
No Unification Variable Left Behind: Fully
Grounding Type Inference for the HDM System
Roger Bosman #

KU Leuven, Belgium

Georgios Karachalias #

Tweag, Paris, France

Tom Schrijvers #

KU Leuven, Belgium

Abstract
The Hindley-Damas-Milner (HDM) system provides polymorphism, a key feature of functional
programming languages such as Haskell and OCaml. It does so through a type inference algorithm,
whose soundness and completeness have been well-studied and proven both manually (on paper)
and mechanically (in a proof assistant). Earlier research has focused on the problem of inferring the
type of a top-level expression. Yet, in practice, we also may wish to infer the type of subexpressions,
either for the sake of elaboration into an explicitly-typed target language, or for reporting those
types back to the programmer. One key difference between these two problems is the treatment
of underconstrained types: in the former, unification variables that do not affect the overall type
need not be instantiated. However, in the latter, instantiating all unification variables is essential,
because unification variables are internal to the algorithm and should not leak into the output.

We present an algorithm for the HDM system that explicitly tracks the scope of all unification
variables. In addition to solving the subexpression type reconstruction problem described above, it
can be used as a basis for elaboration algorithms, including those that implement elaboration-based
features such as type classes. The algorithm implements input and output contexts, as well as the
novel concept of full contexts, which significantly simplifies the state-passing of traditional algorithms.
The algorithm has been formalised and proven sound and complete using the Coq proof assistant.

2012 ACM Subject Classification Software and its engineering → Formal software verification;
Software and its engineering → Correctness

Keywords and phrases type inference, mechanization, let-polymorphism

Digital Object Identifier 10.4230/LIPIcs.ITP.2023.8

Supplementary Material Software (Source Code): github.com/rogerbosman/hdm-fully-grounding
archived at swh:1:dir:32c6b22d2de66001bf4c0ab5e255481de6561daa

Funding This work was partly funded by KU Leuven project C14/20/079#55685055.

Acknowledgements We would like to thank Steven Keuchel for their help and insights about Coq,
and their comments about a draft of this paper.

1 Introduction

Classic unification-based type inference algorithms for the Hindley–Damas–Milner (HDM)
system such as algorithm W [7] solve the type inference problem. That is, they determine
whether programs that lack type signatures are well-typed or not, by assigning every subterm
the most general type possible (an unconstrained unification variable) and solving any type
constraints that arise. Programs are well-typed if and only if all constraints can be solved.

However, depending on the setting, we would like to not only verify that a program is
well-typed but also determine the type of every subterm. The canonical example of this
is elaboration to System F [13, 19], but the problem arises in other settings as well. For

© Roger Bosman, Georgios Karachalias, and Tom Schrijvers;
licensed under Creative Commons License CC-BY 4.0

14th International Conference on Interactive Theorem Proving (ITP 2023).
Editors: Adam Naumowicz and René Thiemann; Article No. 8; pp. 8:1–8:18

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:roger.bosman@kuleuven.be
https://orcid.org/0000-0002-6693-4653
mailto:georgios.karachalias@tweag.io
mailto:tom.schrijvers@kuleuven.be
https://orcid.org/0000-0001-8771-5559
https://doi.org/10.4230/LIPIcs.ITP.2023.8
https://github.com/rogerbosman/hdm-fully-grounding
https://archive.softwareheritage.org/swh:1:dir:32c6b22d2de66001bf4c0ab5e255481de6561daa;origin=https://github.com/rogerbosman/hdm-fully-grounding;visit=swh:1:snp:9aeecfa8b01158317ae4d277dc45f1d587b15094;anchor=swh:1:rev:e833cd5c2d22b6c73e44c755c0bb22a51f8f5e35
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

8:2 Fully Grounding Type Inference for the HDM System

example, to aid development, real-world implementations of programming languages often
allow developers to query the types of subterms, either via a REPL1 like GHCi [22] or in a
GUI-based editor, for example by supporting [24, 17] the Language Server Protocol [4]. We
name this the subterm type reconstruction problem.

An important way the type inference and subterm type reconstruction problem differ is
in how they treat underconstrained types (i.e. types with unconstrained parts). Consider the
following program below.

let x = (λf. unit) (λy. y) in . . .

Observe that the type of y is not subject to any constraints: since λy.y is passed to a function
that discards its argument and instead returns unit, it is never applied an argument, nor is
its output used, either which would impose constraints. For type checking this unconstrained
type is not a problem: the program is well-typed regardless of y’s type. However, this
situation is problematic for subterm type reconstruction, because we need to provide types
for both f and y. We may only output fully ground types; unification variables are internal to
the algorithm and should not be returned. Thus, to ground these types, we must instantiate
all remaining unification variables. Generally, there are two options: (1) to generalise over
the remaining variables, or (2) to default them to an arbitrary type (e.g. Unit).

(1) let x = Λa. (λf : a → a. unit) (λy : a. y) in . . .

(2) let x = (λf : Unit → Unit. unit) (λy : Unit. y) in . . .

Crucially, the type of the overall expression may not determine the instantiation, as type vari-
ables may not occur in this type. Consider again the example above. Since (λf. unit) (λy. y)
beta-reduces to unit, x’s type is Unit. Hence, the type of y does not occur in x’s type.
Therefore, additional machinery is needed to keep track of unsolved unification variables and
apply whichever grounding strategy has been chosen. While solutions to this problem are
not necessarily complicated in practice, implementations are often ad hoc, making reasoning
about their correctness hard.

In this paper, we address this very issue. We present algorithm R, a fully grounding
type inference algorithm for the HDM system. The algorithm explicitly tracks the scope of
unification variables, which allows for fully grounding type inference, meaning we can infer
fully ground types for all subexpressions. Since type grounding is internal to algorithm R, its
correctness proof (which we have mechanised in the Coq proof assistant [23]) carries over to
the grounding strategy as well. As far as we know, we are the first to mechanically formalize
a type inference algorithm for the HDM system that includes type grounding.

The algorithm utilizes in- and output contexts in the style of Dunfield and Krishnaswami
[10] as well as a novel approach to unification, using a concept we dub full contexts. Here,
contexts always contain all existing unification variables. Traditionally, inference algorithm
thread through a substitution to reflect equalities found during unification in other branches
of the derivation. With our approach, we avoid this threading: when an equality α := τ is
found, α can immediately be substituted for τ in the current context. Since the context is
full, no further occurrences of α exist, and the equality can be discharged in one go.

In summary, the specific contributions of this paper are:
This paper presents a new, fully grounding type inference algorithm R for ML-style
polymorphism. The algorithm keeps track of all unification variables and their scope and
uses the novel concept of full contexts to discharge all unifications in one go.

1 Read–Eval–Print Loop

R. Bosman, G. Karachalias, and T. Schrijvers 8:3

Γ ⊢W e1 : τ, θ1

θ1Γ ⊢W e2 : τ2, θ2

a#θ2θ1Γ
θ3 = unify(θ2τ ∼ τ2 → a)
Γ ⊢W e1e2 : θ3a, θ3θ2θ1

W-App

Γ ⊢W e : τ, θ

a = fv(τ) \ fv(θΓ)
Γ ⊢W e : ∀a.τ, θ

W-Gen

Ψin ⊢ e1 : [A1]T ⊣ Ψ1

Ψ1; {[A1]T} ⊢ e2 : [A2]T1 ⊣ Ψ2; {[A′
1]T ′}

α̂#Ψ2; (A′
1, A2)

Ψ2; (A′
1, A2, α̂); {α̂} ⊢ T ′ ∼ T1 → α̂ ⊣ Ψout; Aout; {Tout}

Ψin ⊢ e1 e2 : [Aout]Tout ⊣ Ψout

App

Ψin ⊢ e : [A]T ⊣ Ψout

gen(T, A) = S

Ψin ⊢ e : S ⊣ Ψout

Gen

Figure 1 Application and generalisation of algorithm W (top) and algorithm R (bottom).

