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Abstract
We present a new simple graph-theoretic formulation of the exploratory blockmodeling problem
on undirected and unweighted one-mode networks. Our formulation takes as input the network G

and the maximum number t of blocks for the solution model. The task is to find a minimum-size
set of edge insertions and deletions that transform the input graph G into a graph G′ with at
most t neighborhood classes. Herein, a neighborhood class is a maximal set of vertices with the
same neighborhood. The neighborhood classes of G′ directly give the blocks and block interactions
of the computed blockmodel.

We analyze the classic and parameterized complexity of the exploratory blockmodeling problem,
provide a branch-and-bound algorithm, an ILP formulation and several heuristics. Finally, we
compare our exact algorithms to previous ILP-based approaches and show that the new algorithms
are faster for t ≥ 4.
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1 Introduction

In social network analysis, a standard task is to determine which vertices have the same role in
the network. One approach for this role assignment problem, called structural equivalence [3],
is to assign the same role to vertices if and only if they have the same neighborhood. This
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demand is often too strict. In this case, one may instead use blockmodeling. Here, one
wants to partition the vertex set of the network into blocks in such a way that vertices with
similar neighborhoods end up in the same block [3, 25]. The partition of the vertices gives a
blockmodel of the input network, which is essentially a graph whose vertices are the blocks
and where an edge between two blocks a and b indicates that vertices of block a are likely to
interact with vertices of block b. Usually this graph is represented via its adjacency matrix,
also called blockmatrix or imagematrix. For an example of a vertex partition of a graph and
the corresponding blockmatrix, see Figure 1.

A critical distinction in blockmodeling is whether the blockmatrix is fixed in advance or
not [5, 8, 21]. For fixed blockmatrices, the blockmodeling problem essentially asks to confirm
whether this blockmatrix is a good explanation for the network; when the blockmatrix is
not fixed, then we have an exploratory blockmodeling problem, where we aim to identify
an unknown model from the given input. In this work, we study a simple graph-theoretic
formulation of the exploratory blockmodeling problem. We adopt a graph modification
point of view which has already been used for graph clustering [11, 23] and special cases
of blockmodeling such as the identification of core/periphery structures [2, 4]. In our
formulation, the only prespecified aspect of the blockmodel is the number t of blocks. A
starting point is to consider the situation that the graph admits a perfect blockmodel
with t (possibly empty) blocks. Informally speaking, this is the case when the number of
different neighborhoods of the graph is at most t: In that case, we may simply assign all
vertices that have the same neighborhood to the same block. In the resulting blockmodel,
each block is either a clique or an independent set in the graph and between two different
blocks, either all edges are present or all edges are missing in the input graph.

Naturally, for small values of t, most networks will not admit a perfect blockmodel in
this sense. Our aim is to find a new network that can be obtained from the original network
by a minimum number of edge additions or deletions and which admits a perfect blockmodel
with t blocks. In other words, we aim for a blockmodel with t blocks such that the number of
disagreements between input network and blockmodel is minimum. This objective function
measures globally how different the neighborhoods inside a block are. Thus, minimizing the
objective leads to a blockmodel in which vertices with similar neighborhoods indeed end up
in the same block.

1.1 Related Work
Batagelj et al. [1] also consider the problem of finding the blockmodel with the minimum
number of disagreements. There are two main differences: First, in contrast to Batagelj
et al. [1], we take a graph-theoretic view. Second, we consider exact algorithms whereas
Batagelj et al. [1] use a local search heuristic called TEA. The most closely related exact
approaches were used by Brusco and Steinley [5] and Dabkowski et al. [8]. One difference is
that these works consider directed networks. A further, algorithmic, difference is that both
works solve the exploratory blockmodeling by considering all possible t × t blockmatrices
and selecting one that gives a solution with a minimum number of disagreements. Brusco
and Steinley [5] note that their approach is limited to t ≤ 3 due to the rapidly growing
number of possible blockmatrices. Dabkowski et al. [8] show that by considering for example
isomorphism classes of blockmatrices, this approach can be extended to t = 4. Both works
use integer linear programming (ILP) formulations to compute optimal solutions for small
networks with up to 20 vertices [5] and 13 vertices [8], respectively.

There are further less closely related formulations. Reichardt and White [21] use a cost
function that additionally introduces corrections for the degree distribution of the network.
They consider the case with and without prespecified blockmatrix and use local search
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(a) Input graph H.
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(b) Neighborhood graph of H. For the
sake of clarity, loops are omitted when
the corresponding neighborhood class
consists of one vertex.

g a b f j i c h d k e

g - 1 1 1 1 1 0 0 1 0 0
a 1 - 1 1 1 1 1 1 0 0 0
b 1 1 - 1 1 1 1 1 0 0 0
f 1 1 1 - 1 1 1 1 0 0 0
j 1 1 1 1 - 0 0 0 1 1 1
i 1 1 1 1 0 - 0 0 1 1 1
c 0 1 1 1 0 0 - 1 1 0 0
h 0 1 1 1 0 0 1 - 1 1 1
b 1 0 0 0 1 1 1 1 - 1 1
k 0 0 0 0 1 1 0 1 1 - 0
e 0 0 0 0 1 1 0 1 1 0 -

(c) Partitioned adjacency matrix of H where red entries are the
vertex pairs contained in an optimal set of edge modifications S.

1 1 0
1 0 1
0 1 1


g, a,

b, f

j, i,

c, h

d, k,

e

(d) The blockmatrix for H with t = 3
obtained by applying S, and the neigh-
borhood graph of G△S.

Figure 1 Example instance (H, t = 3) of Blockmodeling with one optimal solution S.

to compute heuristic solutions. Chan et al. [6] use nonnegative matrix factorization to
compute blockmodels without prespecified blockmatrix, the factorization problem is solved
via a (heuristic) gradient descent method. Jessop [14] and Proll [19] use a model where the
objective function rewards large blocks and every block must have a certain minimum density
in the input network, both models are solved via ILP formulations.

From the more graph-algorithmic perspective, the most closely related work is due to
Damaschke and Mogren [9] who consider graph modification formulations of blockmodeling
problems where the blockmatrix is prespecified and each block must become a clique. This
problem was shown to be NP-hard for a number of different blockmatrix types [9, 15]; the
problem can be solved efficiently when the number of necessary modifications and t are
small [9, 13]. Core/periphery problems can be seen as blockmodeling problems for t = 2 and
a certain fixed blockmatrix [2]. The special case when t equals the number of vertices, each
block is fixed to be a clique, and the blockmatrix is fixed to have no edges between different
blocks is known as Cluster Editing [23].

