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Abstract
Given a collection of m sets from a universe U , the Maximum Set Coverage problem consists of
finding k sets whose union has largest cardinality. This problem is NP-Hard, but the solution can
be approximated by a polynomial time algorithm up to a factor 1− 1/e. However, this algorithm
does not scale well with the input size.

In a streaming context, practical high-quality solutions are found, but with space complexity
that scales linearly with respect to the size of the universe n = |U|. However, one randomized
streaming algorithm has been shown to produce a 1− 1/e− ε approximation of the optimal solution
with a space complexity that scales only poly-logarithmically with respect to m and n. In order to
achieve such a low space complexity, the authors used two techniques in their multi-pass approach:

F0-sketching, allows to determine with great accuracy the number of distinct elements in a set
using less space than the set itself.
Subsampling, consists of only solving the problem on a subspace of the universe. It is implemented
using γ-independent hash functions.

This article focuses on the sublinear-space algorithm and highlights the time cost of these
two techniques, especially subsampling. We present optimizations that significantly reduce the
time complexity of the algorithm. Firstly, we give some optimizations that do not alter the space
complexity, number of passes and approximation quality of the original algorithm. In particular,
we reanalyze the error bounds to show that the original independence factor of Ω(ε−2k log m) can
be fine-tuned to Ω(k log m); we also show how F0-sketching can be removed. Secondly, we derive a
new lower bound for the probability of producing a 1− 1/e− ε approximation using only pairwise
independence: 1− 4

ck log m
compared to 1− 2e

mck/6 with Ω(k log m)-independence.
Although the theoretical guarantees are weaker, suggesting the approximation quality would

suffer, for large streams, our algorithms perform well in practice. Finally, our experimental results
show that even a pairwise-independent hash-function sampler does not produce worse solution than
the original algorithm, while running significantly faster by several orders of magnitude.
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1 Introduction

Maximum Coverage, also known as Maximum-k-Coverage is a classic problem in computer
science. Unless P = NP, the decision version is unsolvable in polynomial time. The input is
a family of m sets, F , each a subset of universe U , comprising n elements, and a positive
integer, k. The task is to find a subfamily of k sets in F whose union has largest cardinality.
The best-known polynomial-time approximation algorithm for Max Coverage and the “dual”
Set Cover problem1, is a greedy approach. For Max Coverage, the greedy algorithm has
been shown to return a solution whose coverage is at least a 1− 1/e approximation of the
optimal solution. This is known to be asymptotically optimal [11].

In practice, the greedy algorithm is much more effective than its theoretical guarantee
would suggest, and typically produces a near-optimal solution on realistic inputs [14]. However,
the greedy algorithm does not scale well with the size of the input. In the last 15 years, there
has been increasing interest in efficient implementation of greedy and greedy-like approaches
for Set Cover and Maximum Coverage [7, 10,20]. In the streaming setting, there have been
several innovative algorithms, as detailed below in Table 1. We focus in this paper on
engineering the only sublinear-space Set Streaming algorithm [17] so that it runs much faster,
and sacrifices no space.

In the Set Streaming model [20], the input stream, S, comprises a sequence of the sets
in F , i.e., S = S1, S2, . . . , Sm. Each set Si in S appears in full before the next set, Si+1,
appears. The design of a streaming algorithm trades off memory, throughput, query/solution
time, and solution quality. Let I denote the indexes of the sets in the solution (so far).
The coverage of (the sets in) I is C = ∪i∈ISi. Given I, and hence C, the contribution
of each set Sj , for every j /∈ I is Sj \ C. In the greedy algorithm, we add a set to the
solution whenever it has largest contribution, breaking ties arbitrarily. Additionally, another
well-studied variant of this streaming model is random set arrivals, a reasonable assumption
for many applications, and it makes the problem easier. Many results regarding trade-off
between space complexity and approximation factor improve upon the classic set arrival
setting [1,18]. Another common model for Maximum Coverage, although not discussed in this
paper, is the Edge-arrival Streaming model. Here the stream consists of pairs (i, x) ∈ [m]×U
to indicates that x ∈ Si. In this more general context, Indyk and Vakilian [15] showed a
space lower bound Ω(ma2) and upper bound Õ(ma2) for an arbitrary factor a-approximation
factor in single pass.

1.1 Sublinear Space
Several of the greedy-like approaches for Set Cover in the Set Streaming model assume Ω(n)
memory is available [7, 10, 16]: at least one bit per item, to record the coverage, and thus
determine a set’s contribution. Unlike Maximum Coverage, in Set Cover, we expect that
the subfamily of sets returned, indexed by I, covers all of U , so n = |U| bits seem necessary.
In contrast, for Max Coverage, the minimum space requirement seems depend on m. For
example, it is known that every one-pass (1/2 + ε)-approximation algorithm must work
in Ω(εm/k3) space [12]. Also, Ω(m) space is necessary to achieve better approximation
factors than 1− 1/e [17]. Regarding (1− ε)-approximation algorithms, Assadi [2] showed
that Ω̃(m/ε2) space is required. It should be noted that all these lower bounds are tight and
several one-pass Õ(εdm)-space algorithms do exist [4, 17].

1 In Set Cover, the aim is to return a subfamily of minimum cardinality whose union is U .
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In this context, one algorithm for Maximum Coverage stands out. McGregor and Vu [17]
introduced a family of streaming algorithms for Max Coverage. They describe, in §2.2
of their paper, an approximation algorithm that in O(ε−1) passes and in Õ(ε−2k) space
returns a (1− 1/e− ε)-approximate solution2. This is the only reasonable approximation
algorithm for Max Coverage that runs in o(min{m, n}) space. For convenience3, we name
this algorithm MACH∗. Like some of the first streaming/external-memory algorithms for
Set Cover, MACH∗ takes multiple passes, achieving a near-greedy approach via a sequence
of decreasing thresholds for the contribution of a set: further details of thresholding are in
§1.4. And to save space, MACH∗ has a randomized subsampling component achieved with
multi-way independent hash functions. These hash functions are slow to evaluate, and it is
this component that we accelerate.

