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Abstract
In 1972, Paul Erdős, Vance Faber, and Lászlo Lovász asked whether every linear hypergraph with
n vertices can be edge-colored with n colors, a statement that has come to be known as the EFL
conjecture. Erdős himself considered the conjecture as one of his three favorite open problems, and
offered increasing money prizes for its solution on several occasions. A proof of the conjecture was
recently announced, for all but a finite number of hypergraphs. In this paper we look at some of the
cases not covered by this proof.

We use SAT solvers, and in particular the SAT Modulo Symmetries (SMS) framework, to
generate non-colorable linear hypergraphs with a fixed number of vertices and hyperedges modulo
isomorphisms. Since hypergraph colorability is NP-hard, we cannot directly express in a propositional
formula that we want only non-colorable hypergraphs. Instead, we use one SAT (SMS) solver to
generate candidate hypergraphs modulo isomorphisms, and another to reject them by finding a
coloring. Each successive candidate is required to defeat all previous colorings, whereby we avoid
having to generate and test all linear hypergraphs.

Computational methods have previously been used to verify the EFL conjecture for small
hypergraphs. We verify and extend these results to larger values and discuss challenges and
directions. Ours is the first computational approach to the EFL conjecture that allows producing
independently verifiable, DRAT proofs.
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1 Introduction

In 1972, Paul Erdős and László Lovász gathered at Vance Faber’s apartment for some tea,
and to prove what was supposed to be an easy theorem about hypergraph edge colorings:
every linear hypergraph can be edge-colored with no more colors than it has vertices. A
hypergraph is a collection of subsets, called (hyper)edges, of a finite set, and it is linear if
any two hyperedges intersect in at most one element (vertex). An edge coloring is a coloring
of the edges such that intersecting edges have different colors. The conjecture, now known as
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Figure 1 The famous extremal examples to the EFL conjecture for n = 7. Left to right: the
complete graph, the projective plane of order 2 (also known as the Fano plane), and the degenerate
plane. Hyperedges are drawn as bounding boxes around vertices, 2-edges are drawn simply as lines.
Each hypergraph is colored with its optimal number of colors; in the case of the planes this is trivial
as the number of colors equals the number of hyperedges.

the Erdős-Faber-Lovász conjecture (EFL) conjecture, is inspired by its prominent extremal
examples, the complete graph, the degenerate plane, and the projective plane (see Figure 1),
each of which requires the full number of colors.

Needless to say, they did not find an easy proof, and the conjecture has remained open
for fifty years. Erdős wrote about it as one of his favorite combinatorial problems [7] and
offered money prizes for a solution [6]. Throughout its lifetime, the conjecture attracted a
lot of attention, and many partial results have been proved. The newest in the series is the
recently announced proof of the conjecture for all but a finite number of cases [17].

In this paper, we look at the conjecture by computational means. We investigate classes
of small hypergraphs, and verify that they can indeed be colored with the conjectured
number of colors. In this respect we follow in the footsteps of Hindman [12] and Romero and
Alonso-Pecina [22], who also investigated small classes of hypergraphs and partially verified
the EFL conjecture. The novel aspects of our work are:
1. we verify the EFL conjecture for more classes of small hypergraphs;
2. where the previous two works had to enumerate and afterwards color all linear hypergraphs,

we interleave these two processes: we generate hypergraphs and colorings alternately,
and thus our method is not constrained by the number of linear hypergraphs, but only
by the number of colorings needed to color them all. In doing this we build on the
recently-proposed co-certificate learning (CCL) [18].

3. We use SAT encodings and SAT solvers, and hence our method enables us to produce
independently verifiable proofs, including of the previous computational results. We are
able to use them effectively due to the recently introduced SAT modulo symmetries (SMS)
framework [20], in which a CDCL SAT solver [9] is enhanced with a custom symmetry
propagator which prunes non-canonical search paths. In this work, we extend SMS, which
was previously used for graphs, and later matroids, to hypergraphs. We achieve this by
modeling hypergraphs by their bipartite incidence graphs, which in turn can be fit into
the SMS framework with some care.

We report on the results of three experiments.
In the first, we tackle the EFL conjecture itself and analyze the nature of the hardness of

verifying the conjecture experimentally in cases we processed. Naturally, we have not found
any counterexamples (the title of the paper would otherwise have been different).
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In the second experiment, we search for extremal examples to the EFL conjecture, namely
linear hypergraphs with n vertices that require n colors. In addition to the known extremal
examples, we were able to enumerate all other small extremal hypergraphs. Inspired by our
findings, we also proved extremality of some infinite families of linear hypergraphs by hand.

In the last experiment, we tackle a generalization of the EFL conjecture (Conjecture 3),
which at the same time also generalizes Vizing’s Theorem about edge colorings in graphs.
This experiment proceeds in a very similar way as the first, and we did not find any
counterexamples in this case either.

In the next sections, we first review the necessary background on hypergraphs and
colorings, followed by an explanation of our SAT-based process, and a discussion of results.

2 The EFL Conjecture

For positive integers n, m, let [n] = {1, . . . , n} and [n, m] = {n, n + 1, . . . , m}. A hypergraph
H = (V, E) consists of a finite vertex set V (we assume V = [n]), and a set E of subsets of
V called hyperedges, or sometimes simply edges. A hyperedge of size k is also called a k-edge.
A hypergraph where each hyperedge has size 2 is called a graph. The graph, denoted by Kn,
which contains all possible 2-edges between n vertices is called the complete graph, or the
clique. The degree of a vertex is the number of hyperedges that contain v. A hypergraph
is called linear if any two of its hyperedges intersect in at most one vertex. Every graph is
trivially a linear hypergraph.

