
On the Complexity of k-DQBF
Long-Hin Fung #

Department of Computer Science and Information Engineering,
National Taiwan University, Taipei, Taiwan

Tony Tan #

Department of Computer Science and Information Engineering,
National Taiwan University, Taipei, Taiwan

Abstract
Recently Dependency Quantified Boolean Formula (DQBF) has attracted a lot of attention in the
SAT community. Intuitively, a DQBF is a natural extension of quantified boolean formula where for
each existential variable, one can specify the set of universal variables it depends on. It has been
observed that a DQBF with k existential variables – henceforth denoted by k-DQBF – is essentially
a k-CNF formula in succinct representation. However, beside this and the fact that the satisfiability
problem is NEXP-complete, not much is known about DQBF.

In this paper we take a closer look at k-DQBF and show that a number of well known classical
results on k-SAT can indeed be lifted to k-DQBF, which shows a strong resemblance between k-SAT
and k-DQBF. More precisely, we show the following.
(a) The satisfiability problem for 2- and 3-DQBF is PSPACE- and NEXP-complete, respectively.
(b) There is a parsimonious polynomial time reduction from arbitrary DQBF to 3-DQBF.
(c) Many polynomial time projections from SAT to languages in NP can be lifted to polynomial

time reductions from the satisfiability of DQBF to languages in NEXP.
(d) Languages in the class NSPACE[s(n)] can be reduced to the satisfiability of 2-DQBF with O(s(n))

universal variables.
(e) Languages in the class NTIME[t(n)] can be reduced to the satisfiability of 3-DQBF with

O(log t(n)) universal variables.
The first result parallels the well known classical results that 2-SAT and 3-SAT are NL- and
NP-complete, respectively.

2012 ACM Subject Classification Theory of computation → Problems, reductions and completeness

Keywords and phrases Dependency quantified boolean formulas, existential variables, complexity

Digital Object Identifier 10.4230/LIPIcs.SAT.2023.10

Funding We acknowledge the generous financial support of Taiwan National Science and Technology
Council under grant no. 109-2221-E-002-143-MY3.

Acknowledgements We would like to thank Roland Jiang Jie-Hong for many useful and insightful
discussions as well as the anonymous referees for their constructive feedback.

1 Introduction

The last few decades have seen a tremendous development of boolean SAT solvers and
their applications in many areas of computing [4]. Motivated by applications in hardware
verification and synthesis [19, 3, 29, 17, 5, 7, 22, 16], there have been attempts to build
efficient solvers for even higher complexity class such as NEXP. One NEXP-complete logic
that recently has attracted a lot of attention is Dependency Quantified Boolean Formulas
(DQBF). Intuitively, DQBF is a natural extension of Quantified Boolean Formula (QBF)
where for each existential variable, one can specify the set of universal variables that it
depends on.

© Long-Hin Fung and Tony Tan;
licensed under Creative Commons License CC-BY 4.0

26th International Conference on Theory and Applications of Satisfiability Testing (SAT 2023).
Editors: Meena Mahajan and Friedrich Slivovsky; Article No. 10; pp. 10:1–10:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:b08201030@ntu.edu.tw
mailto:tonytan@csie.ntu.edu.tw
https://doi.org/10.4230/LIPIcs.SAT.2023.10
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 On the Complexity of k-DQBF

It has been observed by various researchers that a DQBF is essentially a succinctly
represented boolean formula in conjunctive normal form (CNF), where the information about
each clause is encoded inside the matrix of the DQBF and that the number of existential
variables in a DQBF corresponds precisely to the width of the clauses of the CNF formula
it represents. Such succinctness makes the the satisfiability of DQBF jumps to NEXP-
complete [26, 8], compared to “only” NP-complete for SAT. However, beside these facts, not
much is known about DQBF and it is natural to ask whether there are more resemblances
between DQBF and CNF formulas.

In this paper we show that some well known classical results on SAT can indeed be lifted
to DQBF – only with exponential blow-up in complexity due to the succinctness of DQBF.
To be more precise, for an integer k ⩾ 1, let k-DQBF denote a DQBF with k existentially
quantified variables. We establish the following.
(a) The satisfiability of k-DQBF where k = 1, 2, 3 is coNP-complete, PSPACE-complete

and NEXP-complete, respectively.
(b) There is a parsimonious polynomial time reduction from arbitrary DQBF to 3-DQBF.
Note that (a) parallels the well known classical complexity results on 2-SAT and 3-SAT, i.e.,
NL-complete and NP-complete and (b) parallels the well known parsimonious polynomial
time reduction from an arbitrary boolean formula to a 3-CNF formula.

The fact that DQBF is a succinct representation of CNF formulas actually has the
same flavour as the succinct representation of graphs with boolean circuits [14]. In such
representation, instead of being given the list of edges in a graph, we are given a boolean
circuit C(x̄, ȳ) where x̄, ȳ are vectors of boolean variables with length n. The circuit C
represents a graph with {0, 1}n being the set of vertices and two vertices ū and v̄ are adjacent
if and only if C(ū, v̄) = 1. It is shown in [25] that many natural NP-complete graph problems
become NEXP-complete when succinctly represented. We observe that the proof in [25] can
be modified to obtain reductions from DQBF in the following sense.
(c) If there is a projection (in the sense of [33]) from SAT to a graph problem Π, then there

is a polynomial time (Karp) reduction from DQBF to the succinctly represented Π.
Briefly, a projection is a special kind of polynomial time reductions first introduced in [33]
and it is known that many reductions from SAT to various NP-complete problems are in
fact projections [25]. Intuitively, we can view (c) as lifting the reductions from SAT in the
class NP to the reductions from DQBF in the class NEXP.

We also observe that DQBF can be used to describe the languages in NTIME[t(n)] and
NSPACE[s(n)]. More precisely, we show the following.
(d) Every language in the class NTIME[t(n)] can be reduced to 3-DQBF instances with

O(log t(n)) universal variables.
(e) Every language in the class NSPACE[s(n)] can be reduced to 2-DQBF instances with

O(s(n)) universal variables.
Note that (d) parallels the reductions from the languages in NTIME[t(n)] to SAT in-
stances with O(t(n) log t(n)) variables and (e) parallels the reductions from the languages in
NSPACE[s(n)] to QBF instances with O(s(n)2) variables.

Finally, it is open whether there is a natural bona fide problem in the class NEXP [25].
In addition to DQBF being a natural extension of QBF and SAT, results (a)–(c) exhibit
a strong resemblance between DQBF and CNF formula. Moreover, (d) and (e) show that
DQBF can be used to describe both the classes NTIME[t(n)] and NSPACE[s(n)], as opposed
to the classical results where we need two different logics QBF and SAT to describe them.
Combined with the work in [8], we hope they can be convincing evidences for DQBF to be
the bona fide problem in NEXP, just like SAT in NP and QBF in PSPACE.