A further distinction in blockmodeling approaches is whether they are direct or indirect [3].
Direct approaches compute the blockmodel using the adjacency information of the graph
itself. In contrast, indirect approaches follow a two-step procedure where the first step is to
compute a distance function for the network vertices based on their neighborhoods and the
second step is to compute a clustering of the vertex set with respect to this distance function.
In this terminology, our approach and the related ones mentioned above are direct methods.

SEA 2023
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1.2 Our Results
We first formally define Blockmodeling, a simple edge-modification-based formulation
for exploratory blockmodeling with t (possibly empty) blocks that avoids blockmatrices
in the problem definition (Section 2). We then show that Blockmodeling is NP-hard
for all fixed values of t ≥ 2 and that it can be solved efficiently when t and the necessary
number k of edge modifications are small (Section 3). We develop a branch-and-bound
algorithm, an ILP formulation, and several heuristics for Blockmodeling (Section 4). For
the branch-and-bound algorithm, we present several speedups based on reduction rules and
upper and lower bounds. We evaluate our algorithms experimentally on standard benchmark
data sets (Section 5). A comparison with an adaption of the approach of Dabkowski et al. [8]
to undirected networks shows that the new algorithm is much faster for t ≥ 4. For example,
for t = 5 our new algorithm can find optimal solutions on networks with up to 32 vertices
whereas previous approaches can solve only networks with up to 18 vertices. Summarizing,
our new approach is competitive with state-of-the-art approaches for exact blockmodeling
and paves the way for exact algorithms for larger values of t. In this regard, our approach is
a substantial improvement over previous approaches as trying all t× t blockmatrices becomes
clearly infeasible for t ≥ 6.

Moreover, we find that the heuristics give almost-optimal solutions on the considered
instances. Finally, we show that for t = 4 our approach finds a reasonable solution for the
Karate Club network. Proofs of statements marked with (*) are deferred to the appendix.

2 Preliminaries and Problem Definition

We now introduce some relevant graph-theoretic notation and formally define the exploratory
blockmodeling problem.

Notation. For a set S and an integer x, we define
(

S
x

)
:= {T ⊆ S | x = |T |}. The

symmetrical difference of two sets S and T is denoted by S△T := (S ∪ T ) \ (S ∩ T ). A
collection of sets (T1, . . . , Tx) is a partition of S if and only if

⋃x
i=1 Ti = S and Ti ∩ Tj = ∅

for all i ̸= j.
A simple undirected graph G = (V, E) consists of a set of vertices V and a set of edges

E ⊆
(

V
2
)
. We set n := |V | and m := |E|. Let S be a set of vertices of G, then we denote

the deletion of S in G by G− S := (V \ S, {e ∈ E | S ∩ e = ∅}). The set of edges of G with
one endpoint in S and the other in T is denoted by EG(S, T ) := {{s, t} ∈ E | s ∈ S, t ∈ T}.
Furthermore, let EG(S) := EG(S, S) denote the set of edges with both endpoints in S.

The neighborhood of a vertex v is defined as NG(v) := {u | {u, v} ∈ E}. We call the
vertices of NG(v) the neighbors of v. If {u, v} ∈ E, then we say u and v are adjacent. If
a vertex v is adjacent to every other vertex of V , then we call v universal. A vertex with
no neighbors is called isolated. Two disjoint vertex sets S1 ⊆ V and S2 ⊆ V are adjacent if
each vertex of S1 is adjacent to every vertex of S2. Similarly, S1 and S2 are non-adjacent if
EG(S1, S2) = ∅. We say the vertices u and v have the same adjacency to another vertex w if
{u, w} ∈ E if and only if {v, w} ∈ E. We say that u and v have the same adjacency to a
set W of vertices if for each vertex w ∈W , u and v have the same adjacency to w.

A set of vertices S ⊆ V is a clique in G if
(

S
2
)
⊆ E and an independent set in G if(

S
2
)
∩ E = ∅. If G is clear from the context, we may omit the subscript.

Problem Definition. Perfect structural equivalence is defined using the following equivalence
relation over vertices [17].
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▶ Definition 1. Let G = (V, E) be a graph. We let ∼G denote the relation over V such that
u ∼G v if and only if N(u) \ {v} = N(v) \ {u}.

▶ Definition 2. Let G = (V, E) be a graph. The neighborhood partition W of G is the
collection of equivalence classes of ∼G. We say that G has a neighborhood diversity of |W|.

The neighborhood partition is unique for each graph and it can be computed in linear time
via computing a modular decomposition of the graph [18, 12]. Each set of this partition
is called neighborhood class. Every neighborhood class is a clique or an independent set.
A neighborhood class C is called positive if C is a clique and negative if C is an independent set.
Note that a neighborhood class containing only one element is both positive and negative.

▶ Definition 3. The neighborhood graph of a graph with neighborhood partition W is the
graph (W, E′) with {Wi, Wj} ∈ E′ if and only if for all u ∈Wi and all v ∈Wj, {u, v} ∈ E

or if Wi = Wj and Wi is positive.

Neighborhood graphs are undirected but not necessarily simple since they may contain loops.
A transformation of a graph G is done by a set of edits S ⊆

(
V
2
)

and results in the
graph G△S := (V, E△S). We may now formulate blockmodeling as follows.
Blockmodeling
Input: An undirected graph G = (V, E) and integers k and t.
Question: Is there a set of edits S ⊆

(
V
2
)

of size at most k such that G△S has neighborhood
diversity at most t?

A set of edits that fulfills the above requirements is a solution of an instance I, a solution S

for I is optimal if there is no solution S′ for I with |S′| < |S|. Given a solution S to an
instance of Blockmodeling, we can obtain the blockmodel from G△S as follows: the
equivalence classes of G△S are the blocks and the blockmatrix is the adjacency matrix of
the neighborhood graph. See Figure 1 for an example instance of Blockmodeling and an
optimal solution.

3 NP-Hardness and Kernelization

We now study the complexity of the problem. For the hardness proof, it will be interesting
to distinguish vertices whose neighborhoods are changed by the solution from the remaining
vertices. Accordingly, a vertex v is called affected by a set of edits S if at least one element
of S contains v. Otherwise, v is unaffected by S.

▶ Lemma 4 (*). If (G, k, t) is a yes-instance of Blockmodeling, then there is a solution
such that every vertex of each neighborhood class of size larger than 2k in G is unaffected.