A χ-edge coloring of a hypergraph H = (V, E) is a mapping c : E → [χ] which colors
intersecting hyperedges with different colors: e ∩ f ̸= ∅ =⇒ c(e) ̸= c(f). The chromatic
index of a hypergraph is the smallest integer χ for which a χ-edge coloring exists. The
Erdős-Faber-Lovász (EFL) conjecture postulates the existence of certain edge colorings.

▶ Conjecture 1 (EFL conjecture). Every linear hypergraph with n vertices is n-edge-colorable.

While this paper is primarily about edge colorings of hypergraphs, we will also need to
work with vertex colorings of graphs. A χ-coloring of a graph G = (V, E) is a mapping
c : V → [χ] that maps adjacent vertices to different colors: {u, v} ∈ E =⇒ c(u) ̸= c(v). The
chromatic number of a graph is the smallest χ for which a χ-coloring exists.

A hypergraph H is covered if every pair of vertices {u, v} ⊆ V is contained in some
hyperedge e ∈ E. Linear hypergraphs which are covered and whose hyperedges have size at
least two are known as linear spaces.

▶ Observation 2. If there is a counterexample to the EFL Conjecture with n vertices, then
there is a counterexample with n vertices which is a linear space.

Indeed, one can simply delete singleton hyperedges without decreasing the chromatic index,
due to the fact that singleton hyperedges intersect at most n − 1 other hyperedges in a linear
hypergraph, and any n-edge coloring can always be extended to them. Similarly, adding a
2-edge to cover a pair {u, v} cannot decrease the chromatic index either. By Observation 2,
we thus restrict our search for counterexamples to the EFL conjecture to linear spaces.

The EFL conjecture, if true, is tight, as witnessed by the examples of the (odd) complete
graphs, the degenerate planes, and the projective planes, each of which requires n colors.

When restricted to graphs, the EFL conjecture is easy to prove. The only linear space
on n vertices is the complete graph, and it is an instructive exercise to verify that it is indeed
n-colorable. In fact, a stronger result known as Vizing’s Theorem holds for graphs: a graph
of maximum degree ∆ can be (∆ + 1)-edge-colored (for these graphs we can no longer assume
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they are covered). Together with the trivial bound arising from the fact that the edges
around a vertex of degree ∆ require ∆ different colors, Vizing’s Theorem implies that the
chromatic index of any graph is either ∆ or ∆ + 1. Again, it is easy to verify that Vizing’s
Theorem in terms of the maximum degree does not hold for linear hypergraphs in general,
but a different, beautiful generalization has been conjectured. This generalization arises from
a reformulation of Vizing’s Theorem in terms of the closed neighborhood of a vertex, which
is the union of the hyperedges containing a vertex,

⋃
v∈e e. In the case of graphs, the size

of the closed neighborhood of v is, by definition, the degree of v + 1, and the maximum
size of any closed neighborhood is ∆ + 1. Vizing’s Theorem then says that a graph can be
edge-colored with a number of colors equal to the largest size of a closed neighborhood. Now,
this version has been conjectured for linear hypergraphs in general.

▶ Conjecture 3 (Füredi [10], Berge [1]). Let H = (V, E) be a linear hypergraph, and let
ζ = maxv∈V

∣∣⋃
v∈e e

∣∣. Then H is ζ-edge-colorable.

We call this conjecture the FB Conjecture.
In the context of this conjecture, we can no longer assume that hypergraphs are covered,

because arbitrary edge addition could increase neighborhood size beyond the admissible
bound. Instead, we say a hypergraph is weakly covered if each vertex pair {u, v} ⊆ V

either is contained in some hyperedge e ∈ E or one of the two vertices has maximum closed
neighborhood. We state a similar observation as before:

▶ Observation 4. If there is a counterexample to the FB Conjecture with n vertices, then
there is a weakly covered counterexample with n vertices without hyperedges of size 1.

Note how the two formulations of Vizing’s Theorem coincide for graphs, but in presence of
larger hyperedges the difference between counting and unifying the neighborhood materializes.

In our experiments, we will validate both conjectures, and we will also search for extremal
examples in addition to those listed in Figure 1.

2.1 Previous Work
A large body of work on the EFL conjecture (Conjecture 1) is available, roughly categorizable
into two groups. In the first group, there are the asymptotic results [3, 13–16,23], of which
the culmination is the recently announced proof of Conjecture 1 for all hypergraphs with a
sufficiently large number of vertices [17]. If correct, this result, at least in theory, leaves the
complete verification of the conjecture down to a finite computation, the verification of the
colorability of a finite number of linear spaces.

In the second group, there are the results which verify the conjecture for a finite number
of small hypergraphs. The first such result known to us is due to Hindman [12], who verified
Conjecture 1 for all hypergraphs with at most 10 vertices. In fact, Hindman proved a stronger
result, namely that every hypergraph whose hyperedges of size at least 3 span at most 10
vertices is colorable; and thus in particular those with at most 10 vertices in total.

▶ Theorem 5 (Hindman [12]). Let H = (V, E) be a linear hypergraph with n vertices, let
E′ = {e ∈ E : |e| ≥ 3}. If |

⋃
E′| ≤ 10, then H is n-edge colorable.

Later, Romero and Alonso-Pecina, building on an existing program to enumerate linear
spaces [2], verified Conjecture 1 up to n ≤ 12 [22]; their contribution lied mainly in a
meta-heuristic coloring algorithm. In our work, we replace ad-hoc hypergraph generation
and coloring tools with a SAT-based workflow, which is more flexible, reliable, and easier to
use. We verify the existing results and explore some generalizations and larger cases.
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3 Reduction to SAT

In the sequel, we shall implicitly generate linear hypergraphs with n vertices and check
that they are colorable with the right number of colors χ in order to validate Conjectures 1
and 3. For the former conjecture, we set χ = n, for the latter, χ is the size of the largest
closed neighborhood. Since in each run we will generate hypergraphs with a fixed number
of hyperedges, we first need to determine bounds on the number m of hyperedges to be
considered for a given number of vertices n.

