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Abstract
Identifying influential nodes in a network is arguably one of the most important tasks in graph mining
and network analysis. A large variety of centrality measures, all aiming at correctly quantifying
a node’s importance in the network, have been formulated in the literature. One of the most
cited ones is the betweenness centrality, formally introduced by Freeman (Sociometry, 1977). On
the other hand, researchers have recently been very interested in capturing the dynamic nature
of real-world networks by studying temporal graphs, rather than static ones. Clearly, centrality
measures, including the betweenness centrality, have also been extended to temporal graphs. Buß et
al. (KDD, 2020) gave algorithms to compute various notions of temporal betweenness centrality,
including the perhaps most natural one – shortest temporal betweenness. Their algorithm computes
centrality values of all nodes in time O(n3T 2), where n is the size of the network and T is the total
number of time steps. For real-world networks, which easily contain tens of thousands of nodes, this
complexity becomes prohibitive. Thus, it is reasonable to consider proxies for shortest temporal
betweenness rankings that are more efficiently computed, and, therefore, allow for measuring the
relative importance of nodes in very large temporal graphs. In this paper, we compare several
such proxies on a diverse set of real-world networks. These proxies can be divided into global and
local proxies. The considered global proxies include the exact algorithm for static betweenness
(computed on the underlying graph), prefix foremost temporal betweenness of Buß et al., which
is more efficiently computable than shortest temporal betweenness, and the recently introduced
approximation approach of Santoro and Sarpe (WWW, 2022). As all of these global proxies are
still expensive to compute on very large networks, we also turn to more efficiently computable local
proxies. Here, we consider temporal versions of the ego-betweenness in the sense of Everett and
Borgatti (Social Networks, 2005), standard degree notions, and a novel temporal degree notion
termed the pass-through degree, that we introduce in this paper and which we consider to be one of
our main contributions. We show that the pass-through degree, which measures the number of pairs
of neighbors of a node that are temporally connected through it, can be computed in nearly linear
time for all nodes in the network and we experimentally observe that it is surprisingly competitive
as a proxy for shortest temporal betweenness.
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6:2 Proxying Betweenness Centrality Rankings in Temporal Networks

1 Introduction

Centrality measures are notions for evaluating the importance of nodes in networks, used
in network analysis and graph theory. The aim is to assign real values to all the nodes,
in such a way that the values are monotonously dependent of the nodes’ importance, i.e.,
more important nodes should have higher centrality values. It is evident that this task is
among the most important ones in network analysis. Consequently, there is a vast variety of
centrality notions in the existing literature. Popular measures include spectral notions, such
as Katz’s index [24], Seeley’s index [41], and PageRank [10], and combinatorial notions, like
the straightforward concept of degree centrality, the closeness centrality [4], the harmonic
centrality [32, 6], and the betweenness centrality [18]. This diversity of notions indicates that
there is no consensus among researchers on which notion is the “correct one”. While Boldi
and Vigna [6] provide an axiomatic approach to this question, their work mainly transfers
the discord from which centrality notion to use to the question of which axioms to agree
upon. In fact, the choice of which centrality notion to employ is mainly dependent on the
application which may stem from a diverse set of fields [30, 17, 11]. In many scenarios, the
considered networks are characterized by the following challenges: (1) they are very large and
(2) they are dynamic or temporal, i.e., they change over time. In the context of these two
challenges it is, thus, essential to consider temporal variants of the most important centrality
notions, alongside algorithms for computing them, that have a good scaling behaviour. In
this work, we focus on the betweenness centrality, which is certainly among the most used
and most cited centrality notions, and study it in the context of these challenges.

Buß et al. [12] defined the shortest temporal betweenness as a temporal counterpart of
the betweenness centrality, and gave an algorithm to compute all centrality values in time
O(n3T 2), where n is the size of the network and T is the total number of time steps. For
nowadays networks, such time complexity easily becomes infeasible. Thus, it is reasonable
to consider proxies for shortest temporal betweenness rankings that are more efficiently
computed. In this work, we use the following general approach. We employ a set of competitor
algorithms that we each use as proxies for temporal betweenness rankings, i.e., for each
algorithm, we compute a complete ranking of the nodes and evaluate how this ranking relates
to the “correct” ranking. While different scenarios may exist, centrality values are frequently
used to rank nodes and our proxy notion is motivated exactly by such applications.

Some of the considered proxies have the property that they still try to capture the global
nature inherent in the definition of the shortest temporal betweenness and, as a consequence,
still suffer from a comparatively bad running time, meaning that their running times are far
from linear in the input size. Note however that, as argued, e.g., by Teng [47], in the age of
Big Data, an algorithm should be considered efficient or scalable if its time complexity is
nearly-linear. In fact, there is even theoretical evidence, in form of several conditional lower
bound results [2, 7], for believing that no such algorithm is achievable, even for approximately
computing the betweenness values in static graphs. We thus shift our focus away from these
global proxies towards local proxies for shortest temporal betweenness rankings. We classify
a proxy as local if the centrality values of nodes are completely determined by the induced
subgraph of their neighborhood (including themselves).

For measuring proxy quality, we employ several different metrics, most prominently
a weighted version of Kendall’s τ correlation coefficient and the intersection of the top-k
ranked nodes (for different values of k). Note that the latter is directly translatable into
the Jaccard similarity of the top ranked nodes. We would like to stress here that it is quite
uncomplicated to show that all proxies considered in the present work can perform arbitrarily
bad on adversarial examples (in terms of all considered metrics) and no reasonable theoretical
guarantees can therefore be given for their ranking quality.
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A diverse set of temporal betweenness notions has been defined in the literature (see
Section 1.2). Clearly, if the notion of centrality is already vague in static graphs, it becomes
even more so in the temporal setting, where in addition the time dimension has to be
considered. In this study, we focus on the definition given by Buß et al. [12] as it arguably
represents one of the most “natural” and direct temporal analogues of the static betweenness
(once the notion of distance has been defined).

1.1 Contribution
We compare a variety of approaches for proxying shortest temporal betweenness rankings
in terms of their scalability and output quality. We start our study in Section 3 with a
comparison of the following proxies: (1) exact algorithm for the static betweenness computed
on the underlying graph, (2) the more efficiently computable prefix foremost temporal
betweenness of Buß et al. and (3) the recently introduced (absolute) approximation approach
of Santoro and Sarpe [39]. Our evaluation indicates that the static betweenness rankings turn
out to be quite competitive, the performance of the prefix foremost temporal betweenness
seems somewhat inconsistent, while the quality of the ranking returned by the considered
temporal betweenness approximation algorithm very much depends on the provided time.

