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Abstract
Motivated by the theory of spin-glasses in physics, we study the so-called reconstruction problem
on the tree, and on the sparse random graph G(n, d/n). Both cases reduce naturally to analysing
broadcasting models, where each edge has its own broadcasting matrix, and this matrix is drawn
independently from a predefined distribution.

We establish the reconstruction threshold for the cases where the broadcasting matrices give
rise to symmetric, 2-spin Gibbs distributions. This threshold seems to be a natural extension of
the well-known Kesten-Stigum bound that manifests in the classic version of the reconstruction
problem. Our results determine, as a special case, the reconstruction threshold for the prominent
Edwards–Anderson model of spin-glasses, on the tree.

Also, we extend our analysis to the setting of the Galton-Watson random tree, and the (sparse)
random graph G(n, d/n), where we establish the corresponding thresholds. Interestingly, for the
Edwards–Anderson model on the random graph, we show that the replica symmetry breaking
phase transition, established by Guerra and and Toninelli in [21], coincides with the reconstruction
threshold.

Compared to classical Gibbs distributions, spin-glasses have several unique features. In that
respect, their study calls for new ideas, e.g. we introduce novel estimators for the reconstruction
problem. The main technical challenge in the analysis of such systems, is the presence of (too) many
levels of randomness, which we manage to circumvent by utilising recently proposed tools coming
from the analysis of Markov chains.
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1 Introduction

Motivated by the theory of spin-glasses in physics, we study the so-called reconstruction
problem with respect to the related distributions, on the tree, and on the sparse random
graph G(n, d/n).
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55:2 Broadcasting with Random Matrices

Spin-glasses are disordered magnetic materials that are studied by physicists (not neces-
sarily the theoretical ones). It has been noted that even though they are a type of magnet,
actually, “they are not very good at being magnets”. Metallic spin-glasses are “unremarkable
conductors”, and the insulating spin-glasses are “fairly useless as practical insulators . . . ”,
e.g. see [30].

However, the research on spin-glasses has provided tools to analyse some exciting, and
extremely challenging, problems in mathematics, physics, but also real world ones. Through
their study, we have garnered a deep understanding of the nature of complex systems. A
case in point is the pioneering work of Giorgio Parisi in ‘70s on the so-called Sherrington-
Kirkpatrick spin-glass, which introduces the formulation of the renowned replica symmetry
breaking [27]. Parisi’s ideas were highly influential in physics community, and later, in
mathematics, and computer science. The theory of replica symmetry breaking was among
the groundbreaking ideas which got Parisi the Nobel Prise in Physics in 2021.

Perhaps one of the most successful, and extensively studied, spin-glass models, is the
famous Edwards-Anderson model (EA-model for short), introduced back in ‘70s by Sam
Edwards and Philip Anderson in [16]. Few months after the work of Edwards and Anderson,
David Sherrington and Scott Kirkpatrick, in [28], introduced their own model of spin-glasses,
the well-known in computer science literature, Sherrington-Kirkpatrick model (or SK-model
for short). As it turns out, the SK-model corresponds to the mean field version of the
EA-model.

Given a fixed graph G = (V,E), the Edwards-Anderson model with inverse temperature
β > 0, is the random Gibbs distribution µ on the configuration space {±1}V defined as
follows: let {Je : e ∈ E} be independent identically distributed (i.i.d.) standard Gaussians.
Then each configuration σ ∈ {±1}V receives probability mass µ(σ), defined by

µ(σ) ∝ exp

β ·
∑

{u,w}∈E

1{σ(u) = σ(w)} · J{u,w}

 , (1)

where ∝ stands for “proportional to”. We usually refer to {Je}e∈E as the coupling parameters.
Let us comment here that, traditionally, the Gibbs distribution is defined by replacing
the indicator 1{σ(u) = σ(w)} in (1), with the product σ(u)σ(w), in the physics literature.
However, the two formulations are equivalent, as a simple transformation converts one to
the other (see the full version). We also note that there is a simpler version of the Edwards-
Anderson model, in which coupling parameters take independently ±1 values, uniformly at
random.

Apart from its mathematical elegance, and theoretical importance, the Edwards-Anderson
model, and the related spin-glass distributions, arise also in applications such as neural
networks (e.g. the so-called Hopfield model), protein folding, and conformational dynamics.
We refer the interested reader to [30], and references therein.

