VeriFx: Correct Replicated Data Types for the
Masses

Kevin De Porre @4
Vrije Universiteit Brussel, Belgium

Carla Ferreira & a
NOVA School of Science and Technology, Caparica, Portugal

Elisa Gonzalez Boix &G &
Vrije Universiteit Brussel, Belgium

—— Abstract

Distributed systems adopt weak consistency to ensure high availability and low latency, but state
convergence is hard to guarantee due to conflicts. Experts carefully design replicated data types
(RDTs) that resemble sequential data types and embed conflict resolution mechanisms that ensure
convergence. Designing RDTs is challenging as their correctness depends on subtleties such as the
ordering of concurrent operations. Currently, researchers manually verify RDTs, either by paper
proofs or using proof assistants. Unfortunately, paper proofs are subject to reasoning flaws and
mechanized proofs verify a formalization instead of a real-world implementation. Furthermore,
writing mechanized proofs is reserved for verification experts and is extremely time-consuming. To
simplify the design, implementation, and verification of RDTs, we propose VeriFx, a specialized
programming language for RDTs with automated proof capabilities. VeriFx lets programmers
implement RDTs atop functional collections and express correctness properties that are verified
automatically. Verified RDTs can be transpiled to mainstream languages (currently Scala and
JavaScript). VeriFx provides libraries for implementing and verifying Conflict-free Replicated Data
Types (CRDTs) and Operational Transformation (OT) functions. These libraries implement the
general execution model of those approaches and define their correctness properties. We use the
libraries to implement and verify an extensive portfolio of 51 CRDTs, 16 of which are used in
industrial databases, and reproduce a study on the correctness of OT functions.

2012 ACM Subject Classification Software and its engineering — Domain specific languages;
Computing methodologies — Distributed programming languages; Theory of computation —
Distributed algorithms

Keywords and phrases distributed systems, eventual consistency, replicated data types, verification
Digital Object Identifier 10.4230/LIPIcs. ECOOP.2023.9
Related Version Previous Version: https://arxiv.org/abs/2207.02502

Supplementary Material Software (ECOOP 2023 Artifact Fvaluation approved artifact):
https://doi.org/10.4230/DARTS.9.2.19

Funding Kevin De Porre: Funded by the Research Foundation - Flanders. Project number 1598519N.
Carla Ferreira: Partly funded by EU Horizon Europe under Grant Agreement no. 101093006
(TaRDIS), and FCT-Portugal under grants UIDB/04516/2020 and PTDC/CCI-INF /32081 /2017.

Acknowledgements The authors would like to thank Nuno Preguica, Carlos Baquero, and Imine
Abdessamad for their early feedback on this work.

1 Introduction

Replication is essential to modern distributed systems as it enables fast access times and
improves the system’s overall scalability, availability, and fault tolerance. When data is
replicated across machines, replicas must be kept consistent to some extent. When facing
network partitions, replicas cannot remain consistent while also accepting reads and writes,
a consequence of the CAP theorem [17,18,39]. Programmers thus face a trade-off between

© Kevin De Porre, Carla Ferreira, and Elisa Gonzalez Boix;

licensed under Creative Commons License CC-BY 4.0
37th European Conference on Object-Oriented Programming (ECOOP 2023).
Editors: Karim Ali and Guido Salvaneschi; Article No.9; pp. 9:1-9:45

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany



mailto:kevin.de.porre@vub.be
https://soft.vub.ac.be/~kdeporre
https://orcid.org/0000-0001-5469-1001
mailto:carla.ferreira@fct.unl.pt
http://ctp.di.fct.unl.pt/~cf/
https://orcid.org/0000-0003-3680-7634
mailto:egonzale@vub.be
https://soft.vub.ac.be/disco/elisa/
https://orcid.org/0000-0002-9966-6421
https://doi.org/10.4230/LIPIcs.ECOOP.2023.9
https://arxiv.org/abs/2207.02502
https://doi.org/10.4230/DARTS.9.2.19
https://doi.org/10.4230/DARTS.9.2.19
https://doi.org/10.4230/DARTS.9.2.19
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

9:2

VeriFx: Correct Replicated Data Types for the Masses

consistency and availability. Keeping replicas strongly consistent induces high latencies, poor
scalability, and reduced availability since updates must be coordinated, e.g. using a consensus
algorithm. By relaxing the consistency guarantees, latencies can be reduced and the overall
availability improved, but users may observe temporary inconsistencies between replicas.

Distributed systems increasingly adopt weak consistency models. However, concurrent
operations may lead to conflicts which must be solved in order to guarantee state convergence.
Consider the case of collaborative text editors. When a user edits a document, the operation
is immediately applied on the local replica and propagated asynchronously to other replicas.
Since concurrent edits are applied in different orders at different replicas, states can diverge.

To ensure convergence, Ellis and Gibbs [25] proposed a technique called Operational
Transformation (OT) that modifies incoming operations against previously executed concur-
rent operations such that the modified operation preserves the intended effect. Much work
focused on designing OT functions for collaborative text editing [25,34,64,69,72], but most
tombstone-free transformation functions (some with mechanized proofs) are wrong [34,49,62].

Since conflict resolution is hard [2,41, 68], researchers now focus on designing replicated
data types (RDTs) that serve as building blocks for the development of highly available
distributed systems. Such RDTs resemble sequential data types (e.g. counters, sets) but
include conflict resolution strategies that guarantee convergence.

Conflict-free Replicated Data Types (CRDTs) [68] are a widely adopted family of RDTs
that leverage mathematical properties (such as commutative operations) to avoid conflicts
by design. However, designing new RDTs is difficult [42] and even seasoned researchers miss
subtle corner cases for basic data structures such as maps [40]. Currently, researchers and
practitioners propose new or improved RDT designs [2,8,14,19, 38,41,66-68] and include a
formal specification or pseudo code of the RDT with a manual proof of convergence, mostly
paper proofs. Unfortunately, paper proofs are subject to reasoning flaws.

To avoid the pitfalls of paper proofs, Zeller et al. [79], Gomes et al. [27], and Nieto
et al. [59] propose formal frameworks to verify the correctness of CRDTs using proof
assistants. However, these frameworks use abstract specifications that are disconnected from
actual implementations (e.g. Akka’s CRDT implementations in Scala). Hence, a particular
implementation may be flawed, even if the specification was proven to be correct.

While interactive proofs are more convincing (as the proof logic is machine-checked),
they require significant programmer intervention which is time-consuming and reserved to
experts [45,60]. Recent works try to automate (part of) the verification process of CRDTs.
Nagar and Jagannathan [56] automatically verify CRDTs under different consistency models
but require a first-order logic specification of the CRDT’s operations that is cumbersome and
error-prone. Liu et al. [54] extend Liquid Haskell [75] to verify CRDTs but significant parts
need to be proven manually due to the way how Liquid Haskell encodes user-defined functions
in SMT. For example, their Map CRDT required more than 1000 lines of proof code. We
conclude that developing RDTs is reserved for experts in distribution and verification.

To simplify the development of RDTs, we propose VeriFx, a specialized functional object-
oriented programming language for designing, implementing, and automatically verifying
RDTs. The main challenge behind VeriFx’s design consists in striking a good balance between
expressiveness and automated verification. We designed VeriFx to support familiar, high-
level language constructs that are suited to implement RDTs, without breaking automated
verification. To implement RDTs, VeriFx provides extensive functional collections including
tuples, sets, maps, vectors, and lists. These collections are immutable which is said to be
desirable for the implementation of RDTs and their integration in distributed systems [30].
To werify RDT implementations, VeriFx features a novel proof construct that enables



K. De Porre, C. Ferreira, and E. Gonzalez Boix

programmers to express correctness properties. For each proof, VeriFx automatically derives
proof obligations and discharges them using SMT solvers. This is possible because VeriFx
efficiently encodes all functional collections and their operations using the Combinatory
Array Logic [23] for SMT solvers, which is decidable. This enables VeriFx to automatically
verify complex RDTs built atop these collections. VeriFx provides libraries that ease the
implementation and verification of CRDT and OT data types. Internally, these libraries use
the proof construct to define the necessary correctness properties. Verified RDTs can be
transpiled to one of the supported target languages (currently Scala and JavaScript).

VeriFx is reminiscent of existing object-oriented languages (like Scala) and demonstrates
that it is possible to automatically verify real-world RDT implementations without requiring
separate specifications. This avoids mismatches between the implementation and the specifi-
cation and simplifies software maintenance. We argue that the ability to implement RDTs
and automatically verify them in the same language allows programmers to catch mistakes
early during the development process.

To demonstrate the applicability of VeriFx, we implemented and automatically verified
51 CRDTs, including well-known CRDTs [2,8,14,40,66,67] and new variants. 50 of these
CRDTs were verified in a matter of seconds and one could not be verified due to its recursive
nature. The CRDTs we verified feature highly optimized designs and many are used in
industrial databases such as Riak [12], Cassandra [73], and AntidoteDB [1]. We also applied
VeriFx to OT and verified all transformation functions described by Imine et al. [34] and
some unpublished designs [33].

In summary, we make the following contributions:

VeriFx, the first high-level programming language that enables programmers to implement

RDTs by composing functional collections, express correctness properties about those

RDTs within the same language, and automatically verify those properties. The novelty

consists of carefully crafting the language such that every language construct is efficiently

encoded without breaking automated verification.

We devise VeriFx libraries that simplify the implementation of CRDT and OT data types

and automatically verify the necessary correctness properties.

We give the first fully automated and mechanized proofs for 51 CRDTs, including the

state-based and operation-based CRDTs proposed by Shapiro et al. [67], delta state-based

CRDTs proposed by Almeida et al. [2], pure op-based CRDTs proposed by Baquero et

al. [8], and many more. To the best of our knowledge, this is the most extensive treatment

of verified RDTs to date. Prior efforts [27,54,59,79] verified only a few CRDTs due to

the labour-intensive nature of the verification process.

We reproduce the study of Imine et al. [34] regarding the verification of OT functions.

2 Motivation

To motivate the need for a language with automated proof capabilities, consider a distributed
system in Scala with replicated data on top of Akka’s highly-available distributed key-value
store [52]. The store provides built-in CRDTs, e.g. sets, counters, etc. However, our system
requires a Two-Phase Set (2PSet) CRDT [67] that is not provided by Akka. We thus need
to implement it and verify our implementation.

For the implementation, we can take the specification from Shapiro et al. [67]. For
the verification, we typically need a complete formalization of the implementation and its
correctness properties which can then be proven manually using proof assistants. The resulting
interactive proofs are complex and require considerable expertise. For example, Nieto et
al. [59]’s implementation of a 2PSet in OCaml is only 25 LoC but its specification in Coq is
80 LoC and requires an additional 73 LoC to verify.

9:3

ECOOP 2023



9:4

VeriFx: Correct Replicated Data Types for the Masses

Alternatively, programmers could resort to Liu et al. [54]’s extension of Liquid Haskell that
automates part of the verification process. However, non-trivial RDTs still require significant
manual proof efforts: 200+ LoC for a replicated set and 1000+ LoC for a map [54]. Thus,
we cannot reasonably assume that programmers have the time nor the skills to manually
verify their implementation [45, 60].

Design RDT

‘ Implement RDT in VeriFx ‘

Automated verification ‘

Modify RDT
implementation

Interpret
counterexample

Deploy in
system

Figure 1 Envisioned workflow.

We argue that verification needs to be fully automatic to be accessible to non-experts.
Figure 1 shows the workflow for developing RDTs using VeriFx, our novel language with
a syntax reminiscent of Scala. Programmers start from a new or existing RDT design and
implement it in VeriFx which verifies the implementation automatically without requiring a
separate formalization. If the implementation is not correct, VeriFx returns a counterexample
in which the replicas diverge. After interpreting the counterexample, the programmer needs
to fix the RDT implementation and verify it again. This iterative process repeats until the
implementation is correct. Verified RDT implementations can be transpiled to a mainstream
language (e.g. Scala) and deployed in an actual system.

Our envisioned workflow verifies RDT implementations before deployment. Moreover,
our workflow benefits from a feedback loop allowing programmers to correct implementations
based on concrete counterexamples. In contrast, traditional verification techniques such as
interactive theorem provers do not provide such feedback; when programmers fail to verify a
property, they do not know if the implementation is flawed or if the chosen proof strategy is
not suited. Similarly, Liquid Haskell [75] may fail to verify a property and raise a type error
without providing additional information as to why the refinement type is not met. Next, we
illustrate each step of our workflow by means of an existing 2PSet design in which VeriFx
uncovered a bug. The corrected version was then transpiled to Scala, and deployed on Akka.

2.1 Design and Implementation

Specification 1 shows the design of the 2PSet CRDT taken from Shapiro et al. [67]
unaltered. The 2PSet is a state-based CRDT whose state (the A and R sets) thus forms a
join semilattice, i.e. a partial order <, with a least upper bound (LUB) U, for all states.
Elements are added to the 2PSet by adding them to the A set and removed by adding them
to the R set. An element is in the 2PSet if it is in A and not in R. Hence, removed elements
can never be added again. Replicas are merged by computing the LUB of their states, which
in this case is the union of their respective A and R sets.

The compare (S,T) operation checks if S <, T' and is used to define state equivalence [68]:
S=T < §S<, TAT <, S. Since state equivalence is defined in terms of <,, on the lattice,
replicas may be considered equivalent even though they are not identical. This is relevant



K. De Porre, C. Ferreira, and E. Gonzalez Boix

Specification 1 2PSet CRDT Listing 1 2PSet implementation in VeriFx.
taken from Shapil"o et al. [67] 1 class TwoPSet[V] (added: Set[V], removed: Set[V])
2 extends CvRDT[TwoPSet[V]] {

1: pay'lo‘ac.:i set A, set R 3 def lookup(element: V) =

2 initial &, & this.added.contains(element) &&

3: query lookup (element e) : boolean b Ithis.removed.contains(element)

4 letb=(e€ ANe ¢ R) 6 def add(element: V) =

5: update add (element e) 7 new TwoPSet (this.added.add(element), this.removed)
6 A:=AU{e} 8 def remove(element: V) =

7. update remove (element e) 9 new TwoPSet(this.added, this.removed.add(element))
8: pre lookup(e) ) def compare(that: TwoPSet[V]) =

9: R:= RU {e}

10: compare (S,T) : boolean b

11:  letb=(S.ACT.AVS.RCT.R)
12: merge (S,T) : payload U

13: let UA=S.AUT.A

14: let UR=S.RUT.R

1
11 this.added.subset0f (that.added) ||

12 this.removed.subsetOf (that.removed)

1 def merge(that: TwoPSet[V]) =

14 new TwoPSet(this.added.union(that.added),

15 this.removed.union(that.removed))
1

for CRDTs that keep additional information. For example, CRDTs often use a Lamport
clock [43] together with unique replica identifiers to generate globally unique IDs. Every
replica identifier is different and is not part of the lattice even though it is part of the state.

Listing 1 shows the implementation of the 2PSet CRDT in VeriFx, which is a straightfor-
ward translation of Specification 1. The TwoPSet class is polymorphic in the type of values
it stores. It defines the added and removed fields which correspond to the A and R sets
respectively. The add and remove methods return an updated copy of the state. The class
extends the CvRDT trait! provided by VeriFx’s CRDT library (explained in Section 5.1). This
trait requires the class to implement the compare and merge methods.

2.2 \Verification

We now verify our 2PSet implementation in VeriFx. State-based CRDTs guarantee con-
vergence if the merge function is idempotent, commutative, and associative [68]. VeriFx
provides several CvRDTProof traits which encode these correctness conditions (explained later
in Section 5.1). To verify the TwoPSet, we define a TwoPSetProof object that extends the
CvRDTProof1 trait (where 1 is the rank). The trait takes as argument the type constructor
of the CRDT we want to verify (i.e. TwoPSet):

object TwoPSetProof extends CvRDTProofl[TwoPSet]

The TwoPSetProof object inherits automated correctness proofs for the polymorphic TwoPSet
CRDT. When executing this object, VeriFx will automatically try to verify those proofs. In
this case, VeriFx proves that the TwoPSet guarantees convergence (independent of the type of
elements it holds), according to the notion of state equivalence that is derived from compare.
However, VeriFx warns the user that the proof for state equivalence fails, which means that
the derived notion of equivalence does not correspond to structural equality. As explained
before, this may be normal in some CRDT designs but it requires further investigation.
VeriFx provides the following counterexample for the equivalence proof:
enum V { v }

val s: TwoPSet[V] = TwoPSet({v}, {})
val t: TwoPSet[V] = TwoPSet({v}, {v})

1 VeriFx traits can declare abstract methods and fields, and provide default implementations for methods.

9:5

ECOOP 2023



9:6

VeriFx: Correct Replicated Data Types for the Masses

Listing 2 Transpiled 2PSet in Scala. Listing 3 Modified 2PSet implemen-

case class TwoPSet[V] (added: Set[V], removed: Set[V]) tation for integration with Akka’s distri-
extends CvRDT[TwoPSet[V]] { // CvRDT trait provided buted key-value store.
by our CRDT library is also compiled to Scala
def lookup(element: V) = this.added.contains(element) &% I @SerialVersionUID(1L)
Ithis.removed.contains(element) 2 case class TwoPSet [V](
def add(element: V): TwoPSet[V] = 3 added: Set[V], removed: Set[V])
TwoPSet [V] (this.added + element, this.removed) extends CvRDT[TwoPSet[V]] with
def remove(element: V): TwoPSet[V] = ReplicatedData with Serializable {
TwoPSet [V] (this.added, this.removed + element) 1 type T = TwoPSet[V]
def compare(that: TwoPSet[V]): Boolean = 5 // The remainder of the implementation
this.added.subsetOf (that.added) && is unchanged
this.removed.subsetOf (that.removed) 6}

def merge(that: TwoPSet[V]): TwoPSet[V] =
TwoPSet [V] (this.added.union(that.added),
this.removed.union(that.removed)) }

The counterexample defines an enumeration V containing a single value v. It then defines two
instances s and t of a TwoPSet [V] that are considered equivalent s =t (according to the
definition of compare) but are not structurally equivalent s # ¢t. These two instances should
indeed not be considered equivalent since v € s but v ¢ ¢ according to lookup. Looking
back at Spec. 1, we notice that the original specification of compare from Shapiro et al. [67]
defines replica s to be smaller or equal to replica t iff s.A C t.A or s.R C t.R. Since
s.A =t.A it follows that s <, t At <, s and thus they are considered equal (s = t) without
even considering the removed elements (i.e. the R sets). Based on this counterexample, we
modify compare to consider both the A sets and the R sets:

def compare(that: TwoPSet[V]) =
this.added.subsetOf (that.added) && this.removed.subsetOf (that.removed)

We verify the implementation again and VeriFx proves that this modified implementation
still guarantees convergence and that the definition of equality that is derived from compare
now corresponds to structural equality, i.e. s =t < s=1.

This example showcases the importance of automated verification as it detected an error
in the specification that would have percolated to the implementation. We completed the
verification of the 2PSet CRDT in VeriFx without providing any verification-specific code.