L.-H. Fung and T. Tan 10:3

Related works. That DQBF is NEXP-complete is proved in [26] and the hardness proof
uses an unbounded number of existential variables. It is recently improved in [8] where it is
shown that 4 existential variables are sufficient to achieve NEXP-hardness.

Many powerful and interesting techniques have been developed in the last decade for
solving DQBF. See, e.g., [2, 12, 15, 23, 39, 36, 38, 21, 31] and the references within. Some
recent solvers include iDQ [13], dCAQE [35], HQS [18, 37], DQBDD [32] and Pedant [28, 27].
Recently there is also a DQBF track in the annual SAT competitions [1].

As mentioned earlier, various researchers have observed that a DQBF is essentially a
succinctly represented CNF formula, which can be established by the universal expansion [6,
13, 3]. Briefly, it removes the universal variables one by one by considering both its values 0
and 1 separately resulting in an exponentially long boolean formula [6]. Based on this insight,
some DQBF benchmarks can be constructed by encoding succinctly graph reachability
instances and SAT instances [3]. The solver iDQ in [13] is based on universal expansion with
additional refinement strategies that remove unnecessary clauses.

A natural extension of QBF to second-order logic that captures the exponential hierarchy
is studied in [9, 20]. Naturally a DQBF can be viewed as an existential second-order boolean
formula. However, [9, 20] do not study the precise complexity and expressiveness of DQBF
itself. In [30] a characterization of a PSPACE subclass of DQBF is introduced. It requires
that the dependency sets of all the existential variables are either the same or disjoint and
the matrix is in CNF. A close examination shows that it is a Σp

3 subclass of DQBF, though
the precise complexity is still unknown. This subclass is orthogonal to the one in this paper
which is based on the number existential variables.

The celebrated Cook-Levin reductions [10, 24] show that every language in NTIME[t(n)]
can be reduced to CNF formulas with O(t(n)2) variables. The bound on the number of
variables was later improved in [11] to O(t(n) log t(n)). The reduction from languages in
NSPACE[s(n)] to QBF with O(s(n)2) variables is from [34]. In [8] the notion called succinct
projection is introduced as a general method to reduce various natural NEXP-complete
problems to DQBF. It is the analogue of the Cook-Levin reductions for the class NEXP.
Our result (c) shows that the reductions in [25] can be viewed as the “converse” reductions
of the ones in [8].

The succinct representation of graphs with boolean circuits was first introduced in [14]. As
mentioned earlier, under such representation, many NP-complete problems become NEXP-
complete and NL-complete problems become PSPACE-complete [25], using the notion of
projections introduced in [33]. To the best of our knowledge, this is the only known technique
to lift the results from the class NL and NP to the class PSPACE and NEXP.

Organisation. We first introduce some useful notations and the formal definition of DQBF
in Section 2. In Section 3 we study the complexity of DQBF based on the number of
existential variables. We discuss how to lift the reductions for NP-complete problems to
the class NEXP in Section 4. Then, in Section 5 we show the relations between the class
NTIME[t(n)] and NSPACE[s(n)] and DQBF. Finally, we conclude with Section 6.

2 Preliminaries

Notations. In this paper we let Σ = {0, 1}. We use 0 and 1 to represent the boolean values
false and true, respectively. We will use the symbol a, b, c (possibly indexed) to denote an
element in Σ and ā, b̄, c̄ (possibly indexed) to denote a string in Σ∗ with |ā| denoting the
length of ā. To avoid clutter, tuples of values from Σ will be written as strings. For example,
instead of (1, 0, 1, 1), we will simply write 1011.

SAT 2023

10:4 On the Complexity of k-DQBF

We use x, y, z, u, v (possibly indexed) to denote boolean variables and the bar version
x̄, ȳ, z̄, ū, v̄ (possibly indexed) to denote vectors of boolean variables with |x̄| denoting the
length of x̄. We implicitly assume that in a vector x̄ there is no variable occurring more than
once. We write z̄ ⊆ x̄ when every variable in z̄ also occurs in x̄.

We write φ(x̄) to denote a (boolean) formula/circuit with variables/input gates x̄. When
the variables/input gates are not relevant or clear from the context, we simply write φ.

Let φ(x̄) be a formula/circuit where x̄ = (x1, . . . , xn). Let z̄ = (z1, . . . , zn). We write
φ[x̄/z̄] to denote the formula obtained by substituting each xi with zi simultaneously for each
1 ⩽ i ⩽ n. For a string ā = (a1, . . . , an) ∈ Σn, we write φ[x̄ 7→ ā] to denote the evaluation
value of φ when we assign each xi with ai.

For z̄ ⊆ x̄ and ā ∈ Σ|x̄|, we write prjx̄(z̄, ā) to denote the projection of ā to the components
in z̄ according to the order of the variables in x̄. For example, if x̄ = (x1, . . . , x5) and
z̄ = (x2, x4, x5), then prjx̄(z̄, 00101) is 001, i.e., the projection of 00101 to its 2nd, 4th and
5th bits. Note that if ā = (a1, . . . , an) and x̄ = (x1, . . . , xn), prjx̄(xi, ā) is the value ai.

Dependency quantified boolean formula. A dependency quantified boolean formula (DQBF)
in prenex normal form is a formula of the form:

Φ := ∀x1 · · · ∀xn ∃y1(z̄1) · · · ∃yk(z̄k) ϕ (1)

where each z̄i ⊆ (x1, . . . , xn) and ϕ, called the matrix, is a quantifier-free boolean formula using
variables x1, . . . , xn, y1, . . . , yk. The variables x1, . . . , xn are called the universal variables,
y1, . . . , yk the existential variables and each z̄i the dependency set of yi. We call Φ a k-DQBF,
where k is the number of existential variables in Φ. To avoid clutter, sometimes we write Φ
as: Φ := ∀x̄ ∃y1(z̄1) · · · ∃yk(z̄k) ϕ, where x̄ = (x1, . . . , xn).

A DQBF Φ in the form (1) is satisfiable, if there is a tuple (f1, . . . , fk) of functions where
fi : Σ|z̄i| → Σ for every 1 ⩽ i ⩽ k, and by replacing each yi with fi(z̄i), the formula ϕ

becomes a tautology. The tuple (f1, . . . , fk) is called the satisfying Skolem functions for Φ.
In this case, we also say that Φ is satisfiable by the Skolem functions (f1, . . . , fk).

