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Abstract
We consider regular string-to-string functions, i.e. functions that are recognized by copyless streaming
string transducers, or any of their equivalent models, such as deterministic two-way automata. We give
yet another characterization, which is very succinct: finiteness-preserving functors from the category
of semigroups to itself, together with a certain output function that is a natural transformation.
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1 Introduction

This paper is about the regular string-to-string functions (see e.g. [17]). This is a fundamental
class of functions; it is one of the standard generalizations of regular languages to produce
string outputs (instead of merely accepting or rejecting inputs), covering examples such as

string reversal : 123 7→ 321 duplication: 123 7→ 123123

It has many equivalent descriptions, including deterministic two-way automata [22, Note 4],
copyless streaming string transducers (sst) [1, Section 3] (or the earlier and very similar single-
use restricted macro tree transducers [14, Section 5]), mso transductions [13, Theorem 13],
combinators [4, Section 2], a functional programming language [8, Section 6], λ-calculus with
linear types [15, Theorem 3] (see also [19, Claim 6.2] and [18, Theorem 1.2.3]), decompositions
à la Krohn–Rhodes [10, Theorem 18, item 4], etc.

The number of equivalent characterizations clearly indicates that the class of regular
functions is important and worth studying. However, from a mathematical point of view, a
disappointing phenomenon is that each of the known descriptions uses syntax that is more
complicated than one could wish for.1 These complications are perhaps minor annoyances,
and the corresponding models are undeniably useful. Nevertheless, it would be desirable to
have a model with a short and abstract definition, similar to the definition of recognizability
of regular languages by finite semigroups.

1 For example, the definition of a two-way automaton requires a discussion of endmarkers and what
happens when the automaton loops. In an mso transduction, an unwiedly copying mechanism is
necessary. In an sst, one needs to be careful about bounding the copies among registers. The calculi
of [4, 8] both have a long list of primitives. Similar remarks apply to the other formalisms.
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117:2 Algebraic Recognition of Regular Functions

This paper proposes such an abstract model. We prove that the regular string-to-string
functions are exactly those that can be obtained by composing two functions

Σ∗ some semigroup homomorphism−−−−−−−−−−−−−−−−−−−−−→ F(Γ∗) outΓ∗−−−−→ Γ∗

where F is a functor from the category of semigroups to itself that maps finite semigroups to
finite semigroups, and the output function outΓ∗ – not necessarily a homomorphism – is part
of a family outA : FA → A that is natural in the semigroup A.

We use the name transducer semigroup for the model implicit in this description, i.e. a
semigroup-to-semigroup functor F together with a natural transformation for producing
outputs. One of the surprising features of this model is the fact that linear growth of the
output size, which is one of the salient properties of the regular string-to-string functions,
does not seem to be a trivial consequence of the definition.

2 Transducer semigroups and warm-up theorems

In this section, we define the model that is introduced in this paper, namely transducer
semigroups. The purpose of this model is to recognize string-to-string functions, which are
defined to be functions of type Σ∗ → Γ∗, for some finite alphabets Σ and Γ. Some results
will work in the slightly more general case where the domain or codomain is a more general
semigroup, but we focus on the string-to-string case for the sake of concreteness.

The model is defined using terminology based on category theory. However, we do not
assume that the reader has a background in category theory, beyond the two most basic
notions of category and functor. Recall that a category consists of objects with morphisms
between them, such that the morphisms can be composed and each object has an identity
morphism to itself. In this paper, we will be working mainly with two categories:
Sets. The objects are sets, the morphisms are functions between them.
Semigroups. The objects are semigroups, the morphisms are semigroup homomorphisms.
To transform categories, we use functors. Recall that a functor between two categories
consists of two maps: one that assigns to each object A in the source category an object in
the target category, and another one that assigns to each morphism f : A → B a morphism
Ff : FA → FB. These maps need to be consistent with composition of morphisms, and the
identity must go to the identity.

▶ Example 2.1. The forgetful functor from the category of semigroups to the category of sets
maps a semigroup to its underlying set, and a semigroup homomorphism to the corresponding
function on sets. It is an example of a semigroup-to-set functor.

▶ Example 2.2. These constructions can be seen as semigroup-to-semigroup functors:
Tuples. This functor maps a semigroup A to its square A × A, with the semigroup operation

defined coordinate-wise. The functor extends to morphisms in the expected way. This
functor also makes sense for higher powers, including infinite powers, such as Aω.

Opposite. This functor maps a semigroup A to the semigroup where the underlying set is the
same, but multiplication is reversed, i.e. the product of a and b in the new semigroup is the
product b and a in the old semigroup. Morphisms are not changed by the functor: they
retain the homomorphism property despite the change in the multiplication operation.

Lists. This functor maps a semigroup A to the free monoid A∗ that consists of lists of
elements of A equipped with concatenation. (When A is finite, it can be regarded as an
alphabet, in which case we shall also call these lists “strings” or “words”.) On morphisms,
the functor is defined element-wise (or letter-wise). A similar construction would make
sense as a set-to-semigroup functor.
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Non-empty lists. A variant of the previous example, which sends a semigroup A to the free
semigroup A+ that consists of non-empty lists of elements in A.

Powerset. This (covariant) powerset functor maps a semigroup A to the powerset semigroup
PA, whose underlying set is the family of all subsets of A, endowed with the operation

(A1, A2) 7→ {a1a2 | a1 ∈ A1 and a2 ∈ A2} .

We now present the central definition of this paper.

▶ Definition 2.3 (Transducer semigroup). A transducer semigroup consists of
a semigroup-to-semigroup functor F,
together with an output mechanism which associates to each semigroup A a function of
type FA → A called the output function for A,

such that for every homomorphism h : A → B, the diagram below commutes:

FA FB

A B

Fh

output function for A output function for B

h

In the language of category theory, a natural transformation between two semigroup-to-set
functors G and K is a family of functions fA : GA → KA such that fB ◦ Gh = Kh ◦ fA for
every semigroup homomorphism h : A → B. So in Definition 2.3, the diagram says that the
output mechanism is a natural transformation of type

Semigroups Sets.

[forgetful functor]◦F

forgetful functor (Example 2.1)

Note that in a transducer semigroup, the output functions are not necessarily homomorphisms,
which is why the forgetful semigroup-to-set functor appears above. This is important in view
of the purpose of transducer semigroups, which is to define functions between semigroups,
as explained in the following definition; asking outB to be a homomorphism would severly
restrict the functions that can be recognized.