In this work, we largely study the Edwards-Anderson model on trees, and the (locally
tree-like) random graph G(n, d/n) with constant expected degree d. This is the random
graph on n vertices, such that each edge appears independently with probability d/n.

Since the Edwards-Anderson model on G(n, d/n) shares essential features with random
Constraint Satisfaction Problems (r-CSPs for short), it is not surprising that has been studied
extensively in terms of phase transitions, in physics, e.g. [19, 25], mathematics, e.g. [21, 12],
but also in computer science, e.g. for sampling algorithms [17, 2].

In contrast to the standard Gibbs distributions on trees, e.g. the Ising model, the
Hard-core model, and the Potts model, the Edwards-Anderson model, despite being the
most basic distribution for spin-glasses, has not been sufficiently studied. As a result, several
fundamental questions about it still remain open. Here, we consider the tree reconstruction
problem for the Edwards-Anderson model (and some natural extensions).
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The reconstruction problem studies the effect of the configuration at a vertex, r, on that
of the vertices at distance h from r, as h → ∞. Specifically, we want to distinguish the
region of parameters where the effect is vanishing, from that where the effect is non-vanishing.
Typically, the two regions are specified in terms of a sharp threshold, i.e., we have an abrupt
transition from one region to the other as we vary the parameters of the model. We usually
call this phenomenon reconstruction threshold, and it has been the subject of intense study,
e.g. [26, 1, 22, 7, 29, 10]. In the context of r-CSPs, the onset of reconstruction has been
linked to an abrupt deterioration of the performance of algorithms (both searching and
counting), e.g. see [1].

In this work, among other results, we establish precisely the reconstruction threshold
for the Edwards-Anderson model on the ∆-ary tree, the Galton-Watson tree with general
offspring distribution, and the random graph G(n, d/n). Furthermore, as far as the Edwards-
Anderson model on G(n, d/n) is concerned, we combine our results with [21, 12], to conclude
that the reconstruction threshold coincides with the so-called Replica Symmetry Breaking
phase transition.

Interestingly, for the ∆-ary tree, we establish the reconstruction threshold, not only for
the Edwards-Anderson model, but also for the general version of the Gibbs distribution µ

defined in (1). That is, the coupling parameters are i.i.d. following a general distribution,
not necessary the standard Normal.

It turns out that the corresponding reconstruction problems on the Galton-Watson tree
with Poisson(d) offspring, and on the sparse random graph G(n, d/n), are not too different
from each other. Connections have been established between these two Gibbs distributions,
e.g. see [4, 15, 11, 14]. We relate the two reconstruction results, i.e., for the tree and the
graph, by exploiting the idea of planted-model (Teacher-Student model [31]) and the notion
of mutual contiguity [12]. In that respect, our basic analysis involves the complete ∆-tree,
and the Galton-Watson tree, while, subsequently, we extend these results to the random
graph G(n, d/n).

We study the reconstruction problem on trees by means of the broadcasting models.
These are abstractions of noisy transmission of information over the edges of the tree, i.e.,
the edges act as noisy channels. To our knowledge, the study of the broadcasting models,
and the closely related reconstruction problem, dates back to ‘60s with the seminal work of
Kesten and Stigum [24].

Establishing the reconstruction threshold for the Edwards-Anderson model on the ∆-ary
tree, as well as the generalisation of this distribution, turns out to be a challenging problem.
The difficulty of these models stems from the manifestation of local frustration phenomena,
i.e., mixed ferromagnetic and antiferromagnetic interaction in the same neighbourhood, but
also from the “many levels of randomness” we need to deal with in their analysis.

To this end, we make an extensive use of various potentials in order to simplify the
analysis. To establish non-reconstruction, we employ some newly introduced techniques in
the area of Markov chains and Spectral Independence [3, 9], that combine potential functions
to analyse tree recursions. To establish reconstruction, we use a carefully crafted potential
as an estimator for the root configuration. We call this estimator flip-majority vote.

1.1 Broadcasting, Reconstruction and the Kesten-Stigum bound
Consider the ∆-ary tree T = (V,E), of height h > 0. Let r be the root of the tree T .
Broadcasting on T , is a stochastic process which abstracts noisy transmission of information
over the edges of the tree.