Next, motivated by the fact that static degree centrality is often compared to other
centrality measures, we follow this approach in the temporal setting. In Section 4, we
describe our main theoretical contribution: the pass-through degree, a new temporal degree
notion which we believe to be interesting in its own right. Informally the pass-through
degree of a node v measures the number of neighbor pairs of v that are temporally connected
through v, i.e., that have a temporal path of length two between them that passes through v.
We proceed by giving an algorithm that computes the pass-through degree of all nodes in a
given (directed) temporal graph in O(M log m) time, where M is the number of temporal
arcs and m the number of arcs in the underlying static graph. In other words, the proposed
algorithm is scalable in the sense of Teng [47].

In Section 5 we compare the following set of local proxies in terms of their efficiency and
quality: (1) temporal versions of the ego-betweenness in the sense of Everett and Borgatti [16],
which entails to compute the betweenness centrality values of the nodes in their respective
ego-networks (the induced subgraph of a node’s neighborhood including himself) (2) the
pass-through degree, and (3) the approximation algorithm for temporal betweenness centrality
also used as one of the global proxies in Section 3, as it is the only choice from that section
that offers scalability in terms of computation time. We note that the pass-through degree
falls somewhere between the simple degree notions and the ego-betweenness notion in terms
of complexity. Our evaluation here indicates that the ego-networks can be of comparable
size as the whole network and, thus, prohibitively large on some data sets, the pass-through
degree usually does not perform worse than the ego-variants and is at the same time much
faster, while the considered approximation algorithm for temporal betweenness has a more
inconsistent performance over different data sets.

Our experimental evaluation is based on a diverse set of real-world networks that includes
almost all publicly available networks from the works of Buß et al. [12] and Santoro and
Sarpe [39]. We did not include the Karlsruhe network [20] (used in [12]) because it does not
appear to be available anymore. Moreover, we replaced Mathoverflow [29] network (used
in [39]) by a bigger temporal network from a different domain to make the set of analyzed
temporal graphs more diverse. Finally, we excluded Ask Ubuntu and Super User [29] (also
analyzed in [39]) because of the excessive amount of time needed to compute their exact
temporal betweenness rankings.
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1.2 Further Related Work

The literature on centrality measures being vast, we restrict our attention to approaches that
are closest to ours. We, thus, particularly focus on centrality notions in temporal graphs.

First of all, several works give introductions to temporal graphs that include surveys
on temporal centrality measures (see, e.g., [23, 28, 40]). Nicosia et al. [33] introduced
different temporal graph notions, such as temporal centralities, temporal motif, temporal
clustering, temporal modularity, and temporal communities. Providing top-k algorithms for
estimating temporal closeness centrality has also already been treated in the literature [15, 34].
Subsequently, a closeness variant based on bounded random-walks, related to the concept
of influence spreading, has been proposed by Haddadan et al. [22]. Furthermore, Tang et
al. [46] introduced temporal variants of both closeness and betweenness centrality based
on foremost temporal paths, and experimentally showed the effectiveness of such metrics
in spotting influential users in real-world temporal graphs. Building upon this direction,
Tang et al. [44] used the notion of temporal closeness to provide an empirical analysis of the
containment of malware in real-world mobile phone networks. The Katz centrality [24] has
been adapted to the temporal setting [21, 5] as well, while Rozenshtein et al. [37] defined the
temporal PageRank by replacing random walks with temporal random walks.

Tsalouchidou et al. [48] extended the well-known Brandes algorithm [9] to allow for
distributed computation of betweenness in temporal graphs. Specifically, they studied
shortest-fastest paths, considering the bi-objective of shortest length and shortest duration.
Buß et al. [12] analysed the temporal betweenness centrality considering several temporal
path optimality criteria, such as shortest (foremost), foremost, fastest, and prefix-foremost,
along with their computational complexities. They showed that, when considering paths
with increasing time labels, the foremost and fastest temporal betweenness variants are
#P -hard, while the shortest and shortest foremost ones can be computed in O(n3T 2), and
the prefix-foremost one in O(nM log M). Here n is the number of nodes and M the number of
temporal arcs. The complexity analysis of these measures has been further refined since [38].

Santoro and Sarpe [39] provide a sampling-based approximation algorithm for estimating
the temporal betweenness centrality of nodes based on shortest path criterion, for situations
in which the computational cost of computing exact values is too large.

Ghanem et al. [19] defined a temporal version of ego betweenness based on most recent
paths, which are paths that give the most recent information to the destination vertex
about the status of the source, i.e., no other path starts from the source at a later point in
time. Their definition of temporal ego betweenness is snapshot based, i.e., it gives the ego
betweenness of the temporal ego graph at a specific time instant. Simard et al. [42], on the
other hand, studied a continuous-time scenario of the shortest paths betweenness.

Finally, Oettershagen et al. [35] defined a random temporal walks based centrality
that quantifies the importance of a node by measuring its ability to obtain and distribute
information in a temporal network. They provide exact and approximate algorithms for
computing their centrality measures and compare it with the state-of-the-art temporal
centralities, i.e., with PageRank [37], Katz [5], closeness [15, 34], and betweenness [12].

2 Preliminaries

We proceed by formally introducing the terminology and concepts that we use in what follows.
For k ∈ N, we let [k] := {1, . . . , k}.
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Static Graphs. We start by introducing standard static, i.e., non-temporal, graphs1. An
undirected graph is an ordered pair G = (V, E), where V is a set whose elements are called
vertices or nodes, and E is a set of unordered pairs of vertices, whose elements are called
edges. We denote by N(u) = {v ∈ V : {u, v} ∈ E} the set of neighbors of a vertex
u ∈ V . The degree of a vertex u ∈ V is defined as d(u) := |N(u)|. A directed graph is a
an ordered pair G = (V, A), where V is a set whose elements are called vertices or nodes,
and A is a set of ordered pairs of vertices, whose elements are called arcs. We denote by
N in(u) = {v ∈ V : (v, u) ∈ A} and Nout(u) = {w ∈ V : (u, w) ∈ A} the set of in-neighbors
and of out-neighbors of a vertex u ∈ V , respectively. For a subset of nodes U ⊆ V , we call
G[U ] := (U, A′), where A′ := {(u, v) ∈ A : u, v ∈ U}, the induced subgraph of U . We note
that an undirected graph can be modeled as a directed graph by introducing, for every edge
e = {u, v} ∈ E, both arcs (u, v) and (v, u), resulting in the corresponding bidirected graph.
We thus focus on directed graphs in what follows.

Temporal Graphs. A directed temporal graph is an ordered triple G = (V, A, λ), where (V, A)
is a directed graph, called the underlying graph of the temporal graph G, and λ : A → 2[T ]

is a function assigning to every arc in A a finite set of elements from the set of time labels
[T ].2 We let A = {(u, v, t) : (u, v) ∈ A, t ∈ λ(u, v)} denote the set of temporal arcs of G.
Undirected temporal graphs can be modeled via directed graphs resulting in a bidirected
underlying graph. Static graphs can be modeled by temporal graphs by defining λ(a) := [T ]
for all arcs a ∈ A.

