lasserre
relaxation of ISO(G,H) is feasible in terms of homomorphism indistinguishability of G and
H . In order to do so, we introduce the graph classes Lt and L+

t . In Section 4.1, we relate Lt

and L+
t to the classes of graphs of bounded treewidth and pathwidth obtaining the results

depicted in Figure 1. In Section 4.2, L1 and L+
1 are identified as the classes of outerplanar

graphs and graphs of treewidth two, respectively.

▶ Definition 22. Let t ≥ 1. Write L+
t for the class of (t, t)-bilabelled graphs generated by the

set of atomic graphs At under parallel composition, series composition, and the action of
S2t on the labels.

Write Lt ⊆ L+
t for the class of (t, t)-bilabelled graphs generated by the set of atomic graphs

At under parallel composition with graphs from At, series composition, and the action of
S2t on the labels.

Note that the only difference between Lt and L+
t is that Lt is closed under parallel

composition with atomic graphs only. This reflects an observation by [15] relating the
closure under arbitrary gluing products to non-negative solutions to systems of equations
characterising homomorphism indistinguishability. Intuitively, one may use arbitrary Schur
products, the algebraic counterparts of gluing, for a Vandermonde interpolation argument,
cf. [14, Appendix B.4].

The following Observation 23 illustrates how the operations in Definition 22 can be used
to generate more complicated graphs from the atomic graphs, cf. Figure 4.

ICALP 2023

101:12 Lasserre Hierarchy for Graph Isomorphism and Homomorphism Indistinguishability

▶ Observation 23. Let t ≥ 1. The class Lt contains a bilabelled graph whose underlying
unlabelled graph is isomorphic to the 3t-clique K3t.

Proof. Let E :=
⊙

1≤i<j≤2t Aij ∈ At. The graph underlying E ⊙ (E · E) is isomorphic to
K3t. ◀

The only missing implications of Theorems 9 and 10 follow from the next two theorems:

▶ Theorem 24. Let t ≥ 1. Two graphs G and H are homomorphism indistinguishable
over Lt if and only if they are partially t-equivalent.

▶ Theorem 25. Let t ≥ 1. Two graphs G and H are homomorphism indistinguishable
over L+

t if and only if they are t-equivalent.

For the proofs of Theorems 24 and 25, we extend the framework developed by [15]. In
this work, the authors introduced tools for constructing systems of equations characterising
homomorphism indistinguishably over classes of labelled graphs. A requirement of these
tools is that the graph class in question is inner-product compatible [15, Definition 24]. This
means that for every two labelled graphs R and S one can write the inner-product of their
homomorphism vectors RG and SG as the sum-of-entries of some T G where T is labelled
graph from the class. Due to the correspondence between combinatorial operations on
labelled graphs and algebraic operations on their homomorphism vectors, cf. Section 2.2, this
is equivalent to the graph theoretic assumption that soe(R ⊙ S) = soe(T), i.e. the unlabelled
graph obtained by unlabelling the gluing product of R and S can be labelled such that the
resulting labelled graph is in the class.

We extend this notion to bilabelled graphs. A class of (t, t)-bilabelled graphs S is
said to be inner-product compatible if for all R,S ∈ S there is a graph T ∈ S such that
tr(R · S∗) = soe(T). This definition is inspired by the inner-product on Cn×n given by
⟨A,B⟩ := tr(AB∗).

▶ Lemma 26. Let t ≥ 1. The classes Lt and L+
t are inner-product compatible.

Proof. Since Lt is closed under matrix products and taking transposes, it suffices to show
that for every S ∈ Lt the graph tr S is the underlying unlabelled graph of some element of Lt.
Indeed, for every (t, t)-bilabelled graphs F it holds that tr(F) = soe(I1,t+1 ⊙ · · · ⊙ It,2t ⊙ F)
where the Iij are as in Definition 13. Since Lt is closed under parallel composition with
atomic graphs, the claim follows. For L+

t , an analogous argument yields the claim. ◀

The following Theorem 27, which extends the toolkit for constructing systems of equations
characterising homomorphism indistinguishability over families of bilabelled graphs, is the
bilabelled analogue of [15, Theorem 13]. Write CSG ⊆ CV (G)t×V (G)t for the vector space
spanned by homomorphism tensors SG for S ∈ S.

▶ Theorem 27. Let t ≥ 1 and S be an inner-product compatible class of (t, t)-bilabelled
graphs containing J . For graphs G and H, the following are equivalent:
1. G and H are homomorphism indistinguishable over S,
2. there exists a sum-preserving vector space isomorphism φ : CSG → CSH such that

φ(SG) = SH for all S ∈ S.

Theorems 24 and 25 follows from this theorem as described in the full version [28].

D. E. Roberson and T. Seppelt 101:13

4.1 The Classes Lt and L+
t and Graphs of Bounded Treewidth

In this section, the classes Lt and L+
t are compared to the classes of graphs of bounded

treewidth and pathwidth. Figure 1 depicts the relationships between these classes. The first
result, Lemma 28, gives an upper bound on the treewidth of graphs in L+

t .

▶ Lemma 28. Let t ≥ 1. The treewidth of an unlabelled graph F underlying some F =
(F,u,v) ∈ L+

t is at most 3t− 1.

Proof. By structural induction, it is shown that every F = (F,u,v) ∈ L+
t admits a tree

decomposition β : V (T) → 2V (F) of width at most 3t−1 such that the labelled vertices u and
v lie together in one bag, i.e. there exists x ∈ V (T) such that {u1, . . . ,ut,v1, . . . , vt} ⊆ β(x).

This is clearly the case for all F ∈ At. Let F = (F,u,v) and F ′ = (F ′,u′,v′) from L+
t

be given. Suppose there are tree decompositions β : V (T) → 2V (F) and β′ : V (T ′) → 2V (F ′)

as in the inductive hypothesis. Let x ∈ V (T) and x′ ∈ V (T ′) be such that the labelled
vertices of F and F ′ lie in β(x) and β′(x′) respectively. Let S be the tree obtained by taking
the disjoint union of T , T ′, and a fresh vertex y, and connecting x and x′ to y.

For the graph F · F ′, an S-decomposition is given by the function

γ : z 7→


β(z), if z ∈ V (T),
β′(z), if z ∈ V (T ′),
{u1, . . . ,ut,v

′
1, . . . , v

′
t,v1, . . . , vt}, if z = y.

where one may note that vi = u′
i for every i ∈ [t] in F ·F ′. It is easy to check that Definition 6

is satisfied. The decomposition is of width 3t− 1.
For the graph F ⊙ F ′, an S-decomposition is given by the function

γ : z 7→


β(z), if z ∈ V (T),
β′(z), if z ∈ V (T ′),
{u1, . . . ,ut,v1, . . . , vt}, if z = y.

where one may note that ui = u′
i and vi = v′

i for every i ∈ [t] in F ⊙ F ′. Again, it is easy
to check that Definition 6 is satisfied. The decomposition is of width at most 3t− 1. ◀

Lemma 28 in conjunction with Theorems 9 and 10 implies Theorems 2 and 3. As a
corollary, this yields the upper bound in Theorem 1. Indeed, by Theorem 8, G ≃SA

t H if and
only if G and H are homomorphism indistinguishable over the class of graphs of treewidth
at most t− 1. Hence, if G ≃SA

3t H then G ≃L+

t H and in particular G ≃L
t H.

It remains to show the lower bound asserted by Theorem 1, i.e. that 3t cannot be replaced
by 3t− 1 for no t ≥ 1. To that end, first observe that Observation 23 implies that the bound
in Lemma 28 is tight. However, this syntactic property of the graph class Lt does not suffice
to derive the aforementioned semantic property of ≃SA

t and ≃L
t . In fact, it could well be that

for all graphs G and H if G and H are homomorphism indistinguishable over the graphs of
treewidth at most 3t−2 also hom(K3t, G) = hom(K3t, H) despite that twK3t > 3t−2. That
this does not hold is implied by a conjecture of the first author [27] which asserts that every
minor-closed graph class F which is closed under taking disjoint unions (union-closed) is
homomorphism distinguishing closed, i.e. for all F ̸∈ F there exist graphs G and H such that
G ≡F H but hom(F,G) ̸= hom(F,H). Although being generally open, this conjecture was
proven by Neuen [24] for the class of graphs of treewidth at most t for every t. Theorem 29
implies the last assertion of Theorem 1.

ICALP 2023

101:14 Lasserre Hierarchy for Graph Isomorphism and Homomorphism Indistinguishability

▶ Theorem 29. For every t ≥ 1, there exist graphs G and H such that G ≃SA
3t−1 H and

G ̸≃L
t H.

Proof. Towards a contraction, suppose that G ≃SA
3t−1 H =⇒ G ≃L

t H for all graphs G and H .
By Theorem 8, G ≃SA

3t−1 H if and only if G and H are homomorphism indistinguishable over
the class T W3t−2 of graphs of treewidth at most 3t− 2. By Observation 23 and Theorem 9,
if G ≡T W3t−2 H then G ≡Lt

H and in particular hom(K3t, G) = hom(K3t, H). As shown
in [24], the class T W3t−2 is homomorphism distinguishing closed. As twK3t = 3t − 1, it
follows that there exist graphs G and H with G ≃SA

3t−1 H and hom(K3t, G) ̸= hom(K3t, H).
In particular, G ̸≃L

t H by Theorem 9. ◀

It is worth noting that the classes of unlabelled graphs underlying the elements of Lt

and L+
t are themselves minor-closed and union-closed. Hence, they are subject to the

aforementioned conjecture. Furthermore, by the Robertson–Seymour Theorem and [29],
membership in Lt and L+

t can be tested in polynomial time for every fixed t ≥ 1. The proof
of Lemma 30 is deferred to the full version [28].

▶ Lemma 30. Let t ≥ 1. The class of graphs underlying the elements of Lt and the class of
graphs underlying the elements of L+

t are minor-closed and union-closed.

The remainder of this section is dedicated to some further relations between the classes
of graphs of bounded treewidth or pathwidth, Lt, and L+

t . Note that these facts give
independent proofs for the correspondence between the feasibility of the level-t Sherali–
Adams relaxation (without non-negativity constraints), which corresponds to homomorphism
indistinguishability over graphs of treewidth (pathwidth) at most t−1, as proven by [9, 15], and
the feasibility of the level-t Lasserre relaxation with and without non-negativity constraints.

First of all, it is easy to see that dropping the semidefiniteness constraint Equation (4)
of the level-t Lasserre system of equations turns this system essentially into the level-2t
Sherali–Adams system of equations without non-negativity constraints, e.g. as defined in [14,
Appendix D.1]. This is paralleled by Lemma 31.

▶ Lemma 31. Let t ≥ 1. For every graph F with pwF ≤ 2t− 1, there is a graph F ∈ Lt

whose underlying unlabelled graph is isomorphic to F .

Furthermore, one may drop Equation (4) from the level-t Lasserre system of equations
with non-negativity constraints to obtain the level-2t Sherali–Adams system of equations in
its original form, i.e. with non-negativity constraints. This is paralleled by Lemma 32.

▶ Lemma 32. Let t ≥ 1. For every graph F with twF ≤ 2t− 1, there is a graph F ∈ L+
t

whose underlying unlabelled graph is isomorphic to F .

Since the diagonal entries of a positive semidefinite matrix are necessarily non-negative,
Equation (4) implies that any solution (yI) to the level-t Lasserre system of equations is
such that yI ≥ 0 for all I ∈

(
V (G)×V (H)

≤t

)
. Hence, such a solution is a solution to the level-t

Sherali–Adams system of equations as well. This is paralleled by Lemma 33.

▶ Lemma 33. Let t ≥ 1. For every graph F with twF ≤ t − 1, there is a graph F ∈ Lt

whose underlying unlabelled graph is isomorphic to F .

The proofs of Lemmas 31–33 are all by inductively constructing an element of L+
t using

a tree decomposition of the given graph. They are deferred to the full version [28].

D. E. Roberson and T. Seppelt 101:15

4.2 The Classes L1 and L+
1

The classes L1 and L+
1 can be identified as the class of outerplanar graphs and as the class

of graphs of treewidth at most two, respectively. This yields Theorem 5. Proofs are deferred
to the full version [28].

▶ Proposition 34. The class of unlabelled graphs underlying an element of L+
1 coincides

with the class of graphs of treewidth at most two.

A graph F is outerplanar if it does not have K4 or K2,3 as a minor. Equivalent, it is
outerplanar if it has a planar drawing such that all its vertices lie on the same face [34].

▶ Proposition 35. The class of unlabelled graphs underlying an element of L1 coincides with
the class of outerplanar graphs.

As a corollary of Proposition 35, we observe the following:

▶ Corollary 36. If G ≡L1 H then G is connected iff H is connected.

5 Deciding Exact Feasibility of the Lasserre Relaxation with
Non-Negativity Constraints in Polynomial Time

This section is dedicated to proving Theorem 4. To that end, it is argued that ≃L+

t has
equivalent characterisations in terms of logical equivalence and a colouring algorithm akin to
the k-dimensional Weisfeiler–Leman algorithm [36]. This algorithm has polynomial running
time. It is defined as follows:

▶ Definition 37. Let t ≥ 1, define for a graph G, i ≥ 1, and r, s ∈ V (G)t

mwl0G(rs) := relG(rs),

mwli−1/2
G (rs) :=

(
mwli−1

G (σ(rs))
∣∣ σ ∈ S2t

)
,

mwliG(rs) :=
(

mwli−1/2
G (rs),

{{(
mwli−1/2

G (rt),mwli−1/2
G (ts)

) ∣∣∣ t ∈ V (G)t
}})

.

The mwliG for i ∈ N define increasingly fine colourings of V (G)2t. Let mwl∞G denote the
finest such colouring. Two graphs G and H are not distinguished by the t-dimensional mwl
algorithm if the multisets{{

mwl∞G (rs)
∣∣ r, s ∈ V (G)t

}}
and

{{
mwl∞H (uv)

∣∣ u,v ∈ V (H)t
}}

are the same.

Since the finest colouring mwl∞G is reached in ≤ n2t − 1 iterations for graphs on n vertices,
for fixed t, it can be tested in polynomial time whether two graphs are not distinguished by
the t-dimensional mwl algorithm. We are about to show that the latter happens if and only
if the level-t Lasserre relaxation with non-negative constraints is feasible. As a by-product,
we obtain a logical characterisation for this equivalence relation.

▶ Definition 38. For t ≥ 1, let Mt denote the fragment of first-order logic with counting
quantifiers and at most 3t variables comprising the following expressions:

xi = xj and Exixj for all i, j ∈ [3t],
if φ,ψ ∈ Mt then ¬φ, φ ∧ ψ, and φ ∨ ψ are in Mt,
if φ,ψ ∈ Mt and n ∈ N then ∃≥ny. φ(x,y) ∧ ψ(y, z) is in Mt. Here, the bold face letters
x, y, z denote t-tuples of distinct variables.

ICALP 2023

101:16 Lasserre Hierarchy for Graph Isomorphism and Homomorphism Indistinguishability

The semantic of the quantifier ∃≥ny. φ(y) is that there exist at least n many t-tuples of
vertices from the graph over which the formula is evaluated which satisfy φ. The following
Theorem 39 may be thought of as a analogue of Theorem 8 for L+

t .

▶ Theorem 39. Let t ≥ 1. For graphs G and H, the following are equivalent:
1. G and H are not distinguished by the t-dimensional mwl algorithm,
2. G and H are homomorphism indistinguishable over L+

t ,
3. G and H satisfy the same Mt-sentences.

The proof of Theorem 39 is deferred to the full version [28]. It is conceptually similar to
arguments of [6, 10, 15]. As mentioned above, Theorem 39 implies Theorem 4.

6 Conclusion

We have established a characterisation of the feasibility of the level-t Lasserre relaxation
with and without non-negativity constraints of the integer program ISO(G,H) for graph
isomorphism in terms of homomorphism indistinguishability over the graph classes Lt and
L+

t . By analysing the treewidth of the graphs Lt and L+
t and invoking results from the

theory of homomorphism indistinguishability, we have determined the precise number of
Sherali–Adams levels necessary such that their feasibility guarantees the feasibility of the
level-t Lasserre relaxation. This concludes a line of research brought forward in [4]. For
feasibility of the level-t Lasserre relaxation with non-negativity constraints, we have given,
besides linear algebraic reformulations generalising the adjacency algebra of a graph, a
polynomial time algorithm deciding this property.

Missing in Theorem 1 is a tight lower bound on the number of Lasserre levels necessary
to ensure feasibility of a given Sherali–Adams level:

▶ Question 40. Do there exist for every t ≥ 3 graphs G and H such that G ≃L
t−1 H and

G ̸≃SA
t H?

Following the path taken in this paper, this question could potentially be resolved in two
steps: Firstly, one would need to prove the graph theoretic assertion that the class Lt does
not contain T Wt for all t ≥ 2. Secondly, one would need to show that Lt is homomorphism
distinguishing closed or at least that the homomorphism distinguishing closure [27] of Lt

does not contain T Wt for all t ≥ 2. Given the means currently available for proving such
a statement [27, 24], this would involve giving game characterisations for Lt (mimicking
the robber-cops game for T Wt) and for ≡Lt

(similar to the bijective (t+ 1)-pebble game
for T Wt). For the former, finding analogies to the notions of brambles or heavens seems
necessary [31].

Another interesting extension of our work might be an efficient algorithm for computing
an explicit partial t-equivalence between two graphs, cf. Definitions 18 and 20, or deciding
that no such map exists. This would yield an efficient algorithm for deciding the exact
feasibility of the Lasserre semidefinite program without non-negativity constraints, cf. [4].

References
1 Samson Abramsky, Tomáš Jakl, and Thomas Paine. Discrete density comonads and graph

parameters. In Helle Hvid Hansen and Fabio Zanasi, editors, Coalgebraic Methods in Computer
Science – 16th IFIP WG 1.3 International Workshop, CMCS 2022, Colocated with ETAPS
2022, Munich, Germany, April 2-3, 2022, Proceedings, volume 13225 of Lecture Notes in
Computer Science, pages 23–44. Springer, 2022. doi:10.1007/978-3-031-10736-8_2.

https://doi.org/10.1007/978-3-031-10736-8_2

D. E. Roberson and T. Seppelt 101:17

2 Albert Atserias, Phokion G. Kolaitis, and Wei-Lin Wu. On the expressive power of
homomorphism counts. In 36th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2021, Rome, Italy, June 29 – July 2, 2021, pages 1–13. IEEE, 2021.
doi:10.1109/LICS52264.2021.9470543.

3 Albert Atserias and Elitza Maneva. Sherali–Adams Relaxations and Indistinguishability in
Counting Logics. SIAM Journal on Computing, 42(1):112–137, 2013. doi:10.1137/120867834.

4 Albert Atserias and Joanna Ochremiak. Definable Ellipsoid Method, Sums-of-Squares Proofs,
and the Isomorphism Problem. In Anuj Dawar and Erich Grädel, editors, Proceedings of the
33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford, UK,
July 09-12, 2018, pages 66–75. ACM, 2018. doi:10.1145/3209108.3209186.

5 Christoph Berkholz and Martin Grohe. Limitations of Algebraic Approaches to Graph
Isomorphism Testing. In Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and
Bettina Speckmann, editors, Automata, Languages, and Programming, pages 155–166. Springer
Berlin Heidelberg, 2015. doi:10.1007/978-3-662-47672-7_13.

6 Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number
of variables for graph identification. Combinatorica, 12(4):389–410, 1992. doi:10.1007/
BF01305232.

7 Gang Chen and Ilia Ponomarenko. Lectures on Coherent Configurations. Central China Normal
University Press, Wuhan, 2018. URL: https://www.pdmi.ras.ru/~inp/ccNOTES.pdf.

8 Anuj Dawar, Tomáš Jakl, and Luca Reggio. Lovász-Type Theorems and Game Comonads. In
36th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2021, Rome, Italy,
June 29 – July 2, 2021, pages 1–13. IEEE, 2021. doi:10.1109/LICS52264.2021.9470609.

9 Holger Dell, Martin Grohe, and Gaurav Rattan. Lovász Meets Weisfeiler and Leman. 45th
International Colloquium on Automata, Languages, and Programming (ICALP 2018), pages
40:1–40:14, 2018. doi:10.4230/LIPICS.ICALP.2018.40.

10 Zdeněk Dvořák. On recognizing graphs by numbers of homomorphisms. Journal of Graph
Theory, 64(4):330–342, August 2010. doi:10.1002/jgt.20461.

11 Martin Grohe. Counting Bounded Tree Depth Homomorphisms. In Proceedings of the 35th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’20, pages 507–520, New
York, NY, USA, 2020. Association for Computing Machinery. doi:10.1145/3373718.3394739.

12 Martin Grohe. word2vec, node2vec, graph2vec, X2vec: Towards a Theory of Vector Embeddings
of Structured Data. In Dan Suciu, Yufei Tao, and Zhewei Wei, editors, Proceedings of the
39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, PODS
2020, Portland, OR, USA, June 14-19, 2020, pages 1–16. ACM, 2020. doi:10.1145/3375395.
3387641.

13 Martin Grohe and Martin Otto. Pebble Games and Linear Equations. The Journal of Symbolic
Logic, 80(3):797–844, 2015. doi:10.1017/jsl.2015.28.

14 Martin Grohe, Gaurav Rattan, and Tim Seppelt. Homomorphism Tensors and Linear Equa-
tions, 2021. doi:10.48550/arXiv.2111.11313.

15 Martin Grohe, Gaurav Rattan, and Tim Seppelt. Homomorphism Tensors and Linear Equations.
In Mikołaj Bojańczyk, Emanuela Merelli, and David P. Woodruff, editors, 49th International
Colloquium on Automata, Languages, and Programming (ICALP 2022), volume 229 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 70:1–70:20, Dagstuhl, Germany, 2022.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.ICALP.2022.70.

16 Martin Grotschel. Geometric Algorithms and Combinatorial Optimization. Springer Berlin
Heidelberg, 2012. doi:10.1007/978-3-642-97881-4.

17 Jean B. Lasserre. Global Optimization with Polynomials and the Problem of Moments. SIAM
Journal on Optimization, 11(3):796–817, 2001. doi:10.1137/S1052623400366802.

18 Monique Laurent. A Comparison of the Sherali–Adams, Lovász–Schrijver, and Lasserre
Relaxations for 0-1 Programming. Mathematics of Operations Research, 28(3):470–496, 2003.
URL: http://www.jstor.org/stable/4126981.

ICALP 2023

https://doi.org/10.1109/LICS52264.2021.9470543
https://doi.org/10.1137/120867834
https://doi.org/10.1145/3209108.3209186
https://doi.org/10.1007/978-3-662-47672-7_13
https://doi.org/10.1007/BF01305232
https://doi.org/10.1007/BF01305232
https://www.pdmi.ras.ru/~inp/ccNOTES.pdf
https://doi.org/10.1109/LICS52264.2021.9470609
https://doi.org/10.4230/LIPICS.ICALP.2018.40
https://doi.org/10.1002/jgt.20461
https://doi.org/10.1145/3373718.3394739
https://doi.org/10.1145/3375395.3387641
https://doi.org/10.1145/3375395.3387641
https://doi.org/10.1017/jsl.2015.28
https://doi.org/10.48550/arXiv.2111.11313
https://doi.org/10.4230/LIPIcs.ICALP.2022.70
https://doi.org/10.1007/978-3-642-97881-4
https://doi.org/10.1137/S1052623400366802
http://www.jstor.org/stable/4126981

101:18 Lasserre Hierarchy for Graph Isomorphism and Homomorphism Indistinguishability

19 László Lovász. Operations with structures. Acta Mathematica Academiae Scientiarum
Hungarica, 18(3):321–328, September 1967. doi:10.1007/BF02280291.

20 Laura Mančinska and David E. Roberson. Quantum isomorphism is equivalent to equality
of homomorphism counts from planar graphs. In 2020 IEEE 61st Annual Symposium on
Foundations of Computer Science (FOCS), pages 661–672, 2020. doi:10.1109/FOCS46700.
2020.00067.

21 Laura Mančinska, David E. Roberson, Robert Samal, Simone Severini, and Antonios Varvit-
siotis. Relaxations of Graph Isomorphism. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian
Kuhn, and Anca Muscholl, editors, 44th International Colloquium on Automata, Languages,
and Programming (ICALP 2017), volume 80 of Leibniz International Proceedings in Informatics
(LIPIcs), pages 76:1–76:14, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer
Informatik. doi:10.4230/LIPIcs.ICALP.2017.76.

22 Laura Mančinska, David E. Roberson, and Antonios Varvitsiotis. Graph isomorphism: Physical
resources, optimization models, and algebraic characterizations, 2020-04-22. doi:10.48550/
arXiv.2004.10893.

23 Yoàv Montacute and Nihil Shah. The pebble-relation comonad in finite model theory. In
Christel Baier and Dana Fisman, editors, LICS ’22: 37th Annual ACM/IEEE Symposium on
Logic in Computer Science, Haifa, Israel, August 2 – 5, 2022, pages 13:1–13:11. ACM, 2022.
doi:10.1145/3531130.3533335.

24 Daniel Neuen. Homomorphism-Distinguishing Closedness for Graphs of Bounded Tree-Width,
April 2023. doi:10.48550/arXiv.2304.07011.

25 Ryan O’Donnell, John Wright, Chenggang Wu, and Yuan Zhou. Hardness of Robust Graph
Isomorphism, Lasserre Gaps, and Asymmetry of Random Graphs. In Chandra Chekuri, editor,
Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 1659–1677. SIAM, 2014.
doi:10.1137/1.9781611973402.120.

26 Gaurav Rattan and Tim Seppelt. Weisfeiler–Leman and Graph Spectra. In Proceedings of the
2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2268–2285, 2023.
doi:10.1137/1.9781611977554.ch87.

27 David E. Roberson. Oddomorphisms and homomorphism indistinguishability over graphs of
bounded degree, June 2022. doi:10.48550/arXiv.2206.10321.

28 David E. Roberson and Tim Seppelt. Lasserre Hierarchy for Graph Isomorphism and Homo-
morphism Indistinguishability, 2023. doi:10.48550/ARXIV.2302.10538.

29 N. Robertson and P.D. Seymour. Graph Minors XIII. The Disjoint Paths Problem. Journal
of Combinatorial Theory, Series B, 63(1):65–110, 1995. doi:10.1006/jctb.1995.1006.

30 Tim Seppelt. Logical Equivalences, Homomorphism Indistinguishability, and Forbidden Minors,
February 2023. doi:10.48550/ARXIV.2302.11290.

31 P.D. Seymour and R. Thomas. Graph Searching and a Min-Max Theorem for Tree-Width.
Journal of Combinatorial Theory, Series B, 58(1):22–33, 1993. doi:10.1006/jctb.1993.1027.

32 Hanif D. Sherali and Warren P. Adams. A Hierarchy of Relaxations between the Continuous
and Convex Hull Representations for Zero-One Programming Problems. SIAM Journal on
Discrete Mathematics, 3(3):411–430, 1990. doi:10.1137/0403036.

33 Aaron Snook, Grant Schoenebeck, and Paolo Codenotti. Graph Isomorphism and the Lasserre
Hierarchy, 2014. doi:10.48550/arXiv.1401.0758.

34 Maciej M. Sysło. Characterizations of outerplanar graphs. Discrete Mathematics, 26(1):47–53,
1979. doi:10.1016/0012-365X(79)90060-8.

35 Edwin R. van Dam and Willem H. Haemers. Which graphs are determined by their spec-
trum? Linear Algebra and its Applications, 373:241–272, 2003. doi:10.1016/S0024-3795(03)
00483-X.

36 Boris Weisfeiler. On Construction and Identification of Graphs, volume 558 of Lecture Notes in
Mathematics. Springer Berlin Heidelberg, Berlin, Heidelberg, 1976. doi:10.1007/BFb0089374.

https://doi.org/10.1007/BF02280291
https://doi.org/10.1109/FOCS46700.2020.00067
https://doi.org/10.1109/FOCS46700.2020.00067
https://doi.org/10.4230/LIPIcs.ICALP.2017.76
https://doi.org/10.48550/arXiv.2004.10893
https://doi.org/10.48550/arXiv.2004.10893
https://doi.org/10.1145/3531130.3533335
https://doi.org/10.48550/arXiv.2304.07011
https://doi.org/10.1137/1.9781611973402.120
https://doi.org/10.1137/1.9781611977554.ch87
https://doi.org/10.48550/arXiv.2206.10321
https://doi.org/10.48550/ARXIV.2302.10538
https://doi.org/10.1006/jctb.1995.1006
https://doi.org/10.48550/ARXIV.2302.11290
https://doi.org/10.1006/jctb.1993.1027
https://doi.org/10.1137/0403036
https://doi.org/10.48550/arXiv.1401.0758
https://doi.org/10.1016/0012-365X(79)90060-8
https://doi.org/10.1016/S0024-3795(03)00483-X
https://doi.org/10.1016/S0024-3795(03)00483-X
https://doi.org/10.1007/BFb0089374

Average-Case to (Shifted) Worst-Case Reduction
for the Trace Reconstruction Problem
Ittai Rubinstein # Ñ

Qedma Quantum Computing, Tel Aviv, Israel

Abstract
In the trace reconstruction problem, one is given many outputs (called traces) of a noise channel
applied to the same input message x, and is asked to recover the input message. Common noise
channels studied in the context of trace reconstruction include the deletion channel which deletes
each bit w.p. δ, the insertion channel which inserts a Gj i.i.d. uniformly distributed bits before each
bit of the input message (where Gj is i.i.d. geometrically distributed with parameter σ) and the
symmetry channel which flips each bit of the input message i.i.d. w.p. γ.

De et al. and Nazarov and Peres [12, 20] showed that any string x can be reconstructed from
exp(O(n1/3)) traces. Holden et al. [13] adapted the techniques used to prove this upper bound, to
construct an algorithm for average-case trace reconstruction from the insertion-deletion channel
with a sample complexity of exp(O(log1/3 n)). However, it is not clear how to apply their techniques
more generally and in particular for the recent worst-case upper bound of exp(Õ(n1/5)) shown by
Chase [7] for the deletion channel.

We prove a general reduction from the average-case to smaller instances of a problem similar to
worst-case and extend Chase’s upper-bound to this problem and to symmetry and insertion channels
as well. Using this reduction and generalization of Chase’s bound, we introduce an algorithm for
the average-case trace reconstruction from the symmetry-insertion-deletion channel with a sample
complexity of exp(Õ(log1/5 n)).

2012 ACM Subject Classification Theory of computation → Sample complexity and generalization
bounds

Keywords and phrases Trace Reconstruction, Synchronization Channels, Computational Learning
Theory, Computational Biology

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.102

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2207.11489

Acknowledgements We would like to thank Zachary Chase, Roni Con and Aviad Rubinstein for
their helpful comments on previous versions of this paper. We would also like to thank Nina Holden,
Robin Pemantle, Yuval Peres and Alex Zhai for their help in understanding their paper.

1 Introduction

The symmetry-insertion-deletion (SID) channel with bit-flip probability γ ∈ [0, 1/2), insertion
probability σ ∈ [0, 1) and deletion probability δ ∈ [0, 1), takes as input a binary string
x ∈ {0, 1}n. For each j, the jth bit of x is flipped w.p. γ (we will sometimes think of this
portion of the channel as replacing the jth bit of x with a random bit w.p. 2γ). Then Gj

random uniform and independent bits are inserted before the jth bit of x, where the random
variables Gj ≥ 0 are i.i.d. geometrically distributed with parameter σ. Then, each bit of the
message is deleted independently with probability δ. The output string x̃ is called a trace1.

1 The trace reconstruction problem was originally defined with only the deletion channel [2] (i.e. with γ
and σ fixed to 0). The more general SID channels were first considered in the “open questions” of [18]
and were further researched by Andoni et al. [1] and by De et al. [12].

EA
T
C
S

© Ittai Rubinstein;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 102; pp. 102:1–102:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ittai.rubinstein@gmail.com
https://ittairubinstein.wixsite.com/ittai-rubinstein
https://orcid.org/0000-0002-8563-6213
https://doi.org/10.4230/LIPIcs.ICALP.2023.102
https://arxiv.org/abs/2207.11489
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

102:2 Average-Case to (Shifted) Worst-Case Reduction

The trace reconstruction problem asks the following question: how many traces are
necessary to reconstruct an unknown string x?

The main motivation for studying trace reconstruction comes from computational biology,
where one often tries to align several DNA sequences to a common ancestor, and it has been
extensively researched since the early 2000’s [2].

Perhaps the most natural and well-researched version of the trace reconstruction problem,
is the worst-case, where the input string x is adversarially chosen. Holenstein et al. [15]
established an upper bound of exp(Õ(n1/2)) on its sample complexity. This was improved
by Nazarov and Peres [20], and De, O’Donnell and Servedio [12] who simultaneously proved
upper and lower bounds of exp(O(n1/3)) on the sample complexity of “mean-based” trace
reconstruction techniques. Recently, Chase [7] improved on these methods by proving that a
“non-linear” method can be used to solve the worst-case deletion-channel trace reconstruction
problem with a far lower sample complexity of exp(Õ(n1/5)).

De et al. and Nazarov and Peres’s results were highly influential and mean-based separ-
ators are used as a central component in the analysis of many other versions of the trace
reconstruction problem [5, 8, 10, 13, 16, 21]. However, so far, Chase’s techniques have not
been extended beyond worst-case trace reconstruction from a deletion channel. In particular,
we note the coded [5, 10] and the average-case [13, 21] trace reconstruction problems.

The average-case trace reconstruction problem was introduced by Batu et al. [2]. In
this problem, the input string x is chosen uniformly at random from {0, 1}n, and the
reconstruction only needs to succeed w.h.p. over the choice of x. McGregor et al. [17]
showed that if H(n) traces are necessary for the worst-case trace reconstruction, then at
least H(log n) are needed for the average-case (and under some conditions H(log n) log n).

Peres and Zhai [21] adapted mean-based separators to the average-case, construct-
ing an efficient algorithm for the average-case deletion-channel trace reconstruction with
exp(O(log1/2 n)) samples and low deletion probability (δ ≤ 1/2). This was further improved
by Holden et al. [14] who reduced the sample complexity to exp(O(log1/3 n)) and generalized
the algorithm to work for all insertion-deletion channels.

Motivated by the question of DNA storage, Cheraghchi et al. [10] introduced the coded
trace reconstruction problem, where one is asked to construct a code C ⊂ {0, 1}n s.t. any
codeword x ∈ C can be reconstructed w.h.p. given as few independent traces x̃ as possible.
Brakensiek et al. [5] proved that this problem is essentially equivalent to the average-case
trace reconstruction problem.

1.1 Our Contributions
Let n ∈ N be arbitrarily large, and let γ ∈ [0, 1/2), σ ∈ [0, 1) and δ ∈ [0, 1) be fixed bit-flip,
insertion and deletion probabilities, and let C be the SID channel with these parameters. Let
C be a sufficiently large constant2.

We introduce a new version of the trace reconstruction problem, called the shifted trace
reconstruction problem (see Definition 1). In this problem, one is asked to reconstruct the
first n bits of a much longer string x from its traces. Moreover, the error channel is also
allowed to “shift” the traces by some unknown distance s ∈ N (selected i.i.d. from a known
and bounded distribution S for each trace).

The shifted trace reconstruction problem often appears as a component in the analysis of
other versions of the trace reconstruction problem [14, 8], but so far it has not been formally
defined. Moreover, it could be of interest in its own right. Similar to the approximate trace
reconstruction problem introduced by Davies et al. [11] and the average-case approximate

2 C may depend on γ, σ, δ, but not on n.

I. Rubinstein 102:3

trace reconstruction problem by Chase and Peres [8] which model the question of using a
smaller number of traces to reconstruct some information about the input string x, the shifted
trace reconstruction problem asks a similar question, but with the goal of reconstructing the
prefix of a long string.

▶ Definition 1 (Shifted Trace Reconstruction Problem). In a shifted trace reconstruction
problem of size n ∈ N, with shift inaccuracy ∆S(n), one must reconstruct the n + 1th bit
of any string x ∈ {0, 1}N of length at most 2n given the value of its first n bits x:n, and
H(n) = exp(h(n)) i.i.d. traces x̃ produced by the following process.

A random shift s is applied to the input string x def= xs:, where s← S is drawn from a known
shift distribution S, with bounded support Supp(S) ⊆ [a, a + ∆S] for some 0 ≤ a ≤ n−∆S.
Then the noise channel C is applied to the shifted string x to obtain a trace x̃.

The shifted trace reconstruction problem is clearly at least as hard as the worst-case
trace reconstruction problem, but the differences between the two do not seem to affect the
leading reconstruction techniques. In particular, we extend Chase’s analysis to SID channels
and to the shifted trace reconstruction problem, proving that exp(Õ(n1/5)) samples suffice
for the (shifted) worst-case trace reconstruction problem from an SID channel (Theorem 2).

▶ Theorem 2. For any SID channel C as defined above, and for any constant C > 0, there
exists an algorithm A which solves the shifted trace reconstruction problem of size n with shift
inaccuracy ∆S(n) = Ch(n) and sample complexity H(n) = exp(h(n)) = exp(O(n1/5 log7 n)).

Furthermore, when the deletion probability is sufficiently low (δ < 1/2), the algorithm A

runs in time exp(O(n4/5 log n)) and if q ≥ 1/2, then A runs in time exp(O(n)).

▶ Remark 3. Note that while De et al.’s reconstruction algorithm has a time complexity
polynomial in its sample complexity, Chase only proves an upper bound on the sample
complexity. A naïve adaptation of Chase’s upper bound to an algorithm would yield a time
complexity of exp(Θ(n)).

Holden et al.’s average-case trace reconstruction algorithm works by partially aligning
each trace and then using an oracle that solves a version of the shifted trace reconstruction
problem to reconstruct each bit of the input message x. However, much of their analysis is
specific to their sample complexity of exp(log1/3(n)).

We transform Holden et al.’s construction into a general reduction from an average-case
trace reconstruction of length n to linearly many instances of shifted trace reconstruction
problems of length O(log(n)) (Theorem 4). Moreover, our reduction applies to any SID chan-
nel.

▶ Theorem 4 (Average to Shifted Reduction). Let A be an oracle that solves the shifted trace
reconstruction problem with sample complexity H(n) = exp(h(n)) (for log(n) ≤ h(n) ≤

√
n),

shift inaccuracy ∆S = Ch(n), and failure probability < exp(−n).
Then there exists an algorithm A′ that solves the average-case trace reconstruction problem

with success probability 1−on(1), sample complexity of exp(Ch(C log n)), and time complexity
t(n) = n1+o(1), given n calls to the oracle A.

▶ Remark 5. Note that the assumption that log(n) ≤ h(n) ≤
√

n is not very restrictive, since
we show an upper bound of h(n) ≤ Õ(n1/5) and the lower bound by Chase [6] implies that

h(n) ≥ 3
2 log n .

ICALP 2023

102:4 Average-Case to (Shifted) Worst-Case Reduction

It is interesting to compare Theorem 4 to [17, Lemma 10]. Theorem 4 shows that if
H(n) traces suffice for shifted trace reconstruction then poly(H(log n)) traces suffice for
average-case trace reconstruction. Compare this to McGregor et al. [17, Lemma 10] who prove
that if H(n) traces are required for worst-case trace reconstruction, then H(log n) traces
are required for average-case trace reconstruction. This means that up to the differences
between shifted and worst-case trace reconstruction, Theorem 4 is essentially tight.

We also note Brakensiek et al. [5], who proved reductions between the coded and the
average-case trace reconstruction problems. When combined with Theorem 4 and [17, Lemma
10], a computational class of trace reconstruction problems begins to emerge (see Figure 1).

An important question to consider in future trace reconstruction research is whether
other versions of the trace reconstruction problem can be reduced to one of these classes.
For instance, consider the approximate average-case trace reconstruction problem. The
best known approximate average-case trace reconstruction technique at the time of writing
this paper is due to Chase and Peres [8], whose approach is based on performing calls to
a “shifted” average-case trace reconstruction oracle, making it a good candidate for a more
general reduction.

Shifted

Worst-Case

Worst-Case Average-Case
Coded Trace

Reconstruction

McGregor
et al. Brakensiek

et al.

C
o

n
jectu

red

This paper

Figure 1 A diagram of several known reductions between trace reconstruction problems. McGregor
et al. [17] proved that any solution to the average-case trace reconstruction problem implies a solution
to a smaller instance of the worst-case trace reconstruction problem. Brakensiek et al. [5] proved
reductions from coded trace reconstruction to average-case trace reconstruction and vice versa. We
introduce the shifted trace reconstruction and prove a reduction from the average-case to it. We
also show that the current best-known solutions for worst-case trace reconstruction can be extended
to shifted trace reconstruction and conjecture that the two are equivalent.

Finally, Theorems 2 and 4 give us an algorithm for the average-case trace reconstruction
from SID channels with only exp(Õ(log1/5 n)) traces.

▶ Theorem 6 (Main Result). For any SID channel C as defined above, if x ∈ {0, 1}n is a
bit-string where the bits are chosen uniformly and independently at random, then we can
reconstruct x with probability 1 − on(1) using exp(C log1/5 n log7 log n) traces. Moreover,
when the deletion probability is sufficiently low (δ < 1/2), this can be done in n1+o(1) time
and otherwise, this can be done in polynomial time.

I. Rubinstein 102:5

1.2 An Overview of Previous Constructions
Many trace reconstruction techniques follow a similar high-level pattern [7, 12, 14, 20, 21].
First, a combinatorial analysis allows us to equate some property of the original message x
to a polynomial whose coefficients depend on the traces x̃. This polynomial is then analysed
on a small sub-arc of the complex disk D using Borwein and Erdélyi’s seminal research on
Littlewood polynomials [3] or an extension of it [7], yielding a statistical test on the traces
which can be used to reconstruct some property of the original message x.

Our analysis will also follow a similar pattern, and many of its steps will be based on
combinations and extensions of components used to prove previous results, so we begin with
a short overview of these techniques.

For any w ∈ {0, 1}N, let Iw : {0, 1}N → R be the function that maps a string x to 1 if it
begins with the prefix w and otherwise maps it to 0. For any function f : {0, 1}N → R, we
define its indicator polynomial on x to be the polynomial pf,x(z) =

∑
j f(xj:)zj ∈ R[z].

De et al. and Nazarov and Peres [12, 20] show that the polynomial px
def= pI1,x whose jth

coefficient is the jth bit of the original message xj and the polynomial px̃
def= E [pI1,x̃] whose

jth coefficient is the average over the jth bits of the traces E [x̃j] are essentially equivalent
up to a parameter change:

px̃(ϕ−1(z)) ≈ (1− δ)(1− 2γ)px(z) (1)

where ϕ(z) = (1−σ)(δ+(1−δ)z)
1−σz is a Möbius transformation related to the channel para-

meters3. De et al. and Nazarov and Peres then consider points of the form z = exp(iα) for
small −n−1/3 < α < n−1/3. px̃(ϕ−1(z)) can be approximated at such points from a bounded
number of traces, because

∣∣ϕ−1(z)
∣∣ < 1 + O(n−2/3) and the linear transformation mapping

the traces x̃ to

px̃(ϕ−1(z)) =
∑

1≤j≤n

(
ϕ−1(z)

)j E [x̃j]

has bounded coefficients
∣∣ϕ−1(z)

∣∣j ≤ exp(O(n1/3)).
Borwein and Erdélyi [3] showed that for any polynomial p(z) with {0,±1} coefficients,

there exists some z in this sub-arc {exp(iα) | |α| ≤ n−1/3} for which |p(z)| ≥ exp(−O(n1/3)).
In the context of trace reconstruction, we take p(z) to be the difference px(z)− py(z) where
x and y are two input messages between which we want to differentiate.

This yields a method of differentiating between any two potential input strings x, y with
exp(O(n1/3)) traces.

Peres and Zhai [21] and Holden et al. [13] use a similar relationship between the original
message and the traces, but in their construction the polynomials px and px̃ have a much
higher degree because they want to reconstruct the first bits of a long string. They overcome
this by extending the complex analysis to points of the form z = ρ exp(iα) for a carefully
chosen ρ = 1− o(1), effectively allowing them to truncate px and px̃ to a finite degree.

Holden et al. also use the fact that their input string is random to create partial alignments.
The alignments are based on a Boolean test which checks whether or not a substring w̃ of
a trace x̃ was the result of applying the channel to some substring w of the input message
x. This Boolean test is guaranteed to have a low false-positive rate and a non-negligible
true-positive rate, when the input string w is “sufficiently random”.

3 Equation (1) is correct up to minor technical details. Lemma 8 can be used to derive an accurate version
of this equation.

ICALP 2023

102:6 Average-Case to (Shifted) Worst-Case Reduction

Holden et al. use this alignment procedure to reconstruct x one bit at a time. For each
bit, they use this partial alignment to pin the traces to some nearby index and then use a
mean-based separator to reconstruct it.

Chen et al. [9] and Narayanan and Ren [19] generalize equation (1) to relate multi-indices
where some subsequence w appears in the input message x to multi-indices where the same
subsequence appears in the traces, but their proof is limited to the deletion channel. As a
results, Chase’s analysis [7] which relies heavily on this generalized relationship, cannot be
directly extended to insertion or symmetry channels.

Chase sets w to be an “a-periodic” string, in order to ensure that the set of indices
where w appears as a consecutive substring in x is sparse. Therefore, the polynomial
pw,x(z) def= pIw,x(z) has sparse coefficients. Chase uses an extension of Borwein and Erdélyi’s
methods to prove much stronger bounds on polynomials with sparse coefficients on similar
arcs of the unit disk. Balancing out the parameters yields Chase’s exp(Õ(n1/5)) bound on
the worst-case sample complexity.

Much of our paper will be devoted to generalizing and combining the results of Holden et
al. [14] and Chase [7]. For the sake of brevity, we will henceforth refer to these papers as the
HPPZ and the Chase constructions respectively.

1.3 Sketch of our Proof
We extend these analyses in three key ways.

In the first and most difficult portion of the paper, we extend Chen et al. and Narayanan
and Ren’s [9, 19] generalization of equation (1) to SID channels. This is non-trivial, as
the common method of dealing with insertions and bit-flips is to take a statistic where the
unbiased insertions average out to having no effect on the output (this is usually done by
looking at the difference between the traces x̃, ỹ of two potential input strings x, y). It is
not clear how to perform a similar analysis on a multi-bit property, such as an indicator of
some magic string w which is highly non-linear in its input.

Our main observation in dealing with this problem is that the function χ(−1,...,−1)(x) def=
(−1)x1 · · · (−1)xk , which we call a “full” character, has the property that if any of its input
bits x1, . . . , xk is an inserted bit or was replaced with a random bit by the symmetry channel,
then its output is unbiased and does not affect the average over traces. This allows us to
prove a similar relationship between pχ(−1,...,−1),x and pf,x̃.

Next, we extend this analysis to all characters f(x) = χω(x) def=
∏

j ω
xj

j for ω ∈ {±1}k.
This extension is more complex and requires several difficult technical lemmas, but it allows
us to reconstruct pf,x(z) for (almost) any function f : {0, 1}k → R from the traces. We do
this by applying the Fourier transformation on Boolean functions to f , allowing us to write
f(x) =

∑
ω χω(x)f̂(ω) as a linear combination of characters, and by extension

pf,x(z) = p∑
ω

χω(·)f̂(ω),x(z) =
∑

ω

f̂(ω)pχω,x(z).

In the second portion of our analysis, we extend the Borwein and Erdélyi-type bounds
proven by Chase [7] to deal with sparse polynomials when evaluated at points within the
unit disk. This step is necessary for our extension of Chase’s bounds to the shifted trace
reconstruction problem.

In the third and final portion of the paper, we generalize Holden et al.’s [13] construction
into a reduction from an average-case trace reconstruction problem of size n to linearly many
trace reconstruction problems of size Θ(log(n)). Moreover, we extend Holden et al.’s proofs
originally shown for the insertion-deletion channel to SID channels as well.

I. Rubinstein 102:7

1.4 Organization of the Paper
Sections 2 and 3 contain the heart of our analysis, where we convert the shifted trace
reconstruction problem into a complex analysis one (2) and use complex analysis techniques
to solve it (3). We adapt Holden et al.’s techniques to prove a general reduction in Section 4,
proving Theorems 4 and 6. Section 5 is reserved for a discussion of our results.

2 Conversion to Complex Analysis

Let x ∈ {0, 1}N be some input string and let x̃ denote its trace from some shifted trace
reconstruction problem. The first step of our analysis will be to relate a property of x to the
expectation of some function applied to its traces x̃. By bounding this function of the traces
in absolute value, we prove that this function can be approximated from a bounded number
of traces. Then, in Section 3, we will show that approximating this property of the input
string x allows us to reconstruct x one bit at a time.

This approach to trace reconstruction is common in recent literature. De et al., Holden et
al. and Nazarov and Peres [12, 14, 20] show how “single bit statistics” of the input string
x can be related to its traces through SID channels and shifts. Chase [7], building off of
the works of Chen et al. [9] and Narayanan and Ren [19], extended this relationship to
multi-bit statistics, in order to prove a stronger bound on the sample complexity of trace
reconstruction.

However, Chase’s analysis is limited to deletion channels and the main known tools for
dealing with insertions and bit-flips are inherently limited to single-bit statistics. Our goal in
this section will be to combine these approaches, allowing us to estimate multi-bit properties
of the input string x from traces through an SID channel.

Let 1 ≤ ℓ ≤ 2n1/5 + 1 be some integer. For any function f : {0, 1}ℓ → D from the
hypercube to the unit disk D (for our use-case, we will want f = Iw to be the indicator of
some marker w ∈ {0, 1}N), we define qf,x(z0, . . . , zℓ) to be

qf,x (z0, . . . , zℓ)
def=

∑
k0<k1<···<kℓ

(−1)x0zk0
0 f (xk1 , . . . , xkℓ

)
∏

1≤j≤ℓ

z
kj−kj−1−1
j .

In essence, qf,x(z0, . . . , zℓ) is a multivariate polynomial whose coefficients encode the
value of f when applied to subsequences of the input string x. Our goal will be to show that
the value of this polynomial can be estimated at certain points from a bounded number of
traces (see Theorem 7).

▶ Theorem 7. Let z0 be a point on the arc
{

(1− n−4/5 log6 n) exp(iα) | α ∈ [−n−2/5, n−2/5]
}

.
If δ < 1/2, let z1, . . . , zℓ = 0. Otherwise, let z1 = · · · = zℓ be any point in the segment
[1− c1, 1− c2] for sufficiently small constants c1 > c2 > 0.

Given H(n) = exp(h(n)) traces with shift inaccuracy η = O(h(n)), we can estimate
qf,x at the point (z0, . . . , zℓ) to within an additive error of order ± exp(−Ω(h(n))) and with
success probability 1− exp(−ω(n)), where h(n) = n1/5 log7 n.

We separate the proof of Theorem 7 into three parts. In the first part of the proof
(Lemma 8), we will show that the statement holds for the function f(x1, . . . , xℓ) =∏

1≤j≤ℓ(−1)xj . We will call this function a “full character”.
We will then extend this proof to any character f(x1, . . . , xℓ) = χω(x1, . . . , xℓ) =∏

1≤j≤ℓ ω
xj

j (with ω ∈ {±1}ℓ) of the Fourier transformation on Boolean functions. Fi-
nally, to complete the proof, we will use the fact that any function f : {0, 1}ℓ → D can
be written as a linear combination of characters f =

∑
ω f̂(ω)χω (where f̂ is the Fourier

transformation of f).

ICALP 2023

102:8 Average-Case to (Shifted) Worst-Case Reduction

▶ Lemma 8. Let S be a shift distribution with bounded support (Supp (S) ⊆ {0, 1, . . . , d}). Let
x ∈ {0, 1}N be an input string, and let x̃ be the trace of x, sampled by applying the SID channel
with deletion probability δ, insertion probability σ and bit-flip rate γ applied to the randomly
shifted string xs: (where s← S).

Define ϕ1(z) def= (1−δ)z +δ, ϕ2(z) def= (1−σ)z
1−σz , ϕ

def= ϕ2 ◦ϕ1. For all j, we set ζj = ϕ−1(zj).
Define P (z) def=

∑d
s=0 Pr [S = s]zs. Then:

P (z−1
0)

∑
k0<k1<···<kℓ

(−1)x0zk0
0

∏
1≤j≤ℓ

z
kj−kj−1−1
j (−1)xj−xj−1−1 =

=

 ∏
0≤j≤ℓ

ϕ1 (ζj)
(1− δ)(1− 2γ)ζj

 Ẽ
x

 ∑
r0<···<rℓ

ζr0
0 (−1)x̃r0

 ℓ∏
j=1

(−1)x̃rj ζ
rj−rj−1−1
j

 (2)

Lemma 8 moves us closer to the goal of proving Theorem 7, because the left-hand-side
of equation (2) is essentially equivalent to qf,x(z0, . . . , zℓ) for the function f(x1, . . . , xℓ) =∏

1≤j≤ℓ(−1)xj , while the right-hand-side depends only on the traces.

2.1 Proof of Lemma 8
We begin by proving Lemma 8 for the simpler case, where the shift s and the bit-flip
probability are both fixed to 0.

Let Dk denote the event that the kth bit of the input string x was not deleted by the
channel. Conditioned on Dk, let Rk be the distribution of the index rk within the trace x̃ to
which this bit was mapped. For any distribution V , let GV (ζ) def=

∑
v Pr [V = v]ζv denote

its generating function.
Consider the generating function GRk

(ζ) of Rk. Each of the first k bits of the input
message x was expanded to an i.i.d. geometrically distributed number of bits, and then each
of those was either retained or deleted, resulting in a Bernoulli distribution of bits (except for
the last bit which was not deleted, because we conditioned on Dk). Using common identities
on products and compositions of generating functions, we derive equation (3).

GRk
(ζ) =

(
GGeom(σ)

(
GBern(δ)(ζ)

))k−1
GGeom(σ)−1

(
GBern(δ)(ζ)

)
ζ = ζ

ϕ1(ζ)ϕ(ζ)k (3)

Denote by Ir the event that the rth bit of the trace was an insertion. Conditioned
on Ir, the rth bit of x̃ is a Bernoulli

(1
2
)

random variable independent of the rest of the
problem. Consider the expectation of f(x̃r0 , . . . , x̃rℓ

) =
∏

1≤j≤l(−1)x̃rj over the traces.
Due to our choice of f , if even one of its inputs is an insertion, then its expectation is
Ex̃

[∏
0≤j≤l(−1)x̃rj

∣∣∣Irj

]
= 0.

The event that the rth bit of the trace x̃r was not due to an insertion is exactly equal
to the event that some bit xk in the input message was not deleted (Dk) and that it was
transmitted as the rth bit of the trace (Rk = r). Therefore, the expectation of f on the
multi-index r0, . . . , rℓ of the trace is equal to

Ẽ
x

 ∏
0≤j≤l

(−1)x̃rj

 =
∑

k0<···<kℓ

(−1)xkj Pr

 ∧
0≤j≤ℓ

(
Dkj
∧

(
Rkj

= rj

))
= (1− δ)ℓ

∑
k0<···<kℓ

(−1)xkj Pr

 ∧
0≤j≤ℓ

(
Rkj

= rj

) ∣∣∣∣∣∣
∧

0≤j≤ℓ

Dkj

 (4)

I. Rubinstein 102:9

Finally, note that given Dkj and the value of rj = Rkj , the effect of the channel on the
next bits is independent of rj . Therefore, conditioned on Dk and Dk+1, we have

Pr
x̃

[
Rkj = rj

∣∣Rkj−1 = rj−1
]

= Pr
x̃

[
Rkj−kj−1−1 = rj − rj−1 − 1

]
. (5)

Combining equations (3), (4) and (5), we see that

(1− δ)−ℓẼ
x

 ∑
r0<···<rℓ

(−1)x̃r0 ζr0
0

∏
1≤j≤l

(−1)x̃rj ζ
rj−rj−1−1
j

 =

=
∑

r0<···<rℓ

∑
k0<···<kℓ

Pr

 ∧
0≤j≤ℓ

(
Rkj

= rj

) ∣∣∣∣∣∣
∧

0≤j≤ℓ

Dkj


(−1)xk0 ζr0

0

∏
1≤j≤l

ζ
rj−rj−1−1
j (−1)xkj =

=
∑

k0<···<kℓ

ζ0

ϕ1(ζ0)ϕ(ζ0)k0(−1)xk0
∏

1≤j≤l

ζj

ϕ1(ζj)ϕ(ζj)kj−kj−1−1(−1)xkj

(6)

Some minor manipulations to equation (6), yields equation (2) for the case when s and γ

are fixed to 0. Finally, we extend the proof to shifts and bit-flips. Let x denote the output of
the shift and symmetry portions of the channel. It is easy to show that

E
x

 ∑
k0<···<kℓ

zk0
0 (−1)xk0

∏
1≤j≤l

z
kj−kj−1−1
j (−1)xkj

 =

= (1− 2γ)ℓ E
s←S

 ∑
k0<···<kℓ

zk0
0 (−1)xk0+s

∏
1≤j≤l

z
kj−kj−1−1
j (−1)xkj +s

 =

= (1− 2γ)ℓP

(
1
z0

) ∑
k0<···<kℓ

zk0
0 (−1)xk0

∏
1≤j≤l

z
kj−kj−1−1
j (−1)xkj

(7)

Combining equations (6) and (7) yields Lemma 8.

2.2 Sketch of the Proof of Theorem 7
Due to space limitations, we reserve the rest of the proof of Theorem 7 to the full version of
the paper which can be found on arxiv [23], where we show that Lemma 8 implies Theorem 7.
The rest of this section is devoted to giving the high-level idea of this proof.

The first step of the proof is an analysis of the Möbius transformations in Lemma 8. In
particular, we show that for the points z0, . . . , zℓ chosen as in Theorem 7, the absolute values
of ζ0, . . . , ζℓ are bounded below 1.

This allows us to truncate the RHS of equation (2) to only its low degree terms with a
negligible effect on the output. This truncation enables us to evaluate this polynomial at the
required points, proving Theorem 7 for the full character f(x1, . . . , xℓ) =

∏
j(−1)xj .

In fact, this allows us to estimate qf,x(z0, . . . , zℓ) for any choice of z1, . . . , zℓ sufficiently
close to those defined Theorem 7 when f is the full character. We use this fact to prove
Theorem 7 for general characters. In essence, we show that qχω,x(z0, . . . , zℓ) can be written
as a high-order derivative of qf ′,x for a full character f ′ on fewer bits ℓ′ < ℓ and that this
derivative can be approximated from a limited number of samples using Lemma 9.

ICALP 2023

102:10 Average-Case to (Shifted) Worst-Case Reduction

▶ Lemma 9. Let c, δ > 0 be some real parameters and let P be an oracle that computes for
a given point z1, . . . , zl ∈ [−c, c]l the value of some polynomial p of degree at most n at the
given point, up to some additive error δ > 0. Let j = (j1, . . . , jl) be some vector of integers
(all smaller than n), define mj = zj1

1 · · · z
jl

l be the jth monomial and jtot =
∑

i ji.
Given poly(n, 1/c)O(l+jtot) queries to P , we can compute the coefficient of mj to within

an additive error of poly(n, 1/c)O(l+jtot)δ in time poly(n, 1/c)O(l+jtot).

Finally, we use the fact that qf,x is linear in our choice of f (i.e. for any f1, f2, qf1+f2,x =
qf1,x + qf2,x), and the fact that any function f can be written as a linear combination of
character functions f =

∑
ω∈{±1}ℓ f̂(ω)χω via a Fourier transformation. Combining these

observations, we see that

qf,x =
∑

ω∈{±1}ℓ

f̂(ω)qχω,x.

The RHS of this equation can be estimated from the traces (one element at a time) and the
LHS was our original goal, thus proving Theorem 7.

3 Proof of Theorem 2

In Section 2, we showed that for any function f from {0, 1}ℓ to the unit disk D, we can
map it into a polynomial related to the input message which can be approximated to a high
degree of accuracy from the traces. In this section, we will construct a function f for which
our approximation of qf,x as promised by Theorem 7 will suffice to reconstruct the n + 1th
bit of the input string x, proving Theorem 2.

A central component of our analysis will be Theorem 10, which is a slight generalisation
of [7, Theorem 5]. In this theorem we show that members of a certain class of polynomials
have some non-negligible values on a sufficiently small sub-arc of the unit disk D.

The polynomial p(z) in Theorem 10 should be thought of as the difference between two
polynomials qf,x(z, 0, . . . , 0)−qf,y(z, 0, . . . , 0) for two hypotheses x and y for the input string.
By proving that these polynomials differ at a point where they can be estimated from the
traces, we show that this estimation can be used to differentiate between the hypotheses.

▶ Theorem 10 (Extension of [7, Theorem 5]). Let Pµ
n denote the set of polynomials of the

form p(z) = ξ − ηzd +
∑

nµ≤j≤n ajzj where η ∈ {0, 1}, ξ ∈ ∂D and |aj | ≤ 2.
For any µ ∈ (0, 1), there exists some constant C > 0, such that for all sufficiently large n,

any p ∈ Pµ
n , it holds that for every ρ ∈ [0, 1]:

max
|α|≤n−2µ

∣∣p(ρeiα)
∣∣ ≥ exp

(
−Cnµ log5 n

)
Our proof of Theorem 10 is similar to Chase’s proof of [7, Theorem 5], and due to space

limitations, we reserve it for the full version of this paper [23]. Throughout the rest of this
section, we will prove that Theorem 2 follows from Theorem 10.

In Section 3.1, we will extend Theorem 10 to a wider class of polynomials, proving that
the estimation method described in Theorem 7 can be used to distinguish between the traces
of any two potential input strings x, y. In Section 3.2, we will show how this distinguishing
oracle can be used to reconstruct a string x from the shifted trace reconstruction problem,
proving Theorem 2.

I. Rubinstein 102:11

3.1 Corollaries of Theorem 10
In this section, we will extend Theorem 10 to prove that for any strings x, y which agree on
their first n bits, the estimation oracle described in Theorem 7 can be used to distinguish
between their traces. This proof will follow from two main components.

First, we will show that for any two such strings x, y, there exists some choice of
indicator function f = Iw, such that for pf,x(z) = qf,x(z, 0, . . . , 0), the polynomial pdiff(z) =
pf,x(z)− pf,y(z) (almost) fits the requirements of Theorem 10. Therefore, if δ < 1/2, then
there exists some point (z, 0, . . . , 0) such that we can estimate the evaluation of qf,x from
the traces and that qf,x and qf,y differ significantly at this same point. This yields a method
of distinguishing between their traces (see Corollary 11).

Then, in Corollary 12, we will extend this analysis to higher deletion probabilities,
by showing that a similar distinguishing method can also be used at points of the form
(z, 1−c, . . . , 1−c). For the rest of this section, let µ = 1/5, ρ = 1−n−4/5 log6 n, ℓ = 2n1/5 +1,
and A = {ρeiα | |α| ≤ n2/5}.

The following is a corollary of Theorem 10:

▶ Corollary 11 (Adaptation of Proposition 6.3 from [7]). Let x, y ∈ {0, 1}N be binary strings
that agree on their first n bits (x:n = y:n) and disagree on their (n + 1)th bit (xn+1 ̸= yn+1).
Then there exist some w ∈ {0, 1}ℓ and z0 ∈ A such that

|qIw,x (z0, 0, . . . , 0)− qIw,x (z0, 0, . . . , 0)| ≥ exp
(
−n1/5 log6 n

)
exp

(
−Cn1/5 log5 n

)
Proof of Corollary 11. Let x and y be two hypotheses for the input string to a shifted trace
reconstruction problem (that agree on their first n bits and not on their n + 1th bit).

Let w′ = x(n− ℓ + 1 : n). Lemmas 1 and 2 of [22] imply that at least one of w′0 or w′1
has no period of length ≤ n1/5 and that for this choice of w ∈ {w′0, w′1}, the indices k for
which xk:k+ℓ = w are n1/5 separated.

Consider the polynomial

pw(z) def= zℓ−n−1 [qIw,x(z, 0, . . . , 0)− qIw,y(z, 0, . . . , 0)]

=
∑

k

[
(−1)xk 1x(k+1:k+ℓ)=w − (−1)yk 1yk+1:k+ℓ=w

]
zk+ℓ−n−1

Because x and y agree on their first n bits, pw(z) has no negative powers. By our definition
of w to be either xn−ℓ+1:n+1 or yn−ℓ+1:n+1, the 0th power of pw(z) is ±1. Moreover, all of
pw(z)’s coefficients are bounded by 2 in absolute value and its non-zero powers maintain the
sparsity condition of Theorem 10.

The only problem with applying Theorem 10 to pw(z) is that its degree is not bounded
by n. We overcome this issue by defining p̃w(z) to be the truncation of pw(z) to its nth
power. Applying Theorem 10 to the polynomial p̃w, we see that there exists a point z0 ∈ A
for which |p̃w(z0)| ≥ exp

(
−C1nµ log5 n

)
Because we want to evaluate p̃w(z) at points z with absolute value |z| = ρ strictly below

1, we can also bound the effect of this truncation by

|p̃w(z)− pw(z)| ≤ ρn

1− ρ
= poly(n) exp(−nµ log6 n) = o (|p̃w|)

From here we apply the triangle inequality to show that |pw(z)| ≥ exp
(
−C2nµ log5 n

)
.

Finally, note that |qIw,x(z, 0, . . . , 0)− qIw,y(z, 0, . . . , 0)| = |pw(z)||z|n−ℓ+1, completing
the proof of Corollary 11. ◀

ICALP 2023

102:12 Average-Case to (Shifted) Worst-Case Reduction

Corollary 11 allowed us to use Theorem 7 to distinguish between the traces of any two
string x and y when the deletion probability of the channel is low (δ < 1/2).

However, this proof relied on our ability to estimate the value of qIw,x at points where
z1 = · · · = zℓ = 0, and when the deletion probability is high (δ ≥ 1/2), Theorem 7 only
allows us to evaluate qIw,x at points of the form z1 = · · · = zℓ ∈ [1− c1, 1− c2]. In order to
distinguish between the traces of x and y from high deletion probability channels, we extend
Theorem 7 to multivariate polynomials sampled at such points. We do this in Corollary 12.

▶ Corollary 12 (Adaptation of Corollary 6.1 from [7]). Let c1 > c2 > 0 be sufficiently small
positive constants, and let x, y ∈ {0, 1}N be as in Corollary 11. There exist some w ∈ {0, 1}l,
z0 ∈ A and z1 = · · · = zℓ ∈ [1− c1, 1− c2], such that

|qIw,x (z0, z1, . . . , z1)− qIw,x (z0, z1, . . . , z1)| ≥ exp
(
−n1/5 log6 n

)
exp

(
−Cn1/5 log5 n

)
Proof of Corollary 12. Fix w and z0 to be the same as in the proof of Corollary 11. We
define Q to be the following polynomial in z1, for z1 ∈ [0, 1− c2].

Q(z1) def= (1− ρ)
(

n

ℓ

)−1
[qIw,x(z0, z1, . . . , z1)− qIw,y(z0, z1, . . . , z1)]

Consider the coefficient of the jth power of z1 in Q. If j ≤ n, then this coefficient is
bounded by 1 in absolute value. This is because our summation over the powers of z0 can
contribute a factor of at most 1/(1− ρ), and the number of terms in qIw,x with total degree
j is at most

(
n
ℓ

)
.

If j > n, then the number of monomials of qIw,x with total degree j is at most
exp(O(ℓ log(j))), but the value of the monomial zj

1 is at most (1− c2)j = exp(−Ω(j)).
Therefore, truncating these higher powers of Q would have a negligible effect on its value.

Let Q̃(z1) be the truncation of Q to monomials of degree ≤ n. Q̃ is a univariate polynomial
in z1, with coefficients bounded from above by 1, and for any z1 ∈ [0, 1− c2], we have∣∣∣Q(z1)− Q̃(z1)

∣∣∣ ≤ exp(−Ω(n)) (8)

In Corollary 11, we showed that |Q(0)| is bounded from below, and this lower bound
can be naturally extended to

∣∣∣Q̃(0)
∣∣∣. Therefore, Q̃(z1) fits the requirements of Theorem 5.1

of [4], which can be used to show that

max
z1∈[1−c1,1−c2]

Q̃(z1) ≥ exp
(
Cnµ log6 n

)
(9)

Combining equations (8) and (9) yields our claim. ◀

3.2 Completing the Proof
In Section 3.1, we proved that the estimation method promised in Theorem 7 can be used
to differentiate between any two potential input strings x and y from their traces. In this
section, we will show how this distinguishing oracle can be transformed into a reconstruction
algorithm, completing the proof of Theorem 2.

The basic idea of this transformation is relatively simple. We enumerate over potential
pairs of input strings y0, y1, and use the distinguishing oracle to decide for each pair which
is a better candidate for being the input string x.

The main technical difficult we need to overcome is due to the fact that the input string x
may be arbitrarily long, so enumerating over all possible input strings can take an arbitrarily
long amount of time. We overcome this, by showing that it suffices to enumerate over the

I. Rubinstein 102:13

first O(n) bits of the input string. Moreover, when the deletion probability is below 1/2, we
show that it suffices to enumerate over only a small fraction of the entropy of these O(n)
bits, yielding a fast reconstruction algorithm.

Let x be the input string to the shifted trace reconstruction problem. By our definition
of the shifted trace reconstruction problem, the first n bits of x are known, and our goal is
to reconstruct the n + 1th bit of the input string x.

Let C > 0 be a sufficiently large constant. Let o0, o1 ∈ {0, 1}Cn−n−1 be two hypotheses
for the value of xn+1:Cn. In other words, y0 = x1:n0o0, y1 = x1:n1o1 are our hypotheses for
the first Cn bits of x.

If δ < 1/2, let z0 and w be as defined in Corollary 11, and let z1 = 0. If δ ≥ 1/2, let
z0, z1 and w be as defined in Corollary 12.

We use the traces to estimate pIw,x(z0, z1, . . . , z1) using the method promised by The-
orem 7. This method may have a small failure probability (which would result in a bad estim-
ate), but for the moment we assume that it succeeds. We then compute pIw,y(z0, z1, . . . , z1)
directly for y ∈ {y0, y1}.

Consider the case where yb = x:Cn for some b ∈ {0, 1}. Because we are evaluating pIw,y
at points with coordinates strictly below 1 in absolute value and this polynomial’s coefficients
are bounded by 1, the contribution of monomials with total degree above Cn is can be
bounded. In particular,∣∣pIw,yb(z0, z1, . . . , z1)− pIw,x(z0, z1, . . . , z1)

∣∣ < exp(−Ω(Cn1/5 log6 n))≪
≪

∣∣pIw,yb(z0, z1, . . . , z1)− pIw,y1−b(z0, z1, . . . , z1)
∣∣ (10)

Therefore, in this case, our estimate of pIw,x(z0, z1, . . . , z1) from the traces will be closer
to pIw,yb(z0, z1, . . . , z1) than to pIw,y1−b(z0, z1, . . . , z1).

We repeat this process for any such pair o0, o1 ∈ {0, 1}Cn−n−1, and for each such pair,
we output the value b for which our estimate of pIw,x(z0, z1, . . . , z1) from the traces is closest
to pIw,yb(z0, z1, . . . , z1).

If b = xn+1, then there exists at least one such ob for which the process above always
selects b for any o1−b. By enumerating over all pairs, we can find the value of b = xn+1 for
which such a string ob exists.

This leaves only a few minor technical details in order to prove Theorem 2.
First, we note that the estimation oracle promised in Theorem 7 has a small failure

probability. We use the union bound to show that the probability that it will fail even once
in the process described above is negligible.

Next we consider the time complexity of our reconstruction. For the high deletion
probability regime (δ ≥ 1/2), this process can clearly be completed in time exp(O(n)).

For lower deletion probabilities δ < 1/2, we note that pIw,y(z0, 0, . . . , 0) depends only on
the indices within y where the string w appears as a consecutive substring. By our definition
of w (see the proof of Corollary 11), this set of indices is sparse. By enumerating only over
the set of indices where w appears in y (and not over the entire Cn bits), we can reduce the
time complexity of this reconstruction algorithm to exp(o(n)), thus completing our proof of
Theorem 2.

4 Proof of Theorem 4

In Sections 2 and 3, we showed that Chase’s worst-case trace reconstruction method can
be naturally extended to the shift trace reconstruction problem and to SID channels. In
this section, we will construct a general reduction from the average-case trace reconstruction
problem to the shifted trace reconstruction problem, proving Theorems 4 and 6.

ICALP 2023

102:14 Average-Case to (Shifted) Worst-Case Reduction

Our proof will be based based on an adaptation of the HPPZ’s methods, and our main
contribution is to show that it can be used as a general reduction as well as to extend it to
symmetry channels. Due to space limitations, in this version of the paper we will give only a
sketch of the proof (for more details, see the full version of this paper [23])

Our reduction will consist of three main ingredients:
A Boolean test T (w, w̃) on pairs of bit-strings (w, w̃) that returns 1 if w̃ is a plausible
match for the output of applying the channel C to w.
A two-step alignment procedure comprised of a coarse and a fine alignment each of which
uses the test T to obtain an estimate τk for the positions within some of the traces
corresponding to the kth bit of the original message x.
The reduction target – a bit recovery procedure based on the target of our reduction to
produce an estimate of any bit of x from these aligned traces.

Finally, similar to HPPZ, throughout this section we will perform our analysis when
δ = σ, but all of these results can be similarly generalized for any values of δ, σ ∈ [0, 1).

4.1 The Boolean Test
The first component of our reduction is a Boolean test T designed to answer whether a string
w̃ is likely to have originated from a trace of some string w or not.

Let ℓ, λ <
√

ℓ and c ∈ (0, 1) be parameters of the test. The test T c
ℓ,λ (when c, ℓ, λ are

clear from the context we may omit them) is defined as follows. First, each of the strings w
and w̃ is split into ≈ ℓ/λ segments of length λ each. Each segment of each string is assigned
a sign +1 if most of the bits in this segment are 0s or −1 otherwise. In other words

si = sign

 ∑
iλ<j≤(i+1)λ

(wj − 1/2)

 ∈ {±1}.

Then, the signs of the segments are compared, and we compute the number of segment
pairs whose signs agree. If w and w̃ were two independently distributed random strings, then
the number of such pairs would be distributed according to the Bin(1/2, ℓ/λ) distribution. If
w and w̃ are similar, then we expect these signs to be roughly correlated to one another.

Therefore, we define the test to pass if at least (1 + c)/2 fraction of the signs agree.

T c
ℓ,λ =

{
1

∑
1≤i≤ℓ/λ sis̃i > c

0 otherwise

We consider this test with two sets of parameters for “coarse” and “fine” alignment pro-
cedures. Let H(n) = exp(h(n)) be the sample complexity of the shifted trace reconstruction
problem. Then for the coarse and fine alignments we set respectively

ℓc = Θ
(

log2(n)
h(Θ (log(n)))

)
; λc = Θ

(
log(n)

h(Θ (log(n)))

)
ℓf = Θ (h(log(n))) ; λf = Θ(1).

Ideally, we want this Boolean test to maintain two behaviours:
If w̃ is not a trace of w, the probability that T will return 1 (called a spurious match)
should be at most exp(−Ω(ℓ/λ)).
If w̃ is a trace of w, the probability that T will pass (called a true match) will be at least
exp(−O(ℓ/λ2)).

I. Rubinstein 102:15

If these conditions hold, then the probability of a true match may be very small, but
when λ is sufficiently large, it will be much higher than the probability of a spurious match.
Therefore, when conditioning on a match, it will most likely be a true match. Over the next
few paragraphs, we will give a sketch of the proof that these conditions hold for substrings of
a random string x.

4.1.1 Spurious Matches are Rare
If w and w̃ are two independently distributed strings chosen uniformly at random, then the
signs of their segments si as defined above will also be independent and uniformly distributed
vectors s, s̃ ∈ {±1}ℓ/λ. In this case, it can be easily shown from the Chernoff bound that the
probability that more than (1 + c)/2 fraction of their entries agree decays exponentially in
their dimension ℓ/λ.

The main difficulty is analysing how this relates to the traces of a random string. Let
w0 = xa0:b0 and w1 = xa1:b1 be two substrings of the random input string x. If the segments
[a0, b0] and [a1, b1] do not overlap, then (averaging over the random options for the input
string x) they are two independent random strings.

Let w̃i be the trace of wi. Clearly, when applying the channel C (which only deletes bits,
inserts i.i.d. uniformly distributed bits and replaces some of the bits of x with i.i.d. uniformly
distributed bits) to a random string of length ℓ, the output will also be a random string of
length roughly 1−δ

1−σ ℓ = ℓ. Therefore, if w0, w1 are non-overlapping substrings of x as defined
above, then w0 and w̃1 are two independent random strings.

Let us denote by ω the randomness of the channel C. Averaging over both the randomness
of the channel and over our selection of the input string x, we have

E
x

[
Pr
ω

[
T (w0, w̃1) = 1

]]
= Pr

ω,x

[
T (w0, w̃1) = 1

]
= Pr

w0,w1←{0,1}ℓ

[
T (w0, w1)

]
= exp (−Ω(ℓ/λ))

(11)

We will use equation (11) in the two settings of the alignment procedure. In the coarse
alignment, we set ℓc/λc = C log(n) = Θ(log(n)). Setting C to be sufficiently large, we can
ensure that Prω,x

[
T (w0, w̃1) = 1

]
= exp(−Ω(C log(n))) < n−10 is sufficiently small that a

simple union bound on the quasi-linear number of coarse alignment procedures we run will
never result in a spurious match.

For the fine alignment procedure, we will have a segment I = [a, a + C log(n)] of length
Θ(log n) of the input string x in which our goal will be to find a subsegment S = [b, b + ℓf]
of length ℓf = o(log(n)) such that for any non-overlapping subsegment S′ ⊂ I of length ℓf ,
the probability of a spurious match between w0 = xS and a trace of w1 = xS′ is

Pr
ω

[
T (w0, w̃1) = 1

]
= exp(−Ω(ℓf /λf)).

It can be shown from a simple combination of a Markov inequality (used to show that
the probability of any such subsegment S to work is 1− exp(−Ω(ℓf))) and an enumeration
over sufficiently many independent options for S, that at least 1 such subsegment exists w.p.
1− exp(−Ω(C log(n))) = 1− n−10. From here, we can simply apply the union bound over
the quasi-linear number of fine alignment procedures in the reduction.

4.1.2 True Matches are Frequent
The next step of our proof will be to show that a string w and its trace w̃ will pass the test
Tℓ,λ with probability at least exp

(
−O(ℓ/λ2)

)
. Due to space limitations, we give only a very

rough sketch of this proof (for a more detailed proof, see the full version of this paper [23]).

ICALP 2023

102:16 Average-Case to (Shifted) Worst-Case Reduction

Consider a substring u = wiλ:(i+1)λ of the string w the matching substring w̃iλ:(i+1)λ of
its trace. The total of the bits in u is binomially distributed, so there is a non-negligible
probability that ≈ 1/2 +

√
1/λ fraction of them will be 0 (in which case, its sign will be −1).

If this is the case, then with fairly high probability, for any substring u′ = wiλ+di,(i+1)λdi+1

where |di| < λ/100, at least ≈ 1/2 +
√

1/2λ fraction of its bits will be 0.
For now, assume that w̃iλ:(i+1)λ = ũ′ originated from the application of the channel C to

u′. The channel replaced a constant fraction of the bits of u′ with random bits (through the
symmetry portion of the channel or the insertion and deletion portions). However, a constant
fraction of these bits were retained, so there is some correlation between their total and that
of the string u′. It can be shown that this correlation suffices to ensure a probability of at
least 1/2 + Ω(1) that the sign of this segment s̃i of the trace will be equal to the sign of the
appropriate segment si of the input string w.

These correlations suffice to ensure that on average 1/2 + Ω(1) of the segments of the
trace w̃ of an input string w will have the same sign as the appropriate segments of the
input string w, conditioned on each of the mismatches di being at most |di| < λ/100 (with
probability 1− exp(−Ω(ℓ)) over the choice of w). Therefore, if we properly set the constant
c parameter of the test T , under these conditions the probability of a true match will be at
least Ω(1).

The next step of our analysis is to show that the mismatches di are sufficiently small
with probability at least exp(−O(ℓ/λ2)). A formal version of this analysis can be found in
the full version of our paper [23].

4.2 Coarse and Fine Alignments
Next, we define our coarse and fine alignment procedures. Let be C a sufficiently large
constant. We define the parameters for the test used in our coarse and fine alignment
procedures to be:

ℓc = C
log2 n

h(C log n) ; λc = C1/2 log n

h(C log n)
ℓf = C2/3h(C log n); λf = C1/12

In the full version of this paper [23], we define a precise condition on the input string x
being “well-behaved” (denoted by x ∈ Ξgood), and show that a string x ∈ {0, 1}n selected
uniformly at random is well-behaved with probability 1 − n−2. We define our alignment
procedure for well-behaved strings x.

Let x ∈ Ξgood be a well-behaved string. For any integer k ∈ [ℓc + C log n, n], we set the
index a1 = k − ℓc − C log n and select a2 ∈ [k − 2/3C log n, k − 1/3C] through a process
defined in the full version of this paper [23].

For any trace x̃, we set our coarse alignment τk
1 to be the first integer b for which

Tℓc,λc(x([a1, a1 + ℓc]), x̃([b, b + ℓc])) = 1

or ∞ if no such b exists. For any trace x̃ with τk
1 <∞, we define its fine alignment τk

2 to be
the first index b ∈ [τk

1 − ℓc, τk
1 + 2ℓc + C log n] such that

Tℓf ,λf
(x([a2, a2 + ℓf]), x̃([b, b + ℓf])) = 1.

I. Rubinstein 102:17

We define the mismatch d(k, τk
i) of any finite alignment τk

i <∞ as the distance between
τk

i and the index of the first bit of the trace originating from the kth bit of the input
message onwards xk:. The following lemma (which we prove in the full version of this
paper [23]) promises that τk

i < ∞ with sufficiently high probability and that there is a
negligible probability that the mismatch of τk

i is large.

▶ Lemma 13. Let x ∈ Ξgood be a well-behaved string and let k ∈ {ℓc + C log n, . . . , n} be an
integer. Then for a1, a2, τk

1 , τk
2 as defined above, the following properties hold:

Pr
[
τk

1 <∞
]

> exp(−c1C1/2h(C log n))
Pr

[
τk

1 <∞∧ d(k, τk
1) > ℓc

]
< n−2

Pr
[
τk

2 <∞ | τk
1 <∞

]
≥ exp(−c2C1/2h(C log n))

Pr
[
τk

2 <∞∧ d(k, τk
2) > ℓf | τk

1 <∞
]

< exp(−c3C7/12h(C log n))
Where the probabilities are taken over the randomness of the channel and c1, c2, c3, c4 > 0
are positive constants that may depend on δ, σ, γ but not on C or n and originate from the
Ω(·)s and O(·)s of the previous sections.

Moreover, as we prove in the full version of this paper, this alignment can be performed
efficiently.

▶ Lemma 14 (τk
1 , τk

2 can be computed efficiently). There is an algorithm Aalign such that,
for any x ∈ Ξgood, k ∈ {ℓc + C log n, . . . , n} and any trace x̃ of x through the channel, given

k, x:k, (τ1
1 , . . . , τk−1

1), (τ1
2 , . . . , τk

2)

Aalign computes τk
1 , τk

2 , a2 in time no(1), with probability ≥ 1− n−2.

4.3 Using the Oracle
In Section 4.1, we introduced the Boolean test which can be used to test whether a substring
of a trace x̃ originated from a specific substring of the input string x. Then, in Section 4.2,
we showed that this test can be used as a central component of an alignment procedure which
maps indices of the input string x to their positions in the traces x̃ with high probability.
In this section, we will complete the proof of our reduction from the average-case trace
reconstruction problem to the shifted trace reconstruction problem.

Proof of Theorem 4. Let C be an SID channel with parameters γ, σ, δ, and let C to be a
sufficiently large constant.

We will prove that given the first k ≥ ℓc + C log n bits of x, we can reconstruct the rest of
its bits one at a time. We can work under this assumption, by adding ℓc + C log n virtual 0
bits to the start of x and adding a trace of 0k to the beginning of each of the traces x̃ before
the reconstruction.

Given the first k bits of x, we will show that we can reconstruct the k + 1th bit of x and
from there, we can continue this process iteratively. Using the alignment algorithm from
Lemma 14, we compute τk

1 and τk
2 of each of the traces x̃.

Given a2, τk
2 , we run the shifted trace reconstruction algorithm A with parameters n′, n′−1,

where n′ = k − a2 ∈ [1/3C log n, 2/3C log n], on the set:

X =
{

x̃(τk
2 :)

∣∣∣x̃ is a sample
τk

2 (x̃)<∞

}
The first and third claims of Lemma 13, mean that for each of our N = exp(Ch(C log n))

traces, it will have a finite τk
2 , with probability at least

exp(−C1/2(c1 + c2)h(C log n)) ≥ exp(−1/3Ch(C log n)).

ICALP 2023

102:18 Average-Case to (Shifted) Worst-Case Reduction

Therefore, by Hoeffding’s inequality, the probability that we will have at least

1/2 exp(2/3Ch(C log n)) > exp(1/2Ch(2/3C log n)) ≥ exp(h(k − a2)) log2(n)

traces for which τk
2 <∞ is at least

1− exp(−Ω(Ch(C log n))) = 1− n−ω(1)

Lemma 13 gives us that the probability that any sample for which τk
2 <∞ is the result

of a spurious match is at most

ε(n) ≤ exp(−(C7/12c3 − C1/2(c1 + c2))h(C log n)) ≤ exp(−10h(k − a2))

Splitting our samples into log2(n) batches of size exp(h(k − a2)) each, we ensure that
1. From the union bound, for each batch, the probability that even a single sample is due

to a spurious match is at most exp(−9h(k − a2)) = o(1).
2. For each batch, if this batch contained no spurious matches, then applying the shifted

trace reconstruction oracle on this batch separately will yield the correct value of the bit
xk with probability 1− o(1).

3. The batches are independent of one another.

From here we can use to Chernoff bound to show that the probability that more than
1/3 of these batches either has at least one spurious match or yielded the wrong output from
the shifted trace reconstruction oracle is exp(−Ω(log2(n))) = n−ω(1), so taking a majority
vote on the applications of the shifted trace reconstruction oracle will yield the correct value
of x with probability 1− n−ω(1), completing our proof. ◀

5 Conclusions

In this paper we presented two main results. First, we proved a general reduction from
the average-case trace reconstruction problem to the shifted trace reconstruction problem,
which is similar to the worst-case trace reconstruction problem. Second, we generalised the
leading algorithm for the worst-case trace reconstruction problem from deletion channels
by Chase [7] to the shifted trace reconstruction problem and to the more general class of
symmetry-insertion-deletion channels.

Our reduction is based on the work of Holden et al. [14] who used a similar technique to
convert the specific methods of De et al. and Nazarov and Peres [12, 20] from worst-case
trace reconstruction to the average-case. Continuing the line of work of Brakensiek et al. [5]
who reduced the coded trace reconstruction problem to the average-case trace reconstruction
problem, we convert the specific construction of Holden et al. to a reduction. Altogether a
computational class of trace reconstruction problems begins to emerge.

Moreover, we note McGregor et al. [17] whose results prove that up to the differences
between shifted and worst-case trace reconstruction, our reduction is essentially tight. This
leads us to several interesting possibilities for future research on trace reconstruction.

First, many other versions of the trace reconstruction have been introduced over the
last few years and analysed with an extension of the methods of De et al. and Nazarov and
Peres [12, 20] for worst-case trace. If more of these analyses can be converted to reductions
to the worst-case or average-case trace reconstruction problems, this would help to simplify
the analysis of the many open questions in this field.

Secondly, it seems that the best known techniques for the worst-case trace reconstruction
problem translate nicely to the shifted trace reconstruction problem, leading to the conjecture
that the two are equivalent. A reduction between the two would help focus further research
on this problem.

I. Rubinstein 102:19

Finally, we note our extension of Chase’s analysis to symmetry-insertion-deletion channels.
This portion of our proof is complicated and would be difficult to extend to other settings.
An important question for future research is whether there exists a simpler and more elegant
analysis for these channels.

References
1 Alexandr Andoni, Constantinos Daskalakis, Avinatan Hassidim, and Sebastien Roch. Global

alignment of molecular sequences via ancestral state reconstruction. Stochastic Processes and
their Applications, 122(12):3852–3874, 2012.

2 Tugkan Batu, Sampath Kannan, Sanjeev Khanna, and Andrew McGregor. Reconstructing
strings from random traces. In Proceedings of the Fifteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’04, pages 910–918, USA, 2004. Society for Industrial and Applied
Mathematics.

3 Peter Borwein and Tamás Erdélyi. Littlewood-type problems on subarcs of the unit circle.
Indiana University mathematics journal, pages 1323–1346, 1997.

4 Peter Borwein, Tamás Erdélyi, and Géza Kós. Littlewood-type problems on [0, 1]. Proceedings
of the London Mathematical Society, 79(1):22–46, 1999.

5 Joshua Brakensiek, Ray Li, and Bruce Spang. Coded trace reconstruction in a constant
number of traces. In 2020 IEEE 61st Annual Symposium on Foundations of Computer Science
(FOCS), pages 482–493. IEEE, 2020.

6 Zachary Chase. New lower bounds for trace reconstruction. In Annales de l’Institut Henri
Poincaré, Probabilités et Statistiques, pages 627–643. Institut Henri Poincaré, 2021.

7 Zachary Chase. Separating words and trace reconstruction. In Proceedings of the 53rd Annual
ACM SIGACT Symposium on Theory of Computing, pages 21–31, 2021.

8 Zachary Chase and Yuval Peres. Approximate trace reconstruction of random strings from a
constant number of traces. arXiv preprint, 2021. arXiv:2107.06454.

9 Xi Chen, Anindya De, Chin Ho Lee, Rocco A Servedio, and Sandip Sinha. Polynomial-time
trace reconstruction in the smoothed complexity model. ACM Transactions on Algorithms
(TALG), 2020.

10 Mahdi Cheraghchi, Ryan Gabrys, Olgica Milenkovic, and Joao Ribeiro. Coded trace recon-
struction. IEEE Transactions on Information Theory, 66(10):6084–6103, 2020.

11 Sami Davies, Miklós Z Rácz, Benjamin G Schiffer, and Cyrus Rashtchian. Approximate trace
reconstruction: Algorithms. In 2021 IEEE International Symposium on Information Theory
(ISIT), pages 2525–2530. IEEE, 2021.

12 Anindya De, Ryan O’Donnell, and Rocco A Servedio. Optimal mean-based algorithms for
trace reconstruction. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory
of Computing, pages 1047–1056, 2017.

13 Nina Holden, Robin Pemantle, Yuval Peres, and Alex Zhai. Subpolynomial trace reconstruction
for random strings and arbitrary deletion probability. In Conference On Learning Theory,
pages 1799–1840. PMLR, 2018.

14 Nina Holden, Robin Pemantle, Yuval Peres, and Alex Zhai. Subpolynomial trace reconstruction
for random strings and arbitrary deletion probability. Mathematical Statistics and Learning,
2(3):275–309, 2020.

15 Thomas Holenstein, Michael Mitzenmacher, Rina Panigrahy, and Udi Wieder. Trace re-
construction with constant deletion probability and related results. In Proceedings of the
nineteenth annual ACM-SIAM symposium on Discrete algorithms, pages 389–398, 2008.

16 Akshay Krishnamurthy, Arya Mazumdar, Andrew McGregor, and Soumyabrata Pal. Trace
reconstruction: Generalized and parameterized. IEEE Transactions on Information Theory,
67(6):3233–3250, 2021.

17 Andrew McGregor, Eric Price, and Sofya Vorotnikova. Trace reconstruction revisited. In
European Symposium on Algorithms, pages 689–700. Springer, 2014.

ICALP 2023

https://arxiv.org/abs/2107.06454

102:20 Average-Case to (Shifted) Worst-Case Reduction

18 Michael Mitzenmacher. A survey of results for deletion channels and related synchronization
channels. Probability Surveys, 6:1–33, 2009. doi:10.1214/08-PS141.

19 Shyam Narayanan and Michael Ren. Circular trace reconstruction. arXiv preprint, 2020.
arXiv:2009.01346.

20 Fedor Nazarov and Yuval Peres. Trace reconstruction with exp (o (n1/3)) samples. In
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages
1042–1046, 2017.

21 Yuval Peres and Alex Zhai. Average-case reconstruction for the deletion channel: subpolynomi-
ally many traces suffice. In 2017 IEEE 58th Annual Symposium on Foundations of Computer
Science (FOCS), pages 228–239. IEEE, 2017.

22 John M Robson. Separating strings with small automata. Information processing letters,
30(4):209–214, 1989.

23 Ittai Rubinstein. Average-case to (shifted) worst-case reduction for the trace reconstruction
problem. arXiv preprint, 2022. arXiv:2207.11489.

https://doi.org/10.1214/08-PS141
https://arxiv.org/abs/2009.01346
https://arxiv.org/abs/2207.11489

The Support of Open Versus Closed Random
Walks
Thomas Sauerwald #

University of Cambridge, UK

He Sun #

University of Edinburgh, UK

Danny Vagnozzi #

University of Edinburgh, UK

Abstract
A closed random walk of length ℓ on an undirected and connected graph G = (V, E) is a random
walk that returns to the start vertex at step ℓ, and its properties have been recently related to
problems in different mathematical fields, e.g., geometry and combinatorics (Jiang et al., Annals
of Mathematics ’21) and spectral graph theory (McKenzie et al., STOC ’21). For instance, in
the context of analyzing the eigenvalue multiplicity of graph matrices, McKenzie et al. show that,
with high probability, the support of a closed random walk of length ℓ ⩾ 1 is Ω(ℓ1/5) on any
bounded-degree graph, and leaves as an open problem whether a stronger bound of Ω(ℓ1/2) holds
for any regular graph.

First, we show that the support of a closed random walk of length ℓ is at least Ω(ℓ1/2/
√

log n) for
any regular or bounded-degree graph on n vertices. Secondly, we prove for every ℓ ⩾ 1 the existence
of a family of bounded-degree graphs, together with a start vertex such that the support is bounded
by O(ℓ1/2/

√
log n). Besides addressing the open problem of McKenzie et al., these two results also

establish a subtle separation between closed random walks and open random walks, for which the
support on any regular (or bounded-degree) graph is well-known to be Ω(ℓ1/2) for all ℓ ⩾ 1. For
irregular graphs, we prove that even if the start vertex is chosen uniformly, the support of a closed
random walk may still be O(log ℓ). This rules out a general polynomial lower bound in ℓ for all
graphs. Finally, we apply our results on random walks to obtain new bounds on the multiplicity of
the second largest eigenvalue of the adjacency matrices of graphs.

2012 ACM Subject Classification Theory of computation → Random walks and Markov chains

Keywords and phrases support of random walks, eigenvalue multiplicity

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.103

Category Track A: Algorithms, Complexity and Games

Funding He Sun: EPSRC Early Career Fellowship (EP/T00729X/1)
Danny Vagnozzi: EPSRC Early Career Fellowship (EP/T00729X/1)

1 Introduction

A random walk on a graph is a Markov chain in which, starting from some vertex of an
undirected graph G = (V, E), the walk moves to one of the neighbors of the current vertex
according to the transition matrix of G. As a fundamental stochastic process, random walks
have been employed to model numerous mathematical and physical processes. In computer
science, random walks have been widely applied in designing randomized and distributed
algorithms. Classical examples range from algorithms for satisfiability, deciding connectivity
to approximating the volume of convex bodies. The vast majority of research on random
walks focuses on “open” random walks, as opposed to closed random walks, which are random
walks of fixed length ℓ conditioned on being at the start vertex at step ℓ.

EA
T
C
S

© Thomas Sauerwald, He Sun, and Danny Vagnozzi;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 103; pp. 103:1–103:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:thomas.sauerwald@cl.cam.ac.uk
mailto:h.sun@ed.ac.uk
mailto:dvagnozz@exseed.ed.ac.uk
https://doi.org/10.4230/LIPIcs.ICALP.2023.103
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

103:2 The Support of Open Versus Closed Random Walks

Following up on an earlier work by Jiang, Tidor, Yao, Zhang and Zhao [11], McKenzie,
Rasmussen and Srivastava [16] develop a more systematic study of closed random walks on
finite graphs. In particular, they study the support of closed random walks, which is the
number of distinct vertices visited by a closed random walk of some length ℓ. As in [11],
they then leverage their proven lower bounds on the support of closed random walks to
upper bound the eigenvalue multiplicities via the trace method of graph matrices. One of
the main ingredients in [16] are general lower bounds on the support of a random walk for
any connected graph. For instance, for any bounded-degree graph, a closed random walk is
shown to have support at least Ω(ℓ1/5). In the same work, they also ask for sharper bounds:

Open Question 3 ([16]): Let d > 1 be a fixed integer. Does there exist an α > 1/5
such that for every connected d-regular graph G on n vertices and every vertex u of G,
a closed random walk1 of length 2ℓ < n rooted at u has support Ω (ℓα) in expectation?
Is α = 1/2 true? Does such a bound hold for simple random walks in general?

Note that the constant α = 1/2 is a natural target, since any open random walk on a regular
graph has support Ω(ℓ1/2) (cf. [3, 7]), and this is matched by the n-cycle. Furthermore, also
for closed random walks on n-cycles as well as the continuous analogue called Brownian
bridges, the support can be shown to be Θ(ℓ1/2). In fact, McKenzie et al. [16] states that
“we know of no example where the answer is o(ℓ1/2)”.

In this paper, we address the Open Question 3 of McKenzie et al. [16]. Our first result
proves a lower bound of almost Ω(ℓ1/2), provided the random walk is sufficiently long. Here
we use Xt to denote the vertex that a (lazy) random walk visits in time t, suppP(ℓ) to denote
the number of distinct vertices that a lazy random walk of length ℓ visits, and P to denote
the associated transition matrix (see Section 2 for more on notation).

▶ Theorem 1.1 (informal version of Theorem 3.1). Consider any connected, n-vertex graph
G = (V, E) with minimum degree δ and maximum degree ∆. Then, for a lazy random walk
of length ℓ = O((∆/δ) · n2 log n) and any vertex u ∈ V , it holds that

E
[

suppP(ℓ)
∣∣∣ Xℓ = X0 = u

]
= Ω

(
ℓ1/2√

(∆/δ) · log n

)
.

This theorem shows that, for any regular or bounded-degree graph, the support of a
closed random walk of length ℓ is at least Ω

(
ℓ1/2/

√
log n

)
; this result improves the lower

bound of Ω
(
ℓ1/5) from [16, Theorem 1.3] whenever ℓ ⩾ (log n)5/3. Apart from the ℓ1/2-term

in our lower bound, one may wonder about the
√

log n-term, which intuitively does not seem
tight. However, we can construct a family of graphs to demonstrate that this

√
log n-term is

needed, establishing that our lower bound is tight up to constant factors. Our upper bound
result is summarized as follows:

▶ Theorem 1.2 (informal version of Theorem 4.1). The following statements hold:
For any ℓ = Ω((log n)7/2), there exists a family of bounded-degree n-vertex graph G =
(V, E) such that a lazy random walk of length ℓ starting at some vertex r satisfies

E
[

suppP(ℓ)
∣∣∣ Xℓ = X0 = r

]
= O

(
ℓ1/2

√
log n

)
.

1 The original formulation in [16] is stated for a randomly chosen closed walk, which has the same
distribution as a closed random walk since G is regular.

T. Sauerwald, H. Sun, and D. Vagnozzi 103:3

Table 1 Overview of the lower and upper bounds on the support of closed and open random walk.
Results highlighted in green are from this work. The lower bound of Ω(ℓ1/5) holds for bounded-degree
graphs. Note that, while our lower bounds hold for all such graphs and all ℓ, the upper bounds only
hold for a specific graph (family) which depends on ℓ and ℓ may be additionally restricted.

Graph
Closed Random Walk Open Random Walk

Lower Bound Upper Bound Lower B. Upper B.

reg./bound. deg.
Ω(ℓ1/5) [16] O(ℓ5/14), ℓ ⩽ (log n)7/2

Ω(ℓ1/2/
√

log n) O(ℓ1/2/
√

log n), ℓ ⩾ (log n)7/2
Ω(ℓ1/2) [7] O(ℓ1/2)

arbitrary – O(log ℓ), ℓ = Θ(log n) Ω(ℓ1/3) [7] –

For any ℓ = O((log n)7/2), there exists a family of bounded-degree n-vertex graph G =
(V, E) such that a lazy random walk of length ℓ starting at some vertex r satisfies

E
[

suppP(ℓ)
∣∣∣ Xℓ = X0 = r

]
= O

(
ℓ5/14

)
.

This result shows that the potential lower bound of Ω(ℓ1/2) mentioned in [16] (Open
Question 3) does not hold in general. In fact, on certain graphs the support of a closed lazy
random walk can be as small as O(ℓ5/14); therefore the “right” exponent must be between
1/5 and 5/14, which is a strong separation from the exponent 1/2 for open random walks.
In contrast, when assuming a suitable lower bound on ℓ, the support of closed random walks
is Θ(ℓ1/2/

√
log n), which is nearly the Θ(ℓ1/2) bound for open random walks. Table 1 lists

the known upper and lower bounds for closed and open random walks; the interplay of these
bounds for regular and bounded-degree graphs is further illustrated in Figure 1.

We now proceed to study closed random walks, with a focus on (highly) irregular graphs.
McKenzie et al. [16] proves that the support of a randomly chosen closed walk can be as
small as O(log ℓ), if starting from a specific vertex (note that a randomly chosen closed walk
will have a different distribution to a closed random walk, unless the graph is regular). Here
we provide a similar upper bound for the support of a closed random walk on a family of
irregular graphs. Interestingly, this upper bound even holds if we assume that the start
vertex is chosen uniformly at random. This lower bound also establishes an “exponential
discrepancy” on the support of closed random walks versus open random walks on irregular
graphs: while the support of open random walks is known to be at least ℓ1/3 (cf. [3]) for any
graph and any start vertex, one can construct graphs for which the support is only O(log ℓ)
for closed random walks.

▶ Theorem 1.3 (informal version of Theorem 4.5). There exists a family of connected, n-vertex
graphs G = (V, E) such that a lazy random walk of some length ℓ = Θ(log n) that starts from
a vertex chosen uniformly at random satisfies

E
[

suppP(ℓ) | Xℓ = X0] = O(log ℓ).

Consequently, there is a vertex r ∈ V such that

E
[

suppP(ℓ) | Xℓ = X0 = r
]

= O(log ℓ).

As side results, we apply our lower bounds on the support of closed random walks to
obtain new eigenvalue multiplicity bounds for certain classes of graphs. We state one result
below, and an additional result is presented in Section 5.

ICALP 2023

103:4 The Support of Open Versus Closed Random Walks

1 (log n)5/3 (log n)7/2
1(log n)1/3

(log n)5/4

= ℓ1/2

= ℓ1/2/
√

log n

⩾ ℓ1/2/
√

log n

⩽ ℓ5/14

⩾ ℓ1/5

ℓ

supp(ℓ)

Figure 1 Comparison of the (worst case) support of open random walks to that of closed random
walks for bounded-degree graphs. We prove for any ℓ = Ω((log n)7/2) (and ℓ ⩽ n1/5) that the
asymptotic worst case bound for closed random walks equals ℓ1/2/

√
log n, while for ℓ = O((log n)7/2)

the correct asymptotic bound is confined in the orange area. Since the lower bound ℓ1/2/
√

log n

is tight for any ℓ ⩾ (log n)7/2 but becomes trivial for ℓ ⩽ log n, we can infer that there must be a
phase transition in the interval [(log n)5/3, (log n)7/2].

▶ Theorem 1.4 (informal version of Theorem 5.1). Consider any connected, n-vertex graph
G = (V, E) with minimum degree δ and maximum degree ∆, such that its second largest
eigenvalue λ of P satisfies |1 − λ| = O(δ

∆ · 1
log4 n

). Then, the number of eigenvalues of P in

the range
[(

1 − δ
32c∆·log5 n

)
· λ, λ

]
is at most O

(
n

log n

)
.

Our eigenvalue multiplicity results are in general incomparable with the ones in [16], and
have their own features. For instance, our eigenvalue multiplicity bound above is based on
the spectral gap condition of P; as such, this result brings a new connection between the
eigenvalue multiplicity and the eigenvalue distribution, the relationship of which is informally
established in spectral graph theory through the high-order Cheeger inequalities [12].

1.1 Further Related Work
There is a plethora of works on random walks on graphs, which often revolves around
quantities such as mixing times, hitting times and cover times [14]. In particular, properties
of short random walks such as their support or return probabilities have found numerous
applications in the analysis of randomness amplification [10], space-efficient graph explor-
ation with random walks [2, 7] and the voter model [17]. These concepts have been also
successfully applied to algorithmic tasks such as estimating network sizes and densities [4],
load balancing [19], information spreading [8], property testing [6] and clustering [20]. In
addition to these applications, many of the random walk quantities have close connections to
other mathematical areas, such as geometry, group theory, electrical networks and spectral
graph theory (see [13, 14] for more details).

More closely related to this work, Benjamini, Izkovsky and Kesten [5] analyze the support
of closed random walks on various finite and infinite graphs, with a focus on vertex-transitive
and Cayley graphs. In particular, for high-girth expander graphs, they prove that the support

T. Sauerwald, H. Sun, and D. Vagnozzi 103:5

of closed random walks is linear in their length. While there are some studies of closed
random walks on finite or infinite graphs with special geometry or symmetries as well as
studies of Brownian bridges in continuous space, much less is known about the support of
closed random walks on finite graphs (without additional assumptions on their symmetry or
geometry).

One specific motivation for studying closed random walks is the relation to the second
eigenvalue multiplicity of the normalized adjacency matrix of graphs, as established recently
in [11, 15, 16]. By examining the support of closed random walks of short length, it is
shown that, for any connected graph G of maximum degree ∆, the second eigenvalue
multiplicity of G’s normalized adjacency matrix is Õ

(
n · ∆7/5/ log1/5 n

)
, where the notation

Õ(·) suppresses poly log log(n) terms. Haiman, Schildkraut, Zhang and Zhao [9] show
the existence of infinitely many connected 18-regular graphs G on n vertices with the
second largest eigenvalue multiplicity at least n2/5 − 1, and the existence of infinitely many
connected n-vertex graphs with maximum degree 4 and second eigenvalue multiplicity at
least

√
n/ log2 n.

1.2 Organization
The remaining part of the paper is organized as follows. Section 2 introduces our notation
and provides some basic lemmas used in this work. We derive our lower bound on the
support of closed random walks in Section 3, and the proofs of our two upper bound results
are presented in Section 4. Finally, we employ our random walk results to analyze the
eigenvalue multiplicity problem in Section 5. We summarize our results and point to some
open questions in Section 6.

2 Definitions and Preliminaries

All graphs in this paper will be undirected. For any vertex u ∈ V of a graph G = (V, E), the
degree of u is denoted by deg(u); the maximum and minimum degrees of G are denoted by
∆ and δ, respectively. For any u ∈ V and ℓ ∈ N, let B⩽ℓ/2(u) ≜ {v ∈ V : dist(u, v) ⩽ ℓ/2}.
For any integer k, let [k] ≜ {1, . . . , k}.

We use Q to represent the transition matrix of a non-lazy random walk in G defined
by Qu,v = 1

deg(u) if {u, v} ∈ E(G) and Qu,v = 0 otherwise. We use P to represent the lazy
random walk matrix of G, where Pu,u = 1

2 for all u ∈ V , Pu,v = 1
2 deg(u) if {u, v} ∈ E(G),

and Pu,v = 0 otherwise. We use A to represent the adjacency matrix of G, and D to
represent the diagonal matrix of degrees of G. For any matrix ♢ ∈ {P, Q} of size n × n, the
eigenvalues of ♢ are denoted by λ1(♢) ⩾ . . . ⩾ λn(♢). We define M♢[x, y] to be the number
of eigenvalues of the matrix ♢ in the interval [x, y].

For any (non-)lazy random walk that starts from a vertex (or possibly distribution over
vertices) X0 ∈ V , we use Xt to denote the vertex that the random walk reaches at step t for
any t ⩾ 0, and define

pt
u,v ≜ Pr

[
Xt = v

∣∣ X0 = u
]

to be the probability that a random walk that starts from u is located at v after t steps; if the
start vertex is deterministic and clear from the context, we sometimes omit the conditioning
on X0 = u. Further, we write X0 ∼ U if the start vertex of the random walk is chosen
uniformly at random from V . We define the support of a random walk of length ℓ to be

supp♢(ℓ) ≜
∣∣{Xi | i ⩽ ℓ

}∣∣ ,

ICALP 2023

103:6 The Support of Open Versus Closed Random Walks

where we use ♢ ∈ {P, Q} to distinguish a lazy random walk from a non-lazy one. It is
well-known that, for a lazy random walk with loop probability 1/2 on a connected graph G, it
holds for all u, v ∈ V that limt→∞ pt

u,v = π(v), where π ∈ Rn
⩾0 is the stationary distribution

defined by π(u) ≜ deg(u)
2·|E(G)| for any u ∈ V .

We list two lemmas used in our analysis. Our first lemma allows us to translate bounds
on the support from lazy random walks to non-lazy ones (and vice versa) at the cost of a
small constant factor.

▶ Lemma 2.1. For any graph G = (V, E) and any fixed ℓ ⩾ 0, it holds that suppQ(ℓ) is
stochastically larger than suppP(ℓ). Moreover, we have for any x ⩾ 0 that

Pr [suppP(4 · ℓ) ⩾ x] ⩾ 1
2 · Pr

[
suppQ(ℓ) ⩾ x

]
,

and thus

E [suppP(4 · ℓ)] ⩾ 1
2 · E

[
suppQ(ℓ)

]
.

The next lemma gives a lower bound on the return probability of a random walk.
While there are a number of results upper bounding the return probability of a random
walk (e.g., [13, 14, 18]),to the best of our knowledge much less is known in terms of lower
bounds.

▶ Lemma 2.2. For any connected, n-vertex graph G = (V, E) and a lazy random walk with
transition matrix P, it holds for any vertex u ∈ V and step t ⩾ 0 that

pt
u,u ⩾ π(u) = deg(u)

2|E|
⩾

1
n2 .

The same also holds for non-lazy random walks with transition matrix Q, if additionally t is
even. Furthermore, if G has minimum degree δ and maximum degree ∆, we also have for
any t ⩾ 2,

pt
u,u ⩾

δt

∆t+1 · 1
|B⩽t/2(u)| ,

and the same inequality holds for the transition matrix Q if t ⩾ 2 is even.

3 A Lower Bound on the Support of Closed Random Walks

This section provides lower bounds on the support of closed random walks, in particular,
we will prove Theorem 1.1. We first present a more detailed formulation of Theorem 1.1, in
which all the hidden constants are stated precisely.

▶ Theorem 3.1. Consider any connected, n-vertex graph G = (V, E) with minimum degree
δ and maximum degree ∆. Then there is a constant c ⩾ 1 independent of n, such that a
random walk of length ℓ ⩽ 512 ∆

δ cn2 log n satisfies for any u ∈ V that

E
[

supp♢(ℓ)
∣∣∣ Xℓ = X0 = u

]
⩾

1
2 ·

⌊√
1

576c
· δ

∆ · ℓ

log n

⌋
,

where ♢ ∈ {P, Q} (in the case of ♢ = Q, the length ℓ needs additionally to be even).
Furthermore, for any µ ∈ [1, ℓ] satisfying ℓ ⩽ 32 ∆

δ cn2µ, it holds that

Pr
[

supp♢(ℓ) ⩽
⌊√

1
64c

· δ

∆ · ℓ

µ

⌋ ∣∣∣∣∣ Xℓ = X0 = u

]
⩽ (5/8)µ/2 · 1

pℓ
u,u

,

where ℓ is required to be even if ♢ = Q.

T. Sauerwald, H. Sun, and D. Vagnozzi 103:7

To examine the significance of this result, notice that it is shown in [16, Theorem 1.3]
that

Pr
[

suppQ(ℓ) ⩽ s

∣∣∣∣∣ Xℓ = u

]
⩽ exp

(
− ℓ

130∆7s4

)
,

if s ⩽ 1
4

(
ℓ

2∆7 log ∆

)1/5
and ℓ is even. In comparison to their result, our bound is not

affected by the density, but only by the degree ratio ∆/δ. Regarding the expected support,
it follows that for bounded-degree graphs, the first statement in Theorem 3.1 improves
on [16, Theorem 1.3] for moderately longer walks, i.e., ℓ ⩾ (log n)5/3, whereas it is worse for
ℓ ⩽ (log n)5/3.

Next, we present the lemmas needed to prove Theorem 3.1. The first lemma (Lemma 3.3)
lower bounds the support of open random walks, and relies on the following result by Feige [7]
bounding the expected time until a certain number of distinct vertices are visited; similar
results are also shown in [3].

▶ Lemma 3.2 ([7, Theorem 4]). Consider any connected, n-vertex graph G = (V, E) with
minimum degree δ and maximum degree ∆. For any s ∈ [1, n], let T (s) be the time until a
random walk visits s distinct vertices. Then there is a constant c ⩾ 1 (independent of s and
n), such that for any lazy random walk and any vertex u ∈ V ,

E
[

T (s) | X0 = u
]
⩽ c ·

(
s + s2

δ
· min{s, ∆}

)
.

▶ Lemma 3.3. Consider any connected, n-vertex graph G = (V, E), and a random walk of
length ℓ for some ℓ ≜ 32 ·

⌈
c · ∆

δ · s2⌉, where 1 ⩽ s ⩽ n is any integer. Then, there is some
constant c ⩾ 1 (independent of n and ℓ), such that it holds for any start vertex u ∈ V that

Pr
[

supp♢(ℓ) ⩾ s | X0 = u
]
⩾

3
8 ,

where ♢ ∈ {P, Q}.

Proof. First of all, we note that the constant c involved in this result is the constant from
Lemma 3.2. With this, we first prove the result for non-lazy random walks, i.e., for ♢ = Q.
Let

ℓ̃ ≜ 8 ·
⌈

c · ∆
δ

· s2
⌉

.

Recall that T (s) is the stopping time until a walk has visited s different vertices. By
Lemma 3.2, we have

E
[

T (s)
∣∣∣ X0 = u

]
⩽ c ·

(
s + ∆

δ
s2
)

⩽ 2 ·
⌈

c · ∆
δ

s2
⌉

= 1
4 · ℓ̃.

By Markov’s inequality, it holds that

Pr
[

T (s) ⩾ ℓ̃
∣∣∣ X0 = u

]
⩽ Pr

[
T (s) ⩾ 4 · E [T (s)]

∣∣∣ X0 = u
]
⩽

1
4 .

Note that T (s) ⩽ ℓ̃ is equivalent to supp(ℓ̃) ⩾ s, and this gives us that

Pr
[

supp(ℓ̃) ⩾ s
∣∣∣ X0 = u

]
⩾

3
4 ⩾

3
8 , (1)

which completes the proof in case of ♢ = Q. For ♢ = P, the statement follows immediately
from (1), and the second statement of Lemma 2.1, since ℓ = 4 · ℓ̃. ◀

ICALP 2023

103:8 The Support of Open Versus Closed Random Walks

We remark that the bound presented in Lemma 3.3 is essentially tight: if one takes
a random walk of length ℓ on a path (or cycle), then by the Central Limit Theorem the
probability that the walk visits at least ε ·

√
ℓ vertices can be upper bounded by 1 − δ for

some δ = δ(ε) > 0; in particular, this probability can be bounded independently of ℓ.

Proof of Theorem 3.1. Fix an arbitrary start vertex u ∈ V as X0 = u. We split the
random walk of length ℓ into consecutive sections of length ℓ′ ≜ ⌈ℓ/(9 log n)⌉. Without loss
of generality, we assume that ℓ ⩾ 576 ∆

δ c log n, since otherwise the statement holds trivially.
Given ℓ ⩾ 576 ∆

δ c log n (and c ⩾ 1), we have ℓ′ ⩽ ℓ/(8 log n). Hence, it would take a random
walk (at least) 8 log n sections before reaching step ℓ. Next we define the integer

γ ≜

⌊√
1

64c
· δ

∆ · ℓ′

⌋
,

with c being the constant from Lemma 3.2. We make the following observations about the
range of γ:

Since ℓ′ ⩽ ℓ/(8 log n) and by the precondition ℓ ⩽ 512 ∆
δ cn2 log n, we have

γ ⩽

√
1

64c
· δ

∆ · ℓ

8 log n
⩽ n.

Similarly, since ℓ′ ⩾ ℓ/(9 log n) and ℓ ⩾ 576 ∆
δ c log n, we have

γ ⩾

⌊√
1

64c
· δ

∆ · ℓ

9 log n

⌋
⩾ 1.

In conclusion, γ is an integer between 1 and n. Notice that the definition of γ implies

γ ⩽

√
1

64c
· δ

∆ · ℓ′,

and thus ℓ′ ⩾ 64c · ∆
δ · γ2. Since γ ⩾ 1, we have c · ∆

δ · γ2 ⩾ 1 and

c · ∆
δ

· γ2 ⩾
1
2

⌈
c · ∆

δ
· γ2
⌉

.

This implies that

ℓ′ ⩾ 64c · ∆
δ

· γ2 ⩾ 32 ·
⌈

c · ∆
δ

· γ2
⌉

.

We now apply Lemma 3.3 (with s = γ) and conclude

Pr
[

supp♢(ℓ′) ⩾ γ
∣∣∣ X0 = u

]
⩾ Pr

[
supp♢

(
32 ·

⌈
c · ∆

δ
· γ2
⌉)

⩾ γ
∣∣∣ X0 = u

]
⩾

3
8 ,

which holds for any start vertex u ∈ V . Therefore, by considering the at least 8 log n

consecutive sections of length ℓ′ each, and using the Markov property we have

Pr
[

supp♢(ℓ) < γ
∣∣∣ X0 = u

]
⩽

(
max
v∈V

Pr
[

supp♢(ℓ′) < γ
∣∣∣ X0 = v

])8 log n

⩽

(
5
8

)8 log n

⩽ n−3,

since (5/8)8 ⩽ e−3.

T. Sauerwald, H. Sun, and D. Vagnozzi 103:9

By Lemma 2.2, it holds for a lazy random walk (i.e., ♢ = P) starting with any u ∈ V

and integer ℓ ⩾ 0 that

Pr
[

Xℓ = u
∣∣∣ X0 = u

]
⩾ π(u) ⩾ δ

∆ · n
;

we also know that the same statement holds for a non-lazy random walk (i.e., ♢ = Q) and
an even value of ℓ. Hence,

Pr
[

supp♢(ℓ) < γ
∣∣∣ X0 = Xℓ = u

]
=

Pr
[

supp♢(ℓ) < γ ∩ X0 = Xℓ = u
]

Pr [X0 = Xℓ = u]

⩽
Pr
[

supp♢(ℓ) < γ
]

Pr
[

Xℓ = u
∣∣∣ X0 = u

]
⩽

n−3

n−2 = n−1. (2)

Consequently,

E
[

supp♢(ℓ)
∣∣∣ X0 = Xℓ = u

]
⩾ γ · Pr

[
supp♢(ℓ) ⩾ γ

∣∣∣ X0 = Xℓ = u
]

⩾ γ ·
(
1 − n−1)

⩾
1
2 ·

⌊√
1

64c
· δ

∆ · ℓ

9 log n

⌋
= 1

2 ·

⌊√
1

576c
· δ

∆ · ℓ

log n

⌋
,

which proves the first statement.
We proceed to the proof of the second statement, which essentially uses the same argument

as before but with different parameters. First note that we may assume ℓ ⩾ 64c · ∆
δ · µ, since

otherwise the statement holds trivially. In particular, this implies ℓ/µ ⩾ 1, so if we split
the random walk of length ℓ into consecutive sections of length ℓ′ ≜ ⌈ℓ/µ⌉, it holds that
ℓ′ ⩽ 2ℓ/µ. Hence there are at least µ/2 consecutive sections before reaching step ℓ. We define

γ ≜

⌊√
1

64c
· δ

∆ · ℓ′

⌋
,

and rearranging this implies

ℓ′ ⩾ 64c · ∆
δ

· γ2 ⩾ 32 ·
⌈

c · ∆
δ

· γ2
⌉

.

Again, we examine the range of γ:
Since ℓ′ ⩽ 2ℓ/µ and by the precondition ℓ ⩽ 32 ∆

δ cn2µ, we have γ ⩽ n.
Since ℓ′ ⩾ ℓ/µ and ℓ ⩾ 64c · ∆

δ · µ, we have γ ⩾ 1.
In conclusion, γ is an integer between 1 and n. By Lemma 3.3 (with s = γ), it holds that

Pr
[

supp♢(ℓ′) ⩾ γ
∣∣∣ X0 = u

]
⩾ Pr

[
supp♢

(
32
⌈

c · ∆
δ

· γ2
⌉)

⩾ γ
∣∣∣ X0 = u

]
⩾

3
8 ,

and, as in the proof of the first statement,

Pr
[

supp♢(ℓ) ⩽ γ
∣∣∣ X0 = u

]
⩽ (5/8)µ/2.

Finally, we apply the same argument as in (2) to conclude that

Pr
[

supp♢(ℓ) ⩽ γ
∣∣∣ X0 = Xℓ = u

]
⩽ (5/8)µ/2 · 1

pℓ
u,u

. ◀

ICALP 2023

103:10 The Support of Open Versus Closed Random Walks

4 Upper Bounds on the Support of Closed Random Walks

This section studies upper bounds on the support of closed random walks, by examining
certain “worst-case” graphs. The section is structured as follows: we first study a family of
bounded-degree graphs, and give the proof of Theorem 1.2 in Section 4.1. We present a more
formal statement of Theorem 1.3, and prove the statement in Section 4.2.

4.1 Proof of Theorem 1.2
We first present a more detailed formulation of Theorem 1.2, in which all the hidden constants
are stated precisely.

▶ Theorem 4.1. There is a constant C ⩾ 1, such that for any pair of integers β being a
power of 2 and ℓ with C ⩽ ℓ ⩽ β1/5 the following holds: there is a connected, n-vertex graph
G satisfying n ∈ [2β + 1, 2β + β1/10 − 1], ∆ = 3, and some vertex r ∈ V (G), such that it
holds for a random walk of length ℓ that starts at r that

E
[

suppP(ℓ)
∣∣∣ Xℓ = X0 = r

]
⩽ 3 · ℓ1/2−ε,

where ε ≜ min (1/2 · log(1/16 · log12 β)/ log ℓ, 1/7) .

We first construct the family of graphs G used in the proof. Given two integers p ⩾ 1
and D ⩾ 1, our constructed graph G = G[p, D] is based on the following two graphs:

let G1 = (V1, E1) be a path graph of length p + 1, where V1 = {v0, v1, . . . , vp} and
E1 = {{vi, vi+1} | 0 ⩽ i < p};
let G2 = (V2, E2) be a complete binary tree over D ⩾ 1 levels labelled 0, 1, . . . , D − 1.
Hence, G2 has 2D+1 − 1 vertices.

We set the root of the binary tree to be vertex z = v0, and let G be the union of the graphs
G1 and G2; see Figure 2 for an illustration of our considered graph. Notice that G has
n = p + (2D+1 − 1) vertices, as vertex z = v0 appears in both G1 and G2. Since all vertices
of graph G have degree one, two or three, we have ∆ = 3.

r = vp

z = v0
level 0
level 1
level 2
level 3

p = 5

D = 3

Figure 2 The construction of the graph G = G[p, D] for p = 5, D = 3. We have 24 − 1 = 15
vertices on the binary tree, and the total number of vertices of G is n = 5 + 16 − 1 = 20.

Now we explain the intuition behind our construction. We study a closed random walk
from r of length p2+c for some suitably small constant c > 0. On one hand, if the closed
random walk remains only on the path, then the support of this walk is at most p ≪ (p2+c)1/2.
On the other hand, once the random walk leaves the path, the walk is likely to “get lost” in

T. Sauerwald, H. Sun, and D. Vagnozzi 103:11

the binary tree, and the probability for the walk to return to r = vp is very small. Hence, if
we sample from the space of all closed random walks, there is a strong bias towards those
walks that never leave the path (and thus have necessarily small support).

Now we turn this intuition into a formal proof. Recall that the level of a vertex in the
binary tree is the distance to the root vertex z, and recall that the maximum level is equal
to the depth D.

▶ Lemma 4.2. Consider a lazy random walk on G = G[p, D] starting at r. For any integer
ℓ ⩾ 0, the following holds with probability at least 1 − exp(−ℓ/288): if the random walk makes
at least ℓ transitions within the binary tree, it reaches at least once a vertex which is at level
min(D, ℓ/12).

This lemma is quite intuitive, as there is a strong drift on the binary tree to increase the
distance to the root, and one can exploit this using Hoeffding’s inequality. Next, we present
a simple fact of random walks on binary trees.

▶ Lemma 4.3. Consider a lazy random walk in a complete binary tree with levels 0, 1, . . . , D

starting at a vertex which has distance k ∈ [1, D] from the root. Then the probability that the
walk reaches the root within ℓ steps is upper bounded by ℓ · 2−k.

Lemmas 4.2 and 4.3 together establish the intuitive fact that, once the random walks
makes sufficiently many transitions in the binary tree, it is unlikely to return to the root of
the tree within a small number of steps.

Next, we consider a lazy random walk on a path with vertices 0, 1, . . . , p, starting from
p, with the special property that the random walk “gets killed” once it reaches the other
endpoint 0. The following lemma lower bounds the probability of the random walk “surviving”
after γ · p2 steps, i.e., the probability that a random walk does not reach the other endpoint
before step γ · p2.

▶ Lemma 4.4. Consider a lazy random walk on the integers {0, 1, . . . , p}, starting at vertex
p, such that the random walk gets killed after reaching vertex 0. More precisely, we define
the following p × p matrix R: 2

Ri,j =


1
2 if j = i ∈ {1, . . . , p},
1
2 if i = p, j = p − 1,
1
4 if j = i − 1, 1 < i < p,
1
4 if j = i + 1, 1 ⩽ i < p.

Let rt
p,. be the probability distribution3 of this t-step random walk, when starting at vertex p.

Then, it holds for any integer γ ⩾ 1 that

rγ·p2

p,p ⩾
1
2p

· 12−8·γ .

With the previous lemmas at hand, we are now ready to prove Theorem 4.1.

2 This matrix is called a “substochastic” matrix [1, Section 3.6.5, page 95]. Note that this is not a
transition matrix, since from state 1 with probability 1/4 the walk gets killed.

3 Since the random walk gets killed at vertex 0, ∥rt
p,.∥1 may generally not be equal to 1, but it is upper

bounded by 1.

ICALP 2023

103:12 The Support of Open Versus Closed Random Walks

Proof of Theorem 4.1. Given the two integers ℓ and β being a power of 2, we will now
instantiate a graph G = G[p, D]. Firstly, the length of the path is p ≜ ℓδ and δ ≜ 1/2 − ε;
recall that

ε = min (1/2 · log(1/16 · log12 β)/ log ℓ, 1/7) .

Secondly, the depth of the binary tree is D ≜ log2 β (so in turn, the binary tree has
2log2(β)+1 − 1 vertices). Hence, the total number of vertices in G is

n = ℓδ + 2log2(β)+1 − 1,

which is at least 2β + 1 and at most 2β + β1/10, as ℓ ⩽ β1/5.
Our objective is to show that the expected support of a closed random walk of length ℓ

starting at vertex r is at most 3 · ℓδ = 3 · ℓ1/2−ε. We first upper bound the probability of the
event that a random walk (not necessarily closed) visits at least 2ℓδ + 1 vertices in ℓ steps
and then returns to r.

In the following, let us define the following events and stopping time:
1. The event A :=

{
supp(ℓ) ⩾ 2ℓδ + 1

}
, meaning the random walk of length ℓ visits at least

2ℓδ + 1 vertices.
2. The event B :=

{
Xℓ = r

}
, meaning the random walk is at the start vertex at time ℓ.

3. The event C which occurs if the random walk of length ℓ makes at least ℓδ transitions on
the binary tree.

4. The stopping time τ , which is the number of transitions on the binary tree until a vertex
at level min{D, ℓδ/12} is reached for the first time.

5. The event C(τ) which occurs if the random walk of length ℓ makes at least τ transitions
on the binary tree.

In order to visit at least 2ℓδ+1 vertices, the walk needs to visit at least 2ℓδ+1−(ℓδ+1) = ℓδ

vertices on the tree (excluding the vertex z = v0), since there are only ℓδ + 1 vertices on the
path. Hence we have

A ⊆ C. (3)

Furthermore, we have by Lemma 4.2 (applied to a random walk on the binary tree with ℓδ

transitions),

Pr
[

τ ⩽ ℓδ
]
⩾ 1 − exp(−ℓδ/288). (4)

Furthermore, let T (τ) be the time-step of the random walk on G when the τ -th transition
on the binary tree is made; so, T (τ) ⩾ τ . Then,

Pr
[

Xℓ = r | FT (τ), T (τ) ⩽ ℓ
]
⩽ ℓ · max

(
2−D, 2−ℓδ/12

)
, (5)

since by Lemma 4.3, the random walk starting from a vertex at level level min{D, ℓδ/12} in
the binary tree does not even reach z = v0 within ℓ additional steps (and therefore cannot
reach the vertex r at step ℓ). By combining the last three inequalities,

T. Sauerwald, H. Sun, and D. Vagnozzi 103:13

Pr
[

A ∩
{

Xℓ = r
}]

⩽ Pr
[

C ∩
{

Xℓ = r
}]

⩽ Pr
[

C ∩
{

τ ⩽ ℓδ
}

∩
{

Xℓ = r
}]

+ Pr
[

τ > ℓδ
]

⩽ Pr
[

C(τ) ∩
{

τ ⩽ ℓδ
}

∩
{

Xℓ = r
}]

+ exp
(
−ℓδ/288

)
⩽ Pr

[
τ ⩽ ℓδ

]
· Pr

[
C(τ) | τ ⩽ ℓδ

]
· Pr

[
Xℓ = r | C(τ), τ ⩽ ℓδ

]
+ exp

(
−ℓδ

)
⩽ Pr

[
Xℓ = r | FT (τ), T (τ) ⩽ ℓ

]
+ exp

(
−ℓδ/288

)
⩽ ℓ · max

(
2−D, 2−ℓδ/12

)
+ exp

(
−ℓδ/288

)
⩽ 16ℓ · max

(
exp(−ℓδ/288), 1/β

)
=: pbad.

On the other hand, we will now lower bound the probability that a random walk starting
at r never leaves the path of length ℓδ and is located at vertex r at step ℓ. By Lemma 4.4,
we have that this probability is lower bounded by

Pr
[{

supp(ℓ) ⩽ 2ℓδ
}

∩
{

Xℓ = r
}]

⩾
1
2 · ℓ−1/2+ε · 12−8ℓ2ε

⩾ ℓ−1/2 · 12−8ℓ2ε

=: pgood.

Finally, we can now upper bound the expected size of the support of a closed random
walk of length ℓ. Using the conditional probabilities and the definitions of pbad and pgood, we
have that

Pr
[

supp(ℓ) ⩾ 2ℓδ + 1 | Xℓ = r
]

Pr [supp(ℓ) ⩽ 2ℓδ + 1 | Xℓ = r] =
Pr
[{

supp(ℓ) ⩾ 2ℓδ + 1
}

∩
{

Xℓ = r
}]

Pr [{supp(ℓ) ⩽ 2ℓδ + 1} ∩ {Xℓ = r}] ⩽
pbad
pgood

⩽ 16ℓ1.5 · max
(
exp(−ℓδ/288), 1/β

)
· 128ℓ2ε

,

which implies that

Pr
[

supp(ℓ) ⩾ 2ℓδ + 1 | Xℓ = r
]
⩽ 16ℓ1.5 · max

(
exp(−ℓδ/288), 1/β

)
· 128ℓ2ε

.

Therefore, it holds that

E
[

supp(ℓ) | Xℓ = r
]

⩽ Pr
[

supp(ℓ) < 2ℓδ + 1 | Xℓ = r
]

· 2ℓδ + Pr
[

supp(ℓ) ⩾ 2ℓδ + 1 | Xℓ = r
]

· ℓ

⩽ 2ℓδ + 1 + 16ℓ2.5 · max
(
exp(−ℓδ/288), 1/β

)
· 128ℓ2ε

.

Since ε = min (1/2 · log(1/16 · log12 β)/ log ℓ, 1/7) by definition, we have ε ⩽ 1/7. Together
with δ = 1/2 − ε, this implies 2ε ⩽ δ − 1/14 and therefore

128ℓ2ε

⩽ 128ℓδ−1/14
⩽ exp

(
ℓδ/572

)
,

where the last inequality holds if ℓ is lower bounded by a sufficiently large constant C > 0.
Applying this gives us that

16ℓ2.5 · exp(−ℓδ/288) · 128ℓ2ε

⩽ 16ℓ2.5 · exp
(
−ℓδ/572

)
.

Similarly, we have ε ⩽ 1/2 · log(1/16 · log12 β)/ log ℓ by definition, and obtain

16ℓ2.5 · 1
β

· 128ℓ2ε

⩽ 16ℓ2.5 · 1
β

·
√

β.

ICALP 2023

103:14 The Support of Open Versus Closed Random Walks

Figure 3 The construction of the graph G, where a large clique of β/⌈log log β⌉ vertices is
connected to β/⌈log log β⌉ small cliques of size ⌈log log β⌉ each; recall that our choice of β ensures
that β/⌈log log β⌉ is an integer.

Combining the last two inequalities gives us that

E [supp(ℓ) | Xs = r] ⩽ 2ℓδ + 1 + 16ℓ2.5 · max
(

exp
(
−ℓδ/572

)
,

1√
β

)
⩽ 3ℓδ,

using that ℓ ⩾ C for some large constant C > 0 as well as ℓ ⩽ β1/5. This completes the
proof. ◀

4.2 Proof of Theorem 1.3
In this subsection we present a more detailed formulation of Theorem 1.3, and prove the
statement afterwards.

▶ Theorem 4.5 (Formal version of Theorem 1.3). Let C ⩾ 1 be a constant. Then, for
every integer β ⩾ C such that β/⌈log log β⌉ is an integer, there is a graph G with n =
β + β/⌈log log β⌉ vertices such that a lazy random walk of length ℓ = ⌊log β⌋ starting from
some vertex chosen uniformly at random from V (G) satisfies

E
[

suppP(ℓ) | Xℓ = X0 ∼ U
]
⩽ 5 log ℓ.

In particular, there is a start vertex r ∈ V such that

E
[

suppP(ℓ) | Xℓ = X0 = r
]
⩽ 5 log ℓ.

We first define the graphs used in proving Theorem 4.5. For any given parameter β ∈ N,
our graph G is defined as follows:

Let G1 = (V1, E1) consist of β/⌈log log β⌉ disjoint, “small” cliques of size ⌈log log β⌉ each.
Let G2 = (V2, E2) = Kβ/⌈log log β⌉ be a “big” clique of size β/⌈log log β⌉.
Our studied graph G is constructed by taking the union of G1 and G2, and additionally
connecting each vertex of the smaller cliques to one distinct vertex in the big clique.

See Figure 3 for an illustration of our construction.

T. Sauerwald, H. Sun, and D. Vagnozzi 103:15

Proof of Theorem 4.5. We use the graph G defined above in the proof, and decompose the
expected support based on the sampled start vertex according to the uniform distribution
over V (G):

E
[

suppP(ℓ) | Xℓ = X0 ∼ U
]

=
∑
u∈V

E
[

suppP(ℓ) | Xℓ = X0 = u
]

· Pr
[

X0 = u | Xℓ = X0]
=
∑
u∈V

E
[

suppP(ℓ) | Xℓ = X0 = u
]

·
Pr
[

Xℓ = X0 = u
]

Pr [Xℓ = X0]

=
∑
u∈V

E
[

suppP(ℓ) | Xℓ = X0 = u
]

·
Pr
[

Xℓ = u | X0 = u
]

· 1
n

Pr [Xℓ = X0]

Splitting the above sum yields

E
[

suppP(ℓ) | Xℓ = X0 ∼ U
]

=
∑

u∈V (G1)

E
[

suppP(ℓ) | Xℓ = X0 = u
]

·
Pr
[

Xℓ = u | X0 = u
]

· 1
n

Pr [Xℓ = X0]

+
∑

v∈V (G2)

E
[

suppP(ℓ) | Xℓ = X0 = v
]

·
Pr
[

Xℓ = v | X0 = v
]

· 1
n

Pr [Xℓ = X0]

= |V (G1)| · E
[

suppP(ℓ) | Xℓ = X0 = u
]

·
Pr
[

Xℓ = u | X0 = u
]

· 1
n

Pr [Xℓ = X0]

+ |V (G2)| · E
[

suppP(ℓ) | Xℓ = X0 = v
]

·
Pr
[

Xℓ = v | X0 = v
]

· 1
n

Pr [Xℓ = X0] , (6)

where u is an arbitrary vertex in G1, v is an arbitrary vertex in G2, and the last equation
holds by symmetry.

Consider now a lazy random walk which starts from some vertex u ∈ V1 in a small clique.
Then the probability that this random walk never leaves the small clique and is at u in step
ℓ ≜ ⌊log β⌋ is at least

Pr
[

suppP(ℓ) ⩾ ⌈log log β⌉ ∩ {Xℓ = u} | X0 = u
]

⩾

(
1 − 1

2⌈log log β⌉

)⌊log β⌋−1
· min

(
1
2 ,

1
2⌈log log β⌉

)
⩾ 8− log β/ log log β . (7)

If the random walk leaves a small clique, then the probability of returning to the small clique
within ℓ steps is at most ℓ · (⌈log log β⌉)2/n; hence, it holds that

Pr
[

suppP(ℓ) ⩾ ⌈log log β⌉ ∩ {Xℓ = u} | X0 = u
]
⩽ ℓ · ⌈log log β⌉

β/⌈log log β⌉ − 1 + ⌈log log β⌉

⩽ ℓ · (⌈log log β⌉)2

β
.

ICALP 2023

103:16 The Support of Open Versus Closed Random Walks

Therefore, as in the proof of Theorem 4.1,

Pr
[

suppP(ℓ) ⩾ ⌈log log β⌉ | Xℓ = X0 = u
]

Pr [suppP(ℓ) ⩽ ⌈log log β⌉ | Xℓ = X0 = u]

=
Pr
[

suppP(ℓ) ⩾ ⌈log log β⌉ ∩
{

Xℓ = u
}

| X0 = u
]

Pr [suppP(ℓ) ⩽ ⌈log log β⌉ ∩ {Xℓ = u} | X0 = u]

⩽
ℓ · (⌈log log β⌉)2

β

8− log β/ log log β
,

and upper bounding the denominator on the left hand side by 1 yields

Pr
[

suppP(ℓ) ⩾ ⌈log log β⌉ | Xℓ = u
]
⩽

ℓ · (⌈log log β⌉)2

n

8− log β/ log log β
.

Therefore, it holds that

E
[

suppP(ℓ) | Xℓ = X0 = u
]

⩽ Pr
[

suppP(ℓ) ⩾ ⌈log log β⌉ | X0 = u
]

· ℓ

+ Pr
[

suppP(ℓ) ⩽ ⌈log log β⌉ | X0 = u
]

· ⌈log log β⌉

⩽ ℓ2 · 8log β/ log log β · (⌈log log β⌉)2

β
+ 1 · ⌈log log β⌉ ⩽ 2 · ⌈log log β⌉,

as ℓ = ⌊log β⌋.
Now we return to (6). By using the three trivial estimates, (i) |V1| ⩽ n, (ii) |V2| ⩽ n and

(iii) E
[

suppP(ℓ) | Xℓ = X0 = v
]
⩽ ℓ, we have

E
[

suppP(ℓ) | Xℓ = X0 ∼ U
]

⩽ n · 2 · ⌈log log β⌉ ·
Pr
[

Xℓ = u | X0 = u
]

· 1
n

Pr [Xℓ = X0] + n · ℓ ·
Pr
[

Xℓ = v | X0 = v
]

· 1
n

Pr [Xℓ = X0]

⩽ 2 · ⌈log log β⌉ ·
Pr
[

Xℓ = u | X0 = u
]

Pr [Xℓ = X0] + ℓ ·
Pr
[

Xℓ = v | X0 = v
]

Pr [Xℓ = X0] . (8)

We now proceed to upper bound the expression in Equation (8), by considering the
two addends separately. We first upper bound Pr[Xℓ=u | X0=u]

Pr[Xℓ=X0] . By decomposing and lower
bounding the denominator, we have that

Pr
[

Xℓ = X0] ⩾ ∑
u∈V1

Pr
[

X0 = u
]

· Pr
[

Xℓ = u | X0 = u
]

⩾
1
2 · Pr

[
Xℓ = u | X0 = u

]
(9)

since the probability Pr
[

Xℓ = X0 | X0 = u
]

is the same for all u ∈ V1 by symmetry, and
by construction of G, at least half of the vertices in G are in V1. Therefore,

Pr
[

Xℓ = u | X0 = u
]

Pr [Xℓ = X0] ⩽ 2. (10)

We now turn to the second addend in (8). We first upper bound Pr
[

Xℓ = v | X0 = v
]

=
pℓ

v,v, where v ∈ V2. To this end, note that the random walk can only be at v at step ℓ if at
least one of the following three cases occurs: (i) the random walk always remains on v by
taking ℓ self-loops, (ii) the random walk leaves v, and then returns to v from another vertex

T. Sauerwald, H. Sun, and D. Vagnozzi 103:17

in the big clique, and (iii) the random walk leaves v, and then returns to v from a neighbor
in the small clique. Regarding (i), the probability is 2−ℓ. Regarding (ii), the probability of
ever using an edge {x, v} ∈ E with x ∈ V2 during ℓ steps is at most

ℓ · 1
2 deg(x) ⩽ ℓ · 1

2 ·
(

β
⌈log log β⌉ − 1 + ⌈log log β⌉

) ⩽ ℓ · ⌈log log β⌉
2β

.

Finally, regarding (iii), the probability that the random walk ever reaches any vertex in V1
within ℓ steps is upper bounded by

ℓ · max
z∈V2

degV1
(z)

2 deg(z) ⩽ ℓ · ⌈log log β⌉

2 ·
(

β
⌈log log β⌉ − 1 + ⌈log log β⌉

) ⩽ ℓ · (⌈log log β⌉)2

2β
.

Combining these three cases, we have

Pr
[

Xℓ = v | X0 = v
]
⩽ 2−ℓ + ℓ · (⌈log log β⌉)2

β
. (11)

To lower bound Pr
[

Xℓ = X0], we apply (9) and the estimate from (7) to obtain that

Pr
[

Xℓ = X0] ⩾ 1
2 · Pr

[
Xℓ = u | X0 = u

]
⩾

1
2 · 8− log β/ log log β . (12)

Finally, combining (10), (11), (12) with (8) gives us that

E
[

suppP(ℓ) | Xℓ = X0 ∼ U
]

⩽ 4 · ⌈log log β⌉ + 2 · ℓ · 8log β/ log log β ·
(

2−ℓ + ℓ · (⌈log log β⌉)2

β

)
⩽ 4 · ⌈log log β⌉ + 2 · ℓ · 8log β/ log log β ·

(
2 · ℓ · (⌈log log β⌉)2

β

)
⩽ 4 · ⌈log log β⌉ + o(1)
⩽ 5 · log ℓ,

where in the second inequality we used the definition ℓ = ⌊log β⌋ ⩾ log β − 1, and similarly
the third inequality holds since ℓ = ⌊log β⌋, and thus the 1/β term dominates.

For the second statement, note that by conditioning on the vertex sampled for X0,

E
[

suppP(ℓ) | Xℓ = X0 ∼ U
]

=
∑
u∈V

E
[

suppP(ℓ) | Xℓ = X0 = u
]

· Pr
[

Xℓ = X0 = u | Xℓ = X0]
⩾ min

u∈V
E
[

suppP(ℓ) | Xℓ = X0 = u
]

,

and thereore the second statement follows immediately from the first statement. ◀

5 Results on Eigenvalue Multiplicity

This section presents some new eigenvalue multiplicity bounds on the transition matrices of
random walks. For ease of presentation, we focus on lazy random walks in this section, but
our presented method can be employed to analyze non-lazy random walks, too. Our first
eigenvalue multiplicity bound is as follows:

ICALP 2023

103:18 The Support of Open Versus Closed Random Walks

▶ Theorem 5.1 (Formal Statement of Theorem 1.4). Consider any connected, n-vertex graph
G = (V, E) with minimum degree δ and maximum degree ∆. Further assume λ = λ2 ⩾ γ,
where γ ≜ 1 − δ

32c∆ · 1
log4 n

and c ⩾ 1 is the constant from Lemma 3.2. Then, it holds that

MP

[(
1 − δ

32c∆ · log5 n

)
· λ, λ

]
= O

(
n

log n

)
. (13)

It is shown in [16] that, for the normalized adjacency matrix of any n-vertex graph G

with maximum degree ∆, the number of eigenvalues in the range
[(

1 − log log∆
log∆ n

)
· λ2, λ2

]
is

Õ

(
n · ∆7/5

log1/5 n

)
. (14)

In comparison to their bound, our presented result only holds for graphs with poor expansion.
However, Theorem 5.1 does show for such graphs that the number of eigenvalues in our
studied range is O(n/ log n), which is significantly smaller than the bound in (14).

The proof of Theorem 5.1 closely follows the approach in [16], by reducing the multiplicity
analysis to the support of closed random walks. We consider a lazy random walk of length
ℓ on G, and assume that the start vertex X0 is sampled uniformly at random. We denote
by W ℓ the event {Xℓ = X0} and by W ℓ,s the event {Xℓ = X0, supp(ℓ) ⩽ s}; that is, the
random walk is closed and has support at most s. Abusing notation a bit, let W ℓ,⩾s be the
event where the random walk is closed and has support at least s. We now state the following
bound, which is based on the arguments of [16] and the probability bound in Theorem 3.1.

▶ Lemma 5.2. Consider any connected, n-vertex graph, and a lazy random walk of length
ℓ ⩽ 32cµ · ∆

δ n2 starting from a uniform random vertex. Then with c > 0 being the constant
from Lemma 3.2, it holds for any s ⩽

⌊√ 1
64c · δ

∆ · ℓ
µ

⌋
that

Pr
[

W ℓ,s
]
⩽

∆
δ

· n ·
(

5
8

)µ/2
Pr
[

W ℓ
]

.

Combining Lemma 5.2 with the techniques developed in [16] proves Theorem 5.1.
We further present a different and more elementary approach to bound the multiplicities

of the eigenvalue λ2, and our proof is based on the Random Target Lemma [14, (3.3)].

▶ Theorem 5.3. Consider any connected, n-vertex graph G = (V, E) with average degree d

and minimum degree δ. Then there is some constant C > 0, such that it holds for any ε > 0
that

MP[(1 − ε)λ2, λ2] ⩽ C · d

δ
· n · 1 − (1 − ε)λ2√

1 − λ2
.

In particular, it holds with ε = (1 − λ2)/λ2 that

MP[(1 − ε)λ2, λ2] ⩽ 2C · d

δ
· n ·

√
1 − λ2.

6 Conclusions

In this work we analyze the support of closed random walks of length ℓ on different graph
classes. Contrary to the well-understood worst-case support of open random walks, especially
on regular and bounded-degree graphs, our results demonstrate that the (worst-case) support

T. Sauerwald, H. Sun, and D. Vagnozzi 103:19

of closed random walks is much more complex, and undergoes a delicate phase transition as
ℓ varies. While the support is Θ(ℓ1/2/

√
log n) for ℓ = Ω((log n)7/2), for smaller values of ℓ it

is sandwiched between Ω(ℓ1/5) and O(ℓ5/14). This proves a strong separation from the open
random walk case, where the support is known to be Ω(ℓ1/2) [3, 7], and provides a negative
answer to [16, Open Problem 3].

For (highly) irregular graphs, we prove that even with a randomly sampled start vertex,
the support may only be logarithmic in ℓ. This is once more in sharp contrast to open walks,
where a lower bound of Ω(ℓ1/3) holds for any start vertex and any 1 ⩽ ℓ ⩽ n3 [3].

One interesting open problem is to derive refined bounds on the support of closed random
walks. For instance, it is tempting to conjecture that on any bounded-degree expander graph,
the lower bound on the support can be improved, possibly even to Ω(ℓ), which would be
tight and match the bound for open random walks. To the best of our knowledge, this is
only known for the special case where ℓ is upper bounded by the girth of the expander [5].

References
1 David Aldous and James A. Fill. Reversible markov chains and random walks on graphs, 2002.

Unpublished. http://www.stat.berkeley.edu/~aldous/RWG/book.html.
2 Noga Alon, Chen Avin, Michal Koucký, Gady Kozma, Zvi Lotker, and Mark R. Tuttle. Many

random walks are faster than one. Combinatorics, Probability and Computing, 20(4):481–502,
2011. doi:10.1017/S0963548311000125.

3 Greg Barnes and Uriel Feige. Short random walks on graphs. SIAM Journal on Discrete
Mathematics, 9(1):19–28, 1996. doi:10.1137/S0895480194264988.

4 Anna Ben-Hamou, Roberto I. Oliveira, and Yuval Peres. Estimating graph parameters via
random walks with restarts. In 29th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA’18), pages 1702–1714, 2018.

5 Itai Benjamini, Roey Izkovsky, and Harry Kesten. On the Range of the Simple Random Walk
Bridge on Groups. Electronic Journal of Probability, 12:591–612, 2007. doi:10.1214/EJP.
v12-408.

6 Artur Czumaj and Christian Sohler. Testing expansion in bounded-degree graphs. Combinat-
orics, Probability and Computing, 19(5-6):693–709, 2010. doi:10.1017/S096354831000012X.

7 Uriel Feige. A spectrum of time–space trade-offs for undirected s-t connectivity. Journal of
Computer and System Sciences, 54(2):305–316, 1997. doi:10.1006/jcss.1997.1471.

8 George Giakkoupis, Frederik Mallmann-Trenn, and Hayk Saribekyan. How to spread a rumor:
Call your neighbors or take a walk? In 38th Annual ACM-SIGOPT Principles of Distributed
Computing (PODC’19), pages 24–33, 2019.

9 Milan Haiman, Carl Schildkraut, Shengtong Zhang, and Yufei Zhao. Graphs with high
second eigenvalue multiplicity. Bulletin of the London Mathematical Society, pages 1–23, 2022.
doi:10.1112/blms.12647.

10 Shlomo Hoory, Nathan Linial, and Avi Wigderson. Expander graphs and their applications.
BAMS: Bulletin of the American Mathematical Society, 43, 2006.

11 Zilin Jiang, Jonathan Tidor, Yuan Yao, Shengtong Zhang, and Yufei Zhao. Equiangular lines
with a fixed angle. Annals of Mathematics, 194(3):729–743, 2021.

12 James R. Lee, Shayan Oveis Gharan, and Luca Trevisan. Multiway spectral partitioning and
higher-order cheeger inequalities. Journal of the ACM, 61(6):37:1–37:30, 2014.

13 David A. Levin, Yuval Peres, and Elizabeth L. Wilmer. Markov chains and mixing times.
American Mathematical Society, 2009. With a chapter by James G. Propp and David B.
Wilson.

14 Lásló Lovász. Random walks on graphs: A survey. Combinatorics, Paul Erdős is Eighty,
2:1–46, 1993.

15 Theo McKenzie. Random Walks and Delocalization through Graph Eigenvector Structure. PhD
thesis, UC Berkeley, 2022.

ICALP 2023

http://www.stat.berkeley.edu/~aldous/RWG/book.html
https://doi.org/10.1017/S0963548311000125
https://doi.org/10.1137/S0895480194264988
https://doi.org/10.1214/EJP.v12-408
https://doi.org/10.1214/EJP.v12-408
https://doi.org/10.1017/S096354831000012X
https://doi.org/10.1006/jcss.1997.1471
https://doi.org/10.1112/blms.12647

103:20 The Support of Open Versus Closed Random Walks

16 Theo McKenzie, Peter Michael Reichstein Rasmussen, and Nikhil Srivastava. Support of
closed walks and second eigenvalue multiplicity of graphs. In 53rd Annual ACM Symposium
on Theory of Computing (STOC’21), pages 396–407, 2021.

17 Roberto I. Oliveira. On the coalescence time of reversible random walks. Transactions of the
American Mathematical Society, 364(4):2109–2128, 2012.

18 Roberto I. Oliveira and Yuval Peres. Random walks on graphs: new bounds on hitting, meeting,
coalescing and returning. In 16th Workshop on Analytic Algorithmics and Combinatorics
(ANALCO ’19), pages 119–126, 2019.

19 Thomas Sauerwald and He Sun. Tight bounds for randomized load balancing on arbitrary
network topologies. In 53th Annual IEEE Symposium on Foundations of Computer Science
(FOCS’12), pages 341–350, 2012. doi:10.1109/FOCS.2012.86.

20 Daniel A. Spielman and Shang-Hua Teng. A local clustering algorithm for massive graphs
and its application to nearly linear time graph partitioning. SIAM Journal on Computing,
42(1):1–26, 2013.

A Auxiliary Tools

This section lists the auxiliary results used in the paper. Our first lemma is a simple upper
bound on the lower tails of a sub-multiplicative random variable. We remark that this is a
standard result, however we present the proof here for the sake of completeness.

▶ Lemma A.1. Let X be a non-negative integer random variable such that E [X] ⩾ b, and
there exists integer c ⩾ 1 such that Pr [X > kc] ⩽ Pr [X > c]k for all integers k ⩾ 0. Then,
it holds for any a < c that

Pr [X > a] ⩾ b − a

b + 2c
.

Proof. Let p ≜ Pr [X > a] ⩾ Pr [X > c], since a < c and Pr [X > x] decreasing in x.
Hence, it holds that

b ⩽ E [X]

=
∞∑

i=0
Pr [X > i]

⩽ a +
c−1∑
i=a

Pr [X > i] + c
∞∑

k=1
Pr [X > kc]

⩽ a +
c−1∑
i=a

Pr [X > i] + c
∞∑

k=1
Pr [X > c]k

⩽ a + p(c − a) + cp/(1 − p).

This implies (1 − p)b ⩽ a + 2pc, rearranging gives the result. ◀

▶ Theorem A.2 (Cauchy’s Interlacing Theorem). Let A be a real symmetric n × n matrix,
and B an m × m principal submatrix of A (that is, B is obtained by deleting both the ith

row and column for some values of i). Suppose A has eigenvalues λ1, . . . , λn, and B has
eigenvalues β1, . . . , βm. Then, it holds for 1 ⩽ k ⩽ m that λk ⩽ βk ⩽ λk+n−m.

https://doi.org/10.1109/FOCS.2012.86

T. Sauerwald, H. Sun, and D. Vagnozzi 103:21

▶ Theorem A.3 (Hoeffding’s Bound). Let Y1, . . . , Yℓ be independent bounded random variables
with Yi ∈ [a, b] for each i ⩽ ℓ, and define Y =

∑ℓ
i=1 Yi. Then, the following hold for all

λ ⩾ 0:

Pr [Yi − E [Y] ⩾ λ] ⩽ exp
(

− 2λ2

ℓ(b − a)2

)
and

Pr [Yi − E [Y] ⩽ −λ] ⩽ exp
(

− 2λ2

ℓ(b − a)2

)
.

ICALP 2023

Faster Matroid Partition Algorithms
Tatsuya Terao #

Research Institute for Mathematical Sciences, Kyoto University, Japan

Abstract
In the matroid partitioning problem, we are given k matroids M1 = (V, I1), . . . , Mk = (V, Ik)
defined over a common ground set V of n elements, and we need to find a partitionable set S ⊆ V

of largest possible cardinality, denoted by p. Here, a set S ⊆ V is called partitionable if there exists
a partition (S1, . . . , Sk) of S with Si ∈ Ii for i = 1, . . . , k. In 1986, Cunningham [7] presented a
matroid partition algorithm that uses O(np3/2 + kn) independence oracle queries, which was the
previously known best algorithm. This query complexity is O(n5/2) when k ≤ n.

Our main result is to present a matroid partition algorithm that uses Õ(k1/3np+kn) independence
oracle queries, which is Õ(n7/3) when k ≤ n. This improves upon previous Cunningham’s algorithm.
To obtain this, we present a new approach edge recycling augmentation, which can be attained
through new ideas: an efficient utilization of the binary search technique by Nguy˜̂en [25] and
Chakrabarty-Lee-Sidford-Singla-Wong [5] and a careful analysis of the number of independence
oracle queries. Our analysis differs significantly from the one for matroid intersection algorithms,
because of the parameter k. We also present a matroid partition algorithm that uses Õ((n + k)√p)
rank oracle queries.

2012 ACM Subject Classification Theory of computation → Discrete optimization; Theory of
computation → Algorithm design techniques; Mathematics of computing → Matroids and greedoids

Keywords and phrases Matroid Partition, Matroid Union, Combinatorial Optimization

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.104

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2303.05920

Funding This work was partially supported by the joint project of Kyoto University and Toyota
Motor Corporation, titled “Advanced Mathematical Science for Mobility Society”.

Acknowledgements The author thanks Yusuke Kobayashi for his generous support and helpful
comments on the manuscript. The author also thanks the three anonymous reviewers for their
valuable comments.

1 Introduction

The matroid partitioning problem1 is one of the most fundamental problem in combinatorial
optimization. The problem is sometimes introduced as an important matroid problem along
with the matroid intersection problem; see [28, Section 41–42] and [21, Section 13.5–6]. In the
problem, we are given k matroids M1 = (V, I1), . . . ,Mk = (V, Ik) defined over a common
ground set V of n elements, and the objective is to find a partitionable set S ⊆ V of largest
possible cardinality, denoted by p. Here, we call a set S ⊆ V partitionable if there exists
a partition (S1, . . . , Sk) of S with Si ∈ Ii for i = 1, . . . , k. This problem has a number of
applications such as matroid base packing, packing and covering of trees and forests, Shannon
switching game. There are much more applications; see [28, Section 42].

1 The matroid partitioning problem is sometimes called simply matroid partition. Matroid partition is
also called matroid union or matroid sum.

EA
T
C
S

© Tatsuya Terao;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 104; pp. 104:1–104:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ttatsuya@kurims.kyoto-u.ac.jp
https://orcid.org/0000-0002-3530-2194
https://doi.org/10.4230/LIPIcs.ICALP.2023.104
https://arxiv.org/abs/2303.05920
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

104:2 Faster Matroid Partition Algorithms

To design an algorithm for arbitrary matroids, it is common to consider an oracle model:
an algorithm accesses a matroid through an oracle. The most standard and well-studied
oracle is an independence oracle, which takes as input a set S ⊆ V and outputs whether
S ∈ I or not. Some recent studies for fast matroid intersection algorithms also consider
a more powerful oracle called rank oracle, which takes as input a set S ⊆ V and outputs
the size of the maximum cardinality independent subset of S. In the design of efficient
algorithms, the goal is to minimize the number of such oracle accesses in a matroid partition
algorithm. We consider both independence oracle model and rank oracle model, and present
the best query algorithms for both oracle models.

The matroid partitioning problem is closely related to the matroid intersection prob-
lem. Actually, the matroid partitioning problem and the matroid intersection problem are
polynomially equivalent; see [9, 11].

In the matroid intersection problem, we are given two matroidsM′ = (V, I ′),M′′ = (V, I ′′)
defined over a common ground set V of n elements, and the objective is to find a common
independent set S ∈ I ′ ∩ I ′′ of largest possible cardinality, denoted by r.

Starting the work of Edmonds [8, 10,11] in the 1960s, algorithms with polynomial query
complexity for the matroid intersection problem have been studied [1–5,7,22,23]. Nguy˜̂en [25]
and Chakrabarty-Lee-Sidford-Singla-Wong [5] independently presented a new excellent binary
search technique that can find edges in the exchange graph and presented a first combinatorial
algorithm that uses Õ(nr) independence oracle queries2. Chakrabarty et al. [5] also presented
a (1 − ϵ) approximation matroid intersection algorithm that uses Õ(n1.5/ϵ1.5) independ-
ence oracle queries. Blikstad-van den Brand-Mukhopadhyay-Nanongkai [4] developed a
fast algorithm to solve a graph reachability problem, and broke the Õ(n2)-independence-
oracle-query bound by combining this with previous exact and approximation algorithms.
Blikstad [2] improved the independence query complexity of the approximation matroid
intersection algorithm. This leads to a randomized matroid intersection algorithm that uses
Õ(nr3/4) independence oracle queries, which is currently the best algorithm for the matroid
intersection problem for the full range of r. This also leads to a deterministic matroid
intersection algorithm that uses Õ(nr5/6) independence oracle queries, which is currently
the best deterministic algorithm for the matroid intersection problem for the full range of r.

We can solve the matroid partitioning problem by using the reduction to the matroid
intersection problem. A well-known reduction reduces the matroid partition to the matroid
intersection whose ground set size is kn. Here, one of the input matroids of this matroid
intersection is the direct sum of the k matroids. This leads to a matroid partition algorithm
using too many independence oracle queries. Even if we use the currently best algorithm for
matroid intersection, the naive reduction leads to a matroid partition algorithm that uses
Õ(k2np3/4) independence oracle queries. Since the matroid partition problem itself is an
important problem with several applications, it is meaningful to focus on the query-complexity
of the matroid partitioning problem.

A direct algorithm for the matroid partitioning problem was first given by Edmonds in
1968 [8]. Algorithms with polynomial query complexity for the matroid partitioning problem
have been studied in the literature [3, 7, 12–14,20,27].

Cunningham [7] designed a matroid partition algorithm that uses O(np3/2 + kn) inde-
pendence oracle queries. Cunningham uses a blocking flow approach, which is similar to
Hopcroft-Karp’s bipartite matching algorithm or Dinic’s maximum flow algorithm. The
independence query complexity of Cunningham’s algorithm is O(n5/2) when k ≤ n. Note

2 The Õ notation omits factors polynomial in log n.

T. Terao 104:3

that p ≤ n obviously holds. This was the best algorithm for the matroid partitioning problem
for nearly four decades. We study faster matroid partition algorithms by using techniques
that were recently developed for fast matroid intersection algorithms.

Our first result is the following theorem, which is obtained by combining Cunningham’s
technique and the binary search technique by Nguy˜̂en [25] and Chakrabarty et al. [5].

▶ Theorem 1 (Details in Theorem 14). There is an algorithm that uses Õ(kn
√

p) independence
oracle queries and solves the matroid partitioning problem.

The independence query complexity of the algorithm given in Theorem 1 improves upon
the one of Cunningham’s algorithm [7] when k is small. However, when k = Θ(n), the
independence query complexity of the algorithm given in Theorem 1 is Õ(n5/2), and this
query complexity is not strictly less than the one in Cunningham’s algorithm.

The setting where k > n is unnatural since there must exist a matroid whose independent
set is not involved in the optimal partition. Thus, in this paper, we mainly focus on the
case where k ≤ n. Under this assumption, we sometimes bound the number of queries by a
function on a single variable n, where we recall that p ≤ n. This makes it easy to compare
the query complexity of different algorithms.

Our second result is to obtain an algorithm that uses o(kn
√

p) independence oracle queries
when k is large. It uses o(n5/2) independence oracle queries when k ≤ n.

▶ Theorem 2 (Details in Theorem 18). There is an algorithm that uses Õ(k1/3np + kn)
independence oracle queries and solves the matroid partitioning problem.

This is the main contribution of this paper. The independence query complexity of the
algorithm given in Theorem 2 improves the one of the algorithm given in Theorem 1 when
k = ω(p3/4). The independence query complexity of the algorithm given in Theorem 2 is
Õ(n7/3) when k ≤ n. This improves the algorithm by Cunningham [7] and our algorithm
given in Theorem 1. It should be emphasized here that this is the first improvement since 1986.
We note that this algorithm requires O(k2/3np) time complexity other than independence
oracle queries.

We also consider the query complexity in the rank oracle model. Note that the rank
oracle is at least as powerful as the independence oracle.

▶ Theorem 3 (Details in the full version of this paper). There is an algorithm that uses
Õ((n + k)√p) rank oracle queries and solves the matroid partitioning problem.

The rank query complexity of the algorithm given in Theorem 3 is Õ(n3/2) when k ≤ n.

1.1 Technical Overview
Cunningham’s matroid partition algorithm. The auxiliary graph called exchange graph
plays an important role in almost all combinatorial algorithms for matroid intersection. In
matroid intersection algorithms, we begin with an empty set and repeatedly increase the size
of the independent set by augmenting along shortest paths in the exchange graph. In the
same way, Knuth [20] and Greene-Magnanti [14] give matroid partition algorithms by using
the auxiliary graph with O(np) edges, which we call compressed exchange graph.

To improve the running time, Cunningham [7] developed blocking flow approach for
matroid partition and intersection, which is akin to bipartite matching algorithm by Hopcroft-
Karp [17]. The blocking flow approach is applied in each phase of the algorithm. In Hopcroft-
Karp’s bipartite matching algorithm, we find a maximal set of vertex-disjoint shortest paths

ICALP 2023

104:4 Faster Matroid Partition Algorithms

and augment along these paths simultaneously. In contrast to this, in a matroid partition
algorithm, the augmentations can not be done in parallel, since one augmentation can change
the compressed exchange graph. Cunningham showed that we can find multiple augmenting
paths of the same length and run all the augmentations in one phase. In Cunningham’s
matroid partition algorithm, one phase uses only O(np) independence oracle queries (each
edge is queried only once in one phase).

Cunningham showed that the number of different lengths of shortest augmenting paths
during the algorithm is O(√p) and then the number of phases is O(√p). Therefore, Cun-
ningham’s matroid partition algorithm uses O(np3/2 + kn) independence oracle queries in
total (enumerating all edges entering sink vertices uses O(kn) independence oracle queries).
We note that this query complexity is O(n5/2) when k ≤ n.

Combining blocking flow approach and binary search subroutine. To develop the matroid
partition algorithm, given in Theorem 1, that uses Õ(kn

√
p) independence oracle queries,

we combine the blocking flow approach proposed by Cunningham [7] and the binary search
procedure proposed by Nguy˜̂en [25] and Chakrabarty et al. [5]. By using the binary search
procedure, we obtain an algorithm that uses Õ(kn) independence oracle queries and performs
a breadth first search in the compressed exchange graph. We also obtain an algorithm that
uses Õ(kn) independence oracle queries and runs all the augmentations in a single phase.
Since Cunningham showed that the number of phases is O(√p), we can easily obtain a matroid
partition algorithm that uses Õ(kn

√
p) independence oracle queries. Our algorithm does not

contain technical novelty in a sense that this algorithm is obtained by simply combining
Cunningham’s technique and the binary search technique by Nguy˜̂en and Chakrabarty et al.
Nevertheless, this result is important in a sense that we improve the independence query
complexity of a matroid partition algorithm.

Edge Recycling augmentation. In a breadth first search, we need to check, for all vertices
v and all indices i ∈ [k], whether there exists an edge from a vertex v to a vertex u ∈ Si in
the compressed exchange graph. Then, independence query complexity of a breadth first
search of the compressed exchange graph seems to be Ω(kn), even if we use the binary search
procedure. It is not clear whether we can develop a matroid partition algorithm that runs a
breadth first search o(√p) times, and so, algorithms by the blocking flow approach are now
stuck at Ω(kn

√
p) independence oracle queries. In the setting where k = Θ(n) and p = Θ(n),

algorithms by the blocking flow approach are stuck at Ω(n5/2) independence oracle queries
even if we use the excellent binary search procedure.

In order to break this O(n5/2)-independence-oracle-query bound, we introduce a new
approach edge recycling augmentation and develop a matroid partition algorithm whose
independence query complexity is sublinear in k. Then we present a matroid partition
algorithm that uses Õ(n7/3) independence oracle queries when k ≤ n.

Our new approach edge recycling augmentation is applied in each phase of the algorithm
in the same way as the blocking flow approach. In one phase of edge recycling augmentation,
we first compute the edge set E∗ in the compressed exchange graph, which uses O(np)
independence oracle queries. Then we simply repeat to run a breadth first search and find
a shortest path in the compressed exchange graph. This breadth first search is performed
by using the information of E∗. The precomputation of E∗ may seem too expensive since
we have the excellent binary search tool to find edges in the compressed exchange graph.
However, we can recycle some edges in E∗ during the repetition of breadth first searches,
which plays an important role in an analysis of our new approach. Note that, edge recycling
augmentation runs a breadth first search before every augmentation, while the blocking flow
approach runs a breadth first search only once in the beginning of each phase.

T. Terao 104:5

Our crucial observation is that all edges entering a vertex in Si are not changed unless Si

was updated by the augmentation. Then, even after some augmentations, we can use E∗

to find edges entering a vertex u ∈ Si such that Si was not updated by the augmentation.
This observation is peculiar to the matroid partition. In a breadth first search of the edge
recycling augmentation approach, we use the binary search procedure only to find edges
entering u ∈ Si such that Si was updated by the augmentation. In one phase, we repeat to
run a breadth first search so that the total number of the binary search procedure calls is
O(np).

We combine the blocking flow approach algorithm and the edge recycling augmentation
approach algorithm. By a careful analysis of independence query complexity, we obtain a
matroid partition algorithm that uses Õ(k1/3np + kn) independence oracle queries.

Note that this edge recycling augmentation approach differs significantly from existing
fast matroid intersection algorithms. The key technical contribution of this paper is to
introduce this new approach.

1.2 Related Work
Blikstad-Mukhopadhyay-Nanongkai-Tu [3] introduced a new oracle model called dynamic
oracle and developed a matroid partitioning algorithm that uses Õ((n + r

√
r) · poly(k))

dynamic rank queries, where r = maxi maxSi∈Ii
|Si|. Blikstad et al. also obtained an

algorithm to solve the k-fold matroid union problem in Õ(n
√

r) time and dynamic rank
queries, which is the special case of the matroid partitioning problem where all matroids
M1, . . . ,Mk are identical. Quanrud [27] developed an algorithm that solves the k-fold
matroid union problem and uses Õ(n3/2) independence oracle queries for the full range of
r and k. Quanrud also considered the k-fold matroid union problem in the more general
settings where the elements have integral and real-valued capacities.

For certain special matroids, faster matroid partition algorithms are known. For linear
matroids, Cunningham [7] presented an O(n3 log n)-time algorithm that solves the matroid
partitioning problem on O(n) matrices that have n columns and at most n rows. For
graphic matroids, the k-forest problem is a special case of the matroid partitioning prob-
lem. In the problem, we are given an undirected graph and a positive integer k, and the
objective is to find a maximum-size union of k forests. Gabow-Westermann [13] presented
an O(min{k3/2√nm(m + n log n), k1/2m

√
m + n log n, kn2 log k, m2

k log k})-time algorithm
to solve the k-forest problem, where n and m denote the number of vertices and edges,
respectively. Blikstad et al. [3] and Quanrud [27] independently obtained an Õ(m + (kn)3/2)
time algorithm to solve the k-forest problem.

Kawase-Kimura-Makino-Hanna [19] studied matroid partitioning problems for various
objective functions.

For the weighted matroid intersection, Huang-Kakimura-Kamiyama [18] developed a tech-
nique that transforms any unweighted matroid intersection algorithm into an algorithm that
solves the weighted case with an O(W) factor. Huang et al. also presented a (1− ϵ) approx-
imation weighted matroid intersection algorithm that uses Õ(nr3/2/ϵ) independence oracle
queries. Chekuri-Quanrud [6] improved the independence query complexity and presented a
(1− ϵ) approximation weighted matroid intersection algorithm that uses O(nr/ϵ2) independ-
ence oracle queries, which can be improved by applying more recent faster approximation
unweighted matroid intersection algorithm by Chakrabarty et al. [5] and Blikstad [2]. Tu [29]
gave a weighted matroid intersection algorithm that uses Õ(nr3/4 log W) rank oracle queries,
which also uses the binary search procedure proposed by Nguy˜̂en [25] and Chakrabarty et
al. [5].

ICALP 2023

104:6 Faster Matroid Partition Algorithms

For matroids of rank n/2, Harvey [15] showed a lower bound of (log2 3)n − o(n) inde-
pendence oracle queries for matroid intersection. Blikstad-Mukhopadhyay-Nanongkai-Tu [3]
showed super-linear Ω(n log n) query lower bounds for matroid intersection and partitioning
problem in their dynamic-rank-oracle and the independence oracle models.

1.3 Paper Organization
In Section 2, we introduce the notation and the known results for matroid partition and
intersection. Next, in Section 3, we present our matroid partition algorithm using blocking
flow approach. Then, in Section 4, we present our new approach edge recycling augmentation
and our faster matroid partition algorithm for large k. Finally, in Section 5 we conclude by
mentioning several open problems relevant to our work.

2 Preliminaries

2.1 Matroids
Notation. For a positive integer a, we denote [a] = {1, . . . , a}. For a finite set X, let #X

and |X| denote the cardinality of X, which is also called the size of X. We will often write
A+x := A∪{x} and A−x := A\{x}. We will also write A+B := A∪B and A−B := A\B,
when no confusion can arise.

Matroid. A pair M = (V, I) for a finite set V and non-empty I ⊆ 2V is called a matroid if
the following property is satisfied.

(Downward closure) if S ∈ I and S′ ⊆ S, then S′ ∈ I.
(Augmentation property) if S, S′ ∈ I and |S′| < |S|, then there exists x ∈ S \ S′ such

that S′ + x ∈ I.
A set S ⊆ V is called independent if S ∈ I and dependent otherwise.

Rank. For a matroidM = (V, I), we define the rank ofM as rank(M) = max{|S| | S ∈ I}.
In addition, for any S ⊆ V , we define the rank of S as rankM(S) = max{|T | | T ⊆ S, T ∈ I}.

Matroid Intersection. Given two matroids M′ = (V, I ′), M′′ = (V, I ′′), we define their
intersection by (V, I ′ ∩ I ′′). The matroid intersection problem asks us to find the largest
common independent set, whose cardinality we denote by r. Note that the intersection of
matroids is not a matroid in general and the problem to find a maximum common independent
set of more than two matroids is NP-hard.

Matroid Partition (Matroid Union). Given k matroids M1 = (V, I1), . . . ,Mk = (V, Ik),
S ⊆ V is called partitionable if there exists a partition (S1, . . . , Sk) of S such that Si ∈ Ii for
i ∈ [k]. The matroid partitioning problem asks us to find the largest partitionable set, whose
cardinality we denote by p. Let Ĩ be the family of partitionable subset of V . Then, (V, Ĩ) is
called the union or sum of k matroids M1 . . . ,Mk. Note that Nash-Williams Theorem [24]
states that the union (V, Ĩ) of the k matroids is also a matroid.

Oracles. Throughout this paper, we assume that we can only access a matroid M = (V, I)
through an oracle. Given a subset S ⊆ V , an independence oracle outputs whether S ∈ I or
not. Given a subset S ⊆ V , a rank oracle outputs rankM(S). Since one query of the rank
oracle can determine whether a given subset is independent, the rank oracle is more powerful
than the independence oracle.

T. Terao 104:7

Binary Search Technique. Chakrabarty-Lee-Sidford-Singla-Wong [5] showed that the follow-
ing procedure can be implemented efficiently by using binary search in the independence oracle
model. (This was developed independently by Nguy˜̂en [25].) Given a matroid M = (V, I),
an independent set S ∈ I, an element v ∈ V \ S, and B ⊆ S, the objective is to find an
element u ∈ S that is exchangeable with v (that is, S + v − u ∈ I) or conclude there is no
such an element. We skip the proof in this paper; see [5, Section 3] for a proof.

▶ Lemma 4 (Edge Search via Binary search, Chakrabarty et al. [5], Nguy˜̂en [25]). There exists
an algorithm FindOutEdge which, given a matroid M = (V, I), an independent set S ∈ I, an
element v ∈ V \ S, and B ⊆ S, finds an element u ∈ B such that S + v − u ∈ I or otherwise
determine that no such element exists, and uses O(log |B|) independence queries.

2.2 Techniques for Matroid Intersection
Here we provide known results about the matroid intersection.

▶ Definition 5 (Exchange Graph). Consider a common independent set S ∈ I ′ ∩ I ′′. The
exchange graph is defined as a directed graph G(S) = (V ∪ {s, t}, E), with s, t /∈ V and
E = E′ ∪ E′′ ∪ Es ∪ Et, where

E′ ={(u, v) | u ∈ S, v ∈ V \ S, S − u + v ∈ I ′},
E′′ ={(v, u) | u ∈ S, v ∈ V \ S, S − u + v ∈ I ′′},
Es ={(s, v) | v ∈ V \ S, S + v ∈ I ′}, and
Et ={(v, t) | v ∈ V \ S, S + v ∈ I ′′}.

▶ Lemma 6 (Shortest Augmenting Path). Let s, v1, v2, . . . , vl−1, t be a shortest (s, t)-path
in the exchange graph G(S) relative to a common independent set S ∈ I ′ ∩ I ′′. Then
S′ = S + v1 − v2 + · · · − vl−2 + vl−1 ∈ I ′ ∩ I ′′.

In a matroid intersection algorithm, we begin with an empty set S. Then we repeat to
find an augmenting path in the exchange graph G(S) and to update the current set S. If
there is no (s, t)-path in the exchange graph G(S), then S is a common independent set of
maximum size. If there is an (s, t)-path in the exchange graph G(S), then we pick a shortest
path and obtain a common independent set S′ ∈ I ′ ∩ I ′′ of |S|+ 1 elements.

Cunningham’s matroid intersection algorithm [7] and recent faster matroid intersection
algorithms [2, 4, 5, 25] rely on the following lemma.

▶ Lemma 7 (Cunningham [7]). For any two matroids M′ = (V, I ′) and M′′ = (V, I ′′), if
the length of the shortest augmenting path in exchange graph G(S) relative to a common
independent set S ∈ I ′ ∩ I ′′ is at least d, then |S| ≥ (1− O(1)

d) · r, where r is the size of a
largest common independent set.

Cunningham’s [7] matroid intersection algorithm by the blocking flow approach relies on
the following monotonicity lemma.

▶ Lemma 8 (Monotonicity Lemma, [5, 7, 16, 26]). For any two matroids M′ = (V, I ′) and
M′′ = (V, I ′′), suppose we obtain a common independent set S′ ∈ I ′ ∩ I ′′ by augmenting
S ∈ I ′ ∩ I ′′ along a shortest augmenting path in G(S). Note that |S′| > |S|. Let d denote
the distance in G(S) and d′ denote the distance in G(S′). Then for all v ∈ V ,

(i) If d(s, v) < d(s, t), then d′(s, v) ≥ d(s, v). If d(v, t) < d(s, t), then d′(v, t) ≥ d(v, t).
(ii) If d(s, v) ≥ d(s, t), then d′(s, v) ≥ d(s, t). If d(v, t) ≥ d(s, t), then d′(v, t) ≥ d(s, t).

ICALP 2023

104:8 Faster Matroid Partition Algorithms

2.3 Compressed Exchange Graph for Matroid Partition
The matroid partitioning problem can be solved by a matroid intersection algorithm. Let
V̂ = V × [k], and define

Î ′ ={Î ⊆ V̂ | ∀v ∈ V, #{i ∈ [k] | (v, i) ∈ Î} ≤ 1},

Î ′′ ={Î ⊆ V̂ | ∀i ∈ [k], {v ∈ V | (v, i) ∈ Î} ∈ Ii}.

Then, M̂′ = (V̂ , Î ′) is a partition matroid. Since M̂′′ = (V̂ , Î ′′) is the direct sum of
matroids (V, Ii) for all i ∈ [k], it is also a matroid. Then, the family of partitionable subsets
of V can be represented as

{S ⊆ V | ∃π : S → [k], {(v, π(v)) | v ∈ S} ∈ Î ′ ∩ Î ′′}.

Therefore, we can solve the matroid partitioning problem by computing a common
independent set of maximum size in I ′ and I ′′. However, we might use too many independence
oracle queries when solving the matroid partitioning problem by using this reduction to
the matroid intersection problem. This is due to the following reasons. When solving the
matroid intersection problem that was reduced by the matroid partitioning problem, the size
of the ground set of that matroid intersection problem is O(kn), and then the number of
edges in the exchange graph is O(knp), which depends heavily on k. Furthermore, since we
consider the total query complexity of the independence oracle of each matroid Mi = (V, Ii)
for all i ∈ [k], the query complexity of the independence query of the matroid M̂′′ = (V̂ , Î ′′)
also depends heavily on k.

Then, to improve the running time, Knuth [20] and Greene-Magnanti [14] give a matroid
partition algorithm that uses the following auxiliary graph with O(np) edges, which we call
compressed exchange graph.

▶ Definition 9 (Compressed Exchange Graph [7, 14, 20]). Consider a partition (S1, . . . , Sk) of
S ⊆ V such that Si ∈ Ii for all i ∈ [k]. The compressed exchange graph is defined as a directed
graph G(S1, . . . , Sk) = (V ∪ {s, t1, . . . , tk}, E), with s, t1, . . . , tk /∈ V and E = E′ ∪ Es ∪ Et,
where

E′ ={(v, u) | ∃i ∈ [k], u ∈ Si, Si + v /∈ Ii, Si + v − u ∈ Ii},
Es ={(s, v) | v ∈ V \ S}, and

Et =
k⋃

i=1
{(v, ti) | v ∈ V \ Si, Si + v ∈ Ii}.

We set T = {t1, . . . , tk}.

In the matroid partition algorithm, we begin with an empty set S and initialize Si = ∅ for
all i ∈ [k]. If there is no vertex in T which is reachable from s in the compressed exchange
graph G(S1, . . . , Sk), then S is a partitionable set of maximum size. If there is a path from s

to T in the compressed exchange graph, then we pick a shortest path s, v1, . . . , vl−1, tj . Then
we can obtain a partitionable set S′ = S + v1 and a partition (S′

1, . . . , S′
k) of S′ such that

S′
i ∈ Ii for all i ∈ [k]. The validity of the algorithm follows from the following two lemmas,

which we use throughout this paper. Cunningham [7] showed these lemmas by using the
equivalence of the compressed exchange graph for the matroid partition and the exchange
graph for the reduced matroid intersection; see [28, Theorem 42.4] for a direct proof that
does not use the reduction to the matroid intersection.

T. Terao 104:9

▶ Lemma 10. Given a partition (S1, . . . , Sk) of S such that Si ∈ Ii for all i ∈ [k], there
exists a partitionable set S′ whose size is at least |S|+ 1 if and only if there is a vertex tj ∈ T

that is reachable from s in the compressed exchange graph G(S1, . . . , Sk).

▶ Lemma 11 (Shortest Augmenting Path). Let s, v1, v2, . . . , vl−1, tj be a shortest (s, T)-path
in the compressed exchange graph G(S1, . . . , Sk). Then S′ = S + v1 is a partitionable set.

We can construct a partition (S′
1, . . . , S′

k) of S′ from a partition (S1, . . . , Sk) of S and an
augmenting path in the compressed exchange graph by using the following procedure Update
(Algorithm 1).

Algorithm 1 Update.

Input: a partition (S1, . . . , Sk) of S (⊆ V) such that Si ∈ Ii for all i ∈ [k]. an
augmenting path s, v1, . . . , vl−1, tj .

Output: a partition (S′
1, . . . , S′

k) of S′ (⊆ V) such that S′
i ∈ Ii for all i ∈ [k] and

S′ = S + v1.
1 For all i ∈ [k], set S′

i ← Si

2 For all v ∈ S, denote by π(v) the index such that v ∈ Sπ(v)
3 for i ∈ [l − 2] do
4 S′

π(vi+1) ← S′
π(vi+1) + vi − vi+1

5 S′
j ← S′

j + vl−1

6 return a partition (S′
1, . . . , S′

k) of S′

Cunningham [7] observes that the equivalence between the exchange graph for the matroid
intersection of two matroids M̂′ = (V̂ , Î ′) and M̂′′ = (V̂ , Î ′′) and the compressed exchange
graph for the matroid partition of k matroids (V, I1), . . . , (V, Ik) to prove the Lemmas 12
and 13 and to develop an efficient algorithm for matroid partition that employs the blocking
flow approach. For a fixed partition (S1, . . . , Sk) of S and an element v ∈ S, let π(v) be
the index such that v ∈ Sπ(v). We also denote by Ŝ the set {(v, π(v)) ∈ V̂ | v ∈ S}.
A path s, v1, v2, . . . , vl−1, tj in the compressed exchange graph for the matroid partition
corresponds to a path s, (v1, π(v2)), (v2, π(v2)), (v2, π(v3)), . . . , (vl−1, π(vl−1)), (vl−1, j), t in
the exchange graph for the matroid intersection. Then, for all elements v ∈ S, we have
dG(S1,...,Sk)(s, v) = 1 + 1

2 dG(Ŝ)(s, (v, π(v))) and dG(S1,...,Sk)(v, T) = 1
2 dG(Ŝ)((v, π(v)), t). We

also have dG(S1,...,Sk)(s, T) = 1 + 1
2 dG(Ŝ)(s, t).

Cunningham [7] uses the following two lemmas to develop an efficient matroid partition
algorithm by using blocking flow approach. These lemmas can be shown from the corres-
pondence between the exchange graph and the compressed exchange graph. We also use
these two lemmas in our fast matroid partition algorithms.

▶ Lemma 12 (Cunningham [7]). Given a partition (S1, . . . , Sk) of S such that Si ∈ Ii for
all i ∈ [k]. If the length of a shortest augmenting path in the compressed exchange graph
G(S1, . . . , Sk) is at least d, then |S| ≥ (1− O(1)

d) ·p, where p is the size of largest partitionable
set.

▶ Lemma 13 (Monotonicity Lemma [5,7, 16, 26]). Suppose we obtain a partition (S′
1, . . . , S′

k)
of S′ by augmenting a partition (S1, . . . , Sk) of S along a shortest augmenting path in
G(S1, . . . , Sk). Note that |S′| > |S|. let d denote the distance in G(S1, . . . , Sk) and d′ denote
the distance in G(S′

1, . . . , S′
k). Then for all v ∈ V ,

(i) If d(s, v) < d(s, T), then d′(s, v) ≥ d(s, v). If d(v, T) < d(s, T), then d′(v, T) ≥ d(v, T).
(ii) If d(s, v) ≥ d(s, T), then d′(s, v) ≥ d(s, T). If d(v, T) ≥ d(s, T), then d′(v, T) ≥ d(s, T).

ICALP 2023

104:10 Faster Matroid Partition Algorithms

As we will see later, we use the binary search technique given in Lemma 4 to find edges
in the compressed exchange graph under the independence oracle model. Note that the
procedure FindOutEdge(Mi, Si, v, B) gives us an efficient way to find edges from the vertex
v to a vertex u ∈ B(⊆ Si) in the compressed exchange graph.

3 Blocking Flow Algorithm

In this section, we provide our matroid partition algorithms in the independence oracle
model, which is obtained by simply combining the blocking flow approach proposed by
Cunningham [7] and the binary search search procedure proposed by Nguy˜̂en [25] and
Chakrabarty-Lee-Sidford-Singla-Wong [5]. In the full version of this paper, we also present a
fast matroid partition algorithm using blocking flow approach in the rank oracle model.

3.1 Blocking Flow Algorithm using Independence Oracle
In this subsection we present our matroid partition algorithm using the blocking flow approach
in the independence oracle model. We show the following theorem, which implies Theorem 1.

▶ Theorem 14. There is an algorithm that uses O(kn
√

p log p) independence oracle queries
and solves the matroid partitioning problem.

This result improves upon the previously known matroid partition algorithm by Cunning-
ham [7] when k = o(p).

For the proof, we first provide the procedure GetDistanceIndependence (Algorithm 2)
that efficiently finds distances from s to every vertex in the compressed exchange graph.
This algorithm simply runs a breadth first search by using the procedure FindOutEdge.

Algorithm 2 GetDistanceIndependence.

Input: a partition (S1, . . . , Sk) of S (⊆ V) such that Si ∈ Ii for all i ∈ [k]
Output: d ∈ RV ∪{s}∪T such that for v ∈ V ∪ {s} ∪ T , dv is the distance from s to v

in G(S1, . . . , Sk)
1 ds ← 0
2 For all v ∈ V \ S let dv ← 1
3 For all v ∈ S let dv ←∞
4 For all i ∈ [k] let dti

←∞
5 Q← {v ∈ V \ S} // Q : queue
6 For all i ∈ [k] let Bi ← Si

7 while Q ̸= ∅ do
8 Let v be the element added to Q earliest
9 Q← Q− v

10 for i ∈ [k] with dti =∞ do
11 if v /∈ Si and Si + v ∈ Ii then
12 dti ← dv + 1
13 for i ∈ [k] with v /∈ Si do
14 while u = FindOutEdge(Mi, Si, v, Bi) satisfies u ̸= ∅ do
15 Q← Q + u

16 du ← dv + 1
17 Bi ← Bi − u

18 return d

T. Terao 104:11

▶ Lemma 15 (Breadth First Search using Independence Oracle). Given a partition (S1, . . . , Sk)
of S (⊆ V) such that Si ∈ Ii for all i ∈ [k], the procedure GetDistanceIndependence (Al-
gorithm 2) outputs d ∈ RV ∪{s}∪T such that, for v ∈ V ∪{s}∪T , dv is the distance from s to v

in the compressed exchange graph G(S1, . . . , Sk). The procedure GetDistanceIndependence
uses O(kn log p) independence oracle queries.

Proof. The procedure GetDistanceIndependence simply performs a breadth first
search in the compressed exchange graph G(S1, . . . , Sk). Thus, the procedure
GetDistanceIndependence correctly computes distances from s in G(S1, . . . , Sk). Note
that each vertex v ∈ V is added to Q at most once and each vertex v ∈ S is removed from
Bπ(v) at most once. Thus, the number of independence oracle queries used in Line 11 is
O(kn). The number of FindOutEdge calls that do not output ∅ is O(p), and the number of
FindOutEdge calls that output ∅ is O(kn). Hence, by Lemma 4, the number of independence
oracle queries used in Line 14 is O(kn log p), which completes the proof. ◀

Next we provide our augmentation subroutine for our faster matroid partition algorithm.
We implement Cunningham’s [7] blocking flow approach for matroid partition by using the
binary search procedure proposed by Nguy˜̂en [25] and Chakrabarty et al. [5]. This algorithm
is similar to Chakrabarty et al.’s matroid intersection algorithm in the rank oracle model [5].
The implementation is described as BlockFlowIndependence in the full version of this paper.

In the procedure BlockFlowIndependence, given a partition (S1, . . . , Sk) of S, we first
compute the distances from s to every vertex in the compressed exchange graph G(S1, . . . , Sk)
using GetDistanceIndependence (Algorithm 2). By using these distances, we divide V into
sets L1, L2, . . . , where each Li has all vertices v such that the distance from s to v is i in the
compressed exchange graph G(S1, . . . , Sk). Then we search a path s, a1, a2, . . . , adT −1, adT

in the compressed exchange graph G(S1, . . . , Sk), where ai ∈ Li for all i ∈ [dT − 1]. If we
found such a path, we augment a partition (S1, . . . , Sk) of S and remove ai from Li for all
i ∈ [dT − 1]. Then we search a new path again until no (s, T)-path of length dT can be found.
During the search for such a path, if the procedure concludes that some vertex in Li is not on
such a path, then it removes the vertex from Li. Note that we write dT = min(dt1 , . . . , dtk

).

▶ Lemma 16 (Blocking Flow using Independence Oracle). Given a partition (S1, . . . , Sk) of
S (⊆ V) such that Si ∈ Ii for all i ∈ [k], the procedure BlockFlowIndependence outputs
a partition (S′

1, . . . , S′
k) of S′ (⊆ V) such that S′

i ∈ Ii for all i ∈ [k] and |S′| > |S| and
dG(S′

1,...,S′
k

)(s, T) ≥ dG(S1,...,Sk)(s, T) + 1, or a partition (S1, . . . , Sk) of S if no such S′ exists.
The procedure BlockFlowIndependence uses O(kn log p) independence oracle queries.

We provide a proof of Lemma 16 in the full version of this paper.
Now we provide a proof of Theorem 14 by using Lemma 12. In our matroid partition

algorithm, we simply apply BlockFlowIndependence repeatedly until no (s, T)-path can be
found.

Proof of Theorem 14. In our algorithm, we start with S = ∅ and initialize Si = ∅ for
all i ∈ [k]. Then we apply BlockFlowIndependence repeatedly to augment the current
partition (S1, . . . , Sk) of S until no (s, T)-path can be found in the compressed exchange
graph G(S1, . . . , Sk).

Since each execution of BlockFlowIndependence strictly increases dG(S1,...,Sk)(s, T), we
have dG(S1,...,Sk)(s, T) = Ω(√p) after O(√p) executions of BlockFlowIndependence. Lemma
12 implies that, if dG(S1,...,Sk)(s, T) = Ω(√p), then |S| ≥ p−O(√p). Then the total number
of BlockFlowIndependence executions is O(√p) + O(√p) = O(√p) in the entire matroid
partition algorithm. Lemma 16 implies that one execution of BlockFlowIndependence uses
O(kn log p) independence oracle queries, which completes the proof. ◀

ICALP 2023

104:12 Faster Matroid Partition Algorithms

In the same way as Chakrabarty et al.’s matroid intersection algorithm in the rank oracle
model [5], we easily obtain the following theorem.

▶ Theorem 17. For any ϵ > 0, there is an algorithm that uses O(knϵ−1 log p) independence
oracle queries and finds a (1− ϵ) approximation of the largest partitionable set of k matroids.

Proof. Similar to the proof of Theorem 14, we start with S = ∅ and initialize Si = ∅ for
all i ∈ [k] and apply BlockFlowIndependence repeatedly to augment the current partition
(S1, . . . , Sk) of S. The only difference is that we apply BlockFlowIndependence only ϵ−1

times, which uses O(knϵ−1 log p) independence oracle queries.
Each execution of BlockFlowIndependence strictly increases dG(S1,...,Sk)(s, T). Thus,

after ϵ−1 executions of BlockFlowIndependence, we have dG(S1,...,Sk)(s, T) = Ω(ϵ−1).
Lemma 12 implies that, if dG(S1,...,Sk)(s, T) = Ω(ϵ−1), then |S| ≥ p−O(pϵ), which completes
the proof. ◀

4 Faster Algorithm for Large k

In this section, we present an algorithm that uses o(kn
√

p) independence oracle queries when
k is large. In subsection 3.1, we have presented the algorithm (Algorithm 2), which runs a
breadth first search in the compressed exchange graph and uses O(kn log p) independence
oracle queries. In the evaluation of the independence query complexity of the matroid
partition algorithm by the blocking flow approach given in section 3, a key observation is
that the number of different lengths of shortest augmenting paths during the algorithm is
O(√p). For now, it is not clear whether we can obtain a matroid partition algorithm that
runs a breadth first search o(√p) times. Then the blocking flow approaches are now stuck
at Ω(kn

√
p) independence oracle queries. To overcome this barrier and improve upon the

algorithm that uses O(kn
√

p log p) independence oracle queries given in Theorem 14, we
introduce a new approach called edge recycling augmentation, which can perform breadth first
searches with fewer total independence oracle queries. Our new approach can be attained
through new ideas: an efficient utilization of the binary search procedure FindOutEdge and
a careful analysis of the number of independence oracle queries by using Lemma 12. By
combining an algorithm by the blocking flow approach and an algorithm by the edge recycling
augmentation approach, we obtain the following theorem, which implies Theorem 2.

▶ Theorem 18. There is an algorithm that uses O(k1/3np log p + kn) independence oracle
queries and solves the matroid partitioning problem. When k ≤ n, the number of queries is
Õ(n7/3).

This theorem implies that we obtain a matroid partition algorithm that uses o(kn
√

p)
independence oracle queries when k = ω(p3/4). We note that this algorithm requires
O(k2/3np) time complexity other than independence oracle queries.

In Section 4.1, we present our new approach edge recycling augmentation, and in Sec-
tion 4.2, we present our faster matroid partition algorithm for large k and give a proof of
Theorem 18.

4.1 Edge Recycling Augmentation
In order to select appropriate parameters for our algorithm, we have to determine the value of
p. However, the size p of a largest partitionable set is unknown before running the algorithm.
Instead of using the exact value of p, we use a 1

2 -approximation p̄ for p (that is p̄ ≤ p ≤ 2p̄),
which can be computed using O(kn) independence oracle queries. It is well known that a

T. Terao 104:13

1
2 -approximate solution for the matroid intersection problem can be found by the following
simple greedy algorithm; see [21, Proposition 13.26]. We begin with an empty set. For
each element in the ground set, we check whether adding it to the set would result in a
common independent set. If it does, we add it to the set. Finally, we obtain a maximal
common independent set. We convert this algorithm into the following 1

2 -approximation
algorithm (Algorithm 3) for the matroid partitioning problem by utilizing the reduction from
matroid partition to the intersection of two matroids M̂′ = (V̂ , Î ′) and M̂′′ = (V̂ , Î ′′) given
in subsection 2.3.

Algorithm 3 1
2 -ApproximationMatroidPartition.

1 For all i ∈ [k] let Si ← ∅
2 for i← 1 to k do
3 for v ∈ V \

(⋃i−1
j=1 Sj

)
do

4 if Si + v ∈ Ii then
5 Si ← Si + v

6 return p̄ = |
⋃k

i=1 Si|

Now we present our new approach Edge Recycling Augmentation. Our new approach
edge recycling augmentation is applied in each phase of the algorithm. One phase of edge
recycling augmentation is described as EdgeRecyclingAugmentation (Algorithm 5).

In EdgeRecyclingAugmentation, we first compute the edges E∗(⊆ V × S) in the com-
pressed exchange graph G(S1, . . . , Sk), which uses O(np) independence oracle queries. Note
that the compressed exchange graph may be changed by augmentations, that is, augment-
ations may add or delete several edges in the compressed exchange graph, and so, taking
one augmenting path may destroy the set E∗ of the edges. However, we notice that we
can recycle some part of the edge set E∗ after the augmentations, which is peculiar to the
matroid partition.

In EdgeRecyclingAugmentation, we simply repeat to run a breadth first search and
then to augment the partitionable set. Unlike GetDistanceIndependence (Algorithm 2) in
Section 3.1, our BFS recycles the precomputed edge set E∗. In one phase, we keep a set
J of all indices i such that Si was updated by the augmentations. Our crucial observation
is that no edges, in the compressed exchange graph, entering a vertex in Si are changed
by the augmentations unless augmenting paths contain a vertex in Si ∪ {ti}. In contrast
to GetDistanceIndependence that uses the binary search procedure FindOutEdge for all
indices i ∈ [k], our new BFS procedure uses FindOutEdge only for indices i ∈ J . We can use
E∗ to search edges entering a vertex in Si with i /∈ J . Then, the BFS based on the ideas
described above can be implemented as EdgeRecyclingBFS (Algorithm 4).

We also provide a new significant analysis of the number of independence oracle quer-
ies in entire our matroid partition algorithm. In EdgeRecyclingAugmentation, we re-
peat to run the breadth first search EdgeRecyclingBFS so that the total calls of the bin-
ary search procedure is O(np). Then, the number of independence oracle queries used
by EdgeRecyclingBFS in one call of EdgeRecyclingAugmentation is almost equal to the
one used by the precomputation of E∗. Hence, one call of EdgeRecyclingAugmentation
uses Õ(np) independence oracle queries. The number of calls of EdgeRecyclingBFS in
EdgeRecyclingAugmentation depends on how many edges can not be recycled. Thus, to
determine the number of calls of EdgeRecyclingBFS, we use the value sum in the imple-
mentation of EdgeRecyclingAugmentation (Algorithm 5). In the entire matroid partition

ICALP 2023

104:14 Faster Matroid Partition Algorithms

algorithm, we apply EdgeRecyclingAugmentation repeatedly. Then, we can obtain a
matroid partition algorithm that uses Õ(np3/2 + kn) independence oracle queries. Fur-
thermore, by combining this with the blocking flow approach, the number of total calls of
EdgeRecyclingAugmentation in the entire matroid partition algorithm can be O(k1/3). This
leads to obtain a matroid partition algorithm that uses Õ(k1/3np + kn) independence oracle
queries. This analysis differs significantly from that of existing faster matroid intersection
algorithms.

For i ∈ [k], let Fi(⊆ V) denote the set of vertices adjacent to ti ∈ T . We first compute
the set Fi for all i ∈ [k] using O(kn) independence oracle queries. Note that, after one
augmentation, they can be updated using only O(n) independence oracle queries.

In the following two lemmas, we show the correctness and the independence query
complexity of the procedure EdgeRecyclingAugmentation (Algorithm 5).

▶ Lemma 19. Given a partition (S1, . . . , Sk) of S(⊆ V) such that Si ∈ Ii for all i ∈ [k], the
procedure EdgeRecyclingAugmentation (Algorithm 5) outputs a partition (S′

1, . . . , S′
k) of

S′(⊆ V) such that S′
i ∈ Ii for all i ∈ [k] and |S′| ≥ |S|.

Proof. To prove the correctness of EdgeRecyclingAugmentation, we prove the following
invariants at the beginning of any iteration of the while loop.

(i) For all i ∈ [k]\J and all (v, u) ∈ V ×Si, we have (v, u) ∈ E∗ if and only if Si +v−u ∈ Ii

and Si + v /∈ Ii.
(ii) For all i ∈ [k] and all v ∈ V , we have v ∈ Fi if and only if Si + v ∈ Ii and v /∈ Si.
(iii) For all i ∈ [k], we have Si ∈ Ii.

The invariant is true before the execution of EdgeRecyclingAugmentation. Now, assume
that the invariants (i)–(iii) hold true at the beginning of an iteration of the while loop. Let
a partition (Sold

1 , . . . , Sold
k) of Sold be the partition before the execution of Line 13 and a

partition (Snew
1 , . . . , Snew

k) of Snew be the partition after the execution of Line 13. For all
i ∈ [k] \ J , we have Sold

i = Snew
i . Then, invariant (i) remains true. For all i ∈ [k] \ {j},

we have |Sold
i | = |Snew

i |. Hence, for all i ∈ [k] \ {j} and all v /∈ Sold
i ∪ Snew

i , we have
Snew

i + v ∈ Ii if and only if Sold
i + v ∈ Ii; see [28, Corollary 39.13a] for a proof. Furthermore,

for all i ∈ [k] \ {j}, we have Sold
i + v /∈ Ii for all v ∈ Snew

i \ Sold
i and Snew

i + v /∈ Ii for
all v ∈ Sold

i \ Snew
i ; see [7, Section 5]. Then, invariant (ii) remains true. The procedure

EdgeRecyclingBFS simply finds a BFS-tree rooted at s by a breadth first search. Thus, if
the invariants (i)–(iii) are true, then the procedure EdgeRecyclingBFS correctly computes
BFS-tree rooted at s. Then, the path P that EdgeRecyclingBFS outputs in Line 5 is a
shortest augmenting path. Hence, by Lemma 11, invariant (iii) remains true. ◀

▶ Lemma 20. The procedure EdgeRecyclingAugmentation (Algorithm 5) uses O(np log p)
independence oracle queries.

Proof of Lemma 20. The number of independence oracle queries used in Line 3 is O(np).
Furthermore, the number of independence oracle queries used in Line 14 is O(np), because
the number of iterations of the while loop is bounded by p.

Now we show that the number of FindOutEdge calls in the entire procedure
EdgeRecyclingAugmentation is O(np).

In the procedure EdgeRecyclingBFS((S1, . . . , Sk), E∗, J,
⋃k

i=1 Fi), each vertex v ∈ V is
added to Q at most once and each vertex v ∈ S is removed from Bπ(v) at most once,
where π(v) is the index such that v ∈ Sπ(v). This means that the number of FindOutEdge
calls that do not output ∅ is bounded by p, and the number of FindOutEdge calls that
output ∅ is bounded by n · |J |. Then, the number of FindOutEdge calls in the procedure
EdgeRecyclingBFS is O(p + n · |J |).

T. Terao 104:15

Algorithm 4 EdgeRecyclingBFS.

Input: a partition (S1, . . . , Sk) of S (⊆ V) such that Si ∈ Ii for all i ∈ [k], a set
E ⊆ V × S, a set J ⊆ [k], a set F = {v ∈ V | ∃i ∈ [k], v /∈ Si, Si + v ∈ Ii}.

Output: An augmenting (s, T)-path in G(S1, . . . , Sk) if one exists.
1 Q← {v ∈ V \ S} // Q : queue
2 Bi ← Si for all i ∈ [k]
3 while Q ̸= ∅ do
4 Let v be the element added to Q earliest
5 Q← Q− v

6 if v ∈ F then
7 return the shortest augmenting path in the BFS-tree.
8 for i ∈ J do
9 while u = FindOutEdge(Mi, Si, v, Bi) satisfies u ̸= ∅ do

10 Q← Q + u

11 Bi ← Bi − u

12 for i ∈ [k] \ J do
13 for u ∈ Bi such that (v, u) ∈ E do
14 Q← Q + u

15 Bi ← Bi − u

16 return NO PATH EXISTS

Algorithm 5 EdgeRecyclingAugmentation.

Input: a partition (S1, . . . , Sk) of S (⊆ V) such that Si ∈ Ii for all i ∈ [k], sets
Fi = {v ∈ V \ Si | Si + v ∈ Ii} for all i ∈ [k]

Output: a partition (S′
1, . . . , S′

k) of S′ (⊆ V) such that S′
i ∈ Ii for all i ∈ [k] and

|S′| ≥ |S|.
1 sum← 0
2 J ← ∅
3 E∗ ← {(v, u) ∈ V × S | ∃i ∈ [k], u ∈ Si, Si + v /∈ Ii, Si + v − u ∈ Ii}
4 while sum < 2p̄ do
5 P ← EdgeRecyclingBFS((S1, . . . , Sk), E∗, J,

⋃k
i=1 Fi)

6 if P = NO PATH EXISTS then
7 break
8 For v ∈ S denote by π(v) the index such that v ∈ Sπ(v)
9 Denote by V (P) = {s, v1, . . . , vl−1, tj} the vertices in the path P

10 for i← 2 to l − 1 do
11 J ← J + π(vi)
12 J ← J + j

13 (S1, . . . , Sk)← Update((S1, . . . , Sk), P)
14 Fj ← {v ∈ V | v /∈ Sj and Sj + v ∈ Ij}
15 sum← sum + |J |
16 return (S1, . . . , Sk)

ICALP 2023

104:16 Faster Matroid Partition Algorithms

Suppose that the procedure EdgeRecyclingBFS is called for J = J1, J2, . . . , Jc in the
procedure EdgeRecyclingAugmentation. Obivously, c ≤ 2p̄ = O(p). Furthermore, by

the condition of the while loop in EdgeRecyclingAugmentation,
c∑

i=1
|Ji| = O(p). Thus,

the number of FindOutEdge calls in the entire procedure EdgeRecyclingAugmentation is

O

(
c∑

i=1
(p + n · |Ji|)

)
, which is O(np). Hence, by Lemma 4, the number of independence

oracle queries by FindOutEdge in the entire procedure EdgeRecyclingAugmentation is
O(np log p), which completes the proof. ◀

At this point, we can obtain a matroid partition algorithm that uses O(np3/2 log p + kn)
independence oracle queries. In the algorithm, we first compute Fi = {v ∈ V \ Si |
Si + v ∈ Ii} for all i ∈ [k]. Next, we apply EdgeRecyclingAugmentation repeatedly to
augment the current partition (S1, . . . , Sk) of S until no (s, T)-path can be found in the
compressed exchange graph G(S1, . . . , Sk). As we will show later in Lemma 22, the number
of independence oracle queries in this algorithm is O(np3/2 log p+kn). In the next subsection,
we improve this by combining the algorithm by the blocking flow approach and the algorithm
by the edge recycling augmentation approach.

4.2 Going Faster for Large k by Combining Blocking Flow and Edge
Recycling Augmentation

We have already presented two algorithms to solve the matroid partitioning problem in the
independence oracle model. We combine the algorithm by the blocking flow approach and
the one by the edge recycling augmentation approach. When the distance from s to T in the
compressed exchange graph is small, we use the blocking flow approach. On the other hand,
when the distance from s to T in the compressed exchange graph is large, we use the edge
recycling augmentation approach. The implementation is described as Algorithm 6. Then
we obtain a matroid partitioning algorithm that uses o(kn

√
p) independence oracle queries

when k = ω(p3/4). This improves upon the algorithm given in Theorem 14 that uses only
the blocking flow approach.

Algorithm 6 Faster Matroid Partition Algorithm for Large k.

1 Compute a 1
2 -approximation p̄ for p by running

1
2 -ApproximationMatroidPartition (Algorithm 3) and determine the value of d.

2 For all i ∈ [k] let Si ← ∅
3 Apply BlockFlowIndependence repeatedly to augment the current partition

(S1, . . . , Sk) of S until the distance from s to T in the compressed exchange graph
G(S1, . . . , Sk) is at least d.

4 For all i ∈ [k] let Fi ← {v ∈ V \ Si | Si + v ∈ Ii}
5 Apply EdgeRecyclingAugmentation (Algorithm 5) repeatedly to augment the

current partition (S1, . . . , Sk) of S and to update Fj with j ∈ [k] until no
(s, T)-path can be found in the compressed exchange graph G(S1, . . . , Sk).

The algorithm is parametrized by an integer d which we set in the end. To analyze
the independence query complexity of Algorithm 6, we first show that Line 3 uses Õ(knd)

independence oracle queries and Line 5 uses Õ

(
p3/2n

d1/2

)
independence oracle queries.

▶ Lemma 21. Line 3 of Algorithm 6 uses O(knd log p) independence oracle queries.

T. Terao 104:17

Proof. Lemma 16 implies that the distance from s to T in the compressed exchange graph
increases by at least 1 after the execution of BlockFlowIndependence. Consequently, the
number of calls of BlockFlowIndependence is bounded by d. Furthermore, Lemma 16 implies
that the number of independence oracle queries in one call of BlockFlowIndependence is
O(kn log p), which completes the proof. ◀

▶ Lemma 22. Line 5 of Algorithm 6 uses O

(
p3/2n

d1/2 log p

)
independence oracle queries.

Proof. Let m denote the number of calls of EdgeRecyclingAugmentation in Line 5 of Al-

gorithm 6. By Lemma 20, we only have to show that m = O

(√
p

d

)
. For i ∈ [m], let ci denote

the number of augmenting paths found in the i-th call of EdgeRecyclingAugmentation. For

i ∈ [m− 1] ∪ {0}, we write si =
m∑

j=i+1
cj .

We first show the following two claims.

▷ Claim 23. There is a positive constant C such that ci ≥ C
√

si for all i ∈ [m− 1].

Proof. Let i ∈ [m − 1]. We denote by li the length of the augmenting path found in the
last EdgeRecyclingBFS in the i-th call of EdgeRecyclingAugmentation. Lemma 12 implies

that si = O

(
p

li

)
. We note that, by Lemma 13, the length of shortest augmenting paths

never decreases as the partitionable set size increases.
In the i-th call of EdgeRecyclingAugmentation, the sum of the sizes of J is upper

bounded by c2
i · li, because the size of J is upper bounded by ci · li. Furthermore, by the

condition of the while loop in EdgeRecyclingAugmentation, the sum of the sizes of J is at

least 2p̄(≥ p). Thus, we obtain c2
i · li ≥ p, and then we have c2

i ≥
p

li
. Since si = O

(
p

li

)
, we

have √si = O(ci), which completes the proof. ◁

▷ Claim 24. For all i ∈ [m− 1], we have C√
1 + C

≤
∫ si−1

si

dx√
x

.

Proof. Let i ∈ [m− 1]. Since ci ≥ C
√

si by Claim 23, we obtain∫ si−1

si

dx√
x

=
∫ si+ci

si

dx√
x
≥
∫ si+C

√
si

si

dx√
x
≥
∫ si+C

√
si

si

dx√
si + C

√
si

=
C
√

si√
si + C

√
si

= C√
1 + C 1√

si

≥ C√
1 + C

,

which completes the proof. ◁

By Claim 24, m− 1 =
m−1∑
i=1

1 ≤
√

1 + C

C

m−1∑
i=1

∫ si−1

si

dx√
x

= O

(∫ s0

sm−1

dx√
x

)
= O (

√
s0) .

Since Lemma 12 implies that s0 = O
(p

d

)
, the number of calls of

EdgeRecyclingAugmentation in Line 5 of Algorithm 6 is O

(√
p

d

)
. By Lemma 20, the

proof is complete. ◀

In Algorithm 6, we set a parameter d in order to balance the number of independence
oracle queries used in Lines 3 and 5. Thus we obtain the following proof.

ICALP 2023

104:18 Faster Matroid Partition Algorithms

Proof of Theorem 18. We set d = p̄

k2/3 and run Algorithm 6. Then, by Lemmas 21 and
22, the number of independence oracle queries used in Lines 3 and 5 is O(k1/3np log p).
Furthermore, the number of independence oracle queries used in Lines 1 and 4 is O(kn),
which completes the proof. ◀

Note that Algorithm 6 requires O
(

np · p

d

)
= O(k2/3np) time complexity other than

independence oracle queries. This is because we use the edge set E∗ of size np in
EdgeRecyclingBFS and the number of total EdgeRecyclingBFS calls in Algorithm 6 is
O
(p

d

)
.

5 Concluding Remarks

By simply combining Cunningham’s algorithm [7] and the binary search technique proposed
by Nguy˜̂en [25] and Chakrabarty-Lee-Sidford-Singla-Wong [5], we can not break the O(n5/2)-
independence-query bound for the matroid partitioning problem. However, we introduce a
new approach edge recycling augmentation and break this barrier and obtain an algorithm
that Õ(n7/3) independence oracle queries. This result will be a substantial step forward
understanding the matroid partitioning problem.

Our key observation is that some edges in the compressed exchange graph will remain
the same after an augmentation, and then we need not query again to find them. That is, we
can recycle some edges in the compressed exchange graph. This yields a matroid partition
algorithm whose independence query complexity is sublinear in k. This idea is quite simple,
and we believe that edge recycling augmentation will be useful in the design of algorithms in
future.

In a recent breakthrough, Blikstad-van den Brand-Mukhopadhyay-Nanongkai [4] broke
the Õ(n2)-independence-query bound for matroid intersection. Then it is natural to ask
whether we can make a similar improvement for the matroid partition algorithm. However,
such an improvement is impossible. As one anonymous reviewer pointed out, it is easy to
show that the matroid partitioning problem requires Ω(kn) independence oracle queries,
which is Ω(n2) when k = Θ(n).3 Then, there is a clear difference between these two problems.

We also consider a matroid partition algorithm in the rank oracle model and present a
matroid partition algorithm that uses Õ(n3/2) rank oracle queries when k ≤ n. Blikstad et
al. [4] asks whether the tight bounds of the matroid intersection problem are the same under
independence oracle model and rank oracle model. The same kind of problem is natural for
the matroid partitioning problem. Unlike the matroid intersection problem, we believe there
exists a difference between independence oracle and rank oracle in terms of query complexity
of the matroid partitioning problem.

References
1 Martin Aigner and Thomas A Dowling. Matching theory for combinatorial geometries.

Transactions of the American Mathematical Society, 158(1):231–245, 1971.
2 Joakim Blikstad. Breaking O(nr) for matroid intersection. In the 48th International Colloquium

on Automata, Languages, and Programming (ICALP2022), pages 31:1–31:17, 2021.

3 Let M1, . . . , Mk be matroids of rank 1 defined over a common ground set V of n elements. Now, we
construct a bipartite graph G = (L ∪ R, E) with |L| = n, |R| = k where (v, i) ∈ E if and only if {v} is
independent in Mi. Here, the maximum size of a partitionable set is equal to the maximum size of a
matching in G. It can be viewed as having edge-query access to this graph G, since it does not make
sense to use an independence query to a set of size at least 2. It requires Ω(kn) edge queries to find the
size of a maximum matching; see [30] for details.

T. Terao 104:19

3 Joakim Blikstad, Sagnik Mukhopadhyay, Danupon Nanongkai Nanongkai, and Ta-Wei Tu.
Fast algorithms via dynamic-oracle matroids. In the 55th ACM Symposium on Theory of
Computing (STOC2023), to appear, 2023.

4 Joakim Blikstad, Jan van den Brand, Sagnik Mukhopadhyay, and Danupon Nanongkai.
Breaking the quadratic barrier for matroid intersection. In the 53rd Annual ACM SIGACT
Symposium on Theory of Computing (STOC2021), pages 421–432, 2021.

5 Deeparnab Chakrabarty, Yin Tat Lee, Aaron Sidford, Sahil Singla, and Sam Chiu-wai Wong.
Faster matroid intersection. In the 60th Annual Symposium on Foundations of Computer
Science (FOCS2019), pages 1146–1168. IEEE, 2019.

6 Chandra Chekuri and Kent Quanrud. A fast approximation for maximum weight matroid
intersection. In the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA2016), pages 445–457. SIAM, 2016.

7 William H Cunningham. Improved bounds for matroid partition and intersection algorithms.
SIAM Journal on Computing, 15(4):948–957, 1986.

8 Jack Edmonds. Matroid partition. Mathematics of the Decision Sciences, 11:335, 1968.
9 Jack Edmonds. Submodular functions, matroids, and certain polyhedra. Combinatorial

Structures and Their Applications, R. Guy, H. Hanani, N. Sauer, and J. Schonheim, eds. New
York, pages 69–87, 1970.

10 Jack Edmonds. Matroid intersection. In Annals of Discrete Mathematics, volume 4, pages
39–49. Elsevier, 1979.

11 Jack Edmonds. Submodular functions, matroids, and certain polyhedra. In Combinatorial
Optimization—Eureka, You Shrink! Papers Dedicated to Jack Edmonds 5th International
Workshop Aussois, France, March 5–9, 2001 Revised Papers, pages 11–26. Springer, 2003.

12 András Frank and Zoltán Miklós. Simple push-relabel algorithms for matroids and submodular
flows. Japan Journal of Industrial and Applied Mathematics, 29:419–439, 2012.

13 Harold Gabow and Herbert Westermann. Forests, frames, and games: algorithms for matroid
sums and applications. In the Twentieth Annual ACM Symposium on Theory of Computing
(STOC1988), pages 407–421, 1988.

14 Curtis Greene and Thomas L Magnanti. Some abstract pivot algorithms. SIAM Journal on
Applied Mathematics, 29(3):530–539, 1975.

15 Nicholas JA Harvey. Matroid intersection, pointer chasing, and young’s seminormal repres-
entation of sn. In the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA2008), pages 542–549, 2008.

16 Julian Haselmayr. Schnitt von matroiden theorie und algorithmen. Master’s thesis, University
of Augsberg, 2008.

17 John E Hopcroft and Richard M Karp. An n5/2 algorithm for maximum matchings in bipartite
graphs. SIAM Journal on Computing, 2(4):225–231, 1973.

18 Chien-Chung Huang, Naonori Kakimura, and Naoyuki Kamiyama. Exact and approximation
algorithms for weighted matroid intersection. In the Twenty-Seventh Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA2016), pages 430–444. SIAM, 2016.

19 Yasushi Kawase, Kei Kimura, Kazuhisa Makino, and Hanna Sumita. Optimal matroid
partitioning problems. Algorithmica, 83:1653–1676, 2021.

20 Donald Ervin Knuth. Matroid partitioning. Computer Science Department, Stanford University,
1973.

21 Bernhard H Korte and Jens Vygen. Combinatorial optimization. Springer, third edition, 2006.
22 Eugene L Lawler. Matroid intersection algorithms. Mathematical Programming, 9(1):31–56,

1975.
23 Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. A faster cutting plane method and its

implications for combinatorial and convex optimization. In the 56th Annual Symposium on
Foundations of Computer Science (FOCS2015), pages 1049–1065. IEEE, 2015.

ICALP 2023

104:20 Faster Matroid Partition Algorithms

24 Crispin St John Alvah Nash-Williams. An application of matroids to graph theory. In Theory
of Graphs – International Symposium – Théorie des graphes – Journées internationales d’étude
Rome, pages 263–265, 1966.

25 Huy L Nguyen. A note on cunningham’s algorithm for matroid intersection, 2019. arXiv:
1904.04129.

26 Christopher Price. Combinatorial algorithms for submodular function minimization and related
problems. Master’s thesis, University of Waterloo, 2015.

27 Kent Quanrud. Faster exact and approximation algorithms for packing and covering matroids
via push-relabel. CoRR, 2023. arXiv:2303.01478.

28 Alexander Schrijver et al. Combinatorial optimization: polyhedra and efficiency, volume 24.
Springer, 2003.

29 Ta-Wei Tu. Subquadratic weighted matroid intersection under rank oracles. In the 33rd
International Symposium on Algorithms and Computation (ISAAC2022), pages 63:1–63:14,
2022.

30 Andrew Chi-Chih Yao. Monotone bipartite graph properties are evasive. SIAM Journal on
Computing, 17(3):517–520, 1988.

https://arxiv.org/abs/1904.04129
https://arxiv.org/abs/1904.04129
https://arxiv.org/abs/2303.01478

Frameworks for Nonclairvoyant Network Design
with Deadlines or Delay
Noam Touitou1 #

Amazon, Tel Aviv, Israel

Abstract
Clairvoyant network design with deadlines or delay has been studied extensively, culminating in an
𝑂 (log 𝑛)-competitive general framework, where 𝑛 is the number of possible request types (Azar and
Touitou, FOCS 2020). In the nonclairvoyant setting, the problem becomes much harder, as Ω(

√
𝑛)

lower bounds are known for certain problems (Azar et al., STOC 2017). However, no frameworks
are known for the nonclairvoyant setting, and previous work focuses only on specific problems, e.g.,
multilevel aggregation (Le et al., SODA 2023).

In this paper, we present the first nonclairvoyant frameworks for network design with deadlines
or delay. These frameworks are nearly optimal: their competitive ratio is 𝑂 (

√
𝑛), which matches

known lower bounds up to logarithmic factors.

2012 ACM Subject Classification Theory of computation; Theory of computation → Design and
analysis of algorithms; Theory of computation → Online algorithms

Keywords and phrases Online, Deadlines, Delay, Network Design, Nonclairvoyant

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.105

Category Track A: Algorithms, Complexity and Games

1 Introduction

In network design problems with deadlines, online connectivity requests arrive over time,
such that every request must be served by its associated deadline. A solution serves pending
requests by transmitting sets of items at various times, thus incurring some cost; the online
algorithm constructs the solution by deciding, irrevocably, whether to make a transmission
at any given time (and which items to transmit). A concrete example is Steiner tree with
deadlines, in which a weighted graph with a designated root node is given offline, and each
connectivity request names a terminal node to be connected to the root. Each transmission
consists of a set of edges, and serves each pending request if its terminal is connected to
the root by the transmitted edges; the cost of the transmission is the total cost of edges. In
network design with delay, in lieu of a deadline, every request accumulates delay cost while
pending, thus motivating quicker service by the algorithm.

A parameter that influences the difficulty of such problems is called clairvoyance. In
the clairvoyant model, upon the arrival of a request, the algorithm learns its deadline
(in the deadline case) or future delay accumulation (in the delay case). However, in the
nonclairvoyant deadline model, the algorithm only learns the deadline of a request upon
its expiration (and must then immediately serve the request if pending). Similarly, in the
nonclairvoyant delay model, the algorithm is only aware of delay accumulated until the
current time.

Various network design problems with deadlines or delay were studied in the clairvoyant
setting. This includes problems such as multilevel aggregation [6, 11, 3, 5, 27], facility
location [3, 7], TCP Acknowledgement [17, 24, 12] and joint replenishment [13, 10, 8, 16].

1 This work does not relate to the author’s position at Amazon.

EA
T
C
S

© Noam Touitou;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 105; pp. 105:1–105:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:noamtwx@gmail.com
https://orcid.org/0000-0002-5720-4114
https://doi.org/10.4230/LIPIcs.ICALP.2023.105
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

105:2 Frameworks for Nonclairvoyant Network Design with Deadlines or Delay

For general, clairvoyant network design with deadlines or delay, algorithmic frameworks were
presented in [4]. These frameworks yield logarithmic competitiveness with respect to multiple
parameters: the number of requests, which we denote 𝑚; the number of request types (e.g.,
number of possible terminals for Steiner tree), which we denote 𝑛; and the number of items
in the item set2.

The nonclairvoyant setting, however, is less thoroughly studied. Some specific problems of
the network design with deadlines/delay class gracefully handle nonclairvoyance; for example,
for nonclairvoyant set cover with delay, logarithmic competitiveness is known [1]. Other
problems, such as joint replenishment, multilevel aggregation, and facility location with
deadlines, have Ω(

√
𝑛) and Ω(

√
𝑚) lower bounds on competitiveness in the nonclairvoyant

setting, even for randomized algorithms [26]3. (Note that an earlier, deterministic lower
bound along the same lines appears in [2] for the service with delay problem.) Recently, Le
et al. [26] presented matching and nearly-matching upper bounds for nonclairvoyant joint
replenishment and multilevel aggregation with delay, respectively. However, unlike in the
clairvoyant case, a general algorithmic framework for nonclairvoyant network design with
deadlines or delay is still not known.

1.1 Our Results

We present the first frameworks for general network design problems with deadlines or delay
in the nonclairvoyant setting. Specifically, with 𝑛 the number of possible request types and
𝑚 the number of requests, we present:
1. A deterministic, 𝑂

(
min

{√︁
𝑛 log 𝑛,

√︁
𝑚 log𝑚

})
-competitive framework for network design

with deadlines.
2. A deterministic, 𝑂

(
min

{√︁
𝑛 log 𝑛,

√︁
𝑚 log𝑚

})
-competitive framework for network design

with delay.

The competitiveness of our frameworks is nearly optimal, as implied by the lower bounds
of Ω(

√
𝑛) and Ω(

√
𝑚) on competitiveness for some network design problems, e.g., multilevel

aggregation [26].
While our frameworks provide nearly-optimal upper bounds for nonclairvoyant network

design, some components require specific properties to be implemented in polynomial time.
In Section 5, we show how to implement the frameworks in polynomial time for a class of
network design problems; specifically, those problems that admit Lagrangian prize-collecting
algorithms. In particular, we obtain the following results:
1. A poly-time, deterministic, 𝑂

(
min

{√︁
𝑛 log 𝑛,

√︁
𝑚 log𝑚

})
-competitive algorithm for Steiner

tree with deadlines/delay. Note that for Steiner tree, 𝑛 equals the number of nodes in the
graph.

2. A poly-time, deterministic, 𝑂
(√︁

𝑚 log𝑚
)
-competitive algorithm for facility location with

deadlines/delay4.

2 Note that the bound with respect to the number of request types is implicit in [4].
3 The lower bound in [26] is stated in terms of joint replenishment; however, joint replenishment can be

seen as a special case of multilevel aggregation and facility location, and thus the lower bound applies
to those problems as well.

4 A fine point regarding facility location is that the number of request types 𝑛 does not yield a meaningful
bound, and thus we only state the bound with respect to the number of requests 𝑚. This is discussed
in more detail in Section 5.

N. Touitou 105:3

3. A poly-time, deterministic, 𝑂
(
min

{√︁
𝑛 log 𝑛,

√︁
𝑚 log𝑚

})
-competitive algorithm for multi-

cut with deadlines/delay on a tree. Note that for multicut, 𝑛 equals the number of node
pairs in the graph (i.e., quadratic in the number of nodes).

For nonclairvoyant facility location with deadlines/delay, our algorithm is the first algorithm.
This is also the case for nonclairvoyant multicut with deadlines or delay. For nonclairvoyant
Steiner tree, there existed no explicit previous algorithm; however, randomly embedding into
an HST [18] then using the multilevel aggregation algorithm of [26] would yield a randomized
𝑂 (
√
𝑛 log 𝑛)-competitive algorithm, with no guarantee in 𝑚. Our algorithm for Steiner tree

improves the power of the logarithm, is deterministic, and has a guarantee in 𝑚.

1.2 Other Related Work
A related problem to network design with deadlines/delay is online service, in which one is
given a server (or multiple servers) on a metric space, which must then be moved to locations
specified in incoming online requests. In fact, Steiner tree (and multilevel aggregation) with
delay can be seen as a special case of this problem, in which the input forces the server
to rest at the root node of the given graph (or tree) through an infinite stream of urgent
requests at the root. Service with delay was first introduced by Azar et al. [2], and has since
seen additional work [9, 3, 20, 25, 21].

The problem of set cover with delay was introduced in [14]; in this problem, the algorithm
must transmit sets containing requested elements. While set cover is not usually considered
a network design problem, set cover with delay falls within the network design with delay
category, and thus the framework of [4] yields a logarithmic-competitive clairvoyant algorithm.
As mentioned earlier, this problem also admits a logarithmic-competitive nonclairvoyant
algorithm, as presented in [1] (and later derandomized in [26]). The best lower bound for
this problem, given in [28], is nearly tight given the upper bound for network design implied
by the framework in [4].

2 Preliminaries

We now introduce definitions and notation related to network design with deadlines/delay;
to make these concrete, we also apply these definitions to the special case of Steiner tree
with deadlines/delay.

Offline network design. In offline network design, one is given a set of items E with
associated costs 𝑐, and a set of requests 𝐻. (In Steiner tree, an input graph is given with a
designated root node; the items are the edges of the input graph, and every request demands
connecting some terminal to the root.) A request can be served by any chosen subset of
items, and we assume that serving requests is upwards-closed: that is, if request ℎ ∈ 𝐻 is
served by a subset of items 𝐸 ⊆ E, then it is also served by any superset of 𝐸. (In Steiner
tree, a set of edges satisfies a request if it contains a path connecting the request’s terminal to
the root; note that satisfaction is indeed upwards-closed.) A solution to the offline problem
is a subset of items 𝐸 ⊆ E which serves all requests in 𝐻; the cost of the solution is the total
cost of items in 𝐸 .

Online network design with deadlines. In online network design with deadlines, one is also
given a set of items E with costs. Now, however, the requests 𝑄 arrive over time; we denote
by 𝑚 := |𝑄 | the number of requests in the online input. Each request 𝑞 ∈ 𝑄 has a type, and we

ICALP 2023

105:4 Frameworks for Nonclairvoyant Network Design with Deadlines or Delay

denote the set of all possible request types by H , and define 𝑛 := |H |; in fact, every request
type in the online problem corresponds to a possible request in the offline problem. We denote
by 𝑟𝑞 the release time of request 𝑞, and each request 𝑞 also has a deadline time 𝑑𝑞 by which
it must be served. At any point in time, the algorithm may transmit any subset of items
𝐸 ⊆ E; such a transmission is also called a service, and incurs a cost of 𝑐(𝐸) :=

∑
𝑒∈𝐸 𝑐(𝑒) for

the algorithm. Transmitting 𝐸 serves all pending requests whose request type is served by 𝐸

in the offline problem. The goal of the algorithm is to serve every request by its deadline,
while minimizing the total cost of services, i.e.,

∑
service 𝑆

∑
𝑒∈𝐸 (𝑆) 𝑐(𝑒) (where 𝐸 (𝑆) is the set

of items transmitted in 𝑆).
For concreteness, consider Steiner tree with deadlines, in which requests for connecting

terminals to the root are served by transmitting subsets of edges. As transmissions are
momentary, it is meaningful for multiple requests (with different release/deadline times) to
request connecting the same terminal 𝑣; such requests would belong to the same request type,
as they would be satisfied by exactly the same subsets of items (i.e., those that contain a
path from 𝑣 to the root). In particular, note that for Steiner tree the number of request
types 𝑛 is equal to the number of nodes in the graph.

Online network design with delay. In the (more general) model with delay, each request 𝑞

has a nondecreasing, continuous delay function 𝑑𝑞, such that for every 𝑡 ≥ 𝑟𝑞 the amount
𝑑𝑞 (𝑡) is the total delay cost incurred by 𝑞 until time 𝑡 (if it is still pending at that time).
The goal of the algorithm in this case is to minimize the total cost of services plus the total
delay cost. That is, denoting by 𝐶𝑞 the time in which request 𝑞 is served in the algorithm,
the goal is to minimize

∑
service 𝑆

∑
𝑒∈𝐸 (𝑆) 𝑐(𝑒) +

∑
𝑞∈𝑄 𝑑𝑞 (𝐶𝑞). For ease of notation, for every

set of requests 𝑄′ and time 𝑡, we define 𝐷 (𝑄′, 𝑡) :=
∑

𝑞∈𝑄′ 𝑑𝑞 (𝑡).

Additional notation. For a request 𝑞 in online network design with deadlines/delay, we
define ℎ𝑞 to be the type of request 𝑞. For a set of requests 𝑄′, we define 𝐻 (𝑄′) ⊆ H to be{
ℎ𝑞 |𝑞 ∈ 𝑄′

}
. For a set of request types 𝐻, we use ND(𝐻) to denote the minimum cost of

serving these request types; slightly abusing notation, for a set of requests 𝑄′, we define
ND(𝑄′) := ND(𝐻 (𝑄′)).

For a set of request types 𝐻, we define ℓ(𝐻) := ⌈log ND({𝐻})⌉. When considering a single
request type, we sometimes write ℓ(ℎ) instead of ℓ({ℎ}). Finally, for request 𝑞 and set of
requests 𝑄′, we define ℓ(𝑞) := ℓ

(
ℎ𝑞

)
and ℓ(𝑄′) := ℓ(𝐻 (𝑄′)).

3 Framework for Network Design with Deadlines

In this section, we present a framework for nonclairvoyant network design with deadlines.
Analyzing this framework, we obtain the following theorem.

▶ Theorem 1. There exists a deterministic, 𝑂 (min
{√︁

𝑛 log 𝑛,
√︁
𝑚 log𝑚

}
)-competitive al-

gorithm for network design with deadlines.

Algorithm’s description. The algorithm assigns levels to each request according to the
logarithm of the cost of serving that request. Upon the deadline of a pending request 𝑞, the
algorithm starts a service 𝜆 that serves the request, thus incurring a cost of at most 2ℓ (𝑞) ;
the level of the service, denoted ℓ𝜆, is defined to be the level of the triggering request 𝑞. If a
service is large, it also serves additional requests; it does so by identifying a set of pending
request types which can be served, subject to some specific budget for every request type.

N. Touitou 105:5

Otherwise, a service is small, and does not serve additional requests. Whether a service is
large or small is determined by the triggering request 𝑞, i.e., the request upon whose deadline
the service is started; specifically, the service triggered by the deadline of 𝑞 will be large if
and only if the variable 𝑏𝑞 is True at that time.

Specifically, suppose a large service 𝜆 takes place. The service will identify the eligible
requests, i.e., the pending requests whose level is at most ℓ𝜆. Denoting by 𝐻 the set of request
types of those eligible requests, the service will give a budget of Θ̃(2ℓ𝜆/

√︁
|𝐻 |) to each request

type, and will attempt to find a subset of requests that can be served without exceeding the
budget for those request types. Thus, the cost of such a large service is at most Θ̃(2ℓ𝜆 ·

√︁
|𝐻 |).

The variable 𝑏𝑞, which controls whether 𝑞 will trigger a large service, is initially True
for every request 𝑞. However, if a large service of level at least ℓ(𝑞) takes place while 𝑞 is
pending, the variable is set to False. Thus, a request that “experienced” a large service
for which it was eligible will never trigger a large service upon its deadline. The formal
description of the algorithm is given in Algorithm 1.

Algorithm 1 Nonclairvoyant framework for network design with deadlines.

1 Event Function UponRequest(𝑞)
2 𝑏𝑞 ← True.
3 Event Function UponDeadline(𝑞)
4 start a new service 𝜆, and set ℓ𝜆 = ℓ(𝑞).
5 define 𝐸𝜆 to be the set of pending requests of level at most ℓ𝜆, and define 𝐻 ← 𝐻 (𝐸𝜆).
6 transmit ND(

{
ℎ𝑞

}
), serving all requests of type ℎ𝑞 .

7 if 𝑏𝑞 then
8 let 𝑥𝜆 ← 2ℓ𝜆 ·

√︃
log(1+|𝐻 |)
|𝐻 | .

9 let 𝐻′ ⊆ 𝐻 be a maximal subset such that ND(𝐻′) ≤ 𝑥𝜆 · |𝐻′ |.
10 transmit ND(𝐻′), serving all requests of types in 𝐻′.

// set 𝑏𝑞′ for eligible requests 𝑞′ which are still pending.
11 let 𝑄𝜆 be the subset of requests served by 𝜆.
12 foreach 𝑞′ ∈ 𝐸𝜆 \𝑄𝜆 do
13 set 𝑏𝑞′ ← False.

3.1 Analysis
We now focus on proving Theorem 1.

▶ Definition 2. We define the following terms:
1. We denote by Λ,Λ∗ the set of services in the algorithm and in the optimal solution,

respectively.
2. For a service 𝜆 ∈ Λ, we define 𝑄𝜆 to be the set of requests served by (the transmissions

of) 𝜆. For an optimal service 𝜆∗ ∈ Λ∗, we define 𝑄𝜆∗ in a similar way.
3. For a service 𝜆 ∈ Λ, we define ℓ𝜆, 𝐸𝜆, 𝑥𝜆 to be the values of the variables of those names

in UponDeadline.
4. We define 𝐻𝜆 = 𝐻 (𝐸𝜆). As a shorthand, we define 𝑦𝜆 = |𝐻𝜆 |.
5. We define the triggering request of 𝜆, denoted 𝑞★

𝜆
, to be the request upon whose deadline

𝜆 was initiated.
6. We define 𝑐(𝜆) to be the total transmission cost incurred in service 𝜆.

ICALP 2023

105:6 Frameworks for Nonclairvoyant Network Design with Deadlines or Delay

7. We say that an algorithm service 𝜆 ∈ Λ is charged to an optimal service 𝜆∗ if 𝑞★
𝜆
∈ 𝑄𝜆∗ .

For every 𝜆∗ ∈ Λ∗, we define Λ𝜆∗ ⊆ Λ to be the set of services charged to 𝜆∗.
8. We call a service 𝜆 a large service if upon the start of 𝜆 we have 𝑏𝑞★

𝜆
= True. Otherwise,

𝜆 is a small service.
9. For every service 𝜆 in the algorithm or in the optimal solution, denote by 𝑡𝜆 the time in

which the service takes place.

We define 𝑘 to be the maximum size of 𝐻 (𝐸𝜆) over all services 𝜆. In particular, note that
𝑘 ≤ min{𝑛, 𝑚}, which allows us to prove our competitiveness bounds with respect to 𝑘. Fix
henceforth any optimal service 𝜆∗ ∈ Λ∗.

▶ Proposition 3. For every 𝜆 ∈ Λ𝜆∗ , it holds that 𝑡𝜆 ≥ 𝑡𝜆∗ .

Proof. Note that 𝜆 is triggered by the deadline of request 𝑞★
𝜆
. From the definition of Λ𝜆∗ , we

have that 𝑞★
𝜆
∈ 𝑄𝜆∗ ; thus, 𝑡𝜆∗ ≤ 𝑑𝑞★

𝜆
= 𝑡𝜆. ◀

We partition Λ𝜆∗ , into three parts, the costs of which we bound individually:

Λ1
𝜆∗ : The large services in Λ𝜆∗ .

Λ2
𝜆∗ : The small services 𝜆 such that 𝑏𝑞★

𝜆
was first set to False at time smaller than 𝑡𝜆∗ .

Λ3
𝜆∗ : The small services 𝜆 such that 𝑏𝑞★

𝜆
was first set to False at time at least 𝑡𝜆∗ .

▶ Proposition 4. For every level ℓ, there exists at most one level-ℓ service in Λ1
𝜆∗ .

Proof. Assume otherwise that there exist 𝜆1, 𝜆2 ∈ Λ𝜆∗ which are both large, and assume
without loss of generality that 𝑡𝜆2 > 𝑡𝜆1 . From the previous claim, we have that 𝑡𝜆1 ≥ 𝑡𝜆∗ ,
and thus 𝑞★

𝜆2
is pending at 𝑡𝜆1 . Moreover, as ℓ

(
𝑞★
𝜆2

)
= ℓ𝜆1 = ℓ, we have that 𝑞★

𝜆2
∈ 𝐸𝜆1 .

But Line 13 of 𝜆1 sets 𝑏𝑞★
𝜆2

to be False, and this value is maintained until 𝜆2. This is in
contradiction to 𝜆2 being a large service. ◀

▶ Proposition 5. For every ℓ, we have
∑

𝜆∈Λ1
𝜆∗ |ℓ𝜆=ℓ

𝑐(𝜆) = 𝑂 (
√︁
𝑘 log 𝑘) · 2ℓ .

Proof. From Proposition 4, it holds that Λ1
𝜆∗ contains at most one (large) service of level

ℓ, and thus the left-hand side of the equation contains at most one summand. The cost of
a large service 𝜆 of level ℓ consists of two costs: the first cost is the cost of transmitting
ND(ℎ𝑞★

𝜆
), which is at most 2ℓ , using the fact that ℓ

(
𝑞★
𝜆

)
= ℓ; the second cost is the cost of

the transmission in Line 10, which is at most

𝑦𝜆 · 𝑥𝜆 ≤ 2ℓ ·
√︁
𝑦𝜆 log(1 + 𝑦𝜆) = 𝑂 (

√︁
𝑘 log 𝑘) · 2ℓ ◀

▶ Proposition 6. For every ℓ, we have∑︁
𝜆∈Λ2

𝜆∗ |ℓ𝜆=ℓ
𝑐(𝜆) = 𝑂 (

√︁
𝑘/log 𝑘) · 𝑐(𝜆∗).

Proof. Fix any ℓ. We define Λ′ :=
{
𝜆 ∈ Λ2

𝜆∗ |ℓ𝜆 = ℓ
}

and, as a shorthand, define 𝑧 := |Λ′ |.
We define 𝑅 to be the set of triggering requests of services in Λ′. First, we claim that the
request types of triggering requests of services in Λ′ are distinct, i.e., that |𝐻 (𝑅) | = |Λ′ | = 𝑧.
To prove this claim, assume for contradiction that there exist two services in 𝜆1, 𝜆2 ∈ Λ′

with triggering requests of the same type, and further assume without loss of generality
that 𝑡𝜆1 < 𝑡𝜆2 . Since 𝑞★

𝜆2
∈ 𝑄𝜆∗ , it must be pending at 𝑡𝜆∗ ; moreover, Proposition 3 implies

that 𝑡𝜆∗ ≤ 𝑡𝜆1 , and thus 𝑞★
𝜆2

is pending at 𝑡𝜆1 . But then 𝜆1 would serve 𝑞★
𝜆2

in Line 6, in
contradiction to 𝑞★

𝜆2
triggering 𝜆2. Thus, the proof of the claim is complete.

N. Touitou 105:7

Now, consider the first large service 𝜆 ∈ Λ after which for every triggering request 𝑞 of
a service in Λ′ we have 𝑏𝑞 = False; it must be that ℓ𝜆 ≥ ℓ. From the definition of Λ′, it
holds that 𝑡𝜆 < 𝑡𝜆∗ ; combining this with Proposition 3, we have that 𝑡𝜆 < 𝑡𝜆′ for every 𝜆′ ∈ Λ′.
In particular, all triggering requests of services from Λ′ must be pending at 𝑡𝜆, and since
they are of level ℓ, these requests are also in 𝐸𝜆. However, they all remain pending after 𝜆,
which means that ND(𝐻 (𝑅)) ≥ 𝑥𝜆 · |𝐻 (𝑅) |. (Otherwise, we would get a contradiction to the
maximality of the set 𝐻′ defined in Line 9, as ND(𝐻 (𝑅)) could be added to the solution
without exceeding budget.) We thus have

𝑐(𝜆∗) ≥ ND(𝐻 (𝑅)) ≥ 𝑥𝜆 · |𝐻 (𝑅) | ≥ 2ℓ ·
√︂

log(1 + 𝑘)
𝑘

· 𝑧 (1)

where the third inequality uses the fact that 𝑦𝜆 ≤ 𝑘. Meanwhile, the total cost of services in
Λ′ is at most 𝑧 · 2ℓ . Combining with Equation (1) completes the proof. ◀

▶ Proposition 7. For every ℓ, we have
∑

𝜆∈Λ3
𝜆∗ |ℓ𝜆=ℓ

𝑐(𝜆) = 𝑂 (
√︁
𝑘/log 𝑘) · 𝑐(𝜆∗).

Proof. For ease of notation, define Λ′ :=
{
𝜆 ∈ Λ3

𝜆∗ |ℓ𝜆 = ℓ
}
. We also define 𝑅 to be the set of

triggering requests for requests in Λ′. We define 𝑧 := |Λ′ |; using an identical argument to
that in the proof of Proposition 6, it holds that |𝐻 (𝑅) | = 𝑧. Let 𝜆 be the first large service of
level at least ℓ such that 𝑡𝜆 ≥ 𝑡𝜆∗ . Note that the following hold:
1. 𝑡𝜆 < 𝑡𝜆′ for every 𝜆′ ∈ Λ′ (stems from the definition of Λ′).
2. 𝑅 are all pending at 𝑡𝜆 and eligible for 𝜆 (as 𝑡𝜆 ≥ 𝑡𝜆∗).
3. 𝜆 changes 𝑏𝑞 from True to False for every 𝑞 ∈ 𝑅.
Since 𝑅 were all eligible for 𝜆 but were not served, it must be the case that ND(𝐻 (𝑅)) ≥
𝑥𝜆 · 𝑧 ≥ 2ℓ ·

√︁
𝑧 log(1 + 𝑧); since 𝜆∗ serves 𝑅, it thus holds that 𝑐(𝜆∗) ≥ 2ℓ ·

√︁
𝑧 log(1 + 𝑧). We

therefore have
∑

𝜆∈Λ3
𝜆∗ |ℓ𝜆=ℓ

𝑐(𝜆) ≤ 2ℓ · 𝑧 ≤
√︁
𝑧/log(1 + 𝑧) · 𝑐(𝜆∗). We now note that all requests

in 𝑅 were pending during 𝜆; thus, 𝑧 ≤ 𝑘, which completes the proof. ◀

Proof of Theorem 1. We first observe that ALG =
∑

𝜆∈Λ 𝑐(𝜆) = ∑
𝜆∗∈Λ∗

∑
𝜆∈Λ𝜆∗ 𝑐(𝜆). We

claim that for every 𝜆∗ ∈ Λ∗, we have
∑

𝜆∈Λ𝜆∗ 𝑐(𝜆) ≤ 𝑂 (
√︁
𝑘 log 𝑘) · 𝑐(𝜆∗); since OPT =∑

𝜆∗∈Λ∗ 𝑐(𝜆∗), proving this claim completes the proof of the theorem.
To prove the claim, fix any optimal service 𝜆∗ ∈ Λ∗, and define ℓ := ⌈log 𝑐(𝜆∗)⌉. Note

that for every service 𝜆 ∈ Λ𝜆∗ we have ℓ𝜆 ≤ ℓ; this is since 𝑞★
𝜆

is served by 𝜆∗, which implies
ND(𝑞★

𝜆
) ≤ 𝑐(𝜆∗). We partition Λ𝜆∗ into Λ1

𝜆∗ ,Λ
2
𝜆∗ ,Λ

3
𝜆∗ as before, and bound each set separately.

First, we bound the cost of Λ1
𝜆∗ as follows.∑︁

𝜆∈Λ1
𝜆∗

𝑐(𝜆) =
∑︁
ℓ′≤ℓ

∑︁
𝜆∈Λ1

𝜆∗ |ℓ𝜆=ℓ
′

𝑐(𝜆) ≤
∑︁
ℓ′≤ℓ

𝑂 (
√︁
𝑘 log 𝑘) · 2ℓ′ (2)

≤ 𝑂 (
√︁
𝑘 log 𝑘) · 2ℓ ≤ 𝑂 (

√︁
𝑘 log 𝑘) · 𝑐(𝜆∗)

where the first inequality uses Proposition 5, and the second inequality bounds a geometric
series.

Defining 𝛾 := ⌈log 𝑘⌉, we bound the cost of Λ2
𝜆∗ .∑︁

𝜆∈Λ2
𝜆∗

𝑐(𝜆) =
∑︁

𝜆∈Λ2
𝜆∗ |ℓ𝜆≤ℓ−𝛾

𝑐(𝜆) +
∑︁

𝜆∈Λ2
𝜆∗ |ℓ−𝛾<ℓ𝜆≤ℓ

𝑐(𝜆) ≤
∑︁

ℓ′≤ℓ−𝛾
𝑘 · 2ℓ′ +

∑︁
𝜆∈Λ2

𝜆∗ |ℓ−𝛾<ℓ𝜆≤ℓ
𝑐(𝜆) (3)

≤
∑︁

ℓ′≤ℓ−𝛾
𝑘 · 2ℓ′ + 𝛾 · 𝑂 (

√︁
𝑘/log 𝑘) · 𝑐(𝜆∗) ≤ 2 · 2ℓ + 𝛾 · 𝑂 (

√︁
𝑘/log 𝑘) · 𝑐(𝜆∗)

≤ 𝑂 (
√︁
𝑘 log 𝑘) · 𝑐(𝜆∗)

ICALP 2023

105:8 Frameworks for Nonclairvoyant Network Design with Deadlines or Delay

Here, the first inequality is due to the fact that the total cost of level-ℓ′ small services in
Λ𝜆∗ cannot exceed 𝑘 · 2ℓ′ . (As seen in the proof of Proposition 6, the requests of level ℓ′
triggering small services are of distinct request types, and are all eligible in a single service 𝜆;
thus, their number is at most 𝑘.) The second inequality is through using Proposition 6, the
third inequality is through the definition of 𝛾 and through summing a geometric sequence,
and the fourth inequality notes that through the definition of ℓ we have 𝑐(𝜆∗) ≥ 2ℓ−1.

Replacing Proposition 6 with Proposition 7, an identical argument to the one used for
bounding Λ2

𝜆∗ can be used for bounding Λ3
𝜆∗ , yielding the following:∑︁

𝜆∈Λ3
𝜆∗

𝑐(𝜆) = 𝑂 (
√︁
𝑘 log 𝑘) · 𝑐(𝜆∗) (4)

Combining Equations (2) to (4) yields
∑

𝜆∈Λ𝜆∗ 𝑐(𝜆) ≤ 𝑂 (
√︁
𝑘 log 𝑘) · 𝑐(𝜆∗), completing the

proof. ◀

4 Framework for Network Design with Delay

In this section, we present a framework for nonclairvoyant network design with delay. Using
this framework, we prove the following theorem.

▶ Theorem 8. There exists a deterministic, 𝑂

(
min

{√︁
𝑛 log 𝑛,

√︁
𝑚 log𝑚

})
-competitive al-

gorithm for network design with delay.

4.1 The Algorithm

We now describe the framework for nonclairvoyant network design with delay. For every
time 𝑡 and set of requests 𝑄′ which are pending at 𝑡, we say that 𝑄′ are critical at 𝑡 if
𝐷 (𝑄′, 𝑡) ≥ ND(𝑄′).

Framework’s description. The framework for delay contains many analogues to the deadline
framework of Section 3. In the deadline case, a service was triggered upon the deadline of
a pending request; in the delay case, the framework initiates a service whenever a set of
pending requests becomes “critical”, which is when its accumulated delay justifies its service.
In the deadline case, whether a service triggered by request 𝑞 was large is determined by the
associated variable 𝑏𝑞. In the delay case, we also maintain the variable 𝑏𝑞 for every pending
request 𝑞.

However, the delay case introduces an additional complication: the triggering set contains
multiple requests, and thus multiple values for the variables 𝑏𝑞. Where services for deadlines
were either “large” or “small”, in the delay case this distinction is no longer binary: services
identify a budget for expansive service which depends on the large requests in the triggering
set.

The service considers the requests 𝑞 in its triggering set with 𝑏𝑞 = True, and finds the
largest subset of those requests whose delay is at least a constant fraction of its service cost.
This subset is considered “mature” enough to justify expansive service, and its service cost
is used as a budget for serving pending requests. Thus, where in deadlines the level of the
service was simply the level of the triggering requests, for delay the level depends on the cost
of the “mature” subset of large requests.

N. Touitou 105:9

Algorithm 2 Nonclairvoyant framework for network design with delay.

1 Event Function UponRequest(𝑞)
2 𝑏𝑞 ← True.
3 Event Function UponCritical(𝑅) // called when the delay of some set 𝑅 exceeds ND(𝑅)
4 Start a new service 𝜆; denote the current time by 𝑡.
5 Define 𝑅⊤ ←

{
𝑞 ∈ 𝑅

��𝑏𝑞 = True
}
.

6 Let 𝑅★ ⊆ 𝑅⊤ be a maximal subset such that 𝐷
(
𝑅★, 𝑡

)
≥ ND(𝐻 (𝑅★))

2 .
7 Define ℓ𝜆 ← ℓ

(
𝑅★

)
.

8 Define 𝐸 to be the set of pending requests of level at most ℓ𝜆, and define 𝐻 ← 𝐻 (𝐸).
9 Transmit ND(𝐻 (𝑅)), serving all requests of types 𝐻 (𝑅).

10 Let 𝑥𝜆 ← 2ℓ𝜆 ·
√︃

log(1+|𝐻 |)
|𝐻 | .

11 Let 𝐻′ ⊆ 𝐻 be a maximal subset such that ND(𝐻′) ≤ |𝐻′ | · 𝑥𝜆.
12 Transmit ND(𝐻′), serving all requests of types in 𝐻′.

// set 𝑏𝑞′ for eligible requests 𝑞′ which are still pending.
13 let 𝑄𝜆 be the subset of pending requests served by 𝜆.
14 foreach 𝑞′ ∈ 𝐸 \𝑄𝜆 do
15 set 𝑏𝑞′ ← False.

4.2 Analysis
Fix any optimal service 𝜆∗ ∈ Λ∗.

▶ Definition 9. For a service 𝜆 ∈ Λ, define 𝑅𝜆, 𝑅
⊤
𝜆
, 𝑅★

𝜆
, 𝐸𝜆 to be the values of the variables

𝑅, 𝑅⊤, 𝑅★, 𝐸 in the call to UponCritical which started 𝜆. Moreover, we define 𝑅⊥
𝜆

:= 𝑅𝜆\𝑅⊤𝜆 ;
these are the requests 𝑞 ∈ 𝑅𝜆 such that 𝑏𝑞 = False at 𝑡𝜆. In addition, define ℓ𝜆, 𝑄𝜆 as they
are defined in the call to UponCritical.

For a service 𝜆 ∈ Λ and an optimal service 𝜆∗ ∈ Λ∗, for ease of notation, when referring to
a set of jobs related to 𝜆 we add 𝜆∗ to the subscript to intersect this set with 𝑄𝜆∗ . For example,
we define 𝑅𝜆,𝜆∗ := 𝑅𝜆 ∩𝑄𝜆∗ , 𝑅⊤

𝜆,𝜆∗ := 𝑅⊤
𝜆
∩𝑄𝜆∗ , 𝑅⊥

𝜆,𝜆∗ := 𝑅⊥
𝜆
∩𝑄𝜆∗ and 𝑅★

𝜆,𝜆∗ := 𝑅★
𝜆
∩𝑄𝜆∗ . We

also define ℓ𝜆,𝜆∗ := ℓ

(
𝑅★
𝜆,𝜆∗

)
.

We define the cost of a service 𝜆, denoted by 𝑐(𝜆), to be the total transmission cost in 𝜆,
plus the total delay cost of requests served in 𝜆. We define 𝑐(𝜆∗) identically for an optimal
service 𝜆∗ ∈ Λ∗.

▶ Proposition 10. For a service 𝜆, it holds that

𝑐(𝜆) ≤ 𝑂 (1) ·
∑︁
𝜆∗∈Λ∗

𝐷

(
𝑅⊥𝜆,𝜆∗ , 𝑡𝜆

)
+𝑂 (

√︁
𝑘 log 𝑘) ·

∑︁
𝜆∗∈Λ∗

𝐷

(
𝑅★
𝜆,𝜆∗ , 𝑡𝜆

)
Proof. Since a service is triggered whenever a set of requests becomes critical, the algorithm
maintains that for every set 𝑄′ of pending requests at any time 𝑡 we have 𝐷 (𝑄′, 𝑡) ≤ ND(𝑄′).
In particular, this holds for the set of requests served by 𝜆 with respect to the service time 𝑡𝜆.
Thus, the delay cost of the service can be charged to the transmission costs of the service;
we hence focus on bounding the transmission costs of 𝜆.

The service 𝜆 performs two transmissions, one at Line 9 and one at Line 12. The first
transmission costs ND(𝑅𝜆); since 𝑅𝜆 is critical at 𝑡𝜆, it holds that

ND(𝑅𝜆) = 𝐷 (𝑅𝜆, 𝑡𝜆) = 𝐷
(
𝑅⊥𝜆 , 𝑡𝜆

)
+ 𝐷

(
𝑅⊤𝜆 \𝑅★

𝜆 , 𝑡𝜆
)
+ 𝐷

(
𝑅★
𝜆 , 𝑡𝜆

)
.

ICALP 2023

105:10 Frameworks for Nonclairvoyant Network Design with Deadlines or Delay

First, let us bound the delay of requests in 𝑅⊤
𝜆
\𝑅★

𝜆
. From the choice of 𝑅★

𝜆
, it must be the

case that 𝐷
(
𝑅⊤
𝜆
\𝑅★

𝜆
, 𝑡𝜆

)
<

ND(𝑅⊤
𝜆
\𝑅★

𝜆
)

2 ; assuming otherwise, we would have the following:

𝐷
(
𝑅⊤𝜆 , 𝑡𝜆

)
= 𝐷

(
𝑅★
𝜆 , 𝑡𝜆

)
+ 𝐷

(
𝑅⊤𝜆 \𝑅★

𝜆 , 𝑡𝜆
)
≥

ND(𝑅★
𝜆
)

2 +
ND(𝑅⊤

𝜆
\𝑅★

𝜆
)

2 ≥
ND(𝑅⊤

𝜆
)

2 ,

in contradiction to the maximality in the definition of 𝑅★
𝜆
; thus, 𝐷

(
𝑅⊤
𝜆
\𝑅★

𝜆
, 𝑡𝜆

)
<

ND(𝑅⊤
𝜆
\𝑅★

𝜆
)

2 ≤
ND(𝑅𝜆)

2 . However, we know that 𝐷 (𝑅𝜆, 𝑡𝜆) = ND(𝑅𝜆), and therefore conclude that

ND(𝑅𝜆) ≤ 2
(
𝐷

(
𝑅⊥𝜆 , 𝑡𝜆

)
+ 𝐷

(
𝑅★
𝜆 , 𝑡𝜆

))
We have thus bounded the cost of the first transmission.

To bound the cost of the second transmission in 𝜆, let 𝐻 be the set of pending request
types in 𝐸𝜆. We know that the cost of the second transmission is at most 𝑥𝜆 · |𝐻 | =
2ℓ𝜆 ·

√︁
|𝐻 | log(1 + |𝐻 |). Additionally, note that 2ℓ𝜆 ≤ 2 · ND(𝑅★

𝜆
) ≤ 4 · 𝐷

(
𝑅★
𝜆
, 𝑡𝜆

)
, where the

second inequality is due to the definition of 𝑅★
𝜆
. Overall, the cost of the second transmission

is at most 4 · 𝐷
(
𝑅★
𝜆
, 𝑡𝜆

)
·
√︁
𝑘 log(1 + 𝑘).

To summarize, we proved that

𝑐(𝜆) ≤ 𝑂 (1) · 𝐷
(
𝑅⊥𝜆 , 𝑡𝜆

)
+𝑂 (

√︁
𝑘 log 𝑘) · 𝐷

(
𝑅★
𝜆 , 𝑡𝜆

)
= 𝑂 (1) ·

∑︁
𝜆∗∈Λ∗

𝐷

(
𝑅⊥𝜆,𝜆∗ , 𝑡𝜆

)
+𝑂 (

√︁
𝑘 log 𝑘) ·

∑︁
𝜆∗∈Λ∗

𝐷

(
𝑅★
𝜆,𝜆∗ , 𝑡𝜆

)
. ◀

For every 𝜆 ∈ Λ, 𝜆∗ ∈ Λ∗ we define the joint cost of 𝜆 and 𝜆∗ as the following.

𝑐(𝜆, 𝜆∗) := 𝐷

(
𝑅⊥𝜆,𝜆∗ , 𝑡𝜆

)
+

√︁
𝑘 log(1 + 𝑘) · 𝐷

(
𝑅★
𝜆,𝜆∗ , 𝑡𝜆

)
.

Through Proposition 10, we have

ALG ≤ 𝑂 (1) ·
∑︁
𝜆∈Λ

∑︁
𝜆∗∈Λ∗

𝑐(𝜆, 𝜆∗). (5)

We henceforth focus on bounding joint costs.

▶ Proposition 11. For every optimal service 𝜆∗ ∈ Λ∗, it holds that∑︁
𝜆∈Λ |𝑡𝜆≤𝑡𝜆∗

𝑐(𝜆, 𝜆∗) ≤ 𝑂 (
√︁
𝑘 log 𝑘) · 𝑐(𝜆∗).

Proof. For every service 𝜆 ∈ Λ such that 𝑡𝜆 ≤ 𝑡𝜆∗ , it holds that

𝑐(𝜆, 𝜆∗) ≤
√︁
𝑘 log(1 + 𝑘) · 𝐷

(
𝑅𝜆,𝜆∗ , 𝑡𝜆

)
≤

√︁
𝑘 log(1 + 𝑘) · 𝐷

(
𝑅𝜆,𝜆∗ , 𝑡𝜆∗

)
Note that every request in 𝑄𝜆∗ is critical in at most one service in the algorithm, as critical
requests in a service are always served by that service. Thus, summing over different services,
we get the following:∑︁

𝜆∈Λ |𝑡𝜆≤𝑡𝜆∗
𝑐(𝜆, 𝜆∗) ≤

√︁
𝑘 log(1 + 𝑘) ·

∑︁
𝜆∈Λ |𝑡𝜆≤𝑡𝜆∗

𝐷
(
𝑅𝜆,𝜆∗ , 𝑡𝜆∗

)
≤

√︁
𝑘 log(1 + 𝑘) · 𝐷 (𝑄𝜆∗ , 𝑡𝜆∗) ≤

√︁
𝑘 log(1 + 𝑘) · 𝑐(𝜆∗) ◀

We thus bounded the joint cost of services prior to 𝜆∗. It remains to bound the joint cost
of services at time at least 𝑡𝜆∗ .

N. Touitou 105:11

▶ Proposition 12. For every optimal service 𝜆∗, it holds that∑︁
𝜆∈Λ |𝑡𝜆>𝑡𝜆∗

𝐷

(
𝑅★
𝜆,𝜆∗ , 𝑡𝜆

)
≤ 𝑂 (1) · 𝑐(𝜆∗).

Proof. Let Λ′ ⊆ Λ be the subset of services that occurred after 𝑡𝜆∗ . First, we claim that for
every integer ℓ, there exists at most one service in Λ′ with ℓ𝜆,𝜆∗ = ℓ. To prove the claim,
assume for contradiction that there are two services 𝜆1, 𝜆2 ∈ Λ′ such that ℓ𝜆1 ,𝜆∗ = ℓ𝜆2 ,𝜆∗ = ℓ,
and assume without loss of generality that 𝑡𝜆2 > 𝑡𝜆1 > 𝑡𝜆∗ . As 𝑡𝜆1 > 𝑡𝜆∗ , it must be that all
requests in 𝑅★

𝜆2 ,𝜆∗
were pending before and after 𝑡𝜆1 . Moreover, every request 𝑞 ∈ 𝑅★

𝜆2 ,𝜆∗
must

have ℓ(𝑞) ≤ ℓ, as ℓ = ℓ

(
𝑅★
𝜆2 ,𝜆∗

)
≥ ℓ(𝑞). However, ℓ𝜆1 ≥ ℓ𝜆1 ,𝜆∗ = ℓ, and thus 𝑅★

𝜆2 ,𝜆∗
⊆ 𝐸𝜆1 . But,

Line 15 in 𝜆1 sets 𝑏𝑞 = False for every 𝑞 ∈ 𝑅★
𝜆2 ,𝜆∗

, in contradiction to having 𝑏𝑞 = True at
𝑡𝜆2 . We conclude that 𝑅★

𝜆2 ,𝜆∗
= ∅; however, this implies that ℓ𝜆2 ,𝜆∗ = −∞, in contradiction to

ℓ𝜆2 ,𝜆∗ = ℓ.
Using this claim, for every level ℓ, there exists at most one service 𝜆 ∈ Λ′ such that

ℓ𝜆,𝜆∗ = ℓ. For such 𝜆, it holds that 𝐷

(
𝑅★
𝜆,𝜆∗ , 𝑡𝜆

)
≤ ND(𝑅★

𝜆,𝜆∗) ≤ 2ℓ (note that delay cannot
exceed service cost since critical sets trigger a service). Also note that max𝜆∈Λ′ ℓ𝜆,𝜆∗ ≤ ℓ(𝑄𝜆∗).
Summing over the possible levels, we get that∑︁

𝜆∈Λ |𝑡𝜆>𝑡𝜆∗
𝐷

(
𝑅★
𝜆,𝜆∗ , 𝑡𝜆

)
≤ 2 · 2max𝜆∈Λ′ ℓ𝜆,𝜆∗ ≤ 2 · 2ℓ (𝑄𝜆∗) ≤ 4 · 𝑐(𝜆∗). ◀

At this point, the only missing ingredient for the main theorem is the following lemma.

▶ Lemma 13. For every optimal service 𝜆∗ ∈ Λ, it holds that∑︁
𝜆∈Λ |𝑡𝜆>𝑡𝜆∗

𝐷

(
𝑅⊥𝜆,𝜆∗ , 𝑡𝜆

)
≤ 𝑂 (

√︁
𝑘 log 𝑘) · 𝑐(𝜆∗)

The proof of Lemma 13 appears in Appendix A; assuming Lemma 13 holds, we proceed
to prove Theorem 8.

Proof of Theorem 8. Equation (5) implies that it is enough to bound the sum of joint costs.
Fix any optimal service 𝜆∗; we have∑︁

𝜆∈Λ
𝑐(𝜆, 𝜆∗) =

∑︁
𝜆∈Λ |𝑡𝜆<𝑡𝜆∗

𝑐(𝜆, 𝜆∗) +
∑︁

𝜆∈Λ |𝑡𝜆≥𝑡𝜆∗
𝑐(𝜆, 𝜆∗)

≤ 𝑂 (
√︁
𝑘 log 𝑘) · 𝑐(𝜆∗) +

∑︁
𝜆∈Λ |𝑡𝜆≥𝑡𝜆∗

(
𝐷

(
𝑅⊥𝜆,𝜆∗ , 𝑡𝜆

)
+

√︁
𝑘 log(1 + 𝑘) · 𝐷

(
𝑅★
𝜆,𝜆∗ , 𝑡𝜆

))
≤ 𝑂 (

√︁
𝑘 log 𝑘) · 𝑐(𝜆∗)

where the first inequality uses Proposition 11 and the second inequality uses Proposition 12
and Lemma 13. ◀

5 Polynomial Time through Lagrangian Prize Collecting

While the algorithms in this paper yield proper competitiveness bounds, it is not clear how
to implement some of their components in polynomial time. In this section, we focus on a
subset of network design problems that admit a Lagrangian prize-collecting approximation
algorithms, and describe a polynomial-time implementation of the framework. For conciseness,
we focus on the delay framework of Section 4; the result for deadlines is a special case of the
result for delay.

Considering the framework in Algorithm 2 of Section 4, we note the following components
which might take super-polynomial time:

ICALP 2023

105:12 Frameworks for Nonclairvoyant Network Design with Deadlines or Delay

1. The framework for the delay model waits until the delay cost of a subset of pending
requests exceeds the cost of serving their request types.

2. The framework solves the offline network design problem optimally, i.e., makes calls to
ND (e.g., in Lines 7 and 12).

3. The framework finds a subset of requests whose delay exceeds a constant fraction of their
service cost (Line 6).

4. The framework includes a component which, given a penalty 𝑥 and a set of request types
𝐻′, finds a maximal subset 𝐻′ ⊆ 𝐻 such that ND(𝐻′) ≥ |𝐻′ | · 𝑥 (Line 11).

The prize-collecting problem. In the offline network design problems we considered thus
far, a valid solution must serve all given requests. However, we now consider a more general
model of these problems, which is the prize-collecting model. In the (offline) prize-collecting
model, in addition to the given connectivity requests 𝐻, we are also given a penalty function
𝜋 : 𝐻 → R+; a valid solution in this model can now serve only a subset of the input requests,
and pay the penalty for the remaining requests. The total cost of the solution is thus the total
service cost plus the total penalty cost; for prize-collecting input (𝐻, 𝜋), we use PCND(𝐻, 𝜋)
to refer to the minimum total cost of a feasible solution to the input. Approximation
algorithms are known for many such prize-collecting network design problems; given an
approximation algorithm �PCND, we again use �PCND(𝐻, 𝜋) to refer to the total cost of�PCND on the input (𝐻, 𝜋). We also use the subscripts b and p to refer to the service and
penalty costs of an algorithm, respectively (e.g., �PCNDb (𝐻, 𝜋)).

To give a polynomial-time implementation to the framework, we require an approximation
algorithm for the prize-collecting version of the offline network design problem. In fact, we
need a slightly stronger notion of approximation, in which the algorithm’s penalty cost is
more closely bound to the optimal solution than the service cost; we now define this notion,
called Lagrangian approximation.

▶ Definition 14. We say that an algorithm for the prize-collecting problem is a Lagrangian
𝛾-approximation if for every prize-collecting input (𝐻, 𝜋) it holds that�PCNDb (𝐻, 𝜋) + 𝛾 · �PCNDp (𝐻, 𝜋) ≤ 𝛾 · PCND(𝐻, 𝜋).

In this section, we present an algorithm which proves the following theorem.

▶ Theorem 15. For an online network design problem with deadlines/delay, whose offline
network design prize-collecting problem admits a Lagrangian 𝛾 approximation, there exists a
poly-time algorithm which achieves the competitiveness of Theorem 8 up to a factor polynomial
in 𝛾. Specifically, it achieves a competitive ratio of 𝑂 (𝛾3 ·min

{√︁
𝑛 log 𝑛,

√︁
𝑚 log𝑚

}
).

5.1 Applications
To demonstrate the use of Theorem 15, we apply it to some network design problems for
which Lagrangian prize-collecting approximation algorithms are known.

Steiner tree. Goemans and Williamson [19] gave a Lagrangian 2-approximation for the
prize-collecting Steiner tree problem. Thus, we obtain the following corollary of Theorem 15.

▶ Corollary 16. There exists an 𝑂 (min
{√︁
|𝑉 | log |𝑉 |,

√︁
𝑚 log𝑚

}
)-competitive nonclairvoyant

algorithm for Steiner tree with deadlines/delay on a graph with vertex set 𝑉 which runs in
polynomial time.

N. Touitou 105:13

Facility location. First, we explain the way facility location conforms to the network design
setting. The set of items consists of two types: an opening item for each location, of the
cost of opening a facility at that location; and a connection item for each (location, request)
pair, of the cost of connecting the request to a facility at the given location. To satisfy a
request, there must exist a location for which both the opening item, and the connection
item to the request, have been bought; note that the upwards-closed property of network
design problems holds. Also note that each request requires a separate connection item;
thus, no two requests belong to the same type, and thus 𝑛 ≥ 𝑚. Hence, we do not state
competitiveness in terms of 𝑛 for this problem.

Charikar et al. [15] gave a Lagrangian 3-approximation for the prize-collecting facility
location problem. This implies the following corollary of Theorem 15 for facility location.

▶ Corollary 17. There exists an 𝑂 (min
{√︁

𝑚 log𝑚
}
)-competitive algorithm for facility location

with deadlines/delay which runs in polynomial time.

Multicut on a tree. Hou et al. [23] gave a Lagrangian 2-approximation for prize-collecting
multicut where the underlying graph is a tree. Note that for multicut on a tree, it holds that
𝑛 is the number of vertex pairs in the tree, i.e., quadratic in the number of vertices. Thus,
we obtain the following corollary of Theorem 15 for multicut on a tree.

▶ Corollary 18. There exists an 𝑂 (min
{
|𝑉 |

√︁
log |𝑉 |,

√︁
𝑚 log𝑚

}
)-competitive algorithm for

multicut with deadlines/delay on a tree with vertices 𝑉 which runs in polynomial time.

5.2 The Algorithm
Consider a problem which admits a Lagrangian 𝛾-approximation, which we denote by �PCND.
As a shorthand, we use ÑD to refer to the offline 𝛾-approximation obtained from using�PCND with the penalties set to ∞.

The procedure PCSOLVE. The algorithm uses �PCND in the procedure PCSolve (Al-
gorithm 3), which receives a set of request types 𝐻 and penalties 𝜋 to those requests, and
outputs a subset of request types 𝐻′ ⊆ 𝐻 and a solution 𝑆 to 𝐻′. We prove the following
properties of PCSolve:
1. It holds that the cost of solution 𝑆 to 𝐻′ is at most 𝛾𝜋(𝐻′).
2. For every subset 𝐻′′ ⊆ 𝐻\𝐻′, it holds that ND(𝐻′′) ≥ 𝜋(𝐻′′).

These two properties make PCSolve a useful primitive, which is used several times in
the algorithm.

Algorithm’s Description The algorithm is given in Algorithm 4. The algorithm periodically
runs the procedure PCSolve on the set of pending requests, where the penalty of every
request type is the total current delay of pending requests of that type. Whenever PCSolve
returns a non-empty set of request types 𝐻′ to serve, the procedure starts the service, and the
set of pending requests of types 𝐻′ is called critical. This triggers a call to UponCritical.

Inside UponCritical, as in Algorithm 2, the algorithm chooses the subset of critical
requests whose variable 𝑏𝑞 is True, and looks for a maximal subset of them whose service
cost is at most some factor from their delay cost. However, this factor is now linear in the
approximation factor 𝛾 rather than a constant. To find this request set 𝑅★, the algorithm
makes a call to PCSolve.

ICALP 2023

105:14 Frameworks for Nonclairvoyant Network Design with Deadlines or Delay

Now, the service makes its transmissions. First, it transmits the approximate solution
previously calculated for the critical requests, thus serving them. Then, it uses PCSolve to
find some subset of the request types of eligible requests to serve in the second transmission;
it does so by providing a uniform penalty function to PCSolve. The proof of Theorem 15
using Algorithm 4 appears in Appendix B.

Algorithm 3 Prize-collecting procedure.

1 Function PCSolve (𝐻, 𝜋)
2 Set 𝐻 ← 𝐻.
3 Set 𝑆 ← ∅.
4 while True do
5 Run PCND(𝐻, 𝜋) to obtain a solution 𝑆′ which serves some subset 𝐻′ ⊆ 𝐻 of request

types.
6 if 𝐻′ = ∅ then break
7 Set 𝑆 ← 𝑆 ∪ 𝑆′, 𝐻 ← 𝐻 \ 𝐻′

8 return (𝑆, 𝐻 \ 𝐻)

Algorithm 4 Polynomial Time Framework for Nonclairvoyant Network Design with Delay.

1 Event Function UponRequest(𝑞)
2 𝑏𝑞 ← True.
3 Function TestCritical() // called continuously
4 Let 𝑡 be the current time, and let 𝑄′ be the set of currently-pending requests.
5 Define 𝜋 which maps from request type ℎ ∈ 𝐻 (𝑄′) to

∑
𝑞∈𝑄′ |ℎ𝑞=ℎ 𝑑𝑞 (𝑡).

6 Call PCSolve(𝑄′, 𝜋), and obtain the output (𝐻′, 𝑆).
7 if 𝐻′ ≠ ∅ then define 𝑅 ←

{
𝑞 ∈ 𝑄′ |ℎ𝑞 ∈ 𝐻′

}
.

8 call UponCritical(𝑅, 𝑆).
9 Event Function UponCritical(𝑅, 𝑆)

10 Start a new service 𝜆; denote the current time by 𝑡.
11 Define 𝑅⊤ ←

{
𝑞 ∈ 𝑅

��𝑏𝑞 = True
}
.

12 Let 𝜋1 map from request type ℎ to 2𝛾 ·∑𝑞∈𝑅★ |ℎ𝑞=ℎ 𝑑𝑞 (𝑡).
13 Call PCSolve(𝐻 (𝑅⊤), 𝜋1), let 𝐻★ ⊆ 𝐻 (𝑅⊤) be the request types served by the output,

and let 𝑆1 be the returned solution for 𝐻′.
14 Define 𝑅★←

{
𝑞 ∈ 𝑅⊤

��ℎ𝑞 ∈ 𝐻★
}

15 Define ℓ̂𝜆 ←
⌈
log(𝑐

(
𝑆1

)
)
⌉
.

16 Define 𝐸 to be the set of pending requests 𝑞 such that ℓ̌(𝑞) ≤ ℓ̂𝜆, and define 𝐻 ← 𝐻 (𝐸).
17 Transmit 𝑆, serving all requests of types 𝐻 (𝑅).

18 Let 𝑥𝜆 ← 2ℓ̂𝜆 ·
√︃

log(1+|𝐻 |)
|𝐻 | .

19 Let 𝜋2 map from ℎ ∈ 𝐻 to 𝑥𝜆.
20 Call PCSolve(𝐻, 𝜋2); let 𝐻′ ⊆ 𝐻 and solution 𝑆2 be the output.
21 Transmit 𝑆2, serving all requests of types in 𝐻′.

// Set 𝑏𝑞′ for eligible requests 𝑞′ which are still pending.
22 Let 𝑄𝜆 be the subset of pending requests served by 𝜆.
23 foreach 𝑞′ ∈ 𝐸 \𝑄𝜆 do
24 set 𝑏𝑞′ ← False.

N. Touitou 105:15

6 Conclusions and Future Directions

In this paper, we presented frameworks for obtaining 𝑂 (min
{√

𝑛,
√
𝑚

}
)-competitive algorithms

for network design with deadlines or delay. For some problems, in particular facility location
and multilevel aggregation, lower bounds of Ω(

√
𝑘) and Ω(

√
𝑚) exist, making these frameworks

optimal up to a logarithmic factor. We then discussed running time, and presented a class of
problems (namely those that admit Lagrangian prize-collecting approximations) for which
these frameworks can be implemented in polynomial time.

An interesting direction for future work would be to implement this framework in
polynomial time for additional problems. This could require a different direction from
the one in this paper, as not all network design problems seem amenable to Lagrangian
prize-collecting approximations. In particular, for Steiner forest, a Lagrangian prize-collecting
approximation implies an approximation of similar ratio for 𝑘-Steiner forest; however, no
subpolynomial approximation for 𝑘-Steiner forest is known (see e.g. [22]).

Additionally, we made little attempt to optimize the dependence of the poly-time frame-
work’s competitive ratio on the approximation ratio 𝛾 of the Lagrangian approximation
algorithm. This is since 𝛾 is constant for the problems we consider in this paper. However,
improving this dependence could be useful for problems which are harder to approximate;
we conjecture that a linear dependence is possible.

References
1 Yossi Azar, Ashish Chiplunkar, Shay Kutten, and Noam Touitou. Set cover with delay –

clairvoyance is not required. In Fabrizio Grandoni, Grzegorz Herman, and Peter Sanders,
editors, 28th Annual European Symposium on Algorithms, ESA 2020, September 7-9, 2020,
Pisa, Italy (Virtual Conference), volume 173 of LIPIcs, pages 8:1–8:21. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ESA.2020.8.

2 Yossi Azar, Arun Ganesh, Rong Ge, and Debmalya Panigrahi. Online service with delay. In
Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC
2017, Montreal, QC, Canada, June 19-23, 2017, pages 551–563, 2017. doi:10.1145/3055399.
3055475.

3 Yossi Azar and Noam Touitou. General framework for metric optimization problems with
delay or with deadlines. In 60th IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12, 2019, pages 60–71, 2019.
doi:10.1109/FOCS.2019.00013.

4 Yossi Azar and Noam Touitou. Beyond tree embeddings – A deterministic framework for
network design with deadlines or delay. In 61st IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020, pages 1368–1379.
IEEE, 2020. doi:10.1109/FOCS46700.2020.00129.

5 Marcin Bienkowski, Martin Böhm, Jaroslaw Byrka, Marek Chrobak, Christoph Dürr, Lukáš
Folwarczný, Lukasz Jez, Jirí Sgall, Kim Thang Nguyen, and Pavel Veselý. New results on multi-
level aggregation. Theor. Comput. Sci., 861:133–143, 2021. doi:10.1016/j.tcs.2021.02.016.

6 Marcin Bienkowski, Martin Böhm, Jaroslaw Byrka, Marek Chrobak, Christoph Dürr, Lukáš
Folwarczný, Lukasz Jez, Jiri Sgall, Nguyen Kim Thang, and Pavel Veselý. Online algorithms for
multi-level aggregation. In 24th Annual European Symposium on Algorithms, ESA 2016, August
22-24, 2016, Aarhus, Denmark, pages 12:1–12:17, 2016. doi:10.4230/LIPIcs.ESA.2016.12.

7 Marcin Bienkowski, Martin Böhm, Jaroslaw Byrka, and Jan Marcinkowski. Online facility
location with linear delay. In Amit Chakrabarti and Chaitanya Swamy, editors, Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques, APPROX/RAN-
DOM 2022, September 19-21, 2022, University of Illinois, Urbana-Champaign, USA (Virtual
Conference), volume 245 of LIPIcs, pages 45:1–45:17. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2022. doi:10.4230/LIPIcs.APPROX/RANDOM.2022.45.

ICALP 2023

https://doi.org/10.4230/LIPIcs.ESA.2020.8
https://doi.org/10.1145/3055399.3055475
https://doi.org/10.1145/3055399.3055475
https://doi.org/10.1109/FOCS.2019.00013
https://doi.org/10.1109/FOCS46700.2020.00129
https://doi.org/10.1016/j.tcs.2021.02.016
https://doi.org/10.4230/LIPIcs.ESA.2016.12
https://doi.org/10.4230/LIPIcs.APPROX/RANDOM.2022.45

105:16 Frameworks for Nonclairvoyant Network Design with Deadlines or Delay

8 Marcin Bienkowski, Jaroslaw Byrka, Marek Chrobak, Lukasz Jez, Dorian Nogneng, and Jirí
Sgall. Better approximation bounds for the joint replenishment problem. In Proceedings of the
Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014, Portland,
Oregon, USA, January 5-7, 2014, pages 42–54, 2014. doi:10.1137/1.9781611973402.4.

9 Marcin Bienkowski, Artur Kraska, and Pawel Schmidt. Online service with delay on a line.
In Structural Information and Communication Complexity – 25th International Colloquium,
SIROCCO 2018, Ma’ale HaHamisha, Israel, June 18-21, 2018, Revised Selected Papers, pages
237–248, 2018. doi:10.1007/978-3-030-01325-7_22.

10 Carlos Fisch Brito, Elias Koutsoupias, and Shailesh Vaya. Competitive analysis of organization
networks or multicast acknowledgment: How much to wait? Algorithmica, 64(4):584–605,
2012. doi:10.1007/s00453-011-9567-5.

11 Niv Buchbinder, Moran Feldman, Joseph (Seffi) Naor, and Ohad Talmon. O(depth)-competitive
algorithm for online multi-level aggregation. In Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2017, Barcelona, Spain, Hotel Porta
Fira, January 16-19, pages 1235–1244, 2017. doi:10.1137/1.9781611974782.80.

12 Niv Buchbinder, Kamal Jain, and Joseph Naor. Online primal-dual algorithms for max-
imizing ad-auctions revenue. In Algorithms – ESA 2007, 15th Annual European Sym-
posium, Eilat, Israel, October 8-10, 2007, Proceedings, pages 253–264, 2007. doi:10.1007/
978-3-540-75520-3_24.

13 Niv Buchbinder, Tracy Kimbrel, Retsef Levi, Konstantin Makarychev, and Maxim Sviridenko.
Online make-to-order joint replenishment model: primal dual competitive algorithms. In
Proceedings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2008, San Francisco, California, USA, January 20-22, 2008, pages 952–961, 2008. URL:
http://dl.acm.org/citation.cfm?id=1347082.1347186.

14 Rodrigo A. Carrasco, Kirk Pruhs, Cliff Stein, and José Verschae. The online set aggreg-
ation problem. In LATIN 2018: Theoretical Informatics – 13th Latin American Sym-
posium, Buenos Aires, Argentina, April 16-19, 2018, Proceedings, pages 245–259, 2018.
doi:10.1007/978-3-319-77404-6_19.

15 Moses Charikar, Samir Khuller, David M. Mount, and Giri Narasimhan. Algorithms for facility
location problems with outliers. In S. Rao Kosaraju, editor, Proceedings of the Twelfth Annual
Symposium on Discrete Algorithms, January 7-9, 2001, Washington, DC, USA, pages 642–651.
ACM/SIAM, 2001. URL: http://dl.acm.org/citation.cfm?id=365411.365555.

16 Ryder Chen, Jahanvi Khatkar, and Seeun William Umboh. Online weighted cardinality joint
replenishment problem with delay. In Mikolaj Bojanczyk, Emanuela Merelli, and David P.
Woodruff, editors, 49th International Colloquium on Automata, Languages, and Programming,
ICALP 2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 40:1–40:18. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ICALP.2022.40.

17 Daniel R. Dooly, Sally A. Goldman, and Stephen D. Scott. TCP dynamic acknowledgment
delay: Theory and practice (extended abstract). In Proceedings of the Thirtieth Annual ACM
Symposium on the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998, pages 389–398,
1998. doi:10.1145/276698.276792.

18 Jittat Fakcharoenphol, Satish Rao, and Kunal Talwar. A tight bound on approximating
arbitrary metrics by tree metrics. J. Comput. Syst. Sci., 69(3):485–497, 2004. doi:10.1016/j.
jcss.2004.04.011.

19 Michel X. Goemans and David P. Williamson. A general approximation technique for con-
strained forest problems. In Proceedings of the Third Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’92, pages 307–316, Philadelphia, PA, USA, 1992. Society for Indus-
trial and Applied Mathematics. URL: http://dl.acm.org/citation.cfm?id=139404.139468.

20 Anupam Gupta, Amit Kumar, and Debmalya Panigrahi. Caching with time windows. In
Konstantin Makarychev, Yury Makarychev, Madhur Tulsiani, Gautam Kamath, and Julia
Chuzhoy, editors, Proccedings of the 52nd Annual ACM SIGACT Symposium on Theory of
Computing, STOC 2020, Chicago, IL, USA, June 22-26, 2020, pages 1125–1138. ACM, 2020.
doi:10.1145/3357713.3384277.

https://doi.org/10.1137/1.9781611973402.4
https://doi.org/10.1007/978-3-030-01325-7_22
https://doi.org/10.1007/s00453-011-9567-5
https://doi.org/10.1137/1.9781611974782.80
https://doi.org/10.1007/978-3-540-75520-3_24
https://doi.org/10.1007/978-3-540-75520-3_24
http://dl.acm.org/citation.cfm?id=1347082.1347186
https://doi.org/10.1007/978-3-319-77404-6_19
http://dl.acm.org/citation.cfm?id=365411.365555
https://doi.org/10.4230/LIPIcs.ICALP.2022.40
https://doi.org/10.1145/276698.276792
https://doi.org/10.1016/j.jcss.2004.04.011
https://doi.org/10.1016/j.jcss.2004.04.011
http://dl.acm.org/citation.cfm?id=139404.139468
https://doi.org/10.1145/3357713.3384277

N. Touitou 105:17

21 Anupam Gupta, Amit Kumar, and Debmalya Panigrahi. A hitting set relaxation for k-server
and an extension to time-windows. In 62nd IEEE Annual Symposium on Foundations of
Computer Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 504–515. IEEE,
2021. doi:10.1109/FOCS52979.2021.00057.

22 Mohammad Taghi Hajiaghayi and Kamal Jain. The prize-collecting generalized steiner tree
problem via a new approach of primal-dual schema. In Proceedings of the Seventeenth Annual
ACM-SIAM Symposium on Discrete Algorithm, SODA ’06, pages 631–640, Philadelphia, PA,
USA, 2006. Society for Industrial and Applied Mathematics. URL: http://dl.acm.org/
citation.cfm?id=1109557.1109626.

23 Xin Hou, Wen Liu, and Bo Hou. An approximation algorithm for the k-prize-collecting multicut
on a tree problem. Theor. Comput. Sci., 844:26–33, 2020. doi:10.1016/j.tcs.2020.07.014.

24 Anna R. Karlin, Claire Kenyon, and Dana Randall. Dynamic TCP acknowledgment and other
stories about e/(e-1). Algorithmica, 36(3):209–224, 2003.

25 Predrag Krnetic, Darya Melnyk, Yuyi Wang, and Roger Wattenhofer. The k-server problem
with delays on the uniform metric space. In Yixin Cao, Siu-Wing Cheng, and Minming
Li, editors, 31st International Symposium on Algorithms and Computation, ISAAC 2020,
December 14-18, 2020, Hong Kong, China (Virtual Conference), volume 181 of LIPIcs, pages
61:1–61:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.
ISAAC.2020.61.

26 Ngoc Mai Le, William Umboh, and Ningyuan Xie. The power of clairvoyance for multi-level
aggregation and set cover with delay. In To appear in Symposium on Discrete Algorithms
(SODA) 2023, 2023.

27 Jeremy McMahan. A d-competitive algorithm for the multilevel aggregation problem with
deadlines. CoRR, abs/2108.04422, 2021. arXiv:2108.04422.

28 Noam Touitou. Nearly-tight lower bounds for set cover and network design with deadlines/delay.
In Hee-Kap Ahn and Kunihiko Sadakane, editors, 32nd International Symposium on Algorithms
and Computation, ISAAC 2021, December 6-8, 2021, Fukuoka, Japan, volume 212 of LIPIcs,
pages 53:1–53:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/
LIPIcs.ISAAC.2021.53.

A Proof of Lemma 13

Henceforth, fix any optimal service 𝜆∗ ∈ Λ∗. For ease of notation, define 𝑅⊥ :=
⋃

𝜆∈Λ |𝑡𝜆>𝑡𝜆∗ 𝑅
⊥
𝜆,𝜆∗ .

Also define ℓ∗ := 𝑐(𝜆∗). Note that∑︁
𝜆∈Λ |𝑡𝜆>𝑡𝜆∗

𝐷

(
𝑅⊥𝜆,𝜆∗ , 𝑡𝜆

)
≤

∑︁
𝜆∈Λ |𝑡𝜆>𝑡𝜆∗

∑︁
ℎ∈𝐻 (𝑅⊥

𝜆,𝜆∗)
ND(ℎ)

We claim that no request type appears twice in the summation on the right-hand side of
the above equation. That is, we claim that

∑
ℎ∈𝐻 (𝑅⊥) ND(ℎ) = ∑

𝜆∈Λ |𝑡𝜆>𝑡𝜆∗
∑

ℎ∈𝐻 (𝑅⊥
𝜆,𝜆∗)

ND(ℎ).
Indeed, note that there cannot be two services 𝜆1, 𝜆2 ∈ Λ such that 𝑡𝜆∗ ≤ 𝑡𝜆1 < 𝑡𝜆2 and
requests 𝑞1 ∈ 𝑅⊥

𝜆1 ,𝜆∗
, 𝑞2 ∈ 𝑅⊥

𝜆2 ,𝜆∗
such that ℎ𝑞1 = ℎ𝑞2 : otherwise, 𝜆1 would serve 𝑞2. We

conclude that∑︁
𝜆∈Λ |𝑡𝜆>𝑡𝜆∗

𝐷

(
𝑅⊥𝜆,𝜆∗ , 𝑡𝜆

)
≤

∑︁
ℎ∈𝐻 (𝑅⊥)

ND(ℎ) (6)

and it is thus enough to bound
∑

ℎ∈𝐻 (𝑅⊥) ND(ℎ). Note that every request 𝑞 ∈ 𝑅⊥ has had 𝑏𝑞

set to False at some point in the algorithm. Define 𝑅⊥1 ⊆ 𝑅⊥ to be the subset of requests 𝑞

such that 𝑏𝑞 was first set to False prior to 𝑡𝜆∗ , and define 𝑅⊥2 := 𝑅⊥\𝑅⊥1 . For every ℓ, further
define 𝑅⊥1,ℓ :=

{
𝑞 ∈ 𝑅⊥1

��ℓ(𝑞) = ℓ
}
; define 𝑅⊥2,ℓ analogously.

ICALP 2023

https://doi.org/10.1109/FOCS52979.2021.00057
http://dl.acm.org/citation.cfm?id=1109557.1109626
http://dl.acm.org/citation.cfm?id=1109557.1109626
https://doi.org/10.1016/j.tcs.2020.07.014
https://doi.org/10.4230/LIPIcs.ISAAC.2020.61
https://doi.org/10.4230/LIPIcs.ISAAC.2020.61
https://arxiv.org/abs/2108.04422
https://doi.org/10.4230/LIPIcs.ISAAC.2021.53
https://doi.org/10.4230/LIPIcs.ISAAC.2021.53

105:18 Frameworks for Nonclairvoyant Network Design with Deadlines or Delay

▶ Proposition 19. For every optimal service 𝜆∗, and for every ℓ, it holds that∑︁
ℎ∈𝐻 (𝑅⊥1,ℓ)

ND(ℎ) ≤ 𝑂

(√︁
𝑘/log 𝑘

)
· 𝑐(𝜆∗).

Proof. Observe the first service 𝜆 ∈ Λ after which 𝑏𝑞 = False for every 𝑞 ∈ 𝑅⊥1,ℓ . From the
definition of 𝑅⊥1,ℓ , we know that 𝑡𝜆 < 𝑡𝜆∗ ; as 𝑅⊥1,ℓ are all served after 𝑡𝜆∗ , they are all pending
both before and after 𝑡𝜆. As 𝜆 set 𝑏𝑞 ← False for some 𝑞 ∈ 𝑅⊥1,ℓ , we have ℓ𝜆 ≥ ℓ. This
implies 𝑅⊥1,ℓ ⊆ 𝐸𝜆. Define 𝑧 :=

���𝐻 (𝑅⊥1,ℓ)���; since no request from 𝑅⊥1,ℓ was served in 𝜆, we have

𝑐(𝜆∗) ≥ ND(𝑅⊥1,ℓ) ≥ 𝑥𝜆 · 𝑧 ≥ 2ℓ𝜆 ·
√︂

log(1 + 𝑘)
𝑘

· 𝑧 ≥ 2ℓ ·
√︂

log(1 + 𝑘)
𝑘

· 𝑧

Noting that
∑

ℎ∈𝐻 (𝑅⊥1,ℓ) ND(ℎ) ≤ 𝑧 · 2ℓ , this yields
∑

ℎ∈𝐻 (𝑅⊥1,ℓ) ND(ℎ) ≤
√︃

𝑘
log(1+𝑘) · 𝑐(𝜆

∗). ◀

▶ Proposition 20. For every optimal service 𝜆∗, and for every ℓ, it holds that∑︁
ℎ∈𝐻 (𝑅⊥2,ℓ)

ND(ℎ) ≤ 𝑂

(√︄
𝑘

log 𝑘

)
· 𝑐(𝜆∗).

Proof. The proof is similar to that of Proposition 19. Consider the first service 𝜆 ∈ Λ such
that 𝑡𝜆 ≥ 𝑡𝜆∗ and ℓ𝜆 ≥ ℓ. It must be the case that all requests in 𝑅⊥2,ℓ are pending before and
after 𝜆, and moreover, 𝜆 sets 𝑏𝑞 ← False for every request in 𝑅⊥2,ℓ . Define 𝑧 :=

���𝐻 (𝑅⊥2,ℓ)���;
since no request from 𝑅⊥2,ℓ was served in 𝜆, we have

𝑐(𝜆∗) ≥ ND(𝑅⊥2,ℓ) ≥ 𝑥𝜆 · 𝑧 ≥ 2ℓ𝜆 ·
√︂

log(1 + 𝑘)
𝑘

· 𝑧 ≥ 2ℓ ·
√︂

log(1 + 𝑘)
𝑘

· 𝑧

Noting that
∑

ℎ∈𝐻 (𝑅⊥2,ℓ) ND(ℎ) ≤ 𝑧 · 2ℓ , the above yields
∑

ℎ∈𝐻 (𝑅⊥2,ℓ) ND(ℎ) ≤
√︃

𝑘
log(1+𝑘) · 𝑐(𝜆

∗),
which completes the proof. ◀

Proof of Lemma 13. Define 𝛾 := ⌈log 𝑘⌉. The following holds:∑︁
𝜆∈Λ |𝑡𝜆>𝑡𝜆∗

𝐷

(
𝑅⊥𝜆,𝜆∗ , 𝑡𝜆

)
≤

∑︁
ℎ∈𝐻 (𝑅⊥)

ND(ℎ) ≤
∞∑︁

ℓ=−∞

(∑︁
ℎ∈𝐻 (𝑅⊥1,ℓ)

ND(ℎ) +
∑︁

ℎ∈𝐻 (𝑅⊥2,ℓ)
ND(ℎ)

)

=

ℓ∗−𝛾∑︁
ℓ=−∞

(∑︁
ℎ∈𝐻 (𝑅⊥1,ℓ)

ND(ℎ) +
∑︁

ℎ∈𝐻 (𝑅⊥2,ℓ)
ND(ℎ)

)
+

ℓ∗∑︁
ℓ=ℓ∗−𝛾+1

(∑︁
ℎ∈𝐻 (𝑅⊥1,ℓ)

ND(ℎ) +
∑︁

ℎ∈𝐻 (𝑅⊥2,ℓ)
ND(ℎ)

)
(7)

where the first inequality uses Equation (6), the second inequality partitions 𝑅⊥ into
{
𝑅⊥1,ℓ

}
ℓ

and
{
𝑅⊥2,ℓ

}
ℓ
, and the equality makes use of the fact that 𝑅⊥ does not contain requests 𝑞 such

that ℓ(𝑞) > ℓ∗ (since 𝑅⊥ ⊆ 𝑄𝜆∗). From the proof of Proposition 19, we know that for every ℓ

the requests 𝑅⊥1,ℓ were all pending during a single service. Thus, we have
���𝐻 (𝑅⊥1,ℓ)��� ≤ 𝑘, and

therefore
∑

ℎ∈𝐻 (𝑅⊥1,ℓ) ND(ℎ) ≤ 2ℓ · 𝑘. Similarly, using the proof of Proposition 20, we have���𝐻 (𝑅⊥2,ℓ)��� ≤ 𝑘 and thus
∑

ℎ∈𝐻 (𝑅⊥2,ℓ) ND(ℎ) ≤ 2ℓ · 𝑘. We can therefore conclude that

ℓ∗−𝛾∑︁
ℓ=−∞

(∑︁
ℎ∈𝐻 (𝑅⊥1,ℓ)

ND(ℎ) +
∑︁

ℎ∈𝐻 (𝑅⊥2,ℓ)
ND(ℎ)

)
≤ 4 · 2ℓ∗−𝛾 · 𝑘 ≤ 4 · 2ℓ∗ ≤ 8 · 𝑐(𝜆∗). (8)

N. Touitou 105:19

Moreover, using Propositions 19 and 20,

ℓ∗∑︁
ℓ=ℓ∗−𝛾+1

(∑︁
ℎ∈𝐻 (𝑅⊥1,ℓ)

ND(ℎ)+
∑︁

ℎ∈𝐻 (𝑅⊥2,ℓ)
ND(ℎ)

)
≤ 𝛾 ·𝑂

(√︄
𝑘

log 𝑘

)
·𝑐(𝜆∗) = 𝑂 (

√︁
𝑘 log 𝑘) ·𝑐(𝜆∗). (9)

Combining Equations (7) to (9) yields
∑

𝜆∈Λ |𝑡𝜆>𝑡𝜆∗ 𝐷
(
𝑅⊥
𝜆,𝜆∗ , 𝑡𝜆

)
≤ 𝑂 (

√︁
𝑘 log 𝑘) · 𝑐(𝜆∗). ◀

B Analysis of Lagrangian Approximation Framework

We focus on proving Theorem 15, following the same lines as the proof of Theorem 8.
Following the notation of Section 4, we use the subscript 𝜆 to refer to the values of variables
in the UponCritical call that started service 𝜆. For example, this includes 𝑆1

𝜆
, 𝑆2

𝜆
.