2.3 Deployment

The final step in our workflow consists of automatically transpiling the CRDT implementation
from VeriFx to Scala and integrating the CRDT in our distributed application which uses
Akka’s distributed key-value store. Listing 2 shows the transpiled implementation of the
2PSet in Scala. To store the RDT in Akka’s distributed key-value store, we need to perform
two manual modifications which are shown in Listing 3. First, the RDT must extend Akka’s
ReplicatedData trait (Line 3) which requires at least the definition of a type member T
corresponding to the actual type of the CRDT (Line 4) and a merge method for CRDTs of
that type (which we already have). Second, the RDT must be serializable. For simplicity, we
use Java’s built-in serializer?. Hence, it suffices to extend the Serializable trait (Line 3) and
to annotate the class with a serial version (Line 1). After applying these modifications, our
verified TwoPSet can be stored in Akka’s distributed key-value store and will automatically
be replicated across the cluster and be kept eventually consistent.

2 Tn production it is safer and more efficient to implement a custom serializer [53], e.g. with Protobuf [28].



K. De Porre, C. Ferreira, and E. Gonzalez Boix

VeriFx

© imperative construct ( Verifier
O logical construct . Proof
VeriFx AST Obligations

derive o/%) query

2 3
construct [Counter-|
N T e ample|
SMT-7) parse
Parser LIB

Scalamet VeriFx AST code
calameta y —a
VeriFx parse transform, e £ ' Scala
source T m transpile ’
code .
Compiler L= |
O/o\% N
[SMT plugin ] [ JS plugin ]

Scala plugin ] L]

Figure 2 VeriFx’s plugin architecture.

3 The VeriFx Language

The goal of this work is to build a familiar high-level programming language that is suited to
implement RDTs and automatically verify them. The main challenge is to efficiently encode
every feature of the language without breaking automatic verification. The result of this
exercise is VeriFx, a functional object-oriented programming language with Scala-like syntax
and a type system that resembles Featherweight Generic Java [32]. VeriFx features a novel
proof construct to express correctness properties about programs. For every proof construct a

proof obligation is derived that is discharged automatically by an SMT solver (cf. Section 4).

VeriFx advocates for the object-oriented programming paradigm as it is widespread across

programmers and fits the conceptual representation of replicated data as “shared” objects.

The functional aspect of VeriFx, in particular its immutable collections, makes it suitable for
implementing and integrating RDTs in distributed systems, as argued by Helland [30].

The remainder of this section is organized in three parts. First, we give an overview
of VeriFx’s architecture. Second, we define its syntax. Third, we describe its functional
collections. VeriFx’s type system is described in Appendix A.

3.1 Overall Architecture

Figure 2 provides an overview of VeriFx’s architecture. VeriFx programs consist of imperative
code and proof code (i.e. logic statements). VeriFx uses Scala Meta [65] to parse VeriFx
source code into an AST representing the program. This is possible because every piece of
VeriFx code is valid Scala syntax (but not necessarily semantically correct).

The AST representing a VeriFx program can be verified or transpiled to other languages.

Transpilation is done by the compiler which features compiler plugins. These plugins dictate
the compilation of the AST to the target language. Currently, VeriFx comes with compiler
plugins for Scala, JavaScript, and SMT-LIB [74], a standardized language for SMT solvers.
Support for other languages can be added by implementing a compiler plugin for them.

To verify the proofs that are defined by a VeriFx program, the verifier derives the
necessary proof obligations from the AST. VeriFx then compiles the program to SMT-LIB
and automatically discharges the proof obligations using the Z3 SMT solver [22]. For every
proof, the outcome is: accepted, rejected, or unknown. Accepted means that the property
holds, rejected means that a counterexample was found for which the property does not
hold, and unknown means that the property could not be verified within a certain time

9:7

ECOOP 2023



9:8 VeriFx: Correct Replicated Data Types for the Masses

L :=class C(X)(w: T){M} M :=deft m(X)(Z:T): T=c¢
| class C(X)(v: T)extends I(P){M} T u=int | string | bool | C(T)
J i=object O{A} | I{(T) | E{T)|T—>T
| object Oextends I (T){A} e u=num | str | true | false | z | le
F  o=trait (X <: T){B} | e®e|exe|ev]|em(T)(e)
| trait I(X <: T) extends [ (P){ B} | valz:T=cine| (Z:T)=c¢| e(e)
N =enum E(X){K(v:T)} | if e then e else e
A ==M|R | new C(T)(%) | new K(T)(e)
B :=walD | methodD | M | R | ematch {Cage 7 ="¢
R :=proof p(X){e} | forall(z: T).e | exists(i: T).e
valD n=valz: T | e = e
methodD  :=deftm (X)(Z:T): T rou=K@) | z] _

Figure 3 VeriFx syntax. The metavariable C ranges over class names; O ranges over object
names; | ranges over trait names; F ranges over enumeration names; K ranges over constructor
names of enumerations; T, P and @ range over types; X and Y range over type variables; v ranges
over field names; z and y range over parameter and variable names; m ranges over method names; p
ranges over proof names; and e ranges over expressions. An overline, e.g. X, denotes zero or more.
A dashed overline, e.g. X, denotes one or more.

frame (which is configurable). When a proof is rejected by Z3, VeriFx constructs a high-level
counterexample that consists of concrete assignments of values to variables that violate the
given property. Note that VeriFx can automatically verify application-specific properties
because it derives the proof obligations from the program itself.

3.2 Syntax

Figure 3 defines the syntax of VeriFx. VeriFx programs consist of one or more statements
which can be the definition of an object O, a class C(X), a trait I{X), or an enumeration
E(X). Objects, classes, enumerations, and traits can be polymorphic and inherit from a single
trait (except enumerations). Objects define zero or more methods and proofs. Classes contain
zero or more fields and (polymorphic) methods. Traits can declare values and methods
that need to be provided by concrete classes extending the trait, and define (polymorphic)
methods and proofs. Traits can express upper bounds on their type parameters to restrict
possible extensions. Enumerations define one or more constructors, each containing zero or
more fields. Programmers can deconstruct enumerations by pattern matching on them.

Unique to VeriFx is its proof construct which is defined by a name and a (well-typed)
boolean expression that expresses the property that must be verified. A proof is accepted if
its body always evaluates to true, otherwise it is rejected; when rejected, VeriFx provides a
concrete counterexample for which the property does not hold. Proofs can be polymorphic,
allowing properties to be proved for all possible type instantiations. Polymorphic proofs are
useful to prove that a polymorphic RDT converges independent of its type of values.

VeriFx supports a variety of expressions, including literal values, arithmetic & and
boolean operations ®, negation, field accesses, and method calls, variable definitions, if tests,
anonymous functions and function calls, class and enum instantiations, pattern matching,
quantified formulas, and logical implication. Functions are first-class and take at least one
argument. Nullary functions can be expressed as constants.

Single inheritance is supported from traits to foster code re-use but some restrictions are
imposed. E.g, the arguments of a class method need to be concrete (cannot be of a trait
type) because proofs about these methods require reasoning about all subtypes but these
may not necessarily be known at compile time. In contrast, enumerations are supported
because their constructors are fixed and known at compile time.



K. De Porre, C. Ferreira, and E. Gonzalez Boix

Tuple<A, B>

+ fst : A
+ snd : B

+ Tuple(fst: A, snd: B) : Tuple<A, B>

Map<K, V>

Set<V>

+ Set() : Set<V>

+ add(e: V) : Set<V>

+ remove(e: V) : Set<V>

+ contains(e: V) : bool

+ isEmpty() : bool

+ nonEmpty() : bool

+ union(s: Set<V>) : Set<V>

+ diff(s: Set<V>) : Set<V>

+ intersect(s: Set<V>) : Set<V>
+ subsetOf(that: Set[V]) : bool

+ map<W>(f: V=> W) : Set<W>

+ Map() : Map<K, V>

+ add(k: K, v: V) : Map<K, V>

+ remove(k: K) : Map<K, V>

+ contains(k: K) : bool

+ get(k: K) : V

+ getOrElse(k: K, default: V) : V

+ keys() : Set<K>

+ values() : Set<V>

+ bijective() : bool

+ map<W>(f: (K, V) => W) : Map<K, W>

+ mapValues<W>(f: V. => W) : Map<K, W>

+ filter(p: (K, V) => bool) : Map<K, V>

+ zip<W>(m: Map<K, W>) : Map<K, Tuple<V, W>>
+ combine(m: Map<K, V>, f: (V, V) => V) : Map<K, V>

+ filter(p: V => bool) : Set<V>
+ forall(p: V => bool) : bool
+ exists(p: V => bool) : bool

+ forall(p: (K, V) => bool) : bool
+ exists(p: (K, V) => bool) : bool
+ toSet() : Set<Tuple<K, V>>

Vector<V> List<V>

+ List() : List<V>

+ get(idx: Int) : V

+ insert(idx: Int, value: V) : List<V>

+ delete(idx: Int) : List<V>

+ map<W>(f: V. => W) : List<W>

+ zip<W>(l: List<W>): List<Tuple<V,W>>
+ forall(p: V => bool) : bool

+ exists(p: V => bool) : bool

+ Vector() : Vector<V>

+ get(idx: Int) : V

+ write(idx: Int, value: V) : Vector<V>

+ append(value: V) : Vector<V>

+ map<W>(f: V=> W) : Vector< W>

+ zip<W>(v: Vector< W>): Vector<Tuple<V,W>>
+ forall(p: V => bool) : bool

+ exists(p: V => bool) : bool

Figure 4 An overview of VeriFx’s built-in functional collections.

3.3 Functional Collections

VeriFx features built-in collections for tuples, sets, maps, vectors, and lists. Every operation
of these collections are verifiable and can be arbitrarily composed to build custom RDTs. All
collections are immutable, “mutators” thus return an updated copy of the object. Figure 4
provides an overview of the interface exposed by these collections, which is heavily inspired
by functional programming.

Sets. Support the typical set operations and can be mapped over or filtered using user-
provided functions. The forall and exists methods check if a given predicate holds for
all (respectively for at least one) element of the set.

Maps. Associate keys to values. Support adding key-value pairs, removing keys, and fetching
the value associated with a key. The keys (resp. values) method returns a set containing
all keys (resp. values) in the map. The bijective method checks if there is a one-to-one
correspondence between keys and values. Maps support well-known functional operations;
zip returns a map of tuples containing only the keys that are present in both maps and
stores their values in a tuple; combine returns a map containing all entries from both
maps, using a user-provided function f to combine values that are present in both maps.

Vectors. Represent a sequence of elements that are indexed from 0 to size-1. Elements
can be written to a certain index which will overwrite the existing value at that index.
One can append a value to the vector which will write that value at index size, thereby,
making the vector grow. Like sets and maps, programmers can map functions over vectors,
zip vectors, and check predicates for all or for one element of a vector.

Lists. Represent a sequence of elements in a linked list. Unlike vectors, insert does not
overwrite the existing value at that index. Instead, the existing value at that index and
all subsequent values are moved one position to the right. Elements can also be deleted
from a list, making the list shrink.

9:9

ECOOP 2023



9:10

VeriFx: Correct Replicated Data Types for the Masses

T :=int | string | bool G u=adt A(X){K(w: T)} C :=constzT R :=asserte
| Array(T,T) | A(T) | S(T) e ==ce[€]| e[fé]:==e | AN#F:T).e D z=sortSi  H ::=check()
F u=funf(X)(z:T): T=e | V@:T)e|3@:T)e] ...

Figure 5 Core SMT syntax. The metavariable S ranges over user-declared sorts; A ranges over
names of algebraic data types (ADTs); K ranges over ADT constructor names; X ranges over type
variables; v ranges over field names; f ranges over function names; 7 ranges over types; = ranges
over variable names; e ranges over expressions; and ¢ ranges over integers.

4  Automated Verification

VeriFx leverages SMT solvers to enable automated verification. Such solvers try to (auto-
matically) determine whether or not a given formula is satisfiable. Modern SMT solvers
support various specialized theories (for bit vectors, arrays, etc.) and are very powerful if
care is taken to encode programs efficiently using these theories. However, SMT-LIB [74], the
language of SMT solvers, is low-level and is not meant to be used directly by programmers
to verify high-level programs. Instead, semi-automatic program verification usually involves
implementing the program in an Intermediate Verification Language (IVL) which internally
compiles to SMT-LIB to discharge the proof obligations using an appropriate SMT solver.
IVLs like Dafny [44], Spec# [11], and Why3 [26] are designed to be general-purpose but
this breaks automated verification since programmers need to specify preconditions and
postconditions on methods, loop invariants, etc.

VeriFx can be seen as a specialized high-level IVL that was carefully designed such that
every feature has an efficient SMT encoding; leaving out features that break automated
verification. For example, VeriFx does not support traditional loop statements but instead
provides higher-order operations (map, filter, etc.) on top of its functional collections. The
resulting language is surprisingly expressive given its automated verification capabilities.

The remainder of this section shows how VeriFx compiles programs to SMT and derives
proof obligations that can be discharged automatically by SMT solvers. Afterward, we
explain how VeriFx leverages a specialized theory of arrays to efficiently encode its functional
collections. These encodings are key to our approach because they enable fully automated
verification of RDTs built atop VeriFx’s functional collections. VeriFx’s encodings significantly
differ from related work such as Why3 [26] and Liquid Haskell [75] which encode higher-order
operations like map, and filter. recursively which hampers automated verification.

Appendix C.4 exemplifies VeriFx’s compilation rules using a concrete example.

4.1 Core SMT

The semantics of VeriFx are defined using translation functions from VeriFx to Core SMT,
a reduced version of SMT that suffices to verify VeriFx programs. Figure 5 defines the
syntax of Core SMT. Valid types include integers, strings, booleans, arrays, ADTs A(T),
and user-declared sorts S(T). Arrays are total and map values of the key types to a value of
the element type. Arrays can be multidimensional and map several keys to a value.

Core SMT programs consist of one or more statements which can be the declaration
of a constant or sort3, assertions, the definition of a function or ADT, or a call to check.
Constant declarations take a name and a type. Sort declarations take a name and a non-
negative number ¢ representing their arity, i.e. how many type parameters the sort takes.

3 The literature on SMT solvers uses the term “sort” to refer to types and type constructors.



K. De Porre, C. Ferreira, and E. Gonzalez Boix

Declared constants and sorts are uninterpreted and the SMT solver is free to assign any valid
interpretation. Assertions are boolean formulas that constrain the possible interpretations of
the program, e.g. assertage >= 18.

Function definitions consist of a name f, optional type parameters X, formal parameters
Z: T, a return type 7T, and a body containing an expression e. Valid expressions include
array accesses e[ € |, array updates e[ €]:= e, anonymous functions, quantified formulas (the
full list of expressions is shown in Appendix B). Updating an array returns a modified copy
of the array. Note that arrays are total and that anonymous functions define an array. For
example, A(x : int, y : int).z + y defines an Array(int, int, int) that maps two integers to their
sum. As arrays are first-class values in SMT, it follows that lambdas are also first-class.

ADT definitions consist of a name A, optional type parameters X, and one or more
constructors. A constructor has a name K and optionally defines fields with name v and type
T. Constructors are called like regular functions and return an instance of the data type.

The decision procedure (check) checks the satisfiability of the SMT program. If the
program’s assertions are satisfiable, check returns a concrete model, i.e. an interpretation of
the constants and sorts that satisfies the assertions. A property p can be proven by showing
that the negation —p is unsatisfiable, i.e. that no counterexample exists.

Note that our Core SMT language includes lambdas and polymorphic functions which
are not part of SMT-LIB v2.6. Nevertheless, they are described in the preliminary proposal
for SMT-LIB v3.0 [35] and Z3 already supports lambdas. For the time being, VeriFx
monomorphizes polymorphic functions when they are compiled to Core SMT. For example,
given a polymorphic identity function id<X> :: X => X, VeriFx creates a monomorphic
version id_int :: int -> int when encountering a call to id with an integer argument.

4.2 Compiling VeriFx to SMT

Similar to Dafny in [44], we describe the semantics of VeriFx by means of translation functions
that compile VeriFx to Core SMT. Types are translated by the []; function:

[bool]s = bool [int]: = int [string]:
(eI Ity [EDI E(t) [T — Pl

string

Array([T], [P]:)

Primitive types are translated to the corresponding primitive type in Core SMT. Class
types and enumeration types keep the same type name and their type arguments are translated
recursively m Functions are encoded as arrays from the argument types to the return type.
Trait types do not exist in the compiled SMT program because traits are compiled away by
VeriFx, i.e. only the types of the classes that implement the trait exist in the SMT program.

We now take a look at the translation function def[] which compiles VeriFx’s main
constructs: enumerations, classes, and objects. Enumerations are encoded as ADTs:

defenum E(X){K (7: T)}] = adt E(X){K(7:[T]:)}

For every enumeration an ADT is constructed with the same name, type parameters, and constructors.
The types of the fields are translated recursively.
Classes are encoded as ADTs with one constructor and class methods become functions:

def[class C(X) (v: T){ M }extends I{P)] =
adt CCOV{ K(@: [T]e)} ; method[C, X, M] ; method[C, X, M'[P/Y]]
where K = str_concat(C,”_ctor”) and I is defined as trait I (Y){M'; ...}

method[C, X,def m(Y)(Z: T): T, = ¢] = funf(X,Y)(this: C(X),z: [T]s) : [T-]: = [e]
where f = str_concat(C,”_", m)

9:11

ECOOP 2023



9:12

VeriFx: Correct Replicated Data Types for the Masses

The ADT keeps the name of the class and its type parameters, and defines one constructor
containing the class’ fields. Since the name of the constructor must differ from the ADT’s
name, the compiler defines a unique name K which is the name of the class followed by
“_ctor”. Class methods M are compiled to regular functions by function method[[]. Further, a
class inherits all concrete methods M’ defined by its super trait that are not overridden. This
entails substituting the trait’s type parameters Y by the concrete type arguments P defined by

the class. As such, traits are compiled away and do not exist in the transpiled SMT program.

For every method, a function is created with a unique name f that is the name of the
class followed by an underscore and the name of the method. In the argument list, the body,
and the return type of a method, programmers can refer to type parameters of the class
and type parameters of the method. Therefore, the compiled SMT function takes both the
class’ type parameters X and the method’s type parameters Y. Without loss of generality
we assume that a method’s type parameters do not override the class’ type parameters which
can be achieved through a-conversion. The method’s parameters become parameters of
the function. In addition, the function takes an additional parameter this referring to the
receiver of the method call which should be of the class’ type. The types of the parameters
and the return type are translated using function [J:. The body of the method must be a
well-typed expression. Expressions are translated by the [] function:

[z] = =z [new K(T)(e)] = K([T]:)([e])
[val z:T =e in e2] = letz=[er]infez] [e.v] - = [e].w L o
[(z:T) =€l = Az :[T]).[€] [exm(T) (@) = m/([Ple, [T]e)([ed], [el)
[e@)] = [alllal] where typeof (e:) = C(P)
[new C{T)(e)] = C{[T])e]) and m’ = str_concat(C,” ", m)

where C' = str_concat(C,”_ctor”) and PNT =10

Primitive values, variable references, and parameter references remain unchanged in Core
SMT. The definition of an immutable variable is translated to a let expression. Anonymous
functions remain anonymous functions in Core SMT, the type of the parameters and
the body are compiled recursively. Remember that anonymous functions in SMT define
(multidimensional) arrays from one or more arguments to the function’s return value. Hence,
function calls are translated to array accesses. To instantiate a class or ADT, the compiler
calls the data type’s constructor function. For classes, the constructor’s name is the name of
the class followed by “_ ctor”. To access a field, the compiler translates the expression and
accesses the field on the translated expression. To invoke a method m on an object e; the
compiler calls the corresponding function m’ which by convention is the name of the class
followed by an underscore and the name of the method. Recall that the function takes both
the class’ type arguments T and the method’s type arguments P as well as an additional
argument e; which is the receiver of the call. The complete set of compilation rules for
expressions is provided in Appendix C.1 as part of the additional material.

