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Abstract
We prove that the degree 4 sum-of-squares (SOS) relaxation of the clique number of the Paley graph
on a prime number p of vertices has value at least Ω(p1/3). This is in contrast to the widely believed
conjecture that the actual clique number of the Paley graph is O(polylog(p)). Our result may be
viewed as a derandomization of that of Deshpande and Montanari (2015), who showed the same
lower bound (up to polylog(p) terms) with high probability for the Erdős-Rényi random graph on
p vertices, whose clique number is with high probability O(log(p)). We also show that our lower
bound is optimal for the Feige-Krauthgamer construction of pseudomoments, derandomizing an
argument of Kelner. Finally, we present numerical experiments indicating that the value of the
degree 4 SOS relaxation of the Paley graph may scale as O(p1/2−ε) for some ε > 0, and give a
matrix norm calculation indicating that the pseudocalibration construction for SOS lower bounds
for random graphs will not immediately transfer to the Paley graph. Taken together, our results
suggest that degree 4 SOS may break the “√

p barrier” for upper bounds on the clique number of
Paley graphs, but prove that it can at best improve the exponent from 1/2 to 1/3.
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1 Introduction

1.1 Maximum and Planted Clique Problems in Random Graphs
For a graph G, we denote by ω(G) the number of vertices in the largest clique or complete
subgraph in G. Computing ω(G) is a classical NP-hard problem in combinatorial optimization,
which is moreover hard to approximate within any polynomial factor n1−ε for ε > 0 [31, 24].
Aside from this worst-case hardness, an average-case setting of computing ω(G) was proposed
by Karp [32]. In this setting, the input graph is an Erdős-Rényi (ER) random graph G on
n vertices, where each edge is present independently with probability 1

2 . We denote this
by distribution by G ∼ G

(
n, 1

2
)
. It is known that (see, e.g., [5, Section 11.1]), with high

probability,

ω(G) ∈ [(2 − o(1)) log2 n, (2 + o(1)) log2 n] . (1)
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In [32], Karp showed that a simple greedy algorithm with high probability finds a clique of
size roughly log2 n, and asked whether a polynomial-time algorithm can with high probability
find a clique of size (1 + ε) log n for any constant ε > 0. The problem remains open, but,
perhaps surprisingly, evidence has accumulated that such an algorithm does not exist [28, 17].

A natural related problem is that of algorithmically bounding the size of the largest clique
in G, outputting a number that is always an upper bound on ω(G). For example, under
G ∼ G(n, 1

2 ), a simple algorithm based on the maximum degree can produce a O(
√

n log n)
bound [34]. Spectral algorithms operating on the eigenvalues of the adjacency matrix of G

can improve this to O(
√

n) (for instance, using Haemers’ generalization to irregular graphs
of Hoffman’s classical spectral bound on the clique number [22]).

The question of algorithmically bounding the clique number is also related to the problem
of hypothesis testing between G ∼ G(n, 1

2 ) and G drawn from another distribution where
a typical G contains a planted clique of size much larger than 2 log2 n, since if we have an
algorithm that always produces a valid bound on ω(G) and this bound is typically small
for G ∼ G(n, 1

2 ), then we can use its output to detect the planting of a sufficiently large
clique. The above then shows that we may detect the presence of a clique of size C

√
n for

sufficiently large C; [2] moreover showed that an efficient spectral algorithm can even recover
the vertex set of a planted clique of this size.1

A long line of work considered whether using convex relaxations of ω(G) that produce
bounds that are in general stronger than spectral bounds can break this “

√
n barrier” for

G ∼ G(n, 1
2 ), with a particular focus on semidefinite programming (SDP) relaxations. [30]

showed that Lovász’s ϑ function [37] also has value Ω(
√

n); [14] later considered further
aspects of using the ϑ function for detecting and recovering planted cliques. [15] showed the
same Ω(

√
n) lower bound for any constant level of the Lovász-Schrijver hierarchy of SDPs,

of which the ϑ function is merely the first and weakest. The stronger sum-of-squares (SOS)
hierarchy of relaxations proved harder to analyze. The pioneering but flawed analysis of
[40] was fixed by [39], albeit at the cost of falling short of an Ω(

√
n) lower bound. Many

subsequent works, first on the degree 4 SOS relaxation [9, 45, 27] and culminating in the
development of the pseudocalibration technique for larger degrees [4], ultimately established
an Ω(n1/2−o(1)) lower bound for any constant degree of the SOS hierarchy.2

All of these results apply, as we have mentioned, to the average case of computing the
clique number over G ∼ G(n, 1

2 ). Some recent literature has revisited other average-case SOS
lower bounds and identified deterministic instances over which the same quality of lower
bound holds (see in particular the work of [11, 26], derandomizing the result of [19] on refuting
3-XORSAT instances).3 In this paper, we initiate the study of the same question for the
clique problem, by derandomizing the SOS lower bound of [9] for the degree 4 SOS relaxation
of ω(G) with G ∼ G(n, 1

2 ). The deterministic graphs that achieve this derandomization are
the Paley graphs, whose clique number is a question of independent interest in number theory.
We first review some background on the Paley graphs, and then describe our results.

1 Observe that, while a brute force search can both detect and recover a planted clique of any size
(2 + ε) log2 n, this brute force search does not run in polynomial time.

2 The SOS hierarchy consists of a sequence of SDPs producing smaller and smaller upper bounds on ω(G),
indexed by an even number called the degree. See Section 2.2.1 for a precise definition.

3 Here we are interested in quantitative lower bounds showing large integrality gaps, rather than arbitrarily
small integrality gaps – deterministic explicit examples giving the latter for high degrees of SOS have
been shown before for several problems in works such as [19, 35].



D. Kunisky and X. Yu 30:3

1.2 Paley Graphs, Pseudorandomness, and Derandomization
The Paley graphs are an infinite family of graphs that exhibit certain pseudorandom properties,
behaving in some regards similarly to a typical G ∼ G(n, 1

2 ). They are defined on vertex sets
identified with finite fields Fq of order q ≡ 1 (mod 4), where edges connect pairs of elements
of Fq whose differences are quadratic residues. We denote the Paley graph on Fq by Gq; the
reader may see Section 2.2.2 for a more precise definition.

Many quantities that may be computed from Paley graphs are the same as those of
typical graphs drawn from G(q, 1

2 ). In the simplest instance, Paley graphs are regular of
degree q−1

2 , roughly the average degree of the corresponding random graph. [7] showed that
the same holds for the number of occurrences of any subgraph of constant size, for the first
eigenvalue being asymptotically q

2 , and the second eigenvalue being o(q 1
2 +ε) for any ε > 0.

How far can we take this analogy? It is natural to ask for subgraph counts of graphs of
size growing slowly with q, and the clique number is just such a question: under G ∼ G(q, 1

2 )
we have E[ω(G)] ∼ 2 log2 q, and we might expect the same for ω(Gq).

However, the clique number of Paley graphs is not well understood. Let us review what
is currently known. Hoffman’s spectral bound [25, 22] implies the upper bound

ω(Gq) ≤ √
q. (2)

In fact, this is easy to derive by elementary combinatorial means (see, e.g., [47]) and for this
reason is sometimes called the trivial upper bound on ω(Gq). This is tight for q = p2k an
even power of a prime, as F√

q may be realized as a subfield of Fq all of whose elements are
quadratic residues in this case [6].