The problem sat(DQBF) is defined as follows. On input DQBF Φ in the form (1), decide
if it is satisfiable. For k ⩾ 1, we denote by sat(k-DQBF) the restriction of sat(DQBF) on
k-DQBF. As a language, sat(DQBF) := {Φ | Φ is a satisfiable DQBF} and sat(k-DQBF) :=
{Φ | Φ is a satisfiable k-DQBF}.

▶ Remark 1. We may allow the matrix ϕ to be in a circuit form, i.e., it is given as a (boolean)
circuit with input gates x1, . . . , xn, y1, . . . , yk. Such form does not effect the generality of
our result since it can be converted to a standard formula form with additional universal
variables, but without additional existential variables. See [8, Proposition 1].

▶ Remark 2. A DQBF can be seen a natural generalization of SAT and QBF. Indeed, a
boolean formula with variables y1, . . . , yk can be seen as a DQBF without any universal
variable and y1, . . . , yk are existential variables with empty dependency set. It is also easy to
see that a QBF is just a DQBF where the dependency set form an ordering w.r.t. inclusion,
i.e., z̄1 ⊆ z̄2 ⊆ · · · ⊆ z̄k. Indeed, a QBF ∀x1∃y1∀x2∃y2 · · · ∀xn∃yn ϕ can be viewed as a DQBF
∀x1∀x2 · · · ∀xn∃y1(x1)∃y2(x1, x2) · · · ∃yn(x1, . . . , xn) ϕ. Conversely, suppose we have a DQBF
Φ as in (1), where z̄1 ⊆ z̄2 ⊆ · · · ⊆ z̄k. Reordering the universal variables, we may assume
that z̄i = (x1, . . . , xji) for each 1 ⩽ i ⩽ k, where j1 ⩽ j2 ⩽ · · · ⩽ jk ⩽ n. Thus, Φ can be
rewritten as the QBF: ∀x1 · · · ∀xj1∃y1∀xj1+1 · · · ∀xj2∃y2∀xj2+1 · · · ∀xjk

∃yk∀xjk+1 · · · ∀xn ϕ.

L.-H. Fung and T. Tan 10:5

Universal expansion. We briefly review the universal expansion method, a useful and well
known method for showing that a k-DQBF essentially represents an exponentially large
k-CNF formula [6, 13, 3]. Let Φ be k-DQBF as in (1). For each ā ∈ Σn, let φā be the
following boolean formula/circuit.

φā := ϕ [x̄/ā, ȳ/(f1(prjx̄(z̄1, ā)), . . . , fk(prjx̄(z̄k, ā)))]

That is, the variables in x̄ in the matrix ϕ are substituted with the values in ā and each
yi with fi(prjx̄(z̄i, ā)). Treating each fi(prjx̄(z̄i, ā)) as a boolean variable, φā is a standard
boolean formula/circuit with k variables and can be rewritten as a k-CNF formula, say, by
building its truth table where each row (in the truth table) with 0 value is represented by
one clause. By expanding the universal quantifiers, the DQBF Φ can be easily seen to be
equivalent to:∧

ā∈Σn

φā,

where we assume each φā is already rewritten in k-CNF.
For our purpose in this paper it is not necessary to convert the entire φā into a k-CNF

formula. We usually only need to extract one clause at a time from the formula φā, which is
facilitated by the following notation. For each (ā, b̄) ∈ Σn × Σk, where ā = (a1, . . . , an) and
b̄ = (b1, . . . , bk), we define the clause Cā,b̄ as ℓ1 ∨ · · · ∨ ℓk, where each literal ℓi is as follows.

ℓi :=

 fi(prjx̄(z̄i, ā)) if bi = 0

¬fi(prjx̄(z̄i, ā)) if bi = 1

We call Cā,b̄ the clause associated with (ā, b̄) and the universal expansion of Φ is defined as:

exp(Φ) :=
∧

(ā,b̄)∈Σn×Σk s.t. ϕ[(x̄,ȳ) 7→(ā,b̄)]=0

Cā,b̄

Intuitively, ϕ[(x̄, ȳ) 7→ (ā, b̄)] = 0 means that we are only interested in the row ā, b̄ that yields
0 in the truth table of ϕ. Since the clause Cā,b̄ is defined precisely to represent such row 0, it
is straightforward to see that exp(Φ) is indeed equivalent to

∧
ā∈Σn φā, and hence, to Φ.

Alternatively, we can also define the expansion exp(Φ) by the following simple rewriting
rule. Let x̄ = (x1, . . . , xn) and ȳ = (y1, . . . , yk). With additional “fresh” k universal variables
v̄ = (v1, . . . , vk), Φ is equivalent to the following DQBF Φ′.

Φ′ := ∀x̄ ∀v̄ ∃y1(z̄1) · · · ∃yk(z̄k)
(k∧

i=1
vi = yi

)
→ ϕ′

where ϕ′ is ϕ[ȳ/v̄], i.e., the formula obtained by simultaneously substituting each yi with vi

in ϕ. Note that ϕ′ no longer uses existentially quantified variables. By simple rewriting rule
and the expansion on the universal quantifiers, we obtain:

∧
(ā,b̄)∈Σn×Σk

(k∨
i=1

(¬bi ∧ fi(prjx̄(z̄i, ā))) ∨ (bi ∧ ¬fi(prjx̄(z̄i, ā)))
)

∨ ϕ′[x̄, v̄ 7→ ā, b̄] (2)

SAT 2023

10:6 On the Complexity of k-DQBF

For each (ā, b̄) ∈ Σn × Σk, when ϕ′[x̄, v̄ 7→ ā, b̄] = 1, the conjunct already yields 1. Thus, (2)
is equivalent to:

∧
(ā,b̄)∈Σn×Σk s.t. ϕ′[x̄,v̄ 7→ā,b̄]=0

(k∨
i=1

(¬bi ∧ fi(prjx̄(z̄i, ā))) ∨ (bi ∧ ¬fi(prjx̄(z̄i, ā)))
)

Since bi is either 0 or 1, exactly one of ¬bi ∧ fi(prjx̄(z̄i, ā)) and bi ∧ ¬fi(prjx̄(z̄i, ā)) evaluates
to 0. Thus, it evaluates to either fi(prjx̄(z̄i, ā)) or ¬fi(prjx̄(z̄i, ā)). Therefore, the disjunction∨k

i=1(¬bi ∧ fi(prjx̄(z̄i, ā))) ∨ (bi ∧ ¬fi(prjx̄(z̄i, ā))) is equivalent to Cā,b̄.