▶ Definition 2.4. We say that a function f : A → B between semigroups, not necessarily a
homomorphism, is recognized by a transducer semigroup (F, out) if it can be decomposed as

A FB Bh outB for some semigroup homomorphism h.

The definition discusses functions between arbitrary semigroups, with no assumption on F,
but we will mainly care about the special case – treated in Section 3 – where:

the function is string-to-string2 (f : Σ∗ → Γ∗), i.e. both the input and output semigroups
are finitely generated free monoids;
the functor F is finiteness-preserving, i.e. it maps finite semigroups to finite semigroups.

This special case will correspond to the regular string functions. Some minor results that do
not assume F is finiteness-preserving are presented in Section 2.2: we characterize all functions
(Theorem 2.10) and “recognizability reflecting” string-to-string functions (Theorem 2.13).

2 Although this case involves monoids, which are a special case of semigroups, the use of a semigroup
homomorphism that is not necessarily a monoid homomorphism is required to recognize functions such
that f(ε) ̸= ε. Furthermore, it will be useful in the proofs to work in the category of semigroups, rather
than the category of monoids.

ICALP 2023



117:4 Algebraic Recognition of Regular Functions

2.1 Examples and intuitions
▶ Example 2.5. Consider the transducer semigroup in which the functor is the identity, and
the output mechanism is also the identity. The functions of type A → B that are recognized
by this transducer semigroup are exactly the semigroup homomorphisms from A to B.

▶ Example 2.6. Consider the transducer semigroup in which
the functor is the “opposite semigroup” functor from Example 2.2;
the output function maps a ∈ FA, seen as an element in A, to aa ∈ A.

The functions of type A → B that are recognized by this transducer semigroup are exactly
those of the form a 7→ h(a)h(a) where h : A → B is some “anti-homomorphism”, i.e. satisfies
h(a1a2) = h(a2)h(a1) for all a1, a2 ∈ A. In particular, if h is the string reversal function rev
on the free monoid Σ∗, which is also a semigroup, then we get the “reverse then duplicate”
function that maps a string w over the alphabet Σ to rev(w) · rev(w).

▶ Example 2.7. We present here a transducer semigroup that recognizes the squaring
function w ∈ Σ∗ 7→ w|w| ∈ Σ∗ (illustrated by 123 7→ 123123123) for any alphabet Σ.

The functor maps A to A × N, with the semigroup structure defined componentwise
(N = {0, 1, . . . } is equipped with addition), and making the morphisms act on the left
component. The output mechanism A × N → A is defined below:

for n ≥ 1, (a, n) 7→ an (a, 0) 7→ a︸ ︷︷ ︸
we handle this case separately because a0 does not make sense in an arbitrary semigroup

▶ Example 2.8. Our last example function is

w ∈ {a, b, c}∗ 7→ (longest c-free suffix of w) · (longest c-free prefix of w) ∈ {a, b}∗

This can be recognized using the functor FA = A + A2, equipped with a suitable semigroup
operation that makes the following map h : {a, b, c}∗ → F({a, b}∗) a homomorphism:

h(w) = w for w ∈ {a, b}∗ h(uc . . . cv) = (u, v) for u, v ∈ {a, b}∗

The output mechanism of the transducer semigroup sends any element a ∈ A – seen as
belonging to the left summand of A + A2 – to aa, and (b, c) to cb.

▶ Remark 2.9. Consider a transducer semigroup with functor F. For a semigroup S, we may
often think of an element of FS as a data structure that contains elements of S (such as a
pair or a list, cf. Example 2.2). Then naturality of the output mechanism expresses that,
being defined “uniformly in S”, it cannot “look inside”3 those elements of S (but it can
combine them using the semigroup operation). In other words, the control flow may depend
only on the part that is “independent of S” – and the condition that F is finiteness preserving
(satisfied by all our examples except Example 2.7) somehow means that this part is finite.

2.2 Two simple characterizations
All functions. Our first theorem concerns transducer semigroups without any restrictions.

▶ Theorem 2.10. Every function between semigroups is recognized by a transducer semigroup.

3 This is similar to the “generic” or “polymorphic” function definitions supported by many statically
typed programming languages. The corresponding notion in type theory is parametric polymorphism,
and it is closely related to naturality, see the introduction to [16].
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Proof. We prove a slightly stronger result: for any semigroup A, there exists a transducer
semigroup that recognizes all functions from A to other semigroups. The functor is

FB = A × (set of all functions of type A → B, not necessarily recognizable).

The semigroup operation in FB is defined as follows: on the first coordinate, we inherit the
semigroup operation from A, while on the second coordinate, we use the trivial left zero
semigroup structure, in which the product of two functions is simply the first one (this is a
trivial way of equipping every set with a semigroup structure). The functor is defined on
morphisms as in the tuple construction from Example 2.2: the first coordinate, corresponding
to A, is not changed, and the second coordinate, corresponding to the set of functions, is
transformed coordinate-wise, when viewed as a tuple indexed by A. This is easily seen to be
a functor. The output mechanism, which is easily seen to be natural, is function application
i.e. (a, f) 7→ f(a). Every function f : A → B is recognized by this transducer semigroup,
with the appropriate homomorphism is a ∈ A 7→ (a, f). ◀

Recognizability reflecting functions. We now characterize functions with the property
that inverse images of recognizable languages are also recognizable. We use a slightly more
general setup, where instead of languages we use functions into arbitrary sets (languages can
be seen as the case of functions into {yes, no}).

▶ Definition 2.11. We say that a function from a semigroup A to some set X is recognizable
if it factors through some semigroup homomorphism from A to a finite semigroup.

In the rest of the paper, we shall sometimes speak of recognizable functions with infinite
codomain, but note that the range of a recognizable function is always finite.

A function f : B → A between semigroups is called recognizability reflecting if for every
recognizable function g : A → X, the composition g ◦ f is recognizable.

▶ Example 2.12. Consider the semigroup (N, +) of natural numbers with addition, which
is isomorphic to the free monoid a∗. In this semigroup, the recognizable functions are
ultimately periodic colourings of numbers. A corollary is that every recognizable function
gives the same answer to all factorials {1!, 2!, . . .}, with finitely many exceptions. Take any
function f : N → N such that (a) every output number arises from at most finitely many
input numbers; (b) every output number is a factorial. The composition of f with any
recognizable function will give the same answer to all numbers with finitely many exceptions,
thus being also recognizable.