3.1 NP-Hardness
In this section, we show NP-hardness for Blockmodeling for each fixed t ≥ 2. We first
show the NP-hardness for t = 2 and afterwards, we extend this result to each fixed t ≥ 2.

▶ Lemma 5. Blockmodeling is NP-hard for t = 2.

Proof. We reduce from Sparse Split Graph Editing1 which is NP-hard [15].

1 Note that Sparse Split Graph Editing is a confirmatory formulation of Blockmodeling for t = 2
with the fixed block matrix

[1 0
0 0

]
. Hence, the problems are closely related but the NP-hardness

of Sparse Split Graph Editing does not directly imply the NP-hardness of Blockmodeling.

SEA 2023
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Sparse Split Graph Editing
Input: A graph G = (V, E) and an integer k.
Question: Is there an edge set S of size at most k such that G△S is a sparse split-graph,
that is, a graph consisting of a clique C and set of isolated vertices P?

Let I = (G = (V, E), k) be an instance of Sparse Split Graph Editing. Moreover,
let G′ = (V ∪K, E) be the graph obtained by adding an independent set K of size 2k + 1
to G. We set I ′ = (G′, k, t = 2) and show that I is a yes-instance of Sparse Split Graph
Editing if and only if I ′ is a yes-instance of Blockmodeling.

(⇒) Let S be a solution of I, that is, an edge set S ⊆
(

V
2
)

of size at most k such
that G△S is a sparse split-graph. We show that S is a solution for I ′. Let G′

res = G′△S.
Note that all vertices of K are unaffected by S. Hence, all vertices of K are isolated in G′

res.
Since G△S consists of a clique C and an isolated set P , all vertices of P ∪K are isolated
in G′

res, and thus in the same neighborhood class. Moreover, the vertices of C are a clique
in G′

res and no vertex of C has any neighbors in P ∪K. Thus, C is a neighborhood class
in G′

res. Consequently, G′
res has a neighborhood diversity of at most 2.

(⇐) Let S be an optimal solution for I ′. Due to Lemma 4, we can assume that each
vertex of K is unaffected by S, that is, S ⊆

(
V
2
)
. We show that GS := G△S is a sparse

split-graph. Since S is a solution for I ′, S has size at most k. Let C and P be the two
(potentially empty) neighborhood classes of G′

res := (V ∪K, E△S). Assume without loss
of generality that K ⊆ P . Note that this implies that P is an independent set in G′

res.
Moreover, since each vertex of K is unaffected, each vertex of P ⊇ K is isolated in G′

res.
Consequently, C is either an empty set or a clique with no neighbors outside of C in G′

res.
Thus, G′

res is a sparse split-graph. Since GS is equivalent to G′
res −K, GS is also a sparse

split-graph. ◀

With the NP-hardness of Blockmodeling for t = 2 at hand, we can now easily
obtain NP-hardness of Blockmodeling for each fixed t ≥ 2.

▶ Theorem 6 (*). Blockmodeling is NP-hard for every fixed t ≥ 2.

3.2 Kernelization
In this section, we provide a problem kernel for the parameter k + t for Blockmodeling.
Informally, this is a data reduction algorithm that, in polynomial time, transforms every
instance into an equivalent one whose size is bounded by a function of t + k; for a formal
definition, we refer to the standard monographs on parameterized algorithms [7, 10]. First,
note that Lemma 4 implies the correctness of the following.

▶ Reduction Rule 1. Let I = (G = (V, E), k, t) be an instance of Blockmodeling and
let C be a neighborhood class of size at least 2k + 2 in G. Then, remove |C| − (2k + 1)
arbitrary vertices of C from G.

Before we give the kernel, we make another observation regarding the difference of the
neighborhood diversities by an application of one edit.

▶ Lemma 7 (*). Let G = (V, E) be a graph with neighborhood diversity t and let e = {u, v}
be a vertex pair. Then, the neighborhood diversity of G△{e} differs from t by at most 2.

Based on Lemma 4 and Lemma 7, we are now able to obtain a polynomial kernel as
shown in the following theorem.
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▶ Theorem 8. Blockmodeling admits a kernel with O(k2 + kt) vertices that can be
computed in O(n + m) time.

Proof. By Lemma 7, a single edit reduces the neighborhood diversity by at most 2. Hence, a
graph with more than 2k+t neighborhood classes cannot be solved with k edits. Consequently,
our algorithm returns false if the neighborhood diversity of the input graph is larger than 2k+t.
Next, we reduce the size of each neighborhood class to at most 2k + 1 by applications of
Reduction Rule 1. After an exhaustive application of Reduction Rule 1, any instance has at
most (2k + t) · (2k + 1) = 4k2 + 2k + 2kt + t ∈ O(k2 + kt) vertices. Since the neighborhood
partition can be computed in linear time [18], and each application of Reduction Rule 1 can
be done simultaneously, this whole algorithm runs in linear time. ◀

Informally, this means that large instances where both k and t are small can be replaced by
relatively small instances (which can then be solved faster by an exact algorithm of choice).

4 Algorithms

4.1 Branch-and-Bound
Basic Search Tree Algorithm. Our branch-and-bound algorithm considers t + 1 many
vertices from distinct neighborhood classes in G. At least two of these vertices have to
be in the same neighborhood class in the resulting graph. Recall that two vertices are in
different neighborhood classes if and only if there is some vertex to which they have a different
adjacency.

▶ Definition 9. Let u and v be vertices. A vertex w is a witness of a vertex pair {u, v} if
and only if w is adjacent to exactly one of u and v.

Let wit({u, v}) denote the set of witnesses of {u, v}. To bring u and v in the same neighbor-
hood class, all witnesses need to be resolved. Consider a witness w of {u, v} with {w, u} ∈ E

and {w, v} /∈ E. To resolve w, we have to either add the missing edge {w, v} or delete the
present edge {w, u}. This decision has to be done for each witness independently. Hence,
when r = |wit({u, v})| is the number of witnesses of {u, v}, there are 2r different possibilities
to achieve that u and v are in the same neighborhood class. We call an edit set S a resolve
set of {u, v} if the edits of S resolve every witness of {u, v} and S is minimal under this
property.

▶ Observation 10. Let G := (V, E) and G′ := (V, E′) be graphs on the same vertex set V

and let u and v be distinct vertices of V . If u and v are in the same neighborhood class
in G′, then there is some resolve set S of {u, v} such that S ⊆ E△E′. More specific, for
each witness w of {u, v}, E△E′ contains either {u, w} or {v, w}.