Objects are singletons that can define methods and proofs, and are compiled as follows:

def[object Oextends I{T){M ; R}] =
def[class O'() {M} extends I{T)] ; const O O’ ; assert O == O'() ; def[R]

The object is compiled to a regular class with a fresh name O’. Then, a single instance of
that class is created and assigned to a constant named after the object O. The proofs defined
by the object are compiled to functions. This translation is the subject of the next section.



K. De Porre, C. Ferreira, and E. Gonzalez Boix 9:13

4.3 Deriving Proof Obligations

We previously verified a 2PSet CRDT using VeriFx’s CRDT library which internally uses our
novel proof construct to define the necessary correctness properties (discussed in Section 5).

However, programmers can also define custom proofs, for instance to verify data invariants.

We now explain how proof obligations are derived from user-defined proofs in VeriFx
programs. Proofs are compiled to regular functions without arguments. While, the name
and type parameters remain unchanged, the body of the proof is compiled and becomes the
function’s body. Proofs always return a boolean since the body is a logical formula whose
satisfiability must be checked.

def[[proof p(X){e}] = funp(X)(): bool = [e]

To check if the property described by a proof holds, the negation of the proof must be
unsatisfiable — if no counterexample exists it constitutes a proof that the property is correct.
A (polymorphic) proof called p with zero or more type parameters 4 is checked as follows:

prove(p,i) = sortS$10; ... ; sortS;0 ; assert 7p(Si,...,S:)() ; check() == UNSAT

For every type parameter, an uninterpreted sort is declared. Then, the proof function is
called with those sorts as type arguments and we check that the negation is unsatisfiable. If
the negation is unsatisfiable, the (polymorphic) proof holds for all possible instantiations of
its type parameters. The underlying SMT solver can generate an actual proof which could
be reconstructed by proof assistants as shown by Béhme et al. [15], Bohme and Weber [16].

4.4 Encoding Functional Collections Efficiently in SMT

Some IVLs feature collections with rich APIs (e.g. Why3 [26]) but encode operations on
these collections recursively. Traditional SMT solvers fail to verify recursive definitions
automatically because they require inductive proofs, which is beyond the capabilities of
most solvers. However, many SMT solvers support specialized array theories. A key insight
of this paper consists of efficiently encoding the collections and their operations using the
Combinatory Array Logic (CAL) [23] which is decidable. As a result, VeriFx can automatically
verify RDTs that are built by arbitrary compositions of functional collections. Next, we
describe the encoding of sets using this array logic, while maps are described in Appendix C.3.

Set Encoding. Sets are encoded as arrays from the element type to a boolean type that
indicates whether the element is in the set:

[Set (T)]: = Array([T]:, bool)

An empty set corresponds to an array containing false for every element. We can create
such an array by defining a lambda that ignores its argument and always returns false:

[new Set (T)( )] = A(z : [T]:)-false
Operations on sets are compiled as follows:

[e1-add(e2)] = [ei]] [e2] | :=true [e1.remove(es)] = [ea][ [e2] | :=false
le1-filter(e2)] = Az : [T]e)-[ea]] z ] A [e2]] z ] [e1.contains(e2)] = [e1][ [ez2] ]
where typeof(e1) = Set(T') A typeof(e2) = T — bool

[er.map(e)] = Ay : [P1). 3 : [T10)-[ead[ 2] A Leal[ ] =
where typeof(e1) = Set(T) A typeof(e2) = T — P

An element e is added to a set e; by setting the entry for es in the array that results from
transforming e; to true. Similarly, an element is removed by changing its entry in the array
to false. An element is in the set if its entry is true. A set e; containing elements of type

ECOOP 2023



9:14

VeriFx: Correct Replicated Data Types for the Masses

T can be filtered such that only the elements that fulfil a given predicate e; : T — bool
are retained. Calls to filter are compiled to a lambda that defines a set (i.e. an array
from elements to booleans) containing only the elements z that are in the original set e;
(i.e. [er][ = ]) and fulfil predicate ez (i.e. [e2][  ]). Similarly, a function ex : T — P
can be mapped over a set e; of T's, yielding a set of Ps. Calls to map are compiled to
a lambda that defines a set containing elements y of type [P]; such that an element z
exists that is in the original set e; (i.e. [e1][ #]) and maps to y (i.e. [ex][ z] = y). The
remaining methods are described in Appendix C.2 as part of the additional material.

5 Implementing and Verifying Replicated Data Types

VeriFx aims to simplify the development of correct RDTs by integrating automated verification
capabilities in the language. Based on our experience implementing RDTs, we noticed that
RDTs need to fulfill specific correctness properties that are well-defined for each RDT family.
Therefore, VeriFx features built-in libraries for the development and automated verification of
two well-known RDT families: CRDTs [68] and OT [25]. These libraries are written in VeriFx
and define proofs that encode the necessary correctness properties such that programmers
do not need to redefine these proofs for every RDT they implement.

This section discusses the aforementioned libraries. For each library, we formally define
the correctness properties that must be verified for that specific RDT family. Section 5.1
describes the implementation of a general execution model for CRDTs and its verification
library in VeriFx. Next, Section 5.2 presents a library for implementing RDTs using OT
and verifying the transformation functions. VeriFx is not limited to these families of RDTs;
programmers can build custom libraries for implementing and verifying other abstractions or
families of RDTs. Last, Section 5.3 explains how to encode common assumptions such as
causal delivery in VeriFx since the CRDT and OT libraries do not make specific assumptions.

5.1 CRDT Library

CRDTs guarantee strong eventual consistency (SEC), a consistency model that strengthens
eventual consistency with the strong convergence property which requires replicas that received
the same updates, possibly in a different order, to be in the same state. VeriFx’s CRDT
library supports all CRDT families: state-based [68], delta state-based [2], op-based [68], and
pure op-based CRDTs [8]. The remainder explains how our library supports each family.

5.1.1 State-based CRDTs

State-based CRDTs (CvRDTs for short) periodically broadcast their state to all replicas and
merge incoming states by computing the least upper bound (LUB) of the incoming state and
their own state. Shapiro et al. [68] showed that CvRDTs converge if the merge function LI, is
idempotent, commutative, and associative. We define these properties based on their work:
Idempotent: Vz € ¥ : reachable(z) = z=zU,x
Commutative: Vz,y € X : reachable(x) A reachable(y) A compatible(z,y)

= (xU, y =yU,x) A reachable(x U, y)
Associative: Vz,y,z € X : reachable(x) A reachable(y) N reachable(z) A

compatible(x,y) A compatible(x,z) N compatible(y, z)

= (xUyy) Uy z =2, (yUy 2)) A reachable((x U, y) Ly 2)



1

w v

K. De Porre, C. Ferreira, and E. Gonzalez Boix

Listing 4 Trait for the implemen- Listing 5 Trait for the verification of CvRDTs in VeriFx.
tation of CvRDTs in VeriFx. The arrow function =>: implements logical implication.
trait CvRDT[T <: CvRDT[T]] { 1 trait CvRDTProof [T <: CvRDT[T]] {
def merge(that: T): T 2 proof mergeldempotent {
def compare(that: T): Boolean 3 forall (x: T) { x.reachable() =>: x.merge(x).equals(x) } }
def reachable(): Boolean = true 1 proof mergeCommutative {
def compatible(that: T): Boolean = 5 forall (x: T, y: T) {
true 6 (x.reachable() && y.reachable() && x.compatible(y)) =>:
def equals(that: T): Boolean = { 7 (x.merge(y) .equals(y.merge(x)) &&
this.asInstanceOf [T].compare (that) x.merge(y) .reachable())}}
&& 8 proof mergeAssociative {
that.compare(this.asInstance0f [T]) o forall (x: T, y: T, z: T) {
¥ 10 (x.reachable() && y.reachable() && z.reachable() &&
} 11 x.compatible(y) && x.compatible(z) && y.compatible(z))

12 =>: (x.merge(y) .merge(z).equals(x.merge(y.merge(z))) &&
13 x.merge(y) .merge(z) .reachable()) } }

14 proof equalityCheck {

15 forall (x: T, y: T) { x.equals(y) == (x ==y) } } }

Y] denotes the set of all states. A state is reachable if it can be reached starting from the initial
state and applying only supported operations. Two states are compatible if they represent
different replicas of the same CRDT object*. As explained in Section 2.1, Shapiro et al. [68]
define state equivalence in terms of <, on the lattice: S <, TAT <, S — S=T.

VeriFx’s CRDT library provides traits for the implementation and verification of CvRDTs,
shown in Listings 4 and 5 respectively. Listing 4 shows the CvRDT trait that was used in
Listing 1 to implement the TwoPSet CRDT. Every state-based CRDT that extends the CvRDT
trait must provide a type argument which is the actual type of the CRDT and provide an
implementation for the merge and compare methods. By default, all states are considered
reachable and compatible, and state equivalence is defined in terms of compare. These
methods can be overridden by the concrete CRDT that implements the trait.

Listing 5 shows the CvRDTProof trait used to verify CvRDT implementations. This trait
defines one type parameter T that must be a CvRDT type and defines proofs to check that
its merge function adheres to the aforementioned properties (i.e. is idempotent, commutative,
and associative). It also defines an additional proof, equalityCheck, that checks that the
notion of state equivalence that, by default, relies on structural equality (i.e., the default
implementation of the equals method computes structural equality). However, programmers
can override the equals method to use another notion of state equivalence if needed.

Objects can extend the CvRDTProof trait to inherit automated correctness proofs for
the given CRDT type. Note that the trait’s type parameter T expects a concrete CvRDT
type (e.g. PNCounter) and will not work for polymorphic CvRDTs (e.g. ORSet) because
those are type constructors. Instead, the CRDT library provides additional CvRDTProof1,
CvRDTProof2, and CvRDTProof3 traits to verify polymorphic CvRDTs that expect 1, 2, or 3
type arguments respectively. For example, the TwoPSet [V] from Section 2 is polymorphic in
the type of values it stores; the TwoPSetProof object thus extended the CvRDTProof1 trait
because the TwoPSet expects one type argument.

5.1.2 Delta state-based CRDTs

Delta state-based CRDTs are a family of state-based CRDTs that exchange only the changes
to the state (called deltas) instead of the full state in order to reduce the amount of data
that is sent. Mutator operations return a delta which is joined into the replica’s local state,
propagated to the other replicas, and eventually joined into the state of all replicas.

4 The compatible predicate can be used to encode certain assumptions. For example, replicas have
unique identifiers which enables them to generate unique tags.

9:15

ECOOP 2023



9:16

VeriFx: Correct Replicated Data Types for the Masses

VeriFx’s CRDT library provides a DeltaCRDT trait that specializes the CvRDT trait and
can be used to implement delta state-based CRDTs. When extending DeltaCRDT traits,
programmers must implement a merge method that joins delta states into the local state.

To verify delta state-based CRDTs, programmers can reuse the CvRDTProof trait since
delta state-based CRDTs are essentially state-based CRDTs. As shown in Listing 5, the
CvRDTProof trait verifies that the merge is idempotent, commutative, and associative for all
valid states. This valid states contain all valid delta states as they are a subset of the full state.

5.1.3 Op-based CRDTs

Op-based CRDTs (CmRDTs for short) execute update operations in two phases, called
prepare and effect. The prepare phase executes locally at the source replica (only if its
source precondition holds) and prepares a message to be broadcast® to all replicas (including
itself). The effect phase applies such incoming messages and updates the state (only if its
downstream precondition holds, otherwise the message is ignored).

Shapiro et al. [68] and Gomes et al. [27] have shown that CmRDTs guarantee SEC if all
concurrent operations commute. Hence, for any CmRDT it suffices to show that all pairs
of concurrent operations commute. Formally, for any operation oy that is enabled by some
reachable replica state s; (i.e. 01’s source precondition holds in s;) and any operation o9
that is enabled by some reachable replica state so, if these operations can be concurrent, and
s1, S2, and s3 are compatible replica states, then we must show that on any reachable replica
state s3 the operations commute and the intermediate and resulting states are reachable:

Vs1, 82,83 € X,Vo1,02 € ¥ — 3 : reachable(s1) N reachable(s2) A reachable(ss) A
enabledSrc(o1,51) A enabledSrc(oz, s2) A canConcur(o1,02) A
compatible(s1, s2) N compatible(s1,s3) N compatible(sz, s3)
—> 020183 = 010283 A reachable(o1 - s3) A reachable(oz - s3) A reachable(o1 - 02 - s3)

We use the notation o - s to denote the application of an operation o on state s if its
downstream precondition holds, otherwise, it returns the state unchanged.

Listing 6 shows the CmRDT trait that must be extended by op-based CRDTs with concrete
type arguments for the supported operations, exchanged messages, and the CRDT type
itself. A CRDT that extends the CmRDT trait must implement the prepare and effect
methods. The tryEffect method has a default implementation that applies the operation if
its downstream precondition holds, otherwise, it returns the state unchanged. By default, we
assume all states are reachable, all operations are enabled at the source and downstream, all
operations can occur concurrently, and all states are compatible. For most CmRDTs these
settings do not need to be altered but some CmRDTs have other assumptions which can
be encoded by overriding the appropriate method. For example, in an OR-Set [67] it is not
possible to delete tags added concurrently; this can be encoded by overriding canConcur.

Similar to state-based CRDTs, our CRDT library provides a CmRDTProof trait and several
versions to verify op-based CRDTs. These traits define a general proof of correctness that
checks that all operations commute based on the previously described formula.

5.1.4 Pure op-based CRDTs

Pure op-based CRDTs are a family of op-based CRDTs that exchange only the operations
instead of data-type specific messages. The effect phase stores incoming operations in a
partially ordered log of (concurrent) operations. Queries are computed against the log and

5 While some CmRDT do not require causal delivery, the overall model assumes reliable causal broadcast.



K. De Porre, C. Ferreira, and E. Gonzalez Boix

Listing 6 Polymorphic CmRDT trait to implement op-based CRDTs in VeriFx.

trait CmRDT[Op, Msg, T <: CmRDT[Op, Msg, T1] {
def prepare(op: Op): Msg
def effect(msg: Msg): T
def tryEffect(msg: Msg): T = if (this.enabledDown(msg)) this.effect(msg) else this.asInstanceOf[T]
def reachable(): Boolean = true // by default all states are considered reachable
def canConcur(x: Msg, y: Msg): Boolean = true // all ops can occur concurrently
def compatible(that: T): Boolean = true // all states are compatible
def enabledSrc(op: Op): Boolean = true // no source preconditions by default
def enabledDown(msg: Msg): Boolean = true // no downstream preconditions by default
def equals(that: T): Boolean = this == that

operations do not need to commute. Data-type specific redundancy relations dictate which
operations to store in the log and when to remove operations from the log. VeriFx’s CRDT
library provides a PureOpBasedCRDT trait which is a specialization of the CmRDT trait for
implementing pure op-based CRDTs. The implementing CRDT inherits the prepare and effect
phase (the same for all pure op-based CRDTs) and only needs to implement the redundancy
relations. Since pure op-based CRDTs are essentially operation-based CRDTs, programmers
can reuse the CuRDTProof traits to verify pure op-based CRDT implementations.

5.2 OT Library

The Operational Transformation (OT) [25] approach applies operations locally and propagates
them asynchronously to the other replicas. Incoming operations are transformed against
previously executed concurrent operations such that the modified operation preserves the
intended effect. Operations are functions from state to state: Op : ¥ — ¥ and are transformed
using a transformation function 7' : Op x Op — Op. Thus, T'(01,02) denotes the operation
that results from transforming o, against a previously executed concurrent operation os.
Suleiman et al. [70] and Sun et al. [72] proved that replicas eventually converge if the
transformation function satisfies two properties: TP; and TP». Property TP; states that
any two enabled concurrent operations o; and o; must commute after transforming them:

Yoi,0; € Op,Vs € ¥ : enabled(o;, s) A enabled(o;,s) A canConcur(oi, 0;)
= T(05,0:)(0i(s)) = T(0:,05)(05(s))

Property TP, states that given three enabled concurrent operations o;, 05, and oy, the trans-
formation of o5, does not depend on the order of the transformation of operations o; and o;:

Yo;, 04,01 € Op,Vs € X : enabled(0;,s) N enabled(oj,s) N enabled(ok,s) A canConcur(o;,05) A
canConcur(oj,0r) A canConcur(o;,0r) = T(T(ok,0i),T(05,0:)) = T(T(ok,05), T(04,05))

Note that properties TP; and TPy only need to hold for states in which the operations
can be generated, represented by the relation enabled : Op x ¥ — B, and only if the two
operations can occur concurrently, represented by the relation canConcur : Op x Op — B.

VeriFx provides a library for implementing and verifying RDTs that use operational
transformations. Programmers can build custom RDTs by extending the 0T trait shown in
Listing 7. Every RDT that extends the 0T trait must provide concrete type arguments for the
state and operations, and implement the transform and apply methods. The transform
method transforms an incoming operation against a previously executed concurrent operation.
The apply method applies an operation on the state. By extending this trait, the RDT
inherits proofs for TP; and T'P,. By default, these proofs assume that operations are always
enabled and that all operations can occur concurrently. If this is not the case, the RDT can
override the enabled and canConcur methods respectively.

9:17

ECOOP 2023



9:18 VeriFx: Correct Replicated Data Types for the Masses

Listing 7 Polymorphic OT trait to implement and verify RDTs using operational transformation.

I trait OT[State, Op] {

def transform(x: Op, y: Op): Op

def apply(state: State, op: Op): State

A def enabled(op: Op, state: State): Boolean = true
5 def canConcur(x: Op, y: Op): Boolean = true

6 proof TP1 {

7 forall (opI: Op, opJ: Op, st: State) {
8 (this.enabled(opI, st) && this.enabled(opJ, st) && this.canConcur(opI, opJ)) =>: {

9 this.apply(this.apply(st, opI), this.transform(opJ, opI)) ==

10 this.apply(this.apply(st, opJ), this.transform(opI, opJ)) } } }

11 proof TP2 {

12 forall (opI: Op, opJ: Op, opK: Op, st: State) {

13 (this.enabled(opI, st) && this.enabled(opJ, st) && this.enabled(opK, st) &&

14 this.canConcur (opI, opJ) && this.canConcur(opJ, opK) && this.canConcur(opI, opK)) =>: {
15 this.transform(this.transform(opK, opI), this.transform(opJ, opI)) ==

16 this.transform(this.transform(opK, opJ), this.transform(opI, opJ)) } } } }

Although VeriFx supports the general execution model of OT, most transformation func-
tions described by the literature were specifically designed for collaborative text editing. They
model text documents as a sequence of characters and operations insert or delete characters at
a given position in the document. Every paper thus describes four transformations functions,
one for every pair of operations: insert-insert, insert-delete, delete-insert, delete-delete.