In the above example, a function with conditions (a) and (b) can be chosen in uncountably
many ways, even if we require that it has linear growth. Therefore, there are too many
recognizability reflecting functions (even just from {a}∗ to itself) to allow a machine model,
or some other effective syntax. The following result gives a non-effective syntax.

▶ Theorem 2.13. The following conditions are equivalent for a string-to-string function:
1. it is recognizability reflecting.
2. it is recognized by a transducer semigroup such that for every finite semigroup A, the

corresponding output function of type FA → A is recognizable.

▶ Example 2.14. For any finite semigroup A, the map (a, n) ∈ A × (N \ {0}) 7→ an ∈ A is
recognizable. This is because, since a|A|! is idempotent for every a ∈ A, this map factors
through a homomorphism into the semigroup A × ((N \ {0})/ ∼) where

n ∼ m ⇐⇒ n = m ∨
(
n, m ≥ |A|! ∧ n ≡ m mod |A|!

)

ICALP 2023
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is a congruence of finite index. Extending this slightly to handle the case (a, 0) 7→ a, one can
show that the output mechanism outA of Example 2.7 is recognizable whenever A is finite.
Therefore, the squaring function is recognizability reflecting.

3 The regular functions

The two straightforward constructions in Theorems 2.10 and 2.13 amount to little more than
symbol pushing. In this section, we present a more substantial characterization, which is
the main result of this paper. This characterization concerns finiteness-preserving functors.
This is a strengthening of the condition from Theorem 2.13: if the functor F in a transducer
semigroup is finiteness-preserving, then for every finite semigroup A, the output function
FA → A will be recognizable, since all functions from a finite semigroup are trivially
recognizable. However, the condition is strictly stronger, as witnessed by Example 2.7, which
is recognizability reflecting (cf. Example 2.14) but not finiteness preserving. As we will see,
the stronger condition will characterize exactly the regular string-to-string functions.

The following counterexample illustrates the non-trivial interaction between naturality of
the output mechanism and the requirement that the functor is finiteness preserving.

▶ Example 3.1. Consider the powerset functor P from Example 2.2. It is finiteness preserving,
since the powerset of a finite semigroup is also finite. One could imagine that using powersets,
one could construct a transducer semigroup that recognizes functions that are not regular,
e.g. because they have exponential growth (unlike regular functions, which have linear growth).
It turns out that this is impossible, because there is no possible output mechanism, i.e. no
natural transformation of type PA → A, as we explain below.

The issue is that the naturality condition disallows choosing elements from a subset. To
see why, consider a semigroup A with two elements, with the trivial left zero semigroup
structure. For this semigroup, the output mechanism of type PA → A would need to choose
some element a ∈ A when given as input the full set A ∈ PA. However, none of the two
choices is right, because swapping the two elements of A is an automorphism of the semigroup
A, which maps the full set to itself, but does not map any element to itself.

We now state the main theorem of this paper.

▶ Theorem 3.2. The following conditions are equivalent for every string-to-string function:
1. it is a regular string-to-string function;
2. it is recognized by a transducer semigroup in which the functor is finiteness preserving;
3. it is recognized by a transducer semigroup in which the functor F maps the singleton

semigroup 1 to a finite semigroup: |F1| < ∞.
(Note that (2) ⇒ (3) is immediate.) Here is the plan for the rest of this section:
Section 3.1 gives a formal definition of regular functions
Section 3.2 proves the easy implication in the theorem, namely (1) ⇒ (2)
Section 3.3 proves the hard implication in the theorem, namely (3) ⇒ (1)

Before continuing, we remark on one advantage of the characterization in item (2), namely
a straightforward proof of closure under composition. In contrast, for some (but not all)
existing models defining regular string-to-string functions, composition requires a non-trivial
construction – examples include two-way transducers [11, Theorem 2] or copyless streaming
string transducers [2, Theorem 1].

▶ Proposition 3.3. Functions recognized by finiteness-preserving transducer semigroups are
closed under composition.
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Proof. This is because finiteness-preserving functors are closed under composition, natural
families of output functions are also closed under composition, and naturality means by
definition that the output functions “commute” in a suitable sense with functors.

More precisely, consider the following diagram:

Σ∗ F(Γ∗) Γ∗

FF′(Π∗) F′(Π∗) Π∗

h outΓ∗

Fh′ h′

outF′(Π∗) out′
(Π∗)

where the square commutes because the output mechanism is natural. The upper path
describes the composition of two functions recognized by the transducer semigroups (F, out)
and (F′, out′), while the lower path describes a function recognized by (FF′, outF′(−)◦out′). ◀

3.1 Defininition of streaming string transducers

In this section, we formally describe the regular functions, using a model based on streaming
string transducers (sst). This model, like our proof of Theorem 3.2, covers a slightly more
general case, namely string-to-semigroup functions instead of only string-to-string functions.
These are functions of type Σ∗ → A where Σ is a finite alphabet and A is an arbitrary
semigroup. The purpose of this generalization is to make notation more transparent, since
the fact that the output semigroup consists of strings will not play any role in our proof.

The model uses registers to store elements of the output semigroup. We begin by
describing notation for registers and their updates. Suppose that R is a finite set of register
names, and A is a semigroup called the output semigroup. We consider two sets

register valuations: (R → A) register updates: (R → (A + R)+)

Below we show two examples of register updates, presented as assignments, using two registers
X, Y and the semigroup A = a∗. (The right-hand sides are the values in (A + R)+.)

X := aY aXaaa

Y := XaaXaa︸ ︷︷ ︸
copyful

X := aaY aaXaaa

Y := aaa︸ ︷︷ ︸
copyless

The crucial property is being copyless – a register update is called copyless if every register
name appears in at most one right-hand side of the update, and in that right-hand side it
appears at most once. The main operation on these sets is application: a register update u

can be applied to a register valuation v, giving a new register valuation vu.
In our model of streaming string tranducers, the registers will be updated by a stream

of register updates that is produced by a rational function, defined as follows. Intuitively
speaking, a rational function corresponds to an automaton that produces one output letter
for each input position, with the output letter depending on regular properties of the input
position within the input string. More formally:

ICALP 2023



117:8 Algebraic Recognition of Regular Functions

▶ Definition 3.4. A rational function of type Σ∗ → X∗ – where Σ is a finite alphabet but X

can be any set – is a length-preserving4 function with the following property: for some family5

fa : Σ∗ × Σ∗︸ ︷︷ ︸
equipped with componentwise multiplication

→ Γ for a ∈ Σ of recognizable functions,

for every input a1 . . . an and i ∈ {1, . . . , n}, the i-th output letter is
fai(a1 . . . ai−1, ai+1 . . . an).

