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Abstract
Limited scalability and transaction costs are some of the critical issues that hamper a wider adoption
of distributed ledger technologies (DLTs). That is particularly true for the Ethereum [58] blockchain,
which, so far, has been the ecosystem with the highest adoption rate. Several solutions have been
attempted in the last few years, most of which adopt the approach to offload transactions from the
blockchain mainnet, a.k.a. Level 1 (L1), to a separate network. Such solutions are collectively known
as Level 2 (L2) systems. While improving scalability, the adoption of L2 introduces additional
drawbacks: users have to trust that the L2 system has correctly performed transactions or, conversely,
high computational power is required to prove transactions’ correctness. In addition, significant
technical knowledge is needed to set up and manage such an L2 system. To tackle such limitations,
we propose 1DLT1: a novel system that enables rapid deployment of an Ethereum Virtual Machine
based (EVM-based) blockchain that overcomes those drawbacks.
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1 Introduction

The current high demand for Ethereum [58] leads to slow transaction throughput (15-30
transactions per second [15]), expensive gas prices, and poor user experience for the majority
of dapps (decentralised apps), Web3 projects, and end users. This limits the potential use
cases, like in DeFi (decentralised finance), where high fees and scalability drawbacks enable
only entities with vast economic power to trade profitably.

A notable example of extremely high gas prices and network congestion occurred with
the launch of a new NFT for the Bored Ape Yacht Club metaverse [52]: during the launch,
the Ethereum blockchain crashed due to traders outbidding each other by paying higher gas
fees to execute their transactions faster. Users spent up to 7,000$ (2.6 ethers) to mint a
5,846$ NFT land deed for the virtual world, which sometimes resulted nevertheless in a failed
transaction. A user trying to send 100$ in crypto between two wallets would need to pay a
fee of 1,700$. As of July 2022, the cost of the above-mentioned NFT floats around 3,000$.

1 Work done while all the authors were at QPQ AG.
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Therefore, scaling solutions become crucial to increase network capacity in terms of speed
and throughput. However, improvements to scalability should not be at the expense of
decentralisation or trustlessness. Traditionally, scalability solutions are based on off-chain
systems, collectively known as “Layer 2” (L2). L2 solutions are implemented separately
from the “Layer 1” (L1) Ethereum mainnet, and do not require changes to its protocol.
In L2 solutions, transactions are submitted to nodes of the L2 system instead of directly
to L1 nodes. Thus, L2 solutions handle transactions outside the Ethereum mainnet and
take advantage of its architectural features to ensure decentralisation and security. Existing
L2 systems show a wide array of trade-offs among critical aspects like throughput, energy
consumption, security guarantees, scalability, gas fees, and loss of trustlessness.

In this work, we present One DLT (1DLT), a novel, modular system for the rapid
deployment of EVM-based blockchains, that avoids the pitfalls of many of the existing
L2 solutions. Section 2 reviews the trade-offs of current solutions; Sections 3, 4, and 5
describe our system; Section 6 describes the Consensus-as-a-Service mechanism at the core of
1DLT; Section 7 show the 1DLT Bridge architecture; Section 8 exhibits a set of preliminary
experimental results; finally, Section 9 concludes the work and describes our next steps.

2 Layer 2 limitations

There are several solutions available in the L2 ecosystem [13] (e.g., Optimistic Rollups [33],
ZK-rollups [51], State channels [43], Sidechains [39]), with many different advantages and
limitations. Due to space limitations, we do not present the main solutions adopted and we
refer to the comprehensive surveys [53] and [54]. In the following, we list the most fundamental
limitations and correlate them to some of the solutions adopted by the Ethereum ecosystem:

Limited expressive power: some solutions do not support EVMs (e.g., several ZK-
rollups, Plasma [34], Validium [48]); others support application-specific computations
and require specialised languages (e.g., StarkWare’s Cairo [55]);
Reduced trustlessness: some solutions use operators and validators that can influence
transaction ordering, leading to potential abuses (e.g., Optimistic Rollups, Sidechains);
Liveness requirement: some solutions need to periodically watch the network or
delegate this task to someone else to ensure security (e.g., Plasma);
High computational power to compute proofs: some solutions require high com-
putational power to compute proofs, which can be too expensive for dapps with little
on-chain activity (e.g., ZK-rollups, Validium);
Reduced decentralisation: some solutions adopt centralised methods to mediate the
implementation of weak security schemes (e.g., Sidechains);
Limited throughput: some solutions claim to theoretically achieve high transactions
per second (tps) but are practically limited in their implementations (e.g, StarkWare [56]
theoretically achieves 2,000 tps, while in real-world deployments is limited to 650 tps);
Not L2: some solutions cannot be technically considered as L2 since they use separate
consensus mechanisms that are not secured by the respective L1 (e.g., Sidechains). As
such, these solutions cannot inherit from the L1 its security guarantees (e.g., resilience
against chain tampering for Ethereum);
Private channels: some solutions implement private channels, which is not a viable
solution for infrequent transactions (e.g., State channels);
Long on-chain wait times: some solutions require long wait times for on-chain
transactions due to potential fraud challenges (e.g., Optimistic Rollups, Validium);
Data availability: some solutions generate proofs that require off-chain data to be
always available (e.g., Validium).
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While the list above is not exhaustive (indeed, the L2 landscape is so dynamic that novel
solutions, prototypes, and products are introduced to the market frequently), it is indicative
of how, while there clearly exist attempts at overcoming these limitations, there is no single
solution that can fix them all. It is important to note that a consequence of some of the
limitations is the generation of security risks. Indeed, chains with relatively small ecosystems
that provide consensus can lead to fallacies of abuse and fraud. Attackers, or the node
maintainers themselves, may tamper with blockchain data ordering or validation, which
allows them to redirect funds, perform flash loans or double-spending attacks, etc.

Lastly, in most solutions, users willing to create a private or public Ethereum network
must rely on Ethereum clients (also known as implementations)2 like Geth [20] and Erigon [8].
This approach requires the user to have significant technical knowledge and resources to
maintain the nodes, with all the related costs and requirements of technical know-how.

3 An overview of 1DLT

This work has been inspired by the user experience of Cloud Service Providers (CSP) and
Web-based applications, guided by the principles of DLTs. Indeed, in Cloud services, users are
directed via graphical interfaces and dashboards through all processes (setup, configuration,
billing, management, etc.). Such interaction is performed without any need of deep knowledge
of the underlying technologies. Similarly, our goal is to provide a system that:

streamlines and simplifies the deployment of a (public/private) EVM-based blockchain,
as customarily happens for web-based services and CSP dashboards, without discarding
the programmability of the EVM;
maintains security while improving scalability and lowering fees;
removes the risks associated with the L2 governance and fraud or abuse detection.

This is achieved with a modular, multilayered, cloud-native architecture (see Section 4) that
decouples the transaction layer from the consensus layer. Thus:

1DLT connects to different blockchains and leverages their consensus mechanisms. We
refer to this as Consensus-as-a-Service (CaaS) (see Section 6 for further details);
1DLT removes the risks associated with the L2 governance and fraud detection. Indeed,
all transactions processed by 1DLT are sent to a L1 public blockchain, which is used as a
consensus resource, allowing to inherit its security guarantees;
1DLT does not suffer from long wait times used in L2 to detect and avoid frauds. Fraud
detection can be performed by checking receipts and confirmation messages of the public
blockchain used as the consensus provider and local transactions’ meta-data sent by CaaS;
1DLT is EVM-based, supports smart contracts written in the Ethereum programming
language, Solidity, without requiring the adoption of L2 specific languages, such as Cairo;
1DLT transaction throughput is limited by that of the public blockchain that it connects
to via CaaS. Thus, 1DLT outperforms Ethereum by connecting to blockchains with higher
throughput and better scalability. Its performance can be further improved by connecting
to different blockchains over time based on their load. The modular architecture makes it
ready to plug in new, faster blockchain networks as they come into being;
1DLT allows to significantly reduce the transaction fees required to perform operations
like payments, smart contract deployments, and token swaps, thanks to CaaS.

In the following, we show an example of user experience with 1DLT.

2 A client is an implementation of Ethereum that verifies all transactions in each block, keeping the
network secure and the data accurate [11].

Tokenomics 2022
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▶ Example 3.1. Due to high transaction fees and long confirmation times, Alice wishes to
move her dapp performing NFTs Auctions from the Ethereum mainnet to 1DLT to reduce
operating costs. However, she does not want to change her codebase. To do that, Alice
deploys a small, private EVM-based blockchain with 1DLT.