▶ Proposition 21 (Properties of PCSolve). Suppose PCSolve is called on request types 𝐻

and penalties 𝜋, and outputs 𝐻′ and solution 𝑆. It holds that:
1. The cost of solution 𝑆 to 𝐻′ is at most 𝛾𝜋(𝐻′).
2. For every subset 𝐻′′ ⊆ 𝐻\𝐻′, it holds that ND(𝐻′′) ≥ 𝜋(𝐻′′).

Proof. Let 𝑏 be the number of iterations of the main loop in PCSolve. We use subscript
𝑖 to refer to the value of a variable in the 𝑖’th iteration of the loop; note that 𝑐(𝑆) ≤∑

𝑖∈[𝑏] 𝑐(𝑆𝑖). For every iteration 𝑖, through the Lagrangian approximation guarantee, it
holds that 𝑐(𝑆𝑖) + 𝛾 · 𝜋(𝐻𝑖\𝐻′𝑖) ≤ 𝛾 · 𝜋(𝐻𝑖), implying 𝑐(𝑆𝑖) ≤ 𝛾 · 𝜋(𝐻′

𝑖
); thus, we have

𝑐(𝑆) ≤ ∑
𝑖 𝜋(𝐻′𝑖) = 𝛾𝜋(𝐻′), proving the first claim.

To prove the second claim, observe that in the final iteration no request types from 𝐻𝑏

were served. Through the Lagrangian guarantee, 𝛾𝜋(𝐻𝑏) ≤ 𝛾 · (ND(𝐻′′) + 𝜋(𝐻𝑏\𝐻′′)) for
every subset 𝐻′′ ⊆ 𝐻𝑏, which implies that ND(𝐻′′) ≥ 𝜋(𝐻′′). Observing that 𝐻𝑏 = 𝐻\𝐻′
completes the proof of the second claim. ◀

▶ Proposition 22 (Analogue of Proposition 10). For a service 𝜆, it holds that

𝑐(𝜆) ≤ 𝑂 (𝛾) ·
∑︁
𝜆∗∈Λ∗

𝐷

(
𝑅⊥𝜆,𝜆∗ , 𝑡𝜆

)
+𝑂 (𝛾3√︁𝑘 log 𝑘) ·

∑︁
𝜆∗∈Λ∗

𝐷

(
𝑅★
𝜆,𝜆∗ , 𝑡𝜆

)
Proof. According to Proposition 21, the cost of the first transmission of solution 𝑆𝜆 (Line 17)
is at most 𝛾 · 𝐷 (𝑅𝜆, 𝑡𝜆). However, Proposition 21 also implies that 2𝛾𝐷

(
𝑅⊤
𝜆
\𝑅★

𝜆
, 𝑡𝜆

)
≤

ND(𝑅⊤
𝜆
\𝑅★

𝜆
); together with the fact that 𝑆𝜆 serves 𝑅⊤

𝜆
\𝑅★

𝜆
implies that 𝛾𝐷

(
𝑅⊤
𝜆
\𝑅★

𝜆
, 𝑡𝜆

)
≤

𝑐(𝑆𝜆)/2. Combining, we have the following:

𝑐(𝑆𝜆) ≤ 𝛾𝐷 (𝑅𝜆, 𝑡𝜆) = 𝛾(𝐷
(
𝑅⊥𝜆 , 𝑡𝜆

)
+ 𝐷

(
𝑅★
𝜆 , 𝑡𝜆

)
) + 𝑐(𝑆𝜆)/2

Simplifying, 𝑐(𝑆𝜆) ≤ 2𝛾(𝐷
(
𝑅⊥
𝜆
, 𝑡𝜆

)
+ 𝐷

(
𝑅★
𝜆
, 𝑡𝜆

)
), yielding the bound for the first transmission.

For the second transmission, note that 2ℓ̂𝜆 ≤ 2 · 𝑐
(
𝑆1
𝜆

)
≤ 4𝛾2𝐷 (𝑅★, 𝑡𝜆), where the second

inequality uses Proposition 21 for PCSolve. Applying Proposition 21 again for Line 20, we
obtain the following bound for the cost of the solution 𝑆2

𝜆
used for the second transmission:

𝑐

(
𝑆2
𝜆

)
≤ 𝛾 · |𝐻𝜆 | · 𝑥𝜆 = 𝛾 · |𝐻𝜆 | · 2ℓ̂𝜆 ·

√︁
log(1 + |𝐻𝜆 |)/|𝐻𝜆 | ≤ 𝛾

√︁
𝑘 log(1 + 𝑘) · 2ℓ̂𝜆

≤ 4𝛾3 ·
√︁
𝑘 log(1 + 𝑘) · 𝐷

(
𝑅★, 𝑡𝜆

)
Combining this with the previous bound for the first transmission completes the proof. ◀

ICALP 2023

105:20 Frameworks for Nonclairvoyant Network Design with Deadlines or Delay

We henceforth define joint costs 𝑐(𝜆, 𝜆∗) as in Section 4. Note that Proposition 10 holds
for Algorithm 4 without modification.

▶ Proposition 23 (Analogue of Proposition 12). For every optimal service 𝜆∗, it holds that∑︁
𝜆∈Λ |𝑡𝜆>𝑡𝜆∗

𝐷

(
𝑅★
𝜆,𝜆∗ , 𝑡𝜆

)
≤ 𝑂 (1) · 𝑐(𝜆∗).

Proof. Let Λ′ ⊆ Λ be the subset of services that occurred after 𝑡𝜆∗ . First, we claim that for
every integer ℓ, there exists at most one service in Λ′ with ℓ𝜆,𝜆∗ = ℓ. To prove the claim,
assume for contradiction that there are two services 𝜆1, 𝜆2 ∈ Λ′ such that ℓ𝜆1 ,𝜆∗ = ℓ𝜆2 ,𝜆∗ = ℓ,
and assume without loss of generality that 𝑡𝜆2 > 𝑡𝜆1 > 𝑡𝜆∗ . As 𝑡𝜆1 > 𝑡𝜆∗ , it must be that all
requests in 𝑅★

𝜆2 ,𝜆∗
were pending before and after 𝑡𝜆1 .

Moreover, every request 𝑞 ∈ 𝑅★
𝜆2 ,𝜆∗

must have ℓ̌(𝑞) ≤ ℓ(𝑞) ≤ ℓ

(
𝑅★
𝜆2 ,𝜆∗

)
= ℓ. However,

ℓ̂𝜆1 ≥ ℓ𝜆1 ,𝜆∗ = ℓ, and thus 𝑅★
𝜆2 ,𝜆∗

⊆ 𝐸𝜆1 . But, Line 15 in 𝜆1 sets 𝑏𝑞 = False for every
𝑞 ∈ 𝑅★

𝜆2 ,𝜆∗
, in contradiction to having 𝑏𝑞 = True at 𝑡𝜆2 . We conclude that 𝑅★

𝜆2 ,𝜆∗
= ∅;

however, this implies that ℓ𝜆2 ,𝜆∗ = −∞, in contradiction to ℓ𝜆2 ,𝜆∗ = ℓ.
Using this claim, for every level ℓ, there exists at most one service 𝜆 ∈ Λ′ such that ℓ𝜆,𝜆∗ = ℓ.

For such 𝜆, it holds that 𝐷
(
𝑅★
𝜆,𝜆∗ , 𝑡𝜆

)
≤ ND(𝑅★

𝜆,𝜆∗) ≤ 2ℓ . Also note that max𝜆∈Λ′ ℓ𝜆,𝜆∗ ≤ ℓ(𝑄𝜆∗).
Summing over the possible levels, we get that∑︁

𝜆∈Λ |𝑡𝜆>𝑡𝜆∗
𝐷

(
𝑅★
𝜆,𝜆∗ , 𝑡𝜆

)
≤ 2 · 2max𝜆∈Λ′ ℓ𝜆,𝜆∗ ≤ 2 · 2ℓ (𝑄𝜆∗) ≤ 4 · 𝑐(𝜆∗). ◀

▶ Lemma 24 (Analogue of Lemma 13). For every optimal service 𝜆∗ ∈ Λ, it holds that∑
𝜆∈Λ |𝑡𝜆>𝑡𝜆∗ 𝐷

(
𝑅⊥
𝜆,𝜆∗ , 𝑡𝜆

)
≤ 𝑂 (log 𝛾 ·

√︁
𝑘 log 𝑘) · 𝑐(𝜆∗).

Proof sketch. The proof follows the same main lines as that of Lemma 13. First, define
𝑅⊥, 𝑅⊥1 , 𝑅

⊥
2 as in the proof of Lemma 13. Now, define 𝑅⊥1,ℓ =

{
𝑞 ∈ 𝑅⊥1 |ℓ̂𝑞 = ℓ

}
; define 𝑅⊥2,ℓ

analogously. Note that the ℓ̂𝑞 is used for these definitions, rather than ℓ𝑞.
We can prove analogues to Proposition 19 and Proposition 20, using identical proofs.

Specifically, for every optimal service 𝜆∗, for every ℓ and for every 𝑏 ∈ {1, 2}, it holds that∑︁
ℎ∈𝐻 (𝑅⊥

𝑏,ℓ
)
ND(ℎ) ≤ 𝑂

(√︁
𝑘/log 𝑘

)
· 𝑐(𝜆∗) (10)

Now, following the proof of Lemma 13, define 𝛿 := ⌈log 𝑘⌉ + ⌈log 𝛾⌉.∑︁
𝜆∈Λ |𝑡𝜆>𝑡𝜆∗

𝐷

(
𝑅⊥𝜆,𝜆∗ , 𝑡𝜆

)
≤

∑︁
ℎ∈𝐻 (𝑅⊥)

ND(ℎ) ≤
∞∑︁

ℓ=−∞

(∑︁
ℎ∈𝐻 (𝑅⊥1,ℓ)

ND(ℎ) +
∑︁

ℎ∈𝐻 (𝑅⊥2,ℓ)
ND(ℎ)

)

=

ℓ∗−𝛿∑︁
ℓ=−∞

(∑︁
ℎ∈𝐻 (𝑅⊥1,ℓ)

ND(ℎ) +
∑︁

ℎ∈𝐻 (𝑅⊥2,ℓ)
ND(ℎ)

)
+

ℓ∗∑︁
ℓ=ℓ∗−𝛿+1

(∑︁
ℎ∈𝐻 (𝑅⊥1,ℓ)

ND(ℎ) +
∑︁

ℎ∈𝐻 (𝑅⊥2,ℓ)
ND(ℎ)

)
(11)

Using a similar argument to that in Lemma 13, we note that
∑

ℎ∈𝐻 (𝑅⊥1,ℓ) ND(ℎ) ≤ 𝑘 · 𝛾 · 2ℓ ;
a similar bound applies to

∑
ℎ∈𝐻 (𝑅⊥2,ℓ) ND(ℎ). Combining with the definition of 𝛿, the first

term in the RHS of Equation (11) can be bounded by 𝑂 (1) · 𝑐(𝜆∗). Using Equation (10), the
second term can be bounded by 𝑂 (𝛿) · 𝑐(𝜆∗), which is 𝑂 ((log 𝑘 + log 𝛾) ·

√︁
𝑘/log 𝑘) · 𝑐(𝜆∗); this

is at most 𝑂 (log 𝛾 ·
√︁
𝑘 log 𝑘) · 𝑐(𝜆∗). This completes the proof. ◀

Proof of Theorem 15. Results from combining Propositions 22 and 23 and Lemma 24. ◀

Tight Bounds for Chordal/Interval Vertex Deletion
Parameterized by Treewidth
Michał Włodarczyk #

Ben-Gurion University, Beer Sheva, Israel

Abstract
In Chordal/Interval Vertex Deletion we ask how many vertices one needs to remove from
a graph to make it chordal (respectively: interval). We study these problems under the parameteri-
zation by treewidth tw of the input graph G. On the one hand, we present an algorithm for
Chordal Vertex Deletion with running time 2O(tw) · |V (G)|, improving upon the running time
2O(tw2) ·|V (G)|O(1) by Jansen, de Kroon, and Włodarczyk (STOC’21). When a tree decomposition of
width tw is given, then the base of the exponent equals 2ω−1 ·3+1. Our algorithm is based on a novel
link between chordal graphs and graphic matroids, which allows us to employ the framework of repre-
sentative families. On the other hand, we prove that the known 2O(tw log tw) · |V (G)|-time algorithm
for Interval Vertex Deletion cannot be improved assuming Exponential Time Hypothesis.

2012 ACM Subject Classification Theory of computation → Graph algorithms analysis; Theory of
computation → Parameterized complexity and exact algorithms

Keywords and phrases fixed-parameter tractability, treewidth, chordal graphs, interval graphs,
matroids, representative families

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.106

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: https://arxiv.org/abs/2305.03440

Funding Supported by the European Research Council (ERC) grant titled PARAPATH. Part of the
work has been carried out when the author was a postdoctorate student at the Eindhoven University
of Technology.

1 Introduction

Treewidth [32, §7] is arguably the most extensively studied width measure in the graph theory.
Simply speaking, treewidth measures to what extent a graph is similar to a tree, where
trees and forests are exactly the graphs of treewidth 1. It plays a crucial role in Robertson
and Seymour’s Graph Minors series [62]. The usefulness of treewidth stems from the fact
that a broad class of problems can be solved in linear time on graphs of bounded treewidth.
The celebrated Courcelle’s Theorem [30] states that any graph problem expressible in the
Counting Monadic Second Order Logic (CMSO) can be solved in time f(tw) · |V (G)|, where
tw denotes the treewidth of graph G and f is some computable function. In other words,
every such problem is fixed-parameter tractable (FPT) when parameterized by treewidth.
Furthermore, bounded-treewidth graphs appear in a wide variety of contexts, which makes
treewidth-based algorithms a ubiquitous tool in algorithm design [36, 47, 56, 57, 61]. The
function f from Courcelle’s Theorem may grow very rapidly and a large body of research
has been devoted to optimize the dependency on tw for particular problems. In the ideal
scenario, we would like the function f to be single-exponential, i.e., f(tw) = 2O(tw), while
possibly allowing a higher (yet constant) exponent at |V (G)|. This is often the best we can
hope for because sub-exponential running times usually contradict the Exponential Time
Hypothesis1 (ETH) [42].

1 The Exponential Time Hypothesis states that there exists a constant δ > 0 so that 3-SAT cannot be
solved in time O(2δn) on n-variable formulas.

EA
T
C
S

© Michał Włodarczyk;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 106; pp. 106:1–106:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:michal.wloda@gmail.com
https://orcid.org/0000-0003-0968-8414
https://doi.org/10.4230/LIPIcs.ICALP.2023.106
https://arxiv.org/abs/2305.03440
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

106:2 Tight Bounds for Chordal/Interval Vertex Deletion

While the standard dynamic programming technique yields single-exponential algorithms
for problems with “local constraints”, such as Vertex Cover, Dominating Set, or
Bipartization, it falls short for problems with “connectivity constraints”, such as Feedback
Vertex Set, Hamiltonian Cycle, or Connected Vertex Cover, leading to parameter
dependency f(tw) = 2O(tw log tw). On the one hand, this issue was dealt with in the
landmark work of Cygan et al. [35], who introduced the Cut & Count technique and
obtained randomized single-exponential algorithms for the problems above, among others
(see also [59]). In following works, Bodlaender et al. [19] and Fomin et al. [38] presented
alternative techniques that allow to circumvent randomization: matrix-based approaches
and representative families. On the other hand, Lokshtanov et al. [54] provided a framework
for proving “slightly super-exponential” lower bounds under ETH, which paved the way for
establishing tight lower bounds for problems that require dependency f(tw) = 2O(tw log tw).
In the same work, they obtained such bounds for Disjoint Paths and Chromatic Number.
For problems with a single-exponential dependency f(tw) = O(ctw), further research has
been devoted to establish the optimal base of the exponent c [31, 33, 35, 53, 67].

Vertex-deletion problems. Many optimization graph problems can be phrased in terms
of H-Vertex Deletion: remove the smallest number of vertices from a graph so that the
resulting graph belongs to the graph class H. For example, Vertex Cover corresponds to
the class H of edge-less graphs. There is a diverse complexity landscape of ETH-tight running
times for various vertex-deletion problems under treewidth parameterization. The classes
H for which tight bounds have been established include: edge-less graphs [53], forests [35]
(see also [15]), planar graphs [47, 58], classes defined by a connected forbidden minor [9] (see
also [10, 11, 12]), bipartite graphs [53], DAGs [22], even-cycle-free graphs [15, 44], and some
classes defined by a forbidden (induced) subgraph [34, 65].

We extend this list by studying the vertex-deletion problems into the classes of chordal
and interval graphs. A graph is chordal if it does not contain an induced cycle of length at
least 4 (a hole) and a graph is interval if it is an intersection graph of intervals on the real
line. Any interval graph is chordal and any chordal graph is perfect. Applications of these
two graph classes have been long studied in miscellaneous areas of discrete optimization [8,
14, 25, 50, 60, 63]. On the theoretical side, the treewidth (resp. pathwidth) of a graph G

equals the minimum clique number of a chordal (resp. interval) supergraph of G [32, 52].
Moreover, some hard problems become tractable on chordal or interval graphs (or even on
graphs with small vertex-deletion distance to chordality) [26, 43, 49].

Our results. The state of the art for Chordal Vertex Deletion (ChVD) is the running
time 2O(tw2)nO(1), which follows from a more general result for a hybrid graph measure
H-treewidth, where H = chordal [45]. We improve the dependency on treewidth to single-
exponential.

▶ Theorem 1.1. Chordal Vertex Deletion can be solved in deterministic time
O(ckkω+1n) on n-vertex node-weighted graphs when a tree decomposition of width k is
provided. The constant c equals 2ω−1 · 3 + 1.

Here, ω < 2.373 stands for the matrix multiplication exponent [7]. To prove Theorem 1.1
we establish a new link between chordal graphs and graphic matroids, which allows us
to exploit the framework of representative families [37, 38]. ChVD is at least as hard
as Feedback Vertex Set, what implies barriers for a significant improvement in the
constant c (see Lemma 4.1 and the discussion therein). Thanks to a single-exponential
constant-factor FPT approximation for treewidth [20], Theorem 1.1 gives running time
2O(tw)n even when no tree decomposition is provided in the input.

M. Włodarczyk 106:3

The best known running time for Interval Vertex Deletion is 2O(tw log tw)n [64].
(While this algorithm has been described for the edge-deletion variant, we briefly explain in
the full version of the article how it can be adapted for vertex deletion.) We show that, unlike
the chordal case, this running time is optimal under ETH. This gives a sharp separation
between the two studied problems.

▶ Theorem 1.2. Under the assumption of ETH, Interval Vertex Deletion cannot be
solved in time 2o(tw log tw)nO(1) on n-vertex unweighted graphs of treewidth tw.

In fact, we show a stronger lower bound that rules out the same running time with respect
to a different graph parameter, called treedepth, which is never smaller than treewidth.
Our lower bound is obtained via a reduction from k × k Permutation Clique [54], which
produces an instance of size 2O(k) and treedepth O(k).

Related work. The two considered H-Vertex Deletion problems have been studied
in several contexts. Both problems are FPT parameterized by the solution size k, with
the best-known running times O(8k(n + m)) for H = interval [27] and 2O(k log k)nO(1)

for H = chordal [28] (but the problem becomes W[2]-hard for H = perfect [41]).
There are polynomial-time approximation algorithms with approximation factor 8 for
H = interval [27] and kO(1) for H = chordal [48]. Observe that, in these two regimes,
vertex deletion into chordal graphs seems harder than into interval graphs (although no
lower bounds are known to justify such a separation formally); this contrasts our results with
respect to the treewidth parameterization.

Both studied problems admit exact exponential algorithms with running times of the
form O((2 − ε)n) [18] as well as polynomial kernelizations [3, 4, 48]. The obstructions to
being chordal (resp. interval) enjoy the Erdős-Pósa property: any graph G either contains k

vertex-disjoint subgraphs which are not chordal (resp. not interval) or a vertex set X of size
O(k2 log k) such that G − X is chordal [51] (resp. interval [2]). Vertex deletion into other
subclasses of perfect graphs has been studied as well [1, 5, 6, 68]. For other modification
variants, where instead of vertex deletions one considers removals, insertions, or contractions
of edges, see, e.g., [17, 26, 27, 28, 39, 55, 70].

The concept of representative families, which plays an important role in our algorithm for
ChVD, has found applications outside the context of treewidth as well [66, 71]. Our other
tool, boundaried graphs, has revealed fruitful insights for various graph classes [9, 21, 45].

Organization of the paper. We begin by describing our technical contributions informally
in Section 2. We provide basic preliminaries in Section 3, while the extended preliminaries
including tree decompositions and representative families can be found in the full version
of the article. Section 4 is devoted to establishing a connection between chordal graphs
and graphic matroids. The description of the dynamic programming algorithm over a tree
decomposition follows standard conventions and is provided in the full version. In Section 5
we prove our lower bound for Interval Vertex Deletion. We conclude in Section 6. The
proofs of statements indicated with (⋆) are postponed to the full version. The numbering of
statements is adjusted to match in both versions.

2 Techniques

Chordal Vertex Deletion. The standard approach to design algorithms over a bounded-
width tree decomposition is to assign a data structure to each node t in the decomposition,
which stores information about partial solutions for the subgraph associated with the subtree
of t. Suppose that X ⊆ V (G) is a bag of t, A ⊆ V (G)\X denote the set of vertices appearing

ICALP 2023

106:4 Tight Bounds for Chordal/Interval Vertex Deletion

in the bags of the descendants of t (but not in X), and B ⊆ V (G) is the set of remaining
vertices. We say that a subset S ⊆ V (G) is a solution if G[S] is chordal; we want to maximize
the size of S. Next, a pair (SA ⊆ A, SX ⊆ X) is a partial solution if G[SA ∪ SX] is chordal.
A set SB ⊆ B is an extension of a partial solution (SA, SX) if SA ∪ SX ∪ SB is a solution.
Since X separates SA from SB, the graph G[SA ∪ SX ∪ SB] can be regarded as a result of
gluing G[SA ∪ SX] with G[SB ∪ SX] alongside the boundary SX . For a node t and SX ⊆ X,
we want to store a family of partial solutions Gt,SX

so that for every possible SB ⊆ B: if
SB is an extension for some partial solution (SA, SX), then there exists a partial solution
(S′

A, SX) ∈ Gt,SX
for which (a) SB is still a valid extension, and (b) S′

A is at least as large as
SA. We say that such a family satisfies the correctness invariant for (t, SX).

Jansen et al. [45] showed that any chordal graph H with a boundary of size k can be
condensed to a graph H ′ on O(k) vertices that exhibits the same behavior in terms of gluing.
More precisely, the gluing product of H with any graph J is chordal if and only if the gluing
product of H ′ with J is chordal. Since there are 2O(tw2) graphs on O(tw) vertices and 2O(tw)

choices for the boundary SX , it suffices to store only 2O(tw2) partial solutions.
We take this idea one step further and show that it is actually sufficient to store only

2O(tw) partial solutions. To this end, we investigate the properties of the class of chordal
graphs with respect to the gluing operation and prove a homomorphism theorem relating
it to graphic matroids. A graphic matroid of a graph J is a set system I over E(J) where
a subset S ⊆ E(J) belongs to I (and is called independent) when S contains no cycles.
A rank of a matroid is the largest size of an independent set; here this coincides with the
size of any spanning forest in J . In the following statement, GX,B is a family of graphs
H that satisfy (a) V (H) ⊇ X and (b) H[X] = B. For graphs H1, H2 ∈ GX,B we assume
that V (H1) ∩ V (H2) = X and define their gluing product as H3 = (H1, X) ⊕ (H2, X) where
V (H3) = V (H1) ∪ V (H2) and E(H3) = E(H1) ∪ E(H2).

▶ Theorem 2.1. Consider a family of graphs GX,B for some pair (X, B). There exists
a graphic matroid M = (E, I) of rank at most |X|−1 and a polynomial-time computable map-
ping σ : GX,B → 2E such that (H1, X) ⊕ (H2, X) is chordal if and only if σ(H1) ∩ σ(H2) = ∅
and σ(H1) ∪ σ(H2) ∈ I.

With this criterion at hand, we can employ the machinery of representative families to
truncate the number of partial solutions to be stored for a node of a tree decomposition.
Technical details aside, for a family S of independent sets in a matroid M = (E, I), a subfamily
Ŝ ⊆ S is called representative for S if for every independent set Y in M : if there exists X ∈ S
so that X ∩Y = ∅ and X ∪Y ∈ I, then there exists X̂ ∈ Ŝ so that X̂ ∩Y = ∅ and X̂ ∪Y ∈ I.
Fomin et al. [38] showed that for any family S in a graphic matroid (more generally, in a
linear matroid) of rank k there exists a representative family of size at most 2k and it can be
constructed in time 2O(k). We use Theorem 2.1 to translate this result into the language
of chordal graphs and gluing. When Gt,SX

is a family of partial solutions that satisfies the
correctness invariant for (t, SX), a representative family for σ(Gt,SX

) in the related graphic
matroid M corresponds to a subfamily Ĝt,SX

⊆ Gt,SX
that satisfies condition (a) of the

correctness invariant and |Ĝt,SX
| ≤ 2tw. In order to satisfy condition (b), we need to assign

weights to the elements of the matroid M , encoding the size of the largest partial solution
mapped to each element. We can then utilize the weighted variant of representative families,
which preserves the largest-weight elements [38]. By storing only the condensed forms of the
partial solutions (having O(tw) vertices), we also achieve a linear dependency on |V (G)|.

In order to prove Theorem 2.1, we give a novel criterion for testing chordality of a gluing
product. When G originates from gluing two chordal graphs G1, G2 alongside boundary
X, then any hole in G must visit both V (G1) \ X and V (G2) \ X, so it must traverse X

multiple times. We show that if a hole H intersects at least two connected components of

M. Włodarczyk 106:5

G[X], then it corresponds to a cycle in the graph obtained from G by contracting each of
the connected components of G[X], G1 − X, G2 − X into single vertices. Otherwise, let
C be the unique connected component of G[X] that is intersected by the hole. We prove
that there exists a vertex set S ⊆ V (C) that is disjoint from V (H) and C − S has two
connected components C1, C2 satisfying NC(C1) = NC(C2) = S (below we refer to such
components as relevant) and having non-empty intersections with V (H). Moreover, every
vertex from V (H) ∩ C belongs to some relevant component. Consider a graph Aux(G, X, S)
obtained from G by (1) removing the connected components of G[X] different than C, (2)
contracting relevant components of C − S into single vertices while removing the irrelevant
ones, and (3) contracting the components of G1 − X, G2 − X into single vertices. A detailed
construction is given in Definition 4.10; see also Figure 1 on page 9. Then the hole H

corresponds to a cycle in Aux(G, X, S). The first scenario can be analyzed with this approach
as well, by taking S = ∅. We prove that considering all minimal vertex separators S in G[X]
and checking acyclity of each auxiliary graph Aux(G, X, S) yields a necessary and sufficient
condition for G to be chordal.

This criterion allows us to construct a graphic matroid encoding all the information about
each of the graphs G1, G2 necessary to reconstruct the graphs Aux(G, X, S) and to determine
whether G is chordal. In order to bound the rank of this matroid, we investigate the structure
of minimal vertex separators in a chordal graph and bound the size of a spanning forest in
a certain graph obtained from the union of Aux(G, X, S). A criterion of a similar kind is
known for testing planarity of a gluing product of planar graphs when the boundary has
a Hamiltonian cycle; then the corresponding auxiliary graph (defined in a different way)
should be bipartite [13]. Our criterion can be also compared to the one used by Bonnet et
al. [23] for analyzing gluing products with respect to certain subclasses of chordal graphs.
We elaborate more on their approach in the full version of the paper.

Interval Vertex Deletion. In order to prove Theorem 1.2 we present a parameterized
reduction from k × k Permutation Clique. Here, the input is a graph G on ver-
tex set [k] × [k], and we ask whether there exists a permutation π : [k] → [k] such that
(1, π(1)), (2, π(2)), . . . , (k, π(k)) forms a clique in G. Lokshtanov et al. [54] proved that k × k

Permutation Clique cannot be solved in time 2o(k log k) under ETH. So we seek a reduction
from k × k Permutation Clique to Interval Vertex Deletion that produces a graph
of treewidth O(k).

Imagine an interval model of a complete graph Y on vertex set [k] in which all the right
endpoints of the intervals coincide and all the left endpoints are distinct. Choosing the
order of the left endpoints encodes some permutation π : [k] → [k] (see Figure 2 on page
13). We can extend this interval model by inserting a new vertex v only if N(v) corresponds
to a set of intervals intersecting at a single point. This is possible only when N(v) = π([ℓ])
for some ℓ ∈ [k]. Furthermore, inserting to Y independent vertices v1, v2, . . . , vk, such that
|N(vi)| = i and N(vi) ⊂ N(vi+1), enforces the choice of permutation π. We can thus encode
a permutation π by an ascending family of sets N1 ⊂ N2 ⊂ · · · ⊂ Nk = [k], satisfying
Ni = π([i]), which correspond to the neighborhoods of v1, v2, . . . , vk in Y . On the other
hand, any ascending family of sets for which the construction above gives an interval graph,
must encode some permutation. On an intuitive level, a partial interval model of a size-k
separator can encode one of k! permutations.

We need a mechanism to verify that a chosen permutation π encodes a clique, i.e., that it
satisfies

(
k
2
)

constraints of the form (i, π(i))(j, π(j)) ∈ E(G). To implement a single constraint,
we construct a choice gadget, inspired by the reduction to Planar Vertex Deletion [58].
Such a gadget Ci,j is defined as a path-like structure, divided into blocks, so that each
block has some special vertices adjacent to Y (see Figure 3 on page 14). We show that

ICALP 2023

106:6 Tight Bounds for Chordal/Interval Vertex Deletion

any minimum-size interval deletion set in Ci,j must “choose” one block and leave its special
vertices untouched while it can remove the remaining special vertices. We use this gadget
to check if a permutation π encoded by an ascending family of sets N1 ⊂ N2 ⊂ · · · ⊂ Nk

satisfies the constraint (i, π(i))(j, π(j)) ∈ E(G). As π(i) is the only element in Ni \ Ni−1,
this information can be extracted from the tuple (Ni−1, Ni, Nj−1, Nj). We create a single
block in Ci,j for each valid tuple. Since the number of such tuples is 2O(k), we need a choice
gadget of exponential length, unlike the mentioned reduction which works in polynomial
time. However, producing an instance of size 2O(k) and treewidth O(k) is still sufficient to
achieve the claimed lower bound.

3 Preliminaries

We write [k] = {1, 2, . . . , k} and assume that [0] = ∅. We abbreviate X \ v = X \ {v}. For
a function w : X → N and S ⊆ X we use shorthand w(S) =

∑
x∈S w(x). We follow the

standard notational conventions for graphs, which are omitted from this extended abstract.

Separators. For vertices u, v ∈ V (G) a vertex set S ⊆ V (G) \ {u, v} is called a (u, v)-
separator if u, v belong to different connected components of G − S. A (u, v)-separator is
minimal when no proper subset of it is a (u, v)-separator. A vertex set S is called a minimal
vertex separator if S is a minimal (u, v)-separator for some u, v ∈ V (G).

▶ Lemma 3.1 (⋆). Let u, v be vertices in a graph G and S be a (u, v)-separator in G. Denote
by Cu, Cv the connected components of G − S that contain respectively u and v. Then S is
minimal if and only if NG(Cu) = NG(Cv) = S.

A vertex (or a vertex set) is called simplicial if its open neighborhood is a clique.

▶ Lemma 3.2 (⋆). Let S be a minimal vertex separator in a graph G. Then S does not
contain any simplicial vertices.

Chordal and interval graphs. An interval graph is an intersection graph of intervals on the
real line. In an interval model IG = {I(v) | v ∈ V (G)} of a graph G, each vertex v ∈ V (G)
corresponds to a closed interval I(v); there is an edge between vertices u and v if and only
if I(v) ∩ I(u) ̸= ∅.

A hole in a graph is an induced (i.e., chordless) cycle of length at least four. A graph is
chordal when it does not contain any hole. An equivalent definition states that a chordal
graph is an intersection graph of a family of subtrees in a tree [40]. This implies that any
interval graph is chordal. For more background on these graph classes see surveys [16, 24].

The characterization of the two classes as intersection graphs of intervals/subtrees leads
to the following observation.

▶ Observation 3.3. The classes of chordal and interval graphs are closed under vertex
deletions and edge contractions.

An asteroidal triple (AT) is a triple of vertices such that for any two of them there exists
a path between them avoiding the closed neighborhood of the third. Interval graphs cannot
contain ATs, which is a consequence of a linear ordering of any interval model. It turns out
that this is the only property that separates the two graph classes.

▶ Lemma 3.4 ([24]). A graph is interval if and only if it is chordal and does not contain an AT.

We collect two more useful facts about chordal graphs.

▶ Lemma 3.5 ([24]). Every non-empty chordal graph contains a simplicial vertex.

M. Włodarczyk 106:7

When a chordal graph contains a cycle then it also contains a triangle. As a bipartite
graph does not have any triangles, we obtain the following.

▶ Observation 3.6. If a graph is chordal and bipartite, then it is a forest.

A vertex set S in graph G is called a chordal deletion set (resp. interval deletion set) if
G − S is chordal (resp. interval). The Chordal/Interval Vertex Deletion problem is
defined as follows. We are given a graph G, a non-negative weight function w : V (G) → N,
an integer p, and we ask whether there exists a chordal (resp. interval) deletion set S in G

such that w(S) ≤ p.

Boundaried graphs. For a set X and a graph B on vertex set X, we define a family GX,B

of graphs G that satisfy (a) V (G) ⊇ X, (b) G[X] = B. For graphs G1, G2 ∈ GX,B we
define their gluing product (G1, X) ⊕ (G2, X) by taking a disjoint union of G1 and G2 and
identifying vertices from X. Note that two vertices from X are adjacent in G1 if and only if
they are adjacent in G2.

For X ⊆ V (G) a pair (G, X) is called a boundaried graph. We say that two boundaried
graphs (G1, X), (G2, X) are compatible if G1, G2 ∈ GX,B for some B. We remark that
it is common in the literature to define a boundaried graph as a triple (G, X, λ) where
λ : X → [|X|] is a labeling (cf. [9, 21]). Since we do not need to perform gluing of abstract
boundaried graphs, but only ones originating from subgraphs of a fixed graph, this simpler
definition is sufficient.

As an example, consider a graph G and X ⊆ V (G). Then for any A ⊆ V (G) \ X the
graph G[A ∪ X] belongs to GX,G[X]. When A, B ⊆ V (G) \ X are disjoint and non-adjacent
then G[A ∪ B ∪ X] is isomorphic to (G[A ∪ X], X) ⊕ (G[B ∪ X], X).

4 Chordal Deletion

We begin with a simple treewidth-preserving reduction from Feedback Vertex Set.

▶ Lemma 4.1 (⋆). Let G be a graph and ℓ ∈ N. Let G′ be obtained from G by subdividing
each edge. Then tw(G′) = tw(G) and G has a feedback vertex set (FVS) of size ℓ if and only
if G′ has a chordal deletion set of size ℓ.

As a consequence, the base of the exponent c in Theorem 1.1 must be at least 3 under
Strong Exponential Time Hypothesis [35] and c must be at least 2ω + 1 if the current-
best deterministic algorithm for Feedback Vertex Set parameterized by treewidth is
optimal [69]. While we have no evidence that the mentioned algorithm should be optimal
for deterministic time, we provide this comparison to indicate that breaching this gap for
ChVD would imply the same for a more heavily studied problem.

Minimal vertex separators. We set the stage for the proof of Theorem 2.1. First we need
to develop some theory about minimal vertex separators in chordal graphs.

▶ Definition 4.2. Let MinSep(G) denote the set of minimal vertex separators in a graph G.
For a graph G and a (possibly empty) set S ⊆ V (G), we define Comp(G, S) to be the set of
connected components Ci of G − S for which it holds that NG(Ci) = S.

Note that whenever G is disconnected then ∅ ∈ MinSep(G) and Comp(G, ∅) is just the
set of connected components of G. According to Lemma 3.1, the set S is a minimal (u, v)-
separator if and only if u, v belong to some (distinct) components from Comp(G, S). For later
use, we establish a relation between sets MinSep(G), Comp(G, S) in G and a graph obtained
by a removal of a simplicial vertex.

ICALP 2023

106:8 Tight Bounds for Chordal/Interval Vertex Deletion

▶ Lemma 4.3 (⋆). Let v be a simplicial vertex in G and S ∈ MinSep(G). If S ̸= NG(v) then
S ∈ MinSep(G − v) and |Comp(G, S)| = |Comp(G − v, S)|.

We need a simple technical lemma about minimal vertex separators.

▶ Lemma 4.4 (⋆). Let G be a connected graph and V1, . . . , Vk ⊆ V (G), k ≥ 2, be disjoint
sets so that G[Vi] is connected, for i ∈ [k], and EG(Vi, Vj) = ∅, for i ̸= j. Then there exists a
minimal vertex separator S ⊆ V (G) \ (V1 ∪ · · · ∪ Vk) in G which is a (Vi, Vj)-separator for
some i ̸= j and each set Vi is contained in some component C ∈ Comp(G, S).

We will use the following concept which appears in the current-best algorithm for ChVD
by Jansen et al [45]. In the full version, we also provide several properties of this operation,
used to process partial solutions in a treewidth DP.

▶ Definition 4.5 ([46, Def. 5.55]). For a graph G and a vertex set X ⊆ V (G) let the graph
Condense(G, X) be obtained from G by contracting the connected connected components of
G − X into single vertices and then removing those of them which are simplicial.

In this section we will exploit the following property of condensation.

▶ Lemma 4.9 (⋆). Consider a graph G with a vertex set X so that G[X] is chordal. Then
G is chordal if and only if the following conditions hold:
1. for each connected component C of G − X the graph G[X ∪ C] is chordal,
2. the graph Condense(G, X) is chordal.

In order to turn Lemma 4.9 into a more convenient criterion, we will compress information
about a graph G with a vertex subset X into multiple auxiliary graphs, one for each minimal
vertex separator in G[X].

▶ Definition 4.10. Consider a graph G with a vertex set X so that G[X] is chordal. For a
set S ∈ MinSep(G[X]) we construct the graph Aux(G, X, S) as follows:
1. contract each C ∈ Comp(G[X], S) into a vertex and remove the remaining vertices of X

(including all of S),
2. contract each connected component of G − X into a vertex.

Note that Aux(G, X, ∅) is obtained by just contracting each connected component of G[X]
and each connected component of G − X. Moreover, observe that Aux(G, X, S) is always a
bipartite graph because there can be no edges between two components from Comp(G[X], S)
nor between two components of G − X. See Figure 1 for an example of this construction.

To make a connection between holes in G and cycles in Aux(G, X, S), we need a criterion
to derive existence of a cycle from a closed walk with certain properties. In the following
lemma we consider a cyclic order on a sequence of length k. We define the successor operator
as s(i) = i + 1, for i ∈ [k − 1], and s(k) = 1.

▶ Lemma 4.11 (⋆). Let G be a bipartite graph with vertex partition V (G) = A ∪ B. Suppose
there exists a sequence of vertices (v1, . . . , vk) in G such that:
1. for i ∈ [k] it holds vi = vs(i) or vivs(i) ∈ E(G),
2. the multiset {v1, . . . , vk} contains at most one occurrence of each vertex from A,
3. the set {v1, . . . , vk} contains at least two vertices from B.

Then G contains a cycle.

We are ready to prove a proposition creating a link between chordality and acyclicity.

M. Włodarczyk 106:9

x

y

z

u

v

Figure 1 On the left: graph G and set X ⊆ V (G) represented by black disks. The graph G[X] is
drawn with solid edges. There are two minimal vertex separators in G[X]: S1 = {v} and S2 = {u, v},
sketched in gray. In the middle: the graph Aux(G, X, S1) with thick edges indicating a component
that gets contracted into a single vertex; the gray vertices and edges are removed. On the right:
the graph Aux(G, X, S2); note that |Comp(G[X], S2)| = 2 because the lower vertices of X are not
adjacent to every vertex in S2. The graph Aux(G, X, S1) contains a cycle and this witnesses that G

is not chordal. However, removing from G any single vertex among x, y, z results in a chordal graph.

▶ Proposition 4.12. Consider a graph G with a vertex subset X ⊆ V (G) so that for each
connected component C of G − X the graph G[X ∪ C] is chordal. Then G is chordal if and
only if for each S ∈ MinSep(G[X]) the graph Aux(G, X, S) is acyclic.

Proof. First we argue that if G is chordal then all graphs Aux(G, X, S) are acyclic. Because
the class of chordal graphs is closed under vertex deletions and edge contractions, the
graphs Aux(G, X, S) are chordal as well. Since each graph Aux(G, X, S) is also bipartite, by
Observation 3.6 we obtain that Aux(G, X, S) is acyclic.

Now suppose that G is not chordal. Let G′ = Condense(G, X) (recall Definition 4.5).
By Lemma 4.9, the graph G′ is not chordal as well but for each vertex v ∈ V (G′) \ X

the graph G′[X ∪ {v}] is chordal (because contraction preserves chordality). Note that
Aux(G′, X, S) is an induced subgraph of Aux(G, X, S) for each S ∈ MinSep(G[X]) (they may
differ only due to removal of simplicial vertices), so it suffices to show that one of the graphs
Aux(G′, X, S) has a cycle.

As G′ is not chordal, it contains a hole H = (u1, . . . , uk). We consider two cases: either
V (H) intersects at least two connected components of G′[X] or only one. In the first case, let
ϕ0 : V (G′) → V (Aux(G′, X, ∅)) be the mapping given by the contractions from Definition 4.10.
Recall that V (G′) \ X is an independent set in G′ so ϕ0 is an identity on this set. The
sequence (ϕ0(u1), . . . , ϕ0(uk)) meets the preconditions of Lemma 4.11 for A = V (G′) \ X

and B = ϕ0(X) so Aux(G′, X, ∅) has a cycle. As G′[X] = G[X] is disconnected, we have
∅ ∈ MinSep(G[X]).

In the second case, let Y ⊆ X induce the only connected component of G′[X] that
intersects V (H). Let V1, . . . , Vℓ ⊆ Y be the vertex sets of maximal subpaths of H within
Y . By the definition of a hole, we have EG′(Vi, Vj) = ∅ for distinct i, j ∈ [ℓ]. It must be
ℓ ≥ 2 because for each v ∈ V (G′) \ X the graph G′[X ∪ {v}] is chordal and the hole H

must visit at least two vertices from the independent set V (G′) \ X. By Lemma 4.4, there
exists a minimal vertex separator S ⊆ Y \ V (H) in G′[Y] such that every set Vi is contained
in some component from Comp(G′[Y], S) and at least two components from Comp(G′[Y], S)
intersect V (H). Note that S ∈ MinSep(G[X]). Let CS be the union of the components from
Comp(G′[Y], S); note that V (H) ⊆ V (CS) ∪ (V (G′) \ X).

Let ϕS : V (CS)∪(V (G′)\X) → V (Aux(G′, X, S)) be the mapping given by the contractions
from Definition 4.10 which turn each component from Comp(G′[Y], S) into a single vertex.
Again, the sequence (ϕS(u1), . . . , ϕS(uk)) meets the preconditions of Lemma 4.11 for A =
V (G′) \ X and B = ϕS(V (CS)) so Aux(G′, X, S) has a cycle. See Figure 1 for an illustration.

◀

ICALP 2023

106:10 Tight Bounds for Chordal/Interval Vertex Deletion

Signatures of boundaried graphs. The next step is to construct a graphic matroid MB

for a chordal graph B so that for any two graphs G1, G2 ∈ GX,B the information about
chordality of (G1, X) ⊕ (G2, X) could be read from MB. Proposition 4.12 already relates
chordality to acyclicity but the corresponding graphic matroids for G1, G2 are disparate. To
circumvent this, we will further compress the information about cycles.

▶ Definition 4.13. Consider a graph B. For S ∈ MinSep(B), let Base(B, S) be the complete
graph on vertex set Comp(B, S). The graph Base(B) is a disjoint union of all the graphs
Base(B, S) for S ∈ MinSep(B).

That is, we treat the components from Comp(B, S) as abstract vertices of a new graph
which is a union of cliques.

The following transformation is similar to the one used in the algorithm for Steiner Tree
based on representative families [38]. For the sake of disambiguation, in the definition below we
assume an implicit linear order on the vertices of B; this order may be arbitrary. Since vertices
of Base(B) correspond to distinct subsets of V (B), which can ordered lexicographically,
fixing the order on V (B) yields an order on V (Base(B)). We can thus assume that also the
vertices of V (Base(B)) are linearly ordered.

▶ Definition 4.14. Consider a chordal graph B and Y ⊆ V (B). We define the spanning
signature Span(B, Y) ⊆ E(Base(B)) as follows. For each S ∈ MinSep(B) let CS,Y ⊆
V (Base(B, S)) be given by components from Comp(B, S) with a non-empty intersection with Y .
Let PS,Y ⊆ E(Base(B, S)) be the path connecting the vertices of CS,Y in the increasing order.
Then Span(B, Y) =

⋃
S∈MinSep(B) PS,Y .

In other words, Span(B, Y) is a disjoint union of paths in the graph Base(B), where each
path encodes the relation between Y and a respective minimal vertex separator in B.

The next lemma states that under certain conditions replacing a vertex v with a tree over
N(v) (in particular: a path) does not affect acyclicity of the graph. Note that due to the
precondition |N(u) ∩ N(v)| ≤ 1 we never attempt to insert an edge that is already present.

▶ Lemma 4.15 (⋆). Let G be a bipartite graph with a vertex partition V (G) = A ∪ B so that
for each distinct u, v ∈ A it holds that |NG(u) ∩ NG(v)| ≤ 1. Consider a graph G′ obtained
from G by replacing each vertex v ∈ A by an arbitrary tree on vertex set NG(v). Then G is
acyclic if and only if G′ is acyclic.

This allows us to translate the criterion from Proposition 4.12 into a more convenient
one, in which the vertex set of the auxiliary graph depends only on G[X] rather than G.

▶ Lemma 4.16. Consider a graph G with a vertex subset X ⊆ V (G). Let C denote the
family of connected components of G − X. Suppose that for each C ∈ C the graph G[X ∪ C]
is chordal. Then G is chordal if and only if:
1. the sets Span(G[X], NG(C)), for different C ∈ C, are pairwise disjoint,
2. the union of sets Span(G[X], NG(C)), over C ∈ C, forms an acyclic edge set in

E(Base(G[X])).

Proof. From Proposition 4.12 we know that G is chordal if and only if for each S ∈
MinSep(G[X]) the graph Aux(G, X, S) is acyclic. We consider two cases.

First, suppose that for some S ∈ MinSep(G[X]) there are two vertices representing distinct
components C1, C2 ∈ C that share two common neighbors x, y in Aux(G, X, S). In other
words, there are two components from Comp(G[X], S) that intersect both NG(C1) and NG(C2).
Then Aux(G, X, S) contains a cycle of length 4, so G is not chordal. If Span(G[X], NG(C1))

M. Włodarczyk 106:11

and Span(G[X], NG(C2)) share an edge, then condition (1) fails, so suppose this is not the
case. But then the paths PS,N(C1) and PS,N(C2) (recall Definition 4.14) are edge-disjoint
and they both visit x and y. As a consequence, x, y lie on a cycle contained in the edge set
Span(G[X], NG(C1)) ∪ Span(G[X], NG(C2)) so condition (2) fails. In summary, both G is
not chordal and one of conditions (1, 2) does not hold.

Next, suppose that for each S ∈ MinSep(G[X]) and any two vertices representing distinct
components C1, C2 ∈ C the intersection of their neighborhoods in Aux(G, X, S) contains at
most one element. This implies condition (1). Consider a graph H given by a disjoint union
of all graphs Aux(G, X, S) over S ∈ MinSep(G[X]). This graph meets the preconditions
of Lemma 4.15. Replacing each C-component-vertex in Aux(G, X, S) by the path PS,N(C)
transforms H into a subgraph of Base(G[X]) with the edge set

⋃
C∈C Span(G[X], NG(C)).

By Lemma 4.15, this graph is acyclic if and only if the graph H is. By Proposition 4.12, this
condition is equivalent to G being chordal. The lemma follows. ◀

We are ready to define the graphic matroid encoding all the necessary information about
where a hole can appear after gluing two chordal graphs. Recall that a graphic matroid of a
graph G is a set system over E(G) where a subset S ⊆ E(G) is called independent when S

contains no cycles. More information about matroids can be found in the preliminaries of
the full version of the article.

▶ Definition 4.17. For a graph B on vertex set X we define matroid MB as the graphic
matroid of the graph Base(B). For a graph G ∈ GX,B the signature Sign(G, X) ⊆ E(Base(B))
is defined as a union of Span(B, NG(C)) over all connected components C of G − X.

It follows from Lemma 4.16 that whenever G is chordal then Sign(G, X) is acyclic and so
it forms an independent set in the matroid MG[X]. We can now give the existential part of
Theorem 2.1. The mapping σ : GX,B → 2E(MB) therein is given here as σ(G) = Sign(G, X).

▶ Lemma 4.18 (⋆). Let (G1, X) and (G2, X) be compatible boundaried chordal graphs.
Then G = (G1, X) ⊕ (G2, X) is chordal if and only if the sets Sign(G1, X), Sign(G2, X) ⊆
E(Base(G[X])) are disjoint and Sign(G1, X) ∪ Sign(G2, X) is acyclic.

Furthermore, Sign(G, X) = Sign(G1, X) ∪ Sign(G2, X).

The following lemma is the main ingredient in the running time analysis. As the bound
on the representative family’s size is exponential in the rank of a matroid2, it is necessary
to bound the rank of MB. It is known that the number of minimal vertex separators in a
chordal graph is bounded by the number of vertices but we need a strengthening of this fact.

▶ Lemma 4.19. For a non-empty chordal graph B, the rank of MB is at most |V (B)| − 1.

Proof. Let k = |V (B)|. The rank of MB equals the size of a spanning forest in Base(B). The
vertex sets of connected components of Base(B) are the sets Comp(B, S) for S ∈ MinSep(B).
Therefore it suffices to estimate∑

S∈MinSep(B)

(|Comp(B, S)| − 1) ≤ k − 1.

We first prove the inequality for connected chordal graphs by induction on k. For k = 1
the sum is zero. Consider k > 1. By Lemma 3.5, B contains a simplicial vertex. Let v be
a simplicial vertex in B and suppose that the claim holds for the graph B − v (which is

2 We remark that Fomin et al. [38] also considered a case when the rank might be large and the exponential
term is governed by a different parameter but it is not applicable in our case.

ICALP 2023

106:12 Tight Bounds for Chordal/Interval Vertex Deletion

connected). Let S be a minimal vertex separator in B. By Lemma 4.3 when S ̸= NB(v)
then S ∈ MinSep(B − v) and |Comp(B, S)| = |Comp(B − v, S)|. In that case the summand
coming from S is the same for B and B − v.

It remains to handle the case S = NB(v). Clearly, {v} ∈ Comp(B, S). If |Comp(B, S)| = 1
then S ̸∈ MinSep(B) (Lemma 3.1). If |Comp(B, S)| = 2 then S ∈ MinSep(B) \ MinSep(B − v)
and the sum grows by one. If |Comp(B, S)| ≥ 3 then S ∈ MinSep(B) ∩ MinSep(B − v) and
|Comp(B, S)| = |Comp(B − v, S)| + 1 so the sum again grows by one. This concludes the proof
of the inequality for connected chordal graphs.

When B is disconnected, let B1, B2, . . . , Bt denote its connected components and let
ki = |V (Bi)|. We have |Comp(B, ∅)| − 1 = t − 1. Together with the sums for B1, B2, . . . , Bt

the total sum is at most
∑t

i=1 ki − t + t − 1 = k − 1. ◀

The last thing to be checked is whether we can compute the signatures efficiently. To
this end, we enumerate minimal vertex separators using Lemma 4.3.

▶ Lemma 4.20 (⋆). There is a polynomial-time algorithm that, given a graph G with a vertex
subset X ⊆ V (G) such that G[X] is chordal, computes Sign(G, X).

Lemmas 4.18, 4.19, and 4.20 entail Theorem 2.1 but instead of working with that abstract
statement we use these three lemmas directly when describing the final algorithm. The
results of this section allow us to employ the framework of representative families in order to
truncate the number of partial solutions stored at a node of a tree decomposition to 2O(tw).
The dynamic programming algorithm follows the lines of proofs in [37] and is described in
detail in the full version. The main technical hurdle comes from the necessity to store only
the condensed counterparts of the partial solutions. The condensed graphs have only O(tw)
vertices each, what is the key to obtain a linear dependency on |V (G)|.

5 Interval Deletion

We switch our attention to Interval Vertex Deletion and show that in this case it is
unlikely to achieve any speed-up over the existing 2O(tw log tw) · n-time algorithm. We prove
Theorem 1.2 via a parameterized reduction from k × k Permutation Clique, which is
defined as follows.

k × k Permutation Clique
Input: Graph G over the vertex set [k] × [k].
Question: Is there a permutation π : [k] → [k] so that (1, π(1)), (2, π(2)), . . . , (k, π(k))
forms a clique in G?

Permutation gadget. We will encode a permutation π : [k] → [k] as a family of sets
N1, N2, . . . , Nk so that Ni = π([i]) (i.e., Ni is the set of i numbers appearing first in π). First,
we need a gadget to verify that such a family represents some permutation.

▶ Definition 5.1. For an integer k, let Yk be a graph on a vertex set {y1, y2, . . . , yk+2} so
that {y1, y2, . . . , yk+1} induces a clique and yk+2 is adjacent only to yk+1.

We shall enforce a linear order on N1, . . . , Nk by demanding that a particular supergraph
of Yk is interval. The corresponding interval model is depicted on Figure 2.

▶ Lemma 5.3 (⋆). Let N1, . . . , Nℓ ⊆ [k]. Consider a graph G obtained from Yk by inserting
an independent set of vertices x1, . . . , xℓ so that NG(xi) = {yj | j ∈ Ni}. Then G is interval
if and only if there exists a permutation π : [k] → [k] so that for each i ∈ ℓ it holds that
Ni = π([ni]) where ni = |Ni|.

M. Włodarczyk 106:13

y1

y2

y3

y4

y5

y6

Figure 2 Illustration for Lemma 5.3. The intervals for vertices of Y4 are blank, ordered from bottom
to top. They encode permutation (2, 4, 3, 1). The black intervals represent vertices x1, x2, x3, x4, x5

with neighborhoods encoding sets {2}, {2, 4} (twice), {2, 4, 3}, and {2, 4, 3, 1}.

Choice gadget. We need to verify that (i, π(i))(j, π(j)) ∈ E(G) for each 1 ≤ i < j ≤ k.
As π(i) is the only element in Ni \ Ni−1, the information whether (i, π(i)), (j, π(j)) ∈ E(G)
can be extracted from the tuple (Ni−1, Ni, Nj−1, Nj). We construct a gadget that enforces a
solution to select one such valid tuple.

We use a following convention to describe the gadgets. When P is a graph with a
distinguished vertex named v and a graph H is constructed using explicit vertex-disjoint
copies of the graph P , referred to as P1, P2, . . . , Pℓ, we refer to the copy of v within the
subgraph Pi as Pi[v]. We construct the choice gadget as a path-like structure consisting of
blocks, each equipped with four special vertices. These are the only vertices that later get
connected to the permutation gadget. On the intuitive level, a solution should choose one
block, leave its special vertices untouched, and remove the remaining special vertices. See
Figure 3 for an illustration.

▶ Definition 5.4. The graph P is obtained from a path (u1, u2, . . . , u9) by appending to u2
two subdivided edges, one subdivided edge to u7, and inserting edge u4u8.

The choice gadget of order s is a graph constructed as follows. We begin
with a vertex set

⋃s
i=1{v1

i , v2
i , v3

i } ∪ {vleft, vright}. For each pair (x, y) of the form
(v1

i , v2
i), (v2

i , v3
i), (v3

i , v1
i), (v3

i , v1
i+1) as well as for (vleft, v1

1), (v3
s , vright) we create two sub-

divided edges between x and y. We refer to the subgraph given by the two subdivided edges
between x, y as ⟨x, y⟩. We refer to the union of ⟨v1

i , v2
i ⟩, ⟨v2

i , v3
i ⟩, ⟨v3

i , v1
i ⟩ as Qi.

Next, for each i ∈ [s] we create four copies of the graph P , denoted P 1
i , P 2

i , P 3
i , P 4

i .
We insert edges between v2

i and P 1
i [u1], P 2

i [u1], P 3
i [u1], P 4

i [u1]. We refer to vertices P α
i [u8],

P α
i [u9], α ∈ [4], as respectively hα

i , gα
i .

The choice gadget is designed to enforce a special structure of minimum-size interval
deletion sets. We exploit the fact that P contains two vertex-disjoint subgraphs with
asteroidal triples (see Figure 3) so any interval deletion set in a choice gadget must contain
at least two vertices from each copy of P .

We prove several properties of the choice gadget which are analogous to the properties
of the gadget used by Pilipczuk in the lower bound for Planar Vertex Deletion [58].
However, in that construction every block has only one special vertex with edges leaving the
gadget, while in our case there are four special vertices. We also need to ensure that when
the special vertices in some block are not being removed then a solution can remove their
neighbors in the gadget. (Inserting a planar graph attached to a single vertex of G does
not affect planarity of G but the analogous property does not hold for the class of interval
graphs.) The special structure of the graph P allows us to resolve these two issues.

▶ Lemma 5.6 (⋆). Let Hs be the choice gadget of order s.
1. The minimal size of an interval deletion set in Hs is 10s.
2. For every i ∈ [s] there exists a minimum-size interval deletion set X in Hs such that

{h1
i , h2

i , h3
i , h4

i } ⊆ X and {g1
j , g2

j , g3
j , g4

j } ⊆ X for each j ̸= i.

ICALP 2023

106:14 Tight Bounds for Chordal/Interval Vertex Deletion

u9 = g

u8 = h

vleft v11 v31

v21

v12 v32

v22

v13

u1

u2

u3

u4

u5

u6

u7

Figure 3 Top: the choice gadget H5 with the subgraph Q1 highlighted in green. The copies of P

are sketched symbolically with dashed lines and the squares represent vertices gα
i . The red disks

and squares represent a solution constructed in Lemma 5.6(2). This solution “chooses” i = 2, leaves
untouched the four vertices gα

2 , and removes hα
2 as well as gα

i for i ̸= 2. Bottom left: the graph P

and vertices named h, g. Two vertex-disjoint non-interval subgraphs of P have green edges. Bottom
right: a closer look at the first two blocks of H5 with two copies of P drawn in detail. The subgraph
highlighted in green witnesses that if a minimum-size solution removes gα

i for at least one α ∈ [4]
then it must also remove v2

i , what is exploited in Lemma 5.6(3).

3. For every minimum-size interval deletion set X in Hs there is i ∈ [s] such that
{g1

i , g2
i , g3

i , g4
i } ∩ X = ∅.

4. If s ≤ 2k then td(Hs) ≤ td(H1) + k, where td(G) stands for the treedepth of G.

Lokshtanov et al. [54] proved that k × k Permutation Clique cannot be solved in time
2o(k log k) assuming ETH. According to the reduction below, this also rules out running time
of the form 2o(td log td) · nO(1) for Interval Vertex Deletion, where td is the treedepth
of the input graph. As tw(G) ≤ td(G), this entails the same hardness for treewidth, what
proves Theorem 1.2.

▶ Proposition 5.7. There is an algorithm that, given an instance (G, k) of k×k Permutation
Clique, runs in time 2O(k) and returns an equivalent unweighted instance (H, p) of Interval
Vertex Deletion such that |V (H)| = 2O(k) and td(H) = O(k).

Proof. For 1 ≤ i < j ≤ k and x ̸= y ∈ [k] let Si,x,j,y be the family of tuples (S1, S2, S3, S4)
of subsets of [k] satisfying:

S1 ⊂ S2 ⊆ S3 ⊂ S4,
|S1| = i − 1,
S2 \ S1 = {x},
|S3| = j − 1,
S4 \ S3 = {y}.

Furthermore, for 1 ≤ i < j ≤ k, let Si,j be the union of Si,x,j,y over all pairs x ≠ y ∈ [k]
such that (i, x)(j, y) ∈ E(G). Let si,j = |Si,j | and ρi,j : [si,j] → Si,j be an arbitrary bijection.
Clearly si,j ≤ 4kk2.

M. Włodarczyk 106:15

The graph H consists of a permutation gadget Yk and, for each 1 ≤ i < j ≤ k, a choice
gadget Ci,j of order si,j . For S ⊆ [k] we use shorthand Yk[S] = {yi | i ∈ S}. For ℓ ∈ [si,j]
and (S1, S2, S3, S4) = ρi,j(ℓ) the vertices Ci,j [g1

ℓ], Ci,j [g2
ℓ], Ci,j [g3

ℓ], Ci,j [g4
ℓ] get connected to

vertex sets Yk[S1], Yk[S2], Yk[S3], Yk[S4], respectively. This finishes the construction of H.
The number of vertices in H is clearly 2O(k) and the construction can be performed in time
polynomial in the size of H. We set p = 10 ·

∑
1≤i<j≤k si,j .

▷ Claim 5.8. If (G, k) admits a solution, then H has an interval deletion set of size p.

Proof. Let π : [k] → [k] be a permutation encoding a clique in G. By the construction, for
each 1 ≤ i < j ≤ k we have (π([i − 1]), π([i]), π([j − 1]), π([j]) ∈ Si,j . Let ℓ ∈ [si,j] be the
index mapped to this tuple by ρi,j . By Lemma 5.6(2) the choice gadget Ci,j has an interval
deletion set Xi,j ⊆ V (Ci,j) of size 10si,j such that {Ci,j [h1

ℓ], Ci,j [h2
ℓ], Ci,j [h3

ℓ], Ci,j [h4
ℓ]} ⊆ Xi,j

and {Ci,j [g1
r], Ci,j [g2

r], Ci,j [g3
r], Ci,j [g4

r]} ⊆ Xi,j for each r ̸= ℓ. In other words, Xi,j contains
all vertices in Ci,j which are adjacent to Yk except for the Ci,j-copies of g1

ℓ , g2
ℓ , g3

ℓ , g4
ℓ and

Xi,j also contains the neighbors of Ci,j [g1
ℓ], Ci,j [g2

ℓ], Ci,j [g3
ℓ], Ci,j [g4

ℓ] in Ci,j .
We set X =

⋃
1≤i<j≤k Xi,j . Then the only connected component of H − X which is not

a connected component of any Ci,j − Xi,j is given by Yk together with an independent set
of the vertices described above. The neighborhood of each such vertex in Yk is of the form
Yk[π([k′])] for some 0 ≤ k′ ≤ k. By Lemma 5.3 this component is an interval graph. This
shows that X is indeed an interval deletion set. ◁

▷ Claim 5.9. If H has an interval deletion set of size at most p, then (G, k) admits a solution.

Proof. Let X be an interval deletion set in H. By Lemma 5.6(1) a minimum-size interval
deletion set in Ci,j has size 10si,j . As the choice gadgets are vertex-disjoint subgraphs
of H, the set X must contain exactly 10si,j vertices from V (Ci,j). This also implies that
V (Yk) ∩ X = ∅.

Let Xi,j = V (Ci,j) ∩ X. By Lemma 5.6(3) there exists ℓ ∈ [si,j] such that{
Ci,j [g1

ℓ], Ci,j [g2
ℓ], Ci,j [g3

ℓ], Ci,j [g4
ℓ]

}
∩ Xi,j = ∅. Therefore for each pair (i, j) there

is a tuple (S1
i,j , S2

i,j , S3
i,j , S4

i,j) ∈ Si,j so that vertices from Ci,j with neighborhoods
Yk[S1

i,j], Yk[S2
i,j], Yk[S3

i,j], Yk[S4
i,j] are present in H − X. By Lemma 5.3 there exists a single

permutation π : [k] → [k] so that each set Sα
i,j is of the form π([|Sα

i,j |]). By the definition of
family Si,j this implies that (i, π(i))(j, π(j)) ∈ E(G) for each pair (i, j). Hence there is a
k-clique in G. ◁

▷ Claim 5.10. The treedepth of H is O(k).

Proof. The treedepth of H is at most |Yk| = k + 2 plus td(H − Yk), which equals the
maximum of td(Ci,j) over all employed choice gadgets Ci,j . As si,j ≤ 4kk2, Lemma 5.6(4)
implies that td(Ci,j) ≤ 2k + 2 log2 k + O(1). ◁

This concludes the proof of the proposition. ◀

6 Conclusion and open problems

We have obtained ETH-tight bounds for vertex-deletion problems into the classes of chordal
and interval graphs, under the treewidth parameterization. The status of the corresponding
edge-deletion problems remains unclear (see [64]). The related problem, Feedback Vertex
Set, can be solved using representative families within the same running time as our
algorithm for ChVD [37]. However, it admits a faster deterministic algorithm based on the
determinant approach [69] and an even faster randomized algorithm based on the Cut &
Count technique [35]. Could ChVD also be amenable to one of those techniques?

ICALP 2023

106:16 Tight Bounds for Chordal/Interval Vertex Deletion

Our algorithm for ChVD is based on a novel connection between chordal graphs and
graphic matroids, which might come in useful in other settings. In particular, we ask whether
this insight can be leveraged to improve the running time for ChVD parameterized by the
solution size k, where the current-best algorithm runs in time 2O(k log k)nO(1) [29]. A direct
avenue for a potential improvement would be to reduce the problem in time 2O(k)nO(1)

to the case with treewidth O(k) and then apply Theorem 1.1. Such a strategy has been
employed in the state-of-the-art algorithm for Planar Vertex Deletion parameterized
by the solution size [47].

References
1 Akanksha Agrawal, Sudeshna Kolay, Daniel Lokshtanov, and Saket Saurabh. A faster FPT

algorithm and a smaller kernel for block graph vertex deletion. In Evangelos Kranakis,
Gonzalo Navarro, and Edgar Chávez, editors, LATIN 2016: Theoretical Informatics – 12th
Latin American Symposium, Ensenada, Mexico, April 11-15, 2016, Proceedings, volume
9644 of Lecture Notes in Computer Science, pages 1–13. Springer, 2016. doi:10.1007/
978-3-662-49529-2_1.

2 Akanksha Agrawal, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi.
Erdös-Pósa property of obstructions to interval graphs. In Rolf Niedermeier and Brigitte
Vallée, editors, 35th Symposium on Theoretical Aspects of Computer Science, STACS 2018,
February 28 to March 3, 2018, Caen, France, volume 96 of LIPIcs, pages 7:1–7:15. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.STACS.2018.7.

3 Akanksha Agrawal, Daniel Lokshtanov, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi.
Feedback vertex set inspired kernel for chordal vertex deletion. ACM Trans. Algorithms,
15(1):11:1–11:28, 2019. doi:10.1145/3284356.

4 Akanksha Agrawal, Pranabendu Misra, Saket Saurabh, and Meirav Zehavi. Interval vertex
deletion admits a polynomial kernel. In Proceedings of the Thirtieth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA ’19, pages 1711–1730, USA, 2019. Society for
Industrial and Applied Mathematics. doi:10.1137/1.9781611975482.103.

5 Jungho Ahn, Eduard Eiben, O joung Kwon, and Sang il Oum. A Polynomial Kernel for 3-Leaf
Power Deletion. In Javier Esparza and Daniel Kráľ, editors, 45th International Symposium
on Mathematical Foundations of Computer Science (MFCS 2020), volume 170 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 5:1–5:14, Dagstuhl, Germany, 2020.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.MFCS.2020.5.

6 Jungho Ahn, Eun Jung Kim, and Euiwoong Lee. Towards constant-factor approximation
for chordal/distance-hereditary vertex deletion. Algorithmica, 84(7):2106–2133, 2022. doi:
10.1007/s00453-022-00963-7.

7 Josh Alman and Virginia Vassilevska Williams. A refined laser method and faster matrix
multiplication. In Proceedings of the Thirty-Second Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA ’21, pages 522–539, USA, 2021. Society for Industrial and Applied
Mathematics. doi:10.5555/3458064.3458096.

8 Amotz Bar-Noy, Reuven Bar-Yehuda, Ari Freund, Joseph (Seffi) Naor, and Baruch Schieber.
A unified approach to approximating resource allocation and scheduling. J. ACM, 48(5):1069–
1090, September 2001. doi:10.1145/502102.502107.

9 Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. A complexity dichotomy for hitting
connected minors on bounded treewidth graphs: the chair and the banner draw the boundary. In
Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete Algorithms,
SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 951–970. SIAM, 2020.
doi:10.1137/1.9781611975994.57.

10 Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. Hitting minors on bounded treewidth
graphs. I. General upper bounds. SIAM J. Discret. Math., 34(3):1623–1648, 2020. doi:
10.1137/19M1287146.

https://doi.org/10.1007/978-3-662-49529-2_1
https://doi.org/10.1007/978-3-662-49529-2_1
https://doi.org/10.4230/LIPIcs.STACS.2018.7
https://doi.org/10.1145/3284356
https://doi.org/10.1137/1.9781611975482.103
https://doi.org/10.4230/LIPIcs.MFCS.2020.5
https://doi.org/10.1007/s00453-022-00963-7
https://doi.org/10.1007/s00453-022-00963-7
https://doi.org/10.5555/3458064.3458096
https://doi.org/10.1145/502102.502107
https://doi.org/10.1137/1.9781611975994.57
https://doi.org/10.1137/19M1287146
https://doi.org/10.1137/19M1287146

M. Włodarczyk 106:17

11 Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. Hitting minors on bounded treewidth
graphs. II. Single-exponential algorithms. Theor. Comput. Sci., 814:135–152, 2020. doi:
10.1016/j.tcs.2020.01.026.

12 Julien Baste, Ignasi Sau, and Dimitrios M. Thilikos. Hitting minors on bounded treewidth
graphs. III. Lower bounds. J. Comput. Syst. Sci., 109:56–77, 2020. doi:10.1016/j.jcss.
2019.11.002.

13 Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph Drawing:
Algorithms for the Visualization of Graphs. Prentice Hall PTR, USA, 1st edition, 1998. URL:
https://dl.acm.org/doi/10.5555/551884.

14 Seymour Benzer. On the topology of the genetic fine structure. Proceedings of the National
Academy of Sciences of the United States of America, 45(11):1607–1620, 1959. URL: http:
//www.jstor.org/stable/90127.

15 Benjamin Bergougnoux, Édouard Bonnet, Nick Brettell, and O joung Kwon. Close Relatives
of Feedback Vertex Set Without Single-Exponential Algorithms Parameterized by Treewidth.
In Yixin Cao and Marcin Pilipczuk, editors, 15th International Symposium on Parameterized
and Exact Computation (IPEC 2020), volume 180 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 3:1–3:17, 2020. doi:10.4230/LIPIcs.IPEC.2020.3.

16 Jean R. S. Blair and Barry Peyton. An introduction to chordal graphs and clique trees. In
Alan George, John R. Gilbert, and Joseph W. H. Liu, editors, Graph Theory and Sparse
Matrix Computation, pages 1–29, New York, NY, 1993. Springer New York.

17 Ivan Bliznets, Marek Cygan, Pawel Komosa, Michal Pilipczuk, and Lukás Mach. Lower bounds
for the parameterized complexity of minimum fill-in and other completion problems. ACM
Trans. Algorithms, 16(2):25:1–25:31, 2020. doi:10.1145/3381426.

18 Ivan Bliznets, Fedor V Fomin, Michał Pilipczuk, and Yngve Villanger. Largest chordal and
interval subgraphs faster than 2n. Algorithmica, 76(2):569–594, 2016.

19 Hans L. Bodlaender, Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Deterministic
single exponential time algorithms for connectivity problems parameterized by treewidth. Inf.
Comput., 243:86–111, 2015. doi:10.1016/j.ic.2014.12.008.

20 Hans L. Bodlaender, Pål Gronås Drange, Markus S. Dregi, Fedor V. Fomin, Daniel Lokshtanov,
and Michał Pilipczuk. A ckn 5-approximation algorithm for treewidth. SIAM Journal on
Computing, 45(2):317–378, 2016. doi:10.1137/130947374.

21 Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh,
and Dimitrios M. Thilikos. (Meta) Kernelization. J. ACM, 63(5):44:1–44:69, 2016. doi:
10.1145/2973749.

22 Marthe Bonamy, Lukasz Kowalik, Jesper Nederlof, Michal Pilipczuk, Arkadiusz Socala,
and Marcin Wrochna. On directed feedback vertex set parameterized by treewidth. In
Andreas Brandstädt, Ekkehard Köhler, and Klaus Meer, editors, Graph-Theoretic Concepts in
Computer Science – 44th International Workshop, WG 2018, Cottbus, Germany, June 27-29,
2018, Proceedings, volume 11159 of Lecture Notes in Computer Science, pages 65–78. Springer,
2018. doi:10.1007/978-3-030-00256-5_6.

23 Édouard Bonnet, Nick Brettell, O joung Kwon, and Dániel Marx. Generalized Feedback Vertex
Set Problems on Bounded-Treewidth Graphs: Chordality Is the Key to Single-Exponential
Parameterized Algorithms. In Daniel Lokshtanov and Naomi Nishimura, editors, 12th Inter-
national Symposium on Parameterized and Exact Computation (IPEC 2017), volume 89 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 7:1–7:13, Dagstuhl, Germany,
2018. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. doi:10.4230/LIPIcs.IPEC.2017.7.

24 Andreas Brandstädt, Van Bang Le, and Jeremy P. Spinrad. Graph classes: a survey. Society
for Industrial and Applied Mathematics, Philadelphia, PA, USA, 1999. doi:10.1137/1.
9780898719796.

25 Peter Buneman. A characterisation of rigid circuit graphs. Discrete Math., 9(3):205–212,
September 1974. doi:10.1016/0012-365X(74)90002-8.

ICALP 2023

https://doi.org/10.1016/j.tcs.2020.01.026
https://doi.org/10.1016/j.tcs.2020.01.026
https://doi.org/10.1016/j.jcss.2019.11.002
https://doi.org/10.1016/j.jcss.2019.11.002
https://dl.acm.org/doi/10.5555/551884
http://www.jstor.org/stable/90127
http://www.jstor.org/stable/90127
https://doi.org/10.4230/LIPIcs.IPEC.2020.3
https://doi.org/10.1145/3381426
https://doi.org/10.1016/j.ic.2014.12.008
https://doi.org/10.1137/130947374
https://doi.org/10.1145/2973749
https://doi.org/10.1145/2973749
https://doi.org/10.1007/978-3-030-00256-5_6
https://doi.org/10.4230/LIPIcs.IPEC.2017.7
https://doi.org/10.1137/1.9780898719796
https://doi.org/10.1137/1.9780898719796
https://doi.org/10.1016/0012-365X(74)90002-8

106:18 Tight Bounds for Chordal/Interval Vertex Deletion

26 Leizhen Cai. Parameterized complexity of vertex colouring. Discrete Applied Mathematics,
127(3):415–429, 2003. doi:10.1016/S0166-218X(02)00242-1.

27 Yixin Cao. Linear recognition of almost interval graphs. In Robert Krauthgamer, editor,
Proceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1096–1115. SIAM, 2016.
doi:10.1137/1.9781611974331.ch77.

28 Yixin Cao and Dániel Marx. Interval deletion is fixed-parameter tractable. ACM Trans.
Algorithms, 11(3), January 2015. doi:10.1145/2629595.

29 Yixin Cao and Dániel Marx. Chordal editing is fixed-parameter tractable. Algorithmica,
75(1):118–137, May 2016. doi:10.1007/s00453-015-0014-x.

30 Bruno Courcelle and Joost Engelfriet. Graph Structure and Monadic Second-Order Logic – A
Language-Theoretic Approach, volume 138 of Encyclopedia of mathematics and its applications.
Cambridge University Press, 2012. doi:10.1017/CBO9780511977619.

31 Radu Curticapea, Nathan Lindzey, and Jesper Nederlof. A tight lower bound for counting
hamiltonian cycles via matrix rank. In Proceedings of the 2018 Annual ACM-SIAM Symposium
on Discrete Algorithms (SODA), pages 1080–1099, 2018. doi:10.1137/1.9781611975031.70.

32 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

33 Marek Cygan, Stefan Kratsch, and Jesper Nederlof. Fast hamiltonicity checking via bases of
perfect matchings. J. ACM, 65(3):12:1–12:46, 2018. doi:10.1145/3148227.

34 Marek Cygan, Dániel Marx, Marcin Pilipczuk, and Michał Pilipczuk. Hitting forbidden
subgraphs in graphs of bounded treewidth. Information and Computation, 256:62–82, 2017.
doi:10.1016/j.ic.2017.04.009.

35 Marek Cygan, Jesper Nederlof, Marcin Pilipczuk, Michał Pilipczuk, Johan M. M. Van Rooij,
and Jakub Onufry Wojtaszczyk. Solving connectivity problems parameterized by treewidth in
single exponential time. ACM Trans. Algorithms, 18(2), March 2022. doi:10.1145/3506707.

36 Erik D. Demaine and MohammadTaghi Hajiaghayi. The bidimensionality theory and its
algorithmic applications. The Computer Journal, 51(3):292–302, 2008. doi:10.1093/comjnl/
bxm033.

37 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Representative
sets of product families. In Andreas S. Schulz and Dorothea Wagner, editors, Algorithms
– ESA 2014, pages 443–454, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg. doi:
10.1007/978-3-662-44777-2_37.

38 Fedor V. Fomin, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. Efficient computation
of representative families with applications in parameterized and exact algorithms. J. ACM,
63(4):29:1–29:60, 2016. doi:10.1145/2886094.

39 Fedor V. Fomin and Yngve Villanger. Subexponential parameterized algorithm for minimum
fill-in. SIAM Journal on Computing, 42(6):2197–2216, 2013. doi:10.1137/11085390X.

40 Fǎnicǎ Gavril. The intersection graphs of subtrees in trees are exactly the chordal graphs.
Journal of Combinatorial Theory, Series B, 16(1):47–56, 1974. doi:10.1016/0095-8956(74)
90094-X.

41 Pinar Heggernes, Pim van ’t Hof, Bart M.P. Jansen, Stefan Kratsch, and Yngve Villanger.
Parameterized complexity of vertex deletion into perfect graph classes. Theoretical Computer
Science, 511:172–180, 2013. Exact and Parameterized Computation. doi:10.1016/j.tcs.
2012.03.013.

42 Russell Impagliazzo, Ramamohan Paturi, and Francis Zane. Which problems have strongly
exponential complexity? J. Comput. Syst. Sci., 63(4):512–530, 2001. doi:10.1006/jcss.2001.
1774.

43 Ashwin Jacob, Fahad Panolan, Venkatesh Raman, and Vibha Sahlot. Structural parameteriza-
tions with modulator oblivion. In Yixin Cao and Marcin Pilipczuk, editors, 15th International
Symposium on Parameterized and Exact Computation, IPEC 2020, December 14-18, 2020,
Hong Kong, China (Virtual Conference), volume 180 of LIPIcs, pages 19:1–19:18. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.IPEC.2020.19.

https://doi.org/10.1016/S0166-218X(02)00242-1
https://doi.org/10.1137/1.9781611974331.ch77
https://doi.org/10.1145/2629595
https://doi.org/10.1007/s00453-015-0014-x
https://doi.org/10.1017/CBO9780511977619
https://doi.org/10.1137/1.9781611975031.70
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1145/3148227
https://doi.org/10.1016/j.ic.2017.04.009
https://doi.org/10.1145/3506707
https://doi.org/10.1093/comjnl/bxm033
https://doi.org/10.1093/comjnl/bxm033
https://doi.org/10.1007/978-3-662-44777-2_37
https://doi.org/10.1007/978-3-662-44777-2_37
https://doi.org/10.1145/2886094
https://doi.org/10.1137/11085390X
https://doi.org/10.1016/0095-8956(74)90094-X
https://doi.org/10.1016/0095-8956(74)90094-X
https://doi.org/10.1016/j.tcs.2012.03.013
https://doi.org/10.1016/j.tcs.2012.03.013
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.4230/LIPIcs.IPEC.2020.19

M. Włodarczyk 106:19

44 Hugo Jacob, Thomas Bellitto, Oscar Defrain, and Marcin Pilipczuk. Close Relatives (Of
Feedback Vertex Set), Revisited. In Petr A. Golovach and Meirav Zehavi, editors, 16th
International Symposium on Parameterized and Exact Computation (IPEC 2021), volume
214 of Leibniz International Proceedings in Informatics (LIPIcs), pages 21:1–21:15, Dagstuhl,
Germany, 2021. doi:10.4230/LIPIcs.IPEC.2021.21.

45 Bart M. P. Jansen, Jari J. H. de Kroon, and Michał Włodarczyk. Vertex deletion parameterized
by elimination distance and even less. In Proceedings of the 53rd Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2021, pages 1757–1769, New York, NY, USA,
2021. Association for Computing Machinery. doi:10.1145/3406325.3451068.

46 Bart M. P. Jansen, Jari J. H. de Kroon, and Michal Wlodarczyk. Vertex deletion parameterized
by elimination distance and even less. CoRR, abs/2103.09715, 2021. arXiv:2103.09715v4.

47 Bart M. P. Jansen, Daniel Lokshtanov, and Saket Saurabh. A near-optimal planarization
algorithm. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014,
pages 1802–1811. SIAM, 2014. doi:10.1137/1.9781611973402.130.

48 Bart M. P. Jansen and Marcin Pilipczuk. Approximation and kernelization for chordal vertex
deletion. SIAM J. Discret. Math., 32(3):2258–2301, 2018. doi:10.1137/17M112035X.

49 J.Mark Keil. Finding hamiltonian circuits in interval graphs. Information Processing Letters,
20(4):201–206, 1985. doi:10.1016/0020-0190(85)90050-X.

50 David Kendall. Incidence matrices, interval graphs and seriation in archeology. Pacific Journal
of mathematics, 28(3):565–570, 1969.

51 Eun Jung Kim and O-joung Kwon. Erdős-Pósa property of chordless cycles and its applications.
J. Comb. Theory, Ser. B, 145:65–112, 2020. doi:10.1016/j.jctb.2020.05.002.

52 Lefteris M. Kirousis and Christos H. Papadimitriou. Interval graphs and searching. Discrete
Mathematics, 55(2):181–184, 1985. doi:10.1016/0012-365X(85)90046-9.

53 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Known algorithms on graphs of
bounded treewidth are probably optimal. ACM Trans. Algorithms, 14(2), April 2018. doi:
10.1145/3170442.

54 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Slightly superexponential parameterized
problems. SIAM J. Comput., 47(3):675–702, 2018. doi:10.1137/16M1104834.

55 Daniel Lokshtanov, Neeldhara Misra, and Saket Saurabh. On the hardness of eliminating small
induced subgraphs by contracting edges. In Gregory Z. Gutin and Stefan Szeider, editors,
Parameterized and Exact Computation – 8th International Symposium, IPEC 2013, Sophia
Antipolis, France, September 4-6, 2013, Revised Selected Papers, volume 8246 of Lecture Notes
in Computer Science, pages 243–254. Springer, 2013. doi:10.1007/978-3-319-03898-8_21.

56 Dániel Marx. Four shorts stories on surprising algorithmic uses of treewidth. In Fedor V.
Fomin, Stefan Kratsch, and Erik Jan van Leeuwen, editors, Treewidth, Kernels, and Algorithms
– Essays Dedicated to Hans L. Bodlaender on the Occasion of His 60th Birthday, volume
12160 of Lecture Notes in Computer Science, pages 129–144. Springer, 2020. doi:10.1007/
978-3-030-42071-0_10.

57 Dániel Marx, Barry O’Sullivan, and Igor Razgon. Finding small separators in linear time via
treewidth reduction. ACM Trans. Algorithms, 9(4):30:1–30:35, 2013. doi:10.1145/2500119.

58 Marcin Pilipczuk. A tight lower bound for vertex planarization on graphs of bounded treewidth.
Discret. Appl. Math., 231:211–216, 2017. doi:10.1016/j.dam.2016.05.019.

59 Michał Pilipczuk. Problems parameterized by treewidth tractable in single exponential time:
A logical approach. In Filip Murlak and Piotr Sankowski, editors, Mathematical Foundations
of Computer Science 2011, pages 520–531, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.
doi:10.1007/978-3-642-22993-0_47.

60 R. C. Prim. Shortest connection networks and some generalizations. The Bell System Technical
Journal, 36(6):1389–1401, 1957. doi:10.1002/j.1538-7305.1957.tb01515.x.

61 N. Robertson and P.D. Seymour. Graph minors XIII. The disjoint paths problem. Journal of
Combinatorial Theory, Series B, 63(1):65–110, 1995. doi:10.1006/jctb.1995.1006.

ICALP 2023

https://doi.org/10.4230/LIPIcs.IPEC.2021.21
https://doi.org/10.1145/3406325.3451068
https://arxiv.org/abs/2103.09715v4
https://doi.org/10.1137/1.9781611973402.130
https://doi.org/10.1137/17M112035X
https://doi.org/10.1016/0020-0190(85)90050-X
https://doi.org/10.1016/j.jctb.2020.05.002
https://doi.org/10.1016/0012-365X(85)90046-9
https://doi.org/10.1145/3170442
https://doi.org/10.1145/3170442
https://doi.org/10.1137/16M1104834
https://doi.org/10.1007/978-3-319-03898-8_21
https://doi.org/10.1007/978-3-030-42071-0_10
https://doi.org/10.1007/978-3-030-42071-0_10
https://doi.org/10.1145/2500119
https://doi.org/10.1016/j.dam.2016.05.019
https://doi.org/10.1007/978-3-642-22993-0_47
https://doi.org/10.1002/j.1538-7305.1957.tb01515.x
https://doi.org/10.1006/jctb.1995.1006

106:20 Tight Bounds for Chordal/Interval Vertex Deletion

62 Neil Robertson and P.D Seymour. Graph minors. II. Algorithmic aspects of tree-width. Journal
of Algorithms, 7(3):309–322, 1986. doi:10.1016/0196-6774(86)90023-4.

63 Donald J Rose. A graph-theoretic study of the numerical solution of sparse positive definite
systems of linear equations. In Graph theory and computing, pages 183–217. Elsevier, 1972.

64 Toshiki Saitoh, Ryo Yoshinaka, and Hans L. Bodlaender. Fixed-treewidth-efficient algorithms
for edge-deletion to interval graph classes. In Ryuhei Uehara, Seok-Hee Hong, and Subhas C.
Nandy, editors, WALCOM: Algorithms and Computation – 15th International Conference and
Workshops, 2021, Yangon, Myanmar, volume 12635 of Lecture Notes in Computer Science,
pages 142–153. Springer, 2021. doi:10.1007/978-3-030-68211-8_12.

65 Ignasi Sau and Uéverton dos Santos Souza. Hitting Forbidden Induced Subgraphs on Bounded
Treewidth Graphs. In Javier Esparza and Daniel Kráľ, editors, 45th International Symposium
on Mathematical Foundations of Computer Science (MFCS 2020), volume 170 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 82:1–82:15, Dagstuhl, Germany, 2020.
Schloss Dagstuhl–Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.MFCS.2020.82.

66 Hadas Shachnai and Meirav Zehavi. Representative families: A unified tradeoff-based approach.
Journal of Computer and System Sciences, 82(3):488–502, 2016. doi:10.1016/j.jcss.2015.
11.008.

67 Johan MM Van Rooij, Hans L Bodlaender, and Peter Rossmanith. Dynamic programming on
tree decompositions using generalised fast subset convolution. In European Symposium on
Algorithms, pages 566–577. Springer, 2009. doi:10.1007/978-3-642-04128-0_51.

68 Pim van ’t Hof and Yngve Villanger. Proper interval vertex deletion. Algorithmica, 65(4):845–
867, 2013. doi:10.1007/s00453-012-9661-3.

69 Michał Włodarczyk. Clifford algebras meet tree decompositions. Algorithmica, 81(2):497–518,
2019. doi:10.1007/s00453-018-0489-3.

70 Mihalis Yannakakis. Computing the minimum fill-in is NP-complete. SIAM Journal on
Algebraic Discrete Methods, 2(1):77–79, 1981. doi:10.1137/0602010.

71 Meirav Zehavi. Mixing color coding-related techniques. In Algorithms-ESA 2015, pages
1037–1049. Springer, 2015. doi:10.1007/978-3-662-48350-3_86.

https://doi.org/10.1016/0196-6774(86)90023-4
https://doi.org/10.1007/978-3-030-68211-8_12
https://doi.org/10.4230/LIPIcs.MFCS.2020.82
https://doi.org/10.1016/j.jcss.2015.11.008
https://doi.org/10.1016/j.jcss.2015.11.008
https://doi.org/10.1007/978-3-642-04128-0_51
https://doi.org/10.1007/s00453-012-9661-3
https://doi.org/10.1007/s00453-018-0489-3
https://doi.org/10.1137/0602010
https://doi.org/10.1007/978-3-662-48350-3_86

The Wrong Direction of Jensen’s Inequality Is
Algorithmically Right
Or Zamir #

Princeton University, NJ, USA

Abstract
Let A be an algorithm with expected running time eX , conditioned on the value of some random
variable X. We construct an algorithm A′ with expected running time O

(
eE[X]), that fully executes A.

In particular, an algorithm whose running time is a random variable T can be converted to one with
expected running time O

(
eE[ln T]), which is never worse than O(E[T]). No information about the

distribution of X is required for the construction of A′.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms; Theory of computation → Algorithm design techniques; Theory of computation →
Computational complexity and cryptography

Keywords and phrases algorithms, complexity, Jensen’s inequality

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.107

Category Track A: Algorithms, Complexity and Games

Acknowledgements The author would like to thank Avi Wigderson for pointing out important
references.

1 Introduction

Let A be a Las Vegas1 randomized algorithm. Assume that conditioned on the value of some
random variable X, the expected running time of A is eX . By Jensen’s inequality, E[eX] ≥
eE[X], and in fact A’s expected running time might be much larger than eE[X]: Consider for
example X that gets the value 1

p E[X] with probability p and 0 otherwise, for any choice
of p > 0; While the expectation of X is always E[X], the expectation of eX is p · e

1
p E[X]

which can be arbitrarily large. We show that, surprisingly, any such A can be converted to a
different Las-Vegas randomized algorithm A′ that gives the same answer yet runs in expected
time O

(
eE[X]). Transforming A to A′ does not require any assumption or knowledge about

the distribution of X.

▶ Theorem 1. There exists an algorithm T that receives as an input a randomized Las
Vegas algorithm A, and fully executes it. If the expected running time of A is eX when
conditioned on the value of some random variable X, then the expected running time of T (A)
is O

(
eE[X]).

As a corollary, any algorithm whose running time is a random variable T can be converted
to one with expected running time O

(
eE[ln T]), which is never worse than O(E[T]).

Recently we used the following simple version of Theorem 1 in a late revision of [10] to
substantially simplify the analysis in the paper. The paper improves the running time of
exact exponential-time algorithms for general Constraint Satisfaction Problems.

1 A randomized algorithm is called Las Vegas if it always returns the correct answer, but its running time
is a random variable.

EA
T
C
S

© Or Zamir;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 107; pp. 107:1–107:10

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:orzamir@princeton.edu
https://doi.org/10.4230/LIPIcs.ICALP.2023.107
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

107:2 The Wrong Direction of Jensen’s Inequality Is Algorithmically Right

▶ Lemma 2 (from an up-to-date version of [10]). Let A be an algorithm with expected running
time 2X conditioned on the value of a random variable X. There exists an algorithm A′

that fully executes A and has an expected running time of O
(
2E[X] · E [X]

)
. Transforming A

to A′ requires knowing E[X].
In this paper we focus on Theorem 1 itself, obtaining an optimal version of it.
We transform an algorithm A by using a sequence of truncated evaluations. A truncated

evaluation of an algorithm A for t steps is the process of running algorithm A and aborting
its run if it did not fully execute in the first t computational steps of its run. Each of
the algorithms we present is thus a sequence of values t1, t2, . . . , ti, . . . which we use as
thresholds for truncated evaluations of A. We stop at the first time A is fully executed.
These thresholds can be defined deterministically or be random variables. In the simpler
algorithms we present, the thresholds depend on E[X] or even on the entire distribution X.
For the proof of Theorem 1 the thresholds are completely independent of X and A.

Truncated evaluations are frequently used in complexity theory (for example, see the
proof of the time and space hierarchies in [2]). The first algorithmic use of such a sequence of
truncated evaluations that we are aware of, is by Alt, Guibas, Mehlhorn, Karp and Wigderson
[1]. They used it to convert Las Vegas randomized algorithms to Monte Carlo randomized
algorithms, with success probability larger than what Markov’s inequality gives. Luby,
Sinclair and Zuckerman [5] then introduced a universal strategy for truncated evaluations.
That is a sequence that is guaranteed to run in time O(s log s) if there exists any sequence
that runs in time O(s) for the same algorithm. Our contribution thus is two-fold: first, we
prove the existence of good strategies in terms of E[X], and second, we show that these
strategies can be explicitly constructed (i.e., without paying additional logarithmic factors).
Not paying additional factors guarantees, due to Jensen’s inequality, that our transformed
algorithm is never worse than the original algorithm.

A natural use for such theorems is the regime of exponential-time algorithms. Consider
the following toy example. As part of the classic algorithm of Schöning [9] it was shown that
given an assignment α and a 3-SAT formula φ it is possible to test in O (2r) expected time
whether φ has a satisfying assignment α0 with HAM (α0, α) ≤ r, where HAM(·, ·) is the
standard Hamming distance. This claim was also derandomized later [6]. We can use this
primitive naively to obtain a non-trivial 3-SAT algorithm: Pick a random assignment α, and
then run the above procedure of Schöning. Let X be the Hamming distance between α and
a satisfying assignment α0 of the input formula φ, this is a random variable. Conditioned
on X, the expected running time of our algorithm is 2X . The expected running time of our
algorithm is thus E

[
2X

]
=

∑n
r=0

(
n
r

)
2−n2r = 2−n(1 + 2)n =

(3
2
)n. Using this paper’s main

Theorem, on the other hand, we can notice that E[X] = n
2 and thus we can convert the above

algorithm in a black-box manner into one with expected running time 2E[X] =
(√

2
)n

<
(3

2
)n.

We note that Schöning already presented an algorithm using this procedure that is faster
than both of the algorithms above.

Another similar example is the famous PPSZ algorithm for solving k-SAT, including
its recent improvements, and generalizations for CSPs [7, 4, 3, 10]. In these algorithms, a
randomly chosen permutation determines the number of input variables that we need to
guess the values of. The expectation of this number of variables is then analyzed. The success
probability or running time is exponential in this number. In the original PPSZ algorithm
the analyzed quantity is the success probability and thus Jensen’s inequality is applicable
to bound this probability from below. In other variations (including [10]), the analyzed
quantity is the running time and then Jensen’s inequality is no longer applicable and either
a more complicated analysis or the statement of this paper is necessary. Further discussion
on possible applications and in particular possible implications for SAT algorithms appears
in Section 3.

O. Zamir 107:3

1.1 Preliminaries

We use standard notation throughout the paper. The notation ln x is used for the natural
logarithm, and log x is used for the base two logarithm.

▶ Definition 3 (Iterated functions). Let f : R → R be a function. We define the iterated
functions f (k) : R → R recursively as follows. f (0)(x) := x, and for any k > 0 we
let f (k)(x) := f

(
f (k−1) (x)

)
.

▶ Definition 4 (Star functions). Let f : R → R be a function. Assume f is strictly increasing
and strictly shrinking2 for all x ≥ x0. The star function of f , defined with respect to x0 for
every x ≥ x0, is

f⋆(x) = min{k | f (k)(x) ≤ x0}.

The (general) Tower function Towerb (n, x) : N × R → R is defined as f (n)(x)
where f(x) = bx. The standard Tower function Tower : N → N is defined as Tower(n) =
Tower2(n, 1). The discrete inverse of the Tower function is log⋆, defined with respect
to x0 = 2. That is, log⋆ n is the smallest integer such that Tower(log⋆ n) ≥ n.

2 Proof of Theorem 1

We begin by presenting a simple proof of Lemma 2.
Let A be an algorithm whose expected running time is eX when we condition on the

value of some non-negative random variable X. We observe, by Markov’s inequality, that

Pr (X > E[X] + 1) ≤ E[X]
E[X] + 1 = 1 − 1

E[X] + 1 .

Hence, consider the following algorithm.

Algorithm 1 Simple repetition.

Input: A, E[X].
1: repeat
2: Run A for 2eE[X]+1 computational steps.
3: until A completed a run.

▶ Lemma 5. Algorithm 1 is expected to terminate in O
(
eE[X] · E [X]

)
time.

Proof. If X ≤ E[X]+1 then the expected running time of A is at most eE[X]+1, and hence by
Markov’s inequality a truncated evaluation of A for 2eE[X]+1 steps concludes with probability
at least 1

2 . By another application of Markov’s inequality we got Pr (X ≤ E[X] + 1) > 1
E[X]+1 .

Hence, the expected number of iterations until the truncated evaluations concludes is at
most 2 (E [X] + 1). Each iteration takes O

(
eE[X]) time. ◀

2 That is, f(x) < x.

ICALP 2023

107:4 The Wrong Direction of Jensen’s Inequality Is Algorithmically Right

2.1 Optimal bound when the distribution of X is known
The bound given by Markov’s inequality in

Pr (X ≥ E[X] + 1) ≤ E[X]
E[X] + 1 = 1 − 1

E[X] + 1

is attained only by the following distribution of X:

Pr (X = k) :=
{

1
E[X]+1 k = 0
1 − 1

E[X]+1 k = E[X] + 1
.

In this distribution, on the other hand, the value of X is very small with a relatively high
probability. In particular, in the case where X < E[X] + 1 we need to run A for much less
than eE[X]+1 computational steps. Hence, it is sensible to hope that every distribution X has
some threshold other than E[X] + 1 for which an algorithm similar to Algorithm 1 results in
a better bound. Consider the following algorithm, which is a generalization of Algorithm 1
in which the threshold can be arbitrary.

Algorithm 2 Simple repetition with variable threshold.

Input: A, t.
1: repeat
2: Run A for 2et computational steps.
3: until A completed a run.

▶ Lemma 6. Let X be a non-negative random variable. There exists t ∈ [0, E[X] + 1] such
that et

Pr(X<t) ≤ eE[X]+1.

Proof. Assume by contradiction that et

Pr(X<t) > eE[X]+1 for every t ∈ [0, E[X] + 1]. Equival-
ently,

Pr (X ≥ t) = 1 − Pr (X < t) > 1 − et−(E[X]+1).

Therefore,

E[X] =
∫ ∞

0
Pr(X ≥ t) dt ≥

∫ E[X]+1

0
Pr(X ≥ t) dt

>

∫ E[X]+1

0

(
1 − et−(E[X]+1)

)
dt

= (E[X] + 1) −
(

1 − e−(E[X]+1)
)

= E[X] + e−(E[X]+1)

> E[X],

which is a contradiction. ◀

Lemma 6 implies the following.

▶ Corollary 7. For every distribution X there exists a value of t = t(X) for which Algorithm 2
runs in O

(
eE[X]) time.

O. Zamir 107:5

We note that the additive constant +1 in the exponent in Lemma 6 is necessary. For
a parameter E, consider the random variable X supported on [0, E + 1 + ln

(
1 + e−(E+1))]

and distributed with density f(x) := ex−(E+1); Its expectation is

E[X] =
∫ E+1+ln(1+e−(E+1))

0
xf(x) dx

=
(

(x − 1) ex−(E+1)
) ∣∣∣∣E+1+ln(1+e−(E+1))

0

=
(

E + ln
(

1 + e−(E+1)
))

·
(

1 + e−(E+1)
)

+ e−(E+1)

= E + O
(

e−(E+1)
)

= E + o(1),

where the o(1) term is vanishing when E → ∞. On the other hand, for any t ≥ 0 we have

et

Pr (X < t) = et

min
(
1, et−(E+1) − e−(E+1)

) >
et

et−(E+1) = eE+1.

2.2 Optimal algorithm when the distribution of X is unknown
If the only thing known about the distribution of X is its expectation E[X], then there is no
fixed value of t for which Algorithm 2 is better than Algorithm 1. Fix a value of E[X] and
a choice of t. If t < E[X] then with the constant distribution X ≡ E[X] Algorithm 2 never
terminates. Otherwise, t ≥ E[X] and we consider the following distribution X:

Pr (X = k) :=
{

1 − E[X]
t+1 k = 0

E[X]
t+1 k = t + 1

.

For this distribution, the expected running time of Algorithm 2 is

et

1 − E[X]
t+1

= eE[X] · es(
s+1

E[X]+s+1

) = eE[X]
(

1 + E[X]
s + 1

)
es ≥ eE[X]E[X] · es

s + 1 ≥ eE[X]E[X],

where s := t − E[X] ≥ 0 and the last inequality follows as es ≥ s + 1 for any s.
To improve Algorithm 1 then, we need to consider several thresholds. We demonstrate

this idea with the following Lemma.

▶ Lemma 8. Let X be a non-negative random variable. It holds that
either Pr (X ≤ E [X] − ln E [X]) > 1

E[X]+1 or Pr (X ≤ E [X] + 2) > 1
ln E[X]+2 .

Proof. Assume that p := Pr (X ≤ E [X] − ln E [X]) ≤ 1
E[X]+1 . We observe that

E [X] = p E [X | X ≤ E [X] − ln E [X]] + (1 − p) E [X | X > E [X] − ln E [X]]
≥ (1 − p) E [X | X > E [X] − ln E [X]] ,

and hence

E [X | X > E [X] − ln E [X]] ≤ 1
1 − p

E[X]

≤ 1
1 − 1

E[X]+1
E[X]

= E[X] + 1.

ICALP 2023

107:6 The Wrong Direction of Jensen’s Inequality Is Algorithmically Right

Denote by Y := X − (E [X] − ln E [X]). The above can now be rephrased as E [Y | Y > 0] ≤
ln E [X] + 1. Applying Markov’s inequality to Y conditioned on Y > 0, we get

Pr (Y > ln E [X] + 2 | Y > 0) ≤ ln E [X] + 1
ln E [X] + 2 = 1 − 1

ln E [X] + 2 .

We conclude by noting that

Pr (X > E [X] + 2) = Pr (Y > ln E [X] + 2) ≤ Pr (Y > ln E [X] + 2 | Y > 0) . ◀

Consider the following Algorithm.

Algorithm 3 Two thresholds algorithm.

Input: A, E[X].
1: repeat
2: for ⌈E[X] + 1⌉ times do
3: Run A for 2eE[X]−ln E[X] computational steps.
4: for ⌈ln E[X] + 2⌉ times do
5: Run A for 2eE[X]+2 computational steps.
6: until A completed a run.

Due to Lemma 8, each iteration of the outermost loop of Algorithm 3 succeeds to fully
execute A with probability larger than 1 − e−1. Thus, in expectation we run this loop for a
constant number of iterations. The first for loop takes O

(
E [X] · eE[X]−ln E[X]) = O

(
eE[X])

expected time, and the second takes O
(
eE[X] ln E [X]

)
. We conclude the following.

▶ Corollary 9. Algorithm 3 runs in expected time O
(
eE[X] ln E [X]

)
.

Intuitively, the proof of Lemma 8 can be viewed as a reduction from the variable X to
the variable Y | (Y > 0), that has a much lower expectation: E [Y | Y > 0] ≤ ln E[X] + 1. We
can thus hope that iterating the proof for ln⋆ E[X] times would result in reducing X to a
variable with constant expectation. A natural implementation of this idea would result in an
algorithm that runs in expected time O

(
eE[X] ln⋆ E [X]

)
. We next formalize this intuition,

and do so in a more careful manner to avoid the ln⋆ E [X] factor.

▶ Definition 10. Let λ(x) := 3 ln(x) and note it is strictly increasing and shrinking for
all x ≥ 5. We define λ⋆(x), for x ≥ 5, to be the smallest k ∈ N such that λ(k)(x) ≤ 5.

▷ Claim 11. The following hold for all x ≥ 5:
1. λ⋆(x) = Θ (log⋆ x).
2. λ(λ⋆(x))(x) > 4.
3.

∑λ⋆(x)
i=0

1
λ(i)(x) < 2.

Proof. (1) We have that λ(2)(x) ≤ log x ≤ λ(x) for all x ≥ 410. In particular, log⋆ x ≤
λ⋆(x) ≤ 2 log⋆ x + λ⋆(410).

(2) λ(λ⋆(x)−1)(x) > 5 and hence λ(λ⋆(x))(x) > λ(5) > 4.82.
(3) For all x ≥ 17 it holds that λ(x) ≤ x

2 . Let k′ be the smallest integer such that λ(k′)(x) <

17. We thus have

k′−1∑
i=0

1
λ(i)(x)

<
1
17

∞∑
i=0

2−i = 2
17 .

O. Zamir 107:7

On the other hand, there are at most λ⋆(17) summands that are strictly larger than 1
17 , thus

by (2) we have

λ⋆(x)∑
i=k′

1
λ(i)(x)

<
λ⋆(17)

4 = 5
4 . ◁

We are now ready to prove a generalized version of Lemma 8, that is going to be the core
of our final algorithm.

▶ Lemma 12. Let X be a non-negative distribution and E ≥ max (E [X] , 5)
be an upper bound on its expectation. There either exists 1 ≤ k ≤ λ⋆(E)
such that Pr

(
X < E − λ(k) (E)

)
≥

((
λ(k−1) (E) + 2

)2 + 1
)−1

, or it holds that
Pr (X < E + 10) ≥ 1

2 .

Proof. We recursively denote by E0 := E and by Ek := λ(k)(E)+
∑k−1

i=0
1

Ei
for 1 ≤ k ≤ λ⋆(E).

Note that Ek ≥ λ(k)(E) and hence also

Ek = λ(k)(E) +
k−1∑
i=0

1
Ei

≤ λ(k)(E) +
k−1∑
i=0

1
λ(i)(E)

< λ(k)(E) + 2,

where the last inequality follows from Claim 11. In particular, λ(k)(E) ≤ Ek < λ(k)(E) + 2.

Assume that Pr
(
X < E − λ(k) (E)

)
<

((
λ(k−1) (E) + 2

)2 + 1
)−1

< 1
(Ek−1)2+1 for

every 1 ≤ k ≤ λ⋆ (E).
Denote by Yk := X −

(
E − λ(k) (E)

)
for k ≥ 0. We prove by induction on k

that E [Yk | Yk ≥ 0] ≤ Ek. For k = 0 the claim is straightforward as Y0 = X and E0 = E.
For the inductive step, we assume the hypothesis holds for k − 1 and show it holds for k. We
note that Yk−1 > Yk and hence if Yk ≥ 0 then Yk−1 ≥ 0 as well. Hence,

E[Yk−1 | Yk−1 ≥ 0] ≥ Pr (Yk ≥ 0 | Yk−1 ≥ 0) E [Yk−1 | Yk ≥ 0]
≥ Pr (Yk ≥ 0) E [Yk−1 | Yk ≥ 0] .

Thus, by the induction hypothesis we have

E [Yk−1 | Yk ≥ 0] ≤ E[Yk−1 | Yk−1 ≥ 0]
Pr (Yk ≥ 0)

≤ Ek−1

1 − 1
(Ek−1)2+1

= Ek−1 + 1
Ek−1

.

Therefore,

E[Yk | Yk ≥ 0] = E[Yk−1 | Yk ≥ 0] + λ(k) (E) − λ(k−1) (E)

≤ Ek−1 + 1
Ek−1

+ λ(k) (E) − λ(k−1) (E)

= Ek.

In particular, we have that E
[
Yλ⋆(E) | Yλ⋆(E) ≥ 0

]
≤ Eλ⋆(E) < λ(λ⋆(E))(E) + 2 ≤ 7.

ICALP 2023

107:8 The Wrong Direction of Jensen’s Inequality Is Algorithmically Right

Therefore,

Pr (X ≥ E + 10) ≤ Pr
(

X ≥ E + 10
∣∣∣∣ X ≥ E − λ(λ⋆(E))(E)

)
= Pr

(
Yλ⋆(E) ≥ λ(λ⋆(E))(E) + 10

∣∣∣∣ Yλ⋆(E) ≥ 0
)

≤ Pr
(

Yλ⋆(E) ≥ 14
∣∣∣∣ Yλ⋆(E) ≥ 0

)
<

7
14 = 1

2 . ◀

Consider the following algorithm.

Algorithm 4 Multiple thresholds algorithm.

Input: A, E.
1: repeat
2: for k = 1 to λ⋆(E) do
3: for 2⌈

(
λ(k−1) (E) + 2

)2 + 1⌉ times do
4: Run A for 2eE−λ(k)(E) computational steps.
5: for 2 times do
6: Run A for 2eE+10 computational steps.
7: until A completed a run.

▶ Corollary 13 (of Lemma 12). Each repeat loop of Algorithm 4 fully executes A with
probability at least 3

4 .

▶ Lemma 14. Let E ≥ max (E[X], 5), Algorithm 4 runs in O
(
eE

)
expected time.

Proof. By Corollary 13 we enter the repeat loop a constant number of times in expectation.
We thus analyze the computational cost of a single repeat loop. The evaluations in Lines 5−6
take O

(
eE

)
time. The evaluations in Lines 2 − 4 take

λ⋆(E)∑
k=1

2⌈
(

λ(k−1) (E) + 2
)2

+ 1⌉ · 2eE−λ(k)(E) = O

eE ·
λ⋆(E)∑
k=1

(
λ(k−1) (E)

)2
e−λ(k)(E)


time. By the definition of λ(x), we have e−λ(k)(x) = e−3 ln(λ(k−1)(x)) =

(
λ(k−1) (x)

)−3. In
particular,

λ⋆(E)∑
k=1

(
λ(k−1) (E)

)2
e−λ(k)(E) =

λ⋆(E)∑
k=1

(
λ(k−1) (E)

)−1
< 2,

where the last inequality follows from Claim 11. ◀

Finally, we also get rid of the necessity to provide the algorithm with E or E[X].

▶ Theorem 15. Algorithm 5 runs in expected time O
(
eE[X]).

Proof. By Lemma 14 the iteration of the outermost for loop corresponding to E takes
at most C · eE time, for some global constant C. All iterations in which E < E[X] thus
take O

(
eE[X]) time. By Corollary 13, each subsequent iteration succeeds with probability at

least 3
4 . Thus the expected running time is bounded by

CeE[X] ·
∞∑

t=0
et

(
1
4

)t

= O
(

eE[X]
)

. ◀

O. Zamir 107:9

Algorithm 5 Final algorithm.

Input: A.
1: for E = 5 to ∞ do
2: for k = 1 to λ⋆(E) do
3: for 2⌈

(
λ(k−1) (E) + 2

)2 + 1⌉ times do
4: Run A for 2eE−λ(k)(E) computational steps.
5: for 2 times do
6: Run A for 2eE+10 computational steps.
7: return if A completed a run.

3 Conclusions and Open Problems

We showed that a Las-Vegas algorithm with expected running eX conditioned on the
value of some random variable X, can always be converted to a Las-Vegas algorithm with
expected running time O

(
eE[X]). In particular, an algorithm whose running time is a random

variable T can be converted to one with expected running time O
(
eE[ln T]), which is never

worse than O(E[T]).
We demonstrated a use of this theorem to simplify a proof in the regime of exponential time

algorithms [10]. It is interesting to try applying it to other exponential and non-exponential
time algorithms and see if it can simplify or even improve the analysis.

3.1 Considering the variance
In terms of E[X] only, we can not get any better than O

(
eE[X]) as the distribution of X

might be constant. In that case though, the variance of X is zero. Can we get a better
bound just by assuming that the variance of X is large? Unfortunately, with the standard
definition of variance this is not the case. For any choice of E and V ≥ 2E2e−E consider the
following distribution:

Pr (X = k) :=


e−E k = 0
1 − V e−E

V −E2e−E k = E

(Ee−E)2

V −E2e−E k = V
Ee−E

.

Its expectation is E, its variance is V , which can be arbitrarily large, and nevertheless Pr(X <

E) = e−E so no strategy can beat O
(
eE

)
.

On the other hand, the wishful thinking above is true with some other notions of deviation.
For example, if we consider mean absolute deviation instead of standard deviation (i.e.,
E [|X − E [X] |]), then it is true that if the deviation is large then we can get a better running
time. It is intriguing to find useful notion of deviation for which such a statement is true,
with the goal of improving the running time of algorithms by analyzing the deviation of X.

In particular, consider the PPSZ algorithm for solving k-SAT [7] [4]. The algorithm
uses randomization in two ways: first, a random permutation of the variables in the input
formulas is drawn; Then, the chosen permutation determines the number of variables we
need to guess the value of. In a recent improvement of the PPSZ analysis, Scheder [8] showed
that in some large subset of permutations the number of guessed variables is smaller than
what we expect when taking a uniformly random permutation. In particular, this implies
that there is some non-negligible variance in the original algorithm’s running time. Can we
get better SAT algorithms by analyzing this variance?

ICALP 2023

107:10 The Wrong Direction of Jensen’s Inequality Is Algorithmically Right

References
1 Helmut Alt, Leonidas Guibas, Kurt Mehlhorn, Richard Karp, and Avi Wigderson. A method

for obtaining randomized algorithms with small tail probabilities. Algorithmica, 16(4):543–547,
1996.

2 Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

3 Thomas Dueholm Hansen, Haim Kaplan, Or Zamir, and Uri Zwick. Faster k-sat algorithms
using biased-ppsz. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing, pages 578–589, 2019.

4 Timon Hertli. 3-sat faster and simpler—unique-sat bounds for ppsz hold in general. SIAM
Journal on Computing, 43(2):718–729, 2014.

5 Michael Luby, Alistair Sinclair, and David Zuckerman. Optimal speedup of las vegas algorithms.
Information Processing Letters, 47(4):173–180, 1993.

6 Robin A Moser and Dominik Scheder. A full derandomization of schöning’s k-sat algorithm. In
Proceedings of the forty-third annual ACM symposium on Theory of computing, pages 245–252,
2011.

7 Ramamohan Paturi, Pavel Pudlák, Michael E Saks, and Francis Zane. An improved exponential-
time algorithm for k-sat. Journal of the ACM (JACM), 52(3):337–364, 2005.

8 Dominik Scheder. Ppsz is better than you think. In 2021 IEEE 62nd Annual Symposium on
Foundations of Computer Science (FOCS), pages 205–216. IEEE, 2022.

9 T Schoning. A probabilistic algorithm for k-sat and constraint satisfaction problems. In
40th Annual Symposium on Foundations of Computer Science (Cat. No. 99CB37039), pages
410–414. IEEE, 1999.

10 Or Zamir. Faster algorithm for unique (k, 2)-csp. ESA, 2022.

A Hyperbolic Extension of Kadison-Singer Type
Results
Ruizhe Zhang #

The University of Texas at Austin, TX, USA

Xinzhi Zhang #

University of Washington, Seattle, WA, USA

Abstract
In 2013, Marcus, Spielman, and Srivastava resolved the famous Kadison-Singer conjecture. It states
that for n independent random vectors v1, · · · , vn that have expected squared norm bounded by ϵ

and are in the isotropic position in expectation, there is a positive probability that the determinant
polynomial det(xI −

∑n

i=1 viv
⊤
i) has roots bounded by (1 +

√
ϵ)2. An interpretation of the Kadison-

Singer theorem is that we can always find a partition of the vectors v1, · · · , vn into two sets with a
low discrepancy in terms of the spectral norm (in other words, rely on the determinant polynomial).

In this paper, we provide two results for a broader class of polynomials, the hyperbolic polynomials.
Furthermore, our results are in two generalized settings:

The first one shows that the Kadison-Singer result requires a weaker assumption that the vectors
have a bounded sum of hyperbolic norms.
The second one relaxes the Kadison-Singer result’s distribution assumption to the Strongly
Rayleigh distribution.

To the best of our knowledge, the previous results only support determinant polynomials [Anari
and Oveis Gharan’14, Kyng, Luh and Song’20]. It is unclear whether they can be generalized to
a broader class of polynomials. In addition, we also provide a sub-exponential time algorithm for
constructing our results.

2012 ACM Subject Classification Theory of computation → Randomness, geometry and discrete
structures

Keywords and phrases Kadison-Singer conjecture, Hyperbolic polynomials, Strongly-Rayleigh
distributions, Interlacing polynomials

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.108

Category Track A: Algorithms, Complexity and Games

Related Version Full Version: http://arxiv.org/abs/2305.02566

Funding Ruizhe Zhang: Supported by the University Graduate Continuing Fellowship from UT
Austin.
Xinzhi Zhang: Research supported by NSF grant CCF-1813135, NSF CAREER Award and Packard
Fellowships.

1 Introduction

Introduced by [30], the Kadison-Singer problem was a long-standing open problem in
mathematics. It was resolved by Marcus, Spielman, and Srivastrava in their seminal work [43]:
For any set of independent random vectors u1, · · · , un such that each ui has finite support,
and u1, · · · , un are in isotropic positions in expectation, there is positive probability that∑n

i=1 uiu
∗
i has spectral norm bounded by 1 + O(maxi∈[n] ∥ui∥). The main result of [43] is as

follows:

EA
T
C
S

© Ruizhe Zhang and Xinzhi Zhang;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 108; pp. 108:1–108:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ruizhe@utexas.edu
mailto:xinzhi20@cs.washington.edu
https://doi.org/10.4230/LIPIcs.ICALP.2023.108
http://arxiv.org/abs/2305.02566
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

108:2 A Hyperbolic Extension of Kadison-Singer Type Results

▶ Theorem 1 (Main result of [43]). Let ϵ > 0 and let v1, · · · , vn ∈ Cm be n independent
random vectors with finite support, such that E[

∑n
i=1 viv

∗
i] = I, and E[∥vi∥2] ≤ ϵ, ∀i ∈ [n].

Then

Pr

∥∥∥ ∑
i∈[n]

viv
∗
i

∥∥∥ ≤ (1 +
√

ϵ)2

 > 0.

The Kadison-Singer problem is closely related to discrepancy theory, which is an essential
area in mathematics and theoretical computer science. A classical discrepancy problem
is as follows: given n sets over n elements, can we color each element in red or blue such
that each set has roughly the same number of elements in each color? More formally, for
vectors a1, . . . , an ∈ Rn with ∥ai∥∞ ≤ 1 and a coloring s ∈ {±1}n, the discrepancy is defined
by Disc(a1, . . . , an; s) := ∥

∑
i∈[n] siai∥∞. The famous Spencer’s Six Standard Deviations

Suffice Theorem [57] shows that there exists a coloring with discrepancy at most 6
√

n,
which beats the standard Chernoff bound showing that a random coloring has discrepancy√

n log n. More generally, we can consider the “matrix version” of discrepancy: for matrices
A1, . . . , An ∈ Rd×d and a coloring s ∈ {±1}n,

Disc(A1, . . . , An; s) :=
∥∥∥ ∑

i∈[n]

siAi

∥∥∥.

Theorem 1 is equivalent to the following discrepancy result for rank-1 matrices:

▶ Theorem 2 ([43]). Let u1, . . . , un ∈ Cm and suppose maxi∈[n] ∥uiu
∗
i ∥ ≤ ϵ and

∑n
i=1 uiu

∗
i =

I. Then,

min
s∈{±1}n

Disc(u1u∗
1, . . . , unu∗

n; s) ≤ O(
√

ϵ).

In other words, the minimum discrepancy of rank-1 isotropic matrices is bounded by
O(

√
ϵ), where ϵ is the maximum spectral norm. This result also beats the matrix Chernoff

bound [60], which shows that a random coloring for matrices has discrepancy O(
√

ϵ log d).
The main techniques in [43] are the method of interlacing polynomials and the barrier
methods developed in [42].

Several generalizations of the Kadison-Singer-type results, which have interesting ap-
plications in theoretical computer science, have been established using the same technical
framework as described in [43]. In particular, Kyng, Luh, and Song [36] provided a “four
derivations suffice” version of Kadison-Singer conjecture: Instead of assuming every inde-
pendent random vector has a bounded norm, the main result in [36] only requires that the
sum of the squared spectral norm is bounded by σ2, and showed a discrepancy bound of 4σ:

▶ Theorem 3 ([36]). Let u1, . . . , un ∈ Cm and σ2 = ∥
∑n

i=1(uiu
∗
i)2∥. Then, we have

Pr
ξ∼{±1}n

[∥∥∥ n∑
i=1

ξiuiu
∗
i

∥∥∥ ≤ 4σ

]
> 0.

This result was recently applied by [38] to approximate solutions of generalized network
design problems.

Moreover, Anari and Oveis-Gharan [6] generalized the Kadison-Singer conjecture into the
setting of real-stable polynomials. Instead of assuming the random vectors are independent,
[6] assumes that the vectors are sampled from any homogeneous strongly Rayleigh distribution
with bounded marginal probability, have bounded norm, and are in an isotropic position:

R. Zhang and X. Zhang 108:3

▶ Theorem 4 ([6]). Let µ be a homogeneous strongly Rayleigh probability distribution on [n]
such that the marginal probability of each element is at most ϵ1, and let u1, · · · , un ∈ Rm be
vectors in an isotropic position,

∑n
i=1 uiu

∗
i = I, such that maxi∈[n] ∥ui∥2 ≤ ϵ2. Then

Pr
S∼µ

[∥∥∥∑
i∈S

uiu
∗
i

∥∥∥ ≤ 4(ϵ1 + ϵ2) + 2(ϵ1 + ϵ2)2

]
> 0.

Theorem 4 has a direct analog in spectral graph theory: Given any (weighted) connected
graph G = (V, E) with Laplacian LG. For any edge e = (u, v) ∈ E, define the vector
corresponding to e as ve = L

†/2
G (1u − 1v) (here L†

G is the Moore-Penrose inverse). Then
the set of {ve : e ∈ E} are in isotropic position, and ∥ve∥2 equals to the graph effective
resistance with respect to e. Also, any spanning tree distribution of the edges in E is
homogeneous strongly Rayleigh. It follows from Theorem 4 that any graph with bounded
maximum effective resistance has a spectrally-thin spanning tree [6]. Moreover, [7] provided
an exciting application to the asymmetric traveling salesman problem and obtained an
O(log log n)-approximation.

Another perspective of generalizing the Kadison-Singer theorem is to study the discrepancy
with respect to a more general norm than the spectral norm, which is the largest root of
a determinant polynomial. A recent work by Bränden [19] proved a high-rank version of
Theorem 2 for hyperbolic polynomial, which is a larger class of polynomials including the
determinant polynomial. Moreover, the hyperbolic norm on vectors is a natural generalization
of the matrix spectral norm. We will introduce hyperbolic polynomials in the full version of
our paper. From this perspective, it is very natural to ask:

Can we also extend Theorem 3 and Theorem 4 to a more general class of polynomials, e.g.,
hyperbolic polynomials?

1.1 Our results
In this work, we provide an affirmative answer by generalizing both Theorem 3 and Theorem 4
into the setting of hyperbolic polynomials. Before stating our main results, we first introduce
some basic notation of hyperbolic polynomials below.

Hyperbolic polynomials form a broader class of polynomials that encompasses determinant
polynomials and homogeneous real-stable polynomials. An m-variate, degree-d homogeneous
polynomial h ∈ R[x1, · · · , xm] is hyperbolic with respect to a direction e ∈ Rm if the univariate
polynomial t 7→ h(te − x) has only real roots for all x ∈ Rm. The set of x ∈ Rm such that all
roots of h(te − x) are non-negative (or strictly positive) is referred to as the hyperbolicity
cone Γh

+(e) (or Γh
++(e)). It is a widely recognized result [16] that any vector x in the open

hyperbolicity cone Γh
++(e) is itself hyperbolic with respect to the polynomial h and have

the same hyperbolicity cone as e, meaning that Γh
++(e) = Γh

++(x). Therefore, the unique
hyperbolicity cone of h can simply be expressed as Γh

+.
The hyperbolic polynomials have similarities to determinant polynomials of matrices, as

they both can be used to define trace, norm, and eigenvalues. Given a hyperbolic polynomial
h ∈ R[x1, · · · , xm] and any vector e ∈ Γh

++, we can define a norm with respect to h(x) and e

as follows: for any x ∈ Rm, its hyperbolic norm ∥x∥h is equal to the largest root (in absolute
value) of the linear restriction polynomial h(te − x) ∈ R[t]. Similar to the eigenvalues of
matrices, we define the hyperbolic eigenvalues of x to be the d roots of h(te − x), denoted by
λ1(x) ≥ · · · ≥ λd(x). We can also define the hyperbolic trace and the hyperbolic rank:

trh[x] :=
d∑

i=1
λi(x), and rank(x)h := |{i ∈ [d] : λi(x) ̸= 0}|.

ICALP 2023

108:4 A Hyperbolic Extension of Kadison-Singer Type Results

Recall that both Theorem 3 and Theorem 4 upper-bound the spectral norm of the
sum ∥

∑n
i=1 ξiviv

⊤
i ∥. In the setting of hyperbolic polynomials, we should upper bound the

hyperbolic norm ∥
∑n

i=1 ξivi∥h for vectors v1, . . . , vn in the hyperbolicity cone, which is the
set of vectors with all non-negative hyperbolic eigenvalues.

Our main results are as follows:

▶ Theorem 5 (Main Result I, informal hyperbolic version of Theorem 1.4, [36]). Let h ∈
R[x1, . . . , xm] denote a hyperbolic polynomial in direction e ∈ Rm. Let v1, . . . , vn ∈ Γh

+ be n

vectors in the closed hyperbolicity cone. Let ξ1, . . . , ξn be n independent random variables
with finite supports and E[ξi] = µi and Var[ξi] = τ2

i . Suppose σ := ∥
∑n

i=1 τ2
i trh[vi]vi∥h.

Then there exists an assignment (s1, . . . , sn) with si in the support of ξi for all i ∈ [n], such
that∥∥∥ n∑

i=1
(si − µi)vi

∥∥∥
h

≤ 4σ.

We remark that Theorem 5 does not require the isotropic position condition of v1, · · · , vn

as in [19]. In addition, we only need the sum of trh[vi]vi’s hyperbolic norm to be bounded,
while [19]’s result requires each vector’s trace to be bounded individually.

We would also like to note that the class of hyperbolic polynomials is much broader
than that of determinant polynomials, which were used in the original Kadison-Singer-type
theorems. Lax conjectured in [39] that every 3-variate hyperbolic/real-stable polynomial
could be represented as a determinant polynomial, this was later resolved in [28, 40]. However,
the Lax conjecture is false when the number of variables exceeds 3, as demonstrated in
[17, 20] with counterexamples of hyperbolic/real-stable polynomials h(x) for which even
(h(x))k cannot be represented by determinant polynomials for any k > 0.

Our second main result considers the setting where the random vectors are not independent,
but instead, sampled from a strongly Rayleigh distribution. We say a distribution µ over
the subsets of [n] is strongly Rayleigh if its generating polynomial gµ(z) :=

∑
S⊆[n] µ(S)zS ∈

R[z1, . . . , zn] is a real-stable polynomial, which means gµ(z) does not have any root in the
upper-half of the complex plane, i.e., gµ(z) ̸= 0 for any z ∈ Cn with ℜ(z) ≻ 0.

▶ Theorem 6 (Main Result II, informal hyperbolic version of Theorem 1.2, [6]). Let h ∈
R[x1, . . . , xm] denote hyperbolic polynomial in direction e ∈ Rm. Let µ be a homogeneous
strongly Rayleigh probability distribution on [n] such that the marginal probability of each
element is at most ϵ1.

Suppose v1, · · · , vn ∈ Γh
+ are in the hyperbolicity cone of h such that

∑n
i=1 vi = e, and

for all i ∈ [n], ∥vi∥h ≤ ϵ2. Then there exists S ⊆ [n] in the support of µ, such that∥∥∥∑
i∈S

vi

∥∥∥
h

≤ 4(ϵ1 + ϵ2) + 2(ϵ1 + ϵ2)2.

It is worth mentioning that the previous paper [36, 6] focused on the determinant
polynomial, leaving the question of whether their techniques could be extended to the
hyperbolic/real-stable setting unresolved. In our paper, we address this gap by developing
new techniques specifically tailored to hyperbolic polynomials.

In addition, we follow the results from [11] and give an algorithm that can find the
approximate solutions of both Theorem 5 and Theorem 6 in time sub-exponential to m:

▶ Proposition 7 (Sub-exponential algorithm for Theorem 5, informal). Let h ∈ R[x1, . . . , xm]
denote a hyperbolic polynomial with direction e ∈ Rm. Let v1, . . . , vn ∈ Γh

+ be n vectors in
the hyperbolicity cone Γh

+ of h. Suppose σ = ∥
∑n

i=1 trh[vi]vi∥h.

R. Zhang and X. Zhang 108:5

Let P be the interlacing family used in the proof of Theorem 6. Then there exists an
sub-exponential time algorithm KadisonSinger(δ, P), such that for any δ > 0, it returns a
sign assignment (s1, · · · , sn) ∈ {±1}n satisfying∥∥∥ n∑

i=1
siui

∥∥∥
h

≤ 4(1 + δ)σ.

▶ Proposition 8 (Sub-Exponential algorithm for Theorem 6, informal). Let h ∈ R[x1, . . . , xm]
denote a hyperbolic polynomial in direction e ∈ Rm. Let µ be a homogeneous strongly Rayleigh
probability distribution on [n] such that the marginal probability of each element is at most ϵ1,
and let v1, · · · , vn ∈ Γh

+ be n vectors such that
∑n

i=1 vi = e, and for all i ∈ [n], ∥vi∥h ≤ ϵ2.
Let Q be the interlacing family used in the proof of Theorem 6. Then there exists an

sub-exponential time algorithm KadisonSinger(δ, Q), such that for any δ > 0, it returns a set
S in the support of µ satisfying∥∥∥∑

i∈S

ui

∥∥∥
h

≤ (1 + δ) ·
(
4(ϵ1 + ϵ2) + 2(ϵ1 + ϵ2)2) .

2 Related work

Real-Stable Polynomials

Real-stability is an important property for multivariate polynomials. In [13], the authors
used the real-stability to give a unified framework for Lee-Yang type problems in statistical
mechanics and combinatorics. Real-stable polynomials are also related to the permanent.
Gurvits [25] proved the Van der Waerden conjecture, which conjectures that the permanent
of n-by-n doubly stochastic matrices are lower-bounded by n!/nn, via the capacity of
real-stable polynomials. Recently, [26] improved the capacity lower bound for real-stable
polynomials, which has applications in matrix scaling and metric TSP. In addition, real-
stable polynomials are an important tool in solving many counting and sampling problems
[46, 9, 8, 58, 10, 5, 12, 3, 4].

Hyperbolic Polynomials

Hyperbolic polynomial was originally defined to study the stability of partial differential
equations [23, 29, 34]. In theoretical computer science, Güler [24] first introduced hyperbolic
polynomial for optimization (hyperbolic programming), which is a generalization of LP
and SDP. Later, a few algorithms [50, 44, 53, 51, 45, 52] were designed for hyperbolic
programming. On the other hand, a significant effort has been put into the equivalence
between hyperbolic programming and SDP, which is closely related to the “Generalized
Lax Conjecture” (which conjectures that every hyperbolicity cone is spectrahedral) and its
variants [28, 40, 18, 35, 54, 2, 48].

Strongly Rayleigh Distribution

The strongly Rayleigh distribution was introduced by [14]. The authors also proved numerous
basic properties of strongly Rayleigh distributions, including negative association, and closure
property under operations such as conditioning, product, and restriction to a subset. [47]
proved a concentration result for Lipschitz functions of strongly Rayleigh variables. [37]
showed a matrix concentration for strongly Rayleigh random variables, which implies that
adding a small number of uniformly random spanning trees gives a graph spectral sparsifier.

ICALP 2023

108:6 A Hyperbolic Extension of Kadison-Singer Type Results

Strongly Rayleigh distribution also has many algorithmic applications. [9] exploited
the negative dependence property of homogeneous strongly Rayleigh distributions, and
designed efficient algorithms for generating approximate samples from Determinantal Point
Process using Monte Carlo Markov Chain. The strongly Rayleigh property of spanning tree
distribution is a key component for improving the approximation ratios of TSP [31, 32] and
k-edge connected graph problem [33].

Other generalizations of the Kadison-Singer-type results

The upper bound of the rank-one Kadison-Singer theorem was improved by [15, 49]. [1]
further extended [49]’s result to prove a real-stable version of Anderson’s paving conjecture.
However, they used a different norm for real-stable polynomials, and hence their results
and ours are incomparable. In the high-rank case, [21] also proved a Kadison-Singer result
for high-rank matrices. [56] relaxed [19]’s result to the vectors in sub-isotropic position. In
addition, they proved a hyperbolic Spencer theorem for constant-rank vectors.

Another direction of generalizing the Kadison-Singer-type result is to relax the {+1, −1}-
coloring to {0, 1}-coloring, which is called the one-sided version of Kadison-Singer problem
in [61]. More specifically, given n isotropic vectors v1, . . . , vn ∈ Rm with norm 1√

N
, the goal

is to find a subset S ⊂ [n] of size k such that ∥
∑

i∈S viv
⊤
i ∥ ≤ k

n + O(1/
√

N). Unlike the
original Kadison-Singer problem, Weaver [61] showed that this problem can be solved in
polynomial time. Very recently, Song, Xu and Zhang [55] improved the time complexity of
the algorithm via an efficient inner product search data structure.

Applications of Kadison-Singer Problem

There are many interesting results developed from the Kadison-Singer theorem. In spectral
graph theory, [27] exploited the same proof technique of interlacing families to show a
sufficient condition of the spectrally thin tree conjecture. [6] used the strongly-Rayleigh
extension of Kadison-Singer theorem to show a weaker sufficient condition. Based on this
result, [7] showed that any k-edge-connected graph has an O(log log(n)

k)-thin tree, and gave
a poly(log log(n))-integrality gap of the asymmetric TSP. [41, 22] used the Kadison-Singer
theorem to construct bipartite Ramanujan graphs of all sizes and degrees. In the network
design problem, [38] exploited the result in [36], and built a spectral rounding algorithm for
the general network design convex program, which has applications in weighted experimental
design, spectral network design, and additive spectral sparsifier.

3 Proof Overview

3.1 Hyperbolic Deviations
In this section, we will sketch the proof of our hyperbolic generalization of the Kadison-Singer
theorem (Theorem 5). Details of the proof are deferred to the full version of the paper. We
will use the same strategy as the original Kadison-Singer theorem (Theorem 1) in [42, 43],
following three main technical steps.

For simplicity, we assume that the random variables ξ1, . . . , ξn ∈ {±1} are independent
Rademacher random variables, i.e., Pr[ξi = 1] = 1

2 and Pr[ξi = −1] = 1
2 for all i ∈ [n].

To generalize the Kadison-Singer statement into the hyperbolic norm, one main obstacle
is to define the variance of the hyperbolic norm of the sum of random vectors

∑n
i=1 ξivi. In

the determinant polynomial case, each vi corresponds to a rank-1 matrix uiu
∗
i , and it is easy

R. Zhang and X. Zhang 108:7

to see that the variance of the spectral norm is ∥
∑n

i=1(uiu
∗
i)2∥. However, there is no analog

of “matrix square” in the setting of hyperbolic/real-stable polynomials. Instead, we define
the hyperbolic variance:∥∥∥∥∥

n∑
i=1

trh[vi]vi

∥∥∥∥∥
h

in terms of the hyperbolic trace, and show that four hyperbolic deviations suffice.

Defining interlacing family of characteristic polynomials

In the first step, we construct a family of characteristic polynomials {ps : s ∈ {±1}t, t ∈
{0, · · · , n}} as follows: For each s ∈ {±1}n, define the leaf-node-polynomial:

ps(x) :=
(

n∏
i=1

pi,si

)
· h

(
xe +

n∑
i=1

sivi

)
· h

(
xe −

n∑
i=1

sivi

)
,

and for all ℓ ∈ {0, . . . , n − 1}, s′ ∈ {±1}ℓ, we construct an inner node with a polynomial that
corresponds to the bit-string s′:

ps′(x) :=
∑

t∈{±1}n−ℓ

p(s′,t)(x).

where (s′, t) ∈ {±1}n is the bit-string concatenated by s′ and t.
We will then show that the above family of characteristic polynomials forms an interlacing

family. By basic properties of interlacing family, we can always find a leaf-root-polynomial ps

(where s ∈ {±1}n) whose largest root is upper bounded by the largest root of the top-most
polynomial.

p∅(x) = E
ξ1,··· ,ξn

[
h
(

xe +
n∑

i=1
ξivi

)
· h
(

xe −
n∑

i=1
ξivi

)]
.

(we call p∅ to be the mixed characteristic polynomial). Notice that by rewriting the largest
root of ps to be the expected hyperbolic norm of

∑n
i=1 sivi, we get that

λmax(p∅) =

∥∥∥∥∥
n∑

i=1
sivi

∥∥∥∥∥
h

. (1)

Also, we will take s ∈ {±1}n as the corresponding sign assignment in the main theorem
(Theorem 5) It then suffices to upper-bound the largest root of the mixed characteristic
polynomial.

From mixed characteristic polynomial to multivariate polynomial

In the second step, we will show that the mixed characteristic polynomial that takes the
average on n random variables

p∅(x) = E
ξ1,...,ξn

[
h
(

xe +
n∑

i=1
ξivi

)
· h
(

xe −
n∑

i=1
ξivi

)]
is equivalent to a polynomial with n extra variables z1, · · · , zn:

n∏
i=1

(
1 − 1

2
∂2

∂z2
i

)∣∣∣∣∣
z=0

(
h
(

xe +
n∑

i=1
zivi

))2

. (2)

ICALP 2023

108:8 A Hyperbolic Extension of Kadison-Singer Type Results

Thus, we can reduce the upper bound of χmax(p∅) to an upper bound of the largest root in
(2). The latter turns out to be easier to estimate with the help of a barrier argument [43].

To show such equivalence holds, we use induction on the random variables ξ1, . . . , ξn.
More specifically, we start from ξ1 and are conditioned on any fixed choice of ξ2, . . . , ξn. We
prove that taking expectation over ξ1 is equivalent to applying the operator (1 − ∂2

∂z2
1
) to the

polynomial(
h(xe + z1v1 +

n∑
i=2

ξivi)
)2

and setting z1 = 0. Here we use the relation between expectation and the second derivatives:
for any Rademacher random variable ξ,

E
ξ
[h(x1 − ξv) · h(x2 + ξv)] =

(
1 − 1

2
d2

dt2

) ∣∣∣∣∣
t=0

h(x1 + tv)h(x2 + tv).

Repeating this process and removing one random variable at a time. After n iterations, we
obtain the desired multivariate polynomial.

We also need to prove the real-rootedness of the multivariate polynomial (Eqn. (2)). We
first consider an easy case where h itself is a real-stable polynomial, as in the determinant
polynomial case. Then the real-rootedness easily follows from the closure properties of the
real-stable polynomial. More specifically, we can show that (h(xe +

∑n
i=1 zivi))2 is also a

real-stable polynomial. Furthermore, applying the operators (1 − 1
2

∂2

∂z2
i
) and restricting z = 0

preserve the real-stability. Therefore, the multivariate polynomial is a univariate real-stable
polynomial, which is equivalent to being real-rooted.

Next, we show that when h is a hyperbolic polynomial, the multivariate polynomial
(Eqn. (2)) is also real-rooted. our approach is to show that the linear restriction of h:
h(xe +

∑n
i=1 zivi) is a real-stable polynomial in R[x, z1, . . . , zn]. A well-known test for real-

stability is that if for any a ∈ Rn+1
>0 , b ∈ Rn+1, the one-dimensional restriction p(at+ b) ∈ R[t]

is non-zero and real-rooted, then p(x) is real-stable. We test h(xe +
∑n

i=1 zivi) by restricting
to at + b, and get the following polynomial:

h
(

(a1e +
n∑

i=1
ai+1vi)t + y

)
∈ R[t],

where y is a fixed vector depending on b. Since ai > 0 for all i ∈ [n + 1] and e, v1, . . . , vn are
vectors in the hyperbolicity cone, it implies that the vector a1e +

∑n
i=1 ai+1vi is also in the

hyperbolicity cone. Then, by the definition of hyperbolic polynomial, we immediately see
that h((a1e +

∑n
i=1 ai+1vi)t + y) is real-rooted for any a ∈ Rn+1

>0 and b ∈ Rn+1. Hence, we
can conclude that the restricted hyperbolic polynomial h(xe +

∑n
i=1 zivi) is real-stable and

the remaining proof is the same as the real-stable case.

Applying barrier argument

Finally, we use barrier argument to find an “upper barrier vector” whose components lie above
any roots of multivariate polynomial can take. In particular, we consider the multivariate
polynomial P (x, z) = (h(xe+

∑n
i=1 zivi))2. Define the barrier function of any variable i ∈ [n]

as the following:

Φi
P (α(t), −δ) = ∂zi

P (x, z)
P (x, z)

∣∣∣
x=α(t),z=−δ

,

where δ ∈ Rn where δi = t trh[vi] for i ∈ [n] and α(t) > t is a parameter that depends on t.

R. Zhang and X. Zhang 108:9

As a warm-up, consider the case when σ = 1 and assuming ∥
∑n

i=1 trh[vi]vi∥h ≤ 1. It is
easy to show that (α(t), −δ) is an upper barrier of P , from the linearity of the hyperbolic
eigenvalues and the assumption. Next, we upper-bound the barrier function’s value at
(α(t), −δ). When h is a determinant polynomial, this step is easy because the derivative of
log det is the trace of the matrix. For a general hyperbolic polynomial, we will rewrite the
partial derivative ∂zi as a directional derivative Dvi and get

Φi
P (α(t), −δ) = 2 ·

(Dvi
h)(αe − te + t(e −

∑n
j=1 trh[vj]vj))

h(αe − te + t(e −
∑n

j=1 trh[vj]vj))
.

We observe that our assumption ∥
∑n

i=1 trh[vi]vi∥h ≤ 1 implies that e −
∑n

j=1 trh[vj]vj ∈ Γh
+.

By the concavity of the function h(x)
Dvi

h(x) in the hyperbolicity cone, we can prove that

Φi
P (α(t), −δ) ≤ 2 trh[vi]

α(t) − t
.

Now, we can apply the barrier update lemma in [36] with α(t) = 2t = 4 to show that

Φj

(1− 1
2 ∂2

zi
)P

(4, −δ + δi1i) ≤ Φj
P (4, −δ).

In other words, the partial differential operator (1 − 1
2 ∂2

zi
) shifts the upper-barrier by

(0, · · · , 0, δi, 0, · · · , 0). Using induction for the variables δ1, · · · , δn, we can finally finally get
an upper-barrier of

(4, −δ +
n∑

i=1
δi1i) = (4, 0, . . . , 0),

which implies that (4, 0, . . . , 0) is above the roots of

n∏
i=1

(
1 − 1

2
∂2

∂z2
i

)(
h
(

xe +
n∑

i=1
ziτivi

))2

(3)

A challenge in this process is ensuring that the barrier function remains nonnegative. To
achieve this, we use the multidimensional convexity of the hyperbolic barrier function as
established in [59]. For cases where σ ̸= 1, this requirement is satisfied through a simple
scaling argument.

Combining the above three steps together, we can prove that Prξ1,··· ,ξn
[∥
∑n

i=1 ξivi∥h ≤
4σ] > 0 for vectors v1, . . . , vn in the hyperbolicity cone with ∥

∑n
i=1 trh[vi]vi∥h = σ2.

3.2 Generalization to Strongly Rayleigh Distributions
Our main technical contribution to Theorem 6 is a more universal and structured method to
characterize the mixed characteristic polynomial. Define the mixed characteristic polynomial
as

qS(x) = µ(S) · h

(
xe −

∑
i∈S

vi

)
. (4)

we want to show that it is equivalent to the restricted multivariate polynomial:
n∏

i=1
(1 − 1

2
∂2

∂z2
i

)
(

h(xe +
n∑

i=1
zivi)gµ(x1 + z)

)∣∣∣∣∣
z=0

∈ R[x, z1, · · · , zn]. (5)

ICALP 2023

108:10 A Hyperbolic Extension of Kadison-Singer Type Results

Although Eqn. (4) and Eqn. (5) are the hyperbolic generalization of [6], we are unable
to apply the previous techniques. This is because [6] computes the mixed characteristic
polynomial explicitly, which heavily relies on the fact that the characteristic polynomial
is a determinant. It is unclear how to generalize this method to hyperbolic/real-stable
characteristic polynomials.

The key step in [6] is to show the following equality between mixed characteristic
polynomial and multivariate polynomial:

xdµ−d · E
S∼µ

[
det
(

x2I −
∑
i∈S

2viv
⊤
i

)]

=
n∏

i=1
(1 − ∂2

zi
)
(

gµ(x1 + z) · det(xI +
n∑

i=1
ziviv

⊤
i)
)∣∣∣∣∣

z=0

where dµ is the degree of the homogeneous strongly-Rayleigh distribution µ (i.e. the degree
of gµ), and m is the dimension of vi.

Then they expand the right-hand side to get:

RHS =
m∑

k=0
(−1)kxdµ+m−2k

∑
S∈([n]

k)
Pr

T ∼µ
[S ⊆ T] · σk(

∑
i∈S

2viv
⊤
i)

= xdµ−m · E
S∼µ

[
det
(

x2I −
∑
i∈S

2viv
⊤
i

)]
= LHS,

where σk(M) equals to the sum of all k × k principal minors of M ∈ Rm×m. The first step
comes from expanding the product

∏n
i=1(1 − ∂2zi), and the second step comes from that

det(x2I −
n∑

i=1
viv

⊤
i) =

m∑
k=0

(−1)2kx2m−2k
∑

S∈([n]
k)

σk(
∑
i∈S

viv
⊤
i).

The naive generalization of a technique to hyperbolic/real-stable polynomial h faces
challenges. One such challenge is the absence of an explicit form for h, unlike in the case of
h = det where the determinant can be expressed as a combination of minors. This lack of a
well-defined minor presents difficulty in rewriting the hyperbolic/real-stable polynomial. To
tackle this issue, we devised a new and structured proof that relies on induction, offering a
novel solution to this problem.

Inductive step

We first rewrite the expectation over the Strongly-Rayleigh distribution T ∼ µ as follows:

xdµ · 2−n · E
T ∼µ

[h(xe −
∑
i∈T

vi)] = 1
2 E

ξ2,··· ,ξn∼{0,1}n−1

[
(1 − ∂z1)h(x2 + z1v1)x∂z1g2(x + z1)

+ h(x2)(1 − x∂z1)g2(x + z1)
∣∣∣
z1=0

]
where g2 is defined as

g2(t) := x
∑n

i=2
ξi ·

n∏
i=2

(
ξi∂zi

+ (1 − ξi)(1 − x∂zi
)
)

gµ(t, x + z2, x + z3, · · · , x + zn)
∣∣∣
z2,...,zn=0

R. Zhang and X. Zhang 108:11

and x2 = x2e −
∑n

i=2 ξivi. The main observation is that the marginals of a homogeneous
Strongly-Rayleigh distribution can be computed from the derivatives of its generating
polynomial.

Then, we can expand the term inside the expectation as

(1 − x

2 ∂2
z1

)
(

h(x2 + z1v1)g2(x + z1)
)∣∣∣

z1=0
,

using the fact that rank(v1)h ≤ 1 and the degree of g2(t) is at most 1.
Hence, we obtain our inductive step as

xdµ · 2−n · E
ξ∼µ

[
h(xe −

n∑
i=1

ξivi)
]

= 1
2(1 − x

2 ∂2
z1

)
(

E
ξ2,··· ,ξn

[
h(xe −

n∑
i=2

ξivi + z1v1) · g2(x + z1)
]) ∣∣∣∣∣

z1=0

.

Applying the step inductively

Repeating the above process for n times, we finally get

xdµ · E
ξ∼µ

[
h(x2e − (

n∑
i=1

ξivi))
]

=
∑

T ⊆[n]

(−x

2)|T |∂2
zT

(
h(x2e +

n∑
i=1

zivi)gµ(x1 + z)
)∣∣∣∣∣

z=0

.

Then, we rewrite the partial derivatives as directional derivatives. For any subset T ⊆ [n] of
size k, we have

(−x

2)k∂2
zT

(
h(x2e +

n∑
i=1

zivi)gµ(x1 + z)
)∣∣∣∣∣

z=0

= (−x

2)k · 2k ·

(∏
i∈T

Dvi

)
h(x2e) · g(T)

µ (x1),

where g
(T)
µ (x1) =

∏
i∈T ∂zigµ(x1 + z)

∣∣∣
z=0

. And by the homogeneity of h, it further equals to

xd · (−1
2)k∂2

zT

(
h(xe +

n∑
i=1

zivi)gµ(x1 + z)
)∣∣∣∣∣

z=0

.

Therefore, we prove the following formula that relates the characteristic polynomial under
SR distribution to the multivariate polynomial:

xdµ · E
ξ∼µ

[
h(x2e − (

n∑
i=1

ξivi))
]

= xd ·
n∏

i=1
(1 − 1

2∂2
zi

)
(

h(xe +
n∑

i=1
zivi)gµ(x1 + z)

)∣∣∣∣∣
z=0

.

References
1 Kasra Alishahi and Milad Barzegar. Paving property for real stable polynomials and strongly

rayleigh processes. arXiv preprint, 2020. arXiv:2006.13923.
2 Nima Amini. Spectrahedrality of hyperbolicity cones of multivariate matching polynomials.

Journal of Algebraic Combinatorics, 50(2):165–190, 2019.
3 Nima Anari, Kuikui Liu, Shayan Oveis Gharan, and Cynthia Vinzant. Log-concave polynomials

ii: high-dimensional walks and an fpras for counting bases of a matroid. In Proceedings of the
51st Annual ACM SIGACT Symposium on Theory of Computing, pages 1–12, 2019.

ICALP 2023

https://arxiv.org/abs/2006.13923

108:12 A Hyperbolic Extension of Kadison-Singer Type Results

4 Nima Anari, Kuikui Liu, Shayan Oveis Gharan, Cynthia Vinzant, and Thuy-Duong Vuong.
Log-concave polynomials iv: approximate exchange, tight mixing times, and near-optimal
sampling of forests. In Proceedings of the 53rd Annual ACM SIGACT Symposium on Theory
of Computing, pages 408–420, 2021.

5 Nima Anari, Tung Mai, Shayan Oveis Gharan, and Vijay V Vazirani. Nash social welfare
for indivisible items under separable, piecewise-linear concave utilities. In Proceedings of
the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2274–2290.
SIAM, 2018.

6 Nima Anari and Shayan Oveis Gharan. The kadison-singer problem for strongly rayleigh
measures and applications to asymmetric tsp. In arXiv preprint. https://arxiv.org/pdf/
1412.1143.pdf, 2014.

7 Nima Anari and Shayan Oveis Gharan. Effective-resistance-reducing flows, spectrally thin
trees, and asymmetric tsp. In Foundations of Computer Science (FOCS), 2015 IEEE 56th
Annual Symposium on, pages 20–39. IEEE, 2015.

8 Nima Anari and Shayan Oveis Gharan. A generalization of permanent inequalities and
applications in counting and optimization. In Proceedings of the 49th Annual ACM SIGACT
Symposium on Theory of Computing, pages 384–396, 2017.

9 Nima Anari, Shayan Oveis Gharan, and Alireza Rezaei. Monte carlo markov chain algorithms
for sampling strongly rayleigh distributions and determinantal point processes. In Conference
on Learning Theory, pages 103–115. PMLR, 2016.

10 Nima Anari, Shayan Oveis Gharan, Amin Saberi, and Mohit Singh. Nash social welfare,
matrix permanent, and stable polynomials. arXiv preprint, 2016. arXiv:1609.07056.

11 Nima Anari, Shayan Oveis Gharan, Amin Saberi, and Nikhil Srivastava. Approximating
the largest root and applications to interlacing families. In Proceedings of the Twenty-Ninth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1015–1028. SIAM, 2018.

12 Nima Anari, Shayan Oveis Gharan, and Cynthia Vinzant. Log-concave polynomials, entropy,
and a deterministic approximation algorithm for counting bases of matroids. In 2018 IEEE
59th Annual Symposium on Foundations of Computer Science (FOCS), pages 35–46. IEEE,
2018.

13 Julius Borcea and Petter Brändén. The lee-yang and pólya-schur programs. ii. theory of stable
polynomials and applications. Communications on Pure and Applied Mathematics: A Journal
Issued by the Courant Institute of Mathematical Sciences, 62(12):1595–1631, 2009.

14 Julius Borcea, Petter Brändén, and Thomas Liggett. Negative dependence and the geometry
of polynomials. Journal of the American Mathematical Society, 22(2):521–567, 2009.

15 Marcin Bownik, Pete Casazza, Adam W Marcus, and Darrin Speegle. Improved bounds in
weaver and feichtinger conjectures. Journal für die reine und angewandte Mathematik (Crelles
Journal), 2019(749):267–293, 2019.

16 Petter Brändén. Notes on hyperbolicity cones. Verfügbar unter https://math. berkeley. edu/˜
bernd/branden. pdf, 2010.

17 Petter Brändén. Obstructions to determinantal representability. Advances in Mathematics,
226(2):1202–1212, 2011.

18 Petter Brändén. Hyperbolicity cones of elementary symmetric polynomials are spectrahedral.
Optimization Letters, 8(5):1773–1782, 2014.

19 Petter Brändén. Hyperbolic polynomials and the kadison-singer problem. arXiv preprint, 2018.
arXiv:1809.03255.

20 Sam Burton, Cynthia Vinzant, and Yewon Youm. A real stable extension of the vamos matroid
polynomial. arXiv preprint, 2014. arXiv:1411.2038.

21 Michael Cohen. Improved spectral sparsification and Kadison-Singer for sums of higher-rank
matrices. In Banff International Research Station for Mathematical Innovation and Discovery.
https://open.library.ubc.ca/cIRcle/collections/48630/items/1.0340957, 2016.

22 Michael B Cohen. Ramanujan graphs in polynomial time. In 2016 IEEE 57th Annual
Symposium on Foundations of Computer Science (FOCS), pages 276–281. IEEE, 2016.

https://arxiv.org/pdf/1412.1143.pdf
https://arxiv.org/pdf/1412.1143.pdf
https://arxiv.org/abs/1609.07056
https://arxiv.org/abs/1809.03255
https://arxiv.org/abs/1411.2038
https://open.library.ubc.ca/cIRcle/collections/48630/items/1.0340957

R. Zhang and X. Zhang 108:13

23 Lars Gårding. Linear hyperbolic partial differential equations with constant coefficients. Acta
Mathematica, 85:1–62, 1951.

24 Osman Güler. Hyperbolic polynomials and interior point methods for convex programming.
Mathematics of Operations Research, 22(2):350–377, 1997.

25 Leonid Gurvits. Van der waerden/schrijver-valiant like conjectures and stable (aka hyperbolic)
homogeneous polynomials: one theorem for all. arXiv preprint, 2007. arXiv:0711.3496.

26 Leonid Gurvits and Jonathan Leake. Capacity lower bounds via productization. In Proceedings
of the 53rd Annual ACM SIGACT Symposium on Theory of Computing, pages 847–858, 2021.

27 Nicholas JA Harvey and Neil Olver. Pipage rounding, pessimistic estimators and matrix
concentration. In Proceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete
algorithms, pages 926–945. SIAM, 2014.

28 J William Helton and Victor Vinnikov. Linear matrix inequality representation of sets.
Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute
of Mathematical Sciences, 60(5):654–674, 2007.

29 L Hormander. The analysis of linear partial differential operators ii. Grundlehren, 257, 1983.
30 Richard V Kadison and Isadore M Singer. Extensions of pure states. American journal of

mathematics, 81(2):383–400, 1959.
31 Anna R Karlin, Nathan Klein, and Shayan Oveis Gharan. An improved approximation

algorithm for tsp in the half integral case. In Proceedings of the 52nd Annual ACM SIGACT
Symposium on Theory of Computing, pages 28–39, 2020.

32 Anna R Karlin, Nathan Klein, and Shayan Oveis Gharan. A (slightly) improved approximation
algorithm for metric tsp. In Proceedings of the 53rd Annual ACM SIGACT Symposium on
Theory of Computing, pages 32–45, 2021.

33 Anna R Karlin, Nathan Klein, Shayan Oveis Gharan, and Xinzhi Zhang. An improved
approximation algorithm for the minimum k-edge connected multi-subgraph problem. arXiv
preprint, 2021. arXiv:2101.05921.

34 N.V. Krylov. On the general notion of fully nonlinear second-order elliptic equations. Trans-
actions of the American Mathematical Society, 347(3):857–895, 1995.

35 Mario Kummer, Daniel Plaumann, and Cynthia Vinzant. Hyperbolic polynomials, interlacers,
and sums of squares. Mathematical Programming, 153(1):223–245, 2015.

36 Rasmus Kyng, Kyle Luh, and Zhao Song. Four deviations suffice for rank 1 matrices. In
Advances in Mathematics. arXiv preprint arXiv:1901.06731, 2020.

37 Rasmus Kyng and Zhao Song. A matrix chernoff bound for strongly rayleigh distributions and
spectral sparsifiers from a few random spanning trees. In 2018 IEEE 59th Annual Symposium
on Foundations of Computer Science (FOCS), pages 373–384. IEEE, 2018.

38 Lap Chi Lau and Hong Zhou. A spectral approach to network design. In Proceedings of the
52nd Annual ACM SIGACT Symposium on Theory of Computing, pages 826–839, 2020.

39 Peter D Lax. Differential equations, difference equations and matrix theory. Technical report,
New York Univ., New York. Atomic Energy Commission Computing and Applied Mathematics
Center, 1957.

40 Adrian Lewis, Pablo Parrilo, and Motakuri Ramana. The lax conjecture is true. Proceedings
of the American Mathematical Society, 133(9):2495–2499, 2005.

41 A. Marcus, D. Spielman, and N. Srivastava. Interlacing families iv: Bipartite ramanujan graphs
of all sizes. SIAM Journal on Computing, 47(6):2488–2509, 2018. doi:10.1137/16M106176X.

42 Adam W. Marcus, Daniel A. Spielman, and Nikhil Srivastava. Interlacing families I: Bipartite
Ramanujan graphs of all degrees. Ann. of Math. (2), 182(1):307–325, 2015.

43 Adam W. Marcus, Daniel A. Spielman, and Nikhil Srivastava. Interlacing families II: Mixed
characteristic polynomials and the Kadison-Singer problem. Ann. of Math. (2), 182(1):327–350,
2015.

44 Tor Myklebust and Levent Tunçel. Interior-point algorithms for convex optimization based on
primal-dual metrics. arXiv preprint, 2014. arXiv:1411.2129.

ICALP 2023

https://arxiv.org/abs/0711.3496
https://arxiv.org/abs/2101.05921
https://doi.org/10.1137/16M106176X
https://arxiv.org/abs/1411.2129

108:14 A Hyperbolic Extension of Kadison-Singer Type Results

45 Simone Naldi and Daniel Plaumann. Symbolic computation in hyperbolic programming.
Journal of Algebra and Its Applications, 17(10):1850192, 2018.

46 Aleksandar Nikolov and Mohit Singh. Maximizing determinants under partition constraints.
In Proceedings of the forty-eighth annual ACM symposium on Theory of Computing, pages
192–201, 2016.

47 Robin Pemantle and Yuval Peres. Concentration of lipschitz functionals of determinantal and
other strong rayleigh measures. Combinatorics, Probability and Computing, 23(1):140–160,
2014.

48 Prasad Raghavendra, Nick Ryder, Nikhil Srivastava, and Benjamin Weitz. Exponential lower
bounds on spectrahedral representations of hyperbolicity cones. In Proceedings of the Thirtieth
Annual ACM-SIAM Symposium on Discrete Algorithms, pages 2322–2332. SIAM, 2019.

49 Mohan Ravichandran and Jonathan Leake. Mixed determinants and the kadison–singer
problem. Mathematische Annalen, 377(1):511–541, 2020.

50 James Renegar. Hyperbolic programs, and their derivative relaxations. Foundations of
Computational Mathematics, 6(1):59–79, 2006.

51 James Renegar. “Efficient” subgradient methods for general convex optimization. SIAM
Journal on Optimization, 26(4):2649–2676, 2016.

52 James Renegar. Accelerated first-order methods for hyperbolic programming. Mathematical
Programming, 173(1-2):1–35, 2019.

53 James Renegar and Mutiara Sondjaja. A polynomial-time affine-scaling method for semidefinite
and hyperbolic programming. arXiv preprint, 2014. arXiv:1410.6734.

54 James Saunderson. A spectrahedral representation of the first derivative relaxation of the
positive semidefinite cone. Optimization Letters, 12(7):1475–1486, 2018.

55 Zhao Song, Zhaozhuo Xu, and Lichen Zhang. Speeding up sparsification using inner product
search data structures, 2022. arXiv:2204.03209.

56 Zhao Song and Ruizhe Zhang. Hyperbolic concentration, anti-concentration, and discrep-
ancy. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques (APPROX/RANDOM 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik,
2022.

57 Joel Spencer. Six standard deviations suffice. Transactions of the American mathematical
society, 289(2):679–706, 1985.

58 Damian Straszak and Nisheeth K Vishnoi. Real stable polynomials and matroids: Optimization
and counting. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of
Computing, pages 370–383, 2017.

59 Terence Tao. Real stable polynomials and the kadison-singer problem. URL: https://terry
tao.wordpress.com/2013/11/04/real-stable-polynomials-and-the-kadison-singer-
problem/, 2013.

60 Joel A. Tropp. An introduction to matrix concentration inequalities. Foundations and Trends®
in Machine Learning, 8(1-2):1–230, 2015. doi:10.1561/2200000048.

61 Nik Weaver. The Kadison-Singer problem in discrepancy theory. Discrete Math., 278(1-3):227–
239, 2004.

https://arxiv.org/abs/1410.6734
https://arxiv.org/abs/2204.03209
https://terrytao.wordpress.com/2013/11/04/real-stable-polynomials-and-the-kadison-singer-problem/
https://terrytao.wordpress.com/2013/11/04/real-stable-polynomials-and-the-kadison-singer-problem/
https://terrytao.wordpress.com/2013/11/04/real-stable-polynomials-and-the-kadison-singer-problem/
https://doi.org/10.1561/2200000048

On Semantically-Deterministic Automata
Bader Abu Radi #

School of Computer Science and Engineering, Hebrew University, Jerusalem, Israel

Orna Kupferman #

School of Computer Science and Engineering, Hebrew University, Jerusalem, Israel

Abstract
Nondeterminism is a fundamental notion in Theoretical Computer Science. A nondeterministic
automaton is semantically deterministic (SD) if different nondeterministic choices in the automaton
lead to equivalent states. Semantic determinism is interesting as it is a natural relaxation of
determinism, and as some applications of automata in formal methods require deterministic automata,
yet in fact can use automata with some level of nondeterminism, tightly related to semantic
determinism.

In the context of finite words, semantic determinism coincides with determinism, in the sense
that every pruning of an SD automaton to a deterministic one results in an equivalent automaton.
We study SD automata on infinite words, focusing on Büchi, co-Büchi, and weak automata. We show
that there, while semantic determinism does not increase the expressive power, the combinatorial and
computational properties of SD automata are very different from these of deterministic automata. In
particular, SD Büchi and co-Büchi automata are exponentially more succinct than deterministic ones
(in fact, also exponentially more succinct than history-deterministic automata), their complementation
involves an exponential blow up, and decision procedures for them like universality and minimization
are PSPACE-complete. For weak automata, we show that while an SD weak automaton need not be
pruned to an equivalent deterministic one, it can be determinized to an equivalent deterministic
weak automaton with the same state space, implying also efficient complementation and decision
procedures for SD weak automata.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory

Keywords and phrases Automata on infinite words, Nondeterminism, Succinctness, Decision proced-
ures

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.109

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version Full Version: https://arxiv.org/abs/2305.15489 [2]

Funding This research is supported by the Israel Science Foundation, Grant 2357/19, the European
Research Council, Advanced Grant ADVANSYNT, and the Neubauer Foundation of Ph.D Fellowship.

1 Introduction

Automata are among the most studied computation models in theoretical computer science.
Their simple structure has made them a basic formalism for the study of fundamental notions,
such as determinism and nondeterminism [35]. While a deterministic computing machine
examines a single action at each step of its computation, nondeterministic machines are
allowed to examine several possible actions simultaneously. Understanding the power of
nondeterminism is at the core of open fundamental questions in theoretical computer science
(most notably, the P vs. NP problem).

A prime application of automata on infinite words is specification, verification, and
synthesis of nonterminating systems. The automata-theoretic approach reduces questions
about systems and their specifications to questions about automata [28, 41], and is at the
heart of many algorithms and tools. A run of an automaton on infinite words is an infinite

EA
T
C
S

© Bader Abu Radi and Orna Kupferman;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 109; pp. 109:1–109:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bader.aburadi@gmail.com
https://orcid.org/0000-0001-8138-9406
mailto:orna@cs.huji.ac.il
https://orcid.org/0000-0003-4699-6117
https://doi.org/10.4230/LIPIcs.ICALP.2023.109
https://arxiv.org/abs/2305.15489
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

109:2 On Semantically-Deterministic Automata

sequence of states, and acceptance is determined with respect to the set of states that the
run visits infinitely often. For example, in Büchi automata, some of the states are designated
as accepting states, and a run is accepting iff it visits states from the set α of accepting states
infinitely often [9]. Dually, in co-Büchi automata, a run is accepting if it visits the set α only
finitely often. Then, weak automata are a special case of both Büchi and co-Büchi automata
in which every strongly connected component in the graph induced by the automaton is either
contained in α or is disjoint from α. We use DBW and NBW to denote determinisitic and
nondeterministic Büchi word automata, respectively, and similarly for D/NCW, D/NWW,
and D/NFW, for co-Büchi, weak, and automata on finite words, respectively.

For automata on infinite words, nondeterminism not only leads to exponential succinctness,
but may also increase the expressive power. This is the case, for example, in Büchi and weak
automata, thus NBWs are strictly more expressive than DBWs [29], and NWWs are strictly
more expressive than DWWs [6]. On the other hand, NCWs are as expressive as DCWs [32],
and in fact, also as NWWs [27]. In some applications of the automata-theoretic approach,
such as model checking, algorithms can be based on nondeterministic automata, whereas in
other applications, such as synthesis and reasoning about probabilistic systems, they cannot.
There, the advantages of nondeterminism are lost, and algorithms involve a complicated
determinization construction [36] or acrobatics for circumventing determinization [26, 21].

In a deterministic automaton, the transition function maps each state and letter to a single
successor state. In recent years there is growing research on weaker types of determinism.
This includes, for example, unambiguous automata, which may have many runs on each word,
yet only one accepting run [10, 12], automata that are deterministic in the limit, where each
accepting run should eventually reach a deterministic sub-automaton [40], and automata that
are determinizable by pruning (DBP), thus embody an equivalent deterministic automaton [4].

In terms of applications, some weaker types of determinism have been defined and studied
with specific applications in mind. Most notable are history-deterministic automata (HD),
which can resolve their nondeterministic choices based on the history of the run [18, 8, 23]1,
and can therefore replace deterministic automata in algorithms for synthesis and control, and
good-for-MDPs automata (GFM), whose product with Markov decision processes maintains
the probability of acceptance, and can therefore replace deterministic automata when
reasoning about stochastic behaviors [16, 39].

The different levels of determinism induce classes of automata that differ in their suc-
cinctness and in the complexity of operations and decision problems on them. Also, some
classes are subclasses of others. For example, it follows quite easily from the definitions that
every automaton that is deterministic in the limit is GFM, and every automaton that is
DBP is HD.

In this paper we study the class of semantically deterministic automata (SD). An
automaton A is SD if its nondeterministic choices lead to equivalent states. Formally, if
A = ⟨Σ, Q, q0, δ, α⟩, with a transition function δ : Q × Σ → 2Q, then A is SD if for every
state q ∈ Q, letter σ ∈ Σ, and states q1, q2 ∈ δ(q, σ), the set of words accepted from A with
initial state q1 is equal to the set of words accepted from A with initial state q2. Since all
nondeterministic choices lead to equivalent states, one may be tempted to think that SD
automata are DBP or at least have similar properties to deterministic automata. This is

1 The notion used in [18] is good for games (GFG) automata, as they address the difficulty of playing
games on top of a nondeterministic automaton. As it turns out, the property of being good for games
varies in different settings and HD is good for applications beyond games. Therefore, we use the
term history determinism, introduced by Colcombet in the setting of quantitative automata with cost
functions [11].

B. Abu Radi and O. Kupferman 109:3

indeed the case for SD-NFWs, namely when one considers automata on finite words. There,
it is not hard to prove that any pruning of an SD-NFW to a DFW results in an equivalent
DFW. Thus, SD-NFWs are not more succinct than DFWs, and operations on them are not
more complex than operations on DFWs.

Once, however, one considers automata on infinite words, the simplicity of SD automata
is lost. In order to understand the picture in the setting of infinite words, let us elaborate
some more on HD automata, which are strongly related to SD automata. Formally, a
nondeterministic automaton A is HD if there is a strategy g that maps each finite word
u ∈ Σ∗ to a transition to be taken after u is read, and following g results in accepting all the
words in the language of A. Obviously, every DBP automaton is HD – the strategy g can
suggest the same transition in all its visits in a state. On the other hand, while HD-NWWs
are always DBP [25, 33], this is not the case for HD-NBWs and HD-NCWs [7]. There, the
HD strategy may need to suggest different transitions in visits (with different histories) to
the same state.

It is easy to see that a strategy g as above cannot choose a transition to states whose
language is strictly contained in the language of states that are reachable by other transitions.
Thus, all HD automata can be pruned in polynomial time to SD automata [20, 5]. The
other direction, however, does not hold: it is shown in [3] that an SD-NWW need not be HD
(hence, SD-NBWs and SD-NCWs need not be HD too). Moreover, while all all HD-NWWs
are DBP, this is not the case for all SD-NWWs.

In this work we study the succinctness of SD automata with respect to deterministic ones,
as well as the complexity of operations on them and decision problems about them. Our
goal is to understand the difference between determinism and semantic determinism, and to
understand how this difference varies among different acceptance conditions. Our study is
further motivated by the applications of automata with different levels of nondeterminism
in algorithms for synthesis and for reasoning in a stochastic setting. In particular, beyond
the connection to HD automata discussed above, as runs of an SD-NBW on words in the
language are accepting with probability 1, all SD-NBWs are GFM [3].

We study semantic determinism for Büchi, co–Büchi, and weak automata. We consider
automata with both state-based acceptance conditions, as defined above, and transition-based
acceptance conditions. In the latter, the acceptance condition is given by a subset α of
transitions, and a run is required to traverse transitions in α infinitely often (in Büchi
automata, termed tD/tNBW) or finitely often (in co-Büchi automata, termed tD/tNCW).
As it turns out, especially in the context of HD automata, automata with transition-based
acceptance conditions may differ in their properties from automata with traditional state-
based acceptance conditions. For example, while HD-tNCWs can be minimized in PTIME
[1], minimization of HD-NCWs is NP-complete [38]. In addition, there is recently growing
use of transition-based automata in practical applications, with evidences they offer a
simpler translation of LTL formulas to automata and enable simpler constructions and
decision procedures [14, 15, 13, 40, 30]. Our results for all types of acceptance conditions
are summarized in Table 1 below, where we also compare them with known results about
deterministic and HD automata.

Let us highlight the results we find the most interesting and surprising. While all three
types of SD automata are not DBP, we are able to determinize SD-NWWs in polynomial
time, and end up with a DWW whose state space is a subset of the state space of the original
SD-NWW. Essentially, rather than pruning transitions, the construction redirects transitions
to equivalent states in deep strongly connected components of the SD-NWW, which we prove

ICALP 2023

109:4 On Semantically-Deterministic Automata

Table 1 Succinctness (determinization blow-up), complementation (blow-up in going from an
automaton to a complementing one), universality (deciding whether an automaton accepts all words),
and minimization (deciding whether an equivalent automaton of a given size exists, and the described
results apply also for the case the given automaton is deterministic). All blow-ups are tights, except
for HD-NBW determinization, where the quadratic bound has no matching lower bound; all NL,
NP, and PSPACE bounds are complete.

Deterministic HD SD

Succinctness n (B,C,W) n2 (B), 2n (C), n (W) 2n (B,C), n (W)
[20, 25, 33] Theorems 5, 14, 22

Complementation n (B,C,W) n (B), 2n (C), n (W) 2n (B,C), n (W)
[22] [20] Theorems 7, 16, 23

Universality NL (B,C,W) P (B,C,W) PSPACE (B,C), P (W)
[22] [17, 20] Theorems 9, 17, 24

Minimization NP (B,C), P (W) NP (B,C), P (W) PSPACE (B,C), P (W)
(state based) [37, 31] [38, 25, 31] Theorems 10, 18, 24
Minimization open (B,C), P (W) open (B), P (C,W) PSPACE (B,C), P (W)

(transition based) [31] [1, 25, 31] Theorems 10, 18, 24

to result in an equivalent deterministic DWW2. This suggests that despite the “not DBP
anomaly” of SD-NWWs, they are very similar in their properties to DWWs. On the other
hand, except for their expressive power, SD-NBWs and SD-NCWs are not at all similar
to DBWs and DCWs: while HD-NBWs are only quadratically more succinct than DBWs,
succinctness jumps to exponential for SD-NBWs. This also shows that SD-NBWs may be
exponentially more succinct than HD-NBWs, and we show this succinctness gap also for
co-Büchi automata, where exponential succinctness with respect to DCWs holds already in
the HD level.

The succinctness results are carried over to the blow-up needed for complementation, and
to the complexity of decision procedures. Note that this is not the case for HD automata.
There, for example, complementation of HD-NBWs results in an automaton with the same
number of states [20]. Moreover, even though HD-NCWs are exponentially more succinct
than DCWs, language-containment for HD-NCWs can be solved in PTIME [17, 20], and HD-
tNCWs can be minimized in PTIME [1]. For SD automata, we show that complementation
involves an exponential blow-up. Also, universality and minimization of SD Büchi and
co-Büchi automata, with either state-based or transition-based acceptance conditions, is
PSPACE-complete, as it is for NBWs and NCWs. We also study the D-to-SD minimization
problem, where we are given a deterministic automaton A and a bound k ≥ 1, and need
to decide whether A has an equivalent SD automaton with at most k states. Thus, the
given automaton is deterministic, rather than SD. By [19], the D-to-N minimization problem
for automata on finite words (that is, given a DFW, minimize it to an NFW) is PSPACE-
complete. It is easy to see that the D-to-SD minimization problem for for automata on finite
words can be solved in PTIME. We show that while this is the case also for weak automata,
D-to-SD minimization for Büchi and co-Büchi automata is PSPACE-complete.

2 Our result implies that checking language-equivalence between states in an SD-NWW can be done
in PTIME, as the check can be performed on the equivalent DWWs. We cannot, however, use this
complexity result in our algorithm, as this involves a circular dependency. Consequently, our construction
of the equivalent DWWs involves a language-approximation argument.

B. Abu Radi and O. Kupferman 109:5

Our results show that in terms of combinatorial and computational properties, semantic
determinism is very similar to determinism in weak automata, whereas for Büchi and co-Büchi
automata, semantic determinism is very similar to nondeterminism.

Due to the lack of space, some proofs are missing, and can be found in the full version [2].

2 Preliminaries

2.1 Languages and Automata
For a finite nonempty alphabet Σ, an infinite word w = σ1 ·σ2 · · · ∈ Σω is an infinite sequence
of letters from Σ. A language L ⊆ Σω is a set of words. For 1 ≤ i ≤ j, we use w[i, j] to
denote the infix σi · σi+1 · · · σj of w, use w[i] to denote the letter σi, and use w[i, ∞] to
denote the infinite suffix σi ·σi+1 · · · of w. We also consider languages R ⊆ Σ∗ of finite words,
denote the empty word by ϵ, and denote the set of nonempty words over Σ by Σ+; thus
Σ+ = Σ∗ \ {ϵ}. For a set S, we denote its complement by S. In particular, for languages
R ⊆ Σ∗ and L ⊆ Σω, we have R = Σ∗ \ R and L = Σω \ L.

A nondeterministic automaton is a tuple A = ⟨Σ, Q, Q0, δ, α⟩, where Σ is an alphabet, Q

is a finite set of states, Q0 is a set of initial states, δ : Q × Σ → 2Q \ ∅ is a transition function,
and α is an acceptance condition, to be defined below. For states q and s and a letter σ ∈ Σ,
we say that s is a σ-successor of q if s ∈ δ(q, σ). Note that the transition function of A is
total, thus for all states q ∈ Q and letters σ ∈ Σ, q has at least one σ-successor. If |Q0| = 1
and every state q has a single σ-successor, for all letters σ, then A is deterministic. The
transition function δ can be viewed as a transition relation ∆ ⊆ Q × Σ × Q, where for every
two states q, s ∈ Q and letter σ ∈ Σ, we have that ⟨q, σ, s⟩ ∈ ∆ iff s ∈ δ(q, σ). We define the
size of A, denoted |A|, as its number of states, thus, |A| = |Q|.

Given an input word w = σ1·σ2 · · · , a run of A on w is a sequence of states r = r0, r1, r2, . . .,
such that r0 ∈ Q0, and for all i ≥ 0, we have that ri+1 ∈ δ(ri, σi+1), i.e, the run starts in
some initial state and proceeds according to the transition function. If the word in the input
is infinite, then so is the run. We sometimes view the run r = r0, r1, r2, . . . on w = σ1 · σ2 · · ·
as a sequence of successive transitions ⟨r0, σ1, r1⟩, ⟨r1, σ2, r2⟩, Note that a deterministic
automaton has a single run on an input w. We sometimes extend δ to sets of states and
finite words. Then, δ : 2Q × Σ∗ → 2Q is such that for every S ∈ 2Q, finite word u ∈ Σ∗, and
letter σ ∈ Σ, we have that δ(S, ϵ) = S, δ(S, σ) =

⋃
s∈S δ(s, σ), and δ(S, u · σ) = δ(δ(S, u), σ).

Thus, δ(S, u) is the set of states that A may reach when it reads u from some state in S.
The acceptance condition α determines which runs are “good”. For automata on finite

words, α ⊆ Q, and a run is accepting if it ends in a state in α. For automata on infinite
words, we consider state-based and transition-based acceptance conditions. Let us start with
state-based conditions. Here, α ⊆ Q, and we use the terms α-states and α-states to refer
to states in α and in Q \ α, respectively. For a run r ∈ Qω, let sinf (r) ⊆ Q be the set of
states that r visits infinitely often. Thus, sinf (r) = {q : q = ri for infinitely many i’s}. In
Büchi automata, r is accepting iff sinf (r) ∩ α ≠ ∅, thus if r visits states in α infinitely often.
Dually, in co-Büchi automata, r is accepting iff sinf (r) ∩ α = ∅, thus if r visits states in α

only finitely often.
We proceed to transition-based conditions. There, α ⊆ ∆ and acceptance depends

on the set of transitions that are traversed infinitely often during the run. We use the
terms α-transitions and ᾱ-transitions to refer to transitions in α and in ∆ \ α, respect-
ively. For a run r ∈ ∆ω, we define tinf (r) = {⟨q, σ, s⟩ ∈ ∆ : q = ri, σ = σi+1, and s =
ri+1, for infinitely many i’s}. As expected, in transition-based Büchi automata, r is ac-
cepting iff tinf (r) ∩ α ̸= ∅, and in transition-based co-Büchi automata, r is accepting iff
tinf (r) ∩ α = ∅.

ICALP 2023

109:6 On Semantically-Deterministic Automata

Consider an automaton A = ⟨Σ, Q, Q0, δ, α⟩. In all automata classes, a run of A that is
not accepting is rejecting. A word w is accepted by an automaton A if there is an accepting
run of A on w. The language of A, denoted L(A), is the set of words that A accepts.

Consider a directed graph G = ⟨V, E⟩. A strongly connected set in G (SCS, for short)
is a set C ⊆ V such that for every two vertices v, v′ ∈ C, there is a path from v to v′. An
SCS is maximal if for every non-empty set C ′ ⊆ V \ C, it holds that C ∪ C ′ is not an SCS.
The maximal strongly connected sets are also termed strongly connected components (SCCs,
for short). An automaton A = ⟨Σ, Q, Q0, δ, α⟩ induces a directed graph GA = ⟨Q, E⟩, where
⟨q, q′⟩ ∈ E iff there is a letter σ ∈ Σ such that ⟨q, σ, q′⟩ ∈ ∆. The SCSs and SCCs of A are
those of GA.

An automaton A = ⟨Σ, Q, Q0, δ, α⟩ with a state-based acceptance condition α ⊆ Q is
weak [34] if for each SCC C of A, either C ⊆ α in which case C is accepting, or C ∩ α = ∅ in
which case C is rejecting. We view A as a Büchi automaton, yet note that a weak automaton
can be viewed as both a Büchi and a co-Büchi automaton. Indeed, a run of A visits α

infinitely often iff it gets trapped in an SCC that is contained in α iff it visits states in Q \ α

only finitely often. Note also that when A uses a transition-based acceptance condition, we
can ignore the membership in α of transitions between SCCs (indeed, such transitions are
traversed only finitely often), and say that A is weak if the transitions in each SCC are all in
α or all disjoint from α.

Consider two automata A1 and A2. We say that A1 is contained in A2 if L(A1) ⊆ L(A2).
Then, A1 and A2 are equivalent if L(A1) = L(A2), and A1 is universal if L(A1) = Σω (or
L(A1) = Σ∗, in case it runs on finite words). Finally, A1 is minimal (with respect to a class
of automata, say state-based deterministic Büchi automata) if for all automata A2 equivalent
to A1, we have that |A1| ≤ |A2|.

2.2 SD and HD Automata
Consider an automaton A = ⟨Σ, Q, Q0, δ, α⟩. For a state q ∈ Q of A, we define Aq =
⟨Σ, Q, {q}, δ, α⟩, as the automaton obtained from A by setting the set of initial states to be
{q}. We say that two states q, s ∈ Q are equivalent, denoted q ∼A s, if L(Aq) = L(As). We
say that q is reachable if there is a finite word x ∈ Σ∗ with q ∈ δ(Q0, x), and say that q is
reachable from s if q is reachable in As. We say that A is semantically deterministic (SD,
for short) if different nondeterministic choices lead to equivalent states. Thus, all initial
states are equivalent, and for every state q ∈ Q and letter σ ∈ Σ, all the σ-successors of q are
equivalent. Formally, if s, s′ ∈ δ(q, σ), then s ∼A s′. The following proposition, termed the
SDness property, follows immediately from the definitions and implies that in SD automata,
for all finite words x, all the states in δ(Q0, x) are equivalent. Intuitively, it means that a
run of an SD automaton can take also bad nondeterministic choices, as long as it does so
only finitely many times.

▶ Proposition 1. Consider an SD automaton A = ⟨Σ, Q, Q0, δ, α⟩, and states q, s ∈ Q. If
q ∼A s, then for every σ ∈ Σ, q′ ∈ δ(q, σ), and s′ ∈ δ(s, σ), we have that q′ ∼A s′.

An automaton A is history deterministic (HD, for short) if its nondeterminism can be
resolved based on the past, thus on the prefix of the input word read so far. Formally, A is
HD if there exists a strategy f : Σ∗ → Q such that the following hold:
1. The strategy f is consistent with the transition function. That is, f(ϵ) ∈ Q0, and for

every finite word u ∈ Σ∗ and letter σ ∈ Σ, we have that f(u · σ) ∈ δ(f(u), σ).
2. Following f causes A to accept all the words in its language. That is, for every word

w = σ1 · σ2 · · · , if w ∈ L(A), then the run f(ϵ), f(w[1, 1]), f(w[1, 2]), . . . is an accepting
run of A on w.

B. Abu Radi and O. Kupferman 109:7

We say that the strategy f witnesses A’s HDness. Note that, by definition, we can assume
that every SD and HD automaton A has a single initial state. Thus, we sometimes abuse
notation and write A as A = ⟨Σ, Q, q0, δ, α⟩, where q0 is the single initial state of the SD (or
HD) automaton A.

For an automaton A, we say that a state q of A is HD, if Aq is HD. Note that every
deterministic automaton is HD. Also, while not all HD automata can be pruned to determ-
inistic ones [7], removing of transitions that are not used by a strategy f that witnesses
A’s HDness does not reduce the language of A and results in an SD automaton. Moreover,
since every state that is used by f is HD, the removal of non-HD states does not affect A’s
language nor its HDness. Accordingly, we have the following [20, 5].

▶ Proposition 2. Every HD automaton A can be pruned to an equivalent SD automaton all
whose states are HD.

We use three-letter acronyms in {D, N} × {B, C, W, F} × {W} to denote the different
automata classes. The first letter stands for the branching mode of the automaton (determ-
inistic or nondeterministic); the second for the acceptance condition type (Büchi, co-Büchi,
weak, or an automaton that runs over finite inputs); and the third indicates that we consider
automata on words. For transition-based automata, we start the acronyms with the letter
“t”, and for HD or SD automata, we add an HD or SD prefix, respectively. For example,
an HD-tNBW is a transition-based HD nondeterministic Büchi automaton, a DFW is a
state-based deterministic automaton on finite words, and an SD-NWW is a state-based weak
SD automaton.

3 Semantically Deterministic Büchi Automata

In this section we examine SD-tNBWs and SD-NBWs. Our results use the following definitions
and constructions: For a language R ⊆ Σ∗ of finite words, we use ∞R to denote the language
of infinite words that contain infinitely many disjoint infixes in R. Thus, w ∈ ∞R iff ϵ ∈ R

or there are infinitely many indices i1 ≤ i′
1 < i2 ≤ i′

2 < · · · such that w[ij , i′
j] ∈ R, for all

j ≥ 1. For example, taking Σ = {a, b}, we have that ∞{ab} is the language of words with
infinitely many ab infixes, namely all words with infinitely many a’s and infinitely many b’s.
We say that a finite word x ∈ Σ∗ is a good prefix for a language R ⊆ Σ∗ if for all finite words
y ∈ Σ∗, we have that x · y ∈ R. For example, while the language (a + b)∗ · a does not have a
good prefix, the word a is a good prefix for the language a · (a + b)∗.

Theorem 3 below suggests that one can encode an NFW-recognizable language R in an
SD-tNBW A for ∞R, and Theorem 4 suggests that one can decode an NFW for R from
an SD-tNBW for ∞($ · R · $), where $ /∈ Σ. The blow-up in the sizes of the automata is
constant, and both theorems play a major rule in the rest of this section.

▶ Theorem 3. Given an NFW N , one can obtain, in polynomial time, an SD-tNBW A such
that L(A) = ∞L(N) and |A| = |N |.

Proof. Let N = ⟨Σ, Q, Q0, δ, F ⟩. Then, A = ⟨Σ, Q, Q0, δ′, α⟩ is obtained from N by adding
transitions to Q0 from all states with all letters. A new σ-transition is in α if Q0 ∩ F ̸= ∅ or
when N could transit with σ to a state in F . Formally, for all s ∈ Q and σ ∈ Σ, we have that
δ′(s, σ) = δ(s, σ) ∪ Q0, and α = {⟨s, σ, q⟩ : q ∈ Q0 and (Q0 ∩ F ̸= ∅ or δ(s, σ) ∩ F ̸= ∅)}.

It is easy to see that |A| = |N |. In order to prove that A is SD and L(A) = ∞L(N), we
prove in the full version that for every state q ∈ Q, it holds that L(Aq) = ∞L(N). ◀

ICALP 2023

109:8 On Semantically-Deterministic Automata

▶ Theorem 4. Consider a language R ⊆ Σ∗ and a letter $ /∈ Σ. For every SD-tNBW A such
that L(A) = ∞($ · R · $), there exists an NFW N such that L(N) = R and |N | ≤ |A| + 1.
In addition, if R has no good prefixes, then |N | ≤ |A|.

Proof. If R is trivial, then one can choose N to be a one-state NFW. Assume that R is
nontrivial. Let A = ⟨Σ ∪ {$}, Q, q0, δ, α⟩ be an SD-tNBW for ∞($ · R · $), W.l.o.g we assume
that all the states of A are reachable. For a nonempty set of states S ∈ 2Q \ ∅, we define the
universal α language of S as

Luα(S) = {w ∈ (Σ ∪ {$})ω : for all q ∈ S, all the runs of Aq on w do not traverse α}.

We say that S is hopeful when ($ · R)ω ⊆ Luα. Note that S is hopeful iff for every state
q ∈ S, it holds that {q} is hopeful. Also, if S is hopeful, x ∈ Σ∗ is a finite word, and there is
a run from S on $ · x that traverses α, then x ∈ R. Then, we say that S is good when for all
words x ∈ Σ∗, it holds that x ∈ R iff all the runs from S on $ · x do not traverse α, and the
set δ(S, $ · x) is hopeful. Note that as R is nontrivial, there exists a word x in R, and thus
by definition, all the $-labled transitions going out from a good set S are in α.

Good sets in A characterize the language R, and as we argue below, their existence
induces an NFW for R. In the full version, we prove that a good set exists. We show now
that a good set in A induces an NFW N for R with the required properties. Let S ∈ 2Q \ ∅
be a good set. We define the NFW N = ⟨Σ, Q ∪ {qacc}, QS

0 , δS , FS⟩, where QS
0 = δ(S, $),

FS = {qacc} ∪ {q ∈ Q : the set {q} is not hopeful}, and the transition function δS is defined
as follows. For every two states q, s ∈ Q and letter σ ∈ Σ, it holds that s ∈ δS(q, σ) iff
⟨q, σ, s⟩ ∈ α. Also, qacc ∈ δS(q, σ) iff there is a σ-labeled α-transition going out from q in A.
Also, for all letters σ ∈ Σ, it holds that δ(qacc, σ) = {qacc}; that is, qacc is an accepting sink.
Thus, N behaves as the states in δ(S, $) as long as it reads α transitions of A, moves to the
accepting sink qacc whenever an α-transition is encountered, and accepts also whenever it
reaches a state in Q that is not hopeful.

In the full version, we prove that L(N) = R. Essentially, this follows from the fact that
if we consider a word x ∈ Σ∗ such that all the runs from QS

0 on x in A do not traverse α,
then S being a good set implies that x ∈ R iff δ(S, $ · x) ∩ FS ̸= ∅.

Since the state space of N is Q ∪ {qacc}, then |N | = |A| + 1. Moreover, as qacc is an
accepting sink, a word x ∈ L(N) that has a run that ends in qacc is a good prefix for L(N).
Hence, as L(N) = R, if R has no good prefixes, then qacc is not reachable in N and thus
can be removed without affecting N ’s language. Thus, in this case, we get an NFW N for R

whose size is at most |A|. ◀

3.1 Succinctness and Complementation

In this section we study the succinctness of SD Büchi automata with respect to deterministic
ones, and the blow-up involved in their complementation. We show that SD-tNBWs are
exponentially more succinct than tDBWs, matching the known upper bound [3], and in
fact, also from HD-tNBWs. We also prove an exponential lower bound for complementation.
Similar results for SD-NBWs follow, as the transition between the two types of acceptance
conditions is linear.

▶ Theorem 5. There is a family L1, L2, L3, . . . of languages such that for every n ≥ 1, there
is an SD-tNBW with 3n + 3 states that recognizes Ln, yet every tDBW or HD-tNBW that
recognizes Ln needs at least 2n states.

B. Abu Radi and O. Kupferman 109:9

Proof. For n ≥ 1, let [n] = {1, . . . , n}, and let Σn = {1, . . . , n, $, #}. We say that a word
z ∈ Σ∗

n is good if z = $ · x · # · i, where x ∈ [n]+ and i appears in x. Let Rn ⊆ Σ∗
n be the

language of all good words. We define Ln = ∞Rn. First, it is not hard to see that Rn can be
recognized by an NFW Nn with 3n + 3 states. Essentially, Nn guesses the last letter i in the
input word and then checks that the guess is correct (see sketch in Figure 1). By Theorem 3,
there is an SD-tNBW for Ln with 3n + 3 states.

q0

q1
1

q2
1

q3
1

q1
i

q2
i

q3
i

q1
n

q2
n

q3
n

qacc

...

...

$

$

$

i

1

n

[n] \ {i}

i

[n]

#

[n] \ {1}

1

[n]

#

[n] \ {n}

n

[n]

#

Figure 1 The NFW Nn. Missing transitions lead to a rejecting-sink.

Before we prove that every tDBW or HD-tNBW that recognizes Ln needs at least 2n

states, let us note that it is already known that going from a DFW for a language R ⊆ Σ∗

to a tDBW for ∞R, may involve a blow-up of 2n−2−log2(n)[24]. Thus, Theorem 3 implies
an exponential gap between SD-tNBWs and tDBWs. Moreover, as HD-tNBWs are at most
quadratically more succinct than tDBWs [20], the above can be extended to a 2

n−2−log2(n)
2

lower bound for the succinctness of SD-tNBWs with respect to HD-tNBWs. Our example
here is tighter.

It is left to prove that every HD-tNBW that recognizes Ln needs at least 2n states. Assume
towards contradiction that A = ⟨Σn, Q, q0, δ, α⟩ is an HD-tNBW for Ln with |Q| < 2n states.
In the full version, we iteratively define infinite sequences of finite words x1, x2, x3, . . . and
states q0, q1, . . . such that for all k ≥ 1, the word xk starts with $, has no good infixes, and
there is a run of the form rk = qk−1

xk−→ qk in A on xk that traverses α. The challenging part
in the construction is to make it valid also for HD (and not only deterministic) automata.
For this, the definition of the words in the sequence is defined with respect to a strategy
that attempts to witness the HDness of A. To see why such sequences imply a contradiction,
note that the concatenation of the runs r1, r2, . . . is an accepting run of A on the word
x = x1 · x2 · · · . As A recognizes Ln = ∞Rn, it follows that x ∈ ∞Rn. On the other hand,
x has no good infixes, and so x /∈ ∞Rn. Indeed, if there is a good infix in x, then it must
contain letters from different xk’s; in particular, it must contain at least two $’s. ◀

▶ Remark 6. In order to get a slightly tighter bound, one can show that a minimal tDBW for
Ln needs at least 2n+1 states and that the language Ln is not HD-helpful. That is, a minimal
HD-tNBW for Ln is not smaller than a minimal tDBW for Ln, and so the 2n+1 bound
holds also for a minimal HD-tNBW. The proof starts with a tDBW for Ln that has 2n+1

states, considers its complement tDCW, and shows that the application of the polynomial
minimization algorithm of [1] on it, namely the algorithm that returns an equivalent minimal
HD-tNCW, does result in a smaller automaton. The result then follows from the fact that a
minimal HD-tNCW for a language is smaller than a minimal HD-tNBW for its complement
[20]. The proof involves many notions and observations from [1] about minimal HD-tNCWs.

ICALP 2023

109:10 On Semantically-Deterministic Automata

In the full version, we still describe a tDBW with 2n+1 states for Ln, and readers familiar
with [1] can observe that the application of the HD-tNCW minimization algorithm on its
dual tDCW does not make it smaller.

▶ Theorem 7. There is a family L1, L2, L3, . . . of languages such that for every n ≥ 1, there
is an SD-tNBW with O(n) states that recognizes Ln, yet every SD-tNCW that recognizes Ln

needs at least 2O(n) states.

Proof. Let Σ = {0, 1}. For n ≥ 1, let Rn = {w : w ∈ 0 · (0 + 1)n−1 · 1 + 1 · (0 + 1)n−1 · 0}.
It is easy to see that Rn can be recognized by an NFW Nn with O(n) states. We define
Ln = ∞Rn. First, by Theorem 3, there is an SD-tNBW with O(n) states for Ln. In order
to prove that an SD-tNCW for Ln needs at least 2O(n) states, we prove that in fact every
tNCW for Ln needs that many states. For this, note that Ln consists of all words w for
which there is u ∈ (0 + 1)n such that w ∈ (0 + 1)∗ · uω. Indeed, for such words w, the suffix
uω contains no infix in Rn. Also, if a word contain only finitely many infixes in Rn, then it
must have a suffix with no such infixes, namely a suffix of the form uω for some u ∈ (0 + 1)n.
Then, the proof that a tNCW for Ln needs exponentially many states is similar to the proof
that an NFW for {u · u : u ∈ (0 + 1)n} needs exponentially many states. Indeed, it has to
remember the last n letters read. ◀

3.2 Decision Problems
We continue to decision problems about SD-tNBWs and SD-NBWs, and show that the
exponential succinctness comes with a price: the complexity of all the problems we study
coincides with the one known for tNBWs and NBWs. Accordingly, we only prove lower
bounds for SD-tNBWs. Matching upper bounds follow from the known complexity for
tNBWs, and same bounds for SD-NBWs follow from linear translations between SD-tNBWs
and SD-NBWs. The problems we study are language containment: given two SD-tNBWs
A1 and A2, decide whether L(A1) ⊆ L(A2), universality: given an SD-tNBW A1, decide
whether L(A1) = Σω, and minimization: given an SD-tNBW A1 and an integer k ≥ 1,
decide whether there is an SD-tNBW A2 such that L(A1) = L(A2) and |A2| ≤ k.

The exponential succinctness of SD automata motivates also the study of the D-to-SD
minimization problem. Here, we are given a tDBW A1 and an integer k ≥ 1, and we
need to decide whether there is an SD-tNBW A2 such that L(A1) = L(A2) and |A2| ≤ k.
For automata on finite words, the D-to-N minimization problem is known to be PSPACE-
complete [19].

Note that a lower bound for universality implies a lower bound also for language contain-
ment. We still start with language containment, as it is much simpler.

▶ Theorem 8. The language-containment problem for SD-tNBWs is PSPACE-hard.

Proof. We describe a reduction from the universality problem for NFWs. Given an NFW N
over Σ, let N ′ be an NFW over Σ ∪ {$} such that L(N ′) = $ · L(N) · $. Now, let A1 be a
1-state tDBW over Σ ∪ {$} such that L(A1) = ∞$, and let A2 be the SD-tNBW obtained
by applying the operation from Theorem 3 on N ′. Note that L(A2) = ∞($ · L(N) · $) and
|A2| = |N | + 3.

We claim that N is universal iff L(A1) ⊆ L(A2). First, if L(N) = Σ∗, then L(A2) =
∞($ · Σ∗ · $) = ∞$ and so L(A1) ⊆ L(A2). Conversely, if there is a word x ∈ Σ∗ \ L(N),
then the word w = ($ · x)ω is in L(A1) \ L(A2). Indeed, w has infinitely many $’s, yet for
every infix $ · y · $ of w, we have that y ̸∈ L(N), and so w ̸∈ L(A2). ◀

B. Abu Radi and O. Kupferman 109:11

The proof in Theorem 8 uses ∞$ as the “contained language”. For the universality
problem, where we cannot relay on hints from words in the contained language, we have to
work much harder and generate such hints from runs of Turing machines. Specifically, we
prove PSPACE hardness by a generic reduction from polynomial space Turing machines.
Such reductions associate with a Turing machine T an automaton A that recognizes the
language R of words that do not encode legal rejecting computations of T , and so R = Σ∗

iff the machine has no rejecting computations. The automaton A is nondeterministic, as
it has to guess violations of attempts to encode legal accepting computations. In order to
replace A by an SD automaton, we manipulate the Turing machine so that the language of
the generated automaton is of the form ∞R, for which we can construct an SD-tNBW.

▶ Theorem 9. The universality problem for SD-tNBWs is PSPACE-hard.

Proof. We do a reduction from polynomial-space Turing machines. Given a Turing machine
T with space complexity s : N → N, we construct in time polynomial in |T | and s(0), an
SD-tNBW A of size polynomial in T and s(0), such that A is universal iff T accepts the
empty tape3. Let n0 = s(0). Thus, each configuration in the computation of T on the
empty tape uses at most n0 cells. We assume that T halts from all configurations (that
is, not just from these reachable from an initial configuration of T); Indeed, by adding a
polynomial-space counter to T , one can transform a polynomial-space Turing machine that
need not halt from all configurations to one that does halt. We also assume, without loss
of generality, that once T reaches a final (accepting or rejecting) state, it erases the tape,
moves with its reading head to the leftmost cell, and moves to the initial state. Thus, all
computations of T are infinite and after visiting a final configuration for the first time, they
eventually consists of repeating the same finite computation on the empty tape that uses at
most n0 tape cells.

We define A so that it accepts a word w iff (C1) no suffix of w is an encoding of a legal
computation of T that uses at most n0 tape cells, or (C2) w has infinitely many infixes that
encode the accepting state of T .

It is not hard to see that T accepts the empty tape iff A is universal. Indeed, if T accepts
the empty tape, and there is a word w that does not satisfy (C1), thus w has a suffix that
is an encoding of a legal computation of T that uses at most n0 cells, then the encoded
computation eventually reaches a final configuration, from which it eventually repeats the
accepting computation of T on the empty tape infinitely many times, and so w satisfies (C2).
Conversely, If T rejects the empty tape, then the word w that encodes the computation of T

on the empty tape does not satisfy (C1) nor (C2), and so A does not accept w.
Finally, the fact that T is a polynomial-space Turing machine enables us to define A with

polynomially many states, as we detail in the full version. ◀

We continue to the minimization problem. Note that here, a PSPACE upper bound does
not follow immediately from the known PSPACE upper bound for tNBWs, as the candidate
automata need to be SD. Still, as SDness can be checked in PSPACE [3], a PSPACE upper
bound follows. Also note that here, the case of SD-NBWs is easy, as a non-empty SD-NBW

3 This is sufficient, as one can define a generic reduction from every language L in PSPACE as follows.
Let TL be a Turing machine that decides L in polynomial space f(n). On input w for the reduction,
the reduction considers the machine Tw that on every input, first erases the tape, writes w on its tape,
and then runs as TL on w. Then, the reduction outputs an automaton A, such that Tw accepts the
empty tape iff A is SD. Note that the space complexity of Tw is s(n) = max(n, f(|w|)), and that w is
in L iff Tw accepts the empty tape. Since A is constructed in time polynomial in s(0) = f(|w|) and
|Tw| = poly(|w|), it follows that the reduction is polynomial in |w|.

ICALP 2023

109:12 On Semantically-Deterministic Automata

is universal iff it has an equivalent SD-NBW with one state. For transition-based acceptance,
the language of a single-state SD-tNBW need not be trivial, and so we have to examine
the specific language used for the universality PSPACE-hardness proof (see proof in the full
version):

▶ Theorem 10. The minimization problem for SD-tNBWs is PSPACE-hard.

As we show below, the minimization problem stays hard even when we start from a
deterministic automaton:

▶ Theorem 11. The D-to-SD minimization problem for Büchi automata is PSPACE-hard.

Proof. We start with Büchi automata with transition-based acceptance, and describe a
reduction from the D-to-N minimization problem for automata on finite words: given a DFW
A1, and an integer k ≥ 1, decide whether there is an NFW A2 such that L(A1) = L(A2) and
|A2| ≤ k. In [19], the authors prove that the problem is PSPACE-hard, in fact PSPACE-hard
already for DFWs that recognize a language that has no good prefixes.

Consider a language R ⊆ Σ∗. The reduction is based on a construction that turns an
NFW for R into an SD-tNBW for ∞($ · R · $), for a letter $ /∈ Σ. Note that by applying
the construction from Theorem 3 on the language $ · R · $, we can get an SD-tNBW for
∞($ · R · $). The construction there, however, does not preserve determinism. Therefore, we
need a modified polynomial construction, which takes advantage of the $’s. We describe the
modified construction below.

Given an NFW A = ⟨Σ, Q, Q0, δ, F ⟩, and a letter $ /∈ Σ, we construct the tNBW
A′ = ⟨Σ ∪ {$}, Q, Q0, δ′, α⟩, where for all states q ∈ Q and letters σ ∈ Σ, we have that
δ′(q, σ) = δ(q, σ). Also, δ′(q, $) = Q0, and α = {⟨s, σ, q⟩ : q ∈ Q0 and s ∈ F}. Thus, A′ is
obtained from A by adding $-transitions from all states to Q0. A new transition is in α iff
its source is an accepting state of A. In the full version, we prove that A′ is an SD-tNBW
and L(A′) = ∞($ · L(A) · $). Also, as we only added transitions labeled $ to Q0, it is easy to
see that if A is deterministic, then so is A′.

We now describe the reduction. Given a DFW A over Σ such that L(A) has no good
prefixes, and given an integer k, the reduction returns the polynomial tDBW A′ and the
integer k. We prove next that the reduction is correct. Thus, the DFW A has an equivalent
NFW with at most k states iff the tDBW A′ has an equivalent SD-tNBW with at most k

states. For the first direction, if B is an NFW equivalent to A whose size is at most k, then
by the above construction, it holds that B′ is an SD-tNBW whose size is at most k, and
L(B′) = ∞($ · L(B) · $) = ∞($ · L(A) · $) = L(A′).

Conversely, if B′ is an SD-tNBW for ∞($ · L(A) · $) whose size is at most k, then as L(A)
has no good prefixes, we get by Theorem 4 that there is an NFW B for L(A) whose size is
at most k, and we are done.

Finally, since the transitions between automata with transition-based and state-based
acceptance may involve a linear blow-up, here we need to be careful in extending the result
to the state-based setting. In the full version, we prove that the arguments in Theorem 11
can be adapted to automata with state-based acceptance, thus PSPACE-completeness holds
also for Büchi automata with state-based acceptance. ◀

4 Semantically Deterministic co-Büchi Automata

In this section we study SD co-Büchi automata. Here too, our results are based on construc-
tions that involve encodings of NFWs by SD-tNCWs. Here, however, the constructions are
more complicated, and we first need some definitions and notations.

B. Abu Radi and O. Kupferman 109:13

Consider a tNCW A = ⟨Σ, Q, Q0, δ, α⟩. We refer to the SCCs we get by removing A’s
α-transitions as the α-components of A; that is, the α-components of A are the SCCs of the
graph GAᾱ = ⟨Q, Eᾱ⟩, where ⟨q, q′⟩ ∈ Eᾱ iff there is a letter σ ∈ Σ such that ⟨q, σ, q′⟩ ∈ α.
We say that A is normal if there are no α-transitions connecting different α-components.
That is, for all states q and s of A, if there is a path of α-transitions from q to s, then there is
also a path of α-transitions from s to q. Note an accepting run of A eventually gets trapped
in one of A’s α-components. In particular, accepting runs in A traverse transitions that
leave α-components only finitely often. Hence, we can add transitions among α-components
to α without changing the language of the automaton. Accordingly, in the sequel we assume
that given tNCWs are normal.

We proceed to encoding NFWs by SD-tNCWs. For a language R ⊆ Σ∗, we define the
language ▷◁$(R) ⊆ (Σ ∪ {$})ω, by

▷◁$(R) = {w : if w has infinitely many $, then it has a suffix in ($R)ω}.

Also, we say that a finite word x ∈ Σ∗ is a bad infix for R if for all words w ∈ Σ∗ that
have x as an infix, it holds that w ∈ R.

Note that for every language R ⊆ Σ∗, we have that ▷◁$(R) = ∞($ · R · $). Thus, ▷◁$(R)
complements ∞($ · R · $). Yet, unlike tDCWs and tDBWs, which dualize each other, SD-
tNBWs and SD-tNCWs are not dual. Hence, adjusting Theorems 3 and 4 to the co-Büchi
setting, requires different, in fact more complicated, constructions.

▶ Theorem 12. Given an NFW N , one can obtain, in linear time, an SD-tNCW A such
that L(A) =▷◁$(L(N)) and |A| = |N |.

Proof. Given N = ⟨Σ, Q, Q0, δ, F ⟩, we obtain A by adding $-transitions from all states to Q0.
The new transitions are in α iff they leave a state in Q\F . Formally, A = ⟨Σ∪{$}, Q, Q0, δ′, α⟩,
where for all s ∈ Q and σ ∈ Σ, we have that δ′(s, σ) = δ(s, σ), and δ′(s, $) = Q0. Then,
α = {⟨s, $, q⟩ : q ∈ Q0 and s ∈ Q \ F}. It is easy to see that |A| = |N |. In order to prove
that A is SD and L(A) =▷◁$(L(N)), we prove in the full version that for every state q ∈ Q,
it holds that L(Aq) =▷◁$(L(N)). Essentially, this follows from the fact that A can avoid
traversing α when it reads an input of the form x · $, only when x ∈ L(N). ◀

▶ Theorem 13. Consider a language R ⊆ Σ∗ and a letter $ /∈ Σ. For every tNCW A such
that L(A) =▷◁$(R), there exists an NFW N such that L(N) = R and |N | ≤ |A| + 1. In
addition, if R has bad infixes, then |N | ≤ |A|.

Proof. Let A = ⟨Σ ∪ {$}, Q, Q0, δ, α⟩ be a tNCW for ▷◁$(R). We assume that A is normal
and all of its states are reachable. We define the NFW N = ⟨Σ, Q ∪ {qrej}, QN

0 , δN , FN ⟩,
where

QN
0 = {q ∈ Q : there is a state q′ such that ⟨q′, $, q⟩ ∈ α}.

FN = {q ∈ Q : there is a state q′ such that ⟨q, $, q′⟩ ∈ α}.
The transition function δN is defined as follows: for every two states q, s ∈ Q and letter
σ ∈ Σ, it holds that s ∈ δN (q, σ) iff ⟨q, σ, s⟩ ∈ α. Also, if {q} × {σ} × δ(q, σ) ⊆ α, then
δN (q, σ) = qrej . Finally, for all letters σ ∈ Σ, it holds that δN (qrej , σ) = qrej ; that is,
qrej is a rejecting sink.

Thus, N tries to accept words x ∈ Σ∗ for which there is a run in A that does not traverse
α on the word $ · x · $.

We prove that L(N) = R. We first prove that R ⊆ L(N). Consider a word x ∈ R, and
let r = r0, r1, r2, . . . be an accepting run of A on ($ · x)ω. As r is accepting, there are i < j

such that ri, ri+1, . . . , rj is a run that does not traverse α on $ · x · $. By the definition of
δN , ri+1 ∈ QN

0 , rj−1 ∈ FN , and so ri+1, ri+2, . . . , rj−1 is an accepting run of N on x.

ICALP 2023

109:14 On Semantically-Deterministic Automata

We prove next that L(N) ⊆ R. Consider a word x = σ1 · σ2 · · · σn ∈ L(N) and let
r = r0, r1, . . . rn be an accepting run of N on x. As r ends an accepting state of N , then
it does not visit qrej . Hence, the definition of δN implies that r is a run that does not
traverse α in A. Also, as r0 ∈ QN

0 and rn ∈ FN , there are states q1, q2 ∈ Q such that
⟨q1, $, r0⟩, ⟨rn, $, q2⟩ ∈ α. Hence, q1, r0, r1, . . . , rn, q2 is a run that does not traverse α in A
on the word $ · x · $. As A is normal, there is a word y ∈ (Σ ∪ {$})∗ such that there is a
run that does not traverse α of Aq2 on y that reaches q1. Therefore, ($ · x · $ · y)ω ∈ L(Aq1).
As all the states of A are reachable, it follows that there is a word z ∈ (Σ ∪ {$})∗ such that
q1 ∈ δ(Q0, z), and thus z · ($ · x · $ · y)ω ∈ L(A). Hence, as L(A) =▷◁$(R), we get that x ∈ R.

Since the state space of N is Q ∪ {qrej}, we have that |N | = |A| + 1. Moreover, if R has
a bad infix x, then x ∈ R. Hence, if we consider the word xω, then as it has no $’s, it is
accepted by A. Hence, there is a state q ∈ Q such that Aq has a run on xω that does not
leave the α-component of q. As we detail in the full version, the fact that x is a bad infix of
R implies that the α-component of q does not contain $-transitions. Hence, since the only
states in Q that are reachable in N lie in α-components that contain a $-transition, we can
remove the state qrej from N and make q a rejecting sink instead. Hence, in this case, we
have that |N | ≤ |A|, and we are done. ◀

4.1 Succinctness and Complementation
In this section we study the succinctness of SD co-Büchi automata with respect to deterministic
ones, and the blow-up involved in their complementation. Recall that unlike Büchi automata,
for co-Büchi automata, HD automata are exponentially more succinct than deterministic
ones. Accordingly, our results also refer to the succinctness of SD automata with respect to
HD ones:

▶ Theorem 14. There is a family L1, L2, L3, . . . of languages such that for every n ≥ 1,
there is an SD-tNCW with 3n + 3 states that recognizes Ln, yet every tDCW or HD-tNCW
that recognizes Ln needs at least 2n states.

Proof. For n ≥ 1, consider the alphabet Σn = [n] ∪ {#}, and the language Rn = {x · # · i :
x ∈ [n]+ and i appears in x} ⊆ Σ∗

n. We define Ln =▷◁$ (Rn). Recall that a word over
z ∈ (Σn ∪ {$})∗ is good if z = $ · x · # · i, where x ∈ [n]+ and i appears in x, and note
that Ln consists of exactly the words with finitely many $’s, or that have a suffix that is
a concatenation of good words. First, it is not hard to see that Rn can be recognized by
an NFW Nn with 3n + 3 states, for example, a candidate for Nn can be obtained from the
NFW in Figure 1 by removing the $-transitions from q0, and letting q0 guess to behave as
any state in

⋃
i∈[n]{q1

i }. By Theorem 12, there is an SD-tNCW for Ln with 3n + 3 states.
In order to show that an HD-tNCW for Ln needs at least 2n states, we rely on properties

of HD-tNCWs [20, 1] and argue that (1) an HD-tNCW for Ln has a state q such that Lα(q) =
{w : there is a run from q on w that does not traverse α} is such that ($ · Rn)ω ⊆ Lα(q),
and (2) the α-component of q is of size at least 2n. As we detail in the full version, the first
claim follows from the fact that HD-tNCWs can be assumed to be α deterministic, thus all
their ᾱ-transitions are deterministic [20, 1]. The second claim follows from the fact that
the α-component of q should detect good subwords, and should remember for this subsets
of [n]. ◀

▶ Remark 15. As has been the case with Büchi automata, here too, an analysis of the
application of the HD-tNCW minimization algorithm on a tDCW for Ln leads to a slightly
tighter bound. Specifically, in the full version, we describe a tDCW for Ln with 2n+1 + 1
states, such that the application of the HD-tNCW minimization algorithm on it does not
make it smaller.

B. Abu Radi and O. Kupferman 109:15

▶ Theorem 16. There is a family L1, L2, L3, . . . of languages such that for every n ≥ 1, there
is an SD-tNCW with O(n) states that recognizes Ln, yet every SD-tNBW that recognizes Ln

needs at least 2O(n) states.

Proof. Let Σ = {0, 1}, and let Rn = {w : w ∈ (0+1)∗·(0·(0+1)n−1·1+1·(0+1)n−1·0)·(0+1)∗}.
Thus, Rn is the language of all words that contain two letters that are at distance n and are
different. We define Ln =▷◁$(Rn).

It is easy to see that Rn can be recognized by an NFW with O(n) states. Hence, by
Theorem 12, there is an SD-tNCW with O(n) states for Ln. We prove next that every
SD-tNBW for Ln needs at least 2O(n) states. For this, note that Ln consists of all words
w such that w contains infinitely many $’s yet has no suffix in ($Rn)ω. Thus, w contains
infinitely many infixes in Rn. Therefore, Ln = ∞($ · Rn · $). It is not hard to prove that
an NFW for Rn needs at least 2O(n) states. Then, by Theorem 4, this bound is carried over
to a 2O(n) lower bound on an SD-tNBW for Ln. ◀

4.2 Decision Problems
We continue to decision problems for SD-tNCWs and SD-NCWs. As in Section 3.2, we state
only the lower bounds, and for SD-tNCWs. Matching upper bounds and similar results for
SD-NCWs follow from the known upper bounds for tNCWs and the known linear translations
between state-based and transition-based automata.

We start with language-containment and universality.

▶ Theorem 17. The language-containment and universality problems for SD-tNCWs are
PSPACE-hard.

Proof. We describe a reduction from universality of NFWs to universality of SD-tNCWs.
Given an NFW N over Σ, the reduction returns the SD-tNCWA over Σ∪{$} that is obtained
by applying the operation from Theorem 12 on N . Thus, L(A) =▷◁$(L(N)).

First, if L(N) = Σ∗, then (Σ ∪ {$})∗ · ($L(N))ω = ∞$, and so L(A) = (Σ ∪ {$})ω.
Conversely, if there is a word x ∈ Σ∗ \L(N), then the word w = ($x)ω is not in L(A). Indeed,
w has infinitely many $’s, yet it has a word not in L(N) between every two consecutive
$’s. ◀

We continue to the minimization problem. Note that while minimization is PSPACE-
complete for NCWs, it is NP-complete for DCWs and in PTIME for HD-tNCWs. Thus, our
PSPACE lower bound suggests a significant difference between SD and HD automata. Note
also that, as has been the case with Büchi automata, the case of SD-NCWs is easy, as a
non-empty SD-NCW is universal iff it has an equivalent SD-NCW with one state, which is
not the case for SD-tNCWs (see proof in the full version):

▶ Theorem 18. The minimization problem for SD-tNCWs is PSPACE-hard.

We continue to the D-to-SD minimization problem, showing it stays PSPACE-hard.

▶ Theorem 19. The D-to-SD minimization problem for co-Büchi automata is PSPACE-hard.

Proof. We reduce from the D-to-N minimization problem for automata on finite words, which
is already PSPACE-hard for languages that have bad infixes[19]. We start with co-Büchi
automata with transition-based acceptance.

Consider the construction from Theorem 12. Recall it takes an NFW A as input, returns
an SD-tNCW A′ of the same size for ▷◁$(L(A)), and preserves determinism.

ICALP 2023

109:16 On Semantically-Deterministic Automata

Consider a DFW A over Σ such that L(A) has a bad infix, and an integer k. The reduction
returns the SD-tNCW A′ constructed from A in Theorem 12, and the integer k. Recall that
L(A′) = ▷◁$(L(A)), and that the construction in Theorem 12 preserves determinism. Thus,
the automaton A′ is really a tDCW.

We prove next that the reduction is correct. That is, the DFW A has an equivalent NFW
with at most k states iff the tDCW A′ has an equivalent SD-tNCW with at most k states.
For the first direction, if B is an NFW equivalent to A whose size is at most k, then, by
applying to it the construction from Theorem 12, we get an SD-tNCW B′ whose size is at
most k, and L(B′) = ▷◁$(L(B)) = ▷◁$(L(A)) = L(A′).

Conversely, if B′ is an SD-tNCW for ▷◁$(L(A)) whose size is at most k, then as L(A) has
bad infixes, we get by Theorem 13 that there is an NFW B for L(A) whose size is at most k,
and we are done.

In the full version, we extend the proof to co-Büchi automata with state-based acceptance.
◀

5 Semantically Deterministic Weak Automata

By [3], SD-NWWs need not be DBP or even HD. For completeness we describe here the
example from [3], as it highlights the challenges in SD-NWW determinization. Consider the
automaton A in Figure 2.

q0

qa

qb

qacc

a

b

b

a

a, b

a, b

a, b

Figure 2 An SD-NWW that is not DBP.

It is easy to see that A is weak, and all its states are universal, and so it is SD. On
the other hand, A is not HD as every strategy has a word with which it does not reach
qacc – a word that forces every visit in qa and qb to be followed by a visit in q0. Below
we show that despite not being DBP, SD-NWWs can be determinized in polynomial time.
Essentially, our proof is based on redirecting transitions of the SD-NWW to deep components
in the automaton. In our example, note that while the SD-NWW A is not HD, it has a
deterministic state qacc that recognizes L(A).

Consider an SD-NWW A = ⟨Σ, Q, q0, δ, α⟩. We denote the set of A’s SCCs by C(A), and
the SCC containing a state q by C(q). Let C1 ≤ C2 ≤ · · · ≤ Cm be a total order on the
SCCs of A, extending the partial order induced by δ. That is, if q′ ∈ δ(q, σ), for some letter
σ, then C(q) ≤ C(q′). When C ≤ C ′, we say that C ′ is deeper than C. Thus, states along
runs of a weak automaton proceed from SCCs to deeper ones, and eventually get stuck in
some SCC.

If we had an algorithm that checks language equivalence between states in A in polynomial
time, we could have a polynomial determinization algorithm that defines the σ-successor of
a state as the deepest state among all states equivalent to its σ-successors (since A is SD,
all these successors agree on their language). Since we still do not have such an algorithm
(in fact, it would follow from our construction), we approximate language equivalence by an
equivalence that follows from the semantic determinism of A.

B. Abu Radi and O. Kupferman 109:17

For two states s1, s2 ∈ Q, we say that s1 and s2 are δ-close, if there is a state q ∈ Q and
a word w ∈ Σ∗ such that s1, s2 ∈ δ(q, w). Note that the δ-close relation refines equivalence,
yet the converse does not hold. Indeed, the SDness property implies that s1 ∼A s2 for all
δ-close states s1 and s2.

▶ Lemma 20. If s1 and s2 are δ-close, then there is a state q and word w of length at most
|Q|2 such that s1, s2 ∈ δ(q, w).

In order to calculate the δ-close relation in polynomial time, we define a sequence
H0, H1, H2, . . . ⊆ Q × Q of relations, where ⟨s1, s2⟩ ∈ Hi iff there is a state q and word w

of length at most i such that s1, s2 ∈ δ(q, w). By Lemma 20 (see proof in the full version),
we are guaranteed to reach a fixed point after at most |Q|2 iterations. The relations Hi are
defined as follows.

H0 = {⟨q, q⟩ : q ∈ Q}.
For i ≥ 0, we define Hi+1 = Hi ∪ {⟨s1, s2⟩ : there is ⟨q1, q2⟩ ∈ Hi and letter σ ∈ Σ such
that s1 ∈ δ(q1, σ) and s2 ∈ δ(q2, σ)}.

Let j ≥ 0 be such that Hj+1 = Hj . It is not hard to see that Hj is the δ-close relation.
While the δ-close relation is reflexive and symmetric, it is not transitive. Now, let H ⊆ Q×Q

be the closure of Hj under transitivity. That is, ⟨s1, s2⟩ ∈ H iff there is k ≥ 2 and states
q1, q2, . . . , qk such that q1 = s1, qk = s2 and ⟨qi, qi+1⟩ ∈ Hj for all 1 ≤ i < k.

The following lemma implies that H propagates to successor states (see proof in the full
version):

▶ Lemma 21. If H(s, s′), then for every letter σ ∈ Σ and states q ∈ δ(s, σ) and q′ ∈ δ(s′, σ),
we have that H(q, q′).

It is easy to see that H is an equivalence relation. Let P = {P1, . . . , Pk} be the set of the
equivalence classes of H . For each equivalence class P ∈ P , we fix the representative of P as
some state in P ∩ C, where C ∈ C(A) is the deepest SCC that intersects P . Let p1, . . . , pk

be the representatives of the sets in P . For a state q ∈ Q, let q̃ denote the representative of
the set P ∈ P with q ∈ P . Note that as H refines ∼A, we have that q ∼A q̃.

▶ Theorem 22. Given an SD-NWW A with state space Q, we can construct, in polynomial
time, an equivalent DWW D with state space Q′, for Q′ ⊆ Q.

Proof. Given A = ⟨Σ, Q, q0, δ, α⟩, we define D = ⟨Σ, Q′, q′
0, δ′, α ∩ Q′⟩, where

Q′ = {p1, . . . , pk}. Note that indeed Q′ ⊆ Q.
q′

0 = q̃0.
For p ∈ Q′ and σ ∈ Σ, we define δ′(p, σ) = q̃, for some q ∈ δ(p, σ). Note that all the
states in δ(p, σ) are δ-close, and thus belong to the same set in P . Hence, the choice of q

is not important, as δ′(p, σ) is the representative of this set.

We prove that D is a DWW equivalent to A. First, in order to see that D is weak,
consider states p, p′ such that p′ ∈ δ′(p, σ). Thus, p′ is the representative of a state q ∈ δ(p, σ).
As A is weak, we have that C(p) ≤ C(q). As p′ = q̃, we have that C(q) ≤ C(p′). Hence
C(p) ≤ C(p′), and we are done.

We continue and prove that L(A) = L(D). We first prove that L(A) ⊆ L(D). Consider a
word w and assume that w ∈ L(A). Let r = q0, q1, q2, . . . be an accepting run of A on w,
and let r′ = s0, s1, s2, . . . be the run of D on w. If r′ is accepting, we are done. Otherwise,
namely if r′ is rejecting, we point to a contradiction. Let j ≥ 0 be the index in which r′

ICALP 2023

109:18 On Semantically-Deterministic Automata

visits only states in sinf(r′). Note that all the states sj , sj+1, sj+2, . . . belong to some SCC
C of A. Since we assume that r′ is rejecting, and acceptance in D is inherited from A, we get
that C is a rejecting SCC of A. We claim that all the runs of Asj on the suffix w[j + 1, ∞]
of w are stuck in C. Thus, w[j + 1, ∞] ̸∈ L(Asj). On the other hand, we claim that for all
i ≥ 0, we have that qi ∼A si. Then, however, w[j + 1, ∞] ̸∈ L(Aqj), contradicting the fact
that r is accepting:

The easy part is to prove that for all i ≥ 0, we have that qi ∼A si. Indeed, it follows from
the fact that for all i ≥ 0, we have that H(qi, si) and the fact that H refines ∼A. The proof
proceeds by an induction on i. First, as for every state q ∈ Q, we have that H(q, q̃), then
H(q0, q′

0), and so the claim follows from s0 being q′
0. Assume now that H(qi, si). Recall that

si+1 is q̃ for some q ∈ δ(si, w[i + 1]). Also, qi+1 ∈ δ(qi, w[i + 1]). Then, by Lemma 21, we
have that H(qi+1, q). Since, in addition, we have that H(q, q̃), then the transitivity of H

implies that H(qi+1, si+1), and we are done.
We proceed to the other part, namely, proving that all the runs of Asj on the suffix

w[j + 1, ∞] of w are stuck in C. Let uj+1, uj+2, . . . be such that for all i ≥ 1, it holds that
uj+i ∈ δ(sj+i−1, w[j + i]) and H(uj+i, sj+i). Note that such states exist, as sj+i−1

w[j+i]−−−−→
sj+i is a transition of D and so sj+i = q̃ for all q ∈ δ(sj+i−1, w[j + i]). Consider a run
r′′ = v0, v1, v2, . . . of Asj on w[j + 1, ∞]. Note that v0 = sj , and so H(v0, sj). Therefore,
by Lemma 21, we have that H(v1, uj+1), implying H(v1, sj+1). By repeated applications
of Lemma 21, we get that H(vi, uj+i), implying H(vi, sj+i), for all i ≥ 1. Assume now by
way of contradiction that the run r′′ leaves the SCC C, and so there is i ≥ 1 such that
C(vi) ̸≤ C(sj+i). As H(vi, sj+i), the states vi and sj+i are in the same equivalence class
P ∈ P. Then, the definition of Q′ implies that C(sj+i) ≥ C(vi), and we have reached a
contradiction.

It is left to prove that L(D) ⊆ L(A). Consider a word w ∈ L(D). Let r′ = s0, s1, s2, . . .

be the run of D on w, and let j ≥ 0 be the index in which r′ visits only states in sinf(r′); in
particular, as argued above, sinf(r′) is included in some SCC C of A. Thus, all the states
sj , sj+1, sj+2, . . . are in C. Since w ∈ L(D), then r′ is accepting, and so C is an accepting
SCC of A. As in the previous direction, it holds that sj is A-equivalent to all the states in
δ(q0, w[1, j]). Hence, to conclude that w ∈ L(A), we show that there is an accepting run of
Asj on w[j + 1, ∞]. Assume by way of contradiction that all the runs of Asj on w[j + 1, ∞]
are rejecting. In particular, all these runs leave the SCC C. As in the previous direction,
this contradicts the choice of the states sj , sj+1, sj+2, . . . as representatives of equivalence
classes in P. ◀

Since DWWs can be complemented by dualization (that is, by switching α and ᾱ),
Theorem 22 implies the following.

▶ Theorem 23. Given an SD-NWW A with n states, we can construct, in polynomial time,
an SD-NWW (in fact, a DWW) that complements A.

Since the language-containment problem for DWW can be solved in NLOGSPACE, and
minimization for DWW is similar to minimization of DFWs and can be solved in polynomial
time [31], we have the following.

▶ Theorem 24. The language-containment, universality, and minimality problems for SD-
NWWs can be solved in polynomial time.

B. Abu Radi and O. Kupferman 109:19

References
1 B. Abu Radi and O. Kupferman. Minimizing GFG transition-based automata. In Proc.

46th Int. Colloq. on Automata, Languages, and Programming, volume 132 of LIPIcs, pages
100:1–100:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019.

2 B. Abu Radi and O. Kupferman. On semantically-deterministic automata. CoRR,
abs/2305.15489, 2023. arXiv:2305.15489.

3 B. Abu Radi, O. Kupferman, and O. Leshkowitz. A hierarchy of nondeterminism. In 46th
Int. Symp. on Mathematical Foundations of Computer Science, volume 202 of LIPIcs, pages
85:1–85:21, 2021.

4 B. Aminof, O. Kupferman, and R. Lampert. Reasoning about online algorithms with weighted
automata. ACM Transactions on Algorithms, 6(2), 2010.

5 M. Bagnol and D. Kuperberg. Büchi good-for-games automata are efficiently recognizable. In
Proc. 38th Conf. on Foundations of Software Technology and Theoretical Computer Science,
volume 122 of LIPIcs, pages 16:1–16:14, 2018.

6 B. Boigelot, S. Jodogne, and P. Wolper. On the use of weak automata for deciding linear
arithmetic with integer and real variables. In Proc. Int. Joint Conf. on Automated Reasoning,
volume 2083 of Lecture Notes in Computer Science, pages 611–625. Springer, 2001.

7 U. Boker, D. Kuperberg, O. Kupferman, and M. Skrzypczak. Nondeterminism in the presence
of a diverse or unknown future. In Proc. 40th Int. Colloq. on Automata, Languages, and
Programming, volume 7966 of Lecture Notes in Computer Science, pages 89–100, 2013.

8 U. Boker and K. Lehtinen. When a little nondeterminism goes a long way: an introduction to
history-determinism. ACM SIGLOG News, 10(1):177–196, 2023.

9 J.R. Büchi. On a decision method in restricted second order arithmetic. In Proc. Int. Congress
on Logic, Method, and Philosophy of Science. 1960, pages 1–12. Stanford University Press,
1962.

10 Olivier Carton and Max Michel. Unambiguous büchi automata. Theoretical Computer Science,
297(1):37–81, 2003.

11 T. Colcombet. The theory of stabilisation monoids and regular cost functions. In Proc. 36th
Int. Colloq. on Automata, Languages, and Programming, volume 5556 of Lecture Notes in
Computer Science, pages 139–150. Springer, 2009.

12 T. Colcombet, K. Quaas, and M. Skrzypczak. Unambiguity in automata theory (dagstuhl
seminar 21452). Dagstuhl Reports, 11(10):57–71, 2021.

13 A. Duret-Lutz, A. Lewkowicz, A. Fauchille, Th. Michaud, E. Renault, and L. Xu. Spot 2.0
— a framework for LTL and ω-automata manipulation. In 14th Int. Symp. on Automated
Technology for Verification and Analysis, volume 9938 of Lecture Notes in Computer Science,
pages 122–129. Springer, 2016.

14 P. Gastin and D. Oddoux. Fast LTL to Büchi automata translation. In Proc. 13th Int. Conf.
on Computer Aided Verification, volume 2102 of Lecture Notes in Computer Science, pages
53–65. Springer, 2001.

15 D. Giannakopoulou and F. Lerda. From states to transitions: Improving translation of LTL
formulae to Büchi automata. In Proc. 22nd International Conference on Formal Techniques
for Networked and Distributed Systems, volume 2529 of Lecture Notes in Computer Science,
pages 308–326. Springer, 2002.

16 E.M. Hahn, M. Perez, S. Schewe, F. Somenzi, A. Trivedi, and D. Wojtczak. Good-for-MDPs
automata for probabilistic analysis and reinforcement learning. In Proc. 26th Int. Conf. on
Tools and Algorithms for the Construction and Analysis of Systems, volume 12078 of Lecture
Notes in Computer Science, pages 306–323. Springer, 2020.

17 T.A. Henzinger, O. Kupferman, and S. Rajamani. Fair simulation. Information and Computa-
tion, 173(1):64–81, 2002.

18 T.A. Henzinger and N. Piterman. Solving games without determinization. In Proc. 15th
Annual Conf. of the European Association for Computer Science Logic, volume 4207 of Lecture
Notes in Computer Science, pages 394–410. Springer, 2006.

ICALP 2023

https://arxiv.org/abs/2305.15489

109:20 On Semantically-Deterministic Automata

19 T. Jiang and B. Ravikumar. Minimal NFA problems are hard. SIAM Journal on Computing,
22(6):1117–1141, 1993.

20 D. Kuperberg and M. Skrzypczak. On determinisation of good-for-games automata. In Proc.
42nd Int. Colloq. on Automata, Languages, and Programming, pages 299–310, 2015.

21 O. Kupferman. Avoiding determinization. In Proc. 21st IEEE Symp. on Logic in Computer
Science, pages 243–254, 2006.

22 O. Kupferman. Automata theory and model checking. In Handbook of Model Checking, pages
107–151. Springer, 2018.

23 O. Kupferman. Using the past for resolving the future. Frontiers in Computer Science, 4,
2023.

24 O. Kupferman and O. Leshkowitz. On repetition languages. In 45th Int. Symp. on Mathematical
Foundations of Computer Science, Leibniz International Proceedings in Informatics (LIPIcs),
2020.

25 O. Kupferman, S. Safra, and M.Y. Vardi. Relating word and tree automata. Ann. Pure Appl.
Logic, 138(1-3):126–146, 2006.

26 O. Kupferman and M.Y. Vardi. Safraless decision procedures. In Proc. 46th IEEE Symp. on
Foundations of Computer Science, pages 531–540, 2005.

27 R.P. Kurshan. Complementing deterministic Büchi automata in polynomial time. Journal of
Computer and Systems Science, 35:59–71, 1987.

28 R.P. Kurshan. Computer Aided Verification of Coordinating Processes. Princeton Univ. Press,
1994.

29 L.H. Landweber. Decision problems for ω–automata. Mathematical Systems Theory, 3:376–384,
1969.

30 W. Li, Sh. Kan, and Z. Huang. A better translation from LTL to transition-based generalized
Büchi automata. IEEE Access, 5:27081–27090, 2017.

31 C. Löding. Efficient minimization of deterministic weak ω-automata. Information Processing
Letters, 79(3):105–109, 2001.

32 S. Miyano and T. Hayashi. Alternating finite automata on ω-words. Theoretical Computer
Science, 32:321–330, 1984.

33 G. Morgenstern. Expressiveness results at the bottom of the ω-regular hierarchy. M.Sc. Thesis,
The Hebrew University, 2003.

34 D.E. Muller, A. Saoudi, and P. E. Schupp. Weak alternating automata give a simple explanation
of why most temporal and dynamic logics are decidable in exponential time. In Proc. 3rd
IEEE Symp. on Logic in Computer Science, pages 422–427, 1988.

35 M.O. Rabin and D. Scott. Finite automata and their decision problems. IBM Journal of
Research and Development, 3:115–125, 1959.

36 S. Safra. On the complexity of ω-automata. In Proc. 29th IEEE Symp. on Foundations of
Computer Science, pages 319–327, 1988.

37 S. Schewe. Beyond Hyper-Minimisation—Minimising DBAs and DPAs is NP-Complete. In
Proc. 30th Conf. on Foundations of Software Technology and Theoretical Computer Science,
volume 8 of Leibniz International Proceedings in Informatics (LIPIcs), pages 400–411, 2010.

38 S. Schewe. Minimising good-for-games automata is NP-complete. In Proc. 40th Conf. on
Foundations of Software Technology and Theoretical Computer Science, volume 182 of LIPIcs,
pages 56:1–56:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.

39 S. Schewe, Q. Tang, and T. Zhanabekova. Deciding what is good-for-MDPs. CoRR,
abs/2202.07629, 2022. arXiv:2202.07629.

40 S. Sickert, J. Esparza, S. Jaax, and J. Křetínský. Limit-deterministic Büchi automata for
linear temporal logic. In Proc. 28th Int. Conf. on Computer Aided Verification, volume 9780
of Lecture Notes in Computer Science, pages 312–332. Springer, 2016.

41 M.Y. Vardi and P. Wolper. Reasoning about infinite computations. Information and Compu-
tation, 115(1):1–37, 1994.

https://arxiv.org/abs/2202.07629

Checking Refinement of Asynchronous Programs
Against Context-Free Specifications
Pascal Baumann #

Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany

Moses Ganardi #

Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany

Rupak Majumdar #

Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany

Ramanathan S. Thinniyam #

Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany

Georg Zetzsche #

Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany

Abstract

In the language-theoretic approach to refinement verification, we check that the language of traces
of an implementation all belong to the language of a specification. We consider the refinement
verification problem for asynchronous programs against specifications given by a Dyck language. We
show that this problem is EXPSPACE-complete – the same complexity as that of language emptiness
and for refinement verification against a regular specification. Our algorithm uses several technical
ingredients. First, we show that checking if the coverability language of a succinctly described vector
addition system with states (VASS) is contained in a Dyck language is EXPSPACE-complete. Second,
in the more technical part of the proof, we define an ordering on words and show a downward
closure construction that allows replacing the (context-free) language of each task in an asynchronous
program by a regular language. Unlike downward closure operations usually considered in infinite-
state verification, our ordering is not a well-quasi-ordering, and we have to construct the regular
language ab initio. Once the tasks can be replaced, we show a reduction to an appropriate VASS and
use our first ingredient. In addition to the inherent theoretical interest, refinement verification with
Dyck specifications captures common practical resource usage patterns based on reference counting,
for which few algorithmic techniques were known.

2012 ACM Subject Classification Theory of computation → Concurrency; Software and its engin-
eering → Software verification

Keywords and phrases Asynchronous programs, VASS, Dyck languages, Language inclusion, Refine-
ment verification

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.110

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version Full Version: https://arxiv.org/abs/2306.13058

Funding Funded by the European Union (ERC, FINABIS, 101077902). Views and opinions expressed
are however those of the author(s) only and do not necessarily reflect those of the European Union
or the European Research Council Executive Agency. Neither the European Union nor the granting
authority can be held responsible for them. Partially funded by the DFG project 389792660 TRR
248–CPEC.

EA
T
C
S

© Pascal Baumann, Moses Ganardi, Rupak Majumdar, Ramanathan S. Thinniyam, and
Georg Zetzsche;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 110; pp. 110:1–110:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pbaumann@mpi-sws.org
https://orcid.org/0000-0002-9371-0807
mailto:ganardi@mpi-sws.org
https://orcid.org/0000-0002-0775-7781
mailto:rupak@mpi-sws.org
https://orcid.org/0000-0003-2136-0542
mailto:thinniyam@mpi-sws.org
https://orcid.org/0000-0002-9926-0931
mailto:georg@mpi-sws.org
https://orcid.org/0000-0002-6421-4388
https://doi.org/10.4230/LIPIcs.ICALP.2023.110
https://arxiv.org/abs/2306.13058
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

110:2 Checking Refinement of Asynchronous Programs

1 Introduction

Asynchronous programs are a common programming idiom for multithreaded shared memory
concurrency. An asynchronous program executes tasks atomically; each task is a sequential
recursive program that can read or write some shared state, emit events (such as calling an
API), and, in addition, can spawn an arbitrary number of new tasks for future execution. A
cooperative scheduler iteratively picks a previously spawned task and executes it atomically
to completion. Asynchronous programs occur in many software systems with stringent
correctness requirements. At the same time, they form a robustly decidable class of infinite-
state systems closely aligned with other concurrency models. Thus, algorithmic verification
of asynchronous programs has received a lot of attention from both theoretical and applied
perspectives [25, 13, 10, 8, 9, 15, 11, 16, 20].

We work in the language-theoretic setting, where we treat asynchronous programs as
generators of languages, and reduce verification questions to decision problems on these
languages. Thus, an execution of a task yields a word over the alphabet of its events and task
names. An execution of the asynchronous program concatenates the words of executing tasks
and further ensures that any task executing in the concatenation was spawned before and
not already executed. The trace of an execution projects the word to the alphabet of events
and the language of the program is the set of all traces. With this view, reachability or safety
verification questions reduce to language emptiness, and refinement verification reduces to
language inclusion of a program in a given specification language over the alphabet of events.

We consider the language inclusion problem for asynchronous programs when the spe-
cification language is given by a Dyck language. Our main result shows that this problem is
EXPSPACE-complete. The language emptiness problem for asynchronous programs, as well as
language inclusion in a regular language, are already EXPSPACE-complete [10]. Thus, there
is no increase in complexity even when the specifications are Dyck languages. However, as
we shall see below, our proof of membership in EXPSPACE requires several new ingredients.

In addition to the inherent language-theoretic interest, the problem is motivated by the
practical “design pattern” of reference counting and barrier synchronization in concurrent
event-driven programs. In this pattern, each global shared resource maintains a counter of
how many processes have access to it. Before working with the shared resource, a task acquires
access to the resource by incrementing a counter (the reference count). Later, a possibly
different task can release the resource by decrementing the reference count. When the count
is zero, the system can garbage collect the resource. For example, device drivers in the kernel
maintain such reference counts, and there are known bugs arising out of incorrect handling of
reference counts [21]. Here is a small snippet that shows the pattern in asynchronous code:

start : { t := inc(); if (t) spawn(work); }
// arbitrarily many requests may start concurrently

work : { in this code, we can assert that the reference count is positive ;
spawn(cleanup); }

cleanup : { dec(); if zeroref() { garbage collect the resource }}

Here, inc and dec increment and decrement the reference count associated with a shared
resource, inc succeeds if the resource has not been garbage collected. spawn starts a new
task, and zeroref checks if the reference count is zero. There are three tasks, start, work,
and cleanup; each invocation of a task executes atomically. Initially, an arbitrary number of
start tasks are spawned.

Our goal is to ensure the device is not garbage collected while some instance of work is
pending. Intuitively, the reason for this is clear: each work is spawned by a previous start
that takes a reference count and this reference is held until a later cleanup runs. However,

P. Baumann, M. Ganardi, R. Majumdar, R. S. Thinniyam, and G. Zetzsche 110:3

it is difficult for automated model checking tools to perform this reasoning, and existing
techniques require manual annotations of invariants [11, 15]. Dyck languages allow specifying
correct handling of reference counts [1], and our algorithm provides as a special case an
algorithmic analysis of correct reference counting for asynchronous programs.

Since there is a simple reduction from language emptiness to inclusion, we immediately
inherit EXPSPACE-hardness. Let us therefore focus on the challenges in obtaining an
EXPSPACE upper bound. The EXPSPACE algorithm for language emptiness proceeds as
follows (see [10, 20]). First, we can ignore the alphabet of events and only consider words
over the alphabet of task names. Second, we notice that (non-)emptiness is preserved if we
“lose” some spawns along an execution; this allows us to replace the language of each task by
its downward closure. By general results about well-quasi orderings, the downward closure is
a regular language which, moreover, has a succinct representation. Thus, we can reduce the
language emptiness problem to checking (coverability) language emptiness of an associated
vector addition system with states (VASS). This problem can be solved in EXPSPACE, by a
result of Rackoff [22].

Unfortunately, this outline is not sufficient in our setting. First, unlike for language
emptiness or regular language inclusion, we cannot simply replace tasks with their downward
closures (w.r.t. the subword ordering). While we can drop spawns as before, dropping letters
from the event alphabet does not preserve membership in a Dyck language. Second, even if
each handler is regular, we are left with checking if a VASS language is contained in a Dyck
language. We provide new constructions to handle these challenges.

Our starting point is the characterization of inclusion in Dyck languages [23]: A language L
is not included in a Dyck language if and only if there is a word w ∈ L with either an offset
violation (number of open brackets does not match the number of closed brackets), a dip
violation (some prefix with more closed brackets than open ones), or a mismatch violation
(an open bracket of one kind matched with a closed bracket of a different kind).

Checking VASS Language Inclusion. Our first technical construction shows how to check
language inclusion of a VASS coverability language in a Dyck language in EXPSPACE. (In a
coverability language, acceptance is defined by reaching a final control state.) In fact, our
result carries over when the control states of the VASS are succinctly represented, for example
by using transducers and binary encodings of numbers.

We first check that the VASS language is offset-uniform, that is, every word in the
language has exactly the same offset (difference between open brackets and closed brackets),
and that this offset is actually zero. (If this condition is not true, there is already an offset
violation.) We show that the offset of every prefix of a word in any offset-uniform VASS
language is bounded by a doubly exponential number, and therefore, this number can be
tracked by adding double exponentially bounded counters (as in Lipton’s construction [18])
in the VASS itself. Moreover, we can reduce the checking of dip or mismatch violations
to finding a marked Dyck factor : an infix of the form #w#̄ for a Dyck word w. Finally,
for offset-uniform VASS, finding a marked Dyck factor reduces to coverability in succinctly
represented VASS, which can be checked in EXPSPACE [2]. Offset uniformity is important –
finding a marked Dyck factor in an arbitrary VASS language is equivalent to VASS reachability,
which is Ackermann-complete [7, 17]. In fact, checking whether a given VASS language is
included in the set of prefixes of the one-letter Dyck language is already equivalent to VASS
reachability (see the long version of the paper for a proof).

ICALP 2023

110:4 Checking Refinement of Asynchronous Programs

A consequence of our result is that given a VASS coverability language K and a reachability
language (i.e. acceptance requires all counters to be zero in the end) L of a deterministic
VASS, deciding whether K ⊆ L is EXPSPACE-complete. This is in contrast (but not in
contradiction1) to recent Ackermann-completeness results for settings where both K and L

are drawn from subclasses of VASS coverability languages [6].

Downward Closure of Tasks. Next, we move to asynchronous programs. We define a
composite ordering on words that is a combination of two different orderings: the subword
ordering for task names, and the syntactic preorder on the events projected to a single set
{x, x̄} of Dyck letters. In our case, the latter means a word u is less than v iff they both
have the same offset, but v has at most the dip of u. The composite order is defined so as
to preserve the existence of marked Dyck factors. In contrast to the subword ordering, this
(composite) ordering is not a well-quasi-ordering (since, e.g., x̄x, x̄x̄xx, x̄x̄x̄xxx, . . . forms
an infinite descending chain). Nevertheless, our most difficult technical construction shows
that for any context-free language (satisfying an assumption, which we call tame-pumping)
there exists a regular language with the same downward closure in this ordering. The case of
general context-free languages reduces to this special case since the presence of a non-tame
pump immediately results in a Dyck-violation and can easily be detected in PSPACE. For
the tame-pumping grammars, a succinct description of the corresponding automaton can be
computed in PSPACE. This key observation allows us to replace the context-free languages of
tasks with regular sets, and thereby reduce the problem to checking VASS language inclusion.

Related Work. Language inclusion in Dyck languages is a well-studied problem. For
example, inclusion in a Dyck language can be checked in polynomial time for context-free
languages [26] or for ranges of two-copy tree-to-string transducers [19]. Our work extends the
recent result that the language noninclusion problem for context-bounded multi-pushdown
systems in Dyck languages is NP-complete [1]. Our result is complementary to that of [1]:
their model considers a fixed number of threads but allows the threads to be interrupted and
context-switched a fixed number of times. In contrast, we allow dynamic spawning of threads
but assume each thread is atomically run to completion. A natural open question is whether
our results continue to hold if threads can be interrupted up to a fixed number of times.

Inclusion problems have recently also been studied when both input languages are given
as VASS coverability languages [6]. Since in our setting, the supposedly larger language
is always a Dyck language (which is not a coverablity VASS language), those results are
orthogonal.

2 Language-Theoretic Preliminaries

General Definitions. We assume familiarity with basic language theory, see the textbook [14]
for more details. For an alphabet Σ ⊆ Θ, let πΣ : Θ∗ → Σ∗ denote the projection onto Σ∗. In
other words, for w ∈ Θ∗, the word πΣ(w) is obtained from w by deleting every occurrence of
a letter in Θ \ Σ. If Σ contains few elements, e.g. Σ = {x, y}, then instead of writing π{x,y}
we also write πx,y, leaving out the set brackets. We write |w|Σ for the number of occurrences
of letters x ∈ Σ in w, and similarly |w|x if Σ = {x}.

1 For general VASS, every coverability language is also a reachability language. However, deterministic
VASS with reachability acceptance cannot accept all coverability languages.

P. Baumann, M. Ganardi, R. Majumdar, R. S. Thinniyam, and G. Zetzsche 110:5

Context-Free Languages. A context-free grammar (CFG) G = (N,Θ, P, S) consists of an
alphabet of nonterminals N , an alphabet of terminals Θ with N ∩ Θ = ∅, a finite set of
productions P ⊆ N × (N ∪ Θ)∗, and the start symbol S ∈ N . We usually write A → v to
denote a production (A, v) ∈ P . The size of the CFG G is defined as |G| =

∑
A→v∈P (|v| + 1).

We denote the derivation relation by ⇒G and its reflexive, transitive closure by ∗⇒G . We
drop the subscript G if it is clear from the context. We also use derivation trees labelled
by N ∪ Θ for derivations of the form A ∗⇒ w for some A ∈ N . Here we start with the root
labelled by A, and whenever we apply a production B → v with v = a1 . . . an, we add n

children labelled by a1, . . . , an (in that order from left to right) to a leaf labelled by B. A
pump is a derivation of the form A ∗⇒ uAv for some nonterminal A. A derivation tree which
is pumpfree, i.e., in which no path contains multiple occurrences of the same nonterminal,
is referred to as a skeleton. We will often see an arbitrary derivation tree as one which is
obtained by inserting pumps into a skeleton.

The language L(G, A) of G starting from nonterminal A ∈ N contains all words w ∈ Θ∗

such that there exists a derivation A ∗⇒G w. The language of G is L(G) = L(G, S). A
context-free language (CFL) L is a language for which there exists a CFG G with L = L(G).

A CFG G = (N,Θ, P, S) is said to be in Chomsky normal form if all of its productions
have one of the forms A → BC, A → a, or S → ε, where B,C ∈ N \ {S}, a ∈ Θ, and the
last form only occurs if ε ∈ L(G). It is well known that every CFG can be transformed in
polynomial time into one in Chomsky normal form with the same language.

An extended context-free grammar (ECFG) G = (N,Θ, P, S) is a CFG, which may addi-
tionally have productions of the form A → Γ∗ ∈ P for some alphabet Γ ⊆ Θ. Productions
of this form induce derivations uAs ⇒G uvs, where u, s ∈ (N ∪ Θ)∗ and v ∈ Γ∗. Chomsky
normal form for ECFG is defined as for CFG, but also allows productions of the form A → Γ∗.
An ECFG can still be transformed into Chomsky normal form using the same algorithm as for
a CFG, treating expressions Γ∗ like single terminal symbols. Since the extended productions
can be simulated by conventional CFG productions, the language of an ECFG is still a CFL.

Dyck Language. Let X be an alphabet and let X̄ = {x̄ | x ∈ X} be a disjoint copy of X.
The Dyck language (over X) DyckX ⊆ (X ∪ X̄)∗ is defined by the following context-free
grammar:

S → ε | S → SS | S → xSx̄ for x ∈ X.

Let Θ ⊇ X ∪ X̄ be an alphabet. For w ∈ Θ∗ we define offset(w) = |w|X − |w|X̄ . A
language L ⊆ Θ∗ is called offset-uniform if for any u, v ∈ L, we have offset(u) = offset(v).

The dip of w ∈ Θ∗ is defined as dip(w) = max{−offset(u) | u is a prefix of w}. We define
e(w) = (dip(w), offset(w)). Observe that for w ∈ (X ∪ X̄)∗ with |X| = 1 we have w ∈ DyckX

if and only if e(w) = (0, 0).
A language L ⊆ (X ∪ X̄)∗ is not included in DyckX if and only if there exists a word

w ∈ L that satisfies one of the following violation conditions [23]:
(OV) an offset violation offset(w) ̸= 0,
(DV) a dip violation, where dip(w) > 0, i.e., there is a prefix u of w with offset(u) < 0, or
(MV) a mismatch violation, where there exists a pair x, ȳ (for some x ̸= y) of mismatched

letters in w, i.e., w contains an infix xvȳ where e(v) = (0, 0).
For example, w1 = xx̄x̄x has a dip violation due to the prefix u = xx̄x̄; w2 = xxx̄ has an
offset violation and w3 = xxx̄ȳ has a mismatch violation.

ICALP 2023

110:6 Checking Refinement of Asynchronous Programs

3 Asynchronous Programs

An asynchronous program [10], henceforth simply called a program, is a tuple P = (Q, Σ, Γ,
G, ∆, q0, qf , γ0), where Q is a finite set of global states, Σ is an alphabet of event letters, Γ is
an alphabet of handler names with Σ ∩ Γ = ∅, G is a CFG over the terminal symbols Σ ∪ Γ,
∆ is a finite set of transition rules (described below), q0 ∈ Q is the initial state, qf ∈ Q is the
final state, and γ0 is the initial handler.

Transition rules in ∆ are of the form q
a,A
↪−−→ q′, where q, q′ ∈ Q are global states, a ∈ Γ is

a handler name, and A is a nonterminal symbol in G.
Let M[S] denote the set of all multisets of elements from the set S. A configuration

(q,m) ∈ Q × M[Γ] of P consists of a global state q and a multiset m : Γ → N of pending
handler instances. The initial configuration of P is c0 = (q0, [[γ0]]), where [[γ0]] denotes the
singleton multiset containing γ0. A configuration is considered final if its global state is qf .
The rules in ∆ induce a transition relation on configurations of P : We have (q,m) w−→ (q′,m′)
iff there is a rule q

a,A
↪−−→ q′ ∈ ∆ and a word u ∈ L(G, A) such that πΣ(u) = w and

m′ = (m ⊖ [[a]]) ⊕ Parikh(πΓ(u)), where m′′ = m ⊕ m′ is the multiset which satisfies
m′′(a) = m′(a) + m(a) for each a ∈ Γ. Similarly m′′ = m ⊖ m′ is the multiset which satisfies
m′′(a) = m′(a) − m(a) for each a ∈ Γ with the implicit assumption that m′(a) ≥ m(a).
Here, Parikh(w) : Γ → N is the Parikh image of w that maps each handler in Γ to its number
of occurrences in w. Note that the transition is feasible only if m contains at least one
instance of the handler a.

Intuitively, a program consists of a set of atomic event handlers that communicate over a
shared global state Q. Each handler is a piece of sequential code that generates a word over
a set of events Σ and, in addition, posts new instances of handlers from Γ. A configuration
(q,m) represents the current value of the shared state q and a task buffer m containing the
posted, but not yet executed, handlers. At each step, a scheduler non-deterministically picks
and removes a handler from the multiset of posted handlers and “runs” it. Running a handler
changes the global state and produces a sequence of events over Σ as well as a multiset of
newly posted handlers. The newly posted handlers are added to the task buffer.

We consider asynchronous programs as generators of words over the set of events. A
run of P is a finite sequence of configurations c0 = (q0, [[γ0]]) w1−−→ c1

w2−−→ . . .
wℓ−−→ cℓ. It is an

accepting run if it ends in a final configuration.
The language of P is defined as

L(P) = {w ∈ Σ∗ | w = w1 · · ·wℓ, there is an accepting run c0
w1−−→ . . .

wℓ−−→ cℓ}.

The size of the program P is defined as |P| = |Q| + |G| + |∆|, i.e., the combined size of
states, grammar, and transitions.

The Dyck inclusion problem for programs asks, given a program P over a set (X ∪ X̄) of
events, whether every word in L(P) belongs to the Dyck language DyckX . We show the
following main result.

▶ Theorem 3.1 (Main Theorem). Given a program P with L(P) ⊆ (X ∪ X̄)∗, deciding if
L(P) ⊆ DyckX is EXPSPACE-complete.

EXPSPACE-hardness follows easily from the following result on language emptiness (by
simply adding a loop with a letter x̄ ∈ X̄ at the final state). Therefore, the rest of the paper
focuses on the EXPSPACE upper bound.

▶ Proposition 3.2 (Theorem 6.2, Ganty and Majumdar [10]). Given a program P, checking
if L(P) = ∅ is EXPSPACE-complete.

P. Baumann, M. Ganardi, R. Majumdar, R. S. Thinniyam, and G. Zetzsche 110:7

A nonterminal B in the grammar G of a program P is called useful if there exists a run ρ
of P reaching qf in which there exists a derivation tree containing B. More precisely, there
are two successive configurations (q,m) w−→ (q′,m′) in ρ such that there is a rule q

a,A
↪−−→ q′

and a word u ∈ L(G, A) with πΣ(u) = w, m′ = (m ⊖ [[a]]) ⊕ Parikh(πΓ(u)), and B occurs in
some derivation tree with root A and yield u. There is a simple reduction from checking if a
nonterminal is useful to checking language emptiness (see the full version) so we can check if
a nonterminal is useful also in EXPSPACE. Therefore, in the following, we shall assume that
all nonterminals are useful.

4 Checking Dyck Inclusion for VASS Coverability Languages

As a first technical construction, we show how to check Dyck inclusion for (succinctly defined)
VASS languages. We shall reduce the problem for programs to this case.

4.1 Models: VASS and Succinct Versions
Vector Addition Systems with States. A vector addition system with states (VASS) is a
tuple V = (Q,Σ, I, E, q0, qf) where Q is a finite set of states, Σ is a finite alphabet of input
letters, I is a finite set of counters, q0 ∈ Q is the initial state, qf ∈ Q is the final state, and E
is a finite set of edges of the form q

x,δ−−→ q′, where q, q′ ∈ Q, x ∈ Σ∪{ε}, and δ ∈ {−1, 0, 1}I .2
A configuration of V is a pair (q,u) ∈ Q× M[I]. The elements of M[I] and {−1, 0, 1}I

can also be seen as vectors of length |I| over N and {−1, 0, 1}, respectively, and we sometimes
denote them as such. The edges in E induce a transition relation on configurations: there is a
transition (q,u) x−→ (q′,u′) if there is an edge q x,δ−−→ q′ in E such that u′(i) = u(i) + δ(i) ≥ 0
for all i ∈ I. A run of the VASS is a finite sequence of configurations c0

x1−→ c1
x2−→ . . .

xℓ−→ cℓ

where c0 = (q0,0). A run is said to reach a state q ∈ Q if the last configuration in the run is
of the form (q,m) for some multiset m. An accepting run is a run whose final configuration
has state qf . The (coverability) language of V is defined as

L(V) = {w ∈ Σ∗ | there exists a run (q0, 0) = c0
x1−→ . . .

xℓ−→ cℓ = (qf , u) with w = x1 · · · xℓ}.

The size of the VASS V is defined as |V| = |I| · |E|.

Models with Succinct Control. In this paper we need various models with doubly succinct
control, i.e., models with doubly exponentially many states. Informally speaking, a machine
with finite control B, e.g. an NFA or a VASS, is doubly succinct if its set of control states is ΛM

where M ∈ N is an exponential number given in binary encoding, and Λ is a finite alphabet.
The initial and final state of B are the states 0M and 1M for some letters 0, 1 ∈ Λ. Finally,
the transitions of B are given by finite-state transducers T , i.e., asynchronous multitape
automata recognizing relations R ⊆ (ΛM)k. For example, a doubly succinct NFA (dsNFA in
short) contains binary transducers Ta for each a ∈ Σ ∪ {ε} where Σ is the input alphabet,
and B contains a transition p

x−→ q if and only if (p, q) is accepted by Tx. A doubly succinct
VASS (dsVASS, for short) contains binary transducers Tx,i, Tx,̄i, Tx,ε for each x ∈ Σ ∪ {ε}
and i ∈ I, where I is the set of counters. A state pair (p, q) accepted by Tx,i specifies

2 A more general definition of VASS would allow each transition to add an arbitrary vector over the
integers. We instead restrict ourselves to the set {−1, 0, 1}, since this suffices for our purposes, and the
EXPSPACE-hardness result by Lipton [18] already holds for VASS of this form.

ICALP 2023

110:8 Checking Refinement of Asynchronous Programs

a transition p
x,ei−−→ q in B, where ei only increments counter i and leaves other counters

the same. Similarly Tx,̄i and Tx,ε specify decrementing transitions and transitions without
counter updates.

Later we will also use (singly) succinct ECFGs, which are extended context-free grammars
whose set of nonterminals is ΛM where M is a unary encoded number. The set of productions
is given in a suitable fashion by transducers. Let us remark that the precise definition of
(doubly) succinct automata or grammars is not important for our paper, e.g. one could also
use circuits instead of transducers to specify the transitions/productions.

4.2 Checking Dyck Inclusion for dsVASS
We prove our first technical contribution: an EXPSPACE procedure to check non-inclusion of
a VASS language in a Dyck language. This involves checking if one of (OV), (DV), or (MV)
occurs. We begin by showing how these violations can be detected for a (non-succinct) VASS.

To this end, first we show that offset-uniformity of a VASS language implies a doubly
exponential bound B on the offset values for prefixes of accepted words (Theorem 4.1). Given
an alphabet X and a number k ∈ N, we define the language

B(X, k) = {w ∈ (X ∪ X̄)∗ | for every prefix v of w: |offset(v)| ≤ k}.

▶ Theorem 4.1. Let V be a VASS with L(V) ⊆ (X ∪ X̄)∗. If L(V) is offset-uniform, then
L(V) ⊆ B(X, 22p(|V|)) for some polynomial function p.

Proof. Let V = (Q,X ∪ X̄, I, E, q0, qf) be a VASS where L(V) ̸= ∅ is offset-uniform. The
unique offset of L(V) is bounded double exponentially in |V| since L(V) contains some word
that is at most double exponentially long, a fact that follows from Rackoff’s bound on
covering runs [22]. Let C ⊆ Q× M[I] be the set of configurations that are reachable from
(q0,0) and from which the final state can be reached. Observe that for any configuration
c ∈ C the language L(c) = {w ∈ (X ∪ X̄)∗ | ∃u : c w−→ (qf ,u)} is also offset-uniform since
L(c) ⊆ {w ∈ (X ∪ X̄)∗ | vw ∈ L(V)} where v ∈ (X ∪ X̄)∗ is any word with (q0,0) v−→ c.
Define the function f : C → Z where f(c) is the unique offset of the words in L(c). It remains
to show that |f(c)| is bounded double exponentially for all c ∈ C.

Let M be the set of all configurations from which the final state can be reached (hence
C ⊆ M). Consider the following order on VASS configurations Q × M[I]: (q,u) ≤ (q′,u′)
iff q = q′ and u(i) ≤ u′(i) for each i ∈ I. The cardinality of the set min(M) of minimal
elements in M with respect to this order is bounded doubly exponentially in the size of V.
This follows directly from the fact that Rackoff’s doubly-exponential bound [22] on the length
of a covering run does not depend on the start configuration (but only the size of the VASS
and the final configuration). An explicit bound for | min(M)| is given in [4, Theorem 2].

Observe that if c1 ∈ M and c2 ∈ C with c1 ≤ c2 then L(c1) ⊆ L(c2) and therefore
L(c1) is also offset-uniform, having the same offset as L(c2). Hence, if for two configurations
c1, c2 ∈ C there exists a configuration c ∈ M with c ≤ c1 and c ≤ c2, then f(c1) = f(c2).
Since for every c2 ∈ C there exists c1 ∈ min(M) with c1 ≤ c2, the function f can only assume
doubly exponentially many values on C.

Finally, we claim that f(C) ⊆ Z is an interval containing 0, which proves that the norms
of elements in f(C) are bounded by the number of different values, i.e., double exponentially.
Since we assumed L(V) ̸= ∅, some final configuration (qf ,u) ∈ C is reachable from (q0,0), and
therefore 0 ∈ f(C) since ε ∈ L((qf ,u)). Consider the configuration graph C of V restricted
to C. For any edge c1 → c2 in C we have |f(c1) − f(c2)| ≤ 1 since VASS transitions consume
at most one input symbol. Moreover, the underlying undirected graph of C is connected
since any configuration is reachable from (q0,0) ∈ C. Therefore f(C) is an interval, which
concludes the proof. ◀

P. Baumann, M. Ganardi, R. Majumdar, R. S. Thinniyam, and G. Zetzsche 110:9

Note that although B(X, k) is a regular language for each X and k, Theorem 4.1 does not
imply that every offset-uniform VASS language is regular. For example, the VASS language
{(xx̄)m(yȳ)n | m ≥ n} is offset-uniform, but it is not regular. This is because Theorem 4.1
only implies boundedness of the number of occurrences of letters in the input words, but the
VASS’s own counters might be unbounded.

The main consequence of Theorem 4.1 is that in a VASS we can track the offset using a
doubly succinct control state. Thus, we have the following corollary.

▶ Corollary 4.2. The following problems can be decided in EXPSPACE: Given a VASS or
dsVASS V, does offset(w) = 0 hold for all w ∈ L(V)?

Proof. First assume V is a VASS. We show that the problem can be reduced to the
intersection non-emptiness problem for a VASS and a doubly succinct NFA, i.e., given a
VASS V and a doubly succinct NFA A, is the intersection L(V) ∩ L(A) nonempty? One
can construct in polynomial time a doubly succinct VASS for L(V) ∩ L(A), as a product
construction between V and A. Since the emptiness problem for dsVASS is in EXPSPACE
([2, Theorem 5.1]), we can also decide emptiness of L(V) ∩ L(A) in EXPSPACE.

Define the number M = 22p(|V|) where p is the polynomial from Theorem 4.1. Let
K0 = {w ∈ (X ∪ X̄)∗ | offset(w) = 0}. According to Theorem 4.1, we have L(V) ⊆ K0
if and only if L(V) ⊆ K0 ∩ B(X,M). By the remarks above, it suffices to construct a
doubly succinct NFA for the complement of K0 ∩ B(X,M). The following doubly succinct
deterministic finite automaton A recognizes K0 ∩B(X,M): Given an input word over X∪X̄,
the automaton tracks the current offset in the interval [−M,M], stored in the control state
as a binary encoding of length logM = 2p(|V|) together with a bit indicating the sign. If
the absolute value of the offset exceeds M , the automaton moves to a rejecting sink state.
The state representing offset 0 is the initial and the only final state. Finally, we complement
A to obtain a doubly succinct NFA Ā, with a unique final state, for the complement of
K0 ∩ B(X,M).

Now assume V is a dsVASS. Using Lipton’s construction simulating doubly exponential
counter values [18], we can construct a (conventional) VASS V ′, size polynomial in |V|, with the
same language (similar to [2, Theorem 5.1]). We can now apply the above construction. ◀

Next, we check for (DV) or (MV), assuming offset uniformity. We will reduce both kinds
of violations to the problem of searching for marked Dyck factors. A word of the form
u#v#̄w is called a marked Dyck factor if u, v, w ∈ {x, x̄}∗ and v ∈ Dyckx.

Intuitively, if a (DV) occurs in a word w, there is a first time that the offset reaches −1.
Placing a #̄ at the place where this happens, and a # right at the beginning, we have a word
of the form #u#̄v where u ∈ Dyckx. Similarly for (MV), we replace two letters z ∈ X and
ȳ ∈ X with z ̸= y by # and #̄, respectively, and look for a word u#v#̄w, where v ∈ Dyckx.

▶ Proposition 4.3. The following problems can be decided in EXPSPACE: Given an offset-
uniform VASS or dsVASS V, does L(V) contain a marked Dyck factor?

Proof. As in Corollary 4.2, given a dsVASS, we can convert to a polynomial-sized VASS with
the same language and apply the following algorithm.

We again reduce to the intersection nonemptiness problem between a VASS and a doubly
succinct NFA, and use the fact that nonemptiness of dsVASS is in EXPSPACE [2, Theorem
5.1]. As above, define the number M = 22p(|V|) where p is the polynomial from Theorem 4.1.
The automaton keeps track of the offset and also verifies that the input has the correct format
u#v#̄w where u, v, w ∈ {x, x̄}∗. Furthermore, upon reaching # it starts tracking the current
offset and verifies that (i) the offset stays nonnegative, (ii) the offset never exceeds 2M ,

ICALP 2023

110:10 Checking Refinement of Asynchronous Programs

and (iii) the offset is zero when reaching #̄. If L(V) intersects L(A), then clearly V is a
positive instance of the problem. Conversely, assume that L(V) contains a word u#v#̄w
with v ∈ Dyckx. By offset-uniformity of V and by Theorem 4.1, each prefix v′ of v satisfies
offset(v′) = offset(uv′) − offset(u) ≤ M − (−M) = 2M . Therefore u#v#̄w ∈ L(A). ◀

Let us put everything together. Let ρ : (X∪X̄)∗ → {x, x̄}∗ be the morphism that replaces
all letters from X (resp., X̄) by the letter x (resp., x̄). Given a dsVASS V over X ∪ X̄ we
can construct in polynomial time three dsVASS Vo,Vd,Vm where

L(Vo) = ρ(L(V)),
L(Vd) = {#ρ(v)#̄ρ(ȳw) | vȳw ∈ L(V) for some v, w ∈ (X ∪ X̄)∗, y ∈ X},
L(Vm) = {ρ(u)#ρ(v)#̄ρ(w) | uyvz̄w ∈ L(V) for some u, v, w ∈ (X ∪ X̄)∗, y ̸= z ∈ X}.

Observe that L(V) ⊆ Dyckx if and only if L(Vo) has uniform offset 0 and L(Vd) and L(Vm)
do not contain marked Dyck factors.

Hence, to decide whether L(V) ⊆ DyckX we first test that L(Vo) has uniform offset
0, using Corollary 4.2, rejecting if not. Otherwise, we can apply Proposition 4.3 to test
whether L(Vd) or L(Vm) contain marked Dyck factors. If one of the tests is positive, we know
L(V) ̸⊆ DyckX , otherwise L(V) ⊆ DyckX .

▶ Theorem 4.4. Given a dsVASS V over the alphabet X∪X̄, checking whether L(V) ⊆ DyckX

is EXPSPACE-complete.

Let us remark that Theorem 4.4 can also be phrased slightly more generally. Above, we
have defined the language of a VASS to be the set of input words for which a final state is
reached. Such languages are also called coverability languages. Another well-studied notion is
the reachability language of a VASS, which consists of those words for which a configuration
(qf ,0) is reached. Moreover, a VASS is deterministic if for each input letter x and each state
q, there is at most one x-labeled transition starting in q (and there are no ε-transitions).
We can now phrase Theorem 4.4 as follows: Given a VASS coverability language K and a
reachability language L of a deterministic VASS, it is EXPSPACE-complete to decide whether
K ⊆ L. This is in contrast to inclusion problems where K is drawn from a subclass of the
coverability languages: This quickly leads to Ackermann-completeness [6]. In fact, even if
we replace DyckX in Theorem 4.4 with the set of prefixes of Dyck{x}, the problem becomes
Ackermann-complete (see the full version of this work).

5 Checking Dyck Inclusion for Programs

We now describe our algorithm for checking inclusion in DyckX for programs. Our argument
is similar to the case of dsVASS: we first construct three auxiliary programs Po, Pd, and
Pm, and then we use them to detect each type of violation in the original program. We
construct the program Po for checking offset violation by projecting the Dyck letters to the
one-dimensional Dyck alphabet {x, x̄}. The programs Pd and Pm are constructed by first
placing two markers like for VASS, and then projecting to {x, x̄}.

As in the algorithm for VASS, we check whether L(Po) has uniform offset 0, and whether
L(Pd) and L(Pm) contain marked Dyck factors. For these checks, we convert the three
programs into dsVASS Vo, Vd, and Vm, respectively, in such a way that violations are preserved.
To be more precise, this conversion from programs to dsVASS will preserve the downward
closure with respect to a specific order that we define below. The global downward closure
procedure is obtained by composing a local downward closure procedure applied to each task.

P. Baumann, M. Ganardi, R. Majumdar, R. S. Thinniyam, and G. Zetzsche 110:11

On the task level, the order ⊑ is a combination of the subword order on the handler names
in Γ and the syntactic order of DyckX over the event letters. The core technical result is a
transformation from context-free grammars into dsNFA which preserve the downward closure
with respect to ⊑.

One key aspect of our downward closure construction is an important condition on the
pumps that appear in the context-free grammar.

▶ Definition 5.1. A context-free grammar G is tame-pumping if for every pump A ∗⇒ uAv,
we have offset(u) ≥ 0 and offset(v) = −offset(u). A derivation A ∗⇒ uAv is called an
increasing pump if offset(u) > 0, otherwise it is called a zero pump. An asynchronous
program is tame-pumping if its grammar is tame-pumping.

Note that while our definition of a tame-pumping grammar is syntactic, it actually only
depends on the generated language, assuming every nonterminal occurs in a derivation: In
that case, a grammar is tame-pumping if and only if (i) the set of offsets and (ii) the set of
dips of words in its language are both finite.

The following lemma summarizes some properties of tame-pumping and why it is useful
for our algorithm. The proof can be found in the full version.

▶ Lemma 5.2.
1. We can check in coNP whether a given context-free grammar over {x, x̄} is tame-pumping.

Furthermore, given a nonterminal A0, we can check in NP whether A0 has a zero pump
(resp., increasing pump).

2. There exists a polynomial p such that, if G is tame-pumping, then for every nonterminal
A of G and every w ∈ L(G, A) we have dip(w) ≤ 2p(|G|).

3. If P does not have tame-pumping, then L(P) ̸⊆ DyckX .
Thus, if P is not tame-pumping, the refinement checking algorithm rejects immediately.

From now on, we assume that P is tame-pumping.

5.1 Combining the subword order and the syntactic order
Suppose Γ is an alphabet and let Θ = Γ ∪ {x, x̄}. Define ā = a for a ∈ Γ. By ≼, we denote
the subword ordering on Γ∗, i.e. u ≼ v if and only if u can be obtained from v by deleting
some letters. Formally there exist words u1, . . . , un, v0, . . . , vn ∈ Γ∗ such that u = u1 · · ·un

and v = v0u1v1 · · ·unvn. For u, v ∈ {x, x̄}∗, we write u ⊴ v if offset(u) = offset(v) and
dip(u) ≥ dip(v). In fact, ⊴ is the syntactic order with respect to the Dyck language, i.e. if
u ⊴ v and rus ∈ Dyckx then rvs ∈ Dyckx for all r, s. We define the ordering ⊑′ on Θ∗ by
z1 ⊑′ z2 if and only if πx,x̄(z1) ⊴ πx,x̄(z2), and πΓ(z1) ≼ πΓ(z2). For example, ax̄xc ⊑′ xabcx̄

because ac is a subword of abc, and both x̄x and xx̄ have offset 0, but x̄x has a larger dip.
Let #, #̄ be two fresh letters, called markers. The set of marked words is defined as

M = Θ∗{ε,#}Θ∗{ε, #̄}Θ∗.

A marked word should be viewed as an infix of a larger word u#v#̄w. The set of admissible
marked words, denoted by A , consists of those words z ∈ M which are an infix of a word
u#v#̄w where v ∈ Dyckx. For example, a marked word u#v is admissible if v is a prefix of
a Dyck word.

On the set of admissible marked words, we define an ordering ⊑. To do so, we first
define for each marked word z ∈ M two words inside(z) and outside(z) in Θ∗ as follows: Let
u, v, w ∈ Θ∗ such that either z = v, z = u#v, z = v#̄w, or z = u#v#̄w. Then we define
inside(z) = v and outside(z) = uw (here, u = ε if it is not part of z, same for w). Given

ICALP 2023

110:12 Checking Refinement of Asynchronous Programs

two admissible marked words z1, z2 ∈ A we define w ⊑ w′ if and only if z1 and z2 contain
the same markers, and inside(z1) ⊑′ inside(z2), and outside(z1) ⊑′ outside(z2). For example,
ax̄xc#a ⊑ xabcx̄#ab because ax̄xc ⊑′ xabcx̄ and a ⊑′ ab.

For a language L ⊆ M we denote by L↓ the downward closure of L within A with respect
to the ordering ⊑. Thus, we define:

L↓ = {u ∈ A | ∃v ∈ L ∩ A : u ⊑ v}.

▶ Theorem 5.3. Given a tame-pumping CFG G, we can compute in polynomial space a
doubly succinct NFA A such that L(A)↓ = L(G)↓ and |A| is polynomially bounded in |G|.

We explain how to prove Theorem 5.3 in Section 6. Let us make a few remarks. While
downward closed sets with respect to the subword ordering are always regular, this does not
hold for ⊑. Consider the language L = (ax)∗ where a ∈ Γ is a handler name and x ∈ X

is an event letter. Then L↓ consists of all words w ∈ {a, x, x̄}∗ where |w|a ≤ |w|x − |w|x̄,
which is not a regular language. Furthermore, the automaton in Theorem 5.3 may indeed
require double exponentially many states. For example, given a number n, consider the
language L = {ux̄2n#x2n

ū | u ∈ {ax, bx}∗} where Γ = {a, b} is the set of handler names
and X = {x}. Here we define a1a2 · · · an = ān · · · ā2ā1 for a word a1 · · · an ∈ {a, b, x}∗ where
ā = a and b̄ = b. This is generated by a tame-pumping context-free grammar of size linear
in n. However, for any A with L(A)↓ = L↓, projecting to just a and b yields the language
K = {uurev | u ∈ {a, b}∗, |u| ≤ 2n}↓, for which an NFA requires at least 22n states.

Finally, note that the restriction to admissible words is crucial: If we defined the ordering
⊑ on all words of M , then for the tame-pumping language L = {xn#x̄n | n ∈ N}, the
downward closure would not be regular, because an NFA would be unable to preserve the
unbounded offset at the separator #. A key observation in this work is that in combination
with tame pumping, admissibility guarantees that the offset at the borders # and #̄ is
bounded (see Lemma 6.7), which enables a finite automaton to preserve it.

Given a tame-pumping asynchronous program P, we can now compute a dsVASS V
with the same downward closure: Its counters are the handler names a ∈ Γ in P. For each
nonterminal A we apply Theorem 5.3 to GA, which is the grammar of P with start symbol A,
and obtain a dsNFA BA. We replace each transition q

a,A
↪−−→ q′ by the following gadget: First,

it decrements the counter for the handler name a. Next, the gadget simulates the dsNFA BA

where handlers b ∈ Γ are interpreted as counter increments. Finally, when reaching the final
state of BA we can non-deterministically switch to q′.

▶ Corollary 5.4. Given an asynchronous program P with tame-pumping, we can compute in
polynomial space a doubly succinct VASS V such that L(P)↓ = L(V)↓ and |V| is polynomially
bounded in |P|.

The details of the proof are given in the full version.

5.2 The algorithm
We are now ready to explain the whole algorithm. Given an asynchronous program P =
(Q,X ∪ X̄,Γ,G,∆, q0, qf , γ0), we want to check if L(P) ⊆ DyckX . Recall that, wlog, we
can assume all nonterminals are useful, meaning every nonterminal is involved in some
accepting run. The algorithm is presented in Algorithm 1. As a first step, the algorithm
verifies that P is tame-pumping using Lemma 5.2. Next we construct the following auxiliary
asynchronous programs Po, Pd, Pm, to detect offset, dip, and mismatch violations in L(P).

P. Baumann, M. Ganardi, R. Majumdar, R. S. Thinniyam, and G. Zetzsche 110:13

Algorithm 1 Checking non-inclusion of L(P) in the Dyck language DyckX in EXPSPACE.

1 Asynchronous program P for a language L ⊆ (X ∪ X̄)∗

2 if P does not have tame-pumping (Lemma 5.2) then return L ̸⊆ DyckX ;
3 Construct asynchronous programs Po, Pd, Pm (Equation (1)).
4 Construct dsVASS Vo, Vd, Vm with L(Vx)↓ = L(Px)↓ for x ∈ {o, d,m} (Corollary 5.4).
5 if Vo does not have uniform offset 0 (Corollary 4.2) then return L ̸⊆ DyckX ;
6 if L(Vd) or L(Vm) contains a marked Dyck factor (Proposition 4.3) then return

L ̸⊆ DyckX ;
7 return L ⊆ DyckX

Let ρ : (X ∪ X̄)∗ → {x, x̄}∗ be the morphism which replaces all letters in X by unique letter
x and all letters in X̄ by unique letter x̄. The programs Po, Pd, Pm recognize the following
languages over the alphabet {x, x̄,#, #̄}:

L(Po) = {ρ(w) | w ∈ L(P)},
L(Pd) = {#ρ(v)#̄ρ(ȳw) | vȳw ∈ L(P) for some v, w ∈ (X ∪ X̄)∗, y ∈ X},
L(Pm) = {ρ(u)#ρ(v)#̄ρ(w) | uyvz̄w ∈ L(P),

for some u, v, w ∈ (X ∪ X̄)∗, y ̸= z ∈ X}.

(1)

In fact, if the original asynchronous program P is tame-pumping, we can ensure that Po,
Pd, Pm are also tame-pumping (see the full version for details).

It remains to verify whether L(Po) has uniform offset 0, and L(Pd) and L(Pm) do
not contain marked Dyck factors. By Corollary 5.4 we can compute for each x ∈ {o, d,m}
a dsVASS Vx with L(Vx)↓ = L(Px)↓. Since ⊑ preserves offsets we know that L(Po) has
uniform offset 0 if and only if L(Vo) has uniform offset 0, which can be decided in exponential
space by Corollary 4.2. Finally, we check whether L(Vd) or L(Vm) contain a marked Dyck
factor by Proposition 4.3. This is correct, because a language L contains a marked Dyck
factor if and only if L↓ contains a marked Dyck factor: On the one hand, the “only if”
direction is clear because L ⊆ L↓. On the other hand, if u#v#̄w ∈ L↓ is a marked Dyck
word then there exists a word u′#v′#̄w′ ∈ L with v ⊴ v′, and therefore v′ ∈ Dyckx.

6 Computing Downward Closures and the Proof of Theorem 5.3

It remains to show how the automaton A for the downward closure in Theorem 5.3 is
constructed. As a warm-up, let us illustrate how to construct from a context-free grammar G
an NFA A for the subword closure of L(G), cf. [5]. Here, subword closure refers to the
downward closure with respect to the subword ordering ≼. Notice that this is a special
case of Theorem 5.3, namely where L(G) ⊆ Γ∗. The basic idea is that every derivation
tree of G can be obtained by inserting pumps into a skeleton – a derivation tree without
vertical repetitions of nonterminals. The skeleton can be guessed by an (exponentially large)
automaton A and the effects of pumps are abstracted as follows: For each nonterminal A
one can compute the subalphabets ΓA,L,ΓA,R ⊆ Γ containing all letters occurring on the left
side u and the right side v of a pump A ∗⇒ uAv. Instead of inserting pumps, the automaton
for the subword closure inserts arbitrary words u′ ∈ Γ∗

A,L and v′ ∈ Γ∗
A,R on the left or right

side of A, respectively. This is sufficient because for any word w, the subword closure of the
language w∗ contains exactly those words that consist only of letters present in w.

ICALP 2023

110:14 Checking Refinement of Asynchronous Programs

#

=⇒

#

=⇒

#

Figure 1 Abstracting undivided pumps (in blue) and divided pumps (in red).

The difficulty in proving Theorem 5.3 is to preserve, not only the subword closure, but
also the downward closure with respect to the syntactic order ⊴ on the letters {x, x̄}. To
do so, we need to distinguish between two types of pumps. Consider the derivation tree for
a marked word z = u#v#̄w, depicted left in Figure 1. Observe that removing one of the
three pumps in blue does not change the offset of inside(z) = v or outside(z) = uw, because
G is tame-pumping. Such pumps, which are completely contained in inside(z) or outside(z),
will be called undivided. However, one needs to be more careful when removing divided
pumps, e.g., the red pump in the second derivation tree of Figure 1. Removing the red pump
decreases the offset of outside(z), while increasing the offset of inside(z) by the same amount.

We will proceed in two transformations, which preserve the downward closure w.r.t. ⊑.
In the first transformation we obtain a grammar whose derivation trees do not contain any
undivided pumps. In the second step we additionally eliminate divided pumps.

6.1 Abstracting undivided pumps
Recall that M = Θ∗{#, ε}Θ∗{#̄, ε}Θ∗ where Θ = Γ ∪ {x, x̄}. In the following we only
consider uniformly marked grammars G, that is, we assume L(G) is contained in one of the
subsets Θ∗#Θ∗#̄Θ∗, Θ∗#Θ∗, Θ∗#̄Θ∗, or Θ∗. This is not a restriction since we can split
the given grammar G into four individual grammars, covering the four types of marked
words, and treat them separately. This allows us to partition the set of nonterminals N into
N##̄ ∪N# ∪N#̄ ∪N0 where N##̄-nonterminals only produce marked words in Θ∗#Θ∗#̄Θ∗,
N#-nonterminals only produce marked words in Θ∗#Θ∗, etc. A pump A ∗⇒ uAv is undivided
if A ∈ N##̄ ∪N0, and divided otherwise. Our first goal will be to eliminate undivided pumps.
A derivation tree without undivided pumps may still contain exponentially large subtrees
below N0-nonterminals. Such subtrees will also be “flattened” in this step, see the first
transformation step in Figure 1.

▶ Definition 6.1. A context-free grammar G = (N,Θ ∪ {#, #̄}, P, S) is almost-pumpfree iff
(C1) G does not have undivided pumps, and
(C2) for all productions A → α with A ∈ N0 either α = a ∈ Θ or α = (Γ′)∗ for some Γ′ ⊆ Γ.

We will now explain how to turn any uniformly marked CFG into an almost-pumpfree
one. The resulting (extended) grammar will be exponentially large but can be represented
succinctly. Recall that a succinct ECFG (sECFG) is an extended context-free grammar

P. Baumann, M. Ganardi, R. Majumdar, R. S. Thinniyam, and G. Zetzsche 110:15

G whose nonterminals are polynomially long strings and whose productions are given by
finite-state transducers. For example, one of the transducers accepts the finite relation
of all triples (A,B,C) such that there exists a production A → BC. Productions either
adhere to Chomsky normal form or have the form A → B. The latter enables us to simulate
PSPACE-computations in the grammar without side effects, see Observation 6.5 below.

▶ Proposition 6.2. Given a uniformly marked tame-pumping CFG G, one can compute in
polynomial space a tame-pumping almost-pumpfree sECFG G′ such that L(G)↓ = L(G′)↓ and
|G′| is polynomially bounded in |G|.

To prove Proposition 6.2, we first need some auxiliary results, which are mainly concerned
with computing the minimal dips and letter occurrences within undivided pumps of a
grammar G. Recall that for the subword closure we computed for each nonterminal A the
subalphabets ΓL,A and ΓR,A, and inserted arbitrary words over ΓL,A and ΓR,A left and right
to the nonterminal A. For the refined order ⊑ we may only use a letter a ∈ Γ after simulating
the minimal dip which is required to produce the letter a.

For a word w ∈ Θ∗ we define the set ψ(w) of all pairs (n,m) ∈ N2 such that n ≥ dip(w)
and m = n + offset(w). In other words, ψ(w) is the reachability relation induced by w,
interpreted as counter instructions. Recall that Presburger arithmetic is the first-order theory
of (N,+, <, 0, 1). As an auxiliary step, we will compute existential Presburger formulas
capturing the relation ψ(u) × ψ(v) for all pumps A ∗⇒ uAv of a nonterminal A.

In the following lemma, when we say that we can compute a formula for a relation R ⊆ Nk

in polynomial space, we mean that there is non-deterministic polynomial-space algorithm,
where each non-deterministic branch computes a polynomial-size formula for a relation Ri

such that if R1, . . . , Rn are the relations of all the branches, then R =
⋃n

i=1 Ri. Here we
tacitly use the fact that NPSPACE = PSPACE [24].

▶ Lemma 6.3. Given an offset-uniform CFG with L(G) ⊆ Θ∗$Θ∗, where $ /∈ Θ, we can
compute in polynomial space an existential Presburger formula for the relation⋃

u$v∈L

ψ(u) × ψ(v) ⊆ N4.

Proof sketch. The result of Lemma 6.3 was already proved in [1, Proposition 3.8], under the
additional assumption that the given context-free grammar G for L is annotated (they even
show that in this case the formula can be computed in NP). We call G annotated if for every
nonterminal A the minimal dip that can be achieved by a word in L(G, A) is given as an
input, denoted by mindip(A). Hence, it remains to show how to compute the annotation of
an offset-uniform grammar in PSPACE, which is possible using a simple saturation algorithm.
For each nonterminal A, the algorithm stores a number D(A) satisfying D(A) ≥ mindip(A).
Initially, D(A) is set to an upper bound for mindip(A), which by Lemma 5.2 (2) can be chosen
to be exponentially large in |G|. In each round the function D is updated as follows: For each
production A → BC we set D(A) to the minimum of D(A) and max{D(B), D(C)−offset(B)},
where offset(B) is the unique offset of L(G, B). Clearly, the algorithm can be implemented in
polynomial space since the numbers are bounded exponentially. Termination of the algorithm
is guaranteed since the numbers D(A) are non-increasing. ◀

With Lemma 6.3 in hand, we can now prove the following lemma, which allows us to
check whether pumps with certain letter occurrences exist for certain minimal dips.

ICALP 2023

110:16 Checking Refinement of Asynchronous Programs

▶ Lemma 6.4. Given a tame-pumping CFG G such that L(G) ⊆ M , a nonterminal A in
G, a letter a ∈ Γ and two numbers dL, dR ∈ N, we can decide in PSPACE if there exists a
derivation A ∗⇒ uAv such that u contains the letter a (or symmetrically, whether v contains
the letter a), dip(u) ≤ dL, and dip(v) ≤ dR. Furthermore, we can also decide in PSPACE
whether a derivation with the above properties exists that also satisfies offset(u) > 0.

Proof sketch. We first construct the CFG GA for the language of pumps of the nonterminal
A, meaning for L(GA) = {u$v | A ∗⇒G uAv}. Then we intersect with the regular language
Θ∗aΘ∗$Θ∗, and apply Lemma 6.3 to the resulting grammar. This is possible, because
tame-pumping implies that the grammar for the pumps has a uniform offset of zero. We can
modify the resulting Presburger formula from Lemma 6.3 to check for the required dips, and
modify it further to check for the positive offset for u. Finally, we use the fact that testing
satisfiability of an existential Presburger formula is in NP [3]. ◀

Now we are almost ready to prove Proposition 6.2. The last thing we need is for an
sECFG to perform PSPACE-computations on paths in its derivation trees:

▶ Observation 6.5. An sECFG can simulate PSPACE-computations on exponentially long
paths in its derivation trees. This is because the nonterminals are polynomially long strings and
can therefore act as polynomial space Turing tape configurations. Moreover, the transducers
of the sECFG can easily be constructed to enforce the step-relation of a Turing machine. If we
apply this enforcement to productions of the form A → B, then the path that simulates the
PSPACE-computation will not even have any additional side paths until after the computation
is complete. Thus, only the result of the computation will affect the derived word.

Since grammars and transducers are non-deterministic (and NPSPACE = PSPACE), we
can even implement non-determinism and guessing within such computations.

We are ready to present a proof sketch of Proposition 6.2. The main idea is that G′

simulates derivation trees of G by keeping track of at most polynomially many nodes, and
abstracting away pumps via the previous auxiliary results.

If a nonterminal A of G does not belong to N0 (i.e., it produces a marker), then G′ guesses
a production A → BC to apply. If A furthermore belongs to N##̄, then G′ also guesses
a pump to apply in the form of a 4-tuple consisting of two dip values dL, dR ∈ N and two
alphabets ΓL,ΓR ⊆ Γ. Guessing and storing the dip values is possible in PSPACE, since
they are exponentially bounded by Lemma 5.2 (2). For each a ∈ ΓL, Lemma 6.4 is used
on input A, a, dL, dR to check in PSPACE whether a matching pump exists. A symmetric
version of Lemma 6.4 is also used for each a ∈ ΓR. Then, if all checks succeed, G′ simulates
the pump as A → x̄dLxdLΓ∗

LBCx̄
dRxdRΓ∗

R. This simulation clearly preserves minimal dips and
handler names, whereas by tame-pumping the combined offset of a pump is zero anyway,
and therefore need not be computed.

If a nonterminal A belongs to N0, then G′ abstracts away its entire subtree. To this
end it generates a pumpfree subtree on-the-fly using depth-first search, which is possible in
PSPACE since without pumps the tree has polynomial height. During this process pumps
are simulated using the same strategy as before.

We also need to ensure that nonterminals of G′ in N0 only have productions that allow
for a single leaf node below them. To this end G′ only ever derives letters and alphabets
Γ′∗ one at a time. Consider the up to two main paths in a derivation tree of G′, by which
we mean the paths leading from the root to a marker. Whenever G′ simulates a pump as
A → u′Av′ in the above process, it extends the main path by |uv| and in each step only
derives a single nonterminal from N0 to the left or right. When G′ abstracts an entire subtree
of a nonterminal in N0, then this subtree is also produced to the left or right of the main
path, without leaving said path.

P. Baumann, M. Ganardi, R. Majumdar, R. S. Thinniyam, and G. Zetzsche 110:17

Additionally, whenever G′ simulates a pump of some A, then G′ assumes that this pump is
the combination of all pumps that occur in the original derivation tree for that instance of A.
Thus, below such a pump, it remembers in polynomial space, that A is not allowed to occur
anymore. Finally, whenever G′ checks by Lemma 6.4 that a pump exists with offset(u) > 0,
then this is a so-called increasing pump, and it can be repeated to achieve an infix with
arbitrary high offset. Thus, dip values below this pump cannot make up for this offset and
therefore will no longer be simulated.

6.2 Abstracting divided pumps
We have now removed all the undivided pumps and are left with derivation trees as in the
middle picture of Figure 1. In this subsection, we will show the following:

▶ Lemma 6.6. Given a tame-pumping almost-pumpfree sECFG G with L(G) ⊆ M , one can
construct in polynomial space a dsNFA B such that L(B)↓ = L(G)↓ and |B| is polynomially
bounded in |G|.

We give a proof sketch here, the details can be found in the full version of the paper. Our
starting point in the proof of Lemma 6.6 is the following key observation: The offsets which
occur during the production of any admissible marked word w which contains exactly one
marker are bounded. This allows us to keep track of the offset precisely, which is necessary
for us to solve the marked Dyck factor (MDF) problem.

For a node t in a derivation tree T , let w(t) denote the word derived by the subtree
rooted at t and let u(t) = inside(w(t)), v(t) = outside(w(t)).

▶ Lemma 6.7. There exists a polynomial p such that for any uniformly marked, tame-
pumping, almost-pumpfree sECFG G the following holds. Let T be a derivation tree of G
which produces an admissible marked word containing # or #̄, but not both. Then we have
|offset(u(t))|, |offset(v(t))| ≤ 2p(|G|).

Proof. We consider the case when the word derived is of the form u#v, the case for v#̄w
being symmetric. Our derivation tree T has a skeleton T ′ into which pumps are inserted to
form T . This means u#v = u′

kûk · · ·u′
1û1u

′
0#v′

0v̂1v
′
1 · · · v̂kv

′
k, where u′

k · · ·u′
0#v′

0 · · · v′
k is the

word generated by T ′ and each pair (ûi, v̂i) is derived using a pump. Then we have

offset(u) =

=:U0︷ ︸︸ ︷
offset(u′

k · · ·u′
0) +

=:U1︷ ︸︸ ︷
k∑

i=1
offset(ûi),

offset(v) = offset(v′
0 · · · v′

k)︸ ︷︷ ︸
=:V0

+
k∑

i=1
offset(v̂i)︸ ︷︷ ︸
=:V1

.

We claim that each of the numbers |U0|, |U1|, |V0|, |V1| is bounded by n(G), the number of
nonterminals of G. This clearly implies the lemma: Since G is a succinct grammar, it has
at most exponentially many nonterminals in the size of its description. We begin with
U0, V0. The tree T ′ contains each nonterminal of G at most once, and by property (C2) in
Definition 6.1, we know that the subtree under each nonterminal in T ′ not containing # has
offset −1, 0, or 1. Thus, |U0|, |V0| ≤ n(G). The bound on |U1|, |V1| is due to admissibility
of u#v: It yields V0 + V1 = offset(v) ≥ 0 and thus V1 ≥ −V0. Moreover, by tame-pumping,
we know that offset(v̂i) ≤ 0 for each i ∈ [1, k], and thus V1 ≤ 0. Together, we obtain
V1 ∈ [−V0, 0]. Finally, tame-pumping also implies offset(ûi) = −offset(v̂i) for each i ∈ [1, k]
and hence U1 = −V1. ◀

ICALP 2023

110:18 Checking Refinement of Asynchronous Programs

▶ Remark 6.8. Note that the bound only holds under the condition of admissibility. An easy
counterexample is the tame-pumping language L = {xn#x̄n | n ∈ N}.

