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Abstract
We present a formalization of constructive affine schemes in the Cubical Agda proof assistant.
This development is not only fully constructive and predicative, it also makes crucial use of
univalence. By now schemes have been formalized in various proof assistants. However, most
existing formalizations follow the inherently non-constructive approach of Hartshorne’s classic
“Algebraic Geometry” textbook, for which the construction of the so-called structure sheaf is rather
straightforwardly formalizable and works the same with or without univalence. We follow an
alternative approach that uses a point-free description of the constructive counterpart of the Zariski
spectrum called the Zariski lattice and proceeds by defining the structure sheaf on formal basic
opens and then lift it to the whole lattice. This general strategy is used in a plethora of textbooks,
but formalizing it has proved tricky. The main result of this paper is that with the help of the
univalence principle we can make this “lift from basis” strategy formal and obtain a fully formalized
account of constructive affine schemes.
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1 Introduction

Algebraic geometry originated as the study of solutions of polynomials. Historically, the
geometric objects of interest would be for example complex affine varieties – subsets of
Cn defined by systems of polynomial equations. Starting with the pioneering work of
Grothendieck in the 1960s, the scope of the discipline was drastically widened, making it
one of the most pervasive in modern day mathematics. At the heart of this development
are schemes – geometric objects that generalize from algebraically closed fields, like C, to
arbitrary commutative rings.
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A point a ∈ C corresponds to the maximal ideal of the polynomial ring C[x] consisting of
polynomials p such that p(a) = 0, i.e. the ideal generated by (x− a). By looking not only at
maximal ideals, but also at prime ideals of C[x], we arrive at the spectrum of C[x], denoted
SpecC[x]. As C[x] has a non-maximal prime ideal, the zero-ideal, SpecC[x] contains an
additional point to C and carries a very different topology. This is called the Zariski topology
in which the open sets are generated by basic opens D(p) ⊆ SpecC[x] where p ∈ C[x]. If
p ≠ 0, D(p) corresponds to the set of points a where p(a) ̸= 0 together with the zero-ideal.
The spectrum can then be equipped with a structure sheaf that associates to every Zariski
open set U a ring of “rational functions” definable on U . For a basic open D(p), this will
be the ring of function q(x)/p(x)n where q is another polynomial. This corresponds to the
functions of the quotient ring C(x) that are definable everywhere but at the zeros of p. See
Vakil’s “The Rising Sea” [34, Ex. 3.2.3.1] for a more in-depth discussion of this motivating
example and an illustration of SpecC[x].

This construction can be carried out for any commutative ring R instead of C[x]: the
spectrum SpecR is the set of prime ideals of R and its Zariski topology is again generated by
basic opens. For f ∈ R, the basic open D(f) is the set of prime ideals that do not contain f .
The structure sheaf maps D(f) to the localization R[1/f], the ring of fractions r/fn where
r ∈ R and the denominator is a power of f . One can prove that this always defines a sheaf,
i.e. is compatible with taking covers of open sets in a certain sense.

When Grothendieck introduced the general notion of (affine) schemes, he did so in a
structural fashion that is typical for his work. Mathematical objects, in particular algebraic
structures, are taken to be identical if they are isomorphic in some unique, or at least
canonical, way. When constructing the structure sheaf, however, this leads to a problem of
well-definedness: if D(f) = D(g), then we better have R[1/f] = R[1/g]. Unfortunately, it is
not difficult to come up with examples violating this. For example, we have D(x) = D(x2) in
C[x] (both functions vanish only at 0), but formally speaking C[x][1/x] is not strictly the same
ring as C[x][1/x2] despite them clearly being isomorphic and describing the same sub-ring of
the quotient ring C(x), as 1/x = x/x2.

In this paper we show how this problem can be solved with the help of univalence. In
particular, we present a formalization in Cubical Agda [35] of constructive affine schemes
following Coquand, Lombardi and Schuster [10]. In the constructive setting, the Zariski
spectrum of a commutative ring is replaced by the so-called Zariski lattice. Elements of this
lattice are finitely generated by formal basic opens, which allows for a completely predicative
approach that does not require additional assumptions like Voevodsky’s resizing axioms [38].

The definition of constructive affine schemes still works analogously to the classical
definition given in most textbooks ranging from Grothendieck’s authoritative classic “EGA
I” [13], to more modern treatments such as “Algebraic Geometry” by Görtz and Wedhorn
[15], “The Rising Sea” by Vakil [34], or Johnstone’s “Stone Spaces” [18]. In either case one
starts with the basic opens, on which the structure sheaf is defined and proved to be a
sheaf. Using abstract categorical machinery this is then lifted to a sheaf on the whole Zariski
spectrum/lattice. More precisely, one takes the right Kan extension along the inclusion of
basic opens, which preserves the sheaf property.

From a constructive, predicative point of view there are two differences that make this
construction work for the Zariski lattice. Predicatively, the inclusion of basic opens into the
Zariski lattice is one of small categories, while the inclusion into the classical spectrum is
not. Furthermore, since we are only concerned with sheaves on a distributive lattice and not
on a general locale or topological space, we only have to consider finite covers. This allows
for a predicative proof that the right Kan extension preserves sheaves on lattices. From a
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classical point of view this is not really a restriction as SpecR is always a coherent space. As
a result, sheaves on SpecR are in bijection to (finitary) sheaves on the Zariski lattice. For
more details see e.g. Johnstone’s “Stone Spaces” [18] and Section 6.1 of this paper.

Regardless of whether one formalizes the classical or constructive definitions, the main
bottlenecks of the formalization are already found at the level of basic opens. First and
foremost, there is the well-definedness problem described above. The second bottleneck is
proving that the structure sheaf actually is a sheaf on basic opens. In fact, the problem
with the textbook proof of the sheaf property is the well-definedness problem in disguise.
Those two points were exactly where the most prominent formalization of schemes [4] in
Lean’s mathlib [26] encountered problems. In this paper, we show that with the help of
univalence it is in fact possible to overcome the issues of well-definedness and formalize
the structure sheaf directly on basic opens and prove its sheaf property. Even though we
work in the constructive, predicative setting using the Zariski lattice, the techniques used
to overcome the problems on the level of basic opens should be applicable to a classical
formalization in type theory with univalence and classical axioms added. The key insight is
that localizations are not just commutative rings, but also commutative algebras over R. In
R-algebras, isomorphisms, and thus also paths, between two localizations are unique, which
ensures well-definedness of the structure sheaf.

As mentioned above, our work is completely formalized1 in Cubical Agda, an extension of
the Agda proof assistant [31] based on the cubical type theory of [7, 8] with fully constructive
support of the univalence axiom and higher inductive types (HITs). However, nothing relies
crucially on cubical features, or on univalence and eliminators applied to higher constructors
of HITs computing definitionally, in our formalization. The only HoTT/UF features that
we rely on are univalence and set quotients (from which propositional truncation follows).
It would hence be possible to perform the formalization in a system implementing Book
HoTT [33] or in UniMath [36]. Our work is thus in line with the aim of Voevodsky’s
Foundations library [39] of developing a library of constructive set-level mathematics based
on Univalent Foundations.

Contributions

As mentioned above, the formalization presented in this paper generally follows the con-
structive, lattice-based approach of [10]. However, a number of design choices had to be
made to ensure predicativity of our formalization and to enable us to formally prove the
well-definedness of the structure sheaf. As a result some definitions and proofs deviate
from the presentation in [10]. The main design choices and contributions of the paper and
formalization can be summarized under the following topics:

Commutative algebra: our formalization of localizations of commutative rings in
Section 3.1 closely follows Atiyah and MacDonald’s classic textbook [2], which works
very well for our constructive approach. However, giving a predicative definition of the
Zariski lattice that does not increase universe levels was more intricate. To this end,
Section 3.2 contains a construction that refines the ideal-based description of [10] using
ideas of Español [14].

