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Abstract
Secret sharing schemes allow sharing a secret between a set of parties in a way that ensures that only
authorized subsets of the parties learn the secret. Evolving secret sharing schemes (Komargodski,
Naor, and Yogev [TCC ’16]) allow achieving this end in a scenario where the parties arrive in an
online fashion, and there is no a-priory bound on the number of parties.

An important complexity measure of a secret sharing scheme is the share size, which is the
maximum number of bits that a party may receive as a share. While there has been a significant
progress in recent years, the best constructions for both secret sharing and evolving secret sharing
schemes have a share size that is exponential in the number of parties. On the other hand, the best
lower bound, by Csirmaz [Eurocrypt ’95], is sub-linear.

In this work, we give a tight lower bound on the share size of evolving secret sharing schemes.
Specifically, we show that the sub-linear lower bound of Csirmaz implies an exponential lower bound
on evolving secret sharing.
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1 Introduction

Secret sharing is a fundamental concept in cryptography, that allows a dealer to distribute a
secret among a set of parties in a way that ensures that only authorized subsets of parties
learn the secret. Such schemes are used in secure multi-party computation, amplification
schemes for cryptographic primitives, Byzantine agreement protocols, and more (see [5]).
Evolving secret sharing (Komargodski, Naor, and Yogev [10]) is a variant of secret sharing,
that can be used in evolving systems, for which there is no a-priory bound on the number of
parties. In such schemes, the dealer distributes the secret to an infinite number of parties in
an online fashion: the parties arrive one by one, and each party receives its share of the secret
as it arrives. The correctness guarantee promises that by the time the n-th party receives
their share, all the authorized subsets among the first n parties can reconstruct the secret.
Such a scheme is adaptive if the dealer does not need to know the entire access structure to
give a share to a party. Rather, it is sufficient to know the list of authorized sets containing
only parties that already arrived.

The main complexity measure of a secret sharing scheme is its share size: the maximal
number of bits a party might receive as a share. While there have been significant advance-
ments in the area in recent years ([13, 12, 1, 2]), the best known constructions for (classical)
secret sharing have exponential share size in the number of parties (Applebaum and Nir [4]).
For the harder task of evolving secret sharing, the best construction for arbitrary access
structure gives the i-th party share of size 2i−1 ([10]).
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2:2 A Lower Bound on the Share Size in Evolving Secret Sharing

Somewhat surprisingly, we do not know if exponential share size is the best possible, or
even if the share size must be super linear in the number of parties. Indeed, the best known
lower bound on (classical) secret sharing is due to Csirmaz [8], which showed a specific access
structure for which every scheme must give some party a share of size Ω(n/ log n). Thus, the
optimal share size for arbitrary access structures is an important open question. Prior to
this paper, this question was open also for the case of evolving secret sharing.

1.1 Our Result
In this work, we resolve the above question for the case of evolving secret sharing. We
show that the linear lower bound of Csirmaz [8] implies a tight exponential lower bound
on evolving secret sharing. This is stated in the following two theorems. The first is for
adaptive evolving secret sharing schemes.

▶ Theorem 1 (Lower bound for adaptive schemes, informal). There exists an access structure
A such that for every adaptive evolving secret sharing scheme and for every n, the total share
size of the first n parties in A is at least 2n. In particular, the share size of the i-th party is
at least 2i−1 for infinitely many i’s.

As stated before, this lower bound is tight with the scheme of [10] which gives the i-th
party share of size 2i−1. Interestingly, the access structure for which we prove this lower
bound does not contain a single authorized set. We also prove the following slightly weaker
lower bound, for a larger class of schemes, namely, non-adaptive schemes.

▶ Theorem 2 (Lower bound for non-adaptive schemes, informal). There exists an access
structure A such that the following holds. For every evolving secret sharing scheme for A
and for every n, the total share size of the first n parties is at least 2n−o(n). Moreover, the
share size of the i-th party is at least 2i−o(i) for infinitely many i’s.

