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Abstract
This paper introduces hinted dictionaries for expressing efficient ordered sets and maps functionally.
As opposed to the traditional ordered dictionaries with logarithmic operations, hinted dictionaries
can achieve better performance by using cursor-like objects referred to as hints. Hinted dictionaries
unify the interfaces of imperative ordered dictionaries (e.g., C++ maps) and functional ones (e.g.,
Adams’ sets). We show that such dictionaries can use sorted arrays, unbalanced trees, and balanced
trees as their underlying representations. Throughout the paper, we use Scala to present the
different components of hinted dictionaries. We also provide a C++ implementation to evaluate
the effectiveness of hinted dictionaries. Hinted dictionaries provide superior performance for set-
set operations in comparison with the standard library of C++. Also, they show a competitive
performance in comparison with the SciPy library for sparse vector operations.
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1 Introduction

Sets and maps are two essential collection types for programming used widely in data
analytics [12]. The underlying implementation for both are normally based on 1) hash tables
or 2) ordered data structures. The former provides (average-case) constant-time lookup,
insertion, and deletion operations, while the latter performs these operations in a logarithmic
time. The trade-off between these two approaches has been heavily investigated in systems
communities [7].

An important class of operations are those dealing with two collection types, such as set-set-
union or the merge of two maps. One of the main advantages of hash-based implementations is
a straightforward implementation for such operations with a linear computational complexity.
However, naïvely using ordered dictionaries results in an implementation with a computational
complexity of O(n log(n)).

Motivating Example. The following C++ code computes the intersection of two sets,
implemented by std::unordered_set, a hash-table-based set:

std::unordered_set<K> result;
for(auto& e : set1) {

if(set2.count(e))
result.emplace(e);

}
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However, the same fact is not true for ordered data structures; changing the dictionary type
to std::set, an ordered implementation, results in a program with O(n log(n)) computational
complexity. This is because both the count (lookup) and emplace (insertion) methods have
logarithmic computational complexity.

As a partial remedy, the standard library of C++ provides an alternative insertion method
that can take linear time, if used appropriately. The emplace_hint method takes a hint for
the position that the element will be inserted. If the hint correctly specifies the insertion
point, the computational complexity will be amortized to constant time.1

std::set<K> result;
auto hint = result.begin();
for(auto& e : set1) {

if(set2.count(e))
hint = result.emplace_hint(hint, e);

}

However, the above implementation still suffers from an O(n log(n)) computational
complexity, due to the logarithmic computational complexity of the lookup operation (count)
of the second set. Thanks to the orderedness of the second set, one can observe that once
an element is looked up, there is no longer any need to search its preceding elements at the
next iterations. By leveraging this feature, we can provide a hinted lookup method with an
amortized constant run-time.

Hinted Data Structures. The following code, shows an alternative implementation for set
intersection that uses such hinted lookup operations:
hinted_set<K> result;
hinted_set<K>::hint_t hint = result.begin();
for(auto& e : set1) {

hinted_set<K>::hint_t hint2 = set2.seek(e);
if(hint2.found)

hint = result.insert_hint(hint, e);
set2.after(hint2);

}

The above hinted set data-structure enables faster insertion and lookup by providing a
cursor through a hint object (of type hint_t). The seek method returns the hint object
hint2 pointing to element e. Thanks to the invocation of set2.after(hint2), the irrelevant
elements of set2 (which are smaller than e) are no longer considered in the next iterations.
The expression hint2.found specifies if the element exists in set2 or not. Finally, if an
element exists in the second set (specified by hint2.found), it is inserted into its correct
position using insert_hint.

This paper introduces hinted dictionaries, a class of functional ordered data structures.
The essential building block of hinted dictionaries are hint objects, that enable faster operations
(than the traditional O(log n) complexity) by maintaining a pointer into the data structure.

Related Work. The existing work on efficient ordered dictionaries can be divided into
two categories. First, in the imperative world, there are C++ ordered dictionaries (e.g.,
std::map) with limited hinting capabilities only for insertion through emplace_hint, but
not for deletion and lookup, as observed previously.

1 https://www.cplusplus.com/reference/set/set/emplace_hint/

https://www.cplusplus.com/reference/set/set/emplace_hint/
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Second, from the functional world, Adams’ sets [1] provide efficient implementations for
set-set operators. Functional languages such as Haskell have implemented ordered sets and
maps based on them for more than twenty years [15]. Furthermore, it has been shown [4] that
Adams’ maps can be used to provide a parallel implementation for balanced trees such as
AVL [2], Red-Black [3], Weight-Balanced [9], and Treaps [11]. However, Adams’ maps do not
expose any hint-based operations to the programmer. At first glance, these two approaches
seem completely irrelevant to each other.

Contributions. The key contribution of this paper is hinted dictionaries, an ordered data
structure that unifies the techniques from both imperative and functional worlds. The underly-
ing representation for hinted dictionaries can be sorted arrays, unbalanced trees, and balanced
trees by sharing the same interface. In our running example, alternative data-structure
implementations can be easily provided by simply changing the type signature of the hinted
set from hinted_set to another implementation, without modifying anything else.

This paper is organized as follows:
We present monoid dictionaries, the most general form of dictionaries without any
orderedness constraint on keys (Section 2). Such dictionaries subsume sets and maps and
provide a restricted form of iterations in the form of map-reduce for computing associative
and commutative aggregations over them (Section 2.4).
Afterwards, we show ordered dictionaries, a more restricted class of dictionaries where
the keys need to be ordered (Section 3). The iterations over these dictionaries are more
general than monoid dictionaries, by relaxing the commutative requirement and providing
associative aggregations. We show two particular interfaces for implementing associative
aggregations in Section 3.3.
We introduce hinted dictionaries, an implementation technique for ordered dictionaries
(Section 4). A key ingredient of hinted dictionaries are the hint objects. In Section 4.2
we show operations over hint objects.
Hinted dictionaries provide both sequential and parallel implementations for associative
aggregations (Section 5).
In order to support binary operations over dictionaries, hinted dictionaries provide a bulk
operation interface (Section 6). The design choice for these bulk operations results in a
completely different instantiation of hinted dictionaries. We present two implementations
in this paper: insert-based (Section 6.1) and join-based (Section 6.2) hinted dictionaries.
We present the implementation for hint objects in Section 7. More specifically, we
present focus-based hints, hint objects focusing on a particular position in the dictionary
(Section 7.1), and the corresponding focus-based hinted dictionaries (Section 7.2).
We present the concrete implementations for hinted dictionaries in Section 8. More
specifically, we show the implementation of ordered dictionaries using sorted arrays
(Section 8.1), unbalanced trees (Section 8.2), and balanced trees (Section 8.3). Then, we
connect all the components together in Section 8.4.
Finally, we provide a C++ prototype for hinted dictionaries and discuss the challenges
for tuning its performance in Section 9.1. We compare its performance with the standard
library of C++ for set-set and sparse vector operations and show its asymptotic improve-
ments in Section 9.2. For the latter workload we show its competitive performance with
SciPy.

Throughout the paper, we use Scala to present the different components. The main
ideas behind hinted dictionaries, however, can be implemented in other object-oriented and
functional languages with support for generic types and lambda expressions (e.g., Haskell,

ECOOP 2023
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trait Monoid[V] {
def op(e1: V, e2: V): V
def zero: V

}

trait Equalable[K] {
def equiv(e1: K, e2: K): Boolean

}

Figure 1 The interface for monoid and equalable type classes.

OCaml, Java, Julia, Rust, and C++), as demonstrated in Section 9.1. The former is
required for implementing the structural interfaces (e.g., Monoid[T]) and generic dictionaries
(e.g., Dict[K, V]), while the latter is essential for implementing higher-order functions (e.g.,
mapReduce) in hinted dictionaries.

2 Monoid Dictionary

In this section, we present the most general form of dictionaries that we support; the ones
where the values form a monoid structure, referred to as monoid dictionaries. We start by
defining monoid and equalable values. Afterwards, we introduce the interface for monoid
dictionaries. Finally, we show the class of iterations that can be expressed over them.