1 All results discussed are integrated in the agda/cubical library and are summarized in:
https://github.com/agda/cubical/blob/310a0956bb45ea49a5f0aede0e10245292ae41e0/Cubical/
Papers/AffineSchemes.agda
This is a permalink to the library at the time of writing, which type-checks with Agda version 2.6.3.
A clickable rendered version that might be subject to change can be found here:
https://agda.github.io/cubical/Cubical.Papers.AffineSchemes.html
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Category theory: in Section 4 we present a formal notion of sheaf on a distributive
lattice that closely follows [10]. However, in [10] presheaves are extended from a basis of
a distributive lattice to the whole lattice in a somewhat non-standard finitary way. This
is to ensure predicativity, but it actually causes problems when working in a univalent
setting. We found that the point-wise right Kan extension of presheaves, as e.g. presented
in MacLane’s classic textbook [23], works just fine even in the constructive and predicative
setting. We then give a proof that the Kan extension preserves the sheaf property. This
can be seen as the main step towards a constructive and predicative “comparison lemma”
that gives an equivalence of categories between sheaves on a lattice and sheaves on a
basis of the lattice.
Constructive affine schemes: in Section 5 we construct the structure sheaf on basic
opens and extend it to the Zariski lattice. We give general heuristics for constructing
presheaves (valued in R-algebras) on subsets defined using propositional truncation. The
well-definedness of the presheaves thus constructed follows from univalence. The structure
sheaf is a special instance of this construction with the basic opens seen as a subset of
the Zariski lattice. Proving the sheaf property on basic opens can then be reduced to
standard commutative algebra, again by using univalence in a way that does not require
to extract the isomorphisms underlying the applications of univalence.

2 Background

Here we give the necessary background for the paper. We first sketch the constructive
approach to schemes of [10]. We then continue with an introduction to the concepts of
Cubical Agda needed for the paper.

2.1 Affine schemes constructively
Recall that, classically, the spectrum of a commutative ring R is the set of its prime ideals
SpecR = {p ⊆ R | p prime} equipped with the Zariski topology. The open sets of this
topology are generated by basic opens D(f) = {p | f /∈ p} for f ∈ R. Constructively, there
are two issues with this. First, the notion of prime ideal is not really well-behaved. One of
the main reasons for this is that the central notion of localizing at a prime ideal p actually
uses the set-theoretic complement R \ p, which does not work well constructively without
additional decidability assumptions.2 To remedy this, one can define the notion of a prime
filter on R and check that classically those are exactly the complements of prime ideals.

The second issue concerns the point-set definition of a topological space itself. For a
constructive development of algebraic geometry it is preferable to avoid this definition and
instead characterize the locale of open sets of SpecR in a direct, point-free way. This can
be done by observing that the closed sets of the Zariski topology admit a direct algebraic
characterization. Every closed set is of the form V (a) = {p | a ⊆ p}, where a is a radical
ideal. An ideal a ⊆ R is radical if a =

√
a, where

√
a =

{
x ∈ R | ∃n > 0 : xn ∈ a

}
The locale of Zariski opens can thus be characterized by the set of radical ideals of R. The
join and meet operation can be defined using addition and multiplication of ideals.

2 See e.g. the discussion by Mines, Richman and Ruitenberg in their standard textbook on constructive
algebra [27, Section III.3].
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From a predicative viewpoint this is still unsatisfactory. Predicatively, the ideals of a
ring form a proper class and consequently the Zariski locale is not a set in such a setting.
However, by restricting to the lattice of compact open sets of the Zariski topology these size
issues can be avoided.3 Classically, the objects of this lattice are finite unions of basic opens
D(f1) ∪ · · · ∪D(fn) and the join and meet operation are just union ∪ and intersection ∩.
Note that for the meet this only works because basic opens are closed under intersections,
i.e. we have D(f) ∩D(g) = D(fg) for any f, g ∈ R.

As with the locale of Zariski opens, this so-called Zariski lattice LR of a commutative
ring R can be described in a point-free way. This was first done by Joyal [19], using the
observation that the Zariski lattice has a certain universal property. The lattice itself can be
defined as the free distributive lattice generated by formal symbols D(f), f ∈ R, satisfying
the following relations:

D(1) = ⊤ and D(0) = ⊥ (1)
∀f, g ∈ R : D(fg) = D(f) ∧D(g) (2)
∀f, g ∈ R : D(f + g) ≤ D(f) ∨D(g) (3)

The induced map D : R→ LR is universal in the following sense: for any distributive lattice
L and support map d : R→ L, i.e. any map d such that conditions (1)-(3) above hold for d
(in place of D), there is a unique lattice homomorphism φ : LR → L such that the following
commutes

R

LR L

D d

∃! φ

Using the correspondence of Zariski opens with radical ideals, the elements of LR can also
be described as the radicals of finitely generated ideals. For two finitely generated ideals
a, b ⊆ R, the join and meet of the radicals are then given by
√
a ∨
√
b =
√
a + b and

√
a ∧
√
b =
√
ab

using the fact that addition and multiplication of two finitely generated ideals is again finitely
generated. The support D : R→ LR maps f ∈ R to the radical of the principal ideal

√
⟨f⟩

and for any support d : R→ L, the unique morphism φ : LR → L is given by

φ
(√
⟨f1, . . . , fn⟩

)
= d(f1) ∨ · · · ∨ d(fn)

In Section 3.2, we will show how to formalize this Zariski lattice of radicals of finitely
generated ideals and prove its universal property while avoiding size issues.

The lattice theoretic approach does require a notion of a sheaf on a distributive lattice.
Recall that a sheaf on a topological space X is just a sheaf on the locale of open sets of X.
By restricting the definition of sheaf on a locale to finite covers one obtains sheaves on a
distributive lattice. This means that for any distributive lattice L, a presheaf F : Lop → C,
valued e.g. in commutative rings (i.e. C = CommRing), is a sheaf if for all x1, . . . , xn ∈ L the
following is an equalizer diagram

3 Through a more careful analysis one might be able to define the structure sheaf on the large Zariski
locale in predicative univalent foundations, as long as one uses a small type of basic opens. See the
recent work by de Jong and Hötzel Escardó [11] and by Tosun and Hötzel Escardó [32] for results of this
kind. For the development of constructive and predicative scheme theory however, it seems certainly
advantageous to work with the small Zariski lattice.

TYPES 2022
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F
( n∨
i=1

xi

)
→

n∏
i=1
F(xi) ⇒

∏
i<j

F(xi ∧ xj)

A basis of a distributive lattice is a subset B ⊆ L containing ⊤ and closed under meets, such
that for any x ∈ L there exists a finite list b1, . . . , bn ∈ B such that x =

∨n
i=1 bi. In Section 4,

we describe how to obtain sheaves on L from sheaves on B. This works analogous to the
special case of the so-called comparison lemma for topological spaces. For the structure sheaf,
the idea is to map D(f) to the ring R[1/f], the localization of R away from f . Recall that for
a subset S ⊆ R containing 1 and being closed under multiplication, the localization S−1R is
defined as the ring of fractions r/s where r ∈ R and s ∈ S. Equality of fractions is given by

r1

s1
= r2

s2
iff ∃u ∈ S : u(r1s2 − r2s1) = 0

R[1/f] is defined by localizing with S = {1, f, f2, f3, . . . }. Its elements are thus fractions r/fn

where the denominator is a power of f and equality can be rephrased as

r

fn
= r′

fm
iff ∃k ∈ N : fk+mr = fk+nr′

Verifying that the presheaf defined by sending D(f) to R[1/f] is indeed a sheaf on the basis
BR ⊆ LR of basic opens proceeds the same way in any constructive or classical account.
As indicated in the introduction, there are some issues to be overcome when formalizing
the construction of the structure sheaf. In this paper we discuss what a solution to these
problems can look like in a univalent setting.4

2.2 Set-level univalent mathematics in Cubical Agda
We will now briefly discuss the concepts needed from Cubical Agda for this paper, for more
details see [35]. Our notation is inspired by Agda syntax and the agda/cubical library,
but we have taken some liberties when typesetting, e.g. shortening notations and omitting
some projections and universe levels whenever possible. We write Type ℓ for universes (at
level ℓ) and Σ[ x ∈ A ] B(x) for dependent pair types over a family B : A→ Type ℓ. The
major difference when working in Cubical Agda compared to vanilla Agda or Book HoTT is
that the primary identity type is changed from Martin-Löf’s inductive construction [25] to a
primitive path-type. The identification x≡ y is captured by PathAxy, the type of functions
p : I → A, where I is a primitive interval type, restricting definitionally to x and y at the
endpoints i0 and i1 of I. Cubical Agda also has a dependent path type, PathP. Given a line
of types B : I → Type, which we may think of as B(i0) ≡ B(i1), and x : B(i0), y : B(i1), the
type PathP B x y expresses that x and y may be identified relative to B. The regular path
type _≡_ is, by definition, PathP (λ i → A), i.e. the special case of a constant line of types.