We can assume the number of hyperedges is at least χ + 1, as ≤ χ hyperedges are trivially
colorable by χ colors, though for generating extremal examples, we also need to consider
m = χ, so we take m ≥ χ. On the upper side, since each hyperedge covers at least one pair
of vertices and no pair is covered twice (which is the same as linearity), the largest possible
number of hyperedges is

(
n
2
)
, when the hypergraph is the complete graph on n vertices.

Additionally, we impose the restrictions given by Observation 2 and 4 respectively.
To enumerate linear hypergraphs with n vertices and m hyperedges, we produce a

propositional formula L(n, m), whose models are exactly these linear hypergraphs. Before
we describe the encoding itself, let us discuss the entire process including coloring and
other parts on a high level. The two hallmarks of our approach are the use of Satisfiability
modulo symmetries (SMS) [20] to enumerate hypergraphs without isomorphic copies, and
an χ-edge-coloring learning technique thanks to which we do not need to enumerate all
hypergraphs in order to show that they are all colorable.

▶ Definition 6. Two hypergraphs H1 = (V, E1) and H2 = (V, E2) are isomorphic, written
H1 ∼= H2, if there is a bijection π : V → V , extended to hyperedges and sets of hyperedges in
the obvious way, so that H2 = π(H1). For any total order ≼ on the set of hypergraphs, we
say that a hypergraph H = (V, E) is canonical if H ≼ π(H) for every π : V → V .

SMS is a general framework which augments a SAT solver with a custom propagator to
check whether the currently constructed hypergraph is canonical. If not, a symmetry clause
is learned and the solver backtracks. SMS performs dynamic symmetry breaking, and thus
prevents the solver from redundantly exploring isomorphic (symmetric) copies of the search
space. Other methods of symmetry exploitation include static symmetry breaking, where
a single symmetry-breaking formula is added at the beginning, but those do not break all
symmetries [4]. We expand on our use of SMS in Section 3.2.

The other important technique that we use is the learning of coloring clauses, recently
proposed under the name co-certificate learning [18]. A naive approach to our problem, even
with symmetry breaking, would consist of enumerating, modulo isomorphisms, all hypergraphs
with n vertices and m hyperedges, and testing that they are all χ-edge-colorable.1 The
coloring process would come wholly after the enumeration process. We, on the other hand,
interleave these two processes. As soon as we generate a candidate hypergraph, we color it.
If it is not colorable, we have found a counterexample to the conjecture. If it is colorable,
we learn a new clause, which we feed back to the hypergraph-generating SAT solver. From
this point onwards, any generated hypergraph will not be colorable by this coloring whose
clause has been learned. Thus, as soon as we discover a set of colorings that colors all
canonical hypergraphs (thanks to SMS, we only generate those), the solver’s active formula
immediately becomes unsatisfiable. See Figure 2 for an overview of the process.

1 Unless NP = coNP, non-colorability cannot be encoded in a polynomial-size propositional formula, i.e.,
we cannot simultaneously encode graph search and non-colorability.
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Generator

Solution Candidate

Symmetry Check

Colorer

Solution

SMS

coloring
blocking clause

Figure 2 SMS-powered enumeration interleaved with color filtering. One SAT solver generates
candidates, the other colors them, and either reports a solution, or returns a coloring clause to be
learned by the generator.

We will now explain the details of each of these components: the encoding, the details of
hypergraph SMS, and the coloring.

3.1 The Encoding
Our encoding of the existence of a linear hypergraphs is relatively straightforward; the magic
happens in SMS and the learning of coloring clauses. We represent a hypergraph with
n vertices and m hyperedges by its incidence graph and incidence matrix. The incidence
graph I(H) of a hypergraph H = (V, E) is the bipartite graph between V and E, with
those edges {v, e} where v ∈ e. The incidence matrix M(H) of H is the n × m binary
matrix where M(H)i,j = 1 ⇐⇒ vi ∈ ej , for some fixed ordering of the vertices and edges
V = {v1, . . . , vn}, E = {e1, . . . , em}.

Clearly, any of H, I(H), M(H) uniquely determines the other two, and H ∼= H ′ ⇐⇒
I(H) ∼= I(H ′).2 We will use propositional variables Ii,j to represent the incidence matrix,
and we will construct incidence graphs modulo isomorphisms. As the canonical incidence
graph, we pick the one with the lexicographically least incidence matrix, seen as a string of
zeros and ones obtained by concatenating the rows.

We describe the encoding L(n, m) of the linear hypergraphs with n vertices and m edges in
terms of a conjunction of clauses together with cardinality constraints. To encode cardinality
constraints, we use sequential counters [24].

To ensure all hyperedges have size at least 2, we use
∧m

j=1
∑n

i=1 Ii,j ≥ 2.
Similarly, we can request that the degree of each vertex be at least 2 (vertices of degree 1
contribute nothing to the intersection structure):

∧n
i=1

∑m
j=1 Ii,j ≥ 2.

To ensure linearity, we will use the auxiliary variables Si,j,k to denote that vk ∈ ei ∩ ej :∧
1≤i<j≤m

n∧
k=1

(
Ik,i ∨ Ik,j ∨ Si,j,k

)
∧
(
Si,j,k ∨ Ik,i

)
∧
(
Si,j,k ∨ Ik,j

)
∧

∧
1≤k<k′≤n

Si,j,k∨Si,j,k′ .