ICALP 2023



55:4 Broadcasting with Random Matrices

There is a finite set of spins A, and an A × A stochastic matrix M , which we call the
broadcasting matrix, or transition matrix. With the broadcasting we obtain a configuration
σ ∈ AV by working recursively as follows: assume that the configuration at the root r is
obtained according to some predefined distribution over A. If for the non-leaf vertex u in
T we have σ(u) = i, then for each vertex w, child of u, we have σ(w) = j with probability
M(i, j), independently of the other children, i.e.,

Pr[σ(w) = j | σ(u) = i] = M(i, j) .

Here we assume that σ(r) is distributed uniformly at random in A.
A natural problem to study in this setting is the so-called reconstruction problem. Suppose

that µh is the marginal distribution of the configuration of the vertices at distance h from the
root. The reconstruction problem amounts to studying the influence of the configuration at
the root of the tree to the marginal µh. Specifically, we want to compare the two distributions
µh(· | σ(r) = i), and µh(· | σ(r) = j) for different i, j ∈ A, i.e., µh conditional on the
configuration at the root being i and j, respectively. The comparison is by means of the
total variation distance, i.e.,

||µh(· | σ(r) = i) − µh(· | σ(r) = j)||TV .

Typically, we focus on the behaviour of the quantity above, as h grows.

▶ Definition 1. We say that the distribution µ exhibits reconstruction if there exist spins
i, j ∈ A such that

lim sup
h→∞

||µh(· | σ(r) = i) − µh(· | σ(r) = j)||TV > 0 .

On the other hand, if for all i, j ∈ A the above limit is zero, then we have non-reconstruction.

The broadcasting process we describe above gives rise to well-known Gibbs distributions
on T such as the Ising model, the Potts model etc. In terms of the Gibbs distributions on
the tree, the reconstruction problem can be formulated as to whether the free-measure on
the tree is extremal, or not. The extremality here is considered with respect to whether the
Gibbs distribution can be expressed as a convex combination of two, or more measures, e.g.
see [20]. It is interesting to compare the extremality condition with various spatial mixing
conditions of the Gibbs distribution. Perhaps the most interesting case is to compare it with
the Gibbs tree uniqueness. Then, it is standard to show that the extremality is a weaker
condition than uniqueness.

The reconstruction problem has been studied since 1960s. Perhaps the most general
result in the area is the so-called Kesten-Stigum bound [24], or KS-bound (for short). Let
∆KS = ∆KS(M) be such that

∆KS = λ−2
2 (M) , (2)

where λ2(M) is the second largest, in magnitude, eigenvalue of the transition matrix M . The
result of [24] implies that if ∆ > ∆KS, then we have reconstruction.

In light of the above, a natural question is whether the condition ∆ < ∆KS implies that
we have non-reconstruction. In general, the answer to this question is no, e.g. see [5, 29].
However, for several important distributions, including the Ising model, the KS-bound is tight,
in the sense that the condition ∆ < ∆KS indeed implies non-reconstruction, see [7, 18, 22].
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1.2 Broadcasting with random matrices
Here, we consider the natural problem of broadcasting on a tree, where the transition matrix
is random. In this setting, as before, we consider the ∆-ary tree T = (V,E), of height h > 0,
rooted at r. Also, we have a finite set of spins A. Rather than using the same matrix for
every edge of the tree, each edge has its own matrix, which is an independent sample from a
predefined distribution ψ.

More formally, every A × A stochastic matrix can be viewed as a point in the |A|2
Euclidean space. We endow the set of all A × A stochastic matrices with the σ-algebra
induced by the Borel algebra. Then, ψ is a distribution over the set of these matrices.

Once we have a matrix for each edge of T , the broadcasting proceeds with the same rules
as in the deterministic case. If for the non-leaf vertex u in T we have σ(u) = i, then the
vertex w, child of u, gets σ(w) = j with probability Me(i, j), independently of the other
children of u, i.e.,

Pr[σ(w) = j | σ(u) = i] = Me(i, j) ,

where e = {u,w}.
The above setting gives rise to a random probability measure on the set of configurations

AV which we denote as µ = µT,ψ. Hence, the configuration σ ∈ AV we get from the
broadcasting, consists of two-levels of randomness. The first level is due to the fact that the
measure µ is induced by the random instances of the broadcasting matrices {Me}e∈E . Once
these matrices have been fixed, the second level of randomness emerges from the random
choices of the broadcasting process. The above formulation gives rise to well-studied Gibbs
distributions, such as the Edwards–Anderson model of spin-glasses, by choosing appropriately
the distribution ψ.