3 The complexity of sat(k-DQBF)

In this section we will study the complexity of sat(k-DQBF) for k = 1, 2, 3. We will start
with the case when k = 1 and 2 in Subsection 3.1. The case when k = 3 is presented in
Subsection 3.2.

3.1 On sat(1-DQBF) and sat(2-DQBF)
We first establish that sat(1-DQBF) is coNP-complete.

▶ Theorem 3. sat(1-DQBF) is coNP-complete.

Proof. We note that checking whether a boolean formula is tautology is just a special case of
sat(1-DQBF) where the existential variable is not used. Since checking tautology is already
coNP-hard, the same hardness for sat(1-DQBF) follows immediately. To establish the coNP
membership, note that a 1-CNF formula is not satisfiable if and only if it contains two
contradicting literals. We will use the same idea for 1-DQBF.

Let Ψ be the following DQBF.

Ψ := ∀x̄∃y(z̄) ψ, where x̄ = (x1, . . . , xn) (3)

It is straightforward to show that there are two contradicting literals in exp(Ψ) if and only if
there is ā, b̄ ∈ Σn+1 such that:
1. prj(x̄,y)(y, ā) ̸= prj(x̄,y)(y, b̄).
2. prj(x̄,y)(z̄, ā) = prj(x̄,y)(z̄, b̄).
3. ψ[(x̄, y) 7→ ā] = ψ[(x̄, y) 7→ b̄] = 0.
The algorithm for accepting unsatisfiable 1-DQBF works as follows. On input Ψ as in (3),
guess two assignments ā, b̄ and accept if conditions 1–3 hold. ◀

Next we establish that sat(2-DQBF) is PSPACE-complete.

▶ Theorem 4. sat(2-DQBF) is PSPACE-complete.

Proof. The PSPACE-hardness is established by reduction from succinct 2-colorability, which
is known to be PSPACE-complete [25]. The problem succinct 2-colorability is defined as:
On input circuit C, decide if the graph represented by C is 2-colorable, i.e., there is coloring
of the vertices with 3 colors such that no two adjacent vertices have the same color.

Let C(ū, v̄) be the input circuit, where |ū| = |v̄| = n. We may assume that {0, 1} is the
set of colors and view a coloring on the vertices as a function f : {0, 1}n × {0, 1}. Consider
the following 2-DQBF.

L.-H. Fung and T. Tan 10:7

Ψ := ∀x̄1∀x̄2 ∃y1(x̄1)∃y2(x̄2)
(
x̄1 = x̄2 → y1 = y2

)
∧

(
C(x̄1, x̄2) → y1 ̸= y2

)
where |x̄1| = |x̄2| = n. Intuitively, it states that y1 and y2 must represent the same function
and that two adjacent vertices have different colors. It is routine to verify that Ψ is satisfiable
if and only if the graph represented by the circuit C is 2-colorable.

To establish the PSPACE-membership, we will use the same idea that 2-SAT is in NL.
Note that 2-CNF formula can be rewritten as a conjunction of implications:

(ℓ1,1 → ℓ1,2) ∧ (ℓ2,1 → ℓ2,2) ∧ · · · ∧ (ℓn,1 → ℓn,2)

where each ℓi,j is a literal. In turn, it can be viewed as a directed graph where the literals
are the vertices and the implications are the edges. It is not satisfiable if and only if there is
a cycle in the graph that contains a literal ℓ and its negation. To check the existence of such
a cycle, it suffices to use O(t) space, where t is the number of bits required to remember a
literal.

We will use a similar idea to establish the PSPACE-membership of sat(2-DQBF). The
detail is as follows. Let Ψ be the input 2-DQBF.

Ψ := ∀x̄ ∃y1(z̄1)∃y2(z̄2) ψ where x̄ = (x1, . . . , xn).

The algorithm works as follows.
Guess ā ∈ Σn+2 where ψ[(x̄, y1, y2) 7→ ā] = 0 and a variable fi(prjx̄,y1,y2(z̄i, ā)) in the
clause Cā.
Guess a series of implications from fi(prjx̄,y1,y2(z̄i, ā)) to its negation in exp(Ψ) and vice
versa.

To guess a series of implications from fi(prjx̄,y1,y2(z̄i, ā)) to its negation, it suffices to remember
only one literal at a time which requires only O(n) bits. This establishes the PSPACE-
membership of sat(2-DQBF). ◀

3.2 On sat(k-DQBF) where k ⩾ 3
In this subsection we will consider sat(k-DQBF) where k ⩾ 3. We will first establish that
sat(3-DQBF) is NEXP-complete. Then, we will show how transform arbitrary DQBF to an
equisatisfiable 3-DQBF.

▶ Theorem 5. sat(3-DQBF) is NEXP-complete.

Proof. The membership is straightforward. The proof for hardness is by reduction from
succinct 3-colorability which is known to be NEXP-complete [25]. The idea is quite similar
to the one in [8] which reduces it to sat(4-DQBF). By a more careful book-keeping, we show
that 3 existential variables is enough to encode succinct 3-colorability.

Let C(ū, v̄) be a circuit where |ū| = |v̄| = n and let GC = (VC , EC) be the graph
represented by C. The main idea is simple. We assume that {01, 10, 11} is the set of colors
and represent a 3-coloring of the graph GC with a function f : {0, 1}n × {0, 1}2 → {0, 1}
where for every color c̄ ∈ {01, 10, 11}, for every vertex ā ∈ {0, 1}n, f(ā, c̄) = 1 if and only if
vertex ā is colored with color c̄. We will show that we can construct a 3-DQBF which states
that “the coloring must be proper.”

The details are as follows. Let C(ū, v̄) be the input circuit (to succinct 3-colorability)
where |ū| = |v̄| = n. Consider the following 3-DQBF Ψ.

Ψ := ∀x̄1∀u1∀v1 ∀x̄2∀u2∀v2 ∀x̄3∀u3∀v3

∃y1(x̄1, u1, v1) ∃y2(x̄2, u2, v2) ∃y3(x̄3, u3, v3) ψ

where |x̄1| = |x̄2| = |x̄3| = n and the formula ψ states the following.

SAT 2023

10:8 On the Complexity of k-DQBF

All y1, y2, y3 are the same function. Formally:∧
1⩽i,j⩽3

(
x̄i = x̄j ∧ (ui, vi) = (uj , vj)

)
→ yi = yj

No vertex is assigned with the color 00. Formally:

(u1, v1) = 00 → y1 = 0

Every vertex is assigned with exactly one color from {01, 10, 11}. Formally:

(
x̄1 = x̄2 = x̄3 ∧

(
(u1, v1), (u2, v2), (u3, v3) ̸= 00
and are pairwise different

))
→


exactly
one of
y1, y2, y3

has value 1


Adjacent vertices have different colors. Formally:(

C(x̄1, x̄2) = 1 ∧ (u1, v1) = (u2, v2)
)

→
(
y1 = 0 ∨ y2 = 0

)
It is routine to verify that GC is 3-colorable if and only if Ψ is satisfiable. Moreover, Ψ can
be constructed in polynomial time. ◀

Next, we present a parsimonious polynomial time transformation from arbitrary DQBF
to 3-DQBF. It is the DQBF analogue of the well known transformation from SAT to 3-SAT.