Likewise, VeriFx’s OT library provides a ListOT trait that models the state as a list
of values and supports insertions and deletions. RDTs extending the ListOT trait need
to implement four methods (Tii, Tid, Tdi, Tdd) corresponding to the transformation
functions for transforming insertions against insertions (Tii), insertions against deletions
(Tid), deletions against insertions (Tdi), and deletions against deletions (Tdd). The trait
provides a default implementation of transform that dispatches to the corresponding
transformation function based on the type of operations, and a default implementation of
apply that inserts or deletes a value from the underlying list.

5.3 Encoding RDT-Specific Assumptions

Some RDTs (most notably op-based CRDTs) assume causal delivery of operations but VeriFx
and its CRDT and OT libraries do not make any assumptions. In VeriFx, assumptions must
either be guaranteed by the RDT’s implementation or be explicitly encoded in the proofs.
We now show, using the OR-Set CRDT [67], how to encode RDT-specific assumptions.
The OR-Set CRDT assumes that 1) replicas can generate globally unique tags, and 2) add and
remove operations of the same element are delivered in causal order. These assumptions imply
that replicas cannot add a tag and concurrently remove the same tag. The first assumption
can be guaranteed by the RDT implementation if every replica has a unique ID that is
combined with a local counter that increases monotonically to generate unique tags. The
latter assumption about causal delivery can be explicitly encoded in the proof. One could also
model the underlying causal communication protocols in VeriFx to remove this assumption.
Listing 8 shows an excerpt from the implementation of the OR-Set CRDT. It overrides the
compatible predicate (Line 7) to encode the fact that replicas have unique IDs, and overrides
the canConcur predicate (Line 8 to 16) such that the proof does not consider add and remove
operations if the tag generated by add is contained in the set of tags that are removed
(because causal delivery precludes remove from having observed that tag). This example
shows how to encode specific assumptions but, in practice, many RDT implementations do
not require any assumptions. Only 7 out of the 51 verified CRDTs (cf. Section 6.1) required
assumptions, all of which are related to causal delivery and logical timestamps.



K. De Porre, C. Ferreira, and E. Gonzalez Boix

Listing 8 Excerpt from the implementation of the OR-Set CRDT [67].

class Tag[ID] (replica: ID, counter: Int)
enum SetOp[V, ID] { Add(e: V) | Remove(e: V) }
enum SetMsg[V, ID] { AddMsg(e: V, tag: Tag[ID]) | RemoveMsg(e: V, tags: Set[Tagl[ID]]) }
class ORSet[V, ID](id: ID, counter: Int, elements: Map[V, Set[Tag[ID]]])
extends CmRDT[SetOp[V, ID], SetMsg[V, ID], ORSet[V, ID]] {
/...
override def compatible(that: ORSet[V, ID]) = this.id != that.id
override def canConcur(x: SetMsg[V, ID], y: SetMsg[V, ID]) = x match {
case AddMsg(_, tag) => y match {
case AddMsg(_, _) => true
case RemoveMsg(_, tags) => !tags.contains(tag) // tag cannot be in tags because of causal delivery
}
case RemoveMsg(_, tags) => y match {
case AddMsg(_, tag) => !tags.contains(tag) // tag cannot be in tags because of causal delivery
case RemoveMsg(_, _) => true

}r}

6 Evaluation

We now evaluate the applicability of VeriFx to implement and verify RDTs. Our evaluation
is twofold. First, we implement and verify numerous CRDTs taken from literature as well as

some new variants®. Also, we verify well-known OT functions and some unpublished designs.

All experiments reported were conducted on AWS using an mb.xlarge VM with 4 virtual
CPUs and 16 GiB of RAM. All benchmarks are implemented using JMH [61], a benchmarking
library for the JVM. We configured JMH to execute 20 warmup iterations followed by 20
measurement iterations for every benchmark. To avoid run-to-run variance JMH repeats
every benchmark in 3 fresh JVM forks, yielding a total of 60 samples per benchmark.

We do not conduct a performance evaluation for the transpiled RDT implementations as
the transpilation merely changes the syntax to Scala or JavaScript but does not modify the
RDT’s design. Thus, the transpilation step does not affect the RDT’s performance.

6.1 Verifying Conflict-free Replicated Data Types

We implemented and verified an extensive portfolio comprising 51 CRDTs, coming from
literature [2,8,14,40,66,67], open source projects [9], and industrial databases [1,12,52]. To
the best of our knowledge, we are the first to mechanically verify all CRDTs from Shapiro
et al. [67], all delta state-based CRDTs from Almeida et al. [2], all pure op-based CRDTs
from Baquero et al. [8], and the map CRDT from Kleppmann [40].

Table 1 summarizes the verification results, including the average verification time and
code size of each CRDT. When applicable, we mention which CRDTs are used in industrial
databases. VeriFx was able to verify all implemented CRDTs except the Replicated Growable
Array (RGA) [67] due to the recursive nature of the insertion algorithm (cf. Section 7). We
found three issues: 1) the Two-Phase Set CRDT (described in Section 2) converges but is
not functionally correct, 2) the original Map CRDT proposed by Kleppmann [40] diverges
as VeriFx found the same counterexample as described in their technical report, and 3) the
Molli, Weiss, Skaf (MWS) Set is incomplete. We now describe the implementation and
verification of the Map CRDTs from [40], while Appendix E discusses the MWS Set.

6 All implementations and proofs are provided as supplementary material in this submission.

9:19

ECOOP 2023



9:20

VeriFx: Correct Replicated Data Types for the Masses

Table 1 Verification results for CRDTs implemented and verified in VeriFx. S = state-based, D
= delta state-based, O = op-based, P = pure op-based CRDT. ® = timeout, @ = adaptation of
an existing CRDT, (D = incomplete definition. The database column includes databases that are
known to use these CRDTs. Some delta state-based CRDTs use a dot kernel abstraction that is not
counted in the LoC, this is indicated in the LoC column with an asterisk.

CRDT Type LoC Correct Time Database Source
Counter (0] 17 4 3.2s AntidoteDB  Shapiro et al. [67
Grow-Only Counter S 27 v 4.3 s Shapiro et al. [67
Grow-Only Counter D 27 4 44s Akka Almeida et al. [2
Dynamic Grow-Only Counter S 27 v 44s Riak @ Shapiro et al. [67
Positive-Negative Counter S 12 4 5.9 s Shapiro et al. [67
Positive-Negative Counter D 17 4 6.8s Akka Almeida et al. [2
Dynamic Positive-Negative Counter S 17 v 9.3 s Riak @ Shapiro et al. [67
Lex Counter D 46 v 4.7s Cassandra Baquero et al. [9
Causal Counter D  28* v 6.7s Riak Baquero et al. [9
Enable-Wins Flag P 18 v 4.0s Baquero et al. [8
Enable-Wins Flag D 14% v 5.7s Riak Baquero et al. [9
Enable-Wins Flag O 44 v 3.6 s AntidoteDB AntidoteDB [4
Disable-Wins Flag P 20 v 39s Baquero et al. [8
Disable-Wins Flag D 14* v 5.8 s Riak Baquero et al. [9
Disable-Wins Flag O 50 v 3.8 s  AntidoteDB AntidoteDB [3
Multi-Value Register S 63 v 8.8s Shapiro et al. [67
Multi-Value Register D 12 v 7.1s Almeida et al. [2
Multi-Value Register P 18 v 4.1s Baquero et al. [8
Last-Writer-Wins Register S 16 v 5.3 s Riak Shapiro et al. [67
Last-Writer-Wins Register (0] 38 4 4.4s Shapiro et al. [67
Grow-Only Set (0] 17 v 3.9s AntidoteDB  Shapiro et al. [67
Grow-Only Set S 8 4 5.3s Riak Shapiro et al. [67
Grow-Only Set D 9 v 39s Baquero et al. [9
Two-Phase Set O 27 v 4.4 s Shapiro et al. [67
Two-Phase Set S 16 X 6.3 s Shapiro et al. [67
Two-Phase Set D 25 v 4.5s Baquero et al. [9
Unique Set (0] 39 v 44 s Shapiro et al. [67
Add-Wins Set P 28 v 435 Baquero et al. [8
Remove-Wins Set P 42 4 45s Baquero et al. [8
Last-Writer-Wins Set S 36 v 6.6 s Shapiro et al. [67
Remove-Wins Last-Writer-Wins Set D 28 4 4.8s Baquero et al. [9
Positive-Negative Set S 36 v 9.6 s Shapiro et al. [67
Observed-Removed Set O 75 v 6.2 s AntidoteDB  Shapiro et al. [67
Observed-Removed Set S 34 4 7.6 s Shapiro [66
Optimized OR Set S 78 4 30.2s Riak Bieniusa et al. [14
Add-Wins OR Set D 28 v 6.5s Almeida et al. [2
Optimized Add-Wins OR-Set D 16* v 7.3s Almeida et al. [2
Optimized Remove-Wins OR-Set D 27* v 8.5s Baquero et al. [9
Molli, Weiss, Skaf (MWS) Set (0] 45 v 4.7 s @ Shapiro et al. [67
Grow-Only Map S 32 v 9.1s new data type
Buggy Map (0] 87 X 65.2's Kleppmann [40
Corrected Map O 101 v 49.4 s Kleppmann [40
2P2P Graph (0] 58 v 7.8s Shapiro et al. [67
2P2P Graph S 41 v 10.7 s ® Shapiro et al. [67
Add-Only Directed Acyclic Graph O 42 4 4.7s Shapiro et al. [67
Add-Only Directed Acyclic Graph S 30 4 8.7s @ Shapiro et al. [67
Add-Remove Partial Order (0] 61 v 104 s Shapiro et al. [67
Add-Remove Partial Order S 49 4 13.2's @ Shapiro et al. [67
Replicated Growable Array O 156 ® Shapiro et al. [67
Continuous Sequence O 108 v 9.2 s ® Shapiro et al. [67
Continuous Sequence S 53 v 11.4s @ Shapiro et al. [67




K. De Porre, C. Ferreira, and E. Gonzalez Boix

6.1.1 Map CRDTs

Kleppmann [40] describes the implementation of a Map CRDT which he believed to be
“obviously correct” only to find out it contains a bug that causes divergence after spending
hours trying to verify it. He then tweeted the buggy pseudo code of the Map CRDT and
challenged his 29400 followers (mainly software engineers) to find the bug. Only one person
managed to manually identify the bug and one other person came close (at the time, both
were Ph.D. students specialized in RDTs). Kleppmann later tweeted a variation on the
algorithm: “Here is a variant of the algorithm that is correct (I believe)”.

We used VeriFx to implement and automatically verify both the buggy Map CRDT and
the corrected Map CRDT, which had not been formally verified. The full implementation
and verification of the buggy map CRDT is explained in Appendix D. We now present the
key takeaways from our experience implementing and verifying these map CRDTs.

Implementation. The implementation of the map CRDTs mainly consisted of translating
the mathematical specifications to VeriFx. We introduced slight changes to the design to
improve efficiency. For example, the specification keeps a set of triples where each triple
holds a key, a value, and a timestamp. Since every key appears at most in one triple, our
implementation uses a dictionary to efficiently map keys to their value and timestamp.

Verification. After implementing the buggy map CRDT, we proceeded to its automated
verification but VeriFx generated invalid counterexamples. For instance, one in which two
distinct replicas generated the same timestamp. This is not possible because the design
assumes that replicas have unique IDs and combines them with Lamport clocks [43] to
generate unique timestamps. However, VeriFx does not know this assumption nor does
it know the relation between a replica’s clock and the values it observed. In practice,
other CRDTs make similar implicit assumptions which is the reason they are complex
and difficult to get right. VeriFx helped us to explicitly encode all assumptions as it
kept returning invalid counterexamples which helped us find and formulate the missing
assumptions. Listing 11 in Appendix D.3 shows the encoding of these assumptions.

Counterexample. After explicitly defining all assumptions, VeriFx found a valid counterex-
ample for the buggy map CRDT that is equivalent to the one found manually by Nair [40].
It consists of a corner case in which the Put and Delete operations do not commute and
thus may cause replicas to diverge. We detail the counterexample in Appendix D.3.

Corrected Map CRDT. After finding the counterexample for the buggy map CRDT, we also
verified the corrected map CRDT from Kleppmann [40]. This did not require additional
efforts since we already distilled all assumptions for the buggy map CRDT. VeriFx
automatically proved that the corrected design indeed guarantees convergence, which to
the best of our knowledge, is the first mechanical proof of correctness for this CRDT.

As shown in Table 1, the verification times for the buggy and corrected map CRDTs are
slightly higher compared to the other CRDTs we verified, but are still very fast for a fully
automated verification approach. The higher times come from the fact that these CRDTs are
too complex to directly prove convergence of all operation pairs. Hence, we use a subproof
for every operation pair. The total verification time is the sum of the times of the subproofs.

6.1.2 Conclusion

Based on Table 1, we conclude that VeriFx is suited to verify CRDT implementations since all
were verified mechanically and fully automatically in a matter of seconds. To the best of our
knowledge, this is the most extensive portfolio of verified RDTs to date. It is representative
of real-world use cases as it includes several CRDTs used in industrial databases.

9:21

ECOOP 2023



9:22

VeriFx: Correct Replicated Data Types for the Masses

Table 2 Verification results of OT functions Listing 9 Excerpt from the implemen-
in VeriFx. tation of Imine et al. [34]’s functions.

1 enum Op { Ins(p: Int, ip: Int, c: Int) |

Transformation LoC Props Time _ Del(p: Int) | 1d0O) }
Function Lo} 2 object Imine extends ListOT[Int, Op] {
TP, TPy TP TPs 3 def Tii(x: Ims, y: Ins) = {
- - 4 val pl = x.p; val ipl = x.ip; val cl = x.c
Ellis and Gibbs [25] 84 X X 115 s 29s val p2 = y.p; val ip2 = y.ip; val c2 = y.c
6 if (p1 < p2) x
Ressel et al. [64} 78 v X 68 s 30s 7 else if (pl > p2) new Ins(pl + 1, ipi1, cl)
8 else if (ipl < ip2) x
Sun et al. [72} 68 X X 32l s 13s 9 else if (ipl > ip2) new Ins(pi+l, ipl, cl)
Suleiman et al. [69] 85 X X  34s  40s 0 else if (el < ¢2) x
11 else if (c1 > c2) new Ins(pi+l, ipil, ci)
Imine et al. [34] 83 v X 61 s 17 s 12 else new Id() }
- 13 def Tid(x: Ins, y: Del) =
Reglstervl [33} 6 X v 3s 3s 14 if (x.p > y.p) new Ins(x.p - 1, x.ip, x.c)
5 1
Registerv, [33] 6 v X 3s 3s j\» deef STZi}Ex: Del, y: Ins) =
. 17 if (x.p < y.p) x else new Del(x.p + 1)
Reglbterv3 [33} 7 v v 3s 3s 18 def Tdd(x: Del, y: Del) = if (x.p < y.p) x
Stack [33] 47 X v 5s 5g 19 else if (x.p > y.p) new Del(x.p - 1)

20 else new Id() }

Overall, the main challenge to building such an extensive portfolio consisted of finding
and encoding the correct assumptions. Those assumptions were usually gradually discovered
as VeriFx returned counterexamples that cannot occur in practice, which indicates that one
or more assumptions are missing. In particular, counterexamples were crucial for verifying
the Map CRDTSs from [40]. These are the designs that took the longest to implement and
verify and they required an afternoon of work.

6.2 Verifying Operational Transformation

We now show that VeriFx is general enough to verify other distributed abstractions such
as Operational Transformation (OT). We implemented all transformation functions for
collaborative text editing defined by Imine et al. [34] and verified TP; and TP, in VeriFx.

Table 2 summarizes the verification results. For each transformation function, the table
shows the code size, whether or not it satisfies TP; and TP, and the average verification time.
As shown in the table, the functions proposed by Ellis and Gibbs [25], Sun et al. [72], and
Suleiman et al. [69] do not satisfy TP; nor TPs. Ressel et al. [64]’s functions satisfy T'P; but
not T'Py. These results confirm prior findings by Imine et al. [34]. VeriFx also found that the
functions proposed by Imine et al. [34] do not satisfy TP2, which confirms the findings of Li
and Li [49] and Oster et al. [62]. That same counterexample also invalidates the transformation
functions of Suleiman for TPy. Imine et al. [34] wrongly proved Suleiman’s functions [69]
correct, but VeriFx found counterexamples for both properties (the counterexample for TP,
was manually found in [63]). We believe that the specification defined in Imine et al. [34] may
have missed those counterexamples due to a wrong encoding of assumptions. Finally, in a
private communication, Imine [33] asked us to verify (unpublished) OT designs for replicated
registers and stacks. Out of the three register designs verified in VeriFx, only one is correct
for both TP; and TPs. Regarding the stack design, it guarantees TP but not TP;. VeriFx
provided meaningful counterexamples for each incorrect design.

To exemplify our approach to verifying OT, we now describe the implementation and
verification of Imine et al. [34]’s transformation functions in VeriFx, which are shown in
Listing 9. The enumeration Op on Line 1 defines the three supported operations:



K. De Porre, C. Ferreira, and E. Gonzalez Boix

Ins(p, ip, c) represents the insertion of character ¢’ at position p. Initially, ¢ was

inserted at position ip. Transformations may change p but leave ip untouched.

Del(p) represents the deletion of the character at position p.

Id() acts as a no-op (to which operations may be transformed).
Object Imine extends the ListOT trait and implements the transformation functions (Tii,
Tid, Tdi, Tdd) required for collaborative text editing (cf. Section 5.2). The implementation of
these transformation functions is a straightforward translation from their description by Imine
et al. [34]. The resulting object inherits automated proofs for TP; and TP,. When running
these proofs, VeriFx reports that the transformation functions guarantee TP; but not TPs.

Based on the results shown in Table 2, we conclude that VeriFx is suited to verify
other RDT families such as OT. Due to the number of cases that have to be considered, the
verification times are longer than for CRDTs but are still acceptable for static verification [21].

7 Discussion
We now discuss the main design decisions behind VeriFx, its limitations and trade-offs.

Traits. For simplicity, VeriFx only supports single inheritance from traits. However, it could
be extended to support multiple inheritance. Traits are not meant for subtyping because
subtyping complicates verification as every subtype needs to be verified but these might
not be known at compile time. Hence, class fields, method parameters, etc. cannot be
of a trait type. Programmers can, however, define enumerations as these have a fixed
number of constructors, which are known at compile time. Note that traits can define
type parameters with upper type bounds. The type checker uses these bounds to ensure
that every extending class or trait is well-typed. The compiled SMT program does not
contain traits as they are compiled away (cf. Section 4.2). Proofs, classes, and methods

cannot have bounds on type parameters because the compiler does not know all subtypes.

