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Preface

The fourth Conference on Information-Theoretic Cryptography (ITC 2023) took place from
June 6-8, 2023, at the Department of Computer Science, Aarhus University, Aarhus, Denmark.
For the first time since the COVID-19 pandemic, we were thrilled to hold a fully in-person
conference. This year’s conference was co-located with the TPMPC 2023 workshop. The
general chair was Ivan Damgard, and the program chair was Kai-Min Chung. As with the
previous editions, the conference was held in cooperation with the International Association
for Cryptologic Research (IACR).

In its fourth year, ITC continued its mission of bringing together the cryptography and
information theory communities, and advancing research in all aspects of information-theoretic
techniques for cryptography and security. In pursuit of this mission, we invited multiple
Program Committee members from the information theory community, and broadened the
Call for Papers to encompass emerging topics such as adversarial and robust learning and
algorithmic fairness. Although we didn’t see a substantial increase in submissions from these
areas this year, we remain hopeful that this will be a valuable initiative for future years.

We received a total of 29 submissions which overall were of high quality. As in the last
year, we leveraged the small conference size to have interactive and anonymous discussions
with the authors to clarify technical issues. With the help of external reviewers, the program
committee selected 18 papers. One was conditionally accepted at first but eventually accepted
after shepherding. The proceedings contain the revised versions of these 18 papers. The
revisions were not reviewed, and the authors bear full responsibility for the content.

Continuing the tradition, the conference featured six “spotlight talks,” highlighting
the exciting development of information theoretical techniques in the cryptography and
information theory community. This year, the selection of spotlight talks was carried out
by the steering committee and the program chair. It was our great pleasure this year to
feature a historical talk by Ivan Damgard on information-theoretic MPC to celebrate the
35th anniversary of its invention.

We are grateful to everyone who made the 4th ITC conference a success. Our heartfelt
thanks go out to the authors who submitted their papers. We extend our sincere thanks to
the PC members and external reviewers for their dedicated efforts in providing thorough
reviews, insightful discussions, and expert opinions. We are deeply indebted to the steering
committee, particularly Benny Applebaum and Hoeteck Wee, for their invaluable guidance.
Special thanks are also due to the previous PC chairs, especially Dana Dachman-Soled, for
sharing their experience and providing answers to numerous questions. Lastly, we extend
our gratitude to all the invited speakers, presenting authors, and participants who devoted
their time and energy to ensuring the success of this conference.

Kai-Min Chung
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Two-Round Perfectly Secure Message Transmission
with Optimal Transmission Rate

Nicolas Resch &

Informatics’ Institute, University of Amsterdam, The Netherlands

Chen Yuan &

School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, China

—— Abstract

In the model of Perfectly Secure Message Transmission (PSMT), a sender Alice is connected to a
receiver Bob via n parallel two-way channels, and Alice holds an ¢ symbol secret that she wishes
to communicate to Bob. There is an unbounded adversary Eve that controls ¢ of the channels,
where n = 2t 4+ 1. Eve is able to corrupt any symbol sent through the channels she controls, and
furthermore may attempt to infer Alice’s secret by observing the symbols sent through the channels
she controls. The transmission is required to be (a) reliable, i.e., Bob must always be able to recover
Alice’s secret, regardless of Eve’s corruptions; and (b) private, i.e., Eve may not learn anything
about Alice’s secret. We focus on the two-round model, where Bob is permitted to first transmit to
Alice, and then Alice responds to Bob.

In this work we provide upper and lower bounds for the PSMT model when the length of the
communicated secret ¢ is asymptotically large. Specifically, we first construct a protocol that allows
Alice to communicate an £ symbol secret to Bob by transmitting at most 2(1 4 0¢— o0 (1))nf symbols.
Under a reasonable assumption (which is satisfied by all known efficient two-round PSMT protocols),
we complement this with a lower bound showing that 2nf symbols are necessary for Alice to privately
and reliably communicate her secret. This provides strong evidence that our construction is optimal
(even up to the leading constant).

2012 ACM Subject Classification Security and privacy — Mathematical foundations of cryptography
Keywords and phrases Secure transmission, Information theoretical secure, MDS codes
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1 Introduction

Perfectly secure message transmission (PSMT) was first introduced by Dolev et al. in [2].
This problem involves two parties, the sender Alice and the receiver Bob. Alice wishes to
communicate a secret to Bob over n parallel channels in the presence of a computationally
unbounded adversary Eve. Eve is able to take control of up to ¢ channels in such a way that
she can listen to and/or overwrite the message passing through these ¢ corrupted channels.
Here, we assume Eve is static, i.e., she chooses up to ¢ channels to corrupt before the protocol
and will not change corrupted channels during the protocol. The goal of PSMT is to devise a
procedure permitting Alice and Bob to communicate the secret reliably and privately. More
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Two-Round Perfectly Secure Message Transmission with Optimal Transmission Rate

precisely, it is guaranteed that Bob always completely recovers the secret (reliability) and
Eve learns absolutely nothing about the secret (privacy).! PSMT can be done in multiple
communication rounds. During each round, one party acts as the sender and the other acts
as the receiver. They are not permitted to change their roles in one round.

It is clear that for ¢ > n/2, PSMT is not possible, regardless of how many rounds the
protocol uses. One can treat all the message transmitted over these n channels as a codeword
of length n. Assume c; represents the secret 1 and cg represents the secret 0 that Alice
wants to communicate to Bob. Since the distance of these two codewords is at most n and
the number of errors t is more than the half the distance between c¢; and cg, unique decoding
is not possible.

The original paper in [2] showed that one-round PSMT is possible if n > 3t + 1. The
same paper also showed that PSMT is possible when n > 2t + 1 if two or more rounds are
performed. There have since been a number of efforts to devise improved PSMT protocols in
various settings. The most challenging case is two-round PSMT with n = 2t + 1 channels. To
measure the performance of a PSMT protocol in this case, we use the metric of transmission
rate, which is the total number of bits transmitted divided by the length (in bits) of the
secret communicated.

Prior Work. In what follows, we focus on the case that n = 2t + 1. Sayeed and Abu-
Amara [5] first presented a two-round PSMT achieving transmission rate O(n3). Agarwal et
al. [1] further improved it to O(n) which is asymptotically optimal as a lower bound of n was
proved in [7]. However, implementing this protocol requires an inefficient exponential-time
algorithm. A breakthrough was achieved by Kurosawa and Suzuki [4] whose protocol achieves
transmission rate 6n, and can be run in polynomial time. Inspired by this protocol, Spini
and Zémor [6] further reduced the transmission rate to 5n, and moreover their protocol is
arguably simpler than those that preceded it. Our protocol builds off of their ideas, as we
discuss at the end of this introduction. Their work also answers in the affirmative an open
problem posed in [4] of whether it is possible to achieve O(n) transmission rate for a secret
of size at most O(n?logn).

Hence, in reviewing the literature on PSMT, we note that the only known lower bound on
the transmission rate for two-round PSMT is n, while the current state-of-the-art construction
in [6] achieves transmission rate 5n. While both bounds are ©(n), there is still a gap of 4n
between the lower bound and the upper bound.

Our Results. Our results are two-fold. Our first contribution is a two-round PSMT protocol
communicating a length ¢ secret with transmission rate 2(1 + 0y (1))n.2 This protocol
improves over the state-of-the-art protocol in [6] by 3n. Furthermore, our protocol reaches
this transmission rate when Alice and Bob merely communicate an w(nlogn)-bit secret, and
moreover achieves transmission rate O(n) when they communicate an (nlogn)-bit secret
as in [6].

Our second contribution is a lower bound on two-round PSMT protocols. Specifically,
under a reasonable assumption, we show that Alice and Bob have to transmit at least 2n¢ bits
so as to securely communicate an ¢-bit secret. Our assumption comes from the observation

L One can also consider the model of secure message transmission where privacy and/or reliability is only
guaranteed to hold with high probability [3]. However, in this work, we focus exclusively on the case of
perfect privacy and reliability.

2 Here and throughout, 0¢—00 (1) denotes a quantity which tends to 0 as £ — oo, holding n fixed.



N. Resch and C. Yuan

that all known efficient constructions such as [1, 4, 6] allow the adversary to learn the whole
transmission in the second round of communication. This means the adversary can recover
the transmission of all n channels by only listening to ¢ of them. The reason is that in the
second round, Alice encodes the message via an error correcting code which ensures the
correctness of the transmission but sacrifices privacy. Therefore, in the security analysis of
their protocols, they assume that the adversary could learn the whole transmission in the
second round. Under this assumption, our two-round PSMT protocol actually achieves the
optimal transmission rate. In this sense, our lower bound argument reveals an inherent limit
for optimizing two-round PSMT: to beat our protocol, one must design a two-round PSMT
protocol bypassing this assumption.

Our Techniques. As mentioned above, we obtain tight upper and lower bounds for commu-
nicating an ¢-bit secret in the model of two-round PSMT. We start by outlining the upper
bound proof.

Upper Bound. For the upper bound, we construct a two-round PSMT protocol achieving
transmission rate ~ 2n. Instead of presenting our optimal protocol immediately, we first
present a simplified protocol which allows for communicating a logn bit secret securely,
which we view as a symbol m € F, with ¢ > n.

Bob first sends ¢t +1 codewords cy, . .., ciy1 which are picked independently and uniformly
at random from a [n,t+ 1,n — t], Reed-Solomon code® over F,. Alice receives the corrupted
codewords €; = c¢; + ;. She uses the parity check matrix of this Reed-Solomon code to
calculate the syndrome vectors H¢; = s;. Since Eve can corrupt at most ¢ channels, there
exist coefficients Aq,..., A\ry1 € Fy, not all zero, such that Zfii Ais; = 0. From this one can
show Zfii Aie; = 0 and thus Zf: Aic; = Zfi% Ai€;. To simplify the following expressions,
denote ¢ := Zzii )\ici = Z:ii )\zéz

Let h € ) be a vector of weight n that is not orthogonal to the [n,t + 1,1 — t] Reed-
Solomon code. Alice broadcasts* Aq,..., A\;1 together with (h,¢) +m to Bob where m is
the secret; (h,c) is a mask for the secret. Bob first uses A1,..., A;41 to recover ¢ and then
obtains m by removing the mask (h, ¢) from the last broadcasted message.

The privacy analysis is quite straightforward. First, Eve can calculate A1,..., A;y1 by
herself since each s; = He; is available to her. This means we can reduce the privacy argument
to the last message (h,¢) + m which is an immediate consequence of the [n,t + 1,n — ¢
Reed-Solomon code we use. This protocol allows Alice and Bob to securely communicate the
secret m € Fy, at the cost of n?logn communication complexity (measured in bits).

Observe that if the syndrome space spanned by sy, ..., s;+1 has dimension r, Alice only
needs to send r 4 1 coefficients instead of ¢ + 1 so as to share a common codeword with Bob.
This observation leads to our most efficient two-round PSMT.

We now present the general protocol. Assume Alice and Bob want to communicate an
£ log n-bit secret securely. We first split it into ¢ secrets myq, ..., my, each of size logn, which
we think of as lying in F, with ¢ > n. Bob first sends ¢ + ¢ codewords c;, ..., ¢4, which are
picked independently and uniformly at random from a [n,t + 1,n — ¢] Reed-Solomon code
over F,. Alice receives the corrupted codewords ¢; = c; + e; for i € [t + £]. She uses the
parity-check matrix of this Reed-Solomon code to calculate the syndrome vectors H¢; = s;.

3 A [n, k,d)q Reed-Solomon code has block-length n, dimension k and distance d = n — k + 1.
4 To broadcast A € F,, Alice sends A through every channel; note that Bob can easily recover A by
choosing the majority symbol.

1:3
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Assume that the space spanned by sy, ...,S¢1¢ has dimension . Let S C [t + ¢] be the
index set of s; that form the basis of this syndrome space. Without loss of generality, let us
assume S = {t+{0—r+1,t+L—r+2,...,t+ L}, the last r elements of [t+¢]. For each i € [{],
there exist not all zero coefficients \;; for j € S such that s; = ZjeS Aijs;. In analogy to
what we did in the simpler protocol, we let ¢; := ¢; — Zjes Aijcj = €; — ZjeS Aij€j.

Before entering into the second round, we do the same thing as [6] so as to reduce the
communication complexity: we spot a corrupted codeword with error weight at least r by
applying linear operations to the &;’s.> We take a different approach which simplifies the
argument; for details, please see Algorithm 4. Let’s suppose Alice has managed to spot a
corrupted codeword ¢ = ) jes A;j€; with error weight at least r. Alice first broadcasts the
index set S together with \; for j € S and ¢ to Bob. Then, Alice uses an [n,r +1,n — 1]
Reed-Solomon code to encode the message data \;;,j € S and (h,¢;) +m; for ¢ € [].

Once Bob receives the messages, he can correctly recover the index set S and A; for
j € S and ¢ as these messages are broadcasted. By applying the same linear operation on
the codewords in S, Bob will obtain ¢ = ZjeS
¢. Bob then ignores the r channels that cause the inconsistency between ¢ and ¢. Bob can

Ajc; which is at least distance r away from

decode the rest of Alice’s messages correctly which were encoded by the [n,r + 1,n — 7]
Reed-Solomon code since Eve can only cause r erasures and ¢ — r errors now. The recovery
procedure is exactly the same as in the first protocol. The privacy argument is also quite
straightforward. First of all, the coefficients A;; can be computed by Eve on her own. Then,
the privacy of the secret m; can be reduced to the privacy of ¢; for ¢ € [r] which is guaranteed
by the [n,t + 1,n — t] Reed-Solomon code.

It remains to bound the communication complexity. The first-round communication
complexity is (¢ + t)nlogn. The second-round communication complexity is nrlog(t + ¢) +
(r+mn)nlogn + 2=(r + 1)¢logn. Thus, the transmission rate is 2n + O("Tf) which becomes

r+1
2(1 4 0p—00(1))n if Alice communicates to Bob an ¢logn = w(nlogn)-bit secret.

Lower Bound. Let us first formalize PSMT by defining Alice and Bob’s moves. Assume
that Alice wants to communicate an ¢-bit secret s securely to Bob via a two-round PSMT. In
the first round, Bob sends a vector a = (aq, ..., a,) to Alice, and Alice receives a corrupted
vector 4. Based on & and the secret s € [2¢], Alice sends back a vector b = (by,...,b,) to
Bob. On receiving the corrupted vector b, Bob tries to decode the correct secret s with the
help of a.

Next, we justify our assumption that Eve learn the whole transmission in the second
round of communication. We design an adversary Eve to force Alice and Bob to transmit at
least 2¢n bits so as to securely send the ¢-bit secret. In the first round, Eve does nothing.
That means Alice will receive a correct vector a. Moreover, she has no idea which channels
are corrupted. She must therefore assume that any subset of ¢ channels are equally likely to
be corrupted in the second round. Given a, Alice has to use a code of distance n = 2t 4+ 1 to
encode the secret s € [2¢] so as to achieve reliability. This gives a lower bound ¢n on the
second round communication complexity. In the meanwhile, if the code of distance n = 2t + 1
used by Alice and Bob in the second round is known to Eve, Eve will learn a. In fact, all

5 Note that Eve has to corrupt at least r channels so as to make the syndrome space have dimension

r. To simplify our discussion here, we assume r < %; otherwise the protocol will be little more
complicated. Specifically, Alice first broadcasts a corrupted codeword with error weight % and then
sends all corrupted codewords in S to Bob via a [n, %, n— % + 1] Reed-Solomon code. This extra cost
will not affect transmission rate as we can amortize it out by communicating ¢logn = w(nlogn)-bit
secret. The interested reader can find the details in our proof.
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known efficient constructions use the same code book in this situation. Their protocol only
protects the correctness of the transmission in the second round not the privacy.® In the
following argument, we assume that Eve knows b if there is no corruption in the first round.
Therefore, to achieve perfect security, Alice and Bob must share a private key of size ¢ in the
first round. We also notice that the message sent by Bob in the first round is independent
of Eve’s strategy, which means that the lower bound on the communication complexity of
the first round can be applied to the case Eve does nothing in the first round. We construct
a secret sharing scheme by treating a = (ay,...,a,) as n shares and this private key as a
secret. Since Eve can listen to ¢ channels, this means any t shares should learn nothing of
this secret. This implies that such a secret sharing scheme has t-privacy. We next show that
such secret sharing scheme must have ¢ + 1-reconstruction.

Let a; be any share vector of secret s; and a; be any share vector of secret so. If a; and
a, are within distance ¢, Eve may inject ¢ errors to change a; to as. Then, Alice can not
detect any corruption and take the move as if no corruption happens. However, this will
lead to the situation that Alice and Bob share a wrong key and thus Alice fails to recover
the correct secret. This implies the share vectors associated with different secrets must have
distance t + 1 and thus any n — (¢t + 1) + 1 = ¢ + 1 shares can reconstruct the secret. As we
have t-privacy and t + 1-reconstruction, our secret sharing scheme is threshold, which implies
that the number of bits communicated in the first round is also at least {n. Putting it all
together, we obtain the desired 2¢/n lower bound on the communication of the two-round
PSMT. Although we do not pin down the actual value of optimal two-round PSMT, our
lower bound shows that any two-round PSMT beating our lower bound must bypass this
assumption. We leave this as a future direction.

Comparison to Previous Version. Our previous version does not include this assumption
and prove the same lower bound. However, one of the conference referees points out that
Eve may not learn the whole transmission in the second round if the code used by Alice and
Bob are not fixed in this situation. We thank for his valuable comment which helps us to fix
this bug. We also emphasize that in all known efficient PSMT protocols, Eve can predict the
code used by Alice and Bob. This means our new assumption holds for these constructions.
To beat our construction, one has to design a PSMT protocol bypassing this assumption.

Technical Comparison to Previous Works. Our protocol achieving transmission rate 2n
utilizes ideas from prior works, and we would like to take a moment here to properly
acknowledge them. The idea of leveraging the syndrome space and pseudobasis to correct
errors was first introduced by Kurosawa and Suzuki in [4]. They also proposed the idea of
generalized broadcast to decrease the communication cost of the second round. Spini and

Zémor [6] further developed this idea by showing how to spot a codeword with large error.

They also abandon the dependency on the codeword communicated in the first round in [4]
which greatly simplified the technique. These ideas also appear in our protocol; in particular,
the first round of our protocol matches that of [6].

To obtain a more efficient PSMT protocol, we observe that the protocol in [6] divided
the size of the global support of the errors into two cases: the small and the big one. In the
second round, Alice transmits information for both of the potential cases. Thus, in some

6 Tt might be possible that Alice and Bob use different codes with same minimum distance n = 2t + 1 in
the second round. In this case, Bob and Alice must share the code information which is kept secret from
Eve. We are not aware of any construction with this property and can not be sure that such strategy
will gain them any advantage.
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sense, half of her communication is wasted. Dealing with both cases simultaneously required
a more careful analysis of the syndrome space to generate the required masks: we exploit
linear dependencies amongst the syndromes, unlike [6] that used a decoding algorithm, which
itself was already a key improvement over the protocol in [4]. Furthermore, the approach
in [6] sends back syndrome vectors whose lengths are always t+ 1. In our protocol, we exploit
the codewords in the pseudobasis S to correct the error, allowing us to only send back |S|
symbols to identify the vector. The bigger || is, the more errors can be detected, permitting
the use of more efficient generalized broadcast.

On the other hand, the lower bound argument is new, except that the need for broadcast
in the second round is also mentioned in the O(n) lower bound argument [7].

2 Preliminaries

Notations. For an integer n > 1, we denote [n] := {1,2,...,n}. By default, log denotes
the base-2 logarithm.

Throughout, F; denotes the finite field with ¢ elements, for ¢ a prime power. We let n
denote the number of channels through which Alice and Bob may communicate and ¢ the
number of channels Eve may corrupt; we focus exclusively on the n = 2t 4+ 1 case. The
complexity measure of a protocol that concerns us is its transmission rate, defined as the
total number of symbols communicated divided by the number of symbols of the transmitted
secret. The length of the transmitted secret is denoted by £. By 0y_00(1) we refer to a
quantity which tends to 0 as £ — oo (fixing all other parameters, including n), and we write

f0) ~ g(0) if limy_, o % =1 (again, fixing all other parameters).

» Remark 1. As usual, a bit refers to an element of {0, 1}, while in this work, a symbol refers
to an element from the field IF;, and we will need ¢ > n. While it is most natural to measure
the total communication in bits, as our protocols will involve transmitting elements of IF it is
more convenient for us to talk about the number of symbols transmitted. Note that when we
compute the transmission rate and we assume the length of the secret is a growing parameter,
whether we measure the communication in bits or symbols does not matter. However, when
we present our lower bound proof in Section 4 it will be most convenient for us to talk about
bits.

Codes. As in previous works, our protocols rely crucially on linear codes with desirable
properties. For two vectors x and y in Fj, the (Hamming) distance between them is
d(x,y) == [{i € [n] : z; # yi}|. Given a vector x and a subset Y C Fj we denote
d(x,Y) := min{d(x,y) : y € Y}. The (Hamming) weight of a vector is wt(x) := d(x,0).
The support of x is supp(x) := {i € [n] : z; # 0}. Note that wt(x) = |supp(x)| and
d(x,y) = |supp(x — y)|. For a vector x € Fy and a subset S C [n], X|s := (2;)ies denotes
the length |S| vector obtained by projecting on the coordinates indexed by S. By a (linear)
code, we refer to a linear subspace C < Fy; n is the block-length, k = dim(C) is the dimension
and d = min{wt(c) : ¢ € C\ {0}} is the (minimum) distance. We refer to such a code as an
[n, k,d], code.

A code is called mazimum distance separable (MDS) if d =n — k + 1. Such codes exist
whenever ¢ > n and are furnished by the well-known Reed-Solomon (RS) codes defined via
the evaluations of degree < k — 1 polynomials. However, in this work, we will not directly
use the specific structure of RS codes,” so we will state our results for arbitrary linear MDS
codes.

7 Although in order to implement the protocol efficiently we will use the existence of efficient encoding
and decoding algorithms for RS codes.
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Any linear code C may be described as the kernel of a matrix, i.e., C = {x € Fy - Hx = 0}.
Such a matrix H € Fén_k)xn is called a parity-check matriz.

Given two vectors x,y € Fy we define their inner product via (x,y) = S wiyi. We
will need the following lemma from [6]. It states that there exists an MDS code C < Fy of
dimension ¢ for n = 2¢ + 1 for which one can find a vector h € Fy' such that, even once ¢
coordinates are revealed from a codeword c € C, the inner-product (h,c) € F, is completely

unconstrained.

» Lemma 2 (Lemma 1 from [6]). For any n and any t < n there exists a linear MDS code
C of parameters [n,t + 1,n — t] and a vector h € F} such that given a uniformly random
codeword ¢ € C, the scalar product (h,c) is a uniformly random element of F,, even when
conditioned on any t symbols of c. Moreover, h can be found efficiently.

Formally, for any 1 <141 <ia <--- <1 <n and ai, 0, ...,a, B € Fy, we have
1
PI‘[<h,C> = 5|C1‘1 = 0417C,L'2 = OéQ,...,Cit = Ozt] = 5 s

where the randomness is over the uniformly random c € C.

» Remark 3. We note that any such vector h must not lie in the dual of C, and moreover
that it must have weight at least ¢ + 1.

Broadcast. Next, observe that since Eve controls at most ¢ < n/2 of the channels, if Alice
transmits the same symbol through all n channels, then Bob can always recover Alice’s
intended symbol by choosing the majority symbol. Of course, such a procedure does not
guarantee any privacy, i.e., Eve will always learn the symbol Alice transmits to Bob.

Pseudobases

An important technical tool in our protocols are pseudobases, as introduced in the work
of Kurosawa and Suzuki [4]. Before providing the definition, we explain their utility. (A
similar discussion of the utility of pseudobases is available in Section 3.2 of [6].) Consider
the scenario where Bob has sent a codeword ¢ € C to Alice by sending the i-th coordinate c;
through the i-th channel. In order to guarantee privacy, as Eve can observe t of the channels,
it must be that dimC > t + 1. However, by the Singleton bound, that forces the distance of
Ctobeat most n— (t+1)+1=mn—t=1t+ 1, which means that Bob can uniquely decode
Alice’s transmission only if Eve introduces < t/2 errors. However, as Eve can introduce up
to t errors, it appears that we do not have an effective means of enforcing reliability.

However, consider the following scenario: instead of sending a single codeword through
the channel in this way, Bob sends many codewords cy,...,c,. Privacy is preserved so long
as the transmissions are not correlated in any way (say, each one is sampled independently
and uniformly at random). However, Alice now has an advantage in decoding: all of the
corruptions introduced by Eve are confined to the same set of ¢ coordinates. The idea is to
exploit this fact to allow Alice and Bob to agree on some codeword ¢ of which Eve knows
at most ¢ coordinates (which in turn means that (h,c) can effectively mask the secret m).
Using the concept of pseudobases, it turns out that this is possible (so long as the distance
of C is at least t + 1, as is the case when C is MDS).

We now provide the formal definition of a pseudobasis.

» Definition 4 (Pseudobasis [4]). Lety:,...,ys € Fy be vectors. A pseudobasis foryi,...,ys
is a subcollection y;,, ...,y with 1 <iy3 <.-- <14, <s such that Hy,;,,..., Hy;, € Fg_k 18
a basis for the linear space span{Hy1, ..., Hy,}.
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In other words, one computes a basis for the space spanned by Hy,...,Hys € IFZ;_’“, and
then the preimage of the basis vectors in Fy provides a pseudobasis. Observe that, given
access to H, such a pseudobasis can be found in time polynomial in n, and furthermore that
it consists of at most n — k vectors.

» Remark 5. Note that if we have a code C < Fy with parity-check matrix H and we write
yi = ¢; + e; for each i € [s] with ¢; € C, then as

Hy; = H(Ci + ei) = Hc; + He; = He;

we conclude that y;,,...,y;. forms a pseudobasis for yi,...,ys if and only if e;,,...,¢€;
forms a pseudobasis for eq,...,es.

r

This observation will be crucial for us in our privacy analysis. We will be in the scenario
that Alice has received potentially corrupted codewords from Bob, which we write as
¢; = c¢; + e;, where e; denotes the errors introduced by Eve. Alice will then broadcast some
information about a pseudobasis for her received vectors to Bob. This does not leak any
information to Eve, as she could have computed the same pseudobasis from the error vectors
e; that she knows.

3 The Protocol

In this section, we present our protocol which allows Alice to privately and reliably transmit
an ¢ symbol secret (mq,...,my) € Ff; to Bob. In order to ease readability, we present two
simplifications of our full protocol first before presenting the full construction. The first
construction, presented in Section 3.1, allows Alice to transmit a one symbol secret m € F,.
Despite being fairly simple, it already introduces a crucial idea, which is a method for Alice
and Bob to agree on a random codeword that is not completely revealed to Eve. As we
elaborate upon further in Remark 8, this means of extracting this secret codewords represents
our core improvement over [6].

Next, in Section 3.2, we show how to generalize the protocol to the case of £ > 1, and
achieve communication rate (4 + 0y— o0 (1))n. Intuitively, this requires Alice and Bob to agree
on ¢ random codewords that are not completely known to Eve. In order to guarantee small
transmission rate, we need a few more tricks. As in [6], one useful technique we employ
is a method for Alice to find a vector which indicates many of the channels that Eve is
corrupting, allowing Bob to safely ignore those channels.® Informally, this transforms symbol
corruptions into erasures, and erasures are easier to recover from. In particular, Alice can
encode her data with a code of higher rate and Bob will still be able to uniquely-decode. To
get our final protocol achieving transmission rate (2 + 0y, (1))n, we note that we only need
to do something different if Eve invests many corruptions in the first round.® In order to
handle this, we ask Alice to send a bit more information to Bob to indicate a larger number
of corrupted channels, which transforms more of the symbol corruptions into erasures in the
subsequent transmissions, and hence allows Alice to use an error-correcting code of higher
rate. We describe the necessary modifications in Section 3.3.

8 There is a procedure with the same guarantee in [6]; however, we believe our procedure is simpler, and
moreover does not use the specific structure of RS codes.
9 More precisely, if the dimension of the syndrome space exceeds ¢ /3.
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Notations for this section. Throughout, C < IFQ denotes an MDS code of dimension t + 1
and h € F a vector satisfying the conclusion of Lemma 2. Also, H € FZX” denotes a
parity-check matrix for C. The datum (C,h, H) is public, fixed prior to the execution of the
protocol and available to Alice, Bob and Eve throughout the execution. Lastly, we denote by
E C [n] the set of ¢ channels that Eve controls. Of course, this set is unknown to Alice and
Bob; we introduce this notation exclusively for the analysis.

3.1 A Simple Protocol for £ =1

We begin by providing a simple protocol which allows Alice to transmit one secret symbol
m € F, to Bob. While this does not achieve our main goal, we find that it clarifies our
means of extracting a codeword known to both Alice and Bob but secret from Eve, which we
call ¢ and ¢’. As we discuss further in Remark 8, this idea is the core of what allows us to
go beyond the protocol of [6] and eventually compress Alice’s communication to just ~ nf¢
symbols. The details of the protocol are provided in Algorithm 1.

We now sketch why the protocol indeed yields a PSMT.

Reliability. First, we argue that Lines 8 and 9 from Algorithm 1 are justified, i.e., that
Alice can indeed find p € [t +1] and \; € F, for j € [t + 1] \ {p} such that s, =3, s;. As

S1y...,S¢41 € IFfI are t + 1 vectors in a t-dimensional space, they must satisfy a nontrivial
linear dependence 23111 Aisj = 0. Alice can thus pick any p € [t + 1] for which A}, # 0, and

then set \; = =\, /A, for j € [t + 1]\ {p}.
Now, the important observation is that since the code C has distance ¢t + 1, we have ¢/ = c.
Indeed, first note that ¢ € C, as

He=H|¢&,— > A& | =He, - > NHe =s,— ) Njs; =0.
J#p J#p J#p

Now, recalling that E C [n] denotes the channels that the adversary controls, the coordinates
on which each c; can disagree with ¢; are confined to the set E. Thus, the support of
(cp =D itp )\jcj) — (ép =D itp )\jéj) is also contained in the set E. As |E| < t, we
conclude that the codewords ¢’ = ¢, — >, Ajcj and € =&, — >, A;€; are distance at
most ¢ from one another; as C has distance ¢ + 1, they must be the same vector.

Thus, in particular, (h,c’) = (h,¢), so m’ — (h,c¢’) =m + (h,¢) — (h,c’) = m, i.e., Bob
returns Alice’s intended secret m.

Privacy. In the first round of the protocol, Eve can only see |E| < t symbols from each
transmitted codeword. As the code C has dimension ¢+ 1 and is MDS, Eve learns only learns
these |E| symbols from cq,...,Cpq1.

In the second round, Eve sees (p, \; : j # p). However, she already knows ey, ..., e;11 and
H and, using the fact that s; = H¢; = He; for j € [t + 1], (p, A, : j # p) can be computed
from eq,...,e;1 and H. Thus, she does not learn anything from the second transmission.

We conclude that after the protocol, Eve has only learned the symbols indexed by
the corrupted channels E from cq,...,ciy1. In particular, Eve only knows ¢ symbols of
¢ =¢c=¢,—};,,A\;€ which is a codeword distributed uniformly at random in C, and
so Lemma 2 guarantees that Eve has no information on (h,¢). Thus, even after observing
m + (h, ¢), she has no information on m, as desired.

1:9
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Communication Cost. In the first round, Bob transmits (¢ + 1)n ~ n?/2 symbols. In the
second round, Alice transmits log, (t + 1) +tn +mn ~ n?/2 symbols. Hence, to communicate
a single symbol, the total communication requirement of Algorithm 1 is ~ n?. In terms of
bits, as we require g > n, we conclude that Alice and Bob must transmit ~ n?logn bits.

3.2 A Protocol with (4 4+ 0/,(1))n Transmission Rate

In this subsection, we provide a protocol that will allow Alice to transmit an ¢ symbol secret
to Bob requiring only ~ 4nf symbols to be communicated. We begin by outlining some of
the new ingredients we need.

Generalized Broadcast. One technique that we will use in our protocol is generalized
broadcast, as introduced in previous works [4, 6]. The situation that motivates the idea of
generalized broadcast is the following: imagine that in some way, Bob has become aware that
Eve is controlling some set R C [n] of the channels. Then, when decoding a transmission
from Alice, he can replace the symbols he receives through the channels in R by an erasure
symbol. Thus, instead of decoding from ¢ symbol corruptions, he only has to perform the
easier task of decoding from ¢ — r symbol corruptions and r erasures, where r = |R).

In particular, to uniquely decode from ¢ errors where n = 2t + 1, if Alice wants to
guarantee that the codeword she transmits can be uniquely-decoded by Bob, then she must
use a code with distance 2t + 1 = n: by the Singleton bound, she must use an MDS code of
dimension 1, i.e., she can only send a single symbol. A natural example of a dimension 1
MDS code is the repetition code: this precisely recovers broadcast as introduced earlier.

However, if Bob knows a subset R as above, then he can uniquely decode so long as the
code has distance at least 2(t —r) + 7+ 1 = n — r. Thus, if Alice uses an MDS code of
dimension r 4+ 1, Bob can recover her intended transmission. We refer to this as r-generalized
broadcast, which we now formally define.

» Definition 6 (Generalized Broadcast). For an integer r > 0, r-generalized broadcast refers
to the procedure where Alice uses an [n,7 4+ 1,n — 1], code C, to transmit r + 1 symbols
(x1,...,2rq1) € ;T by encoding the message (x1,...,xr11) into a codeword ¢ € Cp, and
sending the i-th symbol of c through the i-th channel for each i € [n].

For succinctness, we write Alice r-broadcasts (z1,...,z,+1) to indicate that Alice uses
the r-generalized broadcast to transmit the data (x1,...,%,41) to Bob.

» Remark 7. Assuming Alice and Bob communicate with a dimension r 4+ 1 Reed-Solomon
code, then both encoding the message and decoding from r erasures and ¢t — r symbol
corruptions can be done in polynomial time [8].

Thus, r-generalized broadcast allows Alice to reliably transmit r+1 times more information
to Bob than standard (i.e., 0-)broadcast, which can greatly improve the transmission rate of
the protocol if r is sufficiently large.

Finding a Set of Corrupted Channels. In light of the above discussion, we would like
to allow Bob to find a large set of corrupted channels. For general ¢, we will have Bob
transmit ¢+ /¢ uniformly random codewords in the first round, and Alice receives the corrupted
codewords €; = c; + e;, where the support of each e; is contained in the ¢ channels Eve
controls, F.
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Now, if Alice were aware that e; has large weight for some j, then she could just broadcast
¢; and the index j to Bob. Bob could then compute the set supp(¢; — c¢;) and subsequently
ignore the transmissions sent through those channels. However, one problem is that there
might not be an e; that has sufficiently large weight. More concerningly, Alice does not
actually know ey, ..., e; 4!

Dealing with the first issue, note that it actually suffices to find multipliers A; such that
>_; Aje; has large weight: then Alice can broadcast the \;’s and y := >, A;€;, and then

Bob can compute supp (y -3 y )\jcj> and ignore the subsequent transmissions sent through
those channels.

Actually, in order to ensure a good transmission rate it will be important that the linear
dependency is chosen to be relatively short; in particular, it should be independent of £. It
will turn out that we can find such a vector y which is a linear combination of a pseudobasis
for the vectors €1, ..., €tr¢. Recalling that the dimension of the syndrome space is at most ¢,
this guarantees that we don’t need to transmit too many multipliers A;.

However, we still haven’t addressed the issue that Alice does not have direct access to
the e;’s. But it turns out that this is not an problem: given a set of vectors with linearly
independent syndromes, we will be able to find a linear combination »_ y A;€; that is far from
every codeword. So, in particular, it will be far from > j Ajc;, as required.

Specifically, if » < t/3 and yi,...,y, € F are vectors such that the syndromes
Hy,,...,Hy, € Ffl are linearly independent, then Algorithm 4 finds a vector y in the
span of y1,...,y, that satisfies d(y,C) > r. This procedure and its analysis are presented in
Appendix D.

» Remark 8. There is a procedure in [6] with the same guarantee; however, we believe our
algorithm is a bit simpler, so we have chosen to present it. In particular, we do not need to
apply a unique-decoding algorithm as is required by the procedure in [6]; we just use simple
linear-algebraic operations.

A more significant difference between our protocols concerns the communication of the
masked secrets. For each of the message symbols my, ..., mg, the most efficient protocol

of [6] requires Alice to broadcast two symbols z%i), zg) € IF, which each mask the message

symbol m; in a different way. The symbol z%i) uses the mask (h,y,.); zéi) uses the mask
(h,€p,) where ¢&,, is the decoding of y,,, or zg) is just set to O if the decoding failed. Bob
then chooses which mask to open, depending on the size of the pseudobasis. The authors
comment they could use generalized broadcast for these symbols (as we do) to somewhat
decrease the communication cost; however, even this change would not bring the second
round communication down to ~ nf. Thus, a key difference between our protocols can be
observed: by more carefully exploiting the structure of the pseudobasis, our extraction of the
codewords ¢, = ¢, to yield the masks (h,c;) prevents us from needing to use two different
masks to guarantee that Bob can reliably recover the message symbols.

The Protocol. We are now in position to give our PSMT for transmitting an ¢ symbol
secret: the details are in Algorithm 2.

» Theorem 9. Algorithm 2 is a PSMT with transmission rate (4 + 0400 (1))n0.

Proof. We first verify that the protocol is reliable. After, we show that it is private. Lastly,
we compute its transmission rate. Throughout the proof, we let E C [n] denote the set of ¢
channels that Eve is corrupting.

1:11
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Reliability. We first make a few observations to justify the algorithm. First, we note that
the definition of T on Appendix B is valid: indeed, r = |S| < ¢ since a pseudobasis has size at
most ¢, so there are at least £ elements in [t + ]\ S. Also, we note that z= 3", s \;c; €C,
so since y is at distance at least v’ from C, we have |supp(z —y)| = d(z,y) > 7/, as stated in
Appendix B. Furthermore, as y = 5 jes Ni€j, if B C [n] denotes the set of channels that
Eve controls, then supp(y — z) C E. Hence, for each i € [{], the transmission from Alice to
Bob of (\;; : j € S) and (h,c,,) + m; via r’-generalized broadcast is reliable.

As in the analysis in Section 3.1, the reliability of Algorithm 2 follows from the fact that
fori=1,...,¢, we have c), = c’pi. And once again, the argument proceeds by demonstrating
that both ¢, and cj, are elements of C. This is clear for cj, ; for ¢,,, we use the parity-check
matrix H:

HCpi =H Cp;, — E )\ijcj = Sp;, — E )\iij =0.
Jje€S JjES

Now, since supp(c; — €;) C E for each j € [t + £], we also have

supp(c), — €,) =supp | [ cp = D Nije; | — | & — D> & | | CE,
jes jes
which implies d(c;,,,¢p,) < |E| <t. As C has distance t + 1, it follows that ¢}, = ¢,,. In
particular, we have <h c )=
Hence, for each i €
reliability.

e >
(4],

L — (h c,,) = m; + (h,¢,,) — (h,c;, ) = m;, demonstrating

Privacy. First, we describe Eve’s view of the protocol. In the first round, she observes
(c1)|es- -5 (ci+e)|p. In the second round, she first observes (S, (A : j € S),y). Then, for
each ¢ € [{], she observes (\;; : j € S) and m} = (h,cp,) +m;.

We wish to establish that Eve learns nothing about the symbols m; for each i € [¢]. To
establish this, it suffices to show that, conditioned on Eve’s view, (h,¢c,,) is a uniformly
random element of Fy. And to do this, according to Lemma 2, it suffices to show that from
Eve’s perspective, €, is a uniformly random codeword from which Eve has observed only ¢
coordinates.