Now let us look at the constraints added to L(n, m) for the EFL Conjecture. We start with
restricting the search to covered hypergraphs. To ensure that every pair of vertices is covered,
we use the auxiliary variables Ok,k′,i to denote that {vk, vk′} ⊆ ei:∧

1≤k<k′≤n

(
m∧

i=1

(
Ik,i ∨ Ik′,i ∨ Ok,k′,i

)
∧
(
Ok,k′,i ∨ Ik,i

)
∧
(
Ok,k′,i ∨ Ik′,i

))
∧

(
m∨

i=1
Ok,k′,i

)
.

2 For isomorphisms between incidence graphs we require that vertices be mapped to vertices and hyperedges
to hyperedges or, what is the same, that the incidence matrix is not transposed by an isomorphism.
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For the FB Conjecture we additionally parametrize the formula over the maximum size
of the closed neighborhood ζ. Then L(n, m) is enhanced by the following two constraints:

We use Oi,j for vi, vj ∈ e for some edge e and N (k) =
∑

k′∈[n],k′ ̸=k Omin(k,k′),max(k,k′).
To ensure that the size of the closed neighborhood is limited to ζ we add

∧
1≤k<k′≤n

 ∧
i∈[m]

(Ok,k′,i ∨ Ok,k′) ∧ (Ok,k′ ∨
∨

i∈[m]

Ok,k′,i)

 ∧
∧

k∈[n]

N (k) < ζ;

we restrict the search to weakly covered hypergraphs:∧
1≤k<k′≤n

(Ok,k′ ∨ N (k) = ζ − 1 ∨ N (k′) = ζ − 1) .

Note that the complicated-looking expression N (k) = ζ − 1 is a propositional variable
appearing in the encoding of the cardinality constraint.

Last but not least, the variables Si,j to denote that ei ∩ ej ̸= ∅ are needed to describe the
intersection graph of the hypergraph whose existence we are encoding. The intersection graph
of a hypergraph H = (V, E) is the graph S(H) = (E, E∩), where E∩ = {{e1, e2} : e1 ̸=
e2 and e1∩e2 ̸= ∅}. We will need this explicit description of the intersection graph to encode a
necessary condition for a high chromatic index, and also to learn coloring clauses, as explained
in Section 3.3. The variables Si,j can be encoded as follows:

∧
1≤i<j≤m

(
Si,j ∨

∨n
k=1 Si,j,k

)
∧(∧n

k=1 Si,j ∨ Si,j,k

)
.

3.2 SMS
The encoding presented above is rich in symmetries. Any permutation of the rows and
columns of the incidence matrix M(H) of a hypergraph H leads to an isomorphic hypergraph.
Since linearity and non-colorability of the intersection graph are invariants, it is sufficient to
keep only one hypergraph per isomorphism class in the search space.

Kirchweger and Szeider [20] introduced SAT modulo Symmetries (SMS) for graphs, a
method that supports the search for lexicographically minimal graphs with any additional
property encoded with a propositional formula. Later, it was extended to matroids of fixed
rank [19]. SMS for graphs produces only lexicographically minimal graphs given by the
concatenation of the rows of the adjacency matrix, i.e., those for which no permutation of the
set of vertices produces a lexicographically smaller adjacency matrix. The framework checks
during the CDCL procedure whether there is a permutation leading to a lexicographically
smaller graph; if so, a symmetry-breaking clause is added. This is a problem with two pillars
of hardness: during the search, the presence or absence of some edges might be unknown,
and for those an exponential number of possibilities must be accounted for; and even if all
edges are known, finding a suitable permutation is NP-hard [5]. A procedure called the
minimality check verifies some necessary criteria for a partially defined graph to be extensible
to a minimal graph. The procedure tries to construct a permutation leading to a smaller
graph for all extensions of the partially defined graph. If such a permutation exists, we can
add a symmetry-breaking clause to trigger a backtrack. The minimality check builds the
permutation gradually using a branching algorithm for different choices. Most of the time
in practice, the algorithm is fast enough, although sometimes it degrades to exponential
behavior. One can limit the total number of branching steps per call of the minimality check.
This potentially makes the symmetry breaking incomplete, but does not have an impact on
the satisfiability of the formula. Further, it is easy to filter these copies during postprocessing
using tools like Nauty [21].
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Let us see how we can use SMS for the conjectures on hypergraphs. One possibility to
use SMS as is, is by breaking the symmetries over the intersection graph. Preliminary tests
showed that this approach does not perform well, chiefly due to the fact that for a candidate
intersection graph, the solver must also find the underlying linear hypergraph, and assuming
it breaks symmetries on the intersection graph, it cannot break symmetries of the hypergraph
anymore. However, we can use this framework to break symmetries also for hypergraphs
without (significant) changes.

Let V = {v1, . . . , vn} and the number of hyperedges of a hypergraph be fixed by m. A
hypergraph H1 is lexicographically smaller than H2 (short H1 ≺ H2) if the concatenation of
the rows of the incidence matrix M(H1) is lexicographically smaller than the concatenation
of the rows of M(H2).

Since SMS is originally designed for graphs, we apply the symmetry breaking on the
incidence graph. Note that the incidence matrix M(H) coincides with the first n rows and
last m columns of the adjacency matrix of the incidence graph I(H). Let us have a look at an
example: let H be a hypergraph with the edges e1 = {v0, v1, v2}, e2 = {v0, v3}, e3 = {v1, v3},
and e4 = {v2, v3}. We have

M(H) =

e1 e2 e3 e4
v0 1 1 0 0
v1 1 0 1 0
v2 1 0 0 1
v3 0 1 1 1

, I(H) =

v0 v1 v2 v3 e1 e2 e3 e4
v0 0 0 0 0 1 1 0 0
v1 0 0 0 0 1 0 1 0
v2 0 0 0 0 1 0 0 1
v3 0 0 0 0 0 1 1 1
e1 1 1 1 0 0 0 0 0
e2 1 0 0 1 0 0 0 0
e3 0 1 0 1 0 0 0 0
e4 0 0 1 1 0 0 0 0

.