The dsNFA B of Lemma 6.6 can now be constructed in three steps as follows:

Step I: Tracking counter effects. We first observe that since G is almost-pumpfree, its
pumps A ∗⇒ uAv can be simulated by a transducer that traverses the derivation tree bottom-
up. Thus, we can construct a singly succinct finite-state transducer TA with size polynomial
in |G| that captures all pumps A ∗⇒ uAv. To be precise, TA accepts exactly those pairs (u, v)
for which A ∗⇒ urevAv. The transducer TA has one state for each nonterminal of G.

Since B will need to preserve offset and dip, we need to expand TA to track them as
well. Here, it is crucial that we only need to do this for A ∈ N# ∪N#̄ and pumps A ∗⇒ uAv

that are used to derive an admissible word. According to Lemma 6.7 tells us that in such
a pump, the absolute values of offsets and dips of u and v are bounded by 2q(|G|) for some
polynomial q. Thus, we can modify TA so as to track the dip and offset of the two words it
reads. Therefore, for each A ∈ N# ∪N#̄ and each quadruple x = (dL, δL, dR, δR) of numbers
with absolute value at most 2q(G), we can construct in PSPACE a transducer TA,x with

(u, v) is accepted by TA,x iff A ∗⇒ urevAv and e(urev) = (dL, δL), and e(v) = (dR, δR).

Moreover, TA,x is singly succinct, polynomial-size, and can be computed in PSPACE. Observe
that by Lemma 6.7, if a pump A ∗⇒ uAv is used in a derivation of an admissible word, then
for some quadruple x, the pair (urev, v) is accepted by TA,x.

Step II: Skeleton runs. The automaton B has to read words from left to right, rather than
two factors in parallel as TA and TA,x do. To this end, it will guess a run of TA,x without
state repetitions; such a run is called a skeleton run. For a fixed skeleton run ρ, the set of
words read in each component of TA,x is of the shape Γ∗

0{a1, ε}Γ∗
1 · · · {ak, ε}Γ∗

k, where each
ai is read in a single step of ρ and Γi is the set of letters from Γ seen in cycles in a state
visited in ρ. Sets of this shape are called ideals [12]. The ideal for the left (right) component
is called the left (right) ideal of the skeleton run. Note that since TA,x has exponentially
many states, the skeleton run is at most exponentially long.

Step III: Putting it together. The dsNFA B guesses and verifies an exponential size skeleton
T of the sECFG G. Moreover, for each node t that is above # or #̄—but not both—it guesses
a quadruple x = (dL, δL, dR, δR) with dL, dR ∈ [0, 2q(|G|)], δL, δR ∈ [−2q(G), 2q(G)] and a skeleton
run ρt of the transducer TA,x, where A is t’s label. The automaton B then traverses the
skeleton T in-order; i.e. node, left subtree, right subtree, node; meaning each inner node is
visited exactly twice. Whenever B visits a node t as above, it produces an arbitrary word
from an ideal of ρt: For the first (resp. second) visit of t, it uses the left (resp. right) ideal
of ρt. Moreover, in addition to the word from the left ideal, B outputs a string w ∈ {x, x̄}∗

with e(w) = (dL, δL), where x = (dL, δL, dR, δR) is the quadruple guessed for t (and similarly
for the right ideal). This way, it preserves offset and dip at the separators # and #̄.

Since the skeleton T has exponentially many nodes (in |G|) and each skeleton run ρt

requires exponentially many bits, the total number of bits that B has to keep in memory is
also bounded by an exponential in |G|.

P. Baumann, M. Ganardi, R. Majumdar, R. S. Thinniyam, and G. Zetzsche 110:19

References
1 Pascal Baumann, Moses Ganardi, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg

Zetzsche. Context-bounded verification of context-free specifications. Proc. ACM Program.
Lang., 7(POPL):2141–2170, 2023. doi:10.1145/3571266.

2 Pascal Baumann, Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche. Context-
bounded verification of thread pools. Proc. ACM Program. Lang., 6(POPL):1–28, 2022.
doi:10.1145/3498678.

3 I. Borosh and L. B. Treybig. Bounds on positive integral solutions of linear diophantine
equations. Proceedings of the American Mathematical Society, 55(2):299–304, 1976.

4 Laura Bozzelli and Pierre Ganty. Complexity analysis of the backward coverability algorithm
for VASS. In Giorgio Delzanno and Igor Potapov, editors, Reachability Problems – 5th
International Workshop, RP 2011, Genoa, Italy, September 28-30, 2011. Proceedings, volume
6945 of Lecture Notes in Computer Science, pages 96–109. Springer, 2011. doi:10.1007/
978-3-642-24288-5_10.

5 Bruno Courcelle. On constructing obstruction sets of words. Bulletin of the EATCS, 44:178–186,
1991.

6 Wojciech Czerwinski and Piotr Hofman. Language inclusion for boundedly-ambiguous vector
addition systems is decidable. In Bartek Klin, Slawomir Lasota, and Anca Muscholl, editors,
33rd International Conference on Concurrency Theory, CONCUR 2022, September 12-16, 2022,
Warsaw, Poland, volume 243 of LIPIcs, pages 16:1–16:22. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2022. doi:10.4230/LIPIcs.CONCUR.2022.16.

7 Wojciech Czerwiński and Łukasz Orlikowski. Reachability in vector addition systems is
Ackermann-complete. In 62nd IEEE Annual Symposium on Foundations of Computer Science,
FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 1229–1240. IEEE, 2021. doi:
10.1109/FOCS52979.2021.00120.

8 Ankush Desai, Pranav Garg, and P. Madhusudan. Natural proofs for asynchronous programs
using almost-synchronous reductions. In Andrew P. Black and Todd D. Millstein, editors,
Proceedings of the 2014 ACM International Conference on Object Oriented Programming
Systems Languages & Applications, OOPSLA 2014, part of SPLASH 2014, Portland, OR,
USA, October 20-24, 2014, pages 709–725. ACM, 2014. doi:10.1145/2660193.2660211.

9 Ankush Desai and Shaz Qadeer. P: modular and safe asynchronous programming. In
Shuvendu K. Lahiri and Giles Reger, editors, Runtime Verification – 17th International Confer-
ence, RV 2017, Seattle, WA, USA, September 13-16, 2017, Proceedings, volume 10548 of Lecture
Notes in Computer Science, pages 3–7. Springer, 2017. doi:10.1007/978-3-319-67531-2_1.

10 Pierre Ganty and Rupak Majumdar. Algorithmic verification of asynchronous programs.
ACM Transactions on Programming Languages and Systems (TOPLAS), 34(1):6, 2012. doi:
10.1145/2160910.2160915.

11 Ivan Gavran, Filip Niksic, Aditya Kanade, Rupak Majumdar, and Viktor Vafeiadis. Rely/guar-
antee reasoning for asynchronous programs. In Luca Aceto and David de Frutos-Escrig,
editors, 26th International Conference on Concurrency Theory, CONCUR 2015, Madrid,
Spain, September 1.4, 2015, volume 42 of LIPIcs, pages 483–496. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2015. doi:10.4230/LIPIcs.CONCUR.2015.483.

12 Jean Goubault-Larrecq, Simon Halfon, P. Karandikar, K. Narayan Kumar, and Philippe
Schnoebelen. The ideal approach to computing closed subsets in well-quasi-orderings. In
Peter M. Schuster, Monika Seisenberger, and Andreas Weiermann, editors, Well-Quasi Orders
in Computation, Logic, Language and Reasoning, volume 53 of Trends In Logic, pages 55–105.
Springer, 2020. doi:10.1007/978-3-030-30229-0_3.

13 Ranjit Jhala and Rupak Majumdar. Interprocedural analysis of asynchronous programs.
In POPL ’07: Proc. 34th ACM SIGACT-SIGPLAN Symp. on Principles of Programming
Languages, pages 339–350. ACM Press, 2007.

14 Dexter Kozen. Automata and computability. Undergraduate texts in computer science. Springer,
1997.

ICALP 2023

https://doi.org/10.1145/3571266
https://doi.org/10.1145/3498678
https://doi.org/10.1007/978-3-642-24288-5_10
https://doi.org/10.1007/978-3-642-24288-5_10
https://doi.org/10.4230/LIPIcs.CONCUR.2022.16
https://doi.org/10.1109/FOCS52979.2021.00120
https://doi.org/10.1109/FOCS52979.2021.00120
https://doi.org/10.1145/2660193.2660211
https://doi.org/10.1007/978-3-319-67531-2_1
https://doi.org/10.1145/2160910.2160915
https://doi.org/10.1145/2160910.2160915
https://doi.org/10.4230/LIPIcs.CONCUR.2015.483
https://doi.org/10.1007/978-3-030-30229-0_3

110:20 Checking Refinement of Asynchronous Programs

15 Bernhard Kragl, Constantin Enea, Thomas A. Henzinger, Suha Orhun Mutluergil, and Shaz
Qadeer. Inductive sequentialization of asynchronous programs. In Alastair F. Donaldson and
Emina Torlak, editors, Proceedings of the 41st ACM SIGPLAN International Conference on
Programming Language Design and Implementation, PLDI 2020, London, UK, June 15-20,
2020, pages 227–242. ACM, 2020. doi:10.1145/3385412.3385980.

16 Bernhard Kragl, Shaz Qadeer, and Thomas A. Henzinger. Synchronizing the asynchronous. In
Sven Schewe and Lijun Zhang, editors, 29th International Conference on Concurrency Theory,
CONCUR 2018, September 4-7, 2018, Beijing, China, volume 118 of LIPIcs, pages 21:1–21:17.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.CONCUR.2018.
21.

17 Jérôme Leroux. The Reachability Problem for Petri Nets is Not Primitive Recursive. In
2021 IEEE 62nd Annual Symposium on Foundations of Computer Science (FOCS), pages
1241–1252, February 2022. doi:10.1109/FOCS52979.2021.00121.

18 Richard Lipton. The reachability problem is exponential-space hard. Yale University, Depart-
ment of Computer Science, Report, 62, 1976.

19 Raphaela Löbel. Linear Tree Transducers: From Equivalence to Balancedness. PhD thesis,
Technical University of Munich, Germany, 2020. URL: https://nbn-resolving.org/urn:
nbn:de:bvb:91-diss-20201127-1552125-1-5.

20 Rupak Majumdar, Ramanathan S. Thinniyam, and Georg Zetzsche. General decidability results
for asynchronous shared-memory programs: Higher-order and beyond. In Jan Friso Groote
and Kim Guldstrand Larsen, editors, Tools and Algorithms for the Construction and Analysis
of Systems – 27th International Conference, TACAS 2021, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2021, Luxembourg City, Luxembourg,
March 27 – April 1, 2021, Proceedings, Part I, volume 12651 of Lecture Notes in Computer
Science, pages 449–467. Springer, 2021. doi:10.1007/978-3-030-72016-2_24.

21 Shaz Qadeer and Dinghao Wu. KISS: keep it simple and sequential. In William W. Pugh and
Craig Chambers, editors, Proceedings of the ACM SIGPLAN 2004 Conference on Programming
Language Design and Implementation 2004, Washington, DC, USA, June 9-11, 2004, pages
14–24. ACM, 2004. doi:10.1145/996841.996845.

22 Charles Rackoff. The covering and boundedness problems for vector addition systems. Theor-
etical Computer Science, 6(2):223–231, 1978.

23 Robert W Ritchie and Frederick N Springsteel. Language recognition by marking automata.
Information and Control, 20(4):313–330, 1972.

24 Walter J Savitch. Relationships between nondeterministic and deterministic tape complexities.
Journal of computer and system sciences, 4(2):177–192, 1970.

25 Koushik Sen and Mahesh Viswanathan. Model checking multithreaded programs with asyn-
chronous atomic methods. In CAV ’06: Proc. 18th Int. Conf. on Computer Aided Verification,
volume 4144 of LNCS, pages 300–314. Springer, 2006.

26 Akihiko Tozawa and Yasuhiko Minamide. Complexity results on balanced context-free lan-
guages. In Helmut Seidl, editor, Foundations of Software Science and Computational Structures,
10th International Conference, FOSSACS 2007, Held as Part of the Joint European Confer-
ences on Theory and Practice of Software, ETAPS 2007, Braga, Portugal, March 24-April 1,
2007, Proceedings, volume 4423 of Lecture Notes in Computer Science, pages 346–360. Springer,
2007. doi:10.1007/978-3-540-71389-0_25.

https://doi.org/10.1145/3385412.3385980
https://doi.org/10.4230/LIPIcs.CONCUR.2018.21
https://doi.org/10.4230/LIPIcs.CONCUR.2018.21
https://doi.org/10.1109/FOCS52979.2021.00121
https://nbn-resolving.org/urn:nbn:de:bvb:91-diss-20201127-1552125-1-5
https://nbn-resolving.org/urn:nbn:de:bvb:91-diss-20201127-1552125-1-5
https://doi.org/10.1007/978-3-030-72016-2_24
https://doi.org/10.1145/996841.996845
https://doi.org/10.1007/978-3-540-71389-0_25

On the Limits of Decision:
the Adjacent Fragment of First-Order Logic
Bartosz Bednarczyk # Ñ

Computational Logic Group, Technische Universität Dresden, Germany
Institute of Computer Science, University of Wrocław, Poland

Daumantas Kojelis # Ñ

Department of Computer Science, University of Manchester, UK

Ian Pratt-Hartmann # Ñ

Department of Computer Science, University of Manchester, UK
Institute of Computer Science, University of Opole, Poland

Abstract
We define the adjacent fragment AF of first-order logic, obtained by restricting the sequences of
variables occurring as arguments in atomic formulas. The adjacent fragment generalizes (after a
routine renaming) two-variable logic as well as the fluted fragment. We show that the adjacent
fragment has the finite model property, and that its satisfiability problem is no harder than for
the fluted fragment (and hence is Tower-complete). We further show that any relaxation of the
adjacency condition on the allowed order of variables in argument sequences yields a logic whose
satisfiability and finite satisfiability problems are undecidable. Finally, we study the effect of the
adjacency requirement on the well-known guarded fragment (GF) of first-order logic. We show that
the satisfiability problem for the guarded adjacent fragment (GA) remains 2ExpTime-hard, thus
strengthening the known lower bound for GF .

2012 ACM Subject Classification Theory of computation → Finite Model Theory

Keywords and phrases decidability, satisfiability, variable-ordered logics, complexity

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.111

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version Full Version: https://arxiv.org/abs/2305.03133 [5]

Funding Bartosz Bednarczyk: supported by the ERC Consolidator Grant No. 771779 (DeciGUT).
Ian Pratt-Hartmann: supported by the NCN grant 2018/31/B/ST6/03662.

Acknowledgements B. Bednarczyk thanks R. Jaakkola for many inspiring discussions.

1 Introduction

The quest to find fragments of first-order logic for which satisfiability is algorithmically
decidable has been a central undertaking of mathematical logic since the appearance of
Hilbert and Ackermann’s Grundzüge der theoretischen Logik [15, 16] almost a century ago.
The great majority of such fragments so far discovered, however, belong to just three families:
(i) quantifier prefix fragments [8], where we are restricted to prenex formulas with a specified
quantifier sequence; (ii) two-variable logics [13], where the only logical variables occurring
as arguments of predicates are x1 and x2; and (iii) guarded logics [1], where quantifiers are
relativized by atomic formulas featuring all the free variables in their scope.

There is, however, a fourth family of decidable logics, originating in the work of
W.V.O. Quine [33], and based on restricting the allowed sequences of variables occurring
as arguments in atomic formulas. This family of logics, which includes the fluted fragment,

EA
T
C
S

© Bartosz Bednarczyk, Daumantas Kojelis, and Ian Pratt-Hartmann;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 111; pp. 111:1–111:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bartosz.bednarczyk@cs.uni.wroc.pl
https://bartoszjanbednarczyk.github.io/
https://orcid.org/0000-0002-8267-7554
mailto:daumantas.kojelis@manchester.ac.uk
https://daumantaskojelis.github.io/
https://orcid.org/0000-0002-1632-9498
mailto:ian.pratt@manchester.ac.uk
https://www.cs.man.ac.uk/~ipratt/
https://orcid.org/0000-0003-0062-043X
https://doi.org/10.4230/LIPIcs.ICALP.2023.111
https://arxiv.org/abs/2305.03133
https://iccl.inf.tu-dresden.de/web/DeciGUT/en
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

111:2 On the Limits of Decision: The Adjacent Fragment of First-Order Logic

the ordered fragment and the forward fragment, has languished in relative obscurity. In this
paper, we investigate the potential for obtaining decidable fragments in this way, identifying
a new fragment, which we call the adjacent fragment. This fragment not only includes the
fluted, ordered and forward fragments, but also subsumes, in a sense we make precise, the
two-variable fragment. We show that the satisfiability problem for the adjacent fragment is
decidable, and determine bounds on its complexity.

To explain how restrictions on argument orderings work, we consider presentations of first-
order logic without equality over purely relational signatures, employing individual variables
from the alphabet {x1, x2, x3, . . .}. Any atomic formula in this logic has the form p(x̄), where p
is a predicate of arity m ≥ 0 and x̄ is a word over the alphabet of variables of length m. Call
a first-order formula φ index-normal if, for any quantified sub-formula Qxk ψ of φ, ψ is a
Boolean combination of formulas that are either atomic with free variables among x1, . . . , xk,
or have as their major connective a quantifier binding xk+1. By re-indexing variables, any
first-order formula can easily be written as a logically equivalent index-normal formula.
In the fluted fragment, denoted FL, as defined by W. Purdy [32], we confine attention
to index-normal formulas, but additionally insist that any atom occurring in a context in
which xk is quantified have the form p(xk−m+1 · · ·xk), i.e. p(x̄) with x̄ a suffix of x1 · · ·xk.
In the ordered fragment, due to A. Herzig [14], by contrast, we insist that x̄ be a prefix of
x1 · · ·xk. In the forward fragment [2], we insist only that x̄ be an infix of x1 · · ·xk.

All these logics have the finite model property, and hence are decidable for satisfiability.
Denoting by FLk the sub-fragment of FL involving at most k variables (free or bound),
the satisfiability problem for FLk is known to be in (k−2)-NExpTime for all k ≥ 3,
and ⌊k/2⌋-NExpTime-hard for all k ≥ 2 [30]. Thus, satisfiability for the whole fluted
fragment is Tower-complete, in the system of trans-elementary complexity classes due
to [35]. By contrast, the satisfiability problem for the ordered fragment is known to be
PSpace-complete [14, 18]. On the other hand, the apparent liberalization afforded by the
forward fragment yields no difference in expressive power [4], and moreover there is a
polynomial time satisfiability-preserving reduction of the forward fragment to the fluted
fragment [2]. The term “fluted” originates with Quine [34], and presumably invites us to
imagine the atoms in formulas aligned in such a way that the variables form columns. Note
that none of these fragments can state that a relation is reflexive or symmetric (see [4] for a
discussion of their expressivity).

Say that a word x̄ over the alphabet {x1, . . . , xk} (k ≥ 0) is adjacent if the indices of
neighbouring letters differ by at most 1. For example, x3x2x1x2x2x2x3x4x3 is adjacent, but
x1x3x2 is not. The adjacent fragment, denoted AF , is analogous to the fluted, ordered and
forward fragments, but we allow any atom p(x̄) to occur in a context where xk is available
for quantification as long as x̄ is an adjacent word over {x1, . . . , xk}. (A formal definition is
given in Sec. 2.) As a simple example, the formula

∀x1∀x2∀x3∃x4∀x5
(
p(x1x2x3x2x3x4x5)→ p(x1x2x3x4x3x4x5)

)
(1)

is a validity of AF , as can be seen by assigning x4 the same value as x2. Evidently, AF includes
the fluted, ordered and forward fragments; the inclusion is strict, since the formulas ∀x1 r(x1x1)
and ∀x1x2(r(x1x2)→ r(x2x1)), stating that r is reflexive and symmetric, respectively, are
in AF . As every word over {x1, x2} is adjacent, we may transform any formula of the
two-variable fragment without equality, FO2, in polynomial time, to a logically equivalent
formula of AF . The converse is true over signatures with predicates of arity at most two.
Since the system of basic multimodal propositional logic is, under the standard translation
to first-order logic, included within FO2, this logic is similarly subsumed by AF , as indeed is
its notational variant, the description logic ALC (see, e.g. [17]).

B. Bednarczyk, D. Kojelis, and I. Pratt-Hartmann 111:3

We show that the satisfiability problem for the restriction of the adjacent fragment to
formulas involving at most k variables (free or bound) is in (k−2)-NExpTime for all k ≥ 3 –
and hence no more difficult than the k-variable fluted fragment, which it properly contains.
The critical step in our analysis is a lemma on the combinatorics of strings (Theorem 3.1),
which may be of independent interest. We also consider minimal relaxations of adjacency
involving the fragment with just three variables, and show that, in all cases of interest, the
satisfiability and finite satisfiability problems for the resulting logics are undecidable. Thus,
adjacency is as far as we can go in seeking decidable fragments based on straightforward
argument ordering restrictions of the type envisaged by Quine.

The adjacent fragment is incomparable in expressive power to the guarded fragment.
Moreover, the satisfiability problem for the union of GF and AF is undecidable, as one can use
adjacent formulas to introduce any k-ary universal relations, which makes GF as expressive
as first-order logic. Therefore, we study the effect of the adjacency restriction on GF . We
investigate the complexity of satisfiability for the resulting logic, GA, showing that the
problem is 2ExpTime-complete, thus sharpening the existing 2ExpTime-hardness proof
for GF [11].

2 Preliminaries

Let m and k be non-negative integers. For any integers i and j, we write [i, j] to denote the set
of integers h such that i ≤ h ≤ j. A function f : [1,m]→ [1, k] is adjacent if |f(i+1)−f(i)| ≤ 1
for all i (1 ≤ i < m). We write Am

k to denote the set of adjacent functions f : [1,m]→ [1, k].
Since [1, 0] = ∅, we have A0

k = {∅}, and Am
0 = ∅ if m > 0. Let A be a non-empty set. A word

ā over the alphabet A is simply a tuple of elements from A; we alternate freely in the sequel
between these two ways of speaking as the context requires. Accordingly, Ak denotes the set
of words over A having length exactly k, and A∗ is the set of all finite words over A. If ā ∈ A∗,
denote the length of ā by |ā|, and the reversal of ā by ā−1. Any function f : [1,m]→ [1, k]
(adjacent or not) induces a natural map from Ak to Am defined by āf = af(1) · · · af(m),
where ā = a1 · · · ak. If f ∈ Am

k (i.e. if f is adjacent), we may think of āf as the result of
a “walk” on the tuple ā, starting at the element af(1), and moving left, right, or remaining
stationary according to the sequence of values f(i+ 1)−f(i) (1 ≤ i < m).

For any k ≥ 0, denote by xk the fixed word x1 · · ·xk (if k = 0, this is the empty
word). A k-atom is an expression p(xf

k), where p is a predicate of some arity m ≥ 0, and
f : [1,m] → [1, k]. Thus, in a k-atom, each argument is a variable chosen from xk. If f
is adjacent, we speak of an adjacent k-atom. Thus, in an adjacent k-atom, the indices of
neighbouring arguments differ by at most one. When k ≤ 2, the adjacency requirement is
vacuous, and in this case we prefer to speak simply of k-atoms. Proposition letters (predicates
of arity m = 0) count as (adjacent) k-atoms for all k ≥ 0, taking f to be the empty function.
When k = 0, we perforce have m = 0, since otherwise, there are no functions from [1,m]
to [1, k]; thus the 0-atoms are precisely the proposition letters.

We define the sets of first-order formulas AF [k] by simultaneous structural induction:
1. every adjacent k-atom is in AF [k];
2. AF [k] is closed under Boolean combinations;
3. if φ is in AF [k+1], ∃xk+1 φ and ∀xk+1 φ are in AF [k].
Now let AF =

⋃
k≥0AF

[k] and define AFk to be the set of formulas of AF featuring no
variables other than xk, free or bound. We call AF the adjacent fragment and AFk the
k-variable adjacent fragment. Note that formulas of AF contain no individual constants,
function symbols or equality. The primary objects of interest here are the languages AF

ICALP 2023

111:4 On the Limits of Decision: The Adjacent Fragment of First-Order Logic

and AFk; however, the sets of formulas AF [k] play an important auxiliary role in their
analysis. Thus, for example, formula (1) is in AFk for all k ≥ 5, but in AF [k] only for k = 0.
On the other hand, the quantifier-free formulas of AF [k] and AFk are the same.

We silently assume the variables xk = x1 · · ·xk to be ordered in the standard way. That
is: if φ is a formula of AF [k], A a structure interpreting its signature, and ā = a1 · · · ak ∈ Ak,
we say simply that ā satisfies φ in A, and write A |= φ[ā] to mean that ā satisfies φ in A

under the assignment xi ← ai (1 ≤ i ≤ k). (This does not necessarily mean that each of the
variables of xk actually appears in φ.) If φ is true under all assignments in all structures, we
write |= φ; the notation φ |= ψ means the same as |= φ→ ψ (i.e. variables are consistently
instantiated in φ and ψ). The notation φ(v̄), where v̄ = v1 · · · vk are variables, will always
be used to denote the formula that results from substituting vi for xi (1 ≤ i ≤ k) in φ. We
write ∀xk;ℓ in place of ∀xk∀xk+1 · · · ∀xℓ (and just ∀xℓ if k = 1). A sentence is a formula
with no free variables. Necessarily, all formulas of AF [0] are sentences. For a sentence φ we
write simply A |= φ to mean that φ is true in A. We call the set of predicates used in φ the
signature of φ (denoted sig(φ)). By routine renaming of variables we establish:

▶ Lemma 2.1. Every FO2-formula is logically equivalent to an AF-formula. The converse
holds for AF-formulas featuring predicates of arity at most two.

We adapt the standard notion of (atomic) k-types for the fragments studied here. Fix
some signature σ. An adjacent k-literal over σ is an adjacent k-atom or its negation, featuring
a predicate in σ. An adjacent k-type over σ is a maximal consistent set of adjacent k-literals
over σ. Reference to σ is suppressed where clear from context. We use the letters ζ and η

to range over adjacent k-types for various k. We denote by Atpσ
k the set of all adjacent

k-types over σ. For finite σ, we identify members of Atpσ
k with their conjunctions, and treat

them as (quantifier-free) AFk-formulas, writing ζ instead of
∧
ζ. When k ≤ 2, the adjacency

requirement is vacuous, and in this case we shall simply speak simply of k-types. It is obvious
that every quantifier-free AFk-formula χ is logically equivalent to a disjunction of adjacent
k-types, in essence the adjacent disjunctive normal form of χ. In particular, if χ is satisfiable,
then there is an adjacent k-type which entails it. If A is a σ-structure and ā a k-tuple of
elements from A, there is a unique adjacent k-type ζ such that A |= ζ[ā]; we denote this
adjacent k-type by atpA[ā], and call it the adjacent type of ā in A. If τ ⊆ σ, we use atpA

τ [ā]
to denote the adjacent type of ā in A restricted to predicates from τ . It is not required that
the elements ā be distinct. Again, if k ≤ 2, adjacency is vacuous, and we write tpA[ā] rather
than atpA[ā], and refer to tpA[ā] as the type of ā in A.

Since adjacent formulas do not contain equality, we may freely duplicate elements in their
models. Let B be a σ-structure, and I a non-empty set of indices. We define the structure
B × I over the Cartesian product B × I by setting, for any p ∈ σ of arity m, and any
m-tuples b1 · · · bm from B and i1 · · · im from Im, B× I |= p[⟨b1, i1⟩ · · · ⟨bm, im⟩] if and only
if B |= p[b1 · · · bm]. By routine structural induction:

▶ Lemma 2.2. Let ψ be an equality-free first-order formula all of whose free variables occur in
xk, B a structure interpreting the signature of ψ, and I a non-empty set. Then, for any tuples
b̄ = b1 · · · bk from B and i1 · · · ik from I, B |= ψ[b̄] if and only if B×I |= ψ[⟨b1, i1⟩ · · · ⟨bk, ik⟩].

The following combinatorial lemma allows us to extend the technique of “circular witness-
ing” [12], frequently used in the analysis of two-variable logics, to the languages AFk.

▶ Lemma 2.3. For any integer k > 0 there is a set J with |J | = (k2 + k + 1)k+1 and a
function g : Jk → J such that, for any tuple t̄ ∈ Jk consisting of the elements t1, . . . , tk in
some order: (i) g(t̄) is not in t̄; (ii) if t̄′ ∈ Jk consists of the elements {t2, . . . , tk, g(t̄)} in
some order, then g(t̄′) is not in t̄ either.

B. Bednarczyk, D. Kojelis, and I. Pratt-Hartmann 111:5

3 Primitive generators of words

The upper complexity bounds obtained below depend on an observation concerning the
combinatorics of words, which may be of independent interest. For words ā, c̄ ∈ A∗ with
|ā| = k and |c̄| = m, say that ā generates c̄ if c̄ = āf for some surjective function f ∈ Am

k . As
explained above, it helps to think of āf as the sequence of letters encountered on an m-step
“walk” backwards and forwards on the tuple ā, with f(i) giving the index of our position in ā
at the ith step. The condition that f is adjacent ensures that we never change position by
more than one letter at a time; the condition that f is surjective ensures that we visit every
position of ā. We may picture a walk as a piecewise linear function, with the generated word
superimposed on the abscissa and the generating word on the ordinate, c.f. Figure 1.

c̄

ā
cb

ad
e

fb
a

a b c b a a a d e f e d a d e f b a b f

Figure 1 Generation of abcbaaadefedadefbabf from cbadefba.

Every word generates both itself and its reversal. Moreover, if ā generates c̄, then |c̄| ≥ |ā|;
in fact, ā and ā−1 are the only words of length |ā| generated by ā. Finally, generation is
transitive: if ā generates b̄ and b̄ generates c̄, then ā generates c̄. We call ā primitive if it is
not generated by any word shorter than itself, equivalently, if it is generated only by itself
and its reversal. For example, babcd and abcbcd are not primitive, because they are generated
by abcd; but abcbda is primitive. Note that an infix (factor) of a primitive word need not
be primitive. Define a primitive generator of c̄ to be a generator of c̄ that is itself primitive.
From the foregoing remarks, it is obvious that every word c̄ has some primitive generator
ā, and indeed, ā−1 as well, since the reversal of a primitive generator is clearly a primitive
generator. The following result, by contrast, is anything but obvious. Notwithstanding the
naturalness of the question it answers, we believe it to be new. Since it is concerned only
with the combinatorics of strings, however, we refer the reader to [29] for the proof.

▶ Theorem 3.1. The primitive generator of any word is unique up to reversal.

Remarkably, while primitive generators are unique up to reversal, modes of generation are
not. The word c̄ = abcbcbd has primitive generator ā = abcbd. But there are distinct surjective
functions f, g ∈ A7

5 such that c̄ = āf = āg, as is easily verified. Define the primitive length of
any word c̄ to be the length of any primitive generator of c̄. By Theorem 3.1, this notion is
well-defined; it will play a significant role in our analysis of the adjacent fragment. Obviously,
the primitive length of c̄ is at most |c̄|, but will be strictly less if c̄ is not primitive.

Let χ be a quantifier-free AF ℓ-formula, and let g ∈ Aℓ
k. We denote by χg the formula

χ(xg(1) · · ·xg(ℓ)). We claim that χg ∈ AFk. Indeed, any atom α appearing in χ is of the
form p(xf

k), where p is a predicate of some arity m and f ∈ Am
ℓ . But then the corresponding

atom in χg has the form β := α(xg(1) · · ·xg(ℓ)) = p(xg(f(1)) · · ·xg(f(m))) = p(x(g◦f)
k). Since

the composition of adjacent functions is adjacent, the claim follows. The following (almost
trivial) lemma is useful when manipulating adjacent formulas. Recall in this regard that any
function g ∈ Aℓ

k maps a k-tuple ā over some set to an ℓ-tuple āg over the same set.

ICALP 2023

111:6 On the Limits of Decision: The Adjacent Fragment of First-Order Logic

▶ Lemma 3.2. Let χ be a quantifier-free formula of AF ℓ, and g ∈ Aℓ
k. For any sig(χ)-

structure A and any ā ∈ Ak, we have A |= χg[ā] if and only if A |= χ[āg].

Proof. We may assume without loss of generality that χ = p(xf
k) is atomic, with f ∈ Am

ℓ ;
the general case follows by an easy structural induction. But then, writing ā = a1 · · · am,
both sides of the bi-conditional amount to the statement ag(f(1)) · · · ag(f(m)) ∈ pA. ◀

The adjacent type of any tuple in A is thus completely determined by that of its primitive
generator. Indeed, let A be a σ-structure, and ā an ℓ-tuple from A. Then ā has a primitive
generator, say b̄ of length k ≤ ℓ, with ā = b̄g for some surjective g ∈ Aℓ

k. Now consider any
atomic AF ℓ-formula α. By Lemma 3.2 we have A |= α[ā] if and only if A |= αg[b̄].

When evaluating AF ℓ-formulas, for fixed ℓ, we can disregard any tuples whose primitive
length is greater than ℓ. Indeed, consider a pair of σ-structures A and A′ over a common do-
main A. We write A ≈ℓ A

′, if, for any predicate p (of any arity m ≥ 0), and any m-tuple ā
from A of primitive length at most ℓ, ā ∈ pA if and only if ā ∈ pA′ . That is, A ≈ℓ A′ just
in case pA and pA

′ agree on all those m-tuples whose primitive length is at most ℓ. The
following may be proved by structural induction, using Lemma 3.2.

▶ Lemma 3.3. Let φ be an AF ℓ-sentence, and suppose A and A′ are sig(φ)-structures over
a common domain A such that A ≈ℓ A

′. Then A |= φ⇒ A′ |= φ.

Proof. Let ψ be a formula of AF ℓ (possibly featuring free variables), and let k (0 ≤ k ≤ ℓ)
be such that ψ ∈ AF [k]. (We may as well take the smallest such k.) We claim that, for any
k-tuple of elements ā, A |= ψ[ā] if and only if A′ |= ψ[ā]. To see this, suppose first that ψ is
atomic. We may write ψ := p(xf

k), where p is a predicate (of arity, say, m), and f ∈ Am
k . If

ā is a k-tuple of elements from A, then A |= ψ[ā] if and only if āf ∈ pA. But the primitive
length of āf is certainly at most k = |ā|. This proves our claim for all k (0 ≤ k ≤ ℓ) and for
all atomic ψ ∈ AF [k]. The general case follows simply by structural induction. The statement
of the lemma is the special case where ψ has no free variables. ◀

In view of Lemma 3.3, when considering models of AF ℓ-sentences, it will be useful to
take the extensions of predicates (of whatever arity) to be undefined in respect of tuples
whose primitive length is greater than ℓ, since these cannot affect the outcome of semantic
evaluation. That is, where ℓ is clear from context, we typically suppose any model A of φ
to determine whether ā ∈ pA for any m-ary predicate p and any m-tuple ā of primitive
length at most ℓ; but with respect to m-tuples ā having greater primitive length, A remains
agnostic. To make it clear that the structure A need not be fully defined, we speak of such
a structure A as a layered structure, and we refer to ℓ as its primitive length. Notice that
the notion of primitive length is independent of the arities of the predicates interpreted.
A layered structure A may have primitive length, say 3, but still interpret a predicate p
of arity, say, 5. In this case, it is determined whether A |= p[babcc], because the primitive
generator of babcc is abc; however, it will not be determined whether A |= p[abcab], because
abcab is primitive.

One of the intriguing aspects of layered structures is that they allow us to build up
models of AF-formulas layer by layer. Suppose A has primitive length k; and we wish to
construct a layered structure A+ of primitive length k+1 over the same domain A, agreeing
with the assignments made by A. Clearly, it suffices to fix the adjacent type of each primitive
(k+1)-tuple b̄ from A. To fix the adjacent type of b̄ – and hence that of its reversal, b̄−1 – we
consider each predicate p in turn – of arity, say, m – and decide, for any m-tuple c̄ from A

whose primitive generator is b̄, whether A |= p[c̄]. Now repeat this process for all pairs of
mutually inverse primitive words (b̄, b̄−1) from A having primitive length k+1. Since every

B. Bednarczyk, D. Kojelis, and I. Pratt-Hartmann 111:7

tuple c̄ considered for inclusion in the extension of some predicate has primitive length k+1,
these assignments will not clash with any previously made in the original structure A.
Moreover, since, by Theorem 3.1, every m-tuple c̄ assigned in this process has a unique
primitive generator b̄ (up to reversal), these assignments will not clash with each other.
Thus, to increment the primitive length of A, one takes each inverse pair (b̄, b̄−1) of primitive
(k + 1)-tuples in turn, and fixes the adjacent type of each b̄ consistently with the existing
assignments of all tuples generated by proper infixes of b̄, as given in the original structure A.

We finish this section with an easy technical observation that will be needed in the sequel.
Denote by A⃗m

k the set of all functions f ∈ Am
k such that f(m) = k. Thus, if f ∈ A⃗m

k is used
to define a walk of length m on some word ā of length k, then the walk in question ends at
the final position of ā.

▶ Lemma 3.4. Let c̄ be a word of length m ≥ 0 over some alphabet A, and d an element
of A that does not appear in c̄. If c̄d is not primitive, then neither is c̄. In fact, there is a
word ā of length k < m and a function f ∈ A⃗m

k such that āf = c̄.

Proof. Suppose c̄d = b̄g for some word b̄ of length k + 1 ≤ m and some surjective g ∈ Am+1
k+1 .

Since d does not occur in c̄, it is immediate that d occupies either the first or last position in
b̄ for, otherwise, it would be encountered again in the entire traversal of b̄ (as g is adjacent
and surjective). By reversing b̄ if necessary, assume the latter, so that we may write b̄ = ād,
with g(m+ 1) = k + 1. By adjacency, g(m) = k, so that setting f = g \ {⟨m+ 1, k + 1⟩}, we
have the required ā and f . ◀

Finally, we remark that, if f ∈ A⃗m
k , then the function f+ = f ∪ ⟨m+ 1, k + 1⟩ satisfies

f+ ∈ A⃗m+1
k+1 . That is, we can extend f by setting f(m+ 1) = k + 1, retaining adjacency.

4 Upper bounds for AF and AFk

In this section, we establish a small model property for each of the fragments AFk with
k ≥ 3. Define the function t(k, n) inductively by t(0, n) = n and t(k+1, n) = 2t(k,n). We show
that, for some fixed polynomial p, if φ is a satisfiable formula of AFk, then φ is satisfied
in a structure of size at most t(k − 2, p(||φ||)). We proceed by induction, establishing first
the base case for k = 3, and then reducing the case k+1 to the case k. It follows that the
satisfiability problem (= finite satisfiability problem) for AFk is in (k−2)-NExpTime for
all k ≥ 3. The best lower complexity bound is ⌊k/2⌋-NExpTime-hard, from the k-variable
fluted fragment [30]. For k ≤ 2, the adjacency restriction has no effect on the complexity of
satisfiability. Thus satisfiability for AF2 is NExpTime-complete, while for AF1 and AF0 it
is NPTime-complete. We begin by establishing a normal form lemma for AF .

▶ Lemma 4.1. Let φ be a sentence of AF ℓ+1, where ℓ ≥ 2. We can compute, in polynomial
time, an AF ℓ+1-formula ψ satisfiable over the same domains as φ, of the form∧

i∈I

∀xℓ∃xℓ+1 γi ∧ ∀xℓ+1 δ, (2)

where I is a finite index set, the formulas γi and δ are quantifier-free.

Let φ be a normal-form AF ℓ+1-formula as given in (2), over signature σ. Recall the
operation ·f on quantifier-free adjacent formulas employed in Lemma 3.2, as well as the sets
of functions A⃗ℓ

k employed in Lemma 3.4. For any f ∈ A⃗ℓ
k, we continue to write f+ for the

function (in A⃗ℓ+1
k+1) extending f by setting f(ℓ+ 1) = k + 1. Now define the adjacent closure

of φ, denoted φ#, to be:

ICALP 2023

111:8 On the Limits of Decision: The Adjacent Fragment of First-Order Logic

∧
i∈I

ℓ−1∧
k=1

∧
f∈A⃗ℓ

k

∀xk∃xk+1 γ
f+

i ∧
ℓ∧

k=1

∧
g∈Aℓ+1

k

∀xk δ
g.

Observe that the conjunctions for the ∀ℓ∃-formulas range over A⃗ℓ
k, while the conjunctions for

the purely universal formula range over the whole of Aℓ+1
k . Up to trivial logical rearrangement

and re-indexing of variables, φ# is actually a normal-form AF ℓ-formula. In effect, φ# is the
result of identifying various universally quantified variables in φ in a way which preserves
adjacency. The following lemma is therefore immediate.

▶ Lemma 4.2. Let φ ∈ AF ℓ+1 be in normal-form. Then φ |= φ#.

The following notation will be useful. If χ is any quantifier-free AF ℓ+1-formula, we denote
by χ−1 the formula χ(xℓ+1, . . . , x1) obtained by simultaneously replacing each variable xh

by xℓ−h+2 (1 ≤ h ≤ ℓ+ 1); and we denote by χ̂ the formula χ ∧ χ−1. Obviously χ−1 and χ̂

are also in AF ℓ+1. If η is an adjacent ℓ-type, we denote by η+ the quantifier-free AF ℓ+1-
formula η(x2, . . . , xℓ+1) obtained by incrementing the index of each variable. Finally, if χ is a
quantifier-free AF ℓ+1-formula over some signature σ (which we take to be given by context),
we denote by χ◦ the quantifier-free AF ℓ-formula

∨
{η ∈ Atpσ

ℓ | χ ∧ η+ is consistent}. The
intuition in this last case is that, if a is an element and ā an ℓ-tuple of elements such that aā
satisfies χ in some structure, then χ◦ is the strongest statement that follows regarding ā.

Now we are in a position to tackle the main task of this section, namely, to bound
the complexity of the satisfiability problem for AFk (k ≥ 3). Certainly the satisfiability
problem for AF2 is in NExpTime, since any normal-form AF2-formula is in FO2. Here,
we strengthen that result to AF3 (which will sharpen the bound of Theorem 4.9 by one
exponential). The proof is similar to an analogous result for the three-variable fluted fragment,
FL3 [30, Lemma 4.5]

Let σ be a relational signature. If π is a 1-type over σ, define the 2-type π2, over the
same signature, to be {λ | λ a literal in AF [2] s.t. λ(x1, x1) ∈ π}. The intuition here is that
if π is the type of an element a in some structure, then π2 is the type of the pair aa. A
connector-type (over σ) is a set ω of 2-types over σ subject to the condition that there exists
some 1-type π over σ such that π2 ∈ ω and ζ |= π for all ζ ∈ ω. This 1-type π is clearly
unique, and we denote it by tp(ω). If A is any structure interpreting σ and a ∈ A, then a

defines a connector-type ω over σ in a natural way by setting ω = {tpA[a, b] | b ∈ A}. We
refer to ω as the connector-type of a in A, and denote it conA[a]. It follows immediately
from the above definitions that tp(conA[a]) = tpA[a]. When speaking of connector-types, we
suppress reference to σ if irrelevant or clear from context.

Let φ be a normal-form formula of AF3, as given in (2), with ℓ = 2, with σ = sig(φ). In
the sequel we refer freely to the subformulas γi (i ∈ I) and δ of φ. Say that a connector-type ω
is compatible with φ if the following conditions hold:
L∃1: for all i ∈ I, there exists η ∈ ω s.t. η |= γi(x1, x1, x2).
L∃2: for all ζ such that ζ−1 ∈ ω and all i ∈ I, there exists η ∈ ω such that the AF3-formula

ζ ∧ η+ ∧ γi ∧ δ̂ is consistent;
L∀1: for all η ∈ ω and all f ∈ A3

2, η |= δf ;
L∀2: for all ζ such that ζ−1 ∈ ω and all η ∈ ω, the AF3-formula ζ ∧ η+ ∧ δ̂ is consistent.

The proofs of Lemmas 4.3–4.5 are straightforward and will be omitted.

▶ Lemma 4.3. If φ is a normal-form AF3-formula, A |= φ and a ∈ A, then conA[a] is
compatible with φ.

B. Bednarczyk, D. Kojelis, and I. Pratt-Hartmann 111:9

A set Ω of connector-types is said to be coherent if the following conditions hold:
G∃: for all ω ∈ Ω and all ζ ∈ ω, there exists ω′ ∈ Ω such that ζ−1 ∈ ω′;
G∀: for all ω, ω′ ∈ Ω, there exists a 2-type ζ such that ζ ∈ ω and ζ−1 ∈ ω′.

▶ Lemma 4.4. Let A be a structure. Then Ω = {conA[a] | a ∈ A} is coherent.
Define a certificate for φ to be a non-empty, coherent set of connector-types, all of which are
compatible with φ.

▶ Lemma 4.5. Any satisfiable normal-form AF3-formula has a certificate Ω such that
both |Ω| and |

⋃
Ω| are 2O(||φ||).

We are now in a position to obtain a bound on the size of models of AF3-formulas.

▶ Lemma 4.6. Let φ be a normal-form AF3-formula over a signature σ. If φ is satisfiable,
then it has a model of size 2O(||φ||).

Proof. We may assume without loss of generality that σ features no proposition letters.
Let φ be as given by (2). By Lemma 4.5, φ has a certificate Ω of cardinality at most 2O(||φ||);
moreover the set of 2-types T occurring anywhere in Ω is 2O(||φ||). Let H = {0, 1, 2}, let I
be the index set occurring in φ, let J be a set of cardinality 343 = 73, and let g : J2 → J a
function satisfying the conditions of Lemma 2.3 with k = 2. Defining A = Ω×T×H×I×J , we
see that |A| is 2O(||φ||), as required by the lemma. We write any element a ∈ A as (ω, ζ, h, i, j).
We shall construct a layered model A |= φ of primitive length 3 over this domain, proceeding
layer by layer. In the sequel, bear in mind that a pair or triple of elements is primitive if and
only if those elements are distinct.

Stage 1. We set the 1-type of any a = (ω, ζ, h, i, j) to be tpA[a] = tp(ω). Clearly, all these
determinations can be made independently, since σ features no proposition letters. At this
point, we have a layered structure of primitive length 1.

Stage 2. Now consider any a = (ω, ζ, h, i, j) ∈ A and any η ∈ ω. By (G∃), there exists ωη ∈
Ω such that η−1 ∈ ωη. For each i′ ∈ I and j′ ∈ J set tpA[a, ai′,j′] = η, where ai′,j′ denotes
the element (ωη, η, h+1, i′, j′). (Here the addition in “h+1” is taken modulo 3.) The index η
ensures that the ai′,j′ are chosen to be distinct for distinct η ∈ ω. Moreover, the index h+1
ensures that this process can be carried out for every a ∈ A without danger of clashes. (This
is the familiar technique of “circular witnessing” [12].) Finally, suppose a = (ω, ζ, h, i, j)
and a′ = (ω′, ζ ′, h′, i′, j′) are distinct elements of A for which tpA[a, a′] has not yet been
defined. By (G∀), there exists η ∈ ω such that η−1 ∈ ω′, and we set tpA[a, a′] = η. At
the end of this process, all 1- and 2-types have been defined, and we thus have a layered
structure of primitive length 2. From the foregoing construction, if a = (ω, ζ, h, i, j) ∈ A
and η ∈ ω, then there exists a constructor-type ω′ such that tpA[a, b] = η for each b ∈ A
of the form (ω′, η, h+ 1, i′, j′) (where i′ ∈ I, j′ ∈ J); moreover, for all a = (ω, ζ, h, i, j) and
b = (ω′, ζ ′, h′, i′, j′) with tpA[a, b] = η, we are guaranteed that η ∈ ω and η−1 ∈ ω′. We
remark that, in particular, conA[a] = ω. It follows from L∃1 that, for every a ∈ A and every
i ∈ I, there exists b ∈ A such that γi[a, a, b]. Another way of saying this is that, for every
pair of elements a1, a2 whose primitive length is 1 (i.e. a1 = a2), A provides a witness for the
formula ∃x3 γi. Likewise, it follows from L∀1 that, for every triple ā whose primitive length is
either 1 or 2, A |= δ[ā]. Indeed, if ā = b̄f where |b̄| ≤ 2, we have A |= δf [b̄], whence A |= δ[ā]
by Lemma 3.2.

ICALP 2023

111:10 On the Limits of Decision: The Adjacent Fragment of First-Order Logic

Stage 3. We now increment the primitive length of A to 3 by setting the adjacent 3-
types of all primitive triples in A. Fix any pair of distinct elements a = (ω, τ, h, i, j) and
a′ = (ω′, τ ′, h′, i′, j′). Let us write ζ = tpA[a, a′], so that, by construction of A in the
previous stage, ζ ∈ ω and ζ−1 ∈ ω′. By (L∃2), there exists some η ∈ ω′ such that the
AF3-formula ψ := ζ ∧ η+ ∧ γi ∧ δ̂ is consistent; let θi be an adjacent 3-type entailing
this formula. By the construction of the previous stage again, we can find an element
bi := (ω′′, η, h′ + 1, i, g(j, j′)) ∈ A such that tpA[a′, bi] = η. We shall set atpA[a, a′, bi] = θi

for all i ∈ I. From the index i, the elements bi are distinct, and so these assignments do not
clash with each other. Since θi entails ζ ∧ η+, they do not clash with the 2-types assigned
so far. Since θi entails γi, the pair a, a′ now has a witness in respect of the formula ∃x3 γi.
From property (i) of g secured by Lemma 2.3, the triple a, a′, bi is primitive; hence the only
primitive triples whose adjacent types are thereby defined are a, a′, bi and bi, a

′, a. But since
θi entails δ̂, neither of these triples violates ∀x1x2x3 δ. Now repeat this construction for all
pairs of distinct elements a = (ω, τ, h, i, j) and a′ = (ω′, τ ′, h′, i′, j′). We claim that no tuple c̄
is assigned to the extensions of any predicates twice in this process. Since c̄ must have some
primitive generators a1a2a3 and a3a2a1, the only possibility for double assignment of c̄ is if a3
is chosen as some witness for the pair a1, a2, and a1 is chosen as some witness for the pair
a3, a2. Remembering that a1, a2 and a3 are actually quintuples, let their final components
be, respectively, j, j′, j′′. By the choice of witnesses, j′′ = g(j, j′) and j = g(j′′, j′). But this
contradicts property (ii) of g secured by Lemma 2.3, thus establishing the claim that no
primitive triple is assigned to extensions of predicates twice. At this point, for every pair
of elements a1a2 (of primitive length either 1 or 2) and every i ∈ I, A provides a witness
for the formula ∃x3 γi. Moreover, no adjacent 3-type so-far assigned violates δ. To complete
the extension of A to primitive length 3, it remains only to assign adjacent types to all
remaining primitive triples without violating δ. Suppose, then a, a′, a′′ are distinct elements
whose adjacent type in A has not yet been defined. Let ζ = tpA[a1, a2] and η = tpA[a2, a3].
By the previous stage, ζ ∧ η+ ∧ δ̂ is consistent, so let θ be an adjacent 3-type entailing this
formula, and set tpA[a1, a2, a3] = θ. Observe that we are also thereby assigning the adjacent
3-type of tpA[a3, a2, a1], but are assigning no other adjacent 3-types. Since θ entails ζ ∧ η+,
this assignment does not clash with the assignments of the previous step. Since θ entails δ̂,
no newly assigned triple violates δ. This completes the construction of the model A. ◀

Extending Lemma 4.6 to the whole of AF represents a greater challenge. For the next
two lemmas (4.7 and 4.8), fix a normal-form AF ℓ+1-formula φ over some signature σ,
as given in (2), with ℓ ≥ 3. We construct a normal-form formula φ′ ∈ AF ℓ such that:
(i) if φ is satisfiable over some domain A, then so is φ′; and (ii) if φ′ is satisfiable over
some domain B, then φ is satisfiable over a domain A, with |A|/|B| bounded by some
exponential function of ||φ||.

Recall that the adjacent closure, φ# of φ, may be regarded as a normal-form AF ℓ-formula
over the same signature. For every adjacent ℓ-type ζ over σ, let pζ be a fresh predicate
of arity ℓ−1. Intuitively, we shall think of p(x2 · · ·xℓ) as stating “for some x1, the ℓ-tuple
xℓ = x1 · · ·xℓ is of adjacent type ζ”. Now define φ′ to be the conjunction of φ# with the
following AF ℓ-formulas:∧

ζ∈Atpσ

ℓ

∀xℓ

(
ζ → pζ(x2 · · ·xℓ)

)
(3)

∧
ζ∈Atpσ

ℓ

∧
i∈I

∀xℓ−1∃xℓ

(
pζ(xℓ−1)→ (ζ ∧ δ̂ ∧ γi)◦) (4)

B. Bednarczyk, D. Kojelis, and I. Pratt-Hartmann 111:11

∧
ζ∈Atpσ

ℓ

∀xℓ

(
pζ(xℓ−1)→ (ζ ∧ δ̂)◦) (5)

▶ Lemma 4.7. Suppose A |= φ. Then we can expand A to a model A+ |= φ′.

Proof. Set pA+

ζ = {ā ∈ Aℓ−1 : A |= ζ[aā] for some a ∈ A}, for every ζ ∈ Atpσ
ℓ . The truth

of (3) in A+ is then immediate. To see the same for (4), fix ζ ∈ Atpσ
ℓ and i ∈ I, and suppose

A+ |= pζ(ā), where ā ∈ Aℓ−1. Then there exists a ∈ A such that A |= ζ[aā]. Moreover, since
A |= φ, there exists b ∈ A such that A |= γi[aāb] and A |= δ̂[aāb]. Now let η = atpA[āb].
Writing χ for ζ ∧ δ̂ ∧ γi, we have A |= χ[aāb], whence χ is consistent; and since A |= η[āb],
it follows that η |= χ◦. Thus, b is a witness for the (ℓ−1)-tuple ā required by the relevant
conjunct of (4). This secures the truth of (4) in A+. Formula (5) is handled similarly. ◀

▶ Lemma 4.8. Suppose B |= φ′. Then we can construct a model C+ |= φ such that
|C+|/|B| ≤ |I| · (ℓ2 + ℓ+ 1)ℓ.

Proof. Since φ′ ∈ AF ℓ, we may assume by Lemma 3.3 that B is a layered structure of
primitive length ℓ – that is, does not specify the extensions of predicates in respect of tuples
whose primitive length is greater than ℓ. Let B− be the reduct of B to the signature σ
(i.e. we forget the predicates pζ). Thus, every ℓ-tuple from B satisfies a unique element
of Atpσ

ℓ . We first define a collection of “witness” functions vi : Bℓ → B, where i ∈ I. For
any ℓ-tuple b̄ = b1 · · · bℓ, let ζ = atpB− [b̄]. By (3), B |= pζ [b2 · · · bℓ], whence, by (4), we
may select b ∈ B such that B |= (ζ ∧ δ̂ ∧ γi)◦[(b2 · · · bkb)]. Set vi(b̄) = b. Now let J be a
set of cardinality ℓ2 + ℓ+ 1 and let g : Jℓ → J a function satisfying conditions (i) and (ii)
guaranteed by Lemma 2.3. We inflate the structure B− using the product construction of
Lemma 2.2. Specifically, we define C = B− × (I × J), writing elements of C as triples (b, i, j),
where b ∈ B, i ∈ I and j ∈ J . Now, predicate extensions featuring tuples of primitive length
greater than ℓ can be safely disregarded in the structure C. We next define a collection of
witness functions wi : Cℓ → C, based on the functions vi defined above. The motivation is
that these functions will allow us to choose witnesses in C for the conjuncts (4) that do
not, as it were, tread on each others’ toes. Consider any ℓ-tuple c̄ = c1 · · · cℓ of elements
in C, with ch = (bh, ih, jh) for each h (1 ≤ h ≤ ℓ). Writing b̄ = b1 · · · bℓ, we define wi(c̄) to
be the element (vi(b̄), i, g(j1 · · · jℓ)). Since B− |= (ζ ∧ δ̂ ∧ γi)◦[b2 · · · bℓ wi(b̄)], it follows from
Lemma 2.2 that C |= (ζ ∧ δ̂ ∧ γi)◦[c2 · · · cℓ wi(c̄)]. In addition, the functions wi satisfy the
following two additional properties:
(w1) for fixed c̄, the wi(c̄) are distinct as i varies over I;
(w2) wi(c̄) does not occur in c̄;
(w3) if c̄′ is an ℓ-tuple consisting of the elements c2, . . . , cℓ, wi(c̄) in some order, then wi′(c̄′)

does not occur in c̄ for any i′ ∈ I.
Indeed, (w1) is immediate from the fact wi(c̄) contains i as its second element; (w2) and
(w3) follow, respectively, from conditions (i) and (ii) on g guaranteed in Lemma 2.3.

We are now ready to extend C to a structure C+ of primitive length ℓ+1 such that C+ |= φ.
We first manufacture witnesses required by the conjuncts ∀x̄∃xℓ+1γi, insofar as these are not
already present. Fix any ℓ-tuple c̄ = c1 · · · cℓ, and let ζ = atpC[c̄]. Now consider any i ∈ I,
and write c = wi(c̄). We have two cases, depending on whether the word c̄c is primitive.
Suppose first that it is not. By (w2), c is not an element of c̄, whence by Lemma 3.4 there is
some k-tuple d̄ (k < ℓ) and f ∈ A⃗ℓ

k such that d̄ = c̄f . As before, define f+ ∈ A⃗ℓ+1
k+1 extending

f by setting f(k + 1) = ℓ + 1. Since k < ℓ, and C |= φ#, there exists c′ ∈ C such that
C |= γf+

i [d̄c′]. By Lemma 3.2, C |= γi[(d̄c′)f+], or in other words, C |= γi[c̄c′], so that a witness
c′ is already present in respect of the tuple c̄ and the index i. (Notice that we are throwing

ICALP 2023

111:12 On the Limits of Decision: The Adjacent Fragment of First-Order Logic

our original witness, c, away.) Suppose on the other hand that c̄c is primitive. Since C has
primitive length ℓ, no tuple with primitive generator c̄c has been assigned to the extension
of any predicate in C. Let η = atpC[c2 · · · cℓc]. Writing χ for the AF ℓ-formula ζ ∧ δ̂ ∧ γi

it follows from the choice of c that C |= χ◦[c̄c], whence, by the definition of the operator
(·)◦, the AF ℓ+1-formula η+ ∧ (ζ ∧ δ̂ ∧ γi) is consistent. Therefore, there exists an adjacent
(ℓ+ 1)-type ω entailing it, and we may fix atpC+ [c̄c] = ω. To see that this assignment makes
sense and extends C, recall that atpC+ [c̄c] specifies whether C+ |= q[d̄] for any m-tuple d̄
whose primitive generator is an infix, say ē, of c̄c. If ē is of length ℓ or less, then its adjacent
type has already been fixed in C consistently with ζ or η+. Otherwise, the primitive generator
of d̄ is c̄c, so that C does not determine satisfaction of q by d̄; writing d̄ = (c̄c)f , then, we may
set C+ |= q[d̄] if and only if |= ω → q((xℓxℓ+1)f). Since ω |= γi, we see that, following these
assignments, C+ has been provided with a witness in respect of the tuple c̄ and the index i.
We claim in addition that the newly assigned tuples do not violate ∀xℓxℓ+1 δ. For suppose
that d̄ is an (ℓ+ 1)-tuple whose adjacent type in C+ has been defined. If the primitive length
of d̄ is ℓ or less, then we have d̄ = ēg for some primitive ē of length k ≤ ℓ and some g ∈ Aℓ+1

k .
Since C |= φ#, we have C |= δg[ē], whence by Lemma 3.2, C |= δ[d̄]. If, however, the primitive
length of d̄ is ℓ+ 1, then d̄ is either c̄c or its reversal, and by the fact that ω |= δ̂, we have
C+ |= δ[d̄] as required. Still keeping c̄ fixed for the moment, we may carry out the above
procedure for all i ∈ I. To see that these assignments do not interfere with each other, we
simply note property (w1) of the functions wi.

Now make these assignments as just described for each word c̄ ∈ Cℓ. To ensure that these
assignments do not interfere with each other, we make use of properties (w1) and (w3) of the
functions wi. If d̄ is an m-tuple that has been assigned (or not) to the extensions of various
predicates by the process described above, then the two primitive generators of d̄ must be of
the form c̄c and (c̄c)−1, where c = wi(c̄) for some i ∈ I. Since primitive generators are unique
up to reversal by Theorem 3.1, it suffices to show that, for distinct pairs (c̄, i) and (c̄′, i′), the
corresponding (ℓ+1)-tuples (c̄ wi(c̄)) and (c̄′ wi′(c̄′)) are not the same up to reversal. Now
c̄ wi(c̄) = c̄′ wi′(c̄′) implies c̄ = c̄′, whence i and i′ are distinct, whence wi(c̄) ̸= wi′(c̄′) by
(w1), a contradiction. On the other hand if c̄ wi(c̄) = (c̄′ wi′(c̄))−1, then c̄′ = wi(c̄), cℓ · · · c2,
whence wi′(c̄′) does not occur in c̄ by (w3), again a contradiction.

At this point, we have assigned a collection of tuples with primitive length ℓ+1 to the
extensions of predicates in σ so as to guarantee that C+ |= ∀xℓ∃xℓ+1 γi for all i ∈ I. In
addition, no adjacent (ℓ+1)-types thus defined violate ∀xℓ+1 δ. It remains to complete the
specification of C+ by defining the adjacent types of all remaining primitive ℓ+1-tuples, and
showing that, in the resulting structure, every (ℓ+1)-tuple (primitive or not) satisfies δ. Let
c1 · · · cℓ+1 be a primitive (ℓ+1)-tuple whose adjacent type has not yet been defined. Let
ζ = atpC[c1 · · · cℓ] and η = atpC[c2 · · · cℓ+1]. Writing ch = (bh, ih, jh) for all h (1 ≤ h ≤ ℓ+ 1),
we have ζ = atpB− [b1 · · · bℓ] and η = atpB− [b2 · · · bℓ+1]. By (3), B |= pζ [b2 · · · bℓ+1], and
hence by (5), B |= (ζ ∧ δ̂)◦[b2 · · · bℓ+1], whence ζ ∧ η+ ∧ δ̂ is consistent, by the definition of
the operator (·)◦. So let ω ∈ Atpσ

ℓ+1 entail this formula, and set atpC+ [c̄c] = ω. Carrying this
procedure out for all remaining primitive ℓ+1-tuples, we obtain a layered structure C+ of
primitive length ℓ+ 1. Let d̄ be any (ℓ+1)-tuple of elements from C. If d̄ is primitive, then
we have just ensured that C+ |= δ[d̄]. If, on the other hand, d̄ = ēf for some k-tuple ē and
some f ∈ Aℓ+1

k , where k ≤ ℓ, then, since φ#, we have C |= δf [ē] and hence, by Lemma 3.2,
C |= δ[d̄]. This completes the construction of C+. We have shown that C+ |= φ. ◀

Lemma 4.6 establishes the decidability of satisfiability for AF3. Lemmas 4.7 and 4.8, on
the other hand, reduce the satisfiability problem for AF ℓ+1 to that for AF ℓ (ℓ ≥ 3), though
with exponential blow-up. Putting these together, we obtain the decidability of satisfiability

B. Bednarczyk, D. Kojelis, and I. Pratt-Hartmann 111:13

for the whole of AF . More precisely:

▶ Theorem 4.9. If φ is a satisfiable AF ℓ+1-formula, with ℓ ≥ 2, then φ is satisfied in
a structure of size at most t(ℓ−1, O(||φ||)). Hence the satisfiability problem for AF ℓ is in
(ℓ−2)-NExpTime for all ℓ ≥ 3, and the adjacent fragment is Tower-complete.

Proof. Fix ℓ ≥ 2 and suppose φ is a satisfiable AF ℓ+1-formula over a signature σ. By
Lemma 4.1, we may assume that φ is in normal form. Writing φℓ+1 for φ, let φℓ be the
formula φ′ given by the conjunction of φ# and formulas (3)–(5) as described before Lemma 4.7.
Repeating this process, we obtain a sequence of formulas φℓ+1, . . . , φ3. By Lemma 4.7, φ3
is satisfiable. For all k, (3 ≤ k ≤ ℓ + 1), let φk have signature σk, and for k ≤ ℓ, consider
the construction of φk from φk+1. Since

∑k+1
k′=1 |A

k+1
k′ | is bounded by a constant, we see that

||φ#
k+1|| is O(||φk+1||). Turning now to the formulas corresponding to (3)–(5), we employ the

same technique used in the proof of Lemma 4.5. When considering the adjacent k-types over
σk+1, we may disregard all adjacent atoms whose argument sequence is not a substitution
instance of some argument sequence xg

k occurring in an atom of φk+1, as these cannot affect
the evaluation of φk+1. And since k ≤ ℓ, the number of functions from xk to itself is again
bounded by a constant, so that the number of adjacent k-atoms over σk+1 that we need
to consider is O(||φk+1||). Thus, the number of adjacent k-types over σk+1 that we need to
consider is 2O(||φk+1||); and this bounds the number of conjuncts in (3)–(5) taken together.
Some care is needed when calculating the sizes of these conjuncts themselves, as they feature
the subformulas (ζ ∧ δ̂ ∧ γi)◦ and (ζ ∧ δ̂)◦. However, these are simply, in effect, disjunctive
normal forms over atoms contained in φk+1, and hence have cardinality 2O(||φk+1||), whence
||φk|| is 2O(||φk+1||). By an easy induction, then, ||φ3|| is t(ℓ− 2, O(||φℓ+1||)), i.e. t(ℓ− 2, O(||φ||)).

By Lemma 4.6, φ3 has a model of cardinality t(ℓ− 1, O(||φ||)). Moreover, by Lemma 4.7,
each of the formulas φk (3 ≤ k ≤ ℓ) has a model over a set, say Bk, such that |Bk+1| ≤
|Bk| · ||φk+1|| · (ℓ2 + ℓ+ 1)ℓ. Since ||φk|| is t(ℓ− 3, O(||φ||)) for all k and remembering that ℓ is
a constant, we see that φ = φℓ+1 has a model of cardinality O(||φ||ℓ−1t(ℓ− 1, O(||φ||))), that
is to say t(ℓ− 1, O(||φ||)). ◀

5 The Guarded Subfragment

We next shift our attention to the guarded subfragment of the adjacent fragment, denoted GA,
defined as the intersection of the guarded fragment GF and AF . Recall that in GF , quanti-
fication is relativized by atoms, e.g. all universal quantification takes the form ∀x̄(α→ ψ),
where α (a guard) is an atom featuring all the variables in x̄ and all the free variables of ψ.
We show that the satisfiability problem for GA, in contrast to GF2 (the two-variable guarded
fragment), is 2ExpTime-complete, and thus as difficult as full GF .

Our proof employs the same strategy as the 2ExpTime-hardness proof for GF by
Grädel [11]. The novel part of the reduction here concerns a feature characteristic of hardness
results for guarded logics [11, 19]. However, the fact that we are working in the guarded
adjacent fragment means that existing techniques are not directly available.

Let m ∈ N and consider the following adjacent functions (the upper index is mapped to
the lower one):

λ1 :=
(

1 2 3 4 . . . m+2
1 2 2 3 . . . m+1

)
, λ2 :=

(
1 2 3 4 . . . m+2
1 2 1 2 . . . m

)
, λ3 :=

(
1 2 3 4 . . . m+2
1 2 3 3 . . . m+1

)
.

We show that repeated application of λ1–λ3 on the bit-string 011m yields the whole of
01{0,1}m.

ICALP 2023

111:14 On the Limits of Decision: The Adjacent Fragment of First-Order Logic

▶ Lemma 5.1. Let W0 ⊆ {0,1}∗ contain 011m and Wi := Wi−1 ∪{w̄λ1 , w̄λ2 , w̄λ3 | w̄ ∈
Wi−1}. Setting W :=

⋃
i≥0 Wi, we have 01{0,1}m ⊆W .

Proof. We inductively prove that, for any i ∈ [0,m] and any c̄ ∈ {0,1}i, we have 01c̄1m−i ∈
W . The base case (i = 0) follows from the assumption that W0 contains 011m, so let i > 0.
We aim at generating any word u = 01xc̄1m−i−1 for x ∈ {0,1}. By induction hypothesis
both v̄ = 01c̄1m−i−11 and w̄ = 01d̄1m−i−111 (where c̄ = c1d̄) are in W . We consider cases:
(i) if x = 1 then ū = v̄λ1 , (ii) if both x and c1 = 0 then ū = v̄λ3 , and otherwise, (iii) x = 0,
c1 = 1 and ū = w̄λ2 . Thus ū ∈W . ◀

Let Gm and P be, respectively, (m+ 2)-ary and binary predicates. We define ζP
m to be

the sentence below:

∀xy
(
P (xy)→ Gm(xy y · · · y︸ ︷︷ ︸

m

)
)
∧

∧
i=1,2,3

∀zm+2

(
Gm(zm+2)→ Gm(zλi

m+2)
)
.

Let A be a model of ζP
m, and take any (a, b) ∈ PA. By Lemma 5.1 we conclude that GA

m

contains every word of the form ab{a, b}m. Let R be some 4-ary relation symbol. In the
forthcoming proof we also consider a (2m+ 4)-ary predicate Fm described by ϵRm which is a
conjunction of the following two sentences:

∀yxx′y′
(
R(yxx′y′)→ Fm(y . . . y︸ ︷︷ ︸

m

yxx′y′ y′ . . . y′︸ ︷︷ ︸
m

)
)

∧
i,j∈{0,1,2,3}

∀z−1
m+2z′

m+2

(
Fm(z−1

m+2z′
m+2)→ Fm(zλi(m+2) . . . zλi(1)z

′
λj(1) . . . z

′
λj(m+2))

)
.

Here λ0 is the identity function (i.e. k 7→ k for each k ∈ [1,m]). The intended meaning is
that whenever A |= ζR

m holds, this implies that for any quadruple baa′b′ ∈ RA we have that
A |= G[c̄baa′b′c̄′] holds for all c̄ ∈ {a, b}m and c̄′ ∈ {a′, b′}m.

ATMs. An Alternating Turing Machine (ATM) M is a tuple ⟨Q,S, Tl, Tr, q0, κ⟩, where
Q is a finite set of states, S is a finite alphabet containing an empty-cell symbol “⌞⌟”,
Tl, Tr : Q × S → Q × S × [−1, 1] are, respectively, the left and right transition functions,
q0 ∈ Q is the initial state, and κ : Q → {∀∀∀,∃∃∃} is the state descriptor function stating if a
given state is, respectively, universal ∀∀∀ or existential ∃∃∃. We say that a state q is accepting
if and only if κ(q) = ∀∀∀, and there are no possible transitions given by Tl(q, s) and Tr(q, s)
for any symbol s ∈ S. Dually, q is rejecting if and only if κ(q) = ∃∃∃, and, again, there are no
possible transitions. By tracking every step of the computation by M on w̄ ∈ S∗ we obtain a
binary tree structure G = ⟨V , El, Er⟩. Each vertex v ∈ V is labelled with some configuration
⟨q, s̄, h⟩, where q ∈ Q is a machine state, s̄ ∈ Sm a word indicating the contents of the
tape, and h ∈ [0,m− 1] an integer indicating the position of the head at some point in the
computation. Each edge (v, u) ∈ Eη (where η = l, r) is labelled by a transition Tη(q, sh),
enabled in the configuration labelling of v. We call G the configuration tree of the computation
by M on w̄. Assuming G is finite, we say that it is accepting if no vertex is associated with a
rejecting state. We identify the following three properties of G. The root node is labelled
with a configuration in which the machine is in state q0, the head position is 0, and the tape
is written with the string w̄ followed by blanks. We call this property initial configuration
(IC). Let u be a vertex labelled with a configuration in which the machine is in state q. If q
is universal, then u will have two children; if q is existential, then u will have a single child;

B. Bednarczyk, D. Kojelis, and I. Pratt-Hartmann 111:15

if q is accepting, or rejecting then u will have no children. We call this property successor
existence (SE). Suppose further that, in the configuration labelling of some node u we have
that the head is reading the symbol s whilst in state q. Then any child vη (s.t. (u, vη) ∈ Tη,
where η = l or η = r) represents the result of a single transition Tη(q, s) = (p, s′, k), and thus
is labelled with a configuration in which the machine state is p, s′ is written in place of s, and
the head is moved by a distance of k. We call this property configuration succession (CS).

Encoding numbers. Let binm
x,y be the canonical map from [0, 2n − 1] to bit-string repres-

entations of length m ∈ N, using x as the zero bit and y as the unit bit. In the sequel, we will
consider structures A with elements labelled by a unary predicate O. If A |= ¬O[a] ∧ O[b]
we say that a, b act as zero and unit bits. We thus associate every word c̄ ∈ {a, b}+ with an
integer value given by the canonical map valA (this function depends on A, because it is
A that determines which is the zero bit and which is the unit bit.) Given two bit-strings c̄
and d̄ (not necessarily composed of the same elements) there is a classical way to define the
following properties in the monadic fragment of FO (hence also in GA):

A |= less(c̄, d̄) iff valA(c̄) < valA(d̄)
A |= eq(c̄, d̄) iff valA(c̄) = valA(d̄)
A |= eq(c̄, d̄+ k) iff valA(c̄) = valA(d̄) + k, where k ∈ [−1, 1].

Formally, the formulas are defined as follows:

less(zm, z′
m) :=

m∨
i=1

(
¬O(zi) ∧O(z′

i) ∧
m∧

j=i+1

(
O(zj)↔ O(z′

j)
))

eq(zm, z′
m) :=

m∧
i=1

(
O(zi)↔ O(z′

i)
)

eq(zm, z′
m + 1) :=

m∧
i=1

((
O(zi)↔ O(z′

i)
)
↔

i−1∨
j=1

O(zj)
)

and where eq(zm, z′
m + 0) := eq(zm, z′

m) and eq(zm, z′
m − 1) := eq(z′

m, zm + 1).
Fix an ATM M working in exponential space w.r.t any given input w̄. Our goal is to

construct a polynomial-size GA-sentence φM,w̄ which is satisfiable if and only if M has
an accepting configuration tree on a given input w̄. Utilising the fact that AExpSpace
equals 2ExpTime, the reduction yields the desired bound on GA. Now, take an accepting
configuration tree G = (V, El, Er) for M and w̄, and fix n = |w̄|. We consider structures
interpreting binary predicates V,R,Qq (for each q ∈ Q), quaternary predicates El, Er and
n-ary predicates H,Ss (for each s ∈ S). We say that A0 embeds G if there is f : V → A2

0 such
that for all v ∈ V
(a) A0 |= V [f(v)],
(b) A0 |= R[f(v)] if v is the root node,
(c) A0 |= Eη[f(u)−1, f(v)] if (u, v) ∈ Eη, where η = l, r,
(d) A0 |= Qq[f(v)] if the configuration v is in state q,
(e) A0 |= Ss[binn

f(v)(i)] if v’s i-th tape cell has symbol s,
(f) A0 |= H[binn

f(v)(i)] if v’s head is located over the i-th tape square.
We construct A0 embedding G as follows: the domain A0 is composed of fresh symbols 0v, 1v

for each vertex v ∈ V, for which we also put f(v) = 0v1v. (Notice that 0v1v is a word over
A0 of length 2.) We interpret the predicates V,R,E,Qq, Ss and H as required by conditions
(a)–(f). Then, we construct a φM,w̄ in GA such that: (i) A0 can be expanded to a model A
of φM,w̄; and (ii) every model of φM,w̄ embeds G.

ICALP 2023

111:16 On the Limits of Decision: The Adjacent Fragment of First-Order Logic

The first conjunct of φM,w̄ requires pairs ab satisfying the predicate V to act as zero bits
and unit bits, indicated by the predicate O:

φ1 = ∀xy
(
V (xy)→ ¬O(x) ∧O(y)

)
We now add ζV

n and ζV
2n to the main formula φM,w̄. Recall that the sentence ζV

m features
an (m + 2)-ary predicate Gm, and ensures that, if A |= V [ab], then A |= Gm[abc̄] for all
c ∈ {a, b}m. Writing φ2, φ3 and φ4 as

p ̸=q∧
p,q∈Q

∀xy
(
V (xy)→

(
¬Qp(xy) ∨ ¬Qq(xy)

))
,

s̸=s′∧
s,s′∈S

∀xyzn

(
Gn(xyz)→¬

(
Ss(zn)∧Ss′(zn)

))
,

∀xyznz′
n

(
G2n(xyznz′

n)→
((
H(zn) ∧H(z′

n)
)
→ eq(zn, z′

n)
))

respectively, we ensure that every configuration is in at most one state at a time, every
tape square of a configuration has at most one symbol, and the read-write head of any
configuration is pointing to a single square at a time. Note that all of these formulas are
guarded. However, the advertised behaviour of the guard predicates Gn and G2n means, in
essence, that the guards have no semantic effect.

We now secure the property (IC). Let µ1 abbreviate the formula Qq0(xy)∧H(binn
xy(0))∧∧|w̄|

i=1 Swi
(binn

x,y(i−1)), and µ2 the formula less(binn
x,y(|w̄|−1), zn)→ S⌞⌟(zn). Writing

φ5 := ∃xy
(
V (xy) ∧R(xy)

)
∧ ∀xy

(
R(xy)→

(
µ1 ∧ ∀zn(G(xyzn)→ µ2)

))
,

we ensure that there is a root configuration in which the machine state is q0, the head is
scanning square “0”, and the tape is written with the string w̄ followed by the requisite
number of blanks.

Let K∀∀∀ be the formula
∨κ(q)=∀∀∀

q∈Q Qq(xy), and define K∃∃∃ analogously. Similarly, we define
K××× to be a disjunction of rejecting states. The formula φ6 := ∀xy(V (xy) → ¬K×××(xy))
ensures that no configuration is labelled with a rejecting state.

We next encode the transitions of M, securing the property (SE). Let ψ∀∀∀ abbrevi-
ate the formula ∃x′y′El(yxx′y′) ∧ ∃x′y′Er(yxx′y′), and ψ∃∃∃ the formula ∃x′y′El(yxx′y′) ∨
∃x′y′Er(yxx′y′). Writing

φ7 :=
∧

k=∀∀∀,∃∃∃

∀yx
(
V (xy)→

(
Kk(xy)→ ψk

))
.

we ensure that, if A |= V [a, b]∧Kk[ab], then A contains pairs encoding the appropriate
successor configurations.

We next ensure that the transitions have the expected effect on the configurations they
connect, securing the property (CS). For this, we need a further predicate, Fn, to act as
a dummy guard. By adding ϵ

Eη
n to the main formula (for both η = l, r), we secure A |=

Fn[c̄baa′b′c̄′] for all a, b, a′, b′ such that A |= Eη[baa′b′] with c̄ ∈ {a, b}n, c̄′ ∈ {a′, b′}n. The
formula φ8 then ensures that any pair of parent and successor configurations have identical
tape contents except (possibly) for the position scanned by the head, thus:

B. Bednarczyk, D. Kojelis, and I. Pratt-Hartmann 111:17

φ8 := ∀znyxx
′y′z′

n

(
Fn(znyxx

′y′z′
n)→

((
¬H(zn) ∧ eq(zn, z′

n)
)
→
(∧

s∈S

(
Ss(zn) → Ss(z′

n)
))))

.

Now let χ1 abbreviate the formula Qp(x′y′), χ2 the formula eq(z′
n, zn)→ Ss′(z′

n), and χ3
the formula eq(z′

n, zn + k)→ H(z′
n). In addition, we write ξτη

for the sentence

∀znyxx
′y′z′

n

(
G(znyxx

′y′z′
n)→

((
Eη(yxx′y′)∧Qq(xy)∧H(zn)∧Ss(zn)

)
→
(
χ1∧χ2∧χ3

)))
.

Assuming the transition τη is of the form (q, s) 7→ (p, s′, k), the formula ξτη
states that, if

in a certain configuration, the machine state is q and the head is reading symbol s, then in
the η-side successor configuration defined by Tη, the machine state will be p, the symbol s
will have been replaced by s′, and the head will have moved by k. To encode all possible
transitions, we write φ9 to be a conjunction of ξτη for each transition τη ∈ Tη for both η = l, r.

Let A0 embed some accepting G as described in (a)–(f). We expand A0 to A by setting
A = A0 with
1. A |= ¬O[a] and A |= O[b] if A0 |= V [ab],
2. A |= Gm[abc̄] where A0 |= V [ab] and c̄ ∈ {a, b}m (for m = n, 2n),
3. A |= Fn[c̄baa′b′c̄′] where A0 |= Sη[baa′b′], c̄ ∈ {a, b}n and c̄′ ∈ {a′, b′}n (here η = l, r).
Recalling that G contains an initial configuration (IC), we have that A |= φ5. Additionally,
G has the property (SE), we see that A |= φ7. Lastly, since G has the property (CS), we
have that A |= φ8. At this point it is easy to verify that A |= φM,w̄.

Conversely, suppose A |= φM,w̄. We construct an embedding f : V→A2 for an accepting
G by well-founded induction. The following observations will be used. Suppose A |= V [ab].
Intuitively, we think of the pair ab as a vertex of the computation tree labelled by some
configuration, as determined by the predicates Qq, Ss and H. By φ2, there is a unique Qq

(for q ∈ Q) satisfied by ab. Moreover, by φ3, any bit-string c̄ ∈ {a, b}n satisfies a unique Ss

(for s ∈ S). Similarly, by φ4, there is a unique c̄ satisfying H.
Proceeding with the induction, for the base case, pick a, b s.t. A |= R[ab]. By φ5 we see

that A |= Qq0 [ab], A |= H [binn
a,b(0)], and A |= Swi [c̄] for each 1 ≤ i ≤ |w̄| with valA(c̄) = i−1

and A |= S⌞⌟[c̄] otherwise. We then set V = {v} and f(v) = ab. Labeling v with the state,
tape and head position as suggested by (a)–(f), we have secured the property (IC).

For the inductive step, let u be vertex which has been added to the tree. Assume u is
labelled with a configuration in which the machine state q is universal, and the head is
at position h, reading symbol s. If q is accepting, then we stop. Otherwise, φ7 guarantees
that there are words aηbη ∈ A2 such that A |= Sη[f(u)−1aηbη] for both η = l, r. Notice
that by φ8 if the configuration labelling u has the symbol s′ written on tape square i (for
i ̸= h), then A |= Ss′ [binn

aηbη
(i)]. By φ9 the pair aηbη satisfies the predicate Qp that is in

accordance with the transition Tη(q, s) = (p, s′, k). Additionally, A |= Ss′ [binn
aηbη

(h)] and
A |= H[binn

aηbη
(h+ k)].

We thus set V := V ∪ {vη}, f(vη) = (aη, bη) and Eη := Eη ∪ {(u, vη)} thus securing (SE).
By interpreting the state, tape and head position of vη as suggested by (a)–(f) we see that vη

is a proper successor of u as required by (CS). The case for when q is existential is similar.
Since there are no rejecting states in conf. tree (reference φ6), there is an initial configur-

ation by (IC), each parent has children complying with (SE), and each parent-child pair
conforms to (CS), we conclude that G is an accepting configuration tree.

ICALP 2023

111:18 On the Limits of Decision: The Adjacent Fragment of First-Order Logic

6 Conclusions

The adjacent fragment AF is defined as the union of the formulas sets AF [k], each of which
restricts the allowed argument sequences appearing in atomic formulas to adjacent words
over the alphabet xk. The question arises as to whether these restrictions might be further
relaxed without compromising the decidability of satisfiability. Under reasonable assumptions
about the fragment in question, the answer must be no. Indeed, assume, for simplicity, that
the argument sequence x1x2 is allowed in the 2-variable case, and x2x3 in the 3-variable case.
Now the only non-adjacent words of length 2 over x3 are x1x3 and x3x1. In the first case,
this allows us to write the formula ∀x1∀x2(r(x1x2)→ ∀x3(r(x2x3)→ r(x1x3))), which says
that r is transitive. But even two-variable logic with (at least two) transitive relations yields
a logic for which satisfiability and finite satisfiability are undecidable [20], since it is simple to
write formulas all of whose models embed grids of unbounded size. Similar remarks apply to
the formula ∀x1∀x2(r(x1x2)→ ∀x3(r(x2x3)→ r(x3x1))), and indeed to the case of formulas
featuring ternary non-adjacent atoms such as p(x1x3x2). It is therefore difficult to conceive
of meaningful fragments of first-order logic defined purely by reference to restrictions on the
allowable argument sequences that do not define sub-fragments of the adjacent fragment,
and that are at the same time decidable for satisfiability. In this respect, AF appears to be
the end of the road.

On the other hand, the last two decades have witnessed concerted attempts to investigate
the decidability of the satisfiability problem for FO2 over various classes of structures, where
some distinguished predicates are interpreted in a special way, e.g. as linear orders [24, 36, 37];
other such semantic constraints have also been investigated [25, 10, 21, 7, 9, 3]. It is therefore
natural to ask whether the adjacent fragment remains decidable when subject to similar
semantic constraints. Of course, since AF extends FO2, all the undecidability results for
FO2 immediately transfer to AF . Thus, AF extended with two transitive relations [20], or
with three equivalence relations [22], or with one transitive and one equivalence relation [24],
or with two linear orders and their two corresponding successor relations [25], must all be
undecidable. (See [23] for a survey.) Regarding positive results, existing results on the fluted
fragment give cause for some hope. Thus, for example, the fluted fragment remains decidable
with the addition of one transitive relation (and equality) [31]; moreover, finite satisfiability
for FO2 with one transitive relation is also known to be decidable [27].

A second generalization of FO2 which preserves decidability of satisfiability is the extension
with counting quantifiers [26, 28, 6]. (Here, however, the finite model property is lost.) It has
been shown that the corresponding extension of the fluted fragment retains the finite model
property [28]. Extending the adjacent fragment with counting quantifiers certainly results in
loss of the finite model property, because AF includes FO2; however, the decidability of the
satisfiability and finite satisfiability problems is left for future work.

References

1 Hajnal Andréka, István Németi, and Johan van Benthem. Modal languages and bounded
fragments of predicate logic. Journal of Philosophical Logic, 27(3):217–274, 1998. doi:
10.1023/a:1004275029985.

2 Bartosz Bednarczyk. Exploiting forwardness: Satisfiability and query-entailment in forward
guarded fragment. In Wolfgang Faber, Gerhard Friedrich, Martin Gebser, and Michael Morak,
editors, Logics in Artificial Intelligence – 17th European Conference, JELIA 2021, Virtual
Event, May 17-20, 2021, Proceedings, volume 12678 of Lecture Notes in Computer Science,
pages 179–193. Springer, 2021. doi:10.1007/978-3-030-75775-5_13.

https://doi.org/10.1023/a:1004275029985
https://doi.org/10.1023/a:1004275029985
https://doi.org/10.1007/978-3-030-75775-5_13

B. Bednarczyk, D. Kojelis, and I. Pratt-Hartmann 111:19

3 Bartosz Bednarczyk, Witold Charatonik, and Emanuel Kieroński. Extending two-variable
logic on trees. In Valentin Goranko and Mads Dam, editors, 26th EACSL Annual Conference
on Computer Science Logic, CSL 2017, August 20-24, 2017, Stockholm, Sweden, volume 82
of LIPIcs, pages 11:1–11:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017. doi:
10.4230/LIPIcs.CSL.2017.11.

4 Bartosz Bednarczyk and Reijo Jaakkola. Towards a model theory of ordered logics: Expressivity
and interpolation. In Stefan Szeider, Robert Ganian, and Alexandra Silva, editors, 47th
International Symposium on Mathematical Foundations of Computer Science, MFCS 2022,
August 22-26, 2022, Vienna, Austria, volume 241 of LIPIcs, pages 15:1–15:14. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.MFCS.2022.15.

5 Bartosz Bednarczyk, Daumantas Kojelis, and Ian Pratt-Hartmann. On the limits of decision:
the adjacent fragment of first-order logic. ArXiV, abs/2305.03133, 2023. arXiv:2305.03133.

6 Michael Benedikt, Egor V. Kostylev, and Tony Tan. Two variable logic with ultimately
periodic counting. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th
International Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11,
2020, Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages 112:1–112:16.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ICALP.2020.
112.

7 Mikołaj Bojańczyk, Claire David, Anca Muscholl, Thomas Schwentick, and Luc Segoufin.
Two-variable logic on data words. ACM Transactions on Computational Logic, 12(4), July
2011. doi:10.1145/1970398.1970403.

8 Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision Problem. Perspectives
in Mathematical Logic. Springer, 1997.

9 Witold Charatonik, Emanuel Kieroński, and Filip Mazowiecki. Decidability of weak logics
with deterministic transitive closure. In Thomas A. Henzinger and Dale Miller, editors,
Joint Meeting of the Twenty-Third EACSL Annual Conference on Computer Science Logic
(CSL) and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in Computer Science
(LICS), CSL-LICS ’14, Vienna, Austria, July 14–18, 2014, pages 29:1–29:10. ACM, 2014.
doi:10.1145/2603088.2603134.

10 Witold Charatonik and Piotr Witkowski. Two-variable logic with counting and trees. ACM
Transactions on Computational Logic, 17(4), November 2016. doi:10.1145/2983622.

11 Erich Grädel. On the restraining power of guards. The Journal of Symbolic Logic, 64(4):1719–
1742, 1999. URL: http://www.jstor.org/stable/2586808.

12 Erich Grädel, Phokion G. Kolaitis, and Moshe Y. Vardi. On the decision problem for two-
variable first-order logic. The Bulletin of Symbolic Logic, 3(1):53–69, 1997. URL: http:
//www.jstor.org/stable/421196.

13 Leon Henkin. Logical Systems Containing Only a Finite Number of Symbols. Séminaire
de mathématiques supérieures. Presses de l’Université de Montréal, 1967. URL: https:
//books.google.pl/books?id=0jPQAAAAMAAJ.

14 Andreas Herzig. A new decidable fragment of first order logic. In Abstracts of the 3rd Logical
Biennial Summer School and Conference in honour of S. C. Kleene, Varna, Bulgaria, June
1990.

15 David Hilbert and Wilhelm Ackermann. Grundzüge der theoretischen Logik. Springer, Berlin,
1928.

16 David Hilbert and Wilhelm Ackermann. Principles of Mathematical Logic. Chelsea, New York,
1950.

17 Ullrich Hustadt, Renate A Schmidt, and Lilia Georgieva. A survey of decidable first-order
fragments and description logics. Journal of Relational Methods in Computer Science, 1(3):251–
276, 2004.

18 Reijo Jaakkola. Ordered fragments of first-order logic. In Filippo Bonchi and Simon J. Puglisi,
editors, 46th International Symposium on Mathematical Foundations of Computer Science,
MFCS 2021, August 23-27, 2021, Tallinn, Estonia, volume 202 of LIPIcs, pages 62:1–62:14.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.MFCS.2021.
62.

ICALP 2023

https://doi.org/10.4230/LIPIcs.CSL.2017.11
https://doi.org/10.4230/LIPIcs.CSL.2017.11
https://doi.org/10.4230/LIPIcs.MFCS.2022.15
https://arxiv.org/abs/2305.03133
https://doi.org/10.4230/LIPIcs.ICALP.2020.112
https://doi.org/10.4230/LIPIcs.ICALP.2020.112
https://doi.org/10.1145/1970398.1970403
https://doi.org/10.1145/2603088.2603134
https://doi.org/10.1145/2983622
http://www.jstor.org/stable/2586808
http://www.jstor.org/stable/421196
http://www.jstor.org/stable/421196
https://books.google.pl/books?id=0jPQAAAAMAAJ
https://books.google.pl/books?id=0jPQAAAAMAAJ
https://doi.org/10.4230/LIPIcs.MFCS.2021.62
https://doi.org/10.4230/LIPIcs.MFCS.2021.62

111:20 On the Limits of Decision: The Adjacent Fragment of First-Order Logic

19 Emanuel Kieroński. One-dimensional guarded fragments. In Peter Rossmanith, Pinar Heg-
gernes, and Joost-Pieter Katoen, editors, 44th International Symposium on Mathematical
Foundations of Computer Science, MFCS 2019, August 26-30, 2019, Aachen, Germany, volume
138 of LIPIcs, pages 16:1–16:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019.
doi:10.4230/LIPIcs.MFCS.2019.16.

20 Emanuel Kieroński and Jakub Michaliszyn. Two-variable universal logic with transitive
closure. In Patrick Cégielski and Arnaud Durand, editors, Computer Science Logic (CSL’12) –
26th International Workshop/21st Annual Conference of the EACSL, CSL 2012, September
3-6, 2012, Fontainebleau, France, volume 16 of LIPIcs, pages 396–410. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2012. doi:10.4230/LIPIcs.CSL.2012.396.

21 Emanuel Kieroński, Jakub Michaliszyn, Ian Pratt-Hartmann, and Lidia Tendera. Two-variable
first-order logic with equivalence closure. SIAM Journal on Computing, 43(3):1012–1063, 2014.
doi:10.1137/120900095.

22 Emanuel Kieroński and Martin Otto. Small substructures and decidability issues for first-order
logic with two variables. Journal of Symbolic Logic, 77(3):729–765, 2012. doi:10.2178/jsl/
1344862160.

23 Emanuel Kieroński, Ian Pratt-Hartmann, and Lidia Tendera. Two-variable logics with counting
and semantic constraints. ACM SIGLOG News, 5(3):22–43, 2018. doi:10.1145/3242953.
3242958.

24 Emanuel Kieroński and Lidia Tendera. On finite satisfiability of two-variable first-order logic
with equivalence relations. In Proceedings of the 24th Annual IEEE Symposium on Logic in
Computer Science, LICS 2009, 11-14 August 2009, Los Angeles, CA, USA, pages 123–132.
IEEE Computer Society, 2009. doi:10.1109/LICS.2009.39.

25 Amaldev Manuel. Two variables and two successors. In Petr Hlinený and Antonín Kucera,
editors, Mathematical Foundations of Computer Science 2010, 35th International Symposium,
MFCS 2010, Brno, Czech Republic, August 23-27, 2010. Proceedings, volume 6281 of Lecture
Notes in Computer Science, pages 513–524. Springer, 2010. doi:10.1007/978-3-642-15155-2_
45.

26 Ian Pratt-Hartmann. The two-variable fragment with counting revisited. In Anuj Dawar
and Ruy J. G. B. de Queiroz, editors, Logic, Language, Information and Computation, 17th
International Workshop, WoLLIC 2010, Brasilia, Brazil, July 6-9, 2010. Proceedings, volume
6188 of Lecture Notes in Computer Science, pages 42–54. Springer, 2010. doi:10.1007/
978-3-642-13824-9_4.

27 Ian Pratt-Hartmann. Finite satisfiability for two-variable, first-order logic with one transitive
relation is decidable. Mathematical Logic Quarterly, 64(3):218–248, 2018. doi:10.1002/malq.
201700055.

28 Ian Pratt-Hartmann. Fluted logic with counting. In Nikhil Bansal, Emanuela Merelli,
and James Worrell, editors, 48th International Colloquium on Automata, Languages, and
Programming, ICALP 2021, July 12-16, 2021, Glasgow, Scotland (Virtual Conference), volume
198 of LIPIcs, pages 141:1–141:17. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.ICALP.2021.141.

29 Ian Pratt-Hartmann. Walking on words. ArXiV, abs/2208.08913, 2022. doi:10.48550/arXiv.
2208.08913.

30 Ian Pratt-Hartmann, Wieslaw Szwast, and Lidia Tendera. The fluted fragment revisited.
Journal of Symbolic Logic, 84(3):1020–1048, 2019.

31 Ian Pratt-Hartmann and Lidia Tendera. The fluted fragment with transitive relations. Annals
of Pure and Applied Logic, 173(1):103042, 2022. doi:10.1016/j.apal.2021.103042.

32 William C. Purdy. Fluted formulas and the limits of decidability. The Journal of Symbolic
Logic, 61(2):608–620, 1996. URL: http://www.jstor.org/stable/2275678.

33 Willard Van Orman Quine. On the limits of decision. In Proceedings of the 14th International
Congress of Philosophy, volume III, pages 57–62. University of Vienna, 1969.

https://doi.org/10.4230/LIPIcs.MFCS.2019.16
https://doi.org/10.4230/LIPIcs.CSL.2012.396
https://doi.org/10.1137/120900095
https://doi.org/10.2178/jsl/1344862160
https://doi.org/10.2178/jsl/1344862160
https://doi.org/10.1145/3242953.3242958
https://doi.org/10.1145/3242953.3242958
https://doi.org/10.1109/LICS.2009.39
https://doi.org/10.1007/978-3-642-15155-2_45
https://doi.org/10.1007/978-3-642-15155-2_45
https://doi.org/10.1007/978-3-642-13824-9_4
https://doi.org/10.1007/978-3-642-13824-9_4
https://doi.org/10.1002/malq.201700055
https://doi.org/10.1002/malq.201700055
https://doi.org/10.4230/LIPIcs.ICALP.2021.141
https://doi.org/10.48550/arXiv.2208.08913
https://doi.org/10.48550/arXiv.2208.08913
https://doi.org/10.1016/j.apal.2021.103042
http://www.jstor.org/stable/2275678

B. Bednarczyk, D. Kojelis, and I. Pratt-Hartmann 111:21

34 Willard Van Orman Quine. Algebraic logic and predicate functors. In The Ways of Paradox,
pages 283–307. Harvard University Press, Cambridge, MA, revised and enlarged edition, 1976.

35 Sylvain Schmitz. Complexity hierarchies beyond elementary. ACM Transactions on Computa-
tional Logic, 8(1), February 2016. doi:10.1145/2858784.

36 Thomas Schwentick and Thomas Zeume. Two-Variable Logic with Two Order Relations.
Logical Methods in Computer Science, Volume 8, Issue 1, March 2012. doi:10.2168/LMCS-8(1:
15)2012.

37 Thomas Zeume and Frederik Harwath. Order-invariance of two-variable logic is decidable. In
Martin Grohe, Eric Koskinen, and Natarajan Shankar, editors, Proceedings of the 31st Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, New York, NY, USA, July
5-8, 2016, pages 807–816. ACM, 2016. doi:10.1145/2933575.2933594.

ICALP 2023

https://doi.org/10.1145/2858784
https://doi.org/10.2168/LMCS-8(1:15)2012
https://doi.org/10.2168/LMCS-8(1:15)2012
https://doi.org/10.1145/2933575.2933594

The Complexity of Presburger Arithmetic
with Power or Powers
Michael Benedikt #

Department of Computer Science, University of Oxford, UK

Dmitry Chistikov #

Centre for Discrete Mathematics and its Applications (DIMAP) &
Department of Computer Science, University of Warwick, Coventry, UK

Alessio Mansutti #

IMDEA Software Institute, Madrid, Spain

Abstract
We investigate expansions of Presburger arithmetic (Pa), i.e., the theory of the integers with addition
and order, with additional structure related to exponentiation: either a function that takes a number
to the power of 2, or a predicate 2N for the powers of 2. The latter theory, denoted Pa(2N(·)),
was introduced by Büchi as a first attempt at characterizing the sets of tuples of numbers that
can be expressed using finite automata; Büchi’s method does not give an elementary upper bound,
and the complexity of this theory has been open. The former theory, denoted as Pa(λx.2|x|), was
shown decidable by Semenov; while the decision procedure for this theory differs radically from the
automata-based method proposed by Büchi, Semenov’s method is also non-elementary. And in fact,
the theory with the power function has a non-elementary lower bound. In this paper, we show that
while Semenov’s and Büchi’s approaches yield non-elementary blow-ups for Pa(2N(·)), the theory is in
fact decidable in triply exponential time, similarly to the best known quantifier-elimination algorithm
for Pa. We also provide a NExpTime upper bound for the existential fragment of Pa(λx.2|x|),
a step towards a finer-grained analysis of its complexity. Both these results are established by
analyzing a single parameterized satisfiability algorithm for Pa(λx.2|x|), which can be specialized
to either the setting of Pa(2N(·)) or the existential theory of Pa(λx.2|x|). Besides the new upper
bounds for the existential theory of Pa(λx.2|x|) and Pa(2N(·)), we believe our algorithm provides
new intuition for the decidability of these theories, and for the features that lead to non-elementary
blow-ups.

2012 ACM Subject Classification Theory of computation → Logic and verification

Keywords and phrases arithmetic theories, exponentiation, decision procedures

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.112

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version Extended Version: https://arxiv.org/abs/2305.03037

Funding Michael Benedikt: funded in part by EPSRC grant EP/T022124/1.
Dmitry Chistikov: acknowledges the support of IMDEA Software Institute.
Alessio Mansutti: funded in part by ERC grant No. 852769 (ARiAT).

1 Introduction

This paper concerns decision problems involving first-order logic sentences over the integers.
We are given a sentence in the logic, and want to know if it holds in a certain infinite structure
over the integers – we refer to these as “satisfaction problems” below. If the sentence can
mention “full arithmetic” – both addition and multiplication on the integers – then it is
well-known that the satisfaction problem is undecidable [3]. On the other hand, if the sentence
mentions only addition, inequality, and integer constants – Presburger arithmetic (Pa) –

EA
T
C
S

© Michael Benedikt, Dmitry Chistikov, and Alessio Mansutti;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 112; pp. 112:1–112:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:michael.benedikt@cs.ox.ac.uk
https://orcid.org/0000-0003-2964-0880
mailto:d.chistikov@warwick.ac.uk
https://orcid.org/0000-0001-9055-918X
mailto:alessio.mansutti@imdea.org
https://orcid.org/0000-0002-1104-7299
https://doi.org/10.4230/LIPIcs.ICALP.2023.112
https://arxiv.org/abs/2305.03037
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

112:2 The Complexity of Presburger Arithmetic with Power or Powers

then the satisfaction problem is decidable [20]. Presburger arithmetic is by no means the
maximal decidable arithmetic theory. For instance, adding a “bit predicate” to Presburger
arithmetic – a binary predicate holding on (m,n) if m is the largest power of 2 dividing n –
does not undermine decidability. This extension is known as Büchi arithmetic. A decision
procedure for the satisfaction problem of this theory is based on translating each formula
into a finite automaton over strings, representing the binary expansions of possible solutions
to the formula [2]. Although both are decidable, there is a big difference between Presburger
arithmetic and Büchi arithmetic: the satisfaction problem of the former can be decided in
triply exponential time [17] and even in doubly exponential space [8], whereas the latter
is known to have no elementary bound. See [1] and [25] for a finer-grained analysis of the
complexity of Presburger arithmetic, in terms of alternating Turing machines.

Sitting in between Presburger arithmetic and Büchi arithmetic is the extension of Pa

with a predicate for the powers of 2: we refer to this set of numbers as 2N and to the theory
as Pa(2N(·)). This predicate is clearly definable in Büchi arithmetic, so the first-order theory
of Pa(2N(·)) is again decidable with automata. An alternative decision procedure, avoiding
automata, was developed by Semenov in [23]. It proceeds by eliminating quantifiers, arriving
at a quantifier-free formula in an enhanced signature – including, for example, a predicate
for the highest power of 2 below a given integer. Semenov’s procedure applies more broadly
to extensions of Presburger arithmetic by a unary predicate satisfying a condition “effective
sparseness”: thus it isolates combinatorial properties of 2N that underlie decidability, rather
than automata-theoretic constructions. Semenov’s procedure has been refined and extended
by Point; see, e.g., [19]. The complexity of the procedure and the complexity of Pa(2N(·))
has, to our knowledge, received no attention.

Instead of adding a unary predicate, one can add to Pa the function taking a number n
to 2n: the power function for short, rather than the powers predicate above. The theory,
which we denote Pa(λx.2|x|), subsumes Pa(2N(·)). Semenov proved decidability of this
theory as well [24]. But in this case a non-elementary lower bound follows from [6], see [4].
We are not aware of any finer-grained analysis of the complexity of the theory. Note that
Pa(λx.2|x|) is incomparable to Büchi arithmetic in expressiveness: in fact the union of the
two is undecidable [4].

In this paper we show that the complexity of Pa(2N(·)) is elementary, and is in fact
contained in 3ExpTime. In this sense Pa(2N(·)) is quite similar to Presburger arithmetic
in complexity. We also show that the existential fragment of the theory Pa(λx.2|x|) has
elementary complexity: its satisfaction problem is in NExpTime.

We show our results on extending Pa with powers or the power function using a single
parameterized algorithm. The algorithm can be applied to decide satisfaction of a Pa(λx.2|x|)
sentence φ in time tower of |φ|, matching the prior non-elementary complexity. But it can be
specialized to the context of either a Pa(2N(·)) sentence or an existential Pa(λx.2|x|) sentence,
giving in each case an elementary bound. The algorithm is based on eliminating quantifiers:
it makes heavy use both of existing Presburger quantifier elimination algorithms [25] and
the core of the method of Semenov, which involves removing “problematic occurrences” of
a variable within a formula. Intuitively, an occurrence of a variable in an atomic formula
is unproblematic if it occurs only outside of power functions, or if the atomic formula is
just a comparison between two power terms. In the latter case, the exponentiation of the
variable can be eliminated by taking logarithms. We factor this core Semenovian idea out
into a self-contained subroutine. We give a short top-level procedure that interleaves calls
to this subroutine with calls to a variant of Presburger quantifier elimination. The latter
enables us to remove quantified variables completely. A meticulous complexity analysis that
tracks several parameters of the input formula shows that the procedure achieves the desired

M. Benedikt, D. Chistikov, and A. Mansutti 112:3

bounds in the special cases of Pa(2N(·)) and existential Pa(λx.2|x|).
Our work brings the following ideas:
For Pa(2N(·)), we rewrite the formula by processing quantifier blocks inside out but do
not eliminate quantifier alternation. The resulting formula is put in a nontrivial fragment
of Pa: integer octagon arithmetic (Oct), which we observe to be decidable in PSpace.
In eliminating problematic variables from formulae, our algorithm exploits a new substi-
tution strategy: it tailors substitutions to individual inequalities, rather than applying
them in the entire formula globally or in an individual disjunct in the DNF (à la Reddy
and Loveland [22]). For both Pa(2N(·)) and ∃Pa(λx.2|x|), this will be key to obtaining
strong bounds on the number of homogeneous terms produced during the transformation,
and bounds on these terms will give us bounds on the running times of the algorithms.

We believe that our procedure, in addition to providing the desired bounds, gives a good
intuition for the decidability of Pa(λx.2|x|) and the sources of non-elementary blow-up
within it. Note that in this work we deal for simplicity with powers of 2, but the same
complexity results apply to any other base k ∈ N, k > 2. Expansion with two bases is
undecidable [12].

2 Preliminaries

The symbols Z, N and N+ denote the set of integers, natural numbers (including zero), and
positive integers, respectively. We write #A for the cardinality of a finite set A. Given
n,m ∈ Z, we define [n,m] := {n, n+ 1, . . . ,m} and, if n ∈ N+, [n] := [0, n− 1]. For two sets
D and C, [D → C] stands for the set of all functions from D to C. We write ⌊·⌋ and ⌈.⌉ to
denote the floor and ceiling functions, respectively, | · | to denote the absolute value function,
and log(·) to denote the binary logarithm function. All these functions take as input a real
number. Note that n ∈ N can be represented in binary using ⌈log(n+ 1)⌉ many bits.

We sometimes apply standard set operations and predicates, such as for instance ∈, ⊆
and \, to vectors v = (v1, . . . , vd). In these cases, there is an implicit conversion of v into the
set V = {v1, . . . , vd}. As an example, v ∈ v and v \A stand for v ∈ V and V \A, respectively,
where A is a set (or another vector).

Presburger arithmetic with a power function. We consider the structure Pa(λx.2|x|) :=
⟨Z, 1,+, (a · x)a∈Z, 2|x|, (q | x)q∈N+ , <⟩, in which the classical signature of Presburger arith-
metic (Pa) is enriched with the unary power of the absolute value function x 7→ 2|x|. As
usual, 1 is the constant (interpreted as) 1 ∈ Z, + and < stand for addition and strict ordering
over Z, respectively, x 7→ a · x is the unary function multiplying its input by the constant
a ∈ Z, and x 7→ q | x is the unary relation that is true for integers divisible by q ∈ N+.

The first-order formulae Φ,Ψ, φ, ψ, . . . of Pa(λx.2|x|) are generated from the grammar

Φ,Ψ := α | ⊤ | ⊥ | ¬Φ | Φ ∧Ψ | ∃xΦ | ∀xΦ α := t1 < t2 | (q | t1),

where x is a first-order variable from an infinite countable set V. The elements of α are the
atomic formulae of the logic, i.e., they are linear inequalities t1 < t2 between terms t1 and
t2, or divisibility constraints q | t1, where q ∈ N+. Instead of allowing arbitrary terms of
the signature, we will deal with a simpler language where terms are expressions of the form∑

i∈I ai · 2|xi| +
∑

j∈J bj · xj + c where c ∈ Z is the constant of the term, ai, bj ∈ Z \ {0} are
the coefficients of the power terms (2|xi|)i∈I and of the linear variables (xj)j∈J , and I, J

are finite sets of indices (which might overlap). We also restrict to terms where no variable
occurs linearly twice, or occurs exponentiated twice. It is easy to see that formulae of the
full language can be converted to use this restricted term language, and our algorithms will

ICALP 2023

112:4 The Complexity of Presburger Arithmetic with Power or Powers

not take us out of this fragment. When we talk about equality of terms, we mean modulo
associativity and commutativity of +. A term is said to be homogeneous if its constant is 0.

The Boolean connectives ∨, → and ↔, and the standard (in)equalities between terms
≤, =, ≥ and > are defined from ∧, ¬ and <, as usual. We use the absolute value of
variables occurring linearly as a shortcut: e.g., a · |x| < t is equivalent to the formula
(x ≥ 0→ a · x < t) ∧ (x < 0→ −a · x < t). We write Φ(x1, . . . , xd) or Φ(x) to highlight the
fact that all free variables of the formula Φ are in x. A formula without free variables is said
to be a sentence. We write Φ⇔ Ψ whenever Φ and Ψ are equivalent. A finite set of formulae
S := {Φi : i ∈ I} is said to be a cover for (or to cover) a formula Ψ whenever Ψ⇔

∨
i∈I Φi.

The satisfaction problem asks whether a given sentence is true.

Term and formula normalization. To simplify the exposition, we often bring terms and
formulae to convenient (normal) form, without mentioning this explicitly every time. This
normalization does not change our bounds on the asymptotic running time of the algorithms,
nor their correctness.

We assume inequalities have the form t < 0, where t is a term. Thus, we convert
inequalities of the form t1 < t2 into t1 − t2 < 0. The construction of t1 − t2 follows
the convention on terms described above. We will still sometimes refer to more general
inequalities t1 < t2 for brevity, but these should be taken as abbreviations for inequalities
of the above form.
We rearrange terms following associativity and commutativity of +. We also evaluate
arithmetic expressions, including, e.g., 2|a| and |a|, where a ∈ Z.
In divisibility constraints of the form q |

∑
i∈I ai · 2|xi| +

∑
j∈J bj · xj + c, we always

assume ai, bj , c ∈ [q].
Inequalities a < b and divisibility constraints q | a on integers a, b ∈ Z and q ∈ N+ are
evaluated to ⊤ or ⊥. So are divisibility constraints 1 | t or q | 0, where q ∈ N+ and t is a
term (these are ⊤).
Inequalities of the form a · x < b with a, b ∈ Z and |a| ≥ 2 are rewritten into x ≤ ⌊ b−1

a ⌋
if a > 0, and to x ≥ ⌈ b−1

a ⌉ if a < 0. This normalization is required in the context of
the quantifier elimination (q.e.) procedure for Presburger arithmetic applied to octagons
(see integer octagon arithmetic below).
Trivial inequalities involving power terms, where just the fact that 2|c| is always positive
suffices to evaluate the atomic formula, are also rewritten as ⊤ or ⊥. For instance,
a · 2|x| < c when a and c have different signs or when c = 0; or a · 2|x| < b · 2|y| where a
and b have different signs.

Beyond normalization, we need the following operations and notation for terms. We write
t(x) if all variables appearing in the term t are in x. Let α1 be a formula (resp., a term of the
form x or 2|x|). Given a second formula (resp., term) α2, Φ[α2 / α1] stands for the formula
obtained from Φ by replacing every occurrence of α1 by α2. Additionally, when α1 and α2
are two terms t1 and t2, and given n ∈ N+, we write Φ[t2

n / t1] for the formula obtained from
Φ by replacing each inequality a · t1 + t′ < t′′ by a · t2 + n · t′ < n · t′′ and each divisibility
constraint q | a · t1 + t′ by n · q | a · t2 + n · t′. This operation can be seen as scaling by n the
atomic formulae where t1 occurs linearly, relying on the equivalences s1 < s2 ⇔ n · s1 < n · s2
and q | s⇔ n · q | n · s, followed by the substitution of each n · t1 by t2. We will restrict the
use of term substitutions to the following cases: Φ[t / x] and Φ[t

n / x], where x is a variable
only occurring linearly in Φ; and Φ[t / 2|x|] and Φ[t

n / 2|x|]. Note that in the last two cases, all
linear occurrences of the variable x are left untouched. We extend the notion of substitution
to multiple terms or formulae: Φ[βi / αi : i ∈ [1, k]] := (. . . (Φ[β1 / α1])[β2 / α2] . . .)[βk / αk].

M. Benedikt, D. Chistikov, and A. Mansutti 112:5

Parameters of formulae. As often done for Pa, the complexity analysis of our procedure re-
quires the introduction of several parameters for a formula. We define functions lin(·), hom(·),
heft(·), mod(·), B(·), and alt(·), to track various features of a formula Φ from Pa(λx.2|x|):

lin(Φ) is the set containing the terms 0 and 2 as well as all the terms t that appear in
linear inequalities t < 0 of Φ (implicitly converting t1 < t2 into t1 − t2 < 0);
hom(Φ) is the set of homogeneous linear terms obtained from the linear terms in lin(Φ)
by eliminating their constant term c (alternatively, updating c to 0);
heft(Φ) is the maximum number of variables in a term of Φ;
mod(Φ) is the least common multiple of all q ∈ N+ appearing in constraints q | t of Φ (if
the formula Φ has no divisibility constraints, then we postulate mod(Φ) = 1);
B(Φ) denotes the number of occurrences of negations ¬ and conjunctions ∧ in Φ (note
that the syntax permits binary conjunction only);
alt(Φ) is the quantifier alternation rank (number of quantifier blocks) of a formula Φ in
prenex normal form.

Throughout the paper, we assume an encoding of terms where constants and coefficients
are given in binary representation. By len(Φ) we denote the length of the formula Φ: the
number of bits required to write it down. For simplicity, we assume it is always at least 2.
We extend the notion of infinity norm to terms. The infinity norm ||t|| of a linear term t is
the maximum absolute value of a coefficient or constant appearing in t. For a finite set of
terms T , we define ||T || := max{||t|| : t ∈ T}. The 1-norm of t, denoted ||t||1, is the sum of
absolute values of all its coefficients and of its constant; this is always non-negative.

3 Summary of main results

This paper focuses on two fragments of Pa(λx.2|x|):
The first-order theory of Pa(2N(·)) := ⟨Z, 1,+, (a · x)a∈Z, 2N(x), (q | x)q∈N+ , <⟩, that is,
the structure which enriches Presburger arithmetic with the unary relation x 7→ 2N(x)
that is true for the powers of 2, i.e., 2N(x) = ⊤ iff x ∈ {1, 2, 4, . . .}. Note that the relation
2N(x) can be expressed in Pa(λx.2|x|), with the formula ∃y. x = 2|y|.
The existential fragment of Pa(λx.2|x|), denoted by ∃Pa(λx.2|x|). Formulae of this
fragment are of the form ∃x.Φ, where Φ is quantifier-free (q.f., in short).

The main results of this paper are summarized below:

▶ Theorem 1. The satisfaction problem for ∃Pa(λx.2|x|) is in NExpTime.

▶ Theorem 2. The satisfaction problem for Pa(2N(·)) is in 3ExpTime.

Theorems 1 and 2 are based on a common core procedure for Pa(λx.2|x|) that we introduce
in Section 4. The procedure manipulates the subformulae of an input formula so that they
(eventually) enter the following fragments of Pa(λx.2|x|):

The power comparisons fragment, denoted by PowCmp. In this fragment, inequalities
are restricted to the form a · 2|x| < b · 2|y| or a · 2|x| < b, where a, b ∈ Z, and divisibility
constraints are of the form q | 2|x| − r, where q ∈ N+ and r ∈ [q].
Integer octagon arithmetic, denoted by Oct (see e.g. [13, 16]), that is, the fragment of Pa

in which inequalities are restricted to the forms ±x ± y < c and ±x < c, where c ∈ Z,
and divisibility constraints are of the form q | x− r, where q ∈ N+ and r ∈ [q].
The fragment Sem (short for Semenov, as this fragment is related to the one used in [23]).
In formulae Φ of this fragment, each variable appears either always linearly or always
in a power, and every bound variable x appears only in atomic formulae from PowCmp

ICALP 2023

112:6 The Complexity of Presburger Arithmetic with Power or Powers

(hence, x is always in a power). Moreover, divisibility constraints in Φ are simple, i.e.,
they are of the form q | 2|x| − r or of the form q | x− r, where q ∈ N+ and r ∈ [q]. Notice
that a sentence in this fragment must be in PowCmp.
The quantifier-free fragment of Pa(λx.2|x|), denoted QF, consisting of all q.f. formulae.

4 The core procedure

Overall organization. Our final decision procedures, which will be presented in Section 5,
rely on a core procedure (Algorithm 1) that interleaves calls to what are essentially quantifier
elimination subroutines à la Presburger [20] and Semenov [23], respectively, to be explained
further below. The input of Algorithm 1 is a formula Φ of Pa(λx.2|x|) in prenex normal
form. The procedure can be run in two modes, taking an additional parameter F accordingly.
This parameter specifies the “target” fragment of the logic:

For Φ obtained as a translation of a Pa(2N(·)) formula into Pa(λx.2|x|), set F = Sem.
For general formulae of Pa(λx.2|x|), and for the handling of existential Pa(λx.2|x|) in
non-deterministic exponential time, set F = QF.

The output of the algorithm is a simplified formula: more specifically, it is a formula of the
form ∃x.φ or ¬∃x.φ, where φ is in F: “alternation-free modulo F” below. If the input is a
sentence, then the output has no leading quantifiers and is thus a sentence of F.

The procedure processes blocks of quantifiers at a time, eliminating them one by one.
Each block corresponds to one iteration of the outer while loop. In line 2 we split the
quantifier prefix at the innermost existential block that takes us out of the fragment F.
There may be a choice as to whether ¬ appears at the beginning of Π, but this introduces
no ambiguity to the choice of u, because ∀v.Ψ is in F iff ∃v.Ψ is in F. This follows because
both fragments F = Sem and F = QF are closed under negation.

The organization of the procedure maintains a DNF-like structure. The set Q acts as
a worklist containing the formulae; intuitively, they are the conjunctions (although not
necessarily of atomic formulae). The PresQE and SemCover subroutines embed Reddy and
Loveland’s optimization for Pa [22]: whenever a pair (x, φ1 ∨ φ2) could be produced, it is
split into two pairs (x, φ1) and (x, φ2) evolving independently for as long as possible. Thus,
the DNF-like structure is maintained within each iteration of the outer while loop of the
Master procedure:

Φ⇔ Π.Π′.

 ∨
(x,φ)∈Q

∃x.φ

 ∨ ∨
φ∈D

φ

 .
For each φ ∈ D ∪ {φ : (x, φ) ∈ Q for some x}, we have φ ∈ F. Pairs from Q are processed
in the inner while loop one at a time. Formulae from D are “done” and will only be picked
up again after leaving the current block: the algorithm will no longer process them within
the current block. Thanks to the DNF-like structure, our analysis of the parameter growth
for an individual pair (x, φ) can ignore the complexity of the big disjunction (i.e., other pairs
in Q and D).

Above we have presented Algorithm 1 deterministically: any deterministic choice can
be made in line 5 when popping an element from Q, and in lines 7–9 when choosing an
appropriate x ∈ x. This implementation will be employed to obtain the claimed triply-
exponential bound for Pa(2N(·)), but not the NExpTime bound for the existential fragment
of Pa(λx.2|x|). In the latter case, we will only perform the outer loop once. The prefix
Π will always be empty, and thus the formula we are processing can always be considered

M. Benedikt, D. Chistikov, and A. Mansutti 112:7

Algorithm 1 Master procedure.

Input: fragment F ∈ {QF,Sem};
formula Φ(y) in Pa(λx.2|x|) in prenex normal form with quantifier-free part from F

in which all divisibility constraints are simple
Output: an equivalent formula Φ′(y), alternation-free modulo F;

if Φ is a sentence, Φ′ is a sentence of F

1: while true do
2: Π ← the shortest quantifier prefix of Φ, possibly with ¬ in front,

such that Φ = Π.∃u.Ψ where Ψ is in F (if necessary, rewrite ∀u as ¬∃u.¬)
3: Q ← {(u,Ψ)}; D ← ∅
4: Π′ ← empty string of quantifiers ▷ Π′ is a global variable
5: while (x, φ) ← pop(Q) do
6: if x is empty then add φ to D
7: else if some x ∈ x does not appear in φ then add pair (x \ {x}, φ) to Q
8: else if ∃x.φ is in F for some x ∈ x then add pair (x \ {x}, ∃x.φ) to Q
9: else if some x ∈ x appears only linearly in φ then add PresQE(x,x, φ) to Q

10: else add Linearize(SemCover(x, φ)) to Q
11: Φ← Π.Π′.

∨
φ∈D

φ

12: if Π contains no quantifiers then return Φ

Algorithm 2 Function Linearize.

Input: a set S of pairs (x, θ), with x a vector of variables and θ a formula
Output: if F = QF: for each (x, θ), a pair (x, θ′) where θ ⇔ θ′ and, for every x ∈ x,

if 2|x| only occurs in constraints from PowCmp in θ, then x only occurs linearly in θ′

1: if F = Sem then return S ▷ do nothing unless F = QF

2: for (x, θ) ∈ S do
3: x′ ← vector of all x ∈ x s.t. 2|x| only occurs in constraints from PowCmp in θ

4: for x ∈ x′ do
5: update θ by applying all of the following replacements:

6: a · 2|x| < b 7→

{
|x| < ⌈log2(b/a)⌉ if a > 0 and b > 0
|x| > ⌊log2(b/a)⌋ if a < 0 and b < 0

7: a · 2|x| < b · 2|y| 7→

{
|x| < |y|+ ⌈log2(b/a)⌉ if a > 0 and b > 0
|x| > |y|+ ⌊log2(b/a)⌋ if a < 0 and b < 0

8: q | 2|x| − r 7→



q′ | |x| − r′ if r′ = min{s ≥ 0 : q | 2s − r},
q′ = min{t > 0 : q | r · (2t − 1)}

|x| = r′ if r′ = min{s ≥ 0 : q | 2s − r},
{t > 0 : q | r · (2s − 1)} = ∅

⊥ otherwise, i.e., {s ≥ 0 : q | 2s − r} = ∅

▷ in the replacements in line 8, search for s, t ≤ q − 1 only
9: return S

ICALP 2023

112:8 The Complexity of Presburger Arithmetic with Power or Powers

Algorithm 3 Function PresQE.

Input: variable x; vector of variables x, where x ∈ x;
formula φ(x,y) of F where x \ {x} ⊆ y and x appears only linearly in atomic formulae

Output: a set of pairs (x, ψ(y)) where ψ ∈ F and the set of all ψ is a cover for ∃x.φ

1: T ← {(a,−t(y)) : a > 0, a · x+ t ∈ hom(φ)} ∪ {(−a, t(y)) : a < 0, a · x+ t ∈ hom(φ)}
2: g ← Π{a : (a, t) ∈ T for some t} ▷ product of all elements of non-empty set
3: Γ← {φ[t+k

a /x]∧(a | t+k) : (a, t) ∈ T, k ∈ [−r, r] where r := a·(2·||lin(φ)||+g ·mod(φ))}
4: return {(x, ψ) : ψ ∈ SimplifyDiv(γ), γ ∈ Γ}

Algorithm 4 Function SemCover.

Input: vector x of variables; formula φ(x, z) of F, containing 2|x| for each x ∈ x

Output: a set of pairs (x, ψ(x, z)), where ψ ∈ F and the set of all Π′.∃x.ψ covers Π′.∃x.φ;
in every ψ some 2|x| (x ∈ x) only occurs in constraints from PowCmp

Side effect: update global variable Π′ (string of quantifiers)

1: for x ∈ x do
2: I ← set of inequalities in φ outside PowCmp in which x appears as a power
3: H ← {(η, σ) : η(x) + σ(z) + c < 0 in I; η and σ homogeneous}
4: Γx ← {φ}
5: for (η, σ) ∈ H do
6: A ← subset of I with these η and σ (only c varies)
7: 2g ← 27 ·

(
λ(||η||1 + max{|c| : (η + σ + c < 0) ∈ A})

)2

▷ factors up to 2g are considered “small”
8: a ← coefficient at 2|x| in η

9: V ← variables in η except x
10: β ← 2|x| > 2g ∧ (

∧
u∈V

2|x| > 2g · 2|u|)

11: Γx ←
{

2|x| = 2j ∧ γ[α[2j / 2|x|] / α : α ∈ A] ,
12: 2|x| > 2g ∧ 2|x| = 2j · 2|v| ∧ γ[α[2j · 2|v| / 2|x|] / α : α ∈ A] ,
13: β ∧ λ(a) · 2|x| < λ(σ) ∧ σ < 0 ∧ γ[⊤ / α : α ∈ A] ,
14: β ∧ λ(a) · 2|x| < λ(σ) ∧ σ ≥ 0 ∧ γ[⊥ / α : α ∈ A] ,
15: β ∧ λ(a) · 2|x| = λ(σ) ∧ γ[α[λ(σ)

λ(a) / 2|x|] / α : α ∈ A] ,
16: β ∧ λ(a) · 2|x| = 2 · λ(σ) ∧ γ[α[2·λ(σ)

λ(a) / 2|x|] / α : α ∈ A] ,
17: β ∧ λ(a) · 2|x| > 2 · λ(σ) ∧ a < 0 ∧ γ[⊤ / α : α ∈ A] ,
18: β ∧ λ(a) · 2|x| > 2 · λ(σ) ∧ a > 0 ∧ γ[⊥ / α : α ∈ A]
19: : γ ∈ Γx, 0 ≤ j ≤ g, v ∈ V

}
20: Γ←

⋃
x∈x
{(

∧
y∈x

2|x| ≥ 2|y|) ∧ γ : γ ∈ Γx} ▷ we next remove all occurrences of λ

21: Σ← {σ : λ(σ) is a subterm of some γ ∈ Γ} \ {0}
22: for σ ∈ Σ do
23: if ∀wσ is not in Π′ then
24: wσ ← fresh variable; add ∀wσ to Π′ ▷ update global Π′

25: Θ ← {(σ ̸= 0 ∧ ¬(2|wσ| ≤ |σ| < 2 · 2|wσ|)) : σ ∈ Σ}
26: for each Σ′ ⊆ Σ and each γ ∈ Γ do
27: add to Θ the following formula:
28: (

∧
σ∈Σ′

2|wσ| ≤ |σ| < 2 ·2|wσ|)∧ (
∧

σ∈Σ\Σ′
σ = 0)∧γ[2|wσ| /λ(σ) : σ ∈ Σ′][0/λ(σ) : σ ∈ Σ\Σ′]

29: return {(x, θ) : θ ∈ Θ}

M. Benedikt, D. Chistikov, and A. Mansutti 112:9

Algorithm 5 Function SimplifyDiv.

Input: formula φ almost in F: may contain non-simple divisibility constraints
Output: a cover for φ of formulae from F, in which all divisibility constraints are simple

1: G ← set of non-simple divisibilities in φ

2: d ← least common multiple of all divisors in G

3: t ← all variables x and powers 2|y| appearing in G

4: Γ ← ∅
5: for r ∈ [t→ [d]] do
6: add

(
(
∧

t∈t d | t− r(t)) ∧ φ[r(α) / α : α ∈ G]
)

to Γ
7: where r(q |

∑n
i=1 ai · ti + c) := q |

∑n
i=1 ai · r(ti) + c ▷ simplifies to ⊤ or ⊥

8: return Γ

an existentially quantified DNF, or equivalently a disjunction of existentials. It suffices to
guess one disjunct, corresponding to one element of Q that is satisfiable. Thus, we will
replace a deterministic inner loop that maintains a set of pairs in Q with a non-deterministic
algorithm that maintains a single pair from Q. In the deterministic interpretation, calls to
the subroutines in lines 9 and 10 replace a single element of Q with a set of pairs. In the
non-deterministic interpretation, we guess one pair in the output of the subroutine as the
new element of Q.

Subroutines. We turn from the Master procedure to its subroutines. The core of the
subroutine PresQE (Algorithm 3) corresponds to Weispfenning’s quantifier elimination for
Pa [25], while Linearize given in Algorithm 2 is a simple procedure taking PowCmp atomic
formulae like 2|x| < 2|y| and transforming them to Presburger formulae x < y by “taking logs”.
We remark that all three types of divisibility replacements in line 8 of Linearize are possible:
e.g., (7 | 2|x| − 4) 7→ (3 | |x| − 2), and (20 | 2|x| − 2) 7→ (|x| = 1), and (6 | 2|x| − 3) 7→ ⊥.

The SemCover subroutine (Algorithm 4) is a variation of procedures dating back to
Semenov’s [23]. This will be less familiar to most readers, and so we discuss it in detail here.

The purpose of subroutine SemCover is to ensure that, in each of the pairs (x, ψ) in its
output, for some variable x ∈ x every occurrence is either linear or in an atomic formula from
PowCmp. Across all outputs, the identity of the variable x may differ. Thus, the subroutine
is essentially “PowCmp-ifying” the formula. The significance of converting atomic formulae
to PowCmp is that powers can then be eliminated by just “taking logarithms”, i.e., by
invoking Linearize. And once a quantified variable is so heavily processed that it occurs
only linearly (outside powers), then by applying standard Presburger arithmetic quantifier
elimination, we can eliminate the variable completely using PresQE.

To be more precise about how SemCover assists the Master procedure, consider what
happens when (x, ψ) from the output of SemCover gets popped from Q in the Master
procedure. Our actions depend on the chosen fragment (unless x is eliminated from ψ

entirely, in which case line 7 takes care of it).
If F = Sem: for some x ∈ x, we can move ∃x into ψ while still staying in the fragment,

since x occurs only in power comparisons (line 8).
If F = QF: all occurrences of x became linear after the execution of Linearize on the output

of SemCover, so the variable x can be eliminated by PresQE (line 9).

ICALP 2023

112:10 The Complexity of Presburger Arithmetic with Power or Powers

A look inside subroutine SemCover. Intuitively, the overall workflow of the Master pro-
cedure is repeated processing of atomic formulae lying within the scope of a particular block
of quantifiers. The constraints we process will be those containing “problematic quantified
variables”: those that appear in atomic formulae involving powers, but are outside the
fragment PowCmp. We exhibit the idea using the following subformula:

∃x.∃y. 3 · 2|x| − 5 · 2|y| − z < 0. (1)

Here both x and y are problematic within the sole atomic subformula of the quantified
formula. A major component of all prior procedures is to replace such a formula with a
quantified DNF corresponding to a case analysis on the relative values of the problematic
variables. These cases correspond to lines 11 to 19 of Algorithm 4 and are a cover for the
formula under analysis, hence the name “Semenov cover” given to the algorithm. Each case
is defined by a PowCmp “guard” and, under the assumption specified in a given case, we will
be able to eliminate one problematic variable within a constraint, without introducing new
problematic existentially-quantified variables. Thus, by applying the procedure repeatedly,
we can expunge all problematic quantified variables.

The case analysis includes a guess as to which existentially quantified variable is the
largest. In the example, one such guess is that 2|x| is the largest. In all the subcases for this
guess, we will make x unproblematic. The Semenov cover breaks up this guess into several
subcases. One subcase is where 2|x| is not much bigger than one of the other power terms,
say 2|x| = 4 · 2|y|. In such cases we can substitute 2|x| by a constant multiple of the other
term, where the constant is itself a power of 2. Returning to the subcase mentioned just
above, where 2|x| = 4 · 2|y|, we can replace 2|x| by 4 · 2|y|. The remaining case is where 2|x| is
significantly bigger than all other power terms like 2|y|; the threshold for “significantly” is
set by line 7 of Algorithm 4. In this case we further analyze the most significant digit of the
binary expansion for each term.

▶ Definition. For any integer N , let λ(N) denote the highest power of 2 below |N | 1; we
have λ(0) = 0 and λ(N) ≤ |N | < 2λ(N).

Algorithm 4 will make use of intermediate terms that contain λ’s – for example, λ(σ) for σ
an ordinary Pa(λx.2|x|) term. The semantics of such terms is the obvious one, which could
be formalized by translation into Pa(λx.2|x|), where the function λ is definable.

Returning to the example, our “significantly bigger” hypothesis implies that

λ(3 · 2|x| − 5 · 2|y|) = λ(3 · 2|x|) = 2x+1.

This equality in turn implies that, when λ(3 · 2|x|) is strictly below λ(z), the corresponding
inequality in Equation (1) is true: λ(3 · 2|x| − 5 · 2|y|) is strictly below λ(z), and while each
term can differ from the corresponding λ, the difference cannot be large enough to make
the inequality go the other way. By a similar argument, in the subcase where λ(3 · 2|x|) is
at least four times greater than λ(z), the inequality must be false. Here we reason that if
λ(3 · 2|x| − 5 · 2|y|) is at least four times greater than λ(z), then the offset of each term from
its λ value cannot change the inequality from true to false.

This leaves some subcases where λ(3 · 2|x|) is close to λ(z), and in these cases we can
substitute away 2|x| as well. For example, in the subcase where λ(3 · 2|x|) = λ(z), we note
that λ(3 · 2|x|) = 2 · 2|x|, and thus we could replace 2|x| with λ(z)/2. By multiplying through
the inequality by 2, we can eliminate the division by 2.

1 We will be mostly concerned with this function on positive integers, but using absolute values gives us
the convenience of avoiding partial functions.

M. Benedikt, D. Chistikov, and A. Mansutti 112:11

Using the output of SemCover. The procedure above removed x, but there are several
caveats. Firstly, each case was associated with a condition, where the problematic variable x
still appears! However, these conditions are in PowCmp, and therefore all occurrences of x
are now unproblematic. Secondly, in some of our substitutions to eliminate x, we introduced
λ terms, which appear both in the condition describing the case and in the formula obtained
by substituting (assuming the condition). One solution to this problem, applied in earlier
procedures such as Point’s [19], is to extend the signature with several functions such as
λ, and declare that such conditions are acceptable. In this way one can obtain quantifier
elimination in the extended signature. In our SemCover subroutine, we proceed slightly
differently, eliminating λ terms in favor of new variables that are bound by definitional
quantifiers. That is, the new variables are associated with additional conditions which define
them from the free variables. For example, λ(z) can be replaced by 2w, with additional
conditions 2w ≤ |z| < 2 · 2w. There is a unique such w for a given z, so the quantification
over w can be thought of simultaneously as an existential conjoined with this condition and
as a universal relativized to this condition. Such quantifications take us out of PowCmp.
But when considered as leading universal quantifiers, they will not increase the quantifier
alternation of the global formula – they will add on variables to the next quantified block
considered in the Master procedure. And since Algorithm 1 will process from inner quantifier
blocks outward, the fattening of outer quantifier blocks does not jeopardize termination of our
procedure. Note that at the end of processing quantifier blocks outward with Algorithm 1,
we will have only an outermost block of definitional quantifiers; if there are no free variables
in the top-level input formula Φ, the quantified variables will depend only on constants, and
thus can be replaced by numbers, leading to a quantifier-free sentence.

Analysis of the core procedure. We analyze the procedure, showing in particular that each
of Algorithms 1–5 correctly implements its specification. In the sequel we will also need the
following facts.

▶ Lemma 3. All divisibility constraints in D ∪ {φ : (x, φ) ∈ Q for some x} are simple.

▶ Lemma 4. The Master procedure always terminates and, on a formula Φ(y), returns an
equivalent formula Φ′(y) such that:

Φ′(y) is equal to either ∃w.φ′(w,y) or ¬∃w.φ′(w,y), where φ′ ∈ F,
if Φ is a sentence, then Φ′ ∈ F (in other words, if y is empty, then w is empty).
In fact, Φ′ starts with ¬ iff the outermost quantifier block of Φ is existential.

▶ Lemma 5. Consider a prenex formula Π.Φ, with Φ from F, in which all variables from the
quantifier prefix Π appear only linearly. When running the Master procedure on Φ, SemCover
is never invoked. Moreover, if no variable in Φ occurs in a power term (i.e., it is a formula
from Pa), then the quantifier-free formula returned by the procedure is in Pa.

5 Decision procedures and their complexity

In this section, we provide our top-level decision procedures, which make use of the algorithms
presented in Section 4. We then provide a complexity analysis that establishes Theorems 1
and 2. To simplify the exposition, the growth of the formulae returned by the procedure is
described with the help of “parameter tables” having the following shape:

ICALP 2023

112:12 The Complexity of Presburger Arithmetic with Power or Powers

p1(·) p2(·) · · · pn(·)

φ a1 a2 · · · an

ψ1 f1,1(a1, . . . , an) f1,2(a1, . . . , an) · · · f1,n(a1, . . . , an)
· · · · · · · · · · · · · · ·
ψm fm,1(a1, . . . , an) fm,2(a1, . . . , an) · · · fm,n(a1, . . . , an)

In this table, φ,ψ1,. . . ,ψm are formulae, p1(·),. . . ,pn(·) are parameter functions from formulae
to N, a1, . . . , an ∈ N+, and all fj,k are functions from Nn to N. The table states that

if pi(φ) ≤ ai for all i ∈ [1, n], then pk(ψj) ≤ fj,k(a1, . . . , an) for all j ∈ [1,m] and k ∈ [1, n].

We sometimes assume lower bounds on the values a1, . . . , an (e.g., h ≥ 2 and a ≥ 2 in the
table of Lemma 6) in order to simplify the definition of the functions fj,k. Note that this
does not change the semantics of the table. We sometimes write the ditto mark ” inside a
cell of the table. In that case, the ditto mark represents the value of the cell directly above
it (e.g., the rightmost ” appearing in the table of Lemma 6 is short for b+ 2 · v + 1).

Theorem 1: NExpTime upper bound for existential Pa(λx.2|x|)

Before arguing for a NExpTime decision procedure for ∃Pa(λx.2|x|), we analyze the growth
of formulae resulting from calls to PresQE, SemCover and Linearize.

Our analysis of PresQE simply merges the analysis of Weispfenning’s quantifier elimination
for Presburger arithmetic from [25] (implemented in lines 1 to 3 of PresQE) with an analysis
of SimplifyDiv. Here are the resulting bounds:

▶ Lemma 6. On input (x,x, φ(x, z)) where x only occurs linearly in φ, PresQE returns a
set {(x, ψ1), . . . , (x, ψk)} whose formulae satisfy the parameter table below (i ∈ [1, k]):

#hom heft ||hom(·)|| ||lin(·)|| mod B

φ h ≥ 2 v a ≥ 2 c m b

ψi h 2 · v 2 · a2 ah+2(c+m) a ·m b+ 2 · v + 1∨k
j=1 ψj h2 ” ” ” ahm k(” + 1)

and k ≤ h · c ·m2v+1 · a2v+h+4. The running time is in (len(φ) · c ·m)poly(h,v).

A simple analysis of SemCover yields the following bounds.

▶ Lemma 7. Let Θ = {(x, θ1), . . . , (x, θk)} be the output of SemCover(x, φ(x, z)), where
x = (x1, . . . , xn) with n ≥ 1. Then, the following parameter table holds, where i ∈ [1, k]:

#hom heft ||lin(·)|| mod B

φ h v ≥ 2 c ≥ 2 m b

θi h · (v + 10) + n v 211 · v2 · c4 m b+ h · (v + 11) + n∨k
j=1 θj h · 28 · v3 log(c) + n2 ” ” ” k · (” + 1)

where k ≤ (v + 1)8h · log(c)h · n. Moreover, (i) at most h universal quantifiers are added
to the global variable Π′; (ii) the running time is in (len(φ) · n)poly(h); and (iii) for every
i ∈ [1, k] there are at most h terms t ∈ hom(θi) that contain some variable from x and satisfy
(t+ c′ < 0) ∈ lin(θi) with t+ c′ < 0 not in PowCmp, for some c′ ∈ Z.

M. Benedikt, D. Chistikov, and A. Mansutti 112:13

Note that an estimate of ||hom(θi)|| is missing from Lemma 7. For SemCover, this
parameter grows similarly to ||lin(θi)||, which by definition always bounds ||hom(θi)||. We
also note that Lemma 7 gives an upper bound on the number of global variables added to
Π′. This bound is later required to analyze Pa(2N(·)), but is not needed in the context of
deciding sentences from ∃Pa(λx.2|x|). Indeed, from Lemma 4, in this latter case Π′ is empty.

In computing the upper bounds on ||hom(θi)|| and ||hom(
∨k

j=1 θj)|| keep in mind that in
lines 11 to 18 of SemCover we perform “tailored substitutions”: we only replace 2|x| in linear
terms α ∈ A with either a constant, a unique (given α) expression λ(σ), or a multiple of a
power 2|y|, where y appears in α. Our analysis tracks the impact of iterating these types of
replacements on the number of homogeneous terms.

We continue by analyzing Linearize. Here the bounds are quite simple, but one observation
is in order: line 8 might require iterating through the q − 1 residue classes of q in order to
find suitable q′ and r′. Since q is encoded in binary, this yields an exponential running time
for Linearize (see m below), as shown in the following lemma.

▶ Lemma 8. Consider a set S = {(x, θ1), . . . , (x, θk)} where x = (x1, . . . , xn), and let r be
the maximum number of variables appearing in some θi. On input S, Linearize returns a set
{(x, θ′

1), . . . , (x, θ′
k)} with bounds as in the following table, for all j ∈ [1, k]:

#hom heft ||hom(·)|| ||lin(·)|| mod B

θj h v a c ≥ 2 m ≥ 2 b

θ′
j h+ (6 · r + 2) · n v a c m2 22 · b

The running time is in poly(maxk
i=1 len(θi),m, n,#S).

We now complete the description of the non-deterministic algorithm deciding ∃Pa(λx.2|x|)
in NExpTime, completing the informal comments in Section 4. As a preliminary step, the
algorithm runs SimplifyDiv on the matrix of the input existential sentence Φ, guessing a
residue class for each variable and power, and obtaining an existential sentence where all
the divisibilities are simple. The algorithm puts that sentence in prenex form. Afterwards,
the algorithm follows Algorithm 1 (with F = QF), but replaces pop(Q) in line 5, as well
as other forms of iteration inside PresQE and SemCover, with non-deterministic guesses.
More precisely, when SemCover is called, it guesses a variable x ∈ x in line 1, iterates
(deterministically) over every (η, σ) ∈ H in line 5, and guesses only one of the cases in
lines 11 to 18. As a result, in the non-deterministic version of SemCover, the variable Γ in
line 20 contains a single formula γ. Since Φ is an existential sentence, the various terms σ
considered by SemCover are always 0. Hence, λ(σ) is 0 and lines 21 to 28 have no effect on
the subroutine, which simply returns a singleton set containing the pair (x, γ). For PresQE,
non-deterministic guesses replace the iterations done in line 3, as well as the ones performed
in line 5 of SimplifyDiv (as done in the aforementioned preliminary step of the algorithm).

The non-deterministic versions of PresQE and SemCover described above always return
singleton sets containing a pair of the form (x, θ). Then, by the correctness of PresQE
and SemCover, we conclude that on an input sentence Φ containing n quantified variables,
the non-deterministic version of Algorithm 1 never calls each of the subroutines PresQE,
SemCover and Linearize more than n times. By looking at the bounds on ψi, θi and θ′

j

from Lemmas 6–8 we conclude that these 3n subroutine calls (non-deterministically) return
a formula that never requires more than exponential space to be represented. Since Φ is a
sentence and F = QF, the non-deterministic algorithm will eventually obtain a formula Ψ
with no variables, only constants, which can be evaluated in exponential time. As usual, the
algorithm returns true if one such (non-deterministically derived) formula Ψ is valid.

ICALP 2023

112:14 The Complexity of Presburger Arithmetic with Power or Powers

Theorem 2: 3ExpTime upper bound for Pa(2N(·))

We now move to Pa(2N(·)). Let Φ be obtained by translating a sentence of Pa(2N(·)) into
a prenex sentence of Pa(λx.2|x|) without divisibility constraints (i.e., replace each 2N(x)
with ∃y. x = 2|y|, each q | t with ∃z. t = q · z, and bring the resulting sentence in prenex
form). Note that this translation is in polynomial time, and that each variable in Φ appears
either always linearly or always in a power. The algorithm to decide Φ is described below:

1: Ψ1 ← run Algorithm 1 with F = Sem, on Φ ▷ as Φ is a sentence, Ψ1 ∈ PowCmp.
2: Π.Ψ2(x) ← prenex form of Ψ1 ▷ Ψ2 q.f.; x are the variables appearing in Π
3: {(x,Ψ3)} ← Linearize({(x,Ψ2)}) ▷ Ψ3(x) belongs to Oct

4: Ω ← run Algorithm 1 with F = QF, on Π.Ψ3 ▷ Ω does not contain variables
5: evaluate truth of Ω

Above we highlight the fact that, after the first invocation to Algorithm 1, we obtain a
formula from PowCmp which is then manipulated by Linearize into a formula from integer
octagon arithmetic (Oct). Then, in order to estimate the running time of this algorithm, we
need to study the running time of Algorithm 1 on inputs that either come from Pa(2N(·)) or
are from Oct. Let us discuss the latter case first.

Since Oct is a fragment of Presburger arithmetic, line 4 above fundamentally runs
Weispfenning’s quantifier elimination procedure for Presburger arithmetic (see Lemma 5),
plus calls to SimplifyDiv. It turns out that on formulae from Oct, this procedure only runs
in exponential time, as summarized in the following proposition.

▶ Proposition 9. Let F = QF. Consider a formula Φ(z) from integer octagon arithmetic
(Oct) in prenex form and having alt(φ) = ℓ ≥ 1 quantifier blocks, each with n ≥ 1 many
variables. On input Φ, Algorithm 1 returns a formula Ψ with bounds:

#hom heft ||hom(·)|| ||lin(·)|| mod B

Φ h ≥ 2 2 1 c ≥ 2 m ≥ 2 b

Ψ 4 ·#z2 2 1 4ℓ·n(c+ 2 ·m) m k(b+ ℓ · n+ 1)

and k ≤ 225ℓ2n2(#z2 ·c ·m)ℓ·n. The running time of the procedure is in (len(Φ) · c ·m)poly(ℓ,n).

The proof of this proposition is by induction on alt(φ), and essentially follows the standard
arguments to bound the running time of the quantifier elimination procedure for Presburger
arithmetic. The key ingredient that leads to the bounds above is that, for Oct, the natural
numbers a in line 3 and g in line 2 of PresQE are always 1. This has two effects. Firstly, it
shows that Oct admits quantifier elimination, i.e., while running the procedure no atomic
formulae outside Oct can arise. This is best witnessed by looking at line 3 in PresQE. There,
the divisibility constraints a | t+ k are trivially satisfied, and we are replacing x with a term
of the form ±y + c for some c ∈ Z. From these substitutions, only constraints from Oct or
constraints of the form ±2 · y < b can arise, and the latter are normalized to y ≤ ⌊ b−1

2 ⌋ or
y ≥ ⌈ 1−b

2 ⌉ as explained in Section 2. The second effect is on the growth of the constants. The
variable r in line 3 only depends on mod(Φ), which now does not grow during the procedure,
and on ||lin(Φ)||, which grows only exponentially in the number of variables in Φ.

We now move to the running time of Algorithm 1 on inputs that come from Pa(2N(·)).
The properties of this procedure are summarized in the next proposition.

M. Benedikt, D. Chistikov, and A. Mansutti 112:15

▶ Proposition 10. Let F = Sem. Let Φ(y) be a formula from Pa(λx.2|x|) in prenex normal
form, with no divisibility constraints, and in which each quantified variable appears either
only linearly or only in powers. Suppose Φ has alt(Φ) = B quantifier blocks, each with at most
L ≥ 1 variables occurring linearly and each block having at most E ≥ 1 variables occurring in
powers. On input Φ, Algorithm 1 returns a formula Ψ with bounds as in the following table:

#hom heft ||lin(·)|| mod B

Φ h ≥ 2 v ≥ 2 c ≥ 4 m ≥ 4 b

Ψ H := (E · h · log(c ·m))(2·v)25·L·B3

2B·Lv 2H 2H b · 2H

and the number of quantifiers added to Π′ is at most H. The running time of the procedure
is in len(Φ) ↑ (E · h · log(c ·m)) ↑ v ↑ poly(L,B).

In the above proposition, a ↑ b := ab is the exponentiation function and, following Knuth’s
up-arrow notation, it is right-associative. In view of our bounds for one iteration of SemCover
given in Lemma 7, the bound on #hom(Ψ) should seem somewhat surprising. We know from
the correctness of SemCover that, after a call to SemCover, one of the variables appearing
in powers will only occur in constraints from PowCmp. Since all these variables need to
have this property before moving to the next quantifier block, SemCover must be chained at
least E times within a block, E being the number of variables occurring in powers in the
block. Then, from the bound #hom(θj) ≤ h · (v + 10) + n in Lemma 7, one might expect
#hom(Ψ) to be roughly h · vE , thus exponential in E even for a single block of quantifiers.
Proposition 10, however, proves otherwise: #hom(Ψ) is only polynomial in E. For this, we
need to sharpen the correctness statement for SemCover.

We already know that in each output formula some variable x is made unproblematic,
and no new problematic occurrences of variables are created. We prove a stronger statement:
namely, that every rewriting of a homogeneous term (by a substitution in lines 11–18)
makes the number of problematic variables in that term decrease. This is possible thanks to
the tailoring of these substitutions to individual inequalities, which allows us to track the
evolution of each term independently of the rest of the formula. As a result:

a formula that is placed into D at the end of processing a single quantifier block can be a
result of E chained calls to SemCover, but
the number of calls to SemCover that rewrite an individual term during its evolution is
bounded by the heft.

Therefore, we can iterate the above-mentioned bound #hom(θj) ≤ h · (v + 10) + n just 2L · v
times instead of E times. Thus #hom(Ψ) in Proposition 10 is found to be exponential in v

and only polynomial in E. We remark that if #hom(Ψ) were instead found to be exponential
in E, then the algorithm would not have any hope of running in elementary time. This is
because, after a block of quantifiers is considered, E increases by the number of variables
introduced in SemCover, which from Lemma 7 is roughly the number of homogeneous terms.

To prove Theorem 2 it suffices to chain the bounds and running times of Proposition 10,
Lemma 8 and Proposition 9, according to the algorithm given at the beginning of the section.

Avoiding quadruply exponential numbers. It may not be immediately evident from the
bounds in the various tables why we do not perform quantifier elimination eagerly and instead
run Algorithm 1 without fully eliminating quantifiers first (in mode Sem), then call Linearize,
and only afterwards eliminate the remaining quantifiers by running Algorithm 1 again (now
in mode QF). In fact, this sequence is fundamental for obtaining a 3ExpTime procedure.

ICALP 2023

112:16 The Complexity of Presburger Arithmetic with Power or Powers

Consider the formula Ψ := q | 2|x| − r ∧ y ≥ 2|x|. For specific values of q and r, the smallest
|x| satisfying Ψ might be q − 1. If Ψ is a subformula obtained during quantifier elimination,
then, according to Proposition 10, q might have a triply exponential magnitude relative to the
input size. This means that the smallest y satisfying Ψ might have a quadruply exponential
magnitude. Eliminating x and y in this case would lead to a quadruply exponential blow-up
in the number of disjuncts to be considered during quantifier elimination. Our strategy
avoids this problem by delaying (if necessary) the elimination of x and y until we obtain a
formula in PowCmp. Calling Linearize reduces the reasoning to the exponents, which are
triply exponential at worst.

An observation on Oct. The bounds for integer octagon arithmetic presented in Propos-
ition 9 reveal not only that this logic admits an exponential-time quantifier elimination
procedure, but also that the satisfaction problem for this theory can be solved in PSpace.
Indeed, observe that the bound on ||lin(Ψ)|| given in Proposition 9 implies that all constants
and coefficients appearing in the output formula Ψ have polynomial bit-length. Then, one
can apply the standard quantifier relativization algorithm from Pa to obtain a PSpace
procedure for Oct. Briefly, the quantifier relativization procedure for Pa first replaces every
quantifier ∃x.φ in the input formula with a bounded quantifier ∃x ∈ [−f(φ), f(φ)]. φ, where
f : Pa → N, and then iterates through all (finitely many) values the quantified variable
can take, searching for a solution to the formula. The bound on ||lin(Ψ)|| obtained for Oct

implies that f(Ψ) has bit-length that is at most polynomial in len(Ψ). See [22] for more
information on quantifier relativization.

On the non-elementary bound for Pa(λx.2|x|). To conclude, we provide some insights
on why our procedure runs in non-elementary time on formulae from the Tower-complete
logic Pa(λx.2|x|). One of the ingredients that guarantee that our procedure for Pa(2N(·))
runs in 3ExpTime is that we are able to postpone calls to Linearize to after Algorithm 1.
In Pa(λx.2|x|) this is not possible: since each variable can appear both linearly and in
powers, Linearize must be invoked after each call to SemCover, in order to “linearize” a
variable, and then eliminate it with PresQE. However, SemCover adds, in the worst case,
a number of additional variables that is roughly the number h of homogeneous terms in
the formula (see Lemma 7). When the next quantifier block is considered, these variables
must all be linearized and eliminated with PresQE. As indicated in the table of Lemma 6
(leftmost column of the last row), in doing this, the number of homogeneous terms of the
resulting formula becomes exponential in h. This “hh” dependency makes the algorithm run
in non-elementary time (in fact Tower).

6 Conclusion

We have proven new elementary upper bounds for Pa(2N(·)), and for the existential fragment
of Pa(λx.2|x|). We believe this is a step towards understanding which decidable arithmetic
theories have elementary bounds, and moreover that our method extends to provide element-
ary bounds for any prefix class of Pa(λx.2|x|), but we leave this for future work. Our results
open several research directions, which we now summarize.

Tighter bounds for Pa(2N(·)). It is well-known that, using the bounds on the formulae
returned by quantifier elimination procedures for Pa, one can derive a 2AExpTime(poly)
quantifier relativization procedure for Pa [25]. Here 2AExpTime(poly) is the class of

M. Benedikt, D. Chistikov, and A. Mansutti 112:17

all problems that can be decided with an alternating Turing machine running in doubly
exponential time and performing a polynomial number of alternations. In fact, Pa is complete
for this class under polynomial-time reductions [1]. Our 3ExpTime procedure for Pa(2N(·))
shows that, in terms of deterministic time complexity, this theory is not harder to decide
than Pa. However, at this stage obtaining a 2AExpTime(poly) quantifier relativization
algorithm from the bounds of our procedure seems not easy.

Automata-based decision procedures. As Pa(2N(·)) is a fragment of Büchi arithmetic, it
also admits a representation by finite automata. It appears plausible that the automata-based
procedure for Pa [14, 7] could be adapted to Pa(2N(·)). However, having the procedure run
in 3ExpTime might be very challenging. This is due to the fact that, as observed above,
Pa(2N(·)) formulae may require numbers of quadruply exponential magnitude; instead of
triply exponential as in the case of Pa.

Geometric decision procedures. A class of regular expressions corresponding to Pa(2N(·))
was already defined by Semenov [23, Theorem 5]. These expressions can be seen as an
extension of semilinear sets [18, 9], so it is conceivable that there is an elementary decision
procedure for Pa(2N(·)) which is based on geometry and manipulates these objects dir-
ectly. However, similarly to the automata-based approach, making such a procedure run in
3ExpTime, as the recent one for Pa [5] does, appears challenging.

Tighter bounds for ∃Pa(λx.2|x|). An obvious question is whether our upper bound for
the existential fragment can be improved. For comparison, the existential fragment of Büchi
arithmetic is known to be in NP [11]. While the same may be true for ∃Pa(λx.2|x|), it
would be very surprising if such a result were to be proved with a technique similar to the
one in our paper. In our NExpTime algorithm for ∃Pa(λx.2|x|), the main source of blow-up
is the use of Weispfenning’s quantifier elimination procedure to eliminate linearly occurring
variables. Quantifier elimination is known to be often non-optimal when it comes to deciding
existential fragments of logics, and this is the case for ∃Pa, the existential fragment of
Presburger arithmetic. A possible avenue to improve the NExpTime upper bound would be
to look at geometric procedures, which in the context of ∃Pa perform much better.

Improving the NP lower bound is also challenging. There are several extensions of ∃Pa

that currently fall between NP and NExpTime. These include ∃Pa with pre-quadratic
constraints [10, 21] and ∃Pa with divisibility constraints [15]. One idea is to exploit the
ability of ∃Pa(λx.2|x|) to express a pairing function, that is, an injection from N× N to N,
with, e.g., the formula z = 2|2x| + 2|2y+1| [6, p. 55]. Pairing functions are known to lead to
non-elementary lower bounds in the presence of quantifier alternation, and an interesting
direction would be to study their effect on existential theories.

References
1 Leonard Berman. The complexity of logical theories. Theor. Comput. Sci., 11(1):71–77, 1980.
2 Alexis Bès. A survey of arithmetic definability. Soc. Math. Belgique, pages 1–54, 2002.
3 Egon Börger, Erich Grädel, and Yuri Gurevich. The Classical Decision Problem. Springer,

1997.
4 Gregory Cherlin and Françoise Point. On extensions of Presburger arithmetic. In 4th Easter

Conference on Model Theory, volume 86 of Humboldt-Univ. Berlin Seminarberichte, pages
17–34, 1986. URL: https://webusers.imj-prg.fr/~francoise.point/papiers/cherlin_
point86.pdf.

ICALP 2023

https://webusers.imj-prg.fr/~francoise.point/papiers/cherlin_point86.pdf
https://webusers.imj-prg.fr/~francoise.point/papiers/cherlin_point86.pdf

112:18 The Complexity of Presburger Arithmetic with Power or Powers

5 Dmitry Chistikov, Christoph Haase, and Alessio Mansutti. Geometric decision procedures
and the VC dimension of linear arithmetic theories. In LICS, 2022.

6 Kevin J. Compton and C. Ward Henson. A uniform method for proving lower bounds on the
computational complexity of logical theories. APAL, 48(1):1–79, 1990.

7 Antoine Durand-Gasselin and Peter Habermehl. On the use of non-deterministic automata for
Presburger arithmetic. In CONCUR, 2010.

8 Jeanne Ferrante and Charles Rackoff. A decision procedure for the first order theory of real
addition with order. SIAM J. Comput., 4(1):69–76, 1975.

9 Seymour Ginsburg and Edwin H. Spanier. Semigroups, Presburger formulas, and languages.
Pacific Journal of Mathematics, 16(2):285–296, 1966.

10 Robert Givan, David McAllester, Carl Witty, and Dexter Kozen. Tarskian set constraints.
Information and Computation, 174(2):105–131, 2002.

11 Florent Guépin, Christoph Haase, and James Worrell. On the existential theories of Büchi
arithmetic and linear p-adic fields. In LICS, 2019.

12 Philipp Hieronymi and Christian Schulz. A strong version of Cobham’s theorem. In STOC,
2022.

13 Deepak Kapur, Zhihai Zhang, Matthias Horbach, Hengjun Zhao, Qi Lu, and ThanhVu Nguyen.
Geometric quantifier elimination heuristics for automatically generating octagonal and max-
plus invariants. In Automated Reasoning and Mathematics - Essays in Memory of William W.
McCune, volume 7788 of LNCS, pages 189–228. Springer, 2013.

14 Felix Klaedtke. Bounds on the automata size for Presburger arithmetic. ACM Trans. Comput.
Log., 9(2):11:1–11:34, 2008.

15 Antonia Lechner, Joël Ouaknine, and James Worrell. On the complexity of linear arithmetic
with divisibility. In LICS, 2015.

16 Antoine Miné. The octagon abstract domain. High. Order Symb. Comput., 19(1):31–100, 2006.
17 Derek C. Oppen. A 222pn

upper bound on the complexity of Presburger arithmetic. JCSS,
16(3):323–332, 1978.

18 Rohit J. Parikh. On context-free languages. J. ACM, 13(4):570–581, 1966.
19 Françoise Point. On decidable extensions of Presburger arithmetic: from A. Bertrand numera-

tion systems to Pisot numbers. JSL, 65(3):1347–1374, 2000.
20 Mojżesz Presburger. Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer

Zahlen, in welchem die Addition als einzige Operation hervortritt, 1929. In Comptes Rendus
du I Congrès des Mathématiciens des Pays Slaves, pages 92–101.

21 Rodrigo Raya, Jad Hamza, and Viktor Kunčak. On the complexity of convex and reverse
convex prequadratic constraints. In LPAR, 2023.

22 C. R. Reddy and D. W. Loveland. Presburger arithmetic with bounded quantifier alternation.
In STOC, 1978.

23 Aleksei L. Semenov. On certain extensions of the arithmetic of addition of natural numbers.
Math. USSR Izv., 15(2):401–418, 1980.

24 Aleksei L. Semenov. Logical theories of one-place functions on the set of natural numbers.
Math. USSR Izv., 22(3):587–618, 1984.

25 Volker Weispfenning. The Complexity of Almost Linear Diophantine Problems. J. Symb.
Comput., 10(5):395–404, 1990.

A Dichotomy for Succinct Representations of
Homomorphisms
Christoph Berkholz #

Technische Universität Ilmenau, Germany

Harry Vinall-Smeeth #

Humboldt-Universität zu Berlin, Germany

Abstract
The task of computing homomorphisms between two finite relational structures A and B is a
well-studied question with numerous applications. Since the set Hom(A, B) of all homomorphisms
may be very large having a method of representing it in a succinct way, especially one which enables
us to perform efficient enumeration and counting, could be extremely useful.

One simple yet powerful way of doing so is to decompose Hom(A, B) using union and Cartesian
product. Such data structures, called d-representations, have been introduced by Olteanu and
Závodný [32] in the context of database theory. Their results also imply that if the treewidth of the
left-hand side structure A is bounded, then a d-representation of polynomial size can be found in
polynomial time. We show that for structures of bounded arity this is optimal: if the treewidth is
unbounded then there are instances where the size of any d-representation is superpolynomial. Along
the way we develop tools for proving lower bounds on the size of d-representations, in particular we
define a notion of reduction suitable for this context and prove an almost tight lower bound on the
size of d-representations of all k-cliques in a graph.

2012 ACM Subject Classification Theory of computation → Data structures and algorithms for
data management; Theory of computation → Complexity theory and logic; Theory of computation
→ Data compression

Keywords and phrases homomorphism problem, CSP, succinct representations, enumeration, lower
bound, treewidth

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.113

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version Full Version: https://arxiv.org/abs/2209.14662

Funding Christoph Berkholz : Funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – project number 414325841.
Harry Vinall-Smeeth: Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research
Foundation) – project number 385256563.

1 Introduction

The task of computing homomorphisms between two finite relational structures has a long
history and numerous applications. Most notably, as pointed out by Feder and Vardi [17],
it is the right abstraction for the constraint satisfaction problem (CSP) – a framework for
search problems that generalised Boolean satisfiability. Moreover, evaluating conjunctive
queries on a relational database is equivalent to computing homomorphisms from the query
structure to the database. While deciding the existence of a homomorphism from a structure
A to a structure B is a classical NP-complete problem, several restrictions of the input
instance have been considered in order to understand the landscape of tractability. One
line of research investigates right-hand-side restrictions, where it is asked for which classes
of structures B the CSP becomes tractable and when it remains hard. This culminated in

EA
T
C
S

© Christoph Berkholz and Harry Vinall-Smeeth;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 113; pp. 113:1–113:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:christoph.berkholz@tu-ilmenau.de
https://orcid.org/0000-0002-3554-517X
mailto:harry.vinall-smeeth@informatik.hu-berlin.de
https://orcid.org/0000-0003-2422-9435
https://doi.org/10.4230/LIPIcs.ICALP.2023.113
https://arxiv.org/abs/2209.14662
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

113:2 A Dichotomy for Succinct Representations of Homomorphisms

G H d-representation of Hom(G,H)

x

y

z

a1
a2
a3

b1
b2
b3

d1
d2
d3

c

x 7→ a1 x 7→ a2 x 7→ a3y 7→ b1 y 7→ b2 y 7→ b3 z 7→ d1 z 7→ d2 z 7→ d3z 7→ c y 7→ c

∪ ∪ ∪

× ×

∪

Figure 1 A deterministic d-representation of all homomorphisms from G to H.

the solution [9, 38] of the CSP-dichotomy conjecture [17] that characterises those B where
finding a homomorphism from a given structure A can be done in polynomial time (assuming
P ̸=NP).

Another line of research, to which we contribute in this paper, focuses on left-hand-side
restrictions: for which classes of structures A can we efficiently find a homomorphism from
A to a given B? In this scenario, a dichotomy is only known when all relations have bounded
arity, as is the case for graphs, digraphs, or k-uniform hypergraphs. Grohe [20] showed that,
modulo complexity theoretic assumptions, for any class of structures A of bounded arity the
decision problem, “Given a structure A ∈ A and a structure B, is there a homomorphism
from A to B?” is in polynomial time if and only if the homomorphic core of every structure
in A has bounded treewidth. For classes of unbounded arity, polynomial time tractability has
been shown for fractional hypertreewidth [5, 21], but a full characterisation of tractability
has only been obtained in the parameterised setting using submodular width [29]. Besides
deciding the existence of a homomorphism, the complexity of counting all homomorphism
has also been characterised in the right-hand-side regime [8] and for bounded-arity classes of
left-hand-side structures [14]. A third task, that is less well understood, is to enumerate all
homomorphisms; here only partial results on the complexity are known (e. g. [10, 13, 37, 19]).

In this work we consider the task of representing the set Hom(A,B) of all homomorphisms
in a succinct and accessible way. In particular, we want to store all, potentially exponentially
many, homomorphisms, in a data structure of polynomial size that enables us to, e. g.
generate a stream of all homomorphisms. The data structures we are interested in – so-called
d-representations – were first introduced to represent homomorphisms in the context of join
evaluation under the name factorised databases [32]. They are conceptually very simple:
the set of homomorphisms is represented by a circuit, where the “inputs” are mappings
of single vertices and larger sets of mappings are generated by combining local mappings
using Cartesian product × and union ∪. In the circuit previously computed sets of local
homomorphisms are represented by gates and can be used several times, see Figure 1 for
an example. Such a representation is called deterministic if every ∪-gate is guaranteed to
combine disjoint sets. Deterministic representations have the advantage that the number of
homomorphisms can be efficiently counted by adding the sizes of the local homomorphism sets
on every ∪-gate and multiplying them on every ×-gate. Moreover, all homomorphisms can be
efficiently enumerated where the delay between two outputs is only linear in the size of every
produced homomorphism (= size of the universe of A) [2]. It is known that if the treewidth of
the left-hand side structure is bounded, then a deterministic d-representation of polynomial
size can be found in polynomial time [32]. Our main theorem shows that for structures of
bounded arity this is optimal: if the treewidth is unbounded, then there are instances where
the size of any (not necessarily deterministic) representation is superpolynomial.

C. Berkholz and H. Vinall-Smeeth 113:3

▶ Theorem 1. Let r ∈ N, σ a signature of arity ≤ r and A a class of σ-structures. Then
the following are equivalent:
1. There is a w ∈ N such that every structure in A has treewidth at most w.
2. A deterministic d-representation of Hom(A,B) can be computed in polynomial time, for

any A ∈ A and any B.
3. There is a c ∈ N such that for any A ∈ A and any B there exists a (not necessarily

deterministic) d-representation of Hom(A,B) of size O
(

(∥A∥ + ∥B∥)c
)
.

Related work. The research on succinct data structures for homomorphism problems has
emerged from the two different perspectives. When fixing the right-hand-side structure
B, then data structures like multi-valued decision diagrams (MDD) [4], AND/OR multi-
valued decision diagrams (AOMDD) [30], and multi-valued decomposable decision graphs
(MDDG) [25] have been proposed, which arose from representations for Boolean functions that
are studied in knowledge compilation (see, e. g., [15]). The (deterministic) d-representations
studied in this paper can be interpreted as (deterministic) DNNF circuits with zero-suppressed
semantics [2, Lemma 7.4], where a ∪-gate corresponds to a (deterministic) ∨-gate and a
×-gate corresponds to a decomposable ∧-gate.

In the left-hand-side regime, representations have been introduced in the context of
enumerating query results. Most notably, Olteanu and Závodnỳ [32] introduced the notion
of factorised databases that are used to decompose the result relation of a conjunctive query
using Cartesian product and union. Their findings imply the upper bound part of our
dichotomy theorem: if A has bounded treewidth, its tree decomposition defines a so-called
d-tree, which structures the polynomial size d-representation. They have also shown a
limited lower bound for structured representations (“d-representations respecting a d-tree”).
However, this lower bound considers only a small subclass of all possible d-representations.
In a similar vein, in knowledge compilation there exist several restrictions of DNNFs e. g.
requiring ∨-gates to be decision or deterministic [15], or enforcing structuredness [33]. In
this light, the significance of our lower bound comes from the fact that it holds for the
most general notion of representations (d-representations), which correspond to unrestricted
DNNFs.

The proof of our lower bound has some connections to the conditional lower bound for
the counting complexity of homomorphisms [14], which in turn builds upon the construction
of Grohe [20]. The essence of these proofs is to rely on an assumption about the hardness of
the parametrised clique problem and reduce this to all structures of unbounded treewidth.
We take a similar route: in Section 5 we prove an unconditional lower bound for representing
cliques and obtain our main lower bound using a sequence of reductions in Section 6.

The circuit notion for representing the set of homomorphisms between two given structures
(or, equivalently, the result relation of a multiway join query) in a succinct data structure
might be confused with previous work on the (Boolean or arithmetic) circuit complexity for
deciding or counting homomorphisms or subgraphs. In this research branch, a structure B
over a universe of size n is given as input to a circuit CA,n, which decides the existence of or
counts the number of homomorphisms (or subgraph-embeddings) from A to B. Examples
include monotone circuits for finding cliques [1, 36], bounded-depth circuits for finding cliques
and other small subgraphs [35, 26] as well as graph polynomials and monotone arithmetic
circuits [16, 7, 24] for counting homomorphisms. In particular, the recent work of Komarath,
Pandey and Rahul [24] studies monotone arithmetic circuits that have, for each pattern G
and each n, an input indicator variable x{u,v} for each potential edge {u, v} ∈ [n]2 in the
second graph H. For every input (i.e. setting indicator variables according to a graph H

ICALP 2023

113:4 A Dichotomy for Succinct Representations of Homomorphisms

on n vertices), the arithmetic circuit has to compute the number of homomorphisms from
G to H. Interestingly, Komorath et al. prove a tight bound and show that such arithmetic
circuits need size ntw(G)+1. Unfortunately, this and related results from circuit complexity
(such as lower bounds for the clique problem) do not translate to the knowledge compilation
approach. Part of the reason is that we crucially have a different representation for each pair
G, H and having, e. g. an arithmetic circuit computing the constant number |Hom(G,H)| is
trivial. Moreover, due to monotonicity, the worst-case right-hand-side instances H in [24] are
complete graphs, whereas d-representations lack this form of monotonicity: adding edges
to H can make factorisation simpler and in particular occurences of patterns in complete
graphs can be succinctly factorised.

Despite this, some techniques on a more general level (e. g. arguing about the transversal
of a circuit or using random graphs as bad examples) are useful in circuit complexity as well
as for proving lower bounds on representations.

2 Preliminaries

We write N for the set of non-negative integers and define [n] := {1, . . . , n} for any positive
integer n. Given a set S we write 2S to denote the power set of S. Whenever writing a to
denote a k-tuple, we write ai to denote the tuple’s i-th component; i. e., a = (a1, . . . , ak). For
a function f : X → Y and X ′ ⊂ X we write πX′f to denote the projection of f to X ′. Given a
set of functions, each of which has a domain containing X ′, we write πX′F := {πX′f | f ∈ F}.

Graphs, Minors, Structures, Tree Decompositions. Whenever G is a graph or a hypergraph
we write V (G) and E(G) for the set of nodes and the set of edges, respectively, of G. We let
Kk be the complete graph on k vertices, Ck the k-cycle graph, and Gk the k × k-grid graph.
Given a graph G and {u, v} ∈ E(G), we can form a new graph by edge contraction: replacing
u and v be a new vertex w adjacent to all neighbours of u and v. A graph H is a minor of G
if H can be obtained from G by repeatedly deleting vertices, deleting edges and contracting
edges.

A tree decomposition of a graph G is a pair (T, β) where T is a tree and β : V (T) → 2V (G)

associates to every node t ∈ V (T) a bag β(t) such that the following is satisfied: (1) For
every v ∈ V (G) the set {t ∈ V (T) | v ∈ β(t)} is non-empty and forms a connected set in T .
(2) For every {u, v} ∈ E(G) there is some t ∈ V (T) such that {u, v} ⊆ β(t). The width of a
tree decomposition is maxt∈V (T) |β(t)| − 1 and the treewidth of G is the minimum width of
any tree decomposition of G.

A (relational) signature σ is a set of relation symbols R, each of which is equipped with
an arity r = r(R). A (finite, relational) σ-structure A consists of a finite universe A and
relations RA ⊆ Ar for every r-ary relation symbol R ∈ σ. We will write ∥A∥ :=

∑
R∈σ |RA|.

The Gaifman graph of A is the graph with vertex set A and edges {u, v} for any distinct u, v
that occur together in a tuple of a relation in A. The treewidth of a structure is the treewidth
of its Gaifman graph. We say A is connected if its Gaifman graph is connected and we will
henceforth assume, without loss of generality, that all structures in this paper are connected.

Enumeration. An enumeration algorithm for Hom(A,B) proceeds in two stages. In the
preprocessing stage the algorithm does some preprocessing on A and B. In the enumeration
phase the algorithm enumerates, without repetition, all homomorphisms in Hom(A,B),
followed by the end of enumeration message. The delay is the maximum of three times: the
time between the start of the enumeration phase and the first output homomorphism, the

C. Berkholz and H. Vinall-Smeeth 113:5

maximum time between the output of two consecutive homomorphisms and between the last
tuple and the end of enumeration message. The preprocessing time is the time the algorithm
spends in the preprocessing stage, which may be 0. Similarly given a d-representation C for
Hom(A,B), an enumeration algorithm for C has a preprocessing stage, where it can do some
preprocessing on C, and an enumeration phase defined as above.

3 Homomorphisms and the complexity of constraint satisfaction

A homomorphism h : A → B between two σ-structures A and B is a mapping from A to
B that preserves all relations, i. e., for every r-ary R ∈ σ and (a1, . . . , ar) ∈ Ar it holds
that if (a1, . . . , ar) ∈ RA, then (h(a1), . . . , h(ar)) ∈ RB. We let Hom(A,B) be the set of all
homomorphisms from A to B. A (homomorphic) core of a structure A is an inclusion-wise
minimal substructure A′ ⊆ A such that there is a homomorphism from A to A′. It is well
known that all cores of a structure are isomorphic, hence we will also speak of the core of a
structure.

Following common notation we fix a (potentially infinite) signature σ and define for
classes of σ-structures A and B the (promise) decision problem CSP(A, B) to be: “Given
two σ-structures A ∈ A and B ∈ B, is there a homomorphism from A to B?” Similarly, the
counting problem #CSP(A, B) asks: “Given two σ-structures A ∈ A and B ∈ B, what is the
number of homomorphisms from A to B?” A lot of work has been devoted towards classifying
the classes of structures for which the problems are solvable in polynomial time. Normally
either the left-hand-side A or the right-hand-side B is restricted and the other part (B or A)
is the class _ of all structures. A related problem is Enum-CSP(A, B) [10], which is the
following task: “Given two σ-structures A ∈ A and B ∈ B, enumerate all homomorphisms
from A to B”. One way of defining tractability for enumeration algorithms is polynomial
delay enumeration, where the preprocessing time and the delay is polynomial in A and B.

In this paper we focus on “left-hand-side” restrictions, where B is the class of all structures.
Moreover, we assume that the arity of each symbol in σ is bounded by some constant r.
In this setting the complexity of CSP(A, _) and #CSP(A, _) is fairly well understood:
the decision problem is polynomial time tractable iff the core of every structure in A has
bounded treewidth, while the counting problem is tractable if every structure from A itself
has bounded treewidth. This is made precise by the following two theorems.

▶ Theorem 2 ([20]). Let r ∈ N, σ be a signature of arity ≤ r and A a class of σ-structures.
Under the assumption that there is no c ∈ N such that for every k ∈ N there is an algorithm
that finds a k-clique in an n-vertex graph in time O(nc) the following two statements are
equivalent.
1. There is a w ∈ N such that the core of every structure in A has treewidth at most w.
2. CSP(A,_) is solvable in polynomial time.

▶ Theorem 3 ([14]). Let r ∈ N, σ be a signature of arity ≤ r and A a class of σ-structures.
Under the assumption that there is no c ∈ N such that for every k ∈ N there is an algorithm
that counts the number of k-cliques in an n-vertex graph in time O(nc) the following two
statements are equivalent.
1. There is a w ∈ N such that every structure in A has treewidth at most w.
2. #CSP(A,_) is solvable in polynomial time.

To understand the difference between these characterisations, consider the class A of
all structures Ak that are complete graphs on k vertices with an additional vertex with a
self-loop. The homomorphic core of such structures is just the self-loop and finding one

ICALP 2023

113:6 A Dichotomy for Succinct Representations of Homomorphisms

homomorphism from Ak to B is equivalent to finding a self-loop in B. However, counting
homomorphisms from Ak to B is as hard as counting k-cliques: if B is a simple graph G with
one additional vertex with a self-loop, then the number of homomorphisms from Ak to B is
the number of k-cliques in G plus one.

The complexity of the corresponding enumeration problem Enum-CSP(A, _) is still
open. It has been shown that polynomial delay enumeration is possible if A has bounded
treewidth [10]. On the other hand, polynomial delay enumeration implies solvability of the
decision problem in polynomial time (because either the first solution or an end-of-enumeration
message has to appear after polynomial time). Hence it follows from Theorem 2, under the
same complexity assumption, that there is no polynomial delay enumeration algorithm if the
cores of the structures in A have unbounded treewidth. For further discussion on this topic
we refer the reader to [10].

Our main result (Theorem 1) can be viewed as an unconditional dichotomy for enu-
meration and counting in a restricted class of algorithms: when the algorithm relies on
local decompositions into union and product, then the tractable instances are exactly those
that have bounded treewidth. Interestingly, this matches the conditional dichotomy for the
counting case (Theorem 3).

4 Factorised Representations

In this section we formally introduce the factorisation formats for CSPs. These formats agree
with the factorised representations of relations introduced by Olteanu and Závodný [32] in
the context of evaluating conjunctive queries on relational databases. While we stick to the
naming conventions introduced there we provide a slightly different circuit-based definition
that is very much inspired by [2] and the notion of set circuits introduced in [3].

A factorisation circuit C for two sets A and B is an acyclic directed graph with node
labels and a unique sink. Each node without incoming edges is called an input gate and
labelled by {a 7→ b} for some a ∈ A and b ∈ B. Every other node is labelled by either ∪ or
× and called a ∪-gate or ×-gate, respectively. For each gate g in the circuit we inductively
define its domain dom(g) ⊆ A by dom(g) = {a} if g is an input gate with label {a 7→ b} and
dom(g) =

⋃r
i=1 dom(gi) if g is a non-input gate with child gates g1, . . . , gr.

A factorisation circuit is well-defined if for every gate g with child gates g1, . . . , gr it holds
that dom(g) = dom(g1) = · · · = dom(gr) if g is a ∪-gate and dom(gi) ∩ dom(gj) = ∅ for all
i ̸= j if g is a ×-gate. For every gate g in a well-defined factorisation circuit we let Sg be a
set of mappings h : dom(g) → B defined by

Sg :=


{

{a 7→ b}
}

if g is an input labelled by {a 7→ b}
Sg1 ∪ · · · ∪ Sgr

if g is a ∪-gate with children g1, . . . , gr,{
h1 ∪ · · · ∪ hr | hi ∈ Sgi , i ∈ [r]

}
if g is a ×-gate with children g1, . . . , gr.

(1)

We define SC := Ss for the sink s of C. For each gate g we let Cg be the sub-circuit with
sink g. By ∥C∥ we denote the size of a factorisation circuit C, which is defined to be the
number of gates plus the number of wires. The number of gates in C is denoted by |C|.

Before defining factorised representations for CSP-instances, we introduce two special
types of circuits. A factorisation circuit is treelike if the underlying graph is a tree, i. e.,
every non-sink gate has exactly one parent. Moreover, a well-defined factorisation circuit is
deterministic if for every ∪-gate g the set Sg is a disjoint union of its child sets Sg1 , . . . , Sgr

.
Note that while treelikeness is a syntactic property of the circuit structure, being deterministic
is a semantic property that depends on the valuations of the gates. Now we are ready to
state a circuit-based definition of the factorised representations defined in [32].

C. Berkholz and H. Vinall-Smeeth 113:7

▶ Definition 4. Let A and B be two σ-structures.
1. A (deterministic) d-representation for A and B is a well-defined (deterministic) factor-

isation circuit over V (A) and V (B) where SC = Hom(A,B).
2. A (deterministic) f-representation is a (deterministic) d-representation with the additional

restriction that the circuit is treelike.

For brevity we will sometimes refer to d/f-representations as d/f-reps. Note that a d-rep
can be more succinct than a f-rep and we will mostly deal with d-reps in this paper. However,
in the proofs it will sometimes be convenient to expand out the circuit in order to make it
treelike. More formally, the transversal Trans(C) of a d-rep C is the f-rep obtained from C

as follows: using a top-down transversal starting at the output gate, we replace each gate g
with parents p1, . . . , pd by d copies g1, . . . , gd such that the in-edges of each gi are exactly
the children of g and gi has exactly one out-edge going to pi. This procedure produces a
treelike circuit that is well-defined/deterministic if C was well-defined/deterministic. Finally
it can easily be verified that STrans(C) = SC .

We will often want to construct new factorised circuits from old ones. The following
lemma introduces two constructions that will be particularly useful, the proof of correctness
can be found in the full version of this paper.

▶ Lemma 5. Let A,B be σ-structures and C be a d-rep of Hom(A,B). Let X = {x1, . . . , xℓ} ⊆
A, Y1, . . . , Yℓ ⊆ B, ℓ ≥ 1. Then one can construct the following factorised circuits in time
O(∥C∥).
1. C ′, such that SC′ = πX Hom(A,B) and ∥C ′∥ ≤ ∥C∥.
2. C ′′, such that SC′′ = {h ∈ Hom(A,B) | h(xi) ∈ Yi, i ∈ [ℓ]} and ∥C ′′∥ ≤ ∥C∥.

A special f-rep is the flat representation: a depth-2 circuit with a single ∪-gate at the
top followed by a layer of ×-gates. Note that for any pair A, B, of σ-structures the flat
representation has size 1+|Hom(A,B)|·(2|A|+2). Intuitively, this representation corresponds
to listing all homomorphisms and provides a trivial upper bound on representation size.

Deterministic d-representations have two desirable properties: they allow us to compute
|Hom(A,B)| in time O(∥C∥) and to enumerate all homomorphisms with O(|A|) delay after
O(∥C∥) preprocessing. Efficient counting is possible by computing bottom-up the number |Sg|
for each gate using multiplication on every ×-gate and summation on every (deterministic)
∪-gate. If, additionally, C is normal – i. e., no parent of a ∪-gate is a ∪-gate and the
in-degree of every ∪- and ×-gate is at least 2 – Olteanu and Závodný [32, Theorem 4.11] show
enumeration with O(|A|) delay and no preprocessing is possible by sequentially enumerating
the sets Sgi of every child of a (deterministic) ∪-gate and by a nested loop to generate all
combinations of child elements at ×-gates. The case where C is not normal is shown in [2,
Theorem 7.5] and is more involved. Note that the delay is optimal in the sense that every
homomorphism that is enumerated is of size O(|A|).

In the other direction this means that constructing a deterministic d-rep is at least as
hard as counting the number of homomorphisms. Our main theorem implies that, modulo
the same assumptions as Theorem 3, the opposite is also true: for a class A of structures of
bounded arity there is a polynomial time algorithm that constructs a d-representation of
polynomial size for two given structures A ∈ A and B if and only if, there is a polynomial-time
algorithm that counts the number of homomorphisms between A ∈ A and B.

Upper bounds on representation size. We have already argued that there is always a
flat representation of size O(|A| · |Hom(A,B)|). Thus, as a corollary of [5] we get an upper
bound of O(|A| · ∥B∥ρ∗(A)), where ρ∗(A) is the fractional edge cover number of A. Note
that, however, the fractional edge cover number for structures of bounded arity is quite large.
More precisely, if all relations in A have arity at most r, then ρ∗(A) ≥ 1

r |A|.

ICALP 2023

113:8 A Dichotomy for Succinct Representations of Homomorphisms

Luckily in many cases we can do better: the results by Olteanu and Závodný in [32] imply
that given a tree-decomposition of A of width w − 1 we can construct a d-rep of Hom(A,B)
of size O(∥A∥2∥B∥w) in time O(poly(∥A∥)∥B∥w log(∥B∥)). Moreover the d-reps produced
are normal and deterministic, meaning they allow us to perform efficient enumeration and
counting. Therefore if A is a class of bounded treewidth this gives us one method for solving
#CSP(A,_) in polynomial time. In fact, the same holds true if w is the more general
fractional hypertreewidth, although for the case of bounded arity structures the two measure
differ only by a constant. We discuss the unbounded arity case in the conclusion and, in
more detail, in the full version of this paper.

5 A near-optimal bound for cliques

The goal of this section is to prove the following two theorems:

▶ Theorem 6. For any k ∈ N there exist arbitrary large graphs G with m edges such that
any f-rep of Hom(Kk,G) has size Ω(mk/2/ logk(m)).

▶ Theorem 7. For any k ∈ N there exist arbitrary large graphs G with m edges such that
any d-rep of Hom(Kk,G) has size Ω(mk/2/ log3k−1(m)).

These bounds are almost tight since the number of k-cliques in a graph with m edges is
bounded by mk/2. Moreover Theorem 7 is a crucial ingredient for proving our main theorem
in Section 6. We will first prove Theorem 6 and then show how this implies the bound for
d-reps.

The main idea is to exploit a correspondence between the structure of a (simple) graph G
and f-reps of Hom(Kk,G). To illustrate this consider the case k = 2, where V (K2) = {x1, x2}
and each h ∈ Hom(K2,G) corresponds to an edge of G. Let C be a f-rep of Hom(K2,G), with
×-gates g1, . . . , gα. Each gi has two children g1

i , g2
i with dom(g1

i) = x1 and dom(g2
i) = x2.

Since no ×-gates can occur in Cg1
i

or Cg2
i
, S1

gi
= {{x1 7→ a} | a ∈ Ai} and Sg2

i
= {{x2 7→ b} |

b ∈ Bi} for some disjoint Ai, Bi ⊆ V (G). Therefore Ai ×Bi is a complete bipartite subgraph
of G. Since the ancestors of each ×-gate can only be ∪-gates, each f-rep of Hom(K2,G)
corresponds to a set of complete bipartite subgraphs that cover every edge of G. Finding
such sets and investigating their properties has been studied in various contexts, for example
see [12, 18, 22, 31].

Moreover, the number of input gates appearing in C is
∑α

i=1 |Ai| + |Bi| and so finding
a f-rep of Hom(K2,G) of minimum size corresponds to minimising the sum of the sizes of
the partitions in our complete bipartite covering of G, call this the cost of the covering.
Proving Theorem 6 for the case k = 2, corresponds to finding graphs where every covering
of the edges by complete bipartite subgraphs has high cost. This is a problem investigated
by Chung et al. in [12], where one key idea is that if a graph contains no large complete
bipartite subgraphs and a large number of edges then the cost of any cover must be high.
We deploy this idea in our more general context. This motivates the following lemma, which
follows from a simple probabilistic argument.

▶ Lemma 8. For every k ∈ N there exists some ck ∈ R+ such that for every sufficiently
large integer n there is a graph G with n vertices, such that
1. G has m ≥ 1

8n
2 edges,

2. G contains no complete bipartite subgraph Ka,a for a ≥ 3 log(n), and
3. the number of k-cliques in G is at least ckn

k.

Proof. We first prove the following claim.

C. Berkholz and H. Vinall-Smeeth 113:9

▷ Claim 9. Let Gn be a random graph on n vertices with edge probability 1
2 . Let ϵ > 0.

Then for any a = a(n) ≥ (2 + ϵ) log(n),

Pa := P(Gn has Ka,a as a subgraph) → 0 as n → ∞.

Proof of Claim. By the union bound and the bound on a we get

Pa ≤
(
n

a

)2
2−a2

≤ n2a2−a2
= 22a log(n)−a2

≤ 2−(ϵ2+2ϵ) log2 n. ◁

Now let Gn be as above, s = s(k) :=
(

k
2
)

+ 1 and p be the probability that such a graph has
at least

(
n
k

)
2−s k-cliques. The expected number of k-cliques in Gn is

(
n
k

)
2−(k

2). Therefore,(
n

k

)
2−(k

2) ≤
(
n

k

)
2−s(1 − p) +

(
n

k

)
p

and so p ≥ 1/(2s − 1). Moreover, by the Chernoff bound, (1) from the statement of the
Lemma fails only with exponentially small probability. By Claim 9 there must exist a G
satisfying (1), (2), and (3) for sufficiently large n. ◀

Equipped with Lemma 8 we are already in a position to prove Theorem 6.

Proof of Theorem 6. Let G be an n-vertex graph provided by Lemma 8 and suppose that
C is a f-rep for Kk and G. If maxx∈dom(g) |{a | h(x) = a, h ∈ Sg}| ≤ 3 log(n) for a gate g
we say that g is small. Otherwise we say g is big. Note that a ×-gate cannot have two big
children g1 and g2 because otherwise there would be x1 ∈ dom(g1) and x2 ∈ dom(g2) such
that

{a | h(x1) = a, h ∈ Sg1} × {a | h(x2) = a, h ∈ Sg2}

forms a complete bipartite subgraph with partitions bigger than 3 log n in G, contradicting
(2) from Lemma 8.

If g is small, then Cg represents |Sg| ≤ 3|dom(g)| log|dom(g)|(n) homomorphisms. We claim
that for any gate g of C, |Sg| ≤ |Cg| · 3|dom(g)| log|dom(g)|(n). Clearly this holds for input
gates. We can therefore induct bottom up on C. Suppose our claim holds for all children
g1, . . . , gr of some gate g. If g is a ×-gate then we know at most one of the gi is big, say g1.
Define b :=

∑r
i=2 |dom(gi)|. Then,

|Sg| =
r∏

i=1
|Sgi | ≤ |Cg1 | · 3|dom(g1)| log|dom(g1)|(n) · 3b logb(n) ≤ |Cg| · 3|dom(g)| log|dom(g)|(n),

The ∪-gate case follows immediately from the induction hypothesis because the circuit is
treelike so if g has children g1, . . . , gr then |Cg| = 1 +

∑r
i=1 |Cgi |.

From the claim we infer in particular that |Hom(Kk,G)| = |Ss| ≤ |C| · 3k logk(n) for the
sink s of C. By (3) from Lemma 8 it follows that |C| ≥ ckn

k/(3k logk(n)) which, combined
with (1) from Lemma 8, implies the claimed result. ◀

We now transfer this bound to d-reps, by showing that, for the same graphs used above,
any d-rep cannot be much smaller than the smallest f-rep.

Proof of Theorem 7. Let G be an n-vertex graph provided by Lemma 8 as above and C

a d-rep of Hom(Kk,G) with sink s. If a gate has out-degree of more than one we call it a
definition. As in the proof of Theorem 6, if maxx∈dom(g) |{a | h(x) = a, h ∈ Sg}| ≤ 3 log(n)
for a gate g we say that g is small. Otherwise we say g is big.

ICALP 2023

113:10 A Dichotomy for Succinct Representations of Homomorphisms

Our strategy is to convert C into an equivalent f-rep that is not much bigger than C. For
ease of analysis and exposition we will do this by first eliminating all small definitions and
then all big definitions. First if s is small replace the whole circuit with its equivalent flat
representation. Otherwise, we mark all small gates g that have a big parent and compute
the equivalent flat representation Fg of Cg. Since every unmarked small gate is a descendant
of some marked gate, we can now safely delete all unmarked small gates. Afterwards we
consider every wire between a marked gate g and one of its big parents p and replace it by
a copy of Fg as input to p. We obtain an equivalent circuit Ĉ where every small gate has
only one parent. The size (number of gates plus number of wires) increases only by a factor
determined by the maximum size of a flat representation:

▷ Claim 10. ∥Ĉ∥ ≤ ∥C∥ · (2k + 3)3k logk(n).

When we try and eliminate big definitions one challenge is that if g is big, then ∥Ĉg∥
can be large and so making lots of copies of it could blow up the size of our circuit. To
overcome this we introduce the notion of an active parent. We then show that non-active
parents are effectively redundant and that there can’t be too many active ones, which allows
us to construct an equivalent treelike circuit of the appropriate size.

So let g be a definition with parents p1, . . . , pα, α > 1, and suppose there is a unique
path from pi to the sink s for every i. Then for every gate v on the unique path from g to s
which passes through pi, we inductively define a set of (partial) homomorphisms Av

i = Av
i (g)

as follows, where v̂ refers to the child of v also lying on this path.
Ag

i := Sg,
if v is a ∪-gate Av

i := Av̂
i ,

otherwise v is a ×-gate with children u1, . . . , ur−1, v̂ and Av
i :=

{h1 ∪ . . . ∪ hr | hi ∈ Sui
, i ∈ [r − 1], hr ∈ Av̂

i

}
.

Write Ai := As
i , intuitively this is the set of homomorphisms that the wire from g to pi

contributes to. We say that a parent pi of g is active if Ai ⊈ ∪j ̸=iAj . Now using a top-down
traversal starting at the output gate of Ĉ, we replace each gate with active parents p1, . . . , pβ ,
by β copies g1, . . . , gβ such that the children of each gi are exactly the children of g and gi

has exactly one out-edge going to pi. At each stage we also clean-up the circuit by iteratively
deleting all gates which have no incoming wires, as well as all the wires originating from such
gates. We can think of this process as constructing a slimmed down version of the traversal,
where at each stage we only keep wires going to active parents. Call the resulting circuit C ′.

We first note that this process is well-defined, as there is a unique path from the sink to
itself and since whenever we visit a gate we have already visited all of its parents. Moreover,
by construction this results in a treelike circuit. In the next claim we bound the size of C ′

and show it is indeed an equivalent circuit. The idea is that firstly a gate cannot have too
many active parents, as otherwise we would get a large biclique in G which is ruled out by
Lemma 8, and secondly that since only active parents contribute new homomorphisms we
really do get an equivalent circuit, see the full version of this paper for details.

▷ Claim 11. C ′ is a f-rep of Hom(Kk,G) and ∥C ′∥ ≤ 3k logk−1(n)∥Ĉ∥.

Pulling everything together we get that

∥C∥ ≥
(Claim 10)

∥Ĉ∥
(2k + 3)3k logk(n)

≥
(Claim 11)

∥C ′∥
(2k + 3)32k log2k−1(n)

= Ω
(

mk/2

log3k−1(m)

)
,

where the final equality follows by Theorem 6 since C ′ is a f-rep of Hom(Kk,G). ◀

C. Berkholz and H. Vinall-Smeeth 113:11

6 The representation dichotomy for structures of bounded arity

In this section we lift the lower bound for cliques to all classes of graphs with unbounded
treewidth. We first introduce a notion of reductions between representations and show that
having lower bounds for all graphs of unbounded treewidth immediately implies our main
dichotomy theorem for bounded-arity structures.

Afterwards, we introduce minor and almost-minor reductions and use them to obtain a
lower bound for representing homomorphisms from large grids and from graphs having large
grids as a minor. The superpolynomial representation lower bound for all graph classes with
unbounded treewidth then follows from the excluded grid theorem.

6.1 Reductions between representations
In order to define reductions between representations we fix some notation. For two structures
A and B we let D(A,B) be the set of all d-representations of Hom(A,B) and d(A,B) =
minC∈D(A,B) ∥C∥ be the size of the smallest such representation.

For a class C of structures the function dA,C : N → N expresses the required size of a
d-representation of homomorphisms between A and C ∈ C in terms of the size m of C, i. e.,
dA,C(m) = max{C∈C : ∥C∥≤m} d(A, C). We write dA as an abbreviation for dA,C when C is
the class of all structures. Translated to this notation, [32] showed that dA = O(mtw(A)+1),
whereas Theorem 7 states the lower bound dKk

= Ω(mk/2/ log3k−1(m)). We also write, for
a signature σ, Cσ to denote the class of all σ-structures.

The main goal of this section is to prove, for some increasing function f , a lower bound
of the form dA = Ω(mf(tw(A))/ ar(A)) for every structure A, which immediately implies our
main theorem. To achieve this we use reductions with our k-clique lower bound as a starting
point. Suppose we already have a lower bound on dA,C for a class C of arbitrarily large hard
instances (implying a lower bound on dA), then we can use the following reduction from A
to B via C to obtain a lower bound on dB.

▶ Definition 12. Let A be a σ-structure and let C be a class of σ-structures. Let B be a
σ′-structure and c : R+ → R+ be a strictly increasing function. Then a c-reduction from A to
B via C is a pair (ϕ, (ψC)C∈C), where ϕ : C → Cσ′ and ψC : D(B, ϕ(C)) → D(A, C) such that:
1. for every n ∈ N there is a C ∈ C such that ∥ϕ(C)∥ ≥ n,
2. ∥ϕ(C)∥ ≤ c(∥C∥) for all C ∈ C, and
3. ∥ψC(C)∥ ≤ ∥C∥ for every structure C ∈ C and circuit C ∈ D(B, ϕ(C)).
If c(m) = αm for some α ∈ R+, we say we have a linear reduction.

▶ Lemma 13. Suppose there is a c-reduction (ϕ, (ψC)C∈C) from A to B via C, let D = {ϕ(C) |
C ∈ C} be the image of ϕ. Then dB,D = Ω(dA,C ◦⌊c−1⌋).

Proof. Fix m ∈ N, where m ≥ min{C∈C} ∥C∥. Let C ∈ C with ∥C∥ ≤ m. Then ψC witnesses
that d(A, C) ≤ d(B, ϕ(C)). Also ∥ϕ(C)∥ ≤ c(m), since c is an increasing function. So
dB,D(c(m)) = max{C : ∥ϕ(C)∥≤c(m)} d(B, ϕ(C)) ≥ max{C : ∥C∥≤m} d(A, C) = dA,C(m). Since C

and D contain arbitrarily large structures, the asymptotic bound from the lemma follows. ◀

We start illustrating the power of these reductions by making two simplifications. First, we
reduce the general problem of representing homomorphisms to representing homomorphisms
that respect a partition. Second, we further reduce to graph homomorphisms that respect a
partition. All proofs from this subsection can be found in the full version of the paper.

ICALP 2023

113:12 A Dichotomy for Succinct Representations of Homomorphisms

For the first reduction we need the notion of the individualisation of a σ-structure A,
which is obtained from A by giving every element of the universe a distinct color. More
precisely, we extend the vocabulary σ with unary relations (= colours) σA = {Pa : a ∈ A}
and let Aid be the σ ∪ σA-expansion of A by adding PAid

a = {a}.

▶ Lemma 14. Let A be a σ-structure and let C be the class of all σ ∪ σA-structures where
{P C

a | a ∈ A} is a partition of the universe. Then dA = Ω(dAid,C).

We call structures and (vertex-coloured) graphs individualised if every vertex has a
distinct colour. In the next lemma we reduce from individualised structures to individualised
graphs. Recall the definition of the Gaifman graph GA from the preliminaries.

▶ Lemma 15. Let A be an individualised structure and Gid
A the individualisation of its

Gaifman graph. Let C be the class of all structures C where {P C
a | a ∈ A} is a partition of

its universe and H be the class of all vertex-coloured graphs H where {PH
a | a ∈ A} is a

partition of its vertex set. Then dA,C(m) = Ω
(

(dGid
A,H(m))2/ ar(A))

.

Taking both lemmas into account, we can now focus on individualised graphs G on the
left-hand side and on graphs H with the corresponding colouring {PH

a | a ∈ V (G)} that
partitions its vertex set on the right-hand side. We call such graphs V (G)-partitioned graphs.
However we would also like to deploy our lower bound from Section 5; the next lemma allows
to transfer this lower bound to individualised structures.

▶ Lemma 16. Let G be a graph and C be the class of all V (G)-partitioned graphs. Then
dGid,C = Ω(dG).

6.2 Minor reductions
In this subsection we show that we can reduce G′ to G if G is a minor of G′. We start by
illustrating how to handle edge contractions via an example.

▶ Example 17 (Reduction from 4-cycle to 3-cycle). Consider the 3-cycle K3 on vertices
x1, x2, x3, which is a minor of the 4-cycle C4 on vertices x1, x2, x3, x4 by contracting one
edge {x4, x1}. We show that we can lift the lower bound for Kid

3 (Theorem 7 + Lemma 16)
to Cid

4 (and hence C4 by Lemma 14) by a simple linear reduction from Kid
3 to Cid

4 via the
class of all {x1, x2, x3}-partitioned graphs. Let H be a {x1, x2, x3}-partitioned graph. We
define the {x1, x2, x3, x4}-partitioned graph H′ = ϕ(H) by PH′

x := PH
x for x ∈ {x1, x2, x3},

PH′

x4
:= {v̂ | v ∈ PH

x1
} and E(H′) ={

{v, v̂} | v ∈ PH
x1

}
∪

{
{v, w} | v ∈ PH

x1
, w ∈ PH

x2
, {v, w} ∈ E(H)

}
∪

{
{v, w} | v ∈ PH

x2
, w ∈ PH

x3
, {v, w} ∈ E(H)

}
∪

{
{v, ŵ} | v ∈ PH

x3
, w ∈ PH

x1
, {v, w} ∈ E(H)

}
.

Note that the size of H′ is linear in the size of H. The construction ensures that any
mapping h′ : {x1, . . . , x4} → V (H′) is a homomorphism from Cid

4 to H′ if, and only if,
h′(x4) = ĥ′(x1) and h(xi) := h′(xi), for i ∈ [3], is a homomorphism from Kid

3 to H.
Therefore, Hom(Kid

3 ,H) = π{x1,x2,x3} Hom(Cid
4 ,H′) and a representation C ′ of Hom(Kid

3 ,H)
can be obtained from a representation C of Hom(Cid

4 ,H′) by Lemma 5 which, moreover,
guarantees that ∥C ′∥ ≤ ∥C∥. Therefore we do have a linear reduction from Cid

4 to Kid
3 .

It follows that dC4(m) = Ω(dCid
4 ,C(m)) = Ω(dKid

3 ,H(m)) = Ω(dK3(m)) = Ω(m3/2/ log7(m)),

C. Berkholz and H. Vinall-Smeeth 113:13

where C is the class of V (Cid
4)-partitioned graphs and H is the class of V (Kid

3)-partitioned
graphs. The first equality follows by Lemma 14, the second by Lemma 13, the third by
Lemma 16 and the last by Theorem 7.

So to handle edge contractions we take the partitioned hard right-hand side instance
and “re-introduce” the edge {x, y} contracted to x by copying Px to Py and adding a perfect
matching between the two partitions Px and Py. Handling edge deletions is even simpler:
suppose that {x, y} is deleted from G′ to G and we want to reduce G′ to G. Then we take
a partitioned hard instance for G and just introduce the complete bipartite graph between
the partitions Px and Py; this may square the size of the graph. Since the sets of (partition-
respecting) homomorphisms are the same for both instances, we do not even have to modify
the representations in the reduction. The next lemma summarises these findings. Its proof is
omitted as it is subsumed by Lemma 22.

▶ Lemma 18. Let GX ,GY be graphs with vertex sets X and Y respectively such that GX is
a minor of GY . Let H be the class of all V (GX)-partitioned graphs and H′ the class of all
V (GY)-partitioned graphs. Then there is a c-reduction (ϕ, (ψH)H∈H) from Gid

Y to Gid
X via H

with ϕ(H) ⊆ H′ and c(m) = O(m2).

This yields together with Lemmas 13, 14 and 16 along with Theorem 7 the following
corollary.

▶ Corollary 19. If G has Kk as a minor, then dG = Ω(mk/4/ log(3k−1)/2(m)).

6.3 Relaxation of the minor condition
Every graph having Kk as a minor has treewidth at least k − 1, so Corollary 19 provides the
desired lower bound of Theorem 1 for certain large-treewidth graphs. However, there are
graphs of large treewidth that do not have a large clique as a minor. Instead, the excluded
grid theorem [34] and its more efficient version [11] tells us that graphs of large treewidth
always have a large k × k-grid as a minor.

▶ Theorem 20 ([11]). There is a polynomial function w : N → N such that for every k the
(k × k)-grid is a minor of every graph of treewidth at least w(k).

Thus, in order to prove Theorem 1 it suffices to combine Lemma 18 with a lower bound for
grid graphs. We cannot reduce immediately to our k-clique lower bound, as the grid does not
have a Kk minor for k ≥ 5. However, the complete graph Kk is “almost a minor” of G2k−2
for the following notion of almost minor that is good enough to prove a variant of Lemma 18.

▶ Definition 21. For two graphs GX , GY with vertex sets X = V (GX) and Y = V (GY) we
say that a map M : Y → 2X is almost minor if the following conditions hold:
1. for every y ∈ Y , |M(y)| ∈ {1, 2};
2. for every x ∈ X there is a y ∈ Y s.t. M(y) = {x} and for every x, x′ adjacent in GX

there exists y, y′ adjacent in GY such that M(y) = {x} and M(y′) = {x′};
3. for each x ∈ X, {y : x ∈ M(y)} is connected in GY and
4. if M(y) = {x, x′} with x ≠ x′ and y′ is adjacent to y in GY , then M(y′) = {x} or

M(y′) = {x′}.
If such a map exists we say GX is an almost minor of GY .

For the special case when |M(y)| = 1 for all y, M is a minor map and GX is a minor
of GY . The motivation for this definition is that whilst grids are planar, large cliques are
not and so we introduce “junctions”, i.e. nodes y such that M(y) = {x1, x2} which allows

ICALP 2023

113:14 A Dichotomy for Succinct Representations of Homomorphisms

{v | xi ∈ M(v)}, i ∈ {1, 2} to intersect in a controlled way, see Figure 2. We should also
observe here that this notion is related to Marx’s notion of an embedding [27].1 Now we can
state our reduction lemma for almost minors, which extends Lemma 18.

▶ Lemma 22. Let GX , GY be the graphs with vertex sets X and Y , respectively, such that
GX is an almost minor of GY . Let H be the class of all X-partitioned graphs and H′ be the
class of all Y -partitioned graphs, then there is a c-reduction (ϕ, (ψH)H∈H) from Gid

Y to Gid
X

via H with ϕ(H) ⊆ H′ and c = O(m2).

Proof. We start by defining the Y -partitioned graph H∗ = ϕ(H) for an arbitrary X-
partitioned graph H. To define the partitions, we consider two cases: if M(y) = {x}, we let
PH∗

y := {vy
a | a ∈ PH

x } and if M(y) = {x, x′}, then PH∗

y := {vy
{a,b} | a ∈ PH

x , b ∈ PH
x′ }. For

every edge {y, y′} ∈ E(GY) we define the edge set E{y,y′} between the partitions PH∗

y and
PH∗

y′ by the following exhaustive cases:
1. if M(y) = M(y′) = {x}: E{y,y′} :=

{
{vy

a , v
y′

a } | a ∈ PH
x

}
2. if M(y) = {x}, M(y′) = {x′}, and {x, x′} ∈ E(GX):

E{y,y′} :=
{

{vy
a , v

y′

b } | a ∈ PH
x , b ∈ PH

x′ , {a, b} ∈ E(H)
}

3. if M(y) = {x}, M(y′) = {x′}, x ̸= x′, and {x, x′} /∈ E(GX):
E{y,y′} :=

{
{vy

a , v
y′

b } | a ∈ PH
x , b ∈ PH

x′

}
4. if M(y) = {x} and M(y′) = {x, x′}: E{y,y′} :=

{
{vy

a , v
y′

{a,b}} | a ∈ PH
x , b ∈ PH

x′

}
Finally, we set E(H∗) :=

⋃
e∈E(GY) Ee and note that ∥H∗∥ = O(∥H∥2). For every homo-

morphism h from Gid
X to H we define the mapping h∗ : Y → V (H∗) by

h∗(y) :=
{
vy

h(x), if M(y) = {x}
vy

{h(x),h(x′)}, if M(y) = {x, x′}

The next claim provides the key property of our construction: h∗ is a homomorphism from
Gid

Y to H∗ and every homomorphism from Gid
Y to H∗ has this form, see the full version of

this paper for a proof.

▷ Claim 23. Hom(Gid
Y ,H∗) = {h∗ : h ∈ Hom(Gid

X ,H)}

We finish the lemma by defining the mapping ψH that transforms any d-representation for
Hom(Gid

X ,H) into a d-representation for Hom(Gid
Y ,H∗). For each x ∈ X we fix one yx ∈ Y

such that M(yx) = {x} (those vertices exist by the definition of an almost minor map). Then
we apply Lemma 5 and obtain a d-representation of π{yx : x∈X} Hom(Gid

Y ,H∗). After renaming
every yx to x and every vy

a to a in the input labels of this circuit, we get a d-representation
of Hom(Gid

X ,H). ◀

With the following lemma we have everything in hand to proof our main theorem.

▶ Lemma 24. For every k, Kk is an almost minor of G2k−2.

1 In particular the definition of a depth-2 embedding can be obtained from our definition of an almost
minor by the following modifications. First remove clause (4). Second replace (2) with the following
condition: for every x ∈ X there is a y ∈ Y s.t. x ∈ M(y) and for every x, x′ adjacent in GX there
exists either y, y′ adjacent in GY such that x ∈ M(y) and x′ ∈ M(y′) or there exists y such that
{x, x′} ⊆ M(y). If we also remove clause (1) we get the general definition of an embedding.

C. Berkholz and H. Vinall-Smeeth 113:15

1

2

1

3

1

4

1

1, 2

1

1, 3

1

1, 4

1

2

2

3

2

4

1

1

2

2, 3

2

2, 4

1

1

1

3

3

4

1

1

1

1

3

3, 4

Figure 2 Construction from Lemma 24 for the case k = 4. The node in the ith row and jth
column is labelled by the {a | ua ∈ M(vi,j)}.

Proof of Lemma 24. Set

X :=V (Kk) = {ui | i ∈ [k]},
Y :=V (G2k−2) = {vi,j | i, j ∈ [2k − 2]},

where vi,j is the vertex in the ith row and jth column of the grid. Define M : Y → 2X as
follows:
1. if j − 1 > i, M(vi,j) = {u1},
2. otherwise if i ≥ j − 1 then:

a. if i and j are both odd, M(vi,j) = {u(j+1)/2},
b. if i is odd and is j even, M(vi,j) = {uj/2},
c. if i is even and j is odd, M(vi,j) = {u(i+2)/2},
d. if i and j are both even, M(vi,j) = {u(i+2)/2, uj/2}.

See Figure 2 for the case k = 4. It is easy to see that this map is almost minor, see the full
version of this paper for a proof. ◀

Proof of Theorem 1. Let A have unbounded treewidth. Then for every k there exists
Bk ∈ A of treewidth at least w(k). Then the Gaifman graph of Bk, GBk

also has treewidth
at least w(k). By Theorem 20, GBk

has Gk as a minor. Since by Lemma 24, K(k+2/2) is an
almost minor of Gk we have:

dBk
(m) =

(Lemma 14)
Ω

(
dBid

k
,C(m)

)
=

(Lemma 15)
Ω

(
(dGid

Bk
,H(m))2/ ar(Bk)

)
=

(Lemma 18)
Ω

(
(dGid

k
,H′(m))1/ ar(Bk)

)
=

(Lemma 22)
Ω

(
(dKid

(k+2)/2,D(m))1/2 ar(Bk)
)

ICALP 2023

113:16 A Dichotomy for Succinct Representations of Homomorphisms

=
(Lemma 16)

Ω
(

((dK(k+2)/2(m))1/2 ar(Bk)
)

=
(Theorem 7)

Ω
(
m(k+2)/4r/ log(3k+2)/2r(m)

)

Where C is the class of σ ∪ σBk
structures C such that {P C

a | a ∈ Bk} is a partition of
the universe, H the class of V (Gid

Bk
)-partitioned graphs, H′ the class of V (Gid

k)-partitioned
graphs and D the class of V (Kid

(k+2)/2)-partitioned graphs. From the above we can conclude
that (3) implies (1) in the statement of the theorem. Moreover, as discussed in Section 4, (1)
implies (2) follows from [32] and (2) implies (3) trivially. ◀

7 Conclusion

Our main result characterises those bounded-arity classes of structures A where the set
of homomorphisms from A ∈ A to B can be succinctly represented. More precisely, the
known upper bound of O(∥A∥2∥B∥tw(A)+1) is matched by a corresponding lower bound of
Ω(∥B∥tw(A)ε), where tw(A) is the tree-width of A and ε > 0 is a constant depending on the
excluded grid theorem and the arity of the signature. A future task would be to further close
the gap between upper and lower bounds.

Another open question is to understand the representation complexity for all classes
of structures A (of unbounded arity). As mentioned in Section 4, a polynomial O(∥A∥2 ·
∥B∥fhtw(A)) upper bound was shown where fhtw(A) is the fractional hypertreewidth of A [32]
and one might wonder whether this is tight. At least this is not the case in a parametrised
setting, where a f(∥A∥)∥B∥w sized representation for some (not necessarily polynomial-
time) computable f , is considered tractable. It is known that for structures A of bounded
submodular width the homomorphism problem can be decomposed into a (not necessarily
disjoint) union of f(∥A∥) instances of bounded fractional hypertreewidth [29, 6], leading to
a d-representation of size f(∥A∥)∥B∥subw(A) where subw(A) denotes the submodular width
of A, see Appendix A in the full version of this paper for details. Note that submodular
width can be strictly smaller than fractional hypertreewidth [28]. For a more concrete
example in this direction, the fractional hypertreewidth of C4 is 2, but one can show that
Hom(C4,H) has deterministic d-representations of size O(∥H∥3/2) – almost matching the
O(∥H∥3/2/ log7(∥H∥)) lower bound in Example 17. Note that while submodular width
characterises the FPT-fragment of deciding the existence of homomorphisms on structures
of unbounded arity [29], a tight characterisation for the parameterised counting problem is,
despite some recent progress [23], still missing. In particular, it is not clear whether bounded
submodular width implies tractable counting. We may face similar difficulties when studying
the complexity of deterministic d-representations that allow efficient counting.

In the course of proving our main result we have developed tools and techniques for
proving lower bounds on the size of d-representations, in particular using our k-clique lower
bound as a starting point, defining an appropriate notion of reduction and showing that one
can always get such a reduction if the “almost minor” relation holds. Whilst the proof of the
clique lower bound in Section 5 exploits the specific nature of d-representations, we observe
that much of the content of Section 6 can easily be used for other forms of representations.
Since we now have understood the limitations of unrestricted d-representations, it would be
good to know whether there are even more succinct representation formats that still allow
efficient enumeration.

C. Berkholz and H. Vinall-Smeeth 113:17

References

1 Noga Alon and Ravi B. Boppana. The monotone circuit complexity of boolean functions.
Comb., 7(1):1–22, 1987. doi:10.1007/BF02579196.

2 Antoine Amarilli, Pierre Bourhis, Louis Jachiet, and Stefan Mengel. A circuit-based approach
to efficient enumeration. In Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca
Muscholl, editors, 44th International Colloquium on Automata, Languages, and Programming,
ICALP 2017, July 10-14, 2017, Warsaw, Poland, volume 80 of LIPIcs, pages 111:1–111:15.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2017. doi:10.4230/LIPIcs.ICALP.2017.
111.

3 Antoine Amarilli, Pierre Bourhis, Stefan Mengel, and Matthias Niewerth. Enumeration on
trees with tractable combined complexity and efficient updates. In Dan Suciu, Sebastian
Skritek, and Christoph Koch, editors, Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI
Symposium on Principles of Database Systems, PODS 2019, Amsterdam, The Netherlands,
June 30 – July 5, 2019, pages 89–103. ACM, 2019. doi:10.1145/3294052.3319702.

4 Jérôme Amilhastre, Hélène Fargier, Alexandre Niveau, and Cédric Pralet. Compiling CSPs:
A Complexity Map of (Non-Deterministic) Multivalued Decision Diagrams. International
Journal on Artificial Intelligence Tools, 23(4), 2014. doi:10.1142/S021821301460015X.

5 Albert Atserias, Martin Grohe, and Dániel Marx. Size bounds and query plans for relational
joins. SIAM Journal on Computing, 42(4):1737–1767, 2013. doi:10.1137/110859440.

6 Christoph Berkholz and Nicole Schweikardt. Constant delay enumeration with FPT-
preprocessing for conjunctive queries of bounded submodular width. arXiv preprint, 2020.
arXiv:2003.01075.

7 Markus Bläser, Balagopal Komarath, and Karteek Sreenivasaiah. Graph pattern polynomials.
In Sumit Ganguly and Paritosh K. Pandya, editors, 38th IARCS Annual Conference on Found-
ations of Software Technology and Theoretical Computer Science, FSTTCS 2018, December
11-13, 2018, Ahmedabad, India, volume 122 of LIPIcs, pages 18:1–18:13. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2018. doi:10.4230/LIPIcs.FSTTCS.2018.18.

8 Andrei A. Bulatov. The complexity of the counting constraint satisfaction problem. J. ACM,
60(5):34:1–34:41, 2013. doi:10.1145/2528400.

9 Andrei A. Bulatov. A dichotomy theorem for nonuniform CSPs. In Chris Umans, editor, 58th
IEEE Annual Symposium on Foundations of Computer Science (FOCS 2017), pages 319–330,
2017. doi:10.1109/FOCS.2017.37.

10 Andrei A. Bulatov, Victor Dalmau, Martin Grohe, and Daniel Marx. Enumerating Homo-
morphisms. In Susanne Albers and Jean-Yves Marion, editors, 26th International Symposium
on Theoretical Aspects of Computer Science, volume 3 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 231–242, Dagstuhl, Germany, 2009. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik. doi:10.4230/LIPIcs.STACS.2009.1838.

11 Chandra Chekuri and Julia Chuzhoy. Polynomial bounds for the grid-minor theorem. J. ACM,
63(5):40:1–40:65, 2016. doi:10.1145/2820609.

12 FRK Chung, P Erdős, and Joel Spencer. On the decomposition of graphs into complete
bipartite subgraphs. In Studies in pure mathematics, pages 95–101. Springer, 1983.

13 Nadia Creignou and Jean-Jacques Hébrard. On generating all solutions of generalized
satisfiability problems. RAIRO Theor. Informatics Appl., 31(6):499–511, 1997. doi:
10.1051/ita/1997310604991.

14 Víctor Dalmau and Peter Jonsson. The complexity of counting homomorphisms seen from the
other side. Theor. Comput. Sci., 329(1-3):315–323, 2004. doi:10.1016/j.tcs.2004.08.008.

15 Adnan Darwiche and Pierre Marquis. A knowledge compilation map. J. Artif. Intell. Res.,
17:229–264, 2002. doi:10.1613/jair.989.

16 Christian Engels. Dichotomy theorems for homomorphism polynomials of graph classes. J.
Graph Algorithms Appl., 20(1):3–22, 2016. doi:10.7155/jgaa.00382.

ICALP 2023

https://doi.org/10.1007/BF02579196
https://doi.org/10.4230/LIPIcs.ICALP.2017.111
https://doi.org/10.4230/LIPIcs.ICALP.2017.111
https://doi.org/10.1145/3294052.3319702
https://doi.org/10.1142/S021821301460015X
https://doi.org/10.1137/110859440
https://arxiv.org/abs/2003.01075
https://doi.org/10.4230/LIPIcs.FSTTCS.2018.18
https://doi.org/10.1145/2528400
https://doi.org/10.1109/FOCS.2017.37
https://doi.org/10.4230/LIPIcs.STACS.2009.1838
https://doi.org/10.1145/2820609
https://doi.org/10.1051/ita/1997310604991
https://doi.org/10.1051/ita/1997310604991
https://doi.org/10.1016/j.tcs.2004.08.008
https://doi.org/10.1613/jair.989
https://doi.org/10.7155/jgaa.00382

113:18 A Dichotomy for Succinct Representations of Homomorphisms

17 Tomás Feder and Moshe Y Vardi. Monotone monadic snp and constraint satisfaction. In
Proceedings of the twenty-fifth annual ACM symposium on Theory of computing, pages 612–622,
1993.

18 Herbert Fleischner, Egbert Mujuni, Daniël Paulusma, and Stefan Szeider. Covering graphs
with few complete bipartite subgraphs. Theoretical Computer Science, 410(21-23):2045–2053,
2009.

19 Gianluigi Greco and Francesco Scarcello. Structural tractability of enumerating CSP solutions.
Constraints An Int. J., 18(1):38–74, 2013. doi:10.1007/s10601-012-9129-8.

20 Martin Grohe. The complexity of homomorphism and constraint satisfaction problems seen
from the other side. J. ACM, 54(1), March 2007. doi:10.1145/1206035.1206036.

21 Martin Grohe and Dániel Marx. Constraint solving via fractional edge covers. ACM Transac-
tions on Algorithms (TALG), 11(1):1–20, 2014.

22 Stasys Jukna and Alexander S Kulikov. On covering graphs by complete bipartite subgraphs.
Discrete Mathematics, 309(10):3399–3403, 2009.

23 Mahmoud Abo Khamis, Ryan R. Curtin, Benjamin Moseley, Hung Q. Ngo, Xuanlong Nguyen,
Dan Olteanu, and Maximilian Schleich. Functional aggregate queries with additive inequalities.
ACM Trans. Database Syst., 45(4), December 2020. doi:10.1145/3426865.

24 Balagopal Komarath, Anurag Pandey, and Chengot Sankaramenon Rahul. Monotone arithmetic
complexity of graph homomorphism polynomials. In Mikolaj Bojanczyk, Emanuela Merelli,
and David P. Woodruff, editors, 49th International Colloquium on Automata, Languages,
and Programming, ICALP 2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages
83:1–83:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.
ICALP.2022.83.

25 Frédéric Koriche, Jean-Marie Lagniez, Pierre Marquis, and Samuel Thomas. Compiling
Constraint Networks into Multivalued Decomposable Decision Graphs. In Proceedings of the
24th International Conference on Artificial Intelligence, IJCAI’15, pages 332–338, Buenos
Aires, Argentina, 2015. AAAI Press. URL: http://dl.acm.org/citation.cfm?id=2832249.
2832295.

26 Yuan Li, Alexander A. Razborov, and Benjamin Rossman. On the ac0 complexity of subgraph
isomorphism. SIAM J. Comput., 46(3):936–971, 2017. doi:10.1137/14099721X.

27 Dániel Marx. Can you beat treewidth? In 48th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’07), pages 169–179. IEEE, 2007.

28 Dániel Marx. Tractable structures for constraint satisfaction with truth tables. Theory of
Computing Systems, 48(3):444–464, 2011.

29 Dániel Marx. Tractable hypergraph properties for constraint satisfaction and conjunctive
queries. Journal of the ACM (JACM), 60(6):1–51, 2013.

30 Robert Mateescu and Rina Dechter. Compiling Constraint Networks into AND/OR Multi-
valued Decision Diagrams (AOMDDs). In Principles and Practice of Constraint Programming
– CP 2006, Lecture Notes in Computer Science, pages 329–343. Springer, Berlin, Heidelberg,
September 2006. doi:10.1007/11889205_25.

31 Dhruv Mubayi and György Turán. Finding bipartite subgraphs efficiently. arXiv preprint,
2009. arXiv:0905.2527.

32 Dan Olteanu and Jakub Závodný. Size bounds for factorised representations of query results.
ACM Transactions on Database Systems (TODS), 40(1):1–44, 2015.

33 Knot Pipatsrisawat and Adnan Darwiche. New compilation languages based on structured
decomposability. In Dieter Fox and Carla P. Gomes, editors, Proceedings of the Twenty-Third
AAAI Conference on Artificial Intelligence (AAAI 2008), pages 517–522. AAAI Press, 2008.
URL: http://www.aaai.org/Library/AAAI/2008/aaai08-082.php.

34 Neil Robertson and P.D Seymour. Graph minors. v. excluding a planar graph. Journal of
Combinatorial Theory, Series B, 41(1):92–114, 1986. doi:10.1016/0095-8956(86)90030-4.

https://doi.org/10.1007/s10601-012-9129-8
https://doi.org/10.1145/1206035.1206036
https://doi.org/10.1145/3426865
https://doi.org/10.4230/LIPIcs.ICALP.2022.83
https://doi.org/10.4230/LIPIcs.ICALP.2022.83
http://dl.acm.org/citation.cfm?id=2832249.2832295
http://dl.acm.org/citation.cfm?id=2832249.2832295
https://doi.org/10.1137/14099721X
https://doi.org/10.1007/11889205_25
https://arxiv.org/abs/0905.2527
http://www.aaai.org/Library/AAAI/2008/aaai08-082.php
https://doi.org/10.1016/0095-8956(86)90030-4

C. Berkholz and H. Vinall-Smeeth 113:19

35 Benjamin Rossman. On the constant-depth complexity of k-clique. In Cynthia Dwork, editor,
Proceedings of the 40th Annual ACM Symposium on Theory of Computing, Victoria, British
Columbia, Canada, May 17-20, 2008, pages 721–730. ACM, 2008. doi:10.1145/1374376.
1374480.

36 Benjamin Rossman. The monotone complexity of k-clique on random graphs. SIAM J.
Comput., 43(1):256–279, 2014. doi:10.1137/110839059.

37 Henning Schnoor and Ilka Schnoor. Enumerating all solutions for constraint satisfaction
problems. In Wolfgang Thomas and Pascal Weil, editors, STACS 2007, 24th Annual Sym-
posium on Theoretical Aspects of Computer Science, Aachen, Germany, February 22-24, 2007,
Proceedings, volume 4393 of Lecture Notes in Computer Science, pages 694–705. Springer,
2007. doi:10.1007/978-3-540-70918-3_59.

38 Dmitriy Zhuk. A proof of the CSP dichotomy conjecture. Journal of the ACM (JACM),
67(5):1–78, 2020.

ICALP 2023

https://doi.org/10.1145/1374376.1374480
https://doi.org/10.1145/1374376.1374480
https://doi.org/10.1137/110839059
https://doi.org/10.1007/978-3-540-70918-3_59

Nominal Topology for Data Languages
Fabian Birkmann #

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Stefan Milius #

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Henning Urbat #

Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Abstract
We propose a novel topological perspective on data languages recognizable by orbit-finite nominal
monoids. For this purpose, we introduce pro-orbit-finite nominal topological spaces. Assuming
globally bounded support sizes, they coincide with nominal Stone spaces and are shown to be
dually equivalent to a subcategory of nominal boolean algebras. Recognizable data languages are
characterized as topologically clopen sets of pro-orbit-finite words. In addition, we explore the
expressive power of pro-orbit-finite equations by establishing a nominal version of Reiterman’s
pseudovariety theorem.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory

Keywords and phrases Nominal sets, Stone duality, Profinite space, Data languages

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.114

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version Full Version: https://arxiv.org/abs/2304.13337

Funding Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – project number
470467389.

1 Introduction

While automata theory is largely concerned with formal languages over finite alphabets,
the extension to infinite alphabets has been identified as a natural approach to modelling
structures involving data, such as nonces [26], channel names [23], object identities [22],
process identifiers [11], URLs [5], or values in XML documents [31]. For example, if A is a
(countably infinite) set of data values, typical languages to consider might be

L0 = { vaaw | a ∈ A, v, w ∈ A∗ } (“some data value occurs twice in a row”), or
L1 = { avaw | a ∈ A, v, w ∈ A∗ } (“the first data value occurs again”).

Automata for data languages enrich finite automata with register mechanisms that allow to
store data and test data values for equality (or more complex relations, e.g. order) [24,31].
In a modern perspective first advocated by Bojańczyk, Klin, and Lasota [9], a convenient
abstract framework for studying data languages is provided by the theory of nominal sets [36].

Despite extensive research in the past three decades, no universally acknowledged notion
of regular data language has emerged so far. One reason is that automata models with data
notoriously lack robustness, in that any alteration of their modus operandi (e.g. deterministic
vs. nondeterministic, one-way vs. two-way) usually affects their expressive power. Moreover,
machine-independent descriptions of classes of data languages in terms of algebra or model
theory are hard to come by. However, there is one remarkable class of data languages
that closely mirrors classical regular languages: data languages recognizable by orbit-finite

EA
T
C
S

© Fabian Birkmann, Stefan Milius, and Henning Urbat;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 114; pp. 114:1–114:21

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:fabian.birkmann@fau.de
https://orcid.org/0000-0001-5890-9485
mailto:stefan.milius@fau.de
https://orcid.org/0000-0002-2021-1644
mailto:henning.urbat@fau.de
https://orcid.org/0000-0002-3265-7168
https://doi.org/10.4230/LIPIcs.ICALP.2023.114
https://arxiv.org/abs/2304.13337
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

114:2 Nominal Topology for Data Languages

nominal monoids [7]. Originally introduced from a purely algebraic angle, recognizable data
languages have subsequently been characterized in terms of rigidly guarded MSO∼, a fragment
of monadic second-order logic with equality tests [13], single-use register automata [10] (both
one-way and two-way), and orbit-finite regular list functions [10]. In addition, several
landmark results from the algebraic theory of regular languages, namely the McNaughton-
Papert-Schützenberger theorem [29, 40], the Krohn-Rhodes theorem [25], and Eilenberg’s
variety theorem [14] have been extended to recognizable data languages [7, 10,13,44].

In the present paper, we investigate recognizable data languages through the lens of
topology, thereby providing a further bridge to classical regular languages. The topological
approach to the latter is closely tied to the algebraic one, which regards regular languages as
the languages recognizable by finite monoids. Its starting point is the construction of the
topological space Σ̂∗ of profinite words. Informally, this space casts all information represented
by regular languages over Σ and their recognizing monoids into a single mathematical object.
Regular languages can then be characterized by purely topological means: they may be
interpreted as precisely the clopen subsets of Σ̂∗, in such way that algebraic recognition
by finite monoids becomes a continuous process. Properties of regular languages are often
most conveniently classified in terms of the topological concept of profinite equations, that is,
equations between profinite words; see [3,4,33] for a survey of profinite methods in automata
theory. Moreover, since Σ̂∗ forms a Stone space, the power of Stone duality – the dual
equivalence between Stone spaces and boolean algebras – becomes available. This allows for
the use of duality-theoretic methods for the study of regular languages and their connection
to logic and model theory, which in part even extend to non-regular languages [18–21,35].

On a conceptual level, the topological view of regular languages rests on a single category-
theoretic fact: Stone spaces admit a universal property. In fact, they arise from the category
of finite sets as the free completion under codirected limits, a.k.a. its Pro-completion:

Stone ≃ Pro(Setf). (1.1)

In the world of data languages, the role of finite sets is taken over by orbit-finite nominal sets.
This strongly suggests to base a topological approach on their free completion Pro(Nomof).
However, this turns out to be infeasible: the category Pro(Nomof) is not concrete over
nominal sets (Proposition 3.6), hence it cannot be described via any kind of nominal
topological spaces. This is ultimately unsurprising given that the description (1.1) of Stone
spaces as a free completion depends on the axiom of choice, which is well-known to fail in
the topos of nominal sets. As a remedy, we impose global bounds on the support sizes of
nominal sets, that is, we consider the categories Nomk and Nomof,k of (orbit-finite) nominal
sets where every element has a support of size k, for some fixed natural number k. This
restriction is natural from an automata-theoretic perspective, as it corresponds to imposing
a bound k on the number of registers of automata, and it fixes exactly the issue making
unrestricted nominal sets non-amenable (Lemma 3.9). Let us emphasize, however, that the
category Nomk is not proposed as a new foundation for names and variable binding; for
instance, it generally fails to be a topos.

The first main contribution of our paper is a generalization of (1.1) to k-bounded nominal
sets. For this purpose we introduce nominal Stone spaces, a suitable nominalization of the
classical concept, and prove that k-bounded nominal Stone spaces form the Pro-completion of
the category of k-bounded orbit-finite sets. We also derive a nominal version of Stone duality,
which relates k-bounded nominal Stone spaces to locally k-atomic orbit-finitely complete
nominal boolean algebras. Hence we establish the following equivalences of categories:

nCofAlkBA ≃op nStonek ≃ Pro(Nomof,k).

F. Birkmann, S. Milius, and H. Urbat 114:3

The above equivalences are somewhat remarkable since even the category of k-bounded
nominal sets does not feature choice. They hold because the presence of bounds allows us to
reduce topological properties of nominal Stone spaces, most notably compactness, to their
classical counterparts.

Building on the above topological foundations, which we regard to be of independent
interest, we subsequently develop first steps of a topological theory of data languages.
Specifically, we introduce nominal Stone spaces of (bounded) pro-orbit-finite words and prove
their clopen subsets to correspond to data languages recognizable by bounded equivariant
monoid morphisms, generalizing the topological characterization of classical regular languages
(Theorem 5.14). Moreover, we investigate the expressivity of pro-orbit-finite equations and
show that they model precisely classes of orbit-finite monoids closed under finite products,
submonoids, and multiplicatively support-reflecting quotients (Theorem 6.8). This provides a
nominal version of Reiterman’s celebrated pseudovariety theorem [37] for finite monoids.

Related work. The perspective taken in our paper draws much of its inspiration from
the recent categorical approach to algebraic recognition based on monads [8, 38, 42]. The
importance of Pro-completions in algebraic language theory has been isolated in the work
of Chen et al. [12] and Urbat et al. [42]. In the latter work the authors introduce profinite
monads and present a general version of Eilenberg’s variety theorem parametric in a given
Stone-type duality. The theory developed there applies to algebraic base categories, but not
to the category of nominal sets.

Our version of nominal Stone duality builds on the orbit-finite restriction of the duality
between nominal sets and complete atomic nominal boolean algebras due to Petrişan [17]. It
is fundamentally different from the nominal Stone duality proposed by Gabbay, Litak, and
Petrişan [16], which relates nominal Stone spaces with Nto nominal boolean algebras with N.
The latter duality is not amenable for the theory of data languages; see Remark 3.17.

Reiterman’s pseudovariety theorem has recently been generalized to the level of finite
algebras for a monad [1, 12] and, in a more abstract disguise, finite objects in a category [30].
For nominal sets, varieties of algebras over binding signatures have been studied by Gab-
bay [16] and by Kurz and Petrişan [27], resulting in nominal Birkhoff-type theorems [6].
Urbat and Milius [44] characterize classes of orbit-finite monoids called weak pseudovarieties
by sequences of nominal word equations. This gives a nominal generalization of the classical
Eilenberg-Schützenberger theorem [15], which in fact is a special case of the general HSP
theorem in [30]. Nominal pro-orbit-finite equations as introduced in the present paper are
strictly more expressive than sequences of nominal word equations (Example 6.11), hence
our nominal Reiterman theorem is not equivalent to the nominal Eilenberg-Schützenberger
theorem. Moreover, we note that the nominal Reiterman theorem does not appear to be an
instance of any of the abstract categorical frameworks mentioned above.

2 Preliminaries

We assume that readers are familiar with basic notions from category theory, e.g. functors,
natural transformations, and (co)limits, and from point-set topology, e.g. metric and topolo-
gical spaces, continuous maps, and compactness. In the following we recall some facts about
Pro-completions, the key categorical concept underlying our topological approach to data
languages. Moreover, we give a brief introduction to the theory of nominal sets [36].

Pro-completions. A small category I is cofiltered if (i) I is non-empty, (ii) for every pair
of objects i, j ∈ I there exists a span i← k → j, and (iii) for every pair of parallel arrows
f, g : j → k, there exists a morphism h : i→ j such that f · h = g · h. Cofiltered preorders are

ICALP 2023

114:4 Nominal Topology for Data Languages

called codirected; thus a preorder I is codirected if I ̸= ∅ and every pair i, j ∈ I has a lower
bound k ≤ i, j. For instance, every meet-semilattice with bottom is codirected. A diagram
D : I → C in a category C is cofiltered if its index category I is cofiltered. A cofiltered limit
is a limit of a cofiltered diagram. Codirected limits are defined analogously. The two concepts
are closely related: a category has cofiltered limits iff it has codirected limits, and a functor
preserves cofiltered limits iff it preserves codirected limits [2, Cor. 1.5]. The dual concept is
that of a filtered colimit or a directed colimit, respectively.

▶ Example 2.1.
1. In the category Set of sets and functions, every filtered diagram D : I → Set has a colimit

cocone ci : Di → colim D (i ∈ I) given by colim D =
(∐

i∈I Di

)
/∼ and ci(x) = [x]∼,

where the equivalence relation ∼ on the coproduct (i.e. disjoint union)
∐

i∈I Di relates
x ∈ Di and y ∈ Dj iff there exist morphisms f : i → k and g : j → k in I such that
Df(x) = Dg(y).

2. Every cofiltered diagram D : I → Set has a limit whose cone pi : lim D → Di (i ∈ I) is
given by the compatible families of D and projection maps:

lim D = {(xi)i∈I | xi ∈ Di and Df(xi) = xj for all f : i→ j in I} and pj((xi)i∈I) = xj .

3. In the category Top of topological spaces and continuous maps, the limit cone of a
cofiltered diagram D : I → Top is formed by taking the limit in Set and equipping lim D

with the initial topology, viz. the topology generated by the basic open sets p−1
i [Ui] for

i ∈ I and Ui ⊆ Di open.

An object C of a category C is finitely copresentable if the contravariant hom-functor
C(−, C) : Cop → Set preserves directed colimits. In more elementary terms, this means that
for every codirected diagram D : I → C with limit cone pi : L→ Di (i ∈ I),
1. every morphism f : L→ C factorizes as f = g ◦ pi for some i ∈ I and g : Di → C, and
2. the factorization is essentially unique: given another factorization f = h · pi, there exists

j ≤ i such that g ·Dj,i = h ·Dj,i.
A Pro-completion of a small category C is a free completion under codirected (equivalently
cofiltered) limits. It is given by a category Pro(C) with codirected limits together with a full
embedding E : C ↪→ Pro(C) satisfying the following universal property:
1. every functor F : C → D, where the category D has codirected limits, extends to a

functor F : Pro(C)→ D that preserves codirected limits and satisfies F = F ◦ E;
2. F is essentially unique: For every functor G that preserves codirected limits and satisfies

F = G ◦ E, there exists a natural isomorphism α : F ∼= G such that αE = idF .
C Pro(C)

D

E

F F

C Pro(C)

D

E

F
G

The universal property determines Pro(C) uniquely up to equivalence of categories. We note
that every object EC (C ∈ C) is finitely copresentable in Pro(C), see e.g. [1, Thm A.4]. The
dual of Pro-completions are Ind-completions: free completions under directed colimits.

▶ Example 2.2. The Pro-completion Pro(Setf) of the category of finite sets is the full
subcategory of Top given by profinite spaces (topological spaces that are codirected limits
of finite discrete spaces). Profinite spaces are also known as Stone spaces or boolean spaces
and can be characterized by topological properties: they are precisely compact Hausdorff
spaces with a basis of clopen sets. This equivalent characterization depends on the axiom of

F. Birkmann, S. Milius, and H. Urbat 114:5

choice (or rather the ultrafilter theorem, a weak form of choice), as does Stone duality, the
dual equivalence between the categories of Stone spaces and boolean algebras. The duality
maps a Stone space to its boolean algebra of clopen sets, equipped with the set-theoretic
boolean operations. Its inverse maps a boolean algebra the set of ultrafilters (equivalently,
prime filters) on it, equipped with a suitable profinite topology.

Profinite words. The topological approach to classical regular languages is based on the
space Σ̂∗ of profinite words over the alphabet Σ. This space is constructed as the codirected
limit of all finite quotient monoids of Σ∗, the free monoid of finite words generated by
Σ. Formally, let Σ∗ ↠ Monf be the codirected poset of all surjective monoid morphisms
e : Σ∗ ↠ M , where M is a finite monoid; the order on Σ∗ ↠ Monf is defined by e ≤ e′ if
e′ = e ·h for some h. Then Σ̂∗ is the limit of the diagram D : Σ∗ ↠ Monf → Pro(Setf) sending
e : Σ∗ ↠ M to the underlying set of M , regarded as a finite discrete topological space.
The space Σ̂∗ is completely metrizable; in fact, it is the Cauchy completion of the metric
space (Σ∗, d) where d(v, w) = sup{ 2−|M | | M is a finite monoid separating v, w }. Here a
monoid M separates v, w ∈ Σ∗ if there exists a morphism h : Σ∗ →M such that h(v) ̸= h(w).
Regular languages over Σ correspond to clopen subsets of Σ̂∗, or equivalently to continuous
maps L : Σ̂∗ → 2 into the discrete two-element space.

Nominal Sets. Fix a countable set A of names, and denote by PermA the group of finite
permutations, i.e. bijections π : A→ A fixing all but finitely many names. Given S ⊆ A write

PermS A = {π ∈ PermA | π(a) = a for all a ∈ S}

for the the subgroup of permutations fixing S. A PermA-set is a set X with a group action,
that is, an operation · : PermA×X → X such that id · x = x and π · (σ · x) = (π ◦ σ) · x for
every x ∈ X and π, σ ∈ PermA. The trivial group action on X is given by π · x = x for all
x ∈ X and π ∈ PermA.

A subset S ⊆ A is a support of x ∈ X if every permutation π ∈ PermS A acts trivially on
x, that is, π · x = x. The idea is that x is some syntactic object (e.g. a word, a tree, or a
λ-term) whose free variables are contained in S. A PermA-set X is a nominal set if every
element x ∈ X has a finite support. This implies that every x ∈ X has a least finite support,
denoted by supp x ⊆ A.

For a nominal set X its nominal powerset PfsX ⊆ PX consists of all subsets of U ⊆ X

which are finitely supported under the action π · U := {π · x | x ∈ U}. For example, for the
nominal set A of names with the action π · a = π(a), its nominal powerset PfsA consists of
all finite and cofinite subsets of A. A subset U ⊆ X is equivariant if it has empty support.
If there exists a finite subset S ⊆ A supporting every x ∈ U then U is uniformly finitely
supported, and S also supports U . Given a finite set S ⊆ A of names and a subset U ⊆ X,
we define the S-hull of U by hullS U = {π · x | x ∈ U, π ∈ PermS A}. This is the smallest
S-supported subset of X containing U .

For finite S ⊆ A the S-orbit of an element x ∈ X is the set orbS x = {π ·x | π ∈ PermS A}.
The ∅-orbit of x is called its orbit, denoted orb x. We write orbS X = {orbS x | x ∈ X} for
the set of all S-orbits of X, and orb X for the set of all orbits. The S-orbits form a partition
of X. A finitely supported subset Y ⊆ X is orbit-finite if it intersects only finitely many
orbits of X. In particular, the nominal set X is orbit-finite if orb X is a finite set. This
implies that for every finite subset S ⊆ A the set orbS X is finite. Moreover, X contains only
finitely many elements with support S.

ICALP 2023

114:6 Nominal Topology for Data Languages

▶ Example 2.3. The set A∗ of finite words over A forms a nominal set with the group
action π · (a1 · · · an) = π(a1) · · ·π(an). The languages L0, L1 ⊆ A∗ from the Introduction are
equivariant subsets. Given a fixed name a ∈ A, the subset L2 = {awa | w ∈ A∗} is finitely
supported with supp L2 = {a}. All the above sets have an infinite number of orbits. An
example of an orbit-finite set is given by A2 = A× A ⊆ A∗; its two orbits are {aa | a ∈ A}
and {ab | a ̸= b ∈ A}.

A map f : X → Y between nominal sets is finitely supported if there exists a finite set S ⊆ A
such that f(π ·x) = π ·f(x) for all x ∈ X and π ∈ PermS A, and equivariant if it is supported
by S = ∅. Equivariant maps satisfy supp f(x) ⊆ supp x for all x ∈ X. Nominal sets and
equivariant maps form a category Nom, with the full subcategory Nomof of orbit-finite
nominal sets. The category Nom is complete and cocomplete. Colimits and finite limits
are formed like in Set; general limits are formed by taking the limit in Set and restricting
to finitely supported elements. The category Nomof is closed under finite limits and finite
colimits in Nom. Quotients and subobjects in Nom are represented by surjective and
injective equivariant maps. Every equivariant map f has an image factorization f = m · e
with m injective and e surjective; we call e the coimage of f .

A nominal set is strong if for all x ∈ X and π ∈ PermA one has π ·x = x iff π ∈ PermS A,
where S = supp x. (Note that the “if” direction holds in every nominal set.) For example,
the nominal set A#n = {f : n → A | f injective} with pointwise action is strong and has
a single orbit. Up to isomorphism, (orbit-finite) strong nominal sets are precisely (finite)
coproducts of such sets.

3 Nominal Stone Spaces

In this section, we establish the topological foundations for our pro-orbit-finite approach to
data languages. We start by recalling the basic definitions of nominal topology [17,32].

▶ Definition 3.1.
1. A nominal topology on a nominal set X is an equivariant subset OX ⊆ PfsX closed under

finitely supported union (that is, if U ⊆ OX is finitely supported then
⋃
U ∈ OX) and

finite intersection. Sets U ∈ OX are called open and their complements closed; sets that
are both open and closed are clopen. A nominal set X together with a nominal topology
OX is a nominal topological space. An equivariant map f : X → Y between nominal
topological spaces is continuous if for every open set U of Y its preimage f−1[U] is an
open set of X. Nominal topological spaces and continuous maps form the category nTop.

2. A subbasis of a nominal topological space (X,OX) is an equivariant subset B ⊆ OX such
that every open set of X is a finitely supported union of finite intersections of sets in B.
If additionally every finite intersection of sets in B is a finitely supported union of sets in
B, then B is called a basis. In this case, every open set of X is a finitely supported union
of elements of B.

▶ Example 3.2.
1. A topological space may be viewed as a nominal topological space equipped with the

trivial group action. Then every (open) subset has empty support and every union is
finitely supported, so we recover the axioms of classical topology.

2. Every nominal set X equipped with the discrete topology, where all finitely supported
subsets are open, is a nominal topological space. It has a basis given by all singleton sets.

F. Birkmann, S. Milius, and H. Urbat 114:7

3. A nominal (pseudo-)metric space is given by a nominal set X with a (pseudo-)metric1

d : X ×X → R which is equivariant as a function into the set R, regarded as a nominal
set with the trivial group action. As usual, the open ball around x ∈ X with radius r > 0
is given by Brx = {y ∈ X | d(x, y) < r}. Since π ·Br(x) = Br(π · x) for all π ∈ PermA
and x ∈ X, every nominal (pseudo-)metric space carries a nominal topology whose basic
opens are the open balls.

▶ Remark 3.3. Every nominal topological space induces two families of ordinary topological
spaces, one by taking only opens with a certain support and the other by forming orbits.
In more detail, let S ⊆ A be a finite set of names and let X be a nominal topological space
with topology O.
1. The underlying set of the nominal space X carries a classical topology OS consisting of

all S-supported open sets of O. We denote the resulting topological space by |X|S .
2. The set orbS X of S-orbits can be equipped with the quotient topology OorbS

induced by
the projection X ↠ orbS X mapping each x ∈ X to its S-orbit orbS x. In this topology,
a set O ⊆ orbS X of S-orbits is open iff its union

⋃
O is open in X.

These constructions give rise to functors |−|S , orbS : nTop→ Top. They allow us to switch
between nominal and classical topology.
As noted in Example 2.2, the Pro-completion of the category Setf is the category of profinite
spaces. One may expect that the Pro-completion of Nomof analogously consists of all pro-
orbit-finite spaces, that is, nominal topological spaces that are codirected limits of orbit-finite
discrete spaces. However, this fails due to a simple fact: while codirected limits of non-empty
finite sets are always non-empty (which is a consequence of Tychonoff’s theorem, thus the
axiom of choice), codirected limits of non-empty orbit-finite nominal sets may be empty.
▶ Remark 3.4. Similar to Top, codirected limits in nTop are formed by taking the limit in
Nom equipping it with the initial topology.

▶ Example 3.5. Consider the ωop-chain 1 ← A ← A#2 ← A#3 ← · · · in Nomof with
connecting maps omitting the last component. Its limit in Set (see Example 2.1) is given
by A#ω, the set of all injective functions from ω to A. Clearly no such function has finite
support, thus the limit in Nom (and therefore also in nTop) is empty.

This entails that it is in fact impossible to characterize Pro(Nomof) by any sort of spaces.
By definition of the free completion Pro(Nomof), the inclusion functor I : Nomof ↪→ Nom
extends uniquely to a functor Ī : Pro(Nomof) → Nom preserving codirected limits. The
analogous functor Ī : Pro(Setf)→ Set is the forgetful functor of the category of profinite
spaces. In contrast, we have

▶ Proposition 3.6. The category Pro(Nomof) is not concrete: the functor Ī is not faithful.

Proof. Consider the chain 1 ← A ← A#2 ← · · · of Example 3.5. Let D : ωop → Nomof
denote the corresponding diagram, and let E : Nomof ↪→ Pro(Nomof) be the embedding.
To prove that Ī is not faithful, let 2 be the two element nominal set. We show that
|Pro(Nomof)(lim ED, E2)| > |Nom(Ī(lim ED), ĪE2)|. Indeed, we have

Pro(Nomof)(lim
n<ω

EDn, E2) ∼= colim
n<ω

Pro(Nomof)(EDn, E2) E2 finitely copresentable

∼= colim
n<ω

Nomof(Dn, 2) E full embedding

∼= 2

1 Recall that a pseudometric differs from a metric by not requiring d(x, y) ̸= 0 for x ̸= y.

ICALP 2023

114:8 Nominal Topology for Data Languages

because Nomof(D0, 2) ∼= 2 and the two elements are not merged by the colimit injection.
However,

Nom(Ī(lim
n<ω

EDn), ĪE2) ∼= Nom(lim
n<ω

ĪEDn, ĪE2) Ī preserves codirected limits

∼= Nom(lim
n<ω

IDn, 2) I = ĪE

∼= Nom(∅, 2) Example 3.5
∼= 1. ◀

We thus restrict our focus to well-behaved subcategories of Nomof . We choose these
subcategories in such way that situations like in Example 3.5, where unrestricted accumulation
of supports results in empty codirected limits, are avoided.

▶ Definition 3.7. A nominal set X is k-bounded, for k ∈ N, if |supp x| ≤ k for every x ∈ X.

For concrete categories C over Nom (or Nomof) we denote by Ck the full subcategory of
C whose underlying objects are k-bounded. For instance, Nomk is the category of k-bounded
nominal sets, and nTopk is the category of k-bounded nominal topological spaces.
▶ Remark 3.8.
1. The full subcategories Nomk ↪→ Nom and Nomof,k ↪→ Nomof are coreflective [28,

Section IV.3]: the coreflector (viz. the right adjoint of the inclusion functor) sends a
nominal set X to its subset Xk = {x ∈ X | |supp x| ≤ k}. Hence Nomk is complete:
limits are formed by taking the limit in Nom and applying the coreflector. Analogously,
Nomof,k is finitely complete.

2. In contrast to Nom, the category Nomk generally fails to be a topos because it is
not cartesian closed. For instance, the functor A#2 × (−) on Nom2 does not preserve
coequalizers, hence it is not a left adjoint.

3. The category Nom is known to be equivalent to the category of pullback-preserving
presheaves I → Set, where I is the category of finite sets and injective func-
tions [36, Theorem 6.8]. By inspecting the proof it is easy to see that this restricts
to an equivalence between Nomk and the category of k-generated pullback-preserving
presheaves I→ Set. Here a presheaf F : I→ Set is k-generated if for every finite set S

and every x ∈ FS there exists a set S′ of cardinality at most k and an injective map
f : S′ → S such that x ∈ Ff [FS′].

With regard to codirected limits, the restriction to bounded nominal sets fixes the issue
arising in Example 3.5:

▶ Lemma 3.9. Codirected limits in Nomk are formed at the level of Set.

We proceed to give a topological characterization of Pro(Nomof,k) in terms of nominal
Stone spaces, generalizing the corresponding result (1.1) for Pro(Setf). To this end, we
introduce suitable nominalizations of the three characteristic properties of Stone spaces:
compactness, Hausdorffness, and existence of a basis of clopens. The nominal version of
compactness comes natural and is compatible with the functors |−|S and orbS of Remark 3.3.

▶ Definition 3.10. An open cover of a nominal topological space (X,O) is a finitely supported
set C ⊆ O that covers X, i.e.

⋃
C = X. A subcover of C is a finitely supported subset of C

that also covers X. A nominal topological space X is compact if every open cover C of X

has an orbit-finite subcover: there exist U1, . . . , Un ∈ C such that X =
⋃n

i=1
⋃

orb Ui.

F. Birkmann, S. Milius, and H. Urbat 114:9

▶ Lemma 3.11. For every nominal topological space X the following conditions are equivalent:
1. The space X is compact.
2. Every uniformly finitely supported open cover of X has a finite subcover.
3. For every finite set S ⊆ A the topological space |X|S is compact.
4. For every finite set S ⊆ A the topological space orbS X is compact.

The Hausdorff property is more subtle: rather than just separation of points, we require
separation of S-orbits (“thick points”) by disjoint S-supported open neighbourhoods.

▶ Definition 3.12. A nominal topological space X is (nominal) Hausdorff if for every finite
set S ⊆ A and every pair x1, x2 ∈ X of points lying in different S-orbits, there exist disjoint
S-supported open sets U1, U2 ⊆ X such that xi ∈ Ui for i = 1, 2.

Note that the nominal Hausdorff condition is clearly equivalent to being able to separate dis-
joint S-orbits: If orbS x1 ≠ orbS x2, then any two disjoint open S-supported neighbourhoods
U1, U2 of x1, x2 satisfy orbS xi ⊆ Ui for i = 1, 2. Note also that orbS x = {x} whenever
supp x ⊆ S, hence the nominal Hausdorff condition implies the ordinary one. For bounded
nominal compact Hausdorff spaces, we have a codirected Tychonoff theorem:

▶ Proposition 3.13. For every codirected diagram of non-empty k-bounded nominal compact
Hausdorff spaces, the limit in nTop is a non-empty k-bounded nominal compact Hausdorff
space.

Finally, having a basis of clopen sets is not sufficient in our setting. To see this, note
that in an ordinary topological space X every clopen subset C ⊆ X can be represented as
C = f−1[A] for some continuous map f : X → Y into a finite discrete space Y and some
subset A ⊆ Y . (In fact, one may always take Y = 2 and A = {1}.) This is no longer true
in the nominal setting, see Remark 3.15 below. Therefore, in lieu of clopens we work with
representable subsets:

▶ Definition 3.14. A subset R ⊆ X of a nominal space X is representable if there exists a
continuous map f : X → Y into an orbit-finite discrete space Y such that R = f−1[A] for
some A ∈ PfsY .

▶ Remark 3.15.
1. Every representable set is clopen, but the converse generally fails. To see this, consider

the discrete space X =
∐

n<ω A#n. We show that for fixed a ∈ A the (clopen) subset
R = {x | a ∈ supp x} ⊆ X is not representable. Towards a contradiction suppose that R

is represented by f : X → Y as R = f−1[A] for some A ∈ PfsY . Since Y is orbit-finite,
we can choose m large enough such that there exists some x ∈ A#m \R ⊆ X for which
supp f(x) ⊊ supp x. Choose a name b ∈ supp x \ supp f(x). Then a, b ̸∈ supp f(x), and
so we have

f((a b) · x) = (a b) · f(x) = f(x).

Since (a b) · x ∈ R, this shows f(x) ∈ A and thus x ∈ R. This contradicts the above
choice of x.

2. If a nominal space X has a basis of representable sets, then we may assume without
loss of generality that the basic open sets are of the form f−1[y] for some f : X → Y

and y ∈ Y , where Y is orbit-finite and discrete. Indeed, if R = f−1[A] for A ∈ PfsY ,
then R =

⋃
y∈A f−1[y]. Moreover, given representable sets Ri = f−1

i [yi], i = 1, 2, the set
R1 ∩R2 is equal to ⟨f1, f2⟩−1[y1, y2] and therefore representable as well. Hence, to show
that representable subsets form a basis it suffices to check whether every open set is a
finitely supported union of subsets of the form f−1[y].

ICALP 2023

114:10 Nominal Topology for Data Languages

▶ Definition 3.16. A nominal Stone space is a nominal compact Hausdorff space with a
basis of representables. We let nStone denote the full subcategory of nTop given by nominal
Stone spaces.

▶ Remark 3.17. Nominal Stone spaces as per Definition 3.16 are conceptually very different
from nominal Stone spaces with N, introduced by Gabbay et al. [17] as the dual of nominal
boolean algebras with N. The latter are equipped with a restriction operator n tightly related
to the freshness quantifier Nof nominal sets, which enables a nominal version of the ultrafilter
theorem and thus a represention of boolean algebras with Nvia spaces of ultrafilters. In
nominal Stone spaces with N, the Hausdorff property is implicit (but would be analogous to
that in standard topology), the basis is given by clopen rather than representable sets, and
the notion of compactness (called n-compactness) considers open covers closed under the
operator n, which are required to have a finite subcover. By this definition, the orbit-finite
discrete space A fails to be compact (the n-cover {{a} | a ∈ A} ∪ {∅} has no finite subcover).
Hence, given that algebraic recognition is based on orbit-finite sets, nominal Stone spaces
with Nare not suitable for a topological interpretion of data languages.

▶ Example 3.18. Every orbit-finite nominal set can be viewed as a nominal Stone space
equipped with the discrete topology. We thus regard Nomof as a full subcategory of nStone.
Nontrivial examples of nominal Stone spaces are given by the spaces of pro-orbit-finite words
introduced later.

Within the class of nominal Stone spaces, representable and clopen subsets coincide:

▶ Lemma 3.19. If X is a nominal Stone space, then every clopen set C ⊆ X is representable.

The following theorem is the key result leading to our topological approach to data languages.

▶ Theorem 3.20. For each k ∈ N, the category of k-bounded nominal Stone spaces is the
Pro-completion of the category of k-bounded orbit-finite nominal sets:

Pro(Nomof,k) = nStonek.

Moreover, k-bounded nominal Stone spaces are precisely the nominal topological spaces arising
as codirected limits of k-bounded orbit-finite discrete spaces.

For k = 0, we recover the corresponding characterization of classical Stone spaces.

4 Nominal Stone Duality

Next, we give a dual characterization of (bounded) nominal Stone spaces. It builds on the
known duality between nominal sets and complete atomic nominal boolean algebras due to
Petrişan [32].

▶ Definition 4.1. A nominal boolean algebra is a nominal set equipped with the structure of a
boolean algebra such that all operations are equivariant. It is (orbit-finitely) complete if every
(orbit-finite) finitely supported subset has a supremum. A subalgebra of an (orbit-finitely)
complete nominal boolean algebra is an equivariant subset closed under boolean operations and
the respective suprema. Let nCofBA and nCBA denote the categories of (orbit-finitely) com-
plete nominal boolean algebras; their morphisms are equivariant homomorphisms preserving
(orbit-finite) suprema.

F. Birkmann, S. Milius, and H. Urbat 114:11

▶ Definition 4.2. An element x ∈ B of a nominal boolean algebra is an atom if x ̸= ⊥
and y < x implies y = ⊥. The (equivariant) set of atoms of B is denoted At B. The
algebra B is atomic if every element is the supremum of all atoms below it; if additionally
At B ∈ Nomof,k we call it k-atomic. If A ⊆ B is a k-atomic subalgebra we write A ≤of,k B.
An algebra B ∈ nCBA is called locally k-atomic if every element of B is contained in some
A ≤of,k B. We denote by nCAkBA ⊆ nCBA the full subcategory of all k-atomic complete
nominal boolean algebras, and nCofAlkBA ⊆ nCofBA denotes the full subcategory of all
locally k-atomic orbit-finitely complete nominal boolean algebras.

▶ Remark 4.3.
1. Orbit-finite completeness is equivalent to the weaker condition that suprema of S-orbits

exist for all finite subsets S ⊆ A. In fact, every S-supported orbit-finite subset X ⊆ B is
a finite union X =

⋃n
i=1 orbS xi of S-orbits, whence

∨
X =

∨n
i=1

∨
orbS xi.

2. Every k-atomic orbit-finitely complete nominal boolean algebra is complete: For every
finitely supported subset X ⊆ B we have

∨
X =

∨
{b ∈ At(B) | ∃(x ∈ X). b ≤ x}, which

is a supremum of an orbit-finite subset.

▶ Theorem 4.4. For each k ∈ N, the category of locally k-atomic orbit-finitely complete
nominal boolean algebras is the Ind-completion of the category of k-atomic complete nominal
boolean algebras:

nCofAlkBA ≃ Ind(nCAkBA).

▶ Theorem 4.5 (Nominal Stone Duality). For each k ∈ N, the category of locally k-atomic
orbit-finitely complete nominal boolean algebras is dual to the category of k-bounded nominal
Stone spaces:

nCofAlkBA ≃op nStonek.

Proof. The category Nom of nominal sets is dually equivalent to the category nCABA of
complete atomic nominal boolean algebras [32]. The duality sends a nominal set X to the
boolean algebra PfsX, equippped with the set-theoretic boolean structure. Conversely, a
complete atomic nominal boolean algebra B is mapped to the nominal set At(B) of its atoms,
and an nCABA-morphism h : C → B to the equivariant map At(B) → At(C) sending
b ∈ At(B) to the unique c ∈ At(C) such that c ≤ h(b). For every k ∈ N the duality clearly
restricts to one between k-bounded orbit-finite nominal sets and k-atomic complete nominal
boolean algebras. Thus Theorem 4.4 and Theorem 3.20 yield

nCofAlkBA ≃ Ind(nCAkBA) ≃op Pro(nCAkBAop) ≃ Pro(Nomof,k) ≃ nStonek. ◀

▶ Remark 4.6. We give an explicit description of the dual equivalence of Theorem 4.5.
1. In the direction nStonek → nCofAlkBA it maps a k-bounded nominal Stone space X

to the nominal boolean algebra Clo(X) of clopens (or representables, see Lemma 3.19).
A continuous map f : X → Y is mapped to the homomorphism f−1 : Clo(Y)→ Clo(X)
taking preimages.

2. The direction nCofAlkBA→ nStonek requires some terminology. A finitely supported
subset F ⊆ B of an algebra B ∈ nCofAlkBA is a nominal orbit-finitely complete prime
filter if (i) F ̸= ∅, (ii) F is upwards closed (x ∈ F ∧ x ≤ y ⇒ y ∈ F), (iii) F is downwards
directed (x, y ∈ F ⇒ x ∧ y ∈ F), and (iv) for every finitely supported k-bounded orbit-
finite subset X ⊆ B such that

∨
X ∈ F , one has X ∩ F ≠ ∅. The equivalence now

maps B ∈ nCofAlkBA to the space Fnp(B) of nominal orbit-finitely complete prime

ICALP 2023

114:12 Nominal Topology for Data Languages

filters of B, whose topology is generated by the basic open sets {F ∈ Fnp(B) | b ∈ F}
for b ∈ B. A morphism h : B → C of nCofAlkBA is mapped to the continuous map
h−1 : Fnp(C)→ Fnp(B) taking preimages.

In Theorem 4.5 we made the support bound k explicit, but we can also leave it implicit.
A nominal Stone space is bounded if it lies in nStonek for some natural number k; similarly,
a locally bounded atomic orbit-finitely complete nominal boolean algebras is an element of
nCofAlkBA for some k.

▶ Corollary 4.7. The category of locally bounded atomic orbit-finitely complete nominal
boolean algebras is dual to the category of bounded nominal Stone spaces.

▶ Remark 4.8. For k = 0 we recover the classical Stone duality between boolean algebras and
Stone spaces. Indeed, 0-bounded nominal Stone spaces are precisely Stone spaces, and locally
0-atomic orbit-finitely complete nominal boolean algebras are precisely boolean algebras.

5 Pro-Orbit-Finite Words

In this section, we generalize the topological characterization of regular languages to data
languages recognizable by orbit-finite nominal monoids [7, 10,13].

▶ Definition 5.1. A nominal monoid M is a monoid object in Nom, that is, it is given by
nominal set M equipped with an equivariant associative multiplication M ×M →M and an
equivariant unit 1 ∈M . Nominal monoids and equivariant monoid homomorphisms form a
category nMon.

As for ordinary monoids, the free monoid generated by Σ ∈ Nom is the nominal set Σ∗ of
finite words (with pointwise group action); its multipliation is concatenation and its unit the
empty word.
▶ Remark 5.2. We emphasize the difference between k-bounded nominal monoids – nominal
monoids whose carrier is k-bounded – and monoid objects in Nomk, which are partial
nominal monoids where the product x · y is defined iff |supp x ∪ supp y| ≤ k.

▶ Definition 5.3. A data language over Σ ∈ Nomof is a finitely supported subset L ⊆ Σ∗.
It is recognizable if there exists an equivariant monoid morphism h : Σ∗ → M with M

orbit-finite and a finitely supported subset P ⊆ M such that L = h−1[P]. In this case, we
say that the morphism h recognizes L.

For example, the equivariant language L0 from the Introduction is recognizable, while the
language L1 is not recognizable.
▶ Remark 5.4.
1. The morphism h can be taken to be surjective; otherwise, take its coimage.
2. Via characteristic functions, data languages correspond precisely to finitely supported

maps L : Σ∗ → 2, where 2 is the two-element nominal set. Recognizablity then states
that L factorizes through some equivariant monoid morphism with orbit-finite codomain.

Recall from Section 2 that the Stone space Σ̂∗ of profinite words over a finite alphabet Σ
is constructed as the limit in Stone ≃ Pro(Setf) of all finite quotient monoids of Σ∗. The
obvious generalization to a nominal alphabet Σ ∈ Nomof , which constructs the limit of
all orbit-finite quotient monoids in Pro(Nomof), is unlikely to yield a useful object since
this category is not concrete (Proposition 3.6); in fact, it is futile from a language-theoretic

F. Birkmann, S. Milius, and H. Urbat 114:13

perspective, cf. Remark 5.15. Instead, our results of Section 3 suggest to restrict the diagram
scheme to Σ∗ ↠ nMonof,k, the poset of k-bounded orbit-finite quotient monoids (where e ≤ e′

iff e′ factorizes through e), and take the limit in Pro(Nomof,k) = nStonek. However, this
diagram is not codirected, so its limit may not be a nominal Stone space. We again focus on
well-behaved (i.e., codirected), subcategories by introducing support bounds.

▶ Definition 5.5. A support bound is a map s : Σ∗ → PA such that s[Σ∗] ⊆ PkA for some
k ∈ N, where PkA = {S ⊆ A | |S| ≤ k}. We usually identify s with its codomain restrictions
to PkA for sufficiently large k. A morphism h : Σ∗ →M of nominal monoids is s-bounded
if supp h(w) ⊆ s(w) for all w ∈ Σ∗; we write h : Σ∗ →s M . We denote by Σ∗ ↠

snMonof,k

the subposet of Σ∗ ↠ nMonof,k given by s-bounded quotient monoids.

▶ Lemma 5.6. For every support bound s, the poset Σ∗ ↠
snMonof,k is codirected.

Proof. Let h : Σ∗ →s Mh and h′ : Σ∗ →s Mh′ be two s-bounded quotients in Σ∗ ↠

snMonof,k.
Form the coimage k : Σ∗ ↠ M of their pairing ⟨h, h′⟩ : Σ∗ →Mh ×Mh′ . Then for all w ∈ Σ∗

supp k(w) = supp(h(w), h′(w)) = supp h(w) ∪ supp h′(w) ⊆ s(w).

Hence, k is a lower bound for h, h′ in the poset Σ∗ ↠

snMonof,k. ◀

▶ Definition 5.7. For an orbit-finite nominal set Σ and a support bound s : Σ∗ → PkA we
define the nominal Stone space Σ̂∗

s to be the limit of the codirected diagram

D : Σ∗ ↠

snMonof,k → nStonek, (e : Σ∗ ↠s M) 7→ |M |,

where |M | is the nominal set underlying M , regarded as a discrete nominal topological space.
The elements of Σ̂∗

s are called the (s-bounded) pro-orbit-finite words over Σ. We denote by
ê : Σ̂∗

s →M the limit projection associated to e : Σ∗ ↠s M in Σ∗ ↠

snMonof,k.

▶ Remark 5.8.
1. One may equivalently define Σ̂∗

s as the limit of the larger cofiltered diagram D′ given by

D′ : Σ∗↓snMonof,k → nStonek, (e : Σ∗ →s M) 7→ |M |,

where Σ∗↓snMonof,k is the category of all equivariant s-bounded monoid morphisms
h : Σ∗ →s M with k-bounded orbit-finite codomain; a morphism from h to h′ : Σ∗ →s M ′

is an equivariant monoid morphism k : M →M ′ such that h′ = k ·h. In fact, the inclusion
Σ∗ ↠

snMonof,k ↪→ Σ∗↓snMonof,k is an initial functor, hence the limits of D and D′

coincide. Since the limit of D′ is formed as in Set (Lemma 3.9), the space Σ̂∗
s is carried by

the nominal set of compatible families (xh)h of D′, and the limit projection ĥ associated
to h : Σ∗ →s M is given by (xh)h 7→ xh.

2. The forgetful functor V : nStonek → Nomk and the inclusion I : Nomk → Nom both
preserve codirected limits. The morphisms Σ∗↓snMonof,k viewed as equivariant functions
form a cone for the diagram IV D′, so there exists a unique equivariant map η : Σ∗ → IV Σ̂∗

s

such that

h =
(
Σ∗ IV Σ̂∗

s IVM
η IV ĥ)

for all h ∈ Σ∗↓snMonof,k.

In more explicit terms, the map η is given by η(w) = (h(w))h for w ∈ Σ∗. For simplicity
we omit I and V and write η : Σ∗ → Σ̂∗

s . The image of η forms a dense subset of Σ̂∗
s . We

note that η is generally not injective since we restrict to a subdiagram Σ∗↓snMonof,k of
the diagram Σ∗↓nMonof ,

ICALP 2023

114:14 Nominal Topology for Data Languages

3. The space Σ̂∗
s is a nominal monoid with product ĥ(x · y) = ĥ(x) · ĥ(y) and unit η(ε), with

ε the empty word. Since the multiplication is readily seen to be continuous, Σ̂∗
s can be

regarded as an object of Mon(nStone), the category of nominal Stone spaces equipped
with a continuous monoid structure and continuous equivariant monoid morphisms.

Now recall from Section 2 that the space Σ̂∗ can be constructed as the metric completion
of Σ∗, where the metric measures the size of separating monoids. We now investigate to what
extent the metric approach applies to the nominal setting, using nominal (pseudo-)metrics;
see Example 3.2.

▶ Definition 5.9. Let s be a support bound on Σ∗. We say that a nominal monoid M

s-separates v, w ∈ Σ∗ if there exists an s-bounded equivariant monoid morphism h : Σ∗ →s M

such that h(v) ̸= h(w). We define a nominal pseudometric ds on Σ∗ by setting

ds(v, w) = sup{ 2−| orb M | | the orbit-finite nominal monoid M s-separates v, w }.

We let Σ∗/ds denote the corresponding nominal metric space, obtained as a quotient space of
the pseudometric space (Σ∗, ds) by identifying v, w if ds(v, w) = 0.

▶ Remark 5.10. In contrast to the classical case, ds is generally not a metric: there may
exist words v ̸= w which are not s-separated by any orbit-finite nominal monoids. For
example, if Σ = A and s(a1 · · · an) = a1 for a1, . . . , an ∈ Σ, then for every s-bounded h

and distinct names a, b, c ∈ A we have h(ab) = h((b c) · ac) = (b c) · h(ac) = h(ac) since
b, c ̸∈ s(ac) ⊇ supp h(ac). Therefore, the additional metrization process is required.
For the next lemma we need some terminology. A nominal metric space is complete if every
finitely supported Cauchy sequence has a limit. A nominal topological space is completely
metrizable if its topology is induced by a complete metric. A subset D ⊆ X of a nominal
metric space is (topologically) dense if every open neighbourhood of a point x ∈ X contains
an element of D.
▶ Remark 5.11. In contrast to classical metric spaces, density is not equivalent to sequential
density (every point x ∈ X is a limit of a finitely supported sequence in D). To see this,
consider the space Aω of finitely supported infinite words with the prefix metric, that is,
d(v, w) = 2−n if n is the length of the longest common prefix of v, w. Let D ⊆ X be the
equivariant subset given by

D = {x ∈ Aω | |supp x| ≥ 2 and |supp x| ≥ |initialblock(x)| },

where initialblock(x) is the longest prefix of x of the form an (a ∈ A). The set D is dense,
but not sequentially dense: aω ∈ Aω is not the limit of any finitely supported sequence in D.

▶ Lemma 5.12.
1. The space Σ̂∗

s is completely metrizable via the complete nominal metric

d̂s(x, y) = sup{ 2−|orb M | | ∃(h : Σ∗ →s M) : ĥ(x) ̸= ĥ(y) }. (5.1)

2. The canonical map η (Remark 5.8) yields a dense isometry η : (Σ∗, ds)→ (Σ̂∗
s, d̂s).

▶ Remark 5.13. In classical topology, it would now be clear that Σ̂∗
s is the metric completion of

the metric space Σ∗/ds, i.e. it satisfies the universal property that every uniformly continuous
map from Σ∗/ds to a complete metric space has a unique uniformly continuous extension
to Σ̂∗

s. However, this rests on the coincidence of topological and sequential density, which
fails over nominal sets as seen in Remark 5.11. We therefore conjecture that Σ̂∗

s is not the
nominal metric completion of Σ∗/ds.

F. Birkmann, S. Milius, and H. Urbat 114:15

By using support bounds, we obtain a topological perspective on recognizable data
languages. Let Recs Σ denote the set of data languages recognized by s-bounded equivariant
monoid morphisms.

▶ Theorem 5.14. For every support bound s : Σ∗ → PkA, the k-bounded nominal Stone space
Σ̂∗

s of s-bounded pro-orbit-finite words is dual to the locally k-atomic orbit-finitely complete
boolean algebra Recs(Σ∗) of s-recognizable languages. In particular, we have the isomorphism

Recs(Σ∗) ∼= Clo(Σ̂∗
s) in nCofAlkBA.

Proof (Sketch). The isomorphism is illustrated by the two diagrams below:

L = h−1[P] Σ∗ M P

η[L] = ĥ−1[P] Σ̂∗
s

⊆ h

η

⊇

⊆
ĥ

η−1[C] = h−1[P] Σ∗ M P= p−1[U]

C = f−1[U] Σ̂∗
s Y U

⊆ h

η ∃p

⊇

⊆

ĥ

f ⊇

In more detail, if L ⊆ Σ∗ is s-recognizable, say L = h−1[P] for an s-bounded morphism
h, then its corresponding clopen is the topological closure η[L] = ĥ−1[P] represented by
the continuous extension ĥ. Conversely, every clopen C ⊆ Σ̂∗

s restricts to an s-recognizable
language η−1[C] ⊆ Σ∗. We get s-recognizability of η−1[C] by factorizing a representation
f : Σ̂∗

s → Y of C through a limit projection ĥ as f = p·ĥ, using that Y is finitely copresentable.
Thus h recognizes η−1[C]. ◀

▶ Remark 5.15. In the proof of Theorem 5.14, finite copresentability of orbit-finite sets
is crucial to recover recognizable languages from representable subsets, highlighting the
importance of working in the Pro-completion Pro(Nomof,k) = nStonek. In a naive approach
one might instead want to consider the limit of the diagram D : Σ∗↓nMonof → nTop of
all equivariant morphisms from Σ∗ to orbit-finite monoids. The resulting space Σ̂∗ is still a
nominal Hausdorff space with a basis of representables, but it generally fails to be compact,
and its representable subsets do not correspond to recognizable data languages. To see
this, consider the space Â∗ and the orbit-finite nominal monoids A≤n (words of length at
most n) with multiplication cutting off after n letters. We denote by hn : A∗ → A≤n and
pk,n : A≤k ↠ A≤n, n ≤ k, the equivariant monoid morphisms given by projection to the first
n letters. For every compatible family x = (xh) ∈ Â∗ its subfamily (xhn

)n∈N corresponds to
a (possibly infinite) word over A with finite support. Hence there exists a largest natural
number N = N(x) such that | supp xhN

| = N . The subsets Cn = {x ∈ Â∗ | N(x) = n},
n ∈ N, are equivariant clopens since Cn = ĥ−1

n [A#n] ∩ ĥ−1
n+1[A≤n+1 \ A#(n+1)]. Thus each

Cn is representable (by a continuous map into the two-element discrete space), non-empty
(since η(w) = (h(w))h ∈ Cn for every word w ∈ A#n ⊆ A∗ of pairwise distinct letters), and
pairwise disjoint. Hence they form a cover of Â∗ that admits no orbit-finite (equivalently,
finite) subcover, showing that Â∗ is not compact. Moreover, the sets CM =

⋃
m∈M Cm, where

M ⊆ N, are equivariant clopens (hence representable) and pairwise distinct. Thus Â∗ has
uncountably many clopens. On the other hand, there exist only countably many recognizable
languages over A (using that, up to isomorphism, there exist only countably many orbit-finite
sets [36, Thm. 5.13] and thus countably many orbit-finite nominal monoids), showing that
there is no bijective correspondence between representable sets in Â∗ and recognizable data
languages over A.

ICALP 2023

114:16 Nominal Topology for Data Languages

6 A Nominal Reiterman Theorem

As an application of pro-orbit-finite methods, we present a nominal extension of Reiterman’s
classical pseudovariety theorem [37]. The latter characterizes classes of finite algebras
presentable by profinite equations as precisely those closed under finite products, subalgebras,
and homomorphic images. This result has been generalized to first-order structures [34]
and, recently, to abstract categories [1, 30]. A key insight for the categorical perspective
is that equations should be formed over projective objects. (Recall that an object X in
a category is projective w.r.t. a class E of morphisms if for all cospans X

f−→ Y
e← Z with

e ∈ E there exists a factorization of f through e.) In Nom, one takes strong nominal sets,
which are projective with respect to support-reflecting quotients (see Definition 6.1.2). For
spaces of pro-orbit-finite words we have the support bound as an additional constraint, which
makes the situation more complex: In a cospan Σ̂∗

s
ĥ−→ N

e
↞ M with e support-reflecting, no

s-bounded factorization of ĥ through e may exist. Surprisingly, there nonetheless exists a
suitable type of quotients for nominal monoids, called MSR quotients, which is independent
of the support bound s.

▶ Definition 6.1. A surjective equivariant morphism e : M ↠ N of nominal monoids is
1. support-preserving if supp e(x) = supp x for every x ∈ X;
2. support-reflecting if for every y ∈ Y there exists x ∈ e−1[y] such that supp x = supp y;
3. multiplicatively support-reflecting (MSR for short) if there exists a nominal submonoid

M ′ ⊆M such that the domain restriction e|M ′ : M ′ → N of e is surjective and support-
preserving.

▶ Remark 6.2. Note that a surjective morphism e is support-reflecting iff it restricts to a
support-preserving surjection e|M ′ for some equivariant subset M ′ ⊆M . For MSR morphisms
one additionally requires that M ′ may be chosen to form a submonoid. So the implications

support-preserving =⇒ multiplicatively support-reflecting =⇒ support-reflecting

hold, but none of the two converses holds in general; for the first one consider the morphism
A∗ ↠ 1 into the trivial monoid, and for the second one see Example 6.11.

▶ Proposition 6.3. A surjective equivariant morphism e : M ↠ N between orbit-finite
nominal monoids is MSR iff all the monoids Σ̂∗

s (where Σ ∈ Nomof is strong and s : Σ∗ → PA
is a support bound) are projective with respect to e in Mon(nStone), with M and N regarded
as discrete spaces.

▶ Definition 6.4. An MSR-pseudovariety of nominal monoids is a class V ⊆ nMonof of
orbit-finite nominal monoids closed under
1. finite products: if M1, . . . , Mn ∈ V, n ∈ N, then M1 × · · · ×Mn ∈ V;
2. submonoids: if M ∈ V and N ⊆M is a nominal submonoid, then N ∈ V:
3. MSR quotients: if M ∈ V and e : M ↠ N is an MSR quotient, then N ∈ V.

▶ Definition 6.5. Let s : Σ∗ → PA be a support bound. A morphic pro-orbit-finite equation,
or morphic proequation for short, is a surjective nStone-morphism φ : Σ̂∗

s ↠ E. An orbit-
finite monoid M satisfies φ if for every s-bounded morphism h : Σ∗ →M , the limit projection
ĥ : Σ̂∗

s →M factorizes through φ in nStonek, for some k ∈ N such that M ∈ Nomof,k and
s corestricts to PkA:

ĥ =
(
Σ̂∗

s E M
φ ∃)

.

F. Birkmann, S. Milius, and H. Urbat 114:17

For a set T of morphic proequations, taken over possibly different Σ̂∗
s, we denote by V(T)

the class of orbit-finite monoids satisfying all proequations in T . A class V of orbit-finite
monoids is presentable by morphic proequations if V = V(T) for some set T of morphic
proequations.

Note that proequations use support bounds, while the definition of an MSR-pseudovariety
does not.

▶ Theorem 6.6 (Nominal Reiterman). A class of orbit-finite nominal monoids is an MSR-
pseudovariety iff it is presentable by morphic proequations.

The main technical observations for the proof are that (i) every orbit-finite set is k-bounded
for some k, hence finitely copresentable in nStonek, and (ii) there are “enough” proequations
in the sense that every orbit-finite nominal monoid is a quotient of some Σ̂∗

s . The quotient is
not necessarily MSR, which entails that abstract pseudovariety theorems [1, 30] do not apply
to our present setting.

We also give a syntactic version of our nominal Reiterman theorem, which uses explicit
proequations in lieu of morphic proequations.

▶ Definition 6.7. An explicit proequation is a pair (x, y) ∈ Σ̂∗
s × Σ̂∗

s for some strong
Σ ∈ Nomof and some support bound s, denoted by x = y. An orbit-finite monoid M satisfies
the explicit proequation x = y if

ĥ(x) = ĥ(y) for every s-bounded equivariant monoid morphism h : Σ∗ →M.

(Here choose a common support size bound k for M and s, so that ĥ lies in nStonek.)

▶ Theorem 6.8 (Explicit Nominal Reiterman). A class of orbit-finite nominal monoids is an
MSR-pseudovariety iff it is presentable by explicit proequations.

▶ Example 6.9. Recall that in a finite monoid M every element m has a unique idempotent
power, denoted by mω. This holds analogously for orbit-finite nominal monoids M [7, Theorem
5.1]: one has mω = m(n·k!)! where n is the number of orbits M and k is the maximum support
size. (The number n · k! is an upper bound on the number of elements of M with any given
finite support [36, Thm. 5.13], hence on the cardinality of the set {mi : i ∈ N}.) The nominal
monoid M is aperiodic if mω ·m = mω for all m ∈M . Languages recognizable by aperiodic
orbit-finite monoids are captured precisely by first-order logic on data words [7, 13]. One
readily verifies that the class of aperiodic orbit-finite monoids forms an MSR-pseudovariety; in
fact, it is closed under all quotients. To present it by pro-orbit-finite equations, note that for
every x ∈ Σ̂∗

s the family xω = (ĥ(x)ω)h is again compatible, hence xω ∈ Σ̂∗
s . If s : Σ∗ → PkA

and h : Σ∗ →s M is an s-bounded equivariant monoid morphism such that M has at most
n orbits, then ĥ(xω) = ĥ(x)ω = ĥ(x)(n·k!)! = ĥ(x(n·k!)!), hence d̂s(xω, x(n·k!)!) < 2−n in the
metric (5.1) on Σ̂∗

s. This shows that xω is the limit of the sequence (x(n·k!)!)n∈N in Σ̂∗
s, and

moreover that the pseudovariety of aperiodic orbit-finite monoids is presented by the explicit
proequations xω · x = xω, where x ∈ Σ̂∗

s and s : Σ∗ → PkA ranges over all support bounds
on strong orbit-finite alphabets. Restricting to k = 0, we recover the well-known description
of aperiodic finite monoids by the (single) profinite equation xω · x = xω.

▶ Remark 6.10. 1. Pseudovarieties of finite monoids admit an alternative equational charac-
terization based on sequences of word equations rather than profinite equations. A word
equation is a pair (v, w) ∈ Σ∗ × Σ∗ of words over some finite alphabet Σ, denoted v = w;
it is satisfied by a monoid M if h(v) = h(w) for every monoid morphism h : Σ∗ → M .

ICALP 2023

114:18 Nominal Topology for Data Languages

More generally, a sequence (v0 = w0, v1 = w1, . . .) of word equations, taken over possibly
different finite alphabets, is eventually satisfied by M if it satisfies all but finitely many of
the equations. As shown by Eilenberg and Schützenberger [15], a class of finite monoids
forms a pseudovariety iff it is presentable by a (single) sequence of word equations.

2. Recently, a nominal version of the Eilenberg-Schützenberger theorem by Urbat and
Milius [44]. They consider nominal word equations (defined as above, where Σ is now
a strong orbit-finite nominal set) and show that sequences of nominal word equations
present precisely weak pseudovarieties, i.e. classes of orbit-finite nominal monoids closed
under finite products, submonoids, and support-reflecting quotients. Clearly every MSR-
pseudovariety is weak, but the converse does not hold; hence over nominal sets, sequences
of word equations and pro-orbit-finite equations are of different expressivity. The example
below illustrates one source of additional expressivity of pro-orbit-finite equations: The
support bound s can control how the support changes during multiplication, which is not
expressible by sequences of word equations.

▶ Example 6.11. An example of an MSR-pseudovariety that is not a weak pseudovariety is
given by the class V of all orbit-finite nominal monoids M such that

∀(m, n ∈M) : supp(mn) = ∅ ⇐⇒ supp(m, n) = ∅. (6.1)

(Note that supp(m, n) = supp m ∪ supp n and that “⇐” always holds by equivariance of
the monoid multiplication.) It is not difficult to prove that V is an MSR-pseudovariety.
To show that V is not a weak pseudovariety, we construct a support-reflecting quotient
under which V is not closed. The nominal set 1 + A = {1}+ {a | a ∈ A} forms a nominal
monoid with multiplication given by projection on the first component and unit 1. We
extend the multiplication to the nominal set M = 1 + A + 1 + A by letting 1 be the unit
and setting x · y = x · y whenever x, y ̸= 1; here overlining is idempotent (x := x). This
makes the multiplication associative and equivariant. Thus, M is a nominal monoid. Now
let N = 1 + A + 0 = {1}+ A + {0} be the nominal monoid with multiplication x · y = 0 for
x, y ̸= 1. Thus 0 is an absorbing element. Letting const0 : 1 + A → 0 denote the constant
map, we have the equivariant surjective map

e = id1+A + const0 : M = (1 + A) + (1 + A) ↠ (1 + A) + 0 = N.

Note that e is a monoid morphism: it maps 1 to 1 and if x, y ̸= 1 then e(x), e(y) ̸= 1 and
hence e(x · y) = e(x · y) = 0 = e(x) · e(y). The quotient e is support-reflecting, but it is not
MSR: the subset 1 + A + 1 ⊆M of support-preserving elements does not form a submonoid
of M . Finally, clearly M satisfies (6.1) while N does not.

7 Conclusion and Future Work

We have introduced topological methods to the theory of data languages, and also explored
some of their subtleties and limitations. Following the spirit of Marshall Stone’s slogan
“always topologize”, the core insight of our paper may be summarized as:

Data languages topologize for bounded supports.

In fact, by restricting to support-bounded orbit-finite nominal sets and analyzing their
Pro-completion, we have shown that fundamental results from profinite topology (notably
Stone duality and the equivalence between profinite spaces and Stone spaces) generalize to
the pro-orbit-finite world. These results are of independent interest; in particular, they are

F. Birkmann, S. Milius, and H. Urbat 114:19

potentially applicable to data languages recognizable by all kinds of orbit-finite structures. For
the case of monoids, we derived a topological interpretation of recognizable data languages via
clopen sets of pro-orbit-finite words, as well as a nominal version of Reiterman’s pseudovariety
theorem characterizing the expressive power of pro-orbit-finite equations.

The foundations laid in the present paper open up a number of promising directions for
future research. One first goal is to develop a fully fledged duality theory for data languages
along the lines of the work of Gehrke et al. [18] on classical regular languages, based on
an extended nominal Stone duality between pro-orbit-finite monoids and nominal boolean
algebras with operators.

Regarding specific applications, we aim to analyze further classes of orbit-finite monoids
in terms of pro-orbit-finite equations, following the lines of Example 6.9, in order to classify
the corresponding data languages. One natural candidate is the class of J -trivial monoids,
with the vision of a nominal version of Simon’s theorem [41] relating J -triviality to existential
first-order logic on data words.

Finally, we aim to extend our topological theory of recognizable data languages, and
the corresponding nominal Reiterman theorem, to algebraic structures beyond orbit-finite
monoids. Potential instances include algebras for a signature Σ, which serve as recognizers
for data tree languages, infinitary structures such as nominal ω-semigroups [45], modeling
languages of infinite data words, and algebraic structures with binders, which we expect to
bear interesting connections to data languages with binders and their automata models [39,43].

References

1 Jiří Adámek, Liang-Ting Chen, Stefan Milius, and Henning Urbat. Reiterman’s theorem on
finite algebras for a monad. ACM Trans. Comput. Log., 22(4):23:1–23:48, 2021.

2 Jiří Adámek and Jiří Rosický. Locally Presentable and Accessible Categories. London Mathem-
atical Society Lecture Note Series. Cambridge University Press, 1994.

3 Jorge Almeida. Profinite semigroups and applications. In Structural Theory of Automata,
Semigroups, and Universal Algebra, pages 1–45. Springer Netherlands, 2005.

4 Jorge Almeida and Alfredo Costa. Profinite topologies. In Jean-Éric Pin, editor, Handbook of
Automata Theory, pages 615–652. European Mathematical Society Publishing House, Zürich,
Switzerland, 2021.

5 Michał Bielecki, Jan Hidders, Jan Paredaens, Jerzy Tyszkiewicz, and Jan Van den Bussche.
Navigating with a browser. In ICALP 2002, volume 2380 of LNCS, pages 764–775. Springer,
2002.

6 Garrett Birkhoff. On the Structure of Abstract Algebras. Mathematical Proceedings of the
Cambridge Philosophical Society, 31(4):433–454, 1935.

7 Mikołaj Bojańczyk. Nominal monoids. Theory Comput. Syst., 53(2):194–222, 2013. doi:
10.1007/s00224-013-9464-1.

8 Mikołaj Bojańczyk. Recognisable languages over monads. In DLT 2015, volume 9168 of LNCS,
pages 1–13. Springer, 2015.

9 Mikołaj Bojańczyk, Bartek Klin, and Sławomir Lasota. Automata theory in nominal sets. Log.
Methods Comput. Sci., 10(3), 2014. doi:10.2168/LMCS-10(3:4)2014.

10 Mikołaj Bojańczyk and Rafał Stefański. Single-use automata and transducers for infinite
alphabets. In ICALP 2020, volume 168 of LIPIcs, pages 113:1–113:14. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ICALP.2020.113.

11 Benedikt Bollig, Peter Habermehl, Martin Leucker, and Benjamin Monmege. A robust class
of data languages and an application to learning. Log. Meth. Comput. Sci., 10(4:19):23pp.,
2014. doi:10.2168/LMCS-10(4:19)2014.

ICALP 2023

https://doi.org/10.1007/s00224-013-9464-1
https://doi.org/10.1007/s00224-013-9464-1
https://doi.org/10.2168/LMCS-10(3:4)2014
https://doi.org/10.4230/LIPIcs.ICALP.2020.113
https://doi.org/10.2168/LMCS-10(4:19)2014

114:20 Nominal Topology for Data Languages

12 Liang-Ting Chen, Jiří Adámek, Stefan Milius, and Henning Urbat. Profinite monads, profinite
equations, and Reiterman’s theorem. In FOSSACS 2019, volume 9634 of LNCS, pages 531–547.
Springer, 2016. doi:10.1007/978-3-662-49630-5_31.

13 Thomas Colcombet, Clemens Ley, and Gabriele Puppis. Logics with rigidly guarded data
tests. Log. Methods Comput. Sci., 11(3), 2015.

14 Samuel Eilenberg. Automata, Languages, and Machines. Elsevier Science, 1974.
15 Samuel Eilenberg and Marcel-Paul Schützenberger. On pseudovarieties. Advances Math.,

10:413–418, 1976.
16 Murdoch James Gabbay. Nominal algebra and the HSP theorem. J. Log. Comput., 19(2):341–

367, 2009. doi:10.1093/logcom/exn055.
17 Murdoch James Gabbay, Tadeusz Litak, and Daniela Petrisan. Stone Duality for Nominal

Boolean Algebras with N. In CALCO 2011, volume 6859 of LNCS, pages 192–207. Springer,
2011. doi:10.1007/978-3-642-22944-2_14.

18 Mai Gehrke, Serge Grigorieff, and Jean-Eric Pin. Duality and equational theory of regular
languages. In ICALP 2008, volume 5126 of LNCS, pages 246–257. Springer, 2008.

19 Mai Gehrke, Serge Grigorieff, and Jean-Eric Pin. A topological approach to recognition. In
ICALP 2010, volume 6199 of LNCS, pages 151–162. Springer, 2010.

20 Mai Gehrke, Daniela Petrişan, and Luca Reggio. The Schützenberger product for syntactic
spaces. In ICALP 2016, volume 55 of LIPIcs, pages 112:1–112:14. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2016.

21 Mai Gehrke, Daniela Petrişan, and Luca Reggio. Quantifiers on languages and codensity
monads. In LICS 2017, pages 1–12. IEEE Computer Society, 2017.

22 Radu Grigore, Dino Distefano, Rasmus Petersen, and Nikos Tzevelekos. Runtime verification
based on register automata. In TACAS 2013, volume 7795 of LNCS, pages 260–276. Springer,
2013. doi:10.1007/978-3-642-36742-7_19.

23 Matthew Hennessy. A fully abstract denotational semantics for the pi-calculus. Theoret. Com-
put. Sci., 278:53–89, 2002. doi:10.1016/S0304-3975(00)00331-5.

24 Michael Kaminski and Nissim Francez. Finite-memory automata. Theor. Comput. Sci.,
134(2):329–363, 1994. doi:10.1016/0304-3975(94)90242-9.

25 Kenneth Krohn and John Rhodes. Algebraic theory of machines. I. Prime decomposition
theorem for finite semigroups and machines. Trans. Am. Math. Soc., 116:450–464, 1965.

26 Klaas Kürtz, Ralf Küsters, and Thomas Wilke. Selecting theories and nonce generation for
recursive protocols. In FSME 2007, pages 61–70. ACM, 2007.

27 Alexander Kurz and Daniela Petrisan. On universal algebra over nominal sets. Math. Struct.
Comput. Sci., 20(2):285–318, 2010. doi:10.1017/S0960129509990399.

28 Saunders MacLane. Categories for the Working Mathematician. Springer-Verlag, 1971.
29 R. McNaughton and S. Papert. Counter-free Automata. M.I.T. Press research monographs.

M.I.T. Press, 1971.
30 Stefan Milius and Henning Urbat. Equational axiomatization of algebras with structure.

In FOSSACS 2019, volume 11425 of LNCS, pages 400–417. Springer, 2019. doi:10.1007/
978-3-030-17127-8_23.

31 Frank Neven, Thomas Schwentick, and Victor Vianu. Finite state machines for strings over
infinite alphabets. ACM Trans. Comput. Log., 5(3):403–435, 2004. doi:10.1145/1013560.
1013562.

32 Daniela Petrişan. Investigations into Algebra and Topology over Nominal Sets. PhD thesis,
University of Leicester, 2012.

33 Jean-Eric Pin. Profinite methods in automata theory. In STACS 2009, volume 3 of LIPIcs,
pages 31–50. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Germany, 2009. doi:10.
4230/LIPIcs.STACS.2009.1856.

34 Jean-Eric Pin and Pascal Weil. A Reiterman theorem for pseudovarieties of finite first-order
structures. Algebra Universalis, 35(4):577–595, 1996.

https://doi.org/10.1007/978-3-662-49630-5_31
https://doi.org/10.1093/logcom/exn055
https://doi.org/10.1007/978-3-642-22944-2_14
https://doi.org/10.1007/978-3-642-36742-7_19
https://doi.org/10.1016/S0304-3975(00)00331-5
https://doi.org/10.1016/0304-3975(94)90242-9
https://doi.org/10.1017/S0960129509990399
https://doi.org/10.1007/978-3-030-17127-8_23
https://doi.org/10.1007/978-3-030-17127-8_23
https://doi.org/10.1145/1013560.1013562
https://doi.org/10.1145/1013560.1013562
https://doi.org/10.4230/LIPIcs.STACS.2009.1856
https://doi.org/10.4230/LIPIcs.STACS.2009.1856

F. Birkmann, S. Milius, and H. Urbat 114:21

35 Nicholas Pippenger. Regular languages and Stone duality. Theory Comput. Syst., 30(2):121–134,
1997. doi:10.1007/s002240000045.

36 Andrew M. Pitts. Nominal Sets: Names and Symmetry in Computer Science. Cambridge
University Press, 2013.

37 Jan Reiterman. The Birkhoff theorem for finite algebras. Algebra Universalis, 14(1):1–10,
1982.

38 Julian Salamanca. Unveiling eilenberg-type correspondences: Birkhoff’s theorem for (finite)
algebras + duality. CoRR, 2017. arXiv:1702.02822.