However, for odd prime powers, and even the simplest case q = p a prime, the clique
number is believed to be much lower. The upper bound on the diagonal Ramsey number
established by [12] implies that

ω(Gp) ≥
(

1
2 + o(1)

)
log2 p. (3)

By a number-theoretic analysis of the least quadratic non-residue modulo p, [18] improved
this, showing that for infinitely many primes p,

ω(Gp) ≥ log p log log log p. (4)

Moreover, conditional on the Generalized Riemann Hypothesis, the log log log p term may be
improved to log log p [41, Theorem 13.5].4

On the other hand, the best known upper bound [23, 10] improves only by a constant
factor on the spectral bound (2),

ω(Gp) ≤
√

2p − 1 + 1
2 ∼

√
p

√
2

. (5)

In contrast to this state-of-the-art bound, ω(Gp) is widely believed to actually scale at
most polylogarithmically with p based on computations of ω(Gp) for small p. We express
this in the following conjecture; see [46, 3, 47, 33] as well as our Figure 2.

▶ Conjecture 1. For some C, K > 0 and all p ≡ 1 (mod 4) prime, ω(Gp) ≤ C(log p)K .

Numerical evidence suggests that we might in fact expect to be able to take K = 2, as
discussed by [3, 33] and illustrated in our Figure 2.

4 It is still possible to reconcile these results with the proposal that Gp behaves like a random graph, so
long as we adopt a more sophisticated random model than G(p, 1

2 ) [42].

CCC 2023
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Moreover, these graphs are believed to be good constructions for lower bounds on the
diagonal Ramsey numbers R(k, k). For example, the Paley graph of order 17 is the unique
largest graph that contains neither a clique of size 4 nor an independent set of size 4, which
shows that R(4, 4) = 18 [13]. The current best known bound R(6, 6) ≥ 102 is established by
the Paley graph of order 101, which contains neither a clique of size 6 nor an independent
set of size 6 [44].

Because of this application among others, it is a long-standing open problem in additive
combinatorics and number theory to improve the upper bound for clique numbers of Paley
graphs of prime orders, and in particular to break the “√

p barrier” and prove an upper bound
scaling as p1/2−ε for some ε > 0.5 Some recent work has begun to explore whether convex
relaxations of the clique number can lead to such improvements. For instance, [21, 33] explored
using a hierarchy of SDPs producing bounds between that of the Lovász-Schrijver hierarchy
and the SOS hierarchy for this purpose, and [38] empirically found that a modification of
the Lovász ϑ function SDP can recover and sometimes slightly improve on the best-known
upper bound (5).

1.3 Our Contributions
Our main result contributes to both of the lines of work outlined above. On the one hand, it
shows (conditional on Conjecture 1) that the Paley graph gives a derandomization of the
SOS lower bound of [9] for ER random graphs. On the other hand, it shows that a powerful
convex optimization approach to upper-bounding the clique number cannot be too effective
when applied to Gp.

▶ Theorem 2. There is a constant c > 0 such that the value of the degree 4 SOS relaxation of
the clique number SOS4(G), as defined in Section 2.2.1, evaluated with Gp the Paley graph on
p vertices for p any prime number with p ≡ 1 (mod 4), as defined in Section 2.2.2, satisfies

SOS4(Gp) ≥ cp1/3. (6)

The main ingredients in our proof are new norm bounds for certain graph matrices (as appear
in the analysis of SOS relaxations for random graphs; see, e.g., [1]) formed from Paley graphs
and certain character sum estimates for the Legendre symbol.

To elaborate on this result, we provide three further pieces of more detailed analysis. Note
that Theorem 2 does not exclude the possibility that SOS4(Gp) = o(√p). In Section 4.1,
however, we show that at least the lower bound construction we use to prove Theorem 2,
involving the simple class of Feige-Krauthgamer pseudomoments (see Definition 6), cannot
improve on the p1/3 scaling of our lower bound.

On the other hand, in Section 4.2, we present some numerical evidence that SOS4(Gp) ∼ pη

for a constant η ∈ (0, 1
2 ), with value η ≈ 0.4. As we discuss in Section 4.2, these results

are similar to earlier numerical studies of [21], who consider a weaker class of SDPs than
the SOS hierarchy, and results of [33], who consider the same weaker SDPs and extract a
prediction of the power scaling of their values with p from numerical results. We thus have
reason to believe that our lower bound cannot be improved all the way to a scaling of p1/2.
Unfortunately, we have not found a way to convert these numerical results into a proof of an
improved bound on the clique number, but we leave this as a tantalizing open problem for
future work.

5 For instance, this is mentioned as “probably a very hard problem” in the problem list [8].
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Finally, to accompany these empirical results, we provide some modest theoretical evidence
that the SOS hierarchy may break the √

p barrier for upper bounds on ω(Gp). The tight
analysis showing that E[SOS2d(G)] = Ω(n1/2−o(1)) for G ∼ G(n, 1

2 ) and any constant d uses
a construction satisfying a property called pseudocalibration [4], whose analysis hinges on
norm bounds for the aforementioned graph matrices built from the adjacency matrix of G [1].
In Section 4.3, we show that some of these norm bounds fail for the Paley graph. Thus, the
analysis of the pseudocalibration construction for random graphs cannot be directly adapted
to the case of Paley graphs.6

2 Preliminaries and Proof Overview

2.1 Notations
Throughout the paper, p will denote a prime number, and q a prime power q = pk. The
finite field of order q (unique up to isomorphism) is denoted by Fq, and its group of units by
F×

q . A nonzero element y of Fq is called a quadratic residue of Fq if y = x2 for some x ∈ Fq,
and a quadratic nonresidue otherwise. We write (F×

q )2 for the set of quadratic residues. We
will also freely identify Fp with Z/pZ, with representatives {0, 1, . . . , p − 1}.

We write [n] := {1, 2, . . . , n}. For a finite set X, we write 2X for the power set, and
(

X
k

)
and

(
X
≤k

)
to denote the sets of subsets of X with exactly k elements and at most k elements

respectively. We also use X(k) to denote the set of tuples of elements of X of length k with
all entries distinct.

When the discussion involves variables {xi}i∈I indexed by I, for a subset S ⊂ I, we will
use xS to denote the monomial

∏
i∈S xi.

We use 1 ∈ Rn to denote the all-ones vector. We use I ∈ Rn×n to denote the identity
matrix, J ∈ Rn×n to denote the all-ones matrix, and 0 ∈ Rn×n to denote the all-zeros matrix.
The dimensions of these objects will be clear from context. For a real symmetric or Hermitian
matrix A, we use spec(A) to denote its spectrum, which we write in double braces {{· · · }}
to indicate that the spectrum is a multiset. For matrices A, B ∈ Cn×n and C ∈ Cm×m, we
use A ◦ B ∈ Cn×n to denote the Hadamard product (entrywise product) of A and B, and
A ⊗ C ∈ Cnm×nm to denote the Kronecker product (tensor product) of A and C.

For a graph G = (V, E), we use V (G) to denote its vertex set and E(G) to denote its
edge set. We use G to denote the complement of G. For vertices u, v ∈ V (G), we use u ∼G v

to indicate that u and v are adjacent in G and u ̸∼G v to indicate that they are not adjacent.
We will use AG to denote the {0, 1} adjacency matrix of G, and SG to denote the Seidel
or {±1} adjacency matrix. We drop the subscript G when the graph is clear from context.
Conventionally, the Seidel adjacency matrix is −1 on pairs of adjacent vertices, +1 on pairs
of nonadjacent vertices, and 0 on the diagonal. In this paper, we abuse this term to mean
the matrix that is 1 on pairs of adjacent vertices, −1 on pairs of nonadjacent vertices, and 0
on the diagonal, as this is more conveniently written in terms of the Legendre symbol in the
context of Paley graphs (see Section 3.4). It is easy to see that the AG and SG are related
by SG = 2AG − J + I. We write K(G) for the set of subsets of V (G) that form cliques in G.