The red box in I(H) marks the part which is in common with the incidence matrix M(H).

▶ Observation 7. M(H) is lexicographically minimal if and only if there is no permutation
π : [n + m] → [n + m] with π([n]) = [n] such that π(I(H)) ≺ I(H).

SMS supports not only complete symmetry breaking but also symmetry breaking on a set of
given symmetries which can be described by a generalized ordered partition (GOP). Informally,
a GOP gives for each vertex a range to which it can be mapped in the permutation. For a
formal definition we refer to the original SMS paper [20]. In our case the set of permutations
can be described as [([n], 1, n), ([n + 1, n + m], n + 1, n + m)] which means that all elements
in [n] must be mapped by the permutation between 1 and n; all elements in [n + 1, n + m]
must be mapped between n + 1 and n + m.

This allows us to use SMS as follows. Let eu,v denote the variables representing whether
the edge {u, v} is present in the bipartite incidence graph. By definition of bipartite graph,
we can add the unit clauses ev,u for v, u ∈ [n] and also ev,u for v, u ∈ {n + 1, . . . , n + m}.
Additionally, we set ev,n+i = Iv,i. All clauses of L(n, m) can be added unmodified.

Proofs
SAT solvers, in contrast to many other tools for enumeration of combinatorial objects, can
produce formal proofs, typically in the DRAT format. These proofs can be checked by
external (formally verified) tools [25]. In our workflow, on top of ordinary DRAT-emitting
CDCL, we add additional symmetry-breaking and coloring clauses during the search with a
custom propagator altering the formula. In previous work [19] the authors suggested a multi-
step approach for producing the proof. First, SMS is run until it concludes unsatisfiability.
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All learned symmetry-breaking clauses are stored. Then, a second solver without SMS is run
on the initial formula augmented with the symmetry-breaking clauses, and produces a proof
in the ordinary fashion.

In this work, we use an adaption of the CaDiCaL solver [8] with support for custom
propagators and proof logging, including in combination with propagators. The clauses
added by the propagator are assumed to be part of the initial formula for the DRAT proof.
Proof production in the current CaDiCaL version is only experimental.

The DRAT proof is a certificate for the correctness of the reasoning of the solver, but
not for the correctness of the symmetry-breaking clauses. One can either see the symmetry-
breaking clauses as part of the initial formula and apply no additional check, or one can check
whether the symmetry breaking clauses follow a certain structure, and therefore preserve
lexicographically minimal objects, and by extension also satisfiability. Given the permutation
used for generating the symmetry-breaking clause, it is easy to check the correctness of the
clause [19]. For each symmetry-breaking clause we additionally store the permutation and
use a second script for checking the correctness of these clauses.

3.3 Coloring

Suppose the SMS solver has produced a hypergraph H = (V, E) with V = [n]. We check
whether the hypergraph is χ-edge-colorable with χ = n for the EFL Conjecture and χ = ζ

for the FB Conjecture. Observe that whether H is χ-edge-colorable is the same as whether
its intersection graph is χ-(vertex-)colorable. We produce another propositional formula,
CH,χ, with the variables ce,i for each hyperedge e ∈ E and i ∈ [χ] to express that e is colored
with the color i, and with the following constraints:

each edge should have some color:
∧

e∈E

∨
i∈[χ] ce,i ;

intersecting edges should have different colors:∧
e1,e2∈E

e1 ̸=e2∧e1∩e2 ̸=∅

∧
i∈[χ]

ce1,i ∧ ce2,i.

It is not a problem if an edge receives more than one color, as extra colors can always be
dropped without violating the constraints.

We enhance this basic encoding by finding and fixing the colors of a clique in the
intersection graph as follows. We find the vertex v contained in the largest number of
hyperedges {e1, . . . , er} and give these hyperedges the colors 1, . . . , r by adding the unit
clauses ce1,1, . . . , cer,r. We further find any other hyperedges {er+1, . . . , er′} that intersect
with all of these, for a subset-maximal clique in the intersection graph. Since these hyperedges
must all have different colors, we can break the symmetries that arise from permutations of
color names by fixing the colors.

A second SAT solver then finds a coloring c : E → [χ] (a co-certificate, because it certifies
that the hypergraph is not non-χ-edge-colorable [18]), and from this we learn the following
coloring clause, which we add to the SMS SAT solver:

χ∨
k=1

∨
ei,ej∈c−1(k)

Si,j .

The coloring clause says that at least one pair of hyperedges colored the same by c should
intersect, thereby invalidating the coloring c for future hypergraphs.

SAT 2023
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3.4 Restrictions on the Intersection Graph
We can impose further restrictions on the intersection graph for both conjectures based
on the fact that the intersection graph should not be χ-colorable. Any graph that is not
χ-colorable must contain some vertex-critical subgraph, i.e., one which is rendered χ-colorable
by the removal of any vertex, but which is not χ-colorable itself. It is easy to see that a
vertex-critical graph with chromatic number χ + 1 has minimum degree ≥ χ, because adding
a vertex of degree < χ to a χ-colorable graph does not break χ-colorability.