First of all, as cq, ..., c;4¢ are sampled independently and uniformly from C and C has
dimension ¢ + 1 and is MDS, after the first round Eve only learns (c;)|g for each j € [t + £].

Next, we consider the second round. We begin by noting that Eve can compute S from
H and ey, ..., ey, which she knows. Indeed, as s; = H¢; = He;, Eve can also compute the
pseudobasis S. So she learns nothing from this transmission. Once she has computed S Eve
can then compute the set 7" and subsequently (\;; : j € S) for each ¢ € [{], as the \;;’s are a
function of the sets S and T and the syndromes sq,...,s:¢, to which she has access.

Next, consider revealing to Eve the codewords (c; : j € S). Then, she can compute the
corrupted codeword ¢; = c; +e; for j € S, so she can then compute the vector y and the
multipliers (X; : j € S). Hence, what Eve sees in the second round is at most as informative

s(c;:j€89).

Hence, at the termination of the protocol, what Eve can infer from her view about the
masks (h, c,,) for ¢ € [{] is no more than what she can infer about them from the following
data:

The codewords (c; : j € S);

The coordinates of all the codewords indexed by E, i.e., (c;)|g for j € [t + £].
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Recall that, for each i € [{], ¢,, = ¢}, = ¢p, — 3_;c g Aij€¢;- On the one hand, from the two
pieces of data above, we have shown that Eve can compute exactly > jes Aijcj. On the other
hand, as the c;’s are sampled independently, the above data reveals nothing about c,, other
than the coordinates indexed by E. Thus, from Eve’s perspective, ¢,, = c,, — ZjeS Aijc; is
a uniformly random codeword from which she has only observed the coordinates indexed
by E. Therefore the messages m; = m; + (h,c,,) reveal nothing about the secret vector
(mq,...,mg). This concludes the proof of the assertion that the protocol is private.

Transmission Rate. In the first round, Bob sends (¢ + £)n symbols. In the second round,
Alice first broadcasts %gt;é) +r+mn symbols and then r’-broadcasts ¢(r + 1) symbols, where
we recall that r denotes the size of the pseudobasis and r’ = min{r, [¢/e]}. This requires her

to send

nrlog(t + £)
log q

+(r+n)n+(r+1)€r1+1

elements from F,. Thus, if N is the total number of symbols transmitted, then % is

tn nrlog(t+/¢) n?>+m (r+1)n n?  n2log(n+¢)

o <4 o —+ ————= 1

C Y e T 0 T SO T e ) W
where the inequality uses ¢ > n, r <t <n and ;,‘*4'_11 < 3. Hence, assuming ¢ = w(n) we have
% ~ 4n, as promised. |

» Remark 10. Note that if we had been in the case that r = 7/, ie., r < %, then the
transmission rate of Algorithm 2 would have been ~ 2n. Hence, in order to get our desired
transmission rate of 2n, we will only have to amend the protocol in the case that r > % This

is what we do in the following subsection.

3.3 Protocol with (2 4 0/,,(1))n Transmission Rate

In order to decrease the transmission rate to ~ 2n, we look more carefully at the transmission
rate as computed in (1). We have a factor of ~ n from the first round when Bob communicates
to Alice, and then a factor of ~ 3n when Alice replies to Bob in the second round. In our
lower bound argument, we will show that both parties will have to communicate nf symbols
in each round; hence, our only hope of getting a ~ 2n transmission rate will be to decrease
the communication of Alice in the second round.

(:f_i)lné term which
comes from the ¢ r’-generalized broadcasts from Appendix B; as r’ < % and r can be as large
as t, this term could be as large as 3nf. If Alice used r-generalized broadcast for each of these
transmissions, then this communication would cost only ~ nf symbols, and we would get the
~ 2n transmission rate we desire. However, as y only informs Bob of 7’ corrupted channels,
if r > v’ = min{r, |t/3]} then Alice will have to communicate some more information for
Bob to learn of r corrupted channels, which will guarantee the reliability of the transmission.

Now, we note that the dominant term in Alice’s communication is the

The solution for this is rather simple. We assume from now on that r > r’/, which is the
same as saying r > £. First, Alice broadcasts (y,S,\; : j € S) as before (see Appendix B);
thus, t/3-generalized broadcast is now reliable. Next, we have Alice t/3-generalized broadcast
the entire pseudobasis to Bob, i.e., all the vectors ¢; for j € S. We claim that this implies
that r-generalized broadcast will now be reliable. Indeed, this follows from the following
simple lemma.

1:13
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» Lemma 11. Let €; = c; +e; for j € S with c; € C and put s; = HE; = He;. Assume
that dim (span{s; : j € S}) =r. Then |UJ;cqsupp(e;)| > 7.

Proof. Let d; € Fj; denote the vector whose i-th coordinate is 1 and the remaining coordinates
are 0. Let R = J,cgsupp(e;); then clearly span{d, : i € R} O span{e; : j € S}, so also

span{Hd, : i € R} D span{He; : j € S} = span{s; : j € S}.

As dim (span{Hd; : i € R}) < |R|, we conclude |R| > dim (span{s; : j € S}) = r, as desired.
<

Thus, suppose Alice reliably transmits to Bob the vectors ¢; for j € S. From this, Bob
can compute the set | J ies supp(c; — ¢;) =U ies supp(e;); this set has cardinality at least 7,
and moreover it is contained in F (where, as usual, E denotes the set of channels Eve
controls). Hence, there are now r channels that Bob can safely ignore, so Alice may reliably
r-broadcast the ¢ transmissions (\;; : j € §) and (h,¢p,) +m;, as in Appendix B.

It is reasonable now to wonder if this will negatively impact the privacy of the protocol,
as more information is revealed to Eve. However, by observing the proof of Theorem 9,
one can see that even if Eve learns of €; for j € S, the inner-product (h, c,,) is still wholly
unknown to her, implying that they yield an effective mask for the secrets m;.

Instead of completely rewriting the protocol, we just indicate in Algorithm 3 the changes
that need to be made to Algorithm 2 to obtain the ~ 2n transmission rate.

» Theorem 12. Algorithm 3 is a PSMT with transmission rate (2 + 0¢—oo(1))n.

Proof. The proof is omitted due to page limit. |

4 Lower Bound

In this section, we prove a lower bound on the transmission rate of any two-round PSMT
under an assumption about the protocol which we now formally introduce.

Our starting point is the observation that in our two-round PSMTs from Section 3, we
always have Alice broadcast her desired transmission to Bob which completely sacrifices the
privacy of her transmission. That is, the adversary completely learns the transmission from
the second round. And this is not unique to our protocols: all of the efficient two-round
PSMT protocols from the literature [1, 4, 6] sacrifice the privacy of Alice’s transmission.

Therefore, we make the assumption that the adversary learns the entire transmission of
the second round and prove a 2n lower bound on the transmission rate under this assumption.
This argument shows that among all two-round PSMTs satisfying this assumption, the one
guaranteed by Theorem 12 is actually optimal. In other words, if one want to design a more
efficient PSMT, the second round of this protocol must somehow bypass this assumption
and keep something hidden from Eve. In this sense, we prove an inherent limitation for the
line of optimizing two-round PSMT protocols [1, 4, 6].

» Assumption 1. The adversary learns the whole transmission of the second round. More
precisely, there is a function mapping the symbols Alice transmits through t of the channels
to the symbols she sends through the other channels.

» Theorem 13. Under Assumption 1, any two-round perfectly secure message transmission
of an £-bit secret requires communicating 2nf bits.
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Proof. First of all, we formalize the behaviours of the sender Alice and the receiver Bob in a
two-round PSMT.

1.

3.

In the first round, Bob runs a randomized algorithm A({) to generate a message a =
(a1y...,an) € Ay X -+- x A, where the randomness is only available to Bob. Bob sends a
to Alice such that a; is sent through the i-th channel.

. Alice receives the corrupted vector & and runs the algorithm B(&,s) to generate the
message b = (by,...,b,) € By x --- x B,, where s € [2¢] is the secret. Then Alice sends b
to Bob such that b; is sent through the i-th channel.

Bob receives the corrupted vector b and runs the algorithm C' (B, a) to recover the secret.
The protocol succeeds if C' outputs s and Eve learns nothing about the secret.

Note that if B(a, s) = b then we must have C(b,a) = s, i.e., the protocol must succeed if

the adversary Eve injects no errors. We defer the formal proof to the full version. <
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A Algorithm 1

Algorithm 1 A first protocol for transmitting a one symbol secret m € F,.

1: procedure ROUND 1: BOB TRANSMITS

2: Bob samples ¢y, ..., ci1 € C independently and uniformly at random.
3: For j =1,...,t+1, Bob transmits the i-th coordinate of c; through the i-th channel.
4: end procedure

5: procedure ROUND 2: ALICE TRANSMITS

6: For j =1,...,t+ 1, Alice receives the vectors ¢; where d(c;,¢;) < t.
7 For j =1,...,t 41, Alice computes s; = H¢; € IFZ.

8: Alice finds a coordinate p € [t + 1] such that s, € span{s; : j # p}.

9: Alice finds A\; € Fq for j € [t + 1]\ {p} such that s, = 3", A;s;.
10: (_:<_6P_Zj;ép/\jéj
11: Alice broadcasts p, (A : j # p) and the symbol m’ <— m + (h, c).
12: end procedure
13: procedure OUTPUT PHASE
14: Bob receives p, (A; : j # p) and the symbol m/'.
15: ¢ cp— i, NiC
16: return m’ — (h, c’).
17: end procedure
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Algorithm 2

Algorithm 2 A protocol for transmitting an ¢-symbol secret (mq,...,me) € Fg, which achieves

transmission rate (4 + 0¢—oo(1))n.

1:

12:
13:

14:
15:
16:
17:
18:

19:
20:

21:
22:

procedure ROUND 1: BOB TRANSMITS
Bob samples cq, ..., ciy¢ € C independently and uniformly at random.

For j =1,...,t+ ¢, Bob transmits the i-th symbol of c; through the i-th channel.
: end procedure
procedure ROUND 2: ALICE TRANSMITS
For j =1,...,t+ ¢, Alice receives the vectors &; where d(c;,¢;) < t.
For j =1,...,t+¢, Alice computes s; = H¢; € IF},.
Alice computes a pseudobasis for €1, ...,Ct1¢. Let S C [t + £] index the elements of

the pseudobasis.

r < |S| and ' <= min{r, |t/3]}.

Let S’ C S denote a subset of size r’.

Let y < (¢ :j € §'); writey = Zjes A;€;. > Of course, for j € S\ S, we may put
>\] = 0.

Let T < {p1,...,p¢} denote the ¢ smallest elements of [t 4 ¢] \ S.

For i € [{], choose coefficients \;; € F, such that s,, = > .5 A\i;s;, and define
Cp, ¢ €p, — Djes Nij €

Alice broadcasts the information (S, (A; : j € 5),y).

For each i € [¢], Alice r’-broadcasts the data (\;; : j € S) and m} < m; + (h,cp,).
end procedure
procedure OUTPUT PHASE

Bob recovers (S, (\; : j € S),y) and defines z < )
{p1,...,p¢} denote the £ smallest elements of [t + ¢] \ S.

Bob ignores the channels in the set supp(y — z), a set of cardinality at least 7.

jes Ajcj. He also lets T' =

For each i € [£], Bob recovers the information (A\;; : j € S) and mj, defines cj,, <+
— 2 jes Aij¢j, and then defines m; < mj — (h, c},,).

return (mq,...,my).

end procedure

Cp;

7
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C Algorithm 3

Algorithm 3 Our final protocol for transmitting an ¢-symbol secret (ma,...,m¢) € Ff;, which

achieves transmission rate (2 + o¢—oo(1))n. We just indicate what needs to be changed from
Algorithm 2 when r > v’ = min{r, [¢/3]}.

procedure ROUND 1: BOB TRANSMITS
Bob performs lines 2-3 from Algorithm 2.
end procedure
procedure ROUND 2: ALICE TRANSMITS
Alice performs lines 6-14 from Algorithm 2.
if r =7’ then
Alice performs Appendix B from Algorithm 2.
else
Alice r'-broadcasts ¢€; for each j € S.
For each i € [¢], Alice r-broadcasts the data (\;; : j € S) and (h,¢,,) + m;.
end if
end procedure
procedure OUTPUT PHASE
Bob performs lines 18-19 from Algorithm 2.
Let r + |S].
if » <t/3 then Bob performs line 20
else
Bob recovers ¢&; for each j € S.
Bob ignores the channels in the set (J;cgsupp(€; — ¢;), which has cardinality at
least r.
For each ¢ € [¢], Bob recovers the information (X\;; : j € S) and m), defines
Cp, < Cp, — D jeg AijCj, and then defines m; <— m; — (h,cj,).
end if
return (mq,...,my).
end procedure

D Procedure for Finding a Vector Far from Code
In this section, we present our algorithm for finding a vector that is far from the code.

» Lemma 14. Let yq,...,y, have linearly independent syndromes and assume r < Then

t
5.
the vector y returned by Algorithm 4 has distance at least r from C.

Proof. By assumption, we have that the syndromes s; = Hy,; € IFfI fort =1,...,r are
linearly independent. We claim that the vectors ey,...,e, € Fy are linearly independent.
Suppose Ai, ..., A, € F, are such that Z;Zl A;e; = 0. Then

=1 =1 =1

As s1,...,s, are linearly independent, this implies \; = --- = A, = 0, as desired.



N. Resch and C. Yuan

Algorithm 4 A procedure for Alice to find a vector whose distance from C is at least r for r < %

1: procedure MANY-ERRORS(y1, - .., yr)

2: Fori=1,...,7, let x; € C denote the codeword agreeing with y; on the last ¢t + 1
coordinates. > This is possible, as every subset of ¢ + 1 coordinates forms an information
set for C.

3: Fori=1,...,r, e <y, —x;.

4: Let M denote the matrix in Fj*" whose rows are ey,...,e,.

5: Using Gaussian elimination, put M in reduced row echelon form; let e7, ..., e} denote
the rows.

6 if 3i € [r] s.t. wt(e}) > r then e < €]

7 else

8: for 7=2,3,...,r do

9: if wt (Z{zl ej‘) > r then e Zgzl el

10: end if

11: end for

12: end if

13: Choose Ay, ..., A\, € Fy such that e = >0 \e;.
14: y — Z:,‘Azl )\zyz

15: return y

16: end procedure

Now, we note that if e = Y"!_, A\;e; is found such that d(e,C) > r, then it also follows
that y = >/, \;y; satisfies d(y,C) > r. Indeed,

d(y,C)=d (e + Z)\ixi,c> =d <e,c + Z/\m) =d(e,C) >r
i=1 i=1
as y._ Aix; €C.
Now, for e € span{ey,...,e,}, to ensure d(e,C) > r, note that it is sufficient to show
that r < wt(e) <t —r+ 1. Indeed, as we have d(0,e) = wt(e) > r, it suffices to verify that
for all nonzero codewords ¢ € C \ {0} we have d(e,c) > r. And indeed, this follows as

t+1<d(0,c) <d(0,e)+d(e,c) <t—r+1+d(ec),

and so d(e,c) > r.
Hence, we now show how the algorithm finds a vector e € span{ey,...,e,} which satisfies
r < wt(e) <t—r+ 1. Consider the matrix

€1
e2 XN
M = | € Fy
€r
whose rows are given by vectors eq,...,e;.

Consider putting the matrix M into reduced row echelon form; denote the resulting rows
e},...,er. By the definition of row operations, span{ey,...,e.} = span{ej,...,e’}, so it
suffices to find a vector e* € span{ej,..., e’} satisfying r < wt(e*) <t —r+ 1.

As the vectors ey, ..., e, are linearly independent, there is a set R C [n] of r pivot points:

that is, we have indices 1 < j; < jo < -++ < j. < n such that for each i,p € [r]:

1:19
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1 ifi=p
(ei)j,,:{

0 otherwise

Therefore, for each i € [r] we have supp(e}) C ([t] \ R) U{j;}, so wt(e]) <t —r+1. Thus, if
we are in the case that for some 7 € [r] we have r < wt(e]), we can just return the vector e;.
Assume now that for each ¢ we have wt(e}) < r. Consider the sequence of vectors > 7_, e}
for j = 2,...,r. Note that supp (};_, e}) D R, so wt(>_._, ef) > |R| = r. Hence, there
exists 2 < j < r such that:
wt (23:1 e;-*) >
forall 1 <j" <j, wt (23/:1 e;‘) <r.
We claim that e* := 3:1 el satisfies r < wt(e*) < t+1—r. The lower bound is obvious by

the definition of j. For the upper bound, we note that

J Jj—1
wt (Zej) < wt (Zej) +wtel) <r+r<t+l-r,
i=1 i=1

where the upper bound on the weight of Zf;ll e’ is again by the definition of j and the
upper bound on wt(ej) follows from our earlier assumption. That 27 < ¢+ 1 —r follows from
r <t/3. <
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—— Abstract

Secret sharing schemes allow sharing a secret between a set of parties in a way that ensures that only

authorized subsets of the parties learn the secret. Fvolving secret sharing schemes (Komargodski,
Naor, and Yogev [TCC ’16]) allow achieving this end in a scenario where the parties arrive in an
online fashion, and there is no a-priory bound on the number of parties.

An important complexity measure of a secret sharing scheme is the share size, which is the
maximum number of bits that a party may receive as a share. While there has been a significant
progress in recent years, the best constructions for both secret sharing and evolving secret sharing
schemes have a share size that is exponential in the number of parties. On the other hand, the best
lower bound, by Csirmaz [Eurocrypt '95], is sub-linear.

In this work, we give a tight lower bound on the share size of evolving secret sharing schemes.
Specifically, we show that the sub-linear lower bound of Csirmaz implies an exponential lower bound
on evolving secret sharing.
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1 Introduction

Secret sharing is a fundamental concept in cryptography, that allows a dealer to distribute a
secret among a set of parties in a way that ensures that only authorized subsets of parties
learn the secret. Such schemes are used in secure multi-party computation, amplification
schemes for cryptographic primitives, Byzantine agreement protocols, and more (see [5]).
Evolving secret sharing (Komargodski, Naor, and Yogev [10]) is a variant of secret sharing,
that can be used in evolving systems, for which there is no a-priory bound on the number of
parties. In such schemes, the dealer distributes the secret to an infinite number of parties in
an online fashion: the parties arrive one by one, and each party receives its share of the secret
as it arrives. The correctness guarantee promises that by the time the n-th party receives
their share, all the authorized subsets among the first n parties can reconstruct the secret.
Such a scheme is adaptive if the dealer does not need to know the entire access structure to
give a share to a party. Rather, it is sufficient to know the list of authorized sets containing
only parties that already arrived.

The main complexity measure of a secret sharing scheme is its share size: the maximal
number of bits a party might receive as a share. While there have been significant advance-
ments in the area in recent years ([13, 12, 1, 2]), the best known constructions for (classical)
secret sharing have exponential share size in the number of parties (Applebaum and Nir [4]).
For the harder task of evolving secret sharing, the best construction for arbitrary access
structure gives the i-th party share of size 2:=! ([10]).
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Somewhat surprisingly, we do not know if exponential share size is the best possible, or
even if the share size must be super linear in the number of parties. Indeed, the best known
lower bound on (classical) secret sharing is due to Csirmaz [8], which showed a specific access
structure for which every scheme must give some party a share of size Q(n/logn). Thus, the
optimal share size for arbitrary access structures is an important open question. Prior to
this paper, this question was open also for the case of evolving secret sharing.

1.1 Our Result

In this work, we resolve the above question for the case of evolving secret sharing. We
show that the linear lower bound of Csirmaz [8] implies a tight exponential lower bound
on evolving secret sharing. This is stated in the following two theorems. The first is for
adaptive evolving secret sharing schemes.

» Theorem 1 (Lower bound for adaptive schemes, informal). There exists an access structure
A such that for every adaptive evolving secret sharing scheme and for every n, the total share
size of the first n parties in A is at least 2. In particular, the share size of the i-th party is
at least 2°~1 for infinitely many i’s.

As stated before, this lower bound is tight with the scheme of [10] which gives the i-th
party share of size 2°~!. Interestingly, the access structure for which we prove this lower
bound does not contain a single authorized set. We also prove the following slightly weaker
lower bound, for a larger class of schemes, namely, non-adaptive schemes.

» Theorem 2 (Lower bound for non-adaptive schemes, informal). There exists an access
structure A such that the following holds. For every evolving secret sharing scheme for A
and for every n, the total share size of the first n parties is at least 2"~°") . Moreover, the
share size of the i-th party is at least 2=°0) for infinitely many i’s.

The formal bound we prove (Theorem 14) is somewhat stronger, as we can choose the o(n)
term to be any super-constant. For example, Theorem 14 implies that the total share size of
the first n parties is at least 2" 71°8™, The proof of both theorems follows from an observation
on [8]’s lower bound. In his work, Csirmaz [8] shows that in some access structure over n
parties, there is a specific set of t = logn parties that must hold together at least n bits. We
observe that if these t parties are the first to arrive, by [8]’s lower bound they must hold
exponential (in t) share size. See more details in Section 3.1

1.2 Additional Related Work
Lower bounds on secret sharing schemes

Besides the aforementioned lower bound of [8], Csirmaz [7] showed an access structure for
which, the total share size must be quadratic. The construction is simply duplicating the
parties with large shares in [8]’s construction. Csirmaz [8] also shows that a better lower
bound on the share size cannot be proven using Shannon information inequalities. Beimel
and Orlov [6] showed the same result for a larger set of information inequalities. Recently,
Applebaum, Beimel, Nir, Peter, and Pitassi [3] showed a connection between the known

1 We remark that, as in [8], both of our bounds generalize to the information-ratio of the scheme. That is,
the ratio between the total share size of the first n parties to the length of the secret must be exponential
in n.
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constructions of secret sharing and monotone real circuits, and used this connection to give
a lower bound on a family of constructions. For evolving schemes, [10] gave a tight lower
bound for the special case of the 2-threshold access structure.

Constructions of evolving secret sharing schemes

Following Komargodski et al. [10], Paskin-Cherniavsky [14] showed a more efficient construc-
tion for some classes of access structures. In this scheme, the dealer needs to know the access
structure in advance. More efficient schemes are known for specific types of access structures
(19, 10, 11]).

Paper Organization

Basic definitions and notations are given in Section 2, and the proofs of the lower bounds
are given in Section 3.

2 Preliminaries

2.1 Notations

All logarithms are taken in base 2. We use calligraphic letters to denote sets and distributions,
uppercase for random variables, and lowercase for values and functions. We use [n] to denote
the set {1,...,n}. Given a vector v € ¥", let v; denote its i-th entry, let ve; = (v1,...,0;—1)
and v<; = (v1,...,v;). Similarly, for a set Z C [n], let vz be the ordered sequence (v;);ez.

When unambiguous, we will naturally view a random variable as its marginal distribution.
For a (discrete) distribution D, let x < D denote that x was sampled according to D. Let
Supp(D) = {p: Prp[p] > 0}, and define |D| = log(|Supp(D)|).

2.1.1 Entropy and Mutual Information

The Shannon entropy of a distribution P is defined by H(P) = 3 ,cquppp) P17 [p] -log ﬁ[m.

The conditional entropy of a random variable A given B, is defined as H(A | B) =
Eve g[H(A|p=p)]- The mutual information between two random variables A and B is
defined by

I(A;B)=H(A)—H(A|B)=H(B)- H(B| A)

and the conditional mutual information given a random variable C' is defined similarly
I(A;B|C)=H(A|C)—-H(A|B,C).

We will use the following well known facts:

» Fact 3 (Chain rule for mutual information). For two random wvariables A and B =
(Bi,...,By), it holds that I(A; B) = Y. I(A; B; | B<;).

» Fact 4 (Upper bound on mutual information). For two random variables A and B, it holds
that I(A; B) < |A|.

ITC 2023
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2.2 Secret Sharing Schemes

We now formally define secret sharing schemes. Let P be a set of parties. An access structure
is a monotone collection of subsets of P.

» Definition 5 (Access structure). A collection of sets A C 27 is an access structure if it is
monotone: for every set B € A and for every B' such that B C B’ C P, it holds that B’ € A.
A set B is authorized if B € A, and unauthorized otherwise.

An access structure can be defined by a set of minimal authorized sets. Given a (non-
monotone) set M of subsets of parties, the induced access structure A, is received by adding
to Apq all the subsets containing a set in M. That is, Ay = {B C P: 3IC € M s.t. C C B}.
We are now ready to define secret sharing schemes.

» Definition 6 (Secret sharing scheme). A secret sharing scheme for an access structure A is

a pair of algorithms (SHARE, RECON) such that SHARE is a randomized algorithm and the

following holds:

1. Given a secret s € {0,1}, SHARE(s) returns shares m = {m,} p. mp is called the share
of party p.

2. Correctness: For every secret s € {0,1}, m < SHARE(s) and an authorized set B € A,
RECON(B, 75) = s.

3. Perfect Privacy: For every unauthorized set B ¢ A, it holds that

SHARE(0)3 = SHARE(1)5.

2.3 Evolving Secret Sharing

We now formally define evolving secret sharing schemes, introduces by Komargodski et
al. [10].

» Definition 7 (Restriction). Given an access structure A over P, and a subset of parties
P CP,let Alpr :={Be A: BCP'}.

[10] showed that A|p: is an access structure for every A and P’.

» Definition 8 (Evolving access structure). Let P = N be an infinite set of parties. An
evolving access structure over P is a set of access structures {An}nGN such that for every n,
Apn is an access structure over [n] and Ay 1|pn) = An-

For an evolving access structure A and a finite set of parties Z C P, we use A|z to denote
the access structure A, |z for some n with Z C [n]. Notice that the set A, |z is independent
from the choice of such n (That is, A,|z = A,/ |z for every n and n’ such that Z C [n] and
ZCn]).

» Definition 9 (Evolving secret sharing scheme). An evolving secret sharing scheme for an
evolving access structure { A, }, cn s a pair of algorithms (SHARE, RECON) such that the
following holds for every n:

1. Given a secret s € {0,1} and sequence of shares my,...,mn—1, SHARE(s,71,...,Tpn_1)
returns a share m, for party n. Denote by I1° = (115,115, . .. ) the distribution of the shares
of the parties on secret s. That is, 113 = SHARE(s,II§, ..., II5_,).

2. Correctness: For every secret s € {0,1}, sharesm = (m1,...,7,) < II%,, and an authorized
set B € A,, RECON(B,75) = s. -

3. Perfect Privacy: For every set B C [n] of parties with B ¢ A,,, it holds that 11} = I1j;.
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Note that for every set B C [n] of parties with B ¢ A,,, it holds that B ¢ Ay, for every k € N.

An adaptive evolving secret sharing scheme is a secret sharing scheme that doesn’t know
the access structure in advance. In this definition, the algorithms SHARE and RECON get a
description of the access structure.

» Definition 10 (Adaptive evolving secret sharing scheme). An adaptive evolving secret
sharing scheme is a pair of algorithms (SHARE,RECON) such that the following hold for
every evolving access structure {An}, o and for every n:
1. Given a secret s € {0,1}, A,, and sequence of shares my,...,mp_1,
SHARE(s, Ay, 71, ..., mh—1) Teturns a share m, for party n. Denote by I1° = (115,113, . . .)
the distribution of the shares of the first n parties on secret s. That is,

II¢ = SHARE(s, A;, 15, ..., TI_,).

2. Correctness: For every secret s € {0, 1}, shares m = (m1,...,m,) < I, and an authorized
set B e A,, RECON(B, A,,7p5) = s.
3. Perfect Privacy: For every set B C [n] of parties with B & A,,, it holds that 11} = I1j;.

We now formally define the share size of a set of parties.

» Definition 11 (Share size). For an evolving access structure A = {An}, cn, an adaptive
scheme (SHARE,RECON), and S + {0,1}, let II; := SHARE(S, A;, 111, ...,II;_1) for every
i € N. Then the share size for A of a party p € N is simply |IL,|. The total share size of a set
of parties B is [Tg| < - 5|, 2

We define share size and total share size for non-adaptive/non-evolving secret sharing
schemes similarly.

2.4 Csirmaz’'s lower bound

Csirmaz [8] proved a lower bound on the share size of a (classic) secret sharing scheme for a
specific access structure. We exploit the properties of this access structure in our proof. The
following is the formal statement we need.

» Theorem 12 ([8]). For everyt € N, there exists an access structure Z; over t + 2¢ parties,
such that the following holds: The set of players is composed of two disjoint sets, B and C,
such that |C| =t, |B] = 2¢, and:

1. C is an unauthorized set, and,

2. the total share size of players in C is at least 2t — 1.

For completeness, we give here the proof.

Proof. Fix t € N and let n = 2!. We start with describing the access structure Z;. Let
B={P,...,P,} be a set of n parties, and let C be a disjoint set of parties of size t. Let
C1,...,C, be an ordering of all the subsets of C, such that for every ¢ < j it holds that
C; ;(_ Cj.?’ Define the set of minimal authorized sets of Z; to be the set

M:{CiU{Pl,...,Pi}ZiE [Tl]},

2 Recall that || := log(|Supp(IT,)|) is a lower bound on the maximal representation size of a sample
from II,,.

3 For example, order the sets according to there size in reverse order, with arbitrary order between sets of
equal size.
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and let Z; = A be the induced access structure. Item 1 holds by construction. Moreover,
by the definition of Cy,...,C, and M, for every i the set C; U{Py,..., P;_1} is unauthorized.
We now use this to prove the lower bound on the share size. Let S + {0,1} be a uniformly
chosen secret, and II be a random sharing of S. We want to lower bound the size of II¢. It
holds that,

e + |S| > I(Ile, S;T1z)
= ZI(Hc, S;HP,-, ‘ HP<i)

< ZI(HCNS;HP; HP<1‘)
[
<> I(S;1p, | Mg, TIp_,)

K2

= ZH(S | Hci7HP<i) 7H(S | HPi’HCwHP«:)
Y

7
=n

where the first inequality holds by Fact 4. The first equality, the second inequality, and the
third inequality hold by the chain rule of mutual information. The last inequality holds since
C; U P.; is an unauthorized set, but C; U P<; is authorized. Item 2 now follows from the
above since n = 2' and |S| = 1. <

3 The Lower Bound on the Share Size

In this section, we formally prove our lower bound. We start with a lower bound on adaptive
evolving secret sharing, and then show how to generalize the bound to hold for non-adaptive
schemes.

3.1 The Adaptive Case

We start by formally stating our main result.

» Theorem 13. Let A = {A,}, oy be the access structure for which A, =0 for every n.
Then for every adaptive evolving secret sharing scheme and every t, the total share size for
A of the first t parties is at least 2t — 1. In particular, there are infinitely many parties i
with share size at least 20~ — 1.

The proof of the lower bound is by showing that for every ¢, after the first ¢ parties arrived,
it is possible to add 2! parties such that the resulting access structure will be Csirmaz’s
structure. Thus, by Csirmaz’s lower bound, the ¢ parties must hold long shares.

Proof. Let (SHARE,RECON) be an adaptive secret sharing scheme, and fix ¢ € N. We start
by defining an evolving access structure A’, and bounding its share size. Later, we relate the
share size of A and A’.

Let C = [t], and let n = 2'. Let B = {P1,...,P,} for P, = i +t. Define the evolving
access structure A’ = { A} }, cy as follows: for every i € [t], let A} = A; = (). Let A}, = Z;
be the access structure over the set 8UC promised by Theorem 12. For every j € [n], define
Ay = Alyplierj)- Finally, for every i >t +n, let A} = Aj,,,. Notice that A’ is indeed an
evolving access structure as Aj [ = As.
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Let S « {0,1} be an uniformly random secret, and let II = (IIy, ..., II;1,) be the distri-
bution of the shares of the first ¢+ n parties on A. That is, II; = SHARE(S, A;, 11, ..., II;_1).
Similarly, let II" = (I, ..., II;, ) be the distribution of the shares of the first ¢t + n parties
on A’ (using SHARE and the secret S).

Notice that by definition of evolving secret sharing scheme, the pair (Sﬁ/A?E7 RECON)
is a secret sharing scheme for the access structure A}, , for SﬁA\RE(s) :=II'|g=s. Thus, it
must hold by Theorem 12 that |[II;| = }H’St| > 2! — 1. However, since A, = A; for every
i <t, it holds that IT_, = II<;. Therefore, |II<;| > 2* — 1, and the first part of the theorem
follows. -

To see the second part, assume towards a contradiction that there is only a finite number
of parties i for which the share size is at least 2¢=! — 1, and let i* be the maximal such i (or
1* = 1 if no such exists). Let ¢ be the total share size of the first i* parties. Consider the
i* 4 ¢ first parties of .A. By the assumption, their total share size is at most

P4 i+l i L
(+ )@= Y ity =gt
j=i*+1 j=i*41 j=1

On the other hand, by the first part of the theorem, the total share size of the first i* + ¢
parties is at least 2° +¢ — 1 which is a contradiction to the above. |

3.2 The Non-Adaptive Case

We now prove our main result for non-adaptive schemes. We start with formally stating the
result.

» Theorem 14. For every function f: N — N with f € w(1), there exists an access structure
A = {An}, ey such that the following holds for any evolving secret sharing scheme for A.
For every t, the total share size of the first t parties is at least 2= — 1. Moreover, there
are infinitely many parties i with share size at least 20=f()=1 _ 1,

The proof of the above theorem is similar to the proof of Theorem 13. However, since
the access structure is fixed, we cannot argue that the security and correctness hold if we
change the access structure on parties that did not arrive yet. To overcome this, we need to
embed inside A all the access structures Z; for every value of ¢ € N. Recall that Csirmaz’s
structure Z; is over two sets of parties, C and B, such that the set C is of size ¢ and has total
share size 2t. To get the stated lower bound, we need to embed in A the structure Z; in
such a way that the parties that hold long shares (that is, the parties in the set C) will arrive
early enough. This is done by associating only a sparse fraction (determined by the function
f) of the parties in A with the set B.

Proof. Fix a function f € w(1). We start by describing the access structure A. Assume
without loss of generality that f(0) =0 and 0 < f(n + 1) — f(n) <1/2,% and for every n let
Z,, be a number such that f(x,) >n and f(z, — 1) < n. Let X = {x1,22,...}. We divide
X into disjoint segments {Z; }j cn as follows, such that the size of the j-th segment is 27,
Namely, for every j € N let Z; = {@q;,...,x95+1_1}. For every t € N, let [t] = [t] \ X, and
let ¢' = |[t]5| be the size of [t]. Observe that t' >t — f(t).

4 Otherwise, define f'(n) = min{f/(n — 1)+ 1/2, ming/sp {f(n’) } } Clearly f’ has the assumed property,
and for every n, f'(n) < f(n).
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We next define the evolving access structure A such that A\[t];uzt/ = Zy where Zy
is the access structure promised by Theorem 12. Moreover, [t] will match the set C in
Theorem 12. This concludes the proof of the theorem similarly to the proof of Theorem 13,
as it follows that the total share size of the parties in [t]5 (and therefore also in [t]) is at
least 28 — 1 > 2t=/() _ 1.

To define A as stated above, for every ¢’ € N let Z;» be the access structure promised by
Theorem 12, over the sets of parties C = [t|3; and B = Zy,. For every n € N define

A, = G{’DEZt/: D C [n]}.

t'=1

By definition the sequence A = {A,}, .y is an evolving access structure. Moreover, by
construction it holds that for every ¢’ and for every large enough n (with f(n) > 2'+1), it
holds that An\[t]?uzﬂ is equal to Z;/, as stated above. Indeed, to make sure that we didn’t
add additional authorized subsets, observe that every authorized set of any structure Z;
for j # t' contains at least one party from Z;. Since [t]5 UZy and Z; are disjoint, all the
authorized sets in An'[t]yult/ are authorized in Z. |

3.3 Evolving Secret Sharing Over a Fixed Number of Parties

Our technique also implies a (weaker) lower bound on the share size of adaptive evolving
secret sharing, when the number of parties is known from advanced (but the access structure
is unknown).®> For example, one can prove that for the empty access structure, every scheme
that supports an arbitrary structure over 2n parties, must give a share of length n/logn to at
least n — log n of the first n parties. Otherwise, there are logn such parties with total share
size less than n. We thus can use the remaining n parties to complete Csirmaz’s structure,
with these logn parties being the set C. This is of course a contradiction to Theorem 12.

We also observe that the share size in this model, of adaptive evolving secret sharing
when the number of parties is known, is related to the share size in classical secret sharing, up
to a linear factor in the number of parties n. Indeed, assume that for every access structure
over n parties there exists a (classical) secret sharing scheme with maximal share size ¢. The
following shows that the optimal share size of evolving secret sharing over n players is at
most 2n X £ (the other direction - that the share size in evolving secret sharing is not smaller
than the share size in classical secret sharing - is trivial). Let P = {P,..., P,} be the set of
parties, and first assume for simplicity that every authorized set contains the last party P,.
Let A,, be the final access structure, and let (SHARE, REC) be a (classic) secret sharing
scheme for A,,. We can construct an evolving secret sharing scheme as follows: when the i-th
party arrives, for every i € [n — 1], the scheme gives it random (uniformly and independently
chosen) £ bits as the share m;. The share of P, is {m; ® SHARE(s);},c [, (letting m, = 0%).
Clearly, the share size of the P, in this scheme is n - £, and all other parties get a share of
size /.

To get rid of the assumption that all the authorized sets contain the last player, we can
simply share the secret independently to n access structures, when the i-th access structure
contains all the authorized sets in which P; is the last party. This will yield a share size
of length at most (n — 1) - £+ n - £ (as every party is the last in exactly one such access
structure).

5 Non-adaptive evolving secret sharing with finite number of parties is equivalent to classical secret
sharing.
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We conjecture that the smallest possible share size for binary secrets for the t-out-of-n and (n—t+1)-
out-of-n access structures is the same for all 1 < ¢ < n. This is a strenghtening of a recent conjecture
by Csirmaz (J. Math. Cryptol., 2020). We prove the conjecture for ¢t = 2 and all n. Our proof gives
a new (n — 1)-out-of-n secret sharing scheme for binary secrets with share alphabet size n.
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An access structure A over n parties is a nonempty monotone set system over ground set
{1,...,n}. A secret sharing scheme [7, 1] for A with secret alphabet ¥ is a collection of joint
distributions (X1 (0),...,X,(0)) with o € ¥ taking values in I'™ such that

Secrecy: If S ¢ A then (X;(0) : i € S) are identically distributed for all o € X.
Reconstruction: If R € A then (X;(0) : 4 € R) determine o with probability 1.

The information rate of the scheme is the ratio log|X|/log|T’| of the secret size and the
share size. The dual of A is the access structure A* = {S: S & A}. Csirmaz [4] asks whether
the following duality conjecture holds:

» Conjecture 1. If A has a secret sharing scheme of information rate p for some secret
alphabet size |X|, then A* has a secret sharing scheme of information rate at least p for some
secret alphabet size |Y|.

As supporting evidence, Csirmaz shows that duality holds for the polymatroid relaxation
of A. This is a relaxation whose variables are the joint entropies of subsets of shares and
whose constraints consist of a (in general incomplete) set of linear inequalities. On the other
hand, he proves that duality fails for a relaxed asymptotic notion of secrecy. It is natural to
consider the following even stronger conjecture:

» Conjecture 2. For every %, if A has a secret sharing scheme of information rate p for
secret alphabet X, then so does A*.

In the case when X is the order of a finite field and the scheme is restricted to be linear,
Conjecture 2 is known to hold (see Lemma 7.2 in [5]).
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My motivation for Conjecture 2 is that it can be tested on threshold schemes. Such
schemes have asymptotic information rate 1 as |X| grows with the number of parties so
Conjecture 1 does not say anything new about them. In contrast, when |X| < n, Conjecture 2
appears to be open for threshold schemes.