We will use the standard asymptotic notations O(·), Ω(·), Θ(·), and o(·). We will use Õ(·)
and Ω̃(·) to additionally suppress polylogarithmic factors.

6 We note that the initial premise of pseudocalibration, which involves comparing a pair of “null” and
“alternative” random graph distributions, is not sensible to apply to the deterministic Paley graph. But,
ultimately, the pseudocalibration argument yields a function mapping a graph to a matrix that one
hopes will be feasible for a high-degree SOS program, and one may simply substitute the Paley graph
into this function and consider the result.

CCC 2023
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2.2 Problem Setup
Let us now specify in full detail the SOS relaxations SOS2d of the clique number, and the
Paley graphs Gp.

2.2.1 Sum-Of-Squares Relaxations of the Clique Number
Let G be a graph of order n. The clique number ω(G) of G is equal to the value of the
following polynomial optimization program:

ω(G) =


maximize

∑
i∈V (G) xi

subject to x2
i = xi for all i ∈ V (G),

xixj = 0 for all i, j ∈ V (G) with i ̸= j and i ̸∼G j

 . (7)

It is easy to see that the feasible solutions of the program above are in one-to-one
correspondence with the indicator vectors of the cliques in G. Before we introduce the SOS
relaxations of the clique number, let us first define the pseudoexpectation operators over
which the SOS relaxations optimize.

▶ Definition 3 (Pseudoexpectation). We say Ẽ : R[x1, . . . , xn]≤2d → R is a degree 2d

pseudoexpectation with respect to polynomial constraints {fi(x) = 0}a
i=1, {gj(x) ≥ 0}b

j=1 if
the following properties hold:

Ẽ is linear.
Ẽ[1] = 1.
Ẽ[fi(x)p(x)] = 0, for all p(x) ∈ R[x1, . . . , xn] such that deg(fip) ≤ 2d, for all 1 ≤ i ≤ a.
Ẽ[p(x)2] ≥ 0, for all p(x) ∈ R[x1, . . . , xn]≤d.
Ẽ[gj(x)p(x)2] ≥ 0, for all p(x) ∈ R[x1, . . . , xn] such that deg(gjp2) ≤ 2d, for all 1 ≤ j ≤ b.

In the case of the maximum clique program (7), the polynomial constraints are generated
by the Boolean constraints x2

i − xi = 0 for i ∈ V (G) and the clique constraints xixj = 0 for
i, j ∈ V (G) with i ̸= j and i ̸∼G j,. For convenience, let us identify the vertex set V (G) with
[n] where n = |V (G)|. Then, the degree 2d SOS relaxation of the polynomial optimization
program (7) written in terms of pseudoexpectations is

SOS2d(G) =



maximize
∑n

i=1 Ẽ[xi]
subject to Ẽ : R[x1, . . . , xn]≤2d → R linear,

Ẽ[1] = 1,

Ẽ[(x2
i − xi)p(x)] = 0 for all i ∈ [n], deg(p) ≤ 2d − 2,

Ẽ[xixjp(x)] = 0 for all i ̸∼G j, deg(p) ≤ 2d − 2,

Ẽ[p(x)2] ≥ 0 for all deg(p) ≤ d.


. (8)

To see that this is indeed a relaxation of the clique program (7), observe that for any
probability measure µ : 2[n] → R≥0 supported on the cliques of the graph G, the corresponding
expectation operator Eµ is a pseudoexpectation of any degree.

For every monomial xS for S ∈
( [n]

≤2d

)
, Ẽ[xS ] is called the pseudomoment of S of the

corresponding pseudoexpectation Ẽ. By linearity, every pseudoexpectation of degree 2d is
uniquely determined by its pseudomoments of degree at most 2d, i.e., by the set {Ẽ[xS ] :
S ⊆ [n], |S| ≤ 2d}. We may therefore encode the pseudoexpectation in the pseudomoment

matrix M ∈ R([n]
≤d)×([n]

≤d)
sym with entries

MS,T = Ẽ[xSxT ]. (9)
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This is especially convenient since the positivity of Ẽ on squared polynomials is equivalent to
positive semidefiniteness of M . We can then rewrite the above program (8) in the form of
an SDP:

SOS2d(G) =



maximize
∑n

i=1 M∅,{i}

subject to M ∈ R([n]
≤d)×([n]

≤d)
M∅,∅ = 1,

MS,T depends only on S ∪ T,

MS,T = 0 whenever S ∪ T /∈ K(G),
M ⪰ 0.


. (10)

We will not verify in detail the equivalence of (10) and (8); the reader may consult [36] for
an overview of this pseudomoment matrix framework, or the papers [9, 45, 27, 4] on SOS
relaxations of ω(G) for further details.

▶ Remark 4 (Pseudomoment matrix compression). We note that the row and column of M

indexed by any S /∈ K(G) is forced by the constraints to be identically zero. These entries
do not affect the positivity of M and do not play a role in the objective function, so we may
just as well take M to be indexed by cliques of size at most d rather than arbitrary subsets
of vertices.

In the special case 2d = 2, the SDP in (10) takes the form

SOS2(G) =



maximize
∑n

i=1 yi

subject to y ∈ Rn, Y ∈ Rn×n
sym ,

Yi,i = yi for all i ∈ [n],
Yi,j = 0 for all i, j ∈ [n] with i ̸= j and i ̸∼G j,

M =
[
1 y⊤

y Y

]
⪰ 0.


. (11)

One can show (see [20, 16]) that the program above is equivalent to the Lovász ϑ function of
the complement graph G, a well-known upper bound on ω(G) due to [37]:

SOS2(G) = ϑ(G). (12)

This SDP enjoys many special properties, some of which we will mention below; the reader
may consult the above references for further information.

On the other hand, once the degree increases to 2d = 4, the resulting SDP is not as well
understood. This SDP, which we study in the remainder of the paper, takes the form

SOS4(G) =



maximize
∑n

i=1 M0,1
∅,i

subject to Mr,c ∈ R([n]
r )×([n]

c ) for r, c ∈ {0, 1, 2},

Mr,c
S,T depends only on S ∪ T,

Mr,c
S,T = 0 whenever S ∪ T /∈ K(G),

M =

 1 M0,1 M0,2

M1,0 M1,1 M1,2

M2,0 M2,1 M2,2

 ⪰ 0


. (13)

2.2.2 Paley Graphs
We now give the definition and some useful basic properties of the Paley graphs.

CCC 2023
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▶ Definition 5 (Paley graph). Let q = pk be a prime power such that q ≡ 1 (mod 4). The
Paley graph Gq of order q then has vertex set V (Gq) := Fq and edge set

E(Gq) :=
{

{a, b} ∈
(
Fq

2

)
: a − b ∈ (F×

q )2
}

. (14)

The condition q ≡ 1 (mod 4) ensures that −1 is a square in Fq. As a result, a − b ∈ (F×
q )2 if

and only if b − a ∈ (F×
q )2, so the edge set is well-defined.