39 Lutz Schröder, Dexter Kozen, Stefan Milius, and Thorsten Wißmann. Nominal automata with
name binding. In FOSSACS 2017, pages 124–142, 2017.

40 Marcel Paul Schützenberger. On finite monoids having only trivial subgroups. Information
and Control, 8(2):190–194, 1965.

41 Imre Simon. Piecewise testable events. In H. Brakhage, editor, Automata Theory and Formal
Languages, pages 214–222. Springer, 1975.

42 Henning Urbat, Jiří Adámek, Liang-Ting Chen, and Stefan Milius. Eilenberg theorems for free.
In MFCS 2017, volume 83 of LIPIcs, pages 43:1–43:15. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik, 2017. doi:10.4230/LIPIcs.MFCS.2017.43.

43 Henning Urbat, Daniel Hausmann, Stefan Milius, and Lutz Schröder. Nominal Büchi automata
with name allocation. In CONCUR 2021, pages 4:1–4:16, 2021. doi:10.4230/LIPIcs.CONCUR.
2021.4.

44 Henning Urbat and Stefan Milius. Varieties of data languages. In ICALP 2019, volume
132 of LIPIcs, pages 130:1–130:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.
doi:10.4230/LIPIcs.ICALP.2019.130.

45 Thomas Wilke. An Eilenberg theorem for infinity-languages. In ICALP 1991, volume 510 of
LNCS, pages 588–599. Springer, 1991.

ICALP 2023

https://doi.org/10.1007/s002240000045
https://arxiv.org/abs/1702.02822
https://doi.org/10.4230/LIPIcs.MFCS.2017.43
https://doi.org/10.4230/LIPIcs.CONCUR.2021.4
https://doi.org/10.4230/LIPIcs.CONCUR.2021.4
https://doi.org/10.4230/LIPIcs.ICALP.2019.130

Population Protocols with Unordered Data
Michael Blondin #

Department of Computer Science, Université de Sherbrooke, Canada

François Ladouceur #

Department of Computer Science, Université de Sherbrooke, Canada

Abstract
Population protocols form a well-established model of computation of passively mobile anonymous
agents with constant-size memory. It is well known that population protocols compute Presburger-
definable predicates, such as absolute majority and counting predicates. In this work, we initiate
the study of population protocols operating over arbitrarily large data domains. More precisely, we
introduce population protocols with unordered data as a formalism to reason about anonymous crowd
computing over unordered sequences of data. We first show that it is possible to determine whether
an unordered sequence from an infinite data domain has a datum with absolute majority. We then
establish the expressive power of the “immediate observation” restriction of our model, namely
where, in each interaction, an agent observes another agent who is unaware of the interaction.

2012 ACM Subject Classification Theory of computation → Distributed computing models; Theory
of computation → Automata over infinite objects

Keywords and phrases Population protocols, unordered data, colored Petri nets

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.115

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version Full Version: https://arxiv.org/abs/2305.00872

Funding Michael Blondin: Supported by a Discovery Grant from the Natural Sciences and Engin-
eering Research Council of Canada (NSERC), and by the Fonds de recherche du Québec – Nature
et technologies (FRQNT).
François Ladouceur : Supported by a scholarship from the Natural Sciences and Engineering Research
Council of Canada (NSERC), and by the Fondation J.A. De Sève.

Acknowledgements We thank Manuel Lafond for his ideas and feedback in the early phase of our
research. We further thank the anonymous reviewers for their comments and insightful suggestions.

1 Introduction

Context. Population protocols form a well-established model of computation of passively
mobile anonymous agents with constant-size memory [1]. Population protocols allow, e.g.,
for the formal analysis of chemical reaction networks and networks of mobile sensors (see [23]
for a review article on population protocols and more generally on dynamic networks).

In a population protocol, anonymous agents hold a mutable state from a finite set. They
collectively seek to evaluate a predicate on the initial global state of the population. At each
discrete moment, a scheduler picks two agents who jointly update their respective states
according to their current states. Such a scheduler is assumed to be “fair” (or, equivalently,
to pick pairs of agents uniformly at random). Let us illustrate the model with a classical
protocol for the aboslute majority predicate. Consider a population of ℓ (anonymous) agents,
each initialized with either Y or N , that seek to compute whether the number of Y exceeds
the number of N , i.e., to collectively evaluate the predicate φ(#Y,#N) := (#Y > #N). For
example, a population of ℓ = 5 agents may be initialized to {{Y,N, Y, Y,N}}. An update of
two agents occurs according to these four rules:

EA
T
C
S

© Michael Blondin and François Ladouceur;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 115; pp. 115:1–115:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:michael.blondin@usherbrooke.ca
https://orcid.org/0000-0003-2914-2734
mailto:francois.ladouceur@usherbrooke.ca
https://orcid.org/0009-0000-7651-6685
https://doi.org/10.4230/LIPIcs.ICALP.2023.115
https://arxiv.org/abs/2305.00872
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

115:2 Population Protocols with Unordered Data

strong to weak propagation of winning side tiebreaker

{{Y, N}} → {{n, n}}
{{Y, n}} → {{Y, y}}

{{y, n}} → {{n, n}}
{{N, y}} → {{N, n}}

A possible execution from the aforementioned population is {{Y,N, Y, Y,N}} −→ {{Y,N, Y, n, n}}
−→ {{Y, n, n, n, n}} −→ {{Y, y, n, n, n}} −→ · · · −→ {{Y, y, y, y, y}}.

Agents in states {Y, y} believe that the output of φ should be true, while agents in {N,n}
believe that it should be false. Thus, in the above execution, a lasting true-consensus has
been reached by the population (although no agent is locally certain of it).

It is well known that population protocols compute precisely the predicates definable in
Presburger arithmetic, namely first-order logic over the naturals with addition and order.
This was first shown through convex geometry [2], and reproven using the theory of vector
addition systems [15]. For example, this means that, given voting options {1, . . . , k}, there is
a population protocol that determines whether some option i has an absolute majority, i.e.,
whether more than ℓ/2 of the ℓ agents initially hold a common i ∈ {1, . . . , k}.

Since k must be stored in the state-space, such a majority protocol can only handle a fixed
number of voting options. As rules also depend on k, this means that a whole population
would need to be reconfigured in order to handle a larger k, e.g. if new voting options are
made available. This is conceptually impractical in the context of flocks of anonymous mobile
agents. Instead, we propose that the input of an agent can be modeled elegantly as drawn
from an infinite set D, with rules independent from D.

Contribution. In this work, we initiate the study of population protocols operating over
arbitrarily large domains. More precisely, we propose a more general model where each agent
carries a read-only datum from an infinite domain D together with a mutable state from
a finite set. In this setting, a population can, e.g., seek to determine whether there is an
absolute majority datum. For example, if D := {1, 2, 3, . . .}, then the population initialized
with {{(1, x), (1, x), (2, x), (3, x), (1, x)}} should reach a lasting true-consensus, while it should
reach a lasting false-consensus from {{(1, x), (1, x), (2, x), (3, x), (2, x)}}.

As in the standard model, a fair scheduler picks a pair of agents. An interaction occurs
according to a rule of the form {{p, q}} d∼e−−→ {{p′, q′}}, where d, e ∈ D are the data values of the
two agents, and where ∼ ∈ {=, ̸=} compares them. As for states, we assume that arbitrarily
many agents may be initialized with the same datum; and that agents can only compare
data through (in)equality. So, D is not a set of (unique) identifiers and hence agents remain
anonymous as in the standard model.

To illustrate our proposed model of computation, we first show that it can compute the
absolute majority predicate. This means that a single protocol can handle any number of
options in an absolute majority vote. From the perspective of distributed computing, this
provides a framework to reason about anonymous crowd computing over unordered sequences
of data. From the standpoint of computer-aided verification, this opens the possibility of
formally analyzing single protocols (e.g. modeled as colored Petri nets) rather than resorting
to parameterized verification, which is particularly difficult in the context of counter systems.

As a stepping stone towards pinpointing the expressive power of population protocols
with unordered data, we then characterize immediate observation protocols. In this well-
studied restriction, rules have the form {{p, q}} d∼e−−→ {{p, q′}}, i.e. an agent updates its state
by observing another agent (who is unaware of it). In standard population protocols, this
class is known to compute exactly predicates from COUNT∗ [2]. The latter is the Boolean

M. Blondin and F. Ladouceur 115:3

closure of predicates of the form #q ≥ c, where #q counts the number of agents in state q,
and c ∈ N is a constant. In our case, we show that immediate observation protocols compute
exactly interval predicates, which are Boolean combinations of such simple interval predicates:

∃ pairwise distinct d1, d2, . . . , dn ∈ D :
n∧

i=1

m∧
j=1

#(di, qj) ∈ T (i, j), (1)

where #(di, qj) counts agents in state qj with datum di, and each T (i, j) ⊆ N is an interval.
In order to show that immediate observation protocols do not compute more than interval

predicates, we exploit the fact that (finitely supported) data vectors are well-quasi-ordered.
While our approach is inspired by [2], it is trickier to simultaneously deal with the several
sources of unboundedness: number of data values, number of agents with a given datum, and
number of agents with a given state. As a byproduct, we show that the absolute majority
predicate cannot be computed by immediate observation protocols.

To show the other direction, i.e. that interval predicates are computable by immediate
observation protocols, we describe a protocol for simple interval predicates. In contrast
with the standard setting, we need to implement existential quantification. This is achieved
by a data leader election and a global leader election. We call the latter elected agent the
“controller”. Its purpose is to handle the bookkeeping of data leaders choosing their role
in (1). A correction mechanism is carefully implemented so that the population only reaches
a true-consensus upon locking a correct assignment to the existential quantification.

Related work. It has been observed by the verification and concurrency communities that
population protocols can be recast as Petri nets. In particular, this has enabled the automatic
formal analysis of population protocols [15, 7] and the discovery of bounds on their state
complexity [12, 6]. Our inspiration comes from the other direction: we introduce protocols
with data by drawing from the recent attention to colored Petri nets [17, 19, 18]. Our model
corresponds to unordered data Petri nets where the color and number of tokens is invariant.

Population protocols for computing majority and plurality have been extensively studied
(e.g., see [14, 4, 5, 3] for recent results). To the best of our knowledge, the closest work is [16],
where the authors propose space-efficient families of deterministic protocols for variants of
the majority problem including plurality consensus. They consider the k voting options as
“colors” specified by ⌈log k⌉ bits stored within the agents.

Other incomparable models of distributed systems with some sort of data include broadcast
networks of register automata [13], distributed register automata [9], and distributed memory
automata [10]. Such formalisms, inspired by register automata [20], allow identities, control
structures and alternative communication mechanisms; none allowed in population protocols.

Paper organization. Section 2 provides basic definitions and introduces our model. In
Section 3, we present a protocol that computes the absolute majority predicate. Section 4
establishes the expressive power of immediate observation protocols. We conclude in Section 5.
Note that most proofs appear in the appendix of the full version.

2 Preliminaries

We write N and [a..b] to respectively denote sets {0, 1, 2, . . .} and {a, a + 1, . . . , b}. The
support of a multiset m over E is act(m) := {e ∈ E : m(e) > 0} (We use the notation
act(m) rather than supp(m) as we will later refer to “active states”.) We write NE to denote
the set of multisets over E with finite support. The empty multiset, denoted 0, is such that

ICALP 2023

115:4 Population Protocols with Unordered Data

0(e) = 0 for all e ∈ E. Let m,m′ ∈ NE . We write m ≤ m′ iff m(e) ≤ m′(e) for all e ∈ E.
We define m + m′ as the multiset such that (m + m′)(e) := m(e) + m′(e) for all e ∈ E.
The difference, denoted m − m′, is defined similarly provided that m ≥ m′.

2.1 Population protocols with unordered data

A population protocol with unordered data, over an infinite domain D equipped with equality,
is a tuple (Q, δ, I, O) where

Q is a finite set of elements called states,
δ ⊆ Q2 × {=, ̸=} ×Q2 is the set of transitions,
I ⊆ Q is the set of initial states, and
O : Q → {false, true} is the output function.

We refer to an element of D as a datum or as a color. We will implicitly assume throughout
the paper that δ contains ((p, q),∼, (p, q)) for all p, q ∈ Q and ∼ ∈ {=, ̸=}.

A form f is an element from NQ. We denote the set of all forms by F. Given Q′ ⊆ Q, let
f(Q′) :=

∑
q∈Q′ f(q). A configuration is a mapping C from D to F such that supp(C) :=

{d ∈ D : C(d) ̸= 0} is finite, and
∑

d∈D,q∈Q C(d)(q) ≥ 2. We often write C(d)(q) as C(d, q).
Informally, the latter denotes the number of agents with datum d in state q. We extend this
notation to subsets of states: C(d,Q′) := C(d)(Q′). We naturally extend +, − and ≤ to
D → F, e.g. C + C′ is such that (C + C′)(d) := C(d) + C′(d) for all d ∈ D.

Let C be a configuration. We define the active states as the set act(C) := {q ∈ Q :
C(d, q) > 0 for some d ∈ D}. We say that C is initial if act(C) ⊆ I. Given Q′ ⊆ Q, let
|C|Q′ :=

∑
d∈D C(d,Q′) and |C| := |C|Q. The output of C is defined by O(C) := b if O(q) = b

for every q ∈ act(C); and by O(C) = ⊥ otherwise. Informally, O(C) indicates whether all
agents agree on some output b.

▶ Example 1. Let D := { , , , . . .} and Q := {p, q}. Let f := {{p, p, q}} and f ′ := {{q}}.
Let C := { 7→ f , 7→ f ′, 7→ 0, . . .}. We have C(, p) = 2, C(, q) = C(, q) = 1,
C(, p) = C(, p) = C(, q) = 0 and |C|{q} = 2. Configuration C represents a population of
four agents carrying an immutable datum and a mutable state: {{(, p), (, p), (, q), (, q)}}. ◀

For the sake of brevity, given a form f , let fd : D → F be defined by fd(d) := f and
fd(d′) := 0 for every d′ ̸= d. Furthermore, given a state q, let qd : D → F be defined by
qd(d)(q) := 1 and qd(d′)(q′) := 0 for every (d′, q′) ̸= (d, q).

Let C be a configuration and let t = ((p, q),∼, (p′, q′)) ∈ δ. We say that transition t is
enabled in C if there exist d, e ∈ D such that d ∼ e, C ≥ pd + qe. If the latter holds, then t

can be used to obtain the configuration C′ := C − (pd + qe) + (p′
d + q′

e), which we denote
C t−→ C′. We write C −→ C′ to denote that C t−→ C′ holds for some t ∈ δ. We further define
∗−→ as the reflexive-transitive closure of −→.

▶ Example 2. Let O(p) := false, O(q) := true and t := ((p, q),=, (q, q)). Using the notation
of Example 1 to represent configurations, we have:

{{(, p), (, p), (, q), (, q)}} t−→ {{(, p), (, q), (, q), (, q)}} t−→ {{(, q), (, q), (, q), (, q)}}.

Let C, C′ and C′′ denote the three configurations above. We have O(C) = O(C′) = ⊥
and O(C′′) = true. Moreover, transition t is not enabled in C′′ as no datum d ∈ D satisfies
C′′(d, p) ≥ 1 and C′′(d, q) ≥ 1. So, the agents have “converged to a true-consensus”. ◀

M. Blondin and F. Ladouceur 115:5

An execution is an infinite sequence of configurations C0C1 · · · such that C0 −→ C1 −→ · · · .
We say that such an execution converges to output b ∈ {false, true} if there exists τ ∈ N such
that O(Cτ) = O(Cτ+1) = · · · = b. An execution C0C1 · · · is fair if, for every configuration
C′, it is the case that |{i ∈ N : Ci

∗−→ C′}| = ∞ implies |{i ∈ N : Ci = C′}| = ∞. In words,
fairness states that if C′ is reachable infinitely often, then it appears infinitely often along
the execution. Informally, this means that some “progress” cannot be avoided forever.

Let Σ be a nonempty finite set. An input is some M ∈ ND×Σ with
∑

d∈D,σ∈Σ M(d, σ) ≥ 2.
An input M is translated, via a bijective input mapping ι : Σ → I, into the initial configuration
ι(M) :=

∑
d∈D,σ∈Σ

∑M(d,σ)
j=1 ι(σ)d. We say that a protocol computes a predicate φ if, for

every input M, every fair execution starting in ι(M) converges to output φ(M). By abuse of
notation, we sometimes write φ(C0) for φ(ι−1(C0)).

▶ Example 3. Let D := { , , , . . .}, Σ := {x1, . . . , x4}, I := {q1, . . . , q4} and ι(xi) := qi.
The input M := {{(, x1), (, x1), (, x2), (, x2), (, x2), (, x4), (, x1), (, x3)}} yields the initial
configuration ι(M) = { 7→ {{q1, q1, q2, q2, q2, q4}}, 7→ {{q1, q3}}, 7→ 0, . . .}.

Observe that, as for standard protocols, the set of predicates computed by population
protocols with unordered data is closed under Boolean operations. Given a protocol that
computes φ, we obtain a protocol that computes ¬φ by changing the value of O(q) to ¬O(q)
for all q ∈ Q. Given predicates ψ1 and ψ2, respectively computed by protocols (Q1, δ1, I1, O1)
and (Q2, δ2, I2, O2), it is easy to obtain a protocol computing ψ = ψ1 ∧ ψ2 by having both
protocols run in parallel. This is achieved by defining (Q := Q1 ×Q2, δ, I := I1 × I2, O) where

δ contains (((p1, p2), (q1, q2)),∼, ((p′
1, p2), (q′

1, q2))) for every ((p1, q1),∼, (p′
1, q

′
1)) ∈ δ1;

δ contains (((p1, p2), (q1, q2)),∼, ((p1, p
′
2), (q1, q

′
2))) for every ((p2, q2),∼, (p′

2, q
′
2)) ∈ δ2;

O(q1, q2) = O1(q1) ∧O2(q2).

3 A protocol for the majority predicate

Let Σ := {x}. In this section, we present a protocol for the absolute majority predicate
defined as φmaj(M) := ∃d ∈ D : M(d, x) >

∑
d′ ̸=d M(d′, x). Since each input pair has the

form (d, x) with d ∈ D, we omit the “dummy element” x in the informal presentation of the
protocol. Note that for the sake of brevity, we use the term majority instead of absolute
majority for the remainder of this paper.

Our protocol is not unlike the classical (sequential) Boyer–Moore algorithm [11]: we seek
to elect a color as the majority candidate, and then check whether it indeed has the majority.
It is intended to work in stages. In the pairing stage, each unpaired agent seeks to form
a pair with an unpaired agent of a distinct color. For example, if the initial population is
{{ , , , , , , }}, then we (non-deterministically) end up with either of these two pairings:

paired agents agents left unpaired

{{ – , – , – }} {{ }}
{{ – , – }} {{ , , }}

The agents left unpaired must all have the same color d, e.g. “ ” in the above example.
Moreover, if the population has a majority color, then it must be d.

Since the agents are anonymous and have a finite memory, they cannot actually remember
with whom they have been paired. Thus, once a candidate color has been elected, e.g. “ ” in
the above example, there is a grouping stage. In the latter, unpaired agents indicate to agents
of their color that they are part of the candidate majority group. This is done by internally
storing the value “Y ”, which stands for “Yes”. Similarly, unpaired agents indicate to agents
of a distinct color that they are part of the candidate minority group using “N”. Once this
is over, the majority stage takes place using the classical protocol from the introduction.

ICALP 2023

115:6 Population Protocols with Unordered Data

Two issues arise from this idealized description. First, the protocol is intended to work in
stages, but they may occur concurrently due to their distributed nature. For this reason, we
add a correction mechanism:

If an unpaired agent of the candidate majority color d finds a paired agent of color d
(resp. d′ ̸= d) with “N” (resp. “Y ”), then it flips it to “Y ” (resp. “N”);
If an unpaired agent of the candidate majority color d finds a paired agent of color d
(resp. d′ ̸= d) with either “n” or “y”, then it flips it to “Y ” (resp. “N”).

The intermediate value Y (resp. N) must be reverted to Y (resp. N) by finding an agent
that has initially played role Y (resp. N) and is then reset to its original value.

The second issue has to do with the fact that, in even-size populations, all agents may
get paired. In that case, no unpaired agent is left to group the agents. To address this, each
agent carries an “even bit” to indicate its belief on whether some unpaired agent remains.

3.1 States
The set of states is defined as Q := {false, true}3 × {Y,N, Y ,N, y, n}. To ease the reader’s
understanding, we manipulate states with four “macros”. Each macro has a set of possible
values; each state is a combination of values for the different macros.

name values for q ∈ Q value for q ∈ I

pair(q) {false, true} false
grp(q) {false, true} true

name values for q ∈ Q value for q ∈ I

even(q) {false, true} false
maj(q) {Y, N, Y , N, y, n} Y

The input mapping is defined by ι(x) := qI , where qI is the unique state of I. In-
formally, pair(q) indicates whether the agent has been paired; grp(q) indicates whether the
agent belongs to the candidate majority group; maj(q) is the current value of the majority
computation; and even(q) is the even bit.

3.2 Transitions and stages
We describe the protocol by introducing rules corresponding to each stage. Note that a rule
is a structure on which transitions can be based; therefore, a single rule can yield multiple
transitions of the same nature. For convenience, some lemmas are stated before they can
actually be proven, as they require the full set of transitions to be defined first. Proofs in the
appendix take into account the complete list of transitions.

As the set of transitions for the protocol is lengthy, we present it using a “precondition-
update” notation where for any two agents in state p, q ∈ Q, respectively with colors
d1, d2 ∈ D, a single transition whose preconditions on p, q and d1, d2 are met is used. The
result of such an interaction is the agent initially in state p updating its state to p′, where p′

is identical to p except for the specified macros; and likewise for q. To help the readability,
the precondition and update of states p and q are on distinct lines in the forthcoming tables.

3.2.1 Pairing stage
The first rule is used for the pairing stage whose main goal is to match as many agents as
possible with agents of a different color:

rule state precondition color precondition state update

(1) ¬pair(p)
d1 ̸= d2

pair(p′) ∧ even(p′)
¬pair(q) pair(q′) ∧ even(q′)

M. Blondin and F. Ladouceur 115:7

This rule gives rise to the following lemmas concerning the end of the pairing stage and the
nature of unpaired agents, if they exist. For the remainder of the section, let us fix a fair
execution C0C1 · · · where C0 is initial. Moreover, let P := {q ∈ Q : pair(q)} and U := Q \P .

▶ Lemma 4. There exists τ ∈ N such that |Cτ |U = |Cτ+1|U = · · · . Furthermore, for every
i ≥ τ , all unpaired agents of Ci share the same color, i.e. the set {d ∈ D : Ci(d, U) > 0} is
either empty or a singleton.

Let α denote the minimal threshold τ given by Lemma 4, which is informally the “end of
the pairing stage”.

▶ Lemma 5. Let i ∈ N. If φmaj(C0) and d is the majority color, then Ci(d, U) > 0.

3.2.2 Grouping stage
The next set of transitions seeks to correctly set each agent’s group, representing its status
in the computation of the majority. An agent is either part of the candidate majority group
(true), or part of the candidate minority group (false). Note that this group (and its related
majority computing value) are irrelevant if there are no unpaired agents in Cα; this special
case is handled using the even bit, which is ignored for now.

rule state precondition color precondition state update

(2) ¬pair(p)
d1 ̸= d2

none
pair(q) ∧ grp(q) ∧ maj(q) = Y ¬grp(q′) ∧ maj(q′) = N

(3) ¬pair(p)
d1 = d2

none
pair(q) ∧ ¬grp(q) ∧ maj(q) = N grp(q′) ∧ maj(q′) = Y

(4) ¬pair(p)
d1 ̸= d2

none
pair(q) ∧ grp(q) ∧ maj(q) ∈ {y, n} maj(q′) = N

(5) ¬pair(p)
d1 = d2

none
pair(q) ∧ ¬grp(q) ∧ maj(q) ∈ {y, n} maj(q′) = Y

The forthcoming rules below are part of a two-rule combination whose aim is to rectify an
error in grouping assignments. It allows agents who engaged in the computation within the
candidate minority group (resp. majority group) who encountered a currently valid majority
candidate of their color (resp. a different color) to reset their value to Y (resp. N) and their
group to true (resp. false) by finding another agent, also engaged, to do the same. This,
along with the rules described in the next subsection, ensures that the invariant below holds.

Let Qa := {q ∈ Q : maj(q) = a}, QM := {q ∈ Q : grp(q)} and Qm := Q \QM .

▶ Lemma 6. For every i ∈ N, it is the case that |Ci|QY
− |Ci|QN

= |Ci|QM
− |Ci|Qm

.

rule state precondition color precondition state update

(6) grp(p) ∧ maj(p) = N none ¬grp(p′) ∧ maj(p′) = N

¬grp(q) ∧ maj(q) ∈ {y, n} maj(q′) = N

(7) ¬grp(p) ∧ maj(p) = Y none grp(p′) ∧ maj(p′) = Y

grp(q) ∧ maj(q) ∈ {y, n} maj(q′) = Y

(8) grp(p) ∧ maj(p) = N none ¬grp(p′) ∧ maj(p′) = n

¬grp(q) ∧ maj(q) = Y grp(q′) ∧ maj(q′) = n

ICALP 2023

115:8 Population Protocols with Unordered Data

We give the following example to help illustrate the necessity of the intermediate states
Y ,N in the context of the suggested protocol.

▶ Example 7. Let us first consider a possible execution from the initial population
{{ , , , , }}, for which there is no majority datum. Observe that since the number of
agents is odd, in any execution, there will be a datum with an unpaired agent after the
pairing stage. Assume, for the sake of our demonstration, that this datum is blue ().
Entering the grouping stage, this blue agent will eventually let the other agents know that
they are not part of the majority candidate group and, at some point, rule (11) will occur,
leading to all agents permanently with maj(q) ∈ {N,n}. This is summarized in these three
snapshots (where the even bit is omitted for the sake of clarity):

input pair grp maj

p ✓ Y

p ✓ Y

p ✓ Y

p ✓ Y

p ✓ Y

∗−→

input pair grp maj

✓ p N

✓ p N

✓ p N

✓ p N

p ✓ Y

−→

input pair grp maj

✓ p N

✓ p n

✓ p N

✓ p N

p ✓ n

Now, consider a population where a majority datum does indeed exist: {{ , , , , , , }}.
Note that this population is strictly greater than the previous population. Therefore, we can
promptly obtain a configuration similar to the one described above, where two more agents
of datum red () have yet to participate in the computation. Since the computation must
output true, the consensus on {N,n} initiated by the blue agent has to be reverted.

In this case, after the final pairing is done via an interaction between the blue agent ()
and one of the newly introduced red agents (), the error handling first works through rule (4)
or (5): the unpaired red agent () notifies the blue agent () that its group is incorrect
by setting its computation value to N and similarly, it notifies all red agents () who had
previously participated in the (now incorrect) majority stage to switch their computation
value to Y . This is summarized in these three snapshots:

· · ·

input pair grp maj

✓ p N

✓ p n

✓ p N

✓ p N

✓ ✓ n

✓ ✓ Y

p ✓ Y

∗−→

input pair grp maj

✓ ✓ Y

✓ p Y

✓ p N

✓ p N

✓ ✓ N

✓ ✓ Y

p ✓ Y

−→

input pair grp maj

✓ ✓ Y

✓ ✓ n

✓ p N

✓ p N

✓ p n

✓ ✓ Y

p ✓ Y

This inevitably leads each incorrectly grouped agent to rectify its group bit as well as its
computation value, accordingly, through rules (6), (7) or (8). We then have a configuration
for which the grouping stage is over and where either the majority stage is not yet initiated,
or it has been correctly initiated with the right majority candidate. ◀

The following lemmas show that the grouping stage eventually ends if there are unpaired
agents in Cα. Moreover, they show that the majority candidate color d eventually propagates
the majority group to agents of color d, and the minority group to agents of color d′ ̸= d.

M. Blondin and F. Ladouceur 115:9

▶ Lemma 8. Let E be the set of states engaged in the majority computation, i.e. E := {q ∈
Q : maj(q) ∈ {y, n, Y ,N}}. Let EM := E ∩ QM and Em := E ∩ Qm. For every i ∈ N, the
following holds: |Ci|EM

= |Ci|Em
.

▶ Lemma 9. Let d ∈ D. If Cα(d, U) > 0, then there exists some τ ≥ α such that, for all
i ≥ τ , d′ ∈ D and q ∈ act(Ci(d′)), the following holds: grp(q) = (d′ = d).

3.2.3 Majority stage

The last set of transitions emulates a standard population protocol for the majority predicate.
Populations of even size without a majority give rise to a case requiring careful handling.
Indeed, for such a population the pairing stage may leave no unmatched agent. Therefore,
we give the following rules to fix this specific issue.

rule state precondition color precondition state update

(9) ¬pair(p) none none
even(q) ¬even(q′)

(10) pair(p) ∧ even(p) none none
pair(q) ∧ ¬even(q) even(q′)

▶ Lemma 10. There exists τ ≥ α such that for every i ≥ τ and q ∈ act(Ci), it is the case
that even(q) holds iff |Ci|U = 0.

For other populations, a unique candidate color for the majority exists following the
pairing stage. For the predicate to be true, this candidate must have more agents than all of
the other colors combined. This is validated (or invalidated) through the following rules.

rule state pre. col. pre. state update

(11) maj(p) = Y none maj(p′) = n

maj(q) = N maj(q′) = n

(12) maj(p) = Y none none
maj(q) = n maj(q′) = y

rule state pre. col. pre. state update

(13) maj(p) = N none none
maj(q) = y maj(q′) = n

(14) maj(p) = n none none
maj(q) = y maj(q′) = n

▶ Lemma 11. If φmaj(C0) holds, then there exists τ ≥ α such that for every i ≥ τ and
q ∈ act(Ci), it is the case that maj(q) ∈ {Y, y} and ¬even(q) hold.

▶ Lemma 12. If ¬φmaj(C0) holds, then there exists τ ≥ α such that either:
even(q) holds for every i ≥ τ and q ∈ act(Ci); or
maj(q) ∈ {N,n} holds for every i ≥ τ and q ∈ act(Ci).

We define the output of a given state q ∈ Q as O(q) := (maj(q) ∈ {Y, y} ∧ ¬even(q)). The
correctness of the protocol follows immediately from Lemmas 11 and 12:

▶ Corollary 13. There exists τ ∈ N such that O(Cτ) = O(Cτ+1) = · · · = φmaj(C0).

ICALP 2023

115:10 Population Protocols with Unordered Data

4 Immediate observation protocols

We say that a population protocol is immediate observation (IO) if each of its transitions has
the form ((p, q),∼, (p, q′)), i.e. only one agent can update its state by “observing” the other
agent. There is no restriction on ∼, but one can also imagine the datum to be observed.

In this section, we characterize the expressive power of immediate observation protocols.
First, we establish properties of IO protocols regarding truncations, thereby allowing us to
prove that the majority predicate is not computable. Then, we show that IO protocols do
not compute more than interval predicates. Finally, we show that every interval predicate
can be computed by an IO protocol. Before proceeding, let us define interval predicates.

Let ∃̇d1, d2, . . . , dn denote a disjoint existential quantification, i.e. it indicates that di ≠ dj

for all i, j ∈ [1..n] such that i ̸= j. A simple interval predicate, interpreted over inputs from
ND×Σ, where Σ = {x1, . . . , xm}, is a predicate of the form

ψ(M) = ∃̇d1, d2, . . . , dn ∈ D :
n∧

i=1

m∧
j=1

M(di, xj) ∈ T (i, j), (2)

where m,n ∈ N>0, each T (i, j) ⊆ N is a nonempty interval, and for every i ∈ [1..n], there
exists j ∈ [1..m] such that 0 /∈ T (i, j). An interval predicate is a Boolean combination of
simple interval predicates.

4.1 State and form truncations
Given configurations C,C′, we write C ⊑ C′ if there exists an injection ρ : D → D such that
C(d) ≤ C′(ρ(d)) for every d ∈ D. We write C ≡ C′ if C ⊑ C′ and C′ ⊑ C. We say that a
subset of configurations X is upward closed if C ∈ X and C ⊑ C′ implies C′ ∈ X. We say
that a set B is a basis of an upward closed set X if X = {C′ : C ⊑ C′ for some C ∈ B}.

A configuration C is said unstable if either O(C) = ⊥ or there exists C′ such that
C ∗−→ C′ with O(C) ̸= O(C′). Let U denote the set of unstable configurations, and let
Sb := {C : C ̸∈ U , O(C) = b} denote the set of stable configurations with output b. As in
the case of standard protocols (without data) [1], it is simple to see that U is upward closed.
Moreover, since ⊑ is a well-quasi-order, it follows that U has a finite basis.

This allows us to extend the notion of truncations from [1]. A state truncation to k ≥ 1 of
some form f , denoted by τk(f), is the form such that τk(f)(q) := min(f(q), k) for all q ∈ Q.
The concept of state truncations is also extended to configurations: τk(C) is the configuration
such that τk(C)(d) := τk(C(d)) for all d ∈ D. From a sufficiently large threshold, the stability
and output of a configuration remain unchanged under state truncations:

▶ Lemma 14. Let ψ be a predicate computed by a population protocol with unordered data.
Let Sb be the set of stable configurations with output b of the protocol. There exists k ≥ 1
such that, for all b ∈ {0, 1}, we have C ∈ Sb iff τk(C) ∈ Sb.

Given a configuration C and a form f , let #f (C) := |{d ∈ D : C(d) = f}|. Due to the
nature of immediate observation protocols, it is always possible to take a form f of color d
present in an configuration C, duplicate f with a fresh color d′, and have the latter mimic
the behaviour of the former.

▶ Lemma 15. Let C and C′ be configurations such that C ∗−→ C′. For every d ∈ supp(C)
and d′ ∈ D \ supp(C), it is the case that C + (C(d))d′

∗−→ C′ + (C′(d))d′ .
Combined with the fact that U has a finite basis, this allows to show that from some

threshold, duplicating forms with fresh colors does not change the output of the population.

M. Blondin and F. Ladouceur 115:11

▶ Lemma 16. Let ψ be a predicate computed by a population protocol with unordered data.
Let f be a form with act(f) ⊆ I. There exists h(f) ∈ N such that, for all initial configuration
C0 and d ∈ D \ supp(C0) with #f (C0) ≥ h(f), it is the case that ψ(C0 + fd) = ψ(C0).

The form truncation of a configuration C, denoted σ(C), is an (arbitrary) configuration
such that σ(C) ⊑ C and #f (σ(C)) = min(#f (C), h(f)) for every form f , where h(f) is
given by Lemma 16. By Lemma 16, ψ(C0) holds iff ψ(σ(C0)) holds. Moreover, Lemma 16
allows us to show that IO protocols are less expressive than the general model.

▶ Proposition 17. No IO population protocol computes the majority predicate φmaj.

Proof. For the sake of contradiction, suppose that some IO protocol computes φmaj. Let qI

be the unique initial state and let f := {{qI}}. Let h(f) be given by Lemma 16. Let C0 be
an initial configuration such that

C0(d) =
∑h(f)+1

i=1 f holds for a unique datum d ∈ D, and
C0(d′) = f holds for exactly h(f) other data d′ ∈ {d1, d2, . . . , dh(f)}.

We have φmaj(C0) = true, since d has h(f)+1 agents in a population of 2 ·h(f)+1 agents.
Let C′

0 be the initial configuration obtained from C0 by adding a datum d∗ /∈ supp(C0) such
that C′

0(d∗) = f . By Lemma 16, φmaj(C′
0) = φmaj(C0) = true. However, datum d no longer

has a majority in C′
0, which is a contradiction. ◀

4.2 Predicates computed by IO protocols are interval predicates
▶ Theorem 18. Let (Q, δ, I, O) be an immediate observation protocol with unordered data
that computes a predicate ψ. The predicate ψ can be expressed as an interval predicate.

Proof. We will express ψ as a finite Boolean combination of simple interval predicates.
Let h be the mapping given by Lemma 16. Let T := {C : ψ(C) = true} and T1 := {C ∈

T : C(d, q) ≤ k for all d ∈ D, q ∈ Q}. From Lemma 14, we learn that state truncations do
not change the stability of a configuration. So, ψ(C) holds iff

∨
C′∈T1

τk(C) = C′ holds. Let
T2 := {C ∈ T1 : #f (C) ≤ h(f) for all f ∈ F}. It follows from Lemma 16 that ψ(C) holds
iff

∨
C′∈T2

σ(τk(C)) = C′ holds.
The latter is an infinite disjunction. Let us make it finite. Observe that if C ∗−→ C′ and

C ≡ C hold, then there exists C′ ≡ C′ such that C ∗−→ C′. Moreover, note that equivalent
configurations have the same output as they share the same active states. Indeed, C ≡ C iff∧

f∈F #f (C) = #f (C). Hence, for every initial configuration C ≡ C, we have ψ(C) = ψ(C).
Let T2/≡ be the set of all equivalence classes of ≡ on T2, and let T3 be a set that contains
one representative configuration per equivalence class of T2/≡. It is readily seen that ψ(C)
holds iff

∨
C′∈T3

σ(τk(C)) ≡ C′ holds.
Let us argue that T3 is finite. Let Fk := {f ̸= 0 : f(q) ≤ k for all q ∈ Q}. For every

configuration C ∈ T1, each form f with #f (C) > 0 belongs to Fk. As T2 ⊆ T1, this also
holds for configurations of T2. Given C ∈ T2, we have #f (C) ≤ h(f) for all f ∈ Fk, and
#f (C) = 0 for all f /∈ Fk. Thus, as Fk is finite, we conclude that T3 is finite.

Let us now exploit our observations to express ψ as an interval predicate. Let us fix some
C′ ∈ T3. It suffices to explain how to express “σ(τk(C)) ≡ C′”. Indeed, as T3 is finite, we
can conclude by taking the finite disjunction

∨
C′∈T3

σ(τk(C)) ≡ C′.
For every form f ∈ Fk, let lt(f) := {q ∈ Q : f(q) < k}, eq(f) := {q ∈ Q : f(q) = k} and

φf ,d(C) :=
∧

q∈lt(f)

(C(d, q) = f(q)) ∧
∧

q∈eq(f)

(C(d, q) ≥ f(q)).

Observe that φf ,d(C) holds iff τk(C)(d) = f .

ICALP 2023

115:12 Population Protocols with Unordered Data

For every f ∈ Fk such that #f (C′) < h(f), we define this formula, where n := #f (C′):

ψf (C) := ∃̇d1, d2, . . . , dn ∈ D :
n∧

i=1
φf ,di

(C) ∧ ¬∃̇d1, d2, . . . , dn+1 ∈ D :
n+1∧
i=1

φf ,di
(C).

For every f ∈ Fk such that #f (C′) = h(f), we define this formula, where n := #f (C′):

ψf (C) := ∃̇d1, d2, . . . , dn ∈ D :
n∧

i=1
φf ,di

(C).

Observe that ψf is either a simple interval predicate or a Boolean combination of two simple
interval predicates. Note that ψf (C) holds iff #f (σ(τk(C))) = #f (C′) holds. This means
that

∧
f∈Fk

ψf (C) holds iff σ(τk(C)) ≡ C′ holds, and hence we are done. ◀

4.3 An IO protocol for simple interval predicates
As Boolean combinations can be implemented (see end of Section 2.1), it suffices to describe
a protocol for a simple interval predicate of the form (2). We refer to each i ∈ [1..n] as a role.
In the forthcoming set of states Q, we associate to each q ∈ Q an element elem(q) ∈ [1..m].
Each agent’s element is set through the input; e.g. an agent mapped from symbol (, x1) is
initially in a state q such that elem(q) = 1. Let Qj := {q ∈ Q : elem(q) = j}. For any two
configurations Ca and Cb of an execution, any datum d ∈ D and any element j ∈ [1..m], the
invariant Ca(d,Qj) = Cb(d,Qj) holds. We say that d ∈ D matches role i in configuration C
if C(d,Qj) ∈ T (i, j) holds for all j ∈ [1..m]. Let r := max(r1, . . . , rn) + 1, where

ri := max({min T (i, j) : j ∈ [1..m]} ∪ {max T (i, j) : j ∈ [1..m], supT (i, j) < ∞}).

Agents will not need to count beyond value r to decide whether a role is matched.
As for the majority protocol, our simple interval protocol works in stages, each one being

necessary to ensure properties and invariants for the subsequent stages. In the election stage,
a unique controller for the population and a single leader per datum of the support are
selected; the former seeks to distribute a set of roles to the latter.

All agents contribute to the tallying of their immutable element j through the counting
stage. This is done using the “tower method” described in [2], whereby two agents of the
same datum, element and value meet and allow one of the two agents to increment its value.
The maximal value computed in that manner is subsequently communicated to the (unique)
datum leader.

Once the leaders carry correct counts for each element of their respective datum, they
undertake roles that they match in the distribution stage. These roles can be swapped for
other roles (as long as requirements are met) through a process of interrogating the controller.
The controller is constantly notified of selected roles and updates its list of tasks accordingly.

If a fully assigned task list is obtained by the controller, it spreads a true-output throughout
the population in what we call the output propagation stage. If that is not possible, leaders
are in a consistent state of trial-and-error for their role assignments, ultimately failing to
completely fill the task list, leaving the controller free to propagate its false-output.

▶ Example 19. Consider n = m = 2 with T (1, 1) := [2..∞), T (1, 2) := [0..4], T (2, 1) := N,
T (2, 2) := [1..∞). Let M := {{(, x1), (, x1), (, x1), (, x2), (, x1), (, x2)}}. Note that r = 5.
Datum “ ” could match roles 1 and 2, “ ” cannot match any role, and “ ” could match role 2.

M. Blondin and F. Ladouceur 115:13

After executing the protocol for a while, we may end up with the configuration illustrated
in the table below. The third, fourth, fifth and sixth agents contain the correct value for their
datum and element: M(, x1) = 3 and M(, x2) = M(, x1) = M(, x2) = 1. The second
agent has been elected controller. The last three agents have been elected their respective
datum’s leader and have collected the correct counts for each element. Either the -leader or
the -leader (possibly both) has notified the controller that they play role 2.

input val lead ctrl role count of [#x1, #x2] task list for [role 1, role 2]

(, x1) 1
(, x1) 2 ✓ [p, ✓]
(, x1) 3
(, x2) 1 ✓ 2 [3, 1]
(, x1) 1 ✓ [1, 0]
(, x2) 1 ✓ 2 [0, 1]

The -leader may change its mind and decide to play role 1 after noticing the controller
does not have its task 1 assigned. This switches its role to −2. Once the -leader notifies the
controller, its role is set to 0 and (in doubt) the controller considers that role 2 is not assigned
anymore. The -leader then changes its role to 1. Eventually the -leader and -leader notify
the controller that roles 1 and 2 are taken. This is summarized in these three snapshots:

input · · · role · · · task

(, x1)
(, x1) [p, p]
(, x1)
(, x2) −2
(, x1)
(, x2) 2

· · · role · · · task

[p, p]

0

2

· · · role · · · task

[✓, ✓]

1

2
◀

Note that while we rely on stages to describe our protocol, the distributed nature of the
model implies that some stages may interfere with others. Therefore, we present here a list
of potential problems and the way our protocol fixes them.

While leader election is straightforward, role assignment for leaders can happen at any
time before the actual leader is elected. This could lead to the controller being notified of
a role assignment for which no current leader is assigned. Thus, when an agent loses its
leadership status, it reverts its role to a negative value, meaning it will have to inform
the controller of the change before returning to a passive value.
A leader may take a role before having the correct counts. We provide a reset mechanism
through which the leader falls into a “negative role”. This forces it to then contact the
controller and rectify the situation.
A leader may have previously taken a role before realizing it does not actually meet the
requirements. The leader is then forced to convey its mistake to the controller. But the
controller it notifies may not ultimately be the population’s controller. Therefore, after
losing the controller status, an agent has to go to a negative controller state, meaning it
must reset the controller’s tasks before reverting to a passive value.
There may be many leaders with the same role. To prevent deadlocks, we allow a leader
to self-reassign to a new role if it notices the controller does not have the task filled.

ICALP 2023

115:14 Population Protocols with Unordered Data

4.3.1 States
The set of states is defined as Q := {false, true}n+2 × [1..m] × [1..r]m+1 × [−n..n] × {−1, 0, 1}.
For the sake of readability, we specify and manipulate states with these macros:

name values for q ∈ Q values for q ∈ I

elem(q) [1..m] j ∈ [1..m]
val(q) [1..r] 1
out(q) {false, true} false

lead(q) {false, true} true
role(q) [−n..n] 0

countℓ(q) [1..r] 1 if ℓ = j, 0 otherwise

ctrl(q) {−1, 0, 1} 1
taski(q) {false, true} false

The input mapping is defined by ι(xj) := pj , where pj is the unique state of I with
elem(pj) = j. Informally, elem(q) = j indicates that the agent holds the j-th element;
val(q) is the current tally of element elem(q) for the datum of the agent; lead(q) and ctrl(q)
respectively indicate whether an agent is a datum leader or a controller; role(q) indicates the
role for a leader; countj(q) allows a datum leader to maintain the highest count currently
witnessed for element j; taski(q) allows the controller to maintain a list of the currently
matched roles; and out(q) is the current belief of an agent on the output of the protocol.

Note that the rules presented in this section are used to succinctly describe transitions. A
single rule may induce several transitions. Furthermore, for the sake of brevity, we mark rules
allowing mirror transitions with an asterisk (∗) next to the rule number. Mirror transitions
are transitions in which an agent may observe its own state and react accordingly. Thus,
a ∗-rule generating transitions whose precondition formula is A(p) ∧B(q) also generates a
transition whose precondition is A(q) ∧ B(q), effectively making state p the state of any
“dummy agent”. Note that q is still the only state to be updated to q′.

4.3.2 Leader and controller election
The first two rules are meant to elect a unique leader per datum present in the population,
and a unique global controller for the whole population. For the remainder of the section, let
us fix a fair execution C0C1 · · · where C0 is initial.

rule state precondition color precondition state update

(1) lead(p)
d1 = d2

role(q′) = −|role(q)|
lead(q) ¬lead(q′)

(2) ctrl(p) = 1 none
ctrl(q) = 1 ctrl(q′) = −1

Note that rule (1) guarantees that the agent losing leadership has its role set to a non-
positive value. Similarly, rule (2) pushes the non-controller into a temporary intermediate state
for its controller value, i.e. −1. Let QL := {q ∈ Q : lead(q)} and QC := {q ∈ Q : ctrl(q) = 1}.
The following lemma identifies the end of both elections.

▶ Lemma 20. There exists τ ∈ N such that |Cτ |QC
= |Cτ+1|QC

= · · · = 1, and |Cτ (d)|QL
=

|Cτ+1(d)|QL
= · · · = 1 for every d ∈ D.

M. Blondin and F. Ladouceur 115:15

Let α denote the minimal value τ given by Lemma 20, which we refer to as the end of
the election stage.

4.3.3 Element count by datum
The next rules allow to count how many agents with a common datum hold the same element.
This count is ultimately communicated to the datum leader. Given d ∈ D and τ ∈ N, we say
that a state q ∈ Q is (d, j)-valid if elem(q) = j and val(q) = min(Cτ (d,Qj), r).

rule state precondition color precondition state update

(3) elem(p) = elem(q)
d1 = d2val(q) = val(p) < r val(q′) = val(q) + 1

(4)*
countelem(p)(q) < val(p)

d1 = d2

countelem(p)(q′) = val(p)
lead(q) if (role(q) > 0 ∧

val(p) /∈ T (role(q), elem(p))):
role(q′) = −role(q)

Observe another correction mechanism; rule (4) guarantees that a leader with an assigned
role i > 0 verifies that it can still assume role i after updating its count. The following
lemmas explain that the correct counts are eventually provided to each datum leader.

▶ Lemma 21. There exists τ ∈ N such that, for every τ ′ ≥ τ , d ∈ supp(Cτ ′) and j ∈ [1..m],
if C0(d,Qj) > 0, then Cτ ′(d, q) > 0 holds for some (d, j)-valid state q.

▶ Lemma 22. There exists τ ≥ α such that, for every τ ′ ≥ τ , d ∈ supp(Cτ ′), j ∈ [1..m] and
q ∈ act(Cτ ′(d)) ∩QL, it is the case that countj(q) = min(Cτ ′(d,Qj), r).

Let τ ′ and τ ′′ denote the minimal values τ given by Lemmas 21 and 22. From now on,
let β := max(τ ′, τ ′′).

4.3.4 Role distribution and task tracking
The following rules assign roles to leaders and allow leaders to reset their roles when possible,
therefore preventing deadlocks. In rule (5), variable i can take any value from [1..n].

rule state precondition color precondition state update

(5)
lead(q)

nonerole(q) = 0 role(q′) = i∧
j∈[1..m] countj(q) ∈ T (i, j)

(6)*

ctrl(p)

none
lead(q)

role(q) = i > 0 role(q′) = −i∨
i′∈[1..n]\{i}

(
¬taski′ (p)∧∧

j∈[1..m] countj(q) ∈ T (i′, j)
)

This induces the following result, informally meaning that if a leader has taken a role,
then it currently believes it can fill this role.

▶ Lemma 23. For every τ ∈ N, j ∈ [1..m] and q ∈ act(Cτ) ∩QL such that role(q) > 0, it is
the case that countj(q) ∈ T (role(q), j).

ICALP 2023

115:16 Population Protocols with Unordered Data

These rules allow to update the controller’s task list and reset roles when needed:

rule state precondition color precondition state update

(7)* role(p) ̸= 0 none task|role(p)|(q′) = (role(p) > 0)
ctrl(q) = 1

(8)*
ctrl(p) = 1

nonerole(q) < 0 role(q′) = 0
¬task|role(q)|(p)

To illustrate how rules (5) through (8) operate, we give the following example.

▶ Example 24. Recall Example 19, introduced earlier. Consider the configuration of its first
snapshot. While we initially gave intuitions on how role reassignment might happen from
this specific configuration, we give here a deeper analysis of the important configurations
involved in this process.

input val lead ctrl role count of [#x1, #x2] task list for [role 1, role 2]

(, x1) 1
(, x1) 2 ✓ [p, ✓]
(, x1) 3
(, x2) 1 ✓ 2 [3, 1]
(, x1) 1 ✓ [1, 0]
(, x2) 1 ✓ 2 [0, 1]

In the above, the -leader currently believes (rightly so) that it can fill roles 1 and 2.
Observe that the controller has task 2 assigned. However, its task 1 is still unassigned.
Therefore, rule (6) allows the -leader to initiate its reassignment by setting its role to −2
through an interaction with the controller. This leads to the following configuration:

input val lead ctrl role count of [#x1, #x2] task list for [role 1, role 2]

(, x1) 1
(, x1) 2 ✓ [p, ✓]
(, x1) 3
(, x2) 1 ✓ −2 [3, 1]
(, x1) 1 ✓ [1, 0]
(, x2) 1 ✓ 2 [0, 1]

Since its role is set to −2, the -leader now seeks to inform the controller that it should
unassign role 2 from its task list. This is achieved on their next meeting through rule (7).
We then have this next configuration:

input val lead ctrl role count of [#x1, #x2] task list for [role 1, role 2]

(, x1) 1
(, x1) 2 ✓ [p, p]
(, x1) 3
(, x2) 1 ✓ −2 [3, 1]
(, x1) 1 ✓ [1, 0]
(, x2) 1 ✓ 2 [0, 1]

M. Blondin and F. Ladouceur 115:17

Note that this does not mean that no leader currently has its role set to 2; indeed, the
-leader still has its role set to 2. Let us now assume that, immediately after reaching this

configuration, the -leader and the controller meet again. Since the -leader observes that
the controller no longer has its task 2 assigned, it can assume that either it unassigned it,
some other leader did, or it was never assigned. In any case, it can safely reset its role to 0
through rule (8), giving us the following configuration:

input val lead ctrl role count of [#x1, #x2] task list for [role 1, role 2]

(, x1) 1
(, x1) 2 ✓ [p, p]
(, x1) 3
(, x2) 1 ✓ 0 [3, 1]
(, x1) 1 ✓ [1, 0]
(, x2) 1 ✓ 2 [0, 1]

Observe that the -leader could have met the controller before the -leader, thereby
reassigning role 2 in the controller’s task list and undoing the -leader’s work. This would
only delay the -leader’s role resetting; through fairness, it would not endlessly prevent it.

From this last configuration, since the -leader’s role is set to 0, it is now free to take any
role it can fill through rule (5). Let us assume, for the sake of brevity, that it takes on role 1:

input val lead ctrl role count of [#x1, #x2] task list for [role 1, role 2]

(, x1) 1
(, x1) 2 ✓ [p, p]
(, x1) 3
(, x2) 1 ✓ 1 [3, 1]
(, x1) 1 ✓ [1, 0]
(, x2) 1 ✓ 2 [0, 1]

Suppose the -leader meets the controller before the -leader. Then, rule (7) assigns task 2
in the controller’s task list. The -leader can no longer reset its role through rule (6) because
the controller has task 2 already assigned. Therefore, when the -leader eventually meets the
controller again, it finally assigns task 1 to its task list via rule (7).

input val lead ctrl role count of [#x1, #x2] task list for [role 1, role 2]

(, x1) 1
(, x1) 2 ✓ [✓, ✓]
(, x1) 3
(, x2) 1 ✓ 1 [3, 1]
(, x1) 1 ✓ [1, 0]
(, x2) 1 ✓ 2 [0, 1]

◀

The following lemmas show that at some point in the execution, a configuration is reached
where agents who are neither leaders nor controllers no longer interact with other agents.

▶ Lemma 25. There exists some τ ∈ N such that for every τ ′ ≥ τ and q ∈ act(Cτ ′) \QL, it
is the case that role(q) = 0.

ICALP 2023

115:18 Population Protocols with Unordered Data

rule state precondition color precondition state update

(9) ctrl(p) = −1 none
ctrl(q) = 1

∧
i∈[1..m] ¬taski(q′)

(10)
ctrl(p) = 1

nonectrl(q) = −1 ctrl(q′) = 0∧
i∈[1..m] ¬taski(p)

▶ Lemma 26. There exists τ ≥ α such that for every τ ′ ≥ τ and q ∈ act(Cτ ′), it is the case
that ctrl(q) ∈ {0, 1}.

Let τ ′ and τ ′′ denote the minimal values τ given by Lemmas 25 and 26. From now on, let
γ := max(β, τ ′, τ ′′). Informally, this delimits the configuration where there are no negative
controllers, therefore preventing recurring resets of the controller’s tasks through rule (9).
Finally, the following lemma argues that past Cγ , a controller can only have a task set to true
if some leader is currently assuming the corresponding role (whether positive or negative).

▶ Lemma 27. For every τ ≥ γ, i ∈ [1..n] and q ∈ act(Cτ) ∩ QC such that taski(q) holds,
there exists q′ ∈ act(Cτ) such that |role(q′)| = i.

4.3.5 Output propagation
The last rule allows the controller to communicate to the other agents whether it currently
has its task list completely assigned or not. Note that the output of a state q is precisely the
value of out(q), i.e. O(q) := out(q).

rule state precondition color precondition state update

(11)* ctrl(p) none out(q′) =
∧n

i=1 taski(p)

▶ Lemma 28. It is the case that ψ(C0) holds iff there exists some τ ≥ γ such that for every
τ ′ ≥ τ , there exists q ∈ act(Cτ ′) ∩QC such that

∧
i∈[1..n] taski(q) holds.

▶ Corollary 29. There exists τ ∈ N such that O(Cτ) = O(Cτ+1) = · · · = ψ(C0).

5 Conclusion

In this article, we introduced population protocols with unordered data; we presented such
a protocol that computes majority over an infinite data domain; and we established the
expressive power of immediate observation protocols: they compute interval predicates.

This work initiates the study of population protocols operating over arbitrarily large
domains. Hence, this opens the door to numerous exciting questions, e.g. on space-efficient
and time-efficient protocols. In particular, the expressive power of our model remains open.

There exist results on logics over data multisets (e.g., see [22, 24]). In particular, the
author of [22] provides a decidable logic reminiscent of Presburger arithmetic. It appears
plausible that population protocols with unordered data compute (perhaps precisely) this
logic. While we are fairly confident that remainder and threshold predicates with respect to
the data counts can be computed in our model, the existential quantification, arising in the
(non-ambiguous) solved forms of [22], seems more challenging to implement than the one of
simple interval predicates.

M. Blondin and F. Ladouceur 115:19

Our model further relates to logic and automata on data words: inputs of a protocol
with data can be seen as data words where Q is the alphabet and D is the data domain.
Importantly, these data words are commutative, i.e., permutations do not change acceptance.
For example, the logic FO2(+1,∼, <) of [8] allows to specify non-commutative properties
such as “there is a block of a’s followed by a block of b’s”. In this respect, this logic is too
“strong”. It is also too “weak” as it cannot express “for each datum, the number of a’s is
even”. For this same reason, EMSO2(+1,∼), and equivalently weak data automata [21], is
too “weak”. The logic EMSO2

#(+1,∼), and equivalently commutative data automata [25],
can express the latter, but, again, the successor relation allows to express non-commutative
properties on letters. Thus, while models related to data words have been studied and could
influence research on the complete characterization of the expressive power of our model, we
have yet to directly connect them to our model.

References
1 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Computation

in networks of passively mobile finite-state sensors. Distributed Computing, 18(4):235–253,
2006. doi:10.1007/s00446-005-0138-3.

2 Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. The computational
power of population protocols. Distributed Computing, 20(4):279–304, 2007. doi:10.1007/
s00446-007-0040-2.

3 Gregor Bankhamer, Petra Berenbrink, Felix Biermeier, Robert Elsässer, Hamed Hosseinpour,
Dominik Kaaser, and Peter Kling. Population protocols for exact plurality consensus: How a
small chance of failure helps to eliminate insignificant opinions. In Proc. 41st ACM Symposium
on Principles of Distributed Computing (PODC), pages 224–234, 2022. doi:10.1145/3519270.
3538447.

4 Petra Berenbrink, Felix Biermeier, Christopher Hahn, and Dominik Kaaser. Loosely-stabilizing
phase clocks and the adaptive majority problem. In Proc. 1st Symposium on Algorithmic
Foundations of Dynamic Networks (SAND), pages 7:1–7:17, 2022.

5 Petra Berenbrink, Robert Elsässer, Tom Friedetzky, Dominik Kaaser, Peter Kling, and Tomasz
Radzik. A population protocol for exact majority with O(log5/3 n) stabilization time and
Θ(log n) states. In Proc. 32nd International Symposium on Distributed Computing (DISC),
pages 10:1–10:18, 2018. doi:10.4230/LIPIcs.DISC.2018.10.

6 Michael Blondin, Javier Esparza, Blaise Genest, Martin Helfrich, and Stefan Jaax. Succinct
population protocols for Presburger arithmetic. In Proc. 37th International Symposium on
Theoretical Aspects of Computer Science (STACS), pages 40:1–40:15, 2020. doi:10.4230/
LIPIcs.STACS.2020.40.

7 Michael Blondin, Javier Esparza, Stefan Jaax, and Philipp J. Meyer. Towards efficient
verification of population protocols. Formal Methods in System Design (FMSD), 57(3):305–
342, 2021. doi:10.1007/s10703-021-00367-3.

8 Mikołaj Bojańczyk, Claire David, Anca Muscholl, Thomas Schwentick, and Luc Segoufin.
Two-variable logic on data words. ACM Transactions on Computational Logic (TOCL),
12(4):27:1–27:26, 2011. doi:10.1145/1970398.1970403.

9 Benedikt Bollig, Patricia Bouyer, and Fabian Reiter. Identifiers in registers – describing
network algorithms with logic. In Proc. 22nd International Conference on Foundations
of Software Science and Computation Structures (FoSSaCS), pages 115–132, 2019. doi:
10.1007/978-3-030-17127-8_7.

10 Benedikt Bollig, Fedor Ryabinin, and Arnaud Sangnier. Reachability in distributed memory
automata. In Proc. 29th EACSL Annual Conference on Computer Science Logic (CSL), pages
13:1–13:16, 2021. doi:10.4230/LIPIcs.CSL.2021.13.

11 Robert S. Boyer and J. Strother Moore. Mjrty: A fast majority vote algorithm. In Automated
Reasoning: Essays in Honor of Woody Bledsoe, 1991.

ICALP 2023

https://doi.org/10.1007/s00446-005-0138-3
https://doi.org/10.1007/s00446-007-0040-2
https://doi.org/10.1007/s00446-007-0040-2
https://doi.org/10.1145/3519270.3538447
https://doi.org/10.1145/3519270.3538447
https://doi.org/10.4230/LIPIcs.DISC.2018.10
https://doi.org/10.4230/LIPIcs.STACS.2020.40
https://doi.org/10.4230/LIPIcs.STACS.2020.40
https://doi.org/10.1007/s10703-021-00367-3
https://doi.org/10.1145/1970398.1970403
https://doi.org/10.1007/978-3-030-17127-8_7
https://doi.org/10.1007/978-3-030-17127-8_7
https://doi.org/10.4230/LIPIcs.CSL.2021.13

115:20 Population Protocols with Unordered Data

12 Philipp Czerner, Roland Guttenberg, Martin Helfrich, and Javier Esparza. Fast and succinct
population protocols for Presburger arithmetic. In Proc. 1st Symposium on Algorithmic
Foundations of Dynamic Networks (SAND), pages 11:1–11:17, 2022. doi:10.4230/LIPIcs.
SAND.2022.11.

13 Giorgio Delzanno, Arnaud Sangnier, and Riccardo Traverso. Adding data registers to
parameterized networks with broadcast. Fundamenta Informaticae, 143(3-4):287–316, 2016.
doi:10.3233/FI-2016-1315.

14 David Doty, Mahsa Eftekhari, Leszek Gasieniec, Eric E. Severson, Przemyslaw Uznanski,
and Grzegorz Stachowiak. A time and space optimal stable population protocol solving
exact majority. In Proc. 62nd IEEE Annual Symposium on Foundations of Computer Science
(FOCS), pages 1044–1055, 2021. doi:10.1109/FOCS52979.2021.00104.

15 Javier Esparza, Pierre Ganty, Jérôme Leroux, and Rupak Majumdar. Verification of population
protocols. Acta Informatica, 54(2):191–215, 2017. doi:10.1007/s00236-016-0272-3.

16 Leszek Gasieniec, David D. Hamilton, Russell Martin, Paul G. Spirakis, and Grzegorz Stachow-
iak. Deterministic population protocols for exact majority and plurality. In Proc. 20th

International Conference on Principles of Distributed Systems (OPODIS), pages 14:1–14:14,
2016. doi:10.4230/LIPIcs.OPODIS.2016.14.

17 Utkarsh Gupta, Preey Shah, S. Akshay, and Piotr Hofman. Continuous reachability for
unordered data Petri nets is in PTime. In Proc. 22nd International Conference on Foundations
of Software Science and Computation Structures (FoSSaCS), pages 260–276, 2019. doi:
10.1007/978-3-030-17127-8_15.

18 Piotr Hofman, Slawomir Lasota, Ranko Lazic, Jérôme Leroux, Sylvain Schmitz, and Patrick
Totzke. Coverability trees for Petri nets with unordered data. In Proc. 19th International
Conference on Foundations of Software Science and Computation Structures (FoSSaCS), pages
445–461, 2016. doi:10.1007/978-3-662-49630-5_26.

19 Piotr Hofman, Jérôme Leroux, and Patrick Totzke. Linear combinations of unordered data
vectors. In Proc. 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS),
pages 1–11, 2017. doi:10.1109/LICS.2017.8005065.

20 Michael Kaminski and Nissim Francez. Finite-memory automata. Theoretical Computer
Science, 134(2):329–363, 1994. doi:10.1016/0304-3975(94)90242-9.

21 Ahmet Kara, Thomas Schwentick, and Tony Tan. Feasible automata for two-variable logic
with successor on data words. In Proc. 6th International Conference on Language and
Automata Theory and Applications (LATA), volume 7183, pages 351–362, 2012. doi:10.1007/
978-3-642-28332-1_30.

22 Denis Lugiez. Multitree automata that count. Theoretical Computer Science, 333(1-2):225–263,
2005. doi:10.1016/j.tcs.2004.10.023.

23 Othon Michail and Paul G. Spirakis. Elements of the theory of dynamic networks. Commu-
nications of the ACM, 61(2):72, 2018. doi:10.1145/3156693.

24 Ruzica Piskac and Viktor Kuncak. Decision procedures for multisets with cardinality con-
straints. In Proc. 9th International Conference on Verification, Model Checking, and Abstract
Interpretation (VMCAI), pages 218–232, 2008. doi:10.1007/978-3-540-78163-9_20.

25 Zhilin Wu. Commutative data automata. In Proc. 26th International Workshop/21st Annual
Conference of the EACSL on Computer Science Logic (CSL), volume 16, pages 528–542, 2012.
doi:10.4230/LIPIcs.CSL.2012.528.

https://doi.org/10.4230/LIPIcs.SAND.2022.11
https://doi.org/10.4230/LIPIcs.SAND.2022.11
https://doi.org/10.3233/FI-2016-1315
https://doi.org/10.1109/FOCS52979.2021.00104
https://doi.org/10.1007/s00236-016-0272-3
https://doi.org/10.4230/LIPIcs.OPODIS.2016.14
https://doi.org/10.1007/978-3-030-17127-8_15
https://doi.org/10.1007/978-3-030-17127-8_15
https://doi.org/10.1007/978-3-662-49630-5_26
https://doi.org/10.1109/LICS.2017.8005065
https://doi.org/10.1016/0304-3975(94)90242-9
https://doi.org/10.1007/978-3-642-28332-1_30
https://doi.org/10.1007/978-3-642-28332-1_30
https://doi.org/10.1016/j.tcs.2004.10.023
https://doi.org/10.1145/3156693
https://doi.org/10.1007/978-3-540-78163-9_20
https://doi.org/10.4230/LIPIcs.CSL.2012.528

Network Satisfaction Problems Solved by
k-Consistency
Manuel Bodirsky # Ñ

Institut für Algebra, TU Dresden, Germany

Simon Knäuer # Ñ

Institut für Algebra, TU Dresden, Germany

Abstract
We show that the problem of deciding for a given finite relation algebra A whether the network
satisfaction problem for A can be solved by the k-consistency procedure, for some k ∈ N, is
undecidable. For the important class of finite relation algebras A with a normal representation,
however, the decidability of this problem remains open. We show that if A is symmetric and has a
flexible atom, then the question whether NSP(A) can be solved by k-consistency, for some k ∈ N, is
decidable (even in polynomial time in the number of atoms of A). This result follows from a more
general sufficient condition for the correctness of the k-consistency procedure for finite symmetric
relation algebras. In our proof we make use of a result of Alexandr Kazda about finite binary
conservative structures.

2012 ACM Subject Classification Theory of computation → Finite Model Theory; Theory of
computation → Problems, reductions and completeness; Theory of computation → Complexity
theory and logic

Keywords and phrases Constraint Satisfaction, Computational Complexity, Relation Algebras,
Network Satisfaction, Qualitative Reasoning, k-Consistency, Datalog

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.116

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version Full Version: https://arxiv.org/abs/2304.12871 [13]

Funding Manuel Bodirsky: The author has received funding from the European Union (ERC Grant
NO. 681988, CSP-Infinity and ERC Synergy Grant No. 101071674, POCOCOP).
Simon Knäuer : The author was supported by DFG Graduiertenkolleg 1763 (QuantLA).

1 Introduction

Many computational problems in qualitative temporal and spatial reasoning can be phrased
as network satisfaction problems (NSPs) for finite relation algebras. Such a network consists
of a finite set of nodes, and a labelling of pairs of nodes by elements of the relation algebra.
In applications, such a network models some partial (and potentially inconsistent) knowledge
that we have about some temporal or spatial configuration. The computational task is to
replace the labels by atoms of the relation algebra such that the resulting network has an
embedding into a representation of the relation algebra. In applications, this embedding
provides a witness that the input configuration is consistent (a formal definition of relation
algebras, representations, and the network satisfaction problem can be found in Section 2.1).
The computational complexity of the network satisfaction problem depends on the fixed
finite relation algebra, and is of central interest in the mentioned application areas. Relation
algebras have been studied since the 40’s with famous contributions of Tarski [41], Lyndon [34],
McKenzie [37, 38], and many others, with renewed interest since the 90s [7, 11, 22, 25–27,30].

EA
T
C
S

© Manuel Bodirsky and Simon Knäuer;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 116; pp. 116:1–116:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:manuel.bodirsky@tu-dresden.de
https://tu-dresden.de/mn/math/algebra/bodirsky
https://orcid.org/0000-0001-8228-3611
mailto:simon.knaeuer@tu-dresden.de
https://tu-dresden.de/mn/math/algebra/das-institut/beschaeftigte/simon-knaeuer
https://doi.org/10.4230/LIPIcs.ICALP.2023.116
https://arxiv.org/abs/2304.12871
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

116:2 Network Satisfaction Problems Solved by k-Consistency

One of the most prominent algorithms for solving NSPs in polynomial time is the so-called
path consistency procedure. The path consistency procedure has a natural generalisation
to the k-consistency procedure, for some fixed k ≥ 3. Such consistency algorithms have a
number of advantages: e.g., they run in polynomial time, and they are one-sided correct, i.e.,
if they reject an instance, then we can be sure that the instance is unsatisfiable. Because of
these properties, consistency algorithms can be used to prune the search space in exhaustive
approaches that are used if the network consistency problem is NP-complete. The question
for what temporal and spatial reasoning problems the k-consistency procedure provides a
necessary and sufficient condition for satisfiability is among the most important research
problems in the area [9, 40]. The analogous problem for so-called constraint satisfaction
problems (CSPs) was posed by Feder and Vardi [23] and has been solved for finite-domain
CSPs by Barto and Kozik [5]. Their result also shows that for a given finite-domain template,
the question whether the corresponding CSP can be solved by the k-consistency procedure
can be decided in polynomial time.

In contrast, we show that there is no algorithm that decides for a given finite relation
algebra A whether NSP(A) can be solved by the k-consistency procedure, for some k ∈ N.
The question is also undecidable for every fixed k ≥ 3; in particular, there is no algorithm
that decides whether NSP(A) can be solved by the path consistency procedure. Our proof
relies on results of Hirsch [29] and Hirsch and Hodkinson [25]. The proof also shows that
Hirsch’s Really Big Complexity Problem (RBCP; [27]) is undecidable. The RBCP asks for a
description of those finite relation algebras A whose NSP can be solved in polynomial time.

Many of the classic examples of relation algebras that are used in temporal and spatial
reasoning, such as the point algebra, Allen’s Interval Algebra, RCC5, RCC8, have so-called
normal representations, which are representations that are particularly well-behaved from
a model theory perspective [7, 9, 27]. The importance of normal representations combined
with our negative results for general finite relation algebras prompts the question whether
solvability of the NSP by the k-consistency procedure can at least be characterised for
relation algebras A with a normal representation. Our main result is a sufficient condition
that implies that NSP(A) can be solved by the k-consistency procedure (Theorem 30). The
condition can be checked algorithmically for a given A. Moreover, for symmetric relation
algebras with a flexible atom, which form a large subclass of the class of relation algebras
with a normal representation, our condition provides a necessary and sufficient criterion for
solvability by k-consistency (Theorem 39). We prove that the NSP for every symmetric
relation algebra with a flexible atom that cannot be solved by the k-consistency procedure
is already NP-complete. Finally, for symmetric relation algebras with a flexible atom our
tractability condition can even be checked in polynomial time for a given relation algebra A
(Theorem 42).

In our proof, we exploit a connection between the NSP for relation algebras A with a
normal representation and finite-domain constraint satisfaction problems. In a next step, this
allows us to use strong results for CSPs over finite domains. There are similarities between
the fact that the set of relations of a representation of A is closed under taking unions on
the one hand, and so-called conservative finite-domain CSPs [3, 16–18] on the other hand; in
a conservative CSP the set of allowed constraints in instances of the CSP contains all unary
relations. The complexity of conservative CSPs has been classified long before the solution of
the Feder-Vardi Dichotomy Conjecture [19,23,42,43]. Moreover, there are particularly elegant
descriptions of when a finite-domain conservative CSP can be solved by the k-consistency
procedure for some k ∈ N (see, e.g., Theorem 2.17 in [17]). Our approach is to turn the

M. Bodirsky and S. Knäuer 116:3

similarities into a formal correspondence so that we can use these results for finite-domain
conservative CSPs to prove that k-consistency solves NSP(A). A key ingredient here is a
contribution of Kazda [31] about conservative binary CSPs.

All the missing proofs and details can be found in an extended version of this article [13].

2 Preliminaries

A signature τ is a set of function or relation symbols each of which has an associated finite
arity k ∈ N. A τ -structure A consists of a set A together with a function fA : Ak → A for
every function symbol f ∈ τ of arity k and a relation RA ⊆ Ak for every relation symbol
R ∈ τ of arity k. The set A is called the domain of A. Let A and B be τ -structures. The
(direct) product C = A×B is the τ -structure where

A × B is the domain of C;
for every relation symbol Q of arity n ∈ N and every tuple ((a1, b1), . . . , (an, bn)) ∈
(A × B)n, we have that ((a1, b1), . . . , (an, bn)) ∈ QC if and only if (a1, . . . , an) ∈ QA and
(b1, . . . , bn) ∈ QB;
for every function symbol Q of arity n ∈ N and every tuple
((a1, b1), . . . , (an, bn)) ∈ (A × B)n, we have that

QC((a1, b1), . . . , (an, bn)) := (QA(a1, . . . , an), QB(b1, . . . , bn)).

We denote the (direct) product A×A by A2. The k-fold product A× · · · × A is defined
analogously and denoted by Ak. Structures with a signature that only contains function
symbols are called algebras and structures with purely relational signature are called relational
structures. Since we do not deal with signatures of mixed type in this article, we will use the
term structure for relational structures only.

2.1 Relation Algebras
Relation algebras are particular algebras; in this section we recall their definition and state
some of their basic properties. We introduce proper relation algebras, move on to abstract
relation algebras, and finally define representations of relation algebras. For an introduction
to relation algebras we recommend the textbook by Maddux [36]. Proper relation algebras
are algebras whose domain is a set of binary relations over a common domain, and which are
equipped with certain operations on binary relations.

▶ Definition 1. Let D be a set and R a set of binary relations over D such that
(R; ∪, ¯, 0, 1, Id, ˘, ◦) is an algebra with operations defined as follows:
1. 0 := ∅,
2. 1 :=

⋃
R,

3. Id := {(x, x) | x ∈ D},
4. a ∪ b := {(x, y) | (x, y) ∈ a ∨ (x, y) ∈ b},
5. ā := 1 \ a,
6. ă := {(x, y) | (y, x) ∈ a},
7. a ◦ b := {(x, z) | ∃y ∈ D : (x, y) ∈ a and (y, z) ∈ b},
for a, b ∈ R. Then (R; ∪, ¯, 0, 1, Id, ˘, ◦) is called a proper relation algebra.

The class of all proper relation algebras is denoted by PA. Abstract relation algebras are
a generalisation of proper relation algebras where the domain does not need to be a set of
binary relations.

ICALP 2023

116:4 Network Satisfaction Problems Solved by k-Consistency

▶ Definition 2. An (abstract) relation algebra A is an algebra with domain A and signature
{∪, ¯, 0, 1, Id, ˘, ◦} such that
1. the structure (A; ∪, ∩, ¯, 0, 1), with ∩ defined by x ∩ y := (x̄ ∪ ȳ), is a Boolean algebra,
2. ◦ is an associative binary operation on A, called composition,
3. for all a, b, c, ∈ A: (a ∪ b) ◦ c = (a ◦ c) ∪ (b ◦ c),
4. for all a ∈ A: a ◦ Id = a,
5. for all a ∈ A: ˘̆a = a,
6. for all a, b ∈ A: x̆ = ă ∪ b̆ where x := a ∪ b,
7. for all a, b ∈ A: x̆ = b̆ ◦ ă where x := a ◦ b,
8. for all a, b, c ∈ A: b̄ ∪ (ă ◦ ((a ◦ b)) = b̄.

We denote the class of all relation algebras by RA. Let A = (A; ∪, ¯, 0, 1, Id, ˘, ◦) be a
relation algebra. By definition, (A; ∪, ∩, ¯, 0, 1) is a Boolean algebra and therefore induces a
partial order ≤ on A, which is defined by x ≤ y :⇔ x ∪ y = y. Note that for proper relation
algebras this ordering coincides with the set-inclusion order. The minimal elements of this
order in A \ {0} are called atoms. The set of atoms of A is denoted by A0. Note that for
the finite Boolean algebra (A; ∪, ∩, ¯, 0, 1) each element a ∈ A can be uniquely represented
as the union ∪ (or “join”) of elements from a subset of A0. We will often use this fact and
directly denote elements of the relation algebra A by subsets of A0.

By item 3. in Definition 2 the values of the composition operation ◦ in A are completely
determined by the values of ◦ on A0. This means that for a finite relation algebra the
operation ◦ can be represented by a multiplication table for the atoms A0.

An algebra with signature τ = {∪, ¯, 0, 1, Id, ˘, ◦} with corresponding arities 2, 1, 0, 0, 0,
1, and 2 that is isomorphic to some proper relation algebra is called representable. The class
of representable relation algebras is denoted by RRA. Since every proper relation algebra
and therefore also every representable relation algebra satisfies the axioms from the previous
definition we have PA ⊆ RRA ⊆ RA. A classical result of Lyndon [34] states that there
exist finite relation algebras A ∈ RA that are not representable; so the inclusions above are
proper. If a relation algebra A is representable then the isomorphism to a proper relation
algebra is usually called the representation of A.

We will be interested in the model-theoretic behavior of sets of relations which form
the domain of a proper relation algebra, and therefore consider relational structures whose
relations are precisely the relations of a proper relation algebra. If the set of relations of
a relational structure B forms a proper relation algebra which is a representation of some
abstract relation algebra A, then it will be convenient to also call B a representation of A.

▶ Definition 3. Let A ∈ RA. A representation of A is a relational structure B such that
B is an A-structure, i.e., the elements of A are binary relation symbols of B;
The map a 7→ aB is an isomorphism between the abstract relation algebra A and the
proper relation algebra (R; ∪, ¯, 0, 1, Id, ˘, ◦) with domain R := {aB | a ∈ A}.

Recall that the set of atoms of a relation algebra A = (A; ∪, ¯, 0, 1, Id, ˘, ◦) is denoted by
A0. The following definitions are crucial for this article.

▶ Definition 4. A tuple (x, y, z) ∈ (A0)3 is called an allowed triple (of A) if z ≤ x ◦ y.
Otherwise, (x, y, z) is called a forbidden triple (of A); in this case z ∪ x ◦ y = 1. We say that
a relational A-structure B induces a forbidden triple (from A) if there exist b1, b2, b3 ∈ B

and (x, y, z) ∈ (A0)3 such that x(b1, b2), y(b2, b3) and z(b1, b3) hold in B and (x, y, z) is a
forbidden triple of A.

M. Bodirsky and S. Knäuer 116:5

Note that a representation of A by definition does not induce a forbidden triple. A relation
R ⊆ A3 is called totally symmetric if for every bijection π : {1, 2, 3} → {1, 2, 3} we have

(a1, a2, a3) ∈ R ⇒ (aπ(1), aπ(2), aπ(3)) ∈ R.

The following is an immediate consequence of the definition of allowed triples.
▶ Remark 5. The set of allowed triples of a symmetric relation algebra A is totally symmetric.

2.2 The Network Satisfaction Problem
In this section we present computational decision problems associated with relation algebras.
We first introduce the inputs to these decision problems, so-called A-networks.

▶ Definition 6. Let A be a relation algebra. An A-network (V ; f) is a finite set V together
with a partial function f : E ⊆ V 2 → A, where E is the domain of f . An A-network (V ; f)
is satisfiable in a representation B of A if there exists an assignment s : V → B such that
for all (x, y) ∈ E the following holds:

(s(x), s(y)) ∈ f(x, y)B.

An A-network (V ; f) is satisfiable if there exists a representation B of A such that (V ; f) is
satisfiable in B.

With these notions we can define the network satisfaction problem.

▶ Definition 7. The (general) network satisfaction problem for a finite relation algebra A,
denoted by NSP(A), is the problem of deciding whether a given A-network is satisfiable.

In the following we assume that for an A-network (V ; f) it holds that f(V 2) ⊆ A \ {0}.
Otherwise, (V ; f) is not satisfiable. Note that every A-network (V ; f) can be viewed as an
A-structure C on the domain V : for all x, y ∈ V in the domain of f and a ∈ A the relation
aC(x, y) holds if and only if f(x, y) = a.

It is well-known that for relation algebras A1 and A2 the direct product A1 × A2 is
also a relation algebra (see, e.g., [30]). We will see in Lemma 9 that the direct product of
representable relation algebras is also a representable relation algebra.

▶ Definition 8. Let A1 and A2 be representable relation algebras. Let B1 and B2 be
representations of A1 and A2 with disjoint domains. Then the union representation of the
direct product A1 × A2 is the (A1 × A2)-structure B1 ⊎B2 on the domain B1 ⊎ B2 with the
following definition for all (a1, a2) ∈ A1 × A2:

(a1, a2)B1 ⊎ B2 := aB1
1 ∪ aB2

2 .

The following well-known lemma establishes a connection between products of relation
algebras and union representations (see, e.g., Lemma 7 in [21] or Lemma 3.7 in [30]); it states
that union representations are indeed representations. A proof of the lemma can be found,
for example, in the extended version of this article [13].

▶ Lemma 9. Let A1 and A2 be relation algebras. Then the following holds:
1. If B1 and B2 are representations of A1 and A2 with disjoint domains, then B1 ⊎B2 is

a representation of A1 × A2.
2. If B is a representation of A1 × A2, then there exist representations B1 and B2 of A1

and A2 such that B is isomorphic to B1 ⊎B2.

ICALP 2023

116:6 Network Satisfaction Problems Solved by k-Consistency

The following result uses Lemma 9 to obtain reductions between different network
satisfaction problems. A similar statement can be found in Lemma 7 from [21], however
there the assumption on representability of the relation algebras A and B is missing. Note
that without this assumption the statement is not longer true. Consider relation algebras A
and B such that NSP(A) is undecidable and B does not have a representation. Then A × B
does also not have a representation (see Lemma 9) and hence NSP(A × B) is trivial. We
observe that the undecidable problem NSP(A) cannot have a polynomial-time reduction to
the trivial problem NSP(A × B).

▶ Lemma 10. Let A, B ∈ RRA be finite. Then there exists a polynomial-time reduction
from NSP(A) to NSP(A × B).

Proof. Consider the following polynomial-time reduction from NSP(A) to NSP(A × B).
We map a given A-network (V ; f) to the (A × B)-network (V ; f ′) where f ′ is defined by
f ′(x, y) := (f(x, y), 0). This reduction can be computed in polynomial time.

▷ Claim 1. If (V ; f) is satisfiable then (V ; f ′) is also satisfiable. Let A be a representation
of A in which (V ; f) is satisfiable and let B be an arbitrary representation of B. By
Lemma 9, the structure A⊎B is a representation of A × B. Moreover, the definition of union
representations (Definition 8) yields that the (A × B)-network (V ; f ′) is satisfiable in A⊎B.

▷ Claim 2. If (V ; f ′) is satisfiable then (V ; f) is satisfiable. Assume that (V ; f ′) is satisfiable
in some representation C of A × B. By item 2 in Lemma 9 we get that C is isomorphic to
A⊎B, where A and B are representations of A and B. It again follows from the definition
of union representations that (V ; f) is satisfiable in the representation A of A.

This shows the correctness of the polynomial-time reduction from NSP(A) to NSP(A×B)
and finishes the proof. ◀

2.3 Normal Representations and Constraint Satisfaction Problems
We consider a subclass of RRA introduced by Hirsch in 1996. For relation algebras A
from this class, NSP(A) corresponds naturally to a constraint satisfaction problem. In the
following let A be in RRA. We call an A-network (V ; f) closed (transitively closed in the
work by Hirsch [28]) if f is total and for all x, y, z ∈ V it holds that

f(x, x) ≤ Id,
f(x, y) = ă for a = f(y, x),
f(x, z) ≤ f(x, y) ◦ f(y, z).

It is called atomic if the range of f only contains atoms from A.

▶ Definition 11 (from [27]). Let B be a representation of A. Then B is called
fully universal, if every atomic closed A-network is satisfiable in B;
square, if 1B = B2;
homogeneous, if for every isomorphism between finite substructures of B there exists an
automorphism of B that extends this isomorphism;
normal, if it is fully universal, square and homogeneous.

We now investigate the connection between NSP(A) for a finite relation algebra with a
normal representation B and constraint satisfaction problems. Let τ be a finite relational
signature and let B be a (finite or infinite) τ -structure. Then the constraint satisfaction
problem for B, denoted by CSP(B), is the computational problem of deciding whether a
finite input structure A has a homomorphism to B. The structure B is called the template
of CSP(B).

M. Bodirsky and S. Knäuer 116:7

◦ Id < >

Id Id < >

< < < 1
> > 1 >

Figure 1 Multiplication table of the point algebra P.

Consider the following translation which associates to each A-network (V ; f) an A-
structure C as follows: the set V is the domain of C and (x, y) ∈ C2 is in a relation aC if and
only if (x, y) is in the domain of f and f(x, y) = a holds. For the other direction let C be an
A-structure with domain C and consider the A-network (C; f) with the following definition:
for every x, y ∈ C, if (x, y) does not appear in any relation of C we leave f(x, y) undefined,
otherwise let a1(x, y), . . . , an(x, y) be all atomic formulas that hold in C. We compute in A
the element a := a1 ∩ · · · ∩ an and define f(x, y) := a.

The following theorem is based on the natural 1-to-1 correspondence between A-networks
and A-structures; it subsumes the connection between network satisfaction problems and
constraint satisfaction problems.

▶ Proposition 12 (Proposition 1.3.16 in [6], see also [7,9]). Let A ∈ RRA be finite. Then the
following holds:
1. A has a representation B such that NSP(A) and CSP(B) are the same problem up to

the translation between A-networks and A-structures.
2. If A has a normal representation B the problems NSP(A) and CSP(B) are the same up

to the translation between A-networks and A-structures.

Usually, normal representations of relation algebras are infinite relational structures. This
means that the transfer from NSPs to CSPs from Proposition 12 results in CSPs over infinite
templates, as in the following example.

▶ Example 13. Consider the point algebra P. The set of atoms of P is P0 = {Id, <, >}. The
composition operation ◦ on the atoms is given by the multiplication table in Figure 1. The
table completely determines the composition operation ◦ on all elements of P. Note that the
structure P := (Q; ∅, <, >, =, ≤, ≥, ̸=,Q2) is the normal representation of P and therefore
NSP(P) and CSP(P) are the same problems up to the translation between networks and
structures.

2.4 The Universal-Algebraic Approach
In this section we give a brief introduction to the the universal-algebraic approach to CSPs.

2.4.1 Polymorphisms
Let τ be a finite relational signature. A polymorphism of a τ -structure B is a homomorphism
f from Bk to B, for some k ∈ N called the arity of f . We write Pol(B) for the set of all
polymorphisms of B. The set of polymorphisms is closed under composition, i.e., for all
n-ary f ∈ Pol(B) and s-ary g1, . . . , gn ∈ Pol(B) it holds that f(g1, . . . , gn) ∈ Pol(B), where
f(g1, . . . , gn) is a homomorphism from Bs to B defined as follows

f(g1, . . . , gn)(x1, . . . , xs) := f(g1(x1, . . . , xs), . . . , gn(x1, . . . , xs)).

ICALP 2023

116:8 Network Satisfaction Problems Solved by k-Consistency

If r1, . . . , rn ∈ Bk and f : Bn → B an n-ary operation, then we write f(r1, . . . , rn)
for the k-tuple obtained by applying f component-wise to the tuples r1, . . . , rn. We say
that f : Bn → B preserves a k-ary relation R ⊆ Bk if for all r1, . . . , rn ∈ R it holds that
f(r1, . . . , rn) ∈ R. We want to remark that the polymorphisms of B are precisely those
operations that preserve all relations from B.

A first-order τ -formula φ(x1, . . . , xn) is called primitive positive (pp) if it has the form

∃xn+1, . . . , xm(φ1 ∧ · · · ∧ φs)

where φ1, . . . , φs are atomic τ -formulas, i.e., formulas of the form R(y1, . . . , yl) for R ∈ τ

and yi ∈ {x1, . . . , xm}, of the form y = y′ for y, y′ ∈ {x1, . . . , xm}, or of the form ⊥. We say
that a relation R is primitively positively definable over A if there exists a primitive positive
τ -formula φ(x1, . . . , xn) such that R is definable over A by φ(x1, . . . , xn).

▶ Proposition 14 ([15,24]). Let B be a τ -structure with a finite domain. Then the set of
primitive positive definable relations in B is exactly the set of relations preserved by Pol(B).

2.4.2 Atom Structures
In this section we introduce for every finite A ∈ RA an associated finite structure, called the
atom structure of A. If A has a fully universal representation, then there exists a polynomial-
time reduction from NSP(A) to the finite-domain constraint satisfaction problem CSP(A0)
(Proposition 16). Hence, this reduction provides polynomial-time algorithms to solve NSPs,
whenever the CSP of the associated atom structure can be solved in polynomial-time. For a
discussion of the atom structure and related objects we recommend Section 4 in [12].

▶ Definition 15. The atom structure of A ∈ RA is the finite relational structure A0 with
domain A0 and the following relations:

for every x ∈ A the unary relation xA0 := {a ∈ A0 | a ≤ x},
the binary relation EA0 := {(a1, a2) ∈ A2

0 | ă1 = a2},
the ternary relation RA0 := {(a1, a2, a3) ∈ A3

0 | a3 ≤ a1 ◦ a2}.

Note that A0 has all subsets of A0 as unary relations and that the relation RA0 consists
of the allowed triples of A ∈ RRA. We say that an operation preserves the allowed triples if
it preserves the relation RA0 .

▶ Proposition 16 ([11,12]). Let B be a fully universal representation of a finite A ∈ RRA.
Then there is a polynomial-time reduction from CSP(B) to CSP(A0).

2.4.3 Conservative Clones
Let B be a finite τ -structure. An operation f : Bn → B is called conservative if for all
x1, . . . , xn ∈ B it holds that f(x1, . . . , xn) ∈ {x1, . . . , xn}. The operation clone Pol(B) is
conservative if every f ∈ Pol(B) is conservative. We call a relational structure B conservative
if Pol(B) is conservative.
▶ Remark 17. Let A0 be the atom structure of a finite relation algebra A. Every f ∈ Pol(A0)
preserves all subsets of A0, and is therefore conservative. Hence, Pol(A0) is conservative.
This remark justifies our interest in the computational complexity of certain CSPs where the
template has conservative polymorphisms. Their complexity can be studied via universal
algebraic methods as we will see in the following. An operation f : B3 → B is called

a majority operation if ∀x, y ∈ B.f(x, x, y) = f(x, y, x) = f(y, x, x) = x;
a minority operation if ∀x, y ∈ B.f(x, x, y) = f(x, y, x) = f(y, x, x) = y.

M. Bodirsky and S. Knäuer 116:9

An operation f : Bn → B, for n ≥ 2, is called
a cyclic operation if ∀x1, . . . , xn ∈ B.f(x1, . . . , xn) = f(xn, x1, . . . , xn−1);
a weak near-unanimity operation if

∀x, y ∈ B.f(x, . . . , x, y) = f(x, . . . , x, y, x) = . . . = f(y, x, . . . , x);

a Siggers operation if n = 6 and ∀x, y ∈ B.f(x, x, y, y, z, z) = f(y, z, x, z, x, y).

The following terminology was introduced by Bulatov and has proven to be extremely
powerful, especially in the context of conservative clones.

▶ Definition 18 ([16, 17]). A pair (a, b) ∈ B2 is called a semilattice edge if there exists
f ∈ Pol(B) of arity two such that f(a, b) = b = f(b, a) = f(b, b) and f(a, a) = a. A
two-element set {a, b} ⊆ B has a semilattice edge if (a, b) or (b, a) is a semilattice edge.

A two-element subset {a, b} of B is called a majority edge if neither (a, b) nor (b, a) is a
semilattice edge and there exists an f ∈ Pol(B) of arity three whose restriction to {a, b} is a
majority operation.

A two-element subset {a, b} of B is called an affine edge if it is not a majority edge, if
neither (a, b) nor (b, a) is a semilattice edge, and there exists an f ∈ Pol(B) of arity three
whose restriction to {a, b} is a minority operation.

If S ⊆ B and (a, b) ∈ S2 is a semilattice edge then we say that (a, b) is a semilattice edge
on S. Similarly, if {a, b} ⊆ S is a majority edge (affine edge) then we say that {a, b} is a
majority edge on S (affine edge on S).

The main result about conservative finite structures and their CSPs is the following
dichotomy, first proved by Bulatov, 14 years before the proof of the Feder-Vardi conjecture.

▶ Theorem 19 ([16]; see also [3, 17,18]). Let B be a finite structure with a finite relational
signature such that Pol(B) is conservative. Then precisely one of the following holds:
1. Pol(B) contains a Siggers operation; in this case, CSP(B) is in P.
2. There exist distinct a, b ∈ B such that for every f ∈ Pol(B)(n) the restriction of f to

{a, b}n is a projection. In this case, CSP(B) is NP-complete.
Note that this means that Pol(B) contains a Siggers operation if and only if for all two
elements a, b ∈ B the set {a, b} is a majority edge, an affine edge, or there is a semilattice
edge on {a, b}.

2.5 The k-Consistency Procedure
We present in the following the k-consistency procedure. It was introduced in [2] for finite
structures and extended to infinite structures in several equivalent ways, for example in terms
of Datalog programs, existential pebble games, and finite variable logics [8]. Also see [39] for
recent results about the power of k-consistency for infinite-domain CSPs.

Let τ be a finite relational signature and let k, l ∈ N with k < l and let B be a fixed
τ -structures with finitely many orbits of l-tuples. We define B′ to be the expansion of B by
all orbits of n-tuples for every n ≤ l. We denote the extended signature of B′ by τ ′. Let A

be an arbitrary finite τ -structure. A partial l-decoration of A is a set g of atomic τ ′-formulas
such that
1. the variables of the formulas from g are a subset of A and denoted by Var(g),
2. | Var(g)| ≤ l,
3. the τ -formulas in g hold in A, where variables are interpreted as domain elements of A,
4. the conjunction over all formulas in g is satisfiable in B′.

ICALP 2023

116:10 Network Satisfaction Problems Solved by k-Consistency

A partial l-decoration g of A is called maximal if there exists no partial l-decoration h of
A with Var(g) = Var(h) such that g ⊊ h. We denote the set of maximal partial l-decorations
of A by Rl

A. Note that a fixed finite set of at most l variables, there are only finitely many
partial l-decorations of A, because B has by assumption finitely many orbits of l-tuples.
Since this set is constant and can be precomputed, the set Rl

A can be computed efficiently.
Then the (k, l)-consistency procedure for B is the following algorithm.

Algorithm 1 (k, l)-consistency procedure for B.

Input : A finite τ -structure A.
1 compute H := Rl

A.
2 repeat
3 For every f ∈ H with Var(f) ≤ k and every U ⊆ A with |U | ≤ l − k, if there does

not exist g ∈ H with f ⊆ g and U ⊆ Dom(g), then remove f from H.
4 until H does not change
5 if H is empty then
6 return Reject.
7 else
8 return Accept.

Since Rl
A is of polynomial size (in the size of A) and the (k, l)-consistency procedure

removes in step 3. at least one element from Rl
A the algorithm has a polynomial run time. The

(k, k + 1)-consistency procedure is also called k-consistency procedure. The (2, 3)-consistency
procedure is called path consistency procedure.1

▶ Definition 20. Let B be a relation τ -structure as defined before. Then the (k, l)-consistency
procedure for B solves CSP(B) if the satisfiable instances of CSP(B) are precisely the accepted
instances of the (k, l)-consistency procedure.

▶ Remark 21. Let A be a relation algebra with a normal representation B. We will in the
following say that the k-consistency procedure solves NSP(A) if it solves CSP(B). This
definition is justified by the correspondence of NSPs and CSPs from Theorem 12.

▶ Theorem 22 ([33]). Let B be a finite τ -structure. Then the following are equivalent:
1. There exist k ∈ N such that the k-consistency procedure solves CSP(B).
2. B has a 3-ary weak near-unanimity polymorphism f and a 4-ary weak near-unanimity

polymorphism g such that: ∀x, y, z ∈ B. f(y, x, x) = g(y, x, x, x).

Let A0 be the atom structure of a relation algebra A with a normal representation B.
We finish this section by connecting the solvability of CSP(A0) by k-consistency (or its
characterization in terms of polymorphims from the previous proposition) with the solvability
of CSP(B) by k-consistency. By Remark 21 this gives a criterion for the solvability of
NSP(A) by the k-consistency procedure.

The following theorem is from [39] building on ideas from [14]. We present it here in a
specific formulation that already incorporates a correspondence between polymorphisms of
the atom structure and canonical operations. For more details see [11,12].

1 Some authors also call it the strong path consistency algorithm, because some forms of the definition of
the path consistency procedure are only equivalent to our definition of the path consistency procedure
if B has a transitive automorphism group.

M. Bodirsky and S. Knäuer 116:11

▶ Theorem 23 ([39]). Let B be a normal representation of a finite relation algebra A and A0
the atom structure A. If Pol(A0) contains a 3-ary weak near-unanimity polymorphism f and
a 4-ary weak near-unanimity polymorphism g such that ∀x, y, z ∈ B. f(y, x, x) = g(y, x, x, x),
then NSP(A) is solved by the (4, 6)-consistency algorithm.

3 The Undecidability of RBCP, CON, and PC

In order to view RBCP as a decision problem, we need the following definitions. Let FRA
be the set of all relation algebras A with domain P({1, . . . , n}).

▶ Definition 24 (RBCP). We define the following subsets of FRA:
RBCP denotes the set such that NSP(A) is in P.
RBCPc denotes FRA \ RBCP.
CON denotes the set such that NSP(A) is solved by k-consistency for some k ∈ N.
PC denotes the set such that NSP(A) is solved by path consistency.

The following theorem is our first result. Note that this can be seen as a negative answer
to Hirsch’s Really Big Complexity Problem [27].

▶ Theorem 25. RBCP is undecidable, CON is undecidable, and PC is undecidable.

In our undecidability proofs we reduce from the following well-known undecidable problem
for relation algebras [25].

▶ Definition 26 (Rep). Let Rep be the computational problem of deciding for a given A ∈ FRA
whether A has a representation.

In our proof we also use the fact that there exists U ∈ FRA such that NSP(U) is
undecidable [29]. Note that U ∈ Rep since the network satisfaction problem for non-
representable relation algebras is trivial and therefore decidable.

Proof of Theorem 25. We reduce the problem Rep to RBCPc. Consider the following
reduction f : FRA → FRA. For a given A ∈ FRA, we define f(A) := A × U.

▷ Claim 1. If A ∈ Rep then f(A) ∈ RBCPc. If A is representable, then A × U is
representable by the first part of Lemma 9. Then there is a polynomial-time reduction from
NSP(U) to NSP(A × U) by Lemma 10. This shows that NSP(A × U) is undecidable, and
hence f(A) is in RBCPc.

▷ Claim 2. If A ∈ FRA \ Rep then f(A) ∈ RBCP. If A is not representable, then A × U
is not representable by the second part of Lemma 9, and hence NSP(A × U) is trivial and in
P, and therefore in RBCP.

Clearly, f is computable (even in polynomial time). Since Rep is undecidable [25], this
shows that RBCPc, and hence RBCP, is undecidable as well. The proof for CON and PC is
analogous; all we need is the fact that NSP(U) /∈ CON and NSP(U) /∈ PC. ◀

4 Tractability via k-Consistency

We provide in this section a criterion that ensures solvability of NSPs by the k-consistency
procedure (Theorem 30). A relation algebra A is called symmetric if all its elements are
symmetric, i.e., ă = a for every a ∈ A. We will see in the following that the assumption on
A to be symmetric will simplify the atom structure A0 of A, which has some advantages in
the upcoming arguments.

ICALP 2023

116:12 Network Satisfaction Problems Solved by k-Consistency

▶ Definition 27. Let A be a finite symmetric relation algebra with set of atoms A0. We say
that A admits a Siggers behavior if there exists an operation s : A6

0 → A0 such that
1. s preserves the allowed triples of A,
2. ∀x1, . . . , x6 ∈ A0. s(x1, . . . , x6) ∈ {x1, . . . , x6},
3. s satisfies the Siggers identity: ∀x, y, z ∈ A0. s(x, x, y, y, z, z) = s(y, z, x, z, x, y).

▶ Remark 28. We mention that if A has a normal representation B, then A admits a Siggers
behavior if and only if B has a pseudo-Siggers polymorphism which is canonical with respect
to Aut(B); see [14].

We say that a finite symmetric relation algebra A has all 1-cycles if for every a ∈ A0 the
triple (a, a, a) is allowed. Details on the notion of cycles from the relation algebra perspective
can be found in [36]. The relevance of the existence of 1-cycles for constraint satisfaction
comes from the following observation.

▶ Lemma 29. Let A be a finite symmetric relation algebra with a normal representation B

that has a binary injective polymorphism. Then A has all 1-cycles.

Proof. Let i be a binary injective polymorphism of B and let a ∈ A0 be arbitrary. Consider
x1, x2, y1, y2 ∈ B such that aB(x1, x2) and aB(y1, y2). The application of i on the tuples
(x1, x1, x2) and (y1, y2, y2) results in a substructure of B that witnesses that (a, a, a) is an
allowed triple. ◀

▶ Theorem 30. Let A be a finite symmetric relation algebra with a normal representation
B. Suppose that the following holds:
1. A has all 1-cycles.
2. A admits a Siggers behavior.

Then the NSP(A) can be solved by the (4, 6)-consistency procedure.

We will outline the proof of Theorem 30 and cite some results from the literature that we
will use. Assume that A is a finite symmetric relation algebra that satisfies the assumptions of
Theorem 30. Since A admits a Siggers behavior there exists an operation s : A6

0 → A0 that is
by 1. and 2. in Definition 27 a polymorphism of the atom structure A0 (see Paragraph 2.4.2).
By Remark 17, Pol(A0) is a conservative operation clone. Recall the notion of semilattice,
majority, and affine edges for conservative clones (cf. Definition 18). Since s is by 3. a Siggers
operation, Theorem 19 implies that every edge in A0 is semilattice, majority, or affine.

Our goal is to show that there are no affine edges in A0, since this implies that there exists
k ∈ N such that CSP(A0) can be solved by k-consistency [17]. We present this fact here via
the characterization of (k, l)-consistency in terms of weak near-unanimity polymorphisms
from Theorem 22.

▶ Proposition 31 (cf. Corollary 3.2 in [31]). Let A0 be a finite conservative relational structure
with a Siggers polymorphism and no affine edge. Then A0 has a 3-ary weak near-unanimity
polymorphism f and a 4-ary weak near-unanimity polymorphism g such that

∀x, y, z ∈ B. f(y, x, x) = g(y, x, x, x).

Note that the existence of the weak near-unanimity polymorphisms from Proposition 31
would finish the proof of Theorem 30, because Theorem 23 implies that in this case NSP(A)
can be solved by the (4, 6)-consistency procedure. We therefore want to prove that there
are no affine edges in A0. We start by analyzing the different types of edges in the atom
structure A0 and obtain results about their appearance (see Section 4.1).

M. Bodirsky and S. Knäuer 116:13

Fortunately, there is the following result by Alexandr Kazda about binary structures with
a conservative polymophism clone. A binary structure is a structure where all relations have
arity at most two.

▶ Theorem 32 (Theorem 4.5 in [31]). If A is a finite binary conservative relational structure
with a Siggers polymorphism, then A has no affine edges.

Notice that we cannot simply apply this theorem to the atom structure A0, since the
maximal arity of its relations is three. We circumvent this obstacle by defining for A0 a
closely related binary structure Ab

0 , which we call the “binarisation of A0”:

▶ Definition 33. We denote by Ab
0 the structure with domain A0 and the following relations:

a unary relation US for each subset S of A0;
for every a ∈ A0 the binary relation Ra := {(x, y) ∈ A2

0 | (a, x, y) ∈ R};
a relation for every union of relations of the form Ra.

In the next step we investigate how Pol(A0) and Pol(Ab
0) relate to each other. It follows

from these observations that Ab
0 does not have an affine edge. In other words, it only has

semilattice and majority edges. The crucial step in our proof is to transfer a witness of this
fact to A0 and conclude that also A0 has no affine edge. The detailed proofs can be found in
the extended version of the article [13] and in the PhD thesis of the second author [32].

4.1 Results about the Atom Structure
In this section we present some of our findings about the atom structure. We obtain conditions
on the atom structure (namely the ternary relation R) that imply the (non-)existence of
semilatice edges in the atom structure. As we explained in the previous section, these results
are the starting point for our proof of Theorem 30.

For the sake of notation, we make some global assumptions for this section. Let A be a
finite relation algebra that satisfies the assumptions from Theorem 30. We denote by A0 the
atom structure of A (Definition 15). Since A is a symmetric relation algebra, the relation
RA0 is totally symmetric. Furthermore, we can drop the binary relation EA0 , since it consists
only of loops and does not change the set of polymorphisms. Let s ∈ Pol(A0) be the Siggers
operation that exists by the assumptions in Theorem 30. This implies by Theorem 19 for
every a, b ∈ A0 that the set {a, b} is a majority edge or an affine edge, or that there is a
semilattice edge on {a, b}. The different types of edges are witnessed by certain operations
that we get from Proposition 3.1.in [17]: there exist a binary operation f ∈ Pol(A0) and
ternary operations g, h ∈ Pol(A0) such that for every two element subset C of A0,

f |C is a semilattice operation if C has a semilattice edge, and f |C(x, y) = x otherwise;
g|C is a majority operation if C is a majority edge, g|C(x, y, z) = x if C is affine and
g|C(x, y, z) = f |C(f |C(x, y), z) if C has a semilattice edge;
h|C is a minority operation if C is an affine edge, h|C(x, y, z) = x if C is majority and
h|B(x, y, z) = f |C(f |C(x, y), z) if C has a semilattice edge.

We will fix these operations and introduce the following terminology. A tuple (a, b) ∈ A0
is called f-sl if f(a, b) = b = f(b, a) holds. Next, we prove several important properties of
the relation R: that it must contain certain triples (Lemma 34), that it must not contain
certain other triples (Lemma 35), and that it is affected by the presence of semilattice edges
in A0 (Lemma 36 and Lemma 37).

▶ Lemma 34. The relation R of the atom structure A0 has the following properties:
for all a ∈ A0 we have (a, a, a) ∈ R.
for all a, b ∈ A0 we have (a, a, b) ∈ R or (a, b, b) ∈ R;

ICALP 2023

116:14 Network Satisfaction Problems Solved by k-Consistency

Proof. The first item follows from the assumption that A has all 1-cycles.
For the second item observe that {a, Id} cannot be a majority edge. Otherwise,

g((a, a, Id), (Id, a, a), (Id, Id, Id)) = (Id, a, Id) ∈ R

is a contradiction to the properties of Id. Furthermore, (a, Id) cannot be f -sl, since

f((a, a, Id), (Id, a, a)) = (Id, a, Id) ∈ R.

This is again a contradiction. Since these observations also hold for b instead of a we have
the following case distinction.

1. (Id, a) is f -sl and (Id, b) is f -sl. It follows that f((a, a, Id), (Id, b, b)) ∈ {(a, a, b), (a, b, b)}.
Since f preserves R, (a, a, Id) ∈ R, and (Id, b, b) ∈ R we get that f((a, a, Id), (Id, b, b)) ∈ R.
This implies that (a, a, b) ∈ R or (a, b, b) ∈ R.

2. (Id, a) is f -sl and {b, Id} is affine. By the definition of f we get f((b, b, Id), (Id, a, a)) ∈
{(b, a, a), (b, b, a)}. By the same argument as in Case 1 we get that (a, a, b) ∈ R or
(a, b, b) ∈ R.

3. (Id, b) is f -sl and {a, Id} is affine. This case is analogous to Case 2.
4. {a, Id} is affine and {b, Id} is affine. Observe that

g((a, Id, a), (Id, b, b), (Id, Id, Id)) ∈ {(a, b, a), (a, b, b)},

since g(a, b, Id) ∈ {a, b, Id} and the triple (a, b, Id) is forbidden. As in the cases before it
follows that (a, a, b) ∈ R or (a, b, b) ∈ R.

This concludes the proof of the second item. ◀

▶ Lemma 35. Let a, b, c ∈ A0 be such that (a, b, c) /∈ R and |{a, b, c}| = 3. Then there are
x, y ∈ {a, b, c} such that (x, x, y) /∈ R.

Proof. We first suppose that there is a semilattice edge on {a, b, c}. Without loss of generality
we assume that (a, b) is f -sl. If f(c, a) = c then (a, a, c) /∈ R or (b, a, a) /∈ R because otherwise

f((a, a, c), (b, a, a)) = (b, a, c) ∈ R

contradicting our assumption. If f(c, a) = a then (b, c, c) /∈ R or (a, a, c) /∈ R because
otherwise

f((b, c, c), (a, a, c)) = (b, a, c) ∈ R

which is again a contradiction. Hence, in all the cases we found x, y ∈ {a, b, c} such that
(x, x, y) /∈ R and are done. In the following we therefore assume that there is no semilattice
edge on {a, b, c}.

Next we suppose that there is an affine edge on {a, b, c}. Without loss of generality we
assume that {a, b} is an affine edge. Since there are no semilattice edges on {a, b, c} we
distinguish the following two cases:
1. {a, c} is an affine edge. In this case (c, a, a) /∈ R or (a, b, a) /∈ R because otherwise

h((c, a, a), (a, a, a), (a, b, a)) = (c, b, a) ∈ R.

2. {a, c} is a majority edge. In this case (a, a, c) /∈ R or (a, b, a) /∈ R or (b, b, c) /∈ R, because
otherwise

h((a, a, c), (a, b, a), (b, b, c)) = (b, a, c) ∈ R.

M. Bodirsky and S. Knäuer 116:15

In both cases we again found x, y ∈ {a, b, c} such that (x, x, y) /∈ R and are done. We
therefore suppose in the following that there are no affine edges on {a, b, c}. Hence, all edges
on {a, b, c} are majority edges. Then (a, a, c) /∈ R or (a, b, a) /∈ R or (b, b, c) /∈ R because
otherwise

g((a, a, c), (a, b, a), (b, b, c)) = (a, b, c) ∈ R.

Thus, also in this case we found x, y ∈ {a, b, c} such that (x, x, y) /∈ R. ◀

The next lemma states that the edge type on {a, b} is predetermined whenever a triple
(a, a, b) is not in R.

▶ Lemma 36. Let a, b ∈ A0 be such that (a, a, b) /∈ R. Then (a, b) is a semilattice edge in
A0 but (b, a) is not.

Proof. By Lemma 34 we know that (a, b, b) ∈ R, (a, a, a) ∈ R, and (b, b, b) ∈ R. Assume for
contradiction that {a, b} is a majority edge. Then

g((a, a, a), (a, b, b), (b, b, a)) = (a, b, a)

which contradicts the fact that g preserves R. Assume next that {a, b} is an affine edge.
Then

h((a, b, b), (b, a, b), (b, b, b)) = (a, a, b)

which again contradicts that h preserves R. Finally, if (b, a) is a semilattice edge then

f((a, b, b), (b, a, b)) = (a, a, b)

which contradicts the assumption that f preserves R. If follows that (a, b) is the only
semilattice edge on {a, b} and therefore f(a, b) = b = f(b, a) holds. ◀

▶ Lemma 37. Let a, a′, b, c ∈ A0 be such that (a, b, c) /∈ R, (a, a, b) /∈ R, and (a′, b, c) ∈ R.
Then (a′, a) is not a semilattice edge.

Proof. Assume for contradiction (a′, a) is a semilattice edge, i.e., there exists p ∈ Pol(A0)
with p(a, a′) = a = p(a′, a). Note that by Lemma 34 it follows that (a, a, a) ∈ R and
(a, b, b) ∈ R.

▷ Claim 1. p(b, a) = a implies p(a, b) = b. This follows immediately, since otherwise
p((a, b, b), (b, a, b)) = (a, a, b) ∈ R is a contradiction.

▷ Claim 2. (a, a, c) ̸∈ R. We assume the opposite and consider the only two possible cases
for p(b, a).
1. p(b, a) = b: We get a contradiction by p((a′, b, c), (a, a, c)) = (a, b, c) ∈ R.
2. p(b, a) = a: By Claim 1 we know that p(a, b) = b follows. Then p((a, a, c), (a′, b, c)) =

(a, b, c) ∈ R contrary to our assumptions.

▷ Claim 3. p(c, a) = a implies p(a, c) = c. Lemma 34 together with Claim 2 implies
that (a, c, c) ∈ R. Now Claim 3 follows immediately, since otherwise p((a, c, c), (c, a, c)) =
(a, a, c) ∈ R, which contradicts Claim 2.

We finally make a case distinction for all possible values of p on (b, a) and (c, a).

1. p(b, a) = b and p(c, a) = c: We get a contradiction by p((a′, b, c), (a, a, a)) = (a, b, c) ∈ R.
2. p(b, a) = b and p(c, a) = a: We get a contradiction by p((a′, b, c), (a, a, a)) = (a, b, a) ∈ R.
3. p(b, a) = a and p(c, a) = c: p((a′, b, c), (a, a, a)) = (a, a, c) ∈ R contradicts Claim 2.
4. p(b, a) = a and p(c, a) = a: By Claim 1 we get p(a, b) = b and by Claim 3 we get

p(a, c) = c. This yields a contradiction by p((a, a, a), (a′, b, c)) = (a, b, c) ∈ R. ◀

ICALP 2023

116:16 Network Satisfaction Problems Solved by k-Consistency

5 k-Consistency and Symmetric Flexible-Atom Algebras

We apply our result from Section 4 to the class of finite symmetric relation algebras with a
flexible atom and obtain a k-consistency versus NP-complete complexity dichotomy.

A finite relation algebra A is called integral if the element Id is an atom of A, i.e., Id ∈ A0.
We define flexible atoms for integral relation algebras only. For a discussion about integrality
and flexible atoms consider Section 3 in [12].

▶ Definition 38. Let A ∈ RA be finite and integral. An atom s ∈ A0 is called flexible if for
all a, b ∈ A \ {Id} it holds that s ≤ a ◦ b.

Relation algebras with a flexible atom have been studied intensively in the context of the
flexible atoms conjecture [1, 35]. It can be shown easily that finite relation algebras with a
flexible atom have a normal representation [11,12]. In [12] the authors obtained a P versus
NP-complete complexity dichotomy for NSPs of finite symmetric relation algebras with a
flexible atom (assuming P ̸= NP). In the following we strengthen this result and prove that
every problem in this class can be solved by k-consistency for some k ∈ N or is NP-complete
(without any complexity-theoretic assumptions).

We combine Theorem 30 with the main result of [12] to obtain the following character-
ization for NSPs of finite symmetric relation algebras with a flexible atom that are solved
by the (4, 6)-consistency procedure. Note that the difference of Theorem 39 and the related
result in [12] is the algorithm that solves the problems in P.

▶ Theorem 39. Let A be a finite symmetric integral relation algebra with a flexible atom.
Then the following are equivalent:

A admits a Siggers behavior.
NSP(A) can be solved by the (4, 6)-consistency procedure.

Proof. Every finite symmetric relation algebra A with a flexible atom has a normal repres-
entation B by Proposition 3.5 in [12].

If the first item holds it follows from Proposition 6.1. in [12] that B has a binary injective
polymorphism. By Lemma 29 the relation algebra A has all 1-cycles. We apply Theorem 30
and get that the second item in Theorem 39 holds.

We prove the converse implication by showing the contraposition. Assume that the first
item is not satisfied. Then Theorem 9.1 in [12] implies that there exists a polynomial-time
reduction from CSP(K3) to NSP(A) which preserves solvability by the (k, l)-consistency
procedure. The problem CSP(K3) is the 3-colorability problem which is known (e.g., by [4])
to be not solvable by the (k, l)-consistency procedure for every k, l ∈ N. Hence NSP(A)
cannot be solved by the (4, 6)-consistency procedure. ◀

As a consequence of Theorem 39 we obtain the following strengthening of the complexity
dichotomy NSPs of finite symmetric integral relation algebra with a flexible atom [12].

▶ Corollary 40 (Complexity Dichotomy). Let A be a finite symmetric integral relation algebra
with a flexible atom. Then NSP(A) can be solved by the (4, 6)-consistency procedure, or it is
NP-complete.

Proof. Suppose that the first condition in Theorem 39 holds. Then Theorem 39 implies that
NSP(A) can be solved by the (4, 6)-consistency procedure. If the first condition in Theorem 39
is not satisfied it follows from Theorem 9.1. in [12] that NSP(A) is NP-complete. ◀

M. Bodirsky and S. Knäuer 116:17

6 The Complexity of the Meta Problem

In this section we study the computational complexity of deciding for a given finite symmetric
relation algebra A with a flexible atom whether the k-consistency algorithm solves NSP(A).
We show that this problem is decidable in polynomial time even if A is given by the restriction
of its composition table to the atoms of A: note that this determines a symmetric relation
algebra uniquely, and that this is an (exponentially) more succinct representation of A
compared to explicitly storing the full composition table.

▶ Definition 41 (Meta Problem). We define Meta to be the following computational problem.
Input: the composition table of a finite symmetric relation algebra A restricted to A0.
Question: is there a k ∈ N such that k-consistency solves NSP(A)?

Our proof of Theorem 25 shows that Meta is undecidable as well.

▶ Theorem 42. Meta can be decided in polynomial time if the input is restricted to finite
symmetric integral relation algebras A with a flexible atom.

Proof. By Theorem 39 it suffices to test the existence of an operation f : A6
0 → A0 which

satisfies conditions 1.-3. in this theorem. The three conditions can clearly be checked in
polynomial time, so we already know that Meta is in NP.

Note that the search for f may be phrased as an instance of CSP(A0) with |A|6 variables.
Using the fact that the k-consistency procedure is one-sided correct even in the case that
CSP(A0) is NP-hard (i.e., if the procedure rejects a given instance of CSP(A0), then the
instance is always unsatisfiable), we may use a standard self-reducibility argument (see,
e.g., [20]) to obtain a polynomial-time algorithm for finding f . ◀

7 Conclusion and Open Questions

The question whether the network satisfaction problem for a given finite relation algebra
can be solved by the famous k-consistency procedure is undecidable. Our proof of this fact
heavily relies on prior work of Hirsch [29] and of Hirsch and Hodkinson [25] and shows that
almost any question about the network satisfaction problem for finite relation algebras is
undecidable.

However, if we further restrict the class of finite relation algebras, one may obtain strong
classification results. We have demonstrated this for the class of finite symmetric integral
relation algebras with a flexible atom (Theorem 40); the complexity of deciding whether the
conditions in our classification result hold drops from undecidable to P (Theorem 42). One
of the remaining open problems is a characterisation of the power of k-consistency for the
larger class of all finite relation algebras with a normal representation.

Our main result (Theorem 30) is a sufficient condition for the applicability of the k-
consistency procedure; the condition does not require the existence of a flexible atom but
applies more generally to finite symmetric relation algebras A with a normal representation.
Our condition consists of two parts: the first is the existence of all 1-cycles in A, the second is
that A admits a Siggers behavior. We conjecture that dropping the first part of the condition
leads to a necessary and sufficient condition for solvability by the k-consistency procedure.

▶ Conjecture 43. A finite symmetric relation algebra A with a normal representation admits
a Siggers behavior if and only if NSP(A) can be solved by the k-consistency procedure for
some k ∈ N.

ICALP 2023

116:18 Network Satisfaction Problems Solved by k-Consistency

◦ Id E N

Id Id E N

E E Id N

N N N 1

Figure 2 Multiplication table of the relation algebra C.

Note that this conjecture generalises Theorem 39. Both directions of the conjecture are
open. However, the forward direction of the conjecture is true if A has a normal representation
with a primitive automorphism group: in this case, it is known that a Siggers behavior
implies the existence of all 1-cycles [10], and hence the claim follows from our main result
(Theorem 39). The following example shows a finite symmetric relation algebra A which
does not have all 1-cycles and an imprimitive normal representation, but still NSP(A) can
be solved by the k-consistency procedure for some k ∈ N.

▶ Example 44. Theorem 30 is a sufficient condition for the NSP of a relation algebra A
to be solved by the k-consistency procedure for some k ∈ N. However, there exists a finite
symmetric relation algebra C such that NSP(C) is solved by the 2-consistency procedure,
but we cannot prove this by the methods used to obtain Theorem 30. Consider the relation
algebra C with atoms {Id, E, N} and the multiplication table in Figure 2. This relation
algebra has a normal representation, namely the expansion of the infinite disjoint union of
the clique K2 by all first-order definable binary relations. We denote this structure by ωK2.
One can observe that CSP(ωK2) and therefore also the NSP of the relation algebra can be
solved by the (2, 3)-consistency algorithm (for details see [32]).

The relation algebra C does not have all 1-cycles and therefore does not fall into the
scope of Theorem 30. In fact, our proof of Theorem does not work for C, because the CSP
of the atom structure C0 of C cannot be solved by the k-consistency procedure for some
k ∈ N. Hence, the reduction of NSP(C) to CSP(C0) (incorporated in Theorem 23) does not
imply that NSP(C) can be solved by k-consistency procedure for some k ∈ N.

The following problems are still open and are relevant for resolving Conjecture 43.

Show Conjecture 43 if the normal representation of A has a primitive automorphism
group.

Characterise the power of the k-consistency procedure for the NSP of finite relation
algebras with a normal representation whose automorphism group is imprimitive. In
this case, there is a non-trivial definable equivalence relation. It is already known that if
this equivalence relation has finitely many classes, then the NSP is NP-complete and the
k-consistency procedure does not solve the NSP [10]. Similarly, the NSP is NP-complete
if there are equivalence classes of finite size larger than two. It therefore remains to
study the case of infinitely many two-element classes, and with infinitely many infinite
classes. In both cases we wish to reduce the classification to the situation with a primitive
automorphism group.

Finally, we ask whether it is true that if A is a finite symmetric relation algebra with a
flexible atom and NSP(A) can be solved by the k-consistency procedure for some k, then it
can also be solved by the (2, 3)-consistency procedure? In other words, can we improve (4, 6)
in Corollary 40 to (2, 3)?

M. Bodirsky and S. Knäuer 116:19

References
1 Jeremy F. Alm, Roger D. Maddux, and Jacob Manske. Chromatic graphs, Ramsey numbers

and the flexible atom conjecture. The Electronic Journal of Combinatorics, 15(1), March 2008.
doi:10.37236/773.

2 Albert Atserias, Andrei A. Bulatov, and Víctor Dalmau. On the power of k-consistency. In
ICALP, pages 279–290, 2007.

3 Libor Barto. The dichotomy for conservative constraint satisfaction problems revisited. In
Proceedings of the Symposium on Logic in Computer Science (LICS), Toronto, Canada, 2011.

4 Libor Barto and Marcin Kozik. Constraint satisfaction problems of bounded width. In
Proceedings of Symposium on Foundations of Computer Science (FOCS), pages 595–603, 2009.

5 Libor Barto and Marcin Kozik. Constraint satisfaction problems solvable by local consistency
methods. Journal of the ACM, 61(1):3:1–3:19, 2014.

6 Manuel Bodirsky. Complexity classification in infinite-domain constraint satisfaction. Mé-
moire d’habilitation à diriger des recherches, Université Diderot – Paris 7. Available at
arXiv:1201.0856v8, 2012.

7 Manuel Bodirsky. Finite relation algebras with normal representations. In Relational and
Algebraic Methods in Computer Science – 17th International Conference, RAMiCS 2018,
Groningen, The Netherlands, October 29 – November 1, 2018, Proceedings, pages 3–17, 2018.

8 Manuel Bodirsky and Víctor Dalmau. Datalog and constraint satisfaction with infinite
templates. Journal on Computer and System Sciences, 79:79–100, 2013. A preliminary version
appeared in the proceedings of the Symposium on Theoretical Aspects of Computer Science
(STACS’05).

9 Manuel Bodirsky and Peter Jonsson. A model-theoretic view on qualitative constraint reasoning.
Journal of Artificial Intelligence Research, 58:339–385, 2017.

10 Manuel Bodirsky and Simon Knäuer. Hardness of network satisfaction for relation algebras
with normal representations. In Relational and Algebraic Methods in Computer Science, pages
31–46. Springer International Publishing, 2020. doi:10.1007/978-3-030-43520-2_3.

11 Manuel Bodirsky and Simon Knäuer. Network satisfaction for symmetric relation algebras with
a flexible atom. In Proceedings of AAAI, 2021. Preprint https://arxiv.org/abs/2008.11943.

12 Manuel Bodirsky and Simon Knäuer. The complexity of network satisfaction problems for
symmetric relation algebras with a flexible atom. Journal of Artificial Intelligence Research,
75:1701–1744, December 2022. doi:10.1613/jair.1.14195.

13 Manuel Bodirsky and Simon Knäuer. Network satisfaction problems solved by k-consistency,
2023.

14 Manuel Bodirsky and Antoine Mottet. A dichotomy for first-order reducts of unary structures.
Logical Methods in Computer Science, 14(2), 2018. doi:10.23638/LMCS-14(2:13)2018.

15 V. G. Bodnarčuk, L. A. Kalužnin, V. N. Kotov, and B. A. Romov. Galois theory for Post
algebras, part I and II. Cybernetics, 5:243–539, 1969.

16 Andrei A. Bulatov. Tractable conservative constraint satisfaction problems. In Proceedings of
the Symposium on Logic in Computer Science (LICS), pages 321–330, Ottawa, Canada, 2003.

17 Andrei A. Bulatov. Complexity of conservative constraint satisfaction problems. ACM Trans.
Comput. Logic, 12(4), July 2011. doi:10.1145/1970398.1970400.

18 Andrei A. Bulatov. Conservative constraint satisfaction re-revisited. Journal Computer and
System Sciences, 82(2):347–356, 2016. ArXiv:1408.3690. doi:10.1016/j.jcss.2015.07.004.

19 Andrei A. Bulatov. A dichotomy theorem for nonuniform CSPs. In 58th IEEE Annual
Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October
15-17, pages 319–330, 2017.

20 Hubie Chen and Benoît Larose. Asking the metaquestions in constraint tractability. TOCT,
9(3):11:1–11:27, 2017.

21 Matteo Cristiani and Robin Hirsch. The complexity of the constraint satisfaction problem for
small relation algebras. Artificial Intelligence Journal, 156:177–196, 2004.

ICALP 2023

https://doi.org/10.37236/773
https://arxiv.org/abs/1201.0856v8
https://doi.org/10.1007/978-3-030-43520-2_3
https://doi.org/10.1613/jair.1.14195
https://doi.org/10.23638/LMCS-14(2:13)2018
https://doi.org/10.1145/1970398.1970400
https://doi.org/10.1016/j.jcss.2015.07.004

116:20 Network Satisfaction Problems Solved by k-Consistency

22 Ivo Düntsch. Relation algebras and their application in temporal and spatial reasoning.
Artificial Intelligence Review, 23:315–357, 2005.

23 Tomás Feder and Moshe Y. Vardi. The computational structure of monotone monadic SNP
and constraint satisfaction: a study through Datalog and group theory. SIAM Journal on
Computing, 28:57–104, 1999.

24 David Geiger. Closed systems of functions and predicates. Pacific Journal of Mathematics,
27:95–100, 1968.

25 R. Hirsch and I. Hodkinson. Representability is not decidable for finite relation algebras.
Transactions of the American Mathematical Society, 353(4):1387–1401), 2001.

26 R. Hirsch and I. Hodkinson. Strongly representable atom structures of relation algebras.
Transactions of the American Mathematical Society, 130(6):1819–1831), 2001.

27 Robin Hirsch. Relation algebras of intervals. Artificial Intelligence Journal, 83:1–29, 1996.
28 Robin Hirsch. Expressive power and complexity in algebraic logic. Journal of Logic and

Computation, 7(3):309–351, 1997.
29 Robin Hirsch. A finite relation algebra with undecidable network satisfaction problem. Logic

Journal of the IGPL, 7(4):547–554, 1999.
30 Robin Hirsch and Ian Hodkinson. Relation Algebras by Games. North Holland, 2002.
31 Alexandr Kazda. CSP for binary conservative relational structures. Algebra universalis,

75(1):75–84, December 2015. doi:10.1007/s00012-015-0358-8.
32 Simon Knäuer. Constraint Network Satisfaction for Finite Relation Algebras. PhD thesis,

Technische Universität Dresden, 2023.
33 Marcin Kozik, Andrei Krokhin, Matt Valeriote, and Ross Willard. Characterizations

of several Maltsev conditions. Algebra universalis, 73(3):205–224, 2015. doi:10.1007/
s00012-015-0327-2.

34 R. Lyndon. The representation of relational algebras. Annals of Mathematics, 51(3):707–729,
1950.

35 Roger D. Maddux. A perspective on the theory of relation algebras. Algebra Universalis,
31(3):456–465, September 1994. doi:10.1007/bf01221799.

36 Roger D. Maddux. Relation Algebras: Volume 150. Studies in logic and the foundations of
mathematics. Elsevier Science, London, England, May 2006.

37 Ralph McKenzie. The representation of relation algebras. PhD thesis, University of Colorado
at Boulder, 1966.

38 Ralph McKenzie. Representations of integral relation algebras. Michigan Mathematical Journal,
17(3):279–287, 1970. doi:10.1307/mmj/1029000477.

39 Antoine Mottet, Tomás Nagy, Michael Pinsker, and Michal Wrona. Smooth approximations
and relational width collapses. In Nikhil Bansal, Emanuela Merelli, and James Worrell, editors,
48th International Colloquium on Automata, Languages, and Programming, ICALP 2021, July
12-16, 2021, Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages 138:1–138:20.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ICALP.2021.
138.

40 Jochen Renz and Bernhard Nebel. Qualitative spatial reasoning using constraint calculi. In
M. Aiello, I. Pratt-Hartmann, and J. van Benthem, editors, Handbook of Spatial Logics, pages
161–215. Springer Verlag, Berlin, 2007.

41 Alfred Tarski. Representation problems for relation algebras. Bulletin of the AMS, 54(80),
1948.

42 Dmitriy Zhuk. A proof of the CSP dichotomy conjecture. J. ACM, 67(5):30:1–30:78, 2020.
doi:10.1145/3402029.

43 Dmitriy N. Zhuk. A proof of CSP dichotomy conjecture. In 58th IEEE Annual Symposium
on Foundations of Computer Science, FOCS 2017, Berkeley, CA, USA, October 15-17, pages
331–342, 2017. https://arxiv.org/abs/1704.01914.

https://doi.org/10.1007/s00012-015-0358-8
https://doi.org/10.1007/s00012-015-0327-2
https://doi.org/10.1007/s00012-015-0327-2
https://doi.org/10.1007/bf01221799
https://doi.org/10.1307/mmj/1029000477
https://doi.org/10.4230/LIPIcs.ICALP.2021.138
https://doi.org/10.4230/LIPIcs.ICALP.2021.138
https://doi.org/10.1145/3402029

Algebraic Recognition of Regular Functions
Mikołaj Bojańczyk # Ñ

Institute of Informatics, University of Warsaw, Poland

Lê Thành Dũng (Tito) Nguyễn # Ñ

Laboratoire de l’informatique du parallélisme (LIP), École normale supérieure de Lyon, France

Abstract
We consider regular string-to-string functions, i.e. functions that are recognized by copyless streaming
string transducers, or any of their equivalent models, such as deterministic two-way automata. We give
yet another characterization, which is very succinct: finiteness-preserving functors from the category
of semigroups to itself, together with a certain output function that is a natural transformation.

2012 ACM Subject Classification Theory of computation → Transducers

Keywords and phrases string transducers, semigroups, category theory

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.117

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version Full Version with Appendices: https://hal.science/hal-03985883

Funding Lê Thành Dũng (Tito) Nguyễn: Supported by the LABEX MILYON (ANR-10-LABX-0070)
of Université de Lyon, within the program “Investissements d’Avenir” (ANR-11-IDEX-0007) operated
by the French National Research Agency (ANR).

Acknowledgements We thank the reviewers for helpful suggestions on the presentation of the paper.

1 Introduction

This paper is about the regular string-to-string functions (see e.g. [17]). This is a fundamental
class of functions; it is one of the standard generalizations of regular languages to produce
string outputs (instead of merely accepting or rejecting inputs), covering examples such as

string reversal : 123 7→ 321 duplication : 123 7→ 123123

It has many equivalent descriptions, including deterministic two-way automata [22, Note 4],
copyless streaming string transducers (sst) [1, Section 3] (or the earlier and very similar single-
use restricted macro tree transducers [14, Section 5]), mso transductions [13, Theorem 13],
combinators [4, Section 2], a functional programming language [8, Section 6], λ-calculus with
linear types [15, Theorem 3] (see also [19, Claim 6.2] and [18, Theorem 1.2.3]), decompositions
à la Krohn–Rhodes [10, Theorem 18, item 4], etc.

The number of equivalent characterizations clearly indicates that the class of regular
functions is important and worth studying. However, from a mathematical point of view, a
disappointing phenomenon is that each of the known descriptions uses syntax that is more
complicated than one could wish for.1 These complications are perhaps minor annoyances,
and the corresponding models are undeniably useful. Nevertheless, it would be desirable to
have a model with a short and abstract definition, similar to the definition of recognizability
of regular languages by finite semigroups.

1 For example, the definition of a two-way automaton requires a discussion of endmarkers and what
happens when the automaton loops. In an mso transduction, an unwiedly copying mechanism is
necessary. In an sst, one needs to be careful about bounding the copies among registers. The calculi
of [4, 8] both have a long list of primitives. Similar remarks apply to the other formalisms.

EA
T
C
S

© Mikołaj Bojańczyk and Lê Thành Dũng Nguyễn;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 117; pp. 117:1–117:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:bojan@mimuw.edu.pl
https://www.mimuw.edu.pl/~bojan/
mailto:nltd@nguyentito.eu
https://nguyentito.eu/
https://orcid.org/0000-0002-6900-5577
https://doi.org/10.4230/LIPIcs.ICALP.2023.117
https://hal.science/hal-03985883
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

117:2 Algebraic Recognition of Regular Functions

This paper proposes such an abstract model. We prove that the regular string-to-string
functions are exactly those that can be obtained by composing two functions

Σ∗ some semigroup homomorphism−−−−−−−−−−−−−−−−−−−−−→ F(Γ∗) outΓ∗−−−−→ Γ∗

where F is a functor from the category of semigroups to itself that maps finite semigroups to
finite semigroups, and the output function outΓ∗ – not necessarily a homomorphism – is part
of a family outA : FA → A that is natural in the semigroup A.

We use the name transducer semigroup for the model implicit in this description, i.e. a
semigroup-to-semigroup functor F together with a natural transformation for producing
outputs. One of the surprising features of this model is the fact that linear growth of the
output size, which is one of the salient properties of the regular string-to-string functions,
does not seem to be a trivial consequence of the definition.

2 Transducer semigroups and warm-up theorems

In this section, we define the model that is introduced in this paper, namely transducer
semigroups. The purpose of this model is to recognize string-to-string functions, which are
defined to be functions of type Σ∗ → Γ∗, for some finite alphabets Σ and Γ. Some results
will work in the slightly more general case where the domain or codomain is a more general
semigroup, but we focus on the string-to-string case for the sake of concreteness.

The model is defined using terminology based on category theory. However, we do not
assume that the reader has a background in category theory, beyond the two most basic
notions of category and functor. Recall that a category consists of objects with morphisms
between them, such that the morphisms can be composed and each object has an identity
morphism to itself. In this paper, we will be working mainly with two categories:
Sets. The objects are sets, the morphisms are functions between them.
Semigroups. The objects are semigroups, the morphisms are semigroup homomorphisms.
To transform categories, we use functors. Recall that a functor between two categories
consists of two maps: one that assigns to each object A in the source category an object in
the target category, and another one that assigns to each morphism f : A → B a morphism
Ff : FA → FB. These maps need to be consistent with composition of morphisms, and the
identity must go to the identity.

▶ Example 2.1. The forgetful functor from the category of semigroups to the category of sets
maps a semigroup to its underlying set, and a semigroup homomorphism to the corresponding
function on sets. It is an example of a semigroup-to-set functor.

▶ Example 2.2. These constructions can be seen as semigroup-to-semigroup functors:
Tuples. This functor maps a semigroup A to its square A × A, with the semigroup operation

defined coordinate-wise. The functor extends to morphisms in the expected way. This
functor also makes sense for higher powers, including infinite powers, such as Aω.

Opposite. This functor maps a semigroup A to the semigroup where the underlying set is the
same, but multiplication is reversed, i.e. the product of a and b in the new semigroup is the
product b and a in the old semigroup. Morphisms are not changed by the functor: they
retain the homomorphism property despite the change in the multiplication operation.

Lists. This functor maps a semigroup A to the free monoid A∗ that consists of lists of
elements of A equipped with concatenation. (When A is finite, it can be regarded as an
alphabet, in which case we shall also call these lists “strings” or “words”.) On morphisms,
the functor is defined element-wise (or letter-wise). A similar construction would make
sense as a set-to-semigroup functor.

M. Bojańczyk and L. T. D. Nguyễn 117:3

Non-empty lists. A variant of the previous example, which sends a semigroup A to the free
semigroup A+ that consists of non-empty lists of elements in A.

Powerset. This (covariant) powerset functor maps a semigroup A to the powerset semigroup
PA, whose underlying set is the family of all subsets of A, endowed with the operation

(A1, A2) 7→ {a1a2 | a1 ∈ A1 and a2 ∈ A2} .

We now present the central definition of this paper.

▶ Definition 2.3 (Transducer semigroup). A transducer semigroup consists of
a semigroup-to-semigroup functor F,
together with an output mechanism which associates to each semigroup A a function of
type FA → A called the output function for A,

such that for every homomorphism h : A → B, the diagram below commutes:

FA FB

A B

Fh

output function for A output function for B

h

In the language of category theory, a natural transformation between two semigroup-to-set
functors G and K is a family of functions fA : GA → KA such that fB ◦ Gh = Kh ◦ fA for
every semigroup homomorphism h : A → B. So in Definition 2.3, the diagram says that the
output mechanism is a natural transformation of type

Semigroups Sets.

[forgetful functor]◦F

forgetful functor (Example 2.1)

Note that in a transducer semigroup, the output functions are not necessarily homomorphisms,
which is why the forgetful semigroup-to-set functor appears above. This is important in view
of the purpose of transducer semigroups, which is to define functions between semigroups,
as explained in the following definition; asking outB to be a homomorphism would severly
restrict the functions that can be recognized.

▶ Definition 2.4. We say that a function f : A → B between semigroups, not necessarily a
homomorphism, is recognized by a transducer semigroup (F, out) if it can be decomposed as

A FB Bh outB for some semigroup homomorphism h.

The definition discusses functions between arbitrary semigroups, with no assumption on F,
but we will mainly care about the special case – treated in Section 3 – where:

the function is string-to-string2 (f : Σ∗ → Γ∗), i.e. both the input and output semigroups
are finitely generated free monoids;
the functor F is finiteness-preserving, i.e. it maps finite semigroups to finite semigroups.

This special case will correspond to the regular string functions. Some minor results that do
not assume F is finiteness-preserving are presented in Section 2.2: we characterize all functions
(Theorem 2.10) and “recognizability reflecting” string-to-string functions (Theorem 2.13).

2 Although this case involves monoids, which are a special case of semigroups, the use of a semigroup
homomorphism that is not necessarily a monoid homomorphism is required to recognize functions such
that f(ε) ̸= ε. Furthermore, it will be useful in the proofs to work in the category of semigroups, rather
than the category of monoids.

ICALP 2023

117:4 Algebraic Recognition of Regular Functions

2.1 Examples and intuitions
▶ Example 2.5. Consider the transducer semigroup in which the functor is the identity, and
the output mechanism is also the identity. The functions of type A → B that are recognized
by this transducer semigroup are exactly the semigroup homomorphisms from A to B.

▶ Example 2.6. Consider the transducer semigroup in which
the functor is the “opposite semigroup” functor from Example 2.2;
the output function maps a ∈ FA, seen as an element in A, to aa ∈ A.

The functions of type A → B that are recognized by this transducer semigroup are exactly
those of the form a 7→ h(a)h(a) where h : A → B is some “anti-homomorphism”, i.e. satisfies
h(a1a2) = h(a2)h(a1) for all a1, a2 ∈ A. In particular, if h is the string reversal function rev
on the free monoid Σ∗, which is also a semigroup, then we get the “reverse then duplicate”
function that maps a string w over the alphabet Σ to rev(w) · rev(w).

▶ Example 2.7. We present here a transducer semigroup that recognizes the squaring
function w ∈ Σ∗ 7→ w|w| ∈ Σ∗ (illustrated by 123 7→ 123123123) for any alphabet Σ.

The functor maps A to A × N, with the semigroup structure defined componentwise
(N = {0, 1, . . . } is equipped with addition), and making the morphisms act on the left
component. The output mechanism A × N → A is defined below:

for n ≥ 1, (a, n) 7→ an (a, 0) 7→ a︸ ︷︷ ︸
we handle this case separately because a0 does not make sense in an arbitrary semigroup

▶ Example 2.8. Our last example function is

w ∈ {a, b, c}∗ 7→ (longest c-free suffix of w) · (longest c-free prefix of w) ∈ {a, b}∗

This can be recognized using the functor FA = A + A2, equipped with a suitable semigroup
operation that makes the following map h : {a, b, c}∗ → F({a, b}∗) a homomorphism:

h(w) = w for w ∈ {a, b}∗ h(uc . . . cv) = (u, v) for u, v ∈ {a, b}∗

The output mechanism of the transducer semigroup sends any element a ∈ A – seen as
belonging to the left summand of A + A2 – to aa, and (b, c) to cb.

▶ Remark 2.9. Consider a transducer semigroup with functor F. For a semigroup S, we may
often think of an element of FS as a data structure that contains elements of S (such as a
pair or a list, cf. Example 2.2). Then naturality of the output mechanism expresses that,
being defined “uniformly in S”, it cannot “look inside”3 those elements of S (but it can
combine them using the semigroup operation). In other words, the control flow may depend
only on the part that is “independent of S” – and the condition that F is finiteness preserving
(satisfied by all our examples except Example 2.7) somehow means that this part is finite.

2.2 Two simple characterizations
All functions. Our first theorem concerns transducer semigroups without any restrictions.

▶ Theorem 2.10. Every function between semigroups is recognized by a transducer semigroup.

3 This is similar to the “generic” or “polymorphic” function definitions supported by many statically
typed programming languages. The corresponding notion in type theory is parametric polymorphism,
and it is closely related to naturality, see the introduction to [16].

M. Bojańczyk and L. T. D. Nguyễn 117:5

Proof. We prove a slightly stronger result: for any semigroup A, there exists a transducer
semigroup that recognizes all functions from A to other semigroups. The functor is

FB = A × (set of all functions of type A → B, not necessarily recognizable).

The semigroup operation in FB is defined as follows: on the first coordinate, we inherit the
semigroup operation from A, while on the second coordinate, we use the trivial left zero
semigroup structure, in which the product of two functions is simply the first one (this is a
trivial way of equipping every set with a semigroup structure). The functor is defined on
morphisms as in the tuple construction from Example 2.2: the first coordinate, corresponding
to A, is not changed, and the second coordinate, corresponding to the set of functions, is
transformed coordinate-wise, when viewed as a tuple indexed by A. This is easily seen to be
a functor. The output mechanism, which is easily seen to be natural, is function application
i.e. (a, f) 7→ f(a). Every function f : A → B is recognized by this transducer semigroup,
with the appropriate homomorphism is a ∈ A 7→ (a, f). ◀

Recognizability reflecting functions. We now characterize functions with the property
that inverse images of recognizable languages are also recognizable. We use a slightly more
general setup, where instead of languages we use functions into arbitrary sets (languages can
be seen as the case of functions into {yes, no}).

▶ Definition 2.11. We say that a function from a semigroup A to some set X is recognizable
if it factors through some semigroup homomorphism from A to a finite semigroup.

In the rest of the paper, we shall sometimes speak of recognizable functions with infinite
codomain, but note that the range of a recognizable function is always finite.

A function f : B → A between semigroups is called recognizability reflecting if for every
recognizable function g : A → X, the composition g ◦ f is recognizable.

▶ Example 2.12. Consider the semigroup (N, +) of natural numbers with addition, which
is isomorphic to the free monoid a∗. In this semigroup, the recognizable functions are
ultimately periodic colourings of numbers. A corollary is that every recognizable function
gives the same answer to all factorials {1!, 2!, . . .}, with finitely many exceptions. Take any
function f : N → N such that (a) every output number arises from at most finitely many
input numbers; (b) every output number is a factorial. The composition of f with any
recognizable function will give the same answer to all numbers with finitely many exceptions,
thus being also recognizable.

In the above example, a function with conditions (a) and (b) can be chosen in uncountably
many ways, even if we require that it has linear growth. Therefore, there are too many
recognizability reflecting functions (even just from {a}∗ to itself) to allow a machine model,
or some other effective syntax. The following result gives a non-effective syntax.

▶ Theorem 2.13. The following conditions are equivalent for a string-to-string function:
1. it is recognizability reflecting.
2. it is recognized by a transducer semigroup such that for every finite semigroup A, the

corresponding output function of type FA → A is recognizable.

▶ Example 2.14. For any finite semigroup A, the map (a, n) ∈ A × (N \ {0}) 7→ an ∈ A is
recognizable. This is because, since a|A|! is idempotent for every a ∈ A, this map factors
through a homomorphism into the semigroup A × ((N \ {0})/ ∼) where

n ∼ m ⇐⇒ n = m ∨
(
n, m ≥ |A|! ∧ n ≡ m mod |A|!

)

ICALP 2023

117:6 Algebraic Recognition of Regular Functions

is a congruence of finite index. Extending this slightly to handle the case (a, 0) 7→ a, one can
show that the output mechanism outA of Example 2.7 is recognizable whenever A is finite.
Therefore, the squaring function is recognizability reflecting.

3 The regular functions

The two straightforward constructions in Theorems 2.10 and 2.13 amount to little more than
symbol pushing. In this section, we present a more substantial characterization, which is
the main result of this paper. This characterization concerns finiteness-preserving functors.
This is a strengthening of the condition from Theorem 2.13: if the functor F in a transducer
semigroup is finiteness-preserving, then for every finite semigroup A, the output function
FA → A will be recognizable, since all functions from a finite semigroup are trivially
recognizable. However, the condition is strictly stronger, as witnessed by Example 2.7, which
is recognizability reflecting (cf. Example 2.14) but not finiteness preserving. As we will see,
the stronger condition will characterize exactly the regular string-to-string functions.

The following counterexample illustrates the non-trivial interaction between naturality of
the output mechanism and the requirement that the functor is finiteness preserving.

▶ Example 3.1. Consider the powerset functor P from Example 2.2. It is finiteness preserving,
since the powerset of a finite semigroup is also finite. One could imagine that using powersets,
one could construct a transducer semigroup that recognizes functions that are not regular,
e.g. because they have exponential growth (unlike regular functions, which have linear growth).
It turns out that this is impossible, because there is no possible output mechanism, i.e. no
natural transformation of type PA → A, as we explain below.

The issue is that the naturality condition disallows choosing elements from a subset. To
see why, consider a semigroup A with two elements, with the trivial left zero semigroup
structure. For this semigroup, the output mechanism of type PA → A would need to choose
some element a ∈ A when given as input the full set A ∈ PA. However, none of the two
choices is right, because swapping the two elements of A is an automorphism of the semigroup
A, which maps the full set to itself, but does not map any element to itself.

We now state the main theorem of this paper.

▶ Theorem 3.2. The following conditions are equivalent for every string-to-string function:
1. it is a regular string-to-string function;
2. it is recognized by a transducer semigroup in which the functor is finiteness preserving;
3. it is recognized by a transducer semigroup in which the functor F maps the singleton

semigroup 1 to a finite semigroup: |F1| < ∞.
(Note that (2) ⇒ (3) is immediate.) Here is the plan for the rest of this section:
Section 3.1 gives a formal definition of regular functions
Section 3.2 proves the easy implication in the theorem, namely (1) ⇒ (2)
Section 3.3 proves the hard implication in the theorem, namely (3) ⇒ (1)

Before continuing, we remark on one advantage of the characterization in item (2), namely
a straightforward proof of closure under composition. In contrast, for some (but not all)
existing models defining regular string-to-string functions, composition requires a non-trivial
construction – examples include two-way transducers [11, Theorem 2] or copyless streaming
string transducers [2, Theorem 1].

▶ Proposition 3.3. Functions recognized by finiteness-preserving transducer semigroups are
closed under composition.

M. Bojańczyk and L. T. D. Nguyễn 117:7

Proof. This is because finiteness-preserving functors are closed under composition, natural
families of output functions are also closed under composition, and naturality means by
definition that the output functions “commute” in a suitable sense with functors.

More precisely, consider the following diagram:

Σ∗ F(Γ∗) Γ∗

FF′(Π∗) F′(Π∗) Π∗

h outΓ∗

Fh′ h′

outF′(Π∗) out′
(Π∗)

where the square commutes because the output mechanism is natural. The upper path
describes the composition of two functions recognized by the transducer semigroups (F, out)
and (F′, out′), while the lower path describes a function recognized by (FF′, outF′(−)◦out′). ◀

3.1 Defininition of streaming string transducers

In this section, we formally describe the regular functions, using a model based on streaming
string transducers (sst). This model, like our proof of Theorem 3.2, covers a slightly more
general case, namely string-to-semigroup functions instead of only string-to-string functions.
These are functions of type Σ∗ → A where Σ is a finite alphabet and A is an arbitrary
semigroup. The purpose of this generalization is to make notation more transparent, since
the fact that the output semigroup consists of strings will not play any role in our proof.

The model uses registers to store elements of the output semigroup. We begin by
describing notation for registers and their updates. Suppose that R is a finite set of register
names, and A is a semigroup called the output semigroup. We consider two sets

register valuations: (R → A) register updates: (R → (A + R)+)

Below we show two examples of register updates, presented as assignments, using two registers
X, Y and the semigroup A = a∗. (The right-hand sides are the values in (A + R)+.)

X := aY aXaaa

Y := XaaXaa︸ ︷︷ ︸
copyful

X := aaY aaXaaa

Y := aaa︸ ︷︷ ︸
copyless

The crucial property is being copyless – a register update is called copyless if every register
name appears in at most one right-hand side of the update, and in that right-hand side it
appears at most once. The main operation on these sets is application: a register update u

can be applied to a register valuation v, giving a new register valuation vu.
In our model of streaming string tranducers, the registers will be updated by a stream

of register updates that is produced by a rational function, defined as follows. Intuitively
speaking, a rational function corresponds to an automaton that produces one output letter
for each input position, with the output letter depending on regular properties of the input
position within the input string. More formally:

ICALP 2023

117:8 Algebraic Recognition of Regular Functions

▶ Definition 3.4. A rational function of type Σ∗ → X∗ – where Σ is a finite alphabet but X

can be any set – is a length-preserving4 function with the following property: for some family5

fa : Σ∗ × Σ∗︸ ︷︷ ︸
equipped with componentwise multiplication

→ Γ for a ∈ Σ of recognizable functions,

for every input a1 . . . an and i ∈ {1, . . . , n}, the i-th output letter is
fai(a1 . . . ai−1, ai+1 . . . an).

Note that the range of a rational function with codomain X∗ may contain only finitely many
“letters” from X, so it can always be seen as a string function over finite alphabets.

Having defined register updates and rational functions, we are ready to introduce the
machine model used in this paper as the reference definition of regular functions.

▶ Definition 3.5. The syntax of a streaming string transducer (sst) is given by:
A finite input alphabet Σ and an output semigroup A.
A finite set R of register names. All register valuations and updates below use R and A.
A designated initial register valuation, and a final output pattern in R+ (that does not
need to be copyless, though adding this restriction would not affect the expressive power).
An update oracle, which is a rational function of type Σ∗ → (copyless register updates)∗.

The semantics of the sst is a function of type Σ∗ → A defined as follows. When given an
input string, the sst begins in the designated initial register valuation. Next, it applies all
updates produced by the update oracle, in left-to-right order. Finally, the output of the sst
is obtained by combining the last register values according to the final output pattern.

▶ Example 3.6. We define an sst that computes the function of Example 2.8. It has two
registers X and Y , whose initial valuation is X = Y = ε, and the final output pattern is Y X.
The update associated to an input letter ℓ ∈ {a, b, c} at position i is:

if the position i is part of the longest c-free prefix, then X := Xℓ, otherwise X := X;
if the position i is part of the longest c-free suffix, then Y := Y ℓ, otherwise Y := Y .

This sequence of updates can be produced by a rational function generated by a family of
functions (fℓ)ℓ∈{a,b,c} that are recognized by B2, where B is the monoid of booleans with
conjunction (rephrase the conditions as “there is no c to the left (resp. right) of i”).

In a rational function, the label of the i-th output position is allowed to depend on letters
of the input string that are on both sides of the i-th input position; this corresponds to
regular lookaround in a streaming string transducer. Therefore, the model described above
is easily seen to be equivalent to copyless ssts with regular lookaround, which are one of the
equivalent models defining the regular string-to-string functions, see [3, Section IV.C].

3.2 From a regular function to a transducer semigroup
Having defined the transducer model, we prove the easy implication in Theorem 3.2. It is
apparent from Definition 3.5 that every regular function can be decomposed as a rational
function followed by a function computed by a streaming string transducer whose i-th register
update depends only on the i-th input letter – let us call that a local sst. Thanks to closure
under composition (Proposition 3.3), we only need to handle these two special cases: we
show that finiteness-preserving transducer semigroups recognize

all rational functions in Section 3.2.1;
and all local streaming string transducers in Section 3.2.2.

4 Often in the literature, rational functions are not required to be length-preserving, see e.g. [21, p. 525],
but in this paper, we only need the length-preserving case.

5 The family (fa)a∈Σ is very close to what is called an (Eilenberg) bimachine in the literature.

M. Bojańczyk and L. T. D. Nguyễn 117:9

3.2.1 Recognizing rational functions by transducer semigroups
Consider a rational function, generated by the family (fa)a∈Σ of recognizable functions of
type Σ∗ × Σ∗ → Γ. By definition of recognizability, each fa decomposes into

Σ∗ × Σ∗ ha−−→ Ba
ga−−→ Γ where ha is a semigroup homomorphism and Ba is finite.

One can check that every fa then factors through a monoid morphism to the finite monoid∏
a∈Σ

ha(Σ∗ × Σ∗)

Thus, without loss of generality, we may assume for the rest of the proof that all of the
above semigroups Ba are equal to a common finite monoid B and that each semigroup
homomorphism ha is in fact a monoid morphism.

For any semigroup A, we let6 FA = B × (B → A) × B, endowed with the following
semigroup operation:

(ℓ1, φ1, r1) · (ℓ2, φ2, r2) =
(

ℓ1ℓ2,
(
b 7→ φ1(br2) · φ2(ℓ1b)

)
, r1r2

)
.

The construction F is extended to morphisms by considering B → A as the set of B-indexed
tuples (cf. Example 2.2) of elements of A. To get a transducer semigroup, we take the output
mechanism to be (ℓ, φ, r) 7→ φ(e) where e ∈ B is the neutral element.

Our rational function is then recognized by the unique monoid homomorphism of type
Σ∗ → F(Γ∗) (indeed, F preserves monoids) which maps a ∈ Σ to

(
ha(a, ε), ga, ha(ε, a)

)
.

3.2.2 From a local SST to a transducer semigroup
Suppose now that a string-to-semigroup function f : Σ∗ → A is computed by some local
streaming string transducer. In the proof below, when referring to register valuations and
register updates, we refer to those that use the registers and output semigroup of the fixed
transducer. We say that a register update is in normal form if, in every right-hand side,
one cannot find two consecutive letters from the semigroup A. Any register update can be
normalized, i.e. converted into one that is in normal form, by using the semigroup operation
to merge consecutive elements of the output semigroup in the right-hand sides. Here is an
example, which uses three registers X, Y, Z and the semigroup A = ({0, 1}, ·):

X := 01Y 1111X111
Y := 01011︸ ︷︷ ︸

not in normal form

normalization−−−−−−−−−→ X := 0Y 1X1
Y := 0︸ ︷︷ ︸
in normal form

The register updates before and after normalization act in the same way on register valuations.
If an update is copyless and in normal form, then the combined length of all right-hand sides
is at most three times the number of registers. Therefore, if a semigroup A is finite, then the
set of copyless register updates in normal form, call it UA, is also finite. (However, there are
infinitely many copyful register updates even when A is finite.) This set UA can be equipped
with a composition operation

u1, u2 ∈ UA 7→ u1u2 ∈ UA,

6 A construction similar in spirit to the classical two-sided semidirect product [20, §6].

ICALP 2023

117:10 Algebraic Recognition of Regular Functions

which is defined in the same way as applying a register update to a register valuation, except
that we normalize at the end. This composition operation is associative, and compatible
with applying register updates to register valuations, in the sense that (vu1)u2 = v(u1u2)
holds for every valuation v and all updates u1 and u2. Therefore, A 7→ UA is a finiteness-
preserving semigroup-to-semigroup functor (with the natural extension to morphisms, where
the homomorphism is applied to every semigroup element in a right-hand side).

The functor U described above is almost but not quite the functor that will be used in
the transducer semigroup that we will define to prove the easy implication in Theorem 3.2.
That functor F will also take into account the initial register valuation:

FA = UA × (R → A)︸ ︷︷ ︸
endowed with the trivial left zero semigroup structure

with componentwise multiplication & action on morphisms

Given (u, v) ∈ FA, the output mechanism in the transducer semigroup applies the register
update u to the register valuation v, and then multiplies together the register values given by
the resulting valuation vu according to the final output pattern. Using this, we can recognize
f via the homomorphism that sends each input letter to:

the register update that this letter determines (our sst being local) in the first component;
the designated initial register valuation in the second component.

3.3 From a transducer semigroup to a regular function
We now turn to the difficult implication (3) ⇒ (1) in Theorem 3.2. The proof is presented in
a way which, if sometimes slightly verbose, makes it easier to see how it can be adapted to
other algebraic structures instead of semigroups (such as forest algebras, cf. Section 4).

3.3.1 Polynomial functors and functorial streaming string transducers
The assumption of the implication uses an abstract model (transducer semigroups), while the
conclusion uses a concrete operational model (streaming string transducers). To bridge the
gap, we use an intermediate model, similar to ssts, but a bit more abstract. The abstraction
arises by using polynomial functors instead of registers, as described below.

▶ Definition 3.7. By polynomial functor, we mean a semigroup-to-set functor of the form

A 7→
∐
q∈Q

Adimension of q,

where Q is some possibly infinite set, whose elements are called components, with each
component having an associated dimension in N. The symbol

∐
stands for disjoint union of

sets. This functor does not take into account the semigroup structure of the input semigroup,
since the output is seen only as a set. On morphisms, the functor works in the expected way,
i.e. coordinate-wise.

A finite polynomial functor is a polynomial functor with finitely many components –
for example, A 7→ A2 + A2 + A. The notion of finite polynomial functor can be seen as a
mild generalization of the construction which maps a semigroup A to the set AR of register
valuations for some fixed finite set R of register names. In the generalization, we allow a
variable number of registers, depending on some finite information (the component).

Having defined a more abstract notion of “register valuations”, namely finite polynomial
functors, we now define a more abstract notion of “register updates”. The first condition for
such updates is that they do not look inside the register contents; this condition is captured
by naturality (as discussed in Remark 2.9).

M. Bojańczyk and L. T. D. Nguyễn 117:11

▶ Example 3.8. Consider the polynomial functors (where 1 represents the singleton set A0)

FA = A∗ = 1 + A1 + A2 + · · · GA = A + 1.

An example of a natural transformation between these two functors is the function which
maps a nonempty list in A∗ to the product of its elements, and which maps the empty list
to the unique element of 1. A non-example is the function that maps a list [a1, . . . , an] ∈ A∗

to the leftmost element ai that is an idempotent in the semigroup, and returns 1 if such an
element does not exist. The reason why the non-example is not natural is that a semigroup
homomorphism can map a non-idempotent to an idempotent.

Apart from naturality, we will want our register updates to be copyless. For the purposes
of the following definition, let us call a tuple of numbers in Nk a “sub-unit” if it belongs
to {0, 1}k and at most one coordinate is equal to 1 – or, as an edge case, if k = 0. For a
polynomial functor F, a sub-unit of FN =

∑
q Ndim(q) is a sub-unit of any of the Ndim(q).

▶ Definition 3.9 (Copyless natural transformation). A natural transformation between two
polynomial functors F and G is called copyless if when instantiated to the semigroup7 (N, +),
the corresponding function of type FN → GN maps sub-units to sub-units.

It will be convenient to speak of natural functions f : FA → GA, where F and G are
semigroup-to-set functors and A is a fixed semigroup, to refer to functions that can be
extended to natural transformations (fB : FB → GB)B semigroup, with f = fA. Copyless
natural functions between instantiations of polynomial functors are defined analogously.

Having defined functions that are natural and copyless, we now describe the more abstract
model of ssts used in our proof. The main difference is that instead of register valuations
and updates given by some finite set of register names, we have two abstract polynomial
functors, one of them finite polynomial, together with an explicitly given application function.
We also allow the computation to be initialized and finalized in a more liberal way, that may
depend on a regular property of the input.

▶ Definition 3.10. The syntax of a functorial streaming string transducer is given by:
A finite input alphabet Σ and an output semigroup A.
A finite polynomial functor R, called the register functor, and a (not necessarily finite)
polynomial functor U called the update functor.
A copyless natural function of type RA × UA → RA, called application.
An initial function Σ∗ → RA which is recognizable (and therefore has finite range).
A polynomial final data functor K, a final data function Σ∗ → KA which is recognizable,
and a final output function of type RA × KA → A which is a natural function (but not
necessarily copyless).
An update oracle, which is a rational function of type Σ∗ → (UA)∗.

Analogously to Definition 3.5, the functorial sst computes the function Σ∗ → A obtained
by the following composition, where the first map bundles together the initial function, the
update oracle and the final data function:

Σ∗ → RA × (UA)∗ × KA
(apply updates successively)×idKA−−−−−−−−−−−−−−−−−−−−−−→ RA × KA

final output function−−−−−−−−−−−−−−→ A

In the appendix, we prove that this model is no more expressive than usual copyless ssts.

7 The choice of the semigroup (N, +) in the Definition 3.9 is not particularly important. For example,
the same notion of copylessness would arise if instead of (N, +), we used the semigroup {0, 1, 2} with
addition up to threshold 2. In the appendix, we present a more syntactic characterization of copyless
natural transformations as part of our proof of Lemma 3.11.

ICALP 2023

117:12 Algebraic Recognition of Regular Functions

▶ Lemma 3.11. Definitions 3.5 and 3.10 characterize the same string-to-semigroup functions.

3.3.2 Coproducts and views
Apart from the more abstract transducer model from Definition 3.10, the other ingredient
used in the proof of the hard implication in Theorem 3.2 will be coproducts of semigroups,
and some basic operations on them, as described in this section.

The coproduct8 of two semigroups A and B, denoted by A ⊕ B, is the semigroup whose
elements are nonempty words over an alphabet that is the disjoint union of A and B,
restricted to words that are alternating in the sense that two consecutive letters cannot
belong to the same semigroup. The semigroup operation is defined in the expected way. We
draw elements of a coproduct using coloured boxes, with the following picture showing the
product operation in the coproduct of two copies, red and blue, of the semigroup {a, b}+:

(aba · b · b · aa) · (abba · aabb) = aba · b · b · aaabba · aabb .

A coproduct can involve more than two semigroups; in the pictures this would correspond to
more colours, subject to the condition that consecutive boxes have different colours.
▶ Remark 3.12. The copyless register updates u : R → (A + R)+ of ordinary ssts that are in
normal form (cf. Section 3.2) can be seen as maps R → A ⊕

⊕
X∈R

{X}+.

We write 1 for the semigroup that has one element. This semigroup is unique up to
isomorphism and it is a terminal object in the category of semigroups, which means that it
admits a unique homomorphism from every other semigroup A. This unique homomorphism
will be denoted by ! : A → 1. (It has no connection with the factorial function on numbers.)

Consider the semigroup-to-set functors defined by (the underlying set of) a coproduct of
several copies of their argument with several copies of 1, such as A 7→ A ⊕ A ⊕ A ⊕ 1 ⊕ 1. In
our proof, it will be useful to see them as polynomial functors, even though strictly speaking
they are not defined as sums of products. This identification is allowed by the following
observation (stated for A ⊕ 1 for convenience, but the same idea applies in general).

▶ Proposition 3.13. There is a family of bijections, natural in the semigroup A, between

A ⊕ 1 and
∐

q∈1⊕1
Adimension of q,

where the dimension of q is the number of times that the first copy of 1 appears in q.

Idea. Given x ∈ A ⊕ 1, we apply ! : A → 1 to the elements of A in x to determine the
component q of the polynomial functor that contains the image of x by the left-to-right
bijection. This operation, a special case of what is called the shape below, forgets those
elements of A appearing in x, so we record them in a tuple living in Adim(q). For example,
aba · 1 · aa · 1 is sent to the tuple (aba, aa) in the component 1 · 1 · 1 · 1 . ◀

The crucial property of semigroups that will be used in our proof is Lemma 3.14 below,
which says that an element of a coproduct can be reconstructed based on certain partial
information. This information is described using the following operations.

8 The name coproduct is used because of the following universal property: if f : A → C and g : B → C
are two semigroup homomorphisms, then there is a unique homomorphism A ⊕ B → C that coincides
with f (resp. g) on the subsemigroup consisting of words with a single letter from A (resp. B).

M. Bojańczyk and L. T. D. Nguyễn 117:13

1. Merging. Consider a coproduct A1 ⊕ · · · ⊕ An, such that the same semigroup A appears
on all coordinates from a subset I ⊆ {1, . . . , n}, and possibly on other coordinates as well.
Define merging the parts from I to be the function of type

A1 ⊕ · · · ⊕ An → A ⊕
⊕
i̸∈I

Ai

that is defined in the expected way, and explained in the following picture. In the picture,
merging is applied to a coproduct of three copies of the semigroup {a, b}+, indicated
using colours red, black and blue, and the merged coordinates are red and blue:

aba · b · aa · b · aa · abba · b 7→ abab · aa · baaabba · b︸ ︷︷ ︸
the merge of red and blue is drawn in violet

.

2. Shape. Define the shape operation to be the function of type

A1 ⊕ · · · ⊕ An → 1 ⊕ · · · ⊕ 1

obtained by applying ! on every coordinate. The shape says how many alternating blocks
there are, and which semigroups they come from, as explained in the following picture:

aba · b · aa · b · aa · abba · b 7→ 1 · 1 · 1 · 1 · 1 · 1 · 1 .

3. Views. The final operation is the i-th view

A1 ⊕ · · · ⊕ An → 1 ⊕ Ai.

This operation applies ! to all coordinates other than i, and then it merges all those
coordinates. Here is a picture, in which we take the view of the blue coordinate:

aba · b · aa · b · aa · abba · b 7→ aba · 1 · aa · 1 .

The key observation is that an element of a coproduct is fully determined from its shape
and views, as stated in the following lemma. It seems to contain the essential property of
semigroups that makes the construction work. We expect our theorem to also be true for
other algebraic structures for which the lemma is true; however, the lemma seems to fail in
certain settings. Concrete examples will be discussed in the conclusion (Section 4).

▶ Lemma 3.14. Let A1, . . . , An be semigroups. The deconstruction function of type

A1 ⊕ · · · ⊕ An −→ (1 ⊕ A1) × · · · × (1 ⊕ An) × (1 ⊕ · · · ⊕ 1),

which is obtained by combining the views for all i ∈ {1, . . . , n} and the shape, is injective.

We prove this by exhibiting an explicit partial left inverse: a reconstruction function of type

(1 ⊕ A1) × · · · × (1 ⊕ An) × (1 ⊕ · · · ⊕ 1) −→ (A1 ⊕ · · · ⊕ An) + 1

such that deconstruction followed by reconstruction maps every element of A1 ⊕ · · · ⊕ An to
itself. The idea is to start with the shape and replace the entries from 1 with the elements
appearing in the views in the right order. Rather than a formal definition, we illustrate this
on an example (in the 3 views, we omit the boxes around the 1s to avoid visual cluttering):

aba 1 aa 1
1 b 1 b 1 abba 1

1 aa 1 b

1 1 1 1 1 1 1

7→ aba · b · aa · b · aa · abba · b

Besides proving Lemma 3.14, this reconstruction function also enjoys the following property,
which can be seen from the definition and Proposition 3.13.

ICALP 2023

117:14 Algebraic Recognition of Regular Functions

▶ Proposition 3.15. When each Ai is either A or 1, reconstruction can be seen as a copyless
natural function between polynomial functors in A.

3.3.3 Factorized output
Now, consider some transducer semigroup, with the functor being F, and fix a string-to-
semigroup function f : Σ∗ → A that decomposes as some homomorphism h : Σ∗ → FA

followed by the output function of type FA → A.
For semigroups A1, . . . , An, define the vectorial output function to be the function of type

FA1 × · · · × FAn −→ A1 ⊕ · · · ⊕ An

that is obtained by the composition of three functions described below (where co-projection
is the function Ai → A1 ⊕ · · · ⊕ An that outputs a singleton list containing its input):

FA1 × · · · × FAn

F(A1 ⊕ · · · ⊕ An) × · · · × F(A1 ⊕ · · · ⊕ An)

F(A1 ⊕ · · · ⊕ An)

A1 ⊕ · · · ⊕ An.

F(co-projection)×···×F(co-projection)

semigroup operation

output mechanism for A1 ⊕ · · · ⊕ An

To illustrate the definitions in this section, we use a running example with the transducer
semigroup for the “reverse then duplicate” function from Example 2.6. The functor F sends
a semigroup A to the opposite semigroup (cf. Example 2.2), and the output mechanism
is a 7→ aa. Our example function on {a, b}∗ is obtained by composing the string reversal
homomorphism {a, b}∗ → F({a, b}∗) with the output function. Here is an example of the
vectorial output function (for now, the homomorphism plays no role):

(1, abbb) ∈ F1 × F({a, b}∗) 7→ abbb 1 abbb 1 ∈ 1 ⊕ {a, b}∗.

The vectorial output function is natural in all of its arguments, which means that for all
semigroup homomorphisms h1, . . . , hn, the diagram below commutes:

FA1 × · · · × FAn A1 ⊕ · · · ⊕ An

FB1 × · · · × FBn B1 ⊕ · · · ⊕ Bn

vectorial output function

Fh1×···×Fhn h1⊕···⊕hn

vectorial output function

This is because each of the three steps in the definition of the vectorial output function is itself
a natural transformation, and natural transformations compose. Naturality of the first two
steps is easy to check, while for the last step we use the assumption that the (non-vectorial)
output function is natural.

Let us return to our function f = outA ◦ h recognized by our transducer semigroup
(F, out). For strings w1, . . . , wn ∈ Σ∗, define the corresponding factorized output to be the
result of first applying the semigroup homomorphism h : Σ∗ → FA to all the strings, and
then applying the vectorial output function; we denote it by

⟨w1| · · · |wn⟩ ∈ A ⊕ · · · ⊕ A︸ ︷︷ ︸
n times

,

M. Bojańczyk and L. T. D. Nguyễn 117:15

Here is the factorized output illustrated on our running example (we use colours to distinguish
which of the three parts of the input is used):

⟨abb|ε|baaba⟩ = abaab ε bba abaab ε bba ∈ {a, b}∗ ⊕ {a, b}∗ ⊕ {a, b}∗.

As we can see above, when the output semigroup is a free monoid, the factorized output
morally tells us “which part of the output string comes from which part in the input string”.
▶ Remark 3.16. This is similar to the idea of origin semantics [5] of regular functions (see
also [17, Section 5]). Indeed, our definition of factorized output is inspired by a similar tool
of the same name that appears in the study of origin semantics [5, Section 2].

We also use a similar notation but with some input strings underlined, e.g. the input
could be ⟨abb|ε|baaba⟩ with an underline for the first red part. In the underlined case,
before applying the vectorial output function, we apply h to the non-underlined strings and
(F! ◦ h) : Σ∗ → F1 to the underlined strings. In our running example, we have

⟨abb|ε|baaba⟩ = abaab ε 1 abaab ε 1 ∈ 1 ⊕ {a, b}∗ ⊕ {a, b}∗.

3.3.4 Proof of (3) ⇒ (1) in Theorem 3.2
We have now collected all necessary ingredients to prove this hard direction of the equivalence.
Therefore, our goal is now to show that the function f : Σ∗ → A that we have previously fixed
is computed by some functorial streaming string transducer as in Definition 3.10, assuming
that F1 is finite.

The idea is that we want the functorial sst to maintain the following invariant:

after processing the first i letters in an input string a1 · · · an,
the register valuation is equal to the factorized output ⟨a1 · · · ai|ai+1 · · · an⟩.

This way, after processing all input letters, the last valuation ⟨a1 · · · an|ε⟩ is very close to the
output; indeed, if we see A as a 1-ary coproduct, then f(a1 . . . an) = ⟨a1 . . . an⟩ ∈ A.

The naive choice for the register functor is then R′ : A 7→ A ⊕ 1, since ⟨w|v⟩ ∈ A ⊕ 1 for
all w, v ∈ Σ∗ by definition. However, while R′ can be seen as a polynomial semigroup-to-set
functor, whose set of components is 1 ⊕ 1 (cf. Proposition 3.13), it is not finite polynomial
(the set 1 ⊕ 1 is infinite). That said, we have by naturality of vectorial output:9

▷ Claim 3.17. The component for ⟨w|v⟩ ∈ R′A is ⟨w|v⟩ ∈ 1 ⊕ 1.

This index is determined by definition by the values of (F! ◦ h) : Σ∗ → F1 on w and v, where
h : Σ∗ → FA is the homomorphism used to recognize f . Since F1 is finite, the ⟨w|v⟩ for w, v

9 Let us give some details. From Proposition 3.13, we see that the component in 1 ⊕ 1 of an element in
A ⊕ 1 is obtained by applying ! ⊕ 1. So it suffices to show that

⟨w|v⟩ = (! ⊕ 1)(⟨w|v⟩)

Expanding the definitions, our goal can be rewritten as

vectorial output of (F! ◦ h(w), F! ◦ h(v)) = (! ⊕ 1)
(
vectorial output of (h(w), F! ◦ h(v))

)
This is a direct consequence of the naturality of the vectorial output function, that can be expressed as
follows: for every semigroup homomorphism g : A → B,

(vectorial output for B) ◦ (Fg × id1) = (g ⊕ 1) ◦ vectorial output for A

(take g = ! and apply both sides of the equality to (h(w), F! ◦ h(v)) to get the desired Claim 3.17).

ICALP 2023

117:16 Algebraic Recognition of Regular Functions

ranging over Σ∗ live in finitely many components. We take our register functor RA ⊂ R′A to
be the finite polynomial functor consisting of these “useful” components, plus the unique
component that does not use A (it will serve as a “null value”).

To design the register updates, the key is the following lemma. It shall be proved later
using the machinery of views on coproducts that we have introduced for this very purpose.

▶ Lemma 3.18. There are two copyless natural functions

δ : (A ⊕ 1) × (1 ⊕ A ⊕ 1) → (A ⊕ 1) + 1 κ : (A ⊕ 1) × (1 ⊕ A) → A + 1

such that, for every pair of strings w, v ∈ Σ∗ and every letter a ∈ Σ,

⟨wa|v⟩ = δ(⟨w|av⟩, ⟨w|a|v⟩) f(w) = ⟨w⟩ = κ(⟨w|ε⟩, ⟨w|ε⟩)

Again, to make “copyless natural” meaningful in this context, we invoke Proposition 3.13 to
see δ and κ as functions between polynomial functors in A.

This leads us to use the update functor U : A 7→ 1 ⊕ A ⊕ 1 and to define the application of
updates to registers, of type RA × UA → RA, to be δ followed by the map (A ⊕ 1) + 1 → RA

which sends the components of A ⊕ 1 that are in RA to themselves, and everything else to
the “null value”. As an direct consequence of the lemma, the desired invariant holds using

the initial function w 7→ ⟨ε|w⟩,
and the update oracle a1 . . . an 7→ ⟨ε|a1|a2 . . . an⟩ . . . ⟨a1 . . . an−1|an|ε⟩.

To fit Definition 3.10, we have to check that the initial function is recognizable and that the
update oracle is a rational function; by definition, the latter amounts to saying that for any
a ∈ Σ, the function (w, v) ∈ (Σ∗)2 7→ ⟨w|a|v⟩ is recognizable. According to the definition
of factorized output, the initial function factors through the semigroup homomorphism
F! ◦ h, whose codomain F1 is finite; therefore, the initial function is recognizable. The other
recognizability condition holds for a similar reason.

To finish building our functorial streaming string transducer, we use the function κ from
Lemma 3.18. Thanks to our invariant and to the equation concerning κ, it is immediate that
the following choices lead to a functorial sst that indeed computes f . We take:

the final data functor K : A 7→ (1 ⊕ A) × A,
the final data function w ∈ Σ∗ 7→ (⟨w|ε⟩, some arbitrary fixed value in A) – once again,
it is recognizable because F1 is finite,
and the final output function RA × KA → A that proceeds as follows: first, it applies κ to
get some value in (A + 1) × A; if the left half of the pair is in A, it returns it; otherwise,
it returns the right half.

This being done, let us discharge our only remaining subgoal.

Proof of Lemma 3.18. We cover here the part concerning δ; for κ, the arguments are similar
and a bit simpler. We use the following claim, which is proved using mechanical diagram
chasing (as detailed in the appendix). Recall that the merging, shape and view operations
were introduced just before Lemma 3.14.

▷ Claim 3.19. ⟨wa|v⟩ is obtained from ⟨w|a|v⟩ by merging the first two parts in A ⊕ A ⊕ 1.

The above claim shows that the factorized output ⟨wa|v⟩ is obtained from ⟨w|a|v⟩ by
a copyless natural function. In turn, ⟨w|a|v⟩ is the image by the reconstruction function
– which is copyless natural (Proposition 3.15) – of the following four items (the equalities
below are proved similarly to Claims 3.17 and 3.19):
1. First view of ⟨w|a|v⟩, which is equal to ⟨w|av⟩ – this is the first argument which is passed,

in the lemma statement, to the function δ that we want to define.

M. Bojańczyk and L. T. D. Nguyễn 117:17

2. Second view of ⟨w|a|v⟩, which is obtained by merging the first and third parts in ⟨w|a|v⟩.
3. Third view of ⟨w|a|v⟩, which is equal to ⟨wa|v⟩.
4. Shape of ⟨w|a|v⟩, which is equal to ⟨w|a|v⟩.

To complete the proof, it remains to justify that the last three items above can be
collectively obtained from the second argument given to δ, namely ⟨w|a|v⟩, by applying some
copyless natural function. Each item is obtained separately by applying a natural function.
Furthermore, the second item is obtained in a copyless way, while the last two items do not
use A at all, and therefore they are obtained in a copyless way for trivial reasons, even when
combined with the second item. ◀

4 Conclusions

In this paper, we have exhibited a concise algebraic characterization of the regular string-to-
string functions, in the style of the definition of regular languages using recognizability by
finite semigroups. To perform this extension from languages to functions, we have relied on
the basic concepts of category theory: categories, functors, natural transformations.

It should be noted that our use of categories is quite different in spirit from many of the
works that take a categorical perspective on automata-theoretic results – see for instance [12],
whose introduction points to many further references. In such works, the correspondence
between concrete automata models and their rephrasing as suitable (co)algebras or functors
tends to be straightforward, with the technical focus lying elsewhere (typically, in generalizing
constructions such as determinisation or minimisation). On the contrary, we define a truly
new transducer model whose equivalence with the preexisting copyless streaming string
transducers requires a non-trivial proof.

An advantage of our characterization of the regular string functions is that, as one would
expect from an abstract result, it lends itself to generalizations.

Semigroup-to-semigroup functions. The notion of recognition by a finiteness-preserving
transducer semigroup makes sense for functions between arbitrary semigroups. Furthermore,
such functions are closed under composition (the proof of Proposition 3.3 works as it is). To
check their robustness, it would be desirable to have a more concrete, machine-like model
capturing the same function class; possibly a variant of streaming string transducers where
the underlying finite automaton is morally “replaced” by a finite semigroup.

More string functions. Another direction is characterizing other classes of string-to-string
functions, such as the rational functions or the polyregular functions [7]. In this paper, we
have discovered that, somewhat mysteriously, combining two conditions – naturality and
preserving finiteness – characterizes exactly the regular functions, which have linear growth.
Perhaps there is some way of tweaking the definitions to describe, say, some class with
polynomial growth. For instance, the squaring function (Example 2.7) seems to be recognized
by a mixed-variance functor A 7→ (A → A) × A with a dinatural output mechanism.

Functions on other free algebras. The definition of a transducer semigroup can applied to
other algebras, and not just semigroups. This may be done by taking some monad T and
considering functions that can be decomposed, for some endofunctor F of the category of
Eilenberg-Moore algebras for the monad T and some natural transformation out, as

TΣ some T-algebra homomorphism−−−−−−−−−−−−−−−−−−−−→ FTΓ outTΓ−−−−→ TΓ.

ICALP 2023

117:18 Algebraic Recognition of Regular Functions

An example of this approach is forest algebras [6, Section 5], which are algebras for describing
trees. Preliminary work shows that, in the case of forest algebras, the suitable version of
Theorem 3.2 also holds, i.e. the finiteness-preserving functors lead to a characterization of
the standard notion of regular tree-to-tree functions, namely mso transductions (see [14, 9]).
We believe that these results apply even further, namely for graphs of bounded treewidth,
modeled using suitable monads [6, Section 6]. The crucial property is that Lemma 3.14, about
reconstructing a coproduct from its views, holds for other monads than just the nonempty
list monad for semigroups. Unfortunately, this lemma fails for some monads, such as the
monad of formal linear combinations of strings that corresponds to weighted automata. In
the future, we intend to conduct a more systematic investigation of the extent to which the
characterizations from this paper can be generalized to other algebraic structures.

References

1 Rajeev Alur and Pavol Černý. Expressiveness of streaming string transducers. In Kamal
Lodaya and Meena Mahajan, editors, IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS 2010, December 15-18, 2010, Chennai,
India, volume 8 of LIPIcs, pages 1–12. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2010. doi:10.4230/LIPIcs.FSTTCS.2010.1.

2 Rajeev Alur, Taylor Dohmen, and Ashutosh Trivedi. Composing copyless streaming string
transducers, 2022. arXiv:2209.05448.

3 Rajeev Alur, Emmanuel Filiot, and Ashutosh Trivedi. Regular transformations of infinite
strings. In Proceedings of the 27th Annual IEEE Symposium on Logic in Computer Science,
LICS 2012, Dubrovnik, Croatia, June 25-28, 2012, pages 65–74. IEEE Computer Society, 2012.
doi:10.1109/LICS.2012.18.

4 Rajeev Alur, Adam Freilich, and Mukund Raghothaman. Regular combinators for string
transformations. In Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual
Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS) – CSL-LICS ’14, pages 1–10, Vienna,
Austria, 2014. ACM Press. doi:10.1145/2603088.2603151.

5 Mikołaj Bojańczyk. Transducers with origin information. In Javier Esparza, Pierre Fraigniaud,
Thore Husfeldt, and Elias Koutsoupias, editors, Automata, Languages, and Programming – 41st
International Colloquium, ICALP 2014, Copenhagen, Denmark, July 8-11, 2014, Proceedings,
Part II, volume 8573 of Lecture Notes in Computer Science, pages 26–37. Springer, 2014.
doi:10.1007/978-3-662-43951-7_3.

6 Mikołaj Bojańczyk. Languages recognised by finite semigroups, and their generalisations to
objects such as trees and graphs, with an emphasis on definability in monadic second-order
logic, 2020. arXiv:2008.11635.

7 Mikołaj Bojańczyk. Transducers of polynomial growth. In Christel Baier and Dana Fisman,
editors, LICS ’22: 37th Annual ACM/IEEE Symposium on Logic in Computer Science, Haifa,
Israel, August 2–5, 2022, pages 1:1–1:27. ACM, 2022. doi:10.1145/3531130.3533326.

8 Mikołaj Bojańczyk, Laure Daviaud, and Shankara Narayanan Krishna. Regular and First-
Order List Functions. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science – LICS ’18, pages 125–134, Oxford, United Kingdom, 2018. ACM Press.
doi:10.1145/3209108.3209163.

9 Mikołaj Bojańczyk and Amina Doumane. First-order tree-to-tree functions, 2020. Corrected
version with erratum of a LICS 2020 paper. arXiv:2002.09307v2.

10 Mikołaj Bojańczyk and Rafał Stefański. Single-use automata and transducers for infinite
alphabets. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors, 47th International
Colloquium on Automata, Languages, and Programming, ICALP 2020, July 8-11, 2020,
Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages 113:1–113:14. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.ICALP.2020.113.

https://doi.org/10.4230/LIPIcs.FSTTCS.2010.1
https://arxiv.org/abs/2209.05448
https://doi.org/10.1109/LICS.2012.18
https://doi.org/10.1145/2603088.2603151
https://doi.org/10.1007/978-3-662-43951-7_3
https://arxiv.org/abs/2008.11635
https://doi.org/10.1145/3531130.3533326
https://doi.org/10.1145/3209108.3209163
https://arxiv.org/abs/2002.09307v2
https://doi.org/10.4230/LIPIcs.ICALP.2020.113

M. Bojańczyk and L. T. D. Nguyễn 117:19

11 Michal Chytil and Vojtech Jákl. Serial composition of 2-way finite-state transducers and
simple programs on strings. In Arto Salomaa and Magnus Steinby, editors, Automata,
Languages and Programming, Fourth Colloquium, University of Turku, Finland, July 18-22,
1977, Proceedings, volume 52 of Lecture Notes in Computer Science, pages 135–147. Springer,
1977. doi:10.1007/3-540-08342-1_11.

12 Thomas Colcombet and Daniela Petrişan. Automata Minimization: a Functorial Approach.
Logical Methods in Computer Science, 16(1), March 2020. doi:10.23638/LMCS-16(1:32)2020.

13 Joost Engelfriet and Hendrik Jan Hoogeboom. MSO definable string transductions and
two-way finite-state transducers. ACM Transactions on Computational Logic, 2(2):216–254,
April 2001. doi:10.1145/371316.371512.

14 Joost Engelfriet and Sebastian Maneth. Macro Tree Transducers, Attribute Grammars, and
MSO Definable Tree Translations. Information and Computation, 154(1):34–91, October 1999.
doi:10.1006/inco.1999.2807.

15 Paul Gallot, Aurélien Lemay, and Sylvain Salvati. Linear high-order deterministic tree
transducers with regular look-ahead. In Javier Esparza and Daniel Král’, editors, 45th
International Symposium on Mathematical Foundations of Computer Science, MFCS 2020,
August 24-28, 2020, Prague, Czech Republic, volume 170 of LIPIcs, pages 38:1–38:13. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.MFCS.2020.38.

16 Claudio Hermida, Uday S. Reddy, and Edmund P. Robinson. Logical Relations and Para-
metricity – A Reynolds Programme for Category Theory and Programming Languages. In
John Power and Cai Wingfield, editors, Proceedings of the Workshop on Algebra, Coalgebra and
Topology, WACT 2013, Bath, UK, March 1, 2013, volume 303 of Electronic Notes in Theoretical
Computer Science, pages 149–180. Elsevier, 2013. doi:10.1016/j.entcs.2014.02.008.

17 Anca Muscholl and Gabriele Puppis. The Many Facets of String Transducers. In Rolf
Niedermeier and Christophe Paul, editors, 36th International Symposium on Theoretical
Aspects of Computer Science (STACS 2019), volume 126 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 2:1–2:21. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik,
2019. doi:10.4230/LIPIcs.STACS.2019.2.

18 Lê Thành Dũng Nguyễn. Implicit automata in linear logic and categorical transducer theory.
PhD thesis, Université Paris XIII (Sorbonne Paris Nord), December 2021. URL: https:
//theses.hal.science/tel-04132636.

19 Lê Thành Dũng Nguyễn and Cécilia Pradic. Implicit automata in typed λ-calculi I: aperiodicity
in a non-commutative logic. In Artur Czumaj, Anuj Dawar, and Emanuela Merelli, editors,
47th International Colloquium on Automata, Languages, and Programming, ICALP 2020,
July 8-11, 2020, Saarbrücken, Germany (Virtual Conference), volume 168 of LIPIcs, pages
135:1–135:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.
ICALP.2020.135.

20 John Rhodes and Bret Tilson. The kernel of monoid morphisms. Journal of Pure and Applied
Algebra, 62(3):227–268, 1989. doi:10.1016/0022-4049(89)90137-0.

21 Jacques Sakarovitch. Elements of Automata Theory. Cambridge University Press, 2009.
Translated by Reuben Thomas. doi:10.1017/CBO9781139195218.

22 John C. Shepherdson. The reduction of two-way automata to one-way automata. IBM Journal
of Research and Development, 3(2):198–200, April 1959. doi:10.1147/rd.32.0198.

ICALP 2023

https://doi.org/10.1007/3-540-08342-1_11
https://doi.org/10.23638/LMCS-16(1:32)2020
https://doi.org/10.1145/371316.371512
https://doi.org/10.1006/inco.1999.2807
https://doi.org/10.4230/LIPIcs.MFCS.2020.38
https://doi.org/10.1016/j.entcs.2014.02.008
https://doi.org/10.4230/LIPIcs.STACS.2019.2
https://theses.hal.science/tel-04132636
https://theses.hal.science/tel-04132636
https://doi.org/10.4230/LIPIcs.ICALP.2020.135
https://doi.org/10.4230/LIPIcs.ICALP.2020.135
https://doi.org/10.1016/0022-4049(89)90137-0
https://doi.org/10.1017/CBO9781139195218
https://doi.org/10.1147/rd.32.0198

How to Play Optimally for Regular Objectives?
Patricia Bouyer
Université Paris-Saclay, CNRS, ENS Paris-Saclay, Laboratoire Méthodes Formelles, 91190,
Gif-sur-Yvette, France

Nathanaël Fijalkow
CNRS, LaBRI and Université de Bordeaux, France
University of Warsaw, Poland

Mickael Randour
F.R.S.-FNRS & UMONS – Université de Mons, Belgium

Pierre Vandenhove
F.R.S.-FNRS & UMONS – Université de Mons, Belgium
Université Paris-Saclay, CNRS, ENS Paris-Saclay, Laboratoire Méthodes Formelles, 91190,
Gif-sur-Yvette, France

Abstract
This paper studies two-player zero-sum games played on graphs and makes contributions toward
the following question: given an objective, how much memory is required to play optimally for that
objective? We study regular objectives, where the goal of one of the two players is that eventually
the sequence of colors along the play belongs to some regular language of finite words. We obtain
different characterizations of the chromatic memory requirements for such objectives for both players,
from which we derive complexity-theoretic statements: deciding whether there exist small memory
structures sufficient to play optimally is NP-complete for both players. Some of our characterization
results apply to a more general class of objectives: topologically closed and topologically open sets.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory

Keywords and phrases two-player games on graphs, strategy complexity, regular languages, finite-
memory strategies, NP-completeness

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.118

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version Full Version: https://arxiv.org/abs/2210.09703 [4]

Funding This work has been partially supported by the ANR Project MAVeriQ (ANR-20-CE25-0012)
and by the Fonds de la Recherche Scientifique – FNRS under Grant n◦ T.0188.23 (PDR ControlleRS).
Mickael Randour is an F.R.S.-FNRS Research Associate and a member of the TRAIL Institute.
Pierre Vandenhove is an F.R.S.-FNRS Research Fellow.

Acknowledgements We thank Antonio Casares and Igor Walukiewicz for valuable discussions about
this article.

1 Introduction

Games on graphs is a fundamental model in theoretical computer science for modeling systems
involving competing agents. Its applications include model-checking, program verification
and synthesis, control theory, and reactive synthesis: in all cases, the system specification is
turned into a winning objective for a player and the goal is to construct a winning strategy.
Some central results in the field state that for some objectives, there exist memoryless optimal
strategies, meaning not requiring any memory. For instance, the celebrated memoryless
determinacy result for (infinite) parity games is a key ingredient in the modern proof of
decidability of monadic second-order logic over infinite trees by Gurevich and Harrington [16].

EA
T
C
S

© Patricia Bouyer, Nathanaël Fijalkow, Mickael Randour, and Pierre Vandenhove;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 118; pp. 118:1–118:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://orcid.org/0000-0002-2823-0911
https://orcid.org/0000-0002-6576-4680
https://orcid.org/0000-0001-8777-2385
https://orcid.org/0000-0001-5834-1068
https://doi.org/10.4230/LIPIcs.ICALP.2023.118
https://arxiv.org/abs/2210.09703
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

118:2 How to Play Optimally for Regular Objectives?

Memory requirements. However for many objectives, some memory is required; a central
question is therefore, stated informally:

Given an objective, how much memory is required to play optimally for this objective?

The first answers to this question, at the dawn of the study of games, were memory
requirements for concrete objectives, such as Rabin objectives [22]. The work of Dziembowski,
Jurdziński, and Walukiewicz [13] gave a computable characterization of memory requirements
for the whole class of Muller objectives. This triggered the following long-term research goal:
characterizing the memory requirements for ω-regular objectives.

Regular objectives. Many results have been obtained toward this research goal; we refer to
the related works section in Section 3 for further details. The most pressing open question in
that direction is regular objectives, meaning the special case of ω-regular objectives concerned
with finite duration: in this setting, the objective is induced by a regular language over
finite words and the goal of one of the players is that eventually the sequence of colors
along the play belongs to this language. We call these regular reachability objectives. The
opponent’s objective is then to ensure that the sequence of colors never belongs to the
language, describing regular safety objectives.

A first observation is that for such a regular (reachability or safety) objective, a deter-
ministic finite automaton recognizing the regular language provides an upper bound on the
memory requirements of both players. Indeed, playing with the extra information from the
automaton reduces the game to a standard reachability or safety game, for which no further
memory is required to make optimal decisions. Yet, as we will see, structures smaller than
the minimal automaton recognizing the language may suffice for the players.

Chromatic memory. One of the many contributions of Kopczyński [18] in the study of
memory for games on graphs is the notion of chromatic memory. In this model, the memory
states are updated only using the sequence of colors seen along a play, and in particular do
not depend on the graph itself (as opposed to chaotic memory, which may use information
from the graph in its updates). Kopczyński conjectured [18] that for ω-regular objectives,
chromatic and chaotic memory requirements coincide; unfortunately, this does not hold, as
recently proved by Casares [8] (i.e., there are objectives for which the number of memory
states required to play optimally in all arenas differs depending on the memory model). In
our study, we will see another counterexample using regular objectives.

Contributions. We study the chromatic memory requirements of both regular reachability
and regular safety objectives. For both cases, we give a combinatorial characterization of
the memory structures sufficient to play optimally in all arenas (of any cardinality). As a
by-product of the characterization we obtain complexity-theoretic statements: given as input
a deterministic finite automaton representing the objective,

deciding whether a memory structure suffices to play optimally in all arenas can be done
in polynomial time;
deciding the existence of a sufficient memory structure with a given number of states is
NP-complete.

From our characterizations it also follows that for both regular reachability and safety
objectives, chromatic and chaotic memory requirements do not coincide.

We also discuss when relevant the extension of our results to the more general class of
topologically open and topologically closed objectives (called respectively general reachability
objectives and general safety objectives for consistency in what follows), which include the
regular reachability and regular safety objectives.

P. Bouyer, N. Fijalkow, M. Randour, and P. Vandenhove 118:3

Implementation. In order to test ideas and conjectures, we have implemented algorithms
that automatically build a memory structure with a minimal number of states, both for regular
reachability and regular safety objectives. These algorithms are based on the theoretical
analysis from this paper. Our implementation1 uses SAT solvers provided by the Python
package PySAT [17].

Structure of the paper. All required definitions are provided in Section 2. Section 3 includes
an in-depth discussion of related works and a technical overview of the results and proofs:
Section 3.1 for safety objectives, Section 3.2 for reachability objectives, and Section 3.3 for
computational complexity results. Due to length constraints, only proof sketches are provided
in this version of the article; complete proofs are available in the full version [4]. In particular,
proofs for safety objectives are available in [4, Section 4], for reachability objectives in [4,
Section 5], and for complexity-theoretic statements in [4, Section 6].

2 Preliminaries

Let C be a non-empty alphabet of colors.

Arenas. We study zero-sum turn-based games on graphs with two players, called P1 and
P2. Players play on arenas, which are tuples A = (V, V1, V2, E) where V is a non-empty set
of vertices such that V = V1 ⊎ V2 (disjoint union) and E ⊆ V × C × V is a set of colored
edges. If e = (v1, c, v2) ∈ E, we write in(e) = v1, col(e) = c, and out(e) = v2. Vertices in
V1 are controlled by P1 and vertices in V2 are controlled by P2. An arena is finite if it has
finitely many vertices and edges, and is finitely branching if for all v ∈ V , there are finitely
many edges e ∈ E such that in(e) = v. Unless otherwise specified, we consider arenas of any
cardinality. An arena A = (V, V1, V2, E) is a one-player arena of P1 (resp. of P2) if V2 = ∅
(resp. V1 = ∅).

A history on arena A = (V, V1, V2, E) is a finite sequence γ = e1 . . . en ∈ E∗ such that for
i, 1 ≤ i ≤ n − 1, we have out(ei) = in(ei+1). We write out(γ) for out(en). For convenience,
we assume that for all v ∈ V , there is a distinct empty history λv such that out(λv) = v. For
i ∈ {1, 2}, we write Histsi(A) for the set of histories γ on A such that out(γ) ∈ Vi. A play
on arena A is an infinite sequence π = e1e2 . . . ∈ Eω such that for i ≥ 1, out(ei) = in(ei+1);
play π is from v if in(e1) = v. If π = e1e2 . . . ∈ Eω is a play (resp. γ = e1 . . . en ∈ E∗ is
a history), we write colω(π) (resp. col∗(γ)) for the infinite sequence col(e1)col(e2) . . . ∈ Cω

(resp. the finite sequence col(e1) . . . col(en) ∈ C∗).

Objectives. Objectives are subsets W ⊆ Cω. Given an objective W , we write W = Cω \ W

for its complement. We focus on two types of objectives, both derived from a set A ⊆ C∗:
the general reachability objective derived from A, denoted Reach(A), is the objective⋃

w∈A wCω of infinite words that have (at least) one finite prefix in A.
the general safety objective derived from A, denoted Safe(A), is the objective

⋃
w∈A wCω

of infinite words that have no finite prefix in A. We have Safe(A) = Reach(A).

General reachability and safety objectives are respectively the topologically open and
topologically closed sets, at the first level of the Borel hierarchy. When A is a regular language,
we call Reach(A) a regular reachability objective and Safe(A) a regular safety objective. We

1 Our implementation is available at https://github.com/pvdhove/regularMemoryRequirements.

ICALP 2023

https://github.com/pvdhove/regularMemoryRequirements

118:4 How to Play Optimally for Regular Objectives?

call an objective regular if it is a regular reachability or a regular safety objective. Our
characterizations apply to regular reachability and safety objectives, but we sometimes
discuss when we may generalize our results to the general case. For computational complexity
questions, we restrict our focus to regular reachability and safety objectives so that an
objective can be finitely represented as an automaton. The objectives that we consider
are therefore very simple both in terms of their algebraic representation (using automata
representing languages of finite words) and in terms of their topology (they are at the first
level of the Borel hierarchy).

A game is a tuple G = (A, W) where A is an arena and W is an objective.

Automata. A deterministic automaton is a tuple D = (Q, C, qinit, δ, F) where Q is a possibly
infinite set of states, C is a non-empty alphabet (usually the set of colors), qinit ∈ Q is an
initial state, δ : Q × C → Q is a (complete, deterministic) update function, and F ⊆ Q is a
set of final states. All automata in this work are deterministic, so we sometimes omit the
word deterministic. Automaton D is finite if Q is finite. We write δ∗ : M × C∗ → M for the
natural extension of δ to sequences of colors. The language recognized by D, denoted L(D),
is the set of finite words w ∈ C∗ such that δ∗(qinit, w) ∈ F . For q1, q2 ∈ Q, we write ΠD

q1,q2

for the language of words w ∈ C∗ such that δ∗(q1, w) = q2. We drop the superscript D if the
automaton considered is clear in the context. We denote the empty word by ε.

Continuations. For an objective W ⊆ Cω and w ∈ C∗, we define the winning continuations
of w as the set w−1W = {w′ ∈ Cω | ww′ ∈ W} (this set is sometimes called a left quotient
of W in the literature). Given an objective W ⊆ Cω, its prefix preorder ⪯W ⊆ C∗ × C∗ is
defined as w1 ⪯W w2 if w−1

1 W ⊆ w−1
2 W . Its prefix equivalence ∼W ⊆ C∗ × C∗ is defined as

w1 ∼W w2 if w−1
1 W = w−1

2 W . We denote ≺W = ⪯W \ ∼W . We drop the subscript W when
there is no ambiguity on the objective. The prefix preorder is a relation that is preserved by
reading colors.

▶ Lemma 1. Let W ⊆ Cω be an objective. If w1 ⪯ w2, then for all w ∈ C∗, w1w ⪯ w2w.

Starting from a general reachability or safety objective W ⊆ Cω derived from a set A ∈ C∗,
we can associate with W its minimal automaton DW that “classifies” the equivalence classes
of ∼. Formally, DW = (Q, C, qinit, δ, F) where Q = {[w]∼ | w ∈ C∗} is the set of equivalence
classes of ∼, qinit = [ε]∼, δ([w]∼, c) = [wc]∼, and F = {qfin} where qfin = [w]∼ for some w ∈ A

(the choice of w does not matter). The transition function δ is well-defined: w1 ∼ w2 implies
w1c ∼ w2c for all c ∈ C. Notice that the final state of such an automaton is always absorbing,
i.e., for all c ∈ C, δ(qfin, c) = qfin. This matches the intuition that once a word of A is seen
and the reachability (resp. safety) game is won (resp. lost), it stays that way for the rest of
the game.

We have that a general reachability (resp. safety) objective W is equal to Reach(L(DW))
(resp. to Safe(L(DW))) – in examples, we will sometimes start from an automaton to generate
an objective. Using the well-known Myhill-Nerode theorem [20], we obtain that a general
reachability or safety objective W is regular if and only if ∼ has finitely many equivalence
classes if and only if DW is finite.

When considering a minimal automaton DW = (Q, C, qinit, δ, F), for q ∈ Q, we abusively
write q−1W for the set w−1W , where w is any finite word such that δ∗(qinit, w) = q (the
choice of w does not matter). We extend ⪯ to automaton states (q1 ⪯ q2 if q−1

1 W ⊆ q−1
2 W).

Preorders. Let ⪯ be a preorder on some set B. We say that two elements b1, b2 ∈ B are
comparable for ⪯ if b1 ⪯ b2 or b2 ⪯ b1. A set Γ ⊆ B is a chain for ⪯ (resp. antichain for
⪯) if for all b1, b2 ∈ Γ, b1 and b2 are (resp. are not) comparable for ⪯. A preorder ⪯ is
well-founded if every chain for ⪯ contains a minimal element for ⪯.

P. Bouyer, N. Fijalkow, M. Randour, and P. Vandenhove 118:5

Memory structures. A (chromatic) memory structure is a tuple M = (M, minit, αupd) where
M is a possibly infinite set of states, minit ∈ M is an initial state, and αupd : M × C → M is a
(deterministic, complete) update function. It is syntactically almost the same as a deterministic
automaton, except that we do not specify final states. We recover notations α∗

upd and Πm1,m2

(for m1, m2 ∈ M) from automata. We let Mtriv = ({minit}, minit, (minit, c) 7→ minit) denote
the only memory structure with a single state. The size of a memory structure is its number
of states.

Strategies. Let A = (V, V1, V2, E) be an arena and i ∈ {1, 2}. A strategy of Pi on A is
a function σi : Histsi(A) → E such that for all γ ∈ Histsi(A), out(γ) = in(σi(γ)). Given a
strategy σi of Pi, we say that a play π = e1e2 . . . is consistent with σi if for all finite prefixes
γ = e1 . . . ej of π such that out(γ) ∈ Vi, σi(γ) = ej+1. For v ∈ V , we denote by Plays(A, v, σi)
the set of plays on A from v that are consistent with σi.

For M = (M, minit, αupd) a memory structure, a strategy σi of Pi on arena A is
based on (memory) M if there exists a function αnxt : Vi × M → E such that for all
v ∈ Vi, σi(λv) = αnxt(v, minit), and for all non-empty histories γ ∈ Histsi(A), σi(γ) =
αnxt(out(γ), α∗

upd(minit, col∗(γ))). A strategy is memoryless if it is based on Mtriv. For con-
ciseness, we sometimes abusively assume that a strategy of Pi based on M is a function
Vi × M → E.
▶ Remark 2. This chromatic memory model only observes the sequence of colors seen, and not
the precise edges that are taken during a play (i.e., the current memory state is determined
by the word in C∗ seen, not by the history in E∗). A memory structure observing the edges
is sometimes called a chaotic memory [18] and, as was recently shown, may allow to play
optimally with fewer memory states for some objectives [8]. However, this comes at the cost of
needing to specialize the transition function of the memory structure for every arena – it does
not provide an arena-independent memory structure [5]. The chaotic memory requirements
of general safety objectives are characterized in [10] while, as far as we know, the chaotic
memory requirements of general and regular reachability objectives are unknown. ⌟

Optimality. Let G = (A = (V, V1, V2, E), W) be a game, and v ∈ V . We say that a strategy
σ1 of P1 on A is winning from v for W if for all π ∈ Plays(A, v, σ1), colω(π) ∈ W .

A strategy of P1 is optimal for P1 in (A, W) if it is winning from all the vertices of A
from which P1 has a winning strategy. We often write optimal for P1 in A if the objective
W is clear from the context.
▶ Remark 3. We stress that this notion of optimality requires a single strategy to be
winning from all the winning vertices (a property sometimes called uniformity). Asking for
uniformity may require strategies that are more complex to implement than just requiring
winning strategies from individual vertices. Still, uniformity is a common requirement (see,
e.g., [14, 21]) that comes at no extra cost in many well-studied situations [13, 12]. We discuss
uniformity again in Remark 6.

Note also that there is no requirement on the behavior of an optimal strategy from vertices
from which no strategy is winning, as we assume that the opponent plays rationally. In
particular, even if winning becomes possible due to a mistake of the opponent after starting
from a non-winning vertex, an optimal strategy needs not win. ⌟

Let M be a memory structure and W ⊆ Cω be an objective. We say that M suffices (to
play optimally) for W (resp. in finite, finitely branching, one-player arenas) if for all (resp.
finite, finitely branching, one-player) arenas A, P1 has an optimal strategy based on M in
game (A, W).

ICALP 2023

118:6 How to Play Optimally for Regular Objectives?

3 Technical overview

In this section, we start with a more in-depth discussion of the related literature. We
then present our main contributions (characterization of the memory requirements of safety
objectives, of reachability objectives, and the computational complexity of the related decision
problems) while describing and illustrating the main concepts used in our results. Complete
proofs for the three kinds of contributions are available in the full version [4].

Related works. To classify the existing literature on memory for games, we identify two
axes. The first is whether they concern chaotic memory or chromatic memory. The second
is how the class of objectives is defined: either in automata-theoretic terms, typically as a
subclass of ω-regular languages, or in topological terms, referring to the natural topology
over the set of infinite words.

The result of Dziembowski, Jurdziński, and Walukiewicz [13] applies to the whole class
of Muller objectives, which specify the set of colors which appears infinitely many times.
It shows that Zielonka trees [23] can be used to compute chaotic memory requirements
in polynomial time. Recently, Casares [8] has shown that this characterization does not
extend to chromatic memory: deciding whether there is a memory structure of size k

becomes NP-complete and equivalent to minimizing transition-based Rabin automata. In
this direction, Casares, Colcombet and Lehtinen [9] showed that computing chaotic memory
requirements for Muller objectives is equivalent to minimizing good-for-games automata.
A result by Bouyer, Randour, and Vandenhove [7] provides a link between the chromatic
memory requirements of all ω-regular objectives (not only Muller conditions) and their
representation as transition-based parity automata, but with less tight bounds on the minimal
memory structures.

Article [6] establishes the existence of finite-memory optimal strategies from topological
properties of objectives. Although general reachability and safety objectives fit into their
framework, there are major differences with our work: their framework is different (they
study concurrent games that are not played on graphs), and their aim is to establish the
existence of finite-memory optimal strategies for many objectives, but not to understand
precisely the memory requirements of some class of objectives.

Regular objectives are also mentioned in [19], where the existence of finite-memory optimal
strategies is shown for Boolean combinations of objectives involving regular objectives.

In another line of works, Gimbert and Zielonka [14] gave a characterization of all
payoff functions (extending objectives to a quantitative setting) for which both players
have memoryless optimal strategies, implying an important lifting result: the sufficiency of
memoryless strategies in finite two-player arenas is implied by the existence of memoryless
optimal strategies in both players’ finite one-player arenas. Bouyer et al. [5] extended this to
chromatic finite memory.

The work most related to the present paper is by Colcombet, Fijalkow, and Horn [10, 11],
which gives a characterization of chaotic memory requirements for general safety objectives.
Their constructions strongly rely on the model of chaotic memory; indeed, as a corollary
of our results, we will see that already for regular safety objectives, chromatic and chaotic
memory requirements do not coincide. Our first step is to obtain a characterization of
chromatic memory requirements for (general and regular) safety objectives.

P. Bouyer, N. Fijalkow, M. Randour, and P. Vandenhove 118:7

3.1 Monotony and safety objectives
Let us fix an objective W ⊆ Cω. In order to play optimally for W , a memory structure M
needs to be able to distinguish between histories that are not comparable for ⪯W : indeed, if
two finite words w1, w2 ∈ C∗ are not comparable, we can construct an arena in which the
opponent chooses between playing w1 and playing w2, and then the correct choice has to
be made between a continuation only winning after w1, and a continuation only winning
after w2. This motivates the following definition, which we call M-strong-monotony.

▶ Definition 4 (M-strong-monotony). Let W ⊆ Cω be an objective and M = (M, minit, αupd)
be a memory structure. We say that W is M-strongly-monotone if for all w1, w2 ∈ C∗,
α∗

upd(minit, w1) = α∗
upd(minit, w2) implies that w1 and w2 are comparable for ⪯W .

Notice also that W is M-strongly-monotone if and only if W is M-strongly-monotone
(as being comparable for ⪯W is equivalent to being comparable for ⪯W = ⪰W). Although
stated differently, a property called strong monotony was introduced in [1] and coincides
with our definition of Mtriv-strong-monotony. We can therefore see our definition as a
reformulation and a generalization to handle arbitrary memory structures, rather than only
the “memoryless memory structure” Mtriv.

The discussion above implies that for a memory M, M-strong-monotony is necessary
for M to be sufficient to play optimally. Depending on the type of objective (regular or
general), we specify a class of arenas in which M-strong-monotony can already be shown to
be necessary. Intuitively, regularity allows to distinguish distinct objectives with ultimately
periodic words, which can be encoded into a finite arena.

▶ Lemma 5 (Necessity of M-strong-monotony). Let W be an objective and M a memory
structure.
1. If W is regular and M suffices to play optimally for W in all finite one-player arenas,

then W is M-strongly-monotone.
2. In the general case, if M suffices to play optimally for W in all finitely branching

one-player arenas, then W is M-strongly-monotone.

Complete proofs for this section can be found in [4, Section 4].
▶ Remark 6. This is the only result relying on the “uniformity” assumption (see Remark 3).
This assumption is crucial to obtain this lemma with a hypothesis about one-player arenas.
We provide additional details about the (small) cost of requiring uniformity w.r.t. memory
requirements in two-player games in [4, Section 4]. ⌟

In the case of general reachability or safety objectives, it is useful to reformulate the
notion of M-strongly-monotone objectives using chains. Given a general reachability or
safety objective W , its minimal automaton DW = (Q, C, qinit, δ, F), and a memory structure
M = (M, minit, αupd), we can associate with each state m ∈ M the set ΓW

m ⊆ Q of states of
DW that can be reached “simultaneously”. Formally, for m ∈ M ,

ΓW
m = {δ∗(qinit, w) ∈ Q | w ∈ C∗, α∗

upd(minit, w) = m}.

We drop the superscript W if there is no ambiguity. The following property follows from the
definitions.

▶ Lemma 7. Let W be a general reachability or safety objective and M = (M, minit, αupd) be
a memory structure. Objective W is M-strongly-monotone if and only if for all m ∈ M , the
set Γm is a chain for ⪯W .

ICALP 2023

118:8 How to Play Optimally for Regular Objectives?

Our initial definition of M-strong-monotony required that any two finite words reaching the
same state of M must be comparable; in this reformulation, we focus instead on the minimal
automaton of W and require that states of the automaton that can be reached along with
the same state of M are comparable.

Our first characterization states that for general safety objectives, M-strong-monotony
also implies that M suffices to play optimally. We state two variants of the results: in the
first one, we assume that the preorder ⪯ induced by the objective is well-founded (which
includes the regular case), and the result holds for all arenas; in the second one, we make no
such assumption, but the result holds only for finitely branching arenas. We will discuss why
we do not have the result with none of these hypotheses in Remark 10.

▶ Theorem 8 (Characterization for safety). Let W be a general safety objective, and M be a
memory structure.
1. If ⪯W is well-founded (in particular, if W is regular), then M suffices to play optimally

for W if and only if W is M-strongly-monotone.
2. In the general case, M suffices to play optimally for W in all finitely branching arenas if

and only if W is M-strongly-monotone.

Proof sketch. We provide an overview of the proof of Theorem 8 (complete proof in [4,
Section 4]). We discuss here the sufficiency of M-strong-monotony (the necessity is easier
and was stated in Lemma 5).

Let M = (M, minit, αupd) and let DW = (Q, C, qinit, δ, F) be the minimal automaton of W .
We assume that W is M-strongly-monotone. Let A = (V, V1, V2, E) be an arena. As per the
hypotheses, we require that ⪯ is well-founded or that A is finitely branching.

We want to build a strategy σ optimal for P1 in A such that σ : V1 × M → E is based
on M. The key to the proof is to understand the following sets of states of DW in order to
know what to play in each pair (v, m) ∈ V1 × M . For v ∈ V , m ∈ M , we define

Qv,m = {q ∈ Γm | P1 has a winning strategy for objective q−1W from v}.

States in Qv,m are states of DW that could be reached while the memory state is m, by
definition of Γm. Moreover, M-strong-monotony tells us that each Γm is a chain for ⪯
(Lemma 7), so each Qv,m is too.

For given v ∈ V1 and m ∈ M , we distinguish three possibilities.
If Qv,m is empty, then this means that there is no state of Γm for which P1 can win from
v (i.e., for all q ∈ Γm, P1 has no winning strategy for q−1W from v). In this case, we can
define σ(v, m) arbitrarily, as there is no hope to win.
If Qv,m has a minimum qv,m for ⪯, then this minimum represents the worst (for ⪯) state
of Γm for which P1 still has a winning strategy. We define σ(v, m) as the edge played
by such a winning strategy. Intuitively, this is the most robust way to play as it is a
winning move for the worst possible state of Γm for which winning is possible. Notice
that a non-empty Qv,m always has a minimum when ⪯ is well-founded.
In case Qv,m is non-empty and has no minimum, then ⪯ is not well-founded, so we
work under the hypothesis that A is finitely branching. We can then consider, for each
q ∈ Qv,m, the set of edges Eq that can be taken from v to win for q−1W . Each Eq

is finite and non-empty, and they are ordered for inclusion. We can then show that
their intersection is non-empty, so there is an edge that can be taken in v to win for all
q ∈ Qv,m. We define σ(v, m) as such an edge.

We have now defined a strategy σ based on M that makes local choices that are played
by winning strategies for as many states of Γm (where m is the current memory state) as
possible. Using the fact that W is a general safety condition, one can prove that this strategy
is in fact optimal. ◀

P. Bouyer, N. Fijalkow, M. Randour, and P. Vandenhove 118:9

A corollary of this characterization, by comparing to the characterization for chaotic
memory in [10], is that chromatic and chaotic memory requirements differ already for regular
safety objectives. We provide an instructive example below. Note that this provides a new
simple kind of counterexample to Kopczyński’s conjecture [18], which Casares [8] had already
falsified with a Muller objective.

▶ Example 9. Let C = {a, b, c, d}. We consider the regular language recognized by the finite
automaton D depicted in Figure 1 (left). It accepts the finite words that first see both a and
b (in any order, possibly interspersed with c’s and d’s), and then see both c and d (in any
order, possibly interspersed with a’s and b’s). This language can be described by the regular
expression C∗(aC∗b | bC∗a)C∗(cC∗d | dC∗c)C∗. We write W for the induced regular safety
objective: W = Safe(L(D)).

The main claim is that the chaotic memory requirements for W are two states, which is
easily obtained from the existing characterization [10] (this is the size of a maximal antichain
for ⪯), while the chromatic requirements for W are three states. We depict a memory
structure M with three states which makes W M-strongly-monotone in Figure 1 (right). To
check that W is indeed M-strongly-monotone, we have to check that there is no pair of words
w1, w2 ∈ C∗ such that w1 and w2 reach the same state of M, but reach non-comparable
states in D. The only two pairs of non-comparable states in D are qa and qb, and qc and
qd (besides these, states are ordered for ⪯ from right to left). We can check that for this
choice of M, Γm1 = {qinit, qa}, Γm2 = {qb, qab, qd, qcd}, Γm3 = {qb, qab, qc, qcd}. As these are
all chains for ⪯, we have that W is M-strongly-monotone.

It is not possible to find a chromatic memory structure M with two states which makes
W M-strongly-monotone (this can be checked by trying to assign transitions to two states
while distinguishing non-comparable states, and observing that all cases fail). ⌟

qinit

qa

qb

qab

a

b

b

a

c, d

a, c, d

b, c, d

qc

qd

qcd

c

d

d

c

a, b

a, b, c

a, b, d

a, b, c, dΓm1

Γm2

Γm3

m1 m2 m3
b

a, c, d a, b, d

c

a, b, c

d

Figure 1 Example 9: automaton D (left) and a minimal memory structure M (right) such that
Reach(L(D)) and Safe(L(D)) are M-strongly-monotone. In figures, diamonds are used to depict
automaton states and memory states, and accepting states are depicted with a double border.

To conclude this section, we discuss why, with neither the well-foundedness hypothesis nor
the finitely branching hypothesis from Theorem 8, we cannot expect such a characterization.

▶ Remark 10. If the prefix preorder of an objective W is not well-founded, then there is an
infinite decreasing sequence of finite words w1 ≻ w2 ≻ . . . in C∗. This means that for all
i ≥ 1, there is w′

i ∈ Cω such that wiw
′
i ∈ W , but for j > i, wjw′

i /∈ W . We can then build
the infinitely branching arena depicted in Figure 2 in which P2 first chooses a word wj , and
P1 can win by playing a word w′

i with i ≥ j. This requires infinite memory, even if W is
Mtriv-strongly-monotone. ⌟

ICALP 2023

118:10 How to Play Optimally for Regular Objectives?

. . .

...
. . .

...

w1

...
wn
...

w′
1

w′
n

Figure 2 Infinite branching arena in which P1 needs memory beyond the M-strong-monotony
property in Remark 10. In figures, circles (resp. squares) represent arena vertices controlled by P1

(resp. P2), i.e., in V1 (resp. V2). Squiggly arrows indicate a sequence of edges.

3.2 Capturing progress and reachability objectives
To play optimally for general and regular reachability objectives with a memory M, M-
strong-monotony is necessary (Lemma 5) but not enough: the following example shows that
the memory structure must keep track of progress.

▶ Example 11. Let C = {a, b}. We consider the regular language b∗a+bC∗ of words that
have to see at least one a, followed by at least one b. This language is recognized by the finite
automaton D in Figure 3 (left). We write W for the induced regular reachability objective:
W = Reach(L(D)).

In the arena in Figure 3 (center), P1 may win by starting a play with ab, but not
without memory. The intuition is that playing a first makes some progress (it reaches an
automaton state with more winning continuations), but is not sufficient to win, even if
repeated. Therefore, in our memory structures, if a word makes some progress but without
guaranteeing the win when repeated, we want the memory state to change upon reading that
word. The memory structure in Figure 3 (right) is sufficient for W ; in particular, seeing the
first a, which makes progress from qinit to qa, changes the memory state. ⌟

a bqabqaqinit
a b

b a a, b

m1 m2
a

b a, b

Figure 3 Example 11: automaton D (left), an arena requiring memory for Reach(L(D)) (center),
and a minimal sufficient memory structure (right).

We formalize this intuition in the following definition, which is a generalization of the
progress-consistency property [3]. Notation Πm1,m2 , representing the finite words read from
memory state m1 to memory state m2, was defined in Section 2.

▶ Definition 12 (M-progress-consistency). Let W be an objective and M = (M, minit, αupd)
be a memory structure. We say that W is M-progress-consistent if for all m ∈ M , for all
w1 ∈ Πminit,m, for all w2 ∈ Πm,m,

w1 ≺ w1w2 =⇒ w1(w2)ω ∈ W.

Intuitively, this says that if it is possible to come back to the same memory state while
reading a “word that makes progress” (i.e., that improves our situation by putting us in a
position with more winning continuations), then repeating this word infinitely often from
that point onward must be winning. The notion of Mtriv-progress-consistency corresponds
to the previous definition of progress-consistency [3].

P. Bouyer, N. Fijalkow, M. Randour, and P. Vandenhove 118:11

The discussion above shows that M-progress-consistency is necessary for a memory
structure M to be sufficient to play optimally. As for M-strong-monotony, we distinguish
the regular case from the general case.

▶ Lemma 13 (Necessity of M-progress-consistency). Let W be an objective and M a memory
structure.
1. If W is regular and M suffices to play optimally for W in all finite one-player arenas,

then W is M-progress-consistent.
2. In the general case, if M suffices to play optimally for W in all finitely branching

one-player arenas, then W is M-progress-consistent.

Complete proofs for this section can be found in [4, Section 5]. The following example
should help the reader form the right intuition about M-progress-consistency.

▶ Example 14. Let C = {a, b}. We consider the regular language of words containing
ababa as a (non-necessarily contiguous) subword, recognized by the finite automaton D in
Figure 4 (left). We consider the memory structure M remembering whether a or b was last
seen, depicted in Figure 4 (right). The regular reachability objective W = Reach(L(D)) is
M-progress-consistent. Indeed, let us first consider m = mb in the definition of M-progress-
consistency. A finite word w1 reaching mb in M necessarily reaches qinit, qab, or qabab in Q

(excluding the final state from the reasoning, as no progress is possible from it). After w1,
words w2 that both (i) make progress (w1 ≺ w1w2) and (ii) are a cycle on mb necessarily
see both a and b. Therefore, w1(w2)ω is always a winning word. The same reasoning holds
for m = ma. Notice that the memory states from the memory structure do not carry enough
information to ascertain when a word of the language has been seen (i.e., when the game is
won).

The upcoming Theorem 16 implies that M suffices to play optimally for P1. ⌟

qinit qa qab qaba qabab qfin
a b a b a

b a b a b a, b

mb ma

a

b

b a

Figure 4 Example 14: automaton D (left) and memory structure M (right).

This need to capture progress was not necessary to understand the memory requirements
of safety objectives, which may be explained by the following reasoning.
▶ Remark 15. Unlike general reachability objectives, all general safety objectives are Mtriv-
progress-consistent. Here is a proof of this statement. Let W ⊆ Cω be a general safety
objective. Let w1, w2 ∈ ΠMtriv

minit,minit
= C∗ be such that w1 ≺ w1w2. This implies that w1w2,

and therefore w1, have a non-empty set of winning continuations. Assume by contradiction
that w1(w2)ω /∈ W . As W is a general safety objective, there is a smallest n ≥ 1 such
that w1(w2)n has no winning continuation. Hence, w1(w2)n−1 still has some winning
continuations, so w1(w2)n ≺ w1(w2)n−1. This is a contradiction, as w1 ≺ w1w2 implies that
w1(w2)n−1 ⪯ w1w2(w2)n−1 = w1(w2)n by Lemma 1. This property is, at least intuitively,
a reason hinting that the memory requirements of safety objectives are lower and easier to
understand than those for their complement reachability objective. ⌟

We have now discussed two necessary properties for a memory M to be sufficient to play
optimally for an objective. For regular reachability objectives, it appears that the conjunction
of these two properties is also sufficient.

ICALP 2023

118:12 How to Play Optimally for Regular Objectives?

▶ Theorem 16 (Characterization for reachability). Let W be a regular reachability objective
and M be a finite memory structure. Memory M suffices to play optimally for W if and
only if W is M-strongly-monotone and M-progress-consistent.

Proof sketch. We provide an overview of the proof of Theorem 16 (complete proof in [4, Sec-
tion 5]). We discuss here the sufficiency of M-strong-monotony and M-progress-consistency
(their necessity is easier and was stated in Lemmas 5 and 13).

Let DW = (Q, C, qinit, δ, F) be the minimal automaton of W (which is finite as W is
regular), and M = (M, minit, αupd). We assume that W is M-strongly-monotone and M-
progress-consistent. Let A = (V, V1, V2, E) be a (possibly infinite) arena. We construct
an optimal strategy based on memory M, using the same idea as in the proof for safety
objectives (Theorem 8): we once again consider a strategy based on M making choices that
are “locally optimal”. We then show, thanks to our hypotheses (M-strong-monotony and
M-progress-consistency), that this strategy must be optimal.

For v ∈ V1, m ∈ M , we define

qv,m = min
⪯

{q ∈ Γm | P1 has a winning strategy for objective q−1W from v}.

Every set Γm is a chain using M-strong-monotony (Lemma 7) and is finite since DW is finite.
Hence, the minimum qv,m exists (except when the set is empty, but that means that the
game cannot be won anymore – we ignore this case). Let σv,m be a strategy winning for
q−1

v,mW from v.
Now, just like for the proof for safety, we want to define σ(v, m) as the first edge taken

by qv,m from v – we play locally reasonable edges played by good strategies and hope that
this creates a “globally” optimal strategy. However, this does not work in general, as any
choice for the strategies σv,m may not be good: indeed, such strategies may be winning, but
may make unnecessary moves delaying the achievement of the objective. For instance, in the
arena of Figure 3, a strategy playing babω is winning for q−1

initW , but not as fast as possible
(it takes three moves to create a word in L(D), while it is possible to do it in two moves). If,
by imitating the first move of this strategy, we define σ(v, m1) = (v, b, v), we then get stuck
and σ plays the losing word bω.

A way to remedy this is by formally defining the “time” taken by a strategy to guarantee
a win, and choosing strategies σv,m that win in the least time. When considering infinite
two-player arenas, this time has to be defined using ordinals. If we do this, it is possible
(though still quite involved) to show that σ defined as above is indeed optimal, thanks to
M-progress-consistency. ◀

▶ Remark 17. Unlike safety objectives, our characterization is only shown to hold for regular
reachability objectives. We discuss in [4, Section 5] why our proof technique does not apply
to general reachability objectives (even with ⪯ well-founded and finite branching of the
arenas). ⌟

For objectives beyond reachability and safety, M-strong-monotony and M-progress-
consistency may not imply the sufficiency of M to play optimally. For instance, with
C = {a, b}, let us consider the objective

W = {w ∈ Cω | a and b are both seen infinitely often},

which is ω-regular (it can be recognized by a deterministic Büchi automaton with two states),
but is not a general reachability nor safety objective. Objective W is Mtriv-strongly-monotone
and Mtriv-progress-consistent, but Mtriv does not suffice to play optimally.

P. Bouyer, N. Fijalkow, M. Randour, and P. Vandenhove 118:13

Lift for regular objectives. As a by-product of our results, we observe that for regular
objectives, our characterizations deal with arbitrary arenas of any cardinality, but the
properties used in the characterizations are already necessary in finite one-player arenas.
This means that strategy-wise, to accomplish a regular objective, all the complexity already
appears in finite graphs with no opponent. For the specific class of regular objectives that
we study, this strengthens so-called one-to-two-player lifts from the literature [14, 5].

▶ Theorem 18 (Finite-to-infinite, one-to-two-player lift). Let W be a regular (reachability or
safety) objective and M be a finite memory structure. Memory M suffices to play optimally
for W (in all arenas) if and only if M suffices to play optimally for W in finite one-player
arenas.

Proof. The implication from left-to-right holds as this is the same property quantified over
fewer arenas. We argue the other implication for each case.

For regular safety objectives W , we showed that if M suffices in finite one-player arenas,
then W is M-strongly-monotone (by Lemma 5 as W is regular), which implies that M
suffices in all arenas (by Theorem 8 as W is a safety condition with a well-founded preorder).

For regular reachability objectives W , we showed that if M suffices in finite one-player
arenas, then W is M-strongly-monotone and M-progress-consistent (by Lemmas 5 and 13 as
W is regular), which implies that M suffices in all arenas (by Theorem 16 as W is a regular
reachability objective). ◀

3.3 The complexity of finding small memory structures
We finally discuss the computational complexity of finding small memory structures for
regular objectives. We formalize the question as two decision problems: given a regular
reachability or safety objective, how much memory is required to play optimally for this
objective?

Memory-Safe
Input: A finite automaton D inducing the regular safety objective W = Safe(L(D)) and

an integer k ∈ N.
Question: Does there exist a memory structure M of size at most k which suffices to play

optimally for W ?

Memory-Reach
Input: A finite automaton D inducing the regular reachability objective W =

Reach(L(D)) and an integer k ∈ N.
Question: Does there exist a memory structure M of size at most k which suffices to play

optimally for W ?

It follows from our characterizations (Theorems 8 and 16) that Memory-Safe is equivalent
to asking whether there is a memory structure M of size at most k such that Safe(L(D)) is
M-strongly-monotone, and Memory-Reach whether there is a memory structure M of
size at most k such that Reach(L(D)) is M-strongly-monotone and M-progress-consistent.

▶ Remark 19. The way k is encoded (in binary or in unary) has no impact on the complexity.
Indeed, the input consists of the number k together with a (deterministic) automaton
describing the objective. Since the automaton is an upper bound on the memory requirements
(for both Memory-Safe and Memory-Reach), the problem is non-trivial only when k is
smaller than the size of the automaton. Therefore, the size of the input is dominated by the
size of the automaton in the non-trivial cases. ⌟

ICALP 2023

118:14 How to Play Optimally for Regular Objectives?

▶ Theorem 20 (Complexity of Memory-Safe and Memory-Reach). Both Memory-Safe
and Memory-Reach are NP-complete.

For NP-hardness, we construct a reduction from the Hamiltonian cycle problem which
works for both Memory-Safe and Memory-Reach. Complete proofs for this section can
be found in [4, Section 6].

Our main insight is to reformulate the notion of M-strong-monotony (NP-membership of
Memory-Safe follows from this reformulation). Let W = Safe(L(D)) be a regular objective
and M = (M, minit, αupd) be a memory structure. In Example 9, we have seen how to go
from a memory structure M such that W is M-strongly-monotone to a covering of the states
of D by chains of states. We formulate exactly the requirements for such coverings in order
to have a point of view equivalent to M-strong-monotony. For Γ ⊆ Q a set of automaton
states and c ∈ C a color, we define δ(Γ, c) = {δ(q, c) | q ∈ Γ}.

▶ Definition 21 (Monotone decomposition). Let D = (Q, C, qinit, δ, F) be an automaton. We
say that the sets Γ1, . . . , Γk ⊆ Q form a monotone decomposition of D if
(a) Q =

⋃k
i=1 Γi,

(b) for all c ∈ C, for all i ∈ {1, . . . , k}, there is j ∈ {1, . . . , k} such that δ(Γi, c) ⊆ Γj, and
(c) for all i ∈ {1, . . . , k}, Γi is a chain for ⪯.

Note that the sets Γi do not have to be disjoint (as was illustrated in Example 9). If
we only consider requirements (a) and (b) of this definition, we recover the definition of
an admissible decomposition, which can be used to quotient an automaton [15]. Here, we
add the additional requirement (c) that each set of states is a chain for ⪯. Note that
there always exists an admissible decomposition with just one set (by taking Γ1 = Q), but
finding a small monotone decomposition may not be so easy. This point of view in terms of
monotone decompositions turns out to be equivalent to our initial point of view in terms of
M-strong-monotony in the following sense.

▶ Lemma 22. Let D be an automaton and W be equal to Safe(L(D)) or Reach(L(D)).
Automaton D admits a monotone decomposition with k sets if and only if W is M-strongly-
monotone for some memory structure M of size k.

It is instructive to reformulate the characterization of chaotic memory requirements
from [10]: the original phrasing was that the number of memory states necessary and
sufficient to play optimally for the safety objective W is the size of the largest antichain
of ⪯W . Using our terminology and Dilworth’s theorem, it is equivalent to the smallest
number of chains required to cover all states; that is, decompositions satisfying (a) and (c)
in Definition 21, but not necessarily (b). Hence, it is smaller in general.

We finish this section with an overview of the proof of Theorem 20 (complete proofs in [4,
Section 6]).

Proof sketch of Theorem 20. We first discuss membership in NP, and then NP-hardness.

Membership in NP. Problem Memory-Safe with inputs D and k was shown in Theorem 8
to be equivalent to the existence of a memory structure M of size k such that W is M-
strongly-monotone. This second problem is itself equivalent by Lemma 22 to the existence of
a monotone decomposition of D with k sets. A monotone decomposition is a polynomial-
size witness, and checking whether k sets of states form a monotone decomposition is
done in polynomial time by checking the three conditions in the definition. This shows
NP-membership of Memory-Safe.

P. Bouyer, N. Fijalkow, M. Randour, and P. Vandenhove 118:15

For Memory-Reach, we use memory structures as polynomial-size witnesses. Let D
be a finite automaton and k ∈ N. Given a memory structure M of size k, we want to
decide in polynomial time whether objective Reach(L(D)) is M-strongly-monotone and M-
progress-consistent. We have discussed how to check M-strong-monotony in polynomial time
through monotone decompositions. Checking M-progress-consistency in polynomial time is
slightly more involved and is described in [4, Section 6]: we reduce M-progress-consistency
to checking a polynomial number of emptiness queries of intersections of regular languages
recognized by deterministic finite automata.

NP-hardness. As mentioned above, we prove NP-hardness of Memory-Safe using a
reduction from the Hamiltonian cycle problem. The proof also applies to Memory-Reach,
but we move this discussion to [4, Section 6]. In the following, a (directed) graph is a tuple
G = (V, E) with E ⊆ V × V . A Hamiltonian cycle of G is a sequence (u1, . . . , un) in which
each state of V appears exactly once, (ui, ui+1) ∈ E for all i, 1 ≤ i < n, and (un, u1) ∈ E.

We start from a directed graph G = (V, E) and we intend to build an automaton DG such
that G has a Hamiltonian cycle if and only if DG has a monotone decomposition with k sets,
for a well-chosen k. We write |V | = n and |E| = m. We assume m ≥ n, otherwise G cannot
have a Hamiltonian cycle. We define Automaton(G) as the automaton (Q, Σ, δ, qinit, F) with
Q = V ⊎ E, Σ = {in, out}, and transitions such that for v ∈ V , δ(v, in) = δ(v, out) = v, and
for e = (v1, v2) ∈ E, δ(e, in) = v1 and δ(e, out) = v2. We ignore qinit and F at the moment.
This definition is inspired from a reduction in [2] (although the rest of the proof is different).

We also consider the cycle graph with n vertices Cn = (VC , EC), with VC = {vC
1 , . . . , vC

n }
and EC = {eC

1 , . . . , eC
n } such that eC

i = (vC
i , vC

i+1) for 1 ≤ i < n and en = (vC
n , vC

1). We now
consider an automaton DG = (Q, Σ, δ, qinit, F) based on the disjoint union Automaton(Cn) ⊎
Automaton(G) along with three extra states qinit, ⊥, and ⊤. We illustrate this part of the
construction in Figure 5.

v1

v2

v4

v3

G

vC
1

vC
2

vC
4

vC
3

DG

Automaton(Cn)

in

out

in out

in

out

inout

in, out

v1

v2

v4

v3

Automaton(G)

in

out

in out

in

out

inout

in

out

in, out
qinit

⊥ ⊤ ΣΣ

Figure 5 Illustration of automaton DG starting from a graph G with four vertices. This is only a
part of the full construction in [4, Section 6] to give an overview of the proof.

What is now missing is a way to induce an interesting ordering ⪯ – intuitively, we want ⊥
to be the smallest state, ⊤ to be the largest, and all automaton states corresponding to vertices
(resp. edges) of Automaton(Cn) to be smaller than all automaton states corresponding to
vertices (resp. edges) of Automaton(G), while making all other pairs of states non-comparable.
We can get this ordering by adding a letter to Σ for each state of DG and defining the right
transitions from qinit and to ⊥ and ⊤.

ICALP 2023

118:16 How to Play Optimally for Regular Objectives?

In this way, we have that chains of DG for ⪯ have at most 4 states, and chains with
four states contain either ⊥, ⊤, a vertex of Cn and a vertex of G, or ⊥, ⊤, an edge of Cn

and an edge of G. Moreover, the largest antichain of DG for ⪯ has n + m + 1 elements
and is achieved by V ∪ E ∪ {qinit}. By a counting argument, it is then possible to cover all
states with n + m + 1 chains if only if every vertex (resp. edge) of Cn is in a chain with one
vertex (resp. edge) of G. A covering with n + m + 1 chains therefore induces a bijection
between VC and V and an injection from EC to E. To form a monotone decomposition, these
chains still have to satisfy condition b from Definition 21. If it is possible to find n + m + 1
such chains, we can show by reading in and out from chains containing edges that the cycle
on Cn transfers to a Hamiltonian cycle on G. Reciprocally, if G has a Hamiltonian cycle,
then we can find a natural correspondence between vertices (resp. edges) of Cn and vertices
(resp. edges) of G that allows to define a monotone decomposition with n + m + 1 sets. We
have that G has a Hamiltonian cycle if and only if DG has a monotone decomposition in
k = n + m + 1 sets. ◀

4 Conclusion

We have characterized the minimal memory structures sufficient to play optimally for regular
reachability and safety objectives. In doing so, we were able to prove that related decision
problems about regular objectives were NP-complete. Our characterizations were encoded
into a SAT solver that automatically generates a minimal memory structure given a finite
automaton as an input (link in Section 1).

This article can be seen as one step toward understanding more generally the (chromatic
or chaotic) memory requirements of all ω-regular objectives, as well as synthesizing minimal
memory structures for them. The chaotic memory requirements of regular reachability
objectives are still unknown, as well as the chromatic memory requirements of larger classes
of ω-regular objectives (such as, e.g., the objectives recognized by deterministic Büchi
automata).

References

1 Alessandro Bianco, Marco Faella, Fabio Mogavero, and Aniello Murano. Exploring the
boundary of half-positionality. Annals of Mathematics and Artificial Intelligence, 62(1-2):55–
77, 2011. doi:10.1007/s10472-011-9250-1.

2 Kellogg S. Booth. Isomorphism testing for graphs, semigroups, and finite automata are
polynomially equivalent problems. SIAM Journal on Computing, 7(3):273–279, 1978. doi:
10.1137/0207023.

3 Patricia Bouyer, Antonio Casares, Mickael Randour, and Pierre Vandenhove. Half-positional
objectives recognized by deterministic Büchi automata. In Bartek Klin, Sławomir Lasota, and
Anca Muscholl, editors, Proceedings of the 33rd International Conference on Concurrency
Theory, CONCUR 2022, Warsaw, Poland, September 12–16, 2022, volume 243 of LIPIcs,
pages 20:1–20:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/
LIPIcs.CONCUR.2022.20.

4 Patricia Bouyer, Nathanaël Fijalkow, Mickael Randour, and Pierre Vandenhove. How to play
optimally for regular objectives? CoRR, abs/2210.09703, 2022. doi:10.48550/arXiv.2210.
09703.

5 Patricia Bouyer, Stéphane Le Roux, Youssouf Oualhadj, Mickael Randour, and Pierre Van-
denhove. Games where you can play optimally with arena-independent finite memory. Logical
Methods in Computer Science, 18(1), 2022. doi:10.46298/lmcs-18(1:11)2022.

https://doi.org/10.1007/s10472-011-9250-1
https://doi.org/10.1137/0207023
https://doi.org/10.1137/0207023
https://doi.org/10.4230/LIPIcs.CONCUR.2022.20
https://doi.org/10.4230/LIPIcs.CONCUR.2022.20
https://doi.org/10.48550/arXiv.2210.09703
https://doi.org/10.48550/arXiv.2210.09703
https://doi.org/10.46298/lmcs-18(1:11)2022

P. Bouyer, N. Fijalkow, M. Randour, and P. Vandenhove 118:17

6 Patricia Bouyer, Stéphane Le Roux, and Nathan Thomasset. Finite-memory strategies in
two-player infinite games. In Florin Manea and Alex Simpson, editors, Proceedings of the
30th EACSL Annual Conference on Computer Science Logic, CSL 2022, Göttingen, Germany,
February 14–19, 2022, volume 216 of LIPIcs, pages 8:1–8:16. Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.CSL.2022.8.

7 Patricia Bouyer, Mickael Randour, and Pierre Vandenhove. Characterizing omega-regularity
through finite-memory determinacy of games on infinite graphs. TheoretiCS, 2:1–48, 2023.
doi:10.46298/theoretics.23.1.

8 Antonio Casares. On the minimisation of transition-based Rabin automata and the chromatic
memory requirements of Muller conditions. In Florin Manea and Alex Simpson, editors,
Proceedings of the 30th EACSL Annual Conference on Computer Science Logic, CSL 2022,
Göttingen, Germany, February 14–19, 2022, volume 216 of LIPIcs, pages 12:1–12:17. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.CSL.2022.12.

9 Antonio Casares, Thomas Colcombet, and Karoliina Lehtinen. On the size of good-for-games
Rabin automata and its link with the memory in Muller games. In Mikołaj Bojańczyk,
Emanuela Merelli, and David P. Woodruff, editors, Proceedings of the 49th International
Colloquium on Automata, Languages, and Programming, ICALP 2022, Paris, France, July
4–8, 2022, volume 229 of LIPIcs, pages 117:1–117:20. Schloss Dagstuhl – Leibniz-Zentrum für
Informatik, 2022. doi:10.4230/LIPIcs.ICALP.2022.117.

10 Thomas Colcombet, Nathanaël Fijalkow, and Florian Horn. Playing safe. In Venkatesh
Raman and S. P. Suresh, editors, Proceedings of the 34th IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2014, New
Delhi, India, December 15–17, 2014, volume 29 of LIPIcs, pages 379–390. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2014. doi:10.4230/LIPIcs.FSTTCS.2014.379.

11 Thomas Colcombet, Nathanaël Fijalkow, and Florian Horn. Playing safe, ten years later.
CoRR, abs/2212.12024, 2022. doi:10.48550/arXiv.2212.12024.

12 Thomas Colcombet and Damian Niwiński. On the positional determinacy of edge-labeled games.
Theoretical Computer Science, 352(1-3):190–196, 2006. doi:10.1016/j.tcs.2005.10.046.

13 Stefan Dziembowski, Marcin Jurdziński, and Igor Walukiewicz. How much memory is needed
to win infinite games? In Proceedings of the 12th Annual IEEE Symposium on Logic in
Computer Science, LICS 1997, Warsaw, Poland, June 29 – July 2, 1997, pages 99–110. IEEE
Computer Society, 1997. doi:10.1109/LICS.1997.614939.

14 Hugo Gimbert and Wieslaw Zielonka. Games where you can play optimally without any
memory. In Martín Abadi and Luca de Alfaro, editors, Proceedings of the 16th International
Conference on Concurrency Theory, CONCUR 2005, San Francisco, CA, USA, August 23–26,
2005, volume 3653 of Lecture Notes in Computer Science, pages 428–442. Springer, 2005.
doi:10.1007/11539452_33.

15 Abraham Ginzburg and Michael Yoeli. Products of automata and the problem of covering.
Transactions of the American Mathematical Society, 116:253–266, 1965. URL: http://www.
jstor.org/stable/1994117.

16 Yuri Gurevich and Leo Harrington. Trees, automata, and games. In Harry R. Lewis, Barbara B.
Simons, Walter A. Burkhard, and Lawrence H. Landweber, editors, Proceedings of the 14th
Annual ACM Symposium on Theory of Computing, STOC 1982, San Francisco, CA, USA,
May 5–7, 1982, pages 60–65. ACM, 1982. doi:10.1145/800070.802177.

17 Alexey Ignatiev, António Morgado, and João Marques-Silva. PySAT: A Python toolkit
for prototyping with SAT oracles. In Olaf Beyersdorff and Christoph M. Wintersteiger,
editors, Proceedings of the 21st International Conference on the Theory and Applications
of Satisfiability Testing, SAT 2018, Held as Part of FloC 2018, Oxford, UK, July 9–12,
2018, volume 10929 of Lecture Notes in Computer Science, pages 428–437. Springer, 2018.
doi:10.1007/978-3-319-94144-8_26.

18 Eryk Kopczyński. Half-positional Determinacy of Infinite Games. PhD thesis, Warsaw
University, 2008.

ICALP 2023

https://doi.org/10.4230/LIPIcs.CSL.2022.8
https://doi.org/10.46298/theoretics.23.1
https://doi.org/10.4230/LIPIcs.CSL.2022.12
https://doi.org/10.4230/LIPIcs.ICALP.2022.117
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.379
https://doi.org/10.48550/arXiv.2212.12024
https://doi.org/10.1016/j.tcs.2005.10.046
https://doi.org/10.1109/LICS.1997.614939
https://doi.org/10.1007/11539452_33
http://www.jstor.org/stable/1994117
http://www.jstor.org/stable/1994117
https://doi.org/10.1145/800070.802177
https://doi.org/10.1007/978-3-319-94144-8_26

118:18 How to Play Optimally for Regular Objectives?

19 Stéphane Le Roux, Arno Pauly, and Mickael Randour. Extending finite-memory determinacy by
Boolean combination of winning conditions. In Sumit Ganguly and Paritosh K. Pandya, editors,
Proceedings of the 38th IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science, FSTTCS 2018, Ahmedabad, India, December 11–13, 2018,
volume 122 of LIPIcs, pages 38:1–38:20. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2018. doi:10.4230/LIPIcs.FSTTCS.2018.38.

20 Anil Nerode. Linear automaton transformations. Proceedings of the American Mathematical
Society, 9(4):541–544, 1958. doi:10.2307/2033204.

21 Pierre Ohlmann. Characterizing positionality in games of infinite duration over infinite graphs.
TheoretiCS, 2, 2023. doi:10.46298/theoretics.23.3.

22 Michael O. Rabin. Decidability of second-order theories and automata on infinite trees.
Transactions of the American Mathematical Society, 141:1–35, 1969. doi:10.2307/1995086.

23 Wiesław Zielonka. Infinite games on finitely coloured graphs with applications to automata
on infinite trees. Theoretical Computer Science, 200(1-2):135–183, 1998. doi:10.1016/
S0304-3975(98)00009-7.

https://doi.org/10.4230/LIPIcs.FSTTCS.2018.38
https://doi.org/10.2307/2033204
https://doi.org/10.46298/theoretics.23.3
https://doi.org/10.2307/1995086
https://doi.org/10.1016/S0304-3975(98)00009-7
https://doi.org/10.1016/S0304-3975(98)00009-7

Monadic NIP in Monotone Classes of Relational
Structures
Samuel Braunfeld #

Computer Science Institute of Charles University (IUUK), Prague, Czech Republic

Anuj Dawar #

Department of Computer Science and Technology, University of Cambridge, UK

Ioannis Eleftheriadis #

Department of Computer Science and Technology, University of Cambridge, UK

Aris Papadopoulos #

School of Mathematics, Univesity of Leeds, UK

Abstract
We prove that for any monotone class of finite relational structures, the first-order theory of the
class is NIP in the sense of stability theory if, and only if, the collection of Gaifman graphs of
structures in this class is nowhere dense. This generalises results previously known for graphs to
relational structures and answers an open question posed by Adler and Adler (2014). The result
is established by the application of Ramsey-theoretic techniques and shows that the property of
being NIP is highly robust for monotone classes. We also show that the model-checking problem for
first-order logic is intractable on any monotone class of structures that is not (monadically) NIP.
This is a contribution towards the conjecture that the hereditary classes of structures admitting
fixed-parameter tractable model-checking are precisely those that are monadically NIP.

2012 ACM Subject Classification Theory of computation → Finite Model Theory; Mathematics of
computing → Combinatorics

Keywords and phrases Model theory, finite model theory, structural graph theory, model-checking

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.119

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Funding Samuel Braunfeld: Project 21-10775S of the Czech Science Foundation (GAČR), European
Union’s Horizon 2020 research and innovation programme (grant agreement No 810115 – Dynasnet).
Anuj Dawar : EPSRC grant EP/T007257/1.
Ioannis Eleftheriadis: George and Marie Vergottis Scholarship awarded through Cambridge Trust,
Onassis Foundation Scholarship, Robert Sansom Studentship.
Aris Papadopoulos: Leeds Doctoral Scholarship.

Acknowledgements We want to thank the referees for their numerous improvements to the text,
and for suggesting the simplified argument in Section 6.

1 Introduction

The development of stability theory in classical model theory, originating with Shelah’s
classification programme fifty years ago [19, 2], has sought to distinguish tame first-order
theories from wild ones. A key discovery is that combinatorial configurations serve as dividing
lines in this classification.

Separately, in the development of finite model theory, there has been in interest in
investigating tame classes of finite structures. Here tameness can refer to algorithmic
tameness, meaning that algorithmic problems that are intractable in general may be tractable
on a tame class; or it can refer to model-theoretic tameness, meaning that the class enjoys

EA
T
C
S

© Samuel Braunfeld, Anuj Dawar, Ioannis Eleftheriadis, and Aris Papadopoulos;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 119; pp. 119:1–119:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sbraunfeld@iuuk.mff.cuni.cz
https://orcid.org/0000-0003-3531-9970
mailto:anuj.dawar@cl.cam.ac.uk
https://orcid.org/0000-0003-4014-8248
mailto:ie257@cam.ac.uk
https://orcid.org/0000-0003-4764-8894
mailto:mmadp@leeds.ac.uk
https://orcid.org/0000-0001-7071-4277
https://doi.org/10.4230/LIPIcs.ICALP.2023.119
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

119:2 Monadic NIP in Monotone Classes of Relational Structures

some desirable model-theoretic properties that are absent in the class of all finite structures.
See [6] for an exposition of these notions of tameness. The tame classes that arise in this
context are often based on notions taken from the study of sparse graphs [15] and usually
extended to classes of relational structures beyond graphs by applying them to the Gaifman
graphs of such structures.

In the context of algorithmic tameness of sparse classes, this line of work culminated
in the major result of Grohe et al. [10] showing that the problem of model checking first-
order sentences is fixed-parameter tractable (FPT) on any class of graphs that is nowhere
dense. This generalized a sequence of earlier results showing the tractability of the model
checking problem on classes of graphs satisfying other notions of sparsity. Moreover, it is
also known [13] that this is the limit of tractability for monotone classes of graphs. That is
to say that (under reasonable assumptions) any monotone class of graphs in which first-order
model checking is FPT is necessarily nowhere dense. These results underline the centrality of
the notion of nowhere denseness in the study of sparse graph classes.

A significant line of recent research has sought to generalize the methods and results
on tame sparse classes of graphs to more general classes that are not necessarily sparse.
Interestingly, this has tied together notions of tameness arising in finite model theory and
those in classical model theory. Notions arising from stability theory play an increasingly
important role in these considerations (see [16, 8], for example). Central to this connection
is the realisation that for well-studied notions of sparseness in graphs, the first-order theory
of a sparse class C is stable. Thus, stability-theoretic notions of tameness, applied to the
theory of a class of finite structures, generalize the notions of tameness emerging from the
theory of sparsity.

A key result connecting the two directions is that a monotone class of finite graphs is
stable if, and only if, it is nowhere dense. This connection between stability and combinatorial
sparsity was established in the context of infinite graphs by Podewski and Ziegler [17] and
extended to classes of finite graphs by Adler and Adler [1]. Indeed, for monotone classes of
graphs, stability is a rather robust concept as the theory of such a class is stable if, and only
if, it is NIP (that is, it does not have the independence property) and these conditions on
monotone classes are in turn equivalent to it being monadically stable and monadically NIP
(these notions are formally defined in Section 2 below).

A question posed by Adler and Adler is whether their result can be extended from graphs
to structures in any finite relational language. We settle this question in the present paper
by establishing Theorem 1 below. In the following Gaif(C) (respectively Inc(C)) denotes the
collection of Gaifman graphs (resp. incidence graphs) of structures in the class C. Note
that the extension from graphs to relational structures requires considerable combinatorial
machinery in the form of Ramsey-theoretic results, which we detail in later sections. We also
relate the characterization to the tractability of the classes. In summary, our key results are
stated in the following theorem. See Section 2 for all the relevant definitions.
▶ Theorem 1. Let C be a monotone class of finite structures in a finite relational language.
Then, the following are equivalent:
1. C is NIP;
2. C is monadically NIP;
3. C is stable;
4. C is monadically stable;
5. Gaif(C) is nowhere dense;
6. Inc(C) is nowhere dense; and
7. (assuming AW[∗] ̸= FPT) C admits fixed-parameter tractable model checking.
Moreover, the equivalence of the first six notions also holds for classes containing infinite
structures.

S. Braunfeld, A. Dawar, I. Eleftheriadis, and A. Papadopoulos 119:3

Thus, for monotone classes of relational structures, the picture is clear. Beyond monotone
classes, not every NIP class is stable or monadically NIP. However, it has been conjectured [22,
9] that for any hereditary class C of structures, the model checking problem on C is fixed-
parameter tractable if, and only if, C is NIP. This has previously been established for
monotone classes of graphs (by the results of Adler and Adler, combined with those of Grohe
et al.) and for hereditary classes of ordered graphs by results of Bonnet et al.[3]. Our results
also extend the classes for which this conjecture is verified to all monotone classes of relational
structures.

We establish some necessary definitions and notation in Sections 2 and 3. The proof of
Theorem 1 occupies the next two sections. The equivalence of the first four notions for any
monotone class C is due to Braunfeld and Laskowski [4]. The equivalence of the fifth and
sixth notions follows by results in sparsity theory (see [15]) which we recall in Section 6. We,
therefore, establish the equivalence of the first with the fifth and the seventh. In Section 4 we
show that if Gaif(C) is not nowhere dense, then C admits a formula with the independence
property. That nowhere density of Gaif(C) implies tractability is implicit in [10]. We establish
the converse of this statement in Section 5. Finally, we give an argument that Gaif(C) being
nowhere dense implies monadic stability in Section 6.

2 Preliminaries

We assume familiarity with first-order logic and the basic concepts of model theory. We
have tried to make this paper as self-contained as possible, but refer the reader to [11] for
background and undefined notation. Throughout this paper, L denotes a finite, first-order,
relational language. We write ar(R) for the arity of each relation symbol R ∈ L. Tuples
of elements or variables are denoted by overlined letters and given a tuple ā and k ≤ |ā|,
we write ā(k) to denote the k-th element of ā. Often we abuse notation and treat tuples as
unordered sets; whether we refer to the ordered tuple or the unordered set should be clear
from the context. For n ∈ N, we write [n] for the set {1, . . . , n}.

We adopt the convention of allowing finitely many constant symbols (i.e. parameters)
in L-formulas. Syntactically, these are to be understood as additional free variables, while
semantically these have a fixed interpretation in every L-structure. This is purely a notational
convenience and has no effect on the applicability of our results. By a further abuse of
notation, we do not distinguish between a parameter p and its interpretation pM in an
L-structure, M .

2.1 Graphs and relational structures
An L-structure is denoted by (M,RM)R∈L, where M is its underlying set and RM ⊆ Mar(R)

is the interpretation of the relation symbol R ∈ L in M . We write C(L) for the class of
all L-structures. By abusing notation, often we do not distinguish between an L-structure
and its underlying set. For an L-structure M and a subset A ⊆ M we denote by M [A] the
substructure of M induced by A, i.e. the structure on domain A with RA = RM ∩A for all
R ∈ L. A pointed L-structure is a pair (M, m̄) where m̄ is a tuple of |m̄| labelled points of
M . By the equality type of a tuple m̄ from an L-structure M , we mean the set ∆=(m̄) of
atomic formulas η(x̄) using only the equality symbol such that M |= η(m̄).

A homomorphism from an L-structure M to an L-structure N is a map f : M → N

satisfying such that for all relation symbols R ∈ L and tuples m̄ ∈ Mar(R), if m̄ ∈ RM then
f(m̄) ∈ RN . A homomorphism of pointed structures f : (M, m̄) → (N, n̄) is understood as a
homomorphism f : M → N of the underlying L-structures such that f(m̄) = n̄.

ICALP 2023

119:4 Monadic NIP in Monotone Classes of Relational Structures

By a graph G we mean an {E}-structure such that EG ⊆ G2 is a symmetric, irreflexive
binary relation. We write E(G) rather than EG for the edge set of a graph. Given a graph
G and r ∈ N, we write G(r) for the r-subdivision of G, i.e. the graph obtained by replacing
every edge of G by a path of length r+ 1. We denote by Kn the complete graph on n vertices
and by Kt,t the complete bipartite graph with parts of size t. We write G = (U, V ;E) for a
bipartite graph with parts U and V and edge set E ⊆ U × V , and write B for the class of
all bipartite graphs.

We recall two ways of constructing a graph from a given relational structure M . First,
the Gaifman graph of M which is the graph on vertex set M , whose edges are precisely the
pairs (u, v) such that u and v appear together in a relation of M . Second, the Incidence
graph of M which is the the bipartite graph with elements of M in one part, all tuples in
all relations in the other part, and edges denoting membership of an element u in a tuple v̄.
More formally:

▶ Definition 2 (Gaifman/Incidence graph). Given an L-structure (M,RM)M∈L we define the
Gaifman graph of M , denoted Gaif(M), to be the graph on vertex set M with edges:

E := {(x, y) : ∃R ∈ L∃v1, . . . , var(R)−2∃σ ∈ Sar(R)(σ(x, y, v1, . . . , var(i)−2) ∈ RM)},

where Sn the symmetric group on n elements. Moreover, we define the Incidence graph of
M , denoted Inc(M), to be the bipartite graph (M,

⊔
R∈L M

R, E′), where

E′ := {(x, z̄) : x ∈ z̄}

For a class of relational structures C, all in the same language, we define the Gaifman class
of C to be Gaif(C) := {Gaif(M) : M ∈ C}. Likewise, we define Inc(C) := {Inc(M) : M ∈ C}.

2.2 Sparsity and stability
Throughout this paper, C refers to a class of L-structures or graphs. We write Th(C) for
the common theory of the class, i.e. the set of all first-order L-sentences that hold in all
structures in C. We say that a class C is:

hereditary, if C is closed under induced substructures, i.e. if (M,RM)R∈L ∈ C then
(M ′, RM ∩M ′)R∈L ∈ C for any M ′ ⊆ M .
monotone, if C is closed under weak substructures, i.e. if (M,RM)R∈L ∈ C then
(M ′, RM ′)R∈L ∈ C for any M ′ ⊆ M and RM ′ ⊆ RM .

▶ Definition 3. Let C be a class of graphs. We say that C is nowhere dense if for every
r ∈ N there is some n ∈ N such that for all G ∈ C we have that K(r)

n is not a subgraph of G.

Nowhere density was introduced by Nešetřil and Ossona de Mendez [14], as a structural
property of classes of finite graphs that generalises numerous well-behaved classes, including
graphs of bounded degree, planar graphs, graphs excluding a fixed minor and graphs of
bounded expansion. Nowhere dense classes play an important role in algorithmic graph
theory, as several computationally hard problems become tractable when restricted to such
classes.

Let us now recall some core notions of tameness from classification theory, adapted from
the context of infinite structures to that of classes of (not necessarily infinite) structures.

▶ Definition 4 (Order/Independence Property). Let C be a class of L-structures. We say that
an L-formula ϕ(x̄, ȳ) has:
1. The Order Property in C if for all n ∈ N there is some Mn ∈ C and sequences (āi)i∈[n]

and (b̄j)j∈[n] of tuples from Mn such that:

Mn ⊨ ϕ(āi, b̄j) if, and only if, i < j.

S. Braunfeld, A. Dawar, I. Eleftheriadis, and A. Papadopoulos 119:5

2. The Independence Property in C if for all bipartite graphs G = (U, V ;E) ∈ B there is
some MG ∈ C and sequences of tuples (āi)i∈U and (b̄j)j∈V such that:

MG ⊨ ϕ(āi, b̄j) if, and only if, (i, j) ∈ E.

We say that C is stable if no formula has the order property in C. We say that C is NIP (No
Independence Property) if no formula has the independence property in C.

An easy application of compactness reveals that a class C is stable (resp. NIP) if, and
only if, all completions of Th(C) are stable (resp. NIP) in the standard model-theoretic sense
(see for instance [20] for the standard model-theoretic definitions).

Given a class C of L-structures and an expansion L′ = L∪{Pi : i ∈ I} by unary predicates,
we say that a class C′ of L′-structures is a monadic expansion of C if C = {M ′ ↾L: M ′ ∈ C′},
where for an L′-structure M ′ we write M ′ ↾L for the L-reduct of M ′, i.e. the L-structure
obtained from M ′ by simply forgetting each relation symbol not in L. In other words, C′ is
a monadic expansion of C if, for each structure M ∈ C, C′ contains at least one copy of M
expanded with unary predicates which are interpreted freely, and no other structures.

▶ Definition 5 (Monadic Stability/NIP). Let C be a class of L-structures. We say that C
is monadically stable (resp. monadically NIP) if all monadic expansions C′ of C are stable
(resp. NIP).

The relationship between sparsity and stability is captured by the following theorem,
which was established by Podewski and Ziegler [17], in the context of infinite graphs, and
much later translated to the context of graph classes by Adler and Adler [1].

▶ Theorem 6 (Adler, Adler [1]; Podewski, Ziegler [17]). Let C be a nowhere dense class of
graphs. Then C is monadically stable. Moreover, the following are equivalent when C is
monotone:
1. C is NIP;
2. C is monadically NIP;
3. C is stable;
4. C is monadically stable;
5. C is nowhere dense.

Furthermore, Adler and Adler asked if Theorem 6 can be generalised to arbitrary relational
structures with finite signature. Recently, Braunfeld and Laskowski established a collapsing
phenomeon akin to Theorem 6 for relational structures.

▶ Theorem 7 (Braunfeld, Laskowski, [4]). Let C be a hereditary class of structures. Then C is
monadically NIP (resp. monadically stable) if, and only if, C is NIP (resp. stable). Moreover,
if C is monotone then C is NIP if, and only if, it is stable.

In light of the above, Theorem 1 answers the question of Adler and Adler affirmatively
by connecting the picture arising in Theorem 7 with the sparsity-theoretic properties of the
Gaifman class.

2.3 Model-checking
By model-checking on a class C we refer to the following parametrised decision problem:

Given: A FO-sentence ϕ and a structure M ∈ C.
Parameter: |ϕ|.

Decide: Whether or not M satisfies ϕ.

ICALP 2023

119:6 Monadic NIP in Monotone Classes of Relational Structures

▶ Definition 8. We say that C is tractable, or that the model-checking problem on a class C
is fixed-parameter tractable, if there is an algorithm that decides on input (M,ϕ) whether
G |= ϕ, in time f(|ϕ|) · |M |O(1) for some computable function f .

Model-checking on the class of all graphs is complete with respect to the complexity class
AW[∗], which is conjectured to strictly contain the class FPT. We shall assume throughout
that AW[∗] ̸= FPT.

All hereditary classes of graphs and relational structures that are known to admit tractable
model-checking are NIP. Moreover, the robustness of NIP in hereditary classes hints at its
potential necessity for tractability. This is the basis of the following conjecture:

▶ Conjecture 9 ([22, 9, 3]). Let C be a hereditary class of relational structures. Then C is
tractable if, and only if, C is NIP.

There is good evidence for a positive answer to this conjecture. Indeed, it is known to
hold for:

Monotone classes of graphs, where NIP coincides with nowhere density [10];
Hereditary classes of ordered graphs, where NIP coincides with bounded twin-width [21, 3].

Although it is not explicitly stated in this form, a careful examination of the argument
of [10] reveals that the following holds.

▶ Theorem 10 (Grohe, Kreutzer, Siebertz, [10]). Let C be a class of relational structures such
that Gaif(C) is nowhere dense. Then C admits fixed-parameter tractable model-checking.

2.4 Interpretations
Interpretations in classical model theory allow us to find structures in some language in a
definable way inside a definable quotient of structures in some other language, mimicking,
for instance, the way one can find the rational numbers inside the integers.

In our case, we focus on a restricted version of interpretations, which we call simple
interpretations (possibly with parameters). Intuitively, a class of L′-structures D can be
interpreted in a class of L-structures C if there is a uniform way of defining every structure
in D, in some (Cartesian power of some) structure from C. More formally:

▶ Definition 11 (Simple interpretation). Let L,L′ be two finite relational languages. A simple
interpretation with parameters I : C(L) → C(L′) consists of the following data:

A domain formula δ(x̄, v̄) ∈ L and, a function d which to each M ∈ C(L) associates a
tuple d̄(M) from M |v̄|.
For each k-ary relation symbol R(y1, . . . , yk) ∈ L′ an interpreting formula
ϕR(x1, . . . , xk, v̄R) ∈ L, where |x̄i| = |x̄|, for each i ∈ [k], and a function cR which
to each M ∈ C(L) associates a tuple c̄R(M) from M |v̄R|.

In order to make our discussion of interpretations easier, we adopt the following notation.
Given M ∈ C(L) we write I(M) for the L′ structure on the set δ(M) := {a ∈ M : M ⊨
δ(a, d̄(M))} with:

I(M) ⊨ R(a1, . . . , ak) if, and only if, M ⊨ ϕR(a1, . . . , ak, c̄R(M)),

for each k-ary relation symbol R ∈ L′ and a1, . . . , ak ∈ δ(M, d̄(M)). This dually gives a
map Î : L′ → L mapping L′-formulas to L-formulas with parameters, such that for any
L′-sentence ϕ we have that:

M |= Î(ϕ) if, and only if, I(M) |= ϕ.

S. Braunfeld, A. Dawar, I. Eleftheriadis, and A. Papadopoulos 119:7

In order to be able to reduce the problem of FO model-checking from one class of structures
to another, possibly in a different language, we are interested in interpretations that can be
computed in polynomial time. More precisely we define the following notion:

▶ Definition 12 (Polynomial interpretation). Given classes of structures C ⊆ C(L) and
D ⊆ C(L′) we say that D is polynomially interpreted in C, with parameters, if there are:
1. A simple interpretation with parameters, I : C(L) → C(L′), as in Definition 11, such that

the functions d and (cR)R∈L′ are computable in polynomial time; and
2. a polynomial-time computable map f : D → C such that for all D ∈ D we have that

D = I(f(D)).
In this case, we write D ≤P C.

The next lemma justifies why polynomial interpretations are particularly useful.

▶ Lemma 13. The relations ≤P is a quasi-order on the collection of classes of structures
in finite relational languages. Moreover ≤P preserves tractability, i.e. if C is tractable and
D ⪯P C, then D is tractable.

Proof. The first part of the lemma is immediate, so let us only discuss the second part. We
reduce the problem of model checking in D to model checking in C. Given an L′-sentence
ϕ and an L′-structure M ∈ C(L′), we can compute, by assumption, in polynomial time
an L-structure f(D) ∈ C such that M = I(f(D)). By assumption, we can also compute
I(f(D)) in polynomial time, since the parameters in the domain and interpreting formulas
are computable from M in polynomial time. Then, we have that:

f(D) |= Î(ϕ) if, and only if, I(f(D)) = M |= ϕ,

where Î(ϕ) is obtained, essentially, as in the discussion after Definition 11, which can clearly
be done in polynomial time, from ϕ. Since C is tractable, it follows that D is tractable. ◀

2.5 Ramsey Theory
A core technique that is used repeatedly in our arguments is that if a finite structure is
large enough, then patterns in it are inevitable. This is the main idea of Ramsey theory, the
relevant tools from which we recall here. The notation we use is standard, given a set S and
k ∈ N we write [S](k) for the collection of all k-element subsets of S.

▶ Theorem 14 (Ramsey’s Theorem, [18]). There is a computable function R : N3 → N such
that for all m, k, r ∈ N and for every colouring χ : [R(m, k, r)](k) → [r] there exists some
S ⊆ [R(m, k, r)] of size m which is monochromatic.

Another standard theorem from Ramsey theory that we make use of is the following
well-known variant of Theorem 14:

▶ Theorem 15 (Bipartite Ramsey Theorem). There is a computable function P : N2 → N such
that for all m, r ∈ N and all edge colourings of the complete bipartite graph KP(m,r),P(m,r)
with r colours, there are subsets A,B of the two parts, both of size m, which induce a
monochromatic copy of Km,m.

We also need to make use of the following Ramsey-theoretic result, where the number
of colours is allowed to be possibly infinite. Of course, in this case, we cannot expect to
find monochromatic subsets. Nonetheless, we can ensure that the behaviour of the colouring
falls into one of few “canonical” cases on a large enough set. The original canonical Ramsey
theorem is due to Erdős and Rado [7], but for the purposes of this paper, we are only
interested in the bipartite version in its effective form.

ICALP 2023

119:8 Monadic NIP in Monotone Classes of Relational Structures

▶ Theorem 16 (Bipartite Canonical Ramsey Theorem, [12]). There is a computable function
K : N → N such that for every n ∈ N and every edge-colouring of the complete bipartite
graph KK(n),K(n) there exist subsets X,Y of the two parts, both of size n, such that one of
the following occurs for all x, x′ ∈ X and y, y′ ∈ Y :
1. χ(x, y) = χ(x′, y′);
2. χ(x, y) = χ(x′, y′) if, and only if, x = x′;
3. χ(x, y) = χ(x′, y′) if, and only if, y = y′;
4. χ(x, y) = χ(x′, y′) if, and only if, x = x′ and y = y′.

(1) :

(2) :

(3) :

(4) :

Henceforth, we shall say that an edge colouring of a complete bipartite graph is canonical
of type 1 (resp. 2, 3, 4) if it satisfies condition 1 (resp. 2, 3, 4) from Theorem 16 for all edges.
More generally, we say that such a colouring is canonical whenever it is canonical of any
type.

3 Path formulas

Recall that a formula ϕ(x̄) is called primitive positive if it has the form ∃ȳψ(x̄, ȳ), where ψ is
a conjunction of atomic formulas. Primitive positive formulas are also known as conjunctive
queries in the database theory literature. The following association of a canonical structure
with a primitive positive formula and conversely a canonical such formula with a finite
structure goes back to Chandra and Merlin [5].

▶ Definition 17 (Canonical structures). Given a primitive positive formula ϕ(x̄) = ∃ȳψ(x̄, ȳ)
we define a pointed L-structure (Mϕ, x̄) whose domain is the set {v1, . . . , vr} of variables of
ϕ, and where each R ∈ L is interpreted as follows:

Mϕ ⊨ R(v1, . . . , vn) if, and only if, R(v1, . . . , vn) appears as a conjunct in ψ(x̄, ȳ).

The pointed elements x̄ precisely correspond to the free variables of ϕ. This structure is
unique, up to isomorphism, and we call it the canonical structure of ϕ.

Similarly, for every pointed L-structure (A, x̄) we may associate a primitive positive
formula ϕA(x̄) so that (MϕA

, x̄) = (A, x̄). We call this formula the canonical formula of
(A, x̄). Let ϕ(x̄) be a primitive positive formula and (Mϕ, x̄) its canonical structure. It is
easy to see that for any L-structure A and ā ∈ A we have that A |= ϕ(ā) if, and only if, there
exists a homomorphism (of pointed structures) h : (Mϕ, x̄) → (A, ā).

In our analysis, we argue that whenever a monotone class of relational structures has
the independence property then this is witnessed by a certain kind of primitive positive
formula. In the case of graphs, it is implicit in the work of Adler and Adler that the canonical
structure of this primitive positive formula is a path in the standard graph-theoretic sense,
i.e. a tuple (x1, . . . , xn) of pairwise distinct elements such that E(xi, xi+1) for all i ∈ [n− 1].

In this section, we introduce the analogue of (graph) paths that witnesses the independence
property in general relational structures. We start with the following rather technical
definition.

S. Braunfeld, A. Dawar, I. Eleftheriadis, and A. Papadopoulos 119:9

▶ Definition 18 (Path). By a path of length n, we mean an L-structure P consisting of a
sequence of pairwise disjoint tuples each consisting of pairwise different elements ē1, . . . , ēn

such that:
P =

⋃
i∈[n] ēi;

|ēi ∩ ēi+1| = 1, for all i < n;
ēi ̸⊆ ēi+1 and ēi+1 ̸⊆ ēi, for all i < n;
ēi ∩ ēj = ∅, for all j ∈ [n] \ {i− 1, i, i+ 1};
Ri(ēi), for exactly one relation symbol Ri ∈ L;
R(ā) =⇒ ā = ēi for some i ∈ [n], for all relation symbols R ∈ L and all tuples ā ∈ P.

We write S(P) = ē1\ē2 and call these the starting vertices, while we write F (P) = ēn\ēn−1
and call these the finishing vertices. We refer to the tuples ēi as the steps of the path, and to
the singletons in ēi ∩ ēi+1 as the joints of the path.

Given a primitive positive formula ϕ(x̄, ȳ, z̄) (where z̄ is possibly empty), we say that ϕ
is a path formula if there are x0 ∈ x̄ and y0 ∈ ȳ such that Mϕ is a path with x0 ∈ S(Mϕ)
and y0 ∈ F (Mϕ). Similarly, we call ϕ a simple path formula if x̄ ⊆ S(Mϕ) and ȳ ⊆ F (Mϕ).

Note that technically, no graph G can be a path under the above definition. Indeed,
the last condition ensures that E(G) cannot be symmetric as no permutation of a tuple
appearing in a relation R can appear in any other relation from L. To avoid confusion, we
always refer to paths in the standard graph-theoretic sense as graph paths.

Intuitively, a path formula ϕ(x̄, ȳ) plays the role of a higher arity graph path from x̄ to ȳ.
However, under enough symmetry, it is possible that we cannot definably tell the direction
of ϕ, i.e. x̄ and ȳ look the same within ϕ. This is formalised in the following definition, and
is important in the proof of Theorem 27.

▶ Definition 19 (Symmetric path). A symmetric path is a path P of length n, such that
Ri = Rn+1−i for all i ∈ [n]. A symmetric path formula ϕ(x̄, ȳ, z̄) is a simple path formula with
|x̄| = |ȳ| = m such that Mϕ is a symmetric path and there is an automorphism f of Mϕ which
maps x̄ = (x1, . . . , xm) 7→ (yσ(1), . . . , yσ(m)) and ȳ = (y1, . . . , ym) 7→ (xσ−1(1), . . . , xσ−1(m)),
for some σ ∈ Sm which is not the identity permutation. Moreover, if ϕ contains parameters
then these must be fixed by f .

Given an L-structure and a graph path in Gaif(M), we may produce a path formula that
describes a “type” for this path. This idea is captured by the following definition which is
relevant for the proof of Lemma 21.

▶ Definition 20 (Path type). Let M be an L-structure, and S = (u1, . . . , un) a graph path
in Gaif(M). For every i ∈ [n − 1] we may associate a relation symbol Ri ∈ L, elements
vi,1, . . . , vi,ar(Ri), and a permutation σi ∈ Sar(Ri) such that σi(ui, ui+1, v̄i) ∈ RM

i . Then we
call the formula

ϕ(x,y, z2, . . . , zn−1) =
∃v̄i . . . v̄n−1(R1(σ1(x, z2, v̄1)) ∧R2(σ2(z2, z3, v̄2)) ∧ · · · ∧Rn−1(σn−1(zn−1, y, v̄n−1)))

a path type for the graph path u1, . . . , un.

It is easy to see that whenever S = (u1, . . . , un) is a graph path in Gaif(M), then there
is a path type ϕ for S such that M |= ϕ(u1, un, u2, . . . , un1). Clearly, this is not uniquely
determined by S, as for the same graph path u1, . . . , un in Gaif(M) we can possibly obtain
different sequences of relations Ri, . . . Ri−1 and permutations σ1, . . . , σi−1 as in Definition 20.

ICALP 2023

119:10 Monadic NIP in Monotone Classes of Relational Structures

4 From somewhere density to IP

The main result in this section is Theorem 23, where we prove that for any monotone class C
of relational structures whose Gaifman class is somewhere dense, there is a path formula (in
the sense of Definition 18) which codes the edge relation of all bipartite graphs uniformly
over C.

We work towards this theorem via two preparatory lemmas, which have the benefit of
applying to classes that are not necessarily monotone. Intuitively, Lemma 21 tells us that if
C is a monotone class of relational structure whose Gaifman class is somewhere dense, then
we can find a path formula that codes the edge relation of all finite complete bipartite graphs
in C.

▶ Lemma 21. Let C be a class of L-structures such that Gaif(C) is somewhere dense. Then
there is a path formula ϕ(x, y, z̄) = ∃w̄ψ(x, y, z̄, w̄) of length ≥ 2 whose joints are precisely
the variables in z̄, and for each n ∈ N there is some Mn ∈ C and pairwise distinct elements
(ai)i∈[n], (bj)j∈[n], (c̄i,j)(i,j)∈[n]2 from Mn such that

Mn |= ϕ(ai, bj , c̄i,j), for all i, j ∈ [n].

Proof. If Gaif(C) is somewhere dense, then there exists r ∈ N such that for all n ∈ N there
is some Mn ∈ Gaif(C) with K

(r)
n ≤ Gaif(Mn). Without loss of generality, we may assume

that r ≥ 1. Indeed, if r = 0 then K1
n ≤ Kn2 ≤ Gaif(Mn2) so we may pass to a subsequence

of (Mn)n∈N and relabel the indices appropriately.
For every i < j from [n] let Sn

i,j be the graph path in Gaif(Mn) corresponding to the
r-subdivision of the edge (i, j) from Kn, directed from i to j. Let q ∈ N be the maximum
arity of a relation symbol R ∈ L. Observe that there are at most p = (|L| × q!)r+1 path types
for each graph path Sn

i,j . By Ramsey’s theorem we may find for each n some Σn ⊆ [R(n, 2, q)]
of size n such that SR(n,2,q)

i,j have the same path type for all i < j from Σn. By passing to a
subsequence of (Mn)n∈N and relabelling indices, we may therefore assume that all the Sn

i,j

have the same path type. Let this be ϕn. Since there are only finitely many possible path
types for every n, we may prune the sequence (Mn)n∈N once again to ensure that the same
path type ϕ(x, y, z̄) is obtained for all n ∈ N. By definition, the joints of Mϕ are precisely
the variables in z̄, while Mϕ has length ≥ 2 since r ≥ 1.

=⇒

=⇒

Work in M2n and let (ai)i∈[n] be the elements corresponding to 1, . . . , n from K
(r)
2n , and

(bj)j∈[n] be those corresponding to n+ 1, . . . , 2n. Moreover, let c̄i,j be the tuples obtained
by removing ai and bj from the beginning and end respectively of the graph path S2n

i,n+j . It
is clear that the elements (ai)i∈[n], (bj)j∈[n], (c̄i,j)i,j∈[n] are pairwise distinct. Since the path
type of S2n

i,n+j is equal to ϕ for all i, j ∈ [n], it follows that

M2n |= ϕ(ai, bj , c̄i,j), for all i, j ∈ [n].

We finally pass to the subsequence (M2n)n∈N and relabel. ◀

Having established that we may encode the edge relation of any complete bipartite graph,
we want to use monotonicity in order to encode the edge relation of arbitrary bipartite
graphs, and consequently, to witness the independence property. To achieve this, we must

S. Braunfeld, A. Dawar, I. Eleftheriadis, and A. Papadopoulos 119:11

ensure that the tuples used in the encoding are “sufficiently disjoint” so that the removal of
the desired relations does in fact translate to the removal of an encoded edge. The following
lemma is a step toward this.

▶ Lemma 22. Let C be a class of L-structures such that Gaif(C) is somewhere dense. Then
there is a path formula ϕ(x̄, ȳ, z̄) = ∃w̄ψ(x̄, ȳ, z̄, w̄) of length ≥ 2 with parameters p̄ whose
joints are precisely the elements of z̄, and for every n ∈ N there is some Mn ∈ C and tuples
(āi)i∈[n], (b̄j)j∈[n], (c̄i,j)(i,j)∈[n]2 , (d̄i,j)i,j∈[n]2 from Mn such that the following hold for all
i, i′, j, j′ ∈ [n]:
1. Mn |= ψ(āi, b̄j , c̄i,j , d̄i,j);
2. āi(k) ̸= āi′(k), for i ̸= i′ and all k ∈ [|x̄|];
3. b̄j(k) ̸= b̄j′(k), for j ̸= j′ and all k ∈ [|ȳ|];
4. c̄i,j(k) ̸= c̄i′,j′(k) and c̄i,j(k) ̸= c̄i,j(l), for (i, j) ̸= (i′, j′) and all k ̸= l from [|z̄|];
5. d̄i,j(k) ̸= d̄i′,j′(k), for (i, j) ̸= (i′, j′) and all k ∈ [|w̄|].

Proof. Let ϕ(x, y, z̄) = ∃w̄ψ(x, y, z̄, w̄) and (Mn)n∈N be as in Lemma 21. For clarity, we write
(an

i)i∈[n], (bn
j)j∈[n], (c̄n

i,j)(i,j)∈[n]2 to denote the elements of Mn from the same lemma. For each
n ∈ N, and for each pair (i, j) ∈ [n]2, pick a tuple d̄n

i,j of elements from Mn consisting of some
arbitrarily fixed existential witnesses to Mn |= ϕ(an

i , b
n
j , c̄

n
i,j), i.e. Mn |= ψ(an

i , b
n
j , c̄

n
i,j , d̄

n
i,j)

for all i, j ∈ [n].
Let m = |d̄i,j |. By m applications of Theorem 16, we may assume that whether d̄n

i,j(k) =
d̄n

i′,j′(k) depends on one of the four canonical cases from that theorem, and not on n. Indeed,
for every n ∈ N and each k ∈ [m], define colourings χn,k(i, j) = d̄n

i,j(k) of the edges of Kn,n.
Let K : N → N be the computable function guaranteed by Theorem 16 and write Km for
the composition of K with itself m times. It follows that the complete bipartite graph with
parts of size Km(n) contains subsets An, Bn of the two parts of size n, which induce a copy
of Kn,n on which χKm(n),k is canonical for all k ∈ [m]. We may thus restrict the argument
on the subsequence (MKm(n))n∈N and the elements aKm(n)

i , b
Km(n)
j , c̄

Km(n)
i,j , d̄

Km(n)
i,j for i ∈ An

and j ∈ Bn and relabel appropriately. For every n ∈ N, after the relabelling, we have thus
obtained a tuple t̄n ∈ [4]m such that χn,k is canonical of type t̄n(k). Since there are only
finitely many such t̄n, by the pigeonhole principle we may consider a subsequence of (Mn)n∈N
for which t̄n is constant and equal to some t̄ ∈ [4]m, and relabel once more.

We now proceed to sequentially remove elements from the tuples d̄n
i,j , and to either name

them by a parameter, or to append them to one of an
i or bn

j . Since t̄ is constant for all n,
exactly the same process is carried out to all tuples d̄i,j , and so we may concurrently move
the corresponding variables from ϕ. So, if we fall into Case 1 for some k, i.e. if t̄(k) = 1,
then d̄i,j(k) is the same for all i, j, and so we may name it by a parameter and remove it
from every h̄i,j . If we fall into Case 2, then d̄i,j(k) = d̄i′,j′(k) if, and only if, i = i′. Then, for
every i ∈ [n] we may remove the common element d̄i,j(k) from each d̄i,j and append it to
ai, turning it into a tuple āi. We then adjust ϕ accordingly by shifting the corresponding
variable vk from v̄ to x, which also becomes a tuple x̄. Case 3 is symmetric to Case 2, only
now we append d̄i,j(k) to b̄j and shift the variable vk to ȳ. We may therefore assume that
we fall into Case 4 for all the remaining k ∈ [m].

We argue that the resulting formula and tuples satisfy the requirements of the lemma.
Clearly, Mn |= ϕ(āi, b̄j , c̄i,j , d̄i,j) for all n ∈ N and i, j ∈ [n]. Condition 2 is also satisfied,
since the original singletons (ai)i∈[n] were pairwise disjoint, while for every i ≠ i′ and k ∈ [m]
the elements d̄i,j(k) and d̄i′,j(k), appended to ai and ai′ respectively, come from an instance
of Case 2, and are therefore pairwise distinct. Likewise, condition 3 is satisfied. Since we have
not interfered with the tuples c̄i,j in the above process and these contain pairwise distinct
elements by Lemma 21, Condition 4 is also satisfied. Finally, Condition 5 is trivially satisfied
since the elements remaining in d̄i,j fall into Case 4. ◀

ICALP 2023

119:12 Monadic NIP in Monotone Classes of Relational Structures

▶ Theorem 23. Let C be a monotone class of L-structures such that Gaif(C) is somewhere
dense. Then there is a path formula ϕ(x̄, ȳ) = ∃w̄ψ(x̄, ȳ, w̄) with parameters p̄ and for each
bipartite graph G = (U, V ;E) ∈ B there is some MG ∈ C and sequences of tuples (āu)u∈U

(b̄v)v∈V , (h̄u,v)(u,v)∈E from MG such that:
1. MG |= ϕ(āu, b̄v) if, and only if, (u, v) ∈ E (so, in particular C is not NIP);
2. If (u, v) ∈ E then MG |= ψ(āu, b̄v, h̄u,v);
3. The equality type of p̄u,v = ā⌢

u b̄
⌢
v h̄u,v is constant for all (u, v) ∈ E(G);

4. Any two tuples in {āu, b̄v, h̄u,v : u ∈ U, v ∈ V } are disjoint and do not intersect the
parameters p̄.

Proof. Let ϕ(x, y, z̄) = ∃w̄ψ(x, y, z̄, w̄), with parameters p̄, and (Mn)n∈N be as in Lemma 22.
For clarity, we again write (an

i)i∈[n], (bn
j)j∈[n], (c̄n

i,j)(i,j)∈[n]2 to denote the elements from that
lemma coming from Mn. Consider the tuples p̄n

i,j = ān
i

⌢b̄n
j

⌢c̄n
i,j

⌢d̄n
i,j , and let q = |p̄n

i,j |.
Observe that for every n ∈ N, at most q · |p̄| many tuples p̄n

i,j intersect the parameters p̄
because of the conditions in Lemma 22. By working with suitably large n and avoiding these
tuples, we may relabel so that no p̄n

i,j intersects p̄.
For i, j, k, l ∈ [n], we say that the tuples p̄n

i,j and p̄n
k,l intersect trivially whenever

p̄i,j ∩ p̄k,l =


p̄i,j , if i = k ∧ j = l

āi, if i = k ∧ j ̸= l

b̄j , if i ̸= k ∧ j = l

∅, otherwise.

Letting f(n) = q · (n − 1)2 + n, we claim that for all n ∈ N and all m ≥ f(n) we may
find a set An ⊆ [f(n)] of size n so that p̄m

i,j and p̄m
k,l intersect trivially for all i, j, k, l ∈ An.

We show this by induction. Indeed, for n = 1 this is trivially true as A1 = [1] works for all
m ≥ 1. Suppose that the claim holds for n− 1 and fix m ≥ f(n). Since f(n) ≥ f(n− 1), by
the induction hypothesis there is some An−1 ⊆ [f(n− 1)] ⊆ [f(n)] of size n− 1 so that p̄m

i,j

and p̄m
k,l intersect trivially for all i, j, k, l ∈ An−1. Notice, that because of Lemma 22, for every

fixed p̄i,j , there are at most q tuples p̄k,l that do not intersect trivially with it. Hence, there
are at most q · (n− 1)2 elements l ∈ [f(n)] such that p̄m

i,j and p̄m
k,l do not intersect trivially

for all i, j, k ∈ An−1. Since [f(n)] contains an additional n elements, we are guaranteed to
find some l ∈ [f(n)], which is not one of the n− 1 elements of An−1, such that p̄m

i,j and p̄m
k,l

intersect trivially for all i, j, k ∈ An−1. We may therefore let An = An−1 ∪ {l}.
Hence, we may consider the subsequence (Mf(n))n∈N and relabel the tuples appropriately,

so that all tuples p̄n
i,j , p̄

n
k,l intersect trivially for all n ∈ N and i, j, k, l ∈ [n]. Furthermore, by an

application of Theorem 15, we may assume that the tuples p̄n
i,j have the same equality type for

all i, j ∈ [n] and all n ∈ N. More precisely, for every pair (i, j) ∈ [n]2 let ∆n(i, j) := ∆=(p̄n
i,j).

Letting q = |p̄i,j |, it is easy to see that there are at most p = 2q2 sets ∆n(i, j). It follows
by Theorem 15, that there are subsets A,B of [P(n, 2, p)] of size n such that ∆P(n,2,p)(i, j)
is constant for all i ∈ A, j ∈ B. Hence, we may relabel appropriately so that ∆n(i, j) is
constant for all i, j ∈ [n]. Since there are only finitely many such sets, the pigeonhole principle
implies that we may prune the sequence (Mn)n∈N so that ∆n(i, j) is uniformly constant for
all n ∈ N.

It follows that no tuple ān
i can intersect a tuple b̄n

j . Indeed, since the equality types are
constant, and in particular ∆n(i, j) = ∆n(i, j′), if ān

i and b̄n
j had an element in common

then b̄n
j (k) = b̄n

j′(k) for some k and all j′ ̸= j, contradicting the assumptions of Lemma
22. Likewise, no tuple h̄n

i,j = c̄n
i,j

⌢d̄n
i,j can intersect the tuples āi or b̄j . Since the tuples

p̄n
i,j intersect trivially, this implies that any two tuples {ān

i , b̄
n
j , h̄

n
i,j : i, j ∈ An} are pairwise

disjoint, and furthermore do not intersect the parameters p̄.

S. Braunfeld, A. Dawar, I. Eleftheriadis, and A. Papadopoulos 119:13

For every n ∈ N, consider the weak substructure M ′
n ≤ Mn consisting of the elements

in p̄n
i,j and the parameters p̄, and containing solely the relations necessary to witness

Mn |= ψ(ān
i , b̄

n
j , h̄

n
i,j). By monotonicity, M ′

n ∈ C. Notice that every tuple appearing in a
relation of M ′

n contains at least one element of c̄n
i,j for some i, j ∈ [n]. Indeed, the elements

of c̄i,j correspond precisely to the joints of the paths ϕ(āi, b̄j), and since Mϕ has length ≥ 2
every path has at least one joint.

Finally, given G = (U, V ;E) with U = V = [n], let MG ∈ C be the induced substructure
of M ′

n obtained by removing h̄n
i,j for all (i, j) ̸∈ E. Since the tuples in {ān

i , b̄
n
j , h̄

n
i,j : i, j ∈ [n]}

are pairwise disjoint, it follows that h̄n
i,j ∈ MG for (i, j) ∈ E(G). Hence, letting ϕ′(x̄, ȳ) =

∃z̄ϕ(x̄, ȳ, z̄), we see that MG |= ϕ′(ān
i , b̄

n
j) for all (i, j) ∈ E(G). Moreover, MG |= ¬ϕ(āi, b̄j)

for (i, j) /∈ E(G). Indeed, since the elements of c̄n
i,j are not in MG for (i, j) /∈ E(G), the

above observation implies that MG |= ¬ϕ(āi, b̄j). ◀

Note that all of the above can be proved by working with an appropriate infinite model
of Th(C) obtained by compactness, and applying the infinite versions of the different Ramsey
theorems. We have chosen to give a finitistic proof, which is admittedly more involved, so
that everything is carried out effectively. Therefore, if we assume that the VC-dimension
of formulas in the class is computable, we may compute given r the maximum size of an
r-subdivided clique occurring in the Gaifman graph of a structure in C.

▶ Definition 24. We say that a class C of structures is effectively NIP if there is a computable
function f : N → N such that for all formulas ϕ(x̄, ȳ) and all structures M ∈ C there is no
n > f(|ϕ|) and (āi)i∈[n], (b̄J)J⊆[n] with

M |= ϕ(āi, b̄J) ⇐⇒ i ∈ J.

Recall that a class of graphs C is called effectively nowhere dense whenever there is a
computable function f : N → N such that for all r ∈ N and for all G ∈ C we have that K(r)

f(r)
is not a subgraph of G.

▶ Corollary 25. Let C be a monotone and (monadically) NIP class of L-structures in a finite
relational language. Then Gaif(C) is nowhere dense. Moreover, if C is effectively NIP then
Gaif(C) is effectively nowhere dense.

5 Intractability

In this section, we prove that any monotone class of relational structures whose Gaifman
class is somewhere dense polynomially interprets the class of all bipartite graphs, and is
therefore intractable. Towards this, we first strengthen Theorem 23 to obtain a simple path
formula ϕ as well as a computable function Φ : B → C such that ϕ codes the edge relation of
G in Φ(G).

▶ Lemma 26. Let C be a monotone class of L-structures such that Gaif(C) is somewhere
dense. Then there is a simple path formula ϕ(x̄, ȳ) with parameters p̄ and a polynomial time
computable function Φ : B → C, such that for each bipartite graph G = (U, V ;E) ∈ B there
are tuples (āu)u∈U (b̄v)v∈V , (h̄u,v)(u,v)∈E from Φ(G) satisfying:

Φ(G) |= ϕ(āu, b̄v) if, and only if, (u, v) ∈ E.

Given ϕ, the interpretation of the parameters p̄ in Φ(G) can be computed in constant time
from G ∈ B.

ICALP 2023

119:14 Monadic NIP in Monotone Classes of Relational Structures

Proof. Let ϕ and (MG)G∈B be as in Theorem 23. Consider the path Mϕ. Observe that
either there is a step ēi such that both ēi ∩ x̄ = x̄′ ̸= ∅ and ēi ∩ ȳ = ȳ′ ≠ ∅, or there are i < j

and steps ēi, ēj such that ēi ∩ ȳ = ∅, ēj ∩ x̄ = ∅ and ēi ∩ x̄ = x̄′ ̸= ∅, ēj ∩ ȳ = ȳ′ ̸= ∅ and for
all k ∈ {i+ 1, . . . , j− 1} we have that ēk ∩ x̄ = ēk ∩ ȳ = ∅. Consider the induced substructure
M′ of Mϕ consisting solely of the step ēi in the first case or the steps ēi, . . . , ēj in the second,
and let ϕ′(x̄′, ȳ′) = ∃w̄′ψ′(x̄′, ȳ′, w̄′) be the canonical formula of (M′, x̄′, ȳ′). Clearly, ϕ′ is
a simple path formula, and it follows by construction that for each G ∈ B we may pick
minimal subtuples ā′

u ⊆ āu, b̄
′
v ⊆ b̄v, c̄

′
u,v ⊆ c̄u,vh̄

′
u,v ⊆ h̄u,v ∈ MG for all u ∈ U, v ∈ V such

that :
MG |= ϕ′(ā′

u, b̄
′
v) if, and only if (u, v) ∈ E, and

(u, v) ∈ E implies MG |= ϕ′(ā′
u, b̄

′
v, c̄

′
u,v, h̄

′
u,v).

Clearly, these new subtuples are mutually disjoint and do not intersect any of the parameters
p̄′ ⊆ p̄ that appear in ϕ′. We finally let M ′

G be the induced substructure of MG consisting
solely of these subtuples. Since the equality type of all tuples p̄′

u,v = ā⌢
u b̄

⌢
v h̄u,v is uniformly

constant by Theorem 23, it follows that MG may be computed from G = (U, V ;E) by
adding disjoint tuples (āG

u)u∈U , (b̄G
v)v∈V , (h̄G

u,v)(u,v)∈E(G), p̄
G of appropriate equality types to

represent vertices and existential witnesses, and the relations specified by ϕ′ to represent the
edges. Clearly, the tuple p̄G which interprets the parameters of ϕ′ is obtained in constant
time from G. ◀

With this, we proceed to show intractability for monotone classes with somewhere Gaifman
class. Our proof is essentially based on the proof of [13, Theorem 6.1], which covers the
case of graphs. There, monotonicity and somewhere density imply that for some r ∈ N
we may find an r-subdivided copy of any finite graph G in our class. The aim is then to
definably distinguish the native points of G from the subdivision points. Assuming this, G
can be simply interpreted, defining an edge between two native points if there is a path of
length r between them. The idea is to distinguish points by their degrees; however, while
all subdivision points have degree two, other points in G may as well have degree two. To
address this, we first pre-process G to obtain a graph G′ by adding two pendant vertices
to each non-isolated vertex. Then, G may be definably recovered from G′, and moreover,
given an r-subdivision of G′, we can definably distinguish the subdivision points and the
remaining points by their degrees. Our construction is essentially the same, although the
degree of a subdivision point is bounded by the length of paths in the subdivision, rather
than by two. Moreover, we ought to ensure that the formula coding paths is not symmetric,
so as to avoid accidentally creating two disjoint copies of the graph we wish to interpret.

▶ Theorem 27. Let C be a monotone class of L-structures such that Gaif(C) is somewhere
dense, and assume that AW[∗] ̸= FPT. Then FO model-checking on C is not fixed-parameter
tractable.

Proof. Let C satisfy the above, and assume that AW[∗] ̸= FPT. We argue that we may
polynomially interpret the class of all bipartite graphs in C.

Let ϕ(x̄, ȳ) be the simple path formula from Lemma 26. Without loss of generality, we
may assume that ϕ is not symmetric (in the sense of Definition 19). Indeed, if ϕ is symmetric
let σ ∈ Sn be the non-identity permutation from Definition 19, and consider the formula
ϕ′(x̄, ȳ) = ϕ(x̄, σ−1(ȳ)), where σ−1 is applied to the indices of ȳ. Clearly, ϕ′ is no longer
symmetric, while the tuples (āu)u∈U (σ(b̄v))v∈V , (h̄u,v)(u,v)∈E still satisfy the conditions in
Lemma 26.