1.2 Motivation

In terms of approximation quality and space complexity, MACH∗ is the favored approach for
Maximum Coverage. The space complexity of Õ(ε−2k) is only a little more than the space
required to store4 solution I: Ω̃(k). However, in MACH∗, McGregor and Vu [17] invoke a
γ-independent hash function, where γ = ⌈2cε−2k log m⌉, with c a constant to be discussed in
§4.1. At first glance, this seems to slow the algorithm down, as Ω(γ) operations are required
for each component of the input. Our experiments (refer to Figure 1 below) confirm that the
running time of MACH∗ is particularly high compared to other alternatives. Our research
motivation is:

Can we accelerate this space-efficient Max Coverage algorithm, MACH∗, without
significantly deteriorating space complexity or solution quality?

One promising direction is to simplify the subsampling process. McGregor and Vu show
that, with γ = ⌈2cε−2k log m⌉, an approximation factor of 1 − 1/e − ε is guaranteed with
probability at least 1 − 1/m10k. In the original version of MACH∗, this γ parameter can
easily exceed 103. So we would anticipate a thousand-fold reduction in throughput compared
to a simpler, if theoretically less guaranteed, sampling scheme, such as pairwise independent
hashing. Since we are designing a space-efficient algorithm, a pre-computed hash function
table is infeasible.

1.3 Our contributions

Firstly, we show that the same space complexity and approximation quality can be achieved
with Θ(k log m) independence (Corollary 5) instead of the original Θ(ε−2k log m) and in
fact without invoking F0-sketching (Lemma 6). Removing F0-sketching slightly reduces the
probability of producing a 1− 1/e− ε approximation from 1− e/mck/6 to 1− 2e/mck/6.

2 In this paper, the Õ(·) notation hides polylogarithmic factors in m and n.
3 MACH represents “Maximum Andrew Coverage Hoa”: the ∗ represents their parameter choices, which

we generalize in this paper.
4 An approach that avoids storing at least one bit per index in I, as working space, is in principle possible.

For example, I could be a size-k subset of {1, . . . , m} chosen uniformly at random; this is not an effective
solution, but a valid one, generated in Õ(1) working space.

SEA 2023
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Secondly, if a weaker probabilistic guarantee on the approximation quality is allowed, we
show that the algorithm still works with only pairwise independence (Proposition 8). This
leads to a significant speed-up, from 10× to more than 1000× for k ≥ 100 (Figure 1), while
maintaining the same space complexity5 as the original algorithm of McGregor and Vu [17].

Finally, our experimental results demonstrate the efficiency and quality of our general-
ized algorithm, MACH′

γ . In particular, reducing the independence factor does not lead to
significantly worse solutions. We show that for reasonable values (< 0.27) of ε, our algorithm
returns consistently better solutions than comparator streaming algorithms (Figure 3).

1.4 Related Work

Thresholding. Before surveying the algorithms for Max Coverage, we set out one of the
important algorithmic frameworks. Several algorithms invoke a thresholding technique, first
applied to Set Cover by Cormode et al. [10]. It relaxes the notion of greedy algorithm,
and calculates a near-greedy solution. Instead of searching for the set whose contribution
is R∗ = maxj |Sj \ C|, a thresholding algorithm might add a set Si to the solution if its
contribution is at least αR∗, where α ∈ [0, 1] describes the greediness of the thresholding
algorithm. Applying this principle repeatedly results in a solution whose coverage is α(1−1/e)
fraction of the optimum coverage.

Now the guarantee of αR∗ contribution arises from a multi-pass approach to the stream.
In pass j, all sets with contribution at least r are added, then in pass j + 1, all sets with
contribution at least αr are added. Since a set’s contribution can only decrease as (other)
sets are added to I, with this approach, we only add a set if its contribution is αR∗.

Prior art. There are several existing streaming algorithms for the Max Coverage problem,
which we summarize in Table 1. Badanidiyuru et al. [3] presented a generic algorithm for
maximizing submodular functions on a stream, which can be adapted to Max Coverage. This
is a one-pass thresholding algorithm, somewhat similar to MACH∗, that guesses the optimal
coverage size. Yu and Yuan [22] developed an algorithm that creates a specific ordering
(S̃1, . . . , S̃m) of the entire collection of sets {S1, . . . , Sm} such that for all k, (S̃1, . . . , S̃k) is a
solution of the Maximum-k-Coverage. Saha and Getoor [20], who pioneered set streaming,
took a swapping approach. A putative solution of k sets is stored, and sets in the putative
solution can be replaced by new sets in the stream depending on the number of items
uniquely covered by sets in the putative solution. More recently, Bateni et al. [4] used a
sketching technique and they almost match the optimal approximation factor of 1 − 1/e.
This is an algorithm designed for the edge-arrival streaming model, but can be adapted to
the set streaming model with a space complexity independent to the size of the universe.
Norouzi-Fard et al. [18], in the continuation of Badanidiyuru et al. [3], presented a 2-pass
and a multi-pass approach to maximize a submodular function on a stream. Developed at a
similar time, McGregor and Vu [17] presented two polynomial-time algorithms that achieve
the same approximation factor of 1− 1/e− ε: one taking a single pass, the other, MACH∗,
taking multiple passes. The algorithms developed by McGregor and Vu [17] are thresholding
algorithms.

5 Actually, removing F0-sketching and reducing the independence factor strictly reduces the space
complexity, although not asymptotically.
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Table 1 Streaming algorithms for Maximum Coverage. We focus on the o(min{m, n})-space al-
gorithm, MACH∗.

Author Name Passes Space Approx.

Badanidiyuru et al. [3] BMKK 1 Õ(ε−1n) 1/2− ε

Yu and Yuan [22] 1 Õ(n) ∼ 0.3

Saha and Getoor [20] SG 1 Õ(kn) 1/4

Bateni et al. [4] 1 Õ(ε−3m) 1− 1/e− ε

Norouzi-Fard et al. [18] 2P 2 Õ(ε−1n) 5/9− ε

Norouzi-Fard et al. [18] O(ε−1) Õ(ε−1n) 1− 1/e− ε

McGregor and Vu [17] OP 1 Õ(ε−2m) 1− 1/e− ε

McGregor and Vu [17] MACH∗ O(ε−1) Õ(ε−2k) 1− 1/e− ε

Sampling. Sampling via hashing is a key component of many streaming algorithms. Relaxing
the independence requirement for hash functions was explored in the context of ℓ0-samplers:
Cormode and Firmani [9] invoked γ-independent hash functions. They showed theoretical
bounds on γ to guarantee the probability of sampling a non-zero coordinate. In addition, their
experimental results suggest that constant-independence hashing schemes produce similar
successful sampling rate to linear-independent hash functions, while being significantly more
efficient to compute.