The formal bound we prove (Theorem 14) is somewhat stronger, as we can choose the o(n)
term to be any super-constant. For example, Theorem 14 implies that the total share size of
the first n parties is at least 2n−log n. The proof of both theorems follows from an observation
on [8]’s lower bound. In his work, Csirmaz [8] shows that in some access structure over n

parties, there is a specific set of t = log n parties that must hold together at least n bits. We
observe that if these t parties are the first to arrive, by [8]’s lower bound they must hold
exponential (in t) share size. See more details in Section 3.1

1.2 Additional Related Work
Lower bounds on secret sharing schemes

Besides the aforementioned lower bound of [8], Csirmaz [7] showed an access structure for
which, the total share size must be quadratic. The construction is simply duplicating the
parties with large shares in [8]’s construction. Csirmaz [8] also shows that a better lower
bound on the share size cannot be proven using Shannon information inequalities. Beimel
and Orlov [6] showed the same result for a larger set of information inequalities. Recently,
Applebaum, Beimel, Nir, Peter, and Pitassi [3] showed a connection between the known

1 We remark that, as in [8], both of our bounds generalize to the information-ratio of the scheme. That is,
the ratio between the total share size of the first n parties to the length of the secret must be exponential
in n.
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constructions of secret sharing and monotone real circuits, and used this connection to give
a lower bound on a family of constructions. For evolving schemes, [10] gave a tight lower
bound for the special case of the 2-threshold access structure.

Constructions of evolving secret sharing schemes

Following Komargodski et al. [10], Paskin-Cherniavsky [14] showed a more efficient construc-
tion for some classes of access structures. In this scheme, the dealer needs to know the access
structure in advance. More efficient schemes are known for specific types of access structures
([9, 10, 11]).

Paper Organization

Basic definitions and notations are given in Section 2, and the proofs of the lower bounds
are given in Section 3.

2 Preliminaries

2.1 Notations

All logarithms are taken in base 2. We use calligraphic letters to denote sets and distributions,
uppercase for random variables, and lowercase for values and functions. We use [n] to denote
the set {1, . . . , n}. Given a vector v ∈ Σn, let vi denote its i-th entry, let v<i = (v1, . . . , vi−1)
and v≤i = (v1, . . . , vi). Similarly, for a set I ⊆ [n], let vI be the ordered sequence (vi)i∈I .

When unambiguous, we will naturally view a random variable as its marginal distribution.
For a (discrete) distribution D, let x← D denote that x was sampled according to D. Let
Supp(D) = {p : PrD[p] > 0}, and define |D| = log(|Supp(D)|).

2.1.1 Entropy and Mutual Information

The Shannon entropy of a distribution P is defined by H(P) =
∑

p∈Supp(P) PrP [p] · log 1
PrP [p] .

The conditional entropy of a random variable A given B, is defined as H(A | B) =
Eb←B [H(A|B=b)]. The mutual information between two random variables A and B is
defined by

I(A; B) = H(A)−H(A | B) = H(B)−H(B | A)

and the conditional mutual information given a random variable C is defined similarly

I(A; B | C) = H(A | C)−H(A | B, C).

We will use the following well known facts:

▶ Fact 3 (Chain rule for mutual information). For two random variables A and B =
(B1, . . . , Bn), it holds that I(A; B) =

∑n
i=1 I(A; Bi | B<i).

▶ Fact 4 (Upper bound on mutual information). For two random variables A and B, it holds
that I(A; B) ≤ |A|.

ITC 2023



2:4 A Lower Bound on the Share Size in Evolving Secret Sharing

2.2 Secret Sharing Schemes
We now formally define secret sharing schemes. Let P be a set of parties. An access structure
is a monotone collection of subsets of P.

▶ Definition 5 (Access structure). A collection of sets A ⊆ 2P is an access structure if it is
monotone: for every set B ∈ A and for every B′ such that B ⊆ B′ ⊆ P, it holds that B′ ∈ A.
A set B is authorized if B ∈ A, and unauthorized otherwise.