S. Braunfeld, A. Dawar, I. Eleftheriadis, and A. Papadopoulos 119:15

Now, let k the length of the path Mϕ and define the auxiliary map:

f : B → B

G = (U, V ;E) 7→ (U ′, V ′;E′),

where U ′ := U ⊔ {u̇v,1, . . . , u̇v,k+1 : v ∈ V }, V ′ := V ⊔ {v̇u,1, . . . , v̇u,k+1 : u ∈ U}, and
E′ := E ⊔ {(u, v̇u,i) : u ∈ U, i ∈ [k + 1]} ⊔ {(v, u̇v,i) : v ∈ V, i ∈ [k + 1]}.

This is clearly computable in polynomial time. Given G = (U, V ;E) ∈ B, consider
Φ ◦ f(G) ∈ C given from Theorem 23, and let:

θU (x̄) := ∃>kȳϕ(x̄, ȳ) ∧ x̄ ̸= p̄ and θV (ȳ) := ∃>kx̄ϕ(x̄, ȳ) ∧ ȳ ̸= p̄,

where p̄ are the parameters of ϕ. Without loss of generality, we may assume that |x̄| = |ȳ|,
for if m = |ȳ| < |x̄| = n, then we may take θV (ȳ, ym+1, . . . , yn) to be θV (ȳ)∧

∧n−1
i=m(yi = yi+1),

and similarly if |x̄| < |ȳ|. So, let θ(x̄) = θV (x̄) ∨ θU (x̄).
Observe that G is an induced subgraph of f(G), so we may view Φ(G) as an induced

substructure of Φ ◦ f(G). Letting p̄u,v = ā⌢
u b̄

⌢
v h̄u,v, it holds that p̄u,v ∩ p̄ = ∅ and

p̄u,v ∩ p̄u′,v′ =


āu if u = u′;
b̄v if v = v′;
∅ otherwise.

whenever (u, v) ̸= (u′, v′). Hence, the only non-parameter elements that appear more
than k times within a path are those in the tuples āu and b̄v for u ∈ U and v ∈ V , i.e.
those tuples corresponding to the elements of G. Since ϕ is not symmetric, it follows that
θ(Φ ◦ f(G)) = {āu, b̄v : u ∈ U, v ∈ V }, and so the pair I = (θ(x̄), ϕ(x̄, ȳ)) is an interpretation
with computable parameters such that I(Φ ◦ f(G)) = G for all G ∈ B. It follows that
B ≤P C, and therefore C is not tractable. ◀

6 From nowhere density to monadic stability

Here we establish that a class of structures with nowhere dense Gaifman graphs is monadically
stable. This argument relies on the extension of Theorem 6 to coloured digraphs, and the
equivalence of nowhere density for the classes of Gaifman graphs and incidence graphs.

▶ Lemma 28 ([15, Proposition 5.7]). Let C be a class of structures in a finite relational
language. Then Gaif(C) is nowhere dense if, and only if, Inc(C) is nowhere dense.

We enrich the definition of incidence graphs by colouring the edges to distinguish between
the various relations in the original language, and to indicate that a point in the domain
corresponds to the ith point of an incident tuple. We also direct the edges from points in the
original domain to incident tuples. This will allow us to easily recover the original structure
via a simple interpretation.

▶ Definition 29 (Coloured incidence graphs). Let M be an L-structure in a finite relational
language. Write n for the maximum arity of a relation symbol in L, and let EL be the
language containing binary relation symbols {Ri : i ∈ [n], R ∈ L}. We define the coloured
incidence graph of M to be the EL-structure Incc(M) on domain M ⊔

⊔
R∈L R

M such that
for all R ∈ L and i ∈ [n]

(u, v̄) ∈ R
Incc(M)
i if, and only if, v̄ ∈ RM and v̄(i) = u.

For a class C of L-structures we write Inc(C) for the class {Inc(M) : M ∈ C}.

ICALP 2023

119:16 Monadic NIP in Monotone Classes of Relational Structures

▶ Theorem 30. Let C be a class of structures in a finite relational language. If Gaif(C) is
nowhere dense, then C is monadically stable.

Proof. By Lemma 28, Gaif(C) being nowhere dense implies that Inc(C) is nowhere dense.
In turn, this implies that Incc(C) is monadically stable by the generalisation of Theorem 6
to coloured directed graphs, mentioned in both [1] and [17]. It is easily observed that
C is simply interpreted in Incc(C) by the formulas δ(x) = ¬∃y

∨
R∈L

∨
i∈[n] Ri(y, x) and

ϕR(x1, . . . , xar(R)) = ∃z
∧

i∈[ar(R)] Ri(xi, z) for R ∈ L. Since interpretations preserve monadic
stability, C is monadically stable as well. ◀

An alternative proof of the theorem above is indicated in [1], which does not pass through
incidence graphs but instead explicitly codes the relations into a graph via gadgets.

The hypothesis in the following corollary is weaker than demanding that Gaif(C) be
nowhere dense, as witnessed by the class of finite cliques with countably many edge colours
and no two edges receiving the same colour.

▶ Corollary 31. Let C be a class of structures in an infinite relational language. If for every
reduct to a finite language, Gaif(C−) is nowhere dense, then C is monadically stable.

Proof. The failure of monadic stability is witnessed by a single formula in some unary
expansion, which only uses finitely many relations. ◀

▶ Corollary 32. Let M be a relational structure such that for every reduct M− to a finite
language, for every r ∈ N there is some n ∈ N with K(r)

n ̸≤ Gaif(M−). Then M is monadically
stable.

Proof. Let C be the class of finite substructures of M . Given the assumption, the previous
lemma implies C is monadically stable. By [4], this implies M is monadically stable. ◀

7 Conclusion

Our paper settles the question of Adler and Adler, showing that tameness for a monotone
class of relational structures can be completely recovered from the structural sparsity of its
Gaifman class. We believe that many results from the theory of sparse graphs will generalise
to relational structures by working with the Gaifman class, and we plan to exhibit such
generalisations in future work.

Although this has not been addressed thus far, monotonicity as defined for classes of
relational structures does not fully correspond to monotonicity in the standard graph-theoretic
sense. Indeed, in the graph-theoretic sense, a monotone class of graphs is one closed under
removal of undirected edges, that is, simultaneous removal of pairs of relations E(u, v), E(v, u).
However, a monotone class of {E}-structures is one where we can remove any E relation
(so possibly we can turn an undirected edge into a directed one). In future work, we aim to
address this subtle difference by introducing symmetrically monotone classes, so that our
results can extend to broader classes of relational structures, such as classes of undirected
hypergraphs closed under removal of hyperedges.

Finally, our paper makes a significant contribution towards Conjecture 9, settling it for
the case of monotone classes of structures. While the machinery used in this paper will
certainly assist in tackling the full conjecture, we believe that new techniques are required
for this task. Here, it is important to understand the role of linear orders in the collapse
of monadic NIP and bounded twin-width for hereditary classes of ordered graphs, and to
identify which model-theoretic conditions generalise this phenomenon to arbitrary hereditary
graph classes.

S. Braunfeld, A. Dawar, I. Eleftheriadis, and A. Papadopoulos 119:17

References
1 Hans Adler and Isolde Adler. Interpreting nowhere dense graph classes as a classical notion

of model theory. European Journal of Combinatorics, 36:322–330, 2014. doi:10.1016/j.ejc.
2013.06.048.

2 John T. Baldwin. Fundamentals of Stability Theory. Perspectives in Logic. Cambridge
University Press, 2017.

3 Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Pierre Simon, Stéphan Thomassé,
and Szymon Toruńczyk. Twin-width IV: Ordered graphs and matrices, 2021. doi:10.48550/
arXiv.2102.03117.

4 Samuel Braunfeld and Michael C. Laskowski. Existential characterizations of monadic NIP,
2022. doi:10.48550/arXiv.2209.05120.

5 Ashok K. Chandra and Philip M. Merlin. Optimal implementation of conjunctive queries in
relational data bases. In John E. Hopcroft, Emily P. Friedman, and Michael A. Harrison,
editors, Proceedings of the 9th Annual ACM Symposium on Theory of Computing, May 4-6,
1977, Boulder, Colorado, USA, pages 77–90. ACM, 1977. doi:10.1145/800105.803397.

6 Anuj Dawar. Finite model theory on tame classes of structures. In MFCS, volume 4708 of
Lecture Notes in Computer Science, pages 2–12. Springer, 2007.

7 Paul Erdős and Richard Rado. A combinatorial theorem. Journal of the London Mathematical
Society, 1(4):249–255, 1950.

8 Jakub Gajarský, Michal Pilipczuk, and Szymon Torunczyk. Stable graphs of bounded twin-
width. In Christel Baier and Dana Fisman, editors, LICS ’22: 37th Annual ACM/IEEE
Symposium on Logic in Computer Science, Haifa, Israel, August 2 - 5, 2022, pages 39:1–39:12.
ACM, 2022. doi:10.1145/3531130.3533356.

9 Jakub Gajarský, Petr Hliněný, Daniel Lokshtanov, Jan Obdržálek, and M. S. Ramanujan. A
new perspective on FO model checking of dense graph classes, 2018. arXiv:1805.01823.

10 Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-order properties of
nowhere dense graphs. J. ACM, 64(3), June 2017. doi:10.1145/3051095.

11 Wilfrid Hodges. Model Theory. Encyclopedia of Mathematics and its Applications. Cambridge
University Press, 1993. doi:10.1017/CBO9780511551574.

12 Alexandr Kostochka, Dhruv Mubayi, and Jacques Verstraëte. Turán problems and shadows
II: Trees. Journal of Combinatorial Theory, Series B, 122:457–478, 2017. doi:10.1016/j.
jctb.2016.06.011.

13 Stephan Kreutzer and Anuj Dawar. Parameterized complexity of first-order logic. Elec-
tron. Colloquium Comput. Complex., TR09-131, 2009. URL: https://eccc.weizmann.ac.il/
report/2009/131.

14 Jaroslav Nešetřil and Patrice Ossona De Mendez. On nowhere dense graphs. European Journal
of Combinatorics, 32(4):600–617, 2011.

15 Jaroslav Nešetřil and Patrice Ossona De Mendez. Sparsity: graphs, structures, and algorithms,
volume 28. Springer Science & Business Media, 2012.

16 Michal Pilipczuk, Sebastian Siebertz, and Szymon Torunczyk. Parameterized circuit complexity
of model-checking on sparse structures. In Anuj Dawar and Erich Grädel, editors, Proceedings
of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford,
UK, July 09-12, 2018, pages 789–798. ACM, 2018. doi:10.1145/3209108.3209136.

17 Klaus-Peter Podewski and Martin Ziegler. Stable graphs. Fund. Math, 100(2):101–107, 1978.
18 F. P. Ramsey. On a Problem of Formal Logic. Proceedings of the London Mathematical Society,

s2-30(1):264–286, January 1930. doi:10.1112/plms/s2-30.1.264.
19 Saharon Shelah. Classification theory and the number of nonisomorphic models, volume 92

of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co.,
Amsterdam-New York, 1978.

20 Pierre Simon. A Guide to NIP Theories. Lecture Notes in Logic. Cambridge University Press,
2015. doi:10.1017/CBO9781107415133.

ICALP 2023

https://doi.org/10.1016/j.ejc.2013.06.048
https://doi.org/10.1016/j.ejc.2013.06.048
https://doi.org/10.48550/arXiv.2102.03117
https://doi.org/10.48550/arXiv.2102.03117
https://doi.org/10.48550/arXiv.2209.05120
https://doi.org/10.1145/800105.803397
https://doi.org/10.1145/3531130.3533356
https://arxiv.org/abs/1805.01823
https://doi.org/10.1145/3051095
https://doi.org/10.1017/CBO9780511551574
https://doi.org/10.1016/j.jctb.2016.06.011
https://doi.org/10.1016/j.jctb.2016.06.011
https://eccc.weizmann.ac.il/report/2009/131
https://eccc.weizmann.ac.il/report/2009/131
https://doi.org/10.1145/3209108.3209136
https://doi.org/10.1112/plms/s2-30.1.264
https://doi.org/10.1017/CBO9781107415133

119:18 Monadic NIP in Monotone Classes of Relational Structures

21 Pierre Simon and Szymon Toruńczyk. Ordered graphs of bounded twin-width, 2021. doi:
10.48550/arXiv.2102.06881.

22 Algorithms, logic, and structure workshop in Warwick, open problem session. URL: https://
warwick.ac.uk/fac/sci/maths/people/staff/daniel_kral/alglogstr/openproblems.pdf.
Accessed: 2023-05-02.

https://doi.org/10.48550/arXiv.2102.06881
https://doi.org/10.48550/arXiv.2102.06881
https://warwick.ac.uk/fac/sci/maths/people/staff/daniel_kral/alglogstr/openproblems.pdf
https://warwick.ac.uk/fac/sci/maths/people/staff/daniel_kral/alglogstr/openproblems.pdf

Compositionality of Planar Perfect Matchings
A Universal and Complete Fragment of ZW-Calculus

Titouan Carette #

Centre for Quantum Computer Science, Faculty of Computing, University of Latvia, Riga, Latvia

Etienne Moutot # Ñ

CNRS, I2M, Aix-Marseille Université, Marseille, France

Thomas Perez #

Université de Lyon, ENS de Lyon, France

Renaud Vilmart # Ñ

Université Paris-Saclay, ENS Paris-Saclay, Inria, CNRS, LMF, 91190, Gif-sur-Yvette, France

Abstract
We exhibit a strong connection between the matchgate formalism introduced by Valiant and the
ZW-calculus of Coecke and Kissinger. This connection provides a natural compositional framework
for matchgate theory as well as a direct combinatorial interpretation of the diagrams of ZW-calculus
through the perfect matchings of their underlying graphs.

We identify a precise fragment of ZW-calculus, the planar W-calculus, that we prove to be
complete and universal for matchgates, that are linear maps satisfying the matchgate identities.
Computing scalars of the planar W-calculus corresponds to counting perfect matchings of planar
graphs, and so can be carried in polynomial time using the FKT algorithm, making the planar
W-calculus an efficiently simulable fragment of the ZW-calculus, in a similar way that the Clifford
fragment is for ZX-calculus. This work opens new directions for the investigation of the combinatorial
properties of ZW-calculus as well as the study of perfect matching counting through compositional
diagrammatical technics.

2012 ACM Subject Classification Theory of computation → Quantum computation theory; Theory
of computation → Equational logic and rewriting; Mathematics of computing → Matchings and
factors

Keywords and phrases Perfect Matchings Counting, Quantum Computing, Matchgates, ZW-Calculus,
String Diagrams, Completeness

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.120

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version Full Version: https://arxiv.org/abs/2302.08767

Funding Titouan Carette: acknowledges support from the ERDF project 1.1.1.5/18/A/020
“Quantum33 algorithms: from complexity theory to experiment”.
Renaud Vilmart: acknowledges support from the PEPR integrated project EPiQ ANR-22-PETQ-0007
part of Plan France 2030, the ANR projects TaQC ANR-22-CE47-0012 and HQI ANR-22-PNCQ-0002,
as well as the European project HPCQS.

1 Introduction

A quantum computation mapping n qubits to m qubits corresponds to an isometric linear
map C2n → C2m . Due to the exponential size of their matrix representation, those linear
maps are traditionally depicted as quantum circuits, an assemblage of elementary quantum
gates similar to the more common boolean circuits. Given a quantum circuit n → m,
evaluating a coefficient of the corresponding 2m × 2n matrix (i.e. evaluating the circuit

EA
T
C
S

© Titouan Carette, Etienne Moutot, Thomas Perez, and Renaud Vilmart;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 120; pp. 120:1–120:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:titouan.carette@lu.lv
https://orcid.org/0000-0002-1618-4081
mailto:etienne.moutot@math.cnrs.fr
https://emoutot.perso.math.cnrs.fr/
https://orcid.org/0000-0003-2073-4709
mailto:thomas.perez@ens-lyon.fr
mailto:vilmart@lsv.fr
https://rvilmart.github.io/
https://orcid.org/0000-0002-8828-4671
https://doi.org/10.4230/LIPIcs.ICALP.2023.120
https://arxiv.org/abs/2302.08767
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

120:2 Compositionality of Planar Perfect Matchings

with a given input) typically requires an exponential time. However, there are some specific
classes of quantum circuits – or fragments –, that can be classically simulated in polynomial
time. Examples are the Clifford fragment (as asserted by the Gottesman-Knill theorem) as
well as the fragment that will particularly interest us in this paper, the nearest-neighbour
matchgates [24]. Investigating those tractable fragments allows a better understanding of the
computational advantage of quantum computing. The reference for all elementary results on
quantum circuits is [19].

Taking the diagrammatical circuit representation seriously led to developing graphical
languages for quantum computing [7]. Those languages are equational theories described
by elementary gates and local identities between diagrams. Such languages come with an
interpretation into linear maps. A language is said universal for a class of linear maps if any
linear map in the class is the interpretation of a diagram in the language. A language is said
complete if two diagrams with the same interpretation are equivalent up to the equational
theory, which means that they can be rewritten from one to the other using the local rewriting
rules of the equational theory. In general, completeness is the most challenging property to
prove.

The first quantum graphical language to appear was the ZX-calculus in 2008 [7]. It was
rapidly known to be universal for all linear maps. However, providing a complete set of
rewriting rules took another ten years (see [26] for an history of completeness) and first
required a translation through another language, the ZW-calculus [12, 13].

The ZW-calculus was introduced in [8] as a graphical representation of the two kinds of
tripartite entanglement for qubits, namely the GHZ-states and W-states. It then appeared
that this calculus had very nice algebraic properties allowing the internal encoding of
arithmetical operations. Those properties allowed the ZW-calculus to be the first proven
universal and complete language for linear maps [12]. Despite this historical importance,
the ZW-calculus gathered less attention than other languages, seen as more connected to
quantum computing. Still, we must mention interesting connections with fermionic quantum
computing [11], and recent works importing some ZW-calculus primitives into ZX-calculus
to exploit their algebraic properties [20, 28]. In this paper, we show that ZW-calculus has
very strong connections with a specific family of quantum circuits: the matchgates.

Matchgates were introduced in 2002 by Valiant [24]. They are linear maps defined by
counting the perfect matching of a graph from which we remove some vertices depending
on the inputs. This underlying combinatorial structure allows to classically simulate the
corresponding quantum circuits by using the Polynomial FKT algorithm for perfect matchings
counting [22, 15]. The theory of matchgates was then developed further to the concept
of holographic algorithms [25]. We can notice that if some connections between graphical
languages and holographic algorithms have been investigated [2], we are not aware of any
diagrammatical approach to the original concept of matchgate before the present work,
except a mention in [11].

The main contribution of this paper is the introduction of a fragment of the ZW-calculus,
that we call planar W-calculus. We show that this language is universal and complete for
the planar matchgate fragment of quantum computation. The completeness proof relies
on designing a normal form and a rewriting strategy to reach it. We also define a pro
of matchgate computations by showing the compositionality of the matchgate identities
introduced in [4]. The combinatorial characterisation of matchgate computations then directly
follows from the correspondence with the graphical language. Hence one can see this paper
as a reformulation of matchgate theory in a compositional framework.

The paper is structured as follows. Section 2 introduces our graphical primitives, their
interpretation as linear maps and their combinatorial properties: the interpretation of a
diagram can be deduced by counting the number of perfect matching of the underlying
weighted graph. We present the generators and elementary rewrite rules of the language as

T. Carette, E. Moutot, T. Perez, and R. Vilmart 120:3

well as an essential syntactic sugar: the fermionic swap that emulates the swap gate, which is
not part of our language. Section 3 introduces the normal form and proves the completeness
of the language. In Section 4, we properly define a pro of matchgates characterised as the
linear maps satisfying the matchgate identities. We show that our language is universal for
matchgates, i.e., that the interpretation of a diagram is always a matchgate and that all
matchgates correspond to a diagram. Finally, in Section 5, we sketch future directions of
research suggested by the connection we identified between ZW-calculus and perfect matching
counting.

2 Perfect Matchings and Planar W-Calculus

We define our fragment of the ZW-calculus, the planar W-calculus, denoted pW, by defining
its diagrams. Any diagram with n inputs and m outputs D : n → m is interpreted as a linear
map JDK :2n→2m inductively as follows:

t

D1 D2

|

:= JD1K ⊗ JD2K

u

ww
v

D1

D2

}

��
~ := JD2K ◦ JD1K

q y
:= (1)

s {
:=

(
1 0
0 1

) q y
:=

(
1 0 0 1

) q y
:=


1
0
0
1


In particular, note that we do not use the usual swap diagram , hence the name planar.
We do have, however, the so-called cup and cap satisfying the “snake equations”:

= =

In the following, with D : n → n, we may use the following notation: D⊗b⃗ when b⃗ is a
bitstring, to represent Db1 ⊗ ... ⊗ Dbn with D0 = idn and D1 = D. We call a diagram D a
scalar if it has no input and no output, i.e. D : 0 → 0. In the category-theoretic terminology,
such a collection of diagrams defines a pro, a strict monoidal category whose monoid of
objects is generated by a unique element, and not a prop, which requires the category to
be symmetric, i.e. to have swap diagrams. Furthermore, the presence of the cups and caps
make the category a compact-closed pro. We define Qubit to be the prop whose n → m

morphisms are linear maps 2n →2m . Hence J·K : pW → Qubit is a pro morphism.
We add the two following generators: the black spider and the binary white spider, whose

interpretations are detailed in the next sub-sections.

2.1 Black Spider
To manipulate binary words α ∈ {0, 1}n and β ∈ {0, 1}m, we will denote α ⊕ β ∈ {0, 1}n the
bitwise XOR (if n = m), α · β ∈ {0, 1}n+m the concatenation, |α| ∈ {0, ..., n} the Hamming
weight, i.e., the number of ones in the word α, and |α|2 ∈ {0, 1} the parity of this weight, 0 if
even and 1 if odd. The black spider (or black node) is given by the following interpretation:

t

...

...n

m

|

:=
∑

u∈{0,1}m

v∈{0,1}n

|uv|=1

|u⟩⟨v|

ICALP 2023

120:4 Compositionality of Planar Perfect Matchings

In other words, the black spiders gives an output 1 if and only if exactly one of its legs (either
input or outputs) has value |1⟩ and all the others |0⟩. As inputs and outputs behave exactly
the same, one can use cup and caps in order to transform inputs into outputs and vice-versa:

=

Moreover, as input order do not matter, one can bend the wires and move black spiders around,
without altering the resulting linear map, we say that the black nodes are flexsymmetric [6].
Flexsymmetry of the black spider allows us to see diagrams as graphs with fixed inputs and
outputs edges. Fixing the input and outputs edges, any graph isomorphism preserves the
semantics.

With this graphical interpretation in mind, one can understand the interpretation of a
scalar diagram, composed of only black spiders, as counting the number of perfect matchings
in the underlying graph. To see this, one can use the interpretation of a single edge, which
simply is the identity |0⟩⟨0| + |1⟩⟨1|. This interpretation gives a useful insight in the diagrams:
given an edge, one can partition the set of perfect matchings between those that have this
edge and those that don’t:

...

...

=
...

...

+
...

...

In the case where the graph is an actual graph, without half edges, the resulting map is a
scalar (no input or outputs). One can show by induction that this scalar corresponds to the
number of ways of choosing a set of edges such that each vertex is covered by exactly one
edge. In other ways, the number of perfect matchings of the graph.

2.2 Binary White Spider
The last generator of the planar W-calculus is the binary white spider, given, for any r ∈, by:

s
r

{
:=

(
1 0
0 r

)
which corresponds to the usual binary white spider with weight r of the ZW-calculus. This
binary spider corresponds to having a weight r on an edge of the graph. When r ∈ N, the

interpretation is straightforward: the white spider can be replaced by r edges: r =
r... .

And in particular, 1 = .

Let us interpret the white spiders as weights on the edges of a planar graph G with
black spiders on their vertices. Consider one perfect matching of the same graph G′ without
weights and consider one perfect matching P of G′. If the edge e that belongs to P has a
weight r ∈ N, then it can be replaced by r edges. In other words, the single perfect matching
P is replaced by r perfect matchings when e has weight r. By doing this for every edges,
one can see that each perfect matching in G′ corresponds to a perfect matching of G with a
weight that is the product of all its edge weights, instead of weight 1 in G′. For r ∈, one
cannot replace a white spider by a given number of edges, but the interpretation is the same:
the edge contribute to the perfect matchings that contain it with a weight r.

T. Carette, E. Moutot, T. Perez, and R. Vilmart 120:5

▶ Example 1. 2

−1

= 2 +
−1

= 2 − 1 = 1

Diagrams generated by the black and binary white node, within the framework described
at the beginning of the section, are called pW-diagrams.

2.3 The FKT Algorithm

In general, counting the number of perfect matchings in a graph is an #P-complete problem
[23]. However, for planar graphs the same problem turns out to be surprisingly easy, as
Fisher, Temperley and Kastelyn showed that it is in P [22, 14]. The main idea behind the
algorithm is that for planar graphs, it is possible to find a good orientation of the edges
(called a Pfaffian orientation) in polynomial time such that the number of perfect matchings
is the Pfaffian of the adjacency matrix A (actually its skew-symmetric version, called Tutte
matrix) of the oriented graph. A result due to Cayley then shows that the Pfaffian is the
square root of the determinant of A.

Note that one can find such an orientation for any planar graph, even weighted with
complex weights, and the equality pf(A) =

√
det(A) still holds. Therefore, computing the

total weight of perfect matchings in a complex-weighted graph is in P.

▶ Proposition 2. Let D be a scalar pW-diagram. Then JDK is computable in polynomial
time in the number of black nodes.

2.4 Fermionic Swap

The usual ZW-calculus does have another generator that we did not explicitly include in our
fragment, called the fermionic swap:

r z
:=

∑
x,y∈{0,1}

(−1)xy |xy⟩⟨yx|

However, it turns out that the fermionic swap is just syntactic sugar, and it is actually in
our fragment:

:= -1-1

Notice that the previous equation also appears in [5] to relate planar and non-planar
matchgates. It is very useful to treat this piece of diagram as a generator of its own, especially
as a particular kind of swap, which shares a lot of (but not all) properties of the symmetric
braiding of props. In particular:

=
D

...

...

= D

...

...

(-1)|D|

where |D| is the number of black nodes in the diagram D.

ICALP 2023

120:6 Compositionality of Planar Perfect Matchings

3 Completeness

The planar W-calculus is introduced with an equational theory, given in Figure 1, relating
together diagrams with the same semantics. This builds upon the more general equational
theories for non-planar ZW-calculi, presented in [12, 13]. We write pW ⊢ D1 = D2 when one
can turn diagram D1 into diagram D2 by applying the equations of Figure 1 locally.

...

...

=
(ws) ...

...

=
(wi)

...

...

=
(wb)

...

...
... =

(wl)
...

r

s
=

(zs)
rs 1 =

(zi)

r

...

r ̸=0=
(di)

r · 1
r ...

1
r

r s

...

...

=
(a)

r + s

...

...

r
=

(zf) r

...

...
... =

(wf) −1

...

...

... =
(z)

0 ·

...
=

(wc)

...
=

(yb)
=

(fr)

Figure 1 Axioms of the planar W-calculus.

▶ Proposition 3. The equational theory of Figure 1 preserves the semantics:

pW ⊢ D1 = D2 =⇒ JD1K = JD2K

In the following, we will show that the converse also holds, that is, that whenever two
diagrams have the same semantics, they can be turned into one another using the equational
theory. Intuitively, this implies that the equational theory completely captures the interaction
of generators with one another in the fragment.

To show this result, we give a notion of normal form, which we call W-graph-state
with X-gates (WGS-X for short), then a refinement of that normal form (reduced WGS-X
form) which can be shown to be unique, and we give a rewrite strategy (derivable from the
equational theory) to turn any pW-diagram into this form.

3.1 Normal Form
The first step we take towards defining a normal form is a simplification, making use of the
compact structure of the underlying pro, where we relate maps and states:

▶ Proposition 4. There is an isomorphism between pW(n, m) and pW(0, n + m) defined as
such:

f
...

...

7→ [f]
... ...

:= f
...

...

...

This isomorphism allows us only to consider states rather than maps in the following.
Then, we define W-graph-states, by first defining ordered weighted graphs:

T. Carette, E. Moutot, T. Perez, and R. Vilmart 120:7

▶ Definition 5 (Ordered Weighted Graph). G = (V, E, w) is called an ordered weigthed
graph if:

V is a set endowed with a total order ≺ (or equivalently a sequence)
E ⊂ V × V is such that (u, v) ∈ E =⇒ u ≺ v

w : E → C \ {0} maps each edge to its weight

▶ Definition 6 (W-Graph-State). Let G = (V, E, w) be an ordered weighted graph. Then,
WGS(G) is defined as the pW-diagram where:

Each vertex in V gives a W-spider linked to an output through an additional (the order
on V gives the order of the outputs)
Each (weighted) edge (u, v) gives a white dot with parameter w((u, v)) linked to the
W-spiders obtained from u and v

All wire crossings in WGS(G) are fermionic swaps
No output wire crosses another wire
There are no self-intersecting wires

When an edge has weight 1 we may ignore the white dot and represent the edge as a simple

wire, since 1 = . Notice that there are several ways to build WGS(G), but all of them

are equivalent thanks to
r

=
r

and the axioms on the fermionic swap , together

with the provable identities in Lemmas 7 and 8:

▶ Lemma 7.

= −1

▶ Lemma 8.

=

▶ Definition 9 (WGS-X form). We say that a pW-state D on n qubits is in:
WGS-X form if there exist s ∈ C, G = ([1, n], E, w) an ordered graph, and b⃗ ∈ {0, 1}n

such that D = s ·
(

⊗b⃗
)

◦ WGS(G).

pseudo-WGS-X form if it is in WGS-X form with potentially vertices linked to several
outputs, additional r (r ̸= 0) on wires that do not correspond to edges in the graph, and

potentially fermionic swaps between outputs.
reduced WGS-X form (rWGS-X) if it is in WGS-X form and:

∀i, (bi = 0 =⇒ ∄j, (i, j) ∈ E)

i.e. bi = 0 is only possible if vertex i has no neighbour on its right.

▶ Example 10. WGS


i

−1
2

 =

i

2
−1

where in the

starting graph, vertices are ordered left to right, and edges with no indication of weight have
weight 1.

ICALP 2023

120:8 Compositionality of Planar Perfect Matchings

If b⃗ = (0, 1, 1, 0, 1), then the obtained WGS-X state is:

s ·

i

2
−1

where we used the fact that is an involution to simplify the diagram. The WGS-X state is
however not reduced, as both the first and fourth qubits have additional applied to them,
but still have neighbours on their right.

Finally, the following diagram is an example of a pseudo-WGS-X state:

i

2
−1

−1

i

2

3.2 Rewrite Strategy
We define in this section a rewrite strategy, derived from the equational theory, that will
terminate in a normal form (WGS-X). Doing this naively is made difficult by the potential
presence of fermionic swaps wherever we are looking for patterns to rewrite. Thankfully,
the last 5 equations in Figure 1, together with the above Lemmas 7 and 8 essentially tell
us that we can treat those as usual swaps with the only catch that removing self loops or
moving wires past black nodes adds a −1 weight to the wires.

In the upcoming rewrite strategy, we will hence only specify the patterns without potential
fermionic swaps inside. Should there be some present, it is understood that they will be
moved out of the pattern, before the rewrite occurs. The rules necessary for the rewrite
strategy are given in Figure 2.

▶ Proposition 11. The rewrite rules of Figure 2 are derivable from the equational theory of
Figure 1 and hence are sound.

For the rewrite strategy to terminate, we need to distinguish between different types of
nodes:

▶ Definition 12 (Boundary Node / Internal Node). A node is a boundary node of type 1 if it
is linked directly to an output (potentially through a white node). A node is a boundary node
of type 0 if it is connected to a binary boundary node of type 1.
We say that a black node of D is internal if it is not a boundary node.

Notice that diagrams in WGS-X, rWGS-X, or pseudo-WGS-X form, do not have internal
nodes. The crux of the upcoming rewrite strategy is precisely to remove internal nodes. The
rewrite strategy is laid out as follows:

▶ Definition 13 (Rewrite Strategy). The rewrite strategy is defined in 3 steps:
1. Apply the rewrites of Figure 2 in any order but following constraints, until none apply

anymore. The diagram ends up in pseudo-WGS-X form.

T. Carette, E. Moutot, T. Perez, and R. Vilmart 120:9

r s

...

...

→ r + s

...

...

...

r

→ ... (⋆) 0 → r →
r ̸=0

r · 1
r

...

r s
→

...

s r
(⋆)

r

s
→ rs r → −r

...

s

r

m

→ r · ...
m

...

...

s

r

n

m

n̸=1
m ̸=1→
r ̸=0
s̸=0 ...

...

r

s

r

s

n

m

(∗) r

...

...

n

m

→
n̸=1
m ̸=1

r ·

...

...

1
r

1
r1

r

1
r

n

m

→ 0 ·

Figure 2 Rewrite rules. Rule (⋆) corresponds to the third axiom of Figure 1 with weights, i.e.
the edges form a complete bipartite graph between the black nodes, with a fermionic swap at each
crossing and weight 1

r
on each edge. All the rules in this figure, except (⋆), are supposed to apply

when any of the white nodes are replaced by identity (i.e. when their weight is 1). Rule (∗) can only
be applied if at least one of the black nodes is internal, and if none of the other rules applies.

r

i j<

→ r ·

1
r

i j<

r

→ r ·

1
r

r

i j<

...

→ r ·
1
r

i j<

...
1
r

1
r

r

i j<

...

→ r ·
1
r

i j<

...
1
r

1
r

Figure 3 Rules for reduced WGS-X form, together with rule (∗) when the leftmost black node is
a type-0 boundary node.

2. First, whenever a type-1 boundary is linked to n > 1 outputs directly, apply → to

the n − 1 rightmost such outputs (the top black node then becomes a type-0 boundary node,
the bottom one a type-1 boundary node). Then, push all potential fermionic swaps
between outputs inside the graph part. Finally, move boundary weights up into the edges

of the WGS using
r

...
→ r · 1

r...
1
r

. The diagram ends up in WGS-X form.

3. Whenever a type-0 vertex in the graph has a right neighbour, depending on the arity of
the nodes, apply rule (∗) or one of the rules of Figure 3 between the two nodes (and apply
any other possible rule before going on).

A claim was made in Definition 13 about the form of the diagram at the end of each step.
Those claims are going to be proven in the following (Proposition 14). At the same time, we
are going to show that the rewrite terminates.

ICALP 2023

120:10 Compositionality of Planar Perfect Matchings

▶ Proposition 14 (Termination in rWGS-X form). The rewrite strategy terminates in a
polynomial number of rewriting steps. Moreover, after Step 1 of the rewrite, the diagram is
indeed in pseudo-WGS-X form, after Step 2, it is in WGS-X form, and after Step 3, it is in
rWGS-X form.

A key property of planar W calculus is that any multi-edge can be merged thanks to the
first rule of Figure 2. In the case of the general ZW-calculus, the presence of both swaps
and fermionic swaps do not allow us to merge all multi-edges. Indeed, different parallel
edges, between the two same nodes, can make fermionic swaps with different other edges.
The problem is that with the presence of multi-edges, rule (∗) does not necessarily lead to a
reduction in the number of nodes and our rewriting strategy may not terminate.

An important operation on WGS-X states that has a simple graphical interpretation is
the following:

▶ Lemma 15. For any diagram D in WGS-X form (s, G, b⃗), applying ◦
⊗(bi⊕1)

on the ith
output can be turned into the WGS-X form (s, G \ {i}, b⃗ \ bi), where G \ {i} is defined as the
graph G from which vertex i is removed (together with all edges linked to i and their weights),
and similarly b⃗ \ bi is defined as the sequence b⃗ from which ith element is removed.

This allows us to prove the following:

▶ Lemma 16. For any diagram D in WGS-X form (s, G, b⃗):

JDK = 0 ⇐⇒ s = 0

We may then prove that 0-diagrams can be put in a very well-defined form:

▶ Lemma 17. Let D be a WGS-X state such that JDK = 0. Then D can be put in the
WGS-X form (0, G = ([1, n], ∅, _), 0⃗), i.e.:

pW ⊢ D = 0 · ...

We are now able to prove the completeness of the equational theory.

▶ Theorem 18. Let D1 and D2 be two pW-diagrams. Then:

JD1K = JD2K ⇐⇒ pW ⊢ D1 = D2

This last theorem, together with the fact that the rewriting in rWGS-X form is polynomial
(Proposition 14) makes the problem of deciding whether two pW-diagrams are semantically
equivalent a P problem.

4 Matchgates

This section aims at characterising exactly the linear maps that W -diagrams represent.

4.1 Matchgate Identities
Valiant first introduced matchgate identities to characterise 2 → 2 matchgates, a family of
linear maps described in a combinatorial way [24]. In [4], the matchgate identities have been
extended to characterise matchgates of any size. In the literature, there is a close link between

T. Carette, E. Moutot, T. Perez, and R. Vilmart 120:11

matchgate identities and the Grassman-Plucker identities applied to Pfaffians. It is not the
case here, as the diagrammatic technics allow us to directly link matchgate identities to
matchings without the intermediate of the Pfaffian. We can fully recover the connection with
Pfaffians through the Fetcher-Kasteleyn-Temperley algorithm for counting perfect matchings
[15, 22], more details on this are outlined in Section 5. Many of the proofs of this section are
inspired by the very useful clarification of matchgate theory presented in [5]. Notice that
contrary to the literature that differentiates between matchgrids, matchcircuits or matchnets,
we will only use the term matchgate for any linear map satisfying the matchgate identities.

Recall that for binary words α ∈ {0, 1}n and β ∈ {0, 1}m, α ⊕ β ∈ {0, 1}n is the bitwise
XOR (if n = m), α · β ∈ {0, 1}n+m the concatenation, |α| ∈ {0, ..., n} the Hamming weight,
i.e., the number of ones in the word α, and |α|2 ∈ {0, 1} the parity of this weight, 0 if even
and 1 if odd.

▶ Definition 19 (Matchgate Identities). A tensor Γ ∈ C2n satisfies the matchgate identities
(MGIs) if for all α, β ∈ {0, 1}n:

|α⊕β|∑
k=1

(−1)kΓα⊕epk
Γβ⊕epk

= 0

Where epk
∈ {0, 1}n is the binary word which is zero everywhere except in position pk,

which is the kth position in the set {p1, ..., p|α⊕β|} ⊆ {1, ..., n} of positions in which the words
α and β differs.

The matchgate identities are not linear, so the set of matchgates is not a subspace of the
vector space C2n but an algebraic variety [4]. In general, those identities are not algebraically
independent, i.e. are not all strictly necessary to describe match-tensors.

Indeed, there are numerous symmetries in those identities. For example, the case α = β

directly gives empty sums and exchanging α and β gives the same identity. Interestingly,
one can replace half of the identities with a parity condition.

▶ Proposition 20 (Parity condition [5]). If Γ satisfies the matchgate identities then it satisfies
the parity condition: for all α, β ∈ {0, 1}n, |α|2 ̸= |β|2 ⇒ ΓαΓβ = 0.

The parity condition splits match-tensors into two groups, the one with odd parity, such
that |α| even implies Γα = 0, and the one of even parity, such that |α| odd implies Γα = 0.
In particular, the parity condition directly implies that all terms in identities with |α|2 ̸= |β|2
are zero. Notice that the parity condition is not sufficient. We still need matchgate identities
in general.

However, the parity condition is sufficient for n ≤ 3, but not anymore for n = 4, the
original case considered by Valiant [24]. In particular, for n = 0, the matchgate identities are
trivially true; hence they are satisfied by all scalars (processes 0 → 0).

4.2 The Pro of Matchgates
We will now use the matchgates to define a pro. So far, matchgate identities have been used
to characterise vectors seen as tensors, without consideration of inputs and outputs. To
apply them to linear maps f : n → m, we will use the state form: [f] : 0 → n + m described
in Proposition 4. It allows us to define matchgates.

▶ Definition 21 (Matchgates). A matchgate is a linear map f : C2n → C2m such that [f]
satisfies the matchgate identities.

ICALP 2023

120:12 Compositionality of Planar Perfect Matchings

We would like to define a sub-pro of Qubit whose processes are matchgates, however,
there are a few properties to check before that. We start by showing stability by the tensor
product.

▶ Lemma 22. Given two linear maps f : a → b and g : c → d whose state forms [f] ∈ C2a+b

and [g] ∈ C2c+d satisfy the matchgate identities, then [f ⊗ g] ∈ C2a+c+b+d satisfies the
matchgate identities.

The next thing to check is stability by composition; this follows from the following result:

▶ Lemma 23. If Γ ∈ C2n+2 satisfies the matchgate identities, then the tensor obtained by
contracting two consecutive indices satisfies the matchgate identities.

Notice that the consecutive indices assumption is essential here. Without it, we could
easily construct the swap gate that does not satisfy the matchgate identities. To be able
to contract consecutive indices is enough to show the stability by composition. The idea is
to iterate contraction on consecutive indices until we obtain enough cups to use the snake
equation, pictorially:

g ...

...

f

...

...

...

...

=
g
... ...

...

f
...

=
[f ◦ g]
... ...

Now that we have stability by tensor and composition, it only remains to show the
identities are matchgates. id0 is a scalar, so directly a matchgate. The state-form of id1 is
the cap which is a matchgate as it satisfies the parity condition (sufficient for n = 2). The
fact that all idn are matchgates follows from stability by the tensor product. We can now
state the main theorem of this subsection.

▶ Theorem 24 (Match). The matchgates form a pro Match, which is a sub-pro of Qubit.

Notice that Match is compact closed since the cup and the cap are both matchgates.
Hence we can also use process/state duality in Match without any worry. As expected, all
W -diagrams represent matchgates.

▶ Lemma 25. The functor J_K : pW → Qubit factorises through Match, i.e., the interpret-
ations of diagrams in W are matchgates.

Match

pW Qubit
J_K

Proof. We have to prove that the interpretation of any pW diagram is a matchgate. To do
so, as matchgates are stable by composition and tensor product we only have to check that
the interpretations of the generators are matchgates. The state forms of the generators have
at most three outputs (n-ary spiders can be decomposed into binary and ternary spiders), so
it is sufficient to check the parity condition, which is indeed satisfied by the interpretations
of the generators. ◀

T. Carette, E. Moutot, T. Perez, and R. Vilmart 120:13

4.3 Universality
Now that we proved that all pW-diagrams represent matchgates, it remains to show that all
matchgates can be represented by a pW diagram, in other words, that pW is universal for
Match. This will require a few additional properties of matchgates, adapting some results
of [5].

▶ Lemma 26. If Γ satisfies the matchgate identities and Γ0 = 1, where 0 is binary word full
of 0, then it is uniquely determined by its coefficients Γα where |α| = 2.

Proof. If |α| = 0 then we already know that Γα = 1 and the parity condition implies that
Γα = 0 if |α| = 1. We show that for all α with 3 ≤ |α|, we can express Γα from coefficients
Γβ where all βs have strictly smaller Hamming weights. Let i be the first position where α

and 0 differ, the matchgate identity corresponding to α ⊕ ei and 0 ⊕ ei is:

|α|∑
k=1

(−1)kΓα⊕ei⊕epk
Γei⊕epk

= 0

Here the pk are exactly the position where α is 1, in particular i = p1 so:

Γα = ΓαΓ0 =
|α|∑

k=2
(−1)kΓα⊕ei⊕epk

Γei⊕epk

For k ≥ 2, We have |ei ⊕ epk
| = 2 and |α ⊕ ei ⊕ epk

| = |α| − 2 so Γα is completely determined
by coefficients corresponding to strictly smaller Hamming weight. It follows that all Γα can
be expressed from the Γβs with |β| = 2. ◀

We will now be able to reuse the normal form from Section 3 to construct diagrams
representing any matchgate.

▶ Lemma 27 (Universality). pW is universal for Match.

Proof. Relying on process/state duality, we only consider states 0 → n. Given Γ satisfying
the matchgate identities, we will construct a W diagram D such that JDK = Γ. We start by
considering the case where Γ0 = 1. Then we construct a weighted graph G on n vertices
setting the weight of the edge (i, j) to Γei⊕ej

. We then take D to be the diagram in graph
form corresponding to G. By construction we then have JDK0 = 1 and JDKei⊕ej

= Γei⊕ej for
all i ̸= j. Furthermore, by Lemma 25, JDK is a matchgate so by Lemma 26, JDK = Γ.

Now if Γ0 ̸= 1: First if Γ0 ̸= 0 then Γ′ = 1
Γ0

Γ is of the right form so we can obtain D

by adding a floating edge of weight Γ0 to the diagram D′ representing Γ′. The last case is
Γ0 = 0, then if Γ = 0 we can represent Γ by any diagram and a floating black node, else let
β be such that Γβ ̸= 0, then Γ′ defined as Γ′

α = Γα⊕β satisfies Γ′
0 ̸= 0 and there is a diagram

D′ representing Γ′. A diagram D representing Γ is then obtained by plugging binary black
nodes to the outputs of D′ corresponding to the positions where β is 1. ◀

Notice that since Match is a sub-pro of Qubit, the completeness proof of Section 3
still holds in Match. It provides us with a universal and complete graphical language for
matchgates.

▶ Theorem 28. pW is universal and complete for Match.

ICALP 2023

120:14 Compositionality of Planar Perfect Matchings

5 Further Work

The proper definition and axiomatisation of the pW-calculus pave the way to diverse
investigations of the connection between combinatorics and quantum computing. We briefly
outline in this last section some very promising directions that are the subjects of ongoing
research.

5.1 New Simulation Techniques for Quantum Circuits

The identification of a fragment of the ZX-calculus exactly corresponding to the efficiently
simulable Clifford gate [3] allows to design new rewrite-based simulation technics for quantum
circuits introduced in [16]. Those algorithms have a parametrised complexity which is
polynomial in the number of Clifford gated but exponential in the number of T -gates (a gate
outside of the Clifford fragment sufficient to reach approximate universality).

Similarly, we have identified an efficiently simulable fragment of ZW-calculus: the pW-
calculus exactly corresponding to matchgates. Adding the swap gate to pW we obtain another
fragment of ZW which is exactly the fermionic ZW-calculus introduced in [11]. This calculus
is universal for Qubit modulo an encoding trick: the dual-rail encoding. Equivalently, LFM
is ZW where white nodes are contrived to have even arities, so adding arity one white nodes
(corresponding to preparing |+⟩ states) is enough to recover the full ZW-calculus, which
is universal for Qubits. This situation suggests the possibility of designing rewrite-based
simulation algorithms with complexities parametrised by the number of swap gates and/or
|+⟩ preparation. It would lead to a brand new kind of quantum simulation technics exploiting
the combinatorial structure of matchgate and directly connected to classical perfect matching
counting algorithms.

5.2 Combinatorial Interpretation of Full ZW-Calculus

In Section 2, we provided a combinatorial interpretation of pW-diagrams via perfect matchings
in planar graphs. This combinatorial approach directly extends to LFM-calculus via perfect
matchings in arbitrary graphs (which is #P-complete). Furthermore, we can also extend
the interpretation to the full ZW-calculus, where white nodes can have arbitrary arities. To
do so, we must consider hypergraph matchings, i.e., subsets of hyperedges covering each
vertex exactly once. The arbitrary arity white nodes here play the role of hyperedges, and
the black nodes, the role of vertices. Thus, the interpretation of ZW-scalars is the number of
hypergraph matchings of the hypergraph underlying the diagram. Notice that hypergraph
matching is also presented as the set cover problem in the literature. The full ZW-calculus
could offer new perspectives on set cover in the same way that pW does for perfect matchings.
In particular, some reduction results appear to have very clear diagrammatical proofs.

Aside from perfect matchings, it seems that graphical languages can encode other count-
ing problems on graphs or hypergraphs. Designing such languages could shed a new
tensorial/diagrammatical light on the corresponding combinatorial problems. Those ap-
proaches are reminiscent of the recent ZH-based algorithm for #Sat, introduced in [17] and
related works linking graphical languages and counting complexity [9, 10]. Conversely, the
question of applying similar combinatorial interpretations to other graphical languages as
ZX-calculus [7], or ZH-calculus [1] is also worth being investigated.

T. Carette, E. Moutot, T. Perez, and R. Vilmart 120:15

5.3 Towards a Diagrammatic Approach of Perfect Matching Counting
In Section 2, we used the Fletcher-Kasteleyn-Temperley algorithm as a black box to compute
the interpretation of pW-scalars in polynomial time. However, it seems possible to achieve
the same result with purely diagrammatical technics. In fact, applying the rewriting strategy
described in Section 3 to a scalar reduces it to a normal form from which we can directly
read the interpretation. It seems very probable that this requires only a polynomial number
of rewrites.

This provides a way to count perfect matchings without referring to Pfaffian computation,
and conversely, it gives a new algorithm to compute Pfaffians based on rewriting.

The FKT algorithm only applies to a specific class of graphs, called Pfaffian graphs, i.e.,
the graphs admitting a Pfaffian orientation. In particular, all planar graphs are Pafaffian [14].
It seems that Pfaffian orientiation are directly connected to the behavior of fermionic swap
and their lack of naturality which introduces −1 weights in the edges. More generally, all
graphs not containing K3,3 are Pfaffian [27, 18] (we recall that planar graphs are precisely
the graphs not containing neither K3,3 nor K5 as minors). Moreover, there also exists a
polynomial time algorithm for K5-minor-free graphs [21] based on graph decomposition.
There is a large amount of work in perspective, re-expressing in diagrammatic terms those
different variations and understanding adequately how our rewriting rules could encode the
minor constraints.

Formalising and implementing those different algorithms is the object of ongoing work.
The main difficulty is to identify the suitable data structures to manipulate the topological
data of a given diagram, equivalently, the specific planar embedding of the corresponding
graph.

References
1 M Backens and A Kissinger. Zh: A complete graphical calculus for quantum computations

involving classical non-linearity. Electronic Proceedings in Theoretical Computer Science,
287:23–42, 2019.

2 Miriam Backens. A new holant dichotomy inspired by quantum computation. arXiv preprint,
2017. arXiv:1702.00767.

3 Miriam Backens, Simon Perdrix, and Quanlong Wang. Towards a minimal stabilizer zx-calculus.
Log. Methods Comput. Sci., 16(4), 2020. doi:10.23638/LMCS-16(4:19)2020.

4 Jin-yi Cai, Vinay Choudhary, and Pinyan Lu. On the theory of matchgate computations.
Theory Comput. Syst., 45(1):108–132, 2009. doi:10.1007/s00224-007-9092-8.

5 Jin-Yi Cai and Aaron Gorenstein. Matchgates revisited. Theory Comput., 10:167–197, 2014.
doi:10.4086/toc.2014.v010a007.

6 Titouan Carette. Wielding the ZX-calculus, Flexsymmetry, Mixed States, and Scalable Nota-
tions. (Manier le ZX-calcul, flexsymétrie, systèmes ouverts et limandes). PhD thesis, University
of Lorraine, Nancy, France, 2021. URL: https://tel.archives-ouvertes.fr/tel-03468027.

7 Bob Coecke and Ross Duncan. Interacting quantum observables. In Luca Aceto, Ivan Damgård,
Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz,
editors, Automata, Languages and Programming, 35th International Colloquium, ICALP
2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part II - Track B: Logic, Semantics,
and Theory of Programming & Track C: Security and Cryptography Foundations, volume
5126 of Lecture Notes in Computer Science, pages 298–310. Springer, 2008. doi:10.1007/
978-3-540-70583-3_25.

8 Bob Coecke and Aleks Kissinger. The compositional structure of multipartite quantum
entanglement. In Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer
auf der Heide, and Paul G. Spirakis, editors, Automata, Languages and Programming, 37th
International Colloquium, ICALP 2010, Bordeaux, France, July 6-10, 2010, Proceedings,
Part II, volume 6199 of Lecture Notes in Computer Science, pages 297–308. Springer, 2010.
doi:10.1007/978-3-642-14162-1_25.

ICALP 2023

https://arxiv.org/abs/1702.00767
https://doi.org/10.23638/LMCS-16(4:19)2020
https://doi.org/10.1007/s00224-007-9092-8
https://doi.org/10.4086/toc.2014.v010a007
https://tel.archives-ouvertes.fr/tel-03468027
https://doi.org/10.1007/978-3-540-70583-3_25
https://doi.org/10.1007/978-3-540-70583-3_25
https://doi.org/10.1007/978-3-642-14162-1_25

120:16 Compositionality of Planar Perfect Matchings

9 Niel de Beaudrap, Aleks Kissinger, and Konstantinos Meichanetzidis. Tensor network rewriting
strategies for satisfiability and counting. In Benoît Valiron, Shane Mansfield, Pablo Arrighi,
and Prakash Panangaden, editors, Proceedings 17th International Conference on Quantum
Physics and Logic, QPL 2020, Paris, France, June 2 - 6, 2020, volume 340 of EPTCS, pages
46–59, 2020. doi:10.4204/EPTCS.340.3.

10 Niel de Beaudrap, Aleks Kissinger, and John van de Wetering. Circuit extraction for zx-
diagrams can be #p-hard. In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff,
editors, 49th International Colloquium on Automata, Languages, and Programming, ICALP
2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages 119:1–119:19. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.ICALP.2022.119.

11 Giovanni de Felice, Amar Hadzihasanovic, and Kang Feng Ng. A diagrammatic calculus of
fermionic quantum circuits. Log. Methods Comput. Sci., 15(3), 2019. doi:10.23638/LMCS-15(3:
26)2019.

12 Amar Hadzihasanovic. A diagrammatic axiomatisation for qubit entanglement. In 30th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2015, Kyoto, Japan, July 6-10,
2015, pages 573–584. IEEE Computer Society, 2015. doi:10.1109/LICS.2015.59.

13 Amar Hadzihasanovic, Kang Feng Ng, and Quanlong Wang. Two complete axiomatisations of
pure-state qubit quantum computing. In Anuj Dawar and Erich Grädel, editors, Proceedings
of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2018, Oxford,
UK, July 09-12, 2018, pages 502–511. ACM, 2018. doi:10.1145/3209108.3209128.

14 P. W. Kasteleyn. Graph theory and crystal physics. Graph Theory and Theoretical Physics,
1967.

15 P.W. Kasteleyn. The statistics of dimers on a lattice: I. the number of dimer arrangements on
a quadratic lattice. Physica, 27(12):1209–1225, 1961. doi:10.1016/0031-8914(61)90063-5.

16 Aleks Kissinger, John van de Wetering, and Renaud Vilmart. Classical simulation of quantum
circuits with partial and graphical stabiliser decompositions. In François Le Gall and Tomoyuki
Morimae, editors, 17th Conference on the Theory of Quantum Computation, Communication
and Cryptography, TQC 2022, July 11-15, 2022, Urbana Champaign, Illinois, USA, volume
232 of LIPIcs, pages 5:1–5:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.
doi:10.4230/LIPIcs.TQC.2022.5.

17 Tuomas Laakkonen, Konstantinos Meichanetzidis, and John van de Wetering. A graphical
#sat algorithm for formulae with small clause density. CoRR, abs/2212.08048, 2022. doi:
10.48550/arXiv.2212.08048.

18 Charles HC Little. An extension of kasteleyn’s method of enumerating the 1-factors of planar
graphs. In Combinatorial Mathematics: Proceedings of the Second Australian Conference,
pages 63–72. Springer, 1974.

19 Michael A Nielsen and Isaac Chuang. Quantum computation and quantum information, 2002.
20 Razin A Shaikh, Quanlong Wang, and Richie Yeung. How to sum and exponentiate hamiltoni-

ans in zxw calculus. arXiv preprint, 2022. arXiv:2212.04462.
21 Simon Straub, Thomas Thierauf, and Fabian Wagner. Counting the number of perfect

matchings in k5-free graphs. In IEEE 29th Conference on Computational Complexity, CCC
2014, Vancouver, BC, Canada, June 11-13, 2014, pages 66–77. IEEE Computer Society, 2014.
doi:10.1109/CCC.2014.15.

22 H. N. V. Temperley and Michael E. Fisher. Dimer problem in statistical mechanics-an exact
result. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied
Physics, 6(68):1061–1063, 1961. doi:10.1080/14786436108243366.

23 Leslie G. Valiant. The complexity of computing the permanent. Theoretical Computer Science,
8(2):189–201, 1979. doi:10.1016/0304-3975(79)90044-6.

24 Leslie G. Valiant. Quantum circuits that can be simulated classically in polynomial time.
SIAM J. Comput., 31(4):1229–1254, 2002. doi:10.1137/S0097539700377025.

25 Leslie G Valiant. Holographic algorithms. SIAM Journal on Computing, 37(5):1565–1594,
2008.

https://doi.org/10.4204/EPTCS.340.3
https://doi.org/10.4230/LIPIcs.ICALP.2022.119
https://doi.org/10.23638/LMCS-15(3:26)2019
https://doi.org/10.23638/LMCS-15(3:26)2019
https://doi.org/10.1109/LICS.2015.59
https://doi.org/10.1145/3209108.3209128
https://doi.org/10.1016/0031-8914(61)90063-5
https://doi.org/10.4230/LIPIcs.TQC.2022.5
https://doi.org/10.48550/arXiv.2212.08048
https://doi.org/10.48550/arXiv.2212.08048
https://arxiv.org/abs/2212.04462
https://doi.org/10.1109/CCC.2014.15
https://doi.org/10.1080/14786436108243366
https://doi.org/10.1016/0304-3975(79)90044-6
https://doi.org/10.1137/S0097539700377025

T. Carette, E. Moutot, T. Perez, and R. Vilmart 120:17

26 John van de Wetering. Zx-calculus for the working quantum computer scientist. arXiv preprint,
2020. arXiv:2012.13966.

27 Vijay V. Vazirani. NC algorithms for computing the number of perfect matchings in k3,
3-free graphs and related problems. In Rolf G. Karlsson and Andrzej Lingas, editors, SWAT
88, 1st Scandinavian Workshop on Algorithm Theory, Halmstad, Sweden, July 5-8, 1988,
Proceedings, volume 318 of Lecture Notes in Computer Science, pages 233–242. Springer, 1988.
doi:10.1007/3-540-19487-8_27.

28 Quanlong Wang and Richie Yeung. Differentiating and integrating zx diagrams. arXiv preprint,
2022. arXiv:2201.13250.

ICALP 2023

https://arxiv.org/abs/2012.13966
https://doi.org/10.1007/3-540-19487-8_27
https://arxiv.org/abs/2201.13250

Deterministic Regular Functions of Infinite Words
Olivier Carton #

Université Paris Cité, CNRS, IRIF, F-75013, France
Institut Universitaire de France, Paris, France

Gaëtan Douéneau-Tabot #

Université Paris Cité, CNRS, IRIF, F-75013, France
Direction générale de l’armement – Ingénierie des projets, Paris, France

Emmanuel Filiot #

Université libre de Bruxelles & F.R.S.-FNRS, Brussels, Belgium

Sarah Winter #

Université libre de Bruxelles & F.R.S.-FNRS, Brussels, Belgium

Abstract
Regular functions of infinite words are (partial) functions realized by deterministic two-way trans-
ducers with infinite look-ahead. Equivalently, Alur et. al. have shown that they correspond to
functions realized by deterministic Muller streaming string transducers, and to functions defined
by MSO-transductions. Regular functions are however not computable in general (for a classical
extension of Turing computability to infinite inputs), and we consider in this paper the class of de-
terministic regular functions of infinite words, realized by deterministic two-way transducers without
look-ahead. We prove that it is a well-behaved class of functions: they are computable, closed under
composition, characterized by the guarded fragment of MSO-transductions, by deterministic Büchi
streaming string transducers, by deterministic two-way transducers with finite look-ahead, and by
finite compositions of sequential functions and one fixed basic function called map-copy-reverse.

2012 ACM Subject Classification Theory of computation → Transducers

Keywords and phrases infinite words, streaming string transducers, two-way transducers, monadic
second-order logic, look-aheads, factorization forests

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.121

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Funding This work was partially supported by the Fonds National de la Recherche Scientifique –
F.R.S.-FNRS – under the MIS project F451019F.

1 Introduction

Transducers extend automata with output mechanisms, turning finite state machines from
language acceptors to computational models for functions. Inspired by a seminal work by
Engelfriet and Hoogeboom [22], the last decade has seen an increasing interest in characterizing
the class of functions defined by deterministic two-way transducers over finite words (2-dT),
now called the class of regular functions of finite words. This class admits several (effective)
characterizations: it corresponds to the functions definable by MSO-transductions [22], by
an MSO-based logic on origin graphs [15], by an extension of regular expressions called
combinator expressions [4, 5, 20], and computed by copyless streaming string transducers
(SST) (a deterministic one-way model which uses registers to store and update partial
output words [2]). Moreover, the class of regular functions over finite words is closed under
composition [11], and it has decidable equivalence problem [25].

EA
T
C
S

© Olivier Carton, Gaëtan Douéneau-Tabot, Emmanuel Filiot, and Sarah Winter;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 121; pp. 121:1–121:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Olivier.Carton@irif.fr
https://orcid.org/0000-0002-2728-6534
mailto:doueneau@irif.fr
mailto:efiliot@ulb.ac.be
https://orcid.org/0000-0002-2520-5630
mailto:sarah.winter@ulb.ac.be
https://orcid.org/0000-0002-3499-1995
https://doi.org/10.4230/LIPIcs.ICALP.2023.121
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

121:2 Deterministic Regular Functions of Infinite Words

▶ Example 1.1. Let Σ be an alphabet, the function map-copy-reverse : (Σ⊎{|})∗ → (Σ⊎{|})∗

takes any word of the form u1| . . . |un where each ui is |-free, and outputs u1|ũ1| . . . |un|ũn,
where ũi is the mirror image of ui. The function map-copy-reverse is regular.

Regular functions can also be characterized as the compositions of sequential functions
(functions computed by deterministic one-way finite transducers) and map-copy-reverse [6].

Regular functions of infinite words. The class of regular functions has been extended to
infinite words in [3], and defined as the class of functions definable by MSO-transductions
over infinite words. Equivalently, they have been shown to be the functions realized by
deterministic two-way transducers with regular look-ahead, and by streaming string trans-
ducers with a Muller selection condition (the register holding the final output word is selected
depending on the set of states seen infinitely often). As for finite words, regular functions of
infinite words are closed under composition, and have decidable equivalence problem [3].

▶ Example 1.2. Let Σ = {a, b, c} be an alphabet, and consider the function double : Σω → Σω
which behaves like the identity function except that any occurrence of a is replaced by aa if
there exists a b in the future of that occurence. For example, (ab)ω is mapped to (aab)ω and
acaab(ac)ω is mapped to aacaaaab(ac)ω. The function double is regular, as it can be realized
by a one-way transducer which, when reading an a, uses regular look-aheads to determine
whether there exists a b or not in the future, and produces either a or aa accordingly.

▶ Example 1.3. Let Σ′ = {a, b, 1, 2} and consider the function copy which maps:
u1σ1u2 . . . σnu 7→ uσ1

1 σ1 . . . u
σn
n σnu where u1u2 . . . unu ∈ {a, b}ω and σ1, . . . , σn ∈ {1, 2};

u1σ1 . . . uiσi · · · 7→ uσ1
1 σ1 . . . u

σi
i σi . . . (if there are infinitely many σi ∈ {1, 2}).

For example, copy(ab2a1bω) = abab2a1bω and copy((a2)ω) = (aa2)ω. The function copy is
regular, for instance realized by a deterministic two-way transducer which, using two-wayness,
makes one or two passes on the blocks ui, depending on whether they are followed by σi = 2.
On the first pass, it always outputs what it reads, so that if no separator in {1, 2} is ever
read again (which means it is reading the infinite suffix u), then it outputs u.

Despite the robustness of the class of regular functions of infinite words, witnessed by
its various characterizations and algorithmic properties, they suffer from a severe downside
when it comes to computability. Indeed, there are regular functions of infinite words which
are not computable. At this point, we make clear what is meant by computability, since the
input is infinite. We refer the reader to [18, 19] (and the references therein) for a formal
definition of computability, and rather give intuitions here. A function f of infinite words
is computable if there is a Turing machine with an infinite read-only tape which contains
some infinite input word u in the domain of the function, a bidirectional working tape, and a
write-only left-to-right output tape, such that by reading longer and longer input prefixes,
the machine writes longer and longer prefixes of f(u) on the output tape. Informally, it
is an algorithm which takes the input as a stream and is able to produce the output as a
stream, so that infinitely often, at least one output symbol is produced. For instance, the
function double above is not computable. On reading prefixes of the form acn for increasing
values of n, it can safely output one a symbol, but not more. Indeed, if it outputs one
more a, then it is a wrong output for continuation cω, and if it outputs a c, then it is a
wrong output for continuation bω, as double(acncω) = acω and double(acnbω) = aacnbω. Its
implementation by a two-way transducer indeed requires an infinite look-ahead to check the
absence of a b in the future. On the other hand, copy is realized by a deterministic two-way
transducer with no look-ahead, so it is computable. So, deterministic two-way transducers

O. Carton, G. Douéneau-Tabot, E. Filiot, and S. Winter 121:3

with (infinite) look-ahead, and their equivalent model Muller streaming string transducers,
cannot be considered as models of computation for infinite word functions. This was observed
in [19], where it is shown that the problem of deciding whether a given regular function
of infinite words is computable is Pspace-c. On the other hand, deterministic two-way
transducers without look-ahead are a proper model of computation for functions of infinite
words.

Deterministic regular functions of infinite words. Motivated by the latter observation,
the class of functions computed by deterministic two-way transducers without look-ahead,
coined the class of deterministic regular functions, was introduced in [9], where it is shown
that they are also equivalently computed by Büchi SST (BSST). In BSST, there is one special
designated register out in which to write the output word, which is required to be updated
with at least one new symbol infinitely often. For example, copy can be implemented by a
single-state BSST with two registers out and r, updated as follows. On reading σ ∈ {a, b}, it
performs the updates out 7→ out.σ and r 7→ r.σ, on reading 1, it does out 7→ out.1 and r 7→ ε,
and on reading 2, it does out 7→ out.r.2 and r 7→ ε.

Several important questions remain on the class of deterministic regular functions, such as
whether it is closed under composition, whether it can be logically characterized by a natural
fragment of MSO-transductions, and whether they can be obtained as finite compositions of
“simple” functions. In this paper, we provide positive answers to these questions.

Contributions. Concerning the class of deterministic regular functions, our main results
are:

its effective closure under composition;
its characterization by means of finite compositions of sequential functions and an
extension of map-copy-reverse to infinite words;
a logical characterization by a natural syntactic fragment of MSO-transductions, the
guarded fragment, called MSOTg.

An MSO-transduction is defined as an MSO-interpretation, where the predicates of the
output word structure, namely the successor and label relations, are defined by MSO formulas
with two and one free first-order variables respectively, interpreted over a fixed number of
copies of the input. The guarded fragment is defined by a classical restriction (see e.g. [24]
and references therein) on the MSO formulas composing the MSO-transduction. They have
to be prefixed by an existential quantifier ∃g, where g is a word position, and all quantifiers
of the formula are guarded by the guard x ≤ g (and ∀x ∈ X,x ≤ g for any set variable X).
So, guarded MSO formulas on infinite words, only speak about finite prefixes. Consider again
the function copy. Two copies of the input are needed to account for potential duplication of
the blocks, but the presence or not of a successor edge between two nodes of the output word
structure, only depends on local properties, which are definable by guarded MSO formulas.
E.g., such a property may be “if position x+ 1 is labeled 2, then there is a successor between
the 1st copy of x and the 2nd copy of first position of the block to which x belongs”.

In general, guarded MSO formulas can test non-local properties, which is the main source
of technical difficulties in the paper. It is illustrated by the next example.

▶ Example 1.4. The function replace : {0, a, b}ω ⇀ {a, b}ω of domain Dom(replace) =
{u ∈ {0, a, b}ω : |u|a=∞ or |u|b=∞} and mapping 0n1σ10n2σ2 · · · 7→ σ1

n1+1σ2
n2+1 · · · if

σi ∈ {a, b} and ni ∈ N, is deterministic regular. Replacing a zero at position x by a or b
depends on the next non-zero symbol in the future of x, which can be arbitrarily faraway,
but occurs in a finite prefix if u ∈ Dom(replace). This property is expressible with a guarded
MSO formula, which defines the position holding this non-zero symbol as a guard.

ICALP 2023

121:4 Deterministic Regular Functions of Infinite Words

Proof techniques and additional results. We now give an overview of the proof techniques
used to show the logical characterization, along with some other interesting and useful
results. We prove that deterministic two-way transducers (2-dT) are expressively equivalent
to MSOTg. The conversion of 2-dT into MSOTg is standard and follows the same line as [22].
The converse is more involved and requires new techniques. First, we convert MSOTg-
transductions into deterministic two-way transducers with finite look-ahead (2-dTFLA), which
account for non-local, but finite, properties, as illustrated before. 2-dTFLA are equipped with
regular languages of finite words on their transitions, which act as finite look-aheads in the
following sense: when the reading head is at some position i of an infinite word u, in some
state q, a transition from q with look-ahead L is enabled if there exists a position j ≥ i, called
witness, such that the infix u[i:j] starting at position i and ending at position j, belongs to
L. If no transition is enabled at state q, the computation fails. To ensure determinism, if
several transitions are enabled, only the transition with minimal (i.e. smallest) witness j is
triggered, and a disjointness requirement on the look-aheads make sure that this j is unique.
The condition to consider only the transition with minimal witness j is crucial to ensure that
2-dTFLA define only computable functions. Indeed, a 2-dTFLA can be executed as follows: all
finite look-aheads, supposed for instance to be finitely represented by DFA, are executed in
parallel. By the minimality requirement for j and the disjointness of look-aheads, as soon as
a prefix is accepted by one look-ahead DFA, the corresponding transition is triggered.

Adding look-aheads to two-way transducers in order to capture MSO-transductions is
standard on finite words [22, 14], for example because the “moves” of the MSO-transduction
depends on non-local properties. Look-aheads are then directly removed by using the closure
under composition of deterministic two-way transducers [11]. Closure under composition of
deterministic two-way transducers on infinite words is, to the best of our knowledge, unknown,
and instead we give a direct proof of finite look-ahead removal. It is our main technical result:
any 2-dTFLA is effectively equivalent to some 2-dT. To prove this result, classical techniques,
such as Hopcroft-Ullman construction [1] or the tree outline construction [16] do not apply,
as they heavily rely on the fact that words are finite. In our setting, we instead use a new
technique, based on summarizing the computations of the look-aheads into trees which we
prove to be bounded. As a side result of finite look-ahead removal, we prove that 2-dT (and
so deterministic regular functions) are closed under composition. Classically, closure under
composition of MSO-transductions is direct, by formula substitutions [14]. This technique
however does not apply here, as the guarded MSO formulas are not syntactically closed under
formula substitution, making the correspondence between MSOTg and 2-dT crucial to obtain
closure under composition of MSOg-transductions.

Structure of the paper. In Section 2, we introduce the class of deterministic regular
functions. In Section 3, we prove its closure under composition and the decomposition result.
In Section 4, we introduce guarded MSO-transductions and state the logical characterization.
Since its proof is based on a compilation into deterministic two-way transducers with finite
look-ahead, we prove in Section 5 how to remove those look-aheads. Finally, we prove the
logical characterization in Section 6. All transformations are effective in the paper. Some
proofs are only sketched or simply omitted, but the proof details can be found in [10].

2 Deterministic regular functions

In this section, we introduce the class of deterministic regular functions of infinite words and
recall that it can be described by two computation models: deterministic two-way transducers
and deterministic Büchi streaming string transducers.

O. Carton, G. Douéneau-Tabot, E. Filiot, and S. Winter 121:5

Notations. Letters Σ,Γ denote alphabets, i.e. finite sets of letters. The set Σ∗ (resp. Σ+,
Σω) denotes the set of finite words (resp. non-empty finite words, infinite words) over the
alphabet Σ. Let Σ∞ := Σ∗∪Σω. If u ∈ Σ∞, we let |u| ∈ N∪{∞} be its length, |u|σ ∈ N∪{∞}
be the number of occurrences of σ ∈ Σ and u[i] ∈ Σ be the i-th letter of u for 1 ≤ i ≤ |u|.
If 1 ≤ i ≤ j ≤ |u|, u[i:j] stands for u[i] · · ·u[j]. We write u[i:] for u[i:|u|]. If j > |u| we let
u[i:j] := u[i:|u|]. If j < i we let u[i:j] := ε. In this paper, functions are by default partial (i.e.
possibly with non-total domain). A (partial) function f from S to T is denoted f : S ⇀ T ,
and its domain is denoted Dom(f) ⊆ S. A total function from S to T is denoted f : S → T .

Two-way transducers. Let us recall the syntax of two-way transducers. We consider here
that the machines work on infinite words, and have a Büchi acceptance condition.

▶ Definition 2.1 (Two-way transducer). A deterministic two-way transducer (2-dT) denoted
T = (Σ,Γ, Q, q0, F, δ, λ) consists of:

an input alphabet Σ and an output alphabet Γ;
a finite set of states Q with an initial state q0 ∈ Q and a set of final states F ⊆ Q;
a transition function δ : Q× (Σ ⊎ {⊢}) ⇀ Q× {◁, ▷};
an output function λ : Q× (Σ ⊎ {⊢}) ⇀ Γ∗ with same domain as δ.

A configuration of T over u ∈ (Σ ∪ {⊢})∞ is a tuple (q, i) where q ∈ Q is the current
state and 1 ≤ i ≤ |u| is the current position of the reading head. The transition relation →
is defined as follows. Given a configuration (q, i), let (q′, ⋆) := δ(q, u[i]). Then (q, i) → (q′, i′)
whenever either ⋆ = ◁ and i′ = i− 1 (move left), or ⋆ = ▷ and i′ = i+ 1 (move right). A run
over u is a (finite or infinite) sequence of consecutive configurations (q1, i1) → (q2, i2) → · · · .

Now, we define the infinite output produced by T when given the infinite word u ∈ Σω as
input. First, we let u[0] := ⊢, i.e. we force the symbol ⊢ to be used to mark the beginning
of the input. An accepting run is an infinite run that starts in (q0, 0), visits infinitely often
configurations of the form (q, i) with q ∈ F and such that in → ∞ when n → ∞ (without
this last condition, the transducer may enter an infinite loop without reading its whole input).
The partial function f : Σω ⇀ Γω computed by T is defined as follows. Let u ∈ Σω be
such that there exists a (unique) accepting run (qu0 , iu0) → (qu1 , iu1) → · · · labelled by ⊢u. Let
v :=

∏∞
j=1 λ(quj , (⊢u)[iuj]) ∈ Γ∗ ∪ Γω be the concatenation of the outputs produced along this

run. If v ∈ Γω, we define f(u) := v. Otherwise f(u) is undefined.

▶ Definition 2.2. The class of deterministic regular functions of infinite words is the class
of (partial) functions computed by deterministic two-way transducers.

We have explained in Example 1.3 how to compute the function copy using a 2-dT (without
look-aheads). Observe that the function replace from Example 1.4 can be computed in a
similar fashion. Hence both functions are deterministic regular.

▶ Example 2.3. Let us extend the function map-copy-reverse of Example 1.1 to infinite words.
Let Σ be an alphabet, we define map-copy-reverse : (Σ ⊎ {|})ω → (Σ ⊎ {|})ω as follows:

map-copy-reverse(u1|u2| · · ·) := u1|ũ1|u2|ũ2| · · · with ui ∈ Σ∗ for all i ≥ 0;
map-copy-reverse(u1| · · · |un|u) := u1|ũ1| · · · |un|ũn|u for ui ∈ Σ∗ and u ∈ Σω.

This function is deterministic regular since we can build a 2-dT that processes twice each
|-free factor (or only once for the last infinite one if it exists).

ICALP 2023

121:6 Deterministic Regular Functions of Infinite Words

Büchi Streaming String Transducers. Now, we describe a model of a one-way machine with
registers which captures deterministic regular functions of infinite words. Over finite words,
it is well-known that deterministic two-way transducers are equivalent to copyless streaming
string transducers [2]. A similar equivalence holds for the class of regular functions of infinite
words, which can equivalently be described by deterministic two-way transducers with regular
look-aheads or copyless streaming string transducers with Muller conditions [3]. However,
Muller conditions enable to check regular properties of the infinite input, and thus describe
functions which are not (Turing) computable [3]. Now, let us recall the model of Büchi
deterministic streaming string transducer (BSST), introduced by Carton and Douéneau-Tabot
in [9], that captures exactly the class of deterministic regular functions.

Formally, a Büchi deterministic streaming string transducer consists of a one-way de-
terministic automaton with a finite set R of registers that store words from Γ∗. We use a
distinguished register out to store the output produced when reading an infinite word. The
registers are modified when reading the input using substitutions, i.e. mappings R → (Γ⊎R)∗.
We denote by SΓ

R the set of these substitutions. They can be extended morphically from
(Γ ⊎ R)∗ to (Γ ⊎ R)∗ by preserving the elements of Γ.

▶ Example 2.4 (Substitutions). Let R = {r, s} and Γ = {b}. Consider τ1 := r 7→ b, s 7→ brsb

and τ2 := r 7→ rb, s 7→ rs, then τ1 ◦ τ2(r) = τ1(rb) = bb and τ1 ◦ τ2(s) = τ1(rs) = bbrsb.

▶ Definition 2.5. A Büchi deterministic streaming string transducer (BSST) denoted by
T = (Σ,Γ, Q, F, q0, δ,R, out, λ) consists of:

a finite input (resp. output) alphabet Σ (resp. Γ);
a finite set of states Q with q0 ∈ Q initial and F ⊆ Q final;
a transition function δ : Q× Σ ⇀ Q;
a finite set of registers R with a distinguished output register out ∈ R;
an update function λ : Q× Σ ⇀ SΓ

R such that for all (q, σ) ∈ Dom(λ) = Dom(δ):
λ(q, σ)(out) = out · · · ;
there is no other occurrence of out among the λ(q, σ)(r) for r ∈ R.

This machine defines a partial function f : Σω ⇀ Γω as follows. For i ≥ 0 let qui :=
δ(q0, u[1:i]) (when defined). For i ≥ 1, we let λui := λ(qui−1, u[i]) (when defined) and λu0 (r) = ε

for all r ∈ R. For i ≥ 0, let J · Kui := λu0 ◦ · · ·◦λui . By construction JoutKui is a prefix of JoutKui+1
(when defined). If JoutKui is defined for all i ≥ 0, qui is a state of F infinitely often, and
|JoutKui | → +∞, then we let f(u) :=

∨
i JoutK

u
i (the symbol ∨ is used to denote the unique

v ∈ Γω such that JoutKui is a prefix of v for all i ≥ 0). Otherwise f(u) is undefined.

▶ Example 2.6. The function replace from Example 1.4 can be computed by a BSST. For
all i ≥ 1, it crosses the block 0ni and computes 1ni and 2ni in two registers. Once it sees σi
it adds in out the register storing σini .

▶ Definition 2.7 (Copyless, bounded copy). We say that a substitution τ ∈ SBR is copyless
(resp. K-bounded) if for all r ∈ R, r occurs at most once in {τ(s) : s ∈ R} (resp. for all
r, s ∈ R, r occurs at most K times in τ(s)). We say that a BSST T = (Σ,Γ, Q, q0, δ,R, out, λ)
is copyless (resp. K-bounded) if for all u ∈ Σω and i ≤ j such that λui ◦ · · · ◦ λuj is defined,
this substitution is copyless (resp. K-bounded).

▶ Remark 2.8. The composition of two copyless substitutions is copyless, hence a BSST is
copyless as soon as λ(q, σ) is copyless for all q ∈ Q and σ ∈ Σ. However, K-boundedness is
not necessarily preserved under composition.

O. Carton, G. Douéneau-Tabot, E. Filiot, and S. Winter 121:7

Observe that the BSST described in Example 2.6 is copyless. Now, we recall the result of
Carton and Douéneau-Tabot that proves equivalence between two-way transducers, copyless,
and bounded copy Büchi deterministic streaming string transducers.

▶ Theorem 2.9 ([9, Theorem 3.7]). The following machines compute the same class of partial
functions over infinite words:
1. deterministic two-way transducers (2-dT);
2. K-bounded deterministic Büchi streaming string transducers (K-bounded BSST);
3. copyless deterministic Büchi streaming string transducers (copyless BSST).
Furthermore, all the conversions are effective.

▶ Remark 2.10. The original proof of [9] which transforms a 2-dT into a BSST only considers
machines where all states are final. Nevertheless, the proof can easily be adapted to
transducers with non-final states. Furthermore, given a BSST (possibly with non-final states)
one can build an equivalent BSST where all states are final by [9, Lemma D.1] (the Büchi
conditions are hidden in the fact that the output must be infinite). All in all, all the models
(with all states final or not) exactly capture the class of deterministic regular functions.

Finally, we recall the domains of deterministic regular functions. We say that a language
is Büchi deterministic if it is accepted by a deterministic Büchi automaton (see e.g. [26]).

▶ Proposition 2.11 ([9]). If f is deterministic regular, then Dom(f) is Büchi deterministic.

3 Composition and decomposition theorems

In this section, we show that deterministic regular functions are closed under composition,
and that conversely they can be written as the composition of some “basic” functions.

It is known since [11] (resp. [3]) that the class of regular functions of finite (resp. infinite)
words is closed under composition. We transport this result to deterministic regular functions
of infinite words in Theorem 3.1. However, its proof is not an immediate extension of the
regular case, and it illustrates the main difficulty of this paper: since look-aheads are not
allowed, it is complex for a 2-dT to check if some property happens after its current position.

▶ Theorem 3.1. Deterministic regular functions are (effectively) closed under composition.

Proof idea. The approach is to compose the two transducers directly (using a product
construction); the difficulty in the composition of two computations arises when one transducer
is moving forward and the other backward. In that case, we need to rewind the computation
of the transducer that moves backward by one computation step.

To recover the previous configuration look-ahead comes in handy. As mentioned above,
(infinite) look-aheads are not permitted, but we use a weaker form of finite look-aheads (to be
introduced in Section 5) which does not increase the expressiveness of deterministic two-way
transducers over infinite words (and can be effectively removed), see Theorem 5.2. Finite
look-aheads account for non-local but finite properties. The look-ahead we define basically
re-traces the computation that the two-way transducer has taken so far. Note that this is
indeed a finite property as only a prefix of the input has been visited by the computation of
the two-way transducer. ◀

As an easy consequence of Theorem 3.1, let us observe that deterministic regular functions
(effectively) preserve Büchi deterministic languages by inverse image. Analogue results hold
for regular functions of finite (resp. infinite) words with regular languages.

ICALP 2023

121:8 Deterministic Regular Functions of Infinite Words

▶ Proposition 3.2. If f : Σω ⇀ Γω is deterministic regular and L ⊆ Γω is Büchi deterministic,
then f−1(L) ⊆ Σω is (effectively) Büchi deterministic.

Proof. The function f ◦ idL (where idL : Γω ⇀ Γω is the identity function restricted to L) is
deterministic regular. Its domain f−1(L) is Büchi deterministic by Proposition 2.11. ◀

Let us now focus on the converse of Theorem 3.1, i.e. showing that any deterministic regular
function can be written as a composition of “basic” functions. As mentioned in introduction,
regular functions of finite words can be written as compositions of map-copy-reverse (see
Example 1.1) and sequential functions (computed by one-way transducers).

▶ Theorem 3.3 ([6, Theorem 13]). Over finite words, a function is regular if and only if it
can (effectively) be written as a composition of map-copy-reverse and sequential functions.

To state our similar result for deterministic regular functions of infinite words, we first
recall formally the definition of sequential functions of infinite words.

▶ Definition 3.4 (Sequential functions). A deterministic one-way transducer is a 2-dT
(Σ,Γ, Q, q0, F, δ, λ) such that for all q ∈ Q and σ ∈ (Σ ⊎ {⊢}), δ(q, σ) has shape (_, ▷)
(when defined). The class of (partial) functions over infinite words computed by one-way
deterministic transducers is called sequential functions of infinite words.

▶ Example 3.5. Any function that replaces some letter of its input by another letter is
sequential. The functions replace and map-copy-reverse of Examples 1.4 and 2.3 are not
sequential (this can be shown using a pumping argument). Observe that replace can be
written as the composition of: a sequential function that replaces each σi ∈ {1, 2} by σi|, the
function map-copy-reverse, and finally a sequential function that uses the first copy of each
block to determine the value of σi, and transforms the (mirror) second copy accordingly.

Now, we state the decomposition result, that also uses map-copy-reverse from Example 2.3.
Its proof is somehow technical and it illustrates once more the main difficulty of this paper:
deterministic regular functions are not able to check many properties about the “future”.

▶ Theorem 3.6. A function is deterministic regular if and only if it can (effectively) be
written as a composition of map-copy-reverse and sequential functions of infinite words.

Proof idea. In the case of finite words, the proofs of [7, 6] rely on Simon’s factorization forests
theorem [27]. They first build a factorization forest, and then use its structure to simulate
the runs of a transducer. Furthermore, over finite words, such forests can be computed by a
rational function, which is a composition of sequential functions and map-copy-reverse. We
follow a similar proof sketch for infinite words, but the main issue is that factorization forests
can no longer be computed by a composition of sequential functions and map-copy-reverse
(their structure may depend on regular properties of the input). Thus we use instead a
weakened version of forests, introduced by Colcombet under the name of forward Ramseyan
splits [12]. Such splits can be computed with a sequential function. Our new techniques show
how to simulate the runs of a transducer by using a forward Ramseyan split. ◀

4 Guarded MSO-transductions

In this section, we define the logic MSO over finite and infinite words, as well as MSO-
transductions, and its guarded fragment. We also state the logical characterization of
deterministic regular functions (Theorem 4.8).

O. Carton, G. Douéneau-Tabot, E. Filiot, and S. Winter 121:9

MSO on infinite words. Infinite words over Σ are seen as structures of domain N, over
the signature WΣ = {S(x, y), (σ(x))σ∈Σ} which consists of the successor predicate S(x, y),
naturally interpreted as the successor over N, and unary predicates σ(x) for all σ ∈ Σ,
interpreted as the set of positions labelled σ. Given an infinite word u ∈ Σω, we denote by
Gu the structure it induces, and just u when it is clear that u denotes the structure Gu.

Monadic second-order formulas are defined as first-order logic formulas, which can
additionally use quantifiers ∃X, ∀X over sets of positions, and membership atomic formulas
of the form x ∈ X, where x is a first-order variable while X is a set variable. We denote
by MSO[Σ, S,≤] (or just MSO when the predicates are clear from the context), the set
of monadic second-order formulas over the word signature WΣ extended with the order
predicate ≤ (interpreted by the natural order on N). It is well-known that the predicate ≤ is
syntactic sugar. The semantics is defined as expected (details can be found in [28, 14] for
instance). For a formula ϕ with sets of free first-order and set variables x,X (we use the
tuple notation which implicitly assumes an order between variables), we may write it ϕ(x,X)
to explicit the free variables of ϕ. We also denote by Free(ϕ) the free (first-order and set)
variables of ϕ.Given a word w, an n-tuple of positions p of w and an m-tuple P of sets of
positions of w, we write w |= ϕ(p, P) to mean that the structure induced by w is a model of
ϕ under assignments p and P .

▶ Example 4.1. The formula first(x) = ∀y · ¬S(y, x) is satisfied by any word and position x

such that x is the first position to the left.

Over an alphabet Σ, any closed formula ϕ ∈ MSO defines a regular language Lϕ = {u ∈
Σω | u |= ϕ}. By Büchi-Elgot-Trakhtenbrot’s theorem [29, 8, 21], it is known MSO defines
precisely the class of regular languages over alphabet Σ: for any language L over Σ, L is
regular if and only if L = Lϕ for some ϕ ∈ MSO. MSO formulas can also be interpreted
over finite word structures, whose domains are the (finite) set of word positions. It is also
well-known that a language of finite words is regular iff it is MSO-definable.

MSO-transductions of infinite words. MSO-transductions define transformations of graph
structures, and have been studied in the context of finite words by Engelfriet and Hoogeboom
in [22] (see also [14] for a more recent introduction to MSO-transductions). The main result
of [22] is a Büchi-like theorem: a function of finite words is MSO-definable if and only if it is
regular (i.e. recognizable by a deterministic two-way transducer). This result was then lifted
to functions of infinite words in [3], but deterministic two-way transducers may need infinite
look-aheads to capture the full expressive power of MSO-transductions.

In an MSO-transduction, the output word structure is defined via an MSO interpretation
over a fixed number k of copies of the input word (seen as a structure). Therefore, the nodes
of the output word are copies 1 to k of the nodes of the input word. Output nodes are pairs
(i, c) (often denoted ic), for every copy c and input node i.

The output label and successor predicates are defined by MSO formulas with one and
two free first-order variables respectively, interpreted over the input structure. For instance,
over the output alphabet Γ = {a, b}, to set all the output labels to a, one just specifies the
formulas ϕca(x) = ⊤ and ϕcb(x) = ⊥ for all copies c. The output successor predicate relates
input nodes of possibly different copies, and is therefore defined by formulas of the form
ϕc,dS (x, y), indexed by copies c, d ∈ {1, . . . , k}.

Finally, there is one distinguished copy c0 together with a formula ϕc0
fst(x), which must be

satisfied by at most one node x. Intuitively, if the output structure is a word, this formula
defines the first node of the output word. The domain of the output structure is composed of

ICALP 2023

121:10 Deterministic Regular Functions of Infinite Words

input

word

copy 1

copy 2

a c a b a c a c . . .S S S S S S S
1 2 3 4 5 6 7 8

a c a b a c a c . . .

a c a b a c a c . . .

ϕ1,2
S

ϕ2,1
S

ϕ1,1
S ϕ1,2

S

ϕ2,1
S

ϕ1,1
S ϕ1,1

S ϕ1,1
S ϕ1,1

S

ϕ2,1
S ϕ2,1

S ϕ2,1
S ϕ2,1

S ϕ2,1
S

(a) Input and output structures of the MSO-transduction for the function double of Example 1.2 on input
word acab(ac)ω.

input

word

copy 1

copy 2

a b 1 b a 2 b 2 . . .S S S S S S S
1 2 3 4 5 6 7 8

a b 1 b a 2 b 2 . . .

a b 1 b a 2 b 2 . . .

ϕ1,1
S ϕ1,1

S ϕ1,1
S ϕ1,1

S

ϕ1,2
S

ϕ2,2
S

ϕ2,1
S

ϕ1,1
S
ϕ1,2
S

ϕ2,1
S

ϕ2,2
S ϕ2,2

S ϕ2,2
S ϕ2,2

S

(b) Input and output structures of the MSO-transduction for the function copy of Example 1.3 on input
word ab1ba2b2

Figure 1

all nodes that can be reached from the initial node xc0 by following multiple successor edges.
In general, the output structure of an input word u by an MSO-transduction T might not be
an infinite word structure, in which case u is not in the domain of the function defined by T .

Formally, an MSO-transduction over an input alphabet Σ and output alphabet Γ is a
tuple T = (k, (ϕcγ(x))1≤c≤k,γ∈Γ, (ϕc,dS (x, y))1≤c,d≤k, c0, ϕ

c0
fst(x)) where k ∈ N \ {0}, 1 ≤ c0 ≤ k

and for all input u ∈ Σω, there is at most one position i such that u |= ϕc0
fst(i). We may omit

c0 in the tuple above.
We now formally define the semantics of MSO-transductions. Let u ∈ Σω and N ⊆

N × {1, . . . , k}. We first define the set of output nodes that can be reached from N in zero
or more steps. We let Post0

u(N) = N and for all ℓ > 0,

Postℓu(N) = {jd | ∃ic ∈ Postℓ−1
u (N) · u |= ϕc,dS (i, j)} and Post∗

u(N) =
⋃
ℓ≥0

Postℓu(N)

Given an MSO-transduction T as above, and input word u ∈ Σω, the output structure,
denoted T (u), is the structure over signature WΓ defined by the following interpretation:

the domain is D = Post∗
u({ic0 | u |= ϕc0

fst(i)}) (note that the argument of Post∗
u is either

empty or a singleton)
a node ic ∈ D is labelled γ ∈ Γ if u |= ϕcγ(i)
a node jd is a successor of a node ic if u |= ϕc,dS (i, j).

The output structure T (u) may not be a word structure. For instance, a node might
have multiple labels, T (u) may contain cycles, or branching. So we restrict semantically the
function defined by T to word structures. Formally, the function defined by T is the function
JT K : Σω ⇀ Γω whose graph is:

{(u, v) ∈ Σω × Γω | Gv (the structure associated with v) is isomorphic to T (u)}

We denote by MSOT the set of MSO-transductions and say that a function f : Σω ⇀ Γω
is MSOT-definable if f = JT K for some T ∈ MSOT.

O. Carton, G. Douéneau-Tabot, E. Filiot, and S. Winter 121:11

▶ Example 4.2. We consider again the function double of Example 1.2, illustrated on
Figure 1a and show how to define it with an MSO-transduction. Since some a must be
duplicated, two copies are needed, so k = 2. Labels are preserved: ϕcσ(x) = σ(x) for all
c ∈ {1, 2} and σ ∈ Σ. The first copy c0 is 1, and ϕc0

fst(x) = first(x). The successor formulas
distinguish if there is a b in the future or not. First, from the 2nd to the 1st copy, there
is always a successor relation from a node to its successor in copy 1: ϕ2,1

S (x, y) = S(x, y).
There is a successor from x1 to y2 if x = y, x is labelled a and there is a b in the remaining
infinite suffix starting at x: ϕ1,2

S (x, y) = a(x) ∧ (x = y) ∧ ∃z · x ≤ z ∧ b(z). On the first copy,
it depends on the label of the input: ϕ1,1

S (x, y) = S(x, y) ∧ (a(x) → (∀z ≥ x · ¬b(z)). On the
second copy, there is never a predicate edge: ϕ2,2

S = ⊥. On Figure 1a, the interpretation of
those formulas is depicted, in bold if they are part of the output word, in light grey otherwise.
One can see that the output structure induced by all the descendants of the first node (by
the transitive closure of the successor relation) is isomorphic to the structure Gaacaab(ac)ω .

The function copy of Example 1.3, illustrated in Figure 1b, is definable by an MSOT with
two copies (k = 2). Formulas ϕc0

fst and ϕcσ are the same as for double. Then:

ϕ1,1
S (x, y) = ϕ2,2

S (x, y) = S(x, y) ∧ ¬2(y) ϕ2,1
S (x, y) = S(x, y) ∧ 2(y)

ϕ1,2
S (x, y) =∃g · y < x ≤ g ∧ 2(g) ∧ ∀z ≤ y · (S(z, y) → (1(z) ∨ 2(z)))∧

∀t · (y ≤ t ≤ x) → (a(t) ∨ b(t))

The class of regular functions of infinite words has been defined in [3] as the class of
functions recognizable by deterministic two-way transducers extended with regular (infinite)
look-ahead: to take a transition, such a transducer can query a regular oracle on the infinite
current suffix (given as a deterministic parity automaton for example). Equivalently, this
class corresponds to functions recognizable by (deterministic) SST: they work as BSST but
are not forced to output the content of a special register infinitely often. Instead, the output
of a run depends on the set of states that are seen infinitely often along that run, and can be
“computed” only once the infinite input has been processed (see [3]) for more details. The
following provides a logical characterization of the class of regular functions:

▶ Theorem 4.3 ([3]). A function f : Σω ⇀ Γω is regular if and only if it is MSOT-definable.

The definition of MSOT in [3] is slightly different, but equivalent, to the definition we
take in this paper.

Guarded MSO-transductions of infinite words. Guarded MSO formulas are a syntactical
restriction of MSO formulas. This restriction requires all the free variables and quantifiers to
be guarded by a first-order variable g, in the sense that quantifiers should only talk about
positions which are before g (i.e. smaller than g). Intuitively, the satisfiability of a guarded
formula on an infinite word only depends on the finite prefix up to position g. Formally,
given two first-order variables x and g, we let G(x, g) be the formula x ≤ g (x is guarded by
g), and for a set variable X, we let G(X, g) be the formula ∀x ∈ X,G(x, g). Then, an MSO
formula φ is guarded by some variable g if it is equal to ψ(g) ∧

∧
α∈Free(ψ) G(α, g) for some

ψ(g) such that all its quantified subformulas, i.e. subformulas of the form QX · ψ′ or Qx · ψ′

for some Q ∈ {∃, ∀}, are in one of the following forms:

(1) ∀x · G(x, g) → ζ (2) ∃x · G(x, g) ∧ ζ (3) ∀X · G(X, g) → ζ (4) ∃X · G(X, g) ∧ ζ

An MSO formula is guarded if it is of the form ∃g ·φ where φ is guarded by g. We denote
by MSOg the set of guarded MSO-formulas. For conciseness, we may write ∀x : g · ζ instead
of ∀x · G(x, g) → ζ, and ∃x : g · ζ instead of ∃x · G(x, g) ∧ ζ (and similarly for set variables).

ICALP 2023

121:12 Deterministic Regular Functions of Infinite Words

▶ Example 4.4. All the formulas of the MSO-transduction of Example 4.2 defining the
function double are guarded, or trivially equivalent to a guarded formula. For example, the
formula first(x) is equivalent to the guarded formula ∃g · x ≤ g ∧ ∀y ≤ g · ¬S(y, x).

The order predicate x ≤ y is definable by the guarded formula ∃g · x ≤ g ∧ y ≤ g ∧ y = g.
Since ¬(x ≤ y) is equivalent to y ≤ x ∧ y ̸= x, we easily get that any MSOg-formula ϕ

is equivalent to an MSOg-formula ψ in which the order predicate is only used to guard
quantifiers, by existentially quantifying a global guard, guarding all the local guards used to
define the atomic formulas of the form z ≤ t occurring in ϕ (assumed to occur positively).

▶ Remark 4.5. MSOg formulas only talk about prefixes, in the following sense: If φ = ∃g ·ψ(g)
is a closed guarded formula and w ∈ Σω, then w |= φ if and only if there exists a finite
prefix u of w such that u |= ψ(ℓ), where ℓ is the last position of u. This allows us to get the
following immediate characterization: A language L ⊆ Σω is MSOg-definable if and only if
there exists a regular language F ⊆ Σ∗ such that L = FΣω.

▶ Definition 4.6 (Guarded MSO-transductions). A guarded MSO-transduction (MSOTg) is
an MSO-transduction all formulas of which are guarded.

▶ Example 4.7. As explained in Example 4.4, all formulas of the MSO-transduction of
Example 4.2 defining double are guarded, or trivially equivalent to a guarded formula.

We can now state the logical characterization of deterministic regular functions:

▶ Theorem 4.8 (Logical characterization). A function f : Σω ⇀ Γω is deterministic regular
if and only if it is MSOTg-definable.

The proof is given in Section 6. As an application of this result, since deterministic
regular functions are (effectively) closed under composition by Theorem 3.1, we obtain that
MSOTg are (effectively) closed under composition as well. This is a well-known result for
MSOT over finite strings [22], infinite strings [3] and more generally any structure [13],
yet with purely logic-based and direct proofs, while we use here involved automata-based
arguments (look-ahead removal). Indeed, composition closure of MSOT is obtained by
formula substitutions. To compose two MSOT T2 ◦ T1, the predicates occurring in T2 are
substituted by their definition in T1. Such a direct proof idea does not work in the guarded
fragment MSOTg, as guarded formulas are not closed under negation.

Guarded MSO-transductions with order. We conclude this section by discussing an al-
ternative definition of MSOg-transductions, denoted MSOTg[≤], where instead of defining
the output successor relation, it requires to define the total order ≤ of the output structure,
with MSOg formulas. This however allows to define uncomputable functions (in the sense
of [18], see also Section 1), as stated by the following proposition:

▶ Proposition 4.9. There exists an MSOTg[≤] which defines an uncomputable function.

To prove this proposition, we show that the following uncomputable function h is definable
with MSOTg[≤]. Let Σ = Γ = {a, b} and erb : Σ∗ → Σ∗ the (erasing) morphism defined by
erb(a) = a and erb(b) = ε. The function h : Σω ⇀ Γω is defined on inputs of the form bubω,
for u ∈ {a, b}∗, by h(bubω) = berb(u)bω. It can be shown that h is definable by a 1-copy
MSOTg[≤]. An example of output structure on input bbabaabω is given below (we depict
only the successor predicate and not the order):

O. Carton, G. Douéneau-Tabot, E. Filiot, and S. Winter 121:13

input

output

b b a b a a b b . . .
1 2 3 4 5 6 7 8

b b a b a a b b . . .

The output order formula for instance states that the b occurrences are ordered according
to their input order, while the a occurrences are ordered in reverse. Moreover, it states that
the first b occurrence is smaller than any a occurence, and that any a occurrence is smaller
that any b occurrence but the first one.

Without the guarded restriction, it is known that two definitions of MSOT, with successor
or with order, both define the class of regular functions of infinite words.

5 Two-way transducers with finite look-ahead

We extend deterministic two-way transducers with finite look-ahead. Transitions are addi-
tionally labelled by a regular language of finite words, called (finite) look-ahead. A transition
with look-ahead L can only be taken if the remainder of the input sequence has a prefix
that belongs to L. Such a finite prefix is called a look-ahead witness for L. To ensure
determinism, if several look-aheads succeed, it is required that there is a unique shortest
look-ahead witness. The transducer follows the transition which minimizes the length of the
witness. If no look-aheads succeed the computation fails.

▶ Definition 5.1 (Finite look-ahead). A deterministic two-way transducer with finite look-
ahead (2-dTFLA) is a tuple T = (Σ,Γ, Q, q0, F, δ, λ) where Σ,Γ, Q, q0, F, λ are defined as
for deterministic two-way transducers w/o look-ahead, δ is a transition function Q× (Σ ⊎
{⊢}) × R∗(Σ)) ⇀ Q× {▷, ◁} where R∗(Σ) is the set of all regular languages of finite words
over Σ. The function δ is required to have finite domain. The look-ahead for a transition
(q, σ, L) 7→ (q, d) is L. Furthermore, we require that if δ(q, σ, L) and δ(q, σ, L′) are defined,
then L ∩ L′ = ∅ for all L,L′ ∈ R∗(Σ), q ∈ Q and σ ∈ Σ. Finally, it is assumed that the
look-ahead languages are represented by deterministic finite automata.

The semantics of a deterministic two-way transducer with finite look-ahead remains
unchanged compared to the model without look-ahead. The only difference in the presence
of look-ahead is when a transition is enabled: A transition with look-ahead L can only be
taken if the remainder of the input sequence has a prefix that belongs to L. Formally, in a
configuration (q, i) over input u, a transition of the form δ(q, σ, L) where L ⊆ Σ∗ is enabled
if u[i] = σ and there exists some i < j such that u[i+1:j] ∈ L. The word u[i+1:j] is called a
witness for L. To ensure determinism, whenever the transducer is in a configuration (q, i), if
several look-aheads L1, . . . , Lk are enabled, the triggered transition is the unique (ensured
by the disjointness requirement) transition with shortest witness.

Removing finite look-ahead. We know that infinite look-ahead is strictly more expressive
than finite look-ahead. The natural question is how much expressiveness is gained by adding
finite look-ahead to deterministic two-way transducers w/o look-ahead. As already explained
in the introduction, any function defined by such a transducer is (Turing machine) computable:
A Turing machine can memorize where it is in the input, verify which look-ahead succeeds,
and continue the computation from the memorized position. A two-way transducer does not
have the ability to memorize a position arbitrarily far away in the input. Hence, verifying
(in the absence of some look-ahead “oracle”) that some finite prefix of the remainder of

ICALP 2023

121:14 Deterministic Regular Functions of Infinite Words

the input is a witness for some look-ahead and returning to a specific position becomes
a problem to be solved. This problem is not unique to two-way transducers over infinite
words, it also appears when some regular property of the remainder of a finite input word
must be checked and subsequently the two-way transducer must return to the position it
has been in before checking the property. On finite words, this task can be handled using
the Hopcroft-Ullman [1] or the improved tree-outline construction [16]. However, these
constructions rely on the fact that the input word is finite. We prove that this task can be
also accomplished for infinite words using different techniques.

In the following, we show that no expressiveness is gained by allowing finite look-ahead.

▶ Theorem 5.2 (Finite look-ahead removal). Given a 2-dTFLA, one can effectively construct
an equivalent 2-dT.

Proof sketch. The proof is divided into two parts. The main part is to translate a given
2-dTFLA into an equivalent BSST with bounded copy. We then use Theorem 2.9 to obtain
an equivalent 2-dT. Given a deterministic two-way transducer without look-ahead, the
standard approach to obtain an equivalent SST is to simulate the right-to-right runs of the
deterministic two-way transducer on the so-far read prefix of the infinite input, store their
outputs in registers and compose these registers in the right way (with the output of the
“main” left-to-right run) to re-create the output of the two-way transducer. Since the two-way
transducer is deterministic there is a global bound on the number of different right-to-right
runs on any prefix of the input. The constructions presented in [3, 17, 9] are all built on this
idea. In [2], equivalence between SST and two-way transducers on finite words is shown but
the work exhibits no direct translation.

Our goal is to design a similar construction for deterministic two-way transducers with
finite look-ahead. The main difficulty is that there is no global bound on the number of
different runs that can occur on a prefix, if one takes additionally into account all the runs
of the look-ahead automata that have been triggered so far. Alternatively, such a transducer
can be seen as a non-deterministic transducer, which guesses which finite look-ahead will
succeed and verifies it a posteriori, but there can be many look-ahead automata running in
parallel.

Hence, we extend the standard construction to go from a deterministic two-way transducer
to an SST by additionally taking all the possible look-ahead choices into account. This
approach results in a tree structure representation of the possible runs (similar to a standard
run-tree of a non-deterministic automaton, here the non-determinism is the look-ahead
choice). A branch in such a tree corresponds to a possible run and the nodes additionally
contain information to detect when look-ahead choices succeed or are doomed to fail. The
size of the tree representations is kept bounded by sharing information and a relevant pruning
strategy. The strategy takes care of removing branches whose look-ahead choices cannot
succeed and (prefixes of) branches where the look-ahead choices already have succeeded.
Applying this construction to a deterministic two-way transducer without look-ahead yields
the standard translation construction. ◀

6 Logic-transducer correspondence: proof of Theorem 4.8

In this section, we give an overview of the proof of the logical characterization of Theorem 4.8.
We first prove that any deterministic regular function is MSOTg-definable. The proof is
standard and uses same ideas as for regular functions of finite words [22] and infinite words [3].

▶ Lemma 6.1. If a function f : Σω ⇀ Γω is deterministic regular, then it is MSOTg-definable.

O. Carton, G. Douéneau-Tabot, E. Filiot, and S. Winter 121:15

Proof. The main idea is to define in MSOTg the runs of a 2-dT. Each copy of the MSOTg
represents a state of the 2-dT, and there is a successor edges between node xp to node yq,
where x, y are input positions and p, q are states, if and only if there exists a finite run
from configuration (p, x) to configuration (q, y) which produces output symbols only in
configuration (p, x) and (q, y). This property can be expressed by an MSOg formula. ◀

Proving the converse of Lemma 6.1 is more involved. We first go to an intermediate
model with MSO instructions, in the spirit of [22], called jumping MSOg-transducers, proved
to be equivalent to 2-dT. It is a finite-state model which can (i) test MSOg properties of the
current position (called look-around), (ii) test safety constraints defined by MSO formulas,
and (iii) jump from one position to another one with binary MSOg formulas. Formally, it has
a finite set of states (all final), and transitions are of the form p

ϕla(x)|w,ϕmv(x,y),ϕsf(x)−−−−−−−−−−−−−−−−→ q where
p, q are states, ϕla, ϕmv are MSOg formulas, ϕsf is an MSO formula, and w is a finite word.
Look-around occurring on transitions with same source state are assumed to be pairwise
disjoint (their conjunction is not satisfiable). The initial configuration is (q0, 0) where q0 is
the initial state. Whenever it is in a configuration (q, i), over an infinite word u ∈ Σω, it
enables the transitions whose look-around ϕla(i) holds on u, and select the transition with
shortest witness. Call t this transition. It triggers t only if there exists j such that ϕmv(i, j)
holds and for all k ≥ i, u[:k] |= ϕsf(i) (otherwise the computation fails). It then outputs γ
and moves to some position j such that ϕmv(i, j) holds. Note that there could be several
j, and therefore several runs on the same input in general. We thus make the following
assumption, which can be described informally as follows: for any reachable configuration
of the transducer from the initial configuration, there is always a unique j. Formally, for
all infinite sequence of configurations (q0, i0 = 0)(q1, i1)(q2, i2) . . . , for all k ≥ 0, for any
transition t triggered from configuration (qk, ik) to (qk+1, ik+1), if ϕmv(x, y) is the jumping
formula of t, then ik+1 is the unique position such that ϕmv(ik, ik+1) holds. As for two-way
transducers, a sequence of configurations (q0, i0 = 0)(q1, i1) . . . is accepting if limk→∞ ik = ∞
and it produces an infinite word.

We show that this model defines deterministic regular functions:

▶ Lemma 6.2. Any jumping MSOg-transducer defines a deterministic regular function.

Sketch of proof. The proof goes in two steps. First, it is shown that jumping MSOg-
transducers are equivalent to walking MSOg-transducers, i.e. MSOg-transducers which moves
(backward or forward) between successive positions. This step is standard (it appears e.g.
in [22] in the non-guarded setting). Then, walking MSOg-transducers are shown to be
equivalent to an extension of 2-dT with finite look-around and safety constraints, then proved
to be equivalent to 2-dT by transforming look-arounds into look-aheads, and then removing
look-aheads (based on the techniques of Section 5) and safety constraints. ◀

▶ Lemma 6.3. Any MSOg-transduction is equivalent to a jumping MSOg-transducer.

Proof. Let T = (k, (ϕcγ)c∈[k],γ∈Γ, (ϕc,dS)c,d∈[k], ϕ
c0
fst(x)) be an MSOTg defining f . We construct

a jumping MSOg-transducer T ′ equivalent to T . The set of states of T ′ is {0, 1 . . . , k}. In
state 0, T ′ first jumps to the initial position, i.e. the position y which satisfies ϕc0

fst(y) and
moves to state c0. This is done by a transition going from state 0 to state c0, with the trivial
look-around and safety constraint ⊤, and the move ϕmv(x, y): = first(x) ∧ ϕc0

fst(y). Then, it
follows the successor relation of T , and uses the label formulas to determine which label
to output. Using safety constraints, T ′ also makes sure that the output graph structure is
a word structure. In particular, they express that for any reachable node, there is exactly
one label and at most one successor. There is no need to check that there is at least one

ICALP 2023

121:16 Deterministic Regular Functions of Infinite Words

successor, because if there is none, then the run of T ′ stops and the input is not accepted,
which is consistent with the semantics of T (the input is also rejected by T in that case).
There is also no need to check that there is no cycle, because if there is some, then T ′

will never visit all input positions, and hence the input will be rejected, which is again
consistent with the semantics of T . Formally, for all copies c, d ∈ {1, . . . , k} and output label
γ, since ϕc,dS (x, y) and ϕγ(x) are guarded, there are of the form ϕc,dS (x, y) = ∃g · ψS(x, y, g)
and ϕγ(x) = ∃g · ψγ(x, g). Then we add the following transition to T ′, from c to d:

c
ϕla(x):=∃g∃z≤g·ψc,d

S
(x,z,g)∧ψc

γ (x,g)∧disjc,d,γ (x,g)|γ,ϕmv(x,y):=ϕc,d
S

(x,y),ϕsf(x)
−−−→ d

in which disjc,d,γ(x, g) = ∀g′ ≤ g ·
∧
γ′ ̸=γ ¬ψcγ′(x, g′) ∧

∧
d′ ̸=d ∀z′ ≤ g′ · ¬ψc,d

′

S (x, z′, g′) ensures
disjointness of the look-around, and ϕsf(x) equals

(
∧
d′ ̸=d ∀y · ¬ϕc,d

′

S (x, y))∧ no successor of x in any copy d′ ̸= d

(∀y∀y′ · (ϕc,cS (x, y) ∧ ϕc,cS (x, y′)) → y = y′)∧ at most one successor of x in copy c
(
∧
γ′ ̸=γ ¬ϕcγ′(x) no other label for x

At this point, we remind the reader that safety constraints are not required to be defined by
guarded formulas, as they are regular properties of finite words. However, the look-around
and jumping formulas must be guarded, and it is indeed the case in the transition above.

Finally, note that T ′ satisfies the requirement that on infinite sequences of configurations
(q0, i0) . . . , for all k ≥ 0, ik+1 is the unique successor of ik by the jumping formula. Indeed, if
a sequence of configurations of T ′ is infinite, it implies that all safety constraints are satisfied,
and they precisely make sure that there is no branching. ◀

As a corollary of Lemmas 6.3 and 6.2, we obtain the converse direction of Theorem 4.8:

▶ Corollary 6.4. Any MSOTg-definable function f is deterministic regular.

7 Conclusion

In this paper, we have shown that the class of deterministic regular functions is characterized
by computational models such as deterministic two-way transducers, deterministic two-way
transducers with finite (regular) look-aheads, Büchi SST, by the logical formalism of guarded
MSO-transductions, and by finite compositions of sequential functions and map-copy-reverse.
The transformations between those models are effective. We have also shown that it is
closed under composition, by extending to infinite words the known composition closure of
deterministic two-way transducers, yet with new proof techniques. It is also conjectured that
the class of deterministic regular functions is equal to the class of continuous regular functions
(for the Cantor topology). It is already known that it includes the continuous letter-to-letter
rational functions [23] and the strictly larger class of continuous rational functions [9]. All
this, together with the fact that deterministic regular functions are computable, unlike regular
functions, shows the robustness of this class.

References
1 Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullman. A general theory of translation.

Mathematical Systems Theory, 3(3):193–221, 1969.
2 Rajeev Alur and Pavol Cerný. Expressiveness of streaming string transducers. In IARCS

Annual Conference on Foundations of Software Technology and Theoretical Computer Science,
FSTTCS 2010, volume 8 of LIPIcs, pages 1–12. Schloss Dagstuhl, 2010.

O. Carton, G. Douéneau-Tabot, E. Filiot, and S. Winter 121:17

3 Rajeev Alur, Emmanuel Filiot, and Ashutosh Trivedi. Regular transformations of infinite
strings. In Proceedings of the 27th Annual IEEE Symposium on Logic in Computer Science,
LICS 2012, pages 65–74. IEEE Computer Society, 2012.

4 Rajeev Alur, Adam Freilich, and Mukund Raghothaman. Regular combinators for string
transformations. In Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual
Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), page 9. ACM, 2014.

5 Nicolas Baudru and Pierre-Alain Reynier. From two-way transducers to regular function
expressions. In International Conference on Developments in Language Theory, pages 96–108.
Springer, 2018.

6 Mikołaj Bojańczyk and Rafał Stefański. Single-use automata and transducers for infinite
alphabets. In 47th International Colloquium on Automata, Languages, and Programming
(ICALP 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

7 Mikołaj Bojańczyk. Polyregular Functions, 2018. doi:10.48550/arXiv.1810.08760.
8 J. R. Büchi. Weak second-order arithmetic and finite automata. Zeitschrift für Mathematische

Logik und Grundlagen der Mathematik, 6(1–6):66–92, 1960.
9 Olivier Carton and Gaëtan Douéneau-Tabot. Continuous rational functions are deterministic

regular. In 47th International Symposium on Mathematical Foundations of Computer Science,
MFCS 2022, 2022.

10 Olivier Carton, Gaëtan Douéneau-Tabot, Emmanuel Filiot, and Sarah Winter. Deterministic
regular functions of infinite words. CoRR, abs/2302.06672, 2023. doi:10.48550/arXiv.2302.
06672.

11 Michal P. Chytil and Vojtěch Jákl. Serial composition of 2-way finite-state transducers and
simple programs on strings. In 4th International Colloquium on Automata, Languages, and
Programming, ICALP 1977, pages 135–147. Springer, 1977.

12 Thomas Colcombet. A combinatorial theorem for trees. In 34th International Colloquium on
Automata, Languages, and Programming, ICALP 2007, 2007.

13 Bruno Courcelle. Monadic second-order definable graph transductions: A survey. Theor.
Comput. Sci., 126:53–75, 1994.

14 Bruno Courcelle and Joost Engelfriet. Graph structure and monadic second-order logic: a
language-theoretic approach, volume 138. Cambridge University Press, 2012.

15 Luc Dartois, Emmanuel Filiot, and Nathan Lhote. Logics for word transductions with synthesis.
In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science,
pages 295–304. ACM, 2018.

16 Luc Dartois, Paulin Fournier, Ismaël Jecker, and Nathan Lhote. On reversible transducers.
In 44th International Colloquium on Automata, Languages, and Programming, ICALP 2017,
volume 80 of LIPIcs, pages 113:1–113:12. Schloss Dagstuhl, 2017.

17 Luc Dartois, Ismaël Jecker, and Pierre-Alain Reynier. Aperiodic string transducers. Int. J.
Found. Comput. Sci., 29(5):801–824, 2018.

18 Vrunda Dave, Emmanuel Filiot, Shankara Narayanan Krishna, and Nathan Lhote. Synthesis of
computable regular functions of infinite words. In 31st International Conference on Concurrency
Theory (CONCUR 2020). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2020.

19 Vrunda Dave, Emmanuel Filiot, Shankara Narayanan Krishna, and Nathan Lhote. Synthesis
of computable regular functions of infinite words. Log. Methods Comput. Sci., 18(2), 2022.

20 Vrunda Dave, Paul Gastin, and Shankara Narayanan Krishna. Regular transducer expressions
for regular transformations. In Proceedings of the 33rd Annual ACM/IEEE Symposium on
Logic in Computer Science, pages 315–324. ACM, 2018.

21 C. C. Elgot. Decision problems of finite automata design and related arithmetics. In Transac-
tions of the American Mathematical Society, 98(1):21–51, 1961.

22 Joost Engelfriet and Hendrik Jan Hoogeboom. MSO definable string transductions and two-way
finite-state transducers. ACM Transactions on Computational Logic (TOCL), 2(2):216–254,
2001.

ICALP 2023

https://doi.org/10.48550/arXiv.1810.08760
https://doi.org/10.48550/arXiv.2302.06672
https://doi.org/10.48550/arXiv.2302.06672

121:18 Deterministic Regular Functions of Infinite Words

23 Emmanuel Filiot and Sarah Winter. Synthesizing computable functions from rational spe-
cifications over infinite words. In 41st IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science, FSTTCS 2021, December 15-17, 2021, Virtual
Conference. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

24 Erich Grädel. On the restraining power of guards. J. Symb. Log., 64(4):1719–1742, 1999.
25 Eitan M Gurari. The equivalence problem for deterministic two-way sequential transducers is

decidable. SIAM Journal on Computing, 11(3):448–452, 1982.
26 Dominique Perrin and Jean-Éric Pin. Infinite words: automata, semigroups, logic and games.

Academic Press, 2004.
27 Imre Simon. Factorization forests of finite height. Theor. Comput. Sci., 72(1):65–94, 1990.

doi:10.1016/0304-3975(90)90047-L.
28 Wolfgang Thomas. Languages, automata, and logic. In Handbook of formal languages, pages

389–455. Springer, 1997.
29 Boris Avraamovich Trakhtenbrot. Finite automata and logic of monadic predicates (in Russian).

Dokl. Akad. Nauk SSSR, 140:326–329, 1961.

https://doi.org/10.1016/0304-3975(90)90047-L

Characterising Memory in Infinite Games
Antonio Casares # Ñ

LaBRI, Université de Bordeaux, France

Pierre Ohlmann # Ñ

University of Warsaw, Poland

Abstract
This paper is concerned with games of infinite duration played over potentially infinite graphs.
Recently, Ohlmann (TheoretiCS 2023) presented a characterisation of objectives admitting optimal
positional strategies, by means of universal graphs: an objective is positional if and only if it admits
well-ordered monotone universal graphs. We extend Ohlmann’s characterisation to encompass (finite
or infinite) memory upper bounds.

We prove that objectives admitting optimal strategies with ε-memory less than m (a memory that
cannot be updated when reading an ε-edge) are exactly those which admit well-founded monotone
universal graphs whose antichains have size bounded by m. We also give a characterisation of
chromatic memory by means of appropriate universal structures. Our results apply to finite as well
as infinite memory bounds (for instance, to objectives with finite but unbounded memory, or with
countable memory strategies).

We illustrate the applicability of our framework by carrying out a few case studies, we provide
examples witnessing limitations of our approach, and we discuss general closure properties which
follow from our results.

2012 ACM Subject Classification Theory of computation → Verification by model checking

Keywords and phrases Infinite duration games, Memory, Universal graphs

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.122

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version Full Version: https://arxiv.org/abs/2209.12044

Funding Pierre Ohlmann: European Research Council (ERC), grant agreement No 948057 – BOBR.

Acknowledgements We thank Nathanaël Fijalkow, Rémi Morvan and Pierre Vandenhove for stimu-
lating discussions around the topic.

This document contains hyperlinks. Each occurrence of a notion is linked to its definition.
On an electronic device, the reader can click on words or symbols (or just hover over them
on some PDF readers) to see their definition.

1 Introduction

1.1 Context
Games and strategy complexity. We study zero-sum turn-based games on graphs, in which
two players, that we call Eve and Adam, take turns in moving a token along the edges of a
given (potentially infinite) edge-coloured directed graph. Vertices of the graph are partitioned
into those belonging to Eve and those belonging to Adam. When the token lands in a vertex
owned by player X, it is this player who chooses where to move next. This interaction, which
is sometimes called a play, goes on in a non-terminating mode, producing an infinite sequence

EA
T
C
S

© Antonio Casares and Pierre Ohlmann;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 122; pp. 122:1–122:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:antonio.casares-santos@labri.fr
https://www.labri.fr/perso/acasaressant/
https://orcid.org/0000-0002-6539-2020
mailto:pohlmann@mimuw.edu.pl
https://www.irif.fr/~ohlmann/
https://orcid.org/0000-0002-4685-5253
https://doi.org/10.4230/LIPIcs.ICALP.2023.122
https://arxiv.org/abs/2209.12044
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

122:2 Characterising Memory in Infinite Games

of colours. We fix in advance an objective W , which is a language of infinite sequences of
colours; plays producing a sequence of colours in W are considered to be winning for Eve,
and plays that do not satisfy the objective W are winning for the opponent Adam.

In order to achieve their goal, players use strategies, which are representations of the
course of all possible plays together with instructions on how to act in each scenario. In this
work, we are interested in optimal strategies for Eve, that is, strategies that guarantee a
victory whenever this is possible. More precisely, we are interested in the complexity of such
strategies, or in other words, in the succinctness of the representation of the space of plays.
The simplest strategies are those that assign in advance an outgoing edge to each vertex
owned by Eve, and always play along this edge, disregarding all the other features of the
play. All the information required to implement such a strategy appears in the game graph
itself. These strategies are called positional (or memoryless). However, in some scenarios,
playing optimally requires distinguishing different plays that end in the same vertex; one
should remember other features of plays. An example of such a game is given in Figure 1.

Figure 1 On the left, a game with objective W = (ab)ω; in words, Eve should ensure that the
play alternates between a-edges and b-edges. We represent Eve’s vertices as circles and Adam’s as
squares. On the right, a winning strategy for Eve which uses one state of memory for v0, one state of
memory for v1, and two states of memory for v2. Note that two states of memory for v2 are required
here: a positional strategy would always follow the same self-loop and therefore cannot win. One
can prove that any game with objective W which is won by Eve can be won even when restricting
to strategies with two states of memory, that is, the memory requirements for W is exactly two.

Given an objective W , the question we are interested in is:
“What is the minimal strategy complexity required for Eve to play optimally in all games

with objective W?”

Positional objectives and universal graphs. As mentioned above, an important special
case is that of positional objectives, those for which Eve does not require any memory to
play optimally. A considerable body of research, with both theoretical and practical reach,
has been devoted to the study of positionality. By now it is quite well-understood which
objectives are positional for both players (bi-positional), thanks to the works of Gimbert
and Zielonka [13] for finite game graphs, and of Colcombet and Niwiński [9] for arbitrary
game graphs. However, a precise understanding of which objectives are positional for Eve –
regardless of the opponent – remains somewhat elusive, even though this is a more relevant
question in most application scenarios.

A recent progress in this direction was achieved by Ohlmann [19, 20], using totally ordered
monotone universal graphs. Informally, an edge-coloured graph is universal with respect to a
given objective W if it satisfies W (all paths satisfy W), and homomorphically embeds all
graphs satisfying W . An ordered graph is monotone if its edge relations are monotone:

v ≥ u
c−→ u′ ≥ v′ =⇒ v

c−→ v′, for every colour c.

A. Casares and P. Ohlmann 122:3

Ohlmann’s main result is a characterisation of positionality (assuming existence of a neutral
letter): an objective is positional if and only if it admits well-ordered monotone universal
graphs.

From positionality to finite memory. Positional objectives have good theoretical properties
and do often arise in applications (in particular, parity, Rabin or energy objectives). It is
also true, however, that this class lacks in expressivity and robustness: only a handful of
objectives are positional, and very few closure properties are known to hold for positional
objectives.

In contrast, objectives admitting optimal finite memory strategies are much more general;
for instance they encompass all ω-regular objectives [14] (in fact, it was recently established [3]
that optimal finite chromatic memory for both players characterises ω-regularity). Moreover,
in practice, finite memory strategies can be implemented by means of a program, and memory
bounds for Eve directly translates in space and time required to implement controllers, which
gives additional motivation for their systematic study.

Formally, when moving from positionality to finite memory, a few modelling difficulties
arise, giving rise to a few different notions. Most prominently, one may or may not include
uncoloured edges (ε-edges) in the game, over which the memory state cannot be updated;
additionally one may or may not restrict to chromatic memories, meaning those that record
only the colours that have appeared so far. We now discuss some implications of these two
choices.

It is known that allowing ε-edges impacts the difficulty of the games, in the sense that
it may increase the memory required for winning strategies [5, 15, 23], thus leading to two
different notions of memory (that we call ε-memory and ε-free memory). It is natural
to wonder whether one of the two notions should be preferred over the other. We argue
that allowing ε-edges turns out to be more natural in many applications. First, we notice
that currently existing characterisations of the memory (for Muller objectives [12] and for
topologically closed objectives [8]) do only apply to the case of ε-memory. More importantly,
games induced by logical formulas in which players are interpreted as the existential player
(controlling existential quantifiers and disjunctions) and the universal player (controlling
universal quantifiers and conjunctions) naturally contain ε-edges (along which the memory
indeed should not be allowed to be updated).

It was originally conjectured by Kopczyński [15] that chromatic strategies have the same
power than non-chromatic ones. It was not until recently that this conjecture was refuted [5],
and since then several works have provided new examples separating both notions [6, 17, 18].
It now appears from recent dedicated works [2, 3, 4, 5] that chromatic memory is an interesting
notion in itself.

The main challenge in the study of strategy complexity is to prove upper bounds on
memory requirements of a given objective. A great feature of Ohlmann’s result [20] is that
it turns a question about games to a question about graphs, which are easier to handle.
Despite its recent introduction, Ohlmann’s framework has already proved instrumental for
deriving general positionality results in the context of objectives recognised by finite Büchi
automata [1].

1.2 Contribution
The present paper builds on the aforementioned work of Ohlmann by extending it to
encompass the more general setting of finite (or infinite) memory bounds. This yields the
first known characterisation results for objectives with given memory bounds, and provides a
(provably) general tool for establishing memory upper bounds.

ICALP 2023

122:4 Characterising Memory in Infinite Games

Doing so requires relaxing from totally to partially ordered graphs, while keeping the same
monotonicity requirement, along with some necessary technical adjustments. We essentially
prove that the memory of an objective corresponds to the size of antichains in its well-founded
monotone universal graph; however it turns out that the precise situation is more intricate.
It is summed up in Figure 2 and explained in more details below.

Finite memory m

Memory bound infinite μ

Thm. 3 Thm. 4

(Thm. 4)
Prop. 5

Prop. 6
triv.triv. [Cas22]

Thm. 3

Prop. 7

Prop. 6

triv.triv.
Thm. 4

Locally finite memory

Figure 2 A summary of our main contributions. The three larger boxes correspond to the three
regimes encompassed by our results: finite memory, locally finite memory and larger cardinal bounds.
Each of the smaller boxes correspond to classes of objectives, where “struct.” stands for “existence of
well-founded monotone universal graphs”; for example, the box labelled “ε-separated struct. breadth
≤ m” stands for “existence of ε-separated well-founded monotone universal graphs of breadth ≤ m”.
The dotted implications follow from combining other implications in the figure. For m = 1, all
notions collapse to a single equivalence, which corresponds to Ohlmann’s characterisation.

It is convenient for us to define strategies directly as graphs (see Figure 1 for an example,
and Section 2 for formal details), which allows us in particular to introduce new classes of
objectives such as those admitting locally finite memory, discussed in more details below.
For the well-studied case of finite memory bounds, our definition of memory coincides with
the usual one.

Universal structures for memory. Our main contribution lies in introducing generalisations
of Ohlmann’s structures, and proving general connections between existence of such universal
structures for a given objective W , and memory bounds for W (Section 3).

The first variant we propose is obtained by relaxing the monotonicity requirement to
partially ordered graphs; Theorem 4 states that (potentially infinite) bounds on antichains
of a well-founded monotone universal graph translate to memory bounds.

The second variant we propose, called ε-separated structures, is tailored to capture
ε-memory. These are monotone graphs where the partial order coincides with ε−→ and is
constrained to be a disjoint union of well-orders; the breadth of such a graph refers to the
number of such well-orders. Theorem 3 states that the existence of such universal structures
of breadth µ actually characterises having ε-memory ≤ µ. Additionally, we define chromatic
ε-separated structures (over which each colour acts uniformly), and establish that they
capture ε-chromatic memory.

Applying (infinite) Dilworth’s theorem we obtain that for finite m, one may turn any
monotone graph of width m to an ε-separated one with breadth m (Proposition 5), and
therefore in the setting of finite memory, the two notions collapse.

A. Casares and P. Ohlmann 122:5

We are able to establish most (but not all) of our results in the more general framework
of quantitative valuations; similarly as Ohlmann [20], we show how the notions instantiate in
the qualitative case, and how they can be simplified assuming prefix-invariance properties.

Counterexamples for a complete picture. We provide additional negative results which
set the limits of our approach, completing the picture in Figure 2. Namely, we build two
families of counterexamples that are robust to larger cardinals; these give general separations
of ε-free memory and ε-memory (Proposition 7), and negate the possibility of a converse
for Theorem 4 (Proposition 6). This supports our informal claim that ε-memory is better
behaved than ε-free memory.

Closure properties. Finally, we discuss how our characterisations can be exploited for
deriving closure properties on some classes of objectives (Section 4). Apart from Ohlmann’s
result on lexicographic products of prefix-independent positional objectives [20], no such
closure properties are known. Extending Ohlmann’s proof to our framework, we prove
that if W1 and W2 are prefix-independent objectives with ε-memory m1 and m2, then their
lexicographical product W1 ⋉ W2 has ε-memory ≤ m1m2.

We then propose a new class of objectives with good properties, namely, objectives
with locally finite memory: for each game, there exists a strategy which uses a finite
(though possibly unbounded, even when the game is fixed) amount of memory states for
each vertex. These objectives are connected with the theory of well-quasi orders (wqo),
since they correspond to monotone universal graphs which are well-founded and have
finite antichains. We obtain from the fact that wqo’s are closed under intersections, that
intersections of objectives with finite ε-memory have locally finite memory; an example
is given by conjunctions of energy objectives which have unbounded finite memory even
though energy objectives are positional. This hints at a general result, which is not implied
by our characterisations but we conjecture to be true, that objectives with finite (possibly
unbounded) memory are closed under intersection.

We end our paper by providing yet another application of our characterisation, establishing
that prefix-independent Σ0

2 objectives with finite memory are closed under countable unions.
As of today, this is the only known (non-obvious) closure property pertaining to objectives
with finite memory.

2 Preliminaries

For a finite or infinite word w ∈ C∗ ∪ Cω we denote by wi the letter at position i and by |w|
its length.

2.1 Graphs and morphisms
Graphs, paths and trees. A C-pregraph G, where C is a (potentially infinite) set of colours, is
given by a set of vertices V (G), and a set of coloured directed edges E(G) ⊆ V (G)×C ×V (G).
We write v

c−→ v′ for an edge (v, c, v′), say that it is outgoing from v, incoming in v′ and has
colour c. A C-graph G is a C-pregraph without sinks: from all v ∈ V (G) there exists an
outgoing edge v

c−→ v′ ∈ E(G). We often say c-edges to refer to edges with colour c, and
sometimes C ′-edges for C ′ ⊆ C for edges with colour in C ′.

ICALP 2023

122:6 Characterising Memory in Infinite Games

A path in a pregraph G is a finite or infinite sequence of edges of the form π = (v0
c0−→

v1)(v1
c1−→ v2) . . . , which for convenience we denote by π = v0

c0−→ v1
c1−→ We say that π

is a path from v0 in G. By convention, the empty path is a path from v0, for any v0 ∈ V (G).
If π is a finite path, it is of the form v0

c0−→ v1
c1−→ . . .

cn−1−−−→ vn, and in this case we say that
it is a path from v0 to vn in G.

Given a subset X ⊆ V (G) of vertices of a pregraph G, we let G|X denote the restriction
of G to X, which is the graph given by V (G|X) = X and E(G|X) = E(G) ∩ (X × C × X).
Given a vertex v ∈ V (G), we let G[v] denote the restriction of G to vertices reachable from v.

A C-tree (resp. C-pretree) T is a C-graph (resp. C-pregraph) with an identified vertex
t0 ∈ V (T) called its root, with the property that for each t ∈ V (T), there is a unique path
from t0 to t. Note that since graphs have no sinks, trees are necessarily infinite. We remark
that T [t] represents the subtree rooted at t (if T is a tree, T [t] is also a tree with root t).

When it is clear from context, we omit C and simply say “a graph” or “a tree”.
The size of a graph G (and by extension, of a tree) is the cardinality of V (G).

Morphisms. A morphism ϕ between two graphs G and H is a map ϕ : V (G) → V (H) such
that for each edge v

c−→ v′ ∈ E(G) it holds that ϕ(v) c−→ ϕ(v′) ∈ E(H). We write ϕ : G → H

in this case, and sometimes say that H embeds G. Note that morphisms preserve paths: if
v0

c0−→ v1
c1−→ . . . is a path in G, then ϕ(v0) c0−→ ϕ(v1) c1−→ . . . is a path in H . An isomorphism

is a bijective morphism whose inverse is a morphism; two graphs are isomorphic if they
are connected by an isomorphism (stated differently, they are the same up to renaming the
vertices). The composition of two morphisms is a morphism.

2.2 Valuations, games, strategies and memory

Valuations and objectives. A C-valuation is a map val : Cω → X, where X is a complete
linear order (that is, a total order in which all subsets have both a supremum and an infimum).
The value valG(v0) of a vertex v0 ∈ V (G) in a graph G is the supremum value of infinite
paths from v, where the value of an infinite path π = v0

c0−→ v1
c1−→ . . . is defined to be

val(π) = val(c0c1 . . .).
In the important special case where X = {⊥, ⊤}, ⊥ < ⊤, we identify val with W =

val−1(⊥) ⊆ Cω, and say that val (or W) is an objective. In a graph G, a path with value ⊥
(equivalently, whose sequence of colours belongs to W) is said to satisfy W , and a vertex v0
with value ⊥ (equivalently, all paths from v0 satisfy W) is also said to satisfy W . A graph is
said to satisfy W if all its vertices satisfy it.

Games. A C-game is a tuple G = (G, VEve, v0, val), where G is a C-graph, VEve is a subset
of V (G), v0 ∈ V (G) is an identified initial vertex, and val : Cω → X is a C-valuation. We
interpret VEve to be the set of vertices controlled by the first player, Eve, and we will write
VAdam = V (G) \ VEve for the vertices controlled by her opponent, Adam. A game is played
as follows: starting from v0, successive moves are played where the player controlling the
current vertex v chooses an outgoing edge v

c−→ v′ and proceed to v′. This interaction goes
on forever, producing and infinite path π from v0. Eve’s goal is to minimise the value of the
produced path π, whereas Adam aims to maximise it.

In this paper, we are interested in questions of strategy complexity for Eve: if she wins,
how much memory is required/sufficient? Formally, these are independent of questions of
determinacy (is there a winner?). As a result, we will only ever consider strategies for Eve.

A. Casares and P. Ohlmann 122:7

Strategies. A strategy in the game G is a tuple S = (S, πS , s0) where S is a graph, πS is a
morphism πS : S → G called the S-projection and s0 ∈ V (S) satisfying:

πS(s0) = v0,
for all v ∈ VAdam, all outgoing edges v

c−→ v′ ∈ E(G) and all s ∈ π−1
S (v), there is

s′ ∈ π−1(v′) such that s
c−→ s′ ∈ E(S).

Note that the requirements that S is a graph and πS a morphism impose that for all v ∈ VEve
and s ∈ π−1

S (v), s has an outgoing edge s
c−→ s′ ∈ E(S) satisfying πS(s) = v

c−→ πS(s′) ∈ E(G).
We remark that we do not impose that for each v ∈ VEve and s ∈ π−1

S (v), s has exactly
one outgoing edge. Stated differently, non-determinism is allowed in this definition of strategy.
As the upcoming definition of value of a strategy will clarify, we can interpret that Adam
decides how to resolve this non-determinism.

On an informal level, a strategy S = (S, πS , s0) from v0 ∈ G is used by Eve to play in
the game G as follows:

whenever the game is in a position v ∈ V (G), the strategy is in a position s ∈ π−1
S (v);

initially, the position in the game is v0, and the position in the strategy is s0 ∈ π−1
S (v0);

if the position v in the game belongs to VAdam, and Adam chooses the edge v
c−→ v′ in G,

then the strategy state is updated following an edge s
c−→ s′ in S with πS(s′) = v′, which

exists by definition of S (if multiple options exist, Adam chooses one);
if the position v in the game belong to VEve, then the strategy specifies at least one
successor s

c−→ s′ from the current s ∈ π−1(v), and the game proceeds along the edge
v

c−→ π(s′) (if multiple options exist in the strategy, which corresponds to the non-
determinism mentioned above, then Adam chooses one).

Note that infinite sequences of colours produced when playing as above are exactly labels
of infinite paths from s0 in S.

The value val(S) of a strategy S is valS(s0). The value val(G) of a game is the infimum
value among its strategies. If val is an objective, we say that S is winning if valS(s0) = ⊥,
and we say that Eve wins a game G if val(G) = ⊥.

The following observation is standard (it is usually taken as the definition of a strategy).

▶ Lemma 1. The value of a game is reached with strategies that are trees.

Memory. For a strategy S = (S, πS , s0), we interpret the fibres π−1
S (v) as memory spaces.

Given a cardinal µ, we say that S has memory strictly less than µ, (resp. less than µ) if for
all v ∈ V (G), |π−1

S (v)| < µ (resp. |π−1
S (v)| ≤ µ). As it will appear later on, it is convenient

for us to be able to use both strict and non-strict inequalities. By means of clarity and
conciseness, we usually simply write “S has memory < µ” (resp. ≤ µ) instead of “S has
memory stricly less than µ (resp. less than µ)”.

We say that a valuation val has memory strictly less than µ, or < µ, (resp. less than µ,
or ≤ µ) if in all games with valuation val, the value is reached with strategies with memory
< µ.

Conversely, we say that val has memory at least µ, or ≥ µ, if it does not have memory < µ:
there exists a game with valuation val in which Eve cannot reach the value with strategies
with memory < µ.

We say that val is positional if it has memory ≤ 1.

Product strategies, chromatic strategies. A strategy S = (S, πS , s0) in the game G is a
product strategy over a set M if V (S) ⊆ V (G) × M , with πS(v, m) = v. We call the elements
of M memory states. Note that the memory in a product strategy over M is ≤ |M |, since

ICALP 2023

122:8 Characterising Memory in Infinite Games

fibers are included in M . A product strategy is chromatic if there is a map δ : M × C → M

such that for all (v, m) c−→ (v′, m′) ∈ E(S) we have m′ = δ(m, c). We say in this case that
δ is the update function of S. In words, the update of the memory state in a chromatic
strategy depends only on the current memory state and the colour that is read. A valuation
val has chromatic memory < µ (resp. ≤ µ) if in all games with valuation val, the value is
reached with chromatic strategies with memory < µ (resp. ≤ µ).

ε-games and ε-strategies. Fix a set of colours C, a fresh colour ε /∈ C, and let Cε = C ⊔{ε}.
The C-projection of an infinite sequence w ∈ (Cε)ω is the (finite or infinite) sequence
wC ∈ C∗ ∪ Cω obtained by removing all ε’s in w. Given a C-valuation val : Cω → X, define
its ε-extension valε to be given by

valε(w) =

val(wC), if |wC | = ∞,

inf
w′∈Cω

val(wCw′), otherwise.

It is the unique extension of val with ε as a strongly neutral colour, in the sense of Ohlmann [20].
In particular, if W is an objective and w ∈ C∗, wεω ∈ W ε unless w has no winning
continuation in W .

An ε-game G is a Cε-game with valuation valε. An ε-strategy over such a game is a
product strategy S = (S, πS , s0) over some set M such that (v, m) ε−→ (v′, m′) ∈ E(S) implies
m = m′. Intuitively, Eve is not allowed to update the state of the memory when an ε-edge is
traversed. The memory of an ε-strategy is defined to be |M |. A valuation val has ε-memory
< µ (resp. ≤ µ) if in all ε-games with valuation valε, the value is attained by ε-strategies
with memory < µ (resp. ≤ µ).

Note that by definition, a chromatic strategy over M with update function δ is an
ε-strategy if and only if for all m ∈ M it holds that δ(m, ε) = m. We call such a strategy
an ε-chromatic strategy. A valuation val has ε-chromatic memory < µ (resp. ≤ µ) if in all
ε-games with valuation valε, the value is attained by ε-chromatic strategies with memory
< µ (resp. ≤ µ).

Whenever we want to emphasise that we consider games (resp. strategies, memory)
without ε, we might add the adjective ε-free.

2.3 Monotonicity and universality
Monotonicity. A partially ordered graph (G, ≤) is monotone if

u ≥ v
c−→ v′ ≥ u′ implies u

c−→ u′ in G.

A partially ordered graph (G, ≤) is called well-monotone if it is monotone and it is
well-founded as a partial order. We say that the width of a partially ordered graph is < µ

(resp. ≤ µ) if it does not contain antichains of size µ (resp. of size strictly greater than µ).

ε-separation. An ε-separated monotone graph over a set M is a Cε-graph G such that ε−→
defines a partial order making G monotone (v ≤ v′ ⇐⇒ v′ ε−→ v ∈ E(G)), and moreover
V (G) is partitioned into (Vm)m∈M such that for all m ∈ M , ε−→ induces a total order over Vm,
and there are no ε-edges between different parts: v

ε−→ v′ ∈ E(G) implies that v, v′ ∈ Vm for
some m ∈ M . See Figure 3. We define the breadth of such a graph as |M |.

An ε-separated monotone graph G over M is chromatic if there is a map δ : M × C → M

such that for all v
c−→ v′ ∈ E(G) with v ∈ Vm and v′ ∈ Vm′ we have m′ = δ(v, m). We also

say in this case that δ is the update function of G.

A. Casares and P. Ohlmann 122:9

Figure 3 An ε-separated chromatic monotone graph of breadth 2. Note that ε−→ defines a total
order on each Vi (edges following from transitivity are not represented). Many edges which follow
from monotonicity are not depicted, the dotted edges give a few examples.

Universality. Given a C-valuation val, a C-graph G and a cardinal κ, we say that G is
(κ, val)-universal if for all C-trees T of cardinality < κ, there exists a morphism ϕ : T → G

such that valG(ϕ(t0)) ≤ valT (t0), where t0 is the root of T . We say that ϕ preserves the value
at the root to refer to this property (we remark that, in that case, valG(ϕ(t0)) = valT (t0),
since the other inequality always holds).

▶ Remark 2. An example where the definition with graphs is too constrained to capture
memory is given in Proposition 22 from the full version [7].

3 Universal structures characterise memory

Statement of the main results. We start with our characterisations of ε-memory and
ε-chromatic memory via (chromatic) ε-separated universal graphs.

▶ Theorem 3. Let val be a valuation. If for all cardinals κ there exists an ε-separated
(chromatic) and well-monotone (κ, valε)-universal graph of breadth ≤ µ, then val has ε(-
chromatic)-memory ≤ µ. The converse holds if val is an objective (in both the chromatic
and non-chromatic cases).

Our second result concerns ε-free memory. It is stated with strict inequalities, which
are relevant in this case and allow for more precision. However, we do not have a converse
statement; in fact, the converse cannot hold (see also Figure 2 and Proposition 7).

▶ Theorem 4. Let val be a valuation. If for all cardinals κ there exists a well-monotone
(κ, val)-universal graph of width < µ, then val has ε-free memory < µ.

As we will see in Proposition 5, the two results above collapse for finite cardinals.
We give the main ideas of the proofs of these two theorems, in both cases we extend the

proofs from Ohlmann [20]. The full proofs can be found in Sections 3.2 and 3.3 in the full
version [7].

Proof sketch of Theorem 4 and of =⇒ in Theorem 3. We discuss the proof of Theorem 4
(the proof of the first implication in Theorem 3 follows the same structure). In this case,
assuming existence of a universal structure, we prove upper bounds in the memory of a
valuation. This is done using a strategy-folding procedure that is guided by the morphism
towards the universal structure. Let (U, ≤) be a well-monotone (κ, val)-universal graph
of width < µ. Suppose that G is a game of cardinality ≤ κ with valuation val, and let
T = (T, πT , t0) be a strategy for Eve given by a tree. By universality of U , there is a
morphism ϕ : T → U preserving the value at the root of T .

ICALP 2023

122:10 Characterising Memory in Infinite Games

For each vertex v of the game we consider the set ϕ(π−1
T (v)) in U . Since U is well-founded

and of width < µ, the set Mv of minimal elements of ϕ(π−1
T (v)) has size strictly less than µ.

This allows us to define a strategy over
⋃

v{v}×Mv which simulates the strategy T as follows:
we take a representative t(v,m) ∈ π−1

T (v), and for each m ∈ Mv, we follow the decisions made
at t(v,m) when we are in (v, m).

To define the update of the memory, for each move v
c−→ v′ ∈ E(G) and edge t(v,m)

c−→
t′ ∈ E(T), we consider the image ϕ(t′) ∈ U . By definition, there is an element m′ in Mv′

smaller that ϕ(t′), so we let (v, m) c−→ (v′, m′). By monotonicity it follows that this strategy
has the same value than T . If U is assumed to be (chromatic) ε-separated, it follows directly
that the obtained strategy is a (chromatic) ε-strategy. ◀

Proof sketch of ⇐= in Theorem 3. We prove the following result: given a Cε-tree T

satisfying an objective W , there exists an ε-separated well-monotone graph U of breadth ≤
µ and a morphism T → U preserving the value at the root. Once this is proved, applying it
to the tree TUniv consisting of a root connected by an ε-edge to every Cε-tree < κ satisfying
W yields a (κ, W ε)-universal graph.

In order to prove this result, we consider the following game: Adam controls the vertices
from T , and for each non-empty set A ⊆ V (T), we add a vertex vA controlled by Eve with
ε-edges back and forth from any vertex in A. This game is won by Eve: whenever Adam
chooses an edge t

ε−→ vA she just need to respond vA
ε−→ t. Since W has ε-memory ≤ µ, Eve

has a winning ε-strategy S over V (S) = V (G) × M with |M | ≤ µ.
We define the wanted morphism ϕ : T → S in a top-down fashion using the properties of a

strategy: ϕ(t0) = s0 and if ϕ(t) = (t, m) and t
c−→ t′ ∈ E(T), we set ϕ(t′) = (t′, m′) where m′

is such that (t, m) c−→ (t′, m′) ∈ E(S). This morphism preserves the value of t0, because S is
a winning strategy. With some addition technical tweaks we transform S into an ε-separated
graph U of breadth ≤ µ while maintaining a value-preserving morphism ϕ : T → U . ◀

Applying Dilworth’s Theorem [11], we prove that the two notions of graphs collapse (both
characterise ε-memory) when dealing with objectives and finite memory bounds.

▶ Proposition 5. Let W be an objective and m ∈ N. If for all cardinals κ there exists a
well-monotone graph which is (κ, W)-universal and has width ≤ m, then for all cardinals κ

there is also an ε-separated well-monotone (κ, W ε)-universal graph of breadth ≤ m, and
therefore W has ε-memory ≤ m.

An objective W ⊆ Cω is said to be prefix-independent if for all colours c ∈ C it holds that
cW = W . It is not difficult to prove (this was already done by Ohlmann [20]) that when
considering prefix-independent objectives, one can use a simpler definition of universality,
namely, a graph U is (κ, W)-universal (for prefix-independent objectives) if U satisfies W

and embeds any tree of cardinality < κ which satisfies W .

Some concrete examples. We start by illustrating the notions presented until now and
some methods to derive universality proofs with a few simple concrete examples of objectives.

For many more examples, as well as the missing proofs of this paragraph, we refer to
the Section 4 of the full version [7]. There, we also re-obtain in our framework the general
characterisations of [8] for topologically closed objectives, and of [12] for Muller objectives.

Objective W1 = {w ∈ {a, b}ω | a and b occur infinitely often in w}. We show, for
each cardinal κ, an ε-separated chromatic and well-monotone (κ, W ε

1)-universal graph of
breadth 2. This implies that the ε-chromatic memory of W1 is at most 2.

A. Casares and P. Ohlmann 122:11

Fix a cardinal number κ and consider the graph U from Figure 4. It is easy to check that
U is an ε-separated monotone graph over the set M = {a, b} and that it is indeed chromatic
and satisfies W . We sketch a universality proof. Since W1 is prefix-independent, we show
that U embeds any tree of cardinality < κ which satisfies W .

Figure 4 Universal graph for W1. The order coincides with ε−→ (as required by the definition
of ε-separated graphs). Edges following from monotonicity are not represented. An edge between
boxes indicates that all edges are put between vertices in the respective boxes.

Let T be a C-tree of size < κ which satisfies W , and let t0 be its root. Note that all paths
from t0 eventually visit a b-edge; there is in fact an ordinal λ0 < κ (defined by induction)
which counts the maximal amount of a-edges seen from t0 before a b-edge is seen; we set
ϕ(t0) to be (a, λ0).

Then for each edge t0
c−→ t ∈ E(T) we proceed as follows.

If c ∈ {a, ε}, we iterate exactly the same process on t, but the ordinal count will on the
number of a’s will have decreased (or even strictly decreased if c = a) from t0 to t, which
guarantees that ϕ(t0) a−→ ϕ(t) is indeed an edge in U .
If c = b, then we iterate the same process of t but inverting the roles of a and b; thus
ϕ(t) is of the form (b, λb) for some λb < κ, and the edge ϕ(t0) b−→ ϕ(t) belongs to U , as
required.

This concludes the top-down construction of ϕ and the universality proof.
It is not difficult to find lower bounds to see that the ε-free memory of W1 is ≥ 2. For

example, a game with just one vertex controlled by Eve where she can choose to produce a

or b provides this lower bound. Therefore, the exact memory of W1 is 2, for all the different
notions of memory.

Objective W2 = (C∗a)mC≥naCω with C = {a, b} and m, n ≥ 1. We provide a
universal graph of width n + 1 which proves that the ε-memory is ≤ n + 1. A matching lower
bound on the ε-free memory follows from the game depicted on Figure 5. We remark that
from the minimal automaton for the regular language L = (C∗a)mC≥na we only obtain an
upper bound of n + m + 1 on the memory.

m

Figure 5 A game where Eve requires memory n + 1 to ensure objective W2.

The well-monotone graph U depicted in Figure 6 proves the n + 1 upper bound on the
ε-memory. Actually, it turns out that even the ε-chromatic memory of W2 is n + 1, which
requires a more subtle construction presented in the full version.

ICALP 2023

122:12 Characterising Memory in Infinite Games

Figure 6 A well-monotone graph U which has width n + 1 and is universal for W2.

Objective W3 = {w ∈ Cω | w contains infinitely often bb or (finitely often b and
aa)} over C = {a, b, c}. Figure 7 depicts a deterministic parity automaton A of size 3
recognising W3; this gives an upper bound of 3 on the memory of W3. The game depicted
on the right of Figure 7 witnesses that Eve requires ε-free memory ≥ 2: positional strategies
are losing, but she wins by answering b to b and a to c.

Figure 7 On the left, a deterministic parity automaton A with three states recognising W3 (we
use max-parity semantics). In the middle, an ε-separated chromatic universal graph U of breadth 2
for W3; as always, edges following from monotonicity are omitted. On the right, a game witnessing
that Eve requires ε-free memory ≥ 2.

The graph U depicted in the middle of Figure 7 is an ε-separated chromatic well-monotone
universal graph for W3 of breadth 2, providing the upper bound of 2 on all the types of
memory for W3.

Counterexamples. We now provide two negative results. First, we show that the converse
of Theorem 4 does not hold, even in the case of objectives.

▶ Proposition 6. For each cardinal µ, the objective Wµ = {w0w1 · · · ∈ µω | ∀i, wi ≠ wi+1}
satisfies that
1. the ε-free memory of Wµ is ≤ 2;
2. the ε-free memory of W ε

µ is ≥ µ; and therefore the ε-memory of Wµ is ≥ µ; and
3. there is κ such that any monotone (κ, Wµ)-universal graph has width ≥ µ.

Second, we prove that Proposition 5 cannot hold if the bound on the size of the antichains
of the graph is not finite.

▶ Proposition 7. For any infinite cardinal µ, the objective Wµ = {(w, w′) ∈ (µ × µ)ω |
∄i such that wi < wi+1 and w′

i < w′
i+1} is such that

for all cardinals κ there exists a well-monotone (κ, Wµ)-universal graph whose antichains
have cardinality < ℵ0; and
there is an ε-game with objective W ε

µ requiring ε-memory ≥ µ.

A. Casares and P. Ohlmann 122:13

4 Closure properties

Lexicographical products. We provide a study of lexicographical products, as introduced
by Ohlmann [20], whose result we generalize to finite memory bounds.

Given two prefix-independent objectives W1 and W2 over disjoint sets of colours C1 and
C2, we define their lexicographical product W1 ⋉ W2 over C = C1 ⊔ C2 by

W1 ⋉ W2 = {w ∈ Cω | [w2 is infinite and in W2] or [w2 is finite and w1 ∈ W1]},

where w1 (resp. w2) is the (finite or infinite) word obtained by restricting w to occurrences
of letters from C1 (resp. C2) in the same order. Note that if w2 is finite then w1 is infinite,
which is why the product is well defined.

We now define the lexicographical product (U, ≤) of two ordered graphs (U1, ≤1) and
(U2, ≤2). Intuitively, each vertex in U2 is replaced by a copy of U1. (see also Figure 8).

Figure 8 Illustration of the lexicographical product of two ordered graphs.

Formally U1 ⋉ U2 = U is defined over the lexicographical product of (V (U1), ≤1) and
(V (U2), ≤2), that is V (U) = V (U1) × V (U2) and ≤ is the lexicographical product of ≤1 and
≤2. Its edges are:

E(U) = {(u1, u2) c1−→ (u′
1, u′

2) | c1 ∈ C1 and (u2 >2 u′
2 or [u2 = u′

2 and u1
c1−→ u′

1])}
∪ {(u1, u2) c2−→ (u′

1, u′
2) | c2 ∈ C2 and u2

c2−→ u′
2}.

We now state our main result in this section, a direct extension of [20, Theorem 18].

▶ Theorem 8. Let W1 and W2 be two prefix-independent objectives over disjoint sets of
colours C1 and C2. Let κ be a cardinal and let (U1, ≤) and (U2, ≤) be monotone graphs which
are respectively (κ, W1) and (κ, W2)-universal. Then U1 ⋉U2 is monotone and (κ, W1 ⋉W2)-
universal.

Using Theorems 3 and 4 together with Proposition 5, we deduce the following result.

▶ Corollary 9. Let W1 and W2 be two prefix-independent objectives over disjoint sets of
colours C1 and C2, and assume that W1 (resp. W2) has ε-memory ≤ n1 ∈ N (resp. ≤ n2).
Then, their lexicographical product W1 ⋉ W2 has ε-memory ≤ n1n2.

Combining objectives with locally finite memory. When applied to µ = ℵ0, since well-
founded orders with bounded antichains correspond to well-quasi-orders (wqo’s), Theorem 4
states that the existence of universal monotone graphs which are wqo’s for a given objective
(or even, a valuation) entails locally finite memory, meaning that for any ε-free game there is
an optimal strategy S such that for all vertices v, the amount of memory used at v (that is,
the cardinality of π−1

S (v)) is finite. Unfortunately this is not a characterisation: Proposition 6
applied to µ = ℵ0 gives an objective with ε-free memory 2 but which does not admit such
universal structures. Still, by combining our knowledge so far with a few additional insights

ICALP 2023

122:14 Characterising Memory in Infinite Games

stated below, we may derive some strong closure properties pertaining to objectives with
locally finite memory. In the sequel, we will simply say monotone wqo for a well-monotone
graph whose antichains are finite.

Given two partially ordered sets (U1, ≤1) and (U2, ≤2), we define their (direct) product
to be the partially ordered set (U1 × U2, ≤), where

(u1, u2) ≤ (u′
1, u′

2) ⇐⇒ [u1 ≤ u′
1] and [u2 ≤ u′

2].

Note that if ≤1 and ≤2 are well-founded, then so is ≤. However, there may be considerable
blowup on the size of antichains, for instance, ω × ω has arbitrarily large (finite) antichains
whereas ω is a total order. However, it is a well-known fact that the product of two wqo’s is
also a wqo (see for instance [10]), that is, one may not go from finite to infinite antichains.

Given two partially ordered C-graphs (G1, ≤1) and (G2, ≤2), we define their (direct)
product to be the partially ordered C-graph G defined over the product of (V (G1), ≤1) and
(V (G2), ≤2) by

E(G) = {(v1, v2) c−→ (v′
1, v′

2) | v1
c−→ v′

1 ∈ E(G1) and v2
c−→ v′

2 ∈ E(G2)}.

Note that if (G1, ≤1) and (G2, ≤2) are monotone, then so is their product. Therefore, if
(G1, ≤1) and (G2, ≤2) are monotone wqo’s, then so is their product. Our discussion hinges
on the following result.

▶ Lemma 10. Let κ be a cardinal, and W1, W2 ⊆ Cω be two objectives. Let (U1, ≤1) and
(U2, ≤2) be two C-graphs which are (κ, W1) and (κ, W2)-universal, respectively. Then their
product U is (κ, W1 ∩ W2)-universal.

Therefore, by combining this lemma with the fact that wqo’s are closed under product,
we obtain that if two objectives W1 and W2 have monotone wqo’s as universal graphs, then
so does their intersection, hence, from Theorem 4, W1 ∩ W2 has locally finite memory. In
particular, thanks to Theorem 3, we get the following weak closure property.

Figure 9 A game where initially, Adam chooses an upper bound i, then the players alternate
in choosing integers in [−i, i]. Eve wins if the partial sums of the weights remain bounded both
from above and below (bi-boundedness objective). She can ensure a win by simply playing the
opposite of Adam in each round (this strategy is represented on the right-hand side), which requires
unbounded but locally finite memory. Since bi-boundedness objectives are intersections of two
positional objectives (being bounded from above and from below), our results in this section ensure
that any game with a bi-boundedness objective has optimal locally finite memory strategies.

▶ Corollary 11. Let W1 and W2 be two objectives which have monotone wqo’s as universal
graphs. Then so does W1 ∩ W2. In particular the intersection of two objectives with finite
ε-memory has locally finite memory.

A. Casares and P. Ohlmann 122:15

The upper bound stated in Corollary 11 is met: Figure 9 gives an example where W1
and W2 are positional but W1 ∩ W2 has ε-free memory > n for all n ∈ N.

Although our results fall short of implying such a strong closure property, we may still
state the following conjecture:

▶ Conjecture 12. Objectives with ε-free memory < ℵ0 are closed under intersection.

Unions of prefix-independent Σ0
2 objectives. The Cantor topology on Cω naturally provides

a way to define general families of objectives that have been well-studied in the literature
of formal languages (we refer to [21] for a general overview). In particular, some of these
classes of objectives are given by the different levels of the Borel hierarchy; the lowest levels
are Σ0

1, consisting on the open subsets, and Π0
1, consisting on the closed subsets. The level

Σ0
n+1 (resp. Π0

n+1) contains the countable unions (resp. countable intersections) of subsets
in Π0

n (resp. Σ0
n).

We now prove that prefix-independent objectives in Σ0
2 with ε-memory ≤ m ∈ N are

closed under countable unions. We recall that Σ0
2 objectives are those of the form WL =

{w ∈ Cω | w has finitely many prefixes in L}, where L ⊆ C∗ is an arbitrary language of
finite words [22].

▶ Theorem 13. Prefix-independent Σ0
2 objectives with ε-memory ≤ m ∈ N are closed under

countable unions.

Our proof relies on the definition of the direct sum of a family of universal graphs (obtained
by concatenating them) and the following lemma.

▶ Lemma 14. Let W0, W1, · · · ⊆ Cω be prefix-independent Σ0
2 objectives, κ be a cardinal,

and U0, U1, . . . be C-graphs such that for each i, Ui is (Wi, κ)-universal. Let W =
⋃

i Wi.
Then the graph U ⋉ κ, where U is the direct sum of the Ui’s, and κ is the edgeless graph with
κ vertices, is (κ, W)-universal.

Proof sketch. Let T be a tree of cardinality < κ satisfying W . Since W is prefix-independent,
proving that there is t ∈ V (T) inducing a subtree T [t] such that T [t] → U is enough to
derive universality of U ⋉ κ (in the full version [7], this useful fact is stated as Lemma 10).
Since U is the direct sum of the Ui’s and since each Ui is κ-universal for Wi, this amounts
to showing that there is i ∈ N and t ∈ T such that T [t] satisfies Wi. Assume otherwise.
Take e = e0e1 · · · ∈ Nω to be a word over the naturals with infinitely many occurrences of
each natural, for instance e = 010120123 For each i ∈ N, let Li ⊆ C∗ be such that
Wi = {w ∈ Cω | w has finitely many prefixes in Li}.

We now construct an infinite path π = π0π1 . . . starting from the root t0 in T such that
for each i, the coloration w0 . . . wi of π0 . . . πi belongs to Lei

. This implies that the coloration
w of π has infinitely many prefixes in each of the Li’s, therefore it does not belong to W ,
a contradiction. Assume π = π0 . . . πi−1 : t0

w0...wi−1
⇝ t constructed up to πi−1. Since by

assumption, T [t] does not satisfy Wei , there is a path π′ : t
w
⇝ such that w /∈ Wei . By

prefix-independence of Wei
, we get w0 . . . wi−1w /∈ Wei

, thus w has a prefix wi such that
w0 . . . wi−1wi ∈ Lei ; this allows us to augment π as required and conclude our proof. ◀

The theorem follows from Lemma 14, Theorem 3 and Proposition 5 and the fact that
antichains in the well-founded graph U × κ are no larger than those in U .

ICALP 2023

122:16 Characterising Memory in Infinite Games

5 Conclusion

In this paper, we have extended Ohlmann’s work [20] to the study of the memory of objectives.
We have introduced different variants of well-monotone universal graphs adequate to the
various models of memory appearing in the literature, and we have characterised the memory
of objectives through the existence of such universal graphs (Theorems 3 and 4).

Possible applications. We expect these results to have two types of applications. The first
one is helping to find tight bounds for the memory of different families of objectives. We have
illustrated this use of universal graphs by providing non-trivial tight bounds on the memory
of some concrete examples. In the full version [7, Section 4], we further recover known results
about the memory of topologically closed objectives [8] and Muller objectives [12]. While
finding universal graphs and proving their correctness might be difficult, we believe that
they are a useful support to guide our intuition, and they provide a standardised method to
formalise proofs of upper bounds on memory requirements.

The second kind of application discussed in the paper is the study of combinations of
objectives. We have used our characterizations to bound the memory requirements of finite
lexicographical product of objectives (Section 4). We have also established that intersections
of objectives with finite ε-memory always have locally finite ε-free memory. Finally, we
have proved that prefix-independent Σ0

2 objectives with finite ε-memory are closed under
countable unions. We believe that the new angle offered by universal graphs will help to
better understand general closure properties of memory.

Open questions. Many questions remain open. First of all, as discussed in Section 4, we
have proved that objectives admitting universal monotone wqo’s are closed by intersection.
However, we do not know whether the larger class of objectives with unbounded finite
ε-free memory is closed under intersection (Conjecture 12). A related question is therefore
understanding what are exactly the objectives admitting universal monotone wqo’s.

In the realm of positional objectives, a long-lasting open question is Kopczyński’s conjec-
ture [15]: are unions of prefix-independent positional objectives positional? This conjecture
has recently been disproved for finite game graphs by Kozachinskiy [16], but it remains open
for arbitrary game graphs. We propose a generalisation of Kopczyński’s conjecture in the
case of ε-memory.

▶ Conjecture 15. Let W1 ⊆ Cω and W2 ⊆ Cω be two prefix-independent objectives with
ε-memory ≤ n1, n2, respectively. Then W1 ∪ W2 has ε-memory ≤ n1n2.

Objectives that are ω-regular (those recognised by a deterministic parity automaton, or,
equivalently, by a non-deterministic Büchi automaton) have received a great deal of attention
over the years. However, very little is known about their memory requirements, and even
about their positionality. By now, thanks to a recent work of Bouyer, Casares, Randour and
Vandenhove [1], which relies on Ohlmann’s characterisation, positionality is understood for
objectives recognised by deterministic Büchi automata.

Characterising positionality or memory requirements for other general classes of ω-regular
objectives, such as those recognised by deterministic co-Büchi automata or by deterministic
automata of higher parity index remains an open and challenging endeavour. Similarly, one
may turn to (non-necessarily ω-regular) objectives with topological properties, for instance,
it is not known by now which topologically open objectives (or, recognised by infinite
deterministic reachability automata) are positional, or finite memory. We hope that the
newly available tools presented in this paper will help progress in this direction.

A. Casares and P. Ohlmann 122:17

References
1 Patricia Bouyer, Antonio Casares, Mickael Randour, and Pierre Vandenhove. Half-positional

objectives recognized by deterministic Büchi automata. In CONCUR, volume 243, pages
20:1–20:18, 2022. doi:10.4230/LIPIcs.CONCUR.2022.20.

2 Patricia Bouyer, Youssouf Oualhadj, Mickael Randour, and Pierre Vandenhove. Arena-
independent finite-memory determinacy in stochastic games. In CONCUR, volume 203, pages
26:1–26:18, 2021. doi:10.4230/LIPIcs.CONCUR.2021.26.

3 Patricia Bouyer, Mickael Randour, and Pierre Vandenhove. Characterizing omega-regularity
through finite-memory determinacy of games on infinite graphs. In STACS, volume 219, pages
16:1–16:16, 2022. doi:10.4230/LIPIcs.STACS.2022.16.

4 Patricia Bouyer, Stéphane Le Roux, Youssouf Oualhadj, Mickael Randour, and Pierre Van-
denhove. Games where you can play optimally with arena-independent finite memory. Log.
Methods Comput. Sci., 18(1), 2022. doi:10.46298/lmcs-18(1:11)2022.

5 Antonio Casares. On the minimisation of transition-based Rabin automata and the chromatic
memory requirements of Muller conditions. In CSL, volume 216, pages 12:1–12:17, 2022.
doi:10.4230/LIPIcs.CSL.2022.12.

6 Antonio Casares, Thomas Colcombet, and Karoliina Lehtinen. On the size of good-for-games
Rabin automata and its link with the memory in Muller games. In ICALP, volume 229, pages
117:1–117:20, 2022. doi:10.4230/LIPIcs.ICALP.2022.117.

7 Antonio Casares and Pierre Ohlmann. Characterising memory in infinite games. CoRR,
abs/2209.12044, 2022. doi:10.48550/arXiv.2209.12044.

8 Thomas Colcombet, Nathanaël Fijalkow, and Florian Horn. Playing safe. In FSTTCS,
volume 29, pages 379–390, 2014. doi:10.4230/LIPIcs.FSTTCS.2014.379.

9 Thomas Colcombet and Damian Niwiński. On the positional determinacy of edge-labeled
games. Theor. Comput. Sci., 352(1-3):190–196, 2006. doi:10.1016/j.tcs.2005.10.046.

10 Stéphane Demri, Alain Finkel, Jean Goubault-Larrecq, Sylvain Schmitz, and Philippe
Schnoebelen. Well-quasi-orders for algorithms. Lecture notes, Master MPRI,
2017. URL: https://wikimpri.dptinfo.ens-cachan.fr/lib/exe/fetch.php?media=cours:
upload:poly-2-9-1v02oct2017.pdf.

11 Robert P. Dilworth. A decomposition theorem for partially ordered sets. Annals of Mathematics,
51(1):161–166, 1950. doi:10.2307/1969503.

12 Stefan Dziembowski, Marcin Jurdzinski, and Igor Walukiewicz. How much memory is needed
to win infinite games? In LICS, pages 99–110. IEEE Computer Society, 1997. doi:10.1109/
LICS.1997.614939.

13 Hugo Gimbert and Wieslaw Zielonka. Games where you can play optimally without any
memory. In CONCUR, volume 3653 of Lecture Notes in Computer Science, pages 428–442.
Springer, 2005. doi:10.1007/11539452_33.

14 Yuri Gurevich and Leo Harrington. Trees, automata, and games. In STOC, pages 60–65, 1982.
doi:10.1145/800070.802177.

15 Eryk Kopczyński. Half-positional Determinacy of Infinite Games. PhD thesis, Warsaw
University, 2008.

16 Alexander Kozachinskiy. Energy games over totally ordered groups. CoRR, abs/2205.04508,
2022. doi:10.48550/arXiv.2205.04508.

17 Alexander Kozachinskiy. Infinite separation between general and chromatic memory. CoRR,
abs/2208.02691, 2022. doi:10.48550/arXiv.2208.02691.

18 Alexander Kozachinskiy. State complexity of chromatic memory in infinite-duration games.
CoRR, abs/2201.09297, 2022. arXiv:2201.09297.

19 Pierre Ohlmann. Characterizing positionality in games of infinite duration over infinite graphs.
In LICS, pages 22:1–22:12, 2022. doi:10.1145/3531130.3532418.

20 Pierre Ohlmann. Characterizing Positionality in Games of Infinite Duration over Infinite
Graphs. TheoretiCS, Volume 2, January 2023. doi:10.46298/theoretics.23.3.

ICALP 2023

https://doi.org/10.4230/LIPIcs.CONCUR.2022.20
https://doi.org/10.4230/LIPIcs.CONCUR.2021.26
https://doi.org/10.4230/LIPIcs.STACS.2022.16
https://doi.org/10.46298/lmcs-18(1:11)2022
https://doi.org/10.4230/LIPIcs.CSL.2022.12
https://doi.org/10.4230/LIPIcs.ICALP.2022.117
https://doi.org/10.48550/arXiv.2209.12044
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.379
https://doi.org/10.1016/j.tcs.2005.10.046
https://wikimpri.dptinfo.ens-cachan.fr/lib/exe/fetch.php?media=cours:upload:poly-2-9-1v02oct2017.pdf
https://wikimpri.dptinfo.ens-cachan.fr/lib/exe/fetch.php?media=cours:upload:poly-2-9-1v02oct2017.pdf
https://doi.org/10.2307/1969503
https://doi.org/10.1109/LICS.1997.614939
https://doi.org/10.1109/LICS.1997.614939
https://doi.org/10.1007/11539452_33
https://doi.org/10.1145/800070.802177
https://doi.org/10.48550/arXiv.2205.04508
https://doi.org/10.48550/arXiv.2208.02691
https://arxiv.org/abs/2201.09297
https://doi.org/10.1145/3531130.3532418
https://doi.org/10.46298/theoretics.23.3

122:18 Characterising Memory in Infinite Games

21 Dominique Perrin and Jean-Éric Pin. Infinite words - automata, semigroups, logic and games,
volume 141 of Pure and applied mathematics series. Elsevier Morgan Kaufmann, 2004.

22 Michał Skrzypczak. Topological extension of parity automata. Information and Computation,
228-229:16–27, 2013. doi:10.1016/j.ic.2013.06.004.

23 Wiesław Zielonka. Infinite games on finitely coloured graphs with applications to automata
on infinite trees. Theoretical Computer Science, 200(1-2):135–183, 1998.

https://doi.org/10.1016/j.ic.2013.06.004

Approximate Model Counting: Is SAT Oracle More
Powerful Than NP Oracle?
Diptarka Chakraborty #

National University of Singapore, Singapore

Sourav Chakraborty #

Indian Statistical Institute, Kolkata, India

Gunjan Kumar #

National University of Singapore, Singapore

Kuldeep S. Meel #

National University of Singapore, Singapore

Abstract
Given a Boolean formula ϕ over n variables, the problem of model counting is to compute the number
of solutions of ϕ. Model counting is a fundamental problem in computer science with wide-ranging
applications in domains such as quantified information leakage, probabilistic reasoning, network
reliability, neural network verification, and more. Owing to the #P-hardness of the problems,
Stockmeyer initiated the study of the complexity of approximate counting. Stockmeyer showed
that log n calls to an NP oracle are necessary and sufficient to achieve (ε, δ) guarantees. The
hashing-based framework proposed by Stockmeyer has been very influential in designing practical
counters over the past decade, wherein the SAT solver substitutes the NP oracle calls in practice. It
is well known that an NP oracle does not fully capture the behavior of SAT solvers, as SAT solvers
are also designed to provide satisfying assignments when a formula is satisfiable, without additional
overhead. Accordingly, the notion of SAT oracle has been proposed to capture the behavior of SAT
solver wherein given a Boolean formula, an SAT oracle returns a satisfying assignment if the formula
is satisfiable or returns unsatisfiable otherwise. Since the practical state-of-the-art approximate
counting techniques use SAT solvers, a natural question is whether an SAT oracle is more powerful
than an NP oracle in the context of approximate model counting.

The primary contribution of this work is to study the relative power of the NP oracle and SAT
oracle in the context of approximate model counting. The previous techniques proposed in the
context of an NP oracle are weak to provide strong bounds in the context of SAT oracle since, in
contrast to an NP oracle that provides only one bit of information, a SAT oracle can provide n bits
of information. We therefore develop a new methodology to achieve the main result: a SAT oracle is
no more powerful than an NP oracle in the context of approximate model counting.

2012 ACM Subject Classification Theory of computation → Oracles and decision trees

Keywords and phrases Model counting, Approximation, Satisfiability, NP oracle, SAT oracle

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.123

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Funding Diptarka Chakraborty: Supported in part by an MoE AcRF Tier 2 grant (MOE-T2EP20221-
0009) and Google South & South-East Asia Research Award.
Gunjan Kumar : Supported in part by National Research Foundation Singapore under its NRF
Fellowship Programme[NRF-NRFFAI1-2019-0004].
Kuldeep S. Meel: Supported in part by National Research Foundation Singapore under its NRF Fellow-
ship Programme[NRF-NRFFAI1-2019-0004] and Campus for Research Excellence and Technological
Enterprise (CREATE) programme, Ministry of Education Singapore Tier 2 grant MOE-T2EP20121-
0011, and Ministry of Education Singapore Tier 1 Grant [R-252-000-B59-114].

EA
T
C
S

© Diptarka Chakraborty, Sourav Chakraborty, Gunjan Kumar, and Kuldeep S. Meel;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 123; pp. 123:1–123:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:diptarka@comp.nus.edu.sg
mailto:sourav@isical.ac.in
mailto:dcsgunj@nus.edu.sg
mailto:meel@comp.nus.edu.sg
https://doi.org/10.4230/LIPIcs.ICALP.2023.123
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

123:2 Approximate Model Counting: Is SAT Oracle More Powerful Than NP Oracle?

1 Introduction

Let ϕ be a Boolean formula over n propositional variables. An assignment s ∈ {T, F}n is
called a satisfying assignment if it makes ϕ evaluate to true. Let sol(ϕ) denote the set of all
satisfying assignments. The model counting problem is to compute |sol(ϕ)| for a given ϕ. It
is a fundamental problem in computer science and has numerous applications across different
fields such as quantified information leakage, probabilistic reasoning, network reliability,
neural network verification, and the like [12, 13, 17, 9, 8, 1]. The seminal work of Valiant [17]
showed that the problem of model counting is #P-complete, and consequently, one is often
interested in approximate variants of the problem. In this paper, we consider the following
problem:

Approximate Model Counting

Input A formula ϕ, tolerance parameter ε > 0, and confidence parameter δ ∈ (0, 1).
Output Compute an estimate Est such that

Pr
[
|sol(ϕ)|
1 + ϵ

≤ Est ≤ (1 + ϵ)|sol(ϕ)|
]
≥ 1− δ.

Stockmeyer [16] initiated the study of the complexity of approximate model counting.
Stockmeyer’s seminal paper made two foundational contributions: the first contribution was
to define the query model that could capture possible natural algorithms yet amenable enough
to theoretical tools to allow non-trivial insight. To this end, Stockmeyer proposed the query
model wherein one can construct an arbitrary set S and query an NP oracle to determine if
|sol(ϕ)∩S| ≥ 1. Stockmeyer showed that under the above-mentioned query model, log n calls
to an NP oracle are necessary and sufficient (for a fixed ε and δ). Furthermore, Stockmeyer
introduced a hashing-based algorithmic procedure to achieve the desired upper bound that
makes O(log n) calls to NP-oracle. The lack of availability of powerful reasoning systems for
problems in NP dissuaded the development of algorithmic frameworks based on Stockmeyer’s
hashing-based framework until the early 2000s [10].

Motivated by the availability of powerful SAT solvers, there has been a renaissance in
the development of hashing-based algorithmic frameworks for model counting, wherein a
call to an NP oracle is handled by an SAT solver in practice. The current state-of-the-art
approximate model counter, ApproxMC [4], relies on the hashing-based framework and is able
to routinely handle problems involving hundreds of thousands of variables. The past decade
has witnessed a sustained interest in further enhancing the scalability of these approximate
model counters. It is perhaps worth highlighting that Stockmeyer’s query model captures
queries by ApproxMC.

While the current state-of-the-art approximate model counters rely on the hashing-based
framework, they differ significantly from Stockmeyer’s algorithm for approximate model
counting. The departures from Stockmeyer’s algorithm have been deliberate and have
often been crucial to attaining scalability. In particular, ApproxMC crucially exploits the
underlying SAT solver’s ability to return a satisfying assignment to attain scalability. In this
context, it is worth highlighting that, unlike an NP oracle that only returns the answer Yes
or No for a given Boolean formula, all the known SAT solvers are capable of returning a
satisfying assignment if the formula is satisfiable without incurring any additional overhead.
Observe that one would need n calls to an NP oracle to determine a satisfying assignment.
From this viewpoint, an NP oracle does not fully capture the behavior of an SAT solver, and
one needs a different notion to model the behavior of SAT solver.

D. Chakraborty, S. Chakraborty, G. Kumar, and K. S. Meel 123:3

Delannoy and Meel [7] sought to bridge the gap between theory and practice by proposing
the notion of a SAT oracle. Formally, a SAT oracle takes in a Boolean formula ϕ as input
and returns a satisfying assignment s ∈ sol(ϕ) if ϕ is satisfiable and ⊥, otherwise. It is worth
highlighting that we may need n calls to an NP oracle to simulate a query to a SAT oracle,
and therefore, it is conceivable for an algorithm to make O(log n) calls to a SAT oracle but
O(n log n) calls to an NP oracle. Delannoy and Meel showcased precisely such behavior
in the context of almost-uniform generation. Their proposed algorithm, UniSamp makes
O(log n) calls to a SAT oracle and would require O(n log n) calls to an NP oracle if one were
to replace a SAT oracle with an NP oracle. At the same time, it is not necessary that there
would be a gap of n calls for every algorithm: simply consider the problem of determining
whether a formula is satisfiable or not. Only one call to an NP oracle (and similarly to a
SAT oracle) suffices.

Furthermore, the notion of the SAT oracle has the potential to be a powerful tool to
explain the behavior of algorithms, as highlighted by Delannoy and Meel. Given access to an
NP oracle, the sampling algorithm due to Jerrum, Valiant, and Vazirani [11] (referred to as
JVV algorithm) makes O(n2 log n) calls to an NP oracle as well as a SAT oracle, i.e., there are
no savings from the availability of a SAT oracle. On the other hand, the algorithm, UniSamp
makes O(log n) and O(n log n) calls to SAT and an NP oracle respectively. Therefore, the
NP oracle model would indicate that one should expect the performance gap between JVV
and UniSamp to be linear, while the SAT oracle model indicates an exponential gap. The
practical implementations of JVV and UniSamp indeed indicate the performance gap between
them to be exponential rather than linear. Therefore, analyzing problems under the SAT
oracle model has the promise to have wide-ranging consequences.

In this paper, we analyze the complexity of the problem of approximate model counting
given access to a SAT oracle. Our study is motivated by two observations:

O1 The modern state-of-the-art hashing-based techniques differ significantly from Stock-
meyer’s algorithmic procedure and, in particular, exploit the availability of SAT solvers.
Yet, they make O(log n) calls to a SAT oracle, which coincides with the number of NP
oracle calls in Stockmeyer’s algorithmic procedure.

O2 Stockmeyer provided a matching lower bound of Ω(log n) on the number of NP calls,
which follows from the simple observation that for a fixed ε, there are Θ(n) possible
outputs that an algorithm can return. Since every NP call returns an answer, Yes or No,
the trace of an algorithm can be viewed as a binary tree such that every leaf represents
a possible output value. Therefore, the height of the tree (i.e., the number of NP calls)
must be Ω(log n). Since a SAT oracle returns a satisfying assignment (i.e., provides n
bits of information), the trace of the algorithm is no longer a binary tree, and therefore,
Stockmeyer’s analysis does not extend to the case of SAT oracles for approximate model
counting.

To summarize, the best-known upper bound for SAT oracle calls for approximate model
counting is O(log n), which matches the upper bound for NP oracle calls. However, the
technique developed in the context of achieving a lower bound for NP oracle calls does not
apply to the case of SAT oracle. Therefore, one wonders whether there exist algorithms with
a lower number of SAT oracle calls. In other words, are SAT oracles more powerful than NP
oracles for the problem of approximate model counting?

The primary contribution of this work is to resolve the above challenge. In contrast to
the problem of uniform sampling, we reach a starkly different conclusion: SAT oracles are no
more powerful than NP oracles in the context of approximate model counting. Formally, we
prove the following theorem:

ICALP 2023

123:4 Approximate Model Counting: Is SAT Oracle More Powerful Than NP Oracle?

▶ Theorem 1.1. For any ϵ, δ ∈ (0, 1), given a formula ϕ, computation of (ε, δ)-approximation
of |sol(ϕ)| requires Ω̃(log n)1 queries to a SAT oracle.

The establishment of the above theorem turned out to be highly challenging as the
existing approaches in the context of NP oracles are not applicable to the SAT oracles. We
provide an overview of our approach below.

1.1 Technical Overview
In order to provide the lower bound on the number of queries required by the SAT oracle,
we work with a stronger SAT oracle model. In particular, an answer from a (standard)
SAT oracle does not provide any extra guarantee/information other than that the returned
assignment is a satisfying assignment of the queried formula. Our lower bound works even
if we consider that the returned satisfying assignment is chosen randomly from the set of
satisfying assignments. More specifically, we consider a stronger model, namely SAT-Sample
oracle, which returns a uniformly chosen solution of a queried formula ϕ whenever the formula
is satisfiable. It is worth remarking that while a SAT oracle can be simulated by only n

queries to an NP oracle, the best-known technique to simulate SAT-Sample makes O(n2 log n)
queries to an NP oracle [2, 7]. We prove the following theorem which implies Theorem 1.1.

▶ Theorem 1.2. For any ϵ < 1/2 and any δ ≤ 1/6, given a formula ϕ, computation of
(ε, δ)-approximation of |sol(ϕ)| requires Ω̃(log n) queries to a SAT-Sample oracle.

Although we consider ϵ < 1/2 and δ ≤ 1/6 in the above theorem and provide the proof
accordingly, our proof works even for any constant ϵ, δ ∈ (0, 1). Another thing to remark is
that in our proof, we allow even exponential (in the size of the original formula) size formula
to be queried in the SAT-Sample oracle, making our result stronger than what is claimed in
the above theorem.

Let us assume that Alg is an algorithm that (ϵ, δ)-approximates |sol(ϕ)| for any given
input ϕ (on n variables) by making q queries to a SAT-Sample oracle. We will refer to such
an algorithm as a SAT-Sample counter. We would like to prove a lower bound on q.

The main technical difficulty in proving our lower bound results comes from the enormous
power of a SAT-Sample oracle compared to an NP oracle. An NP oracle can only provide a
YES or NO answer, restricting the number of possible answers (from the NP oracle) to 2q for
a q-query counter with an NP oracle. On the other hand, since a SAT-Sample oracle returns
a (random) satisfying assignment (if a satisfying assignment exists), the number of possible
answers can be 2nq. Further, any counter can be adaptive – it can choose the next query
adaptively based on the previous queries made and their corresponding answers. In general,
proving a non-trivial (tight) lower bound for any adaptive algorithm turns out to be one
of the notorious challenges, and the difficulty in proving such a lower bound arises in other
domains like data structure lower bound, property testing, etc. One of the natural ways to
prove any lower bound is to use the information-theoretic technique. However, one of the
main challenges in applying such techniques in the adaptive setting is that conditional mutual
information terms often involve complicated conditional distributions that are difficult to
analyze.

To start with, we argue that we can assume that the SAT-Sample counter is “semi-
oblivious” in nature. The number of satisfying assignments of a formula does not change
by any permutation of the elements in {T, F}n, and the SAT-Sample counter can only get

1 The tilde hides a factor of log log n.

D. Chakraborty, S. Chakraborty, G. Kumar, and K. S. Meel 123:5

elements of sol(ϕ) by querying the SAT-Sample oracle. So we argue that the only useful
information of the ith query set (that is, the set of satisfying assignments of the formula
that is given to the SAT-Sample oracle) is the size of its intersection with the previous (i− 1)
query sets and their corresponding answers. We formalize it in Section 3.1.

We next use Yao’s minimax principle to prove a lower bound on the number of queries
to a SAT-Sample oracle made by a deterministic “Semi-oblivious counter” when the input
formula ϕ is drawn from a “hard” distribution.

For the hard distribution, we construct O(n3/4) formulas ϕℓ for each value of ℓ in
the set {⌊n1/4⌋, ⌊n1/4⌋ + 1, . . . , ⌈n3/4⌉}. The formulas ϕℓ are chosen in such a way that
|sol(ϕℓ)| ≈ 2|sol(ϕℓ+1)| thereby approximately counting the number of satisfying assignments
(upto a multiplicative (1+ϵ)-factor for small constant ϵ) reduces to the problem of determining
the value of ℓ. The hard distribution is obtained by picking an ℓ uniformly at random from
the set {⌊n1/4⌋, ⌊n1/4⌋+ 1, . . . , ⌈n3/4⌉} and using the corresponding formula ϕℓ.

Finally, we show the lower bound using information theory. At a high level, we show
that the information gained about ℓ by the knowledge of obtained samples is small unless
we make Ω̃(log n) oracle calls (Lemma 9). Then we turn to Fano’s Inequality (Theorem 3)
which links the error probability of a counter to the total information gain. Showing that the
information gained by samples is small boils down to showing that the KL-divergence of the
conditional distribution over the samples is small for all formulas ϕℓ (shown in the proof of
the third part of Lemma 9). The difficulty in showing the above bound comes from the fact
that the samples are adaptive and may not always be concentrated around the expectation.
To overcome the above challenge, we first define an indicator random variable Yi to denote
whether, at the ith query, the concentration holds (see the definition in Equation 10). Then
we split it into cases: In the first case, we argue for the situation when concentration may
not hold at some step of the algorithm (if Yi = 1 for some i ∈ [q]). The second case is when
concentration holds (if Yi = 0 for all i ∈ [q]). We believe that the technique developed in this
paper can be a general tool to show sampling lower bounds in a number of other settings.

2 Notations and Preliminaries

For any integer m, let [m] denote the set of integers {1, 2, . . . ,m}. For a formula ϕ over
variable set vars(ϕ) = {v1, . . . , vn}, we denote by sol(ϕ) the set of satisfying assignments of ϕ.
If ϕ is not satisfiable then sol(ϕ) = ∅. We can interpret sol(ϕ) as a subset of {T, F}n. On the
other hand, for any subset A ⊂ {T, F}n we denote by ψA the formula whose set of satisfying
assignments is exactly A; that is, sol(ψA) = A.

Oracles and query model

In our context of Boolean formulas, an NP oracle takes in a Boolean formula ϕ as input
and returns Yes if ϕ is satisfiable (i.e., sol(ϕ) ̸= ∅), and No, otherwise. Modern SAT solvers,
besides determining whether a given formula is satisfiable or not, also return a satisfying
assignment (arbitrarily) if the formula is satisfiable. This naturally motivates us to consider
an oracle, namely SAT-Sample oracle, that takes in a Boolean formula ϕ as input and, if ϕ is
satisfiable, returns a satisfying assignment uniformly at random from the set sol(ϕ), and ⊥,
otherwise.

We rely on the query model introduced by Stockmeyer [16]: For a given ϕ whose model
count we are interested in estimating, one can query the corresponding (NP/SAT) oracle
with formulas of the form ϕ ∧ ψA, where, as stated earlier, ψA is an (arbitrary) formula
whose set of solutions is A. We will use ϕA as a shorthand to represent ϕ ∧ ψA. Throughout

ICALP 2023

123:6 Approximate Model Counting: Is SAT Oracle More Powerful Than NP Oracle?

this paper, we consider the above query model with query access to the SAT-Sample oracle.
One call to the SAT-Sample oracle will be called a SAT-Sample query. By abuse of notation,
we sometimes say “A is queried” to refer to the formula ϕA.

k-wise independent hash functions

Let n,m, k be positive integers and let H(n,m, k) denote the family of k-wise independent
hash functions from {T, F}n to {T, F}m. For any α ∈ {T, F}m, and h ∈ H(n,m, k), let
h−1(α) denote the set {s ∈ {T, F}n | h(s) = α}.

It is well-known (e.g., see [5]) that for any integer n,m, k, one can generate an explicit
family of k-wise independent hash functions in time and space poly(n,m, k). Moreover, for
any α ∈ {T, F}m, h−1(α) (where h ∈ H(n,m, k)) can be specified by a Boolean formula of
size poly(n,m, k).

Concentration inequalities for limited independence

▶ Lemma 1 ([15]). If X is a sum of k-wise independent random variables, each of which is
confined to [0, 1] with µ = E[X] then
1. For any γ ≤ 1 and k ≥ γ2µ, Pr[|X − µ| ≥ γµ] ≤ exp(−γ2µ/3).
2. For any γ ≥ 1 and k ≥ γµ, Pr[|X − µ| ≥ γµ] ≤ exp(−γµ/3).

Basics of information theory

Let X and Y be two random variables over the space X ×Y . The mutual information I(X;Y)
between random variables X and Y is the reduction in the entropy of X given Y and hence

I(X;Y) = H(X)−H(X|Y) ≤ H(X) (1)

where H(X) = −
∑

x∈X Pr[X = x] log Pr[X = x] is the Shannon entropy of X and H(X|Y)
is the conditional entropy of X given Y .

The Kullback–Leibler divergence or simply KL divergence (also called relative entropy)
between two discrete probability distributions P and Q defined on same probability space X
is given by :

KL(P ||Q) :=
∑
x∈X

p(x) log p(x)
q(x)

where p and q are probability mass functions of P and Q respectively.
If the joint distribution of X and Y is QX,Y and marginal distributions QX and QY

respectively, then the mutual information I(X;Y) can also be equivalently defined as:

I(X;Y) := KL(QX,Y ||QX ×QY).

For three random variables X,Y, Z, the conditional mutual information I(X;Y |Z) is
defined as

I(X;Y |Z) := EZ [KL(Q(X,Y)|Z ||QX|Z ×QY |Z)].

For any three random variables X,Y, Z, the chain rule for mutual information says that

I(X; (Y,Z)) = I(X;Y) + I(X;Z|Y).

D. Chakraborty, S. Chakraborty, G. Kumar, and K. S. Meel 123:7

If Z is a discrete random variable taking values in Z then we have

EZ [KL(Q(X,Y)|Z ||QX|Z ×QY |Z)] =
∑
z∈Z

QZ(z) ·KL(Q(X,Y)|Z=z||QX|Z=z ×QY |Z=z)

=
∑
z∈Z

QZ(z) · I(X;Y |Z = z).

▶ Lemma 2 ([14]). Let PX , PZ , PZ|X be the marginal distributions corresponding to a pair
(X,Z), where X is discrete. For any auxiliary distribution QZ , we have

I(X,Z) =
∑

x

PX(x)KL(PZ|X(·|x)||PZ) ≤ max
x

KL(PZ|X(·|x)||QZ).

▶ Theorem 3 (Fano’s inequality). Consider discrete random variables X and X̂ both taking
values in V. Then

Pr[X̂ ̸= X] ≥ 1− I(X; X̂) + log 2
log |V| .

Consider the random variables X,Z, X̂. If the random variable X̂ depends only on Z

and is conditionally independent on X, then we have

I(X; X̂) ≤ I(X;Z). (2)

This inequality is known as the data processing inequality. For the further exposition, readers
may refer to any standard textbook on information theory (e.g., [6]).

MiniMax theorem

Yao’s minimax principle [18] is a standard tool to show lower bounds on the worst-case
performance of randomized algorithms. Roughly speaking, it says that to show a lower bound
on the performance of a randomized algorithm R, it is sufficient to show a lower bound on
any deterministic algorithm when the instance is randomly drawn from some distribution.

Consider a problem over a set of inputs X . Let Γ be some probability distribution over
X and let X ∈ X be an input chosen as per Γ. Any randomized algorithm R is essentially a
probability distribution over the set of deterministic algorithms, say T . By Yao’s minimax
principle,

max
X∈X

Pr[R gives wrong answer onX] ≥ min
T ∈T

Pr
X∼Γ

[T gives wrong answer onX].

3 Lower Bound on the number of queries to SAT-Sample oracle

In this section, we will prove Theorem 1.2, which implies Theorem 1.1. Let Alg be an adaptive
randomized algorithm that given as input ϕ over n variables vars = {v1, . . . , vn} and output
Est that is an (ϵ, δ)-approximation of sol(ϕ). The only way Alg accesses the input ϕ is by
making queries to the SAT-Sample oracle, that is, obtaining random satisfying assignments
from sol(ϕA), where ϕA = ϕ∧ ψA. We will prove that Alg has to make at least Ω̃(log n) such
queries to the SAT-Sample oracle.

We will start by arguing that we can assume that the adaptive algorithm Alg has some
more structure. In particular, in Section 3.1 we will argue (in the same lines as in [3]) that
we can assume Alg is a semi-oblivious counter (Definition 4).

ICALP 2023

123:8 Approximate Model Counting: Is SAT Oracle More Powerful Than NP Oracle?

We use Yao’s Min-max technique to argue that obtaining a lower bound on a (randomized)
semi-oblivious counter is the same as obtaining a lower bound on a (deterministic) semi-
oblivious counter when the input is drawn from the worst possible distribution over the set
of formulas on n variables. In Section 3.2 we present the “hard” distribution that would help
us prove the lower bound against any deterministic semi-oblivious counter. In Section 3.2.1
we present some properties of the hard instance that would be used for the final lower bound
proof.

Finally in Section 3.3 we will use an information-theoretic argument to give a lower
bound on the query complexity of any deterministic semi-oblivious counter and hence prove
Theorem 1.2.

A note on the use of auxiliary variables in the queries to the SAT-Sample oracle

One thing we observe is that our lower bound proof does not assume that in the input
formula ϕ all the variables are influential. In other words, we can assume that ϕ is on n

variables, the actual number of variables in ϕ may be significantly less. All we need for our
lower bound proofs to go through is that the queries to the SAT-Sample oracle made by the
algorithm are to ϕ ∧ ψA where the ψ is a formula over n variables. And the lower bound on
the query complexity that we prove (Theorem 1.2) is Õ(log n). Hence, as long as the number
of variables used in the queries to the SAT-Sample oracle is at most polynomial in the actual
number of variables in the input formula ϕ, our lower bound holds.

3.1 Semi-oblivious counter

Suppose given a formula ϕ over n variables, a counter Alg makes q calls to the SAT-Sample
oracle with queried formulas ϕA1 , · · · , ϕAq

respectively, where each Ai ⊆ {T, F}n. (Recall,
ϕAi = ϕ ∧ ψAi , where ψAi denote the formula having sol(ψAi) = Ai.) Note, the i-th
SAT-Sample oracle call by the counter Alg is specified by the set Ai. During the i-th call (for
1 ≤ i ≤ q), suppose the counter Alg receives a sample si ∈ Ai ∪ {⊥}. Note that the oracle
calls made by Alg can be adaptive, i.e., the sets A1, · · · , Aq are not fixed in advance – the
counter Alg fixes Ai only after seeing the samples s1, · · · , si−1 (outcomes of all the previous
oracle calls).

We now define a special type of randomized SAT-Sample counter, referred to as semi-
oblivious counter, which at any point of time queries the SAT-Sample oracle only by looking
into the configuration of the previous step. We will later argue that to prove a query lower
bound for general SAT-Sample counters, it suffices to consider semi-oblivious counters. In
other words, semi-oblivious counters are as “powerful” as general SAT-Sample counters.

We first provide intuition for semi-oblivious counter. Note that permuting the variables
of any formula ϕ permutes the set of satisfying assignments sol(ϕ) but |sol(ϕ)| is unchanged.
Since a SAT-Sample counter needs to determine |sol(ϕ)| only (not sol(ϕ)), the final output by
the SAT-Sample counter, in some sense, should be based only on the relations between the
samples and the query sets (not on their actual values). Before providing a formal definition,
let us first introduce some terminology.

Given a family of sets A = {A1, · · · , Ai}, (where Ai ⊆ {T, F}n), the atoms generated byA,
denoted by At(A), are (at most) 2i distinct sets of the form ∩i

j=1Cj where Cj ∈ {Aj , {T, F}n\
Aj}. For example, if i = 2, then At(A1, A2) = {A1 ∩A2, A1 \A2, A2 \A1, (A1 ∪A2)c}.

D. Chakraborty, S. Chakraborty, G. Kumar, and K. S. Meel 123:9

▶ Definition 4 (Semi-oblivious counter). A semi-oblivious counter is a randomized algorithm
T that, given any formula ϕ, at any step i, works in the following three phases:

Semi-oblivious choice: Let Ai−1 = {A1, · · · , Ai−1}, Si−1 = {s1, · · · , si−1}, Ci−1 =
{c1, · · · , ci−1} be the set of first i− 1 query sets, the set of first i− 1 samples obtained,
the set of first i− 1 configurations, respectively. Only based on Ci−1 (without knowing the
set Si−1), T does the following:

For each A ∈ At(Ai−1), it generates an integer kA
i between 0 and |A \ Si−1|. (kA

i

indicates how many unseen elements from the atom A of the previous query sets are to
be included in the next query set.)
It chooses a set of indices Ki ⊆ {1, · · · , i− 1}. (Ki specifies the index set of previous
samples that are to be included in the next query set.)

Query set generation: In this phase, it decides the query set Ai as follows:
Let us define the candidate unseen set family as

Ui := {U ⊆ {T, F}n \ Si−1 | ∀A ∈ At(Ai−1), |Ui ∩A| = kA
i }.

The algorithm T chooses a set Ui uniformly at random from the candidate unseen set
family Ui−1.
Let us denote Oi := {sj | j ∈ Ki}. The algorithm T decides the query set to be
Ai = Ui ∪Oi.

Oracle call: It places a query to the SAT-Sample oracle with the formula ϕAi
. Let the

i-th configuration ci specify whether si = ⊥, or for which j ∈ Ki, si = sj, or for which
A ∈ At(Ai−1), si ∈ A ∩ Ui.

In the end (after placing q = q(n) SAT-Sample oracle calls), depending on the set of all the
configurations Cq, T outputs an estimate on the |sol(ϕ)|.

From now on, for brevity, we use At(Ui) to denote the set {Ui ∩ A | A ∈ At(Ai−1)}.
Next, we show that if there exists a general SAT-Sample counter, then there also exists a
semi-oblivious counter. The proof is inspired by the argument used in [3] and is given in
Appendix A.

▶ Lemma 5. If there is an algorithm that, given any input ϕ on n variables, outputs an
(ϵ, δ)-approximation of |sol(ϕ)| while placing at most q = q(n) SAT-Sample oracle calls,
then there also exists a (randomized) semi-oblivious counter that, given input ϕ, outputs an
(ϵ, δ)-approximation of |sol(ϕ)| while also placing at most q SAT-Sample oracle calls.

Suppose all the internal randomness of a semi-oblivious counter is fixed. (Since in the
proof of Theorem 1.1, we will first apply Yao’s minimax principle, it suffices to only consider
deterministic decision trees.) Then, a semi-oblivious counter T can be fully described by a
decision tree R where the path from the root to any node v at depth i (more precisely, the
edges of this path) corresponds to the configuration of the first i − 1 samples. Note that
fixing the configurations of the samples till i− 1 queries (and the internal randomness) fixes
the size of an atom A ∈ At(A1, · · · , Ai) (and hence of each Aj for j ≤ i). Formally,

(i) A path (from root) to any node v at depth i is associated with a sequence of query sets
Ai−1 = (A1, · · · , Ai−1) such that the sizes of all atoms A ∈ At(Ai−1) are fixed.

(ii) The node v is labeled by a vector kv = (kA
i)A∈At(Ai−1) and a set Kv ⊆ [i− 1] which are

used to determine the next query set Ai = Oi ∪Ui. (Again, |Ui| =
∑

A∈At(Ai−1) k
A
i and

the set Ui is fixed.) Ai is used to place the next SAT-Sample oracle call.
(iii) For every possible value of the configuration at step i, there is a corresponding child of

the node v, with the corresponding edge labeled by the value of the configuration.

ICALP 2023

123:10 Approximate Model Counting: Is SAT Oracle More Powerful Than NP Oracle?

For any node v, we use Av = Ov ∪ Uv to denote the (random) query set (corresponding
to the node v) determined by the kv and Kv. Note that |Uv| =

∑
A∈At(Ai−1) k

A
i . Further,

we use Av := (A1, · · · , Av) for the sequence of query sets corresponding to a path to v

and node v. Observe the number of possible outcomes of the counter T at any step i is
at most i+ 2i + 1 ≤ 2q+1 (since i ≤ q). So the total number of nodes in the decision tree
corresponding to the semi-oblivious counter T is at most 2O(q2).

3.2 Hard instance
We will provide a set of inputs X (which, in our case, will be a set of formulas) and a
distribution Γ over X . Then we will show that any deterministic semi-oblivious counter D
(note that D knows X and Γ) which receives as input a formula ϕ ∈ X randomly drawn as
per distribution Γ and returns an (ϵ, δ)-approximation of sol(ϕ), must make Ω̃(log n) queries
to the SAT -oracle.

Let k = (log n)9. Let X be the set of all formulas (with n variables). We now define the
hard distribution Γ over X as follows by describing the procedure of picking a formula in X
according to Γ.
1. Pick ℓ ∈ {⌊n1/4⌋, ⌊n1/4⌋+ 1, . . . , ⌈n3/4⌉} uniformly at random.
2. Draw a hash function hℓ ← H(n, ℓ, k) uniformly at random.
3. Let ϕℓ be the formula whose set of satisfying assignments is h−1

ℓ (F ℓ). (Recall, hℓ :
{T, F}n → {T, F}ℓ.)

4. The formula ϕℓ is the picked formula.

3.2.1 Properties of the hard instance
Let fℓ := E[|sol(ϕℓ)|] = E[|h−1

ℓ (F ℓ)|] for ℓ ∈ {⌊n1/4⌋, ⌊n1/4⌋ + 1, . . . , ⌈n3/4⌉}. Observe, it
follows from the construction of ϕℓ and the properties of hash functions that fℓ = 2n

2ℓ .

▶ Lemma 6. With probability at least 1− n2−n/20, we have

for all ℓ, ||sol(ϕℓ])| − fℓ| ≤ 2−n/10fℓ. (3)

Proof. It is straightforward to see that the variance of |sol(ϕℓ)| is V ar[|sol(ϕℓ)|] ≤ fℓ. So by
Chebyshev’s inequality,

Pr
[
||sol(ϕℓ)| − fℓ| ≥ 2−n/5fℓ

]
≤ 2n/5

fℓ
≤ 2n/5 · 2ℓ

2n
≤ 2−n/20.

The lemma now follows from a union bound over all ℓ. ◀

▶ Definition 7. Once ℓ ∈ {⌊n1/4⌋, ⌊n1/4⌋+ 1, . . . , ⌈n3/4⌉} has been picked in Step 1 of the
construction of the hard instance (Section 3.2), let for any S ⊆ {T, F}n

Nℓ(S) = E [|sol(ϕℓ) ∩ S|] ,

where the expectation is over the choice of the hash function is Step 2 of the construction of
the hard instance.

Note that for any S ⊆ {T, F}n the value of Nℓ(S) is |S|/2ℓ.

▶ Lemma 8. With probability at least 1− 2O(q2)

n(log n)4 , the following holds:
For any node v in the decision tree R and any atom A ∈ At(Uv),

1. If Nℓ(Uv) < 1
n(log n)4 then |Uv ∩ sol(ϕℓ)| = 0. Similarly, if Nℓ(A) < 1

n(log n)4 for any atom
A ∈ At(Uv) then |A ∩ sol(ϕℓ)| = 0

D. Chakraborty, S. Chakraborty, G. Kumar, and K. S. Meel 123:11

2. If Nℓ(Uv) ≥ (log n)5 then 1
2Nℓ(Uv) ≤ |Uv ∩ sol(ϕℓ)| ≤ 3

2Nℓ(Uv). Similarly, if Nℓ(A) ≥
(log n)5 then 1

2 Nℓ(A) ≤ |A ∩ sol(ϕℓ)| ≤ 3
2 Nℓ(A)

3. If Nℓ(Uv) ≤ (log n)5 then |Uv ∩ sol(ϕℓ)| ≤ 2(log n)5. Similarly, if Nℓ(A) ≤ (log n)5 then
|A ∩ sol(ϕℓ)| ≤ 2(log n)5.

Proof. From Markov’s inequality, we have

Pr[|Uv ∩ sol(ϕℓ)| ≥ 1] ≤ Pr
[
|Uv ∩ sol(ϕℓ)| ≥

(
1

Nℓ(Uv) − 1
)

Nℓ(Uv)
]
≤ 2Nℓ(Uv)

Taking a union bound over all nodes v with Nℓ(Uv) < 1
n(log n)4 and all possible values of ℓ

(which can take O(n3/4) values), we get the first part.
From the first part of the Lemma 1, by setting γ = 1/2, we have

Pr[|Uv ∩ sol(ϕℓ)| ≥ Nℓ(Uv)] ≤ exp
(
−Nℓ(Uv)

12

)
for all nodes v in R such that Nℓ(Uv) ≥ (log n)5 (note that we have k = (log n)9 > γ2Nℓ(Uv)).
Taking a union bound over all such nodes v and all possible values of ℓ, we get the second
bound.

Let γv = (log n)5

Nℓ(Uv) . Since k = (log n)9 > γvNℓ(Uv), from the second part of Lemma 1, we
have

Pr[|Uv ∩ sol(ϕℓ)| ≥ γvNℓ(Uv)] ≤ exp
(
−γv

Nℓ(Uv)
3

)
≤ O

(
1

n(log n)4

)
.

for all nodes v such that Nℓ(Uv) ≤ (log n)5. Taking a union bound over all such nodes v and
all possible values of ℓ, we get the third part. ◀

3.3 Proof of Theorem 1.2
Proof of Theorem 1.2. By Lemma 5 and Yao’s minmax theorem we can assume that our
SAT-Sample counter Alg is a (deterministic) semi-oblivious counter whose input is a randomly
chosen formula ϕ ∈ ϕn, as per distribution Γ and Alg returns Est which is an (ϵ, 2/3)-
approximation of |sol(ϕ)|. We will prove that Alg must make q = Ω̃(log n) many SAT -oracle
calls.

Recall the distribution Γ (Section 3.2) over the set of all formulas. We can assume that the
input to Alg is ϕℓ, where ℓ is uniformly drawn from the set {⌊n1/4⌋, ⌊n1/4⌋+ 1, . . . , ⌈n3/4⌉}.

Consider the path taken by the semi-oblivious counter Alg in the decision tree. Let the
ith query made by Alg (that is at vertex vi) be Ai = Ui ∪ Oi (as in Definition 4). Let Zi

be the configuration (denoted as ci in Definition 4) of the sample from Ai. Note that the
domain of Zi is Ωi := Oi ∪ At(Ui) ∪ ⊥.

Let Good be the event that the condition in Equation 3 (in Lemma 6) and the condition
in Lemma 8 holds. Note that by Lemma 6 and Lemma 8 if q ≤ log n then

Pr[Good] = 1− o(1). (4)

Let X be the random variable that takes values in {⌊n1/4⌋, ⌊n1/4⌋+ 1, . . . , ⌈n3/4⌉} uni-
formly at random (in Step 1 of the construction of hard instance). Note that by the triangle
inequality

|Est− |sol(ϕℓ)|| ≥
∣∣∣∣Est− 2n

2ℓ

∣∣∣∣− ∣∣∣∣2n

2ℓ
− |sol(ϕℓ)|

∣∣∣∣ . (5)

ICALP 2023

123:12 Approximate Model Counting: Is SAT Oracle More Powerful Than NP Oracle?

By Lemma 6 we know that with probability at least (1 − 1/6), we have | 2
n

2ℓ − |sol(ϕℓ)|| ≤
1

2n/10 · 2n

2ℓ . On the other hand, since Alg outputs an (ϵ, δ)-approximation of |sol(ϕ)| (with
ϵ < 1/2 and δ < 1/6), Equation 5 implies that with probability at least (1− 1

6 − δ) ≥
2
3 we

have∣∣∣∣Est− 2n

2ℓ

∣∣∣∣ ≤ (
ϵ+ 1

2n/10

)
2n

2ℓ
≤ 1

2 ·
2n

2ℓ
, (6)

where the last inequality follows from the fact that ϵ ≤ 1/3. Since | 2
n

2ℓ − 2n

2ℓ′ | > 1
2 ·

2n

2ℓ for
any integer ℓ′ ̸= ℓ, so Equation 6 is satisfied only when X̂ is same as the picked ℓ (that is
X̂ = X) where,

X̂ = arg min
ℓ∈{⌊n1/4⌋,⌊n1/4⌋+1,...,⌈n3/4⌉}

∣∣∣∣2n

2ℓ
− Est

∣∣∣∣ .
Hence, assuming Good

1
3 ≥ Pr[X̂ ̸= X]. (7)

By Fano’s Inequality (Theorem 3)

Pr[X̂ ̸= X] ≥ 1− I(X; X̂)
O(log n) (8)

Since the final outcome of the algorithm is determined by the outcome at each step, i.e.,
Z = (Z1, . . . , Zq), so by the data processing inequality (Equation 2), we have

I(X; X̂) ≤ I(X;Z1, . . . , zq). (9)

Let Yi be the random variable that defined as

Yi =
{

1 if 1
n(log n)4 ≤ Nℓ(Ui) ≤ n(log n)4

0 otherwise
(10)

Again by the data-processing inequality (Equation 2), we have

I(X;Z1, . . . , Zq) ≤ I(X;Y1, Z1, . . . , Yq, Zq). (11)

By the chain rule of mutual information, we have

I(X;Y1, Z1, . . . , Yq, Zq) =
∑
i∈[q]

I(X;Yi, Zi|Y1, Z1, . . . , Yi−1, Zi−1) (12)

Finally, we will show, in the following lemma, that conditioned on the fact Good happens
we can upper bound I(X;Y1, Z1, . . . , Yq, Zq) by O(log log n).

▶ Lemma 9. I(X; (Y1, Z1, . . . , Yq, Zq)) ≤ q(O(log log n) +O(log q) + 22qpoly(log n)
n(log n)3).

We defer the proof of Lemma 9 and complete the proof of Theorem 1.2 assuming Lemma 9.

D. Chakraborty, S. Chakraborty, G. Kumar, and K. S. Meel 123:13

From the Equations 7, 8, 9, 11 and Lemma 9, we have that assuming Good happens
1
3 ≥Pr[X̂ ̸= X] [From Equation 7]

≥1− I(X; X̂)
O(log n) [From Equation 8]

≥1− I(X;Z1, . . . , zq)
O(log n) [From Equation 9]

≥1− I(X;Y1, Z1, . . . , Yq, Zq)
O(log n) [From Equation 11]

≥1− I(X;Y1, Z1, . . . , Yq, Zq)
O(log n) [From Equation 12]

≥1− q log log n
log n [From Lemma 9]

Thus, from Equation 4, if q ≤ log n

1− q log log n
log n ≤ 1

3 + Pr[Good] ≤ 1
3 +O(1)

which implies

q = Ω
(

log n
log log n

)
. ◀

3.3.1 Proof of Lemma 9
▶ Lemma 10. The following holds:
1. Conditioned on event that Yj = 1 for some j ≤ i,

I(X;Zi|Y1, Z1, . . . , Yi−1, Zi−1, Yi) ≤ O(log log n),

2. I(X,Yi|Y1, Z1, . . . , Yi−1, Zi−1) ≤ 1,
3. Conditioned on the event that Y1 = 0, . . . , Yi−1 = 0,

I(X,Zi|Y1, Z1, . . . , Yi−1, Zi−1, Yi) ≤ O(log q) + 22qpoly(log n)
n(log n)3 .

Proof. We will prove Part 1, 2, and 3 one by one.
Proof of Part 1. We will prove that conditioned on event that Yj = 1 for some j ≤ i,

I(X;Zi|Y1, Z1, . . . , Yi−1, Zi−1, Yi) ≤ O(log log n).

From (1), we have

I(X,Zi|Y1, Z1, . . . , Yi−1, Zi−1, Yi) ≤ H(X|Y1, Z1, . . . , Yi−1, Zi−1, Yi).

Note that if Yj = 1 then by definition of Yj we have 1
n(log n)4 ≤ |Uj |

2ℓ ≤ n(log n)4 , that is,

|Uj |
n(log n)4 ≤ 2ℓ ≤ |Uj |n(log n)4

.

Note that by definition of the semi-oblivious counter the sets |U1|, . . . , |Ui| are deterministically
determined by Z1, . . . , Zi . Thus, there are O(log(n(log n)4)) = O((log n)5) possible values of
ℓ and hence

H(X|Y1, Z1, . . . , Yi−1, Zi−1) ≤ O(log log n).

This proves the first part.

ICALP 2023

123:14 Approximate Model Counting: Is SAT Oracle More Powerful Than NP Oracle?

Proof of Part 2. Since Yi can take only binary values, we have

I(X,Yi|Y1, Z1, . . . , Yi−1, Zi−1) ≤ 1.

This proves Part 2.
Proof of Part 3. We will now prove the upper bound on I(X; (Yi, Zi)|Y1, Z1, . . . , Yi−1, Zi−1)
for each i ∈ [q], conditioned on Yj = 0 for all j ∈ [i].

Note that Z1, . . . , Zi−1 fixes the size of Oi and each atoms in At(Ui). Note that the
domain of Zi, i.e., Ωi is ⊥ ∪Oi ∪ At(Ui). Let r = |Oi|+ 2 ≤ q + 2.

We define an auxiliary distribution Q(Yi,Zi) as follows:

Q(Yi,Zi)(yi, zi) := QYi
(yi)QZi|Yi

(zi|yi)

where, QYi(0) = QYi(1) = 1/2 and

QZi|Yi
(zi|yi) =

{
1
r , zi ∈ Oi ∪ ⊥
1
r ·

|zi|
|Ui| , zi ∈ At(Ui)

Let PX , PZ , PZ|X be the marginal distributions corresponding to a pair (X,Z). Con-
ditioned on Yj = 0 for all j ∈ [i] and Zj = zj for all j ∈ [i − 1] for any (z1, . . . , zi−1) ∈
Ω1×· · ·×Ωi−1, we have for any ℓ ∈ X (note that, for brevity, we have ignored the conditioning
on Y1, Z1, . . . , Yi−1, Zi−1, in the expression below)

KL(PZi|X(·|X = ℓ)||QZi
) =

∑
zi∈Ωi

PZi|X(zi|X = ℓ) log
PZ|X(zi|X = ℓ)

QZi
(zi)

(13)

Note that if zi ∈ ⊥ ∪Oi then QZi
(zi) = 1

r ≥
1

q+2 . Hence,

PZi|X(zi|X = ℓ)
QZi

(zi)
≤ q + 2 ≤ 2q.

Now we consider the case when zi ∈ At(Ui).
If Nℓ(zi) ≥ (log n)5 then from Lemma 8 we have

PZi|X(zi|X = ℓ) = |zi ∩ sol(ϕℓ)|
|Ui ∩ sol(ϕℓ)|

≤ 3Nℓ(zi)/Nℓ(Ui).

Note that

QZi
(zi) = 1

r
· |zi|
|Ui|
≥ 2qNℓ(zi)/Nℓ(Ui).

Therefore, we have

PZi|X(zi|X = ℓ)
QZi(zi)

≤ O(q).

For the case when Nℓ(zi) < 1
n(log n)4 , we have |zi ∩ sol(ϕℓ)| = 0. Hence the sum

∑
zi

PZi|X(zi|X = ℓ) log
PZ|X(zi|X = ℓ)

QZi(zi)

when, zi ∈ ⊥ ∪Oi or zi ∈ At(Ui) such that Nℓ(zi) ≥ (log n)5 or Nℓ(zi) < 1
n(log n)4 , is at most

O(log q).

D. Chakraborty, S. Chakraborty, G. Kumar, and K. S. Meel 123:15

Now we bound the sum∑
zi

PZi|X(zi|X = ℓ) log
PZ|X(zi|X = ℓ)

QZi
(zi)

when zi ∈ At(Ui) such that

1
n(log n)4 < Nℓ(zi) < (log n)5.

If Nℓ(zi) ≤ (log n)5 then we have

|zi ∩ sol(ϕℓ)| ≤ 2(log n)5

and thus

PZi|X(zi|X = ℓ) ≤ 4(log n)5

Nℓ(Ui)
.

Note that

QZi(zi) = 1
r
· |zi|
|Ui|
≥ 1

2qNℓ(zi)/Nℓ(Ui).

Hence,

PZ|X(zi|X = ℓ)
QZi

(zi)
≤ O(q(log n)5/Nℓ(zi)).

Therefore, we have

∑
zi: 1

n(log n)4 <Nℓ(zi)≤(log n)5

PZi|X(zi|X = ℓ) log
PZ|X(zi|X = ℓ)

QZi
(zi)

<
∑

zi: 1
n(log n)4 <Nℓ(zi)≤(log n)5

4(log n)5

Nℓ(Ui)
log(2q(log n)5/Nℓ(zi))

≤ 2q 8(log n)5

n(log n)4 log(2q(log n)5n(log n)4
)

≤ 22qpoly(log n)
n(log n)4 .

The second last inequality follows because there are at most 2q possible values of such zi,
Nℓ(Ui) ≥ n(log n)3

/2 and Nℓ(zi) ≥ 1
n(log n)3 .

Now by Lemma 2 conditioned on the event that Yj = 0 for all j ≤ i we have

I(X;Zi|Y1, Z1, . . . , Yi−1, Zi−1, Yi) ≤ KL(PZi|X(·|X = ℓ)||QZi
)

≤ O(log q) + 22qpoly(log n)
n(log n)3 . ◀

Proof of Lemma 9. We will first prove that for any i

I(X; (Yi, Zi)|Y1, Z1, . . . , Yi−1, Zi−1) ≤ O(log log n) +O(log q) + 22qpoly(log n)
n(log n)3 .

ICALP 2023

123:16 Approximate Model Counting: Is SAT Oracle More Powerful Than NP Oracle?

By the chain rule of mutual information,

I(X; (Yi, Zi)|Y1, Z1, . . . , Yi−1, Zi−1)
=I(X;Yi|Y1, Z1, . . . , Yi−1, Zi−1) + I(X;Zi|Y1, Z1, . . . , Yi−1, Zi−1, Yi)

≤O(log log n) +O(log q) + 22qpoly(log n)
n(log n)3 ,

where the last inequality follows from Lemma 10.
Again by the chain rule of mutual information, we have

I(X; (Y1, Z1, . . . , Yq, Zq))

=
q∑

i=1
I(X; (Yi, Zi)|Y1, Z1, . . . , Yi−1, Zi−1)

≤ q(O(log log n) +O(log q) + 22qpoly(log n)
n(log n)3). ◀

4 Conclusion

In this paper, we study the power of SAT oracles in the context of approximate model
counting and show a lower bound of Ω̃(log n) on the number of oracle calls. This is in
contrast to other settings where a SAT oracle is provably more powerful than an NP oracle.
In fact, we prove that even with a much more powerful oracle (namely SAT-Sample oracle),
the number of queries needed to approximately count the number of satisfying assignments
of a Boolean formula is Ω̃(log n).

References
1 Teodora Baluta, Shiqi Shen, Shweta Shinde, Kuldeep S Meel, and Prateek Saxena. Quantitative

verification of neural networks and its security applications. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, pages 1249–1264, 2019.

2 Mihir Bellare, Oded Goldreich, and Erez Petrank. Uniform generation of NP-witnesses using
an NP-oracle. Information and Computation, 163(2):510–526, 2000.

3 Sourav Chakraborty, Eldar Fischer, Yonatan Goldhirsh, and Arie Matsliah. On the power
of conditional samples in distribution testing. SIAM J. Comput., 45(4):1261–1296, 2016.
doi:10.1137/140964199.

4 Supratik Chakraborty, Kuldeep S Meel, and Moshe Y Vardi. Algorithmic improvements in
approximate counting for probabilistic inference: From linear to logarithmic sat calls. Technical
report, Rice University, 2016.

5 Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to Algorithms.
The MIT Press and McGraw-Hill Book Company, 1989.

6 Thomas M. Cover and Joy A. Thomas. Elements of information theory (2. ed.). Wiley, 2006.
7 Remi Delannoy and Kuldeep S Meel. On almost-uniform generation of SAT solutions: The

power of 3-wise independent hashing. In Proceedings of the 37th Annual ACM/IEEE Symposium
on Logic in Computer Science, pages 1–10, 2022.

8 Leonardo Duenas-Osorio, Kuldeep Meel, Roger Paredes, and Moshe Vardi. Counting-based
reliability estimation for power-transmission grids. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 31(1), 2017.

9 Matthew Fredrikson and Somesh Jha. Satisfiability modulo counting: A new approach
for analyzing privacy properties. In Proceedings of the Joint Meeting of the Twenty-Third
EACSL Annual Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–10, 2014.

https://doi.org/10.1137/140964199

D. Chakraborty, S. Chakraborty, G. Kumar, and K. S. Meel 123:17

10 Carla P Gomes, Ashish Sabharwal, and Bart Selman. Model counting: A new strategy for
obtaining good bounds. In AAAI, volume 10, pages 1597538–1597548, 2006.

11 Mark R Jerrum, Leslie G Valiant, and Vijay V Vazirani. Random generation of combinatorial
structures from a uniform distribution. Theoretical computer science, 43:169–188, 1986.

12 Dan Roth. On the hardness of approximate reasoning. Artificial Intelligence, 82(1-2):273–302,
1996.

13 Tian Sang, Paul Beame, and Henry A Kautz. Performing bayesian inference by weighted
model counting. In AAAI, volume 5, pages 475–481, 2005.

14 Jonathan Scarlett and Volkan Cevher. An introductory guide to Fano’s inequality with
applications in statistical estimation. arXiv preprint, 2019. arXiv:1901.00555.

15 Jeanette P Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff–Hoeffding bounds for
applications with limited independence. SIAM Journal on Discrete Mathematics, 8(2):223–250,
1995.

16 Larry Stockmeyer. The complexity of approximate counting. In Proceedings of the fifteenth
annual ACM symposium on Theory of computing, pages 118–126, 1983.

17 Leslie G Valiant. The complexity of enumeration and reliability problems. SIAM Journal on
Computing, 8(3):410–421, 1979.

18 Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified measure of complexity.
In 18th Annual Symposium on Foundations of Computer Science (SFCS 1977), pages 222–227.
IEEE Computer Society, 1977.

A Proof of Lemma 5

Consider any general SAT-Sample counter, T . We will show that there exists a
semi-oblivious counter that performs similarly. Given a sequence of query-sample
pairs {(A1, s1), . . . , (Ai−1, si−1)}, we say the query Ai is a good strategy by T (given
{(A1, s1), . . . , (Ai−1, si−1)}) if the counter T can return the correct output by fixing
the next query to Ai. It suffices to show that, given a sequence of query-sample
pairs {(A1, s1), . . . , (Ai−1, si−1)}, if Ai is a good strategy then any A′

i is also a good
strategy if A′

i ∩ {s1, . . . , si−1} = Ai ∩ {s1, . . . , si−1} and |A′
i ∩ A| = |Ai ∩ A| for atoms

A ∈ At(A1, . . . , Ai−1). This means that to fix the next query, all it requires to fix the
intersection size with each atom A ∈ At(A1, . . . , Ai) and a subset of {s1, . . . , si−1} (to be
included in next query). We prove it in the following claim.

▷ Claim 11. Suppose Ai is a good strategy for {(A1, s1), . . . , (Ai−1, si−1)}. Consider
A′

i such that A′
i ∩ {s1, . . . , si−1} = Ai ∩ {s1, . . . , si−1} and |A′

i ∩ A| = |Ai ∩ A| for atoms
A ∈ At(A1, . . . , Ai−1). Then A′

i is also a good strategy for {(A1, s1), . . . , (Ai−1, si−1)}.

Proof. We denote by SN the symmetric group acting on a set of size N . Any σ ∈ SN can
be thought of acting on any set of size N (by thinking the elements of the set as numbered
1, . . . , N and σ acting on the set [N]). For any element x in the set, we will denote by σ(x)
the element after the action of σ. For any σ ∈ SN and set A (with |A| = N) we denote by
σ(A) the following set σ(A) := {σ(x) | x ∈ A}.

Let σ ∈ S2n be a permutation acting on the set {T, F}n. For any ϕ observe that
|sol(ϕ)| = |σ(sol(ϕ))|. Since any counter estimates |sol(ϕ)| only, we observe that if Ai

is a good strategy for {(A1, s1), . . . , (Ai−1, si−1)} then σ(Ai) is also a good strategy for
{(σ(A1), σ(s1)), . . . , (σ(Ai−1), σ(si−1)} for any σ : {T, F}n → {T, F}n that preserves the
atoms At(A1, . . . , Ai−1) and the elements {s1, . . . , si−1}.

Since |A′
i ∩ A| = |Ai ∩ A| for atoms A ∈ At(A1, . . . , Ai−1) and A′

i ∩ {s1, . . . , si−1} =
Ai ∩ {s1, . . . , si−1}, there exists a σ such that σ(Aj) = Aj , σ(sj) = sj for all j ≤ i − 1
and also σ(Ai) = A′

i. By our earlier observation, A′
i is also a good strategy for

{(A1, s1), . . . , (Ai−1, si−1)}. ◁

ICALP 2023

https://arxiv.org/abs/1901.00555

The Identity Problem in Z ≀ Z Is Decidable
Ruiwen Dong #

Department of Computer Science, University of Oxford, UK

Abstract
We consider semigroup algorithmic problems in the wreath product Z ≀ Z. Our paper focuses on
two decision problems introduced by Choffrut and Karhumäki (2005): the Identity Problem (does
a semigroup contain the neutral element?) and the Group Problem (is a semigroup a group?) for
finitely generated sub-semigroups of Z ≀ Z. We show that both problems are decidable. Our result
complements the undecidability of the Semigroup Membership Problem (does a semigroup contain a
given element?) in Z ≀ Z shown by Lohrey, Steinberg and Zetzsche (ICALP 2013), and contributes
an important step towards solving semigroup algorithmic problems in general metabelian groups.

2012 ACM Subject Classification Computing methodologies → Symbolic and algebraic manipulation

Keywords and phrases wreath product, algorithmic group theory, identity problem, polynomial
semiring, positive coefficients

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.124

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version Full Version: https://arxiv.org/abs/2302.05939

Funding The author acknowledges support from UKRI Frontier Research Grant EP/X033813/1.

Acknowledgements The author would like to thank Markus Schweighofer and David Sawall for
useful discussions.

1 Introduction

The computational theory of groups and semigroups is one of the oldest and most well-
developed parts of computational algebra. Dating back to the work of Markov [24] in the
1940s, the area plays an essential role in analysing system dynamics, with notable applications
in automata theory and program analysis [5, 9, 11, 16]. See [19] for an all-encompassing
survey on this topic. Among the most prominent problems in this area are Semigroup
Membership and Group Membership, proposed respectively by Markov and Mikhailova in
the 1940s and 1960s. For these decision problems, we work in a fixed group G. The input
is a finite set of elements G ⊆ G, plus a distinguished element g ∈ G. Denote by ⟨G⟩ the
semigroup generated by G, and by ⟨G⟩grp the group generated by G.

(i) (Semigroup Membership) decide whether ⟨G⟩ contains g.
(ii) (Group Membership) decide whether ⟨G⟩grp contains g.

In this paper, we consider two problems closely related to (i) and (ii): the Identity Problem
and the Group Problem, both introduced by Choffrut and Karhumäki [9] in 2005.
(iii) (Identity Problem) decide whether ⟨G⟩ contains the neutral element I of G.
(iv) (Group Problem) decide whether ⟨G⟩ is a group, in other words, whether ⟨G⟩ = ⟨G⟩grp.
In general matrix groups, Semigroup Membership is undecidable by a classical result of
Markov [24]. All four problems remain undecidable even for integer matrix groups of
dimension four [4, 25]. Notably, using an embedding of the Identity Correspondence Problem,
Bell and Potapov [4] showed undecidability of the Identity Problem and the Group Problem
in the group SL(4,Z) of 4 × 4 integer matrices of determinant one. On the other hand, in the

EA
T
C
S

© Ruiwen Dong;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 124; pp. 124:1–124:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:ruiwen.dong@kellogg.ox.ac.uk
https://doi.org/10.4230/LIPIcs.ICALP.2023.124
https://arxiv.org/abs/2302.05939
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

124:2 The Identity Problem in Z ≀ Z Is Decidable

group SL(2,Z), all four problems are decidable with various degrees of complexity [3, 9, 21].
In particular, the Identity Problem and the Group Problem in SL(2,Z) are both NP-complete
by a result of Bell, Hirvensalo, and Potapov [3].

In this paper we focus on these decision problems in the wreath product Z ≀Z. The wreath
product is a fundamental construction in group and semigroup theory. A great number
of important groups can be constructed using the wreath product, notably metabelian
groups. Metabelian groups are groups whose commutator is abelian: these are the simplest
generalization of abelian groups. Algorithmic problems in metabelian groups have been the
focus of active research since the 1970s [2, 8, 26], with a classic result of Romanovskii [27]
showing decidability of Group Membership in all finitely presented metabelian groups. A
key part of Romanovskii’s proof is to embed metabelian groups into quotients of wreath
products. In fact, the Magnus embedding theorem [23] states that every finitely generated free
metabelian group can be embedded in a wreath product Zm ≀ Zn. Therefore, understanding
the wreath product Z ≀Z is the most crucial step towards studying general metabelian groups.
Apart from its interest within group theory, the wreath product also plays an important role
in the algebraic theory of automata. The Krohn–Rhodes theorem [20] states that every finite
semigroup (and correspondingly, every finite automaton) can be decomposed into elementary
components using wreath products.

One easy way to understand the wreath product Z ≀ Z is through its isomorphism to a
matrix group [23] over the Laurent polynomial ring Z[X±]:

Z ≀ Z ∼=
{(

Xb y

0 1

) ∣∣∣∣ y ∈ Z[X±], b ∈ Z
}

. (1)

Consider the four aforementioned decision problems in Z ≀ Z. Since Z ≀ Z is metabelian [17],
the classic result of Romanovskii [27] shows decidability of Group Membership in Z ≀ Z. If
we retrace the proof of Romanovskii, one can reduce Group Membership in Z ≀ Z to solving
systems of linear equations over the ring Z[X±], which can then be decided using Gröbner
bases. For Semigroup Membership in Z ≀ Z, Lohrey, Steinberg and Zetzsche showed its
undecidability using an encoding of 2-counter machines [22]. Decidability of the Identity
Problem and the Group Problem in Z ≀Z remained an intricate open problem. A recent paper
by Dong [12] gave a partial decidability result when the generators all satisfy b = ±1. Dong’s
idea was to represent a product of elements in Z ≀ Z as a walk on Z. When the generators
all satisfy b = ±1, this walk can be decomposed into simple cycles, and the Group Problem
reduces to solving a single homogeneous linear equation over the semiring N[X]. Extending
Dong’s result to arbitrary generators is highly challenging: the structure of the walk becomes
much more complex when we allow steps of arbitrary length. In this paper, we combine a
series of new ideas from graph theory and algebraic geometry to show full decidability of the
Identity Problem and the Group Problem in Z ≀ Z.

The first main idea of this paper is to reduce both problems to solving a system of
homogeneous linear equations over the semiring N[X±], in addition to two degree constraints.
We use a highly non-trivial graph theoretic construction to establish this reduction. The
second main idea of this paper is to generalize a local-global principle by Einsiedler, Mouat and
Tuncel [13] to solve these linear equations with degree constraints. In particular, the original
local-global principle by Einsiedler et al. is not compatible with the degree constraints which
are essential in our reduction. We introduce new ideas to prove a generalized local-global
principle that incorporates these additional degree constraints.

We now mention some other known decidability results in wreath products. In [14],
Ganardi, König, Lohrey and Zetzsche showed that for every non-trivial finitely generated
abelian group G, the knapsack problem in G ≀ Z is NP-complete. Notably, this result applies
to Z ≀ Z. In [22], Lohrey, Steinberg and Zetzsche showed decidability of the Rational Subset

R. Dong 124:3

Membership Problem (which subsumes all four decision problems mentioned in the beginning)
in the wreath product H ≀ V , where H is a finite and V is virtually free. In [7], Cadilhac,
Chistikov and Zetzsche proved decidability of Rational Subset Membership in the Baumslag-
Solitar groups BS(1, p). This group can be considered as an analogue of (Z/pZ) ≀ Z “with
carrying”. In [17], Kharlampovich, López, and Myasnikov showed decidability of solving
Diophantine equations in certain metabelian groups, including Z ≀ Z and BS(1, p). Many of
these results are closely related to automata theory, which we draw inspiration from.

A natural follow-up to our work would be trying to solve the Identity Problem and the
Group Problem in all finitely presented metabelian groups. This boils down to deciding both
problems in quotients of Zm ≀ Zn. One encounters some difficulties when trying to generalize
our approach to Zm ≀ Zn. Notably, decomposition of walks in Zn are much more complex,
and we can no longer reduce these problems to solving a finite system of equations. We
also point out that one cannot go much further beyond metabelian groups (which are 2-step
solvable groups), since there exist 3-step solvable groups with undecidable word problem [18].

2 Preliminaries

Words, semigroups and graphs

Let G be an arbitrary group. Let G = {g1, . . . , ga} be a finite set of elements in G. Considering
G as an alphabet, denote by G∗ the set of words over G. For an arbitrary word w =
gi1gi2 · · · gim

∈ G∗, by multiplying consecutively the elements appearing in w, we can evaluate
w as an element π(w) in G. We say that the word w represents the element π(w). The
semigroup ⟨G⟩ generated by G is hence the set of elements in G that are represented by
non-empty words in G∗.

A word w over the alphabet G is called full-image if every letter in G has at least one
occurrence in w. The following observation shows that deciding the Group Problem amounts
to finding a full-image word representing the neutral element.

▶ Lemma 2.1. Let G = {g1, . . . , ga} be a set of elements in a group G. The semigroup ⟨G⟩ is
a group if and only if the neutral element I of G is represented by a full-image word over G.

The following lemma shows that decidability of the Group Problem implies decidability
of the Identity Problem.

▶ Lemma 2.2 ([4]). Given a finite subset G of a group G, the semigroup ⟨G⟩ contains the
neutral element I if and only if there exists a non-empty subset H ⊆ G such that ⟨H⟩ is a
group. In particular, if the Group Problem is decidable in the group G, then the Identity
Problem is also decidable.

For detailed definition of graph theory terms, see [6]. All graphs considered in this paper
will be directed multigraphs. For a graph G, we denote by V (G) its set of vertices and by
E(G) its set of edges. For a (directed) edge e, we denote by s(e) the starting vertex of e.

A loop is an edge that starts and ends at the same vertex. A circuit is a path that starts
and ends at the same vertex. An Euler path of a graph G is a path that uses each edge
exactly once. An Euler circuit is an Euler path that starts and ends at the same vertex. We
call a graph Eulerian if it contains an Euler circuit. It is easy to see that attaching a circuit
to an Eulerian graph still results in an Eulerian graph.

ICALP 2023

124:4 The Identity Problem in Z ≀ Z Is Decidable

Laurent polynomials and the wreath product Z ≀ Z
A (univariate) Laurent polynomial with coefficients over R is an expression of the form

f =
q∑

i=p

aiX
i, where p, q ∈ Z and ai ∈ R, i = p, p + 1, . . . , q.

If p > q, then f is understood to be zero. Otherwise, p ≤ q, and we suppose ap ̸= 0,
aq ̸= 0. In this case, we call p the negative degree of f , denoted by deg−(f), and call
q the positive degree of f , denoted by deg+(f). We call ap the negative leading coeffi-
cient of f , denoted by lc−(f), and call aq the positive leading coefficient of f , denoted
by lc+(f). Define additionally deg−(0) = +∞, deg+(0) = −∞ and lc−(0) = lc+(0) = 0.
In this paper, all polynomials will be univariate Laurent polynomials. The set of all polyno-
mials with coefficients over R forms a ring and is denoted by R[X±]. One can define Q[X±]
and Z[X±] similarly by restricting the coefficients ai to Q and Z.

Given a tuple of polynomials f = (f1, . . . , fn) ∈ (R[X±])n and r ∈ R, one naturally defines
the evaluation f(r) := (f1(r), . . . , fn(r)) ∈ Rn. The definition of leading coefficients also
extends to tuples of polynomials by lc∗(f) := (lc∗(f1), . . . , lc∗(fn)) ∈ Rn, where ∗ ∈ {+, −}.

Consider the semiring R≥0[X±] of polynomials with positive coefficients: these are
expressions of the form f =

∑q
i=p aiX

i where p, q ∈ Z and ai ∈ R≥0, i = p, p + 1, . . . , q.
Define further R≥0[X±]∗ := R≥0[X±] \ {0}. One can define N[X±] and N[X±]∗ similarly by
restricting the coefficients ai to N.

An element f =
∑q

i=p aiX
i ∈ R≥0[X±]∗ is called gap-free if ai ̸= 0 for all i = p, p+1, . . . , q.

Is it easy to see that, given arbitrary M, N ∈ Z>0 and f ∈ R≥0[X±]∗, the polynomial
(X−M + X−M+1 + · · · + XN)n · f is gap-free for all large enough n.

A monomial is a polynomial f = aiX
i with only one term (including zero). Let d ≥ 1 be

a positive integer. One can define the semirings

N[X±d] :=


q∑

i=p

adiX
di ∈ N[X±]

 , N[X±d]∗ := N[X±d] \ {0}.

These are polynomials whose monomials have degrees divisible by d. Similarly, if adi ̸= 0
for all i = p, . . . , q, we will call

∑q
i=p adiX

di gap-free. Note that whether a polynomial is
gap-free depends on the polynomial ring we consider it in.

Similarly one can define the rings Z[X±d], Q[X±d] and R[X±d]. Furthermore, we define
the field of rational functions Q(X) to be the set of expressions of the form f

g , where
f, g ∈ Q[X±]. Similarly, Q(Xd) is defined as the set of expressions f

g , where f, g ∈ Q[X±d].
The wreath product Z ≀ Z has several equivalent definitions. Here, we introduce the one

most convenient to our purpose.

▶ Definition 2.3. The wreath product Z ≀ Z is a group whose elements are pairs of the
form (y, b), where y ∈ Z[X±] and b ∈ Z. The neutral element in Z ≀ Z is given by (0, 0).
Multiplication is defined by (y, b) · (y′, b′) = (y + Xb · y′, b + b′), and inversion is defined by

(y, b)−1 = (X−b · y, −b). Note that the element (y, b) corresponds to the matrix
(

Xb y

0 1

)
under the isomorphism (1) in the introduction.

The wreath product Z ≀ Z can be embedded into the larger group Q(X) ⋊ Z, whose
elements are pairs of the form (y, b) with y ∈ Q(X) and b ∈ Z and whose multiplication and
inversion are defined using the same formulas as in Z ≀ Z.

R. Dong 124:5

3 Overview of proof

The main result of this paper is the decidability of the Identity Problem and the Group
Problem in Z ≀Z. In view of Lemma 2.2, it suffices to prove decidability of the Group Problem.
In this section we give an overview of its proof.

Our proof proceeds in three steps. As a first step we reduce the Group Problem in Z ≀ Z
to deciding whether a system of linear equations in R[X±] has solution in R≥0[X±]∗ with
two additional degree constraints (see Proposition 3.2 and Corollary 3.3). As the second step
we prove a local-global principle that further reduces solving linear equations over R≥0[X±]∗
to solving a family of “local” equations over R>0 (see Proposition 3.4). As the third step,
we show that solving these “local” equations can be done using the first order theory of the
reals as well as Gröbner basis techniques (see Proposition 3.5 and 3.6).

Let G be a finite subset of Z ≀ Z. Write G = {(ya, ba) | a ∈ A} where A is a finite set of
indices. Divide A into three subsets of indices A = I ∪ J ∪ K where

I := {i | bi > 0}, J := {j | bj < 0}, K := {k | bk = 0}. (2)

First, we exclude the easy case where I or J is empty.

▶ Proposition 3.1. Suppose I = ∅ or J = ∅. The semigroup ⟨G⟩ is a group if and only if
I = J = ∅ and

∑
k∈K nkyk = 0 for some positive integers nk ∈ Z>0. In particular, this is

decidable by integer programming.

A simple proof of Proposition 3.1 is given in the Appendix A. For the rest of this paper,
we will suppose I ̸= ∅ and J ̸= ∅.

Define

d := gcd ({ba | a ∈ I ∪ J}) .

For each pair (i, j) ∈ I × J , define the rational function

h(i,j) := yi

1 + Xd + · · · + Xbi−d
+ yj

X−d + X−2d + · · · + X−|bj | ∈ Q(X). (3)

By direct computation we have

(yi, bi)|bj | · (yj , bj)bi =
(

h(i,j) · (1 + Xd + · · · + Xbi|bj |−d), 0
)

. (4)

One can also take (4) as the definition of h(i,j).
A subset S of I × J is called double-full if for every i ∈ I there exists ji ∈ J such that

(i, ji) ∈ S, and for every j ∈ J there exists ij ∈ I such that (ij , j) ∈ S. The following
proposition reduces the Group Problem in Z ≀ Z to solving linear equations over N[X±d]∗.

▶ Proposition 3.2. The semigroup ⟨G⟩ is a group if and only if there exist a double-full set
S ⊂ I × J and polynomials f(i,j), fk ∈ N[X±d]∗ for (i, j) ∈ S, k ∈ K that satisfy the following
three conditions.

(i) (Single linear equation) The following equation over Q(X) is satisfied:∑
(i,j)∈S

f(i,j) · h(i,j) +
∑
k∈K

fk · yk = 0. (5)

(ii) (Positive degree bound) We have:

deg+

(∑
(i,j)∈S

f(i,j)

)
+ d ≥ deg+

(∑
k∈K

fk

)
. (6)

ICALP 2023

124:6 The Identity Problem in Z ≀ Z Is Decidable

(iii) (Negative degree bound) We have:

deg−

(∑
(i,j)∈S

f(i,j)

)
≤ deg−

(∑
k∈K

fk

)
. (7)

The proof of Proposition 3.2 will be given in Section 4. The idea is roughly as follows.
By Lemma 2.1, ⟨G⟩ is a group if and only if there is a full-image word w ∈ G∗ that represents
the neutral element. For the “only if” statement of Proposition 3.2, we will represent w

as a walk over Z, and decompose the walk into “primitive circuits”. Each primitive circuit
contributes a multiple of h(i,j) or yk to the element represented by w. Since w represents
the neutral element, this results in the linear equation in Condition (i). Conditions (ii) and
(iii) will stem from the connectedness of the walk. The “if” statement is significantly harder.
Given the polynomials f(i,j), fk, we will construct an Eulerian graph G by attaching long
“elementary circuits” in a way that corresponds to the coefficients of f(i,j), fk. We then read
a word w from an Euler circuit of G. Condition (i) will make sure w represents the neutral
element. However, making sure G is connected is highly non-trivial and will be the main
difficulty of the proof. In particular, Conditions (ii)-(iii) will be crucial. This concludes the
idea of the proof for Proposition 3.2.

Note that Proposition 3.2 involves finding solutions over N[X±d]∗ for linear equations
with coefficients in Q(X). When d > 1, this is inconvenient, so we now further reduce
Proposition 3.2 to finding solutions over R≥0[X±]∗ for a system of linear equations. For
each (i, j) ∈ I × J , since the denominator of h(i,j) is an element in Q[X±d], there exist
h(i,j),0, . . . , h(i,j),d−1 ∈ Q(X) such that h(i,j) can be written as

h(i,j) = h(i,j),0(Xd) + h(i,j),1(Xd) · X + · · · + h(i,j),d−1(Xd) · Xd−1. (8)

Similarly, for each k ∈ K, there exist yk,0, . . . , yk,d−1 ∈ Q[X±] so that yk can be written as

yk = yk,0(Xd) + yk,1(Xd) · X + · · · + yk,d−1(Xd) · Xd−1. (9)

The following corollary shows that, using the elements h(i,j),m, yk,m defined in (8) and (9),
we can rewrite the conditions in Proposition 3.2 using only variables in R≥0[X±]∗ instead of
N[X±d]∗. See Appendix A for a simple proof of Corollary 3.3.

▶ Corollary 3.3. The semigroup ⟨G⟩ is a group if and only if there exist a double-full set
S ⊂ I × J and polynomials fS , fK , f(i,j), fk ∈ R≥0[X±]∗ for (i, j) ∈ S, k ∈ K that satisfy the
following three conditions.

(i) (System of linear equations) The following linear equations over R(X) are satisfied:∑
(i,j)∈S

f(i,j)h(i,j),m +
∑
k∈K

fkyk,m = 0, m = 0, . . . , d − 1, (10)

fS =
∑

(i,j)∈S

f(i,j), fK =
∑
k∈K

fk. (11)

(ii) (Positive degree bound) We have:

deg+ (fS) + 1 ≥ deg+ (fK) . (12)

(iii) (Negative degree bound) We have:

deg− (fS) ≤ deg− (fK) . (13)

R. Dong 124:7

For brevity, from now on we denote A := R[X±] and A+ := R≥0[X±]∗. Denote also
n := 2 + |S| + |K|. Define the following subset of An:

M :=
{

f =
(
fS , fK , (f(i,j))(i,j)∈S , (fk)k∈K

)
∈ An

∣∣ f satisfies (10) and (11)
}

. (14)

That is, M is the set of solutions of the linear equations (10)-(11). Using linear algebra over
the polynomial ring A (see [1]), one can effectively compute a set of vectors g1, . . . , gm ∈ An

such that

M = {ϕ1g1 + · · · + ϕmgm | ϕ1, . . . , ϕm ∈ A} . (15)

One can even suppose g1, . . . , gm ∈ (Q[X±])n since h(i,j) and yk all have rational coefficients.
A set M of the form (15) will be called a A-submodule of An, and the elements g1, . . . , gm

will be called a basis of M.
Corollary 3.3 actually states the following: the semigroup ⟨G⟩ is a group if and only if

M contains an element f = (fS , fK , . . .) ∈ (A+)n such that deg+(fS) + 1 ≥ deg+(fK) and
deg−(fS) ≤ deg−(fK). The key to deciding the existence of f is the following proposition,
which can be considered as a local-global principle that generalizes a result of Einsiedler,
Mouat and Tuncel [13].

▶ Proposition 3.4. Let M be a A-submodule of An. Then M contains an element f =
(fS , fK , . . .) ∈ (A+)n with deg+(fS) + 1 ≥ deg+(fK) and deg−(fS) ≤ deg−(fK), if and only
if the following three conditions are all satisfied.

(i) (Existence of fr for all r ∈ R>0) For each r ∈ R>0, there exists fr ∈ M such that

fr(r) ∈ Rn
>0. (16)

(ii) (Existence of f∞) There exists f∞ = (f∞,S , f∞,K , . . .) ∈ M such that

lc+(f∞) ∈ Rn
>0 and deg+ (f∞,S) + 1 ≥ deg+ (f∞,K) . (17)

(iii) (Existence of f0) There exists f0 = (f0,S , f0,K , . . .) ∈ M such that

lc−(f0) ∈ Rn
>0 and deg− (f0,S) ≤ deg− (f0,K) . (18)

The proof of Proposition 3.4 will be given in Section 5. The original result of Einsiedler et
al. [13, Theorem 1.3] gives a similar local-global principle without the degree constraints on
fS and fK . While our proof follows the main steps of the original proof, we need to introduce
new arguments in order for the degree constraint to stay compatible with the local-global
principle.

One direction of the implication in Proposition 3.4 is clear. In fact, if f ∈ A+ and r ∈ R>0,
then we have f(r) ∈ R>0 and lc+(f), lc−(f) ∈ R>0. Therefore, if M contains an element
f = (fS , fK , · · ·) ∈ (A+)n with deg+(fS) + 1 ≥ deg+(fK) and deg−(fS) ≤ deg−(fK), then
simply take fr = f∞ = f0 = f for all r: Equation (16) is satisfied for all r as well as (17)
and (18); hence all three conditions are satisfied.

On the other hand, if the Equation (16) as well as (17) and (18) can be satisfied individually
by different fr, f∞, f0, we cannot a priori find an element f ∈ M in (A+)n. Such an element
f would simultaneously satisfy Equations (16) for all r ∈ R>0 as well as (17) and (18). The
key idea of proving this non-trivial direction is that if all three conditions (i)-(iii) are satisfied,
then we can “glue” these different fr, f∞ and f0 together to obtain a single f that satisfies
Equation (16) for all r as well as (17) and (18). While this idea comes from the original

ICALP 2023

124:8 The Identity Problem in Z ≀ Z Is Decidable

proof, the difficult part in our generalization is to make sure the degree constraints are still
satisfied after the gluing procedure. In the end, we multiply this f by a “large enough”
polynomial to obtain an element in (A+)n, using a theorem of Handelman (Theorem 5.3).

The following two propositions show that Conditions (i), (ii) and (iii) of Proposition 3.4
are all decidable.

▶ Proposition 3.5. Let M be an A-submodule of An. Given as input a finite basis of M, it
is decidable whether for every r ∈ R>0 there exists fr ∈ M with fr(r) ∈ Rn

>0.

▶ Proposition 3.6. Let ∗ ∈ {+, −}, a ∈ Z and M be an A-submodule of An. Given as input
a finite basis of M, it is decidable whether there exists f = (fS , fK , · · ·) ∈ M such that

lc∗(f) ∈ Rn
>0 and deg∗ (fS) + a ≥ deg∗ (fK) . (19)

Proposition 3.5 and 3.6 will be proven in Section 6. The idea of proving Proposition 3.5 is
to reduce the statement to the first order theory of the reals; while for proving Proposition 3.6
we will use the super Gröbner basis introduced in the original proof of Einsiedler et al. [13].

We are now ready to prove our main theorem by bridging the remaining gaps.

▶ Theorem 3.7. The Identity Problem and the Group Problem in Z ≀ Z are decidable.

Proof. First we show decidability of the Group Problem. Given a finite set G = {(ya, ba) |
a ∈ A} in Z ≀Z, define the index sets I, J, K as in (2). If I or J is empty, then Proposition 3.1
shows that the Group Problem for G is decidable. If I and J are not empty, we enumerate
all double-full sets S ⊂ I × J . For each S we compute a finite basis of M defined in (14).
Corollary 3.3 together with Proposition 3.4 shows that the Group Problem for G has a
positive answer if and only if for some S, the three conditions in Proposition 3.4 are all
satisfied. For each S, Condition (i) can be decided using Proposition 3.5; Condition (ii) can
be decided using Proposition 3.6 by taking ∗ = +, a = 1; Condition (iii) can be decided using
Proposition 3.6 by swapping the coordinates S and K and taking ∗ = −, a = 0. Therefore
the Group Problem in Z ≀ Z is decidable. By Lemma 2.2, the Identity Problem in Z ≀ Z is
also decidable. ◀

4 From semigroup to polynomial equations

4.1 Definition of G-graphs
Section 4 is dedicated to the proof of Proposition 3.2. In this subsection, we will define the
notion of a G-graph. Let A be a finite set of indices. Let G = {(ya, ba) | a ∈ A} be a finite
set of elements in the group Z ≀ Z or Q(X) ⋊ Z. We define the following notion of a G-graph.

▶ Definition 4.1 (G-graphs). A G-graph is a directed multigraph G, whose set of vertices
V (G) is a finite subset of Z, and its edges are each labeled with an index in A. Furthermore,
if an edge from vertex d1 to vertex d2 has label a, then d2 = d1 + ba.

For a word w over the alphabet G, we associate to it a unique G-graph G(w), defined as
follows. Write w = (ya1 , ba1) · · · (yap

, bap
). For each i = 0, . . . , p − 1, we add an edge starting

at the vertex ba1 + · · · + bai , ending at the vertex ba1 + · · · + bai+1 , with the label ai. (If i = 0
then the edge starts at 0 and ends at ba1 .) The graph G(w) is then obtained by taking the
connected component of the vertex 0. See Figure 1 for the illustration of an example.

By reading the letters in w one by one and tracing the corresponding edges of G(w), we
obtain an Euler path of G(w). Furthermore, if the word w represents the neutral element
(or any element of the form (y, 0)), then this Euler path is an Euler circuit.

We point out that the element which w represents is uniquely determined by G(w):

R. Dong 124:9

Figure 1 Illustration of G(w). Here,
A = {i, j, k}, G = {(yi, 6), (yj , −4), (yk, 0)},
w = (yi, 6)(yj , −4)(yk, 0)(yi, 6)(yj , −4)(yj , −4).

Figure 2 Attaching the circuit C to G(w)
at vertex 6.

▶ Fact 4.2 (Product of associated graph). Let w be a word over the alphabet G, and let
G = G(w) be its associated G-graph. For an edge e ∈ E(G), denote by ℓ(e) the label of e,
denote by s(e) ∈ Z the starting vertex of e, then w represents the element ∑

e∈E(G)

Xs(e) · yℓ(e),
∑

e∈E(G)

bℓ(e)

 . (20)

For an arbitrary G-graph G, the element in Expression (20) will be called the product of
the graph G. It is easy to see that, if G contains an Eulerian path, then by following this
path we obtain a word w that represents the product of G.

Let C be a another Eulerian G-graph (seen as a circuit). We define the following action
of attaching C to G at vertex v: For each edge e of C, starting at vertex s(e) with label ℓ(e),
we add an edge e′ to G, starting at vertex s(e) + v with label ℓ(e). See Figure 2 for the
illustration of an example. The product of the resulting graph is uniquely determined by G,
C as well as v:

▶ Fact 4.3 (Effect of attaching circuit to a graph). Let G be an arbitrary G-graph and C be
an Eulerian G-graph. Denote by (yG, bG) the product of G and by (yC , 0) the product of C.
Then attaching C to G at vertex v results in a graph with product (yG + Xv · yC , bG).

4.2 Group Problem implies polynomial equations
In this subsection, we prove the “only if” part of Proposition 3.2. We will show that if ⟨G⟩ is
a group then there exists a double-full set S ⊂ I × J and polynomials f(i,j), fk ∈ N[X±d]∗
for (i, j) ∈ S, k ∈ K satisfying (i)-(iii) of Proposition 3.2.

Recall that d := gcd ({ba | (ya, ba) ∈ G}) . Define the alphabet Ĝ of radical elements:

Ĝ :=
{

(ŷa, b̂a)
∣∣∣ (ya, ba) ∈ G

}
,

where

(ŷa, b̂a) :=


(

ya

1+Xd+···+Xba−d , d
)

a ∈ I (or equivalently, ba > 0),(
ya

1+X−d+···+X−(|ba|−d) , −d
)

a ∈ J (or equivalently, ba < 0),

(ya, 0) a ∈ K (or equivalently, ba = 0).

ICALP 2023

124:10 The Identity Problem in Z ≀ Z Is Decidable

Note that these elements are in Q(X) ⋊ Z instead of Z ≀ Z. Direct computation shows that

(ŷa, b̂a)|ba|/d = (ya, ba) (21)

for a ∈ I ∪ J . Equation (21) can also be taken as the definition of (ŷa, b̂a).
Since ⟨G⟩ is a group, by Lemma 2.1 there exists a full-image word w ∈ G∗ that represents

the neutral element. Replacing the letters (ya, ba) in w by the words (ŷa, b̂a) · · · (ŷa, b̂a)︸ ︷︷ ︸
|ba|/d times

for

every a ∈ I ∪ J , we obtain a word ŵ ∈ Ĝ∗. By Equation (21), ŵ also represents the neutral
element. To the word ŵ we associate a Ĝ-graph G(ŵ). See Figure 3 for the illustration of an
example of G(ŵ); one can compare it with Figure 1 which illustrates G(w) for the same w.

Figure 3 Decomposition of G(ŵ). Here G
and w are the same as in Figure 1.

Figure 4 Primitive circuits of type (i, j)
and k.

Since ŵ represents the neutral element, the graph G(ŵ) is Eulerian. Since b̂a = ±d or 0
for all indices a ∈ I ∪ J ∪ K, the graph G(ŵ) can be decomposed into two classes of smaller
circuits. The first class of circuits is an edge with some label i ∈ I (edge directed to the
right) followed by an edge with some label j ∈ J (edge directed to the left); we call such a
circuit of the type (i, j). The second class is a loop with label k ∈ K; we call such a circuit
of the type k. We call these two classes of circuits primitive. See Figure 4 for an illustration.

▶ Lemma 4.4. The graph G(ŵ) can be constructed by starting with an edgeless graph with a
single vertex 0 and gradually attaching primitive circuits.

Recall the definition of h(i,j) in Equation (3). In fact, h(i,j) is the product of a primitive
circuit of type (i, j), meaning (ŷi, b̂i) · (ŷj , b̂j) = (h(i,j), 0). Similarly, the product of a circuit
of type k is (hk, 0) := (yk, 0). By Lemma 4.4, G(ŵ) can be decomposed into primitive circuits.
For each primitive circuit C in the decomposition, denote by s(C) ∈ dZ the vertex where C is
attached, and by type(C) the type of C. Denote by C the set of circuits in the decomposition
of G(ŵ) into primitive circuits. By Fact 4.3, the product of G(ŵ) can be written as(∑

C∈C
Xs(C) · htype(C), 0

)
= (0, 0). (22)

For each (i, j) ∈ I × J and k ∈ K, define the following polynomials in N[X±d]:

f(i,j) :=
∑

C∈C of type (i,j)

(
Xd
) s(C)

d , fk :=
∑

C∈C of type k

(
Xd
) s(C)

d . (23)

Let S := {(i, j) ∈ I × J | f(i,j) ̸= 0}. We point out that fk ̸= 0 for all k ∈ K, because ŵ is
full-image, meaning G(ŵ) contains a loop of label k for each k ∈ K. Equation (22) becomes∑

(i,j)∈S

f(i,j) · h(i,j) +
∑
k∈K

fk · yk = 0. (24)

This is exactly Condition (i) of Proposition 3.2. It suffices to show the following to complete
the proof of the first implication of Proposition 3.2.

R. Dong 124:11

▶ Lemma 4.5. Let f(i,j), fk ∈ N[X±d] and S ⊂ I × J be defined as above, then:
(i) S is double-full.
(ii) deg+

(∑
(i,j)∈S f(i,j)

)
+ d ≥ deg+

(∑
k∈K fk

)
.

(iii) deg−

(∑
(i,j)∈S f(i,j)

)
≤ deg−

(∑
k∈K fk

)
.

Sketch of proof. For (i), S is double full since G(ŵ) contains edges of each type of labels.
For (ii) and (iii), it suffices to notice that G(ŵ) must be connected while max(V (G(ŵ))) =
deg+

(∑
(i,j)∈S f(i,j)

)
+ d and min(V (G(ŵ))) = deg−

(∑
(i,j)∈S f(i,j)

)
. ◀

Proof of “only if” part of Proposition 3.2. If ⟨G⟩ is a group, then there exists a full-image
word w ∈ G∗ that represents the neutral element. Consider G(ŵ) and let f(i,j), fk ∈
N[X±d]∗, (i, j) ∈ S, k ∈ K, be as defined in (23). The Conditions (i)-(iii) of Proposition 3.2
follow directly from Equation (24) and Lemma 4.5. ◀

4.3 Polynomial equation implies Group Problem
In this subsection, we prove the “if” part of Proposition 3.2. Given a double-full set S ⊂ I ×J

and positive polynomials f(i,j), fk ∈ N[X±d]∗ for (i, j) ∈ S, k ∈ K that satisfy Conditions
(i)-(iii) of Proposition 3.2, we will construct an Eulerian G-graph G with product zero. The
main difficulty here is that the length of the edges of a G-graph are no longer identical, as
opposed to Ĝ-graphs. Therefore one can no longer decompose G-graphs into primitive circuits.
The key idea is a work-around that simulates primitive circuits using longer circuits.

For (i, j) ∈ I × J , we define an elementary circuit of the type (i, j) to be a circuit that
starts with |bj | edges of label i, followed by bi edges of label j. See Figure 5 for an example.

Figure 5 An elementary circuit of type (i, j). Here, bi = 6, bj = −4.

▶ Lemma 4.6. Suppose S ⊂ I × J be double-full. There exists an Eulerian G-graph A with
d ∈ V (A), obtained by attaching together elementary circuits of types in S.

The idea of constructing A is illustrated in Figure 6, with a detailed proof given in
Appendix A. We now characterize the product of A. An elementary circuit of type (i, j)
attached at vertex dv contributes Xdv(1 + Xd + · · · + Xbi|bj |−d) · h(i,j) to the product (see
Equation (4)). Since A is a combination of elementary circuits, the product of A can written
as
∑

(i,j)∈S a(i,j)h(i,j) for some a(i,j) ∈ N[X±d].
Let N :=

∏
i∈I∪J |bi|. Note that simultaneously multiplying all f(i,j) and fk by any

polynomial g ∈ N[X±d]∗ does not change the fact that f(i,j), fk ∈ N[X±d]∗, and they still
satisfy Conditions (i)-(iii) of Proposition 3.2. Also note that 1 + Xd + · · · + Xbi|bj |−d |
1 + Xd + · · · + XN−d. Therefore, by simultaneously multiplying all f(i,j) and fk by p · (X−d +
1 + · · · + XN−2d)q for large enough p, q ∈ N, we can suppose that for all (i, j) ∈ S,

g(i,j) :=
f(i,j) − a(i,j) · (1 + Xd + · · · + XN−d)

1 + Xd + · · · + Xbi|bj |−d
∈ N[X±d]∗ is gap-free, (25)

and

deg+
(
f(i,j)

)
> deg+(a(i,j)) + N − d, deg−

(
f(i,j)

)
< deg−(a(i,j)). (26)

ICALP 2023

124:12 The Identity Problem in Z ≀ Z Is Decidable

elementary circuit

Figure 6 Graph A from Lemma 4.6.

▶ Proposition 4.7. Suppose S is double-full and f(i,j), fk ∈ N[X±d]∗, (i, j) ∈ S, k ∈ K,
satisfy Equations (25), (26) and Conditions (ii)-(iii) of Proposition 3.2, then there exists an
Eulerian G-graph G whose product is

∑
(i,j)∈S f(i,j) · h(i,j) +

∑
k∈K fk · yk.

Proof. We construct G in three steps. See Figure 7 for an illustration.

Step 1: Constructing the foundation A′. We start with the G-graph A constructed in
Lemma 4.6. We then attach to it another N/d − 1 copies of A, where the k-th copy is
attached at vertex dk. The resulting graph is still Eulerian because d ∈ V (A). We denote by
A′ the G-graph obtained by this attachment. Then we have 0, d, · · · , N − d ∈ V (A′).

Step 2: Attaching elementary circuits of type (i, j) ∈ S. For each pair (i, j) ∈ S, we want
to attach elementary circuits of type (i, j) to the graph A′, such that the total contribution
of these circuits to the product is g(i,j) ·

(
1 + Xd + · · · + Xbi|bj |−d

)
· h(i,j), where g(i,j) is

defined in (25). Write g(i,j) =
∑q

t=p γtX
dt. We attach a total of

∑q
t=p γt elementary circuits

of type (i, j) to A′, where for t = p, p + 1, . . . , q, exactly γt of these circuits are attached
at the vertex dt. The resulting graph is connected (and Eulerian) because g(i,j) is gap-free.
In fact, for each t ∈ [deg−(g(i,j))/d,

(
deg+(g(i,j)) + bi|bj |

)
/d] ∩ Z and u ∈ [0, N), such that

dt ≡ du mod bi|bj |, the vertex dt is connected to du ∈ V (A′) by a chain of circuits of type
(i, j). Denote by A′′ the resulting graph after doing the above attachments for all (i, j) ∈ S.
Then

dt ∈ V (A′′) for all t ∈ [deg−(g(i,j))/d,
(
deg+(g(i,j)) + bi|bj |

)
/d] ∩ Z, (i, j) ∈ S. (27)

Step 3: Attaching loops of type k ∈ K. For each k ∈ K, we want to attach loops of
label k ∈ K to A′′, such that the total contribution of these loops to the product is fk · yk.
Write fk =

∑q
t=p βtX

dt, we attach a total of
∑q

t=p βt loops of label k to A′′, where for
t = p, p + 1, . . . , q, exactly βt of these loops are attached at the vertex dt.

We need to prove that the resulting graph G is still connected (and hence Eulerian). In view
of Property (27) of the graph A′′, it suffices to prove deg−(fk) ≥ min(i,j)∈S

{
deg−(g(i,j))

}
and deg+(fk) ≤ max(i,j)∈S

{
deg+(g(i,j)) + bi|bj |

}
for all k ∈ K. By Equations (25) and

(26), we have deg−(g(i,j)) = deg−(f(i,j)) and deg+(g(i,j)) + bi|bj | − d = deg+(f(i,j)) for all
(i, j) ∈ S. Then, by Conditions (ii) and (iii) of Proposition 3.2, we have

R. Dong 124:13

deg−(fk) ≥ deg−

(∑
k∈K

fk

)
≥ min

(i,j)∈S
{deg−(f(i,j))} = min

(i,j)∈S
{deg−(g(i,j))},

deg+(fk) ≤ deg+

(∑
k∈K

fk

)
≤ max

(i,j)∈S
{deg+(f(i,j))} + d = max

(i,j)∈S
{deg−(g(i,j)) + bi|bj |},

for all k ∈ K. Therefore, the resulting graph G is still connected.
Finally, we count the product of G. The product of A′ is (1 + Xd + · · · + XN−d) ·∑

(i,j)∈S a(i,j)h(i,j). The total contribution of elementary circuits in Step 2 is
∑

(i,j)∈S g(i,j) ·(
1 + Xd + · · · + Xbi|bj |−d

)
· h(i,j). The total contribution of loops in Step 3 is

∑
k∈K fk · yk.

Thus, by Equation (25), the product of G is
∑

(i,j)∈S f(i,j) · h(i,j) +
∑

k∈K fk · yk. ◀

(Step 1)

elementary circuit of type

Step 2

Step 3

loop of type

Figure 7 Graph G from Proposition 4.7.

Proof of “if” part of Proposition 3.2. We use Proposition 4.7 to prove the “if” part of
Proposition 3.2. Suppose there exist a double-full set S ⊂ I × J and polynomials f(i,j), fk ∈
N[X±d]∗ for (i, j) ∈ S, k ∈ K that satisfy Conditions (i)-(iii). Recall that by simultaneously
multiplying all f(i,j) and fk by p ·(X−d +1+Xd + · · ·+XN−2d)q for large enough p, q ∈ N, we
can suppose Equations (25) and (26) to be satisfied. Then Proposition 4.7 gives an Eulerian
G-graph G whose product is

(∑
(i,j)∈S f(i,j) · h(i,j) +

∑
k∈K fk · yk, 0

)
. This product is equal

to the neutral element due to Conditions (i) of Proposition 3.2. By following an Eulerian
cycle of G, we obtain a word w representing the neutral element. The word w is full-image
because G contains elementary circuits of all types (i, j) ∈ S and loops of all types k ∈ K,
and because S is double-full. Therefore ⟨G⟩ is a group by Lemma 2.1. ◀

5 A local-global principle for polynomial equations

In this section we prove Proposition 3.4. We follow the line of proof for the original result of
Einsiedler et al. [13], while introducing new elements concerning the degree constraints. See
Figure 8 in Appendix A for an illustration of the proof.

ICALP 2023

124:14 The Identity Problem in Z ≀ Z Is Decidable

▶ Lemma 5.1. Suppose Conditions (ii) and (iii) of Proposition 3.4 hold. Then there exists
fend = (fend,S , fend,K , · · ·) ∈ M such that

lc+(fend) ∈ Rn
>0, deg+ (fend,S) + 1 ≥ deg+ (fend,K) , and (28)

lc−(fend) ∈ Rn
>0, deg− (fend,S) ≤ deg− (fend,K) . (29)

Since lc±(fend) ∈ Rn
>0, there exists c > 1, such that fend(x) ∈ Rn

>0 for all x ∈ R>0\[1/c, c].
Define the compact set C := [1/4c, 4c].

▶ Lemma 5.2. Suppose Condition (i) of Proposition 3.4 hold. Let C ⊂ R>0 be a compact
set, then there exists fC = (fC,S , fC,K , · · ·) ∈ M such that fC(x) ∈ Rn

>0 for all x ∈ C.

The key ingredient for finding an element in (A+)n is the following corollary of Handel-
man’s Theorem.

▶ Theorem 5.3 (Corollary of Handelman’s Theorem [10, 15]). Let f ∈ An. There exists
g ∈ A+ such that g · f ∈ (A+)n if and only if the two following conditions are satisfied:

(i) For all r ∈ R>0, we have f(r) ∈ Rn
>0.

(ii) We have lc+(f) ∈ Rn
>0 and lc−(f) ∈ Rn

>0.
We now sketch a proof of Proposition 3.4 by “gluing” the two elements fend and fC

obtained respectively in Lemma 5.1 and 5.2, then applying Theorem 5.3. For an illustration
of the proof, see Figure 8.

Lemma 5.1

Lemma 5.2

Theorem 5.3

Figure 8 Proof of Proposition 3.4, illustrated at dimension n = 1.

Sketch of proof of Proposition 3.4. If M contains an element f = (fS , fK , · · ·) ∈ (A+)n

with deg+(fS) + 1 ≥ deg+(fK) and deg−(fS) ≤ deg−(fK), then simply take fr = f∞ =
f0 = f for all r ∈ R>0: Equation (16) is satisfied for all r as well as (17) and (18).

Consider the non-trivial direction of implication. Let fend, fC ∈ M be the elements
obtained respectively in Lemma 5.1 and 5.2. Define the polynomial q := 1

2c (X + X−1).
Let ϵ > 0 be such that ϵ · fend(x) + fC(x) ∈ Rn

>0 for all x ∈ C. Such an ϵ exists by the
compactness of C. We claim that there exists N ∈ N such that f := ϵqN · fend + fC satisfies
Conditions (i) and (ii) in Theorem 5.3 simultaneously.

R. Dong 124:15

Let M ∈ N be such that deg+(fend,i) + M > deg+(fC,i) and deg−(fend,i) − M <

deg−(fC,i) for every coordinate i = S, K, · · · , n. Let g := ϵqM · fend + fC . Then we have
lc+(g) = lc+(fend) ∈ Rn

>0 and lc−(g) = lc−(fend) ∈ Rn
>0, as well as

deg+ (gS) + 1 = deg+ (fend,S) + M + 1 ≥ deg+ (fend,K) + M = deg+ (gK) ,

deg− (gS) = deg− (fend,S) − M ≤ deg− (fend,K) − M = deg− (gK) .

Therefore, there exists a compact set [1/d, d] ⊃ C such that g(x) ∈ Rn
>0 for all x ∈ R>0 \

[1/d, d]. Since [1/d, d] is compact, there exists N > M such that ϵfend,i(x) · 2N + fC,i(x) > 0
for all i = S, K, · · · , n, and all x ∈ [1/d, d].

For this N , the vector f := ϵqN · fend + fC satisfies both Conditions (i) and (ii) in
Theorem 5.3 (see the full proof in Appendix A). Therefore, we can find g ∈ A+ such that
gf ∈ (A+)n. We have at the same time gf ∈ M as well as deg+(gfS) + 1 ≥ deg+(gfK) and
deg−(gfS) ≤ deg−(gfK). We have thus found the required element gf . ◀

6 Decidability of local conditions

In this section we prove Proposition 3.5 and 3.6. Let M be an A-submodule of An.

▶ Lemma 6.1. Let g1, . . . , gm be a basis of M and r ∈ R>0. There exists f ∈ M with
f(r) ∈ Rn

>0 if and only if there exist r1, . . . , rm ∈ R such that r1g1(r)+ · · ·+rmgm(r) ∈ Rn
>0.

▶ Proposition 3.5. Let M be an A-submodule of An. Given as input a finite basis of M, it
is decidable whether for every r ∈ R>0 there exists fr ∈ M with fr(r) ∈ Rn

>0.

Proof. By Lemma 6.1, the statement to be decided is equivalent to the following sentence in
the first order theory of the reals:

∀r, r > 0 =⇒ (∃r1∃r2 · · · ∃rm, r1g1(r) + · · · + rmgm(r) ∈ Rn
>0) . (30)

Its truth is decidable by Tarski’s Theorem [28]. ◀

For Proposition 3.6, we start by the following definitions.

▶ Definition 6.2.
(i) Suppose f =

∑q
i=p aiX

i ∈ A \ {0}, where apaq ̸= 0. Define in+(f) := aqXq and
in−(f) := apXp. Additionally define in+(0) = in−(0) = 0.

(ii) Given ∗ ∈ {+, −}, α = (αS , αK , . . .) ∈ Zn and f = (fS , fK , . . .) ∈ An. Define
sgn(∗) = 1 when ∗ = +, and sgn(∗) = −1 when ∗ = −. Let

m∗,α(f) := max{sgn(∗) · deg∗(fS) + αS , sgn(∗) · deg∗(fK) + αK , . . .}.

Define in∗,α(f) := (gS , gK , . . .), where for j = S, K, . . .,

gj :=
{

in∗(fj) sgn(∗) · deg∗(fj) + αj = m∗,α(f),
0 deg∗(fj) + αj < m∗,α(f).

For a monomial f = aiX
i ∈ A, define coef(f) := ai. In particular, coef(0) = 0. Note

that for any ∗ ∈ {+, −}, f ∈ An and α ∈ Zn, the above defined in∗,α(f) is an n-tuple of
monomials. Writing in∗,α(f) = (gS , gK , . . .), we then extend the definition of coef() to

coef(in∗,α(f)) := (coef(gS), coef(gK), . . .) ∈ Rn.

ICALP 2023

124:16 The Identity Problem in Z ≀ Z Is Decidable

▶ Lemma 6.3. Fix ∗ ∈ {+, −} and a ∈ Z. The two following conditions are equivalent:
(i) There exists f = (fS , fK , · · ·) ∈ M such that

lc∗(f) ∈ Rn
>0 and deg∗ (fS) + a ≥ deg∗ (fK) . (31)

(ii) There exists α = (αS , αK , · · ·) ∈ Zn with αS − αK ≤ a, as well as f = (fS , fK , · · ·) ∈
M, such that coef (in∗,α(f)) ∈ Rn

>0.
We use the notion of a super Gröbner basis for M: see [13, Chapter 2] for its exact

definition. Readers can simply take the following Lemma 6.4 as its definition, since this will
be the only property of the super Gröbner basis that we use in this paper.

▶ Lemma 6.4 ([13, Lemma 2.1]). Let ∗ ∈ {+, −} and α ∈ Zn. Let g1, . . . , gm be a super
Gröbner basis for M. For every g ∈ M, we have in∗,α(g) =

∑m
i=1 pi · in∗,α(gi) for some

p1, . . . , pm ∈ A.

By [13, Chapter 2], given a basis for M, a set of super Gröbner basis exists and can be
effectively computed. We now fix a set of a super Gröbner basis g1, . . . , gm for M.

▶ Corollary 6.5. Let ∗ ∈ {+, −} and α ∈ Zn. Then there exists f ∈ M with coef (in∗,α(f)) ∈
Rn

>0 if and only if there exist r1, . . . , rm ∈ R with
∑m

i=1 ri · coef(in∗,α(gi)) ∈ Rn
>0.

▶ Lemma 6.6 (Generalization of [13, Lemma 6.1]). Fix ∗ ∈ {+, −}. The initial tuples
in∗,α(g1), . . . , in∗,α(gm) can take only a finite number of possible values when α varies in the
set {α = (αS , αK , · · ·) ∈ Zn | αS −αK ≤ a}. Furthermore, one can effectively compute repres-
entatives α1, . . . , αp ∈ Zn, such that the tuples

(
in∗,α1(gi)

)
i=1,...,m

, . . . ,
(

in∗,αp
(gi)

)
i=1,...,m

are all the possible tuples
(

in∗,α(gi)
)

i=1,...,m
when α varies.

▶ Proposition 3.6. Let ∗ ∈ {+, −}, a ∈ Z and M be an A-submodule of An. Given as input
a finite basis of M, it is decidable whether there exists f = (fS , fK , · · ·) ∈ M such that

lc∗(f) ∈ Rn
>0 and deg∗ (fS) + a ≥ deg∗ (fK) . (19)

Proof. First we compute a set of super Gröbner basis g1, . . . , gm for M. Then for each ∗ ∈
{+, −}, by Lemma 6.6 we compute α1, . . . , αp ∈ Zn such that the tuples

(
in∗,α1(gi)

)
i=1,...,m

,
. . . ,

(
in∗,αp

(gi)
)

i=1,...,m
are all the possible tuples when αS − αK ≤ a. For each of these

α ∈ {α1, . . . , αp}, use linear programming to decide whether there exist real numbers
r1, . . . , rm ∈ R such that

∑m
i=1 ri ·coef (in∗,α(gi)) ∈ Rn

>0. By Corollary 6.5, such r1, . . . , rm ∈
R exist if and only if there exists f ∈ M with coef(in∗,α(f)) ∈ Rn

>0. By Lemma 6.3, this is
true if and only if there exists f = (fS , fK , · · ·) ∈ M satisfying condition (19). ◀

References
1 Erwin H. Bareiss. Sylvester’s identity and multistep integer-preserving gaussian elimination.

Mathematics of computation, 22(103):565–578, 1968.
2 Gilbert Baumslag, Frank B. Cannonito, and Derek J. S. Robinson. The algorithmic theory

of finitely generated metabelian groups. Transactions of the American Mathematical Society,
344(2):629–648, 1994.

3 Paul C. Bell, Mika Hirvensalo, and Igor Potapov. The Identity Problem for matrix semigroups
in SL2(Z) is NP-complete. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium
on Discrete Algorithms, pages 187–206. SIAM, 2017.

4 Paul C. Bell and Igor Potapov. On the undecidability of the identity correspondence problem
and its applications for word and matrix semigroups. International Journal of Foundations of
Computer Science, 21(06):963–978, 2010.

R. Dong 124:17

5 Vincent D. Blondel, Emmanuel Jeandel, Pascal Koiran, and Natacha Portier. Decidable and
undecidable problems about quantum automata. SIAM Journal on Computing, 34(6):1464–
1473, 2005.

6 J. A. Bondy and U. S. R. Murty. Graph theory with applications, volume 290. Macmillan
London, 1976.

7 Michaël Cadilhac, Dmitry Chistikov, and Georg Zetzsche. Rational subsets of baumslag-solitar
groups. In 47th International Colloquium on Automata, Languages, and Programming, ICALP,
volume 168 of LIPIcs, pages 116:1–116:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2020.

8 Olivier Chapuis. ∀-free metabelian groups. The Journal of Symbolic Logic, 62(1):159–174,
1997.

9 Christian Choffrut and Juhani Karhumäki. Some decision problems on integer matrices.
RAIRO-Theoretical Informatics and Applications-Informatique Théorique et Applications,
39(1):125–131, 2005.

10 Valerio De Angelis and Selim Tuncel. Handelman’s theorem on polynomials with positive
multiples. Codes, systems, and graphical models (Minneapolis, MN, 1999), pages 439–445,
2001.

11 Harm Derksen, Emmanuel Jeandel, and Pascal Koiran. Quantum automata and algebraic
groups. Journal of Symbolic Computation, 39(3-4):357–371, 2005.

12 Ruiwen Dong. Solving homogeneous linear equations over polynomial semirings. arXiv preprint,
2022. To appear in STACS 2023. arXiv:2209.13347.

13 Manfred Einsiedler, Robert Mouat, and Selim Tuncel. When does a submodule of
(R[x1, . . . , xk])n contain a positive element? Monatshefte für Mathematik, 140(4):267–283,
2003.

14 Moses Ganardi, Daniel König, Markus Lohrey, and Georg Zetzsche. Knapsack problems for
wreath products. In 35th Symposium on Theoretical Aspects of Computer Science, STACS
2018, February 28 to March 3, 2018, Caen, France, volume 96 of LIPIcs, pages 32:1–32:13.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018.

15 David Handelman. Positive polynomials and product type actions of compact groups, volume
320. American Mathematical Soc., 1985.

16 Ehud Hrushovski, Joël Ouaknine, Amaury Pouly, and James Worrell. Polynomial invariants
for affine programs. In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, pages 530–539, 2018.

17 Olga Kharlampovich, Laura López, and Alexei Myasnikov. The diophantine problem in some
metabelian groups. Mathematics of Computation, 89(325):2507–2519, 2020.

18 Olga G. Kharlampovich. A finitely presented solvable group with unsolvable word problem.
Izvestiya Rossiiskoi Akademii Nauk. Seriya Matematicheskaya, 45(4):852–873, 1981.

19 Olga G. Kharlampovich and Mark V. Sapir. Algorithmic problems in varieties. International
Journal of Algebra and Computation, 5(04n05):379–602, 1995.

20 Kenneth Krohn and John Rhodes. Algebraic theory of machines. I. Prime decomposition
theorem for finite semigroups and machines. Transactions of the American Mathematical
Society, 116:450–464, 1965.

21 Markus Lohrey. Subgroup membership in GL(2, Z). In 38th International Symposium on
Theoretical Aspects of Computer Science (STACS 2021), volume 187 of LIPIcs, pages 51:1–51:17.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

22 Markus Lohrey, Benjamin Steinberg, and Georg Zetzsche. Rational subsets and submonoids
of wreath products. Information and Computation, 243:191–204, 2015.

23 Wilhelm Magnus. On a theorem of Marshall Hall. Annals of Mathematics, pages 764–768,
1939.

24 A. Markov. On certain insoluble problems concerning matrices. Doklady Akad. Nauk SSSR,
57(6):539–542, 1947.

ICALP 2023

https://arxiv.org/abs/2209.13347

124:18 The Identity Problem in Z ≀ Z Is Decidable

25 K. A. Mikhailova. The occurrence problem for direct products of groups. Matematicheskii
Sbornik, 112(2):241–251, 1966.

26 Vitalii Anatol’evich Roman’kov. Equations in free metabelian groups. Siberian Mathematical
Journal, 20(3):469–471, 1979.

27 N. S. Romanovskii. Some algorithmic problems for solvable groups. Algebra and Logic,
13(1):13–16, 1974.

28 Alfred Tarski. A Decision Method for Elementary Algebra and Geometry. second ed., rev.,
Univ. of California Press, Berkeley, 1951.

A Some omitted proofs

This appendix contains some omitted proofs from the main article. Other omitted proofs
can be found in the full version of this paper.

▶ Lemma 2.1. Let G = {g1, . . . , ga} be a set of elements in a group G. The semigroup ⟨G⟩ is
a group if and only if the neutral element I of G is represented by a full-image word over G.

Proof. Let w ∈ G∗ be a full-image word with π(w) = I. Then for every i, the word w can
be written as w = vgiv

′, so g−1
i = π(v′)π(v) ∈ ⟨G⟩. Therefore, the semigroup ⟨G⟩ contains

all the inverse g−1
i , and is thus a group.

If ⟨G⟩ is a group, then for all i, the inverse g−1
i can be written as π(wi) for some

word wi ∈ G∗. Then the word w := g1w1g2w2 · · · gawa is a full-image word with π(w) =
π(g1w1) · · · π(gawa) = I. ◀

▶ Proposition 3.1. Suppose I = ∅ or J = ∅. The semigroup ⟨G⟩ is a group if and only if
I = J = ∅ and

∑
k∈K nkyk = 0 for some positive integers nk ∈ Z>0. In particular, this is

decidable by integer programming.

Proof. First suppose ⟨G⟩ is a group. Without loss of generality suppose I = ∅. Then every
element (y, b) ∈ ⟨G⟩ must satisfy b ≤ 0. Therefore, for any (yj , bj) ∈ G with bj < 0, we have
(yj , bj)−1 = (X−bj · yj , −bj) ̸∈ ⟨G⟩ by the positivity of −bj . Hence J = ∅.

Since ⟨G⟩ is a group, by Lemma 2.1 there exists a full-image word w ∈ G∗ that represents
(0, 0). Let nk be the number of times the word (yk, 0) appears in w, then nk > 0 and w

represents
(∑

k∈K nkyk, 0
)

= (0, 0). This finishes the first implication.
For the converse implication, suppose I = J = ∅ and

∑
k∈K nkyk = 0 for some integers

nk ∈ Z>0. Then the word
∏

k∈K(yk, 0)nk = (0, 0). Therefore there exists a full-image word
that represents (0, 0). Hence ⟨G⟩ is a group.

Let p = mink∈K{deg−(yk)} and q = maxk∈K{deg+(yk)}. For each k ∈ K, write
yk =

∑q
t=p βk,tX

t, then
∑

k∈K nkyk = 0 is equivalent to the system of linear equations∑
k∈K

nkβk,t = 0, t = p, p + 1, . . . , q. (32)

Deciding whether the system (32) has solution over Z>0 can be decided using integer
programming. ◀

▶ Corollary 3.3. The semigroup ⟨G⟩ is a group if and only if there exist a double-full set
S ⊂ I × J and polynomials fS , fK , f(i,j), fk ∈ R≥0[X±]∗ for (i, j) ∈ S, k ∈ K that satisfy the
following three conditions.

R. Dong 124:19

(i) (System of linear equations) The following linear equations over R(X) are satisfied:∑
(i,j)∈S

f(i,j)h(i,j),m +
∑
k∈K

fkyk,m = 0, m = 0, . . . , d − 1, (10)

fS =
∑

(i,j)∈S

f(i,j), fK =
∑
k∈K

fk. (11)

(ii) (Positive degree bound) We have:

deg+ (fS) + 1 ≥ deg+ (fK) . (12)

(iii) (Negative degree bound) We have:

deg− (fS) ≤ deg− (fK) . (13)

Proof. We show that Corollary 3.3 is equivalent to Proposition 3.2.
By the definition of h(i,j),m, yk,m, (i, j) ∈ S, k ∈ K, m = 0, . . . , d − 1 in Equation (8) and

(9), the Equation (5) in Condition (i) of Proposition 3.2 is equivalent to the following system:

∑
(i,j)∈S

f ′
(i,j)h(i,j),m +

∑
k∈K

f ′
kyk,m = 0, m = 0, . . . , d − 1. (33)

Where f ′
(i,j), f ′

k are polynomials in N[X±]∗ such that f(i,j) = f ′
(i,j)(Xd), fk = f ′

k(Xd).
On one hand, suppose there exist polynomials f(i,j), fk ∈ N[X±d]∗ that satisfy Condi-

tions (i)-(iii) of Proposition 3.2. Then the polynomials f ′
(i,j), f ′

k satisfying the system (33)
are also in R≥0[X±]. Then let f ′

S =
∑

(i,j)∈S f ′
(i,j) and f ′

K =
∑

k∈K f ′
k, so Conditions (i)-(iii)

of Corollary 3.3 are satisfied for f ′
S , f ′

K , f ′
(i,j), f ′

k ∈ R>0[X±]∗.
On the other hand, suppose there exist polynomials f ′

S , f ′
K , f ′

(i,j), f ′
k ∈ R>0[X±]∗ that

satisfy Conditions (i)-(iii) of Corollary 3.3. We show that there exist fS , fK , f(i,j), fk ∈
N[X±]∗, (i, j) ∈ S, k ∈ K that satisfy the same Equations (10)-(11), and such that
deg± f ′

(i,j) = deg± f(i,j), deg± f ′
k = deg± fk for all (i, j) ∈ S, k ∈ K.

In fact, by the homogeneity of Equations (10)-(11), one can multiply all h(i,j),m and
yk,m simultaneously by their common denominator, and suppose h(i,j),m, yk,m ∈ Q[X±].
Then, fixing the degrees of f(i,j) and fk, one can rewrite Equations (10)-(11) as a system of
homogeneous linear equation where the variables are the coefficients of f(i,j) and fk. We then
add to this system of homogeneous linear equations a boolean combination of homogeneous
linear inequalities to guarantee f(i,j), fk ∈ R>0[X±]∗ (this can be expressed using inequalities
for the coefficients of f(i,j), fk), as well as to guarantee the degree of f(i,j), fk. Since this
system of homogeneous linear equations plus boolean combination of homogeneous linear
inequalities has a solution over R, it also has a solution over Q, and even over Z by the
homogeneity. Therefore, we obtain a solution over Z for the coefficients of f(i,j), fk. This
gives us a solution f(i,j), fk ∈ N[X±]∗ with the same fixed degrees.

Consequently, f(i,j), fk, (i, j) ∈ S, k ∈ K, satisfy the system (33). Thus,
f(i,j)(Xd), fk(Xd), (i, j) ∈ S, k ∈ K. satisfy Conditions (i)-(iii) of Proposition 3.2. ◀

▶ Lemma 4.4. The graph G(ŵ) can be constructed by starting with an edgeless graph with a
single vertex 0 and gradually attaching primitive circuits.

Proof. Denote by G0 the edgeless graph with a single vertex 0. We show that every Eulerian
Ĝ-graph G can be constructed by attaching primitive circuits to G0. We use induction on
the number of edges in G. When there is no edge in G, it is G0, and we are done.

ICALP 2023

124:20 The Identity Problem in Z ≀ Z Is Decidable

When there are loops in G, these are loops of some label k ∈ K, and are therefore primitive
circuits themselves. Removing them results in another Eulerian graph G′ and decreases the
number of edges. By the induction hypothesis G′ can be constructed by attaching primitive
circuits to G0. Then attaching the loops (primitive circuits of type in K) to G′ results in G.

When there are no loops in G, denote m := max(V (G)). Then since G is Eulerian, there
must be an edge e of label ℓ(e) starting from the vertex m, and an edge e′ of label ℓ(e′)
ending at the vertex m. Since all the edges in G are of length d, the edge e must end at
vertex m − d, and e′ must start at m − d. (The length of an edge of label a is b̂a.) Therefore
the circuit consisting of e and e′ is primitive of type (ℓ(e), ℓ(e′)). Removing the circuit (and
the vertex m if necessary) results in a graph G′. G′ is connected (and Eulerian) since there
is no loop at m, and the only possible neighbour of the vertex m is m − d. By the induction
hypothesis G′ can be constructed by attaching primitive circuits to G0. Then attaching to
G′ the primitive circuits of type (ℓ(e), ℓ(e′)) at vertex m − d results in G. ◀

Indiscernibles and Flatness in Monadically Stable
and Monadically NIP Classes
Jan Dreier #

TU Wien, Austria

Nikolas Mählmann #

Universität Bremen, Germany

Sebastian Siebertz #

Universität Bremen, Germany

Szymon Toruńczyk #

University of Warsaw, Poland

Abstract
Monadically stable and monadically NIP classes of structures were initially studied in the context of
model theory and defined in logical terms. They have recently attracted attention in the area of
structural graph theory, as they generalize notions such as nowhere denseness, bounded cliquewidth,
and bounded twinwidth.

Our main result is the – to the best of our knowledge first – purely combinatorial characterization
of monadically stable classes of graphs, in terms of a property dubbed flip-flatness. A class C of
graphs is flip-flat if for every fixed radius r, every sufficiently large set of vertices of a graph G ∈ C

contains a large subset of vertices with mutual distance larger than r, where the distance is measured
in some graph G′ that can be obtained from G by performing a bounded number of flips that swap
edges and non-edges within a subset of vertices. Flip-flatness generalizes the notion of uniform
quasi-wideness, which characterizes nowhere dense classes and had a key impact on the combinatorial
and algorithmic treatment of nowhere dense classes. To obtain this result, we develop tools that also
apply to the more general monadically NIP classes, based on the notion of indiscernible sequences
from model theory. We show that in monadically stable and monadically NIP classes indiscernible
sequences impose a strong combinatorial structure on their definable neighborhoods. All our proofs
are constructive and yield efficient algorithms.

2012 ACM Subject Classification Mathematics of computing → Graph algorithms; Theory of
computation → Finite Model Theory

Keywords and phrases stability, NIP, combinatorial characterization, first-order model checking

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.125

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version Full Version: https://arxiv.org/abs/2206.13765 [15]

Funding Nikolas Mählmann: supported by the German Research Foundation (DFG) with grant
greement No. 444419611.
Szymon Toruńczyk: supported by the project BOBR that is funded from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innovation programme with
grant agreement No. 948057.

Acknowledgements We thank Édouard Bonnet, Jakub Gajarský, Stephan Kreutzer, Amer E.
Mouawad and Alexandre Vigny for their valuable contributions to this paper. In particular, we
thank Jakub Gajarský and Stephan Kreutzer for suggesting the notion of flip-flatness and providing
a proof for the cases r = 1, 2.

EA
T
C
S

© Jan Dreier, Nikolas Mählmann, Sebastian Siebertz, and Szymon Toruńczyk;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 125; pp. 125:1–125:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:dreier@ac.tuwien.ac.at
https://orcid.org/0000-0002-2662-5303
mailto:maehlmann@uni-bremen.de
https://orcid.org/0000-0003-3657-7736
mailto:siebertz@uni-bremen.de
https://orcid.org/0000-0002-6347-1198
mailto:szymtor@mimuw.edu.pl
https://orcid.org/0000-0002-1130-9033
https://doi.org/10.4230/LIPIcs.ICALP.2023.125
https://arxiv.org/abs/2206.13765
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

125:2 Indiscernibles and Flatness in Monadically Stable and Monadically NIP Classes

1 Introduction

An important open problem in structural and algorithmic graph theory is to characterize
those hereditary graph classes for which the model checking problem for first-order logic
is tractable1 [23, Section 8.2]. A result of Grohe, Kreutzer, and Siebertz [24] states that
for monotone graph classes (that is, classes closed under removing vertices and edges), the
limit of tractability is precisely captured by the notion of nowhere denseness, introduced
by Nešetřil and Ossona de Mendez [29]. Examples of nowhere dense classes include the
class of planar graphs, all classes that exclude a fixed minor, and classes with bounded
expansion. Whereas these classes are sparse (for instance, they exclude some fixed biclique
as a subgraph), the aforementioned problem seeks to generalize the result of Grohe, Kreutzer,
and Siebertz to classes that are not necessarily sparse. Indeed, there are known hereditary
graph classes that are not sparse, and for which the model checking problem is tractable,
such as transductions of classes of bounded local cliquewidth [5], transductions of nowhere
dense classes [16], or classes of ordered graphs (that is, graphs equipped with a total order)
of bounded twinwidth [6].

So far, a complete picture is understood in two contexts: for monotone graph classes, where
tractability coincides with nowhere denseness, and for hereditary classes of ordered graphs,
where tractability coincides with bounded twinwidth. Despite the apparent dissimilarity of
the combinatorial definitions of nowhere denseness and bounded twinwidth, those notions
can be alternatively characterized in a uniform way in logical terms by the following notion,
originating in model theory. Unless mentioned otherwise, all formulas are first-order formulas.

Say that a class C of graphs transduces a class D of graphs if for every H ∈ D there is
some G ∈ C from which H can be obtained by performing the following steps: (1) coloring
the vertices of G arbitrarily (2) interpreting a fixed formula φ(x, y) (involving the edge
relation and unary relations for the colors), thus yielding a new graph φ(G) with the same
vertices as G and edges uv such that φ(u, v) holds, and finally (3) taking an induced subgraph
of φ(G). The transducability relation on graph classes is transitive, and classes that do not
transduce the class of all graphs are called monadically NIP. For instance, the class of all
bipartite graphs transduces the class of all graphs: to obtain an arbitrary graph G, consider
its 1-subdivision, obtained by placing one vertex on each edge of G, thus yielding a bipartite
graph H; then the formula φ(x, y) expressing that x and y have a common neighbor defines
a graph on V (H) containing G as an induced subgraph. Hence, the class of bipartite graphs
is not monadically NIP. On the other hand, all the graph classes mentioned earlier – nowhere
dense classes and transductions thereof, classes of bounded twinwidth, or transductions of
classes with bounded local cliquewidth – are monadically NIP. This suggests that monadic
NIP might constitute the limit of tractability of the model checking problem. More precisely,
the following has been conjectured2.

▶ Conjecture 1 ([1]). Let C be a hereditary class of graphs. Then the model checking problem
for first-order logic is fixed parameter tractable on C if and only if C is monadically NIP.