Furthermore, some theoretical results [19] show that many strong guarantees generally
associated with high-independence families of hash functions can be achieved with simpler
hashing schemes. Tabulation hashing [19], for example, is not even 4-independent, but
manages to implement γ-independent hash function based algorithms, such as Cuckoo
Hashing. Pǎtraşcu and Thorup [19] also prove Chernoff-type inequalities with relaxed
assumptions on the independence of the random variables.

2 Tools

The Introduction includes most of our notation; in addition, we let IOPT be an optimal
solution and OPT the size of the optimal coverage

∣∣⋃
i∈IOPT

Si

∣∣.
2.1 Subsampling
▶ Definition 1 (subsampling). Given F , U , and hash function h : U → {0, 1}, the subsampled
universe is U ′ = {x ∈ U | h(x) = 1}, with subsampled sets S′ = S ∩ U ′ for every S ∈ F .

Instead of computing with respect to universe U , algorithm MACH∗ focuses on U ′ ⊂ U , and
tracks only the subsampled coverage C ′ = ∪i∈IS′

i. The size of the optimal coverage of U ′, by
a subfamily of k sets from F , is henceforth called OPT′.
▶ Remark. The value OPT′ = max|J|=k

∣∣⋃
i∈J S′

i

∣∣ is not necessarily the same as the size of
the union of the subsampled sets in the optimal coverage of U , i.e.,

∣∣⋃
i∈IOPT

S′
i

∣∣.
▶ Definition 2. Let γ, v, p ∈ N such that p > |U|:

Hγ,v =
{

x 7−→
γ−1∑
i=0

aix
i mod p mod v | 0 ≤ ai < p

}

is a family of hash functions Hγ,v ⊂ {f : U → [v − 1]}

SEA 2023
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Such a family has the property of being γ-independent6. Evaluating a hash function
f ∈ Hγ,v takes Θ(γ) operations, including expensive modulo operations, but these can be
accelerated using the overflow mechanism on unsigned integer types. Hγ,v are the families of
hash functions used in MACH∗.

2.2 Sketching
To estimate the size of a set, McGregor and Vu invoke F0 sketching.

▶ Theorem 3 (F0-sketching [8]). Given a stream s, there exists a data structure, M(s),
that requires O(ε−2 log δ−1) space and, with probability 1 − δ, returns the number of dis-
tinct elements in s within multiplicative factor 1 ± ε. Processing each new element takes
O(ε−2 log δ−1) time, the same time as finding the number of distinct elements.

2.3 Thresholding on the sampled universe
The core of MACH∗ is thresholding and subsampling. The solution, I, and the associated
subsampled coverage C ′ = ∪i∈IS′

i are built incrementally, as new sets arrive in the stream
and are selected. Given a threshold, r, the selection rule for set Si is:

If |S′
i \ C ′| ≥ r, then I ← I ∪ {i} and C ′ ← C ′ ∪ S′

i , (1)

where |S′
i \ C ′| is called the contribution of S′

i – from the context, it is clear this is in the
sampled universe. In choosing the sequence of thresholds there is a trade-off [7]: the larger
the threshold, the higher the solution quality, but the more passes.

3 Low-space Streaming Algorithm

In this section, we describe in detail MACH∗ developed by McGregor and Vu [17], which
solves Max Cover in sublinear space with a respectable approximation factor. Algorithm
MACH∗ depends on two variables:

v, an estimate of the optimal coverage, OPT; and
λ, an estimate of the optimal coverage on the subsampled universe, OPT′.

These variables determine the probability of subsampling an element, and the initial value of
the threshold, r, as applied above (1). The subsampling hash function is implemented as
h(x) = 1f(x)<λ where f ∈ H⌈2λ⌉,v, hence the probability an item is subsampled is λ/v. The
threshold, r, is initially set to 2(1 + ε)λ/k and after each pass, r decreases by a factor 1 + ε.
McGregor and Vu [17] showed that if

λ = cε−2k log m , with c ≥ 60 , and OPT/2 ≤ v ≤ OPT , (2)

then this thresholding procedure, which we call TP, gives a 1− 1/e− ε approximation using
Õ(ε−2k) space with probability at least 1− 1/m10k.

3.1 Guessing
Algorithm MACH∗ relies on a reasonable estimate of OPT: a v such that OPT/2 ≤ v ≤ OPT.
Of course, we do not know OPT in advance! The algorithm naively finds the right value for
v by executing TPv for different values of v, called guesses, in parallel. Denote by vg the

6 Different definitions exist; our definition of γ-independent is stated in the Appendix.
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Algorithm 1 Algorithm MACHγ(S, k, ε, ||S||∞).

begin
1 /* Initialise the guesses */
2 V ← {2g−1||S||∞ ≤ min(n, k||S||∞), g ∈ N}
3 Duplicates each variable |V | times: h, I, C′, M and active
4 r ← 2(1 + ε)λ/k

5 /* Multiple passes */
6 for p← 1 to 1 + ⌈log1+ε(4e)⌉ do
7 /* One pass */
8 for Si ∈ S (stream) do
9 /* Iterate over the guesses */

10 for g ← 0, . . . , |V | − 1 do
11 S′

i ← Subsample Si with hg

12 Ri ← S′
i \ C′

g /* Contribution */
13 /* Check the bad guess condition */
14 if |C′

g|+ |R′
i| > 2(1 + ε)λ then

15 activeg ← false

16 /* Thresholding procedure */
17 if activeg and |Ig| < k and |Ri| ≥ r then
18 update Mg with Si

19 C′
g ← C′

g ∪Ri

20 Ig ← Ig ∪ {i}

21 /* Update the threshold */
22 r ← r/(1 + ε)
23 /* Find the best coverage among the potentially correct guesses */
24 s← argmax

activeg

{|Mg|}

25 return Is

gth guess. To reduce the number of guesses, we assume the maximum set size, which we
call ||F||∞, is known. This assumption requires only one additional pass through the set
stream, S: the asymptotic number of passes is unchanged. Hence the guesses for v can be
restricted to all the values vg = 2g−2||S||∞, with g ≥ 1, smaller than k||S||∞. These parallel
instantiations increase the running time and space by factor log2 k: there are separate copies
of variables I, C ′ and h (the subsampling hash function) for each guess: these variables for
guess vg are Ig, C ′

g and hg. Now I, C and C ′ refer to the variable associated with the output
of the algorithm.