We cannot require that the whole intersection graph itself be critical because that is
incompatible with (weak) coverage, but we can select a critical subgraph of the intersection
graph, using additional variables se indicating whether a vertex is part of the subgraph, and
restrict the minimum degree for this subgraph accordingly. Without loss of generality, we can
additionally request that each vertex (in the intersection graph) representing a hyperedge of
size ≥ 3 is part of the critical subgraph and therefore must have degree ≥ χ. To see that this
last restriction is sound, consider the following process. Given a non-χ-colorable intersection
graph S(H) of some (weakly) covered linear hypergraph H:
1. find a χ-vertex-critical subgraph G ≤ S(H);
2. remove all hyperedges of size ≥ 3 from H which are not contained (as vertices) in G to

obtain H ′;
3. add however many 2-edges are needed to make H ′ (weakly) covered;
4. observe that G ≤ S(H ′), and so H ′ is not χ-edge-colorable.
A hypergraph H whose intersection graph S(H) contains a subgraph containing all hyperedges
of size at least 3 and having minimum degree at least δ is called δ-reduced. It follows that if
a counterexample with n vertices and m hyperedges to either conjecture exists, a (χ − 1)-
reduced (weakly) covered counterexample also exists, with the same number of vertices n,
and a number of hyperedges m′ ≥ m.

3.5 Conjectures
Let us summarize the encoding and how the side constraints relate to the original Conjectures 1
and 3. We will formulate modified versions of the conjectures that match our encoding and
precisely state their relationship to the original conjectures.

▶ Conjecture 8 (EFL’ Conjecture). Every (n − 1)-reduced linear space with n vertices and m

hyperedges is n-edge-colorable.

▶ Proposition 9. If there is a counterexample to the EFL Conjecture with n vertices and
m hyperedges of size at least 2, then there is a counterexample to EFL’ Conjecture with n

vertices and m′ ≥ m hyperedges.

▶ Corollary 10. The EFL Conjecture and the EFL’ Conjecture are equivalent.

▶ Conjecture 11 (FB’ Conjecture). Every (ζ − 1)-reduced weakly covered linear hypergraph
with n vertices, m hyperedges of size at least 2, and maximum closed neighborhood size ζ is
ζ-edge-colorable.

▶ Proposition 12. If there is a counterexample to FB Conjecture with n vertices and m

hyperedges of size at least 2, then there is a counterexample to the FB’ Conjecture with n

vertices and m′ ≥ m hyperedges.

▶ Corollary 13. The FB Conjecture and the FB’ Conjecture are equivalent.
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Figure 3 For selected n, the regions of m for which we verified the EFL’ conjecture, within 3
days of CPU time. For each n, m runs from n to

(
n
2

)
. The color transitions from yellow to red in

proportion to the logarithm of the running time in seconds, red means higher. White regions on the
left are trivial, on the right impossible for linear spaces. Regions we could not solve are in gray.

For given n and m, the individual cases of the EFL’ and FB’ conjectures are, in some sense,
the canonical or essential cases of EFL and FB, respectively, even though the correspondence
between the (n, m)-buckets between the two versions of each conjecture is not one-to-one
(and is made precise by Propositions 9 and 12).

4 Computational Results

In this section we will present the results of our computations. We performed three different
experiments, each on a cluster of machines with different processors3, running Ubuntu 18.04
on Linux 4.15. The source code and scripts for reproducing the results are available as part
of the SMS package at https://github.com/markirch/sat-modulo-symmetries.

The first experiment was targeted at verifying Conjecture 8, and by extension the EFL
conjecture itself. We managed to verify, this time with formal methods capable of proof
logging, the previous known results, and we verified the conjecture in additional cases.
Selected results of this experiment are summarized in Figure 3. The colored cells indicate
which values of n and m we could solve, within a time limit of three days. Our results in
every case agree with the prediction of Erdős, Faber, and Lovász: all linear hypergraphs
are n-colorable. In addition to those shown in Figure 3, we verified all cases listed in the
following theorem.

▶ Theorem 14. The EFL’ Conjecture (Conjecture 8) holds for n, m if n ≤ 12; or
n = 13 and m ∈ [13, 32] ∪ [55, 78]; or
n = 14 and m ∈ [14, 28] ∪ [70, 91]; or
n = 15 and m ∈ [15, 29] ∪ [84, 105]; or
n = 16 and m ∈ [16, 30] ∪ {99} ∪ [101, 120]; or
n = 17 and m ∈ [17, 30] ∪ [117, 136]; or
n = 18 and m ∈ [18, 31] ∪ [134, 153].

The longest successfully terminated case that we encountered was that of n = 15 and
m = 85, which took two days, 15 hours, and 26 minutes to solve, of which one day and 15
and a half hours were spent in the coloring solver.

3 Intel Xeon {E5540, E5649, E5-2630 v2, E5-2640 v4}@ at most 2.60 GHz, AMD EPYC 7402@2.80GHz
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Figure 4 The distribution of the running times for n = 12 and n = 15.

In general, we observed a pattern where hardness of the individual instances culminated
around the middle of the region of the available values

[
n,
(

n
2
)]

, and fell off roughly sym-
metrically on both sides. However, the nature of the hardness differed on the two sides: for
smaller values of m, coloring was negligibly easy (less than 0.1% of the total time) and most
of the time was spent in hypergraph search, while for higher values of m, coloring took up
a much more significant portion of the total time; this proportion peaked for n = 15 and
m = 87, at just over 67%. Selected cases are depicted in Figure 4.

For smaller values of n we can exhaustively enumerate all (n − 1)-reduced linear spaces
and compare their number with the number of learned colorings, to get an idea of the
speedup. We tested this for 10 ≤ n ≤ 12 and found that the total number of colorings is
about 10% smaller than the number of hypergraphs. This is somewhat in contrast with
much higher speedups reported in related work [18], and it would be interesting future work
to investigate why our case behaves differently. One hypothesis that we have is that in our
case, the intersection graphs are not canonical, and hence the colorings do not work as well.
In fact, we could even see isomorphic copies of intersection graphs, which require different
colorings. This is testable by setting up an appropriate experiment, but is somewhat beyond
the scope of this paper.