Quite remarkably, among monotone graph classes, classes that are monadically NIP
correspond precisely to nowhere dense classes [2], and among hereditary graph classes of
ordered graphs, classes that are monadically NIP correspond precisely to classes of bounded

1 more precisely, fixed parameter-tractable, that is, solvable in time f(|φ|) · |G|c, where φ is the input
formula and G is the input graph, for some function f : N → N and constant c

2 To the best of our knowledge the conjecture was first explicitly discussed during the open problem
session of the Algorithms, Logic and Structure Workshop in Warwick, in 2016, see [1].

J. Dreier, N. Mählmann, S. Siebertz, and S. Toruńczyk 125:3

twinwidth [6]. One may tweak the definition of monadic NIP classes by considering other
logics than first-order logic. For instance, for the counting extension CMSO2 of monadic
second-order logic, one recovers precisely the notion of classes of bounded cliquewidth [9],
or classes of bounded treewidth if only monotone classes are considered. Thus, variations
on the definition of monadic NIP recover important notions from graph theory: nowhere
denseness, bounded twinwidth, bounded treewidth, and bounded cliquewidth.

Note that both implications in Conjecture 1 remain open. The conjecture is so far
confirmed for monotone graph classes [24] (where monadically NIP classes are exactly the
nowhere dense classes) and for hereditary classes of ordered graphs [6], tournaments [22],
interval graphs and permutation graphs [7], (where monadically NIP classes are exactly the
classes of bounded twinwidth). As a special important case, the conjecture predicts that all
monadically stable graph classes are tractable. A class C is monadically stable if it does not
transduce the class of all half-graphs, that is, graphs with vertices a1, b1, . . . , an, bn such that
ai is adjacent to bj if and only if i ⩽ j. Although much more restrictive than monadically
NIP classes, monadically stable classes include all nowhere dense classes [2], and hence also
all classes D that transduce in a nowhere dense class C (called structurally nowhere dense
classes [19]). Those include dense graph classes, such as for instance squares of planar graphs.
In fact, it is conjectured [30] that every monadically stable class of graphs is structurally
nowhere dense.

These outlined connections between structural graph theory and model theory have
recently triggered the interest to generalize combinatorial and algorithmic results from
nowhere dense classes to structurally nowhere dense, monadically stable and monadically
NIP classes, and ultimately to efficiently solve the model checking problem for first-order
logic on these classes [5, 6, 19, 13, 21, 27, 30, 31, 32]. Logical results on monadically stable
and monadically NIP classes in model theory include [3, 34, 8, 4].

Contribution

As discussed above, many central graph classes such as those with bounded cliquewidth,
twinwidth or nowhere dense classes can be characterized both from a structural (i.e., graph
theoretic) and a logical perspective. While monadically stable and monadically NIP graph
classes are naturally defined via logic, structural characterizations have so far been elusive. In
this work we take a step towards a structure theory for monadically stable and monadically
NIP classes of graphs, which is the basis for their future algorithmic and combinatorial
treatment, in particular, a tool for approaching Conjecture 1, as we discuss later.

Flatness. Our main result, Theorem 3, provides a purely combinatorial characterization of
monadically stable graph classes in terms of flip-flatness. Flip-flatness generalizes uniform
quasi-wideness3, introduced by Dawar in [10] in his study of homomorphism preservation
properties. Uniform quasi-wideness was proved by Nešetřil and Ossona de Mendez [29]
to characterize nowhere dense graph classes and is a key tool in the combinatorial and
algorithmic treatment of these classes. To foster the further discussion, let us formally define
this notion.

3 Another reasonable name for flip-flatness would be flip-wideness. We avoided this name to prevent
confusion with the recently introduced graph parameter flip-width [37], which is studied in the same
context.

ICALP 2023

125:4 Indiscernibles and Flatness in Monadically Stable and Monadically NIP Classes

delete • delete •

flip (•, •) flip (•, •)

uniform quasi-wideness:

flip-flatness:

Figure 1 An example of uniform quasi-wideness (flip-flatness). Among the yellow vertices, we
find a still large set of green vertices, that is distance-7 independent after deleting a bounded number
of red vertices (performing a bounded number of flips between sets of red and blue vertices). Two
key properties are illustrated: 1. the higher the desired independence distance, the more operations
have to be performed; 2. we cannot hope to make all the yellow vertices distance-r independent
with a bounded number of operations.

A set of vertices is distance-r independent in a graph if any two vertices in the set are
at distance greater than r. A class of graphs C is uniformly quasi-wide if for every r ∈ N
there exists a function Nr : N → N and a constant s ∈ N with the following property. For
all m ∈ N, G ∈ C , and A ⊆ V (G) with |A| ⩾ Nr(m), there exists S ⊆ V (G) with |S| ⩽ s

and B ⊆ A \ S with |B| ⩾ m such that B is distance-r independent in G− S (see the top
of Figure 1). Intuitively, for uniformly quasi-wide classes, in sufficiently large sets one can
find large subsets that are distance-r independent after the deletion of a constant number of
vertices. Uniform quasi-wideness is only suitable for the treatment of sparse graphs. Already
very simple dense graph classes, such as the class of all cliques, are not uniformly quasi-wide.

Inspired by the notion of uniform quasi-wideness, Jakub Gajarský and Stephan Kreutzer
proposed the new notion of flip-flatness. Roughly speaking, flip-flatness generalizes uniform
quasi-wideness by replacing in its definition the deletion of a bounded size set of vertices by
the inversion of the edge relation between a bounded number of (arbitrarily large) vertex sets.
Let us make this definition more precise. A flip in a graph G is specified by a pair of sets
F = (A,B) with A,B ⊆ V (G). We write G⊕ F for the graph with the same vertices as G,
and edges uv such that uv ∈ E(G) xor (u, v) ∈ (A×B)∪ (B×A). For a set F = {F1, . . . , Fn}
of flips, we write G⊕ F for the graph G⊕ F1 ⊕ · · · ⊕ Fn.

▶ Definition 2. A class of graphs C is flip-flat if for every r ∈ N there exists a function
Nr : N → N and a constant sr ∈ N such that for all m ∈ N, G ∈ C , and A ⊆ V (G) with
|A| ⩾ Nr(m), there exists a set F of at most sr flips and B ⊆ A with |B| ⩾ m such that B
is distance-r independent in G⊕ F .

J. Dreier, N. Mählmann, S. Siebertz, and S. Toruńczyk 125:5

Intuitively, for flip-flat classes in sufficiently large sets one can find large subsets that
are distance-r independent after a constant number of flips (see bottom of Figure 1). For
example the class of all cliques is flip-flat, requiring only a single flip to make the whole
vertex set distance-∞ independent. Our main result is the following purely combinatorial
characterization of monadic stability.

▶ Theorem 3. A class of graphs is monadically stable if and only if it is flip-flat.

Notably, our proof is algorithmic and yields polynomial bounds in the following sense.

▶ Theorem 4. Every monadically stable class C of graphs is flip-flat, where for every r, the
function Nr is polynomial. Moreover, given an n-vertex graph G ∈ C , A ⊆ V (G), and r ∈ N,
we can compute a subset B ⊆ A and a set of flips F that makes B distance-r independent in
G⊕ F in time O(fC (r) · n3) for some function fC .

Just as uniform quasi-wideness provided a key tool for the algorithmic treatment of
nowhere dense graph classes, in particular for first-order model checking [24], we believe that
the characterization by flip-flatness will provide an important step towards the algorithmic
treatment of monadically stable classes. We leave as an open question whether a similar
characterization of monadically NIP classes exists.

Indiscernible sequences. Our study is based on indiscernible sequences, which are a fun-
damental tool in model theory. An indiscernible sequence is a (finite or infinite) sequence
I = (ā1, ā2, . . .) of tuples of equal length of elements of a fixed (finite or infinite) structure,
such that any two finite subsequences of I that have equal length, satisfy the same formulas.
More generally, for a set of formulas ∆, the sequence I is ∆-indiscernible if for each formula
φ(x̄1, . . . , x̄k) from ∆ either all subsequences of I of length k satisfy φ, or no subsequence
of length k satisfies φ. For example, any enumeration of vertices forming a clique or an
independent set in a graph is ∆-indiscernible for ∆ = {E(x1, x2)} containing only the edge
relation. Also, any increasing sequence of rationals in the structure (Q, <) is ∆-indiscernible
for ∆ being the set of all formulas. We use indiscernible sequences to obtain new insights
about monadically stable and monadically NIP classes.

It was shown by Blumensath [4] that in monadically NIP classes, any fixed element
interacts with the tuples of an indiscernible sequence in a very regular way. We give a new
finitary proof of Blumensath’s result. Building on this, we develop our main technical tool,
Theorem 11, where we show that the regular properties of the indiscernible sequences extend
to their disjoint definable neighborhoods (see Section 3.2 for details). A result similar to
Theorem 11, also for disjoint definable neighborhoods in monadically NIP classes, plays a
key role in [6, 35].

Apart from powering our algorithmic proof of flip-flatness, Theorem 11 has already found
further applications in monadically stable classes of graphs: it was recently used to obtain
improved bounds for Ramsey numbers [14] and to prove an algorithmic game-characterization
of these classes, called Flipper game [20]. The paper [20] provides two proofs for this game
characterization. One is constructive and algorithmic and builds on our work. The other
builds on model theoretic tools; it is non-constructive but self-contained and highlights
additional properties of monadically stable graph classes, including a second (though non-
constructive) proof of Theorem 3. The algorithmic version of the Flipper game plays a crucial
role for proving that the first-order model checking problem is fixed parameter tractable for
structurally nowhere dense classes of graphs [16]. This suggests that our developed techniques
may be an important tool towards resolving Conjecture 1.

ICALP 2023

125:6 Indiscernibles and Flatness in Monadically Stable and Monadically NIP Classes

2 Preliminaries

We use standard notation from graph theory and model theory and refer to [11] and [25] for
extensive background. We write [m] for the set of integers {1, . . . ,m}.

Relational structures and graphs. A (relational) signature Σ is a set of relation symbols,
each with an associated non-negative integer, called its arity. A Σ-structure A consists of
a universe, which is a non-empty, possibly infinite set, and interpretations of the symbols
from the signature: each relation symbol of arity k is interpreted as a k-ary relation over the
universe. By a slight abuse of notation, we do not differentiate between structures and their
universes and between relation symbols and their interpretations. By C we denote classes
of structures over a fixed signature. Unless indicated otherwise, C may contain finite and
infinite structures.

A monadic extension Σ+ of a signature Σ is any extension of Σ by unary predicates. A
unary predicate will also be called a color. A monadic expansion or coloring of a Σ-structure A
is a Σ+-structure A+, where Σ+ is a monadic extension of Σ, such that A is the Σ-reduct
of A+, that is, the Σ-structure obtained from A+ by removing all relations with symbols
in Σ+ \ Σ. When C is a class of Σ-structures and Σ+ is a monadic extension of Σ, we
write C [Σ+] for the class of all possible Σ+-expansions of structures from C .

A graph is a finite structure over the signature consisting of a binary relation symbol E,
interpreted as the symmetric and irreflexive edge relation.

First-order logic. We say that two tuples ā, b̄ of elements are φ-connected in a structure A
if A |= φ(ā, b̄). We call the set NA

φ (ā) = {b̄ ∈ A|ȳ| : A |= φ(ā, b̄)} the φ-neighborhood of ā.
We simply write Nφ(ā) when A is clear from the context.

Let Φ(x̄) be a finite set of formulas with free variables x̄. A Φ-type is a conjunction τ(x̄)
of formulas in Φ or their negations, such that every formula in Φ occurs in τ either positively
or negatively. More precisely, τ(x̄) is a formula of the following form, for some subset A ⊆ Φ:∧

φ∈A

φ(x̄) ∧
∧

φ∈Φ\A

¬φ(x̄).

Note that for every |x̄|-tuple ā of elements of A, there is exactly one Φ-type τ(x̄) such
that A |= τ(ā).

Stability and NIP. While we already defined monadic stability and NIP in terms of
transductions in the introduction, let us also give the equivalent original definition. A
formula φ(x̄, ȳ) has the k-order property on a class C of structures if there are A ∈ C and
two sequences (āi)1⩽i⩽k, (b̄i)1⩽i⩽k of tuples of elements of A, such that for all i, j ∈ [k]

A |= φ(āi, b̄j) ⇐⇒ i ⩽ j.

The formula φ is said to have the order property on C if it has the k-order property for
all k ∈ N. The class C is called stable if no formula has the order-property on C . A class C

of Σ-structures is monadically stable if for every monadic extension Σ+ of Σ the class C [Σ+]
is stable.

Similarly, a formula φ(x̄, ȳ) has the k-independence property on a class C if there are
A ∈ C , a size k set A ⊆ A|x̄| and a sequence (b̄J)J⊆A of tuples of elements of A such that for
all J ⊆ A and for all ā ∈ A

A |= φ(ā, b̄J) ⇐⇒ ā ∈ J.

J. Dreier, N. Mählmann, S. Siebertz, and S. Toruńczyk 125:7

We then say that A is shattered by φ. We define the independence property (IP), classes
with the non-independence property (NIP classes), and monadically NIP classes as expected.
Note that every (monadically) stable class is (monadically) NIP. Baldwin and Shelah proved
that in the definitions of monadic stability and monadic NIP, one can alternatively rely
on formulas φ(x, y) with just a pair of singleton variables, instead of a pair of tuples of
variables [3, Lemma 8.1.3, Theorem 8.1.8].

We call a relation R definable on a structure A if R = {ā ∈ A|x̄| : A |= φ(ā)} for some
formula φ(x̄). The following is immediate from the previous definitions.

▶ Lemma 5. Let C be a monadically stable (monadically NIP) class of Σ-structures, let Σ+

be a monadic extension of Σ and let D be the hereditary closure of any expansion of C [Σ+]
by definable relations. Then also D is monadically stable (monadically NIP).

A formula φ(x, ȳ) has pairing index k on a class C of structures if there is A ∈ C and
two sequences (aij)1⩽i<j⩽k and (b̄i)1⩽i⩽k such that for all 1 ⩽ i < j ⩽ k and ℓ ∈ [k]

A |= φ(aij , b̄ℓ) ⇐⇒ ℓ ∈ {i, j}.

We require that x is a single free variable, while ȳ is allowed to be a tuple of variables.
Intuitively, from a graph theoretic perspective, if a formula has unbounded pairing index on
a class C , then it can encode arbitrarily large 1-subdivided cliques in C , where the principal
vertices are represented by the tuples b̄ℓ and the subdivision vertices are represented by single
elements aij . As discussed in the introduction, this is sufficient to encode arbitrary graphs
in C by using an additional color predicate. In this case, C cannot be monadically NIP. The
above reasoning is formalized in the following characterization.

▶ Lemma 6. A class C of Σ-structures is monadically NIP if and only if for every monadic
extension Σ+ of Σ every Σ+-formula φ(x, ȳ) has bounded pairing index on C [Σ+].

Indiscernible sequences. Let A be a Σ-structure and φ(x̄1, . . . , x̄m) a formula. We say
a sequence (āi)1⩽i⩽n of tuples from A (where all x̄i and āj have the same length) is a
φ-indiscernible sequence of length n, if for every two sequences of indices i1 < · · · < im and
j1 < · · · < jm from [n] we have

A |= φ(āi1 , . . . , āim
) ⇐⇒ A |= φ(āj1 , . . . , ājm

).

For a set of formulas ∆ we call a sequence ∆-indiscernible if it is φ-indiscernible for
all φ ∈ ∆. For finite ∆, by (iteratively applying) Ramsey’s theorem we can extract a
∆-indiscernible sequence from any sequence. In general structures however, in order to
extract a large ∆-indiscernible sequence we must initially start with an enormously large
sequence. To the best of our knowledge the following theorem goes back to Ehrenfeucht and
Mostowski [17].

▶ Theorem 7. Let ∆ be a finite set of formulas. There exists a function f such that every
sequence of elements of length at least f(m) (in a structure with a signature matching ∆)
contains a ∆-indiscernible subsequence of length m.

In stable classes we can efficiently find polynomially large (that is, f(m) = mO(1))
indiscernible sequences of elements (see also [28, Theorem 3.5]). In the full version of the
paper we observe that the run time is essentially bounded by the time it takes to evaluate
the formulas from ∆ on a small polynomial part of the input structure.

ICALP 2023

125:8 Indiscernibles and Flatness in Monadically Stable and Monadically NIP Classes

3 Technical overview

Our work is organized as follows. Section 3.1 introduces useful combinatorial properties of
indiscernibles in monadically NIP classes. We extend those properties in Section 3.2, where
we prove our main tool, Theorem 11. We use this tool in Section 3.3 to prove flip-flatness.
Due to space constraints, we mostly provide proof sketches, which should convey the key
ideas. All missing proofs can be found in the full version of the paper [15].

3.1 Indiscernibles in monadically stable and monadically NIP classes
In classical model theory, instead of classes of finite structures, usually infinite structures
are studied. For a single infinite structure A, we say A is (monadically) stable/NIP, if the
class {A} is (monadically) stable/NIP. In this context, an indiscernible sequence is usually
assumed to be of infinite length and indiscernible over the set of all first-order formulas.
Using Ω to denote the set of all first-order formulas, we will denote the latter property as
Ω-indiscernibility.

It is well-known that indiscernible sequences can be used to characterize stability and NIP
for infinite structures. To characterize NIP, define the alternation rank of a formula φ(x̄, ȳ)
over a sequence I in a structure A as the maximum k such that there exists a (possibly non-
contiguous) subsequence (ā1, . . . , āk+1) of I and a tuple b̄ ∈ A|x̄| such that for all i ∈ [k] we
have A |= φ(b̄, āi) ⇐⇒ A |= ¬φ(b̄, āi+1). A structure A is NIP if and only if every formula has
finite alternation rank over every Ω-indiscernible sequence in A [33, Theorem 12.17]. Stable
classes can be characterized in a similar way. We say the exception rank of a formula φ(x̄, ȳ)
over a sequence I in a structure A is the maximum k such that there exists a tuple b̄ ∈ A|x̄|

such that for k distinct tuples āi ∈ I we have A |= φ(b̄, āi) and for k other distinct tuples
āi ∈ I we have A |= ¬φ(b̄, āi). A structure A is stable if and only if every formula has finite
exception rank over every Ω-indiscernible sequence in A [33, Corollary 12.24].

Hence, NIP and stablility can be characterized by the interaction of tuples of elements
with indiscernible sequences. For monadically NIP structures, Blumensath [4] shows that
the interaction of single elements with indiscernible sequences is even more restricted.

▶ Theorem 8 ([4, Corollary 4.13]). In every monadically NIP structure A, for every for-
mula φ(x, ȳ), where x is a single free variable, and Ω-indiscernible sequence (āi)i∈N of
|ȳ|-tuples the following holds: for every element b ∈ A there exists an exceptional index
ex(b) ∈ N and two truth values t<(b), t>(b) ∈ {0, 1} such that

for all i < ex(b) : A |= φ(b, āi) ⇐⇒ t<(b) = 1, and
for all i > ex(b) : A |= φ(b, āi) ⇐⇒ t>(b) = 1.

See Figure 2 for examples. In particular, the alternation rank of the formulas φ(x, ȳ) with
a single free variable x over every Ω-indiscernible sequence in a monadically NIP structure is
at most 2.

Theorem 8 will be a crucial tool for proving flip-flatness. However, as we strive for
algorithmic applications, we have to develop an effective, computable version that is suitable
for handling classes of finite structures. Instead of requiring Ω-indiscernibility, we will
specifically consider ∆-indiscernible sequences with respect to special sets ∆ = ∆Φ

k that we
define soon. These sets ∆Φ

k will strike the right balance of being on the one hand sufficiently
rich to allow us to derive structure from them, but on the other hand sufficiently simple such
that we can efficiently evaluate formulas from ∆Φ

k , making our flip-flatness result algorithmic.

J. Dreier, N. Mählmann, S. Siebertz, and S. Toruńczyk 125:9

a1 a2 a3 a4 a5

b

.

a1 a2 a3 a4 a5

b

.

Figure 2 Two monadically NIP structures. On the left: the infinite half-graph, where Theorem 8
applies for the edge relation with t<(b) = 0 and t>(b) = 1. On the right: the infinite matching,
where we have t<(b) = t>(b) = 0 but a differing truth value at index ex(b) = 3.

Fix a finite set Φ(x, ȳ) of formulas of the form φ(x, ȳ) where x is a single variable. A
Φ-pattern is a finite sequence (φi)1⩽i⩽k′ , where each formula φi(x, ȳ) is a boolean combination
of formulas φ(x, ȳ) ∈ Φ(x, ȳ). Given a Φ-pattern (φi)i∈[k′], the following formula expresses
that, for a given sequence of k′ tuples, each of length |ȳ|, there is some element that realizes
that pattern (see Figure 3 for an example):

γ(φ1,...,φk′)(ȳ1, . . . , ȳk′) = ∃x.
∧

i∈[k′]

φi(x, ȳi).

For a finite set of formulas Φ(x, ȳ) and an integer k we define ∆Φ
k to be the set of all

formulas γ(φ1,...,φk′), where (φ1, . . . , φk′) is a Φ-pattern of length k′ ⩽ k. Note that the
set ∆Φ

k is finite, as (up to equivalence) there are only finitely many boolean combinations of
formulas in Φ. We write ∆φ

k for ∆{φ}
k .

v1 v2 v3 v4 v5

Figure 3 Example of an {E}-pattern: a graph satisfying G |= γ(E,E,¬E,E,¬E)(v1, v2, v3, v4, v5).

We can now state a finitary version of Theorem 8 as follows. For the convenient use
later on, we state the result not for single formulas φ but for Φ-types.

▶ Theorem 9. For every monadically NIP class C of structures and finite set of formulas
Φ(x, ȳ) there exist integers n0 and k, such that for every A ∈ C the following holds. If
I = (āi)1⩽i⩽n is a ∆Φ

k -indiscernible sequence of length n ⩾ n0 in A, and b ∈ A, then there
exists an exceptional index ex(b) ∈ [n] and Φ-types τ−(x, ȳ) and τ+(x, ȳ) such that

A |= τ−(b, āi) holds for all 1 ⩽ i < ex(b), and
A |= τ+(b, āi) holds for all ex(b) < i ⩽ n.

Our proof uses different tools than [4]. It is combinatorial, fully constructive, and gives
explicit bounds on n0 and k as well as the required set of formulas ∆Φ

k . One may alternatively
finitize Theorem 8 via compactness, but then we do not obtain these crucial properties.

For the more restricted monadically stable classes we can give even stronger guarantees:
for every element b ∈ A, the types do not alternate and we have τ− = τ+.

▶ Theorem 10. For every monadically stable class C of structures and finite set of formu-
las Φ(x, ȳ) there exist integers n0 and k, such that for every A ∈ C the following holds. If
I = (āi)1⩽i⩽n is a ∆Φ

k -indiscernible sequence of length n ⩾ n0 in A, and b ∈ A, then there
exists an exceptional index ex(b) ∈ [n] and a Φ-type τ , such that

A |= τ(b, āi) for all i ∈ [n] with i ̸= ex(b).

ICALP 2023

125:10 Indiscernibles and Flatness in Monadically Stable and Monadically NIP Classes

Building on Theorem 9, we give a full proof of Theorem 10. In order to give an intuition
about the interaction of monadic stability and ∆Φ

k -indiscernibility, we sketch a standalone
proof here.

Proof sketch of Theorem 10. For simplicity, we will focus on the case were Φ is a singleton
set {φ(x, ȳ)}. Let k be the smallest number such that the bound for the pairing index of φ
and ¬φ on C is less than k. Such a bound exists since C is in particular monadically NIP. As-
sume towards a contradiction that there exists a sufficiently long ∆φ

k -indiscernible sequence I
in a structure A ∈ C and an element b ∈ A that is φ-connected to at least two tuples in I

and not φ-connected to at least two other tuples in I. By symmetry, we can assume that b is
not φ-connected to the majority of I. We therefore find a length-k subsequence ā1, . . . , āk

of I and two distinct indices i0, j0 ∈ [k], such that b is φ-connected exactly to the i0th and
j0th element of ā1, . . . , āk. We say that the i0th and j0th element are φ-paired by b. Our
goal is to derive a contradiction by finding also for every other pair i, j of indices an element
that φ-pairs them, witnessing that φ has pairing index at least k in C .

In stable classes, every sufficiently long ∆φ
k -indiscernible sequence I is also totally ∆φ

k -
indiscernible: This means that every permutation I ′ of I is again ∆φ

k -indiscernible, with
the formulas from ∆φ

k taking the same truth values on I ′ as on I. Intuitively speaking,
if permuting two elements in an indiscernible sequence would change the truth value of a
formula, then this formula orders these two elements and by indiscernibility also orders a large
part of the sequence, contradicting stability. A proof of the statement for Ω-indiscernibles
can be found in [36, Lemma 9.1.1].

The formula γ(ȳ1, . . . , ȳk) := “ȳi0 and ȳj0 are φ-paired by some element” is contained
in ∆φ

k and holds on ā1, . . . , āk, as witnessed by b. By total indiscernibility, we may permute
ā1, . . . , āk and the formula still holds. By swapping ai0 with ai and aj0 with aj , we obtain
for arbitrary i, j that “āi and āj are φ-paired by some element”. This witnesses that φ has
pairing index at least k, a contradiction. ◀

For the more general monadically NIP case, we cannot rely on total indiscernibility.
Instead, we bound the alternation rank by pairing tuples located around alternation points,
leading to a similar but more involved reasoning.

nowhere dense

monadically stable
monadically NIP

homogenous single exception single alternation

Figure 4 All types of neighborhoods a vertex (top) can have in indiscernible sequences (bottom)
in different graph classes.

J. Dreier, N. Mählmann, S. Siebertz, and S. Toruńczyk 125:11

We conclude this section by mentioning that a behavior similar to Theorem 10 was already
observed in [26] for the edge relation in nowhere dense classes. Considering only the edge
relation, we depict the different possible behavior of vertices towards indiscernible sequences
in different classes of graphs in Figure 4. In monadically NIP (or stable) classes, the same
six (or four) patterns apply for connections with respect to any formula φ(x, y).

3.2 Disjoint definable neighborhoods
In the previous section we have seen that in monadically stable and monadically NIP
classes, every element is very homogeneously connected to all but at most one element of
an indiscernible sequence. At a first glance, this exceptional behavior towards one element
seems to be erratic and standing in the way of combinatorial and algorithmic applications.
However, it turns out that it can be exploited to obtain additional structural properties.

The key observation is that elements that are “exceptionally connected” towards a single
element of an indiscernible sequence, inherit some of the good properties of that sequence.
We will give a simple example to demonstrate this idea. Let G be a graph containing certain
red vertices R and blue vertices B, such that the edges between R and B describe a matching
(see Figure 5, left).

Figure 5 Examples of one-to-one and many-to-one connections in a graph. On the left: a
matching. On the right: a star forest.

Given a formula φ(x1, . . . , xq), define

φ̂(x1, . . . , xq) := ∃b1, . . . , bq ∈ B.φ(b1, . . . , bq) ∧
∧

i∈[q]

E(xi, bi).

Take a φ̂-indiscernible sequence R′ among R. Obviously, every vertex in the blue
neighborhood B′ of R′ has one exceptional connection towards R′, that is, towards its unique
matching neighbor in R′. It is now easy to see that B′ is a φ-indiscernible sequence in G:
for every sequence of red vertices a1, . . . , aq ∈ R′ and their unique blue matching neighbors
b1, . . . , bq ∈ B′ we have G |= φ̂(a1, . . . , aq) if and only if G |= φ(b1, . . . , bq).

This example sketches how first-order definable one-to-one connections towards elements
of an indiscernible sequence preserve indiscernibility. The more general case however is the
many-to-one case, where we have a set of elements, each of which is exceptionally connected
to a single element of an indiscernible sequence I, while allowing multiple elements to be
exceptionally connected to the same element of I (think, for example, of R and B being the
centers and leaves of a star-forest as depicted in Figure 5, right). Our notion of such many-
to-one connections will be that of disjoint α-neighborhoods. Recall, that for a formula α(x̄, y),
the α-neighborhood Nα(ā) of a tuple ā is defined as the set of all b satisfying α(ā, b). We
say a sequence J of |x̄|-tuples has disjoint α-neighborhoods if Nα(ā1) ∩Nα(ā2) = ∅ for all
distinct ā1, ā2 ∈ J .

As the main technical tool of this paper, we prove for monadically NIP classes that every
sequence of disjoint α-neighborhoods contains a large subsequence that exerts strong control
over its neighborhood. This lifts the strongly regular behaviour of idiscernible sequences
to sequences of disjoint α-neighborhoods. The main result of this section, Theorem 11, is
the backbone of our flip-flatness proof and states the following. In every large sequence of
disjoint α-neighborhoods, we will find a still-large subsequence such that the φ-connections

ICALP 2023

125:12 Indiscernibles and Flatness in Monadically Stable and Monadically NIP Classes

of every element a towards all α-neighborhoods in the subsequence can be described by a
bounded set of sample elements in the following sense. After possibly omitting one exceptional
neighborhood at index ex(a) depending on a, the φ-connections are completely homogeneous
(in the stable case) or alternate at most once (in the NIP case). A related (but orthogonal)
result was also proved in [38, Lemma 64] using tools from model theory.

a

φ

α

ā1 ā2 āex(a) ā4 ā5

s<(a) = s1 s>(a) = s3

.

s1 s2 s3

I =

S =

Figure 6 A visualization of Theorem 11. On the bottom: a sequence I with disjoint α-
neighborhoods. On the top right: a small set of sample elements S. The φ-neighborhoods of the
elements in S in the α-neighborhood of I are colored accordingly. Note that their φ-neighborhoods
can overlap. The φ-neighborhood of a in the α-neighborhood of I is equal to the φ-neighborhood
of s<(a) = s1 before the exceptional index ex(a). After it, it is equal to the φ-neighborhood of
s>(a) = s3. For the α-neighborhood of āex(a) we make no claims.

▶ Theorem 11. For every monadically NIP class of structures C , and formulas φ(x, y) and
α(x̄, y), there exists a function N : N → N and an integer k such that for every m ∈ N
every structure A ∈ C and every finite sequence of tuples J ⊆ A|x̄| of length N(m) whose α-
neighborhoods are disjoint the following holds. There exists a subsequence I = (āi)1⩽i⩽m ⊆ J

of length m and a set S ⊆ A of at most k sample elements such that for every element a ∈ A
there exists an exceptional index ex(a) ∈ [m] and a pair s<(a), s>(a) ∈ S such that

for all 1 ⩽ i < ex(a) : Nα(āi) ∩Nφ(a) = Nα(āi) ∩Nφ(s<(a)), and
for all ex(a) < i ⩽ m : Nα(āi) ∩Nφ(a) = Nα(āi) ∩Nφ(s>(a)).

If a ∈ Nα(āi) for some āi ∈ I, then i = ex(a).

If C is monadically stable, then s<(a) = s>(a) for every a ∈ A.

A visualization of the NIP case of Theorem 11 is provided in Figure 6. An important
ingredient of the proof is the following Ramsey-type result due to Ding et al. [12, Corollary 2.4].
We say a bipartite graph with sides a1, . . . , aℓ and b1, . . . , bℓ forms

a matching of order ℓ if ai and bj are adjacent if and only if i = j for all i, j ∈ [ℓ],
a co-matching of order ℓ if ai and bj are adjacent if and only if i ̸= j for all i, j ∈ [ℓ],
a ladder of order ℓ if ai and bj are adjacent if and only if i ⩽ j for all i, j ∈ [ℓ].

We call two distinct vertices u and v twins in a graph G they have the same neighborhood
with regard to the edge relation, i.e. NG

E (u) \ {v} = NG
E (v) \ {u}.

J. Dreier, N. Mählmann, S. Siebertz, and S. Toruńczyk 125:13

▶ Theorem 12 ([12, Corollary 2.4]). There exists a function Q : N → N such that for
every ℓ ∈ N and for every bipartite graph G = (L,R,E) without twins, where L has size at
least Q(ℓ), contains a matching, co-matching, or ladder of order ℓ as an induced subgraph.

Equipped with Theorem 10 from the previous subsection and the above Theorem 12, we
will now give a proof sketch of the monadically stable case of Theorem 11.

Proof sketch of Theorem 11 (monadically stable case). We will build the sequence I by
inductively extracting indiscernible subsequences Ii of J and growing a set of sample elements
Si = {s1, . . . , si}. During the induction, we maintain the following invariant: every two dis-
tinct sample elements from Si have pairwise different φ-neighborhoods in the α-neighborhood
of every tuple of Ii. We start with I0 = J and S0 = ∅ where this trivially holds. Let us now
describe the inductive construction of Ii+1 and Si+1. We first add a constant symbol for
every element in Si to the signature of A. This extended signature will allow us to express
for all j ∈ [i] the formula ψj(x, ȳ) stating that x has the same φ-neighborhood as sj in the
α-neighborhood of ȳ, i.e., Nα(ȳ) ∩Nφ(x) = Nα(ȳ) ∩Nφ(sj). We collect all these formulas
into the set Φ = {ψj : j ∈ [i]} and build Ii+1 by extracting a ∆Φ

k -indiscernible sequence
from Ii, for the appropriate value of k given by Theorem 10. Now by Theorem 10, for every
element b ∈ A, there exists a Φ-type τ(x, ȳ) such that b is τ -connected to all but at most one
tuple from Ii+1. Since the Φ-types capture information about the connections relative to
vertices in Si, one of the following two cases applies for every b ∈ A.
1. The φ-neighborhood of b is different to the φ-neighborhood of every element of Si in the

α-neighborhood around all but at most one tuple of Ii+1.
2. For some j ∈ [i], the φ-neighborhood of b is equal to the φ neighborhood of sj in the

α-neighborhood around all but at most one tuple of Ii+1 (whose index will ex(b)).
If the first case applies for some b ∈ A, then we can build Si+1 by setting si+1 := b, which
satisfies our invariant (after we possibly drop one more element from Ii+1). If the second
case applies for every b ∈ A, every element is represented by Si, and the construction stops
with I := Ii+1 and S := Si.

It now remains to show that the construction stops after less than k steps for some k
depending only on C , φ, and α. To this end, we show that for every ℓ ∈ N, there exists
k ∈ N with the following property. If there exists Ik and Sk satisfying the invariant of our
construction, then we can derive a formula ψ from φ and α which has pairing index at least ℓ
in an expansion of A with a constant number of colors (in the full proof we use 3 colors).
As C is monadically NIP, the pairing index of ψ is bounded, which also yields a bound for k.

Assume we are given Ik and Sk, such that all the elements from Sk have different
φ-neighborhoods, in the α-neighborhoods around the tuples of Ik. By choosing k large
enough, repeated application of Theorem 12 and the pigeonhole principle, we find a subset
S′ = {s1, . . . , sℓ2} of Sk and a subsequence I ′ = {ā1, . . . , āℓ} of Ik with the following
property. For each j ∈ [ℓ], there exists a subset N ′

j of the α-neighborhood of āj , such that
the φ-connections from S′ to the N ′

j all form a matching, all form a co-matching, or all form
a ladder. Assume the φ-connections form a matching. Let us now show that the formula

ψ(x, ȳ) := ∃z ∈ Nφ(x) ∩Nα(ȳ). R(z)

has pairing index at least ℓ in the class C extended with an additional unary predicate R.
The situation is depicted in Figure 7. The formulas φ and α interpret a large 1-subdivided
biclique in A as follows. The tuples from I ′ and the elements from S′ form the principle
vertices. The subdivision vertices are formed by

⋃
i∈[ℓ] N

′
i . Due to the assumed matchings,

each subdivision element has exactly one incoming φ-connection from S′. Due to the tuples

ICALP 2023

125:14 Indiscernibles and Flatness in Monadically Stable and Monadically NIP Classes

α

φ
S′

N ′
i N ′

j

I ′āi āj

sij

Figure 7 Pairing the elements of I ′.

in I ′ having disjoint α-neighborhoods, each subdivision element has exactly one incoming
α-connection from the elements of I ′. Since I ′ has size ℓ and S′ has size ℓ2 we can assign
to every pair āi, āj ∈ I ′ a unique element sij ∈ S′. By marking with the predicate R the
two unique subdivision elements from Nφ(sij) ∩ N ′

i and Nφ(sij) ∩ N ′
j , we get that sij is

ψ-connected only to āi and āj among I ′. As desired, S′ and I ′ witness that ψ has pairing
index at least ℓ.

In case the φ-connections form a co-matching or a ladder, we can replace φ with a derived
formula φ′, such that the φ′-connections form a matching in a coloring of A, which completes
the proof sketch for the size bound of S.

Lastly, in order to ensure that a ∈ Nα(āi) implies i = ex(a), we can augment the
formula ψj(x, ȳ) in the construction to return false whenever x is contained in Nα(ȳ). This
way, we enforce the single exception given by Theorem 10 to be on ai. ◀

To prove the more general NIP case, we replace Theorem 10 with Theorem 9, which
introduces the possibility for a vertex a to be sampled by two vertices s<(a) and s>(a),
alternating around ex(a). We also have to slightly adapt the search for the next sample
element sj using an additional indiscernibility argument.

3.3 Flatness in monadically stable classes of graphs
In this section we use Theorem 11 to characterize monadically stable graph classes in terms
of flip-flatness. We start with the forward direction, restated for convenience.

▶ Theorem 4. Every monadically stable class C of graphs is flip-flat, where for every r, the
function Nr is polynomial. Moreover, given an n-vertex graph G ∈ C , A ⊆ V (G), and r ∈ N,
we can compute a subset B ⊆ A and a set of flips F that makes B distance-r independent in
G⊕ F in time O(fC (r) · n3) for some function fC .

Partial proof. Let C be a monadically stable class of graphs and r ∈ N. We want to show
that in every graph G ∈ C , in every set A ⊆ V (G) of size Nr(m) we find a subset B ⊆ A

of size at least m and a set F of at most sr flips such that B is distance-r independent in
G⊕ F . We will first inductively describe how to obtain the set of vertices B and the set of
flips F and bound the runtime and values for Nr and sr later. In the base case we have
r = 0. We can pick B := A and F := ∅ and there is nothing to show.

In the inductive case we assume the result is proved for r and extend it to r + 1. Let
r = 2i+ p for some i ∈ N and parity p ∈ {0, 1}. Apply the induction hypothesis to obtain sr

flips Fr and a set Ar that is distance-r independent in Gr := G⊕ Fr. Note that for every
fixed number t of flips, since flips are definable by coloring and a quantifier-free formula,
the class Ct of all graphs obtainable from graphs of C by at most t flips is monadically
stable by Lemma 5. Hence, Gr comes from the monadically stable class Csr

. Our goal is to

J. Dreier, N. Mählmann, S. Siebertz, and S. Toruńczyk 125:15

find a set of flips F ′
r+1 (of fixed finite size which will determine the number sr+1) together

with a set Ar+1 ⊆ Ar, that is distance-(r + 1) independent in Gr+1 := Gr ⊕ F ′
r+1. Then

Gr = G⊕ Fr+1 with Fr+1 = Fr ∪ F ′
r+1.

Since the elements in Ar have pairwise disjoint distance-i neighborhoods, we can apply
Theorem 11 to Ar with φ(x, y) = E(x, y) and α(x, y) = dist⩽i(x, y). Since we are in the
monadically stable case, this yields a subset Ar+1 ⊆ Ar and a small set of sample vertices S
such that for every vertex a ∈ V (G) there exists s(a) ∈ S and ex(a) ∈ Ar+1 such that a has
the same edge-neighborhood as s(a) in the distance-i neighborhoods of all elements from
Ar+1 \ {ex(a)}. We now do a case distinction depending on whether r is even or odd.

The odd case: r = 2i + 1. For every s ∈ S let Cs be the set containing every vertex a

for which we have s(a) = s and that is at distance at least i+ 1 from every vertex in Ar+1.
Let Ds be the set containing every edge-neighbor of s that is at distance exactly i from one
of the vertices in Ar+1. We now build the set of flips F ′

r+1 by adding for every sample vertex
s ∈ S the flip (Cs, Ds).

Let us now argue that Ar+1 is distance-(r + 1) independent in Gr+1 := Gr. We only flip
edges in Gr between pairs of vertices a, b such that a has distance (in Gr) at least i+1 and b has
distance exactly i to Ar+1. It follows that Ar+1 remains distance-(2i+1) independent in Gr+1.
Assume towards a contradiction that there exists a path P = (a, a1, . . . , ai, u, bi, . . . , b1, b) of
length r + 1 = 2i + 2 between two vertices a, b ∈ Ar+1 in Gr+1. The distance between a

and ai (resp. b and bi) is not affected by the flips. Only the connection between ai (resp. bi)
and u can possibly be impacted. Additionally, note that u ∈ Cs(u).

Since a and b are distinct we have that either ex(u) ̸= a or ex(u) ̸= b. By symmetry
we can assume the former case. As ai is in the distance-i neighborhood of a, we have
Gr |= E(u, ai) ⇐⇒ Gr |= E(s(u), ai). Observe that if E(s(u), ai) holds in Gr, then
ai ∈ Ds(u) and therefore the edge (u, ai) was removed by the flips and is not in Gr+1.
Similarly, if E(s(u), ai) does not hold in Gr, then ai ̸∈ Ds(u) and the edge (u, ai) was not
introduced by any flip. We can conclude that P is not a path in Gr+1, and that Ar+1 is
distance-(r + 1) independent in Gr+1.

The even case and runtime analysis. The even distance creates a symmetry that requires
additional care to handle, but otherwise proceeds similarly to the odd case. The arguments
concerning size bounds and runtimes can be found there as well. The runtime bound crucially
uses the fact that we take ∆Φ

k -indiscernible sequences only with respect to formulas Φ that
can be evaluated in polynomial time. ◀

We have shown that for graph classes, monadic stability implies flip-flatness. We now show
that the reverse holds as well. We will use the following statement, which is an immediate
consequence of Gaifman’s locality theorem [18]. For an introduction of the locality theorem
see for example [23, Section 4.1].

▶ Corollary 13 (of [18, Main Theorem]). Let φ(x, y) be a formula. Then there are numbers
r, t ∈ N, where r depends only on the quantifier-rank of φ and t depends only on the signature
and quantifier-rank of φ, such that every (colored) graph G can be vertex-colored using t
colors in such a way that for any two vertices u, v ∈ V (G) with distance greater than r in G,
G |= φ(u, v) depends only on the colors of u and v. We call r the Gaifman radius of φ.

▶ Lemma 14. Every flip-flat class of graphs is monadically stable.

ICALP 2023

125:16 Indiscernibles and Flatness in Monadically Stable and Monadically NIP Classes

Proof sketch of Lemma 14. Assume towards a contradiction that there exists a class C

that is not monadically stable but flip-flat. Then there exists a formula σ(x, y) and a graph
G ∈ C , such that σ defines an order on a large vertex set A in a coloring G+. Let r be
the Gaifman radius of σ. By flip-flatness there exists a (still large) subset B of A and a
bounded size set of flips F , such that B is distance-r independent in H := G+ ⊕ F . Let H+

be the graph where we have marked the flips F with colors in H. We can rewrite σ to a
formula σ′ of the same quantifier rank such that for all u, v ∈ V (G) we have H+ |= σ′(u, v)
if and only if G+ |= σ(u, v). In particular, σ′ orders B in H+. By Corollary 13 and the
pidgeonhole principle, there must be two distinct vertices u, v ∈ B such that H+ |= σ′(u, v)
if and only if H+ |= σ′(v, u). However as σ′ orders B, we also have H+ |= σ′(u, v) if and
only if H+ ̸|= σ′(v, u); a contradiction. ◀

From Theorem 4 and Lemma 14 we conclude the following.

▶ Theorem 3. A class of graphs is monadically stable if and only if it is flip-flat.

References
1 Algorithms, Logic and Structure Workshop in Warwick – Open Problem Session.

URL: https://warwick.ac.uk/fac/sci/maths/people/staff/daniel_kral/alglogstr/
openproblems.pdf, 2016. [Online; accessed 23-Jan-2023].

2 Hans Adler and Isolde Adler. Interpreting nowhere dense graph classes as a classical notion of
model theory. European Journal of Combinatorics, 36:322–330, 2014.

3 John T Baldwin and Saharon Shelah. Second-order quantifiers and the complexity of theories.
Notre Dame Journal of Formal Logic, 26(3):229–303, 1985.

4 Achim Blumensath. Simple monadic theories and indiscernibles. Mathematical Logic Quarterly,
57(1):65–86, 2011. doi:10.1002/malq.200910121.

5 Édouard Bonnet, Jan Dreier, Jakub Gajarský, Stephan Kreutzer, Nikolas Mählmann, Pierre
Simon, and Szymon Torunczyk. Model checking on interpretations of classes of bounded local
cliquewidth. In Christel Baier and Dana Fisman, editors, LICS ’22: 37th Annual ACM/IEEE
Symposium on Logic in Computer Science, Haifa, Israel, August 2 - 5, 2022, pages 54:1–54:13.
ACM, 2022. doi:10.1145/3531130.3533367.

6 Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Pierre Simon, Stéphan Thomassé,
and Szymon Toruńczyk. Twin-width IV: Ordered graphs and matrices. In Proceedings of the
54th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022, pages 924–937,
New York, NY, USA, 2022. Association for Computing Machinery. doi:10.1145/3519935.
3520037.

7 Édouard Bonnet, Dibyayan Chakraborty, Eun Jung Kim, Noleen Köhler, Raul Lopes, and
Stéphan Thomassé. Twin-width viii: delineation and win-wins, 2022. doi:10.48550/arXiv.
2204.00722.

8 Samuel Braunfeld and Michael Laskowski. Characterizations of monadic NIP. Transactions of
the American Mathematical Society, Series B, 8(30):948–970, 2021.

9 Bruno Courcelle and Sang-il Oum. Vertex-minors, monadic second-order logic, and a conjecture
by seese. Journal of Combinatorial Theory, Series B, 97(1):91–126, 2007. doi:10.1016/j.
jctb.2006.04.003.

10 Anuj Dawar. Homomorphism preservation on quasi-wide classes. Journal of Computer and
System Sciences, 76(5):324–332, 2010.

11 Reinhard Diestel. Graph Theory, 4th Edition, volume 173 of Graduate texts in mathematics.
Springer, 2012.

12 Guoli Ding, Bogdan Oporowski, James G. Oxley, and Dirk Vertigan. Unavoidable minors
of large 3-connected binary matroids. J. Comb. Theory, Ser. B, 66(2):334–360, 1996. doi:
10.1006/jctb.1996.0026.

https://warwick.ac.uk/fac/sci/maths/people/staff/daniel_kral/alglogstr/openproblems.pdf
https://warwick.ac.uk/fac/sci/maths/people/staff/daniel_kral/alglogstr/openproblems.pdf
https://doi.org/10.1002/malq.200910121
https://doi.org/10.1145/3531130.3533367
https://doi.org/10.1145/3519935.3520037
https://doi.org/10.1145/3519935.3520037
https://doi.org/10.48550/arXiv.2204.00722
https://doi.org/10.48550/arXiv.2204.00722
https://doi.org/10.1016/j.jctb.2006.04.003
https://doi.org/10.1016/j.jctb.2006.04.003
https://doi.org/10.1006/jctb.1996.0026
https://doi.org/10.1006/jctb.1996.0026

J. Dreier, N. Mählmann, S. Siebertz, and S. Toruńczyk 125:17

13 Jan Dreier, Jakub Gajarský, Sandra Kiefer, Michał Pilipczuk, and Szymon Toruńczyk. Tree-
like decompositions for transductions of sparse graphs. In Proceedings of the 37th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS 2022), New York, NY, USA,
2022. Association for Computing Machinery. doi:10.1145/3531130.3533349.

14 Jan Dreier, Nikolas Mählmann, Amer E. Mouawad, Sebastian Siebertz, and Alexandre
Vigny. Combinatorial and Algorithmic Aspects of Monadic Stability. In Sang Won Bae
and Heejin Park, editors, 33rd International Symposium on Algorithms and Computation
(ISAAC 2022), volume 248 of Leibniz International Proceedings in Informatics (LIPIcs), pages
11:1–11:17, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
doi:10.4230/LIPIcs.ISAAC.2022.11.

15 Jan Dreier, Nikolas Mählmann, Sebastian Siebertz, and Szymon Toruńczyk. Indiscernibles
and flatness in monadically stable and monadically nip classes. arXiv preprint, 2022. arXiv:
2206.13765.

16 Jan Dreier, Nikolas Mählmann, and Sebastian Siebertz. First-order model checking on
structurally sparse graph classes, 2023. doi:10.48550/arXiv.2302.03527.

17 Andrzej Ehrenfeucht and Andrzej Mostowski. Models of axiomatic theories admitting auto-
morphisms. Fundamenta mathematicae, 1(43):50–68, 1956.

18 Haim Gaifman. On local and non-local properties. In Proceedings of the Herbrand Symposium,
volume 107 of Stud. Logic Found. Math., pages 105–135. Elsevier, 1982.

19 Jakub Gajarskỳ, Stephan Kreutzer, Jaroslav Nešetřil, Patrice Ossona De Mendez, Michał
Pilipczuk, Sebastian Siebertz, and Szymon Toruńczyk. First-order interpretations of bounded
expansion classes. ACM Transactions on Computational Logic (TOCL), 21(4):1–41, 2020.

20 Jakub Gajarský, Nikolas Mählmann, Rose McCarty, Pierre Ohlmann, Michał Pilipczuk,
Wojciech Przybyszewski, Sebastian Siebertz, Marek Sokołowski, and Szymon Toruńczyk.
Flipper games for monadically stable graph classes. arXiv preprint, 2023. arXiv:2301.13735.

21 Jakub Gajarský, Michał Pilipczuk, and Szymon Toruńczyk. Stable graphs of bounded twin-
width. In Proceedings of the 37th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS ’22, New York, NY, USA, 2022. Association for Computing Machinery. doi:
10.1145/3531130.3533356.

22 Colin Geniet and Stéphan Thomassé. First order logic and twin-width in tournaments and
dense oriented graphs, 2022. doi:10.48550/arXiv.2207.07683.

23 Martin Grohe. Logic, graphs, and algorithms. Logic and Automata, 2:357–422, 2008.
24 Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-order properties of

nowhere dense graphs. Journal of the ACM (JACM), 64(3):1–32, 2017.
25 Wilfrid Hodges. A Shorter Model Theory. Cambridge University Press, 1997.
26 Stephan Kreutzer, Roman Rabinovich, and Sebastian Siebertz. Polynomial kernels and

wideness properties of nowhere dense graph classes. ACM Transactions on Algorithms (TALG),
15(2):1–19, 2018.

27 O-joung Kwon, Michał Pilipczuk, and Sebastian Siebertz. On low rank-width colorings.
European Journal of Combinatorics, 83:103002, 2020.

28 M. Malliaris and S. Shelah. Regularity lemmas for stable graphs. Transactions of the
American Mathematical Society, 366(3):1551–1585, 2014. URL: http://www.jstor.org/
stable/23813167.

29 Jaroslav Nešetřil and Patrice Ossona De Mendez. On nowhere dense graphs. European Journal
of Combinatorics, 32(4):600–617, 2011.

30 Jaroslav Nešetřil, Patrice Ossona de Mendez, Michał Pilipczuk, Roman Rabinovich, and
Sebastian Siebertz. Rankwidth meets stability. In Proceedings of the 2021 ACM-SIAM
Symposium on Discrete Algorithms (SODA), pages 2014–2033. SIAM, 2021.

31 Jaroslav Nešetřil, Patrice Ossona de Mendez, and Sebastian Siebertz. Structural properties
of the first-order transduction quasiorder. In 30th EACSL Annual Conference on Computer
Science Logic (CSL 2022). Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2022.

ICALP 2023

https://doi.org/10.1145/3531130.3533349
https://doi.org/10.4230/LIPIcs.ISAAC.2022.11
https://arxiv.org/abs/2206.13765
https://arxiv.org/abs/2206.13765
https://doi.org/10.48550/arXiv.2302.03527
https://arxiv.org/abs/2301.13735
https://doi.org/10.1145/3531130.3533356
https://doi.org/10.1145/3531130.3533356
https://doi.org/10.48550/arXiv.2207.07683
http://www.jstor.org/stable/23813167
http://www.jstor.org/stable/23813167

125:18 Indiscernibles and Flatness in Monadically Stable and Monadically NIP Classes

32 Jaroslav Nešetřil, Roman Rabinovich, Patrice Ossona de Mendez, and Sebastian Siebertz.
Linear rankwidth meets stability. In Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1180–1199. SIAM, 2020.

33 Bruno Poizat. A Course in Model Theory: An Introduction to Contemporary Mathematical
Logic. Springer New York, 2000.

34 Saharon Shelah. Monadic logic: Hanf numbers. In Around classification theory of models,
pages 203–223. Springer, 1986.

35 Pierre Simon and Szymon Toruńczyk. Ordered graphs of bounded twin-width, 2021. doi:
10.48550/arXiv.2102.06881.

36 Katrin Tent and Martin Ziegler. A course in model theory, volume 40 of Lecture Notes in
Logic. Cambridge University Press, 2012.

37 Symon Toruńczyk. Flip-width: Cops and robber on dense graphs, 2023. arXiv:2302.00352.
38 Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Pierre Simon, Stéphan Thomassé,

and Szymon Toruńczyk. Twin-width iv: ordered graphs and matrices, 2021. arXiv:2102.03117.

https://doi.org/10.48550/arXiv.2102.06881
https://doi.org/10.48550/arXiv.2102.06881
https://arxiv.org/abs/2302.00352
https://arxiv.org/abs/2102.03117

Black-Box Testing Liveness Properties of Partially
Observable Stochastic Systems
Javier Esparza #

Technische Universiät München, Germany

Vincent P. Grande #

RWTH Aachen University, Germany

Abstract
We study black-box testing for stochastic systems and arbitrary ω-regular specifications, explicitly
including liveness properties. We are given a finite-state probabilistic system that we can only
execute from the initial state. We have no information on the number of reachable states, or on the
probabilities; further, we can only partially observe the states. The only action we can take is to
restart the system. We design restart strategies guaranteeing that, if the specification is violated
with non-zero probability, then w.p.1 the number of restarts is finite, and the infinite run executed
after the last restart violates the specification. This improves on previous work that required full
observability. We obtain asymptotically optimal upper bounds on the expected number of steps until
the last restart. We conduct experiments on a number of benchmarks, and show that our strategies
allow one to find violations in Markov chains much larger than the ones considered in previous work.

2012 ACM Subject Classification Theory of computation → Verification by model checking

Keywords and phrases Partially observable Markov chains, ω-regular properties, black-box testing

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.126

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version Full Version: https://arxiv.org/abs/2303.03292

Supplementary Material Software (Source Code):
https://git.rwth-aachen.de/netsci/restarting-markov-chains-experiments/

Funding Javier Esparza: Partially funded by the DFG within Research Training Group 2428 CONVEY.
Vincent P. Grande: Funded by the DFG (German Research Foundation) under Research Training
Group 2236/2 UnRAVeL.

Acknowledgements The authors thank the anonymous reviewers for helpful feedback that improved
the paper.

1 Introduction

Black-box testing is a fundamental analysis technique when the user does not have access to
the design or the internal structure of a system [12, 15]. Since it only examines one run of
the system at a time, it is computationally cheap, which makes it often the only applicable
method for large systems.

We study the black-box testing problem for finite-state probabilistic systems and ω-regular
specifications: Given an ω-regular specification, the problem consists of finding a run of the
program that violates the property, assuming that such runs have nonzero probability.

Let us describe our assumptions in more detail. We do not have access to the code of the
system or its internal structure, and we do not know any upper bound on the size of its state
space. We can repeatedly execute the system, restarting it at any time. W.l.o.g. we assume
that all runs of the system are infinite. We do not assume full observability of the states
of the system, only that we can observe whether the atomic propositions of the property

EA
T
C
S

© Javier Esparza and Vincent P. Grande;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 126; pp. 126:1–126:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:esparza@in.tum.de
https://orcid.org/0000-0001-9862-4919
mailto:grande@cs.rwth-aachen.de
https://orcid.org/0000-0002-6694-1685
https://doi.org/10.4230/LIPIcs.ICALP.2023.126
https://arxiv.org/abs/2303.03292
https://git.rwth-aachen.de/netsci/restarting-markov-chains-experiments/
https://git.rwth-aachen.de/netsci/restarting-markov-chains-experiments/
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

126:2 Black-Box Testing Liveness Properties of Partially Observable Stochastic Systems

are currently true or false. For example, if the property states that a system variable, say
x, should have a positive value infinitely often, then we only assume that at each state
we can observe the sign of x; letting Σ denote the set of possible observations, we have
Σ = {+,−}, standing for a positive and a zero or negative value, respectively (in the rest
of the introduction we shorten “zero or negative” to “negative”). Every system execution
induces an observation, that is, an element of Σω. The violations of the property are the
ω-words V ⊆ Σω containing only finitely many occurrences of +.

Our goal is to find a strategy that decides after each step whether to abort the current
run and restart the system, or continue the execution of the current run. The strategy must
ensure that some run that violates the property, that is, a run whose observation belongs to
V , is eventually executed. The strategy decides depending on the observations made so far.
Formally, given Σ and the set of actions A = {r, c} (for “restart” and “continue”) a strategy
for V is a mapping from (Σ×A)∗Σ, the sequence of observations and actions executed so far,
to A, the next decision. Our goal is to find a strategy σ satisfying the following property:

For every finite-state program P over Σ, if V ⊆ Σω has positive probability and the
runs of P are restarted according to σ, then w.p.1 the number of restarts is finite, and
the observation of the run executed after the last restart belongs to V .

Observe that it is not clear that such strategies exist. They are easy to find for safety
properties, where the fact that a run violates the property is witnessed by a finite prefix1, but
for liveness properties there is no such prefix in general. We show that these strategies exist
for every ω-regular language V . Moreover, the strategies only need to maintain a number of
counters that depends only on V , and not on the program. So in order to restart P according
to σ one only needs logarithmic memory in the length of the current sequence.

▶ Example 1. To give a first idea of why these strategies also exist for liveness properties,
consider the property over Σ = {+,−} stating that a variable x should have a positive value
only finitely often. The runs violating the property are those that visit +-states infinitely
often. Our results show that the following strategy works in detecting a run violating the
property (among others):

After the n-th restart, repeatedly execute blocks of 2n steps. If at some point after
executing the first block the second half of the concatenation of the blocks executed
so far contains only negative states, then restart.

For example, assume there have been 4 restarts. Then the strategy repeatedly executes
blocks of 8 steps. If after executing 1, 2, 3, . . . of these blocks the last 4, 8, 16, . . . states are
negative, then the strategy restarts for the 5th time. If that is never the case, then there are
only 4 restarts. Figure 1 shows a family of Markov chains for which naive strategies do not
work, but the above strategy does: almost surely the number of restarts is finite and the run
after the last restart visits the rightmost state infinitely often. Observe that for every n ≥ 0
the family exhibits executions that visit + states at least n times, and executions that visit
a + state at most once every n steps.

1 One can choose for σ the strategy “after the n-th reset, execute n steps; if this finite execution is not
a witness, restart, otherwise continue forever.” Indeed, if the shortest witness has length k, then for
every n ≥ k, after the n-th restart the strategy executes a witness with positive probability, and so it
eventually executes one w.p.1.

J. Esparza and V. P. Grande 126:3

− − · · · − − − · · · − +

+ + · · · + −

p1

p3

p2 p2

p3

p1

p2

p3

p2 + p3 p2 p2

p1 p1

p3

p3

1q1

q2 q2 q2

q2

q2

Figure 1 A family of partially observable Markov chains.

We also obtain asymptotically optimal upper bounds on the expected time until the last
restart, that is, on the time until the execution of the run violating the property starts. The
bounds depend on two parameters of the Markov chain associated to the program, called the
progress radius and the progress probability. An important part of our contribution is the
identification of these parameters as the key ones to analyze.

While our results are stated in an abstract setting, they easily translate into practice. In a
practical scenario, on top of the values of the atomic propositions, we can also observe useful
debugging information, like the values of some variables. We let a computer execute runs of
the system for some fixed time t according to the strategy σ. If at time t we observe that the
last restart took place a long time ago, then we stop testing and return the run executed since
the last restart as candidate for a violation of the property. In the experimental section of
our paper we use this scenario to detect errors in population protocols, a model of distributed
computation, whose state space is too large to find them by other means.

Related work. There is a wealth of literature on black-box testing and black-box checking
[12, 15], but the underlying models are not probabilistic and the methods require to know
an upper bound on the number of states. Work on probabilistic model-checking assumes
that (a model of) the system is known [2]. There are also works on black-box verification
of probabilistic systems using statistical model checking of statistical hypothesis testing
[22, 17, 18, 20, 21] (see also [11, 13] for surveys on statistical model checking). They consider
a different problem: we focus on producing a counterexample run, while the goal of black-box
verification is to accept or reject a hypothesis on the probability of the runs that satisfy a
property. Our work is also related to the runtime enforcement problem [16, 3, 14, 7, 8], which
also focus on identifying violations of a property. However, in these works either the setting
is not probabilistic, or only a subset of the ω-regular properties close to saftey properties
is considered. Finally, the paper closest to ours is [6], which considers the same problem,
but for fully observable systems. In particular, in the worst case the strategies introduced
in [6] require to store the full sequence of states visited along a run, and so they use linear
memory in the length of the current sequence, instead of logarithmic memory, as is the case
for our strategy.

Structure of the paper. The paper is organized as follows. Section 2 contains preliminaries.
Section 3 introduces the black-box testing problem for arbitrary ω-regular languages with
partial observability, and shows that it can be reduced to the problem for canonical languages
called the Rabin languages. Section 4 presents our black-box strategies for the Rabin
languages, and proves them correct. Section 5 obtains asymptotically optimal upper bounds
on the time to the last restart. Section 6 reports some experimental results.

ICALP 2023

126:4 Black-Box Testing Liveness Properties of Partially Observable Stochastic Systems

2 Preliminaries

Directed graphs. A directed graph is a pair G = (V, E), where V is the set of nodes and
E ⊆ V × V is the set of edges. A path (infinite path) of G is a finite (infinite) sequence
π = v0, v1, . . . of nodes such that (vi, vi+1) ∈ E for every i = 0, 1, A path consisting only
of one node is empty. Given two vertices v, v′ ∈ V , the distance from v to v′ is the length of
a shortest path from v to v′, and the distance from v to a set V ′ ⊆ V is the minimum over
all v′ ∈ V ′ of the distance from v to v′.

A graph G is strongly connected if for every two vertices v, v′ there is a path leading
from v to v′. A graph G′ = (V ′, E′) is a subgraph of G, denoted G′ ⪯ G, if V ′ ⊆ V and
E′ ⊆ E ∩ (V ′ × V ′); we write G′ ≺ G if G′ ⪯ G and G′ ̸= G. A graph G′ ⪯ G is a strongly
connected component (SCC) of G if it is strongly connected and no graph G′′ satisfying
G′ ≺ G′′ ⪯ G is strongly connected. An SCC G′ = (V ′, E′) of G is a bottom SCC (BSCC) if
v ∈ V ′ and (v, v′) ∈ E imply v′ ∈ V ′.

Partially observable Markov chains. Fix a finite set Σ of observations. A partially observable
Markov chain is a tuple M = (S, sin, Σ, Obs, P), where

Σ is a set of observations;
S is a finite set of states and sin ∈ S is the initial state;
Obs : S → Σ is an observation function that assigns to every state an observation; and
P : S × S → [0, 1] is the transition probability matrix, such that for every s ∈ S it holds∑

s′∈S P(s, s′) = 1,
Intuitively, Obs(s) models the information we can observe when the chain visits s. For
example, if s is the state of a program, consisting of the value of the program counter
and the values of all variables, Obs(s) could be just the values of the program counter,
or the values of a subset of public variables. The graph of M has S as set of nodes and
{(s, s′) | P(s, s′) > 0} as set of edges. Abusing language, we also use M to denote the graph
of M. A run of M is an infinite path ρ = s0s1 · · · of M; we let ρ[i] denote the state si.
The sequence Obs(ρ) := Obs(s0)Obs(s1) · · · is the observation associated to ρ. Each path
π in M determines the set of runs Cone(π) consisting of all runs that start with π. To
M we assign the probability space (Runs,F ,P), where Runs is the set of all runs in M, F
is the σ-algebra generated by all Cone(π), and P is the unique probability measure such
that P[Cone(s0s1 · · · sk)] = µ(s0) ·

∏k
i=1 P(si−1, si), where the empty product equals 1. The

expected value of a random variable f : Runs→ R is E[f] =
∫

Runs f dP.

Partially Observable Markov Decision Processes. A Σ-observable Markov Decision Process
(Σ-MDP) is a tuple M = (S, sin, Σ, Obs, A, ∆), where S, sin, Σ, Obs are as for Markov chains,
A is a finite set of actions, and ∆: S ×A→ D(S) is a transition function that for each state
s and action a ∈ A(s) yields a probability distribution over successor states. The probability
of state s′ in this distribution is denoted ∆(s, a, s′).

Strategies. A strategy on Σ-MDPs with A as set of actions is a function σ : (Σ×A)∗Σ→ A,
which given a finite path π = ℓ0a0 ℓ1 a1 . . . an−1 ℓn ∈ (Σ×A)∗Σ, yields the action σ(π) ∈ A

to be taken next. Notice that σ only “observes” Obs(s), not the state s itself. Therefore,
it can be applied to any Σ-MDP M = (S, sin, Σ, Obs, A, ∆), inducing the Markov chain
Mσ = (Sσ, sin, Σ, Obs, A, Pσ) defined as follows: Sσ = (S × A)∗ × S; and for every state
π ∈ Sσ of Mσ ending at a state s ∈ S of M, the successor distribution is defined by
Pσ(π, π a s′) := ∆(s, a, s′) if σ(π) = a and 0 otherwise.

J. Esparza and V. P. Grande 126:5

3 The black-box testing problem

Fix a set Σ of observations, and let r, c (for restart and continue) be two actions. We
associate to a Σ-observable Markov chain M = (S, sin, Σ, Obs, P) a restart MDP Mr =
(S, sin, Obs, {r, c}, ∆), where for every two states s, s′ ∈ S the transition function is given
by: ∆(s, r, s′) = 1 if s′ = sin and 0 otherwise, and ∆(s, c, s′) = P(s, s′). Intuitively, at every
state of Mr we have the choice between restarting the chain M or continuing.

We consider black-box strategies on Σ and {r, c}. Observe that if a run π of Mσ
r contains

finitely many occurrences of r, then the suffix of π after the last occurrence of r is a run ofM
(after dropping the occurrences of the continue action c). More precisely, if π = π0π′, where
π′ is the longest suffix of π not containing r, then π′ = (π0 sin) (π0 sin c s1) (π0 sin c s1 c s2) . . .,
where sins1s2 . . . is a run of M. The sequence of observations of sins1s2 . . . is an infinite
word over Σ, called the tail of π; formally tail(π) := Obs(sin)Obs(s1)Obs(s2) · · · .

▶ Definition 2 (Black-box testing strategies). Let L ⊆ Σω be an ω-regular language. A
black-box strategy σ on Σ and {r, c} is a testing strategy for L if it satisfies the following
property: for every Σ-observable Markov chain M, if PrM(L) > 0 then w.p.1 a run of Mσ

r
has a finite number of restarts, and its tail belongs to L. The black-box testing problem for
L consists of finding a black-box testing strategy for L.

We denote by #r(ρ) ∈ N ∪ {∞} the number of appearances of the restart action r in
ρ. Intuitively, the language L models the set of potential violations of a given liveness
specifications. If we sample any finite-state Σ-observable Markov chain M according to a
testing strategy for L, then w.p.1 we eventually stop restarting, and the tail of the run is a
violation, or there exist no violations.

3.1 Canonical black-box testing problems
Using standard automata-theoretic techniques, the black-box testing problem for an arbitrary
ω-regular language L can be reduced to the black-box testing problem for a canonical
language. For this, we need to introduce some standard notions of the theory of automata
on infinite words.

A deterministic Rabin automaton (DRA) A over an alphabet Σ is a tuple (Q, Σ, γ, q0, Acc),
where Q is a finite set of states, γ : Q× Σ→ Q is a transition function, q0 ∈ Q is the initial
state, and Acc ⊆ 2Q × 2Q is the acceptance condition. The elements of Acc are called Rabin
pairs. A word w = a0a1a2 . . . ∈ Σω is accepted by A if the unique run q0q1q2 . . . of A on w

satisfies the following condition: there exists a Rabin pair (E, F) ∈ Acc such that ai ∈ E

for infinitely many i ∈ N and ai ∈ F for finitely many i ∈ N. It is well known that DRAs
recognize exactly the ω-regular languages (see e.g. [2]). The Rabin index of an ω-regular
language L is the minimal number of Rabin pairs of the DRAs that recognize L.

▶ Definition 3. Let k ≥ 1, and let Mk = {e1, . . . , ek, f1, . . . , fk} be a set of markers. The
Rabin language Rk ⊆ (2Mk)ω is the language of all words w = α0α1 · · · ∈ (2Mk)ω satisfying
the following property: there exists 1 ≤ j ≤ k such that ej ∈ αi for infinitely many i ≥ 0,
and fj ∈ αi for at most finitely many i ≥ 0.

We show that the black-box testing problem for languages of Rabin index k can be
reduced to the black-box testing problem for Rk.

▶ Lemma 4. There is an algorithm that, given an ω-regular language L ⊆ Σω of index k

and given a testing strategy σk for Rk, effectively constructs a testing strategy σL for L.

ICALP 2023

126:6 Black-Box Testing Liveness Properties of Partially Observable Stochastic Systems

Proof. (Sketch, full proof in the Appendix.) Let A = (Q, Σ, γ, q0, Acc) be a DRA recognizing
L ⊆ Σω with accepting condition Acc = {(E1, F1), . . . , (Ek, Fk)}, i.e., Acc contains k Rabin
pairs. Let σk be a black-box strategy for the Rabin language Rk. We construct a black-box
strategy σL for L.

Let w = ℓ1a1ℓ2 · · · ℓn−1anℓn ∈ (Σ × {r, c})∗Σ. We define the action σL(w) as follows.
Let q0q1 . . . qn be the unique run of A on the word ℓ1ℓ2 . . . ℓn ∈ Σ∗. We then define
v = ℓ′

1a1ℓ′
2 · · · ℓ′

n−1anℓ′
n ∈ (2Mk × {r, c})∗2Mk as the word given by: ej ∈ ℓ′

i iff qi ∈ Ej , and
fj ∈ ℓ′

i iff qi ∈ Fj . (Intuitively, we mark with ej the positions in the run at which the DRA
visits Ej , and with fj the positions at which the DRA visits Fj .) We set σL(w) := σk(v). We
show in the Appendix that σL is a black-box strategy for L. ◀

4 Black-box strategies for Rabin languages

We describe a family of testing strategies for the Rabin languages {Rk | k ≥ 1}. In Section 4.1
we describe our strategy in detail. In Section 4.2 we introduce the progress radius and the
progress probability, two parameters of a chain needed to prove correctness and necessary for
quantitative analysis in Section 5. In Section 4.3 we formally prove that our strategy works.

4.1 The strategy
Let M be a Markov chain with observations in 2Mk , and let π = s0s1s2 · · · sm be a finite
path of M. The length of π is m, and its last state, denoted last(π), is sm. The second half
of π is the path SecondHalf(π) := s⌈m/2⌉ . . . sm. The concatenation of π and a finite path
ρ = r0r1 · · · rl ofM such that sm = r0 is the path π⊙ ρ := s0s1s2 · · · smr1 · · · rl. A path π is
i-good if it has length 0 or there are markers ei, fi ∈Mk such that some state s of π satisfies
ei ∈ Obs(s) and no state s of π satisfies fi ∈ Obs(s). Further, π is good if it is i-good for
some 1 ≤ i ≤ k.

The strategy S[f], described in Figure 2, is parametrized by a function f : N→ N. The
only requirement on f is lim supn→∞ f(n) =∞. In words, after the n-th restart the strategy

n := 0 ▷ number of restarts
while true do

π ← sin ▷ initial state of the chain
while SecondHalf(π) is good do

sample path ρ from state last(π)
of length 2 · f(n) ▷ even length for convenience
π ← π ⊙ ρ

end while ▷ restart
n← n + 1

end while

Figure 2 Strategy S[f] for the Rabin language Rk and a function f : N → N.

keeps sampling in blocks of 2 · f(n) steps until the second half of the complete path sampled
so far is bad, in which case it restarts. For example, after the n-th restart the strategy
samples a block π0 = π01 ⊙ π02, where |π01| = |π02| = f(n), and checks whether π02 is good;
if not, it restarts, otherwise it samples a block π1 = π11 ⊙ π12 starting from last(π02), and
checks whether π11 ⊙ π12 is good; if not, it restarts; if so it samples a block π2 = π21 ⊙ π22
starting from last(π12), and checks whether π12 ⊙ π21 ⊙ π22 is good, etc. Intuitively, the
growth of f controls how the strategy prioritizes deep runs into the chain over quick restarts
while the number of restarts increases.

J. Esparza and V. P. Grande 126:7

Good BSCC
rγ

Rγ
Rβ

rβ

Bad BSCC

R = 3
R = 2

R = 1

i-good/bad BSCC
R = 3

R = 2

R = 1
ei

fi

Reachability
Radii

Witness
Radii

Figure 3 Left: Intuitively, rγ and rβ denote an upper bound of how hard it is to reach a BSCC.
Right: Rγ and Rβ measure how hard it is to reach a state with label ei/fi inside the BSCCs.

In the rest of the paper we prove that our strategy is correct, and obtain optimal upper
bounds on the number of steps to the last reset. These bounds are given in terms of two
parameters of the chain: the progress radius and the progress probability. We introduce the
parameters in section 4.2.

4.2 Progress radius and progress probability
We define the notion of progress radius and progress probability for a Markov chain M with
2Mk as set of observations and such that Pr(Rk) > 0. Intuitively, the progress radius is the
smallest number of steps such that, for any state of the chain, conducting only this number
of steps one can “make progress” toward producing a good run or a bad run. The progress
probability gives a lower bound for the probability of the paths that make progress.

We define the notions only for the case k = 1, which already contains all the important
features. The definition for arbitrary k is more technical, and is given in the Appendix.

Good runs and good BSCCs. We extend the definition of good paths to good runs and
good BSCCs of a Markov chain. A run ρ = s0s1s2 . . . is good if e1 appears infinitely often in
ρ and f1 finitely often, and bad otherwise. So a run ρ is good iff there exists a decomposition
of ρ into an infinite concatenation ρ := π0 ⊙ π1 ⊙ π2 ⊙ · · · of non-empty paths such that
π1, π2, . . . are good. We let Pgood denote the probability of the good runs of M.

A BSCC of M is good if it contains at least one state labeled by e1 and no state labeled
by f1, and bad otherwise. It is well-known that the runs of any finite-state Markov chain
reach a BSCC and visit all its states infinitely often w.p.1 [2, Thm. 10.27]. It follows that
good (resp. bad) runs eventually reach a good (resp. bad) BSCC w.p.1.

Progress radius. Intuitively, the progress radius Rm is the smallest number of steps such
that, for any state s, by conducting Rm steps one can “make progress” toward producing
a good run – by reaching a good BSCC or, if already in one, by reaching a state with
observation e1 – or a bad run.

▶ Definition 5 (Good-reachability and good-witness radii). Let Bγ be the set of states of M
that belong to good BSCCs and let Sγ be the set of states from which it is possible to reach
Bγ , and let s ∈ Sγ . A non-empty path π starting at s is a good progress path if

s ∈ Sγ \Bγ , and π ends at a state of Bγ ; or
s ∈ Bγ , and π ends at a state with observation e1.

The good-reachability radius rγ is the maximum, taken over every s ∈ Sγ \Bγ , of the length
of a shortest progress path for s. The good-witness radius Rγ is the same maximum, but
taken over every s ∈ Bγ .

ICALP 2023

126:8 Black-Box Testing Liveness Properties of Partially Observable Stochastic Systems

The bad-reachability and bad-witness radii, denoted rβ and Rβ are defined analogously.
Only the notion of progress path of a states ∈ Bβ needs to be adapted. Loosely speaking,
a bad BSCC either contains no states with observation e1, or it contains some state with
observation f1. Accordingly, if no state of the BSCC of s has observation e1, then any
non-empty path starting at s is a progress path, and otherwise a progress path of s is a
non-empty path starting at s and ending at a state with observation f1. We illustrate the
definition of the reachability and witness radii in Figure 3. We leave rβ , Rβ , pβ , and Pβ

undefined if the chain does not contain a bad BSCC, and hence runs are good w.p.1.

▶ Definition 6 (Progress radius). The progress radius Rm of M is the maximum of rγ , Rγ ,
rβ, and Rβ.

Progress probability. From any state of the Markov chain it is possible to “make progress”
by executing a progress path of length Rm. However, the probability of such paths varies from
state to state. Intuitively, the progress probability gives a lower bound on the probability of
making progress.

▶ Definition 7. Let Bγ be the set of states of M that belong to good BSCCs, let Sγ be the
set of states from which it is possible to reach Bγ, and let s ∈ Sγ. The good-reachability
probability pγ is the minimum, taken over every s ∈ Sγ \Bγ , of the probability that a path
with length rγ starting at s contains a good progress path. The good-witness probability Pγ is
the same mininum, but taken over every s ∈ Bγ with paths of length Rγ . The corresponding
bad probabilities are defined analogously. The progress probability Pm is the minimum of
pγ , Pγ , pβ , Pβ.

4.3 Correctness proof

We prove that the strategy S[f] of section 4.1 is a valid testing strategy S[f] for arbitrary
Markov chains M. First, we will give an upper bound on the probability that S[f] restarts
“incorrectly”, i.e. at a state s ∈ Sγ from which a good BSCC could still be reached.

▶ Lemma 8. Let M be a Markov chain, and let MS[f]
r be its associated Markov chain with

S[f] as restart strategy. Let NBn be the set of paths of MS[f]
r that have at least n− 1 restarts

and only visit states in Sγ after the (n− 1)-th restart. We have:

Pr[#r ≥ n | NBn] ≤ 3(1− Pm)⌊f(n)/Rm⌋−1

The technical proof of this lemma is in the Appendix. We give here the proof for a special
case that illustrates most ideas. Consider the Markov chain with labels in 2{e1,f1} at the top
of Figure 4. The labeling function is Obs(sgoal) = {e1} and Obs(s) = ∅ for all other states,
and Obs(ρ) ∈ R1 iff ρ visits sgoal infinitely often. The set Sγ contains all states because sgoal
is reachable from every state. The only BSCC is B = {s1, sgoal}, and it is a good BSCC. From
the definitions of the parameters we obtain rγ = Rγ = 1, pγ = p and Pγ = q. Further, since
there are no bad BSCCs, rβ and Rβ are undefined, and so Rm = 1. So for this Markov chain
Lemma 8 states Pr[#r ≥ n | NBn] ≤ 3(1− Pm)f(n)−1. Let us see why this is the case.

Let ρ be a run of MS[f]
r such that #r(ρ) ≥ n, i.e., ρ has at least n restarts. Since Sγ

contains all states, we have ρ ∈ NBn iff #r(ρ) ≥ n − 1. We consider three cases. In the
definition of the cases we start counting steps immediately after the (n − 1)-th restart,
and denote by ρ[a, b] the fragment of ρ that starts immediately before step a, and ends
immediately after step b.

J. Esparza and V. P. Grande 126:9

sstart s1

sgoal

1−p
p

1−q

q

q
1−q

sstart → s1 → s1 → sgoal

no restart

→ s1 → s1 → s1 → s1
restart!

Figure 4 A Markov chain (left), and (a finite prefix of) one of its runs for n = 2 and f(n) = n

(right). After 2 steps, the run has reached a good BSCC B. After 4 steps, σ checks whether to restart,
but decides against it because of sgoal in step 4. After 8 steps it checks again, restarting this time.
This restart is covered by the third case of the case distinction, with k = 4. The run must have
visited sgoal in step 4, because otherwise the minimal k would be 3 or less.

(a) After f(n) steps, ρ has not yet reached B.
Then ρ has stayed in sstart for f(n) consecutive steps, which, since p = pγ , happens with
probability at most (1− pγ)f(n).

(b) After f(n) steps, ρ has already reached B. Further, the n-th restart happens immediately
after step 2f(n).
In this case, by the definition of the strategy, ρ does not visit sgoal during the interval
ρ[f(n) + 1, 2f(n)] (the second half of [0, 2f(n)]). So ρ stays in s1 during the interval
ρ[f(n) + 1, 2f(n)] which, since ρ has already reached B by step f(n), occurs with
probability (1− Pγ)f(n).

(c) After f(n) steps, ρ has already reached B. Further, the n-th restart does not happen
before step 2f(n) + 1.
Since the n-th restart happens at some point, and not before step 2f(n) + 1, by the
definition of the strategy there is a smallest number k ≥ f(n) such that ρ does not visit
sgoal during the interval ρ[k + 1, 2k]. Because we assume that the n-th restart happens
after step 2f(n), we even have k > f(n). By the minimality of k, the run ρ does visit
sgoal during the interval ρ[k, 2k − 2]. So ρ moves to sgoal at step k, and then stays in s1
for k steps. The probability of the runs that eventually move to sgoal and then move to
stay in s1 for k steps is Pγ(1− Pγ)k.

Figure 4 shows at the bottom an example of a run, and how the stratgy handles it. Since
(a)-(c) are mutually exclusive events, Pr[#r ≥ n | NBn] is bounded by the sum of their
probabilities, where in case (c) we sum over all possible values of k. This yields:

Pr[#r ≥ n | NBn] ≤ (1− pγ)f(n) + (1−Pγ)f(n) +
∞∑

k=f(n)+1

Pγ(1−Pγ)k ≤ 3(1−Pm)f(n).

The proof for arbitrary Markov chains given in the Appendix has the same structure, and
in particular the same split into three different events. Applying Lemma 8 we now easily
obtain (see the Appendix for a detailed proof) an upper bound for the probability to restart
an n-th time. Note that this bound captures the “correct” as well as the “incorrect” restarts:

▶ Lemma 9 (Restarting probability). LetM be a Markov chain, and let MS[f]
r be its associated

Markov chain with S[f] as restart strategy. The probability that a run restarts again after
n− 1 restarts satisfies:

Pr[#r ≥ n | #r ≥ n− 1] ≤ 1− Pgood

(
1− 3(1− Pm)⌊f(n)/Rm⌋−1

)
Proof. Let NBn be the set of paths of MS[f]

r that have at least n− 1 restarts and only visit
states in Sγ after the (n− 1)-th restart and NBn its complement. We have

ICALP 2023

126:10 Black-Box Testing Liveness Properties of Partially Observable Stochastic Systems

Pr[#r ≥ n | #r ≥ n− 1] = Pr[#r ≥ n | NBn] · Pr[NBn | #r ≥ n− 1]+
Pr[#r ≥ n | NBn] · Pr[NBn | #r ≥ n− 1].

Applying Lemma 8 and Pr[#r ≥ n | NBn] ≤ 1, we get

Pr[#r ≥ n | #r ≥ n−1] ≤
(
3(1−Pm)⌊f(n)/Rm⌋−1)Pr[NBn | #r ≥ n−1]+Pr[NBn | #r ≥ n−1]

W.p.1, good runs ofM only visit states of Sγ and so Pr[NBn | #r ≥ n− 1] ≥ Pgood and thus
Pr[NBn | #r ≥ n− 1] ≤ 1− Pgood, which completes the proof. ◀

Finally, we show that S[f] is a correct testing strategy. Further, we show that the
condition lim supn→∞ f(n) = ∞ is not ony sufficient, but also necessary. The previous
lemma gives an upper bound on the probability for a restart that, for increasing f(n), drops
below 1. If f(n) is above that threshold for infinitely many n, it suffices to show that the
strategy S[f] restarts every bad run:

▶ Theorem 10. S[f] is a testing strategy for the Rabin language Rk iff the function f

satisfies lim supn→∞ f(n) =∞.

Proof.
(⇒): We prove the contrapositive. If lim supn→∞ f(n) < ∞ then there is a bound b such
that f(n) ≤ b for every n ≥ 0. Consider a Markov chain over 2M1 consisting of a path of
2b + 1 states, with the last state leading to itself with probability 1; the last state is labeled
with e1, and no state is labeled with f1 . Then the chain has a unique run that goes from
the initial to the last state of the path and stays there forever, and its observation is a word
of R1; therefore, Pr(R1) = 1. However, since 2f(n) ≤ 2b + 1, S[f] always restarts the chain
before reaching the last state.
(⇐): By the previous lemma, we can bound the restart probability after n− 1 restarts by
1−

(
1− 3(1− Pm)⌊f(n)/Rm⌋−1)Pgood. Because 0 < Pm ≤ 1 and and Pgood > 0, for large

enough f(n) this is smaller than 1−Pgood/2 < 1. Because of lim supn→∞ f(n) =∞, we have
that the probability to restart the run another time is at most 1−Pgood/2 for infinitely many
n, and hence the total number of restarts is finite with probability 1. A bad run would enter
a bad BSCC B w.p.1 and would then go on to visit a set consisting of all the fi corresponding
to B infinitely often. Thus, S[f] would restart this run and hence reached a good run when
it does not restart. ◀

5 Quantitative analysis

The quality of a testing strategy is given by the expected number of steps until the last
restart, because this is the overhead spent until a violation starts to be executed. As in [6],
given a labeled Markov chain M and a testing strategy σ, we define the number of steps to
the last restart as random variables over the Markov chain Mσ

r :

▶ Definition 11 (S(ρ) and Sn(ρ)). Let ρ be a run of Mσ
r . We define: S(ρ) is equal to 0 if r

does not occur in ρ; it is equal to the length of the longest prefix of ρ ending in r, if r occurs
at least once and finitely often in ρ; and it is equal to ∞ otherwise. Further, for every n ≥ 1
we define Sn(ρ) to be equal to 0 if r occurs less than n times in ρ; and equal to the length of
the segment between the (n− 1)-th (or the beginning of ρ) and the n-th occurrence of r.

J. Esparza and V. P. Grande 126:11

In this section we investigate the dependence of E[S] on the function f(n). A priori it is
unclear whether f(n) should grow fast or slow. Consider the case in which all BSCCs of the
chain, good or bad, have size 1, and a run eventually reaches a good BSCC with probability
p. In this case the strategy restarts the chain until a sample reaches a good BSCC for the
first time. If f(n) grows fast, then after a few restarts, say r, every subsequent run reaches a
BSCC of the chain with large probability, and so the expected number of restarts is small, at
most r + (1/p). However, the number of steps executed during these few restarts is large,
because f(n) grows fast; indeed, only the run after the penultimate restart executes already
at least 2f(r + (1/p)− 1) steps.

In a first step we show that E[S] =∞ holds for every function f(n) ∈ 2Ω(n).

▶ Proposition 12. Let f ∈ 2Ω(n). Then there exists a Markov chain such that the testing
strategy of Figure 2 satisfies E(S) =∞.

Proof. Let f be in 2Ω(n). Then there exists some k > 0 such that we have lim supn→∞ f(n) ·
(1/2)n/k > 0. Consider a Markov chain with Pgood = 1 − (1/2)1/k. Then we have E(S) =∑∞

n=0 E(Sn | #r ≥ n−1)P (#r ≥ n−1). We have that P (#r ≥ n−1 | #r ≥ n−2) ≥ 1−Pgood
because only good runs will not be restarted. We also have that E(Sn | #r ≥ n − 1) ≥
f(n)(1− Pgood) because of the same reason. Thus

E[S] =
∞∑

n=0
E(Sn | #r ≥ n− 1)P (#r ≥ n− 1) ≥

∞∑
n=0

f(n)(1− Pgood) · (1− Pgood)n

and hence E[S] ≥
∞∑

n=0
f(n)(1/2)n/k =∞. ◀

It follows that (if we limit ourselves to monotonic functions, which is no restriction in
practice), we only need to consider functions f(n) satisfying f(n) ∈ ω(1) ∩ 2o(n). In the rest
of the section we study the strategies corresponding to polynomial functions f(n) = nc for
c ∈ N+, and obtain an upper bound as a function of the parameters Rm/Pm, Pgood, and
c. The study of subexponential but superpolynomial functions is beyond the scope of this
paper.

5.1 Quantitative analysis of strategies with f(n) = nc

We give an upper bound on E(S), the expected total number of steps before the last restart.
Our starting point is Lemma 9, which bounds the probability to restart for the n-th time, if
(n− 1) restarts have already happened. When the number n of restarts is small, the value of
the right-hand-side is above 1, and so the bound is not useful. We first obtain a value X

such that after X restarts the right-hand-side drops below 1.

▶ Lemma 13. Let X = c
√

Rm (2 + ln(1/6)/ ln(1− Pm)). For all n ≥ X, we have

Pr[#r ≥ n | #r ≥ n− 1] ≤ 1− Pgood/2

when restarting according to S[n 7→ nc].

Proof. Follows immediately from Lemma 9, the fact that the restart probability decreases
with n, the definition of X, and some calculations. We recall the statement of Lemma 9:

Pr[#r ≥ n | #r ≥ n− 1] ≤ 1− Pgood

(
1− 3(1− Pm)⌊f(n)/Rm⌋−1

)
Plugging in an n ≥ X validates the claim. ◀

ICALP 2023

126:12 Black-Box Testing Liveness Properties of Partially Observable Stochastic Systems

We now try to find a bound for E[S]: By linearity of expectation, we have E[S] =∑∞
i=1 E[Sn]. We split the sum into two parts: for n < X, and for n ≥ X. For n < X we just

approximate Pr[#r ≥ n− 1] by 1. For n > X we can say more thanks to Lemma 13:

Pr[#r ≥ n− 1] = Pr[#r ≥ n− 1|#r ≥ n− 2] · · ·Pr[#r ≥ X + 1|#r ≥ X] · Pr[#r ≥ X]

≤
n∏

k=⌈X⌉

Pr[#r ≥ k|R ≥ k − 1] ≤ (1− Pgood/2)n−X

This yields:

E[S] =
∞∑

n=0
E[Sn | #r ≥ n− 1] Pr[#r ≥ n− 1]

≤
X∑

n=0
E[Sn | #r ≥ n− 1] +

∞∑
n=X

E[Sn | #r ≥ n− 1] · (1− Pgood/2)n−X (1)

It remains to bound the expected number of steps between two restarts E[Sn | #r ≥ n− 1],
which is done in Lemma 14 below. The proof can be found in the Appendix. The proof first
observes that the expected number of steps it takes to reach a good or a bad BSCC is rγ/pγ

resp. rβ/pβ . Then we give a bound on the expected number of steps it takes to perform a
progress path inside a bad BSCC for the first time, or to not perform a progress path inside a
good BSCC for an entire second half of a run at some point after the (n− 1)-st restart; the
bound is also in terms of Rm/Pm and Rm/Pm(1− Pγ). The term 2f(n) comes from the fact
that the strategy always executes at least 2f(n) steps. The term 2Rm is an artifact due to
the “granularity” of the analysis, where we divide runs in blocks of Rm steps.

▶ Lemma 14 (Expected number of steps in a fragment). For the strategy S[n 7→ nc] we have:

E[Sn | #r ≥ n− 1] ≤ 2(Rm + f(n)) + 9
(

Rm

Pm(1− Pγ)

)
. (1)

Plugging Lemma 14 into (1), we finally obtain (see the Appendix):

▶ Theorem 15 (Expected number of total steps). For the strategy S[n 7→ nc] we have:

E[S] ∈ O

(
(c + 1)! · 2c ·

(
Rm

Pm

)1+1/c

+ 2c(c + 1)!
P c+1

good

+ (c + 1)!(2c)c+1

)
.

If we fix a value c, we obtain a much simpler statement:

▶ Corollary 16. For a fixed c, the strategy S[n 7→ nc] satisfies:

E[S] ∈ O

((
Rm

Pm

)1+1/c

+ 1
P c+1

good

)
.

Thus the bound on the total number of steps depends on two quantities, Rm/Pm and Pgood.
A small c favours the effect of Rm/Pm on the bound, a larger c the effect of Pgood. In Section
6 we will see that this closely matches the performance of the algorithms for different values
of c on synthetic Markov chains and on Markov chains from the PRISM benchmark set.

J. Esparza and V. P. Grande 126:13

5.2 Optimality of the Strategy f(n) = nc

We will prove the following optimality guarantee for our strategies.

▶ Theorem 17. For every c ∈ N+ there is a family of Markov chains such that our bound of
Corollary 16 on S[n 7→ nc] is asymptotically optimal, i.e., no other black-box testing strategy
is in a better asymptotic complexity class.

This proves two points: first, our bounds cannot be substantially improved. Second, one
necessarily needs information on Rm

Pm
and Pgood to pick an optimal value for c; without any

information every value is equally good.

Proof. Consider the family of Markov chains at the top of Figure 5. We take an arbitrary
k > 1 and set M = kc−1 and p = q = 1/k. With this choice we have Pgood = Pm = 1/k,
and Rm = kc−1. By Lemma 15, the strategy S[n 7→ nc]. satisfies E[S] ∈ O((Rm/Pm)1+1/c +
(1/Pgood)c+1) = O(kc+1)

We compare this with the optimal number of expected steps before the final restart. Since
runs that visit sgoal at least once are good w.p.1, any optimal strategy stops restarting exactly
after the visit to sgoal. We claim that every such strategy satisfies E[S] ≥ Rm/(PgoodPm)(1−
Pgood). For this, we make four observations. First, the probability of a good run is Pgood.
Second, the expected number of steps of a good run until the first visit to sgoal is Rm/Pm.
Third, the smallest number of steps required to distinguish a bad run, i.e. being in the left
BSCC, from a good run is equal to Rm, because until Rm steps are executed, all states visited
carry the same label. Hence, every strategy takes Rm/(PgoodPm) steps on average before
reaching the state sgoal for the first time. Fourth, on average 1/Pgood tries are required to
have one try result in a good run. Hence, on average at least 1/Pgood−1

1/Pgood
of the Rm/(PgoodPm)

steps happen before the last restart. Since 1/Pgood−1
1/Pgood

= (1 − Pgood), this proves the claim.
Now Rm/(PgoodPm)(1− Pgood) = kc+1 − kc ∈ Θ(kc+1) and we are done. ◀

6 Experiments

We report on experiments on three kinds of systems. First, we conduct experiments on two
synthetic families of Markov Chains. Second, we repeat the experiments of [6] on models
from the standard PRISM Benchmark Suite [10] using our black-box strategies. Finally, we
conduct experiments on population protocols from the benchmark suite of the Peregrine
tool [4, 5].

Synthetic Experiments. Consider the two (families of) labeled Markov chains at the top of
Figure 5. The labels are a and b. In the top chain, state sgoal is labeled by a, all others by
b. In the bottom chain, the states s2 to sM and sgoal are labeled by {a, sstart} and ssink by
b. The language L is the set of words containing infinitely many occurrences of a. In the
top chain at the initial state we go right or left with probability q and (1− q), respectively.
Runs that go left are bad, and runs that go right are good w.p.1. It follows Pgood = q,
Rm = M , and Pm = min(p, q). In our experiments we fix q = 1/2. By controlling M and p,
we obtain chains with different values of Rm and Pm for fixed Pgood = 1/2. In the bottom
chain, Rβ = Rγ = 1, Rm = rγ = M , pγ = pM , pβ = (1− p) and Pm = min(pM , 1− p) and
Pgood = pM .

Recall that the bound obtained in the last section is E[S] ≤ f(c)(Rm/Pm)1+1/c +
g(c)(1/Pgood)c+1 where f(c) and g(c) are fast-growing functions of c. If Pgood and Rm/Pm
are small, then f(c) and g(c) dominate the number of steps, and hence strategies with small
c should perform better. The data confirms this prediction. Further, for fixed Pgood, the

ICALP 2023

126:14 Black-Box Testing Liveness Properties of Partially Observable Stochastic Systems

sgoal

ssink sstart s1 . . . sM−1 sM

1

1−q q 1 1 1−p

p

1

ssink sstart s2 . . . sM sgoal
1−p p

1−p

p

1−p

p

1−p

p

Figure 5 Two families of Markov chains. The initial state is sstart. The good runs are those that
visit sgoal infinitely often. For the top chains, Pgood = q, Rm = M , and Pm = p. For the bottom
chains, Pgood = pM , Rm = M , Pm = pM .

2 4 6 8
log(Rm/Pm)

4

6

8

10

12

14

lo
g(
E[

S
])

c = 1

y = x1.59

c = 2

y = x1.25

c = 3

y = x1.12

0.5 1.0 1.5 2.0 2.5 3.0
log(1/Pgood)

0

2

4

6

8

10

12

14

lo
g(
E[

S
])

c = 1

y = x2.23

c = 2

y = x3.06

c = 3

y = x3.96

Figure 6 On the left, double-logarithmic plot of the expected total number of steps before the
last restart E(S) for the chain at the top of Figure 5 as a function of Rm/Pm for strategies (2) with
f(n) = nc for varying c. On the right, same for the bottom chain as a function of 1/Pgood. The
plots also show linear regressions. The leading exponent can be taken from the legend.

bound predicts E[S] ∈ O((Rm/Pm)1+1/c), and so for growing Rm/Pm strategies with large c

should perform better. The left diagram confirms this. Also, the graphs become straight
lines in the double logarithmic plot, confirming the predicted polynomial growth. Finally,
for Rm/Pm and 1/Pgood growing roughly at the same speed as in the lower Markov chain,
the bound predicts E[S] ∈ O(1/P c+1

good) for c = 2, 3 and E[S] ∈ O(M2/P c+1
good) for c = 1, and

hence for growing Pgood and Rm/Pm, strategies with small c perform better. Again, the right
diagram confirms this.

J. Esparza and V. P. Grande 126:15

Experiments on the PRISM data set. We evaluate the performance of our black-box testing
strategies for different values of c on discrete time Markov chain benchmarks from the PRISM
Benchmark suite [10], and compare them with the strategies of [6] for fully observable systems.
Table 1 shows the results. The properties checked are of the form GF, (GF→ FG), or their
negations. We add a gridworld example2 denoted GW, with larger values of the parameters,
to increase the number of states to ∼ 5 · 108. When trying to construct the corresponding
Markov chain, Storm experienced a timeout. Runs are sampled using the simulator of the
Storm model checker [9] and the python extension Stormpy. We abort a run after 106 (Up
to 3 · 107 for the gridworld examples gw, gw, and GW) steps without a restart. The probability
of another restart is negligibly small.

The Cautious10- and the Bold0.1-strategy of [6] store the complete sequence of states
observed, and so need linear memory in the length of the sample. Our strategies use at
most a logarithmic amount of memory, at none or little cost in the number of steps to the
last restart. Our strategies never timeout and, surprisingly, often require fewer steps than
fully-observable ones. In particular, the strategies for fully observable systems cannot handle
gridworlds, and only the bold strategy handles gridworld. One reason for this difference is
our strategies’ ability to adapt to the size of the chain automatically by increasing values of
f(n) as n grows. In two cases (nand and bluetooth) the fully observing strategies perform
better by a factor of ∼ 2 to ∼ 3. In comparison to the improvement by a factor of ∼ 50 in
scale10 and a factor of ∼ 90 in gridworld of the newly presented black-box strategies over the
whitebox strategies, this is negligible.

Table 1 Average number of steps before the final restart, averaged over 300 (100 for Herman and
GW) runs. Results for our strategies for c = 1, 2, 3, and the bold and cautious strategies of [6].

nand bluetooth scale10 crowds herman gw gw GW

states 7·107 143 291 121 1·107 5·105 309 327 309 327 5·108

c = 1 31 246 4 428 116 44 2 486 171 219 8 082 659
c = 2 18 827 4 548 75 61 1 404 152 127 4 883 449
c = 3 32 777 7 615 179 99 1 293 579 896 4 252 263

Bold0.1 10 583 4 637 14 528 199 0 TO TO
Cautious10 6 900 2 425 3 670 101 TO 26 361 TO

Table 2 Testing population protocols with the strategies S[n 7→ nc]. Experiments were run 100
times, averaging the number of steps to the last restart with a restart threshold of 250 for Average
and Conquer (AvC) and 10 000 for the Majority Protocol.

AvC17,8(faulty) Maj≤ 12(faulty) AvC17,8 Maj5,6

c = 1 13 645 ce 872 ce 126 294 true 4 264 508 ge
c = 2 181 746 ce 4 763 ce 10 485 163 true 11 878 533 ge

Peregrine TO ce TO true

Experiments on population Protocols. Population protocols are consensus protocols in
which a crowd of indistinguishable agents decide a property of their initial configuration by
reaching a stable consensus [1, 4]. The specification states that for each initial configuration

2 Unfortunately, the experimental setup of [6] cannot be applied to this example [19].

ICALP 2023

126:16 Black-Box Testing Liveness Properties of Partially Observable Stochastic Systems

the agents eventually reach the right consensus (property holds/does not hold). We have
tested our strategies on several protocols from the benchmark suite of Peregrine, the state-
of-the-art model checker for population protocols [4, 5]. The first protocol of Table 2 is
faulty, but Peregrine cannot prove it; our strategy finds initial configurations for which
the protocol exhibits a fault. For the second protocol both our strategies and Peregrine
find faulty configurations. The third protocol is correct; Peregrine fails to prove it, and
our strategies correctly fail to find counterexamples. The last protocol is correct, but in
expectation consensus is reached only after an exponential number of steps in the parameters;
we complement the specification, and search for a run that achieves consensus. Thanks to
the logarithmic memory requirements, our strategies can run deep into the Markov chain
and find the run.

7 Conclusions

We have studied the problem of testing partially observable stochastic systems against
ω-regular specifications in a black-box setting where testers can only restart the system,
have no information on size or probabilities, and cannot observe the states of the system,
only its outputs. We have shown that, despite these limitations, black-box testing strategies
exist. We have obtained asymptotically optimal bounds on the number of steps to the last
restart. Surprisingly, our strategies never require many more steps than the strategies for
fully observable systems of [6], and often even less. Sometimes, the improvement is by a
large factor (up to ∼ 90 in our experiments) or the black-box strategies are able to solve
instances where the strategies of [6] time out.

References
1 Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Peralta. Computation

in networks of passively mobile finite-state sensors. Distributed Comput., 18(4):235–253, 2006.
2 Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT Press, Cambridge,

Massachusetts, 2008.
3 David A. Basin, Vincent Jugé, Felix Klaedtke, and Eugen Zalinescu. Enforceable security

policies revisited. ACM Trans. Inf. Syst. Secur., 16(1):3:1–3:26, 2013.
4 Michael Blondin, Javier Esparza, and Stefan Jaax. Peregrine: A tool for the analysis of

population protocols. In CAV (1), volume 10981 of Lecture Notes in Computer Science, pages
604–611. Springer, 2018.

5 Javier Esparza, Martin Helfrich, Stefan Jaax, and Philipp J. Meyer. Peregrine 2.0: Explaining
correctness of population protocols through stage graphs. In ATVA, volume 12302 of Lecture
Notes in Computer Science, pages 550–556. Springer, 2020.

6 Javier Esparza, Stefan Kiefer, Jan Kretínský, and Maximilian Weininger. Enforcing ω-regular
properties in markov chains by restarting. In CONCUR, volume 203 of LIPIcs, pages 5:1–5:22.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

7 Yliès Falcone, Laurent Mounier, Jean-Claude Fernandez, and Jean-Luc Richier. Runtime
enforcement monitors: composition, synthesis, and enforcement abilities. Formal Methods
Syst. Des., 38(3):223–262, 2011.

8 Yliès Falcone and Srinivas Pinisetty. On the runtime enforcement of timed properties. In RV,
volume 11757 of Lecture Notes in Computer Science, pages 48–69. Springer, 2019.

9 Christian Hensel, Sebastian Junges, Joost-Pieter Katoen, Tim Quatmann, and Matthias Volk.
The probabilistic model checker storm. CoRR, abs/2002.07080, 2020. arXiv:2002.07080.

10 Marta Z. Kwiatkowska, Gethin Norman, and David Parker. The PRISM benchmark suite. In
QEST, pages 203–204. IEEE Computer Society, 2012.

https://arxiv.org/abs/2002.07080

J. Esparza and V. P. Grande 126:17

11 Kim G. Larsen and Axel Legay. On the power of statistical model checking. In ISoLA (2),
volume 9953 of Lecture Notes in Computer Science, pages 843–862, 2016.

12 David Lee and Mihalis Yannakakis. Principles and methods of testing finite state machines-a
survey. Proc. IEEE, 84(8):1090–1123, 1996.

13 Axel Legay, Benoît Delahaye, and Saddek Bensalem. Statistical model checking: An overview.
In RV, volume 6418 of Lecture Notes in Computer Science, pages 122–135. Springer, 2010.

14 Jay Ligatti, Lujo Bauer, and David Walker. Run-time enforcement of nonsafety policies. ACM
Trans. Inf. Syst. Secur., 12(3):19:1–19:41, 2009.

15 Doron A. Peled, Moshe Y. Vardi, and Mihalis Yannakakis. Black box checking. J. Autom.
Lang. Comb., 7(2):225–246, 2002.

16 Fred B. Schneider. Enforceable security policies. ACM Trans. Inf. Syst. Secur., 3(1):30–50,
2000.

17 Koushik Sen, Mahesh Viswanathan, and Gul Agha. Statistical model checking of black-box
probabilistic systems. In CAV, pages 202–215, 2004. doi:10.1007/978-3-540-27813-9_16.

18 Koushik Sen, Mahesh Viswanathan, and Gul Agha. On statistical model checking of stochastic
systems. In CAV, volume 3576 of Lecture Notes in Computer Science, pages 266–280. Springer,
2005.

19 Maximilian Weininger. Personal communication, 2022.
20 Håkan L. S. Younes. Probabilistic verification for “black-box” systems. In CAV, volume 3576

of Lecture Notes in Computer Science, pages 253–265. Springer, 2005.
21 Håkan L. S. Younes, Edmund M. Clarke, and Paolo Zuliani. Statistical verification of

probabilistic properties with unbounded until. In SBMF, volume 6527 of Lecture Notes in
Computer Science, pages 144–160. Springer, 2010.

22 Håkan L. S. Younes and Reid G. Simmons. Probabilistic verification of discrete event systems
using acceptance sampling. In CAV, volume 2404 of Lecture Notes in Computer Science, pages
223–235. Springer, 2002.

A Notes

The appendix can be found in the extended version at https://arxiv.org/abs/2303.03292.

ICALP 2023

https://doi.org/10.1007/978-3-540-27813-9_16
https://arxiv.org/abs/2303.03292

The Fine-Grained Complexity of Boolean
Conjunctive Queries and Sum-Product Problems
Austen Z. Fan #

Department of Computer Sciences, University of Wisconsin-Madison, WI, USA

Paraschos Koutris #

Department of Computer Sciences, University of Wisconsin-Madison, WI, USA

Hangdong Zhao #

Department of Computer Sciences, University of Wisconsin-Madison, WI, USA

Abstract
We study the fine-grained complexity of evaluating Boolean Conjunctive Queries and their general-
ization to sum-of-product problems over an arbitrary semiring. For these problems, we present a
general semiring-oblivious reduction from the k-clique problem to any query structure (hypergraph).
Our reduction uses the notion of embedding a graph to a hypergraph, first introduced by Marx [20].
As a consequence of our reduction, we can show tight conditional lower bounds for many classes of
hypergraphs, including cycles, Loomis-Whitney joins, some bipartite graphs, and chordal graphs.
These lower bounds have a dependence on what we call the clique embedding power of a hypergraph
H, which we believe is a quantity of independent interest. We show that the clique embedding power
is always less than the submodular width of the hypergraph, and present a decidable algorithm for
computing it. We conclude with many open problems for future research.

2012 ACM Subject Classification Theory of computation → Database theory; Theory of computation
→ Parameterized complexity and exact algorithms

Keywords and phrases Fine-grained complexity, conjunctive queries, semiring-oblivious reduction

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.127

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version Full Version: http://arxiv.org/abs/2304.14557 [9]

Funding NSF IIS-1910014.

1 Introduction

In a seminal paper, Marx proved the celebrated result that CSP(H) is fixed-parameter
tractable (FPT) if and only if the hypergraph H has a bounded submodular width [20]. In
the language of database theory, a Boolean Conjunctive Query (BCQ) can be identified as the
problem of CSP(H) where H is the hypergraph associated with the query [11]. Thus, Marx’s
result implies that a class of Boolean Conjunctive Queries is FPT if and only if its submodular
width is bounded above by some universal constant. Built on this result, Khamis, Ngo,
and Suciu introduced in [17] the PANDA (Proof-Assisted eNtropic Degree-Aware) algorithm,
which can evaluate a BCQ1 in time Õ(|I|subw(H)), where |I| is the input size and subw(H) is
the submodular width of H (here Õ hides polylogarithmic factors). Remarkably, the running
time of PANDA achieves the best known running time of combinatorial algorithm2 for all
BCQs. It is thus an important open question whether there exists a faster combinatorial
algorithm than PANDA for some Boolean CQ.

1 Technically, the PANDA algorithm works for Boolean or full CQs.
2 Informally speaking, this requires the algorithm does not leverage fast matrix multiplication techniques.

EA
T
C
S

© Austen Z. Fan, Paraschos Koutris, and Hangdong Zhao;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 127; pp. 127:1–127:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:afan@cs.wisc.edu
https://orcid.org/0000-0001-7714-2195
mailto:paris@cs.wisc.edu
https://orcid.org/0000-0001-6309-1702
mailto:hangdong@cs.wisc.edu
https://orcid.org/0009-0009-7636-0831
https://doi.org/10.4230/LIPIcs.ICALP.2023.127
http://arxiv.org/abs/2304.14557
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

127:2 The Fine-Grained Complexity of BCQs and Sum-Product Problems

To show that large submodular width implies not being FPT, Marx introduced the notion
of an embedding, which essentially describes a reduction from one CSP problem to another.
Our key insight in this work is that we can apply the notion of an embedding to measure
how well cliques of different sizes can be embedded to a hypergraph H. By taking the
supremum over all possible clique sizes, we arrive at the definition of clique embedding power,
denoted emb(H). The use of cliques as the starting problem means that we can use popular
lower bound conjectures in fine-grained complexity (the Boolean k-Clique conjecture, the
Min-Weight k-Clique conjecture) to obtain (conditional) lower bounds for the evaluation of
BCQs that depend on emb(H).

Equipped with the new notion of the clique embedding power, we can show tight lower
bounds for several classes of queries. That is, assuming the Boolean k-Clique Conjecture, we
derive (conditional) lower bounds for many queries that meet their submodular width, and
therefore the current best algorithm, up to polylogarithmic factors. In particular, we show
that for cycles [2], Loomis-Whitney joins [22], and chordal graphs, among others, the current
combinatorial algorithms are optimal.

We further extend the embedding reduction to be independent of the underlying (com-
mutative) semiring3. It was observed by Green, Karvounarakis, and Tannen [10] that the
semantics of CQs can be naturally generalized to sum-of-product operations over a semiring.
This point of view unifies a number of database query semantics that seem unrelated. For
example, evaluation over set semantics corresponds to evaluation over the Boolean semiring
σB = ({0, 1},∨,∧, 0, 1), while bag semantics corresponds to the semiring (N,+,×, 0, 1). In-
terestingly, following this framework, the decision problem of finding a k-clique in a graph
can be interpreted as the following sum-of-product operation: consider the input graph
G = (V,E) as the edge-weighted graph of the complete graph with |V | vertices where
weight(e) = 1e∈E ; then the problem is to compute

∨
V ′⊆V :|V ′|=k

∧
w({v, w}). Observe that

by changing the underlying semiring to be the tropical semiring trop = (R∞,min,+,∞, 0),
this formulation computes the min-weight k-clique problem. Indeed, given an edge-weighted
graph (where the weight of non-existence edges is 0), the minimum weight of its k-clique
is exactly minV ′⊆V :|V ′|=k

∑
w({v, w}). We prove that the clique embedding reduction is

semiring-oblivious, i.e., the reduction holds for arbitrary underlying semirings. This enables
one to transfer the lower bound result independent of the underlying semiring and should be
of independent interest.

Recent years have witnessed emerging interests in proving lower bounds for the runtime of
database queries (see Durand [8] for a wonderful survey). Casel and Schmid consider the fine-
grained complexity of regular path queries over graph databases [7]. Joglekar and Ré prove
a full dichotomy for whether a 1-series-parallel graph admits a subquadratic algorithm [13].
Their proof is based on the hardness hypothesis that 3-XOR cannot be solved in subquadratic
time. Perhaps the line of work in spirit closest to ours is the characterization of queries
which can be enumerated by linear preprocessing time and constant delay [3, 6, 4]. However,
their results focus on the enumeration problem and therefore are different from the main
subject of our paper. Furthermore, their characterization mainly classifies queries based on
the existence of a linear preprocessing time and constant delay algorithm. In contrast, our
method can provide a lower bound for every query.

3 A triple (D, ⊕, ⊗, 0, 1) is a commutative semiring if ⊕ and ⊗ are commutative binary operators over
D with the following properties: (i) (D, ⊕) is a commutative monoid with an additive identity 0. (ii)
(D, ⊗) is a commutative monoid with a multiplicative identity 1. (iii) ⊗ distributes over ⊕. (iv) For
any element e ∈ D, we have e ⊗ 0 = 0 ⊗ e = 0.

A. Z. Fan, P. Koutris, and H. Zhao 127:3

Our Contributions. We summarize our contributions as follows:
We introduce the notion of the clique embedding power emb(H) of a hypergraph H
(Section 3). We show several interesting properties of this notion; most importantly,
we show that it is always upper-bounded by the submodular width, subw(H). This
connection can be seen as additional evidence of the plausibility of the lower bound
conjectures for the k-clique problem.
We show how to construct a reduction from the k-clique problem to any hypergraph H
for any semiring, and discuss how the clique embedding power provides a lower bound
for its running time (Section 4).
We study how to compute emb(H) (Section 5). In particular, we prove that it is a
decidable problem, and give a Mixed Integer Linear Program formulation. One interesting
consequence of this formulation is that to achieve emb(H) it suffices to consider clique
sizes that depend on the hypergraph size.
We identify several classes of hypergraphs for which emb(H) = subw(H) (Section 6). For
these classes of queries, our lower bounds match the best-known upper bounds if we
consider the Boolean semiring with combinatorial algorithms or the tropical semiring.
The most interesting class of hypergraphs we consider is the class of chordal hypergraphs
(which captures chordal graphs).
Finally, we identify a hypergraph with six vertices for which there is a gap between its
clique embedding power and submodular width (Section 7). We believe that the existence
of this gap leaves many open questions.

2 Background

In this section, we define the central problem, and notions necessary for our results.

The SumProduct Problem. We define this general problem following the notation in [16, 14].
Consider ℓ variables x1, x2, . . . , xℓ, where each variable xi takes values in some discrete domain
Dom(xi). A valuation v is a function that maps each xi to Dom(xi). For a subset S ⊆ [ℓ],
we define the tuple xS = (xi)i∈S and v(xS) = (v(xi))i∈S .

The SumProduct Problem is parameterized by:
1. a commutative semiring σ = (D,⊕,⊗,0,1), where D is a fixed domain.
2. a hypergraph H = (V,E) where V = [ℓ].

The input I specifies for every hyperedge e ∈ E a function Re :
∏
i∈e Dom(xi) → D. This

function is represented in the input as a table of all tuples of the form (ae, Re(ae)), such that
Re(ae) ̸= 0. This input representation is standard in the CSP and database settings. We use
|I| to denote the input size, which is simply the sum of sizes of all tables in the input.

The SumProduct Problem then asks to compute the following function:⊕
v:valuation

⊗
e∈E

Re(v(xe)).

We will say that v is a solution for the above problem if
⊗

e∈E Re(v(xe)) ̸= 0.
Within this framework, we can capture several important problems depending on the

choice of the semiring and the hypergraph. If we consider the Boolean semiring σB =
({0, 1},∨,∧, 0, 1), then each Re behaves as a relational instance (Re is 1 if the tuple is in the
instance, otherwise 0) and the SumProduct function captures Boolean Conjunctive Query
evaluation. If σ = (N,+,×, 0, 1) and Re is defined as above, then the SumProduct function
computes the number of solutions to a Conjunctive Query. Another important class of

ICALP 2023

127:4 The Fine-Grained Complexity of BCQs and Sum-Product Problems

problems is captured when we consider the min-tropical semiring trop = (R∞,min,+,∞, 0)
and we assign each tuple to a non-negative weight; this computes a minimum weight solution
that satisfies the structural properties.

The Complexity for SumProduct Problems. We adopt the random-access machine (RAM)
as our computation model with O(log n)-bit words, which is standard in fine-grained com-
plexity. The machine has read-only input registers and it contains the database and the
query, read-write work memory registers, and write-only output registers. It is assumed that
each register can store any tuple, and each tuple is stored in one register. The machine can
perform all “standard” 4 operations on one or two registers in constant time.

In this paper, we are interested in the computational complexity of a SumProduct problem
for a fixed hypergraph H. (This is typically called data complexity). We will consider two
different ways of treating semirings when we think about algorithms.

In the first variant, we fix the semiring σ along with the hypergraph H. This means
that the representation of the semiring is not part of the input and is known a priori to the
algorithm. We denote this problem as SumProd⟨σ,H⟩. In the second variant, we consider
algorithms that access the semiring only via an oracle. In particular, the algorithm does not
know the semiring a priori and can only access it during runtime by providing the values for
the ⊕,⊗ operations. We assume that each of these operations takes a constant amount of
time. We denote this problem as SumProd⟨H⟩.

Our goal in this paper is to specify the exact exponent of |I| in the polynomial-time
runtime cost of an algorithm that computes SumProd⟨σ,H⟩ or SumProd⟨H⟩.

Tree Decompositions. A tree decomposition of a hypergraph H is a pair (T , χ), where T is
a tree and χ maps each node t ∈ V (T) of the tree to a subset χ(t) of V (H) such that:
1. every hyperedge e ∈ E(H) is a subset of χ(t) for some t ∈ V (T); and
2. for every vertex v ∈ V (H), the set {t | v ∈ χ(t)} is a non-empty connected subtree of T .

We say that a hypergraph H is acyclic if it has a tree decomposition such that each bag
corresponds to a hyperedge.

Notions of Width. Let H be a hypergraph and F be a set function over V (H). The
F -width of a tree decomposition (T , χ) is defined as maxt F (χ(t)). The F -width of H is the
minimum F -width over all possible tree decompositions of H.

A fractional independent set of a hypergraph H is a mapping µ : V (H) → [0, 1] such that∑
v∈e µ(v) ≤ 1 for every e ∈ E(H). We naturally extend functions on the vertices of H to

subsets of vertices of H by setting µ(X) =
∑
v∈X µ(v).

The adaptive width adw(H) of a hypergraph H is defined as the supreme of F -width(H),
where F goes over all fractional independent sets of H. Hence if adw(H) ≤ w, then for every
µ, there exists a tree decomposition of H with µ-width at most w.

A set function F is submodular if for any two sets A,B we have F (A ∪B) + F (A ∩B) ≤
F (A) +F (B). It is monotone if whenever A ⊆ B, then F (A) ≤ F (B). The submodular width
subw(H) of a hypergraph H is defined as the supreme of F -width(H), where F now ranges
over all non-negative, monotone, and submodular set functions over V (H) such that for every
hyperedge e ∈ E(H), we have F (e) ≤ 1. A non-negative, monotone, and submodular set
function F is edge-dominated if F (e) ≤ 1, for every e ∈ E.

4 This includes all arithmetic (e.g. +, −, ÷, ∗) and logical operations.

A. Z. Fan, P. Koutris, and H. Zhao 127:5

The fractional hypertree width of a hypergraph H is fhw(H) = min(T ,χ) maxt∈V (T) ρ
∗(χ(t)),

where ρ∗ is the minimum fractional edge cover number of the set χ(t). It holds that
adw(H) ≤ subw(H) ≤ fhw(H).

It is known that SumProd⟨σB,H⟩ can be computed in time Õ(|I|subw(H)) using the PANDA
algorithm [17]. However, we do not know of a way to achieve the same runtime for the
general SumProd⟨H⟩ problem. For this, the best known runtime is Õ(|I|#subw(H)), where
subw(H) ≤ #subw(H) ≤ fhw(H) [14]. On the other hand, there are hypergraphs for which we
can compute SumProd⟨σB,H⟩ with runtime better than Õ(|I|subw(H)) using non-combinatorial
algorithms. For example, if H is a triangle we can obtain a runtime Õ(|I|2ω/(ω+1)), where ω
is the matrix multiplication exponent (the submodular width of the triangle is 3/2).

Conjectures in Fine-Grained Complexity. Our lower bounds will be based on the following
popular conjectures in fine-grained complexity. To state the conjectures, it will be helpful
to define the k-clique problem over a semiring σ: given an undirected graph G = (V,E)
where each edge has a weight in the domain of the semiring, we are asked to compute
the semiring-product over all the k-cliques in G, where the weight of each clique is the
semiring-sum of clique edge weights.

▶ Definition 1 (Boolean k-Clique Conjecture). There is no real ϵ > 0 such that computing
the k-clique problem (with k ≥ 3) over the Boolean semiring in an (undirected) n-node graph
requires time O(nk−ϵ) using a combinatorial algorithm.

▶ Definition 2 (Min-Weight k-Clique Conjecture). There is no real ϵ > 0 such that computing
the k-clique problem (with k ≥ 3) over the tropical semiring in an (undirected) n-node graph
with integer edge weights can be done in time O(nk−ϵ).

When k = 3, min-weight 3-clique is equivalent to the All-Pairs Shortest Path (APSP) prob-
lem under subcubic reductions. The Min-Weight Clique Conjecture assumes the Min-Weight
k-Clique conjecture for every integer k ≥ 3 (similarly for the Boolean Clique Conjecture).

3 The Clique Embedding Power

In this section, we define the clique embedding power, a quantity central to this paper.

3.1 Graph Embeddings
We introduce first the definition of embedding a graph G to a hypergraph H, first defined by
Marx [20, 19]. We say that two sets of vertices X,Y ⊆ V (H) touch in H if either X ∩ Y ≠ ∅
or there is a hyperedge e ∈ E(H) that intersects both X and Y . We say a hypergraph is
connected if its underlying clique graph is connected.

▶ Definition 3 (Graph Embedding). Let G be an undirected graph, and H be a hypergraph. An
embedding from G to H, denoted G 7→ H, is a mapping ψ that maps every vertex v ∈ V (G)
to a non-empty subset ψ(v) ⊆ V (H) such that the following hold:
1. ψ(v) induces a connected subhypergraph;
2. if u, v ∈ V (G) are adjacent in G, then ψ(u), ψ(v) touch in H.

It will often be convenient to describe an embedding ψ by the reverse mapping ψ−1(x) =
{i | x ∈ ψ(i)}, where x is a vertex in V (H). Given an embedding ψ and a vertex v ∈ V (H),
we define its vertex depth as dψ(v) = |ψ−1(v)|. For a hyperedge e ∈ E(H), we define its weak
edge depth as dψ(e) = |{v ∈ V (G) | ψ(v) ∩ e ̸= ∅}|, i.e., the number of vertices of G that map
to some variable in e. Moreover, we define the edge depth of e as d+

ψ (e) =
∑
v∈e dψ(v).

ICALP 2023

127:6 The Fine-Grained Complexity of BCQs and Sum-Product Problems

The weak edge depth of an embedding ψ can then be defined as wed(ψ) = maxe dψ(e),
and the edge depth as ed(ψ) = maxe d+

ψ (e). Additionally, we define as wed(G 7→ H) the
minimum weak edge depth of any embedding ψ from G to H. Similarly for ed(G 7→ H). It is
easy to see that wed(G 7→ H) ≤ ed(G 7→ H).

It will be particularly important for our purposes to think about embedding the k-clique
graph Ck to an arbitrary hypergraph H. In this case, it will be simpler to think of the vertices
of G as the numbers 1, . . . , k and the embedding ψ as a mapping from the set {1, . . . , k} to
a subset of V (H). We can now define the following quantity, which captures how well we
can embed a k-clique to H for an integer k ≥ 3:

embk(H) := k

wed(Ck 7→ H) .

▶ Example 4. Consider the hypergraph H with the following hyperedges:

{x1, x2, x3}, {x1, y}, {x2, y}, {x3, y}

We can embed the 5-clique into H as follows:

1 → {x1}, 2 → {x2}, 3 → {x3}, 4, 5 → {y}.

It is easy to check that this is a valid embedding, since, for example, 1, 4 touch at the edge
{x1, y}. Moreover, wed(C5 7→ G) = 3, hence emb5(G) = 5/3.

3.2 Embedding Properties
In this part, we will explore how wed(Ck 7→ H) and embk(H) behave as a function of the
size of the clique k. We start with some basic observations.

▶ Proposition 5. For any hypergraph H and integer k ≥ 3:
1. wed(Ck 7→ H) ≤ k.
2. wed(Ck 7→ H) ≤ wed(Ck+1 7→ H) ≤ wed(Ck 7→ H) + 1.
3. If k = m · n, where k,m, n ∈ Z≥0, then embk(H) ≥ embm(H).

Proof. (1) We define an embedding ψ from a k-clique where ψ(i) = V (H) for every i =
1, . . . , k. It is easy to see that ψ is an embedding with weak edge depth k.

(2) For the first inequality, take any ψk+1, we can construct a ψk by only preserving the
mapping ψk+1 for [k]. Then, for any e ∈ E(H), we have

{y ∈ V (Ck) | ψk(y) ∩ e ̸= ∅} ⊆ {y ∈ V (Ck+1) | ψk+1(y) ∩ e ̸= ∅}

Thus,

wed(Ck 7→ H) ≤ wed(ψk) := max
e∈E(H)

dψk
(e) ≤ wed(ψk+1).

For the second inequality, take any ψk, we construct a ψk+1 by preserving the mapping ψk
and ψk+1 maps k + 1 to V (H). Then, for any e ∈ E(H), we have

dψk+1(e) = dψk
(e) + 1

so wed(ψk+1) = wed(ψk) + 1 and in particular, we can take ψk such that

wed(ψk+1) ≤ wed(Ck 7→ H) + 1

A. Z. Fan, P. Koutris, and H. Zhao 127:7

which implies that

wed(Ck+1 7→ H) ≤ wed(Ck 7→ H) + 1

(3) Suppose ψ is the embedding that achieves embm(H) for Cm. It suffices to construct
an embedding ψ′ for Ck which achieves the same quantity embm(H). To do so, we simply
bundle every n vertices in Ck to be a “hypernode”. That is, label the bundles as b1, . . . , bn.
and ψ′(v) = ψ(i) if and only if v ∈ Bi. The embedding power given by ψ′ is then

k

wed(ψ′) = mn

wed(ψ)n = m

wed(ψ) = embm(H). ◀

The first item of the above proposition tells us that embk(H) ≥ 1 for any k. But how
does embk(H) behave as k grows? We next show that embk(H) is always upper bounded by
the submodular width of H.

▶ Lemma 6. Let H be a hypergraph. Take an embedding ψ : Ck 7→ H. Let (T , χ) be a
tree decomposition of H. Then, there exists a node t ∈ T such that for every i = 1, . . . , k,
ψ(i) ∩ χ(t) ̸= ∅.

Proof. For i = 1, . . . , k, let Ti be the subgraph of T that includes all nodes t ∈ V (T) such
that ψ(i) ∩ χ(t) ̸= ∅.

We first claim that Ti forms a tree. To show this, it suffices to show that Ti is connected.
Indeed, take any two nodes t1, t2 in Ti. This means that there exists x1 ∈ χ(t1) ∩ ψ(i) and
x2 ∈ χ(t2) ∩ ψ(i). Since x1, x2 ∈ ψ(i) and ψ(i) induces a connected subgraph in H, there
exists a sequence of vertices x1 = z1, . . . , zk = x2, all in ψ(i), such that every two consecutive
vertices belong to an edge of H. Let S1, . . . , Sk be the trees in T that contain z1, . . . , zk
respectively. Take any two consecutive zi, zi+1: since they belong to the same edge, there
exists a bag that contains both of them, hence Si, Si+1 intersect. This means that there
exists a path between t1, t2 in T such that every node is in Ti.

Second, we claim that any two Ti, Tj have at least one common vertex. Indeed, ψ(i), ψ(j)
must touch in H. If there exists a variable x ∈ ψ(i) ∩ ψ(j), then any vertex that contains
x is a common vertex between Ti, Tj . Otherwise, there exists x ∈ ψ(i), y ∈ ψ(j) such that
x, y occur together in a hyperedge e ∈ E(H). But this means that some node t ∈ T contains
both x, y, hence Ti, Tj intersect at t.

Finally, we apply the fact that a family of subtrees of a tree satisfies the Helly property [12],
i.e. a collection of subtrees of a tree has at least one common node if and only if every pair
of subtrees has at least one common node. Indeed, the trees T1, . . . , Tk satisfy the latter
property, so there is a vertex t common to all of them. Such t has the desired property of
the lemma. ◀

We can now state the following Theorem 7 on the embedding power of a hypergraph.

▶ Theorem 7. For any hypergraph H and integer k ≥ 3, the following holds:

wed(Ck 7→ H) ≥ k

subw(H)

Proof. Let wed(Ck 7→ H) = α. Then, there is an embedding ψ : Ck 7→ H with weak edge
depth α. We will show that subw(H) ≥ k/α.

First, we define the following set function over subsets of V (H): for any S ⊆ V (H), let
µ(S) = |{i | ψ(i) ∩ S ̸= ∅}|/α. This is a coverage function, and hence it is a submodular
function. It is also edge-dominated, since for any hyperedge e, we have µ(e) = |{i | ψ(i) ∩ e ̸=
∅}|/α ≤ 1.

ICALP 2023

127:8 The Fine-Grained Complexity of BCQs and Sum-Product Problems

Now, consider any decomposition (T , Bt) of H. From Lemma 6, there is a node t ∈ T
such that or every i = 1, . . . , k, ψ(i) ∩Bt ̸= ∅. Hence, µ(Bt) = |{i | ψ(i) ∩Bt ̸= ∅}|/α = k/α.
Thus, the submodular width of the decomposition is at least k/α. ◀

The above result tells us that embk(H) ≤ subw(H) for any k ≥ 3. Hence, taking the
supremum of embk(H) for k ≥ 3 is well-defined since the set is bounded. This leads us to
the following definition:

▶ Definition 8 (Clique Embedding Power). Given a hypergraph H, define the clique embedding
power of H as

emb(H) := sup
k≥3

embk(H) = sup
k≥3

k

wed(Ck 7→ H) .

The following is immediate:

▶ Corollary 9. For any hypergraph H, 1 ≤ emb(H) ≤ subw(H).

For the connection between edge depth width and adaptive width, we have the following
theorem analogous to Theorem 7. The proof can be found in [9].

▶ Theorem 10. For any hypergraph H, the following holds:

ed(Ck 7→ H) ≥ k

adw(H)

4 Lower Bounds

In this section, we show how to use the clique embedding power to obtain conditional lower
bounds for SumProduct problems. Our main reduction follows the reduction used in [20], but
also has to account for constructing the appropriate values for the semiring computations.

▶ Theorem 11. For any hypergraph H and semiring σ, if SumProd⟨σ,H⟩ can be solved in
time O(|I|c) with input I, then k-Clique over σ can be solved in time O(nc·wed(Ck 7→H)) where
n is the number of vertices.

Proof. We will show a reduction from the k-clique problem with n vertices over a semiring
σ to SumProd⟨σ,H⟩. Without loss of generality, we will assume that the input graph G

to the k-clique problem is k-partite, with partitions V1, . . . , Vk. Indeed, given any graph
G = (V,E) where V = {v1, v2, . . . , vn}, consider the k-partite graph Gk = (V k, Ek) where
V k = {vji | 1 ≤ i ≤ n, 1 ≤ j ≤ k} and for any two vertices vji , vqp ∈ V k, {vji , vqp} ∈ Ek iff
{vi, vp} ∈ E and j ̸= q. Then there is a one-to-one mapping from a k-clique in G to a
k-clique in Gk.

Let ψ be an embedding from Ck to H that achieves a weak edge depth λ = k/embk(H).
As we mentioned before, it is convenient to take V (Ck) = {1, . . . , k}. We now construct the
input instance I for SumProd⟨σ,H⟩. More explicitly, the task is to construct the function Re
for each hyperedge e ∈ E.

To this end, we first assign to each pair {i, j} : i ̸= j, i, j,∈ {1, 2, . . . , k} a hyperedge
θ({i, j}) = e ∈ E(H) satisfying the following conditions: ψ(i) ∩ e ̸= ∅ and ψ(j) ∩ e ≠ ∅. Such
an e must exist by the definition of an embedding. If there is more than one hyperedge
satisfying the condition, we arbitrarily choose one.

For every variable x ∈ V (H), let ψ−1(x) be the subset of {1, . . . , k} mapping to x. Then,
we define the domain Dom(xi) of each variable xi in the input instance as vectors over
[n]|ψ

−1(xi)|. Let Se = {i ∈ [k] | ψ(i) ∩ e ̸= ∅}. Note that |Se| = dψ(e) ≤ λ. Also, note

A. Z. Fan, P. Koutris, and H. Zhao 127:9

that ψ−1(x) ⊆ Se for all x ∈ e. Then, we compute all cliques in the graph G between the
partitions Vi, i ∈ Se; these cliques will be of size |Se| and can be computed in running time
O(nλ) by brute force.

For every clique {ai ∈ Vi | i ∈ Se}, let t be the tuple over
∏
i∈Se

Dom(xi) such that its
value at position x is ⟨ai | i ∈ ψ−1(x)⟩. Then, we set

Re(t) = 1 ⊗
⊗

{i,j}:θ({i,j})=e

w({i, j}).

In other words, we set the value as the semiring product of all the weights between the edges
{ai, aj} in the clique whenever the pair {i, j} is assigned to the hyperedge e. All the other
tuples are mapped to 0. By construction, the size of the input is |I| = O(nλ).

We now show that the two problems will return exactly the same output. To show
this, we first show that there is a bijection between k-cliques in G and the solutions of the
SumProduct instance.

⇐ Take a clique {a1, . . . , ak} in G. We map the clique to the valuation v(x) = ⟨ai |
i ∈ ψ−1(x)⟩. This valuation is a solution to the SumProduct problem, since any subset of
{a1, . . . , ak} forms a sub-clique. Hence for any hyperedge e, Re(v(xe)) ̸= 0.

⇒ Take a valuation v. Consider any i ∈ {1, . . . , k} and consider any two variables
x, y ∈ ψ(i) (recall that ψ(i) must be nonempty). Recall that x, y ∈ V (H). We claim that
the i-th index in the valuation v(x), v(y) must take the same value, which we will denote as
ai; this follows from the connectivity condition of the embedding. Indeed, since x, y ∈ ψ(i),
there exists a sequence of hyperedges e1, e2, . . . , em where m ≥ 1 such that ej ∩ ej+1 ̸= ∅ for
1 ≤ j ≤ m − 1 and x ∈ e1, y ∈ em. By the construction, the i-th index in v(x) will then
“propagate” to that in v(y). This proves the claim. It then suffices to show that {a1, . . . , ak}
is a clique in G. Indeed take any i, j ∈ {1, . . . , k}. Since i and j are adjacent as two vertices
in Ck, we know ψ(i) and ψ(j) touch. Therefore, there exists a hyperedge e that contains
some x ∈ ψ(i) and y ∈ ψ(j). But this means that {ai, aj} must form an edge in G.

We next show that the semiring product of the weights in the clique has the same value
as the semiring product of the corresponding solution. Indeed:⊗

e∈E
Re(v(xe)) = 1 ⊗

⊗
e∈E

⊗
{i,j}:θ({i,j})=e

w({i, j}) =
⊗

{i,j}:i̸=j

w({i, j})

where the last equality holds because each edge of the k-clique is assigned to exactly one
hyperedge of H.

The above claim together with the bijection show that the output will be the same;
indeed, each the semiring sums will go over exactly the same elements with the same values.

To conclude the proof, suppose that SumProd⟨σ,H⟩ could be answered in time O(|I|c) for
some c ≥ 1. This means that we can solve the k-clique problem over σ in time O(nλ+ncλ) =
O(nc·wed(Ck 7→H)). ◀

As an immediate consequence of Theorem 11, we can show the following lower bound.

▶ Proposition 12. Under the Min-Weight k-Clique conjecture, SumProd⟨trop,H⟩ (and thus
SumProd⟨H⟩) cannot be computed in time O(|I|embk(H)−ϵ) for any constant ϵ > 0.

Proof. Indeed, if SumProd⟨trop,H⟩ can be computed in time O(|I|embk(H)−ϵ) for some
constant ϵ > 0, then by Theorem 11 the k-Clique problem over the tropical semiring can be
solved in time O(n(embk(H)−ϵ)·wed(Ck 7→H)) = O(nk−δ) for some δ > 0. However, this violates
the Min-Weight k-Clique conjecture. ◀

ICALP 2023

127:10 The Fine-Grained Complexity of BCQs and Sum-Product Problems

Similarly, we can show the following:

▶ Proposition 13. Under the Boolean k-Clique conjecture, SumProd⟨σB,H⟩ (and thus
SumProd⟨H⟩) cannot be computed via a combinatorial algorithm in time O(|I|embk(H)−ϵ)
for any constant ϵ > 0.

The above two results imply that to obtain the best lower bound, we need to find the
clique size with the largest embk(H). However, the function k 7→ embk(H) is really intriguing.
It is not clear whether in the definition supremum is ever needed, i.e., whether there exists a
hypergraph where the embedding power is achieved in the limit.

In Section 5, we show that for every hypergraph H, there exists a natural number k such
that emb(H) = embk(H). We also demonstrate how to compute emb(H) through a MILP
and locate the complexity of computing the embedding power within the class 2-EXPTIME
(double exponential time). The insight of our method is that, instead of computing the
“integral” embedding power, one can consider the “fractional” embedding power and then
recover the “integral” one by letting the clique size k to be sufficiently large.

5 Decidability of the Clique Embedding Power

To illustrate the algorithm for computing emb(H), it is instructive to first show how to
compute embk(H) for a fixed clique size k.

5.1 An Integer Linear Program for wed(Ck 7→ H)
The following ILP formulation computes the minimum weak edge depth w = wed(Ck 7→ H).

min w

s.t.
∑
S⊆V

xS = k

xS = 0 ∀S ⊆ V where S is not connected
min{xS , xT } = 0 ∀S, T ⊆ V where S, T do not touch∑
S⊆V :e∩S ̸=∅

xS ≤ w ∀e ∈ E

xS ∈ Z≥0 ∀S ⊆ V

(1)

Each integer variable xS , S ⊆ V , indicates how many vertices in Ck are assigned to the
subset S. For example, if x{1,2} = 3, this means in the embedding ψ, three vertices are
mapped to the subset {1, 2} ⊆ V . It is sufficient to record only the number of vertices in
Ck because of the symmetry of the clique. That is, since any two vertices are connected in
Ck, one can arbitrarily permute the vertices in Ck so that the resulting map ψ′ is still an
embedding (given ψ is). Moreover, since the clique size k is fixed, to compute embk(H) it
suffices to minimize w.

Observe that the condition min{xS , xT } = 0 is not a linear condition. To encode it as
such, we perform a standard transformation. We introduce a binary variable yS for every set
S ⊆ V . Then, we can write it as

xS + k · yS ≤ k

xT + k · yT ≤ k

yS + yT ≥ 1

Indeed, since yS and yT are binary variables, at least one of them is 1. Without loss of
generality assume yS = 1. Then xS = 0 since xS ∈ Z≥0. Therefore two subsets that do not
touch cannot both be chosen in the embedding.

A. Z. Fan, P. Koutris, and H. Zhao 127:11

5.2 A Mixed Integer Linear Program for emb(H)
The above ILP construction does not directly yield a way to compute the clique embedding
power, since the latter is defined to be the supremum for all k.

1 5 30 60
k

1

5/3

em
b_

k

Figure 1 embk(H) for the 6-cycle.

As alluded before, the behavior of embk(H) as a function of k is non-trivial (and certainly
not monotone). Figure 1 depicts how the clique embedding power changes with respect to
different clique sizes for the 6-cycle, where the horizontal line represents the clique size.

To compute the supremum, the key idea is to change the integer variables xS to be
continuous (so they behave as fractions) and “normalize” the clique size k to 1. Specifically,
we can write the following mixed integer linear program (MILP).

min w

s.t.
∑
S⊆V

xS = 1

xS = 0 ∀S ⊆ V where S is not connected
min{xS , xT } = 0 ∀S, T ⊆ V where S, T do not touch∑
S⊆V :e∩S ̸=∅

xS ≤ w ∀e ∈ E

xS ∈ R≥0 ∀S ⊆ V

(2)

▶ Proposition 14. Let w∗ be the optimal solution of MILP (2). Then, emb(H) = 1/w∗.
Additionally, there exists an integer K ≥ 3 such that emb(H) = embK(H).

Proof. We first show for any k, embk(H) ≥ 1/w∗. Indeed, any embedding ψ : Ck → H
determines the values of the variables xS in MILP (1). Let x̂S = xS

k and ŵ = w
k be an

assignment of the variables in MILP (2). It is easy to see that this is a feasible assignment.
Thus, w∗ ≤ wed(Ck 7→ H)/k. Therefore embk(H) = k/wed(Ck 7→ H) ≤ 1/w∗.

Next, observe that emb(H) is a rational number. In fact, the solution w∗ for MILP (2)
is a rational number, since every constant is a rational number [24]. Let K be the least
common multiplier of their denominators of the fractions in the set {xS}. Then, the
assignment K · xS ,K · w is a feasible solution for MILP (1) for k = K. This implies that
K · w∗ ≥ wed(CK 7→ H), so embK(H) ≥ 1/w∗.

ICALP 2023

127:12 The Fine-Grained Complexity of BCQs and Sum-Product Problems

Table 1 Summary of emb and subw for some classes of queries.

emb subw
Acyclic 1 [Theorem 29] 1 [27]
Chordal = [Theorem 24] = [22]
ℓ-cycle 2 − 1/⌈ℓ/2⌉ [Proposition 18] 2 − 1/⌈ℓ/2⌉ [2]
K2,ℓ 2 − 1/ℓ [Proposition 19] 2 − 1/ℓ [17]
K3,3 2 [Proposition 20] 2 [17]
Aℓ (ℓ − 1)/2 [Proposition 26] (ℓ − 1)/2 [22]
Hℓ,k ℓ/k [Proposition 27] ℓ/k [22]
Qb 17/9 2 [13]
Qhb 7/4 2 [Proposition 30]

Thus, we have shown that 1/w∗ is an upper bound for {embk(H)}k, but also embK(H) =
1/w∗. Hence, emb(H) = embK(H) = 1/w∗. ◀

This leads to the following theorem (whose proof can be found in [9]).

▶ Theorem 15. The problem of computing emb(H) for a hypergraph H is in 2-EXPTIME
and, in particular, is decidable.

Unfortunately, our method does not yield an upper bound on how large the K in
Proposition 14 might be. There is no reason that K cannot be very large, e.g. doubly
exponential to the size of H. Some knowledge of that could be very useful in computing the
clique embedding power. For example, one can compute all the embeddings from Ck, for k
not greater than the upper bound, and output the one with the largest embedding power.
The best-known upper bound we have so far is the following. The proof can be found in [9].

▶ Proposition 16. For any hypergraph H, there is a constant K = O((2|V |)!) such that
emb(H) = embK(H).

6 Examples of Tightness

In this section, we identify several classes of queries where the clique embedding power
coincides with the submodular width. For brevity, we write emb, subw, fhw, and adw when
the underlying hypergraph is clear under context. Table 1 summarizes our results.

6.1 Cycles
For the cycle query of length ℓ ≥ 3, we show that emb = subw = 2−1/⌈ℓ/2⌉. The best-known
algorithm for ℓ-cycle detection (and counting) of Alon, Yuster, and Zwick [2] runs in time
O(|I|subw). First, we show the following lemma.

▶ Lemma 17. Consider the cycle query of length ℓ ≥ 3. Then emb ≥ 2 − 1/⌈ ℓ2 ⌉.

Proof. We start with the case where ℓ is odd and name the variables of the cycle query as
x1, . . . , xℓ. Then, we define λ = (ℓ+ 1)/2 and an embedding from a ℓ-clique as follows:

ψ−1(x1) = {1, 2, . . . , λ− 1}
ψ−1(x2) = {2, 3, . . . , λ}

. . .

ψ−1(xℓ) = {2λ− 1, 1, . . . , λ− 2}

(3)

A. Z. Fan, P. Koutris, and H. Zhao 127:13

In other words, ψ maps each i ∈ [ℓ] into a consecutive segment consisting of λ−1 vertices in the
cycle. To see why ψ is an embedding, we observe that for any i, j ∈ [ℓ] such that ψ(i)∩ψ(j) = ∅,
|ψ(i) ∪ ψ(j)| = 2λ− 2 = ℓ− 1, so there is an edge that intersects both ψ(i) and ψ(j). It is
easy to see that wed(ψ) = λ = (ℓ+ 1)/2. Thus, emb ≥ ℓ/λ = 2ℓ/(ℓ+ 1) = 2 − 2/(ℓ+ 1).

If ℓ is even, we define λ = ℓ/2 and an embedding from a (ℓ− 1)-clique as follows:

ψ−1(x1) = {1, 2, . . . , λ− 1}
ψ−1(x2) = {2, 3, . . . , λ}

. . .

ψ−1(xℓ−1) = {2λ− 2, 2λ− 1, 1, . . . , λ− 3}
ψ−1(xℓ) = ψ−1(xℓ−1)

where ψ−1(xi), i ∈ [ℓ− 1] is exactly the embedding we constructed for (ℓ− 1)-cycle. We show
that this is a valid embedding. Let i, j ∈ [ℓ] such that ψ(i) ∩ ψ(j) = ∅.
1. If i ∈ ψ−1(xℓ−1) (or j ∈ ψ−1(xℓ−1)), then |ψ(i) ∪ ψ(j)| = ℓ− 1, so there is an edge that

intersects both ψ(i) and ψ(j).
2. If i, j /∈ ψ−1(xℓ−1), then ψ(i) and ψ(j) do not contain xℓ−1 and xℓ. There is an edge

that intersects both ψ(i) and ψ(j) since |ψ(i) ∪ ψ(j)| = ℓ− 2.
For this embedding, we have wed(ψ) = λ = ℓ/2, so emb ≥ (ℓ− 1)/λ = 2 − 2/ℓ. ◀

Thus, we have the following proposition.

▶ Proposition 18. Consider the cycle query of length ℓ ≥ 3. Then we have

emb = subw = 2 − 1
⌈ ℓ2 ⌉

Proof. It can be shown using Example 7.4 in [17] (setting m = 1) that subw ≤ 2 − 1/⌈ ℓ2 ⌉
(technically the Example 7.4 in [17] only deals with cycles of even length, but their argument
can be easily adapted to cycles of odd length). We thus conclude by applying Lemma 17
and Theorem 7. ◀

6.2 Complete Bipartite Graphs
We consider a complete bipartite graph Km,n where the two partitions of its vertices are
{x1, . . . , xm} and {y1, . . . , yn}. We study two of its special cases, K2,ℓ and K3,3. The proofs
of the following two propositions can be found in [9].

▶ Proposition 19. For the bipartite graph K2,ℓ, emb(K2,ℓ) = subw(K2,ℓ) = 2 − 1/ℓ.

▶ Proposition 20. For K3,3, we have emb(K3,3) = subw(K3,3) = 2.

Finding emb(Km,n) and subw(Km,n) in the most general case is still an open question.

6.3 Chordal Queries
In this section, we identify a special class of queries, called choral queries. We introduce
necessary definitions and lemmas to prove that for a chordal query, emb, subw, fhw, and adw
all coincide, as stated in Theorem 24.

Let G be a graph. A chord of a cycle C of G is an edge that connects two non-adjacent
nodes in C. We say that G is chordal if any cycle in G of length greater than 3 has a chord.
We can extend chordality to hypergraphs by considering the clique-graph of a hypergraph H,
where edges are added between all pairs of vertices contained in the same hyperedge.

ICALP 2023

127:14 The Fine-Grained Complexity of BCQs and Sum-Product Problems

Let (T , χ) be a tree decomposition of a hypergraph H and bags(T) def= {χ(t) | t ∈ V (T)}.
We say that (T , χ) is proper if there is no tree decomposition (T ′, χ′) such that
1. for every bag b1 ∈ bags(T ′), there is a bag b2 ∈ bags(T) such that b1 ⊆ b2;
2. bags(T ′) ⊉ bags(T),

The following important properties hold for chordal graphs.

▶ Lemma 21 ([5]). If G is a chordal graph and (T , χ) is a proper tree decomposition of G,
then the bags of (T , χ), i.e. bags(T), are the maximal cliques in G.

For chordal hypergraphs, we can show the following lemma:

▶ Lemma 22. Let H be a hypergraph. Then, (T , χ) is a (proper) tree decomposition of H if
and only if it is a (proper) tree decomposition of the clique-graph of H.

Proof. We first show that (T , χ) is a tree decomposition of H if and only if it is also a tree
decomposition of the clique-graph of H. The forward direction is straightforward. For the
backward direction, let (T , χ) be a decomposition of the clique-graph of H. Then for any
hyperedge e ∈ H and any pair of vertices u, v ∈ e, we know that {t | u ∈ χ(t)} ∩ {t | v ∈
χ(t)} ≠ ∅. By the Helly Property, there is a bag that contains all vertices in the hyperedge e.
Therefore, (T , χ) is a tree decomposition for H. It is easy to extend the proof for proper
tree decompositions. ◀

The following corollary is immediate from both Lemma 21 and Lemma 22:

▶ Corollary 23. If H is a chordal hypergraph and (T , χ) is a proper tree decomposition of H,
then the bags of (T , χ) are the maximal cliques in the clique-graph of H.

The above corollary tells us that every proper tree decomposition has the same set of
bags, with the only difference being the way the bags are connected in the tree. From this,
we can easily obtain that subw = fhw. However, we have an even stronger result:

▶ Theorem 24. If H is a chordal hypergprah, then emb = adw = subw = fhw.

Proof. Since H is chordal, by Corollary 23, the bags of any proper tree decomposition (T , χ)
of H are the maximal cliques in the clique-graph of H. Then, there is a node t ∈ V (T) such
that the minimum fractional edge cover (also the maximum fractional vertex packing) of
χ(t) is fhw. In particular, let {ui | i ∈ χ(t)} be the optimal weights assigned to each vertex
in χ(t) that obtain the maximum fractional vertex packing, so

∑
i∈χ(t) ui = fhw. We let

ûi = ui/
∑
i∈χ(t) ui and k be the smallest integer such that k · ûi is an integer for every

i ∈ χ(t). Now we construct an embedding ψ from Ck to H so that every ψ(j), for j ∈ [k] is
a singleton and for each i ∈ χ(t), let d−1

ψ (i) def= k · ûi. This assignment uses up all k vertices
in Ck, since

∑
i∈χ(t) k · ûi = k. Then,

wed(ψ) = max
e∈E(H)

∑
i∈e

k · ûi = k∑
i∈χ(t) ui

· max
e∈E(H)

∑
i∈e

ui ≤ k∑
i∈χ(t) ui

and thus, we get emb = fhw since

emb ≥ emb(Ck 7→ H) ≥ k

wed(ψ) ≥
∑
i∈χ(t)

ui = fhw.

For adw, we define the following modular function over subsets of V (H): for any S ⊆ V (H),
let µ(S) def=

∑
i∈S ui. It is edge-dominated since for every hyperedge e, µ(e) =

∑
i∈e ui ≤ 1.

Moreover, we have that µ(χ(t)) =
∑
i∈χ(t) ui = fhw. That is, adw ≥ fhw, so adw = fhw. As a

remark, it is also viable to use Lemma 3.1 in [17] to prove the claim for adaptive width. ◀

A. Z. Fan, P. Koutris, and H. Zhao 127:15

Recall that Corollary 23 implies if H is chordal, then every proper tree decomposition of
H has the same set of bags. We show the converse is also true, which could be of independent
interest. The proof is in [9].

▶ Lemma 25. Let H be a hypergraph. If every proper tree decomposition of H has the same
set of bags, then H is chordal.

We identify three classes of hypergraphs (almost-cliques, hypercliques, and acyclic hyper-
graphs) that are chordal and find their clique embedding powers and submodular widths.

Almost-cliques. Consider the ℓ-clique where one vertex, say x1, connects to k vertices only,
where 1 ≤ k < ℓ− 1 (hence it is the missing edges from being a ℓ-clique). We denote such a
hypergraph as Aℓ. To show that Aℓ is chordal, we observe that for any cycle of length ≥ 4
that contains x1, the two adjacent vertices of x1 in the cycle must be connected by an edge
in Aℓ and that edge is a chord to the given cycle. We also show the following proposition.

▶ Proposition 26. For an almost-cliques Aℓ, emb = subw = fhw = (ℓ− 1)/2.

Proof. To prove the claim, suppose WLOG xi connects only to xi, where i ∈ 2, 3, . . . , k.
Then, we take the decomposition with two bags: {x1, x2, . . . , xk}, {x2, x3, . . . , xℓ}, where
each bag has an edge cover of at most (ℓ− 1)/2 since the first bag induces an k-clique and
the second bag induces an (ℓ− 1)-clique. Hence, fhw ≤ (ℓ− 1)/2.

On the other hand, consider the embedding ψ from the (ℓ− 1)-clique, where ψ(i) = xi+1,
1 ≤ i ≤ ℓ− 1; it is easy to verify that this is a valid embedding such that wed(ψ) = 2, hence
emb ≥ (ℓ− 1)/2. Therefore, we have shown that emb = subw = (ℓ− 1)/2 by Theorem 7. ◀

Hypercliques. Next, we consider the (ℓ, k)-hyperclique query Hℓ,k, where 1 < k ≤ ℓ. This
query has ℓ variables, and includes as atoms all possible subsets of {x1, . . . , xℓ} of size exactly
k. When k = ℓ− 1, the query simply becomes a Loomis-Whitney join [22]. It is easy to see
that Hℓ,k is chordal since the clique-graph of Hℓ,k is a ℓ-clique.

▶ Proposition 27. For Hℓ,k, we have emb = subw = fhw = ℓ/k.

Proof. First, we show that fhw ≤ ℓ/k. Indeed, there is a fractional edge cover that assigns a
weight of 1/k to each hyperedge that contains k consecutive vertices in {x1, . . . , xℓ} (let the
successor of xℓ be x1). The fractional edge cover is then ℓ/k. We show next that this bound
coincides with emb.

We simply define the embedding ψ from a ℓ-clique as ψ(i) = xi, i ∈ [ℓ]. Then, wed(ψ) = k

since every hyperedge has exactly k vertices. Therefore, emb ≥ ℓ/k ≥ fhw and we conclude
by applying Lemma 17 and Theorem 7. ◀

Acyclic Hypergraphs. First, we claim that acyclic queries are indeed chordal queries.

▶ Lemma 28. An acyclic hypergraph H is chordal.

Proof. We prove by induction on the number of hyperedges in the hypergraph H = (V,E).
If |E| = 1, it is clique-graph is a clique, thus it is chordal. The induction hypothesis assumes
the claim for acyclic hypergraphs with |E| ≤ k hyperedges. Let H be an acyclic hypergraph
such that |E| = k+1. Since H is acyclic, it has a join forest whose vertices are the hyperedges
of H. Let eℓ ∈ E be a leaf of the join forest and it is easy to show that H′ = (V,E \ {eℓ})
is an acyclic hypergraph with k hyperedges. For any cycle in the clique-graph of H having
length ≥ 4, we discuss the following two cases.

ICALP 2023

127:16 The Fine-Grained Complexity of BCQs and Sum-Product Problems

If every edge of the cycle is in the clique-graph of H′: by the induction hypothesis, there
is a chord for this cycle in the clique-graph of H′ (thus also in H).

Otherwise, there is an edge e in the cycle that is in the clique-graph of H, but not in the
clique-graph of H′: therefore, the edge e is only contained by eℓ. This implies that there is a
vertex u that is only contained by eℓ, not by any other edges in E. Let {u, v} and {u,w} be
the edges connecting u in the given cycle, we know that {u, v, w} ⊆ eℓ and thus, {v, w} is a
chord for the given cycle. ◀

Now we prove the following theorem for acyclic hypergraphs:

▶ Theorem 29. For an acyclic hypergprah H, emb = adw = subw = fhw = 1.

Proof. From Proposition 5, we know that emb ≥ 1. Since it is known that subw = fhw = 1,
the theorem is then a direct result from Lemma 28 and Theorem 24. ◀

7 Gap Between Clique Embedding Power and Submodular Width

In this section, we discuss the boat query and its variant depicted in Figure 2, where gaps
between the clique embedding power and submodular width can be shown.

x1 x4 x5 x8

x2 x3

x6 x7

(a) Boat Query Qb.

y1

y2

y3

z1

z2

z3

(b) Hyper-boat Query Qhb.

Figure 2 The Boat query and its variant, the Hyper-boat Query.

7.1 Clique Embedding Power, Submodular Width and Adaptive Width

1,6-11,16 5-11 3-5 2-4,12-17

1,2,6-8 1,2,12-15

9-11,16-17 12-17

(a) emb for Qb.

1-3

2,3

1,4

7

5,6

4-6

(b) emb for Qhb.

Figure 3 Optimal embedding for the boat query and its variants.

Using MILP (2), we find the optimal clique embedding for Qb and Qhb, as illustrated in
Figure 3. The numbers represent the vertices from the clique, and we adopt the shorthand
notation, say, 6-8 to refer to the set {6,7,8}. The clique embedding powers for Qb and Qhb
are 17

9 and 7
4 , respectively. However, [13] proves that for the boat query, subw(Qb) = 2. This

A. Z. Fan, P. Koutris, and H. Zhao 127:17

implies a gap since emb(Qb) = 17/9 < subw(Qb) = 2. We show that for the hyper-boat query
Qhb, there is also a gap between the optimal clique embedding power and submodular width.
In particular, we show that subw(Qhb) = 2 in the following proposition, which implies the
following gap: emb(Qhb) = 7

4 < subw(Qhb) = 2. Its proof can be found in [9].

▶ Proposition 30. For Qhb, we have subw(Qhb) = 2.

7.2 Subquadratic Equivalence Between Boat Queries
In this section, we demonstrate an interesting connection between the two boat queries. To
start, let’s consider Qb and Qhb. Both queries admit an algorithm that runs in time O(|I|2).
Informally, we are going to show that either both queries can be executed significantly faster,
or neither can. Following the seminal paper by Williams and Williams [25], we define truly
subquadratic algorithm and subquadratic equivalence.

▶ Definition 31. An algorithm is said to be truly subquadratic if it runs in time O(m2−ϵ)
for some ϵ > 0 (m is the input size).

Two problems A and B are subquadratic equivalent if A admits a truly subquadratic
algorithm iff B admits a truly subquadratic algorithm. We show that the two boat queries
are subquadratic equivalent.

▶ Theorem 32. Qb is subquadratic equivalent to Qhb.

Proof. It’s easy to see that a truly subquadratic algorithm for Qb gives a truly subquadratic
algorithm for Qhb. Indeed, given an input instance Ihb of Qhb, we can form an input instance
Ib of Qb where the table (x1, x2) is the projection of the table (y1, y2, y3) in Ihb, and similar for
the tables (x1, x4), (x1, x6), (x3, x8), (x5, x8) and (x7, x8). We then solve Ib by the algorithm
for Qb. It is easy to see that this algorithm is correct and runs in truly quadratic time.

The converse direction needs more work, since if we were to simply create the table
(y1, y2, y3) for Qhb by joining the tables (x1, x2), (x1, x4) and (x1, x6) for Qb, the size of the
result might be significantly greater than all previous tables. For example, if the sizes of the
tables (x1, x2), (x1, x4) and (x1, x6) are all m, then joining them could result in a table of
size m 3

2 and therefore calling the algorithm for Qhb on this instance does not necessarily
yield a truly subquadratic algorithm for Qb.

We perform our fine-grained reduction based on heavy-light split. Our goal is to give a
subquadratic algorithm for Qb assuming there is one such algorithm for Qhb. Suppose the
subquadratic algorithm for Qb runs in time O(m2−δ) for some δ > 0, where m is the size of
all tables. Our algorithm for Qb runs as follows. First, it checks whether there are entries of
attribute x1 that has degree more than ∆ := mϵ in tables (x1, x2), (x1, x4) and (x1, x6) for
some ϵ > 0 to be specified later. Those are called heavy and there are at most m

∆ many of
them. For those entries, we fix each one so that the remaining query becomes acyclic, and
thus can be solved in linear time by Yannakakis algorithm [27]. We do the same procedure
for heavy entries of attribute x8. Therefore, any result of Qb that contains a heavy entry
in attributes x1 or x8 will be detected in time O(m2−ϵ). It remains to consider the case
where the entries of attributes x1 and x8 have degrees less than ∆, which are called light.
In this case, we loop over all light entries of x1 in the table (x1, x2) and directly join them
with the tables (x1, x4) and (x1, x6) and project the result to build a table (x2, x4, x6). We
then do the same procedure for joining x8. This will cost time O(m · ∆ · ∆) = O(m1+2ϵ).
We then call the O(m2−δ) algorithm for Qhb, which cost time O(m(1+2ϵ)(2−δ)). By choosing
0 < ϵ < δ

4−2δ (note that δ < 2), we observe that the whole algorithm for Qb takes time
O(m2−ϵ) +O(m(1+2ϵ)(2−δ)) = O(m2−ϵ′) for some ϵ′ > 0. ◀

ICALP 2023

127:18 The Fine-Grained Complexity of BCQs and Sum-Product Problems

We remark that the reduction from Qhb to Qb is parametrized by the running time of the
algorithm for Qhb. That is, the reduction is not uniform in the sense that only after given
δ > 0 can we specify a suitable ϵ. Theorem 32 implies that either both boat queries admit a
truly subquadratic algorithm or none of them does.

The fact that there is a gap between subw(Qhb) = 2 and emb(Qhb) = 7
4 suggests currently

our lower bound does not match with the best upper bound, i.e., PANDA. This implies either
that PANDA is not universally optimal, or that we are missing the best possible lower bound.
We leave this as an open question.

Finally, we note that Theorem 4 in [13], which proves there does not exist a Õ(m2−ϵ +
|OUT|5) algorithm for the boat query unless 3-XOR can be solved in time Õ(m2−t) for a
t > 0, does not directly translate into the quadratic hardness for the boat query in our case.
This is because their reduction uses the output of the boat query in an essential way to “hack
back the collision” which is not available in the Boolean case.

8 Related Work

Fine-Grained Complexity. The study of fine-grained complexity aims to show the (con-
ditional) hardness of easy problems. Recent years have witnessed a bloom of development
into this fascinating subject, resulting in many tight lower bounds which match exactly, or
up to poly log factors, the running time of best-known algorithms [18, 26, 25, 1]. Among
many others, popular hardness assumptions include the Strong Exponential Time Hypothesis
(SETH), Boolean Matrix Multiplication (BMM), and All-Pairs Shortest Paths (APSP). Our
work can be seen as a particular instance under this framework, i.e. using Boolean or
Min-Weight k-Clique Conjecture to show conditional lower bounds for BCQs. Interestingly,
our reduction of k-cycles essentially mirrors the construction in the proof of Theorem 3.1
in [18].

Conjunctive Queries (CQs) Evaluation. The efficient evaluation of CQs constitutes the
core theme of database theory. Khamis, Ngo, and Suciu introduced in [17] the PANDA
algorithm that runs in time as predicted by the submodular width of the query hypergraph.
This groundbreaking result establishes a profound connection between various lines of work
on tree decompositions [19, 20], worst-case optimal join algorithms [23, 22], and the interplay
between CQ evaluation and information theory [15, 28, 14].

Functional Aggregate Queries (FAQs). FAQs [16] provides a Sum-of-Product framework
that captures the semantics of conjunctive queries over arbitrary semirings. The semiring
point-of-view originated from the seminal paper [10]. Khamis, Ngo, and Rudra [16] initiate the
study of the efficient evaluation of FAQs. [14] introduces the FAQ version of the submodular
width #subw and the #PANDA algorithm (as the FAQ version of the PANDA algorithm)
that achieves the runtime as predicated by #subw. We show that the embedding from a
k-clique into a hypergraph holds for arbitrary semirings, which enables one to transfer the
hardness of k-clique to FAQ independent of the underlying semiring. To the best of our
knowledge, this is the first semiring-oblivious reduction.

Enumeration and Preprocessing. Bagan, Durand and Grandjean characterized in [3] when
a constant delay and linear preprocessing algorithm for self-join-free conjunctive queries is
possible. A recent paper [6] makes an initial foray towards the characterization of conjunctive

5 |OUT| is the size of the output.

A. Z. Fan, P. Koutris, and H. Zhao 127:19

queries with self-joins. Also recently, [4] identifies new queries which can be solved with linear
preprocessing time and constant delay. Their hardness results are based on the Hyperclique
conjecture, the Boolean Matrix Multiplication conjecture, and the 3SUM conjecture.

9 Conclusion

In this paper, we study the fine-grained complexity of BCQs. We give a semiring-oblivious
reduction from the k-clique problem to an arbitrary hypergraph. Assuming the Boolean
k-Clique Conjecture, we obtain conditional lower bounds for many queries that match
the combinatorial upper bound achieved by the best-known algorithms, possibly up to a
poly-logarithmic factor.

One attractive future direction is to fully unravel the gap between the clique embedding
power and submodular width, where improved lower bounds or upper bounds are possible.
The Boolean k-Clique Conjecture states that there is no O(nk−ϵ) combinatorial algorithm
for detecting k-cliques. One future direction is to base the hardness assumption over Nešetřil
and Poljak’s algorithm [21], which solves the k-clique problem in O

(
n(ω/3)k)

by leveraging
fast matrix multiplication techniques and show lower bounds for any algorithm.

References
1 Amir Abboud, Arturs Backurs, and Virginia Vassilevska Williams. If the current clique

algorithms are optimal, so is Valiant’s parser. In FOCS, pages 98–117. IEEE Computer Society,
2015.

2 Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given length cycles.
Algorithmica, 17(3):209–223, 1997.

3 Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. On acyclic conjunctive queries
and constant delay enumeration. In CSL, volume 4646 of Lecture Notes in Computer Science,
pages 208–222. Springer, 2007.

4 Karl Bringmann and Nofar Carmeli. Unbalanced triangle detection and enumeration hardness
for unions of conjunctive queries. CoRR, abs/2210.11996, 2022. arXiv:2210.11996.

5 Nofar Carmeli, Batya Kenig, Benny Kimelfeld, and Markus Kröll. Efficiently enumerating
minimal triangulations. Discret. Appl. Math., 303:216–236, 2021.

6 Nofar Carmeli and Luc Segoufin. Conjunctive queries with self-joins, towards a fine-grained
complexity analysis. CoRR, abs/2206.04988, 2022. arXiv:2206.04988.

7 Katrin Casel and Markus L. Schmid. Fine-grained complexity of regular path queries. In
ICDT, volume 186 of LIPIcs. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.

8 Arnaud Durand. Fine-grained complexity analysis of queries: From decision to counting and
enumeration. In PODS, pages 331–346. ACM, 2020.

9 Austen Z. Fan, Paraschos Koutris, and Hangdong Zhao. The fine-grained complexity of boolean
conjunctive queries and sum-product problems. CoRR, 2023. arXiv:2304.14557.

10 Todd J. Green, Gregory Karvounarakis, and Val Tannen. Provenance semirings. In PODS,
pages 31–40. ACM, 2007.

11 Martin Grohe. The complexity of homomorphism and constraint satisfaction problems seen
from the other side. Journal of the ACM (JACM), 54(1):1–24, 2007.

12 Pinar Heggernes. Treewidth, partial k-trees, and chordal graphs. Partial curriculum in
INF334-Advanced algorithmical techniques, Department of Informatics, University of Bergen,
Norway, 2005.

13 Manas Joglekar and Christopher Ré. It’s all a matter of degree - using degree information to
optimize multiway joins. Theory Comput. Syst., 62(4):810–853, 2018.

ICALP 2023

https://arxiv.org/abs/2210.11996
https://arxiv.org/abs/2206.04988
https://arxiv.org/abs/2304.14557

127:20 The Fine-Grained Complexity of BCQs and Sum-Product Problems

14 Mahmoud Abo Khamis, Ryan R. Curtin, Benjamin Moseley, Hung Q. Ngo, XuanLong
Nguyen, Dan Olteanu, and Maximilian Schleich. On functional aggregate queries with additive
inequalities. In PODS, pages 414–431. ACM, 2019.

15 Mahmoud Abo Khamis, Phokion G. Kolaitis, Hung Q. Ngo, and Dan Suciu. Bag query
containment and information theory. In PODS, pages 95–112. ACM, 2020.

16 Mahmoud Abo Khamis, Hung Q. Ngo, and Atri Rudra. FAQ: questions asked frequently. In
PODS, pages 13–28. ACM, 2016.

17 Mahmoud Abo Khamis, Hung Q. Ngo, and Dan Suciu. What do shannon-type inequalities,
submodular width, and disjunctive datalog have to do with one another? In PODS, pages
429–444. ACM, 2017.

18 Andrea Lincoln, Virginia Vassilevska Williams, and R. Ryan Williams. Tight hardness for
shortest cycles and paths in sparse graphs. In SODA, pages 1236–1252. SIAM, 2018.

19 Dániel Marx. Can you beat treewidth? Theory Comput., 6(1):85–112, 2010.
20 Dániel Marx. Tractable hypergraph properties for constraint satisfaction and conjunctive

queries. J. ACM, 60(6):42:1–42:51, 2013.
21 Jaroslav Nešetřil and Svatopluk Poljak. On the complexity of the subgraph problem. Com-

mentationes Mathematicae Universitatis Carolinae, 26(2):415–419, 1985.
22 Hung Q. Ngo, Ely Porat, Christopher Ré, and Atri Rudra. Worst-case optimal join algorithms.

J. ACM, 65(3):16:1–16:40, 2018.
23 Hung Q. Ngo, Christopher Ré, and Atri Rudra. Skew strikes back: new developments in the

theory of join algorithms. SIGMOD Rec., 42(4):5–16, 2013.
24 Alexander Schrijver. Theory of linear and integer programming. Wiley-Interscience series in

discrete mathematics and optimization. Wiley, 1999.
25 Virginia Vassilevska Williams and R. Ryan Williams. Subcubic equivalences between path,

matrix, and triangle problems. J. ACM, 65(5):27:1–27:38, 2018.
26 Virginia Vassilevska Williams and Yinzhan Xu. Monochromatic triangles, triangle listing and

APSP. In FOCS, pages 786–797. IEEE, 2020.
27 Mihalis Yannakakis. Algorithms for acyclic database schemes. In VLDB, pages 82–94. IEEE

Computer Society, 1981.
28 Hangdong Zhao, Shaleen Deep, and Paraschos Koutris. Space-time tradeoffs for conjunctive

queries with access patterns. CoRR, 2023. arXiv:2304.06221.

https://arxiv.org/abs/2304.06221

Flipper Games for Monadically Stable Graph
Classes
Jakub Gajarský #

University of Warsaw, Poland
Nikolas Mählmann #

Universität Bremen, Germany

Rose McCarty #

Princeton University, NJ, USA
Pierre Ohlmann #

University of Warsaw, Poland

Michał Pilipczuk #

University of Warsaw, Poland
Wojciech Przybyszewski #

University of Warsaw, Poland

Sebastian Siebertz #

Universität Bremen, Germany
Marek Sokołowski #

University of Warsaw, Poland

Szymon Toruńczyk #

University of Warsaw, Poland

Abstract
A class of graphs C is monadically stable if for every unary expansion Ĉ of C, one cannot encode –
using first-order transductions – arbitrarily long linear orders in graphs from Ĉ. It is known that
nowhere dense graph classes are monadically stable; these include classes of bounded maximum
degree and classes that exclude a fixed topological minor. On the other hand, monadic stability is a
property expressed in purely model-theoretic terms that is also suited for capturing structure in
dense graphs.

In this work we provide a characterization of monadic stability in terms of the Flipper game: a
game on a graph played by Flipper, who in each round can complement the edge relation between
any pair of vertex subsets, and Localizer, who in each round is forced to restrict the game to a ball
of bounded radius. This is an analog of the Splitter game, which characterizes nowhere dense classes
of graphs (Grohe, Kreutzer, and Siebertz, J. ACM ’17).

We give two different proofs of our main result. The first proof is based on tools borrowed from
model theory, and it exposes an additional property of monadically stable graph classes that is
close in spirit to definability of types. Also, as a byproduct, we show that monadic stability for
graph classes coincides with monadic stability of existential formulas with two free variables, and we
provide another combinatorial characterization of monadic stability via forbidden patterns. The
second proof relies on the recently introduced notion of flip-flatness (Dreier, Mählmann, Siebertz,
and Toruńczyk, arXiv 2206.13765) and provides an efficient algorithm to compute Flipper’s moves
in a winning strategy.

2012 ACM Subject Classification Theory of computation → Finite Model Theory; Mathematics of
computing → Graph theory

Keywords and phrases Stability theory, structural graph theory, games

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.128

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version Full Version: https://arxiv.org/abs/2301.13735 [11]

Funding This work is a part of projects CUTACOMBS (R. McCarty) and BOBR (J. Gajarský, P.
Ohlmann, M. Pilipczuk, W. Przybyszewski, M. Sokołowski and S. Toruńczyk) that have received
funding from the European Research Council (ERC) under the European Union’s Horizon 2020
research and innovation programme (grant agreements No. 714704 and 948057, respectively). Nikolas
Mählmann and Sebastian Siebertz are supported by the German Research Foundation (DFG) with
grant agreement No. 444419611. Rose McCarty is also supported by National Science Foundation
(NSF) grant No DMS-2202961.

EA
T
C
S

© Jakub Gajarský, Nikolas Mählmann, Rose McCarty, Pierre Ohlmann, Michał Pilipczuk,
Wojciech Przybyszewski, Sebastian Siebertz, Marek Sokołowski, and Szymon Toruńczyk;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 128; pp. 128:1–128:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:gajarsky@mimuw.edu.pl
https://orcid.org/0000-0002-4761-3432
mailto:maehlmann@uni-bremen.de
https://orcid.org/0000-0003-3657-7736
mailto:rm1850@math.princeton.edu
https://orcid.org/0000-0002-9884-3406
mailto:pohlmann@mimuw.edu.pl
https://orcid.org/0000-0002-4685-5253
mailto:michal.pilipczuk@mimuw.edu.pl
https://orcid.org/0000-0001-7891-1988
mailto:przybyszewski@mimuw.edu.pl
https://orcid.org/0000-0003-1158-9925
mailto:siebertz@uni-bremen.de
https://orcid.org/0000-0002-6347-1198
mailto:marek.sokolowski@mimuw.edu.pl
https://orcid.org/0000-0001-8309-0141
mailto:szymtor@mimuw.edu.pl
https://orcid.org/0000-0002-1130-9033
https://doi.org/10.4230/LIPIcs.ICALP.2023.128
https://arxiv.org/abs/2301.13735
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

128:2 Flipper Games for Monadically Stable Graph Classes

1 Introduction

Monadic stability is a notion of logical tameness for classes of structures. Introduced by
Baldwin and Shelah [3] in the context of model theory1, it has recently attracted attention
in the field of structural graph theory. We recall the definition below. One of the main
contributions of this paper is to provide purely combinatorial characterizations of monadically
stable classes of graphs via games and via forbidden patterns. Our game characterization is
effective, and can be employed in algorithmic applications, as we explain later.

In this paper we focus on (undirected, simple) graphs, rather than arbitrary structures.
A graph is modelled as a relational structure with one symmetric binary relation signifying
adjacency. By a class of graphs we mean any set of graphs. For a class of graphs C, a unary
expansion of C is any class Ĉ of structures such that each Ĝ ∈ Ĉ is obtained from some graph
in G ∈ C by adding some unary predicates. Thus, the elements of Ĉ can be regarded as
vertex-colored graphs from C. A class of graphs C is called monadically stable if one cannot
interpret, using a fixed formula φ(x̄, ȳ) of first-order logic, arbitrarily long linear orders in
any unary expansion Ĉ of C. More precisely, for every unary expansion Ĉ and formula φ(x̄, ȳ)
with |x̄| = |ȳ| (over the signature of Ĉ) there is a bound ℓ such that there is no structure
Ĝ ∈ Ĉ and tuples ā1, . . . , āℓ ∈ V (Ĝ)x̄ such that Ĝ |= φ(āi, āj) if and only if i ⩽ j. More
generally, C is monadically dependent (or monadically NIP) if one cannot interpret, using a
fixed formula φ(x̄, ȳ) of first-order logic, all finite graphs in any unary expansion of C. Thus,
from the model-theoretic perspective, the intuition is that being monadically dependent is
being non-trivially constrained: for any fixed interpretation, one cannot interpret arbitrarily
complicated structures in vertex-colored graphs from the considered class. On the other
hand, graphs from monadically stable classes are “orderless”, in the sense that one cannot
totally order any large part of them using a fixed first-order formula.

Baldwin and Shelah proved that in the definitions, one can alternatively consider only
formulas φ(x, y) with just a pair of free variables, instead of a pair of tuples of variables [3,
Lemma 8.1.3, Theorem 8.1.8]. Moreover, they proved that monadically stable theories
are tree decomposable [3, Theorem 4.2.17], providing a structure theorem for such theories,
although one of a very infinitary nature. A more explicit, combinatorial structure theorem
for monadically stable and monadically dependent is desirable for obtaining algorithmic
results for the considered classes, as we discuss later.

On the other hand, Braunfeld and Laskowski [6] very recently proved that for hereditary
classes of structures C that are not monadically stable or monadically dependent, the required
obstructions (total orders or arbitrary graphs) can be exhibited by a boolean combination of
existential formulas φ(x̄, ȳ) in the signature of C, without any additional unary predicates.
Among other things, this shows that for hereditary classes of structures, the notions of
monadic stability coincides with the more well-known notion of stability, and similarly,
monadic dependence coincides with dependence (NIP). Furthermore, since the formulas are
existential, this result can be seen as a combinatorial non-structure theorem for hereditary
classes that are not monadically stable (resp. monadically dependent). Still, they do not
provide explicit structural results for classes that are monadically stable or monadically
dependent.

1 Formally, Baldwin and Shelah [3], as well as Braunfeld and Laskowski [6], study monadically dependent
and monadically stable theories, rather than classes of structures. Some of their results transfer to the
more general setting of monadically dependent/stable classes of structures.

J. Gajarský et al. 128:3

Explicit, combinatorial and algorithmic structural results for monadically dependent
and monadically stable classes are not only desired, but also expected to exist, based on
the known examples of such classes that have been studied in graph theory and computer
science. As observed by Adler and Adler [2] based on the work of Podewski and Ziegler [16],
all nowhere dense graph classes are monadically stable. A class C is nowhere dense if for
every fixed r ∈ N, one cannot find r-subdivisions of arbitrarily large cliques as subgraphs of
graphs in C. In particular, every class excluding a fixed topological minor (so also the class of
planar graphs, or the class of subcubic graphs) is monadically stable. In fact, it follows from
the results of Adler and Adler [2] and of Dvořák [10] that monadic stability and monadic
dependence are both equivalent to nowhere denseness when considering only sparse classes
of graphs (formally, classes of graphs that excludes a fixed biclique as a subgraph). However,
monadic stability and monadic dependence are not bound to sparsity; they can be used to
understand and quantify structure in dense graphs as well.

The pinnacle of the theory of nowhere dense graph classes is the result of Grohe, Kreutzer,
and Siebertz [14] that the model-checking problem for first-order logic is fixed-parameter
tractable on any nowhere dense class of graphs.

▶ Theorem 1 ([14]). For every nowhere dense graph class C, first-order sentence φ, and
ε > 0, there exists an algorithm that given an n-vertex graph G ∈ C decides whether G |= φ

in time OC,φ,ε(n1+ε).

Here, and in the following, the notation Op(·) hides multiplicative factors that depend
only on the the parameter p.

Monadically dependent classes include all monadically stable classes, in particular all
nowhere dense classes, but also for instance all classes of bounded twin-width [5]. An
analogous result, with 1 + ε replaced by 3, holds for all classes C of ordered graphs2 of
bounded twin-width [4].

In light of the discussion above, monadic stability and monadic dependence seem to be
well-behaved generalizations of nowhere denseness that are defined in purely model-theoretic
terms; hence these concepts may be even better suited for treating the model-checking
problem for first-order logic. This motivated the following conjecture [1], which has been a
subject of intensive study over the last few years3.

▶ Conjecture 2. Let C be a monadically dependent graph class. There exists a constant
c ∈ N depending only on C and, for every first-order sentence φ, an algorithm that, given a
n-vertex graph G ∈ C, decides whether G |= φ in time OC,φ(nc).

Conjecture 2 is not even resolved for monadically stable classes. To approach this conjec-
ture, it is imperative to obtain explicit, combinatorial structure theorems for monadically
stable and in monadically dependent graph classes, with a particular focus on finding analogs
of the tools used in the proof of Theorem 1. Our work contributes in this direction. We
provide certain recursive tree-like decompositions for graphs in monadically stable graph
classes, which can be most intuitively explained in terms of games. On the one hand, our
decompositions generalize a similar result for nowhere dense classes, recalled below. On the
other hand, they are remininiscent of the tree decomposability property proved by Baldwin

2 Ordered graphs are graphs equipped with a total order.
3 To the best of our knowledge the conjecture was first explicitly discussed during the open problem

session of the Algorithms, Logic and Structure Workshop in Warwick, in 2016, see [1].

ICALP 2023

128:4 Flipper Games for Monadically Stable Graph Classes

and Shelah, but are more explicit and finitary in nature. Furthermore, we provide a charac-
terization of monadic stability via forbidden patterns, similar to the known characterization
of nowhere denseness.

Splitter game. The cornerstone of the proof of Theorem 1 is a game-theoretic characteriza-
tion of nowhere denseness, through the Splitter game. This game has a fixed radius parameter
r ∈ N and is played on a graph G between two players, Splitter and Localizer, who make
moves in rounds alternately. In each round, first Splitter chooses any vertex u and removes
it from the graph. Next, Localizer selects any other vertex v, and the game gets restricted to
the subgraph induced by the ball of radius r with center at v. The game ends with Splitter’s
victory when there are no vertices left in the graph.

▶ Theorem 3 ([14]). A class C of graphs is nowhere dense if and only if for every r ∈ N
there exists k ∈ N such that for every G ∈ C, Splitter can win the radius-r Splitter game
on G within k rounds.

Very roughly speaking, Theorem 3 shows that any graph from a nowhere dense class can
be hierarchically decomposed into smaller and smaller parts so that the decomposition has
height bounded by a constant k depending only on the class and the locality parameter r.
This decomposition is used in the algorithm of Theorem 1 to guide model-checking.

Flipper game. In this work we introduce an analog of the Splitter game for monadically
stable graph classes: the Flipper game. Similarly to before, the game is played on a graph G

and there is a fixed radius parameter r ∈ N. There are two players, Flipper and Localizer,
which make moves in rounds alternately. In each round, first Flipper selects any pair of
vertex subsets A,B (possibly non-disjoint) and applies the flip between A and B: inverts
the adjacency between any pair (a, b) of vertices with a ∈ A and b ∈ B. Then Localizer, just
as in the Splitter game, selects a ball of radius r, and the game is restricted to the subgraph
induced by this ball. The game is won by Flipper once there is only one vertex left. See
Figure 1 for an illustration.

flip loc. flip

Figure 1 An example play of the radius-1 Flipper game. Taking turns, Flipper flips the red set
with the blue set and Localizer restricts to the radius-1 ball centered at the green vertex.

We remark that the Flipper game is a radius-constrained variant of the natural game
for graph parameter SC-depth, which is functionally equivalent to shrubdepth, in the same
way that the Splitter game is a radius-constrained variant of the natural game for treedepth.
SC-depth and shrubdepth were introduced and studied by Ganian et al. in [13, 12].

Our main result is the following analog of Theorem 3 for monadically stable classes.

▶ Theorem 4. A class C of graphs is monadically stable if and only if for every r ∈ N there
exists k ∈ N such that for every graph G ∈ C, Flipper can win the radius-r Flipper game
on G within k rounds.

Let us compare Theorem 4 with another recent characterization of monadic stability,
proposed by Gajarský and Kreutzer, and proved by Dreier, Mählmann, Siebertz, and
Toruńczyk [9], through the notion of flip-flatness. This notion is an analog of uniform

J. Gajarský et al. 128:5

quasi-wideness, introduced by Dawar [7]. Without going into technical details, a class of
graphs C is uniformly quasi-wide if for any graph G ∈ C and any large enough set of vertices A
in G, one can find many vertices in A that are pairwise far from each other after the removal
of a constant number of vertices from G. As proved by Nešetřil and Ossona de Mendez [15],
a class of graphs is uniformly quasi-wide if and only if it is nowhere dense. The definition
of flip-flatness is obtained from uniform quasi-wideness similarly as the Flipper game is
obtained from the Splitter game: by replacing the concept of deleting a vertex with applying
a flip; see Definition 7 for a formal definition. The fact that monadic stability is equivalent to
flip-flatness (as proved in [9]) and to the existence of a short winning strategy in the Flipper
game (as proved in this paper) suggests the following: the structural theory of monadically
stable graph classes mirrors that of nowhere dense graph classes, where the flip operation is
the analog of the operation of removing a vertex.

We give two very different proofs of Theorem 4. The first proof is based on elementary
model-theoretic techniques, and it provides new insight into the properties of monadically
stable graph classes. As a side effect, it gives a new (though non-algorithmic) proof of the
main result of [9]: equivalence of monadic stability and flip-flatness. On the other hand, the
second proof relies on the combinatorial techniques developed in [9]. It has the advantage
of being effective, and provides an efficient algorithm for computing Flipper’s moves in a
winning strategy.

Forbidden patterns. A class C of graphs is nowhere dense if for every fixed r ∈ N the exact
r-subdivision of some clique Kn is not a subgraph of any G ∈ C, which can be understood
as a forbidden pattern characterization. Our model-theoretic proof of Theorem 4 uncovers
a similar characterization of monadically stable classes, providing a strong combinatorial
non-structure theorem. We prove that a class C of graphs is monadically stable if and only
if there exists a fixed ℓ ∈ N such that all graphs from C exclude a ladder of length ℓ as a
semi-induced subgraph (see Section 2 for a formal definition), and C is pattern-free. A class
C of graphs is not pattern-free if for some r ⩾ 1, k ∈ N the exact r-subdivision of every
clique Kn can be obtained from an induced subgraph H of some G ∈ C by first partitioning
V (H) into k parts, and then either flipping the edges, removing all the edges, or inserting all
the edges between some pairs of the partition. Equivalently C is not pattern-free if, using
a quantifier-free formula φ(x, y), one can encode (more formally transduce) the class of all
r-subdivided cliques for a fixed r ⩾ 1.

Model-theoretic proof. The following statement lists properties equivalent to monadic
stability uncovered in our model-theoretic proof of Theorem 4. Each condition is shortly
explained below the theorem and formally defined in the full version of the paper [11].

▶ Theorem 5. Let C be a class of graphs. Then the following conditions are equivalent:
1. C is monadically stable.
2. C has a stable edge relation and is monadically dependent with respect to existential

formulas φ(x, y) with two free variables.
3. C has a stable edge relation and is pattern-free.
4. For every r ∈ N every model G of the theory of C, every elementary extension H of G,

and every vertex v ∈ V (H) − V (G), there is a finite set S ⊆ V (G) that r-separates v
from G.

5. For every r ∈ N there is k ∈ N such that Flipper wins the Flipper Game with qf-definable
separation of radius r on every G ∈ C in at most k rounds.

ICALP 2023

128:6 Flipper Games for Monadically Stable Graph Classes

6. For every r ∈ N there is k ∈ N such that Flipper wins the Flipper game of radius r on
every G ∈ C in at most k rounds.

7. C is flip-flat.

Note that Theorem 4 is the equivalence (1)↔(6). Let us give a brief overview of the
presented conditions.

Conditions (1) and (2), respectively, are monadic stability and a weak form of existential
monadic stability. Recall that Baldwin and Shelah proved that it is sufficient to consider
formulas φ(x, y) with two free variables in the definition of monadic stability (instead of
formulas φ(x̄, ȳ)). Braunfeld and Laskowski proved that it is sufficient to consider boolean
combinations of existential formulas φ(x̄, ȳ) that do not involve additional unary predicates.
The condition (2) lies somewhere in between: it implies that it is sufficient to consider
existential formulas φ(x, y) with two variables, possibly involving additional unary predicates.
In particular, it implies the result of Baldwin and Shelah (in the case of graph classes)
and is incomparable with the result of Braunfeld and Laskowski. Our proof uses different
techniques.

Condition (3) concerns the combinatorial notion of pattern-freeness discussed earlier.
Condition (4) is phrased in the language of model theory and serves a key role in our

proof. It resembles a fundamental property called “definability of types”, and in essence
it says the following: whenever working with a model G of the theory of C, every element
of any elementary extension of G can be robustly “controlled” by a finite subset of G. We
believe that the new notion of r-separation used here is of independent interest. It refers to
non-existence of short paths after applying some flips governed by S.

Conditions (5) and (6) assert the existence of a short winning strategy in two variants of
the Flipper game.

Finally, condition (7) is the notion of flip-flatness, whose equivalence with monadic
stability was proved by Dreier et al. [9].

Algorithmic proof. We also give a purely combinatorial proof of the forward implication of
Theorem 4, which in particular provides a way to efficiently compute Flipper’s moves in a
winning strategy. Formally, we show the following.

▶ Theorem 6. Let C be a monadically stable class of graphs. Then for every radius r ∈ N
there exist k ∈ N and a Flipper strategy flip⋆ such that the following holds:

When playing according to flip⋆ in the Flipper game of radius r on any graph G ∈ C,
Flipper wins within at most k rounds.
Each move of flip⋆ on an n-vertex graph G ∈ C can be computed in time OC,r(n2).

The main idea behind the proof of Theorem 6 is to rely on the result of Dreier et al. that
monadically stable graph classes are flip-flat [9]. Using the combinatorial tools developed
in [9], we strengthen this property: we prove that the set of flips F whose application uncovers
a large scattered set Y (a set of vertices that are pairwise far from each other) can be selected
in a somewhat canonical way, so that knowing any 5-tuple of vertices in Y is enough to
uniquely determine F . We can then use such strengthened flip-flatness to provide a winning
strategy for Flipper; this roughly resembles the Splitter’s strategy used by Grohe et al. in
their proof of Theorem 3, which in turn relies on uniform quasi-wideness.

Theorem 6, the algorithmic version of Theorem 4, is the key to algorithmic applications
of the Flipper game. In particular, it was very recently used by Dreier, Mählmann, and
Siebertz [8] to approach the first-order model checking problem on monadically stable graph
classes and prove that it is fixed-parameter tractable on structurally nowhere dense classes,
an important subclass of monadically stable classes.

J. Gajarský et al. 128:7

Organization. After introducing monadic stability and the Flipper game in the next section,
we give an outline of the model theoretic proof (Section 3) and the algorithmic proof
(Section 4). We refer to the appended full version for details.

2 Preliminaries

All graphs in this paper are simple and loopless but not necessarily finite. For a vertex v of
a graph G, we write N(v) for the (open) neighborhood of v in G; so N(v) := {u ∈ V (G) |
uv ∈ E(G)}. For two sets X,Y ⊆ V (G) the bipartite graph semi-induced by X and Y

in G, denoted G[X,Y], is the bipartite graph with parts X and Y , and edges uv for u ∈ X,
v ∈ Y with uv ∈ E(G). For vertices a, b ∈ V (G), an (a, b)-path is a path with ends a and b.
Similarly, for sets A,B ⊆ V (G), an (A,B)-path is a path where one end is in A and the other
end is in B.

Model theory. We work with first-order logic over a fixed signature Σ that consists of
(possibly infinitely many) constant symbols and of relation symbols. A model is a Σ-structure,
and is typically denoted M,N, etc. We usually do not distinguish between a model and
its domain, when writing, for instance, m ∈ M or f : M → X, or X ⊆ M. A graph G is
viewed as a model over the signature consisting of one binary relation denoted E, indicating
adjacency between vertices.

A theory T (over Σ) is a set of Σ-sentences. A model of a theory T is a model M such
that M |= φ for all φ ∈ T . When a theory has a model, it is said to be consistent. The
theory of a class of Σ-structures C is the set of all Σ-sentences φ such that M |= φ for all
M ∈ C. The elementary closure C of C is the set of all models M of the theory of C. Thus
C ⊆ C, and C and C have equal theories.

Let M and N be two structures with M ⊆ N, that is, the domain of M is contained in
the domain of N. Then N is an elementary extension of M, written M ≺ N, if for every
formula φ(x̄) (without parameters) and tuple m̄ ∈ Mx̄ we have M |= φ(m̄) if and only if
N |= φ(m̄). We also say that M is an elementary substructure of N.

Stability and dependence. A formula φ(x̄; ȳ) is stable in a class C of structures if there exists
k ∈ N such that for every M ∈ C, there are no sequences ā1, . . . āk ∈ Mx̄ and b̄1, . . . , b̄k ∈ Mȳ

such that M |= φ(āi; b̄j) if and only if i < j for 1 ⩽ i, j ⩽ k. We say that a class C of graphs
has a stable edge relation if the formula E(x; y) is stable in C. Equivalently, C excludes some
ladder as a semi-induced subgraph, where a ladder (often called also half-graph) of order k is
the graph with vertices a1, . . . , ak, b1, . . . , bk and edges aibj for all 1 ⩽ i < j ⩽ k. Note that
replacing < by ⩽ in the above definitions does not change them.

A formula φ(x̄; ȳ) is dependent, or NIP (standing for “not the independence property”) in
a class C if there exists k ∈ N such that for every M ∈ C, there are no tuples ā1, . . . , āk ∈ Mx̄

and b̄J ∈ Mȳ for J ⊆ {1, . . . , k} such that M |= φ(āi; b̄J) if and only if i ∈ J for 1 ⩽ i ⩽ k

and J ⊆ {1, . . . , k}. Observe that a formula which is stable is also dependent. A class C is
stable (resp. dependent) if every formula φ(x̄; ȳ) is stable (resp. dependent) in C.

Let Σ be a signature and let Σ̂ be a signature extending Σ by (possibly infinitely many)
unary relation symbols and constant symbols. A Σ̂-structure M̂ is a lift of a Σ-structure M
if M is obtained from M̂ by forgetting the symbols from Σ̂ − Σ. A class of Σ̂-structures Ĉ is a
unary expansion of a class of Σ-structures C if every structure M̂ ∈ Ĉ is a lift of some structure
M ∈ C. A class C of structures is monadically stable if every unary expansion Ĉ of C is stable.
Similarly, C is monadically dependent (or monadically NIP) if every unary expansion Ĉ of C is

ICALP 2023

128:8 Flipper Games for Monadically Stable Graph Classes

dependent. A single structure M is monadically stable (resp. monadically dependent) if the
class {M} is. Note that a class which is monadically stable (resp. monadically dependent) is
stable (resp. dependent).

Flips. An atomic flip is an operation F specified by a pair (A,B) of (possibly intersecting)
vertex sets, which complements the adjacency relation between the sets A and B in a given
graph G. Formally, for a graph G, the graph obtained from G by applying the atomic flip F
is the graph denoted G⊕ F with vertex set V (G), where, for distinct vertices u, v in V (G),

uv ∈ E(G⊕ F) ⇐⇒

{
uv /∈ E(G), if (u, v) ∈ (A×B) ∪ (B ×A);
uv ∈ E(G), otherwise.

A set of flips {F1, . . . ,Fk} defines an operation F that, given a graph G, results in the
graph G ⊕ F := G ⊕ F1 ⊕ · · · ⊕ Fk. One can easily show that the order in which we carry
out the atomic flips does not matter and that it would be useless to consider multisets.
Abusing terminology, we will often just say that the operation F is a set of flips, and write
F = {F1, . . . ,Fk}.

Let F be a family of vertex sets. Then an F -flip is a set of flips of the form {F1, . . . , Fk},
where each flip Fi is a pair (A,B) with A,B ∈ F . Note that there are at most 2|F|2 different
F-flips. In our context, the family F will usually be a partition of the vertex set of some
graph G. An F-flip of a graph G, where F is a family of subsets of V (G), is a graph G′

obtained from G after applying an F-flip. Whenever we speak about an F-flip, it will be
always clear from the context whether we mean a graph or the family of flips used to obtain it.

Flipper game. Fix a radius r. The Flipper game (or the Flipper/Localizer game) of radius
r is played by two players, Flipper and Localizer, on a graph G as follows. At the beginning,
set G0 := G. In the ith round, for i > 0, the game proceeds as follows.

If |Gi−1| = 1 then Flipper wins.
Localizer chooses a vertex v in Gi−1 and we set Gloc

i−1 to be the subgraph of Gi−1 induced
by the ball Br(v) of radius r around v in Gi−1.
Flipper chooses an atomic flip F and applies it to produce Gi, i.e. Gi = Gloc

i−1 ⊕ F.

Variants. It will be convenient to work with different variants of the Flipper game.
Batched flipping: One can consider a variant of the Flipper game where Flipper in the ith
move applies a set F of flips to Gloc

i−1 to obtain Gi, where |F | ⩽ g(i) for some function
g : N → N. This does not change the game significantly – if Flipper wins this extended
game in m rounds, then Flipper wins the standard Flipper game in

∑m
i=1 g(i) rounds.

Localization modes: In the definition above, the graph shrinks at each step, and when
localizing, distances are computed by only taking into account vertices of the current
(shrinked) graph. For this reason, we sometimes call it the shrinking variant, or we say
that the localization is shrinking. In the confining variant, Localizer still remains confined
within short distance to his past moves, however Flipper always produces flips of the
original graph and distances are measured with respect to the full vertex set.
Definability of flips: We also consider the variant where Flipper is restricted to choosing
flips defined using quantifier-free formulas with parameters from the original graph, which
we call qf-definable flips.
Separation: Finally, we will also use a variant where distances are measured according to
the later defined separation metric capturing all possible flips that can be performed over
a given (definable) partition of the vertex set.

J. Gajarský et al. 128:9

It will turn out that all these variants are equivalent; for more discussion and formal
proofs, see the full version [11]. In particular we will work with the confining Flipper game
with qf-definable separation, whose formal definition is deferred to Section 3.

Flip-flatness. The following notion of flip-flatness was introduced in [9] and characterizes
monadic stability for graph classes. Given a graph G, a set of vertices A ⊆ V (G) is called
distance-r independent if all vertices in A are pairwise at distance greater than r in G.

▶ Definition 7 (Flip-flatness). A class of graphs C is flip-flat if for every r ∈ N there exists a
function Nr : N → N and a constant sr ∈ N such that for all m ∈ N, G ∈ C, and A ⊆ V (G)
with |A| ⩾ Nr(m), there exists a set F of flips with |F | ⩽ sr and B ⊆ A with |B| ⩾ m such
that B is distance-r independent in G⊕ F .

▶ Theorem 8 ([9]). A class of graphs is monadically stable if and only if it is flip-flat.

3 Outline of the model-theoretic proof

We prove the implications between the conditions of Theorem 5 as depicted in Figure 2.

(1)
mon. stable

(2)
stable edge relation

+ ex. mon. dependent

(3)
stable edge relation

+ pattern-free

(4)
separable

(5)
Flipper wins with

qf-definable separation
and confining localization

(6)
Flipper wins

(7)
flip-flat

trivial ♣ ♣ Sec. 3.3

Sec. 3.2

♣

♣

♣

[9]

Figure 2 The implications that constitute Theorem 5. Implications marked with ♣ are proved in
the full version of the paper.

The implication (1)→(2) is trivial. We prove (2)→(3) by contraposition: using the
forbidden patterns, we derive the independence property for some existential formula. The
implication (3)→(4) is the core part of our proof; due to space restrictions we will provide
a sketch of the implication (1)→(4) (which requires fewer definitions) in Section 3.2. The
implication (4)→(5) is proved by proposing a strategy with qf-definable separation in the
confining game for Flipper and using compactness combined with (4) to argue that it leads
to a victory within a bounded number of rounds. The proof is sketched in Section 3.3.
We prove the implication (5)→(7) by (essentially) providing a strategy for Localizer in the
confining game with qf-definable separation when the class is not flip-flat. Then we rely on
the implication (7)→(1) from [9] to close the circle of implications; this proves the equivalence
of (1)-(7) with the exception of (6). We remark that (7)→(1) is the easy implication of [9],
hence our reasoning can also serve as an alternative proof of the flip-flatness characterization
given in [9].

To put the Flipper game into the picture, we separately prove the implications (5)→(6)
and (6)→(2). The implication (5)→(6) relies on a conceptually easy, but technically not-
so-trivial translation of the strategies. In the implication (6)→(2) we use obstructions to
existential monadic stability to give a strategy for Localizer in the Flipper game that enables
her to endure for arbitrarily long.

ICALP 2023

128:10 Flipper Games for Monadically Stable Graph Classes

3.1 Separation
The crucial new ingredient in our model-theoretic proof is the notion of r-separation. The
definitions provided here are streamlined compared to the full version due to space restrictions.

Let G be a graph, and let S ⊆ V (G) be a finite set of vertices. Consider the equivalence
relation ∼S on V (G), in which two vertices a, b are equivalent if either a, b ∈ S and a = b,
or a, b /∈ S and N(a) ∩ S = N(b) ∩ S. An S-class is an equivalence class of ∼S . In
other words, it is a set of vertices either of the form {s} for some s ∈ S, or of the form
{v ∈ V (G) − S | N(v) ∩ S = T} for some T ⊆ S. The S-class of a vertex v ∈ V (G) is the
unique S-class which contains v. Hence, V (G) is partitioned into S-classes, and the number
of S-classes is at most |S| + 2|S|. An S-flip of a graph G is an F -flip G′ of G, where F is the
partition of V (G) into S-classes.

▶ Definition 9 (r-separation). Let G be a graph, S a finite subset of vertices of G. We say
that vertices a and b of G are r-separated over S, denoted by4 a |⌣

r

S
b, if there exists a S-flip

H of G such that distH(a, b) > r.

For any r ∈ N and any graph G, finite subset S of V (G), and sets A,B ∈ V (G), we write
A |⌣

r

S
B if there exists an S-flip H of G such that H has no (A,B)-path of length at most r.

Note that A |⌣
r

S
B is a stronger condition than a |⌣

r

S
b for all a ∈ A and b ∈ B, since we

require that the same S-flip H is used for all a ∈ A and b ∈ B. We write ̸ |⌣
r

S
to denote the

negation of the relation |⌣
r

S
. If A ̸ |⌣

r

S
B we say that A and B are r-connected over S. If A

consists of a single vertex a then we write a |⌣
r

S
B for A |⌣

r

S
B.

We now formally introduce the confining Flipper game with qf-definable separation; the
most important difference is that we evaluate distances in the original graph G: the localizing
ball is always defined with respect to the distance induced by |⌣

r

S
in G, where S is the set

of vertices played by Flipper.
Fix a radius r ∈ N. The game of radius r is played on a graph G as follows. Let

A0 = V (G) and S0 = ∅. For k = 1, 2, . . . , the kth round proceeds as follows.
If |Ak−1| = 1, then Flipper wins.
Otherwise, Localizer picks ck ∈ Ak−1 and we set

Ak := Ak−1 −
{
w

∣∣∣ w r

|⌣
Sk−1

ck

}
(where separation is evaluated in the graph G).
Then Flipper picks sk ∈ V (G) and we set Sk := Sk−1 ∪ {sk}, and proceed to the next
round.

As previously, we may allow Flipper to add g(i) vertices to Si−1 in the ith round, where
g : N → N is some fixed function. Again, if Flipper can win this new game in m rounds, then
Flipper can also win the original game in

∑m
i=1 g(i) rounds.

In the full paper [11, Lemma 3.2], we prove that a winning strategy for Flipper in the
above game can be adapted by to win in the original Flipper game. The idea is that Flipper
carries out all possible S-flips and then flips back to (an induced subgraph of) the original
graph.

4 The symbol |⌣ denotes forking independence in stable theories. Its use here is justified by the relationship
of r-separation and forking independence in monadically stable theories, which is briefly explained in
the full version of the paper.

J. Gajarský et al. 128:11

▶ Lemma 10. There exists a function f : N → N such that for every radius r and every
graph G the following holds. If Flipper wins the confining game with qf-definable separation
of radius 2r on G in at most k rounds, then Flipper wins the shrinking game with arbitrary
flips of radius r on G in at most f(k) rounds.

Note that the converse direction, allowing to translate a winning strategy of Flipper from
the shrinking to the confining variant, is not immediately clear. However, the equivalence of
the two games ultimately follows from Theorem 5.

3.2 Finite separators in monadically stable models
In this section, we provide our key model-theoretic characterization of monadically stable
graphs. We will use M to denote a graph that is typically infinite.

▶ Definition 11. A graph M is r-separable if for every elementary extension N of M, and
every v ∈ N − M, there is a finite set S ⊆ M such that v |⌣

r

S
M in N.

The main result of this section is the following theorem.

▶ Theorem 12. Every monadically stable graph M is r-separable, for every r ∈ N.

The proof will rely on Lemma 13 and Lemma 14 below. To state them, we will need one
more definition. Let M be a graph and A,B ⊆ M. We say that a, a′ ∈ A have the same
E-type over B if N(a) ∩B = N(a′) ∩B; this is clearly an equivalence relation. We denote
the set of E-types of A over B by TypesE(A/B).

▶ Lemma 13. Fix r ∈ N. Let M be a monadically stable graph, let N be an elementary
extension of M, and let v ∈ N be such that the r-ball Br(v) around v in N is disjoint from M.
Then TypesE(Br(v)/M) is finite.

We now briefly outline the idea behind the proof of Lemma 13. It is a folklore result that
in an infinite bipartite graph with sides L and R there is an infinite induced matching, or
an infinite induced co-matching, or an infinite induced ladder, or TypesE(L/R) is finite.
Assume towards a contradiction that the last option (with L = Br(v) and R = M) does not
hold. Since we work with a monadically stable graph, we cannot have an infinite ladder.
Therefore, there is an infinite induced matching or co-matching between Br(v) and M. By
symmetry, we can assume the former. From this we obtain, for any k, vertices a1, . . . , ak

in M and b1, . . . , bk in Br(v) ⊆ N − M such that the corresponding pairs ai, bi form a
semi-induced matching and any bi, bj are connected by a path of length at most 2r that
passes through v. Let H denote the subgraph of N induced by b1, . . . , bk together with the
paths connecting them (we pick one such path for each pair). Using the fact that M is an
elementary substructure of N, we can then show that there exist as many disjoint copies
of H in M as we want, and all these copies behave in the same way towards a1, . . . ak as the
original H. Consequently, we can for each pair ai, aj use one copy of H to create a short
path between ai and aj , and all these paths can be defined using a single first-order formula,
which in turn defines a subdivided clique with k principal vertices. Since k is arbitrary, this
means that M is not monadically dependent, as desired.

▶ Lemma 14. For any graphs M and N with M ≺ N and such that N is monadically stable
and for any set U ⊆ N − M such that TypesE(U/M) is finite, there exists a finite set S ⊆ M
and an S-flip which:

1-separates U from M; and
does not flip the S-class T := {v ∈ N : ∀s ∈ S.¬E(v, s)} with any other S-class (including
itself), as long as T ∩ U is nonempty.

ICALP 2023

128:12 Flipper Games for Monadically Stable Graph Classes

The idea behind the proof of Lemma 14 can be briefly summarized as follows. Roughly
speaking, we aim to find a finite S ⊆ M such that if a, a′ ∈ U are in the same S-class,
then N(a) ∩ M = N(a′) ∩ M, and analogously, if b, b′ ∈ M are in the same S-class, then
N(a) ∩U = N(a′) ∩U . Then we can use these properties to suitably flip between S-classes to
obtain the result. First we note that since TypesE(U/M) is finite, we have that TypesE(M/U)
is also finite, and so by taking one representative from each class of TypesE(M/U) we find
a finite subset SM ⊆ M such that any two elements in the same SM-class have the same
neighborhood in M. Clearly, by the same idea we could find a finite subset set SU of U
such that vertices in the same SU -class have the same neighborhood in U . However, we
need our set SU to be contained in M. To achieve this, we rely on a fundamental fact about
stable formulas known as definability of types, which allows us to show that sets N(u) ∩ M
(where u ∈ U) can be defined from within M by looking at Su-classes, where Su is a finite
subset of M. Since there are only finitely many types of vertices in U with respect to the
adjacency towards M, we can list them as u1, . . . , uk and set SU := ∪iSu. We can then take
S = SM ∪ SU . We remark that the set S defined in the actual proof of Lemma 14 contains
more vertices; we refer to the full version of the paper for details.

An inductive proof of Theorem 12 now follows by putting together Lemmas 13 and 14.

Proof sketch of Theorem 12. We proceed by induction on r. Let M be a monadically
stable graph and let N be an elementary extension of M. For every v ∈ N − M, we have to
find a finite set S ⊆ M such that v |⌣

r

S
M in N. The base case r = 0 is immediate as we

may take S to be ∅ since v /∈ M. In the inductive step, assume that the result is proved
for the distance r ∈ N. Stated differently, assume there is a finite S ⊆ M and an S-flip N′

of N in which the r-ball around v is disjoint from M. It is easily checked that an S-flip of a
monadically stable graph is monadically stable, and so N′ is monadically stable. Moreover,
one can also show that N′ is an elementary extension of the subgraph of N′ induced by the
domain of M. We can therefore apply Lemma 13 to N′,M and Br

N′(v). By Lemma 13,
TypesE(Br(v)/M) is finite. Now Lemma 14 applied to Br(v) finishes the inductive step and
the proof (we are using the fact that we obtain a set S and an S-flip, which doesn’t flip the
S-class that contains Br−1(v)). ◀

Since monadic stability is preserved in the elementary closure5, we get the following
corollary, proving the implication (1)→(4) in Theorem 5.

▶ Corollary 15. If C is a monadically stable class of graphs and r ∈ N, then every M ∈ C is
r-separable.

3.3 From separability to winning the confining Flipper game
For brevity, in this section we use “Flipper game” to refer to the confining Flipper game with
qf-definable separation.

▶ Theorem 16. Fix r ∈ N, and let C be a class of graphs such that every G ∈ C is r-separable.
Then there exists k ∈ N such that Flipper wins the Flipper game with radius r in k rounds on
every G ∈ C.

In the proof we will use the Tarski-Vaught test, which we now recall.

5 The preservation of monadic stability in the elementary closure is true but not obvious (follows from [6]).
However, in the full version of the paper, we prove the implication (3)→(4) of Theorem 5 and only
require the preservation of edge-stability and pattern-freeness, which we prove easily.

J. Gajarský et al. 128:13

▶ Theorem 17 (Tarski-Vaught Test). The following conditions are equivalent for any structures
M and N with M ⊆ N.

The structure N is an elementary extension of M.
For every formula φ(y; x̄) and tuple m̄ ∈ Mx̄, if N |= φ(n; m̄) holds for some n ∈ N,
then N |= φ(n′; m̄) holds for some n′ ∈ M.

In the rest of this section we sketch the proof of Theorem 16. Fix an enumeration
φ1, φ2, . . . of all formulas (in the signature of graphs) of the form φ(y, x1, . . . , xℓ), with ℓ ⩾ 0.
We define a strategy of Flipper in any graph G. In the kth round, after Localizer picks
ck ∈ Ak−1, Flipper first sets S := Sk−1 ∪ {ck} and marks ck. Then, for every i = 1, . . . , k,
for the formula φi(y, x̄), Flipper does the following.

For each ā ∈ Sx̄ such that G |= ∃y.φi(y, ā), Flipper marks any vertex b ∈ V (G) such
that G |= φi(b, ā).

We say that any strategy of Flipper with this property is Localizer-complete. The marked
vertices form Flipper response in the kth round, and we set Sk to be the union of Sk−1 and
all the marked vertices. Note that there is a function f : N → N such that |Sk| ⩽ f(k) for all
k ∈ N, regardless of which vertices Localizer picks or which of the formulas ∃y.φi(y, ā) hold.

We prove that there is a number k ∈ N such that when Flipper plays according to any
Localizer-complete strategy on a graph G ∈ C, then he wins in at most k rounds. Assume
that the conclusion of the theorem does not hold. Then, there exists a sequence of graphs
G1, G2, . . . ∈ C, where in Gn Localizer has a strategy ensuring that Flipper does not win for
at least n rounds. We shall now prove that there is some graph G in the elementary closure
of C and a vertex in the graph that survives in the arena indefinitely, when Flipper plays
according to a Localizer-complete strategy. We will then use the r-separability of G to derive
a contradiction.

▷ Claim 18. There exists a graph G ∈ C, a strategy of Localizer, and a Localizer-complete
strategy of Flipper for which the Flipper Game on G lasts indefinitely and the intersection
of the arenas

⋂
n<ω An is nonempty.

Proof sketch. For every graph Gn ∈ C, choose any Localizer-complete strategy of Flipper,
and any strategy of Localizer ensuring the game continues for more than n rounds.

In each Gi, use constants to mark moves of Localizer and Flipper in a play in which they
play for i moves according to the chosen strategies, and moreover mark by cω an arbitrary
vertex that remains the arena after i rounds. We then consider, for every i ∈ N, a sentence
ψi that is true in a graph if and only if the play encoded by the introduced constants is a
valid i move play in the Flipper game and cω is in the arena after the ith move. We then
have Gi |= ψi for each i. By a compactness argument, we can argue that there exists a graph
G ∈ C such that G |= ψi for every i. Then we have in G that cω ∈ Ai for each i, and so
cω ∈

⋂
n<ω An, which means that

⋂
n<ω An is nonempty, as desired. ◁

Let G ∈ C be the graph produced by Claim 18, along with the strategies of Localizer and
Flipper. By assumption, G is r-separable. Recall that A0 ⊇ A1 ⊇ . . . is the sequence of
arenas in the play, c1, c2, . . . is the sequence of moves of Localizer, and S0 ⊆ S1 ⊆ . . . is the
sequence of sets of vertices marked by Flipper. Denote Aω :=

⋂
n<ω An, and Sω :=

⋃
n<ω Sn.

We will get a contradiction with the previous claim by proving the following claim:

▷ Claim 19. Aω is empty.

ICALP 2023

128:14 Flipper Games for Monadically Stable Graph Classes

Proof. Observe that for each k ∈ N, we have ck /∈ Sk−1: as soon as Localizer plays ck in Sk−1,
the arena Ak shrinks to a single vertex and Flipper wins in the following round. Then, Ak is
disjoint from Sk−1: since Localizer plays ck outside of Sk−1, each vertex of Sk−1 becomes
separated from ck and thus is removed from the arena. It follows that Aω ∩ Sω = ∅.

Since Flipper follows a Localizer-complete strategy, Sω induces an elementary substructure
of G by the Tarski-Vaught test (Theorem 17). We also have that c1, c2, . . . ∈ Sω by
construction. Now suppose for a contradiction that there exists some cω ∈ Aω. We remark
that cω /∈ Sω.

By Theorem 12, there exists a finite set S ⊆ Sω such that cω |⌣
r

S
Sω. As S is finite,

there is some n < ω such that S ⊆ Sn, so in particular, cω |⌣
r

Sn
Sω. On the other hand,

cω ̸ |⌣
r

Sn
cn+1, as cω ∈ An+1. This is a contradiction since cn+1 ∈ Sω. ◁

However, this means that there exists a graph G ∈ C and strategies of Localizer and
Flipper, for which Aω is simultaneously nonempty (Claim 18) and empty (Claim 19). This
contradicts the existence of the graphs G1, G2, . . . ∈ C and completes the proof of Theorem 16.

4 Outline of the algorithmic proof

In this part we outline the proof of Theorem 6 by sketching a winning Flipper strategy whose
moves can be computed in time OC,r(n2).

Let us first sketch a natural approach to use the flip-flatness characterization of monadic
stability (see Definition 7) to derive a winning strategy for Flipper. Consider the radius-r
Flipper game on a graph G from a monadically stable class C. For convenience we may
assume for now that we work with an extended version of the game where at each round
Flipper can apply a bounded (in term of the round’s index) number of flips, instead of just
one (see the discussion in the preliminaries). As making a vertex isolated requires one flip –
between the vertex in question and its neighborhood – we can always assume that the flips
applied by Flipper in round i make all the i vertices previously played by Localizer isolated.
Hence, Localizer needs to play a new vertex in each round, thus building a growing set X of
her moves.

Fix some constant m ∈ N. According to flip-flatness, there exists some number N :=
N2r(m) with the property that once X has grown to the size N , we find a set of flips F –
whose size is bounded independently of m – and a set Y of m vertices in X that are pairwise
at distance greater than 2r in G⊕ F . It now looks reasonable that Flipper applies the flips
from F within his next move. Indeed, since after applying F the vertices of Y are at distance
more than 2r from each other, the intuition is that F robustly “disconnects” the graph so
that the subsequent move of the Localizer will necessarily localize the game to a simpler
setting. This intuition is, however, difficult to capture: flip-flatness a priori does not provide
any guarantees on the disconnectedness of G⊕ F other than that the vertices of Y are far
from each other.

The main idea for circumventing this issue is to revisit the notion of flip-flatness and
strengthen it with an additional predictability property. Intuitively, predictability says that
being given any set of 5 vertices in Y as above is sufficient to uniquely reconstruct the set of
flips F . Formally, we prove the following strengthening of the results of [9]. Here and later
on, O(G) denotes the set of linear orders on the vertices of G.

▶ Theorem 20 (Predictable flip-flatness). Fix a radius r ∈ N and a monadically stable class
of graphs C. Then there exist the following:

An unbounded non-decreasing function αr : N → N and a bound λr ∈ N.

J. Gajarský et al. 128:15

A function FFr that maps each triple (G ∈ C,≼ ∈ O(G), X ⊆ V (G)) to a pair (Y, F) such
that:
F is a set of at most λr flips in G, and
Y is a set of αr(|X|) vertices of X that is distance-r independent in G⊕ F .

A function Predictr that maps each triple (G ∈ C,≼ ∈ O(G), Z ⊆ V (G)) with |Z| = 5 to
a set F of flips in G such that the following holds:

For every X ⊆ V (G), if (Y, F) = FFr(G,≼, X) and Z ⊆ Y , then F = Predictr(G,≼, Z).

Moreover, given G, ≼, and Z, Predictr(G,≼, Z) can be computed in time OC,r(|V (G)|2).

Let us explain the intuition behind the mappings FFr and Predictr provided by Theorem 20.
The existence of bounds αr and λr and of the function FFr with the properties as above is
guaranteed by the standard flip-flatness, see Definition 7 and Theorem 8. However, in the
proof we pick the function FFr in a very specific way, so that the flip set F is defined in a
somewhat minimal way with respect to a given vertex ordering ≼. This enables us to predict
what the flip set F should be given any set of 5 vertices from Y . This condition is captured
by the function Predictr.

We remark that the predictability property implies the following condition, which we
call canonicity, and which may be easier to think about. (We assume the notation from
Theorem 20.)

For every G ∈ C, ≼ ∈ O(G), and X,X ′ ⊆ V (G), if we denote (Y, F) = FFr(G,≼, X) and
(Y ′, F ′) = FFr(G,≼, X ′), then |Y ∩ Y ′| ⩾ 5 entails F = F ′.

Indeed, to derive canonicity from predictability note that F = Predictr(G,≼, Z) = F ′, where
Z is any 5-element subset of Y ∩ Y ′. Predictability strengthens canonicity by requiring that
the mapping from 5-element subsets to flip sets is governed by a single function Predictr,
which is moreover efficiently computable. We prove Theorem 20 in the appended full version
of the paper. The proof is based on the combinatorial tools from [9], which were developed
to prove the standard flip-flatness. However, the generated sets of flips have to be chosen
and analyzed with much greater care.

We now outline how Flipper can use predictable flip-flatness for radius 2r to win the
radius-r Flipper game in a bounded number of rounds. Suppose the game is played on a
graph G; we also fix an arbitrary ordering ≼ of vertices of G. Flipper will keep track of a
growing set X of vertices played by the Localizer. The game proceeds in a number of eras,
where at the end of each era X will be augmented by one vertex. In an era, Flipper will
spend 2 ·

(|X|
5

)
rounds trying to robustly disconnect the current set X. To this end, for every

5-element subset Z of X Flipper performs a pair of rounds:
In the first round, Flipper computes F := Predict2r(G,≼, Z) and applies the flips from F .
Subsequently, Localizer needs to localize the game to a ball of radius r in the F -flip of
the current graph.
In the second round, Flipper reverses the flips by applying F again, and Localizer again
localizes.

Thus, after performing a pair of rounds as above, we end with an induced subgraph of
the original graph, which moreover is contained in a ball of radius r in the F -flip. Having
performed all the

(|X|
5

)
pairs of rounds as above, Flipper makes the last round of this era: he

applies flips that isolates all vertices of X, thus forcing Localizer to play any vertex outside
of X that is still available. This adds a new vertex to X and a new era begins.

Let us sketch why this strategy leads to a victory of Flipper within a bounded number of
rounds. Suppose the game proceeds for N eras, where N is such that α2r(N) ⩾ 7. Then
we can apply predictable flip-flatness to the set X built within those eras, thus obtaining
a pair (Y, F) := FF2r(G,≼, X) such that |Y | = 7 and F is a set of flips such that Y is

ICALP 2023

128:16 Flipper Games for Monadically Stable Graph Classes

distance-2r independent in G ⊕ F . Enumerate Y as {v1, . . . , v7}, according to the order
in which they were added to X during the game. Let Z := {v1, . . . , v5} and note that
F = Predict2r(G,≼, Z). Observe that in the era following the addition of v5 to X, Flipper
considered Z as one of the 5-element subsets of the (current) set X. Consequently, within one
of the pairs of rounds in this era, he applied flips from F and forced Localizer to localize the
game subsequently. Since v6 and v7 are at distance larger than 2r in G⊕ F , this necessarily
resulted in removing v6 or v7 from the graph. This is a contradiction with the assumption
that both v6 and v7 were played later in the game.

References
1 Algorithms, Logic and Structure Workshop in Warwick – Open Problem Session.

URL: https://warwick.ac.uk/fac/sci/maths/people/staff/daniel_kral/alglogstr/
openproblems.pdf, 2016. [Online; accessed 23-Jan-2023].

2 Hans Adler and Isolde Adler. Interpreting nowhere dense graph classes as a classical notion of
model theory. Eur. J. Comb., 36:322–330, 2014. doi:10.1016/j.ejc.2013.06.048.

3 J.T. Baldwin and S. Shelah. Second-order quantifiers and the complexity of theories. Notre
Dame Journal of Formal Logic, 26(3):229–303, 1985.

4 Édouard Bonnet, Ugo Giocanti, Patrice Ossona de Mendez, Pierre Simon, Stéphan Thomassé,
and Szymon Toruńczyk. Twin-width iv: Ordered graphs and matrices. In Proceedings of the 54th
Annual ACM SIGACT Symposium on Theory of Computing, STOC 2022, pages 924–937, New
York, NY, USA, 2022. Association for Computing Machinery. doi:10.1145/3519935.3520037.

5 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width
I: tractable FO model checking. In Sandy Irani, editor, 61st IEEE Annual Symposium on
Foundations of Computer Science, FOCS 2020, Durham, NC, USA, November 16-19, 2020,
pages 601–612. IEEE, 2020. doi:10.1109/FOCS46700.2020.00062.

6 Samuel Braunfeld and Michael C Laskowski. Existential characterizations of monadic NIP.
arXiv preprint, 2022. arXiv:2209.05120.

7 Anuj Dawar. Homomorphism preservation on quasi-wide classes. J. Comput. Syst. Sci.,
76(5):324–332, 2010. doi:10.1016/j.jcss.2009.10.005.

8 Jan Dreier, Nikolas Mählmann, and Sebastian Siebertz. First-order model checking on
structurally sparse graph classes. arXiv preprint, 2023. arXiv:2302.03527.

9 Jan Dreier, Nikolas Mählmann, Sebastian Siebertz, and Szymon Toruńczyk. Indiscernibles
and flatness in monadically stable and monadically NIP classes. arXiv preprint, 2022. arXiv:
2206.13765.

10 Zdenek Dvořák. Induced subdivisions and bounded expansion. Eur. J. Comb., 69:143–148,
2018. doi:10.1016/j.ejc.2017.10.004.

11 Jakub Gajarský, Nikolas Mählmann, Rose McCarty, Pierre Ohlmann, Michał Pilipczuk,
Wojciech Przybyszewski, Sebastian Siebertz, Marek Sokołowski, and Szymon Toruńczyk.
Flipper games for monadically stable graph classes, 2023. doi:10.48550/ARXIV.2301.13735.

12 Robert Ganian, Petr Hliněný, Jaroslav Nešetřil, Jan Obdržálek, and Patrice Ossona de Mendez.
Shrub-depth: Capturing height of dense graphs. Log. Methods Comput. Sci., 15(1), 2019.
doi:10.23638/LMCS-15(1:7)2019.

13 Robert Ganian, Petr Hliněný, Jaroslav Nešetřil, Jan Obdržálek, Patrice Ossona de Mendez,
and Reshma Ramadurai. When trees grow low: Shrubs and fast MSO1. In 37th International
Symposium on Mathematical Foundations of Computer Science 2012, MFCS 2012, volume
7464 of Lecture Notes in Computer Science, pages 419–430. Springer, 2012.

14 Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding first-order properties of
nowhere dense graphs. J. ACM, 64(3):17:1–17:32, 2017. doi:10.1145/3051095.

15 Jaroslav Nešetřil and Patrice Ossona de Mendez. On nowhere dense graphs. Eur. J. Comb.,
32(4):600–617, 2011. doi:10.1016/j.ejc.2011.01.006.

16 Klaus-Peter Podewski and Martin Ziegler. Stable graphs. Fundamenta Mathematicae,
100(2):101–107, 1978.

https://warwick.ac.uk/fac/sci/maths/people/staff/daniel_kral/alglogstr/openproblems.pdf
https://warwick.ac.uk/fac/sci/maths/people/staff/daniel_kral/alglogstr/openproblems.pdf
https://doi.org/10.1016/j.ejc.2013.06.048
https://doi.org/10.1145/3519935.3520037
https://doi.org/10.1109/FOCS46700.2020.00062
https://arxiv.org/abs/2209.05120
https://doi.org/10.1016/j.jcss.2009.10.005
https://arxiv.org/abs/2302.03527
https://arxiv.org/abs/2206.13765
https://arxiv.org/abs/2206.13765
https://doi.org/10.1016/j.ejc.2017.10.004
https://doi.org/10.48550/ARXIV.2301.13735
https://doi.org/10.23638/LMCS-15(1:7)2019
https://doi.org/10.1145/3051095
https://doi.org/10.1016/j.ejc.2011.01.006

Regular Methods for Operator Precedence
Languages
Thomas A. Henzinger #

Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria

Pavol Kebis #

University of Oxford, UK

Nicolas Mazzocchi1 # Ñ

Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria

N. Ege Saraç #

Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria

Abstract
The operator precedence languages (OPLs) represent the largest known subclass of the context-
free languages which enjoys all desirable closure and decidability properties. This includes the
decidability of language inclusion, which is the ultimate verification problem. Operator precedence
grammars, automata, and logics have been investigated and used, for example, to verify programs
with arithmetic expressions and exceptions (both of which are deterministic pushdown but lie outside
the scope of the visibly pushdown languages). In this paper, we complete the picture and give,
for the first time, an algebraic characterization of the class of OPLs in the form of a syntactic
congruence that has finitely many equivalence classes exactly for the operator precedence languages.
This is a generalization of the celebrated Myhill-Nerode theorem for the regular languages to OPLs.
As one of the consequences, we show that universality and language inclusion for nondeterministic
operator precedence automata can be solved by an antichain algorithm. Antichain algorithms
avoid determinization and complementation through an explicit subset construction, by leveraging
a quasi-order on words, which allows the pruning of the search space for counterexample words
without sacrificing completeness. Antichain algorithms can be implemented symbolically, and these
implementations are today the best-performing algorithms in practice for the inclusion of finite
automata. We give a generic construction of the quasi-order needed for antichain algorithms from a
finite syntactic congruence. This yields the first antichain algorithm for OPLs, an algorithm that
solves the ExpTime-hard language inclusion problem for OPLs in exponential time.

2012 ACM Subject Classification Theory of computation → Formal languages and automata theory

Keywords and phrases operator precedence automata, syntactic congruence, antichain algorithm

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.129

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Funding This work was supported in part by the ERC-2020-AdG 101020093.

Acknowledgements We thank Pierre Ganty for early discussions and the anonymous reviewers for
their helpful comments.

1 Introduction

Pushdown automata are a fundamental model of computation and the preferred formalism
to parse programs in a deterministic manner. In verification, they are used to encode the
behaviors of both systems and specifications that involve, for example, nested procedure calls.

1 Corresponding author

EA
T
C
S

© Thomas A. Henzinger, Pavol Kebis, Nicolas Mazzocchi, and N. Ege Saraç;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 129; pp. 129:1–129:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:tah@ist.ac.at
mailto:pavol.kebis@protonmail.com
mailto:nicolas.mazzocchi@ist.ac.at
https://mazzocchi.github.io/
https://orcid.org/0000-0001-6425-5369
mailto:esarac@ist.ac.at
https://doi.org/10.4230/LIPIcs.ICALP.2023.129
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

129:2 Regular Methods for OPLs

However, unlike for regular languages specified by finite automata, the inclusion of context-
free languages given by pushdown automata is undecidable, even for deterministic machines.
This is why expressive subclasses of context-free languages with decidable properties have
been studied in the past decades. Prominent among those formalisms is the class of visibly
pushdown languages [3], which is strictly contained in the deterministic context-free languages.
A visibly pushdown language (VPL) is a context-free language where each word admits a
single parse tree, which does not depend on the pushdown automaton that generates (or
accepts) the word. More technically, visibly pushdown automata (VPDAs) extend finite
automata with a memory stack that is restricted to “push” and “pop” operations on disjoint
subsets of the input alphabet. VPDAs have become popular in verification for several reasons.
First, they recognize “well-nested” words, which find applications in the analysis of HTML
and XML documents. Second, their restricted stack behavior enables desirable closure and
decidability properties; in particular, in contrast to deterministic context-free languages,
VPDAs can be complemented and their inclusion is decidable. Third, the VPLs admit a
generalization of the celebrated Myhill-Nerode theorem for the regular languages [2]: they can
be characterized algebraically by a finite syntactic congruence, which not only explains the
decidability results, but also leads to symbolic verification algorithms, such as antichain-based
universality and inclusion checking for VPDAs [11].

There are, however, important languages that are parsable by deterministic pushdown
automata, yet are not visibly pushdown. An important example are the arithmetic expressions
with two binary operators, addition and multiplication, where multiplication takes precedence
over addition. Most programming languages allow such expressions with implicit precedence
relations between operators, instead of insisting on explicit parantheses to disambiguate. For
this very purpose, Floyd introduced three elementary precedence relations between letters,
namely, equals in precedence =̇, yields precedence ⋖, and takes precedence ⋗, which provide
structure to words. He introduced the operator precedence languages (OPLs), a subclass
of the context-free languages, where non-conflicting precedence relations between letters
can be derived from the context-free grammar [33]. The ability to extract non-conflicting
relations from the grammar provides a unique parse tree for each word. However, unlike for
VPLs, a letter is not assigned to a unique stack operation, but will trigger “push” and “pop”
operations depending on its precedence with respect to the adjacent letters. This allows
OPLs to model not only arithmetic expressions, but also languages with exception handling
capabilities, where a single closed parenthesis may close several open parentheses [1, 48].

The class of OPLs lies strictly between the VPLs and the deterministic context-free
languages. Despite their extra expressive power, the OPLs enjoy the closure and decidability
properties of the VPLs, and they even do so at the same cost in computational complexity:
the class of OPLs is closed under all boolean and regular operations (union, intersection,
complement, concatenation, reverse, and Kleene star) [20, 21]; their emptiness can be solved
in PTime (it is PTime-hard for VPDAs), and universality and inclusion in ExpTime (they
are ExpTime-hard for VPDAs) [43]. Moreover, OPLs admit a logical characterization in
terms of a monadic second-order theory over words, as well as an operational characterization
in terms of automata with a stack (called OPAs) [43]. In short, OPLs offer many of the
benefits of the VPLs at no extra cost.

In this paper, we complete the picture by showing that OPLs also offer an algebraic charac-
terization in form of a generalized Myhill-Nerode theorem. Specifically, we define a syntactic
congruence relation ≡L for languages L such that ≡L has finitely many equivalence classes
if and only if L is an OPL. Finite syntactic congruences provide a formalism-independent
(i.e., grammar- and automaton-independent) definition for capturing the algebraic essence of

T. A. Henzinger, P. Kebis, N. Mazzocchi, and N. E. Saraç 129:3

a class of languages. In addition to the regular languages (Myhill-Nerode) and the VPLs,
such congruences have been given also for tree languages [37], for profinite languages [47],
for omega-regular languages [4, 44], for sequential and rational transducers [15, 30]. Further-
more, such characterization results through syntactic congruences have been used to design
determinization [2, 38], minimization [34, 41], and learning [12, 41, 46] algorithms.

Our contribution in this paper is twofold. Besides giving a finite congruence-based
characterization of OPLs, we show how such a characterization can be used to obtain
antichain-based verification algorithms, i.e., symbolic algorithms for checking the universality
and inclusion of operator precedence automata (OPA). Checking language inclusion is the
paradigmatic verification problem for any automaton-based specification formalism, but
it is also computationally difficult: PSpace-hard for finite automata, ExpTime-hard for
VPDAs, undecidable for pushdown automata. This is why the verification community has
devised and implemented symbolic algorithms, which avoid explicit subset constructions for
determinization and complementation by manipulating symbolic representations of sets of
states. For finite automata, the antichain-based algorithms have proven to be particularly
efficient in practice: DWINA [29] outperforms MONA [40] for deciding WS1S formulae,
ATC4VPA [11] outperforms VPAchecker [50] for deciding VPDAs inclusion, and Acacia [31]
outperforms Lily [39] for LTL synthesis. They leverage a quasi-order on words to prune the
search for counterexamples. Intuitively, whenever two words are candidates to contradict
the inclusion between two given languages, and the words are related by the quasi-order at
hand, the “greater” word can be discarded without compromising the completeness of the
search. During symbolic fixpoint iteration, this “quasi-order reduction” yields a succinct
representation of intermediate state sets. Based on our syntactic congurence, we show how
to systematically compute a quasi-order that enables the antichain approach. Then, we
provide the first antichain algorithm for checking language inclusion (and as a special case,
universality) between OPAs. In fact, our antichain inclusion algorithm can take any suitable
syntactic congruence over structured words (more precisely, any finite equivalence relation
that is monotonic for structured words and saturates its language). The instantiation of
the antichain algorithm with our syntactic congruence yields an ExpTime algorithm for the
inclusion of OPAs, which is optimal in terms of enumeration complexity.

In summary, we generalize two of the most appealing features of the regular languages –
the finite characterization by a syntactic congruence, and the antichain inclusion algorithm –
to the important context-free subclass of operator precedence languages.

Overview. In Section 2, we define operator precedence alphabets and structured words. We
present operator precedence grammars as originally defined by Floyd. We then define the
operator precedence languages (OPLs) together with their automaton model (OPAs). Finally,
we summarize the known closure and complexity results for OPLs and OPAs. In Section 3,
we introduce the syntactic congruence that characterizes the class of OPLs. Subsection 3.1
proves that the syntactic congruence of every OPLs has finitely many equivalence classes,
and Subsection 3.2 proves that every language whose syntactic congruence has finitely many
equivalence classes is an OPL. In Section 4, we present our antichain inclusion algorithm.
First, we introduce the notion of a language abstraction and prove that our syntactic
congruence is a language abstraction of OPLs. We also present a quasi-order that relaxes
the syntactic congruence while preserving the property of being a language abstraction.
Then, we provide an antichain algorithm that decides the inclusion between automata whose
languages have finite abstractions. We prove the correctness of our algorithm and establish
its complexity on OPAs. In Section 5, we conclude with future directions.

ICALP 2023

129:4 Regular Methods for OPLs

Related Work. Operator precedence grammars and their languages were introduced by
Floyd [33] with the motivation to construct efficient parsers. Inspired by Floyd’s work,
Wirth and Weber [51] defined simple precedence grammars as the basis of an ALGOL-like
language. The relation between these two models was studied in [32]. The properties of OPLs
were studied in [17, 21]. Later, their relation with the class of VPLs was established in [20],
their parallel parsing was explored in [5], and automata-theoretic and logical characterizations
were provided in [43]. Recent contributions provide a model-checking algorithm for operator
precedence automata [14], a generalization to a weighted model [27], and their application to
verifying procedural programs with exceptions [48].

The OPLs form a class of structured context-free languages [45] that sits strictly between
deterministic context-free languages and the VPLs [3, 19]. To the best of our knowledge,
the OPLs constitute the largest known class that enjoys all desired closure and decidability
properties. Several attempts have been made to move beyond this class, however, this often
comes at the cost of losing some desirable property. For example, the locally chain-parsable
languages are not closed under concatenation and Kleene star [18], and the higher-order
OPLs with fixed order are not closed under concatenation [22]. Despite the fact that they are
more powerful than the VPLs and enjoy all closure and decidability properties, the class of
OPLs is not nearly as well studied. In particular, a finite syntactic congruence characterizing
the VPLs was provided in [2]. An analogous result was missing for the OPLs until now.

The antichain algorithm for checking language inclusion was originally introduced for
finite automata [52] and later extended to alternating finite automata [53]. The approach
has been adapted to solve games with imperfect information [13], the inclusion of tree
automata [8], the realizability of linear temporal logic [31], the satisfiability of quantified
boolean formulas [9], the inclusion of visibly pushdown automata [11], the inclusion of
ω-visibly pushdown automata [24], the satisfiability of weak monadic second-order logic [28],
and the inclusion of Büchi automata [25, 26]. The antichain-based approach can be expressed
as a complete abstract interpretation as it is captured by the framework introduced in [35, 36].
We provide the first antichain inclusion algorithm for OPLs, and the first generic method to
construct an antichain algorithm from a finite syntactic congruence.

2 Operator Precedence Languages

We assume that the reader is familiar with formal language theory.

2.1 Operator Precedence Relations and Structured Words
Let Σ be a finite alphabet. We refer by Σ∗ to the set of all words over Σ, by ε to the empty
word, and we let Σ+ = Σ∗ \ {ε}. Given a word w ∈ Σ∗, we denote by |w| its length, by w◁

its first letter, and by w▷ its last letter. In particular |ε| = 0, ε◁ = ε, and ε▷ = ε.
An operator precedence alphabet Σ̂ is an alphabet Σ equipped with the precedence relations

⋖, ⋗, =̇, given by a matrix (see Figure 1). Formally, for each ordered pair of letters (a, b) ∈ Σ2,
exactly one1 of the following holds:

a yields precedence to b, denoted a ⋖ b,
a takes precedence over b, denoted a ⋗ b,
a equals in precedence with b, denoted a =̇ b.

1 In the literature, operator precedence matrices are defined over sets of precedence relations, leading then
to notion of precedence conflict. We use the restriction to singletons because it covers the interesting
part of the theory.

T. A. Henzinger, P. Kebis, N. Mazzocchi, and N. E. Saraç 129:5

+ × 0 1 (| |) ε
+ ⋗ ⋖ ⋖ ⋖ ⋖ ⋗ ⋗
× ⋗ ⋗ ⋖ ⋖ ⋖ ⋗ ⋗
0 ⋗ ⋗ · · · ⋗ ⋗
1 ⋗ ⋗ · · · ⋗ ⋗
(| ⋖ ⋖ ⋖ ⋖ ⋖ =̇ ⋗
|) ⋗ ⋗ · · · ⋗ ⋗
ε ⋖ ⋖ ⋖ ⋖ ⋖ ⋖ =̇

ε ⋖ 1 ⋗ + ⋖ 0 ⋗ × ⋖ (| ⋖ 111 ⋗ + ⋖ 111 ⋗ |) ⋗ ε

ε ⋖ 1 ⋗ + ⋖ 0 ⋗ × ⋖ (| ⋖ +++ ⋗ |) ⋗ ε

ε ⋖ 1 ⋗ + ⋖ 000 ⋗ × ⋖ (|(|(| =̇ |)|)|) ⋗ ε

ε ⋖ 111 ⋗ + ⋖ ××× ⋗ ε

ε ⋖ +++ ⋗ ε

ε =̇ ε

1 + 0 × (|111 + 111|)
1 + 0 × (|A +++ B|)

1 + 000 × (|(|(|A|)|)|)
111 + B ××× C

A +++ B

A

Figure 1 (left) Operator precedence matrix
where parentheses take precedence over multipli-
cation, which takes precedence over addition. The
cells marked by · denote the irrelevant relations.

Figure 2 (center) Computation of the
collapsed from of 1 + 0 × (|1 + 1|).

Figure 3 (right) Derivation tree of the
words 1 + 0 × (|1 + 1|) ∈ L(Garith).

For a, b ∈ Σ, we write a ≥⋗ b iff a ⋗ b or a =̇ b, and similarly a ≤⋖ b iff a ⋖ b or a =̇ b. It is
worth emphasizing that, despite their appearance, the operator precedence relations ⋖, ≤⋖, ⋗,
≥⋗ and =̇ are in general neither reflexive nor transitive. We extend the precedence relations
with ε such that ε ⋖ a, a ⋗ ε, and ε =̇ ε for all a ∈ Σ.

Every word induces a sequence of precedences. For some words, this sequence corresponds
to a chain [43], which is a building block of structured words.

▶ Definition 1 (chain). Let ai ∈ Σ̂ and ui ∈ Σ̂∗ for all i ∈ N, and let n ≥ 1. A word w =
a0a1 . . . an+1 is a simple chain when a0, an+1 ∈ Σ̂ ∪ {ε} and a0 ⋖ a1 =̇ a2 =̇ ... =̇ an ⋗ an+1.
A word w = a0u0a1u1 . . . anunan+1 is a composite chain when a0a1 . . . an+1 is a simple chain
and for all 0 ≤ i ≤ n, either aiuiai+1 is a (simple or composite) chain or ui = ε. A word w

is a chain when w is a simple or a composite chain.

For all x, y, z ∈ Σ̂∗, the predicate x[y]z holds iff (x▷)y(z◁) is a chain. Note that, if x[y]z
then xyz ̸= ε.

▶ Example 2. Let Σ̂ be the operator precedence alphabet in Figure 1 that specifies the
precedence relations for generating arithmetic expressions. The word (|(||)|) is a simple chain
because (| ⋖ (| =̇ |) ⋗ |). Moreover, the word (|1 + 1|) is a composite chain because the words
(|1+, +1|), and (| + |) are simple chains.

Next, we define a function that conservatively simplifies the structure of a given word.

▶ Definition 3 (collapsing function). For a given operator precedence alphabet Σ̂, its collapsing
function λΣ̂ : Σ̂∗ → Σ̂∗ is defined inductively as follows: λΣ̂(w) = λΣ̂(xz) if w = xyz and
x[y]z for some x, y, z ∈ Σ̂+, and λΣ̂(w) = w if there is no such x, y, z ∈ Σ̂+. When Σ̂ is clear
from the context, we denote its collapsing function by λ.

For every w ∈ Σ̂, observe that λ(w) is in the following collapsed form: there exist
1 ≤ i ≤ j ≤ n = |λ(w)| such that a1 ≥⋗ . . . ≥⋗ ai−1 ⋗ ai =̇ ai+1 =̇ . . . =̇ aj ⋖ aj+1 ≤⋖ . . . ≤⋖ an.

▶ Example 4. Let Σ̂ be the operator precedence alphabet in Figure 1. Let w = (|1+0|)×(|1+1|)
and observe that λ(w) = (||) × (||) since (|[1 + 0]|) and (|[1 + 1]|). Note also that (| =̇ |) ⋗ × ⋖
(| =̇ |).

Note that the collapsed form is unique and allows us to generalize classical notions of
well-nested words.

ICALP 2023

129:6 Regular Methods for OPLs

▶ Definition 5 (structured words). Let Σ̂ be an operator precedence alphabet. We define the
following sets of words:

Σ̂∗
≤⋖ = {w ∈ Σ̂∗ | λ(w) = a1 . . . an where ai ≤⋖ ai+1 for all i, or |λ(w)| ≤ 1}

Σ̂∗
≥⋗ = {w ∈ Σ̂∗ | λ(w) = a1 . . . an where ai ≥⋗ ai+1 for all i, or |λ(w)| ≤ 1}

Σ̂∗
=̇ = {w ∈ Σ̂∗ | λ(w) = a1 . . . an where ai =̇ ai+1 for all i, or |λ(w)| ≤ 1} = Σ̂∗

≤⋖ ∩ Σ̂∗
≥⋗

Looking back at the definition of collapsed form, one can verify for every word w ∈ Σ̂∗

that w ∈ Σ̂∗
≤⋖ iff i = 1, and w ∈ Σ̂∗

≥⋗ iff j = n.

▶ Example 6. Let Σ̂ be the operator precedence alphabet in Figure 1. The word + × (||) is in
Σ̂∗

≤⋖ , the word (||)×+ is in Σ̂∗
≥⋗ , and the word (||) is in Σ̂∗

=̇. Moreover, note that + ⋖ × ⋖ (| =̇ |)
and (| =̇ |) ⋗ × ⋗ +.

2.2 Operator Precedence Grammars
A context-free grammar G = (Σ, V, R, S) is tuple where Σ is a finite set of terminal symbols,
V is a finite set of non-terminal symbols, R ⊆ V × (Σ ∪ V)∗ is a finite set of derivation
rules, and S ∈ V is the starting symbol. Given α, β ∈ (Σ ∪ V)∗, we write α → β when β

can be derived from α with one rule, i.e., when there exists (α2, β2) ∈ R, α = α1α2α3 and
β = α1β2α3. Derivations using a sequence of rules are denoted by →∗, the transitive closure
of the relation →. The language of G is L(G) = {w ∈ Σ∗ | S →∗ w}. A derivation tree for
u ∈ L(G) is a tree over Σ ∪ V ∪ {ε} such that the root is labeled by S, the concatenation
of all leaves is u, and if a node is labeled by α and its children labeled by β1, . . . , βk then
(α, β1 . . . βk) ∈ R. A grammar is said to be non-ambiguous when for all u ∈ L(G) admits a
unique derivation tree.

Intuitively, an operator precedence grammar (OPG for short) is an unambiguous context-
free grammar whose derivation trees comply with some operator precedence matrix. Formally,
let G = (Σ, V, R, S) be a context-free grammar and A ∈ V be a non-terminal, and define the
following sets of terminal symbols where B ∈ V ∪ {ε} and α ∈ (V ∪ Σ)∗:

LG(A) = {a ∈ Σ | A →∗ Baα} RG(A) = {a ∈ Σ | A →∗ αaB}

Given a, b ∈ Σ, we define the following operator precedence relations where α, β ∈ (V ∪ Σ)∗:
a ⋖G b iff there exists a rule A → αaCβ where C ∈ V and b ∈ LG(C),
a ⋗G b iff there exists a rule A → αCbβ where C ∈ V and a ∈ RG(C),
a =̇G b iff there exists a rule A → αaCbβ where C ∈ V ∪ {ε}.

Finally, G is an operator precedence grammar if and only if for all a, b ∈ Σ, we have that
|{⊙ ∈ {⋖G, =̇G,⋗G} | a ⊙ b}| ≤ 1.

▶ Example 7. Let Garith = (Σ, V, R, A) be a context-free grammar over Σ̂ = {+, ×, (|, |), 0, 1}
as in Figure 1 where V = {A, B, C} and R contains the following rules:

A → A + B | B B → B × C | C C → (|A|) | 0 | 1

The language L(Garith) consists of valid arithmetic expressions with an implicit relation
between terminal symbols: parentheses take precedence over multiplication, which takes
precedence over addition [43]. The missing relations, replaced by · in the matrix of Figure 1,
denote the precedence relations that cannot be encountered by the given grammar, so the
chosen precedence relation does not matter. For example, 00 and |)(| are not valid arithmetic
expressions and cannot be generated by Garith. We remark that the structures of derivation
trees and chains share strong similarities as highlighted by Figure 2 and Figure 3.

T. A. Henzinger, P. Kebis, N. Mazzocchi, and N. E. Saraç 129:7

2.3 Operator Precedence Automata

Intuitively, operator precedence automata are pushdown automata where stack operations
are determined by the precedence relations between the next letter and the top of the stack.

▶ Definition 8 (operator precedence automaton). An operator precedence automaton (OPA
for short) over Σ̂ is a tuple A = (Q, I, F, ∆) where Q is a finite set of states, I ⊆ Q is the set
of initial states, F ⊆ Q is a set of accepting states, and ∆ ⊆

(
Q × (Σ ∪ {ε}) × (Γ+ ∪ {⊥})

)2

is the Σ̂-driven transition relation where Γ = Σ × Q is the stack alphabet and ⊥ denotes the
empty stack, meaning that, when ((s, a, α), (t, b, β)) ∈ ∆ the following holds:

If α = ⊥ or α = ⟨q, a′⟩α′ with a′ ⋖ a, then the input triggers a push stack-operation
implying that b = ε and β = ⟨s, a⟩α. We write (s, α) a (t, β).
If α = ⟨q, a′⟩α′ with a′ =̇ a, then the input triggers a shift stack-operation implying that
b = ε and β = ⟨q, a⟩α′. We write (s, α) a (t, β).
If α = ⟨q, a′⟩α′ with a′ ⋗ a, then the input triggers a pop stack-operation implying that
b = a and β = α′. We write (s, α) a (t, β).

Let A be an OPA. A configuration of A is a triplet (q, u, θ) where q ∈ Q is the current
state, u ∈ Σ∗ is the input suffix left to be read, and θ ∈ Γ+ ∪ {⊥} is the current stack.
A run of A is a finite sequence of configurations ((qi, ui, θi))1≤i≤n for some n ∈ N such
that, for all 1 ≤ i ≤ n, the automaton fires (i) a push-transition (qi−1, θi−1) a (qi, θi)
where ui−1 = aui, (ii) a shift-transition (qi−1, θi−1) a (qi, θi) where ui−1 = aui, or (iii)
a pop-transition (qi−1, θi−1) a (qi, θi) where ui−1 = ui ∈ {au | u ∈ Σ∗}. We write
(s, u, α) (t, v, β) when (s, u, α)(t, v, β) is a run, and let (s, u, α) ∗ (t, v, β) be its reflexive
transitive closure. For all n ∈ N, we define the predicate (s, u, α) n (t, v, β) inductively by
(s, u, α) = (t, v, β) when n = 0 and by ∃(q, w, θ), (s, u, α) (q, w, θ) n−1 (t, v, β) otherwise.
The language of A is defined by L(A) = {w ∈ Σ∗ | q0 ∈ I, qF ∈ F, (q0, w, ⊥) ∗ (qF , ε, ⊥)}.
An OPA is deterministic when |I| = 1 and ∆ is a function from Q × Σ × (Γ+ ∪ {⊥}) to
Q × (Σ ∪ {ε}) × (Γ+ ∪ {⊥}), and it is complete when from every configuration (s, u, θ) there
exists a run that ends in (t, ε, ⊥) for some state t ∈ Q. For a given stack θ ∈ Γ+ ∪ {⊥}, we
define θ⊤ as the stack symbol at the top of θ if θ ∈ Γ+, and θ⊤ = ε if θ = ⊥.

▶ Definition 9 (operator precedence language). An operator precedence language (OPL for
short) is a language recognized by some operator precedence automaton.

If L is an OPL over the operator precedence alphabet Σ̂, we say that L is a Σ̂-OPL.

▶ Remark 10. The literature on OPLs often assumes the =̇-acyclicity of operator precedence
relations of the alphabet, i.e., that there is no n ≥ 1 and a1, . . . , an ∈ Σ with a1 =̇ . . . =̇
an =̇ a1. This assumption is used to bound the right-hand side of OPG derivation rules,
and find a key application for constructing an OPG that recognizes the language of a given
OPA [43]. We omit this assumption since it is not needed for establishing the results on
OPAs, including the construction of an OPA that recognizes the language of a given OPG.

Now, we present an OPA that recognizes valid arithmetic expressions.

▶ Example 11. Recall the OPG of Example 7 generating arithmetic expressions over the
operator precedence alphabet of Figure 1. In Figure 4, we show an OPA that recognizes the
same language and an example of a computation.

ICALP 2023

129:8 Regular Methods for OPLs

q0 q1

q2 q3

0, 1

+, ×
q0, q1

(|

(|
0, 1

+, ×
q0, q1, q2, q3

|)

state input stack state input stack
q0 1 × (|0 + 1|) ⊥ q2 1|) ⟨q3, +⟩⟨q0, (|⟩⟨q1, ×⟩⊥
q1 ×(|0 + 1|) ⟨q0, 1⟩⊥ q3 |) ⟨q2, 1⟩⟨q3, +⟩⟨q0, (|⟩⟨q1, ×⟩⊥
q1 ×(|0 + 1|) ⊥ q3 |) ⟨q3, +⟩⟨q0, (|⟩⟨q1, ×⟩⊥
q0 (|0 + 1|) ⟨q1, ×⟩⊥ q3 |) ⟨q0, (|⟩⟨q1, ×⟩⊥
q2 0 + 1|) ⟨q0, (|⟩⟨q1, ×⟩⊥ q3 ε ⟨q0, |)⟩⟨q1, ×⟩⊥
q3 +1|) ⟨q2, 0⟩⟨q0, (|⟩⟨q1, ×⟩⊥ q3 ε ⟨q1, ×⟩⊥
q3 +1|) ⟨q0, (|⟩⟨q1, ×⟩⊥ q3 ε ⊥

Figure 4 An OPA recognizing the arithmetic expressions generated by the OPG in Example 7
and its run on the input word 1 × (|0 + 1|). Shift-, push-, and pop-transitions are respectively denoted
by dashed, normal, and double arrows.

2.4 Expressiveness and Decidability of Operator Precedence Languages
In this section, briefly summarize some known results about OPLs. First, we remark that
OPLs are context-free languages as they are recognized by a subclass of pushdown automata.

▶ Theorem 12 (from [20]). Deterministic context-free languages strictly include OPLs.

The language L = {anban | n ≥ 0}, which is a deterministic context-free language,
separates the two classes. Indeed, it is not an OPL because while the first segment of an must
push to the stack (i.e., a ⋖ a), the last segment must pop (i.e., a ⋗ a), resulting in conflicting
precedence relations. Next, we recall that OPLs enjoy the many closure properties.

▶ Theorem 13 (from [20, 21]). OPLs are closed under boolean operations, concatenation,
Kleene star, reversal, prefixing, and suffixing.

The class of VPLs enjoy these closure as well. In fact, every VPL can be expressed as
an OPL with an operator precedence alphabet designed as follows: internal characters and
returns take precedence over any character; calls equal in precedence with returns, and they
yield precedence to calls and internal characters.

▶ Theorem 14 (from [20]). OPLs strictly include visibly pushdown languages.

The language L = {anbn | n ≥ 1} ∪ {cndn | n ≥ 1} ∪ {en(bd)n | n ≥ 1}, which is an OPL
due to their closure under union, separate the two classes. Indeed, for L to be a VPL, the
first set requires that a is a call and b is a return. Similarly, c is a call and d is a return due
to the second set. However, the last set requires that at most one of b and d is a return,
resulting in a contradiction. We also note that OPAs support determinization.

▶ Theorem 15 (from [43]). Every OPL can be recognized by a deterministic OPA.

Despite their expressive power, OPL remain decidable for the classical decision problems.
In particular, OPAs enjoy the same order of complexity as VPDA for basic decision problems.

▶ Theorem 16 (from [42, 43]). The language emptiness is in PTime-C for OPAs. The
language inclusion, universality, and equivalence are in PTime for deterministic OPAs and
ExpTime-C for nondeterministic OPAs.

▶ Remark 17. The membership problem is in PTime for OPAs. Determining whether a given
word w is accepted by a given OPA A can be done in polynomial time by constructing an
automaton B that accepts only w, constructing the intersection C of A and B, and deciding
the non-emptiness of C.

T. A. Henzinger, P. Kebis, N. Mazzocchi, and N. E. Saraç 129:9

3 A Finite Congruence for Operator Precedence Languages

This section introduces a congruence-based characterization of OPLs, similar to the Myhill-
Nerode congruence for regular languages. We let Σ̂ be an operator precedence alphabet
throughout the section. A relation ▷◁ over Σ̂∗ is monotonic when x ▷◁ y implies uxv ▷◁ uyv

for all x, y, u, v ∈ Σ̂∗. Intuitively, monotonicity requires two words in relation to stay related
while becoming embedded into some context that constructs a larger word. However, such
a definition is not well suited for structured words as it does not follow how chains are
constructed. Hence, we introduce a more restrictive notion than monotonicity.

▶ Definition 18 (chain-monotonicity). A relation ▷◁ over Σ̂∗ is chain-monotonic when x ▷◁ y

implies uu0xv0v ▷◁ uu0yv0v for all x, y, u, v, u0, v0 ∈ Σ̂∗ such that u0z◁ ∈ Σ̂∗
≥⋗ , z▷v0 ∈ Σ̂∗

≤⋖ ,
and u[u0zv0]v for each z ∈ {x, y}.

Chain-monotonicity requires two words in relation to stay related while being embedded
into some context that construct larger structured words. This leads us to describe when two
words agree on whether an embedding into a larger word forms a chain. For this, we introduce
a relation that relates words that behave similarly with respect to the chain structure.

▶ Definition 19 (chain equivalence). We define the chain equivalence ≈ over Σ̂∗ as follows:

x ≈ y ⇐⇒
∧ {

x◁ = y◁ ∧ x▷ = y▷

∀u, v, u0, v0 ∈ Σ̂∗,
(
u0x◁ ∈ Σ̂∗

≥⋗ ∧ x▷v0 ∈ Σ̂∗
≤⋖

)
⇒

(
u[u0xv0]v ⇔ u[u0yv0]v

)
We observe that ε is in relation with itself exclusively, i.e., x = ε iff ε ≈ x iff x ≈ ε.

Consider a word w ∈ Σ̂+ for which λ(w) is of the form a1 . . . aℓb1 . . . bmc1 . . . cn for some
ℓ, m, n ∈ N such that a1 ≥⋗ . . . ≥⋗ aℓ ⋗ b1 =̇ . . . =̇ bm ⋖ c1 ≤⋖ . . . ≤⋖ cn where ai, bj , ck ∈ Σ for
all i, j, k. We define the profile of w as Pw = (w◁, w▷, P ◁

w, P ▷
w), where P ◁

w = {a1, b1} ∪ {ai+1 |
ai ⋗ ai+1, 1 ≤ i < ℓ} and P ▷

w = {bm, cn} ∪ {ck | ck ⋖ ck+1, 1 ≤ k < n}. There are at most
|Σ|2 × 22|Σ|−2 + 1 profiles. We can show that two words with the same profile are chain
equivalent, leading to the following proposition.

▶ Proposition 20. ≈ is a chain-monotonic equivalence relation with finitely many classes.

Next, we introduce an equivalence relation that characterizes OPLs.

▶ Definition 21 (syntactic congruence). Given L ⊆ Σ̂∗, we define ≡L as the following relation
over Σ̂∗:

x ≡L y ⇐⇒ x ≈ y ∧

{
∀u, v, u0, v0 ∈ Σ̂∗,

(
u0x◁ ∈ Σ̂∗

≥⋗ ∧ x▷v0 ∈ Σ̂∗
≤⋖ ∧ u[u0xv0]v

)
⇒

(
uu0xv0v ∈ L ⇔ uu0yv0v ∈ L

)
Let us demonstrate the syntactic congruence.

▶ Example 22. Let Σ = {a, b} and let Σ̂ be the operator precedence alphabet with the
relations a ⋖ a, a =̇ b, b ⋗ a, and b ⋗ b. Consider the language L = {anbn | n ≥ 1}.

There are 17 potential profiles for Σ̂ in total. Although some of them cannot occur due
to the precedence relations of Σ̂, the remaining ones correspond to the equivalence classes
of ≈. For example, (a, a, {a}, {a, b}) cannot occur since b ⋗ a, and (a, b, {a}, {b}) contains
exactly the words in L which are of the form anbn for some n ≥ 1. For brevity, we only show
how the syntactic congruence ≡L refines the class of ≈ corresponding to (a, a, {a}, {a}) by
splitting it into four subclasses. The profile (a, a, {a}, {a}) captures exactly the words of the
form w = a or w = aua where in each prefix of au there are no more b’s than a’s. Notice
that for such w, λ(w) is of the form (ab)∗a+, where a+ = {an | n > 0}.

ICALP 2023

129:10 Regular Methods for OPLs

We first argue that a ̸≡L aa but aa ≡L aan for all n ≥ 1. Taking u = v = u0 = ε and
v0 = b, observe that the preconditions for the syntactic congruence are satisfied but ab ∈ L

while aab /∈ L, therefore a ̸≡L aa. Now, let n ≥ 2, and consider the words aa and aan.
Intuitively, since there is no x, y ∈ Σ̂∗ such that xaay ∈ L and xaany ∈ L, we show that
whenever the preconditions for the congruence are satisfied, both longer words are out of L.
Given u, v, u0, v0 ∈ Σ̂∗ such that u0a ∈ Σ̂∗

≥⋗ , av0 ∈ Σ̂∗
≤⋖ , and u[u0aav0]v, we assume towards

contradiction that uu0aav0v ∈ L. Since uu0aav0v ∈ L and u0a ∈ Σ̂∗
≥⋗ , we have u0 = ε.

Moreover, since av0 ∈ Σ̂∗
≤⋖ , we have that v0 is either of the from a∗ or a∗b. Consequently,

λ(u0aav0) is aaa∗ or aaa∗b. This contradicts that u[u0aav0]v because a ⋖ a, and therefore
uu0aav0v /∈ L. The same argument shows that uu0aanv0v /∈ L, implying that aa ≡L aan.
Similarly as above, we can show that u ̸≡L v but v ≡L w for all u, v, w ∈ Σ̂∗ such that
λ(u) = (ab)ia, λ(v) = (ab)jaa, and λ(w) = (ab)kaan, where n, i, j, k ≥ 1.

We now show that the syntactic congruence is chain-monotonic.

▶ Theorem 23. For every L ⊆ Σ̂∗, ≡L is a chain-monotonic equivalence relation.

The main result of this section is the characterization theorem below. We prove each
direction separately in Sections 3.1 and 3.2.

▶ Theorem 24. A language L is an OPL iff ≡L admits finitely many equivalence classes.

3.1 Finiteness of the Syntactic Congruence
Let Σ̂ be an operator precedence alphabet, A = (Q, I, F, ∆) be an OPA over Σ̂, and ⋆ /∈ Σ
be a fresh letter for which we extend the precedence relation with a ⋖ ⋆ for all a ∈ Σ.

For every word w ∈ Σ̂∗, we define the functions fw : Q × (Γ ∪ {⊥}) → 2Q and Φw : Q ×
(Γ ∪ {⊥}) → 2Γ+∪{⊥} such that for all q ∈ Q and all γ ∈ Γ ∪ {⊥}, we have fw(q, γ) = {qw ∈
Q | ∃γw ∈ Γ+ ∪ {⊥}, (q, w⋆, γ) ∗ (qw, ⋆, γw)} and Φw(q, γ) = {γw ∈ Γ+ ∪ {⊥} | ∃qw ∈
Q, (q, w⋆, γ) ∗ (qw, ⋆, γw)}. Intuitively, the states in fw(q, γ) and the stacks in Φw(q, γ)
come from the configurations that A can reach after reading w from an initial state in I, but
before triggering any pop-transition due to reaching the end of the word w.

Furthermore, for every w ∈ Σ̂∗, we define the function gw : Q2 × (Γ ∪ {⊥}) → 2Q such
that for all q1, q2 ∈ Q and all γ ∈ Γ ∪ {⊥} we have gw(q1, q2, γ) = {pw ∈ Q | ∃γw ∈
Φw(q1, γ), (q2, ε, γw) ∗ (pw, ε, ⊥)}. Intuitively, gw(q1, q2, γ) is the set of states that A can
reach after triggering from q2 the pop-transitions that empty the (unique) stack γw ∈ Φw(q1, γ)
that was generated by reading w while moving from the state q1 to some state in fw(q1, γ).

Recall that for a given stack θ ∈ Γ+ ∪ {⊥}, we denote by θ⊤ the stack symbol at the top
of θ, which is ε when θ = ⊥. Moreover, for a given set of stacks Θ ⊆ Γ+ ∪ {⊥}, let us define
Θ⊤ = {θ⊤ | θ ∈ Θ}. For the sequel, we define the following equivalence relation:

▶ Definition 25 (structural congruence). Given an OPA A = (Q, I, F, ∆), we define the
relation ≡A over Σ̂∗ as follows:

x ≡A y ⇐⇒ x ≈ y∧fx = fy ∧gx = gy ∧
(
∀q ∈ Q, ∀γ ∈ Γ∪{⊥}, (Φx(q, γ))⊤ = (Φy(q, γ))⊤)

First, we show that the structural congruence of any OPA has a finite index.

▶ Lemma 26. For every OPA A with n states and m input letters, the structural congruence
≡A has at most O(m)O(m×n)O(1) equivalence classes.

Then, we show that for any OPA the syntactic congruence of its language is coarser than
its structural congruence, therefore has a finite index as well.

T. A. Henzinger, P. Kebis, N. Mazzocchi, and N. E. Saraç 129:11

▶ Lemma 27. For every OPA A, the congruence ≡L(A) is coarser than the congruence ≡A.

As a direct result of Lemmas 26 and 27 above, we obtain the following.

▶ Corollary 28. For every L ⊆ Σ̂∗, if L is a Σ̂-OPL then ≡L has finite index.

3.2 From the Syntactic Congruence to Operator Precedence Automata
Consider a language L ⊆ Σ̂∗ such that ≡L has finitely many equivalence classes. We construct
a deterministic OPA that recognizes L and whose states are based on the equivalence classes of
≡L. Given w ∈ Σ̂∗, we denote by [w] its equivalence class with respect to ≡L. We construct
A = (Q, {q0}, F, ∆) with the set of states Q = {([u], [v]) | u, v ∈ Σ̂∗}, the initial state
q0 = ([ε], [ε]), the set of accepting states F = {([ε], [w]) | w ∈ L}, and the Σ̂-driven transition
function ∆: Q × Σ × (Γ+ ∪ {⊥}) → Q × (Σ ∪ {ε}) × (Γ+ ∪ {⊥}), where Γ = Σ × Q, is defined
as follows: ∆ maps (([u], [v]), a, ⟨b, ([u′], [v′])⟩θ) to (([a], [ε]), ε, ⟨a, ([u], [v])⟩⟨b, ([u′], [v′])⟩θ) if
b ⋖ a, it returns (([uva], [ε]), ε, ⟨a, ([u′], [v′])⟩θ) if b =̇ a, and (([u′], [v′uv]), a, θ) if b ⋗ a. The
soundness of our construction is given by the proof of the following lemma in Appendix.

▶ Lemma 29. For every L ⊆ Σ̂∗, if ≡L has finite index then L is a Σ̂-OPL.

4 Antichain-based Inclusion Checking

Considering two languages L1 and L2 given by some automata, the classical approach for
deciding whether L1 ⊆ L2 holds is to first compute the complement L2 of L2, and then
decide the emptiness of L1 ∩ L2. The major drawback with this approach is that the
complementation requires the determinization of the automaton denoting L2. A way to avoid
the determinization is to search among words of L1 for a counterexample to L1 ⊆ L2. For
this, a breadth-first search can be performed symbolically as a fixpoint iteration. In order to
guarantee its termination, the search is equipped with a well quasi-order, and considers only
words that are not subsumed, i.e., the minima of L1 with respect to the quasi-order. It is
known that well quasi-orders satisfy the finite basis property, i.e., all sets of words have finitely
many minima. Our approach is inspired by [36] which, in the context of unstructured words,
presents the antichain approach as a Galois connection, and observes that the upward closure
of the quasi-order is a complete abstraction of concatenation according to the standard notion
of completeness in abstract interpretation [16]. We identify, in the context of structured
words, sufficient conditions on quasi-orders to enable the antichain approach, by defining the
class of language abstraction quasi-orders (which satisfy the finite basis property). Further,
we relax the syntactic congruence into a quasi-order that is a language abstraction of a given
OPL. In particular, we prove that the syntactic congruence itself is a language abstraction for
its language. Then, we design our inclusion algorithm based on a fixpoint characterization of
OPLs, which allows us to iterate breadth-first over all words accepted by a given OPA. Once
equipped with a language abstraction quasi-order, this fixpoint is guaranteed to terminate,
thus to synthesize a finite set T ⊆ L1 of membership queries for L2 which suffices to decide
whether L1 ⊆ L2 holds.

4.1 Language Abstraction by Quasi-order
Let E be a set of elements and ≼ be a binary relation over E. The relation ≼ is a quasi-order
when it is reflexive and transitive. A quasi-order ≼ over E is decidable if for all x, y ∈ E,
determining whether x ≼ y holds is computable. Given a subset X of E, we define its upward
closure with respect to the quasi-order ≼ by ≼↿X = {e ∈ E | ∃x ∈ X, x ≼ e}. Given two

ICALP 2023

129:12 Regular Methods for OPLs

A

q0

q1

q2

c
c

rq1

q0

Σ̂cr c r ε

c ⋖ =̇ ⋗
r ⋗ ⋗ ⋗
ε ⋖ ⋖ =̇

B

p0 p1

c, r

c, r

r

p0, p1 p0, p1

Figure 5 (left) OPA A over Σ̂cr recog-
nizing the VPL of well-matched call/return
words.

Figure 6 (right) OPA B over Σ̂cr recog-
nizing the regular language of words of even
length.

subsets X, Y ⊆ E the set X is a basis for Y with respect to ≼, denoted B(X ≼ Y), whenever
X ⊆ Y and ≼↿X = ≼↿Y . The quasi-order ≼ is a well quasi-order if and only if for each set
Y ⊆ E there exists a finite set X ⊆ E such that B(X ≼ Y). This property on bases is also
known as the finite basis property. Other equivalent definitions of well quasi-orders can be
found in the literature [23], we will use the following two:
(†) For every sequence {ei}i∈N in E, there exists i, j ∈ N with i < j such that ei ≼ ej .
(‡) There is no sequence {Xi}i∈N in 2E such that ≼↿X1 ⊊ ≼↿X2 ⊊ . . . holds.

Let L1, L2 be two languages. The main idea behind our inclusion algorithm is to compute
a finite subset T of L1, called a query-basis, such that T ⊆ L2 ⇔ L1 ⊆ L2. Then, L1 ⊆ L2
holds if and only if each word of T belongs to L2, which is checked via finitely many
membership queries. The computation of a query-basis consists of collecting enough words
of L1 to obtain a finite basis T for L1 with respect to a quasi-order ≼ that abstracts L2.
When ≼ is a well quasi-order, some basis is guaranteed to exist thanks to the finite basis
property. To ensure the equivalence L1 ⊆ L2 ⇔ T ⊆ L2 for any T such that B(T ≼ L1),
a counterexample w ∈ L1 \ L2 can be discarded (not included in T), only if it there exists
w0 ∈ T such that w0 ≼ w and w0 is also a counterexample. Thus, we introduce the language
saturation property asking a quasi-order ≼ to satisfy the following: for all w0, w ∈ Σ̂∗ if
w0 ≼ w and w0 ∈ L2 then w ∈ L2, or equivalently, ≼↿L2 = L2. Intuitively, language
saturation ensures the completeness of the language abstraction with respect to the inclusion.
Finally, to guarantee that the query-basis T is iteratively constructible with an effective
fixpoint computation, the quasi-order ≼ must be both chain-monotonic and decidable. We
now define the notion of language abstraction to identify the properties for a quasi-order over
structured words that allow an effectively computable query-basis, as was done in [25, 36] in
the context of Büchi automata for quasi-orders over unstructured infinite words.

▶ Definition 30 (language abstraction). Let L ⊆ Σ̂∗. A quasi-order ≼ over Σ̂∗ is a language
abstraction of L iff (1) it is decidable, (2) it is chain-monotonic, (3) it is a well quasi-order,
and (4) it saturates L.

In the next section, we provide an effective computation of a query-basis for an OPA,
thanks to a quasi-order that abstracts its language.

▶ Example 31. The operator precedence alphabet Σ̂cr of A and B from Figures 5 and 6
induces four families of words: (1) the words of Σ̂∗

=̇ where every c matches an r, (2) the
words of Σ̂∗

⋖ = Σ̂∗
≤⋖ \ Σ̂∗

=̇ where some c is pending for an r on its right, (3) the words of
Σ̂∗

⋗ = Σ̂∗
≥⋗ \ Σ̂∗

=̇ where some r is pending for a c on its left, and (4) all other words of
Σ̂∗

̸=̇= = Σ∗ \
(

Σ̂∗
≤⋖ ∪ Σ̂∗

≥⋗

)
.

T. A. Henzinger, P. Kebis, N. Mazzocchi, and N. E. Saraç 129:13

We focus on deciding whether L(B) is a subset of L(A) and suppose that we are given
the quasi-order ≪ that is a language abstraction of L(A). Additionally, we have that two
words compare with ≪ only if they belong to the same family, and we have the following
bases: B({cr} ≪ Σ̂∗

=̇), B({c} ≪ Σ̂∗
⋖), B({r} ≪ Σ̂∗

⋗), and B({rc} ≪ Σ̂∗
̸=̇=). We observe that

≪ saturates L(A) since Σ̂∗
=̇ ⊆ L(A) and Σ̂∗

≤⋖ , Σ̂∗
≥⋗ , Σ̂∗

̸=̇= ⊈ L(A).
Among the representatives cr, c, r, and rc, we can construct the set T = {cr, rc} since

c, r /∈ L(B). The set T is a query-basis for deciding whether L(B) is a subset of L(A). In
particular, rc ∈ T witnesses that L(B) ⊈ L(A).

Note that the syntactic congruence is a natural language abstraction of OPLs.

▶ Proposition 32. For every OPL L, ≡L is a language abstraction of L.

When the language to be abstracted is given by an OPA we are able to define a quasi-order,
called structural quasi-order, that is based on the underlying structure of the automaton.

▶ Definition 33 (structural quasi-order). Given an OPA A = (Q, I, F, ∆), we define the
relation ⩽A over Σ̂∗ as follows:

x ⩽A y ⇐⇒ x ≈ y ∧ ∀q, q′ ∈ Q, ∀γ ∈ Γ ∪ {⊥}
∧ 

fx(q, γ) ⊆ fy(q, γ)
gx(q, q′, γ) ⊆ gy(q, q′, γ)
(Φx(q, γ))⊤ ⊆ (Φy(q, γ))⊤

▶ Remark 34. For every OPA A, the quasi-order ⩽A relaxes the congruence ≡A from Section 3.
For every OPA A, the quasi-order ⩽A relaxes the congruence ≡A from Section 3.

Note that, for every OPA A, the set Q × (Γ ∪ {⊥}) is finite. Consequently, ⩽A is
computable, and it is a well quasi-order since there cannot exist an infinite sequence of
incomparable elements, i.e., (†) holds.

▶ Proposition 35. For every OPA A, ⩽A is a computable chain-monotonic well quasi-order.

Next, we establish that structural quasi-orders saturate their languages.

▶ Lemma 36. For every OPA A and w1, w2 ∈ Σ̂∗, if w1 ⩽A w2 and w1 ∈ L(A) then
w2 ∈ L(A).

The following comes as a direct consequence of Proposition 35 and Lemma 36.

▶ Corollary 37. For every OPA A, ⩽A is a language abstraction of L(A).

We continue Example 31, showing that the structural quasi-order agrees with the consid-
ered bases above.

▶ Example 38. The quasi-order ≪ described in Example 31 agrees with the structural
quasi-order ⩽A of the OPA A in Figure 5. Indeed, due to the constraint that two comparable
words x, y ∈ Σ̂∗ should be chain equivalent, i.e., x ≈ y, the quasi-order ⩽A compares only the
words from the same families among Σ̂∗

=̇, Σ̂∗
⋖, Σ̂∗

⋗, and Σ̂∗
̸=̇= . We also note that, for all words,

adding a factor in Σ̂∗
=̇ cannot change the accessibility in A since reading such a factor has no

effect on the stack or the current state. Additionally, reading several c in a row triggers a
self loop and reading several r is not possible in A. As a consequence, the base predicates
mentioned in Example 31 hold, that is, B({cr} ⩽A Σ̂∗

=̇), B({c} ⩽A Σ̂∗
⋖), B({r} ⩽A Σ̂∗

⋗),
and B({rc} ⩽A Σ̂∗

̸=̇=). Yet, we have that cr ⩽A ε because (q0, cr, ⊥) ∗ (q2, ε, ⟨c, q0⟩) but
(q0, ε, ⊥) / ∗ (q2, ε, ⟨c, q0⟩).

ICALP 2023

129:14 Regular Methods for OPLs

4.2 Fixpoint Characterization of Languages and Inclusion
In order to formulate our inclusion algorithm, it remains to give an effective computation of
a query-basis. We do so through a fixpoint characterization of the languages recognized by
OPAs. We introduce the function Cat to construct words that follow the runs of the given
OPA. Iterating the Cat function n ∈ N times captures all words of length up to n, and the
fixpoint of the iteration captures the entire language of a given OPA.

Let A = (Q, I, F, ∆) be an OPA. Consider a vector of set of words X⃗ that accesses its
fields with two states s, t ∈ Q, and three letters a, b, c ∈ Σ̂ ∪ {ε}. Intuitively, we aim at
constructing X⃗ iteratively such that, reading any w ∈ X⃗a,b,c

s,t from the configuration (s, wc, α)
where α⊤ = a allows reaching (t, c, β) where β⊤ = b in A. We recall that ⊥⊤ = ε. As
the base case, we take X⃗a,b,c

s,t = ε when a = b and s = t, otherwise X⃗a,b,c
s,t = ∅. Then, we

introduce operations (more explicitly, functions from sets of words to sets of words) that use
the transitivity of ∗ in A to extend the sets of X⃗. We first introduce:

CatShift(X⃗a,b,c
s,t) =

{
ub′v

a′, b′ ∈ Σ, q, s′, t′ ∈ Q, u ∈ X⃗a,a′,b′

s,s′ , v ∈ X⃗b′,b,c
t′,t ,

(s′, ⟨a′, q⟩⊥) b′ (t′, ⟨b′, q⟩⊥)

}

Essentially, CatShift adds ub′v to X⃗a,b,c
s,t when some run over u can be appended with b′

thanks to a shift-transition, and some run of v requires starting with b′ at the top of the
stack. Next, we introduce:

CatChain(X⃗a,b,c
s,t) =

{
ub′v

a′, b′, c′ ∈ Σ, q, s′, t′ ∈ Q, u ∈ X⃗a,b,b′

s,q , v ∈ X⃗b′,c′,c
s′,t′ ,

b ⋖ b′ ∧ (q, ⊥) b′ (s′, ⟨b′, q⟩⊥) ∧ (t′, ⟨c′, q⟩⊥) c (t, ⊥)

}

Intuitively, CatChain adds ub′v to X⃗a,b,c
s,t when some run over u can be appended with b′

thanks to a push-transition, and some run of v requires starting with b′ at the top of the
stack. Additionally, b′ is guaranteed to be removed from the stack thanks to a pop-transition
on the incoming letter c. Finally, we define:

Cat(X⃗a,b,c
s,t) = X⃗a,b,c

s,t ∪ CatShift(X⃗a,b,c
s,t) ∪ CatChain(X⃗a,b,c

s,t)

Note that the function Cat never removes words from the sets of X⃗, i.e., X⃗a,b,c
s,t ⊆ Cat(X⃗a,b,c

s,t).
Iterating the Cat function n ∈ N times allows us to extend the sets of X⃗ to words of length
at most n that follow some run of A. In particular, Cat characterizes the language of A by
w ∈ L(A) if and only if w ∈ Cat∗(X⃗ε,ε,ε

qI ,qF
) for some qI ∈ I and qF ∈ F . This is formalized by

the following lemma.

▶ Lemma 39. Let A = (Q, I, F, ∆) be an OPA, and let Γ = Σ × Q. Considering U⃗a,b,c
s,t = ε

when a = b and s = t, otherwise U⃗a,b,c
s,t = ∅. The following holds for all n > 0:

Catn(U⃗a,b,c
s,t)=

{
u | (s, uc, α) ∗(t, c, β), |u| = n, α ∈ Θa, β ∈ Θb, au ∈ Σ̂∗

≤⋖ , uc ∈ Σ̂∗
≥⋗ , u▷ = b

}
where, for all a ∈ Σ̂, the set of stack symbols Θa ⊆ Γ ∪ {⊥} is defined by Θa = {⊥} if a = ε,
and Θa = {⟨a, q⟩ | q ∈ Q} otherwise.

We continue Example 31, showing that Cat agrees with the considered query-basis.

▶ Example 40. Let U⃗a,b,c
s,t = ε when a = b and s = t, otherwise U⃗a,b,c

s,t = ∅. Thanks to
Lemma 39, we have that L(B) = Cat∗(U⃗ε,ε,ε

p0,p0
). First observe that c, r /∈ Cat∗(U⃗ε,ε,ε

p0,p0
). This

comes from Lemma 39 and the fact that there is no run of B from p0 to p0 that reads a
single letter. Next, we prove that cr, rc ∈ Cat2(U⃗ε,ε,ε

p0,p0
).

T. A. Henzinger, P. Kebis, N. Mazzocchi, and N. E. Saraç 129:15

We show that r ∈ Cat(U⃗ε,ε,c
p0,p1

) by CatChain. Indeed, we have ε ∈ U⃗ε,ε,r
p0,p0

, ε ∈ U⃗r,r,c
p1,p1

,
ε ⋖ r, and (p0, ⊥) r (p1, ⟨r, p1⟩⊥) c (p1, ⊥). Then, rc ∈ Cat2(U⃗ε,ε,ε

p0,p0
) by CatChain since

r ∈ Cat(U⃗ε,ε,c
p0,p1

), ε ∈ U⃗ c,c,ε
p0,p0

, ε ⋖ c, and (p1, ⊥) c (p0, ⟨c, p1⟩⊥) ε (p1, ⊥).
We show that r ∈ Cat(U⃗ c,r,ε

p1,p0
) by CatShift. Indeed, we have ε ∈ U⃗ c,c,r

p1,p1
, ε ∈ U⃗r,r,ε

p0,p0
, and

(p1, ⟨c, p⟩⊥) r (p0, ⟨r, p⟩⊥), for all p ∈ {p0, p1}. Then, cr ∈ Cat2(U⃗ε,ε,ε
p0,p0

) by CatChain since
ε ∈ U⃗ε,ε,c

p0,p0
, r ∈ Cat(U⃗ c,r,ε

p1,p0
), ε ⋖ c, (p0, ⊥) c (p1, ⟨c, p0⟩⊥), and (p0, ⟨r, p0⟩) ε (p0, ⊥).

The computation of a query-basis for deciding whether L1 is a subset of L2 consists
of iterating Cat to collect enough words to obtain a vector of finite bases with respect
to the quasi-order ≼ that is a language abstraction of L2. In other words, we search for
n ∈ N such that Catn(X⃗a,b,c

s,t) is a basis for limk 7→∞ Catk(U⃗a,b,c
s,t) with respect to ≼. The

following lemma shows that when B(Catn(X⃗a,b,c
s,t) ≼ Catn+1(X⃗s,b,c

s,t)) holds for some n ∈ N,
then B(Catn(X⃗a,b,c

s,t) ≼ limk 7→∞ Catk(X⃗a,b,c
s,t)) holds also, as long as the used quasi-order is

chain-monotonic.

▶ Lemma 41. Let ≼ be a chain-monotonic quasi-order over Σ̂∗. For every A = (Q, I, F, ∆)
and X⃗, Y⃗ such that B(X⃗a,b,c

s,t ≼ Y⃗ a,b,c
s,t) holds for all s, t ∈ Q and all a, b, c ∈ Σ ∪ {ε}, we have

B(Cat(X⃗a,b,c
s,t) ≼ Cat(Y⃗ a,b,c

s,t)) holds also for all s, t ∈ Q and all a, b, c ∈ Σ ∪ {ε}.

Input: an OPL L1 given by the OPA (Q, I, F, ∆)
Input: a language L2 with a procedure deciding if w ∈ L2
Input: a quasi-order ≼ that is a language abstraction of L2
Output: Returns ok if L1 ⊆ L2 and ko otherwise

1 Function:
2 let U⃗ as U⃗a,b,c

s,t := ε if a = b ∧ s = t else U⃗a,b,c
s,t := ∅

3 X⃗ := U⃗

4 repeat
5 let X⃗ as X⃗a,b,c

s,t := Cat(X⃗a,b,c
s,t)

6 until B(X⃗a,b,c
s,t ≼ Cat(X⃗a,b,c

s,t)) for all s, t ∈ Q and all a, b, c ∈ Σ ∪ {ε}
7 for each (qI , qF) ∈ I × F do
8 for each w ∈ X⃗ε,ε,ε

qI ,qF
do

9 if w /∈ L2 then return ko
10 return ok

Figure 7 Antichain inclusion algorithm.

Our inclusion algorithm is given in Figure 7. We can prove that it always terminates
thanks to the finite base property of language abstractions. Additionally, its correctness is
based on the following: Lemmas 39 and 41 ensure that the repeat-until loop computes a basis
of the language L1 given by an OPA while the language saturation ensures the completeness
of this basis with respect to the inclusion problem.

▶ Theorem 42. The algorithm from Figure 7 terminates and decides language inclusion.

We establish that our inclusion algorithm for OPAs is in ExpTime as a consequence of
Lemma 26, Remark 34, the facts that the vector X⃗ maintains polynomially many sets of
words and the membership problem for OPAs is in PTime (Remark 17). We recall that
inclusion and universality are ExpTime-C for both OPLs and VPLs [3, 43].

ICALP 2023

129:16 Regular Methods for OPLs

▶ Theorem 43. For all OPAs A, B with respectively nA, nB states and m input letters, the
inclusion algorithm from Figure 7 with ⩽B as the language abstraction quasi-order decides if
L(A) ⊆ L(B) in time O(m × nA)O(m×nB)O(1) .

5 Conclusion

We provided, for the first time, a syntactic congruence that characterizes operator precedence
languages (OPLs) in the following exact sense: for any language L, the syntactic congruence
has finitely many equivalence classes if and only if L is an OPL. Second, we gave sufficient
conditions for a quasi-order to yield an antichain algorithm for solving the universality and
language inclusion problems for nondeterministic automata. These conditions are satisfied
by our syntactic congruence, which, like any finite congruence, is monotonic for structured
words (i.e., chain-monotonic) and saturates its language. This results in an exponential-time
antichain algorithm for the inclusion of operator precedence automata (OPAs), which is
the optimal worst-case complexity for the ExpTime-hard problem. This will allow efficient
symbolic implementations of antichain algorithms to be extended to OPLs.

The possibility of future research directions regarding OPLs is still vast. One promising
direction is to study OPAs from a runtime verification [6] perspective. For example, extending
the runtime approaches for visibly pushdown automata [10, 49], one can study the monitor
synthesis and right-universality problems for OPAs to establish them as an expressively
powerful class of monitors. Also other methods developed for visibly pushdown automata may
be generalizable to OPAs based on our syntactic congruence, such as learning algorithms [41].

While OPLs characterize the weakest known restrictions on stack operations which enable
decidability of the inclusion problem, one may try to push the frontier of decidability by
relaxing the restrictions on stack operations further. Investigating similar restrictions in
the context of observability for counter automata can also provide new decidability results.
For example, [7] shows that hardcoding the counter operations (increments and decrements)
in the input letters yields decidable inclusion for one-counter automata. Another natural
direction is to investigate quantitative versions of OPAs, for instance, through the addition
of Presburger acceptance constraints, and to identify decidable fragments thereof [27].

References

1 Rajeev Alur and Dana Fisman. Colored nested words. Formal Methods Syst. Des., 58(3):347–
374, 2021. doi:10.1007/s10703-021-00384-2.

2 Rajeev Alur, Viraj Kumar, P. Madhusudan, and Mahesh Viswanathan. Congruences for visibly
pushdown languages. In Luís Caires, Giuseppe F. Italiano, Luís Monteiro, Catuscia Palamidessi,
and Moti Yung, editors, Automata, Languages and Programming, 32nd International Collo-
quium, ICALP 2005, Lisbon, Portugal, July 11-15, 2005, Proceedings, volume 3580 of Lecture
Notes in Computer Science, pages 1102–1114. Springer, 2005. doi:10.1007/11523468_89.

3 Rajeev Alur and P. Madhusudan. Visibly pushdown languages. In László Babai, editor,
Proceedings of the 36th Annual ACM Symposium on Theory of Computing, Chicago, IL, USA,
June 13-16, 2004, pages 202–211. ACM, 2004. doi:10.1145/1007352.1007390.

4 André Arnold. A syntactic congruence for rational omega-language. Theor. Comput. Sci.,
39:333–335, 1985. doi:10.1016/0304-3975(85)90148-3.

5 Alessandro Barenghi, Stefano Crespi-Reghizzi, Dino Mandrioli, and Matteo Pradella. Parallel
parsing of operator precedence grammars. Inf. Process. Lett., 113(7):245–249, 2013. doi:
10.1016/j.ipl.2013.01.008.

https://doi.org/10.1007/s10703-021-00384-2
https://doi.org/10.1007/11523468_89
https://doi.org/10.1145/1007352.1007390
https://doi.org/10.1016/0304-3975(85)90148-3
https://doi.org/10.1016/j.ipl.2013.01.008
https://doi.org/10.1016/j.ipl.2013.01.008

T. A. Henzinger, P. Kebis, N. Mazzocchi, and N. E. Saraç 129:17

6 Ezio Bartocci and Yliès Falcone, editors. Lectures on Runtime Verification – Introductory
and Advanced Topics, volume 10457 of Lecture Notes in Computer Science. Springer, 2018.
doi:10.1007/978-3-319-75632-5.

7 Benedikt Bollig. One-counter automata with counter observability. In Akash Lal, S. Akshay,
Saket Saurabh, and Sandeep Sen, editors, 36th IARCS Annual Conference on Foundations of
Software Technology and Theoretical Computer Science, FSTTCS 2016, December 13-15, 2016,
Chennai, India, volume 65 of LIPIcs, pages 20:1–20:14. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2016. doi:10.4230/LIPIcs.FSTTCS.2016.20.

8 Ahmed Bouajjani, Peter Habermehl, Lukás Holík, Tayssir Touili, and Tomás Vojnar. Antichain-
based universality and inclusion testing over nondeterministic finite tree automata. In Oscar H.
Ibarra and Bala Ravikumar, editors, Implementation and Applications of Automata, 13th
International Conference, CIAA 2008, San Francisco, California, USA, July 21-24, 2008.
Proceedings, volume 5148 of Lecture Notes in Computer Science, pages 57–67. Springer, 2008.
doi:10.1007/978-3-540-70844-5_7.

9 Thomas Brihaye, Véronique Bruyère, Laurent Doyen, Marc Ducobu, and Jean-François Raskin.
Antichain-based QBF solving. In Tevfik Bultan and Pao-Ann Hsiung, editors, Automated
Technology for Verification and Analysis, 9th International Symposium, ATVA 2011, Taipei,
Taiwan, October 11-14, 2011. Proceedings, volume 6996 of Lecture Notes in Computer Science,
pages 183–197. Springer, 2011. doi:10.1007/978-3-642-24372-1_14.

10 Véronique Bruyère, Marc Ducobu, and Olivier Gauwin. Right-universality of visibly push-
down automata. In Axel Legay and Saddek Bensalem, editors, Runtime Verification –
4th International Conference, RV 2013, Rennes, France, September 24-27, 2013. Proceed-
ings, volume 8174 of Lecture Notes in Computer Science, pages 76–93. Springer, 2013.
doi:10.1007/978-3-642-40787-1_5.

11 Véronique Bruyère, Marc Ducobu, and Olivier Gauwin. Visibly pushdown automata: Univer-
sality and inclusion via antichains. In Adrian-Horia Dediu, Carlos Martín-Vide, and Bianca
Truthe, editors, Language and Automata Theory and Applications – 7th International Confer-
ence, LATA 2013, Bilbao, Spain, April 2-5, 2013. Proceedings, volume 7810 of Lecture Notes
in Computer Science, pages 190–201. Springer, 2013. doi:10.1007/978-3-642-37064-9_18.

12 Véronique Bruyère, Guillermo A. Pérez, and Gaëtan Staquet. Learning realtime one-counter
automata. In Dana Fisman and Grigore Rosu, editors, Tools and Algorithms for the Construc-
tion and Analysis of Systems – 28th International Conference, TACAS 2022, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2022, Munich,
Germany, April 2-7, 2022, Proceedings, Part I, volume 13243 of Lecture Notes in Computer
Science, pages 244–262. Springer, 2022. doi:10.1007/978-3-030-99524-9_13.

13 Krishnendu Chatterjee, Laurent Doyen, Thomas A. Henzinger, and Jean-François Raskin.
Algorithms for omega-regular games with imperfect information, . In Zoltán Ésik, editor,
Computer Science Logic, 20th International Workshop, CSL 2006, 15th Annual Conference of
the EACSL, Szeged, Hungary, September 25-29, 2006, Proceedings, volume 4207 of Lecture
Notes in Computer Science, pages 287–302. Springer, 2006. doi:10.1007/11874683_19.

14 Michele Chiari, Dino Mandrioli, and Matteo Pradella. Operator precedence temporal logic and
model checking. Theor. Comput. Sci., 848:47–81, 2020. doi:10.1016/j.tcs.2020.08.034.

15 Christian Choffrut. Minimizing subsequential transducers: a survey. Theor. Comput. Sci.,
292(1):131–143, 2003. doi:10.1016/S0304-3975(01)00219-5.

16 Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model for
static analysis of programs by construction or approximation of fixpoints. In Robert M.
Graham, Michael A. Harrison, and Ravi Sethi, editors, Conference Record of the Fourth ACM
Symposium on Principles of Programming Languages, Los Angeles, California, USA, January
1977, pages 238–252. ACM, 1977. doi:10.1145/512950.512973.

17 Stefano Crespi-Reghizzi, Giovanni Guida, and Dino Mandrioli. Operator precedence grammars
and the noncounting property. SIAM J. Comput., 10(1):174–191, 1981. doi:10.1137/0210013.

ICALP 2023

https://doi.org/10.1007/978-3-319-75632-5
https://doi.org/10.4230/LIPIcs.FSTTCS.2016.20
https://doi.org/10.1007/978-3-540-70844-5_7
https://doi.org/10.1007/978-3-642-24372-1_14
https://doi.org/10.1007/978-3-642-40787-1_5
https://doi.org/10.1007/978-3-642-37064-9_18
https://doi.org/10.1007/978-3-030-99524-9_13
https://doi.org/10.1007/11874683_19
https://doi.org/10.1016/j.tcs.2020.08.034
https://doi.org/10.1016/S0304-3975(01)00219-5
https://doi.org/10.1145/512950.512973
https://doi.org/10.1137/0210013

129:18 Regular Methods for OPLs

18 Stefano Crespi-Reghizzi, Violetta Lonati, Dino Mandrioli, and Matteo Pradella. Toward a
theory of input-driven locally parsable languages. Theor. Comput. Sci., 658:105–121, 2017.
doi:10.1016/j.tcs.2016.05.003.

19 Stefano Crespi-Reghizzi and Dino Mandrioli. Algebraic properties of structured context-free
languages: old approaches and novel developments. CoRR, abs/0907.2130, 2009. arXiv:
0907.2130.

20 Stefano Crespi-Reghizzi and Dino Mandrioli. Operator precedence and the visibly pushdown
property. J. Comput. Syst. Sci., 78(6):1837–1867, 2012. doi:10.1016/j.jcss.2011.12.006.

21 Stefano Crespi-Reghizzi, Dino Mandrioli, and David F. Martin. Algebraic properties of operator
precedence languages. Inf. Control., 37(2):115–133, 1978. doi:10.1016/S0019-9958(78)
90474-6.

22 Stefano Crespi-Reghizzi and Matteo Pradella. Beyond operator-precedence grammars and
languages. J. Comput. Syst. Sci., 113:18–41, 2020. doi:10.1016/j.jcss.2020.04.006.

23 Aldo de Luca and Stefano Varricchio. Well quasi-orders and regular languages. Acta Informatica,
31(6):539–557, 1994. doi:10.1007/BF01213206.

24 Kyveli Doveri, Pierre Ganty, and Luka Hadži-Ðokić. Antichains Algorithms for the Inclusion
Problem Between ω-VPL. In TACAS’23: Proc. 29th Int. Conf. on Tools and Algorithms for
the Construction and Analysis of Systems, volume 13993 of LNCS. Springer, 2023.

25 Kyveli Doveri, Pierre Ganty, and Nicolas Mazzocchi. Forq-based language inclusion formal
testing. In Sharon Shoham and Yakir Vizel, editors, Computer Aided Verification – 34th
International Conference, CAV 2022, Haifa, Israel, August 7-10, 2022, Proceedings, Part
II, volume 13372 of Lecture Notes in Computer Science, pages 109–129. Springer, 2022.
doi:10.1007/978-3-031-13188-2_6.

26 Kyveli Doveri, Pierre Ganty, Francesco Parolini, and Francesco Ranzato. Inclusion testing of
büchi automata based on well-quasiorders. In Serge Haddad and Daniele Varacca, editors,
32nd International Conference on Concurrency Theory, CONCUR 2021, August 24-27, 2021,
Virtual Conference, volume 203 of LIPIcs, pages 3:1–3:22. Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2021. doi:10.4230/LIPIcs.CONCUR.2021.3.

27 Manfred Droste, Stefan Dück, Dino Mandrioli, and Matteo Pradella. Weighted operator
precedence languages. Inf. Comput., 282:104658, 2022. doi:10.1016/j.ic.2020.104658.

28 Tomás Fiedor, Lukás Holík, Ondrej Lengál, and Tomás Vojnar. Nested antichains for WS1S.
In Christel Baier and Cesare Tinelli, editors, Tools and Algorithms for the Construction
and Analysis of Systems – 21st International Conference, TACAS 2015, Held as Part of the
European Joint Conferences on Theory and Practice of Software, ETAPS 2015, London, UK,
April 11-18, 2015. Proceedings, volume 9035 of Lecture Notes in Computer Science, pages
658–674. Springer, 2015. doi:10.1007/978-3-662-46681-0_59.