Functional collections. VeriFx encodes higher-order operations on collections (e.g. map,
filter) using arrays, which are treated as function spaces in the Combinatory Array
Logic (CAL) [23]. Hence, anonymous functions (lambdas) merely define arrays that
are first-class. SMT solvers can efficiently reason about VeriFx’s functional collections
because CAL is decidable. However, some operations are encoded using universal or
existential quantifiers which may hamper decidability. In practice, VeriFx can verify
RDTs involving complex functional operations. Unfortunately, VeriFx’s collections do
not yet provide aggregation methods (e.g. fold and reduce) because this is beyond the
capabilities of CAL. These restrictions may soon be lifted as SMT-LIB v3 [35] preliminary
plans incorporate new theories that include aggregation functions such as fold.

Trade-off between expressiveness and verifiability. All constructs in VeriFx were carefully
designed to have efficient SMT encoding. Overall, general loop constructs cannot be
verified automatically as those require inductive proofs. A key insight of VeriFx is
that ¢mplicit loop constructs (e.g. map, etc.) enable the automatic verification of an
extensive portfolio of RDTs. Even though the language does not provide general loop
constructs, programmers can define recursive methods. While VeriFx will not prove facts
about (unbounded) recursive methods out-of-the-box, programmers can still verify these
implementations by explicitly defining inductive proofs. This requires devising a suitable
induction hypothesis and defining two proofs: one for the base case, and another for the
induction step. Then, VeriFx can verify both proofs. This approach has been used to
verify nested CRDT designs [13].

7 We represent characters using integers that correspond to their ASCII code.

9:23

ECOOP 2023



9:24

VeriFx: Correct Replicated Data Types for the Masses

8 Related Work

We focus our comparison of related work on verification languages and approaches for
verifying RDTs, invariants in distributed systems, and operational transformation.

Verification languages. Verification languages can be classified into three categories: inter-
active, auto-active, and automated [45]. Interactive languages include proof assistants like
Coq and Isabelle/HOL in which programmers define theorems and prove them manually
using proof tactics. Although automation tactics exist, proving complex theorems requires
considerable manual proof efforts. Vazou et al. [76] introduce the idea of refinement
reflection in Liquid Haskell [75], where user-defined functions are reflected in a decidable
fragment of SMT logic and can be used in refinement types to express correctness proper-
ties. Similarly, in VeriFx every construct of the language and its collections are reflected
in SMT logic such that arbitrary VeriFx programs can be reflected in the logic. However,
VeriFx enables automated verification of user-defined correctness properties whereas,
Liquid Haskell requires programmers to express correctness properties using refinement
types and manually write proofs as Haskell functions. Moreover, VeriFx offers an iterative
process where incorrect designs are improved based on the counterexamples, whereas
Liquid Haskell only raises a type error. Auto-active verification languages like Dafny [44]
and Spec# [11] verify programs based on annotations provided by the programmer
(e.g. preconditions, postconditions, loop invariants). Intermediate verification languages
(IVLs) like Boogie [10] and Why3 [26] automate the proof task by generating verification
conditions (VCs) from source code and discharging them using one or more SMT solvers.
IVLs are not meant to be used by programmers directly. Instead, programs written in
some verification language (e.g. Dafny, Spec#) are translated to an IVL to verify the VCs.
Regarding automated verification, the work by Kaki and Jagannathan [37] integrated
an automated verification framework in a refinement type system. Programmers write
relational specifications that define structural relations for the RDT at hand and express
correctness properties as refinement types atop operations. However, writing relational
specifications for advanced data types is non-trivial and can be rather verbose, as noted
by the authors themselves. In contrast, VeriFx does not require separate specifications.

Verifying SEC for RDTs. Burckhardt et al. [20] propose a formal framework that enables the
specification and verification of RDTs. Attiya et al. [5] use a variation on this framework
to provide specifications of replicated lists and prove the correctness of an existing text
editing protocol. Gomes et al. [27] and Zeller et al. [79] propose formal frameworks in
the Isabelle/HOL theorem prover to mechanically verify SEC for CRDTs. In contrast to
VeriFx, Gomes et al. [27] only consider operation-based CRDTs but model the underlying
network to reason about causal delivery of messages. Nieto et al. [59] developed libraries
to implement and verify op-based CRDTs in separation logic. Their approach requires
programmers to write Coq specifications atop the provided libraries and manually prove
correctness. Liu et al. [54] extend Liquid Haskell with typeclass refinements and use
them to prove SEC for some of their own CRDTs. While simple proofs can be discharged
automatically by the underlying SMT solver, advanced CRDTs also require significant
proof efforts (as discussed in Section 2). All the aforementioned verification techniques
require significant effort and expertise whereas, VeriFx fully automatically verified 51
well-known CRDTs. Liang and Feng [51] propose a new correctness criterion for CRDTs
that extends SEC with functional correctness and enables manual verification of CRDT
implementations and client programs using them. They mainly focus on functional
correctness and provide paper proofs rather than automated verification. Wang et al. [77]



K. De Porre, C. Ferreira, and E. Gonzalez Boix

propose replication-aware linearizability, a criterion that enables sequential reasoning to
prove the correctness of CRDT implementations. The CRDTs were manually encoded in
the Boogie verification tool to prove correctness. Those encodings are non-trivial and
differ from real-world CRDT implementations. Nagar and Jagannathan [56] developed
a proof rule that is parametrized by the consistency model and automatically checks
convergence for CRDTs. Unfortunately, their framework introduces imprecision and may
reject correct CRDTs. Moreover, their framework requires a first-order logic specification
of the CRDT. In contrast, VeriFx can verify high-level CRDT implementations instead of
specifications. Finally, Jagadeesan and Riely [36] introduce a notion of validity for RDTs
and manually prove it for some CRDTs. We do not consider validity in this work.

Verifying applications invariants. Some work has focused on verifying application invariants
under weak consistency. Bailis et al. [6] introduce invariant confluent operations that
maintain application invariants, even without coordination. Whittaker and Hellerstein [78]
devise a decision procedure for invariant confluence that can be checked automatically.
Other work has focused on verifying invariants for RDTs [7,29,57,58,80]. Soteria [57]
verifies program invariants for state-based RDTs. Repliss [80] verifies program invariants
for applications that are built on top of their CRDT library. CISE [29, 58] proposes a
proof rule to check that a chosen consistency level for operations preserves the application
invariants. IPA [7] detects invariant-breaking operations and proposes changes to the
operations in order to preserve the invariants. All these approaches assume that the
underlying RDT is correct, while VeriFx enables programmers to verify that this is the
case. This paper does not consider RDTs with mixed consistency levels as [24,31,46-48,
50, 55,81,82].

Verifying operational transformation functions. Ellis and Gibbs [25] first proposed an algo-
rithm for OT together with a set of transformation functions. Several works [70,72] showed
that integration algorithms like adOPTed [64], SOCT2 [70], and GOTO [71] guarantee
convergence iff the transformation functions satisfy the TP; and TPs properties. Ellis
and Gibbs [25]’s functions do not satisfy these properties [64,70,72] and, over the years,
several functions were proposed [64,69,72]. Imine et al. [34] used SPIKE, an automated
theorem prover, to verify the correctness of these functions and found counterexamples
for all of them, except for Suleiman et al. [69]’s functions. As shown in Section 6.2, we
reproduced their study and generated similar counterexamples. Imine et al. [34] proposed
a simpler set of functions which later was found to also violate TPy [49,62]. VeriFx
also found this counterexample.

9 Conclusion

To support the development of correct RDTs, we propose VeriFx, a high-level programming
language powerful enough to implement RDTs as CRDTs and OT, and verify them auto-
matically without requiring annotations or programmer intervention. Our approach enables
programmers to implement RDTs, and express and verify correctness properties, all within
the same language. This avoids gaps between the implementation and verification. VeriFx
high-level counterexamples enable programmers to iteratively improve their implementation.
Once verified, RDTs can be transpiled to mainstream languages, e.g. Scala and JavaScript.
VeriFx shows that automated verification based on SMT solving can verify real-world
RDT implementations with minimal programmer intervention. This work accounts for the
most extensive portfolio of mechanically verified RDTs to date, including 51 CRDTs and 9
OT designs. All were verified in a matter of seconds or minutes and with minimal effort.

9:25

ECOOP 2023



9:26 VeriFx: Correct Replicated Data Types for the Masses

In this work, we focused on verifying correctness properties in the domain of RDTs. In

future work, we would like to explore the applicability of VeriFx to other domains.

—— References

1

10

11

12

13

14

15

Deepthi Devaki Akkoorath and Annette Bieniusa. Antidote: The highly-available geo-replicated
database with strongest guarantees. Technical report, Technical Report. Tech. U. Kaiser-
slautern., 2016.

Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. Efficient state-based CRDTs by
delta-mutation. In Ahmed Bouajjani and Hugues Fauconnier, editors, Int. Conference on
Networked Systems, pages 62—76, Agadir, Morocco, 2015. Springer-Verslag.

AntidoteDB. Implementation of a Disable-Wins Flag CRDT in AntidoteDB.
https://github.com/AntidoteDB/antidote/blob/master/apps/antidote_crdt/src/
antidote_crdt_flag_dw.erl. Accessed: 2022-07-19.

AntidoteDB. Implementation of an Enable-Wins Flag CRDT in AntidoteDB.
https://github.com/AntidoteDB/antidote/blob/master/apps/antidote_crdt/src/
antidote_crdt_flag_ew.erl. Accessed: 2022-07-19.

Hagit Attiya, Sebastian Burckhardt, Alexey Gotsman, Adam Morrison, Hongseok Yang, and
Marek Zawirski. Specification and complexity of collaborative text editing. In Proceedings of
the 2016 ACM Symposium on Principles of Distributed Computing, PODC ’16, pages 259268,
New York, NY, USA, 2016. ACM. doi:10.1145/2933057.2933090.

Peter Bailis, Alan Fekete, Michael J. Franklin, Ali Ghodsi, Joseph M. Hellerstein, and Ion
Stoica. Coordination avoidance in database systems. Proc. VLDB Endow., 8(3):185-196,
November 2014. doi:10.14778/2735508.2735509.

Valter Balegas, Sérgio Duarte, Carla Ferreira, Rodrigo Rodrigues, and Nuno Preguica. IPA:
Invariant-preserving applications for weakly consistent replicated databases. Proc. VLDB
Endow., 12(4):404-418, December 2018.

Carlos Baquero, Paulo Sérgio Almeida, and Ali Shoker. Pure operation-based replicated data
types. CoRR, abs/1710.04469, 2017. arXiv:1710.04469.

Carlos Baquero, Omer Katz, Brian Cannard, and Georges Younes. JGraphT: a Java li-
brary of graph theory data structures and algorithms. https://github.com/CBaquero/
delta-enabled-crdts. Accessed: 22-11-2022.

Mike Barnett, Bor-Yuh Evan Chang, Robert DeLine, Bart Jacobs, and K. Rustan M. Leino.
Boogie: A modular reusable verifier for object-oriented programs. In Frank S. de Boer,
Marcello M. Bonsangue, Susanne Graf, and Willem-Paul de Roever, editors, Formal Methods for
Components and Objects, pages 364-387, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg.
Mike Barnett, K. Rustan M. Leino, and Wolfram Schulte. The Spec# programming system:
An overview. In Gilles Barthe, Lilian Burdy, Marieke Huisman, Jean-Louis Lanet, and Traian
Muntean, editors, Construction and Analysis of Safe, Secure, and Interoperable Smart Devices,
pages 49-69, Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

Basho Technologies. Riak KV. https://riak.com/products/riak-kv/index.html. Accessed:
22-11-2022.

Jim Bauwens and Elisa Gonzalez Boix. Nested pure operation-based CRDTs. In To Appear in
87th European Conference on Object-Oriented Programming, ECOOP 2023, July 17-21, 2023,
Seattle, WA, LIPIcs, 2023.

Annette Bieniusa, Marek Zawirski, Nuno M. Preguica, Marc Shapiro, Carlos Baquero, Valter
Balegas, and Sérgio Duarte. An optimized conflict-free replicated set. CoRR, abs/1210.3368,
2012. arXiv:1210.3368.

Sascha Bohme, Anthony C. J. Fox, Thomas Sewell, and Tjark Weber. Reconstruction of Z3’s
bit-vector proofs in HOL4 and Isabelle/HOL. In Jean-Pierre Jouannaud and Zhong Shao,
editors, Certified Programs and Proofs, pages 183—-198, Berlin, Heidelberg, 2011. Springer
Berlin Heidelberg.


https://github.com/AntidoteDB/antidote/blob/master/apps/antidote_crdt/src/antidote_crdt_flag_dw.erl
https://github.com/AntidoteDB/antidote/blob/master/apps/antidote_crdt/src/antidote_crdt_flag_dw.erl
https://github.com/AntidoteDB/antidote/blob/master/apps/antidote_crdt/src/antidote_crdt_flag_ew.erl
https://github.com/AntidoteDB/antidote/blob/master/apps/antidote_crdt/src/antidote_crdt_flag_ew.erl
https://doi.org/10.1145/2933057.2933090
https://doi.org/10.14778/2735508.2735509
https://arxiv.org/abs/1710.04469
https://github.com/CBaquero/delta-enabled-crdts
https://github.com/CBaquero/delta-enabled-crdts
https://riak.com/products/riak-kv/index.html
https://arxiv.org/abs/1210.3368

K. De Porre, C. Ferreira, and E. Gonzalez Boix

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

Sascha Béhme and Tjark Weber. Fast LCF-style proof reconstruction for Z3. In International
Conference on Interactive Theorem Proving, pages 179-194. Springer, 2010.

Eric Brewer. CAP twelve years later: How the “rules” have changed. Computer, 45:23-29,
February 2012.

Eric A. Brewer. Towards robust distributed systems (abstract). In Proceedings of the Nineteenth
Annual ACM Symposium on Principles of Distributed Computing, PODC ’00, page 7, New
York, NY, USA, 2000. ACM. doi:10.1145/343477.343502.

Sebastian Burckhardt, Manuel Fahndrich, Daan Leijen, and Benjamin P. Wood. Cloud types
for eventual consistency. In 26th European Conference on Object-Oriented Programming,
ECOOP’12, pages 283-307, Berlin, Heidelberg, 2012. Springer-Verlag.

Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Zawirski. Replicated
data types: Specification, verification, optimality. In Proceedings of the 41st ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 14, pages 271-284,
New York, NY, USA, 2014. ACM. doi:10.1145/2535838.2535848.

Cristiano Calcagno, Dino Distefano, Jeremy Dubreil, Dominik Gabi, Pieter Hooimeijer, Martino
Luca, Peter O’Hearn, Irene Papakonstantinou, Jim Purbrick, and Dulma Rodriguez. Moving
fast with software verification. In Klaus Havelund, Gerard Holzmann, and Rajeev Joshi,
editors, NASA Formal Methods, pages 3—11, Cham, 2015. Springer International Publishing.
Leonardo de Moura and Nikolaj Bjgrner. Z3: An efficient smt solver. In C. R. Ramakrishnan
and Jakob Rehof, editors, Tools and Algorithms for the Construction and Analysis of Systems,
pages 337-340, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.

Leonardo de Moura and Nikolaj Bjgrner. Generalized, efficient array decision procedures. In

2009 Formal Methods in Computer-Aided Design, pages 45-52, 2009. doi:10.1109/FMCAD.

2009.5351142.

Kevin De Porre, Carla Ferreira, Nuno Preguica, and Elisa Gonzalez Boix. ECROs: Building
Global Scale Systems from Sequential Code. Proc. ACM Program. Lang., 5(OOPSLA),
November 2021.

C. A. Ellis and S. J. Gibbs. Concurrency control in groupware systems. In Proceedings of the
1989 ACM SIGMOD International Conference on Management of Data, SIGMOD ’89, pages
399-407, New York, NY, USA, 1989. ACM. doi:10.1145/67544.66963.

Jean-Christophe Fillidtre and Andrei Paskevich. Why3 — where programs meet provers. In
Matthias Felleisen and Philippa Gardner, editors, Programming Languages and Systems, pages
125-128, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

Victor B. F. Gomes, Martin Kleppmann, Dominic P. Mulligan, and Alastair R. Beresford.
Verifying strong eventual consistency in distributed systems. Proc. ACM Program. Lang.,
1(OOPSLA), October 2017. doi:10.1145/3133933.

Google. Protocol buffers. https://developers.google.com/protocol-buffers. Accessed:
10-10-2022.

Alexey Gotsman, Hongseok Yang, Carla Ferreira, Mahsa Najafzadeh, and Marc Shapiro. ’cause
i’m strong enough: Reasoning about consistency choices in distributed systems. SIGPLAN
Not., 51(1):3717384, January 2016. doi:10.1145/2914770.2837625.

Pat Helland. Immutability changes everything: We need it, we can afford it, and the time is
now. Queue, 13(9):101-125, November 2015. doi:10.1145/2857274.2884038.

Farzin Houshmand and Mohsen Lesani. Hamsaz: Replication coordination analysis and
synthesis. Proc. ACM Program. Lang., 3(POPL), January 2019. doi:10.1145/3290387.
Atsushi Igarashi, Benjamin C. Pierce, and Philip Wadler. Featherweight Java: A minimal
core calculus for Java and GJ. ACM Trans. Program. Lang. Syst., 23(3):396-450, May 2001.
doi:10.1145/503502.503505.

Abdessamad Imine. Exchange of mails regarding OT, and unpublished register and stack
designs. personal communication.

Abdessamad Imine, Pascal Molli, Gérald Oster, and Michaél Rusinowitch. Proving correctness
of transformation functions in real-time groupware. In Proceedings of the Eighth Conference on
European Conference on Computer Supported Cooperative Work, ECSCW’03, pages 277293,
USA, 2003. Kluwer Academic Publishers.

9:27

ECOOP 2023


https://doi.org/10.1145/343477.343502
https://doi.org/10.1145/2535838.2535848
https://doi.org/10.1109/FMCAD.2009.5351142
https://doi.org/10.1109/FMCAD.2009.5351142
https://doi.org/10.1145/67544.66963
https://doi.org/10.1145/3133933
https://developers.google.com/protocol-buffers
https://doi.org/10.1145/2914770.2837625
https://doi.org/10.1145/2857274.2884038
https://doi.org/10.1145/3290387
https://doi.org/10.1145/503502.503505

9:28

VeriFx: Correct Replicated Data Types for the Masses

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52
53

The SMT-LIB Initiative. SMT-LIB Version 3.0 - Preliminary Proposal. http://smtlib.cs.
uiowa.edu/version3.shtml. Accessed: 23-11-2022.

Radha Jagadeesan and James Riely. Eventual consistency for CRDTs. In Amal Ahmed, editor,
Programming Languages and Systems, pages 968—-995, Cham, 2018. Springer International
Publishing.

Gowtham Kaki and Suresh Jagannathan. A relational framework for higher-order shape
analysis. SIGPLAN Not., 49(9):311-324, August 2014. doi:10.1145/2692915.2628159.
Gowtham Kaki, Swarn Priya, KC Sivaramakrishnan, and Suresh Jagannathan. Mergeable
replicated data types. Proc. ACM Program. Lang., 3(OOPSLA), October 2019. doi:10.1145/
3360580.