2.1 Monoid
A monoid is defined as a set of values V , with a binary operator op and a zero element,
such that the following properties hold:

Associativity: For all elements a, b, c in V : op(op(a, b), c) = op(a, op(b, c))
Identity Element: For all elements a in V : op(a, zero) = op(zero, a) = a

An important class of monoids, supports the following additional axiom:
Commutativity: For all elements a, b in V : op(a, b) = op(b, a)

Such monoids are referred to as commutative monoids. Important examples of commutative
monoids are boolean values under conjunction and disjunction, integer numbers under
multiplication and addition. Matrices of real numbers are commutative monoids under
addition, but are non-commutative monoids under multiplication.

The Scala interface for monoid structures is shown in Figure 1. This interface can be
thought of as a type class, where providing concrete implementations for this interface results
in type class instances.

2.2 Equalable
In order to perform lookups over dictionaries, one requires to check for the equality of keys.
This is achieved by the Equalable type class (Figure 1). Each type class instance provides
the implementation strategy for checking the equivalence between two keys by overriding the
equiv method.

2.3 Dictionary Interface
Given the key type K with an Equalable[K] constraint, and the value type V with a
Monoid[V] constraint, one can define the interface Dict[K, V, D] for a dictionary type D
(Figure 2).
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trait Dict[K, V, D] {
implicit val equ: Equalable[K]
implicit val mon: Monoid[V]
def find(dict: D, key: K): V
def insert(dict: D, key: K, value: V): D
def delete(dict: D, key: K): D
def size(dict: D): Int
def count(dict: D): Int
def empty(): D
def isEmpty(dict: D): Boolean
final def single(key: K, value: V): D = insert(empty(), key, value)

}

Figure 2 The interface for (monoid) dictionaries.

The specification of the methods of monoid dictionaries is as follows:
find: performs a look up for the associated value with key in the dictionary dict. If the
key does not exist in the dictionary, the identity element of the monoid structure over V
is returned (mon.zero).
insert: first performs a look up for the associated value with key. If the key does not
exist, the pair of key and value is inserted in the dictionary. If the key already exists,
the associated value, old_value, is updated by applying the binary operator of monoid
to old_value and value (mon.op(old_value, value)). As the result, the updated
dictionary is returned.
delete: returns a new dictionary where key and its associated value is removed.
size: returns the number of key-value pairs in the dictionary.
count: returns the number of key-value pairs with non-zero values in the dictionary.
empty: returns an empty dictionary of type D with keys and values of type K and V.
isEmpty: check if the given dictionary is empty or not.
single: returns a singleton dictionary containing the pair of key and value. This can
be implemented by inserting into an empty dictionary.

By providing appropriate monoid structures for values, one can instantiate different
collections from monoid dictionaries. As an example, using boolean values results in sets,
using natural numbers results in bags, and using Option types results in maps.2

2.4 Iterations over Dictionaries
Next, we introduce the constructs required for performing iterations over dictionaries. As
monoid dictionaries do not enforce any order over the keys, the iterative computation over
them must be order-agnostic. Otherwise, the iterative computation results in different
outcomes depending on the underlying organization of dictionary keys.

We provide the mapReduce method for expressing sound iterations over monoid dictionaries.
This method performs map-reduce operations by starting from the initial element z, computing
a transformation between key-value pairs to element of result type by map, and reducing the
result elements by red. To ensure the soundness of aggregate computations, the red binary
operator must be both commutative and associative.

2 Using Option types incurs boxing and unboxing costs that is avoided by libraries such as
scala-unboxed-option [5] for Scala and unpacked sums in GHC for Haskell [8]

ECOOP 2023
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trait DictIteration[K, V, D] { this: Dict[K, V, D] =>
// precond: ‘red‘ must be commutative and associative
def mapReduce[R](dict: D, z: R, map: (K, V) => R, red: (R, R) => R): R
// precond: ‘R‘ must form a commutative monoid
def aggregate[R: Monoid](dict: D, map: (K, V) => R): R = {

val monR = implicitly[Monoid[R]]
mapReduce[R](dict, monR.zero, map, monR.op)

}
def size(dict: D): Int =

aggregate[Int](dict, (k, v) => 1)
def count(dict: D): Int =

aggregate[Int](dict, (k, v) => if(v == mon.zero) 0 else 1)
}

Figure 3 The interface for iterations on dictionaries.

As an alternative interface, we provide aggregate with a monoid constraint over the
result type. This method can be implemented in terms of mapReduce (cf. Figure 3). To
do so, we need to use the zero element and the binary operator of an instance of the type
class Monoid[R]. The Scala type system can provide an instance for type class T by using
implicitly[T] [10]. In this case, implicitly[Monoid[R]] returns an instance of type
Monoid[R], where its zero element (monR.zero) and binary operator (monR.op) are passed
as the initial value and reduction functions of mapReduce, respectively. Note that for sound
aggregations, the result type should form a commutative monoid.

One can easily provide an implementation for size using the aggregate method. As we
are only interested in counting the number of key-value pairs, it is sufficient to transform
them to 1. Note that size returns the number of all pairs in the dictionary, while count
only returns the number of pairs containing non-zero values.

For a cleaner presentation, we use the DictIteration interface to define the iteration-
based methods (cf. Figure 3). This way, we avoid a large interface for Dict. To do
so, we need to make sure that all classes and interfaces that extend DictIteration, also
extend the Dict interface. This is achieved by ascribing the type of this object of the
DictIteration interfaces with Dict[K, V, D]. Such dependency injection technique is
known as cake pattern in the Scala programming language. It is important to note that using
this technique is not essential; we can implement this code in a language without this feature
by removing the interface for DictIteration altogether. Instead, all the method definitions
of DictIteration are added to Dict.

3 Ordered Dictionary

In this section we present ordered dictionaries, the keys of which should follow a total order.
First, we define the required interface for orderable keys in Section 3.1. Then, we introduce
the interface for ordered dictionaries including bulk operations of them in Section 3.2. Finally,
similar to monoid dictionaries, we show the class of iterations expressible over ordered
dictionaries in Section 3.3.

3.1 Orderable
In this section, we introduce the interface required for the keys of ordered dictionaries (cf.
Figure 4). In ordered dictionaries, apart from the need to check for the equality of two keys
(using equiv derived from Equalable), a total order must also be provided.
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trait Orderable[K] extends Equalable[K] {
def compare(e1: K, e2: K): Int
def max: K
def min: K
final def lt(e1: K, e2: K): Boolean = compare(e1, e2) < 0
final def gt(e1: K, e2: K): Boolean = compare(e1, e2) > 0
final def lteq(e1: K, e2: K): Boolean = compare(e1, e2) <= 0
final def gteq(e1: K, e2: K): Boolean = compare(e1, e2) >= 0
final def equiv(e1: K, e2: K): Boolean = compare(e1, e2) == 0

}

Figure 4 The interface for orderable.

The compare method is sufficient to provide the total order information. If its return
value is a positive number, the first element is greater than the second value, and for a
negative number, vice versa. Otherwise, if the return value is zero, this means that both
elements are equal. All comparison operators can be implemented using the compare method,
as can be seen in Figure 4.

As we are only interested in finite dictionaries, one can provide an upper bound and lower
bound for keys. These values are specified using max and min in the Orderable interface.
We will see in Section 7.1 how upper bounds can be used for implementing hint objects.

3.2 Ordered Dictionary Interface
The interface of ordered dictionaries is very similar to monoid dictionaries. The Equalable
type class instance is the same as the one used for Orderable. This is because the Orderable
interface subsumes the interface of Equalable by using inheritance.

The additional methods provided for ordered dictionaries are as follows:
toList: this method converts ordered dictionaries into a list of type List[(K, V)].3

append: for two ordered dictionaries left and right, where all the keys of left are
less than the keys of right, this method returns an ordered dictionary containing the
elements of both dictionaries.
join: given two ordered dictionaries left and right and a key-value pair key and value,
this method creates an ordered dictionary containing the elements of left and right as
well as the pair of key and value. In this method, all the keys of left must be less than
key, and all the keys of right must be more than key.

Note that the mentioned preconditions for the last two methods are necessary to pre-
serve the dictionary’s order, and violating any of them makes hinted dictionaries not work.
Furthermore, these two methods are bulk operations and thus are defined in a separate
OrderedDictBulkOps interface (Figure 5) following the cake pattern. These methods are crit-
ical for providing different concrete ordered dictionary implementations, as will be observed
in Section 6.