29 Tomás Fiedor, Lukás Holík, Ondrej Lengál, and Tomás Vojnar. Nested antichains for WS1S.
Acta Informatica, 56(3):205–228, 2019. doi:10.1007/s00236-018-0331-z.

30 Emmanuel Filiot, Olivier Gauwin, and Nathan Lhote. Logical and algebraic characterizations
of rational transductions. Log. Methods Comput. Sci., 15(4), 2019. doi:10.23638/LMCS-15(4:
16)2019.

31 Emmanuel Filiot, Naiyong Jin, and Jean-François Raskin. An antichain algorithm for LTL
realizability. In Ahmed Bouajjani and Oded Maler, editors, Computer Aided Verification, 21st
International Conference, CAV 2009, Grenoble, France, June 26 – July 2, 2009. Proceedings,
volume 5643 of Lecture Notes in Computer Science, pages 263–277. Springer, 2009. doi:
10.1007/978-3-642-02658-4_22.

32 Michael J. Fischer. Some properties of precedence languages. In Patrick C. Fischer, Seymour
Ginsburg, and Michael A. Harrison, editors, Proceedings of the 1st Annual ACM Symposium
on Theory of Computing, May 5-7, 1969, Marina del Rey, CA, USA, pages 181–190. ACM,
1969. doi:10.1145/800169.805432.

33 Robert W. Floyd. Syntactic analysis and operator precedence. J. ACM, 10(3):316–333, 1963.
doi:10.1145/321172.321179.

https://doi.org/10.1016/j.tcs.2016.05.003
https://arxiv.org/abs/0907.2130
https://arxiv.org/abs/0907.2130
https://doi.org/10.1016/j.jcss.2011.12.006
https://doi.org/10.1016/S0019-9958(78)90474-6
https://doi.org/10.1016/S0019-9958(78)90474-6
https://doi.org/10.1016/j.jcss.2020.04.006
https://doi.org/10.1007/BF01213206
https://doi.org/10.1007/978-3-031-13188-2_6
https://doi.org/10.4230/LIPIcs.CONCUR.2021.3
https://doi.org/10.1016/j.ic.2020.104658
https://doi.org/10.1007/978-3-662-46681-0_59
https://doi.org/10.1007/s00236-018-0331-z
https://doi.org/10.23638/LMCS-15(4:16)2019
https://doi.org/10.23638/LMCS-15(4:16)2019
https://doi.org/10.1007/978-3-642-02658-4_22
https://doi.org/10.1007/978-3-642-02658-4_22
https://doi.org/10.1145/800169.805432
https://doi.org/10.1145/321172.321179

T. A. Henzinger, P. Kebis, N. Mazzocchi, and N. E. Saraç 129:19

34 Pierre Ganty, Elena Gutiérrez, and Pedro Valero. A congruence-based perspective on automata
minimization algorithms. In Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen,
editors, 44th International Symposium on Mathematical Foundations of Computer Science,
MFCS 2019, August 26-30, 2019, Aachen, Germany, volume 138 of LIPIcs, pages 77:1–77:14.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:10.4230/LIPIcs.MFCS.2019.
77.

35 Pierre Ganty, Francesco Ranzato, and Pedro Valero. Language inclusion algorithms as
complete abstract interpretations. In Bor-Yuh Evan Chang, editor, Static Analysis – 26th
International Symposium, SAS 2019, Porto, Portugal, October 8-11, 2019, Proceedings, volume
11822 of Lecture Notes in Computer Science, pages 140–161. Springer, 2019. doi:10.1007/
978-3-030-32304-2_8.

36 Pierre Ganty, Francesco Ranzato, and Pedro Valero. Complete abstractions for checking
language inclusion. ACM Trans. Comput. Log., 22(4):22:1–22:40, 2021. doi:10.1145/3462673.

37 Ferenc Gécseg. Classes of tree languages determined by classes of monoids. Int. J. Found.
Comput. Sci., 18(6):1237–1246, 2007. doi:10.1142/S0129054107005285.

38 Jelena Ignjatovic, Miroslav Ciric, and Stojan Bogdanovic. Determinization of fuzzy automata
with membership values in complete residuated lattices. Inf. Sci., 178(1):164–180, 2008.
doi:10.1016/j.ins.2007.08.003.

39 Barbara Jobstmann and Roderick Bloem. Optimizations for LTL synthesis. In Formal Methods
in Computer-Aided Design, 6th International Conference, FMCAD 2006, San Jose, California,
USA, November 12-16, 2006, Proceedings, pages 117–124. IEEE Computer Society, 2006.
doi:10.1109/FMCAD.2006.22.

40 Nils Klarlund, Anders Møller, and Michael I. Schwartzbach. MONA implementation secrets.
Int. J. Found. Comput. Sci., 13(4):571–586, 2002. doi:10.1142/S012905410200128X.

41 Viraj Kumar, P. Madhusudan, and Mahesh Viswanathan. Minimization, learning, and
conformance testing of boolean programs. In Christel Baier and Holger Hermanns, editors,
CONCUR 2006 – Concurrency Theory, 17th International Conference, CONCUR 2006, Bonn,
Germany, August 27-30, 2006, Proceedings, volume 4137 of Lecture Notes in Computer Science,
pages 203–217. Springer, 2006. doi:10.1007/11817949_14.

42 Martin Lange. P-hardness of the emptiness problem for visibly pushdown languages. Inf.
Process. Lett., 111(7):338–341, 2011. doi:10.1016/j.ipl.2010.12.013.

43 Violetta Lonati, Dino Mandrioli, Federica Panella, and Matteo Pradella. Operator precedence
languages: Their automata-theoretic and logic characterization. SIAM J. Comput., 44(4):1026–
1088, 2015. doi:10.1137/140978818.

44 Oded Maler and Ludwig Staiger. On syntactic congruences for omega-languages. Theor.
Comput. Sci., 183(1):93–112, 1997. doi:10.1016/S0304-3975(96)00312-X.

45 Dino Mandrioli and Matteo Pradella. Generalizing input-driven languages: Theoretical and
practical benefits. Comput. Sci. Rev., 27:61–87, 2018. doi:10.1016/j.cosrev.2017.12.001.

46 Jakub Michaliszyn and Jan Otop. Learning deterministic visibly pushdown automata under
accessible stack. In Stefan Szeider, Robert Ganian, and Alexandra Silva, editors, 47th
International Symposium on Mathematical Foundations of Computer Science, MFCS 2022,
August 22-26, 2022, Vienna, Austria, volume 241 of LIPIcs, pages 74:1–74:16. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.MFCS.2022.74.

47 Jean-Eric Pin. Profinite methods in automata theory. In Susanne Albers and Jean-Yves
Marion, editors, 26th International Symposium on Theoretical Aspects of Computer Science,
STACS 2009, February 26-28, 2009, Freiburg, Germany, Proceedings, volume 3 of LIPIcs,
pages 31–50. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Germany, 2009. doi:
10.4230/LIPIcs.STACS.2009.1856.

48 Francesco Pontiggia, Michele Chiari, and Matteo Pradella. Verification of programs with
exceptions through operator precedence automata. In Radu Calinescu and Corina S. Pasareanu,
editors, Software Engineering and Formal Methods – 19th International Conference, SEFM
2021, Virtual Event, December 6-10, 2021, Proceedings, volume 13085 of Lecture Notes in
Computer Science, pages 293–311. Springer, 2021. doi:10.1007/978-3-030-92124-8_17.

ICALP 2023

https://doi.org/10.4230/LIPIcs.MFCS.2019.77
https://doi.org/10.4230/LIPIcs.MFCS.2019.77
https://doi.org/10.1007/978-3-030-32304-2_8
https://doi.org/10.1007/978-3-030-32304-2_8
https://doi.org/10.1145/3462673
https://doi.org/10.1142/S0129054107005285
https://doi.org/10.1016/j.ins.2007.08.003
https://doi.org/10.1109/FMCAD.2006.22
https://doi.org/10.1142/S012905410200128X
https://doi.org/10.1007/11817949_14
https://doi.org/10.1016/j.ipl.2010.12.013
https://doi.org/10.1137/140978818
https://doi.org/10.1016/S0304-3975(96)00312-X
https://doi.org/10.1016/j.cosrev.2017.12.001
https://doi.org/10.4230/LIPIcs.MFCS.2022.74
https://doi.org/10.4230/LIPIcs.STACS.2009.1856
https://doi.org/10.4230/LIPIcs.STACS.2009.1856
https://doi.org/10.1007/978-3-030-92124-8_17

129:20 Regular Methods for OPLs

49 Grigore Rosu, Feng Chen, and Thomas Ball. Synthesizing monitors for safety properties:
This time with calls and returns. In Martin Leucker, editor, Runtime Verification, 8th
International Workshop, RV 2008, Budapest, Hungary, March 30, 2008. Selected Papers,
volume 5289 of Lecture Notes in Computer Science, pages 51–68. Springer, 2008. doi:
10.1007/978-3-540-89247-2_4.

50 Nguyen Van Tang and Hitoshi Ohsaki. On model checking for visibly pushdown automata. In
Adrian-Horia Dediu and Carlos Martín-Vide, editors, Language and Automata Theory and
Applications – 6th International Conference, LATA 2012, A Coruña, Spain, March 5-9, 2012.
Proceedings, volume 7183 of Lecture Notes in Computer Science, pages 408–419. Springer,
2012. doi:10.1007/978-3-642-28332-1_35.

51 Niklaus Wirth and Helmut Weber. EULER: a generalization of ALGOL and it formal definition:
Part 1. Commun. ACM, 9(1):13–25, 1966. doi:10.1145/365153.365162.

52 Martin De Wulf, Laurent Doyen, Thomas A. Henzinger, and Jean-François Raskin. Antichains:
A new algorithm for checking universality of finite automata. In Thomas Ball and Robert B.
Jones, editors, Computer Aided Verification, 18th International Conference, CAV 2006, Seattle,
WA, USA, August 17-20, 2006, Proceedings, volume 4144 of Lecture Notes in Computer Science,
pages 17–30. Springer, 2006. doi:10.1007/11817963_5.

53 Martin De Wulf, Laurent Doyen, Nicolas Maquet, and Jean-François Raskin. Antichains:
Alternative algorithms for LTL satisfiability and model-checking. In C. R. Ramakrishnan and
Jakob Rehof, editors, Tools and Algorithms for the Construction and Analysis of Systems,
14th International Conference, TACAS 2008, Held as Part of the Joint European Conferences
on Theory and Practice of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6,
2008. Proceedings, volume 4963 of Lecture Notes in Computer Science, pages 63–77. Springer,
2008. doi:10.1007/978-3-540-78800-3_6.

https://doi.org/10.1007/978-3-540-89247-2_4
https://doi.org/10.1007/978-3-540-89247-2_4
https://doi.org/10.1007/978-3-642-28332-1_35
https://doi.org/10.1145/365153.365162
https://doi.org/10.1007/11817963_5
https://doi.org/10.1007/978-3-540-78800-3_6

Positivity Problems for Reversible Linear
Recurrence Sequences
George Kenison #

Institute of Logic and Computation, TU Wien, Austria

Joris Nieuwveld #

Max Planck Institute for Software Systems, Saarland Informatics Campus, Saarbrücken, Germany

Joël Ouaknine #

Max Planck Institute for Software Systems, Saarland Informatics Campus, Saarbrücken, Germany

James Worrell #

Department of Computer Science, University of Oxford, UK

Abstract
It is a longstanding open problem whether there is an algorithm to decide the Positivity Problem for
linear recurrence sequences (LRS) over the integers, namely whether given such a sequence, all its
terms are non-negative. Decidability is known for LRS of order 5 or less, i.e., for those sequences in
which every new term depends linearly on the previous five (or fewer) terms. For simple LRS (i.e.,
those sequences whose characteristic polynomials have no repeated roots), decidability of Positivity
is known up to order 9.

In this paper, we focus on the important subclass of reversible LRS, i.e., those integer LRS
⟨un⟩∞

n=0 whose bi-infinite completion ⟨un⟩∞
n=−∞ also takes exclusively integer values; a typical

example is the classical Fibonacci (bi-)sequence ⟨. . . , 5, −3, 2, −1, 1, 0, 1, 1, 2, 3, 5, . . .⟩. Our main
results are that Positivity is decidable for reversible LRS of order 11 or less, and for simple reversible
LRS of order 17 or less.

2012 ACM Subject Classification Mathematics of computing → Discrete mathematics; Computing
methodologies → Algebraic algorithms

Keywords and phrases The Positivity Problem, Linear Recurrence Sequences, Verification

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.130

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Funding George Kenison: Work supported by WWTF ICT19-018 grant ProbInG and ERC Consol-
idator Grant ARTIST 101002685.
Joël Ouaknine: Also affiliated with Keble College, Oxford as emmy.network Fellow, and supported
by DFG grant 389792660 as part of TRR 248 (see https://perspicuous-computing.science).
James Worrell: Work supported by UKRI Frontier Research Grant EP/X033813/1.

1 Introduction

The Positivity Problem

The class of threshold problems considers whether a given loop program’s variables remain
above a fixed threshold before and after each iteration of the loop. In automated verification,
this class of decision problems is relevant to program correctness, and particularly questions
regarding termination, persistence, and reachability. The moniker Positivity is used when
the chosen threshold is zero. In this paper, we shall consider the Positivity Problem (and its
variants) for a particular class of integer-valued linear recurrence sequences.

EA
T
C
S

© George Kenison, Joris Nieuwveld, Joël Ouaknine, and James Worrell;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 130; pp. 130:1–130:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:george.kenison@tuwien.ac.at
mailto:jnieuwve@mpi-sws.org
mailto:joel@mpi-sws.org
mailto:jbw@cs.ox.ac.uk
https://doi.org/10.4230/LIPIcs.ICALP.2023.130
https://emmy.network
https://perspicuous-computing.science
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

130:2 Positivity Problems for Reversible Linear Recurrence Sequences

An integer-valued linear recurrence sequence (LRS) ⟨un⟩n satisfies a relation of the form

un+d = ad−1un+d−1 + · · ·+ a1un+1 + a0un (1)

where the coefficients ad−1, . . . , a1, a0 ∈ Z and, without loss of generality, we can assume that
a0 ≠ 0. The sequence ⟨un⟩n is then wholly determined by the recurrence relation and the
initial values u0, u1, . . . , ud−1. The relation in (1) is said to have length d and the order of an
LRS ⟨un⟩n is equal to the length of the shortest relation that ⟨un⟩n satisfies. The polynomial
f(X) = Xd − ad−1Xd−1 − · · · − a1X − a0 is the characteristic polynomial associated with
relation (1).

Given an LRS ⟨un⟩n, the Positivity Problem asks to determine whether un ≥ 0 for each
n ∈ N0. Positivity is a longstanding open problem and is intimately related to the well-known
Skolem Problem, which asks to determine whether an LRS vanishes at some term [6, 8].
Indeed, if one could establish decidability of Positivity, then decidability of Skolem would
necessarily follow (cf. [13]). One of the motivations to study Positivity lies in its connections
to program verification [15]. Take, for example, the following linear loop P with inputs
w, b ∈ Zd and A ∈ Zd×d where

P : v ← w; while b⊤ · v ≥ 0 do v ← Av. (2)

Let ⟨un⟩n be the LRS with terms given by un = b⊤Anw. It is clear that loop P terminates
if and only if there exists an n ∈ N0 such that un < 0. Conversely, to each LRS ⟨un⟩n we
can associate a linear loop of the form (2): one need only take A to be the transpose of the
companion matrix associated with ⟨un⟩n so that

A =


ad−1 1 · · · 0 0

... 0
. . . 0 0

a2 0 · · · 1 0
a1 0 · · · 0 1
a0 0 · · · 0 0

 , b⊤ = (ud−1, . . . , u1, u0), and w = (1, 0, . . . , 0)⊤

in order to recover the terms un+d−1 = b⊤Anw.
Variants of the Positivity Problem have also garnered attention in the literature. For

example, the Ultimate Positivity Problem weakens the guard clause: given an LRS ⟨un⟩n,
determine whether there exists an N ∈ N such that un ≥ 0 if n > N . By contrast, the
Simple Positivity Problem restricts the class of sequences under consideration to those that
are simple. Here an LRS ⟨un⟩n is simple if each of the roots of the associated characteristic
polynomial has algebraic multiplicity one. In this paper, we focus on the Reversible Positivity
Problem, i.e., the restriction of the Positivity Problem to the class of LRS that are reversible
(as defined below).

Background and Motivation

Lipton et al. [11] coined the term reversible to describe the class of LRS that assume exclusively
integer values, whether the sequences are expanded forwards or backwards. Equivalently,
such LRS can be shown to satisfy relations of the form (1) with the condition a0 = ±1 (or,
alternatively, the associated characteristic polynomial satisfies f(0) = ±1). The subclass
of while loops (as in (2)) naturally associated with reversible sequences have unimodular
update matrices. The inverse A−1 of a unimodular matrix A is likewise unimodular. Thus
the uniquely defined bi-infinite extension ⟨un⟩∞n=−∞ with each un = b⊤Anw (as above) is
integer-valued.

G. Kenison, J. Nieuwveld, J. Ouaknine, and J. Worrell 130:3

The decidability of Reversible Skolem – where one restricts the Skolem Problem to
reversible LRS – was established up to order 7 in a recent paper by Lipton et al. [11].
Kenison [9] gave an alternative proof of this decidability result, leveraging a powerful result
for algebraic units due to Dubickas and Smyth [5]. In general, the Skolem Problem is only
known to be decidable for arbitrary LRS up to order four [12, 22]. The Positivity Problem
is decidable for arbitrary LRS of order five or less [16], and for simple LRS of order 9 or
less [13]. The Ultimate Positivity Problem is also decidable for arbitrary LRS of order 5 of
less, as well as for simple LRS of arbitrary order [14, 16]. Previous work showed that the
Positivity Problem is decidable for simple reversible LRS of order 10 or less [9].

Contributions

In this paper, we shall consider Positivity problems for reversible LRS. We will exploit
spectral properties of reversible LRS and employ techniques from both Galois theory and
Diophantine approximation to establish decidability at higher orders than is currently known
for general positivity. Our main contributions are as follows:

▶ Theorem 1. For reversible LRS, the Positivity and Ultimate Positivity Problems are both
decidable up to order 11.

▶ Theorem 2. For simple reversible LRS, the Positivity Problem is decidable up to order 17.

Structure

The remainder of this paper is structured as follows. In the next section we review necessary
preliminary material. In Section 3, we prove results on the root structures of characteristic
polynomials associated with reversible LRS. In Section 4, we prove Theorems 1 and 2. We
also consider barriers impeding further progress to the state of the art (i.e., decidability results
at higher orders) by exhibiting sequences that are not amenable to standard Diophantine
approximation techniques due to certain spectral properties (see Section 5). The calculations
involved in preparing these hard instances were performed in SageMath [4].

2 Preliminaries

2.1 Linear Recurrence Sequences
We expand upon the standard terminology for LRS given in the introduction. It is straight-
forward to see that an LRS ⟨un⟩n is wholly determined by a recurrence relation (as in (1))
and the initial values u0, u1, . . . , ud−1.

Let ⟨un⟩n be an LRS with characteristic polynomial f . It is well-known that an LRS
admits a closed-form representation as an exponential polynomial; specifically, for each
n ∈ N0, we have un = A1(n)λn

1 + · · · + Aℓ(n)λn
ℓ . Here the characteristic roots λ1, . . . , λℓ

are the distinct roots of f . Further, the polynomial coefficients Aj ∈ Q[X] are completely
determined by the initial values of ⟨un⟩n. The polynomial coefficients for a simple LRS are
all constants; that is, if ⟨un⟩n is simple, then un = A1λn

1 + · · ·+ Aℓλ
n
ℓ .

An LRS is degenerate when there are two distinct characteristic roots whose quotient is a
root of unity. Otherwise, the sequence is said to be non-degenerate.

Let λ1, . . . , λℓ be the characteristic roots of an LRS ⟨un⟩n. A characteristic root λ of
⟨un⟩n is dominant if |λ| ≥ |λj | for each j ∈ {1, . . . , ℓ}. By convention, when we talk about
the number of dominant roots we do not count multiplicity; e.g., a recurrence sequence that
satisfies the relation un+2 = 2un+1 − un with characteristic polynomial (X − 1)2 has only
one dominant root.

ICALP 2023

130:4 Positivity Problems for Reversible Linear Recurrence Sequences

In the sequel, we will state and prove technical results for polynomials in Z[X]. Here we
say that a polynomial in Z[X] is non-degenerate if no quotient of distinct roots is a root of
unity and we say that it is reversible if it is monic and has constant term ±1. Note that
our use of these terms for both recurrence sequences and their characteristic polynomials is
consistent.

2.2 The Positivity Problem

In this subsection we briefly recall decidability results for the Positivity Problem for LRS.
We first recall the standard assumptions that permit us to reduce the problem of deciding
positivity to that of deciding positivity for LRS that are both non-degenerate and possess a
positive dominant characteristic root.

First, it is well known (cf. [6, 8]) that we can effectively reduce the computational study
of LRS to that of non-degenerate LRS. This observation follows because each degenerate
LRS can be realised as an interleaving of finitely many non-degenerate LRS of the same
order. Thus we need only consider non-degenerate LRS when studying positivity. We note
also that this reduction preserves the quality of having simple characteristic roots.

Second, let us recall the following classical consequence of the Vivanti–Pringsheim Theorem
from complex analysis [17, 23] (see also [21, Section 7.21]).

▶ Lemma 3. Suppose that a non-zero LRS ⟨un⟩n has no positive dominant characteristic
root. Then the sets {n ∈ N : un > 0} and {n ∈ N : un < 0} are both infinite.

As a consequence of Lemma 3, we can reduce the problem of deciding positivity to LRS that
possess a positive dominant characteristic root.

Together, the two preceding assumptions show that the sequences we consider have an
odd number of dominant roots: the set of dominant roots comprises complex-conjugate pairs
of roots and a single positive dominant root. Note that a second real dominant root would
violate non-degeneracy.

Ouaknine and Worrell showed that the Simple Positivity Problem for LRS is decidable
up to order nine [13]. The main technical contribution of that paper was the following result,
which, in combination with the various observations above, covers all sequences up to order
nine.

▶ Theorem 4. Let ⟨un⟩n be a non-degenerate simple LRS with characteristic polynomial
f ∈ Z[X] and a positive dominant root. If f ∈ Z[X] has either at most eight dominant roots
or precisely nine roots, then we can determine whether un ≥ 0 for each n ∈ N0.

2.3 Number Theory

An algebraic integer is a unit if its multiplicative inverse is also an algebraic integer. It is a
basic fact that an algebraic number is a unit if and only if its minimum polynomial in Z[X]
is monic and has constant term ±1. Thus the characteristic roots of a reversible LRS are all
units.

A number field K is a field determined by a finite extension of Q. The splitting field K

for the polynomial f ∈ Q[X] is the field extension of Q with the following two properties.
First, the polynomial f can be written as a product of linear factors in K[X] (i.e., f splits
completely in K) and second, f does not split completely over any proper subfield of K

containing Q.

G. Kenison, J. Nieuwveld, J. Ouaknine, and J. Worrell 130:5

2.4 Group Theory
A finite group G is said to act transitively on a finite set X if for each pair x, y ∈ X there
is a g ∈ G such that gx = y. The stabilizer Gx of an element x in X is defined as the set
{g ∈ G : gx = x}. The Orbit-Stabilizer Theorem (see, for example, [18, Theorem 3.19])
implies that if G acts transitively on X, the cardinality of Gx is the same for each x ∈ X.
Further, #{g ∈ G : gx = y} is the same for all x, y ∈ G in this scenario.

2.5 Galois Theory
We assume familiarity with basic notions in Galois theory and the theory of number fields.
For reference, we recommend standard textbooks such as [3, 20]. The following includes
some of the definitions and theory we use in the sequel.

Given a field extension K of Q, we use GalQ(K) to denote the Galois group of K over Q;
that is, the group of automorphisms of K that fix Q. We shall refer to elements of a Galois
group as Galois automorphisms. In the sequel, we shall frequently use the following property
of irreducible polynomials. Let f ∈ Q[X] be an irreducible polynomial and K the splitting
field of f . Then the Galois group GalQ(K) acts transitively on the roots of f . Indeed, the
orbit of a root of f (i.e., the set of images of the root under the group action) is the set of
roots of f . In light of the above, for a given algebraic number α we use the term Galois
conjugates to refer to set of roots of the minimal polynomial of α.

Recall the following theorem due to Kronecker [10].

▶ Theorem 5. Let f ∈ Z[X] be a monic polynomial such that f(0) ̸= 0. Suppose that all the
roots of f have absolute value at most 1. Then all the roots of f are roots of unity.

We deduce the following. If f ∈ Z[X] is the characteristic polynomial of a reversible LRS
⟨un⟩n such that the roots of f all lie in the unit disk {z ∈ C : |z| ≤ 1}, then the roots of f are
all roots of unity and so ⟨un⟩n is of order one or degenerate. In the former case, positivity
of ⟨un⟩n is easily determined and in the latter case, determining whether ⟨un⟩n is positive
reduces to studying positivity for associated non-degenerate LRS. Thus in the sequel we shall
always assume, without loss of generality, that the dominant roots of f lie on a circle with
radius strictly larger than 1.

The roots of an irreducible polynomial are necessarily Galois conjugates. We call the
quotient of two distinct roots of an irreducible polynomial a conjugate ratio.

Key to the technical lemmas we prove in the sequel are results concerning identities
between the roots of irreducible polynomials. We employ a powerful result due to Dubickas
and Smyth [5], Theorem 6 below, concerning necessary conditions for an algebraic unit and
all its Galois conjugates to lie on two concentric circles centred at the origin. (Theorem 6 is
a specialisation of the general result [5, Theorem 2.1].)

▶ Theorem 6. Suppose that f ∈ Z[X] is an irreducible, reversible polynomial of degree d

such that all the roots of f lie on two circles centred at the origin. Let r and R be the radii
of the respective circles and, without loss of generality, suppose that at most half of the roots
of f lie on the circle of radius r. Then we have the following: either d is even, in which case
half of the roots lie on the circle of radius r; or d is a multiple of three and a third of the
roots lie on the circle of radius r. In the latter case, we additionally have that for every root
β on the circle of radius r there exists n > 0 such that βn ∈ R.

We shall frequently employ the following lemma, versions of which were proved by Smyth [19]
and Ferguson [7].

▶ Lemma 7. Suppose that λ is an algebraic number with Galois conjugates β and γ satisfying
λ2 = βγ. Then the conjugate ratio λ/β is a root of unity.

ICALP 2023

130:6 Positivity Problems for Reversible Linear Recurrence Sequences

3 Root Analysis of Reversible Polynomials

The main result of this section is Theorem 14, concerning the number of dominant roots of a
reversible polynomial. Essentially the theorem says that, excepting a number of special cases,
no more than half of the roots of such a polynomial can be dominant. This is the key technical
tool behind our main decidability results for the Positivity Problem for reversible LRS.

Let us begin with two lemmas concerning the dominant roots of reversible polynomials.
These can be considered as weak forms of the main result of the section (and are used in the
proof thereof).

▶ Lemma 8. Let f ∈ Z[X] be an irreducible non-degenerate polynomial with a real dominant
root λ. Then f has exactly one dominant root.

Proof. Let λ be a real dominant root. Suppose β is also a dominant root. Then λ2 = ββ

and hence λ/β is a root of unity by Lemma 7. Since f is non-degenerate we have λ = β; that
is, f has exactly one dominant root. ◀

▶ Lemma 9. Suppose that f ∈ Z[X] is irreducible, non-degenerate, and reversible, with 2m

non-real dominant roots and no real dominant roots. Then deg(f) > 3m if m ≥ 2. Further,
deg(f) ≤ 3m only if (deg(f), m) = (3, 1) or f is constant.

Proof. Since f has at least 2m roots, it is clear that deg(f) ≥ 2m. The case where m = 0
pertains to constant polynomials, thus we need only consider the case when m ≥ 1.

We will first show that deg(f) > 2m. Assume, for a contradiction, that deg(f) = 2m.
Then the roots of f all lie on the circumference of some circle centred at the origin. We
make the following two observations. First, f is reversible, and hence monic. Second, by
Vieta’s formulas, |f(0)| = 1 is equal to the absolute value of the product of the roots of
f . From these observations, we conclude that the roots of f all lie on the unit circle and,
by Theorem 5, are therefore roots of unity. As m ≥ 1, f has at least two roots, and their
conjugate ratio is thus a root of unity. We have reached a contradiction: f is assumed to be
non-degenerate. Thus deg(f) > 2m.

Consider the subcase where m = 1. Assume that 2m < deg(f) ≤ 3m, then clearly we
have deg(f) = 3. The assertion in the lemma trivially holds. Hereafter we assume that
m ≥ 2.

We now show that under the assumption that m ≥ 2, we necessarily have deg(f) ≥ 3m. Let
λ1, λ1, . . . , λm, λm be the 2m dominant roots of f . Thus λ1λ1 = λiλi for each i ∈ {1, . . . , m}.
Since 2m < deg(f), f has a non-dominant root γ. Further, since f is irreducible, there
is a Galois automorphism σ such that σ(λ1) = γ. We claim that for each i ∈ {2, . . . , m}
at least one of σ(λi) and σ(λi) is a non-dominant root of f . Assume, for a contradiction,
that the claim does not hold. Then there is an i ∈ {2, . . . , m} such that both σ(λi) and
σ(λi) are dominant roots. The map σ necessarily preserves polynomial symmetries between
the roots of f and so γσ(λ1) = σ(λi)σ(λi). However, since σ(λ1) = γ is strictly smaller
in absolute value than both σ(λi) and σ(λi), we have |γσ(λ1)| < |σ(λi)σ(λi)|. This last
inequality contradicts the aforementioned symmetry between dominant roots. We conclude
that the list of non-dominant roots of f includes γ and at least one of σ(λi) and σ(λi) for each
i ∈ {2, . . . , m}. Thus f has at least m non-dominant roots and so deg(f) ≥ m + 2m = 3m.

Finally, we eliminate the case that deg(f) = 3m when m ≥ 2. Assume, for a contradiction,
that deg(f) = 3m. We can apply the preceding argument to the reciprocal polynomial of f

to deduce that the m non-dominant roots of f are equal in modulus and so all lie on a circle
{z ∈ C : |z| = r} for some r > 0. Thus all roots of the irreducible and reversible polynomial

G. Kenison, J. Nieuwveld, J. Ouaknine, and J. Worrell 130:7

f lie on two circles centred at the origin: the dominant roots all lie on one circle, and all
the non-dominant roots lie on another circle. Thus, by Theorem 6, each non-dominant root
of f takes the form reiθ where eiθ is a root of unity. Since m ≥ 2, there are at least two
distinct roots of f , say, reiθ and reiθ′ of the prescribed form. It follows that the conjugate
ratio reiθ/reiθ′ is a root of unity, which contradicts our assumption that f is non-degenerate.
Hence deg(f) > 3m if m ≥ 2, from which the desired result follows. ◀

In order to improve the bound from from deg(f) > 3m to deg(f) ≥ 4m, we shall introduce
new and novel techniques for counting symmetries in the roots of f . Let λ1, . . . , λℓ be the
roots of f . The interesting case occurs when all the dominant roots of f are non-real. Let us
denote the dominant roots of f by λ1, λ1, . . . , λm, λm. Let µ1 := λ1λ1 and g be the minimal
polynomial of µ1 (hereafter we shall refer to g as the dominating polynomial of f). Let
µ2, . . . , µn be the Galois conjugates of µ1 (and thus the other roots of g) and σ1, . . . , σn the
Galois automorphisms associated with g such that σj(µ1) = µj .

Set K = Q(µ1, . . . , µn) and L = Q(λ1, . . . , λℓ). Clearly, K ⊂ L, and so each σj can
be lifted to an automorphism σ̃j in GalQ(L) such that σ̃j |K = σj . Applying these σ̃j on
λ1λ1 = · · · = λmλm = µ1 gives rise to the following n equations:

α1,1,1α1,1,2 = . . . = αm,1,1αm,1,2 = µ1

...
...

... (3)
α1,n,1α1,n,2 = . . . = αm,n,1αm,n,2 = µn

where αi,j,1 = σ̃j(λi) and αi,j,2 = σ̃j(λi). Since each αi,j,k is a Galois conjugate of a dominant
root of f , we determine that each αi,j,k is also a root f . Given a root λ of f , we define the
equation number

E = #{(i, j, k) : αi,j,k = λ for 1 ≤ i ≤ m, 1 ≤ j ≤ n, k = 1, 2}.

In Lemma 11, we will show that E is independent of the choice of root λ. It is useful to
see the two roots of f in one position in one equation in (3) as a pair. In other words,
αi,j,1 and αi,j,2 are paired for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. Further, for j = 1, . . . , n, let
Aj := {α1,j,1, α1,j,2, . . . , αm,j,1, αm,j,2}. Note that #Aj = 2m, as σ̃j is a bijection between
the set of dominant roots of f and Aj .

We claim that Aj is independent of the choice of lift σ̃j of σj . If λ and λ′ are roots of f

such that λλ′ = µj , then σ̃j
−1(λ)σ̃j

−1(λ′) = µ1. Because σ̃j
−1(λ) and σ̃j

−1(λ′) are roots of
f whose product is equal to µ1 = λ1λ1, we easily deduce that both σ̃j

−1(λ) and σ̃j
−1(λ′) are

dominant roots of f . Further, since σ̃j is a bijection, λ = σ̃j

(
σ̃j

−1(λ)
)
∈ Aj (and similarly

λ′ ∈ Aj). We make two deductions. First, if µj is the product of two distinct roots of f then
those roots are two elements of Aj . Second, we infer our claim that Aj is independent of the
choice of σ̃j .

In the case of one dominant root, the same construction applies: g is defined as the
minimum polynomial of λ2

1, where λ1 is the sole dominant root of f . By non-degeneracy, the
squares of all roots of f are distinct, and so deg(f) = deg(g), µj = λ2

j for j = 1, . . . , deg(f)
and E = 2 for all roots of f (it appears once as a square). Only, Aj = {λj} consists of
exactly one root of f .

▶ Lemma 10. Suppose that f ∈ Z[x] is reversible, non-degenerate, and irreducible with 2m

non-real dominant roots and has degree less than 4m. Write g for the dominating polynomial
of f . Then g is also non-degenerate.

ICALP 2023

130:8 Positivity Problems for Reversible Linear Recurrence Sequences

Proof. Assume, for a contradiction, that the conjugate ratio µj/µj′ of g is a root of unity.
Both root sets Aj and Aj′ have cardinality 2m. Since deg(f) < 4m = #Aj + #Aj′ , we
deduce that Aj ∩ Aj′ is non-empty. Let λ ∈ Aj ∩ Aj′ and κ, κ′ be roots of f such that
λκ = µj and λκ′ = µj′ . Since µj ̸= µj′ , we have κ ̸= κ′. It follows that f is degenerate
because κ/κ′ = µj/µj′ is a root of unity. From this contradiction, we deduce that g is
non-degenerate. ◀

▶ Lemma 11. Suppose that f ∈ Z[X] is reversible, non-degenerate, and irreducible with 2m

non-real dominant roots. Write g for the dominant polynomial of f . Then all the roots of f

have the same equation number E and

2m deg(g) = E deg(f). (4)

Proof. We use the notation of λi, µj , σj , σ̃j , αi,j,k, K, L, etc. as above.
Set H = GalQ(K) and G = GalQ(L). By the Orbit-Stabilizer Theorem, the number of

σ ∈ H such that σ(µ1) = µj is independent of the choice of j ∈ {1, . . . , n}. Now each σ ∈ H

has the same number of lifts to G, and so the number of elements of G that map µ1 to each
µj is independent of j ∈ {1, . . . , n}. Thus the number of elements of G such that the image
of A1 is Aj is also independent of the choice of j.

We make the following claim whose proof is given immediately below.

▷ Claim 12. In the setting defined above, there is no pair of distinct j1 and j2 for which
Aj1 = Aj2 .

We also make the following observation. By the Orbit-Stabilizer Theorem, for every choice of
two roots λ and λ′ of f , the number of σ ∈ G such that σ(λ) = σ(λ′) is equal. Thus for each
root λ of f , the number of σ ∈ G such that one of σ̃(λ1), σ̃(λ1), . . . , σ̃(λm), σ̃(λm) equals λ

is independent of the choice of λ. This shows that the equation number E is independent of
the choice of the root λ.

The equation 2m deg(g) = E deg(f) follows from counting the number of αi,j,k. On the
one hand, there are deg(g) equations with 2m entries (Claim 12). On the other hand, there
are deg(f) roots each appearing E times. ◀

Proof of Claim 12. Let us assume, for a contradiction, that Aj1 = Aj2 for j1 ̸= j2. Then
µj1 ̸= µj2 and

µm
j1

=
m∏

i=1
αi,j1,1αi,j1,2 =

m∏
i=1

αi,j2,1αi,j2,2 = µm
j2

.

Thus µj1/µj2 is a root of unity. Since α1,j1,1 ∈ Aj2 , there are 1 ≤ i ≤ m and k ∈ {1, 2} such
that α1,j1,1 = αi,j2,k. Then we have that the conjugate ratio α1,j1,2/αi,j2,3−k given by

1 ̸= µj1

µj2

= α1,j1,1α1,j1,2

αi,j2,1αi,j2,2
= α1,j1,2

αi,j2,3−k

is also a root of unity. Since α1,j1,2 and αi,j2,3−k are distinct roots of f whose quotient is
a root of unity, it follows that f is degenerate. We have reached a contradiction to our
assumption that f is non-degenerate. Thus we have the claimed result. ◁

The next result increases the bound on the degree of f to deg(f) ≥ 4m.

▶ Theorem 13. Let f ∈ Z[X] be an irreducible, non-degenerate, and reversible polynomial
with 2m dominant non-real roots and no real dominant roots, then (deg(f), m) = (3, 1) or
deg(f) ≥ 4m.

G. Kenison, J. Nieuwveld, J. Ouaknine, and J. Worrell 130:9

Proof. Assume, for a contradiction, that f is a minimal counterexample in the sense that all
polynomials of strictly smaller degree satisfy the statement in Theorem 13.

From Lemma 9, we deduce that deg(f) > 3m if we are not in the exceptional case
(deg(f), m) = (3, 1). As we assume that f is a counterexample to Theorem 13, deg(f) < 4m

as well. We shall employ the preceding notation for the dominating polynomial g, the sets of
roots Aj of f , and the equation number E.

Consider that there are 2m distinct roots of f in each equation in (3). Since deg(f) < 4m

and f has 2m dominant roots, there is at least one dominant root of f in each such equation.
Let γ be a root of f with minimal absolute value, then |γλ1| is the minimal absolute value
attained by any root of g. We now show that at least half of the roots of g lie on the circle
{z ∈ C : |z| = |γλ1|}. Observe that γ is witnessed in E (and so more than half) of the
pairings in (3) and, further, is necessarily paired with a dominant root (for otherwise, a
pairing between γ and a non-dominant root breaks the equality in (3)). From (4) and our
assumption that deg(f) < 4m, we deduce that 2E > deg(g), and so γ appears in more than
half of the equations in (3). Each such equation is in correspondence with a root of g of
minimal absolute value.

Consider the polynomial h(X) := g(0)Xng(X−1). The polynomial Xng(X−1) is the
reciprocal polynomial of g and so immediately, the roots of h are precisely µ−1

1 , . . . , µ−1
n

and n = deg(g) = deg(h). From the preceding discussion, more than half of the roots
of h are dominant. Moreover, we can easily deduce that h is reversible, irreducible, and
non-degenerate as g has these properties. Thus h is another counterexample to the statement
in Theorem 13. All that remains is to derive a contradiction from our assumption that f has
minimal degree. We derive this contradiction by proving that deg(h) < deg(f) and h does
not belong to either one of the exceptional cases.

Observe that h cannot belong to one of the exceptional cases since (4) has no integer
solutions when n = 1, 2, 3 and 3m < deg(f) < 4m. Thus it remains to show that n ≥ deg(f)
is absurd. Let us assume, for a contradiction, that λ1 appears in a product pair with a
dominant root other than λ1 in the jth equation of (3). Then µ1 and µj have equal absolute
value. If µj is real, µ1/µj = ±1 contradicting our non-degeneracy assumption (Lemma 10).
Similarly, we derive a contradiction to our non-degeneracy assumption if µj is non-real by
Lemma 7. Thus, we can pair λ1 with the deg(f)− 2m < 2m non-dominant roots of f and λ1.
This gives the upper bound E ≤ deg(f)− 2m + 1 ≤ 2m on E. We substitute our assumption
that n = deg(g) ≥ deg(f) into (4) to obtain a lower bound 2m ≤ E. Thus, E = 2m.

We use the equality E = 2m to deduce that deg(f) = 4m − 1 and make the following
observations. Each of the 2m dominant roots of f pair with their respective complex conjugate
and all of the 2m− 1 non-dominant roots of f . Thus we can pair each non-dominant root
of f with 2m dominant roots. Further, every pair of non-dominant roots of f appears in
at least one equation in (3). Thus the roots of g and h lie on two concentric circles centred
at the origin. The roots of g are distributed so that g has exactly one dominant root and
2m + (2m − 1) − 1 = 4m − 2 non-dominant roots. By construction, h has exactly one
non-dominant root and 4m− 2 dominant roots. This distribution of roots is not possible by
Theorem 6, hence a contradiction.

In summary, f cannot be a counterexample to Theorem 13 of smallest possible degree.
We thus deduce that all polynomials that satisfy the hypothesis in the theorem obey the
bound deg(f) ≥ 4m, as required. ◀

The only superfluous assumption in Theorem 13 is that f is irreducible. We circumvent
the irreducibility assumption with a careful case analysis.

ICALP 2023

130:10 Positivity Problems for Reversible Linear Recurrence Sequences

▶ Theorem 14. Let f be a non-degenerate reversible polynomial. Suppose that more than half
of the roots of f are dominant. Then either f is linear or f is cubic with two dominant roots.

Proof. Let f be a counterexample of minimal degree, and factor f into irreducible polynomials
f1, . . . , fk. For 1 ≤ i ≤ k, let m′

i be the number of dominant roots of fi. Call an irreducible
factor sharp if 2m′

i = deg(fi) and special if 2m′
i > deg(fi). From Lemma 8 and Theorem 13,

it follows that if an irreducible factor is special, then (deg(fi), m′
i) = (1, 1) or (3, 2). If

k = 1, then f is irreducible and the result follows automatically. Thus we can freely assume
that k ≥ 2. Since f is a counterexample of minimal degree, a straightforward proof by
contradiction permits us to assume k = 2. Thus our argument reduces to the following cases:
we need only show that the product of either two special polynomials or a special and a
sharp polynomial breaks the hypothesis. By renumbering, we can assume f1 is special and f2
is either sharp or special. We observe that under our assumptions the dominant roots of f1
and f2 are necessarily equal in absolute value and, as we do not count multiplicity, f1 ̸= f2.

We begin our case analysis. First, consider the case where (deg(f1), m′
1) = (1, 1). Then

f1(X) = X ± 1 as f1 is reversible. Since the root ∓1 of f1 is a dominant root of f , we
deduce that all roots of f lie on the unit circle as the roots of f are algebraic units. When
we combine Lemma 8, Theorem 13, and our assumption that at least half of the roots of f

are dominant, we deduce that (deg(f2), m′
2) = (1, 1) and so f2(X) = X ∓ 1. Thus −1 and 1

are both roots of f , which contradicts our assumption that f is non-degenerate.
Second, let us suppose that (deg(f1), m′

1) = (3, 2). Following the argument in the
preceding case, either (deg(f2), m′

2) = (3, 2) or deg(f2) = 2m′
2. In the former, the non-

dominant roots γ1 and γ2 of f1 and f2 (respectively) are both real and equal in modulus.
This is straightforward to see since each fj is of the form fj = (x−γj)(x−Reiθj)(x−Re−iθj)
for some R > 1 and γj := ±R−2. We cannot have two such irreducible factors since then the
ratio γ1/γ2 = ±1, which breaks either the non-degeneracy assumption on f or the assumption
that f1 ̸= f2.

We continue with the latter subcase (deg(f1), m′
1) = (3, 2) and deg(f2) = 2m′

2. Since
the dominant roots of f1 and f2 are dominant roots of f , the dominating polynomials of
f1 and f2 are one and the same, say g. Let E1 and E2 be the respective equation numbers
of f1 and f2. From (4), 2 deg(g) = E1 deg(f1) = 3E1. We thus deduce that E1 is even.
Since 1 ≤ E1 ≤ deg(f1) = 3 (each pairing is distinct), we have that E1 = 2 and, it follows
immediately, deg(g) = 3. We substitute this result and our assumption that deg(f2) = 2m′

2
into (4) in order to obtain m′

2 deg(g) = 3m′
2 = 2E2m′

2. We have reached a contradiction:
E2 = 3/2 is not an integer. We have exhausted the possibilities for constructing a minimal
counterexample f and find that no such counterexample exists. We have thus proved
Theorem 14. ◀

4 Decidability at Low Orders

In this section we complete the proofs of our two main theorems concerning the Positivity
Problem for reversible LRS. We start with Theorem 2, which states that positivity of
reversible sequences that are moreover simple is decidable up to order 17.

Proof of Theorem 2. As previously noted, we can reduce the Simple Reversible Positivity
Problem to deciding positivity for the subclass of simple reversible LRS that are additionally
both non-degenerate and in possession of a positive dominant root.

In light of the preceding paragraph, consider the subclass of non-degenerate, simple,
and reversible LRS with a positive dominant root. Let f be the characteristic polynomial
associated with a sequence in this class. Without loss of generality, we can additionally

G. Kenison, J. Nieuwveld, J. Ouaknine, and J. Worrell 130:11

assume that fewer than half of the roots of f are dominant. If f ∈ Z[X] has at least
nine dominant roots, then, by Theorem 14, we have the bound deg(f) ≥ 18. Taking the
contrapositive, if f is again the characteristic polynomial of a sequence in this subclass with
deg(f) ≤ 17, then f has at most eight dominant roots.

Now we invoke Theorem 4 to deduce that, in the aforementioned subclass, positivity is
decidable for LRS up to order 17. As noted at the beginning of this proof, this deduction
is sufficient to obtain the desired result: simple reversible positivity is decidable up to
order 17. ◀

We now turn our attention to general reversible sequences; i.e., we no longer assume that
the characteristic roots are simple. Here, as stated in Theorem 1, we have decidability up to
order 11.

Proof of Theorem 1. Assume, for a contradiction, that ⟨un⟩n is a reversible LRS and
counterexample to the statement; that is to say, ⟨un⟩n is a reversible LRS with order at most
11 for which we cannot determine positivity or ultimate positivity.

From our earlier discussion on the Positivity Problem and Ultimate Positivity Problem
in Subsection 2.2, it follows that we can reduce both problems for reversible LRS to deciding
(ultimate) positivity for the subclass of reversible LRS that are additionally both non-
degenerate and in possession of a positive dominant root.

For the class of reversible LRS with one dominant root, decidability of (ultimate) positivity
is considered folklore. Thus we freely assume that ⟨un⟩n has at least three dominant roots
(the positive root and a pair of complex conjugate roots). By Theorem 2 for positivity and
the earlier mentioned results in [14] for ultimate positivity, we can also assume that ⟨un⟩n
has a non-simple characteristic root. Now consider the exponential polynomial representation
of ⟨un⟩n: deciding (ultimate) positivity for LRS whose dominant characteristic roots are all
simple reduces to deciding (ultimate) positivity for simple LRS. So, in addition, we shall
assume that ⟨un⟩n has a non-simple dominant characteristic root. We will use the following
claims, whose proofs are given immediately below.

▷ Claim 15. Suppose that the real positive dominant root ρ of sequence ⟨un⟩n (as above)
is the only non-simple dominant root of ⟨un⟩n. Then we can determine whether ⟨un⟩n is
(ultimately) positive.

▷ Claim 16. Suppose that sequence ⟨un⟩n (as above) possesses non-real dominant roots that
are not simple and, further, that the real dominant root ρ is simple. Then ⟨un⟩n is neither
ultimately positive nor positive.

In light of the preceding claims, we freely assume that the counterexample ⟨un⟩n has at
least three non-simple dominant characteristic roots and this collection must include the real
dominant root ρ as well as a complex conjugate pair λ and λ.

Let f be the monic integer-valued polynomial of the smallest degree with ρ and λ as
roots. Then, f is non-degenerate and reversible. By Theorem 14, it follows that at most half
of the roots of f are dominant if f is neither linear nor cubic with two dominant roots. As
such, f has degree at least 6 and, additionally, as each of these roots is non-simple being a
Galois conjugate of either ρ or λ, ⟨un⟩n has order at least 12.

We thus deduce the desired result: positivity and ultimate positivity are decidable for
sequences up to order 11. ◀

ICALP 2023

130:12 Positivity Problems for Reversible Linear Recurrence Sequences

Proof of Claim 15. Suppose that the real positive dominant root ρ of ⟨un⟩n is the only non-
simple dominant root of the sequence. If such a phenomenon were to take place then
un = Aρ(n)ρn + O(ρn) where Aρ is a non-constant polynomial. It is straightforward to
deduce that ⟨un⟩n is (ultimately) positive if and only if Aρ(n) is (ultimately) positive in this
instance. ◁

Proof of Claim 16. We will show that the claim follows from Lemma 17 (cf. [1]).

▶ Lemma 17. Let γ1, . . . , γk ∈ {z ∈ C : |z| = 1, z ̸= 1} be distinct complex numbers,
α1, . . . , αk ∈ C \ {0}, and wn =

∑k
ℓ=1 αℓγ

n
ℓ . Then there is a c < 0 such that Re(wn) < c for

infinitely many n.

To prove the claim, let d be the maximum of the degrees of the roots of ⟨un⟩n. Note d ≥ 1
since, by assumption, ⟨un⟩n has a non-real dominant root that is not simple. We consider
the normalised sequence ⟨vn⟩n with terms given by vn = un/(ρnnd) where ρ is the dominant
root of ⟨un⟩n. Note it is sufficient to establish that ⟨vn⟩n is neither positive nor ultimately
positive to obtain the desired result.

An analysis of the exponential polynomial of ⟨un⟩n leads to

vn =
2k∑

ℓ=1

Aℓ(n)
nd

λn
ℓ

ρn
+ O(n−d)

where λ1, . . . , λ2k are the non-real dominant roots of ⟨un⟩n and the implied constant associated
with O(n−d) is real-valued. Let αℓ be the leading coefficient of Aℓ(n). Then Aℓ(n)/nd → αℓ

as n→∞. Now

vn < r(n) +
2k∑

ℓ=1
αℓ

λn
ℓ

ρn
=: r(n) + wn

where r(n) ∈ O(n−1) is real-valued and the LRS ⟨wn⟩n is both real-valued and simple. In
addition, the characteristic roots of ⟨wn⟩n are all non-real and lie on the unit circle. For
the avoidance of doubt, the exponential polynomial defining ⟨wn⟩n is real-valued since the
summands αℓλ

n
ℓ /ρn for non-real λℓ occur in complex-conjugate pairs. Thus, wn satisfies the

hypothesis in Lemma 17, and so the inequalities vn < r(n) + wn < r(n) + c hold for some
c < 0 and infinitely many n. Since r(n) ∈ O(n−1), we find that for infinitely many n, vn < 0.
Hence ⟨un⟩n is neither positive nor ultimately positive. ◁

5 Hard Instances

In this section we discuss obstacles to extending our results for deciding positivity of reversible
LRS of higher orders. Specifically, we construct a simple reversible LRS of order 18 and
sketch the construction of a reversible LRS of order 12 that, to the best of our knowledge, lie
outside the known classes for which the Positivity Problem can be decided. In particular,
these examples lie beyond the scope of Theorem 4.

We start with simple reversible LRS of order 18. In order to illustrate the technical
arguments and guide our construction of a hard instance, it is useful to recall the techniques
employed by Ouaknine and Worrell in their proof of Theorem 4 [13]. For the sake of brevity,
we shall give only a brief outline here; we direct the interested reader to the full argument
given in [13].

G. Kenison, J. Nieuwveld, J. Ouaknine, and J. Worrell 130:13

5.1 Sketch proof of Theorem 4
Let ⟨un⟩n be a simple LRS satisfying the assumptions of Theorem 4. We first normalise
⟨un⟩n and so assume that the dominant roots λ1, . . . , λk of ⟨un⟩n lie on the unit circle in the
complex plane. Then, for each n ∈ N,

un = α1λn
1 + · · ·+ αkλn

k + β1ξn
1 + · · ·+ βk′ξn

k′

where ξ1, . . . , ξk′ are the non-dominant roots of ⟨un⟩n and α1, . . . , αk, β1, . . . , βk′ are algebraic
numbers.

We then compute a basis for the multiplicative relations between the dominant roots
and consider a maximal subset λ1, . . . , λℓ whose elements are multiplicatively independent.
By Kronecker’s Theorem on simultaneous Diophantine approximation (cf. [2, page 53]),
{(λn

1 , . . . , λn
ℓ) : n ∈ N} is a dense subset of the torus T := {z ∈ C : |z| = 1}ℓ, which is

compact.
Ouaknine and Worrell then construct a continuous function τ : T → R given by

τ(λn
1 , . . . , λn

ℓ) = α1λn
1 + · · ·+ αkλn

k

with the following properties. If minT τ = 0, the given sequence ⟨un⟩n is ultimately positive.
That is to say, there is a number N such that un ≥ 0 for all n ≥ N . If minT τ < 0, the
sequence is not ultimately positive (and thus also not positive). Finally, if minT τ > 0, then
the sequence grows quickly, and deciding positivity is relatively straightforward. Hence the
critical case occurs when minT τ = 0. Moreover, we can determine which of the three cases
occur (that is, compute minT τ).

In the critical case where minT τ = 0, we can sometimes exploit the set of points
Z = {(z1, . . . , zℓ) ∈ T : τ(z1, . . . , zℓ) = 0} where the minimum is attained. If (z1, . . . , zℓ) ∈ Z,
then Baker’s Theorem on linear forms shows that λn

1 cannot get too “close” to z1 for n

greater than a computable bound. As such, if Z is finite, then we can decide whether ⟨un⟩n
is positive.

Theorem 4 is now proven as follows. If ⟨un⟩n has at most eight dominant characteristic
roots and falls into the critical case, then Z is finite. Likewise, if ⟨un⟩n has exactly nine
characteristic roots all of which are dominant, then ⟨un⟩n is positive in the critical case as
un ≥ minT τ = 0.

The approach described breaks down when there are nine dominant roots since then Z is
possibly infinite. Briefly, in this setting the state of the art cannot show that (λn

1 , . . . , λn
ℓ)

does not approach this infinite set too “closely”. Thus we encounter examples of LRS where
we cannot currently determine positivity.

5.2 Constructing a hard example of a simple sequence of order 18
Our hard example is constructed from a function τ that assumes its minimum infinitely often
on the torus T = {(z1, z2) ∈ C : |z1| = |z2| = 1}. To this end, we define τ : T → R by

τ(z1, z2) = (az1 + az−1
1 + bz2 + bz−1

2)2 (5)

for some non-zero a, b ∈ C with |a| ̸= |b|. Then minT τ is equal to 0 and τ attains its
minimum on an infinite subset of T . This property prevents the application of Theorem 4.

▶ Example 18. We shall construct a simple reversible LRS sequence of order 18. An
analysis of the spectral properties of this sequence shows that it lies beyond the current
state-of-the-art techniques for deciding positivity. This hard instance is derived from the
irreducible polynomial

f(X) = X8 − 3X7 + 4X6 − 4X5 + 11X4 − 21X3 + 19X2 − 7X + 1,

ICALP 2023

130:14 Positivity Problems for Reversible Linear Recurrence Sequences

which has eight non-real roots λ1, . . . , λ4 such that λ1 and λ2 are dominant, λ3 and λ4 are
both non-dominant, and 1.143 ≈ |λ3| > 1 > |λ4|.

Let ϕ := (1 +
√

5)/2 denote the golden ratio. Then, with a certain labelling of complex
conjugates,

λ1λ1 = λ2λ2 = ϕ2 and λ3λ4 = λ3 λ4 = ϕ−2,

which, due to the number of relations, severely limits the possible Galois automorphisms. In
particular, the Galois group has the form of a wreath product D4 ≀C2. Thus a dihedral group
D4 acts on λ1, λ1, λ2, and λ2 and is generated by the elements (written in cycle notation)
(λ1 λ2 λ1 λ2) and (λ1 λ1). A second dihedral group D4 acts on λ3, λ3, λ4, λ4 and is generated
by (λ3 λ3 λ4 λ4) and (λ3 λ4). Lastly, there is a cyclic C2 group acting on these two sets of
four roots generated by the permutation (λ1 λ3)(λ1 λ4)(λ2 λ3)(λ2 λ4).

The terms in the sequence ⟨un⟩n are given as follows:

un = 1√
5

(
(1 + λ1)λn

1 + (1 + λ1)λ1
n + (1 + λ2)λn

2 + (1 + λ2)λ2
n
)2

− 1√
5

(
(1 + λ3)λn

3 + (1 + λ3)λ3
n + (1 + λ4)λn

4 + (1 + λ4)λ4
n
)2

.

By the action of the Galois group, it can be seen that each term un is rational and further
that ⟨un⟩n is simple, reversible, and has exactly order 18. The initial values u0, . . . , u17 of
⟨un⟩n are

− 11,−8, 0, 240, 704,−20, 192, 5508, 46305, 2625, 13425, 73117,

2469800, 536000, 554151, 77287, 108792361, 66461616.

The simple LRS ⟨un⟩n satisfies the relation

un+18 = un+17 − 10un+16 + 6un+15 + 43un+14 − 93un+13 + 672un+12 − 596un+11

+ 120un+10 + 3972un+9 − 15345un+8 + 29654un+7 − 36108un+6 + 23847un+5

− 9572un+4 + 2361un+3 − 325un+2 + 26un+1 − un.

Observe that u0, u1, and u5 are negative, but up to n = 105 these are the only negative
terms. Thus, the question is to prove that un ≥ 0 for all n ≥ 6. We reiterate that, as far as
the authors are aware, there are no known techniques in the state of the art that can tackle
this question.

It remains to show that the torus T associated with ⟨un⟩n has the prescribed “squaring
form” (as in (5)) and that ⟨un⟩n is non-degenerate. To start, un is positive if and only if
un

ϕ2n . Moreover, we observe that |1 + λ1| ̸= |1 + λ2| and that both λ1/ϕ and λ2/ϕ lie on the
unit circle. For a = 1 + λ1, b = λ2 and some 0 < r < 1, we have that

un

ϕ2n
= 1

ϕ2n

(
(1 + λ1)λn

1 + (1 + λ1)λ1
n + (1 + λ2)λn

2 + (1 + λ2)λ2
n
)2

+ O(rn)

=
(

a

(
λ1

ϕ

)n

+ a

(
λ1

ϕ

)−n

+ b

(
λ2

ϕ

)n

+ b

(
λ2

ϕ

)−n
)2

+ O(rn)

is close to the “squaring form” discussed at (5). In fact, we have that

un/ϕ2n = τ((λ1/ϕ)n, (λ2/ϕ)n) + O(rn).

Here, the term O(rn) decreases exponentially fast and determines how closely the square
should approach zero to contradict positivity.

G. Kenison, J. Nieuwveld, J. Ouaknine, and J. Worrell 130:15

We now show that we cannot apply Theorem 4 in this instance. To this end, we need
to show that the points to which we restrict τ are dense on the torus T . That is, we need
to show that λ1/ϕ and λ2/ϕ are multiplicatively independent. This lack of multiplicative
relations also immediately implies that ⟨un⟩n is non-degenerate. We complete the spectral
analysis of sequence ⟨un⟩n with the following proposition.

▶ Proposition 19. We have that λ1/|λ1| and λ2/|λ2| are multiplicatively independent.

Proof. Note that |λ1| = |λ2| = ϕ as λ1λ1 = λ2λ2 = ϕ2. By the earlier described Galois
action, we see that there are Galois automorphisms σ and τ such that σ(λ1) = τ(λ1) = λ3,
σ(λ2) = λ4 and τ(λ2) = λ3. Further, by this choice, σ(ϕ) = τ(ϕ) = −ϕ−1.

Assume, for a contradiction, that λ1/|λ1| and λ2/|λ2| are multiplicatively dependent; that
is to say, there are a, b ∈ Z, not both 0, such that (λ1/|λ1|)a (λ2/|λ2|)b = 1. By applying σ

to this identity we obtain

1 =
(

λ3

−ϕ−1

)a(
λ4

−ϕ−1

)b

= ζ

(
|λ3λ4|
ϕ−2

)a(
λ4

−ϕ−1

)b−a

= ζ

(
λ4

−ϕ−1

)b−a

for some ζ on the unit circle. Since |λ4/−ϕ−1| ̸= 1, we conclude that a = b. Then when we
apply τ to the identity (λ1/|λ1|)a (λ2/|λ2|)b = 1 we obtain

1 =
(

λ3

−ϕ−1

)a(
λ3

−ϕ−1

)b

= ζ ′
(
|λ3|
|λ3|

)a(
λ3

−ϕ−1

)b+a

= ζ ′
(

λ3

−ϕ−1

)b+a

for some ζ ′ on the unit circle. Since |λ3/−ϕ−1| ̸= 1, this implies that a = −b. Together
with a = b, we deduce that a = b = 0. Thus λ1/|λ1| and λ2/|λ2| are multiplicatively
independent. ◀

5.3 Constructing a hard example of a non-simple sequence of order 12
In this subsection, we briefly consider a reversible LRS of order 12 where we cannot decide
positivity nor ultimate positivity. Explicit examples are easier to construct than in the simple
case and are closely related to the extensive discussion in [16]. Let us recall the following
point from Theorem 1: a non-simple LRS that is a hard example of (ultimate) positivity
possesses three simple dominant roots of which one is real and positive. One choice, closely
resembling Example 4.5 in [11], is to take

ρ =
√

2 + 1 and λ = 1 +
√

1− 4ρ2

2 .

Then we have that ρ and λ are units of equal modulus, ρ has one Galois conjugate ρ̃ of
smaller modulus, and λ has three Galois conjugates. The three Galois conjugates of λ are
its complex conjugate and two real numbers, say, λ3 and λ4 of smaller modulus. Lastly, let
q ∈ Q>0. Then define the non-simple reversible rational-valued LRS ⟨uq

n⟩n as follows:

uq
n = (n + ρ)ρn + (n + ρ̃)ρ̃n + q(n + λ)λn + q(n + λ)λn + q(n + λ3)λn

3 + q(n + λ4)λn
4 .

For small q, ⟨uq
n⟩n is positive and so ultimately positive. For sufficiently large q, ⟨uq

n⟩n is
neither positive nor ultimately positive. However, given the current state of the art, it is not
known how to determine where an arbitrary q falls in this partition. Thus, at the time of
writing, we cannot tell whether LRS of the form ⟨uq

n⟩n are (ultimately) positive.
Following [11, Section 4.2]), we can construct further LRS (akin to ⟨uq

n⟩n) where the state
of the art is unable to settle positivity and ultimate positivity. In this direction, we may take
a real quadratic unit ρ > 1 and find a non-real algebraic unit λ of equal modulus such that λ

has a minimum polynomial of degree 4.

ICALP 2023

130:16 Positivity Problems for Reversible Linear Recurrence Sequences

References
1 Mark Braverman. Termination of integer linear programs. In International conference on

computer aided verification, pages 372–385. Springer, 2006.
2 J. W. S. Cassels. An introduction to Diophantine approximation. Cambridge Tracts in

Mathematics and Mathematical Physics, No. 45. Cambridge University Press, New York, 1957.
3 Henri Cohen. A course in computational algebraic number theory, volume 138 of Graduate

Texts in Mathematics. Springer-Verlag, Berlin, 1993.
4 The SageMath Developers. SageMath, the Sage Mathematics Software System (Version 9.7),

2022. https://www.sagemath.org.
5 A. Dubickas and C. J. Smyth. On the Remak height, the Mahler measure and conjugate

sets of algebraic numbers lying on two circles. Proc. Edinb. Math. Soc. (2), 44(1):1–17, 2001.
doi:10.1017/S001309159900098X.

6 Graham Everest, Alf van der Poorten, Igor Shparlinski, and Thomas Ward. Recurrence
sequences, volume 104 of Mathematical Surveys and Monographs. Amer. Math. Soc., Providence,
RI, 2003.

7 Ronald Ferguson. Irreducible polynomials with many roots of equal modulus. Acta Arith.,
78(3):221–225, 1997. doi:10.4064/aa-78-3-221-225.

8 Vesa Halava, Tero Harju, Mika Hirvensalo, and Juhani Karhumäki. Skolem’s problem–on the
border between decidability and undecidability. Technical report, Turku Centre for Computer
Science, 2005.

9 George Kenison. On the Skolem Problem for Reversible Sequences. In Stefan Szeider, Robert
Ganian, and Alexandra Silva, editors, 47th International Symposium on Mathematical Found-
ations of Computer Science (MFCS 2022), volume 241 of Leibniz International Proceedings
in Informatics (LIPIcs), pages 61:1–61:15, Dagstuhl, Germany, 2022. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik. doi:10.4230/LIPIcs.MFCS.2022.61.

10 L. Kronecker. Zwei Sätze über Gleichungen mit ganzzahligen Coefficienten. Journal für
die reine und angewandte Mathematik (Crelles Journal), 1857(53):173–175, January 1857.
doi:10.1515/crll.1857.53.173.

11 Richard Lipton, Florian Luca, Joris Nieuwveld, Joël Ouaknine, David Purser, and James
Worrell. On the Skolem Problem and the Skolem Conjecture. In Proceedings of the 37th
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’22, New York, NY,
USA, 2022. Association for Computing Machinery. doi:10.1145/3531130.3533328.

12 Maurice Mignotte, Tarlok Shorey, and Robert Tijdeman. The distance between terms of an
algebraic recurrence sequence. Journal für die Reine und Angewandte Mathematik, pages
63–76, 1984.

13 Joël Ouaknine and James Worrell. On the Positivity Problem for Simple Linear Recurrence
sequences,. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias,
editors, Automata, Languages, and Programming, pages 318–329, Berlin, Heidelberg, 2014.
Springer Berlin Heidelberg.

14 Joël Ouaknine and James Worrell. Ultimate positivity is decidable for simple linear recurrence
sequences. In Javier Esparza, Pierre Fraigniaud, Thore Husfeldt, and Elias Koutsoupias,
editors, Automata, Languages, and Programming - 41st International Colloquium, ICALP 2014,
Copenhagen, Denmark, July 8-11, 2014, Proceedings, Part II, volume 8573 of Lecture Notes in
Computer Science, pages 330–341. Springer, 2014. doi:10.1007/978-3-662-43951-7_28.

15 Joël Ouaknine and James Worrell. On linear recurrence sequences and loop termination. ACM
SIGLOG News, 2(2):4–13, April 2015.

16 Joël Ouaknine and James Worrell. Positivity Problems for Low-Order Linear Recurrence
Sequences, pages 366–379. ACM, New York, 2014. doi:10.1137/1.9781611973402.27.

17 Alfred Pringsheim. Ueber Functionen, welche in gewissen Punkten endliche Differentialquo-
tienten jeder endlichen Ordnung, aber keine Taylor’sche Reihenentwickelung besitzen. Math-
ematische Annalen, 44(1):41–56, 1894.

https://doi.org/10.1017/S001309159900098X
https://doi.org/10.4064/aa-78-3-221-225
https://doi.org/10.4230/LIPIcs.MFCS.2022.61
https://doi.org/10.1515/crll.1857.53.173
https://doi.org/10.1145/3531130.3533328
https://doi.org/10.1007/978-3-662-43951-7_28
https://doi.org/10.1137/1.9781611973402.27

G. Kenison, J. Nieuwveld, J. Ouaknine, and J. Worrell 130:17

18 J.J. Rotman. An Introduction to the Theory of Groups. Graduate Texts in Mathematics.
Springer New York, 2012.

19 C. Smyth. Conjugate algebraic numbers on conics. Acta Arithmetica, 40(4):333–346, 1982.
20 I. Stewart and D. Tall. Algebraic number theory and Fermat’s last theorem. CRC Press, Boca

Raton, FL, fourth edition, 2016.
21 Edward Charles Titchmarsh. The theory of functions. Oxford University Press, 2nd edition,

1939.
22 Nikolai Vereshchagin. Occurrence of zero in a linear recursive sequence. Mathematical notes

of the Academy of Sciences of the USSR, 38(2):609–615, August 1985.
23 Giulio Vivanti. Sulle serie di potenze. Annali di Matematica Pura ed Applicata (1867-1897),

21(1):193–194, 1893.

ICALP 2023

Coverability in VASS Revisited: Improving
Rackoff’s Bound to Obtain Conditional Optimality
Marvin Künnemann #

RPTU Kaiserslautern-Landau, Germany

Filip Mazowiecki #

University of Warsaw, Poland

Lia Schütze #

Max Planck Institute for Software Systems (MPI-SWS), Kaiserslautern, Germany

Henry Sinclair-Banks # Ñ

Centre for Discrete Mathematics and its Applications (DIMAP) & Department of Computer
Science, University of Warwick, Coventry, UK

Karol Węgrzycki #

Saarland University and Max Planck Institute for Informatics, Saarbrücken, Germany

Abstract
Seminal results establish that the coverability problem for Vector Addition Systems with States
(VASS) is in EXPSPACE (Rackoff, ’78) and is EXPSPACE-hard already under unary encodings
(Lipton, ’76). More precisely, Rosier and Yen later utilise Rackoff’s bounding technique to show that
if coverability holds then there is a run of length at most n2O(d log d)

, where d is the dimension and n

is the size of the given unary VASS. Earlier, Lipton showed that there exist instances of coverability
in d-dimensional unary VASS that are only witnessed by runs of length at least n2Ω(d)

. Our first
result closes this gap. We improve the upper bound by removing the twice-exponentiated log(d)
factor, thus matching Lipton’s lower bound. This closes the corresponding gap for the exact space
required to decide coverability. This also yields a deterministic n2O(d)

-time algorithm for coverability.
Our second result is a matching lower bound, that there does not exist a deterministic n2o(d)

-time
algorithm, conditioned upon the Exponential Time Hypothesis.

When analysing coverability, a standard proof technique is to consider VASS with bounded
counters. Bounded VASS make for an interesting and popular model due to strong connections with
timed automata. Withal, we study a natural setting where the counter bound is linear in the size of
the VASS. Here the trivial exhaustive search algorithm runs in O(nd+1)-time. We give evidence
to this being near-optimal. We prove that in dimension one this trivial algorithm is conditionally
optimal, by showing that n2−o(1)-time is required under the k-cycle hypothesis. In general fixed
dimension d, we show that nd−2−o(1)-time is required under the 3-uniform hyperclique hypothesis.

2012 ACM Subject Classification Theory of computation → Models of computation

Keywords and phrases Vector Addition System, Coverability, Reachability, Fine-Grained Complexity,
Exponential Time Hypothesis, k-Cycle Hypothesis, Hyperclique Hypothesis

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.131

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version Full Version: https://arxiv.org/abs/2305.01581 [31]

Funding Marvin Künnemann: Research partially supported by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) – 462679611.
Filip Mazowiecki: Supported by the ERC grant INFSYS, agreement no. 950398.
Henry Sinclair-Banks: Supported by EPSRC Standard Research Studentship (DTP), grant number
EP/T5179X/1.
Karol Węgrzycki: Supported by the ERC grant TIPEA, agreement no. 850979.

EA
T
C
S

© Marvin Künnemann, Filip Mazowiecki, Lia Schütze, Henry Sinclair-Banks, and
Karol Węgrzycki;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 131; pp. 131:1–131:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:kuennemann@cs.uni-kl.de
mailto:f.mazowiecki@mimuw.edu.pl
mailto:lschuetze@mpi-sws.org
https://orcid.org/0000-0003-4002-5491
mailto:h.sinclair-banks@warwick.ac.uk
http://henry.sinclair-banks.com
https://orcid.org/0000-0003-1653-4069
mailto:wegrzycki@cs.uni-saarland.de
https://orcid.org/0000-0001-9746-5733
https://doi.org/10.4230/LIPIcs.ICALP.2023.131
https://arxiv.org/abs/2305.01581
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

131:2 Coverability in VASS Revisited

Acknowledgements We would like to thank our anonymous reviewers for their comments, for their
time, and especially for highlighting a piece of related work [30].

1 Introduction

Vector Addition Systems with States (VASS) are a popular model of concurrency with a
number of applications in database theory [9], business processes [49], and more (see the
survey [47]). A d-dimensional VASS (d-VASS) consists of a finite automaton equipped with
d non-negative valued counters that can be updated by transitions. A configuration in a
d-VASS consists of a state and a d-dimensional vector over the naturals. One of the central
decision problems for VASS is the coverability problem, that asks whether there is a run
from a given initial configuration to some configuration with at least the counter values
of a given target configuration. Coverability finds application in the verification of safety
conditions, which often equate to whether or not a particular state can be reached without
any precise counter values [13, 24]. Roughly speaking, one can use VASS as a modest model
for concurrent systems where the dimension corresponds with the number of locations a
process can be in and each counter value corresponds with the number of processes in a
particular location [21, 25].

In 1978, Rackoff [45] showed that coverability is in EXPSPACE, by proving that if
coverability holds then there exists a run of double-exponential length. Following, Rosier and
Yen [46] analysed and discussed Rackoff’s ideas in more detail and argued that if a coverability
holds then it is witnessed by a run of length at most n2O(d log d) , where n is the size of the
given unary encoded d-VASS. Furthermore, this yields a 2O(d log d) · log(n)-space algorithm
for coverability. Prior to this in 1976, Lipton [37] proved that coverability is EXPSPACE-hard
even when VASS is encoded in unary, by constructing an instance of coverability witnessed
only by a run of double-exponential length n2Ω(d) . Rosier and Yen [46] also presented a
proof that generalises Lipton’s constructions to show that 2Ω(d) · log(n)-space is required for
coverability. Although this problem is EXPSPACE-complete in terms of classical complexity,
a gap was left open for the exact space needed for coverability [46, Section 1]. By using an
approach akin to Rackoff’s argument, we close this thirty-eight-year-old gap by improving
the upper bound to match Lipton’s lower bound.

Result 1: If coverability holds then there exists a run of length at most n2O(d) (Theorem 3.3).
Accordingly, we obtain an optimal 2O(d) · log(n)-space algorithm that decides
coverability (Corollary 3.4).

Our bound also implies the existence of a deterministic n2O(d)-time algorithm for cover-
ability. We complement this with a matching lower bound on the deterministic running time
that is conditioned upon the Exponential Time Hypothesis (ETH).

Result 2: Under ETH, there is no deterministic n2o(d)-time algorithm deciding coverability
in unary d-VASS (Theorem 4.2).

While our results establish a fast-increasing, conditionally optimal exponent of 2Θ(d) in
the time complexity of the coverability problem, they rely on careful constructions that
enforce the observation of large counter values. In certain settings, however, it is natural to
instead consider a restricted version of coverability, where all counter values remain bounded.
This yields one of the simplest models, fixed-dimension bounded unary VASS, for which we
obtain even tighter results. Decision problems for B-bounded VASS, where B forms part of
the input, have been studied due to their strong connections to timed automata [27, 22, 41].

M. Künnemann, F. Mazowiecki, L. Schütze, H. Sinclair-Banks, and K. Węgrzycki 131:3

We consider linearly-bounded unary VASS, that is when the maximum counter value is
bounded above by a constant multiple of the size of the VASS. Interestingly, coverability
and reachability are equivalent in linearly-bounded unary VASS. The trivial algorithm that
employs depth-first search on the space of configurations runs in O(nd+1)-time for both
coverability and reachability. We provide evidence that the trivial algorithm is optimal.

Result 3: Reachability in linearly-bounded unary 1-VASS requires n2−o(1)-time, subject to
the k-cycle hypothesis (Theorem 5.4).

This effectively demonstrates that the trivial algorithm is optimal in the one-dimensional
case. For the case of large dimensions, we show that the trivial algorithm only differs from
an optimal deterministic-time algorithm by at most an n3+o(1)-time factor.

Result 4: Reachability in linearly-bounded unary d-VASS requires nd−2−o(1)-time, subject
to the 3-uniform k-hyperclique hypothesis (Theorem 5.8).

Broadly speaking, these results add a time complexity perspective to the already known
space complexity, that is for any fixed dimension d, coverability in unary d-VASS is NL-
complete [45].

Organisation and Overview. Section 3 contains our first main result, the improved upper
bound on the space required for coverability. Most notably, in Theorem 3.3 we show that if
coverability holds then there exists a run of length at most n2O(d) . Then, in Corollary 3.4
we are able to obtain a non-deterministic 2O(d) · log(n)-space algorithm and a deterministic
n2O(d)-time algorithm for coverability. In much of the same way as Rackoff, we proceed
by induction on the dimension. The difference is in the inductive step; Rackoff’s inductive
hypothesis dealt with a case where all counters are bounded by the same well-chosen value.
Intuitively speaking, the configurations are bounded within a d-hypercube. This turns out to
be suboptimal. This is due to the fact that the volume of a d-hypercube with sides of length
ℓ is ℓd; unrolling the induction steps gives a bound of roughly nd·(d−1)·...·1 = nd! = n2O(d log d) ,
hence the twice-exponentiated log(d) factor. The key ingredient in our proof is to replace
the d-hypercubes with a collection of objects with greatly reduced volume, thus reducing the
number of configurations in a run witnessing coverability.

Section 4 contains our second main result, the matching lower bound on the time required
for coverability that is conditioned upon ETH. In Lemma 4.3, we first reduce from finding a
k-clique in a graph to an instance of coverability in bounded unary 2-VASS with zero-tests.
Then, via Lemma 4.4, we implement the aforementioned technique of Rosier and Yen to, when
there is a counter bound, remove the zero-tests at the cost of increasing to a d-dimensional
unary VASS. Then, in Theorem 4.2 we are able to conclude, by setting k = 2d, that if ETH
holds, then there is no deterministic n2o(d) -time algorithms for coverability in unary d-VASS.
This is because ETH implies that there is no f(k) ·no(k)-time algorithm for finding a k-clique
in a graph with n vertices (Theorem 4.1).

Section 5 contains our other results where we study bounded fixed dimension unary VASS.
Firstly, Theorem 5.4 states that under the k-cycle hypothesis (Hypothesis 5.2), there does
not exist a deterministic n2−o(1)-time algorithm deciding reachability in linearly-bounded
unary 1-VASS. Further, we conclude in Corollary 5.5, if the k-cycle hypothesis is assumed
then there does not exist a deterministic n2−o(1)-time algorithm for coverability in (not
bounded) unary 2-VASS. Following, we prove Theorem 5.8, that claims there does not exist
a deterministic nd−o(1)-time algorithm reachability in linearly-bounded unary (d + 2)-VASS
under the 3-uniform k-hyperclique hypothesis (Hypothesis 5.7). We achieve this with two

ICALP 2023

131:4 Coverability in VASS Revisited

components. First, in Lemma 5.9, we first reduce from finding a 4d-hyperclique to an
instance of reachability in a bounded unary (d + 1)-VASS with a fixed number of zero-tests.
Second, via Lemma 5.10, we implement the newly developed controlling counter technique
of Czerwiński and Orlikowski [16] to remove the fixed number of zero-tests at the cost of
increasing the dimension by one.

Related Work. The coverability problem for VASS has plenty of structure that still receives
active attention. The set of configurations from which the target can be covered is upwards-
closed, meaning that coverability still holds if the initial counter values are increased. An
alternative approach, the backwards algorithm for coverability, relies on this phenomenon.
Starting from the target configuration, one computes the set of configurations from which it
can be covered [1]. Thanks to the upwards-closed property, it suffices to maintain the collection
of minimal configurations. The backwards algorithm terminates due to Dickson’s lemma,
however, using Rackoff’s bound one can show it runs in double-exponential time [10]. This
technique has been deeply analysed for coverability in VASS and some extensions [23, 32].
Despite high complexity, there are many implementations of coverability relying on the
backwards algorithm that work well in practice. Intuitively, the idea is to prune the set of
configurations, using relaxations that can be efficiently implemented in SMT solvers [21, 7, 8].

Another central decision problem for VASS is the reachability problem, asking whether
there is a run from a given initial configuration to a given target configuration. Reachability
is a provably harder problem. In essence, reachability differs from coverability by allowing
one zero-test to each counter. Counter machines, well-known to be equivalent to Turing
machines [43], can be seen as VASS with the ability to arbitrarily zero-test counters; cover-
ability and reachability are equivalent here and are undecidable. In 1981, Mayr proved that
reachability in VASS is decidable [39], making VASS one of the richest decidable variants of
counter machines. Only recently, after decades of work, has the complexity of reachability in
VASS been determined to be Ackermann-complete [35, 16, 34]. A widespread technique for
obtaining lower bounds for coverability and reachability problems in VASS is to simulate
counter machines with some restrictions. Our overall approach to obtaining lower bounds
follows suit; we first reduce finding cliques in graphs, finding cycles in graphs, and finding
hypercliques in hypergraphs to various intermediate instances of coverability in VASS with
extra properties such as bounded counters or a fixed number of zero-tests. These VASS,
that are counter machines restricted in some way, are then simulated by standard higher-
dimensional VASS. Such simulations are brought about by the two previously developed
techniques. Rosier and Yen leverage Lipton’s construction to obtain VASS that can simulate
counter machines with bounded counters [46]. Czerwiński and Orlikowski have shown that
the presence of an additional counter in a VASS, with carefully chosen transition effects and
reachability condition, can be used to implicitly perform a limited number of zero-tests [16].

Recently, some work has been dedicated to the coverability problem for low-dimensional
VASS [3, 42]. Furthermore, reachability in low-dimensional VASS has been given plenty of
attention, in particular for 1-VASS [48, 26] and for 2-VASS [28, 6]. In the restricted class of
flat VASS, other fixed dimensions have also been studied [15, 17].

Another studied variant, bidirected VASS, has the property that for every transition
(p, x, q), the reverse transition (q,−x, p) is also present. The reachability problem in bidirected
VASS is equivalent to the uniform word problem in commutative semigroups, both of which
are EXPSPACE-complete [40]; not to be confused with the reversible reachability problem
in general VASS which is also EXPSPACE-complete [33]. In 1982, Meyer and Mayr listed
an open problem that stated, in terms of commutative semigroups, the best known upper

M. Künnemann, F. Mazowiecki, L. Schütze, H. Sinclair-Banks, and K. Węgrzycki 131:5

bound for coverability in general VASS [45], the best known lower bound for coverability in
bidirected VASS [37], and asked for improvements to these bounds [40, Section 8, Problem 3].
Subsequently, Rosier and Yen refined the upper bound for coverability in general VASS to
2O(d log d) · log(n)-space [46]. Finally, Koppenhagen and Mayr showed that the coverability
problem in bidirected VASS can be decided in 2O(n)-space [30], matching the lower bound.

2 Preliminaries

We use bold font for vectors. We index the i-th component of a vector v by writing v[i].
Given two vectors u, v ∈ Zd we write u ≤ v if u[i] ≤ v[i] for each 1 ≤ i ≤ d. For every
1 ≤ i ≤ d, we write ei ∈ Zd to represent the i-th standard basis vector that has ei[i] = 1
and ei[j] = 0 for all j ̸= i. Given a vector v ∈ Zd we define ∥v∥ = max{1, |v[1]|, . . . , |v[d]|}.
Throughout, we assume that log has base 2. We use poly(n) to denote nO(1).

A d-dimensional Vector Addition System with States (d-VASS) V = (Q, T) consists of
a non-empty finite set of states Q and a non-empty set of transitions T ⊆ Q × Zd × Q.
A configuration of a d-VASS is a pair (q, v) ∈ Q × Nd consisting of the current state q

and current counter values v, denoted q(v). Given two configurations p(u), q(v), we write
p(u) −→ q(v) if there exists t = (p, x, q) ∈ T where x = v − u. We may refer to x as the
update of a transition and may also write p(v) t−→ q(w) to emphasise the transition t taken.

A path in a VASS is a (possibly empty) sequence of transitions ((p1, x1, q1), . . . , (pℓ, xℓ, qℓ)),
where (pi, xi, qi) ∈ T for all 1 ≤ i ≤ ℓ and such that the start and end states of consecutive
transitions match qi = pi+1 for all 1 ≤ i ≤ ℓ − 1. A run π in a VASS is a sequence of
configurations π = (q0(v0), . . . , qℓ(vℓ)) such that qi(vi) −→ qi+1(vi+1) for all 1 ≤ i ≤ ℓ − 1.
We denote the length of the run by len(π) = ℓ + 1. If there is such a run π, we can write
q0(v0) π−→ qℓ(vℓ). We may also write p(u) ∗−→ q(v) if there exists a run from p(u) to q(v).
The underlying path of a run π is sequence of transitions (t1, . . . , tℓ) taken between each of
the configurations in π, so qi(vi)

ti+1−−→ qi+1(vi+1) for all 0 ≤ i ≤ ℓ− 1.
A B-bounded d-VASS, in short (B, d)-VASS, is given as an integer upper bound on

the counter values B ∈ N and d-VASS V. A configuration in a (B, d)-VASS is a pair
q(v) ∈ Q× {0, . . . , B}d. The notions of paths and runs in bounded VASS remain the same
as for VASS, but are accordingly adapted for the appropriate bounded configurations. We
note that one should think that B forms part of the problem statement, not the input, as it
will be given implicitly by a function depending on the size of the VASS. For example, we
later consider linearly-bounded d-VASS, that represent occasions where B = O(∥V∥).

We do allow for zero-dimensional VASS, that is VASS with no counters, which can be seen
as just directed graphs. A hypergraph is a generalisation of the graph. Formally, a hypergraph
is a tuple H = (V, E) where V is a set of vertices and E is a collection of non-empty subsets
of V called hyperedges. For an integer µ, a hypergraph is µ-uniform if each hyperedge has
cardinality µ. Note that a 2-uniform hypergraph is a standard graph.

We study the complexity of the coverability problem. An instance (V, p(u), q(v)) of
coverability asks whether there is a run in the given VASS V from the given initial configuration
p(u) to a configuration q(v′) with at least the counter values v′ ≥ v of the given target
configuration q(v). At times, we also consider the reachability problem that additionally
requires v′ = v so that the target configuration is reached exactly.

To measure the complexity of these problems we need to discuss the encoding used. In
unary encoding, a d-VASS V = (Q, T) has size ∥V∥ = |Q| +

∑
(p,x,q)∈T ∥x∥. We define a

unary d-VASS U = (Q′, T ′) to have restricted transitions T ′ ⊆ Q′ ×{−1, 0, 1}d ×Q′, the size
is therefore ∥U∥ = |Q′|+ |T ′|. For any unary encoded d-VASS V there exists an equivalent

ICALP 2023

131:6 Coverability in VASS Revisited

unary d-VASS U such that ∥U∥ = ∥V∥. An instance (V, p(u), q(v)) of coverability has size
n = ∥V∥+ ∥u∥+ ∥v∥. An equal in size, equivalent instance (V ′, p′(0), q′(0)) of coverability
exists; consider adding an initial transition (p′, s, p) and a final transition (q,−t, q′).

It is well known that for d-VASS, the coverability problem can be reduced to the
reachability problem. Indeed, for an instance (V, p(u), q(v)) of coverability, define V ′ = (Q, T ′)
that has additional decremental transitions at the target states T ′ = T∪{(q, ei, q) : 1 ≤ i ≤ d}.
It is clear that p(u) ∗−→ q(v′), for some v′ ≥ v, in V if and only if p(u) ∗−→ q(v) in V ′.

▶ Lemma 2.1 (folklore). Let (V, p(u), q(v)) be an instance of coverability. It can be reduced
to an instance of reachability (V ′, p(u), q(v)) such that ∥V ′∥ = O(∥V∥).

A d-dimensional Vector Addition System (d-VAS) V is a system without states, consisting
only of a non-empty collection of transitions V ⊆ Zd. All definitions, notations, and problems
carry over for VAS except that, for simplicity, we drop the states across the board. For
example, a configuration in a VAS is just a vector v ∈ Nd. Another well-known result from the
seventies by Hopcroft and Pansiot, one can simulate the states of a VASS at the cost of three
extra dimensions in a VAS [28]. For clarity, the VAS obtained has an equivalent reachability
relation between configurations; a configuration q(x) in the original VASS corresponds with
a configuration (x, a, b, c) in the VAS, where a, b, and c represent the state q.

▶ Lemma 2.2 ([28, Lemma 2.1]). A d-VASS V can be simulated by (d + 3)-VAS V ′ such that
∥V ′∥ = poly(∥V∥).

3 Improved Bounds on the Maximum Counter Value

This section is devoted to our improvement of the seminal result of Rackoff. Throughout,
we fix our attention to the arbitrary instance (V, p(s), q(t)) of the coverability problem in
a d-VASS V = (Q, T) from the initial configuration p(s) to a configuration q(t′) with at
least the counter values of the target configuration q(t). We denote n = ∥V∥+ ∥s∥+ ∥t∥.
Informally, n may as well be the number of states plus the absolute value of the greatest
update on any transition, for these differences can be subsumed by the second exponent in
our following upper bounds. The following two theorems follow from Rackoff’s technique
and subsequent work by Rosier and Yen, in particular see [45, Lemma 3.4 and Theorem 3.5]
and [46, Theorem 2.1 and Lemma 2.2].

▶ Theorem 3.1 (Corollary of [45, Lemma 3.4] and [46, Theorem 2.1]). Suppose p(s) ∗−→ q(t′)
for some t′ ≥ t. Then there exists a run π such that p(s) π−→ q(t′′) for some t′′ ≥ t and
len(π) ≤ n2O(d log d) .

▶ Theorem 3.2 (cf. [45, Theorem 3.5]). For a given d-VASS V, integer ℓ, and two con-
figurations p(s) and q(t), there is an algorithm that determines the existence of a run π

of length len(π) ≤ ℓ that witnesses coverability, so p(s) π−→ q(t′) for some t′ ≥ t. The al-
gorithm can be implemented to run in non-deterministic O(d log(n · ℓ))-space or deterministic
2O(d log(n·ℓ))-time.

Note that Theorem 3.1 combined with Theorem 3.2, that is proved in the full version [31],
yield non-deterministic 2O(d log d)-space and deterministic n2O(d log(d))-time algorithms for
coverability. Our result improves this by a O(log(d)) factor in the second exponent.

▶ Theorem 3.3. Suppose p(s) ∗−→ q(t′) for some t′ ≥ t. Then there exists a run π such that
p(s) π−→ q(t′′) for some t′′ ≥ t and len(π) ≤ n2O(d) .

M. Künnemann, F. Mazowiecki, L. Schütze, H. Sinclair-Banks, and K. Węgrzycki 131:7

This combined with Theorem 3.2 yields the following corollary.

▶ Corollary 3.4. Coverability in d-VASS can be decided by both a non-deterministic 2O(d) ·
log(n)-space algorithm and a deterministic n2O(d)-time algorithm.

Note that by Lemma 2.2, we may handle VAS instead of VASS. Recall that, as there are
no states, a d-VAS consists only of a set of vectors in Zd that we still refer to as transitions.
A configuration is just a vector in Nd. Accordingly, we may fix our attention on the instance
(V, s, t) of the coverability problem in a d-VAS V = {v1, . . . , vm} from the initial configuration
s to a configuration t′ that is at least as great as the target configuration t. The rest of this
section is dedicated to the proof of Theorem 3.3. Imitating Rackoff’s proof, we proceed by
induction on the dimension d. Formally, we prove a stronger statement; Theorem 3.3 is a
direct corollary of the following lemma.

▶ Lemma 3.5. Define Li := n4i , and let t ∈ Nd such that ∥t∥ ≤ n. For any s ∈ Nd, if s ∗−→ t′

for some t′ ≥ t then there exists a run π such that s π−→ t′′ for some t′′ ≥ t and len(π) ≤ Ld.

The base case is d = 0. In a 0-dimensional VAS, the only possible configuration is the
empty vector ε and therefore there is only the trivial run ε

∗−→ ε. This trivially satisfies the
lemma.

For the inductive step, when d ≥ 1, we assume that Lemma 3.5 holds for all lower
dimensions 0, . . . , d − 1. Let π = (c0, c1, . . . , cℓ) be a run with minimal length such that
s π−→ t′ for some t′ ≥ t, so in particular, c0 = s and cn = t′. Our objective is to prove that
len(π) = ℓ + 1 ≤ Ld. Observe that configurations ci need to be distinct, else π could be
shortened trivially. We introduce the notion of a thin configuration.

▶ Definition 3.6 (Thin Configuration). In a d-VAS, we say that a configuration c ∈ Nd is thin
if there exists a permutation σ of {1, . . . , d} such that c[σ(i)] < Mi for every i ∈ {1, . . . , d},
where M0 := n and for i ≥ 1, Mi := Li−1 · n.

Recall, from above, the run π = (c0, c1, . . . , cℓ). Let t ∈ {0, . . . , ℓ} be the first index
where ct is not thin, otherwise let t = ℓ + 1 if every configuration in π is thin. We decompose
the run about the t-th configuration π = πthin · πtail, where πthin := (c0, . . . , ct−1) and
πtail := (ct, . . . , cℓ). Note that πthin or πtail can be empty. Subsequently, we individually
analyse the lengths of πthin and πtail (see Figure 1). We will also denote m = ct to be the
first configuration that is not thin.

▷ Claim 3.7. len(πthin) ≤ d! · nd · Ld−1 · . . . · L0.

Proof. By definition, every configuration in πthin is thin. Moreover, since π has a minimal
length, no configurations in π repeat, let alone in πthin. We now count the number of possible
thin configurations. There are d! many permutations of {1, . . . , d}. For a given permutation
σ and an index i ∈ {1, . . . , d}, we know that for a thin configuration c, 0 ≤ c[σ(i)] < Mi, so
there are at most Mi = Li−1 ·n many possible values on the σ(i)-th counter. Hence the total
number of thin configurations is at most d! ·

∏d
i=1(Li−1 · n) = d! · nd · Ld−1 · . . . · L0. ◁

▷ Claim 3.8. len(πtail) ≤ Ld−1.

Proof. Consider m ∈ Nd, the first configuration of πtail. Let σ be a permutation such that
m[σ(1)] ≤ m[σ(2)] ≤ . . . ≤ m[σ(d)]. Given that m is not thin, for every permutation σ′

there exists an i ∈ {1, . . . , d} such that m[σ′(i)] ≥Mi; in particular, this holds for σ. Note
that this also implies Mi ≤m[σ(i + 1)] ≤ . . . ≤m[σ(d)].

ICALP 2023

131:8 Coverability in VASS Revisited

Figure 1 The schematic view of proofs of Claim 3.7 and Claim 3.8, restricted to the two-
dimensional case. Note that s is the initial configuration and t is the target configuration. Every
configuration inside the green shaded polygon is thin, where each rectangular component of the
green shaded polygon corresponds to a permutation of the indices. Observe that m is the first
configuration, just outside the green shaded polygon, that is not thin. Claim 3.7 bounds πthin, and
therefore its maximum length, by the volume of the green polygon. Claim 3.8 argues that there is
an executable run ρ (drawn in blue) from m to t′′ ≥ t of length at most Ld−1 that can be used in
place of the run πtail (drawn in red) from m to t′ ≥ t.

We construct an (i− 1)-VAS U from V by ignoring the counters σ(i), . . . , σ(d). Formally,
u ∈ U if there is v ∈ V such that u[j] = v[σ(j)] for each 1 ≤ j ≤ i− 1. In such a case we say
u is the projection of v via σ. We will use the inductive hypothesis to show that there is a
short path ρ′ in U from (the projection of) m covering (the projection of) t. We will then
show that the remaining components of m are large enough that the embedding of ρ′ into V
maintains its covering status.

Recall that t′ is the final configuration of the run π. Note that the run πtail in-
duces a run π′

tail in U by permuting and projecting every configuration. More precisely,

(m[σ(1)], . . . , m[σ(i− 1)]) π′
tail−−−→ (t′[σ(1)], . . . , t′[σ(i− 1)]). By the inductive hypothesis there

exists a run ρ′ in U such that (m[σ(1)], . . . , m[σ(i− 1)]) ρ′

−→ (t′′[σ(1)], . . . , t′′[σ(i− 1)]), such
that (t′′[σ(1)], . . . , t′′[σ(i− 1)]) ≥ (t[σ(1)], . . . , t[σ(i− 1)]) and len(ρ′) ≤ Li−1.

Let (u1, . . . , ulen(ρ′)) be the underlying path of the run ρ′, that is, the sequence of
transitions in U that are sequentially added to form the run ρ′. By construction, each
transition vector ui ∈ U has a corresponding transition vector vi ∈ V where ui is the
projection of vi via σ. We will now show that the following run witnesses coverability of t.

ρ =

m, m + v1, m + v1 + v2, . . . , m +
len(ρ′)∑

j=1
vj


To this end, we verify that (i) ρ is a run, that is, all configurations lie in Nd, and (ii) the

final configuration indeed covers t. For components σ(1), . . . , σ(i− 1), this follows directly
from the inductive hypothesis. For all other components we will show that all configurations
of ρ are covering t in these components. This satisfies both (i) and (ii).

M. Künnemann, F. Mazowiecki, L. Schütze, H. Sinclair-Banks, and K. Węgrzycki 131:9

Let j be any of the remaining components. Recall that by the choice of m, m[j] ≥Mi =
n · Li−1. Since n > ∥V∥ ≥ ∥vj∥ for every 1 ≤ j ≤ len(ρ′), this means that in a single step,
the value of a counter can change by at most n. Given that len(ρ) = len(ρ′) ≤ Li−1, the
value on each of the remaining components must be at least n for every configuration in ρ.
In particular, observing that ∥t∥ ≤ n, the final configuration of ρ satisfies

m +
len(ρ′)∑

j=1
vj ≥ t.

Finally, observe that len(ρ) = len(ρ′) ≤ Li−1 ≤ Ld−1. ◁

To conclude this section, we show that Lemma 3.5 follows from Claim 3.7 and Claim 3.8.

Proof of Lemma 3.5. From Claim 3.7 and Claim 3.8,
len(π) ≤ len(πthin) + len(πtail) ≤ d! · nd · Ld−1 · . . . · L0 + Ld−1

≤ 2 · d! · nd · Ld−1 · . . . · L0.

Recall that n ≥ 2 and observe that 2 · d! · nd ≤ n2d . Hence,
len(π) ≤ n2d

· Ld−1 · . . . · L0.

Next, we use the definition of Li := n4i to show

len(π) ≤ n2d

·
d−1∏
i=0

n4i

≤ n

(
2d+

∑d−1
i=0

4i
)
.

Finally, when d ≥ 1, 2d +
∑d−1

i=0 4i ≤ 4d holds, therefore

len(π) ≤ n4d

= Ld. ◀

4 Conditional Time Lower Bound for Coverability

In this section, we present a conditional lower bound based on the Exponential Time
Hypothesis (ETH) [29]. Roughly speaking, ETH is a conjecture that an n-variable instance
of 3-SAT cannot be solved by a deterministic 2o(n)-time algorithm (for a modern survey,
see [38]). In our reductions, it will be convenient for us to work with the k-clique problem
instead. In the k-clique problem we are given a graph G = (V, E) as an input and the task is
to decide whether there is a set of k pairwise adjacent vertices in V . The naive algorithm for
k-clique runs in O(nk) time. Even though the exact constant in the dependence on k can be
improved [44], ETH implies that the exponent must have a linear dependence on k.

▶ Theorem 4.1 ([11, Theorem 4.2], [12, Theorem 4.5], and [14, Theorem 14.21]). Assuming
the Exponential Time Hypothesis, there is no algorithm running in f(k) · no(k)-time for the
k-clique problem for any computable function f . Moreover one can assume that G is k-partite,
i.e. G = (V1 ∪ . . . ∪ Vk, E) and edges belong to Vi × Vj for i ̸= j ∈ {1, . . . , k}.

We will use Theorem 4.1 to show the following conditional lower bound for coverability
in unary d-VASS, which is proved at the end of this section.

▶ Theorem 4.2. Assuming the Exponential Time Hypothesis, there does not exist an
n2o(d)-time algorithm deciding coverability in a unary d-VASS with n states.

We first reduce the k-clique problem to coverability in bounded 2-VASS with the ability
to perform a fixed number of zero-tests. We will then leverage a result by Rosier and Yen to
construct an equivalent, with respect to coverability, (O(log k))-VASS without zero-tests.

ICALP 2023

131:10 Coverability in VASS Revisited

▶ Lemma 4.3. Given a k-partite graph G = (V1 ∪ · · · ∪ Vk, E) with n vertices, there exists
a unary (O(n2k), 2)-VASS T such that there is a k-clique in G if and only if there exists a
run from qI(0) to qF (v) in T , for some v ≥ 0. Moreover, ∥T ∥ ≤ poly(n + k) and T can be
constructed in poly(n + k)-time.

Proof. Without loss of generality, we may assume that each of the k vertex subsets in the
graph has the same size |V1| = . . . = |Vk| = ℓ. Thus n = k · ℓ. For convenience, we denote
V = {1, . . . , k} × {1, . . . , ℓ}.

We begin by sketching the main ideas behind the reduction before they are implemented.
We start by finding the first n = k · ℓ primes and associating a distinct prime pi,j to each
vertex (i, j) ∈ V . Note that a product of k different primes uniquely corresponds to selecting
k vertices. Thus the idea is to guess such a product, and test whether the corresponding
verticies form a k-clique. To simplify the presentation we present VASS also as counter
programs, inspired by Esparza’s presentation of Lipton’s lower bound [20, Section 7].

We present an overview of our construction in Algorithm 1. Note that the counter y is
used only by subprocedures. Initially both counter values are 0, as in the initial configuration
of the coverability instance. The program is non-deterministic and we are interested in the
existence of a certain run. One should think that coverability holds if and only if there is a
run through the code without getting stuck so to say. In this example a run can be stuck
only in the Edge[e] subprocedure, that will be explained later. The precise final counter
values are not important, as we are simply aiming to cover the target counter values 0. The
variable i (in the first loop) and variables i and j (in the second loop) are just syntactic
sugar for copying similar code multiple times. The variables j (in the first loop) and e (in
the second loop) allow us to neatly represent non-determinism in a VASS.

Algorithm 1 A counter program for a VASS with zero tests with two counters x and y.

input : x = 0, y = 0

x += 1
for i← 1 to k do

guess j ∈ {1, . . . , ℓ}
Multiply[x, pi,j]

end
for (i, j) ∈ {1, . . . , k}2, i ̸= j do

guess e ∈ E ∩ (Vi × Vj)
Edge[e]

end

Algorithm 1 uses the Multiply[x, p] and Edge[e] subprocedures. These two subprocedures
will be implemented later. Note that Multiply[x, p] takes a counter x as input as we later
reuse this subprocedure when there is more than one counter subject to multiplication. The
intended behaviour of Multiply[x, p] is that it can be performed if and only if as a result we
get x = x · p, despite the fact that VASS can only additively increase and decrease counters.
The subprocedure Edge[e] can be performed if and only if both vertices of the edge e are
encoded in the value of the counter x. Overall, Algorithm 1 is designed so that in the first
part the variable x is multiplied by pi,j , where for every i one j is guessed. This equates
to selecting one vertex from each Vi. Then the second part the algorithm checks whether
between every pair of selected vertices from Vi and Vj there is an edge. Clearly there is a
run through the program that does not get stuck if and only if there is k-clique in G.

M. Künnemann, F. Mazowiecki, L. Schütze, H. Sinclair-Banks, and K. Węgrzycki 131:11

qIqI

qF

Multiply[x, p1,1]

Multiply[x, p1,2]

· ·
·

Multiply[x, p1,ℓ]

· · ·

· · ·

· · ·

Multiply[x, pk,1]

Multiply[x, pk,2]

··
·

Multiply[x, pk,ℓ]

x += 1

qF

qI

Edge[{u1, u2}]

Edge[{v1, v2}]

· ·
·

Edge[{w1, w2}]

V1 × V2 ∩ E

· · ·

· · ·

· · ·

Vi × Vj ∩ E

Edge[{uk−1, uk}]

Edge[{vk−1, vk}]

· ·
·

Edge[{wk−1, wk}]

Vk−1 × Vk ∩ E

Figure 2 The top part of the VASS implements the first line and the first loop in Algorithm 1.
The variable x is multiplied by k non-deterministically chosen primes pi,j , each corresponding to a
vertex in Vi. The bottom part of the VASS implements the second loop in Algorithm 1. For every
pair i ̸= j the VASS non-deterministically chooses e ∈ Vi ∩ Vj and invokes the subprocedure Edge[e].

In Figure 2 we present a VASS with zero-tests implementing Algorithm 1. The construction
will guarantee that qF (0) can be covered from qI(0) if and only if there is a k-clique in G.

It remains to define the subprocedures. One should think that every call of a subprocedure
corresponds to a unique part of the VASS, like a gadget of sorts. To enter and leave the
subprocedure one needs to add trivial transitions that to do not change the counter values.
All subprocedures rely on the invariant y = 0 at the beginning and admit the invariant at
the end.

Algorithm 2 The counter program of Multiply[x, p] above its VASS implementation
(left) and the counter program of Divide[x, p] above its VASS implementation (right).

input : x = v, y = 0
output : x = v · p, y = 0

repeat
x−= 1; y += 1

until x = 0
repeat

x += p; y−= 1
until y = 0

x = 0 y = 0

x−= 1
y += 1

x += p

y−= 1

input : x = v · p, y = 0
output : x = v, y = 0

repeat
x−= p; y += 1

until x = 0
repeat

x += 1; y−= 1
until y = 0

x = 0 y = 0

x−= p

y += 1
x += 1
y−= 1

ICALP 2023

131:12 Coverability in VASS Revisited

We start with Multiply[x, p] and Divide[x, p] that indeed multiply and divide x by p,
respectively. See Algorithm 2 for the counter program and VASS implementations. Notice
that the repeat loops correspond to the self-loops in the VASS. In the Multiply[x, p] gadget,
it is easy to see that a run passes through the procedure if and only if the counter x is
multiplied by p. Similarly, in the Divide[x, p] gadget, it is easy to see that a run pass
through the procedure if and only if the counter x is divided by p wholly. Indeed, the division
procedure would get stuck if p ∤ x because it will be impossible to exit the first loop.

Algorithm 3 The counter program for Edge[{u, v}] and its VASS implementation.

input : x = v, y = 0
output : x = v, y = 0

Divide[x, pu]

Multiply[x, pu]

Divide[x, pv]

Multiply[x, pv]

Divide[x, pu]

Multiply[x, pu]

Divide[x, pv]

Multiply[x, pv]

The procedure Edge[{u, v}] is very simple, it is a sequence of four subprocedures, see
Algorithm 3. Indeed, to check if the vertices from edge e are encoded in x we simply check
whether x is divisible by the corresponding primes. Afterwards we multiply x with the same
primes so that the value does not change and it is ready for future edge checks.

It remains to analyse the size of the VASS and its construction time in this reduction
time. In every run from qI(0) to qF (v), for some v ≥ 0, the greatest counter value observable
can be bounded above by pk where p is the n-th prime. By the Prime Number Theorem (for
example, see [51]), we know that pk ≤ O((n log(n))k) ≤ O(n2k) is an upper bound on the
counter values observed. Hence T is an O(n2k)-bounded unary 2-VASS.

Finally, the Multiply and Divide subprocedures contain three states and five transitions.
Since the n-th prime is bounded above by O(n log(n)), we also get ∥T ∥ = O(n log(n)), hence
our VASS can be represented using unary encoding. Analysing Algorithm 1, it is easy to
see that overall the number of states is polynomial in n. Finally, the first n primes can be
found in O(n1+o(1))-time [2]. Therefore, in total T has size ∥T ∥ = poly(n + k) and can be
constructed in poly(n + k)-time. ◀

To attain conditional lower bounds for coverability we must replace the zero-tests. We
make use of a technique of Rosier and Yen [46] that relies on the construction of Lipton [37].
They show that a (2n)2k -bounded counter machine with finite state control can be simulated
by a unary (O(k))-VASS with n states. As Rosier and Yen detail after their proof, it is
possible to apply this technique to multiple counters with zero-tests at once [46]. This
accordingly results in the number of VASS counters increasing, but we instantiate this with
just two counters. We remark that the VASS constructed in Lemma 4.3 is structurally
bounded, so for any initial configuration there is a limit on the largest observable counter, as
is the case in the VASS Lipton constructed [37].

▶ Lemma 4.4 (Corollary of [46, Lemma 4.3]). Let T be an n-state unary (nO(k), 2)-VASS
with zero-tests, for some parameter k. Then there exists an O(n)-state (O(log k))-VASS V,
such that there is a run from qI(0) to qF (v), for some v ≥ 0, in T if and only if there is a
run from q′

I(0) to q′
F (w), for some w ≥ 0, in V. Moreover, V has size O(|T |) and can be

constructed in the same time.

M. Künnemann, F. Mazowiecki, L. Schütze, H. Sinclair-Banks, and K. Węgrzycki 131:13

Proof of Theorem 4.2. Let k = 2d. We instantiate Lemma 4.3 on k-partite graphs G with
n vertices. We therefore obtain a unary (n2O(d)

, 2)-VASS with zero tests T such that G

contains a k-clique if and only if there is a run from qI(0) to qF (v), for some v ≥ 0, in T .
Given the bound on the value of the counters, we can apply Lemma 4.4 to T . This gives

us an O(n)-state (O(d))-VASS V such that G contains a k-clique if and only if there is a run
from q′

I(0) to q′
F (w), for some w ≥ 0, in V.

By Theorem 4.1 we conclude that under the Exponential Time Hypothesis there does
not exist an n2o(d) -time algorithm deciding coverability in unary d-VASS. ◀

5 Coverability and Reachability in Bounded Unary VASS

In this section, we give even tighter bounds for coverability in bounded fixed dimension
unary VASS. Specifically, for a time constructible function B(n), the coverability problem in
(B(n), d)-VASS asks, for a given (B(n), d)-VASS V = (Q, T) of size n as well as configurations
p(u), q(v), whether there is a run in V from p(u) to q(v′) for some v′ ≥ v such that each
counter value remains in {0, . . . , B(n)} throughout. We would like to clarify the fact that
the bound is not an input parameter. We focus on the natural setting of linearly-bounded
fixed dimension VASS, that is (O(n), d)-VASS. There is a simple algorithm, given in the
proof of Observation 5.1 which can be found in the full version [31], that yields an immediate
O(nd+1) upper bound for the time needed to decide the coverability problem. We accompany
this observation with closely matching lower bounds, see Table 1 for an overview.

Table 1 Conditional lower bounds and upper bounds of the time complexity of coverability
and reachability in unary (O(n), d)-VASS. For clarity, we remark that Theorem 5.4 is subject to
Hypothesis 5.2 and that Theorem 5.8 is subject to Hypothesis 5.7. Note that the lower bounds for
dimensions d = 2 and d = 3 follow from Theorem 5.4 by just adding components consisting of only
zeros. All upper bounds follow from Observation 5.1.

d Lower Bound Upper Bound
0 Ω(n) (trivial) O(n)
1 n2−o(1) (Theorem 5.4) O(n2)
2 n2−o(1) (from above) O(n3)
3 n2−o(1) (from above) O(n4)

d ≥ 4 nd−2−o(1) (Theorem 5.8) O(nd+1)

▶ Observation 5.1. Coverability in an n-sized unary (B(n), d)-VASS can be solved in
O(n(B(n) + 1)d)-time.

Lower Bounds for Coverability in Linearly-Bounded VASS
Now, we consider lower bounds for the coverability problem in linearly-bounded fixed
dimension unary VASS. Firstly, in dimension one, we show that quadratic running time is
conditionally optimal under the k-cycle hypothesis. Secondly, in dimensions four and higher,
we require a running time at least nd−2−o(1) under the 3-uniform hyperclique hypothesis.
Together, this provides evidence that the simple O(nd+1) algorithm for coverability in
(O(n), d)-VASS is close to optimal, as summarised in Table 1.

▶ Hypothesis 5.2 (k-Cycle Hypothesis). For every ε > 0, there exists a k such that there does
not exist a O(m2−ε)-time algorithm for finding a k-cycle in directed graphs with m edges.

ICALP 2023

131:14 Coverability in VASS Revisited

The k-cycle hypothesis arises from the state-of-the-art O(m2− c
k +o(1))-time algorithms,

where c is some constant [4, 50, 19]. It has been previously used as an assumption for
hardness results, for example, see [36, 5, 18]. It is a standard observation, due to colour-
coding arguments, that we may without loss of generality assume that the graph given is
a k-circle-layered graph [36, Lemma 2.2]. Specifically, we can assume that the input graph
G = (V, E) has vertex partition V = V0 ∪ · · · ∪ Vk−1 such that each edge {u, v} ∈ E is in
Vi × Vi+1 (mod k) for some 0 ≤ i < k. Furthermore, we may assume |V | ≤ |E|.

The core of the upcoming lower bounds is captured in the following lemma; see Figure 3
for an overview and the full version [31] for the proof.

▶ Lemma 5.3. Given a k-circle-layered graph G = (V0 ∪ · · · ∪ Vk−1, E) with m edges, there
exists a unary (O(n), 1)-VASS V such that there is a k-cycle in G if and only if there exists
a run from p(0) to q(0) in V. Moreover, V has size n ≤ O(m) and can be constructed in
O(m)-time.

P0

pv1

pv2

··
·

pvℓ

+1

+1

+1

Q0

qvℓ

· ·
·

qv2

qv1

−1

−1

−1

S1 S2

· · ·

Sk−1

Figure 3 The (O(n), 1)-VASS V of size n ≤ O(m) for finding k-cycle in a k-circle-layered graphs
with m edges. Note that unlabelled transitions have zero effect. Observe that the graph is mostly
copied into the states and transitions of the linearly-bounded 1-VASS. Importantly, two copies of V0

are created. By starting at pv1 (0) in the first copy, a vertex from V0 belonging to the k-cycle can be
selected by loading the sole counter with a value corresponding to that vertex. Then, in the second
copy, qv1 (0) can only be reached if the state first arrived at corresponds to the vertex selected in
the beginning. Accordingly, there is a run from pv1 (0) to qv1 (0) if and only if there exists a k-cycle,
since the states visited in the underlying path of the run correspond to the vertices of the k-cycle.

▶ Theorem 5.4. Assuming the k-cycle hypothesis, coverability and reachability in unary
(O(n), 1)-VASS of size n require n2−o(1)-time.

Proof. Assume for contradiction that reachability in a unary (O(n), 1)-VASS of size n can
be solved in O(n2−ε)-time for some ε > 0. By the k-cycle hypothesis (Hypothesis 5.2), there
exists a k such that the problem of finding a k-cycle in a k-circle layered graph with m vertices
cannot be solved in O(m2−ε)-time. Via the reduction presented above in Lemma 5.3, we
create a (O(n), 1)-VASS V of size n ≤ O(m) together with an initial configuration p(0) and
a target configuration q(0), such that deciding reachability from p(0) to q(0) in V determines
the existence of a k-cycle in G. Thus the O(n2−ε) algorithm for reachability would give a
O(m2−ε) algorithm for finding k-cycles, contradicting the k-cycle hypothesis.

By the equivalence of coverability and reachability in unary (O(n), 1) VASS in Lemma 5.6,
the same lower bound holds for coverability. ◀

▶ Corollary 5.5. Assuming the k-cycle hypothesis, coverability in unary 2-VASS of size n

requires n2−o(1)-time.

M. Künnemann, F. Mazowiecki, L. Schütze, H. Sinclair-Banks, and K. Węgrzycki 131:15

Reachability in (O(n), d)-VASS can be decided in O(n(B(n) + 1)d)-time using the simple
algorithm for Observation 5.1 with a trivially modified acceptance condition. It turns out
that coverability and reachability are equivalent in unary (O(n), d)-VASS. The following
lemma is proved in the full version [31].

▶ Lemma 5.6. For a (B(n), d)-VASS, let CB(n)(n) and RB(n)(n) denote the optimal running
times for coverability and reachability, respectively. For any γ > 0, there exists some δ > 0
such that Cγ·n(n) ≤ O(Rδ·n(n)). Conversely, for any γ > 0, there exists some δ > 0 such
that Rγ·n(n) ≤ O(Cδ·n(n)).

Lower Bounds for Reachability in Linearly-Bounded VASS
To obtain further lower bounds for the coverability problem in (O(n), d)-VASS, by Lemma 5.6,
we can equivalently find lower bounds for the reachability problem in (O(n), d)-VASS. In
Theorem 5.8, we will assume a well-established hypothesis concerning the time required
to find hypercliques in 3-uniform hypergraphs. In fact, Lincoln, Vassilevska Williams, and
Williams state and justify an even stronger hypothesis about µ-uniform hypergraphs for
every µ ≥ 3 [36, Hypothesis 1.4]. We will use this computational complexity hypothesis to
expose precise lower bounds on the time complexity of reachability in linearly-bounded fixed
dimension unary VASS.

▶ Hypothesis 5.7 (k-Hyperclique Hypothesis [36, Hypothesis 1.4]). Let k ≥ 3 be an integer.
On Word-RAM with O(log(n)) bit words, finding an k-hyperclique in a 3-uniform hypergraph
on n vertices requires nk−o(1)-time.

▶ Theorem 5.8. Assuming Hypothesis 5.7, reachability in unary (O(n), d + 2)-VASS of size
n requires nd−o(1)-time.

For the remainder of this section, we focus on the proof of Theorem 5.8. The lower bound
is obtained via reduction from finding hyperclique in 3-uniform hypergraphs, hence it is
subject to the k-Hyperclique Hypothesis. We present our reduction in two steps. The first
step is an intermediate step, in Lemma 5.9 we offer a reduction to an instance of reachability
in unary VASS with a limited number of zero-tests (proved in the full version [31]). The
second step extends the first, in Lemma 5.10 we modify the reduction by adding a counter so
zero-tests are absented. This extension leverages the recently developed controlling counter
technique of Czerwiński and Orlikowski [16]. This technique allows for implicit zero-tests to
be performed in the presence of a dedicated counter whose transition effects and reachability
condition ensure the implicit zero-tests were indeed performed correctly.

It has been shown that we may assume that the hypergraph is ℓ-partite for the k-
Hyperclique Hypothesis [36, Theorem 3.1]. Thus, we may assume that the vertices can be
partitioned into ℓ disjoint subsets V = V1 ∪ · · · ∪ Vℓ and all hyperedges contain three vertices
from distinct subsets {u, v, w} ∈ Vi × Vj × Vk for some 1 ≤ i < j < k ≤ ℓ.

▶ Lemma 5.9. Let d ≥ 1 be a fixed integer. Given a 4d-partite 3-uniform hypergraph
H = (V1 ∪ . . . ∪ V4d, E) with n vertices, there exists a unary (O(n4+o(1)), d + 1)-VASS
with O(d3) zero-tests T such that there is a 4d-hyperclique in H if and only if there is
a run from qI(0) to qF (v), for some v ≥ 0, in T . Moreover, T can be constructed in
poly(d) · n4+o(1)-time.

▶ Lemma 5.10 ([16, Lemma 10]). Let ρ be a run in a (d + 2)-VASS such that qI(0) ρ−→ qF (0).
Further, let q0(v0), q1(v1) . . . , qr(vr) be some distinguished configurations observed along the
run ρ with q0(v0) = qI(0) and qr(vr) = qF (0) and let ρj be the segment of ρ that is between
qj−1(vj−1) and qj(vj), so ρ can be described as

qI(0) = q0(v1) ρ1−→ q1(v1)→ · · · → qr−1(vr−1) ρr−→ qr(vr) = qF (0).

ICALP 2023

131:16 Coverability in VASS Revisited

Let S1, . . . , Sd, Sd+1 ⊆ {0, 1, . . . , r} be the sets of indices of the distinguished configurations
where zero-tests could be performed on counters x1, . . . , xd, xd+1, respectively. Let tj,i =
|{s ≥ j : s ∈ Si}| be the number of zero-test for the counter xi in the remainder of the run
ρj+1 · · · ρr. Given that v0 = 0 and vr = 0, if

eff(ρj)[d + 2] =
d+1∑
i=1

tj,i · eff(ρj)[i], (1)

then for every i ∈ {1, . . . , d, d + 1} and j ∈ Si, we know that vj [i] = 0.

With Lemma 5.10 in hand, we can ensure that the O(d3) zero-tests performed by T , from
Lemma 5.9, are executed correctly. We conclude this section with a proof of Theorem 5.8.

Proof of Theorem 5.8. Consider the reduction, presented in Lemma 5.9, from finding a
4d-hyperclique in a 4d-partite 3-uniform hypergraph H to reachability in (O(n4+o(1)), d + 1)-
VASS with O(d3) zero-tests. Now, given Lemma 5.10, we will add a controlling counter to
T so that the zero-tests on the d + 1 counters x1, . . . , xd, y are instead performed implicitly.
So we introduce another counter z that receives updates on transitions, consistent with
Equation 1, whenever any of the other counters are updated. Note that counters y and z,
for the sake of a succinct and consistent description, are respectively referred to as counters
xd+1 and xd+2 in the statement of Lemma 5.10. Moreover, notice that the maximum value
of z is bounded by poly(d) ·

(∑d+1
i=1 xi

)
∈ poly(d) · n4+o(1).

Therefore, we have constructed a unary (poly(d) ·n4+o(1), d+2)-VASS V with the property
that there H contains a 4d-hyperclique if and only if there is a run from q′

I(0) to q′
F (0) in V .

Such a (poly(d) ·n4+o(1), d + 2)-VASS V has size O(t · |T |) where t ∈ poly(d) is the number of
zero-tests performed on the run from qI(0) to qF (0) in T . Moreover, V can be constructed
in poly(d) · n4+o(1) time. Hence, if reachability in (O(n), d + 2)-VASS of size n can be solved
faster than nd−o(1), then one can find a 4d-hyperclique in a 3-uniform hypergraph faster
than n4d−o(1), contradicting Hypothesis 5.7. ◀

6 Conclusion

Summary. In this paper, we have revisited a classical problem of coverability in d-VASS.
We have closed the gap left by Rosier and Yen [46] on the length of runs witnessing instances
of coverability in d-VASS. We have lowered the upper bound of n2O(d log d) , from Rackoff’s
technique [45], to n2O(d) (Theorem 3.3), matching the n2Ω(d) lower bound from Lipton’s
construction [37]. This accordingly closes the gap on the exact space required for the
coverability problem and yields a deterministic n2O(d)-time algorithm for coverability in
d-VASS (Corollary 3.4). We complement this with a matching lower bound conditional on
ETH; there does not exist a deterministic n2o(d) -time algorithm for coverability (Theorem 4.2).
By and large, this settles the exact space and time complexity of coverability in VASS.

In addition, we study linearly-bounded unary d-VASS. Here, coverability and reachability
are equivalent and the trivial exhaustive search O(nd+1) algorithm is near-optimal. We prove
that reachability in linearly-bounded 1-VASS requires n2−o(1)-time under the k-cycle hypo-
thesis (Theorem 5.4), matching the trivial upper bound. We further prove that reachability
in linearly-bounded (d + 2)-VASS requires nd−o(1)-time under the 3-uniform hyperclique
hypothesis (Theorem 5.8).

Open Problems. The boundedness problem, a problem closely related to coverability, asks
whether, from a given initial configuration, the set of all reachable configurations is finite.
This problem was also studied by Lipton then Rackoff and is EXPSPACE-complete [37, 45].

M. Künnemann, F. Mazowiecki, L. Schütze, H. Sinclair-Banks, and K. Węgrzycki 131:17

Boundedness was further analysed by Rosier and Yen [46, Theorem 2.1] and the same gap
also exists for the exact space required. We leave the same improvement, to eliminate the
same twice-exponentiated log(d) factor, as an open problem.

Our lower bounds for the time complexity of coverability and reachability in linearly-
bounded unary d-VASS, for d ≥ 2, leave a gap of up to n3+o(1), see Table 1. We leave it
as an open problem to either improve upon the upper bound O(nd+1) given by the trivial
algorithm, or to raise our conditional lower bounds.

References
1 Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson, and Yih-Kuen Tsay. Algorithmic analysis

of programs with well quasi-ordered domains. Inf. Comput., 160(1-2):109–127, 2000. doi:
10.1006/inco.1999.2843.

2 Manindra Agrawal, Neeraj Kayal, and Nitin Saxena. Primes is in P. Annals of Mathematics,
pages 781–793, 2004.

3 Shaull Almagor, Nathann Cohen, Guillermo A. Pérez, Mahsa Shirmohammadi, and James
Worrell. Coverability in 1-VASS with Disequality Tests. In Igor Konnov and Laura Kovács,
editors, 31st International Conference on Concurrency Theory, CONCUR 2020, September 1-4,
2020, Vienna, Austria (Virtual Conference), volume 171 of LIPIcs, pages 38:1–38:20. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.CONCUR.2020.38.

4 Noga Alon, Raphael Yuster, and Uri Zwick. Finding and counting given length cycles.
Algorithmica, 17(3):209–223, 1997. doi:10.1007/BF02523189.

5 Bertie Ancona, Monika Henzinger, Liam Roditty, Virginia Vassilevska Williams, and Nicole
Wein. Algorithms and hardness for diameter in dynamic graphs. In Christel Baier, Ioannis
Chatzigiannakis, Paola Flocchini, and Stefano Leonardi, editors, 46th International Colloquium
on Automata, Languages, and Programming, ICALP 2019, July 9-12, 2019, Patras, Greece,
volume 132 of LIPIcs, pages 13:1–13:14. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2019. doi:10.4230/LIPIcs.ICALP.2019.13.

6 Michael Blondin, Matthias Englert, Alain Finkel, Stefan Göller, Christoph Haase, Ranko Lazić,
Pierre McKenzie, and Patrick Totzke. The Reachability Problem for Two-Dimensional Vector
Addition Systems with States. J. ACM, 68(5):34:1–34:43, 2021. doi:10.1145/3464794.

7 Michael Blondin, Alain Finkel, Christoph Haase, and Serge Haddad. Approaching the
Coverability Problem Continuously. In Marsha Chechik and Jean-François Raskin, editors,
Tools and Algorithms for the Construction and Analysis of Systems – 22nd International
Conference, TACAS 2016, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings,
volume 9636 of Lecture Notes in Computer Science, pages 480–496. Springer, 2016. doi:
10.1007/978-3-662-49674-9_28.

8 Michael Blondin, Christoph Haase, and Philip Offtermatt. Directed reachability for infinite-
state systems. In Jan Friso Groote and Kim Guldstrand Larsen, editors, Tools and Algorithms
for the Construction and Analysis of Systems – 27th International Conference, TACAS
2021, Held as Part of the European Joint Conferences on Theory and Practice of Software,
ETAPS 2021, Luxembourg City, Luxembourg, March 27 – April 1, 2021, Proceedings, Part
II, volume 12652 of Lecture Notes in Computer Science, pages 3–23. Springer, 2021. doi:
10.1007/978-3-030-72013-1_1.

9 Mikołaj Bojańczyk, Claire David, Anca Muscholl, Thomas Schwentick, and Luc Segoufin.
Two-variable logic on data words. ACM Trans. Comput. Log., 12(4):27:1–27:26, 2011. doi:
10.1145/1970398.1970403.

10 Laura Bozzelli and Pierre Ganty. Complexity analysis of the backward coverability algorithm
for VASS. In Giorgio Delzanno and Igor Potapov, editors, Reachability Problems – 5th
International Workshop, RP 2011, Genoa, Italy, September 28-30, 2011. Proceedings, volume
6945 of Lecture Notes in Computer Science, pages 96–109. Springer, 2011. doi:10.1007/
978-3-642-24288-5_10.

ICALP 2023

https://doi.org/10.1006/inco.1999.2843
https://doi.org/10.1006/inco.1999.2843
https://doi.org/10.4230/LIPIcs.CONCUR.2020.38
https://doi.org/10.1007/BF02523189
https://doi.org/10.4230/LIPIcs.ICALP.2019.13
https://doi.org/10.1145/3464794
https://doi.org/10.1007/978-3-662-49674-9_28
https://doi.org/10.1007/978-3-662-49674-9_28
https://doi.org/10.1007/978-3-030-72013-1_1
https://doi.org/10.1007/978-3-030-72013-1_1
https://doi.org/10.1145/1970398.1970403
https://doi.org/10.1145/1970398.1970403
https://doi.org/10.1007/978-3-642-24288-5_10
https://doi.org/10.1007/978-3-642-24288-5_10

131:18 Coverability in VASS Revisited

11 Jianer Chen, Benny Chor, Mike Fellows, Xiuzhen Huang, David W. Juedes, Iyad A. Kanj,
and Ge Xia. Tight lower bounds for certain parameterized NP-hard problems. Inf. Comput.,
201(2):216–231, 2005. doi:10.1016/j.ic.2005.05.001.

12 Jianer Chen, Xiuzhen Huang, Iyad A. Kanj, and Ge Xia. Strong computational lower
bounds via parameterized complexity. J. Comput. Syst. Sci., 72(8):1346–1367, 2006. doi:
10.1016/j.jcss.2006.04.007.

13 Hubert Comon and Yan Jurski. Multiple counters automata, safety analysis and presburger
arithmetic. In Alan J. Hu and Moshe Y. Vardi, editors, Computer Aided Verification, 10th
International Conference, CAV ’98, Vancouver, BC, Canada, June 28 – July 2, 1998, Pro-
ceedings, volume 1427 of Lecture Notes in Computer Science, pages 268–279. Springer, 1998.
doi:10.1007/BFb0028751.

14 Marek Cygan, Fedor V. Fomin, Łukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michał Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.
doi:10.1007/978-3-319-21275-3.

15 Wojciech Czerwiński, Slawomir Lasota, Ranko Lazic, Jérôme Leroux, and Filip Mazowiecki.
Reachability in Fixed Dimension Vector Addition Systems with States. In Igor Konnov and
Laura Kovács, editors, 31st International Conference on Concurrency Theory, CONCUR 2020,
September 1-4, 2020, Vienna, Austria (Virtual Conference), volume 171 of LIPIcs, pages
48:1–48:21. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.
CONCUR.2020.48.

16 Wojciech Czerwiński and Łukasz Orlikowski. Reachability in Vector Addition Systems
is Ackermann-complete. In 62nd IEEE Annual Symposium on Foundations of Computer
Science, FOCS 2021, Denver, CO, USA, February 7-10, 2022, pages 1229–1240. IEEE, 2021.
doi:10.1109/FOCS52979.2021.00120.

17 Wojciech Czerwiński and Łukasz Orlikowski. Lower Bounds for the Reachability Problem
in Fixed Dimensional VASSes. In Christel Baier and Dana Fisman, editors, LICS ’22: 37th
Annual ACM/IEEE Symposium on Logic in Computer Science, Haifa, Israel, August 2–5,
2022, pages 40:1–40:12. ACM, 2022. doi:10.1145/3531130.3533357.

18 Mina Dalirrooyfard, Ce Jin, Virginia Vassilevska Williams, and Nicole Wein. Approximation
Algorithms and Hardness for n-Pairs Shortest Paths and All-Nodes Shortest Cycles. In 63rd
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2022, Denver, CO,
USA, October 31 – November 3, 2022, pages 290–300. IEEE, 2022. doi:10.1109/FOCS54457.
2022.00034.

19 Mina Dalirrooyfard, Thuy Duong Vuong, and Virginia Vassilevska Williams. Graph pattern
detection: Hardness for all induced patterns and faster noninduced cycles. SIAM J. Comput.,
50(5):1627–1662, 2021. doi:10.1137/20M1335054.

20 Javier Esparza. Decidability and Complexity of Petri Net Problems – An Introduction. In
Wolfgang Reisig and Grzegorz Rozenberg, editors, Lectures on Petri Nets I: Basic Models,
Advances in Petri Nets, the volumes are based on the Advanced Course on Petri Nets, held in
Dagstuhl, September 1996, volume 1491 of Lecture Notes in Computer Science, pages 374–428.
Springer, 1996. doi:10.1007/3-540-65306-6_20.

21 Javier Esparza, Ruslán Ledesma-Garza, Rupak Majumdar, Philipp J. Meyer, and Filip
Niksic. An SMT-Based Approach to Coverability Analysis. In Armin Biere and Roderick
Bloem, editors, Computer Aided Verification – 26th International Conference, CAV 2014,
Held as Part of the Vienna Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014.
Proceedings, volume 8559 of Lecture Notes in Computer Science, pages 603–619. Springer,
2014. doi:10.1007/978-3-319-08867-9_40.

22 John Fearnley and Marcin Jurdziński. Reachability in Two-Clock Timed Automata Is PSPACE-
Complete. In Fedor V. Fomin, Rusins Freivalds, Marta Z. Kwiatkowska, and David Peleg,
editors, Automata, Languages, and Programming – 40th International Colloquium, ICALP
2013, Riga, Latvia, July 8-12, 2013, Proceedings, Part II, volume 7966 of Lecture Notes in
Computer Science, pages 212–223. Springer, 2013. doi:10.1007/978-3-642-39212-2_21.

https://doi.org/10.1016/j.ic.2005.05.001
https://doi.org/10.1016/j.jcss.2006.04.007
https://doi.org/10.1016/j.jcss.2006.04.007
https://doi.org/10.1007/BFb0028751
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.4230/LIPIcs.CONCUR.2020.48
https://doi.org/10.4230/LIPIcs.CONCUR.2020.48
https://doi.org/10.1109/FOCS52979.2021.00120
https://doi.org/10.1145/3531130.3533357
https://doi.org/10.1109/FOCS54457.2022.00034
https://doi.org/10.1109/FOCS54457.2022.00034
https://doi.org/10.1137/20M1335054
https://doi.org/10.1007/3-540-65306-6_20
https://doi.org/10.1007/978-3-319-08867-9_40
https://doi.org/10.1007/978-3-642-39212-2_21

M. Künnemann, F. Mazowiecki, L. Schütze, H. Sinclair-Banks, and K. Węgrzycki 131:19

23 Diego Figueira, Santiago Figueira, Sylvain Schmitz, and Philippe Schnoebelen. Ackermannian
and Primitive-Recursive Bounds with Dickson’s Lemma. In Proceedings of the 26th Annual
IEEE Symposium on Logic in Computer Science, LICS 2011, June 21-24, 2011, Toronto,
Ontario, Canada, pages 269–278. IEEE Computer Society, 2011. doi:10.1109/LICS.2011.39.

24 Pierre Ganty and Rupak Majumdar. Algorithmic verification of asynchronous programs. ACM
Trans. Program. Lang. Syst., 34(1):6:1–6:48, 2012. doi:10.1145/2160910.2160915.

25 Steven M. German and A. Prasad Sistla. Reasoning about systems with many processes. J.
ACM, 39(3):675–735, 1992. doi:10.1145/146637.146681.

26 Christoph Haase, Stephan Kreutzer, Joël Ouaknine, and James Worrell. Reachability in
Succinct and Parametric One-Counter Automata. In Mario Bravetti and Gianluigi Zavattaro,
editors, CONCUR 2009 – Concurrency Theory, 20th International Conference, CONCUR
2009, Bologna, Italy, September 1-4, 2009. Proceedings, volume 5710 of Lecture Notes in
Computer Science, pages 369–383. Springer, 2009. doi:10.1007/978-3-642-04081-8_25.

27 Christoph Haase, Joël Ouaknine, and James Worrell. On the relationship between reachability
problems in timed and counter automata. In Alain Finkel, Jérôme Leroux, and Igor Potapov,
editors, Reachability Problems – 6th International Workshop, RP 2012, Bordeaux, France,
September 17-19, 2012. Proceedings, volume 7550 of Lecture Notes in Computer Science, pages
54–65. Springer, 2012. doi:10.1007/978-3-642-33512-9_6.

28 John E. Hopcroft and Jean-Jacques Pansiot. On the Reachability Problem for 5-Dimensional
Vector Addition Systems. Theor. Comput. Sci., 8:135–159, 1979. doi:10.1016/0304-3975(79)
90041-0.

29 Russell Impagliazzo and Ramamohan Paturi. On the Complexity of k-SAT. J. Comput. Syst.
Sci., 62(2):367–375, 2001. doi:10.1006/jcss.2000.1727.

30 Ulla Koppenhagen and Ernst W. Mayr. Optimal algorithms for the coverability, the subword,
the containment, and the equivalence problems for commutative semigroups. Inf. Comput.,
158(2):98–124, 2000. doi:10.1006/inco.1999.2812.

31 Marvin Künnemann, Filip Mazowiecki, Lia Schütze, Henry Sinclair-Banks, and Karol Wę-
grzycki. Coverability in VASS Revisited: Improving Rackoff’s Bound to Obtain Conditional
Optimality, 2023. arXiv:2305.01581.

32 Ranko Lazic and Sylvain Schmitz. The ideal view on Rackoff’s coverability technique. Inf.
Comput., 277:104582, 2021. doi:10.1016/j.ic.2020.104582.

33 Jérôme Leroux. Vector addition system reversible reachability problem. Log. Methods Comput.
Sci., 9(1), 2013. doi:10.2168/LMCS-9(1:5)2013.

34 Jérôme Leroux. The Reachability Problem for Petri Nets is Not Primitive Recursive. In 62nd
IEEE Annual Symposium on Foundations of Computer Science, FOCS 2021, Denver, CO, USA,
February 7-10, 2022, pages 1241–1252. IEEE, 2021. doi:10.1109/FOCS52979.2021.00121.

35 Jérôme Leroux and Sylvain Schmitz. Reachability in Vector Addition Systems is Primitive-
Recursive in Fixed Dimension. In 34th Annual ACM/IEEE Symposium on Logic in Computer
Science, LICS 2019, Vancouver, BC, Canada, June 24-27, 2019, pages 1–13. IEEE, 2019.
doi:10.1109/LICS.2019.8785796.

36 Andrea Lincoln, Virginia Vassilevska Williams, and R. Ryan Williams. Tight hardness for
shortest cycles and paths in sparse graphs. In Artur Czumaj, editor, Proceedings of the Twenty-
Ninth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA,
USA, January 7-10, 2018, pages 1236–1252. SIAM, 2018. doi:10.1137/1.9781611975031.80.

37 Richard Lipton. The Reachability Problem Requires Exponential Space. Department of
Computer Science. Yale University, 62, 1976.

38 Daniel Lokshtanov, Dániel Marx, and Saket Saurabh. Lower bounds based on the Exponential
Time Hypothesis. Bulletin of EATCS, 3(105), 2013.

39 Ernst W. Mayr. An Algorithm for the General Petri Net Reachability Problem. SIAM J.
Comput., 13(3):441–460, 1984. doi:10.1137/0213029.

ICALP 2023

https://doi.org/10.1109/LICS.2011.39
https://doi.org/10.1145/2160910.2160915
https://doi.org/10.1145/146637.146681
https://doi.org/10.1007/978-3-642-04081-8_25
https://doi.org/10.1007/978-3-642-33512-9_6
https://doi.org/10.1016/0304-3975(79)90041-0
https://doi.org/10.1016/0304-3975(79)90041-0
https://doi.org/10.1006/jcss.2000.1727
https://doi.org/10.1006/inco.1999.2812
http://arxiv.org/abs/2305.01581
https://doi.org/10.1016/j.ic.2020.104582
https://doi.org/10.2168/LMCS-9(1:5)2013
https://doi.org/10.1109/FOCS52979.2021.00121
https://doi.org/10.1109/LICS.2019.8785796
https://doi.org/10.1137/1.9781611975031.80
https://doi.org/10.1137/0213029

131:20 Coverability in VASS Revisited

40 Ernst W. Mayr and Albert R. Meyer. The complexity of the word problems for commutative
semigroups and polynomial ideals. Advances in Mathematics, 46(3):305–329, 1982. doi:
10.1016/0001-8708(82)90048-2.

41 Filip Mazowiecki and Michał Pilipczuk. Reachability for Bounded Branching VASS. In Wan J.
Fokkink and Rob van Glabbeek, editors, 30th International Conference on Concurrency
Theory, CONCUR 2019, August 27-30, 2019, Amsterdam, the Netherlands, volume 140 of
LIPIcs, pages 28:1–28:13. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019. doi:
10.4230/LIPIcs.CONCUR.2019.28.

42 Filip Mazowiecki, Henry Sinclair-Banks, and Karol Węgrzycki. Coverability in 2-VASS with
One Unary Counter is in NP. In Orna Kupferman and Paweł Sobociński, editors, Foundations
of Software Science and Computation Structures, pages 196–217. Springer Nature Switzerland,
2023. doi:10.1007/978-3-031-30829-1_10.

43 Marvin L. Minsky. Computation: Finite and Infinite Machines. Prentice-Hall, Inc., 1967.
44 Jaroslav Nešetřil and Svatopluk Poljak. On the complexity of the subgraph problem. Com-

mentationes Mathematicae Universitatis Carolinae, 26(2):415–419, 1985.
45 Charles Rackoff. The Covering and Boundedness Problems for Vector Addition Systems.

Theor. Comput. Sci., 6:223–231, 1978. doi:10.1016/0304-3975(78)90036-1.
46 Louis E. Rosier and Hsu-Chun Yen. A Multiparameter Analysis of the Boundedness Problem

for Vector Addition Systems. J. Comput. Syst. Sci., 32(1):105–135, 1986. doi:10.1016/
0022-0000(86)90006-1.

47 Sylvain Schmitz. The Complexity of Reachability in Vector Addition Systems. ACM SIGLOG
News, 3(1):4–21, 2016. URL: https://dl.acm.org/citation.cfm?id=2893585, doi:10.1145/
2893582.2893585.

48 Leslie G. Valiant and Mike Paterson. Deterministic One-Counter Automata. J. Comput. Syst.
Sci., 10(3):340–350, 1975. doi:10.1016/S0022-0000(75)80005-5.

49 Wil M. P. van der Aalst. Verification of Workflow Nets. In Pierre Azéma and Gianfranco
Balbo, editors, Application and Theory of Petri Nets 1997, 18th International Conference,
ICATPN ’97, Toulouse, France, June 23-27, 1997, Proceedings, volume 1248 of Lecture Notes
in Computer Science, pages 407–426. Springer, 1997. doi:10.1007/3-540-63139-9_48.

50 Raphael Yuster and Uri Zwick. Detecting short directed cycles using rectangular matrix
multiplication and dynamic programming. In J. Ian Munro, editor, Proceedings of the Fifteenth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2004, New Orleans, Louisiana,
USA, January 11-14, 2004, pages 254–260. SIAM, 2004. URL: http://dl.acm.org/citation.
cfm?id=982792.982828.

51 Don Zagier. Newman’s short proof of the prime number theorem. The American mathematical
monthly, 104(8):705–708, 1997.

https://doi.org/10.1016/0001-8708(82)90048-2
https://doi.org/10.1016/0001-8708(82)90048-2
https://doi.org/10.4230/LIPIcs.CONCUR.2019.28
https://doi.org/10.4230/LIPIcs.CONCUR.2019.28
https://doi.org/10.1007/978-3-031-30829-1_10
https://doi.org/10.1016/0304-3975(78)90036-1
https://doi.org/10.1016/0022-0000(86)90006-1
https://doi.org/10.1016/0022-0000(86)90006-1
https://dl.acm.org/citation.cfm?id=2893585
https://doi.org/10.1145/2893582.2893585
https://doi.org/10.1145/2893582.2893585
https://doi.org/10.1016/S0022-0000(75)80005-5
https://doi.org/10.1007/3-540-63139-9_48
http://dl.acm.org/citation.cfm?id=982792.982828
http://dl.acm.org/citation.cfm?id=982792.982828

First Order Logic on Pathwidth Revisited Again
Michael Lampis #

Université Paris-Dauphine, PSL University, CNRS, LAMSADE, 75016, Paris, France

Abstract
Courcelle’s celebrated theorem states that all MSO-expressible properties can be decided in linear
time on graphs of bounded treewidth. Unfortunately, the hidden constant implied by this theorem
is a tower of exponentials whose height increases with each quantifier alternation in the formula.
More devastatingly, this cannot be improved, under standard assumptions, even if we consider the
much more restricted problem of deciding FO-expressible properties on trees.

In this paper we revisit this well-studied topic and identify a natural special case where the
dependence of Courcelle’s theorem can, in fact, be improved. Specifically, we show that all FO-
expressible properties can be decided with an elementary dependence on the input formula, if the
input graph has bounded pathwidth (rather than treewidth). This is a rare example of treewidth and
pathwidth having different complexity behaviors. Our result is also in sharp contrast with MSO logic
on graphs of bounded pathwidth, where it is known that the dependence has to be non-elementary,
under standard assumptions. Our work builds upon, and generalizes, a corresponding meta-theorem
by Gajarský and Hliněný for the more restricted class of graphs of bounded tree-depth.

2012 ACM Subject Classification Theory of computation → Parameterized complexity and exact
algorithms

Keywords and phrases Algorithmic Meta-Theorems, FO logic, Pathwidth

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.132

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version Full Version: https://arxiv.org/abs/2210.09899

Funding Supported by ANR projects ANR-21-CE48-0022 (S-EX-AP-PE-AL) and ANR-18-CE40-
0025 (ASSK).

1 Introduction

Algorithmic meta-theorems are general statements of the form “all problems in a certain class
are tractable on a particular class of inputs”. Probably the most famous and celebrated result
of this type is Courcelle’s theorem [5], which states that all graph properties expressible in
Monadic Second Order (MSO) logic are solvable in linear time on graphs of bounded treewidth.
This result has proved to be of immense importance to parameterized complexity theory,
because a vast collection of natural NP-hard problems can be expressed in MSO logic (and
its variations that allow optimization objectives [1]) and because treewidth is the most well-
studied structural graph parameter. Thanks to Courcelle’s theorem, we immediately obtain
that all such problems are fixed-parameter tractable (FPT) parameterized by treewidth.

Despite its great success, Courcelle’s theorem suffers from a significant weakness: the
algorithm it guarantees has a running time that is astronomical for most problems. Indeed, a
careful reading of the theorem shows that the running time increases as a tower of exponentials
whose height is equal to the number of quantifier alternations of the input MSO formula.
Hence, even though Courcelle’s theorem shows that any MSO formula ϕ can be decided on
n-vertex graphs of treewidth tw in time f(ϕ, tw)n, the function f is non-elementary, that is,
it cannot be bounded from above by any tower of exponentials of fixed height.

EA
T
C
S

© Michael Lampis;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 132; pp. 132:1–132:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:michail.lampis@lamsade.dauphine.fr
https://orcid.org/0000-0002-5791-0887
https://doi.org/10.4230/LIPIcs.ICALP.2023.132
https://arxiv.org/abs/2210.09899
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

132:2 First Order Logic on Pathwidth Revisited Again

Table 1 Summary of the state of the art for FO and MSO model checking on graphs of bounded
treewidth, pathwidth, and tree-depth. Elementary (green cells) indicates that there is an algorithm
which, when the corresponding width is bounded by an absolute constant, decides any formula ϕ in
time f(ϕ)nO(1), where f is a function that can be bounded above by a finite tower of exponentials.
For the remaining cases, this is known to be impossible, under standard assumptions, hence it is
inevitable to have an f(ϕ) that is a tower of exponentials whose height increases with ϕ.

Parameter FO MSO
Treewidth Non-elementary on Trees [13] Non-elementary on Trees [13]
Pathwidth Elementary (Theorem 24) Non-elementary on Caterpillars [13]
Tree-depth Elementary [14] Elementary [14]

One could hope that this terrible dependence on ϕ is an artifact of Courcelle’s proof
technique. Unfortunately, it was shown in a very influential work by Frick and Grohe [13]
that this non-elementary dependence on the number of quantifiers of ϕ is best possible
(under standard assumptions), even if one considers the severely restricted special case of
model-checking First Order (FO) logic on trees. Recall that FO logic is a basic logic formalism
that allows us to express graph properties using quantification over the vertices of the graph,
while MSO logic also allows quantification over sets of vertices. Since FO logic is trivially
a subset of MSO logic and trees have treewidth 1, this result established that Courcelle’s
theorem is essentially best possible.

Frick and Grohe’s lower bound thus provided the motivation for the search for subclasses
of bounded-treewidth graphs where avoiding the non-elementary dependence on ϕ may
be possible. The obvious next place to look was naturally, pathwidth, which is the most
well-known restriction (and close cousin) of treewidth. Unfortunately, Frick and Grohe’s
paper provided a negative result for MSO model checking also for this parameter. More
precisely, they showed that MSO model checking on strings with a total order relation has a
non-elementary dependence on the formula (unless P=NP), but such structures can easily
be embedded into caterpillars (which are graphs of pathwidth 1) if one allows quantification
over sets. Notice, however, that this does not settle the complexity of FO logic for graphs of
counstant pathwidth, as it is not clear how one could implement the total ordering relation
of a string without access to set quantifiers (we expand on this question further below).

On the positive side, Frick and Grohe’s lower bounds motivated the discovery of sev-
eral meta-theorems with elementary dependence on the formula for other, more restricted
variations of treewidth (we review some such results below). Of all these results, the one
that is “closest” to treewidth, is the theorem of Gajarský and Hliněný [14], which states
that on graphs of constant tree-depth, MSO (and hence FO) model checking has elementary
dependence on the input formula. It is known that for all n-vertex graphs G we have
tw(G) ≤ pw(G) ≤ td(G) ≤ tw(G) log n, where tw, pw, td denote the treewidth, pathwidth
and tree-depth. In a sense, this positive result seemed to go as far as one could possibly go
towards emulating treewidth, while retaining the elementary dependence on the formula and
avoiding the lower bound of Frick and Grohe. This state of the art is summarized in Table 1.

Our result. In this paper we revisit this well-studied topic and address the one remaining
case of Table 1 where it is still unknown whether it is possible to obtain an elementary
dependence on the formula for model checking. We answer this question positively, showing
that if we restrict ourselves to graphs of pathwidth p, where p is an absolute constant, then
FO formulas with q quantifiers can be decided in time f(q)nO(1), where f is an elementary
function of q. More precisely, the function f is at most a tower of exponentials of height
O(p). In other words, our result trades the non-elementary dependence on q which is inherent
in Courcelle’s theorem, with a non-elementary dependence on p. Though this may seem

M. Lampis 132:3

disappointing at first, it is known that this is the best one could have hoped for. In fact,
the meta-theorem of [14] also has this behavior (its parameter dependence is a tower of
exponentials whose height increases with the tree-depth), and it was shown in [24] that this is
best possible (under standard assumptions). Since pathwidth is a more general parameter, we
cannot evade this lower bound and our algorithm needs to have a non-elementary dependence
on pathwidth, if its dependence on the formula is elementary.

The result we obtain is, therefore, in a sense best possible and fills a natural gap in
our knowledge regarding FO model checking for a well-studied graph width. Beyond filling
this gap, the fact that we are able to give a positive answer to this question and obtain an
algorithm with “good” dependence on the formula is interesting, and perhaps even rather
striking, for several reasons. First, in many cases in this domain, it is impossible to obtain
an elementary dependence on q, no matter how much we are willing to sacrifice on our
dependence on the graph width, as demonstrated by the fact that the lower bounds of Table 1
apply for classes with the smallest possible width (trees and caterpillars). Second, even
though FO seems much weaker than MSO in general, the complexities of model checking
the two logics seem to be similar (that is, at most one level of exponentiation apart) for
most parameters (we review some further examples below). Indeed, a main contribution
of [14] was to prove that for graphs of bounded tree-depth, the two logics are actually
equivalent. It is therefore somewhat unusual (for this context) that for pathwidth FO has
quite different complexity from MSO logic. Third, even though treewidth and pathwidth are
arguably the two most well-studied graph widths in parameterized complexity, by and large
the complexities of the vast majority of problems are the same for both parameters (for more
information on this, see [2] which only recently discovered the first example of a natural
problem separating the two parameters). It is therefore remarkable that the complexity of
FO model checking is so different for pathwidth and treewidth.

Finally, one aspect of our result that makes it more surprising is that it does not seem to
generalize to dense graphs. Meta-theorems that give a non-elementary dependence on the
formula by using a restriction of treewidth, generally have a dense graph analogue, using a
restriction of clique-width (the dense graph analogue of treewidth). Indeed, this is the case
for vertex cover [23] (neighborhood diversity [23], twin cover [16]) but also for tree-depth
(shrub-depth [17]). One may have expected something similar to hold in our case. However,
the natural dense analogue of pathwidth is linear clique-width and it is already known that
FO logic has a non-elementary dependence on threshold graphs [24]. Since threshold graphs
have linear clique-width 2, we cannot hope to extend our result to this parameter and it
appears that the positive result of this paper is an isolated island of “tractability”.

High-level proof overview. Our technique extends and builds upon the meta-theorem
of [14] which handles the more restricted case of graphs of bounded tree-depth. We recall
that the heart of this meta-theorem is the basic observation that FO logic has bounded
counting power: if our graph contains q+ 1 identical parts (for some appropriate definition of
“identical”), then deleting one cannot affect the validity of any FO formula with q quantifiers.
The approach of [14] is to partition the vertices of the graph depending on their height in
the tree-depth decomposition, then identify (and delete) identical vertices in the bottom
level. This bounds the degree of vertices one level up, which allows us to partition them
into a bounded number of types, delete components of the same type if we have too many,
hence bound the degree of vertices one level up, and so on until the size of the whole graph
is bounded.

Our approach borrows much of this general strategy: we will appropriately rank the
vertices of the graph and then move from lower to higher ranks, at each step bounding the
maximum degree of any vertex of the current rank. Besides the fact that ranking vertices
into levels is less obvious when given a path decomposition, rather than a tree of fixed height,

ICALP 2023

132:4 First Order Logic on Pathwidth Revisited Again

the main difficulty we encounter is that no matter where we start, we cannot in general easily
find identical parts where something can be safely deleted. Intuitively, this is demonstrated
by the contrast between the simplest bounded tree-depth graph (a star, where leaves are
twins, hence one can easily delete one if we have at least q + 1) and the simplest bounded
pathwidth graph (a path, which contains no twins). In order to handle this more general
case, we need to combine the previous approach with arguments that rely on the locality of
FO logic.

To understand informally what we mean by this, recall the classical argument which
proves that Reachability is not expressible in FO logic. One way this is proved, is to show
that a graph G1 which is a long path (of say, 4q vertices) and a graph G2 which is a union of
a path and a cycle (of say, 2 · 4q−1 vertices each) are indistinguishable for FO formulas with
q quantifiers. Our strategy is to flip this argument: if we are asked to model check a formula
on a long path, we might as well model check the same formula on a simpler (less connected)
graph which contains a shorter path and a cycle. Of course, our input graphs will be more
complicated than long paths; we will, however, be dealing with long path-like structures, as
our graph has small pathwidth. Our strategy is to perform a surgical rewiring operation
on the path decomposition, producing the union of a shorter decomposition and a ring-like
structure, while still satisfying the same formulas (the reader may skip ahead to Figure 1
to get a feeling for this operation). In other words, the main technical ingredient of our
algorithm is inspired by (and exploits) a classical impossibility result on the expressiveness of
FO logic. The abstract idea is (in a rough sense) to apply this argument repeatedly, so that
if we started with a long path decomposition, we end up with a short path decomposition
and many “disconnected rings”. Eventually, we will be able to produce some such rings which
are identical, delete them, and simplify the graph.

There are, of course, now various technical difficulties we need to overcome in order to
turn this intuition into a precise argument. First, when we cut at two points in the path
decomposition to extract the part that will form the “ring”, we need to make sure that at an
appropriate radius around the cut points the decompositions are isomorphic. It is not hard
to calculate the appropriate radius we need in the graph (it is known that q-quantifier FO
formulas depend on balls of radius roughly 2q), but a priori two vertices which are close in
the graph could be far in the path decomposition. To handle this, we take care when we
rank the vertices, so that vertices of lower rank are guaranteed to only appear in a bounded
number of bags, hence distances in the path decomposition approximate distances in the
graph. Second, we need to calculate how long our decomposition needs to be before we
can guarantee that we will be able to find some appropriate cut points. Here we use some
counting arguments and pigeonhole principle to show that a path decomposition with length
double-exponential in the desired radius is sufficient. Finally, once we find sufficiently many
points to rewire and produce sufficiently many “rings”, we need to prove that this did not
affect the validity of the formula. Then, we are free to delete one, using the same argument
as [14] and obtain a smaller equivalent graph. In the end, once we can no longer repeat this
process, we obtain a bounded-degree graph, where it is known that FO model checking has
an elementary dependence on the formula.

Overall, even though the algorithm we present seems somewhat complicated, the basic
ingredients are simple and well-known: the fact that deleting one of many identical parts
does not affect the validity of the formula (which is also used in [14]); the fact that FO
formulas are not affected if we edit the graph in a way that preserves balls of a small radius
around each vertex; and simple counting arguments and the pigeonhole principle.

M. Lampis 132:5

Paper Organization. We conclude this section below with a short overview of other related
work on algorithmic meta-theorems and continue in Section 2 with definitions and notation.
The rest of the paper is organized as follows:
1. In Section 3 we present two lemmas, which are standard facts on FO logic, with minor

adjustments to our setting. In particular, in Section 3.1 we present the lemma that states
that if we have q + 1 identical parts, it is safe to delete one; and in Section 3.2 we present
the lemma that states that if two graphs agree on the local extended neighborhoods
around each vertex (for some appropriate radius), then they satisfy the same formulas
(that is, FO logic is local). Since these facts are standard, the reader may wish to skip the
proofs of Section 3, which are given for the sake of completeness, during a first reading.

2. Then, in Section 4 we present the specific tools we will use to simplify our graph. In
Section 4.1 we explain how we rank the vertices of a path decomposition so that each
vertex has few neighbors of higher rank (but possibly many neighbors of lower rank).
This allows us to process the ranks from lower to higher, simplifying the graph step by
step. Then, in Section 4.2 we use some counting arguments to calculate the length of a
path decomposition that guarantees the existence of long isomorphic blocks, on which
we will apply the rewiring operation. We also show how distances in the graph can be
approximated by distances in the path decomposition, if we have bounded the number
of occurrences of each vertex in the decomposition. Finally, in Section 4.3 we formally
define the rewiring operation and show that if the points where we apply it are in the
middle of sufficiently long isomorphic blocks of the decomposition, this operation is safe.
We also show that the “rings” it produces can be considered identical, in a sense that
will allow us to invoke the lemma of Section 3.1 and delete one.

3. We put everything together in Section 5, where we explain how the lemmas we have
presented form parts of an algorithm that ranks the vertices of a graph supplied with
a path decomposition and then processes ranks one by one, decreasing the number of
occurences of each vertex in the decomposition without affecting the validity of any
formula (with q quantifiers). In the end, the processed graph has bounded degree and we
invoke known results to decide the formula.

Other related work. Algorithmic meta-theorems are a very well-studied topic in param-
eterized complexity ([20]) and much work has been devoted in improving and extending
Courcelle’s theorem. Among such results, we mention the generalization of this theorem
to MSO for clique-width, which covers dense graphs [6]. For FO logic, fixed-parameter
tractability can be extended to much wider classes of graphs, with the recently introduced
notion of twin-width nicely capturing many results in the area [4, 9, 11, 12]. Of course,
since all these classes include the class of all trees, the non-elementary dependence on the
formula implied by the lower bound of [13] still applies. Meta-theorems have also been
given for logics other than FO and MSO, with the goal of either targeting a wider class of
problems [18, 21, 22, 28], or achieving better complexity [26]. Kernelization [3, 10, 19] and
approximation [8] are also topics where meta-theorems have been studied.

The meta-theorems which are more relevant to the current work are those which explicitly
try to improve upon the parameter dependence given by Courcelle, by considering more
restricted parameters. We mention here the meta-theorems for vertex cover, max-leaf, and
neighborhood diversity [23], twin-cover [16], shrub-depth [17], and vertex integrity [25]. As
mentioned, one common aspect of these meta-theorems is that they handle both FO and
MSO logic, without a huge difference in complexity (at most one extra level of exponentiation
in the parameter dependence), which makes the behavior of FO logic on treewidth somewhat

ICALP 2023

132:6 First Order Logic on Pathwidth Revisited Again

unusual. The only exception, is the meta-theorem on graphs of bounded max-leaf number
of [23] which does not generalize to MSO logic. It was later shown that this is with good
reason, as MSO logic has a non-elementary dependence even for unlabeled paths [24], which
have the smallest possible max-leaf number. This is therefore the only previous result in the
literature which mirrors the situation for pathwidth.

A classical result, incomparable to the parameters mentioned above, is the fact that FO
model checking is FPT (with an elementary, triple-exponential dependence on the formula)
on graphs of bounded degree [27]. We will use this fact as the last step of our algorithm.

The complexity of model checking FO and MSO formulas on structures other than graphs,
such as posets [15] and strings has also been investigated. As mentioned, the case of strings is
of particular interest to us, because the standard structure that represents a string over a fixed
alphabet (a universe that contains the letters of the string, unary predicates that indicate for
each letter which character of the alphabet it corresponds to, and a total ordering relation ≺
which indicates the ordering of the letters in the string) allows us to easily translate MSO
properties of strings into MSO properties of an appropriate caterpillar. Indeed, to embed a
string into a caterpillar, we can start with a path with endpoints s, t, and use one vertex
of the path to represent each letter in the string. We can attach an appropriate (constant)
number of leaves on each vertex to signify which character it represents. The precedence
relation x ≺ y of the string now becomes the relation “every connected set that contains s
and y, also contains x”, which is MSO-expressible. Thanks to this simple transformation,
the lower bound result of [13] on model checking MSO (and even FO) logic on strings,
immediately carries over to graphs of pathwidth 1. Note, however, that the existence of
the ordering relation is crucial, as FO model checking on other models of strings (e.g. with
a successor relation) has elementary dependence on the formula, as such structures have
bounded degree [13]. Hence, it seems that if we focus on FO (rather than MSO) logic, the
similarity between model checking on bounded pathwidth graphs and strings becomes much
weaker: FO model checking is easier on graphs of bounded pathwidth than on strings with
an ordering relation, but harder than on strings with only a successor relation (as the lower
bound of [24] for tree-depth applies to pathwidth, and rules out an algorithm with “only”
triple-exponential dependence).

2 Definitions and Preliminaries

We use standard graph-theoretic notation and assume the reader is familiar with the basics
of parameterized complexity (see e.g. [7]). For a graph G = (V,E), and S ⊆ V , we use
G[S] to denote the subgraph of G induced by S. When r is a positive integer, we use
[r] to denote the set {1, . . . , r}, while for two integers s, t, we use [s, t] to denote the set
{i ∈ Z | s ≤ i ≤ t}. Note that if t < s then [s, t] = ∅. We define tow(i, n) as follows:
tow(0, n) = n and tow(i + 1, n) = 2tow(i,n). A function f : N → N is elementary if there
exists a fixed i such that for all n we have f(n) ≤ tow(i, n).

We recall the standard notion of path decomposition: a path decomposition of a graph
G = (V,E) is an ordered sequence of bags B1, B2, . . . , Bℓ, where each Bi is a subset of V ,
that satisfies the following: (i)

⋃
j∈[ℓ] Bj = V and for all uv ∈ E there exists i ∈ [ℓ] such

that {u, v} ⊆ Bi (ii) for all i1 < i2 < i3, with i1, i2, i3 ∈ [r] we have Bi1 ∩ Bi3 ⊆ Bi2 . The
width of a path decomposition is the number of vertices in the largest bag (minus one). The
pathwidth of a graph G is the smallest width of any path decomposition of G.

M. Lampis 132:7

First Order Logic. We use a standard form of First Order (FO) logic on graphs, where
quantified variables are allowed to range over vertices. To simplify the presentation of some
results, we will allow our formulas to also refer to vertex constants, corresponding to some
specific vertices of the graph. More formally, the structures on which we will perform model
checking are k-terminal graphs as defined below.

▶ Definition 1. For a positive integer k, a k-terminal graph G = (V,E) is a graph supplied
with a function T : [k] → V , called the terminal labeling function. For i ∈ [k], we say that
T (i) is the i-th terminal of G. The set of terminals is the set T of images of T in V . Vertices
of V \ T are called non-terminals.

Intuitively, terminals will play two roles: on the one hand, we define FO logic on graphs
(below) in a way that allows formulas to refer to the terminal vertices; on the other, in some
parts of our algorithm we will use a set of terminals that form a separator of the graph
and hence allow us to break down the graph into smaller components. Note, however, that
Definition 1 does not require the k terminals to be a separator, or have any other particular
property.

A formula of FO logic is made up of the following vocabulary: (i) vertex variables, denoted
x1, x2, . . . (ii) vertex constants denoted ℓ1, ℓ2, . . . (iii) existential quantification ∃ (iv) the
boolean operations ¬,∨ (v) the binary predicates ∼ (for adjacency) and = (for equality).
More formally, a First Order formula is a formula produced by the following grammar, where
x represents a vertex variable and y represents a vertex variable or constant:

ϕ → ∃x.ϕ | ¬ϕ | ϕ ∨ ϕ | y ∼ y | y = y

A FO formula ϕ is called a sentence if every vertex variable x appearing in ϕ is quantified,
that is, x appears within the scope of ∃x. A variable that is not quantified is called a free
variable. For a formula ϕ that contains a free variable x, we will write ϕ[x/ℓi] to denote the
formula obtained by replacing every occurrence of x in ϕ by the constant ℓi.

The main problem we are concerned with is model checking: given a k-terminal graph
G and a sentence ϕ, decide if G satisfies ϕ. We define the semantics of what this means
inductively in a standard way, as follows. We say that a k-terminal graph G = (V,E) with
labeling function T models (or satisfies) a formula ϕ, and write G, T |= ϕ (or simply G |= ϕ

if T is clear from the context) if and only if we have one of the following:
1. ϕ := (ℓi = ℓj), where i, j ∈ [k] and T (i) is the same vertex as T (j).
2. ϕ := (ℓi ∼ ℓj), where i, j ∈ [k] and T (i)T (j) ∈ E.
3. ϕ := (¬ψ) and it is not the case that G, T |= ψ.
4. ϕ := (ψ1 ∨ ψ2) and at least one of G |= ψ1, G |= ψ2 holds.
5. ϕ := (∃x.ψ) and there exists v ∈ V such that G, T ′ |= ψ[x/ℓ(k+1)], where T ′ is the

labeling function that sets T ′(k + 1) = v and T ′(i) = T (i) for i ∈ [k].

Note that we have not included in our definition universal quantification or other boolean
connectives such as ∧. However, this is without loss of generality as ∀x.ϕ can be thought
of as shorthand for ¬∃x.¬ϕ and all missing boolean connectives can be simulated using ¬
and ∨.

Let us also define a kind of isomorphism between labeled graphs that is guaranteed to
leave terminal vertices untouched.

▶ Definition 2. A terminal-respecting isomorphism between two k-terminal graphs G1 =
(V1, E1) and G2 = (V2, E2) with terminal labeling functions T1, T2 is a bijective function
f : V1 → V2 such that (i) for all u, u′ ∈ V1 we have uu′ ∈ E1 if and only if f(u)f(u′) ∈ E2
(ii) for each i ∈ [k], f(T1(i)) = T2(i).

ICALP 2023

132:8 First Order Logic on Pathwidth Revisited Again

We recall the following basic fact about FO logic which states that isomorphic structures
satisfy the same sentences (see e.g. Lemma 9 of [25] for a proof).

▶ Lemma 3. If G1, G2 are two k-terminal graphs such there exists a terminal-respecting
isomorphism from G1 to G2, then, for all FO sentences ϕ we have G1 |= ϕ if and only if
G2 |= ϕ.

3 Two Basic Lemmas

The purpose of this section is to establish two basic ingredients that will allow us to simplify
the input graph without affecting whether it satisfies any FO formula with at most a given
number q of quantified variables. The first lemma (Lemma 5) is rather simple and states
that if a graph contains many “identical” components, we can safely remove one. Despite
its simplicity, this idea has been sufficient to obtain many of the best currently known
meta-theorems with non-elementary dependence in the formula, such as the meta-theorem of
[14] for graphs of bounded tree-depth.

The second lemma (Lemma 9) is a variation of standard arguments regarding the locality
of FO logic. It states that if we have two graphs which look locally the same, in the sense
that for each vertex of one graph there exists a vertex of the other whose r-neighborhood is
the same, for some appropriately chosen r, then actually the two graphs are indistinguishable
by FO formulas with q quantifiers (even though they are not necessarily isomorphic). As we
explained, we intend to use this to allow us to take parts of the graph that resemble “long”,
low-pathwidth components and cut them up into smaller, disconnected components. The
strategy is to eventually produce a large enough number of such components that we can
apply Lemma 5 and simplify the graph.

3.1 Identical Parts
We would now like to show that if the given graph contains many (say, at least q + 1)
“identical” parts, then it is safe to delete one without affecting whether the graph satisfies
any FO formula with at most q quantifiers. We first define what we mean that two sets of
vertices are identical in a k-terminal graph and then prove that if we can find q + 1 such sets
in a graph, we can safely delete one without affecting whether any FO formula with at most
q quantifiers is satisfied.

▶ Definition 4. Let G = (V,E) be a k-terminal graph with labeling function T and terminal
set T . We say that two disjoint sets of vertices C1, C2 are identical if there exists a terminal-
respecting isomorphism from G to G that maps all vertices of C1 to C2 and all vertices of
C2 to C1, and maps every vertex of V \ (C1 ∪ C2) to itself.

Before we proceed, let us make two easy observations. First, if C1, C2 are identical, it
must be the case that (C1 ∪C2) ∩ T = ∅, because C1, C2 are disjoint and terminal-respecting
isomorphisms must map vertices of T to themselves. Second, the relation of being identical is
an equivalence relation on a collection of pairwise disjoint sets of vertices, that is, if C1, C2, C3
are disjoint, C1 is identical to C2, and C2 is identical to C3, then C1 is identical to C3 (the
fact that the relation is reflexive and symmetric is easy to see).

▶ Lemma 5. Fix a positive integer q. Let G = (V,E) be a k-terminal graph with labeling
function T and terminal set T and suppose that C1, C2, . . . , Cq+1 are q + 1 sets of vertices
of G which are pairwise identical. Then, for all FO sentences with at most q quantifiers we
have that G, T |= ϕ if and only if G[V \ C1], T |= ϕ.

M. Lampis 132:9

3.2 Similar Neighborhoods
We now move on to present a lemma that will allow us to claim that two graphs are
indistinguishable for FO formulas with q quantifiers if they are locally the same. This is a
standard argument in FO logic, going back to Gaifman, though we need to adjust the proof
to our purposes to handle terminal vertices appropriately. In particular, we will on the one
hand be stricter on the isomorphisms we allow before we consider that the neighborhoods of
two vertices are the same (because we only allow terminal-respecting isomorphisms), but on
the other, we will only consider the extended neighborhood around a vertex by considering
paths that go through non-terminals. This is important, because it allows us to work around
the case where, for example, a terminal vertex is connected to everything and hence the
diameter of the graph is 2. In such a case, the extended neighborhood of a non-terminal
vertex will not trivially contain the whole graph, because we exclude paths that go through
the supposed universal terminal.

According to this discussion, we define the notion of a ball of radius r around a vertex
v, denoted Br(v), in a way that only takes into account paths whose internal vertices are
non-terminals, as follows.

▶ Definition 6. Let G = (V,E) be a k-terminal graph with terminal labeling function T and
terminal set T , r be a positive integer, and v ∈ V . We define BG

r (v) (and simply write Br(v)
if G is clear from the context) to be the k-terminal subgraph of G that has labeling function
T and is induced by T ∪ V ′, where V ′ is the set of all vertices reachable by v via a path of
length at most r whose internal vertices are all in V \ T .

▶ Definition 7. Let G1 = (V1, E1), G2 = (V2, E2) be two k-terminal graphs, with terminal
labeling functions T1, T2 and terminal sets T1, T2. For a non-negative integer r, we will say
that v1 ∈ V1 is r-similar to v2 ∈ V2, if there exists a terminal-respecting isomorphism from
BG1

r (v1) to BG2
r (v2) that maps v1 to v2.

Note that in the above definition, G1, G2 may be the same graph. It is not hard to see
that r-similarity is an equivalence relation on the vertices of V1 ∪ V2. Definition 7 allows us
to set r = 0, in which case we are testing if the graphs induced by T ∪ {v1} and T ∪ {v2} are
isomorphic. Let us also make the following easy observation that decreasing r cannot make
two similar vertices dissimilar.

▶ Observation 8. Let G1, G2 be two graphs as in Definition 7 and v1 ∈ V (G1), v2 ∈ V (G2)
be two vertices which are r-similar. Then, for all non-negative integers r′ ≤ r, v1 is r′-similar
to v2.

The main lemma of this section is then the following.

▶ Lemma 9. Let q, k be positive integers and set r = 2q − 1. Let G1, G2 be two k-terminal
graphs that contain some non-terminal vertices, with labeling functions T1, T2 and terminal
sets T1, T2. Suppose that there exists a bijective mapping f : V (G1) → V (G2) such that (i)
for all i ∈ [k] we have f(T1(i)) = T2(i) (ii) for all non-terminal vertices v ∈ V (G1) \ T1 we
have that v is r-similar to f(v) ∈ V (G2) \ T2. Then, for all FO sentences ϕ with at most q
quantifiers we have G1 |= ϕ if and only if G2 |= ϕ.

4 Simplification Operations on Path Decompositions

In this section we present the main technical ingredients of our algorithm. In Section 4.1 we
show how we can rank the vertices to bound the number of higher-rank neighbors of any
vertex; in Section 4.2 we use the pigeonhole principle to show that for sufficiently long path

ICALP 2023

132:10 First Order Logic on Pathwidth Revisited Again

decompositions we can always find long isomorphic blocks; and in Section 4.3 we describe the
rewiring operation we will use in these blocks and show that it does not affect the validity of
any formula and that it produces identical parts, in the sense of Lemma 5.

4.1 Normalized Path Decompositions
▶ Definition 10. A ranked path decomposition of a graph G = (V,E) where all bags have
size at most p is a path decomposition together with a ranking function ρ : V → N that has
the property that no bag Bi of the decomposition contains two vertices u, v ∈ Bi for which
ρ(u) = ρ(v).

▶ Lemma 11. Given a graph G = (V,E) and a path decomposition of G where each bag
contains at most p vertices, it is possible in polynomial time to convert it into a ranked path
decomposition with a ranking function ρ : V → [8p] and the property that for each i < j with
i, j ∈ [8p] we have that for every vertex v with ρ(v) = i, there exist at most two vertices u1, u2
with ρ(u1) = ρ(u2) = j that appear in a bag together with v. Furthermore, the produced
decomposition has the property that each bag contains at least one vertex that does not appear
in the previous bag.

We will call the ranked path decompositions that satisfy the properties of the decomposi-
tions produced by Lemma 11 normalized path decompositions. Since such a decomposition
can always be obtained without using too many ranks in the ranking function, we will from
now on focus on the case where we are given a normalized decomposition. Furthermore, we
will usually use p to denote the maximum rank, rather than the pathwidth; this will not
have a significant impact as, according to Lemma 11 we can make sure that the two are at
most a constant factor apart.

4.2 Finding Isomorphic Bag Intervals
As mentioned, our high-level strategy will be to identify parts of the graph which are locally
isomorphic, so that we can apply Lemma 9 to obtain a simpler (less well-connected) graph,
and eventually Lemma 5 in order to decrease the size of the graph. In order to identify such
parts, we first define what it means for two blocks of bags of a given decomposition to be
isomorphic.

▶ Definition 12. Let G = (V,E) be a k-terminal graph with terminal set T , and B1, . . . , Bℓ a
ranked path decomposition of G with ranking function ρ : V → [p]. Let s1, t1, s2, t2 be positive
integers with s1 ≤ t1 and t1 − s1 = t2 − s2. We define the block corresponding to [s1, t1]
and write B(s1, t1) to be {Bj | j ∈ [s1, t1] }. We say that B(s1, t1) is block-isomorphic to
B(s2, t2) if
1. For each j ∈ [s1, t1] and rank i we have |ρ−1(i) ∩Bj | = |ρ−1(i) ∩Bs2+(j−s1)|.
2. For each j ∈ [s1 + 1, t1] and rank i we have that Bj contains a vertex v with ρ(v) = i

such that v ̸∈ Bj−1 if and only if Bs2+(j−s1) contains a vertex v′ with ρ(v′) = i such that
v′ ̸∈ Bs2+(j−s1)−1.

3. The following mapping f is a terminal-respecting isomorphism from G[T ∪ (
⋃

j∈[s1,t1] Bj)]
to G[T ∪ (

⋃
j∈[s2,t2] Bj)]. For each v ∈

⋃
j∈[s1,t1] Bj we let jv be the minimum index in

[s1, t1] such that v ∈ Bjv
and define f(v) to be the (unique) vertex of Bs2+(jv−s1) such

that ρ(v) = ρ(f(v)).

▶ Definition 13. Let L ≥ 0 and G, k, T, ℓ, ρ as in Definition 12. For positive integers
s1, s2 ∈ [ℓ− L] we will write s1 ≈L s2 to indicate that B(s1, s1 + L) is block-isomorphic to
B(s2, s2 + L).

M. Lampis 132:11

Note that the isomorphism of Definition 12 is well-defined, because according to the first
condition, if Bj contains a vertex of rank i, then so does Bs2+(jv−s1), and such a vertex is
unique by the definition of ranked path decomposition. According to Definition 12, two
blocks of bags are isomorphic only if the subgraphs induced by the bags they contain (and
the terminals of G) are isomorphic under the trivial mapping function which maps each
vertex of a bag from one block to the vertex of the corresponding bag of the other block that
has the same rank. Despite the fact that this restricts the class of isomorphisms we may
consider quite a bit, the block-isomorphism relation is an equivalence relation that does not
have too many equivalence classes. In particular, we have the following.

▶ Lemma 14. Let L ≥ 0, G = (V,E) be a k-terminal graph with terminal set T , and
B1, . . . , Bℓ a ranked path decomposition of G with ranking function ρ : V → [p]. Let t1, t2
be integers such that for all j, j′ ∈ [t1, t2] we have Bj ∩ T = Bj′ ∩ T . Then, the relation ≈L

is an equivalence relation on the set [t1, t2 − L] with at most 2(L+1)(p2+2p+kp) equivalence
classes.

Proof. The fact that ≈L is an equivalence relation is easy to see, as terminal-respecting
isomorphisms can be composed to show transitivity. The interesting part of the lemma is
then the bound on the number of equivalence classes. We prove this by induction on L.

For L = 0, we claim there are at most 2p+p2+kp equivalence classes of bags (in this case,
each block consists of a single bag). Indeed, in order to decide if B(s1, s1) = {Bs1} and
B(s2, s2) = {Bs2} are block-isomorphic, we first need to check if Bs1 , Bs2 contain vertices
of the same ranks, and for this there are 2p equivalence classes. If they do, then we must
check, for each i1, i2 ∈ [p] if the vertices of ranks i1, i2 in each of Bs1 , Bs2 are adjacent, and
for this we have 2(p

2) < 2p2 equivalence classes. Finally, since the isomorphism has to be
terminal-respecting, we have to check for each rank i ∈ [p] if the vertex of rank i in each of
Bs1 , Bs2 is connected to each of the k terminals, which gives at most kp edges which may or
may not exist. (Note that we have to check these edges, even though the two bags contain
the same terminals, because terminal-respecting isomorphisms must also preserve the edges
towards terminals outside the bag). Overall we have at most 2p+p2+kp < 2p2+2p+kp choices.
If we make the same choices for two bags, the two bags are block-isomorphic, hence we have
bounded the number of equivalence classes for L = 0.

Suppose now that L > 0 and we have shown that the number of equivalence classes of
≈L−1 is at most 2L(p2+2p+kp). Consider two indices s1, s2 for which we want to check if
s1 ≈L s2. We claim that for this it is sufficient to have s1 ≈L−1 s2 and to satisfy certain
conditions for the bags Bs1+L, Bs2+L for which we have at most 2p2+2p+kp choices. More
precisely, for each rank i, we have three possibilities for the bag Bs1+L: either the bag
contains no vertex of rank i; or it contains a vertex of rank i that also appears in Bs1+L−1;
or it contains a vertex of rank i that appears for the first time in Bs1+L (and hence this
vertex is a non-terminal). Suppose now that for each rank i, the bags Bs1+L, Bs2+L agree on
the choice of which of these three possibilities holds (there are 3p < 22p possibilities in total),
and furthermore, that the graphs induced by Bs1+L ∪ T and Bs2+L ∪ T are isomorphic for
the natural terminal-respecting isomorphism that matches vertices of the same rank (at most
2p2+kp possibilities). Then, if s1 ≈L−1 s2, we now have s1 ≈L s2. Therefore, each of the
2L(p2+2p+kp) equivalence classes of ≈L−1 has been refined into at most 22p+p2+kp equivalence
classes, giving that the number of equivalence classes of ≈L is at most 2(L+1)(p2+2p+kp), as
desired. ◀

Now that we know that block-isomorphism has a bounded number of equivalence classes
(if k, p, L are bounded), we can try to look for “copies” of the same block in our path
decomposition. We observe the following lemma.

ICALP 2023

132:12 First Order Logic on Pathwidth Revisited Again

▶ Lemma 15. Let L be a non-negative integer, G = (V,E) be a k-terminal graph with
terminal set T , and B1, . . . , Bℓ a ranked path decomposition of G with ranking function
ρ : V → [p]. We define R = (L + 1)(2(L+1)(p2+2p+kp) + 1). Let t1, t2 be integers such that
for all j, j′ ∈ [t1, t2] we have Bj ∩ T = Bj′ ∩ T . Then, for every s ∈ [t1, t2 −R], there exist
s1, s2 ∈ [s, s+R− (L+ 1)] such that s1 + L < s2 and s1 ≈L s2.

What we have shown so far is that if we take sufficiently many (at least R) consecutive bags
in our decomposition, we will find two blocks of length (roughly) L which are block-isomorphic.
Let us now move a step further.

▶ Lemma 16. Let L be a non-negative integer, G = (V,E) be a k-terminal graph with
terminal set T , B1, . . . , Bℓ a ranked path decomposition of G with ranking function ρ :
V → [p], and t1, t2 as defined in Lemma 15. Let q,R be positive integers. We define
R∗ = (R + 1)(q2(R+1)(p2+2p+kp) + 1). Then, for every s ∈ [t1, t2 − R∗] there exist q + 1
distinct s1, s2, . . . , sq+1 ∈ [s, s + R∗ − (R + 1)], such that for any two distinct si, sj with
i, j ∈ [q + 1] we have |si − sj | > R and si ≈R sj.

Note that Lemma 15 and Lemma 16 are non-vacuous only if we find a long enough
interval where all bags contain the same terminals, that is if t2 − t1 ≥ R or t2 − t1 ≥ R∗

respectively. We will take this into account when we use these lemmas in the next section.
At this point we are almost done in our search for appropriate isomorphic parts of the

graph. What we have proved is that, if we fix some appropriate radius L, there is some
larger radius R∗ (double-exponential in L), such that if we look at any interval of the path
decomposition of length R∗, we will be able to find q+ 1 isomorphic R-blocks, which are long
enough to guarantee the existence of two isomorphic L-blocks inside them. What remains
is to ask what value of L will be appropriate for our purposes. Ideally, we would like to
calculate a value L that will allow us to preserve the balls around vertices for a suitable
radius and apply Lemma 9. However, we can only give such a bound if we know that vertices
of our path decomposition do not appear in too many bags.

▶ Lemma 17. Let G = (V,E) be a k-terminal graph with terminal set T and B1, . . . , Bℓ a
ranked path decomposition of G with the additional property that any non-terminal vertex
appears in at most ∆ bags of the decomposition. Then, for each r ≥ 0 and for each non-
terminal vertex v, if v ∈ Bj , then each non-terminal vertex of Br(v) is contained in a bag of
B(j − r∆, j + r∆).

4.3 Rewiring Operation
The goal of Section 4.2 was to present the basic tools which will allow us to find isomorphic
parts of the input graph. Ideally, we would then like to use Lemma 5 and delete one such
part. However, this is in general not possible, as the isomorphism guaranteed by the lemmas
of Section 4.2 is not sufficient to obtain identical sets, in the sense of Definition 4. What we
need to do, then, is to edit the graph in a way that does not affect the validity of any FO
formula with q quantifiers but leverages the isomorphic parts we have found to construct
q + 1 identical parts on which Lemma 5 can be applied. We now present the basic edit
operation which will allow us to achieve this for appropriate parameters.

▶ Definition 18 (Rewiring). Let G = (V,E) be a k-terminal graph for which we are given
a ranked path decomposition with ranking function ρ : V → [p]. Let Bs1 , Bs2 be two bags
of this decomposition, for s1 < s2. We define the rewiring operation on (s1, s2) as follows:
(i) for every non-terminal vertex v ∈ Bs1 which is adjacent to a non-terminal vertex u ∈

M. Lampis 132:13

X Y ZBs1 Bs2

X

Y

ZBs1

Bs2

Figure 1 The rewiring operation of Definition 18. Edges from Y to Bs1 are rerouted towards Bs2 ,
while edges from Z to Bs2 are rerouted towards Bs1 . Edges incident on terminals are not modified.

Bj \ (Bs1 ∪Bs2) for some j ∈ [s1 + 1, s2 − 1] we delete the edge uv and add to the graph the
edge uv′, where v′ ∈ Bs2 and ρ(v) = ρ(v′), if such a v′ exists (ii) for every non-terminal
vertex v ∈ Bs2 which is adjacent to a non-terminal vertex u ∈ Bj \Bs2 for some j > s2, we
delete the edge uv and add to the graph the edge uv′, where v′ ∈ Bs1 and ρ(v) = ρ(v′), if
such a v′ exists.

Some explanations are in order regarding the motivation of the rewiring operation. We
refer the reader to Figure 1. From standard properties of path decompositions, Bs1 , Bs2

are separators which break down the graph into three parts, call them X,Y, Z, which are
respectively vertices which appear in a bag before Bs1 , between Bs1 and Bs2 , and after Bs2 .
The rewiring operation leaves all edges incident on terminals and all edges incident on X

unchanged. What it does is replace edges from Y to Bs1 with edges from Y to Bs2 and edges
from Z to Bs2 with edges from Z to Bs1 . Intuitively, what this is meant to achieve is to break
down the long path-like structure X −Bs1 −Y −Bs2 −Z into the shorter path-like structure
X − Bs1 − Z and the ring-like structure Y − Bs2 . The idea here is that the Y − Bs2 part
is “disconnected” from the rest of the graph (more precisely, the k terminals separate this
part from the rest of the graph, since terminals are not modified by this operation). Hence if
we find many isomorphic such parts, they will also be identical in the sense of Definition 4,
allowing us to delete one using Lemma 5. This argument is made precise in Lemma 20.

Before we do all these things, however, we need to be sure that the rewiring operation
did not affect the validity of any FO formula of at most q quantifiers. The main claim now
is that if s1, s2 are sufficiently far apart, we have a bound on the number of occurrences of
non-terminal vertices in bags, and a sufficiently large block around Bs1 is block-isomorphic
to a sufficiently large block around Bs2 , then the ball of radius r = 2q − 1 around any vertex
has remained unchanged. Hence, we can invoke Lemma 9 to conclude that the rewired graph
is indistinguishable from the original graph for FO formulas with q quantifiers. Our main
tool in proving this will be the following lemma.

▶ Lemma 19. Let G = (V,E) be a k-terminal graph with terminal set T , B1, . . . , Bℓ a ranked
path decomposition of G with ranking function ρ : V → [p] with the additional property that
any non-terminal vertex appears in at most ∆ bags of the decomposition. Fix an integer
q ≥ 0 and let L = ∆(2q − 1). Let s1, s2 be such that (i) we have s1 > 4L, s2 < ℓ − 4L,
s2 − s1 > 6L (ii) B(s1 − L, s1 + L) is block-isomorphic to B(s2 − L, s2 + L). Let G′ be the
graph obtained by applying the rewiring operation on (s1, s2). Then, for all FO formulas ϕ
with at most q quantifiers we have G |= ϕ if and only if G′ |= ϕ.

ICALP 2023

132:14 First Order Logic on Pathwidth Revisited Again

X Y ZBs1 Bs2X1 Y1 Y2 Z1

f1

f2

Figure 2 Schematic view of the two mappings of the proof of Lemma 19.

Finally, we argue that if we apply the rewiring operation on two block-isomorphic parts,
then we obtain two parts of the graph which are identical in the sense of Definition 4. This
will allow us to delete a part of the graph, once we gather sufficiently many identical parts.

▶ Lemma 20. Let R be a positive integer, G = (V,E) be a k-terminal graph with terminal
set T , B1, . . . , Bℓ a ranked path decomposition of G with ranking function ρ : V → [p] with
the property that no non-terminal vertex appears in more than R bags. Let s1, s2 be positive
integers such that s2 − s1 > 4R and B(s1, s1 +R) is block-isomorphic to B(s2, s2 +R). Let
j1, j2 ∈ [0, R − 1] with j1 < j2 and let G′ be the graph obtained after applying the rewiring
operation on (s1 + j1, s1 + j2) and also on (s2 + j1, s2 + j2). Let Y1 be the set of vertices that
appear in a bag with index in [s1 + j1 + 1, s1 + j2 − 1], but not in Bs1+j1 ∪Bs1+j2 . Similarly,
let Y2 be the set of vertices that appear in a bag with index in [s2 + j1 + 1, s2 + j2 − 1], but
not in Bs2+j1 ∪Bs2+j2 . Then (Y1 ∪Bs1+j2) \ T is identical to (Y2 ∪Bs2+j2) \ T .

5 Putting Everything Together

We are now ready to put everything together to obtain our model checking algorithm for FO
logic. We formulate a procedure which can either simplify the graph in a way that does not
affect the validity of the given formula (or any formula with the same number of quantifiers),
or certify that the graph has bounded degree, and hence we can use known algorithms with
an elementary dependence on the formula. On a high level, we take as input a graph G, a
path decomposition of G, and a formula ϕ with q quantifiers and we will do the following:
1. Use Lemma 11 to normalize the decomposition and obtain a ranking of the vertices. In

this ranking, vertices of rank 1 appear in a constant number of bags. We would like to
extend this so that every vertex appears in a bounded number of bags. In the remainder
we will use the number of bags a vertex appears in as a proxy bound for its degree.

2. Define a function ∆(i) which defines an acceptable bound for the number of occurrences
in distinct bags for a vertex of rank i. This function will be a tower of exponentials of
height roughly 2i, but this is acceptable, since the maximum rank is upper-bounded by a
function of the pathwidth, which we consider to be an absolute constant.

3. Examine the graph and check if any vertex of rank i appears in more than ∆(i) bags. If
this is not the case, we can bound the maximum degree of the graph, and we are done.

4. Otherwise, find a vertex v of minimum rank i that appears more than ∆(i) times. Find
a section of the decomposition where v appears, and where all bags contain the same
vertices of rank higher than i (if ∆(i) is large, we can find such a section that is quite
long). We label as terminals the vertices of the first and last bag of the section, and the
vertices of rank at least i appearing in the section.

5. Now, the remaining vertices of the section appear a bounded (by ∆(i− 1)) number of
times, and are separated from the rest of the graph by k = O(p) terminals. However,
they are quite numerous, as we assumed that v appears too many times. Therefore,

M. Lampis 132:15

we can invoke the machinery of Section 4.2 to find some isomorphic parts. Note that
it is important that vertices of rank at least i (which are now terminals) are common
throughout the section, which allows us to invoke Lemmas 15 and 16.

6. Having found many isomorphic parts, we use the tools of Section 4.3 to perform the
rewiring operation that will produce q + 1 identical parts, of which we can remove one.
We then “undo” the operation on the remaining parts, and obtain a smaller graph, where
v appears in fewer bags, without changing whether ϕ is satisfied.

▶ Definition 21. Let p, q be positive integers. We define the function ∆p,q(i) as follows:

∆p,q(1) = 3p and ∆p,q(i+ 1) = 22∆p,q(i)·220qp2

. When p, q are clear from the context, we will
write ∆(i) to denote ∆p,q(i).

▶ Observation 22. For each fixed p, i, the function ∆p,q(i) is an elementary function of q.
Furthermore, ∆p,q(i) is a strictly increasing function of i.

▶ Lemma 23. There is an algorithm that takes as input an FO formula ϕ with q quantifiers,
an n-vertex graph G = (V,E), a normalized ranked path decomposition of G with ranking
function ρ : V → [p], such that G contains a vertex that appears in at least 3p · ∆(p) bags of
the decomposition. Then, the algorithm runs in polynomial time and outputs a smaller graph
G′ and a normalized ranked path decomposition of G′ with the same ranking function ρ, such
that G |= ϕ if and only if G′ |= ϕ.

▶ Theorem 24. For every fixed p, model checking a formula ϕ on a graph G with pathwidth
p can be performed in time f(ϕ)|G|O(1), where f is an elementary function.

6 Conclusions

We have shown that FO model checking for graphs of bounded pathwidth has a complexity
behavior that is in sharp contrast with both MSO logic for the same class of graphs and the
complexity of FO logic on graphs of bounded treewidth. It may be interesting to improve
upon our result by noting that our algorithm’s dependence on the pathwidth is a tower of
exponentials whose height is O(pw), where the hidden constant is roughly 16. This is in
contrast with the meta-theorem of [14], where the height of the tower is roughly equal to the
tree-depth. Can the height of the tower in our case can be made pw +O(1), or is FO model
checking on bounded pathwidth truly harder than for bounded tree-depth?

Another interesting research direction would be to explore parameters which lie between
pathwidth and treewidth to attempt to trace the frontier of where the arguments of this
paper break down. One idea would be to consider tree decompositions with a bounded
number of leaf bags, which would generalize pathwidth, and see if, as long as the number
of leaf bag and the width of the decomposition is an absolute constant, we can hope for an
elementary dependence on the formula for FO model checking.

References
1 Stefan Arnborg, Jens Lagergren, and Detlef Seese. Easy problems for tree-decomposable

graphs. J. Algorithms, 12(2):308–340, 1991. doi:10.1016/0196-6774(91)90006-K.
2 Rémy Belmonte, Eun Jung Kim, Michael Lampis, Valia Mitsou, and Yota Otachi. Grundy

distinguishes treewidth from pathwidth. In ESA, volume 173 of LIPIcs, pages 14:1–14:19.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020.

3 Hans L. Bodlaender, Fedor V. Fomin, Daniel Lokshtanov, Eelko Penninkx, Saket Saurabh,
and Dimitrios M. Thilikos. (meta) kernelization. J. ACM, 63(5):44:1–44:69, 2016.

ICALP 2023

https://doi.org/10.1016/0196-6774(91)90006-K

132:16 First Order Logic on Pathwidth Revisited Again

4 Édouard Bonnet, Eun Jung Kim, Stéphan Thomassé, and Rémi Watrigant. Twin-width I:
tractable FO model checking. In FOCS, pages 601–612. IEEE, 2020.

5 Bruno Courcelle. The monadic second-order logic of graphs. I. recognizable sets of finite
graphs. Inf. Comput., 85(1):12–75, 1990.

6 Bruno Courcelle, Johann A. Makowsky, and Udi Rotics. Linear time solvable optimization
problems on graphs of bounded clique-width. Theory Comput. Syst., 33(2):125–150, 2000.

7 Marek Cygan, Fedor V. Fomin, Lukasz Kowalik, Daniel Lokshtanov, Dániel Marx, Marcin
Pilipczuk, Michal Pilipczuk, and Saket Saurabh. Parameterized Algorithms. Springer, 2015.

8 Anuj Dawar, Martin Grohe, Stephan Kreutzer, and Nicole Schweikardt. Approximation
schemes for first-order definable optimisation problems. In LICS, pages 411–420. IEEE
Computer Society, 2006.

9 Zdenek Dvořák, Daniel Král, and Robin Thomas. Testing first-order properties for subclasses
of sparse graphs. J. ACM, 60(5):36:1–36:24, 2013.

10 Eduard Eiben, Robert Ganian, and Stefan Szeider. Meta-kernelization using well-structured
modulators. Discret. Appl. Math., 248:153–167, 2018.

11 Markus Frick. Generalized model-checking over locally tree-decomposable classes. Theory
Comput. Syst., 37(1):157–191, 2004.

12 Markus Frick and Martin Grohe. Deciding first-order properties of locally tree-decomposable
structures. J. ACM, 48(6):1184–1206, 2001.

13 Markus Frick and Martin Grohe. The complexity of first-order and monadic second-order
logic revisited. Ann. Pure Appl. Log., 130(1-3):3–31, 2004.

14 Jakub Gajarský and Petr Hliněný. Kernelizing MSO properties of trees of fixed height, and
some consequences. Log. Methods Comput. Sci., 11(1), 2015.

15 Jakub Gajarský, Petr Hlinený, Daniel Lokshtanov, Jan Obdrzálek, Sebastian Ordyniak, M. S.
Ramanujan, and Saket Saurabh. FO model checking on posets of bounded width. In FOCS,
pages 963–974. IEEE Computer Society, 2015.

16 Robert Ganian. Improving vertex cover as a graph parameter. Discret. Math. Theor. Comput.
Sci., 17(2):77–100, 2015.

17 Robert Ganian, Petr Hliněný, Jaroslav Nešetřil, Jan Obdržálek, and Patrice Ossona de Mendez.
Shrub-depth: Capturing height of dense graphs. Log. Methods Comput. Sci., 15(1), 2019.

18 Robert Ganian and Jan Obdržálek. Expanding the expressive power of monadic second-order
logic on restricted graph classes. In IWOCA, volume 8288 of Lecture Notes in Computer
Science, pages 164–177. Springer, 2013.

19 Robert Ganian, Friedrich Slivovsky, and Stefan Szeider. Meta-kernelization with structural
parameters. J. Comput. Syst. Sci., 82(2):333–346, 2016.

20 Martin Grohe and Stephan Kreutzer. Methods for algorithmic meta theorems. Model Theoretic
Methods in Finite Combinatorics, 558:181–206, 2011.

21 Dusan Knop, Martin Koutecký, Tomás Masarík, and Tomás Toufar. Simplified algorithmic
metatheorems beyond MSO: treewidth and neighborhood diversity. Log. Methods Comput.
Sci., 15(4), 2019.

22 Dusan Knop, Tomás Masarík, and Tomás Toufar. Parameterized complexity of fair vertex
evaluation problems. In MFCS, volume 138 of LIPIcs, pages 33:1–33:16. Schloss Dagstuhl –
Leibniz-Zentrum für Informatik, 2019.

23 Michael Lampis. Algorithmic meta-theorems for restrictions of treewidth. Algorithmica,
64(1):19–37, 2012. doi:10.1007/s00453-011-9554-x.

24 Michael Lampis. Model checking lower bounds for simple graphs. Log. Methods Comput. Sci.,
10(1), 2014.

25 Michael Lampis and Valia Mitsou. Fine-grained meta-theorems for vertex integrity. In ISAAC,
volume 212 of LIPIcs, pages 34:1–34:15. Schloss Dagstuhl – Leibniz-Zentrum für Informatik,
2021.

https://doi.org/10.1007/s00453-011-9554-x

M. Lampis 132:17

26 Michal Pilipczuk. Problems parameterized by treewidth tractable in single exponential time:
A logical approach. In MFCS, volume 6907 of Lecture Notes in Computer Science, pages
520–531. Springer, 2011.

27 Detlef Seese. Linear time computable problems and first-order descriptions. Math. Struct.
Comput. Sci., 6(6):505–526, 1996.

28 Stefan Szeider. Monadic second order logic on graphs with local cardinality constraints. ACM
Trans. Comput. Log., 12(2):12:1–12:21, 2011.

ICALP 2023

Witnessed Symmetric Choice and Interpretations in
Fixed-Point Logic with Counting
Moritz Lichter #

TU Darmstadt, Germany

Abstract
At the core of the quest for a logic for Ptime is a mismatch between algorithms making arbitrary
choices and isomorphism-invariant logics. One approach to tackle this problem is witnessed symmetric
choice. It allows for choices from definable orbits certified by definable witnessing automorphisms.

We consider the extension of fixed-point logic with counting (IFPC) with witnessed symmetric
choice (IFPC+WSC) and a further extension with an interpretation operator (IFPC+WSC+I). The
latter operator evaluates a subformula in the structure defined by an interpretation. When similarly
extending pure fixed-point logic (IFP), IFP+WSC+I simulates counting which IFP+WSC fails to
do. For IFPC+WSC, it is unknown whether the interpretation operator increases expressiveness
and thus allows studying the relation between WSC and interpretations beyond counting.

In this paper, we separate IFPC+WSC from IFPC+WSC+I by showing that IFPC+WSC
is not closed under FO-interpretations. By the same argument, we answer an open question of
Dawar and Richerby regarding non-witnessed symmetric choice in IFP. Additionally, we prove that
nesting WSC-operators increases the expressiveness using the so-called CFI graphs. We show that if
IFPC+WSC+I canonizes a particular class of base graphs, then it also canonizes the corresponding
CFI graphs. This differs from various other logics, where CFI graphs provide difficult instances.

2012 ACM Subject Classification Theory of computation → Finite Model Theory; Theory of
computation → Complexity theory and logic

Keywords and phrases witnessed symmetric choice, interpretation, fixed-point logic, counting, CFI
graphs, logic for PTime

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.133

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version Full Version: https://arxiv.org/abs/2210.07869 [30]

Funding This work received funding from the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation programme (EngageS: agreement No. 820148).

1 Introduction

The quest for a logic for Ptime is one of the prominent open questions in finite model
theory [6, 19]. It asks whether there is a logic defining exactly all polynomial-time decidable
properties of finite structures. While Fagin’s theorem [14] initiated descriptive complexity
theory by showing that there is a logic capturing NPtime, the question for Ptime is still open.
One problem at the core of the question is a mismatch between logics and algorithms. For
algorithms, it is common to make arbitrary choices as long as the output is still isomorphism-
invariant. In general, it is undecidable whether an algorithm is isomorphism-invariant.
Showing this is usually part of the proof that the algorithm is correct. On the other hand,
every reasonable logic is required to be isomorphism-invariant by design [22, 13], so in contrast
to algorithms we cannot define something non-isomorphism-invariant. That is, a logic has to
enforce isomorphism-invariance syntactically and it is generally not clear how algorithms
making choices can be implemented in a logic.

EA
T
C
S

© Moritz Lichter;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 133; pp. 133:1–133:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lichter@mathematik.tu-darmstadt.de
https://orcid.org/0000-0001-5437-8074
https://doi.org/10.4230/LIPIcs.ICALP.2023.133
https://arxiv.org/abs/2210.07869
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

133:2 Witnessed Symmetric Choice and Interpretations in IFPC

For totally ordered structures, inflationary fixed-point logic (IFP) captures Ptime due to
the Immerman-Vardi Theorem [27]. On ordered structures, no arbitrary choices are needed
and the total order is used to “choose” the unique minimal element. Thus, the lack of
making choices is crucial on unordered structures. We therefore would like to support choices
in a logic while still guaranteeing isomorphism-invariance. There are logics in which arbitrary
choices can be made [2, 10], but for these it is undecidable whether a formula is isomorphism-
invariant [2]. In particular, such logics fail to be reasonable in the sense of Gurevich [22].
Similarly, when extending structures by an arbitrary order it is undecidable whether a formula
is order-invariant, i.e., it evaluates equally for all such orders (see [16]).

One approach to overcome the lack of choices in logics is to support a restricted form
of choice. If only choices from definable orbits (of the automorphism group of the input
structure) are allowed, that is, from sets of definable objects related by an automorphism of
the input structure, the output is guaranteed to be still isomorphism-invariant [9, 15]. This
form of choice is called symmetric choice (SC). However, it is unknown whether orbits can be
computed in Ptime. So it is unknown whether a logic with symmetric choice can be evaluated
in Ptime because during the evaluation we have to verify that the choice-sets are indeed
orbits. This is solved by handing over the obligation to check whether the choice-sets are
orbits from the evaluation to the formulas themselves. To make a choice, not only a choice-set
but also a set of witnessing automorphisms has to be defined. These automorphisms certify
that the choice-set is indeed an orbit in the following way: For every pair of elements a
and b in the choice-set, an automorphism mapping a to b has to be provided. This condition
guarantees evaluation in Ptime. We call this restricted form of choice witnessed symmetric
choice (WSC).

Besides witnessed symmetric choice, other operators were proposed to extend the expres-
siveness of logics not capturing Ptime including a counting operator (see [35]) and an operator
based on logical interpretations [15]. It was shown that witnessed symmetric choice increases
the expressiveness of IFP [15] and that counting operators increase the expressiveness of
IFP and the logic of Choiceless Polynomial Time (CPT) [4] (one usually refers with CPT to
its extension with counting, which we also do from now). However, for the combination of
counting and choices not much is known. In this paper, we investigate the relation of counting,
witnessed symmetric choice, and interpretations to better understand their expressive power.

Extending IFP with symmetric and witnessed symmetric choice was first studied by
Gire and Hoang [15]. They extend IFP with symmetric choice (which we denote IFP+SC)
and which witnessed symmetric choice (which we denote IFP+WSC). The authors show
that IFP+WSC distinguishes CFI graphs over ordered base graphs, which IFP (and even
fixed-point logic with counting IFPC) fails to do [5]. Afterwards IFP+SC was studied by
Dawar and Richerby [9]. They allowed for nested symmetric choice operators, proved that
parameters of choice operators increase the expressiveness, showed that nested symmetric
choice operators are more expressive than a single one, and conjectured that with additional
nesting depth the expressiveness increases.

Recently, extending CPT with witnessed symmetric choice (CPT+WSC) was studied by
Lichter and Schweitzer [32]. CPT+WSC has the interesting property that a CPT+WSC-
definable isomorphism test on a class of structures implies a CPT+WSC-definable canoniza-
tion for this class. Canonization is the task of defining an isomorphic but totally ordered copy.
The only requirement is that the class is closed under individualization, so under assigning
unique colors to vertices. This is often unproblematic [28, 33]. Individualization is natural in
the context of choices because a choice is, in some sense, an individualization. The concept of
canonization is essential in the quest for a logic for Ptime. It provides the routinely employed

M. Lichter 133:3

approach to capture Ptime on a class of structures: Define canonization, obtain isomorphic
and ordered structures, and apply the Immerman-Vardi Theorem (e.g. [42, 20, 21, 31]).
While in CPT+WSC defining isomorphism implies canonization, we do not know whether
the same holds for CPT or whether CPT+WSC is more expressive than CPT. Proving this
requires separating CPT from Ptime, which has been open for a long time.

(Witnessed) symmetric choice has the drawback that it can only choose from orbits of the
input structure. This structure might have complicated orbits that we cannot define or witness
in the logic. However, there could be a reduction to a different structure with easier orbits
exploitable by witnessed symmetric choice. For logics, the natural concept of a reduction
is an interpretation, i.e., defining a structure in terms of another one. Interpretations are
in some sense incompatible with (witnessed) symmetric choice because we always have to
choose from orbits of the input structure. Orbits of the interpreted structure are always
unions of orbits of the input structure, i.e., an interpretation may add more automorphisms
but never removes one. To exploit a combination of choices and interpretations, Gire and
Hoang proposed an interpretation operator [15]. It evaluates a formula in the image of an
interpretation. For logics closed under interpretations (e.g. IFP, IFPC, and CPT) such an
interpretation operator does not increase expressiveness. However, for the extension with
witnessed symmetric choice this is different: IFP+WSC is less expressive than the extension
of IFP+WSC with the interpretation operator. The interpretation operator in combination
with WSC simulates counting, which for WSC alone is indicated not to be the case [15].

We are interested in the relation between witnessed symmetric choice and the interpre-
tation operator not specifically for IFP but more generally. Most of the existing results
in [15, 9] showing that (witnessed) symmetric choice or the interpretation operator increases
in some way the expressiveness of IFP are based on counting. However, counting is not the
actual reason for using witnessed symmetric choice. Counting can be achieved more naturally
in IFPC. Thus, it is unknown whether the interpretation operator increases expressiveness
of IFPC+WSC. In CPT, it is not possible to show that witnessed symmetric choice or the
interpretation operator increases expressiveness without separating CPT from Ptime [32].

Overall, a natural base logic for studying the interplay of witnessed symmetric choice
and the interpretation operator is IFPC. In IFPC, separation results based on counting
are not applicable. But there are known IFPC-undefinable Ptime properties, namely the
already mentioned CFI query, which can be used to separate extensions of IFPC. The CFI
construction assigns to a connected graph, the so-called base graph, two non-isomorphic
CFI graphs: One is called even and the other one is called odd. The CFI query is to define
whether a given CFI graph is even.

Results. We define the logics IFPC+WSC and IFPC+WSC+I, which extend IFPC by a
fixed-point operator featuring witnessed symmetric choice and the latter additionally by an
interpretation operator. We show that the interpretation operator increases expressiveness:

▶ Theorem 1. IFPC+WSC < IFPC+WSC+I ≤ Ptime.

In particular, this separates IFPC+WSC from Ptime. Such a result does not follow from
existing techniques because separating IFP+WSC from Ptime is based on counting in [15].
Moreover, we show that both IFPC+WSC and IFP+SC are not even closed under FO-
interpretations. This answers an open question of Dawar and Richerby [9]. Proving Theorem 1
relies on the CFI construction and on defining the CFI query for certain classes of base graphs.
To show this, we show that IFPC+WSC+I-distinguishable orbits imply an IFPC+WSC+I-
definable canonization (similarly to [32]). We apply this to CFI graphs:

ICALP 2023

133:4 Witnessed Symmetric Choice and Interpretations in IFPC

▶ Theorem 2. If IFPC+WSC+I canonizes a class of colored base graphs K (closed under
individualization), then IFPC+WSC+I canonizes the class of CFI graphs CFI(K) over K.

The conclusion is that for IFPC+WSC+I canonization of a class of CFI graphs is not more
difficult than canonization of the corresponding class of base graphs, which is different in
many other logics [5, 17, 29, 7]. However, to canonize the CFI graphs in our proof, the
nesting depth of WSC-fixed-point operators and interpretation operators increases. We
show that this increase is unavoidable: For L ⊆ IFPC+WSC+I, we denote by WSCI(L) the
IFPC+WSC+I-fragment which uses IFPC-formula-formation-rules to compose L-formulas
and an additional interpretation operator nested inside a WSC-fixed-point operator.

▶ Theorem 3. There is a class of base graphs K, for which WSCI(IFPC) defines a canon-
ization but does not define the CFI query for CFI(K) and WSCI(WSCI(IFPC)) canonizes
CFI(K).

Theorem 3 provides a first step towards an operator nesting hierarchy for IFPC+WSC+I.

Our Techniques. We adapt the techniques of [32] from CPT to IFPC to define a WSC-
fixed-point operator. It has some small but essential differences to [15, 9]. Similar to [32]
for CPT, Gurevich’s canonization algorithm [23] is expressible in IFPC+WSC: It suffices to
distinguish orbits of a class of individualization-closed structures to define a canonization.

To prove Theorem 2, we use the interpretation operator to show that if IFPC+WSC+I
distinguishes orbits of the base graphs, then IFPC+WSC+I distinguishes also orbits of the
CFI graphs and thus canonizes the CFI graphs. The CFI-graph-canonizing formula nests
one WSC-fixed-point operator (for Gurevich’s algorithm) and one interpretation operator (to
distinguish orbits) more than the orbit-distinguishing formula of the base graphs. To show
that this increase in nesting depth is necessary, we construct double CFI graphs. We start
with a class of CFI graphs CFI(K′) canonized in WSCI(IFPC). We create new base graphs K
from the CFI(K′)-graphs. Applying the CFI construction once more, CFI(K) is canonized in
WSCI(WSCI(IFPC)) but not in WSCI(IFPC): To define orbits of CFI(K), we have to define
orbits of the base graph, for which we need to define the CFI query for CFI(K′).

To prove IFPC+WSC < IFPC+WSC+I, we construct a class of asymmetric structures,
i.e., structures without non-trivial automorphisms, for which isomorphism is not IFPC-
definable. Because asymmetric structures have only singleton orbits, witnessed symmetric
choice is not beneficial, thus IFPC+WSC = IFPC, and isomorphism is not IFPC+WSC-
definable. These structures combine CFI graphs and the so-called multipedes [24], which
are asymmetric and for which IFPC fails to distinguish orbits. An interpretation removes
the multipedes and reduces the isomorphism problem to the ones of CFI graphs. Thus,
isomorphism of this class of structures is IFPC+WSC+I-definable.

Related Work. The logic IFPC was separated from Ptime using the CFI graphs [5]. CFI
graphs not only turned out to be difficult for IFPC but variants of them were also used to
separate rank logic [29] and the more general linear-algebraic logic [7] from Ptime. CPT
was shown to define the so-called CFI query for ordered base graphs [12] and base graphs of
maximal logarithmic color class size [37]. Defining the CFI query for these graphs in CPT
turned out to be comparatively more complicated than in IFP+WSC for ordered base graphs
in [15]. In general, it is still open whether CPT defines the CFI query for all base graphs.

The definitions of the (witnessed) symmetric choice operator in [15, 9] differ at crucial
points form the one in [32] and in this paper: The formula defining the witnessing auto-
morphism has access to the obtained fixed-point. This is essential to implement Gurevich’s

M. Lichter 133:5

canonization algorithm but has the drawback to impose (possibly) stronger orbit conditions.
Although it is unknown whether these two variants of witnessed symmetric choice have
the same expressiveness, existing results [15, 9] transfer to the variant used in this paper.
We expect that the results of this paper also hold for the other variant. However, proving
Theorem 2 will be more effort because Gurevich’s canonization algorithm cannot be used.

CPT+WSC in [32] is a three-valued logic using, beside true and false, an error marker for
non-witnessed choices. This is needed for CPT because fixed-point computations in CPT do
not necessarily terminate in a polynomial number of steps. Instead, computation is aborted
(and orbits cannot be witnessed). For other approaches to integrate choice in first-order logic,
but which are no Ptime-logic candidates, see e.g. [3, 36, 10]. We refer to [38] for an overview.

Logical interpretations can also be used to characterize CPT. The logic CPT as the same
expressive power as polynomial-time interpretation logic [18]. This logic essentially applies a
first-order interpretation (with an appropriate counting extension) iteratively. The iterative
application of an interpretation and thereby the ability to iteratively take quotients strictly
increases the expressive power. The interpretation operator that we consider evaluates a
formula in the interpreted structure, that is, it evaluates an interpretation only once. By
nesting this operator, constantly many interpretations can be nested. Hence, for logics closed
under interpretations, the interpretation operator does not increase the expressive power.

Multipedes [24] are a class of asymmetric structures not characterized up to isomorphism
in k-variable counting logic for every fixed k. Asymmetry turns multipedes to hard examples
for graph isomorphism algorithms in the individualization-refinement framework [34, 1]. The
size of a multipede not identifiable in k-variable counting logic is large with respect to k.
There also exists a class of asymmetric graphs [8] for which the number of variables needed
for identification is linear. Both classes are based on the CFI construction.

There is another remarkable but not directly-connected coincidence to lengths of resolution
proofs. Resolution proofs for non-isomorphism of CFI-graphs have exponential size [40]. When
adding a global symmetry rule (SRC-I), which exploits automorphisms of the formula (so akin
to symmetric choice), the length becomes polynomial [39]. For asymmetric multipedes the
length in the SRC-I system is still exponential [41]. But when considering the local symmetry
rule (SRC-II) exploiting local automorphisms (so somewhat akin to symmetric choice after
restricting to a substructure with an interpretation) the length becomes polynomial again [39].

2 Preliminaries

We set [k] := {1, . . . , k}. The i-th entry of a k-tuple t̄ ∈ Nk is denoted by ti and its length by
|t̄| = k. The set of all tuples of length at most k is N≤k and the set of all finite tuples is N∗.

A relational signature τ is a set of relation symbols {R1, . . . , Rℓ} of arities ar(Ri). We
use letters τ and σ for signatures. A τ -structure is a tuple A = (A,RA

1 , . . . , R
A
ℓ) where

RA
i ⊆ Aar(Ri). The set A is called universe and its elements vertices. We use letters A and

B for structures, A and B for their universes, and u, v, and w for vertices. The reduct A ↾ σ
is the restriction of A to the relations in σ ⊆ τ . This paper considers finite structures.

A colored graph is an {E,⪯}-structure G = (V,EG,⪯G). The relation E is the edge
relation and the relation ⪯ is a total preorder. Its equivalence classes are the color classes
or colors. We often write G = (V,E,⪯) for a colored graph. The neighborhood of a vertex
u ∈ V is NG(u). The induced subgraph of G by W ⊆ V is G[W]. The graph G is k-connected
if |V | > k and, for every V ′ ⊆ V of size at most k − 1, the graph G \ V ′ is connected. The
treewidth tw(G) of G measures how close G is to being a tree. We omit a definition (see [11])
and only use the fact that if G is a minor of H, i.e., G is obtained from H by deleting
vertices or edges and contracting edges, then tw(G) ≤ tw(H).

ICALP 2023

133:6 Witnessed Symmetric Choice and Interpretations in IFPC

Let A and B be two τ -structures and ū ∈ Ak and v̄ ∈ Bk. We write (A, ū) ∼= (B, v̄)
if there is a isomorphism φ : A → B satisfying φ(ū) = v̄. An automorphism φ of (A, ū) is
an isomorphism (A, ū) → (A, ū). We say that φ fixes ū and write Aut((A, ū)) for the set of
all automorphisms fixing ū. We will use the same notation also for other objects, e.g., for
automorphisms fixing relations. A k-orbit of (A, ū) is a maximal set of k-tuples O ⊆ Ak such
that for every v̄, w̄ ∈ O, there is an automorphism φ ∈ Aut((A, ū)) satisfying φ(v̄) = w̄.

Fixed-Point Logic with Counting. We recall fixed-point logic with counting IFPC (proposed
in [26], see [35]). Let τ be a signature and A = (A,RA

1 , . . . , R
A
ℓ) be a τ -structure. We extend τ

and A with counting. Set τ# := τ ⊎ {·,+, 0, 1} and A# := (A,RA
1 , . . . , R

A
ℓ ,N, ·,+, 0, 1) to be

the two-sorted τ#-structure that is the disjoint union of A and N. IFPC[τ] is a two-sorted
logic using the signature τ#. Element variables range over vertices and numeric variables
range over N. The letters x, y, and z are used for element variables, ν and µ for numeric
variables, and s and t for numeric terms. IFPC-formulas are built from first-order formulas,
a fixed-point operator, and counting terms. The range of numeric variables needs to be
bounded to ensure Ptime-evaluation: For an IFPC-formula Φ, a closed numeric IFPC-term s,
a numeric variable ν, and a quantifier Q ∈ {∀, ∃}, the formula Qν ≤ s.Φ is an IFPC-formula.
An inflationary fixed-point operator defines a relation R. For an IFPC[τ,R]-formula Φ
and variables x̄µ̄, the fixed-point operator [ifpRx̄µ̄ ≤ s̄.Φ] (ν̄µ̄) is an IFPC[τ]-formula. The
tuple s̄ of |µ̄| closed numeric terms bounds the values of µ̄. The crucial element of IFPC are
counting terms. For an IFPC-formula Φ, variables x̄ν̄, and |ν̄| closed numeric IFPC-terms s̄,
#x̄ν̄ ≤ s̄.Φ is a numeric IFPC-term.

IFPC-formulas (or terms) are evaluated over A#. For a numeric term s(x̄ν̄), the function
sA : A|x̄| × N|ν̄| → N maps the values for the free variables of s to the value that s takes
in A#. Likewise, for a formula Φ(x̄ν̄), we write ΦA ⊆ A|x̄| × N|ν̄| for the set of values for the
free variables satisfying Φ. Evaluating a counting term for a formula Φ(ȳx̄µ̄ν̄) is defined as
follows: (#x̄ν̄ ≤ s.Φ)A(ūm̄) := |{w̄n̄ ∈ A|x̄| × N|ν̄| | ni ≤ sAi for all i ∈ [|ν̄|], ūw̄m̄n̄ ∈ ΦA}|.

Finite Variable Counting Logic. The k-variable logic with counting Ck extends the k-
variable fragment of first-order logic (FO) with counting quantifiers ∃≥jx.Φ (“at least j
distinct vertices satisfy Φ”). For every fixed n ∈ N, every k-variable IFPC-formula is
equivalent to a CO(k)-formula [35] on structures of order up to n. Let A and B be two
τ -structures and ū ∈ Aℓ and v̄ ∈ Bℓ. A logic L distinguishes (A, ū) from (B, v̄) if there
is an L-formula Φ with ℓ free variables such that ū ∈ ΦA and v̄ /∈ ΦB. Otherwise, the
structures are L-equivalent. We write (A, ū) ≃k

C (B, v̄) if (A, ū) and (B, v̄) are Ck-equivalent.
The logics Ck are used to prove IFPC-undefinability: Let (Ak,Bk) be a sequence of finite
structures for every k ∈ N such that Ak has a property P but Bk does not. If Ak ≃k

C Bk

for every k, then IFPC does not define P . The logic Ck is characterized by the bijective
k-pebble game [25]. The game is played on two structures A and B by two players called
Spoiler and Duplicator. There are pebble pairs (pi, qi) for every i ∈ [k]. Positions in the
game are tuples (A, ū;B, v̄) for tuples ū ∈ A≤k and v̄ ∈ B≤k of the same length. A pebble pj

is placed on ui and qj is placed on vi for some j ∈ [k]. No pebbles are placed initially.
If |A| ̸= |B|, then Spoiler wins. If not, Spoiler picks up a pair of pebbles (pi, qi). Duplicator
answers with a bijection λ : A → B. Spoiler places pi on w ∈ A and qi on λ(w) ∈ B. If in the
resulting position (A, ū;B, v̄) the map ui 7→ vi is not a pebble-respecting local isomorphism
(A[ū], ū) → (B[v̄], v̄), then Spoiler wins. Otherwise, the game continues with the next round.
Duplicator wins if Spoiler never wins. Spoiler/Duplicator has a winning strategy in position
(A, ū;B, v̄) if they can always win the game. Spoiler has a winning strategy in position
(A, ū;B, v̄) if and only if (A, ū) ̸≃k

C (B, v̄) [25].

M. Lichter 133:7

Logical Interpretations. Interpretations define maps between structures via formulas evalu-
ated on tuples containing vertices and numbers. We use x̄, ȳ, and z̄ for a tuple of element
and numeric variables and ū and v̄ for a tuple of vertices and numbers in the following.

Let σ := {R1, . . . , Rℓ}. A d-dimensional IFPC[τ, σ]-interpretation Θ(z̄) with parameters z̄
is a tuple

Θ(z̄) =
(
Φdom(z̄x̄),Φ∼=(z̄x̄ȳ),ΦR1(z̄x̄1 . . . x̄ar(R1)), . . . ,ΦRℓ

(z̄x̄1 . . . x̄ar(Rℓ)), s̄
)

of IFPC[τ]-formulas and a j-tuple s̄ of closed numeric IFPC[τ]-terms, where j is the number
of numeric variables in x̄. The tuples of variables x̄, ȳ, and the x̄i are all of length d and
agree on whether the k-th variable is an element variable or not. Let A be a τ -structure and
ū ∈ (A ∪ N)|z̄| match the parameter variables (element or numeric). Assume that the first j
variables in x̄ are numeric variables and set D := {0, ..., sA1 } × · · · × {0, ..., sAj } ×Ad−j . We
define the σ-structure B = (B,RB

1 , . . . , R
B
ℓ) via

B :=
{
v̄ ∈ D

∣∣ ūv̄ ∈ ΦA
dom

}
and

RB
i :=

{
(v̄1, . . . , v̄ar(Ri)) ∈ Bar(Ri) ∣∣ ūv̄1 . . . v̄ar(Ri) ∈ ΦA

Ri

}
and the relation E := {(v̄1, v̄2) ∈ B2 | ūv̄1v̄2 ∈ ΦA∼=}. Set Θ(A, ū) := B/E if E is a
congruence relation on B and otherwise leave Θ(A, ū) undefined. An interpretation is called
equivalence-free if Φ∼=(z̄x̄ȳ) is the formula x̄ = ȳ. For extensions L of IFPC, the notion of an
L[τ, σ]-interpretation is defined similarly. For logics without numeric variables like FO or
IFP, interpretations are defined analogously omitting the numeric parts.

A property P of τ -structures is L-reducible to a property Q of σ-structures if there is a
parameter-free L[τ, σ]-interpretation Θ such that A ∈ P if and only if Θ(A) ∈ Q for every
τ -structure A. A logic L′ is closed under L-interpretations if for every property P that is
L-reducible to an L′-definable property Q, the property P itself is L′-definable (cf. [13, 35]).

3 Witnessed Symmetric Choice

We extend IFPC with an inflationary fixed-point operator with witnessed symmetric choice.
Let τ be a relational signature and R, R∗, and S be relation symbols not in τ satisfying
k = ar(R) = ar(R∗). The relation R will be used for stages in the fixed-point computation,
R∗ for a fixed-point, and S will be a singleton relation containing a chosen tuple.

We define the WSC-fixed-point operator with parameters p̄ν̄. If Φstep(p̄x̄ν̄) is an
IFPC + WSC[τ,R, S]-formula such that |x̄| = ar(R), Φchoice(p̄ȳν̄) is a IFPC + WSC[τ,R]-
formula such that |ȳ| = ar(S), Φwit(p̄ȳȳ′z1z2ν̄) is an IFPC + WSC[τ,R,R∗]-formula where
|ȳ| = |ȳ′| = ar(S), and Φout(p̄ν̄) is an IFPC + WSC[τ,R∗]-formula, then

Φ(p̄ν̄) = ifp-wscR,x̄;R∗;S,ȳ,ȳ′;z1z2 .
(
Φstep(p̄x̄ν̄),Φchoice(p̄ȳν̄),Φwit(p̄ȳȳ′z1z2ν̄),Φout(p̄ν̄)

)
is an IFPC + WSC[τ]-formula. The formulas Φstep, Φchoice, Φwit, and Φout are called step
formula, choice formula, witnessing formula, and output formula respectively. Note that
only element variables are used for defining the fixed-point in the WSC-fixed-point operator.
This suffices for our purpose in this paper. We expect that our arguments also work with
numeric variables. We omit the free numeric variables ν̄ when defining the semantics of the
WSC-fixed-point operator because numeric parameters do not change automorphisms.

Intuitively, Φ is evaluated as follows. The formula Φ defines the set of vertex-tuples ū that,
when interpreting p̄ with ū, satisfy the following process: Initialize R as the empty relation.
Define a choice-set using the choice formula. Pick an arbitrary tuple of this set and let S

ICALP 2023

133:8 Witnessed Symmetric Choice and Interpretations in IFPC

only contain this tuple. Define the next stage from R and S using the step formula. Then
set R to be this next stage and repeat until a fixed-point R∗ is reached. If the witnessing
formula certifies that all choice-set were indeed orbits and the output formula is satisfied
by R∗, then ū satisfies Φ.

We now consider the evaluation in more detail. Let A be a τ -structure and ū ∈ A|p̄|. We
define a sequence of relations called stages ∅ =: RA

1 , . . . , R
A
ℓ = RA

ℓ+1 =: (R∗)A. Given the
relation RA

i , the choice formula defines the choice-set

TA
i+1 :=

{
v̄

∣∣∣ ūv̄ ∈ ΦA,RA
i

choice

}
.

We pick an arbitrary tuple v̄ ∈ TA
i+1 and set SA

i+1 := {v̄} or SA
i+1 := ∅ if TA

i+1 = ∅. The step
formula defines the next stage on the structure (A, RA

i , S
A
i+1):

RA
i+1 := RA

i ∪
{
w̄

∣∣∣ ūw̄ ∈ Φ(A,RA
i ,SA

i+1)
step

}
.

We proceed until a fixed-point (R∗)A is reached. This fixed-point is in general not isomorphism-
invariant, i.e., not invariant under automorphisms of (A, ū). Isomorphism-invariance of Φ is
ensured as follows: Choices are only allowed from orbits, which is certified by the witnessing
formula. A set N ⊆ Aut((A, ū)) witnesses a relation R ⊆ Ak as (A, ū)-orbit, if for very
v̄, v̄′ ∈ R there is a φ ∈ N with v̄ = φ(v̄′). Because we consider isomorphism-invariant sets,
the relation R is never a proper subset of an orbit. We require that Φwit defines a set of
automorphisms. For v̄, v̄′ ∈ TA

i+1, a map φv̄,v̄′ is defined by

w 7→ w′ whenever ūv̄v̄′ww′ ∈ Φ(A,RA
i ,(R∗)A)

wit .

The set {φv̄,v̄′ | v̄, v̄′ ∈ TA
i+1} has to witness TA

i+1 as (A, ū, RA
1 , . . . , R

A
i)-orbit. The witnessing

formula always has access to the fixed-point (note that orbits are witnessed after the fixed-
point is computed). This is possible because TA

i+1 is an (A, ū, RA
1 , . . . , R

A
i)-orbit and not just

an (A, ū, RA
i)-orbit. If some choice is not witnessed, then ū /∈ ΦA. Otherwise, the output

formula is evaluated on the fixed-point:

ΦA := Φ(A,(R∗)A)
out .

Because all choices are witnessed, all possible fixed-points (for different choices) are related
by an automorphism of (A, ū) and thus either all or none satisfy the output formula.

An Example. We give an illustrating example (an adaption of [32]). We show that the class
of threshold graphs (i.e., graphs which can be reduced to the empty graph by iteratively
deleting universal or isolated vertices) is IFPC+WSC-definable (it is actually IFP-definable).
The set of all isolated or universal vertices of a graph forms a 1-orbit (there cannot be an
isolated and a universal vertex in a nontrivial graph). We chose one such vertex, collect it in
a unary relation R, and repeat as follows: The choice formula

Φchoice(y) := ¬R(y) ∧
(
(∀z. ¬R(y) ⇒ E(y, z)) ∨ (∀z. ¬R(y) ⇒ ¬E(y, z))

)
defines the set of all isolated or universal vertices after deleting the vertices in R. The step
formula Φstep(x) := R(x) ∨ S(x) adds the chosen vertex contained in the relation S to R.
The output formula Φout := ∀x.R∗(x) defines whether it was possible to delete all vertices.
Witnessing orbits is easy: To show that two isolated (or universal) vertices y and y′ are
related by an automorphism, it suffices to define their transposition via

Φwit(y, y′, z1, z2) := (z1 = y ∧ z2 = y′) ∨ (z2 = y ∧ z1 = y′) ∨ (y ̸= z1 = z2 ̸= y′).

The formula ifp-wscR,x;R∗;S,y,y′;z1z2 . (Φstep,Φchoice,Φwit,Φout) defines the class of threshold
graphs.

M. Lichter 133:9

Reduct Semantics. The semantics is defined formally using the WSC∗-operator from [32].
It formalizes the former evaluation strategy. The WSC-fixed-point operator Φ is evaluated
in the structure A ↾ sig(Φ), where sig(Φ) are all relations symbols used in Φ. So adding
a relation to A that is not mentioned in Φ but possibly changes the orbits of A does not
change ΦA. This is a desirable property of a logic [13]. The reduct semantics of a choice
operator can also be found in [9].

Extension with an Operator for Logical Interpretations. We extend IFPC+WSC with
another operator using interpretations. Every IFPC+WSC-formula is an IFPC+WSC+I-
formula. If Θ(p̄ν̄) is an IFPC+WSC+I[τ, σ]-interpretation with parameters p̄ν̄ and Φ is an
IFPC+WSC+I[σ]-sentence, then the interpretation operator

Ψ(p̄ν̄) := I(Θ(p̄ν̄); Φ)

is an IFPC+WSC+I[τ]-formula with free variables p̄ν̄. The semantics is defined by

I(Θ(p̄ν̄); Φ)A :=
{
ūn̄ ∈ A|p̄| × N|ν̄| ∣∣ ΦΘ(A,ūn̄) ̸= ∅

}
.

Note that ΦΘ(A,ūn̄) = {()} if Φ is satisfied and ΦΘ(A,ūn̄) = ∅ otherwise. The interpretation
operator evaluates a subformula in the image of an interpretation. For IFPC, such an
operator does not increase expressiveness because IFPC is closed under interpretations [35].
For IFPC+WSC this is not clear: Because Θ(A, ūn̄) may have a different automorphism
structure, Φ possibly can exploit the WSC-fixed-point operator in a way impossible on A.
Indeed, we will see that IFPC+WSC is not even closed under FO-interpretations. We now
study the properties of IFPC+WSC+I and its relation to IFPC+WSC.

4 The CFI Construction

We give an overview of the CFI construction. For more details, we refer to [5]. The degree-d
CFI gadget consists of d pairs of edge vertices {ai0, ai1} for every i ∈ [d] and the set of
gadget vertices {b̄ ∈ Fd

2 | b1 + · · · + bd = 0}. There is an edge {aij , b̄} if and only if bi = j.
If we use d colors to additionally color the vertices {ai0, ai1} for every i ∈ [d], then the
CFI gadget realizes precisely the automorphisms exchanging the vertices {ai0, ai1} for an
even number of i ∈ [d]. We later need a relational variant of the CFI gadgets in which
every gadget vertex b̄ is replaced by the d-tuple (a1b1 , . . . , adbd

). This gadget has the same
automorphisms [24]. A base graph is a simple connected graph. Let G = (V,E,⪯) be a
colored base graph. We call V base vertices and E base edges and use fraktur letters for base
vertices or edges. For f : E → F2, we construct the CFI graph CFI(G, f) as follows: Replace
every base vertex by a CFI gadget of the same degree. For every base edge {u, v} ∈ E,
we obtain two edge-vertex-pairs {ai0, ai1} and {a′

j0, a
′
j1}. The first one is given by the

gadget of u and the second one by the gadget of v. Now add the edges {aik, a
′
jℓ} satisfying

k+ ℓ = f({u, v}). The gadget vertices of the gadget for a base vertex u originate from u, the
edge vertices {ai0, ai1} originate from (u, v), and the edge vertices {a′

j0, a
′
j1} originate from

(v, u). The color of edge and gadget vertices is obtained from the color of its origin.
It is known [5] that CFI(G, g) ∼= CFI(G, f) if and only if

∑
g :=

∑
e∈E g(e) =

∑
f . If we

are interested in the graph up to isomorphism, we write CFI(G, 0) and CFI(G, 1). CFI graphs
with

∑
g = 0 are called even and the others odd. A base edge e ∈ E is twisted by f and g if

g(e) ̸= f(e). Twisted edges can be moved by path isomorphisms [29]: If u1, . . . , uℓ is a path
in G, then there is an isomorphism φ : CFI(G, g) → CFI(G, g′), where g′(e) = g(e) apart from

ICALP 2023

133:10 Witnessed Symmetric Choice and Interpretations in IFPC

e1 := {u1, u2} and e2 := {uℓ−1, uℓ} satisfying g′(ei) = g(ei) + 1. If G is totally ordered, then
every isomorphism is composed of path-isomorphisms. When considering a cycle instead of a
path, we obtain an automorphism of CFI(G, g).

For a class of base graphs K, set CFI(K) := {CFI(G, g) | G = (V,E) ∈ K, g : E → F2}.
The CFI query for CFI(K) is to decide whether a given CFI graph in CFI(K) is even.

▶ Lemma 4 ([11]). If G is of minimum degree 2 and has treewidth at least k, in particular
if G is k-connected, then CFI(G, 0) ≃k

C CFI(G, 1).

▶ Lemma 5. Let G = (V,E,⪯) be (k+2)-connected and A = CFI(G, f) for some f : E → F2.
Let ū ∈ A≤k and {u, v} ∈ E be a base edge such that no vertex in ū has origin u, v, (u, v), or
(v, u). Then the two edge vertices with origin (u, v) are contained in the same orbit of (A, ū).

5 Canonization of CFI Graphs in IFPC+WSC+I

We show that canonizing CFI graphs in IFPC+WSC+I is not harder than canonizing the base
graphs. We work with a class of base graphs closed under individualization, i.e., intuitively
closed under assigning new unique colors to some vertices.

▶ Definition 6 (Individualization of Vertices). Let A be a τ -structure. A binary relation
⊴A ⊆ A2 is an individualization of V ⊆ A if ⊴A is a total order on V and ⊴A ⊆ V 2. We
say that ⊴A is an individualization if it is an individualization of some V ⊆ A and that a
vertex u ∈ A is individualized by ⊴A if u ∈ V .

The closure under individualization of a class of τ -structures K is the class K⊴ of (τ ⊎ {⊴})-
structures such that (A,⊴A) ∈ K⊴ for every A ∈ K and every individualization ⊴A. Instead
of (A,⊴A), one can think of (A, ū) where u1 ⊴A · · · ⊴A u|ū| are the ⊴A-individualized
vertices. In the following, let L be one of the logics IFPC, IFPC+WSC, or IFPC+WSC+I.
We adapt some notions related to canonization from [32] to our first-order setting. Note that
all definitions that follow implicitly include the closure under individualization.

▶ Definition 7 (Canonization). Let K be a class of τ -structures. An L-canonization for K
is an L[τ ⊎ {⊴}, τ ⊎ {⊴,≤}]-interpretation Θ such that ≤Θ(A) is a total order on Θ(A) for
every A ∈ K⊴, A ∼= Θ(A) ↾ (τ ⊎ {⊴}) for every A ∈ K⊴, and Θ(A) ∼= Θ(B) if and only if
A ∼= B for all A,B ∈ K⊴. L canonizes K if there is an L-canonization for K.

▶ Definition 8 (Distinguishable Orbits). The logic L distinguishes k-orbits for a class of
τ -structures K if some L[τ ⊎ {⊴}]-formula Φ(x̄, ȳ) with |x̄| = |ȳ| = k defines, for every
A ∈ K⊴, a total preorder on Ak whose equivalence classes form the k-orbit partition of A,
i.e., Φ orders the k-orbits.

▶ Definition 9 (Ready for Individualization). A class of τ -structures K is ready for individ-
ualization in L if there is an L[τ ⊎ {⊴}]-formula Φ(x) defining for every A ∈ K⊴ a set of
vertices O = ΦA such that O is a 1-orbit of A, |O| > 1 if A has a non-trivial 1-orbit, and if
O = {u} is a singleton set, then u is not individualized by ⊴A unless ⊴A individualizes A.

Let L be one logic of IFPC+WSC and IFPC+WSC+I. The following lemma is similar
to [32] for CPT+WSC and the proof is analogous (we do not include definable isomorphism):

▶ Lemma 10. Let K be a class of τ -structures. Then the following are equivalent:
1. L defines a canonization for K.
2. L distinguishes the k-orbits of K for every k ∈ N.
3. K is ready for individualization in L.

M. Lichter 133:11

Gurevich’s canonization algorithm [23] is used to define the canonization. It requires the WSC-
fixed-point operator. When canonizing using Lemma 10, defining witnessing automorphisms
is hidden in Gurevich’s algorithm and they do not have to be defined explicitly.

▶ Lemma 11. Let K be a class of colored base graphs. If IFPC+WSC+I distinguishes
2-orbits of K, then CFI(K) is ready for individualization in IFPC+WSC+I.

Proof Sketch. For a CFI graph A over G ∈ K⊴, the base graph G is definable by an IFPC-
interpretation. With an interpretation operator, we evaluate a 2-orbit-defining formula on G.
a) If there is a 2-orbit O of G such that for all edges in O there is a cycle not using the origins

of individualized vertices, we define the non-trivial orbit of the CFI graph containing the
edge-vertex-pairs with origin in O.

b) Otherwise, we can order each edge-vertex-pair. If there is a non-trivial 2-orbit O of G, we
define the non-trivial orbit of the CFI graph containing the greater edge vertex of each
edge-vertex-pair (with respect to the edge-vertex-pair-order) with origin in O.

c) Otherwise, the edge-vertex-pair-order extends to a total order. ◀

Proof of Theorem 2. The claim follows immediately from Lemmas 10 and 11. ◀

▶ Corollary 12. If K is a class of base graphs of bounded degree, then IFPC+WSC+I defines
canonization for K if and only if IFPC+WSC+I defines canonization for CFI(K).

Proof. One direction is by Theorem 2. For the other direction, a base graph G of bounded
degree is canonized by defining CFI(G, 0) (which is possible because G is of bounded degree),
canonizing CFI(G, 0), and defining the base graph of the ordered copy of CFI(G, 0). ◀

Theorem 2 can be applied iteratively: If IFPC+WSC+I canonizes K, then IFPC+WSC+I
canonizes CFI(K), and so IFPC+WSC+I canonizes CFI(CFI(K)). Every iteration adds one
WSC-fixed-point operator (Gurevich’s algorithm in Lemma 10) and one interpretation opera-
tor (define the base graph in Lemma 11), i.e., the nesting depth of these operators increases.

6 The CFI Query and Nesting of Operators

We show that the increased nesting depth of operators in Theorem 2 is unavoidable. If
IFPC distinguishes orbits of the base graphs, then the nesting depth of WSC-fixed-point
operators has to increase because IFPC does not define the CFI query. To show this for
IFPC+WSC+I-distinguishable orbits, we combine non-isomorphic CFI graphs into a new
base graph and apply the CFI construction again. To define orbits of these double CFI graphs,
one has to define the CFI query for the base CFI graphs, which requires a WSC-fixed-point
operator. However, parameters to WSC-fixed-point operators will complicate matters.

Nested WSC-Fixed-Point and Interpretation Operators. Let IFPC ⊆ L ⊆ IFPC+WSC+I.
We write WSC(L) for formulas composed by IFPC-formula-formation rules from L-formulas
and WSC-fixed-point-operators, for which all subformulas are L-formulas. We define I(L)
similarly: One can use interpretation operators I(Θ,Ψ) where Θ is an L-interpretation and
Ψ is an L-formula. We set WSCI(L) := WSC(I(L)) and WSCIk+1(L) := WSCI(WSCIk(L)).
Note the construction in Lemmas 10 and 11:

▶ Corollary 13. Let K be a class of base graphs.
1. If L distinguishes 2-orbits of K, then CFI(K) is ready for individualization in I(L).
2. If CFI(K) is ready for individualization in L, then WSC(L) canonizes CFI(K).
3. If L distinguishes 2-orbits of K, then WSCI(L) canonizes CFI(K).

ICALP 2023

133:12 Witnessed Symmetric Choice and Interpretations in IFPC

Color Class Joins. Let G1, . . . , Gℓ be connected colored graphs such that all Gi have c
colors. The color class join Jcc(G1, . . . , Gℓ) is the following graph: Start with the disjoint
union of the Gi and add c additional vertices u1, . . . , uc. Add, for every i ∈ [c], edges
between ui and every vertex v in the i-th color class of all Gj . The resulting colored graph
Jcc(G1, . . . , Gℓ) has 2c color classes: For every i ∈ [c], the vertex ui forms a singleton color
class and the union of the i-th color classes of every Gj forms a color class. The Gj are the
parts of Jcc(G1, . . . , Gℓ). The uj are the join vertices and the others the part vertices. The
part of a part vertex v is the Gj containing v. Defining orbits of Jcc(G1, . . . , Gℓ) is at least
as hard as defining isomorphism of the Gj .

▶ Lemma 14. If two part vertices v and v′ are in the same orbit of Jcc(G1, . . . , Gℓ), then
the part of v is isomorphic to the one of v′.

We set Jk
cc(G,H,K) := Jcc(G, . . . , G,H, . . . ,H,K, . . . ,K), where G, H , and K are repeated k

times. To consider color class joins of CFI graphs, let K be a class of colored base graphs.
For G ∈ K and g ∈ F2, we set

CFIk(G, g) := Jk
cc(CFI(G, 0),CFI(G, g),CFI(G, 1)),

CFIk(K) :=
{

CFIk(G, g)
∣∣ G ∈ K, g ∈ F2

}
,

CFIω(K) :=
⋃
k∈N

CFIk(K).

▶ Lemma 15. If L canonizes CFI(K), then L canonizes CFIω(K).

Let G1, . . . , Gℓ be colored base graphs and h ∈ F2. We transfer the notion of part and join
vertices from H := Jcc(G1, . . . , Gℓ) to A := CFI(H,h). The Gi-part of A is the set of vertices
originating from Gi in H. These vertices are called part vertices of Gi. A vertex is a part
vertex, if it is a part vertex of some Gi. The remaining vertices are the join vertices.

We consider a special class of individualizations of A. Let ū ∈ A∗. A part of A is pebbled
by ū if the part contains ui for some i. The set of ū-pebbled-part vertices Vū(A) is the set
of all join vertices and all part vertices of a part pebbled by ū. The set of ū-pebbled-part
individualizations Pū(A) is the set of all individualizations of Vū(A).

▶ Definition 16 (Unpebbled-Part-Distinguishing). For a tuple ū ∈ Aℓ, a relation R ⊆ Ak

is ū-unpebbled-part-distinguishing if there are m ∈ [k] and i ̸= j ∈ [ℓ] such that both the
Gi-part and the Gj-part of A are ū-unpebbled, there is a v̄ ∈ R such that vm is a part vertex
of Gi, and for every w̄ ∈ R, the vertex wm is not a part vertex of Gj.

If Gi ̸∼= Gj are not ū-pebbled, then every k-orbit O of (A, ū) satisfies O ⊆ Vū(A)k or is
ū-unpebbled-part-distinguishing because Gi- and Gj-part vertices are not in the same orbit.

Quantifying over Pebbled-Part Individualizations. We now define an extension of Ck which
allows for quantifying over pebbled-part individualizations. This (unnatural) extension
can only be evaluated on CFI graphs over color class joins. We use this logic for proving
WSCI(IFPC)-undefinability. If Φ(x̄) is a Ck[τ,⊴P]-formula, then (∃P⊴P .Φ)(x̄) is a Pk[τ]-
formula. Pk[τ]-formulas can be combined as usual in Ck with Boolean operators and counting
quantifiers. Note that ∃P -quantifiers cannot be nested. Let G1, . . . , Gℓ be base graphs,
g ∈ F2, and A = CFI(Jcc(G1, . . . , Gn), g). The ∃P -quantifier has the following semantics:

(∃P⊴P . Φ)A :=
{
ū

∣∣ ū ∈ Φ(A,⊴A
P) for some ⊴A

P ∈ Pū(A)
}
.

M. Lichter 133:13

▶ Lemma 17. Let G1, . . . , Gk+1 be colored base graphs, each with c > k ≥ 3 color classes,
such that CFI(Gi, 0) ≃k

C CFI(Gi, 1) for every i ∈ [k + 1]. Then CFI(Jcc(G1, . . . , Gk+1), 0) and
CFI(Jcc(G1, . . . , Gk+1), 1) are Pk-equivalent.

Proof Sketch. The lemma is proven by a game characterization of Pk. Essentially, because
only k of the k + 1 parts can be pebbled by k pebbles, the twist can always be moved in the
pebble-free part, which is not affected by quantifying over pebbled-part individualizations. ◀

Nesting Operators to Define the CFI Query is Necessary. Let K := {Gk | k ∈ N} be a
set of ordered 3-regular base graphs such that Gk has treewidth at least k for every k ∈ N.

▶ Lemma 18. CFI(CFI(Gk, g), 0) ≃k
C CFI(CFI(Gk, g), 1) for every k ∈ N and g ∈ F2.

Proof. The graph Gk is a minor of CFI(Gk, g) for every g ∈ F2 (cf. [11]). Hence, CFI(Gk, g)
has treewidth at least k. The claim follows by Lemma 4. ◀

▶ Lemma 19. WSCI2(IFPC) defines the CFI query for CFI(CFIω(K)).

Proof. IFPC distinguishes 2-orbits of K and so WSCI(IFPC) canonizes CFI(K) (Corollary 13)
and CFIω(K) (Lemma 15) and so also distinguishes 2-orbits of CFIω(K). Thus, WSCI2(IFPC)
canonizes CFI(CFIω(K)) (Corollary 13) and hence defines the CFI query for CFI(CFIω(K)). ◀

To show WSCI(IFPC)-undefinability, there are two cases: If a choice is made from an orbit
of parts not pebbled by parameters, then CFI graphs of CFI(K) are distinguished. Otherwise,
CFI graphs of CFI(CFIω(K)) are distinguished only by choices from parameter-pebbled parts,
so by (at most) individualizing all pebbled-part vertices, i.e., the graphs are distinguished
by Pk. By Lemmas 4 and 17, each case only applies to finitely many K-graphs.

▶ Lemma 20. WSCI(IFPC) does not define the CFI query for CFI(CFIω(K)).

Proof Sketch. Suppose, towards a contradiction, that Φ is a WSCI(IFPC)-formula defining
the CFI query for CFI(CFIω(K)). Because IFPC is closed under interpretations, we can
assume that Φ is a WSC(IFPC)-formula.

Let Ψ1(x̄1), . . . ,Ψp(x̄p) be all WSC-fixed-point operators in Φ and suppose all x̄i are
element variables (for numeric ones see the full version [30]). Let the number of distinct
variables of Φ be k and let ℓ := ℓ(k) ≥ max{k, 3}. We consider the subclass CFI(CFIℓ+1(K)) ⊆
CFI(CFIω(K)) and partition K as follows: Let Korb be the set of all G ∈ K such that, for
every g ∈ F2, there are h ∈ F2, j ∈ [p], and a |x̄j |-tuple ū of CFI(CFIℓ+1(G, g), h)) such that
a) all choice-sets during the evaluation of Ψj(ū) on CFI(CFIℓ+1(G, g), h) are orbits and
b) some choice-set is ū-unpebbled-part-distinguishing.
Set Kcfi := K \ Korb. At least one of Korb and Kcfi is infinite. Assume that Korb is
infinite. We claim that the CFI query for CFI(Korb) is IFPC-definable. There is an IFPC-
interpretation that for G ∈ K maps CFI(G, g) and h ∈ F2 to (CFI(CFIℓ+1(G, g), h),⊴) such
that ⊴ individualizes the vertices of ℓ + 1 many CFI(G, 0)-parts, ℓ + 1 many CFI(G, 1)-
parts, and all join vertices. For every Ψj(x̄j), we try all h ∈ F2 and all tuples ū of
⊴-individualized vertices for x̄j . We simulate Ψj as long as all choices are made from
ū-pebbled parts (which are resolved using ⊴). If that is not the case, we check if the
choice-set is ū-unpebbled-part distinguishing. If not, the choice-set is not an orbit and we
evaluate to false. Otherwise, the choice-set contains vertices of CFI(G, g)-parts and either of
CFI(G, 0)-parts or of CFI(G, 1)-parts. At least one CFI(G, 0)-part and one CFI(G, 1)-part is
not ū-pebbled because |ū| ≤ k < ℓ + 1, which is isomorphic to the CFI(G, g)-parts. So we
defined the parity of CFI(G, g) and IFPC defines the CFI query for CFI(Korb) contradicting
Lemma 4.

ICALP 2023

133:14 Witnessed Symmetric Choice and Interpretations in IFPC

So Kcfi must be infinite. Then there is an ℓ′ > ℓ such that G := Gℓ′ ∈ Kcfi. Hence there
is a g ∈ F2 such that for all h ∈ F2, j ∈ [p], and all |x̄j |-tuples ū of CFI(CFIℓ+1(G, g), h))
a) some choice-set during the evaluation of Ψj(ū) on CFI(CFIℓ+1(G, g), h) is not an orbit or
b) all choice-sets are not ū-unpebbled-part-distinguishing.
We construct a Pℓ-formula equivalent to Φ on CFI(CFIℓ+1(G, g), 0) and CFI(CFIℓ+1(G, g), 1).
The general idea is that we quantify over all ū-pebbled-part individualizations. Choices from
choice-sets using only vertices of the ū-pebbled parts can be resolved deterministically using
the individualization. If this is not always the case, one choice-set will not be an orbit and we
evaluate to false. So a Pℓ-formula distinguishes CFI(CFIℓ+1(G, g), 0) and CFI(CFIℓ+1(G, g), 1).
This finally contradicts Lemma 17: The graphs G and CFI(G, g′) have more than ℓ color classes
for every g′ ∈ F2 and we have CFI(CFI(G, g′), 0) ≃k

C CFI(CFI(G, g′), 1) by Lemma 18. ◀

Proof of Theorem 3. Consider CFIω(K). The claim follows from Lemmas 15, 19, and 20. ◀

▶ Corollary 21. IFPC < WSCI(IFPC) < WSCI2(IFPC).

It seems natural that WSCIn(IFPC) < WSCIn+1(IFPC) for every n ∈ N. Possibly, this
hierarchy can be shown by iterating our construction (e.g., using CFI((CFIω)n(K))).

7 Separating IFPC+WSC from IFPC+WSC+I

We define a class of asymmetric structures K, i.e., structures without non-trivial auto-
morphisms, for which isomorphism can be reduced to isomorphism of CFI graphs via an
interpretation. To do so, we combine CFI graphs and the so-called multipedes.

7.1 Multipedes
We review the multipedes construction [24]. Let G = (V,W,E,≤) be an ordered bipartite
graph, where every vertex in V has degree 3. We obtain the multipede MP(G) as follows. For
every vertex u ∈ W , there is a vertex pair F (u) = {u0, u1} called a segment. We also call
u ∈ W a segment. A single vertex ui is a foot. Vertices v ∈ V are constraint vertices. For
every constraint vertex v ∈ V , a degree-3 CFI gadget with three edge-vertex-pairs {aj

0, a
j
1}

(j ∈ [3]) is added. Let NG(v) = {u1, u2, u3}. Then aj
i is identified with the foot uj

i for all
j ∈ [3] and i ∈ F2. We use the relation-based CFI gadgets, i.e., we do not add further vertices.
All base constraint vertices have degree 3 and we obtain a ternary {R,⪯}-structure. The
coloring ⪯ is obtained from ≤ such that feet in the same segment have the same color.

The feet-induced subgraph by X ⊆ W is G[[X]] := G[X ∪ {v ∈ V | NG(v) ⊆ X}].
We extend the notation to the multipede: MP(G)[[X]] is the induced substructure of
all feet whose segment is contained in X. For a tuple ū of feet of MP(G), we define
S(ū) := {u ∈ W | ui ∈ F (u) for some i ≤ |ū|} to be the set of the segments of the ui.

A bipartite graph G = (V,W,E,≤) is odd if for every ∅ ≠ X ⊆ W , there exists a v ∈ V

such that |X ∩ NG(v)| is odd. The graph G is k-meager, if for every set X ⊆ W of size
|X| ≤ 2k, it holds that |{v ∈ V | NG(v) ⊆ X}| ≤ 2|X|.

▶ Lemma 22 ([24]). If G is an odd and ordered bipartite graph, then MP(G) is asymmetric.

▶ Lemma 23 ([24]). Let G be a k-meager bipartite graph, A = MP(G), and ū, v̄ ∈ Ak. If
there is a local isomorphism φ ∈ Aut(A[[S(ūv̄)]]) with φ(ū) = v̄, then (A, ū) ≃k

C (A, v̄).

Odd and k-meager graphs exist [24]. A closer inspection shows that for these graphs there
are sets of vertices of pairwise large distance. For a bipartite graph G = (V,W,E), a set
X ⊆ W is k-scattered if all distinct u, v ∈ X have distance at least 2k in G.

M. Lichter 133:15

▶ Lemma 24. For every k, there is an odd and k-meager bipartite graph G = (V,W,E) and
a k-scattered set X ⊆ W of size |X| ≥ k2.

We will use a k-scattered set X to ensure that in the bijective k-pebble game placing a pebble
on one foot of a segment in X creates no restrictions on the other segments in X. For now,
fix a bipartite graph G = (V,W,E,≤). The attractor of a set X ⊆ W is

attr(X) := X ∪
⋃

u∈V : |NG(u)\X|≤1

NG(u).

The set X is closed if X = attr(X). The closure cl(X) of X is the inclusion-wise minimal
closed superset of X.

▶ Lemma 25 ([24]). Assume that X ⊆ W , |X| ≤ k, G is k-meager, A = MP(G), and
φ ∈ Aut(A[[X]]). Then there is an extension of φ that is an automorphism of A[[cl(X)]].

▶ Lemma 26. Let G be 2k-meager, X = {u1, . . . , uℓ} ⊆ W be 6k-scattered, Y ⊆ W such
that X ∩ cl(Y) = ∅ and |X| + |Y | < k, A = MP(G), and φ ∈ Aut(A[[Y]]). Then for all
ū, ū′ ∈ F (u1) × · · · × F (uℓ), there is an extension ψ of φ to A[[X ∪ Y]] satisfying ψ(ū) = ū′.

The previous lemma turns out to be useful in the bijective k-pebble game: If the pebbles are
placed on the feet in Y , we can simultaneously for all feet in X place arbitrary pebbles and
still maintain a local automorphism. Such sets X will allow us to glue another graph to the
multipede at the feet in X: Whatever restrictions on placing pebbles are imposed by the
other graph, we still can maintain partial automorphisms in the multipede.

7.2 Gluing Multipedes to CFI Graphs
We now use multipedes to make CFI graphs asymmetric. We alter the CFI graphs in this
section. Instead of two edge-vertex-pairs for the same base edge {u, v}, we contract the
edges between the two vertex pairs and obtain a single edge-vertex-pair with origin {u, v}.
This preserves all relevant properties of CFI graphs. In this section we write CFI(H, f) for
CFI graphs of this modified construction. A single edge-vertex-pair per base edge removes
technical details from the following.

Let G = (V G,WG, EG,≤G) be an ordered bipartite graph, H = (V H , EH ,≤H) be an
ordered base graph, f : EH → F2, and X ⊆ WG have size |X| = |EH |. We define the gluing
MP(G) ∪X CFI(H, f) of the multipede MP(G) = (A,RMP(G),⪯MP(G)) and the CFI graph
CFI(H, f) = (B,ECFI(H,f),⪯CFI(H,f)) at X as follows: We start with the disjoint union of
MP(G) and CFI(H, f) and identify the i-th edge-vertex-pair of CFI(H, f) (according to ≤H)
with the i-th segment in X (according to ≤G). We turn the edges ECFI(H,f) into a ternary
relation by extending every edge (u, v) to (u, v, v). In that way, we obtain a {R,⪯}-structure,
where R is the union of RMP(G) and the triples (u, v, v) defined before and ⪯ is the total
preorder obtained from combining ⪯MP(G) and ⪯CFI(H,f).

▶ Lemma 27. If MP(G) is asymmetric, then MP(G) ∪X CFI(H, f) is asymmetric.

Let ū be a tuple of at most k vertices of MP(G) ∪X CFI(H, f), i.e., ū contains either gadget
vertices of CFI(H, f) or feet of MP(G). We call the set of segments S(ū) of all feet in ū

directly-fixed by ū and the segments cl(S(ū)) \ S(ū) closure-fixed by ū. A segment u ∈ X is
gadget-fixed by ū if the feet of u are identified with an edge-vertex-pair with origin {v,w} in
CFI(H, f) such that there is a gadget vertex with origin v or w in ū. A segment is fixed by ū
if it is directly fixed, closure-fixed, or gadget-fixed.

ICALP 2023

133:16 Witnessed Symmetric Choice and Interpretations in IFPC

▶ Lemma 28. Let r ≥ k ≥ 2. If H is r-regular, G is 2k-meager, and X is 6k-scattered, then
at most r · |ū| segments are fixed. If ū contains i gadget vertices and ℓ segments in X are
directly-fixed, then at most |ū| − i− ℓ segments in X are closure-fixed.

We now combine winning strategies of Duplicator on multipedes and CFI graphs:

▶ Lemma 29. Let G be 2rk-meager, H be r-regular and at least (k + 2)-connected, and X
be 6rk-scattered. Then MP(G) ∪X CFI(H, 0) ≃k

C MP(G) ∪X CFI(H, 1).

Proof Sketch. Assume A = MP(G), B = CFI(H, 0), and B′ = CFI(H, 1). We show that
Duplicator has a winning strategy in the bijective k-pebble game on A ∪X B and A ∪X B′.
For a set of segments Y and a tuple ū, we denote by ūY the restriction of ū to all feet whose
segment is contained in Y , by ūG the restriction to all gadget vertices, and by ūF to all feet.
Duplicator maintains the following invariant. At every position (A ∪X B, ū;A ∪X B′, ū′) in
the game, there exist tuples of feet v̄gf, v̄cf of A ∪X B and v̄′

gf, v̄
′
cf of A ∪X B′ satisfying the

following:
1. v̄gf (respectively v̄′

gf) contains for every segment gadget-fixed by ū exactly one foot and
no others.

2. v̄cf (respectively v̄′
cf) contains for every segment in X closure-fixed by ū exactly one foot

and no others.
3. There is a local isomorphism φ ∈ Aut(A[[S(ūFv̄gfv̄cf)]]) satisfying φ(ūFv̄gfv̄cf) = ū′

Fv̄
′
gfv̄

′
cf.

4. (B, ūX ūGv̄cf) ≃k
C (B′, ū′

X ū
′
Gv̄

′
cf).

5. For every base vertex u, it holds that (B′, ūGv̄gf)[Vu] ∼= (B, ū′
Gv̄

′
gf)[Vu], where Vu is the

set of all gadget vertices with origin u and all edge vertices with origin {u, v} for some v.
For Property 3, note that S(ūFv̄gfv̄cf) = S(ū′

Fv̄
′
gfv̄

′
cf) and |ūFv̄gfv̄cf| = |ū′

Fv̄
′
gfv̄

′
cf| ≤ rk by

Lemma 28 because G is 2rk-meager. For Property 4, note that |ūX ūGv̄cf| = |ū′
X ū

′
Gv̄

′
cf| ≤ k:

By Lemma 28, the number of closure-fixed segments in X is at most |v̄cf| ≤ k − |ūG| − |ūX |.
Property 5 guarantees that the vertices v̄gf and v̄′

gf are picked consistently. This is needed
because |v̄gf| exceeds k and thus cannot be included in Property 4.

We play two games. Game I is played with rk pebbles on (A, ūFv̄gfv̄cf;A, ū′
Fv̄

′
gfv̄

′
cf).

Game II is played with k pebbles on (B, ūX ūGv̄cf;B′, ū′
X ū

′
Gv̄

′
cf). From the winning strategies

of Duplicator in both games (Lemmas 4 and 23) we construct a winning strategy on
(A∪X B, ū;A∪X B′, ū′). We can do so because in Game I we fixed all gadget-fixed segments
and in Game II we fixed all closure-fixed segments in X. When placing a pebble on a gadget
vertex, we extend the tuples v̄gf and v̄′

gf using Lemma 26. When a pebble is placed on a
segment not in X, at most one segment in X gets closure fixed and the edge vertices are in
the same orbit of the CFI graphs (Lemma 5). ◀

▶ Theorem 30. There is an FO-interpretation Θ and, for every k ∈ N, a pair of ternary
{R,⪯}-structures (Ak,Bk) such that ⪯ is a total preorder, Ak and Bk are asymmetric,
Ak ≃k

C Bk, Ak ̸∼= Bk, and Θ(Ak) ̸∼= Θ(Bk) are CFI graphs of the same ordered base graph.

Proof Sketch. We use the gluings constructed before for suitable base graphs and multipedes
(Lemma 24). By Lemma 29, the odd and even gluing are Ck-equivalent (but surely not
isomorphic) and asymmetric by Lemmas 22 and 27. There is an FO-interpretation Θ removing
the multipede: Shorten R-triples (u, v, v) back to edges (u, v) and remove the others. ◀

Proof Sketch of Theorem 1. Consider the {R,⪯}-structures K from Theorem 30. To ensure
that the reduct semantics does not add automorphisms, ⪯ is encoded into R by attaching
paths of different lengths to the vertices. This preserves asymmetry and non-isomorphism.
The paths are removed by an FO-interpretation ΘK. All structures are asymmetric and have
a single relation, so IFPC = IFPC+WSC and IFPC does not define isomorphism.

M. Lichter 133:17

Let ΦCFI be a WSCI(IFPC) = WSC(IFPC)-formula defining the CFI query for ordered
base graphs (Corollary 13) and let ΘCFI be the FO-interpretation extracting the CFI graphs
from K-structures given by Theorem 30. Then the I(WSC(IFPC))-formula I(ΘCFI ◦ΘK; ΦCFI)
defines the isomorphism problem of K-structures. ◀

▶ Corollary 31. IFPC+WSC < Ptime.

▶ Corollary 32. WSC(IFPC) < I(WSC(IFPC)).

Note that the prior corollary refines Corollary 21. We actually expect that

WSC(IFPC) < I(WSC(IFPC)) < WSC(I(WSC(IFPC)))

because it seems unlikely that I(WSC(IFPC)) defines the CFI query of the base graphs of
Theorem 3.

▶ Corollary 33. IFPC+WSC is not closed under IFPC-interpretations and not even under
1-dimensional equivalence-free FO-interpretations.

Using the same structures, we can answer an open question of Dawar and Richerby in [9]:

▶ Corollary 34. IFP+SC is not closed under 1-dimensional equivalence-free FO-interpretations.

8 Discussion

We defined the logics IFPC+WSC and IFPC+WSC+I to study the combination of witnessed
symmetric choice and interpretations beyond simulating counting. Instead, we provided graph
constructions to prove lower bounds. IFPC+WSC+I canonizes CFI graphs if it canonizes
the base graphs, but operators have to be nested. We proved that this increase in nesting
depth is unavoidable using double CFI graphs obtained by essentially applying the CFI
construction twice. Does iterating our construction further show an operator nesting hierarchy
in IFPC+WSC+I? We have seen that also in the presence of counting the interpretation
operator strictly increases the expressiveness. So indeed both, witnessed symmetric choice
and interpretations are needed to possibly capture Ptime. This answers the question to the
relation between witnessed symmetric choice and interpretations for IFPC. But it remains
open whether IFPC+WSC+I captures Ptime. Here, iterating our CFI construction is of
interest again: If one shows an operator nesting hierarchy using this construction, then one
in particular will separate IFPC+WSC+I from Ptime because our construction does not
change the signature of the structures. Studying this remains for future work.

References
1 Markus Anders and Pascal Schweitzer. Search problems in trees with symmetries: Near

optimal traversal strategies for individualization-refinement algorithms. In 48th International
Colloquium on Automata, Languages, and Programming, ICALP 2021, July 12-16, 2021,
Glasgow, Scotland (Virtual Conference), volume 198 of LIPIcs, pages 16:1–16:21. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2021. doi:10.4230/LIPIcs.ICALP.2021.16.

2 Vikraman Arvind and Somenath Biswas. Expressibility of first order logic with a nondeter-
ministic inductive operator. In STACS 87, 4th Annual Symposium on Theoretical Aspects
of Computer Science, Passau, Germany, February 19-21, 1987, Proceedings, volume 247 of
Lecture Notes in Computer Science, pages 323–335. Springer, 1987. doi:10.1007/BFb0039616.

3 Andreas Blass and Yuri Gurevich. The logic of choice. J. Symb. Log., 65(3):1264–1310, 2000.
doi:10.2307/2586700.

ICALP 2023

https://doi.org/10.4230/LIPIcs.ICALP.2021.16
https://doi.org/10.1007/BFb0039616
https://doi.org/10.2307/2586700

133:18 Witnessed Symmetric Choice and Interpretations in IFPC

4 Andreas Blass, Yuri Gurevich, and Saharon Shelah. On polynomial time computation over
unordered structures. J. Symb. Log., 67(3):1093–1125, 2002. doi:10.2178/jsl/1190150152.

5 Jin-yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number
of variables for graph identification. Combinatorica, 12(4):389–410, 1992. doi:10.1007/
BF01305232.

6 Ashok K. Chandra and David Harel. Structure and complexity of relational queries. J. Comput.
Syst. Sci., 25(1):99–128, 1982. doi:10.1016/0022-0000(82)90012-5.

7 Anuj Dawar, Erich Grädel, and Moritz Lichter. Limitations of the invertible-map equivalences.
J. Log. Comput., 2022. doi:10.1093/logcom/exac058.

8 Anuj Dawar and Kashif Khan. Constructing hard examples for graph isomorphism. J. Graph
Algorithms Appl., 23(2):293–316, 2019. doi:10.7155/jgaa.00492.

9 Anuj Dawar and David Richerby. A fixed-point logic with symmetric choice. In Computer
Science Logic, 17th International Workshop, CSL 2003, 12th Annual Conference of the EACSL,
and 8th Kurt Gödel Colloquium, KGC 2003, Vienna, Austria, August 25-30, 2003, Proceedings,
volume 2803 of Lecture Notes in Computer Science, pages 169–182. Springer, 2003. doi:
10.1007/978-3-540-45220-1_16.

10 Anuj Dawar and David Richerby. Fixed-point logics with nondeterministic choice. J. Log.
Comput., 13(4):503–530, 2003. doi:10.1093/logcom/13.4.503.

11 Anuj Dawar and David Richerby. The power of counting logics on restricted classes of
finite structures. In Computer Science Logic, 21st International Workshop, CSL 2007, 16th
Annual Conference of the EACSL, Lausanne, Switzerland, September 11-15, 2007, Proceedings,
volume 4646 of Lecture Notes in Computer Science, pages 84–98. Springer, 2007. doi:
10.1007/978-3-540-74915-8_10.

12 Anuj Dawar, David Richerby, and Benjamin Rossman. Choiceless Polynomial Time, counting
and the Cai-Fürer-Immerman graphs. Ann. Pure Appl. Logic, 152(1-3):31–50, 2008. doi:
10.1016/j.apal.2007.11.011.

13 Heinz-Dieter Ebbinghaus. Extended logics: the general framework. In Model-Theoretic Logics,
Perspectives in MathematicalLogic, pages 25–76. Association for Symbolic Logic, 1985.

14 Ronald Fagin. Generalized first-order spectra and polynomial-time recognizable sets. In
Complexity of computation (Proc. SIAM-AMS Sympos. Appl. Math., New York, 1973), pages
43–73. SIAM–AMS Proc., Vol. VII, 1974.

15 Françoise Gire and H. Khanh Hoang. An extension of fixpoint logic with a symmetry-based
choice construct. Inf. Comput., 144(1):40–65, 1998. doi:10.1006/inco.1998.2712.

16 Erich Grädel, Phokion G. Kolaitis, Leonid Libkin, Maarten Marx, Joel Spencer, Moshe Y.
Vardi, Yde Venema, and Scott Weinstein. Finite Model Theory and Its Applications. Texts
in Theoretical Computer Science. An EATCS Series. Springer, Berlin, Heidelberg, 2007.
doi:10.1007/3-540-68804-8.

17 Erich Grädel and Wied Pakusa. Rank logic is dead, long live rank logic! J. Symb. Log.,
84(1):54–87, 2019. doi:10.1017/jsl.2018.33.

18 Erich Grädel, Wied Pakusa, Svenja Schalthöfer, and Lukasz Kaiser. Characterising Choiceless
Polynomial Time with first-order interpretations. In 30th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2015, Kyoto, Japan, July 6-10, 2015, pages 677–688. IEEE
Computer Society, 2015. doi:10.1109/LICS.2015.68.

19 Martin Grohe. The quest for a logic capturing PTIME. In Proceedings of the Twenty-
Third Annual IEEE Symposium on Logic in Computer Science, LICS 2008, 24-27 June 2008,
Pittsburgh, PA, USA, pages 267–271. IEEE Computer Society, 2008. doi:10.1109/LICS.2008.
11.

20 Martin Grohe. Descriptive Complexity, Canonization, and Definable Graph Structure Theory.
Cambridge University Press, 2017.

21 Martin Grohe and Daniel Neuen. Canonisation and definability for graphs of bounded
rank width. In 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
2019, Vancouver, BC, Canada, June 24-27, 2019, pages 1–13. IEEE Computer Society, 2019.
doi:10.1109/LICS.2019.8785682.

https://doi.org/10.2178/jsl/1190150152
https://doi.org/10.1007/BF01305232
https://doi.org/10.1007/BF01305232
https://doi.org/10.1016/0022-0000(82)90012-5
https://doi.org/10.1093/logcom/exac058
https://doi.org/10.7155/jgaa.00492
https://doi.org/10.1007/978-3-540-45220-1_16
https://doi.org/10.1007/978-3-540-45220-1_16
https://doi.org/10.1093/logcom/13.4.503
https://doi.org/10.1007/978-3-540-74915-8_10
https://doi.org/10.1007/978-3-540-74915-8_10
https://doi.org/10.1016/j.apal.2007.11.011
https://doi.org/10.1016/j.apal.2007.11.011
https://doi.org/10.1006/inco.1998.2712
https://doi.org/10.1007/3-540-68804-8
https://doi.org/10.1017/jsl.2018.33
https://doi.org/10.1109/LICS.2015.68
https://doi.org/10.1109/LICS.2008.11
https://doi.org/10.1109/LICS.2008.11
https://doi.org/10.1109/LICS.2019.8785682

M. Lichter 133:19

22 Yuri Gurevich. Logic and the challenge of computer science. In Current Trends in Theoretical
Computer Science, pages 1–57. Computer Science Press, 1988.

23 Yuri Gurevich. From invariants to canonization. Bull. EATCS, 63, 1997.
24 Yuri Gurevich and Saharon Shelah. On finite rigid structures. J. Symb. Log., 61(2):549–562,

1996. doi:10.2307/2275675.
25 Lauri Hella. Logical hierarchies in PTIME. Information and Computation, 129(1):1–19, 1996.

doi:10.1006/inco.1996.0070.
26 Neil Immerman. Expressibility as a complexity measure: results and directions. In Proceedings

of the Second Annual Conference on Structure in Complexity Theory, Cornell University,
Ithaca, New York, USA, June 16-19, 1987. IEEE Computer Society, 1987.

27 Neil Immerman. Languages that capture complexity classes. SIAM J. Comput., 16(4):760–778,
1987. doi:10.1137/0216051.

28 Sandra Kiefer, Pascal Schweitzer, and Erkal Selman. Graphs identified by logics with counting.
In Mathematical Foundations of Computer Science 2015 – 40th International Symposium,
MFCS 2015, Milan, Italy, August 24-28, 2015, Proceedings, Part I, volume 9234 of Lecture Notes
in Computer Science, pages 319–330. Springer, 2015. doi:10.1007/978-3-662-48057-1_25.

29 Moritz Lichter. Separating rank logic from polynomial time. In 36th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2021, Rome, Italy, June 29 – July 2, 2021,
pages 1–13. IEEE Computer Society, 2021. doi:10.1109/LICS52264.2021.9470598.

30 Moritz Lichter. Witnessed symmetric choice and interpretations in fixed-point logic with
counting. CoRR, abs/2210.07869, 2022. arXiv preprint. doi:10.48550/arXiv.2210.07869.

31 Moritz Lichter and Pascal Schweitzer. Canonization for bounded and dihedral color classes
in Choiceless Polynomial Time. In 29th EACSL Annual Conference on Computer Science
Logic, CSL 2021, January 25-28, 2021, Ljubljana, Slovenia (Virtual Conference), volume
183 of LIPIcs, pages 31:1–31:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.CSL.2021.31.

32 Moritz Lichter and Pascal Schweitzer. Choiceless Polynomial Time with witnessed symmetric
choice. In LICS ’22: 37th Annual ACM/IEEE Symposium on Logic in Computer Science, Haifa,
Israel, August 2–5, 2022, pages 30:1–30:13. ACM, 2022. doi:10.1145/3531130.3533348.

33 Rudolf Mathon. A note on the graph isomorphism counting problem. Inf. Process. Lett.,
8(3):131–132, 1979. doi:10.1016/0020-0190(79)90004-8.

34 Daniel Neuen and Pascal Schweitzer. An exponential lower bound for individualization-
refinement algorithms for graph isomorphism. In Proceedings of the 50th Annual ACM
SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June
25-29, 2018, pages 138–150. ACM, 2018. doi:10.1145/3188745.3188900.

35 Martin Otto. Bounded variable logics and counting – A study in finite models, volume 9 of
Lecture Notes in Logic. Springer, 1997.

36 Martin Otto. Epsilon-logic is more expressive than first-order logic over finite structures. J.
Symb. Log., 65(4):1749–1757, 2000. doi:10.2307/2695073.

37 Wied Pakusa, Svenja Schalthöfer, and Erkal Selman. Definability of Cai-Fürer-Immerman
problems in Choiceless Polynomial Time. In 25th EACSL Annual Conference on Computer
Science Logic, CSL 2016, August 29 – September 1, 2016, Marseille, France, volume 62
of LIPIcs, pages 19:1–19:17. Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2016.
doi:10.4230/LIPIcs.CSL.2016.19.

38 David Richerby. Fixed-point logics with choice. PhD thesis, University of Cambridge, 2004.
39 Pascal Schweitzer and Constantin Seebach. Resolution with symmetry rule applied to linear

equations. In 38th International Symposium on Theoretical Aspects of Computer Science,
STACS 2021, March 16-19, 2021, Saarbrücken, Germany (Virtual Conference), volume
187 of LIPIcs, pages 58:1–58:16. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021.
doi:10.4230/LIPIcs.STACS.2021.58.

ICALP 2023

https://doi.org/10.2307/2275675
https://doi.org/10.1006/inco.1996.0070
https://doi.org/10.1137/0216051
https://doi.org/10.1007/978-3-662-48057-1_25
https://doi.org/10.1109/LICS52264.2021.9470598
https://doi.org/10.48550/arXiv.2210.07869
https://doi.org/10.4230/LIPIcs.CSL.2021.31
https://doi.org/10.1145/3531130.3533348
https://doi.org/10.1016/0020-0190(79)90004-8
https://doi.org/10.1145/3188745.3188900
https://doi.org/10.2307/2695073
https://doi.org/10.4230/LIPIcs.CSL.2016.19
https://doi.org/10.4230/LIPIcs.STACS.2021.58

133:20 Witnessed Symmetric Choice and Interpretations in IFPC

40 Jacobo Torán. On the resolution complexity of graph non-isomorphism. In Theory and
Applications of Satisfiability Testing – SAT 2013 – 16th International Conference, Helsinki,
Finland, July 8-12, 2013. Proceedings, volume 7962 of Lecture Notes in Computer Science,
pages 52–66. Springer, 2013. doi:10.1007/978-3-642-39071-5_6.

41 Jacobo Torán and Florian Wörz. Number of variables for graph differentiation and the
resolution of GI formulas. In 30th EACSL Annual Conference on Computer Science Logic,
CSL 2022, February 14-19, 2022, Göttingen, Germany (Virtual Conference), volume 216 of
LIPIcs, pages 36:1–36:18. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2022. doi:
10.4230/LIPIcs.CSL.2022.36.

42 Faried Abu Zaid, Erich Grädel, Martin Grohe, and Wied Pakusa. Choiceless Polynomial Time
on structures with small abelian colour classes. In Mathematical Foundations of Computer
Science 2014 – 39th International Symposium, MFCS 2014, Budapest, Hungary, August 25-29,
2014. Proceedings, Part I, volume 8634 of Lecture Notes in Computer Science, pages 50–62.
Springer, 2014. doi:10.1007/978-3-662-44522-8_5.

https://doi.org/10.1007/978-3-642-39071-5_6
https://doi.org/10.4230/LIPIcs.CSL.2022.36
https://doi.org/10.4230/LIPIcs.CSL.2022.36
https://doi.org/10.1007/978-3-662-44522-8_5

On the Complexity of Diameter and Related
Problems in Permutation Groups
Markus Lohrey #

Universität Siegen, Germany

Andreas Rosowski #

Universität Siegen, Germany

Abstract
We prove that it is ΠP

2 -complete to verify whether the diameter of a given permutation group G = ⟨A⟩
is bounded by a unary encoded number k. This solves an open problem from a paper of Even and
Goldreich, where the problem was shown to be NP-hard. Verifying whether the diameter is exactly
k is complete for the class consisting of all intersections of a ΠP

2-language and a ΣP
2-language. A

similar result is shown for the length of a given permutation π, which is the minimal k such that π

can be written as a product of at most k generators from A. Even and Goldreich proved that it is
NP-complete to verify, whether the length of a given π is at most k (with k given in unary encoding).
We show that it is DP-complete to verify whether the length is exactly k. Finally, we deduce from
our result on the diameter that it is ΠP

2-complete to check whether a given finite automaton with
transitions labelled by permutations from Sn produces all permutations from Sn.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness

Keywords and phrases algorithms for finite groups, diameter of permutation groups, rational subsets
in groups

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.134

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Funding Both authors were supported by the DFG research project Lo748/12-2.

1 Introduction

Algorithmic problems for finite groups, in particular permutation groups, are an active
research at the borderline between mathematics and theoretical computer science. Among
the many applications of permutation group algorithms in computer science, let us just
mention the work on the graph isomorphism problem that culminated with Babai’s quasi-
polynomial time algorithm [2]. For a comprehensive introduction into the area permutation
group algorithms, see Serres’ textbook [23]. In this paper we are concerned with algorithmic
problems related to the diameter of finite permutation groups. We start with a few basic
definitions.

Let G be a finite group. For a subset A ⊆ G we denote with ⟨A⟩ the subgroup of G

generated by the elements from A (i.e., the closure of A under the group multiplication). If
⟨A⟩ = G then A is called a generating set of G. For k ≥ 0 we write A≤k for the set of all
products a1a2 · · · al ∈ G with l ≤ k and a1, . . . , al ∈ A. For an element g ∈ ⟨A⟩ we denote
with |g|A (the A-length of g) the smallest integer k such that g ∈ A≤k. The diameter d(G, A)
of G with respect to the generating A is the smallest number d such that ⟨A⟩ = A≤d. Note
that such a d exists since G is finite. There is a quite extensive literature on upper and
lower bounds on the diameter in various finite groups; see e.g. [3, 4, 5, 6, 7, 8, 9, 13, 17, 19].
Let us mention in this context a famous (and still open) conjecture of Babai and Seress [8]
stating that for every finite non-abelian simple group G and every generating set A, d(G, A)

EA
T
C
S

© Markus Lohrey and Andreas Rosowski;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 134; pp. 134:1–134:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:lohrey@eti.uni-siegen.de
https://orcid.org/0000-0002-4680-7198
mailto:rosowski@eti.uni-siegen.de
https://doi.org/10.4230/LIPIcs.ICALP.2023.134
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

134:2 On the Complexity of Diameter and Related Problems in Permutation Groups

is bounded by O((log |G|)c) for some universal constant c. This would imply in particular
that the diameters of An and Sn (with respect to any generating sets) are bounded by a
polynomial in n. The currently best known upper bound is exp(O(log4 n log log n)) [13].

Many problems about mechanical puzzles reduce to questions about the diameter of finite
groups. As an example let us mention Rubik’s cube. For a long time it was open how many
moves in Rubik’s cube are needed to transform an arbitrary initial configuration into the
target configuration. This number is simply the diameter of the so-called Rubik’s cube group.
The precise value of this diameter was open for a long time. In 2013 Rokicki et al. proved
that is 20 [22].

1.1 Computing diameter and length
In the first part of the paper (Sections 3 and 4) we investigate the complexity of certain
decision variants of the following computational problems:

(i) computing the length of a given element from a permutation group and
(ii) computing the diameter of a permutation group.

Let us define the problems that we will investigate more precisely. With Sn we denote the
group of all permutations on [1, n] = {1, . . . , n}. In the following problems, a permutation
π ∈ Sn is given by the list π(1), π(2), . . . , π(n). The size n of the domain (also called the
degree of the permutations) is part of the input. For A ⊆ Sn we write d(A) for d(⟨A⟩, A).
We then define the following computational problems:

▶ Problem (unary length).
Input: a set of permutations A ⊆ Sn, an element π ∈ ⟨A⟩, and a unary encoded number k.1
Question: Is |π|A ≤ k?

▶ Problem (unary diameter).
Input: a set of permutations A ⊆ Sn and a unary encoded number k.
Question: Is d(A) ≤ k?

The problems binary length and binary diameter are defined in the same way, except
that the input number k is given in binary encoding.

Goldreich and Even [11] were the first who obtained results on the complexity of these
problems. They proved that unary length is NP-complete and unary diameter is
NP-hard2 but the exact complexity of unary diameter remained open. A parameterized
variant of unary length (with k as the parameter) is studied under the name permutation
group factorization in [10] and shown to be W[1]-hard and in W[P]. The binary setting
was first studied by Jerrum [15]. He proved that binary length is PSPACE-complete.

We also study exact versions of the above problems:

▶ Problem (unary exact length).
Input: a set of permutations A ⊆ Sn, a permutation π ∈ ⟨A⟩, and a unary encoded number k.
Question: Is |π|A = k?

1 It is well-known that there is a polynomial time algorithm that checks whether π ∈ ⟨A⟩ holds [12].
2 The problem unary length is called mgs for “minimum generator sequence” in [11], whereas unary

diameter is called mbgs for “minimum upper bound on generator sequences”. We believe that unary
length and unary diameter are more suggestive. Another point is that Even and Goldreich do not
specify the encoding of integers in their paper, but from the NP-completeness result for unary length,
it can deduced that they have the unary encoding of integers in mind.

M. Lohrey and A. Rosowski 134:3

▶ Problem (unary exact diameter).
Input: a set of permutations A ⊆ Sn and a unary encoded number k.
Question: Is d(A) = k?

Again, there are corresponding problems binary exact length and binary exact dia-
meter, where the input number k is given in binary notation.

The first main result of this paper solves the open problem left in [11]: unary diameter
is ΠP

2 -complete, where ΠP
2 is the second universal level of the polynomial time hierarchy.

This result also holds for the restriction, where all permutations in the set A ⊆ Sn pairwise
commute and have order two (and hence ⟨A⟩ is an abelian group of exponent two). Moreover,
we also show that binary diameter with a set A of pairwise commuting permutations is
ΠP

2 -complete.
The complexity of binary diameter for general permutation groups remains open.

The problem is easily seen to be in PSPACE. The above mentioned result of Jerrum
(PSPACE-completeness of binary length for a binary encoded number k) seems to have
no implications for the complexity of binary diameter. Nevertheless, we conjecture that
binary diameter is PSPACE-complete.

We then proceed to show that unary exact diameter is complete for the complexity
class DP2, which is the class of all intersections of a ΠP

2 -language and a ΣP
2 -language. Hardness

for DP2 already holds for the restriction of unary exact diameter to abelian permutation
groups of exponent two. To get DP2-hardness, we use the fact that our ΠP

2 -hardness proof
of unary diameter already holds for inputs A ⊆ Sn and k ∈ N with the promise that the
diameter of ⟨A⟩ is either k or k + 1. Using similar techniques we can also show that unary
exact length is DP-complete, where DP is the class of all intersections of an NP-language
and a coNP-language.

1.2 Equality and universality for finite automata over permutation
groups

In the second part of the paper (Section 5), we consider problems related to finite automata
over permutation groups. The setting is as follows: Consider a nondeterministic finite
automaton (NFA) A over a finite alphabet Σ of input letters and a mapping h : Σ → Sn to a
symmetric group. The mapping h extends to a morphism h : Σ∗ → Sn from the free monoid
Σ∗ to the group Sn (we use the same letter h for this extension). We may then ask whether
a given permutation π belongs to h(L(A)). This is the rational subset membership problem
for permutation groups, where the input consists of the NFA A, the mapping h : Σ → Sn (n
is also part of the input) and the permutation π. It is shown in [16, 18] that the rational
subset membership problem for permutation groups is NP-complete.3

To simplify notation, we omit the mapping h : Σ∗ → Sn in the following, and replace in
the NFA A every transition label a ∈ Σ by the corresponding permutation h(a) ∈ Sn. Thus,
we consider NFAs, where the transitions are labelled with elements of a symmetric group
Sn. The set L(A) accepted by A is then directly interpreted as a subset of Sn. Clearly,
every subset of Sn is of the form L(A) for an NFA A over Sn, but in general the number of

3 In [18] stronger results are shown: (i) NP-hardness already holds for membership in sets π∗σ∗τ∗, where
π, σ, τ are input permutations, and (ii) membership in NP holds for black-box groups and a restricted
class of context-free languages (where terminal symbols are again replaced by permutations). The
general membership problem for context-free sets of permutations is PSPACE-complete [18].

ICALP 2023

134:4 On the Complexity of Diameter and Related Problems in Permutation Groups

transitions of A must be exponential in n (this follows from a simple counting argument).
Note that for a finite set A ⊆ Sn it is straightforward to come up with an automaton A over
Sn with a single state and |A| many transitions such that L(A) = ⟨A⟩.

In Section 5, we consider the rational equality problem for permutation groups, rational
equality for short:

▶ Problem (rational equality).
Input: two NFAs A and B over Sn (n is as usual part of the input).
Question: Does L(A) = L(B) hold?

As before, we also consider the abelian variant of this problem, where all permutations
labelling the transitions of A and B pairwise commute. Moreover, we consider the following
restriction of rational equality.

▶ Problem (rational universality).
Input: an NFA A over Sn.
Question: Does L(A) = Sn hold?

Note that for rational universality, the restriction where the permutations appearing in
A pairwise commute is not interesting, since Sn is not abelian for n ≥ 3.

We show that rational equality and rational universality are both ΠP
2 -complete

and that ΠP
2 -hardness for rational equality already holds for the abelian case. For the

lower bounds we use reductions from unary diameter.
Let us finally remark that our upper bound proofs do not use any specific properties of

permutation groups. In particular, all upper bounds shown in this paper also hold for the
black-box-group setting, where elements of a black-box group G are encoded by bit strings
and there are oracles for (i) multiplying two elements of G, (ii) inverting an element of G,
and (iii) checking whether two bit strings represent the same element of G (see [23] for more
details on black-box groups).

2 Preliminaries

2.1 Background from complexity theory
We assume that the reader has some basic background from complexity theory, see e.g. [1]
for more information. The levels ΣP

k and ΠP
k of the polynomial time hierarchy [24] are defined

as follows:
ΣP

0 = ΠP
0 = P

ΣP
k+1 is the set of all languages L such that there exists a language K ∈ ΠP

k and a
polynomial p with L = {x | ∃y ∈ {0, 1}p(|x|) : x#y ∈ K} (here # is a separator symbol).
ΠP

k+1 is the set of all languages L such that there exists a language K ∈ ΣP
k and a

polynomial p with L = {x | ∀y ∈ {0, 1}p(|x|) : x#y ∈ K}.
In particular, we have ΣP

1 = NP and ΠP
1 = coNP. We will make use of the computational

problem ∀∃sat, where the input is a ∀∃-formula

Ψ = ∀x1 · · · ∀xn∃y1 · · · ∃ymF (x1, . . . , xn, y1, . . . , ym), (1)

where F is a boolean formula in conjunctive normal form built from the boolean variables
x1, . . . , xn, y1, . . . , ym. The question is whether Ψ holds. This problem is ΠP

2 -complete [24].
The complexity class DPk is defined as

DPk = {L1 ∩ L2 | L1 ∈ ΣP
k and L2 ∈ ΠP

k}.

M. Lohrey and A. Rosowski 134:5

The class DP1 = {L1 ∩ L2 | L1 ∈ NP and L2 ∈ coNP} is usually denoted by DP. It was
defined in [21]. The only mentioning of the classes DPk for k ≥ 2 we are aware of is the stack
exchange post [20].

2.2 Some notations for permutation groups
Recall that a permutation group is a subgroup of the symmetric group Sn for some n, where
Sn is the group of all permutations on [1, n] = {1, . . . , n}. We will use standard notations for
permutation groups; see e.g., [23]. Permutations will be often written by their decomposition
into disjoint cycles, called the disjoint cycle decomposition. A cycle of length two is a
transposition. A product of permutations will be evaluated from left to right. For a ∈ [1, n]
and π ∈ Sn we will also write aπ for π(a). This fits nicely to the left-to-right evaluation order:
aπτ = (aπ)τ . For a permutation π we denote by ord(π) the order of π, i.e., the smallest k ≥ 1
such that πk is the identity permutation.

Most of the hardness results in Sections 3 and 4 will be shown for the group Zn
2 (the

n-fold direct product of the group Z2) for an n ≥ 0. Clearly, this is an abelian group of
exponent two (i.e., every element has order two). The group Zn

2 is isomorphic to the subgroup
of S2n generated by all transpositions (2i − 1, 2i) for i ∈ [1, n]. For a finite set V of size n,
we will identify Zn

2 with the group ZV
2 of all mappings f : V → Z2 with the group operation

to be pointwise addition modulo 2. We write this abelian group additively. For a function
f : V → Z2 = {0, 1} we define its support as supp(f) = {v ∈ V | f(v) = 1}. For a subset
U ⊆ V we denote by [U] ∈ ZV

2 the unique group element with supp([U]) = U .

3 Complexity of diameter for permutation groups

We come to the first main result of the paper: unary diameter is ΠP
2 -hard. In the following

theorem, the additional statement that the diameter d(A) is either k or k + 1 will be needed
later when we consider unary exact diameter.

▶ Theorem 3.1. There is a logspace reduction ϕ from ∀∃sat to unary diameter such that
for every ∀∃-formula Ψ with ϕ(Ψ) = (A, k) we have: A ⊆ Zn

2 for some n, ⟨A⟩ = Zn
2 and

d(A) ∈ {k, k + 1}.

Proof. Let us fix a ∀∃-formula Ψ as in (1). We can write F as F =
∧

c∈C c, where C is
a set of clauses (disjunctions of variables and negated variables). We start with several
transformations that ensure some additional properties for Ψ.

Step 1. In order to bound the diameter of the group from above by k + 1 we replace Ψ by
the formula

∀x1 · · · ∀xn∃y1 · · · ∃ym∃y∗ G(x1, . . . , xn, y1, . . . , ym, y∗),

where y∗ is a new variable and

G = ¬y∗ ∧
∧

c∈C

(y∗ ∨ c).

By this it is ensured that for every truth assignment of the universally quantified variables
x1, . . . , xn, there is a truth assignment of the existentially quantified variables y1, . . . , ym, y∗

such that exactly one clause in G is unsatisfied (simply set y∗ to the true value 1).

ICALP 2023

134:6 On the Complexity of Diameter and Related Problems in Permutation Groups

Step 2. Next, it is necessary to ensure that every variable appears in at most d clauses
for a fixed constant d. This can be ensured similarly to [25] for 3sat: for every variable
z ∈ {x1, . . . , xn, y1, . . . , ym, y∗} that appears in l ≥ 4 clauses in G we introduce new variables
z1, . . . , zl and replace the i-th occurrence of z by zi. Then we add the clauses

(¬z1 ∨ z2), (¬z2 ∨ z3), . . . , (¬zl−1 ∨ zl), (¬zl ∨ z1) (2)

which enforce that z1, . . . , zl must get the same truth value. If z ∈ {x1, . . . , xn} then we
universally quantify z1 and existentially quantify z2, . . . , zl. If z ∈ {y1, . . . , ym, y∗} then all
new variables zi get existentially quantified. In the resulting formula, every variable occurs
in at most 3 clauses.

Step 3. Finally, for our later arguments, it is necessary to add for every universally quantified
variable x the trivial clause

cx = (x ∨ ¬x).

Of course, this trivial clause does not change the truth value of the formula. Now every
variable occurs in at most 4 clauses. We still have the property that every truth assignment for
the universally quantified variables can be extended by a truth assignment for the existentially
quantified variables such that exactly one clause becomes unsatisfied. To see this, consider
an arbitrary truth assignment for the universally quantified variables. The clauses cx that
we added in Step 3 are always satisfied. We now assign the truth value 1 to all variables
y∗

i that replaced in Step 2 the variable y∗ from Step 1. This ensures that all clauses that
were derived from clauses y∗ ∨ c with c ∈ C in Step 2 are satisfied. All remaining clauses
of the form (2) (with z ̸= y∗) can be easily satisfied. If z1 is universally quantified (so its
truth value is already fixed) then all z2, . . . , zl are existentially quantified and we assign to
these variables the truth value of z1. Otherwise z1, . . . , zl are all existentially quantified and
we can assign the truth value 1 to all of them (the truth value 0 would also work). At this
point, only the single clause derived from ¬y∗ in Step 2 is not satisfied. Finally, note that
each of the three steps preserves the truth value of the ∀∃-formula.

This concludes the preprocessing of the ∀∃-formula Ψ. To simplify notation, we denote
the resulting formula again with

Ψ = ∀x1 · · · ∀xn∃y1 · · · ∃ymF (x1, . . . , xn, y1, . . . , ym). (3)

Let X = {x1, . . . , xn} and Y = {y1, . . . , ym}. For a variable z ∈ X ∪ Y we denote with z̃ one
of the literals z or ¬z. Moreover we denote by C the set of clauses of F . A clause is viewed
as a set of literals. For a literal z̃ let C(z̃) be the set of all clauses containing z̃. Note that
every set C(z̃) has size at most 4. Let

V = X ∪ Y ∪ C

(we assume that X, Y, C are pairwise disjoint). We will work in the group ZV
2 introduced in

Section 2.2 and use the notation introduced there.
The logspace reduction ϕ from ∀∃sat to unary diameter is defined by ϕ(Ψ) = (A, k)

with k = n + m and

A =
⋃

x∈X

Ax ∪
⋃

y∈Y

Ay,

where for all universally quantified variables x ∈ X,

Ax = {[{x} ∪ U] | U ⊆ C(x)} ∪ {[U] | U ⊆ C(¬x), U ̸= ∅}

M. Lohrey and A. Rosowski 134:7

and for all existentially quantified variables y ∈ Y ,

Ay = {[U] | U ⊆ {y} ∪ C(y), U ̸= ∅} ∪ {[U] | U ⊆ {y} ∪ C(¬y), U ̸= ∅}.

Since every set C(z̃) has size at most 4, we can construct the instance (A, k) in logspace.

▷ Claim 3.2. ⟨A⟩ = ZV
2 .

Proof of Claim 3.2. It suffices to show that every [{v}] for v ∈ V belongs to ⟨A⟩. From the
definition of A we immediately get [{x}] ∈ Ax for all x ∈ X and [{y}] ∈ Ay for all y ∈ Y .
Consider now a clause c ∈ C and fix a literal z̃ ∈ c. We have c ∈ C(z̃). If z ∈ Y then
[{c}] ∈ Az. If z ∈ X and z̃ = ¬z, then again [{c}] ∈ Az. Finally, if z ∈ X and z̃ = z then
[{z}], [{z, c}] ∈ Az. Hence, [{c}] = [{z}] + [{z, c}] ∈ ⟨A⟩. ◁

▷ Claim 3.3. Let fX : X → {0, 1} and f : V → {0, 1} be elements of ZV
2 with

f(x) = fX(x)

for all x ∈ X and

f(v) = 1

for all v ∈ Y ∪ C. If f ∈ A≤n+m, then there is a function fY : Y → {0, 1} such that fX + fY

is a satisfying truth assignment for F .