Here I study Conjecture 2 for threshold schemes and binary secrets, i.e., |X| = 2. This
specialization is formulated as Conjecture 3. The t-out-of-n access structure consists of all
t-element subsets of {1,...,n}.

» Conjecture 3. If there exists a t-out-of-n scheme for binary secrets and share alphabet size
v then there also exists a (n —t + 1)-out-of-n scheme for binary secrets and share alphabet
size 7.

The conjecture is true for every n > 2 when t € {1,n}. Let y3(A) denote the smallest
possible share alphabet size for binary secrets and access structure A. Whent =1 and t =n
one-bit secrets are possible and clearly optimal, so vs(1-out-of-n) = 45 (n-out-of-n) = 2. A
more interesting case is ¢ € {2,n — 1}.

» Proposition 4. For alln > 2, yo(2-out-of-n) = n.

The lower bound 7y, (2-out-of-n) > n was proved by Kilian and Nisan (see [2]). When n is
a power of a prime (i.e., a finite field order) the upper bound can be obtained from Shamir’s
secret sharing with “infinity” as one of the evaluation points (see e.g. [3]). An alternative
construction, which was communicated to me by Ilan Komargodski around 2016, works for
all n. A variant of it is shown in the proof of Proposition 4 below.

If duality were to hold the same bound should be expected for the (n — 1)-out-of-n access
structure. The required lower bound was shown by Bogdanov, Guo, and Komargodski [2].
When n is a power of a prime the upper bound can also be derived from Shamir’s scheme.
The main result here is that this bound can be matched for non-prime powers n:

» Theorem 5. For alln > 2, v2((n — 1)-out-of-n) = n.

The smallest example for which Theorem 5 is new is n = 6. This is a good example to
keep in mind for the rest of the discussion.

Perspective: Lower bounds on alphabet size

There are two methods for lower bounding 7, (t-out-of-n) that give incomparable results.
The analysis of Kilian and Nisan (KN) shows s (t-out-of-n) > n —t + 2 for all t > 2. The
analysis of Bogdanov, Guo, and Komargodski (BGK) shows the same lower bound for
v2((n — t 4+ 1)-out-of-n). Among the two, KN is more intuitive. They reduce their statement
to the special case t = 2. When ¢t = 2 let X; and Y; denote the i-th party’s share of zero and
one, respectively. Assuming the shares of zero and one are sampled independently, the KN
bound follows from the two inequalities

1=E[ 2 B[ X = Y}) = Yo P{x =¥ 2 ) =
=1 i=1

The first inequality is by correctness of reconstruction (if X; =Y; and X; =Yj is possible
the corresponding values would reconstruct to both zero and one) and the second one is by
secrecy (X; and Y; are identically distributed, so Pr[X; = Y] is a collision probability). The
middle equality is linearity of expectation.
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In contrast, BGK work directly with the probability mass functions pg,p; of the shares
of zero and one. They derive two types of constraints on the Fourier transform f of the
real-valued function f = p; — pg over I'". The first type is a reformulation of secrecy in the
Fourier domain:

|f(x)\2 =0 for every x such that Supp x € A, (BGK1)

where Suppx = {i: x; # 0} is the support of the character x viewed as an element of
Zy where ¢ = |I'|. The second type of constraint is the following (somewhat mysterious)
relaxation of reconstruction:

S, s FOOP) (<527
A

This system of constraints is a linear program in the variables |f(x)|2, x € Zy. The BGK

A\B]
) >0 forall BeA (BGK?2)

lower bound follows from its infeasibility when ¢ < n and A is the (n — 1)-out-of-n access
structure.

If Conjecture 3 were true, BGK would be a direct consequence of it and KN. Thus a
natural first step towards Conjecture 3 would be to seek an alternative proof of BGK. The
Conjecture itself suggests a route for such a proof: Assume that a (n —t¢+ 1)-out-of-n scheme
with impossibly good share alphabet size 2 exists. Use this scheme to construct a t-out-of-n
scheme with the same parameters. BGK offers a possible clue about this transformation:
A feasible solution to the linear program (BGK1-BGK2) for access structure A should
correspond to a secret sharing scheme for A*.

I do not know how to construct this transformation. For the purposes of investigating this
potential “duality” between a secret sharing scheme and its Fourier transform it should be
instructive to compare known secret sharing schemes for A and A* and their Fourier trans-
forms. I discovered the proof of Theorem 5 by working backwards from this correspondence.
In the case of (n — 1)-out-of-n schemes, the constraints (BGK1-BGK2) provide substantial
information about what a scheme for this access structure should look like, if one exists at
all. The scheme itself was obtained by reverse engineering f (and the distributions py and
p1) from its Fourier transform. It would be interesting if the same result can be obtained by
direct construction.

Concrete challenges

Figure 1 shows the best currently known lower and upper bounds on ~y;(#-out-of-n) for small
values of ¢t and n. Except for the entries in bold, the upper bounds follow from Shamir’s
scheme, while the lower bounds are from KN or BGK. The upper bound for vz (3-out-of-5)
can be obtained from a (6,4,3) MDS code over Fy (see e.g. [6, Chapter 11]). The upper
bound for 5 (2-out-of-6) is from Proposition 4. The upper bound for 7z (5-out-of-6) is from
Theorem 5. The obvious next challenges are to calculate y2(3-out-of-6), and ~,(4-out-of-6),
or for those who prefer prime n, v2(3-out-of-7) and ~;(5-out-of-7).

Constructions

Proof of the upper bound in Proposition 4. Shares of zero are n random symbols in ' =
{0,...,n — 1} all equal to one another, while shares of one are a random cyclic permutation
of the sequence (0,1,...,n — 1). Reconstruct to zero if the shares are equal and to one if
they are different. The scheme is secret because the marginal distribution of every share is
uniform (and therefore identical) in both cases. <
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! 1 2 3 4 ) 6 7
n
2 2 2
3 2 3 2
4 2 4 4 2
) 2 5 4 5 2
6 2 6 o-7 5-7 6 2
7 2 7 6-7 5-7 6-7 7 2

Figure 1 Upper and lower bounds on v (t-out-of-n).

The proof of Theorem 5 uses Fourier analysis of functions f: Zj — C. The ¢" character
functions

2mi
X(.’L‘) = X(an cee 7$n71) = EXP(7 : (irOXO + -+ $n71Xn71)>

with (xo0, .-, Xn-1) € Ly (also denoted by x) form an orthonormal basis of the linear space of
such functions with respect to the inner product (f, g) = E[f(x)g(x)] for x chosen uniformly
at random from Zg. The Fourier transform of f is the unique function f: Zij — C for which

f= erzn f(x) - x. The Fourier coefficients f(x) are given by (f,x). Parseval’s identity
q —_
states that (f,g) = erzg Fx) - a(x)-

Proof of the upper bound in Theorem 5. Let f: Z? — C be the function whose Fourier
transform is
N 1, if x is a cyclic shift of (0,1,...,n—1)or (n—1,n—2,...,0),
F) = .
0, if not.

As will be shown shortly (or derived from symmetry of f under negation) f is real-valued.
Shares of zero and one are sampled from the disjoint distributions py and p; obtained by
writing f = C(po — p1) for a suitable normalizing constant C' > 0. In more detail, let

—C- f(x), if f(z) <0

0, otherwise, 0, otherwise,

_JC-fla), if f(z) =0
po(z) =

where C' is the factor that scales pg and p; to probability mass functions. The scaling factor
is the same because f(0) = 0.

Security follows from the fact that f (x) vanishes on all characters y of Hamming weight
at most n — 2. In more detail, the advantage of any distinguisher D is

C

¢ Y D)) = S BD@T@] = o 3 Df)

TELT XELY,

by Parseval’s identity. If D depends on at most n — 2 variables then ﬁ(X) = 0 unless
x| <n—2. As f(x) =0 for all x of size at most n — 2 the advantage of D must be zero.
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To show reconstruction, f is calculated using the inverse Fourier formula. Letting
T = (fL'(), ce 7$n71)7

fl@)=">" fex()
XEZL},
2mi = i
= Z exp(T . Z(k + t)xk) + Z exp(T . Z(—k + t)m)
teZn k=0 teZn k=0
omit W= omi W omi W
= e ) (e (5 X ko) (<2 X k) )
t€Zn, k=0 k=0 k=0
it e 27
= (Z exp(— xk)) -2cos<—2kmk)
n n
= k=0 k=0
2w
=n-1(zg+- - + a1 =0) -2cos<; (1 42z 4+ (n— l)xn,l)).
Any n — 1 of the n values xg, ..., z,_1 determine the remaining one on the set of inputs

where f does not vanish. These values will satisfy the constraint x¢ + -+ + x,_1 = 0 from
which the missing x; can be determined. This in turn determines the value of f and therefore
the secret, which equals sign f(z) up to a change in representation. <

In more detail, the reconstruction procedure is this: Given shares xzg,...,T,_1 except for
x;, first compute z; = — 3, x; mod n, then output the sign of cos(2m(3_ kxy)/n). (The
cosine will never evaluate to zero because py and p; assign zero probability to those shares.)
Two alternative descriptions of sign cos(27 (> kxy)/n) are

the parity of [ (3 kxy)/n], where | - ] is the closest integer,

the indicator of || > kxi]n| < n/4, where | - |, is the unique integer in the set (—n/2,n/2]

congruent modulo n.

The reconstruction procedure is clearly efficient. Its running time is quasilinear in n.

How about sharing? Perfect sampling of the shares is not even possible in a model where the
random seed is uniform over some finite domain! The reason is that some of the probabilities
are irrational numbers. The scheme has perfect secrecy and reconstruction, but any realistic
implementation of it must be imperfect.

It is possible to deduce from general considerations that if there exists a bit secret sharing
scheme, then there exists one over the same share alphabet in which all probabilities are
rational. The reason is that once the sign-pattern of f is fixed (i.e., once it is determined which
shares reconstruct to zero and which reconstruct to one), finding the share probabilities that
satisfy the secrecy constraints amounts to solving a linear program with rational coefficients.
If this linear program is feasible then a rational solution must exist.

Nevertheless, even if imperfections in sampling are allowed, it is unclear how efficient
a (n — 1)-out-of-n scheme with share alphabet size n can be. Is it possible to sample an
e-approximation to the shares in time polynomial in n and 1/¢ for all n and €?

To summarize, the crucial property of f is that its weak sign can be determined from any
subset of shares that allow reconstruction. By weak sign I mean that one of the non-exclusive
conclusions f(z) <0 or f(z) > 0 can be reached only from knowledge of those coordinates
of x that fall inside the reconstruction set. If an f with this property can be constructed
under the constraints (BGK1) then reconstruction is possible. In the proof of Theorem 5 the
cyclic structure of the nonvanishing Fourier coefficient plays a useful role. If, for example,
f (x) was chosen to equal 1 on all characters of weight n — 1 it appears that reconstruction
wouldn’t be possible.
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Csirmaz’s Duality Conjecture and Threshold Secret Sharing

Finally, notice the symmetry between the secret sharing scheme in the proof of Propo-

sition 4 and the construction of f in the proof of Theorem 5. Is this a coincidence or an
instance of duality?
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—— Abstract

In recent years, the number of applications of the repeated squaring assumption has been growing
rapidly. The assumption states that, given a group element z, an integer 7', and an RSA modulus N,
it is hard to compute 22" mod N — or even decide whether Y Z 22 mod N —in parallel time less
than the trivial approach of simply computing 7" squares. This rise has been driven by efficient proof
systems for repeated squaring, opening the door to more efficient constructions of verifiable delay
functions, various secure computation primitives, and proof systems for more general languages.

In this work, we study the complexity of statistically sound proofs for the repeated squaring
relation. Technically, we consider proofs where the prover sends at most k > 0 elements and
the (probabilistic) verifier performs generic group operations over the group Z%. As our main
contribution, we show that for any (one-round) proof with a randomized verifier (i.e., an MA proof)
the verifier either runs in parallel time Q(T"/(k + 1)) with high probability, or is able to factor N
given the proof provided by the prover. This shows that either the prover essentially sends p, ¢ such
that N = p - ¢ (which is infeasible or undesirable in most applications), or a variant of Pietrzak’s
proof of repeated squaring (ITCS 2019) has optimal verifier complexity O(T'/(k + 1)). In particular,
it is impossible to obtain a statistically sound one-round proof of repeated squaring with efficiency
on par with the computationally-sound protocol of Wesolowski (EUROCRYPT 2019), with a generic
group verifier.

We further extend our one-round lower bound to a natural class of recursive interactive proofs
for repeated squaring. For r-round recursive proofs where the prover is allowed to send k group
elements per round, we show that the verifier either runs in parallel time Q(7T"/(k + 1)") with high
probability, or is able to factor N given the proof transcript.
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The Cost of Statistical Security in Proofs for Repeated Squaring

1 Introduction

The repeated squaring (RS) assumption (first introduced by Rivest, Shamir, and Wagner [33])
states that for an RSA modulus N, a group element x, and a time bound 7', it is hard to
compute 22" mod N — or even decide whether y 2 22" mod N - in parallel time less than
the trivial approach of simply computing 7" squares. Under this assumption, the RS function
is a candidate sequential function, meaning it cannot be sped up using parallel processors.
This gives the ability to tune the time bound 7T so that computing the RS function requires
a specified amount of wall-clock time, e.g. you can set 1" so that computing 22" mod N
takes at least 1 hour. This property, combined with the algebraic structure of the repeated
squaring function, has led to many exciting applications.

Originally, Rivest, Shamir, and Wagner [33] used the RS function to construct time-lock
puzzles. Time-lock puzzles provide a mechanism to send a message “to the future”, by
allowing a sender to quickly generate a puzzle with an underlying message that remains
hidden for a specified amount of wall-clock time. These are possible because repeated
squaring in RSA group has a natural trapdoor that allows the puzzle generator to evaluate
the function quickly. Namely, given the factorization of N, one can reduce 27" mod the order
of the group to compute 22" efficiently. In this sense, time-lock puzzles effectively give a
“fine-grained” variant of standard cryptographic commitments, where the hiding property
only holds for some fixed amount of time specified by T

More recently, Pietrzak [30] and Wesolowski [41] showed how to construct efficient (non-
interactive) proofs for the RS relation. (In both works, this was obtained by first designing
an interactive protocol for RS and then making it non-interactive via the Fiat-Shamir
transform [12].) Such proofs for the RS relation have been the main driving force behind
various applications of the repeated squaring function. For instance, they are used to
construct verifiable delay functions (VDFs), first proposed by Boneh, Bonneau, Biinz, and
Fisch [5], where the output of the function serves as a unique “proof-of-sequential-work” that
can be efficiently verified with an associated non-interactive proof. Among other applications,
Boneh et al [5] propose VDFs as a way to generate randomness for a trusted lottery or to
construct resource-efficient blockchains (which has since been adopted by Chia [1]).

Since the initial works of [6, 30, 41], there have been many new proposed applications
for proofs of repeated squaring: [7] construct accumulators, [11] construct randomness
beacons, [10] construct polynomial commitments for succinct arguments, and [4] build
off of [10] to construct time and space-efficient arguments. Furthermore, there has been
much focus on understanding the efficiency and security of such proofs (see e.g. [30, 41, 6,
11, 34, 4, 19]) as well as the security of the sequentiality assumption underlying RS (see
e.g. [36, 23, 37, 35]).

Proofs of repeated squaring. In this work, we are interested in proofs for the repeated
squaring language, defined with respect to a multiplicative group of integers modulo N:

RSNy = {(x,y,T) | y:xQT modN},

where x and y are two group elements and T is an integer.! A proof system for this language
consists of a prover P and a (probabilistic) verifier V. The goal of the verifier is to decide,
given an instance (x,y,T), whether it is in RSy or not, and the prover sends the verifier a

1 More generally, our results hold for the repeated squaring relation in any multiplicative group of unknown
order. We focus on RSA groups for this introduction for simplicity of presentation.
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proof string 7 to help in this task. We emphasize that we are mostly interested in the setting
of non-interactive proofs in this work as they are most useful for applications, but later we
also generalize the above and consider interactive protocols.

For a proof system to be meaningful, it must satisfy completeness and soundness. Com-
pleteness stipulates that an honestly generated proof will convince the verifier whenever
(x,y,T) € RSy, and soundness requires that, whenever (x,y,T) &€ RS, there is no cheating
proof 7 that will convince a verifier with noticeable probability. As stated, this is a statistical
notion of soundness, asking whether there exist cheating proofs at all. We also consider
proof systems that are only computationally sound — commonly known as arguments — where
there may exist such cheating proofs, but we assume they are hard to find. Furthermore,
computationally sound proofs come in many forms depending on the kind of assumptions
they rely on.

There are several known proofs for RSy (see Appendix B for an overview). For all of
them, at least one of the following hold:

(A) The proof is only computationally sound. This is undesirable or even insufficient for
several important applications; see below.

(B) The prover leaks the factorization to the verifier. This only allows N to be used once
and is infeasible unless the prover can factor V.

(C) There is a tradeoff between proof size, ||, and (parallel) running time of V', Timey,
where

|7T| -TimeV > T.

That is, inefficiency is somewhat necessary: any improvement in communication com-
plexity must necessarily cause an increase in computational complexity and vice versa.

All three of the above properties are undesirable for various reasons as we discussed
above. So, in this work, we aim to understand whether having one of the above drawbacks is
necessary. We do this by studying the cost of statistical soundness in RS y:

Can we construct a (statistically sound) non-interactive proof system for RSy with low
communication, an efficient verifier, and that doesn’t leak the factorization of N ?

On statistical soundness and tradeoffs between efficiency and security. Purely based
on security and ignoring efficiency, it is clear that proofs with statistical soundness are
strictly better than ones with only computational soundness. So perhaps in high-stakes
applications (e.g. for blockchains where lots of money is at stake), having soundness rely on
newer and untested mathematical/ computational assumptions may not be worth it. It’s
worth emphasizing, however, that the computationally sound, non-interactive proofs for
RS N rely not only on well-formulated computational assumptions, but potentially also on
assumptions regarding the setup used to generate the RSA modulus N.

Wesolowski’s argument [41], for instance, is completely broken if the prover knows
the factorization of N. This is not the case for Pietrzak’s non-interactive proof [30], but
this already suffers an O(logT') multiplicative communication overhead in efficiency. Still,
Pietrzak’s protocol is potentially broken if N is not a product of safe primes. To fix this,
Block et al. [4] give a non-interactive proof that works for any group and hence value of N,
but results in an additional O()) blowup in efficiency over Pietrzak’s proof.?2 This protocol

2 We mention that Hoffmann et al. [19] give a similar result to [4] that works in any group with improved
efficiency by considering repeated gth powers for structured ¢ > 2. Still, their protocol inherently
cannot be made more efficient than the protocol of [30].
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still relies on a random oracle to securely instantiate the F'S heuristic though. Technically,
the FS heuristic can be instantiated for [4] assuming LWE [3], but only at a further cost
in efficiency for both the prover and the verifier with its own additional trusted setup. So
it seems, no matter which computationally sound proof you choose, there is a complex
combination of both computational and setup assumptions, and if one piece fails, the security
of the entire system may be completely compromised. However, if the underlying proof is
statistically sound, then this problem does not exist as it is impossible to generate accepting
proofs for false statements (this is true even if P = NP and factoring is easy).

Even if one is extremely confident in their computational assumptions, there are protocols
based on proofs for RSy that are completely broken if the wrong underlying protocol is
used. Specifically, in the recent work of Freitag, Komargodski, Pass, and Sirkin [13], they
use proofs for RSy on top of a time-lock puzzle based on the RS function in order to
construct publicly verifiable and non-malleable time-lock puzzles (on their way to building
fair multi-party coin-flipping and auction protocols without trusted setup). In the context
of time-lock puzzles, the party who generates the puzzle needs to know the factorization
of N; this is actually a feature of time-lock puzzles, not a bug. However, this implies that
they need the corresponding proof in their construction to be sound even if some party
may know the factorization of N, so as pointed out above, Wesolowki’s protocol will not
suffice. They instead rely on Pietrzak’s protocol, which is still plausibly secure when the
factorization of N is leaked. But again, even though Wesolowski and Pietrzak’s protocols
are both “computationally secure”, you cannot simply default to using the more practically
efficient protocol of Wesolowski.

We highlight two important takeaways from the example of [13]:

If using computationally sound rather than statistically sound proofs, protocol designers

need to be very careful about the specific assumptions that the soundness of this proof

relies on. This crucially includes the interplay between the setup assumptions and

mathematical/ computational assumptions that are needed in the case of [13].

In settings where security is required (or simply desired) even when the factorization of

N may be known, current protocols start with a statistically sound interactive proof,

and then compile it to a non-interactive argument using the FS heuristic. As such, we

see it as an important goal to characterize the efficiency of general, statistically sound,
interactive proofs for RSy, which first requires understanding the setting of statistically
sound, non-interactive proofs.

Still, statistically secure protocols tend to be much less efficient than their computationally
secure counterparts. As such, our overall goal is to try to formally characterize the exact
tradeoffs between efficiency and security for proofs of RSy, which has led to many exciting
practical and theoretical applications in recent years.

The complexity of RS (without proofs). Even ignoring the potential help from a prover,
the complexity of the RS function — or deciding the RSy language — was not well understood
until the very recent works of [36, 23|, even in generic models. Specifically, Rotem and
Segev [36] show that computing the RS function or deciding RSy in less than T parallel
time implies a factoring algorithm for N, at least when restricted to generic-ring algorithms.
Katz, Loss, and Xu [23] show a similar result for computing the RS function in the strong
algebraic group model.?

3 These are incomparable models. The generic-ring model allows for multiplication/ division/ addition/
subtraction/ equality queries, but require that queries are independent of the group elements represen-
tations. The strong algebraic group model only allows multiplication/ division queries, but allows these
queries to be made in a way that depends on the group elements explicit bit representations.



C. Freitag and |. Komargodski

1.1 Our Results

We make progress towards resolving the above-mentioned questions. Within a certain
restricted model (the generic-group model relative to a hidden order group; see below),
we prove results on the tradeoffs between the communication complexity and the verifier’s
complexity in a large class of proof systems for RS. In particular, for the class of proof
systems that we consider, any improvement over known ones would lead to a non-trivial
factoring algorithm. Thus, assuming that factoring is hard, any improvement must either be
outside of the restricted model or relax soundness to computational.

A bound for MA proof systems. We consider proof systems where the prover sends the
verifier a single possibly long message, and then the verifier decides whether to accept or not
by running a probabilistic polynomial time computation. This corresponds to the class MA
(which generalizes NP by allowing the verifier to be probabilistic).

We briefly mention two statistically sound proofs for RS. First, the prover can just send
the factorization (p,q) where N = p-q. The verifier can check that N = p - ¢, compute the
order of the group ¢(N), and then efficiently check that y equals 22" mod (M) mod N. The
second is a sumcheck-style proof [27] that is a generalization of Pietrzak’s protocol [30] due

o [11]. Here, the prover sends k evenly spaced “midpoints” between = and T', which results
in k + 1 statements corresponding to T'/(k + 1) squares. The verifier uses random exponents
to combines these statements into a new statement (x’,y’,T/(k + 1)) that it can check itself
in time T'/(k + 1).

We show that the above two protocols are essentially the best possible among all generic-
group proofs. Specifically, we show that either we can factor composite numbers (matching
the first protocol), or otherwise in any MA proof that includes & > 0 group elements, the
verifier must run in parallel time at least Q(7/(k 4+ 1)) (matching the second protocol).
Additionally, if neither of these hold, then the protocol must not be statistically sound —
there must exist proofs for false statements, even if they may be computationally hard to
find.

We prove our result by presenting an algorithm that uses any “too-good-to-be-true” generic-
group MA proof to solve factoring in the plain model. To this end, we use Maurer’s [28]
generic-group algorithms abstraction and extend it to capture MA proofs. In our model,
we restrict the verifier to be a generic-group algorithm (in Maurer’s sense) that makes a
bounded number of group multiplication and division queries?, and we say that it accepts
if it outputs the group’s identity 1. Notice, for example, that this allows the verifier to
compute two element g, h and accept if they are equal by outputting g-h~'. Furthermore, the
verifier can perform ANDs of equality checks and accept if many pairs (g1, k1), - -, (gn, Fn)
are equal (allowing parallel repetition). This can be done by sampling random exponents
T1,...,7n € [2%] and outputting [T, (g; - h;l)“, a la the sumcheck-style technique used
in [30]. Finally, we note that all efficient proofs specifically designed for RSy fall into this
generic model.

The prover, on the other hand, may still be an unbounded (not necessarily generic)
algorithm whose proof consists of a bit string and a sequence of group elements. Note
that mot restricting the prover to be generic only makes our result applicable to larger
classes of constructions, thereby making it stronger. Refer to Section 2 for the precise model

4 Such algorithms are sometimes referred to as straight-line programs.
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definition. We emphasize that even in this simplified one-round setting, it turns out to
be highly non-trivial to prove our result in a way that captures the behaviors of arbitrary
provers and verifiers; see Section 1.3 for an overview.

» Theorem 1 (Simplified and Informal; see Theorem 4). For any generic-group MA proof
system for RS, if the prover sends k > 0 group elements and a string st, the verifier either
runs in parallel time Q(T/(k + 1)), or is able to factor N given st.

In fact, we prove in Corollary 9 that the above holds for any hidden order group. In
addition to RSA groups, this notably includes class groups of unknown order, which was
suggested in the context of repeated squaring by Wesolowski [41] (see [9] for a more general
survey on the use of class groups in cryptography). In the general case, we show that either
the verifier runs in parallel time Q(7/(k + 1)), or is able to compute (a non-zero multiple of)
the order of the group given the string st output by the prover. However, by a variant of the
Miller-Rabin primality test [29, 31], it is well known that this implies a factoring algorithm
for N when working over the multiplicative group Zj,.

We note that if the prover is efficient, we can compute st ourselves. So, the existence of a
verifier with o(T/(k 4 1)) parallel runtime implies a standard model factoring algorithm.

A bound for recursive interactive proofs. We extend our lower bound for MA proofs
to a certain natural class of general (multi-round) interactive proofs (IPs). Specifically,
we consider a class of recursive IPs, where in every round of communication, the prover
attempts to prove a new instance of RSy, although with a different starting point z, a
different endpoint y, and a different delay parameter 7. This class of IPs captures many
sumcheck-style proofs for RSy ; see Appendix B for an overview. In particular, for a bound
on the round complexity r and a communication bound k, the adaptation of Pietrzak’s [30]
protocol results with a recursive IP with total communication & - r and verifier running time
O(T/(k+ 1)"). Here, we obtain an optimal tradeoff between the message complexity, the
round complexity, and the verifier’s parallel running time, at least when restricted to generic
group verifiers.

» Theorem 2 (Simplified and Informal). For any generic-group r-round recursive interactive
proof system for RSy, if the prover sends k group elements per round and results in a
transcript tr, the verifier either runs in parallel time Q(T/(k + 1)"), or is able to factor N
given tr.

Future Directions and Open Problems

Our work leaves many exciting open problems. We mention some of them next:

1. We prove our result in the generic-group model where we only allow multiplication and
division queries. It would be interesting to extend this to handle general equality queries
or addition/ subtraction queries in the the generic-ring model [2, 21, 36].

2. Can we get a similar result to Theorem 2 for general (public-coin) IPs rather than just
for “recursive” IPs?

3. In general, for what other languages can we say that sumcheck-style (e.g. see [8] and
references therein) proofs are optimal (at least among a reasonable but restricted class of
verifiers)?
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Paper Organization

In Section 1.2, we give an overview of related work, and then in Section 1.3, we give a detailed
overview of the main techniques in this work. In Section 2, we define the generic group model
we use in this work in the context of proofs. Then in Section 3, we give our main result for
MA proofs. We provide standard notation and preliminaries in Appendix A and a detailed
overview of existing non-interactive proofs for the repeated squaring relation in Appendix B.

Due to space constraints, we refer the reader to the full version of the paper for more
details regarding our result on recursive interactive proofs and for all proofs.

1.2 Related Work

Complexity of interactive proofs. Goldreich and Hastad [15] initiated the investigation
of interactive proofs with bounded communication. They showed that if a language L
has an interactive proof in which the total communication is bounded by c¢(n) bits then
L € BPTime(2°("™ . poly(n)). Further relations between the communication complexity of
interactive proof for a language and its complement were shown by Goldreich, Vadhan, and
Widgerson [16].

The IP=PSPACE result [27, 38| says that languages that can be verified in polynomial
time are exactly those proofs that can be generated with polynomial space. In this interactive
proof system, the honest prover runs in super-polynomial time (even for log-space languages);
this is true even for the scaled down version which captures polynomially recognizable
languages. Nevertheless, the “easy” side of this result says that every language with an
interactive proof of ¢ bits is decidable with ¢ space [27, 38]. Therefore, languages that require
a lot of space to decide cannot have super efficient interactive proof systems.

Computationally sound proof systems can recognize any language in NP while using only
poly-logarithmic message complexity (assuming collision resistant hash functions) [24].

In the statistical setting, the first interactive proofs with an efficient prover were given by
Goldwasser, Kalai, and Rothblumn [17]. They designed an interactive proof system where
the honest prover is efficient and run in polynomial time. In their proof system the language
is given by a log-space uniform Boolean circuit with depth d and input length n. Their
verifier runs in time n - poly(d,logn), the communication complexity is poly(d,logn), and
the prover runs in time poly(n). This protocol is very useful for low-depth computations.

Reingold, Rothblum, and Rothblum [32] showed a different protocol which suits polynomial
time and bounded-polynomial space computations. They give a constant round protocol
for polynomial time and space S = S(n) languages such that: the honest prover runs in
polynomial time, the verifier is almost linear time, and the communication complexity is
O(S -n®) for § € (0,1). Applied on the repeated squaring language, (where S = polylogn)
this protocol’s communication roughly matches Pietrzak’s [30] when adapted to run in
constant rounds (in which case it also requires the transmission of n? group elements).

Generic models. The problem we consider can be placed in a long line of research on
proving efficiency trade-offs for various primitives, in some restricted class of constructions
usually termed “black-box” or “generic”. Generic or black-box constructions have the benefit
of being applicable to every instantiation of the underlying structure, irrespectively of the
exact details of its description. For specific instances, this usually allows for cleaner and more
efficient constructions. The interactive proofs for RS of Pietrzak [30] and Wesolowski [41]
are generic.
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Our work is the first to study the complexity of proofs for RS from a foundational
perspective. The most relevant previous works study the (“generic”) complexity of related
cryptographic primitives or assumptions. Rotem and Segev [36] and Katz et al. [23] showed
that any generic algorithm for repeated squaring which is faster-than-trivial can be used to
solve factoring. The result of [36] rules out generic constructions in the generic-ring model
introduced by Aggarwal and Maurer [2] (see also Jager and Schwenk [21]). The result of [23]
rules out constructions in the strong algebraic group model (extending [14]) wherein the
adversary may use the concrete representation of group elements to make its group queries. In
another work, Rotem, Segev, and Shahaf [37] showed that hidden order groups are necessary
for achieving “delay” functions, at least generically. The result of [37] rules out generic-group
constructions in Maurer’s model [28] (same as our proof).

On class groups. It is worth noting that class groups are an alternative candidate for
a group of hidden order. In contrast to RSA groups, they only require a trusted setup
consisting of an honestly generated random string. Since this setup is simpler and easy to
generate, it is presumably less likely that someone may know a trapdoor (the order of the
group) for class groups. However, while they can be used to construct VDFs, it is not known
how to use them to get TLPs. See [9] for a general survey of the use of class groups in

cryptography.

1.3 Technical Overview

Throughout this overview, we use A € N to refer to the security parameter and let N denote
the RSA modulus, where NV is a product of two random A-bit primes. We use Z}, to denote
the multiplicative group of integers mod N. We consider interactive proof systems for the
repeated squaring relation RSy, which we represent via the function fy r(z) = 22" mod N
for any time bound T" € N. As a warm up, we will start by considering single-round, NP-style,
proof systems where the verifier is a deterministic, generic group algorithm. We will later
show how to deal with randomized verifiers, and additionally extend to the class of recursive
interactive proofs.

Overview of generic group proof systems. A (non-interactive) proof system consists of
two parties, the prover P and the verifier V. On input a group element z € Z};, P’s goal
is to convince V that another group element y is equal to fxr(z) = 22" mod N. P is
allowed to send V up to k group elements mq,. .., 7, € Z}; as well as a bit string st € {0,1}*.
Throughout the overview, we will always assume that P sends exactly k group elements as
part of its proof. V processes this information and outputs 1 to accept that y = 22" mod N
or rejects otherwise. We require that the proof system satisfies the standard notions of
completeness and soundness. Completeness says that if y = 22" mod N , then an honest
prover P causes V to accept. We parameterize soundness by a parameter §, which says that
if y £ 22" mod N , then no (potentially unbounded) cheating prover P* can cause V to
accept with probability more than §.

We restrict the above model by requiring that V' is a (straight-line) generic group verifier,
whereas we still allow the prover to be unbounded and behave arbitrarily. Specifically, V'
takes as input the modulus N, the time bound T, the prover’s string st as explicit inputs.
However, V' only has implicit access to the input group element x, the purported output y,
and the proof elements 71,..., 7 sent by P. Intuitively, this means that V is allowed to
multiply and divide these elements arbitrarily, as long as it does so in a way that independent
of their representation. We formalize this following Maurer’s generic group model [28], which
we outline in Section 2.
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At the end of the day, we leverage the fact that V uses its explicit inputs® to effectively
generate various exponents «, 3, 71, . . . , 7% such that its output is given by the group element
corresponding to

k
V(NvTast;‘T,y,’Trl,...,’]Tk) :xo‘.yﬂ.Hﬂ.;Yi =g.
=1

Furthermore, we can always run V with dummy elements x,y, 71, ..., 7T, and compute the
exponents («, 8,71,...,7k) by observing its group operations. We say that V accepts if
the output group element g is equal to the multiplicative identity 1 € Z};, and V rejects
otherwise. While this convention may seem restrictive, as V' doesn’t even know whether it
is accepting or rejecting, we claim that this is still very expressive as V' can compute two
different group elements g, h and then output ¢ - h~!, which is 1 if and only if g = h. Most
natural protocol for repeated squaring including [30, 41] fall into this category. Furthermore,
the verifier can perform ANDs of equality checks and accept if many pairs (g1, k1), - -, (gn, hn)
are equal (allowing parallel repetition). This can be done by sampling random exponents
1,...,7n € [2%] and outputting [T, (g; - hi_l)”, a la the sumcheck-style technique used
in [30].

The complexity of deterministic (NP) proofs. As a warm-up, suppose that the verifier V'
is deterministic. This means that for every set of explicit inputs N, T st that V receives, it
generates the same exponents (a, 3,71, . .., 7Vk). Given this knowledge, we want to characterize
all possible strategies a cheating prover may use. So, say a cheating prover P* wants to fool
V on any y = 2% # 22" mod N. Effectively, P* can only set each group element m; to be
equal to x* for some value z;.° Then, it follows that V accepts if

k
x® - zh. H:EZ"'%’ =1.
=1

However, since the base x is shared by all of the group elements, the above holds if

k
oz—i—d-b’—l—Zsz%:01rnodCarm(N)7

i=1

where Carm(N) is Carmichael totient function, which is defined as the minimal value ¢ such
that g¢ = 1 € Z% for all g € Z%.7 But, as long as ¥ = (y1,...,7%) # 0 mod Carm(N), it

follows that P* can simply solve for a solution to z1, ..., zx in the equation above to generate

a proof that will falsely convince V that z% = 22" 8

If we allowed V' to also use the representation of the input group elements, this would correspond to the
strong algebraic group model of [23].

Note that this is not true in general since Z}; is not cyclic and hence there are group elements not
represented as x¢ for some ¢ € Z. However, we assume this in the overview for simplicity as it captures
the main idea of the proof.

We note that we can simply choose = to be a group element whose order attains the maximal value
Carm(N). This is what allows us to switch to working over the exponent without loss of generality.
We note that this style of attack works for Wesolowski’s (computationally sound) proof of repeated
squaring [41], which is an AM protocol. The adaptive root assumption essentially states that it is
computationally infeasible to perform such an attack, leveraging the randomness sampled by the verifier
before the prover sends its message.
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Still, it may be the case that V simply ignores the proof elements 71,..., 7 by setting
Y1, .-.,7 = 0. In this case, we leverage the completeness of the proof system to conclude
that either V is inefficient and runs in parallel time T', or V' must be able to factor N. If
Y= 22" mod N and Y1, .-+, = 0, then we know, by the above equation, that V accepts if

a+2". 3 =0mod Carm(N).

We consider two different cases, either (1) a +27-8=0€ Z or (2) a +27 -3 =c-Carm(N)
for some ¢ # 0 € Z.

In case (2), this actually immediately implies a probabilistic factoring algorithm for N
via a well known adaptation of the Miller-Rabin primality test (formally stated in Lemma 6).
Since we can compute a and 3, given the code of V' and the prover’s string st, and hence
a+27.8 = c-Carm(N), this implies a factoring algorithm in the standard model given st. If the
prover P is efficient, then we can compute st by ourselves, so it implies a factoring algorithm
for any N, without any auxiliary advice. We emphasize, however, that it may be the case
that the explicit string st sent by P helps V to compute some value a = 27 mod Carm(N).
For example, P could have just set st to be a representation of Carm(N), and V' simply set
a = 27 mod Carm(N) and 8 = —1. This is why the factoring algorithm must receive the
proof string st as input in general.

We split case (1) into two further subcases, either (1A) 8 =0 or (1B) § # 0. In case (1B)
where § # 0, this implies that

28 <2718 < |al.

But that implies that V' must run in parallel time T to compute x® since |a| > 27
In case (1A) where 8 = 0 and a+27- 3 = 0, it must also be the case that a = 0. However,
we’ve already assumed that ~q,...,7v% = 0, so this means that V just always outputs 1 and
accepts! So clearly, (P, V) cannot be a valid proof system as V accepts any y # 22" mod N
with probability 1 in this case.
In summary, if (P, V) is a sound proof system where V is a deterministic generic group
verifier, then either:
1. V must run in parallel time at least T, or
2. there is a standard model factoring algorithm for N given the code of V' and the string st
output by P.
Stated another way, if V' runs in parallel time less than 7', then V' must be able to factor N
(with the help of the prover via st).

Extending to randomized verifiers. The high level outline of the lower bound for randomized
verifiers is actually very similar to the case of deterministic verifiers. However, allowing the
verifier to use randomness to determine its exponents introduces many highly non-trivial
challenges. The key distinction between deterministic and randomized verifiers is that
randomized verifiers are allowed to choose their exponents as a function of their randomness,
so the attack where a cheating prover simply solves a single equation to fool the verifier no
longer works. Instead, the cheating prover needs to satisfy a random equation with better
than 0 probability in order to violate soundness. Still, we will show how we can use the
verifier’'s exponents to factor, or argue that the verifier must have parallel running time
greater than T'/(k 4+ 1) with high probability.
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Throughout, we will consider a fixed set of explicit inputs IV, T, and st received by the
verifier. Then, for any random string p € {0,1}* sampled by the verifier, we use coef(p) to
denote the exponents that V' uses to compute its output. So, if

k
V(N,T,St,(t,y,ﬂl,...,Wk;p) :xa'yﬁ'Hﬂ-%

7
i=1
then we say that coef(p) = («, 5,71,...,7). We note that we refer to these exponents
as “coefficients” as they will correspond to coefficients in a system of equations over the
exponent, hence the notation coef(p).