Temporal Betweenness. A walk from node u to node w in a static graph G = (V, A) is
a sequence a1, . . . , ak such that ai = (vi, vi+1) ∈ A, v1 = u, and vk+1 = w. We call k the
length of the walk. A path is a walk such that vi ≠ vj for all i, j ∈ [k] with i ≠ j. A shortest
path from u to w is a path of minimum length among all paths from u to w. We denote by
σu,w the total number of shortest paths between u and w in G, while σu,w(v) is the number
of shortest paths between u and w that pass through v. The betweenness or betweenness
centrality of a node v in G, formally introduced by Freeman [18] in 1977, is defined as

bG(v) :=
∑

u,w∈V \{v}:σu,w ̸=0

σu,w(v)
σu,w

.

A temporal walk from node u to node w in a temporal graph G = (V, A, λ) is a walk
a1, . . . , ak from u to w in the underlying graph G = (V, A) such that there exist time labels
t1, . . . , tk with t1 < . . . < tk and ti ∈ λ(ai) for every i ∈ [k]. We call k the length of the
temporal walk and tk the arrival time of the walk at w. A temporal path is a temporal walk
such that vi ̸= vj for all i, j ∈ [k] with i ̸= j. A prefix temporal path of a temporal path is its
subpath starting at the same vertex. A shortest temporal path from u to w is a temporal
path of minimum length among all temporal paths from u to w. Analogously to the static
case, we denote by σtemp

u,w the total number of shortest temporal paths between u and w in G,
while σtemp

u,w (v) is the number of shortest temporal paths between u and w that pass through
v. The shortest temporal betweenness (centrality) of a node v in the temporal graph G is
defined as

1 We use the terms “graph” and “network” interchangeably.
2 The value T denotes the life-time of the temporal graph, and, without loss of generality for our purposes,

we assume that, for any t ∈ [T ], there exists at least one temporal arc a such that λ(a) = t.
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stbG(v) :=
∑

u,w∈V \{v}:

σtemp
u,w ̸=0

σtemp
u,w (v)
σtemp

u,w

.

Different notions of temporal betweenness were recently studied by Buß et al. [12]. Their
foremost and fastest variants are both #P -hard, making them very impractical. From the
remaining variants, the shortest temporal betweenness seems to be the most natural one.
We do not consider walk-based betweenness notions as we agree with Buß et al. that “paths
are more suitable than walks for defining temporal betweenness centrality” [12]. Buß et
al. [12] gave an algorithm to compute the shortest temporal betweenness of all nodes in time
O(n3T 2). We will next introduce the notion of prefix foremost temporal betweenness from
the work of Buß et al. as we will use it as a proxy for the shortest temporal betweenness.
A prefix foremost shortest path from u to w is a shortest temporal path from u to w such
that no other shortest temporal path has an earlier arrival time at w and such that its every
prefix path satisfies the same property. Let τ temp

u,w now be the total number of prefix foremost
shortest paths between u and w in G and let τ temp

u,w (v) be the number of those paths that pass
through v. The prefix foremost temporal betweenness pftb of v is then defined analogously
to the shortest temporal betweenness by replacing σ by τ , i.e.,

pftbG(v) :=
∑

u,w∈V \{v}:
τtemp

u,w ̸=0

τ temp
u,w (v)
τ temp

u,w

.

Buß et al. give an algorithm for computing the prefix foremost temporal betweenness of all
nodes in time O(nM log M), where n is the number of vertices and M the total number of
temporal arcs.

Temporal Ego-Betweenness The ego-network G[v] of a node v in a static graph G is
the induced subgraph of its in- and out-neighbors, i.e., G[v] := G[N in(v) ∪ Nout(v)].
The ego-betweenness (centrality) of v is the betweenness of v in its ego-network, i.e.,
ego-b(v) := bG[v](v). The ego-betweenness (in undirected graphs) was introduced by Everett
and Borgatti [16] as a more tractable variant of betweenness. We extend their ego-betweenness
to temporal graphs as follows. The ego-network G[v] of a node v in a temporal graph G is the
temporal graph with the underlying graph G[v] := G[N in(v)∪Nout(v)] and with the time label
function λ′ being the restriction of λ to arcs in G[v]. The ego-shortest temporal betweenness
of v is the shortest temporal betweenness of v in its ego-network, i.e., ego-stb(v) := stbG[v](v).
Similarly, we define the ego-prefix foremost temporal betweenness of v as the prefix foremost
temporal betweenness of v in its ego-network, i.e, ego-pftb(v) := pftbG[v](v).

Everett and Borgatti [16] propose an algorithm to compute the ego-betweenness of a
single node in an undirected static graph via computation of the square of the incidence
matrix of the node’s ego-network. We note that in the worst case the ego-network is of the
same size as the original graph. For computing the temporal ego-betweennesses of all nodes,
this algorithm can thus be implemented in time O(nω+1), where ω is matrix multiplication
exponent, i.e., the smallest real number such that two n × n matrices can be multiplied
within O(nω+ε) field operations for all ε > 0. The current best bound on ω is 2.3728596 [3].
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3 Global Proxies for Shortest Temporal Betweenness

In this section, we summarize the results of our experimental study on proxying the shortest
temporal betweenness values in large real-world networks using global proxies. Recall
that a proxy is global, if the centrality value of each node is not purely dependent on its
neighborhood. Our general experimental approach here is as follows. We employ a set
of competitor algorithms that we each use as a proxy for shortest temporal betweenness
centrality rankings. That is, for each algorithm, we compute a complete ranking of the
nodes and evaluate (using various metrics) how this ranking relates to the “correct” ranking
computed by the algorithm of Buß et al. [12]. In what follows, we will call this benchmark
algorithm TempBrandes for “Temporal Brandes algorithm”. Recall that TempBrandes
computes the shortest temporal betweenness values of all nodes in time O(n3T 2).

3.1 Experimental Setting
Global Proxies. As global proxies for shortest temporal betweenness, our study includes
the following algorithms.
Brandes: The classical algorithm of Brandes, which computes the static betweenness of all

nodes in time O(nm) on the underlying graph, i.e., the graph obtained by a union over
all the time steps.3

Pref: The algorithm of Buß et al. [12] for computing the prefix foremost temporal between-
nesses pftb in O(nM log M).