(i) Alice registers with the authentication system3 and receives a redemption code for
1DLT blockchain creation;

(ii) Alice specifies the blockchain name and description, and token name and symbol. Then,
with the redemption code, she creates a 1DLT Ethereum node in the private blockchain,
configuring parameters such as cloud provider, virtual machine, etc.;

(iii) after specifying blockchain and nodes’ parameters, Alice waits a short period for the
execution of the setup procedure to start the deployment of her dapp;

(iv) Alice is now ready to deploy her dapp using the same procedure she used in Ethereum,
that is, by sending a deployment transaction through the Web3 API;

(v) finally, upon receiving the deployment confirmation within few seconds, she and her
customers are ready to interact with the dapp.

4 Architecture of 1DLT

1DLT has a modular architecture, consisting of two main components: a private EVM-based
node (called 1DLT Ethereum Node) and Consensus-as-a-Service (CaaS), a module that
connects to external DLTs. When no confusion arises, from now on we refer to the 1DLT
Ethereum Node simply as Ethereum Node. CaaS allows the Ethereum Node to leverage
an external DLT to achieve consensus on transactions. Therefore, the 1DLT architecture
abstracts and decouples the transaction layer from the consensus layer.

DLT adopts a very simple trust model in which the CaaS module is trusted. Hence, there
are no checks from the Ethereum Node about the correctness of the responses from the CaaS
module. Such trust assumption can be overcome by adding a verification mechanism to the
Ethereum Node. In this work we focus on showing that 1DLT provides a low-cost scaling
approach allowing high transaction outputs and fast transaction finality.

An overview of the 1DLT components and their interactions is shown in Figure 1. The
structure of the Ethereum Node is detailed in the next section.

Figure 1 1DLT architecture.

▶ Example 4.1. We continue with the scenario introduced in Example 3.1, where Alice sets
up a node, and interacts with it by deploying a smart contract and sending a transaction.
We expand on the operation flow sketched in Figure 1:

3 A user must be authenticated to perform any action, thus a trusted authentication system is entitled
to handle the user registration and management. Note that this trusted entity, while serving as a
gateway for participants, is not relied upon for accountability of the actions of the participants. With
our approach, the latter is achieved in a trustless manner using CaaS.
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(i) Alice calls the Web3 API provided by the Ethereum Node to send a transaction, i.e.
eth_sendRawTransaction;

(ii) the Ethereum Node receives the transaction and forwards it to CaaS using a POST
message. This allows to achieve consensus on the transaction. The mechanisms used
by CaaS to select a DLT for transaction dispatching is shown in Section 6;

(iii) CaaS forwards the transaction to the chosen DLT for confirmation;
(iv) when the transaction is confirmed, CaaS retrieves it using a blockchain explorer service

(e.g., Hedera mirror service [24]);
(v) finally, CaaS sends the confirmation of the transaction to the Ethereum Node, which

updates its state accordingly.

5 1DLT Ethereum Node

Figure 2 1DLT Ethereum node architecture.

While there are well-known and widely used implementations of Ethereum nodes, like
Geth and Erigon, to overcome some of the limitations of Section 2, we engineered our
own Ethereum node with a simpler architecture (see Figure 2). Section 5.2 describes the
differences with a standard implementation. Usually, an Ethereum node contains a Web3
API, a state handling mechanism (i.e., the set of tries storing information on the state [29]), a
database, an Ethereum Virtual Machine (EVM) [18], a p2p network, a transaction pool, and
a consensus protocol. In the following, we describe the modules of our proposed architecture:

EVM module: it is a sandboxed virtual stack machine that computes the system state
transitions by executing an instruction specified in a transaction. In order to connect the
node to a local, private EVM, the Ethereum Client-VM Connector API (EVMC) is used,
as shown in Figure 3. The EVMC is the low-level interface between Ethereum Virtual
Machines (EVMs) and Ethereum clients, which – on the EVM side – supports classic
EVM14 and ewasm5. On the client side, EVMC defines the interface for accessing the
Ethereum environment and state. A very relevant feature of EVMC is that nodes can
connect with other non-Solidity based virtual machines.
1DLT deploys a standalone C++ EVM implementation, called EVMone [19]. The
EVMone EVM can be imported as a module by an Ethereum client and provides efficient
execution of smart contracts written in an EVM-compliant language.
Web3 API module: It handles incoming transactions and the communication with
CaaS. It mostly works in the same way as in an Ethereum implementation, except for a
customization that allows it to interact with CaaS. The module exposes a Web3-compatible
API supporting modern Ethereum development tools and wallets (e.g., Metamask [30],

4 Ethereum 1.x is a codename for a comprehensive set of upgrades to the Ethereum mainnet intended for
near-term adoption.