Our main strategy is to sample many different values p1, ..., p, such that ||coef(p;)||max <
2T/(F+1) for each i € [n], where ||-||max indicates the maximum absolute value in the coefficient
vector. If this isn’t possible, then that means that the verifier must run in parallel time
at least T/(k + 1), and we are done. Otherwise, it remains to show that we can either
use these coefficients to factor or show that (P,V') is not a valid proof system. For each
randomness value p;, let coef(p;) = (a4, Bi, Vi1, - - -, 7ik) denote the corresponding coefficient
vector for p;. We combine all of these coefficients together in the following way. Let
I' € Z™*k be the matrix consisting of all of the 7vi,; values, and let 62,5 € Z™ be vectors
of the a; and (; values. A key property we will leverage is that the system of equations
I'zZ=-ad-d- 3 mod Carm(NN) has a solution for d = 27" by completeness, but does not
have a solution for any d # 27 mod Carm(N) by soundness (with high probability), which
we explain next.

For simplicity, we will assume throughout this overview that the proof elements 7;
potentially output by the prover are all equal to z* for some z; € Z. Then, for y = P
all i € [n], completeness tells us that there must be a solution for z1, ..., z; to the equation

and

k
a; +27 - B + Z%J - z; = 0 mod Carm(N).

j=1

Since the prover’s proof must work for all randomness values by completeness, we know that
the prover’s vector z = (21,...,2;)! actually satisfies

I -Z=-a—-2"- /3 mod Carm(N).

However, for any d # 27 mod Carm(N) corresponding to z¢ # x2T, we use soundness to
show that

AZ T-Z=—a—d-f mod Carm(N),

as long as we sample enough vectors n. At a very high level, this follows since each newly
sampled coefficient vector must restrict the space of solutions in a non-trivial way, since
otherwise the same solution will work with good probability for many different choices of
exponents. So we set n large enough such that, with high probability, the space of possible
solutions for any d # 27 mod Carm(N) is empty. The details of this argument are given in
the full version of the paper.

Next, we prove a key technical lemma that allows us to relate whether or not a system of
equations mod Carm(NV) has a solution. Specifically, we show that there exists an efficiently
computable matrix M that satisfies the following two properties:
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1. If there exists a solution Z such that I'-Z = —@—d- mod Carm(N), then M -(—a—d-f) =

0 mod Carm(N).

2. If M- (—a&—d- f) = 0 over Z, then there exists a solution Z such that - Z = (—@ —d - )

over Z (and hence mod Carm(N)).

Furthermore, we show that [|M - #]|max < 27 when ||7]|masx, ||T||lmax << 27/¢*+1. When
working over a field, such a result is well known by simply converting I' into reduced row
echelon form and the linear function M is closely related to the determinant of I'. However,
working over the integers mod Carm(NN), this becomes much messier to work with. At a very
high level, we show the lemma by first converting I' to its Hermite normal form H, which is
the integer counterpart to reduced row echelon form. We then augment the matrix H with
the column (—& —d - ﬁ) and apply linear operations to zero out the last column to construct
the matrix M. However, working over the integers, we must be careful to make sure that the
values don’t blow up in order to get our desired bound on ||M - ¥/]|ax. The full details for
the proof of this technical lemma are provided in the full version of the paper.

Armed with our key technical lemma and the observations above, we are ready to complete
the logic of our result, which follows the same high level structure as the deterministic case.
Given M, we compute o = M - (—a — 27 - E) By completeness, we know that there exists a
vector Z such that T'- Z= (=& — d - #) mod Carm(NN), so by the technical lemma, we know
that ¥ = 0 mod Carm(N). We consider two different cases, either (1) 7 = 0 over Z or (2)
there exists an index ¢ such that @; = ¢- Carm(N) for ¢ € Z. In case (2), we can factor given
¥; using the variant of the Miller-Rabin primality test, so we are done.

For case (1), we use the fact that M is linear, so

=,

G=M-(—a—2"-f)=-M-a—2"- M- mod Carm(N).

We consider two further subcases, either (1A) M - 5 = 0 over Z or (1B) there exists an index
i such that M; - 8 # 0. In case (1B), this implies that

2T < 2T |M;- B < |M; - al,

but we show in our key technical lemma that |M; - @ < 27. So case (1B) cannot happen.
In case (1A) where M - E = 0, this actually implies that M - @ = 0 since we have already
assumed that 7 = M - (=@ — 27 - §) = 0. But, this implies that M - (—&@ — d - ) = 0 over Z
for any d # 27 mod Carm(N)! So, by our key technical lemma, we conclude that there exists
a solution over Z, and hence mod Carm(N) for some d # 27 mod Carm(N). However, we
argued above that this cannot be the case by soundness (with high probability).
Combining the above, we’ve ruled out the possibility of case (1), so case (2) must hold,
which implies we can factor with high probability. So, in summary, if (P, V) is a sound proof
system where V is now a randomized generic group verifier and P sends at most k group
elements in its proof, then either:
1. V runs in parallel time at least T//(k + 1) with high probability, or
2. there is a standard model factoring algorithm for N given the code of V' and the string st
output by P.
An alternative way to view this result is as follows. If V runs in parallel time less than
T/(k + 1) with good probability, then either it must “know” a factorization of N to be able
to reduce its exponents mod Carm(N), or there must be a cheating strategy that falsely
convinces V' on such randomness values. Hence, if you want both statistical security and an
efficient verifier V', it must be the case that V' can factor N.
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Recursive interactive proofs. We next discuss how our result for one-round, MA-style,
proofs extends to the class of recursive interactive proofs. First, we define what we mean by
a r-round recursive interactive proof for the function fy r(x) = 22" mod N. In each round
i, there is an input statement (x,y,T) claiming that y = 22" mod N. P starts the round
by sending a string st € {0,1}* and up to k group elements m1,...,m;. V then responds
with a random string p < {0,1}*. If i is the last round, V uses its randomness p and the
message from P to decide whether or not y = 22" mod N. Otherwise, P and V both use
a generic group algorithm A; to compute a new statement (z’,y’,T") given the prover’s
message and the verifier’s random coins, and they start a new independent (recursive) proof
for this statement with one fewer round.

The overall running time of V' is simply the running time of A; in each round i, plus
its final running time to compute its output at the end of the protocol. In addition to
standard notions of completeness and soundness, we require that if (z,y,T) is valid at the
beginning of the round, then (2,3, T") is also valid for the start of the next round. However,
if (x,y,T) starts as invalid, so y # 22" mod N, then we require that (2,9, T") is invalid
with probability at least 1 — 4.

Due to the recursive nature of this interactive proof, we are able to reduce to the one-round
case to show that in each round 7" cannot shrink too much relative to T, assuming A; (and
hence V') runs in low parallel time. If there exists a round 7 such that 7" is much smaller than
T, then we could construct a proof system (]3, ‘A/) for y = 22" mod N as follows. The prover
P sends whatever P would have sent in round i. Then, V runs A; to compute (z',y',T")

and outputs (:z:’)ZT/ - (y/)~L. Tt follows that V runs in time corresponding to the running
time of A; plus 7", which is dominated by 7”. By our result for one-round proofs, this
means that 7" must be at least T'/(k + 1) with high probability, otherwise we can construct
a factoring algorithm given the proof string st from P in round ¢. Hence, after » — 1 rounds,
the final time bound 7" must be at least T'/(k + 1)"~! and V must run in parallel time at
least T'/(k + 1)" to be a valid proof system.
In summary, if (P, V) is a recursive, generic group, r-round interactive proof for fx r(x) =
2T .
z* mod N, where the prover sends at most k& group elements per round, then either:
1. V runs in parallel time at least T'/(k + 1)" with high probability, or
2. there is a standard model factoring algorithm for N given the code of V' and the transcript
generated by an honest prover P.

2  Generic Group Proof Systems

We next give the details for the generic group model we use in this work. Then we define
proof systems where the verifier is restricted to generic group operations.

2.1 The Generic Group Model

In this work, we use Maurer’s generic group model abstraction [28], following the related
works of Aggarwal and Maurer [2] and Rotem and Segev [36]. We note that this is not
the same as Shoup’s random representation model [39]. See the work of Zhandry [42] for a
detailed comparison between these two models.

Informally, a generic group algorithm is one that can perform arbitrary group operations
as long as the operations performed are independent of the representation of the group
elements. At a high level, we model this by giving the algorithm indirect access to its input
group elements via pointers into a table, and each new multiplication or division adds a new
element to the table and returns the corresponding pointer.
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Formally, we consider the multiplicative group Z} in this work, where NV is an RSA
modulus in Supp (I\/IodGen(l/\)) for some security parameter A € N. A generic group
algorithm A receives IV as input as an explicit bit string and also receives access to a table
Table via an oracle O that stores the group elements computed so far. Initially, Table contains
the identity vo =1 € Z}; at index 0, and all of the group elements z1,...,z; € Z}, provided
as input to A in indices 1,...,k. A can make queries to the oracle O via the following syntax:

Mutliplication: On input (41,2, j, X ), the oracle O checks that the values v;, and v;, at

indices ¢; and ¢y in Table are non-empty and not L. If so, O computes v;, o v;, and stores

the result at index j in Table. Otherwise, O stores L at index j.

Division: On input (41,42, j, +), the oracle O additionally checks v;, is invertible. If so, O

computes v, L and stores v; x v, L at index j in Table, if applicable. Otherwise, @ stores

1 at index j.

We note that Maurer’s generic group model usually includes equality queries, which we do
not handle in this work. An algorithm A that does not issue any equality queries is known
as a straight-line algorithm, so for this reason, we state our formal results for straight-line
generic group algorithms to avoid confusion. We note that generic-ring algorithms are defined
similarly as above, but they also include addition and subtraction queries with essentially
the same syntax.

For a group element g computed by A, we use g to denote the pointer to the corresponding
element ¢ in the table Table. We abuse notation slightly and whenever we write that A
receives a group element g as input, we mean that it receives a pointer g to the element in
the corresponding table Table.

We allow generic group algorithms to receive and output both “explicit” values, represented
by bit strings, and “implicit” values indicating group elements, represented by pointers into
Table. We can think of all of the explicit values as helping the generic algorithm decide how
to invoke the oracle O to perform generic operations.

A randomized generic group algorithm also receives as input a string p € {0,1}* (we
assume A bits of randomness for simplicity, however this could be extended arbitrarily).
For any input inp, We denote A(1*, N,inp;p) the randomized generic group algorithm with
random tape p.

Measuring complexity. Let A be a generic group algorithm. We denote by Time4(1*, N, inp;
p) the total running time of A on the given inputs with random tape p, where each oracle
query costs a single unit of time. Additionally, we allow A to be a parallel algorithm.
Following Rotem and Segev [36], we model parallel generic group algorithms A by allowing A
to issue oracle queries in “rounds”. In each round, A can issue any number of oracle queries
to O in a single time step via multiple processors. We use Width 4 (1%, N, inp; p) to denote
the maximum number of processors used by A at any time step and ParTime, (1%, N, Z; p)
to denote the number of sequential time steps that it takes for A to compute its output.
Whenever we omit input/ randomness parameters from Time 4, Width4, or ParTimey, we
mean the worst case running time over an arbitrary choice of input parameters.

The behavior of generic group algorithms. Let A € N and N € Supp (ModGen(1%)). Let
A be a straight-line generic group algorithm such that A(1*, N, st, Z; p) takes as input an
explicit string st € {0,1}* and group elements ¥ = x1,..., 2, € Z) and outputs a group
element g. As A is only allowed to perform generic operations, it follows that A’s output is
of the form Hle x]" for v1,...,v% € Z. Furthermore, by running A, we can compute these
coefficients by providing arbitrary pointers as input to A in place of . We use the notation
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coefyanst(p) = (71,--- /yk)T to denote the coefficient vector of V' on input p for security
parameter A, modulus NV, and explicit string st. We note that the main distinction between
our model and the strong algebraic group model of [23] is that they allow the coefficient
vector to additionally depend on the bit representations of the input group elements.

Relating parallel running time to degree. Its easy to see that a straight-line generic
group algorithm that computes A(1*, N, st, %; p) = H?Zl x)", where y1,...,7; are given by
7 = coef 4 nst(p), must run in depth at least log ||¥||max. This can be shown by induction
for ||7||max equal to 2¢ for i > 0. If ||¥||max = 2° = 1, then it may be the case that A just
immediately outputs a group element in 0 steps, satisfying the base case. Suppose that
||7]|max = 2¢. After i — 1 steps, the maximum exponent in absolute value of any group element
in Table is 2/~! by assumption. So, in the next time step, A can issue a multiplication query
multiplying two such elements together. However, this will result in an element with depth

at most 2¢, as required. It follows that
ParTime4 (1%, N, st, Z; p) > log [|coef 4 x N st (0)]|max

for all A € N, N € Supp (ModGen(l/\)), string st € {0,1}*, input elements #, and random
string p € {0, 1}

We additionally note that, even if we only require A to compute a high degree function
with high probability and with pre-processing over a random input, then the same lower
bound holds by the work of Rotem and Segev [36].

2.2 Proof Systems in the Generic Group Model

A proof system consists of two algorithms: the prover P and the verifier V. For a language
L, P and V interact on common input x over potentially many rounds until V' either accepts
or rejects. In order to be non-trivial, the prover P must have some additional capabilities
compared to the verifier V. For classical proof systems, the prover P is an unbounded
algorithm while V' is polynomially bounded. The two main properties of a proof system
are completeness and soundness. Completeness stipulates that P convinces V on z € L,
and J-soundness stipulates no cheating prover P* can convince V on x ¢ L with probability
better than §.

We consider generic group proof systems for languages defined by a function f defined
over a group Z for A € Nand N € Supp (ModGen(l)‘)). For such proof systems, we restrict
V' to be a generic group algorithm that makes a bounded number of group multiplication and
division queries, whereas P may still be an unbounded (not necessarily generic) algorithm
that sends a bit string and group elements to V. So, for a function f, P and V receive an
input a security parameter 1%, the group description N, an input group element z, and the
output of the function f(z) as common input. P sends a bit string st € {0,1}* and sequence
of group elements 71, ..., 7 to V, which V receives access to via pointers into a table as a
generic group algorithm. V' then performs generic computations and outputs a pointer to a
group element g and “accepts” if the corresponding group element g = 1.

» Definition 3 (Generic Group Proof Systems). Let §: N — [0,1] and k: N — N. For any
AeN, N € Supp (ModGen(lA)), let f: Zy — Z% be a function. We say that the pair (P, V)
is a k-element generic group proof system for f with d-soundness if V' is a generic group
algorithm, and for all A € N, N € Supp (ModGen(lA)), and k = k(X), the following hold:
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Completeness: For all x € 7%, let st, 1, ..., 7k be the output of P(1*, N, z, f(z)), then
it holds that

V(1A7N7St,$,f(.73)771'1,...,7Tk-) =1

Soundness: For allz € Z%, y # f(z), and algorithms P* such that P*(1*, N, x,y) outputs
a string st and group elements z1, ..., zx, it holds that

P V(M N, st,2,y, 21, ..., 2) = 1] < 6(N).
peti [V stz 2) = 1] 000

If the verifier V is a straight-line algorithm, we say that (P, V) is a straight-line generic
group proof system.

3 One Round Proofs

In this section, we provide our main theorem. Let A € N and N € Supp (ModGen(lA)). We
show that if there is a k-element generic group proof system with a straight-line verifier that
runs in parallel time less than T'/2(k + 1) with probability e, then there is a poly(1/¢€) - Timey
algorithm that factors N. We define some useful notation for the theorem first, and then
provide a high level outline of the proof structure.

For each randomness p, let coefy \ nst(p) = (1, - -, 7k, @, B) | be the coefficients such that
V(A N,st,z,y,21,...,2;) outputs z® - 37 - Hle z]". As V is a generic group algorithm, we
can compute coefy,x nst(p) by simply running V (1*, N, st, z,y, 21, . . ., z1) for generic elements
Y, 21,---,2 and keep track of the operations of V. For notational convenience, when
V, A\, N, st are clear from context, we simply write coef(p). We also define dcoefy,x v st(p, d)
to denote the vector (y1,...,yk,a +d-B3)", where (v1,...,7,a, 3) are given by coef(p),
which will be useful in our analysis.

» Theorem 4. Let A\ >2,T €N, k: N— N, §,e: N— [0,1], N € Supp (ModGen(1%)), and
(P, V) be a k-element straight-line generic-group proof system for the function fnr(x) =

T .
22 mod N with soundness error §.

Let x € Z7 and (st, 71, ..., 7)) € Supp (P(1>‘,N, T, x, fNT(a;))) If

Pr [ParTimey (1%, N, T, st) <

5 O log(k(A))| > max(25(A), €(N)),

then there exists a standard model probabilistic poly(\, k(X),T,1/e(\)) - Timey (1%, N, st) time
algorithm A such that

Pr [p,q%A(l/\,N,k,T,SLl/e()\)) :N:p~q] 21*27)‘.

We refer the reader to the full version for the proof of the theorem.
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A  Preliminaries
For any n € N, we use [n] = {1,...,n} to denote the set from 1 to n. For a distribution X,

we denote by z <~ X the process of sampling a value = from the distribtion X. For a set X,
we use x + X to denote the process of sampling a value z from the uniform distribution
over X. For a bit string st € {0,1}*, we use |st| to denote the length of st. Throughout, we
use A € N to denote the security parameter.

A.1 Number Theory

In this work, we consider the multiplicative group of integers mod N, denoted by Z%,, where
N is a product of two primes. Specifically, for any A € N, we let ModGen(1*) denote the
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algorithm that samples two random primes p, g in the interval [2*,2**1) and outputs N = p-q.

The group is given by Z% = {z € [1, N) : ged(z, N) = 1}, and multiplication in the group
corresponds to multiplication over Z mod N. When it is clear from context we are working
in the group Z};, we will omit mod N when discussing multiplication of group elements.

The main language we consider in this work is the repeated squaring relation, RSy,
defined as follows

RSNy = {(x,y,T) | y=x2T modN}.

For a particular value of N and T, we represent this relation by the function fy r(z) =
22" mod N. Tt is widely believed that fy r cannot be computed and RSy cannot be
decided in depth less than T even with poly(\, T') parallel processors. We focus on the proof
complexity of this language in this work.

For any a,b € Z, we use ged(a,b) and lem(a, b) to denote the greatest common divisor
and least common multiple of a and b, respectively. Specifically, ged(a,b) is the maximal
¢ € N such that ¢ divides a and b, and lem is the minimal ¢ € N such that ¢ and b both
divide ¢. Let a,b € Z, then there always exist integers ¢, d such that ¢-a +d - b = ged(a, b).
c and d are known as Bezout coefficients for a and b. While Bezout coefficients may not be
unique, we note that there always exist bezout coefficients such that |c|, |d| < max(|al, |b]),
and these are the coefficients given by the standard euclidean algorithm.

We denote by ¢(N) = |Z}|, known as the Euler totient function of N, and Carm(N) =
min{a € N : Vg € Z%,, 9* = 1}, known as the Carmichael totient function. For A € N and
N € Supp (ModGen(l)‘)) such that N = p - q, it holds that

o(N)=(p—-1)-(¢—1), and Carm(N) =lem(p — 1,4 — 1).

For a specific element g € Z%;, we define the order of g, ord(g), to be the minimum ¢ € N
such that g¢ =1 € Z}.

In this work, we use the fact that for N = p-q, Zy = Z; x Zj;, where Z; and Z; are
each cyclic groups of order ¢(p) = p — 1 and ¢(q) = ¢ — 1, respectively. Let g, and g, be
generators for the corresponding subgroups. Then, we can write any group element h € Z},
b for some a,b € N. For convenience of notation, we will use hlp to

q
denote the p “component” of h and h|, to denote the ¢ component, so a = h|, and b = h,

in the form h =g, - g

above.

In order to translate between results mod a composite number ® and its solutions mod
its prime power divisors, we make use of the Chinese remainder theorem (CRT). We use the
following version of CRT.

» Lemma 5. Let k€N, ny,...,ng,a1,...,ax € N. Then, the set of equations
T = a; mod n;

has a solution over Z if and only if for alli,j € [k], a; = a; mod ged(n;, nj;). Moreover, any
two solutions x1,xs satisfy r1 = xo mod lem(nq,...,nk).

The following lemma, based on the Miller-Rabin primality test [29, 31], gives a probabilistic

factoring algorithm given any non-zero multiple of Carm(N). For the proof of the lemma
and further discussion, we refer the reader to Section 10.4 of Shoup [40].

» Lemma 6 (Factoring Lemma). Let A € N, N € Supp (ModGen(1%)), and m = ¢ - Carm(N)
for ¢ € Z such that ¢ # 0. For any §: N — [0, 1], there exists a probabilistic algorithm A that
runs in poly(A,log(1/8(N))) time such that

Pr [p,q(—A(lA,N,m):N:pq} >1-=450N).
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A.2 Linear Algebra

Let M be a matrix in Z™**. For i € [m], j € [{], we use M; to denote the ith row and M, ;
to denote the element in the ith row and jth column. We use M T to denote the transpose of
a matrix. We treat vectors # € Z™ as column vectors, so implicitly of the form @ € Z"*!. To
take the dot product of two vectors @, i, we write 7' - . If v € Z™*1! is a vector, we simply
write v; to denote the ith component. We write || M||max = max;c(m] jefq [ Mi,;| to denote
the largest element in absolute value in the matrix M. For a matrix M) € Zm*4 and a
matrix M®?) ¢ Zm*% we write M’ = (MM |M®) to denote the augmented matrix which
appends M®) to the right of M) to get the matrix M’ € Zm*((rtt2),

For any composite ®, let Zg be the rmg of integers mod ®. We say that a function
f: Zg — Z§ is linear if for any vectors g, h € Zg and a,b € Z, it satisfies fla-g+b- h)
a-f (57) +b- f(h). We say that a function f is affine if there exists some matrix M such that
f(@) = M - § where g is equal to ¢ appended by 1. In particular, this means that f is a
linear function shifted by a constant.

Let Perm(n) denote the set of all permutations over [n]. For a permutation o € Perm(n),
we write sign(o) to denote the sign of o, i.e. 1 if there are an even number transpositions from
the identity to o, and —1 otherwise. For a square matrix M, the determinant of M is given
by det(M) = 3_, cperm(n) SigN(0) - [T1 M; 5(:)- It follows by definition of the determinant
that det(M) < n!-||M]||}. We say that an integer matrix U € Z™*™ is unimodular if
det(U) € {+1,—-1}.

Let M), ..., #(") € Z™ be a set of vectors. This determines a lattice

EZE(@'(D,...,E’(”)) = {Zci-ﬁ(i) N P o EZ}
i=1

of points spanned by these vectors. For a lattice £, we refer to a basis of the lattice as
a set of vectors b, ... B(™) often written in matrix matrix B = (6] ...[6(™)), that are
linearly independent over R and £ = £L(B). A lattice is unique up to multiplication of B by
a unimodular matrix U, so when the basis is clear from context, we refer simply to the lattice
L. The determinant of a lattice det(£) is defined to be the volume of the parallelepiped
formed by a set of basis vectors over R™.

We next define the Hermite normal form (HNF) of an integer matrix M € Z™*™. We use
the notion of column-style HNF, defined via right multiplication by a unimodular matrix, in
contrast to row-style HNF.

» Definition 7 (Hermite Normal Form). A matriz H € Z™*™ is in Hermite normal form if

the following hold:

1. Lower triangular: For some h < n, there exists a sequence 1 < iy < iy < ...<1ip <n
such that H; j #0 = ¢ > ;.

2. Row-reduced: For allk < j <mn,0< H; < H;, ;.

We additionally use the fact that the HNF of a matrix M € Z™*™ has entries bounded by
[| M| ax- See [25] for a proof of this claim.

When working over a field F, such as the integers mod a prime p or the rationals Q, we
can define standard notions like span and rank. The span of a set over vectors over an n
dimensional vector space over a field F is defined as the set of all linear combinations of
the vectors, with coefficients from the field F. When clear from context, we use span in the
context of integers to refer to the set of linear combinations with coefficients from Z, as in
the definition of a lattice. The rank of a matrix or vector space over a field F is the size of
the minimal set of vectors that spans the space over F.
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A.3 Concentration Inequalities

Concentration inequalities allow us to bound the probability that certain random variables
take values too far away from their mean. In this work, we use the following version of the
well known Chernoff-Hoeffding bound [18].

» Lemma 8 (Chernoff-Hoeffding Bound [18]). Let X = >_\" | X; such that X; € [0,1] are
independent random variables. Let = E[X]. Then, for all t,

Pr[|X — p| > ] < 2 2°/m,

B  Existing Proofs for RS

We give a brief overview of the currently known proof systems for RSy, focusing on the
practical setting of non-interactive proofs. When discussing the proofs below, we use A to
denote the security parameter. Informally, we say that a verifier is efficient if it runs in time
poly(\,log T), essentially independent of the time bound T'.
The empty proof. The prover can always do nothing and let the verifier check the
relation y = 22" mod N itself.
This is a valid, albeit not very helpful, proof system that is perfectly complete and sound.
In terms of efficiency, the verifier runs in time 7" to compute T squares, so nothing has
been gained.
The factoring proof. The prover can factor N to get primes p,q where N = p-q and
send (p, q) to the verifier. The verifier can check that indeed N = p- ¢, compute the order
of the group ¢(N), and check if y = 22" med ¢(N) ;od N,
This protocol is extremely efficient for the verifier, and is perfectly complete and sound.
However, such a proof disallows N to be reused again since RS is not a sequential
function whenever p, ¢ are known. Furthermore, unless P generated N itself, it requires
an inefficient prover.
Sumcheck-style proofs. This is a general proof style that follows the structure of the
sumcheck protocol of Lund, Fortnow, Karloff, and Nisan [27]. The main idea is that the
prover first splits the statement (x,y,T’) into k > 2 sub-statements (x;,y;, T") for i € [K]
for T" < T. Then, the verifier uses its randomness to merge these sub-statements into a
single statement (2’,y’,T") which is hopefully easier to handle. Such protocols naturally
lend themselves to recursive interactive proofs. We note that the proofs of [30, 11, 4, 19]
as well as a generic proof for space-bounded computation [32] generally fall into this
framework. We focus on Pietrzak’s protocol [30] as it is the simplest and is specifically
tailored for RSy .
In the proof of [30], the prover sends a midpoint p = z
statements (x, 1, T/2) and (p,y,T/2). The verifier samples a random exponent r ¢ [2*],
and computes a new statement (a’,y’,T/2) where &’ = 2" - pu, y' = p" -y, and T' = T/2.
In the non-interactive setting, the verifier can then simply check (z’ )2T/2 =1/ itself.

T/2 S
277" which induces two sub-

In terms of efficiency, this protocol only cuts down the running time of the verifier by a
factor of 2. [11] show how to reduce this to an T/k + 1-time verifier for any k£ > 0 by
having the prover sending k evenly spaced midpoints.

It’s easy to see that if (x,y,T) is valid, then so is (z/,3’,T"). Soundness follows since if
(z,y,T) is invalid, then (z’,3’,T") becomes valid only with probability at most O(1/s),
where s is the size of the smallest subgroup of Z%;. If IV is a product of safe primes, then
s = 2*, and the protocol is statistically sound. Block et al. [4] show how to adapt this
protocol, at the cost of O(\) multiplicative overhead in communication, to be statistically
sound for any multiplicative group.
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FS-style arguments. We can get non-interactive proofs by applying the Fiat-Shamir
(FS) heuristic [12] to the public-coin, interactive variants of the sumcheck-style proofs
above. Again, we focus on the protocol of Pietrzak [30] for sake of comparison.

The FS heuristic generates the verifier’s randomness in each round by applying a (suffi-
ciently random) hash function on the transcript of the protocol so far. Hence, the prover
can generate all of its messages without needing to interact with the verifier, resulting in
a non-interactive proof.

In the case of [30], the prover generates an initial midpoint p; = a:ZT/z, then hashes
(along with the statement) to get a random value r; € [2*]. The prover can then compute
(2, y’,T/2) itself as above. At this point, P compute a second midpoint ps = (m’)QT/4,
generate randomness 7 using the hash function, and continue this process r times until
it generates a statement (Z,§,T") where T' = T'/2" that the verifier can check directly. If
r =logT, then T = O(1), resulting in an efficient verifier. The prover needs to send r
group elements in this protocol, so this requires Q(logT - A)-bits of communication in
total.

In terms of security, we note that, even when modeling the hash function h as a random
function, the resulting protocols are only computationally sound. An unbounded prover
that can query the random oracle arbitrarily can generate cheating proofs for false
statements. However, there is a recent line of work (see e.g. [26, 22, 3]) showing how
to securely instantiate hash functions for different sumcheck-style protocols from more
standard assumptions. Most relevant to us is the work of Bitansky et al. [3] that
instantiates the FS-heuristic for the interactive proof of [4] for RSy assuming only
(polynomially hardness) LWE using the hash function of [20].

Wesolowski’s argument. Wesolowski [41] gave an extremely efficient non-interactive
proof for RSy where the prover sends a single group element and the verifier computes
only O()) squares. In this protocol, the verifier first samples a random A-bit prime ¢ (or
is sampled using a random function as in the FS-heuristic), and the prover sends an ¢th
root of y, m = 212"/8] | The verifier then accepts iff y = 7¢ - 2¢ for ¢ = 27 mod ¢.

The computational soundness of this protocol relies on a new “adaptive root assumption”,
which says that the prover cannot compute an ¢th root of a group element for a random
prime £. Aside from this assumption being relatively new, this protocol is broken if the
prover knows the factorization of N. Namely, given the order of the group, the prover can
break the adaptive root assumption. This means that the protocol additionally requires
a strong assumption on the setup used to generate N as well. We note that this style of
assumption is not required for the computational soundness for the FS-style arguments
mentioned above.

C Extension to General Hidden Order Groups

Let G be any finite, abelian, multiplicative group. For any A € N, we let GroupGen(1*) be
an algorithm that outputs some group of size [2*,2* + 1) such that it is believe that it is
hard to compute the order of a random group G < GroupGen(1*). Any such group G must
be finitely generated, so there exist elements g, ..., gs such that every h € Z}; is equal to
-, gf“, where h|; € Z is the ith component of h. We use ord(G) to denote the size of the
group, and ord(g) to denote the minimum ¢ such that g = 1. Borrowing notation from Z%,,
we use Carm(G) to denote the maximum value of ord(g) for any g € G. In particular, there

must exist some g € G such that ord(g) = Carm(G).
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The proof of Theorem 4 goes through by considering an arbitrary group G. We refer to
the full version of the paper for more details.

» Corollary 9. Let A\ >2,T €N, k: N—= N, §,e: N — [0,1], G € Supp (GroupGen(1*)), and
(P, V) be a k-element straight-line generic-group proof system for the function fgr(x) =
22" € G with soundness error 5. For any (st,m1,..., M) € Supp (P(l)‘, G,T,x, fe,r(x))).
If

Pr |ParTimey (1%, G, T, st) < —log(k(X) +1)| > max(25()), e(N)),
14

T
(E(A) +1)

then there exists a standard model probabilistic poly(\, k(X), T, 1/e()\)) - Timey (1, G, st) time
algorithm A such that

Pr [c +— A (1)‘,((}, k,T,st, 1/6(/\)) :ord(G) divides ¢, c # 0] >1-—2"M\
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1 Introduction

There is a long line of research that aims to make communication resilient to tampering,
starting with error correcting codes. Error correcting codes allow a sender to encode a
message m into a codeword ¢, such that a receiver can always recover the message m even
from a tampered codeword ¢’ as long as the tampering is done in some restricted way.
Specifically, the class of tampering functions tolerated by traditional error correcting codes
are those that erase or modify at most a constant fraction of the symbols in codeword c. If
the tampering function, however, behaves in any other way, there is no longer any guarantee
on the output of the decoding algorithm. Error detecting codes are a relaxation that allows
the decoder to also output a special symbol L when m is not recoverable from ¢’. But these
codes, again, cannot tolerate, i.e. will decode incorrectly when tampered with, many simple
tampering functions such as a constant function.

Dziembowski, Pietrzak, and Wichs [30] introduced a further relaxation which they called
non-malleable codes (NMC). Very informally, an encoding scheme (Enc, Dec) is an NMC
for a class of tampering functions, F, if the following holds: given a tampered codeword
¢ = f(Enc(m)) for some f € F, the decoded message m’ = Dec(c) is either the original
message m or completely unrelated to m. Le., the tampering function can only “destroy” the
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information being transferred, but not modify it in a meaningful way. Obviously, NMCs
can still not exist for the set of all tampering functions F,;. To see this, consider the
tampering function that retrieves m = Dec(c), chooses a message m’ related to m and
encodes ¢ = Enc(m’). This tampering trivially defeats the requirement above. In light of
this observation, a rich line of works has dealt with constructing non-malleable codes for
different classes of tampering attacks (see Section 1.3 for a discussion).

Non-malleable codes have the obvious advantage that we can obtain meaningful guarantees
for larger classes of tampering functions (compared to error correcting codes) and they have
also found a number of interesting applications in cryptography such as tamper-resilient
cryptography [30, 46, 33, 34]. They have also been useful as a building block in constructing
non-malleable encryption [23], round optimal non-malleable commitments [39], and non-
malleable secret sharing schemes [37, 38, 7].

Interactive Coding

Traditional codes, whether error correcting, error detecting or non-malleable are only con-
cerned with the scenario where a sender sends a single message to a receiver. Interactive
Coding, introduced by Schulman [49, 50, 51], generalizes (error correcting) codes to arbitrary
interactive protocols between two or more [48] parties. Consider the following scenario: n
parties, each with their own input, are running an interactive protocol to perform some task
involving their inputs, such as computing a joint function on them. Now, say an adversary
can get access to their communication channels and tamper with the messages being sent in
the protocol. An interactive code for a class of tampering functions F is essentially a wrapper
around the protocol that would guarantee that, as long as the tampering is performed using
a function f € F, the protocol will conclude correctly and all participants will be able to
recover their correct output.

Interactive Non-Malleable Codes

In interactive coding, just as in the case of error correcting codes, there are strong limits on
which classes of tampering can be dealt with. To achieve meaningful guarantees for larger
classes of tampering functions Fleischhacker et al. [36] introduced the notion of interactive
non-malleable codes (INMC). Just as interactive coding generalizes error correcting codes,
INMCs generalize NMCs, by encoding “active communication” instead of “passive data”.
An INMC is supposed to give a similar guarantee as an NMC. Informally, that means that
the participants of the protocol should either be able to recover the correct output from the
protocol or the correct output would be completely “destroyed” and the participants would
recover something completely unrelated to their inputs. Fleischhacker et al. in fact define
two seperate notion of non-malleability, weak non-malleability only requires the outputs to be
unrelated from other parties’ inputs, while strong non-malleability requires the outputs to be
unrelated even to the party’s own input. We are only interested in the strong non-malleability
notion, which we will simply call non-malleability. It turns out that strong non-malleability
somewhat counterintuitively actually implies error detection in the interactive case.

Fleischhacker et al. [36] define three classes of tampering functions, bounded-state tam-
pering, a variation of split-state tampering, and sliding-window tampering. For each class
they give a construction of a strongly non-malleable INMC.

However, both the definitions and the constructions are limited, because they only apply
to the two party setting and they only consider synchronous tampering. Consider a protocol
between two parties, Alice and Bob. In the synchronous setting, when Alice sends a message
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m to Bob, the tampering function can arbitrarily modify m, but it must then forward it to
Bob without further delay. I.e., at all times, even in a tampered execution of the protocol,
Alice and Bob remain in sync and the tampering function can not choose to, e.g., first finish
the protocol with Alice, before later resuming the communication with Bob.

When considering desynchronization between parties in an interactive protocol we need
to consider how protocols are modeled. As pointed out by Braverman et al. [13] there are
essentially two paradigms for protocols without fully synchronized parties. In a clock-driven
model, each party has a clock and wakes up with each clock tick, checks for incoming
messages, performs some computation, and potentially send messages to the other parties.
Here desynchronization can occur because the different parties’ clocks may be mismatched
or skewed. In a message-driven model, the parties sleep until they receive a new message,
which triggers them to wake up and perform some action. Here desynchronization can occur
because messages are dropped causing one party to be ahead in the protocol. The model for
desynchronization considered in this paper is of the latter kind. IL.e., parties in our model are
purely activated by receiving messages and have no sense of time, i.e., they do not notice
how long they may have been asleep. This strengthens the possible attacker, since it allows
for even the most extreme forms of desynchronization.

1.1 Results and Technical Overview

In this work, we aim to remedy the shortcomings of the previous work by Fleischhacker et
al. [36]. In Section 3 we introduce new definitions for arbitrary (potentially desynchronizing)
tampering with interactive protocols between n > 2 parties, define interactive non-malleability
and formalize the class of bounded-state tampering functions. In Section 5 we construct an
INMC for bounded-state tampering functions.

The “Obvious” Solution

When faced with the task of constructing an interactive non-malleable code it may seem
tempting to directly apply the huge body of work around regular non-malleable codes and
try to build an INMC by simply applying an NMC on a per-message basis. While we might
not get guarantees against the same class of tampering functions, we might still hope to
get some useful guarantees. Sadly, this is not the case for general protocols. Consider a
protocol between Alice and Bob, where Alice has input (x1,x2) and Bob has no input. In
the protocol, Alice first sends x; to Bob, Bob replies with some arbitrary message and then
Alice sends zo. At the end Alice outputs nothing and Bob outputs (1, x2).

If we encode the messages in this protocol individually, a tampering function can simply
leave all the messages related to x; intact and replace the messages related to xo with
constant messages that will decode to some z, causing Bob to output (z1,%), an output
very much not unrelated (z1,x2). This attack works for any class of tampering functions
that allow to tamper with the entire message, no matter how restrictive.

Technical Overview

On a technical level, our construction is heavily inspired by the bounded-state INMC of [36]
and follows the same basic idea: At the beginning of the protocol, each pair of parties runs a
key-exchange protocol that is secure against a bounded state attacker with full control of the
communication channel. Once the key material has been successfully exchanged, the parties
will engage in the underlying protocol while encrypting all messages with an information
theoretically secure encryption scheme and authenticating each message with an information
theoretically secure message authentication code.
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However, since [36] was restricted to two parties and worked in a strictly synchronized
setting, it is unsurprising that directly lifting their protocol to the multi-party unsynchronized
setting causes it to fail in several ways. The key-exchange of [36] works as follows: The
two parties P;, Py each choose random strings «q, 81 and aso, B2 of sufficient length. They
then send these in alternating order, use a 2-non-malleable extractor to agree on a key
k := nmExt(a1, £1) @ nmExt(as, f2) and go on to exchange key-confirmation messages to
confirm that both parties have received the same key. Once we allow the tampering function
to desynchronize the two parties this key exchange becomes trivially broken. Consider the
tampering function f that simply ignores P, and their messages. Instead, when P; sends
aq, the tampering function immediately sends back a; and likewise for 8;. Note that this
attack works, even though P; will now receive g in the “wrong round”. This is because, as
discussed above, we work in a purely message-driven model where P; does not notice how
much time has passed between sending «; and receiving ay. This means that P; will now
derive the constant key nmExt(«y, 1) & nmExt(aq, 81) = 0%. This key is of course trivially
known to the tampering function in future rounds meaning the tampering function can
simply engage in the underlying protocol pretending to be P, with some arbitrary input ¢’ of
its own choice. If the protocol is meant to evaluate a function g on the joint inputs, P, will
now output g(z,y’) which is in general neither the correct result nor independent of (z,y).

To fix this problem, we split each bidirectional communication channel into two unidi-
rectional channels and negotiate separate keys. The two parties still choose random strings
a1, f1 and asg, B2 of sufficient length and send them in separate messages. However the
parties agree on two separate keys ki := nmExt(«y, 81) and ko := nmExt(as, 82). Each party
P; then uses k; to encrypt messages sent to the other party and to verify the authentication
tags on messages received from the other party. This way, each party always uses a key that
is known to be untampered to perform the security critical operations.