▶ Theorem 6. There is a parsimonious polynomial time (Karp) reduction from sat(DQBF)
to sat(3-DQBF). In other words, there is a polynomial time algorithm such that: On input
DQBF Ψ, it outputs a 3-DQBF Φ such that Ψ and Φ have the same number of satisfying
Skolem functions.

Proof. Before we proceed to give the details, we will first explain the intuition. Consider
the following k-DQBF Ψ.

Ψ := ∀x̄ ∃y1(z̄1) · · · ∃yk(z̄k) ψ where x̄ = (x1, . . . , xn)

Let ni = |z̄i|, for each 1 ⩽ i ⩽ k. We will encode the satisfying Skolem functions (f1, . . . , fk)
for Ψ as one function g : Σn × Σk → Σ as follows. For every ā ∈ Σn, for every b̄ =
(b1, . . . , bk) ∈ Σk,

g(ā, b̄) = 1 if and only if bi = fi(prjx̄(z̄i, ā)) for every 1 ⩽ i ⩽ k

We call such function g the encoding of (f1, . . . , fk). Note that for a function g : Σn ×Σk → Σ
to properly encode k functions (f1, . . . , fk), it has to satisfy the following “functional property”:

For every ā ∈ Σn, there is exactly one b̄ ∈ Σk such that g(ā, b̄) = 1.

Unfortunately DQBF by itself is not strong enough to state such property. For this, we need
another type of encoding that can be expressed with 3-DQBF.

We first introduce a few terminology and notations. For b̄, c̄ ∈ Σk, we denote by b̄ ⩽lex c̄,
if b̄ is “lexicographically” less than or equal to c̄.1 Note that one can easily write a (boolean)
formula φ(x̄1, x̄2), where |x̄1| = |x̄2| = k such that φ[(x̄1, x̄2) 7→ (b̄, c̄)] = 1 if and only if
b̄ ⩽lex c̄. We denote by b̄ − 1 and b̄ + 1 the induced predecessor and successor of b̄ in the
lexicographic ordering of Σk (when b̄ ̸= 0k and b̄ ̸= 1k, respectively).

The monotonic encoding of the functions (f1, . . . , fk) is a function h : Σn × Σk → Σ such
that for every ā ∈ Σn, the following holds.

1 This is the standard lexicographic ordering on Σk where 0 is “less than” 1.

L.-H. Fung and T. Tan 10:9

x̄ = (x1, . . . , xn) v̄ = (v1, . . . , vk) h(x̄, v̄)

ā

...

ā

0k

...

b̄− 1

0
...

0

 all zeroes

ā

ā

...

ā

b̄

b̄+ 1
...

1k

1

1
...

1


all ones

Figure 1 Here b̄ ∈ Σk. The notations b̄ − 1 and b̄ + 1 denote the predecessor and the successor
of b̄, respectively, according to the lexicographic ordering of Σk. The function h : Σn × Σk → Σ is
monotone (w.r.t. v̄), i.e., if h(ā, b̄) = 1, then h(ā, c̄) = 1 for every c̄ greater than b̄ lexicographically.
Such h encodes a function g : Σn × Σk → Σ where g(ā, b̄) = 1 if and only if h(ā, b̄ − 1) = 0 and
h(ā, b̄) = 1.

For every b̄, c̄ ∈ Σk, h(ā, b̄) ⩽ h(ā, c̄) whenever b̄ ⩽lex c̄. That is, it is monotonic w.r.t. to
the last k bits.
For every b̄ = (b1, . . . , bk) ∈ Σk such that bi = fi(prjx̄(z̄i, ā)), for every 1 ⩽ i ⩽ k, the
following holds.
h(ā, c̄) = 0, for every c̄ ∈ Σk where c̄ <lex b̄.
h(ā, c̄) = 1, for every c̄ ∈ Σk where b̄ ⩽lex c̄.

Intuitively, if h is the monotonic encoding of (f1, . . . , fk), the value b̄ = (b1, . . . , bk) where
bi = fi(prjx̄(z̄i, ā)) for every 1 ⩽ i ⩽ k can be identified as the lexicographically smallest b̄
such that g(ā, b̄) = 1. See Figure 1 for an illustration.

Note that if h : Σn × Σk → Σ is the monotonic encoding of (f1, . . . , fk), we can recover
the encoding of (f1, . . . , fk). Indeed, define the function g : Σn × Σk → Σ as follows.

If h(ā, 0n) = 0, then g(ā, b̄) = 1 if and only if h(ā, b̄− 1) = 0 and h(ā, b̄) = 1.
In this case, note that there is exactly one b̄ such that h(ā, b̄ − 1) = 0 and h(ā, b̄) = 1.
Thus, there is exactly one b̄ such that g(ā, b̄) = 1.
If h(ā, 0n) = 1, then g(ā, 0n) = 1 and for every b̄ ̸= 0n, g(ā, b̄) = 0.

Since h is the monotonic encoding of (f1, . . . , fk), it is immediate that g is the encoding of
(f1, . . . , fk).

We now give the details of the reduction from sat(DQBF) to sat(3-DQBF). On input
Ψ := ∀x̄∃y1(z̄1) · · · ∃yk(z̄k) ψ, where x̄ = (x1, . . . , xn), it outputs the following DQBF:

Φ := ∀x̄1∀v̄1 ∀x̄2∀v̄2 ∀x̄3∀v̄3 ∃p1(x̄1, v̄1)∃p2(x̄2, v̄2)∃p3(x̄3, v̄3) ϕ

where |x̄i| = n and |v̄i| = k for each 1 ⩽ i ⩽ 3 and ϕ states the following.
p1 and p2 represent the monotonic encoding of the Skolem functions (f1, . . . , fk) for Ψ (if
exist).
p3 represents the encoding of the Skolem functions (f1, . . . , fk) for Ψ (if exists).

The details of ϕ are as follows. Let x̄i = (xi,1, . . . , xi,n) and v̄i = (vi,1, . . . , vi,k) for every
1 ⩽ i ⩽ 3.