We will study the SOS relaxations of the clique number of Paley graphs, SOS2d(Gq).
Recall that the degree 2 SOS relaxation of the clique number of the Paley graph Gq is
equal to the Lovász theta function of its complement, SOS2(Gq) = ϑ(Gq). Since Gq is
self-complementary (under the automorphism x 7→ gx for g a multiplicative generator of F×

q ),
ϑ(Gq) = ϑ(Gq). Since Gq is vertex-transitive, by Lovász’s result in [37],

ϑ(Gq)ϑ(Gq) = |V (Gq)| = q, (15)

whereby combining our observations shows that

SOS2(Gq) = √
q. (16)

This is the same as the upper bound of the clique number given by Hoffman’s spectral bound.
Thus, degree 2 SOS does not improve on the spectral bound, and degree 4 SOS, which we
begin to analyze with Theorem 2, is the first more interesting degree.

2.3 Proof Overview
To prove Theorem 2, we will construct a feasible pseudomoment matrix M for the program (13)
that has objective value Ω(p1/3). We will consider the following type of pseudomoments, which
we call Feige-Krauthgamer (FK) pseudomoments, first studied by Feige and Krauthgamer [15]
to prove lower bounds on Lovász-Schrijver relaxations for the maximum independent set
of random graphs (sometimes these are called MPW pseudomoments after their use by the
later paper [39]).

▶ Definition 6 (Feige-Krauthgamer pseudomoments). Consider the degree 2d SOS relax-
ation of the clique number of a graph G. We say the pseudomoments of a degree 2d pseu-
doexpectation Ẽ are Feige-Krauthgamer (FK) pseudomoments if there exists a sequence
1 = α0, α1, α2, . . . , α2d ∈ R such that

Ẽ[xS ] =
{

α|S| if S ∈ K(G) (i.e., if S is a clique in G)
0 otherwise.

(17)

We note that FK pseudomoments automatically satisfy all conditions on a pseudoexpectation
other than positivity.

The line of work beginning with [40] sought to use FK pseudomoments to prove lower
bounds on SOS relaxations of ω(G) for random graphs G.7 While eventually in [27, 4] it
was found that FK pseudomoments could not prove optimal Ω(

√
n) lower bounds, earlier

works still proved polynomial Ω(nη) lower bounds with η < 1
2 using FK pseudomoments,

7 Some works, wanting to study an SOS relaxation that included the “exact” constraint
∑n

i=1 xi = k

for some k, adjusted the FK pseudomoments to satisfy the consequences of this constraint (see, e.g.,
[27, 43]). We do not take this route here.
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which are simpler to define and to work with than the alternatives developed later. In
particular, our analysis will closely follow that of [9], who used FK pseudomoments to prove
that SOS4(G) = Ω̃(n 1

3 ) with high probability for G ∼ G(n, 1
2 ). [27] later showed that, up to

polylogarithmic factors, this is optimal over any choice of FK pseudomoments for the degree
4 relaxation.
▶ Remark 7 (Partial symmetry). By vertex transitivity and edge transitivity of Paley graphs,
there always exists an optimal degree 4 pseudoexpectation giving all Ẽ[xi] the same value
and all Ẽ[xixj ] with i ∼ j in Gp the same value, regardless of whether Ẽ is given by FK
pseudomoments or not. This strong symmetry of course fails to hold for ER random graphs.

Recall that in the degree 4 SOS program (13), we write the pseudomoment matrix M in
the block form

M =

 1 M0,1 M0,2

M1,0 M1,1 M1,2

M2,0 M2,1 M2,2

 . (18)

We will follow the strategy of [9] to successively check the Schur complement conditions for
positive semidefiniteness of M . Namely, we will rely on the following fact.

▶ Proposition 8. Let

M =
[
A B⊤

B C

]
∈ R(a+b)×(a+b) (19)

be a real symmetric matrix written in block form, with A ∈ Ra×a and C ∈ Rb×b. If A ≻ 0
and C −BA−1BT ⪰ 0, then M ⪰ 0. We call the matrix C −BA−1B⊤ the Schur complement
of the block A in M .

3 Proof of Theorem 2

We restate Theorem 2 in more detailed terms of the FK pseudomoments that we will
construct.

▶ Theorem 9. There exists a constant c > 0 so that, setting α1 := cp−2/3, α2 := 4α2
1, α3 :=

8α3
1, and α4 := 512α4

1, the FK pseudomoments defined by these parameters give a feasible
solution to the degree 4 SOS relaxation (13) of the clique number of the Paley graphs Gp for
all sufficiently large p.

Theorem 2 follows, since the above gives, for all sufficiently large p,

SOS4(Gp) ≥ p · cp−2/3 = cp1/3. (20)

To remind the reader of the notations we set in the previous section, the pseudomoment
matrix in the degree 4 SOS relaxation (13) is denoted

M =

 1 M0,1 M0,2

M1,0 M1,1 M1,2

M2,0 M2,1 M2,2

 , (21)

and we take this to be given by the FK pseudomoments proposed in Theorem 9. Recall that
Mr,c ∈ R(Fp

r )×(Fp
c ) for all r, c ∈ {0, 1, 2}. We will use

N =
[
N1,1 N1,2

N2,1 N2,2

]
(22)

to denote the Schur complement of the top left 1 × 1 block in M .
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3.1 Filling Zero Rows and Columns

As mentioned before, we will fill in the zero rows and columns of N in order to make use of
graph matrices. In this section, we define the matrix

H =
[
H1,1 H1,2

H2,1 H2,2

]
(23)

that will achieve this filling.

▶ Definition 10. We write 1k :
(Fp

k

)
→ {0, 1} for the function with 1k(S) = 1 if S is a clique

in Gp and 1k(S) = 0 otherwise.

We now expand the N•,• matrices in terms of this indicator function.

▶ Proposition 11. Under the FK pseudomoments proposed in Theorem 9, the matrix N can
be written as

N =
[
N1,1 N1,2

N2,1 N2,2

]
, (24)

where N1,1 ∈ RFp×Fp , N1,2 ∈ RFp×(Fp
2 ), N2,1 = N1,2⊤ ∈ R(Fp

2 )×Fp , N2,2 ∈ R(Fp
2 )×(Fp

2 ) have
entries

N1,1
a,b =

{
α1 − α2

1 if a = b,

α212({a, b}) − α2
1 if a ̸= b,

(25)

N1,2
a,{b,c} =

{
(α2 − α1α2) 12({b, c}) if a ∈ {b, c},

α313({a, b, c}) − α1α212({b, c}) if a ̸∈ {b, c},
(26)

N2,2
{a,b},{c,d} =


(α2 − α2

2)12({a, b}) if {a, b} = {c, d},

α313({a, b} ∪ {c, d}) − α2
212({a, b})12({c, d}) if |{a, b} ∩ {c, d}| = 1,

α414({a, b, c, d}) − α2
212({a, b})12({c, d}) if {a, b} ∩ {c, d} = ∅.

(27)

Per Remark 4, rows and columns indexed by pairs are identically zero in any of these matrices
for all pairs that are not edges in Gp.

Next, we define matrices H•,• based on the N•,• by replacing the clique indicator functions
with “bipartite” versions of those indicator functions, that only depend on the presence of
edges between two subsets of vertices.