We have mechanised both algorithm R as well as its correctness proof in the Coq proof
assistant. Since algorithm R is fully grounding, we are – to our knowledge – the first to
mechanically prove the correctness of an inference algorithm that features grounding. We
admit an axiom about unification (see Section 5.3) and about the declarative specification
(see Section 6.3).

2 Overview

This section describes the difference between unification-based algorithms like algorithm W
and our algorithm R. We first describe how algorithm W loses track of unconstrained type
variables. We then propose our algorithm R, which explicitly tracks the scope of unification
variables, and show how this information yields fully grounding type inference.

Algorithm W

Unification-based algorithms like algorithm W derive equality constraints at application sites
e1 e2. Rule W-App of Figure 1 describes algorithm W in the case of applications.

Let us apply this to the example (λf. unit) (λy. y) (shown in Section 1) under an empty
context. First, we infer the type a1 → Unit for λf. unit. Then, we infer the type a2 → a2 for
(λy. y). Both steps result in empty unifiers θ1, θ2. Then, with a3 fresh, we unify a1 → Unit
with (a2 → a2) → a3, yielding θ = (a3 := Unit, a1 := a2 → a2). Finally, we return θ(a3),
which equates to Unit. Since algorithm W only returns the function’s result type Unit, it
loses track of free variables that only occur in the parameter’s type (i.e. a2). As a2 is no
longer reachable, it will not be further constrained and will remain unsolved.

Algorithm W’s generalisation logic, extracted as W-Gen2 in Figure 1, turns an expres-
sion’s monotype into a type scheme. In our running example, since the monotype Unit does
not contain any free variables, algorithm W generalises over the empty list, which simply
yields the Unit type scheme. Observe in particular that the unsolved unification variable a2
is not generalised over. Hence, the type for λy. y remains a2 → a2, but we do not know in
which context a2 is defined, and whether or where it can be generalised.

2 Normally, this logic would be incorporated as part of the rule for let expressions.

ITP 2023

8:4 Fully Grounding Type Inference for the HDM System

x Variables a Skolem type variables
Terms e ::= x | unit | λx.e | e1 e2 | let x = e1 in e2

Monotypes τ ::= a | Unit | τ1 → τ2
Type Schemes σ ::= τ | ∀a.σ

Scoping/Typing Context Γ ::= • | Γ; a | Γ; x : σ

Figure 2 Syntax of the Declarative Specification.

Algorithm R

Our algorithm solves this problem by not only inferring the type T of an expression but also
a list of unification variables that are in scope for T. By “in scope” we mean those variables
that are safe to generalise over. Note that this list need not be a superset or subset of the
free unification variables of T. We denote unification variables as α̂ with A denoting a list of
α̂. Furthermore, we use [A]T to denote the type T having A in scope.

Algorithm R utilises in- and output contexts [10] as well as the notion of full contexts
to avoid having to pass around unifiers θ. We postpone fully introducing algorithm R to
Section 4.2. For now, we present an informal preview of the application of algorithm R to
the same example as covered above, highlighting how algorithm R infers fully ground types,
and showing the benefit of full contexts.

For the application (λf. unit) (λy. y), in App, we first derive the type [α̂1](α̂1 → Unit)
for λf. unit. Then, we infer the type [α̂2](α̂2 → α̂2) for λy. y. Here our notion of full
contexts comes in: instead of deriving a unifier that needs to be applied to the type of
λf. unit, we instead append [α̂1](α̂1 → Unit) to the input context of the inference on λy. y,
and obtain a possibly further instantiated [A′

1]T ′ from the output context (as seen in rule
App in Figure 1). Here, [A′

1]T ′ = [α̂1](α̂1 → Unit).
With α̂3 fresh, we unify [α̂1](α̂1 → Unit) with [α̂3, α̂2]((α̂2 → α̂2) → α̂3). Again, we

apply our notion of full contexts, appending all variables in scope for our to-be-unified
types ([α̂3, α̂1, α̂2]) to the context, allowing us to retrieve a possibly further instantiated
Aout from the output context. Here, Aout = [α̂2]. Furthermore, we append α̂3 once more,
now occurring as a type instead of an in-scope unification variable. Since α̂3 enjoys any
substitution occurring during unification, we obtain the possibly further instantiated Tout

from the output context. Here, Tout = Unit. Finally, we return [α̂2]Unit. Observe that,
even though we are dropping the argument type, we are not dropping the variables in
scope of the argument type. Generalisation, as displayed in Gen, of type [α̂2]Unit is
(almost) trivial.

To conclude this section, we have shown that our algorithm R not only infers a type T,
but also a list of type variables A in scope for T. This way it can infer a fully ground type
for every subterm. The following sections formally introduce algorithm R.

3 Declarative System

Before we present our algorithm, we present the declarative system that serves as its
specification. The declarative system is essentially the syntax-directed system of Clement et
al. [6], with two changes. First, like System F [13, 19], we explicitly track type variables in
an ordered context. Consequently, we only generalise over variables that occur at the end of
the context (i.e., not occurring to the left of term variable bindings). The second change is a
purely syntactic one: we have extracted generalisation into a separate judgment.

R. Bosman, G. Karachalias, and T. Schrijvers 8:5

Γ ⊩mono e : τ Γ ⊩poly e : σ Term Typing

(x : σ) ∈ Γ Γ ⊩ σ ≥ τ

Γ ⊩mono x : τ
TmVar

Γ ⊩mono unit : Unit
TmUnit

Γ ⊩ty τ1

Γ; x : τ1 ⊩mono e : τ2

Γ ⊩mono λx.e : τ1 → τ2
TmAbs

Γ ⊩mono e1 : τ1 → τ2

Γ ⊩mono e2 : τ1

Γ ⊩mono e1 e2 : τ2
TmApp

Γ ⊩poly e1 : σ

Γ; x : σ ⊩mono e2 : τ

Γ ⊩mono (let x = e1 in e2) : τ
TmLet

a#Γ Γ; a ⊩mono e : τ

gen(τ, a) = σ

Γ ⊩poly e : σ
TmGen

Γ ⊩ty σ Type Well-formedness

a ∈ Γ
Γ ⊩ty a Γ ⊩ty Unit

Γ ⊩ty τ1 Γ ⊩ty τ2

Γ ⊩ty τ1 → τ2

Γ; a ⊩ty σ

Γ ⊩ty ∀a.σ

wf(Γ) Scoping/Typing Context Well-formedness

wf(Γ)
wf(Γ; •)

wf(Γ) a /∈ Γ
wf(Γ, a)

wf(Γ) Γ ⊩ty σ

wf(Γ; x : σ)

Γ ⊩ σ1 ≥ σ2 Type Subsumption

Γ ⊩ τ ≥ τ

a#Γ Γ; a ⊩ σ1 ≥ σ2

Γ ⊩ σ1 ≥ ∀a.σ2

Γ ⊩ty τ1 Γ ⊩ [τ1/a]σ ≥ τ2

Γ ⊩ ∀a.σ ≥ τ2

Figure 3 Typing of the Declarative Specification.

3.1 Syntax

Figure 2 displays the syntax of the declarative system. The terms and types are as given by
Damas and Milner [7]. Terms consist of term variables, unit values, lambda abstractions,
applications, and let-bindings. Type schemes are in Skolem normal form, consisting of a
number of quantifiers in front of a monotype. Finally, contexts Γ track the scope of type and
term variables that are in scope of an expression.