With this observation at hand, we can write a basic version of a branch-and-bound
algorithm shown in Algorithm 1.

Note that the algorithm is correct, since if I is a yes-instance of Blockmodeling, there
is an optimal solution S for I, such that for some pair {u, v} ∈

(
T
2
)
, u and v are in the same

neighborhood class in G△S. Due to Observation 10, for each witness w of {u, v}, S contains
either {u, w} or {v, w}. In particular, this holds for the vertex w chosen at Line 7. Hence, I

is a yes-instance of Blockmodeling if and only if for some instance I ′ defined in Line 10,
I ′ is a yes-instance of Blockmodeling.

SEA 2023
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Algorithm 1 solveBaB.

1: Input Instance I = (G, k, t) of Blockmodeling
2: Output True if and only if I is a yes-instance of Blockmodeling
3: if k < 0 then return False
4: if G has neighborhood diversity of at most t then return True
5: T ← a set of t + 1 vertices of distinct neighborhood classes in G

6: for all {u, v} ∈
(

T
2
)

do
7: w ← a witness of {u, v}
8: for all e ∈ {{u, w}, {v, w}} do
9: G′ ← G△{e}

10: I ′ ← (G′, k − 1, t)
11: if solveBaB(I ′) then return True
12: return False

In the following, we bound the running time of Algorithm 1. Since T contains exactly t+1
vertices, Algorithm 1 reaches Line 10 exactly

(
t+1

2
)
· 2 = t2 + t times. Each instance defined

in Line 10 reduces k by exactly one. Hence, the search tree has at most (
(

t+1
2

)
· 2)k =

(t2 + t)k leaves.
The running time of the other computations depend on n. The neighborhood classes

of G can be computed in O(n + m) ⊆ O(n2) time [18]. Moreover, when given the adjacency
matrix, for each pair {u, v} ∈

(
T
2
)
, a witness of {u, v} can be found in O(n) time. Since the

adjacency matrix can be computed in O(n2) time, Algorithm 1 runs in O((t2 + t)k · n2) time.
By initially applying the kernelization algorithm presented in Theorem 8, we obtain the
following.

▶ Theorem 11. Blockmodeling can be solved in O((t2 + t)k · (k2 + kt)2 + n + m) time.

Thus, the problem can be solved efficiently when t and k are small.

Heuristic Speedups. To reduce the running time of the branch-and-bound algorithm we
develop several speedups. In the following we describe those that have the highest impact.

The first speedup is an improved branching: Once we have branched into the case that
two vertices u and v from a set T need to be merged, we consider the witnesses of u and v

one by one. That is, after branching on witness w, we check in the recursive calls whether u

and v still have some witness w′, and if this is the case, we directly branch into the two ways
to resolve w′. As a consequence, often the number of created branches is 2 instead of t2 + t.
Furthermore, we store all witnesses for each vertex pair and update them whenever an edit
is performed. We use the stored witnesses to update the neighborhood partition after an
edit is done.

This branch-and-bound algorithm uses the solution size k∗ of any of our heuristics
(described in Section 4.3) as an initial upper bound for any optimal solution. The algorithm
then searches for a solution S of size at most k∗−1. If such a solution is found, the algorithm
decreases the value of k∗ by 1 and continues to search for a solution of size at most k∗ − 1.
This is done until no solution of size k∗ − 1 can be found, that is, if the size of each optimal
solution is k∗.

When an edge e is added or removed, we label the vertex pair e as permanent in the
corresponding child branches. The algorithm forbids that a permanent vertex pair can be
edited again. Whenever all witnesses of vertex pair {u, v} of the for-loop in Line 6 are
resolved, we label this vertex pair as merged for its recursive calls. Each two vertices of a
merged vertex pair should be in the same neighborhood class in the resulting graph. If each
recursive call with u and v merged returns false, we label {u, v} as apart for the remaining
recursive calls. Based on this labeling, we introduce the following reduction rule.
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▶ Reduction Rule 2. Let {u, v} be a merged vertex pair and let w be a witness of {u, v}.
a) If both vertex pairs {u, w} and {v, w} are permanent, then return false. b) If the vertex
pair {u, w} is permanent, then edit {v, w}.

The labeling can also be used as follows: any vertex pair that is labeled apart can be skipped
in the for-loop of Line 6. Another improvement is the use of a lower bound algorithm (LBA)
which computes a number that underestimates the optimal solution size. Our LBA computes
disjoint sets of t + 1 many vertices of distinct neighborhood classes in the current graph. We
call such a set pack and a collection of packs is called a packing. We define the cost of a
pack P as minp∈(P

2)\A |wit(p)| where A are the vertex pairs labeled as apart. The cost is the
minimum number of edits that are incident with vertices of P . For a packing P, the sum
over the cost of each pack in P divided by 2 is a lower bound for an instance; division by 2 is
necessary since one edit may resolve witnesses in two packs. Furthermore, we try to increase
the lower bound by a local search that swaps vertices of a pack with vertices of another pack
or with vertices that are in no pack. The packing is updated after each edit; after a fixed
time the packing is deleted and recomputed.

4.2 ILP Formulation
The idea of our ILP is derived from Observation 10. Let G = (V, E) be the input graph. The
editing of one vertex pair {u, v} is represented by the edit variable e{u,v} ∈ {0, 1}. The vertex
pair {u, v} is in the solution if and only if e{u,v} = 1. Hence, the objective is to minimize∑

{u,v}∈(V
2 ) e{u,v}.

We introduce a merge variable m{u,v} ∈ {0, 1} for each vertex pair {u, v} ∈
(

V
2
)
. If a

merge variable m{u,v} equals 1, all witnesses of {u, v} must be resolved. Let w be a witness
of {u, v}. The constraints m{u,v} ≤ e{u,w} +e{v,w} and m{u,v} ≤ 2−e{u,w}−e{v,w} guarantee
that exactly one edit variable equals 1 and thus, in the solution w is resolved for {u, v}. Next,
we introduce constraints for ensuring that there will be at most t neighborhood classes: For
every vertex set V ′ of size t + 1, at least two vertices have to be in the same neighborhood
class in the resulting graph. Thus, there is at least one vertex pair {x, y} with x ∈ V ′

and y ∈ V ′ such that m{x,y} = 1 for every solution. To model the transitivity of ∼G, we add
further constraints. Consider the vertices u, v, and w. If m{u,w} = m{v,w} = 1, then m{u,v}
has to be 1 as well. This is equivalent to the constraint m{u,w} + m{v,w} −m{u,v} ≤ 1. The
ILP is given by

min
∑

{u,v}∈(V
2 )

e{u,v},

s.t. m{u,v} ≤ e{u,w} + e{v,w} ∀{u, v} ∈
(

V

2

)
,∀w ∈ V, (a)

m{u,v} ≤ 2− e{u,w} − e{v,w} ∀{u, v} ∈
(

V

2

)
,∀w ∈ V, (b)