▶ Definition 12. We write 1ℓ,r :
(Fp

ℓ

)
×
(Fp

r

)
→ {0, 1} for the function with

1ℓ,r(L, R) =
{

1 if v ∼Gp w for all v ∈ L \ R, w ∈ R \ L,

0 otherwise.
(28)

In other words, 1ℓ,r(L, R) = 1 if and only if all pairs of vertices in
(

L∪R
2
)

that don’t belong
simultaneously to L or R are connected in Gp.
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Now we are ready to state what matrix H is: it is given by blocks H1,1 ∈ RFp×Fp , H1,2 ∈
RFp×(Fp

2 ), H2,1 = H1,2⊤
, and H2,2 ∈ R(Fp

2 )×(Fp
2 ) having entries

H1,1
a,b =

{
α1 − α2

1 if a = b

α211,1({a}, {b}) − α2
1 if a ̸= b

, (29)

H1,2
a,{b,c} =

{
α2 − α1α2 if a ∈ {b, c}
α311,2({a}, {b, c}) − α1α2 if a ̸∈ {b, c}

, (30)

H2,2
{a,b},{c,d} =


α2 − α2

2 if {a, b} = {c, d}
α312,2({a, b}, {c, d}) − α2

2 if |{a, b} ∩ {c, d}| = 1
α412,2({a, b}, {c, d}) − α2

2 if {a, b} ∩ {c, d} = ∅
. (31)

It is easy to see that proving positive semidefiniteness for H also proves N is positive
semidefinite, due to the following observation.

▶ Proposition 13. Up to permutation of rows and columns, N is the direct sum of the
principal submatrix of H indexed by singletons and the edges of Gp with a zero matrix.

The proof is simply that, for |L|, |R| ≤ 2, we have 1|L∪R|(L ∪ R) = 1|L|,|R|(L, R) so long as
L is an edge if |L| = 2 and R is an edge if |R| = 2.

3.2 Second Schur Complement Bounds
Next, the goal is to prove under the same setting of Theorem 9 that H ⪰ 0. The argument
for this analysis is included in the full version of this paper and is similar to that of [9].

We will use Q0 = 1
p J ∈ RFp×Fp to denote the orthogonal projection matrix to the constant

vector, and Q1 = I − Q0 to denote the projection matrix to the orthogonal complement.

▶ Proposition 14. Under the FK pseudomoments specified by α1, α2, α3, α4 in Theorem 9,
for any constant ε > 0, the matrix H1,1 satisfies

H1,1 ⪰
(

α1 + p − 1
2 α2 − pα2

1

)
Q0 + (1 − ε)α1Q1 ≻ 0 (32)

for all sufficiently large primes p.

So, if moreover we can show H2,2 − H2,1(H1,1)−1H1,2 ⪰ 0, we can conclude the positive
semidefiniteness of H. Our last simplification before proceeding to the main technical analysis
is to remove the (H1,1)−1 term above. Fix some constant ε > 0 for all future discussions,
say ε := 1

2 . Then,

H1,1 ⪰
(

α1 + p − 1
2 α2 − pα2

1

)
Q0 + (1 − ε)α1Q1 ≻ 0 (33)

for all sufficiently large primes p, so

(H1,1)−1 ⪯
(

α1 + p − 1
2 α2 − pα2

1

)−1
Q0 + ((1 − ε)α1)−1

Q1, (34)

and substituting this into the term appearing in the inequality we need to show,

H2,1(H1,1)−1H1,2 ⪯ H2,1

[(
α1 + p − 1

2 α2 − pα2
1

)−1
Q0 + ((1 − ε)α1)−1

Q1

]
H1,2. (35)
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Note that the column sum (row sum) of H2,1 is the same across each column (nonzero
row indexed by edges of Paley graphs) due to the partial symmetry of Paley graphs. As
a result, 1 is an eigenvector of H2,1H1,2, and H2,1Q0H1,2 = P0H2,1H1,2P0, where we use
P0 = 2

p(p−1) J ∈ R(Fp
2 )×(Fp

2 ) to denote the orthogonal projection matrix to the constant vector.
Moreover, since 1 is an eigenvector of H2,1H1,2, (I − P0)H2,1H1,2P0 = 0. We therefore have

H2,1

[(
α1 + p − 1

2 α2 − pα2
1

)−1
Q0 + ((1 − ε)α1)−1

Q1

]
H1,2

= H2,1

[((
α1 + p − 1

2 α2 − pα2
1

)−1
− ((1 − ε)α1)−1

)
Q0 + ((1 − ε)α1)−1

I

]
H1,2

=
(

α1 + p − 1
2 α2 − pα2

1

)−1
P0H2,1H1,2P0 + ((1 − ε)α1)−1 (I − P0)H2,1H1,2(I − P0).

(36)

Thus, to show H2,2 ⪰ H2,1(H1,1)−1H1,2 holds for all sufficiently large primes p, it is sufficient
to prove the following proposition:

▶ Proposition 15. Under the FK pseudomoments specified by α1, α2, α3, α4 in Theorem 9,
for any constant ε > 0,

H2,2 ⪰
(

α1 + p − 1
2 α2 − pα2

1

)−1
P0H2,1H1,2P0

+ ((1 − ε)α1)−1 (I − P0)H2,1H1,2(I − P0) (37)

holds for all sufficiently large primes p.

3.3 Ribbons and Graph Matrices
To organize the remaining calculation, now let us review the construction of graph matrices
that has played a role in many SOS lower bound analyses in previous literature. We will use
the following definitions as appeared in the work of [29].

▶ Definition 16 (Ribbon). A ribbon on a ground set V is a tuple R = (V (R), E(R), AR, BR),
where (V (R), E(R)) is a graph, and AR, BR ⊆ V (R) ⊆ V .

▶ Definition 17 (Matrix for a Ribbon). Let G ∈ RV ×V be a real symmetric matrix whose off-
diagonal entries are ±1 and whose diagonal entries are zero. For R = (V (R), E(R), AR, BR)
a on V , the corresponding matrix MG(R) ∈ R( V

|AR|)×( V
|BR|) has rows and columns indexed by

the subsets of V of sizes |AR| and |BR|, respectively. The entries of MG(R) is given by

MG(R)I,J =
{∏

{i,j}∈E(R) Gi,j if I = AR and J = BR

0 otherwise
. (38)

In other words, there is only one nonzero entry of MG(R), and it is located at the row and
the column corresponding to AR and BR.

▶ Definition 18 (Isomorphisms Between Ribbons). Two ribbons R, S are isomorphic, or have
the same shape, if there is a bijection f : V (R) → V (S) which is a graph isomorphism between
(V (R), E(R)) and (V (S), E(S)) and also a bijection from AR to AS and from BR to BS.

If we ignore the labels on the vertices of a ribbon, what remains is the shape of the ribbon.
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▶ Definition 19 (Shape). A shape is an equivalence class of ribbons of the same shape. Each
shape has associated with it a representative β = (V (β), E(β), Aβ , Bβ).

▶ Definition 20 (Embedding of a Shape). Given a shape β on V and an injective function
f : V (β) → V , we let f(β) be the ribbon by labeling the vertices V (β) in the natural way.

▶ Definition 21 (Graph Matrix). Let G ∈ RV ×V be a real symmetric matrix whose off-
diagonal entries are ±1 and whose diagonal entries are zero. For a shape β on V , the graph
matrix MG(β) ∈ R( V

|Aβ |)×( V
|Bβ |) is defined as the sum of all ribbon matrices over ribbons with

shape β:

MG(β) =
∑

R ribbon of shape β

MG (R) . (39)

▶ Definition 22 (Automorphism of a Shape). For a shape β, Aut(β) is the group of bijection
from V (β) to itself such that Aβ and Bβ are fixed as sets and the map is a graph automorphism
of (V (β), E(β)).

It is easy to see that if we sum over ribbon matrices of all ribbons obtained from injective
labelings of β, we obtain the graph matrix MG(β) multiplied by | Aut(β)|. Thus,

MG(β) =
∑

R ribbon of shape β

MG(R) = 1
| Aut(β)|

∑
f :V (β)→V injective

MG(f(β)). (40)

3.4 Graph Matrix Decomposition

▶ Definition 23 (Legendre Symbol). Let Fp be the finite field of order p. The Legendre symbol
is defined as

χ(a) = χp(a) :=


0 if a ≡ 0 (mod p),
1 if a is a quadratic residue in Fp,

−1 if a is a quadratic nonresidue in Fp.