It is still critical, that keys are confirmed and bound to a specific channel. If keys are
not explicitly confirmed, a tampering function could replace one of the keys, say ks without
any of the parties realizing. If P, would now send a message to P;, this message would be
authenticated using k, which was not tampered with, meaning P; would accept it. However
they would then go on to decrypt the message with an incorrect key k5. This would likely
result in P; passing a random string to the underlying protocol and there is no guarantee
how the underlying protocol would behave in that case. If the key was not explicitly bound
to a specific channel, a tampering function could potentially “swap” two parties. Say there’s
a protocol where P; and P, do not communicate with one another but do communicate with
P,. The tampering function could swap all messages from the channel between P; and P» to
the channel between P; and Ps and vice versa. If P, and and P; behave identically in the
protocol and never explicitly identify themselves, this would lead P; to output g(x1,x3,x2)
which again is obviously neither correct nor independent of the original input (z1, 22, z3) in
general.

To prevent all these and other problems introduced by the existence of multiple parties
and the ability of the tampering function to desynchronize the parties each message is always
authenticated together with the identifier of the channel it is being sent on and the message
counter.

Different Message Topologies

The INMC for bounded-state tampering functions presented in Section 5 is still somewhat
restricted in the sense that it can only directly be applied to protocols with a fixed message
topology. This means the message flow of the protocol is required to be known is a priori and
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has to be independent of inputs and randomness. L.e., when party P; is invoked for the rth
time, we a priori know from which parties they should be receiving messages and to which
parties they should be sending.

Restricting ourselves to protocols with a fixed message topology makes our live significantly
easier, as it allows us to sidestep many subtle issues. The most obvious problem would be an
input dependent message topology. If, whether P; sends a message to P; when invoked for
the rth time depends on the value x;, we can easily come up with ways to leak x; to the
tampering function, which would make non-malleability impossible. A more subtle issue are
protocols that misbehave if messages are reordered or dropped. Consider a protocol between
two parties. In an untampered execution P; would receive a message from P; in its first
invocation. At the end both parties output 0. Now we can modify this protocol to misbehave
if the messages from P, never arrives. In this case P; could simply output x;, which is
neither correct nor unrelated to (z1,x2). If we, however, know which messages should be
arriving in which order, we can abort any party that did not receive messages as specified in
the protocol preventing them from misbehaving.

Obviously, restricting the INMC to protocols with a fixed message topology limits its
applicability at least in theory. However, we show in Section 4 that any protocol (with a
fixed upper bound on the number of rounds) can be transformed into a protocol with a fixed
message topology, thereby extending the applicability of the INMC to (almost) arbitrary
protocols. The transformation is fairly straightforward and simply involves sending dummy
messages when the original protocol decides not to send a message. The transformation
naturally comes with a certain blowup in the communication complexity.

1.2 Instantiating the Construction

To instantiate the protocol the main question is how to instantiate the 2-source non-malleable
extractor. Before going into details of the instantiation of the non-malleable extractor one
needs to understand the amount of key material that will be required by each party in order
to carry out the protocol execution efficiently. As per the construction of our protocol every
party will use the 2-source non-malleable extractor to extract an authentication key and an
encryption key per party it communicates with. The length of those keys will depend on
the number of messages the party expects to exchange with each other party. For a rough
ballpark estimate, let us assume that the encoded protocol is between n parties, that each
party sends the same number r of messages to every other party, and that those messages
are all of length ¢ > A.

From the two sources sent from party A to party B, both parties must thus extract a
key for a statistically unforgeable (r 4+ 1)-time MAC and a key for stateful r-time encryption
scheme with perfect indistinguishability. Following, Remark 2 and Remark 4 they have to
extract at least (2r + 2) - £ bits from each pair of sources. For a 2-source non-malleable
extractor with source length «,,,, we will later see, that the sources will have min-entropy
at least Kpm — (s + 3nA). To get the lowest possible overhead, we will need a 2-source non-
malleable extractor that can tolerate sources with the lowest possible min-entropy. The best
currently known extractor in this regard was described in a recent paper by Xin Li [44]. The
description of the construction, as is common for the literature on extractors, unfortunately
only makes asymptotic statements about the extractor. It is thus hard to find out what the
ezact concrete source length of the extractor needs to be. We can however make an estimate
on the best possible overhead achievable with the extractor from [44].

The construction described in Theorem 6.3 of [44] requires sources with min-entropy
(2/3 +7) + Knm for the first source and k with k& > C'log Ky, for the second source, where
0 < v < 1/3 can be chosen arbitrarily and C > 1 is some “large enough” constant. For large
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enough K, we can choose k = (2/3 + 7) - Kpm which is convenient as the guaranteed min-
entropy of the sources will be balanced in our application. The absolute best-case scenario for
Li’s extractor, depending on its exact instantiation, is that the output length is 9-107%-x,,,,, and
therefore we must have that r,,,,, > (10°/9)-(2r+2)¢. However, this is not the only condition.
Additionally, we need to consider that we must have Ky, — (s+3nX) > (2/347) - Knm, for the
non-malleability guarantee to apply. Therefore, we must also have Ky, > (s+3nX)/(1/3+7).
Which of these two bounds is larger depends on the the exact parameters of the protocol and
the size of the tampering function’s state. However clearly even in the best case scenario
the current state of the art makes the encoded protocol incur a multiplicative overhead of
roughly 440,000. It is thus clear that, which the current state of the art, our construction is
chiefly of theoretical interest.

1.3 Related Works

To the best of our knowledge, the only previous work on non-malleable codes in the interactive
setting has been the already mentioned work of Fleischhacker et al. [36]. In concurrent work
Lin [45] used the results of [36] to construct non-malleable multi-party computation. However,
Lin’s results are largely orthogonal to our work. In particular the tampering model is weaker.
E.g., while we allow the tampering function to tamper jointly on all parties’ concurrent
messages, Lin requires a fixed execution order and only allows tampering based on past
messages. At the same time Lin attempts to achieve not merely a non-malleable encoding but
non-malleable MPC, where the same party who controls the tampering function also controls
a number of corrupted parties. Overall this means that the results of [45] are incomparable
even if the used techniques are similar.

In contrast, non-malleable codes in the non-interactive setting have been studied ex-
tensively for a large variety of different classes of tampering functions. The most ex-
tensively studied class in the non-interactive setting are certainly split-state tampering
functions [46, 29, 3, 19, 18, 2, 20, 42, 40, 41, 4]. But other classes of tampering functions have
been studied such as tampering circuits of limited size or depth [35, 10, 17, 11, 8], tampering
functions computable by decision trees [12], memory-bounded tampering functions [32] where
the size of the available memory is a priori bounded, bounded polynomial time tampering
functions [9], bounded parallel-time tampering functions [26], and non-malleable codes against
streaming tampering functions [11]. Non-malleable codes were also generalized in several
ways, such as continuously non-malleable codes in [33, 25, 23, 47, 31, 24, 4] and locally
decodable and updatable non-malleable codes [28, 15, 27].

As a general rule non-malleable codes are usually considered in the information theoretic
setting. However, there has also been some work in the computational setting. [1, 5, 6, 11]

2 Preliminaries

In this section we introduce our notation and recall some definitions needed for our construc-
tions and proofs.

2.1 Notation

We denote the security parameter by A € N. For an integer n € N, denote [n] = {1,...,n}.

Let M be a matrix. We denote by row; (M) the i-th row vector and by col;(M) the
j-th column vector of M. If M is square, we denote by diag(M) the vector representing
the main diagonal of M.
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Let S and S’ be sets, let P : S — {true, false} be a predicate, let f : S — S’ be a function,
and let L = (z1,...,2¢) € S* be a list. We denote by (f(z) | z € L A P(z)) the list that
contains f(x;) iff P(x;) = true and preserves the relative order of the elements.

For 2’ € S we denote by Loz’ the list (x1,...,x¢,2’), i.e. the list resulting from appending
x’ to L. Further, we write L; to denote the ith entry of L and L<; to denote the length ¢
prefix of L, i.e. L<; = (z1,...,%;).

Let D be some distribution over S. We denote by f(D) the distribution over S’ sampled by
first sampling x according to D and then applying f to x. For a pair Dy, D5 of distributions
over a domain S, we denote their statistical distance by

1
SD(D,,Ds) = §Z‘Pr[a: «—~Dy:x=v]—-Priz<+ Dy:z :v}‘.
vES

If SD(D1, Ds) < €, we say that Dy, Dy are e-close. For an arbitrary set S we define the
functions replace : (S U {same}) x S — S and indicate : S — {same, L} as

y if x =same same ifx # L

1 otherwise

replace(x, y) := { and indicate(z) = {

x otherwise

We extend replace and indicate to n-tuples in the natural way by applying them component-
wise, i.e. replace(zx,y) := (replace(z1,¥1), - . ., replace(x,, ¥, )) and indicate(x) = (indicate(z1),
..., indicate(x,,)).

2.2 Encryption and Message Authentication Codes

Our constructions relies exclusively on information theoretically secure primitives, specifically
perfectly indistinguishable encryption and statistically secure message authentication codes.
For notational convenience we formalize encryption as stateful which allows us not burden
the description of the protocol with keeping track of key-usage.

» Definition 1 (Stateful g-time Encryption with Perfect Indistinguishability). A correct stateful
q-time encryption scheme & for message space {0,1}* and keyspace {0,1}" consists of a
pair of deterministic stateful algorithms (Enc, Dec), such that for all keys k € {0,1}* and all
messages (my,...,mg) € ({0,1}Y)" we have that for ¢; := Enc(k,m1),...,cq := Enc(k,m,)
and mj := Dec(k, c1),...,m; := Dec(k,c,) it holds that m; = mj for alli € [r].

Let LoR be the stateful “left-or-right” algorithm defined as LoR(k,b, mg, m1) := Enc(k, my)
for the first q invocations and as L afterwards. A stateful g-time encryption scheme is
perfectly indistinguishable if for any unbounded algorithm A it holds that

Pr[k + {0,1}": ALOR(K,0,) 0] — Pr[k — {0,1}" : ALoR(E L) 0]

For convenience we extend the notation of encryption schemes to vectors in the natural way
by applying the algorithm component wise. Le., for m € ({0,1}¥)" and k € ({0,1}")" we
write ¢ := Enc(k, m) to denote the vector consisting of ¢; := Enc(k;, m;). Similarly we write
m’ := Dec(k, ¢) for the vector consisting of m/ := Dec(k;, ¢;).

» Remark 2. A stateful g-time encryption with perfect indistinguishability can easily be
instantiated using the one-time pad where the key & is split into keys k1, ..., k, € {0, 1} and
¢; is computed as m; @ k;. The perfect indistinguishability follows from the regular perfect
secrecy of the one-time pad.[52] In this case k = ¢/.
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» Definition 3 (Statistically Unforgeable ¢-time MACs). A g-time message authentication
code M for message space {0,1}¢ and keyspace {0,1}* consists of a pair of deterministic
algorithms (MAC, Vf), such that for all keys k € {0,1}* and all messages m € {0,1}¢ it holds
that Vf(k,m,MAC(k,m)) = 1.

Let n € N and let MAC be the algorithm defined as MAC(ky, .. ., kn,i,m) := MAC(k;, m).
A g-time message authentication code is e-unforgeable, if for all unbounded algorithms A it
holds that

p kl)"wknF{Oal}H Vf(k‘l,m,t):1
r — :
(5, 8) € Ao () A () € Q0 A Q1] < g

where Q; denotes the set of message-answer pairs, queried by A for index i.

Similar to encryption schemes, we extend the notation of message authentication codes
to vectors in the natural way by applying the algorithm component wise. I.e., for m €
({0,1})™ and k € ({0,1}%)" we write t := MAC(k,m) to denote the vector consisting of

» Remark 4. Statistically unforgeable ¢-time MACs can be instantiated using any family of
q+ 1-wise independent functions such as the family of degree g polynomials over Fomax(e, 2} [53].
In this case k = (¢ + 1) - max{f, A} and ¢ = 2~ max{t:A}

2.3 2-Non-Malleable Extractors

Our construction also makes use of 2-non-malleable extractors. These were first defined by
Cheraghchi and Guruswami [19, 21] but constructing them was left as an open problem. The
definition was finally instantiated by Chattopadhyay, Goyal, and Li [16]. Such an extractor
allows to non-malleably extract an almost uniform random string from two sources with a
given min-entropy that are being tampered by a split-state tampering function. We closely
follow the definition from [16].

» Definition 5 (2-Non-Malleable Extractor). A function nmExt : {0,1}" x{0,1}"™ — {0,1}™ is
a 2-non-malleable extractor for sources with min-entropy k < n and with error € if it satisfies
the following property: If X,Y are independent sources of length n with min-entropy k and
f=(fo, f1) is an arbitrary 2-split-state tampering function, then there exists a distribution
Dy over {0,1}™ U {same}, such that

SD((nmExt(X,Y),nmExt(fo(X), f1(Y))), (Un,replace(Dys,Uy,))) < €
where both U, refer to the same uniform m-bit string.
» Remark 6. The required 2-non-malleable extractor can be instantiated with the construction

of Chattopadhyay Goyal and Li [16] or a number of other construction. [42, 43, 22].

3 Interactive Protocols and Tampering Model

We consider protocols II between n parties Py, ..., P, for evaluating functionalities g =
(g1,---,gn) of the form ¢; : X; x --- x X,, — Y, where X;,Y; are finite domains. Each
party P; holds an input x; € X; and randomness w; € €2; and the goal of the protocol is to
interactively evaluate the functionality, such that at the end of the protocol party P; outputs
gi(z1,...,7,) €Y,
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Formally, an interactive protocol II between n parties can be described either using
interactive Turing machines, or using next-message functions. The two formalizations
are equivalent up to a slight computational overhead. We will switch between the two
formalizations whenever this is convenient for exposition.

Interactive Protocols as Interactive Turing Machines

In this formalization an interactive protocol II between n parties is described by an n-tuple
of interactive Turing machines P;. Each interactive Turing machine P; has an input tape
containing x;, a random tape containing w;, an internal work tape, as well as an incoming
communication tape and an outgoing communication tape for each party P; with j # ¢ and
an output tape.

Interactive Protocols as Next Message Functions

In this formalization an interactive protocol II between n parties is described by a an n-tuple
of “next message” functions m; and an n-tuple of output functions out;. The next message
function 7; takes as input the view of P;, i.e., the input z;, the randomness w;, and the
sequence of message vectors received by P; thus far and outputs the vector s; € {0,1}*U{L}
of messages to be sent by P;. The output function out; takes as input the final view of P;,
i.e., x;, w;, and received message vectors and outputs P;’s protocol output.

Equivalence of Formalizations

The two formalizations are equivalent up to a slight computational overhead. To see this
consider the following two simple conversions: Given an interactive Turing machine P;, the
equivalent next message function 7; can be computed on input x;,w;, m; by simulating the
Turing machine on input x; and randomness w;, writing the received messages for each round
on the appropriate incoming communication tapes until the current round is reached. The
content of the outgoing communication tapes can then be output as s;. Similarly, given a
next message function m;, the equivalent interactive Turing machine P; will simply store
the contents of its incoming communication tapes on its internal work tape, evaluate m; on
its input x;, randomness w; and all incoming messages, and write the output of m; to its
outgoing communication tapes.

3.1 Correctness and Encodings

We denote by II(x) the joint distribution of the outputs of an honest execution of the protocol
IT using inputs @ and uniformly sampled randomness w. Further, we denote by g(x) the

vector (g1(x1,...,&n)s.- .y g1(T1,. .., Tn))-

» Definition 7 (Correctness). A protocol I1, is said to e-correctly evaluate a functionality g =
(91,---,9n) if an untampered execution of the protocol correctly computes g with probability
at least 1 —e. Le., for all valid input vectors @ it holds that Pr[y < Il(x) : y = g(x)] > 1 —¢,
where the probability is taken over the uniform choice of the random tape of all parties.

» Definition 8 (Encoding of an Interactive Protocol). An encoding £ of n-party interactive
protocols is defined by n interactive oracle machines Enc;.

Let 11 be an arbitrary interactive n-party protocol that e-correctly evaluate a functionality g.
The encoded protocol is then the interactive n-party protocol between interactive Turing
machines (Q1,...,Qy) defined as follows: On input x;, Q; samples uniform randomness w;,
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O, o/
initiates the oracle O, = P;(xi;w;) and then executes Enc; ™* (), giving it direct access to

O_ ./
all communication tapes. Once Enc; ™ () terminates with some output y, Q; also outputs y.
& is a d-correct protocol encoding for I1 if for all inputs x, the protocol E(II) = (Q1, ..., Qx)
€ + d-correctly evaluates the functionality g.

3.2 Tampering Model

The transcript of a protocol executed under tampering needs to specify for each round of
execution both the messages sent by each party and the messages received by each party.
Remember that, due to the presence of the tampering function, the messages received are
not necessarily related in any way to the messages sent.

We consider a scenario in which each party has a point-to-point channel to each other
party, but not to itself. L.e., a protocol among n parties is executed over a complete directed
communication graph (excluding loops) with n nodes P;.

For each round, the transcript needs to label each edge (P;, P;) for i # j in the graph
with the message P; sent to P; and the message P; received from F;, the two of which need
not be related. We will denote this with two n x n matrices S and R of labels per round of
execution, where a label is either an arbitrary bitstring or the special symbol L denoting
that no message was sent or received respectively.

» Definition 9 (Transcripts). Let M = {0, 1}*U{.L} be the set of possible labels for the edges
of the communication graph. The set of possible transcripts is then the set of lists of pairs of
matrices S;, R; € M™*™ such that the diagonal of both matrices only contains L. ILe.,

T = ({M e M | diag(M) € {1)7)?)

For any transcript T = ((S1, R1), ..., (Se, Re)), row;(S;) denotes the vector of messages
sent by P; in round i of the execution, while col; (R;) " denotes the vector of messages received
by P; in round i of the execution.

We denote by Transy(x, w) the function mapping the input vector x along with the randomness
w to the transcript of an honest execution of II with inputs  and randomness w.

A party’s view of the transcript consists exactly of the vectors of messages it receives. In
particular, if a party does not receive any messages in a particular round of the execution,
this round is not included in the party’s view. This models that a party is not necessarily
capable of detecting that desynchronization happens and allows general tampering functions
to arbitrarily desynchronize different parties during protocol execution.

» Definition 10 (Views). Let 7 be a transcript. The corresponding view of party P; is then
defined as V;(1) = (col;(R)" | (S,R) € T Acol;(R)" & {L1}").

The interactive non-malleable code presented in Section 5 is restricted to protocols with
a fixed message topology. This means that the number of messages exchanged over each
channel is fixed, the expected relative ordering of all the messages received by a single party is
a priori known, and whether or not a party sends a message along a communication channel
does not depend on their input or their received messages. L.e., the “structure” of each vector
in a party’s view as well as the output vector in any particular round of execution is fixed in
an untampered execution. We define this formally as follows.
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» Definition 11 (Fixed Message Topology). An interactive protocol I1 with n parties defined by
next message functions m; and outputl functions out; is said to have a fixed message topology,
if there exists a function p : [n] x N — {0,1}™ x {0,1}", such that for all vectors of inputs x,
all randomness vector w and the transcript 7 of an honest untampered execution of II on x
with w, all i € [n], and all r € [|V;(7)|] it holds that u(i,r) = (v', s"), where

i 1 otherwise - 1 otherwise

oo {o Vi =1, _ {o if (s, wi, Vi(m) <)y = L

for j € [n] and for all v > |Vi(T)| it holds that p(i,r) = (0™,0™). We further define the
function v : [n] x [n] = N as v(i,7) == > ey (i, 7)1, = D en #(J7)2,i as the exact number
of messages recetved by party i from j during an execution of the protocol.

Let II be a protocol with n parties defined by next message functions 7; and output functions
out;. For ease of notation we define the function Nexty; which describes computation
of all messages sent during a particular round of execution depending on the protocol

specification, the vector of inputs © = (z1,...,z,) and the partial transcript 7 € 7. Let
F:T x M — M™™ be an arbitrary tampering function. We describe execution of IT
on inputs & = (1, ..., z,) under tampering by F' using the algorithm Executer p.
Nextr (@, w, 7) Executer, p(x; w)
parse 7 = ((S1,R1),...,(Se, Re)) 7:=10
for 1 <i<ndo S = Next(Il, z,w, 7)
if7=0V coli(R,)" # L" R:=F(1,8)
8; = (T4, wi, Vi(T)) while R # L™
else T=710(S,R)
s;=1" S == Next(Il, z, w, 7)
s1 R :=F(r,S)
return | : return (outl(acl7 Vi(7)),...,outn(zn, Va (7—)))
Sn

Let I : T x M™"™ — M™™ be the function defined as I(7,S) := S. We call I the
identity tampering function. Note that the distribution II(x) is identical to the distribution
Executery ().

» Definition 12 (Protocol Non-malleability). An n-party protocol I1 for functionality g is
e-protocol non-malleable for a family F of tampering functions if for every tampering function
F € F there exists a distribution Dp over {1, same}™ such that for all x, it holds that

SD(Executery (), replace(Dp, II(x))) < e.

» Definition 13 (Interactive Non-Malleable Code). A protocol encoding & is called a (9, €)—inter-
active non-malleable code for a family F of tampering functions and a class of protocols, if for
any protocol T1 of this class, E(IT) §-correctly encodes 11 and E(II) is e-protocol non-malleable
for F.
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3.3 Bounded State Tampering

We now define bounded state tampering functions for multi-party protocols. This is a natural
model in which the adversary can arbitrarily and jointly tamper with all channels, however
there exists an a priori upper bound on the size of the state they can hold. Similar classes of
adversaries have already been considered starting with the work of Cachin and Maurer [14]
which proposed encryption and key exchange protocols secure against computationally
unbounded adversaries. With respect to non-malleable codes Faust et al. [32] introduced the
notion of non-malleable codes against space-bounded tampering. Our formalization closely
follows the one of Fleischhacker et al. [36] but adapted to the multi-party case. This means
that we do not limit the size of the memory available for computing the tampering function
in each round of tampering. Instead, we only limit the size of the state that can be carried
over to the next round of tampering. I.e., an adversary in this model can jointly tamper
with all of the messages exchanged in one round of execution depending on some function of
all previously exchanged messages. But the function can only depend on up to some fixed
number of s bits of information about previous messages. This is formalized as follows.

» Definition 14 (Bounded State Tampering Functions). Functions of the class of s-bounded
state tampering functions F' € Fp,,.q for an interactive protocol are defined by a function

F{0,1}5 UL} x M™™ =5 {0,1}5 x MX™

The function f takes as input a previous state of the tampering function and a matriz of sent
messages and outputs an updated state and a matriz of received messages.

The full tampering function F : T x M™™ — M™ ™ s then defined in terms of f as
seen below.

F(r,S)

o:=1

for (S',R') in T
(o, R) = f(0,8)

(o,R) = f(c,S)

return R

4 Arbitrary Message Topologies

The INMC for Bounded-state tampering functions that is introduced in Section 5 requires
the underlying protocol to have a fixed message topology. In this section we show that is is
not in general a restriction, as any protocol can be transformed protocol with a fixed message
topology. Therefore, the INMC can be applied to any protocol by first transforming it to a
protocol with a fixed message topology and then applying the INMC itself.

For this purpose we first introduce a general definition of a message topology, which for
any party and round defines the probability that messages are received or sent over each
channel, maximized over all possible inputs.



N. Fleischhacker, S. Ghoshal, and M. Simkin

» Definition 15 (Message Topology). Let II be interactive protocol with n parties defined by
next message functions w; and output functions out;. The message topology of 11 is defined
by a function p : [n] x N = [0,1]™ x [0,1]™, such that for all i € [n], and all r € N it holds
that p(i,r) = (v, 8"), where

T + Transp(z, w)

, WD x Qg x - xQ,
v} 1= max Pr : ‘V;,(T)| >rA Vi(T)m’ #1
x 7 < Transp(z, w)
, wtengx~~~XQn
8} 1= max Pr V(T > r A, wi, Vi(T)<r); # L

for j € [n].

A fixed message topology can then be seen as a special case, where p is defined over {0,1}
and the probabilities used in the definition are independent of the input vectors.

4.1 Transformations from Arbitrary to Fixed Message Topology

We propose three different transformations from an arbitrary message topology (AMT) to a
fixed message topology (FMT). The first transformation is very naive, resulting in a very
large blowup of the communication complexity but can be applied without any detailed
consideration to the original message topology, i.e. it does not even reference the above
definition. The second transformation considers the original message topology and will result
in a lower blowup in the communication complexity for most reasonable protocols. However,
in the worst case, for pathological examples, it can still result in the same blowup as the
naive transformation. The third transformation finally allows us to limit the blowup, even
in the worst case, but at the cost of potentially degrading the correctness of the protocol.
Throughout this section, we assume that there exists a fixed upper bound on the number
rounds the execution of a protocol may take.

4.1.1 Trivial Transformation

The simplest transformation floods the entire network in every round by sending dummy
messages whenever there’s no actual message to be sent. To reliably distinguish between

real and dummy messages, real messages are marked by a prefix identifying them as real.

Specifically, if in any round of the original protocol an actual message is sent by party P; to

party P; then party P; just prepends 1 to the message and sends it to the concerned party P;.

If on the other hand no message is sent in the original protocol a dummy message consisting
of 0 is sent to P;. To formally describe the next-message functions of the transformed
protocol, we first define two functions addDummies and remDummies used to add and remove
the dummy messages. We define the function

addDummies : [n] X [rmax] x ({0,1}*U{L})"™ — ({0,1}  u{L}H"
as
1 ifi=j
addDummies(i,r,m) :=m’, where m/ = {0 ifmj=_Landi#j

1|jm; otherwise.!

and the function

1 Note that addDummies takes an input r which is then ignored. This will make our lives easier when we
modify the transformation going forward.
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remDummies : ({0,1}* U{L})™ = ({0,1}* U {L}H)"

1L ifm; e {0, 1}

m” if m; = 1||m”

remDummies(m) := m/, where m/ = {

For ease of notation we will apply remDummies to lists of vectors, which is to be interpreted
as component-wise application. Let II be an arbitrary e-correct protocol described by next
message functions 7; with an upper bound of ry.x on the number of rounds. The next
message function 7} of the naively transformed protocol can then simply be defined as

n s g

PR L oy Sz
addDummies(i, |V;|, m; (24, w;, remDummies(V;)))  otherwise.
This trivially transformed protocol works exactly in the same way as the original protocol
with the only exception being that in every round, all channels on which the original protocol
would not have sent messages, the transformed protocol sends dummy messages and then
promptly ignores them. The protocol terminates after exactly ry.x rounds. This means that
since the transformed protocol doesn’t drop any messages and the original views of the parties
can easily be reconstructed by ignoring the dummy messages. Hence it will still be e-correct.
This transformation clearly serves the purpose of transforming any protocol into a protocol
with a fixed message topology. A clear downside, however, is the blowup in communication
complexity, especially if the original protocol used a rather sparse communication graph.
In every round each party starts sends messages to every other party whether they were
expecting messages or not. In the worst case, this means that the expected communication
complexity of the protocol blows up infinitely.? But even in more reasonable protocols that
happen to use a sparse communication graph, the blowup is quite severe. Luckily we can do
a bit better at least for reasonable protocols.

4.1.2 Maintaining the Communication Graph

The overhead of the transformation can be reduced if we only flood those channels where
messages could possibly be sent. In order for that to happen we let party P; send a dummy
message only on those channels where there’s a non-zero probability of a real message being
sent. We can achieve that if we redefine the function addDummies as follows

0 if m} = 1 and p(i,7)2,; >0
addDummies(i,r,m) := m/, where m} = { 1|m/} if m # L
L otherwise.

The next message function is still defined as before. Clearly, this again results in a fixed
message topology. This transformed protocol will also be e-correct if the actual protocol
is e-correct as no messages are dropped and the original view can be reconstructed. Even
though this transformation eliminates quite a lot of redundant messages and will result in a
much smaller blowup for many protocols run over a sparse communication graph, the worst
case blowup still remains infinite by the same argument as before.

2 An example of a pathological protocol that exhibits infinite blowup is a protocol with at most one round,
where one party sends a message with probability ¢, where ¢ tends towards 0.
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4.1.3 Dropping Low Probability Messages

To fix this issue of an infinite blowup in the expected communication complexity we can
modify the transformation, by introducing a threshold value ¢t and dropping all messages
that are sent with probability less than ¢. In order to achieve this we again redefine the
function addDummies as as

0 if m} = 1 and p(i,r)2,; >t
/

addDummies(i, 7, m) := m/, where m

= q Um} if m# L and p(i,r); >t

1 otherwise.

This transformation only allows messages to be sent if their probability is above the threshold
probability of £. The implementation of the next message function m; remains the same for
this transformation as was for the last transformation. For this transformation potentially
degrades the correctness of the protocol. In a protocol with 7.« rounds there are Tmax(nz —n)
potential messages, each of which may have a probability of being sent infinitesimally less
than ¢t. Each message that is actually sent by the underlying protocol but them blocked by
the transformation can result in the protocol computing an incorrect output. But we can

apply a union bound and get that the transformed protocol remains € + 7y (n? — n)-correct.

However, this degraded correctness buys us a finite bound on the blowup of the expected
communication complexity. In the worst case, each message in the original protocol is sent

with probability exactly ¢, whereas it is sent with probability 1 in the transformed protocol.

Therefore, the blowup can be at most 1/t therefore allowing us to bound the blowup.

5 An INMC for Bounded-State Tampering Functions

We devise an interactive non-malleable code for bounded state tampering functions that can
be applied to any multi-party protocol II' with fized message topology, i.e., to any protocol
where for every party P; and every invocation r of the next message function m;, whether
or not a message is sent to party P; is a priori known and does not depend on any of s
inputs. The basic idea is that each pair of parties will first run a key-exchange in which they
will exchange enough key-material to the execute the original protocol encrypted under an
information theoretically secure encryption scheme and authenticated with a statistically
unforgeable MAC. Besides making sure that the tampering function cannot replay, redirect
or omit messages by binding the authentication to a specific channel and including message
counters in the authentication, the main challenge is to construct a key exchange that is
secure against a computationally unbounded but bounded state adversary. We achieve this
using a 2-non-malleable extractor. Essentially each party chooses a key by choosing two
random sources «, § which will be much longer than the bounded state of the tampering
function and extracting a key k := nmExt(«, 3). They will be using this key which they
know is untampered to encrypt messages and to verify authentication tags. The two sources
«, B are then sent in seperate rounds, ensuring that they cannot be tampered jointly, except
for some amount of leakage through the state of the tampering function and potentially
conditional aborts. This leakage can be handled by reinterpreting the sources as coming
from a different distribution with slightly less min-entropy. Once the keys are exchanged,
the parties verify that the keys were not modified in transit by sending a MAC computed
over the ID of the channel with the key they received from the other party.
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’

! @, Vi(r)

i

s:=1" else
if [V] =0 if V] =3
rec := 0", sent := 0" if LeVs
(@i, B;) + (({0,1}")*)" abort
(k5™ k$™) = nmExt(as, 8,) for j € [n]\ {z} do
5= a if VE(K{™™, (4,1), Va5) = 0
elseif |V| =1 abort
if Lely else
abort m:=1"
s:=8, if CheckMsgOrder(V) =0
elseif V]| =2 abort
if Lels else
abort for j € [n]\ {i} do
& E:(;uth) — nmExt(V1, V) if Viv; #L
for j € [n] \ {i} do (c,t) :=Vjy),j,rec; :=rec; + 1
5; = MAC(RE™ (i, ) if VE(KSU™" (¢, 5,1, rec;),t) = 0
CheckMsgOrder (V') abort
r—o" m; = Dec(k;", c)
for j € [n]\ {i} do s 0 r(m)
if Vi), # L for j € [n]\ {i} do
rj=1 if 55 # L
if u(i,|[V]|—3)1 #7r ¢ := Enc(k{™*, s}), sent; := sent; + 1
return 0 sj = (¢, MAC(I%;“”“”7 (¢,1, J,sent;))
return 1 return s
Figure 1 The func- Figure 2 The next message function describing the INMC for bounded

tion checking the order- state tampering functions. For the sake of readability, we write the
ing of messages against function as if it were stateful. I.e., in particular the variables rec and sent
the fixed message topol- retain their value accross different invocations of 7; and do not need to
ogy. be recomputed.

5.1 Defining the Next Message Function

The INMC is restricted to protocols with a fixed message topology as defined in Definition 11.
Refer to Section 4 for a discussion on how arbitrary protocols can be transformed into
protocols with a fixed message topology. To formally describe the next message function
and output function of the INMC, we need an algorithm that checks whether the sequence
of messages received from the other parties involved in the protocol confirm to the fixed
message topology. The function CheckMsgOrder defined in Figure 1 allows to perform this
check. Now that we have defined the CheckMsgOrder function we are ready to define the
next message function in Figure 2. Remember, that according to Definition 8 an encoding is
specified by an oracle machine or equivalently a next message function that is defined relative
to an stateful oracle representing the next message function of the underlying protocol. The
next message function 7TZ-O “=’ has three phases. In the initial phase every party shares their
keys with the rest of the parties taking part in the protocol. In the next phase all of the
parties confirms their respective keys with the other parties by sending a key confirmation
value. The last phase of the execution of the next message function just deals with the
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actual message exchanges that happens between all the parties taking part in the protocol IT'.
The output function out; of the INMC simply takes the view V' of the underlying protocol
that it can extract from it’s own view exactly as in the next message function and outputs
out}(x,w’, V') if the view conforms to the fixed message topology or L otherwise.

» Theorem 16. Let IT' be a protocol between n parties with fized message topology, with
r = max; je[n{v(4,7)} and message length L. If (MAC,Vf) is a statistically €,,qc-unforgeable
r+ 1-time message authentication code with with message length £+ 2[logn] + [logr] and key
length Komae, (Enc,Dec) is a perfectly indistinguishable stateful t-time encryption scheme with
message length £ and key length Kene, and nmExt : {0, 1}#nm x {0, 1}fnm — {0, 1}Fmaectren g
an € -non-malleable 2-source extractor for sources with min-entropy at least Ky — S — 3nA,
then I1 as described by m; and out; specified above is a (0, (2n2+n)-27*+(n? —n) - €pm +emac)-
interactive non-malleable code for II' for the class Fp,,q0eq 0f bounded state tampering
functions.

Due to space constraints the proof is deferred to Appendix A.
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A  Proof of Main Theorem

Proof. In order to prove that the protocol Il is a (0, €)-interactive non-malleable code we need
to prove the correctness as well as non-malleability of the protocol as stated in Lemma 17
and Lemma 18.

» Lemma 17. For any protocol II', TI 0-correctly encodes II'.

Proof. The extractor is deterministic and hence all the parties involved in the protocol will
extract identical keys in an untampered execution. Since the MAC is correct, and tags are
computed and verified with the correct keys, all messages will always verify and no party will
abort during the protocol. As the correctness of the stateful encryption scheme Enc allows
each party decrypt all received messages correctly all the parties will be able to faithfully
execute a perfectly honest untampered execution of the underlying protocol II. Therefore II
evaluates correctly whith the same probability as IT'. <
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» Lemma 18. The interactive protocol 11 is e-protocol non-malleable, where € = (2n* + n) -
27 + (n2 —n) - €pm + EMAC-

Proof. In order to show that the coding scheme is non-malleable we need to provide a
distribution Dp as defined in Definition 12. In order to achieve a sampler for the distribution
Dp, we start with the output distribution of an honest execution of the actual protocol
and modify it through a serie of hyrids, until we reach a distribution that can be sampled
independently of . To define the different hybrid distributions, first define a function V;
which essentially gives us the equivalent of a party’s current view in the protocol, but replaces
all received messages, with the messages that were originally sent.

V(r)
V= Vi(r)
for j € [n] do
s:=(Si; | (S,R)€TNS;; #1)
c:=1
for ¢ € [|[V]] do
if Vi # L
Vaj = =tje
c=c+1

return V

Now, let F' € F ndeq P€ an arbitrary tampering function. For 7,5 € [n] and o € {a, 5}, let

Ca,i,j be the probability that the tampering function modifies or drops o; ;

during an execution of the protocol. We define the modified tampering function F’ which

behaves exactly like F, but for any (i,j,0) such that (4;; < 27 it always keeps 05 j

unmodified. We then further define for 7 € [n] and r € {1,2,3}, v, to be the probability

that in an execution tampered by F’, m; aborts in execution round r, i.e., after receiving
the as, after receiving the (s, or after receiving the key confirmation values. Finally, let

x’ € X7 x---x X, bearbitrary but fixed. We then define several variants of Execute, Next, and

m; in Figure 3 and Figure 4 respectively and are then finally ready to specify a series of hybrid

distribution we construct to reach the distribution that corresponds to replace(Dp, II(x)).

Hy : Hybrid 0 is the original output distribution of a tampered execution. l.e, Hy =
Executery p ().

Hy : Hybrid 1 is still the distribution of a tampered execution, however we replace the
tampering function with the modified tampering function F’. Le., H; = Executery g (x).

Ho : In hybrid 2, we switch to using the modified execution algorithm Execute! and II'.
This change gives the next message function access to the message it should have received,
i.e., those that were originally sent. IL.e., Hy Executellp,F,(w).

Hs : In hybrid 3 we switch to using II?, which means that parties that abort with over-
whelming probability during the key exchange or key confirmation phase, now abort with
probability 1. L.e., Hy = ExecutehzyF, (x).

H, : In hybrid 4, we switch to using II?> which means that the keys are now no longer
extracted but instead sampled uniformly at random on the sender’s side and according
to Dy on the receiver’s side, where f is a split state tampering function induced by F”.
Le., Hy = Executell-p,’F, (x).

Hy : Hybrid 5 switches to using II*, which means that instead of verifying MACs the
next message functions now directly check if messages were modified or not. L.e., H5 =
Execute}14,F/ ().
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Executey; p(;w) Next(x, w, 7)
T:=10 parse 7 = ((S1,R1),...,(Se, Ry))
S = Nextl(H,:c,w,T) J/x=1 forl<i<ndo
R :=F(r,8) if 7=0 V col;(Re)" # 1"
while R # 1" si = mi(wi,wi, Vi(7), V(7))
T=710(S,R) else
S = Next' (IT, z,w, 7) Jx=1 83 =1"
R =F(r,S) 511"
return (out1 (z1,Vi(1)), ..., outn(xn, Vi (T))) /x=1 return
indicate(out: (z1, Vi(7))), S.n
return e, J x=2
indicate(outy, (zn, Vi (7)))

Figure 3 Variants of Execute and Next as used in the hybrid distributions. Differences from
the original are highlighted in gray. The different versions of Execute used in the hybrids are
differentiated by the index x. Each line where differences exist is marked with a comment indicating
for which values of x this line will be executed.

Hg : In hybrid 6 we switch to Execute’. This means that the execution no longer out-
puts the actual outputs of the parties. Instead it only indicates which parties pro-
duced an output and which aborted. The outputs of all non-aborting parties are
then replaced by the outputs of an honest untampered execution of II(z). le., Hs =
replace(Executefys p (), II(x)).

H7 : Finally in hybrid 7, we replace the input @ of the tampered execution with the arbitrary
fixed input «’. T.e., H; = repIace(Execute%{F/ (x’),II(x)).

We note, that in Hr, the distribution of Executeﬁzl)F,(:l:') no longer depends on x. Ie., we
define Dp as Execute%{47F, (') and it is then sufficient to bound that SD(Hy, H7) to prove the
Lemma. We do so by bounding the statistical distance of each pair of neighboring hybrids.