3.3 Iterations over Ordered Dictionaries
As opposed to monoid dictionaries, ordered dictionaries do not need the reduction function to
be commutative. This is because even with non-commutative reductions, ordered dictionaries
will result in a deterministic order for key-value pairs.

3 Unordered dictionaries cannot implement toList as there is no deterministic order for the key-value
pairs.

ECOOP 2023
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trait OrderedDict[K, V, D] extends Dict[K, V, D] {
implicit val ord: Orderable[K]
implicit val equ: Equalable[K] = ord
def toList(dict: D): List[(K, V)]

}

trait OrderedDictBulkOps[K, V, D] { this: OrderedDict[K, V, D] =>
// precond: keys(left) < keys(right)
def append(left: D, right: D): D
// precond: keys(left) < k < keys(right)
def join(left: D, key: K, value: V, right: D): D

}

Figure 5 The interface for ordered dictionaries and bulk operations over them.

The toList method can be implemented by mapReduce and aggregate methods. Figure 6
shows its implementation using aggregate; it is sufficient to map each of the key-value pairs
into a singleton list. This requires the following instance of Monoid[List[T]]:

implicit def MonoidList[T] = new Monoid[List[T]] {
def op(e1: List[T], e2: List[T]): List[T] = e1 ++ e2
def zero: List[T] = Nil

}

Here, the binary operator is list append (++) and the zero element is the empty list (Nil).
The toList method returns the result of appending all these singleton lists.

3.3.1 Sequential Iterations

Similar to functional lists in functional languages, ordered dictionaries also provide a foldLeft
method for performing accumulating computations over their elements from left to right.
This method is provided in the OrderedDictFoldLeft interface (cf. Figure 6).

The mapReduce method can be implemented using foldLeft by passing the initial value
and defining the accumulating function as applying the red function to the previous state s
and the result of map(k, v).

3.3.2 Parallel Iterations

Thanks to the associative nature of reduction functions, there is no need to perform ag-
gregations only sequentially from left to right. Instead, one can perform aggregations in a
tree-structured manner, which is more parallel-friendly.

The foldTree method provided in the OrderedDictFoldTree interface (cf. Figure 6) is
responsible for computing parallel iterations. This is provided by performing a top down
traversal over the logical tree representation. Similar to foldLeft, this method accepts an
initial state (z). At each stage, it computes the stage to be passed to each of the subtrees.
The op method produces a triple of elements when applied to the current key-value pair and
the previous state. The first two elements of this triple are the states to be passed to each of
subtrees. The last element corresponds to a hidden state of type M. This hidden state is used
after the aggregation for subtrees are computed. The comb method applies this hidden state
alongside with the current key-value and the states return by the subtrees and computes the
next state.
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trait OrderedDictIteration[K, V, D] extends DictIteration[K, V, D] {
this: OrderedDict[K, V, D] =>
// precond: ‘red‘ should only be associative
def mapReduce[R](dict: D, z: R, map: (K, V) => R, red: (R, R) => R): R
def toList(dict: D): List[(K, V)] =

aggregate[List[(K, V)]](dict, (k, v) => List((k, v)))
}

trait OrderedDictFoldLeft[K, V, D] extends OrderedDictIteration[K, V, D] {
this: OrderedDict[K, V, D] =>
def foldLeft[R](dict: D, z: R, op: (R, K, V) => R): R
override def mapReduce[R](dict: D, z: R, map: (K, V) => R, red: (R, R) => R): R =

foldLeft[R](dict, z, (s, k, v) => red(s, map(k, v)))
}

trait OrderedDictFoldTree[K, V, D] extends OrderedDictIteration[K, V, D] {
this: OrderedDict[K, V, D] =>
def foldTree[R, M](dict: D, z: R, op: (K, V, R) => (R, R, M),

comb: (K, V, M, R, R) => R): R
override def mapReduce[R](dict: D, z: R, map: (K, V) => R, red: (R, R) => R): R =

foldTree[R, Unit](dict, z, (k, v, s) => (s, s, ()),
(k, v, _, s1, s2) => red(red(s1, map(k, v)), s2))

}

Figure 6 The interface for iterations over ordered dictionaries. The foldLeft method corre-
sponds to computing aggregations sequentially and foldTree method is a parallel-friendly aggregate
computation strategy.

The mapReduce method can be implemented using foldTree as well. As the op method,
we return the previous state s to both subtrees. As the comb method, we apply the reduction
method twice. The first application involves the return state of left subtree (s1) and the
mapping of key-value pair map(k, v). The second application is over the result of the
previous reduction and the state of the right subtree (s2).

Note that for implementing mapReduce there was no hidden state required, and thus the
unit value () with unit type Unit was provided. We will see cases where this hidden state
will be required in Section 5.2.1.

By carefully keeping the value of aggregation in the ordered dictionary, one can provide a
more efficient implementation for mapReduce. This is similar to the idea of augmented trees,
and has already been investigated in Augmented Maps [17].

4 Hinted Dictionary

In this section, we introduce hinted dictionaries, an implementation strategy for ordered
dictionaries. First, we present the interface of hinted dictionaries in Section 4.1. Then, we
show the interface for hint objects in Section 4.2.

4.1 Hinted Dictionary Interface
Hinted dictionaries inherit all the methods of both monoid dictionaries and ordered dictio-
naries. Additionally, they provide the following methods:

begin: returns the hint object corresponding to the beginning of dictionary. This method
is useful for accessing the head of an ordered dictionary.

ECOOP 2023
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trait HintedDict[K, V, D, H] extends OrderedDict[K, V, D] {
def begin(dict: D): H
def middle(dict: D): H
def end(dict: D): H
def isEnd(dict: D, hint: H): Boolean
def next(dict: D, hint: H): H
def seek(dict: D, key: K): H
// precond: current(hint)._1 == key
def findHint(dict: D, hint: H, key: K): V
// precond: current(hint)._1 == key
def insertHint(dict: D, hint: H, key: K, value: V): D
// precond: current(hint)._1 == key
def deleteHint(dict: D, hint: H, key: K): D
def insert(dict: D, key: K, value: V): D =

insertHint(dict, seek(dict, key), key, value)
def delete(dict: D, key: K): D =

deleteHint(dict, seek(dict, key), key)
def find(dict: D, key: K): V =

findHint(dict, seek(dict, key), key)
}

Figure 7 The interface for hinted dictionaries.

middle: returns the hint object of the middle of the dictionary. This method is useful
for cases that require viewing the dictionary as a tree. For example, it can be used for a
binary search where one needs to access the middle of a collection.
end: returns the hint object specifying the end of dictionaries.
isEnd: checks whether the given hint object corresponds to the end of the dictionary.
This is useful for terminating an iteration over the hinted dictionary.
next: returns the hint object succeeding the given hint object over the input dictionary.
seek: returns the hint object for the position in the array where key would be placed.
This means that the preceding elements have smaller keys and succeeding elements have
larger keys. In the case that the dictionary contains the key, the corresponding hint
object is returned.
findHint: returns the associated value with the given key using the provided hint object.
As the precondition, the hint should point to the correct position.
insertHint: inserts the given key-value pair to the position provided by the hint object.
Similar to the previous method, the hint object assumed to point to the correct position.
deleteHint: deletes the key-value pair corresponding to the input key using the provided
hint object. A similar precondition to the previous two methods hold.

By using the seek method to compute the correct hint object, one can have an imple-
mentation for find, insert, and delete using the corresponding hinted methods. Once
hinted dictionaries are supplied with (amortized) constant-time operations for these hinted
methods, one can better benefit from their efficiency.

4.2 Hint Operations
The hint objects can be thought as pointers to different locations of an ordered dictionary
(cf. Figure 8). Rather than providing a concrete implementation for hint object, we provide
an interface for them in Figure 9. We leave the actual implementation for these operators to
Section 7.
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middlebegin end

current {after{before

Operations for middle hint

Hint objects returned from a hinted dictionary

Figure 8 An example hinted dictionary representation showing the hint objects returned by
begin, middle, and end methods and the outcome of before, current, and after over the hint
object returned by middle.

trait HintOps[K, V, D, H] { this: HintedDict[K, V, D, H] =>
def before(hint: H): D
def after(hint: H): D
def current(hint: H): (K, V)

}

Figure 9 The interface for operations on hint objects.