Which is the right guess?

This guessing method begs the question: how do we detect the right guess? Also, MACH∗
is only guaranteed to work under the condition OPT/2 ≤ v ≤ OPT. Some instances, with
a wrong guess, might necessitate more space than the bound Õ(ε−2k). McGregor and Vu
introduce two mechanisms to deal with these questions.

First, the right guess is found by estimating the (non-subsampled) coverage of Uassociated
with each guess: the biggest coverage is considered the right guess. However, only the
subsampled coverages, of U ′, are calculated. To resolve this, McGregor and Vu adopt F0-
sketching, see Theorem 3, which approximates the number of distinct elements in a collection
of sets using less space than the collection itself. More particularly, in addition to the
subsampled coverage, C ′

g, for each vg, MACH∗ maintains a sketch Mg of the coverage in

SEA 2023
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Õ(ε−2) space. Each time a set is selected,Mg is updated accordingly. Once all the instances
TPg are completed, the sketches {Mg} determine which guess produced the biggest coverage.
We still need the subsampled coverages, {C ′

g}, for calculating the set’s contributions: {Si\C ′
g}.

The F0-sketches are too inefficient to be queried that often.
Second, the space complexity never exceeds Õ(ε−2k) due to a consequence of Corollary 9

of McGregor and Vu [17]: if v is the right guess then OPT′ ≤ 2(1+ε)λ. Thus, if the subsample
coverage C ′

g of an instance TPg exceeds 2(1 + ε)λ, the associated guess is necessarily wrong
and this instance can be terminated (Line 14 in Algorithm 1). Hence every instance runs in
space O(λ) = Õ(ε−2k). Thus, λ can be referred as the space budget of the algorithm.

3.2 Properties
Algorithm 1 is our generalisation of MACH∗, which we call MACHγ . The independence
factor, γ, is not fixed, but is instead a parameter that influences the implementation of the
subsampling hash functions {hg}. The original algorithm, MACH∗, has an independence
factor of ⌈2λ⌉: so MACH∗ = MACH⌈2λ⌉ in our generalization.

McGregor and Vu [17] showed that MACH∗ has space complexity Õ(ε−2k) and with
probability at least 1− 1

m10k produces a 1−1/e− ε approximation. As our focus is improving
run time, with only a small trade-off in the other properties, we first dissect the run time. The
coverages C ′

g are implemented with hash tables in order to efficiently compute Ri = S′
i \ C ′

g.
If the gth guess is reading the ith set then:
Line 11: Subsampling Si: O(γ)|Si| time (evaluate degree-O(γ) polynomial for each element

in Si)
Line 12: Computing Ri: O(|S′

i|) ⊂ O(|Si|) time
Line 19: Updating C ′

g: O(|Ri|) ⊂ O(|Si|) time
Line 20: Updating Mg: O(ε−2 log n)|Si| time (Theorem 3)
Therefore, the expected time complexity, Tγ , of MACHγ is

Tγ = O(log k)︸ ︷︷ ︸
guesses

O(ε−1)︸ ︷︷ ︸
passes

· O

(
m∑

i=1
γ|Si|

)
︸ ︷︷ ︸

subsampling

+O
(∑

i∈I

ε−2|Si| log n

)
︸ ︷︷ ︸

F0-sketching


= O

(
ε−1γm|S| log k + ε−2k|C| log n log k

)
(3)

▶ Note. |S| = 1
m

∑
i |Si| is the average set size over the entire stream, S, while |C| =

1
k

∑
i∈I |Si| is the average set size over the selected sets (in I).

Therefore, MACH∗ = MACH⌈2λ⌉ has expected time complexity of

T⌈2λ⌉ = O
(
ε−3km|S| log m log k + ε−2k|C| log n log k

)
. (4)

Regarding the space complexity for γ < ⌈2λ⌉, it remains (asymptotically) the same.
Indeed the cost for storing a γ-independent hash function is O(γ) ⊂ Õ(ε−2k).

Interestingly, MACHγ does not guarantee the solution returned actually has k sets. Given
that |I| ≤ k, we can simply append k− |I| random indices to the returned solution. However,
the goal of this paper is to assess the probabilistic nature of the algorithm that arises from
the γ-independent hash functions. Therefore, in our experiments in §5, we do not alter the
returned solution given by MACHγ .
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4 Accelerating the Algorithm

Algorithm MACHγ is a breakthrough: it runs in sublinear space. As we surmise from
the expression (3) for Tγ , however, the high independence factor, γ, induces a significant
bottleneck. Our experiments in §5 validate this conjecture. In this section we demonstrate
how to improve the running time without too much sacrifice in the other properties. Indeed,
when lowering the independence factor, γ, we maintain the space complexity and the number
of passes.

McGregor and Vu [17] showed that if OPT/2 ≤ v and
∣∣ |C ′|−p|C|

∣∣ < εvp then the solution
produced by MACHγ is a 1−1/e−ε approximation. Assuming condition OPT/2 ≤ v ≤ OPT
is met, i.e., we have the right guess for v, P(EI) is a lower bound on the probability of
producing a 1 − 1/e − ε approximation, where EI is the event

{ ∣∣ |C ′| − p|C|
∣∣ < εvp

}
.

Therefore, the goal is to estimate P(EI) for independence factor γ smaller than ⌈2λ⌉.
We provide proofs of several of the following results in the Appendix.