Martin Kleppmann. A critique of the CAP theorem. CoRR, abs/1509.05393, 2015. arXiv:
1509.05393.

Martin Kleppmann. Assessing the understandability of a distributed algorithm by tweeting
buggy pseudocode. Technical Report UCAM-CL-TR-969, University of Cambridge, Computer
Laboratory, May 2022. doi:10.48456/tr-969.

Martin Kleppmann and Alastair R Beresford. A conflict-free replicated JSON datatype. IEEE
Trans. on Parallel and Distributed Systems, 28(10):2733-2746, 2017.

Shadaj Laddad, Conor Power, Mae Milano, Alvin Cheung, and Joseph M. Hellerstein. Katara:
Synthesizing CRDTs with verified lifting. Proc. ACM Program. Lang., 6(OOPSLA2), October
2022. doi:10.1145/3563336.

Leslie Lamport. Time, Clocks, and the Ordering of Events in a Distributed System. Commu-
nications of the ACM, 21(7):558-565, 1978.

K. Rustan M. Leino. Dafny: An automatic program verifier for functional correctness. In
Edmund M. Clarke and Andrei Voronkov, editors, Logic for Programming, Artificial Intelligence,
and Reasoning, pages 348-370, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

K. Rustan M. Leino and Michat Moskal. Usable auto-active verification. In Usable Verification
Workshop, 2010.

Cheng Li, Joao Leitdao, Allen Clement, Nuno Preguica, Rodrigo Rodrigues, and Viktor Vafeiadis.
Automating the choice of consistency levels in replicated systems. In Proceedings of the 201/
USENIX Conference on USENIX Annual Technical Conference, USENIX ATC’14, pages
281-292, Berkeley, CA, USA, 2014. USENIX Association.

Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno Preguica, and Rodrigo
Rodrigues. Making geo-replicated systems fast as possible, consistent when necessary. In
Proceedings of the 10th USENIX Conference on Operating Systems Design and Implementation,
OSDI'12, pages 265278, USA, 2012. USENIX Association.

Cheng Li, Nuno Preguica, and Rodrigo Rodrigues. Fine-grained consistency for geo-replicated
systems. In 2018 USENIX Annual Technical Conference (USENIX ATC 18), pages 359-372,
Boston, MA, 2018. USENIX Association.

Du Li and Rui Li. Preserving operation effects relation in group editors. In Proceedings of the
2004 ACM Conference on Computer Supported Cooperative Work, CSCW ’04, pages 457—466,
New York, NY, USA, 2004. ACM. doi:10.1145/1031607.1031683.

Xiao Li, Farzin Houshmand, and Mohsen Lesani. Hampa: Solver-aided recency-aware replica-
tion. In Computer Aided Verification: 32nd International Conference, CAV 2020, Los Angeles,
CA, USA, July 21-24, 2020, Proceedings, Part I, pages 324-349, Berlin, Heidelberg, 2020.
Springer-Verlag. doi:10.1007/978-3-030-53288-8_16.

Hongjin Liang and Xinyu Feng. Abstraction for conflict-free replicated data types. In
Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language
Design and Implementation, PLDI 2021, pages 636—650, New York, NY, USA, 2021. ACM.
doi:10.1145/3453483.3454067.

Lightbend, Inc. Akka. https://akka.io/. Accessed: 22-11-2022.

Lightbend Inc. Serialization. https://doc.akka.io/docs/akka/current/serialization.
html. Accessed: 10-10-2022.


http://smtlib.cs.uiowa.edu/version3.shtml
http://smtlib.cs.uiowa.edu/version3.shtml
https://doi.org/10.1145/2692915.2628159
https://doi.org/10.1145/3360580
https://doi.org/10.1145/3360580
https://arxiv.org/abs/1509.05393
https://arxiv.org/abs/1509.05393
https://doi.org/10.48456/tr-969
https://doi.org/10.1145/3563336
https://doi.org/10.1145/1031607.1031683
https://doi.org/10.1007/978-3-030-53288-8_16
https://doi.org/10.1145/3453483.3454067
https://akka.io/
https://doc.akka.io/docs/akka/current/serialization.html
https://doc.akka.io/docs/akka/current/serialization.html

K. De Porre, C. Ferreira, and E. Gonzalez Boix

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

Yiyun Liu, James Parker, Patrick Redmond, Lindsey Kuper, Michael Hicks, and Niki Vazou.
Verifying replicated data types with typeclass refinements in liquid Haskell. Proc. ACM
Program. Lang., 4(OOPSLA), November 2020. doi:10.1145/3428284.

Mae Milano and Andrew C. Myers. MixT: A language for mixing consistency in geodistributed
transactions. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI 2018, pages 226-241, New York, NY, USA, 2018. ACM.
doi:10.1145/3192366.3192375.

Kartik Nagar and Suresh Jagannathan. Automated parameterized verification of CRDTs. In
Isil Dillig and Serdar Tasiran, editors, Computer Aided Verification, pages 459-477, Cham,
2019. Springer International Publishing.

Sreeja S. Nair, Gustavo Petri, and Marc Shapiro. Proving the safety of highly-available
distributed objects. In Programming Languages and Systems: 29th European Symposium on
Programming, ESOP 2020, Held as Part of the European Joint Conferences on Theory and
Practice of Software, ETAPS 2020, Dublin, Ireland, April 25-30, 2020, Proceedings, pages
544-571, Berlin, Heidelberg, 2020. Springer-Verlag. doi:10.1007/978-3-030-44914-8_20.
Mahsa Najafzadeh, Alexey Gotsman, Hongseok Yang, Carla Ferreira, and Marc Shapiro. The
CISE tool: proving weakly-consistent applications correct. In Peter Alvaro and Alysson Bessani,
editors, Proceedings of the 2nd Workshop on the Principles and Practice of Consistency for
Distributed Data, PaPoCQ@QFEuroSys 2016, London, United Kingdom, April 18, 2016, pages
2:1-2:3. ACM, 2016. doi:10.1145/2911151.2911160.

Abel Nieto, Léon Gondelman, Alban Reynaud, Amin Timany, and Lars Birkedal. Modular
verification of op-based CRDTs in separation logic. Proc. ACM Program. Lang., 6(OOPSLA2),
October 2022. doi:10.1145/3563351.

Peter W. O’Hearn. Continuous reasoning: Scaling the impact of formal methods. In Proceedings
of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’18, pages
13-25, New York, NY, USA, 2018. ACM. doi:10.1145/3209108.3209109.

OpenJDK. jmh - OpenJDK. https://openjdk.java.net/projects/code-tools/jmh/. Ac-
cessed: 13-05-2020.

Gérald Oster, Pascal Molli, Pascal Urso, and Abdessamad Imine. Tombstone transformation
functions for ensuring consistency in collaborative editing systems. In 2006 International
Conference on Collaborative Computing: Networking, Applications and Worksharing, pages
1-10, 2006. doi:10.1109/COLCOM.2006.361867.

Aurel Randolph, Hanifa Boucheneb, Abdessamad Imine, and Alejandro Quintero. On synthe-
sizing a consistent operational transformation approach. IEEFE Transactions on Computers,
64(4):1074-1089, 2015. doi:10.1109/TC.2014.2308203.

Matthias Ressel, Doris Nitsche-Ruhland, and Rul Gunzenh&user. @ An integrating,
transformation-oriented approach to concurrency control and undo in group editors. In
Proceedings of the 1996 ACM Conference on Computer Supported Cooperative Work, CSCW
’96, pages 288-297, New York, NY, USA, 1996. ACM. doi:10.1145/240080.240305.
Scalameta. Scalameta: Library to read, analyze, transform and generate Scala programs.
https://scalameta.org/. Accessed: 24-11-2022.

Marc Shapiro. Replicated Data Types. In Ling Liu and M. Tamer Ozsu, editors, Encyclopedia
Of Database Systems, volume Replicated Data Types, pages 1-5. Springer-Verlag, July 2017.
do0i:10.1007/978-1-4899-7993-3_80813-1.

Marc Shapiro, Nuno Preguiga, Carlos Baquero, and Marek Zawirski. A comprehensive study
of convergent and commutative replicated data types. Research Report RR-7506, INRIA —
Centre Paris-Rocquencourt, January 2011.

Marc Shapiro, Nuno Preguica, Carlos Baquero, and Marek Zawirski. Conflict-free replicated
data types. In Xavier Défago, Franck Petit, and Vincent Villain, editors, 13th Int. Symp. on
Stabilization, Safety, and Security of Distributed Systems, SSS’11, pages 386—400, Grenoble,
France, 2011. Springer-Verslag.

9:29

ECOOP 2023


https://doi.org/10.1145/3428284
https://doi.org/10.1145/3192366.3192375
https://doi.org/10.1007/978-3-030-44914-8_20
https://doi.org/10.1145/2911151.2911160
https://doi.org/10.1145/3563351
https://doi.org/10.1145/3209108.3209109
https://openjdk.java.net/projects/code-tools/jmh/
https://doi.org/10.1109/COLCOM.2006.361867
https://doi.org/10.1109/TC.2014.2308203
https://doi.org/10.1145/240080.240305
https://scalameta.org/
https://doi.org/10.1007/978-1-4899-7993-3_80813-1

9:30

VeriFx: Correct Replicated Data Types for the Masses

69

70

71

72

73

74
75

76

77

78

79

80

81

82

Maher Suleiman, Michele Cart, and Jean Ferrié. Serialization of concurrent operations in a
distributed collaborative environment. In Proceedings of the International ACM SIGGROUP
Conference on Supporting Group Work: The Integration Challenge, GROUP 97, pages 435-445,
New York, NY, USA, 1997. ACM. doi:10.1145/266838.267369.

Maher Suleiman, Michele Cart, and Jean Ferrié. Concurrent operations in a distributed and
mobile collaborative environment. In Proceedings of the Fourteenth International Conference
on Data Engineering, ICDE 98, pages 36-45, USA, 1998. IEEE Computer Society.
Chengzheng Sun and Clarence Ellis. Operational Transformation in Real-time Group Editors:
Issues, Algorithms, and Achievements. In Proc. of the 1998 ACM Conference on Computer
Supported Cooperative Work, CSCW ’98, pages 59-68, 1998.

Chengzheng Sun, Xiaohua Jia, Yanchun Zhang, Yun Yang, and David Chen. Achieving
convergence, causality preservation, and intention preservation in real-time cooperative editing
systems. ACM Trans. Comput.-Hum. Interact., 5(1):63-108, March 1998. doi:10.1145/
274444 .274447.

The Apache Software Foundation. Cassandra: Open source NoSQL database. https://
cassandra.apache.org/_/index.html. Accessed: 24-11-2022.

The SMT-LIB Initiative. SMT-LIB. https://smtlib.cs.uiowa.edu. Accessed: 24-11-2022.
Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon Peyton-Jones.
Refinement types for Haskell. In Proceedings of the 19th ACM SIGPLAN International
Conference on Functional Programming, ICFP 14, pages 269-282, New York, NY, USA, 2014.
ACM. doi:10.1145/2628136.2628161.

Niki Vazou, Anish Tondwalkar, Vikraman Choudhury, Ryan G. Scott, Ryan R. Newton, Philip
Wadler, and Ranjit Jhala. Refinement reflection: Complete verification with SMT. Proc. ACM
Program. Lang., 2(POPL), December 2017. doi:10.1145/3158141.

Chao Wang, Constantin Enea, Suha Orhun Mutluergil, and Gustavo Petri. Replication-
aware linearizability. In Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2019, pages 980-993, New York, NY, USA, 2019.
ACM. doi:10.1145/3314221.3314617.

Michael J. Whittaker and Joseph M. Hellerstein. Interactive checks for coordination avoidance.
Proc. VLDB Endow., 12(1):14-27, 2018. doi:10.14778/3275536.3275538.

Peter Zeller, Annette Bieniusa, and Arnd Poetzsch-Heffter. Formal specification and verification
of CRDTs. In Erika Abrahdm and Catuscia Palamidessi, editors, Formal Techniques for
Distributed Objects, Components, and Systems, pages 33—48, Berlin, Heidelberg, 2014. Springer
Berlin Heidelberg.

Peter Zeller, Annette Bieniusa, and Arnd Poetzsch-Heffter. Combining state- and event-based
semantics to verify highly available programs. In Farhad Arbab and Sung-Shik Jongmans,
editors, Formal Aspects of Component Software, pages 213-232, Cham, 2020. Springer Interna-
tional Publishing.

Xin Zhao and Philipp Haller. Observable atomic consistency for CvRDTs. In Proceedings of
the 8th ACM SIGPLAN International Workshop on Programming Based on Actors, Agents,
and Decentralized Control, pages 23-32, 2018.

Xin Zhao and Philipp Haller. Replicated data types that unify eventual consistency and
observable atomic consistency. Journal of Logical and Algebraic Methods in Programming,
114:100561, 2020.

A VeriFx’s Type System

We now present VeriFx’s type system. An environment I' is a partial and finite mapping

from variables to types. A type environment A is a finite set of type variables. VeriFx’s type

system consists of a judgment for type wellformdness A + T ok which says that type T is

well-formed in context A, and a judgment for typing A; " - e : T which says that in context A

and environment I', the expression e is of type T. We abbreviate A + Ty ok, ..., A+ T, ok

to A Tok,and A;T e : Ty, ..., AT ke, : T, toA;THe: T.


https://doi.org/10.1145/266838.267369
https://doi.org/10.1145/274444.274447
https://doi.org/10.1145/274444.274447
https://cassandra.apache.org/_/index.html
https://cassandra.apache.org/_/index.html
https://smtlib.cs.uiowa.edu
https://doi.org/10.1145/2628136.2628161
https://doi.org/10.1145/3158141
https://doi.org/10.1145/3314221.3314617
https://doi.org/10.14778/3275536.3275538

K. De Porre, C. Ferreira, and E. Gonzalez Boix 9:31

Below we define well-formed types:

———— (WF-STRING) —— (WF-BooL) ——— (WF-InT)
A F string ok A F bool ok A F int ok

AF T ok
clasiC<Y)(...){...}
or class C(X)(...) extends I{.. ){...}

b (WF-CLASS)
AF C(T) ok
AFTok T<:P
trait I (X <: P){...}
or trait [ (X <: P) ﬁctends I¢. {3 (WF-TRAIT)
AF I{T) ok
AF T ok
enum E(X){...} XeA
—/ (WF-ENUM) v (WF-TVar)
A+ E(T) ok AF X ok

Primitive types are always well-formed. A type variable X is valid if it is in scope:
X € A, i.e. the surrounding method or class defined the type parameter. Class types and
enumeration types are valid if a corresponding class or enumeration definition exists and all
type arguments are well-formed.

We now define a few auxiliary definitions which are needed for the typing rules. The
fields function takes a class type and returns its fields and their types:

class C(X)(@: T){M} or class C(X)(v: T) extends I{Q){ M}
T

— - (F-cLass)
fields(C(P)) = [P/X] v :

The ftypes function takes an enumeration type and the name of one of its constructors
and returns the type of the fields of that constructor.

enum E(X){K®@:T), ...}
ftypes(E(P), K) = [P/X] T

(FT-ENUM)

The mtype function takes the name of a method and the type of a class, and returns the
actual type signature of the method. If the method is not found in the class (MT-CLASS-REC
rule) it is looked up in the hierarchy of super traits by the MT-TRAIT rules. For polymorphic
methods, the returned type signature is polymorphic:

class C(X)(...){M} or class C(X)(...) extends I{Q){ M}

def m{Y)(Z:T): T=e€M
— e (MT-cLASS)
mtype(m, C(P)) = [P/X] (V)T — T)

class C (@ (...) extends I(a)LM}
detm(Y)(T:T): T=e¢ M
mtype(m, C(P)) = miype(m, 1{Q))
trait I[(X <: T"){ M} or trait I (X <: T’) extends I'(...){ M}
def m(Y)(@Z: T): T=e€M

= e (MT-TRAIT)
miype(m, [(P)) = [P/X] (V)T — T)

(MT-CLASS-REC)

trait (X <: T"){M} or trait I (X <: T') extends I'(P){ M}

def m(Y)(Z:T): T=¢¢ M
— — (MT-TRAIT-REC)
miype(m, I{P)) = mtype(m, I'(P))

ECOOP 2023



9:32

VeriFx: Correct Replicated Data Types for the Masses

Similarly, we assume that there are functions valNames(I{P)) and declaredMethods(I{P))
that return all fields, respectively all methods, declared by a trait (and its super traits). The
ctors function takes an enumeration type and returns the names of its constructors.

enmE(X)iK(E:T)}

Figure 6 shows the typing rules for expressions. Most rules are a simplification of Feath-
erweight Generic Java [32] without subtyping. Quantified formulas are boolean expressions if
their body also types to a boolean expression in the environment that is extended with the
quantified variables (T-UNI and T-EXI rules). The logical implication is a well-typed boolean
expression if both the antecedent and the consequent are boolean expressions (T-IMPL rule).

Classes are well-formed if the types of the fields are well-formed and all its methods are
well-formed (T-crLAss1 rule). If the class extends a trait, it must also implement all fields
and methods declared by the hierarchy of super traits (T-cLASS2 rule). The typing rules for
trait definitions and object definitions can be defined similarly.

When instantiating an enumeration through one of its constructors new K(P)(¢€), the
provided arguments € need to match the types of the constructors’ fields, and the result

effectively is an object of the enumeration type E(P).

Programmers can pattern match on enumerations but the cases must be exhaustive, i.e.
every constructor must be matched by at least one case. If all cases are of type T, then the
resulting pattern match expression is also of type T.

Finally, the body of a proof must be a well-typed boolean expression.

B Core SMT Expressions

We will now discuss the expressions that are supported by Core SMT. Those expressions are
common to most SMT solvers, except lambdas which, as mentioned before, are described by
the preliminary proposal for SMT-LIB v3.0 and are only implemented by some SMT solvers
such as Z3 [22].

Figure 7 provides an overview of all Core SMT expressions. The simplest expressions are
literal values representing integers, strings, and booleans. Core SMT supports the typical
arithmetic operators (+, —, *, /) and boolean operators (A, V, and negation —) as well as
universal and existential quantification, and logical implication. Immutable variables are
defined by let bindings. Pattern matching is supported but the cases must be exhaustive. For
example, when pattern matching against an algebraic data type every constructor must be
handled. Core SMT supports two types of patterns: constructor patterns n(7) that match a
specific ADT constructor n and binds names to its fields 7, and wildcard patterns that match
anything and give it a name n. References v refer to variables that are in scope, e.g. function
parameters or variables introduced by let binding or pattern matching. If statements are
supported but an else branch is mandatory and both branches must evaluate to the same
sort. Functions can be called and type arguments can be provided explicitly to disambiguate
polymorphic functions. For example, we defined an ADT Option(T") with two constructors
Some and None. When calling the None constructor we need to explicitly provide a type
argument since it cannot be inferred from the call, e.g. None(int)(). Finally, fields of an ADT
can be accessed by their name. Arrays and lambdas were already discussed in Section 4.1.