Onbra: The approximation algorithm of Santoro and Sarpe [39], which is a sampling technique
for obtaining an absolute approximation of the shortest temporal betweenness values.
The work that introduced this algorithm is rather vague in terms of how to choose the
sample size, stating only that they choose it so as to make the algorithm run “within a
fraction of the time required by the exact algorithm”. In our study, we choose the number
of samples such that the running time of Onbra is a tenth, a half and roughly equal to
the running time of TempBrandes. We achieve this by first estimating the time taken
per sample, and then computing the number of samples by dividing the (fraction of) time
needed by TempBrandes with the computed estimate.

Besides Brandes, which is available in the Graphs.jl library, we implemented TempBrandes
and all competitor algorithms in Julia. We chose to re-implement TempBrandes, Pref and
Onbra because the available implementations of TempBrandes and Pref have issues with
the number of paths in the tested networks, causing overflow errors (indicated by negative
centralities). Since Onbra is based on the TempBrandes code, it results in the same
errors. Our implementation uses a sparse matrix representation of the n × |T | table used in
[12, 39], making the implemented algorithms space-efficient and allowing to compute the exact
temporal shortest betweenness on big temporal graphs (for which the original version of the
code gives out of memory errors). Furthermore, we noticed another error in TempBrandes
and Pref, related to time relabeling causing an underestimation of centralities. Our code is
available at https://github.com/piluc/TSBProxy.

Networks. We evaluate all of the above competitors on real-world temporal graphs of
different nature, whose properties are summarized in Table 1. The networks come from two
different domains.

3 We are aware of fast approximation algorithms like Kadabra [8] for the computation of the static
betweenness, but for our purpose here the efficiency of the exact algorithm is sufficient.

SEA 2023

https://github.com/piluc/TSBProxy


6:8 Proxying Betweenness Centrality Rankings in Temporal Networks

Table 1 The temporal networks used in our evaluation, where n denotes the number of nodes, m

the number of arcs in the underlying static graph, M the number of temporal arcs, T the number of
unique time labels, tSTB the execution time of TempBrandes, and nmax

e the maximum number
of nodes in the ego network (type D stands for directed and U for undirected). The networks are
sorted in increasing order with respect to tSTB.

Data set n m M T tSTB nmax
e Type Source

Hypertext 2009 113 4392 41636 5246 263 99 U [1]
High school 2011 126 3418 57078 5609 446 56 U [1]
Hospital ward 75 2278 64848 9453 659 62 U [1]
College msg 1899 20296 59798 58911 894 256 D [29]
Wiki elections 7115 103680 106985 101012 1192 1066 D [29]
High school 2012 180 4440 90094 11273 1345 57 U [1]
Digg reply 30360 85247 86203 82641 1762 284 D [36]
Infectious 10972 89034 831824 76944 4985 65 U [1]
Primary school 242 16634 251546 3100 5607 135 U [1]
Facebook wall 35817 104942 198028 194904 5751 89 D [36]
Slashdot reply 51083 130370 139789 89862 8653 2916 D [36]
High school 2013 327 11636 377016 7375 20642 88 U [1]
Topology 16564 122140 198038 32823 22453 1401 U [27]
SMS 44090 67190 544607 467838 25178 407 D [36]
Email EU 986 24929 327336 207880 31840 346 D [29]

Social networks: This domain includes most of the considered networks: College msg, Wiki
elections, Digg reply, Slashdot reply, a subgraph of Facebook wall [50] containing
the last ∼ 200k temporal arcs (as in the work of Santoro and Sarpe [39]), SMS and Email
EU. These are social networks from different realms, where nodes correspond to users and
temporal arcs indicate messages sent between them at specific points in time.

Contact networks: This domain includes the six networks Hypertext 2009, High school
11/12/13, Hospital ward, Infectious, Primary school and Topology. In the first
case nodes correspond to individuals, while in the second case they correspond to
computers. In both cases temporal arcs indicate a contact between nodes at a specific
time.

In Appendix C we briefly discuss another type of temporal networks, that is, public transport
networks (see, for example, [14, 15]), which, due to their topology, have quite peculiar
properties in terms of both the execution times and of the quality of the analysed proxies.

Evaluation Details. We executed the experiments on a server running Ubuntu 20.04.5 LTS
112 with processors Intel(R) Xeon(R) Gold 6238R CPU @ 2.20GHz and 112GB RAM. All
the correlation coefficients were computed by making use of the corresponding functions
available in the Python scipy.stats module [13].
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3.2 Experimental Results

Experiment 1: Global Proxies’ Correlation to TEMPBRANDES

In our first experiment, we run both TempBrandes and all the discussed global proxies on
the networks listed in Table 1. We then, for each of these four algorithms (TempBrandes
plus three proxies), compute the resulting node ranking and evaluate the correlation of the
rankings computed by the proxies with the ranking computed by TempBrandes. Here, we
employ two different rank correlation measures, i.e., (1) a weighted version of Kendall’s τ

coefficient based on the work of Vigna [49], and (2) the number of common highest rank
nodes among the first k. We also investigated the Spearman’s ρ coefficient [43] and Kendall’s
τ coefficient [25] of the rankings, but we omit these results here due to space constraints. We,
however, note that these measures indicated similar proxy performance as (1), and at the
same time we find (1) more relevant, as it gives more importance to approximating the upper
part of the ranking. For the weighted Kendall’s τ coeffficient, we use a hyperbolic weighting
scheme, as proposed by Vigna [49], that gives weights to the positions in the ranking which
decay harmonically with the ranks, i.e., the weight of rank r is 1/(r + 1). We refrain from
comparing the proxies with respect to average correlation due to outliers.

Table 2 For each network, we show the execution times of TempBrandes and of all proxies
(except for Onbra) in seconds. Dashes indicate that the experiment was interrupted after the
time of TempBrandes elapsed. We omit Onbra from the table as its running time is fixed to
approximately 1/10, 1/2, or 1 times the running time of TempBrandes due to the choice of the
sample size.