The methods for hint objects are as follows:
before: returns the dictionary of elements located before the hint object.
after: returns the dictionary of elements that are after the hint object.
current: returns the key-value pair of the entry of the dictionary that hint object is
pointing into. If for a given key, there is no associated value, the identity element of
monoid is returned, similar to what was observed for find.

As it was shown in Figure 7 we can use these methods to provide preconditions for the
hinted dictionary methods. In addition, all the implementations of the seek method need to
enforce the following post-condition. Assuming the result hint object is res, the key of this
element should be the same as the input key (current(res)._1 == key).4 Furthermore,
the keys of the dictionary before the result hint object (before(res)) should be less than
key. Similarly, the keys of the dictionary after the result hint object (after(res)) should
be greater than key.

5 Iterations

In this section, we use the methods provided by hinted dictionaries to implement sequential
and parallel iterations over them.

5.1 Sequential Implementation
The interface of HintedDictFoldLeft containing the implementation for foldLeft is pre-
sented in Figure 10. Recall that this method is useful for stateful iterations over dictionaries.
The initial state is specified by z, and the state is updated by applying the function op to
the current state and key-value pairs.

In order to implement foldLeft, we define a recursive function foldLeftTR inside it.
This function has two input parameters hint and res, which specify the current hint object
and the computed state by iterating up to that hint object. We start by passing the initial

4 Note that tuple indexing in Scala starts from 1, and tup._i where i is an integer shows the ith element
of the tuple.
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trait HintedDictFoldLeft[K, V, D, H] extends OrderedDictFoldLeft[K, V, D]
with HintedDict[K, V, D, H] with HintOps[K, V, D, H] {
def foldLeft[R](dict: D, z: R, op: (R, K, V) => R): R = {

@tailrec def foldLeftTR(hint: H, res: R): R =
if(!isEnd(dict, hint)){

val (key, value) = current(hint)
val next_res = op(res, key, value)
val next_hint = next(dict, hint)
foldLeftTR(next_hint, next_res)

}
else

res
foldLeftTR(begin(dict), z)

}
}

Figure 10 The implementation of sequential (fold-left-based) iterations over hinted dictionaries.

state z as the value of res, and the beginning of the dictionary as the value of hint. The
function foldLeftTR is recursively called until the hint object does not point to the end of
dictionary (!isEnd(dict, hint)). At each recursive call, we compute the next state value
(next_res) by applying op to the current state (res) and key-value pair and the next hint
object (next_hint) by next(dict, hint).

Note that the definition of foldLeftTR is annotated with @tailrec. This means that
this function is tail recursive – all recursive calls are appearing as the last statement. This
annotation ensures that the Scala compiler can turn this method into imperative while loops,
which results in better performance by removing the need to increase the stack frame size.

5.1.1 Example: Sparse Vector Inner Product
Figure 11 shows the interface for sparse vectors. A sparse vector Vec can be represented as a
dictionary from indices to a scalar value Sca. In order to support operation such as inner
product that involve multiplication over scalar values, we need to define a type class instance
for monoid over scalar values under multiplication (specified by prod).

An efficient sequential implementation of the inner product is provided in Figure 11.
The foldLeft method accepts a pair of states containing the result of inner product as
well as the rest of the second vector to process. The state is initially set to the monoid
identity element (dict.mon.zero) and the second vector (v2). At each iteration, the seek
method for the given key is invoked over the remaining part of the second vector. Then,
the result of inner product is updated by adding the previous result (res) to the outcome
of multiplying (prod.op) the current value (v) with the value specified by the hint object
(current(hint)._2). Note that in the case that the second vector does not have any elements
at index k, the specified value by its hint object would be zero (dict.mon.zero). Finally, the
rest of the second vector is computed by taking only the elements of dictionary happening
after the hint object (after(hint)).

5.2 Parallel Implementation
The foldTree method can also be used for performing stateful iterations over hinted
dictionaries. As opposed to foldLeft, this method can perform the computation in a
divide-and-conquer manner. Figure 12 demonstrates the process of applying foldTree over a
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trait SparseVectorOps[Sca, Vec] {
implicit val prod: Monoid[Sca]
def inner(v1: Vec, v2: Vec): Sca

}

trait SparseVectorFoldLeftOps[Sca, Vec, H] extends SparseVectorOps[Sca, Vec] {
val dict: HintedDict[Int, Sca, Vec, H]
val dictFolding: OrderedDictFoldLeft[Int, Sca, Vec]
val hintOps: HintOps[Int, Sca, Vec, H]
import dict._
import dictFolding._
import hintOps._
def inner(v1: Vec, v2: Vec): Sca =

foldLeft[(Sca, Vec)](v1, (dict.mon.zero, v2), (s, k, v) => {
val (res, v2p) = s
val hint = seek(v2p, k)
dict.mon.op(res, prod.op(v, current(hint)._2)) -> after(hint)

})._1
}

Figure 11 The implementation of the inner product of two sparse vectors using sequential
iteration.
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Figure 12 The process of executing foldTree on a logical tree view of an ordered dictionary.
The recursive invocations of foldTree on the two sub-trees can be evaluated in parallel.

hinted dictionary viewed as a tree. The divide phase involves recursively applying foldTree
to the left and right subtrees, where the initial state for each recursive call is computed
using the function op. The conquer phase uses the function comb to combine the results of
recursive calls to compute the output state of the entire tree.

The interface of HintedDictFoldTree provides the implementation for foldTree using
hinted dictionaries (cf. Figure 13). If the input dictionary is empty the initial value is
returned. Otherwise, the following steps are performed. First, the hint object returned by
middle is used to retrieve the key-value pairs in the middle of the dictionary. The op function
is applied to this key-value pair and the previous state z. This results in the initial state of
the left and right sub-trees (zLeft and zRight) as well as the hidden state (hidden). The

ECOOP 2023



28:14 Hinted Dictionaries: Efficient Functional Ordered Sets and Maps

trait HintedDictFoldTree[K, V, D, H] extends OrderedDictFoldTree[K, V, D]
with HintedDict[K, V, D, H] with HintOps[K, V, D, H] {
def foldTree[R, M](dict: D, z: R, op: (K, V, R) => (R, R, M),

comb: (K, V, M, R, R) => R): R =
if(isEmpty(dict)) z
else {

val hint = middle(dict)
val (key, value) = current(hint)
val (zLeft, zRight, hidden) = op(key, value, z)
val resLeft = foldTree(before(hint), zLeft, op, comb)
val resRight = foldTree(after(hint), zRight, op, comb)
comb(key, value, hidden, resLeft, resRight)

}
}

Figure 13 The implementation of parallel (fold-tree-based) iterations over hinted dictionaries.

foldTree method is recursively invoked for both left and right sub-trees (before(hint) and
after(hint)) using their corresponding initial states. These two invocations are independent
of each other and can be run in parallel. Finally, the key-value pair, the hidden state, and
the results of recursive calls (resLeft and resRight) are combined by applying the comb
function.

Next, we show example usages of these iteration constructs.

5.2.1 Example: Set-Set Union

A set of type S, consisting elements of type K can be expressed as a dictionary with keys
of type K and values of type Boolean. Hence, they can also be expressed using hinted
dictionaries.

Figure 14 provides the interface for set-set operations such as union, intersect, and
difference. For the sake of brevity here we only show the implementation for union using
foldTree. The foldLeft-based implementation and the one for intersect and difference
can be similarly obtained.

The result type of foldTree (cf. Figure 14) is the set type S, and the type of its hidden
state is the hint type H. The iteration is over set1 with the initial state of set2. At each
stage, the seek method looks for the key k in the set specified by its current state s. As the
state for the left and right sub-trees, the dictionaries with preceding and succeeding elements
(before(hint) and after(hint)) are provided, and as the hidden state the hint object
hint is returned. For the combine operation, the state returned by the left sub-tree (s1), the
current key-value pair with update value (k and mon.op(v, current(hidden)._2)), and
the state returned by the right sub-tree (s2) are joined.