In this new setting, we study the reconstruction problem. Here, the definition of recon-
struction differs slightly from Definition 1 above. Denote with µh the marginal of µ on
the vertices at distance h from the root of the tree T . Then, the reconstruction problem is
defined as follows:

▶ Definition 2. For a distribution ψ on A × A stochastic matrices , we say that the random
measure µ = µT,ψ exhibits reconstruction if there exist spins i, j ∈ A such that

lim sup
h→∞

E [||µh(· | σ(r) = i) − µh(· | σ(r) = j)||TV] > 0 ,

where the expectation is with respect to the randomness of µ.
On the other hand, if for all i, j ∈ A the above limit is zero, then we have non-

reconstruction.

We consider the reconstruction problem in terms of the KS-bound, i.e., we examine whether
it is tight, or not. Before addressing this question, we need to specify what the parameter
∆KS might be in this setting.

It turns out that a natural candidate for ∆KS can be defined as follows:
Let M be a matrix sampled from the distribution ψ, and define

Ξ = E [M ⊗ M ] , (3)

i.e., the matrix Ξ is the expectation of the tensor product of the matrix M with itself. Let
1 ∈ RA denote the vector whose entries are all equal to one. Also, write

E =
{
z ∈ RA ⊗ RA : ∀y ∈ RA⟨z,1 ⊗ y⟩ = ⟨z, y ⊗ 1⟩ = 0

}
,

ICALP 2023
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where ⟨·, ·⟩ is the standard inner product operation. Then, we define ∆KS(ψ) to be such that

∆KS(ψ) =
(

max
x∈E:||x||=1

⟨Ξx, x⟩
)−1

. (4)

The above quantity, ∆KS, arises in the study of phases transitions in random CSPs [12].
Specifically, it signifies an upper bound on the density of the so-called Replica Symmetric
phase, of symmetric Gibbs distributions. The value ∆KS is derived in [12] by means of a
stability analysis of the so-called free-energy functional. Note that the above definition for
∆KS(ψ) applies to any set of spins A, and any distribution ψ on A × A matrices.

Here, we prove that the above is indeed the analogue of KS-bound for symmetric, 2-spin
distributions µ. That is, for any value of the parameter β > 0, and for any distribution
ψ over the broadcasting matrices whose support is comprised of symmetric 2 × 2 matrices,
we prove that the ∆-ary tree T exhibits reconstruction when ∆ > ∆KS(ψ), while we have
non-reconstruction when ∆ < ∆KS(ψ).

Furthermore, we go beyond the basic case of the ∆-ary tree. Firstly, we extend our results
to the cases where the underlying graph is the Galton-Watson random tree with general
offspring distribution. Secondly, we exploit the notion of contiguity of measures to derive
non-reconstruction results for the Edwards-Anderson model on the random graph G(n, d/n).

2 Results

We start the presentation of our results on the 2-spin, symmetric distributions, by considering
the ∆-ary tree. Specifically, for integers ∆ > 0 and h > 0, let T = (V,E) be the ∆-ary tree
of height h, rooted at vertex r. We let A = {±1} be the set of spins.

Assume that each edge of the tree is equipped with its own broadcasting matrix, each
matrix drawn independently from the distribution induced by the following experiment: We
have two parameters, a real number β > 0, and a distribution ϕ on the real numbers R,
i.e., we have the probability space (R,F , ϕ) where F is the σ-algebra induced by the Borel
algebra. We generate a matrix M following the two steps below:
Step 1 Draw J ∈ R from the distribution ϕ.
Step 2 Generate the A × A matrix M such that

M = 1
exp(βJ) + 1

[
exp(βJ) 1

1 exp(βJ)

]
. (5)

Note that our broadcasting matrices are always symmetric.
The above broadcasting process gives rise to configurations in AV following the Gibbs

distribution µβ,ϕ specified as follows: Let {Je}e∈E be independent, identically distributed
(i.i.d.) random variables such that each one of them is distributed as in ϕ (this is the same
distribution used to generate matrix M). Each σ ∈ AV is assigned probability mass µβ,ϕ(σ)
defined by

µβ,ϕ(σ) ∝ exp
(
β
∑

{w,u}∈E 1{σ(u) = σ(w)} · J{u,w}

)
, (6)

where ∝ stands for “proportional to”.
At this point, it is immediate that by choosing ϕ to be the standard Gaussian distribution,

we retrieve the Edwards-Anderson model in (1). Note however, that (6) above generates a
whole family of “spin-glass” distributions with the EA-model being a special case.
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The definition of the distribution of the broadcasting matrix in (5) allows us to derive an
explicit formula for the quantity ∆KS in (4). Specifically, for J distributed according to ϕ, it
is not hard to prove (see the full version) that

∆KS(β, ϕ) =
(
E
[(

1−exp(βJ)
1+exp(βJ)

)2
])−1

, (7)

where the expectation is with respect to the random variable J . In light of the above, we
prove the following result for the general Gibbs distribution.