> Claim 19. SD(Hy, H;) < 2(n? —n) - 272

Proof. In H; we replaced I with the modified tampering function F’. This function is
modified such that a series of low probability events (that o; ; for o € {, 8} and ¢,j € [n] is
modified by F') does not happen. Each event happens with probability less than 2~*. The
number of events is bounded by two times the number of edges in the communication graph.
This is a directed complete graph, i.e., the number of edges is n?
bound over all events, the statistical distance between hybrids Hy and H; can be bounded
by 2(n? —n) - 27>, <

—n. Hence, by a union

> Claim 20. SD(H;, Hy) =0

Proof. In hybrids Hy, Hs, it is easy to see that the only differences between the hybrids are
syntactic. Le., the next message function receives the additional input V;(7) in Hs, but does
not actually use it yet. Therefore the output distributions remain identical. <

> Claim 21. SD(Ha, H3) < 3n-272

Proof. In hybrid Hs we eliminate another series of low probability events. If F’ causes any
of the parties to abort with overwhelming probability > (1 —27*) in the first three rounds of
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40" ,
T " (w, Vi(T))
g:=1" else
if [V]=0 if V] =3
rec := 0", sent := 0" if LeVs Jd<2
(o, B;) + (({0, 1}"»m)2)" if LeVaorys>1—2" Jd>2
(k5™ k3™ := nmExt(as, 8,) J d<3 abort
(k37 B55%) £ o, 1} ens o Jazs  forjeh\fi}do
5= if VE(ES™™M (4,4), Va,;) = 0 [ d<a
elseif |V] = 1 if (ki # ki) or Va; # Vi Jd>4
if Levs ) d<2 abort
if LeViory,>1-27" ) da>2 else
abort m:= 1"
s:=4, if (CheckMsgOrder = 0)
elseif |V| =2 abort
if 1eVs Ja<z2  else
if LelVhorqya>1—22 Jd>2 for j € [n]\ {i} do
abort if Vivy; # L
(iéjnc?i;:(;uth) — nmExt(V4, V3) Jd<s (¢, t) := Vjv| 5, rec; :=rec; + 1
(RS 2™ 1 replace(Dy, (57, K2WM)  J x5 if VE(RE™", (¢, isrec), ) =0 [ a<a
for j € [n]\ {i} do if Vivis # Vvl V=4
) i= MAC(RES™, (i,)) abort
my := Dec(kj™, ¢)
s« O;ywz(m)
for j € [n]\ {i} do
if sj # L
¢ := Enc(k{"*, s}), sent; := sent; + 1
55 1= (¢, MAC(KS™™, (¢, 1, j, sent;))
return s

Figure 4 The modified next message functions used in the hybrid distributions. Differences from
the original are highlighted in gray. The different next message functions used in the hybrids are
differentiated by the index d. Each line where differences between next message functions exist is
marked with a comment indicating for which values of d this line will be executed.

the protocol, i.e., during key-exchange or key-confirmation, the party now aborts at the same
point in time with probability 1. Le., each eliminated event, i.e. the “non-abort”, happens
with probability less than 27*. The number of eliminated events is bounded by three times
the number of parties in the protocol. Therefore a union bound over all eliminated events
gives us that the statistical distance between Hy and Hsz can be bounded by 3n-27*. <

> Claim 22. SD(Hsz, Hy) < (n? —n) - €am-

Proof. For any 7, j, let f; ; be the tampering function for «; ;, 8; ; induced by F'. We observe
that the changes that were made in H, are that rather than using the extracted keys the
sender uses uniformly chosen keys while the receiver either receives keys that are distributed
according to Dy, . that is independent of the actual key, or it receives the same uniformly
distributed key used by the sender.

Now, if f; ; were split state, then the non-malleability of the extractor would imply that
the statistical distance caused by each replaced key can be at most €,,,. The main issue is
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that f;; is in fact not split state. The tampering function can use both, its bounded state
as well as conditional aborts (and non-aborts) of the individual parties to leak information
from the first part of the tampering function to the second part and from both parts to the
rest of the protocol. However, if we can bound the amount of information that can be leaked,
then we can change our perspective and look at f; ; as a split state tampering functions, that
tampers with sources sampled from a distribution defined by sampling almost uniformly, but
conditioned on the leakage.

It remains to actually bound the leakage. Clearly a tampering function in FyJ 4.4 can
leak s bits simply through its persistent state. Additional leakage is obtained by causing any
of the parties to abort or not to abort with low probability. However, due to the elination
of low probability events in previous hybrids, we know that each of these events happens
with probability at least 27*. Per party there exist three abort /non-abort events, i.e. the
tampering function can leak at most 3nlog 2% = 3n\ additional bits of information.

We can thus reinterpret f; ; as a split-state tampering function on sources with min-
entropy Knm — s — 3nA. Since, nmExt is specified as working with sources of this type, we
have that each replaced key increases the statistical distance by at most €,.,. As there are,
as mentioned before, (n? — n) keys to deal with, we can bound the total statistical distance
between the hybrids H; and Hy with (n? —n) - €m. <

> Claim 23. SD(Hy, Hs) < emac

Proof. Here we bound the statistical distance between the hybrids using a reduction from
the statistical unforgeability of the MAC. The output distribution of the two hybrids only
differs, if at any point one of the parties receives a ciphertext and tag pair (c,t) such that
for some (i,7,7), Vf(kﬁ?th, (¢c,i,7,7),t) = 1 but where none of the parties ever computed
MAC(k‘ﬁqjth, (¢c,i,7,7)). That means that the statistical distance between the hybrids is
equal to the probability that the above event occurs. We can then construct an attacker A
against the MAC scheme as follows: A executes Hy as specified, except that it ignores the
actual authentication keys and instead uses the MAC oracle to compute all tags. When the
event specified above occurs, A outputs (¢, 1, j,7),t,i. If the event never occurs, A aborts.
Clearly A forges a MAC with probability SD(Hy, Hs). Since the MAC is €,,4.-statistically
unforgeable, we therefore have SD(Hy, Hs) < emac as claimed. <

Proof. Due to the changes in the previous hybrids, we know that all messages received by
any party that does not abort are exactly those messages that were originally sent. Further,
whenever a party aborts it does not send any more messages, ensuring that all messages that
are sent are computed solely based on untampered messages. Additionally, since the protocol
has a fixed message topology and both the next message function as well as the output
function check that the view conforms to this topology, we know that any party that does
not abort computed their output based on a complete view consisting of honestly computed
messages that were received in the correct order. Le., in Hs the outputs of the non-aborting
parties are distributed according to the same distribution as in a completely untampered
execution of Il on . In Hg, Execute2n4’F(:c) returns L for all aborting parties and same for
all non-aborting parties. The function indicate then replaces the same entries with consistent
outputs of an honest execution of II(x). Therefore the two distributions are identical. <
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Proof. Since the message topology is fixed in both the hybrids, the “shape” of the transcripts
of the underyling protocol during the execution in both the hybrids are identical, only the
content of the messages might differ based on the inputs x and x’. However, due to the
perfect indistingishability of the stateful encryption scheme, the distribution of the ciphertexts
is identical. Therefore the distributions of the overall transcripts observed by the tampering
function are identical and therefore, so are the output distributions. <

Using the triangle inequality over the bounds from Claim 19 through Claim 25 we can thus
conclude that

SD(Executer; p(x), replace(Dp, II(x)))
= SD(Executer; p(x), replace(ExecuteQHAL,F(w’), I(x)))

7
= SD(Hy, H7) §ZSD (Hi—1, Hy) (2n2+n)~27)‘+(n2—n)'e"m+eMAc <
i=1

The theorem finally follows immediately from Lemma 17 and Lemma 18. <



Asymmetric Multi-Party Computation

Vipul Goyal &
NTT Research, Sunnyvale, CA, USA
Carnegie Mellon University, Pittsburgh, PA, USA

Chen-Da Liu-Zhang &
NTT Research, Sunnyvale, CA, USA

Rafail Ostrovsky &
University of California at Los Angeles, CA, USA

—— Abstract

Current protocols for Multi-Party Computation (MPC) consider the setting where all parties have
access to similar resources. For example, all parties have access to channels bounded by the same
worst-case delay upper bound A, and all channels have the same cost of communication. As a
consequence, the overall protocol performance (resp. the communication cost) may be heavily
affected by the slowest (resp. the most expensive) channel, even when most channels are fast (resp.
cheap). Given the state of affairs, we initiate a systematic study of asymmetric MPC. In asymmetric
MPC, the parties are divided into two categories: fast and slow parties, depending on whether they
have access to high-end or low-end resources.

We investigate two different models. In the first, we consider asymmetric communication delays:
Fast parties are connected via channels with small delay ¢ among themselves, while channels
connected to (at least) one slow party have a large delay A > 4. In the second model, we consider
asymmetric communication costs: Fast parties benefit from channels with cheap communication,
while channels connected to a slow party have an expensive communication. We provide a wide
range of positive and negative results exploring the trade-offs between the achievable number of
tolerated corruptions ¢ and slow parties s, versus the round complexity and communication cost in
each of the models. Among others, we achieve the following results. In the model with asymmetric
communication delays, focusing on the information-theoretic (i-t) setting:

An i-t asymmetric MPC protocol with security with abort as long as t +s < n and t < n/2, in a
constant number of slow rounds.

We show that achieving an i-t asymmetric MPC protocol for t + s = n and with number of
slow rounds independent of the circuit size implies an i-t synchronous MPC protocol with
round complexity independent of the circuit size, which is a major problem in the field of
round-complexity of MPC.

We identify a new primitive, asymmetric broadcast, that allows to consistently distribute a value
among the fast parties, and at a later time the same value to slow parties. We completely
characterize the feasibility of asymmetric broadcast by showing that it is possible if and only if
2t 4+ s < n.

An i-t asymmetric MPC protocol with guaranteed output delivery as long as t + s < n and
t < n/2, in a number of slow rounds independent of the circuit size.

In the model with asymmetric communication cost, we achieve an asymmetric MPC protocol for
security with abort for ¢ + s < n and ¢ < n/2, based on one-way functions (OWF). The protocol
communicates a number of bits over expensive channels that is independent of the circuit size. We
conjecture that assuming OWF is needed and further provide a partial result in this direction.
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1 Introduction

Secure Multi-Party Computation [49, 24, 7, 11, 46] allows a set of distrustful parties to
compute a function over their private inputs, in such a way that nothing about the inputs is
revealed beyond the output of the computation.

Generally speaking, current MPC protocols consider the simplest setting where all
parties have network resources with the same guarantees. In particular, the most common
synchronous network model considers the setting where all channel delays are upper bounded
by a single worst-case delay A and all channels have the same cost of communication. Even
though this model is theoretically interesting, it suffers from important practical limitations.
In particular, A has to be set large enough to accommodate any possible delay: Even in
cases where almost all parties have fast channels with delay § < A, the protocols do not
take advantage of this, and the running time of the protocol is affected by the slowest party.
This is particularly critical for information-theoretic protocols, where all current solutions
have a round complexity that depends on the depth of the circuit to evaluate. Similarly, the
protocols designed in this model also fail to take advantage of the cost of communication
from channels that are cheap, and the total communication cost is affected by the most
expensive channel.

Given the state of affairs, we initiate the study of asymmetric MPC. In asymmetric MPC,
the parties are divided into two categories. We consider fast parties, which are parties that
have access to high-end network resources (e.g. channels with small delay, cheap channels,
etc), and slow parties, which are parties that have access only to low-end network resources.
One can think about the fast parties as parties that are in some sense privileged and have
access to fast and cheap internet connection, e.g. with fiber, while slow parties are not so
privileged, and only have access to slow and expensive connectivity, e.g. one may think
of mobile devices or IoT devices such as sensors collecting data. Considering parties with
asymmetric resources allows us to not only model more realistic scenarios, where parties
have access to different levels of resources, but also to design more refined protocols that
exploit such asymmetries, thereby improving the performance and communication cost of
protocols, while at the same time achieving more refined levels of security and assumptions.

2  Our Contributions

We initiate a systematic study of asymmetric MPC with respect to two different models for
network resources. In the first model, we consider a network with asymmetric communication
delay. Fast parties are connected via channels with small delay § among themselves, while
all other channels, which are connected to a slow party, have a large delay A. In the second
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model, we consider a network with asymmetric communication cost. This means that fast
parties benefit from channels with cheap communication, while other channels incur a high
cost of communication.

Our focus is on minimizing the complexity from the slow parties (minimizing the number
of slow rounds, respectively the usage of expensive channels) while at the same time tolerating
as many corruptions and slow parties as possible. This allows us to give a first overall study
of asymmetric MPC protocols in a clean manner.

What are the achievable trade-offs between the number of tolerated corruptions and

slow parties compared to the number of slow rounds in the model with asymmetric

delays? And similarly, trade-offs with respect to the number of bits transmitted over
expensive channels in the model with asymmetric communication cost?

To the best of our knowledge, no previous work has addressed the setting of asymmetric
MPC, for any of the resource models. For example, synchronous protocols assume that all
channels have the same worst-case delay and also that the cost of communication is the same
for all channels. Similarly, asynchronous protocols assume that all channels have eventual
delivery, and that all channels have the same cost of communication.

Note, however, that existing protocols using standard cryptographic assumptions do
achieve a constant number of slow rounds [49, 5], and FHE-based protocols [40, 1, 26] achieve
low communication over expensive channels, so our focus is on information-theoretic protocols
when minimizing the number of slow rounds, and non-FHE protocols when minimizing the
communication over expensive channels. See a more detailed discussion in Appendix A.

2.1 MPC with Asymmetric Delays

The Model. As mentioned above, in this model we divide the parties into two categories:
fast and slow parties. Parties have access to a complete network of point-to-point (P2P)
channels. The channels between fast parties have a small delay § and are denoted fast
channels, and all the other channels, i.e. the channels that contain at least one slow party,
have a large delay A and are denoted slow channels.

We are interested in counting the number of slow P2P-rounds, which are the number of
P2P communication steps via all channels, and the number of fast rounds, which are the
number of P2P communication steps via the fast channels. Optimally, we would like to find
protocols that have a constant number of slow P2P-rounds, or at least a number of slow
P2P-rounds that is independent of the circuit to evaluate. Throughout the paper, we will
omit the P2P term, and simply denote such rounds as fast and slow rounds.

Existing Solutions. Current constant-round solutions based on cryptographic assumptions
[49, 5, 37, 35, 42, 34, 20, 8], are already asymmetric MPC protocols with a constant number
of slow rounds. This is because any constant-round synchronous MPC protocol trivially
implies an asymmetric MPC protocol in our setting with a constant number of slow rounds.

Information-Theoretic Protocols. Information-theoretic protocols are much more inter-
esting, since all current synchronous solutions require a number of rounds proportional to
the depth of the circuit to evaluate. This is in stark contrast with protocols in our model,
where we will be able to achieve a number of slow rounds that is independent of the circuit
(sometimes even constant). We propose several information-theoretic protocols for the setting
of malicious security, with abort and with guaranteed output delivery.

In the following, we let C' be the circuit to evaluate, and let n,s,t be the number of
parties, bound on the number of slow parties, and bound on the number of corruptions.

6:3
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Security with Abort. We first present a protocol that achieves security with abort and is
secure as long as t + s < n and t < n/2. The round complexity is O (1) slow rounds and
O (depth(C)) fast rounds.

» Theorem 1. Let n,s,t be natural numbers such that t + s < n and t < n/2. There is
an information-theoretic asymmetric MPC' protocol among n parties that securely evaluates
circuit C' with security with abort, in the presence of up to t malicious corruptions and s slow
parties. The round complexity is O (1) slow rounds and O (depth(C)) fast rounds.

We then show that improving the resiliency of our asymmetric MPC protocol requires a
breakthrough. Assume that ¢t + s = n. Then, the following result implies that information-
theoretic asymmetric MPC in a constant number of slow rounds implies constant-round
information-theoretic MPC in the synchronous model resilient up to 1 corruption, which is
known to be a major barrier in information-theoretic MPC.

» Theorem 2. Let n,s,t > 0 be natural numbers such that t +s = n. Then n-party
information-theoretic asymmetric MPC with security with abort (resp. guaranteed output
delivery), resilient up to t corruptions and s slow parties in R slow rounds, implies (s + 1)-
party information-theoretic synchronous MPC with security with abort (resp. guaranteed
output delivery), resilient up to 1 corruption in R rounds.

Guaranteed Output Delivery. In the setting of malicious security with guaranteed output
delivery, we present two results.

A Protocol for 2t+s < n andt < n/3. We start by presenting a solution for an information-
theoretic protocol with guaranteed output delivery in the regime where 2¢ + s < n and
t < n/3 (with no setup nor broadcast).

» Theorem 3. Let k be a security parameter. Let n, s, t be natural numbers such that 2t+s < n
and t <n/3. There is an asymmetric MPC protocol among n parties that securely evaluates
circuit C' with guaranteed output delivery in the presence of up to t malicious corruptions and
s slow parties. The round complezity is O (k) slow rounds and O (depth(C) - k) fast rounds.

In the above theorem statement, if synchronous broadcast channels are assumed as setup
(or alternatively, a setup for i-t signatures [44]), the condition ¢ < n/3 is not necessary. The
above protocol inherently requires the condition 2t + s < n. However, optimally one would
wish to require an honest majority overall, rather than among the fast parties. We therefore
want to find protocols that deal with a dishonest majority among the fast parties.

Broadcast with Asymmetric Delays. To overcome this bound, we identify a natural
primitive in our setting with asymmetric delays, called asymmetric broadcast. This primitive
ensures that all the fast parties obtain the output within d;. fast rounds, while slow parties
obtain the same output much later, within D, slow rounds. We call the quantity dj. the
fast asymmetric broadcast delay, and Dy, the slow asymmetric broadcast delay.

Our first step is to investigate the possible trade-offs for asymmetric broadcast. Our
results completely characterize the feasibility of asymmetric broadcast from point-to-point
channels, by showing matching positive and negative results.

First, in Section 5.2, we show a simple construction of n-party asymmetric broadcast
with a fast sender, where dp. and Dy, are O(k), and security holds up to ¢ corruptions and s
slow parties, as long as 2t + s < n, assuming a PKI setup for signatures. The theorem holds
also unconditionally, if the setup consists of information-theoretic signatures [44].
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» Theorem 4. Let n,s,t be natural numbers such that 2t + s < n. Assuming a PKI setup
for signatures, there is an n-party asymmetric broadcast protocol with dy. = Dy. = O(k),
tolerating t malicious corruptions and s slow parties.

Perhaps surprisingly, this is the best trade-off one can achieve, and tolerating 2t + s = n
for any non-trivial parameters ¢ > 0 and s > 0 is impossible, even with setup, and for any
number of fast and slow rounds.

» Theorem 5. Let n,s,t > 0 be natural positive numbers such that 2t + s = n. Then,
asymmetric broadcast is impossible against t malicious corruptions and s slow parties, even
with setup.

A Protocol for t+s <n and t < n/2. We now present an asymmetric MPC protocol
where parties have access to asymmetric broadcast channels with fast and slow delays dp.
and Dy, and achieve a protocol that is secure as long as t + s < n and ¢ < n/2. The round
complexity is O (n - Dy.) slow rounds and O (depth(C) - n - dy.) fast rounds. In the optimistic
case where no party is corrupted, we save a factor n in the round complexity. That is, in
this case the protocol incurs O (Dy.) slow rounds and O (depth(C) - dp.) fast rounds.

» Theorem 6. Let n,s,t be natural numbers such that t + s <mn and t < n/2. Assuming
asymmetric broadcast with slow and fast delays Dy. and dp., there is an asymmetric MPC
protocol among n parties that securely evaluates circuit C with guaranteed output delivery,
in the presence of up t corruptions and s slow parties. The round complexity is O (n - Dy,)
slow rounds and O (depth(C') - n - dye) fast rounds. In the optimistic case where no party is
corrupted, the round complexity is O (Dp.) slow rounds and O (depth(C) - dy.) fast rounds.

The number of rounds in the protocol above has a linear dependency in the number of
parties in the worst case. This linear dependency can be removed at the cost of requiring
any constant fraction of honest parties among the fast parties.

» Corollary 7. Let € > 0 and n, s,t be natural numbers such that t < min{(1—e€)(n—s),n/2}.
Assuming asymmetric broadcast with slow and fast delays Dy. and dy., there is an asymmetric
MPC protocol among n parties that securely evaluates circuit C with guaranteed output
delivery, in the presence of up to t corruptions and s slow parties. The round complexity is
O (Dy) slow rounds and O (depth(C) - dp.) fast rounds.

2.2 MPC with Asymmetric Communication Cost

The Model. Similar to the previous model, we divide the parties into two categories:
fast and slow parties. Parties have access to a complete network of standard synchronous
point-to-point channels with the same delay upper bound. However, now the channels are
differentiated with respect to the cost of communication. The channels between fast parties
have a small cost and are denoted by cheap channels, and all other channels, i.e. the channels
that contain at least one slow party as sender or receiver, have a high cost and are denoted
by ezpensive channels.

We are interested in minimizing the number of bits transmitted over the expensive
channels. Note that slow parties need to distribute their inputs, so the number of transmitted
bits over expensive channels will definitely depend (at least) on the total number of slow
parties and their input size. Our main focus is therefore that the number of bits over
expensive channels does not depend on the circuit to evaluate.
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Existing Solutions. Current solutions that make use of (multi-key) fully-homomorphic
encryption (FHE) [40, 1, 26] already transmit a number of bits over expensive channels that
is independent of the circuit to evaluate, given that the computation is performed under the
homomorphic evaluation with no interaction.

A Protocol From One-Way Functions. Our focus is then on protocols that do not make
use of FHE. Even more, we will focus on protocols that make use of as weaker cryptography
assumptions as possible (preferably one-way functions, or no assumptions).

We provide a protocol that is resilient as long as t+s < n and ¢t < n/2 and achieves security
with abort. The protocol communicates O(poly(n, k)) bits over the expensive channels and
assumes the existence of one-way functions.

» Theorem 8. Let n,s,t be natural numbers such thatt +s <mn and t < n/2. Assuming
the existence of one-way functions, there is an asymmetric MPC protocol among n parties
that securely evaluates circuit C' with security with abort, in the presence of up to t malicious
corruptions and s slow parties. The communication complexity is O (poly(n,k)) bits of
expensive communication and O (poly(n, k)|C|) bits of cheap communication.

Interestingly, our communication-efficient protocol requires the existence of one-way
functions, in contrast to our round-efficient protocols. We conjecture that this is necessary,
and provide a partial result in this direction.

» Lemma 9. Assume an n-party asymmetric MPC, secure up to t semi-honest corruptions
and s slow parties such that the slow parties perform constant computation, for any n,s,t >0
natural numbers such that n —s > 1, t+s <mn and t <n/2. Then, this implies the existence
of one-way functions.

2.3 Open Questions

Our work initiates the area of asymmetric MPC and leaves several exciting new directions
for future research. We highlight some of them:

1. General network topologies: We divide the parties into slow and fast parties, where fast
parties have high-end channels among themselves, while all other channels are low-end.
One can generalize this setting and consider more general network topologies, where a
party may at the same time have some high-end and some low-end channels.

2. Other resource asymmetries: Our work considers models with respect to network asymme-
tries. One can explore other types of resources. For example, one can explore trade-offs
with respect to asymmetric computation or memory resources.

3. Communication-efficient protocol with guaranteed output delivery: Our communication
efficient protocols achieve security with abort. It would be interesting to see if our
techniques extend to the case of guaranteed output delivery.

4. Concrete efficiency: Our protocols serve as a basis for feasibility of asymmetric MPC,
and our focus is on minimizing the complexity coming from the slow parties. In practice,
one may consider more refined settings where the cost difference is explicit (for example,
expensive channels cost as twice as cheap channels). Understanding which concrete cost
differences are relevant in practice and designing protocols tailored to such settings is an
exciting open research direction.
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3 Technical Overview

In this section we describe the techniques used to achieve our theorem statements.

3.1 Information-Theoretic MPC with Asymmetric Delays

We present several information-theoretic solutions for the settings of security with abort and
guaranteed output delivery.

Security with Abort. We provide a simple solution that achieves security with abort in a
constant number of slow rounds, when ¢ + s < n and ¢t < n/2. The protocol lets all parties
generate during a pre-processing phase OT correlations among the fast parties, using an
information-theoretic MPC protocol for honest majority and security with abort, with round
complexity linear in the depth of the circuit (e.g. [46, 21]). Since the OTs can be generated
in parallel and can be computed with a constant-depth circuit, this takes a constant number
of slow rounds. Then, the parties execute an information-theoretic MPC protocol in the
client-server model, that achieves security with abort against a dishonest majority in the
OT-hybrid model: The parties (acting as clients) distribute their inputs to the fast parties
(acting as servers), who will compute the corresponding outputs and send them back to the
respective parties. Existing protocols [36, 15] run in a constant number of rounds during the
input and output phases, and the number of rounds during the computation is linear in the
depth of the circuit to evaluate. This leads to Theorem 1.

We then show that our protocol achieves the optimal resilience: any asymmetric MPC
protocol secure when ¢ + s = n among n parties and with constant number of slow rounds,
implies a synchronous MPC protocol with security with abort, resilient up to 1 corruption in
constant number of rounds, which is a major open problem in round complexity of MPC. The
proof implication follows from a simple emulation argument: In order to design a synchronous
MPC protocol among s + 1 parties, we simply let s parties emulate each of the slow parties
in the asymmetric MPC protocol, and the last party to emulate all fast parties altogether
(in total ¢ parties). The resulting synchronous protocol has a round-complexity that is the
same as the number of slow rounds in the asymmetric MPC protocol, and therefore the
implication follows. This corresponds to Theorem 2.

Asymmetric Broadcast. We briefly sketch the arguments that exactly characterize the
feasibility of asymmetric broadcast.

First observe that it is clear that for a sender that is a slow party, it is impossible to
expect the fast parties to obtain output fast, even when all parties are honest. Therefore, we
focus on the case where the sender is a fast party.

The protocol to achieve asymmetric broadcast (for a fast sender), for any 2t + s < n,
assuming a PKI for signatures, is quite simple: Fast parties run a synchronous broadcast
protocol [33] among themselves, and reach agreement on a value v. All fast parties send the
value v to the slow parties, who take a majority decision. Since there is honest majority
among the fast parties, all slow parties output the same value. This is presented in Theorem 4.

In order to show that asymmetric broadcast (for a fast sender) is impossible when
2t + s = n, even with setup, we make use of two ideas. First, observe that fast parties must
output before the slow parties are even able to communicate with any fast party. This is
because fast rounds may be much faster than slow rounds, i.e., the delay § < A of fast
channels could be much smaller than the delay A of slow channels, and asymmetric broadcast
requires fast parties to output fast. Let v denote the value that the fast parties output.
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Second, since there is a dishonest majority among the fast parties, the corrupted parties
(including the sender) can simulate towards the slow parties an execution with input value
v’ # v. As a consequence, the honest slow parties cannot decide on a consistent output value.
A precise scenario-based proof is presented in Theorem 5.

Guaranteed Output Delivery. We present two results. We first present a somewhat simple
solution for an information-theoretic protocol in the regime where 2t + s < n and t < n/3.
The protocol works as follows: First, since t < n/3, the protocol generates a setup for
information-theoretic signatures to emulate synchronous broadcast channels with guaranteed
termination [44, 33] from slow parties to all parties in O(k) slow rounds, and from fast parties
to themselves in O(k) fast rounds, where « is the security parameter. Using these broadcast
channels, parties can execute an existing synchronous protocol in the client-server model
as follows: All parties initially play the role of a client, while each fast party in addition
plays the role of a server. The clients distribute their inputs towards the n — s servers, where
each synchronous round corresponds to a slow round. The servers then perform the protocol
computation, where each synchronous round corresponds to a fast round. Finally, the fast
parties robustly reconstruct each output to the respective clients, where each synchronous
round corresponds to a slow round. Standard information-theoretic protocols [46, 14] tolerate
up to half of the corrupted servers (we assume 2t < n — s) and any number of clients, and
have a constant number of rounds and broadcast invocations, during the input and the output
phase, and a number of rounds proportional to the circuit depth during the computation
phase. This results in an asymmetric MPC protocol with O(x) slow rounds and a number of
fast rounds proportional to the circuit depth times &, corresponding to Theorem 3.

We then present our information-theoretic asymmetric MPC protocol with guaranteed
output delivery, and resilience t + s < n and ¢ < n/2, which assumes asymmetric broadcast.

The protocol follows the sharing-based paradigm, and has a preprocessing phase and
an online phase. During the preprocessing phase, the parties generate raw data that is
independent of the inputs. During the online phase, the parties receive their inputs and
perform the protocol evaluation.

In the preprocessing phase, we generate certified Beaver multiplication triples, using the
MPC protocol by Cramer et. al. [14].

Background. Let us first recap their VSS protocol Il [14]. The protocol follows
traditional verifiable secret sharing schemes [19, 7] with bivariate polynomials, but uses
so-called information-checking (IC) signatures, instead of error correction. One can think
about such signatures as information-theoretic signatures that can only be forwarded once.
These can be generated unconditionally without setup, and also have a linearity property,
where given signatures for values x and y, one can compute a signature on x + y.

In order to share a value v, the dealer D creates a random bivariate polynomial f(z,y)
of degree at most ¢, with f(0,0) = v. The univariate polynomial projections f(z,) and
f(i,y) are sent to party P; in a signed manner (by sending all the points (a1, ..., a;m) =
(f(5,1),..., f(i,n)) and (b14,...,bni) = (f(1,49),..., f(n,i)), where each point is signed using
IC-signatures). After this, the parties can bilaterally compare the cross-point values between
them, and expose inconsistent behavior by the dealer by broadcasting the signatures. If an
inconsistency is detected, the dealer is disqualified.

After the checking process, the values held by honest parties are consistent, and since
there are at least n — ¢ > ¢ + 1 honest parties, these values uniquely define a bivariate
polynomial f'(x,y) of degree at most ¢, which in turn defines a fixed secret v/ (which is
v’ = v if the dealer is honest). Therefore, this already ensures that the dealer is committed
to a value after the sharing phase.
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Still, the reconstruction might fail if the adversary sends corrupted shares (the adversary
can send arbitrary shares). To avoid that, each share of P; is also signed by the other parties.
This will in turn prevent the adversary from corrupting the secret at reconstruction time.

At the end of the VSS, each party P; holds sub-shares (a;1,...,a;,), where a;; is signed
by P;. This implicitly defines a share a;, which in the case of an honest dealer is f(¢,0).

With the above VSS, one can process addition gates locally (using the fact that the
IC-signatures are linear). The multiplication gates are processed using the well-known
method by Gennaro, Rabin and Rabin [22]: Each party P; locally multiplies his shares a;
and b; of the input wires a and b, and shares the result d; = a;b; using VSS. This results
in n VSSs and a proper sharing of the output wire ¢ can be computed as a fixed linear
combination of these. The authors show a way for P; to share a secret d;, such that d; = a;b;
and to prove that he has done so properly. The details can be found in [14].

The Online Protocol. At the start of the online phase, enough triples (x,y,z) have
been shared using the protocol described above, where each of the shares x;, y;, 2; are
held (implicitly) by party P; via the corresponding sub-shares, which are IC-signed by the
other parties. Note that generating such certified Beaver triples takes O(1) invocations of
broadcast, since they can be generated in parallel.

The online phase proceeds as follows. Parties distribute their inputs using Il,s. The
addition gates are locally computed (simply adding the shares and the IC-signatures, since
they are linear). In the multiplication gates, fast parties publicly open two random values,
(a —z) and (b — y), where a and b are the values of the input wires to the multiplication
gate, by running the same reconstruction procedure of Il,, except that they distribute their
shares using asymmetric broadcast. Since the values are IC-signed, corrupted fast parties
can only withhold their shares. Since fast parties distribute their shares via the asymmetric
broadcast channel, this implies that all parties, fast and slow, reach agreement on the set of
parties that did not contribute their share and are corrupted.

Note that since the threshold is t < n — s, if all fast parties contribute their shares, the
slow parties do not need to participate (and the protocol can proceed between between
the fast parties, without incurring additional slow rounds). However, if not all shares are
received, a process to identify and kick out corrupted parties is performed: fast parties wait
for the slow parties to help opening the shares (note that n — ¢ > ¢, and therefore all honest
parties can jointly open the shares). The corrupted identified parties are then kicked out
of the computation, and the protocol is restarted without the kicked parties. This process
incurs and overhead of a constant number of slow asymmetric broadcast delays. And since
every time at least one corrupted party is kicked out, the incurred overhead on the total
number of slow rounds is linear in the number of parties. This corresponds to Theorem 6.

3.2 MPC with Asymmetric Communication Cost

We describe the protocol for MPC that communicates O(poly(n, x)) bits over slow connections,
and achieves resilience ¢ + s < n and ¢ < n/2. The protocol is based on one-way functions,
and is similar to the simple protocol mentioned in Theorem 1 in the asymmetric delay model.

In that protocol, the step that is communication expensive, is the generation of the OT
correlations, which depends on the circuit size. In order to solve that, we will make use of
OT-extension protocols [41, 2], which can be based on one-way functions. More concretely,
since t < m/2, parties can jointly create x OT correlations among each pair of fast parties
using an honest-majority MPC protocol [46, 14]. This step communicates O(poly(n, %)) bits
over slow connections. The fast parties then perform an OT-extension protocol to set up
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an OT channel between each pair of fast parties [41, 2]. With this setup, parties can then
perform an unconditional protocol achieving dishonest majority in the OT-hybrid model
[36, 15] among the fast parties. This is stated in Theorem 8.

The protocol described above makes use of one-way functions. We conjecture that this
is necessary, and provide a partial result: we show that any asymmetric MPC protocol
containing at least two fast parties, where the slow parties perform little computation, and
with resilience t + s < n, implies the existence of one-way functions.

The high-level idea is to build an OT extension protocol from an asymmetric MPC
protocol. Since OT extension implies the existence of one-way functions [38], the claim
follows. Assume that there is an asymmetric MPC protocol that outputs a large number
of OTs. We can emulate the computation of each slow party using a protocol for dishonest
majority (e.g. [24]). Note that since each slow party performs a small amount of computation,
the circuit that is used to emulate the computation uses a small number of (seed) OTs as
well. This is stated in Lemma 9.

4 Models and Definitions

We consider a set of n parties P = {Py,..., P,}. We partition the set of parties into two
known categories, slow parties and fast parties, P = S U F. Let k be the security parameter.

4.1 Communication Network and Adversary

We consider a complete network of point-to-point secure channels. Parties have access to
synchronized clocks, and messages sent by honest parties are guaranteed to be delivered
within some known upper bound delay. We consider two asymmetric network models.

Network with Asymmetric Delays. In the first model, we consider a network with asym-
metric delays. The channels between fast parties deliver messages within a small delay §, and
are denoted fast channels. And all channels containing at least one slow party have a large
delay A, and are denoted slow channels. We measure the round complexity as the number of
slow P2P-rounds (communication steps via all channels), and the number of fast P2P-rounds
(communication steps via fast channels). We will omit mentioning the P2P term, and simply
denote such rounds as fast and slow rounds.

Network with Asymmetric Communication Cost. In the second model, we consider
a network with asymmetric communication cost. Here, all the channels have the same
delay upper bound, similar to the standard synchronous network model, but the cost of
communication is asymmetric. We will consider expensive communication, the number of
bits transmitted via channels that contain at least one slow party, and cheap communication,
the number of bits transmitted via channels that contain only fast parties.

Adversary. We consider a static adversary who corrupts parties in an arbitrary manner at
the beginning of the protocol.

4.2 Broadcast

Broadcast allows a designated party called the sender to consistently distribute a message
among a set of receivers.
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Synchronous Broadcast. The synchronous broadcast channel with guaranteed termination
delivers the output to the set of receivers after a fixed number of rounds.! Synchronous
broadcast protocols with guaranteed termination can be achieved within O(k) rounds, when
there are up to a third fraction of corrupted parties [19]. This is also the case for honest
majority, if a setup is available [33]. In the dishonest majority setting, synchronous broadcast
is achievable in O(n) rounds with a PKI setup [18], and even unconditionally with a setup
for information-theoretic signatures [44].

These protocols, when run in the asymmetric network delay model, achieve an actual
number of rounds that is proportional to the slowest channel. This means, that if all the
parties involved (sender and receivers) are connected via fast channels, the output is received
after a fixed number of fast rounds. However, when some of the channels between the
considered parties are slow, the protocols guarantee that the receivers obtain the output in a
fixed number of slow rounds.

4.3 Secret Sharing

In some of our protocols, we make use of Shamir secret sharing scheme [48]. This is a
t-out-of-n linear secret-sharing scheme over a finite field F, consisting of two protocols,
(Sh,Rec), called share and reconstruct.

Protocol Sh allows a designated party, called the dealer, to distribute a value s € F
among n parties, Py,..., P,. For that, the dealer samples a uniform random polynomial
f € Flz] with degree at most ¢, and subject to the fact that f(0) = s. Then, the dealer sends
the value f(i) = s; to P;. We denote s; the share of P;, and the vector [s]s = (s1,...,54)
is called a degree-t sharing of s. We may omit the degree if it is clear from the context.
Note that any set of ¢ shares does not reveal anything about the secret. Protocol Rec allows
parties to jointly reconstruct a secret s’, which corresponds to the original secret s if the
dealer is honest. Shamir secret sharing scheme satisfies in addition the following properties:

Additive Homomorphism: V[x], [y]:, [z + y]t = [x]t + [y]+-
Local Multiplication of Degree-t Sharings: V|[x], [y]:, [Z - y]ot = [®]¢ - [y]¢-

4.4 Oblivious Transfer

Oblivious transfer [45] is a two-party primitive between a sender S, and a receiver R. The
sender has two inputs zg,xz; € {0,1}, called the messages, and the receiver R has an
input ¢ € {0,1}, called the selection bit. The oblivious transfer guarantees that R outputs
Ze = c(xo ® x1) B 0, and that no party learns any other information.

5 MPC with Asymmetric Delays

In this section we introduce protocols in the model with asymmetric delays. We are interested
in protocols that incur as few slow rounds as possible, preferably a constant, and tolerating
a high number of corruptions and slow parties.

1 There are also protocols with probabilistic termination (19, 33], where the parties obtain output after
an expected-constant number of rounds. However, composing such protocols involves many subtleties.
See for example [13] for a nice discussion.
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5.1 Security with Abort

Protocol Description. We present a naive protocol that achieves security with abort in a
constant number of slow rounds, when ¢t + s < n and ¢ < n/2.

The protocol lets all parties generate during a pre-processing phase OT correlations
among the fast parties, using a (synchronous) information-theoretic MPC protocol for honest
majority and security with abort (e.g. [46, 21]), with round complexity linear in the circuit
depth to evaluate. Note that since the OTs can be generated in parallel and can be computed
with a constant-depth circuit, this is possible in a constant number of slow rounds. Then,
the parties execute an information-theoretic MPC protocol in the client-server model, that
achieves security with abort against a dishonest majority in the OT-hybrid model: All parties
act as clients and distribute their inputs to the fast parties, who also act as servers. The fast
parties will then compute the corresponding outputs and send them back to the respective
parties. Existing protocols [36, 15] run in a constant number of rounds during the input and
output phases, and the number of rounds during the computation is linear in the depth of
the circuit to evaluate. As a consequence, the overall protocol incurs a constant number of
slow rounds, and a number of fast rounds proportional to the depth of the circuit. This leads
to the following theorem, and the proof follows from the security of [46, 21] and [15].

» Theorem 1. Let n,s,t be natural numbers such that t +s < n and t < n/2. There is
an information-theoretic asymmetric MPC' protocol among n parties that securely evaluates
circuit C' with security with abort, in the presence of up to t malicious corruptions and s slow
parties. The round complezity is O (1) slow rounds and O (depth(C)) fast rounds.