4.1 Maintaining the Approximation Property
Recalculating c. The first optimisation is actually an observation about the constant c in
the definition of λ = cε−2k log m. Indeed, the independence factor γ = ⌈2λ⌉ depends on c:
the authors state “Let c be some sufficiently large constant.” At first glance, it seems that to
get P(EI), an upper bound on the failure probability, below e/m10k, the constant c must be
greater than 60 because the inequality in their Lemma 8 is P(EI) ≤ e/mck/6. Indeed, with a
bound on P(EI), we apply a union bound to upper bound P

(
∪|I|=kEI

)
. Unpacking this, we

find the inequalities

P

 ⋃
|I|=k

EI

 ≤ ∑
|I|=k

P(EI) ≤
(

m

k

)
e

mck/6 ≤
e

k! m(c/6−1)k
,

whence we conclude that c = 6 is the smallest reasonable value to be sure the upper bound
is o(1). This reduction in c does not reduce the asymptotic time complexity of MACHγ , but
in practice it reduces the independence factor by a factor 10 so this is still a 10× speed up
compared to the original c ≥ 60.

Reducing γ. In order to reduce further the independence factor γ, we express P(EI) with
respect to γ. To that end, we use the following concentration bound, from the same paper
cited by McGregor and Vu.

▶ Theorem 4 (Schmidt et al. [21]). Let X1, . . . , Xn be γ-wise independent r.v.s, X =
∑n

i=1 Xi

and µ = E(X). If Xi ∈ [0, 1] and γ ≤ ⌊min(δ, δ2)µe−1/3⌋ then P(|X − µ| ≥ δµ) ≤ e−⌊γ/2⌋.

Notice that |C ′| =
∑n

i=1 Xi where Xi = 1i∈C1h(i)=1 ∈ [0, 1]; since p = λ/v is the probability
of subsampling an element, P(h(i) = 1), we have the following corollary:

▶ Corollary 5. If γ ≤ ⌊ c
3 k log m⌋, with I, C, and C ′ defined accordingly, then:

P
( ∣∣ |C ′| − p|C|

∣∣ ≥ εvp
)
≤ e−⌊γ/2⌋ .

Consequently, by setting γ = ⌊ c
3 k log m⌋ = O(ε2λ), compared to the original O(λ), we

keep the same approximation guarantees as McGregor and Vu [17]:

P(EI) ≤ e−⌊⌊ c
3 k log m⌋/2⌋ = e−⌊ c

6 k log m⌋ ≤ e− c
6 k log m+1 = e

mck/6 .
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Algorithm 2 Procedure FindGuess.

s← |V | − 1
while |C′

s| < (1− ε)(1− 1/e− ε)λ or ¬actives do
s← s− 1

Removing F0-sketching. First, it should be noted that McGregor and Vu showed that
MACH∗ produces a 1 − 1/e − δ(ε) approximation of the optimal coverage where δ(ε) =
ε(3− 1/e− ε) ≤ 2.6ε. Asymptotically, the statement of McGregor and Vu is right because
the algorithm can simply start by dividing ε by 3 and it would indeed produce a 1− 1/e− ε

approximation. Nevertheless, such a modification would result in a significant slowdown
(×3 to ×27 depending on the independence factor). In the §5 experiments, we assess the
approximation quality relatively to the actual theoretical bound 1 − 1/e − δ(ε). Finally,
thanks to the following result, we adapt MACHγ so that F0-sketching is not needed.

Let MACH′
γ be the algorithm that replaces line 24 in Algorithm 1 with Algorithm 2. The

selected guess is the biggest active guess, s, such that |C ′
s| ≥ (1− ε)(1− 1/e− ε)λ. We thus

conclude MACH′
γ is correct for γ ≥ ⌊ c

3 k log m⌋.

▶ Lemma 6. Let v be some guess in MACH′
γ and let C ′ be the final subsampled coverage

associated with guess v. If∣∣ |C ′| − p|C|
∣∣ < εvp; and v > OPT; and (1− ε)(1− 1/e− ε)λ ≤ |C ′| ,

then |C| > (1− 1/e− δ(ε))OPT.

▶ Proposition 7. For γ ≥ ⌊ c
3 k log m⌋, MACH′

γ finds a 1− 1/e− δ(ε) approximation of the
Maximum-k-Coverage problem with probability at least 1− 2e/mck/6.

Since the F0-sketch is omitted, the time complexity is T ′
γ = O(ε−1γm|S| log k), while

the space complexity is unchanged. With γ = ⌊ c
3 k log m⌋, MACH′

γ has a time complexity of
T ′

⌊ε2λ/3⌋ = O(ε−1km|S| log k log m), which is at least ε−2 faster than expression (4).

4.2 Pairwise Independence
We now consider the smallest independence factor possible, γ = 2.

▶ Proposition 8. Let h be a 2-independent hash function, and I, C, C ′, be defined accordingly.
We have P

( ∣∣ |C ′| − p|C|
∣∣ ≥ εvp

)
≤ 2/(ck log m).

Substituting the bound of Proposition 8 into Proposition 7, we conclude:

▶ Corollary 9. With probability at least 1− 4/(ck log m), MACH′
2 returns a 1− 1/e− δ(ε)

approximation to the Maximum-k-Coverage problem.

The decrease in probabilistic guarantee is compensated by a significant speed-up. The
time complexity of MACH′

2 is T ′
2 = O(ε−1m|S| log k), which grows only logarithmically in k.

5 Experimentation

In this section, we assess the performance of the MACH′
γ algorithm family on real-world

datasets. We focus on four datasets, summarized in Table 2:
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SocialNet7 represents a collection of individuals linked by a friendship relation.
UKUnion [5] combines snapshots of webpages in the .uk domain taken over a 12-month
period between June 2006 and May 2007.
Webbase [6] and Webdocs [13] each represent a collection of interlinked websites.

Table 2 Real-world datasets. Hapax Legomena (HL) refers to the number of sets that contains
an element which appears only in this set. The minimum set size and element frequency is 1.