1 ≤
∑

{u,v}∈(X
2 )

m{u,v} ∀X ∈
(

V

t + 1

)
, (c)

1 ≥ m{u,w} + m{v,w} −m{u,v} ∀{u, v, w} ∈
(

V

3

)
, (d)

e{u,v} ∈ {0, 1}, m{u,v} ∈ {0, 1} ∀{u, v} ∈
(

V

2

)
.
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Now, we analyze the number of variables and constraints. For each vertex pair, the ILP
has an edit variable and a merge variable. In total, there are 2 ·

(
n
2
)
∈ O(n2) variables. Two

constraints are constructed for each witness of a vertex pair. A vertex pair can have up to
n−2 witnesses. Thus, the ILP has

(
n
2
)
·(n−2) ∈ O(n3) witness constraints (a) and (b). There

are O(n3) many transitivity constraints (d) as well, one for each vertex triple. The largest
number of constraints is taken by the merge constraints (c). There are

(
n

t+1
)
∈ Θ(nt+1)

such constraints. To improve the running time of this algorithm, we add the transitivity
and merge constraints in a lazy way. That is, initially, the ILP contains only the witness
constraints. Whenever a solution is found for the current constraints, then we construct the
graph G′ = G△S where S is the set of vertex pairs p with ep = 1 in the current solution.
If the neighborhood diversity of G′ is larger than t, we find a vertex set X of size t + 1 of
pairwise distinct neighborhood classes in G′. Then, we add a merge constraint for X to the
ILP together with the transitivity constraints for all vertex triples of

(
X
3
)
. Finally, a current

solution may create a new witness w for some vertex pair {u, v}, for example by editing
the edge {u, w} and not the edge {v, w}. To model that this new witness either needs to
be resolved by an additional edit or that the current solution must be changed, we add the
constraint m{u,v} ≤ (1− e{u,w}) + e{v,w} in this case.

4.3 Heuristics
We now present two greedy heuristic algorithms and a local search approach.

Block-Framework. Let G = (V, E) be the input graph. All heuristics maintain some
partition B = {B0, B1, . . . , Bb} of V during the computation, each set of this partition is
called a block. In each step, a greedy heuristic computes a new partition with a decreased
number of blocks. This is repeated until the partition consists of t blocks. To choose the next
partition, we need to compute the cost of a partition as follows. For each block, we compute
the minimal cost for putting all vertices of this block into the same neighborhood class by
considering two aspects: First, a block has to be a clique or independent set in the resulting
graph G′. Second, two blocks have to be adjacent or non-adjacent in G′. We define the cost
functions ω1 and ω2 that compute the minimal cost for both aspects. The cost functions are
defined as

ω1(Bi) := min(
(
|Bi|

2

)
− |E(Bi)|, |E(Bi)|),

ω2(Bi, Bj) := min(|Bi| · |Bj | − |E(Bi, Bj)|, |E(Bi, Bj)|).

Then, the cost of a partition is the sum of the cost of each block and of each pair of blocks:

ω(B) :=
∑

Bi∈B
ω1(Bi) +

∑
{Bi,Bj}∈(B

2)
ω2(Bi, Bj).

Merge-Heuristic. The initial partition B is the neighborhood partition of G. In each step,
the Merge-Heuristic searches the best partition that can be obtained from the current one
by merging two blocks. Algorithm 2 shows the pseudocode of the Merge-Heuristic, herein
the function mergeB(Bi, Bj) returns the partition where the two blocks Bi and Bj of B are
merged, that is, mergeB(Bi, Bj) := (B \ {Bi, Bj})∪ {Bi ∪Bj}. This process is repeated until
the partition consists of t blocks and the cost ω of the final partition is returned.
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Algorithm 2 Method Merge-Heuristic.

1: Input Instance I = (G, t)
2: Output upper bound for the cost of a solution of I

3: B ← neighborhood partition of G

4: while |B| > t do
5: find Bi ∈ B and Bj ∈ B with i ̸= j such that ω(mergeB(Bi, Bj)) is minimal
6: B ← mergeB(Bi, Bj)
7: return ω(B)

Now we discuss the running time. We use a matrix where the number of edges between
two blocks are stored. The matrix for the initial partition can be computed in O(m + |B|2)
time. In each iteration of the while-loop the algorithm computes the cost increase for each
block pair. In total, we compute the cost increase for

∑|B|
i=t

(
i
2
)
∈ O(|B|3) merges. Since

several summands of ω(B) are unaffected by a merge, we only have to update costs for pairs
that contain the merged block. Since the merged block is involved in O(|B|) pairs, we can
compute the cost increase of a merge and update the matrix after performing a merge in
O(|B|) time. Therefore, the total running time of the while loop is O(|B|4). Note that the
cost of the current partition can be stored in a variable and can be updated according to the
cost increase of a merge. Overall, the Merge-Heuristic runs in O(|B|4 + m) time.

Split-Heuristic. This heuristic also starts with the neighborhood partition and decreases
the number of blocks by greedily choosing some block which splits and whose vertices are
then added to other blocks. To estimate the cost increase incurred by splitting a block, we
define a function τB which describes the cost increase when a vertex is added to a block. For
example, let B be the current block partition and we want to compute the cost increase for a
vertex v ∈ Bv by putting v in Bi. For a naive approach, let B′ := B \ {Bv} be the partition
without Bv and let B′′ := (B′ \ {Bi}) ∪ {Bi ∪ {v}} be the partition without Bv where Bi is
augmented by v. The cost difference is computed by ω(B′′) − ω(B′). Due to canceling of
terms where the addition does not affect ω1 or ω2, we can simplify the term to

τB′(Bi, v) := ω1(Bi ∪ {v})− ω1(Bi) +
∑

Bi ̸=Bj∈B′

ω2(Bi ∪ {v}, Bj)− ω2(Bi, Bj).

The minimal cost increase for a vertex v ∈ Bv is computed by min
Bi∈B′

τB′(Bi, v).
To determine the block which should be split, the algorithm searches a block B∗ such

that the sum of the minimum cost increase over all vertices of B∗ is minimal.
During the split process, the chosen block B∗ will first be removed from the partition.