Cubical Agda also comes with a function ua : A≃B → A≡B which promotes equiv-
alences (or isomorphisms) of types to paths between these types. The fact that this map
is an equivalence itself is a way to formulate Voevodsky’s univalence axiom. A reasonable
question to ask in a univalent setting is whether an equivalence of types can be promoted to

4 A solution that is e.g. taken in [10], is to map D(f) to S−1
f R, the ring of fractions whose denominators

are elements of the saturation Sf = {g | D(f) ⊆ D(g) }. It is immediate to see that if D(f) = D(g),
then S−1

f R = S−1
g R, but it is not as natural to work with these rings. Usually, one still wants to appeal

to the “canonical isomorphism” between R[1/f] and S−1
f R, as in e.g. [13, Sect. 1.3].
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an equality of structured types, such as groups or rings. The Structure Identity Principle
(SIP) [33, Sect. 9.8] is an informal principle which attempts to answer this: given two
structured types (A,SA) and (B,SB) and an equivalence of underlying types A ≃ B which
is a homomorphisms with respect to the structure in question, we get a path of structured
types (A,SA)≡ (B,SB). For instance, an isomorphism of rings R and S induces a path
R≡S. This has been implemented in agda/cubical using the cubical SIP of Angiuli, Cav-
allo, Mörtberg and Zeuner [1]. For this paper we will use sip to denote the function that
turns isomorphisms of commutative rings or R-algebras (over a ring R) into paths.

Univalence refutes Uniqueness of Identity Proofs (UIP), or Streicher’s axiom K [30],
because it produces equality proofs in Type that are not equal [33, Ex. 3.1.9]. In the presence
of univalence, it is therefore important to keep track of which types satisfy UIP or related
principles expressing the complexity of a type’s equality relation. In the terminology of
HoTT/UF, a type satisfying UIP is called an h-set (homotopy set, henceforth simply set),
while a type whose elements are all equal is called an h-proposition (henceforth proposition).

Another very important concept in HoTT/UF is that of contractible types, i.e. types with
exactly one element:

isContr : Type → Type
isContr A = Σ[ x ∈ A ] ((y : A) → x ≡ y)

We can characterize propositions as types whose equality types are contractible, just as sets
are types whose equality types are propositions. Thus contractible types, propositions, and
sets serve as the bottom three layers of an infinite hierarchy of types introduced by Voevodsky,
known as h-levels [37] or n-types [33]. This paper is about set-level mathematics, so we are
mainly interested in these 3 bottom layers. However, univalence implies that collections of
set-level structures (e.g. the collection of all commutative rings or R-algebras) are one level
higher than sets. Types at this level are called h-groupoids (heceforth groupoids) and will
be the only types of h-level higher than 2 in the paper. We write isProp A to say that A
is a proposition and isSet A to say that A is a set. The “universe of propositions” hProp ℓ
is defined as Σ[ A ∈ Type ℓ ] (isProp A), and if isSet A, we call functions S : A → hProp ℓ
a subset of A. For a : A we denote by a ∈ S the type of proofs that a is actually in S. It
is often convenient to identify the subset S with Σ[ a ∈ A ] (a ∈ S), which can be seen as
a sub-type of A. With some abuse of notation we will not distinguish between subsets as
functions and the corresponding Σ-type. We thus write a : S for elements of S when the
proof of a belonging to S can be ignored.

Another concept from HoTT/UF which Cubical Agda supports are higher inductive types
(HITs). These allow us to define many important operations on types, such as truncations.
For instance, the propositional truncation is defined by:

data ∥_∥ (A : Type ℓ) : Type ℓ where
|_| : A → ∥ A ∥
squash : isProp ∥ A ∥

This HIT takes a type A and forces it to be a proposition. This is a very important
construction for capturing existential quantification in HoTT/UF:

∃[ x ∈ A ] P (x) = ∥Σ[ x ∈ A ] P (x) ∥

In this paper, we follow the HoTT Book terminology and say that x merely exists when it is
existentially quantified. Note that the propositional truncation in the definition is crucial. In
HoTT/UF, ΣAP without the truncation is interpreted as the total space of P , which may
be highly non-trivial. For example, a subset B of a lattice L is a basis if

TYPES 2022
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∀ (x : L)→ ∃[ b1, . . . , bn ∈ B ] (
∨n
i=1 bi ≡ x)

Here the propositional truncation is necessary. We will see this in Section 3.2, when proving
that the basic opens form a basis of LR.

The main HIT that we use in this paper is the set quotient, which quotients a type by
an arbitrary relation, yielding a set. It has three constructors: [_], which includes elements
of the underlying type, eq/, which equates all pairs of related elements, and squash/, which
ensures that the resulting type is a set:

data _/_ (A : Type ℓ) (R : A → A → Type ℓ) : Type ℓ where
[_] : (a : A) → A / R
eq/ : (a b : A) → (r : R a b) → [ a ] ≡ [ b ]
squash/ : isSet (A / R)

We can write functions out of A / R by pattern-matching; this amounts to writing a function
out of A (the clause for [_]) which sends R-related elements of A to equal results (the clause
for eq/), such that the image of the function is a set (the clause for squash/). Set quotients
and propositional truncations have in common that the resulting type will be of a fixed
h-level and this makes it very hard to map into types of higher h-levels. In fact, the higher
the h-level of the target type, the more complicated the coherence conditions that need to be
proved. We will see an example of this in Section 5.

3 Commutative algebra

In this section, we first discuss our formalization of localizations of rings, followed by the
definition of the Zariski lattice. These objects can be described by universal properties, but
may also be concretely implemented as set quotients. One of the guiding principles of this
project was to work with concrete implementations and mainly use universal properties to
construct equivalences and paths (via the SIP). As a result the formalization follows the
usual informal treatment in the commutative algebra literature quite closely.

3.1 Localizations
Our formalization of localizations of commutative rings follows the classic textbook of Atiyah
and MacDonald [2], with our main result being a path version of [2, Cor. 3.2]. Note that the
definition of localization is actually the same in classical and constructive algebra.5 For the
remainder of this paper we will only consider commutative rings with a multiplicative unit
(denoted by 1). Let R be such a ring and S a subset of R that contains 1 and is closed under
multiplication. The formalization of localization is then straightforward:

S−1R : Type
S−1R = (R × S) / _≈_

where
_≈_ : R × S → R × S → Type
(r1 , s1 , _) ≈ (r2 , s2 , _) = Σ[ (u , _) ∈ S ] (u · r1 · s2 ≡ u · r2 · s1)

The underscores in the definition of ≈ correspond to the proofs that s1, s2 and s are elements
of S respectively. As these are unimportant to the definition of ≈, we can safely omit them.

5 Compare [2] with e.g. the books by Lombardi and Quitté [22] or Mines, Richman and Ruitenburg [27].
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▶ Remark 1. It might be surprising that we define ≈ using a Σ and not an ∃ (as is done e.g.
in [39]). However, it turns out that it does not matter whether one quotients by the truncated
relation using ∃ or the untruncated relation using Σ, as the resulting set-quotients will be
equivalent. As we do not need to prove anything about ≈ except it being an equivalence
relation, it is more convenient to work without the truncation.
Equipping S−1R with the structure of a commutative ring is laborious in Cubical Agda, but
the proofs generally proceed as in any textbook. The same holds for the universal property.
Note that for this we need the canonical homomorphism _/1 : R→ S−1R, mapping r : R to
[ r , 1 ], the equivalence class corresponding to r/1. The universal property then states that
for any commutative ring A with a morphism φ : R → A, such that for all s : S we have
φ(s) ∈ A× (i.e. that φ(s) is a unit in A), there is a unique morphism ψ : S−1R→ A, such
that the following commutes

R

S−1R A

_/1 φ

∃! ψ

The key observation for the main results of this paper is that localizations are R-algebras
via the canonical homomorphism _/1. The type of R-algebras is equivalent to the Σ-
type of a commutative ring A together with a ring homomorphism φ : R → A. An
homomorphism between R-algebras (A,φ) and (B,ψ) is just a ring homomorphism χ : A→ B

together with a path χ ◦ φ ≡ ψ. The type of R-algebra homomorphisms will be denoted by
HomR

[
(A,φ) , (B,ψ)

]
or just HomR

[
A,B

]
if the morphisms are clear from context.