3.2 Typing

Figure 3 displays the typing rules of our declarative system. As stated, we have extracted
the generalisation logic in a separate judgment, giving rise to both a monomorphic typing
judgment Γ ⊩mono e : τ, and a polymorphic judgment Γ ⊩poly e : σ, the latter of which is
exclusively used in the typing rule for let-bindings TmLet. Rule TmGen uses the auxiliary
function gen(τ, a), which generalises the passed τ over the passed a in the usual way. The
type- and context well-formedness judgments Γ ⊢ty σ and wf(Γ) are standard. Finally, rule
TmVar uses type subsumption [7, 6] to instantiate a type scheme. Since subsumption is
only used in this manner, we could have given it the signature Γ ⊩ σ ≥ τ and omitted the
middle rule. Yet, the advantage of the subsumption rules in Figure 3 is that subsumption

ITP 2023

8:6 Fully Grounding Type Inference for the HDM System

x Variables a Skolem type variables α̂ Existential type variables
Terms e ::= x | unit | λx.e | e1 e2 | let x = e1 in e2

Monotypes T ::= a | α̂ | Unit | T1 → T2
Type Schemes S ::= T | ∀a.S

Local Existential Context A ::= • | A, α̂

Scoping/Typing Context Ψ ::= • | Ψ; a | Ψ; A | Ψ; x : S | Ψ; {[A]S}
Type Equalities E ::= • | T1 ∼ T2, E

{S} .= {[•]S}

Figure 4 Syntax of Algorithm R.

proofs can be done in multiple parts and combined using transitivity.

4 Algorithmic System

We now introduce algorithm R. We discuss its syntax, rules and unification algorithm.

4.1 Syntax
Figure 4 displays the syntax used by algorithm R. Observe that we now have two kinds
of type variables: like our declarative system we have (Skolem) type variables representing
types generalised over by a type scheme. We have added unification variables α̂, which we
refer to as existential type variables. Like Skolem type variables they are placeholders which
can be substituted for other types. Accordingly, monotypes T may now also take the form of
an existential type variable.

Contexts Ψ differ from their declarative counterparts in two significant ways. First,
besides Skolem type variables, contexts also track the scope of existential type variables,
similar to [10, 30]. However, unlike Skolem type variables, they are not simply appended as
individual variables, but instead come in a list-like structure A. As unification may both
split and solve existential type variables, reasoning about ranges of existential type variables
traditionally [10] requires adding markers to the context. By putting them in a list we obtain
the same reasoning power, without having to add explicit markers.

Secondly, types with their list of existential variables in scope may live in the context as
an invisible object {[A]S}. These invisible objects, when combined with input and output
contexts, are the essence behind full contexts, which we already introduced in Section 2.
These allow us to append As and Ss on the context in branches of the inference algorithm
that normally would not have them in scope. Invisible objects are invisible to membership ∈,
but visible to both substitution and fresh variable generation #.

4.2 Inference algorithm
Figure 5 shows the rules of algorithm R. Its main judgments feature in and output contexts,
where the output context consists of the input context subjected to all unifications made
in the derivation, which means sequences A may shrink or grow and substitutions may be
made, but their basic structure is the same.

Rule Var looks up a variable in the context, and instantiates polytype S to [A]T using
instantiation, discussed below. Rule Unit is trivial.

R. Bosman, G. Karachalias, and T. Schrijvers 8:7

Ψin ⊢ e : [A]T ⊣ Ψout Type Inference

(x : S) ∈ Ψ Ψ ⊢ S ≥ [A]T
Ψ ⊢ x : [A]T ⊣ Ψ

Var
Ψ ⊢ unit : [•]Unit ⊣ Ψ

Unit

α̂#Ψin

Ψin; α̂; x : α̂ ⊢ e : [A2]T2 ⊣ Ψout; A1; x : T1

Ψin ⊢ λx.e : [A1, A2](T1 → T2) ⊣ Ψout

Abs

Ψin ⊢ e1 : S ⊣ Ψ
Ψ; x : S ⊢ e2 : [A]T ⊣ Ψout; x : S′

Ψin ⊢ (let x = e1 in e2) : [A]T ⊣ Ψout

Let

Ψin ⊢ e1 : [A1]T ⊣ Ψ1 Ψ1; {[A1]T} ⊢ e2 : [A2]T1 ⊣ Ψ2; {[A′
1]T ′}

α̂#Ψ2; (A′
1, A2) Ψ2; (A′

1, A2, α̂); {α̂} ⊢ T ′ ∼ T1 → α̂ ⊣ Ψout; Aout; {Tout}
Ψin ⊢ e1 e2 : [Aout]Tout ⊣ Ψout

App

Ψin ⊢ e : S ⊣ Ψout Generalization

Ψin ⊢ e : [A]T ⊣ Ψout gen(T, A) = S

Ψin ⊢ e : S ⊣ Ψout

Gen

Ψ ⊢ty S Type Well-formedness

a ∈ Ψ
Ψ ⊢ty a

α̂ ∈ Ψ
Ψ ⊢ty α̂ Ψ ⊢ty Unit

Ψ ⊢ty T1 Ψ ⊢ty T2

Ψ ⊢ty T1 → T2

Ψ; a ⊢ty S

Ψ ⊢ty ∀a.S

wf(Ψ) Scoping/Typing Context Well-formedness

wf(Ψ)
wf(Ψ; •)

wf(Ψ) A#Ψ
wf(Ψ, A)

wf(Ψ) Ψ ⊢ty S

wf(Ψ; x : S)
wf(Ψ; A) Ψ; A ⊢ty T

wf(Ψ; {[A]T})

Ψ ⊢ S ≥ [A]T Polymorphic Type Instantiation

Ψ ⊢ T ≥ [•]T
InstMono

α̂#Ψ Ψ; (α̂) ⊢ [α̂/a]S ≥ [A]T
Ψ ⊢ ∀a.S ≥ [(α̂), A]T

InstPoly

Figure 5 Typing of Algorithm R.

While Abs may visually look different from conventional abstraction typing rules, it
follows the same approach, with added machinery to derive the list of existential type
variables in scope. Term variable x is assigned a fresh existential variable α̂; this assignment
is added to the context as well as (the singleton list) α̂. We utilize full contexts to let [α̂]α̂
enjoy any unifications made during the recursive inference by appending them to the input
context and obtaining the possibly further instantiated [A1]T1 from the output context.

Rule App, as already discussed in Section 2, first infers a type [A1]T for e1. Inference
proceeds on e2, with the input environment extended with [A1]T, by using an invisible object.
By usage of this invisible object we ensure that we can safely extend the context with [A1]T,
because it does not bring either A1 or T into scope. We now unify e1’s type with a function
consisting of e2’s type as argument, and fresh variable α̂ as result. We do so under an
environment extend with all existential variables in scope for both types being unified, as
well as α̂, occurring as a type, instead of an in-scope variable. For this second occurrence of
α̂ we again use an invisible object, which avoids us bringing α̂ into scope twice. We obtain

ITP 2023

8:8 Fully Grounding Type Inference for the HDM System

the results from the unification’s output.
Rule Gen, as already discussed in Section 2, is (almost) trivial: based on the recursive,

monomorphic inference, we generalise T over A. Note that we do not derive a list of variables
in scope of S: since we generalise over all existential variables in scope, this list would always
be empty. Finally, we have rule Let, which first infers a polytype using Gen. Inference
proceeds on e2, on which the output is based.

Type Instantiation

Type instantiation is of form Ψ ⊢ S ≥ [A]T, where context Ψ and polytype S are inputs, and
the monomorphic instance T and list in scope A are outputs. Essentially, type instantiation
takes a type of form ∀a

i
.T, removes all quantifiers, and generates a fresh existential type

variable α̂i for each Skolem type variable ai, and returns [α̂i]([α̂i
/ai]T). For example, the

fst projection of pairs instantiates to • ⊢ ∀a1.∀a2.(a1, a2) → a1 ≥ α̂1, α̂2 → α̂1.

Well-formedness

Type well-formedness for the algorithmic system is a moderate extension of the declarative
one, adding a single rule that checks if existential type variables α̂ are in the context Ψ.
Observe that, since objects are invisible to set membership ∈, {[α̂]Unit} ̸⊢ty α̂.