5 Ethereum flavoured WebAssembly is a subset of the WebAssembly format used for contracts in Ethereum.

Tokenomics 2022
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Hardhat [22] and Web3.js [49]). E.g., the eth_sendRawTransaction API method is
supported as in other implementations, but mining-related methods like eth_isMining

are not supported, since consensus is handled through CaaS without any need for mining.
Ledger and state transitions module: To store transactions and state, we use an
Ethereum-compatible ledger implementation based on Merkle Patricia Trees (also known
as (Merkle) Tries). This allows us to rely on the same structures as a standard Ethereum
node (i.e., a State Trie, Receipt Trie, Transaction Trie, and Storage Trie [58]).
Instead of the LevelDB [28] used in other Ethereum implementations, we opted for
Sled [40], an embedded key-value store written in Rust optimised for modern hardware.
It uses lock-free data structures to improve scalability and organises storage on disk in a
log-structured way optimised for SSDs. We do not perform complex operations to achieve
state transitions, such as the staged sync [9] in Erigon, as well as for block cutting. Since,
CaaS validates transactions using an external consensus resource, it is possible to perform
the block cutting in multiple ways. We opted to cut the block every ∆ seconds (e.g., 10
seconds), after checking that the block is not empty.
Core module: This module manages and coordinates the interaction of the other
modules. It retrieves consensus updates of the processed transactions from CaaS (see
Section 6) to perform state changes.

5.1 The execution flow
In what follows, we briefly describe the steps needed to perform a state update in a 1DLT
Ethereum node upon receiving a transaction (see the sequence diagram in Figure 4).
1. the transaction is sent to the Ethereum node through the Web3 API;
2. the Web3 API module handles the transaction and sends a POST request to CaaS with

the transaction wrapped inside the data field;
3. CaaS handles the transaction and connects to one of the chosen DLTs (e.g., Hedera) to

confirm the transaction;
4. CaaS communicates with an external service (e.g. a Hedera mirror node) to retrieve the

transaction confirmation;
5. CaaS then sends the confirmation message (i.e., the hash of the transaction with the

consensus proof) of the transaction only to the Ethereum nodes that are part of the
source network of the message.

6. the EVM of the Ethereum node executes the transaction, updating the state;
7. a block is then created if ∆ seconds are passed (the time interval is a configurable

parameter whose default is set to 10 seconds);
8. finally, the state transition result is stored in the Sled database.

5.2 Differences with current Ethereum implementations
Several relevant changes differentiate our node implementation from the standard one:

External Consensus: in general, a consensus protocol has to be included in the internal
architecture of a standard Ethereum node – like PoS for a mainnet, or PoA for a testnet
node. Instead, we do not rely on an internal module, and delegate consensus to CaaS.
This enables us to have the same liveness and safety guarantees of the chosen DLT while
decreasing the complexity of the node.
No transaction pools: in general, in a standard Ethereum node the transactions
waiting for confirmation are placed into a transaction pool. Since our solution relies
on an external consensus, all newly arrived transactions are forwarded directly to CaaS
for confirmation without putting them in a queue. The benefits from this choice are a
significantly simplified design and overall increased performance, as shown in Section 8.
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Figure 3 EVMC API. Figure 4 Sequence Diagram of a state update
in a 1DLT Ethereum node.

Lightweight Core module: as already mentioned in Section 5, the Core module is
thoroughly simplified, since there is no transaction pool to manage, and it does not have
complex state transitions (e.g., staged sync) as the consensus is retrieved from CaaS.
Difference in the Web3 support: several methods are not supported by our implement-
ation, such as those related to mining (e.g., eth_getMining, eth_coinbase), to uncles
(e.g., eth_submitHashrate), and to Ethereum protocol (e.g., eth_protocolV ersion).

6 Consensus-as-a-Service

Consensus-as-a-Service (CaaS) is the module that allows a 1DLT Ethereum node to access
an external, public consensus protocol with an on-demand approach. Its key feature is the
introduction of an abstract layer that enables the access to different DLTs through a single,
uniform interface. This layer allows 1DLT Ethereum node to offload consensus complexity
allowing it to achieve higher throughput and faster transaction finality with low transaction
costs. Moreover, relying on an external consensus provider enables 1DLT to inherit the
security model of the chosen DLT. Lastly, we remark that the CaaS approach eliminates any
issue that may arise from the presence of a trusted third party, since transactions are public
and easily auditable.