(41)

When the underlying finite field Fp is fixed and clear from context, we will omit the subscript.

▶ Remark 24. Recall that all the primes p in our discussion are congruent to 1 modulo 4.
This ensures that χ(−1) = 1, and thus χ(a) = χ(−a) for any a ∈ Fp.

▶ Proposition 25. We have 1ℓ,r(L, R) = 1
2|L\R|×|R\L|

∏
(a,b)∈(L\R)×(R\L)(1 + χ(a − b)) for

all ℓ, r ≥ 0, L ∈
(Fp

ℓ

)
, and R ∈

(Fp

r

)
.

Proof. The result follows from observing that, for a, b ∈ Fp distinct, 1
2 (1 + χ(a − b)) is the

indicator of the edge {a, b} existing in the Paley graph. ◀

In the following few equations, let us write S for the Seidel adjacency matrix of Gp, so
that Sa,b := χ(a − b). By substituting the indicator functions 1ℓ,r in the definition of H

using Proposition 25 and expanding the products, we have
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H2,2
{a,b},{c,d} =



α2 − α2
2 if {a, b} = {c, d},(

α3
2 − α2

2
)

+ α3
2 Sb,d if a = c and b ̸= d,

( α4
16 − α2

2) + α4
16

(
Sa,c + Sa,d + Sb,c + Sb,d

+Sa,cSa,d + Sb,cSb,d + Sa,cSb,c

+Sa,dSb,d + Sa,cSb,d + Sa,dSb,c

+Sa,cSa,dSb,c + Sb,dSa,dSb,c

+Sa,cSa,dSb,d + Sa,cSb,cSb,d

+Sa,cSa,dSb,cSb,d

)
if {a, b} ∩ {c, d} = ∅.

(42)

and

(H2,1H1,2){a,b},{c,d}

=
∑
i∈Fp

H2,1
{a,b},iH

1,2
i,{c,d}

=



2(α2 − α1α2)2 + (p − 2)((α1α2)2 + α2
3

4 − α1α2α3
2 )

+( α2
3

4 − α1α2α3
2 )

∑
i∈Fp\{a,b}(Sa,i + Sb,i + Sa,iSb,i)

if {a, b} = {c, d},

(α2 − α1α2)2 − 2(α2 − α1α2)α1α2 + (p − 3)(α1α2)2

+ (α2−α1α2)α3
2 − (p − 3) α1α2α3

2 + (p − 3) α2
3

8

+ (α2−α1α2)α3
4 (Sa,bSb,d + Sa,dSb,d + Sa,b + Sa,d + 2Sb,d)

+( α2
3

8 − α1α2α3
2 )

∑
i̸∈{a,b,d} Sa,i

+( α2
3

8 − α1α2α3
4 )

∑
i̸∈\{a,b,d}(Sb,i + Sd,i

+Sa,iSb,i + Sa,iSd,i)
+ α2

3
8
∑

i∈Fp\{a,b,d}(Sb,iSd,i + Sa,iSb,iSd,i)

if a = c and b ̸= d,

(α2 − α1α2)α3 − 4(α2 − α1α2)α1α2

+(p − 4)(α1α2)2 − (p − 4) α1α2α3
2 + (p − 4) α2

3
16

+ (α2−α1α2)α3
2 (Sa,c + Sa,d + Sb,c + Sb,d)

+ (α2−α1α2)α3
4 (Sa,cSa,d + Sb,cSb,d + Sa,cSb,c + Sa,dSb,d)

+( α2
3

16 − α1α2α3
4 )

∑
i̸∈{a,b,c,d}(Sa,i + Sb,i + Sc,i + Sd,i

+Sa,iSb,i + Sc,iSd,i)
+ α2

3
16
∑

i ̸∈{a,b,c,d}(Sa,iSc,i + Sa,iSd,i + Sb,iSc,i + Sb,iSd,i

+Sa,iSb,iSc,i + Sa,iSb,iSd,i

+Sa,iSc,iSd,i + Sb,iSc,iSd,i

+Sa,iSb,iSc,iSd,i)

if {a, b} ∩ {c, d} = ∅.

(43)

We now express this as a sum of graph matrices. We present all the matrices required for
this decomposition in Table 1. Using the notations for graph matrices defined above and in
the table, we can write the matrix H2,2 and the matrix H2,1H1,2 as a weighted sum of these
matrices, as follows:
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H2,2 = (α2 − α2
2)I +

(α3

2 − α2
2

)
T 3,0,1 + α3

2 T 3,1,1 +
(α4

16 − α2
2

)
T 4,0,1

+ α4

16
(
T 4,1,1 + T 4,2,1 + T 4,2,2 + T 4,2,3 + T 4,3,1 + T 4,4,1) , (44)

H2,1H1,2 =
[
2(α2 − α1α2)2 + (p − 2)

(
(α1α2)2 + α2

3
4 − α1α2α3

2

)]
I

+
(

α2
3

4 − α1α2α3

2

)(
U3,1,1 + U3,2,1)

+
[
(α2 − α1α2)

(
α2 − 3α1α2 + α3

2

)
+ (p − 3)

(
(α1α2)2 − α1α2α3

2 + α2
3

8

)]
T 3,0,1

+ (α2 − α1α2)α3

4 (T 3,2,1 + T 3,2,2 + 2T 3,1,1 + T 3,1,2 + T 3,1,3)

+
(

α2
3

8 − α1α2α3

2

)
U4,1,1

+
(

α2
3

8 − α1α2α3

4

)(
U4,1,2 + U4,1,3 + U4,2,1 + U4,2,2)+ α2

3
8
(
U4,2,3 + U4,3,1)

+
[
(α2 − α1α2)(α3 − 4α1α2) + (p − 4)

(
α1α2 − α3

4

)2
]

T 4,0,1

+ (α2 − α1α2)α3

2 T 4,1,1 + (α2 − α1α2)α3

4 (T 4,2,1 + T 4,2,2)

+
(

α2
3

16 − α1α2α3

4

)(
U5,1,1 + U5,1,2 + U5,2,1 + U5,2,2)

+ α2
3

16
(
U5,2,3 + U5,3,1 + U5,3,2 + U5,4,1) . (45)

3.5 Graph Matrix Norm Bounds
Now we analyze the norms of the graph matrices defined above in order to prove Proposi-
tion 15.
▶ Remark 26. Previous work of [1] established the typical norm of graph matrices when
the underlying matrix G is the Seidel adjacency matrix of an ER random graph, where the
quantities that characterize the norm bounds are the sizes of the minimum vertex separators
of the shapes. In this work, using different techniques, we prove graph matrix norm bounds
when the underlying matrix is the Seidel adjacency matrix of the Paley graph Gp.