6 Bulk Operations

In this section, we provide two design decisions for implementing bulk operations. The first
design is insert-based hinted dictionaries, where the bulk operations are derived from the
implementation for the hinted insertion method (Section 6.1). The second design revolves
around using the join method as the central operator (Section 6.2).
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trait SetSetOps[S] {
def union(set1: S, set2: S): S
def intersect(set1: S, set2: S): S
def difference(set1: S, set2: S): S

}

trait SetSetFoldTreeOps[K, S, H] extends SetSetOps[S] {
val dict: HintedDict[K, Boolean, S, H]
val dictFolding: OrderedDictFoldTree[K, Boolean, S]
val hintOps: HintOps[K, Boolean, S, H]
val dictDictOps: OrderedDictBulkOps[K, Boolean, S]
import dict._
import dictFolding._
import hintOps._
import dictDictOps._

def union(set1: S, set2: S): S =
foldTree[S, H](set1, set2, (k, v, s) => {

val hint = seek(s, k)
(before(hint), after(hint), hint)

}, (k, v, hidden, s1, s2) => join(s1, k, mon.op(v, current(hidden)._2), s2))
// ...

}

Figure 14 The implementation of set-set union using fold-tree-based iteration.

6.1 Insert-Based Hinted Dictionaries
The hinted insertion method (insertHint) is an expressive operation. By providing a
concrete implementation for this method, one can guide how an ordered dictionary can be
inductively constructed starting from an empty dictionary.

Figure 15 shows the implementation of insert-based hinted dictionaries. The insertHint
method is left as abstract. Providing different implementations result in a completely different
strategy for maintaining ordered dictionaries.

The append method is implemented by iterating over the second dictionary and adding its
elements one-by-one to the first dictionary. This is achieved by foldLeft over right, with
an initial state of left, and adding the key-value pairs of right to the end of the previously
computed result. This implementation is correct because we know that the keys appearing
in the second dictionary are greater than the keys of the first dictionary. By assuming that
we provide an implementation for insertHint with an amortized constant-time complexity,
the append operation will have an amortized linear run-time complexity.

The join method can be implemented in terms of append and insertHint. First,
we need to insert the given key-value pair to the end of the first dictionary. Afterwards,
this intermediate dictionary is appended by the second dictionary. By making the same
assumptions as append, this operation has also an amortized linear run-time complexity.

6.2 Join-Based Hinted Dictionaries
An alternative way for defining hinted dictionaries is based on the join operator. This is
inspired by Adams’ sets [1] and the follow up parallel implementations [4].
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trait InsertBasedDict[K, V, D, H] extends HintedDict[K, V, D, H]
with HintOps[K, V, D, H] with OrderedDictBulkOps[K, V, D]
with HintedDictFoldLeft[K, V, D, H] {
// precond: keys(left) < keys(right)
def append(left: D, right: D): D =

foldLeft[D](right, left, (s, k, v) =>
insertHint(s, end(s), k, v)

)
// precond: keys(left) < key < keys(right)
def join(left: D, key: K, value: V, right: D): D =

append(insertHint(left, end(left), key, value), right)
// precond: current(hint)._1 == key
def insertHint(dict: D, hint: H, key: K, value: V): D

}

Figure 15 The implementation of insert-based hinted dictionaries.

The implementation of join-based hinted dictionaries is shown in Figure 16. The join
method does not have a concrete implementation. It has been shown [4] that different
balanced tree representations such as AVL [2], Red-Black [3], Weight-Balanced [9], and
Treaps [11] can be expressed by providing an appropriate implementation for the join
method.

The append method is expressed as follows. If the second dictionary is empty, the first
dictionary is returned. Otherwise, the hint object for the beginning of the second dictionary
is used to retrieve its first key-value pair. Then, the join method is applied to the first
dictionary, the first key-value pair, and the rest of the second dictionary. If the join method is
an amortized linear operation, the append method also follows the same run-time complexity.

The insertHint method is expressed by joining the dictionary preceding the hint ob-
ject (before(hint)), the key-value pair with updated value (mon.op(current(hint)._2,
value)), and the dictionary succeeding the hint object (after(hint)). Note that this way of
implementing insertHint is suboptimal given that the join is a linear time operator. Thus,
one has to try avoid using insertHint for join-based hinted dictionaries for performance
reasons.

The efficiency of hinted dictionaries is not solely dependent on efficient join and
insertHint operations. Having an efficient hint object implementation is also essential,
which will be presented next.

7 Hint Implementation

This section starts with a concrete representation for hint objects. Using this representation
we provide the implementation for hint operations in Section 7.1. Afterwards, we provide
the implementation of the rest of the methods of hinted dictionaries in Section 7.2.

7.1 Focus-Based Hints
As it was stated in Section 4.2, hint objects can be viewed as pointers to different locations
of an ordered dictionary. In this section, we consider them as objects focusing on a particular
position in the dictionary. The key-value pair that the hint object focuses on, specifies the key
and value fields of the FocusHint class. The lack of a key-value pair is specified by putting
the identity element of the underlying monoid for type V. The sub-dictionary containing the
elements preceding/succeeding the focused key-value pair are stored in left/right.
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trait JoinBasedDict[K, V, D, H] extends HintedDict[K, V, D, H]
with HintOps[K, V, D, H] with OrderedDictBulkOps[K, V, D] {
// precond: keys(left) < keys(right)
def append(left: D, right: D): D = {

if (isEmpty(right))
left

else {
val hint = begin(right)
val (key, value) = current(hint)
val rightNew = after(hint)
join(left, key, value, rightNew)

}
}
// precond: keys(left) < key < keys(right)
def join(left: D, key: K, value: V, right: D): D
// precond: current(hint)._1 == key
def insertHint(dict: D, hint: H, key: K, value: V): D =

join(before(hint), key, mon.op(current(hint)._2, value), after(hint))
}

Figure 16 The implementation of join-based hinted dictionaries.

case class FocusHint[K, V, D](left: D, key: K, value: V, right: D)

trait FocusHintOps[K, V, D] extends HintOps[K, V, D, FocusHint[K, V, D]] {
this: HintedDict[K, V, D, FocusHint[K, V, D]] =>
type H = FocusHint[K, V, D]
def before(hint: H): D = hint.left
def after(hint: H): D = hint.right
def current(hint: H): (K, V) = (hint.key, hint.value)

}

Figure 17 The implementation for focus hint and its operations.

The implementation of the hint operations using focus-based hints is very natural: before
and after return left and right fields of the FocusHint object, and current returns the
pair (hint.key, hint.value).

7.2 Focus-Based Hinted Dictionaries
Figure 18 shows the implementation of focus-based hinted dictionaries, where the hint objects
are FocusHints. The following methods are left as abstract: empty, isEmpty, begin, and
middle. Depending on the underlying data structure, the implementation for these methods
can be different.

The methods implemented by focus-based dictionaries are as follows:
seek: If the given dictionary is empty, an empty FocusHint object is returned the key
of which is the same as the input key. Otherwise, it performs a binary search to return
an appropriate hint object. For binary search, the key of the middle of the dictionary
is compared with the input key. If the middle key is the same as the input key, the
middle hint object is returned. If the input key is less than the middle key, the process
is recursively invoked for the preceding dictionary (seek(l, key)), and the result hint
object is computed by substituting its right dictionary by joining it with the rest of the
input dictionary. A similar process is performed when the input key is greater than the
middle key.
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trait FocusHintedDict[K, V, D] extends HintedDict[K, V, D, FocusHint[K, V, D]]
with FocusHintOps[K, V, D] with OrderedDictBulkOps[K, V, D] {
// postcond: res.key == key
def seek(dict: D, key: K): H = {

if(isEmpty(dict))
FocusHint(empty(), key, mon.zero, empty())

else {
val hint@FocusHint(l, m, v, r) = middle(dict)
if(ord.equiv(key, m)) {

hint
} else if(ord.lt(key, m)) {

val hint2 = seek(l, key)
hint2.copy(right = join(hint2.right, m, v, r))

} else {
val hint2 = seek(r, key)
hint2.copy(left = join(l, m, v, hint2.left))

} } }
def end(dict: D): H = FocusHint(dict, ord.max, mon.zero, empty())
def isEnd(dict: D, hint: H): Boolean = hint == end(dict)
def next(dict: D, hint: H): H = {

val rightDict = after(hint)
val nextHint = begin(rightDict)
if(isEnd(rightDict, nextHint))

end(dict)
else {

val (k, v) = current(nextHint)
FocusHint(before(hint), k, v, after(nextHint))

} }
def deleteHint(dict: D, hint: H, k: K): D = append(hint.left, hint.right)
def findHint(dict: D, hint: H, k: K): V = hint.value

}

Figure 18 The implementation of focus-based hinted dictionary.

end: Returns an empty FocusHint object with the key set to the upper bound of keys
(ord.max).
isEnd: Check if the given hint is the same as the end hint object.
next: The hint object for the succeeding dictionary is constructed. If this hint object
corresponds to the end of that dictionary, then the end of the input dictionary is returned.
Otherwise, the return hint object is constructed by using this hint object and the preceding
dictionary of the input dictionary.
deleteHint: It is computed by appending the preceding and succeeding dictionaries
together.
findHint: The associated value with the hint object is returned. In the case where the
key does not exist, the hint object stores the identity of the underlying monoid.