▶ Theorem 3. For a real number β > q0, and a distribution ϕ on the real numbers R let
∆KS = ∆KS(β, ϕ) be defined as in (7).

For any integer ∆ > ∆KS, the Gibbs distribution µβ,ϕ, defined as in (6), on the ∆-ary
tree exhibits reconstruction. On the other hand, if ∆ < ∆KS the distribution µβ,ϕ exhibits
non-reconstruction.

The proof of Theorem 3 appears in the full version. Let us state the implications of
Theorem 3 for the Edwards-Anderson model on the ∆-ary tree.

▶ Corollary 4. For β > 0 and the standard Gaussian J , let

∆EA(β) =
(
E
[(

1−exp(βJ)
1+exp(βJ)

)2
])−1

,

where the expectation is with respect to J .
For any integer ∆ > ∆EA(β), the distribution µβ, the Edwards-Anderson model with

inverse temperature β on the ∆-ary tree, exhibits reconstruction. On the other hand, if
∆ < ∆EA(β) the distribution µβ exhibits non-reconstruction.

2.1 The case of the Galton-Watson tree

As a further step, we study the reconstruction problem on the Galton-Watson tree. Even
though this is a very interesting problem on its own, we make use of our results for the
Galton-Watson tree to derive subsequent results for G(n, d/n), see Section 2.2.

Let ζ : Z≥0 → [0, 1] be a distribution over the non-negative integers. Then, the rooted
tree T is a Galton-Watson tree with offspring distribution ζ, if the number of children for
each vertex in T is distributed according to ζ, independently from the other vertices.

Note that broadcasting with random matrices over the Galton-Watson tree T , gives
rise to configurations that consist of three levels of randomness. One of the challenges we
circumvent with our analysis, is to disentangle all of three levels of randomness, and make
clear the contribution of each one of them. Before getting there, we need to clarify what we
mean by (non-)reconstruction in the current setting.

▶ Definition 5. Consider the distributions ϕ over R and ζ over Z≥0, and a real number
β ≥ 0. Let the Galton-Watson tree T with offspring distribution ζ, while let the measure
µ = µβ,ϕ be defined as in (6), on the tree T . We say that µ exhibits reconstruction if

lim sup
h→∞

ET [ Eµ [||µh(· | σ(r) = +1) − µh(· | σ(r) = −1)||TV | T ] ] > 0 .

On the other hand, if the above limit is zero, then we have non-reconstruction.

ICALP 2023
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For the above, recall that µh is the marginal of µ on the set of vertices at distance h from
the root. Note that if T has no vertex at level h, then the total variation distance above is,
degenerately, equal to zero. We use the double expectation in Definition 5 for the sake of
clarity: we can just replace it by a single expectation with respect to both the random tree
T , and the random measure µ.

As far as the reconstruction problem on the Galton-Watson trees is concerned, we have
the following result.

▶ Theorem 6. For any real numbers d > 0, β > 0, for any distribution ϕ on R, for any
distribution ζ on Z≥0 with expectation d, and bounded second moment, let T be the Galton-
Watson tree with offspring distribution ζ. Let also µβ,ϕ be the Gibbs distribution defined as
in (6), on the tree T . Finally, let ∆KS = ∆KS(β, ϕ) be defined as in (7).

The distribution µβ,ϕ exhibits reconstruction if d > ∆KS. On the other hand, if d < ∆KS,
the distribution µβ,ϕ exhibits non-reconstruction.

Let us now state the implications of Theorem 6 for the Edwards-Anderson model on the
Galton-Watson tree.

▶ Corollary 7. For β > 0, consider the quantity ∆EA(β) defined in Corollary 4. For any
real number d > 0, and any distribution ζ : Z≥0 → [0, 1] with expectation d, and bounded
second moment, let T be the Galton-Watson tree with offspring distribution ζ.