The universal property of localization then becomes a statement about R-algebras.
In HoTT/UF unique existence is defined as contractibility of Σ-types, so the universal
property of the localization at S becomes: for any R-algebra (A,φ) s.t. φ(S) ⊆ A×, the type
HomR

[
S−1R , (A,φ)

]
is contractible. Combining the proof of [2, Cor. 3.2] with the SIP, we

can then prove the following:6

▶ Lemma 2. Let A be a commutative ring with a morphism φ : R→ A satisfying
∀(s : S)→ φ(s) ∈ A×
∀(r : R)→ φ(r) ≡ 0→ ∃[ s ∈ S ] (sr ≡ 0)
∀(a : A)→ ∃[ (r , s) ∈ R× S ] (φ(r)φ(s)−1 ≡ a)

From this we can construct a path S−1R ≡ A, which is unique as a path in R-algebras.

With this result we can transport proofs about localizations to any suitable ring and morphism
pair, i.e. R-algebra, satisfying the three conditions above. Below we will see a few applications
of this result that will be used for formalizing constructive affine schemes. The important case
for our purpose is R[1/f], the localization of R away from f . This can be seen as inverting a
single element f in R. The subset S = {1, f, f2, f3, ...} is easily defined in Cubical Agda as
the set of g : R for which we have an inhabitant of ∃[ n ∈ N ] (g ≡ fn).

For the remainder of this section let f, g : R. By the canonical homomorphism we get
an element g/1 in R[1/f]. With a bit of abuse of notation we denote the localization away
from this element by R[1/f][1/g]. This is an R-algebra by applying the canonical morphism
_/1 twice. We can of course also localize away from (f · g), thus obtaining R[1/fg]. Using
Lemma 2, we can construct a (unique) path between these two, which will be used for the
structure sheaf. Similarly, we also get other useful paths.

6 In Lean’s mathlib a localization is defined to be any ring-morphism-pair satisfying the three conditions
of Lemma 2. The formulation of this predicate is attributed to Neil Strickland in [4].
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▶ Lemma 3. We have the following paths for both commutative rings and R-algebras:
1. R[1/f][1/g] ≡ R[1/fg]
2. R[1/f] ≡ R, if f ∈ R×
3. R[1/f] ≡ R[1/g], if f/1 ∈ R[1/g]× and g/1 ∈ R[1/f]×

3.2 The Zariski lattice
Next, we provide a definition of the Zariski lattice that does not lead to size issues, while
still being convenient to work with. We have already seen that the Zariski lattice LR, which
classically corresponds to the compact open sets of the Zariski topology, can be described
as the lattice of radicals of finitely generated ideals. The meet and join of this lattice are
defined using multiplication and addition of ideals. With some elementary ideal theory this
should be straightforward to formalize. Unfortunately, without any form of impredicativity,
like resizing axioms, this leads to size issues.

So far we have avoided being explicit about universe levels, but in this section let ℓ be
the level of the base ring R, that is, the level of the universe in which the underlying type
of R lives. Being precise about universe levels, subsets of R are elements of R → hProp ℓ,
living in Type (ℓ + 1), the next bigger universe. The type of all ideals of R, which is just
the Σ-type of subsets satisfying the ideal property, is hence in Type (ℓ+ 1). However, for
technical reasons to be discussed in the next section, we need LR : Type ℓ. Consequently, the
definition of LR must not rely on the type of all ideals of R.

To avoid this issue, we use a construction due to Español [14]. Since we are only concerned
with the radicals of finitely generated ideals, we can describe LR in terms of generators
instead of arbitrary ideals. In particular, a list of generators α = [α0, . . . , αn] with αi : R
corresponds to the radical of the ideal generated by the αi. In other words, we can obtain
LR by quotienting the type of lists with elements in R, by the relation

α ∼ β ⇔
(
∀ i→ βi ∈

√
⟨α0, . . . , αn⟩

)
and

(
∀ i→ αi ∈

√
⟨β0, . . . , βm⟩

)
Here ⟨α0, . . . , αn⟩ is the ideal generated by the αi’s. As both the type of lists and ∼ live in
Type ℓ so does their quotient LR. It might seem more natural to quotient by the relation

α ∼∼∼ β ⇔
√
⟨α0, . . . , αn⟩ ≡

√
⟨β0, . . . , βm⟩

Unfortunately the type of paths between two such radicals is large, as for any two ideals I, J
we have I ≡ J : Type (ℓ+ 1). Still, ∼ is equivalent to ∼∼∼ in the sense that we have α ∼ β if
and only if α ∼∼∼ β. This equivalence can then be used in proofs.

Equipping LR with the distributive lattice structure requires us to introduce operations
on lists that correspond to ideal addition and multiplication. For the join we can take list
concatenation _ ++_ as this corresponds to addition of finitely generated ideals in the sense
that for any two lists α, β we have that

⟨ [α0, . . . , αn] ++ [β0, . . . , βm] ⟩ ≡ ⟨α0, . . . , αn, β0, . . . , βm⟩
≡ ⟨α0, . . . , αn⟩+ ⟨β0, . . . , βm⟩ (4)

When checking that _ ++_ defines an operation on the quotient LR, it suffices to check that
it respects ∼∼∼, which in turn follows from (4).

For the meet of LR we need to define an operation _ · ·_ on lists that corresponds to
multiplication of finitely generated ideals. For two lists α, β this product α · ·β is the list of
all products of the form αiβj . Proving the correspondence to ideal multiplication, i.e.
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⟨ [α0, . . . , αn] · · [β0, . . . , βm] ⟩ ≡ ⟨α0β0, . . . , αnβ0, . . . , α0βm, . . . , αnβm⟩
≡ ⟨α0, . . . , αn⟩ · ⟨β0, . . . , βm⟩ (5)

is much more involved than (4), but gives us the well-definedness of _ · ·_ on the quotient.
Proving the lattice laws also proceeds by using (4) and (5), together with the equivalence
of ∼ and ∼∼∼, thus reducing these laws to special cases of standard equalities about ideal
addition/multiplication and radical ideals.

Showing the universal property of LR is then relatively straightforward. Note that the
basic opens are defined by the map D : R → LR, sending f : R to [ [f ] ], the equivalence
class of the singleton list [f ]. It then becomes straightforward to verify that for f, g : R

D(g) ≤ D(f) ⇔
√
⟨g⟩ ⊆

√
⟨f⟩ ⇔ f ∈ R[1/g]× ⇔ isContr

(
HomR

[
R[1/f] , R[1/g]

])
The last two logical equivalences hold by some standard commutative algebra and the
universal property of localization.7 The basic opens as a subset of LR are defined as the
function BasicOpens : LR → hProp, sending a to ∃[ f ∈ R ] (D(f) ≡ a). In other words
a ∈ BasicOpens if there merely exists an f such that a equals D(f). The type of basic opens
is then the type BR = Σ[ a ∈ LR ] (a ∈ BasicOpens). Note that by the universal property, the
only lattice morphism LR → LR commuting with D is the identity and from this it follows
that for any list α = [α0, . . . , αn] the equivalence class [ α ] is the finite join

∨n
i=0 D(αi).

Since being a basis is a proposition, this is enough to prove that the basic opens form a basis
of LR.

4 Category theory

We now turn to category theory and describe the machinery needed to lift sheaves from the
basis of a distributive lattice to the whole lattice. The lifting of a presheaf defined on a
subset of a distributive lattice, seen as a sub-poset category, is obtained by taking the right
Kan extension along the inclusion. The general theory of limits and Kan extensions in the
formalization closely follows Mac Lane [23]. We will not discuss details here, but only sketch
the lattice case in order to introduce notation and show where size issues enter the picture.

Note that for any category C and P : C → hProp, CP = Σ[ x ∈ C ] (x ∈ P ) becomes a
subcategory of C by taking arrows between pairs to be arrows between the first projections.
The projection fst induces a fully faithful embedding of CP into C. Let us now fix a distributive
lattice L : Type ℓ. For any P : L→ hProp ℓ, LP becomes a sub-poset of L.