Contexts are well-formed iff all contained existential type variables are unique and all
contained types are well-formed w.r.t. the context to their left, with any A enclosed in an
invisible object temporarily added to the context. The notation A#Ψ ensures not only
that A is fresh w.r.t. Ψ, but also that all α̂ in A are fresh w.r.t. each other. Since objects
are visible to freshness #, context {[α̂]Unit}; α̂ is ill-formed. Another interesting detail is
that, while contexts Ψ may contain Skolem type variables a (and this is used to verify the
well-formedness of types), well-formed contexts may not contain any Skolem type variables.

4.3 Unification
Figure 6 displays our unification algorithm. The judgment Ψin ⊢ E ⊣ Ψout unifies a list of
constraints E of form T1 ∼ T2 under input context Ψin and produces an output context
Ψout. It can be viewed as the transitive closure of the single-step unification judgment
Ψ1 ⊢ E1 −→ Ψ2 ⊢ E2, restricted to those sequences that end in •.

Hole Notation

We use the syntax Ψ[α̂] to denote the context ΨL; (AL, α̂, AR); ΨR, where Ψ[] is the context
ΨL; (AL, AR); ΨR. A multi-hole notation splits the context into more parts. For example,
Ψ[α̂1][α̂2] means Ψ1; (A1, α̂1, A2, α̂2, A3); Ψ2 or Ψ1; (A1, α̂1, A2); Ψ2; (A3, α̂2, A4); Ψ3. Note
that hole notation does not split invisible objects.

Single-step Unification

The single-step unification algorithm essentially is a subset of Zhao et al.’s [30], taking only
the cases that apply. Rules 1 and 2 simply discharge already-solved constraints. Rule 3 splits
constraints on function types. Rules 7 and 8 deal with constraints on two existential type
variables. Since our contexts are ordered, we avoid existential type variables escaping their
scope by always substituting away the rightmost variable. Rules 9 and 10 solve constraints
with an existential variable on one side, and Unit on the other.

R. Bosman, G. Karachalias, and T. Schrijvers 8:9

Ψin ⊢ E ⊣ Ψout Unification Algorithm

Ψ ⊢ • ⊣ Ψ
SolNil

Ψin ⊢ T1 ∼ T2, E −→ Ψ ⊢ E Ψ ⊢ E ⊣ Ψout

Ψin ⊢ T1 ∼ T2, E ⊣ Ψout

SolCons

Ψ1 ⊢ E1 −→ Ψ2 ⊢ E2 Unification Algorithm (Single-step)

Ψ ⊢ Unit ∼ Unit, E −→1 Ψ ⊢ E
Ψ ⊢ α̂ ∼ α̂, E −→2 Ψ ⊢ E

Ψ ⊢ (T1 → T2) ∼ (T3 → T4), E −→3 Ψ ⊢ T1 ∼ T3, T2 ∼ T4, E

Ψ[α̂] ⊢ α̂ ∼ (T1 → T2), E −→4 [α̂1 → α̂2/α̂](Ψ[α̂1, α̂2] ⊢ (α̂1 → α̂2) ∼ (T1 → T2), E)
where α̂ /∈ fv(T1 → T2) and α̂1, α̂2#Ψ[α̂]

Ψ[α̂] ⊢ (T1 → T2) ∼ α̂, E −→5 [α̂1 → α̂2/α̂](Ψ[α̂1, α̂2] ⊢ (T1 → T2) ∼ (α̂1 → α̂2), E)
where α̂ /∈ fv(T1 → T2) and α̂1, α̂2#Ψ[α̂]

Ψ[α̂1][α̂2] ⊢ α̂1 ∼ α̂2, E −→7 [α̂1/α̂2](Ψ[α̂1][] ⊢ E)
Ψ[α̂1][α̂2] ⊢ α̂2 ∼ α̂1, E −→8 [α̂1/α̂2](Ψ[α̂1][] ⊢ E)

Ψ[α̂] ⊢ α̂ ∼ Unit, E −→9 [Unit/α̂](Ψ ⊢ E)
Ψ[α̂] ⊢ Unit ∼ α̂, E −→10 [Unit/α̂](Ψ ⊢ E)

Figure 6 Unification Algorithm.

Finally, rules 4 and 5 solve constraints with an existential variable α̂ on one side, and a
function type T1 → T2 on the other. Because our contexts are ordered, and both T1 and T2
may contain existential variables to the left of α̂, we do not directly unify α̂ := T1 → T2, but
instead split α̂ into a function type α̂1 → α̂2, where α̂1 and α̂2 are fresh w.r.t. the context.
This way, rules 7 and 8 may correctly determine which existential variable to eliminate.
Because of our notion of full contexts, after substitution we can discharge the fact that
α̂ := α̂1 → α̂2, since no other occurrences of α̂ exist. Finally, to ensure termination, we
require α̂ does not occur in T1 → T2.

5 Metatheory

To reason about how declarative and algorithmic derivations relate, we first need a way of
converting between them. We do so through context instantiation, which takes an algorithmic
context and converts it to a declarative one. However, this instantiation leaves us with
a problem: what to do about invisible objects? To make reasoning about the declarative
system easier, we extend declarative contexts Γ with a rule for objects Γ; {[a]σ}, and assert
we can rewrite these away.

▶ Definition 1. Γ1 ≡a,x Γ2 ≜ (∀a, a ∈ Γ1 ⇐⇒ a ∈ Γ2) ∧ (∀(x : σ), (x : σ) ∈ Γ1 ⇐⇒ (x :
σ) ∈ Γ2)

▶ Lemma 2. If Γ1 ⊩mono e : τ and Γ1 ≡a,x Γ2, then Γ2 ⊩mono e : τ.

5.1 Context instantiation
Figure 7 shows simplified context instantiation rules, which implicitly coerce Ψs to Γs and
allow for the appending of a and A. They are meant to convey the intuition; their actual
full definition can be found in the supplementary materials.

ITP 2023

8:10 Fully Grounding Type Inference for the HDM System

Ψ ⇝ Γ Context instantiation

Γ ⇝ Γ

Γ; a ⊢ty τ

Γ; a; [τ/α̂]A; Ψ ⇝ Γ′

Γ; (α̂; A); Ψ ⇝ Γ′

Γ; a1; a2 ⊢ty τ

Γ; {[a1; a2; A][τ/α̂]T}; Ψ ⇝ Γ′

Γ; {[a1; α̂; A]T}; Ψ ⇝ Γ′

Figure 7 Context instantiation.

For existential type variables outside invisible objects, we choose a sequence of Skolem
type variables a and a declarative type τ that is well-typed w.r.t. the already-instantiated
context Γ to its left as well as the chosen sequence a. We proceed by replacing α̂ by a,
and substituting τ for α̂ in the remaining, still-to-be instantiated Ψ to its right. For α̂’s in
invisible objects the logic is similar, but the generated sequences A and substitutions stay
local to the object itself.

5.2 Soundness
Using context instantiation, we can formulate the soundness of the algorithmic system. We
want to show that, for every closed algorithmic derivation, any instantiation leads to a valid
derivation in the declarative system.

▶ Theorem 3 (Soundness of the algorithmic system). If • ⊢ e : [A]T ⊣ • then for all
A; {T}⇝ {τ} we have that • ⊩mono e : τ.

This formulation is too weak to prove directly. Instead, we prove a more general variant,
from which soundness follows.

▶ Lemma 4. Given wf(Ψin):
1. If Ψin ⊢ e : [A]T ⊣ Ψout then for all Ψout; A; {T}⇝ Γ; {τ} we have that Γ ⊩mono e : τ.
2. If Ψin ⊢ e : S ⊣ Ψout then for all Ψout; {S}⇝ Γ; {σ} we have that Γ ⊩poly e : σ.
The proof proceeds by mutual induction on the monomorphic and polymorphic algorithmic
typing judgments. As the given instantiation instantiates the output context, we reason
backwards through the algorithm. As a consequence, for rules App and Gen that have
multiple recursive hypotheses, to invoke the induction hypotheses the second time we must
produce an instantiation of the intermediate context from the instantiation of the output
context. To allow for this, we have proven several lemmas about the backwards preservation
of instantiation.