Barrier Result. Our result shows that improving the resiliency achieved by the protocols in
the above sections would be a breakthrough in the area of information-theoretic synchronous
MPC. In particular, if there is an information-theoretic protocol that is constant in the
number of slow rounds for ¢ + s = n, this implies a constant-round information-theoretic
synchronous MPC protocol secure up to 1 corruption.

» Theorem 2. Let n,s,t > 0 be natural numbers such that t +s = n. Then n-party
information-theoretic asymmetric MPC with security with abort (resp. guaranteed output
delivery), resilient up to t corruptions and s slow parties in R slow rounds, implies (s + 1)-
party information-theoretic synchronous MPC with security with abort (resp. guaranteed
output delivery), resilient up to 1 corruptions in R rounds.

Proof. Let IT be the protocol for fast and slow parties with R slow rounds. We want to
construct a synchronous protocol II" among s + 1 parties with R rounds.

Let us call the s + 1 virtual parties Py, ..., Ps11. Each party P;, i € [s] emulates a slow
party, and the last party Psy; emulates all the fast parties. The parties then execute the
protocol II, where the messages between fast parties are emulated internally by Psy.

The resulting protocol I is a secure synchronous protocol up to 1 corruption and with R
rounds. This follows from the fact that II is a secure protocol tolerating ¢ corruptions, and
each virtual party contains at most ¢ parties from II. |

5.2 Broadcast with Asymmetric Delays

The asymmetric broadcast channel guarantees the delivery of a consistent message fast to the
fast parties and slow to the slow parties. More precisely, an asymmetric broadcast channel
achieves guaranteed output after Dy, slow rounds for slow parties, and dj. fast rounds for
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the fast parties. We will make use of this channel in the protocol for guaranteed output
delivery with resilience t + s < n and t < n/2, but in this section we study the feasibility of
this primitive from a complete network of point-to-point channels as a stand-alone question.

Functionality F.gc }

1: On input z from the sender P*, output z to the adversary. Then, output = to all parties
in S after Dy, slow rounds and all parties in F after d. fast rounds.

First, note that when the sender is slow, it is impossible to achieve asymmetric broadcast,
since one needs at least a slow round to distribute the value towards the fast parties. Therefore,
in the following we focus on the more interesting case where the sender is a fast party.

Feasibility. Assuming setup, if 2 + s < n, it is easy to see that asymmetric broadcast with
a fast sender is achievable. The protocol proceeds as follows: The sender with input s uses
a synchronous broadcast protocol to distribute his value among all the fast parties. Since
there is an honest majority of fast parties, one can for example use the protocol by Katz
and Koo [33]. All the fast parties reach agreement on a value s’ (which is s if the sender is
honest) within O(k) fast rounds, and they send their value to the slow parties, who will take
a majority decision and output the result. Therefore, the slow parties output after O(k) fast
rounds, and 1 slow round.

» Theorem 4. Let k be a security parameter. Further let n,s,t be natural numbers such that
2t + s < n. Assuming a PKI setup for signatures, there is an n-party asymmetric broadcast
protocol with dp. = Dy, = O(k), tolerating t malicious corruptions and s slow parties.

The protocol can be achieved with unconditional security, if a setup for information-
theoretic signatures is assumed [44].

Impossibility. We show that asymmetric broadcast is impossible when 2t + s = n for
a fast sender (even with setup), for any non-trivial parameters ¢ > 0 and s > 0. Note
that this is in contrast to synchronous broadcast, which is achievable for any number of
corruptions assuming a PKI setup [18]. (Or even unconditionally, assuming information-
theoretic signatures [44].) The main challenge is to achieve agreement between fast and slow
parties. Intuitively, since asymmetric broadcast requires fast parties to obtain the output
fast, they need to decide their output value (let us denote it v) without having received
any value from the slow parties. Moreover, since there is dishonest majority among the fast
parties, they can act towards the slow parties as if their output value was v # v. As a
consequence, the honest slow parties will not output v and consistency is broken. The proof
of the following theorem can be found in Appendix B.

» Theorem 5. Let n,s,t > 0 be natural positive numbers such that 2t + s = n. Then,
asymmetric broadcast is impossible against t malicious corruptions and s slow parties, even
with setup.

5.3 Guaranteed Output Delivery

In this section, we present two protocols. The first protocol achieves a lower resilience, but
operates only assuming point-to-point channels. The second protocol has a higher resilience,
but makes use of asymmetric broadcast.
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Protocol for 2t + s < n and t < n/3. In the regime where 2t +s < n and ¢ < n/3, it is
easy to design an asymmetric MPC protocol, by simply delegating the computation to the
fast parties. Note that since ¢ < n/3, the parties can create a setup of information-theoretic
signatures, which can be used to construct a synchronous broadcast channel [44, 33] from slow
parties to all parties in O(k) slow rounds, and from fast parties among themselves in O(k)
fast rounds. With the emulated synchronous broadcast channels, parties can then execute
an honest majority protocol such as [46] as follows: the slow parties, using the emulated
broadcast channel, use a verifiable secret sharing scheme to share their input towards the
fast parties (with threshold ¢), who will robustly evaluate the circuit among themselves. The
fast parties can then robustly reconstruct the output towards the respective recipients. The
total round complexity is O (k) slow rounds and O (depth(C) - ) fast rounds. The proof of
the following theorem follows from the security of [46] and [33].

» Theorem 3. Let k be a security parameter. Let n, s,t be natural numbers such that 2t+s < n
and t <n/3. There is an asymmetric MPC protocol among n parties that securely evaluates
circuit C' with guaranteed output delivery in the presence of up to t malicious corruptions and
s slow parties. The round complezity is O (k) slow rounds and O (depth(C) - ) fast rounds.

We note that if a synchronous broadcast channel is given (or alternatively a setup for
information-theoretic signatures), the condition ¢ < n/3 is not necessary.

Protocol for t + s < n and t < n/2. In this section, we present a protocol that achieves
guaranteed output delivery with the higher trade-off ¢t + s < n and ¢ < n/2. The resulting
protocol has round complexity O (n - Dy.) slow rounds and O (depth(C) - n - dp.) fast rounds,
assuming asymmetric broadcast.

Generating Certified Beaver Triples. We generate Beaver multiplication triples (a, b, ¢),
that are shared among all parties. The triples are certified, in the sense that all shares are
signed via information-checking signatures. There can be thought of as signatures that are
information-theoretic, and can only be forwarded once. The signatures are also homomorphic,
in the sense that for two values that can be verified by the scheme, any linear combination of
them can also be verified with no additional information. See [14] for a concrete construction.

We generate the triples using the protocol by Cramer et al. [14], which makes use of such a
IC-signature scheme. The protocol takes O(1) invocations to asymmetric broadcast (incurring
a total of O(Dy.) slow rounds), since the multiplication triples can be generated in parallel.
In this protocol, a value s is shared using a bivariate polynomial f(x,y) with degree at most
t. At the end of the sharing protocol, each honest party P; holds the values s;1,..., Sin
that lie on a degree-t polynomial, which in the case the dealer is honest, corresponds to
the values f(i,1),..., f(i,n). This implicitly defines the share of P;, which is s; = f(4,0).
Moreover, each value s;; is signed by party P;, and we denote such a signature (from P; to
P;) by o(s;j, Pj, P;). This signature allows P; to forward the value s;; in an authentic way.
In Appendix C, we recap the protocol in detail.

The Online Phase. At the start of the online phase, enough triples (a,b,c) have been
shared using the protocol in [14]. This means, that each party P; implicitly holds each of the
shares a;, b;, ¢; via the corresponding sub-shares, which are signed by the other parties.
The online phase proceeds as follows. Parties distribute their inputs using Ils, the VSS
scheme in [14]. The addition gates can locally be computed (simply by locally adding the
shares and locally adding the signatures, since they are linear). In the multiplication gates,
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fast parties robustly open two random values, (z — a) and (y — b), where x and y are the
values of the input wires to the multiplication gate, by running the same reconstruction
procedure of Ils, except that they distribute their shares using asymmetric broadcast. Since
the values are signed, corrupted fast parties can only withhold their shares. Since fast parties
distribute their shares via the asymmetric broadcast channel, this implies that all parties,
fast and slow, reach agreement on the set of parties that did not contribute their share and
are corrupted. Note that since the threshold is ¢t < n — s, if all fast parties contribute their
shares, the slow parties do not need to participate (and therefore we do not need to incur
additional slow rounds). However, if not all shares are received, a process to identify and
kick out corrupted parties is performed: fast parties wait for the slow parties to help opening

the shares (note that n — ¢t > ¢, and therefore all honest parties can jointly open the shares).

The corrupted identified parties are then kicked out of the computation, and the protocol is
restarted without the kicked parties. This process involves O(Dy.) slow rounds. And since
every time at least one corrupted party is kicked out, the incurred total number of slow
rounds is linear in the number of parties times the broadcast slow delay. We formally describe
the protocol in Appendix D, and a proof of the following theorem appears in Appendix E.

» Theorem 6. Let n,s,t be natural numbers such that t +s < n and t < n/2. Assuming
asymmetric broadcast with slow and fast delays Dy and dpc, Iligoq s an asymmetric MPC
protocol among n parties that securely evaluates circuit C with guaranteed output delivery,
in the presence of up t corruptions and s slow parties. The round complexity is O (n - Dy,)
slow rounds and O (depth(C) - n - dy.) fast rounds. In the optimistic case where no party is
corrupted, the round complezity is O (Dy.) slow rounds and O (depth(C) - dy.) fast rounds.

Although the number of slow rounds is independent of the depth of the circuit, it has
the drawback that it depends on the number of parties in the worst case. However, if we
assume that among the fast parties there is a constant fraction of parties that are honest,
then we can modify the above protocol to achieve round complexity O (D) slow rounds
and O (depth(C) - dp.) fast rounds. Then, the adversary needs e(n — s) corrupted parties to
not send messages in order to execute Steps 3 and 4 in a multiplication step, which will be
all identified and kicked out of the computation. This can only happen at most 1/e times.

» Corollary 7. Let € > 0 and n, s,t be natural numbers such that t < min{(1—e)(n—s),n/2}.
Assuming asymmetric broadcast with slow and fast delays Dy. and dp., there is an asymmetric
MPC protocol among n parties that securely evaluates circuit C with guaranteed output
delivery, in the presence of up to t corruptions and s slow parties. The round complexity is
O (Dy.) slow rounds and O (depth(C) - dp.) fast rounds.

6 MPC with Asymmetric Communication Cost

In this section we introduce protocols in the model with asymmetric communication cost.
We are interested in protocols that transmit as few bits as possible over expensive channels
(channels containing at least one slow party), and that tolerate a high number of corrupted
parties and slow parties. Looking closer, our protocol from Theorem 3 already achieves small
expensive communication, independent of the circuit since expensive communication only
occurs in the input and output stages. However, the resiliency is only 2t + s < n. Therefore,
we turn our attention to protocols achieving resiliency ¢ + s < n and ¢t < n/2.
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6.1 Security with Abort

We provide a protocol that achieves security with abort and communicates O(poly(n, k)) bits
over the expensive channels. The protocol assumes the existence of one-way functions, and
follows from existing results. The idea is to generate pair-wise OT correlations among the
fast parties during a pre-processing phase. This is possible [46, 21] since there is an honest
majority ¢ < n/2 of parties, and the total number of communicated bits over expensive
channels is independent of the circuit size. More concretely, all parties will prepare x OT
correlations per fast connection (in total O(n?x) OTs?. Each pair of fast parties can then
use OT extension protocols [4, 32, 41] to set up OT channels between them. Once the OT
channels are prepared, we can execute a standard unconditional OT-based protocols for
dishonest majority [36, 15] to perform the computation among the fast parties, and deliver
the outputs to all the parties, leading to the following theorem statement.

» Theorem 8. Let n,s,t be natural numbers such that t + s < n and t < n/2. Assuming
the existence of one-way functions, there is an asymmetric MPC protocol among n parties
that securely evaluates circuit C' with security with abort, in the presence of up to t malicious
corruptions and s slow parties. The communication complexity is O (poly(n,k)) bits of
expensive communication and O (poly(n, k)|C|) bits of cheap communication.

6.2 Barriers on Communication Complexity

In this section, we show that if one assumes an asymmetric MPC, where the slow parties
perform a small amount of computation, then this implies OT extension.

» Lemma 9. Assume an n-party asymmetric MPC, secure up to t semi-honest corruptions
and s slow parties such that the slow parties perform constant amount of computation, for
any n,s,t > 0 natural numbers such that n —s > 1, t+s < n and t < n/2. Then, this
implies the existence of one-way functions.

Proof. The proof strategy is to build a semi-honest OT extension protocol from a semi-
honest asymmetric MPC protocol. Since OT extension for semi-honest corruption implies the
existence of one-way functions [38], the claim follows. Let ¢ the total circuit size to represent
the computation of the slow parties (this has polynomial size). Assume that there is an
n-party asymmetric MPC protocol I with at least 2 fast parties and secureuptot =n—s—1
and t < n/2. Further assume that the protocol outputs ¢ + 1 OT correlations. We first
describe an (n — s)-party reactive functionality Fyow that emulates the computation of the
slow parties. Concretely, this is a reactive functionality which keeps the internal joint state of
the slow parties, and which, upon giving inputs from the fast parties, it updates its internal
joint state and computes the outputs to the fast parties according to the protocol description
IT for the slow parties. Now we create a two-party protocol II' for OT extension, where both
parties have access to the reactive functionality described above, and where: P; emulates
n — s — 1 fast parties, and P, emulates the 1 remaining fast party. The two parties execute
the asymmetric MPC protocol, where any interaction with the slow parties is performed
via the reactive functionality Fgon instead. First, note that the reactive functionality can
be realized using a dishonest majority synchronous MPC protocol such as GMW among

2 This can be reduced to O(n«) OTs if there is a constant fraction of honest fast parties, i.e. ¢ < (1—€)(n—s),
for € > 0 constant, using the results of Harnik, Ishai and Kushilevitz [30], which combines from
distributing computations among several committees from Bracha [10], techniques for combining
oblivious transfers from Harnik et al. [31], and constructions of dispersers [25, 47])
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the fast parties. Further note that since we are assuming that the slow parties performs
computation represented by a total circuit size c. This means that the number of OTs needed
to realize Fyon is ¢. Finally, in terms of security, note that since the asymmetric MPC
protocol tolerates t = n — s — 1 corruptions, the resulting two-party protocol tolerates 1

corruption. In conclusion, the resulting two-party protocol where the reactive functionality is

emulated among the two fast parties is a secure OT extension protocol against a semi-honest

static adversary, which implies one-way functions. This concludes the proof. |
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Appendix
A Related Work

To the best of our knowledge, all current protocols consider a symmetric network resource
model, where all parties have access to the same types of channels: all channels have the same
delay and the same communication cost. In contrast, we consider a more refined asymmetric
resource model, by making a distinction between two party categories. In the following, we
show how our results compare to previous existing results.

Round Complexity of Information-Theoretic Synchronous MPC. The round complexity
of MPC has a significant line of works. We focus on the information-theoretic setting. Here,
all known protocols incur a number of rounds, that is linear in the depth of the computed
circuit [7, 11, 46], and each round corresponds to the worst-case delay upper bound A. This
is the case even when only one channel has delay A, and all other channels have delay § < A.
In contrast, we provide protocols where the number of slow A-rounds is independent of the
circuit size (even constant in some cases). Note that a constant number of slow rounds is
necessary in order to distribute the inputs of all slow parties.

Responsive MPC. A line of works focused on the problem of obtaining MPC protocols that
are responsive. These are protocols where the running time is as fast as the actual network
delay. Note that any asynchronous protocol is responsive, but there are also synchronous
protocols that remain responsive when the number of corruptions is small [43, 39]. These
protocols inherently cannot achieve input completeness, i.e., the inputs of up to ¢ honest
parties may be ignored from the computation, and are responsive up to ¢t < n/3 corruptions
(above n/3 corruptions, the running time is similar to that of synchronous protocols). In
contrast, our protocols achieve input completeness, and benefit from the fast channels even
up to t < n/2 corruptions.
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Communication Complexity of MPC. The communication complexity of MPC has a
significant line of works as well. Traditional solutions incur poly(n)|C| communication, and
since then, there has been a significant progress in the communication efficiency (see e.g.
[16, 6, 27, 28]). All these works consider the communication cost to be the same for all
channels, and, as a consequence, their communication depends on the circuit size. Our work
makes a distinction between cheap and expensive channels, and we provide protocols where
the amount of bits transmitted over expensive channels is independent of the circuit size.

MPC with Sporadic Participation. A line of works [29, 3, 9, 12, 23, 17] considered MPC
protocols where not all parties need to be online and /or participate at all steps of the protocol.
In such protocols, a main challenge is to keep the state of the honest parties consistent
throughout the protocol execution, and the protocol efficiency is counted uniformly (there is
no asymmetry between network resources). In our case all parties are always online, and
the main challenge is on minimizing the use of resources from a fixed known set of (slow)
parties.

B Proof of Theorem 5

We prove by contradiction. Assume that there is such a secure asymmetric broadcast protocol

resilient up to ¢ corruptions and s slow parties such that 2t +s =n, for s,t > 0and n—s > 1.

We partition the set of parties into three sets: the slow parties S, and two sets of size t Fy
and JF for the fast parties. We make the argument for an external fast sender role P*.

The adversary corrupts the sender P* and chooses a random bit b. Then, it corrupts Fy.

In addition, the adversary runs the following two executions Execy and Exec; at the same
time.

In Execy, the corrupted parties F; and the corrupted sender P* run an execution with
the other parties where the sender has input b, but where F;, ignores every message from
Fi_p and does not communicate with them either.

In Exec;_p, the corrupted sender P* runs an execution with the slow parties and parties
in Fj_p, where the sender has input 1 — b, and the parties in F;, do not send any message
to ]:1,1,.

Consider an execution with the above adversary strategy. First, note that no matter
what value b is chosen, the view of the slow parties S is exactly the same. This is because
the view of the slow parties consist of two independent executions, where F;, and F;_; do
not communicate, but otherwise follow an execution where the sender has input b and 1 — b,
respectively.

Second, note that when the bit b is chosen, the parties in F;_; output 1 — b. This is
because the view of Fj_; is identically distributed as in an execution where the sender is
honest with input 1 — b, and parties in F; crashed. Note that F;_; must output fast, before
receiving any message from S.

The above observations imply that the slow parties output a value that is inconsistent
with Fj_;, with probability 1/2. Note that even though S sees the sender is corrupted, he
does not see whether Fy or Fj is honest (these sets output different bits).
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C Recap of Protocol [14]

In this section, we describe the details of the protocol by Cramer et al. [14], which is used in
the preprocessing phase of the protocol Il,gq in Section 5.3.

IC-Signatures. Information checking (IC) [14] is a tool for authenticating data that is
information-theoretic. We make use of information checking among n parties Py, ..., P,.
Protocol Dist will be carried out by the dealer D with intermediary INT and the receivers
Py, ..., P,, each with the same input value s. The information sent by D to INT will be
called an IC-signature and we denote such a signature as o(s, D, INT). In order to verify a
signature among n parties, the AuthVal protocol is executed bilaterally by INT and each
party P;. Then, in protocol Reveal, INT broadcasts s and the authentication information,
and if ¢ + 1 parties accept s then we say that the signature has been confirmed. These
signatures enable D to give INT a signature which only /NT can use to convince the other
parties about the authenticity of a value received from the dealer. Therefore, we can use
these IC-signatures as signatures given specifically from D to INT, so that INT can prove
authenticity of a received value to any party.

Verifiable Secret Sharing. We recall the definition of verifiable secret sharing (VSS).

» Definition 10. A t-secure VSS scheme for sharing a secret s € F is a pair (Sh,Rec) n-party
protocols that satisfy the following properties, even in the presence of an adversary corrupting
up to t parties:

Correctness: Once all honest parties terminate protocol Sh, there exists a fired value,
s’ € F UL, such that the following requirements hold:

If the dealer D is honest, then s’ = s, and each honest party outputs s’ in protocol Rec.

If the dealer is corrupted then each honest party outputs s’ in protocol Rec.

Privacy: If the dealer is honest and no honest party has yet started Rec, then the adversary
has no information about the shared secret s.

Termination: If the dealer D is honest then all honest parties terminate Sh, and if the
honest parties invoke Rec, then each honest party eventually terminates Rec.

Protocol Description. The protocol is based on classical protocols [19, 7], but using IC-
signatures, instead of error correction.

In order to share a value s, the dealer D will make use of a bivariate polynomial f(z,y)
of degree at most t. The projections f(x,4) and f(i,y) will be sent to party P; (where all
the points are signed using IC-signatures). The parties can now bilaterally compare the
cross-point values between them, and expose inconsistent behavior by the dealer using the
signatures. This implies that the values held by honest parties are consistent, and since there
are at least n — ¢ >t + 1 honest parties, these values uniquely define a bivariate polynomial
f'(z,y) of degree at most ¢, which in turn defines the secret. Therefore, this already ensures
that the dealer is committed to a value after the sharing phase.

However, the reconstruction might still fail if the adversary sends corrupted shares. In
order to avoid that, each share of P; is also signed by the other parties. This will in turn
prevent the adversary from corrupting the secret at reconstruction time.
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—{ Protocol Il

Share Let s be the input for the dealer D.

1: D chooses a random bivariate polynomial f(z,y) of degree at most ¢ in each variable,
such that f(0,0) = s. Let s;; = f(i,7). The dealer sends to party P; the values ai; =

Sliye-+s0ni = Spi and bj1 = Si1,...,bin = Sin. For each value aji, bi;, D attaches IC-
signatures o(aj;, D, P;), and o(b;;, D, P;).
2: Party P; checks that the two sets ai4,...,ani and b;1, ..., by are t-consistent. If the values

are not t-consistent, Pi broadcasts these values with D’s signature on them. If a party
hears a broadcast of inconsistent values with the dealer’s signature then D is disqualified
and execution is halted.

3: P; sends aj; and a signature which he generates on a;j, o(ajs, P;, Pj) privately to P;.

4: Party P; compares the value a;; which he received from P; in the previous step to the
values b;; received from D. If there is an inconsistency, P; broadcasts b;; and o(bi;, D, P;).

5: Party P; checks if P; broadcasted a value bj;, o(bj;, D, P;) which is different than the value
aj; which he holds. If such a broadcast exists then P; broadcasts aj; and o(ajs, D, Pi).

6: If for an index pair (¢, j) a party hears two broadcasts with signatures from the dealer on
different values, then D is disqualified and execution is halted.

Reconstruct

1: Party P; broadcasts the values b;1, . .., bin with the signature for value b;; which he received
from party P;j.

2: Party P; checks whether P;’s shares broadcasted in the previous step are t-consistent and
all the signatures are valid. If not then P; is disqualified.

3: The values of all non-disqualified parties are taken and interpolated to compute the secret.

Multi-Party Computation. Using the VSS scheme Il from above, it is easy to come up
with an MPC protocol. Addition gates are straightforward and parties can process them
locally (using the fact that the IC-signatures are linear). Multiplication gates are processed
using the well-known method by Gennaro, Rabin and Rabin [22]: Each party P; locally
multiplies his shares a; and b; of the input wires a and b, and shares the result d; = a;b; using
VSS. This results in n VSSs and a proper sharing of the output wire ¢ can be computed as a
fixed linear combination of these. The authors show a way for P; to share a secret d;, such
that d; = a;b; and to prove that he has done so properly. The details can be found in [14].

D Description of Protocol Il,g.q4

— Protocol IIgq

Initialize t' =t, 7' = F.

Preprocessing Phase

1: Parties use the protocol [14] to create:
nm random sharings of certified Beaver triples ([ax], [bx], [ck]), where ny, is the number
of multiplication gates, as explained before. This means, that for each triple (a,b,c),
each honest party P; implicitly holds his share a; by holding sub-shares a1, ..., @in,
where each sub-share is IC-signed by P;. These sub-shares lie on a degree-t polynomial;
and the shares a; also lie on a degree-t polynomial f with f(0) = a. And similarly, for
the values b and ¢ = ab.

Input Phase Let x; be the input from party P;.

1: Pj uses the protocol Il (described in Section C) to share his input z;.
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Addition Gates

1: Fast parties locally add the shares using linearity of the sharing scheme, and compute the
corresponding IC-signatures using its linearity property.

Multiplication Gates Let [z] and [y] be sharings of the inputs to the gate.

1: Fast parties in ' use a multiplication triple ([a], [b], [c]) to publicly reconstruct the values
x — a and y — b among the fast parties, using the reconstruction procedure of Il (where
only the fast parties start). That is, the fast parties use asymmetric broadcast to distribute
their share towards all parties, and the corresponding IC-signatures.

2: After time dp., all the fast parties reach agreement on whether all the shares received have
correct IC-signatures are t-consistent. If not, they keep waiting for a total of 2D, time.
Otherwise, execute Step 5.

3: After time Dy, all slow parties reach agreement on whether the shares distributed by the
fast parties were correct (t-consistent and with correct signatures). If not, slow parties
participate in the reconstruction by broadcasting their shares and IC-signatures.

4: After time 2Dy, either there were enough shares to reconstruct at Step 2, or all honest
parties (fast and slow) identify at least one corrupted fast party P, € F' that did not
contribute its share. In this case, parties kick out the identified corrupted party, and restart
the protocol, now with threshold ¢’ =¢' — 1, and set 7' = F \ {Px}.

5: Fast parties in F' locally compute a share of the output to the gate as [2] = (z — a)[b] +
(y — b)[a] + [c] + (x — a)(y — b) (via locally adding each of the sub-shares), and update the
IC-signatures accordingly using the linearity property.

Output Phase

1: To reconstruct a sharing [z] towards P;, parties robustly reconstruct the secret to the P,
using the VSS reconstruction protocol in Ilys.

E Proof of Theorem 6

We describe the simulator for the online phase of the protocol, as the preprocessing phase is
executed using the protocol [14] and can also be simulated.

Simulation of the Input Phase. For each honest party P;, the simulator emulates an
execution of Il,¢ with input 0 towards the adversary. This includes sending random projected
univariate polynomials to the adversary, along with IC-signatures. Each time a complain is
received by the adversary, the simulator responds by broadcasting the corresponding stored
share and signature.

For each corrupted party P;, the simulator emulates an honest execution of Il on behalf
of the honest parties: it receives univariate polynomials with signatures on behalf of the
honest parties. It then checks that they are all of degree-t, and if not, it broadcasts the
values with P;’s signatures. Finally, for any share and signature that are broadcasted, if the
corresponding party holding the cross-point share is honest, it checks whether that received
share is consistent, and if not, it broadcasts these values with P;’s signature on them.

Simulation of Addition Gates. The addition gates require no simulation, since they consti-
tute local computation only.

Simulation of Multiplication Gates. During each multiplication gate, the simulator emulates
the reconstruction procedure of Il,s from the fast parties. That is, it emulates an execution
of asymmetric broadcast, and gives to the adversary the shares and signatures corresponding
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to x — a and y — b, where x and y are the input wire values in the simulated execution, and
(a,b,c) is a multiplication triple. (Note that since a and b are random, the reconstructed
values are also random.)

Simulation of the Output Stage. During the output phase, the simulator receives the
output y; for P;, and the shares of the corrupted parties. With these, the simulator can
consistently reconstruct the shares of the honest parties and send them to the adversary.

Analysis of the Simulation. We first argue about correctness. First, the pre-processing
phase is successful, and all parties hold correct shares of the multiplication triples with
correct signatures (with high probability). Similarly, after the input phase, parties hold
correct shares of their inputs and signatures. This correctness trivially propagates to the
rest of the wires in the circuit, since all operations are linear.

Now let us argue that the protocol securely computes the function. During the input
phase for an honest party P;, the adversary receives the projections of univariate polynomials
f(z,7) and f(4,y), for up to t indices j. By properties of bivariate polynomials, this reveals
no information about the secret, and is therefore identically distributed as the univariate
polynomials that the simulator reveals. In the multiplication phase, as hinted above, since
the multiplication triple (a,b, ¢) contains uniform random values a and b, the reconstructed
values are also distributed uniformly at random, identically as the simulated execution. This
is also the case for the output gates, where the simulator outputs honest shares and signatures
that are consistent with the corresponding reconstructed output.
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—— Abstract

We consider the task of designing secure computation protocols in an unstable network where honest
parties can drop out at any time, according to a schedule provided by the adversary. This type of
setting, where even honest parties are prone to failures, is more realistic than traditional models,
and has therefore gained a lot of attention recently. Our model, Phoenix, enables a new approach
to secure multiparty computation with dropouts, allowing parties to drop out and re-enter the
computation on an adversarially-chosen schedule and without assuming that these parties receive the
messages that were sent to them while being offline - features that are not available in the existing
models of Sleepy MPC (Guo et al., CRYPTO ’19), Fluid MPC (Choudhuri et al., CRYPTO ’21 )
and YOSO (Gentry et al. CRYPTO ’21). Phoenix does assume an upper bound on the number of
rounds that an honest party can be off-line — otherwise protocols in this setting cannot guarantee
termination within a bounded number of rounds; however, if one settles for a weaker notion, namely
guaranteed output delivery only for honest parties who stay on-line long enough, this requirement is
not necessary.

In this work, we study the settings of perfect, statistical and computational security and design
MPC protocols in each of these scenarios. We assume that the intersection of online-and-honest
parties from one round to the next is at least 2¢ + 1, ¢ + 1 and 1 respectively, where ¢ is the number
of (actively) corrupt parties. We show the intersection requirements to be optimal. Our (positive)
results are obtained in a way that may be of independent interest: we implement a traditional stable
network on top of the unstable one, which allows us to plug in any MPC protocol on top. This
approach adds a necessary overhead to the round count of the protocols, which is related to the
maximal number of rounds an honest party can be offline. We also present a novel, perfectly secure
MPC protocol in the preprocessing model that avoids this overhead by following a more “direct”
approach rather than first building a stable network and then using existing protocols. We introduce
our network model in the UC-framework, show that the composition theorem still holds, and prove
the security of our protocols within this setting.
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1 Introduction

Secure Multiparty Computation (MPC) is a technique that allows multiple mutually distrust-
ful parties to compute a function of their inputs without leaking anything else beyond the
output of the computation. Most protocols in the MPC literature assume that the parties
communicate over a synchronous network, that is, all the parties have access to a global
clock. This allows the parties to follow the protocol specification based on time. A protocol
under such network model proceeds in communication rounds, each of which has a fixed
duration and where each party can send a message to each other party.

Synchronous networks are natural for describing protocols and may make sense in many
contexts, but the model is not resilient to sudden slowdowns: if a party fails to send a message
within the allocated time for a specific round, this message will not be taken into account,
and what is worse, in the context of an active adversary this will be considered a deviation
from the protocol specification. Hence an honest party who accidentally misses a deadline
will be classified as corrupt. The first problem with this is that an MPC protocol can only
tolerate a certain maximal number of corruptions. Tagging parties as corrupt because of
natural network issues that may appear in practice leaves little room for real corruptions.
For instance, MPC over unstable mobile network connections or denial of service attacks
might consume all the corruptions we can handle. The second problem is that once a party
is tagged as corrupt, the protocol may now reveal her secret inputs, which seems unfair if
the party was actually honest but suffered a random network delay. An alternative model is
an asynchronous network, where the parties are not assumed to have a clock anymore. This
modeling is more resilient to the type of attacks described above since the communication
network allows for parties to be slow and no deadlines are set. However, this model comes
with its own set of issues since, when dealing with an active adversary, the parties cannot
distinguish a delayed message sent by a slow party, from a message that an actively corrupt
party decided not to send in the first place. As a result asynchronous protocols tend to
tolerate a smaller number of corruptions [3], and, what is worse, an asynchronous protocol
cannot guarantee that all honest parties get to contribute inputs to the computation.

Therefore, it seems to be a better approach of considering an imperfect synchronous
network where the adversary is allowed to cause some parties to go offline temporarily, and
require protocols to not classify such parties as corrupt. In such a setting we may still hope
to get (1) optimal corruption thresholds, (2) allow all parties to contribute input, and (3)
guarantee termination at a certain time. A series of works has studied MPC in different
variant of this model, see Section 1.3 and also the Full Version of this work for a detailed
comparison of prior works. However, it is still an open question whether we can have MPC
protocols with optimal security and corruption thresholds in the most adversarial, but also
most realistic setting, that we call an unstable network in this paper. In such a network
parties go offline and come back according to an adversarially chosen schedule (not a schedule
prescribed by the protocol specifications), and parties are not assumed to receive messages
sent while they were offline. Not receiving messages while being offline introduces more
challenges since one can only rely on the parties that are online in the current round and
were also online in the previous round.
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1.1 Unstable Networks

As we have mentioned, there are multiple attempts in the literature to model what a realistic
network where parties can dropout and return should represent concretely. In this work we
are interested in studying the setting of MPC over an unstable network, which is a type of
synchronous network we introduce where, in contrast to a stable network (i.e. a standard
synchronous network), the adversary can choose in each round a subset of parties that will
be offline in that specific round, and hence may not be able to send or receive messages. This
models honest parties dropping out in that specific round, possibly due to network errors or
malicious attacks, which serves to represent certain failures like weak mobile connections or
DDoS attacks. We remark that our “timing model” is still synchronous in that the parties
have a synchronized clock and know which current protocol step is being run, but crucially,
they may drop and re-join in every round.

Given that over an unstable network the set of offline parties can be different in every
round, an MPC protocol in such setting must allow parties to rejoin the computation after
being offline. Furthermore, these parties may not know they are under network attack,
so a missing message can mean that either (1) they are under attack, (2) the sender is
under attack, or (3) the sender is malicious. This ambiguity is crucial to maintain a strong
and realistic model, but it turns out to heavily complicate protocol design. This is further
accentuated by the fact that, in an unstable network — and in stark contrast with previous
networking models for tolerating dropouts — parties who rejoin the computation do not
necessarily receive the messages sent to them while being offline, which is an important
property to model settings like peer-to-peer networks where the parties do not count on
“always-running” servers that can queue messages for them. This is an important scenario
to consider in practice, since one might argue that counting on communication servers that
never fail can be equivalent to assuming parties who never drop.

1.2 Qur Contribution

In this work we formally introduce the notion of an unstable network, which we believe to
be an appropriate communication model to capture realistic settings where parties join and
leave an ongoing computation according to a potentially adversarial schedule. Our first
contribution lies in the formal definition of this novel networking model, and we present a
rigorous treatment of this notion within the confines of the UC framework, which in particular
involves re-proving the UC theorem to ensure that composability still holds in this new
setting.

Our second contribution — and where most of our work is devoted — consists of a full char-
acterization of what types of security properties (i.e. perfect, statistical or computational) can
be achieved by MPC protocols over unstable networks in terms of the underlying adversarial
schedule. More precisely, we show that the minimum amount of honest parties that remain
online from one round to the next is the crucial metric that determines whether a given level
of security is attainable or not, and we show both impossibility and correspondingly matching
feasibility results for each one of the three security notions: computational, statistical and
perfect security. We believe our novel model and initial set of results open an exciting and
interesting research direction on the design of MPC protocols over realistic networks.

In order to discuss what the characterizations above are in detail, let us introduce some
notation. Let n be the number of parties and let ¢ be the number of corrupt parties. Let O,
denote the set of online parties in round r, and let H denote the set of honest parties. Our
goal is to determine if we can construct MPC protocols for an unstable network which enjoy
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Perfect Statistical Computational
security security security
Passive adversary
t+1 t+1 1
|Or N O'r+1| 2 + +
Acti d
ctive adversary 2 4+ 1 f1 1

|Or N Orp1 NH| >

Figure 1 Overview of the required intersection sizes for each setting considered in this paper.
The result for statistical and passive security follows from the one for perfect and passive security.

the same security guarantees as protocols over a stable network and if so, what constraints we
must assume on the unstable network to make this happen. To be able to talk more concretely
about this, we will say that two protocols 7, n’ are equivalent if they tolerate the same
number of corruptions, achieve the same type of security (computational/statistical/perfect)
and the same security guarantee (security with abort/fairness/guaranteed output delivery).
Our first set of results is as follows:

Perfect security. (Section 2) Given any perfectly secure synchronous MPC protocol against
t corruptions, we construct an equivalent protocol over an unstable network, assuming
that |0, N 041 NH| > 2t + 1 for all » > 0. Furthermore, this condition is required for
any MPC protocol with perfect security to exist over an unstable network.

Statistical security. (Section 3) Given any statistically secure synchronous MPC protocol
against ¢ corruptions, we construct an equivalent protocol over an unstable network,
assuming that |0, N Op41 NH| >t + 1 for all » > 0. This condition is required for any
MPC protocol with statistical security to exist over an unstable network.

Computational security. (Full Version) Given any computationally secure synchronous MPC
protocol secure against ¢ corruptions, we construct an equivalent protocol over an unstable
network, assuming that |0, N O,41 NH| > 1 for all » > 0 (and, for malicious security,
assuming a PKI and public key encryption). The intersection condition is required for
any computationally secure MPC protocol to exist over an unstable network.

An overview of the intersection sizes required in each of the settings considered in our
work is presented in Fig 1. Notice that our results imply a necessary tradeoff between
instability and corruptions: taking perfect security as an example, it is well known that we
must have n > 3t + 1 to have perfect security at all. So for a maximal value of ¢, we have
only 2t + 1 honest parties, and the result above then says that all honest parties must stay
online all the time. On the other hand, as we increase n above 3t 4 1, an increasing number
of honest players can be sent offline. Also, note that even if the (minimal) assumptions in
our results say that a minimum amount of parties must stay online from one round to the
next, this does not imply that any particular party stays online for more than one round.
This makes protocol design considerably difficult, as in particular, the following scenario may
occur: a given party can be offline for a while, not receiving any messages, then it is set to
be online in a given round, but the scheduling! is such that this party only receives messages
in this round after he or she has sent their own message, so this message can only depend on
outdated information this party learned before going offline. Furthermore, this party may be

L As in the standard synchronous network, the adversary is allowed to choose the ordering of the messages
received by honest parties.
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Round r ‘ Round r + 1

Round 7 ' " Roundr+1
(a) Lazy-MPC model. (b) Guo et al. (Sleepy) model.

Round r r Round r + 1 Round r Round r + 1
(c) Fluid MPC model. (d) Our model.

Figure 2 Our model compared to other models in the literature. Parties inside the marked region
are online, and messages represented by dashed arrows are dropped. In Lazy-MPC, Fig. 2a, the
parties cannot return. In the model of Guo et al., Fig. 2b, the parties can return but it is assumed
they receive the messages sent to them while they were offline. In the Fluid-MPC model, Fig. 2c, in
each round the set of parties who send messages may differ from the set of parties who receive these
messages, but the identities of these parties must be known by the protocol. In our model, Fig. 2d,
the parties can return to the computation and it is not assumed that they receive the messages sent
to them while they were offline.

set to be offline for the next round immediately after sending their message, which makes
the contribution of this party to the protocol meaningless. The honest parties in O, N 0,41
are these who are able to receive the messages in round r, and simultaneously are able to
send a derived message in round r + 1, so having enough honest parties in this intersection is
what enables us to design MPC protocols in this difficult networking setting.

1.3 Related Work

In what follows we discuss some of the works that study a similar problem to the one we
address in this work. The description in this section is relatively lightweight, and we defer a
more detailed analysis to the Full Version.