An access structure can be defined by a set of minimal authorized sets. Given a (non-
monotone) setM of subsets of parties, the induced access structure AM is received by adding
to AM all the subsets containing a set in M. That is, AM := {B ⊆ P : ∃C ∈ M s.t. C ⊆ B}.
We are now ready to define secret sharing schemes.

▶ Definition 6 (Secret sharing scheme). A secret sharing scheme for an access structure A is
a pair of algorithms (SHARE, RECON) such that SHARE is a randomized algorithm and the
following holds:
1. Given a secret s ∈ {0, 1}, SHARE(s) returns shares π = {πp}p∈P . πp is called the share

of party p.
2. Correctness: For every secret s ∈ {0, 1}, π ← SHARE(s) and an authorized set B ∈ A,

RECON(B, πB) = s.
3. Perfect Privacy: For every unauthorized set B /∈ A, it holds that

SHARE(0)B ≡ SHARE(1)B.

2.3 Evolving Secret Sharing
We now formally define evolving secret sharing schemes, introduces by Komargodski et
al. [10].

▶ Definition 7 (Restriction). Given an access structure A over P, and a subset of parties
P ′ ⊆ P, let A|P′ := {B ∈ A : B ⊆ P ′}.

[10] showed that A|P′ is an access structure for every A and P ′.

▶ Definition 8 (Evolving access structure). Let P = N be an infinite set of parties. An
evolving access structure over P is a set of access structures {An}n∈N such that for every n,
An is an access structure over [n] and An+1|[n] = An.

For an evolving access structure A and a finite set of parties I ⊆ P , we use A|I to denote
the access structure An|I for some n with I ⊆ [n]. Notice that the set An|I is independent
from the choice of such n (That is, An|I = An′ |I for every n and n′ such that I ⊆ [n] and
I ⊆ [n′]).

▶ Definition 9 (Evolving secret sharing scheme). An evolving secret sharing scheme for an
evolving access structure {An}n∈N is a pair of algorithms (SHARE, RECON) such that the
following holds for every n:
1. Given a secret s ∈ {0, 1} and sequence of shares π1, . . . , πn−1, SHARE(s, π1, . . . , πn−1)

returns a share πn for party n. Denote by Πs = (Πs
1, Πs

2, . . . ) the distribution of the shares
of the parties on secret s. That is, Πs

i = SHARE(s, Πs
1, . . . , Πs

i−1).
2. Correctness: For every secret s ∈ {0, 1}, shares π = (π1, . . . , πn)← Πs

≤n and an authorized
set B ∈ An, RECON(B, πB) = s.

3. Perfect Privacy: For every set B ⊆ [n] of parties with B /∈ An, it holds that Π0
B ≡ Π1

B.
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Note that for every set B ⊆ [n] of parties with B /∈ An, it holds that B /∈ Ak for every k ∈ N.
An adaptive evolving secret sharing scheme is a secret sharing scheme that doesn’t know

the access structure in advance. In this definition, the algorithms SHARE and RECON get a
description of the access structure.

▶ Definition 10 (Adaptive evolving secret sharing scheme). An adaptive evolving secret
sharing scheme is a pair of algorithms (SHARE, RECON) such that the following hold for
every evolving access structure {An}n∈N and for every n:
1. Given a secret s ∈ {0, 1}, An and sequence of shares π1, . . . , πn−1,

SHARE(s,An, π1, . . . , πn−1) returns a share πn for party n. Denote by Πs = (Πs
1, Πs

2, . . . )
the distribution of the shares of the first n parties on secret s. That is,

Πs
i = SHARE(s,Ai, Πs

1, . . . , Πs
i−1).

2. Correctness: For every secret s ∈ {0, 1}, shares π = (π1, . . . , πn)← Πs
≤n and an authorized

set B ∈ An, RECON(B,An, πB) = s.
3. Perfect Privacy: For every set B ⊆ [n] of parties with B /∈ An, it holds that Π0

B ≡ Π1
B.