Proof of Claim 3.3. Suppose that f ∈ A≤n+m and hence

f = f1 + · · · + fs (4)

for an s ≤ n + m with fi ∈ A. Then the right-hand side of (4) must contain for every x ∈ X

a generator from Ax since f(cx) = 1 (recall that we added the clause cx = {x, ¬x} since x

is universally quantified) and only generators from Ax set the cx-value to 1. Moreover, the
right-hand side of (4) must contain for every y ∈ Y a generator from Ay since f(y) = 1.
Thus, the right-hand side of (4) must contain at least |X| + |Y | = n + m generators. We get
s = n + m and obtain

f =
∑
x∈X

gx +
∑
y∈Y

gy (5)

with gx ∈ Ax and gy ∈ Ay. For z ∈ X ∪ Y let Cz = supp(gz) ∩ C be the set of clauses that
appear in gz in the sum (5). For all y ∈ Y we must have gy = [{y} ∪ Cy] since f(y) = 1.

We define the function fY : Y → {0, 1} by

fY (y) =
{

1 if Cy ⊆ C(y),
0 otherwise.

Note that if fY (y) = 0 then we must have Cy ⊆ C(¬y).
We claim that fX + fY satisfies F . Consider a clause c ∈ C. Since f(c) = 1 there must

exist z ∈ X ∪ Y such that c ∈ Cz. If z = y ∈ Y , then one of the following two cases holds:
fY (y) = 1, gy = [{y} ∪ Cy], and c ∈ Cy ⊆ C(y), i.e., y ∈ c,
fY (y) = 0, gy = [{y} ∪ Cy], and c ∈ Cy ⊆ C(¬y), i.e., ¬y ∈ c.

ICALP 2023

134:8 On the Complexity of Diameter and Related Problems in Permutation Groups

In both cases fY set a literal from c (either y or ¬y) to 1. Now, assume that z = x ∈ X.
Then one of the following two cases holds:

f(x) = fX(x) = 1, gx = [{x} ∪ Cx] and c ∈ Cx ⊆ C(x), i.e., x ∈ c,
f(x) = fX(x) = 0, gx = [Cx] and c ∈ Cx ⊆ C(¬x), i.e., ¬x ∈ c.

Again, in both cases fX sets a literal from c (either x or ¬x) to 1. ◁

Our proof of Claim 3.3 also shows that d(A) ≤ k implies d(A) = k: if d(A) ≤ k then for any
of the functions f from Claim 3.3 we have |f |A = k.

From Claims 3.2 and 3.3 it follows that if ⟨A⟩ = A≤n+m then for every fX : X → {0, 1}
there must exist fY : Y → {0, 1} such that fX + fY satisfies F . Hence, the formula Ψ from
(3) holds.

Now suppose that Ψ holds. Let f ∈ ZV
2 . We want to show f ∈ A≤n+m. First observe

that there are unique functions fX : X → {0, 1} and g : Y ∪C → {0, 1} such that f = fX + g.
Since Ψ holds, there is a partial truth assignment fY : Y → {0, 1} such that fX + fY satisfies
F . We define for every variable z ∈ X ∪ Y the set U(z) ⊆ V as follows:

if z = x ∈ X and fX(x) = 1 then U(x) = {x} ∪ C(x),
if z = x ∈ X and fX(x) = 0 then U(x) = C(¬x),
if z = y ∈ Y and fY (y) = 1 then U(y) = {y} ∪ C(y),
if z = y ∈ Y and fY (y) = 0 then U(y) = {y} ∪ C(¬y).

Note that [U(z)] ∈ Az for every variable z ∈ X ∪ Y , except for the case that z = x ∈ X,
fX(x) = 0 and C(¬x) = ∅ (then, U(z) = ∅). Define

U =
⋃

z∈X∪Y

U(z).

Since all clauses evaluate to 1 under fX + fY , we have C ∪ Y ⊆ U . Moreover, x ∈ U if and
only if x ∈ supp(f) for all x ∈ X. We therefore have

supp(f) ⊆ U.

We can choose pairwise disjoint (possibly empty) subsets U ′(z) ⊆ U(z) such that

U =
⋃

z∈X∪Y

U ′(z)

is a partition of U . It follows that

supp(f) =
⋃

z∈X∪Y

(U ′(z) ∩ supp(f))

is a partition of supp(f). Let Z ⊆ X∪Y be the set of all z ∈ X∪Y such that U ′(z)∩supp(f) ̸=
∅. Then we have

f =
∑
z∈Z

[U ′(z) ∩ supp(f)]

and |Z| ≤ n + m. It remains to show that [U ′(z) ∩ supp(f)] is a generator from Az. This is
clear if z = y ∈ Y or (z = x ∈ X and U(x) = C(¬x)). In those case, for every non-empty
subset U ′ ⊆ U(z), [U ′] belongs to Az. Finally, if z = x ∈ X and U(x) = {x} ∪ C(x) then
also x ∈ U ′(x) must hold because x ∈ U(x) ⊆ U =

⋃
z∈X∪Y U ′(z) and x /∈ U ′(z) for z ̸= x.

Moreover, U(x) = {x} ∪ C(x) implies f(x) = fX(x) = 1, i.e., x ∈ supp(f). Therefore,
[U ′(x) ∩ supp(f)] is of the form [{x} ∪ C ′] for some C ′ ⊆ C(x), which belongs to Ax. We
obtain f ∈ A≤n+m, which shows that ϕ is indeed a logspace reduction from ∀∃sat to unary
diameter.

M. Lohrey and A. Rosowski 134:9

▷ Claim 3.4. d(A) ≤ k + 1.

Proof of Claim 3.4. Our preprocessing ensured that every partial truth assignment of the
universally quantified variables can be extended by a truth assignment for the existentially
quantified variables such that exactly one clause c ∈ C is unsatisfied. Let f ∈ ZV

2 . Then
there are functions fX : X → {0, 1} and g : Y ∪ C → {0, 1} such that f = fX + g. Moreover,
there is a partial truth assignment fY : Y → {0, 1} such that fX + fY satisfies all clauses
from C \ {c}. As above we define for every variable z ∈ X ∪ Y the set U(z) ⊆ V as follows:

if z = x ∈ X and fX(x) = 1 then U(x) = {x} ∪ C(x),
if z = x ∈ X and fX(x) = 0 then U(x) = C(¬x),
if z = y ∈ Y and fY (y) = 1 then U(y) = {y} ∪ C(y),
if z = y ∈ Y and fY (y) = 0 then U(y) = {y} ∪ C(¬y).

Note that c = {¬y} for an existentially quantified variable y ∈ Y (see Step 1 in our
preprocessing). Hence, we have c ∈ C(¬y) and [{c}] ∈ Ay is a generator. We define
U(c) = {c} and

U =
⋃

z∈X∪Y ∪{c}

U(z).

The rest of the argument is the same as above: Since all clauses except for c evaluate to 1
under f = fX + fY , we have C ∪ Y ⊆ U . Moreover, x ∈ U if and only if x ∈ supp(f) for all
x ∈ X. We therefore have

supp(f) ⊆ U.

Then there are pairwise disjoint subsets U ′(z) ⊆ U(z) such that

U =
⋃

z∈X∪Y ∪{c}

U ′(z) and supp(f) =
⋃

z∈X∪Y ∪{c}

(U ′(z) ∩ supp(f))

are partitions of U and supp(f), respectively. Let Z ⊆ X ∪ Y ∪ {c} be the set of all
z ∈ X ∪ Y ∪ {c} such that U ′(z) ∩ supp(f) ̸= ∅. Then we have

f =
∑
z∈Z

[U ′(z) ∩ supp(f)]

and |Z| ≤ n + m + 1. As above it can easily be shown that [U ′(z) ∩ supp(f)] is a generator.
Hence f ∈ A≤n+m+1. ◁

It now follows that d(A) is either k or k + 1: if d(A) ≤ k then d(A) = k (see the remark after
the proof of Claim 3.3), and if d(A) > k then d(A) = k + 1 by Claim 3.4. ◀

▶ Corollary 3.5. The following problems are all ΠP
2 -complete:

(i) unary diameter (without a restriction on the permutation group ⟨A⟩),
(ii) unary diameter restricted to abelian permutation groups ⟨A⟩ of exponent two,
(iii) binary diameter restricted to abelian permutation groups ⟨A⟩.

Proof. In all cases the lower bound follows from Theorem 3.1. It remains to show the upper
bound in cases (i) and (iii). For (i), this is straightforward: Let G = ⟨A⟩ where A ⊆ Sn is a
set of permutations and take a unary encoded k > 0. First of all we universally guess an
element π ∈ G. More precisely, we guess an arbitrary permutation π ∈ Sn and then check in
polynomial time (using [12]) whether π ∈ ⟨A⟩. If this does not hold, we immediately accept,
otherwise we proceed with existentially guessing a sequence a1a2 · · · al with ai ∈ A and l ≤ k.
We accept if and only if a1a2 · · · al = π.

ICALP 2023

134:10 On the Complexity of Diameter and Related Problems in Permutation Groups

The upper bound in case (iii) can be shown in a similar way. We follow the procedure for
unary diameter up to the point where we guess a sequence a1a2 · · · al with ai ∈ A and
l ≤ k. Since k is given in binary encoding this is not feasible. Instead, we guess for each
a ∈ A a binary encoded number ka ≥ 0 whose bit length is bounded by the bit length of k.
We accept if and only if the following two conditions hold:∑

a∈A ka ≤ k,∏
a∈A aka = π.

Both conditions can be checked in polynomial time. For the second point note that aka can
be computed in time O(n log ka) by iterated squaring. ◀

▶ Theorem 3.6. unary exact diameter is DP2-complete for general permutation groups
as well as abelian permutation groups of exponent two.

Proof. Let A ⊆ Sn be a set of permutations and let k be a unary encoded number. Then
we have d(A) = k if and only if d(A) ≤ k and d(A) > k − 1. This is the intersection of a
ΠP

2 -property and a ΣP
2 -property. Hence, unary exact diameter belongs to DP2.

Now let L = L1 ∩L2 be a language from DP2 with L1 ∈ ΣP
2 and L2 ∈ ΠP

2 . By Theorem 3.1
we can compute from x two pairs (A1, k1) and (A2, k2) (with Ai ⊆ Sni

and ki a unary encoded
natural number) such that

x ∈ L1 if and only if d(A1) = k1 + 1 if and only if d(A1) ̸= k1, and
x ∈ L2 if and only if d(A2) = k2 if and only if d(A2) ̸= k2 + 1.

Hence, x ∈ L if and only if d(A1) = k1 + 1 and d(A2) = k2.
Consider the subgroup of Sn2 × Sn2 ≤ S2n2 generated by

B := (A2 × {1}) ∪ ({1} × A2).

Here, 1 denotes the identity permutation. Since we have either d(A2) = k2 or d(A2) = k2 + 1
we obtain either d(B) = 2k2 or d(B) = 2k2 + 2.

Finally, consider the subgroup of Sn1 × Sn2 × Sn2 ≤ Sn1+2n2 generated by

A := (A1 × {(1, 1)}) ∪ ({1} × B).

There are four cases for the diameter of the group generated by A:

d(A) =


k1 + 2k2 if d(A1) = k1 and d(A2) = k2

k1 + 2k2 + 1 if d(A1) = k1 + 1 and d(A2) = k2

k1 + 2k2 + 2 if d(A1) = k1 and d(A2) = k2 + 1
k1 + 2k2 + 3 if d(A1) = k1 + 1 and d(A2) = k2 + 1.

Thus, we have x ∈ L if and only if d(A) = k1 + 2k2 + 1, which shows the DP2-hardness of
unary exact diameter. ◀

4 Complexity of computing the length in permutation groups

Recall that Even and Goldreich [11] proved that unary length is NP-complete. We present
below an alternative proof for the NP-hardness, where the reduction has additional properties
(similar to Theorem 3.1) that will be needed in order to settle the complexity of unary
exact length. Our techniques are similar to those from Section 3.

▶ Theorem 4.1. There is a logspace reduction ϕ from sat to unary length such that for
every CNF formula F with ϕ(Ψ) = (A, π, k) we have: A ⊆ Zn

2 for some n, π ∈ ⟨A⟩ = Zn
2

and |π|A ∈ {k, k + 1}.

M. Lohrey and A. Rosowski 134:11

Proof. Let F =
∧

c∈C c be a conjunction of clauses c ∈ C with boolean variables from
the set X. We preprocess F as in the proof of Theorem 3.1. First, we replace F by
F ′ = ¬y∗ ∧

∧
c∈C(y∗ ∨ c), where y∗ /∈ X is a new variable ensuring that there is a truth

assignment such that exactly one clause in F ′ is unsatisfied. Moreover, F is satisfiable if and
only if F ′ is satisfiable.

Then we apply the construction of [25] that we also used in the proof of Theorem 3.1 in
order to ensure that every variable occurs in at most three clauses. We replace the occurrences
of every variable z ∈ X ∪ {y∗} that occurs in l ≥ 4 clauses (negated or unnegated) by new
variables z1, . . . , zl and add the clauses zl ∨ ¬z1 and zi ∨ ¬zi+1 for i ∈ [1, l − 1]. Let F ′′ be
the resulting CNF formula. It still has the property that there is a truth assignment such
that exactly one clause in F ′′ is unsatisfied. One can take the truth assignment that sets all
variables of F ′′ to 1. Moreover, F is satisfiable if and only if F ′′ is satisfiable.

From this consideration, it follows that we can assume that our input CNF formula F

has the following two properties:
Every variable occurs in at most three clauses.
There is a truth assignment for F such that exactly one clause of F is not satisfied.

Let X be the variables that occur in F and let C be the set of clauses in F . Moreover, let
V = X ∪ C. With L = X ∪ {¬x | x ∈ X} we denote the set of all literals.

We reuse several notations that we have introduced in the proof of Theorem 3.1. For a
literal x̃ ∈ L we denote with C(x̃) ⊆ C the set of all clauses containing x̃. Note that we have
|C(x)| + |C(¬x)| ≤ 3. For the reduction we work with the group ZV

2 and use the notations
from Section 2.2. Now we define the set A of generators by

A =
⋃

c∈C

Ac ∪
⋃

x̃∈L

Ax̃,

where for x ∈ X and c ∈ C we take

Ax = {[{x} ∪ U] | U ⊆ C(x)},

A¬x = {[{x} ∪ U] | U ⊆ C(¬x)},

Ac = {[{c}]}.

Note that ⟨A⟩ = ZV
2 .

We define π = [V] and k = |X|. This defines our logspace reduction ϕ : F 7→ (A, π, k).
To compute ϕ in logspace, it is important that all sets C(x̃) have constant size.

Now we show that |π|A ≤ k if and only if F is satisfiable. Suppose |π|A ≤ k. Since
X ⊆ supp(π), we need a generator from every Ax ∪ A¬x (x ∈ X) to produce π. This implies
|π|A = k and we can write

π =
∑
x∈X

πx

with πx ∈ Ax ∪ A¬x. Let πx = [{x} ∪ Ux] with Ux ⊆ C. We define a truth assignment by

σ(x) =
{

1 if πx ∈ Ax,

0 if πx ∈ A¬x \ Ax.

for all x ∈ X. From C ⊆ supp(π) it follows that for every clause c ∈ C there must exist a
variable x ∈ X such that c ∈ Ux. If πx ∈ Ax (i.e., σ(x) = 1) then c ∈ Ux ⊆ C(x), i.e., x

appears in the clause c. Hence, π satisfies c. Similarly, if πx ∈ A¬x (i.e., σ(x) = 0) then ¬x

appears in the clause c. Therefore, σ satisfies F .

ICALP 2023

134:12 On the Complexity of Diameter and Related Problems in Permutation Groups

Now suppose that F is satisfiable and let σ be a satisfying truth assignment. Hence,
every clause is satisfied. Let X0 = {x ∈ X | σ(x) = 0} and X1 = {x ∈ X | σ(x) = 1}. Then
we have

supp(π) = V = X ∪ C =
⋃

x∈X0

{x} ∪ C(¬x) ∪
⋃

x∈X1

{x} ∪ C(x).

Then we can choose for every x ∈ X0 a subset Ux ⊆ C(¬x) and for every x ∈ X1 a subset
Ux ⊆ C(x) such that

supp(π) =
⋃

x∈X

{x} ∪ Ux

is a partition of supp(π). Hence, we have

π =
∑
x∈X

[{x} ∪ Ux].

Since [{x} ∪ Ux] ∈ Ax ∪ A¬x, we finally obtain |π|A = k. This show that ϕ is indeed a
logspace reduction from sat to unary length.

We have already noted that |π|A ≤ k implies |π|A = k. The converse implication is
trivially true. Therefore, we have |π|A ≤ k if and only if |π|A = k. It remains to show that
|π|A ∈ {k, k + 1}. For this it suffices to show |π|A ≤ k + 1.

We know that there is a truth assignment σ such that exactly one clause c ∈ C is
unsatisfied. As above we can choose generators πx ∈ Ax ∪ A¬x for all x ∈ X such that

supp(π) \ {c} =
⋃

x∈X

supp(πx)

is a partition of supp(π) \ {x}. From this we obtain

π = [{c}] +
∑
x∈X

πx

and hence |π|A ≤ k + 1, which concludes the proof. ◀

▶ Theorem 4.2. unary exact length is DP-complete for general permutation groups as
well as abelian permutation groups of exponent two.

Proof. Let A be a set of generators of a permutation group, k a unary encoded integer, and
π ∈ ⟨A⟩ a permutation. Then we have |π|A = k if and only if |π|A ≤ k and |π|A > k −1. This
is the conjunction of an NP-property and a coNP-property. Thus unary exact length is
the intersection of a language in NP with a language in coNP and therefore belongs to DP.

We show DP-hardness of unary exact length by a reduction from sat-unsat. The
input for the latter problem is a pair (F, G) of two CNF formulas and the question is whether
F is satisfiable and G is unsatisfiable. This problem is known to DP-complete, see [21].

Let (F, G) be an input for sat-unsat. By Theorem 4.1 we can compute from (F, G) in
logspace two triples (A1, π1, k1) and (A2, π2, k2) (with Ai ⊆ Sni , πi ∈ ⟨Ai⟩ and ki a unary
encoded natural number) such that

F is satisfiable if and only if |π1|A1 = k1 if and only if |π1|A1 ̸= k1 + 1 and
G is unsatisfiable if and only if |π2|A2 ̸= k2 if and only if |π2|A2 = k2 + 1.

Hence, (F, G) is a positive instance of sat-unsat if and only if |π1|A1 = k1 and |π2|A2 = k2+1.

M. Lohrey and A. Rosowski 134:13

Consider the subgroup of Sn2 × Sn2 ≤ S2n2 with the generating set

B := (A2 × {1}) ∪ ({1} × A2).

Since we have |π2|A2 ∈ {k2, k2 + 1} we obtain |(π2, π2)|B ∈ {2k2, 2k2 + 2}.
Finally, consider the group ⟨A1⟩ × ⟨A2⟩ × ⟨A2⟩ ≤ Sn1+2n2 with the generating set

A := (A1 × {(1, 1)}) ∪ ({1} × B).

For the length |(π1, π2, π2)|A we obtain

|(π1, π2, π2)|A =


k1 + 2k2 if |π1|A1 = k1 and |π2|A2 = k2

k1 + 2k2 + 1 if |π1|A1 = k1 + 1 and |π2|A2 = k2

k1 + 2k2 + 2 if |π1|A1 = k1 and |π2|A2 = k2 + 1
k1 + 2k2 + 3 if |π1|A1 = k1 + 1 and |π2|A2 = k2 + 1.

Hence, (F, G) is a positive instance of sat-unsat if and only if |(π1, π2, π2)|A = k1 + 2k2 + 2,
which concludes the proof. ◀

Since binary length is PSPACE-complete [15], one might expect that also binary exact
length is PSPACE-complete. The following result confirms this.

▶ Theorem 4.3. binary exact length is PSPACE-complete.

Proof of Theorem 4.3. Since PSPACE is closed under complement, and |π|A = k if and only
if π ∈ A≤k and π /∈ A≤k−1, it follows that also binary exact length belongs to PSPACE.

For the lower bound let A ⊆ Sn be a set of permutations on [1, n], π ∈ ⟨A⟩ and k be a
binary encoded number. We construct from A, π, k in logspace a new instance B, τ, k such
that π ∈ A≤k if and only if |τ |B = k holds. This proves that binary exact length is
PSPACE-complete.

Clearly, Sn ≤ Sm for n ≤ m. In the following, we will identify a permutation π ∈ Sn

with a permutation from Sm by defining aπ = a for a ∈ [n + 1, m].
Let d be the number of bits of k. Then log2(k) < d ≤ log2(k)+1. Let p1 = 2, p2 = 3, . . . , pd

be the first d primes. Note that since d is polynomially bounded in the input length, the
primes pi are so too and therefore can be stored in logarithmic space. Let m =

∑d
i=1 pi and

let α1, . . . , αd be permutations with pairwise disjoint support on [n + 1, n + m] such that αi

is a cycle of length pi. Moreover let r1, . . . , rd ∈ [0, pi − 1] such that

k ≡ ri mod pi.

These numbers can be computed in logspace; see e.g. [14]. Moreover let α = α1 · · · αd,
β = αr1

1 · · · αrd

d and τ = πβ. We have

ord(α) =
d∏

i=1
pi ≥ 2d > 2log2(k) = k.

Finally, we define the set of permutations

B = {γα | γ ∈ A} ∪ {α} ⊆ Sn+m.

Since β = αk, i.e., τ = παk and ord(α) > k, we obtain π ∈ A≤k if and only if |τ |B = k,
which concludes the reduction. ◀

ICALP 2023

134:14 On the Complexity of Diameter and Related Problems in Permutation Groups

5 Complexity of equality and universality for NFAs over permutation
groups

In this section we determine the complexity of rational equality and rational univer-
sality (defined in Section 1.2).

▶ Theorem 5.1. The following problems are ΠP
2 -complete for permutation groups:

(i) rational equality
(ii) rational equality restricted to the case where all permutations in the two input

NFAs A and B pairwise commute and have order two.
(iii) rational universality

Proof. For the upper bounds, we only have to consider rational equality. Membership
of rational equality in ΠP

2 follows from the fact that the rational subset membership
problem for permutation groups (see Section 1.2) is in NP. More precisely, the following
formula expresses the equality L(A0) = L(A1) for two NFAs A0 and A1 over Sn:

∀i ∈ {0, 1}∀π ∈ Sn : π ̸∈ L(Ai) ∨ π ∈ L(A1−i).

Since the rational subset membership problem for permutation groups is in NP, the above
formula is equivalent to a statement of the form

∀i ∈ {0, 1}∀π ∈ Sn∀u∃v : u is not a witness for π ∈ L(Ai) ∨ v is a witness for π ∈ L(A1−i).

Here u and v are bit strings of size polynomial in the input length.
The lower bound in (ii) is a direct consequence of Corollary 3.5, since for a finite set

A ⊆ Sn and a unary encoded number k both ⟨A⟩ and A≤k can be defined by logspace
computable NFAs.

It remains to show ΠP
2 -hardness of rational universality. For this we give a reduction

from unary diameter to rational universality. Before we come to the actual reduction,
let us explain an auxiliary construction. Fix an n ≥ 1 and consider the symmetric group S2n

on the domain Ω = [1, 2n]. We define the following sets of transpositions:

Ti = {(a, b) | a, b ∈ Ω \ {i}, a ̸= b} ⊆ S2n for all i ∈ Ω, (6)
Z = {(2i − 1, 2i) | 1 ≤ i ≤ n} ⊆ S2n. (7)

Note that ⟨Z⟩ ∼= Zn
2 and ⟨Ti⟩ is the set of permutations that fix i.

For every 1 ≤ i < j ≤ 2n with (i, j) /∈ Z we can construct in space O(log n) three
automata Ai,j , Bi,j , Ci,j over S2n such that the following hold:

L(Ai,j) =
⋃

ℓ∈Ω\{i,j}

(i, j)(j, ℓ)⟨Ti ∩ Tj⟩ (8)

L(Bi,j) =
⋃

ℓ∈Ω\{i,j}

(j, i)(i, ℓ)⟨Ti ∩ Tj⟩ (9)

L(Ci,j) = (i, j)⟨Ti ∩ Tj⟩ (10)

▷ Claim 5.2. We have

⟨Z⟩ ∩
⋃

1≤i<j≤2n
(i,j)/∈Z

(L(Ai,j) ∪ L(Bi,j) ∪ L(Ci,j)) = ∅.

Proof of Claim 5.2. Suppose there is a τ ∈ ⟨Z⟩ such that τ ∈ L(Ai,j) ∪ L(Bi,j) ∪ L(Ci,j) for
some 1 ≤ i < j ≤ 2n with (i, j) /∈ Z. For every a ∈ [1, n] we have either (2a − 1)τ = 2a − 1
and (2a)τ = 2a or (2a − 1)τ = 2a and (2a)τ = 2a − 1.

M. Lohrey and A. Rosowski 134:15

Case 1. τ ∈ L(Ai,j). Then we can write τ = (i, j)(j, ℓ)π with ℓ ∈ Ω\{i, j} and π ∈ ⟨Ti ∩Tj⟩.
Then we obtain

jτ = j(i,j)(j,ℓ)π = i(j,ℓ)π = iπ = i.

We can exclude the case j = jτ = i, since i < j. Hence, we have jτ ∈ {j + 1, j − 1}. If j is
odd we obtain j + 1 = jτ = i, which is a contradiction since i < j. If j is even we obtain
j − 1 = jτ = i, and hence (i, j) ∈ Z, which is also a contradiction.

Case 2. τ ∈ L(Bi,j). Then we can write τ = (j, i)(i, ℓ)π with ℓ ∈ Ω\{i, j} and π ∈ ⟨Ti ∩Tj⟩.
In this case we obtain

iτ = i(j,i)(i,ℓ)π = j(i,ℓ)π = jπ = j.

We can exclude the case i = iτ = j, since i < j. Hence, we have iτ ∈ {i + 1, i − 1}. If i is
odd we obtain i + 1 = iτ = j and hence (i, j) ∈ Z, which is a contradiction. If i is even we
obtain i − 1 = iτ = j, which contradicts i < j.

Case 3. τ ∈ L(Ci,j). Then we can write τ = (i, j)π with π ∈ ⟨Ti ∩ Tj⟩ and get

iτ = i(i,j)π = jπ = j.

We obtain a contradiction in the same way as in Case 2. ◁

▷ Claim 5.3. We have⋃
1≤i<j≤2n

(i,j)/∈Z

(L(Ai,j) ∪ L(Bi,j) ∪ L(Ci,j)) = S2n \ ⟨Z⟩. (11)

Proof of Claim 5.3. By Claim 5.2 it suffices to show

S2n \ ⟨Z⟩ ⊆
⋃

1≤i<j≤2n
(i,j)/∈Z

(L(Ai,j) ∪ L(Bi,j) ∪ L(Ci,j)). (12)

Let τ ∈ S2n \ ⟨Z⟩. We have to show that τ belongs to the union on the right-hand side of
(12). Let τ = γ1 · · · γm be the disjoint cycle decomposition of τ . Since τ /∈ ⟨Z⟩ we can assume
that w.l.o.g. γ1 /∈ ⟨Z⟩. Let α = γ1 and let β = γ2 · · · γm. Then we can write τ = αβ = βα in
which α = (id, . . . , i2, i1) is a cycle of length d ≥ 2. Note that iq ̸= ip for all q ̸= p.

Case 1. d = 2. W.l.o.g. we can assume i1 < i2. Then (i1, i2) /∈ Z and by this the NFA
Ci1,i2 is defined. We have (i1, i2)π ∈ L(Ci1,i2) for all π ∈ ⟨Ti1 ∩ Ti2⟩. Since β fixes i1 and i2,
we have β ∈ ⟨Ti1 ∩ Ti2⟩ and hence τ = (i1, i2)β ∈ L(Ci1,i2).

Case 2. d ≥ 3 and (i1, i2) /∈ Z. Then, Ai1,i2 is defined if i1 < i2 and Bi2,i1 is defined if
i2 < i1. We have

α = (id, . . . , i1) = (i1, i2)(i2, i3)(i3, i4) · · · (id−1, id).

Let γ = (i3, i4) · · · (id−1, id)β. We get τ = αβ = (i1, i2)(i2, i3)γ. Moreover, γ ∈ ⟨Ti1 ∩ Ti2⟩,
since β fixes i1 and i2 and iq ̸= ip for q ̸= p. If i1 < i2 we have (i1, i2)(i2, ℓ)π ∈ L(Ai1,i2) for
all ℓ ∈ Ω \ {i1, i2} and π ∈ ⟨Ti1 ∩ Ti2⟩. Hence we obtain τ = (i1, i2)(i2, i3)γ ∈ L(Ai1,i2). If
i2 < i1 we have (i1, i2)(i2, ℓ)π ∈ L(Bi2,i1) for all ℓ ∈ Ω \ {i1, i2} and π ∈ ⟨Ti1 ∩ Ti2⟩. Thus
we analogously obtain τ = (i1, i2)(i2, i3)γ ∈ L(Bi2,i1).

ICALP 2023

134:16 On the Complexity of Diameter and Related Problems in Permutation Groups

Case 3. d ≥ 3 and (i1, i2) ∈ Z. We then have (i2, i3) /∈ Z (otherwise, we would get i3 = i1)
and Ai2,i3 is defined if i2 < i3 and Bi3,i2 is defined if i3 < i2. We have

α = (id, . . . , i1) = (i1, id, id−1 . . . , i2) = (i2, i3)(i3, i4)(i4, i5) · · · (id−1, id)(id, i1).

Let γ = (i4, i5) · · · (id−1, id)(id, i1)β. Then we obtain τ = αβ = (i2, i3)(i3, i4)γ (if d = 3 we
have γ = β and i4 = i1). Analogously to Case 2, we obtain (i2, i3)(i3, i4)γ ∈ L(Ai2,i3) if
i2 < i3 and (i2, i3)(i3, i4)γ ∈ L(Bi3,i2) if i3 < i2. ◁

Now we come to the reduction from unary diameter to rational universality. The
proof of Theorem 3.1 shows that we can start with an input instance (A, k) of unary
diameter, where A ⊆ Zn

2 for some n ∈ N and k ∈ N is given in unary encoding. We can
therefore assume that ⟨A⟩ = ⟨Z⟩ for the above Z from (7). From A and k we can easily
construct in logspace an NFA A such that

L(A) = A≤k ∪
⋃

1≤i<j≤2n
(i,j)/∈Z

(L(Ai,j) ∪ L(Bi,j) ∪ L(Ci,j)) = A≤k ∪ (S2n \ ⟨A⟩),

where the second equality follows from Claim 5.3. It is also important that k is given in
unary encoding, which allows to construct in logspace an NFA for A≤k. We have L(A) = S2n

if and only if d(A) ≤ k which concludes the reduction. ◀

Note that in the above proof we write the complement S2n \ ⟨A⟩ = S2n \ ⟨Z⟩ as a union of a
polynomial number of cosets (see (8)–(10) and (11)). One might ask why we do not write
S2n \ ⟨A⟩ simply as union of cosets of ⟨A⟩. The problem is that the latter would require
|S2n|/|⟨A⟩| = (2n!)/2n − 1 cosets, which is not polynomial in n.

6 Open problems

The main open problem that remains is the complexity of binary diameter. We conjecture
that this problem is PSPACE-complete. Recall that we proved binary diameter to be
ΠP

2 -complete for abelian permutation groups. We conjecture that this result can be extended
to nilpotent permutation groups (and maybe even solvable permutation groups).

We conjecture that unary diameter is ΠP
2 -complete for input instances (A, k), where A

generates the full symmetric group Sn. The ΠP
2 -completeness of rational universality

would directly follow from this. Moreover, we mentioned in the introduction the conjecture
according to which the diameter of Sn (with respect to any generating set) is bounded by a
polynomial in n. This conjecture would imply that binary diameter belongs to ΠP

2 for
input instances (A, k), where A generates the full symmetric group Sn.

References
1 Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cambridge

University Press, 2009. doi:10.1017/CBO9780511804090.
2 László Babai. Graph isomorphism in quasipolynomial time [extended abstract]. In Proceedings

of the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, pages
684–697. ACM, 2016. doi:10.1145/2897518.2897542.

3 László Babai, Robert Beals, and Ákos Seress. On the diameter of the symmetric group:
polynomial bounds. In Proceedings of the 15th Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2004, pages 1108–1112. SIAM, 2004. URL: https://dl.acm.org/doi/10.
5555/982792.982956.

https://doi.org/10.1017/CBO9780511804090
https://doi.org/10.1145/2897518.2897542
https://dl.acm.org/doi/10.5555/982792.982956
https://dl.acm.org/doi/10.5555/982792.982956

M. Lohrey and A. Rosowski 134:17

4 László Babai and Thomas P. Hayes. Near-independence of permutations and an almost sure
polynomial bound on the diameter of the symmetric group. In Proceedings of the 16th Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2005, pages 1057–1066. SIAM, 2005.
URL: http://dl.acm.org/citation.cfm?id=1070432.1070584.

5 László Babai and Gábor Hetyei. On the diameter of random Cayley graphs of the sym-
metric group. Combinatorics, Probability & Computing, 1:201–208, 1992. doi:10.1017/
S0963548300000237.

6 László Babai, Gábor Hetyei, William M. Kantor, Alexander Lubotzky, and Ákos Seress. On
the diameter of finite groups. In Proceedings of the 31st Annual Symposium on Foundations
of Computer Science, FOCS 1990, Volume II, pages 857–865. IEEE Computer Society, 1990.
doi:10.1109/FSCS.1990.89608.

7 László Babai, William M. Kantor, and A. Lubotsky. Small-diameter Cayley graphs for finite
simple groups. European Journal of Combinatorics, 10(6):507–522, 1989. doi:10.1016/
S0195-6698(89)80067-8.

8 László Babai and Ákos Seress. On the diameter of Cayley graphs of the symmetric group.
Journal of Combinatorial Theory, Series A, 49(1):175–179, 1988. doi:10.1016/0097-3165(88)
90033-7.

9 László Babai and Ákos Seress. On the diameter of permutation groups. European Journal of
Combinatorics, 13(4):231–243, 1992. doi:10.1016/S0195-6698(05)80029-0.

10 Liming Cai, Jianer Chen, Rodney G. Downey, and Michael R. Fellows. On the parameterized
complexity of short computation and factorization. Archive for Mathematical Logic, 36(4-
5):321–337, 1997. doi:10.1007/s001530050069.

11 Shimon Even and Oded Goldreich. The minimum-length generator sequence problem is
NP-hard. Journal of Algorithms, 2(3):311–313, 1981. doi:10.1016/0196-6774(81)90029-8.

12 Merrick L. Furst, John E. Hopcroft, and Eugene M. Luks. Polynomial-time algorithms for
permutation groups. In Proceedings of the 21st Annual Symposium on Foundations of Computer
Science, FOCS 1980, pages 36–41. IEEE Computer Society, 1980. doi:10.1109/SFCS.1980.34.

13 Harald A. Helfgott and Ákos Seress. On the diameter of permutation groups. Annals of
Mathematics, 179(2):611–658, 2014. doi:10.4007/annals.2014.179.2.4.

14 William Hesse, Eric Allender, and David A. Mix Barrington. Uniform constant-depth threshold
circuits for division and iterated multiplication. Journal of Computer and System Sciences,
65(4):695–716, 2002. doi:10.1016/S0022-0000(02)00025-9.

15 Mark Jerrum. The complexity of finding minimum-length generator sequences. Theoretical
Computer Science, 36:265–289, 1985. doi:10.1016/0304-3975(85)90047-7.

16 Arthur A. Khashaev. On the membership problem for finite automata over symmetric groups.
Discrete Mathematics and Applications, 32(6):389–395, 2022. doi:10.1515/dma-2022-0033.

17 D. Kornhauser, G. Miller, and P. Spirakis. Coordinating pebble motion on graphs, the diameter
of permutation groups, and applications. In Proceedings of the 25th IEEE Symposium on
Foundations of Computer Science, FOCS 1984, pages 241–250. IEEE Computer Society Press,
1984. doi:10.1109/SFCS.1984.715921.

18 Markus Lohrey, Andreas Rosowski, and Georg Zetzsche. Membership problems in finite
groups. In Proceedings of the 47th International Symposium on Mathematical Foundations of
Computer Science, MFCS 2022, volume 241 of LIPIcs, pages 71:1–71:16. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2022. doi:10.4230/LIPIcs.MFCS.2022.71.

19 Pierre McKenzie. Permutations of bounded degree generate groups of polynomial diameter.
Information Processing Letters, 19(5):253–254, 1984. doi:10.1016/0020-0190(84)90062-0.

20 not A or B (https://cstheory.stackexchange.com/users/38066/not-a-or b). An analog of DP for
the second level of the polynomial hierarchy. Theoretical Computer Science Stack Exchange.
URL: https://cstheory.stackexchange.com/q/38776.

21 Christos H. Papadimitriou and Mihalis Yannakakis. The complexity of facets (and some
facets of complexity). Journal of Computer and System Sciences, 28(2):244–259, 1984. doi:
10.1016/0022-0000(84)90068-0.

ICALP 2023

http://dl.acm.org/citation.cfm?id=1070432.1070584
https://doi.org/10.1017/S0963548300000237
https://doi.org/10.1017/S0963548300000237
https://doi.org/10.1109/FSCS.1990.89608
https://doi.org/10.1016/S0195-6698(89)80067-8
https://doi.org/10.1016/S0195-6698(89)80067-8
https://doi.org/10.1016/0097-3165(88)90033-7
https://doi.org/10.1016/0097-3165(88)90033-7
https://doi.org/10.1016/S0195-6698(05)80029-0
https://doi.org/10.1007/s001530050069
https://doi.org/10.1016/0196-6774(81)90029-8
https://doi.org/10.1109/SFCS.1980.34
https://doi.org/10.4007/annals.2014.179.2.4
https://doi.org/10.1016/S0022-0000(02)00025-9
https://doi.org/10.1016/0304-3975(85)90047-7
https://doi.org/10.1515/dma-2022-0033
https://doi.org/10.1109/SFCS.1984.715921
https://doi.org/10.4230/LIPIcs.MFCS.2022.71
https://doi.org/10.1016/0020-0190(84)90062-0
https://cstheory.stackexchange.com/q/38776
https://doi.org/10.1016/0022-0000(84)90068-0
https://doi.org/10.1016/0022-0000(84)90068-0

134:18 On the Complexity of Diameter and Related Problems in Permutation Groups

22 Tomas Rokicki, Herbert Kociemba, Morley Davidson, and John Dethridge. The diameter of
the Rubik’s cube group is twenty. SIAM Journal of Discrete Mathematics, 27(2):1082–1105,
2013. doi:10.1137/120867366.

23 Ákos Seress. Permutation Group Algorithms. Cambridge Tracts in Mathematics. Cambridge
University Press, 2003. doi:10.1017/CBO9780511546549.

24 Larry J. Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Science, 3(1):1–22,
1976. doi:10.1016/0304-3975(76)90061-X.

25 Craig A. Tovey. A simplified NP-complete satisfiability problem. Discrete Applied Mathematics,
8(1):85–89, 1984. doi:10.1016/0166-218X(84)90081-7.

https://doi.org/10.1137/120867366
https://doi.org/10.1017/CBO9780511546549
https://doi.org/10.1016/0304-3975(76)90061-X
https://doi.org/10.1016/0166-218X(84)90081-7

Canonical Decompositions in Monadically Stable
and Bounded Shrubdepth Graph Classes
Pierre Ohlmann #

Institute of Informatics, University of Warsaw, Poland

Michał Pilipczuk #

Institute of Informatics, University of Warsaw, Poland

Wojciech Przybyszewski #

Institute of Informatics, University of Warsaw, Poland

Szymon Toruńczyk #

Institute of Informatics, University of Warsaw, Poland

Abstract
We use model-theoretic tools originating from stability theory to derive a result we call the Finitary
Substitute Lemma, which intuitively says the following. Suppose we work in a stable graph class C ,
and using a first-order formula φ with parameters we are able to define, in every graph G ∈ C , a
relation R that satisfies some hereditary first-order assertion ψ. Then we are able to find a first-order
formula φ′ that has the same property, but additionally is finitary: there is finite bound k ∈ N such
that in every graph G ∈ C , different choices of parameters give only at most k different relations R
that can be defined using φ′.

We use the Finitary Substitute Lemma to derive two corollaries about the existence of certain
canonical decompositions in classes of well-structured graphs.

We prove that in the Splitter game, which characterizes nowhere dense graph classes, and in the
Flipper game, which characterizes monadically stable graph classes, there is a winning strategy
for Splitter, respectively Flipper, that can be defined in first-order logic from the game history.
Thus, the strategy is canonical.

We show that for any fixed graph class C of bounded shrubdepth, there is an O(n2)-time algorithm
that given an n-vertex graph G ∈ C , computes in an isomorphism-invariant way a structure H
of bounded treedepth in which G can be interpreted. A corollary of this result is an O(n2)-time
isomorphism test and canonization algorithm for any fixed class of bounded shrubdepth.

2012 ACM Subject Classification Theory of computation → Finite Model Theory

Keywords and phrases Model Theory, Stability Theory, Shrubdepth, Nowhere Dense, Monadically
Stable

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.135

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version Full Version: https://arxiv.org/abs/2303.01473

Funding This paper is part of a project that have received funding from the European Research
Council (ERC) (grant agreement No 948057 – BOBR).

Acknowledgements We are indebted to Pierre Simon for enlightening discussions about classic
results in stability theory that greatly helped in deriving the results presented in this work. We also
thank Jakub Gajarský, Rose McCarty, and Marek Sokołowski for their contribution in discussions
around the topic of this work.

EA
T
C
S

© Pierre Ohlmann, Michał Pilipczuk, Wojciech Przybyszewski, and Szymon Toruńczyk;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 135; pp. 135:1–135:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pohlmann@mimuw.edu.pl
https://orcid.org/0000-0002-4685-5253
mailto:michal.pilipczuk@mimuw.edu.pl
https://orcid.org/0000-0001-7891-1988
mailto:przybyszewski@mimuw.edu.pl
https://orcid.org/0000-0003-1158-9925
mailto:szymtor@mimuw.edu.pl
https://orcid.org/0000-0002-1130-9033
https://doi.org/10.4230/LIPIcs.ICALP.2023.135
https://arxiv.org/abs/2303.01473
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

135:2 Canonical Decompositions of Stable Graphs

1 Introduction

Stability theory is a well-established branch of model theory devoted to the study of stable
theories, or equivalently classes of structures that are models of such theories. Here, we
say that a formula1 φ(x̄; ȳ) is stable on a class of relational structures C if there is an
integer k ∈ N such that for every M ∈ C , one cannot find tuples ū1, . . . , ūk ∈ Mx̄ and
v̄1, . . . , v̄k ∈ Mȳ such that for all i, j ∈ {1, . . . , k},

M |= φ(ūi, v̄j) if and only if i < j.

Then C is stable if every formula is stable on C . Intuitively, this means that using a fixed
formula, one cannot interpret arbitrarily long total orders in structures from C . We refer to
the textbooks of Pillay [24] or of Tent and Ziegler [27] for an introduction to stability.

The goal of this paper is to use certain classic results of stability theory, particularly
the understanding of forking in stable theories, to derive statements about the existence of
canonical decompositions in certain classes of well-structured graphs. Here, we model graphs
as relational structures with one binary adjacency relation that is symmetric.

Finitary Substitute Lemma. Our main model-theoretic tool is the Finitary Substitute
Lemma, which we state below in a simplified form; see Lemma 10 for a full statement.

To state the lemma, we need some definitions. A formula φ(x̄; ȳ) is finitary on a class of
structures C if there exists k ∈ N such that for every M ∈ C , we have∣∣{φ(Mx̄, v̄) : v̄ ∈ Mȳ

}∣∣ ⩽ k,

where φ(Mx̄, v̄) = {ū ∈ Mx̄ | M |= φ(ū, v̄)}. In other words, φ(x̄; ȳ) is finitary on C if by
substituting different parameters for ȳ in any model M ∈ C , one can define only at most k
different relations on x̄-tuples. Next, a sentence ψ is hereditary if for every model M and its
induced substructure M′, M |= ψ implies M′ |= ψ. Finally, for a relation R(x̄) present in
the signature, formula φ(x̄) (possibly with parameters), and sentence ψ, by ψ[R(x̄)/φ(x̄)] we
mean the sentence derived from ψ by substituting every occurrence of R with formula φ.

▶ Lemma 1 (Finitary Substitute Lemma, simplified version). Let C be a stable class of structures.
Suppose φ(x̄; ȳ) is a formula and ψ a hereditary sentence such that for every G ∈ C ,

there exists s̄ ∈ Gȳ such that G |= ψ[R(x̄)/φ(x̄; s̄)]. (1)

Then there exists a formula φ′(x̄, z̄) that also satisfies (1), but is additionally finitary on C .

Thus, intuitively, the Finitary Substitute Lemma says that in stable classes, every relation
that is definable with parameters can be replaced by a finitary one, as long as we care that
the relation satisfies some hereditary first-order assertion. The main observation of this paper
is that this can be used in the context of various graph decompositions. Intuitively, if every
step in decomposing the graph can be defined by a first-order formula with parameters, and
the validity of the step can be verified using a hereditary first-order sentence, then we can
use the Finitary Substitute Lemma to derive an equivalent definition of a step that is finitary.
This yields only a bounded number of different steps that can be taken, making it possible
to construct a decomposition that, in a certain sense, is canonical.

1 All formulas considered in this paper are first-order, unless explicitly stated.

P. Ohlmann, M. Pilipczuk, W. Przybyszewski, and S. Toruńczyk 135:3

Classes of bounded shrubdepth. Our first application concerns classes of bounded shrub-
depth. The concept of shrubdepth was introduced by Ganian et al. [17] to capture dense
graphs that are well-structured in a shallow way. On one hand, classes of bounded shrub-
depth are exactly those that can be interpreted, using first-order formulas with two free
variables, in classes of forests of bounded depth. On the other hand, graphs from any fixed
class of bounded shrubdepth admit certain decompositions, called connection models, which
are essentially clique expressions of bounded depth. (See Section 5.1 for a definition of a
connection model.) Thus, in particular every graph class of bounded shrubdepth has bounded
cliquewidth, but classes of bounded shrubdepth are in addition stable [17].

Shrubdepth is a dense counterpart of treedepth, defined as follows: the treedepth of a
graph G is the smallest integer d such that G is a subgraph of the ancestor/descendant
closure of a rooted forest of depth at most d. In particular, every class of graphs of bounded
treedepth has bounded shrubdepth; boundedness of treedepth and of shrubdepth is in fact
equivalent assuming that the class excludes some biclique Kt,t as a subgraph [17]. In essence,
treedepth is a bounded-depth counterpart of treewidth in the same way as shrubdepth is a
bounded-depth counterpart of cliquewidth.

In spite of the above, the combinatorial properties of shrubdepth are still much less
understood than those of treedepth. For instance, a good understanding of subgraph obstacles
allows one to construct suitable canonical decompositions for graphs of bounded treedepth.
This allowed Bouland et al. [4] to design a graph isomorphism test that works in fixed-
parameter time parameterized by the treedepth, or more precisely, in time f(d) · n3 log n,
where f is a computable function. While it is known that every class of bounded shrubdepth
can be characterized by a finite number of forbidden induced subgraphs [17], it is unclear
how to use just this result to design any kind of canonical decompositions for classes of
bounded shrubdepth. Consequently, so far it was unknown whether the graph isomorphism
problem can be solved in fixed-parameter time on classes of bounded shrubdepth2. The most
efficient isomorphism test in this context is the one designed by Grohe and Schweitzer [20] for
the cliquewidth parameterization: it works in XP time, that is, in time nf(k) where k is the
cliquewidth and f is a computable function. See also the later work of Grohe and Neuen [19],
which improves the XP running time and applies to the more general canonization problem.

We show that the Finitary Substitute Lemma can be used to bridge this gap by proving
the following result.

▶ Theorem 2. Let C be a class of graphs of bounded shrubdepth. Then there is a class D of
binary structures of bounded treedepth and a mapping A : C → D such that:

For each G ∈ C , the vertex set of G is contained in the domain of A(G) and the mapping
G 7→ A(G) is isomorphism-invariant.
Given an n-vertex graph G ∈ C , the structure A(G) has O(n) elements and can be
computed in time O(n2).
There is a simple first-order interpretation I such that G = I(A(G)), for every G ∈ C .

Here, by isomorphism-invariance we mean that every isomorphism between G,G′ ∈ C

extends to an isomorphism between A(G) and A(G′). Further, by a simple interpretation
we mean a first-order interpretation that is 1-dimensional: vertices of G are interpreted in

2 This statement is somewhat imprecise, as shrubdepth is defined as a parameter of a graph class, rather
than of a single graph. By this we mean that there is a universal constant c such that for every graph
class C of bounded shrubdepth, the isomorphism of graphs from C can be tested in O(nc) time, with
the constant hidden in the O(·) notation possibly depending on C .

ICALP 2023

135:4 Canonical Decompositions of Stable Graphs

single elements of A(G) (actually, every vertex is interpreted in itself). Thus, A(G) can be
regarded as a canonical – obtained in an isomorphism-invariant way – sparse decomposition
of G that encodes G faithfully and takes the form of a structure of bounded treedepth. We
remark that certain logic-based sparsification procedures for classes of bounded shrubdepth
were proposed in [8, 14], but these are insufficient for our applications, which we explain
next.

The third point above together with the fact that A is isomorphism-invariant imply the
following: for all G,G′ ∈ C , G and G′ are isomorphic if and only if A(G) and A(G′) are. We
can now combine Theorem 2 with the approach of Bouland et al. [4] to give a fixed-parameter
isomorphism test on classes of bounded shrubdepth.

▶ Theorem 3. For every graph class C of bounded shrubdepth there is an O(n2)-time
algorithm that given n-vertex graphs G,G′ ∈ C , decides whether G and G′ are isomorphic.

In fact, our algorithm solves also the general canonization problem, see Section 5.4.
We remark that the algorithm of Theorem 3 is non-uniform, in the sense that we

obtain a different algorithm for every class C . Despite the existence of parameters such as
rankdepth [22] or SC-depth [17] that are suited for the treatment of single graphs and are
equivalent in terms of boundedness on classes to shrubdepth, we do not know how to make
our algorithm uniform even for the rankdepth or SC-depth parameterizations.

Finally, we believe that the construction behind our proof of Theorem 2 can be used to
obtain an alternative proof of a result of Hliněný and Gajarský [13], later reproved by Chen
and Flum [8]: the expressive power of first-order and monadic second-order logic coincide on
classes of bounded shrubdepth. This direction will be explored in future research.

Nowhere dense and monadically stable classes. Second, we use the Finitary Substitute
Lemma to provide canonical strategies in game characterizations of two important concepts
in structural graph theory: nowhere dense classes and monadically stable classes. In both
cases, a strategy in the game can be regarded as decompositions of the graph in question.

We start with some definitions. A unary lift of a class of graphs C is any class of structures
C + such that every member of C + is obtained from a graph belonging to C by adding any
number of unary predicates on vertices. A class of graphs C is monadically stable if every
unary lift of C is stable. On the other hand, a class of graphs C is nowhere dense if for every
d ∈ N there exists t such that no graph in C contains the d-subdivision of Kt as a subgraph.

Nowhere denseness is the most fundamental concept of uniform sparsity in graphs
considered in the theory of Sparsity; see the monograph of Nešetřil and Ossona de Mendez [23]
for an introduction to this area. A pinnacle result of this theory was derived by Grohe et
al. [18]: the model-checking problem for first-order logic is fixed-parameter tractable on
any nowhere dense graph class. As observed by Adler and Adler [2] using earlier results of
Podewski and Ziegler [25], monadically stable classes are dense counterparts of nowhere dense
classes in the following sense: every nowhere dense class is monadically stable, and nowhere
denseness and monadic stability coincide when we assume the class to be sparse, for instance
to exclude some biclique Kt,t as a subgraph. This motivated the following conjecture [1],
which is an object of intensive studies for the last few years: The model-checking problem for
first-order logic is fixed-parameter tractable on every monadically stable class of graphs C .

To approach this conjecture, it is imperative to obtain a better structural understanding
of graphs from monadically stable classes. This is the topic of several very recent works [5, 6,
7, 11, 15]. In this work we are particularly interested in the results of Gajarský et al. [15],
who characterized monadically stable classes of graphs through a game model called the
Flipper game, which reflects the characterization of nowhere dense classes through the Splitter
game, due to Grohe et al. [18].

P. Ohlmann, M. Pilipczuk, W. Przybyszewski, and S. Toruńczyk 135:5

The radius-r Splitter game is played on a graph G between two players: Splitter and
Connector. In every round, Connector first chooses any vertex u and the current arena –
graph on which the game is played – gets restricted to a ball of radius r around u. Then
Splitter removes any vertex of the graph. The game finishes, with Splitter’s win, when
the arena becomes empty. Splitter’s goal is to win the game as quickly as possible, while
Connector’s goal is to avoid losing for as long as possible. The Flipper game is defined
similarly, except that the moves of Flipper – who replaces Splitter – are as follows. Instead
of removing a vertex, Flipper selects any subset of vertices F and performs a flip: replaces
all edges with both endpoints in F with non-edges, and vice versa. Also, the game finishes
when the arena consists of one vertex.

Grohe et al. [18] proved that a class of graphs C is nowhere dense if and only if for every
radius r ∈ N there exists ℓ ∈ N such that on every graph from C , Splitter can win the radius-r
Splitter game within at most ℓ rounds. This characterization is the backbone of their model-
checking result for nowhere dense classes, as a strategy in the Splitter game provides a shallow
decomposition of the graph in question, useful for understanding its first-order properties.
Very recently, Gajarský et al. [15] proved an analogous characterization of monadically
stable classes in terms of the Flipper game, and subsequently Dreier et al. [10] used this
characterization to prove fixed-parameter tractability of the model-checking first order logic
on monadically stable classes of graphs which possess so-called sparse neighborhood covers.
Given this state-of-the-art, it is clear that a better understanding of strategies for Splitter and
Flipper in the respective games may lead to a deeper insight into decompositional properties
of nowhere dense and monadically stable graph classes.

In the Splitter game, we prove using just basic compactness, that in any arena there is
only a bounded number of possible Splitter’s moves that are progressing: lead to an arena
where the Splitter can win in one less round. (See Theorem 6 for a formal statement.) So
this gives a transparent canonical strategy for Splitter: just play all progressive moves one
by one, in any order. Obtaining a similar canonicity result for strategies in the Flipper game
requires the full power of our Finitary Substitute Lemma, discussed above.

In the interest of space, we have omitted from this version our results about canonical
strategies in the Flipper game, as well as most proofs. For a complete exposition, we refer to
the full version of the paper.

2 Preliminaries

Models. We work with first-order logic over a fixed signature Σ that consists of (possibly
infinitely many) constant symbols and relation symbols. A model is a Σ-structure, and is
typically denoted M,N, etc. We usually do not distinguish between a model and its domain,
when writing, for instance, m ∈ M or X ⊆ M. A graph G is viewed as a model over the
signature consisting of one binary relation denoted E, indicating adjacency between vertices.

If x̄ is a finite set of variables, then we write φ(x̄) to denote a first-order formula φ with
free variables contained in x̄. We may also write φ(x̄1, . . . , x̄k) to denote a formula whose
free variables are contained in x̄1 ∪ . . . ∪ x̄k. We will write x instead of {x} in case of a
singleton set of variables, e.g. φ(x, y) will always refer to a formula with two free variables x
and y. We sometimes write φ(x̄; ȳ) to distinguish a partition of the set of free variables of φ
into two parts, x̄ and ȳ; this partition plays an implicit role in some definitions. A Σ-formula
φ(x̄) with parameters from a set A ⊆ M is a formula φ(x̄) over the signature Σ ⊎A, where
the elements of A are treated as constant symbols (which are interpreted by themselves).

ICALP 2023

135:6 Canonical Decompositions of Stable Graphs

If U is a set and x̄ is a set of variables, then U x̄ denotes the set of all x̄-tuples ā : x̄ → U

of x̄ in U . For a formula φ(x̄) (with or without parameters) and an x̄-tuple m̄ ∈ Mx̄, we
write M |= φ(m̄) if the valuation m̄ satisfies the formula φ(x̄) in M. For a formula φ(x̄; ȳ)
and a tuple b̄ ∈ Mȳ we denote by φ(Mx̄; b̄) the set of all ā ∈ Mx̄ such that M |= φ(ā; b̄).

Theories and compactness. A theory T (over Σ) is a set of Σ-sentences. The theory of
a class of structures C is the set of sentences that hold in every structure M ∈ C . For
instance, the theory of a class of graphs C contains sentences expressing that the relation E

is symmetric and irreflexive. A model of a theory T is a structure M such that M |= φ for
all φ ∈ T . When a theory has a model, it is said to be consistent.

▶ Theorem 4 (Compactness). A theory T is consistent if and only if every finite subset of T
is consistent.

Elementary extensions. Let M and N be two structures with M ⊆ N, that is, the domain
of M is contained in the domain of N. Then N is an elementary extension of M, written
M ≺ N, if for every formula φ(x̄) (without parameters) and tuple m̄ ∈ Mx̄, the following
equivalence holds:

M |= φ(m̄) if and only if N |= φ(m̄).

We also say that M is an elementary substructure of N. In other words, M is an elementary
substructure of N if M is an induced substructure of N, where we imagine that M and N
are each equipped with every relation Rφ of arity k (for k ∈ N) that is defined by any fixed
first-order formula φ(x1, . . . , xk). In this intuition, formulas of arity 0 correspond to Boolean
flags, with the same valuation for both M and N.

Interpretations and transductions. A simple interpretation I between signatures Σ and Γ
is specified by a domain formula δ(x) and a formula αR(x1, . . . , xk) for each relation symbol
R ∈ Γ of arity k, with δ and the αR’s being in the signature Σ. For a given Σ-structure M,
the interpretation outputs the Γ-structure I(M) whose domain is δ(M) and in which the
interpretation of each relation R of arity k consists of the tuples m̄ such that M |= αR(m̄).
In this paper, we only consider simple interpretations, and therefore we will call them
interpretations for conciseness.

For an integer k ∈ N and a structure M, we define k × M to be the structure consisting
of k disjoint copies of M, together with a new symmetric binary relation S containing all
pairs (m,m′) such that m and m′ originate from the same element of M. A transduction
from Σ to Γ consists of an integer k, unary symbols U1, . . . , Uℓ and an interpretation I from
Σ ∪ {S,U1, . . . , Uℓ} to Γ.

For a transduction T and an input Σ-structure M, the output T(M) consists of all
Γ-structures N such that there exists a coloring M̂ of k × M with fresh unary predicates
U1, . . . , Uℓ such that B = I(M̂). We say that a class of Σ-structures C transduces a class of
Γ-structure D if there exists a transduction T such that for every structure N ∈ D there is
M ∈ C satisfying N ∈ T(M).

Graphs. We use standard graph theory notation. For a graph parameter π, we say that
a graph class C has bounded π if there exists k ∈ N such that π(G) ⩽ k for all G ∈ C .
Similarly, a class of structures C has bounded π if the class of Gaifman graphs of structures
in C has bounded π.

P. Ohlmann, M. Pilipczuk, W. Przybyszewski, and S. Toruńczyk 135:7

3 Canonical Splitter-strategies in nowhere dense graphs

In this section, we show how compactness can be used to derive canonical decompositions
for nowhere dense classes. More precisely, we will show that in the Splitter game, which
characterizes nowhere dense classes [18], there is a constant k (depending only on the graph
class C) such that for any graph in C there are at most k optimal Splitter moves. This will
allow us to illustrate the general methodology used in the paper.

Splitter game. First, we recall the rules of the Splitter game. The radius-r Splitter game is
played on a graph G by two players, Splitter and Connector, in rounds i = 1, 2, . . . as follows.
Initially the arena G1 is the whole graph G. In the i-th round,

Connector chooses a vertex ci ∈ Gi;
Splitter chooses a vertex si ∈ Gi and we let Gi+1 = Gi[Br

Gi
(ci)] − si;

Splitter wins if Gi+1 is the empty graph, otherwise the game continues.
Here, Br

H(u) = {v ∈ V (H) | distH(u, v) ⩽ r} denotes the ball of radius r around u in H.
The following result is instrumental in the celebrated proof of model-checking on nowhere

dense classes [18].

▶ Theorem 5 (Theorems 4.2 and 4.5 in [18]). A class of graphs C is nowhere dense if and
only if for every r, there exists ℓ such that on every graph G ∈ C , Splitter can win the
radius-r game in at most ℓ rounds.

The r-Splitter number of a graph G is the minimal ℓ such that Splitter wins the radius-r
game in ℓ rounds. Fix a nowhere dense class C and a radius r, and let ℓ be as in the theorem
(hence ℓ is an upper bound to all r-Splitter numbers of graphs in C). Observe that for a
given ℓ′ ⩽ ℓ there is a first-order sentence expressing that Splitter wins the radius-r game
in ⩽ ℓ′ rounds, and therefore, there is a first-order sentence expressing that G has Splitter
number ℓ′. Given a Connector move c ∈ V (G), we say that a Splitter move s ∈ V (G) is
r-progressing against c if the r-Splitter number of G[Br(c)] − s is strictly smaller than the
r-Splitter number of G[Br(c)]. In other words, playing s is strictly better for Splitter than
not playing any vertex. Again, since an upper bound to Splitter numbers depends only on C ,
this can be expressed by a formula φr(s; c). This leads to the following result.

▶ Theorem 6. Let C be a nowhere dense class of graphs, and r ∈ N. There is a constant k
such that for every graph G ∈ C , and every Connector move c, there are at most k progressing
moves against c in G.

In particular, this gives an isomorphism-invariant strategy for Splitter: simply play all
progressing moves (either one by one, in any order, or all at once in an extended variant of
the game considered in [18], where Splitter can remove a bounded number of vertices in each
turn, instead of just one.) The idea of the proof is to extend, by compactness, progressive
moves towards outside the model (in an elementary extension), and conclude by observing
that “being a progressive move” is a definable and hereditary property.

Proof. Let T be the theory of C . Note that T contains the sentence “Splitter wins the
radius-r game in ⩽ ℓ rounds”. Our aim is to prove that for some k, it contains the sentence
“for all connector moves c, there are at most k progressing Splitter moves against c”. We
show that for any model of T and any connector move c, there are finitely many progressing
Splitter moves against c; the result then follows from an easy application of compactness.

Assume for contradiction that there is a model M of T and a connector move c ∈ M such
that Splitter has infinitely many progressing moves against c. We now let T ′ be the theory
over the signature extended by a constant corresponding to each element m ∈ M and an
additional constant s, such that T ′ consists of:

ICALP 2023

135:8 Canonical Decompositions of Stable Graphs

all sentences in T ,
all sentences (with parameters in M) which hold in M,
a sentence expressing that s is a progressing move against c, and
for each m ∈ M, the sentence s ̸= m.

Since every finite subset T ′′ of T ′ mentions finitely many m ∈ M, one can construct a model
of T ′′ by starting from M and setting s to be one of those progressing moves that are not
mentioned. We conclude from compactness (Theorem 4) that T ′ is consistent.

Let N be a model of T ′. By construction N is an elementary extension of M – in particular,
N[Br(c)] has the same Splitter number ℓ′ as M[Br(c)] – and contains a progressing move
s ∈ N − M against c. This means that N[Br(c)] − s has Splitter number < ℓ′. But M[Br(c)]
is a subgraph of N[Br(c)] − s with Splitter number ℓ′: this is absurd. ◀

The next section presents more elaborate tools from stability theory that will allow us to
extend the above idea to different settings.

4 Stability, forking, and Finitary Substitution

This section collects notions and a few basic results from stability theory. The purpose is to
give a self-contained exposition culminating in our Finitary Substitution Lemma; for more
context and explanations we refer to [27].

4.1 Stability and definability of types
We say that a formula φ(x̄; ȳ) defines a ladder of order k in a model M if there are sequences
ā1, . . . āk ∈ Mx̄ and b̄1, . . . , b̄k ∈ Mȳ satisfying

M |= φ(āi; b̄j) if and only if i < j, for 1 ⩽ i, j ⩽ k.

For a formula φ(x̄; ȳ) we call the largest k such that φ defines a ladder of order k the ladder
index of φ in M. If no such k exists, we say that the ladder index of φ is ∞.

We say that φ is stable in M if its ladder index is finite. We say that φ is stable in a
theory T if it is stable in all models of T . Moreover, we say that a model (or a theory) is
stable if every formula is stable.

We now state a fundamental result about stable formulas; it states that sets definable by
stable formulas with parameters in some elementary extension can actually be defined from
the model itself.

▶ Theorem 7 (Definability of types). Let M ≺ N be two models and φ(x̄; ȳ) be a stable
formula of ladder index d in M. For every n̄ ∈ Nȳ there is a formula ψ(x̄), which is a
positive boolean combination of formulas of the form ψ(x̄; m̄) using a tuple m̄ of 2d + 1
parameters from M, such that for every ā ∈ Mx̄,

N |= φ(ā; n̄) if and only if M |= ψ(ā).

4.2 Forking in stable theories
We move on to the definition of forking, which was first defined by Shelah in order to study
stable theories [26], and later grew to become the central notion of stability theory. In stable
theories, forking coincides with the simpler notion of dividing, so by a slight abuse we will
only work with dividing (and call it forking). We first need to formally introduce types, then
we give a definition of forking in stable theories and a few useful properties.

P. Ohlmann, M. Pilipczuk, W. Przybyszewski, and S. Toruńczyk 135:9

Types. Fix a model M over a signature Σ. A set π of formulas in variables x̄ with parameters
from A ⊆ M is called a partial type over A if it is consistent: for every finite subset π′ ⊆ π

there is m̄ ∈ Mx̄ which satisfies all the formulas from π′ (i.e. for every formula φ(x̄) ∈ π′ we
have M |= φ(m̄)). We sometimes write π(x̄) to explicitly mention free variables. Partial types
p which are maximal are called types; this amounts to stating that for every formula φ(x̄)
with parameters from A, either φ(x̄) ∈ p or ¬φ(x̄) ∈ p. Observe that for sets A ⊆ B ⊆ M
every type p over A can be seen as a partial type over B. We denote the set of types over A
in variables x̄ by Sx̄(A).

For a tuple ā ∈ Mx̄ and a set A ⊆ M of parameters, the type of ā over A, denoted
tp(ā/A) ∈ Sx̄(A), is the set of all formulas φ(x̄) with parameters from A such that M |= φ(ā).
It follows from compactness that for every p ∈ Sx̄(M) there is some N ≻ M and an x̄-tuple
n̄ ∈ Nx̄ such that tp(n̄/M) = p.

Forking. Fix a stable model M over a signature Σ and a set A ⊆ M. Let φ(x̄; ȳ) be a
formula without parameters and let b̄ ∈ Mȳ. We say that φ(x̄; b̄) forks over A if there is
an elementary extension N ≻ M, a sequence b̄1, b̄2, . . . ∈ Nȳ satisfying tp(b̄i/A) = tp(b̄/A)
for every i and an integer k such that S = {φ(x̄; b̄i) : i ∈ N} is k-inconsistent: no k-element
subset of S is consistent. For a type p ∈ Sx̄(B) over a set B ⊆ M, we say that p forks over
A if there is a formula φ(x̄; b̄) ∈ p which forks over A.

We will make use of the following important property of forking which is often called
(full) existence.

▶ Theorem 8 (See [27, Corollary 7.2.7]). Let M be a stable model and let A ⊆ B ⊆ M. For
every p ∈ Sx̄(A) there is some q ∈ Sx̄(B) such that p ⊆ q and q does not fork over A.

Finitary formulas. We say that a formula φ(x̄; ȳ) is finitary in a theory T if for every model
M of T , the set {φ(Mx̄; m̄) : m ∈ Mȳ} is finite. By compactness, this is equivalent to
the following assertion: there exists k ∈ N such that |{φ(Mx̄; m̄) : m ∈ Mȳ}| ⩽ k for every
model M of T . We now relate forking and finitary formulas.

▶ Theorem 9 (Special case of [27, Theorem 8.5.1]3). Let M be a stable model, N an
elementary extension of M, φ(x̄; ȳ) a formula, n̄ ∈ Nȳ, and A ⊆ M. If tp(n̄/M) does
not fork over A, then there is a finitary formula φ′(x̄; z̄) and a tuple r̄ ∈ Mz̄ such that
φ(Nx̄; n̄) ∩ Mx̄ = φ′(Mx̄; r̄).

Combining Theorems 8 and 9 yields the following statement.

▶ Lemma 10. Let M be a stable model over the signature Σ, φ(x̄; ȳ) a Σ-formula, and
ψ a sentence over signature Σ ∪ {R}, where R /∈ Σ has arity |x̄|. Let s̄ ∈ Mȳ be such
that M |= ψ[R(x̄)/φ(x̄; s̄)]. Then there is an elementary extension N of M, a tuple s̄′ ∈
Nȳ, a finitary formula φ′(x̄; z̄) and a tuple r̄ ∈ Mz̄, such that N |= ψ[R(x̄)/φ(x̄; s̄′)] and
φ(Nx̄; s̄′) ∩ Mx̄ = φ′(Mx̄; r̄).

Proof. Consider p = tp(s̄/∅). By Theorem 8, p extends to a type q ∈ Sȳ(M) which does
not fork over ∅. By compactness there is an elementary extension N ≻ M and a tuple
s̄′ ∈ Nȳ such that tp(s̄′/M) = q. In particular tp(s̄′/∅) = p = tp(s̄/∅), and therefore
N |= ψ[R(x̄)/φ(x̄; s̄′)] as required. Applying Theorem 9 we get a finitary formula φ′(x̄; z̄)
and a tuple r̄ ∈ Mz̄ with the wanted properties. ◀

3 Formally, [27, Theorem 8.5.1] speaks about definability with imaginaries, which is known to be equivalent
to the existence of finitary formulas (see for instance [9, Lemma 1.3.2 (5), Lemma 1.3.7]).

ICALP 2023

135:10 Canonical Decompositions of Stable Graphs

4.3 Finitary Substitute Lemma

Recall from Section 3 that applying our method requires a mechanism for moving the wanted
property ψ back towards the structure M we started from. This is formalized by the following
definition. In a theory T , and given two sentences ψ and ψ′ over the signature Σ ∪ {R}, we
say that a sentence ψ induces ψ′ on semi-elementary substructures if for every model M
of T , for every elementary extension N and for every R ⊆ Nk, where k is the arity of R,

N[R/R] |= ψ implies M[R/R|M] |= ψ′.

As an important special case, if ψ is hereditary then ψ induces ψ on semi-elementary
substructures. We are now ready to state our main model-theoretic tool.

▶ Lemma 11 (Finitary Substitute Lemma). Let T be a theory with signature Σ, φ(x̄; ȳ) a stable
formula, and ψ,ψ′ be sentences over the signature Σ ∪ {R}, where R /∈ Σ has arity |x̄|, such
that ψ induces ψ′ on semi-elementary substructures. Assume that T |= ∃s̄.ψ[R(x̄)/φ(x̄; s̄)].
Then there is a finitary formula φ′(x̄; z̄) such that T |= ∃s̄.ψ′[R(x̄)/φ′(x̄; s̄)].

The proof follows from Lemma 10 by applying compactness; we refer to the full version for
details.

5 Canonization of graphs of bounded shrubdepth

In this section, we prove Theorems 2 and 3 which we now recall for convenience.

▶ Theorem 2. Let C be a class of graphs of bounded shrubdepth. Then there is a class D of
binary structures of bounded treedepth and a mapping A : C → D such that:

For each G ∈ C , the vertex set of G is contained in the domain of A(G) and the mapping
G 7→ A(G) is isomorphism-invariant.
Given an n-vertex graph G ∈ C , the structure A(G) has O(n) elements and can be
computed in time O(n2).
There is a simple first-order interpretation I such that G = I(A(G)), for every G ∈ C .

▶ Theorem 3. For every graph class C of bounded shrubdepth there is an O(n2)-time
algorithm that given n-vertex graphs G,G′ ∈ C , decides whether G and G′ are isomorphic.

The proof is broken into three parts.
The first part combines insights about classes of bounded shrubdepth with our Finitary
Substitute Lemma developed in the previous section, to conclude that the first level in a
shrubdepth decomposition (which we will call a dicing, defined below) can be defined
using finitary formulas. This result is stated as Theorem 12 below.
The second part builds on Theorem 12 to propose a canonical transformation from classes
of bounded shrubdepth to classes of bounded treedepth. This proves Theorem 2.
In the third part, we show how Theorem 3 is derived from Theorem 2, and also establish
a stronger result about the canonization problem.

We start by recalling a few preliminaries about shrubdepth in Section 5.1, and proceed with
the three parts outlined above in Sections 5.2, 5.3 and 5.4.

P. Ohlmann, M. Pilipczuk, W. Przybyszewski, and S. Toruńczyk 135:11

5.1 Preliminaries on shrubdepth
Shrubdepth. The decomposition notion underlying shrubdepth is that of connection models,
defined as follows. Let G be a graph. A connection model for G consists of:

a finite set of labels Labels;
a labelling label : V (G) → Labels;
a rooted tree T whose leaf set coincides with the vertex set of G; and
for every non-leaf node x of T , a symmetric relation Adj(x) ⊆ Labels × Labels, called the
adjacency table at x.

The rule is as follows: for every distinct vertices u, v of G, u and v are adjacent in G if and
only if (label(u), label(v)) ∈ Adj(x), where x is the lowest common ancestor of u and v in T .

The depth of a connection model is the depth of T . The shrubdepth of a graph class C is
the least integer d with the following property: there exists a finite set of labels Labels such
that every graph G ∈ C has a connection model of depth at most d that uses label set Labels.

Dicings. Our inductive proof requires manipulating the first level (just below the root)
of a connection model; we will call this a dicing. Formally, for a graph G, a pair (P,L)
of partitions of the vertex set of G is called a dicing of G if for every pair of vertices u, v
belonging to different parts of P, whether u and v are adjacent in G depends only on the
pair of parts of L that u and v belong to. In other words, there is a symmetric relation
Z ⊆ L × L such that for all u, v belonging to different parts of P,

u and v are adjacent in G if and only if (L(u),L(v)) ∈ Z,

where L(w) denotes the part of L to which w belongs. In the context of a dicing (P,L),
partition P will be called the component partition, and partition L will be called the label
partition. The order of a dicing (P,L) is |L|, the number of parts in the label partition.

Dicings appear naturally in connection models for shrubdepth: given a connection model
for a graph G, using “having a common ancestor below the root” as component partition P
and label-classes as label partition L defines a dicing of G.

5.2 Definability of canonical dicings
We say that a formula φ(x̄; ȳ) with |x̄| = 2 defines a partition if for every graph G and
b̄ ∈ Gȳ, φ(Gx̄; b̄) is an equivalence relation on the vertex set of G. (Note that for different
choices of b̄, φ can yield different equivalence relations.) Abusing the notation, by φ(Gx̄; b̄)
we will also denote the partition of the vertex set into the equivalence classes of φ(Gx̄; b̄).
Recall that a formula φ(x̄; ȳ) is said to be finitary in (the theory of) a graph class C if there
exists k such that for all graph G ∈ C ,

|{φ(Gx̄; b̄) : b̄ ∈ Gȳ}| ⩽ k.

This section is focused on establishing the following result.

▶ Theorem 12. Let C be a class of shrubdepth at most d, where d > 1. Then there exists
a hereditary class C ′ of shrubdepth at most d− 1, finitary first-order formulas φ(x̄; ȳ) and
λ(x̄; ȳ), each defining a partition, and ℓ ∈ N, such that the following holds: for every graph
G ∈ C there exists s̄ ∈ Gȳ such that

(φ(Gx̄; s̄), λ(Gx̄; s̄)) is a dicing of G of order at most ℓ; and
for every part A of φ(Gx̄; s̄), we have G[A] ∈ C ′.

ICALP 2023

135:12 Canonical Decompositions of Stable Graphs

On a high level, this proves that connection models can be defined using first-order formulas
φ(x̄; ȳ), λ(x̄; ȳ) and parameters s̄ ∈ Gȳ. While a good start towards sparsification, this alone
would be insufficient for our needs, as different choices of s̄ may lead to many different
connection models, and choosing an arbitrary s̄ would not give an isomorphism-invariant
construction. This difficulty is overcome by the finitariness of φ and λ: our construction will
take into account all of the (boundedly many) possible dicings (see Section 5.3).

The proof of Theorem 12 is broken into three parts as follows.
The first part consists of proving that the label partition L can be chosen to be definable
as a partition λ(Gx̄; s̄) into s̄-types. This is achieved thanks to a more general result of
Bonnet et al. [3] pertaining to classes of bounded VC-dimension.
We then show that the component partition P can be chosen to be definable by a formula
φ(Gx̄; s̄) using the same parameters s̄. This relies on known properties of classes of
bounded shrubdepth [16].
We then apply our Finitary Substitute Lemma (Lemma 11) and prove that φ and λ can
be taken to be finitary.

Definability of the label partition. For a subset of vertices S of a graph G we let LS denote
the partition of the vertex set of G into neighborhood classes with respect to S: u and v

belong to the same part of LS if and only if

{w ∈ S | u and w are adjacent} = {w ∈ S | v and w are adjacent}.

Note that we have |LS | ⩽ 2|S|. It turns out that label partitions can be taken of this form.

▶ Lemma 13 (follows from Theorem 3.5 of [3]). Let C be graph class of bounded shrubdepth.
Then for every graph G ∈ C and dicing (P,L) of G of order at most t, there exists S ⊆ V (G)
with |S| ⩽ O(t2) such that (P,LS) is also a dicing of G.

Definability of the component partition. We now show that the component partition P
can also be defined using a first-order formula.

▶ Lemma 14. Let C be a graph class of bounded shrubdepth and t ∈ N be an integer. There
exist formulas φ(x̄; ȳ) and λ(x̄; ȳ), both defining a partition, such that the following holds: for
every graph G ∈ C and dicing (P,L) of G of order at most t, there exists s̄ ∈ Gȳ such that

(P ′,L′) =
(
φ(Gx̄; s̄), λ(Gx̄; s̄)

)
is a dicing of G of order at most 2O(t2). Further, every part of P ′ is entirely contained in
some part of P.

Proof sketch. By Lemma 13, there exists a vertex subset S with |S| ⩽ O(t2) such that
(P,LS) is also a dicing of G, with relation Z ⊆ LS × LS . We let H denote the graph
obtained by “flipping according to the dicing (P,LS)”, meaning that we exchange edges
and non-edges between pairs of parts in LS that belong to Z. Since (P,LS) is a dicing,
connected components of H are contained in single parts of P; let P ′ denote the partition
of V (G) = V (H) into connected components in H. Since H can be transduced from G, it
has bounded shrubdepth, and thus we get that each part of P ′ have diameter bounded by a
constant; this is because every class of bounded shrubdepth does not admit arbitrarily long
induced paths [16]. We deduce that there is a formula expressing that two vertices belong to
the same P ′-component, and the result follows. ◀

P. Ohlmann, M. Pilipczuk, W. Przybyszewski, and S. Toruńczyk 135:13

Finitariness of the definition. We are now ready to derive the theorem.

Proof sketch for Theorem 12. Let Labels be a large enough set of labels so that graphs in
C admit connection models with labels in Labels, and let C ′ be the class of all graphs that
admit a connection model of depth at most d− 1 using the label set Labels. By Lemma 14,
there exist formulas φ(x̄; ȳ) and λ(x̄; ȳ), depending only on C , such that there is s̄ ∈ Gȳ

for which (φ(Gx̄; s̄), λ(Gx̄; s̄)) is a dicing of G of order at most ℓ, where ℓ ∈ 2O(|Labels|2) is a
constant depending only on C . Moreover, every part of φ(Gx̄; s̄) is entirely contained in a
single part of P, which implies that for every part A′ of φ(Gx̄, s̄) we have G[A′] ∈ C ′. It
remains to transform φ and λ into finitary formulas. Let T be the theory of C .

Let R be a relation symbol of arity 4 and consider the following assertion:

“R is the product of two partitions P and L such that (P,L) is a dicing of G of
order at most ℓ. Moreover, for every part A of P it holds that G[A] ∈ C ′”.

It follows from [16, Corollary 3.9] that the assertion above can be expressed by a first order
sentence ψ over the signature {E,R}. Moreover, ψ is hereditary, so we may apply the
Finitary Substitute Lemma to the formula η(x̄1, x̄2; ȳ) = φ(x̄1; ȳ) ∧ λ(x̄2, ȳ); we get a finitary
η′(x̄1, x̄2; ȳ) such that

T implies ∃s̄.ψ[R(x̄1, x̄2)/η′(x̄1, x̄2; s̄)].

Then the formulas

φ′(x̄; ȳ) = ∃z.η′(x̄, z, z; ȳ) and λ′(x̄; ȳ) = ∃z.η′(z, z, x̄; ȳ)

yield the wanted result. ◀

5.3 Canonical reduction to bounded treedepth
With Theorem 12 in hand, we proceed to the proof of Theorem 2. Fix a class C of shrubdepth
at most d.

Properties of the construction. We describe a construction that, given a graph G ∈ C ,
constructs a structure A(G) of the following shape.

A(G) is a structure over a signature consisting of several unary relations and one binary
relation. Thus, we see A(G) as a vertex-colored directed graph, and we will apply the
usual directed graphs terminology to A(G).
The vertex set of G is contained in the vertex set of A(G). The elements of V (G) will be
called leaves of A(G). In A(G) there is a unary predicate marking all the leaves.
In A(G) there is a specified vertex, called the root, such that for every vertex u of A(G)
there is an arc from u to the root. The root is identified using a unary predicate.

The construction will satisfy the following properties.
The mapping G 7→ A(G) is isomorphism-invariant within the class C .
For every vertex u of A(G), there are at most c arcs with tail at u, for some constant c
depending only on C .
There is a transduction T depending on C such that A(G) ∈ T(G).
The class {A(G) | G ∈ C } has bounded treedepth.
There is an interpretation I depending on C such that G = I(A(G)).
Given G, A(G) can be computed in time O(n2), where n is the vertex count of G.

We proceed by induction on d, the shrubdepth of C ; the base case d = 1 is obvious.

ICALP 2023

135:14 Canonical Decompositions of Stable Graphs

Preparation for the inductive construction. Suppose d > 1. Let φ(x̄; ȳ), λ(x̄; ȳ), ℓ ∈ N,
and C ′ be the finitary formulas, the bound, and the class provided by Theorem 12. Since
the shrubdepth of C ′ is at most d− 1, by induction assumption we get a suitable mapping
A′(·), constant c′, transduction T′, and interpretation I′ that satisfy the properties stated
above for C ′.

Call a tuple s̄ ∈ Gȳ good if (φ(Gx̄; s̄), λ(Gx̄; s̄)) is a dicing of G of order at most ℓ satisfying
that for every part A of φ(Gx̄, s̄) it holds that G[A] ∈ C ′. Define

F = { (φ(Gx̄; s̄), λ(Gx̄; s̄)) : s̄ ∈ Gȳ is a good tuple }.

By Theorem 12, we have

1 ⩽ |F| ⩽ k

for some constant k ∈ N depending only on C .
Let L̂ be the coarsest partition that refines all label partitions of the dicings belonging

to F ; that is, u, v are in the same part of L̂ if and only if u, v are in the same part of L
for each (P,L) ∈ F . Similarly, let P̂ be the coarsest partition that refines all component
partitions of the dicings belonging to F . Since |F| ⩽ k and |L| ⩽ ℓ for each label partition
featured in F , we have

|L̂| ⩽ ℓk.

Moreover, every part of P̂ is contained in a single part of any component partition featured
in F , hence G[B] ∈ C ′ for every part B of P̂.

Let F̂ = {(P, L̂) : (P,L) ∈ F}. Since L̂ refines each label partition featured in F , it
follows that every element of F̂ is a dicing of G. Then, for a component partition P featured
in F , let ZP ⊆ L̂ × L̂ be the symmetric relation witnessing that (P, L̂) is a dicing.

Definition of the construction. We now describe the structure A(G); see Figure 1. Con-
struct:

a root vertex r;
for every part L ∈ L̂, a vertex xL;
for every component partition P featured in F , a vertex yP ;
for every component partition P featured in F , and every part A ∈ P , a vertex zP,A; and
for every component partition P featured in F , and every (unordered) pair LL′ ∈ ZP , a
vertex qP,LL′ . (Note here that ZP is symmetric, so we may treat its elements as unordered
pairs of elements of L̂.)

Further, for every part B of P̂ we have G[B] ∈ C ′, hence we may apply the construction
A′ to G[B], yielding a structure HB = A′(G[B]). Let rB be the root of HB. We add all
structures HB obtained in this way to A(G). We then connect these with the following arcs:
1. for every vertex u of A(G) there is an arc (u, r);
2. for every vertex of the form zP,A there is an arc (zP,A, yP);
3. for every vertex of the form qP,LL′ , there are arcs (qP,LL′ , xL), (qP,LL′ , xL′), and

(qP,LL′ , yP);
4. for every part B of P̂ and every component partition P featured in F , there is an arc

(rB , zP,A), where A is the unique part of P that contains B;
5. for every vertex u of G there is an arc (u, xL), where L is the unique part of L̂ that

contains u. (Recall that the vertex set of G is the union of the leaf sets of HB for B ∈ P̂ .)

P. Ohlmann, M. Pilipczuk, W. Przybyszewski, and S. Toruńczyk 135:15

rB

r

X Y

Z

(4)

(5)

HB

Q
(1)(2)(3) (3)

(4)
(4)

(5)

(1)

(1)

(2)(2)

Figure 1 Inductive construction of A(G). Vertices of the form r, yP , zP,A, qP,LL′ are depicted
in red, orange, violet, and green, respectively. Vertices of the form xL are depicted in the top-left
corner of the figure in different soft colors (which do not correspond to unary predicates), matching
the colors of vertices of G that point to them; thus the soft color partition is L̂. We depict a few
representatives for each type of arcs.

Finally, we add five fresh unary predicates, called R,X, Y, Z,Q, respectively selecting the
root r, the vertices of the form xL, the vertices of the form yP , the vertices of the form zP,A,
and the vertices of the form qP,LL′ . Note here that H contains more unary predicates: those
that come with structures HB constructed by induction. These include a unary relation
selecting the leaves.

This concludes the construction of A(G). We do not include detailed proofs of the
properties listed above, and refer instead to the full version. That the transformation is
isomorphism-invariant and that every element is the tail of a bounded number of arcs follows
directly from the construction. Also, it is quite straightforward to transduce A(G) from
G, by guessing good tuples s̄1, . . . , s̄k′ ; then it follows from the results of Ganian et al. [16]
that the class of D = {A(G) : G ∈ C } has bounded shrubdepth. This, together with the
sparsity of A(G) following from the bound on outdegrees, implies that D in fact has bounded
treedepth. Further, there is no difficulty in interpreting G in A(G). To compute A(G) in
quadratic time, we rely on algorithmic meta-theorems over graphs of bounded cliquewidth
obtained from combining [12, 21]. Theorem 2 follows.

5.4 Canonization and isomorphism test
We now use Theorem 2 to prove Theorem 3, that is, give a quadratic-time isomorphism test
for any class of graphs of bounded shrubdepth. As mentioned in the introduction, in fact we
solve the more general canonization problem, defined as follows.

For a class of structures C , a canonization map for C is a mapping c with the following
property: for every M ∈ C , c(M) is a total order on elements of M so that if M,M′ ∈ C

are isomorphic, then associating elements with same index in c(M) and in c(M′) yields an
isomorphism between M and M′. Note that if there is a canonization map c for C that is
efficiently computable, then this immediately gives an isomorphism test within the same
time complexity.

ICALP 2023

135:16 Canonical Decompositions of Stable Graphs

For classes of bounded treedepth, Bouland et al. [4] gave a relatively easy fixed-parameter
isomorphism test. Their techniques can be easily extended to the canonization problem for
binary structures of bounded treedepth.

▶ Theorem 15 (Adapted from [4]). Let D be a class of binary structures of bounded treedepth.
There exists a canonization map c on D that is computable in time O(n log2 n), where n is
the size of the universe of the input structure.

We can now prove the main result of this section.

▶ Theorem 16. Let C be a class of graphs of bounded shrubdepth. There exists a canonization
map c on C that is computable in time O(n2), where n is the vertex count of the input graph.

Proof. Let D be the class of bounded treedepth and A : C → D be the mapping provided
by Theorem 2 for the class C . Then to get a suitable canonization map for C , it suffices
to compose A with the canonization map for D , provided by Theorem 15, and restrict the
output order to the vertex set of the original graph. ◀

As discussed, Theorem 3 follows immediately from Theorem 16.

References
1 Algorithms, Logic and Structure Workshop in Warwick – Open Problem Session.

URL: https://warwick.ac.uk/fac/sci/maths/people/staff/daniel_kral/alglogstr/
openproblems.pdf, 2016.

2 Hans Adler and Isolde Adler. Interpreting nowhere dense graph classes as a classical notion of
model theory. Eur. J. Comb., 36:322–330, 2014. doi:10.1016/j.ejc.2013.06.048.

3 Édouard Bonnet, Jan Dreier, Jakub Gajarský, Stephan Kreutzer, Nikolas Mählmann, Pierre
Simon, and Szymon Torunczyk. Model Checking on Interpretations of Classes of Bounded
Local Cliquewidth. In LICS ’22: 37th Annual ACM/IEEE Symposium on Logic in Computer
Science, pages 54:1–54:13. ACM, 2022. doi:10.1145/3531130.3533367.

4 Adam Bouland, Anuj Dawar, and Eryk Kopczyński. On Tractable Parameterizations of Graph
Isomorphism. In 7th International Symposium on Parameterized and Exact Computation,
IPEC 2012, volume 7535 of Lecture Notes in Computer Science, pages 218–230. Springer, 2012.
doi:10.1007/978-3-642-33293-7_21.

5 Samuel Braunfeld and Michael C. Laskowski. Characterizations of monadic NIP. Transactions
of the American Mathematical Society, Series B, 8(30):948–970, 2021. doi:10.1090/btran/94.

6 Samuel Braunfeld and Michael C. Laskowski. Existential characterizations of monadic NIP.
CoRR, abs/2209.05120, 2022. doi:10.48550/arXiv.2209.05120.

7 Samuel Braunfeld, Jaroslav Nešetřil, Patrice Ossona de Mendez, and Sebastian Siebertz.
Decomposition horizons: from graph sparsity to model-theoretic dividing lines. CoRR,
abs/2209.11229, 2022. doi:10.48550/arXiv.2209.11229.

8 Yijia Chen and Jörg Flum. FO-Definability of Shrub-Depth. In 28th EACSL Annual Conference
on Computer Science Logic, CSL 2020, volume 152 of LIPIcs, pages 15:1–15:16. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2020. doi:10.4230/LIPIcs.CSL.2020.15.

9 Artem Chernikov. Lecture notes on stability theory. AMS Open Math Notes (OMN:
201905.110792), 2019.

10 Jan Dreier, Nikolas Mählmann, and Sebastian Siebertz. First-order model checking on
structurally sparse graph classes. CoRR, abs/2302.03527, 2023. doi:10.48550/arXiv.2302.
03527.

11 Jan Dreier, Nikolas Mählmann, Sebastian Siebertz, and Szymon Torunczyk. Indiscernibles
and flatness in monadically stable and monadically NIP classes. CoRR, abs/2206.13765, 2022.
doi:10.48550/arXiv.2206.13765.

https://warwick.ac.uk/fac/sci/maths/people/staff/daniel_kral/alglogstr/openproblems.pdf
https://warwick.ac.uk/fac/sci/maths/people/staff/daniel_kral/alglogstr/openproblems.pdf
https://doi.org/10.1016/j.ejc.2013.06.048
https://doi.org/10.1145/3531130.3533367
https://doi.org/10.1007/978-3-642-33293-7_21
https://doi.org/10.1090/btran/94
https://doi.org/10.48550/arXiv.2209.05120
https://doi.org/10.48550/arXiv.2209.11229
https://doi.org/10.4230/LIPIcs.CSL.2020.15
https://doi.org/10.48550/arXiv.2302.03527
https://doi.org/10.48550/arXiv.2302.03527
https://doi.org/10.48550/arXiv.2206.13765

P. Ohlmann, M. Pilipczuk, W. Przybyszewski, and S. Toruńczyk 135:17

12 Fedor V. Fomin and Tuukka Korhonen. Fast FPT-approximation of branchwidth. In 54th
Annual ACM SIGACT Symposium on Theory of Computing, STOC ’22, pages 886–899. ACM,
2022. doi:10.1145/3519935.3519996.

13 Jakub Gajarský and Petr Hliněný. Faster Deciding MSO Properties of Trees of Fixed Height,
and Some Consequences. In IARCS Annual Conference on Foundations of Software Technology
and Theoretical Computer Science, FSTTCS 2012, volume 18 of LIPIcs, pages 112–123. Schloss
Dagstuhl – Leibniz-Zentrum für Informatik, 2012. doi:10.4230/LIPIcs.FSTTCS.2012.112.

14 Jakub Gajarský, Stephan Kreutzer, Jaroslav Nešetřil, Patrice Ossona de Mendez, Michał
Pilipczuk, Sebastian Siebertz, and Szymon Toruńczyk. First-Order Interpretations of Bounded
Expansion Classes. ACM Trans. Comput. Log., 21(4):29:1–29:41, 2020. doi:10.1145/3382093.

15 Jakub Gajarský, Nikolas Mählmann, Rose McCarty, Pierre Ohlmann, Michał Pilipczuk,
Wojciech Przybyszewski, Sebastian Siebertz, Marek Sokolowski, and Szymon Torunczyk.
Flipper games for monadically stable graph classes. CoRR, abs/2301.13735, 2023. doi:
10.48550/arXiv.2301.13735.

16 Robert Ganian, Petr Hliněný, Jaroslav Nešetřil, Jan Obdržálek, and Patrice Ossona de Mendez.
Shrub-depth: Capturing Height of Dense Graphs. Log. Methods Comput. Sci., 15(1), 2019.
doi:10.23638/LMCS-15(1:7)2019.

17 Robert Ganian, Petr Hliněný, Jaroslav Nešetřil, Jan Obdržálek, Patrice Ossona de Mendez, and
Reshma Ramadurai. When Trees Grow Low: Shrubs and Fast MSO1. In 37th International
Symposium on Mathematical Foundations of Computer Science 2012, MFCS 2012, volume
7464 of Lecture Notes in Computer Science, pages 419–430. Springer, 2012. doi:10.1007/
978-3-642-32589-2_38.

18 Martin Grohe, Stephan Kreutzer, and Sebastian Siebertz. Deciding First-Order Properties of
Nowhere Dense Graphs. J. ACM, 64(3):17:1–17:32, 2017. doi:10.1145/3051095.

19 Martin Grohe and Daniel Neuen. Isomorphism, canonization, and definability for graphs of
bounded rank width. Commun. ACM, 64(5):98–105, 2021. doi:10.1145/3453943.

20 Martin Grohe and Pascal Schweitzer. Isomorphism Testing for Graphs of Bounded Rank
Width. In IEEE 56th Annual Symposium on Foundations of Computer Science, FOCS 2015,
pages 1010–1029. IEEE Computer Society, 2015. doi:10.1109/FOCS.2015.66.

21 Wojciech Kazana and Luc Segoufin. Enumeration of monadic second-order queries on trees.
ACM Trans. Comput. Log., 14(4):25:1–25:12, 2013. doi:10.1145/2528928.

22 O-joung Kwon, Rose McCarty, Sang-il Oum, and Paul Wollan. Obstructions for bounded
shrub-depth and rank-depth. J. Comb. Theory, Ser. B, 149:76–91, 2021. doi:10.1016/j.
jctb.2021.01.005.

23 Jaroslav Nešetřil and Patrice Ossona de Mendez. Sparsity: Graphs, Structures, and Al-
gorithms, volume 28 of Algorithms and Combinatorics. Springer, 2012. doi:10.1007/
978-3-642-27875-4.

24 A. Pillay. Geometric Stability Theory. Oxford logic guides. Clarendon Press, 1996. URL:
https://books.google.pl/books?id=k6FK_Gqal2EC.

25 Klaus-Peter Podewski and Martin Ziegler. Stable graphs. Fundamenta Mathematicae,
100(2):101–107, 1978. doi:10.4064/fm-100-2-101-107.

26 Saharon Shelah. Classification theory – and the number of non-isomorphic models, volume 92
of Studies in logic and the foundations of mathematics. North-Holland Publishing Co., 1978.

27 Katrin Tent and Martin Ziegler. A Course in Model Theory. Lecture Notes in Logic. Cambridge
University Press, 2012. doi:10.1017/CBO9781139015417.

ICALP 2023

https://doi.org/10.1145/3519935.3519996
https://doi.org/10.4230/LIPIcs.FSTTCS.2012.112
https://doi.org/10.1145/3382093
https://doi.org/10.48550/arXiv.2301.13735
https://doi.org/10.48550/arXiv.2301.13735
https://doi.org/10.23638/LMCS-15(1:7)2019
https://doi.org/10.1007/978-3-642-32589-2_38
https://doi.org/10.1007/978-3-642-32589-2_38
https://doi.org/10.1145/3051095
https://doi.org/10.1145/3453943
https://doi.org/10.1109/FOCS.2015.66
https://doi.org/10.1145/2528928
https://doi.org/10.1016/j.jctb.2021.01.005
https://doi.org/10.1016/j.jctb.2021.01.005
https://doi.org/10.1007/978-3-642-27875-4
https://doi.org/10.1007/978-3-642-27875-4
https://books.google.pl/books?id=k6FK_Gqal2EC
https://doi.org/10.4064/fm-100-2-101-107
https://doi.org/10.1017/CBO9781139015417

Probabilistic Guarded KAT Modulo Bisimilarity:
Completeness and Complexity
Wojciech Różowski # Ñ

Department of Computer Science, University College London, UK

Tobias Kappé # Ñ

Open Universiteit, Heerlen, The Netherlands
ILLC, University of Amsterdam, The Netherlands

Dexter Kozen # Ñ

Department of Computer Science, Cornell University, Ithaca, NY, USA

Todd Schmid # Ñ

Department of Computer Science, University College London, UK

Alexandra Silva # Ñ

Department of Computer Science, Cornell University, Ithaca, NY, USA

Abstract
We introduce Probabilistic Guarded Kleene Algebra with Tests (ProbGKAT), an extension of GKAT
that allows reasoning about uninterpreted imperative programs with probabilistic branching. We
give its operational semantics in terms of special class of probabilistic automata. We give a sound
and complete Salomaa-style axiomatisation of bisimilarity of ProbGKAT expressions. Finally, we
show that bisimilarity of ProbGKAT expressions can be decided in O(n3 log n) time via a generic
partition refinement algorithm.

2012 ACM Subject Classification Theory of computation → Program reasoning

Keywords and phrases Kleene Algebra with Tests, program equivalence, completeness, coalgebra

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.136

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version Full Version: https://arxiv.org/abs/2305.01755 [51]

Funding This work was partially supported by ERC grant Autoprobe (no. 101002697; Różowski,
Schmid and Silva), the EU’s Horizon 2020 research and innovation program under Marie Skłodowska-
Curie grant VERLAN (no. 101027412; Kappé), and NSF grant CCF-2008083 (Kozen).

1 Introduction

Randomisation is an important feature in the design of efficient algorithms, cryptographic
protocols, and stochastic simulation [9]. For a simple example of randomisation, imagine
simulating a three-sided die [64]. There are at least two ways to do this:

A reference implementation could use a fair coin and a biased coin with probability 1
3 of

landing on heads: Toss the biased coin first. If it lands on heads, return , and otherwise
toss the fair coin and return if it lands on heads or otherwise.
Another way to do this is with two consecutive tosses of a fair coin: if the outcome is
heads-heads, then return ; if it is heads-tails, return ; if it is tails-heads, return

; and if it is tails-tails, repeat the process [34].
These programs can be written using a function flip(p) that returns true (heads) with
probability p, and false (tails) with probability 1 − p, see Figure 1. If we can prove that
those programs are equivalent, then we can be certain they implement the same distribution.

EA
T
C
S

© Wojciech Różowski, Tobias Kappé, Dexter Kozen, Todd Schmid, and Alexandra Silva;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 136; pp. 136:1–136:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:w.rozowski@cs.ucl.ac.uk
https://wkrozowski.github.io
https://orcid.org/0000-0002-8241-7277
mailto:tobias.kappe@ou.nl
https://tobias.kap.pe
https://orcid.org/0000-0002-6068-880X
mailto:kozen@cs.cornell.edu
https://www.cs.cornell.edu/~kozen/
https://orcid.org/0000-0002-8007-4725
mailto:todd.schmid.19@ucl.ac.uk
https://toddtoddtodd.net
https://orcid.org/0000-0002-9838-2363
mailto:alexandra.silva@cornell.edu
https://alexandrasilva.org
https://orcid.org/0000-0001-5014-9784
https://doi.org/10.4230/LIPIcs.ICALP.2023.136
https://arxiv.org/abs/2305.01755
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

136:2 Probabilistic Guarded KAT Modulo Bisimilarity: Completeness and Complexity

while true do
if flip(0.5) then

if flip(0.5) then
return

else
return

else
if flip(0.5) then

return
else

skip

if flip(1/3) then
return

else
if flip(0.5) then

return
else

return

Figure 1 On the left, the Knuth-Yao process to simulate a three-sided die with two throws of a
fair coin. On the right, direct implementation of the three-sided die (note that the probability of the
first else-branch is 2

3 , hence both and are returned with probability 1
3).

In this paper, we introduce Probabilistic GKAT (ProbGKAT), a language based on Guarded
Kleene Algebra with Tests (GKAT) [39, 58, 53] augmented with extra constructs for reas-
oning about such randomised programs. The laws of GKAT allow reasoning about the
equivalence of uninterpreted programs with deterministic control flow in the form of Boolean
branching (if-then-else) and looping (while-do) constructs. GKAT comes equipped with
an automata-theoretic operational semantics, a nearly linear decision procedure, and com-
plete axiomatic systems for reasoning about trace equivalence [58] and bisimilarity [53] of
expressions, both inspired by Salomaa’s axiomatisation of Kleene Algebra [52].

ProbGKAT extends GKAT with three new syntactic constructs: (1) a probabilistic choice
operator, representing branching based on a (possibly biased) coin flip; (2) a probabilistic loop
operator, representing a generalised Bernoulli process; and (3) return values, which allow a
limited form of non-local control flow akin to return statements in imperative programming.

The main focus of this paper is the problem of axiomatising bisimilarity of ProbGKAT
expressions. We build on an inference system for reasoning about bisimilarity of GKAT
expressions [53], which includes a generalisation of Salomaa’s axiomatisation of the Kleene
star [52] called the Uniqueness of Solutions axiom (UA), also known in the process algebra
community as Recursive Specification Principle (RSP) [10]. In the presence of both Boolean
guarded and probabilistic branching, axiomatisation becomes significantly more involved.
Besides adding intuitive rules governing the behaviour of probabilistic choice and loops, we
add axioms capturing the interaction of both kinds of branching when combined with looping
constructs. Moreover, in the case of ProbGKAT, showing the soundness of UA becomes highly
nontrivial. We do so by exploiting the topological structure of the operational model, namely
the behavioural pseudometric associated with bisimilarity. Despite the jump in difficulty, our
completeness proof follows a similar strategy as the one for GKAT modulo bisimilarity [53].

Our main contributions are as follows.
We provide an operational semantics of ProbGKAT programs, which relies on a type of
automata that have both Boolean guarded and probabilistic transitions (Section 3).
We concretely characterise bisimulations for our automata using an adaption of the flow
network characterisation of bisimilarity of Markov chains [30, 8] (Section 4).
We give a sound and complete Salomaa-style axiomatisation of bisimulation equivalence
of ProbGKAT expressions (Sections 5 and 6).

W. Różowski, T. Kappé, D. Kozen, T. Schmid, and A. Silva 136:3

e, f ∈ Exp ::= p ∈ Act do p
| b ∈ BExp assert b
| e +b f if b then e else f
| e ; f
| e(b) while b do e
| v ∈ Out return v

| e ⊕r f if flip(r) then e else f
| e[r] while flip(r) do e

Figure 2 Syntax of ProbGKAT.

We show that, when the number of tests is fixed, bisimilarity of ProbGKAT expressions
can be efficiently decided in O(n3 log n) time, where n is the total size of programs under
comparison, by using coalgebraic partition refinement [17, 67] (Section 7).

In Section 2 we define the syntax of ProbGKAT. We survey related work in Section 8;
conclusions and further work appear in Section 9. Proofs appear in the full version [51].

2 Syntax

ProbGKAT has a two-sorted syntax consisting of a set of expressions Exp that contains a set
BExp of Boolean assertions or tests. For a fixed finite set T of primitive tests, the syntax for
tests is denoted BExp and generated by the grammar

b, c ∈ BExp ::= 0 | 1 | t ∈ T | b + c | bc | b̄

Here, 0 and 1 respectively denote false and true, ·̄ denotes negation, + is disjunction, and
juxtaposition is conjunction. Let ≡BA denote Boolean equivalence in BExp. Entailment is a
preorder on BExp given by b ≤BA c ⇐⇒ b+c ≡BA c. The quotient of BExp by ≡BA is the free
Boolean algebra on the set of generators T, in which entailment – [b]≡BA ≤ [c]≡BA ⇐⇒ b ≤BA c
– is a partial order, with bottom and top elements being the equivalence classes of 0 and 1
respectively. The minimal non-zero elements of that partial order are called atoms, and we
will use At to denote the set of atoms. For fixed sets Act of atomic actions and Out of return
values, the set Exp of ProbGKAT expressions is defined by the grammar in Figure 2.

The syntax of GKAT is captured by the first five cases in Figure 2, and so is a proper
fragment of ProbGKAT. There are three new constructs: return values, probabilistic choices,
and probabilistic loops. Return values behave like return statements in imperative programs,
introducing a form of non-local control flow. The probabilistic choice e ⊕r f flips a biased
coin with real bias r ∈ [0, 1] and depending on the outcome runs e with probability r and f
with probability 1 − r. The probabilistic loop e[r] also begins with a biased coin flip, and
depending on the outcome it either executes e and starts again (probability r) or terminates
(probability 1 − r). A probabilistic loop can be regarded as a generalised Bernoulli processes.

▶ Example 1. Recall the two programs from the introduction (Figure 1): one directly
implementing a 3-sided die and the other simulating a 3-sided die with a fair coin. We
can express these programs using three output values, , , and , to model the possible
outcomes of the three-sided die. The first program is the infinite while loop f = g(1), where

ICALP 2023

136:4 Probabilistic Guarded KAT Modulo Bisimilarity: Completeness and Complexity

the loop body is given by g = (⊕ 1
2

) ⊕ 1
2

(⊕ 1
2

1). In f, represents heads-heads, is
heads-tails, is tails-heads, and tails-tails prompts a rethrow. The second program
encodes the ProbGKAT expression e = ⊕ 1

3
(⊕ 1

2
).

3 Operational semantics

In this section, we formally introduce ProbGKAT automata, the operational models of
ProbGKAT expressions. We associate a ProbGKAT automaton with each expression via a
small-step semantics inspired by Brzozowski derivatives [13]. As we will see, the biggest
hurdle is the semantics of the probabilistic loop. Before we provide our small-step semantics,
we introduce the notation and operations on probability distributions that we will need.

Preliminary definitions. A function ν : X → [0, 1] is called a (probability) distribution on X

if it satisfies
∑

x∈X ν(x) = 1. In case
∑

x∈X ν(x) ≤ 1 we call ν a subprobability distribution, or
subdistribution. Every (sub)distribution ν in this paper is finitely supported, which means that
the set supp(ν) = {x ∈ X | ν(x) > 0} is finite. Given A ⊆ X, we define ν[A] =

∑
x∈A ν(x).

This sum is well-defined because only finitely many summands have non-zero probability.
We use Dω(X) to denote the set of finitely supported probability distributions on the set X.

A function f : X → Y can be lifted to a map Dω(f) : Dω(X) → Dω(Y) between distributions
by setting Dω(f)(ν) = ν[f−1(y)]. Given x ∈ X, its Dirac delta is the distribution δx; here
δx(y) is equal to 1 when x = y, and 0 otherwise. Given f : X → Dω(Y), there is a unique
map f̄ : Dω(X) → Dω(Y) such that f = f̄ ◦ δ, called the convex extension of f , and explicitly
given by f̄(ν)(y) =

∑
x∈X ν(x)f(x)(y).

When ν, µ : X → [0, 1] are probability distributions and r ∈ [0, 1], we write rν + (1 − r)µ
for the convex combination of ν and µ, which is the probability distribution given by
(rν + (1 − r)µ)(x) = rν(x) + (1 − r)µ(x); this operation preserves finite support.

Operational model. Operationally, ProbGKAT expressions denote states in a transition
system called a ProbGKAT automaton. Below, we write 2 = { ,✓} for a two element set of
symbols denoting rejection and acceptance respectively.

▶ Definition 2. A ProbGKAT automaton is a pair (X, β) consisting of set of states X and
a transition function β : X × At → Dω(2 + Out + Act × X).

A state in a ProbGKAT automaton associates each Boolean atom α ∈ At (capturing the
global state of the Boolean variables) with a finitely supported probability distribution over
several possible outcomes. One possible outcome is termination, which ends execution and
either signals success (✓) or failure (), or returns an output value (v ∈ Out). The other
possible outcome is progression, performing an action (p ∈ Act) and transitioning to a state.

▶ Example 3. Let X = {x1, x2}, At = {α, β}, Act = {p, q} and Out = {v}. On the right,
there is a definition of a transition function τ : X × At → Dω(2 + Out + Act × X), while on
the left there is a visual representation of (X, τ). Given a state x ∈ X and an atom α ∈ At,
we write τ(x)α rather than τ(x)(α).

x1 ◦

◦

β

α

p | 0.5

x2

q | 0.5

q | 0.5
◦

α, β
✓

1

v
0.5

τ(x1)α = 1
2δ(q,x2) + 1

2δv

τ(x1)β = 1
2δ(p,x1) + 1

2δ(q,x2)

τ(x2)α = τ(x2)β = δ✓

W. Różowski, T. Kappé, D. Kozen, T. Schmid, and A. Silva 136:5

We use solid lines annotated with (sets of) atoms to denote Boolean guarded branching,
dashed lines annotated with atomic actions and probabilities to denote probabilistic labelled
transitions to a next state, and double bar arrows pointing at elements of 2 + Out annotated
with probabilities to denote probabilistic transitions that result in termination or output.

The following notions of homomorphism and bisimulation describe structure-preserving
maps and relations between ProbGKAT automata.

▶ Definition 4. A homomorphism between ProbGKAT automata (X, β) and (Y, γ) is a
function f : X → Y satisfying for all x ∈ X and α ∈ At
1. For any o ∈ 2 + Out, γ(f(x))α(o) = β(x)α(o)
2. For any (p, y) ∈ Act × Y , γ(f(x))α(p, y) = β(x)α[{p} × f−1(y)]

▶ Definition 5. Let (X, β) and (Y, γ) be ProbGKAT automata and let R ⊆ X×Y be a relation.
R is a bisimulation if there exists a transition function ρ : R × At → Dω(2 + Out + Act × R)
such that projection maps π1 : R → X and π2 : R → Y given by π1(x, y) = x and π2(x, y) = y

are homomorphisms from (R, ρ) to (X, β) and (Y, γ) respectively.

▶ Remark 6. Definitions 4 and 5 are direct translations from the coalgebraic theory of
ProbGKAT automata [51, Appendix A]. Coalgebra plays a central role in our proofs, but for
purposes of exposition it does not appear in the body of the present paper.

Brzozowski construction. ProbGKAT expressions can be endowed with an operational
semantics in the form of a ProbGKAT automaton ∂ : Exp × At → Dω(2 + Out + Act × Exp),
which we refer to as the Brzozowski derivative, as it is reminiscent of the analogous construction
for regular expressions and deterministic finite automata due to Brzozowski [13].

Given α ∈ At, e, f ∈ Exp, b ∈ BExp, v ∈ Out, r ∈ [0, 1], and p ∈ Act, we define

∂(b)α =
{

δ✓ α ≤BA b
δ α ≤BA b̄

∂(e +b f)α =
{

∂(e)α α ≤BA b
∂(f)α α ≤BA b̄

∂(v)α = δv ∂(p)α = δ(p,1) ∂(e ⊕r f)α = r∂(e)α + (1 − r)∂(f)α

The derivatives of sequential composition and loops are defined below. The outgoing
transitions of b ∈ BExp depend on whether or not the input atom α ∈ At satisfies b, either
outputting ✓ (success) or (abort) with probability 1. The outgoing transitions of a guarded
choice e +b f consist of the outgoing transitions of e labelled by atoms satisfying b and the
outgoing transitions of f labelled by atoms satisfying b̄ (as in GKAT). The output value
v ∈ Out returns the value v with probability 1 given any input atom. The atomic action
p ∈ Act emits p given any input atom and transitions to the expression 1. The outgoing
transitions of the probabilistic choice e ⊕r f consist of the outgoing transitions of e with
probabilities scaled by r and the outgoing transitions of f scaled by 1 − r.

The behaviour of the sequential composition e ; f is more complicated. We need to factor
in the possibility that e may accept with some probability t given an input atom α, in
which case the α-labelled outgoing transitions of f contribute to the outgoing transitions of
e ; f. Formally, we write ∂(e ; f)α = ∂(e)α ◁α f, where given α ∈ At and f ∈ Exp we define
(− ◁α f) : Dω(2 + Out + Act × Exp) → Dω(2 + Out + Act × Exp) to be the convex extension
of cα,f : 2 + Out + Act × Exp → Dω(2 + Out + Act × Exp) given below on the left.

ICALP 2023

136:6 Probabilistic Guarded KAT Modulo Bisimilarity: Completeness and Complexity

cα,f(x) =


δx x ∈ { } ∪ Out
∂(f)α x = ✓

δ(p,e′;f) x = (p, e′)

e ; f

◦
α

e′ ; f❅❅✓∂(f)α
t p | s

Intuitively, cα,f reroutes the transitions coming out of e: acceptance (the second case) is
replaced by the behaviour of f, and the probability mass of transitioning to e′ (the third case)
is reassigned to e ; f. The branches that output the elements of { } + Out are unchanged by
this operation. A pictorial representation of the effect on the derivatives of e ; f is given above
on the right. Here, we assume that ∂(e)α can perform a p-transition to e′ with probability s;
we make the same assumption in the informal descriptions of derivatives for loops, below.

For guarded loops, we consider three cases when defining ∂
(
e(b))

α
. If α ≤BA b̄, then the

current state does not satisfy the loop guard and can be skipped: ∂
(
e(b))

α
= δ✓. If α ≤BA b

and ∂(e)α(✓) = 1, then the loop body is called, but the inner program e does not perform
actions. We identify divergent loops with rejection and so in this case we set ∂

(
e(b))

α
= δ .

If α ≤BA b and ∂(e)α(✓) < 1, the program executes the loop body and starts again, having to
redistribute the probability mass of immediate acceptance ∂(e)α(✓) through each execution.
So, for α ≤BA b and ∂(e)α(✓) < 1, the definition of ∂(e(b))α is given below on the left: it
rejects or returns when e does, and transitions to e′ ; e(b) when e transitions to e′.

∂(e(b))α(x) =


∂(e)α(x)

1−∂(e)α(✓) x ∈ { } ∪ Out
∂(e)α(p,e′)

1−∂(e)α(✓) x =
(
p,

(
e′ ; e(b)))

0 otherwise

e(b)

◦

◦ ✓
1

b

b̄

e′ ; e(b)
❅❅✓

t p | s/(1 − t)

The reweighing of probabilities used in the definition of the loops comes from defining loops
as least fixpoints w.r.t. to an order on distributions, similarly to Stark and Smolka [62].

Finally, we specify the behaviour of the probabilistic loop. In the special case where
∂(e)α(✓) = 1 and r = 1, the loop will not terminate; hence we set ∂

(
e[r])

α
= δ . In all

other cases, we look at ∂(e)α to build ∂(e[r])α for each α ∈ At. First, we make sure that
the loop may be skipped with probability 1 − r. Next, we account for the possibility that e
may reject or return a value, and we modify the productive branches by adding e[r] to be
executed next, as was done for the guarded loop. The remaining mass is r∂(e)α(✓), the
probability that we will enter the loop with an atom that can skip over the loop body. As
was the case for the guarded loop, we discard this possibility and redistribute it among the
remaining branches. The resulting definition of ∂(e[r])α is given below on the left.

∂
(

e[r]
)

α
(x) =



1−r
1−r∂(e)α(✓) x = ✓

r∂(e)α(x)
1−r∂(e)α(✓) x ∈ { } ∪ Out
r∂(e)α(p,e′)

1−r∂(e)α(✓) x =
(
p,

(
e′ ; e[r]))

0 otherwise

e[r]

◦
α

✓ e′ ; e[r]

❅❅✓

1−r
1−rt

rt

p | rs/(1 − rt)

As before, we provide an informal visual depiction of the probabilistic loop semantics above
on the right, using the same conventions.

Reachable states. For any ProbGKAT automaton (X, β) and any x ∈ X, we denote by
⟨x⟩β the set of states reachable from x via β. Clearly, (⟨x⟩β , β) is a ProbGKAT automaton
and is the smallest subautomaton of (X, β) containing x. The canonical inclusion map

W. Różowski, T. Kappé, D. Kozen, T. Schmid, and A. Silva 136:7

(⟨x⟩β , β) → (X, β) is a ProbGKAT automaton homomorphism. In particular, (⟨e⟩∂ , ∂) is the
smallest subautomaton of (Exp, ∂) containing e. We will refer to this subautomaton as the
small-step semantics of e. We will often abuse notation and write ⟨e⟩∂ for (⟨e⟩∂ , ∂).

The following lemma says that every ProbGKAT expression generates a finite automaton.

▶ Lemma 7. For all e ∈ Exp, ⟨e⟩∂ is finite. In fact, the number of states is bounded above
by #(e) : Exp → N, where #(−) is defined recursively by

#(b) = 1 #(v) = 1 #(p) = 2 #(e +b f) = #(e) + #(f) #(e ⊕r f) = #(e) + #(f)

#(e ; f) = #(e) + #(f) #
(
e(b)) = #(e) #

(
e[r]) = #(e)

4 Bisimulations and their properties

Verifying that a given relation is a bisimulation (Definition 5) requires that we construct a
suitable transition structure on the relation. In this section, we give necessary and sufficient
conditions for the existence of such a transition structure. We also study properties of the
bisimilarity relation ∼, the largest bisimulation [50].

Concrete characterisation of bisimulation equivalence. There is a beautiful characterisa-
tion of bisimulations between Markov chains in [30], whose proof makes use of the max-flow
min-cut theorem. Adapting this work to ProbGKAT automata produces a useful character-
isation of bisimulation equivalences, bisimulations that are also equivalence relations.

▶ Lemma 8. Let (X, β) be a ProbGKAT automaton and let R ⊆ X × X be an equivalence
relation. R is a bisimulation if and only if and only if for all (x, y) ∈ R and α ∈ At,
1. for all o ∈ 2 + Out, β(x)α(o) = β(y)α(o), and
2. for all equivalence classes Q ∈ X/R and all p ∈ Act, β(x)α[{p} × Q] = β(y)α[{p} × Q]

This lemma can be seen as an extension of Larsen-Skou bisimilarity [40] to systems with
outputs. Intuitively, R is a bisimulation equivalence if for any atom α ∈ At and (x, y) ∈ R, the
transitions assign the same probabilities to any output, and the probability of transitioning
into any given equivalence class after emitting p is the same for both x and y.

Bisimilarity and its properties. Given a relation R ⊆ X × Y , define R−1 = {(y, x) | x R y},
and given A ⊆ X, write R(A) = {y ∈ Y | x R y, x ∈ A}. The bisimilarity relation
∼β,γ ⊆ X × Y between (X, β) and (Y, γ) is the greatest fixpoint of the following operator.

▶ Definition 9. Let (X, β) and (Y, γ) be ProbGKAT automata and let R ⊆ X × Y . We define
the operator Φβ,γ : 2X×Y → 2X×Y so that (x, y) ∈ Φβ,γ(R) if for any given α ∈ At,

for all o ∈ 2 + Out, β(x)α(o) = γ(y)α(o),
for all A ⊆ X and all p ∈ Act, β(x)α[{p} × A] ≤ γ(y)α[{p} × R(A)], and
for all B ⊆ Y and p ∈ Act, γ(y)α[{p} × B] ≤ β(x)α[{p} × R−1(B)].

From now on, we will omit the subscripts from Φ when the automata are clear from context.

The operator Φβ,γ can also be used to define a behavioural pseudometric. Let (X, β)
be a ProbGKAT automaton. A relation refinement chain is an indexed family {∼(i)}i∈N
of relations on X defined as: ∼(0)= X × X, ∼(i+1)= Φ(∼(i)). We can intuitively think of
successive elements of this chain as closer approximations of bisimilarity (see also [26]).

▶ Theorem 10. Let (X, β) be a ProbGKAT automaton. For any x, y ∈ X, x ∼ y if and only
if for all i ∈ N, we have x ∼(i) y.

ICALP 2023

136:8 Probabilistic Guarded KAT Modulo Bisimilarity: Completeness and Complexity

Table 1 Axiomatisation of ProbGKAT. In the figure e, f, g ∈ Exp, b, c ∈ BExp, v ∈ Out, p ∈ Act
and r, s ∈ [0, 1]. Laws involving division of probabilities apply when the denominator is not zero. To
simplify the notation, we write E (e) = 0 to denote that for all α ∈ At it holds that E (e)α = 0.

Guarded Choice Axioms
(G1) e +b e ≡ e
(G2) e +b f ≡ b ; e +b f
(G3) e +b f ≡ f +b̄ e
(G4) (e +b f) +c g ≡ e +bc (f +c g)

Distributivity Axiom
(D) e ⊕r (f +b g) ≡ (e ⊕r f) +b (e ⊕r g)

Sequencing Axioms
(S1) 1 ; e ≡ e
(S2) e ; 1 ≡ e
(S3) (e ; f) ; g ≡ e ; (f ; g)
(S4) 0 ; e ≡ 0
(S5) (e +b f) ; g ≡ e ; g +b f ; g
(S6) (e ⊕r f) ; g ≡ e ; g ⊕r f ; g
(S7) v ; e ≡ v

(S8) b ; c ≡ bc

Loop Axioms
(L1) e(b) ≡ e ; e(b) +b 1
(L2) e[r] ≡ e ; e[r] ⊕r 1
(L3) (e +c 1)(b) ≡ (c ; e)(b)

(L4) e(1) ≡ e[1]

(L5) e ≡ (f ⊕s 1) +c g s > 0
c ; e(b) ≡ c ;

(
f ; e(b) +b 1

)
(L6) e ≡ (f ⊕s 1) +c g

c ; e[r] ≡ c ;
(

f ; e[r] ⊕ rs
1−r(1−s)

1
)

Probabilistic Choice Axioms
(P1) e ⊕r e ≡ e
(P2) e ⊕1 f ≡ e
(P3) e ⊕r f ≡ f ⊕1−r e
(P4) (e ⊕r f) ⊕s g ≡ e ⊕rs (f ⊕ (1−r)s

1−rs

g)

Fixpoint Rules
(F1) g ≡ e ; g +b f E (e) = 0

g ≡ e(b) ; f

(F2) g ≡ e ; g ⊕r f E (e) = 0
g ≡ e[r] ; f

Define E : Exp → At → [0, 1] inductively by

E (p)α = E (v)α = 0

E (b)α =
{

1 α ≤BA b
0 α ≤BA b̄

E (e +b f)α =
{

E (e)α α ≤BA b
E (f)α α ≤BA b̄

E (e ⊕r f)α = rE (e)α + (1 − r)E (f)α

E (e ; f)α = E (e)α E (f)α

E
(

e(b)
)

α
= E

(
b̄
)

α

E
(

e[r]
)

α
=

{
0 r = 1 and E (e)α = 1

1−r
1−rE(e)α

otherwise

Thus, if x, y ∈ X are not bisimilar, then there exists a maximal i ∈ N such that x ∼(i) y.
In Section 6, we use this to define a pseudometric on the states of any ProbGKAT automaton.
Informally speaking, this allows us to quantify how close to being bisimilar two states are.

Our main goal is to axiomatise bisimilarity of ProbGKAT expressions with a set of equa-
tional laws and reason about equivalence using equational logic. For such an axiomatisation
to exist, bisimilarity needs to be both an equivalence relation and a congruence with respect
to the ProbGKAT operations. The greatest bisimulation on any ProbGKAT automaton is an
equivalence [50], but being congruence requires an inductive argument.

▶ Theorem 11. The greatest bisimulation on (Exp, ∂) is a congruence with respect to
ProbGKAT operations.

W. Różowski, T. Kappé, D. Kozen, T. Schmid, and A. Silva 136:9

5 Axiomatisation

We turn our attention to axiomatisation of bisimilarity of ProbGKAT expressions, using an
axiom system based on GKAT modulo bisimilarity [53]. First, we give an overview of the
axioms, and establish their soundness. Finally, we show that our axioms are strong enough
to decompose every expression into a certain syntactic normal form relating the expressions
to their small-step semantics. Completeness is tackled in the next section.

Overview of the axioms. Table 1 contains the axioms, which are either equational (of the
form e ≡ f), or quasi-equational (of the form e1 ≡ f1, . . . en ≡ fn =⇒ e ≡ f). It also holds
the definition of the function E (−), which is necessary to give a side condition to the fixpoint
rules. We define ≡ ⊆ Exp × Exp as the smallest congruence relation satisfying the axioms.

Axioms G1–G4 are inherited from GKAT and govern the behaviour of Boolean guarded
choice. P1–P4 can be thought of as their analogues, but for the probabilistic choice. The
distributivity axiom D states that guarded choice distributes over a probabilistic choice,
which reflects the way our operational model resolves both types of branching.

The sequencing axioms S1–S8 are mostly inherited from GKAT. The new axioms include
S6 which talks about right distributivity of sequencing over probabilistic choice and S7
which captures the intuitive property that any code executed after a return statement is
not executed. L1 and L3 come from GKAT, while L2 is a probabilistic loop analogue of L1,
which captures the semantics of the probabilistic loop in terms of recursive unrolling. L4
equates the while(true) and while(flip(1)) loops. F1 and F2 are inspired by Salomaa’s
axioms [52] and provide a partial converse to L1 and L2 respectively, given the loop body
cannot immediately terminate. The property that a loop body has a zero probability of
outputting ✓ is formally writen using the side condition E (e) = 0, which can be thought of
as empty word property from Salomaa’s axiomatisation [52].

This leaves us with L5 and L6, which describe the behaviour of guarded and probabilistic
loops where parts of the loop body may be skipped. These are quasi-equational, but can be
replaced by equivalent equations – see [51, Remark 49]. L5 concerns a loop on an expression
e that has probability 1 − s of not performing any action, given that c holds. The rule says
that, if we start the loop on e given that c holds, then either b holds and we execute f, or
it does not, and the loop is skipped. The reason that we can disregard the 1 part of e is
that if this branch is taken, then c still holds on the next iteration of the loop, and so the
program will have to choose probabilistically between f and 1 once more. Since s > 0, it will
eventually choose the probabilistic branch f with almost sure probability.

The second rule, L6, is the analogue of L5 for probabilistic choice. In this case, however,
a choice for 1 also means another probabilistic experiment to determine whether the loop
needs to be executed once more, with probability r. The consequence is that if the loop on e
is started given that c holds, some more probability mass will shift towards skipping, as a
result executing 1 some number of times before halting the loop.

Soundness with respect to bisimilarity. Using the characterisation from Section 4, we can
show that ≡ is a bisimulation equivalence on (Exp, ∂). The proof is available in the full
version of the paper [51, Appendix D].

▶ Lemma 12. ≡ is a bisimulation equivalence on (Exp, ∂)

We immediately obtain that provable equivalence is contained in bisimilarity.

▶ Theorem 13 (Soundness). For all e, f ∈ Exp, if e ≡ f then e ∼ f

ICALP 2023

136:10 Probabilistic Guarded KAT Modulo Bisimilarity: Completeness and Complexity

Example of equational reasoning. Since our axioms are sound, we can reason about
ProbGKAT expressions equationally, without constructing bisimulations by hand. Once again,
we revisit the algorithm from Figure 1. To show correctness, we need to prove the equivalence
of expressions e and g(1) from Example 1, as follows:

g(1) ≡
((

⊕ 1
2

)
⊕ 1

2

(
⊕ 1

2
1
))(1)

(Def. of g)

≡
(((

⊕ 1
2

)
⊕ 2

3

)
⊕ 1

2
1
)(1)

(See below)

≡
((((

⊕ 1
2

)
⊕ 2

3

)
⊕ 1

2
1
)

+1 0
)(1)

(See below)

≡
((

⊕ 1
2

)
⊕ 2

3

)(1)
(Axioms L5 and S1)

≡
(

⊕ 1
3

(
⊕ 1

2

))(1)
(Axiom P4)

≡
(

⊕ 1
3

(
⊕ 1

2

))
;
(

⊕ 1
3

(
⊕ 1

2

))(1)
+1 1 (Axiom L1)

≡
(

⊕ 1
3

(
⊕ 1

2

))
; e(1) +1 1 (Def. e)

≡
(

⊕ 1
3

(
⊕ 1

2

))
; e(1) (See below)

≡
(

; e(1) ⊕ 1
3

(
; e(1) ⊕ 1

2
; e(1)

))
(Axiom S6)

≡
(

⊕ 1
3

(
⊕ 1

2

))
(Axiom S7)

≡ e (Def. e)

In the second step, we used that for all e1, e2, e3 ∈ Exp and r, s ∈ [0, 1] with (1 − r)(1 − s) > 0,
we have e1 ⊕r (e2 ⊕s e3) ≡ (e1 ⊕k e2) ⊕l e3, where k = r

1−(1−r)(1−s) and l = 1 − (1 − r)(1 − s).
In the third and eighth steps, we used that for all e, f ∈ Exp, we have that e +1 f ≡ e. Both
those equivalences follow from the other axioms; see [51, Lemma 50] in the full version of the
paper for details.

Fundamental theorem. Every expression in the language of KA (resp. KAT, GKAT) can be
reconstructed from its small-step semantics, up to ≡. This property, often referred to as the
fundamental theorem of (in analogy with the fundamental theorem of calculus and following
the terminology of Rutten [50]) is useful in many contexts, and we will need it later on.

▶ Theorem 14 (Fundamental Theorem). For every e ∈ Exp it holds that

e ≡ +
α∈At

 ⊕
d∈supp(∂(e)α)

∂(e)α(d) · exp(d)


where exp defines a function 2 + Out + Act × Exp → Exp given by

exp() = 0 exp(✓) = 1 exp(v) = v exp(a, f) = a;f (v ∈ Out, a ∈ Act and f ∈ Exp)

The proof is given in the appendix. We use a generalised type of guarded and probabilistic
choice ranging over indexed collections of expressions, which is defined in [51, Appendix D.2].

W. Różowski, T. Kappé, D. Kozen, T. Schmid, and A. Silva 136:11

6 Completeness

Given the axioms presented in the previous section, a natural question is to ask whether they
are complete w.r.t. bisimilarity – i.e., whether any bisimilar pair can be proved equivalent
using the axioms that make up ≡. The traditional strategy is to develop the idea of systems
of equations within the calculus, and show that these systems have unique (least) solutions
up to provable equivalence. If we can characterise the expressions of interest as solutions to
a common system of equations (typically derived from the bisimulation that relates them),
then uniqueness of solutions guarantees their equivalence. Unfortunately, the first step of this
process, where systems of equations are shown to have unique solutions, does not transfer to
ProbGKAT (nor GKAT). Indeed, some systems of equations do not have any solution [39, 53];
the lack of a procedure to construct solutions also encumbers a proof of uniqueness.

Instead, we follow the approach from [58] pioneered by Bergstra and Klop [10], and
incorporate uniqueness of solutions into the axiomatisation. The uniqueness axiom (UA)
that accomplishes this is an axiom scheme, which is to say it is a template for infinitely many
axioms, one for each number of unknowns. In the case of a single unknown, one can show
that F1 and F2 are special cases of UA, which moreover give a candidate solution.

With UA in hand, the traditional roadmap towards completeness works out. Before
we get there, however, we must expend some energy to properly state this axiom scheme.
Moreover, showing soundness of UA requires effort. Both of these take up the bulk of the
development in this section; we derive the desired completeness property at the end.

(Salomaa) systems of equations. First, we define formally the idea of systems of equations
for ProbGKAT automata. The constraints on each variable will be built using the following
two-sorted grammar, where X is a finite set of indeterminates.

e1, e2 ∈ Exp(X) ::= p | e1 +b e2 (p ∈ PExp(X), b ∈ BExp)
p1, p2 ∈ PExp(X) ::= f | gx | p1 ⊕r p2 (f, g ∈ Exp, x ∈ X, r ∈ [0, 1])

▶ Definition 15. A system of equations is a pair (X, τ : X → Exp(X)) consisting of a finite
set X of indeterminates and a function τ : X → Exp(X). If for all x ∈ X, in each of τ(x)
all subterms of the form gx satisfy E (g) = 0, then such system is called Salomaa.1

Every finite state ProbGKAT automaton yields a Salomaa system of equations.

▶ Definition 16. Let (X, β) be a finite state ProbGKAT automaton. A system of equations
associated with (X, β) is a Salomaa system (X, τ), with τ : X → Exp(X) defined by

τ(x) = +
α∈At

 ⊕
d∈supp(β(x))α

β(x)α(d) · sys(d)


where sys : 2 + Out + Act × Exp → PExp(X) is given by

sys() = 0 sys(✓) = 1 sys(v) = v sys(a, x) = ax

1 In process algebra [46], Salomaa systems are usually called guarded. We avoid the latter name to prevent
confusion with Boolean guarded choice present in (Prob)GKAT.

ICALP 2023

136:12 Probabilistic Guarded KAT Modulo Bisimilarity: Completeness and Complexity

▶ Example 17. In the system associated with the automaton from Example 3, τ is given by

x1 7→ (qx2 ⊕ 1
2

v) +α

(
(px1 ⊕ 1

2
qx2) +β 0

)
x2 7→ 1 +α (1 +β 0)

Given a function h : X → Exp that assigns a value to each indeterminate in X, we can
derive a ProbGKAT expression h#(e) for each e ∈ Exp(X) inductively, as follows: h#(f) = f,
h#(p1 ⊕r p2) = h#(p1) ⊕r h#(p2), h#(gx) = g ; h(x), h#(e1 +b e2) = h#(e1) +b h#(e2). We
can now state the notion of a solution to the Salomaa system. Rather than expecting both
sides of equations to be strictly equal, we require them to be related by a relation, which we
leave as a parameter to instantiate later.

▶ Definition 18. Let R ⊆ Exp × Exp. A solution up to R to a system (X, τ) is a map
h : X → Exp satisfying for all x ∈ X that

(
h(x), h#(τ(x))

)
∈ R.

▶ Example 19. A solution up to ≡ to the system from Example 17 would satisfy

h(x1) ≡ (q ; h(x2) ⊕ 1
2

v) +α

(
(p ; h(x1) ⊕ 1

2
q ; h(x2)) +β 0

)
h(x2) ≡ 1 +α (1 +β 0)

In this case, choosing h(x1) = (p +β v)[1
2] ; q and h(x2) = 1 fits these constraints.

▶ Example 20. Let r ∈ [0, 1]. The recursive specification on the left below describes a
program randAdd(m, r) which takes an integer m and bias r. As long as m is strictly below 10,
this program flips an r-biased coin to decide between incrementing m followed by a recursive
call or termination. That recursive specification can be thought of as a Salomaa system with
one unknown; the program on the right is a solution up to ≡.

def randAdd(m, r):
if m < 10 then

if flip(r) then
m++;
randAdd(m, r)

else
skip

else
skip

while flip(r) do
if m < 10 then

m++;
randAdd(m, r)

else
skip

Solutions up to ≡ can be characterised concretely, using Theorem 14.

▶ Theorem 21. Let (X, β) be a finite state ProbGKAT automaton. The map h : X → Exp
is a solution up to ≡ to the system associated with (X, β) if and only if [−]≡ ◦ h is a
ProbGKAT automata homomorphism from (X, β) to (Exp/≡, ∂̄). We write ∂̄ to denote the
unique transition function on Exp/≡ which makes the quotient map [−]≡ : Exp → Exp/≡ a
ProbGKAT automaton homomorphism from (Exp, ∂) [50, Proposition 5.8].

Uniqueness of Solutions axiom. Informally, UA extends ≡ by stating that solutions to
Salomaa systems, if they exist, are unique. Formally, we define ≡̇ ⊆ Exp × Exp to be the
least congruence that contains ≡, and satisfies the following (quasi-equational) axiom:

(X, τ) is a Salomaa system f, g : X → Exp are solutions of (X, τ) up to ≡̇
f(x) ≡̇ g(x) for all x ∈ X

(UA)

F1 and F2 are instantiations of UA for Salomaa systems with one variable.

W. Różowski, T. Kappé, D. Kozen, T. Schmid, and A. Silva 136:13

Behavioural pseudometric. We now develop the theory necessary to verify soundness of
UA. First, note that for every ProbGKAT, we can define a function dX : X × X → R+:

dX(x, y) =
{

2−n n is maximal such that x ∼(n) y

0 if x ∼ y

The above is well-defined by Theorem 10, and is a pseudometric, in the following sense.

▶ Definition 22. A pseudometric space is a pair (X, dX), where dX : X × X → R+ is a
pseudometric, which means that for all x, y, z ∈ X we have

dX(x, x) = 0 dX(x, y) = dX(y, x) dX(x, z) ≤ dX(x, y) + dX(y, z)

Let k ∈ R+. A mapping f : X → Y between pseudometric spaces (X, dX) and (Y, dY) is
called k-Lipschitz if for all x, y ∈ X dY (f(x), f(y)) ≤ kdX(x, y).

The behavioural pseudometric satisfies the definition above, in a strong sense.

▶ Lemma 23. For every ProbGKAT automaton, (X, β), (X, dX) a pseudometric space that
is ultra, in the sense that for all x, y, z ∈ X we have dX(x, z) = max{dX(x, y), dX(y, z)}.

Let (X, dX) and (Y, dY) be pseudometric spaces. Their product is a pseudometric space
(X × Y, dX×Y) where dX×Y is defined by dX×Y ((x, y), (x′, y′)) = max{dX(x, x′), dY (y, y′)}.
It is easy to show that if both pseudometric spaces are ultra, then so is their product. Going
forward, we will omit subscripts when they are clear from context.

Soundness of the Uniqueness Axiom. Every Salomaa system (X, τ : X → Exp(X)) with
X = {x1, x2, . . . , xn} induces a mapping τ̄ : Expn → Expn. Intuitively, this mapping takes a
vector e⃗ = (e1, . . . , en), and produces a new vector where the i-th component is the evaluation
of τ(xi) when each xj is substituted by ej . More formally, given this e⃗, we define e : X → Exp
by e(xi) = ei, and set τ̄ (⃗e) =

(
(e# ◦ τ)(x1), . . . , (e# ◦ τ)(xn)

)
.

To establish soundness of UA, we first show that τ̄ is 1
2 -Lipschitz on the pseudometric

space (Expn, d), where d is the metric that arises from the n-fold product of (Exp, ∂).

▶ Lemma 24. Given a Salomaa system (X, τ : X → Exp(X)), the map τ̄ : Expn → Expn

from the pseudometric space (Expn, d) to itself is 1
2 -Lipschitz.

Finally, we can prove the following.

▶ Lemma 25. UA is satisfied by bisimilarity.

Proof. Let (X, τ) is a Salomaa system, with X = {x1, . . . , xn}, and let f, g : X → Exp(X) be
solutions up to ≡̇ to the system. Finally, let f⃗ = (f(x1), . . . , f(xn)) and g⃗ = (g(x1), . . . , g(xn)).
Assume that the premises are satisfied by the bisimilarity, f(xi) ∼ (f# ◦ τ)(xi) and g(xi) ∼
(g# ◦ τ)(xi) for all 1 ≤ i ≤ n. In other words, we have that d(τ̄ (⃗f), f⃗) = 0 and d(τ̄ (⃗g), g⃗) = 0

Let d(τ̄ (⃗f), τ̄ (⃗g)) = k for some k ∈ R+. Then, since d is ultra,

d(⃗f, g⃗) = max{d(⃗f, τ̄ (⃗f)), d(τ̄ (⃗f), g⃗)} = d(τ̄ (⃗f), g⃗) = max{d(τ̄ (⃗f), τ̄ (⃗g)), d(τ̄ (⃗g), g⃗)} = k

By Lemma 24, we find k = d(τ̄ (⃗f), τ̄ (⃗g)) ≤ 1
2 d(⃗f, g⃗) = 1

2 k which implies that d(⃗f, g⃗) = 0.
Because of the definition of the product pseudometric on (Exp, ∂), we have f(xi) ∼ g(xi) for
all 1 ≤ i ≤ n. Therefore, the conclusion of the UA is satisfied by bisimilarity. ◀

Because of the above lemma and Theorem 13, both UA and the axioms of ≡ are contained
in ∼, the greatest bisimulation on (Exp, ∂). Recall that ≡̇ is the least congruence containing
those rules. Since ∼ on (Exp, ∂) is a congruence (Theorem 11), we have that ≡̇ is sound.

▶ Theorem 26 (Soundness with UA). For all e, f ∈ Exp if e ≡̇ f then e ∼ f.

ICALP 2023

136:14 Probabilistic Guarded KAT Modulo Bisimilarity: Completeness and Complexity

Completeness. After all the hard work is done, the proof of completeness follows via the
same line of reasoning as the one for GKAT [58, 53].

▶ Theorem 27 (Completeness). For all e, f ∈ Exp if e ∼ f then e ≡̇ f

Proof. Let R ⊆ Exp × Exp be a bisimulation with a transition structure ρ : R × At →
Dω(2+Out+Act×R) relating ProbGKAT automata (⟨e⟩∂ , ∂) and (⟨f⟩∂ , ∂) such that (e, f) ∈ R.
Let π1, π2 be the projection homomorphisms from (R, ρ) to (⟨e⟩∂ , ∂) and (⟨f⟩∂ , ∂) respectively.
Since both ⟨e⟩∂ and ⟨f⟩∂ are finite (by Lemma 7), so is R.

Let j, k be the inclusion homomorphisms of (⟨e⟩∂ , ∂) and (⟨f⟩∂ , ∂) in (Exp, ∂). We can
construct two homomorphisms [−]≡ ◦ j ◦ π1 and [−]≡ ◦ k ◦ π2 from (R, ρ) to (Exp/≡, ∂̄). By
Theorem 21, j ◦ π1 and k ◦ π2 are solutions up to ≡ to the Salomaa system associated with
(R, ρ). Since ≡ is contained in ≡̇, those are immediately also solutions up to ≡̇.

Because of UA, we have that (j ◦ π1)(g, h) ≡̇ (k ◦ π2)(g, h) for all (g, h) ∈ R. Thus,

e ≡̇ j(e) ≡̇ (j ◦ π1)(e, f) ≡̇ (k ◦ π2)(e, f) ≡̇ k(f) ≡̇ f ◀

7 Decidability and Complexity

To decide whether e ≡̇ f, we need to demonstrate the existence of a bisimulation between the
states e and f in (Exp, ∂). Since bisimulations need only involve reachable states, it suffices to
find this bisimulation within ⟨e, f⟩∂ , the smallest subautomaton of (Exp, ∂) containing e and
f, which is also the union of ⟨e⟩∂ and ⟨f⟩∂ ; this automaton is finite by Lemma 7. We thus
focus on the problem of deciding bisimilarity within a single finite ProbGKAT automaton.

Our analysis in this section is facilitated by two simplifying assertions.
1. To avoid having to compare real (infinite-precision) probabilities, we limit ProbGKAT

expressions to rational probabilities r ∈ [0, 1] ∩ Q in this section. This restriction is
compatible with the earlier operators on probabilities, which all preserve rationality.

2. Equivalence of GKAT proper is co-NP-hard [58], simply because Boolean unsatisfiability
can trivially be encoded in the language of tests. We take a fixed-parameter approach,
assuming that At, the set of atoms that can appear on transitions, is fixed beforehand.

Coalgebraic partition refinement. We rely on partition refinement [31, 32, 48], which
effectively computes the largest bisimulation on an automaton, by approximating it from
above. In the coalgebraic presentation of partition refinement [67], which we instantiate to
our setting, automata of various types are encoded as abstract graphs. More specifically, an
automaton is encoded in two maps o : X → O and ℓ : X → B(L × X), where

X is a set of nodes that represent (partial) states of the automaton;
O is a set of observable values at each node;
L is a set representing possible labels of edges between nodes;
B(L × X) is a multiset of pairs representing edges between nodes.

Subject to a number of coherence conditions on the encoding (omitted here), coalgebraic
partition refinement yields an O(n log |X|) algorithm to compute the largest bisimulation on
an automaton, where n =

∑
x∈X |ℓ(x)| is the number of edges of the automaton.

Encoding ProbGKAT automata. Coalgebraic partition refinement provides suitable en-
codings for well-known transition types, as well as methods to soundly obtain encodings of
composite transition types [67]. The details of these techniques are beyond the scope of this
paper, but the underlying idea is fairly intuitive: composite transition types are encoded

W. Różowski, T. Kappé, D. Kozen, T. Schmid, and A. Silva 136:15

by inserting synthetic nodes that represent partially evaluated states – not unlike how our
drawings contain intermediate nodes that are the target of α-labelled arrows. More precisely,
the nodes of an encoded ProbGKAT automaton (Q, t) are three-sorted:
1. every state of the automaton is a node; and
2. every “intermediate” state (the small circles in our drawings) is a node; and
3. every probabilistic edge gives rise to another node.
Nodes of the third kind separate the dashed arrows in our drawings (labelled with a probability
as well as an action) into two arrows, each of which is labelled by one value.

Formally, we choose X := Q + I + Act × Q as our set of nodes, where I := {t(q)α : q ∈
Q, α ∈ At}. We also set L := At + Q + Act. The map ℓ : X → B(L × X) is then defined by:2

ℓ(x) :=


{|(α, t(q)α) | α ∈ At|} x = q ∈ Q

{|(d(p, q), (p, q)) | p ∈ Act, q ∈ Q|} x = d ∈ I

{|(p, q)|} x = (p, q) ∈ Act × Q

In other words, ℓ labels the edges between nodes of the first and second kind with an atom,
the edges between nodes of the second and third kind with a probability, and the edges
between nodes of the third and first kind with an action.

Observables represent the probabilities assigned to acceptance, rejection, or a return value
by nodes of the second kind. Formally, O := 1 + Q2+Out, where ∗ ∈ 1 means “no observable
value”, and values from Q2+Out assign a probability to each ξ ∈ 2 + Out. We can then define
o : X → O by setting o(d)(ξ) := d(ξ) when d ∈ I, and o(x) := ∗ otherwise.3

Deciding bisimilarity. We can now leverage the encoding given above to decide bisimilarity.

▶ Theorem 28. If all probabilities are rational and At is fixed, then bisimilarity of states in
a ProbGKAT automaton (Q, t) is decidable in time O(|Q|2|Act| log(|Act × Q|)).

Proof. The results from [67] ensure that our encoding of ProbGKAT automata can be
equipped with an appropriate interface that allows their algorithm to decide equivalence.

As for the complexity, we instantiate their abstract complexity result by computing the
parameters. The number of nodes and edges can be bound from above fairly easily, as follows:

|X| = |Q| + |I| + |Act × Q| ≤ |Q| + 2 · |Act| · |Q|

n =
∑
x∈X

|ℓ(x)| ≤ |Q| · |At| + |Q|2 · |Act| + |Q| · |Act|

Since At is fixed, the claimed complexity then follows. ◀

This allows us to conclude that bisimilarity of ProbGKAT expressions is also decidable.

▶ Corollary 29. If all probabilities are rational and At is fixed, then ProbGKAT equivalence
of e, f ∈ Exp is decidable in time O(n3 log n), where n = #(e) + #(f).

Proof. By Lemma 7, ⟨e, f⟩∂ is of size at most n, and the number of distinct actions e or f is
fixed from above by n as well. The claim then follows by Theorem 28. ◀

2 Here, {|− | −|} denotes multiset comprehension, where each element occurs at most once.
3 If the coalgebraic approach from [67] is followed to the letter, the observable map for nodes of the third

kind behaves slightly differently; we simplify our encoding here for the sake of presentation.

ICALP 2023

136:16 Probabilistic Guarded KAT Modulo Bisimilarity: Completeness and Complexity

8 Related work

Our work builds on GKAT, a strictly deterministic fragment [39] of Kleene Algebra with Tests
(KAT). KAT has been used in several verification tasks, such as cache control [15], compiler
optimisations [37], source-to-source translations [3], and network properties [2, 22, 21, 59,
60, 66], and was generalised to include fuzzy logics [23]. GKAT admits a Salomaa-style [52]
axiomatisation of trace equivalence [58] and bisimilarity [53], both relying on the Uniqueness
of Solutions axiom, and completeness without it remains open, though completeness of a
fragment of GKAT was recently proved by [33].

GKAT modulo bisimilarity and Milner’s interpretation of regular expressions arise as
fragments of the parametrised processes framework [55]; this is not the case for ProbGKAT
due to a different treatment of loops. The uniqueness axiom was originally introduced by
Bergstra and Klop under the name Recursive Specification Principle (RSP) [10] and used in
axiomatisations of process calculi [11]. The general pattern of their proofs of completeness is
similar to ours, although the key challenge is the extension to the probabilistic setting.

Our paper also builds up the vast line of research on probabilistic bisimulation [40,
56, 18] and the coalgebraic approach to systems with probabilistic transitions [16, 8, 18,
61]. More concretely, we relied on relation refinement characterisation of bisimilarity [63],
natural metrics on the final coalgebras for ω-accessible endofunctors [7, 69], coalgebraic
completeness theorems [27, 57, 54] and minimisation algorithms for coalgebras [67, 17, 68, 29].
Axiomatisations of probabilistic bisimulation were extensively studied in the process algebra
community, including a recursion-free process algebra of Bandini and Segala [6] and recursive
calculi of Stark and Smolka [62] and Mislove, Ouaknine and Worrell [47]. Aceto, Ésik
and Ingólfsdóttir [1] gave an alternative axiomatisation of Stark and Smolka’s calculus by
extending Iteration Theories [12, 20] with equational axioms.

Probabilistic Kleene Algebra (pKA) [43] relaxes the axioms of KA to accommodate
reasoning about probabilistic predicate transformers; its axioms are complete w.r.t. sim-
ulation equivalence of NFAs [44]. pKA was also extended with a probabilistic choice op-
erator and concurrency primitives [45], but completeness this system was not considered.
ProbNetKAT [21, 60] is a domain-specific language for reasoning about probabilistic ef-
fects in networks based on KAT, which features a probabilistic choice operator, however,
axiomatisation of the obtained language was not studied.

9 Conclusion and Future Work

We have presented ProbGKAT, a language for reasoning about uninterpreted programs with
branching and loops, with both Boolean and probabilistic guards. We provided an automata-
theoretic operational model and characterised bisimilarity for these automata. We gave a
sound and complete axiomatisation of bisimilarity, relying on the Uniqueness of Solutions
(UA) axiom, and showed bisimilarity can be efficiently decided in O(n3 log n) time.

A first natural direction for future work is the question whether the more traditional
language semantics of GKAT can be lifted to ProbGKAT and axiomatised. More broadly, we
would like to investigate notions of ProbGKAT expression equivalence more permissive than
bisimilarity, including the notion of bisimulation distance [5] and its possible axiomatisations
based on quantitative equational logic [42, 4].

A second direction touches on the problem of completeness without UA, which is still
open for (Prob)GKAT. In light of recent completeness results for the skip-free fragment of
GKAT [33] modulo bisimilarity and trace equivalence, we are interested to study the skip-free
fragment of ProbGKAT. The proofs in [33] do not immediately generalise to ProbGKAT as
probabilities do not obviously embed into (1-free) regular expressions.

W. Różowski, T. Kappé, D. Kozen, T. Schmid, and A. Silva 136:17

Similarly to GKAT, ProbGKAT is strictly deterministic and thus avoids known complica-
tions of combining nondeterminism with probabilistic choice [30, 65, 24]. We are interested if
the recent work on combining multisets and probabilities via distributive laws [28, 38] could
be applied to extending our developments with nondeterminism.

ProbGKAT can express only uninterpreted programs, hence it cannot be used to reason
about programs involving mutable state. An example of a probabilistic program with
state is Pólya’s urn [41]. One way of adding mutable state [25] to ProbGKAT is by adding
hypotheses [14]. Unfortunately, adding hypotheses can lead to undecidability or incomplete-
ness [35], although there are forms of hypotheses that retain completeness [36, 19, 49] and
exploring this is as an interesting direction for future work.

References

1 Luca Aceto, Zoltán Ésik, and Anna Ingólfsdóttir. Equational axioms for probabilistic bisimil-
arity. In AMAST, pages 239–253, 2002. doi:10.1007/3-540-45719-4_17.

2 Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter Kozen, Cole
Schlesinger, and David Walker. NetKAT: semantic foundations for networks. In POPL, pages
113–126, 2014. doi:10.1145/2535838.2535862.

3 Allegra Angus and Dexter Kozen. Kleene algebra with tests and program schematology.
Technical Report TR2001-1844, Cornell University, July 2001. URL: https://hdl.handle.
net/1813/5831.

4 Giorgio Bacci, Giovanni Bacci, Kim G. Larsen, and Radu Mardare. Complete axiomatization
for the bisimilarity distance on Markov chains. In CONCUR, pages 21:1–21:14, 2016. doi:
10.4230/LIPIcs.CONCUR.2016.21.

5 Paolo Baldan, Filippo Bonchi, Henning Kerstan, and Barbara König. Coalgebraic behavioral
metrics. Log. Methods Comput. Sci., 14(3), 2018. doi:10.23638/LMCS-14(3:20)2018.

6 Emanuele Bandini and Roberto Segala. Axiomatizations for probabilistic bisimulation. In
ICALP, pages 370–381, 2001. doi:10.1007/3-540-48224-5_31.

7 Michael Barr. Terminal coalgebras in well-founded set theory. Theor. Comput. Sci., 114(2):299–
315, 1993. doi:10.1016/0304-3975(93)90076-6.

8 Falk Bartels, Ana Sokolova, and Erik P. de Vink. A hierarchy of probabilistic system types.
In CMCS, pages 57–75, 2003. doi:10.1016/S1571-0661(04)80632-7.

9 Gilles Barthe, Joost-Pieter Katoen, and Alexandra Silva, editors. Foundations of Probabilistic
Programming. Cambridge University Press, Cambridge, 2020. doi:10.1017/9781108770750.

10 Jan A. Bergstra and Jan Willem Klop. Verification of an alternating bit protocol by means of
process algebra. In Mathematical Methods of Specification and Synthesis of Software Systems,
volume 215 of LNCS, pages 9–23. Springer, 1985. doi:10.1007/3-540-16444-8_1.

11 Jan A. Bergstra and Jan Willem Klop. Process theory based on bisimulation semantics.
In Linear Time, Branching Time and Partial Order in Logics and Models for Concurrency,
volume 354 of LNCS, pages 50–122, 1988. doi:10.1007/BFb0013021.

12 Stephen L. Bloom and Zoltán Ésik. Iteration Theories – The Equational Logic of Iterative
Processes. EATCS Monographs on Theoretical Computer Science. Springer, 1993. doi:
10.1007/978-3-642-78034-9.

13 Janusz A. Brzozowski. Derivatives of regular expressions. J. ACM, 11(4):481–494, 1964.
doi:10.1145/321239.321249.

14 Ernie Cohen. Hypotheses in Kleene algebra. Technical report, Bellcore, 1994.
15 Ernie Cohen. Lazy caching in Kleene algebra. Technical report, Bellcore, 1994.
16 Erik P. de Vink and Jan J. M. M. Rutten. Bisimulation for probabilistic transition

systems: A coalgebraic approach. Theor. Comput. Sci., 221(1-2):271–293, 1999. doi:
10.1016/S0304-3975(99)00035-3.

ICALP 2023

https://doi.org/10.1007/3-540-45719-4_17
https://doi.org/10.1145/2535838.2535862
https://hdl.handle.net/1813/5831
https://hdl.handle.net/1813/5831
https://doi.org/10.4230/LIPIcs.CONCUR.2016.21
https://doi.org/10.4230/LIPIcs.CONCUR.2016.21
https://doi.org/10.23638/LMCS-14(3:20)2018
https://doi.org/10.1007/3-540-48224-5_31
https://doi.org/10.1016/0304-3975(93)90076-6
https://doi.org/10.1016/S1571-0661(04)80632-7
https://doi.org/10.1017/9781108770750
https://doi.org/10.1007/3-540-16444-8_1
https://doi.org/10.1007/BFb0013021
https://doi.org/10.1007/978-3-642-78034-9
https://doi.org/10.1007/978-3-642-78034-9
https://doi.org/10.1145/321239.321249
https://doi.org/10.1016/S0304-3975(99)00035-3
https://doi.org/10.1016/S0304-3975(99)00035-3

136:18 Probabilistic Guarded KAT Modulo Bisimilarity: Completeness and Complexity

17 Hans-Peter Deifel, Stefan Milius, Lutz Schröder, and Thorsten Wißmann. Generic parti-
tion refinement and weighted tree automata. In FM, pages 280–297, 2019. doi:10.1007/
978-3-030-30942-8_18.

18 Josée Desharnais. Labelled Markov processes. PhD thesis, McGill University, 1999.
19 Amina Doumane, Denis Kuperberg, Damien Pous, and Pierre Pradic. Kleene algebra with

hypotheses. In FoSSaCS, pages 207–223, 2019. doi:10.1007/978-3-030-17127-8_12.
20 Calvin C. Elgot. Monadic computation and iterative algebraic theories. In H.E. Rose and J.C.

Shepherdson, editors, Logic Colloquium ’73, volume 80 of Studies in Logic and the Foundations
of Mathematics, pages 175–230. Elsevier, 1975. doi:10.1016/S0049-237X(08)71949-9.

21 Nate Foster, Dexter Kozen, Konstantinos Mamouras, Mark Reitblatt, and Alexandra Silva.
Probabilistic NetKAT. In ESOP, pages 282–309, 2016. doi:10.1007/978-3-662-49498-1_12.

22 Nate Foster, Dexter Kozen, Mae Milano, Alexandra Silva, and Laure Thompson. A coalgebraic
decision procedure for NetKAT. In POPL, pages 343–355, 2015. doi:10.1145/2676726.
2677011.

23 Leandro Gomes, Alexandre Madeira, and Luís Soares Barbosa. Generalising KAT to verify
weighted computations. Sci. Ann. Comput. Sci., 29(2):141–184, 2019. doi:10.7561/SACS.
2019.2.141.

24 Alexandre Goy and Daniela Petrisan. Combining probabilistic and non-deterministic choice
via weak distributive laws. In LICS, pages 454–464, 2020. doi:10.1145/3373718.3394795.

25 Niels Bjørn Bugge Grathwohl, Dexter Kozen, and Konstantinos Mamouras. KAT + B! In
CSL, pages 44:1–44:10, 2014. doi:10.1145/2603088.2603095.

26 Matthew Hennessy and Robin Milner. On observing nondeterminism and concurrency. In
ICALP, pages 299–309, 1980. doi:10.1007/3-540-10003-2_79.

27 Bart Jacobs. A bialgebraic review of deterministic automata, regular expressions and languages.
In Algebra, Meaning, and Computation, Essays Dedicated to Joseph A. Goguen on the Occasion
of His 65th Birthday, pages 375–404, 2006. doi:10.1007/11780274_20.

28 Bart Jacobs. From multisets over distributions to distributions over multisets. In LICS, pages
1–13, 2021. doi:10.1109/LICS52264.2021.9470678.

29 Jules Jacobs and Thorsten Wißmann. Fast coalgebraic bisimilarity minimization. In POPL,
pages 1514–1541, 2023. doi:10.1145/3571245.

30 Claire Jones. Probabilistic non-determinism. PhD thesis, University of Edinburgh, UK, 1990.
URL: https://hdl.handle.net/1842/413.

31 Paris C. Kanellakis and Scott A. Smolka. CCS expressions, finite state processes, and three
problems of equivalence. In PODC, pages 228–240, 1983. doi:10.1145/800221.806724.

32 Paris C. Kanellakis and Scott A. Smolka. CCS expressions, finite state processes, and three
problems of equivalence. Inf. Comput., 86(1):43–68, 1990. doi:10.1016/0890-5401(90)
90025-D.

33 Tobias Kappé, Todd Schmid, and Alexandra Silva. A complete inference system for skip-
free guarded Kleene algebra with tests. In ESOP, pages 309–336, 2023. doi:10.1007/
978-3-031-30044-8_12.

34 Donald E. Knuth and Andrew C. Yao. The complexity of nonuniform random number
generation. In Algorithms and Complexity: New Directions and Recent Results, 1976.

35 Dexter Kozen. On the complexity of reasoning in Kleene algebra. Inf. Comput., 179(2):152–162,
2002. doi:10.1006/inco.2001.2960.

36 Dexter Kozen and Konstantinos Mamouras. Kleene algebra with equations. In ICALP (Part
II), pages 280–292, 2014. doi:10.1007/978-3-662-43951-7_24.

37 Dexter Kozen and Maria-Christina Patron. Certification of compiler optimizations using
Kleene algebra with tests. In CL, pages 568–582, 2000. doi:10.1007/3-540-44957-4_38.

38 Dexter Kozen and Alexandra Silva. Multisets and distributions, 2023. arXiv:2301.10812.
39 Dexter Kozen and Wei-Lung Dustin Tseng. The Böhm-Jacopini theorem is false, propositionally.

In MPC, pages 177–192, 2008. doi:10.1007/978-3-540-70594-9_11.

https://doi.org/10.1007/978-3-030-30942-8_18
https://doi.org/10.1007/978-3-030-30942-8_18
https://doi.org/10.1007/978-3-030-17127-8_12
https://doi.org/10.1016/S0049-237X(08)71949-9
https://doi.org/10.1007/978-3-662-49498-1_12
https://doi.org/10.1145/2676726.2677011
https://doi.org/10.1145/2676726.2677011
https://doi.org/10.7561/SACS.2019.2.141
https://doi.org/10.7561/SACS.2019.2.141
https://doi.org/10.1145/3373718.3394795
https://doi.org/10.1145/2603088.2603095
https://doi.org/10.1007/3-540-10003-2_79
https://doi.org/10.1007/11780274_20
https://doi.org/10.1109/LICS52264.2021.9470678
https://doi.org/10.1145/3571245
https://hdl.handle.net/1842/413
https://doi.org/10.1145/800221.806724
https://doi.org/10.1016/0890-5401(90)90025-D
https://doi.org/10.1016/0890-5401(90)90025-D
https://doi.org/10.1007/978-3-031-30044-8_12
https://doi.org/10.1007/978-3-031-30044-8_12
https://doi.org/10.1006/inco.2001.2960
https://doi.org/10.1007/978-3-662-43951-7_24
https://doi.org/10.1007/3-540-44957-4_38
https://arxiv.org/abs/2301.10812
https://doi.org/10.1007/978-3-540-70594-9_11

W. Różowski, T. Kappé, D. Kozen, T. Schmid, and A. Silva 136:19

40 Kim G. Larsen and Arne Skou. Bisimulation through probabilistic testing. Information and
Computation, 94(1):1–28, 1991. doi:10.1016/0890-5401(91)90030-6.

41 Hosam Mahmoud. Pólya Urn Models. Texts in Statistical Science. Chapman & Hall, 2008.
42 Radu Mardare, Prakash Panangaden, and Gordon D. Plotkin. Quantitative algebraic reasoning.

In LICS, pages 700–709, 2016. doi:10.1145/2933575.2934518.
43 Annabelle McIver, Carlos Gonzalía, Ernie Cohen, and Carroll C. Morgan. Using probabilistic

Kleene algebra pKA for protocol verification. J. Log. Algebraic Methods Program., 76(1):90–111,
2008. doi:10.1016/j.jlap.2007.10.005.

44 Annabelle McIver, Tahiry M. Rabehaja, and Georg Struth. On probabilistic Kleene al-
gebras, automata and simulations. In RAMICS, pages 264–279, 2011. doi:10.1007/
978-3-642-21070-9_20.

45 Annabelle McIver, Tahiry M. Rabehaja, and Georg Struth. Probabilistic concurrent Kleene
algebra. In QAPL, pages 97–115, 2013. doi:10.4204/EPTCS.117.7.

46 Robin Milner. A complete inference system for a class of regular behaviours. J. Comput. Syst.
Sci., 28(3):439–466, 1984. doi:10.1016/0022-0000(84)90023-0.

47 Michael W. Mislove, Joël Ouaknine, and James Worrell. Axioms for probability and non-
determinism. In EXPRESS, pages 7–28, 2003. doi:10.1016/j.entcs.2004.04.019.

48 Robert Paige and Robert Endre Tarjan. Three partition refinement algorithms. SIAM J.
Comput., 16(6):973–989, 1987. doi:10.1137/0216062.

49 Damien Pous, Jurriaan Rot, and Jana Wagemaker. On tools for completeness of kleene algebra
with hypotheses, 2022. arXiv:2210.13020.

50 Jan J. M. M. Rutten. Universal coalgebra: a theory of systems. Theor. Comput. Sci.,
249(1):3–80, 2000. doi:10.1016/S0304-3975(00)00056-6.

51 Wojciech Różowski, Tobias Kappé, Dexter Kozen, Todd Schmid, and Alexandra Silva.
Probabilistic Guarded KAT Modulo Bisimilarity: Completeness and Complexity, 2023.
arXiv:2305.01755.

52 Arto Salomaa. Two complete axiom systems for the algebra of regular events. J. ACM,
13(1):158–169, 1966. doi:10.1145/321312.321326.

53 Todd Schmid, Tobias Kappé, Dexter Kozen, and Alexandra Silva. Guarded Kleene algebra
with tests: Coequations, coinduction, and completeness. In ICALP, pages 142:1–142:14, 2021.
doi:10.4230/LIPIcs.ICALP.2021.142.

54 Todd Schmid, Jurriaan Rot, and Alexandra Silva. On star expressions and coalgebraic
completeness theorems. In MFPS, pages 242–259, 2021. doi:10.4204/EPTCS.351.15.

55 Todd Schmid, Wojciech Różowski, Alexandra Silva, and Jurriaan Rot. Processes parametrised
by an algebraic theory. In ICALP, 2022. doi:10.4230/LIPIcs.ICALP.2022.132.

56 Roberto Segala and Nancy A. Lynch. Probabilistic simulations for probabilistic processes. In
CONCUR, pages 481–496, 1994. doi:10.1007/978-3-540-48654-1_35.

57 Alexandra Silva. Kleene coalgebra. PhD thesis, University of Nijmegen, 2010.
58 Steffen Smolka, Nate Foster, Justin Hsu, Tobias Kappé, Dexter Kozen, and Alexandra Silva.

Guarded Kleene algebra with tests: verification of uninterpreted programs in nearly linear
time. In POPL, pages 61:1–61:28, 2020. doi:10.1145/3371129.

59 Steffen Smolka, Praveen Kumar, Nate Foster, Dexter Kozen, and Alexandra Silva. Cantor
meets Scott: semantic foundations for probabilistic networks. In POPL, pages 557–571, 2017.
doi:10.1145/3009837.3009843.

60 Steffen Smolka, Praveen Kumar, David M. Kahn, Nate Foster, Justin Hsu, Dexter Kozen, and
Alexandra Silva. Scalable verification of probabilistic networks. In PLDI, pages 190–203, 2019.
doi:10.1145/3314221.3314639.

61 Ana Sokolova. Probabilistic systems coalgebraically: A survey. Theor. Comput. Sci.,
412(38):5095–5110, 2011. doi:10.1016/j.tcs.2011.05.008.

62 Eugene W. Stark and Scott A. Smolka. A complete axiom system for finite-state probabilistic
processes. In Proof, Language, and Interaction, Essays in Honour of Robin Milner, pages
571–596, 2000.

ICALP 2023

https://doi.org/10.1016/0890-5401(91)90030-6
https://doi.org/10.1145/2933575.2934518
https://doi.org/10.1016/j.jlap.2007.10.005
https://doi.org/10.1007/978-3-642-21070-9_20
https://doi.org/10.1007/978-3-642-21070-9_20
https://doi.org/10.4204/EPTCS.117.7
https://doi.org/10.1016/0022-0000(84)90023-0
https://doi.org/10.1016/j.entcs.2004.04.019
https://doi.org/10.1137/0216062
https://arxiv.org/abs/2210.13020
https://doi.org/10.1016/S0304-3975(00)00056-6
https://arxiv.org/abs/2305.01755
https://doi.org/10.1145/321312.321326
https://doi.org/10.4230/LIPIcs.ICALP.2021.142
https://doi.org/10.4204/EPTCS.351.15
https://doi.org/10.4230/LIPIcs.ICALP.2022.132
https://doi.org/10.1007/978-3-540-48654-1_35
https://doi.org/10.1145/3371129
https://doi.org/10.1145/3009837.3009843
https://doi.org/10.1145/3314221.3314639
https://doi.org/10.1016/j.tcs.2011.05.008

136:20 Probabilistic Guarded KAT Modulo Bisimilarity: Completeness and Complexity

63 Sam Staton. Relating coalgebraic notions of bisimulation. Log. Methods Comput. Sci., 7(1),
2011. doi:10.2168/LMCS-7(1:13)2011.

64 Joseph Aaron Toumanios. Three sided die, 2019. US patent 10384119. URL: https://
image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/10384119.

65 Daniele Varacca and Glynn Winskel. Distributing probability over non-determinism. Mathem-
atical Structures in Computer Science, 16(1):87–113, 2006. doi:10.1017/S0960129505005074.

66 Jana Wagemaker, Nate Foster, Tobias Kappé, Dexter Kozen, Jurriaan Rot, and Alexandra
Silva. Concurrent NetKAT – Modeling and analyzing stateful, concurrent networks. In ESOP,
pages 575–602, 2022. doi:10.1007/978-3-030-99336-8_21.

67 Thorsten Wißmann, Ulrich Dorsch, Stefan Milius, and Lutz Schröder. Efficient and modular
coalgebraic partition refinement. Logical Methods in Computer Science, 16:1:8:1–8:63, 2020.
doi:10.23638/LMCS-16(1:8)2020.

68 Thorsten Wißmann, Stefan Milius, and Lutz Schröder. Quasilinear-time computation of
generic modal witnesses for behavioural inequivalence. Log. Methods Comput. Sci., 18(4), 2022.
doi:10.46298/lmcs-18(4:6)2022.

69 James Worrell. On the final sequence of a finitary set functor. Theor. Comput. Sci., 338(1-
3):184–199, 2005. doi:10.1016/j.tcs.2004.12.009.

https://doi.org/10.2168/LMCS-7(1:13)2011
https://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/10384119
https://image-ppubs.uspto.gov/dirsearch-public/print/downloadPdf/10384119
https://doi.org/10.1017/S0960129505005074
https://doi.org/10.1007/978-3-030-99336-8_21
https://doi.org/10.23638/LMCS-16(1:8)2020
https://doi.org/10.46298/lmcs-18(4:6)2022
https://doi.org/10.1016/j.tcs.2004.12.009

Action Codes
Frits Vaandrager # Ñ

Radboud University, Nijmegen, The Netherlands

Thorsten Wißmann # Ñ

Radboud University, Nijmegen, The Netherlands
Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Abstract

We provide a new perspective on the problem how high-level state machine models with abstract
actions can be related to low-level models in which these actions are refined by sequences of concrete
actions. We describe the connection between high-level and low-level actions using action codes, a
variation of the prefix codes known from coding theory. For each action code R, we introduce a
contraction operator αR that turns a low-level model M into a high-level model, and a refinement
operator ϱR that transforms a high-level model N into a low-level model. We establish a Galois
connection ϱR(N) ⊑ M ⇔ N ⊑ αR(M), where ⊑ is the well-known simulation preorder. For
conformance, we typically want to obtain an overapproximation of model M. To this end, we also
introduce a concretization operator γR, which behaves like the refinement operator but adds arbitrary
behavior at intermediate points, giving us a second Galois connection αR(M) ⊑ N ⇔ M ⊑ γR(N).
Action codes may be used to construct adaptors that translate between concrete and abstract actions
during learning and testing of Mealy machines. If Mealy machine M models a black-box system
then αR(M) describes the behavior that can be observed by a learner/tester that interacts with
this system via an adaptor derived from code R. Whenever αR(M) implements (or conforms to)
N , we may conclude that M implements (or conforms to) γR(N).

Almost all results, examples, and counter-examples are formalized in Coq.

2012 ACM Subject Classification Theory of computation

Keywords and phrases Automata, Models of Reactive Systems, LTS, Action Codes, Action Refine-
ment, Action Contraction, Galois Connection, Model-Based Testing, Model Learning

Digital Object Identifier 10.4230/LIPIcs.ICALP.2023.137

Category Track B: Automata, Logic, Semantics, and Theory of Programming

Related Version Full Version With Appendix : https://arxiv.org/abs/2301.00199

Supplementary Material Software: https://gitlab.science.ru.nl/twissmann/action-codes-
coq, archived at swh:1:dir:953b24c1e0771ce9ed7961f59f07294e0fd615d2

Funding Frits Vaandrager : Supported by the NWO TOP project 612.001.852.
Thorsten Wißmann: Supported by the NWO TOP project 612.001.852 (until 2022) and the DFG
project 419850228 (since 2023).

Acknowledgements As part of an MSc thesis project under supervision of the first author, Timo
Maarse studied a different and more restricted type of action codes (called action refinements) [29].
It turned out, however, that for these action codes, the concretization operator is not monotone.
The present paper arose from our efforts to fix this problem. We thank the anonymous reviewers for
their suggestions, Paul Fiterău-Broştean for examples of the use of action codes in model learning,
and Jules Jacobs for helpful discussions about Coq. The first author would like to thank Rocco De
Nicola for his hospitality at IMT Lucca during the work on this paper.

EA
T
C
S

© Frits Vaandrager and Thorsten Wißmann;
licensed under Creative Commons License CC-BY 4.0

50th International Colloquium on Automata, Languages, and Programming (ICALP 2023).
Editors: Kousha Etessami, Uriel Feige, and Gabriele Puppis; Article No. 137; pp. 137:1–137:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:F.Vaandrager@cs.ru.nl
https://www.cs.ru.nl/F.Vaandrager/
https://orcid.org/0000-0003-3955-1910
mailto:T.Wissmann@cs.ru.nl
https://thorsten-wissmann.de
https://orcid.org/0000-0001-8993-6486
https://doi.org/10.4230/LIPIcs.ICALP.2023.137
https://arxiv.org/abs/2301.00199
https://gitlab.science.ru.nl/twissmann/action-codes-coq
https://gitlab.science.ru.nl/twissmann/action-codes-coq
https://archive.softwareheritage.org/swh:1:dir:953b24c1e0771ce9ed7961f59f07294e0fd615d2;origin=https://gitlab.science.ru.nl/twissmann/action-codes-coq;visit=swh:1:snp:f431205ed7c0b12ba406e2b0c92f16c15243a98e;anchor=swh:1:rev:35d0dafa2b2eb62b9b914282a0273928ce41a857
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

137:2 Action Codes

a

b

(a) Original System.

1

1

4

4

1

2

(b) Existing action refinements.

1 4
1

2

(c) Desired action refinement behavior.

Figure 1 Example for the (lack of) preservation of determinism in action refinement.

1 Introduction

Labeled transition systems (LTSs) constitute one of the most fundamental modeling mech-
anisms in Computer Science. An LTS is a rooted, directed graph whose nodes represent
states and whose edges are labeled with actions and represent state transitions. LTS-based
formalisms such as Finite Automata [21], Finite State Machines [25], I/O automata [26],
IOTSs [35], and process algebras [4] have been widely used to model and analyze a broad
variety of reactive systems, and a rich body of theory has been developed for them.

In order to manage the complexity of computer-based systems, designers structure such
systems into hierarchical layers. This allows them to describe and analyze systems at different
levels of abstraction. Many LTS-based frameworks have been proposed to formally relate
models at different hierarchical levels, e.g. [4, 14, 27, 40]. In most of these frameworks, the
states of a high-level LTS correspond to sets of states of a low-level LTS via simulation
or bisimulation-like relations. However, the actions are fixed and considered to be atomic.
Actions used at a lower level of abstraction can be hidden at a higher level, but higher-level
actions will always be available at the lower level. For this reason, Rensink & Gorrieri [18, 31]
argue that these (bi)simulations relate systems at the same conceptual level of abstraction,
and therefore they call them horizontal implementation relations. They contrast them with
vertical implementation relations that compare systems that belong to conceptually different
abstraction levels, and have different alphabets of actions.

A prototypical example of a hierarchical design is a computer network. To reduce design
complexity, such a network is organized as a stack of layers or levels, each one built upon the
one below it [34]. Examples are the transport layer, with protocols such as TCP and UDP,
and the physical layer, concerned with transmitting raw bits over a communication channel.
Now consider a host that receives a TCP packet in some state s. If P is the set of possible
packets then, in an LTS model of the transport layer, state s will contain outgoing transitions
labeled with action receive(p), for each p ∈ P . At the physical layer, however, receipt of
a packet corresponds to a sequence of receive(b) actions, with b a bit in {0, 1}. Only after
the final bits have arrived, the host knows which packet was actually received. Mechanisms
for transforming high-level actions into sequences (or processes) of low-level actions have
been addressed extensively in work on action refinements [18]. These approaches, however,
are unable to describe the above scenario in a satisfactory manner and somehow assume
that a host upfront correctly guesses the packet that it will receive, even before the first bit
has arrived. In order to illustrate this problem, we consider the simplified example of an
LTS with a distinguished initial state, displayed in Figure 1a, which accepts either input
a or input b. At a lower level of abstraction, input a is implemented by three consecutive
inputs 1 4 1, whereas input b is implemented by action sequence 1 4 2 (the ASCII encodings
of a and b in octal format). An action refinement operator will replace the a-transition in
Figure 1a by a sequence of three consecutive transitions with labels 1, 4 and 1, respectively,

F. Vaandrager and T. Wißmann 137:3

and will handle the b-transition in an analogous manner. Thus, action refinement introduces
a nondeterministic choice (Figure 1b), rather than the deterministic behavior that one would
like to see (Figure 1c). As a consequence of this and other limitations, refinement operators
have not found much practical use [18].

Based on the observation that any action can be modeled as a state change, some
authors (e.g. [2, 10, 24]) prefer modeling formalisms in which the term “action” is only
used informally, and Kripke structures rather than LTSs are used to model systems. These
state-based approaches have the advantage that a distinction between horizontal and vertical
implementation relations is no longer needed, and a single implementation relation suffices.
Purely state-based approaches, however, are problematic in cases where we need to interact
with a black-box system and (by definition) we have no clue about the state of this system.
Black-box systems prominently occur in the areas of model-based testing [36] and model
learning [37]. In these application areas, use of LTSs makes sense and there is a clear practical
need for formalisms that allow engineers to relate actions at different levels of abstraction.

Van der Bijl et al. [7], for instance, observe that in model-based testing specifications
are usually more abstract than the System Under Test (SUT). This means that generated
test cases may not have the required level of detail, and often a single abstract action has to
be translated (either manually or by an adaptor) to a sequence of concrete actions that are
applied to the SUT. Van der Bijl et al. [7] study a restricted type of action refinement in
which a single input is refined into a sequence of inputs, and implement this in a testing tool.

Also in model learning, typically an adaptor is placed in between the SUT and the learner,
to take care of the translation between abstract and concrete actions. For example, in a
case study on hand-held smartcard readers for Internet banking, Chalupar et al. [9] used
abstract inputs that combine several concrete inputs in order to accelerate the learning
process and reduce the size of the learned model. In particular, they introduced a single
abstract input COMBINED_PIN corresponding to a USB command, followed by a 4-digit
PIN code, followed by an OK command. Fiterău-Broştean et al. [12] used model learning
for a comprehensive analysis of DTLS implementations, and found four serious security
vulnerabilities, as well as several functional bugs and non-conformance issues. Handshakes in
(D)TLS are defined over flights of messages. Hence, (D)TLS entities are often expected to
produce multiple messages before expecting a response. During learning, Fiterău-Broştean
et al. [12] used an adaptor that contracted multiple messages from the SUT into a single
abstract output. Also in other case studies on TLS [32], Wi-Fi [33] and SSH [39, 13], multiple
outputs from the SUT were contracted into a single abstract output. Verleg [39] used a single
abstract input to execute the entire key re-exchange during learning higher layers of SSH.

In this article, we provide answers to two fundamental questions: (1) How can we formalize
the concept of an adaptor that translates between abstract and concrete actions?, and (2)
Suppose the behavior of an SUT is described by an unknown, concrete modelM, and suppose
a learner interacts with this SUT through an adaptor and learns an abstract model N . What
can we say about the relation between M and N ?

We answer the first question by introducing action codes, a variation of the prefix codes
known from coding theory [5]. Action codes describe how high-level actions are converted
into sequences of low-level actions, and vice versa. This makes them different from action
refinements, which specify how high-level actions can be translated into low-level processes,
but do not address the reverse translation. Our notion of an action code captures adaptors
that are used in practice, and in particular those described in the case studies listed above.

In order to answer the second question we introduce, for each action code R, a contraction
operator αR that turns a low-level model M into a high-level model by contracting concrete
action sequences ofM according toR. We also introduce the left adjoint of αR, the refinement

ICALP 2023

137:4 Action Codes

operator ϱR that turns a high-level modelM into a low-level model by refining abstract actions
of N according to R. This refinement operator, for instance, maps the LTS of Figure 1a
to the LTS of Figure 1c. We establish a Galois connection ϱR(N) ⊑M ⇔ N ⊑ αR(M),
where ⊑ denotes the simulation preorder. So if an abstract model N implements contraction
αR(M), then the refinement ϱR(N) implements concrete model M, and vice versa.

In practice, we typically want to obtain an overapproximation of concrete model M. To
this end, we introduce the right adjoint of αR, the concretization operator γR. This operator
behaves like the refinement operator, but adds arbitrary behavior at intermediate points (cf.
the demonic completion of [6]). We establish another Galois connection: αR(M) ⊑ N ⇔
M ⊑ γR(N). This connection is useful, because whenever we have established that αR(M)
implements (or conforms to) N , it allows us to conclude that M implements (or conforms
to) γR(N).

We show that, in a setting of Mealy machines (subsuming Finite State Machines), an
adaptor can be constructed for any action code for which a winning strategy exists in a
certain 2-player game. If a learner/tester interacts with an SUT via an adaptor generated
from such an action code R, and the SUT is modeled by Mealy machine M, then from the
learner/tester perspective, the composition of adaptor and SUT will behave like αR(M).
Thus, if a learner succeeds to learn an abstract model N such that N ≈ αR(M) then, using
the Galois connections, the learner may conclude that ϱR(N) ⊑M ⊑ γR(N).

The remainder of this article is structured as follows. We start with a preliminary
Section 2 that introduces basic notations and results for LTSs. Next, action codes and the
contraction operator are introduced in Section 3. After describing the refinement operator,
we establish our first Galois connection in Section 4. Next we define concretization and
establish our second Galois connection in Sections 5. Section 6 explains how action codes
can be composed, and shows that contraction and refinement commute with action code
composition. Section 7 describes how adaptors can be constructed from action codes. Finally,
Section 8 contains a discussion of our results and identifies directions for future research.

Almost all proofs are formalized in Coq (about 6000 lines of code) and can be accessed
via https://gitlab.science.ru.nl/twissmann/action-codes-coq and via the ancillary
files of the full version on arxiv. We mark formalized results with a clickable Coq icon
pointing to the respective location in the HTML documentation. Appendix A (in the full
version) contains comments on the Coq formalization and Appendix B contains full proofs
(in natural language) and additional remarks.

2 Preliminaries

If Σ is a set of symbols then Σ∗ denotes the set of all finite words over Σ, and Σ+ the set of all
non-empty words. We use ε to denote the empty word, so e.g. Σ∗ = Σ+∪{ε}. Concatenation
of words u, w ∈ Σ∗ is notated u · w (or simply u w). We write u ≤ w if u is a prefix of w, i.e.
if there is v ∈ Σ∗ with u v = w. We write |w| to denote the length of word w.

We use f : X⇀Y to denote a partial map f from X to Y and write dom(f) ⊆ X for its
domain, i.e. set of x ∈ X on which f is defined. The image im(f) of a partial map f : X⇀Y

is the set of elements of Y it can reach: im(f) := {f(x) | x ∈ dom(f)} ⊆ Y .

▶ Definition 2.1 (). For a set A of action labels, a labeled transition system (LTS) is a tuple
M = ⟨Q, q0, ⟩ where Q is a set of states, q0 ∈ Q is a starting state, and ⊆ Q×A×Q is
a transition relation. We write LTS(A) for the class of all LTSs with labels from A. We refer
to the three components of an LTS M as QM, qM

0 and M, respectively, and introduce
the following notation:

https://gitlab.science.ru.nl/twissmann/action-codes-coq
https://arxiv.org/abs/2301.00199
https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.LTS.html#LTS

F. Vaandrager and T. Wißmann 137:5

q0 q1

q2q3

b/0

a/0 a/0

b/0

b/0

a/0

a/0

b/1

Figure 2 A Mealy machine.

q a q′ denotes (q, a, q′) ∈ ; q a denotes that there is some q′ with q a q′;
q

w
q′ for w ∈ A∗ denotes that there are finite sequences a1, . . . , an ∈ A, r0, . . . , rn ∈ Q

such that w = a1 · · · an, and r0 = q, rn = q′ and ri−1
ai ri for all 1 ≤ i ≤ n;

q
w denotes that there is q′ such that q

w
q′;

q ∈ Q is reachable if there is w ∈ A∗ such that q0
w

q.
A special class of LTSs that is frequently used in conformance testing and model learning
are Mealy machines. Mealy machines with a finite number of states are commonly referred
to as Finite State Machines.

▶ Definition 2.2. For non-empty sets of inputs I and outputs O, a (non-deterministic)
Mealy machine M ∈ LTS(I × O) is an LTS where the labels are pairs of an input and an
output. We write q

i/o
q′ to denote that (q, (i, o), q′) ∈ . Whenever we omit a symbol

in predicate q
i/o

q′ this is quantified existentially. Thus, i/o if there are q and q′ s.t.
q

i/o
q′, q

i/
q′ if there is an o s.t. q

i/o
q′, and q

i/ if there is a q′ s.t. q
i/

q′.

▶ Example 2.3 (). Figure 2 visualizes a simple Mealy machine with inputs {a, b} and
outputs {0, 1}. The machine always outputs 0 in response to an input, except in one specific
situation. Output 1 is produced in response to input b if the previous input was a and
the number of preceding inputs is odd. The machine has four states q0, q1, q2 and q3, with
starting state q0 marked by an incoming arrow. In states q0 and q2 the number of preceding
inputs is always even, whereas in states q1 and q3 it is always odd. In states q2 and q3 the
previous input is always a, whereas in states q0 and q1 either the previous input is b, or no
input has occurred yet. Thus, only in state q3 input b triggers output 1.

We introduce some notation and terminology for LTSs.

▶ Definition 2.4 (). Let M = ⟨Q, q0, ⟩ ∈ LTS(A) be an LTS. We say that
M is deterministic if, whenever q a for some q and a, there is a unique q′ with q a q′.
M is a tree-shaped if each state q ∈ Q can be reached via a unique sequence of transitions
from state q0.
q ∈ Q is a leaf, notated q , if there is no a ∈ A with q a .
M is grounded if every state q ∈ Q has a path to a leaf.

We can now define the set of traces of an LTS:

▶ Definition 2.5 (). Let M = ⟨Q, q0, ⟩ ∈ LTS(A). A word w ∈ A∗ is a trace of state
q ∈ Q if q

w , and a trace of M if it is a trace of q0. We write trace(M) for the set
{w ∈ A∗ | q0

w } of all traces of M.

ICALP 2023

https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.MealyExample.html#ExampleMealy
https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.LTS.html#deterministic
https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.LTS.html#traces

137:6 Action Codes

▶ Definition 2.6 (Simulation,). For M,N ∈ LTS(A), a simulation from M to N is a
relation S ⊆ QM ×QN such that
1. qM

0 S qN
0 and

2. if q1 S q2 and q1
a

M q′
1 then there exists a state q′

2 such that q2
a

N q′
2 and q′

1 S q′
2.

We write M⊑ N if there exists a simulation from M to N .

It is a classical result that trace inclusion coincides with the simulation preorder for
deterministic labeled transition systems (see e.g. [28]):

▶ Lemma 2.7 (). For all M,N ∈ LTS(A) where N is deterministic: trace(M) ⊆ trace(N)
iff M⊑ N .

We will often consider LTSs up to isomorphism of their reachable parts:

▶ Definition 2.8 (Isomorphism,). For M,N ∈ LTS(A), an isomorphism from M to N is
a bijection f : QM

R → QN
R , where:

1. QM
R ⊆ QM and QN

R ⊆ QN are the subsets of reachable states in M and N , respectively;
2. f(qM

0) = qN
0 , and

3. q a
M q′ iff f(q) a

N f(q′), for all q, q′ ∈ QM
R , a ∈ A.

We write M∼= N if there exists an isomorphism from M to N .

Note that ∼= is an equivalence relation on LTS(A), and that M∼= N implies M⊑ N , since
each isomorphism (when viewed as a relation) is trivially a simulation.

3 Action Codes

Adaptors that are used for learning and testing translate sequences of abstract actions into
sequences of concrete actions, and vice versa. Action codes describe how an adaptor may
translate between two action label alphabets, for example from A to B. Intuitively, we
understand the first alphabet A as the actions at the lower, concrete level, and the second
alphabet B as the actions at the higher, more abstract level. In an action code, a single
abstract action b ∈ B corresponds to a finite, non-empty sequence of concrete actions a1 · · · an

in A. Essentially, action codes are just a special type of prefix codes [5], as known from
coding theory. Prefix codes have the desirable property that they are uniquely decodable:
given a sequence of concrete actions, there is at most one corresponding sequence of abstract
actions. We provide two equivalent definitions of action codes: one via tree-shaped LTSs and
one via partial maps.

▶ Definition 3.1 (Action code,). For sets of action labels A and B, a (tree-shaped)
action code R from A to B is a structure R = ⟨M, l⟩, with M = ⟨R, r0, ⟩ ∈ LTS(A) a
deterministic, tree-shaped LTS with L being the set of non-root leaves L ⊆ R \ {r0} and an
injective function l : L→ B. We write Code(A, B) for all action codes from A to B.

The injectivity of l and the tree-shape ensure that every abstract b ∈ B is represented by at
most one w ∈ A+.

▶ Example 3.2. Figure 3 shows an action code for a fragment of the ASCII encoding in
octal format, e.g., 1 1 5 encodes the letter M, 1 4 5 encodes the letter e, etc.

▶ Example 3.3. Figure 4 shows an action code for the activity of getting a cup of coffee or
espresso, in the special case of Mealy machines, i.e. where A = I ×O and B = I ′ ×O′ are
sets of input/output-pairs. Rather than the full sequence of interventions that is required in
order to get a drink, the abstract input/output pair only reports on the type of drink that
was ordered and the number of interventions that occurred.

https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.LTS.html#Simulation
https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.LTS.html#simulation_iff_trace_inclusion_for_deterministic
https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.LTS.html#Isomorphism
https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.TreeShapedCode.html#TreeShapedCode

F. Vaandrager and T. Wißmann 137:7

M e a l y

1

1
4 5

7

5 5 1 4 1

/0

/
coffee

/0

/
espresso

switch_on/
ready

/1

/
coffee

/1

/
espresso

ad
d_

wate
r/r

ead
y

/2

/
coffee

/2

/
espresso

add_beans/
ready

/3

/
coffee

/3

/
espresso

remove_waste/
ready

add_beans/
tray_full

add_water/
need_beans

switch_on/
need_water

Figure 3 Action code
for a fragment of ASCII.

Figure 4 Action code for a coffee machine.

The definition of action codes as LTSs allows an intuitive visualization. For easier mathe-
matical reasoning, we characterize action codes also in terms of maps:

▶ Definition 3.4 (). A (map-based) action code from A to B is a partial map f : B⇀A+

which is prefix-free, by which we mean that for all b, b′ ∈ dom(f),

f(b) ≤ f(b′) implies b = b′. (1)

In the following, we show that these prefix-free partial maps bijectively correspond to the
tree-shaped LTSs:

▶ Lemma 3.5 (). Every tree-shaped action code R ∈ Code(A, B) induces a unique map-
based action code f : B⇀A+ with the property that for all b ∈ B, w ∈ A+:

f(b) = w iff ∃r ∈ L : r0
w

R r, l(r) = b (2)

▶ Lemma 3.6 (). For each map-based action code f : B⇀A+, there is (up to isomorphism)
a unique tree-shaped action code R ∈ Code(A, B) which is grounded and satisfies (2).

▶ Example 3.7 (). For the uniqueness in Lemma 3.6, we use groundedness, because for
A = {a} and any B, the action codes

R :=
(a a · · ·a)

and S :=
()

.

both have no non-root leaves, and so they both induce the empty partial map f : B⇀A+

via Lemma 3.5. This f is undefined for all b ∈ B. And indeed, R and S are not isomorphic.
The issue is that while the finite S is grounded, the infinite R is not grounded. So R
contains subtrees which do not contribute anything to the partial map f but which hinder
the existence of an isomorphism.

ICALP 2023

https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.CodeMap.html#Code
https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.TreeShapedCode.html#EveryTreeShapedCodeInducesSomeMapBasedCode
https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.TreeShapedCode.html#MapToTree
https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.TreeShapedCode.html#groundedness_is_needed_for_uniqueness

137:8 Action Codes

A/0 B/0

a/0 b/0

a/0 b/0

q0 q1

q2q3

b/0

a/0 a/0

b/0

b/0

a/0

a/0

b/1

A/0

A
/0

B/0

B
/0

B/0

C/0 C/1

a/0 b/0

b/0 b/1

q0 q1

q2q3

b/0

a/0 a/0

b/0

b/0

a/0

a/0

b/1

B/0

C/1

B/0

C/0

(a) An action code R together with αR(M). (b) Another code S together with αS(M).

Figure 5 The resulting contraction of the LTS M from Figure 2 for different action codes.

Having shown the correspondence between tree-shaped and map-based action codes
Code(A, B), we can switch between the two views in proofs. Mostly, we use the tree-shaped
version for visualization and the map-based version for mathematical reasoning.

Consider a concrete M∈ LTS(A), together with an action code R from A to B. We can
construct an abstract LTS for the action labels B by walking through M with seven-league
boots, repeatedly choosing input sequences that correspond to runs to some leaf of R, and
then contracting this sequence to a single abstract transition.

▶ Notation 3.8. In the rest of the paper, we introduce operators αR, ϱR, γR on LTSs,
involving an action code R. Whenever the action code R is clear from the context, we omit
the index and simply speak of operators α, ϱ, γ for the sake of brevity.

▶ Definition 3.9 (Contraction,). For each action code R ∈ Code(A, B), the contraction
operator αR : LTS(A) → LTS(B) is defined as follows. For M ∈ LTS(A), the LTS αR(M)
has states Qα(M) ⊆ QM and transitions α(M) defined inductively by the rules (1α) and
(2α), for all q, q′ ∈ QM, b ∈ B.

qM
0 ∈ Qα(M) (1α)

q ∈ Qα(M), b ∈ dom(R), q
R(b)

M q′

q b
α(M) q′, q′ ∈ Qα(M)

(2α)

The initial state q
α(M)
0 := qM

0 is the same as in M.

▶ Example 3.10. Figures 5 shows two examples of action codes and the contractions obtained
when we apply them to the Mealy machine of Figure 2 (with the original machine shaded in
the background). The examples illustrate that by choosing different codes we may obtain
completely different abstractions of the same LTS.

The next proposition asserts that we can view αR as a monotone function αR : LTS(A)→
LTS(B) between preordered classes.

▶ Proposition 3.11 (Monotonicity,). For every action code R ∈ Code(A, B), whenever
M⊑ N for M,N ∈ LTS(A), then αR(M) ⊑ αR(N) in LTS(B).

4 Refinements

Now that we have introduced the contraction αR of an LTS for a code R, it is natural to
consider an operation in the other direction, which we call the refinement ϱR. Intuitively,
refinement replaces each abstract transition q b q′ by a sequence of concrete transitions, as
prescribed by R.

https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.Contraction.html#contraction
https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.LTS.html#contraction_monotone

F. Vaandrager and T. Wißmann 137:9

q0

M

a

q0, ε q0, 1
q0, 11

q0, 14

1
1

4

5

1

Figure 6 LTS and its refinement w.r.t R of Figure 3.

ϱR(N) ⊑M N ⊑ αR(M)
If N ∈ LTS(dom(R))

If M is deterministic

Figure 7 Theorem 4.5.

▶ Definition 4.1 (Refinement,). For each action code R ∈ Code(A, B), we define the
refinement operator ϱR : LTS(B)→ LTS(A) as follows. For M∈ LTS(B), the LTS ϱR(M) ∈
LTS(A) has a set of states

Qϱ(M) := {(q, w) ∈ QM ×A∗ | w = ε or (there is b with q b
M and w ≨ R(b))}

and the initial state (qM
0 , ε). The transition relation ϱ(M) is defined by the following rules:

(q, wa) ∈ Qϱ(M)

(q, w) a
ϱ(M) (q, wa)

(1ϱ)
q b

M q′ wa = R(b)
(q, w) a

ϱ(M) (q′, ε)
(2ϱ)

Intuitively, whenever ϱ(M) is in state (q, w), then this corresponds to being in state q in the
abstract automaton M∈ LTS(B) and having observed the actions w ∈ A∗ so far. However,
we have insufficiently many actions for finding an abstract transition q b

M q′ with w = R(b)
because w is still to short. Nevertheless, whenever ϱ(M) admits a transition to a state (q, w)
with w ̸= ε, then we know that we can eventually complete w to a sequence corresponding
to an abstract transition: there exist at least one q b

M q′ for some b ∈ dom(R) with
w ≤ R(b). If the abstract system M is non-deterministic, then there may be multiple
abstract transitions that match in the final rule (2ϱ), but the transitions produced by rule
(1ϱ) are deterministic.

▶ Example 4.2. Figure 6 shows an example application of a refinement operator that replaces
the actions of the LTS M on the left by their ASCII encoding in octal format, as prescribed
by the action code from Figure 3. The initial state is (q0, ε), corresponding to q0 in M.
Since M contains abstract labels M and a, with R(M) = 1 1 5 and R(a) = 1 4 1, we need to
introduce additional states for having read 1, 1 1, and 1 4, because those are the sequences of
A-actions before we have observed a sequence R(b) ∈ A+ for some b ∈ B.

A more visual explanation of ϱR(M) is the following: for every state q ∈ QM, we consider
the outgoing transitions {q b

M q′ | b ∈ B, q′ ∈ QM} and labels B′ ⊆ B that appear in it.
Then, this outgoing-transition structure is replaced with (a copy of) the minimal subgraph
of the tree R containing all leaves with labels in B′.

Like contraction, the refinement operation also preserves the simulation preorder.

▶ Proposition 4.3 (Monotonicity,). For all action codes R ∈ Code(A, B), if M⊑ N in
LTS(B), then ϱR(M) ⊑ ϱR(N) in LTS(A).

As R is deterministic, applying ϱR on a deterministic LTS results in a deterministic LTS:

▶ Proposition 4.4 (Refinement preserves determinism,). For every action code R ∈
Code(A, B), if M∈ LTS(B) is deterministic, then ϱR(M) ∈ LTS(A) is deterministic, too.

▶ Theorem 4.5 (Galois connection,). For R ∈ Code(A, B), N ∈ LTS(B), andM∈ LTS(A):
1. If N is in the subclass LTS(dom(R)) ⊆ LTS(B), then ϱR(N) ⊑M implies N ⊑ αR(M).
2. If M is deterministic, then N ⊑ αR(M) implies ϱR(N) ⊑M.

ICALP 2023

https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.Refinement.html#refinement
https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.Refinement.html#refinement_monotone
https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.Refinement.html#refinement_preserves_determinism
https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.Refinement.html#refinement_galois_forward / refinement_galois_backward

137:10 Action Codes

The condition in the first direction means that N ∈ LTS(B) only makes use of action labels
in the subset dom(R) ⊆ B. Hence, in the proof, we can consider R to be a total map
dom(R)→ A+.
▶ Remark 4.6. If we wanted to support non-deterministic M, we can consider a less-pleasant
ϱ′

R that replaces every q b q′ for R(a1 · · · an) = b with literally a sequence q
a1 · · · an q′.

Thus, ϱ′
R would rather create a system as in Figure 1b whereas ϱR creates a system as in

Figure 1c. However, such an operator ϱ′
R does not preserve determinism.

▶ Remark 4.7. In the proof of the Galois connection, we make use of the fact that our action
codes are functional, i.e. that every b ∈ B is encoded by at most one w ∈ A∗. We would
allow multiple, then one can show that α can not have a left-adjoint (details in appendix).
In the first direction, we can even prove a stronger statement for M := ϱR(N), showing a
Galois insertion between αR and ϱR:

▶ Theorem 4.8 (Galois insertion,). For R ∈ Code(A, B), if N ∈ LTS(B) is in the subclass
N ∈ LTS(dom(R)), then N ∼= αR(ϱR(N)).

5 Concretizations

In this section, we consider another method of transforming an abstract system into a
concrete one: the concretization operator. Whereas refinement is the left adjoint of contraction
(Theorem 4.5), this section will establish that concretization is the right adjoint (Theorem 5.5)
of contraction. Whereas for refinement we omitted transitions for which the action code R
was not defined, for concretization we add transitions to a new chaos state [20] in which
any action may occur. Essentially, this is the idea of demonic completion of [6]. In order to
reduce the number of transitions to the chaos state, the concretization operator is parametric
in a reflexive relation I ⊆ A×A which describes whether two symbols are sufficiently similar.
With this relation, we allow transitions to the chaos state only for those symbols that are
not similar to any symbol for which the code is defined:

▶ Definition 5.1 (Concretization,). Let M ∈ LTS(B) be an LTS, R ∈ Code(A, B) an
action code, and I ⊆ A × A a reflexive relation. The concretization γR,I(M) ∈ LTS(A)
consists of:

Qγ(M) := QM ×W ∪ {χ} with W := {w ∈ A∗ | w = ε or ∃b ∈ dom(R) : w ≨ R(b)}.
q

γ(M)
0 := (qM

0 , ε)
Transitions are defined by the following rules, for a ∈ A, w ∈ A∗, b ∈ B:

wa ∈W

(q, w) a
γ(M) (q, wa)

(1γ)
q b

M q′, R(b) = wa

(q, w) a
γ(M) (q′, ε)

(2γ)

∀a′ ∈ A, (a, a′) ∈ I : wa′ /∈W ∧ wa′ /∈ im(R)
(q, w) a

γ(M) χ
(3γ)

χ a
γ(M) χ

(4γ)

Intuitively, W represents the internal nodes of the tree-representation of action code R.
The transitions then try to accumulate a word w ∈ A∗ known to the action code (rule (1γ)).
As soon as we reach w = R(b) for some b, we use a b-transition in the original M∈ LTS(B)
to jump to a new state (rule (2γ)). The chaos state χ attracts all runs with symbols unknown
to the action code. The corresponding rule (3γ) involves the relation I ⊆ A × A. The
rule only allows a transition to χ for a symbol a ∈ A if there is no related symbol a′ ∈ A,
(a, a′) ∈ A for which the code R could make a transition. For general LTSs, we can simply
consider I to be the identity relation on A. Once transitioned to the chaos state χ, we allow
transitions for arbitrary action symbols a ∈ A (rule (4γ)).

https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.Refinement.html#refinement_galois_insertion
https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.Concretization.html#concretization

F. Vaandrager and T. Wißmann 137:11

q0, ε

q2, b q2, ε

q0, aq0, b

χ q2, a

χ

b/0
a/0

a/0, a/1

b/0

b/0
a/0

a/0

b/0, b/1

a/0, a/1
b/0

b/0, b/1
a/0

a/0, a/1,
b/0, b/1

a/0, a/1,
b/0, b/1

Figure 8 Concretization of the Mealy machine of Figure 5a.

▶ Example 5.2. For the special case of Mealy machines A := I × O, we can define I ⊆
(I ×O)× (I ×O) to relate (i, o) and (i′, o′) iff i = i′, i.e. two actions are related if they use
the same input symbol. Then, we only have transitions to the chaos states if the code can’t
do any action for the same input symbol i ∈ I. Figure 8 depicts the concretization (for this
I) of the Mealy machine of Figure 5a(right) with the action code of Figure 5a(left). To
increase readability, we introduced two copies of chaos state χ. Also, multiple labels next to
an arrow denote multiple transitions.

Like in the refinement operator, the transition structure of γ is built in such a way that
transitions for b ∈ B in M correspond to runs of R(b) in γ(M):

(q, ε)
R(b)

γ(M) q̄ iff ∃q′ : q b
M q′ and q̄ = (q′, ε).

To make γ right adjoint to α, all runs outside the code R lead to the chaos state. One may
think that the many transitions to the chaos state χ would make the construction γR trivial.
However, only those paths lead to χ for which the action code is not defined.

The following technical condition describes that a code R contains sufficiently many
related symbols compared to a given M∈ LTS(A):

▶ Definition 5.3 (). A code R ∈ Code(A, B) is called I-complete for M∈ LTS(A), if for
all w ∈ B∗, u ∈ A∗, q ∈ QM, a, a′ ∈ A:

r0
u a

R and (a, a′) ∈ I and q0
R∗(w) u

M q a′
implies r0

u a′

R .

Intuitively, I-completeness means that if a state q ∈M can do a transition for a′ ∈ A which
is related to similar symbol a ∈ A defined in the action code, then a′ ∈ A itself is also
defined in the action code. However, we do not compare arbitrary transitions of q inM with
arbitrary symbols mentioned in R, but only look at the node in R reached when ‘executing
R’ zero or more times while following the path q0 q.

For example, if I ⊆ A × A happens to be the identity relation, then R is I-complete
for any M∈ LTS(A). In the instance of I ⊆ (I ×O)× (I ×O) for Mealy machines, if R is
I-complete for M, then this means: whenever a state q ∈ QM has transitions q

i/o and
q

i/o′

, then the code R is defined for either both or none of them.

▶ Assumption 5.4. For the rest of the present Section 5, we fix the sets A, B, an action
code R ∈ Code(A, B), and a reflexive relation I ⊆ A×A.

▶ Theorem 5.5 (Galois connection,). For all N ∈ LTS(A), and M∈ LTS(B), such that R
is I-complete for N , we have

αR(N) ⊑M (in LTS(B)) ⇐⇒ N ⊑ γR,I(M) (in LTS(A)).

ICALP 2023

https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.Concretization.html#icomplete
https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.Concretization.html#concretization_galois_connection

137:12 Action Codes

▶ Example 5.6 (). If we instantiate I to be the identity relation ∆ on A, then this means
that we simply replace a′ with a in rule (3γ), and then we have above equivalence for all
N ∈ LTS(A) and M∈ LTS(B) (without any side-condition):

αR(N) ⊑M (in LTS(B)) ⇐⇒ N ⊑ γR,∆(M) (in LTS(A)).

▶ Example 5.7 (). Consider the instantiation of I for Mealy machines described in
Example 5.2. Let N be our running example of Figure 2, let R be the action code from
Figure 5a(left), and letM be the abstract Mealy machine from Figure 5a(right), i.e. αR(N) =
M. One can verify thatR is I-complete forN . Therefore, application of the Galois connection
gives that there is a simulation from N to the Mealy machine γR,I(M) of Figure 8.

It is a standard proof that the operators in a Galois connections are monotone. In that
proof, one applies the Galois connection also to M := γR,I(N), so we first need to show that
it satisfies the technical completeness condition:

▶ Lemma 5.8 (). R is always I-complete for γR,I(M).

▶ Corollary 5.9 (). M⊑ N in LTS(B) implies γR,I(M) ⊑ γR,I(N) in LTS(A).

▶ Remark 5.10. Monotonicity of concretization also follows by observing that the rules in
Definition 5.1 all fit the tyft format of [19] if we view (·, w) as a unary operator for each
sequence w ∈ W . Monotonicity then follows from the result of [19] that the simulation
preorder is a congruence for any operator defined using the tyft format. Since contraction
also can be defined using the tyft format, also monotonicity of contraction (Proposition 3.11)
follows from the result of [19].

Like refinement, concretization preserves determinism.

▶ Proposition 5.11 (). If M∈ LTS(B) is a deterministic LTS and ∆ the identity relation
on A, then γR,∆(M) is deterministic, too.

If the code R ∈ Code(A, B) is defined for all labels mentioned in M∈ LTS(B), then γR
is even the right inverse of αR, that is, we have a Galois insertion:

▶ Theorem 5.12 (Galois insertion,). If M∈ LTS(dom(R)), then M∼= αR(γR,I(M)).

Note that dom(R) ⊆ B, and so LTS(dom(R)) ⊆ LTS(B). Since we may reach the chaos state
χ in the concretization, it is clear that γR is not a left inverse of αR in general.

6 Action Code Composition

Since notions of abstraction can be stacked up, it is natural to consider multiple adaptors
for multiple action codes. Assume an action code R ∈ Code(A, B) and an action code
S ∈ Code(B, C). Then the composition of R and S should be an action code from A to C.

▶ Definition 6.1 (). Given two map-based action codes R : B⇀A+ and S : C⇀B+, we
define their (Kleisli) composition (R ∗ S) : C⇀A+ by

(R ∗ S)(c) =
{
R(b1) · · ·R(bn) if S(c) = b1 · · · bn with ∀i : bi ∈ dom(R)
undefined otherwise

The composed action code R∗S is only defined for c ∈ C if S is defined for c and additionally
R is defined for every letter bi ∈ B that appears in the word S(c) ∈ B+.

https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.Concretization.html#concretization_galois_connection_lts
https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.MealyExample.html#simulation_from_mealy_to_own_concretization
https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.Concretization.html#icomplete_for_concretization
https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.Concretization.html#concretization_monotone
https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.Concretization.html#concretization_preserves_determinism
https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.Concretizaton.html#concretization_galois_insertion
https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.CodeMap.html#compose_codemap

F. Vaandrager and T. Wißmann 137:13

▶ Remark 6.2. The defined composition is an instance of Kleisli composition for a monad,
which is a standard concept in functional programming and category theory.

▶ Lemma 6.3 (). Action codes are closed under composition.
Concretely, given two map-based action codes R : B⇀A+ and S : C⇀B+, their Kleisli

composition (R ∗ S) : C⇀A+ is again a prefix-free partial map.

Now that we can compose action codes, we can now investigate how the previously defined
operators on LTSs behave for composed action codes:

▶ Theorem 6.4 (,). Contraction and refinement commute with action code composition:
for action codes R ∈ Code(A, B), S ∈ Code(B, C),
1. αR∗S(M) = αS(αR(M)) for all M∈ LTS(A).
2. ϱR∗S(M) = ϱR(ϱS(M)), whenever im(S) ⊆ dom(R)+ and for all M∈ LTS(C).
For the case of refinement, the additional assumption expresses that every word produced
by S only contains letters b ∈ B for which R is defined. The equations of Theorem 6.4
equivalently mean that the following diagrams commute:

LTS(A) LTS(C)

LTS(B)
αR

αR∗S

αS

LTS(A) LTS(C)

LTS(B)
ϱR

ϱR∗S

ϱS

▶ Remark 6.5 (). Concretization does not commute with action code composition. The
reason for that is that the rules (1γ) and (2γ) in γR(γS(M)) would also be applied to
transitions for the chaos state in γS(M) ∈ LTS(B) (see appendix for details).

7 Adaptors

In this section, we describe how action codes may be used for learning and testing of black-box
systems. The general architecture is shown in Figure 9. On the right we see the system
under test (SUT), some piece of hardware/software whose behavior can be modeled by a
Mealy machine M with inputs I and outputs O. On the left we see the learner/tester, an

Learner /
Tester

Adaptor
R

SUT
M

x ∈ X i ∈ I

o ∈ Oy ∈ Y

Figure 9 Using action codes for learning/testing.

0/A 0/B

a/0 b/0

Figure 10 Example 7.4.

agent which either tries to construct a model N ofM by performing experiments, or already
has such a model N and performs experiments (tests) to find a counterexample which shows
that M and N behave differently. The learner/tester uses abstract inputs X and outputs Y .
In between the learner/tester and the SUT we place an adaptor, which uses action code R to
translate between the abstract world of the learner/tester and the concrete world of the SUT.
In order to enable the adaptor to do its job, we need to make four (reasonable) assumptions.

Our first assumption, common in model-based testing [35], is that the SUT will accept
any input from I in any state, that is, we require that M is input enabled: for all q ∈ QM

and i ∈ I, q
i/

M. Our second assumption is that code R is I-complete for M (for I

ICALP 2023

https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.CodeMap.html#compose_code
https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.Contraction.html#contraction_code_composition
https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.RefinementCodeComposition.html#refinement_preserves_code_composition
https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.Contraction.html#contraction_does_not_preserve_code_composition

137:14 Action Codes

denoting same input as in Example 5.2). This ensures that whenever the adaptor sends
a concrete symbol i ∈ I to the SUT, the adaptor will accept any output o ∈ O that the
SUT may possibly produce in response. Our third assumption is that whenever the adaptor
receives an abstract input x ∈ X from the learner/tester, it can choose concrete inputs from
I that drive R from its initial state to a leaf with label (x, y), for some y ∈ Y . Output y can
then be returned as a response to the learner/tester. Reaching such a leaf is nontrivial since
the transitions taken in R are also determined by the outputs provided by the SUT. We may
think of the situation in terms of a 2-player game where the adaptor wins if the game ends
in an x-leaf, and the SUT wins otherwise. Formally, we require that R has finitely many
states and a winning strategy for every input x ∈ X, as defined below:

▶ Definition 7.1 (Winning). Let R = ⟨R, r0, , l⟩ ∈ Code(I ×O, X × Y) be an action code
with R finite and let x ∈ X. Then
1. A leaf r ∈ R is winning for x if π1(l(r)) = x.1

2. An internal state r ∈ R is winning for x with input i ∈ I if r
i/ and, for each transition

of the form r
i/o

r′, r′ is winning for x.
3. An internal state r ∈ R is winning for x if it is winning for x with some i ∈ I.
4. R has a winning strategy for x if r0 is winning for x.

▶ Example 7.2. The action codes for Mealy machines that we have seen thus far (Figures 4,
5a and 5b) are winning for all the inputs that label their leaves. The action code of Figure 4
is not winning for the input (latte macchiato), for the simple reason that this input does
not label any leaf. If we remove the transition to the leaf /2 in Figure 4, then the resulting
code is no longer winning for (espresso), although it is winning for (coffee).

Our fourth and final assumption is that action code R is determinate. If an action code
is determinate then, for each state r and abstract input x, there is at most one concrete
input i such that r is winning for x with i.

▶ Definition 7.3 (Determinate,). An action code R is determinate if, for each state r,
whenever r

i1/
r1, r

i2/
r2 and from both r1 and r2 there is a path to a leaf labeled with

input x, then i1 = i2.

▶ Example 7.4. All action codes for Mealy machines that we have seen thus far (Figures 4,
5a and 5b) are determinate. Figure 10 shows an action code that is not determinate: in
the root two different concrete inputs a and b are enabled that lead to leaves with the same
abstract input 0. Hence (trivially), this action code does have a winning strategy for input 0.

Algorithm 1 shows pseudocode for an adaptor that implements action code R. During
learning/testing, the adaptor records the current state of the action code in a variable r.
When an abstract input x arrives, it first sets r to r0. As long as current state r is internal,
the adaptor chooses an input i that is winning for x, and forwards it to the SUT. When the
SUT replies with an output o, the adaptor sets r to a state r′ with r

i/o−−→ r′. When the new
r is internal the adaptor chooses again a winning input, and updates its current state after
interacting with the SUT, etc. When the new r is a leaf with label (x, y) then the adaptor
returns symbol y to the learner/tester and waits for the next abstract input to arrive.

1 We use projections functions π1 and π2 to denote the first and second element of a pair, respectively.
So π1(x, y) = x and π2(x, y) = y.

https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.Adaptor.html#Determinate

F. Vaandrager and T. Wißmann 137:15

Algorithm 1 Pseudocode for an adaptor that implements action code R.
1: while true do
2: x← Receive-from-learner()
3: r ← r0
4: while r is internal do ▷ loop invariant: r is winning for x

5: i← unique input such that r is winning for x with i

6: Send-to-SUT(i)
7: o← Receive-from-SUT()
8: r ← unique state r′ such that r

i/o
r′ ▷ R is I-complete for M

9: end while
10: Send-to-learner(π2(l(r)))
11: end while

From the perspective of the learner/tester, the combination of the adaptor and SUT
behaves the same as the contraction αR(M). In the appendix, we will formalize this
statement by modeling both the combination of adaptor and SUT, as well as contraction
αR(M) as expressions in the process calculus CCS [30], and then establish the existence of
delay simulations between these expressions. This implies that both expressions have the
same traces if we remove all occurrences of the synchronizations between adaptor and SUT,
which are invisible from the perspective of the learner.

▶ Theorem 7.5. Let M ∈ LTS(I × O) be an input enabled Mealy machine and let R ∈
Code(I ×O, X ×Y) be a finite, determinate action code that has a winning strategy for every
input in X and that is output enabled for M. Then the composition of an implementation for
M and an adaptor for R is delay simulation equivalent to an implementation for αR(M).

▶ Remark 7.6. Requiring the existence of a determinate action code with a winning strategy
for a Mealy machine is not a severe restriction. Definition 7.1 implicitly describes a bottom-up
algorithm (linear in the size of the action code) that checks whether a winning strategy exists.
Checking whether an action code is determinate is also easy. A sufficient (but not necessary)
condition for an action code to be determinate and have a winning strategy is that when
we project the action code to the inputs (with concrete inputs labeling the transitions and
abstract inputs as label for the leaves) and merge isomorphic subtrees, then the result is still
an action code (defined for all the abstract inputs). This is a natural condition that can
also be used for the design of determinate action codes with a winning strategy: we start
from an action code for the inputs and recursively add output labels starting from the root.
Whenever, for a given input i, different outputs may occur, we make a copy of the subtree
after i for each possible output o. Finally, the abstract outputs need to be defined in such a
way that the labeling of the leaves remains injective.

Active automata learning algorithms and tools for Mealy machines typically assume that
the system under learning is output deterministic2: the output and target state of a transition
are uniquely determined by its source state and input.

▶ Definition 7.7. Mealy machine M is output deterministic if, for each state q and input i,

q
i/o

r ∧ q
i/o′

r′ ⇒ o = o′ ∧ r = r′.

2 The notion of deterministic that we use in this article is the standard one for LTSs. In the literature on
Mealy machines and FSMs, machines that we call output deterministic are called deterministic, and
machines that we call deterministic are called observable.

ICALP 2023

137:16 Action Codes

For action codes that are determinate, contraction preserves output determinism. This
property makes it possible to use existing automata learning tools to learn models of an
output deterministic SUT composed with a determinate adaptor.

▶ Proposition 7.8 (). Suppose M is a Mealy machine and R is an action code. If M is
output deterministic and R is determinate then αR(M) is output deterministic.

8 Discussion and Future Work

Via the notion of action codes, we provided a new perspective on the fundamental question
how high-level state machine models with abstract actions can be related to low-level models
in which these actions are refined by sequences of concrete actions. This perspective may, for
instance, help with the systematic design of adaptors during learning and testing, and the
subsequent interpretation of obtained results. Our theory allows for action codes (such as in
Figure 4) that are adaptive in the sense that outputs which occur in response to inputs at
the concrete level may determine the sequence of concrete inputs that refines an abstract
input. We are not aware of case studies in which such adaptive codes are used, but believe
they may be of practical interest. One may, for instance, consider a scenario in which an
abstract action AUTHENTICATE is refined by a protocol in which a user is either asked to
authenticate by entering a PIN code, or by providing a fingerprint.

Close to our work are the results of Rensink and Gorrieri [31], who investigate vertical
implementation relations to link models at conceptually different levels of abstraction. These
relations are indexed by a refinement function that maps abstract actions into concrete
processes. Within a setting of a CCS-like language, Rensink & Gorrieri [31] list a number of
proof rules that should hold for any vertical implementation relation, and propose vertical
bisimulation as a candidate vertical implementation relation for which these proof rules hold.
In the setting of our paper, we can define two vertical implementation relations ⊑R

γ and ⊑R
ϱ ,

for any action code R, by

M⊑R
γ N ⇔ M ⊑ γR(N) and M⊑R

ϱ N ⇔ M ⊑ ϱR(N).

Then ⊑R
ϱ ⊆ ⊑R

γ and both relations satisfy all language-independent proof rules of [31]. For
instance, we have

M⊑M′ M′ ⊑R
γ N ′ N ′ ⊑ N

M ⊑R
γ N

(since γR is monotone and ⊑ is transitive). With the action code R of Figure 3, both
implementation relations relate the LTSs of Figures 1c and 1a. However, the vertical
bisimulation preorder of Rensink and Gorrieri [31] does not relate these LTSs, when using
a code that maps a to 1 4 1, and b to 1 4 2. This suggests that bisimulations may not be
suitable as vertical implementation relations.

Also close to our work are results of Burton et al. [8, 23], who propose a vertical
implementation relation in the context of CSP. Instead of action codes, they use extraction
patterns, a strict monotonic map extr : Dom → B∗, where Dom is the prefix closure of a set
dom ⊆ A∗ of concrete action sequences that may be regarded as complete. As a mapping from
concrete to abstract sequences of actions, extraction patterns are more general than action
codes. However, as extraction mappings are not required to have an inverse, establishing
interesting Galois connections in this setting may be difficult. With an extraction pattern

https://thorsten-wissmann.de/archive/action-codes-icalp23/ActionCodes.Adaptor.html#contraction_preserves_determinism

F. Vaandrager and T. Wißmann 137:17

defined in the obvious way, the LTSs of Figures 1c and 1a are related by the implementation
relation of [8]. We are not aware of any other vertical implementation relation proposed
in the literature that handles our basic interface refinement example correctly. We find it
surprising that the fundamental problem of refining inputs actions has not been properly
addressed in the literature, except in some work that apparently has not been picked up
outside Newcastle-upon-Tyne and Catania.

The action refinement operator ϱR that we study is similar to the one proposed by [16, 17].
It improves on the one from [16, 17] by not introducing unnecessary nondeterminism, as
illustrated in the example of Figure 1. However, it falls short of the approach of [16, 17] by
not considering concurrency. Another difference is that in [16, 17] R(b) can be an arbitrary
system (including choice and parallel composition), whereas in our work it must be a sequence.
But then [16, 17] did not have the dual contraction operator αR. It would be very interesting
to combine both approaches.

Our theory is orthogonal to the one of Aarts et al. [1], which explores the use of so-called
mappers to formalize adaptors that abstract the large action alphabets of realistic applications
into small sets of actions that can be handled by a learning tool. Aarts et al. [1] also describe
the relation between abstract and concrete models using a Galois connection. In practical
applications of model learning, it makes sense to construct an adaptor that combines a
mapper in the sense of [1] with an action code as introduced in this paper. Fiterău-Broştean
et al. [11] describe a small domain specific language to specify mapper components, and from
which adaptor software can be generated automatically. It would be interesting to extend
this domain specific language so that it may also be used to specify action codes.

We developed our theory for LTSs and Mealy machines, using the simulation preorder as
the implementation relation. It would be interesting to transfer our results to other modeling
frameworks, such as IOTSs [35] timed automata [3] and Markov Decision Processes, and to
other preorders and equivalences in the linear-time branching-time spectrum for LTSs [15]
and IOTSs [22]. An obvious direction for future work would be to explore how action codes
interact with parallel composition. Here the work of [8, 23] may serve as a basis.

Different action codes lead to different contractions, and thereby to different abstract
views of a system, see for instance Figures 5a and 5b. We may try to exploit this fact during
learning and testing. For instance, if a system M is too big for state-of-the-art learning
algorithms, we may still succeed to learn partial views using cleverly selected action codes.
Using our Galois connections we then could obtain various upper and lower bounds for M.
Ideally, such an approach may even succeed to uniquely identify M. In particular, learning
algorithms such as L# [38] that use observation trees as their primary data structure may
exploit the use of different action codes, since the refinement operator ϱR and contraction
operator αR transform observation trees for abstract actions into observation trees for
concrete actions, and vice versa. Maarse [29] quantified the quality of a contraction αR(M)
in terms of the graph-theoretic concept of eccentricity. If q and q′ are states in an LTS M
then d(q, q′) is defined as the number of transitions in the shortest path from q to q′ (or ∞
if no such path exists). For any set of states Q ⊆ QM, the eccentricity ε(Q) is defined as
maxq′∈QM minq∈Q d(q, q′), that is, the maximal distance one needs to travel to visit a state
of M, starting from a state of Q. A good contraction has a small set of states Q and a low
eccentricity ε(Q): it only covers a small subset Q of the states of M, but any state from M
can be reached via a few transitions from a Q-state.

ICALP 2023

137:18 Action Codes

References
1 F. Aarts, B. Jonsson, J. Uijen, and F.W. Vaandrager. Generating models of infinite-state

communication protocols using regular inference with abstraction. Formal Methods in System
Design, 46(1):1–41, 2015. doi:10.1007/s10703-014-0216-x.

2 M. Abadi and L. Lamport. Composing specifications. ACM Transactions on Programming
Languages and Systems, 1(15):73–132, 1993.

3 G. Behrmann, A. David, K. G. Larsen, J. Håkansson, P. Pettersson, W. Yi, and M. Hendriks.
Uppaal 4.0. In Third International Conference on the Quantitative Evaluation of SysTems
(QEST 2006), 11-14 September 2006, Riverside, CA, USA, pages 125–126. IEEE Computer
Society, 2006.

4 J.A. Bergstra, A. Ponse, and S.A. Smolka, editors. Handbook of Process Algebra. North-Holland,
2001.

5 J. Berstel and D. Perrin. Theory of codes. Academic Press, 1985.
6 M. van der Bijl, A. Rensink, and J. Tretmans. Compositional testing with ioco. In A. Petrenko

and A. Ulrich, editors, Formal Approaches to Software Testing, Third International Workshop
on Formal Approaches to Testing of Software, FATES 2003, Montreal, Quebec, Canada,
October 6th, 2003, volume 2931 of Lecture Notes in Computer Science, pages 86–100. Springer,
2003. doi:10.1007/978-3-540-24617-6_7.

7 M. van der Bijl, A. Rensink, and J. Tretmans. Action refinement in conformance testing. In
F. Khendek and R. Dssouli, editors, Testing of Communicating Systems, 17th IFIP TC6/WG
6.1 International Conference, TestCom 2005, Montreal, Canada, May 31 - June 2, 2005,
Proceedings, volume 3502 of Lecture Notes in Computer Science, pages 81–96. Springer, 2005.

8 J. Burton, M. Koutny, and G. Pappalardo. Implementing communicating processes in the
event of interface difference. In 2nd International Conference on Application of Concurrency
to System Design (ACSD 2001), 25-30 June 2001, Newcastle upon Tyne, UK, page 87. IEEE
Computer Society, 2001. doi:10.1109/CSD.2001.981767.

9 G. Chalupar, S. Peherstorfer, E. Poll, and J. de Ruiter. Automated reverse engineering using
Lego. In Proceedings 8th USENIX Workshop on Offensive Technologies (WOOT’14), San
Diego, California, Los Alamitos, CA, USA, August 2014. IEEE Computer Society.

10 E.M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, Cambridge, Mas-
sachusetts, 1999.

11 P. Fiterău-Broştean, R. Janssen, and F.W. Vaandrager. Combining model learning and model
checking to analyze TCP implementations. In S. Chaudhuri and A. Farzan, editors, Proceedings
28th International Conference on Computer Aided Verification (CAV’16), Toronto, Ontario,
Canada, volume 9780 of Lecture Notes in Computer Science, pages 454–471. Springer, 2016.
doi:10.1007/978-3-319-41540-6_25.

12 P. Fiterău-Broştean, B. Jonsson, R. Merget, J. de Ruiter, K. Sagonas, and J. Somorovsky.
Analysis of DTLS implementations using protocol state fuzzing. In 29th USENIX Security
Symposium (USENIX Security 20), pages 2523–2540. USENIX Association, August 2020.

13 P. Fiterău-Broştean, T. Lenaerts, E. Poll, J. de Ruiter, F. Vaandrager, and P. Verleg. Model
learning and model checking of SSH implementations. In Proceedings of the 24th ACM
SIGSOFT International SPIN Symposium on Model Checking of Software, SPIN 2017, pages
142–151, New York, NY, USA, 2017. ACM. doi:10.1145/3092282.3092289.

14 H. Garavel and F. Lang. Equivalence checking 40 years after: A review of bisimulation tools.
In N. Jansen, M. Stoelinga, and P. van den Bos, editors, A Journey from Process Algebra via
Timed Automata to Model Learning, pages 213–265, Cham, 2022. Springer Nature Switzerland.
doi:10.1007/978-3-031-15629-8_13.

15 R.J. van Glabbeek. The linear time – Branching time spectrum I. The semantics of concrete,
sequential processes. In J.A. Bergstra, A. Ponse, and S.A. Smolka, editors, Handbook of
Process Algebra, pages 3–99. North-Holland, 2001.

https://doi.org/10.1007/s10703-014-0216-x
https://doi.org/10.1007/978-3-540-24617-6_7
https://doi.org/10.1109/CSD.2001.981767
https://doi.org/10.1007/978-3-319-41540-6_25
https://doi.org/10.1145/3092282.3092289
https://doi.org/10.1007/978-3-031-15629-8_13

F. Vaandrager and T. Wißmann 137:19

16 R.J. van Glabbeek and U. Goltz. Equivalence notions for concurrent systems and refinement
of actions (extended abstract). In A. Kreczmar and G. Mirkowska, editors, Mathematical
Foundations of Computer Science 1989, MFCS’89, Porabka-Kozubnik, Poland, August 28 -
September 1, 1989, Proceedings, volume 379 of Lecture Notes in Computer Science, pages
237–248. Springer, 1989. doi:10.1007/3-540-51486-4_71.

17 R.J. van Glabbeek and U. Goltz. Refinement of actions and equivalence notions for concurrent
systems. Acta Informatica, 37(4/5):229–327, 2001. doi:10.1007/s002360000041.

18 R. Gorrieri and A. Rensink. Action refinement. In J.A. Bergstra, A. Ponse, and S.A. Smolka,
editors, Handbook of Process Algebra, pages 1047–1147. North-Holland, 2001.

19 J.F. Groote and F.W. Vaandrager. Structured operational semantics and bisimulation as a
congruence. Information and Computation, 100(2):202–260, October 1992.

20 C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall International, Englewood
Cliffs, 1985.

21 J.E. Hopcroft and J.D. Ullman. Introduction to Automata Theory, Languages and Computation.
Addison-Wesley, 1979.

22 R. Janssen, F.W. Vaandrager, and J. Tretmans. Relating alternating relations for conformance
and refinement. In W. Ahrendt and S. Lizeth Tapia Tarifa, editors, Integrated Formal
Methods - 15th International Conference, IFM 2019, Bergen, Norway, December 2-6, 2019,
Proceedings, volume 11918 of Lecture Notes in Computer Science, pages 246–264. Springer,
2019. doi:10.1007/978-3-030-34968-4_14.

23 M. Koutny and G. Pappalardo. The ERT model of fault-tolerant computing and its application
to a formalisation of coordinated atomic actions. Report 636, Department of Computing Science,
University of Newcastle upon Tyne, 1998. URL: http://www.cs.ncl.ac.uk/publications/
trs/papers/636.pdf.

24 L. Lamport. The temporal logic of actions. ACM Transactions on Programming Languages
and Systems, 16(3):872–923, May 1994.

25 D. Lee and M. Yannakakis. Principles and methods of testing finite state machines — a survey.
Proceedings of the IEEE, 84(8):1090–1123, 1996.

26 N.A. Lynch. Distributed Algorithms. Morgan Kaufmann Publishers, Inc., San Fransisco,
California, 1996.

27 N.A. Lynch and M.R. Tuttle. Hierarchical correctness proofs for distributed algorithms. In
Proceedings of the 6th Annual ACM Symposium on Principles of Distributed Computing, pages
137–151, August 1987. A full version is available as MIT Technical Report MIT/LCS/TR-387.

28 N.A. Lynch and F.W. Vaandrager. Forward and backward simulations, I: Untimed systems.
Information and Computation, 121(2):214–233, September 1995.

29 T. Maarse. Active Mealy Machine Learning Using Action Refinements. Master’s thesis,
Radboud University, Institute for Computing and Information Sciences, August 2020.

30 R. Milner. Communication and Concurrency. Prentice-Hall International, Englewood Cliffs,
1989.

31 A. Rensink and R. Gorrieri. Vertical implementation. Information and Computation, 170(1):95–
133, 2001. doi:10.1006/inco.2001.2967.

32 J. de Ruiter and E. Poll. Protocol state fuzzing of TLS implementations. In
24th USENIX Security Symposium, pages 193–206, Washington, D.C., August 2015.
USENIX Association. URL: https://www.usenix.org/conference/usenixsecurity15/
technical-sessions/presentation/de-ruiter.

33 C. McMahon Stone, T. Chothia, and J. de Ruiter. Extending automated protocol state learning
for the 802.11 4-way handshake. In J. López, J. Zhou, and M. Soriano, editors, Computer
Security - 23rd European Symposium on Research in Computer Security, ESORICS 2018,
Barcelona, Spain, September 3-7, 2018, Proceedings, Part I, volume 11098 of Lecture Notes in
Computer Science, pages 325–345. Springer, 2018. doi:10.1007/978-3-319-99073-6_16.

34 A.S. Tanenbaum and D. Wetherall. Computer networks, 5th Edition. Pearson, 2011. URL:
https://www.worldcat.org/oclc/698581231.

ICALP 2023

https://doi.org/10.1007/3-540-51486-4_71
https://doi.org/10.1007/s002360000041
https://doi.org/10.1007/978-3-030-34968-4_14
http://www.cs.ncl.ac.uk/publications/trs/papers/636.pdf
http://www.cs.ncl.ac.uk/publications/trs/papers/636.pdf
https://doi.org/10.1006/inco.2001.2967
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter
https://doi.org/10.1007/978-3-319-99073-6_16
https://www.worldcat.org/oclc/698581231

137:20 Action Codes

35 J. Tretmans. Test generation with inputs, outputs, and repetitive quiescence. Software–
Concepts and Tools, 17:103–120, 1996.

36 J. Tretmans. Model based testing with labelled transition systems. In R.M. Hierons, J.P.
Bowen, and M. Harman, editors, Formal Methods and Testing, An Outcome of the FORTEST
Network, Revised Selected Papers, volume 4949 of Lecture Notes in Computer Science, pages
1–38. Springer, 2008.

37 F.W. Vaandrager. Model learning. Communications of the ACM, 60(2):86–95, February 2017.
doi:10.1145/2967606.

38 F.W. Vaandrager, B. Garhewal, J. Rot, and T. Wißmann. A new approach for active automata
learning based on apartness. In D. Fisman and G. Rosu, editors, Tools and Algorithms for the
Construction and Analysis of Systems - 28th International Conference, TACAS 2022, Held as
Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022,
Munich, Germany, April 2-7, 2022, Proceedings, Part I, volume 13243 of Lecture Notes in
Computer Science, pages 223–243. Springer, 2022. doi:10.1007/978-3-030-99524-9_12.

39 P. Verleg. Inferring SSH state machines using protocol state fuzzing. Master thesis, Radboud
University Nijmegen, February 2016. URL: https://www.ru.nl/publish/pages/769526/z07_
patrick_verleg.pdf.

40 M. Yannakakis. Hierarchical state machines. In J. van Leeuwen, O. Watanabe, M. Hagiya,
P.D. Mosses, and T. Ito, editors, Theoretical Computer Science: Exploring New Frontiers of
Theoretical Informatics, pages 315–330, Berlin, Heidelberg, 2000. Springer Berlin Heidelberg.

https://doi.org/10.1145/2967606
https://doi.org/10.1007/978-3-030-99524-9_12
https://www.ru.nl/publish/pages/769526/z07_patrick_verleg.pdf
https://www.ru.nl/publish/pages/769526/z07_patrick_verleg.pdf

	p000-Frontmatter
	Preface
	Organization

	p001-Karlin
	p002-Kyng
	p003-Baumann
	1 Introduction
	2 Preliminaries
	3 A Language-Theoretic Model of Concurrent Programs
	3.1 Model
	3.2 Runs and Context-bounded Runs
	3.3 Decision Problems
	3.4 Orders on Runs and Downclosures

	4 Decidability Results
	5 Further Results

	p004-Vidick
	p005-Worrell
	p006-Aamand
	1 Introduction
	1.1 Connectivity
	1.2 General reduction for c-edge-connectivity
	1.3 Results
	1.3.1 Adaptive updates and unique perfect matching

	2 Technical overview
	2.1 Thorup's construction [39]
	2.2 Our c-certificate based on small cut samples
	2.3 Maintaining our certificate
	2.4 Combining our certificate with Thorup's algorithm
	2.5 Final self-check

	p007-Afshani
	1 Introduction
	1.1 Problem Definition, Previous Work, and Related Results
	1.2 Our Contributions

	2 Preliminaries
	2.1 Shallow Cuttings and Approximate Range Counting
	2.2 epsilon-approximation

	3 Approximate Heavy Hitter Summary Queries
	3.1 Base Solution
	3.2 Solving AHHS Queries

	4 Approximate Quantile Summary Queries
	4.1 The Data Structure and the Query Algorithm
	4.2 Dominance Approximate Quantile Summary Queries
	4.2.1 A Suboptimal O(nlog log frac{1}{epsilon_0}) Space Solution
	4.2.2 An Optimal Solution for 3D Dominance AQS

	5 Open Problems

	p008-Agarwal
	1 Introduction
	2 Preliminaries
	2.1 Stable Matching and the Deferred Acceptance (DA) Algorithm
	2.2 Useful notation and definitions

	3 Upper Bound in The Linear Separable Model
	4 Sketch of the Proof of Theorem 6
	5 Making Fewer Proposals
	6 Numerical Simulations
	6.1 NRMP Data
	6.2 Numbers of Available Edges
	6.3 Unique Stable Partners
	6.4 Constant Number of Proposals

	7 Discussion and Open Problems

	p009-Agassy
	1 Introduction
	2 Preliminaries
	3 Approximating conductance via cut-matching
	3.1 KRV's Cut-Matching Game for Conductance
	3.2 OSVV's Cut-Matching Game for Conductance

	4 Expander decomposition via spectral Cut-Matching
	4.1 SW's Cut-Matching for expander decomposition
	4.2 Our contribution: Spectral cut player for expander decomposition
	4.3 Cut player
	4.4 Matching player

	5 Analysis
	5.1 The Algorithm
	5.2 F{t} is embeddable in G
	5.3 A_T is a near expander in F{T}
	5.4 Proof of Theorem 17

	p010-Akbari
	1 Introduction
	1.1 Contribution 1: landscape of models
	1.2 Contribution 2: collapse for LCLs in rooted regular trees
	1.3 Contribution 3: 3-coloring bipartite graphs in online-LOCAL
	1.4 Contribution 4: locality of online coloring
	1.5 Motivation
	1.6 Techniques and key ideas
	1.7 Open questions

	2 Definitions and related work
	3 Landscape of models
	4 3-coloring bipartite graphs
	4.1 Algorithm for 3-coloring bipartite graphs in online-LOCAL
	4.2 Analysis of the 3-coloring Algorithm in online-LOCAL

	5 LCL problems in paths, cycles, rooted regular trees
	5.1 Cycles and paths
	5.2 Rooted regular trees

	p011-Akmal
	1 Introduction
	1.1 Our Contribution
	1.2 Comparison to Previous Results
	1.3 Organization

	2 Preliminaries
	3 Proof Overview
	3.1 Flow Vector Encodings
	3.2 All-Pairs Connectivity
	3.3 All-Pairs Vertex Connectivity

	4 Flow Vector Encoding
	5 Connectivity Algorithm
	6 Encoding Vertex Connectivities
	7 Vertex Connectivity Algorithm

	p012-Amireddy
	1 Introduction
	1.1 Our results
	1.2 Techniques and proof overview

	2 Preliminaries
	3 Structure of the space of partials of a product
	4 Lower bound for low-depth homogeneous formulas
	4.1 Decomposition of low-depth formulas
	4.2 Low-depth formulas have high residue
	4.3 High residue implies lower bounds
	4.4 The hard polynomials
	4.5 Putting everything together: the low-depth lower bound

	5 Lower bound for unique-parse-tree formulas
	5.1 Decomposition of UPT formulas
	5.2 UPT formulas have high residue
	5.3 Putting everything together: the UPT formula lower bound

	6 Conclusion

	p013-Azar
	1 Introduction
	2 Multi-Layer Peeling Framework
	3 Notations and Preliminaries
	4 The Linear Arrangement Objective
	4.1 Defining the Algorithms
	4.1.1 Defining ALG
	4.1.2 Defining ALG_{d-w}

	4.2 Analyzing the Approximation Ratio of ALG
	4.2.1 Structural Lemmas
	4.2.2 Analyzing the Approximation Ratio of Case (a) of ALG
	4.2.3 Analyzing the Approximation Ratio of Case (b) of ALG
	4.2.4 Setting the Values alpha_i, beta_i and gamma_i
	4.2.5 Putting it all Together

	4.3 Analyzing the Running Time of ALG

	5 The Hierarchical Clustering Objective
	5.1 Defining the Algorithms
	5.1.1 Defining ALG
	5.1.2 Defining ALG_{d-w}

	5.2 Analyzing the Approximation Ratio of ALG
	5.2.1 Analyzing the Approximation Ratio of Case (a) of ALG
	5.2.2 Analyzing the Approximation Ratio of Case (b) of ALG
	5.2.3 Setting the Values alpha_i, beta_i and gamma_i
	5.2.4 Putting it all Together

	5.3 Analyzing the Running Time of ALG

	p014-Azarmehr
	1 Introduction
	2 Technical Overview
	3 Preliminaries
	3.1 Background on Matching Theory
	3.2 Concentration Inequalities

	4 A New Analysis of Bernstein's Protocol
	5 From Expectation to High Probability
	6 Some Instances for Bernstein's Protocol

	p015-Bansal
	1 Introduction
	1.1 Our Contributions
	1.1.1 Pliable Functions and Property (γ)
	1.1.2 Application 1: Augmenting a Family of Small Cuts
	1.1.3 Application 2: Capacitated k-Edge-Connected Subgraph Problem
	1.1.4 Application 3: (p,2)-Flexible Graph Connectivity

	1.2 Related work

	2 Preliminaries
	2.1 The WGMV Primal-Dual Algorithm for Uncrossable Functions

	3 Extending the WGMV Primal-Dual Method to Pliable functions
	4 O(1)-Approximation Algorithm for Augmenting Small Cuts
	5 O(k/u_min)-Approximation Algorithm for the Capacitated k-Edge-Connected Subgraph Problem
	6 O(1)-Approximation Algorithm for (p,2)-FGC
	A Missing Proofs from Section 3
	B Optimal Dual Solutions with Non-Laminar Supports

	p016-Barman
	1 Introduction
	2 Notation and Preliminaries
	3 Approximation Algorithm for Envy-Free Cake Division
	3.1 Interval Growing and Cycle Elimination
	3.2 Approximation Guarantee

	4 An epsilon-EF Algorithm under Bounded Heterogeneity
	5 Conclusion and Future Work
	A Missing Proofs from Section 3
	A.1 Runtime Analysis of Algorithm 1

	p017-Beame
	1 Introduction
	2 Preliminaries
	3 Quantum cumulative memory complexity of sorting
	4 General methods for proving cumulative memory lower bounds
	A Optimizations

	p018-Berenbrink
	1 Introduction
	1.1 Related Work

	2 Balancing Models and Notation
	2.1 Notation

	3 Random Matching Model
	3.1 Bounding the Contribution of Dynamically Allocated Load

	4 Balancing Circuit Model
	5 Asynchronous Model
	6 Drift Result
	7 Conclusions and Open Problems

	p019-Berendsohn
	1 Introduction
	2 Preliminaries
	3 Approximation guarantees for general trees
	4 Approximation guarantees for trees with bounded degrees
	5 Computing centroid trees
	6 Conclusions

	p020-Bergamaschi
	1 Introduction
	1.1 Our Main Contributions

	2 Technical Overview
	2.1 Background and Notation
	2.2 Our Results
	2.3 Related Work

	3 Discussion
	4 Organization
	A The Hamiltonian Regularity Lemma

	p021-Bhattacharjee
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Technical Overview
	1.3.1 Improved Bounds via Non-Uniform Sampling

	1.4 Towards Optimal Query Complexity

	2 Notation and Preliminaries
	3 Sublinear Time Eigenvalue Estimation using Uniform Sampling
	3.1 Outer and Middle Eigenvalue Bounds
	3.2 Main Accuracy Bounds

	4 Conclusion

	p022-Bhattacharya
	1 Introduction
	1.1 Related work

	2 Notations and preliminaries
	2.1 Grammars

	3 Decomposition algorithm
	3.1 Encoding a grammar
	3.2 k-mismatch approximate pattern matching

	4 Algorithm overview
	5 Description of the algorithm
	6 Correctness of the algorithm
	7 Time complexity of the algorithm
	8 Space complexity of the algorithm

	p023-Biedl
	1 Introduction
	2 Preliminaries
	3 Full 1-Plane Graphs
	4 1-Plane Graphs Without x-Crossings
	5 Computing Vertex Connectivity in Linear Time
	6 Outlook

	p024-Bilo
	1 Introduction
	1.1 Related Work on Fault-Tolerant Diameter Oracles
	1.2 All-Pairs Distance Sensitivity Oracles
	1.3 Related Work on Single-Source Distance Sensitivity Oracles

	2 Preliminaries
	3 ST-Diameter Oracles
	3.1 Query Algorithm
	3.2 Data Structure for the Sets S' and T' for Large Sensitivity
	3.3 Small Sensitivity

	4 Single-Source sT-Diameter Oracles
	5 Space Lower Bound

	p025-Black
	1 Introduction
	1.1 Isoperimetric Inequalities for Real-Valued Functions
	1.1.1 Boolean Decomposition
	1.1.2 Undirected Isoperimetric Inequality for Real-Valued Functions

	1.2 Applications of Our Isoperimetric Inequality for Real-Valued Functions
	1.2.1 Monotonicity Testing
	1.2.2 Our Lower Bound for Testing Monotonicity
	1.2.3 Approximating the Distance to Monotonicity

	1.3 Other Prior Work on Monotonicity Testing and Open Questions
	1.3.1 Discussion of Results Published After our Initial Manuscript

	2 Directed Talagrand Inequality for Real-Valued Functions
	3 Boolean Decomposition: Proof of Lg
	3.1 Sweeping Graphs and Their Properties
	3.2 Matching Decomposition Lemma for DAGs
	3.3 Specifying a Matching to Construct the Subgraphs LG
	3.4 Tying it Together: Defining the Boolean Functions Lg

	4 Testing Monotonicity of Real-Valued Functions
	4.1 Existence of a Good Bipartite Subgraph
	4.2 Bounding the Number of Non-Persistent Vertices

	p026-Blelloch
	1 Introduction
	1.1 Our Results
	1.2 Related Work

	2 Preliminaries
	3 Tree-based Sorting
	3.1 Mergesort
	3.2 Partition Sort

	4 The Log-Interleave Bound
	5 Adaptive Parallel Mergesort

	p027-Bodlaender
	1 Introduction
	2 Preliminaries
	3 W[3]-completeness for BinCSP parameterized by vertex cover
	4 XSLP and treedepth
	4.1 A machine characterization
	4.1.1 Regularization

	4.2 A logic characterization

	5 Conclusion

	p028-Bogdanov
	1 Introduction
	1.1 The Nearest Boolean Vector problem
	1.2 Our Result

	2 Background and Overview
	2.1 Average-case refutations
	2.2 Refutations in the Sum-of-Squares Framework
	2.3 Sherrington-Kirkpatrick and Nearest Boolean Vector
	2.4 Algorithms for NBV
	2.5 Nondeterministic refutations for NBV
	2.6 Refutations, SZK, and Public-key Encryption

	3 Refutation via Lattice Smoothing
	4 Well-conditioned submatrices of random matrices
	4.1 Anticoncentration

	5 Refutation via Boolean combinations

	p029-Bosch-Calvo
	1 Introduction
	1.1 Related Work
	1.2 Preliminaries

	2 Overview of Our Approach
	2.1 A Reduction to Structured Graphs
	2.2 A Canonical 2-Edge-Cover
	2.3 A Credit-Based Argument

	p030-Braverman
	1 Introduction
	1.1 Main Result: Approximate Counting
	1.2 Main Technique: The Shift Finding Problem
	1.2.1 Connection to PD Counting
	1.2.2 An Algorithm for Shift Finding

	1.3 Related Work

	2 Preliminaries
	3 Lower Bounds for PD Approximate Counting via Shift Finding
	4 Lower Bound for PD Approximate Counting
	4.1 Scenario One
	4.2 Scenario Two
	4.3 Concluding the Proof of Theorem 1.3

	5 Shift Finding Algorithm

	p031-Caceres
	1 Introduction
	2 Notation and preliminaries
	3 Mergeable dictionaries with SIZE-SPLIT
	4 An almost linear time algorithm for MCC

	p032-Cade
	1 Introduction
	2 Preliminaries
	2.1 Semi-classical states
	2.2 Non-2SLD Hamiltonian and geometry of interaction

	3 GLHLE hardness constructions
	3.1 Increasing the allowed fidelity
	3.2 Extending to excited states
	3.3 Locality reduction and reduction to physically motivated Hamiltonians via strong Hamiltonian simulation

	A Approximate Hamiltonian simulation
	A.1 Introduction of approximate Hamiltonian simulation

	B Schrieffer-Wolf transformation for 1-dimensional gapped ground space
	C Encoding of states for strong Hamiltonian simulation

	p033-Cai
	1 Introduction
	2 Preliminaries
	3 Quantum Isomorphism Implies Planar #CSP Equivalence
	3.1 The Planar Gadget Decomposition
	3.2 Gadgets and quantum permutation matrices
	3.3 The Quantum Holant Theorem

	4 Planar #CSP Equivalence Implies Quantum Isomorphism
	A Appendix: An alternate approach to connectivity

	p034-Chan
	1 Introduction
	1.1 The discrete k-center problem for small k
	1.2 The geometric set cover problem with small size k
	1.3 New results

	2 Subquadratic Algorithms for Size-3 Set Cover for Rectangles in R^2
	3 Conditional Lower Bounds for Size-3 Set Cover for Boxes
	3.1 Weighted size-3 set cover for unit squares in R^2
	3.2 Unweighted size-3 set cover for boxes in R^3
	3.3 Unweighted size-3 set cover for unit hypercubes in R^4

	4 Conditional Lower Bound for Euclidean Discrete 2-Center
	5 Conclusions

	p035-Chang
	1 Introduction
	1.1 Ortho-radial drawing
	1.2 Previous methods
	1.3 Our new method
	1.4 Related work
	1.5 Organization

	2 Preliminaries
	3 Technical overview
	4 Conclusions

	p036-Chekuri
	1 Introduction
	1.1 Our contribution
	1.2 Overview of techniques and related work

	2 Preliminaries
	3 Uncrossability-Based Approximation Algorithms
	3.1 An O(q)-approximation for (2, q)-FGC
	3.2 Identifying Uncrossable Subfamilies
	3.3 Approximating (p, q)-FGC for q < = 4
	3.4 An O(1)-Approximation for Flex-ST

	4 Approximating the Augmentation Problem for (p,q)-Flex-SNDP
	4.1 Räcke Tree Embeddings
	4.2 Group Steiner Tree, Set Connectivity and Tree Rounding
	4.3 Rounding Algorithm for the Augmentation Problem
	4.4 Analysis
	4.5 Shattered Components, Set Connectivity and Rounding
	4.6 Correctness and Cost

	p037-Chen
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview
	1.2.1 Overview of Algorithmic Techniques
	1.2.2 Overview of Lower Bound Techniques

	1.3 Organization

	2 Cover Advantage
	3 A Two-Pass Algorithm for TSP Estimation in Graph Streams
	4 An (2-epsilon_0)-Approximation Query Algorithm with a given MST
	5 Future Directions

	p038-Chen
	1 Introduction
	1.1 Linear regression with norm constraints
	1.2 Our results
	1.2.1 Lasso
	1.2.2 Ridge

	1.3 Related work

	2 Preliminaries
	2.1 Computational model and quantum algorithms
	2.2 Expected and empirical loss
	2.3 Linear regression problems and their classical and quantum setup
	2.3.1 Lasso
	2.3.2 Ridge

	2.4 The KP-tree data structure and efficient state preparation

	3 Quantum Algorithm for Lasso
	3.1 The classical Frank-Wolfe algorithm
	3.2 Approximating the quadratic loss function and entries of its gradient
	3.3 Quantum algorithms for Lasso with respect to S
	3.3.1 Analysis of Algorithm 2
	3.3.2 Analysis of Algorithm 3

	3.4 Quantum algorithms for Lasso with respect to D

	4 Quantum query lower bounds for Lasso
	4.1 Finding a hidden set W using a Lasso solver
	4.2 Worst-case quantum query lower bound for the set-finding problem
	4.3 Worst-case to average-case reduction for the set-finding problem
	4.4 Classical lower bound for Lasso

	5 Quantum query lower bound for Ridge
	6 Future work

	p039-Chen
	1 Introduction
	1.1 Our Results
	1.1.1 Unordered and Unbounded-width roBPs
	1.1.2 Adaptive roBPs

	2 Preliminaries
	3 PRGs for Unbounded-width Branching Programs
	3.1 Fourier Decomposition of Regular BPs
	3.2 Bounding the Error
	3.3 Applications

	4 PRGs for Adaptive Branching Programs
	4.1 Decomposition of roBPs
	4.1.1 Fourier Decomposition for Adaptive BP

	4.2 Forbes-Kelley PRG fools Adaptive roBP
	4.2.1 PRG for Adaptive roBP

	A Fourier Growth of Constant-Width Adaptive roBP
	A.1 Reducing Adaptive roBP to Oblivious roBP
	A.2 Fourier Growth and Pseudorandomness

	p040-Cheng
	1 Introduction
	2 {(1+O(epsilon),delta)}-ANN
	2.1 Coarse encodings of query curves
	2.2 Data structure organization and construction
	2.3 Querying
	2.4 Approximation guarantee

	3 {(3+O(epsilon),delta)}-ANN
	4 {(11epsilondelta)}-segment queries and proof of Lemma 8
	4.1 Data structure organization
	4.2 Answering a query

	5 Conclusion

	p041-Cheng
	1 Introduction
	1.1 Our Results
	1.2 Overview of the Techniques

	2 Preliminaries
	3 General Construction of Our Codes
	4 Constructions For High Noise

	p042-Cheung
	1 Introduction
	2 Preliminaries and Background
	2.1 VC Dimension and Littlestone Dimension
	2.2 Disambiguations

	3 Proofs
	3.1 Proofs of Theorems 6 and 10
	3.2 Disambiguations via the SOA algorithm (Theorem 12)
	3.3 Small-size refutation of the Alon-Saks-Seymour conjecture (Theorem 11)

	4 Concluding remarks

	p043-Cohen
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 Related Work

	2 Preliminaries and Results
	2.1 Problem Definition
	2.2 Exponentiated and Generalized Proportional Allocations

	3 Canonical Properties of Generalized Proportional Allocations
	3.1 Convergence of Algorithm 1
	3.2 Weak Monotonicity of the Maximum and Minimum Loads in Algorithm 1: Proof of Lemma 13

	4 Monotonicity and Convergence of Exponentiated Proportional Allocations
	5 Noise Resilience: Handling Predictions with Error
	6 Learnability of the Parameters
	7 Generalization to Well-Behaved Objectives
	7.1 Noise Resilience
	7.2 Learnability

	8 Conclusion and Future Directions

	p044-CohenSidon
	1 Introduction
	1.1 Our results
	1.2 A high-level discussion of our algorithms
	1.2.1 The uniform case
	1.2.2 The distribution-free case

	1.3 Related results
	1.4 Further research
	1.5 Organization

	2 Distance approximation under the uniform distribution
	3 Distribution-free distance approximation
	3.1 Interval construction and classification
	3.2 Estimation of symbol density and weight of intervals
	3.3 Reducing from distribution-free to uniform
	3.3.1 A basis for reducing from distribution-free to uniform
	3.3.2 Establishing the reduction for win W_c and quantized p

	4 A lower bound for distance approximation
	A Chernoff bounds

	p045-Compton
	1 Introduction
	1.1 Computation Models
	1.2 Our Results
	1.2.1 Implications in Other Settings

	1.3 Related Work

	2 Overview of Our Techniques
	2.1 Unweighted Interval Scheduling – Partitioning Over Time (Section 4)
	2.2 Weighted Interval Scheduling
	2.2.1 Job data structure
	2.2.2 Organizing computation
	2.2.3 Auxiliary data structure
	2.2.4 The charging method
	2.2.5 Approximate dynamic programming
	2.2.6 Comparison with Prior Work

	2.3 Localizing the Time-Partitioning Method

	3 Problem Setup
	4 Dynamic Unweighted Interval Scheduling on a Single Machine

	p046-Coy
	1 Introduction
	1.1 Background and Related Works
	1.2 Technical Overview

	2 Preliminaries
	2.1 Notation
	2.2 Derandomization in CongestedClique

	3 The DILC Algorithm
	4 ColorTrial and Subsample
	4.1 ColorTrial
	4.2 Subsample

	5 BucketColor
	5.1 Assigning nodes to buckets
	5.2 Correctness of BucketColor

	6 Proof of the main theorem
	A Derandomization in CongestedClique
	A.1 Bounded Independence
	A.2 The Method of Conditional Expectations

	p047-Disser
	1 Introduction
	2 Separability of Incremental Maximization
	3 Continuization Results
	3.1 Optimal Continuous Online Algorithm
	3.2 General Lower Bound

	4 Randomized Incremental Maximization
	4.1 Randomized Algorithm
	4.2 Randomized Lower Bound

	p048-Dorobisz
	1 Introduction
	1.1 Local Computation Algorithms
	1.2 Constructive Local Lemma and LCA
	1.3 Main result
	1.4 LOCAL distributed algorithms

	2 Main techniques and ideas of the proof
	3 Establishing base result
	3.1 Global coloring procedure
	3.1.1 The shattering phase
	3.1.2 The final coloring phase

	3.2 LCA realization
	3.2.1 query
	3.2.2 build_final_component
	3.2.3 color_final_component

	4 Main result – algorithm
	4.1 A general idea
	4.1.1 Activation of bad-components
	4.1.2 Edge trimming

	4.2 Global coloring procedure
	4.2.1 The shattering phase
	4.2.2 The final coloring phase

	4.3 Ideas behind LCA realization
	4.3.1 Trimming to bad-component
	4.3.2 Activation exclusion
	4.3.3 Conditional expansion

	4.4 LCA procedure
	4.4.1 query
	4.4.2 build_final_component
	4.4.3 expand_or_accept
	4.4.4 color_final_component

	A Listings of the improved procedure
	A.1 Listing of the global algorithm
	A.2 Listing of build_final_component (LCA)
	A.3 Listing of expand_or_accept (LCA)

	p049-Doron-Arad
	1 Introduction
	1.1 Related Work
	1.2 Contribution and Techniques

	2 Preliminaries
	2.1 Matching and Matroids
	2.2 Instance Definition

	3 The Algorithm
	4 Exchange Set for Matching Constraints
	5 Exchange Set for Matroid Intersection Constraints
	6 Discussion

	p050-Drexler
	1 Introduction
	2 Setup and review of results on restricted graph classes
	3 General G, non-disjoint clusters
	4 General G, disjoint clusters
	4.1 Making the clusters disjoint
	4.2 Finding well-separated partitions
	4.2.1 Well-separated partitions in general metrics
	4.2.2 Well-separated partitions in Euclidean metrics
	4.2.3 Well-separated partitions in metrics with small doubling dimension

	5 Conclusions

	p051-Dughmi
	1 Introduction
	2 Problem Definition
	3 Sparsification from Contention Resolution
	4 Additive Optimization over a Matroid
	4.1 Special Case: Unweighted Optimization
	4.2 Proof of Theorem 6

	5 Improved Sparsifier for Stochastic Weighted Matching
	6 Additive Optimization over the Intersection of k Matroids
	7 Open Questions

	p052-Eden
	1 Introduction
	1.1 Results
	1.1.1 Lower Bound for the Noninteractive Local Model
	1.1.2 Tight Analysis of Randomized Response
	1.1.3 Lower Bound for the Interactive Local Model

	1.2 Technical Overview of the Noninteractive Lower Bound
	1.3 Additional Related Work
	1.4 Organization

	2 Background on Differential Privacy
	2.1 The local model

	3 The Noninteractive Lower Bound
	3.1 Reduction from Outer-product Queries to Triangle Counting
	3.2 Anti-Concentration for Random Outer-Product Queries
	3.3 Reconstruction Attack Using Outer-Product Queries

	4 The Interactive Lower Bound

	p053-Efremenko
	1 Introduction
	1.1 Our Result
	1.2 Corruption Noise and Adaptivity
	1.3 Related Work

	2 Proof Sketch
	2.1 The [10] Scheme
	2.2 Avoiding The Repeated Rewinds Problem
	2.3 Avoiding The Message Certification Problem
	2.4 Erasures To And From The Leader
	2.5 Implementing Check Phases

	3 The Model
	4 Our Simulation Protocol
	A Technical Preliminaries
	A.1 Tree Codes

	B Analyzing the Protocol
	B.1 Technical Lemmas and One-Sided Error
	B.2 Bad Events
	B.2.1 Noise Events
	B.2.2 Bad Iterations

	B.3 Bad Intervals
	B.3.1 Critical Players
	B.3.2 Bad Intervals

	B.4 A Potential Function
	B.5 Finishing the proof of Theorem 2

	p054-Efthymiou
	1 Introduction
	2 Results
	2.1 Mixing Time for Hard-Core Model
	2.2 Extensions to Monomer-Dimer Model
	2.3 Hard-Core Model – Entropy Tensorisation for Rapid Mixing

	3 Our Approach & Contributions
	3.1 Tensorisation and Block-Factorisation of Entropy
	3.2 Spectral Independence with Branching Values

	4 Entropy Factorisation from Stability and Spectral Independence
	4.1 Ratios of Gibbs Marginals & Stability
	4.2 (Complete) Spectral Independence
	4.3 Entropy Block Factorisation - Proof of Theorem 6

	5 Approximate Tensorisation of Entropy
	5.1 Proof of Theorem 4

	p055-Efthymiou
	1 Introduction
	1.1 Broadcasting, Reconstruction and the Kesten-Stigum bound
	1.2 Broadcasting with random matrices

	2 Results
	2.1 The case of the Galton-Watson tree
	2.2 The Edwards-Anderson model on {G}(n,d/n)

	3 Approach

	p056-Eppstein
	1 Introduction and background
	1.1 Decomposition framework
	1.2 Paper organization
	1.3 Triangulations of convex point sets and lattice point sets
	1.4 Convex triangulation flip walk and mixing time
	1.5 Main results

	2 Decomposing the convex point set triangulation flip graph
	2.1 Bounding mixing via expansion
	2.2 ``Slicing and peeling''

	3 Bounding expansion via multicommodity flows
	4 Our framework
	4.1 Markov chain decomposition via multicommodity flow
	4.2 General pattern for bounding projection chain congestion
	4.3 Eliminating inductive loss: nearly tight conductance for triangulations
	4.4 Intuition for the flow construction for triangulations

	p057-Esperet
	1 Introduction
	2 Adjacency Labeling Scheme
	2.1 Phase 1: Exactly One Difference
	2.2 Phase 2: Induced Subgraphs
	2.3 Phase 3: Subgraphs

	3 Optimality

	p058-Feldman
	1 Introduction
	1.1 Our Results and Techniques
	1.2 Further Related Work

	2 Preliminaries
	3 Prompt mechanisms with public graph edges
	3.1 Deterministic truthful mechanisms
	3.2 Randomized truthful mechanisms

	4 Mechanisms with private graph edges
	4.1 Deterministic truthful mechanisms

	5 Randomized truthful mechanisms
	6 Ex-ante truthfulness
	7 Conclusions
	A Mechanisms for Myopic Buyers
	B Tardy mechanisms with public graph edges
	C Proofs of

	p059-Ferens
	1 Introduction
	1.1 Contribution

	2 Solving Complete Reachability in Polynomial Time
	2.1 Reachability
	2.2 Witnesses
	2.3 An Algorithm in co-NP
	2.4 A Polynomial-Time Algorithm
	2.4.1 Finding Properly Extending Words
	2.4.2 Set Reduction for Witness Containment
	2.4.3 Finding a Witness

	2.5 Improving Running Time
	2.5.1 Reduction History
	2.5.2 Finding a Reduction
	2.5.3 The Optimized Algorithm

	3 An Upper Bound on Reset Threshold
	3.1 Synchronization
	3.2 Finding Short Properly Extending Words
	3.2.1 Nested Boxes
	3.2.2 Final Bounding

	p060-Fomin
	1 Introduction
	2 Overview of the proofs
	2.1 Approximating long cycles
	2.2 Approximating long (s,t)-paths

	3 Preliminaries
	4 Approximating (s,t)-path
	4.1 Erdős-Gallai decomposition
	4.2 Proof of Theorem 2

	5 Conclusion

	p061-Fomin
	1 Introduction
	1.1 State of the art and our contribution
	1.2 Our results

	2 Overview of the proof
	2.1 General scheme of the algorithm
	2.2 A simplified and illustrative setting

	3 From FOL to FOL+DP: the compound logic Theta^{DP}
	4 Further research

	p062-Friedrich
	1 Introduction
	2 (Geometric) Inhomogeneous Random Graphs
	3 Asymptotic Equivalence
	4 Clique Structure
	5 Relation to Previous Analyses
	6 Conjectures & Future Work

	p063-Friggstad
	1 Introduction
	2 Preliminaries
	3 Planar DST
	3.1 Warm-up: An overview of a quasi-polynomial time approximation
	3.2 The polynomial-time algorithm
	3.3 Analysis

	4 Multi-rooted planar DST
	5 Concluding Remarks
	6 Proof of Lemma 5

	p064-Fu
	1 Introduction
	2 Preliminaries
	3 Completeness of self-testing protocol
	4 Soundness of self-testing protocol
	5 Applications

	p065-Garg
	1 Introduction
	2 Technical overview
	2.1 Preliminaries
	2.2 Algorithmic template and the previous frac 5 3-approximation
	2.3 Highlights of our approach and innovations for the 13/8-approximation
	2.4 Important definitions
	2.5 Algorithm overview

	3 Preprocessing
	4 Algorithm for structured graphs
	4.1 Computing an economical bridgeless 2-edge-cover
	4.2 Computing a special configuration
	4.3 Two-edge-connecting special configurations

	5 ALG is admissible
	6 Conclusion

	p066-Ghazi
	1 Introduction
	1.1 Our Results
	1.2 Proof Overview
	1.3 Relation Between Tree Aggregation and Releasing Thresholds

	2 Preliminaries
	2.1 Norms
	2.2 Tools from Differential Privacy

	3 Threshold-Based Utility
	4 Upper Bounds
	4.1 A Classification Problem
	4.2 A Reduction from Estimation to Classification
	4.3 Putting Everything Together

	5 Lower Bounds
	5.1 Pure-DP Lower Bound

	6 Conclusions

	p067-Gheorghiu
	1 Introduction
	2 Main results
	2.1 Soundness proof for parallel RSP protocol

	3 Applications
	4 Related work
	5 Discussion

	p068-Goldberg
	1 Introduction
	1.1 Counting Modulo 2
	1.2 Our Contributions

	2 Preliminaries
	2.1 Colour-Preserving Homomorphisms and Embeddings
	2.2 Fractures and Fractured Graphs
	2.3 Parameterised and Fine-grained Computation

	3 Classification for Hereditary Graph Classes
	3.1 Triangle Packings
	3.2 P_2-packings

	p069-Goranci
	1 Introduction
	2 Preliminaries
	3 A framework for Incremental Approximate Maximum Flow
	4 Incremental Bounded Maximum Flow
	4.1 Directed Graphs
	4.2 Undirected Graphs

	5 Conclusion

	p070-Goyal
	1 Introduction
	1.1 Our Contributions
	1.2 Related Work
	1.3 Future Directions
	1.4 Roadmap

	2 Model and Preliminaries
	2.1 Distortion
	2.2 Model of preference aggregation

	3 Incremental allocation space
	3.1 Projection On Incremental Allocations

	4 Overview of Median and Nash bargaining schemes
	4.1 Overview of class of schemes M and N
	4.2 Randomised Nash bargaining solution {n}_{rand}
	4.3 Median schemes M

	5 Distortion Of Schemes in M
	6 Distortion of {n}_{rand}
	6.1 Construction of bargaining solution in {n}~_{rand}
	6.2 Distortion under {n}_{rand}

	7 Empirical Results
	8 Triadic Scheme With Project Interactions
	9 Conclusion

	p071-Hader
	1 Introduction
	2 Preliminary definitions
	2.1 Definition of the abstract Tile-Assembly Model
	2.2 Model Variations
	2.3 Intrinsic Simulation
	2.4 Window Movie Lemma

	3 Results
	3.1 Simulations using existing tile sets
	3.2 Directed systems cannot simulate undirected systems
	3.3 The PaTAM cannot simulate the aTAM
	3.4 The aTAM cannot simulate the PaTAM
	3.5 The 3DaTAM cannot simulate the SaTAM
	3.6 The PaTAM can simulate the directed PaTAM

	p072-Harris
	1 Introduction
	1.1 Algorithmic sampling-to-counting
	1.2 Our contributions
	1.3 Overview

	2 Preliminaries
	2.1 The Balance subroutine
	2.2 Statistical sampling

	3 Solving {P^{#1}_count} {delta, epsilon} in the continuous setting
	4 Solving {P^{#1}_count} {} and {P^all_ratio} for integer-valued Gibbs distributions
	4.1 Solving {P^{#1}_count} {delta, epsilon}
	4.2 Solving {P^all_ratio}

	5 Constructing a covering schedule
	5.1 Constructing a preschedule
	5.2 Converting the preschedule into a covering schedule

	6 Combinatorial applications
	6.1 Counting connected subgraphs
	6.2 Counting independent sets in bounded-degree graphs

	7 Lower bounds on sample complexity

	p073-Haviv
	1 Introduction
	1.1 Our Contribution
	1.1.1 The Generalized Schrijver Problem
	1.1.2 The Unfair Independent Set in Cycle Problem

	1.2 Outline

	2 Preliminaries
	2.1 Kneser and Schrijver Graphs
	2.2 Intersecting Families
	2.3 Complexity Classes
	2.4 Computational Problems

	3 The Generalized Schrijver Problem
	4 The Unfair Independent Set in Cycle Problem
	4.1 Hardness
	4.2 Algorithms

	5 Unstable Sets
	5.1 Chromatic Number
	5.2 Independence Number

	p074-Henzinger
	1 Introduction
	1.1 Our contributions
	1.2 Technical Overview

	2 Preliminaries
	3 Improved nearly-linear submodular maximization
	3.1 Data structure requirements
	3.2 The LAZYSAMPLINGGREEDY+ algorithm
	3.3 The CONTINUOUSGREEDY algorithm
	3.4 Analysis of the overall framework

	4 Data structures for various matroids
	4.1 Laminar matroids
	4.2 Graphic matroids
	4.3 Transversal matroids

	p075-Hlineny
	1 Introduction
	2 Notation and Tools
	3 Proof of Theorem 1
	3.1 Induction setup for a bounded region of the graph
	3.2 Vertical-horizontal division into subregions
	3.3 Finishing the proof

	4 Proof of Theorem 2
	5 Concluding Remarks

	p076-Houen
	1 Introduction
	1.1 Sparse Johnson-Lindenstrauss Transform
	1.2 Hashing Speed

	2 Related Work
	3 Overview of the New Analysis
	4 Technical Results
	5 Analysis of the Sparse Johnson-Lindenstrauss Transform

	p077-Hsieh
	1 Introduction
	2 The Algorithm and Analysis
	2.1 Proof of Theorem 1

	p078-Hsieh
	1 Introduction
	1.1 Technical overview
	1.2 Comparison to prior work

	2 Proof of main result
	2.1 Candidate construction
	2.2 Decomposition of M
	2.3 Inverse of M
	2.4 Finishing the proof of Theorem 2

	3 Machinery for tight norm bounds of graph matrices
	3.1 Preliminaries
	3.2 Global bounds via a local analysis
	3.3 Vertex factor assignment scheme
	3.4 Bounding edge-factors
	3.5 Bounding return cost (Pur factors)
	3.5.1 Pur bound for circle vertices
	3.5.2 Pur bound for square vertices

	3.6 Wrapping up with a toy example
	3.6.1 Tight bound for GOE

	p079-Hyatt-Denesik
	1 Introduction
	2 Laminarity
	3 Improved approximation for CA-Node-Steiner Tree
	3.1 Preprocessing
	3.2 Computing a witness tree for a component
	3.3 Bounding the cost of
	3.4 Key Lemma
	3.5 Merging and bounding the cost of

	4 Improved Lower Bound on
	5 Tight bound for Steiner-Claw Free Instances

	p080-Ibrahimpur
	1 Introduction
	2 Preliminaries and Notation
	3 Fractional O(log k)-Competitive Algorithm for Caching with Reserves
	3.1 Fractional Algorithm
	3.2 Analysis Overview
	3.3 Potential Function Analysis
	3.4 A Lower Bound on OPT through Dual Fitting

	4 Rounding
	4.1 Discretization Procedure
	4.2 Updating the Distribution of Cache States

	p081-Ito
	1 Introduction
	1.1 Disjoint Paths and Reconfiguration
	1.2 Our Contributions
	1.3 Related Work
	1.4 Organization

	2 Preliminaries
	3 Curves on a Plane
	4 Algorithms for Planar Graphs
	4.1 One-Face Instance and Two-Face Instance
	4.2 Reconfiguration of s-t Paths

	5 Proof of Theorem 14
	5.1 Preliminaries for the Proof
	5.2 Case When P preceq Q
	5.3 General Case

	6 Concluding Remarks

	p082-Ito
	1 Introduction
	2 Preliminaries
	3 Hardness of the Weighted Problem
	3.1 Reduction
	3.2 Proof of Proposition 4

	4 Hardness of the Unweighted Problem (Proof of Theorem 1)
	4.1 Useful Operation: Projection
	4.2 Reduction
	4.3 Validity

	5 Hardness for Polymatroids (Proof of Theorem 2)
	6 Conclusion

	p083-Iyer
	1 Introduction
	1.1 Related Work
	1.2 Techniques

	2 Preliminaries
	2.1 Fourier Analysis on Subspaces

	3 Upper Bound on r(f,delta)
	4 Applications
	5 Lower Bounds on r(f, delta)
	5.1 Bounded Functions
	5.2 Boolean Functions
	5.2.1 Non-explicit Lower Bounds on r(f, delta)
	5.2.2 Explicit Lower Bounds on r(f, delta)

	A Section 1 Omissions
	A.1 Omitted Proofs
	A.2 Omitted Sketches

	B Section 2 Omitted Proofs
	C Proofs from Section 5
	C.1 Proofs from Section 5.1

	p084-Karczmarz
	1 Introduction
	1.1 Prior work
	1.2 Our results
	1.3 Technical overview
	1.4 Further related work

	2 Preliminaries
	3 Fully dynamic shortest paths data structure
	3.1 Preprocessing at the beginning of a phase
	3.2 Update
	3.3 Query
	3.4 Time analysis
	3.5 Derandomization
	3.6 Reducing the space usage
	3.7 Negative edges and cycles

	4 Algebraic fully dynamic reachability in sparse digraphs
	A Further variants of the fully dynamic shortest paths data structure
	A.1 Unweighted digraphs
	A.2 A slight tradeoff

	p085-Kogan
	1 Introduction
	1.1 New Results
	1.2 Technical Overview

	2 Warmup: +O~(n^{1/4}) Linear Emulators
	3 New Weighted Additive Emulators
	3.1 The Core Construction
	3.2 Improved Additive Emulators

	4 +n^{0.222} Emulator of Linear Size
	4.1 An Optimized Weighted Thorup-Zwick Emulator
	4.2 Improved Linear Emulators

	p086-Li
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques
	1.3 Other Related Work

	2 Preliminaries
	2.1 Nearly-Linear Time Mixed Packing and Covering LP Solver
	2.2 Template Packing LP Solver over a Simple Polytope

	3 Unrelated Machine Makespan Minimization
	4 Unrelated Machine Weighted Completion Time Minimization
	4.1 Rectangle LP Relaxation
	4.2 A Nearly-Linear Size LP Relaxation
	4.3 Equivalence of LP(11) and LP(6)

	p087-Li
	1 Introduction
	2 Preliminaries
	2.1 Duhamel's principle
	2.2 Algorithmic tools

	3 Higher order series expansion based on Duhamel's principle
	4 Approximating multiple integrals using scaled Gaussian quadrature
	5 Quantum algorithm and the proof of the main theorem
	6 Conclusion and open questions
	A Simulating time-dependent Lindbladians

	p088-Liu
	1 Introduction
	1.1 Our contribution
	1.2 Related work

	2 Technical overview
	2.1 Dual-only robust IPM
	2.2 Solve LP in small space
	2.3 Semi-streaming maximum weight bipartite matching in passes
	2.4 Discussions

	p089-Liu
	1 Introduction
	1.1 Known results
	1.2 Our result
	1.3 Our Techniques
	1.4 Organization of the paper

	2 Preliminaries
	2.1 Rank-metric codes
	2.2 Gabidulin codes
	2.3 Subspace design
	2.4 Periodic Subspaces

	3 Compressing the folded Gabidulin codes
	3.1 Encoding Algorithm
	3.2 List Decoding Algorithm
	3.3 Prune the list

	p090-Lokshtanov
	1 Introduction
	1.1 Algorithm Overview

	2 Preliminaries
	3 Proof of Main Theorem and Case Breakdown
	3.1 Properties of Cuts and Special Cases
	3.2 Steps of Our Algorithm

	4 Conclusion

	p091-Mathieu
	1 Introduction
	1.1 Related Work

	2 Overview of Techniques
	2.1 Preprocessing
	2.2 Solutions Within Each Component
	2.2.1 Multi-Level Decomposition (Section 4)
	2.2.2 Simplifying the Local Solution (Section 5)

	2.3 Postprocessing

	3 Preliminaries
	3.1 Formal Problem Description and Notations
	3.2 Reduction to Instances of Bounded Distances
	3.3 Decomposition Into Components

	4 Multi-Level Decomposition in a Component
	4.1 Decomposition of a Component Into Blocks (Figure 2a)
	4.2 Decomposition of a Block Into Clusters (Figure 2b)
	4.3 Decomposition of a Cluster Into Cells (Figure 2c)

	5 Simplifying the Local Solution
	5.1 Construction of S*_c
	5.2 Analysis on the Cost of S*_c
	5.3 Feasibility

	p092-Mellou
	1 Introduction
	1.1 Our results
	1.2 Technical Overview
	1.3 Related work

	2 FAILOVER Problem in the Online Worst-Case Model
	2.1 Algorithm
	2.2 Analysis

	3 Sublinear Additive Regret in the Stochastic Model
	3.1 Algorithm
	3.2 Analysis
	3.2.1 Proof of Lemma 10

	4 Offline Machine Minimization
	4.1 Configuration LP
	4.2 Matching configurations

	p093-Morelle
	1 Introduction
	2 Preliminaries
	3 Sketch of the algorithms
	4 Vertex deletion to a minor-closed graph class
	4.1 Description of the algorithm for F-M-DELETION
	4.2 Correctness of the algorithm

	5 Concluding remarks

	p094-Oko
	1 Introduction
	1.1 Main Results and Idea
	1.2 Additional Results
	1.3 Related Work

	2 Preliminaries
	3 Technical Overview
	4 Spectral Sparsification of Directed Hypergraphs
	4.1 Algorithm Description
	4.2 Proof of Lemma 6
	4.2.1 Proof of Lemma 13

	4.3 Proof of Theorem 1
	4.4 Total Time Complexity

	p095-Oshman
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Upper Bounds
	4.1 Basic Protocol for Computing Intersections (k < = log n)
	4.2 Approximating the Marginals
	4.3 Entropy-Based Protocol (k < = log n)
	4.4 Upper Bound for Large k

	5 Lower Bounds

	p096-Peng
	1 Introduction
	1.1 Discussions of previous ideas and our techniques
	1.2 Other Related work

	2 A Lower Bound for Testing k-Occurrence-freeness
	2.1 Basic tools and notions
	2.2 Proof of Theorem 3

	3 A Lower Bound for Testing Subgraph-Freeness

	p097-Qin
	1 Introduction
	1.1 Contributions
	1.2 Comparison with [26]
	1.3 Proof overview

	2 Preliminary
	2.1 Quantum mechanics
	2.2 Fourier analysis in Gaussian space
	2.3 Fourier analysis in matrix space
	2.4 Random operators
	2.5 Rounding maps

	3 Main results
	3.1 Notations and setup
	3.2 Proof of Theorem 16

	p098-Rajaraman
	1 Introduction
	1.1 Overview of our results
	1.2 Overview of our techniques
	1.3 Related work
	1.4 Discussion and open problems

	2 Machine Delays and Job Delays
	2.1 Partitioning machines and jobs into groups
	2.2 The linear program
	2.3 Deriving a rounded solution to the linear program
	2.4 Computing a schedule given an integer solution to the LP
	2.5 Combinatorial Algorithm for Uniform Machine Delays

	p099-Resch
	1 Introduction
	1.1 Our techniques
	1.2 Discussion on related work
	1.3 Organization

	2 Main results
	2.1 q-ary list-decoding
	2.2 List-recovery

	3 Discussion of Blinovsky's results [6,7]
	4 Conclusion

	p100-Rivals
	1 Introduction
	1.1 Related works

	2 Preliminaries
	2.1 Periodicity
	2.2 Autocorrelation
	2.3 Irreducible Period Set

	3 Asymptotic convergence of Lg
	4 Correlation
	A Omitted proofs
	B Independence of alphabet

	p101-Roberson
	1 Introduction
	1.1 Contributions
	1.2 Techniques

	2 Preliminaries
	2.1 Linear Algebra
	2.2 Bilabelled Graphs and Homomorphism Tensors
	2.3 Pathwidth and Treewidth
	2.4 Systems of Equations for Graph Isomorphism

	3 From Lasserre to Homomorphism Tensors
	3.1 Isomorphism Relaxations via Matrix Families
	3.2 Choi Matrices and Isomorphism Maps
	3.3 Connection to Lasserre
	3.4 Isomorphisms between Matrix Algebras
	3.4.1 Partially Coherent Algebras and S_+-Isomorphism Maps
	3.4.2 Coherent Algebras and DNN-Isomorphism Maps

	4 Homomorphism Indistinguishability
	4.1 The Classes L_t and L_t^+ and Graphs of Bounded Treewidth
	4.2 The Classes L_1 and L_1^+

	5 Deciding Exact Feasibility of the Lasserre Relaxation with Non-Negativity Constraints in Polynomial Time
	6 Conclusion

	p102-Rubinstein
	1 Introduction
	1.1 Our Contributions
	1.2 An Overview of Previous Constructions
	1.3 Sketch of our Proof
	1.4 Organization of the Paper

	2 Conversion to Complex Analysis
	2.1 Proof of Lemma 8
	2.2 Sketch of the Proof of Theorem 7

	3 Proof of Theorem 2
	3.1 Corollaries of Theorem 10
	3.2 Completing the Proof

	4 Proof of Theorem 4
	4.1 The Boolean Test
	4.1.1 Spurious Matches are Rare
	4.1.2 True Matches are Frequent

	4.2 Coarse and Fine Alignments
	4.3 Using the Oracle

	5 Conclusions

	p103-Sauerwald
	1 Introduction
	1.1 Further Related Work
	1.2 Organization

	2 Definitions and Preliminaries
	3 A Lower Bound on the Support of Closed Random Walks
	4 Upper Bounds on the Support of Closed Random Walks
	4.1 Proof of Theorem 1.2
	4.2 Proof of Theorem 1.3

	5 Results on Eigenvalue Multiplicity
	6 Conclusions
	A Auxiliary Tools

	p104-Terao
	1 Introduction
	1.1 Technical Overview
	1.2 Related Work
	1.3 Paper Organization

	2 Preliminaries
	2.1 Matroids
	2.2 Techniques for Matroid Intersection
	2.3 Compressed Exchange Graph for Matroid Partition

	3 Blocking Flow Algorithm
	3.1 Blocking Flow Algorithm using Independence Oracle

	4 Faster Algorithm for Large TEXT
	4.1 Edge Recycling Augmentation
	4.2 Going Faster for Large TEXT by Combining Blocking Flow and Edge Recycling Augmentation

	5 Concluding Remarks

	p105-Touitou
	1 Introduction
	1.1 Our Results
	1.2 Other Related Work

	2 Preliminaries
	3 Framework for Network Design with Deadlines
	3.1 Analysis

	4 Framework for Network Design with Delay
	4.1 The Algorithm
	4.2 Analysis

	5 Polynomial Time through Lagrangian Prize Collecting
	5.1 Applications
	5.2 The Algorithm

	6 Conclusions and Future Directions
	A Proof of Lemma 13
	B Analysis of Lagrangian Approximation Framework

	p106-Wlodarczyk
	1 Introduction
	2 Techniques
	3 Preliminaries
	4 Chordal Deletion
	5 Interval Deletion
	6 Conclusion and open problems

	p107-Zamir
	1 Introduction
	1.1 Preliminaries

	2 Proof of Theorem 1
	2.1 Optimal bound when the distribution of X is known
	2.2 Optimal algorithm when the distribution of X is unknown

	3 Conclusions and Open Problems
	3.1 Considering the variance

	p108-Zhang
	1 Introduction
	1.1 Our results

	2 Related work
	3 Proof Overview
	3.1 Hyperbolic Deviations
	3.2 Generalization to Strongly Rayleigh Distributions

	p109-AbuRadi
	1 Introduction
	2 Preliminaries
	2.1 Languages and Automata
	2.2 SD and HD Automata

	3 Semantically Deterministic Büchi Automata
	3.1 Succinctness and Complementation
	3.2 Decision Problems

	4 Semantically Deterministic co-Büchi Automata
	4.1 Succinctness and Complementation
	4.2 Decision Problems

	5 Semantically Deterministic Weak Automata

	p110-Baumann
	1 Introduction
	2 Language-Theoretic Preliminaries
	3 Asynchronous Programs
	4 Checking Dyck Inclusion for VASS Coverability Languages
	4.1 Models: VASS and Succinct Versions
	4.2 Checking Dyck Inclusion for dsVASS

	5 Checking Dyck Inclusion for Programs
	5.1 Combining the subword order and the syntactic order
	5.2 The algorithm

	6 Computing Downward Closures and the Proof of Theorem 5.3
	6.1 Abstracting undivided pumps
	6.2 Abstracting divided pumps

	p111-Bednarczyk
	1 Introduction
	2 Preliminaries
	3 Primitive generators of words
	4 Upper bounds for {AF} {} and {AF^{k}}
	5 The Guarded Subfragment
	6 Conclusions

	p112-Benedikt
	1 Introduction
	2 Preliminaries
	3 Summary of main results
	4 The core procedure
	5 Decision procedures and their complexity
	6 Conclusion

	p113-Berkholz
	1 Introduction
	2 Preliminaries
	3 Homomorphisms and the complexity of constraint satisfaction
	4 Factorised Representations
	5 A near-optimal bound for cliques
	6 The representation dichotomy for structures of bounded arity
	6.1 Reductions between representations
	6.2 Minor reductions
	6.3 Relaxation of the minor condition

	7 Conclusion

	p114-Birkmann
	1 introduction
	2 Preliminaries
	3 Nominal Stone Spaces
	4 Nominal Stone Duality
	5 Pro-Orbit-Finite Words
	6 A Nominal Reiterman Theorem
	7 Conclusion and Future Work

	p115-Blondin
	1 Introduction
	2 Preliminaries
	2.1 Population protocols with unordered data

	3 A protocol for the majority predicate
	3.1 States
	3.2 Transitions and stages
	3.2.1 Pairing stage
	3.2.2 Grouping stage
	3.2.3 Majority stage

	4 Immediate observation protocols
	4.1 State and form truncations
	4.2 Predicates computed by IO protocols are interval predicates
	4.3 An IO protocol for simple interval predicates
	4.3.1 States
	4.3.2 Leader and controller election
	4.3.3 Element count by datum
	4.3.4 Role distribution and task tracking
	4.3.5 Output propagation

	5 Conclusion

	p116-Bodirsky
	1 Introduction
	2 Preliminaries
	2.1 Relation Algebras
	2.2 The Network Satisfaction Problem
	2.3 Normal Representations and Constraint Satisfaction Problems
	2.4 The Universal-Algebraic Approach
	2.4.1 Polymorphisms
	2.4.2 Atom Structures
	2.4.3 Conservative Clones

	2.5 The -Consistency Procedure

	3 The Undecidability of RBCP, CON, and PC
	4 Tractability via -Consistency
	4.1 Results about the Atom Structure

	5 -Consistency and Symmetric Flexible-Atom Algebras
	6 The Complexity of the Meta Problem
	7 Conclusion and Open Questions

	p117-Bojanczyk
	1 Introduction
	2 Transducer semigroups and warm-up theorems
	2.1 Examples and intuitions
	2.2 Two simple characterizations

	3 The regular functions
	3.1 Defininition of streaming string transducers
	3.2 From a regular function to a transducer semigroup
	3.2.1 Recognizing rational functions by transducer semigroups
	3.2.2 From a local SST to a transducer semigroup

	3.3 From a transducer semigroup to a regular function
	3.3.1 Polynomial functors and functorial streaming string transducers
	3.3.2 Coproducts and views
	3.3.3 Factorized output
	3.3.4 Proof of (??it:trans-semig-f1}) = = > (??it:regular}) in Theorem 3.2

	4 Conclusions

	p118-Bouyer
	1 Introduction
	2 Preliminaries
	3 Technical overview
	3.1 Monotony and safety objectives
	3.2 Capturing progress and reachability objectives
	3.3 The complexity of finding small memory structures

	4 Conclusion

	p119-Braunfeld
	1 Introduction
	2 Preliminaries
	2.1 Graphs and relational structures
	2.2 Sparsity and stability
	2.3 Model-checking
	2.4 Interpretations
	2.5 Ramsey Theory

	3 Path formulas
	4 From somewhere density to IP
	5 Intractability
	6 From nowhere density to monadic stability
	7 Conclusion

	p120-Carette
	1 Introduction
	2 Perfect Matchings and Planar W-Calculus
	2.1 Black Spider
	2.2 Binary White Spider
	2.3 The FKT Algorithm
	2.4 Fermionic Swap

	3 Completeness
	3.1 Normal Form
	3.2 Rewrite Strategy

	4 Matchgates
	4.1 Matchgate Identities
	4.2 The Pro of Matchgates
	4.3 Universality

	5 Further Work
	5.1 New Simulation Techniques for Quantum Circuits
	5.2 Combinatorial Interpretation of Full ZW-Calculus
	5.3 Towards a Diagrammatic Approach of Perfect Matching Counting

	p121-Carton
	1 Introduction
	2 Deterministic regular functions
	3 Composition and decomposition theorems
	4 Guarded MSO-transductions
	5 Two-way transducers with finite look-ahead
	6 Logic-transducer correspondence: proof of Theorem 4.8
	7 Conclusion

	p122-Casares
	1 Introduction
	1.1 Context
	1.2 Contribution

	2 Preliminaries
	2.1 Graphs and morphisms
	2.2 Valuations, games, strategies and memory
	2.3 Monotonicity and universality

	3 Universal structures characterise memory
	4 Closure properties
	5 Conclusion

	p123-Chakraborty
	1 Introduction
	1.1 Technical Overview

	2 Notations and Preliminaries
	3 Lower Bound on the number of queries to {SAT-Sample} oracle
	3.1 Semi-oblivious counter
	3.2 Hard instance
	3.2.1 Properties of the hard instance

	3.3 Proof of Theorem 1.2
	3.3.1 Proof of Lemma 9

	4 Conclusion
	A Proof of Lemma 5

	p124-Dong
	1 Introduction
	2 Preliminaries
	3 Overview of proof
	4 From semigroup to polynomial equations
	4.1 Definition of G-graphs
	4.2 Group Problem implies polynomial equations
	4.3 Polynomial equation implies Group Problem

	5 A local-global principle for polynomial equations
	6 Decidability of local conditions
	A Some omitted proofs

	p125-Dreier
	1 Introduction
	2 Preliminaries
	3 Technical overview
	3.1 Indiscernibles in monadically stable and monadically NIP classes
	3.2 Disjoint definable neighborhoods
	3.3 Flatness in monadically stable classes of graphs

	p126-Esparza
	1 Introduction
	2 Preliminaries
	3 The black-box testing problem
	3.1 Canonical black-box testing problems

	4 Black-box strategies for Rabin languages
	4.1 The strategy
	4.2 Progress radius and progress probability
	4.3 Correctness proof

	5 Quantitative analysis
	5.1 Quantitative analysis of strategies with f(n) = n^c
	5.2 Optimality of the Strategy f(n) = n^c

	6 Experiments
	7 Conclusions
	A Notes

	p127-Fan
	1 Introduction
	2 Background
	3 The Clique Embedding Power
	3.1 Graph Embeddings
	3.2 Embedding Properties

	4 Lower Bounds
	5 Decidability of the Clique Embedding Power
	5.1 An Integer Linear Program for wed(C_k mapsto H)
	5.2 A Mixed Integer Linear Program for emb(H)

	6 Examples of Tightness
	6.1 Cycles
	6.2 Complete Bipartite Graphs
	6.3 Chordal Queries

	7 Gap Between Clique Embedding Power and Submodular Width
	7.1 Clique Embedding Power, Submodular Width and Adaptive Width
	7.2 Subquadratic Equivalence Between Boat Queries

	8 Related Work
	9 Conclusion

	p128-Gajarsky
	1 Introduction
	2 Preliminaries
	3 Outline of the model-theoretic proof
	3.1 Separation
	3.2 Finite separators in monadically stable models
	3.3 From separability to winning the confining Flipper game

	4 Outline of the algorithmic proof

	p129-Henzinger
	1 Introduction
	2 Operator Precedence Languages
	2.1 Operator Precedence Relations and Structured Words
	2.2 Operator Precedence Grammars
	2.3 Operator Precedence Automata
	2.4 Expressiveness and Decidability of Operator Precedence Languages

	3 A Finite Congruence for Operator Precedence Languages
	3.1 Finiteness of the Syntactic Congruence
	3.2 From the Syntactic Congruence to Operator Precedence Automata

	4 Antichain-based Inclusion Checking
	4.1 Language Abstraction by Quasi-order
	4.2 Fixpoint Characterization of Languages and Inclusion

	5 Conclusion

	p130-Kenison
	1 Introduction
	2 Preliminaries
	2.1 Linear Recurrence Sequences
	2.2 The Positivity Problem
	2.3 Number Theory
	2.4 Group Theory
	2.5 Galois Theory

	3 Root Analysis of Reversible Polynomials
	4 Decidability at Low Orders
	5 Hard Instances
	5.1 Sketch proof of Theorem 4
	5.2 Constructing a hard example of a simple sequence of order 18
	5.3 Constructing a hard example of a non-simple sequence of order 12

	p131-Kunnemann
	1 Introduction
	2 Preliminaries
	3 Improved Bounds on the Maximum Counter Value
	4 Conditional Time Lower Bound for Coverability
	5 Coverability and Reachability in Bounded Unary VASS
	6 Conclusion

	p132-Lampis
	1 Introduction
	2 Definitions and Preliminaries
	3 Two Basic Lemmas
	3.1 Identical Parts
	3.2 Similar Neighborhoods

	4 Simplification Operations on Path Decompositions
	4.1 Normalized Path Decompositions
	4.2 Finding Isomorphic Bag Intervals
	4.3 Rewiring Operation

	5 Putting Everything Together
	6 Conclusions

	p133-Lichter
	1 Introduction
	2 Preliminaries
	3 Witnessed Symmetric Choice
	4 The CFI Construction
	5 Canonization of CFI Graphs in IFPC+WSC+I
	6 The CFI Query and Nesting of Operators
	7 Separating IFPC+WSC from IFPC+WSC+I
	7.1 Multipedes
	7.2 Gluing Multipedes to CFI Graphs

	8 Discussion

	p134-Lohrey
	1 Introduction
	1.1 Computing diameter and length
	1.2 Equality and universality for finite automata over permutation groups

	2 Preliminaries
	2.1 Background from complexity theory
	2.2 Some notations for permutation groups

	3 Complexity of diameter for permutation groups
	4 Complexity of computing the length in permutation groups
	5 Complexity of equality and universality for NFAs over permutation groups
	6 Open problems

	p135-Ohlmann
	1 Introduction
	2 Preliminaries
	3 Canonical Splitter-strategies in nowhere dense graphs
	4 Stability, forking, and Finitary Substitution
	4.1 Stability and definability of types
	4.2 Forking in stable theories
	4.3 Finitary Substitute Lemma

	5 Canonization of graphs of bounded shrubdepth
	5.1 Preliminaries on shrubdepth
	5.2 Definability of canonical dicings
	5.3 Canonical reduction to bounded treedepth
	5.4 Canonization and isomorphism test

	p136-Rozowski
	1 Introduction
	2 Syntax
	3 Operational semantics
	4 Bisimulations and their properties
	5 Axiomatisation
	6 Completeness
	7 Decidability and Complexity
	8 Related work
	9 Conclusion and Future Work

	p137-Vaandrager
	1 Introduction
	2 Preliminaries
	3 Action Codes
	4 Refinements
	5 Concretizations
	6 Action Code Composition
	7 Adaptors
	8 Discussion and Future Work