Recall that we defined P0 = 1
p(p−1) J ∈ R(Fp

2 )×(Fp
2 ) to denote the orthogonal projection

matrix to the constant vector. Following the strategies in [9], we define the following subspaces
of R(Fp

2 ):

V0 =
{

v ∈ R(Fp
2 ) : vi,j = vi′,j′ , ∀{i, j}, {i′, j′} ∈

(
Fp

2

)}
(46)

V1 =
{

v ∈ R(Fp
2 ) : ∃u ∈ RFp , s.t. ⟨1, u⟩ = 0 and v{i,j} = ui + uj , ∀{i, j} ∈

(
Fp

2

)}
(47)

V2 = (V0 ⊕ V1)⊥. (48)

In words, V0 is the span of constant vectors, V0 ⊕ V1 is the span of vectors v whose entries
v{i,j} can be decomposed to a sum of ui + uj for some u ∈ RFp , and V2 is the orthogonal
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Table 1 We present the graph matrices that we consider in Section 3.5 for the proof of Theorem 2,
all defined on the Seidel adjacency matrix S of Gp. For each matrix, we give its name, the associated
shape (see Definition 19), and the formula for the entries of the matrix. Some matrices are only
non-zero on index sets satisfying certain equalities; in this case, for the sake of brevity, we indicate
this “pattern” in the first column, and do not include the requisite indicator function in the third
column. We also give the norm bound we prove in Section 3.5 and the norm bound for the same
graph matrix evaluated on an ER random graph that follows from [1]. In these bounds we give only
the order of growth; our bounds should be viewed as having an implicit O(·), and the bounds of [1]
as having an implicit Õ(·).

Matrix Shape Entry Formula Gp G(p, 1
2 )

T 3,2,1
{a,b},{a,c}

A B

Sa,bSb,c p1/2 p1/2

T 3,2,2
{a,b},{a,c}

A B

Sa,cSb,c p1/2 p1/2

T 3,1,1
{a,b},{a,c}

A B

Sb,c p1/2 p1/2

T 3,1,2
{a,b},{a,c}

A B

Sa,b p p

T 3,1,3
{a,b},{a,c}

A B

Sa,c p p

T 3,0,1
{a,b},{a,c}

A B

1 p p

T 4,4,1
{a,b},{c,d}

BA

Sa,cSa,dSb,cSb,d p5/4 p
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Matrix Shape Entry Formula Gp G(p, 1
2 )

T 4,3,1
{a,b},{c,d}

BA

Sa,cSa,dSb,c + Sa,cSa,dSb,d +
Sa,cSb,cSb,d + Sa,dSb,cSb,d

p p

T 4,2,1
{a,b},{c,d}

BA

Sa,cSa,d + Sb,cSb,d p3/2 p3/2

T 4,2,2
{a,b},{c,d}

BA

Sa,cSb,c + Sa,dSb,d p3/2 p3/2

T 4,2,3
{a,b},{c,d}

BA

Sa,cSb,d + Sa,dSb,c p p

T 4,1,1
{a,b},{c,d}

BA

Sa,c + Sa,d + Sb,c + Sb,d p3/2 p3/2

T 4,0,1
{a,b},{c,d}

BA

1 p2 p2

U3,2,1
{a,b},{a,b}

A B ∑
i ̸∈{a,b} Sa,iSb,i 1 p1/2

U3,1,1
{a,b},{a,b}

A B ∑
i ̸∈{a,b} Sa,i + Sb,i 1 p1/2
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Matrix Shape Entry Formula Gp G(p, 1
2 )

U4,3,1
{a,b},{a,c}

A B ∑
i̸∈{a,b,c} Sa,iSb,iSc,i p3/2 p

U4,2,1
{a,b},{a,c}

A B ∑
i̸∈{a,b,c} Sa,iSb,i p p3/2

U4,2,2
{a,b},{a,c}

A B ∑
i̸∈{a,b,c} Sa,iSc,i p p3/2

U4,2,3
{a,b},{a,c}

A B ∑
i̸∈{a,b,c} Sb,iSc,i p p

U4,1,1
{a,b},{a,c}

A B ∑
i̸∈{a,b,c} Sa,i p p3/2

U4,1,2
{a,b},{a,c}

A B ∑
i̸∈{a,b,c} Sb,i p p3/2

U4,1,3
{a,b},{a,c}

A B ∑
i̸∈{a,b,c} Sc,i p p3/2

U5,4,1
{a,b},{c,d}

A B ∑
i̸∈{a,b,c,d} Sa,iSb,iSc,iSd,i p2 p2
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Matrix Shape Entry Formula Gp G(p, 1
2 )

U5,3,1
{a,b},{c,d}

A B ∑
i ̸∈{a,b,c,d} Sa,iSb,iSc,i +

Sa,iSb,iSd,i

p2 p2

U5,3,2
{a,b},{c,d}

A B ∑
i ̸∈{a,b,c,d} Sa,iSc,iSd,i +

Sb,iSc,iSd,i

p2 p2

U5,2,1
{a,b},{c,d}

A B ∑
i ̸∈{a,b,c,d} Sa,iSb,i p2 p5/2

U5,2,2
{a,b},{c,d}

A B ∑
i ̸∈{a,b,c,d} Sc,iSd,i p2 p5/2

U5,2,3
{a,b},{c,d}

A B ∑
i ̸∈{a,b,c,d} Sa,iSc,i +

Sa,iSd,i + Sb,iSc,i + Sb,iSd,i

p2 p2

U5,1,1
{a,b},{c,d}

A B ∑
i ̸∈{a,b,c,d} Sa,i + Sb,i p2 p5/2

U5,1,2
{a,b},{c,d}

A B ∑
i ̸∈{a,b,c,d} Sc,i + Sd,i p2 p5/2
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complement of V0 ⊕ V1. Furthermore, let P1 and P2 be the orthogonal projection matrices
to the subspaces V1, and V2 respectively. Note that this is consistent with the previously
defined P0, which is the orthogonal projection matrix to the span of constant vectors V0.

In the analysis of ER graphs, these subspaces appear because they are the decomposition
of R(Fp

2 ) into irreducible subrepresentations under the action of Sp, with respect to which the
expectation of an FK pseudomoment matrix is invariant. This invariance does not hold for
our deterministic FK pseudomoment matrix, but we will see that the same decomposition is
still useful.

We will use the following norm bounds for the graph matrices defined earlier. The proofs
may be found in the full version of the paper.

▶ Proposition 27. ∥T 3,2,i∥ = O(√p) for i ∈ {1, 2}.

▶ Proposition 28. ∥T 3,1,1∥ = O(√p).

▶ Proposition 29. ∥T 3,1,i∥ = O(p) for i ∈ {2, 3}.

▶ Proposition 30. T 3,0,1 = 2(p − 2)P0 + (p − 4)P1 − 2P2.

▶ Proposition 31. ∥T 4,3,1∥ = O(p).

▶ Proposition 32. ∥T 4,i,j∥ = O(p3/2) for (i, j) ∈ {(2, 1), (2, 2), (1, 1)}. Moreover, all of
∥T 4,2,1P2∥, ∥P2T 4,2,2∥, ∥P2T 4,1,1∥, and ∥T 4,1,1P2∥ are O(√p).

▶ Proposition 33. ∥T 4,2,3∥ = O(p).

▶ Proposition 34. T 4,0,1 = (p−2)(p−3)
2 P0 − (p − 3)P1 + P2.

▶ Proposition 35. ∥U3,i,1∥ = O(1) for i ∈ {1, 2}.

▶ Proposition 36. ∥U4,3,1∥ = O(p3/2).

▶ Proposition 37. ∥U4,i,j∥ = O(p) for i ∈ {1, 2} and j ∈ {1, 2, 3}.

▶ Proposition 38. ∥U5,4,1∥ = O(p2).

▶ Proposition 39. ∥U5,3,i∥ = O(p2) for i ∈ {1, 2}.

▶ Proposition 40. ∥U5,i,j∥ = O(p2) for i ∈ {1, 2} and j ∈ {1, 2, 3}, where j ̸= 3 if i = 1.

▶ Theorem 41. ∥T 4,4,1∥ = O(p5/4).