▶ Lemma 5. Both typing judgments and unification preserve instantiation. That is:
1. If Ψin ⊢ e : [A]T ⊣ Ψout and Ψout ⇝ Γ, then Ψin ⇝ Γ.
2. If Ψin ⊢ e : S ⊣ Ψout and Ψout ⇝ Γ, then Ψin ⇝ Γ.
3. If Ψin ⊢ E ⊣ Ψout and Ψout ⇝ Γ, then Ψin ⇝ Γ.

5.3 Completeness
Completeness states that, for any declarative derivation, there exists an algorithmic derivation
that instantiates to it.

▶ Theorem 6 (Completeness of the algorithmic system). For each declarative derivation there
exists an algorithmic derivation that instantiates to it. That is,
1. If • ⊩mono e : τ then there exists A T such that A; {T}⇝ {τ} and • ⊢ e : [A]T ⊣ •.

R. Bosman, G. Karachalias, and T. Schrijvers 8:11

2. If • ⊩poly e : σ then there exists σ′ such that • ⊢ e : σ′ ⊣ • and ⊩ σ′ ≥ σ.

Observe that (2) from Theorem 6 asserts that a polytype σ′ not containing any existential
type variables is inferred. In other words, σ′ is fully ground. Again, we proceed by proving a
more general lemma.

▶ Lemma 7. Given wf(Ψin):
1. If Γ ⊩mono e : τ, Γ′ ≦a,x Γ, and Ψin; Ain ⇝ Γ′, then there exists T A Ψout Γ′′ a s.t.

Γ′ = Γ′′; a, Ψin ⊢ e : [A]T ⊣ Ψout and Ψout; A; {T}; Ain ⇝ Γ′′; {τ}; a.
2. If Γ ⊩poly e : σ, Γ′ ≦a,x Γ, and Ψin; Ain ⇝ Γ′, then there exists S σ′ Ψout Γ′′ a s.t.

Γ′ = Γ′′; a, Ψin ⊢ e : S ⊣ Ψout, Ψout; {S}; Ain ⇝ Γ′′; {σ′}; a, and Γ′ ⊩ σ′ ≥ σ.

Here, Γ1 ≦a,x Γ2 iff two conditions hold. First, the contexts must contain the same type
variables in the same order. Second, their term bindings (x : S) must (1) bind the same
names in the same order to (2) types that are related by subsumption under Γ1.

Finally, we admit the following property about unification:

▶ Axiom 8. If a unifier exists, unification succeeds. That is, if θT1 = θT2 and Ψin ⇝ Γ then
there exists Ψout such that Ψin ⊢ T1 ∼ T2 ⊣ Ψout and Ψout ⇝ Γ.

5.4 Decidability

In our algorithm there is only one part of which decidability is not obvious: unification.
Hence, we prove its decidability here.

▶ Theorem 9 (Decidability of unification). Given ∀T1T2. T1 ∼ T2 ∈ E =⇒ (Ψin ⊢ty T1
∧ Ψin ⊢ty T2), it is decidable whether there exists a Ψout such that Ψin ⊢ E ⊣ Ψout.

The proof proceeds by induction on the lexicographic measure ⟨|Ψin|
α̂

, |E | + 2 ∗ |E |→⟩,
representing the number of existential type variables in Ψin and the length and number of
function arrows in E , respectively. All rules directly reduce this measure, except for rules
4 and 5. For these, we need an additional lemma, from which these cases follow. Let us
categorize lists of constraints where one side is an existential type variable that does not
occur in the rest of the list as Ei, and assert that we can solve any head of pattern Ei without
increasing the length of the tail.

Ei ::= •
| α̂ ∼ T, Ei with α̂ ̸∈ Ei

| T ∼ α̂, Ei with α̂ ̸∈ Ei

▶ Lemma 10 (Solving Ei). For all Ψin Ei E there exist Ψout E ′ such that Ψin ⊢ Ei + E −→∗

Ψout ⊢ E ′ and |Ψout|α̂ = |Ψin|
α̂

− |Ei|.

Proof. By induction on ⟨|Ei| + 2 ∗ |Ei|→⟩. Rules 1, 9 and 10 do not apply. The rest
directly reduce the measure, except for (again) rules 4 and 5. We consider rule 4, where
Ei = α̂ ∼ (T1 → T2), E ′

i . It must be immediately followed by rule 3, which gives us
Ψin[α̂] ⊢ α̂ ∼ (T1 → T2), Ei, E −→∗ [α̂1 → α̂2]Ψin[α̂1, α̂2] ⊢ α̂1 ∼ T1, α̂2 ∼ T2, Ei, E . Be-
cause we know α̂ ̸∈ E ′

i , we know any substitution of α̂ on Ei does not increase |Ei|→. Even
though we have added an existential variable, we end up with a decreased measure because
we have eliminated an arrow, which counts for two. ◀

ITP 2023

8:12 Fully Grounding Type Inference for the HDM System

6 Mechanization

We have mechanised both the declarative specification presented in Section 3 as well as
the algorithmic system presented in Section 4 in the Coq proof assistant [23]. Furthermore,
we have proven the algorithmic system sound and correct w.r.t. the declarative speciation
following the approach described in Section 5. The mechanization is implemented by
generating definitions with Ott [20] and its backend [29] for the locally nameless representation
[2, 5, 15]. To reason about the locally nameless representation, we have generated many
useful lemmas with LNgen [1]. The mechanisation consists of ±700 handwritten lines of Ott
DSL, ±10 000 lines of handwritten Coq code, ±900 lines of Coq code generated by Ott, and
±6 800 lines of Coq code generated by LNgen.

We start this section with a discussion of these tools and the locally nameless representa-
tion. Then, we discuss the major points of difference between what is presented in the paper
and the formalization. The mechanisation as well as an exhaustive list of the delta between
the paper and the mechanization are available in the supplementary material, as well as at
https://github.com/rogerbosman/hdm-fully-grounding.

6.1 Ott
Our mechanization uses the Sewel et al.’s Ott [20] DSL to express both the syntax and
inference rules in this paper and generate corresponding (LATEX and) Coq definitions, as well
as boilerplate definitions such as substitutions and free variable functions. As Sewell et al.
already argue the general benefits of Ott, here we focus only on the aspects that we found
particularly useful.

Typically, manually written LATEX specifications make notational liberties that do not
translate well to Coq. For example, we have taken such a liberty in the environment
instantiation judgment as discussed in Section 5.1. Ott rejects such ill-typed definitions.
Hence, it forces well-typed formulations that can be translated to Coq, but are more verbose
in LATEX. As a compromise, we have stuck to the Ott-generated LATEX during the development
and have manually produced a cleaned-up version for this paper.3

A clear advantage of the Ott-generated outputs is that they both have the same single
source of truth. Thus, the LATEX output can be used to reason about the Coq output.
Another substantial advantage is that Ott takes care of generating boilerplate definitions
such as free variable functions and substitutions.

6.2 The locally nameless representation
Formalizations that contain abstraction must represent variables in some way. Typically,
variables are either referred to by explicit name – which suffers from the lack of built-in
α-equivalence, and have issues such as shadowing – or a nameless representation such as De
Bruijn indices [8], which are sensitive to the context in which they are defined, requiring
shifting operations whenever such changes occur.

The locally nameless representation combines the two approaches: it uses a named rep-
resentation for free variables, and a nameless representation for locally bound variables. As a
consequence, each alpha-equivalence class of closed lambda terms has a unique representation.
At the same time, terms are less sensitive to changes in their context. For example, the
lambda expression λx. x y is represented as λ. 0y, because x is locally bound, while y is

3 We describe the difference in Section 6.4.

https://github.com/rogerbosman/hdm-fully-grounding

R. Bosman, G. Karachalias, and T. Schrijvers 8:13

free. This implies a well-formedness condition, namely that every nameless variable has
a corresponding abstraction, in other words, that nameless variables are not free. This
condition is called locally closed.