Note that the range of a rational function with codomain X∗ may contain only finitely many
“letters” from X, so it can always be seen as a string function over finite alphabets.

Having defined register updates and rational functions, we are ready to introduce the
machine model used in this paper as the reference definition of regular functions.

▶ Definition 3.5. The syntax of a streaming string transducer (sst) is given by:
A finite input alphabet Σ and an output semigroup A.
A finite set R of register names. All register valuations and updates below use R and A.
A designated initial register valuation, and a final output pattern in R+ (that does not
need to be copyless, though adding this restriction would not affect the expressive power).
An update oracle, which is a rational function of type Σ∗ → (copyless register updates)∗.

The semantics of the sst is a function of type Σ∗ → A defined as follows. When given an
input string, the sst begins in the designated initial register valuation. Next, it applies all
updates produced by the update oracle, in left-to-right order. Finally, the output of the sst
is obtained by combining the last register values according to the final output pattern.

▶ Example 3.6. We define an sst that computes the function of Example 2.8. It has two
registers X and Y , whose initial valuation is X = Y = ε, and the final output pattern is Y X.
The update associated to an input letter ℓ ∈ {a, b, c} at position i is:

if the position i is part of the longest c-free prefix, then X := Xℓ, otherwise X := X;
if the position i is part of the longest c-free suffix, then Y := Y ℓ, otherwise Y := Y .

This sequence of updates can be produced by a rational function generated by a family of
functions (fℓ)ℓ∈{a,b,c} that are recognized by B2, where B is the monoid of booleans with
conjunction (rephrase the conditions as “there is no c to the left (resp. right) of i”).

In a rational function, the label of the i-th output position is allowed to depend on letters
of the input string that are on both sides of the i-th input position; this corresponds to
regular lookaround in a streaming string transducer. Therefore, the model described above
is easily seen to be equivalent to copyless ssts with regular lookaround, which are one of the
equivalent models defining the regular string-to-string functions, see [3, Section IV.C].

3.2 From a regular function to a transducer semigroup
Having defined the transducer model, we prove the easy implication in Theorem 3.2. It is
apparent from Definition 3.5 that every regular function can be decomposed as a rational
function followed by a function computed by a streaming string transducer whose i-th register
update depends only on the i-th input letter – let us call that a local sst. Thanks to closure
under composition (Proposition 3.3), we only need to handle these two special cases: we
show that finiteness-preserving transducer semigroups recognize

all rational functions in Section 3.2.1;
and all local streaming string transducers in Section 3.2.2.

4 Often in the literature, rational functions are not required to be length-preserving, see e.g. [21, p. 525],
but in this paper, we only need the length-preserving case.

5 The family (fa)a∈Σ is very close to what is called an (Eilenberg) bimachine in the literature.
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3.2.1 Recognizing rational functions by transducer semigroups
Consider a rational function, generated by the family (fa)a∈Σ of recognizable functions of
type Σ∗ × Σ∗ → Γ. By definition of recognizability, each fa decomposes into

Σ∗ × Σ∗ ha−−→ Ba
ga−−→ Γ where ha is a semigroup homomorphism and Ba is finite.

One can check that every fa then factors through a monoid morphism to the finite monoid∏
a∈Σ

ha(Σ∗ × Σ∗)

Thus, without loss of generality, we may assume for the rest of the proof that all of the
above semigroups Ba are equal to a common finite monoid B and that each semigroup
homomorphism ha is in fact a monoid morphism.

For any semigroup A, we let6 FA = B × (B → A) × B, endowed with the following
semigroup operation:

(ℓ1, φ1, r1) · (ℓ2, φ2, r2) =
(

ℓ1ℓ2,
(
b 7→ φ1(br2) · φ2(ℓ1b)

)
, r1r2

)
.

The construction F is extended to morphisms by considering B → A as the set of B-indexed
tuples (cf. Example 2.2) of elements of A. To get a transducer semigroup, we take the output
mechanism to be (ℓ, φ, r) 7→ φ(e) where e ∈ B is the neutral element.

Our rational function is then recognized by the unique monoid homomorphism of type
Σ∗ → F(Γ∗) (indeed, F preserves monoids) which maps a ∈ Σ to

(
ha(a, ε), ga, ha(ε, a)

)
.

3.2.2 From a local SST to a transducer semigroup
Suppose now that a string-to-semigroup function f : Σ∗ → A is computed by some local
streaming string transducer. In the proof below, when referring to register valuations and
register updates, we refer to those that use the registers and output semigroup of the fixed
transducer. We say that a register update is in normal form if, in every right-hand side,
one cannot find two consecutive letters from the semigroup A. Any register update can be
normalized, i.e. converted into one that is in normal form, by using the semigroup operation
to merge consecutive elements of the output semigroup in the right-hand sides. Here is an
example, which uses three registers X, Y, Z and the semigroup A = ({0, 1}, ·):

X := 01Y 1111X111
Y := 01011︸ ︷︷ ︸

not in normal form

normalization−−−−−−−−−→ X := 0Y 1X1
Y := 0︸ ︷︷ ︸
in normal form

The register updates before and after normalization act in the same way on register valuations.
If an update is copyless and in normal form, then the combined length of all right-hand sides
is at most three times the number of registers. Therefore, if a semigroup A is finite, then the
set of copyless register updates in normal form, call it UA, is also finite. (However, there are
infinitely many copyful register updates even when A is finite.) This set UA can be equipped
with a composition operation

u1, u2 ∈ UA 7→ u1u2 ∈ UA,

6 A construction similar in spirit to the classical two-sided semidirect product [20, §6].
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which is defined in the same way as applying a register update to a register valuation, except
that we normalize at the end. This composition operation is associative, and compatible
with applying register updates to register valuations, in the sense that (vu1)u2 = v(u1u2)
holds for every valuation v and all updates u1 and u2. Therefore, A 7→ UA is a finiteness-
preserving semigroup-to-semigroup functor (with the natural extension to morphisms, where
the homomorphism is applied to every semigroup element in a right-hand side).