Then, each vertex of B∗ will be put sequentially in another block such that the cost increase
is minimal. After the distribution of the vertices, one step is complete. The Split-Heuristic is
shown in Algorithm 3.

Note that the order of the vertices during the splitting process can affect the distribution.
Furthermore, the precomputed cost for such a block B∗ of the block partition B is not always
the actual cost after the split. This is due to the fact that the cost increase for each vertex v

is computed with the partition B \{B∗}. The other vertices of B∗ \ {v} are not considered in
τB\{B∗}(Bi, v) for some Bi ∈ B \ {B∗}. Note that the actual cost of a split is never smaller
than the estimation.

Now we discuss the running time. As in the Merge-Heuristic, we use the adjacency matrix
and an additional matrix for the number of edges from each vertex to each block. With these
matrices, we can compute τB in O(|B|) time. Therefore, we need O(|B|2) time to find the
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Algorithm 3 Method Split-Heuristic.

1: Input Instance I = (G, t)
2: Output upper bound for the cost of a solution of I

3: B ← neighborhood partition of G

4: while |B| > t do
5: Bv ← argmin

B∈B
(

∑
v∈B

min
B′∈B\B

τB\B(B′, v))

6: B ← B \Bv

7: for all v ∈ Bv do
8: B∗ ← argmin

B′∈B
τB\{B′}∪{B′∪{v}}(B′, v)

9: B ← B \ {B∗} ∪ {B∗ ∪ {v}}
10: return ω(B)

block with the minimal cost increase for one vertex. In Line 5 the algorithm iterates over
every block and computes its cost increase. Since every vertex is considered exactly once,
this takes O(n|B|2) time. Afterwards, the split process starts. The determination of the
best block is repeated for each vertex of this block and the vertex will be moved to another
block. The latter part demands an update for both matrices. This update requires O(n) time
since only the entries of adjacent vertices and their blocks need to be updated. Therefore,
Line 7 can be computed in O(n(|B|2 + n)). Hence, for the while-loop the running time
is O(|B|(n|B|2 + n(|B|2 + n))) = O(|B|3n + |B|n2).

Local Search. Our local search algorithm receives the graph and a block partition with
t blocks as input. The algorithm tries to improve the solution by small changes until a locally
optimal solution is found. The following three kinds of changes are considered. The first
kind of change allows to move a vertex from one block and to another block. The second
kind of change exchanges the blocks of two vertices. The third kind of change removes all
vertices of the same neighborhood class from one block and puts these vertices to another
block. Each of these changes is applied only if it reduces the total cost. The first two kinds
of changes are the same changes local search approach TEA by Batagelj et al. [1]. We use
our local search to improve the partitions obtained by the greedy heuristics.

5 Experimental Evaluation

In this section, we compare our algorithms with each other and with an adapted ILP-
formulation of Dabkowski et al. [8] which is also described in Section 5.1. Furthermore,
we discuss the quality of our heuristics. Finally, we analyze the structure of an optimal
Blockmodeling solution with t = 4 for Zachary’s Karate Club graph [26].

5.1 Matrix-Based ILP

In this section, we recall the ILP of Dabkowski et al. [8]. This ILP calculates for a specific
blockmatrix B how well the input graph G = (V, E) fits B. Naively, to find the optimal
blockmatrix we need to solve an integer linear program for every quadratic matrix with at
most t columns. Fortunately, it is possible to exploit isomorphism properties to reduce the
number of matrices to consider.
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Now we describe the formulation in detail. For each vertex pair {i, j} ∈
(

V
2
)
, the

constant si,j equals 1 if {i, j} ∈ E and 0, otherwise. Furthermore, the constant bp,ℓ

corresponds to the entry in the pth row and ℓth column of B. The binary variable xi,p

indicates whether vertex i is in block p. Obviously, every vertex should be assigned to exactly
one block and each block should have at least one vertex, otherwise another blockmatrix
fits this graph better. This formulation models the error for the adjacency of two vertices i

and j that are assigned to the blocks p and ℓ, respectively, (that is, xi,p = xj,ℓ = 1) using
the term bp,ℓ + si,j − 2bp,ℓsi,j . Altogether, the ILP is given by:

min
∑

p∈{1,...,t}

∑
ℓ∈{1,...,t}

∑
i∈V

∑
j∈V \{i}

xi,pxj,ℓ(bp,ℓ + si,j − 2bp,ℓsi,j)

s.t.
∑

p∈{1,...,t}

xi,p = 1 ∀i ∈ V,

∑
i∈{1,...,n}

xi,p ≥ 1 ∀p ≤ t,

xi,p ∈ {0, 1} ∀i ∈ V,∀p ≤ t.

Since the objective function is not linear, they introduced new variable yi,j,p,ℓ to replace
xi,pxj,ℓ for every 1 ≤ p, ℓ ≤ t, i ∈ V , and j ∈ V \ {i} and added several constraints
ensuring yi,j,p,ℓ = xi,pxj,ℓ [8].

Since Blockmodeling is defined only on undirected graphs and the ILP of Dabkowski
et al. [8] is designed to work with directed graphs, we adapt their formulation slightly by
omitting some variables that are redundant in the case of undirected graphs. This improves
the running time and thus allows for a more fair comparison to our methods.

Let MB-ILP be the algorithm that searches a best blockmatrix for a given graph G and
an integer t using the above ILP. MB-ILP applies the adapted ILP formulation for symmetric
block matrices of increasing size and stops when all symmetric block matrices with up to t

columns have been considered.
MB-ILP can be improved by adding an upper bound. Then, MB-ILP has to find a

solution where the objective function is smaller than the upper bound. We use the minimum
of the heuristic upper bound (as described in Section 5.2) and the best solution of any
previously solved blockmatrix as the upper bound.

5.2 Running Time
The algorithms2 are implemented in Java with OpenJDK 14.0.1. To solve the ILPs we used
the Gurobi Optimizer in version 10.0.0. Each experiment was run on a single thread of
an Intel(R) Xeon(R) Silver 4116 CPU 2.10GHz machine with 128GB RAM under Debian
GNU/Linux 11 operating system.

For the experiments we used social networks obtained from KONECT [16]. For each
graph of Table 1, we constructed four instances, one for each t ∈ {2, 3, 4, 5} giving a total
of 48 instances. Each algorithm had a time limit of 3 hours for each instance. The three
graphs whose names include “pos” were obtained from directed and weighted graphs. In the
appendix, we describe in detail how this was done.