The aim of the second experiment was to gain insights about the extremal examples to
the EFL conjecture. The second experiment is similar to the first, except that

instead of asking for hypergraphs that cannot be edge-colored with n colors (and getting
none), we asked for hypergraphs that cannot be edge-colored with n − 1 colors;
and we dropped the constraint that the hypergraphs should be (n − 1)-reduced.

Thus, we have enumerated all extremal linear spaces with respect to the EFL conjecture.
The known extremal examples are the degenerate plane (for any n ≥ 3), the complete

graph (for odd n ≥ 3), and the projective plane, where n = k2 + k + 1 for many k including
all prime powers. According to Kang et al. [17], in addition to the odd clique, also “minor
modifications thereof” work. Kahn [15] is similarly cryptic: “[The EFL Conjecture] is sharp
when H is a projective plane or complete graph Kn with n odd, and also in a few related cases,
but there ought to be some slack in the bound away from these extremes.” We enumerated
all extremal examples with n ≤ 12 and in some cases of n = 13, and can confirm that these
“minor modifications,” listed in Theorem 15, are the only other extremal examples.

Let Hn,k be the linear space on n vertices that consists solely of 2-edges and one k-edge,
Hn,3 ̸∩3 the linear space with 2-edges and two disjoint 3-edges, and Hn,3∩3 the space with
2-edges and two intersecting 3-edges.
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Figure 5 The extremal hypergraph H7,3 ̸∩3, on the left drawn analogously to K7 from Figure 1,
on the right in a way that highlights symmetries.

▶ Theorem 15. The linear spaces with n ≤ 12 vertices and chromatic index n are precisely
Hn,k for all k ̸≡ n mod 2, and additionally H7,3, H9,3, H11,3, H7,3 ̸∩3, H11,3∩3, H11,3 ̸∩3, and
the Fano plane.

We proved Theorem 15 almost entirely computationally, with the only exception of H11,3∩3
and H11,3 ̸∩3, which were too hard to prove non-colorable. In Section 4.1, we provide
the missing manual proofs of extremality and generalize some patterns from Theorem 15.
Theorem 15 remains necessary to show that the enumerated extremal examples are complete.

The hypergraphs Hn,k can be seen as a chain of steps of size 2 linking the complete
graph to the degenerate plane. Even though the complete graph is not extremal for even n,
this chain still exists, only shifted to odd k. In this case the chain can even be considered
somewhat “purer,” as there is neither an “intermediate link” of the wrong parity, as there is
Hn,3 for odd n, nor other exceptions as listed in Theorem 15; and moreover there are no
projective planes for even n (k2 + k + 1 is always odd). One is almost tempted to conjecture
that these are the only extremal examples when n is even.

The enumeration of extremal examples is computationally harder than the verification
of the EFL conjecture, for two reasons. The first is that the coloring clauses are weaker,
and as such more hypergraphs must be searched. The second is that while in the case of
the EFL conjecture all graphs are colorable (all colorability queries satisfiable), in this case
non-colorability sometimes has to be proved. Even though we break color symmetries by
assigning arbitrary colors to one clique in the intersection graph, frequently a clique of the
maximum possible size n − 1, a large part of the intersection graph remains to be colored,
often with other large cliques. Since the formula encoding the existence of a (vertex) coloring
of a clique is nothing else than the famous pigeonhole principle formula [11], known to be
hard for resolution and CDCL solvers, we can expect proving non-colorability to be hard.
This is indeed what we observe: for n = 11 we could not completely solve the case m = 51
(H11,3∩3 and H11,3 ̸∩3), and for n = 13 there were many cases that were easy in the first
experiment, but which we could not solve now; in fact, we could not even prove (with SAT)
that K13 is not 12-edge-colorable. Since in these cases we can easily enumerate all linear
spaces, the reason for hardness must be unsatisfiable colorability queries. An interesting
avenue for future research would be to improve performance on these hard coloring instances.

SAT 2023
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Figure 6 The distribution of the running times for the EFL’ and FB’ conjectures for n ∈ [9, 10].

This experiment also uncovered that the minimality check sometimes struggles and runs
out of the limit (see Section 3.2), and duplicate solutions are produced. In this case, this is
not a problem in and of itself, mainly because the copies are very obviously isomorphic, but
it shows that these highly symmetric hypergraphs pose a challenge for current SMS, and
could serve as benchmarks for future development.

In the third experiment we tackled Conjecture 11, and through it Conjecture 3. The
setup is almost identical to the first experiment, except that we use the other version of the
encoding described in Section 3.1. We summarize our results in another theorem.

▶ Theorem 16. The FB’ Conjecture holds for n and m if n ≤ 10; or
n = 11 and m ∈ [11, 20] ∪ [37, 55]; or
n = 12 and m ∈ [12, 17] ∪ [49, 66].

▶ Corollary 17. The FB Conjecture holds for n ≤ 10.

Verifying the FB Conjecture is much harder than verifying the EFL conjecture; for
example for n = 11 and m = 35, Conjecture 8 was solved in 12 minutes, while the same case
took over a day for Conjecture 11. The running times for n = 9, 10 are shown in Figure 6.

4.1 Extremality Proofs

The main results of this section are Theorems 18, 22, 24, and 27. Theorem 18 says that
a linear space with an odd number of vertices that does not have enough or large enough
hyperedges of size ≥ 3 is extremal. Theorem 22 establishes extremality of Hn,k when n

and k have opposite parity. The other two theorems fill some of the gaps left by the first
two. Theorem 24 gives a sufficient condition for a space of odd size to be non-extremal, and
Theorem 27 shows that spaces with an even number of vertices and only even hyperedges
are non-extremal provided that large hyperedges do not intersect.

We say a color c sees a vertex v (and vice versa) if a c-colored hyperedge contains v.