The functor U described above is almost but not quite the functor that will be used in
the transducer semigroup that we will define to prove the easy implication in Theorem 3.2.
That functor F will also take into account the initial register valuation:

FA = UA × (R → A)︸ ︷︷ ︸
endowed with the trivial left zero semigroup structure

with componentwise multiplication & action on morphisms

Given (u, v) ∈ FA, the output mechanism in the transducer semigroup applies the register
update u to the register valuation v, and then multiplies together the register values given by
the resulting valuation vu according to the final output pattern. Using this, we can recognize
f via the homomorphism that sends each input letter to:

the register update that this letter determines (our sst being local) in the first component;
the designated initial register valuation in the second component.

3.3 From a transducer semigroup to a regular function
We now turn to the difficult implication (3) ⇒ (1) in Theorem 3.2. The proof is presented in
a way which, if sometimes slightly verbose, makes it easier to see how it can be adapted to
other algebraic structures instead of semigroups (such as forest algebras, cf. Section 4).

3.3.1 Polynomial functors and functorial streaming string transducers
The assumption of the implication uses an abstract model (transducer semigroups), while the
conclusion uses a concrete operational model (streaming string transducers). To bridge the
gap, we use an intermediate model, similar to ssts, but a bit more abstract. The abstraction
arises by using polynomial functors instead of registers, as described below.

▶ Definition 3.7. By polynomial functor, we mean a semigroup-to-set functor of the form

A 7→
∐
q∈Q

Adimension of q,

where Q is some possibly infinite set, whose elements are called components, with each
component having an associated dimension in N. The symbol

∐
stands for disjoint union of

sets. This functor does not take into account the semigroup structure of the input semigroup,
since the output is seen only as a set. On morphisms, the functor works in the expected way,
i.e. coordinate-wise.

A finite polynomial functor is a polynomial functor with finitely many components –
for example, A 7→ A2 + A2 + A. The notion of finite polynomial functor can be seen as a
mild generalization of the construction which maps a semigroup A to the set AR of register
valuations for some fixed finite set R of register names. In the generalization, we allow a
variable number of registers, depending on some finite information (the component).

Having defined a more abstract notion of “register valuations”, namely finite polynomial
functors, we now define a more abstract notion of “register updates”. The first condition for
such updates is that they do not look inside the register contents; this condition is captured
by naturality (as discussed in Remark 2.9).
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▶ Example 3.8. Consider the polynomial functors (where 1 represents the singleton set A0)

FA = A∗ = 1 + A1 + A2 + · · · GA = A + 1.

An example of a natural transformation between these two functors is the function which
maps a nonempty list in A∗ to the product of its elements, and which maps the empty list
to the unique element of 1. A non-example is the function that maps a list [a1, . . . , an] ∈ A∗

to the leftmost element ai that is an idempotent in the semigroup, and returns 1 if such an
element does not exist. The reason why the non-example is not natural is that a semigroup
homomorphism can map a non-idempotent to an idempotent.

Apart from naturality, we will want our register updates to be copyless. For the purposes
of the following definition, let us call a tuple of numbers in Nk a “sub-unit” if it belongs
to {0, 1}k and at most one coordinate is equal to 1 – or, as an edge case, if k = 0. For a
polynomial functor F, a sub-unit of FN =

∑
q Ndim(q) is a sub-unit of any of the Ndim(q).

▶ Definition 3.9 (Copyless natural transformation). A natural transformation between two
polynomial functors F and G is called copyless if when instantiated to the semigroup7 (N, +),
the corresponding function of type FN → GN maps sub-units to sub-units.

It will be convenient to speak of natural functions f : FA → GA, where F and G are
semigroup-to-set functors and A is a fixed semigroup, to refer to functions that can be
extended to natural transformations (fB : FB → GB)B semigroup, with f = fA. Copyless
natural functions between instantiations of polynomial functors are defined analogously.

Having defined functions that are natural and copyless, we now describe the more abstract
model of ssts used in our proof. The main difference is that instead of register valuations
and updates given by some finite set of register names, we have two abstract polynomial
functors, one of them finite polynomial, together with an explicitly given application function.
We also allow the computation to be initialized and finalized in a more liberal way, that may
depend on a regular property of the input.

▶ Definition 3.10. The syntax of a functorial streaming string transducer is given by:
A finite input alphabet Σ and an output semigroup A.
A finite polynomial functor R, called the register functor, and a (not necessarily finite)
polynomial functor U called the update functor.
A copyless natural function of type RA × UA → RA, called application.
An initial function Σ∗ → RA which is recognizable (and therefore has finite range).
A polynomial final data functor K, a final data function Σ∗ → KA which is recognizable,
and a final output function of type RA × KA → A which is a natural function (but not
necessarily copyless).
An update oracle, which is a rational function of type Σ∗ → (UA)∗.

Analogously to Definition 3.5, the functorial sst computes the function Σ∗ → A obtained
by the following composition, where the first map bundles together the initial function, the
update oracle and the final data function:

Σ∗ → RA × (UA)∗ × KA
(apply updates successively)×idKA−−−−−−−−−−−−−−−−−−−−−−→ RA × KA

final output function−−−−−−−−−−−−−−→ A

In the appendix, we prove that this model is no more expressive than usual copyless ssts.

7 The choice of the semigroup (N, +) in the Definition 3.9 is not particularly important. For example,
the same notion of copylessness would arise if instead of (N, +), we used the semigroup {0, 1, 2} with
addition up to threshold 2. In the appendix, we present a more syntactic characterization of copyless
natural transformations as part of our proof of Lemma 3.11.
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▶ Lemma 3.11. Definitions 3.5 and 3.10 characterize the same string-to-semigroup functions.

3.3.2 Coproducts and views
Apart from the more abstract transducer model from Definition 3.10, the other ingredient
used in the proof of the hard implication in Theorem 3.2 will be coproducts of semigroups,
and some basic operations on them, as described in this section.

The coproduct8 of two semigroups A and B, denoted by A ⊕ B, is the semigroup whose
elements are nonempty words over an alphabet that is the disjoint union of A and B,
restricted to words that are alternating in the sense that two consecutive letters cannot
belong to the same semigroup. The semigroup operation is defined in the expected way. We
draw elements of a coproduct using coloured boxes, with the following picture showing the
product operation in the coproduct of two copies, red and blue, of the semigroup {a, b}+:

( aba · b · b · aa ) · ( abba · aabb ) = aba · b · b · aaabba · aabb .