Network Execution Time (seconds)

TempBrandes Brandes Prefix EgoPrefix EgoSTB PTD

Hypertext 2009 262.58 0.01 2.29 25.14 – 0.01
High school 2011 445.62 0.02 3.39 15.81 – 0.01
Hospital ward 659.13 0.01 2.01 37.97 – 0.01
College msg 894.44 1.12 21.58 4.83 116.53 0.02
Wiki elections 1192.42 6.52 49.84 45.54 586.75 0.06
High school 2012 1345.06 0.03 7.77 232.90 – 0.01
Digg reply 1762.09 123.37 224.58 1.61 4.43 0.05
Infectious 4985.19 3.28 50.26 26.97 820.73 0.11
Primary school 5607.17 0.08 39.22 492.73 – 0.04
Facebook wall 5750.73 349.01 429.38 2.00 17.86 0.07
Slashdot reply 8652.54 442.75 1116.99 7.08 38.78 0.07
High school 2013 20641.71 0.11 95.49 200.89 – 0.09
Topology 22452.98 124.98 1017.78 905.69 – 0.08
SMS 25178.27 129.53 591.98 4.18 476.71 0.09
Email EU 31839.72 0.54 180.86 411.07 – 0.05

Running Times. The running times of the global proxies can be found in the first three
columns of Table 2. We note that Prefix always terminates in at most 15% of the running
time of TempBrandes, while Brandes always finishes in at most 7% of the running time
of TempBrandes. The efficiency of both proxies is particularly pronounced on contact
networks with lots of temporal edges and comparatively few edges in the underlying graph.
As a result the underlying graph is comparatively small, which is beneficial for Brandes.
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On the other hand, the number of prefix foremost shortest paths is also much smaller than
the total number of shortest temporal paths, which is beneficial for Prefix. The running
times of the three Onbra versions are fixed to approximately 1/10, 1/2, and 1 times the
running times of TempBrandes due to the choice of the sample size.
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Figure 1 Comparison of the centrality ranking produced by TempBrandes and the rankings
produced by the global proxies. The comparison is given in terms of the weighted Kendall’s τ

coefficient and the intersection of the top 50 nodes.

Ranking Correlation. An illustration of the ranking correlation results of this experiment can
be found in Figure 1. On top of the figure, we show the Weighted Kendall’s τ correlation of the
rankings computed by the respective proxies and the ranking computed by TempBrandes.
On the bottom, we show the results in terms of the intersection of the top-k nodes. We
choose the value of k to be 50 here, while further results for k = 1 and k = 25 can be found
in Table 5 in the appendix.

In terms of the weighted Kendall’s τ correlation (see Table 3), we first observe that
there are three (3) networks in which Brandes performs best, five (5) networks in which
Prefix performs best, and ten (10) networks in which Onbra with maximal sample size
performs best (we count networks with ties multiple times). We, however, also notice that
the Onbra’s performance heavily relies on the used sample size. Indeed, if the sample size
is such that Onbra needs roughly 10% of TempBrandes running time, we observe that
the numbers change as follows: there are eleven (11) networks in which Brandes achieves
the best correlation and there are five (5) networks in which Prefix performs best, while
Onbra never performs best.

As Brandes always terminates in less than 7% of TempBrandes’ running time, and in
most cases much faster, we can conclude that the static betweenness rankings are actually
quite competitive in situations where we are restricted in terms of running time. In other
words, it seems really necessary to give Onbra a running time similar to the exact algorithm
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Table 3 For each network, we show the weighted Kendall’s τ coefficient of the rankings computed
by the three global proxies and the ranking computed by TempBrandes. For Onbra we show the
results using, respectively, a sample size such that Onbra’s execution time is 1/10, 1/2, and exactly
the one of TempBrandes. For each instance, we highlight the best result in bold font.

Network weighted Kendall’s τ coefficient

Brandes Prefix Onbra 1
10

Onbra 1
2

Onbra1

Hypertext 2009 0.90 0.67 0.86 0.94 0.96
High school 2011 0.89 0.56 0.82 0.92 0.95
Hospital ward 0.84 0.71 0.82 0.92 0.94
College msg 0.95 0.92 0.89 0.94 0.95
Wiki elections 0.92 0.92 0.84 0.90 0.92
High school 2012 0.90 0.56 0.81 0.89 0.93
Digg reply 0.94 0.99 0.73 0.83 0.86
Infectious 0.92 0.78 0.45 0.67 0.70
Primary school 0.89 0.13 0.88 0.94 0.96
Facebook wall 0.91 0.98 0.80 0.87 0.90
Slashdot reply 0.91 0.96 0.85 0.91 0.92
High school 2013 0.92 0.63 0.86 0.93 0.95
Topology 0.93 0.92 0.89 0.93 0.94
SMS 0.93 0.99 0.73 0.81 0.84
Email EU 0.95 0.88 0.91 0.96 0.97

in order for it to outperform Brandes. At this point, we would like to emphasize that our
choice of sample size for Onbra is inherently impractical as it requires to run the exact
algorithm first. We chose this approach in order to be as fair as possible when evaluating its
performance in terms of quality. Choosing its sample size based on the time of other proxies,
as, e.g., Brandes, makes its performance much worse in comparison. The results based on
the intersection measure are somewhat similar, with Onbra performing slightly better.

4 Pass-Through Degree

Motivated by the fact that the running times of the global proxies employed in the previous
section all grow much faster than linearly, we now turn to local proxies, i.e., proxies which
compute centrality values purely based on nodes’ neighborhoods. In the case of static graphs,
it is common practice to compare more involved centrality notions to the simple degree
centrality. Motivated by this fact, we here introduce a new degree notion for temporal graphs,
which we will evaluate as a local proxy for shortest temporal betweenness in what follows.
This new degree notion is somewhat related to the ego-betweenness, but it is in fact even
simpler. In the end of this section, we will show that it can be computed for all nodes in
nearly linear time in the number of temporal arcs.

Static Pass-Through Degree. With the aim of a simpler exposition, we start by giving
the definition of our new degree notion for static directed graphs. We first note that the
two standard degree notions in directed graphs, the in-degree din(u) = |N in(u)| and the
out-degree dout(u) = |Nout(u)|, both fail to observe the vertex as a whole, by taking in-going
and out-going arcs into account in isolation. In undirected graphs, on the other hand, the
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v1

u1

v2

w1

u2

w2 w3 w4 w5 w6 wk. . .

Figure 2 For the first variant, the pass-through degree of vertices u1 and u2 in the example
graphs depicted above is equal. Namely, d1(u1) = |N in(u1)| = 1 = |N in(u2)| = d1(u2). For the
second variant this is not the case, as d2(u1) =

√
2 and d2(u2) =

√
k = Θ(

√
n), where n denotes the

number of nodes in the graph.

degree of a vertex also measures the number of neighbor pairs that can reach each other
by passing through u, albeit normalized by the size of the neighborhood of u. In other
words, d(u) = |N(u)|·|N(u)|

|N(u)| . This is, of course, just an overly complicated way of writing
down the identity d(u) = |N(u)|, but we use it as motivation for defining the analogous
degree notion in directed graphs. We actually give two candidate definitions first, both
generalizing the above equality to directed graphs, and then argue which of the two notions
is more reasonable. The two variants of a directed degree notion that we propose, for a node
u ∈ V , are d1(u) := |N in(u)|·|Nout(u)|

|N in(u)∪Nout(u)| and d2(u) :=
√

|N in(u)| · |Nout(u)|. When modeling
an undirected graph G = (V, E) as a directed graph D = (V, A), by introducing two arcs
(u, v) and (v, u) for every edge {u, v} ∈ E, we obtain, for every node u in the undirected
graph, N(u) = N in(u) = Nout(v) and d1(u) = d2(u) = d(u). Thus, both notions are proper
generalizations of the undirected degree.