K. De Porre, C. Ferreira, and E. Gonzalez Boix 9:33

(T-NUM)

_ - (T-sTR) ———————— (T-TRUE)
A;T F num: int A;T F str: string A; T F true : bool
z € dom(T") A;T F e : bool
- (T-FALSE) ————— (T-vAR) ——————— (T-NEQG)
A; T F false : bool AT F oz T(z) A;T Fle : bool
A;TF e :int A;T F eg @ int A;TF eg :bool A;TF ez :bool
(T-opr1) (T-or2)
A;T F e @ ez int A;T'F e; ® ez : bool
A;T F eg : bool A+ T1 ok
A;T'Hex: T A;T'kes: T (T-11) AThHer: T AT z:Tibex: Ta
-IF
A;T F if e then e else e3 : T

(T-vAL)
A;TFval z: T1 = e; in eg : Ta
A+T ok AT,E:ThHe: T T

ATHG@E:T)=e: T - T
fields(C(P)) =v: T

AFC(PYyok A;TFE: T

A;T +new C(P)(€): C(P)

A;The:T - T ATRHE:T
(T-ABS) — (T-CALL)
A;TFe(és): T

AThe: T, fields(To)=v:T
(T-N-CLASS)

(T-FIELD)
AT Few : T
AT he,: To Ak Pok
mtype(m, To) = (X)T — T
AT He: [P/X|T AFT ok A;T,%: TF e:bool
(T-1nv)

AT Foeoom (P)y (%) : [P/X]T
AFT ok A;T,%:TF e:bool
— (T-EXI)

A;T F exists (Z: T) . e : bool

— (T-un1)
A;T F forall(Z: T) . e : bool
A;T F ep :bool A;T'F ez : bool
(T-1mPL)
A;TFH ey = es:bool
ctors(E(P)) =K KeK ftypes(E(P),K)=T
AFEP)ok A;THe:T
— — (T-N-ENUM)
A;T Fnew K(P)(e) : E(P)
B AT Foeo: E(P)
(ctors(E(P))\¢=0) V (case z = e € ¢) V (case _ = e € ¢)
for each c € ¢: A;T Fe: T IN ey match {...}

T-mATCH
A;T & eg match {¢} : T ( )
A;T & ey : E(P) ftypes(E(P),K)=Q A;I'Nz:QFe: T
— (T-CTOR-PTN)
A;T F case K(T) = e: T IN eg match {...}

A;T'Fey: E(P) AT ,z:E(P)yFe: T
(T-NAMED-PTN)
A;T' - case z = e: T IN ey match {...}
A;TkHe: T
(T-WCARD-PTN)
A;T Fcase = e: T IN eg match {...}

A=X AFTok
— — (T-ENUM)
enum E(X){K (v: T)} OK
A=X,Y AFT,Tok
classC(Y)(...){;..}ir
..} ortrait C (X <: Q) extends ... {...}
Z: T,this: C(X)Fe: T
— — — (T-METHOD)
def m(Y)(@:T): T=e OK IN C(X)
A=X A;DF e:bool

proof p(X){e} OK

trait C (X <: Q) {.
A;

A=X AFTok M OKIN C(X)
(T-PROOF) — — (T-cLass1)
class C(X)(v: T){ M} OK
A=X AFTok A+ I(P) ok
trait I (...){ B} or trait I(...) extends ... { B}

valNames(I{P)) C © declaredMethods(I(P)) C M ‘M OK IN C{X)

— — (T-cLASS2)
class C(X) (v: T) extends I(P){ M} OK

A —

trait I’ (...)

X AR Tok A+ I'(P) ok

{...} or trait I’ (...) extends ... {...}

B = walDU methodDUM M OK IN I{X)
valNames(I' (P)) C valD declaredMethods(I' (P)) C (methodD U M)

— — (T-TRAIT)
trait I (X <: T) extends I' (P){ B} OK

Figure 6 Typing VeriFx expressions.

ECOOP 2023



9:34

VeriFx: Correct Replicated Data Types for the Masses

e:x=num | str | true | false (primitive values)
e[e] | e[€]:=e | Az : T).e
z|ede| exke| e

|

|

| match(e, case(ptn, e)) (pattern matching)

| letz =cine (let expression)

| if(e, e, €) (conditional expression)

| e(e) (function call)

| f(T)(e) (function call with explicit type arguments)

| ew (field access)

| V#@:T)e| 3@:T).e (quantified formulas)

| e = e (logical implication)
pin::=K(Z) | z (patterns)

Figure 7 All Core SMT expressions.

C Compiler Semantics

We now discuss the compiler semantics that was not discussed in the main body of the paper.
First, we provide all compilation rules for expressions in Appendix C.1. Then, we provide all
compilation rules for sets and maps in Appendices C.2 and C.3 respectively.

C.1 Compiling Expressions

Figure 8 shows the compilation rules for expressions. The operands of binary operators @
are compiled recursively. A negated expression is compiled to the negation of the compiled
expression. For if statements, the condition, and both branches are compiled recursively.
In VeriFx, this can be used inside the body of a method to refer to the current object.
The reference is compiled to a similar this reference in Core SMT which refers to the this
parameter which is always the first parameter of any method (cf. compilation of class methods
in Section 4.2). We explained how to compile the remaining expressions in Section 4.2.

Figure 9 shows the compilation rules for logic expressions which in VeriFx can only occur
within the body of proofs. For quantified formulas the types of the variables 7" and the
formula e are compiled. For logical implications, the antecedent and the consequent are
compiled recursively.

Finally, pattern match expressions are compiled to similar pattern match expressions in
Core SMT (shown in Figure 10). To this end, every pattern is compiled recursively. Core
SMT supports two types of patterns: constructor patterns n;(7z) that match an algebraic
data type constructor n; and bind its fields to the provided names 73, and wildcard patterns
n that match any value and give it a name n. Every VeriFx pattern is compiled into the
corresponding Core SMT pattern. The first pattern, ny(73), matches an ADT constructor ng
and binds its fields to 3. It is compiled to an equivalent constructor pattern in Core SMT.
The other two patterns match any expression and are compiled to an equivalent wildcard
pattern in Core SMT.

C.2 Compiling Sets

In Section 4.4 we explained how basic set operations (add, remove, contains) and some
advanced operations (filter, map) are compiled to Core SMT. Now, we explain how the
remaining operations on sets are compiled. Figure 11 shows the compilation rules for



K. De Porre, C. Ferreira, and E. Gonzalez Boix

[+] =
[er @ e2] = [ea] & [e]
[lel = ]

[val z : T = e; in e2]

letz = [e1] in [ez2]

if([ei], [ez2], [es])

[if e1 then e; else e3] =

[(z:T)= €] = Az :[T[e).[e]

[e1(e2)] = [ea][ [e=] ]

[new Set (T)( )] = Mz : [T]:) false

[new Map (T, P)( )] Az : [[TﬂtL one([P]:)()
[new C(T)(e)] C ([ T1e)([el)

str_concat(C,’

where ¢/ = " _ctor”)
[new K(T)(%)] = K([T]:)([eD)
[e-v] B = [e].v o
[er.m (T) ()] = m/([Pe, [T]e)([er]; [e])

c<ﬁ

and m’ = str_concat

where typeof(e1) =

Figure 8 Compiling expressions.

[forall (% : ?’) el = V(= [[Tj]]t)[[e]]
lexists (z: T).e] = 3(Z:[T]:).[e]
[er = e = [ea] = [e]

Figure 9 Compiling logical expressions.

operations over sets. The union of two sets e; and e is compiled to a lambda which defines
an array of elements z of type [T]; containing only elements that are in at least one of
[ex][ = ]V [e2][ = ].
compiled to a lambda which defines an array containing only elements that are in both sets,

[ex][ = ] A [e2][ = .
elements that are in e; and not in es. A set e; is a subset of ey iff all elements from e are
also in ey. A set e is non-empty if an element z exists that is in the set, i.e. [e][ z]. A
:T — Dbool holds for

the two sets, i.e. Similarly, the intersection of two sets e; and ey is

For set difference, the lambda defines an array containing only

set e is empty if all elements x are not in the set. A predicate e

all elements of a set e; if for every element x that is in the set the predicate is true, i.e.

[ei]] = A predicate e5 : T — bool holds for at least one element of a

| = el ]

set e; if there exists an element x that is in the set and for which the predicate holds, i.e.

[eddl ) A [ep] 2 ).

C.3 Compiling Maps
Maps are encoded as arrays from the key type to an optional value:
Map (T, P)]: = Array([T]:, Option([F]¢))

Optional values indicate the presence or absence of a value for a certain key. The option type
is defined as an ADT with two constructors: Some(value) which holds a value and None()
indicating the absence of a value. An empty map corresponds to an array containing None()
for every key and is created by a lambda that returns None() for every key:

9:35

ECOOP 2023



9:36 VeriFx: Correct Replicated Data Types for the Masses

[e match {case 7 ="e;}|] = match([e], pat[case r = e.])
pat[case K(T) = €] case(K (), [e])

pat[case z = €] case(z, [e])

pat[case _ = €] = case(_, [e])

Figure 10 Compiling pattern match expressions.

[e1-add(e2)] = [ei][[e2] ]:=true
[e1.remove(e2)] = [e1]] [e2] ] :=false
[e1.contains(e2)] = [ex]][ [e2] ]
ler-filter(e2)] = Mz : [T]¢)-[ex][ ] A [ez][ ] where typeof(e1) = Set(T)
[ev-map(es)] = Ay : [Pl 3 : [T]) [l ] A [eal [ ] =

where typeof(e1) = Set(T) A typeof(e2) = T — P
[er-union(ez)] = Xz : [T]¢)-[ex][ z ]V [e2]] = ]

where typeof(e1) = Set(T') A typeof(e2) = Set(T)
[e1.intersect(ez)] = Az : [T]¢).[ea][ z ] A [e2]] = ]

where typeof(e1) = Set(T') A typeof (e2) = Set(T)
fex.diff (e2)] = Az : [T]0)-[e]] ] A ~[ea] [ ]

where typeof(e1) = Set(T) A typeof(ez) = Set(T)
[e1.subsetOf (e2)] =V (z : [T]¢)-[er][z] = [ez2][ =]

where typeof(e1) = Set(T') A typeof (e2) = Set(T)
[e.nonEmpty()] = 3(z : [T]¢).[e][ z] where typeof(e) = Set(T)
le-isEmpty()] =V(z : [T]¢).~[e][ ] where typeof(e) = Set(T)
lex-forall(e,)] = V(2 : [T]e).[er][ 2] = [ep][ =]

where typeof(e1) = Set(T") and typeof(ep) =T — bool
[e1-exists(ep)] = Iz : [T]e)-[ea][ z ] A [ep]] = ]

where typeof(e1) = Set(T) and typeof(ep) =T — bool

Figure 11 Compiling set operations.

[new Map (T, P)( )] = Az : [T]¢).None([P]:)()
Operations on maps are compiled as follows:

map[em.add(er, ex)] = [em]] [ex] ] :=Some([e.])

map[em.remove(ex)] = [em][ [ex] ]:=None([V]:)()

map[em.contains(ex)] = [em][ [ex] ] # None([V]:)()

map[em.get(er)] = [en]] [ex] ]-value

map[em.getOrElse(er, e,)] = if ([em][ [ex] ] = None([V]:)(), [ev], [em]] [ex] ]-value)

A key-value pair e — e, is added to a map e,, by updating the entry for the compiled key
[ex] in the compiled array [e,,] with the compiled value, Some([e,]). A key ey is removed
from a map e, by updating the corresponding entry to None([V]:)(), thereby indicating the
absence of a value. Note that None is polymorphic but the type parameter cannot be inferred
from the arguments; it is thus passed explicitly. A key ey is present in a map e,, if the value
that is associated to the key is not None([V]:)(). The get method fetches the value that is
associated to a key ey in a map e,,. To this end, the compiled key [ex] is accessed in the
compiled map [e,,] and the value it holds is then fetched by accessing the value field of



K. De Porre, C. Ferreira, and E. Gonzalez Boix

the Some constructor. Even though the entry that is read from the array is an option type
(i.e. a None or a Some) we can access the value field because the interpretation of value is
underspecified in SMT. If the entry is a None, the SMT solver can assign any interpretation
to the value field. Hence, the get method on maps should only be called if the key is known
to be present in the map, e.g. after calling contains. VeriFx also features a safe variant,
called getOrElse, which returns a default value if the key is not present.

Next, we explain how to encode the advanced map operations. Figure 12 defines the SMT
encoding for all advanced map operations. The keys method on maps returns a set containing
only the keys that are present in the map. Calls to keys on a map e,, of type Map (K, V) are
compiled to a lambda which defines a set of keys k of the compiled key type [K]: such that
a key is present in the set iff it is present in the compiled map: [e,,][ k| # None([V]+)(). A
predicate e, of type (K, V) — bool holds for all elements of a map e,, of type Map (K, V) iff
it holds for every key k that is present in the map and its associated value:

[em][ k] # None([V]1)() = [ep][ ¥, [em][ & ].value ]

€m .contains(k) ep(k, em.get(k))

Similarly, the values method returns a set with all values of the map. To this end, it defines
an array containing all values for which at least one key exists that maps to that value.

A predicate e, of type (K,V) — bool holds for at least one element of a map e, of
type Map (K, V) iff there exists a key k with associated value v that is present in the map and
for which the predicate holds. Mapping a function e over the key-value pairs of a map e,
is encoded as a lambda that defines an array containing only the keys that are present in the

compiled map [e,,] and whose values are the result of applying e; on the original value, i.e.

Some([es][ k, [em]] k ].value ]). The mapValues method is similar except that it applies the
provided function only on the value. A map e,, can be filtered using a predicate e, such that
the resulting map only contains key-value pairs that fulfill the predicate. Calls to filter
are encoded as a lambda that defines an array containing only the key-value pairs that are
in the compiled map:

in original map predicate holds

if([em][ k] # None([V]:)() Alepll &, [en][ & ].value ],
Some([e][ k ]-value), None([V]:)() )

then keep the value else not in the map

To zip two maps e,,, and e,,, the compiler creates a lambda that defines an array containing
only the keys that are present in both maps and the value is a tuple holding the corresponding
values from both maps:

Some( Tuple__ctor([em, ]| k ]-value, [em,]] k |.value))

To combine two maps e,,, and e,,, with a function ey the compiler creates a lambda that
defines an array containing all the keys from e,,, and e,,,. If a key is present in both maps
their values are combined using the provided function ey:

Some([ef][ [em, ][ k ]-value, [em, ][ k |.value ])

If a key-value pair is present in only one of the maps it is also present in the new map. If a
key is not present in e,,, neither in e,,, then it is also not present in the resulting map.

Vectors and Lists. The encoding of sets and maps is very useful to build new data structures
in VeriFx without having to encode them manually in SMT. For example, vectors and
lists are implemented on top of maps. Internally, they map indices between 0 and size — 1

9:37

ECOOP 2023



9:38 VeriFx: Correct Replicated Data Types for the Masses

maplem keys()] = Az : [K]¢).[em][ = ] # None([V]:)()
where typeof (ey) = Map(K, V)
maplem.values()] = Xz : [V]¢).3(k : [K]¢)-[em][ k] = Some(z)
where typeof (e ) = Map(K, V)
maplem.bijective()] = V(k1 : [K]¢, k2 : [K]¢).
(k1 # k2 A [em][ k1 ] # None([V]e)() A [em][ k2 | # None([V]:)())
= lem][ k1] # [em][ k2]
where typeof (e ) = Map(K, V)
maplem forall(ep)] = V(z : [K]:).[em][ 2] 7# None([V]:)() = [epl[ 2, [em][ # ]-value]
where typeof (em) = Map(K, V) and typeof(ep) = (K,V) — bool
maplem.ezxists(ep)] = Iz : [K]¢).[em]] ] # None([V]e)() A [epl] z, [em]] z |.value ]
where typeof (em) = Map(K, V) and typeof (ep) = (K, V) — bool
maplem-map(ef)] = Az : [K]¢). if ([en][ = | # None([V])(),
Some([ef][ z, [em]] z ].value ]),
None([W]:)())
where typeof (em) = Map(K, V) and typeof(ef) = (K, V) - W
mapem.map Values(es)] = Mz : [K]¢). if([em][ z ] # None([V]¢)(),
Some([ef][ [em][ z ].value ]),
None([W]:)())
where typeof (em) = Map(K, V) and typeof(es) =V — W
maplem.filter(ep)] = Az : [K]¢). if([em]] ] # None([V]e)() A [epl] z, [em]] = |.value ],
Some([em ][ z ]-value),

None([V]¢)())
where typeof (eym) = Map(K, V) and typeof(ep) = (K, V) — bool
maplem, -zip(em,)] = A(z : [K]e). if([em, [ 2] # None([V]e)() A [em,][ z] # None([W]:)(),
Some(Tuple__ctor([em, ][ = |.value, [em, ][ = ].value)),
None([Tuple(V, W)]:)())
where typeof (em,) = Map(K, V) and typeof(em,) = Map(K, W)
maplem, .combine(em,, ef)] = Mz : [K]¢).if (lem, ][ # ] # None([V]e)() A [em,][ =] # None([V]:)(),
Some([ef][ [em, ][  ].value, [em,]] = ].value ]),

if(%eml}}“ w% # None([V]:)(),
if(@émﬂ %} # None([V1,)(),
None([V1:}()))
where typeof (em,) = Map(K, V) and typeof (em,) = Map(K, V) and typeof(ef) = (V,V) -V
maplem.toSet()] = Mz : Tuple([K]¢, [V]:)).[em]] z.fst | = Some(z.snd)

where typeof (ey,) = Map(K, V)

Figure 12 Compiling advanced map operations.

to their value, and provide a traditional interface on top (cf. Figure 4). Note that this
encoding of vectors and lists on top of maps is only used when verifying proofs in SMT;
when compiling to a target language (e.g. Scala or JavaScript), VeriFx leverages the
language’s built-in vector and list data structures.

C.4 Compilation Example

Figure 13 shows a concrete example of a polymorphic set implemented in VeriFx and
its compiled code in Core SMT. The MSet class defines a type parameter V' corresponding
to the type of elements it holds. It also contains one field set of type Set(V) and defines
a polymorphic method map that takes a function f : V' — W and returns a new MSet
that results from applying f on every element. The compiled Core SMT code defines an
ADT MSet with one type parameter V and one constructor MSet_ ctor. The constructor
defines one field set of sort Array(V, bool) which is the compiled sort for sets. In addition,
a polymorphic MSet__map function is defined which takes two type parameters V' and W



K. De Porre, C. Ferreira, and E. Gonzalez Boix 9:39

adt MSet(V){ MSet_ctor(set : Array(V, bool)) }
fun MSet_map(V, W)(this : MSet(V),

class MSet[V](set: Set[V]) { f : Array(V, W)) : MSet<W> =

def map[W](f: V => W): MSet[W] = MSetictor(
) new MSet(this.set.map(f)) )\(y . W)H(CE . V).this.set[ CE} A f[ :C} — y)
(a) A polymorphic class in VeriFx. (b) Compiled Core SMT code.

Figure 13 Example of a polymorphic class in VeriFx and the compiled Core SMT code.

which correspond to MSet’s type parameter and map’s type parameter respectively. The
function takes two arguments, the object that receives the call and the function f. The
function’s body calls the MSet constructor with the result of mapping f over the set.