A coproduct can involve more than two semigroups; in the pictures this would correspond to
more colours, subject to the condition that consecutive boxes have different colours.
▶ Remark 3.12. The copyless register updates u : R → (A + R)+ of ordinary ssts that are in
normal form (cf. Section 3.2) can be seen as maps R → A ⊕

⊕
X∈R

{X}+.

We write 1 for the semigroup that has one element. This semigroup is unique up to
isomorphism and it is a terminal object in the category of semigroups, which means that it
admits a unique homomorphism from every other semigroup A. This unique homomorphism
will be denoted by ! : A → 1. (It has no connection with the factorial function on numbers.)

Consider the semigroup-to-set functors defined by (the underlying set of) a coproduct of
several copies of their argument with several copies of 1, such as A 7→ A ⊕ A ⊕ A ⊕ 1 ⊕ 1. In
our proof, it will be useful to see them as polynomial functors, even though strictly speaking
they are not defined as sums of products. This identification is allowed by the following
observation (stated for A ⊕ 1 for convenience, but the same idea applies in general).

▶ Proposition 3.13. There is a family of bijections, natural in the semigroup A, between

A ⊕ 1 and
∐

q∈1⊕1
Adimension of q,

where the dimension of q is the number of times that the first copy of 1 appears in q.

Idea. Given x ∈ A ⊕ 1, we apply ! : A → 1 to the elements of A in x to determine the
component q of the polynomial functor that contains the image of x by the left-to-right
bijection. This operation, a special case of what is called the shape below, forgets those
elements of A appearing in x, so we record them in a tuple living in Adim(q). For example,
aba · 1 · aa · 1 is sent to the tuple (aba, aa) in the component 1 · 1 · 1 · 1 . ◀

The crucial property of semigroups that will be used in our proof is Lemma 3.14 below,
which says that an element of a coproduct can be reconstructed based on certain partial
information. This information is described using the following operations.

8 The name coproduct is used because of the following universal property: if f : A → C and g : B → C
are two semigroup homomorphisms, then there is a unique homomorphism A ⊕ B → C that coincides
with f (resp. g) on the subsemigroup consisting of words with a single letter from A (resp. B).
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1. Merging. Consider a coproduct A1 ⊕ · · · ⊕ An, such that the same semigroup A appears
on all coordinates from a subset I ⊆ {1, . . . , n}, and possibly on other coordinates as well.
Define merging the parts from I to be the function of type

A1 ⊕ · · · ⊕ An → A ⊕
⊕
i̸∈I

Ai

that is defined in the expected way, and explained in the following picture. In the picture,
merging is applied to a coproduct of three copies of the semigroup {a, b}+, indicated
using colours red, black and blue, and the merged coordinates are red and blue:

aba · b · aa · b · aa · abba · b 7→ abab · aa · baaabba · b︸ ︷︷ ︸
the merge of red and blue is drawn in violet

.

2. Shape. Define the shape operation to be the function of type

A1 ⊕ · · · ⊕ An → 1 ⊕ · · · ⊕ 1

obtained by applying ! on every coordinate. The shape says how many alternating blocks
there are, and which semigroups they come from, as explained in the following picture:

aba · b · aa · b · aa · abba · b 7→ 1 · 1 · 1 · 1 · 1 · 1 · 1 .

3. Views. The final operation is the i-th view

A1 ⊕ · · · ⊕ An → 1 ⊕ Ai.

This operation applies ! to all coordinates other than i, and then it merges all those
coordinates. Here is a picture, in which we take the view of the blue coordinate:

aba · b · aa · b · aa · abba · b 7→ aba · 1 · aa · 1 .

The key observation is that an element of a coproduct is fully determined from its shape
and views, as stated in the following lemma. It seems to contain the essential property of
semigroups that makes the construction work. We expect our theorem to also be true for
other algebraic structures for which the lemma is true; however, the lemma seems to fail in
certain settings. Concrete examples will be discussed in the conclusion (Section 4).

▶ Lemma 3.14. Let A1, . . . , An be semigroups. The deconstruction function of type

A1 ⊕ · · · ⊕ An −→ (1 ⊕ A1) × · · · × (1 ⊕ An) × (1 ⊕ · · · ⊕ 1),

which is obtained by combining the views for all i ∈ {1, . . . , n} and the shape, is injective.

We prove this by exhibiting an explicit partial left inverse: a reconstruction function of type

(1 ⊕ A1) × · · · × (1 ⊕ An) × (1 ⊕ · · · ⊕ 1) −→ (A1 ⊕ · · · ⊕ An) + 1

such that deconstruction followed by reconstruction maps every element of A1 ⊕ · · · ⊕ An to
itself. The idea is to start with the shape and replace the entries from 1 with the elements
appearing in the views in the right order. Rather than a formal definition, we illustrate this
on an example (in the 3 views, we omit the boxes around the 1s to avoid visual cluttering):

aba 1 aa 1
1 b 1 b 1 abba 1

1 aa 1 b

1 1 1 1 1 1 1

7→ aba · b · aa · b · aa · abba · b

Besides proving Lemma 3.14, this reconstruction function also enjoys the following property,
which can be seen from the definition and Proposition 3.13.
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▶ Proposition 3.15. When each Ai is either A or 1, reconstruction can be seen as a copyless
natural function between polynomial functors in A.

3.3.3 Factorized output
Now, consider some transducer semigroup, with the functor being F, and fix a string-to-
semigroup function f : Σ∗ → A that decomposes as some homomorphism h : Σ∗ → FA

followed by the output function of type FA → A.
For semigroups A1, . . . , An, define the vectorial output function to be the function of type

FA1 × · · · × FAn −→ A1 ⊕ · · · ⊕ An

that is obtained by the composition of three functions described below (where co-projection
is the function Ai → A1 ⊕ · · · ⊕ An that outputs a singleton list containing its input):

FA1 × · · · × FAn

F(A1 ⊕ · · · ⊕ An) × · · · × F(A1 ⊕ · · · ⊕ An)

F(A1 ⊕ · · · ⊕ An)

A1 ⊕ · · · ⊕ An.