While at first sight it is not obvious which vertex degree definition is more suitable, both
of them being legitimate generalizations of the undirected degree, one of the two turns out
to be better suited for measuring vertex importance. As the examples in Figure 2 illustrate,
the first candidate, d1, has a serious drawback. More formally, when N in(u) ∪ Nout(u) ∈
{N in(u), Nout(u)}, then d1(u) ∈ {|N in(u)|, |Nout(u)|}. This in particular means that in such
a case, contrary to our initial intention, the degree of a node depends only on the in-going
or the out-going arcs. Since the second candidate does not suffer from this issue, we find
it more suitable for defining our directed degree notion. We now formally define it as the
pass-through degree of a node.

▶ Definition 1. In a static directed graph G = (V, A), the pass-through-degree of u ∈ V is
defined as

ptd(u) :=
√

|N in(u)| · |Nout(u)|

We point out that the pass-through degree is the geometric mean of in- and out-degree, the
two classical notions of directed degree.

Temporal Pass-Through Degree. The introduced pass-through degree notion nicely gener-
alizes to temporal graphs. Recall that the pass-through degree of a node u is equal to the
geometric mean of the number of ordered neighbor pairs v, w that are connected through
u. We generalize this to temporal nodes via pairs of neighbors that are temporally connec-
ted via exactly two hops through u. Formally, we write v

u−→ w if and only if there exist
a1 = (v, u) ∈ A and a2 = (u, w) ∈ A such that λ(a1) < λ(a2). We are now ready to define
the temporal pass-through degree.
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▶ Definition 2. In a temporal graph G = (V, A, λ), the temporal pass-through-degree of
u ∈ V is

t-ptd(u) :=
√

|{(v, w) ∈ (V \ {u})2 : v
u−→ w}|

Algorithm 1 Temporal Pass-Through Degree.

Data: temporal arc list A
Result: temporal pass-through degree of all vertices t-ptd

1 G, G = {∅} // initialize two empty temporal graphs
2 for each (u, v, t) ∈ A do

// check if the edge already exists in G, G

3 if (u, v) ∈ E(G) then
// update max and min encountered label

4 G(u, v) = max
(
G(u, v), t

)
, G(u, v) = min (G(u, v), t)

5 else
6 add (u, v) to E(G), E(G)
7 G(u, v) = t, G(u, v) = t

8 sort edges of G in ascending order according to time labels
9 Leat = [[·], [·], . . . , [·]] // list of n empty lists

10 for each (u, v, t) ∈ G do
11 Leat[v].append(t)
12 t-ptd = [0, 0, . . . , 0]// initialize array of n zeros
13 for each (v, w, t) ∈ G do

// compute the pass-through degrees
14 t-ptd[v] = t-ptd[v] +

∣∣{t ∈ Leat[v] : t < t}
∣∣

15 return t-ptd

Computation of the Temporal Pass-Through Degree. Algorithm 1, given the temporal
arc list A of a temporal graph, computes the pass-through degrees in O(M log m) = Õ(M)
time and O(m +n) space, where M is the number of temporal arcs and m, n are, respectively,
the number of arcs and the number of nodes of the underlying static graph. More precisely,
the first for loop (lines 2-7) iterates over all the temporal arcs and builds two simple
labeled directed graphs, G and G, which respectively keep track of the maximum and the
minimum appearance time of each arc from the underlying graph. Building G and G requires
O(M log m) time, as we can maintain a vertex-sorted list of already added arcs, and O(m+n)
space. Subsequently, the algorithm sorts the m arcs of the temporal graph G according to
their time labels in time O(m log m). The second for loop (lines 10-11) iterates over all the
(now sorted) arcs of the temporal graph G, and appends the appearance time t of the arc
(u, v, t) to the minimum incoming times list of node v. Since G has exactly m arcs, this loop
requires O(m) steps and uses O(m + n) space. Finally, using O(n) space, the last for loop
(lines 13-14) iterates over all the m temporal arcs (u, w, t) of G and increments the t-ptd
variables. More specifically, when encountering the temporal arc (v, w, t), it increases the
previous t-ptd value of v by the number of distinct in-going temporal arcs of v in G with
t < t (line 14). Since Leat[v] is a sorted lists of length at most n (as G is a simple graph),
for each v ∈ V we can compute the new ptd[u] in O(log n) via binary-search. Therefore, the
last loop requires O(m log n) steps. The overall time and space complexities are therefore
O(M log m) = Õ(M) and O(m + n), respectively.
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5 Local Proxies for Shortest Temporal Betweenness

We now turn to an experimental analysis of local proxies for shortest temporal betweenness.
Our approach here is the same as in Section 3 and, besides the different choice of proxies, our
experimental setting is identical. We first list the set of local proxies for shortest temporal
betweenness that our study includes.

EgoSTB: The algorithm for computing the ego-shortest temporal betweenness ego-stb of all
nodes by going through them iteratively, computing the ego-network of the respective
node, and then calling the algorithm of Buß et al. [12] for computing the shortest temporal
betweenness of the node in its ego-network.

EgoPrefix: The algorithm that, analogously to the one above, computes the ego-prefix
foremost temporal betweenness ego-pftb of all nodes.

PTD: The algorithm for computing the temporal pass-through degree of all nodes in nearly
linear time in the number of temporal arcs, described in Section 4.

We in addition examine the rankings produced by both the static and temporal versions of
the in- and out-degree. These results are omitted from the main body of the paper (but can
be found in Table 7, Appendix B). The quality of the rankings returned by PTD is usually
much better, and only in a single case (on Infectious) is the obtained Weighted Kendall’s
τ value more than 0.01 worse than for another degree notion.

Table 4 For each network, we show the weighted Kendall’s τ coefficient of the rankings computed
by the three local proxies and the ranking computed by TempBrandes. For Onbra we show the
results using a sample size such that Onbra’s execution time is 1/10 the one of TempBrandes.
For each instance, we highlight the best result in bold font.