A locally bound variable can be converted to a named, free variable through opening,
where any reference to the outermost abstraction is replaced by a named variable. We use ex

to denote opening term e with name x. It’s dual is closing. We use \xe to denote closing e

w.r.t. x. Our mechanization uses the locally nameless representation for both the declarative
and algorithmic term variables x and for the Skolem type variables a. Since existential type
variables α̂ do not have a matching abstraction, they are always free, and thus use the named
representation.

Cofinite Quantification
To preserve the locally closed property, whenever we go under a binder, we have to open the
term with some named variable quantified over in some way. There are several ways to go
about this. One way would be to use existential quantification, where we assert that there
exists some name not in the free variables of the term being opened. Consider rule ∀Wf-Ex
below, which applies this principle to the well-formedness of declarative type schemes.

∃a.(a ̸∈ fv(σ) ∪ fv(Γ) Γ; a ⊢ty σa)
Γ ⊢ty ∀.σ

∀Wf-Ex
∃L.∀a.a ̸∈ L. Γ; a ⊢ty σa

Γ ⊢ty ∀.σ
∀Wf-Cof

As described by Aydemir et al. [2], existential quantification is weak as an elimination form.
For example, since eliminating this rule only gives well-formedness for one particular name,
renaming lemmas are required for deriving well-formedness over any other name.

Universal quantification suffers from the opposite problem: it can be cumbersome to
prove the well-formedness of any variable satisfying the freshness constaints. In particular,
sometimes we want to exclude more variables than just those in fv(σ) ∪ fv(Γ).

Cofinite quantification, as displayed by rule ∀Wf-Cof above, offers exactly this. Here,
we quantify universally over any name not in some existentially quantified set L. This
elimination form is much stronger than with existential quantification, because we know
well-formedness to hold for any a ̸∈ L, instead of just one, avoiding, in general, the need for
renaming lemmas. Yet, as an introduction form, it is much easier to use than with universal
quantification, because it allows us to exclude finitely many names, instead of just the fixed
set of free variables. While cofinite quantification is not free of quirks (particularly the control
flow of quantification), which we describe below, in general, it strikes the best balance.

Ott’s Locally Nameless Backend & LNgen

One drawback of cofinite quantification is that implementation details of the variable
representation leak to the LATEX inference rules. Here, Ott’s locally nameless backend
[29] comes in handy: it automatically converts inference rules as specified in Sections 3 and 4
to those that use a (cofinitely quantified) locally nameless presentation for Coq only. The
LATEX definitions render as the original specification.

By default, Ott’s locally nameless backend generates definitions for opening terms, but
not for closing them. Weirich’s Ott fork [27] adds the generation of these closing definitions.

The opening and closing operations are subject to various laws. One of these, which will
become relevant later, is the following.

▶ Proposition 11 (Subsitution as Open and Close). Subsitution can be defined in terms of
open and close. That is, [T/a]S = (\aS)T .

ITP 2023

8:14 Fully Grounding Type Inference for the HDM System

Proposition 11 as well as many others are automatically generated and proven by LNgen [1],
which bases itself on the Ott specification. Our mechanization uses these laws extensively.

6.3 Quirks of the locally nameless representation
As with any variable representation, some quirks arise. We cover three here.

Generalisation

First is the gen function used in Gen in Figure 5, and its definition4 is displayed below.

gen(S, • , _) = S

gen(S,(A; α̂), L) = let S′ = gen(S, A, L), a#fv(S′) ∪ L

in ∀.\a([a/α̂] S′)

Since variable closing closes nameless Skolem type variables a only, we first substitute in a
freshly generated one, only to close it away immediately after. While it would be possible to
manually define a closing operation that replaces (named) existential type variables with
unnamed Skolem type variables, we would lose the ability to reason over them with the
laws generated by LNgen. While we cannot completely avoid having to manually replicate
some of these in some instances, here we can avoid doing so. Fortunately, because of these
same LN-generated laws, reasoning about this is straightforward. If we open the generalised
term with some T, we get (\a([a/α̂] S′))T . By Proposition 11, this can be rewritten into
[T/a][a/α̂] S′, which simplifies to [T/α̂] S′.

Lists of variables

Rule TmGen in Figure 2 quantifies over a list of variables a. Quantifying cofinitely over
and opening with a list of type variables instead of a singular variable requires additional
machinery and is not supported by Ott. Attempts at patching the generated definitions
manually were unsuccessful (we discuss this again in Section 8). As a consequence, the list
of variables a is quantified existentially, which is why we used an axiom in our proof of the
weakening lemma for declarative typing judgments.

Control Flow

When inducting over typing derivations, we have existentially quantified sets of variables
L, and universally quantified variables fresh w.r.t. L. Sets L flow downwards from the
induction hypothesis to the conclusion. Yet, variables flow upwards from the conclusion to
the induction hypothesis. Consider the abstraction case for completeness, which essentially
consists of proving the following implication.

(∃L.∀x.x /∈ L =⇒ ∃ Ψout A T2. Ψin; [α̂]; x : α̂ ⊢ ex : [A2]T2 ⊣ Ψout; A1; x : T1
∧ Ψout; A1; x : T1; A2; {T2}⇝ Γ; x : τ1; {τ2})

=⇒ Ψin ⊢ λ.e : [A1; A2]T1 → T2 ⊣ Ψout ∧ Ψout; A1; A2; {T1 → T2}⇝ Γ; {τ1 → τ2}

4 Observe that gen is parametrised with a third argument, unspecified in Gen, which is included in the
set w.r.t. fresh variables are generated, i.e. a#fv(S′) ∪ L. Since fresh variables are immediately closed
away, the generalised term is not affected by a choice for L. It is helpful proving the commutativity of
generalisation with for example substitution of existential type variables.

R. Bosman, G. Karachalias, and T. Schrijvers 8:15

There is a problem here. Since we only obtain the term variable to open e with after applying
the Abs constructor in the right branch of the conclusion, we do not have access to it in the
left branch of the conclusion. Since the IH existentially quantifies objects that occur in both
branches of the conclusion, we cannot simply apply the IH twice, once per branch. While
the IH can probably be strengthened to shift the ∀x to each of its two branches, we found it
easier to apply the IH to a sufficiently fresh variable before splitting the conclusion. This
leaves us with a typing derivation opened with a different term than required. However, this
can be remedied straightforwardly with the following renaming lemma.

▶ Lemma 12. Ψin ⊢ e : [A]T ⊣ Ψout =⇒ [y/x]Ψin ⊢ [y/x]e : [A]T ⊣ [y/x]Ψout

6.4 Delta between the paper and the mechanization
We cover the two most important differences between the system as presented in this paper
and the mechanization.

Unification

To facilitate easier reasoning over unification, the mechanisation’s single-step unification
judgment rules do not apply the substitution directly, but instead output the substitution
as a third output, giving unification the form Ψ1 ⊢ E1 −→ Ψ2 ⊢ E2, γ, where γ has form
[T/α̂]. Note that single steps return either the empty list, or a singleton list. The auxiliary
judgment Ψin ⊢ E ⊣ Ψout, γ takes the substitution generated by the single-step judgment,
applies it to the step’s result (yielding the same result as the paper’s single-step judgment),
and then combines it with the inductive result. Finally, Ψin ⊢ E ⊣ Ψout is defined in terms
of this auxiliary judgment by simply discarding the substitution.

Context Instantiation

The instantiation as presented in Section 5.1 contains notation that is not properly translatable
to an inductive type. We present instantiation in this manner to obtain a simpler overview
of the logic of context instantiation. The instantiation in the mechanization can be obtained
by applying the following three transformations.

First, instead of concatenating the already-processed Γ with the yet-to-be processed Ψ,
we define instantiation inductively on Ψ, where we pattern match on the different heads of
Ψ, process the tail, and then add the processed head. This means that when generating
a substitution for an existential type variable α̂ we do not have access to the yet-to-be
processed Ψ, since now α̂ is at the head. Therefore, we flip the control flow, instead deriving
a substitution θ of form [τ/α̂], and apply it to any bound type later. This yields a signature
of Γ ⇝ Ψ, θ.