8 Concrete Implementations

In this section, provide three categories of concrete implementations for hinted dictionaries.
We start by using sorted arrays as the underlying implementation in Section 8.1. Then, we
show how unbalanced trees can be used for implementing hinted dictionaries in Section 8.2.
Finally, we use balanced trees as the representation for hinted dictionaries in Section 8.3.
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import scala.collection.mutable.ArrayBuffer

case class ArrayView[T](buffer: ArrayBuffer[T], lower: Int, upper: Int)

trait ArrayDict[K, V] extends FocusHintedDict[K, V, ArrayView[(K, V)]] {
type D = ArrayView[(K, V)]
def empty(): D = ArrayView(ArrayBuffer(), 0, 0)
def isEmpty(dict: D): Boolean = dict.upper == dict.lower
def begin(dict: D): H =

if(isEmpty(dict)) end(dict)
else {

val (k, v) = dict.buffer(dict.lower)
FocusHint(empty(), k, v, ArrayView(dict.buffer, dict.lower + 1, dict.upper))

}
def middle(dict: D): H = {

if(isEmpty(dict)) end(dict)
else {

val mid = (dict.lower + dict.upper) / 2
val (k, v) = dict.buffer(mid)
val l = ArrayView(dict.buffer, dict.lower, mid)
val r = ArrayView(dict.buffer, mid + 1, dict.upper)
FocusHint(l, k, v, r)

} } }

class CopyingArrayDict[K, V](
implicit override val ord: Orderable[K], val mon: Monoid[V]) extends

ArrayDict[K, V]
with InsertBasedDict[K, V, ArrayView[(K, V)], FocusHint[K, V, ArrayView[(K,

V)]]] {
def insertHint(dict: D, hint: H, key: K, value: V): D = {

val array = dict.buffer.clone() // can be removed if dict is no longer used
val idx = before(hint).upper
val (prevKey, prevValue) = current(hint)
val newUpper =

if(prevValue == mon.zero) {
array.insert(idx, (key, value))
dict.upper + 1

} else {
array(idx) = (key, mon.op(prevValue, value))
dict.upper

}
ArrayView(array, dict.lower, newUpper)

} }

Figure 19 The implementation of hinted dictionaries using an underlying sorted array.

8.1 Sorted Array

Using sorted arrays is one of the main techniques for a sequential implementation of ordered
dictionaries. In the C++ world, the flat_map container provided by the Boost library [14]
uses sorted arrays for representing dictionaries. This data structure is particularly useful for
the workloads where the insertions are applied to the end of the ordered dictionary.
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Inspired by these C++ implementations, Figure 19 provides the implementation of
hinted dictionaries using sorted arrays. In order to preserve an underlying array we use
ArrayBuffers, mutable containers similar to std::vectors of C++. The ArrayView data
type represents a subset of an ArrayBuffer bounded by the indices specified by lower and
upper.

The implementations for empty, isEmpty, and begin are straightforward. For the middle
method, we need to first retrieve the index of the middle element (mid). Then, we compute
the preceding dictionary by using the same lower bound, but with the upper bound specified
by mid. Similarly, the succeeding dictionary uses the lower bound specified by mid+1, but
with the same upper bound. Finally, we return the focused hint object based on the key-value
pair of the middle element and the preceding and succeeding dictionaries.

To create the left and right ArrayViews of the hint object, we can share the underlying
buffer of the current ArrayDict without copying it. Since ArrayView is using ArrayBuffer
as the underlying array and the start and end of the ArrayView are determined by lower and
upper, changing these parameters can result in a new dictionary. This sharing opportunity
frees the code from copying elements every time we are using middle. A similar opportunity
is available for before and after.

Because of using arrays as the underlying representation, it would be more efficient to
follow an InsertBasedDict interface. To implement the insertHint method, we need to
check if the hint object points to an actual element. This is achieved by checking if the
associated value is different than the identity element of the underlying monoid. In the case
of the existence of an element with the same key, the size of the underlying ArrayBuffer does
not need to change; it is sufficient to update the value of the existing element by applying
the binary operator of the monoid to the previous value and the new value to be inserted
(mon.op(prevValue, value)). If the hint object does not point to an actual element, we
need to insert the given key-value pair in the specified position. Finally, we adjust the upper
bound and return the updated array.

Note that in the case that there is no more references to the input dictionary in the user
program, one can perform in-place update and there would be no need to copy the original
array. We leave the implementation of the in-place update version for the sake of brevity.

8.2 Unbalanced trees
An alternative implementation for hinted dictionaries is based on a tree-based representation.
We first give a generic implementation for tree-based hinted dictionaries that can be used
for both unbalanced and balanced tree representations. Afterwards, we show a simple
representation where no smart effort is invested for maintaining the tree in balance.

Figure 20 provides the generalized implementation for ordered dictionaries using trees.
The Tree data type is defined as an ADT (Algebraic Data Type), where Leaf corresponds
to a leaf and Bin specifies an intermediate node. As the tree nodes can maintain additional
information (e.g., height for balanced trees), the type member Entity is used for keeping
the type of the information kept by each tree node. The key and value methods are used to
extract keys and values from the elements, respectively.

As opposed to sorted arrays, the tree-based hinted dictionaries have a straightforward
implementation for middle; for leaves the hint object for end is returned, whereas for
intermediate nodes the focused-hint object with 1) the left sub-tree as the preceding dictionary,
2) the right sub-tree as the succeeding dictionary, and 3) the key/value of its element as the key-
value pair is returned. To implement begin, the helper method seekFirst is defined, which
looks for the smallest key-value pair and returns them alongside the succeeding dictionary.
These values are used to return the hint object with an empty preceding dictionary.
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sealed trait Tree[T]
case class Bin[T](l: Tree[T], v: T, r: Tree[T]) extends Tree[T]
case class Leaf[T]() extends Tree[T]

trait TreeDict[K, V, E] extends FocusHintedDict[K, V, Tree[E]] {
type Entity = E
type D = Tree[E]
def key(e: Entity): K
def value(e: Entity): V
def empty(): D = Leaf()
def isEmpty(dict: D): Boolean = dict == Leaf()
def seekFirst(dict: D): (D, K, V) = {

val FocusHint(l, k, v, r) = middle(dict)
if(isEmpty(l)) (r, k, v)
else {

val (tp, kp, vp) = seekFirst(l)
(join(tp, k, v, r), kp, vp)

} }
def begin(dict: D): H =

if(isEmpty(dict)) end(dict)
else {

val (r, k, v) = seekFirst(dict)
FocusHint(empty(), k, v, r)

}
def middle(dict: D): H = dict match {

case Leaf() => end(dict)
case Bin(l, e, r) => FocusHint(l, key(e), value(e), r)

}
}

Figure 20 The generalized implementation for tree-based representations of hinted dictionaries.

class UnbalancedDict[K, V](implicit override val ord: Orderable[K], val mon:
Monoid[V])

extends TreeDict[K, V, (K, V)]
with JoinBasedDict[K, V, Tree[(K, V)], FocusHint[K, V, Tree[(K, V)]]]
with HintedDictFoldTree[K, V, Tree[(K, V)], FocusHint[K, V, Tree[(K, V)]]] {
def key(e: Entity): K = e._1
def value(e: Entity): V = e._2
def join(left: D, key: K, value: V, right: D): D = Bin(left, (key, value), right)

}

Figure 21 The implementation of hinted dictionaries using unbalanced binary trees.