Network weighted Kendall’s τ coefficient

Onbra 1
10

EgoPrefix EgoSTB PTD

Hypertext 2009 0.86 0.73 – 0.89
High school 2011 0.82 0.69 – 0.76
Hospital ward 0.82 0.77 – 0.82
College msg 0.89 0.94 0.94 0.95
Wiki elections 0.84 0.94 0.94 0.94
High school 2012 0.81 0.81 – 0.81
Digg reply 0.73 0.96 0.96 0.96
Infectious 0.45 0.76 0.81 0.65
Primary school 0.88 0.63 – 0.83
Facebook wall 0.8 0.94 0.94 0.93
Slashdot reply 0.85 0.97 0.97 0.96
High school 2013 0.86 0.83 – 0.83
Topology 0.89 0.92 – 0.92
SMS 0.73 0.95 0.96 0.94
Email EU 0.91 0.91 – 0.91
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Experiment 2: Local Proxies’ Correlation to TEMPBRANDES

Running Times. The local proxies’ running times can be found in the last three columns of
Table 2. We note that the running time of EgoSTB easily becomes prohibitively large: in
fact, we interrupted its execution once the time of TempBrandes elapsed, which resulted
in eight (8) missing values for EgoSTB. We note that this is due to the large size of the ego
networks, which can be deduced from the nmax

e column in Table 1. We emphasize that the
nearly linear time algorithm from the previous section computes the pass-through degree of
all nodes in less than 0.005% of the running time of TempBrandes on all data sets.
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Figure 3 Comparison of the centrality ranking produced by TempBrandes and the rankings
produced by the local proxies and Onbra with the smallest considered sample size. The comparison
is given in terms of the weighted Kendall’s τ coefficient and the intersection of the top 50 nodes.

Ranking Correlation. An illustration of the ranking correlation results of this experiment
can be found in Figure 3. On top of the figure, we show the Weighted Kendall’s τ correlation
coefficient of the rankings computed by the respective proxies and the ranking computed
by TempBrandes (see also Table 4). On the bottom, we show the results in terms of the
intersection of the top-k nodes (again k = 50, see Table 6, Appendix A, for k = 1 and
k = 25). In order to allow for better comparison with the results for global proxies from
Section 3, in all the tables and plots that follow, we also include the fastest variant of Onbra,
i.e, the variant with roughly 10% of TempBrandes’ running time. We observe that the
pass-through degree usually does not perform worse than the ego-variants of the shortest
temporal betweenness and is at the same time much faster. In terms of both weighted
Kendall’s τ coefficient and the intersection measure, the pass-through degree performs better
or at least as good as the considered version of Onbra on 10 out of 15 instances. At the
same time its running time is between 3 and 4 orders of magnitudes smaller on all instances.
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Figure 4 A two-dimensional illustration of ranking quality in terms of weighted Kendall’s τ

coefficient (on the horizontal linear axis) and the ratio between the proxies execution time and the
time of TempBrandes (on the vertical logarithmic axis). The shapes of the points indicate the
network, while the color indicates the proxy. On the top and on the right we plot the median value
of the weighted Kendall’s τ and the time ratio, respectively. We note that the running time ratios of
the three Onbra variants are fixed to 1/10, 1/2, and 1, respectively.

6 Conclusion

We experimentally compared three global and three local proxies for shortest temporal
betweenness rankings. One of these local proxies is a novel temporal degree notion, called
the pass-through degree, which computes the number of neighbor pairs that are temporally
connected by a two-hop path passing through the node at hand. Our experimental results
are summarized in Figure 4, which depicts the performance of both global and local proxies
discussed in previous sections (both in terms of running time and ranking quality). When
applied to very large temporal networks, the pass-through degree clearly outperforms all the
other competitors in terms of time performance. As indicated by the median time ratios
that are depicted on the right of the plot, the pass-through degree achieves a time ratio
that is around two (2), three (3), and four (4) orders of magnitude better than Brandes,
Prefix, and the fastest considered Onbra variant, respectively. In terms of ranking quality,
the medians of the two time-intense Onbra variants are best, followed by Brandes, PTD,
Prefix, and the fastest Onbra variant.4

One future direction is explaining the correlations between PTD and the shortest temporal
betweenness by using temporal graph parameters, such as the ones defined in the works
of Tang et al. [45] and Nicosia et al. [33]. It would also be interesting to use PTD as a
proxy for both static and temporal centralities in the context of routing schemes [31], as
its local character enables an efficient distributed computation. From a theoretical point
of view, possible directions of research include finding a conditional lower bound on the
time complexity of computing shortest temporal betweenness that is better than the lower
bound implied by its non-temporal counterpart. Proving a conditional lower bound on the
computation of the ego-network betweenness measures (or designing a better algorithm) is
also a very challenging question. Finally, the pass-through degree easily generalises to k-hop
paths (instead of 2-hop paths). We believe that designing a quasi-linear time algorithm for
computing such a generalisation, and verifying its quality in terms of proxying the shortest
temporal betweenness, is the most natural continuation of this work.

4 We note that we chose to compute medians rather than averages here, as the data seems to include
several outliers (see, e.g., Prefix on the primary school network).
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A Top-k intersection value tables

Table 5 For each network, we show the intersections between the top 1, 25 and 50 nodes in
the rankings computed by the three global proxies and the ranking computed by TempBrandes.
For Onbra we show the results when its running time is, respectively, one tenth, half and exactly
TempBrandes’ execution time.

Network Intersection
Brandes Prefix Onbra 1

10
Onbra 1

2
Onbra1

k 1 25 50 1 25 50 1 25 50 1 25 50 1 25 50
Hypertext 2009 1 22 43 1 15 37 1 20 42 1 22 46 1 22 47
High school 2011 0 20 45 0 14 31 0 19 42 0 20 47 1 22 48
Hospital ward 0 22 45 1 18 43 0 20 44 0 22 47 0 24 48
College msg 1 22 42 1 12 29 1 19 37 0 23 44 1 23 46
Wiki elections 1 16 34 0 7 21 1 15 31 1 21 41 1 22 42
High school 2012 1 21 44 0 8 27 1 18 37 1 20 42 1 22 45
Digg reply 1 20 40 1 22 44 0 14 26 0 20 39 1 20 43
Infectious 1 19 31 0 3 7 0 6 9 0 5 11 0 6 10
Primary school 0 18 43 0 3 18 1 20 40 1 23 46 1 23 45
Facebook wall 0 10 15 1 17 37 1 15 26 1 17 37 1 19 43
Slashdot reply 1 18 39 1 20 38 1 19 39 1 22 45 1 23 46
High school 2013 1 20 44 0 11 26 1 20 38 0 22 45 1 23 46
Topology 1 21 41 1 20 39 1 23 46 1 23 47 1 24 49
SMS 0 13 32 1 20 43 0 15 26 0 18 33 1 19 40
Email EU 1 20 41 0 14 34 1 19 41 1 23 46 1 23 47

SEA 2023

https://doi.org/10.1561/0400000051
https://doi.org/10.1145/2736277.2741088


6:20 Proxying Betweenness Centrality Rankings in Temporal Networks

Table 6 For each network, we show the intersections between the top 1, 25 and 50 nodes in the
rankings computed by the three global proxies and the ranking computed by TempBrandes. For
Onbra we show the results when its running time is one tenth of TempBrandes execution time.