While in principle CaaS could attempt to tamper with handled transactions, such an
attempt would make the transaction proof invalid, preventing the transaction execution, as
each transaction proof required for an audit process can be retrieved from the target DLT.
We acknowledge that this does not prevent CaaS to act in a malicious way and we leave as a
future work the addition of a more efficient verification mechanism.

After choosing a suitable DLT, CaaS interacts with it by creating a channel that is used to
publish messages containing transactions’ information using the CaaS’s DLT interface. The
exchanged messages are stored in a time-series database (the current implementation uses
timescale v2.6.0-pg1) to guarantee benefits over traditional relational database management
systems like time-oriented features, higher data ingest rates and query performance. Addi-
tionally, each delivered message comes with the receipt of the transaction from the chosen
DLT (e.g., an Hedera transaction receipt), which is an auditable proof that the transaction
has been correctly processed by the DLT.

CaaS manages communication channels, I/O operations, and DB operations in a concur-
rent way, by spawning and managing multiple threads dedicated to the message exchange
of different 1DLT networks. In particular, each 1DLT network has at least one dedicated
communication channel, allowing high message processing throughput with low latency while
also isolating multiple co-existing 1DLT networks from each other.

Tokenomics 2022
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7 Bridge

Blockchains are siloed environments that cannot communicate with each other, as each
network has its own protocols, native assets, data, and consensus mechanisms. Blockchain
bridges, or cross-chain bridges [26][2], are a possible solution for enabling interoperability
between different blockchains. The interoperability trilemma [45] allows for different bridge
designs, for which, a non-standard classification can be based on [3]:

Trust model – How they work: the type of authority used to synchronise the
operations. The bridge is referred to as a “trusted bridge” if there is a central-trusted
authority (e.g., Binance bridge [1]). If not, smart contracts make the bridge a “trustless
bridge” by removing the necessity for a reliable third party (e.g., Connext [5], Hop [25],
and other bridges with an atomic swap mechanism).
Validation – Validator or oracle-based bridges: the type of mechanism the bridge
relies on to validate cross-chain transfers, such as external validator or oracles.
Level – What they connect to: the type of systems it connects to, such as a connection
between blockchains or between a blockchain and an L2 system.
Sync – How they move assets: the type of mechanism used to transfer assets between
blockchains, such as Lock and mint, Burn and mint, or Atomic swaps.
Functionality – Their function: the specialized interoperability task they are meant
for, such as Chain-To-Chain, Multi-Chain, Specialized, Wrapped Asset, Data Specific,
dapps Specific, and Sidechain.

1DLT offers a unique solution for bridges, enabling users to deploy a bridge by providing them
with all the necessary tools and components (e.g., smart contracts). Since it operates via
smart contracts, which serve as trusted parties, the 1DLT bridge belongs to the set of trustless
bridges. It allows for the bi-directional transfer of ERC20 and ERC721 tokens between 1DLT
nodes and EVM-compatible blockchains. 1DLT uses a Lock and mint mechanism: on the
origin chain (e.g., Ethereum), a lock over the asset is performed, while on the destination
chain (e.g., 1DLT), a mint is performed. Figure 5 provides a high-level breakdown of the
bridge’s core elements and how they interact. Essentially, the bridge is composed of a two
of smart contracts, Bridge.sol and Token.sol, that are deployed on both the source and
destination blockchain. Their interaction is coordinated via a cross-chain message dispatcher,
called Mediator, using HTTP and WebSocket. The Bridge smart contracts implementation
differ, as on the destination chain (i.e., Bridge1DLT for 1DLT) the contract design is for burn
and mint, while on the origin chain is lock and withdraw (i.e., BridgeETH ) for Ethereum).
For the Token smart contract the implementation is the same for both the chains.

Figure 5 1DLT bridge architecture.

In what follows, we briefly describe the steps needed to perform the deposit of some
ERC20 tokens from Ethereum to 1DLT (see Figure 6). The process relies on locking the
asset on the source blockchain, and then mint the corresponding amount in the destination
blockchain6.