We now formally define the share size of a set of parties.

▶ Definition 11 (Share size). For an evolving access structure A = {An}n∈N , an adaptive
scheme (SHARE, RECON), and S ← {0, 1}, let Πi := SHARE(S,Ai, Π1, . . . , Πi−1) for every
i ∈ N. Then the share size for A of a party p ∈ N is simply |Πp|. The total share size of a set
of parties B is |ΠB| ≤

∑
p∈B|Πp|. 2

We define share size and total share size for non-adaptive/non-evolving secret sharing
schemes similarly.

2.4 Csirmaz’s lower bound
Csirmaz [8] proved a lower bound on the share size of a (classic) secret sharing scheme for a
specific access structure. We exploit the properties of this access structure in our proof. The
following is the formal statement we need.

▶ Theorem 12 ([8]). For every t ∈ N, there exists an access structure Zt over t + 2t parties,
such that the following holds: The set of players is composed of two disjoint sets, B and C,
such that |C| = t, |B| = 2t, and:
1. C is an unauthorized set, and,
2. the total share size of players in C is at least 2t − 1.

For completeness, we give here the proof.

Proof. Fix t ∈ N and let n = 2t. We start with describing the access structure Zt. Let
B = {P1, . . . , Pn} be a set of n parties, and let C be a disjoint set of parties of size t. Let
C1, . . . , Cn be an ordering of all the subsets of C, such that for every i < j it holds that
Ci ⊈ Cj .3 Define the set of minimal authorized sets of Zt to be the set

M = {Ci ∪ {P1, . . . , Pi} : i ∈ [n]},

2 Recall that |Πb| := log(|Supp(Πp)|) is a lower bound on the maximal representation size of a sample
from Πp.

3 For example, order the sets according to there size in reverse order, with arbitrary order between sets of
equal size.
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2:6 A Lower Bound on the Share Size in Evolving Secret Sharing

and let Zt = AM be the induced access structure. Item 1 holds by construction. Moreover,
by the definition of C1, . . . , Cn andM, for every i the set Ci ∪ {P1, . . . , Pi−1} is unauthorized.
We now use this to prove the lower bound on the share size. Let S ← {0, 1} be a uniformly
chosen secret, and Π be a random sharing of S. We want to lower bound the size of ΠC . It
holds that,

|ΠC |+ |S| ≥ I(ΠC , S; ΠB)

=
∑

i

I(ΠC , S; ΠPi
| ΠP<i

)

≤
∑

i

I(ΠCi , S; ΠPi | ΠP<i)

≤
∑

i

I(S; ΠPi
| ΠCi

, ΠP<i
)

=
∑

i

H(S | ΠCi
, ΠP<i

)−H(S | ΠPi
, ΠCi

, ΠP<i
)

=
∑

i

1− 0

= n

where the first inequality holds by Fact 4. The first equality, the second inequality, and the
third inequality hold by the chain rule of mutual information. The last inequality holds since
Ci ∪ P<i is an unauthorized set, but Ci ∪ P≤i is authorized. Item 2 now follows from the
above since n = 2t and |S| = 1. ◀

3 The Lower Bound on the Share Size

In this section, we formally prove our lower bound. We start with a lower bound on adaptive
evolving secret sharing, and then show how to generalize the bound to hold for non-adaptive
schemes.

3.1 The Adaptive Case
We start by formally stating our main result.

▶ Theorem 13. Let A = {An}n∈N be the access structure for which An = ∅ for every n.
Then for every adaptive evolving secret sharing scheme and every t, the total share size for
A of the first t parties is at least 2t − 1. In particular, there are infinitely many parties i

with share size at least 2i−1 − 1.

The proof of the lower bound is by showing that for every t, after the first t parties arrived,
it is possible to add 2t parties such that the resulting access structure will be Csirmaz’s
structure. Thus, by Csirmaz’s lower bound, the t parties must hold long shares.