Dataset n m Set size Element frequency HL
×106 ×106 Max Med Avg Max Med Avg

SocialNet 65.0 37.6 3,615 12 48.10 4,223 6 27.80 24.0%
UKUnion 126.5 74.1 22,429 25 45.56 4,714,511 2 26.71 16.7%
Webbase 112.2 57.0 3,841 6 11.81 618,957 2 6.00 23.5%
Webdocs 5.3 1.7 71,472 98 177.20 1,429,525 1 56.93 21.2%

MACH′
γ is implemented8 in C++20 and executed on Spartan the high performance

computing system of The University of Melbourne. The CPU model is the Intel(R) Xeon(R)
Gold 6254 CPU @ 3.10GHz with a maximum frequency of 4GHz. MACH′

γ naturally implies
a parallel algorithm that consists of performing the computation related to each guess in
parallel. Nonetheless, we do not implement an actual parallel algorithm as it would require
substantial effort in order to fine tune. Also, compared to the original algorithm, this
approach does not change the number of guesses. Therefore, the potential speed-up of
a parallel implementation would be the same for our algorithm MACH′

γ and the original
algorithm MACH∗.

Assessing coverage. With original independence factor γ = ⌈2λ⌉, MACH′
γ can still take

tens of hours on the biggest datasets. We thus introduce a new variant of the algorithm,
the full sampling variant, MACH′

fs. Full sampling means there is no subsampling so MACH′
fs

is a deterministic algorithm where P(EI) = 1. It means that MACH′
fs is fast and produces

particularly good solutions (Figure 3). However, it has a space complexity of Õ(n) so MACH′
fs

is just seen as a tool to assess the approximation quality of MACH′
2.

Setting c. To bound the failure probability of MACH′
⌈2λ⌉ and MACH′

⌊ε2λ/3⌋, we set c← 6.
With c < 6, MACH′

⌊ε2λ/3⌋ would be even more space efficient, while maintaining a high
probability of success: P(EI) ≥ 1− e/mck/3, for c ≥ 1, where m is expected to exceed several
million. We therefore run MACH′

fs and MACH′
γ with c = 1.

Suite of experiments. Algorithms MACH′
fs, MACH′

⌈2λ⌉, MACH′
⌊ε2λ/3⌋ and MACH′

2 are
executed on the four datasets, for ε ∈ {1

2 , 1
4 , 1

8} and k ∈ {1, 2, 4, 8, 16, 32, 64, 128, 256}.
Although ε = 1/2 is out of the theoretical consideration, because 1− 1/e− δ(1/2) < 0, it
presents an opportunity to observe how the algorithm behaves outside its theoretical scope:
ε < 0.267. For each Figure, in the main text, we only show the datasets representative of the
variety of behaviors. The remaining components of each figure are in the Appendix.

7 https://snap.stanford.edu/data/com-Friendster.html
8 https://github.com/caesiumCode/streaming-maximum-cover
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Figure 1 Running times of the algorithms, demonstrated on Webbase. Observe that for ε = 1/8,
sticking with γ = ⌈2λ⌉ leads to a particularly slow algorithm. On the other hand, up to k = 8,
both γ = ⌈ε2λ/3⌉ and γ = 2 are only 2–3 times slower than full sampling. For larger values of k,
γ = ⌈ε2λ/3⌉ becomes 8–10 times slower. The missing values (dashed line) for γ = ⌈2λ⌉ and SG are
extrapolated, they refer to a running time that exceeds the time limit of 48 hours.

Comparator algorithms (refer to Table 1). The goal is to assess the trade-off between
time, space and approximation quality, therefore we aim to compare MACH′

γ with algorithms
that perform relatively well in all three categories. For that reason, we implemented the
comparator algorithms SG, BMKK, and 2P. The algorithm of Yu and Yuan [22] takes too
much time and space, as it solves for all possible values of k at once. Also, as illustrated and
explained in the Appendix (Figure 7), the Õ(ε−dm)-space algorithms consume too much
space in comparison to the Õ(ε−dn) space algorithms. We run Algorithm 2P instead of its
(1− 1/e− ε)-approximation cousin [18]: the latter is less effective than 2P, empirically, while
consuming the same space and taking more passes.

5.1 Runtime Evaluation
Figure 1 demonstrates the time saved by reducing the independence factor. MACH′

⌊ε2λ/3⌋ is
consistently faster than MACH′

⌈2λ⌉ by an order of magnitude, while, as k increases, MACH′
2

widens its gap over MACH′
⌊ε2λ/3⌋. In contrast to MACH′

fs, the time spent calculating hash
function outputs for subsampling is clear. About half the running time of MACH′

2 is about
subsampling, while this proportion easily exceeds 99% of the running time for MACH′

⌈2λ⌉.
Considering comparators, BMKK and 2P are equally the fastest algorithms by a wide margin.
Despite only one pass, SG is one of the slowest algorithms, along with MACH′

⌈2λ⌉. The precise
running times can be consulted in Table 3.

5.2 Space Efficiency
To measure the space complexity of the different algorithms, we simply count the number
of element instances stored by each algorithm. Figure 2 demonstrates how space efficient
MACH′

γ is compared with alternatives, as predicted by the sublinear asymptotic bound:
Õ(ε−2k), seemingly independent of the coverage size, in practice as well as theory.
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Table 3 Summary of the running times in minutes of the algorithms (Figure 1). An empty cell
means the time exceeds 48 hours (2880 minutes).