6 To prevent the user from minting an arbitrary amount of token, only the bridge smart contract is
entitled to call the mint method in the token smart contract.
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1. The user sends a transaction to Ethereum, calling the lock method defined in the BridgeEth
smart contract;

2. The transaction locks the tokens on Ethereum, transferring them to the BridgeEth address;
3. The BridgeEth emits a custom Deposit event with the address of the receiver on 1DLT

and the amount;
4. The Mediator detects the event and retrieves the information;
5. The Mediator builds a transaction to call the mint method defined in Bridge1DLT with

the event information as parameters;
6. The Mediator sends the new transaction to 1DLT;
7. 1DLT executes the transaction, which calls the mint method of Bridge1DLT ;
8. The method calls the mint defined in Token;

Figure 6 Deposit of ERC20 tokens from
Ethereum to 1DLT.

Figure 7 Withdraw of ERC20 tokens from
1DLT to Ethereum.

In what follows, we briefly describe the steps needed to perform the withdrawal of some
ERC20 tokens from 1DLT to Ethereum (see Figure 7).
1. The user sends a transaction to 1DLT calling the burn method defined in Bridge1DLT ;
2. The transaction burns the tokens on 1DLT;
3. The Bridge1DLT emits a custom event with the address of the receiver and the amount;
4. The Mediator detects the event and retrieves the information;
5. The Mediator builds a transaction to call the withdraw method defined in BridgeEth with

the event information as parameters;
6. The Mediator sends the transaction to Ethereum;
7. Ethereum executes the transaction, which calls the withdraw method of BridgeEth;
8. The method calls the transferFrom defined in Token;
As virtually all complex, interacting systems, bridges are exposed to security risks related to:

Smart Contracts: bugs in their code can be exploited for malicious behaviours;
Underlying Blockchain: the underlying blockchain may be breached or act improperly;
Users: users not following best practices can incur non-secure behaviours;
Censorship and Custodial: bridge operators may act in malicious ways (e.g. they can
suspend their activities or collude to gain sensitive information about the bridge’s users)7.

There are numerous examples of bridge attacks that resulted in multimillion dollar losses. [27].
It is worth to mention that bridge hacks mainly happen due to a vulnerability identified and
exploited within the bridge contract, such as in the Wormhole attack [50] or the Optimism

7 Applies to bridges that require the presence of trusted operators.

Tokenomics 2022
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smart contract bug [32]. In the remaining cases, user mistakes take place, such as in the
Optimism Wintermute case [31], where a Wintermute user inserted the wrong destination
address for a transaction.

To overcome some of the previously mentioned risks, we give the user the ability to set up
its 1DLT bridge without 1DLT system taking control of the bridge or custody of the assets.
1DLT offers reliable smart contracts that adhere to community-tested security best practices,
such as Optimism [46] or Polygon[35]). Thus, an internal and external auditing procedure
of the smart contracts, bridge, and the node is conducted to ensure the users’ safety. For
the external audit process, we use well-known auditors, such as CertiK[4], Hacken[21], and
Trail of Bits [47]. As part of the internal audit process, we use a smart contract bytecode
verification similar to the one of Etherscan [17] and Sourcify [42]. To this end, to have the
smart contracts verified, a user must share with 1DLT the transaction hash of the exploited
smart contracts via a dedicated page.

8 Experiments and Performance Discussion

A set of preliminary experiments were performed to benchmark and test 1DLT. We run
experiments according to the following metrics:

1. Total transaction cost: the cost of sending a transaction, which is computed as:
Costtotal = costtransaction + feegas + feeDLT where: costtransaction is the cost associated
to the transaction, which may involve the execution cost of a smart contract or an amount
of tokens; feegas and feeDLT are the fee costs associated to the transaction from the
node and for the target DLT. We note that the data field is where the difference between
a transaction and an interaction lies; in a transaction, the field is empty; in an interaction,
it has a value.

2. Transaction finality: the amount of time a user has to wait, on average, to obtain a
confirmation of a transaction, measured in seconds. In the case of 1DLT, the finality time
includes the transaction processing time and consensus finality time of the public DLT.

3. Total smart contract deployment cost: the cost of deploying a smart contract, which
is computed as: Costtotal = costtransaction+feegas+feeDLT +costcreateContract+costdata

where: costtransaction is the cost associated with the contract creation transaction; feegas

and feeDLT are the fee costs associated to the transaction from the node and for the
target DLT; costcreateContract is the cost associated to a contract creation, fixed to 32000
gas; and costdata is the cost associated to the contract complexity. As of today, we do
not support only the legacy format (before EIP 2930 [7]).