Proof. Let (SHARE, RECON) be an adaptive secret sharing scheme, and fix t ∈ N. We start
by defining an evolving access structure A′, and bounding its share size. Later, we relate the
share size of A and A′.

Let C = [t], and let n = 2t. Let B = {P1, . . . , Pn} for Pi = i + t. Define the evolving
access structure A′ = {A′m}m∈N as follows: for every i ∈ [t], let A′i = Ai = ∅. Let A′t+n = Zt

be the access structure over the set B ∪ C promised by Theorem 12. For every j ∈ [n], define
A′t+j = A′t+n|[t+j]. Finally, for every i > t + n, let A′i = A′t+n. Notice that A′ is indeed an
evolving access structure as A′t+n|[t] = At.
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Let S ← {0, 1} be an uniformly random secret, and let Π = (Π1, . . . , Πt+n) be the distri-
bution of the shares of the first t+n parties on A. That is, Πi = SHARE(S,Ai, Π1, . . . , Πi−1).
Similarly, let Π′ = (Π′1, . . . , Π′t+n) be the distribution of the shares of the first t + n parties
on A′ (using SHARE and the secret S).

Notice that by definition of evolving secret sharing scheme, the pair (ŜHARE, RECON)
is a secret sharing scheme for the access structure A′t+n, for ŜHARE(s) := Π′|S=s. Thus, it
must hold by Theorem 12 that |Π′C | =

∣∣Π′≤t

∣∣ ≥ 2t − 1. However, since A′i = Ai for every
i ≤ t, it holds that Π′≤t = Π≤t. Therefore, |Π≤t| ≥ 2t − 1, and the first part of the theorem
follows.

To see the second part, assume towards a contradiction that there is only a finite number
of parties i for which the share size is at least 2i−1 − 1, and let i∗ be the maximal such i (or
i∗ = 1 if no such exists). Let ℓ be the total share size of the first i∗ parties. Consider the
i∗ + ℓ first parties of A. By the assumption, their total share size is at most

ℓ +
i∗+ℓ∑

j=i∗+1
(2j−1 − 1) =

i∗+ℓ∑
j=i∗+1

2j−1 <

i∗+ℓ∑
j=1

2j−1 = 2i∗+ℓ − 1.

On the other hand, by the first part of the theorem, the total share size of the first i∗ + ℓ

parties is at least 2i∗+ℓ − 1 which is a contradiction to the above. ◀

3.2 The Non-Adaptive Case
We now prove our main result for non-adaptive schemes. We start with formally stating the
result.

▶ Theorem 14. For every function f : N→ N with f ∈ ω(1), there exists an access structure
A = {An}n∈N such that the following holds for any evolving secret sharing scheme for A.
For every t, the total share size of the first t parties is at least 2t−f(t) − 1. Moreover, there
are infinitely many parties i with share size at least 2i−f(i)−1 − 1.

The proof of the above theorem is similar to the proof of Theorem 13. However, since
the access structure is fixed, we cannot argue that the security and correctness hold if we
change the access structure on parties that did not arrive yet. To overcome this, we need to
embed inside A all the access structures Zt for every value of t ∈ N. Recall that Csirmaz’s
structure Zt is over two sets of parties, C and B, such that the set C is of size t and has total
share size 2t. To get the stated lower bound, we need to embed in A the structure Zt in
such a way that the parties that hold long shares (that is, the parties in the set C) will arrive
early enough. This is done by associating only a sparse fraction (determined by the function
f) of the parties in A with the set B.

Proof. Fix a function f ∈ ω(1). We start by describing the access structure A. Assume
without loss of generality that f(0) = 0 and 0 ≤ f(n + 1)− f(n) ≤ 1/2,4 and for every n let
xn be a number such that f(xn) ≥ n and f(xn − 1) < n. Let X = {x1, x2, . . . }. We divide
X into disjoint segments {Ij}j∈N as follows, such that the size of the j-th segment is 2j .
Namely, for every j ∈ N let Ij = {x2j , . . . , x2j+1−1}. For every t ∈ N, let [t]X = [t] \ X , and
let t′ =

∣∣[t]X ∣∣ be the size of [t]X . Observe that t′ ≥ t− f(t).