F(co-projection)×···×F(co-projection)

semigroup operation

output mechanism for A1 ⊕ · · · ⊕ An

To illustrate the definitions in this section, we use a running example with the transducer
semigroup for the “reverse then duplicate” function from Example 2.6. The functor F sends
a semigroup A to the opposite semigroup (cf. Example 2.2), and the output mechanism
is a 7→ aa. Our example function on {a, b}∗ is obtained by composing the string reversal
homomorphism {a, b}∗ → F({a, b}∗) with the output function. Here is an example of the
vectorial output function (for now, the homomorphism plays no role):

(1, abbb) ∈ F1 × F({a, b}∗) 7→ abbb 1 abbb 1 ∈ 1 ⊕ {a, b}∗.

The vectorial output function is natural in all of its arguments, which means that for all
semigroup homomorphisms h1, . . . , hn, the diagram below commutes:

FA1 × · · · × FAn A1 ⊕ · · · ⊕ An

FB1 × · · · × FBn B1 ⊕ · · · ⊕ Bn

vectorial output function

Fh1×···×Fhn h1⊕···⊕hn

vectorial output function

This is because each of the three steps in the definition of the vectorial output function is itself
a natural transformation, and natural transformations compose. Naturality of the first two
steps is easy to check, while for the last step we use the assumption that the (non-vectorial)
output function is natural.

Let us return to our function f = outA ◦ h recognized by our transducer semigroup
(F, out). For strings w1, . . . , wn ∈ Σ∗, define the corresponding factorized output to be the
result of first applying the semigroup homomorphism h : Σ∗ → FA to all the strings, and
then applying the vectorial output function; we denote it by

⟨w1| · · · |wn⟩ ∈ A ⊕ · · · ⊕ A︸ ︷︷ ︸
n times

,
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Here is the factorized output illustrated on our running example (we use colours to distinguish
which of the three parts of the input is used):

⟨abb|ε|baaba⟩ = abaab ε bba abaab ε bba ∈ {a, b}∗ ⊕ {a, b}∗ ⊕ {a, b}∗.

As we can see above, when the output semigroup is a free monoid, the factorized output
morally tells us “which part of the output string comes from which part in the input string”.
▶ Remark 3.16. This is similar to the idea of origin semantics [5] of regular functions (see
also [17, Section 5]). Indeed, our definition of factorized output is inspired by a similar tool
of the same name that appears in the study of origin semantics [5, Section 2].

We also use a similar notation but with some input strings underlined, e.g. the input
could be ⟨abb|ε|baaba⟩ with an underline for the first red part. In the underlined case,
before applying the vectorial output function, we apply h to the non-underlined strings and
(F! ◦ h) : Σ∗ → F1 to the underlined strings. In our running example, we have

⟨abb|ε|baaba⟩ = abaab ε 1 abaab ε 1 ∈ 1 ⊕ {a, b}∗ ⊕ {a, b}∗.

3.3.4 Proof of (3) ⇒ (1) in Theorem 3.2
We have now collected all necessary ingredients to prove this hard direction of the equivalence.
Therefore, our goal is now to show that the function f : Σ∗ → A that we have previously fixed
is computed by some functorial streaming string transducer as in Definition 3.10, assuming
that F1 is finite.

The idea is that we want the functorial sst to maintain the following invariant:

after processing the first i letters in an input string a1 · · · an,
the register valuation is equal to the factorized output ⟨a1 · · · ai|ai+1 · · · an⟩.

This way, after processing all input letters, the last valuation ⟨a1 · · · an|ε⟩ is very close to the
output; indeed, if we see A as a 1-ary coproduct, then f(a1 . . . an) = ⟨a1 . . . an⟩ ∈ A.

The naive choice for the register functor is then R′ : A 7→ A ⊕ 1, since ⟨w|v⟩ ∈ A ⊕ 1 for
all w, v ∈ Σ∗ by definition. However, while R′ can be seen as a polynomial semigroup-to-set
functor, whose set of components is 1 ⊕ 1 (cf. Proposition 3.13), it is not finite polynomial
(the set 1 ⊕ 1 is infinite). That said, we have by naturality of vectorial output:9

▷ Claim 3.17. The component for ⟨w|v⟩ ∈ R′A is ⟨w|v⟩ ∈ 1 ⊕ 1.

This index is determined by definition by the values of (F! ◦ h) : Σ∗ → F1 on w and v, where
h : Σ∗ → FA is the homomorphism used to recognize f . Since F1 is finite, the ⟨w|v⟩ for w, v

9 Let us give some details. From Proposition 3.13, we see that the component in 1 ⊕ 1 of an element in
A ⊕ 1 is obtained by applying ! ⊕ 1. So it suffices to show that

⟨w|v⟩ = (! ⊕ 1)(⟨w|v⟩)

Expanding the definitions, our goal can be rewritten as

vectorial output of (F! ◦ h(w), F! ◦ h(v)) = (! ⊕ 1)
(
vectorial output of (h(w), F! ◦ h(v))

)
This is a direct consequence of the naturality of the vectorial output function, that can be expressed as
follows: for every semigroup homomorphism g : A → B,

(vectorial output for B) ◦ (Fg × id1) = (g ⊕ 1) ◦ vectorial output for A

(take g = ! and apply both sides of the equality to (h(w), F! ◦ h(v)) to get the desired Claim 3.17).
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ranging over Σ∗ live in finitely many components. We take our register functor RA ⊂ R′A to
be the finite polynomial functor consisting of these “useful” components, plus the unique
component that does not use A (it will serve as a “null value”).

To design the register updates, the key is the following lemma. It shall be proved later
using the machinery of views on coproducts that we have introduced for this very purpose.

▶ Lemma 3.18. There are two copyless natural functions

δ : (A ⊕ 1) × (1 ⊕ A ⊕ 1) → (A ⊕ 1) + 1 κ : (A ⊕ 1) × (1 ⊕ A) → A + 1

such that, for every pair of strings w, v ∈ Σ∗ and every letter a ∈ Σ,

⟨wa|v⟩ = δ(⟨w|av⟩, ⟨w|a|v⟩) f(w) = ⟨w⟩ = κ(⟨w|ε⟩, ⟨w|ε⟩)

Again, to make “copyless natural” meaningful in this context, we invoke Proposition 3.13 to
see δ and κ as functions between polynomial functors in A.