4. Throughput: the transaction rate of a blockchain, measured in transactions per second
(TPS). It is known that throughput is not the inverse of latency. For example, the
transaction throughput for Bitcoin is about 7tx/second [37] due to relatively small blocks
and long block time. Instead, Ethereum has a short block time but tiny blocks, which
results in a 15tx/second [38]. 1DLT’s throughput is limited by the total throughput of
public blockchains that CaaS connects to. In fact, all transactions submitted to CaaS
by the 1DLT Ethereum nodes are forwarded to the public blockchains like Hedera and
Algorand. Therefore, 1DLT throughput varies proportionally with the throughput of the
blockchain CaaS connects to.
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The experiments are executed on an Azure Virtual Machine8 configured as Standard_
D2_v39, with 2 vCPUs, 8 GB of RAM, 256 GB SSD, and running Ubuntu 21.10. We
use Hedera Consensus Service (HCS) [23] on the Testnet as the consensus resource. We
simulate the Web3 API interaction using Web3.js API [49]. We use Metamask [30] as
the wallet application to verify the state of the transactions and Hardhat as development
environment [22], as it is the de-facto standard tool for developing dapps [41].

8.1 Total transaction cost
We consider the token in Alice’s 1DLT network, with token name and symbol Alice_Token

and APT, respectively. In Figure 8, we show the steps done from Metamask’s user interface
to transfer tokens from Alice to Bob: first, we specify Bob’s account as the destination, the
APT token as the asset, and 1,000 as the amount. Next, we check the calculated fees and
send the transaction. Initially, the transaction state is on pending, then, after 6 seconds, the
state changes from pending to confirmed, allowing the balance update for Alice and Bob.

The total cost (Costtotal) for Alice is as follows: feeGas is 0.000021 APT, costtransaction

is 1000 APT, and feeDLT is 0.00051779 HBAR, which is 0.00000003 APT (assuming that 1
ETH = 1 APT). So the cumulative cost is 1, 000.00002103 APT and the cumulative cost for
the fees is 0.00002103 (0.056 USD). On the Ethereum Testnet (Ropsten [14]) the cumulative
cost is 0.00005093 (total of 0.14 USD), while on the Ethereum mainnet, with a gas fee of 47
Gwei, it’s 0.000819 (for a total of 2.95 USD).

Figure 8 Setup and send transaction from Alice to Bob state transition and account update.

8.2 Transaction finality
We evaluate the consensus finality of 1DLT using a client app that generates payment
transactions, and submits them to a 1DLT Ethereum node in its 1DLT network. We compute
the overall time from the generation of the transaction to the balance update in the Metamask
wallet as: Overall_time = Generate_Sendtx+1DLT_Finalitytx+Update_wallettx where:

Generate_Sendtx is the time our client application takes to generate and send the
payment transaction to a 1DLT Ethereum Node of 1DLT;
1DLT_Finalitytx is the time for 1DLT to process a transaction;
Update_wallettx is the time the Metamask wallet takes to update the balance via a call
sent by 1DLT.

8 https://azure.microsoft.com/
9 https://docs.microsoft.com/en-gb/azure/virtual-machine/dv3-dsv3-series
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In Figure 9, we present the experiment results, showing the Overall_Finality_Time that
we measured executing 200 transactions. We observe that average execution time for
Overall_Finality_Time is 4.526 seconds.

Figure 9 Transaction Finality experiment Diagram.

8.3 Smart contract deployment cost
We consider the example in 3.1 where Alice deploys the smart contract for her NFTs Auction
dapp. To deploy the auction smart contract, we write a deployment script in JavaScript. We
add the 1DLT node information, Node IP address, chain ID and private key of Alice account
to the Hardhat configuration file, hardhat.config.js. Then, from terminal, we execute the
deployment script with the command:

$ pnpm hardhat run --network AliceNetwork deploySmartContract .js

Once the deployment is completed, we receive the address of the created smart contract, like:
$ Contract deployed to address : 0 x6cd7d44516a20882cEa2DE9f205bF401c0d23570

The transaction cost for deploying the smart contract on 1DLT is 0.000013402 APT
(suppose that 1 ETH = 1 APT). On the Ethereum Testnet (Ropsten) the cumulative cost is
0.0015402 (for a total of 1.74 USD), while on the Ethereum mainnet, with a gas fee of 30
Gwei, it’s 0.0117055 (for a total of 13.91 USD). Note that the cost to interact with a smart
contract, that is, to call a method that changes the state (e.g., a set method), is calculated
the same as a transaction since a setter method is implemented by sending a transaction.