Network Intersection
ONBRA 1

10
EgoPrefix EgoSTB PTD

k 1 25 50 1 25 50 1 25 50 1 25 50
Hypertext 2009 1 20 42 1 17 40 – – – 1 20 44
High school 2011 0 19 42 0 16 36 – – – 1 17 42
Hospital ward 0 20 44 1 18 44 – – – 0 21 47
College msg 1 19 37 0 20 41 0 22 43 1 23 43
Wiki elections 1 15 31 1 19 38 1 21 44 1 19 42
High school 2012 1 18 37 1 16 38 – – – 1 13 36
Digg reply 0 14 26 1 19 36 1 19 36 1 19 36
Infectious 0 6 9 0 4 12 0 4 12 0 2 8
Primary school 1 20 40 0 11 22 – – – 0 17 40
Facebook wall 1 15 26 1 14 27 1 14 25 1 13 24
Slashdot reply 1 19 39 1 20 39 1 20 39 1 19 37
High school 2013 1 20 38 0 18 38 – – – 0 17 37
Topology 1 23 46 1 21 40 – – – 0 16 34
SMS 0 15 26 0 13 34 0 13 33 0 12 32
Email EU 1 19 41 0 18 39 – – – 1 18 36

B Comparison among Degree Notions

Table 7 For each network, we show the weighted Kendall’s τ coefficient of the rankings computed
by the static/temporal degree notions and the pass-through degree and the ranking computed by
TempBrandes.

Network weighted Kendall’s τ coefficient
PTD in-degree out-degree t-in-degree t-out-degree

Hypertext 2009 0.89 0.89 0.89 0.72 0.72
High school 2011 0.76 0.77 0.77 0.40 0.40
Hospital ward 0.82 0.83 0.83 0.85 0.85
College msg 0.95 0.91 0.92 0.90 0.91
Wiki el’s 0.94 0.74 0.72 0.72 0.72
High school 2012 0.81 0.82 0.82 0.50 0.50
Digg reply 0.96 0.84 0.83 0.84 0.83
Infectious 0.65 0.70 0.70 0.42 0.42
Faceb’k w’l 0.93 0.86 0.89 0.85 0.88
Primary school 0.83 0.84 0.84 0.70 0.70
Slashdot reply 0.96 0.78 0.94 0.80 0.94
SMS 0.94 0.84 0.88 0.69 0.81
High school 2013 0.83 0.84 0.84 0.50 0.50
Topology 0.92 0.92 0.92 0.92 0.92
Email EU 0.91 0.87 0.90 0.77 0.83
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C Public transport networks

A special class of temporal networks are public transport networks, in which the existence of
a temporal arc (u, v, t) indicates that it is possible to reach location v from u by taking a
mean of public transport at time t. Indeed, these networks are characterized by a sort of
“regularity” (that is, nodes are very similar in terms of in- and out-degree), which makes
the local proxies quite bad in proxying the temporal shortest betweenness. At the same
time, they contain a huge amount of shortest temporal paths, which forced us to use big
integer data structures for TempBrandes and Onbra, thus significantly slowing down
their execution time. As an example, we considered the two networks Venice and Bordeaux
that stem from the work of Kujala et al. [26], and are chosen to be analysed because of
their different sizes and geographies. The main characteristics of these two networks are
summarised in the following table.

Data set n m M T tSTB nmax
e Type Source

Venice 1874 3465 113670 1691 7758 20 D [26]
Bordeaux 3435 4040 236075 60582 50937 13 D [26]

The execution times TempBrandes and of all proxies (except for Onbra) in seconds are
shown in the following table (once again dashes indicate that the experiment was interrupted
after the time of TempBrandes elapsed and we omit Onbra from the table as its running
time is fixed to approximately 1/10, 1/2, or 1 times the running time of TempBrandes due
to the choice of the sample size).

Network Execution Time (seconds)

TempBrandes Brandes Prefix EgoPrefix EgoSTB PTD

Venice 7758 0.7374 72.9 31 48 0.0168
Bordeaux 50937 2.8722 443.0 93 107 0.0161

The weighted Kendall’s τ coefficient of the rankings computed by the three global proxies
and the ranking computed by TempBrandes are shown in the following table (once again,
for Onbra we show the results using, respectively, a sample size such that Onbra’s execution
time is 1/10, 1/2, and exactly the one of TempBrandes, and, for each instance, we highlight
the best result in bold font).

Network weighted Kendall’s τ coefficient

Brandes Prefix Onbra 1
10

Onbra 1
2

Onbra1

Venice 0.90 0.80 0.93 0.96 0.98
Bordeaux 0.96 0.82 0.94 0.97 0.98

We can observe that, in this case, Onbra even in the case of the smallest sample size
is better than Brandes and Prefix. However, it is also worth observing that Brandes
performs quite well in the case of both networks, suggesting that, in these cases, the
temporality of the network does not influence so much the ranking of the nodes. This might
be intuitively justified by the fact that a “temporally” central node in this kind of networks
is also central in the underlying graphs. This is confirmed by the following table, which
shows the intersection values for all global proxies for values of k = 1, 25, 50 (once again, a
value of x in the table means that the top-k nodes with respect to the ranking computed by
a given proxy contain x of the top-k nodes of the ranking computed by TempBrandes).
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Network Intersection
Brandes Prefix Onbra 1

10
Onbra 1

2
Onbra1

k 1 25 50 1 25 50 1 25 50 1 25 50 1 25 50
Venice 0 16 36 0 12 23 1 23 41 0 24 47 0 24 48
Bordeaux 1 23 46 1 17 29 1 19 48 1 23 48 1 24 49

The next table shows the weighted Kendall’s τ coefficient of the rankings computed by
the three local proxies and the ranking computed by TempBrandes (once again, for Onbra
we show the results using a sample size such that Onbra’s execution time is 1/10 the one of
TempBrandes, and, for each instance, we highlight the best result in bold font).

Network weighted Kendall’s τ coefficient

Onbra 1
10

EgoPrefix EgoSTB PTD

Venice 0.93 0.64 0.62 0.61
Bordeaux 0.94 0.63 0.55 0.61

As expected, the local proxies perform quite bad and Onbra is by far better than all of
them. This is confirmed by the following table, which shows the intersections between the
top 1, 25 and 50 nodes in the rankings computed by the three global proxies and the ranking
computed by TempBrandes (once again, for Onbra we show the results when its running
time is one tenth of TempBrandes execution time).

Network Intersection
ONBRA 1

10
EgoPrefix EgoSTB PTD

k 1 25 50 1 25 50 1 25 50 1 25 50
Venice 1 23 41 0 5 13 0 4 13 0 5 11
Bordeaux 1 19 48 0 4 5 0 4 5 0 4 5
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