Then, for µβ the Edwards-Anderson model with inverse temperature β, on the tree T , the
following is true. The distribution µβ exhibits reconstruction if d > ∆EA(β). On the other
hand, if d < ∆EA(β), the distribution µβ exhibits non-reconstruction.

2.2 The Edwards-Anderson model on G(n, d/n)
For integer n ≥ 1, and real p ∈ [0, 1], let G = G(n, p) be the random graph on Vn =
{x1, . . . , xn}, whose edge set E(G) is obtained by including each edge with probability, p
independently.

The Edwards-Anderson model on G at inverse temperature β > 0, is defined as follows:
for J = {Je}e∈E(G) a family of independent standard Gaussians, we let

µG,J,β(σ) = 1
Zβ(G,J) exp

(
β
∑
x∼y 1{σ(y) = σ(x)} · J{x,y}

)
, (8)

where

Zβ(G,J) =
∑
τ∈{±1}Vn exp

(
β
∑
x∼y 1{τ(y) = τ(x)} · J{x,y}

)
.

Here we assume that p = d
n , where d > 0 is a fixed number. Typically, we study this

distribution as n → ∞. The natural question we ask here is how does the model change
as we vary d. According to the physics predictions, for any β there exists a condensation
threshold, denoted as dcond(β), where the function

d 7→ lim
n→∞

1
n
E[lnZβ(G,J)]

is non-analytic [19]. This conjecture was proved by Guerra and Toninelli [21]. The regime
d < dcond(β) is called the replica symmetric phase. This region has several interesting
properties; here we consider one that seems to be most relevant to our discussion. For any
d < dcond(β) the distribution µG,J,β satisfies the following property: for σ distributed as
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in µG,J,β , for two randomly chosen vertices x and y, the configurations σ(x) and σ(y) are
asymptotically independent. Formally, the above can be expressed as follows: for d < dcond(β)
and any i, j ∈ {±1}, we have that

lim sup
n→∞

1
n2

∑
x,y∈Vn

E [⟨1{σ(x) = i} × 1{σ(y) = j}⟩ − ⟨1{σ(x) = i}⟩ × ⟨1{σ(y) = j}⟩] = 0 ,

where ⟨·⟩ denotes expectation with respect to the Gibbs distribution µG,J,β . Note that the
above holds not only for pairs of vertices, but also for sets of k vertices, for any fixed integer
k > 0. Using our notation, the work by Guerra and Toninelli [21] implies the following result.

▶ Theorem 8 ([21]). For any β > 0, for the distribution µG,J,β defined as in (8), we have
that

dcond(β) =
(
E
[(

1−exp(βJ)
1+exp(βJ)

)2
])−1

,

where J is a standard Gaussian random variable.

Interestingly, one obtains the above by combining our Theorem 6 and using results from
[12, 13]. Our main focus is on the reconstruction threshold for the Edwards-Anderson model
on G. The reconstruction for µG,J,β(·) is defined in a slightly different way than what we
have for the random tree.

▶ Definition 9. For d > 0, for β > 0, consider the Gibbs distribution µG,J,β as this is
defined in (8). We say that the measure µ = µG,J,β exhibits reconstruction if

lim sup
h→∞

lim
n→∞

1
n

∑
x∈Vn

E
[
||µx,h(· | σ(x) = +1) − µx,h(· | σ(x) = −1)||TV

]
> 0 ,

where µx,h denote the Gibbs marginal at the vertices at distance h from vertex x. On the
other hand, if the above limit is zero, then we have non-reconstruction.

Perhaps, it is interesting to notice the order with which we take the double limit in the
above definition. We let the reconstruction threshold, denoted as drecon, to be the infimum
over d > 0 such that

lim sup
h→∞

lim
n→∞

1
n

∑
x∈Vn

E [||µh(· | σ(x) = +1) − µh(· | σ(x) = −1)||TV ] > 0 .

The region of values of d such that d < drecon is called the non-reconstruction phase. It is
immediate from Definition 9 that, for any d < drecon, we have that non-reconstruction.

In the following result, we prove that the replica symmetric phase coincides with the
non-reconstruction phase of the Edwards-Anderson model on G.

▶ Theorem 10. For any β > 0, for the distribution µG,J,β defined as in (8), we have that
drecon(β) = dcond(β).

The above follows from Theorems 8, 7 and [12, Corollary 1.5].