Dataset Webbase UKUnion
k 4 16 64 256 4 16 64 256

ε = 0.5
MACH′

fs 4.5 4.4 4.7 9.2 17.1 22.3 38.1 59.7
MACH′

2 8.5 8.8 9.3 10.8 35.7 48.3 77.2 134.5
MACH′

⌊ε2λ/3⌋ 8.0 14.5 38.3 135.9 40.8 90.3 338.3 1145.3
MACH′

⌈2λ⌉ 143.4 588.6 2609.1 – 849.0 – – –
SG 92.1 399.3 1632.4 – 936.7 – – –
BMKK 0.5 0.5 0.6 0.8 2.9 3.8 5.5 11.6
2P 0.8 0.8 0.8 0.8 3.6 4.4 6.6 8.8

ε = 0.125
MACH′

fs 6.7 6.8 7.6 8.5 24.9 37.1 63.3 201.3
MACH′

2 13.6 13.9 15.6 21.3 52.0 79.0 130.6 212.4
MACH′

⌊ε2λ/3⌋ 14.9 23.2 68.0 212.7 58.3 144.3 461.3 2002.5
MACH′

⌈2λ⌉ 987.4 – – – – – – –
SG 92.1 399.3 1632.4 – 936.7 – – –
BMKK 0.5 0.6 0.7 1.2 3.1 5.5 9.9 17.5
2P 0.8 0.8 0.8 1.1 3.7 4.7 8.3 15.7

As stated earlier, the space complexity of MACH′
fs, SG and BMKK scales linearly with the

coverage size of the solution. So when MACH′
γ does not look so advantageous for SocialNet

when ε = 0.125, it is simply because the coverage is almost as small as the space budget of
MACH′

γ . The coverage of UKUnion is about 10 times bigger than SocialNet, but the space
consumption is about the same as SocialNet.

5.3 Estimating Approximation Quality

The maximum set coverage problem is NP-Hard. Comparing the coverage size produced
by MACH′

γ with the optimal solution is infeasible at the scale of our datasets. Since the
greedy algorithm guarantees a 1− 1/e approximation, and can be implemented, its coverage
is our reference. Moreover, even if the optimal solution, OPT, is unknown, the 1− 1/e− δ(ε)
approximation of MACH′

γ can be verified using the greedy algorithm thanks to the following
implication: |C|/|G| ≥ β =⇒ |C|/OPT ≥ β(1−1/e), where G returned by greedy and C an
arbitrary coverage. In particular, if |C|/|G| ≥ 1−δ(ε)/(1−1/e) then |C|/OPT ≥ 1−1/e−δ(ε).

Figure 3 demonstrates that for theoretically admissible values of ε, MACH′
γ produces a

coverage close to greedy coverage, and always within the 1− δ(ε)/(1− 1/e) limit. Regardless
of γ value, it remains very close to the coverage produced by MACH′

fs. Even for pairwise
independence, which is expected to produce worse solutions, there is no clear performance
effectiveness difference compared higher independence. Additionally, even though MACH′

γ is
a randomized algorithm, no coverage has been observed to beat greedy.

We observe some rare events (< 1%) where the coverage is particularly small compared to
MACH′

fs. Investigating these cases reveals that such solutions typically contain fewer than k

sets. If MACH′
γ does not select the right guess, it tends to select a guess slightly bigger than

the right one, which increases the threshold, therefore it does not have enough opportunity
to select k sets in O(ε−1) passes.
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Figure 2 Coverage versus space, for k ∈ {1, 2, 4, 8, 16, 32, 64, 128, 256}. Every panel shows the
advantage of the MACH′ family for max coverage in streams. For ε = 1/2, the space advantage is
at least ten-fold. Interestingly, as ε decreases, the space advantage drops for some datasets, but
the coverage does not improve significantly, suggesting that a lightweight MACH′ approach, i.e.,
smaller ε−1, might be the most effective time-space-performance trade-off.

Figure 3 Coverage of the algorithms relative to greedy coverage. Since they are randomized,
there are box plots of coverage produced by MACH′

γ . The box plots show the 1%, 25%, 75% and
99% quantiles, hence the points below and above the box plots are in the first and last 1%. For
γ = 2 and γ = ⌊ε2λ/3⌋, each boxplot gathers 200 data points on average whereas for γ = ⌈2λ⌉,
each boxplot gathers 90 data points on average. Observe that the MACH′ methods return excellent
coverage except for values of k around 64 on the dataset Webdocs when ε = 1/2.
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6 Conclusions

In this paper, we accelerate the sublinear-space approach to solving Maximum Coverage.
The algorithm MACH∗ of McGregor and Vu is hampered by a high-independence hash
function. We generalize their approach to produce MACHγ , so that MACH∗ = MACH⌈2λ⌉
and then avoid F0-sketches to obtain MACH′

γ . The space consumption is in Õ(ε−2k) and
the approximation factor is 1− 1/e− δ(ε).

For reasonable values of ε (≤ 0.25), our algorithm, MACH′
γ , maintains the space efficiency

and approximation quality of MACH∗ = MACH⌈2λ⌉. In experiments, it is several orders of
magnitude faster. In practice, we find MACH′

2 presents the best trade-off between space
complexity, time complexity and approximation quality. Since MACH′

2 is so efficient, we
can run it several times with fresh randomness. This approach is more effective than
executing MACH′

γ with a high independence factor. Although we avoided F0-sketching in
MACH′

γ , they could help compare independent instances of the fast MACH′
2.

We obtained several key results by carefully analyzing upper bounds on algorithm failure
probability. We expect this idea accelerates other lower-space streaming algorithms.
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A Definition of γ-independent hash functions family

▶ Definition 10. The family of hash functions H ⊂ {f : U → Y } is γ-independent iff
for every γ distinct keys x1, . . . , xγ ∈ U and γ values y1, . . . , yγ ∈ Y , if we draw f uni-
formly at random from H, then the f(xi) are independent uniform random variables, and
P [∩γ

i=1(f(xi) = yi) ] = 1/|Y |γ .

B Corollary 5 (proof)

▶ Corollary 5. If γ ≤ ⌊ c
3 k log m⌋, with I, C, and C ′ defined accordingly, then:

P
( ∣∣ |C ′| − p|C|

∣∣ ≥ εvp
)
≤ e−⌊γ/2⌋ .

Proof. Consider I to be fixed, so the 1i∈C factor is just a constant, with no randomness.