Let C be an ℓ-complete category (i.e. with limits of diagrams in Type ℓ). The right Kan
extension then exists for any C-valued presheaf G on LP :(

LP
)op

Lop C
fst G

Ran G

(
Ran G

)
(x) = lim

←−

{
G(u)→ G(v) | u, v : LP s.t. v ≤ u ≤ x

}

7 As all the types above are propositions, we could also replace logical equivalence with equivalence of
types ≃.
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Moreover, since the functor induced by fst is fully faithful, Ran G extends G in the sense that
we have a natural isomorphism between G and

(
Ran G) ◦ fst. For the structure sheaf we need

to consider presheaves valued in CommRing ℓ, the category of commutative rings living in
the same universe as the base ring R. This category is ℓ-complete but not (ℓ+ 1)-complete.
It is precisely for this reason that we required LR to be in Type ℓ.

The main result of this section is that taking the right Kan extension of a presheaf defined
on the basis of a lattice preserves the sheaf property.8 This requires a definition of sheaf on
both distributive lattices and their bases suitable for formalization. For the remainder of
this section we fix a basis B of L. When outlining the formalization, we defined sheaves
on lattices by restricting the usual definition in terms of equalizer diagrams to finite covers.
However, we can express these equalizers as finite limits over diagrams of a certain shape.9
This approach is also taken by Coquand, Lombardi and Schuster in [10]. We decided to
follow it as it allows one to work with special data types for the shapes of the diagrams
involved, which is convenient in the formalization.

▶ Definition 4 (Sheaf diagram shapes). The category of the sheaf diagram shape for covers of
size n, has as objects indices i, where 1 ≤ i ≤ n, or pairs of indices (i, j), where 1 ≤ i < j ≤ n.
Arrows are either identity arrows or inclusions of singleton indices from the left i 7→ (i, j) or
right j 7→ (i, j).

In Agda the objects and arrows can be described as the terms of the following data types:

data DLShfDiagOb (n : N) : Type where
sing : Fin n → DLShfDiagOb n
pair : (i j : Fin n) → i < j → DLShfDiagOb n

data DLShfDiagHom (n : N) : DLShfDiagOb n → DLShfDiagOb n → Type where
idAr : {x : DLShfDiagOb n} → DLShfDiagHom n x x
singPairL : {i j : Fin n} {p : i < j} → DLShfDiagHom n (sing i) (pair i j p)
singPairR : {i j : Fin n} {p : i < j} → DLShfDiagHom n (sing j) (pair i j p)

Here Fin n is the finite type of n elements from 1 to n. Composition is easily defined by case
analysis as it is not possible to compose two non-identity arrows and the laws then follow
directly. We denote the resulting category by DLShfDiagCat n.
▶ Remark 5. In order for this to define a category in HoTT/UF we have to prove that the
hom-types are sets, i.e. that for x, y : DLShfDiagOb n we have isSet (DLShfDiagHom n x y).
This follows from a retraction argument using the encode-decode method [33].
Given a list of elements α = [α1, . . . , αn] with αi : L, we get a corresponding diagram in
the form of a functor DLShfDiagCat n→ Lop sending the singleton index i to αi and (i, j)
to αi ∧ αj . We call this the diagram associated to α. Furthermore, let F : Lop → C be a
presheaf, we then have a diagram DLShfDiagCat n→ C, obtained by composing the diagram
associated to α with F . We call this the F-diagram associated to α.

The join
∨n
i=1 αi induces a cone over the diagram associated to α and it is in fact a

limiting cone because limits are least upper bounds in the opposite of a poset category. A
presheaf on L is a sheaf if it preserves these limits:

8 In fact the right Kan extension (as opposed to left Kan) establishes an equivalence of categories between
sheaves on a lattice L and sheaves on a basis B of L, with its inverse being restriction to B. This is the
special case of the so-called comparison lemma for distributive lattices.

9 See e.g. Mac Lane [23, Thm. V.2.1].
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▶ Definition 6 (Sheaves on a distributive lattice). We say that F is a sheaf on the distributive
lattice L, if for all lists α = [α1, . . . , αn] with αi : L the induced cone of F

( ∨n
i=1 αi

)
over

the F-diagram associated to α is a limiting cone. In other words F
( ∨n

i=1 αi
)

is the limit of
the diagram

F
( ∨n

i=1 αi
)

F(αi) F(αi ∧ αj) F(αj)

for all 1 ≤ i < j ≤ n.

We now turn our attention to the corresponding notion for the basis B. Let G : Bop → C be
a presheaf. For a list α = [α1, . . . , αn] with αi : B, we have a diagram DLShfDiagCat n→ C,
which is obtained by composing the diagram associated to α with G. We call this the
G-diagram associated to α. As B is in general not closed under finite joins, the definition of
a basis-sheaf below has an extra condition, saying that limits of the associated diagrams are
only preserved if they exist.

▶ Definition 7 (Sheaves on a basis of a distributive lattice). We say that G is a sheaf on the
basis B of a distributive lattice, if for all α = [α1, . . . , αn] with αi : B, such that

∨n
i=1 αi is

in B, the induced cone of G
( ∨n

i=1 αi
)

over the G-diagram associated to α is a limiting cone.

The following lemma only holds for sheaves on the whole lattice, since it requires closure
under finite joins.

▶ Lemma 8. Let F : Lop → C, then F is sheaf if and only if F(⊥) is terminal in C and for
all x, y : L the following is a pullback square

F(x ∨ y) F(x)

F(y) F(x ∧ y)

⌟

Proof. We start by observing that Definition 6 also applies to the empty list []. The join
over [] is just ⊥ and the associated diagram is the “empty” diagram. So if F is a sheaf then
F(⊥) is terminal. Furthermore, the pullback squares are exactly the sheaf condition for two
element lists. This concludes the “only if” direction.

For the other direction, we proceed by induction on the length n. The base case n = 0
follows from F(⊥) being terminal. For the inductive step take a list α1, . . . , αn : L of length
n. By assumption the following is a pullback square

F
( ∨n

i=1 αi
)

F
( ∨n

i=2 αi
)

F(α1) F
( ∨n

i=2(α1 ∧ αi)
)

⌟

Now both lists α1, . . . , αn and α1 ∧ α1, . . . , α1 ∧ αn are of length n − 1. By applying the
induction hypothesis to both, one can easily check that F

( ∨n
i=1 αi

)
is the desired limit. ◀

This alternative characterization can be used to prove our “comparison lemma” for distributive
lattices. For the remainder of this section, let G : Bop → C be a sheaf on the basis B. The
key observation is the following technical lemma.
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▶ Lemma 9. For any list of elements α1, . . . , αk : B, we have that10

(
Ran G

)( ∨k
i=1 αi

) ∼= lim
←−

{
G(αi)→ G(αi ∧ αj)← G(αj) | 1 ≤ i < j ≤ k

}
(6)

Proof sketch. By definition we have(
Ran G

)( ∨k
i=1 αi

)
= lim
←−

{
G(u)→ G(v) | u, v : B s.t. v ≤ u ≤

∨k
i=1 αi

}
This immediately gives us the map from left to right, since we can restrict the defining
diagram of

(
Ran G

)( ∨k
i=1 αi

)
to the G-diagram associated to α.

For the inverse map we have to show that given any X : C with a cone based at X over
the G-diagram associated to α, we can extend this to a cone based at X over the defining
diagram of

(
Ran G

)( ∨k
i=1 αi

)
. Assume we have X : C with such a cone and let u : B such

that u ≤
∨k
i=1 αi. Then

∨k
i=1(u ∧ αi) ≡ u and hence

∨k
i=1(u ∧ αi) is in B. This means that

we can apply the assumption that G is a sheaf to this join. By substituting along this path,
we can see G(u) as the limit of the G-diagram associated to the u ∧ αi’s. By composing with
restrictions we get a cone based at X over the G-diagram associated to the u ∧ αi’s, and
thus an arrow X → G(u). It is not hard to show that this is functorial in u, which gives
us the desired inverse arrow. The proof that the two maps are mutually inverse, is quite
cumbersome and we will omit it here. ◀

The proof of the following theorem is the most technical of the entire formalization, so again
we only give an outline.

▶ Theorem 10. Ran G is a sheaf on the distributive lattice L.