Notation
For the graph G = (V,E) and the Gibbs distribution µ on the set of configurations {±1}V .
For a configuration σ, we let σ(Λ) denote the configuration that σ specifies on the set of
vertices Λ. We let µΛ denote the marginal of µ at the set Λ. We let µ(· | Λ, σ), denote
the distribution µ conditional on the configuration at Λ being σ. Also, we interpret the
conditional marginal µΛ(· | Λ′, σ), for Λ′ ⊆ V , in the natural way.

ICALP 2023
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3 Approach

A major challenge in our setting is that we have to deal with multiple levels of randomness,
i.e., we have two levels of randomness in the case of the ∆-ary tree, while the levels increase
with the Galton-Watson trees. To circumvent this problem, we follow an analysis that allows
us to disentangle the different sources of randomness in our models. In this section, we
provide a high-level description of our approach. We restrict our discussion on the ∆-ary
tree.

Non-reconstruction
Consider the ∆-ary tree T = (V,E) rooted at r. Suppose that we have a distribution µ as in
(6) on T , while assume that each edge e ∈ E has its own coupling parameter Je. Assume,
for the moment, that the coupling parameters at the edges are fixed, e.g. the reader may
assume that are arbitrary real numbers. That is, each Je can be either positive, or negative.
Hence, one might consider the aforementioned distribution as a non-homogenous Ising model
which involves both ferromagnetic and anti-ferromagnetic interactions. Let us focus on
non-reconstruction. We derive an upper bound on

||µh(· | σ(r) = +1) − µh(· | σ(r) = −1)||TV ,

which is expressed in terms of the influence between neighbouring vertices. The notion of
influence between vertices is the same as the one developed in the context of Spectral Inde-
pendence technique for establishing rapid mixing of Glauber dynamics [3, 9]. These influences
are used in the context of the so-called down-up coupling to establish non-reconstruction.
This is a coupling approach from [6], which also relies on ideas in [29].

Let us be more specific. For the probability measure µ we consider, let Rr be the ratio of
Gibbs marginals at the root r defined by

Rr = µr(+1)
µr(−1) . (9)

Recall that µr(·) denotes the marginal of the Gibbs distribution µ(·) at the root r. For a
vertex u ∈ V , we let Tu be the subtree of T that includes u, and all its descendants. Also,
we let Ru be the ratio of marginals at vertex u, where the Gibbs distribution is, now, with
respect to the subtree Tu.

Suppose that the vertices w1, . . . , w∆ are the children of the root r. Our focus is on
expressing logRr recursively, as a function of logRw1 , . . . , logRw∆

. Note that we study the
logarithm of the ratios involved, which can be viewed as applying the potential function
log(·) to the tree recursions. We have that log (Rr) = H (logRw1 , . . . , logRw∆

) where

H(x1, x2, . . . , x∆) =
∆∑
i=1

log
(

exp
(
xi + βJ{r,wi}

)
+ 1

exp(xi) + exp
(
βJ{r,wi}

)) . (10)

Note that J{r,wi} is the coupling parameter that corresponds to the edge between the root r
with its child wi. All the above extends naturally in the case where we impose boundary
conditions. That is, for a region K ⊆ V , and τ ∈ {±1}K , we define the ratio of marginals
RK,τr at the root, where now the ratio is between the conditional marginals µr(+1 | K, τ)
and µr(−1 | K, τ). The recursive function H for the conditional ratios is exactly the same
as the one above.
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Our interest is on the gradient of the function H. Specifically, for every i ∈ [∆], we let

Γ{r,wi} = sup
x1,...,x∆

∣∣∣∣ ∂∂xiH(x1, x2, . . . , x∆)
∣∣∣∣ . (11)

It turns out that, in our case, Γ{r,wi} has a simple form

Γ{r,wi} =
∣∣1 − exp

(
βJ{r,w}

)∣∣
1 + exp

(
βJ{r,wi}

) .

Utilising the idea of down-up coupling from [6], we prove the following:

||µh(· | σ(r) = +1) − µh(· | σ(r) = −1)||TV ≤
√∑
v∈Λ

∏
e∈path(r,v)

Γ 2
e , (12)

where Λ = Λ(h) denotes the set of vertices at distance h from the root r. Note that the above
provides a bound for the total variation distance of the the marginals for fixed, i.e., non-
random, couplings {Je}e∈E . Inequality (12), extends naturally when we study reconstruction
for the distribution µ defined in (6), i.e., when the coupling parameters Je are i.i.d. samples
from a distribution ϕ. Indeed, averaging yields

E
[
(||µh(· | σ(r) = +1) − µh(· | σ(r) = −1)||TV )2

]
≤
∑
v∈Λ

∏
e∈path(r,v)

E
[
Γ 2
e

]
, (13)

where we have Γe = |1−exp(βJe)|
1+exp(βJe) , for each e ∈ E. Note that the above holds, since each Γe

depends only on Je, while the coupling parameters Je are assumed to be independent with
each other.