All algorithms used the best solution of 10 runs of the Merge-Heuristic with local search
improvement and 10 runs of the Split-Heuristic with local search improvement as initial upper
bound. Table 1 shows for each graph G, for which values of t at least one of our algorithms

2 https://git.uni-jena.de/algo-engineering/blockmodeling
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Figure 2 Each data point represents an instance, the color indicates the value of t. The gray
lines mark a relative running time difference of 2, 10, 100, and 1000, respectively. The thin black
lines mark the time limit. Points on these lines are not solved by the corresponding algorithm.

Table 1 Overview of the graphs used for the running time evaluation. Numbers in the middle
columns denote the discovery of the optimal solution size for t ∈ {2, 3, 4, 5} for each graph. Numbers
in the last columns denote the maximal t the corresponding algorithm solved within the time limit.

Name n m k2 k3 k4 k5 BB ILP MB-ILP
Highland Tribes pos 16 29 18 12 9 8 5 5 5
Kangaroo 17 91 20 16 9 8 5 5 5
Crisis in a Cloister pos 18 26 22 19 16 13 5 5 5
Taro Exchange 22 39 35 31 27 24 5 5 4
Zebra 27 111 32 26 20 17 5 5 4
Dutch College pos 32 87 61 51 45 41 2 5 4
Karate Club 34 78 65 57 44 – – 4 4
Chesapeake Bay 39 170 118 104 – – – 3 3
HIV 40 41 38 33 30 – 4 3 3
Dolphins 62 159 146 – – – – – 2
Train Bomb 64 243 185 152 – – – 2 3
Iceland 75 114 105 – – – – – 2

found an optimal solution, and for each algorithm this table includes the maximal t-value
for which the algorithm solved the instance (G, t). The branch-and-bound algorithm (BB)
solved 24 instances and both ILPs solved 32. Every algorithm solved at least one instance
which could not be solved by any other algorithm. For example, BB solved (HIV, t = 4), our
ILP solved (Dutch College, 5) and MB-ILP solved (Iceland, 2). Altogether, for 36 out of
the 48 instances at least one of these algorithms found an optimal solution.

Figure 2 shows a running time comparison between BB, our ILP, and MB-ILP and
Figure 5 shows how many instances each algorithm solved depending on the time. While
BB solved many instances faster than both ILPs, the ILPs solved more instances in total.
As expected, the running time of MB-ILP depends very strongly on t; compared to our
algorithms, MB-ILP solved more instances with t ∈ {2, 3} and less with t ∈ {4, 5}, even if
the optimal solution size is small. For larger t, our ILP is faster than MB-ILP by a factor up
to more than 1000. In our opinion, the worse running time for t = 2 is not critical, since this
special case can be solved much faster with tailored algorithms.

5.3 Heuristics
Now we evaluate the quality of Merge-Heuristic and Split-Heuristic with subsequent local
search compared to optimal solutions. In particular, we examine the dependence of the
relative error of the best found heuristic solution to the number of repetitions of these
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Figure 3 Relative difference between optimal solutions and the heuristics after r repetitions. One
repetition includes a run of Merge-Heuristic and Split-Heuristic, each with subsequent local search.


1 0 0 0
0 0 0 0
0 0 0 1
0 0 1 1



Figure 4 The Karate Club graph and its blockmatrix of an optimal clustering for t = 4; the
vertex colors indicate the block in the optimal computed blockmodel.

heuristics. The maximum number of repetitions was set to 25. The optimal solution size was
found for 32 of 36 instances. In the four cases where the optimal solution was not found,
the relative difference was 1.37 % (Dolphins, t = 2), 7.89 % (HIV, t = 2), 10% (HIV, t = 4),
and 0.95 % (Iceland, t = 2). The relative errors, averaged over all instances, are shown in
Figure 3. After 9 rounds no progress is made. In preliminary experiments we could not
deduce that one heuristic is in general better than the other. Therefore, we used both for
the computation of the upper bound.

5.4 Karate Club

We now discuss one optimal blockmodel of the well-known Karate Club [26] for t = 4. This
graph consists of members of a karate club. An edge represents an interaction between two
actors outside the karate club. The club split into two new clubs, headed by the members 1
and 34, respectively. The clustering and the blockmatrix of an optimal solution for t = 4 is
shown in Figure 4. The four blocks of the computed blockmodel correspond approximately
to the split into two clubs: The red and cyan blocks correspond to the new club headed by
vertex 1, the orange and green blocks correspond to the new club headed by 34. The orange
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and red blocks (which contain the new leaders 1 and 34, respectively) are the two clique
blocks and can be interpreted as the two cores of the corresponding new clubs. The orange
and green blocks form together a dense split graph, the red and cyan clusters form together
a sparse split graph. Hence, the blockmodel recovers a core/periphery structure within the
clubs. In these terms, the vertices which are in a block that does not correspond to their
new club (9, 25, 26, and 27) are periphery vertices. In other words, the cores are correctly
separated. Finally, note that there is another optimal solution that adds 27 to the green
cluster. This solution deletes fewer edges; it could be advantageous to favor such optimal
solutions, to avoid producing too many isolated vertices.

6 Conclusion

We presented a new formulation of exact exploratory blockmodeling in undirected networks as
graph-modification problem and developed exact and heuristic algorithms for this approach.
Our algorithms are competitive with previous state-of-the-art exact approaches in terms of
running times. More crucially, our algorithms enable solving the blockmodeling problem
for larger values of t for which previous approaches based on enumerating all candidate
blockmatrices become prohibitively slow.

There are many opportunities for future work. First, further improvements of our
algorithms are desirable and likely possible. The most promising direction here seems to be
the development of better lower bounds. Further extending the range of tractable instances
could then allow for an empirical study of the quality of optimal solutions, beyond the
anecdotical evidence discussed here. Moreover, an adaption to directed networks seems
promising. Finally, one could extend our formulation also to blockmodeling with more
complicated objective functions such as the one of Reichardt and White [21].
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A Supplementary Material

A.1 Deferred Proofs
A.1.1 Proof of Lemma 4
Proof. Let I := (G = (V, E), t, k) be a yes-instance of Blockmodeling. Assume towards a
contradiction, that for each optimal solution S, there is a at least one neighborhood class C

of G with |C| > 2k where some vertices of C is affected by S.
Let S be an optimal solution for I and let C be a neighborhood class in G with |C| > 2k

such that at least one vertex of C is affected. We can assume without loss of generality,
that C is an independent set in G, as otherwise, we can simply consider the complement
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graph G′ = (V,
(

V
2
)
\ E). Since S is a solution for I, |S| ≤ k. Hence, there is at least

one vertex c ∈ C which is unaffected by S, that is, c has the same neighbors in G and in
Gres = (V, E△S).