8.4 Transaction per second (TPS)
We evaluate the performance of CaaS using Hedera as the consensus resource. We use a
different Azure virtual machine configuration than before. We run CaaS on an Azure VM
in the Switzerland North region configured as Standard DS3 v2, with 4 vCPUs, 14 GB of
RAM, 1 TB SSD, and running Ubuntu 20.04. Then, to simulate the client, we use a VM
configured with Standard D2s v3, 2 vCPUs, 8 GB memory, and running Ubuntu 20.04.
In this experiment, we configured CaaS to run on a small VM to demonstrate that it is
very lightweight and can achieve high performance even with this setup. Ideally, and in the
production environment, CaaS will run on a Kubernetes cluster that allows to scale up with
the increased transaction requests. The client runs a Python v3.8.10 script that generates
a total of ten thousand transactions across five Hedera topics (which corresponds to five
communication channels in CaaS), sends transactions to CaaS, and waits for confirmations
from CaaS. Running the experiment 10 times with a single client results in an average of
1120 tps. The results are promising, as this experiment proves that a single client can process
around 1120 transactions per second with a minimal CaaS setup as discussed above.
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8.5 Discussion
The energy consumption of operating the Ethereum network has decreased by 99.9% after
the Merge, occurred in mid September 2022 [44].

However, the gas fees’ costs have not changed and this results in high costs for deploying
Ethereum as a computing platform. In fact, each finalized block includes 30 million Gas,
which is the amount of Gas used for all the transactions in a block [10]. The current
transaction fees for 30 million of consumed gas is more than 1 Ether, which (as of July 2022)
is valued at 1,479 USD. This implies that the computation costs of the Ethereum Network
are around 133 USD per second, which is ∼25 times more than 15 days of an EC2 instance
(currently around 20 USD).

In order to estimate the cost of the Ethereum network itself (measured in gas), fol-
lowing [57], we consider a very basic computational task like adding two 256-bit integers.
Since this operation costs 3 Gas [12] and the Ethereum network’s total compute is 2 million
gas/second, the Ethereum network may perform 600,000 additions per second. In contrast,
Raspberry Pi 4 [36], a 45 USD single-board computer with four processors running at 1.5 GHz,
can perform around 3,000,000,000 additions per second. As such, the Ethereum network,
considered as a general-purpose computational environment, has roughly 1/5,000 of the
computing power of a Raspberry Pi 4. At the current gas price, this means that performing
256-bit additions on the Ethereum network, costs about 60 USD per month.

Ethereum as a computational environment has the drawback to be expensive, in terms of
gas fees. Since 1DLT follows a modular approach and separates the EVM-based computational
layer from the consensus layer, it minimises energy consumption and computational effort.
Thanks to the deployment of CaaS, the consensus engine does not require a mining algorithm
in the consensus retrieval. Additionally, 1DLT offers the same level of computational power
as Ethereum at a significantly lower cost, as shown in experiments 1 and 3 in Section 8. As
an example, the cost to execute 50,000 transactions is 0.04 USD.

9 Conclusion and Future work

Scaling solutions are crucial to increase the Ethereum network’s capacity in terms of speed
and throughput, but they come at the cost of reduced decentralisation, increased transaction
finality times. 1DLT, inspired by the user experience of Cloud Service Providers (CSP)
and Web-based applications, overcomes the limitations of the existing scaling solutions
enabling low gas fees, high transaction throughput, and fast transaction finality. Additionally,
1DLT removes the risk associated with the L2 governance and fraud detection, since all the
transactions processed in 1DLT networks are submitted to the consensus protocols of L1
public DLTs. Lastly, the programmability and user experience of the Ethereum ecosystem is
maintained thanks to an EVM-based architecture.

We demonstrated the feasibility of our architecture with a set of preliminary experiments
in Section 8, benchmarking transaction costs and finality.

Future work includes: (i) a proper experimental benchmark to execute advanced ex-
periments that fully accounts for the real-world landscape of L2 solutions and 1DLT; (ii)
Extend the 1DLT Ethereum Node with a verification mechanism for proving the correctness
of Caas module’s responses; (iii) enhance the bridge with support for blockchains that are not
compatible with EVM; (iv) the integration of 1DLT with Trusted Execution Environments;
(v) full integration with a proprietary wallet that will enhance the Metamask solution; (vi)
provision of user tools like Etherscan [16] for Ethereum or DragonGlass [6] for Hedera, to
audit the status of the blockchains in the 1DLT ecosystem.

Tokenomics 2022
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