At this point, and since the Je’s are identically distributed, we further observe that for
any e ∈ E, we have that

∆KS(β, ϕ) =
(
E
[
Γ 2
e

])−1
.

Since the underlying tree T is ∆-ary, it is immediate to see that for ∆ < ∆KS(β, ϕ), the r.h.s.
of (13) tends to zero as h → ∞. From this point on, it is standard to prove non-reconstruction.

Our analysis allows to deal with the randomness of the spin-glass measure µ by utilising
the bound in (12). That is, the upper bound on the total variation distance has a nice
product form of the quantities Γe, which, in turn, expresses the dependence of the total
variation distance on the edge couplings {Je}e∈E . This product form of the bound, behaves
rather nicely when we need to take averages over the randomness of the coupling parameters
{Je}e∈E of the the spin-glass measure µ.

Reconstruction
In the reconstruction regime, the configuration at the root has a non-vanishing effect on
the configuration of the vertices at distance h, regardless of the height h. Specifically, the
corresponding leaf configurations from the measure conditioned on root’s spin being +1,
and −1, are so different with each other, that discrepancies cannot be attributed to random
fluctuations. Therefore, a question that naturally arises is how can we take advantage of the
discrepancies so that we infer the spin of the root.

For the standard ferromagnetic Ising, several approaches have been developed to establish
reconstruction (see [18], [8], [23]). Here, we build on an elegant argument in [18]. The authors
in this work, show that a simple majority vote of the leaf spins, conveys information sufficient
to reconstruct root’s spin, The majority vote on the leaves is defined by

Mh =
∑
u∈Λ

σ(u) . (14)

ICALP 2023
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The estimation rule is to infer that the spin at the root is sgn{Mh}, i.e., the sign of Mh.
Impressively, it turns out that this estimator is optimal, i.e., it coincides with the maximum
likelihood one. For the ∆-ary tree, one establishes reconstruction for the ferromagnetic Ising
model by employing a second moment argument on the estimator Mh.

For the distributions we consider here, the above estimator is far from sufficient. This is
due to various facts. Firstly, we allow for mixed couplings on the edges, i.e., certain edges
can be ferromagnetic, and others can be anti-ferromagnetic. Secondly, the strength of the
interaction, i.e., the magnitude of Je’s, is expected to vary from one edge to the other. To
this end, we introduce a new estimator, and we establish reconstruction by building on the
second moment argument from [18]. The starting point towards deriving this estimator,
comes from just considering the standard anti-antiferromagnetic Ising. The statistic from
(14), clearly does not work for this distribution. However, there is an easy remedy, by taking
into account the parity of the height h, i.e., if h is an even, or an odd number. We infer that
the spin at the root is equal to sgn

{
M̂h

}
, where

M̂h = (−1)h
∑
u∈Λ

σ(u) .

For the spin-glass distributions we consider here, we need to get the above idea even further.
Firstly, in order to accommodate the mixed ferromagnetic and anti-ferromagnetic couplings
on the edges of the tree. It seems meaningful to use the estimator sgn

{
M̃h

}
for the root

configuration, where

M̃h =
∑
u∈Λ

σ(u)
∏

e∈path(r,u)

sign{Je} ,

with path(r, u) denoting the set of edges along the unique path connecting r to u. So that
in M̃h, for each leaf we essentially examine the parity of the number of antiferromagnetic
couplings along the path that connects it to the root. Unfortunately, for the above estimator,
our second moment argument does not seem to work all that well.

The estimator we end up using, is a reweighted version of M̃h, which we call the “flip
majority” vote, and is defined by

Fh =
∑
u∈Λ

σ(u)
∏

e∈path(r,u)

1−exp(βJe)
1+exp(βJe) .

Note that the absolute value of the weight for the edge e, above, coincides with the quantity
Γe in (13). Naturally, the estimation rule is to infer that the root spin is sgn {Fh}.
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