4 Otherwise, define f ′(n) = min
{

f ′(n − 1) + 1/2, minn′>n

{
f(n′)

}}
. Clearly f ′ has the assumed property,

and for every n, f ′(n) ≤ f(n).

ITC 2023



2:8 A Lower Bound on the Share Size in Evolving Secret Sharing

We next define the evolving access structure A such that A|[t]X∪It′ = Zt′ where Zt′

is the access structure promised by Theorem 12. Moreover, [t]X will match the set C in
Theorem 12. This concludes the proof of the theorem similarly to the proof of Theorem 13,
as it follows that the total share size of the parties in [t]X (and therefore also in [t]) is at
least 2t′ − 1 ≥ 2t−f(t) − 1.

To define A as stated above, for every t′ ∈ N let Zt′ be the access structure promised by
Theorem 12, over the sets of parties C = [t]X and B = It′ . For every n ∈ N define

An :=
∞⋃

t′=1
{D ∈ Zt′ : D ⊆ [n]}.

By definition the sequence A = {An}n∈N is an evolving access structure. Moreover, by
construction it holds that for every t′ and for every large enough n (with f(n) > 2t′+1), it
holds that An|[t]X∪It′ is equal to Zt′ , as stated above. Indeed, to make sure that we didn’t
add additional authorized subsets, observe that every authorized set of any structure Zj

for j ̸= t′ contains at least one party from Ij . Since [t]X ∪ It′ and Ij are disjoint, all the
authorized sets in An|[t]X∪It′ are authorized in Zt′ . ◀

3.3 Evolving Secret Sharing Over a Fixed Number of Parties
Our technique also implies a (weaker) lower bound on the share size of adaptive evolving
secret sharing, when the number of parties is known from advanced (but the access structure
is unknown).5 For example, one can prove that for the empty access structure, every scheme
that supports an arbitrary structure over 2n parties, must give a share of length n/ log n to at
least n− log n of the first n parties. Otherwise, there are log n such parties with total share
size less than n. We thus can use the remaining n parties to complete Csirmaz’s structure,
with these log n parties being the set C. This is of course a contradiction to Theorem 12.

We also observe that the share size in this model, of adaptive evolving secret sharing
when the number of parties is known, is related to the share size in classical secret sharing, up
to a linear factor in the number of parties n. Indeed, assume that for every access structure
over n parties there exists a (classical) secret sharing scheme with maximal share size ℓ. The
following shows that the optimal share size of evolving secret sharing over n players is at
most 2n× ℓ (the other direction - that the share size in evolving secret sharing is not smaller
than the share size in classical secret sharing - is trivial). Let P = {P1, . . . , Pn} be the set of
parties, and first assume for simplicity that every authorized set contains the last party Pn.
Let An be the final access structure, and let (SHARE, REC) be a (classic) secret sharing
scheme for An. We can construct an evolving secret sharing scheme as follows: when the i-th
party arrives, for every i ∈ [n− 1], the scheme gives it random (uniformly and independently
chosen) ℓ bits as the share πi. The share of Pn is {πi ⊕ SHARE(s)i}i∈[n] (letting πn = 0ℓ).
Clearly, the share size of the Pn in this scheme is n · ℓ, and all other parties get a share of
size ℓ.

To get rid of the assumption that all the authorized sets contain the last player, we can
simply share the secret independently to n access structures, when the i-th access structure
contains all the authorized sets in which Pi is the last party. This will yield a share size
of length at most (n − 1) · ℓ + n · ℓ (as every party is the last in exactly one such access
structure).

5 Non-adaptive evolving secret sharing with finite number of parties is equivalent to classical secret
sharing.
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