Proof sketch. It suffices to check the terminal and pullback condition of Lemma 8. We
will restrict our attention to the pullback case here. Let x, y : L and note that, as being a
pullback square is a proposition, we can take covers x ≡

∨n
i=1 βi and y ≡

∨m
i=1 γi by base

elements, i.e. βi, γj : B for all i and j. Substituting these covers for x and y, we have to prove
the following: given X : C and arrows f and g such that the outer square in the diagram
below commutes, then there is a unique arrow h making the whole diagram commute:

X

(
Ran G

)( ∨n+m
i=1 (β ++γ)i

) (
Ran G

)( ∨n
i=1 βi

)
(
Ran G

)( ∨m
i=1 γi

) (
Ran G

)(( ∨n
i=1 βi

)
∧

( ∨m
i=1 γi

))

∃! h

f

g

(7)

Here (β ++γ) is the list-concatenation of β and γ. Applying Lemma 9 to (β ++γ), we get
such an arrow h from a cone based at X over the diagram{

G
(
(β ++γ)i

)
→ G

(
(β ++γ)i ∧ (β ++γ)j

)
← G

(
(β ++γ)j

)
| 1 ≤ i < j ≤ n+m

}
10 This is actually how the extension

(
Ran G

)
is defined in [10]. However, in general we cannot use concrete

covers of arbitrary elements of L by base elements to construct a functor into C if its h-level is unknown.



M. Zeuner and A. Mörtberg 14:15

To construct such a cone, we apply Lemma 9 to both β and γ and precompose the resulting
limiting cones with f and g respectively. This gives us two cones based at X, one over the
G-diagram associated to β and the other one over the G-diagram associated to γ. Note that
the two cones are compatible in the following sense: for all 1 ≤ i ≤ n and 1 ≤ j ≤ m the
following square commutes

X G(βi)

G(γj) G(βi ∧ γj)

This is because the outer square in diagram (7) commutes and it is sufficient to construct a
cone based at X over the G-diagram associated to (β ++γ).

Note that the induced h is the unique cone morphism between the cone thus constructed
and the limiting cone obtained from applying Lemma 9 to (β ++γ). Moreover, f and g

are the unique cone morphisms between their respective precomposition-cones based at X
and the limiting cones obtained from applying Lemma 9 to β and γ respectively. From this
it follows by a cumbersome diagram chase that h is the unique morphism making the two
triangles in diagram (7) commute. ◀

Formalizing the gaps in the above proof sketches is quite tedious and uses involved transports.
We refer the interested reader to the formalization.

5 The structure sheaf

We now have all the ingredients needed to formalize the structure sheaf. The basic opens
BR form a basis of LR and we have seen in the previous section how sheaves can be extended
along the embedding fst : BR → LR. What should the structure sheaf on BR then look like?
Focusing on the underlying presheaf and its action on objects for now, we need a function
BR → CommRing ℓ, which upon unfolding the definition of BR becomes(

Σ[ a ∈ LR ] ∃[ f ∈ R ] (D(f) ≡ a)︸ ︷︷ ︸
prop. trunc.

)
−→ CommRing ℓ︸ ︷︷ ︸

groupoid

Since membership in BR is defined as a mere existence condition using propositional truncation,
we can only specify the behavior of the structure sheaf in the case where we are given a point
constructor of this truncation. If a : LR is a basic open, such an element of the truncation
consists of an element f : R and a path p : D(f) ≡ a. In this case we know that the structure
sheaf should send ( a , | f , p | ) to R[1/f]. If the goal type were a proposition, this would
be enough to specify a function. However, the type of commutative rings is a groupoid,
requiring us to construct some non-trivial higher coherences.

To circumvent this problem we use the observation that the localizations are actually
R-algebras and that we could regard the structure sheaf as taking values in R-algebras. What
is usually called the structure sheaf in the literature is this R-algebra-valued sheaf composed
with the forgetful functor to commutative rings. In other words, the structure sheaf factors
through the forgetful functor from R-algebras to commutative rings. The single reason why
the situation is more well-behaved in R-algebras is the fact that

D(g) ≤ D(f) ⇐⇒ isContr
(

HomR

[
R[1/f] , R[1/g]

])
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Contractibility is a powerful concept in HoTT/UF and we will show how this can be used to
solve the coherence issues of the structure sheaf and gives rise to a reduction argument for the
sheaf property. We start with two lemmas for general constructions involving propositional
truncations and R-algebras. Note that these results are pretty much tailored to the situation
of the structure sheaf, but should also hold for other univalent categories, which are always
groupoids and even sets if they are posetal [33, Lemma 9.1.9, Ex. 9.1.14]. With a bit of
abuse of notation we will use R-Alg to denote both the type and the category of R-algebras.

▶ Lemma 11. Let X : Type and F : X → R-Alg. Assume further that for x, y : X we have
an isomorphism of R-algebras φxy : F(x) ∼= F(y) such that for x, y, z : X we have a path
φxz ≡ φyz ◦ φxy. Then we can construct a map ∥F∥ : ∥X ∥ → R-Alg such that for x : X we
have ∥F∥

(
| x |

)
= F(x) definitionally.

Proof. Since R-Alg is a groupoid, we can apply a result by Kraus [20, Prop. 2.3]. In order
to construct ∥F∥ we need a family of paths over any two elements of X satisfying a certain
coherence condition. For x, y : X we get a path sip φxy : x ≡ y. The corresponding coherence
condition states that for x, y, z : X, we need a path sip φxz ≡ sip φxy • sip φyz (where _•_
is path composition). By the functoriality of sip, which follows from the functoriality of
ua, this path type is equivalent to sip φxz ≡ sip (φyz ◦ φxy). But by assumption we have
φxz ≡ φyz ◦ φxy, so by applying sip to this path we are done. ◀

For the next lemma, note that for any category C and family P : C → Type, we have the
subcategory C∥P∥ of C induced by λ x→ ∥P (x) ∥ : C → hProp.

▶ Lemma 12. Let C be a category with a family P : C → Type and a family of R-algebras
F :

(
Σ[ x ∈ C ] P (x)

)
→ R-Alg. Assume furthermore that for x, y : C, p : P (x), q : P (y)

with an arrow f : C [x, y] we have

isContr
(

HomR

[
F(y , q) , F(x , p)

])
We can then construct a “universal” presheaf

Pu :
(
C∥P∥

)op → R-Alg

such that for x : C with p : P (x) we have

Pu(x , | p |) = F(x , p)

definitionally, and for y : C, q : P (y) with arrow f : C [x, y], Pu (f) is the unique R-algebra
morphism from F(y , q) to F(x , p).

Proof. We first describe the action of Pu on objects. By currying we fix x : C and need to
provide a function ∥P (x) ∥ → R-Alg. For this we apply Lemma 11 to F(x ,_) : P (x)→ R-Alg.
From our contractibility assumption it follows that given p, q : P (x) there are unique
morphisms from F(x , p) to F(x , q) and vice versa, so F(x , p) ∼= F(x , q). It remains to
check that the family of isomorphisms thus defined is closed under composition in the sense
of Lemma 11. Again, this follows from contractibility.

For the action of Pu on morphisms, we start by proving something stronger. Given
x, y : C, p : ∥P (x) ∥, q : ∥P (y) ∥ with an arrow f : C[x, y], we have:

isContr
(

HomR

[
Pu(x , p) , Pu(y , q)

])
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As being contractible is a proposition, we can assume that p = | p′ | and q = | q′ |. In this
case Pu(x , p) = F(y , p′) and Pu(y , q) = F(y , q′) and we can just use our contractibility
hypothesis. Since a morphism between (x , p) and (y , q) in C∥P∥ is just a morphism
f : C[x, y], we can take Pu(f) to be the center of contraction of the contractible type of
R-algebra morphisms above. The functoriality of Pu then follows immediately. ◀

We now want to apply this construction to the Zariski lattice (seen as a poset category). In
the situation of Lemma 12 with C = LR we set, for a : LR:

P (a) = Σ[ f ∈ R ] (D(f) ≡ a) and F(a , f , p) = R[1/f].

If we are given b ≤ a with D(f) ≡ a and D(g) ≡ b then D(g) ≤ D(f) and the type of
R-algebra morphisms from R[1/f] to R[1/g] is contractible. This way we obtain the desired

Pu :
(
BR

)op → R-Alg

Composing with the forgetful functor from R-algebras to commutative rings gives us the
desired presheaf on basic opens, denoted by OB . From this we finally obtain the structure
(pre-)sheaf O :

(
LR

)op → CommRing using the right Kan extension machinery described in
Section 4. The following fact then becomes rather straightforward to verify:

▶ Proposition 13. For any f : R we get a path O
(
D(f)

)
≡ R[1/f].