D Implementation and Verification of the Buggy Map CRDT

Section 6.1.1 reported on our experience implementing and verifying the buggy and corrected
map CRDTs proposed by Kleppmann [40]. In this appendix, we explain the implementation
and verification of the buggy map CRDT in detail using code examples. We also discuss the
counterexample found by VeriFx.

Specification 2 The buggy map CRDT algorithm, taken from [40].

on initialisation do
values := {}
end on

on request to read value for key k£ do
if 3t,v.(t, k,v) € values then return v else return null

end on

on request to set key k to value v do

t := newTimestamp() > globally unique, e.g. Lamport timestamp
broadcast (set,t, k,v) by causal broadcast (including to self)
end on

on delivering (set, t, k,v) by causal broadcast do
previous := {(t',k’,v") € values | k' =k}
if previous = {} V V(t',k’,v") € previous.t’ < t then
values := (values \ previous) U {(t, k,v)}
end if
end on

on request to delete key k do
if 3t,v. (¢, k,v) € values then
broadcast (delete, t) by causal broadcast (including to self)
end if
end on

on delivering (delete, t) by causal broadcast do
values := {(t', k', v") € values | t' # t}
end on

D.1 Original Specification

The buggy map CRDT is a replicated dictionary storing key-value pairs where the values
are regular values (i.e. no nested CRDTS). Specification 2 shows the specification of the
buggy map CRDT. It defines a read operation to fetch the value associated with a certain

ECOOP 2023



9:40

VeriFx: Correct Replicated Data Types for the Masses

Listing 10 Excerpt from the implementation of the buggy map CRDT in VeriFx.

enum MapOp[K, V] { Put(k: K, v: V) | Delete(k: K) }
enum MapMsg[K, V] {
PutMsg(t: Clock, k: K, v: V) |
DeleteMsg(t: Clock, k: K) |
NopMsg ()
}
class KMap[K, V](clock: Clock, values: Map[K, Tuple[Clock, V]])
extends CmRDT[MapOp[K, V], MapMsglK, V], KMap[K, V1] {
def contains(k: K): Boolean = this.values.contains(k)
def get(k: K): V = this.values.get(k).snd

// Prepare phase for the "put" operation
// "put" corresponds to the "set" operation in the specification
def preparePut(k: K, v: V) = {
val t = this.clock
new PutMsg(t, k, v)
}
// Effect phase for incoming "put" messages
def put(t: Clock, k: K, v: V) = {
val newClock = this.clock.sync(t)
if (!this.values.contains(k) ||
this.values.get(k).fst.smaller(t))
new KMap(newClock, this.values.add(k, new Tuple(t, v)))
else
new KMap(newClock, this.values)

// Prepare phase for the "delete" operation
def prepareDelete(k: K) = {
if (this.values.contains(k)) {
val t = this.values.get(k).fst
new DeleteMsg[K, V1(t, k)
}
else
new NopMsg[K, V]()
}
// Effect phase for incoming "delete" messages
def delete(t: Clock, k: K) = {
if (this.values.contains(k) && this.values.get(k).fst == t)
new KMap(this.clock, this.values.remove(k))
else
new KMap(this.clock, this.values)

override def equals(that: KMap[K, V]) =
this.values == that.values



K. De Porre, C. Ferreira, and E. Gonzalez Boix

key, and two update operations: set and delete which assign a value to a key, respectively,

delete a certain key. Every operation consists of two parts, a prepare phase (denoted “on

request®) that prepares a message to be broadcast to every replica (including itself), and an

effect phase (denoted “on delivering“) that applies the incoming message. We briefly explain

both update operations:

set(k,v). When preparing a set operation that assigns a value v to a key k, the replica
generates a new and globally unique timestamp ¢ and broadcasts a (set,t, k,v) message.
When receiving such a message, the replica checks if it already stores a value for this key.
If this is not the case, or if the previous value has a smaller timestamp ¢’ < ¢, then it
assigns the incoming value v to the key k, thereby, overriding any previous value. On the
other hand, if the previous value has a bigger timestamp, then the incoming set message
is ignored and the previous value is kept.

delete(k). When preparing a delete operation that deletes a key k, the replica fetches the
timestamp ¢ at which that key was inserted and broadcasts a (delete,t) message. Note
that the key itself is not added to the message because set always inserts a single key with
a unique timestamp, hence, the timestamp ¢ uniquely identifies the key. When receiving
a (delete,t) message, the replica removes the key that was inserted at timestamp ¢ (if it
is still present).

D.2 Implementation in VeriFx

Listing 10 shows the implementation of the buggy map CRDT in VeriFx. Every replica (i.e.
every instance of the KMap class) maintains a local Lamport clock (consisting of a counter and
a replica identifier) and keeps a dictionary that maps keys to timestamped values (i.e. a tuple
containing a timestamp and a value). This implementation strategy is slightly different from
Spec. 2 but more efficient because a dictionary allows for constant-time lookup, insertion,
and deletion. We also extended the DeleteMsg such that it not only contains the timestamp
t but also the key to be deleted (Line 4). This allows for an efficient implementation of
delete since the replica knows which key to delete and does not have to loop over the map
to find the key whose value has timestamp ¢.

We override equality - which by default is structural equality - because replicas have
different Lamport clocks [43] as our implementation of the clocks keeps a unique replica
identifier. Hence, two replicas are considered equal if they have the same values, independent of
their clocks. We also renamed the set operation to put. The remainder of the implementation
is a straightforward translation from the specification.

D.3 Verification in VeriFx

After implementing the buggy map CRDT in VeriFx we proceeded to the verification of the
map. As explained in Section 6.1.1, VeriFx returned invalid counterexamples because it is
not aware of the CRDT’s assumptions which are implicit in the design. For instance, VeriFx
does not know that replicas have unique IDs nor does it know the relation between a replica’s
clock and the values it observed. We need to encode these assumptions explicitly such that
VeriFx does not consider cases that cannot occur in practice. To this end, we override the
reachable and compatible predicates (cf. Section 5.1). The former defines which states
are reachable (i.e. valid), while the latter defines which replicas are compatible.

Listing 11 shows the implementation of the reachable and compatible predicates. First,
we define a state to be reachable iff every value has a unique timestamp (Line 3 to 6) and
all values have a timestamp whose count is smaller than the replica’s local clock (Line 10).

9:41

ECOOP 2023



9:42 VeriFx: Correct Replicated Data Types for the Masses

Listing 11 Encoding the assumptions of the Map CRDT in VeriFx.

1 override def reachable(): Boolean = {

2 // every value must have a unique timestamp

3 I(exists(kl: K, k2: K) {

4 ki !'= k2 &&

5 this.values.get (k1) .fst == this.values.get(k2).fst

o 1) &

7 // All the values in the map must have a timestamp < than our local clock
8 // (since we sync our clock on incoming updates)

9 this.values.values().forall((entry: Tuple[Clock, V1) =>
10 entry.fst.counter < this.clock.counter)

SR

12 private def noValueFromFuture(rl: KMap[K, V], r2: KMap([K, V]) {
13 rl.values.values().forall((entry: Tuple[Clock, V]) => {

14 val t = entry.fst

15 (t.replica == r2.clock.replica) =>:

16 (t.counter < r2.clock.counter)

17 1))

18 }

10 override def compatible(that: KMap[K, V]) = {

20 // replicas have unique IDs

21 (this.clock.replica != that.clock.replica) &&

22 // we have no value from the future of the other replica

23 this.noValueFromFuture(this, that) &&

24 // the other did not observe a value from our future

25 this.noValueFromFuture(that, this) &&

26 // unique timestamps

27 ! (exists(kl: K, k2: K) {

28 k1 !'= k2 && this.values.get(kl).fst == that.values.get(k2).fst
29 }) &&

30 // replicas cannot store different values for the same key and timestamp
31 ! (exists(k: K) {

32 val thisTuple = this.values.get (k)

33 val thisTimestamp = thisTuple.fst

34 val thisValue = thisTuple.snd

35 val thatTuple = that.values.get (k)

36 val thatTimestamp = thatTuple.fst

37 val thatValue = thatTuple.snd

38 (thisTimestamp == thatTimestamp) && (thisValue != thatValue)
39 b



K. De Porre, C. Ferreira, and E. Gonzalez Boix

enum V { vO | v2 }
enum K { k1 }

val sl = KMap(Clock(1l, 1), Map())
val s2 = KMap(Clock(2, 9), Map(kl -> (Clock(4, 2), v2)))
val s3 = KMap(Clock(3, 3), Map(kl -> (Clock(4, 2), v2)))

val x = Put(kl, v0) // operation generated by sl

// The prepare phase will broadcast the following message:
// sl.preparePut(kl, v0) = PutMsg(Clock(1l, 1), k1, v0))
val y = Delete(kl) // operation generated by s2

// s2.prepareDelete(kl) = DeleteMsg(Clock(4, 2), k1)

(a) Simplified counterexample returned by VeriFx.

s3

(KT > (8. 2),v2)) PutMsg((1 1), k1, vO))

> {k1->((4,2),v2)} DeleteMsg((4, 2), k1) . i)

+

> {k1->((1,1),v0)}

s3

(K1 > (4, 2), v2)} 2eteteMsg((d, 2), k1)

PutMsg((1, 1), k1, v0))

> {}
(b) Visualization of the counterexample returned by VeriFx.

Figure 14 Counterexample for the buggy Map CRDT, found by VeriFx.

The latter property follows from the fact that the dictionary is constructed by successive
insertions and every insertion synchronizes the replica’s clock with the timestamp of the
inserted element.
Second, we define two replicas to be compatible iff:
they have unique IDs (Line 21),
they did not observe values with a timestamp that is bigger than the current clock of
the replica that inserted that value (Line 23 to 25) because that would mean that some
replica observed a value from the future of the origin replica which is not possible,
they do not have the same timestamp for different keys (Line 27 to 29) because every
insertion inserts a single key with a unique timestamp,
for every key k for which they store the same timestamp ¢ they also store the same value
v (Line 31 to 39) because every timestamp uniquely identifies one insertion: PutMsg(t,
k, v).
Clearly, the above assumptions are not straightforward and are in fact implicit in the original
specification, but are nevertheless vital to the correctness of the algorithm. In practice, many
CRDTs make similar implicit assumptions which is the reason they are complex and difficult
to get right.

Counterexample. After defining all assumptions described above, VeriFx found a valid
counterexample which is shown in Figure 14a. We simplified the counterexample by
renaming the keys and values and removing those that do not affect the outcome. The
counterexample is equivalent to the one that was found manually by Nair (cf. [40]). It
consists of a corner case in which the Put and Delete operations do not commute and
thus may cause replicas to diverge.

Recall that a counterexample is a mapping from variables (defined by the proof) to values
that break the proof. In this case, the ChRDTProof2 trait (cf. Section 5.1) that was used to
check commutativity of the operations, defines three variables s1, s2, and s3 representing

9:43

ECOOP 2023



9:44

VeriFx: Correct Replicated Data Types for the Masses

the state of the replicas, and two variables x = Put(k1l, vO) and y = Delete(kl)
representing concurrent operations that were generated by replica s1 and s2 respectively.
These replicas first prepare a message for the operations (respectively, PutMsg(Clock(1,
1), k1, v0)) and DeleteMsg(Clock(4, 2), k1)) and broadcast those messages to
every replica. Every replica receives these messages, possibly in a different order, and
applies them.

Depending on the order in which replica s3 applies the operations, the outcome is different.
This is visualized in Figure 14b. If s3 first processes the DeleteMsg(Clock(4, 2), k1)
message then key k1 is gone because the stored timestamp matches the timestamp that was
requested to delete. Afterwards, when processing the PutMsg(Clock(1, 1), k1, v0)
message, the replica will add key k1 with value vO. When applying the operations the other
way around, the outcome is different because the PutMsg(Clock(1,1), k1, vO) message
is ignored since its timestamp is smaller than the timestamp s3 currently stores for that key:
Clock(1,1) < Clock(4, 2). Later, when processing the DeleteMsg(Clock(4,2), k1)
message, s3 effectively deletes key k1 because the timestamp matches the one that is
stored. Thus, after the first execution, the resulting state contains key k1, whereas, after
the second execution, k1 is not present in the map. This explains the divergence bug.

E Verification of the MWS Set

Specification 3 describes the MWS Set, which associates a count to every element. An
element is considered in the set if its count is strictly positive. remove decreases the element’s
count, while add increments the count by the amount that is needed to make it positive
(or by 1 if it is already positive). Listing 12 shows the implementation of the MWS Set in
VeriFx as a polymorphic class that extends the CmRDT trait (cf. Section 5.1.3). The type
arguments passed to CmRDT correspond to the supported operations (Set0Ops), the messages
that are exchanged (SetMsgs), and the CRDT type itself (MWSSet). The SetOp enumeration
defines two types of operations: Add(e) and Remove(e).

The MWSSet class has a field, called elements, that maps elements to their count (Line 3).
Like all op-based CRDTs, the MWSSet implements two methods: prepare and effect. The
prepare method pattern matches on the operation and delegates it to the corresponding
source method which prepares a SetMsg to be broadcast to all replicas. The class overrides the
enabledSrc method to implement the source precondition on remove, as defined by Spec. 3.
When replicas receive incoming messages, they are processed by the effect method which
delegates them to the corresponding downstream method which performs the actual update.
For example, the removeDownstream method processes incoming RmvMsgs by decreasing
some count k' by 1. Unfortunately, k" is undefined in Spec. 3.

We believe that k' is either defined by the source replica and included in the propagated
message (Spec. 4), or, k' is defined as the element’s count at the downstream replica (Spec. 5).
We implemented both possibilities in VeriFx (Listings 13 and 14) and verified them to find
out which one, if any, is correct. To this end, the companion object of the MWSSet class
(cf. Line 26 in Listing 12) extends the CmRDTProof1 trait (cf. Section 5.1.3), passing along
three type arguments: the type of operations SetOp, the type of messages being exchanged
SetMsg, and the CRDT type constructor MWSSet. The object extends the CmRDTProof1 trait
since the MWSSet class is polymorphic and expects one type argument. When executing the
proof inherited by the companion object, VeriFx automatically proves that the possibility
implemented by Listing 14 is correct and that the one of Listing 13 is wrong. We thus
successfully completed the MWS Set implementation using VeriFx’s integrated verification
capabilities.



K. De Porre, C. Ferreira, and E. Gonzalez Boix

Specification 3 Op-based MWS Set
CRDT taken from Shapiro et al. [67].

: payload set S = {(element, count), ...}

initial £ x {0}

: query lookup (element e) : boolean b

let b= ((e,k) € SAk>0)
update add (element e)
atSource (e) : integer j
if 3J(e,k) € S: k<0 then

let j = |k|+1
else
let j =1

downstream (e, j)
let k' : (e,k') € S
5= S\{(e, k)} U {(e. k" + 1)}

: update remove (element e)

atSource (e)
pre lookup(e)

downstream (e)

S i= S\{(e,k)} U{(e, k' — 1)}

Specification 4 Remove with k' de-

fined at source.

1
2
3
4:
5
6

: update remove (element e)

atSource (e) : integer k'
pre lookup(e)
let k' : (e,k’) €S
downstream (e, k)

S i= S\{(e, KN} U {(e. K — 1)}

Specification 5 Remove with k' de-

fined in downstream.

oA W N

update remove (element e)
atSource (e)
pre lookup(e)
downstream (e)
let k' : (e,k’) € S
8 = S\{(e, k)] U {(es k' — 1)}

(S

16

o W

Listing 12 MWS Set implementation in VeriFx.

enum SetOp[V] { Add(e: V) | Remove(e: V) }

enum SetMsg[V] { AddMsg(e: V, dt: Int) | RmvMsg(e: V) }

class MWSSet[V] (elements: Map[V, Int]) extends

CmRDT [SetOp[V], SetMsgl[V], MWSSet[Vl] {
override def enabledSrc(op: SetOpl[V])

case Add(_) => true

case Remove(e) => this.preRemove(e) }

def prepare(op: SetOp[V]) = op match {

case Add(e) => this.add(e)
case Remove(e) => this.remove(e) }

def effect(msg: SetMsg[V]) = msg match {
case AddMsg(e, dt) => this.addDownstream(e, dt)
case RmvMsg(e) => this.removeDownstream(e) }

def lookup(e: V) = this.elements.getOrElse(e, 0) > 0

def add(e: V): SetMsglV] = {

val count = this.elements.getOrElse(e, 0)
val dt = if (count <= 0) (count * -1) + 1 else 1

new AddMsg(e, dt) }

def addDownstream(e: V, dt: Int): MWSSet[V]
val count = this.elements.getOrElse(e, 0)
new MWSSet(this.elements.add(e, count + dt)) }

def preRemove(e: V) = this.lookup(e)

def remove(e: V): SetMsg[V] = new RmvMsg(e)

def removeDownstream(e: V): MWSSet[V]
val kPrime = ??? // undefined in Specification 3
new MWSSet(this.elements.add(e, kPrime - 1)) } }

object MWSSet extends CmRDTProofl[SetOp,SetMsg,MWSSet]

Listing 13 Computing k' at the source.

def remove(e: V): Tuple[V, Int] =

new Tuple(e, this.elements.getOrElse(e, 0))

def removeDown(tup: Tuplel[V, Int]): MWSSet[V] = {
val e = tup.fst; val kPrime = tup.snd
new MWSSet(this.elements.add(e, kPrime - 1)) }

Listing 14 Computing k' downstream.

def remove(e: V): V = e
def removeDown(e: V): MWSSet[V] = {

val kPrime = this.elements.getOrElse(e, 0)
new MWSSet(this.elements.add(e, kPrime - 1))

op match {

{

{

9:45

ECOOP 2023



	1 Introduction
	2 Motivation
	2.1 Design and Implementation
	2.2 Verification
	2.3 Deployment

	3 The VeriFx Language
	3.1 Overall Architecture
	3.2 Syntax
	3.3 Functional Collections

	4 Automated Verification
	4.1 Core SMT
	4.2 Compiling VeriFx to SMT
	4.3 Deriving Proof Obligations
	4.4 Encoding Functional Collections Efficiently in SMT

	5 Implementing and Verifying Replicated Data Types
	5.1 CRDT Library
	5.1.1 State-based CRDTs
	5.1.2 Delta state-based CRDTs
	5.1.3 Op-based CRDTs
	5.1.4 Pure op-based CRDTs

	5.2 OT Library
	5.3 Encoding RDT-Specific Assumptions

	6 Evaluation
	6.1 Verifying Conflict-free Replicated Data Types
	6.1.1 Map CRDTs
	6.1.2 Conclusion

	6.2 Verifying Operational Transformation

	7 Discussion
	8 Related Work
	9 Conclusion
	A VeriFx's Type System
	B Core SMT Expressions
	C Compiler Semantics
	C.1 Compiling Expressions
	C.2 Compiling Sets
	C.3 Compiling Maps
	C.4 Compilation Example

	D Verification of the Buggy Map CRDT
	D.1 Original Specification
	D.2 Implementation in VeriFx
	D.3 Verification in VeriFx

	E Verification of the MWS Set