SAT 2023

10:10 On the Complexity of k-DQBF

(1) p1 and p2 represent the same function. Formally:(
x̄1 = x̄2 ∧ v̄1 = v̄2

)
→

(
p1 = p2

)
(2) The function represented by p1 (and p2) is a monotonic w.r.t. the bits in v̄1. Formally:(

x̄1 = x̄2 ∧ v̄1 ⩽lex v̄2
)

→
(
p1 ⩽ p2

)
(3) That v̄1 = 1k implies p1 = 1. Formally:

v̄1 = 1k → p1 = 1

Note that this condition implies that the fact that if p1 represents a function h : Σn×Σk →
Σ, then for every ā ∈ Σn, there is b̄ ∈ Σk such that the value h(ā, b̄) = 1. This is because
p1 represents a monotonic function w.r.t. v̄1.

(4) The function represented by p3 is the encoding of the k functions whose monotonic
encoding is represented by p1 (and p2). Formally:((

x̄1 = x̄2 = x̄3
)

∧
(
v̄1 + 1 = v̄2 = v̄3

))
→

((
p1 = 0 ∧ p2 = 1

)
↔ p3 = 1

)
∧
((
x̄2 = x̄3

)
∧
(
v̄2 = v̄3 = 0k

))
→

(
p2 = 1 ↔ p3 = 1

)
(5) The functions (f1, . . . , fk) encoded by p1, p2, p3 respect the dependency set z̄i for every

1 ⩽ i ⩽ k. Formally:((
x̄1 = x̄2 ∧ v̄1 + 1 = v̄2 ∧ p1 = 0 ∧ p2 = 1

)
∧ p3 = 1

)
→

∧
1⩽i⩽k

prjx̄(z̄i, x̄2) = prjx̄(z̄i, x̄3) → v2,i = v3,i

∧
((
v̄2 = 0k ∧ p2 = 1

)
∧ p3 = 1

)
→

∧
1⩽i⩽k

prjx̄(z̄i, x̄2) = prjx̄(z̄i, x̄3) → v2,i = v3,i

(6) The functions (f1, . . . , fk) encoded by p3 is indeed a satisfying Skolem functions for Ψ.
Formally:

p3 = 1 → ψ[(x̄, y1, . . . , yk)/(x̄3, v̄3)]

It is routine to verify that Ψ and Φ are equisatisfiable. Note also that every Skolem
functions (f1, . . . , fk) for Ψ is uniquely represented by their encoding and monotonic encoding.
Conversely, every encoding and monotonic encoding represented by p3 and p1, p2 uniquely
represented the Skolem functions (f1, . . . , fk) for Ψ. Thus, Ψ and Φ have the same number of
satisfying Skolem functions. By inspection, the 3-DQBF Φ can be constructed in polynomial
time. ◀

4 Lifting the projections in the class NP to the class NEXP

In this section we will establish the relations between the so called projections (from SAT
to NP-complete graph problem Π) and polynomial time reductions (from sat(DQBF) to
the succinctly represented Π). We first recall the definition of projections [33, 25]. Let
ξ : Σ∗ → Σ∗ be a reduction from a language L to another language K. We say that ξ is a
projection, if the following holds.

L.-H. Fung and T. Tan 10:11

There is a polynomial p(n) such that for every w ∈ Σ∗, the length of ξ(w) is p(|w|).
There is a polynomial time (deterministic) algorithm A such that on input 1n and
1 ⩽ i ⩽ p(n), where i is in the binary representation, the output A(1n, i) is one of the
following:

a value (either 0 or 1);
a variable xj (appropriately encoded) where 1 ⩽ j ⩽ n;
the negation of a variable ¬xj (appropriately encoded) where 1 ⩽ j ⩽ n ;

such that if z1 · · · zp(n) are the output A(1n, 1), . . . ,A(1n, p(n)), the following holds. For
every w = b1 · · · bn ∈ Σn:

ξ(w) = z1 · · · zp(n)[(x1, . . . , xn) 7→ (b1, . . . , bn)]

where z1 · · · zp(n)[(x1, . . . , xn) 7→ (b1, . . . , bn)] is the 0-1 string obtained by substituting
each xi with bi.

The intuitive meaning of the algorithm A(1n, i) is as follows. The ith bit of the output of
the reduction ξ on an input of length n is either 0 or 1 or the jth bit of the input (when
A(1n, i) = xj) or the complement of the jth bit of the input (when A(1n, i) = ¬xj). Note
also that if there is a projection ξ from L to K, then there is a polynomial time reduction
from L to K, where on input w, we compute each bit in ξ(w) by computing A(1|w|, i) for
every 1 ⩽ i ⩽ p(|w|). Almost all know reductions from SAT to graph problems are, in fact,
projections. We recall the following result from [25] and briefly review the proof.

▶ Theorem 7 ([25]). If there is a projection from SAT to a graph problem Π, then the
succinct version of Π is NEXP-hard.

Proof. We assume that a graph G = (V,E) is encoded as 0-1 string of length |V |2 representing
the adjacency matrix of G. Let L ∈ NEXP. Let M be the NTM that accepts L in time
2p(n) for some polynomial p(n). For w ∈ Σ∗, let Fw denote the CNF formula obtained by
applying the standard Cook-Levin reduction on w (w.r.t. the NTM M). Assuming that Fw

is encoded as 0-1 string, the length of F (w) is 2q(n) for some polynomial q(n).
We can design a polynomial time deterministic algorithm A that on input w and two

indexes i, j, determine if a literal ℓi appears in clause Cj in the formula Fw. Note that i
and j can be encoded in binary representation with p(n) bits. We can easily modify A into
another algorithm A′ such that on input w and index 1 ⩽ i ⩽ 2q(n), output the bit-i in the
formula Fw.

Let ξ be the projection from SAT to a graph problem Π. Suppose for a formula F ,
the graph ξ(F) has r(|F |) vertices, for some polynomial r(n). Using ξ, we can design a
polynomial time algorithm B that on input w and index 1 ⩽ i, j ⩽ r(2q(n)) (in binary),
output an index i′ (in binary) such that the bit-i′ in Fw is the same as the (i, j)-entry in
the adjacency matrix of ξ(Fw). We can then combine both algorithms A′ and B to obtain
another algorithm C such that on input w and indexes 1 ⩽ i, j ⩽ r(2q(n)), it outputs the
(i, j)-entry in the adjacency matrix of ξ(Fw). Note that when the length of the input is fixed,
we can construct in polynomial time the boolean circuit representing the algorithm C.