E(|C ′|) =
n∑

i=1
1i∈CE(1h(i)=1) =

∑
i∈C

P(h(i) = 1) = p|C|

Let δ = εv/|C| and µ = E(|C ′|), then P
( ∣∣ |C ′| − p|C|

∣∣ ≥ εvp
)

= P
( ∣∣ |C ′| − p|C|

∣∣ ≥ δµ
)

.
Now, recalling the definition (2) of λ, we verify the condition on the independence factor, γ:

c

3k log m = ε2

3 λ = ε

3δµ ≤ e−1/3 ε

2δµ e−1/3 > 2/3

≤ e−1/3 min(1, δ)δµ δ ≥ ε/2 and ε/2 ≤ 1 ,

where |C| ≤ OPT ≤ 2v gives us the condition δ ≥ ε/2. The condition ε/2 ≤ 1 is arbitrary
but recall that we want a 1 − 1/e − ε approximation so ε < 1 − 1/e ≤ 0.7. Therefore,
γ ≤ ⌊ c

3 k log m⌋ ≤ ⌊e−1/3 min(δ, δ2)µ⌋ and Theorem 4 gives the desired inequality. ◀
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C Lemma 6 (proof)

▶ Lemma 6. Let v be a guess in MACHγ and let C ′ be the final subsampled coverage associated
with guess v. If
1.
∣∣ |C ′| − p|C|

∣∣ < εvp; and
2. v ≥ OPT; and
3. (1− ε)(1− 1/e− ε)λ ≤ |C ′|;
then |C| > (1− 1/e− δ(ε))OPT.

Proof. Assuming condition 3, we have,

|C ′| − εvp ≥ (1− ε)(1− 1/e− ε)vp− εvp

|C|p ≥ (1− ε)(1− 1/e− ε)vp− εvp Condition 1
|C| ≥ (1− ε)(1− 1/e− ε)v − εv p > 0
|C| ≥ (1− 1/e− δ(ε))v where δ(x) = x(3− 1/e− x)
|C| ≥ (1− 1/e− δ(ε)) OPT Condition 2. ◀

D Proposition 7 (proof)

▶ Proposition 7. For γ ≥ ⌊ c
3 k log m⌋, MACH′

γ finds a 1− 1/e− δ(ε) approximation of the
Maximum-k-Coverage problem with probability at least 1− 2e/mck/6.

Proof. Let vs be the selected guess accordingly to procedure 2 and v∗ the right guess, i.e.
OPT/2 ≤ v∗ ≤ OPT. Also, we denote by Is the solution associated with guess vs.

If vs = v∗, we already saw that the 1 − 1/e − δ(ε) approximation is guaranteed if the
event EIs

=
∣∣|C ′

s| − p|Cs|
∣∣ < εvsp is met.

If vs > v∗, then vs ≥ OPT because each guess is of the form 2g||S||∞, so vs must be at least
twice as big as v∗. Therefore, Lemma 6 ensures the 1−1/e−δ(ε) approximation if the event
EIs

is met, because procedure 2 always takes a guess for which |C ′
s| ≥ (1−ε)(1−1/e−ε)λ.

To conclude, MACH′
γ finds a 1−1/e− δ(ε) approximation of Maximum-k-Coverage if vs ≥ v∗

and EIs
. Furthermore, a consequence of Corollary 9 in §2.3 [17] is that, for the right guess

v∗, if
∣∣|C ′

∗| − p|C∗|
∣∣ < εv∗p then |C ′

∗| ≥ (1− ε)(1− 1/e− ε)λ, which makes the right guess a
possible choice for procedure 2. Therefore, EI∗ ⇒ vs ≥ v∗. Consequently:

P ({vs ≥ v∗} ∩ EIs
) = 1− P

(
{vs < v∗} ∪ EIs

)
≥ 1− P

(
EI∗ ∪ EIs

)
≥ 1− P

(
EI∗

)
− P

(
EIs

)
≥ 1− 2 e

mck/6 ◀

E Proposition 8 (proof)

▶ Proposition 8. Let h be a 2-independent hash function, and I, C, C ′, be defined accordingly.
We have P

( ∣∣ |C ′| − p|C|
∣∣ ≥ εvp

)
≤ 2/(ck log m).
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Proof. As before, |C ′| can be represented as |C ′| =
∑n

i=1 Xi, where Xi = 1i∈C1h(i)=1.
Letting V stand for variance, we have:

V
(
|C ′|

)
= E

(
|C ′|2

)
− E

(
|C ′|

)2 = E

( n∑
i=1

Xi

)2
− p2|C|2

= E

 n∑
i=1

Xi +
∑
i̸=j

XiXj

− p2|C|2 X2
i = Xi

= E
(
|C ′|

)
+
∑
i ̸=j

E (XiXj)− p2|C|2

= p|C|+
∑
i ̸=j

E (Xi)E (Xj)− p2|C|2 pairwise independence

= p|C|+
∑
i ̸=j

1i,j∈CE
(
1h(i)=1

)
E
(
1h(j)=1

)
− p2|C|2

= p|C|+ p2 (|C|2 − |C|)− p2|C|2 = p(1− p)|C|

Including this value for the variance in Chebyshev’s inequality, we have:

P
( ∣∣ |C ′| − p|C|

∣∣ ≥ εvp
)
≤

V
(
|C ′|

)
(εvp)2 = p(1− p)|C|

ε2v2p2

≤ p OPT
ε2v2p2 = OPT

ε2v2p

≤ 2v

ε2v2p
OPT/2 ≤ v

= 2
ε2λ

p = λ/v

= 2
ε2cε−2k log m

= 2
ck log m

. ◀
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F Experimentation

Figure 4 Running times of algorithms MACH′
γ , MACH′

fs, SG, and BMKK on datasets SocialNet,
UKUnion and Webdocs.

Figure 5 Coverage versus space, for k ∈ {1, 2, 4, 8, 16, 32, 64, 128, 256} on datasets Webbase and
Webdocs. The anomalies of MACH′

fs and MACH′
γ in Webdocs when ε = 0.5 coincide with the coverage

quality drop in Figure 3.
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Figure 6 Box plot of coverage produced by MACH′
γ , SG and BMKK relative to the coverage

produced by the greedy algorithm for the datasets SocialNet and Webbase.

Figure 7 Coverage versus space, the Õ(ε−2m) space algorithm OP [17] consumes systematically
more space than all the other Õ(ε−dn) space alternatives. This is because the Õ(ε−dn) space
algorithms actually scale linearly with respect to the returned coverage size with a hidden constant
close to one. On the other hand, the Õ(ε−dm) space algorithms, such as OP, have precisely a
Θ̃(ε−dm) space complexity with a much bigger hidden constant, storing a fraction of each set.
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