This leads us to use the update functor U : A 7→ 1 ⊕ A ⊕ 1 and to define the application of
updates to registers, of type RA × UA → RA, to be δ followed by the map (A ⊕ 1) + 1 → RA

which sends the components of A ⊕ 1 that are in RA to themselves, and everything else to
the “null value”. As an direct consequence of the lemma, the desired invariant holds using

the initial function w 7→ ⟨ε|w⟩,
and the update oracle a1 . . . an 7→ ⟨ε|a1|a2 . . . an⟩ . . . ⟨a1 . . . an−1|an|ε⟩.

To fit Definition 3.10, we have to check that the initial function is recognizable and that the
update oracle is a rational function; by definition, the latter amounts to saying that for any
a ∈ Σ, the function (w, v) ∈ (Σ∗)2 7→ ⟨w|a|v⟩ is recognizable. According to the definition
of factorized output, the initial function factors through the semigroup homomorphism
F! ◦ h, whose codomain F1 is finite; therefore, the initial function is recognizable. The other
recognizability condition holds for a similar reason.

To finish building our functorial streaming string transducer, we use the function κ from
Lemma 3.18. Thanks to our invariant and to the equation concerning κ, it is immediate that
the following choices lead to a functorial sst that indeed computes f . We take:

the final data functor K : A 7→ (1 ⊕ A) × A,
the final data function w ∈ Σ∗ 7→ (⟨w|ε⟩, some arbitrary fixed value in A) – once again,
it is recognizable because F1 is finite,
and the final output function RA × KA → A that proceeds as follows: first, it applies κ to
get some value in (A + 1) × A; if the left half of the pair is in A, it returns it; otherwise,
it returns the right half.

This being done, let us discharge our only remaining subgoal.

Proof of Lemma 3.18. We cover here the part concerning δ; for κ, the arguments are similar
and a bit simpler. We use the following claim, which is proved using mechanical diagram
chasing (as detailed in the appendix). Recall that the merging, shape and view operations
were introduced just before Lemma 3.14.

▷ Claim 3.19. ⟨wa|v⟩ is obtained from ⟨w|a|v⟩ by merging the first two parts in A ⊕ A ⊕ 1.

The above claim shows that the factorized output ⟨wa|v⟩ is obtained from ⟨w|a|v⟩ by
a copyless natural function. In turn, ⟨w|a|v⟩ is the image by the reconstruction function
– which is copyless natural (Proposition 3.15) – of the following four items (the equalities
below are proved similarly to Claims 3.17 and 3.19):
1. First view of ⟨w|a|v⟩, which is equal to ⟨w|av⟩ – this is the first argument which is passed,

in the lemma statement, to the function δ that we want to define.
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2. Second view of ⟨w|a|v⟩, which is obtained by merging the first and third parts in ⟨w|a|v⟩.
3. Third view of ⟨w|a|v⟩, which is equal to ⟨wa|v⟩.
4. Shape of ⟨w|a|v⟩, which is equal to ⟨w|a|v⟩.

To complete the proof, it remains to justify that the last three items above can be
collectively obtained from the second argument given to δ, namely ⟨w|a|v⟩, by applying some
copyless natural function. Each item is obtained separately by applying a natural function.
Furthermore, the second item is obtained in a copyless way, while the last two items do not
use A at all, and therefore they are obtained in a copyless way for trivial reasons, even when
combined with the second item. ◀

4 Conclusions

In this paper, we have exhibited a concise algebraic characterization of the regular string-to-
string functions, in the style of the definition of regular languages using recognizability by
finite semigroups. To perform this extension from languages to functions, we have relied on
the basic concepts of category theory: categories, functors, natural transformations.

It should be noted that our use of categories is quite different in spirit from many of the
works that take a categorical perspective on automata-theoretic results – see for instance [12],
whose introduction points to many further references. In such works, the correspondence
between concrete automata models and their rephrasing as suitable (co)algebras or functors
tends to be straightforward, with the technical focus lying elsewhere (typically, in generalizing
constructions such as determinisation or minimisation). On the contrary, we define a truly
new transducer model whose equivalence with the preexisting copyless streaming string
transducers requires a non-trivial proof.

An advantage of our characterization of the regular string functions is that, as one would
expect from an abstract result, it lends itself to generalizations.

Semigroup-to-semigroup functions. The notion of recognition by a finiteness-preserving
transducer semigroup makes sense for functions between arbitrary semigroups. Furthermore,
such functions are closed under composition (the proof of Proposition 3.3 works as it is). To
check their robustness, it would be desirable to have a more concrete, machine-like model
capturing the same function class; possibly a variant of streaming string transducers where
the underlying finite automaton is morally “replaced” by a finite semigroup.

More string functions. Another direction is characterizing other classes of string-to-string
functions, such as the rational functions or the polyregular functions [7]. In this paper, we
have discovered that, somewhat mysteriously, combining two conditions – naturality and
preserving finiteness – characterizes exactly the regular functions, which have linear growth.
Perhaps there is some way of tweaking the definitions to describe, say, some class with
polynomial growth. For instance, the squaring function (Example 2.7) seems to be recognized
by a mixed-variance functor A 7→ (A → A) × A with a dinatural output mechanism.

Functions on other free algebras. The definition of a transducer semigroup can applied to
other algebras, and not just semigroups. This may be done by taking some monad T and
considering functions that can be decomposed, for some endofunctor F of the category of
Eilenberg-Moore algebras for the monad T and some natural transformation out, as

TΣ some T-algebra homomorphism−−−−−−−−−−−−−−−−−−−−→ FTΓ outTΓ−−−−→ TΓ.
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An example of this approach is forest algebras [6, Section 5], which are algebras for describing
trees. Preliminary work shows that, in the case of forest algebras, the suitable version of
Theorem 3.2 also holds, i.e. the finiteness-preserving functors lead to a characterization of
the standard notion of regular tree-to-tree functions, namely mso transductions (see [14, 9]).
We believe that these results apply even further, namely for graphs of bounded treewidth,
modeled using suitable monads [6, Section 6]. The crucial property is that Lemma 3.14, about
reconstructing a coproduct from its views, holds for other monads than just the nonempty
list monad for semigroups. Unfortunately, this lemma fails for some monads, such as the
monad of formal linear combinations of strings that corresponds to weighted automata. In
the future, we intend to conduct a more systematic investigation of the extent to which the
characterizations from this paper can be generalized to other algebraic structures.
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