Figure 21 shows the implementation for hinted dictionaries that use unbalanced trees.
Because of the tree-based representation, a natural interface for UnbalancedDict is the join-
based hinted dictionary, although one could use the insert-based one with worse performance.
The tree nodes do not need to maintain any additional information. Thus, the entity type
of the tree nodes is the key-value pair ((K, V)). The implementation for the join is to
simply create an intermediate node with the given key-value pair as the content, and first
and section dictionaries as the left and right sub-trees.
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trait BalancedDict[K, V, N] extends TreeDict[K, V, (K, V, N)]
with JoinBasedDict[K, V, Tree[(K, V, N)], FocusHint[K, V, Tree[(K, V, N)]]] {
def key(e: Entity): K = e._1
def value(e: Entity): V = e._2
def info(e: Entity): N = e._3
def zeroInfo: N
def info(e: D): N = e match {

case Leaf() => zeroInfo
case Bin(_, entity, _) => info(entity)

}
def newInfo(left: N, right: N): N
def rotateLeft(tree: D): D = tree match {

case Bin(l, e1, Bin(l2, e2, r2)) =>
bin(bin(l, key(e1), value(e1), l2), key(e2), value(e2), r2)

case _ => throw new Exception("Not left rotatable")
}
def rotateRight(tree: D): D = // elided for brevity
def isHeavier(left: D, right: D): Boolean
def isVeryHeavier(left: D, right: D): Boolean
def joinRight(left: D, key: K, value: V, right: D): D =

if(!isHeavier(left, right)) bin(left, key, value, right)
else {

val hint = middle(left)
val (leftLeft, leftRight) = (before(hint), after(hint))
val (k, v) = current(hint)
val newRight = joinRight(leftRight, key, value, right)
if(isHeavier(newRight, leftLeft)) {

val newHint = middle(newRight)
if(isVeryHeavier(before(newHint), after(newHint)))

rotateLeft(bin(leftLeft, k, v, rotateRight(newRight)))
else rotateLeft(bin(leftLeft, k, v, newRight))

} else bin(leftLeft, k, v, newRight)
}

def joinLeft(left: D, key: K, value: V, right: D): D = // elided for brevity
def bin(left: D, key: K, value: V, right: D): D =

Bin(left, (key, value, newInfo(info(left), info(right))), right)
def join(left: D, key: K, value: V, right: D): D =

if(isHeavier(left, right)) joinRight(left, key, value, right)
else if (isHeavier(right, left)) joinLeft(left, key, value, right)
else bin(left, key, value, right)

}

Figure 22 The generalized interface for hinted dictionaries using balanced binary trees.

8.3 Balanced trees
Figure 22 shows the generalized implementation for balanced-tree-based hinted dictionaries.
This interface subsumes AVL trees and WBB trees. It is possible to implement Red-Black
tree and Treaps as hinted dictionaries by appropriately overriding the join method, however,
as it was shown that AVLs and WBBs have superior performance in comparison with them [4],
we only present their implementation in this paper.

The interface of BalancedDict accepts the extra parameter N for the extra information
kept by the tree nodes. For example, AVL trees store the height of the tree in each node and
WBB trees store the size of the tree as the weight information.
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class AVLDict[K, V](implicit override val ord: Orderable[K], val mon: Monoid[V])
extends BalancedDict[K, V, Int] {
type N = Int
def zeroInfo: Int = 0
def newInfo(left: N, right: N): N = math.max(left, right) + 1
def isHeavier(left: D, right: D): Boolean = info(left) > info(right) + 1
def isVeryHeavier(left: D, right: D): Boolean = info(left) > info(right)

}
class WBBDict[K, V](implicit override val ord: Orderable[K], val mon: Monoid[V])

extends BalancedDict[K, V, Int] {
type N = Int
val ALPHA = 0.29
val RATIO = ALPHA / (1 - ALPHA)
val BETA = (1 - 2 * ALPHA) / (1 - ALPHA)
def zeroInfo: Int = 1
def newInfo(left: N, right: N): N = left + right - 1
def isHeavier(left: D, right: D): Boolean = RATIO * info(left) > info(right)
def isVeryHeavier(left: D, right: D): Boolean =

info(left) > BETA * newInfo(info(left), info(right))
}

Figure 23 The implementation for hinted dictionaries based on AVL and WBB trees.

In order to preserve correct bookkeeping information, the smart constructor bin is
added. This method invokes the abstract method newInfo in order to compute the updated
information based on the information of the sub-trees. This method needs to be overridden
by concrete balanced tree implementation choices.

The join method starts with checking if the tree is unbalanced towards either of its
sub-trees. If this is not the case, the smart construct bin is invoked to simply construct the
new root node. However, if either of the sides is heavier, an appropriate recursive method is
invoked in order to take care of possible rotations.

In Figure 22 we show the implementation of joinRight, which is invoked when the
left sub-tree is heavier than the right sub-tree. The implementation of isHeavier is again
postponed to the concrete implementation of a balanced tree. The rest of the implementation
of joinRight mirrors a generalized version of what has been reported before in [4]. An
interesting case is when there needs to be a double rotation involved. This is checked by
isVeryHeavier, which needs to be implemented by a concrete balanced tree implementation.

Figure 23 shows the implementation of AVL and WBB trees using the generalized interface
mentioned above. The AVL tree maintains the height of the tree as the extra information.
The height of a new tree is computed by incrementing the maximum height of its sub-trees by
one. A sub-tree is heavier than another sub-tree when its height is more than an increment
of the height of the other sub-tree. And finally, a node needs double rotation only if the
height of its left sub-tree is more than the height of its right sub-tree.

The WBB tree considers the size of the tree (added by one) as the extra information,
referred to as weight [1]. The updated weight is computed by adding the weight of sub-trees
(decremented by one). The RATIO and BETA parameters control whether rotation or double
rotation need to be performed. The values for these parameters specify the trade-off between
the tree being in a perfect balance and the number of re-balancing invocations. There were
follow up research on fixing the balancing issues related to the parameter values originally
suggested by Adams [6, 16]. We use the parameters reported by [4].
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Monoid[V]

op: V
zero: V

Equalable[K]

equiv: K

Dict[K,V,D]

find: V
insert: D
delete: D
empty: D
isEmpty: Boolean
mapReduce[R]: R
single: D
aggregate[R]: R
size: Int
count: Int

Orderable[K]

compare: Int
max: K
min: K
lt: Boolean
gt: Boolean
lteq: Boolean
gteq: Boolean
equiv: Boolean

HintedDict[K,V,D,H]

begin: H
middle: H
end: H
isEnd: Boolean
next: H
seek: H
findHint: V
insertHint: D
deleteHint: D
before: D
after: D
current: Tuple[K,V]
find: V
insert: D
delete: D
foldLeft[R]: R
foldTree[R]: R

InsertBasedDict[K,V,D,H]

insertHint: D

append: D
join: D

JoinBasedDict[K,V,D,H]

join: D

append: D
insertHint: D

FocusHintedDict[K,V,D]

before: D
after: D
current: Tuple[K,V]
seek: FocusHint[K,V,D]
end: FocusHint[K,V,D]
isEnd: Boolean
next: FocusHint[K,V,D]
deleteHint: D
findHint: V

ArrayDict[K,V]

empty: ArrayView[K,V]
isEmpty: Boolean
begin: FocusHint[K,V]
middle: FocusHint[K,V]

CopyingArrayDict[K,V]

insertHint: D

TreeDict[K,V,N]

empty: Node[K,V,N]
isEmpty: Boolean
begin: FocusHint[K,V]
middle: FocusHint[K,V]

UnbalancedDict[K,V]

join: Node[K,V,Int]

OrderedDict[K,V,D]

append: D
join: D
foldLeft[R]: R
foldTree[R]: R
toList: List[K,V]
mapReduce[R]: R

BalancedDict[K,V,N]

zeroInfo: N
newInfo: N
isHeavier: Boolean
isVeryHeavier: Boolean
info: N
rotateLeft: Node[K,V,N]
rotateRight: Node[K,V,N]
joinRight: Node[K,V,N]
joinLeft: Node[K,V,N]
join: Node[K,V,N]

WBBTree[K,V]

zeroInfo: Int
newInfo: Int
isHeavier: Boolean
isVeryHeavier: Boolean

FocusHint[K,V,D]

ArrayView[K,V] Node[K,V,N]

Abstract Method
Concrete Method

Inheritance
Association

Abstract Class

Type Class

Concrete Class

AVLTree[K,V]

zeroInfo: Int
newInfo: Int
isHeavier: Boolean
isVeryHeavier: Boolean

Figure 24 The bird’s eye view of all the interfaces.