Proof. There is a canonical proof pf = | f , refl | of D(f) belonging to the basic opens. Since
we have a natural isomorphism between OB and O ◦ fst, we can use the SIP for commutative
rings to obtain a path O

(
D(f)

)
≡ OB

(
D(f) , pf

)
. But in R-algebras Pu

(
D(f) , pf

)
equals

R[1/f] definitionally and applying the forgetful functor to this gives us R[1/f] as a commutative
ring (unfortunately not by refl). ◀

As a corollary we obtain the standard sanity check:

▶ Corollary 14. O
(
⊤LR

)
≡ O

(
D(1)

)
≡ R.

Proof. D(1) is the top element of the Zariski lattice by definition, so the first path is just
refl. By Proposition 13 we get that O

(
D(1)

)
≡ R[1/1]. Combining this with Lemma 3.2, we

get the desired path. ◀

It remains to prove that OB is indeed a sheaf. At this point the standard strategy is to
reduce the general case of a cover D(h) ≡

∨n
i=1 D(fi) to the special case h = 1 and then

proceed by some algebraic computations in the rings R[1/fi].11 Informally this reduction step
follows from a short argument, but it identifies certain localizations by appealing to their
canonical isomorphisms. Making this formal in a system without univalence requires to take
the isomorphisms at face value and results in cumbersome diagram chases. This problem
is described in detail in [4]. There the ultimate breaking point was identifying the rings
R[1/f][1/g] and R[1/fg]. As the authors point out, simply providing a path between those
rings does not solve the problem at hand, since what is actually needed is a path between
the diagrams occurring in the sheaf condition. For the remainder of this section we want to
show that we can conclude that OB is a sheaf from the aforementioned special case, using
the observation that the canonical morphisms are unique in R-algebras. In our formalization,
the special case of covers of D(1) reads as follows:

11 See for example [15, theorem 2.33.], [13, theorem 1.3.7] or [18, theorem V.3.3]. Note that in these
classical textbooks the sheaf property only has to be verified for finite covers because basic opens are
quasi-compact. In contrast, we are restricted to finite covers by definition.
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▶ Lemma 15. For a ring A with f1, . . . , fn : A such that 1 ∈ ⟨f1, . . . , fn⟩, we have

A ≡ lim
←−

{
A[1/fi]→ A[1/fifj]← A[1/fj] | 1 ≤ i < j ≤ n

}
More precisely, the canonical cone of A over the diagram above is a limiting cone.

Proof. The proof follows closely the textbook approach, see e.g. Mac Lane and Moerdijk [24,
p. 125], by some hands-on algebra in the different rings involved. It is precisely at this point
that working with concrete implementations of the A[1/fi] as set quotients really simplifies
the formalization. ◀

Reducing the sheaf property of OB to Lemma 15 can now be done using the special nature
of Pu. We also need that the forgetful functor preserves and reflects limits and some basic
results about dependent paths. In the library this is packaged up in a generalized, technical
lemma, working for arbitrary diagrams, not only those needed for the sheaf property. For
the sake of readability however, we proceed to prove our main result directly.

▶ Theorem 16. OB is a sheaf on the basic opens.

Proof. Again for readability, we restrict ourselves to the case of binary covers, i.e. the
situation where D(h) ≡ D(f) ∨D(g) for f, g, h : R. As described in the proof of Lemma 8,
in this case the sheaf property can be reformulated as stating that sq below is a pullback.

OB
(
D(h) , ph

)
OB

(
D(g) , pg

)
OB

(
D(f) , pf

)
OB

(
D(fg) , pfg

)sq
R[1/h] R[1/g]

R[1/f] R[1/fg]

sqR

Here the p’s are, as in the proof of Proposition 13, the canonical proofs that the D’s are in
fact basic opens. Note that by definition, sq is obtained by applying the forgetful functor to
sqR and since the forgetful functor preserves limits (and in particular pullbacks) it suffices
to prove that sqR is a pullback in R-algebras.

The assumption D(h) ≡ D(f) ∨D(g) gives us
√
⟨h⟩ ≡

√
⟨f, g⟩ and by some standard

algebra 1 ∈ ⟨f/1, g/1⟩ in R[1/h]. This lets us apply Lemma 15 with A = R[1/h] and we get that
sq∗ is a pullback (in rings):

R[1/h] R[1/h][1/g]

R[1/h][1/f] R[1/h][1/fg]

⌟
sq∗

As all the vertices of sq∗ are R-algebras, by the canonical morphisms coming from R, and all
the edges of sq∗ commute with these canonical morphisms, we can lift sq∗ to a square sq∗R in
R-algebras. Since the forgetful functor reflects limits (and thus pullbacks), we get that sq∗R
is a pullback square as well.

All that we need is a path sq∗R ≡ sqR and we are done, as we can transport the property
of being a pullback square along this path of squares. It is immediate in Cubical Agda that
to give a path between squares we need to give four paths between the respective vertices
and four dependent paths between the morphisms over the paths of vertices. In order to see
how this applies to our situation, let us first look at the left side of sq∗R and sqR. We get the
following square where we have to provide paths at the top and bottom and a dependent
path filling this square connecting the vertical arrows ψ and φ:
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R[1/h] R[1/h]

R[1/h][1/f] R[1/f]

≡≡≡≡≡

ψ φ

≡≡≡≡

For the top path we just choose refl. For the bottom we apply Lemma 3 and get a path

R[1/h][1/f] ≡ R[1/hf] ≡ R[1/f]

where the first path is just Lemma 3.1 and the second path is Lemma 3.2 using the fact
that D(hf) ≡ D(f) by absorption. Let p denote the composition of these two paths. The
dependent path between ψ and φ is then of type

PathP
(
λ i→ HomR

[
R[1/h] , p i

])
ψ φ

By a standard result about PathP, this is equivalent to the non-dependent path type

transport
(
λ i→ HomR

[
R[1/h] , p i

])
ψ ≡ φ

But by definition φ is the center of contraction of the type HomR

[
R[1/h] , R[1/f]

]
. By

contractibility, we hence get a path to the transport of ψ and thus the desired dependent
path. Repeating this strategy four times, as described in the diagram below, gives us the
desired path sq∗R ≡ sqR and finishes the proof.

R[1/h] R[1/g]

R[1/h] R[1/h][1/g]

R[1/h][1/f] R[1/h][1/fg]

R[1/f] R[1/fg]

∃!

∃!

≡≡≡≡≡

∃!

≡≡≡
≡≡

⌟

∃!

≡≡≡
≡≡

≡≡≡≡≡

PathPPathP

PathP

PathP

◀

Combining this with Theorem 10 we get:

▶ Corollary 17. O is a sheaf on the Zariski lattice LR.

Most of the argument in the proof of Theorem 16, including the crucial transport goes
through for the general Pu construction and cones over arbitrary diagrams. If we take the
action of Pu on any cone of any shape, we only need two things for establishing that this is
a limiting cone: first, a limiting cone in R-algebras of the same shape and second, a family
of paths between the corresponding vertices of the two cones. In the case of structure sheaf
the limiting cone is provided by Lemma 15 and the paths are provided by Lemma 3. As a
matter of fact, the general case is actually easier to formalize and computationally better
behaved, even though the pullback case is easier to visualize.

TYPES 2022



14:20 Univalent Constructive Affine Schemes

6 Conclusion

In this paper we presented a fully constructive and predicative formalization of the structure
sheaf on the Zariski lattice in Cubical Agda. To this end, we gave a construction of the
Zariski lattice associated to a commutative ring that does not increase the universe level
even when working predicatively. We formalized the notion of sheaf on a distributive lattice
and formally proved the first steps towards a “comparison lemma” for distributive lattices.
In particular, we showed how to extend a sheaf defined on the basis of a lattice, and taking
values in any complete category, to a sheaf on the whole lattice. Applying this to the Zariski
lattice we then constructed the structure sheaf on its basis. We had to solve higher coherence
conditions in order to show that this construction is well-defined. The main insight was that
by essentially regarding the structure sheaf to be valued in algebras, not rings, we could use
contractibility to solve the coherence issues. Furthermore, it was the same contractibility
result that let us formalize the textbook proof of the sheaf property with the help of some
univalent machinery.

As discussed in the introduction nothing in the paper crucially relied on cubical features,
but they proved convenient in the formalization. In particular, having more things holding by
refl, eliminators computing also for higher constructors, and having direct access to dependent
paths in the form of PathP types simplified many of the formal proofs. We hope nevertheless
that the main ideas introduced in this paper could prove useful for formalizations in other
systems. For the remainder of this paper we want to make a few comments that should help
putting our work into context.