Of these statements, Theorem 41 is by far the subtlest – unlike the other terms, where fairly
straightforward arguments work, for T 4,4,1 it turns out that a naive bound is insufficient,
and we must more carefully account for character sum cancellations. The bounds we prove
are generally incomparable to those for random graphs following from [1]: for some graph
matrices we expect a comparable norm bound but cannot prove one due to technical obstacles,
while for other graph matrices the Paley graph exhibits stronger cancellations than a random
graph and we can show a stronger norm bound. We compare the respective bounds in Table 1.
Moreover, as we show in Section 4.3, there is an example of a graph matrix for which the
norm when evaluated on the Paley graph is actually asymptotically larger than the norm
when evaluated on a random graph; however, this example does not figure in our analysis.
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3.6 Final Steps
Finally, putting all the graph matrix norm bounds together, we prove Proposition 15, which
will conclude the proof of Theorem 9, as we have discussed earlier.

Proof of Proposition 15. The statements in this proof will hold for all sufficiently large
primes p.

To show H2,2 ⪰ (α1 + p−1
2 α2 −pα2

1)−1P0H2,1H1,2P0 +((1−ε)α1)−1(I −P0)H2,1H1,2(I −
P0), we have to show that M1 ⪰ M2, where M1 is the sum of all multiples of the identity,
T 3,0,1, and T 4,0,1 (possibly conjugated by P0 or I − P0) appearing in the expressions
(44) and (45), and M2 is the sum of the remaining graph matrices of shapes having at
least one edge. Note that V0,V1,V2 are eigenspaces of M1, with eigenvalues scaling as
(1 − o(1))6p2α4

1, (1 − o(1))4pα3
1, and (1 − o(1))4α2

1, respectively.
It is then sufficient to show3p2α4

1 0 0
0 2pα3

1 0
0 0 2α2

1

 ?
⪰

∥P0M2P0∥ ∥P0M2P1∥ ∥P0M2P2∥
∥P1M2P0∥ ∥P1M2P1∥ ∥P1M2P2∥
∥P2M2P0∥ ∥P2M2P1∥ ∥P2M2P2∥

 . (49)

Using the graph matrix norm bounds above, we have for any i ∈ {0, 1, 2} and j ∈ {0, 1, 2}
with (i, j) ̸= (2, 2) that

∥PiM2Pj∥ = O(p3/2α4
1), (50)

and for the remaining case

∥P2M2P2∥ = O(p2α5
1), (51)

so we only need to prove that the following matrix is positive semidefinite:3p2α4
1 − O(p3/2α4

1) −O(p3/2α4
1) −O(p3/2α4

1)
−O(p3/2α4

1) 2pα3
1 − O(p3/2α4

1) −O(p3/2α4
1)

−O(p3/2α4
1) −O(p3/2α4

1) 2α2
1 − O(p2α5

1)

 , (52)

which is verified by taking the Schur complement and using diagonal dominance when
α1 = c · p−2/3 for a sufficiently small constant c. ◀

With Proposition 15 proved, we have finished proving Theorem 9.

4 Ancillary Results

4.1 Optimality Over Feige-Krauthgamer Pseudomoments
In this section, we show that our lower bound is optimal over those achievable by FK
pseudomoments. To be precise, let us define a new SDP corresponding to this restricted type
of pseudomoment, a variant of (13):

FK4(G) :=



maximize
∑n

i=1 M0,1
∅,i

subject to Mr,c ∈ R([n]
r )×([n]

c ) for r, c ∈ {0, 1, 2},

Mr,c
S,T depends only on S ∪ T,

Mr,c
S,T = 0 whenever S ∪ T /∈ K(G),

Mr,c
S,T depends only on |S ∪ T | when S ∪ T ∈ K(G),

M =

 1 M0,1 M0,2

M1,0 M1,1 M1,2

M2,0 M2,1 M2,2

 ⪰ 0


. (53)
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102
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6× 100

S
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p
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1.017 p 0.395

1.177 p 0.323

Full SDP values

FK pseudomoment SDP values

Figure 1 For primes 5 ≤ p ≤ 250, we present the value of SOS4(Gp) and the value of FK4(Gp)
(where the semidefinite program is restricted to optimize over only FK pseudomoments). We fit
power models apb to the data and plot the results as well.
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Figure 2 For primes 5 ≤ p ≤ 16741, we present computations of the true clique number ω(Gp)
(taken from [46] and its online supplementary materials). We fit a model a(log p)2 to the data and
plot the results as well.
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A B

Figure 3 We illustrate the graph matrix used as an example in Section 4.3.

Since the conditions of this SDP are more restrictive than those of SOS4(G), we have
SOS4(G) ≥ FK4(G). Our strategy has been to show that FK4(G) is large; the following
shows a limitation to this approach. The proof is given in the full version of the paper.

▶ Theorem 42. Over primes p ≡ 1 (mod 4), FK4(Gp) = Θ(p1/3).

4.2 Numerical Experiments
Given our results in Theorems 2 and 42, it is natural to ask whether a better lower bound
technique than working with FK pseudomoments might prove an optimal lower bound of
the form SOS4(Gp) = Ω(p1/2). In Figure 1, we present some surprising numerical results
suggesting that this is not the case. Namely, in addition to the true values of ω(Gp), we plot
the values of SOS4(Gp) (the “full SDP”) and of FK4(Gp) (the “FK pseudomoment SDP”)
on a log-log plot, and fit lines to these results.8

These results for FK4(Gp) confirm the statement of Theorem 42, with an estimated scaling
of FK4(Gp) ∼ p0.323, close to our result showing that FK4(Gp) ∼ p1/3. For SOS4(Gp), the
results still indicate a scaling below p1/2, estimated at SOS4(Gp) ∼ p0.395. Based on these
results, it seems reasonable to conjecture that SOS4(Gp) = O(p1/2−ε) for some ε > 0. This
prediction is compatible with that of [33], who, based experiments solving a weaker SDP
than degree 4 SOS as proposed by [21], experimentally found that SOS4(Gp) ≲ p0.456.

4.3 General Graph Matrix Norm Bounds Do Not Derandomize
In this section, we give a simple example of a graph matrix for which the norm bound of [1]
for ER graphs fails to hold for Paley graphs. Since the bound of [1] is a crucial ingredient
in the proof of the Ω(p1/2) SOS lower bound of [4], we take this as some evidence that
a sufficiently high degree of SOS can prove a bound of the form ω(Gp) ≤ O(p1/2−ε). In
particular, this gives theoretical evidence for the numerical observations above.

Let S ∈ Rn×n be the Seidel adjacency matrix of a graph. We consider the graph
matrix M = M(S) formed from S and the shape in Figure 3, with entries Mxy =
1{x ̸= y}

∑
a,b∈[n]

a̸=b

Sa,xSa,ySb,xSb,y, where we do not need to include the constraints a, b /∈

{x, y} since these are automatically enacted by having Sa,a = 0 for all a.
For any such S and x ̸= y, we have Mxy = (S2)2

x,y − (p − 2). When S is the Seidel
adjacency matrix of the Paley graph, we have S2 = pI − 11⊤. Thus in this case we have
M(S) = (p−3)I − (p−3)11⊤, and ∥M∥ = (p−1)(p−3) ∼ p2. On the other hand, when S is
the Seidel adjacency matrix of a random ER graph, then the results of [1] show that, since the
shape of M has minimum vertex separator of size 1, with high probability, ∥M∥ ≤ Õ(p3/2).
Thus, the Paley graph adjacency matrix fails to satisfy this basic graph matrix bound.

8 These SDPs are solved using the Mosek solver through the CVXPY interface for Python.
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