Then we split out the instantiation of A’s in a dedicated judgment, A ⇝ a, θ. Finally, to
make it easier to reason about instantiation, we add a context Γin, θin such that the following
holds.

▶ Theorem 13 (Splitting and merging context instantiation). Context instantiation judgments
can be split and merged. That is:

Γin, θin ⊢ Ψ1; Ψ2 ⇝ Γ, θ =⇒ ∃ Γ1 Γ2 θ1 θ2, Γ = Γ1; Γ2 ∧ θ = θ2; θ1
∧ Γin, θin ⊢ Ψ1 ⇝ Γ1, θ1 ∧ Γin; Γ1, θ1; θin ⊢ Ψ2 ⇝ Γ2, θ2.
Γin, θin ⊢ Ψ1 ⇝ Γ1, θ1 ∧ Γin; Γ1, θ1; θin ⊢ Ψ2 ⇝ Γ2, θ2 =⇒
Γin, θin ⊢ Ψ1; Ψ2 ⇝ Γ1; Γ2, θ2; θ2.

ITP 2023

8:16 Fully Grounding Type Inference for the HDM System

7 Related Work

The algorithm presented in this paper extends a long line of work on the inference of the
HDM system [9, 16, 12, 14]. Yet, a surprisingly small amount of work addresses the issue of
underconstrained type variables.

Pottier [18] gives an (not formalised) elaboration algorithm which inspects the accumulated
constraints to determine the list of variables in scope of types. In the appendix, they
identify the problem of potentially unnecessary quantification. They address this with a
non-deterministic specification that “magically” chooses which variables to abstract over.

Vytiniotis et al. advocate [25] removing the generalisation of lets altogether, citing un-
wanted interactions and needless complexity in context of generalising types with constraints
arising from, for example, type classes or GADTs [28]. They observe that removing let
generalisation would not be a significant restriction, since most programs do not utilize
this functionality. Yet, removing let generalisation would not address the problem of un-
derconstrained types: they would still need to be dealt with, only now by defaulting, since
generalisation is no longer an option.

Zhao et al. mechanised [30] an algorithm for Dunfield and Krishnaswami’s [10] type
system featuring higher-rank polymorphism. However, since these systems are bidirectional,
it is left to the programmer to decide which type variable should be generalised over where,
if at all. Yet, we have taken a great deal of inspiration from both these works, adopting the
in- and output contexts from Dunfield and Krishnaswami, and manner of tracking existential
type variables and approach to unification from Zhao et al.

Zhao et al. rewrote Dunfield and Krishnaswami’s algorithmic system, citing the lack of
support by their proof assistant of choice (Abella [11]) as one of their reasons. Since we are
not using any built-in variable binding support (like what is supported by Abella), we did
not encounter such limitations. Thus, we were able to maintain the tree-like structure of
Dunfield and Krishnaswami instead of the flatter, list-based approach of Zhao et al.

8 Conclusion

In this paper we have presented algorithm R: the first mechanically verified, fully grounding
type inference algorithm for the HDM system. The contribution features the novel approach
to unification by using full contexts, in which the current context always represents the
entire context. The algorithm lays the foundation for formalizing algorithms that require
determining types for every subterm.

While any variable representation will have its quirks, the quirks of locally nameless as
discussed in Section 6.3 make us wonder if a fully nameless representation would be easier
to work with. Our design choice of a separate judgment for generalisation did not turn
out well. This approach requires mutual induction on the monomorphic and polymorphic
typing judgments, which is a nuisance. Furthermore, Coq not being able to generate this
mutual induction scheme is what left us unable to manually patch the inference rule for
generalisation to quantify the list of variables a cofinitely, as discussed in Section 6.3.

One particularly interesting future area of work is the extension of the algorithm with elab-
oration to an explicitly typed language like System F, potentially extended with elaboration-
based features such as Go’s structural subtyping system [21] or type classes [26], whose
coherence has been proven on paper in a bidirectional setting [3], but – as far as we know –
not yet in the HDM system. Since formalizing these algorithms requires reasoning about the
scope of existential variables, our work should serve as a solid starting point.

R. Bosman, G. Karachalias, and T. Schrijvers 8:17

References
1 Brian Aydemir and Stephanie Weirich. LNgen: Tool support for locally nameless represent-

ations. Technical report, Department of Computer and Information Science, University of
Pennsylvania, 2010.

2 Brian E. Aydemir, Arthur Charguéraud, Benjamin C. Pierce, Randy Pollack, and Stephanie
Weirich. Engineering formal metatheory. In George C. Necula and Philip Wadler, editors,
Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2008, San Francisco, California, USA, January 7-12, 2008, pages 3–15.
ACM, 2008. doi:10.1145/1328438.1328443.

3 Gert-Jan Bottu, Ningning Xie, Koar Marntirosian, and Tom Schrijvers. Coherence of type class
resolution. Proc. ACM Program. Lang., 3(ICFP):91:1–91:28, 2019. doi:10.1145/3341695.

4 Hendrik Bünder. Decoupling language and editor - the impact of the language server protocol
on textual domain-specific languages. In Slimane Hammoudi, Luís Ferreira Pires, and Bran
Selic, editors, Proceedings of the 7th International Conference on Model-Driven Engineering
and Software Development, MODELSWARD 2019, Prague, Czech Republic, February 20-22,
2019, pages 129–140. SciTePress, 2019. doi:10.5220/0007556301310142.

5 Arthur Charguéraud. The locally nameless representation. J. Autom. Reason., 49(3):363–408,
2012. doi:10.1007/s10817-011-9225-2.

6 Dominique Clément, Joëlle Despeyroux, Th. Despeyroux, and Gilles Kahn. A simple applicative
language: Mini-ml. In William L. Scherlis, John H. Williams, and Richard P. Gabriel,
editors, Proceedings of the 1986 ACM Conference on LISP and Functional Programming,
LFP 1986, Cambridge, Massachusetts, USA, August 4-6, 1986, pages 13–27. ACM, 1986.
doi:10.1145/319838.319847.

7 Luís Damas and Robin Milner. Principal type-schemes for functional programs. In Richard A.
DeMillo, editor, Conference Record of the Ninth Annual ACM Symposium on Principles of
Programming Languages, Albuquerque, New Mexico, USA, January 1982, pages 207–212. ACM
Press, 1982. doi:10.1145/582153.582176.

8 N.G de Bruijn. Lambda calculus notation with nameless dummies, a tool for automatic formula
manipulation, with application to the church-rosser theorem. Indagationes Mathematicae
(Proceedings), 75(5):381–392, 1972. doi:10.1016/1385-7258(72)90034-0.

9 Catherine Dubois and Valérie Ménissier-Morain. Certification of a type inference tool for
ML: damas-milner within coq. J. Autom. Reason., 23(3-4):319–346, 1999. doi:10.1023/A:
1006285817788.

10 Jana Dunfield and Neelakantan R. Krishnaswami. Complete and easy bidirectional typechecking
for higher-rank polymorphism. In Greg Morrisett and Tarmo Uustalu, editors, ACM SIGPLAN
International Conference on Functional Programming, ICFP’13, Boston, MA, USA - September
25 - 27, 2013, pages 429–442. ACM, 2013. doi:10.1145/2500365.2500582.

11 Andrew Gacek. The abella interactive theorem prover (system description). In Alessandro
Armando, Peter Baumgartner, and Gilles Dowek, editors, Automated Reasoning, 4th Inter-
national Joint Conference, IJCAR 2008, Sydney, Australia, August 12-15, 2008, Proceed-
ings, volume 5195 of Lecture Notes in Computer Science, pages 154–161. Springer, 2008.
doi:10.1007/978-3-540-71070-7_13.

12 Jacques Garrigue. A certified implementation of ML with structural polymorphism and recurs-
ive types. Math. Struct. Comput. Sci., 25(4):867–891, 2015. doi:10.1017/S0960129513000066.