Let P ⊆ V be the neighborhood class of c in Gres. We show that P is an independent set
in Gres. Note that this is the case if P = {c}. If P contains a second vertex of C, then P

is an independent set in Gres since c is unaffected. Otherwise, c is the only vertex of C

in P and there is at least one vertex p in P \ {c}. Hence, if P is a clique, {c, p} ∈ E which
implies that for each c′ ∈ C \ {c}, {c′, p} ∈ E since c is unaffected and C is a neighborhood
class in G. Since P is a neighborhood class in Gres, C is an independent set in G, and c is
unaffected, for each c′ ∈ C \ {c}, some edge {p, v} is in S. This would imply that |S| > k.
Since by assumption |S| ≤ k, P is an independent set in Gres. Note that this also implies
that there is no edge between any vertex of C and any vertex of P \ C in E since P is an
independent set in Gres and c is unaffected.

Let S′ := {{u, v} ∈ S | u /∈ C, v /∈ C}. We show that S′ is a solution for I. Note
that each vertex of C is unaffected by S′. Since by the above, P is an independent set
in Gres with N(p) = N(c) for each p ∈ P \ C, and there is no edge between any vertex
of P \ C and C in E, P ∪ C is a neighborhood class in Galt := (V, E△S′). It remains to
show that Galt − (P ∪ C) has neighborhood diversity at most t− 1.

Let u and v be two distinct vertices of V \ (C ∪P ) of the same neighborhood class in Gres.
We show that u and v are in the same neighborhood class in Galt. Since u and v are in the
same neighborhood class in Gres and |S| ≤ k, both u and v are either adjacent to each vertex
of C in G or non-adjacent to each vertex of C in G. Hence, both u and v are either adjacent
to each vertex of C ∪ P in Galt or non-adjacent to each vertex of C ∪ P in Galt. By the fact
that S′ contains all vertex pairs of S that do not contain any vertex of C, u and v are in the
same neighborhood class in Galt.

Since S is a solution for I, Gres \ P has neighborhood diversity at most t − 1. By the
above, this implies that Galt \ (C ∪ P ) has neighborhood diversity at most t− 1. Hence S′

is a solution for I. Since S′ is a proper subset of S, S is not an optimal solution for I, a
contradiction. ◀

A.1.2 Proof of Theorem 6

Proof. For t = 2 the NP-hardness is shown by Lemma 5. For t > 2, we reduce from
Blockmodeling. Let I = (G = (V, E), k, 2) be an instance of Blockmodeling. Moreover,
let G′ = (V ′, E′) be the graph obtained from G by adding for each i ∈ {1, . . . , t − 2} a
clique Ci of size 2k + 1 to G such that each vertex of Ci has no neighbors outside of Ci in G′.
Finally, we set I ′ = (G′, k, t) and show that I is a yes-instance of Blockmodeling if and
only if I ′ is a yes-instance of Blockmodeling.

Note that for each i ∈ {1, . . . , t − 2}, the clique Ci is a neighborhood class in G′.
Let S ⊆

(
V ′

2
)

be an optimal solution for I ′. Hence, due to Lemma 4, every vertex of V ′ \ V

is unaffected by S. That is, every optimal solution for I ′ is a subset of
(

V
2
)

and no vertex
of V is in any neighborhood class some vertex of V ′ \ V .

Let S ⊆
(

V
2
)

be a set of size at most k. Hence, for each i ∈ {1, . . . , t−2}, the clique Ci is a
neighborhood class in G′

res := (V ′, E′△S). As a consequence G′
res has neighborhood diversity

at most t if and only if Gres = (V, E△S) has neighborhood diversity at most 2. Hence, I is a
yes-instance of Blockmodeling if and only if I ′ is a yes-instance of Blockmodeling. ◀
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Table 2 Overview of the graphs and their links.

Graph Link

Highland Tribes http://www.konect.cc/networks/ucidata-gama/
Kangaroos http://www.konect.cc/networks/moreno_kangaroo/
Cloister http://www.konect.cc/networks/moreno_sampson/
Taro Exchange http://www.konect.cc/networks/moreno_taro/
Zebra http://www.konect.cc/networks/moreno_zebra/
Dutch College http://www.konect.cc/networks/moreno_vdb/
Karate Club http://www.konect.cc/networks/ucidata-zachary/
Chesapeake Bay http://www.konect.cc/networks/dimacs10-chesapeake/
HIV http://www.konect.cc/networks/hiv/
Dolphins http://www.konect.cc/networks/dolphins/
Train Bomb http://www.konect.cc/networks/moreno_train/
Iceland http://www.konect.cc/networks/iceland/

A.1.3 Proof of Lemma 7
Proof. Let Cu and Cv be the neighborhood classes of u and v respectively, let C be the
neighborhood partition of G and let Crest := C \ {Cu, Cv} = {C1, . . . , Ct−2}. For two vertices
x and y of V \ {u, v} the relation ∼G is the same as ∼G′ because x and y have the same
neighbors in G as in G′. Therefore, the vertices {v1, . . . , vt−2} with vi ∈ Ci are in t − 2
distinct neighborhood classes in G′ since vi ≁G vj for 1 ≤ i ̸= j ≤ t− 2. This implies that
G′ has at least t− 2 neighborhood classes.

On the other hand, both u and v might be in single-sized neighborhood classes in G′.
Hence, G′ has neighborhood diversity at most t + 2. ◀

A.2 Data acquisition
We describe how we obtained undirected and unweighted graphs out of the given data sets
for the three “pos”-graphs. The weight of an edge in these data sets represents how much one
actor likes/dislikes the other. The undirected graph Highland Tribes [20] consists of edges of
weights 1 and −1. We removed the edges with a negative weight. The remaining two graphs
are Crisis in a Cloister [22] and Dutch College [24]. Both are directed and have weights
{−1, 0, 1} and {−1, 0, 1, 2, 3} respectively. In the undirected graphs, there is an undirected

Figure 5 These graphs indicates how many instances with selected values for t each algorithm
solved depending on the time.
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edge {u, v} if and only if there is an edge form u to v and an edge from v to u, the sum of
weights of these edges is at least 2, and none of the weights of these edges is negative. The
Dutch College data consists of 7 graphs among the same actors. For our experiment we used
the graph (timestamp: 924217200) with the most edges obtained by the above-mentioned
method.
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