Now, the reduction from L to succinct Π works as follows. On input w, it constructs the
boolean circuit for C where the input length is fixed to |w| + 2 · log r(2q(n)) and the first |w|
input gates are fed with w. Note that the output circuit represents the graph ξ(Fw). Thus,
we obtain the reduction from L to succinct Π. ◀

We show that it can actually be stated as follows.

SAT 2023

10:12 On the Complexity of k-DQBF

▶ Corollary 8. If there is a projection from SAT to a graph problem Π, then there is a poly-
nomial time (Karp) reduction from sat(DQBF) to the problem Π in succinct representation.

Proof. We actually just follow the proof in [25] with a slight modification on the definition
of exp(Ψ). Let Ψ be a DQBF with matrix ψ. We modify the definition of the clause Cā,b̄ as
follows.

If ψ[x̄, v̄ 7→ ā, b̄] = 0, we set Cā,b̄ as in Section 2.
If ψ[x̄, v̄ 7→ ā, b̄] = 1, we set Cā,b̄ as a trivial clause such as (¬x ∨ x ∨ · · · ∨ x) for some
arbitrary variable x.

Under such definition, we can easily design an algorithm A′ that on input DQBF Ψ and
index i, output the ith bit in the formula exp(Ψ). The reduction from sat(DQBF) to succinct
Π can be obtained in exactly the same way as in Theorem 7. ◀

5 The relations between NTIME[t(n)], NSPACE[s(n)] and DQBF

In this section we will show how to reduce the languages in the class NTIME[t(n)] and
NSPACE[s(n)] to DQBF. We implicitly assume that the functions t(n) and s(n) are time/space
constructible. We start with the following theorem which has been proved in [8].2

▶ Theorem 9 ([8, Theorem 1]). For every L ∈ NTIME[t(n)], there is a (deterministic)
algorithm A that runs in time polynomial in n and log t(n) such that on input word w, it
outputs a DQBF Ψ such that w ∈ L if and only if Ψ is satisfiable. Moreover, the output
DQBF Ψ uses O(log t(n)) universal variable and O(1) existential variables, where n is the
length of the input w.

The constant hidden in O(1) in Theorem 9 depends on the number of states, tapes and
tape symbols of the Turing machine M that decides L. Combining Theorem 6 and 9, we
obtain the following corollary.

▶ Corollary 10 ([8, Theorem 1]). For every T (n) ⩾ n, for every L ∈ NTIME[t(n)], there is a
(deterministic) algorithm A that runs in time polynomial in n and log t(n) such that on input
word w, it outputs a 3-DQBF Ψ such that w ∈ L if and only if Ψ is satisfiable. Moreover,
the output DQBF Ψ uses O(log t(n)) universal variable where n is the length of the input w.

Note that since the reductions in Theorem 9 and 6 are parsimonious, the algorithm A in
Corollary 10 is also parsimonious in the sense that if M is the NTM that accepts L, then
the number of accepting runs of M on input word w is the precisely the number of satisfying
Skolem functions for the output DQBF Ψ.

▶ Theorem 11. For every language L ∈ NSPACE[s(n)], there is a deterministic algorithm A
with run time polynomial in n and s(n) such that: On input w, it outputs a 2-DQBF Ψ with
O(s(|w|)) universal variables such that w ∈ L if and only if Ψ is not satisfiable.

Proof. Let L ∈ NSPACE[s(n)] and let M be the NTM that accepts L using s(n) space. We
may assume that M halts on every input word. We first present the reduction to 2-CNF
formula (with exponential blow-up). On input word w, it construct the following formula,
denoted by Fw.
(a) The variables are XC , where the index C ranges over all the configurations of M on w.

2 Actually [8, Theorem 1] establishes Theorem 9 for some exponential t(n), i.e., t(n) = 2p(n) for some
polynomial p(n). However, it can be easily verified that the proof can be used for Theorem 9.

L.-H. Fung and T. Tan 10:13

(b) For every two configurations C1 and C2 where C2 is the next configuration of C1, we
have an implication XC1 → XC2 .

(c) For the initial configuration C0, we have the implication ¬XC0 → XC0 .
(d) For the initial configuration C0 and the accepting configuration Cacc, we have the

implication XCacc
→ ¬XC0 .

It is not difficult to show that M accepts w if and only if Fw is not satisfiable.
We can easily modify the construction above to the case of DQBF by encoding the

configuration of M on w with strings from Σ with length O(s(n)), where n = |w|. That is,
on input word w, we can construct in time polynomial in s(n) a DQBF Ψ such that exp(Ψ)
is equivalent to the formula Fw. The details are as follows. On input word w, construct the
following DQBF:

Ψ := ∀x̄1∀x̄2 ∃y1(x̄1)∃y2(x̄2) ψ

where |x̄1| = |x̄2| = O(s(n)), i.e., x̄1, x̄2 are used to represent the 0-1 encoding of the
configuration of M of w and the matrix ψ states the following.
(1) The functions y1 and y2 are the same. Formally:

x̄1 = x̄2 → y1 = y2

(2) If x̄1 and x̄2 encode configurations and x̄2 is the “next” configuration of x̄1, then y1
implies y2. Formally:

C(x̄1, x̄2) →
(
¬y1 ∨ y2

)
where C(x̄1, x̄2) is a formula that checks whether x̄1 and x̄2 are configurations and x̄2 is
the next configuration of x̄1. Such formula can be easily constructed in time polynomial
in s(n).

(3) If x̄1 is the accepting configuration and x̄2 is the initial configuration, then y1 implies
¬y2. Formally:

C ′(x̄1, x̄2) →
(
¬y1 ∨ ¬y2

)
where C ′(x̄1, x̄2) is a formula that checks whether x̄1 is the accepting configuration and
x̄2 is the initial configuration. Such formula can be easily constructed in time polynomial
in max(n, s(n)).

(4) If x̄1, x̄2 are the initial configuration, then y1 ∨ y2. Formally:

C ′′(x̄1, x̄2) →
(
y1 ∨ y2

)
where C ′′(x̄1, x̄2) is a formula that checks whether x̄1, x̄2 are the initial configuration.
Again, such formula can be easily constructed in time polynomial in max(n, s(n)).

It is not difficult to see that on every input word w, the formula Fw is equivalent to exp(Ψ).
This completes the proof of Theorem 11. ◀

It is not difficult to see that if the TM M in the proof of Theorem 11 is deterministic, we
can easily modify the construction such that w ∈ L if and only if the output Ψ is satisfiable.

SAT 2023

10:14 On the Complexity of k-DQBF

6 Concluding remarks

In this paper we have shown that a number of well known classical results on SAT can be
lifted up to DQBF. Previously it has been observed that DQBF formulas indeed represent
(exponentially large) CNF formulas and that the satisfiability problem becomes NEXP-
complete. In this paper we take one little step forward by presenting a few results that shows
a strong resemblance between DQBF and SAT. Together with the work in [8], we hope that
it can be a convincing evidence for DQBF to be the bona fide problem in NEXP.