13 Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures de l’arithmétique
d’ordre supérieur. PhD thesis, Éditeur inconnu, 1972.

14 Adam Gundry, Conor McBride, and James McKinna. Type inference in context. In Venanzio
Capretta and James Chapman, editors, Proceedings of the 3rd ACM SIGPLAN Workshop
on Mathematically Structured Functional Programming, MSFP@ICFP 2010, Baltimore, MD,
USA, September 25, 2010, pages 43–54. ACM, 2010. doi:10.1145/1863597.1863608.

15 Conor McBride and James McKinna. Functional pearl: i am not a number-i am a free
variable. In Henrik Nilsson, editor, Proceedings of the ACM SIGPLAN Workshop on Haskell,

ITP 2023

https://doi.org/10.1145/1328438.1328443
https://doi.org/10.1145/3341695
https://doi.org/10.5220/0007556301310142
https://doi.org/10.1007/s10817-011-9225-2
https://doi.org/10.1145/319838.319847
https://doi.org/10.1145/582153.582176
https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/10.1023/A:1006285817788
https://doi.org/10.1023/A:1006285817788
https://doi.org/10.1145/2500365.2500582
https://doi.org/10.1007/978-3-540-71070-7_13
https://doi.org/10.1017/S0960129513000066
https://doi.org/10.1145/1863597.1863608

8:18 Fully Grounding Type Inference for the HDM System

Haskell 2004, Snowbird, UT, USA, September 22-22, 2004, pages 1–9. ACM, 2004. doi:
10.1145/1017472.1017477.

16 Wolfgang Naraschewski and Tobias Nipkow. Type inference verified: Algorithm W in isa-
belle/hol. J. Autom. Reason., 23(3-4):299–318, 1999. doi:10.1023/A:1006277616879.

17 Andrey Popp, Rusty Key, Louis Roché, Oleksiy Golovko, Rudi Grinberg, Sacha Ayoun,
cannorin, Ulugbek Abdullaev, Thibaut Mattio, and Max Lantas. ocaml-lsp-server 1.15.1-
5.0 – opam, January 2023. URL: https://opam.ocaml.org/packages/ocaml-lsp-server/
ocaml-lsp-server.1.15.1-5.0/.

18 François Pottier. Hindley-milner elaboration in applicative style: functional pearl. In Johan
Jeuring and Manuel M. T. Chakravarty, editors, Proceedings of the 19th ACM SIGPLAN
international conference on Functional programming, Gothenburg, Sweden, September 1-3,
2014, pages 203–212. ACM, 2014. doi:10.1145/2628136.2628145.

19 John C. Reynolds. Towards a theory of type structure. In Bernard J. Robinet, editor,
Programming Symposium, Proceedings Colloque sur la Programmation, Paris, France, April
9-11, 1974, volume 19 of Lecture Notes in Computer Science, pages 408–423. Springer, 1974.
doi:10.1007/3-540-06859-7_148.

20 Peter Sewell, Francesco Zappa Nardelli, Scott Owens, Gilles Peskine, Tom Ridge, Susmit
Sarkar, and Rok Strnisa. Ott: effective tool support for the working semanticist. In Ralf
Hinze and Norman Ramsey, editors, Proceedings of the 12th ACM SIGPLAN International
Conference on Functional Programming, ICFP 2007, Freiburg, Germany, October 1-3, 2007,
pages 1–12. ACM, 2007. doi:10.1145/1291151.1291155.

21 Martin Sulzmann and Stefan Wehr. A dictionary-passing translation of featherweight go. In
Hakjoo Oh, editor, Programming Languages and Systems - 19th Asian Symposium, APLAS
2021, Chicago, IL, USA, October 17-18, 2021, Proceedings, volume 13008 of Lecture Notes in
Computer Science, pages 102–120. Springer, 2021. doi:10.1007/978-3-030-89051-3_7.

22 GHC Team. Using GHCi - GHC User’s Guide 9.4.4. URL: https://downloads.haskell.org/
ghc/9.4.4/docs/users_guide/index.html.

23 The Coq Development Team. The coq proof assistant, September 2022. doi:10.5281/zenodo.
7313584.

24 The Haskell IDE Team. haskell-language-server documentation. URL: https://
haskell-language-server.readthedocs.io/en/latest/.

25 Dimitrios Vytiniotis, Simon Peyton Jones, and Tom Schrijvers. Let should not be generalized.
In Proceedings of the 5th ACM SIGPLAN Workshop on Types in Language Design and
Implementation, TLDI ’10, pages 39–50, New York, NY, USA, 2010. Association for Computing
Machinery. doi:10.1145/1708016.1708023.

26 Philip Wadler and Stephen Blott. How to make ad-hoc polymorphism less ad-hoc. In
Conference Record of the Sixteenth Annual ACM Symposium on Principles of Programming
Languages, Austin, Texas, USA, January 11-13, 1989, pages 60–76. ACM Press, 1989. doi:
10.1145/75277.75283.

27 Stephanie Weirich. Github repository: sweirich/ott, April 2022. URL: https://github.com/
sweirich/ott/tree/aa65f53ea0587223662aaad9c48cb0770549f018.

28 Hongwei Xi, Chiyan Chen, and Gang Chen. Guarded recursive datatype constructors. In Alex
Aiken and Greg Morrisett, editors, Conference Record of POPL 2003: The 30th SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, New Orleans, Louisisana,
USA, January 15-17, 2003, pages 224–235. ACM, 2003. doi:10.1145/604131.604150.

29 Francesco Zappa Nardelli. A locally-nameless backend for ott, March 2009. URL: https:
//fzn.fr/projects/ln_ott/.

30 Jinxu Zhao, Bruno C. d. S. Oliveira, and Tom Schrijvers. A mechanical formalization of
higher-ranked polymorphic type inference. Proc. ACM Program. Lang., 3(ICFP):112:1–112:29,
2019. doi:10.1145/3341716.

https://doi.org/10.1145/1017472.1017477
https://doi.org/10.1145/1017472.1017477
https://doi.org/10.1023/A:1006277616879
https://opam.ocaml.org/packages/ocaml-lsp-server/ocaml-lsp-server.1.15.1-5.0/
https://opam.ocaml.org/packages/ocaml-lsp-server/ocaml-lsp-server.1.15.1-5.0/
https://doi.org/10.1145/2628136.2628145
https://doi.org/10.1007/3-540-06859-7_148
https://doi.org/10.1145/1291151.1291155
https://doi.org/10.1007/978-3-030-89051-3_7
https://downloads.haskell.org/ghc/9.4.4/docs/users_guide/index.html
https://downloads.haskell.org/ghc/9.4.4/docs/users_guide/index.html
https://doi.org/10.5281/zenodo.7313584
https://doi.org/10.5281/zenodo.7313584
https://haskell-language-server.readthedocs.io/en/latest/
https://haskell-language-server.readthedocs.io/en/latest/
https://doi.org/10.1145/1708016.1708023
https://doi.org/10.1145/75277.75283
https://doi.org/10.1145/75277.75283
https://github.com/sweirich/ott/tree/aa65f53ea0587223662aaad9c48cb0770549f018
https://github.com/sweirich/ott/tree/aa65f53ea0587223662aaad9c48cb0770549f018
https://doi.org/10.1145/604131.604150
https://fzn.fr/projects/ln_ott/
https://fzn.fr/projects/ln_ott/
https://doi.org/10.1145/3341716

	1 Introduction
	2 Overview
	3 Declarative System
	3.1 Syntax
	3.2 Typing

	4 Algorithmic System
	4.1 Syntax
	4.2 Inference algorithm
	4.3 Unification

	5 Metatheory
	5.1 Context instantiation
	5.2 Soundness
	5.3 Completeness
	5.4 Decidability

	6 Mechanization
	6.1 Ott
	6.2 The locally nameless representation
	6.3 Quirks of the locally nameless representation
	6.4 Delta between the paper and the mechanization

	7 Related Work
	8 Conclusion