Fail-stop adversaries that may cause some parties to stop during a computation were
considered for the first time in [5], but this and subsequent works assume parties know when
a given party fail-stopped, plus these parties are not able to return the computation. A recent
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model in [1] considers an adversary that can set parties to be offline at any round, but as
before these parties cannot return the computation, plus that work focuses on computational
assumptions, making use of strong homomorphic encryption tools. In the “sleepy model”
of [8] parties who drop can return. However, a crucial difference with our model is that, in
our case, parties who return after being offline may not receive the messages sent to them
before becoming onine, while in [8] these parties (who are not “offline” but “slow”) do receive
these messages. This makes the problem considerably easier, plus the authors consider only
computational assumptions. Finally, in [2, 12] a new model is considered where the set of
parties can change dynamically from one round to the next. In that work, the set of “online”
parties in a given round is not adversarially chosen, but rather set in advance and used in
the design of the protocol. As a result, this work may not model adversarial attacks to the
underlying network, and may be less realistic in these settings. Furthermore, the protocol
in [2], although statistically secure, only achieves security with abort. Our compilation-based
techniques allows us to transfer any result in the standard synchronous setting (e.g. protocols
with guaranteed output delivery) to the unstable networking setting.

The “You Only Speak Once” (YOSO) model for MPC is introduced in [7]. Our model
assumes a somewhat less powerful adversary who must allow a physical party to come back
after being offline, while in [7] this adversary can take a party down as soon as they speak,
and progress is guaranteed by means of assigning roles “on-the-fly” in certain randomized
fashion. Their model does not allow for perfect security, while in our case, on top of achieving
much easier protocol design, we can obtain information theoretic security based only on
point-to-point secure channels, and we allow for termination such that all parties can provide
input and get output. Finally, the “constrained parties” and “full-omission parties” from
[10] and [13] are such that whose messages are selectively blocked by the adversary, as in
our setting. However, in these works the adversary choses the subset of offline parties at the
beginning of the protocol execution, while in our case this subset can change adaptively as
the protocol is run. This is in fact one of the main sources of difficulties when designing
protocols in our setting, since a party who is “full-omission-corrupt” can stop being so, and
non-corrupted parties can later on become full-omission-corrupt. We remind the reader to
visit the Full Version for a more detailed discussion on related work.

We present in Figure 2 a more graphical comparison of our model with respect to the
works of [1, 8, 2].

1.4 Preliminaries and Organization

Let P = {Py,..., P,} be the set of all parties, and H be the set of honest parties. We assume
that the adversary corrupts t out of the n parties. Let F be a finite field with |F| > n. Due
to space limitations we assume background on Shamir secret-sharing, with details given in
Section A and in the Full Version. For our results in the computational setting, we assume
the existence of a CPA-secure public key encryption scheme (enc,dec), and a EUF-CMA
signature scheme (sign, verify). The formal definitions of these primitives and their security
is standard and can be found in any modern book in Cryptography (e.g. [9]).

Unstable Networks

Now we provide the different functionalities we will make use of in our work. More thorough
definitions and considerations, including the proof of the composition theorem, are given in
the Full Version. Our timing model is synchronous, meaning there parties have a global clock
and there is a known upper bound A on the time it takes for a message to be transmitted
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between any pair of parties. The communication pattern proceeds in rounds, identified
with integers 1,2, 3, ..., each taking A time and consisting of all parties sending messages
to each other at the beginning of each round, and receiving some of these messages in a
way we will specify later before the end of that round. We use Fsiaplenet t0 denote the
functionality that models a stable network in which all of the messages between honest
parties are always delivered. We also consider a family of functionalities {fsia:ﬁet =1
that models a synchronous channel from P; to P; only. In this work we take the following
approach in order to obtain MPC over unstable networks: first, we instantiate the FsiapleNet
functionality on top of an unstable network, that is, we design a way for each pair of parties
to communicate reliably over an unstable network. Then, we take off-the-shelf MPC protocols
set in the stable/synchronous model and compose them with our protocol for emulating the
stable network, to get MPC protocols that are set in the unstable networking model. In the
Full Version we elaborate on which protocols we use, and on why the modular approach
sketched above works via the composition theorem. In this version we focus on instantiating
the stable networking model only.

An unstable network is formalized as a functionality, that we denote by FynstableNet- 11
each round, the functionality proceeds as follows: (1) At the beginning of the round the
environment, denoted by Z, specifies a subset of parties O, C P; (2) For every P;, P; € O,NH,
the functionality delivers messages sent from P; to P; in the given round; (3) For every P;
and P; with either one of the two parties in (O,)° N, the environment can choose whether
to drop the message sent from F; to P; in the given round.

If the adversary is allowed to set a given party P; as offline forever, it is obvious that
no stable channel to or from P; could be instantiated. To address this we introduce the
B-assumption, which states that the maximum amount of consecutive rounds that a party
can be offline is B. The protocols we present here require this assumption in order to produce
output, but in the Full Version we discuss alternative protocols that do not require this
during the entire computation.

2 Instantiating Fe.Spmns, with Perfect Security

In this section we take care of instantiating the functionality for a stable network with perfect
security. First, in Section 2.1 we discuss the simplest setting of passive security. Then, in
Section 2.2 we extend this to active security, while retaining perfect simulation.

2.1 Passive Security

Assuming a passive adversary, and assuming that |0, N O,41| > t + 1 for all » > 0, our
protocol to instantiate fslzib_léﬁgt with perfect security is obtained as follows. At every round,
Ps tries to secret-share its message m towards all the parties, which succeeds in the round
in which Pg comes online. In the following rounds, the parties try to send their shares of
m to Pgr, who is able to get them when it comes online, and hence is able to reconstruct
m. The only missing step is that, when Pg secret-shares m, only the parties online in the
current round are able to receive the shares. To alleviate this issue, the parties in each round
“transfer” the shared secret to the parties that are online in the next round. This is done via
a simple resharing protocol. Details are in Protocol Hgfgz’l‘;ﬁi"e(P& Pr,m).

We remark that, although it is not explicitly written in the protocol description, whenever
it is written that P; sends a message to P;, this is done by invoking the Fuynstablenet function-
ality.

77
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erf,passive
,_l Protocol IIE P (Pg, Pr,m)

J

On input (m), Ps samples random elements ¢;; € F for 4,5 = 0,...,¢t, subject to co,0 = m
and c¢;; = ¢ji, and lets f(z,y) = Z: o cijz'y’. Then, in rounds 1,..., B, Ps sends f(z, 1)
to each party P;.

Every party P; initializes a variable f; = L. In rounds 1,...,2B, P; does the following:

If £; is not set already:
If P; receives a polynomial f;(z) = f(xz,7) from Pg, then P; sets £; = f;.
Else, if P; receives messages m; € [F from at least t + 1 parties P;, then P; sets f; to be
the polynomial f;(z) such that f;(j) = m; for the first ¢ + 1 messages m;.

If £; # L, then P; sends £;(j) to each party P; and £;(0) to Pr.

In rounds B +1,...,2B, Pr does the following: If Pr receives messages m; € I from at least
t + 1 parties Pj, then Pr computes the polynomial fo(z) such that fo(j) = m; for the first
t + 1 messages mj, and outputs m = fo(0).

» Theorem 1. Assume that [Op N Opp1| > ¢ + 1 for every r > 0. Then, protocol
Hg::;’f;f\f;ve(PR,Pg) instantiates the functionality Fé?;mi,\},)gt in the FunstableNet-hybrid model

with perfect security against an adversary passively corrupting t < n parties.

Proof. We claim that, in an execution of protocol Hgfgg’lza,\fi"e(PR, Pg), Pr learns the value

of m at the end of the interaction, and the adversary does not learn the value of m, unless
Ps or Pr are passively corrupt.

To see this, let rg € {1,..., B} be the smallest value such that Ps € O,, which exists
due to the B-assumption. We claim the following invariant: at the end of every round r with
rs <r < 2B, each P, € O, has f; # L, and these polynomials satisfy that £;(x) = f(z,1),
where f(z,y) is the polynomial sampled by Ps at the beginning of the protocol. To see this
we argue inductively. First, notice that the invariant holds for r = rg given that parties
P; € O, receive this directly from Pg. For the inductive step assume that the invariant
holds for some round r, that is, each party P; € O, has set its variable £;, and £;(z) = f(z,1).
In particular, this is held by the parties in O, N O,41, so each party P; in this set sends
£,(j) to every other party P; in round r + 1, which is received by the parties in O,;.
Since |0, N Or41| > t+ 1, we see that each party P; € O,y receives at least t + 1 values
£:(j) = f(J,%) = f(4, ), which enables P; to interpolate f(z,j), which is set to £;. We see
then that the invariant is preserved.

Finally, let rr € {B+1,...,2B} be a round in which Pr € O,,, which is guaranteed
from the B-assumption. By the invariant, the parties in O, ,_; have set their variables £;
at the end of round rr — 1 correctly, so in particular the parties in O,,_1 N O, will send
£,(0) = £(0,9) to Pr in round O, . Since there are at least ¢ + 1 such parties, this means
that Pr gets at least ¢ + 1 values f(0, ), which allows Pg to interpolate m = f(0,0).

The fact that the adversary does not learn anything if both Ps and Pg are honest follows
from the fact that its view is limited to ¢ polynomials of the form f(x, ), which look uniformly
random. We remark that with the analysis above, it is straightforward to set up a simulator
S for the proof. <

Optimality of |0, N O,441| >t +1

. . . . Ps— Pr . . . D, el
Now we show that, in order to instantiate F¢J, -n5 with perfect security against a passive

adversary, the assumption that the adversary’s schedule satisfies |0, N O,.41] > ¢t + 1 in every
round r is necessary. However, we have to be careful about what this should actually mean:
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consider an adversary who respects the B-assumption and breaks the intersection condition
in one, or some finite number of rounds. Now, if the sender happens to start our protocol for
sending a message after the last bad round, it will clearly succeed. So we cannot hope to
show that communication between sender and receiver is impossible, unless we consider an
adversary who keeps breaking the intersection condition “for ever”. So we construct below
an adversary that breaks this condition once every B rounds, and by doing so it is able to
learn the message sent by an honest sender using any instantiation of f;ii;ﬁgt.

Assume the existence of an implementation of Fslzi;l;ﬁg‘t with perfect security that tolerates
an adversary that schedules the parties as follows: (1) The adversary chooses a set 41 C P
such that |A;] =t+1, Ps € A; and O.p = A; for k > 0, and (2) the adversary chooses a set
As such that A1 U Ay = P and |A; N Ag| <t such that Pr € A, Pg ¢ As and O, = A, for

every r that is not of the form & - B. Notice that this scheduling respects the B-assumption.

Now, suppose that Pg learns the output in round rz = k- B + ¢ for some k and ¢ with
1 < ¢ < B. Since during the whole protocol Pg only hears from the parties in A, this means

that these parties together had enough information to reconstruct the secret in round rg.

However, these parties only hear from Pg through A; N As, which means that at a given
point in the protocol this set had enough information to reconstruct the secret. This is a
contradiction since |41 N Ay| < ¢ and Pg, Pr ¢ Ay N Ay, and due to privacy no set of at most
t parties that does not contain the sender nor the receiver can reconstruct the message.
We remark that this lower bound rules out general MPC over unstable networks when
|0 N Opq1] < t, since ]—"SF,:;;;J,\T’; is a particular case of general MPC. This can be seen even
more clearly since what the lower bound actually shows is that, if the minimum intersection
size is not met, then the “state” of the computation is either leaked, or lost, which rules
out general MPC. Indeed, our perfectly secure protocol from Section B, which does not use

FstableNet directly, still requires |0, N O,41| >t + 1 to hold for every round.

2.2 Active Security

The construction we presented in the previous section does not carry over to the actively

secure setting, given that a corrupted party P; is not forced to send correct evaluations £;(j).

In this section we show an extension of this protocol that rules out this case. We assume
that, for every r, |0, N O,11 NH| > 2t + 1, which should be contrasted with the weaker
condition in the passively secure setting of |0, N O,4+1 NH| >t + 1. The use of a larger
threshold allows us to make use of error correction, which allows the parties to reconstruct
the right polynomials at each step of the protocol regardless of any incorrect value sent by
corrupt parties.

The protocol for active security, Protocol Hgf:;’;ﬁ;vte(Ps, Pr,m), is similar to Protocol
Hgf;mf\five(Ps,PR,m), except for the following crucial change: when each P; collects the
messages m; € F for P; received in a given round, only if there are at least 2¢ 4+ 1 such
messages, P; performs error correction on these to reconstruct a polynomial f;(x) such that
fi(j) = m for every received message m,, and if this succeeds, then P; sets £; = f;. Similarly,
only if Pg receives at least 2t + 1 messages {m;};, then Pr performs error correction to
recover a polynomial fo(x) such that fy(j) = m; for every received message m;, and if this
succeeds then Pg outputs m = f(0).

» Theorem 2. Assume that |0, N Opp1 NH| > 2t + 1 for every v > 0. Then, protocol
Hg:b’lic,\?e\f(PR,PS) instantiates the functionality fg;?b_le’NPgt in the FynstableNet-hybrid model
with perfect security against an adversary actively corrupting t < n/3 parties.”

2 In principle the restriction is simply ¢ < n, but we have that n —t = |H| > |0, N Opr1 NH| > 2t + 1,
son > 3t+ 1.
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Proof. We claim that, in an execution of protocol Hgfgtlaec,\t,zf(PR, Pg), Pg learns the value of
m at the end of the interaction, and, if Pr and Pg are honest, the adversary does not learn
the value of m.

To see this, let rg € {1,..., B} be the smallest value such that Pg € O,,. We claim the
following invariant: at the end of every round r with rg < r < 2B, each P; € O, N'H has
f; # L, and these polynomials satisfy that £;(z) = f(x,4), where f(x,y) is the polynomial
sampled by Ps at the beginning of the protocol. We use induction in order to show that
the invariant holds. First, notice that the invariant is true for r = rg given that parties
P; € O,, NH receive the polynomial directly from Pg. For the inductive step assume that
the invariant holds for some round r, and we show that it holds for round r + 1. By the
hypothesis assumption each party P; € O, N'H has set its variable £;, and £;(x) = f(x,%).
In particular, this holds for the parties in O, N 0,11 N H, which means that each party
P; in this set sends £;(j) to every other party P; in round r + 1, which is received by the
parties in Op41. Since |Op N Opp1 NH| > 2t + 1, each party P; € O,1 NH receives at least
2t 4+ 1 correct values £;(j) = f(j,4) = f(4,7). Even if P; receives more shares, some of them
potentially incorrect, P; can still recover f(z,j) via error correction, as instructed by the
protocol. We see then that for P; £; = f(z, j), so the invariant is preserved.

Now, let rg € {B+1,...,2B} be a round in which Pg € O,,. By the invariant, the
parties in O,,_; have set their variables £, at the end of round rg — 1 correctly, so in
particular the parties in O,,_1NO,, NH will send £;(0) = f(0,¢) to Pg in round O,,. Since
there are at least 2t + 1 such parties, this means that Pr gets at least 2t 4+ 1 correct values
£(0,4), which allows Pg to error-correct m = f(0,0). The fact that the adversary does not
learn anything if both Pg and Pg are honest follows as in the proof of Theorem 1.

As with the case with passive security, the analysis above enables the construction of
a simulator S for the proof in a straightforward manner. The main complication with the
actively secure setting in contrast to the scenario with passive security is that a corrupt Pg
may send inconsistent shares in the first round in which it becomes online. However, in this
case, S can simply emulate the protocol exactly as the honest parties would do, and check if
the receiver would be able to error-correct or not at the end of the execution. Only if this
is the case, S would make use of the change command in the .Fé:i;exgt functionality to set
Ps’s message to be the one that is recovered by Pg, and then it would clock-out Pg if Pg is
honest. <

Optimality of |O, N O, 1 NH| > 2t + 1

As in Section 2.1, we show that the bound |0, NO,11 NH| > 2t+1 is necessary for essentially
all rounds by presenting an adversary that breaks the correctness of any perfectly secure
implementation of ]-"S}:;jeﬁgt against active adversaries, by using a scheduling that breaks the
condition above while still respecting the B-assumption.

The adversary’s scheduling is as follows. For simplicity let us assume that n = 5 and
t = 1, although the argument can be extended easily to any number of parties. Assume that
P, is the sender, Ps is the receiver.

Let Op.p = {P1, Py, P3, Py} for k=0,1,....

Let O, = {P», P3, Py, Ps} for every r that is not of the form rg + k - B. Notice that

|Ok~B NOk.pr1 N H| = |{Pg7 P4}| =2 = 2t where Og.p N O.p11 = {PQ, P, P4}.

Notice that this scheduling respects the B-assumption. Suppose that there is a protocol
that instantiates fé:i@ﬁf; with perfect security against an active adversary, supporting the
scheduling above. We will show a contradiction arising from the fact that the adversary can

actively cheat.
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Suppose that Pgr learns the output in round rz = ko - B + £ for some kg and ¢ with
1 < ¢ < B. Consider two different messages m # m’, and let M; and MJ' for j = 2,3,4 be the
concatenation of the messages sent by P; in round k - B to the parties in Oy.p N Ok.p+1 =
{Pa, P3, Py} for k =0,..., ko, when the inputs of Pg to the protocol are m and m' respectively.

First, we claim that the messages (Mz, M3, My) (resp. (M3, M5, M})) must uniquely
determine the secret m (resp. m’). To see why this is the case, observe that the receiver, Ps,
only ever hears from the parties P, P3, P4, but these in turn only hear from the sender, Py,
through the messages (Ma, M3, My) (resp. (M4, M5, M})), so these messages have to carry
enough information to determine the secret.

Now, due to privacy, no single party must be able to determine whether the message sent
is m or m/. If P3 was corrupt and if M3 # M} for all possible initialization of all random
tapes, then the adversary would be able to distinguish the message by simply looking at
whether M3 or M} is being sent by Ps. Hence, we see that there must exist an initial random
tape for which M3 = Mj. For the rest of the attack we assume this is the case.

With the observations we have seen so far, a corrupt party P» can mount the following
attack: If P, sees it needs to send My, it will send M} instead. Since the protocol withstands
an active attack, the transcript (Ms, M3, My), which would be transformed to (M}, M3, M)
after the attack, would uniquely determine m. On the other hand, the very same transcript
can arise from an actively corrupt P, that modifies the message M, when the message is
m’ to My (recall that M} = Mjs). In this case, due to the resilience of the protocol against
one active attack, (M3, M3, My) should reconstruct to the same message as (M5, M4, My),
which is m/. This is, however, a contradiction, since the same transcript cannot lead to two
different messages.

3 Instantiating FeSpmnZ, with Statistical Security

The goal of this section is to develop an information-theoretic protocol that instantiates
fsliﬁt;;ﬁft against active adversaries, but replacing the condition |0, N Q11 NH| > 2t + 1
from Section 2.2 with |0, N O,41 NH| > ¢+ 1. As shown in Section 2.2, perfect security
cannot be achieved in this setting, so we settle with statistical security.

Our construction at a high level works as follows. First, we design a pair of functions
fm) = (my,...,my) and g(mi,...,m}) = m' such that, if m, = m; for at least t + 1
(unknown) indices, then m’ = m. Also, it should hold that no set of at most ¢ values m;
leaks anything about m. Assuming the existence of such pair of functions, we can envision a
simple construction of a protocol II; (Pg, Pg, m) that guarantees that a receiver Pr gets the
message m sent by a sender Pg, as long as Pr comes online either in the same round where
Pg is, or in the next one. This operates as follows: Pg computes (my,...,m,) = f(m), and,
in every round, Pg sends m; to party P;, as well as m to Pg. Once a party P; receives m;,
it sends this value to Pg in the next round. Let m/,...,m/ be the values received by Pg
when it comes online, where m; = L if Pg does not receive a message from P; (notice that
m}, could differ from m; if P; is actively corrupt). Since |O, N Op41 NH| >t + 1, we see that
at least ¢ + 1 of the m! are equal to m;, so Pg can output m = g(m},...,m}).

Now, we would like to “bootstrap” the protocol II; into a protocol II,(Pg, Pgr, m) that
guarantees that a receiver Pr gets the message m sent by a sender Pg, as long as Pr comes
online either in the same round where Pg is, in the next one, or in the one after that. To this
end, the parties run IT; (Pg, Pg, m), which guarantees that Pg gets m if it comes online in
the same round as Pg, or at most in the round after. However, to deal with the case in which

Pr comes online two rounds after Pg, the parties also execute the following in parallel: Pg
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computes (my,...,my,) = f(m) and executes Iy (Pg, Pgr,m;) for i = 1,...,n. This ensures
that every P; € Oy will get m;, and at this point, the parties in O3 N Os can send these to
Pp in the third round. Upon receiving m}, Pr outputs m = g(mj,...,m)).

To analyze the protocol II,, assume for simplicity that Ps € O;. We first observe that if
Pr € O1 U Oy, then Pr gets m as Iy (Ps, Pr,m) is being executed. If, on the other hand,
Pgr € O3, Pg gets m as g(my, ..., my,) since the parties P; € Oy get m; from Iy (Ps, Pr,m;).
This idea can be iterated to obtain protocols that deliver messages as long as Pr comes
online at most k£ rounds after Ps comes online.

In what follows we present the tools necessary to formalize this idea, and later discuss

]_-PS —Pr

the actual protocols for instantiating Fe¢,5, "\

3.1 Robust Secret Sharing

The functions f and g discussed above are instantiated using robust secret-sharing, which
are techniques that enables a dealer to distribute a secret among multiple nodes in such a
way that (1) no subset of at most ¢ nodes learn the secret and (2) if each node sends its
share to a receiver, no subset of at most ¢ corrupt nodes can stop the receiver from learning
the correct secret.

The definition we consider here is more general than standard definitions from the
literature since, at reconstruction time, we allow for missing shares, and if there are many of
these we allow the reconstruction algorithm to output an error signal 1. However, if there
are enough honest non-missing shares, then reconstruction of the correct message must be
guaranteed. This is needed since, in our protocols, there are some rounds in which parties
may not receive enough shares to reconstruct the right secret, and they must be able to
detect this is the case to wait for subsequent rounds where more shares are available.

» Definition 3. Let A C {1,...,n} with |A| < t. A robust secret-sharing (RSS) scheme
with deletions having message space M and share space S is made up of two randomized
polytime functions, share : M — S™ and rec : S™ — M, satisfying the properties below
for any not-necessarily-polytime algorithm A. Let (s1,...,8,) = share(m). Let B¢ =
A(missing, {s;};ca) C P denote a set chosen by A of shares to be deleted. Let (s},...,s))
be defined as follows: s; = L fori e B, s, = A(i,{sj}jeca) €S forie ANB and s; = s;
forie A°N B.

Privacy. The distribution of {s;}ica is independent of m.
/

Error detection. With probability 1 — negl(k), rec(s},...,s),) outputs either m or L.

r n

Guaranteed reconstruction. If |A°N B| >t then, with probability 1 — negl(k), it holds

!

that m = rec(s},...,s)).

Several robust secret-sharing constructions can be found in the literature. However, since
we consider a non-standard version of robust secret-sharing, we present below a concrete
construction that fits Definition 3, which is motivated on the so-called information-checking
signatures from [11]. We remark that any instantiation of Definition 3 will suffice for our
stable network construction, with better parameters such as share length of computational
complexity directly leading to direct improvements on our protocols.

The following proposition shows that the scheme (share, rec) is an RSS scheme with error
detection.

» Proposition 4. The construction (share,rec) from above is an RSS scheme with deletions.
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,_[ RSS scheme with deletions: (share, rec) }

share(m): Compute Shamir shares mi,...,m, of m. For each i € {1,...,n}, sample
(ai, {Bij}j=1), and let, for every i,5 € {1,...,n}, Tij = aym; + Bji. Return (s1,...,s,), with
si = (ma, (au, {Baj Yi=1,{Tis }i=1)-

rec(sy,...,sn). Let B = {i: s} # L}. Parse each s; for i € B as (mj, (af, {Bi;}7=1,{7i;}1=1)-

Then proceed as follows:

1. If |B| > ¢ + 1: for every i € B do the following. If o/jmj + 3 < 7;; does not hold for at least
t + 1 values of j € B, then set m; = 1.%

2. After this process, if [{m} : m} # L}| > t, then using any subset of this set of size ¢t + 1 to
interpolate a polynomial f(x) of degree at most ¢, and output m = f(0). Else, output L.

® In particular, if 0 < |B| < t then all m; would be set to L as the check would always fail.

Proof. Let share(m) = (s1,...,8,) with s; = (my, (i, {8i5}7=1), {Tij = aymi + Bji}j—1)-
First we argue privacy. It is clear that the n Shamir shares mq, ..., m, do not leak anything
about the secret m towards the adversary. Additionally, the keys (i, {Bi;}}—;) are simply
random values, which do not leak anything either. Finally, each P; receives {r;; = a;;m; +
53‘1‘}?:1, but these only involve m;, which is already known by F;. Notice that, since §;; is
uniformly random and unknown to P; (if j # i), P; learns no information about «;. This
will be crucial since, as we show below, o is used to prevent P; from changing their share.

Now, to see the guaranteed reconstruction property, let (s7,...,s)) be as in Definition 3.
Assume that |A° N B| > t, we want to show that rec(s],...,s),) outputs m in this case.

»°9n

Let us write each s] for i € AN B as s} = (m], (a}, {B,;}]=1),{7i;}}=1). We claim that
if mi = m; +&; with 6; # 0, then 7/, = a;m; + fB;; for at least j € A°N B can only
happen with negligible probability. To see why this holds, let us write Ti/j = T3 + €55, SO
Ti’j = (oym; + Bji) + €5 = (a;m] + Bj;) — jd; + €;;. For this to be equal to a;m; + Bji,
it has to hold that a; = 6;16ij~. However, ¢; and ¢;; are functions of {s;}¢ca, so they are
computed independently of the uniformly random value «; since j ¢ A. This shows that
the equation a; = §; 16ij for at least j € A° N B can only hold with probability at most
1/|F| = negl(k), so in particular the claim above holds (recall that n = poly(x)).

From the above we see that if m] # m; then, with overwhelming probability, 7'2-’]- #*
ajmy + Bj; for every j € A°N B, so in particular 7;; = a;m] + 3;; can only be satisfied for
j € AN B, but since |[AN B| < t, we see that m} would be set to L from the definition of
rec(-). As a result, only values with m} = m; remain, and since there are at least |A°NB| > ¢
of these, we see that rec(-) outputs m correctly in this case.

The argument above also shows the error detection property: the extra assumption
|A¢N B| > t was only used at the end to show that the set {m/} : m} # L} will have at least
t + 1 elements, in which case the correct m could be reconstructed. If this does not hold,

then rec(-) outputs L. <

3.2 Delivering within 2 rounds

Let (share, rec) be a robust secret-sharing scheme with deletions. We begin by presenting a
protocol II; (Pg, Pr,m) that guarantees that Pr gets the message m sent by Pg as long as
Pgr comes online either in the same round as Pg, or at most one round later. First, we define
the concept of k-delivery, which formalizes and generalizes this notion.
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,_[ Protocol II;(Ps, Pg, m) }

Ps does the following:
Let (s1,...,8n) = share(m). Send s; to P; in every round.

Send m to Pg.
Every party P; does the following:
P; sets an internal variable s; = L. In every round, if P; receives s; from P;, then it sets
S; = S;.
In every round, if s; # L, then P; sends s; to Pg.
Pr does the following in every round:
If Pgr receives m from Pg, then Pr outputs m.

Let s; be the message Pgr receives from P;, setting s; = L if no such message arrives. If
rec(sh,...,s,) # L, then Pr outputs this value.

» Definition 5 (k-delivery). A protocol 11 is said to satisfy k-delivery if it instantiates the
functionality f;:it;ﬁﬁet (with statistical security), modified so that Pg is only guaranteed to
receive the message sent by Ps if Pr € Uf:o Opg4r, where rg is the first round in which

Ps € O,,. If Pr ¢ Uf:o Oyg4r, then Pr cannot output an incorrect message.

» Proposition 6. II;(Pgr, Ps,m) satisfies 1-delivery.

Proof. Privacy holds from the privacy of the robust secret-sharing scheme.

Now, assume that Pr € O,;, UOpy41. If Pg € O,4, then Pr gets m as it is being sent by
Ps directly. On the other hand, if Pg € O,441, the argument is the following. First, each
P; € O, receves s; from Pg, which in particular means that the parties in O, N Org41 NH
send the correct s; to Pr. Pgr receives at least ¢ + 1 correct shares s; and at most ¢ incorrect
ones, hence, by the guaranteed reconstruction property of the RSS, Pr obtains s from these
shares.

Finally, the fact that if Ps ¢ O,4 U O,441 then Pg does not output an incorrect message
follows from the error detection property of (share, rec). |

3.3 From (k — 1)-delivery to k-delivery

Now we show that, given a protocol IIy_1(Pg, Ps, ) that achieves (k — 1)-delivery, one can
obtain a protocol that achieves k-delivery. This is achieved by Protocol Iy (Pg, Ps, m).

,_[ Protocol Il (Pg, Ps, m) ]

In the following, multiple protocols will be executed in parallel. We assume that messages are
tagged with special identifiers so that they can be effectively distinguished.

The parties execute IIx—1(Ps, Pr,m). In parallel, they execute the following.
Let (s1,...,8n) = share(m). The parties run n protocol instances IIx_1(Ps, P;, s;) for i =
1,...,n.
Each P;, upon outputting s; from Ilx_1(Ps, P;, s;), send (s;) to Pg in all subsequent rounds.

Pr initializes variables s1,...,s, = L. Then Pr does the following in every round:
Upon outputting s; from some execution Ilx_1(Ps, P;, s;), Pr sets s; = s;.
Upon receiving s; from some party, sets s; = s;.

Pr outputs rec(s1,...,sy) if this value is not L.
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» Proposition 7. Protocol Il (Ps, Pr,m) achieves k-delivery.

Proof. Let rg be the first round in which Py € O,, and assume that Pr € Uﬁ:o Orgqr. If
Pr € Uf;é Org+r, then Pr would receive m correctly from the properties of IIy_;.

Given the above, it remains to analyze the case in which Pr € O, 1«. From the properties
of ITx_1, every party P; € O, 4 (,—1) receives s; from Ps in round 75 + (k —1). In particular,
each party P; € Opgy (k—1)NOpgyk sends s; to Pg in round 75+ k. An analysis similar to the
one in the proof of Proposition 6 shows that Pg is able to recover m from this information,
and it also shows that if Pr ¢ U]::o Oy g+4r, then Pr cannot be fooled into reconstructing an
incorrect message. <

Combining Propositions 6 and 7, we obtain the following corollary:
» Corollary 8. For every k, there exists a protocol Il satisfying k-delivery.

Now, recalling that the B-assumption implies that there is one round among 1,..., B in
which Pg will come online, and a round among B + 1,...,2B in which Pg is online as well,
we obtain the following theorem as a corollary.

» Theorem 9. Assume that |0, N Op11 NH| > t + 1 for every r > 0. Then, protocol
I5(Pr, Ps,-) instantiates the functionality ]-"SI:’;)T;,\IT; in the FunstableNet-hybrid model with
statistical security against an adversary actively corrupting t < n/2 parties.

» Remark 10. The communication complexity of I is ©(n*). This is because, in the execution
of Iy, Pg must use IIx_; to communicate a share to each single party, adding a factor of n
with respect to the communication complexity of this protocol. This is too inefficient for large
values of k. We leave is an open problem the challenging task of obtaining instantiations
of ‘Fé:it’)f:ﬁet with statistical security in the setting in which |0, N O, 11 NH| > ¢t + 1 having
communication complexity that is polynomial in the bound B.
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A  Shamir Secret Sharing

Throughout this work we will make use of Shamir secret sharing in order to distribute
data among different parties. To secret-share a value s € F among the n parties P,..., P,
using threshold ¢, a dealer proceeds as follows: (1) sample a uniformly random polynomial
f(z) € Flz] of degree at most ¢, subject to f(0) = s, and (2) send to P; its share s; := f(7).
It is well known that for every set of ¢t 4+ 1 points (4, s;) there exists a unique polynomial f(z)
of degree at most ¢ such that f(i) = s; for all 4, which implies that any set of at least ¢ + 1
shares can recover the secret, and any set of ¢ shares does not reveal anything about the
secret.

Bivariate sharings

Sometimes we will make use of bivariate sharings, in which the dealer, to distribute a secret
s € F, samples a random symmetric bivariate polynomial f(x,y) of degree at most ¢ in each
variable subject to f(0,0) = s, and sends the polynomial f(z,%) to P;. As before, given at
most ¢ of these polynomials nothing is leaked about the secret s since any secret could be
chosen so that it looks consistent with the given polynomials.

Error-detection and error-correction

Given m shares among which at most ¢ can be incorrect, then the parties output f(0) as the
secret, where f(x) is the reconstructed polynomial. Given m shares {s;} among which at
most ¢ are incorrect we have the following two possibilities:
If at least t+1 are guaranteed to be correct, error-detection can be performed by checking
if these shares all lies in a polynomial of degree at most ¢, and if this is the case, the
reconstructed polynomial is guaranteed to be correct since it is determined by the ¢ 4 1
correct shares.
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If at least 2t + 1 are guaranteed to be correct, error-correction is possible by looping
through all possible subsets of these shares of size 2t + 1 and checking if all shares in
the given subset are consistent with a polynomial of degree at most ¢. The subset used
for reconstructing this polynomial has 2t + 1 points among which at least t + 1 are
correct (since at most ¢ shares are assumed to be incorrect), which guarantees that the
reconstructed polynomial is the correct one. Although the process of looping through all
subsets of size 2t + 1 can be too inefficient if m is much larger than 2¢ 4 1, this can be
made polynomial in m by using error-detection algorithms like Berlekamp-Welch [6].

In some of our protocols we will need a version of error-correction, which we call enhanced
error-correction, in which the correct polynomial is recovered if there are enough correct
shares, and else an error is output. To this end, given m > 2t 4+ 1 shares as above among
which at most ¢ are incorrect, all possible subsets of 2¢ + 1 shares are inspected, checking if
all these shares are consistent with a polynomial of degree at most ¢. If one such subset is
found, then its corresponding polynomial is output, and else, an error L is produced as the
result. By the same analysis as above, this either results in the correct polynomial or an
error. The main complication is that error-correcting algorithms like Berlekamp-Welch are
not designed to handle this setting in which not enough correct shares may be available, but
one can easily modify this algorithm to handle this case (see for example [4]).

B A More Efficient Protocol with Perfect Security

Recall that in Section 2.2 we presented a protocol to instantiate the functionality FstableNet,

which is intended to represent a traditional stable and secure network among the n parties.

This is the typical communication model used in several MPC protocols, and, assuming
t < n/3, we can find perfectly secure protocols in this model which can be used together
with our protocol Hgf;&lzc,\t,;‘f(Ps, Pr) from Section 2.2 to obtain a perfectly secure protocol

over an unstable network.

In order to instantiate the functionality FstableNet, We required that the scheduling the
adversary provides allows each party to come online at least once within certain amount
of rounds, say B. This is necessary since FsiapleNet Iequires each message between honest
parties to be delivered, and if the receiver never comes online such guarantee cannot hold.
Unfortunately, our protocol Hgf:;’laec,\fie‘f(Ps,PR) requires 2B rounds to deliver a message
between a sender and a receiver, which ultimately means that the final protocol after
composing Hgf:;ﬁﬁ;e(Ps,PR) with an existing perfectly secure protocol would lead to a

multiplicative overhead of 2B in the number of rounds.

Round-count is a very sensitive metric in distributed protocols, especially in high-latency
scenarios where every communication trip incurs in a noticeable waiting time. Furthermore,
the 6(B) overhead may not be so noticeable if the higher level protocol has a low round count,
but unfortunately, it is a well-known open problem to achieve constant round protocols with
perfect security for functionalities outside NC* while achieving polynomial computation and
communication complexity. Motivated by this, we develop in this section a perfectly secure
protocol over an unstable network whose number of rounds corresponds to the depth of
the circuit being computed plus a term that depends on B, but is independent of the size
of the circuit, matching the round complexity of existing protocols over stable networks.
Furthermore, after the inputs have been provided, our protocol does not require anymore the

7:17

ITC 2023



7:18

Phoenix: Secure Computation in an Unstable Network

assumption that each party has to be online at least once every B rounds.* This is because,
as we will see, our protocol only relies on the assumption that |0, N Op41 NH| > 2t + 1 for
every round r in order to transmit and advance the secret-shared state of the computation
from one round to the next. Intuitively, it is irrelevant if certain specific parties become
online at certain points of the protocol, and the only thing that matters is that enough
parties remain online from one round to the next one, irrespectively of their identities.

B.1 Bivariate Sharings and Transition of Shares

We describe the input and preprocessing phases of our protocol in Section B.2, and in
Section B.3 we describe its computation phase. However, before we dive into the protocols
themselves, we need to present certain primitives that will be useful for these constructions.
These are bivariate sharings, together with methods for transmitting bivariate shared values
from one round to the next. This will allow the parties to “transmit” the state of the
computation from the parties that are online in a given round, to these online in the next
one, making progress in one layer of the circuit at the same time.

We say that the parties have bivariate shares of a value s if there exists a symmetric
bivariate polynomial f(x,y) of degree at most ¢ in both variables such that (1) each party
P, € P has f(x,i) and (2) it holds that f(0,0) = s. We denote this by (s). Observe that
this scheme is linear, i.e. parties can locally compute additions of secret shared values, which
is denoted by (z + y) < (x) + (y).

Bivariate sharings were used indirectly in Section 2.2 to instantiate fslzitzﬁgt with perfect

security against an active adversary. This type of sharings proved useful in Protocol
Hgf:;’laec,\t,zf(Pg, Pr) to “transfer” a state between a set of parties to another one, and this is
the purpose of this primitive in this section as well. In a bit more detail, during the execution
of our protocol it will not hold that all parties have shares of certain given values, but rather
only specific subsets corresponding to online parties will do. Since the set of online parties
potentially changes from round to round, a crucial primitive our protocol relies on is what
we call transition of shares, which takes care of transmitting the shared state from one set of

parties to another.

We first formalize the notion that only (part of) the online parties hold shares of a given
value. We say that the parties have a bivariate-shared value s in round r if there exists a
symmetric bivariate polynomial f(z,y) of degree at most ¢ in both variables such that (1)
there exists a subset S, C O, N'H with |S,| > 2t + 1 such that each P; € S, has f(z,1i), (2)
each P; € (O, NH)\ S, has set their share to either f(x,1), or a predefined value L, and (3)
it holds that f(0,0) = s. This is denoted by (s)©~. Observe that nothing is required from
parties outside O, NH. Also, notice that if all the parties have bivariate shares of a value s,
which we denote by (s), then it holds that (s)©r for every r.

A protocol for transition of shares is a one-round protocol in which the parties start with
(s)© in round r, and they obtain (s)©
a protocol for transition of shares, which is motivated in the perfectly secure protocol for

*+1 in the next round r + 1. In what follows we present

instantiating F2 .5, 0% from Section 2.

1 However, the output will be received only by the parties who happen to be online at the output phase.
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,_[ Protocol Il .nsfer }

Input: (s)°" in round r
Output: (s)°7+! in round r + 1.

Parties do the following:

1. For each i =1,...,n, if P; has a share f(z,i) of (s)°r+! (different to L), then P; sends f(j,1)
to Pj for j=1,...,n.

2. For each j = 1,...,n, if P; receives at least 2t + 1 messages {f(J,)}:, then P; performs
enhanced error correction (see Section A) to either recover f(j,z) or output an error L.

» Theorem 11. I[f executed in round r, protocol yanster guarantees that the parties get
Orq1

sharings (s)
Proof. Let S, C O, N'H with |S,| > 2t + 1 be the set of honest parties P; having f(x,1),
guaranteed from the definition of bivariate sharings. Since the protocol above is executed
in round r, each party P; € S, will send f(j,%) to each other party P;, which in particu