We believe there is still a lot of work to do. There are still a plethora of results on SAT
that we haven’t considered and it would be interesting to investigate which results can be
lifted to DQBF and which can’t. We leave it for future work.

References
1 SAT competition, 2020. URL: http://www.satcompetition.org/.
2 V. Balabanov, H.-J. K. Chiang, and J.-H. R. Jiang. Henkin quantifiers and boolean formulae:

A certification perspective of DQBF. Theor. Comput. Sci., 523:86–100, 2014.
3 V. Balabanov and J.-H. R. Jiang. Reducing satisfiability and reachability to DQBF. In Talk

given at QBF, 2015.
4 A. Biere, M. Heule, H. van Maaren, and T. Walsh, editors. Handbook of Satisfiability. IOS

Press, 2009.
5 R. Bloem, R. Könighofer, and M. Seidl. SAT-based synthesis methods for safety specs. In

VMCAI, 2014.
6 U. Bubeck. Model-based transformations for quantified boolean formulas. PhD thesis, University

of Paderborn, 2010.
7 K. Chatterjee, T. Henzinger, J. Otop, and A. Pavlogiannis. Distributed synthesis for LTL

fragments. In FMCAD, 2013.
8 F.-H. Chen, S.-C. Huang, Y.-C. Lu, and T. Tan. Reducing NEXP-complete problems to

DQBF. In FMCAD, 2022.
9 D. Chistikov, C. Haase, Z. Hadizadeh, and A. Mansutti. Higher-order quantified boolean

satisfiability. In MFCS, 2022.
10 S. Cook. The complexity of theorem proving procedures. In STOC, 1971.
11 S. Cook. Short propositional formulas represent nondeterministic computations. Inf. Process.

Lett., 26(5):269–270, 1988.
12 A. Fröhlich, G. Kovásznai, and A. Biere. A DPLL algorithm for solving DQBF. In POS-12,

Third Pragmatics of SAT workshop, 2012.
13 A. Fröhlich, G. Kovásznai, A. Biere, and H. Veith. iDQ: Instantiation-based DQBF solving.

In POS-14, Fifth Pragmatics of SAT workshop, 2014.
14 H. Galperin and A. Wigderson. Succinct representations of graphs. Inf. Control., 56(3):183–198,

1983.
15 A. Ge-Ernst, C. Scholl, and R. Wimmer. Localizing quantifiers for DQBF. In FMCAD, 2019.
16 Aile Ge-Ernst, Christoph Scholl, Juraj Síc, and Ralf Wimmer. Solving dependency quantified

boolean formulas using quantifier localization. Theor. Comput. Sci., 925:1–24, 2022.
17 K. Gitina, S. Reimer, M. Sauer, R. Wimmer, C. Scholl, and B. Becker. Equivalence checking

of partial designs using dependency quantified boolean formulae. In ICCD, 2013.
18 K. Gitina, R. Wimmer, S. Reimer, M. Sauer, C. Scholl, and B. Becker. Solving DQBF through

quantifier elimination. In DATE, 2015.
19 J.-H. R. Jiang. Quantifier elimination via functional composition. In CAV, 2009.
20 R. Jiang. Second-order quantified boolean logic. In AAAI, 2023.
21 G. Kovásznai. What is the state-of-the-art in DQBF solving. In Join Conference on Mathem-

atics and Computer Science, 2016.

http://www.satcompetition.org/

L.-H. Fung and T. Tan 10:15

22 A. Kuehlmann, V. Paruthi, F. Krohm, and M. Ganai. Robust boolean reasoning for equivalence
checking and functional property verification. IEEE Trans. Comput. Aided Des. Integr. Circuits
Syst., 21(12):1377–1394, 2002.

23 O. Kullmann and A. Shukla. Autarkies for DQCNF. In FMCAD, 2019.
24 L. Levin. Universal search problems (in russian. Problems of Information Transmission,

9(3):115–116, 1973.
25 C. Papadimitriou and M. Yannakakis. A note on succinct representations of graphs. Inf.

Control., 71(3):181–185, 1986.
26 G. Peterson and J. Reif. Multiple-person alternation. In FOCS, 1979.
27 F.-X. Reichl and F. Slivovsky. Pedant: A certifying DQBF solver. In SAT, 2022.
28 F.-X. Reichl, F. Slivovsky, and S. Szeider. Certified DQBF solving by definition extraction. In

SAT, 2021.
29 C. Scholl and B. Becker. Checking equivalence for partial implementations. In DAC, 2001.
30 C. Scholl, R. J.-H. Jiang, R. Wimmer, and A. Ge-Ernst. A PSPACE subclass of dependency

quantified boolean formulas and its effective solving. In AAAI, 2019.
31 C. Scholl and R. Wimmer. Dependency quantified boolean formulas: An overview of solution

methods and applications - extended abstract. In SAT, 2018.
32 J. Síc and J. Strejcek. DQBDD: an efficient bdd-based DQBF solver. In SAT, 2021.
33 S. Skyum and L. Valiant. A complexity theory based on boolean algebra. J. ACM, 32(2):484–

502, 1985.
34 L. Stockmeyer and A. Meyer. Word problems requiring exponential time: Preliminary report.

In STOC, 1973.
35 L. Tentrup and M. Rabe. Clausal abstraction for DQBF. In SAT, 2019.
36 K. Wimmer, R. Wimmer, C. Scholl, and B. Becker. Skolem functions for DQBF. In ATVA,

2016.
37 R. Wimmer, A. Karrenbauer, R. Becker, C. Scholl, and B. Becker. From DQBF to QBF by

dependency elimination. In SAT, 2017.
38 R. Wimmer, S. Reimer, P. Marin, and B. Becker. HQSpre – an effective preprocessor for QBF

and DQBF. In TACAS, 2017.
39 R. Wimmer, C. Scholl, and B. Becker. The (D)QBF preprocessor hqspre - underlying theory

and its implementation. J. Satisf. Boolean Model. Comput., 11(1):3–52, 2019.

SAT 2023

	1 Introduction
	2 Preliminaries
	3 The complexity of sat(k-DQBF)
	3.1 On sat(1-DQBF) and sat(2-DQBF)
	3.2 On sat(k-DQBF) where k geqslant 3

	4 Lifting the projections in the class NP to the class NEXP
	5 The relations between NTIME[t(n)], NSPACE[s(n)] and DQBF
	6 Concluding remarks