▶ Theorem 18. Let H be a linear space with n vertices, n odd, whose hyperedges of size ≥ 3
have sizes a1, . . . , aµ. If n ≥

∑µ
i=1 ai(ai − 2) + µ + 2, then H is not (n − 1)-edge-colorable.
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Proof. For a vertex of degree d, there are n − 1 − d colors that do not see it. We have
deg(v) = n − 1 −

∑
v∈e,|e|≥3(|e| − 2), so at most∑

v∈V

( ∑
v∈e,|e|≥3

(|e| − 2)
)

=
µ∑

i=1
ai(ai − 2)

colors do not see every vertex. There are ≤ µ colors used for the hyperedges of size ≥ 3, so at
least one color sees every vertex and is used only on 2-edges; a contradiction for odd n. ◀

▶ Corollary 19. Hn,3 ̸∩3 and Hn,3∩3 are not (n − 1)-colorable when n ≥ 11 is odd.
▶ Theorem 20. H7,3 ̸∩3 is not 6-edge-colorable.
Proof. Let A and B be the 3-edges, and v the other vertex. A and B cannot be colored the
same because v needs to see all colors, so the nine 2-edges between A and B use 4 colors, and
some c is used ≥ 3 times. But then each vertex of A and B sees c, and so v cannot see c. ◀

▶ Theorem 21. H9,3 ̸∩3 is 8-edge-colorable.
Proof. {u, v} 7→ u + v mod 8 if u, v < 8, {u, 8} 7→ 2u if u ≤ 3, else {u, 8} 7→ 2u − 1 mod 8,
{3, 4, 5} 7→ 0, {6, 7, 8} 7→ 5. ◀

▶ Theorem 22. Let n ̸≡ k mod 2, k ∈ [2, n]. Then Hn,k is not (n − 1)-edge-colorable.
Proof. Let the k-edge have the color c. All other vertices must see every color, in particular c.
The color c forms a perfect matching with 1 + (n − k)/2 edges; but n − k is odd. ◀

▶ Corollary 23. Hn,3 is not (n − 1)-edge-colorable when n = 4 or n ≥ 6.
Proof. For even n this follows from Theorem 22, for odd n from Theorem 18. ◀

▶ Theorem 24. Let H be a linear space with n vertices, n odd, and assume that H contains
a vertex v∗ that belongs to every hyperedge of size greater than two. If the number of even
hyperedges (including 2-edges) containing v∗ is ≤ n−1

2 , then H is (n − 1)-edge-colorable.
Proof. Rename vertices so that v∗ = n−1, the even hyperedges containing v∗ are A0, . . . , Ar,
with i ∈ Ai, and the odd hyperedges are B1, . . . , Bs, and they are ordered as follows:

0, 1, . . . , r, (A0 \ {0, n − 1}), . . . , (Ar \ {r, n − 1}), (B1 \ {n − 1}), . . . , (Bs \ {n − 1}), n − 1

Color as follows: u, v < n − 1 =⇒ {u, v} 7→ u + v mod n − 1, if u ≤ n−1
2 and {u, n −

1} ⊆ E, then E 7→ 2u; all thus unassigned hyperedges must be Bi, and we color them
Bi 7→ min(Bi) + max(Bi \ {n − 1}) mod n − 1. The coloring is proper because (1) the
doubling color is applied to at most n−1

2 edges; (2) min(Bi) and max(Bi \ {n − 1}) always
have opposite parity, and hence do not conflict with the doubled colors, which are even;
and (3) two colors assigned by the last rule cannot be the same because min(Bi) ≥ n+1

2(
n−1

2 < a < b < c < d < n − 1 =⇒ a + b ̸≡ c + d mod n − 1
)
. ◀

▶ Corollary 25. Let n ≤ 2k − 1, n ≡ k ≡ 1 mod 2. Then Hn,k is (n − 1)-edge-colorable.
▶ Corollary 26. H5,3 is 4-, H7,3∩3 is 6-, and H9,3∩3 is 8-edge-colorable.
▶ Theorem 27. Let H be a hypergraph with n vertices, n even. If all hyperedges of H are
even, and all those of size greater than 2 are pairwise disjoint, then H is (n−1)-edge-colorable.
Proof. Let the hyperedges of size greater than two be L1, . . . , Lr, let L :=

⋃r
i=1 Li. Rename

the vertices so that all Li are closed under additive inverse: x ∈ Li =⇒ n − 1 − x ∈ Li.
Color Li 7→ 0, u, v < n − 1 =⇒ {u, v} 7→ u + v mod n − 1, {u, n − 1} 7→ 2u mod n − 1. ◀

▶ Corollary 28. Let n ≡ k ≡ 0 mod 2, k ∈ [2, n]. Then Hn,k is (n − 1)-edge-colorable.

SAT 2023
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5 Conclusion

In this paper, we used SAT solvers to partially confirm two conjectures about hypergraph
edge colorings for small instances. We achieved this by interleaving the two SAT solvers: one
for symmetry-breaking search for hypergraphs, the other for finding colorings of candidate
hypergraphs, to prune the search space early.

Our experiments show that the hypergraph search and edge-coloring problem is a challeng-
ing benchmark for all components of our framework. To improve the minimality check in SMS,
we plan to combine dynamic symmetry breaking with (partial) static symmetry breaking, for
example by way of sorting the vertices by degree (by a static, poly-size encoding), and limit
the dynamic symmetry breaking to vertices of the same degree. Similarly, it would be very
interesting to improve CDCL performance on these hard coloring problems. Here, it seems,
symmetry-breaking could help, but we have a chicken-and-egg problem: if symmetry-breaking
is sometimes hard for the minimality check, will it be feasible for the coloring part? In any
case, hypergraphs and colorings are very general and expressive combinatorial objects, and as
such are worthy of the attention to improve the performance of general-purpose SAT solvers.
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