8.4 Putting It All Together

Finally, we give an overall picture of hinted dictionaries by connecting all the pieces together.
Figure 24 shows the different interfaces defined throughout this paper. To reduce the number
of classes, we merged the definition of several interfaces with each other (e.g., DictIterations
is merged with Dict). Crucially, there is no cake-pattern-based interface in Figure 24, as
this technique is not essential for implementing hinted dictionaries.
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template<class K, class V, class Compare, class Mon>
class array_dict {

private:
typedef std::vector<std::pair<K, V>> vector_t;
typedef std::pair<int, bool> hint_t;
int lower; int upper;
vector_t buffer;

public:
void insert(K& key, V& value);
hint_t insert_hint(hint_t& hint_obj, K& key, V& value);
bool is_end(hint_t& hint_obj);
template<SearchMethod search_method>
hint_t seek(K& key);
void after(hint_t& hint_obj);
template<class R, class Func>
void inplace_fold_left(R& z, Func op);
/* Elided for brevity */

}

Figure 25 The interface of sorted-array-based dictionaries in C++.

9 Evaluation

In this section, we evaluate the performance of hinted dictionaries. First, we present an
efficient C++ prototype for them. Then, we show the experimental results by comparing our
C++ implementation with competitors for set-set and sparse vector operations.

9.1 Tuned Implementation in C++

The hinted dictionaries can have an efficient low-level implementation in C++. We provide
the following hinted dictionary implementations: 1) array_dict, an array-based implemen-
tation that uses std::vector<std::pair<K, V>> as the underlying representation, and 2)
wbb_dict, a tree-based implementation based on WBBs [9, 1].

We do not use the hierarchy presented in Figure 24 for performance reasons; we merge the
definitions of all the parent interfaces of hinted dictionaries into array_dict and wbb_dict.
The implementation for wbb_dict stays very similar to the one presented in Section 8.3.
However, we have applied the following performance tuning tricks for array_dict, the
interface of which is shown in Figure 25.

Pointer-Based Hints. In Section 7.1 we presented FocusHint objects that materialize the
entire dictionaries before and after a hint object. However, this design results in unnecessarily
copying of arrays (cf. Section 8.1). The array_dict implementation only maintains a pointer
to the appropriate place by using pointer-based hint objects of type std::pair<int, bool>.
If the hint object points to an actual element of the hinted dictionary, the first element of
the pair specifies its index and the second element is set to true. For keys that do not exist
in the dictionary (i.e., the associate value is the zero element of the underlying monoid),
the first element is the index of an element with the least upper bound key and the second
element is set to false.
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Binary Search vs. Linear Search. In Section 7.2 we used binary search (by calling middle)
in order to implement seek. However, as we observe in the next section, in many cases
it could be beneficial to use linear search. We provide a template parameter for the seek
method in order to specify the underlying search method.

In-Place Updates. Finally, we use in-place updates to improve the performance in the
following cases. First, the methods that return a subset of the hinted dictionary (before
and after) can perform an in-place modification of the boundary of the dictionary (lower
and upper). Second, the aggregation-based methods that produce dictionaries can use a
single mutable dictionary and modify it in-place, instead of passing around new dictionaries
(cf. inplace_fold_left in Figure 25).

Constant-time Size. The array_dict implementation can compute the size of the dictionary
by evaluating upper - lower. Similarly, wbb_dict can compute the size using the meta
data (info). However, both dictionaries still require iterations for count (i.e., the number of
elements with a non-zero value). Thanks to the fast size computation, we can make sure
that we always iterate over smaller dictionaries for all binary operations over dictionaries
(e.g., set-set operations).

9.2 Experimental Results

Experimental Setup. We run our experiments on a machine running Ubuntu 20.04.3
equipped with an Intel Core i5 CPU running at 1.6GHz, 16GB of DDR4 RAM. We use G++
9.4.0 for compiling the generated C++ code using the O3 flag. We also use SciPy 1.8.0 (on
Python 3.8.10) as the competitor.

Workloads. We consider the following set-set and sparse vector operations: 1) set-set union,
2) set-set intersection, 3) sparse vector addition, 4) sparse vector element-wise multiplication,
and 5) sparse vector inner product. For all the experiments, we generate randomly synthetic
data by varying the size of sets and the density of vectors. We run all the experiments for
ten times and measure their average run time.

Competitors. We consider the following alternatives of our C++ prototype and other
frameworks:

array_dict (Linear): array-based dictionary with linear-search-based seek.
array_dict (Binary): array-based dictionary with binary-search-based seek.
wbb_dict: tree-based dictionary that uses a WBB-based representation.
Baseline C++: a baseline implementation using the operations provided by std::set
(for the set experiments) or std::map (for the sparse vector experiments).
std::set_intersect, std::set_union: set-set operations provided by the standard
library of C++. As input arguments we use std::set collections.
SciPy: sparse linear algebra operators provided by the SciPy library. A sparse vector is
represented as a row matrix with a CSR (Compressed Sparse Row) or a column matrix
with a CSC (Compressed Sparse Column) format.
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Figure 26 Experimental results for set-set operations.

Set-Set Experiments. Figure 26 shows the results for the union and intersection operations
over sets. We make the following observations. First, in most cases, we observe a superior
performance for the array_dict implementations. In most cases, the linear-search-based
approach has better performance. However, as the difference between the size of sets widens,
the binary-search starts showing better performance. This is because of the additional
run-time improvements caused by skipping irrelevant elements.

Furthermore, we observe that the wbb_dict implementation does not show superior
performance in most cases. As shown before [4], one of the advantages of such join-based
implementations is their amenability to parallelism that we leave for the future.

Finally, we observe an asymptotically improved performance over the baseline C++
implementation. This is thanks to turning O(log n) lookup and insertion operations into
amortized constant-time ones. The implementations provided by the standard library of
C++ suffer from a similar issue. In addition, due to a concurrent linear iteration over both
sets, they show worse performance for the sets with a large difference in their sizes.

Sparse Vector Experiments. The implementations for sparse vector addition and element-
wise multiplication are identical to the ones for set union and intersection, respectively. The
sparse vector addition uses real number addition instead of boolean disjunction, and the
element-wise multiplication uses real number multiplication instead of boolean conjunction.
The results for vector inner product are also very similar to the ones for the element-wise
multiplication (cf. Figure 27).

The SciPy framework uses a CSR format for representing all vectors, except for the
second operand of the vector inner product. This is because the second vector needs to be
transposed which makes the CSC format a better representation. Overall, this framework

ECOOP 2023
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Figure 27 Experimental results for sparse vector operations.

shows superior performance for vectors with a large density. This can be related to their
better storage layout (struct of array instead of array of struct) that leads to improved cache
locality. The array_dict variants show better performance for vectors with a higher degree
of sparsity.

10 Conclusion and Outlook

In this paper, we introduced hinted dictionaries, a unified technique for implementing ordered
dictionaries. We have shown how hinted dictionaries unify the existing techniques from both
imperative and functional languages. These dictionaries can be used as the collection type
for data-intensive workloads. It would be interesting to see the usage of such data structures
for real-world use-cases such as query processing (relying on relations in the form of sets and
bags) as well as sparse linear algebra (relying on sparse vectors and matrices).
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The performance improvement offered by hinted dictionaries does not come for free. The
programmers must be careful on how to use hinted dictionaries. As presented in Section 4,
certain preconditions need to be preserved for hint objects. Violating these preconditions by
the programmers destroys the invariants of hinted dictionaries leading to runtime errors or,
even worse, undefined behaviour, which can hinder the productivity of programmers. One
interesting future direction is to statically detect the violation of the hinted dictionaries’
invariants.

Furthermore, we envision the following future directions for hinted dictionaries. First,
we plan to consider real-world applications that require batch processing of sets and maps,
including relational query engines and sparse tensor processing frameworks. Furthermore,
it would be interesting to use code generation and multi-stage programming techniques
to generate low-level code. This way, one can automatically improve the performance by
removing allocation of unnecessary intermediate objects (e.g., FocusHint objects) or to use
in-place updates (cf. Section 9.1) from a purely functional implementation. Finally, for
applications such as query processing the trade-offs between hashing and sorting have been
debated for a long time. We believe hinted dictionaries provide a nice abstraction layer for
DSLs based on dictionaries (e.g., the physical query plan of query engines) to automatically
tune the choice of the underlying dictionary implementation [13].
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