6.1 Comparison to the classical definition of affine schemes
Even though the constructive, predicative approach described in this paper is similar to the
standard, classical textbook approach to affine schemes in the sense that it involves a “lifting”
from basic opens, it might not be immediately clear whether we loose anything by working
with the Zariski lattice and finitary lattice sheaves. As mentioned in the introduction, from
a classical perspective this is not the case because SpecR is a coherent space. A topological
space X is coherent if it is compact, sober (its non-empty irreducible closed subsets are
the closure of a single point), and its compact opens are closed under finite intersections
and form a basis of the topology of X. A coherent map between coherent spaces X and
Y is a continuous map f : X → Y such that for any compact open K ⊆ Y , its pre-image
f−1(K) is compact as well. Stone’s representation theorem for distributive lattices [29] states
that the functor from the category of coherent spaces with coherent maps to distributive
lattices, sending a coherent space to the lattice of its compact opens, is an equivalence of
categories.12 For the inverse direction we take a distributive lattice and recover the opens of
the corresponding space by taking ideals on that lattice. We can even recover the points of
the space by taking prime filters on the lattice. In the case of SpecR the prime filters of
LR are just the complements of prime ideals of R.13

The approach of defining LR through formal generators D(f) and obtaining the locale of
Zariski opens as the ideals of LR, is taken in Johnstone’s “Stone Spaces” [18, Chap. V.3]. The
structure sheaf on the resulting locale of LR-ideals can then be constructed by only defining
it on the base elements D(f). In our predicative and constructive setting we only extend the

12 Furthermore, any coherent space is coherently homeomorphic to Spec R for some ring R [17], i.e. Spec
as a functor from commutative rings to coherent spaces is essentially surjective.

13 See also the discussion by Coquand, Lombardi and Schuster in the introduction of [9].
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structure sheaf construction on basic opens to LR. Again, classically no information is lost.
Whether one considers the structure sheaf to be defined on SpecR as a topological space, on
the locale of LR-ideals or only on LR, it is determined (up to unique isomorphism) by what
happens at the level of basic opens.

More generally, for any coherent space X, the category of sheaves on X is equivalent to
the category of (finitary) lattice-sheaves on the compact opens of X. This follows from the
comparison lemma for topological spaces, which gives us an equivalence between sheaves
on X and sheaves on the basis of compact opens of X. But since the compact opens are
all compact we only have to consider finite covers for the sheaf property, which gives us
the equivalence to lattice-sheaves on compact opens. Formalizing this classical fact would
certainly be interesting in its own right. But as we are interested in the formalization of
constructive mathematics, we will just see this fact as a justification that the notion of
constructive affine scheme that we arrive at is not fundamentally weaker than the standard
classical definition.

6.2 Existing formalizations
To our knowledge, we have presented the first constructive and predicative formalization of
affine schemes. However, there are several classical formalizations of affine and general schemes
in the literature by now. Examples include an early setoid-based formalization in Coq by
Chicli [6], the aforementioned formalization in Lean’s mathlib [4], a more recent formalization
in Isabelle/HOL [3], and a univalent Coq formalization in the UniMath library [5]. It is
noteworthy that none of these formalizations define the structure sheaf on basic opens first.
Instead, they follow the approach of Hartshorne’s classic textbook “Algebraic Geometry”
[16]. This approach directly defines the structure sheaf on arbitrary opens, but is inherently
non-constructive. Assuming classical reasoning (including the axiom of choice) it is quite
straightforward to formalize Hartshorne’s definition. As a result, the UniMath formalization
[5] does not actually use univalence in its definition of the structure sheaf.

It should be mentioned however, that in the beginning the Lean formalization [4] did use
the “lift from basic opens approach”. Being unable to formalize the notion of “canonical
isomorphism” between localizations R[1/f] in a satisfactory way, Lean’s mathlib [26] con-
sequently adopted a non-standard take on localizations. Ultimately, the definition of the
structure sheaf got completely overhauled using the Hartshorne approach. Buzzard et al.
argue in [4, Sect. 3.4] that even with the structure sheaf directly defined using univalence,
proving the sheaf property would run into the same problems that they encountered. As the
equality/path obtained by an application of the univalence axiom would still carry around
the isomorphism in question, it is a priori unclear what has actually been gained by working
with paths, as opposed to working with isomorphisms directly. One of the main results of this
paper is that on the contrary we can use univalence in a genuinely helpful way to construct
the structure sheaf on basic opens and prove its sheaf property. This is achieved by shifting
the focus to R-algebras, where the canonical isomorphisms between localizations become the
center of contraction of the corresponding path spaces. Indeed, the localizations R[1/f] form
a full subcategory of the category of R-algebras that is posetal and equivalent to the poset
of basic opens.

6.3 Different univalent approaches to basic opens
One of the main challenges of our formalization was to solve the higher coherence issues when
constructing the structure presheaf on basic opens. These coherence issues arose because the
basic opens were defined as a subset of the Zariski lattice (i.e. as functions into propositions)
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using propositional truncation. In constructive mathematics it is common to define subsets
X as sets A with an embedding i : A ↪→ X and one can prove in HoTT/UF that these two
notions of subsets are equivalent. This raises the question whether one could define the type
of basic opens more directly, thus eliminating the coherence issues.

The basic opens can be defined as a quotient on R, equating any f and g such that√
⟨f⟩ =

√
⟨g⟩. A first, now deprecated, formalization attempt defined the structure sheaf

on this type. However, in this case we need to map from a set quotient into an groupoid,
which is notoriously hard. The general characterization of such maps given by Kraus and von
Raumer [21, Thm. 13] is not easily applicable in this case. As a result, we ended up working
in R-algebras because the contractibility of the path spaces between localizations solved the
coherence issues in this case as well. Rijke has since suggested, in private communications,
that the basic opens can be seen as the Rezk completion [33, Sec. 9.9] of R as a poset
category with the pre-order f ≤ g given by inclusion

√
⟨f⟩ ⊆

√
⟨g⟩. This could potentially

be used for an alternative development where coherence issues are avoided altogether.

6.4 Towards constructive quasi-compact, quasi-separated schemes

The structure sheaf, as constructed in this paper, lets us define constructive affine schemes.
This is of course only the first step towards a formalization of constructive schemes. Schemes
are classically defined as a special class of locally ringed spaces. However, in the constructive,
predicative setting of [10] we are confined to ringed lattices, i.e. distributive lattices equipped
with a sheaf valued in commutative rings. These correspond to ringed coherent spaces. Maps
between those are maps of ringed spaces where the underlying continuous map is coherent.
Morphisms of schemes, however, are just morphisms of locally ringed spaces, i.e. morpisms
of ringed spaces that induce local morphisms on the stalks. In general these two types of
morphisms do not coincide.

Fortunately, the situation is well-behaved for quasi-compact, quasi-separated schemes, a
very important class of schemes that, in particular, encompasses all Noetherian schemes.14

They are actually just the schemes where the underlying topological space is coherent.
Furthermore, if X and Y are quasi-compact, quasi-separated schemes, for any morphism
of locally ringed spaces (f, f ♯) : (X,OX) → (Y,OY ), the underlying continuous map f is
coherent. As pointed out in [10], this was essentially already proved by Grothendieck [13, Sec.
6.1]. This makes the constructive lattice-based approach to quasi-compact, quasi-separated
schemes as worked out in [10] possible.

Such an approach still needs to be able to talk about morphisms of quasi-compact, quasi-
separated schemes, i.e. morphisms of locally ringed spaces. This problem is circumvented in
[10] by considering locally affine morphisms. A locally affine morphism is induced by ring
homomorphisms on affine covers and it is a standard exercise to show that for general schemes
this is equivalent to a morphism of locally ringed spaces. For a formalization however, it
could be advantageous to work with a constructive reformulation of morphisms of locally
ringed spaces. Schuster discusses the right constructive, point-free notion of a morphism
of locally ringed spaces in the setting of formal topology in [28]. Transferring this to a
development based on ringed lattices could lead to a constructive account of quasi-compact,
quasi-separated schemes closer to the usual classical presentation and easier to formalize.

14 Deligne in fact argued that this class of schemes is actually sufficient for a lot of applications in algebraic
geometry [12].
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